
The pacer kit featuring the
National 16 Bit "PACE" MPU.

. -

USER
MANUAL

Distributed Exclusively By Hamilton/ Avnet ss.oo

The Hamilton/ Avnet PACER system ...
A complete Microcomputer system
you can understand and afford.

TABLE OF CONTENTS

Page No.
1.0 INTRODUCTION 1

1.1 Pacer Benefits 1
1.2 Dimensions 3
1.3 Features 4

2.0 WHAT THE HEX rs GOING ON? 7
2. 1 BCD, A Binary Coded Decimal 9
2.2 Hexadecimal 10

2.3 Positive And Negative Numbers 11

3.0 DISPLAY DEFINITIONS 13

4.0 OPERATING INSTRUCTIONS 14
4. 1 Program Counter 14
4.2 Status And Flag Registers 15
4.3 Processor Registers 15
4.4 Pushdown Stack 16
4.5 Automatic Register Advance 16
4.6 Scan Value 17
4.7 Mask Value 19
4.8 Memory Locations 20
4.9 Automatic Memory Advance 20
4.10 Single Step 21
4 .11 Halt 22
4.12 Break Points 23
4.13 Pace Instruction Set 26

5.0 PACER AND YOUR HARDWARE 28
5 .1 Pace Hard Wired Signals 31

6.0 PACER PRODUCT PRICE LIST 38

6. 1 Pacer Kit Unassembled 38

6.2 Pacer Kit Assembled 38

6.3 PAC-1 38

6.4 PAC-2 38

6.5 Cassette 38

6.6 Disc Operating System 38

6.7 Keyboard, ASCII 38
Appendix A - Pace 2 (PAC I)

1.0 The PACER is a complete desk top microcomputer development system that may be
purchased in kit form, unassembled or completely assembled ready to plug in.
In either case the kit is complete, containing everything from the power cord
to the plastic enclosure. PACER is the easiest development system to use, its
unique alphanumeric display actually talks to you in language you can understand
at sight.

1.1 o WHAT ARE PACER'S BENEFITS?

o Complete set of control panel functions:

* Examine or modify - Contents of any computer register or memory
location can be examined or modified.

* Run
* Single Step

* Word Scan

- Examine/modify a location with a single-key
stroke (current location).
Examine/modify the current location and examine
the next sequential location with a single-key
stroke (current location +l).
Examine/modify the previous sequential location
with a single-key stroke (current location -1).

Execute a program starting at a specified address
Execute a program one instruction at a time
starting at a specified address.
Scan through the MPU's registers or memory
starting at a specified location unti1 a location
is found having a specified content.

o Complete set of DEBUG functions:

* HALT
* Breakpoints
* Decimal to

Hexadecimal
Conversion

* Hexidecimal
Calculator

* Address
Ca le u l at i on i n
Hexadecimal

o The CPU Board:

Stop program execution at a specified address.
- Set up to 10 breakpoints to 11 HALT 11 execution.
- Single-key stroke.

Plus(+), minus(-), and equal(=) keys

Current address, +, or - displacement.

* National Semiconductor's PACE microprocessor has all inputs and out­
puts buffered for system expansion.

o Control Board

*Contains control program in lK x 16 ROM and 256 x 16 of control RAM.
All control memory is transparent to user.

o RAM/PROM Board:

* Contains 256 x 16 RAM, expandable to lK x 16, and space for lK x 16
PROM (in 512 x 16 modules).

o Mother Board:

* Printed wiring board which has room for eight user defined card
locations besides the three listed. Cards are offset to insure
proper position of board.

o Power Supply:

*The power supply provides +8 and -16 volts. These voltages are
regulated on each board dependent upon its requirement.

o Full Alphanumeric Display:

* Two 4-digit alphanumeric displays are utilized to allow for easy
to understand communication with the operator. For exam[le, when
looking at Accumulator 1, display reads:IA!Clll,[[/J'IAIF SI

o Keyboard:

* A 32-key keyboard plus 6 additional single keys are supplied to
give the following inputs:

Data Entry - Decimal or hex entry 0-9, A-F.

Control Examine or modify:

* Program counter
*Accumulators (0, l, 2, 3)
* Stack
* Flag registers

Hex Calculator

* + Hex addition
* - Hex substraction

Debug

* Scan for value
* Scan for value with mask

Operate

* Single step program
* Run, begin execution of program
*Cancel, reset to prompt

* Current location
* Go to next (+l in sequence)
*Go to last (-1 in sequence)
* Open/close register or memory

*=Equal, display result
* Decimal to hex conversion

* Scan memory
* Breakpoint (0-9)

* Executive restart, Halt CPU
but do not reset

* Initialize, reset

o PACER is modular and may be expanded in many ways:

* TTY interface & line assembler
* Memory board - RAM
* Memory board - PROM/ROM
* Cassette interface

-2-

* CRT interface
* ASCII keyboard
* Bit interface
* Prototype card

1.2

CASE DIMENSIONS

13~ 11 Wide

1911 Long

7" Over a 11 Height

-3-

l .3 PACE FEATURE LIST

I. PHYSICAL

A. Control console has a 37-key keyboard which provides complete
"control panel" functions as well as a set of "debug" functions
to facilitate program development.

B. Communication with the operator is via two 4-character displays
that have full alphanumeric capability to reduce operator guesswork.

II. OPERATIONAL

A. The system provides the full set of normal "control panel" functions
provided in larger computer systems. The individual functions are
as follows:

1. Execute a program starting at a specified address (RUN).

2. Execute a program one instruction at a time starting at a
specified address (STEP). After each program step, the address
of the next instruction to be executed is displayed. The pro­
gram is advanced one instruction with each entry of the STEP key.

3. Examine and/or modify the contents of any of the 16 computer
registers (PC, FL, A0 ~ A3, S~ ~ S9). The registers are
"opened" for examination or modification by either a single (PC
and FL) or double (AX and SX) key entry. An open register may
be optionally modified by simply keying in a new value. In
either case, the register must be "closed" prior to opening
another register. The close function is accomplished by a
single-key entry. In addition to the computer registers, 12
pseudo-registers (described later) may also be examined and/or
modified in this manner.

4. Examine and/or modify the contents of any memory location.
Memory locations are "opened" by keying in the memory address.

They may be modified and/or closed as described above for registers.

-4-

5. Stop a program that has "run away 11 or entered an 11 infinite
loop 11 , and return control to the operator. Two keys are pro­
vided: !NIT which will reinitialize the system and clear all
active registers, and RESTART 11 RS 11 which will halt the program
and return control without altering the state of the system.
In either case memory is left unaltered.

B. In addition to the normal 11 control panel 11 functions described in
Section A, the following additional features are also provided:

1. Scan upwards in memory, starting at a specified address, unti
a location is found having a specified content, and then auto­
matically open that location for examination and/or modification
as described in Section A-4. The location can be optionally
modified and then closed with a special key 11 SC 11 that will

automatically resume the scan until the next location is found.
The scan is controlled by two pseudo registers VL and MK. VL

contains the value to be searched for, while MK contains a mask
that indicates which bits are to be compared. Both VL and MK
may be examined and modified as described in Section A-3. The

scan function can also be performed on the 16 in. computer
registers and/or 12 pseudo registers (VL, MK and V~ thru V9).

2. In addition to the normal close function, which allows the user
to manually specify the next register or memory location, and
the SCAN close function described above; three additional auto­
matic close functions are provided, all by single-key entries.

a. Close the current location and automatically open the next
sequential location (i.e., the current location +l).

b. Close the current location and automatically open the
previous sequential location (i.e., the current location -1).

c. Close the current location and automatically open the memory
location specified by the contents of the current location.

-5-

When the automatic close functions are used on the registers,
the following order is assumed:

Relative Location 0 l 2 ~ 5 6 ~ 15 16 17 18 ~ 27

Register PC FL A0~ A3 S0 ~ S9 VL MK 80 ~ 89

NOTE: Pseudo registers VL, MK and 80 ~ 89 are described in
Section C-2.

C. The set of special "debug" functions are as follows:

l. HALT instructions return control to the operator. As a result the
operator may insert HALT instructions at points within his program
where he wishes to manually examine the contents of registers or
memory before continuing execution.

2. As an alternative to HALT instructions the operator may define up
to 10 "breakpoints" where the system must automatically return
control. The breakpoints function as HALTS but do not require the
operator to modify his program. The breakpoints are specified by
the 10 pseudo registers 80 __,. 89. A breakpoint is specified by
setting the contents of a BX register to FFFF, thus FFFF may not
be used as a break address.

3. Numeric values may be entered in either decimal or hexadecimal.
The current numeric entry mode is indicated by the display and may
be toggled between decimal or hexadecimal with a single-key entry.
After entry, numeric values are always converted and displayed in
hexadecimal, thereby allowing rapid decimal to hexadecimal
conversion.

4. A two-function (+and -) calculator capability is also provided,
which may be used either for simple decimal or hexidecimal addition
and subtraction (with the result displayed in hexadecimal) or for
computing memory addresses and/or modifying register/memory
locations. The user may include the current memory address in a
computation if memory is being examined by entering a single key.

-6-

2.0 WHAT THE HEX IS GOING ON?

People type computers have been taught from childhood to recognize and manipulate
freely a number system called decimal or base 10. This system uses 10 symbols
to represent the values or numbers. These symbols are 0, l, 2, 3, 4, 5, 6, 7, 8,
and 9. We use combinations of these to form other numbers. Each number or digit
position is assigned a value equal to its position in the number sequence. For
example, the number 12,045.

Position No. 4 3 2 l 0
l 2 0 4 5

l = 5 x 100 = 5
= 4 x 10 l = 40
= 0 x l o2 = 000
= 2 x 103 = 2,000
= l x 104 = 10,000

12,045

10 is the base value of the number system and 0, 1, 2, 3, 4 is the
position or weighted value.

Computers being the simple machines that they are use a base 2 numbering system
and use only zeros and ones to represent a value. By using groups of ones and
zeros and assigning values to the bit positions, large numbers may be represented.
The computer looks at the groups of ones and zeros and determines its value. Th2
least significant bit would have a value of 2°, the next bit would be 21, then 2 ,
etc. Let's use a group of 5 bits and assign bit 0 as the least significant bit.

Bit No.
0 lx2°
l 0 Ox21 0
2 = l = lx22 = 4
3 0 Ox23 0
4 l lx24 16

21 10

21 is the sum of the value of the bit positions.

It can also be seen that by using larger groups of bits, larger numbers may be
represented. An eight bit computer which ca?0handle eight bit positions in
parallel can represent numbers from 0 to 255 .

-7-

All Bits Egual 0 All Bits Egual l
Bit No. Bit No.

0 0 Ox20 0 0 l lx2° l
l 0 Ox21 0 1 l l x21 2
2 0 Ox22 0 2 lx22 4

3 = 0 = Ox23 = 0 3 = l = lx23 = 8 = 255
4 0 Ox24 0 4 l lx24 16
5 0 Ox25 0 5 l lx25 32
6 0 Ox26 0 6 l lx26 64
7 0 . Ox27 0 7 l 1 x27 128

A computer which has 16 bit positions may represent numbers with values
from 0 to 65,535.

Another consideration in computers is the representation of not just numbers, but
both positive and negative values. This may be accomplished by assigning one of the
bits in a group as a plus/minus indicator. The normal method is to assign the most
significant bit position to this task. If it is a logic 0, then the value is positive.
If it is a logic 1, then the value is minus. Assuming a maximum group of eight bits
and using the eighth position as the sign we may represent the following numbers:

sign

Bit No.
0 1 lx2° l
1 l lx21 2
2 1 lx22 4
3 = lx23 = 8
4 l lx24 16
5 l lx25 32
6 l lx26 64

bit 7 0 = + +128

If bit 7 is equal to a 1, then the above number would
It should be noted that by using the most significant
maximum numbers that may be represented is only ±127.
this number would be ±32,767.

be a negative or -127.
bit for the sign, the

In a 16 bit computer

The human type being has difficulty in visually converting all those 11 l 111 s and 11 0111 s
to their represented value. Due to this, other methods of representing or reading
these numbers have been implemented.

-8-

2. 1 BCD or Binar~ Coded Decimal:

BCD uses groups of four binary bits or positions and only uses those combinations
which add up to 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. For example:

Bit 3 2 l 0
0 0 0 0 = 0
0 0 0 1 = 1

0 0 1 0 = 2
0 0 1 1 = 3
0 l 0 0 = 4
0 l 0 1 = 5
0 1 1 0 = 6
0 1 l l = 7
1 0 0 0 = 8
l 0 0 l = 9

The other binary combinations possible in the four bit positions are not
allowed in the BCD method.

l 0 1 0
l 0 l 1
1 l 0 0 Not Valid
l 1 0 1

l l l 0
l l l 1

In an eight bit computer, the decimal numbers of 00 thru 99 may be represented.

Bit Position: 7 6 5 4 3 2 1 0

10 0 0 0 \ ~ 0
I

0 0 o I
0 0

0 0 I l 0 0 1
I 1x20 l ~lx2° 1

~ox21 0 Ox21 0
Ox22 = 0 Ox22 = 0
lx23 8 lx23 8

9 9

Note that the binary weighting system repeats for each four bit group.

-9-

2.2

This is then compensated for by applying the decimal or base 10 rules
to the converted numbers.

q:r:iJ 9x 10° = 9

L 9x101 = 90

99

By only having to weigh up to four binary bits a person can easily become efficient
at converting binary to decimal and decimal to binary numbers.

The maximum numbers therefore that can be represented in an eight bit machine is then
only 9910 in decimal versus 25510 in binary.

As can be seen, the efficiency of the computer is restricted due to the illegal
combination in each four bit group. Another representation of binary numbers allows
for all combinations of the four bit groups. This method is called hexidecimal.

Hexidecimal or HEX:

Hex uses a numbering system of base 16. Hex allows for all combinations of the
four bit binary groups as follows:

Bit Position: 3 2 1 0 Binary Hex Symbol

0 0 0 0 0 0

0 0 0 l 1 1

0 0 1 0 2 2

0 0 1 1 3 3

0 1 0 0 4 4

0 0 1 5 5

0 1 1 0 6 6

0 1 1 l 7 7

1 0 0 0 8 8

1 0 0 9 9

1 0 1 0 10 A

1 0 1 11 B

1 1 0 0 12 c
1 1 0 1 13 D

1 0 14 E

1 1 1 15 F

The ALPHA Notation A - F are used to allow for a single character representation
of the four bit group without duplication.

-10-

With Hex we can now represent all 16 combinations of binary weights possible in
a group of four bit positions.

An eight bit computer can then represent the numbers 00 thru FF, which is
equivalent to binary 0 thru 255.

Bit Position: 7 6 5 4 3 2 1 0
10 0 0 01 10 0 0 01

I I
I

I
I

1 1 1

I ~lx2° 1 lx2° 1
lx21 = 2 ~lx21 = 2
lx22 4 lx22 4

lx23 8 lx23 8

15 = F 15 = F

Applying the same rules as for decimal, only using the base 16 instead
of base 10.

~ 15xl6° = 15
L 15x161 = 240

255

As can be seen, binary numbers, no matter what the number of positions, can easily
be converted by simply dividing them up into groups of 4 bits. For example, in a
16 bit computer:

Hex

Binary

Hex

E

fu)
'\/

E

9

fa~
v

9

A
A
1010 v

A

Also, it becomes obvious that by using a hex symbol to represent an equivalent for
4 binary bits, it takes a lot less printed symbols. Most all computer documentation
is now using the Hexidecimal representation of computer code.

2.3 Positive and Negative Numbers:

In Hex the method for representing positive and negative numbers is the same as
for binary. The most significant bit of the most significant group is set to a
zero for positive and a one for negative.

If we have four groups of 4 bits each as in a 16 bit computer, we could have:

-11-

Hex

Binary

7
/\

0111

F
/\

1111

l Sign Bit

F

~
F

l{,)

This number is equivalent to a positive (+) 32,767.

By making the most significant bit a logic l, then the number becomes:

F F F F

&i /\
1111

I\
1111

/\
1111

l Sign Bit

This number is equivalent to a minus (-) 32,767.

-12-

3.0

I . I . I . 1. I

I · I : I : I : I

I ? I ? I ? I ? I

DISPLAY DEFINITIONS

I 1 . I . I . l

I l : I : I : I

I I l . I I

I I . I . I I

-13-

System has been initialized, either by
turning on the oower switch or by
depressing the !NIT ~ey on the keyboard

System is in the 11 Prompt 11 mode - waiting
to accept the next mode of operation

Decimal to Hexadecimal conversion mode -
waiting for next mode of operation

An illegal function was attempted

Register range or memory range was exceeded

4.0 PACER OPERATOR INSTRUCTIONS

Upon initialization, the lefthand and righthand displays appear as shown below:

I • i • I . i • I
The operator can at this time perform any function he wishes, i.e., scan memory,
look at processor status, enter data, modify data, read entire program or just
bits of it, etc.

4.1 PROGRAM COUNTER (PC)

To look at the program counter (PC), depress 11 PC 11 on the keyboard, and read:

I PI c I . I • I
To modify the contents of the PC, the location desired is typed in. The display
would read, for example:

Key in 11 211 IPlcl.1.1 I . I . i . I 2

Key in 11 311 IP1 cl .I .I

Key in 114 11 IPl~l.1.1 I .I 21 31 4 j Then read the display

Then the 11 CR 11 key is depressed on the keyboard, and the display reads:

I • I . I . l . I I . I . I . I . I
The display must be in this position so that the operator is assured his data
has been registered in the PC, and also in order to proceed to next function.

-14-

4.2 STATUS FLAG REGISTER (FL)

To view the status register, the operator depresses 11 FL 11 :

I Fi LI . i . I I . I . I . I . !
To modify same, type in the desired data on the keyboard. The lefthand display
will still remain the same. For example, 11 1, 2, F, 011 are keyed in. The
righthand display would then read:

I FI LI • I . I
Then the 11 CR 11 key is depressed and the data is at this time officially entered
in the status flag register (FL). The display now will show:

I . I . I . I . I I • I . i . I . I
4.3 PROCESSOR REGISTERS A~, Al, A2 and A3

In order to read the registers, depress first 11A", fo 11 owed by the number of
the register the operator desires (~, 1, 2, or 3). An example of what the
display would show:

1.1.1.1.~
Then,

I 01 ~1 01 ~ l
To modify data in the registers, the desired data is then typed in on the key­
board. The display will then read, for example:

I • I . i 91 s I
Then, depress the 11 CR" key to complete the function. Display will then read:

I.I.I.I.I I . I . I . I . I
After any given register is loaded, others may be loaded also by repeating the
procedure using appropriate additional information.

-15-

4.4 PROCESSOR PUSHDOWN STACK (S)

Any level of the stack may be read by depressing 11 S11 and the level· of the
stack the operator wishes to read (0 through 9). An example:

[sj?l.1.1
The 11 F's 11 show that no data has been entered thus far. Then, enter data
desired, such as:

.I 3! 91 a

Then depress the 11 CR 11 key and read:

I :.1 • I . I . I I . I . I . I . :
To re-read or verify the data in that location immediately following, again
depress the 11 CR 11 key and read contents. Then, again, depress 11 CR 11 and return
display to:

I • I . I . I • I I . I . I . I .

4.5 AUTOMATIC REGISTER ADVANCE

Another way all of the processor registers may be read or altered is to depress
either the ·~ 11 key or the 'U. 11 key. The 11t 11 key will advance the display through
the registers one after another for each depression. Data may be read or altered
for a given register when that particular register is shown on the display.

The 11 CR 11 key need not be depressed fo 11 owing the entry, but instead, the 111' 11 key
is depressed. This will also cause the display to advance to the next register.
(See information on Page 17)

The ''Ji." key is like the ·~ 11 key in that when depressed, it will display each of
the registers so that data may be read or altered in the same way as the ·~ 11 ,

except that it is depressed when there is a need to REVERSE the order of registers
displayed, i.e., A3, A2, Al, A0, etc.

-16-

Depress ''1' 11

Depress ''1' 11

Depress 111' 11

Depress 111' 11

Depress 11f 11

Depress '1' 11

I PI c I . I . I

I FI LI • I • I

I A I ~I . I • I

I A I 1 I . I • I

I Al 2 I • I • I

I A I 31 .1 • I

I s I a I . I • I

(The data in each register

will appear on the right­

hand display when that

register is displayed.)

and so on through all the registers. Then when at 11 89 11 the 11t 11 key is depressed,
and the display will read:

1?1.1.1.1 r.1.1.1.1

4. 6 SCAN VALUE
This feature enables the operator to read certain desired data already entered
in the system memory by depressing the Value key 11 VL" on the keyboard. If it
is desirable to know which addresses contain particular information, the Value
key (VL) is depressed and then that desired information is entered.

The address that is the desired starting place for the scan is entered and then
the Scan (SC) key is depressed. This will cause the machine to search for the
next address that has that same value, and the display will then show that
address and its data. The Scan key (SC) is depressed repeatedly and each address
containing the scan value is read each time on the display until the entire

-17-

memory has been scanned. Example:

Depress "VL" and read display:

I v I LI • I . I
Enter the data desired,

I v I LI . I . l I • I FI A I B I
Then depress "CR" and read:

I . I . I . I • I I • I .] • I • i
Enter the starting address for the scan:

I • I . I .1 5 I . I • I . I • l
Now depress the Scan key (SC):

This is the first address, after the starting address, at which this data was
found. At this time data can be modified by keying in the desired data. (It is
automatically entered when the "SC" key is again depressed).

Depress Scan key (SC) again and read the display for the next address containing
the specified value:

Depress Scan key (SC) repeatedly until the entire memory is scanned.

When the Pacer is scanning memory and there are no addresses with the data it

is searching for, the display is blank until it searches all addresses. This
takes approximately 25 seconds to scan 65,000 addresses.

Another feature on the PACER is: If the operator has data entered only in the
first sections of memory and not all addresses are occupied, and the operator
does not wish to wait until scanning is complete, he may depress the Cancel key

(CANCEL) on the keyboard and automatically terminate the scan.

-18-

When scanning of the memory is complete, display reads:

I . I • I . I • I

4. 7 MASK VALUE (MK)

This feature enables the operator to scan a certain digit or digits in the
display, "masking out" the digit(s) in memory that are not desired to be read.
Example: Depress the Value key (VL) and read display:

I vi d . I . I
Then enter the desired data to be scanned:

i vi d . I . I
Depress the 11 CR 11 key:

I . I . I . I . I I • I . I . I . !
Now depress Mask key (MK) and read display:

At this point, enter either zeros or 11 F1 s1' into each digit in order to designate
which digit(s) are to be scanned and which are not. The digits desired to be
masked out are entered as zeros. The digit(s) that are to be searched are
entered as 11 F11 , meaning "enable". For example:

Depress the "CR 11 key on the keyboard:

I . I . I • I . I I . I . I . I . I
Enter the desired starting address for the masked scan:

I • I . I . I ~ I I . I . I . I . I

-19-

Now depress the Scan key (SC) to begin the scan and read:

I ft) I ft) I l I , I
The display will not only show the digit which had been enabled, but rather the
entire contents of that address. Individual bits can be scanned for by setting
the appropriate mask, i.e., if bits l and 2 are being scanned for, the mask
would be 11 611 •

4.8 MEMORY LOCATIONS

To examine any memory location, enter the address that is desired. Example:

I • I • I • I • I
and then depress the 11 CR 11 key

To modify the contents of the memory location, the desired new value should be
typed in over the displayed data, such as:

I ft) I 1 I 2 I 3 I
Then depress "CR"

1=:1 • I • I • I I . I . I . I . I
To re-read or verify the data at this address immediately following completion
of this function, again depress the 11 CR 11 key and read display:

I ~1 11 21 3 l
Then, again, depress 11 CR 11

I . I . I . I . I I . I . I . I . I
4.9 AUTOMATIC MEMORY ADVANCE

As with reading and/or altering of registers automatically, all that need be
done to read or alter memory locations is to either depress the 11' 11 key or the
11.J, 11 key repeatedly.

-20-

The data at a certain address can be modified by keying in the new data and
then depressing the 111' 11 key to: (a) register the new data, and (b) advance
the display to the next address. Or, in the case of scanning in reverse,
depress the 11.J, 11 key in 1 i eu of the 1'1' 11 key.

4.10 SINGLE STEP

[.I.I.I.I I . I . I . I . I
Enter the desired starting address:

I . I . I 2 I 1 I I . I . I . I . I
Depress the single-step key. The instruction at the starting address is
executed and the display shows the next address to be executed:

I s I Tl p I . I

4.11 HALT

If a halt instruction is in the program when it is executed, the display will
read:

4.12 BREAKPOINTS

The following is an example of a program to explain the usage of breakpoints.

Address Mnemonic Hex Code

0 JMP +l 1900
1 JMP +l 1900
2 JMP +l 1900
3 JMP +l 1900
4 JMP +l 1900
5 JMP -6 1800

-21-

To load memory, key in the starting address:

1.1.1.1~1 1.1.1.1.1
Depress the "CR" key:

Then key in the first instruction:

Depress the 11 1'" key:

Key in the rest of the program in the same way:

I :. I • I • I • I
Depress the breakpoint key "B" on the keyboard:

I :. I • I • I • I
Key in the first breakpoint to be set (0-9). Key in B0 and the display
wi 11 read:

The display will read FFFF if no breakpoint had previously been set.

Key in the desired breakpoint address, such as (3):

I Bl 0 I • I • I
Depress the "CR" key to enter the address for that particular breakpoint.

I • I • I • I • I I ~ I • I • I • I
Any of the remaining breakpoints can be set in the same way. Key in, for
example, (B6):

I Bl 6 l " I - I If IF I F I F I

-22-

Then key in the breakpoint address (5) and the display would read:

I . I • I • I s I
Depress the 11 CR 11 key:

I:. I . I. I • I I . I • I • I • I
Now, key in the starting address for execution of the program:

1.1.1.1~1 I . I • l • J . I
Depress the single step key (STEP):

Depress'STEP" key:

Depress 11 STEP 11 key:

Depress "STEP". Key;

Depress "STEP 11 key:

Depress "STEP" key:

Is IT Ip I. I
The breakpoint address will be displayed in 11 RUN" mode the same as it was in
the "single 11 step mode.

Depress the "RUN" key.

-23-

Depress the 111RUN 11 key again:

[B I R I K I • I
In either the 11 single step 11 or 11 run 11 mode it is possible to examine and/or
modify any of the registers or memory locations before continuing program
execution.

To examine registers A'/J and Al, depress the register 11A11 key:

I • I • I • I • I
Key in register 11 .0 11 :

I • I • l. 1 .: I
Depress the 11 CR 11 key:

Depress the 11 t 11 key:

Depress the 11 RN 11 key:

To remove the breakpoints, depress the breakpoint key (B):

I :. I • I • I • I
Key in the first breakpoint that was set (0):

I ~ I '/J I '/J l 3 I
Key in 11 FFFF 11 to remove the breakpoint:

I F I F I F I F I

-24-

Depress the 11 t 11 key until the next breakpoint that needs to be removed is
displayed. Then remove it in the same way.

Key in the starting address:

I • I • I • I ~ I 1.1.[.l.1
Depress the 11 RN 11 key:

[I
The display is now blank because the program is being executed. Program
execution can be terminated in one of two ways:

1. Depress the initialization 11 INIT 11 _key. The 11 INIT 11 key will clear all of
the registers and, therefore, the status of the system is not retained.

2. Depress the restart 11 RESTART 11 key. System status is not cl eared. therefore,
it is possible to then look at all of the registers, etc.

Depress the restart 11 RESTART 11 key:

-25-

I
N
O"'I
I

4.13

ALPHANUMERIC SEQUENCE BY HEXADECIMAL
Read down then right.

Mnemonic
Assembler Code AGO ACT AC2 AC3

HALT 0000
CFR r 0400 0500 0600 0700

CRF r 0800 0900 OAOO OBOO

PUSHF ocoo
PULLF 1000

JSR disp(xr)
JMP disp(xr)

XCHRS r TCOO 1000 TEOO !FOO

ROL r.n,I 20XX 21XX 22XX 23XX

ROR r,n,I 24XX 25XX 26XX 27XX

SHL r,n,I 28XX 29XX 2AXX 2BXX

SHR r,n,I 2CXX 20XX 2EXX 2FXX

NOT
fc USED IET IE2 IE3

PFLG fc 3000 3100 3200 3300

SFLG fc 3080 3180 3280 3380

STACK AGO AGO AGO
cc Full =O Bit! 5=0 BitO= 1

BOC cc,disp 40XX 41XX 42XX 43XX

AGO ACT AC2 AC3

LI r, disp 50XX 51XX 52XX 53XX

sr AGO ACT AC2 AC3
dr AGO AGO AGO AGO

RAND sr,dr 5400 5440 5480 54CO

RXOR sr,dr 5800 5840 5880 58CO

RCPY sr,dr 5COO 5C40 5C80 5CCO

AGO ACT AC2 AC3

PUSH r 6000 6100 6200 6300

PULL r 6400 6500 6600 6700

sr AGO ACT AC2 AC3
dr AGO AGO AGO AGO

RADO sr,dr 6800 6840 6880 68CO

RXCH sr,dr 6COO 6C40 6C80 6CCO

AGO ACT AC2 AC3

CAI r, disp 70XX 71XX 72XX 73XX

sr AGO ACT AC2 AC3
dr AGO AGO AGO AGO

RADC sr,dr 7400 7440 7480 74CO

BASE
PAGE
(XX)

14XX
18XX

IE4
3400
3480

AGO
Bitl=l
44XX

AGO
ACT
5500
5900
5000

AGO
ACT
6900
6000

AGO
ACT
7500

PACE INSTRUCTION SET

PC AC2 AC3
REL REL REL
(XX+PC) (XX+AC2) (XX+AC3)

15XX 16XX 17XX
19XX TAXX TBXX

IE5 OVF CRY LINK IEN BYTE FT 1 F12

3500 3600 3700 3800 3900 3AOO 3BOO 3COO
3580 3680 3780 3880 3980 3A80 3B80 3C80

AGO AGO AGO

*O Bit2=1 CONT LINK IEN CRY Bit 15=0 OVF
45XX 46XX 47XX 48XX 49XX 4AXX 4BXX 4CXX

ACT AC2 AC3 AGO ACT AC2 AC3 AGO
ACT ACT ACT AC2 AC2 AC2 AC2 AC3
5540 5580 55CO 5600 5640 5680 56CO 5700
5940 5980 59CO 5AOO 5A40 5A80 5ACO 5BOO
5040 5080 5DCO 5EOO 5E40 5E80 5ECO 5FOO

ACT AC2 AC3 AGO ACT AC2 AC3 AGO
ACT ACT ACT AC2 AC2 AC2 AC2 AC3

6940 6980 69CO 6AOO 6A40 6A80 6ACO 6BOO
6040 6080 6DCO 6EOO 6E40 6E80 6ECO 6FOO

ACT AC2 AC3 AGO ACT AC2 AC3 AGO
ACT ACT ACT AC2 AC2 AC2 AC2 AC3
7540 7580 75CO 7600 7640 7680 76CO 7700

F13 F14
3000 3EOO
3080 3E80

JC13 JC14
4DXX 4EXX

ACT AC2
AC3 AC3
5740 5780
5840 5B80
5F40 5F80

ACT AC2
AC3 AC3
6B40 6B80
6F40 6F80

ACT AC2
AC3 AC3
7740 7780

NOT
USED
3FOO
3F80

JC15
4FXX

AC3
AC3
57CO
5BCO
5FCO

AC3
AC3
6BCO
6FCO

AC3
AC3
77CO

Halt
Copy flags to register
Copy register to flags
Push flags onto stack
Pull stack into flags
Jump to subroutine; XX= ±127; push PC onto stack
Jump; XX= ±127
Exchange register and stack
Rotate register left
Rotate register right
Shift left
Shift right

Pulse or reset flag
Set flag

) Bit 1=1 include link bit
Bit 2 = 2 shift count
Bits 2·7 = N =shift count

Branch on condition (PC relative) XX = ±127

Load immediate; load register with XX; XX= data
Bit 7 of XX extends to Bits 8-15 of register

"AND" register to register; result to register (dr)
Exclusive "OR" register to register; result to register (dr)
Copy register to register

Push register onto stack
Pull stack into stack

Add register to register; result to register (dr), overflow, and carry
Exchange register

Complement register and add XX; result to register
Bit 7 of XX is extended to Bits 8-15

Add register to register plus carry; result to register (dr);
overflow and carry

I
N
'-....J
I

ALPHANUMERIC SEQUENCE BY HEXADECIMAL
Read down then right.

Mnemonic
Assembler Code AGO ACl AC2 AC3
AISZ r, disp 7BXX 79XX 7AXX 7BXX
RTI disp 7CXX
RTS disp BOXX
DECA 0, disp(xr)
ISZ disp(xr)
SUBB 0, disp(xrl
JSR @ disp(xr)
JMP @ disp(xr)
SKG 0, disp(xr)
LO 0,@ disp(xr)
DR 0, disp(xrl
AND 0, disp(xrl
DSZ disp(xr)
ST 0, @disp(xr)
SKAZ 0, disp(xr)
LSEX 0, disp(xr)
LO r, disp(xr) ><

><
><
~

ST r, disp(xr) 2::::;
><
~
~

ADD r, disp(xr) ><
><

><
2:S

SKNE r, disp(xr) ~
~

>..::::;:
~

BASE PC
PAGE REL
xx (XX+PC)

88XX B9XX
BCXX BOXX
90XX 91XX
94XX 95XX
9BXX 99XX
9CXX 9DXX
AOXX Al XX
A4XX A5XX
ABXX A9XX
ACXX ADXX
BOXX Bl XX
BBXX B9XX
BCXX BOXX
co xx Cl XX
C4XX C5XX
CBXX C9XX
CCXX CDXX
DOXX DlXX
D4XX 05XX
DBXX D9XX
DCXX DDXX
EOXX El XX
E4XX E5XX
EBXX E9XX
ECXX EDXX
FOXX Fl XX
F4XX F5XX
FBXX FSXX
FCXX FOXX

PACE INSTRUCTION SET

AC2 AC3
REL REL
(XX+AC2) (XX+AC3)

BAXX 8BXX
8EXX 8FXX
92XX 93XX
96XX 97XX
9AXX 9BXX
9EXX 9FXX
A2XX A3XX
A6XX A7XX
AAXX ABXX
AEXX AFXX
B2XX B3XX
BAXX BBXX
BEXX BFXX
C2XX C3XX
C6XX C7XX
CAXX CBXX
CEXX CFXX
D2XX D3XX
D6XX 07XX
DAXX DBXX
DEXX DFXX
E2XX E3XX
E6XX E7XX
EAXX EBXX
EEXX EFXX
F2XX F3XX
F6XX F7XX
FAXX FBXX
FEXX FFXX

Add XX to register; skip next instruction if result= zero; XX= ±127
Return from interrupt; add XX to top of stack and place result in PC; XX= ±127; set I EN flag
Return from subroutine; add XX to top of stack and place result in PC; XX= ±127
Decimal add register ACO to contents of effective address; result to ACO, overflow and carry; address= (XX+ register shown); XX= ±127
Increment contents of effective address by ~;skip next instruction if result= O; result is in EA; use address mode shown; XX= ±127
Subtract contents of effective address from ACO; result to ACO; use address mode shown; XX= ±127
Jump to subroutine indirect; push PC onto stack; final address= to contents of location (XX+ register shown); XX= ±127
Jump indirect; final address= to contents of location (XX+ register shown); XX = ±127
Compare ACO with contents of location (XX+ register shown); XX = ±127; skip next instruction if ACO >(EA)
Load indirect; load ACO with contents of final address; address= contents of location (XX+ register shown); XX= ±127
DR ACO with contents of location (XX+ register shown); XX = ±127; result to ACO
AND ACO with contents of location (XX+ register shown); XX= ±127; result to ACO
Decrement contents of effective address by 1; skip next instruction if result= O; result is in EA; address= (XX+ register shown); XX = ±127
Store indirect; store ACO into final address; address= contents of location (XX+ register shown); XX= ±127
AND ACO with contents of location (XX+ register shown); skip next instruction if result= O; XX= ±127
Load ACO with sign extended; Bit 7 of location (XX+ register shown) is extended to ACO B-15; Bits 0-7 are loaded to ACO Bits 0-7; XX= ±127

Load ACO with contents of location (XX + register shown); XX = ±127
Load AC1 with contents of location (XX+ register shown); XX= ±127
Load AC2 with contents of location (XX + register shown); XX= ±127
Load AC3 with contents of location (XX+ register shown); XX= ±127
Store ACO to location (XX+ register shown); XX = ±127
Store AC1 to location (XX+ register shown); XX= ±127
Store AC2 to location (XX+ register shown); XX= ±127
Store AC3 to location (XX+ register shown); XX = ±127
Add ACO to location (XX+ register shown); XX= ±127; result to ACO
Add AC1 to location (XX+ register shown); XX= ±127; result to AC1
Add AC2 to location (XX+ register shown); XX= ±127; result to AC2
Add AC3 to location (XX+ register shown); XX= ±127; result to AC3
Compare ACO to location (XX+ register shown); XX= ±127; if not equal skip next instruction
Compare AC1 to location (XX+ register shown); XX= ±127; if not equal skip next instruction
Compare AC2 to location (XX + register shown); XX= ±127; if not equal skip next instruction
Compare AC3 to location (XX+ register shown); XX= ±127; if not equal skip next instruction

5.0 PACER AND YOUR HARDWARE
Pacer provides the user with many features intended to make it easy for the
user to;

1) learn to operate Pacer

2) to be able to write programs

3) enter the programs into Pacer memory

4) debug the program using Pacer debug features

5) execute the debugged program

6) design and breadboard various interfaces

7) checkout the interfaces using the available card slots
on the mother board

8) use components and/or sub-assembly, memory board, CPU board,
etc., of Pacer in production systems

The Pacer is organized as indicated by the block diagram below. Three
connector positions are used on the mother board for the CPU, Control and
memory cards. The remaining eight locations are for user expansion and
application development.

There are essentially four groups of signals on the back plane. These are:

• 16-Bit Bi-directional Data Bus

• System Control Bus (BADS, BIDS, BODS)

•

•

User Control Bus (NBADS, BODS, BIDS, BCLK, Interrupt inputs,
Jump conditions and Flag lines)

Decoded Peripheral Read/Write Strobes

Besides these, there are other signals on the back plane used to interconnect
the three Pacer system cards. These signals may be utilized, however, cau­
tion should be exercised to prevent system manfunctions due to overloadinq. etc.

-28~

Prom/Program
Connector

mer [

User Connect or [

Keyboard
Display
Connector

I
N
\.0
I

~

U-. :
\ ~"-

/

fr-

L£c ~{'·:· Jll JlO
......- ,..--,

Jl2 .~·.: 1
~ ~ {' .. \ . >• . L··~

l'iJ. ~

,\':"
Jl3 ~····
1~11· . . ·. .
L ~··· I 21~~ .·· l.:;:._' ..;., Jl4 ...;.;. .- "
~?1:•'0· ~-\I r .·. .. C <

1··· -=-:-.-. ' , .
~·>·?:'

. :
~---- --

..:.. .. ······-~·-·····.·· •:--::~.::2~:.:.: ..

PACER BLOCK DIAGRAM

User Locations

J9 J8 JJ_ ~ ~ ,......., r-.. - ·•<: 1-<:. ··.··•···· ~-!"·•·-~-
-'--:·,- ..;;. _.::_ -·-- . ,·_

. F ·•··.·

.

,.~- .
..;;. .·. ..;;.

:
...:..:. I

'-- .__ .__ ..._ ~

,.~! Alpha/Numeric ~ I .. --· ~ Display
' I

It All I 319 216 I F1 c
+10 -16 -50 n~ ..l _J_ _J_ ..l. ..I.

1 l l
r-- 11 Keyboard ll

_ ... 0 VL MK SC Bx 0
Power F · .. · Run Power
Supply PC FL Ax SX I·<::

1

QT
@ • CR 0 CL + - = Run

0 c D E F 0 g 9 A B cancel Step

0 4 5 6 7 0 0 1 2 3 Dec/Hex Restart

~

F

·"-~

;-
··~.-

.__

CPU,
Control,
Memory.

r~--,,,,,..__---~

1 J3 ~ ;... r--

I --~··?

~ t . .

''·-~~

S._'·'·' .--~-:-;-~_,.,_.

~

r .._ ..
~

'---' ~

User Control Bus

16-Bit Bi-Direc­
tional Data/Add­
ress Bus
System Control
Bus ADS/IDS/ODS/
CLK
Pheripheral Read/
vJri te Strobes

The following requirements need to be considered when attaching peripherals
to the Pacer system.

1. The Pacer supplies unregulated supplies to the edge card
connector. The user is required to have regulators on
his application card. The prototyping cards which are
available to Pacer users have the necessary area and
mounting for a positive and negative regulator.

2. The Pace system communicates with peripherals and memory
by first puting a 16-bit address onto the data bus.
A signal, NBADS, is then present to signify that the add­
ress is valid. A comparison or decode of part or all of
these 16 bits would then select the user application.
Either the address bits, the decode,or comparison true must
be latched at NBADS time in order to supply a static select
signal until the trailing edge of BODS or BIDS.

Pace Internal
Clock Phase 2 3 4 5 6 7 8 E E 1 2: 13 4 5

BCLK

BNADS
BIDS/BODS

ADXO:J-ADX09

BDl/0 00-BDl/O 15
(Read Cycle)
BDl/000-BDl/015
(Write Cycle)

Card/Memory/
Peripheral Select

Extend

-, r-1 r·---, r·--, -- .. r-~ ~--··1 ~ L__J L_J L ____ l L

' j
____ _J L_ ________ _

~._,..~~~.--------~~~--~--~~---'' I ,

~$?:%a ADDRESS DATA LATCHED 1 1 ~~

~ADDRESS VALI['f%0z;%7~0ZJ)ATA VAL!~ [fili"[fr{-VALID

~ADDRESS VAL!~ DATA VALID ~ ~ADDR VAL:ID

I~ L ___________ __.

I/0 TIMING

-30-

--------------' '------ ·------
I I

r4ul tip le 'j'
Machine -
Cycles

3. Data being transfered from a user onto the data bus must
be enabled only when the user logic is selected and the
BIDS strobe is present. Tri-state devices should be
utilized for this purpose. Facilities are provided using
resister packs on the mother board if user wishes to use
open collector logic or extend the back plane signals.

All of the Pace user signals are provided on the back plane. The following is
a list, with description, of each of these. For further information regarding
these and other aspects of Pace, the reader is requested to use the Pace
Technical Description, National Semiconductor Publications No. 4200078A and
other documents contained in the Pacer Document Package.

5.1 DESCRIPTIONS OF PACE HARDWIRED SIGNALS

Signal
Mnemonic/Name

BDOOBD15/Data Bits 00-15

BIDS/Input Data Strobe

BODS/Output Data Strobe

-31-

Description

Input/output Data Bus Lines.

Pace output signal used to enable external
devices so data can be placed on-line to
Pace. IDS operation is as follows:

1. Following output of peripheral or
memory address information from
Pace, DOO-Dl5 data line drivers
assuming high-impedance state and
Pace Control Logic drives IDS
Signal high.

2. IDS remains high for approximately
1.5 CLK periods. (plus extended)

3. Valid input data to Pace must be
present on DOO-Dl5 Input/Output
Data Bus Lines when IDS is driven
low again by Control Logic after
approximately 1.5-CLK-period duration.

Pace output signal used to enable external
devices to accept data output from Pace,
ODS operation is as follows:

1. Following output of peripheral or
memory address information from
Pace, data are placed on DOO-Dl5
Input/Output Data Bus Lines by Pace.

NBADS/Address Data Strobe

EXTEND/Extended Data Transfer

NINIT/Initialize

-32-

2. At approximately the same time that
data are placed on Input/Output
Data Bus, ODS Signal is driven high
by Pace Control Logic to signify
that output data from Pace are
available to memory or peripherals.

3. ODS remains high for approximately
l .5 CLK periods.

4. Output data remains on Input/Output
Data Bus after ODS is driven low
again by Control Logic after approx­
imately l .5-CLK-period duration.
Thus, ODS trailing edge can be used
to clock Pace output data into
External Data Latch. ODS can also
be used as read/write control signal
for external RAM memory elements.

Pace output signal used to clock address
information from Pace into Address Latches.
After address information is placed on
Input/Output Data Bus by Pace, NADS Signal
is driven low for approximately 0.5 CLK
period by Pace Control Logic. NADS is
active in middle of approximately 1 .5 CLK
periods that address information is valid.
Thus, either edge of NADS can be used to
clock address information.

Pace input signal used to temporarily in­
crease time duration of data input/output
transfers to accommodate accessing of slow
memories or peripherals without altering
CLK frequency. EXTEND Signal must be
driven high at beginning of ODS or IDS.
If EXTEND is held high, data-transer
operation is extended by 1 CLK period.
Holding EXTEND high for additional n clock
periods increases data-transfer timing
by n + 1 clock periods.

Pace input signal that initializes micro­
processor functions. When NINIT is low,
Pace operation is suspended and all Pace
strobe signals (IDS, ODS, NADS, and so
forth) are set to inactive state. After
NINIT completes low-to-high transition,
the following conditions are effected:

1. Pace Program Counter contents are
set to zero.

NHALT/Control Panel Halt

CONTIN/Continue Jump Condition

BPS/Base Page Select

JC13, 14, 15/Jump Conditions 13,
14, and 15

2. Internal Stack Pointer (indicates
last Stack level accessed) is
cleared.

3. All flags and interrupt enables are
set low except Level-0 Interrupt
Enable which is set high. All other
registers contain an arbitrary value.

Pace Control Logic input/output signal used
for nonmaskable Level-0 Interrupt, micro­
processor stall, and programmed HALT indi­
cator output. When NHALT is applied as
low input, microprocessor operation halts
after completing execution of current
instruction. When Halt Instruction is
executed, NHALT Line is driven low by Pace
Control Logic for a 7/8 duty cycle.
Microprocessor can be stalled by using
external open-collector driver to hold
NHALT Line low for desired time duration,
thereby overriding NHALT output buffer on
Pace chip.

Pace Jump Condition Multiplexer input/
output signal used to sense external signal
through BOC Instruction. Also used to
restore microprocessor operation from
suspended state or cause subroutine branch
to Level-0 Interrupt Service Routine
(generally used to implement Control Panel
functions). Driving CONTIN Input high for
4 CLK periods, minimum, causes halted
microprocessor to resume operation. As
output, CONTIN is driven low for approxi­
mately 3 clock periods by Pace Jump Condi­
tion Multiplexer to acknowledge that
microprocessor operation is stalled.
CONTIN Line must be pulsed to terminate
Halt Instruction.

Input signal to Pace Control Logic that
enables one of two base-page addressing
schemes to be selected. When BPS is low,
first 256 words of memory constitute base
page (page zero). When BPS is high, first
128 memory words and last 128 memory words
constitute base page.

User-specified branch-condition inputs to
Pace Jump Condition Multiplexer. Some
possible uses are testing system status
and receiving serial data. When JC13, 14

-33-

Fll , 12, 13, 14/Fl ags 11 , 12
13 and 14

NIR2, 3, 4, 5/Interrupt Requests
2, 3, 4 and 5

or 15 is high, Pace Branch-On Condition
Instruction effects program branch if
Jump Condition Input is true.

Pace Status and Control Flags Register
general-purpose control flag outputs.
Fll.-14 may be used for direct control of
system functions or serial data output.
Individual flags may be set by Pace
Set Flag Instruction and pulsed or reset
by Pulse Flag Instruction. Push Flag
and Pull Flag Instructions permit
contents of Status and Control Flags
Register to be saved on Stack during
Interrupt Service Routine or subroutine
execution, and then restored.

Inputs to Pace Interrupt Control Logic.
When NIR2, 3, 4 or 5 Input is low for
1 CLK period, minimum, corresponding inter­
nal Interrupt Request Latch is set.

-34-

I w
O'I
I

Unregulated LM
+ Voltag,.,..----1 340 i---......:.+5

GRD GRD
Unregulated LM
- Voltag--~ 320 --~-12

Data
Bus

< PACER

Control
Bus

_ _Bi -di rectiona 1
•Transceiver
1 (optional)

-·
Read Strobe

JC14
JCl 5

NBADS
BODS

BIDS

Flag 11

12
13

User address
decode

GR D Q Select

c

JMP Condition 13

NIR2
lf\lnterrupt
I Inputs

Flag 14

USER INTERFACE TO PACER

Write
Strobe
Read
Strobe

Tri-state
buffer or latch

Input
Latch or
Buff er

Output
Latch or
Buff er

8 Channel Mux

BIT 0

BIT 15

BIT 0

BIT 15

USER I/O:>

Peripheral
Decodes

Misc
Pacer
Control
Signal

Power and GRD {. ~~~ = 1
-12V 3

-5V -4
+l2V - 5

RUN 6

{
KB READ* - 7

TTY Trans Read* - 8
TTY Trans Write*= 9

BPS 10

{
JC13 = 11

Sense Inputs JC14 12
JC15-13
Open 14

Decode 15
Open - 16

Decode - 17
Open - 18

Decode - 19
Open - 20

Decode - 21
Open - 22

Decode - 23
Open - 24
Open - 25
Open - 26
Open - 27
Open 28
Open - 29

User Mode* - 30
BODS 31

PROM Read* 32
BIDS 33

Control Card Disable 34
Read Control Status* 35

User Trap - 36
Write Control Status* - 37

BADS* 38
Continue 39

Halt* 40
User Memory Enable 41

BCLKT 42
GRD 43

A GRD
B +5V
C -12V
D -5V
E +12V
F - TTY KB Read* 1\
H =TTY Reader Adv* Peripheral Decodes
J Display Read*
K - Display Write*
L - NIR2 }
M = NIR3 Interrupt Inputs
N NIR4
P NIR5
R BOO - 0
S BOO - l
T BOO - 2
U BOO - 3
V BOO - 4
W BOO - 5
X BOO - 6
Y BOO - 7
Z BOO - 8 Address/Data Bus
a BOO - 9
b - BOO - 10
-·-c BOO - 11
d- BOO - 12 --e BOO - 13
f- BOO - 14 --h BOO - 15
j - User BADS*}
:is::= User BIDS User Control Bus
1 User BODS
m- BFll} n- BF12
£= BF13 Control Outputs
r BF14 --s
t-
u EXT* --v PROM Write* --w Executive Restart Switch* --x POR* + INIT*
y_ = GRD

MOTHERqOARD BUS PIN NUMBER ASSIGNMENTS

-36-

The following connectors may be inserted into the motherboard for expansion.
Connector Company Part No.
Viking Industries 2V8 43/1AV5
21001 Nordhoff St.
Chatsworth, CA 91311
(213)341-4330

S.A.E. SA-M-43D/2-3
340 Martin Ave.
Santa Clara, CA 95050
(408)243-9200

These connectors may be purchased through franchised Reps or Distributors in
your local area. For specific Reps or Distributors in your area, please call
the phone numbers listed above.

-37-

PACER PRODUCT PRICE LIST

6. 1 Pacer Kit $695

6.2 Pacer Assembled $855

6.3 PAC-I $175

6.4 PAC II $199

6.5 Cassette Future

6.6 Dist Operation System Future

6.7 Keyboard Future

-38-

5.3 EXPRESSIONS
Simple Expression

The form 'X' is assembled as:

15 8 7

IX ASCII code I
The form 11 X is assembled as:

15 8 7 0
I X ASCII code J

All codes are 7-bit ASCII.

Consist of self-defining terms combined as follows:

{- f t ·{ fl t 2 (; h ---- [; l tn

+ = addition
subtraction

* = unsigned multiplication (overflow is ignored)
/ = unsigned division (without rounding, divide

by 0 produces an undefined result)

Examples:

-123 = -12310

25/4 = 610
0ABC*5 = 274810*5 = 1374010

"A+2 = 6510+2 = 6710
I A I I 2 56 = II A = 6 5 10

Complex Expressions Same as simple expressions except user defined terms
may be used.

5. 4 USER DEFINED TERMS

Period •

Examples:

.+25
ABCD+22/X24

is equal to the current location being examined in alter
mode, or the location being listed by the list (LS)

-63-

Symbols

command. Not allowed in other commands or in Alter
mode while examining registers.

as defined by the user in Alter mode. May have any
16-bit value. (See the symbol table description
which follows.)

-64-

P A C E 2
(PAC-I)

Appendix A

NOTE
The remaining portion of this manual is pertinent only if user has Pacer
option PAC-1. This is the teletype and line assembler board. This option
may be purchased and plugged into the Pacer mother board. A teletype
printer with punch and reader is required to utilize all of the features
of PAC-1. However, if no use of paper tape is desired, a teletype with­
out the punch and reader is sufficient.

ii

TABLE OF CONTENTS
Page No.

1.0 INTRODUCTION 1

1.1 Pace Benefits 1

1. 2 Debug Functions 2

1. 3 Line Assembler 3

1.4 System Functions 3

1.5 Display Functions 4

1.6 Control Characters 5

1. 7 Command Summary 5

2.0 COMMUNICATING WITH PACE 2 6

2. 1 Hardware Features 7

2.2 Operating Modes 8

2.3 Command Mode 8

2.4 Display Mode 9

2.5 Memory/Register Block Display/Modify Commands 10
2.5.l Display Memory/Register Command 11
2.5.2 List Memory Command 15
2.5.3 Scan Memory/Register Command 15
2.5.4 Set Memory/Register Command 19

2.6 Memory Load/Save Commands 19
2.6.l Load Command 21
2.6.2 Save Command 23

2.7 Break/Snap Point Commands 24
2. 7. 1 Snap Specifications 25
2.7.2 Snap Point Command 27
2.7.3 List Break/Snap Points Command 28
2.7.4 Reset Break/Snap Points Command 29

2.8 Program Execution Commands 30
2. 8. 1 Single Step 30
2.8.2 Run 31

2.9 Symbol Table Commands 33
2.9.l List Symbols 33
2.9.2 Delete Symbols 33

2.10 Alter Mode 33
2.10.1 Examining and Modifying Memory/Register 34

3.0 PROGRAMMING FUNDAMENTALS 38

3. l Program Coding 39

3.2 Binary Coding 39

3.3 Hexadecimal Coding 40

iii

Page No.
3.4 Mnemonic Coding 41
3.5 Elementary Programming Techniques 42
3.6 Programming Phases 43
3.7 Fl ow Charting 44

4.0 CODING A PROGRAM 47
4. 1 Symbolic Programming Conventions 48
4.2 Assembly Language Input 49
4.3 The Symbol Table 53
4.4 Symbol Definition 54
4.5 Assembly Language Output 55

5.0 SYSTEM FUNCTIONS 56
5. l Alter Mode Command 61
5.2 Self-Defining Terms 62
5.3 Expressions 63
5.4 User Defined Terms 63

iv

1.0 • WHAT IS IT?
Pace 2 is an optional PC card to Pacer. The PC card contains a
parallel TTY interface, an RS232C interface and Pace 2 ROM 1 s.
Pace 2 (like Pacer) is implemented as a special type of 11 Control
Panel 11 program. Pace 2 communicates with the user via a tele­
type, or teletype-like CRT terminal, on a 11 line-at-a-time 11 basis.

1.1 • WHAT ARE PACE 2 1 S BENEFITS?
• Complete set of Control Panel functions

* Examine or modify - Contents of any computer register or
memory location can be examined or
modified

* Display

- Examine/modify a location with a
single-key stroke (current location)

- Examine/modify the current location and
examine the next sequential location
with a single-key stroke (current
location +l)

- Examine/modify the previous sequential
location with a single-key stroke
(current location -1)

- Examine/modify the current location and
examine the memory location specified
by the contents of the current location

- Examine/modify the contents of the
calculated effective address

- Contents of a specified number of registers
or memory location (a block of memory)

The registers/memory contents can be displayed in hexadecimal
or any one of four optional formats.

- ASCII

- ASSEMBLY LANGUAGE FORMAT

- UNSIGNED DECIMAL

- SIGNED DECIMAL

-1-

* Run

* Single Step

* Scan

* Scan with Mask

* Set

* Memory Load

* Memory Save

- Execute a program starting at a
specified address

- Execute a program one instruction at
a time starting at a specified address.
Following each 11 step 11 , the contents of
any register(s) or memory location(s)
can automatically be displayed in hex­
adecimal or in one of the optional
display formats

- Scan throu9h the contents of the MPU 1 s
register(s) or memory location(s)
starting at a specified location until
a location is found having a specified
content

- The scan can be specified to scan for
a bit(s) digit(s) or word

- Set the contents of any register(s) or
memory location(s) to a specified value

- Load a binary formatted paper tape into
the specified memory locations

- Saves the specified memory locations on
paper tape in a binary format

1 . 2 • Comp 1 ete set of DEBUG functions

* HALT

* Break Points

* Snap Points

* List Snap/Break
Points

* Reset Snap/Break
Points

- Stop program execution at a specified
address

- Set up to five breakpoints to 11 HALT 11

execution and display the contents of
the specified register(s) and memory
location(s) in hexadecimal or one of the
optional formats

Set up to five snap points to display the
contents of the specified register(s)
and memory location(s) in any format.
Program execution is not halted

- Type out all of the specified snap/break
points and their memory locations.

- Reset individual snap/break points or
all of them

-2-

* Decimal to
Hexadecimal
Conversion

* Hexadecimal
Calculator

* Address
Calculator in
Hexadecimal

- Single-key stroke

- Plus(+), minus(-), multiply(x), di­
vide(~) and equal(=) functions

- Current address +or - displacement

1.3 • Complete line-by-line Assembler

* Assembly Input

* Symbols

- Program entry ~ Assembly language
format - Assembler converts it to
hexadecimal

- Assembler allows the use of symbols
and does all address assignment and
referencing

* Assembly Language - Assembler converts the 16-bit memory
Output word to assembly language format

* List Symbol Table - Type out the symbol table and the value
associated with it (memory address
or constant)

* Delete Symbol - Delete the specified symbol or clear
Table the table

1.4 • System functions

* Test Keyboard

* Input Data from
Keyboard

* Output Data to
the Printer

- Test the keyboard to see if it is being used

- Test the keyboard until it is used and
load the character

- Output a specified character to the printer

-3-

1.5
DISPLAY DEFINITIONS

Display

)

)

??

?

RST
(Memory Address)

STP
(Memory Address)

HALT
(Memory Address)

BRK
(Memory Address)

SNP
(Memory Address)

!R

!F

!L

Meaning

System has been initialized either by
turning on the power switch or by de­
pressing the INIT key on the front panel.

System is in the 11 prompt 11 mode waiting
to accept the next input.

An illegal function was attempted.

Register range or memory range was exceeded.

The restart switch on Pacer was depressed
and stopped execution of a user program
and returned control to Pace 2.

Pace 2 in single-step mode.

A 11 halt instruction 11 was executed.

PC equals a specified break point address.

PC equals a specified snap point address.

A symbol definition has resulted in the
re-definitfon of the same symbol currently
in the table.

Indicates a symbol definition was ignored
due to a table full condition.

Indicates that a five or six character symbol
was encountered during a load command.

-4-

1.6

1. 7

CONTROL CHARACTER DEFINITIONS

Character Meaning

~ Rub Out Key - Deletes last character typed

to

tc

TAB

COMMAND SUMMARY

Character

OS

LS

SC

ST

LO

sv

BP

SP

LB

RB

SS

RN

SY

DL

AL

Control-0

Control-C

Control-I

Control-N

- Used to terminate command execution

- Used to terminate a line entry and
to terminate a command

- Spaces the carriage to the beginning
of next input field

- Continue scan in alter mode

Meaning

Display memory/register in hexadecimal, ASCII or
decimal

List memory in assembly language format

Scans memory/register and displays those addresses
equal to the scan value

Set memory/register to specified value

Load a binary paper tape into memory

Punch a paper tape to save the specified memory location

Define a break point at a specified memory location

Define a snap point at a specified memory location

List all break/snap points

Reset break/snap points

Single step

Run

List the symbol table

Delete symbols

Alter mode
- run % (memory address)

% (memory address,
!SY

display mode) - single step
- delete symbols
- scan memory

? - display value
-5-

2.0 COMMUNICATING WITH PACE 2
Pace 2 communicates with the user via a teletype, or teletype-like CRT terminal,
on a 11 line-at-a-time 11 basis. The user inputs commands, data, etc. via the
teletype (TTY) keyboard. The system output or display is the TTY printout.

Pace 2 will prompt the user and then wait until a complete line of infor­
mation has been entered before examining and acting upon the entry. The user
tells Pace 2 that the line is complete by entering a line termination
character (normally carriage RETURN). If the user detects an entry error
prior to entering the termination character, he may correct it by use of the
following 11 line editing" characters.

Character
RUBOUT

Control-C

Control-D

Function
Deletes one character to the left.
Successive RUBOUT's will delete
successive characters. RUBOUT is
echoed by the system as a back
arrow (+-).

Deletes the entire line and causes
Pace 2 to re-prompt. Control-C is
echoed astC. (Note: Control-C is
also used for other functions as de­
scribed 1 ater).
Similar to Control-C. Control-D is
echoed as -t-D. (Note: Control-D is
also used to terminate command execu­
tion as described later).

Any line containing unknown information will cause Pace 2 to output the syntax
error message (??) and re-prompt the entry.

To aid in assembly language input, the operator may request automatic spacing
to the next preset tabulation point by entering a Control-I (TAB). Pace 2
will output spaces and enter them into the buffer until the next tab point is
reached. The tab points are six characters apart starting at Position 7
(ie., character positions 7, 13, 19, etc. within the buffer).

The line buffer within Pace 2 is 40 characters long. Any attempt to go beyond
the buffer limits (either forward by character entry or backward by character
rlelete) will cause the bell to be sounded and the entry ignored. Characters

-6-

other than the 64 printing characters and the special characters mentioned
in this and later sections are ignored by Pace 2.

2.1 PACE 2 - HARDWARE FEATURES
Pace 2 (like Pacer) is implemented as a special type of "control panel" program.
The ROM containing the Pace 2 operating program and the I/0 addresses assigned
to the operator 1s console are located in the 8K block from C~~~16 to DFFF16.
This address space is completely locked out as far as user access is concerned.
Any attempt to write in this area will be ignored while any attempt to read
will return the value FFFF16 . The base page read/write memory (RWM) used
by Pace 2, however, is separate from that of the user and is totally inaccess­
ible to the user. As a result Pace 2 will remain operable even after a
massive failure of the user 1 s program.

The control panel features incorporated into the Pace 2 hardware are described
as follows:

!NIT

RESTART

Single
Step

The !NIT button is used to reinitialize
and restart Pace 2. The program will
display the message:

PACE 2
and then prompt the user for the first
command. All registers and the user
symbol table are cleared. An !NIT is
automatically performed on power up.

The RESTART button will stop execution
of a user program and return control to
Pace 2. Pace 2 will type the message:

RST Memory Address
where Memory Address is the address of the
next instruction to be executed (ie., the
value of PC) and program execution will
cease. All registers and the user symbol
table are left unaltered.

Pace 2 is able to execute a single instruction
of a user program and then regain control.
This feature is used to implement Step Mode
and break/snap points. In Step Mode the
message:

STP Memory Address

-7-

2. 2 PACE 2 OPERATING MODES

is displayed after each instruction execu­
tion where Memory Address is the value of
PC. Pace 2 then waits for a keyboard entry
from the operator before continuing with
the next instruction. The commands which
initiate Step Mode allow the operator to
specify other information to be displayed
after each execution step.

Pace 2 operates in three basic modes~ Command Mode, Alter Mode and User Mode.
In Command Mode and Alter Mode the system is controlled by the operator, via
Pace 2, while in ser ode the system is controlled by the user's running
program. Control may be returned to Pace 2 either automatically, from the
user's program, or manually by use of the RESTART or !NIT buttons.

Command Mode is the primary Pace 2 operating mode and enables the user to
perform such functions as examining or altering blocks of memory (or registers),
loading or saving memory via papertape load modules, setting break or snap
points, listing the symbol table and so forth.

Alter Mode is a secondary operating mode of Pace 2 and is entered from
Command Mode. Alter mode provides the user with an interactive means of
entering, modifying and debugging his programs. Individual registers or memory
locations can be conveniently opened, examined or modified and closed.
Instructions may be entered in assembly language format and the resulting

program executed in either Single Step or User Mode (RUN). In qeneral. Alter
Mode is a highly expanded Pacer.

In User Mode Pace 2 provides the running program with a set of "system functions"
that enables it to communicate with the Pace 2 operators console and return
control to Pace 2 after execution is complete. The system functions are
executed by Pace 2 as if they were part of the Pace instruction set.

2. 3 COMMAND MODE
The following sections describe in detail the functions that may be performed
in Pace 2 Command Mode. The first sections describe the terms used in the
individual command descriptions which follow. The term descriptions define
the parameters used in the commands and how they are specified. The command

-8-

descriptions define the function of each command in detail and are sub­
categorized into command groups as follows:

1) Memory/register block display/modify commands
2) Memory load/save commands
3) Break/snap point commands
4) Program execution commands
5) Symbol table commands

Alter mode is described separately following the command descriptions.

In the term and command descriptions, the term "memory" refers to the user's
RW or RO memory while the term "registers" refers to the 16 Pace operating
registers, namely;

PC
FL

A0-A3
S0-S9

Program counter
Flags
Accumulators 0-3
Stack locations 0-9

All command lines are prompted by Pace 2 with the character (.;>) and are terminated
by the operator with a RETURN (indicated by a~in the definitions).

2.4 DISPLAY MODE
While hexadecimal is the normal form in which numeric values are displayed,
certain commands allow the operator to specify other (optional) display modes.
The optional display modes are specified by single character codes as follows:

Character
A

u

Display Mode
ASCII. The 16 bit value is treated
as two ASCII coded bytes (bits 15 and
7 ignored) and is displayed as "X1X2"
where X1 is the upper byt~ (bits 14)·8)
and X2 is the lower byte ~bits 6-0 .
Any codes other than the 64 character
printing set (2115-5F15) are displayed
as blanks.

Unsigned decimal. The value is treated
as a 16 bit positive integer and dis­
played as such in decimal (e.g. FFFF16 is
displayed as 65535).

-9-

S Signed decimal. The value is treated
as a 15 bit signed integer and displayed
as such in decimal (e.g. FFFF16 is
displayed as -1).

2.5 MEMORY/REGISTER BLOCK DISPLAY/MODIFY COMMANDS
The commands in this set are used to display or modify blocks of registers
or memory locations. The functions performed by these commands are also
available in AJter Mode, but on a single register~ one-memory~location-at-a
time basis. Any command in this set may be prematurely terminated by entering
either a Control-C or Control-D.

ABBREVIATIONS USED IN THE COMMAND DESCRIPTIONS
ra
rr
ri
ma
mr
ar
am
aa
sy
se
ce
ae
dm
SS

al
ti
n

b
~

Register Address
Register Address Range
Implied Register Address Range
Memory Address
Memory Address Range
Any type of register address (ra, rr, ri)
Any type of memory address (ma or mr)*
Any type of address (ar or am)*
Any user symbol
Simple expression
Complex expression
Any expression
Display mode
Snap specification
Assembly language
A 1-6 character title symbol
A numeric value
One or more blanks (spaces) or Control-I (TAB)
A RETURN (CR)

*if aa or amt specified as optional, the implied memory address range is
selected (O-FFFF16) whenever the address is omitted.

-10-

Upper case letters or special characters ($, #, etc.) indicate actual
operator entries while lower case letters indicate entries to be determined
by the operator (ie., $R9J implies $R9J while $Rn implies $R9J, $Rl, $R2 or
$R3, etc.). Terms of the form description are the same as lower case
letters with the meaning specified by the description. 11 Curly 11 brackets,
iand ~, are used to denote optional entries while 11 straight 11 brackets,
[and J, are used to denote a set of entries of which one must be selected.

For example:

could be entered as either XZ or XYZ

must be entered as either AXB or AYB

2. 5. 1 DISPLAY MEMORY /REGISTER COMMAND
The display command will print out the specified memory or register address
and display their contents in the specified format.

1) Hexadecimal
2) ASCII
3) Signed decimal
4) Unsigned decimal

The following format defines the display command:

OS ~b ~aaj 2 /dm]_?

Command Code Address I Display Mode
NONE HEXADECIMAL

OS Any type of memory or register
address

A ASII
U Unsigned decimal
S Signed decimal

Register addresses can be specified by the following forms:

Single Register: $PC
$FL

$~~
$A3

-11-

Program counter
Status register flags
Accumulator 9J . • +
Accumulator 3

Register Groups:

Register Ranges:

Example:

Example:

$S91
I
I

"' $S9

$
$P
$A
$S

$An1 -n2 or
$Sn1 -n2

$A91-2
$S4-7

$An1 >or
$Sn2>

$A2 >
$S7>

Stack lev~l 91 (top of stack)
' ...

Stack level 9

All registers (ie., PC thru S9)

PC and FL
A91 thru A3
S91 thru S9

register n1 to and including
n2 where n1 < n2

Accumulator 0 thru 2
Stack level 4 thru 7

Register $An 1 thru 3 or $Sn2 thru
9 where n1<3 and n2<9

Accumulator 2 and 3
Stack level 7 thru 9

Memory addresses are specified in the following way:

Decimal: Any number not preceded by an 91

Example: 123 = 123191

6 = 6191
28 = 28191
etc.

Hexadecimal: Any number preceded by an 91

Examp-1 e: 91123 = 12316
916 = 616

9128 = 2816
911FA = 1FA16
etc.

Single Address: n

Examp 1 e: 0191

-12-

Memory location

Memory location 19116

Memory Ranges: n1 - n2 Memory locations n1 through and
including n2 where n1<.:"n 2.

Example: 0 10 - ~100

.0 - 255

Memory address 1016 thru 10016 .

Memory address 0 thru FF16 .

In certain commands if the memory address is omitted, the range 0 - ~FFFF

is implied.

DISPLAY COMMAND EXAMPLES
Note: In all examples operator-typed information is underlined.

Pace 2 typed information is not underlined.

Display the contents of the PC:

>OS $PC@
$PC 00000 ,.

Display the contents of the sixth level of the stack:

> DS $S6@)
$S6 0FFFF

:>
Display the contents of all the CPU registers:

>OS $ @>
$PC 00000
$FL 00000
$A0 00000 00000 0~000 00000
$S0 0FFFF 0FFFF 0FFFF 0FFFF
$S4 0FFFF 0FFFF 0FFFF 0FFFF
$S8 0FFFF 0FFFF

Display the contents of stack levels 4 thru 7:

> OS $54-7 @)
$S4 0FFFF ~FFFF 0FFFF ~FFFF ,.

Display the contents of memory locations 0 thru E16 :

>OS 0-0E@)

00000 0~000 00000 00000 00000

>
-13-

HEXADECIMAL

00004 04146 02000 00000 04434
00008 00000 00100 00000 01000
0000C 08000 04646 02000
~

>os 0-0E/A@
00000 I l I l l I I I
00004 I AF I I. I l I I 04 I
00008 t I I I I I I I

.00.00C I I IFFI I I

)

>OS 0-0E/S@)
00000 0 0 0 0
00004 16710 8192 0 17460
0.0008 0 256 0 4096
0000C -32768 17990 8192

/
)OS 0-0E/U@
00000 0 0 0 0
00004 16710 8192 0 17460
00008 0 256 0 4096
0000C 32768 17990 8192

"J
Display the contents of memory location AF0 16 :

>OS 0AF~
00AF0 000AE

Display the contents of memory location AF 16 thru B3 16 :

) OS 0AF-0B3 @)

ASCII

SIGNED DECIMAL

UNSIGNED DECIMAL

HEXADECIMAL

.000AF 00000 020A8 0004C 04078 HEXADECIMAL
000B3 02420

7

-14-

2.5.2 LIST MEMORY COMMAND
Assembly language output is produced by the list (LS) command and may also
be requested in Alter Mode or as part of a snap specification. When
requested, Pace 2 will interpret the contents of memory as Pace instructions
and list them as they might appear in an assembly listing.

The address and contents are displayed in hexadecimal. The label field will
be listed if a symbol is found in the User Symbol Table (in Pace 2 read/write
memory) having a value equal to the address. If more than one symbol has this
value, the first symbol encountered will be listed.

The following format defines the list command:

LS f b fam~~

Command Code
LS

List Command Examples:

Address
Any type of memory address

List the contents of memory locations 0 thru 816 :

>LS 0-08@
!1'0000 03800
00001 0c00c
00002 051E7

00003 0C821

00004 00203

00005 07A04
00006 07901

00007 01804

00008 00000
7

PFLG LK
GO: LO AO,VAL

LI Al ,-25
LO A2,ADDR

LOOP: ST A0,3(A2)
AlSZ A2,4
AISZ Al ,1
JMP LOOP
HALT

2.5.3SCAN MEMORY/REGISTER COMMAND
The Scan Command will scan the specified register or memory address(s) and print
out the address(s) with contents equal to the specified value (or not equal
to the specified value, if # is entered) after being masked by the specified
mask(or FFFF16 if no mask is specified). The algorithm is as follows:

-15-

1) Take the contents of the register or memory address
under test, "exclusive OR 11 with the specified value
and then AND with the specified mask.
((contents) @ value) • (mask)

2) Display the address if the result is =9J and 11 #11 not
specified or the result is 'I= 9J and 11 #11 is specified.

One of the optional parts of the Scan Command allows the operator to modify
the meaning of the value. It can search for a given value or it can search
for all values other than a named value by depressing the 11 not 11 key(#)
immediately preceding the value not desired. The Pace 2 will then scan all
other values and display them.

The following format defines the Scan Conmand:

SC J {aa} [!dmJ , [# J se1 f ,se2 ~

Command Code Address I Displa,t Mode,
SC any register or NONE

memory address(s) A-
S-
u-

Scan Examples:

Example 1:
Scan the contents of all of the registers for 0:

)SC $,0@
$PC 09J9J9J9J
$A9J 9J9J09J9J 9J09J9J0
>

The contents of the PC,A0 and Al were 0.

Example 2:
Scan the contents of all of the registers for 01FFE:

)'SC $,01FFE@
$S9J 9JlFFE ,.

The contents of only level 9J of the stack were 01FFE.

-16-

Value,

= or 'I= Contents
being
searched
for

Mark
digit(s)
or bit(s)
being
masked
out

Example 3:
Scan the contents of memory address 0 thru 0FF16 (25610) for 03800:

) SC 0-0FF ,03800 @
00000 03800

?
Example 4:
Scan the contents of memory addresses 0 thru 0FF for 0C00C:

7SC 0-0FF ,C00C @ - Re-entered
0001c 0c00c
0003A 0c00c
0003E 0c00c

'7
Example 5:
Scan the contents of memory address 0 thru 0FF for 0:

7SC 0-0FF ,0 @
00000 00000 00000 00000 00000
00004 00000
00006 00000 00000 00000
0000A 00000 fo
?

Then to scan using the 11 not 11 value:

Example 6:
;>SC 0-0FF ,#0 @
00005 02000
00009 00100
0000B 01000 08000
0000E 02000
00010 06031 00012 00203 00100
00014 00180 00010 00003
)

Scan terminated by Control-D

The second optional feature of the Scan Command allows the operator to scan
the registers or memory for a certain digit, digits, bit or bits 11masking
out 11 the digit(s) or bit(s) not desired to be read. In the mask, enter
hexadecimal characters into each digit in order to designate which bit(s)

-17-

are to be "masked out 11 and which are not. The bit(s) desired to be masked
out are entered as zeros. The bit(s) that are to be scanned for are
entered as 11 l 1s 11 meaning 11 enable 11 •

Example 7:
Scan the contents of memory locations 0 thru 0FF for the value 9 in the
fourth digit (Bits 15, 14, 13, 12).

Example 8:

>SC 0-0FF ,09900 ,0F000 @)
00000 09900
00008 09900
~001C 09900
000Fl 09EB6
~

Scan the contents of memory locations 0 thru 0FF for the value 9 in the third
digit (Bits 11, 10, 9,8).

Example 9:

>SC 0-0FF ,09900 ,00F00 @
00000 09900
00008 09900
0001C 09900
00033 019F3

?

Scan the contents of memory locations 0 thru 0FF for a 11 1" in Bit 15.

>SC 0-0FF ,09900 ,08000 @
00000 09900 0C380 0C732 0C733

00004 0C733 0C733 0C733c0C733

00008 09900 0C6D5
00010 0FFFF 0FFFF 0FFFF 0FFFF

00014 0FFFF 0FFFF 0FFFF 0FFFF

00018 0FFFF 0FFFF
0001B 0FFFF 09900 tQ. scan terminated by Control-D

'7
Example 10:

-

Scan the contents of memory locations 0 thru OFF for an 11 ASCII T11 in the
upper byte (Bits 15-8).

-18-

'>SC 0-0FF I A' IT I ,0FF0~
0001 c I T4 I

000C2 'T0 I
7

Note: All ASCII input must be enclosed in single quotes.

Example 11:
Scan the contents of 0 thru 0E for -14541 10 .

>SC 0-0E/S,-l4541@
00003 -14541 -14541 -14541 -14541
/'

2.5.4 SET MEMORY/REGISTER COMMAND
The Set Command sets the contents of the specified register(s) or memory lo­
cations to the specified value. The following format defines the set command:

STb { aa} ,se+'
Command Code Address Value

ST

Example l:

Any register or memory
address

Set the contents of all of the registers to 0.

Any decimal or hexadecimal
value

>ST $0 ~? - syntax error occurred because a comma is missing
between the $ and the 0.

Example 2:
Set the contents of Accumulators 2 and 3 to 12310 .

ST $A2-3,123@

Examp~:

Set the contents of memory location 0-FF to 0.

>ST 0--0FF ,0@

2.6 MEMORY LOAD/SAVE COMMANDS
The commands in this group are designed to load or save blocks of memory,
and/or the User Symbol Table, on paper tape. The tapes loaded or saved
are in Pace binary load module format as created by the Pace assembler.

-19-

These commands allow the user to save a manually entered program (and its
defined symbols) for later reloading and execution.

2. 6. 1 LOAD COMMAND
The following format defines the Load command:

LD{b (~J}~

Conmand Code
LO

The Load Command loads a binary load module from the operator's console paper
tape reader (if available). The 11 S11 parameter specifies that symbol records,
if encountered, are to be loaded into the User Symbol Table. The L para­
meter also specifies symbol loadingtbut in addition requests listing of
the symbols being loaded. Symbols longer than four characters will be
ignored.

As loading proceeds, the following status messages are listed:

Message
TI = ti

SY = sy

LO = ma

HI = ma

ST = ma

Indicates the title of the load module as read from the
title record.

Indicates the symbol 11 sy 11was read and loaded into the
symbol table. This message appears only if the 11 L11

option was specified.

Indicates the lowest memory address loaded.

Indicates the highest memory address loaded.

Indicates the starting address specified in the end
record.

The LO= and HI =messages will appear only if memory is actually loaded
(ie., if a data record is encountered) and will be listed at the end of
loading after the end record is processed. If any address or value within
the load module is other than absolute (ie., external or relocatable) the
message:

REL BIN

-21-

will be outputed at the end of loading. The address or value will be used
if it were absolute.

Each record read from the load module is checked for errors. If a checksum
error is encountered, one of the following messages will be output:

Message
CKS TTL
CKS SYM
CKS ma,n

CKS END

Meaning
Checksum error in a title record.
Checksum error in a symbol record.
Checksum error in a data record. The record contains
11 n11 words to be loaded starting at location ma.
Checksum error in an end record.

After the message is printed, Pace 2 will wait for one of the following
operator responses:

Response
Control-C

Control-I

Control-D

Meaning
Re-read the record. The operator must manually reposition
the tape to the beginning of the record prior to entering
the response.
Ignore the error and process the block. This is echoed
as 11 1'I 11 •

Terminate the load command.

All 11 control 11 characters are entered by depressing the CTRL key on the TTY and
holding it down while depressing the appropriate letter key.

If the first word of a record is in error, Pace 2 will print the message:

FMT ERR
and wait for either the Control-C or Control-D response as specified above.

While reading the tape, Pace 2 checks the interbyte timing. If the reader
does not respond within 500 msec (approximate), due to a reader jam or end­
of-tape condition, the message:

TMO ERR
will be printed and the load command terminated. The operator may use the
feature to prematurely terminate the load by manually stopping the reader.

-22-

Example 1:
Load data records from paper tape but do not load symbols.

LO@

Example 2:
Load data records and symbol records from paper tape.

LO s@

Example 3:
Load data records and symbol records from tape and print out the symbols
as they are loaded.

>LO L@
TMO ERR

)LO L@
CKS TTL "'D

>.!:Q_L@
CKS TTL "'I
TI=MECS
SY=STA !R
SY=LOOP !R
L0=9)39)
HI=9)54
ST=9)39)

2.6.2 SAVE COMMAND

The reader was not in the start position,
therefore, we got a time out error.

The title block had a checksum error. Command
was terminated with a Control-D.

The title block again read a checksum error-­
the title should be MESS. The Control-I was used
to finish reading the block.

The !R is a warning message that the symbols had
been previously defined.

The following format defines the save command:

Command Code
sv

SVbti {,s} £am,{ ---Am4}} {;ma}

Title
Program title

Symbol

S - if a symbol
record is to be
punched

-23-

Address
Any type of
memory add­
ress (4
blocks max
separated
by commas)

Address
Starting of the
program

The Save command saves as a binary load module the currently defined user
symbols and/or specified blocks of user memory. The load module is out­
put to the operator's console paper tape punch (if ava1lable). Symbols are
output if the "S" parameter is specified. Up to four blocks of memory may

be specified. The starting address, if required, is specified by the ;ma
parameter.

After the command is entered, Pace 2 waits for the operator to turn on the
punch and depress the SPACE key. When punching ceases, Pace 2 waits for the
operator to turn off the punch and depress the SPACE key prior to the next
command prompt. The operator may prematurely terminate the command at any
time by entering either Control-C or Control-0.

Example 1:
Create a load module with title A containing only the user symbols:

>sv A, s@

Example 2:

Create a load module with title PROG X, stored at memory locations f.)10-0FF,
with a starting address of 010.

> SV PROGX ,0lf)-fJFF ;f.)l !.@.

Example 3:
Create a load module with title MESS, stored at memory locations 03fJ-fJ54,
with a starting address of f.)3fJ.

> SV MESS)S >fJ3fJ-f.)54 ;f.)30 ~
MESS

0fJ4STALOOPl
f.)5@C$$ 11
(l< @D I WILL KEEP
ZHTHE MESSAGE SHORT ----HI
! HT!
@&0V

2.7 BREAK/SNAP POINT COMMANDS

The TTY will print out all printable
information as the tape is punched.

Pace 2 maintains a break/snap point table within its own read/write memory.
The table can hold up to five break/snap point definitions along with their

-24-

associated snap specifications. Each break/snap point defines a memory
location at which Pace 2 will terminate execution and/or execute the
associated snap specification. Whenever one or more break/snap points are
set, the effective instruction execution time will be increased to approxi­
mately l millisecond/instruction.

2.7.l SNAP SPECIFICATIONS
These are used to specify which active registers and/or memory addresses are
to be displayed during a break point, snap point or single step execution.

A snap specification consists of one or more of the following terms,
separated by commas.

l) register address

2) register address range

3) implied register address range

4) memory address

5) memory address range

6) implied memory address range

Register addresses (1, 2 and 3 above) are 1 ~0Red" together to eliminate multiple
listing of the same register (e.g., $R0-2, $Rl-3 will be listed as if $R was
specified). A maximum of two memory addresses (4 and 5 above) may be included
in any single snap specification (ie., 100-109,0100). Any memory address
range greater than 4095 locations (FFF16) will be limited to 4095.

When a snap specification is executed, the information requested is listed
in three groups as follows:

l) Header, consisting of a three letter code (indicating
tne reason for the listing), the current value of PC
(indicating the next instruction to be executed) and
optional header information described below.

2) Registers, consisting of the specified registers (if
any) in the order FL, A0-A3 and S0-S9 (PC is always
listed in the header).

3) (1emory, consisting of the specified memory locations
if any) in the order specified.

-25-

The three-letter header codes are as follows:

Meaning Code
BRK Break point (PC equals a specified break point

address).

SNP Snap point (PC equals a specified
address).

STP Single step.

(If a break or snap point is encountered in single step mode, the break or
snap point snap specification will supersede the single step snap specification).

The optional header information consists of the contents of the location
specified by PC listed in either hexadecimal or both hexadecimal and assembly
language formats. The optional information is requested by specifying one
of the following characters as the first term of the snap specification.

Character
H

Option_
Hexadecimal only

L Hexadecimal and assembly language

All register and memory contents are listed in hexadecimal. Execution of a
snap specification may be terminated by entering Control-C.

The following format defines the snap specification:

Output Format Address
H - Hexadecimal only
L - Hexadecimal and

Any register or
memory address

assembly language

The following format defines the break point command:

BP,bJna t,ss J t:n J ~

Command Code Address Snap Spec
BP Any memory address H

-~6-

L
address

Executions
The number of times the
breakpoint must be exe­
cuted before the break
point is performed.

Example 1:

Set a break. point at memory address 03 that will be executed prior to the
fourth access of memory location 03.

>BP03;4@)

After the break point has been set, if the Run command is executed the
following print out would occur:

Example 2:

>RN 01@
BKP 00003

(run command)

Set a break point at memory address 05. Execute the break point prior to each
access of address 05. When the break point is executed, Pace 2 will printout:

1) all of the accumulators

2) the hexadecimal value and assembly language at 05

3) the contents of memory location 0 thru 05.

>BP 05,L,$A,0-05@)

After the break point has been set, if the Run command is executed the fo 11 owing
printout would occur:

>RN 01 @)
BKP 00005 01800 JMP .-5
$A0 03F8D 00002 0CF92 0C3A6
00000 01801 01802 01803 01804
00004 01805 01800,

2.7.2 SNAP POINT COMMAND
The snap point command is identical to the break point command except the
snap specification is displayed without a program break (ie., program
execution continues after the snap printout).

The following format defines the snap point command:

SPbma {ss} { ;m} +/

-27-

Command Code Address
SP Any memory address

Example 1:
Print out the contents:

Snap Spec
H
L

Any register
and memory
address

Number of Executions

Number of executions
between snap point
executions

1) of the snap address in hexadecimal and assembly
language format

2) of address 0 thru 03 in hexadecimal

prior to the execution of the instruction at the snap address.

:>SP 03,L,0-03@

>RN 01@
SNP 00003 01804 JMP .+l
00000 01801 01802 01803 01804
SNP 00003 01804 JMP .+l
00000 01801 01802 01803 01804
SNP 00003 01804 JMP .+l 1 0

2. 7 .3 LIST BREAK/SNAP POINT COMMAND
The list break/snap point command lists all of the specified break/snap points.

The following format will define the printout.

Address Nv
Break/snap address Number of executions (+l)

prior to the next break
or snap

>LB@
00001 10
00003 1
00004 4 *

-28-

*
*will be printed next to Nv
if the address is a break
point

2.7.4 ~ESET BREAK/SNAP POINT COMMAND
The break/snap point command resets the break/snap points at the location that
is defined, or all of the break/snap points if an@ is entered.

RBb(m~]

Example l_:
Reset the break point at location ~4.

>RB 04@
)

Example 2:

Reset the snap point at location 01.

)RB ~l@

>
Example 3:
Reset all break/snap points.

)RB@@)

>

-29-

2.8 PROGRAM EXECUTION COMMANDS

This group includes the commands used to run or single step through a
program. The functions performed by these commands are also available
in alter mode.

2.8.1 SINGLE STEP COMMAND

SS [b{ ma} { ,ss 1 }~

Enter Single Step user mode at location ma or at the location currently
specified by PC if ma is omitted. The snap specification, if entered, \Ifill

be executed after each step. The program is advanced to the next instruction
by depressing the SPACE key. The system will return to Pace 2 Command mode
in any of the following cases.

Example l:

l) A system function 0 (or illegal system function) is
executed (as described later).

2) By entering Control-D.

Enter Single Step mode at location 012.

Example 2:

'>SS 012@

STP 00012
STP 00013
STP 00014

05314@

0cs01@
050FF CONTROL-C. t C

Enter Single Step mode at location 012 and output the memory content in
hexadecimal and assembly language.

Example 3:

).SS 012@
STP 00012

STP 00013
STP 00014

05314

0C801
050FF

GO: LI A3,20@
LD A2 ,ALPH @_
LI A0 ,-1@

Enter Single Step mode at location 012 and display the next instruction in

hexadecimal and assembly language, to be executed after each step.

-30-

>ss 012@
STP 00013 0C801
STP 00014 050FF

LD A2 ,ACPH@
LI A0 ,-1

2. 8. 2 RUN COMMAND
The Run command starts user program execution at the specified memory location
or at the location specified by the PC if a memory address is not specified.
The system will automatically return to Pace 2 Command mode in any of the
following cases:

1) A break point location is encountered.

2) A halt instruction is executed.

3) A system function 0 (or illegal system function) is executed
(as described later).

If an infinite loop occurs, the operator may force the system to return to
Command mode as follows:

Using the

Example 1:

1) By entering Control-D during any snap point execution.

2) By pressing RESET.

3) By pressing !NIT.

following program, to

>LS 010-015 ~
00010 05000 STA:

00011 05104
00012 07801 GO:

00013 079FF

00014 01812

00015 00000

illustrate the Run modes:

LI A0 ,0
LI A 1 ,4
AISZ A0, 1

AISZ Al ,-1

JMP GO
HALT

Load A0 with 0
Load A 1 with 410
Increment A0, test for 0 and
skip the next instruction if 0
Decrement Al, test for 0 and skip
the next instruction if 0
Jump to address 012

Execute the program starting at address 011.

>RN 011@?
HLT 00016

-31-

Example 2:
Execute the program starting at address 010 after a snap was set at 013
to look at Al and a snap was set at 015 to look at Al.

RNOl@?? Syntax error, no space between RN and address

>RN 010@
SNP 00013
$Al 00004
SNP 00013
$Al 00003
St-JP 00013
$Al 00002
SNP 00013
$Al 00001
SNP 00015
$Al 00000
HLT 00016
>

Example 3:
Execute the program starting at address 010 after a break point was set at
address 014.

Example 4:

>RN 010@
SNP 00013
$Al 00004
BKP 00014
)

Execute the program starting at address 010 and depress the restart button
to get back to the Command mode. (Break point at 014 was reset).

>~N 010@
SNP 00013
$Al 00004
SNP 00013
$Al 00003
RST 00012
>

-32-

2.9 SYMBOL TABLE COMMANDS
The commands in this group allow the operator to examine and delete the
contents of the User Symbol Table. The functions performed by these
commands are also available in Alter mode.

2.9.l LIST SYMBOL COMMAND

2.9.2

SY@)
Lists the entire contents of the User Symbol Table in the form sy n (where n
is the value associated with the symbol). The listing is in alphabetic order
and may be terminated by entering either Control-C or Control-D.
Example:

>sY@)
ADDR 00021
GO 00001
LOOP 00004
VAL OOOOC
)

DELETE SYMBOLS COMMAND

DL b[~y])

Deletes symbol (sy) as all

Examele l :
> DL ADDR@

Examele 2:

>DL @@

user symbols if 11 * 11 is entered.

2. 10 ALTER MODE
Alter mode is entered from Command mode with the command:

Once in Alter mode, the system will remain there until the operator either
enters Control-Dor presses !NIT. If User mode is entered from Alter mode
to run a program, the system will return to Alter mode when execution is terminated.

Within Alter mode, the user may examine or modify register or memory contents
in an interactive manner, define user symbols, and execute any of the special

-33-

Alter mode commands. To examine a register or memory location, the user merely
enters the desired address. Pace 2 then "opens" the specified address by
displaying its contents in hexadecimal and, optionally, a previously speci­
fied Display mode. The user may then enter a new value and "close"
the address, thus modifying it, or simply close it without modification.
Once the address is closed a new address may be opened or any other Alter mode
function performed. As with Pacer, Alter mode also provides automatic
close functions which close any open location and automatically open a new
location as specified by the selected function.

The Alter mode functions are described in detail in the following sections.
All Alter mode functions are prompted by a RETURN/LINE FEED combination.
Lines entered in Alter mode are terminated with either a RETURN or other
specified control characters. In the examples which are shown, underlining is
used to indicate operator input, encircling is used to indicate a control
character input (ie. ,(8) would indicate Control-X).

2.10.1 EXAMINING/MODIFYING MEMORY/REGISTERS
To open a memory location or register, the user enters the desired address
(ma or ra) followed by a RETURN. Pace 2 will display the contents in hexa­
decimal and, if previously selected~ a secondary Displaymode and then wait
for a second operator entry on the same line. If the contents are to be
modified, the operator should enter the new contents and then terminate the
line with either RETURN or one of the automatic close characters.

The secondary display mode is selected by entering one of the following
control characters:

Character

Control-H

Control-A

Control-LI

Control-S

Control-L

Secondary Display

None. The secondary display is
deleted.

ASCII

Unsigned decimal

Signed decimal

Assembly language

-34-

I
I

When assembly language mode is selected, additional spaces will be output after
the operands so that the following input lines will start at the same position.
Also, since the assembly language display applies only to memory locations,
it w411 be omitted while examining registers.

The display mode .select characters are not echoed and may be entered at any
time that Pace 2 is waiting for an input line. A given Display mode remains
in effect until a new mode is selected.

The manner in which the new contents of an open address are specified is
determined by the type of address. For register addresses, the new contents
may be entered as any expression while for memory addresses either any
expression or assembly language input is permitted. The line termination
characters used to close an open address are described below. The term

"current address 11 refers to the currently open or last opened address con­
tained in an internal register maintained by Pace 2. The current address
is initially set to the value of PC.

Character

RETURN

LINE FEED

ESC, ACK,
or ALT MODE

Control-V

Control-E

Function

Close the current address and ouput
a new prompt. This allows the oper­
ator to manually enter a new address
or execute some other Alter mode
function.

Close the current address and auto­
matically open the current address
+ 1.

Close the current address and auto­
matically open the current address
- 1.

Close the current address and auto­
matically open the memory location
specified by the contents of the
current location.

Close the current address and auto­
matically open the memory location
specified by the ,effective address
as explained in the following paragraphs.

-35-

Control-N Close the current address and auto­
matically open the next highest
address which satisfies the scan
criteria (explained below).

The automatic close functions which index to a new address (LINE FEED, ESC
and Control-N) treat the registers and memory as idependent linear arrays.
The register array has the following relative address sequence.

Address Register

0 PC
l FL
2-5 A0-A3
6-15 S0-S9

Whenever one of these functions attempts to exceed the current array bounds
(0-15 for register, 0-FFFF16 for memory), the function is aborted and the
error message ? is output. The operator may switch to the memory array with
the Control-V and Control-E functions or to either array by manually
specifying an address in that array.

The "effective address" used by the Control-E function is contained in an
auxilliary address register maintained internally by Pace 2. The effective
address is set by either the~?"command (described in a later section) or by
the display, or entry in assembly language, of a memory reference instruction
that uses base page or PC relative addressing. In the latter case, the
effective address is set to the address of the memory location referenced.
As a result, the user can modify a location by entering:

JMP ABC+5@

and then automatically open the location specified by ABC+5. The effective
address is initially set to the value of PC.

The Control-N function is controlled by scan value and scan mask registers
maintained internally by Pace 2. The value and mask registers are identical
to the VL and MK registers of Pacer as is the scan function initiated by
Control-N. The scan registers are set by the command described in a later
section.

-36-

The line termination characters described above may also be used to auto­
matically open a new register when no register is currently open. In this
case, the operator enters the desired character in place of a register or
memory address. If RETURN is entered, the current address is opened again.

To enter Alter mode type

AL@

the following examples show memory/register examination/modification.

Example 1:
Examine and modify the PC.

$PC@) 091000 0FAB3@

Example 2:
Modify address 010 and automatically open address 011.

010 @ 010C3 0CA43@
011 00000

Example 3:
Modify address 010 and automatically open address 09JF.

0H~ @ 0H~C3 9JCA43 @
00F 00000

Example 4:
Modify address 010 and automatically open address determined by the
contents of address 010.

010@ 010C3 0CA43(y)
0CA43 00000

-37-

3.0 PROGRAMMING FUNDAMENTALS
This section describes the two general types of computer instructions and the
way in which they are used in computer programs. The first type of instruction
is distinguished by the fact that it operates upon data that is stored in
some memory location and must tell the computer where the data is located
in memory so that the computer can find it. This type of instruction is
said to reference a location in memory; therefore, these instructions are often
called memory reference instructions (MRI).

When speaking of memory locations, it is very important that a clear distinction
is made between the address of a location and the contents of that location:
A memory reference instruction refers to a location by a 16-bit address;
however, the instruction causes the computer to take some specified action
with the content of the location. Thus, although the address of a specific
location in memory remains the same, the content of the location is subject
to change. In summary, a memory reference instruction uses a 16-bit address
vaue to refer to a memory location, and it operates on the 16-bit binary
number stored in the referenced memory location.

The second type of instructions are the operate instructions, which per-
form a variety of program operations without any need for reference to a
memory location. Instructions of this type are used to perform the following
operations: clear the accumulator, test for negative accumulator, halt
program execution, etc.

-38-

3. 1 PROGRAM CODING

Binary numbers are the only language which the computer is able to understand.
It stores numbers in binary and does all its arithmetic operations in binary.
What is more important to the programmer, however, is that in order for the
computer to understand an instruction it must be represented in binary.
The computer can not understand instructions which use English language
words. All instructions must be in the form of binary numbers (binary code).

3.2 Binary Coding

The computer has a set of instructions in binary code which it 11 understands 11 •

In other words, the circuitry of the machine is wired to react to these
binary numbers in a certain manner. These instructions have the same
appearance as any other binary number; the computer can interpret the same
binary configuration of 01 s and 1 1 s as data or as an instruction. The
programmer tells the computer whether to interpret the binary configuration
as an instruction or as data by the way in which the configuration is
encountered in the program.

Suppose the computer has the following binary instruction set.

Instruction A 1110 0000 0001 0010 This binary number instructs the
computer to add the contents of
location 0000 0000 00~1 0010 to
accumulator 0.

Instruction B 1110 0000 0001 0111 This binary number instructs the
computer to add the contents of
location 0000 0000 0001 0111 to
accumulator 0.

If instruction B is contained in a memory location with an address of
0000 0000 0001 0010 and the binary number ~000 ~001 1111 1111 is stored in a
location with an address of 0000 0000 00~1 ~111, the following program could
be written:

_39-

Location

0000 0000 0001 0010
0000 0000 0001 0111

Content

1110 0000 0001 0010
0000 0001 1111 1111

If this program were to be executed, the number 0000 0001 1111 1111 would be
added to the accumulator.

3.3 Hexadecimal Coding
If binary configurations appear cumbersome and confusing, the reader will now
understand why most programmers seldom use the binary number system in actual
practice. Instead, they substitute the hexadecimal number system. The
reader should not proceed until he understands these two number systems and
the conversions between them.

Henceforth, hexadecimal numbers will be used to represent the binary numbers
which the computer uses. Although the programmer may use hexadecimal numbers
to describe the binary numbers within the computer, it should be remembered
that the hexadecimal representation itself does not exist within the computer.

When the conversion to hex is performed, Instruction B becomes 001716 and
the previous program becomes.

Location

001216
001716

Content

001716
01FF16

To demonstrate that a computer can not distinguish between a number and an
instruction, consider the following program.

Location

0011
0012

Content
0012
0017

01FF

(Instruction A)
(Instruction B)

(The number 01FF16)

Instruction A, which adds the contents of location 0012 to the accumulator,
has been combined with the previous program. Upon execution of the program

-40-

(assuming the initial accumulator value=0), the computer will execute
instruction A and add 001716 as a number to the accumulator obtaining a
result of 001716 . The computer will then execute the next instruction,
which is 0017, causing the computer to add the contents of 0017 to the
accumulator. After the execution of the two instructions the number 0216
is in the accumulator. Thus, the above program caused the number 001716 to
be used as as instruction and as a number by the computer.

3.4 Mnemonic Coding
Coding a program in hex numbers, although an improvement upon binary coding,
is nevertheless very inconvenient. The programmer must learn a complete
set of hex numbers which have no logical connection with the operations they
represent. The coding is difficult for the programmer when he is writing
the program, and this difficulty is compounded when he is trying to debug
or correct a program. There is no easy way to remember the correspondence
between a hex number and a computer operation.

To simplify the process of writing or reading a program, each instruction
is often represented by a simple 3- or 4-letter mnemonic symbol. These
mnemonic symbols are considerably easier to relate to a computer operation
because the letters often suggest the definition of the instruction.
The programmer is now able to write a program in a language of letters and
numbers which suggests the meaning of each instruction.

The computer still does not understand any language except binary numbers.
Now, however, a program can be written in a symbolic language and translated
into the binary code of the computer because of the one-to-one correspondence
between the binary instructions and the mnemonics. This translation could
be done by hand, defeating the purpose of mnemonic instructions, or the
computer could be used to do the translating for the programmer. Using a
binary code to represent alphabetic characters, the programmer is able to
store alphabetic information in the computer memory. By instructing the
computer to perform a translation, substituting binary numbers for the
alphabetic characters, a program is generated in the binary code of the
computer. This process of translation is called 11 assembling 11 a program.
The program that performs the translation is called an assembler.

-41-

It is well to make some observations about the assembler at this point.

1) The assembler itself must be written in binary code, not
mnemonics.

2) It performs a one-to-one translation of mnemonic codes into
binary numbers.

3) It allows programs to be written in a symbolic language which
is easier for the programmer to understand and remember.

3.5 ELEMENTARY PROGRAMMING TECHNIQUES
Mastery of the instruction set is the first step in learning to program Pacer.
The next step is to learn to use the instruction set to obtain correct results
and to obtain them efficiently. This is best done by studying the following
programming techniques. Examples. which should further familiarize the
reader with the instructions and their uses, are given to illustrate each
technique.

The modern digital computer is capable of storing information, performing
calculations, making decisions based on the results and arriving at a final
solution to a given problem. The computer can not, however, perform these
tasks without direction. Each step which the computer is to perform must
first be worked out by the programmer.

The programmer must write a program, which is a list of instructions for the
computer to follow to arrive at a solution for a given problem. This list of
instructions is based on a computational method, sometimes called algorithm,
to solve the problem. The list of instructions is placed in the computer
memory to activate the applicable circuitry so that the computer can process
the problem. This section describes the procedure to be followed when
writing a program to be used on the Pacer.

3.6 PROGRAMMING PHASES
In order to successfully solve a problem with a computer, the programmer
proceeds through the five programming phases listed below:

1) Definition of the problem to be solved,

2) Determination of the most feasible solution method,

-42-

3) Design and analysis of the solution--flowcharting,

4) Coding the solution in the programming language, and

5) Program checkout.

The definition of the problem is not always obvious. A great amount of time
and energy can be wasted if the problem is not adequately defined. When the
problem is to sum four numbers, the defining phase is obvious. However,
when the problem is to monitor and control a performance test for semicon­
ductors, a precise definition of the problem is necessary. The question
that must be answered in this phase is: 11 What precisely is the program to
accomplish?"

Determining the method to be followed is the second important phase in solving
a problem with a computer. There are perhaps an infinite number of methods
to solve a problem, and the selection of one method over another is often
influenced by the computer system to be used. Having decided upon a method
based on the definition of the problem and the capabilities of the computer
system, the programmer must develop the method into a workable solution.

The programmer must design and analxze the solution by identifying the
necessary steps to solve the problems and arranging them in a logical order,
thus implementing the method. Flowcharting is a graphical means of representing
the logical steps of the solution. The flowcharting technique is effective
in providing an overview of the logical flow of a solution, thereby enabling
further analysis and evaluation of alternative approaches.

Having designed the problem solution, the programmer begins coding the solution
in the programming language~ This phase is commonly called programming but is
actually coding and is only one part of the programming process. When the
program has been coded and the program instructions have been stored in the
computer memory, the problem can be solved. At this point, however, the
programming process is rarely complete. There are very few pro.grams written
which initially function as expected. Whenever the program does not work
properly, the programmer is forced to begin the fifth step of programming, that
of checking out or 11 debugging 11 the program.

-43-

The program checkout phase requires the programmer to methodically retrace
the flow of the instructions step-by-step to find any program errors that
may exist. The programmer can not tell a computer: 11 You know what I mean! 11 ,

as he might say in daily life. The computer does not know what is meant
until it is told, and once given a set of instructions, the computer follows
them precisely. If needed instructions are left out or coding is done
incorrectly, the results may be surprising. These flaws, or 11 bugs 11 as they
are often called, must be found and corrected. There are many different
approaches to finding bugs in a program; however, the chosen approach must
be organized and painstakingly methodical if it is to be successful.

3. 7 FLOWCHART! NG
A simple problem to add three numbers together is solved in a few, easily
determined steps. A programmer could sit at his desk and write out three
or four instructions for the computer to solve the problem. However, he
probably could have added the same three numbers with paper and pencil
in much less time than it took him to write the program. Thus, the problems
which the programmer is usually asked to solve are much more complex than
the addition of three numbers, because the value of the computer is in the
solution of problems which are inconvenient or time consuming by human
standards.

When a more complex problem is to be solved by a computer, the program in­
volves many steps, and writing it often becomes long and confusing. A method
for solving a problem which is written in words and mathematical equations
is extremely hard to follow, and coding computer instructions from such a
document would be equally difficult. A technique called flowcharting is used
to simplify the writing of programs. A flowchart is a graphical representation
of a given problem, indicating the logical sequence of operations that the
computer is to perform. Having a diagram of the logical flow of a program
is a tremendous advantage to the programmer when he is determining the method
to be used for solving a problem, as well as when he writes the coded program
instructions. In addition, the flowchart is often a valuable aid when the
programmer checks the written program for errors.

-44-

The flowchart is basically a collection of boxes and lines. The boxes
indicate what is to be done and the lines indicate the sequence of the boxes.
The boxes are of various shapes which represent the action to be performed
in the program.

The following are examples of flowcharts for specific problems, illustrating
methods of attacking problems with a computer program as well as illustrating
flowcharting techniques. Example 1 adds three numbers together. Example 2
puts three numbers in increasing order.

Example 1: Straight-Line Programming
Example 1 is an illustration of straight-line programming. As the flowchart
shows, there is a straight-line progression through the processing steps
with no change in course. The value of X, which is equal to A+B+C is in the
accumulator when the program stops.

START

CLEAR
ACCUMULATOR

GET A INTO
ACCUMULATOR

ADD B

ADD C

STOP

Example 1 - Add Three Numbers

Example 2: Program Branching
Example 2 is designed to arrange three numbers in increasing order. The pro­
gram must branch to interchange numbers that are out of order. (Branching, a
common feature of programming, is described in the user 1 s manual). Note that
the arithmetic operations of subtraction are done in the accumulator, which
must be cleared initially.

-45-

START

CLEAR THE
ACCUMULATOR

r--G~E~T.-.F"""'I"'""RS~T­

NUMBER INTO
ACCUMULATOR

SUBTRACT
SECOND NUMBER

COMPARE
2ND AND 3RD

NUMBERS
AS ABOVE

COMPARE
lST AND 2ND

NUMBERS
AS ABOVE

DONE

YES

YES

YES

INTERCHANGE
lST AND 2ND

NUMBERS

INTERCHANGE
2ND AND 3RD

NUMBERS

INTERCHANGE
lST AND 2ND

NUMBERS

Example 2 - Arrange Three Numbers in Increasing Order

-46 ...

4.0 CODING A PROGRAM
The introduction of an assembler enabled the programmer to write a symbolic
program using meaningful mnemonic codes rather than the octal representation
of the instructions. The programmer could now write mnemonic programs such
as the following example, which multiplies 1810 by 3610 using successive
addition.

020 LI.ll ,0 (Initialize)
021 LI.ll-18 (Set up a CNTR
022 ST.{), 212 count the additions of 36)
023 ADD,(), 211 (Add 36)
024 ISZ 212 (Skip if CNTR is 0)
025 JMP 204 (Add another 36 if not done)
026 HALT (Stop after 18 times)
027 0012 (Equal to 1816)
028 0024 (Equal to 3616)
029 0000 (Holds the tally)

Writing the above program was greatly simplified because mnemonic codes were
used for the hex instructions. However, writing down the absolute address of
each instruction is clearly an inconvenience. If the programmer later adds
or deletes instructions, thus altering the location assignments of his program,
he has to rewrite those instructions whose operands refer to the altered
assignments. If the programmer wishes to move the program to a different
section of memory, he must rewrite the program. Since such changes must be
made often, especially in large programs, a better means of assigning locations
is needed. The assembler provides this better means.

Location Assignment
As in the previous program example, most programs are written in successive
memory locations. If the programmer assigned an absolute location to the
first instruction, the assembler could be told to assign the next instructions
to the following locations in order. The assembler maintains a current
..!.9cation counter by which it assigns successive locations to instructions.

Symbolic Addresses
The programmer does not at the outset know which locations he will use to store
constants or the tally. Therefore, he must leave blanks after each MRI and

-47-

come back to fill these in after he has assigned locations to these numbers.
In the previous program, he must count the number of locations after the
assigned initial address in order to assign the correct values to the MRI
operands. Actually this is not necessary, because he may assign symbolic
names (a symbol followed by a 11 : 11 is a symbolic address) to the locations to
which he must refer, and the assembler will assign address values for him.
The assembler maintains a symbol table in which it records the hex values
of all symbolic addresses. With symbolic address name tags, the program
is as shown below.

020 LI0,0
021 GO: LI0,-18
022 ST0,CNTR
023 MULT: ADD!{J,B
024 ISZ CNTR
!{J2.S JMP MULT
026 HALT
027 A:
028 B:
029 CNTR:

Note: The 11 : 11 after a symbol (e.g., GO:) indicates to the assembler
that the symbol is a symbolic address.

4.1 Symbolic Programming Conventions
Any sequence of letters (A,B,C ... ,Z) and digits (0,1, ... ,9) beginning with a
letter and terminated by a delimiting character(: or=) is a symbol.

User-defined symbols (stored in the external symbol table) must be four
characters in length.

The colon after a symbol in a line of coding (e.g., MULT:LD0) indicates to the
assembler that the value of MULT is the address of the location in which the
instruction is stored. When an instruction that reference MULT (now a
~mbolic address) is encountered, the assembler supplies the correct address
value for MULT. (Care must be taken that a symbolic address is never used
twice in the same program and that all locations referenced by an MRI are
identified somewhere in the program.)

-48-

The assembler will recognize the arithmetic symbols +and - in conjunction
with numbers or symbols, thereby enabling 11 address arithmetic". For
example, the instruction JMP START+l will cause the computer to execute
the instruction in the next location after START.

The decimal point, or period, is a character which is interpreted by the
assembler as the value of the current location counter. This special symbol
can be used as the operand of an instruction; for example, the instruction
JMP.-1 causes the computer to execute the preceding instruction.

The equal sign is used to define symbols. This character is used to replace
an undefined symbol with the value of a known quantity.

4.2 ASSEMBLY LANGUAGE INPUT
Assembly language input from the operator 1 s console is allowed only in alter
mode. The form of the input is very similar to that required by the Pace
assembler, namely:

{<label> :} b <opcode)~ b< operands>}

Example:

LOOP: LO 0. 01E4

The opcode may be any of the 45 Pace instruction mnemonics or one of the

special opcodes DATA and SYSF described below. The label field may contain

any user defined symbol. If specified, the label symbol will be entered
into the symbol table with a value equal to the current memory address
(ie., the value of .). The operand field must be specified as required by

the opcode. The special Pace assembler directives (=, and the set of opcodes
starting with .) are not allowed opcodes. When a label is not specified
the TAB key may be used to line up the opcode fields. One or more spaces,
however~ may be used if desired.

The operand syntax required for each opcode is specified in a table below.
The special symbols used in the definitions are defined as follows:

Symbol

a

Meaning

Any expression which evaluates to a 2-bit
accumulator address (0-3) or one of the

-49-

a VJ

c

d

f

following special symbols:

Symbo 1 Va 1 ue

AVJ 0
Al
A2 2
A3 3

Any expression which evaluates to 0 or the
special symbol A0.

Any expression which evaluates to a 4-bit
branch condition code (0-15) or one of the
following special symbols:

Symbol Value Condition
SF VJ Stackfull

ZR 1 A0 = 0
PS 2 A0 ~ 0
B0 3 A0 - 1 0 -
Bl 4 A0 - 1 1 -
NZ 5 A0 "'" 0
B2 6 A0 = 1 2
CN 7 Contin =

LK 8 LNK = 1

IE 9 IEN = 1

CY 10 CRY = 1

NG 11 A0 < 0
ov 12 OVF =- 1

J3 13 JC13 = 1

J4 14 JC14 = 1

J5 15 JC15 = 1

Any expression which evaluates to an 8-bit signed
value {-128 to +127).

Any expression which evaluates to a 4-bit flag
code (0-15) or one of the following special
symbols:

-50-

Symbol

Il

I2

Value
1

2

Flag

I El

IE2

(cont.)

m

m0

v

V7

vl

Symbol Value ~
I3 3 IE3
I4 4 IE4
I5 5 IE5
av 6 OVF
CY 7 CRY
LK 8 LNK

IE 9 IEN
BY A BYTE
Fl B Fll
F2 c Fl2
F3 D Fl3
F4 E Fl 4

Any expression representing a memory address
or the form d(a) representing a displacement
and base accumulator (or addressing mode).
d and a are defined above.

Any expression representing a memory address.

Any expression.

Any expression which
value (0-127).

evaluates to a 7-bit

Any expression which evaluates to a 1-bit value
(0 or l).

The special symbols described above are separate from those in the symbol table
and may be used only where specified. They may not be combined in expressions.

The operand syntax definition~ alphabetically according to opcode, are as
fo 11 ows:

Opcode Operand(s)
ADD a~m

AISZ a,d
AND a0 ,m
BOC c,m0
CAI a,d
CFR a
CRF a

-51-

(cont.) Opcode Qperand(s)
DATA v
DECA a0,m
DSZ m
HALT
ISZ m
JMP {e} m
JSR teJ m
LD a,m or a0,@m

!'
LI a,d
LSEX af!Pm
OR a0,m
PFLG f

PULL a
PULLF
PUSH a
PUSHF
RADC a,a
RADO a,a
RAND a,a
RCPY a,a
ROL a,v7,v1
ROR a,v7,v1
RTI {d}
RTS ~dl
RXCH a,a
RXOR a,a
SFLG f

SHL a,v7,v1
SHR a,v7,v1
SKAZ a0,m
SKG a0,m
SKNE a,m
ST a,m or a0,@m
SUBB a0,m

-52-

The order and function of the operands are identical to those of the Pace
assembler (refer to the Pace User's Manual for further information).
The addressing mode for memory reference instructions is automatically
determined by Pace 2 unless explicitly specified by accumulator relative
addressing of the form d(a). Where d is any expression which evaluates
to an 8-bit signed value (-128 to+ 127) and a is an accumulator (0 thru 3).

The DATA opcode is assembled as the value of the operand expression. The SYSF
opcode is assembled as a system function which is described later.
Note: Assembly language input is an immediate one pass function. As a result,

any symbol referenced in an operand (other than the special symbols)
must be defined at the time of reference. If a referenced symbol
is redefined at a later time, it will NOT alter the previously
assembled referencing instructions.

Example:
VAL = 010
ADDR = 020

PFLG $
LO A0,VAL
LI 1 ,-25
LO 2,ADDR

LOOP: ST 0,3(A2)
AISZ 2,4
JHSZ A 1 , 1
JMP LOOP
HALT

Note: VAL and ADDR must have been defined prior to their reference. If VAL
or ADDR are redefined later it will not affect the assembled code
(ie., the two LO instructions will still refer to the locations
specified by the original values of VAL and ADDR).

4.3 THE SYMBOL TABLE
Pace 2 maintains a user symbol table within its own read/write memory.
Symbols are entered into the table either manually, in Alter mode, by ex­
plicitly defining them or automatically, with the load (LO) command, from

-53-

the symbol blocks of a load module. Symbols stored in the table contain
from one to four alphanumeric characters starting with an alphabetic
character. Symbols may be redefined at any time. Any redefinition, how­
ever, will result in a warning message. Individual symbols or the entire
contents of the table may be deleted at any time by use of the 11 ! 11 function
in alter mode or the delete (DL) command. The symbol table is automatically
cleared by a power up or !NIT operation. The basic symbol table holds
up to 26 symbols with an option available to enlarge it to 121 symbols.
The value assigned to a symbol may be any 16-bit quantity.

Warning messages that are printed during symbol table manipulation are
as follows:

!R

!F

!L

Indicates that a symbol definition has
resulted in the redefinition of the same
symbol currently in the table. This is
printed even if the new and old values
are the same.

Indicates that a symbol definition was
ignored due to a table full condition.

During a load command, which includes a
symbol load and list, this message indi­
cates that a five or six character symbol
was encountered and ignored. If the list
was not specified, the symbol will be
ignored and the message omitted.

Other symbol errors, such as manually defining a five character (or longer)
symbol or referencing an undefined symbol, will result in a syntax error
message (??).

4.4 SYMBOL DEFINITION
Symbols are defined in alter mode by entering the sequence:

symbol = expression

where any expression may be used. Symbol definition will not change the
current address on any of the other internal registers used by Pace 2.
A special case of symbol definition, however, may be used to set the current
address to a memory address defined by an expression. This special case is
entered as:

• = <expression)~

-54-

j;

After the definition is entered, the specified address is automatically
opened and displayed.

) f.BC=5 fi}

)·01'1l0*4@

Defines the symbol ABC as 5

Opens the memory location specified by
10015*4 00400 05678

>
4.5 ASSEMBLY LANGUAGE OUTPUT

Assembly language output is produced by the list (LS) command and may also
be requested in alter mode or as part of a snap specification. When re­
quested, Pace 2 will interpret the contents of memory as Pace instructions
and list them as they might appear in an assembly listing.

The address and contents are displayed in hexadecimal. The label field will
be listed if a symbol is found in the user symbol table having a value equal
to the address. If more than one symbol has this value, the first symbol
encountered will be listed. The opcode and operands are output as described
for assembly language input with the following exceptions:

1) a,a ,c, and f operands will always be listed as the special
sym~ol corresponding their value. f operands having values
of 0 and 15 will be listed as decimal numbers.

2) d,v7, and v0 operands will be listed as decimal numbers.
For RTS and RT! d will be omitted if 0.

3) Memory reference operands (m and m0) will be listed accord­
ing to the referenced address as follows:

a) (symbo l>H + 1 n} if a symbo 1 is found having
a value within + 9 of the referenced add­
ress. The symbol closest in value to the
address will be selected.

b) .f[+n)1 if the address of the instruction
is within + 9 locations of the referenced
address and no symbol is found having a
closer value.

c) reference address15> if neither of the
above criteria are satisfied.

Instructions having unused fields that are non-zero (with exception of SYSF)
will be listed as data using the DATA opcode. Sufficient spaces are auto­
matically inserted to line up the opcode operand fields.

-55-

5.0 SYSTEM FUNCTIONS
The Pace 2 system functions are implemented by using a sub-set of the
redundant Pace HALT instructions. The Pace 2 hardware traps all HALT
instructions and examines the actual instruction to see if it was a system
function or not. If it is not a system function, Pace 2 retains control
and outputs a halt message. If it is a system function, Pace 2 attempts
to perform the requested function. System functions have the format
01XX16 where XX if the function code as described below. The assembly
language format is:

SYSF ce

where the value of ce (XX) must be one of those described below.

xx
0

1

2

3

Function
Return to Pace 2. If A0=0 no message
is printed, otherwise the message:

ERR ma
is printed where ma is the address of
the word following the SYSF.

Test for input from the operator 1 s console.
If no input is ready A0 will be set to -1.
Otherwise, A0 will be set to fl~cc16 where
CC is the ASCII code entered from the
keyboard (8 bits).

Get a character or byte from the operator 1 s
console or its attached paper tape reader.
If LNK=l the reader will be pulsed prior
to waiting for character entry. In any case,
Pace 2 will wait until a character is
entered (on byte read). The character
(byte) is returned in A0 as for the test
function.

Output a character or byte to the operator 1 s
console and/or its attached paper tape
punch. Bits 7-0 of A0 are output. The
byte will be punched if the punched has
been manually activated.

If execution of the system function is successful, the instruction following
the SYSF is skipped (the normal case). If an error is encountered, however,
A0 is set to an appropriate error code and the instruction following the

-56-

SYSF is executed.

Note: The set of system functions currently implemented always skip
the following instructions; ie., no errors are generated.

Only those registers/bits explicitly specified above are altered by the
system functions. All other registers/bits are left unaltered. If an

llldefined system function is encountered, it will be executed as SYSF 0 with
A0 set to 5016 .

Note: The RESTART button will have no effect while SYSE 2 is waiting for
console input. To effect a restart, hold down the RESTART button
and enter any key from the keyboard.

The following example programs will show how to use the alter mode features
and show how they can save program coding and debugging time.

Program No.

Address

010
011
012

013

014
015

1

Hex Code Mnemonic
LI A0,0
LI Al,4
AISZ A0, 1

AISZ Al ,-1

JMP 9)12
HALT

Comment
Load 11 ~ 1 s 11 into AC!!'
Load 0004 into AC4
Add on to AC0 and then test the result
for zero. If zero, skip the next instruction.
Add a -1 (subtract 1) to AC4 and then
test the result for zero. If zero, skip
the next instruction.
Jump to address 012
Halt

The mnemonic must now be converted to hexadecimal. The hexadecimal codes
are obtained from the conversion chart and the address values are calculated
where necessary (JMP).

Type in:

)AL@

Alter mode is now active.

-57-

010@) 00000 05000·CC}
011 00200 05104a:B
012 01080 07801 Ci)
013 0FFF0 079FF ~
014 00DEC 01812(f)
015 00A23 00000@)

~Je now have the program 1 oaded into memory.

An easier way to enter the program into the system memory is to use the line
assembler feature of Pace 2.

>AL@
010 00000 STA:
011 00200
012 01000 GO:
013 0FFF0 AISZ
013 00DEC
014 00A23
015 045AB

1'D

LI 0 ,0
LI 1 ,4
AISZ 0jl

1,-1 ??

AISZ 1,-1
JMP GO

(syntax error)

By using a symbol, we have the
assembler calculate the address
that it needs to jump to.

The program is loaded in memory and can now be executed.

% 010@
HLT 00016

Run command
It ran and halted at address 015
when A,l became zero.

Two snap points can now be set and Al will 11 count down 11 • Set a snao at
address 013 and 015 as defined earlier.

% 010@
SNP 00013
$Al 00004
SNP 00013
$Al 00003
SNP 00013
$Al 00002

-58-

Count is at 4

SNP 00013
$Al 00001
SNP 00015
$Al 00000
HLT 00016

Count is at 0 and the AISZ
instruction has skipped the
JMP instruction

The following example shows the print out when both break points and snap
points are set and unit is in the single step mode.

! %10,L CR

STP 00011 05104 LI Al ,4
STP 00012 07801 GO: AISZ A0, l
SNP 00013
$Al 017J004
BKP 00014
STP 00012 07801 GO: AISZ A0, l
SNP 00013
$Al 017J003
BKP 00014
STP 00012 07801 GO: AISZ A0 'l I c

Example 2:
The following program uses the system function to allow the TTY to be used
in the users program. The program will input a character from the TTY and
then printout the character.

>AL@
020 00000 LOOP: SYSF 2 {li)
021 00000@
022 00017J0 SYSF 3@ ?? Syntax error (need to tab or space)
023 00000
022 00000 [ONTR D SYSF 3 (Cf)
023 000fll0 (0
(a24 0000fl! (G-O-NT_R_]) JMP LOOP (i])

The program is now loaded to and read_v to execute.

-59-

Example 3:

i ~~~ ~p~R~~/.f~tN8i~A~D H~¥E wi~~T~~L p~~2~EbH6u~E~o~0~~D
0123456789
RST 0~023 Depress the restart key and then

type any character to transfer
control back to alter mode.

>THE FOLLOWING PROGRAM (SUBROUTINE) WILL ALLOW AN ASCII MESSAGE
TO BE PRINTED OUT.

>AL(@
LI ??

030 03000 TAB
031 048C0 LOOP:
032 08008
033 000E4

LI 3,040@
LD 0 ,(3) @!R

ROR A0 ,8,0@
SYSF 3@

Load A3 with the #40
Load A0 with content of addr 40
Rotate A0 right eight places
Output to TTY lower byte

034 00088@
035 02016 ROR A0,8,0@ Rotate AV) right eight places
036 0004C SYSF 3@ Output to TTY 1 ower byte

037 00004@
038 01444
039 000EC
040 00080 I

AISZ 3,1@
JMP LOOP (f}

·@
041 00000 I I@
042 00000 'I •<bf)
043 00000 I ~JI I @
044 00000 'LL'~
045 04000 1 KE 1 (!j)
046 00000 1 EP 1 (!J}
047 00000 ~
045 04B45 I K'~
046 04550 1 EE 1 4j}
047 00000 •p ·~
048 00000 1 TH 1 {f)
049 00002 'E 'rbV
04A 00000 'ME'{kD

-60-

Add one to value in A3
Jump to add 9)31

See write up for ASCII constants

To examine the program and the message, type a Control-D to enter the
command mode.

>LS 030-03A @
00030 05340 LI A3,64
00031 0C300 LOOP: LD A0,{A3) List the program
00032 02410
00033 00103
00034 00088
00035 02410
00036 00103
00037 00004
00038 07B01
00039 042C7
0003A 01831

Display the message in ASCII
> DS 040-055/A @

ROR A0,8,0
SYSF 3
DATA 088
ROR A0,8,0
SYSF 3
DATA 04
AISZ A3, 1
BOC PS,01
JMP LOOP

00040 I I I I I I I I ~JI I

00044 'LL' I K1 1 EE 1 •p I

00048
0004C

'TH'
'AG'

IE I 'ME' 'SS'
IE I I SH' I OR I

00050 'T I I
I I l 'HI I

I I I I

To execute the program:

>AL@
%030~ I WILL KEEP THE MESSAGE SHORT ----HI!

Depress the restart switch and get RST 0030.

5. l ALTER MODE COMMANDS
All Alter Mode commands are specified with a single character and are terminated
with a RETURN. The entry formats and command functions are described below.
Only those registers specified are altered during execution.

Delete Symbol

Deletes the symbol sy or the entire
symbol table if@ is entered.
Identical to the DL command.

-61-

Display Value

?ae~

Enter User Mode

Scan Memory

!ABC@ Deltes symbol ABC

Displays the value of the expression ae
in hexadecimal and sets the effective
address to this value. The value is
printed on the same line preceded by=.

?32*4@ = 080

Starts executing a program in user mode
at location ma or at the PC location if ma
is omitted. If ss is specified, the pro­
gram will be run in single step mode.
When execution is terminated, the current
and effective addresses are set to the value
of PC. The command functions identical
to the ., GO and SS commands.

%0100,L@ Starts execution in single
step mode at location 10016 .

r{[~:1~,~#Jse1f,se2}~ Sets the scan value to se and the scan mask
to se and proceeds to scan memory/registers
upward starting at the specified address
(ma/ra) or the current address if ma/ra is
omitted. The scan algorithm is identical

5.2 SELF-DEFINING TERMS

Numbers

ASCII Constants

to that of the SCAN command. The first
address satisfying the scan criteria is
automatically opened. Control-N may then be
used to advance to the next scan location.

f0100,0FOOO@ Scan memory starting at H1>016
for the first location con­
taining the value F00016 .

Entered in decimal or hexadecimal in the form decimal
number or 0 hexadecimal number , respectively.

Entered as either •x1•x2•,•x•, or 11 X. The form •x X •
is assembled as: 1 2

15 8 p1 ASCII code

-62-

7 0

x2 ASCII codel

I'

Hamihon/J\vnet-Pacer
a complete

Microprocessor System!
The Pacer features the Pace MPU and all
National Semiconductor 1/0 Memory
and support components.

Quick to assemble:
All the accessory components and PC
Boards are furnished . Also. a power
supply, case, mother board and assembly
book are supplied so you can be in
operation within hours.

Easy to use:
A system monitor gives you a complete
set of:
Control Functions
• Examine and modify
• Single Step
• Executive restart
• Run

Debug Functions
• Breakpoints
• Halt
• Hex calculations

Also, included is the Pacer User's Manual
that gives instructions and sample
programs on these functions in a simple
self-teaching format.
Expandable:
Assembly language programming can be
accomplished with the "PAC-I " TTY
Interface / Program Assembler Card for
$175.00. Extra memory is available with
the "PAC-II " 2K by 16 RAM static RAM
card for $199.00.
Low Cost-5695.00: "PACER" Kit features these National Semiconductor Components.
The "PACER" is a complete desk top
" PACE" microcomputer development
system that contains everything.

Special Offer:
A completely assembled ready-to-plug-in
" PACER" can be purchased for an extra
cost of $160.00. Just specify "PACER"
Kit #2 on your order.

NORTH CENTRAL

Memory Board Components
Four MM2112N 1256 x 41 RAMs for 256 Words
Space for both 12 more MM2112N and four
MM 52040 1512 x Bl PROMS to expand memory
Other Components
M other Board to reduce interconnect wiring and make
expansion easy Power supply t- 10 and 16
volts LM320 and LM323 series of on-card regula­
te rs Assorted standard National Tri -State•
Logic

CPU Board Components
One National IPC-16A/ 5000 '"PACE'" 16-Bit MPU
with necessary input and output buffer components

Controf and 1/0 Board Components
Two OM85310 ROM's for 1 K Words of system moni­
tor Four MM2112N 1256 x 4 1 static RAM 's . One
MM5740N Keyboard Encoder Two OS 8859N Hex
Latch and LED Driver Circuits All required sup­
port components to interface wt th the two 4 · d1g1t
displays and a 32-key pad

.MID-ATLANTIC SOUTHERN NORTHEAST SOUTHERN CALIFORNIA
Avnet , C213l 558-2345
Hamilton Electro, C213l 558-2121
San Diego, C71 4l 279-2421
WEST
Albuquerque, C505l 765-1500
Denver, C303l 534-1212
Mountain View, C41 5l 961 -7000
Phoenix, C602l 275-7851

Chicago, C312l 678-6310
Cleveland, C216l 461 -1400
Dayton, C513l 433-0610
Det roit, C313l 522-4700
M inneapolis, C612l 941 -3801
St. Louis, C314l 731 -11 44

Baltimore, C301l 796-5000
Connecticut, C203l 762-0361
Long Island, C51 6l 333-5800
Cedar Grove, C201l 239-0800
Cherry Hill, C609l 234-2133

Atlanta, C404l 448-0800
Dallas, C214l 661 -8661
Houston, C713l 526-4661
Huntsville, C205l 533-1170
Kansas City, C913l 888-8900
M iami, C305J 925-5401

Boston, C617l 273-2120
Rochester, C716l·442-7820
Syracuse, C31 5l 437-2642
CANADA
Montreal, C514l 331 -6443
Ottawa, C613l 226-1700
Toronto, C416l 677-7432
INTERNATIONAL

Salt Lake City, C801l 262-8451
Seattle, C206l 746-8750

Call'
Telex 67-3692

j

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	63
	64
	A-001
	A-002
	A-003
	A-004
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	xBack

