
NCR 53C710 SCSI va Processor

Programmer's. Guide

Printing History

Reyision No,
Draft 0.1
1.0

print Date
9/90
10/90

SCSI SCRJPTfM is a registered trademark of NCR Corporation

NCR is the name and mark of NCR Corporation. While the infonnation presented herein has been
checked for accuracy, NCR assumes no responsibility for either its use or any damages resulting
from its use. NCR reserves the right to make any changes or discontinue altogether without notice
any hardware or software product or the technical content herein.

Copyright © 1990 by NCR Corporation, Dayton, OH, U.S.A.
All Rights Reserved, Printed in U.S.A.

Table of Contents

Table of Contents

Chapter Descri ption Page

1. Introduction .. 1-1

2. SCSI SCRIPTSTM Machine Language Description 2-1
Block Move Command ... 2-1
I/O Command .. 2-6
ReadIWrite Register Command .. 2-10
Transfer Control Command .. 2-14
Memory Move Command .. 2-18

3 . Developing NCR SCSI SCRIPTS3-1
Single-Tasking SCSI Example .. 3-4

4 • SCSI SCRIPTS Compiler ... 4-1

5. NCR SCSI SCRIPTS Utilities ... 5-1

6. The NCR SCSI SCRIPTS Language Syntax 6-1
Notation .. 6-1
Input Fonnat ... 6-1
Language Directives ... 6-2
The SCSI SCRIPTS Instructions ... 6-3
Block Move Command ... 6-3
Jump Command .. : 6-4
Call Command ... 6-6
Re turn Command .. 6-8
Interrupt Command ... 6-10
SCSI I/O Commands ... 6-11

7 • SCSI SCRIPTS to Support Use of Scatter/Gather 7-1

8 • NCR SCSI SCRIPTS For An Initiator ... 8-1

9. Unique Initiator Sequences For The 53C710 9-1
Disk Drive Initiator Sequence ...•...... 9-1
Ta pe Drive Initiator Sequence .. 9-2
SCSI Character Oriented Device in the Initiator Role 9-3

10. Special SCRIPTS Situations ... 10-1
Transferring Large Blocks of User Data .. 10-1
How a Save Data Pointers can be processed by the Initiator 10-2

11. Multi-Tasking I/O Using SCSI SCRIPTS 11-1

NCR 53C71 0 Programmer's Guide (Preliminary) 10/25/90

Table"of Contents

Appendices

Chapter Descri ption Page

A. High Performance Considerations When Using the
S3C710 vs S3C90 .. A-l
Sample Input Data Structure .. A-I
Initializing SCSI SCRIPTS for an I/O ans Starting I/O Operations A-I
53C90 Algorithm Description ... A-I
Conclusion .. A-2

B • S3C710 System Bus Utilization ... B-1
Host Bus Time to Fetch A SCSI SCRIPTS Command B-1
Conclusion .. B-2

C. Use of the SIGP Bit ... C-l

D. Compiler SCRIPT Examples .. D-l
S CS I SCRIPTS Source File ... D-l
SCSI SCRIPTS List File .. D-4
SCSI SCRIPTS Output File .. D-7

E . SCRIPT Compiler Error Messages ... E-l
Fatal Error: .. E-l
Err 0 r: ... E-2
War n i n g : .. ~ E-4

F . Miscellaneous Design Topics ... F-l
SCSI Activity Timer ... F-l
Longitudinal Parity Register .. F-l
Bi~ittle Endian Support ... F-l

G. Using the S3C710 in Low Level Mode .. 0-1

List of Figures

Figure Description Page

1. Block Move Command .. 2-1
2. I/O Command .. 2-6
3 . ReadIW rite Register Command .. 2-10
4. Transfer Control Command .. 2-14
5. Memory Move Command ... 2-18

NCR 53C710 Programmer's Guide (Preliminary) ii

Preface

1/0 Performance

The demands on today's I/O interfaces are
being pushed by increased performance of
personal computers and workstations.
Extremely fast CPU's, both CISC and RISC,
only provide marginal system perfonnance if
their I/O interfaces are not properly designed.
Faster processors do not equal higher
performance. Amdahl's Law describes this
situation: "Assume I/O represents 10% of
the system activity and its performance is kept
constant. If CPU power is increased by a
factor of 10:1, the net improvement is only
5:1. A 100:1 increase in CPU power is
valueless if the net improvement in systems
performance is only 10:1."

Interrupt service routines often take more than
several hundred microseconds to execute and
can be a large source of performance delays.
Interrupts may be generated for exception
conditions, I/O completion, saving/restoring
buffer data pointers (for system check­
point/restart), or low probability events
available as options in todays SCSI
definition. Interrupts can be reduced by
using programmed I/O; however, this can be
time consuming and requires much of the
host computer cycle time. Therefore,
programmed I/O is not an adequate solution
for mUlti-tasking operations.

ScatterlGather

Another performance issue is the scatter­
gather operation. With virtual storage
immensely common today, many I/O's gather
the data from several physical addresses in
system memory. Latencies inherent in the re­
instruct DMA operation can cause serious
performance degradation by allowing the disk
drive to slip a latency while the DMA is being
re-instructed.

1/0 Flexibility

Options in bus protocol allow increased J/O
flexibility. Need for I/O flexibility is partially
responsible for the popUlarity of the SCSI
standard. I/O flexibility allows configuration
of systems for a wide range of peripherals

NCR 53C71 0 Programmer's Guide (Preliminary) iii

(from high performance disk drives to hand
held scanners). Additionally, I/O flexibility
supports command queueing, asynchronous
or synchronous data transfers, caching
controllers, peer to peer communication, etc ..
Unfortunately, this implies fmnware
complexity. If these options are not carefully
implemented, performance will suffer.

A Better Solution

First generation (NCR 5380) SCSI devices
are register oriented and require processor
intervention to make the most fundamental
protocol decisions. Users like the flexibility
of these devices because the low-level
firmware interface provides specific real time
information about the SCSI bus and
improved testability of the SCSI device. This
generation of devices typically requires in
excess of 4,000 lines of code to specify a
SCSI-l device implementation.

Second generation (NCR 53C90) SCSI
devices provide on-chip state machines.
Some complex SCSI sequences can be
perfonned automatically which reduces
protocol overhead. However, these devices.
have no decision making capability, because
the internal sequences are fixed in hardware at
VLSI design time. This generation of devices
typically requires in excess of 2,500 lines of
driver software to support this class of SCSI
device.

The flexibility of the SCSI bus creates a
dilemma for system integrators and OEM's
alike. The dilemma is: should frrst and
second generation SCSI devices be used as
non-intelligent, stand-alone devices or should
they be integrated into intelligent host adapter
boards. Non-intelligent SCSI host ports or
host bus adapters require a fair amount of
processor intervention, but are inexpensive to
implement. Intelligent host adapters are more
expensive than non-intelligent adapters. They
provide slower decision making capabilities
(less powerful CPU's), experience
interpretation delays (2-8 msec required to
start any I/O), and suffer from interprocessor
communication delays. In systems not
requiring a complex buffering scheme, non-

10/25/90

Preface

intelligent host adapters outperfonn their
intelligent counterparts. For peripheral
controllers, space is at a premium and
complex peripheral interfaces require
powerful microprocessors to transfer data at
the high rates used by the peripheral interface.
Therefore, SCSI chips requiring intense
fmnware can overwork the controller
microprocessor making it unable to perform
required tasks. Limited available space
usually excludes adding an extra processor or
replacing it with a more powerful one.

With MIPs increasing in the system CPU, the
delays caused by intelligent host adapter cards
and slow peripheral controllers pose
problems for the system integrator. The
simplest solution is to build complex,
versatile hardware sequences inside the SCSI
components or to add additional CPU power
in the SCSI device board. Both solutions are
costly (space and component cost) and do not
adequately address the problem.

Third Generation Requirements

To accommodate the flexibility requirements
of the SCSI bus (reducing interrupts and
controlling board cost), an additional level of
intelligence and integration is required for
next generation SCSI devices. Third·
generarion SCSI devices must make
execution decisions based on phase changes
on the SCSI bus and compare specific
incoming data values which will result in a
minimum number of interrupts to the external
processor.

NCR 53C71 0 Programmer's Guide (Preliminary) iv

A programmable SCSI device that executes
SCSI oriented commands is required. These
new devices must reduce interrupt service
routine complexities by providing unique
status values to the external processor for
any interrupts that do occur. Additionally, a
fully integrated DMA channel would allow
full use of available host bus bandwidth.
This is the key to overall I/O performance
given current use of virtual memory schemes
which require the ability to support scatter­
gather memory operations without processor
intervention.

Third generation SCSI devices require only a
few hundred lines of driver code. This code
is required for exception conditions and for
passing addresses of the user data buffer to
the device. Error recovery occurs at the high
level interface. In second generation chips,
the fmnware is required to manage every
detail of the error recovery mechanism,
because the high level interface is ftxed and
has only one entry point. Programmable
SCSI chips allow error recovery using the
high level interface, because the algorithm can
be entered at any command and error speciftc
SCSI SCRIPTSTM can be developed.

10/25/90

Chapter 1
Introduction

This chapter introduces the NCR 53C710
SCSI I/O Processor (SlOP).

The NCR SCSI 1/0 Processor
(SIOPl

The NCR 53C710 is the second member of a
family of intelligent SCSI chips. A high­
perfonnance reusable SCSI core and an
intelligent 32-bit bus master DMA have been
integrated with a SCSI SCRIPTS processor
to accommodate the flexibility requirements
of SCSI-I, SCSI-2, and eventually SCSI-3.
This flexibility is supported while solving the
protocol perfonnance problems that have
plagued both intelligent and non-intelligent
adapter designs.

SCSI Component

In addition to the reliability components of
NCR's other SCSI chips:

• 10K volts ESD protection

• >350 mV Bus Hysteresis

• Immunity to bus reflections due to
impedance mismatches

• Controlled bus assertion times which
reduces generated RFI, improves
reliability, and increases the chances
for FCC approval

• Latch-up protection >100 rnA

• Voltage feed-through protection

The SCSI core in the 53C710 is reusable and
designed to migrate to SCSI-2 wide and fast
requirements. It offers synchronous transfers
up to 10 MBytes/sec with asynchronous
transfers greater than 5 MB ytes/sec.
Synchronous offsets up to 8 MBytes/sec are
supported.

NCR 53C71 0 Programmer's Guide (Preliminary}1-1

The SCSI core offers low-level register
access as well as the high-level control
interface. Similar to frrst generation SCSI
devices, the 53C710 SCSI core can be
accessed as a register-oriented chip. The
ability to sample and assert any signal on the
SCSI bus can be used for manufacturing test
and diagnostic procedures. Loopback
diagnostics are supported; the SCSI core can
perform self-selection and can operate as both
an initiator and a target to verify that internal
data paths are operational. The 53C710 can
test the SCSI pins for physical connection to
the board or the SCSI bus.

Unlike previous generation devices, the
53C710 SCSI core is controlled by the
integrated DMA through a high-level logical
interface. High-level programming language
commands controlling the SCSI core may be
chained from main host memory. These
commands instruct the SCSI core to select,
reselect, disconnect, wait for a disconnect,
transfer user data, transfer SCSI information,
change bus phases, and implement all aspects
of the SCSI protocol.

Also, the SCSI SCRIPTS processor will
transfer execution control Gump, call, return,
and interrupt) based on SCSI bus phase
comparisons. A value in the SCSI SCRIPTS
command can be compared to the actual data
value on the SCSI bus, allowing the same
transfer of control based on input data
compares. The SCSI SCRIPTS processor is
a special2MIPS processor located on the
SCSI chip ..

9/27/90

Introduction

DMA Component

The DMA component is a bus master DMA
chip that attaches easily to various processor
buses and is designed to be externally adapted
to ISA (AT), EISA, Micro Channel™, etc.

The 53C710 supports 32-bit memory and
automatically supports misaligned DMA
transfers. Data bus enables are provided for
each byte lane. An on-chip, 64-byte FIFO
allows 2,4, or 8-long words to be burst
across the memory bus interface, providing
memory transfer rates in excess of 66
MBytes/sec.

Sixteen bytes at a time can be burst into the
FIFO using the cache line burst feature.

The DMA is tightly coupled to the SCSI core
through the SCSI SCRIPTS processor,
which supports uninterrupted scatter-gather
memory operations with only a 500
nanosecond delay between memory segment
transfers.

A Watchdog Timer provides a "bus safety"
feature. The flexible arbitration scheme
allows daisy chained or 'OR'ed memory bus
request implementations.

SCSI SCRIPTSTM Processor

The SCSI SCRIPTS processor is a specially
designed 2 MIPS processor that allows both
DMA and SCSI instructions to be fetched
from host memory. Algorithms written in the
SCSI SCRIPTS language and then compiled
control the SCSI and DMA cores and are
executed from 32-bit system memory.
Complex SCSI bus sequences are executed
independently of the host CPU.

U sing relative jumps and the Table Indirect
Mode for fetching data values, SCSI
SCRIPTS can be executed from a PROM.

NCR 53C71 0 Programmer's Guide (Preliminary) 1-2

The SCSI SCRIPTS processor can begin a
SCSI I/O operation in 500 nsec. This
compares to the 2-8 msee required for
traditional intelligent adapters. The SCSI
SCRIPTS processor offers perfonnance and
customization. By designing your own
algorithms, you can tune SCSI bus
performance, adjusting it to new bus device
types (that is, scanners, communication
gateways, etc.), or changes in the SCSI
logical bus defmitions; or you can quickly
incorporate new or popular options.

The SCSI SCRIPTS processor is how the
53C710, the NCR third generation SCSI
chip, implements flexibility without
sacrificing I/O performance.

NCR SCSI SCRIPTS Description

SCSI SCRIPTS are independent of the CPU
and system bus. SCRIPTS for an EISA bus
implementation of a 80386 can, therefore, be
identical to the SCRIPTS for a Micro Channel
implementation.

After power up and initialization of the
53C710, the chip may be operated in one of
two modes:

1) Low-level register interface

2) SCSI SCRIPTS mode.

In the low level register interface, you have
access to the DMA control logic and the SCSI
bus control logic and can operate the chip like
an NCR 53C80. Access by an external
processor to the SCSI bus signals and the
low-level DMA signals, allows use of a
complicated board level test algorithm. The
interface provides backwards compatibility
with SCSI chips requiring unique timings or
bus sequences to operate properly. Another
low-level feature is loop back testing. In loop
back mode, the SCSI core can be directed to
talk to the DMA core; this allows the internal
data paths to be tested all the way to the
chip's pad.

9/27/90

Introduction

Operating in the SCSI SCRIPTS chained
mode, the 53C710 requires only a SCSI
SCRIPTS start address. All subsequent
commands are fetched from external memory.
Four bytes at a time are fetched across the
DMA interface and loaded into the command
register. Command fetch and decode time is
minimal at about 500 nanoseconds.

In the Table Indirect Mode, data values (for
example, byte count and address) are fetched
after the command bytes are in the chip.

A Data Structure Address (DSA) register is
provided for the data structure base address,
and a 24~bit signed value is in the SCSI
SCRIPT. Therefore, a complete context
switch involves loading a new DSA value
and then starting SCSI SCRIPT execution.

Commands are fetched until an interrupt
command is encountered or until an external,
unexpected event (e.g. hardware error
detected) causes an interrupt to the external
processor. The full set of SCSI features in
the command set allow re-entry of the SCSI
algorithm at any point. A high level interface
is required for both normal and exception
conditions. Therefore, switching to a low­
level mode for error recovery, as is the case
with today's second generation SCSI VLSI,
is never necessary.

NCR 53C71 0 Programmer's Guide (Preliminary) 1-2 9/27/90

Chapter 2
SCSI SCRIPTS Machine Language Description

This chapter describes each SCSI SCRIPT in
detail, at the programming and bit level.
Nonnally, you will use the SCSI SCRIPTS
compiler as described in the following
sections, but for debugging purposes, each
command is described in detail. Each
command description consists of a bit diagram
of the command, a brief overview of the
command, and a description of each field
within the command

BLOCK MOVE COMMAND

Bits 31-30 are.SCSI I/O Processor opcodes:

00 equals Block Move Command
01 equals I/O Command and Read/Write
10 equals Transfer Control Command
11 equals Memory Move Command

~D D~

1/0
C/O

MSG 24-bit Block Move Byte Counter
OpCode

o

Table Indirect Addressing
Indirect Addressing (53C700 compatible)

o

First 32-bit word of the Block Move Instructions

DNAD Register
31 23 15 7 o

Second 32-bit word of the Block Move Instructions

Rgure 1. Block Move Instructions

Overview

The Block Move command transfers data
to(from) user memory from(to) the SCSI bus.
No distinction is made between user data and
SCSI infonnation, such as command or

NCR 53C710 Programmer's Guide (Preliminary) 2 - 1

message bytes. A series of SCSI SCRIPTS
is written to move all types of data, with no
requirement for separate fmnware to
distinguish between user and SCSI data.

11/13/90

SCSI SCRIPTS Machine Language Description

Note that the data may come from any
memory address, so scatter/gather operations
for user data are transparent to the chip and
the external processor. One simply writes a
separate Block Move for each piece of data to
be moved. Use the 32-byte DMA data buffer
to speed data transfers between user memory
and the I/O Processor. Synchronous SCSI
data in transfers can use the 8-byte FIFO.

Note: The possible values for each field are
given in binary.

BLOCK MOVE COMMAND
FIRST SCRIPTS WORD

Block Move opcode -- 00 Bits 31-
30

Indirect data address flag (I), Bit 29

o SCSI or user data is moved to (from)
the 32-bit data start address for the
Block Move. The value is loaded into
the chip's address register and
incremented as data is transferred

1 The 32-bit SCSI or user data start
address for the Block Move is the
address of a pointer to the actual data
buffer address. The value at the 32-bit
data start address is loaded into the
chip's DNAD register via a second long
word (four-byte transfer across the host
computer bus).

This option implies three DMA long
word transfers, rather than two
transfers. Once the data buffer address
is loaded, it is executed as if the chip
operates in the direct mode. This
indirect feature allows specification of a
table of data buffer addresses. Using
the NCR SCSI SCRIPTS compiler, the
table offset is placed in the script at
compile time. Then at the actual data
transfer time, the offsets are added to the
base address of the data address table by
the external processor. This allows the
logical I/O driver to build a structure of

addresses for an I/O rather than treating
each address individually.

Table Indirect Field, Bit 28

o SCSI or user data is moved as described
previously. This option allows
compatibility with existing 53C700
SCSI SCRIPTS.

1 The 32-bit start address is treated as a
24-bit signed value. After the command
is moved into the 53C710, the 24 bits
are added to the Data Structure Address
(DSA) register to form a 32-bit physical
address.

From this new address, the byte count
(24 bits of count, plus 8 bits of high­
order zeros), and the Data Buffer
Address (32 bits of address) are fetched.

There are several programming
implications of this feature.

First, a standard SCSI data structure can
be designed with values in predefined
areas. The SCSI SCRIPT does not
require the actual 32-bit address or 24-
bit count to be in the SCRIPT itself. At
the start of the an I/O, once the actual
data structure is built, no more fmnware
intervention is· required except loading
the data table base address into the DSA
register.

Second, the SCRIPT may be placed in a
PROM because no dynamic alteration is
required at the start of an I/O.

Finally, there is a requirement for only
one copy of the main SCSI SCRIPT for
all I/O, using a fast context switch to
change to another I/O.

In the Table Indirect mode, the user must have
stored the byte count and data address in
memory formatted as shown in the illustration
following this description.

The data must begin on a 4-byte boundary and
must be located at the 24-bit signed offset
from the address contained in the Data
Structure Address register.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 2 11/13/90

SCSI SCRIPTS Machine Language . Description

If the data is written to memory, four bytes at
a time from the processor, then the user need
not be concerned about big or little Endian
mode because the low order byte will
automatically be at the low order address. If
this is not the case, the user must ensure that
the bytes are in the proper order (that is, low
order byte at address zero; next byte at
address 1, etc.)

longwordnl'" _O_O-4-I_YYx_x_+-I_xYY_x -+1_Xyy_X--lI~:!eb:~nt
long word n + 1 yy. . . byte address

Addr Addr Addr Addr (32 bits)

321 °

Block Move Opcodes, Bit 27

The SCSI role (target or initiator) causes the
chip to react differently, with respect to the
phase line values. A primary difference .
between roles is whether the SCSI phase lines
are sensed or driven. There are also major
differences between the two roles in the
command phase. Therefore, the Block Move
functions are described for each SCSI role -
target and initiator.

Tar~et Role Function--O

The target role allows DMA of user or SCSI
data. First the chip detetmines whether the
previous command has completed, or a
reselect has occurred. The SCSI phase bits
are asserted to the value requested by the
Block Move command

In all phases, the chip will react one of several
ways, after the SCSI SCRIPT is loaded.

If the Indirect Addressing bit is 1, the 53C710
fetches the Data Buffer Start Address from the
location pointed to by the DMA Next Address
(DNAD) register. This fetched value is then
stored in the DNAD, and execution begins.

If the Table Indirect bit is 1, then the byte
count is fetched, and the buffer address is
fetched.

An address for these values is generated using
the 24-bit signed value in the start address

field of the SCSI SCRIPT, and the value of
the DSA register.

Note:
Setting both the Indirect Addressing and Table
Indirect bits to 1 causes an illegal instruction.

If the command phase has been requested, the
chip will:

•

•

•

•

Wait for the first byte received.

Decode the byte to detennine the number
of SCSI command bytes to receive.

Write the command length into the DBC
register.

An invalid group code value causes the
chip to use the original value in the
DBC register. A zero value stops
processing, creates an interrupt with the
first byte, and stops transferring
command bytes.

Transfer the correct number of bytes
into the address designated by the Block
Move command

If any phase (other than command) is
requested, the chip transfers the number of
bytes requested to (from) the address
requested. Should the initiator tum on
attention at any time during the transfer, the
transfer will optionally complete, and then an
interrupt will occur.

Tar:~et Role Function--l

This is an illegal value and will generate an
invalid command interrupt if !:he chip is in the
target role.

Initiator Role Function--OO

This is an illegal value and will generate an
invalid command interrupt if the chip is in the
initiator role.

Initiator Role Function--l

In the initiator role, this operation waits for a
valid phase and DMA data. Mter verification
that the previous command is complete or a

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 3 11/13/90

SCSI SCRIPTS Machine Language Description

reselect has occurred, the chip waits for a • Transfer the burst size.
previously unserviced phase before executing
the Block Move command You can program • Decrement the byte counter (byte count).

Increment the next address register (data
address).

the 53C710 to pause until the SCSI device it
is communicating with goes to the. next phase, •
using the Transfer Control commands or the
Move instructions.

A comparison is made between the expected
phase bits in the SCSI SCRIPTS and the
latched phase value. If the two values are not
equal, the chip issues a phase mismatch
interrupt and halts execution. This wait
capability is normally used to allow the target
to pace the chip in the initiator role. When a
phase change is expected, the wait
synchronizes the expected phase with the
Block Move for that phase.

To eliminate the possibility of these interrupts,
use the compare and jump features to verify
the phase before issuing the Block Move
command.

Please refer to the previous discussion of how
the table indirect or indirect address features
cause the chip to load byte count and buffer
address.

SCSI Phase Lines, Bits 26-24

These three SCSI phase lines perform
compatisons to the actual SCSI bus phase
lines. The SCSI bus phase value is latched
when REQ goes active. The value is stored in
SST A T2 (bit 2 through bit 0 -- MSG, C/D, &
I/O). Before any data is moved, the chip
compares the expected value with the actual
value.

24-bit Byte. Count, Bits 23-00

This count value specifies the exact number of
data bytes to be moved between the SCSI bus
and system memory. As the SCSI SCRIPTS
command is decoded, the value is moved into
the DBC register. When the user specified
burst size of data is available in the DMA
FIFO, the SCSI I/O Processor will:

• Gain access to the system bus.

The process will continue until the byte count
is zero. At that time, the next SCSI SCRIPTS
command will be fetched.

If the chip is in Table Indirect mode, the byte
count will be fetched from the memory
address formed by adding the Data Structure
Address (DSA) register to the 24-bit signed
value in the Start Address register.

BLOCK MOVE SECOND
SCRIPTS WORD

Data Start Address for the Block
Move Bits 31-00

This value specifies the address of data in
memory (direct mode), the address of the
actual address (indirect mode), or the 24-bit
signed offset from the Data Structure Address
register (Table Indirect mode). The DNAD
register is Updated with the address of the
actual data and is incremented with each chip
DMA transfer.

The Block Move command is very powerful
for several reasons.

1) No distinction is made between user
data and SCSI command, message, or
status data.

2)

3)

4)

Data can be stored in any area of system
memory with little performance impact
(one command fetch).

The indirect feature allows a table of
addresses instead of requiring the
address to be in the command.

A scatter/gather operation has little
performance impact, because the only
overhead is 500 nanoseconds (direct
mode) or 750 nanoseconds (indirect
mode). Thus, one Block Move

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 4 11/13/90

SCSI SCRIPTS Machine Language Description

command for each segment of data in
memory is economical with the SCSI
I/O processor architecture.

The Table Indirect mode allows both byte
count and Data Buffer address to be fetched
from system memory. Having this
information brought into the chip, in the
indirect mode, causes 8 more bytes of
information to be fetched and separates data
from SCRIPTS code.

In the initiator role, the Block Move wait
feature is useful for high performance SCSI
SCRIPTS that do not compare for any
unexpected phases before executing a Block
Move command. If the phase does not match,
then an external interrupt is generated.

For the high performance SCSI SCRIPTS
algorithm, exceptions are abnormal and are
handled by the external processor. Normally,
the Conditional Transfer command (see I/O
Command) compares actual to expected
phase. The frrst Conditional Transfer
command must have the "wait" option on (to
synchronize the commands with the actual bus
phase), and each subsequent command should
have the "wait" option turned off.

With the Table Indirect mode, I/O data
structures can be fetched directly, eliminating
one mere level of system software translation
normally required to start an I/O.

In this mode, SCRIPTS do not need to be
patched at the start of an I/O. Once a standard
I/O descriptor has been described by a SCSI
SCRIPT, it can effectively execute the data
structure with no processor intervention.

For another method of placing a 32-bit
address into this instruction, refer to the
PASS option available in the SCSI SCRIPTS
compiler.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 5 11/13/90

SCSI SCRIPTS TN Machine Language Description

1/0 COMMAND

DBC

31

SCSIIDO RES
SCSIID 1

SCSIID2

RES

Set/Clear ATNI
Set/Clear ACKI

o

SCSIID3
SCSIID4

SCSIID5
SCSIID6

SCSIID7
Select with ATN

Reserved - must be 0
Reserved - must be 0

OpCode bit 0
OpCodebit1

OpCodebit2

First 32·bit word of the 110 Instructions

DSPS Register
31 23 15

Set/Clear Target Mode

7 o

Second 32·bit word of the 110 Instructions

Rgure 2. lID Instructions

Overview

The I/O command perfonns SCSI operations
such as select and reselect. Each function
defmed is a direct command to the SCSI
portion of the 53C710. The functions vary if

NCR 53C710 Programmer's Guide 2-6

the chip is in the target or initiator role, so that
the functions are described separately for each
role.

A new set of register-to-register operations
has been defined for this opcode.

11/13/90

SCSI SCRIPTS Machine Language Description

1/0 COMMAND FIRST
SCRIPTS WORD

SCSI 1/0 Processor opcode -- 01
Bits 31-30

I/O Command Opcodes Bits 29-27

Five functions are defined for target and
initiator role, three are used in register
operations.

Target Role -- function 000. .
Perform reselection -- The chip arbItrates for
the SCSI bus and then performs a reselection.
Arbitration continues until the chip is
successful, unless there is a bus ~iti~ted
interrupt (e.g. selection). ~ a:~ltra~on
terminates because of a bus mltlated Interrupt
(selection or reselection) the chip will use the
32-bit jump address value to fetch the next
instruction and begin execution at that
address.

If the relative addressing bit is 1, then the 24-
bit signed value in the D~ ~ext Address
register is used as a relatlve displacement from
the DMA SCRIPTS pointer. If the command
is successful, then the next sequential
instruction is fetched and executed

Note that the targetfmitiator role automatically
changes to reflect what is actually occurring
on the bus, unless bit 0 (COM) of the DCNTL
register is set.

If the Table Indirect mode bit is 1, the 24-bit
signed value in the DMA Byte Count register
is used as an offset relative to the Data
Structure Address register. The SCSI
destination device ID, the synchronous offset,
and the synchronous period are loaded from
the formed address. U sing this indirect
mode, the SCRIPTS program can set the
values stored with the I/O data structure and
not require the user to alter SCRIPTS
instructions at the start of an I/O. Upon
reselect, the synchronous offset and period
can be set using register writes, with no need
to cause an external interrupt

After completion of the bus initiated interrupt
processing (sequence goes to bus free), the
chip reverts to the rol~ se~ by th~ user In the
registers. Some caution IS requrred here. If
the chip is set to an initiator role, gets
selected, changes to the target role
automatically, disconnects, does some
processing, and then issues a reselect
command (without being set to the target role
by the exte~al processpr or ~y a SCRIPTS
register wnte), a selec?on ~ ?Ccur.
Because the chip was In the Imtlator role (at
the time of selection), it reverts to that role
after the disconnect and bus free. See the
description of the COM bit (DC~, bi~ 0)
for a mechanism to tum off auto-swItching.

Target Role --.function 001. .
Perform disconnect -- The chip phYSIcally
disconnects from the SCSI bus.

Target Role -- function Q10. .
Wait for select -- The ChIP Walts for a SCSI
selection by another device on the SCSI bus.
If the chip is already selected, then the next
SCSI SCRIPTS is fetched and executed.
When a bus initiated interrupt or reselect
occurs, the chip optionally changes to the
initiator role and fetches the next command
from the address pointed to by the 32-bit jump
address, and continues execution.

If the relative addressing bit is 1, then the 24-
bit signed value in the D~ ~ext Address
register is used as a relatlve displacement from
the DMA SCRIPTS pointer.

Target Role -- function 011 .
Assert bit -- The chip asserts the latches In the
SCSI output data register, but nothing is .
driven onto the SCSI bus. Consequently, thIS
function should not be used in the target role.

Target Role -- function 100 .
Reset bit -- The chip resets the latches m the
SCSI output data register, but nothi~g is re~et
on the SCSI bus. Consequently, this funcnon
should not be used in the target role.

Initiator Role -- 000 . .
Perform selection -- The ChIP arbItrates for the
SCSI bus and then performs a selection.
Arbitration continues until the chip is

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 7 11/13/90

SCSI SCRIPTS Machine Language Description

successful or a bus initiated interrupt (e.g.,
res election) occurs. If arbitration terminates
because of a bus initiated interrupt (as a result
of a select or reselect), the chip uses the 32-bit
jump address to fetch the next instruction and
begin execution at that address.

If the relative addressing bit is 1, then the 24-
bit signed value in the DMA Next Address
register is used as a relative displacement from
the DMA SCRIPTS pointer.

If the command is successful, then the next
sequential instruction is fetched and executed.

Optionally, the target/initiator role auto­
matically changes to reflect bus actions (see
the description of the DCNTL COM bit).

If the Table Indirect mode bit is 1, the 24-bit
signed value in the DMA Byte Count register
is used as an offset relative to the Data
Structure Address register. The SCSI
destination device ID, the synchronous offset,
and the synchronous period are loaded from
the formed address. U sing this indirect
mode, the SCRIPTS program can set the
values stored with the I/O data structure and
not require the user to alter SCRIPTS
instructions at the start of an I/O. Upon
reselect, the synchronous offset and period
can be set using register writes, with no need
to cause an external interrupt

After completion of the bus initiated interrupt
processing (sequence goes to bus free), the
chip reverts to the role set by the user. If the
selection is successful, the next instruction is
fetched and executed. If bit 24 (the attention
flag) is set, then the chip perfonns a select
with attention.

Note:
Because the chip automatically changes roles
and jumps to an alternate address if the select
or reselect fails, a bus initiated interrupt can be
processed by the chip with no external
intervention. The alternate jump address
should contain the address of an algoritlunfor
a selection or reselection. Include in the
address a waitfor selection (target role)
command. That command's alternate address
is the reselection algoritlun (initiator role).
The 53C710 can determine exactly what

happened and transfer control to the
appropriate SCSI SCRIPTS algorithm. See
Appendix C for another solution to this
problem.

Initiator Role -- 00 I
Wait for disconnect -- The initiator waits for a
disconnect from the SCSI bus. A legal
disconnect is defined as a loss of busy and
select for the specified bus free time following
a DISCONNECf message or a COMMAND
COMPLETE message. If the disconnect is
legal, the next SCSI SCRIPTS command will
be executed, otherwise an unexpected
disconnect interrupt will be generated.

Note that the interrupt will occur on an abort
message to a target to abort a SCSI command
when the aborted target goes to bus free.

Initiator Role -- OlD
Wait for reselection -- The initiator waits for a
reselection from a previously selected SCSI
device. If the operation completes as
expected, then the next instruction is fetched
and executed by the 53C710. However, if the
chip is selected, then the alternate jump
address should contain the address of an
algorithm for a selection. Include in the
address a wait for selection (target role)
command. That command's alternate address
is the error recovery algorithm (for initiator
role -- reselect). The chip can determine
exactly what happened and transfer control to
the appropriate SCSI SCRIPTS algorithm.

If the relative addressing bit is 1, then the 24-
bit signed value in the DMA Next Address
register is used as a relative displacement from
the DMA SCRIPTS pointer. If the command
is successful, then the next sequential
instruction is fetched and executed.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 8 11/13/90

SCSI SCRIPTS Machine Language Description

Note:
With the 53C710 byte compare capability of
the transfer control command, the SCSI
SCRIPTS algorithm can determine which
target reselected the initiator and canjwnp to
the correct algorithm for that particular target.
SCSI SCRIPTS can be tuned for the various
types of targets available and executed with no
external processor intervention.

See chapter 10, "Multi-tasking 110"for more
discussion of this subject.

Initiator Role -- function 011
Assert bit -- The chip asserts the SCSI bus
bits requested in the flags field. Currently
three bits are defined, allowing the SCSI
ACK target role and A TN bits to be set Bit
10 is for target, bit 6 is for Acknowledge, and
bit 3 is for Attention.

Initiator Role -- function 100
Reset bit -- The chip resets the SCSI bus bits
requested in the flags field. Currently two
bits are defmed, allowing the SCSI ACK
target role and A TN bits to be reset Bit 10 is
for target, bit 6 is for Acknowledge, and bit 3
is for Attention.

Note that these bits can also be set or reset
with the read/write register functions.

NCR 53C710 Programmer's Guide (Preliminary) 2 - 9 11/13/90

SCSI SCRIPTS Machine Language Description

READ/WRITE REGISTER COMMAND

DCMD DBC

31 23 15

AO

~
1

A3 A2 Register
A4 Address

AS
o
~ Reserved

o Immediate Data
Operator 0

Operator 1
()p Code bit 0

OpCode bit 1
OpCode bit 2

1
o

First 32-bit word of the RDIWR Register Instructions

DSPS Register
31 23 15

Second 32-bit word of the RDIWR Register Instructions

Rgure 3. Read/Write Register Instructions

7 o

RESERVED, must be 0

7 o

Overview The opcode bit operations are:

In either initiator or target role, the opcode bits
101, 110, and 111 are for a set of register
operations. The three opcodes are modified
by the operator field (bits 26-25).

Function 101

Move the SCSI First Byte Received register
(SFBR) to the specified register. Four
operator field values alter the meaning of the
function. They are:

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 10 11/13/90

SCSI SCRIPTS TM Machine Language Description

(Function 101, continued)
o 0 Move immediate data value to the

destination register value.

o 1 Qr.the immediate data value with the
SFBR, and write the result to the
destination register.

1 0 And the immediate data value with the
SFBR and write the result to the
destination value.

11 Add the immediate data value with the
SFBR and write the result to the
destination register.

Function 110

Move the specified register value to the SCSI
First Byte Received (SFBR) register. Four
operator field values alter the meaning of the
function. They are as follows:

00 Move immediate data to the SFBR

o 1 Or the immediate data value with the
specified register and write the result to
theSFBR

10 And the immediate data value with the
specified register and write the result to
the SFBR.

11 Add the immediate data value to the
specified register and write the result to
the SFBR.

Function 111

Read a specified register, modify it, and write
the result back into the register. Four operator
field values alter the meaning of the function.

00 Move immediate data to the specified
register.

o 1 Qr the immediate data value with the
specified register and write it back to the
specified register.

10 And the immediate data value with the
specified register and write it back to the
specified register.

11 Add the immediate data value to the
specified register and write it back to the
specified register.

The following table is a summary of the possible operations allowed

OpCode 7 OpCode 6 OpCode 5
Operator Field Read modify Write Move to SFBR Move from SFBR

00 Immediate data to Immediate data Immediate data
destination register to SFBR to destination register

01 Immediate data or'ed Immediate data Immediate data or'ed
with destination OR register to with SFBR to destination
register SFBR register

10 Immediate data Immediate data Immediate data and'ed with
and'ed with AND register to SFBR to destination
register destination register SFBR

11 Immediate data Immediate data Immediate data added
added to destination added with with SFBR to destination
register register to SFBR register

NCR 53C710 Programmer's Guide (Preliminary) 2 - 11 11/13/90

SCSI SCRIPTS TId Machine Language Description

Register Address Field, Bits 21-16

These bits select one of the 8-bit registers in
the 53C710 to serve as source, destination, or
immediate register.

Immediate Data Field, Bits 15-8

These bits contain any immediate data that is
to be used in the operation specified by the
instruction.

The second 32-bit register in the instruction is
not used in the operations, but it should be
zero to ensure compatibility with future
instructions that may be defined

Having a read/write register capability in the
53C710 adds a new dimension of SCRIPTS
programming capability.

Several examples of how useful this capability
are explained in the following.

1) Set synchronous offset and period for a
target upon res election. This operation
will typically require an interrupt to an

, external processor. A 53C710 SCRIPT
will be able to write an immediate value
to the correct register once the
reselecting device ID is decoded, and
resume data transfer immediately.

2) Write an interrupt service routine in the
SCSI SCRIPTS. After the external
interrupt is serviced, the processor
SCRIPTS program can detennine the
number of bytes left in the chip-check
status bits, and in general, can clean up
after an interrupt.

3) Keep a loop counter. Using the Add
instruction, the number of times through
a loop can be counted and stored. Thus,
a Do Loop construction can be
programmed using SCRIPTS.

Many other uses can be discovered. With the
53C710, a user can write a SCRIPTS
program that will perfonn most of the
operations done in external processor
fmnware.

Relative Addressing Mode, Bit 26

When this bit is set to 1, the 24-bit signed
value in the DMA Next Address register is
used as a relative displacement from the
current DMA SCRIPTS Pointer register.

Using this mode, the 32-bit physical address
is formed at execution time, and there is no
need to relocate a SCRIPT at system power­
up. This bit may be used with select, reselect,
wait_select, and wait_reselect commands.

Table Indirect Mode, Bit 25

When this bit is set to 1, the 24-bit signed
value in the DMA Byte Count register is used
as an offset relative to the value of the Data
Structure Address register. Using this feature
allows the SCSI device ID synchronous offset
and synchronous period to be fetched from an
I/O data structure that is built at start I/O.
Thus, an I/O can begin with no requirement to
write the values into the chip or into the actual
SCRIPT in memory. In the I/O data structure
the user must have written a four-byte value
of:

I 00 Device i.d. I Period & offset 00

AdJr AdJr AdIr AdJr
3 2 1 0

Device ID is the same fonnat as SCSI
destination ID register (02), and the period
offset must be the same as the SCSI Transfer
register (05).

The data must begin on a four-byte boundary
and must be located at the 24-bit signed offset
from the address contained in the Data
Structure Address register.

If the four bytes are written from the
processor into memory as a unit (one long
word), then the user need not be concerned
about big or little Endian mode. The low
order byte must be at address zero, next byte
at address one, and so forth.

Only one bit may be on in the Device ID byte.
Synchronous offset is a 4-bit value, and
synchronous period is a 3-bit value with the
high order bit equal to zero. Refer to the

NCR 53C710 Programmer's Guide (Preliminary) 2 - 12 11/13/90

SCSI SCRIPTS TM Machine Language Description

SCSI Transfer register (address 05) for a
complete description of these bits.

SELECT WITH ATN • Bit 24

If bit 24 is set, then the initiator SELECT
command will cause the SCSI attention line to
be set during the SELECT operation.
Attention on is valid only during the initiator
function OOO."The bit is invalid for all other
functions and will cause an interrupt.

SCSI 10 7-0 • Bits 23-16

This eight bit field is the ID for the SCSI chip
to be selected in the initiator role and
reselected in the target role. Set only one bit
for either of the functions requested. These
bits are not used for any function other than
select or reselect

Flags Field • Bits 15-00

These bits are used during the set or clear
command. Bit 10, on places the chip in the
target/initiator role. Bit 6, on sets/resets the
SCSI acknowledge. Bit 3, on sets/resets the
SCSI attention. Use the clear ACK command
after the last target message-in byte has been
verified for each separate message data Block
Move command. The initiator has the
opportunity to set attention before
ackno\J(-ledging the last message byte of a
Block Move command. On each byte, if a
parity error was detected on the message in
operation, the ASSERT SCSI ATN is issued
before the clear acknowledge is issued to
accept the message. Use Set Acknowledge to
handshake bytes across the SCSI bus.

1/0 COMMAND
SECOND SCRIPTS WORD

Jump Address - Bit 31-00

If the select, wait reselect, or reselect .
command fails, this thirty-two bit field
specifies from which memory address to fetch
the next SCSI SCRIPTS for execution.
Normally, the next instruction is fetched in
sequence if the requested operation completes
with no bus initiated interrupt

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 13 11/13/90

SCSI SCRIPTS Machine Language Description

Transfer Control Command

DCMD

31 23

DBC

15

Wait for valid phase
Compare Phase

Compare Data
Jump if: True=1, False=O

o
o~ Reserved

7

Data to be compared
with the SCSI First
Byte Received

o

Relative Addressing Mode
1/0

CID Mask for compare

o

MSG
Op Code bit 0

OpCodebit 1
Op COde bit 2

First 32-bit word of the Transfer Control Command

DSPS Register
31 23 15 7 o

Second 32-bit word of the Transfer Control Command

Figure 4. Transfer Control Command

Overview

The Transfer Control Command contains the
JUMP, CALL, RETURN, and INTERRUPT
operation codes. Each opcode is conditionally
performed based on compare of SCSI phase
values and incoming SCSI data values.

The Transfer control command allows
comparisons of current phase values on the
SCSI bus or the first byte of data on any
incoming bytes and transfers control to
another address depending on the results of
the test.

These commands allow SCSI algorithms to be
written in SCSI SCRIPTS and give the
53C710 characteristics of a general purpose
SCSI processor. With transfer control
commands, you can program the chip, rather
than simply buffering commands to be serially
executed with no real-time decision making
capabilities.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 14 11/13/90

SCSI SCRIPTS Machine Language Description

TRANSFER CONTROL
COMMAND, FIRST SCRIPTS
WORD

SCSI I/O Processor opcode -- 10
Bits 31-30

Transfer Opcodes - Bits 29-27

Four opcodes are currently defmed that allow
a transfer of control in the SCSI SCRIPTS
language. All undefined opcodes cause an
interrupt of illegal command.

JUMP Command -- 000
If the condition evaluates according to the
sequence control bits so the jump must be
taken, the next instruction is fetched from
memory at the 32-bitjump address.
Otherwise, the next sequential address will be
used as the instruction fetch address.

CALL Command -- 001
If the condition evaluates according to the
sequence control bits so the call must be
taken, the next instruction is fetched from
memory at the 32-bit call address. Otherwise,
the next sequential address will be used as the
instruction fetch address.

The address of the next sequential command
is stored in the chip's TEMP register in
anticipation of a subsequent return address. If
two CALL instructions are executed without
any intervening RETURN instruction, then
the first return address in the chip's TEMP
register is overwritten by the second CALL.

Note that a call to an exit point, followed by
an interrupt at the exit point, will supply the
address (in the Temp register) of which
execution path led to the exit.

RETURN Command -- 010
If the condition evaluates according to the
sequence control bits so the return must be
taken, the next instruction will be fetched
from memory at the 32-bit address contained
in the TEMP register, where it was stored by
the previous call instruction. Otherwise, the
next sequential address will be used as the

instruction fetch address. The contents of the
TEMP register may be undefmed if a call
instruction was not previously executed.

INTERRUPT Command -- 011
If the condition evaluates according to the
sequence control bits so the software interrupt
must be taken, the chip h~ts execution and
issues an interrupt request to the external
processor. Otherwise, the next sequential
address will be used as the instruction fetch
address.

The 32-bit jump address in the instruction is
available in the chip's command register at the
time of the interrupt You can post a four
byte, user unique erro~ s.tatus to be us~d by
the external processor s mterrupt servIce
routine. Thus, the cause of the interrupt can
be easily decoded by firmware which reduces
interrupt service routine overhead. Also, the
value could be a 32-bit firmware (or a
SCRIPT) address.

SCSI Phase Bits - Bits 26-24

In the SCSI initiator role, these bits compare
the actual SCSI lines (MSG, C/D, and I/O), if
the phase compare bit is set in the sequence
control field. Actual SCSI lines are a copy of
the last valid SCSI phase line values. These
bits are set in the SCSI SCRIPTS command ..
to compare with the current SCSI bus phase
lines, then branch to the SCSI SCRIPTTM that
processes the particular phase that is currently
active. Bit 26 is SCSI MSG, bit 25 is SCSI
C/D, and bit 24 is SCSI I/O. In the target
role, these bits are ignored.

Relative Addressing, Bit 23

For the JUMP command or the CALL
command, the chip can execute a relative
transfer. The 24-bit signed value in the DSPS
register is used as a relative offset from the
DMA SCRIPTS Pointer register.

Bits 22-20

These bits are reserved for future use and
must be zero.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 -15 11/13/90

SCSI SCRIPTS Machine Language Description

Sequence Control Bits - Bits 19-
1 6

SCSI SCRIPTS can use the current
conditions on the SCSI bus to determine
where to transfer control and execute
alternative algorithms using the sequence
control bits. The bits are defined as follows:

• Bit 19 -- Transfer if TrueIFalse.

•

•

If the bit is set to 1, a transfer of control
occurs if the phase or data values in the
instruction are equal to the actual phase
value on the SCSI bus or the first byte
of the most recent asynchronous in
phase. The byte could be a message in,
data in, or status for the initiator and
message out, command, or data out for
the target role. When the bit is set to
zero, the transfer control will occur if
the comparison yields a false.

Bit 18 -- Compare the data byte value
(bit 7 - bit 0 in the instruction) to the
fIrst byte of the most recent data,
message, command, or status byte
received.

The user's SCSI SCRIPTS program can
determine what routine to execute next,
based on actual data values received
?o.\,~oss the SCSI bus. For example, the
chip can compare for specific message
values and process an extended message
in SCSI SCRIPTS, with no external
interrupt to the external processor.

Bit 17 -- In the initiator role, compare
the SCSI phase line value (bit 26 - bit
24) to the recent valid SCSI phase line
values saved in the chip.

Using this feature, the chip can react to
actual bus conditions and determine
which routines to execute next based on
SCSI bus phase line values.
Unexpected phase values can be
compared for and error conditions or
low probability events can be processed
by SCSI SCRIPTS inside the chip.

In the Target role, bit 17 ON causes the
chip to test for the attention line on. If
the initiator has set attention, the chip (in
the target role) can jump to a message
out routine to determine what the
initiator needs. This is normally placed
after each SCSI phase to allow the
initiator to tum on attention if an error is
detected during the transfer.

• Bit 16 -- In the initiator role, wait for a
previously unserviced phase change.

You can program the chip to pause until
the SCSI device it is communicating
with has proceeded to the next phase.
One normally uses this wait capability to
pace the chip in the initiator role. When
a phase change is expected, the wait is
used to synchronize the expected phase
with the actual phase detected on the
SCSI bus. If both data and phase
compare bits are set, the compare must
be both true or both false for the transfer
to occur.

Mask Bits - Bits 15-8

The mask bits allow selective comparison of
bits within the data byte using SCRIPTS.
During the compare, any bits that are on· will
cause the corresponding bit in the data byte to
be ignored for the comparison. A user can
code a binary sort to quickly determine the
value of a byte.

For instance, a mask of '7F' and data
compare of '80' allows the SCRIPTS
processor to determine whether or not the
high order bit is on.

Data Byte - Bits 7-0

Compare this data byte value to the fIrst byte
of the most recent asynchronous data,
message, command, or status byte received.
The user's SCSI SCRIPTS program can
determine what routine to execute next based
on actual data values received Using a series
of these compares, the algorithm can process
complex sequences with no intervention
required by the external processor.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 16 11/13/90

SCSI SCRIPTS Machine Language Description

TRANSFER CONTROL
COMMAND, SECOND
SCRIPTS WORD

Data Jump Address - Bit 31-00

This value specifies the address of the next
instruction in memory to transfer control. It is
either a 32-bit physical address, or a 24-bit
signed value, used as an offset from the DMA
SCRIPTS Pointer register. The value is
ignored in both return and interrupt
commands. However, the address is loaded
into the chip's command register and is
available to be read by firmware in the case of
an interrupt command.

If both data compare and phase compare bits
are set, then both comparisons must be true or
both must be false before the requested
transfer will occur. There is no way to test
one for false and the other for true.

If neither the phase or data bit are set, and if
the true/false bit is 1, the operation is executed
unconditionally.

If neither the phase nor the data bit is set and
the true/false bit is 0, then the command has
no operation assignment and can be used as a
delay function, or to reserve a SCSI
SCRIPTS patch area.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 17 11/13/90

SCSI SCRIPTS Machine Language Description

Memory-to-Memory Move Instruction

DCMD DBC

o

o ~ Reserved

24-bit Memory Move Byte Counter

1

First 32-bit word of the Memory Move instruction

DSPS Register
31 23 15 7 o

Second 32-bit word (source address) of the Memory Move instruction

TEMP Register
31 23 15 7 o

Third 32-bit word (destination address) of the Memory Move Instruction

Figure 5. Memory-to-Memory Move Instruction

Overview

The Memory Move command is able to
transfer data from one 32-bit memory location
to another. A 24-bit byte counter allows large
moves to occur with no intervention required
by the processor.

If both addresses are in system memory, then
the 53C710 functions as a high-speed DMA

controller, able to move data at speeds of (up
to) 40 MBytes/sec without using the
processor or its cache memory. If the source
address is within the 53C710's address space,
then the instruction is a write to external
memory. To perform a read from memory,
make the destination address be within the
53C710.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 -18 11/13/90

SCSI SCRIPTS Machine Language Description

MEMORY-TO-MEMORY
MOVE, FIRST SCRIPTS
WORD

SCSI 1/0 Processor Opcode, Bits
31-30

Reserved Section, Bits 29-24

These bits should always be zero.

24-blt Byte Count, Bits 23-00

This count value specifies the exact number of
bytes to be moved from the source address
and the destination address. As the SCSI
SCRIPTS command is decoded, the value is
moved into the DMA Byte Counter register.
The SCSI I/O Processor will:

•
•

•
•
•
•

•

Gain access to the system bus.
Transfer the burst size into the DMA
FIFO
Decrement the byte count.
Increment the source address.
Gain access to the system bus.
Transfer the burst size from the DMA
FIFO into system memory.
Increment the destination address.

The process will continue until the byte count
is zero at the start of a byte transfer into the
DMA FIFO. At that time, the next SCSI
SCRIPTS command will be fetched.

The Indirect Mode is not allowed for the
Memory Move command; therefore, the byte
count must be in the actual SCRIPT. A byte
count can be any value; thus, an odd number
of bytes can be transferred

MEMORY MOVE
SECOND SCRIPTS WORD

Source Address of the Memory
Move, Bits 31-00

This value specifies the address from which
data will be moved. An address must be the
full 32-bit physical address of the data source.
The indirect mode is not allowed in the
Memory Move instruction. The "DMA Next

Address register holds this source address and
is incremented with each chip DMA transfer.
If the value placed in the chip is a 53C710
register address, data can be moved from the
53C710 to a destination address. Only one
byte, or multiples of four bytes, ~an be mov~d
out of the chip. A register-to-regtster move IS
possible if both source and destination
addresses are within the 53C710's register
address space.

For another method of placing a 32-bit
address in the instruction without resorting to
patching SCSI SCRIPTS, please refer to the
PASS option available in the SCSI SCRIPTS
compiler.

MEMORY MOVE
THIRD SCRIPTS WORD

Destination Address of the
Memory Move, Bits 31-00

This value specifies the address to which data
will be moved. An address must be the full
32-bit physical address of the dat~ destination.
The indirect mode is not allowed In the
Memory Move instruction. The 1EMP .
register holds this destination address and IS
incremented with each chip DMA transfer. If
the value placed in the chip is a 53C710
register address, then data can be moved to
the 53C710 from a source address. One byte,
or multiples of four bytes, can be moved into
the chip. A register-to-register ~o~e is
possible if both source and desnnanon
addresses are within the 53C710's register
address space. For another method of placing
a 32-bit address in the instruction without
resorting to patching SCRIPTS, please refer
to the PASS option available in the SCSI
SCRIPTS compiler.

There is one restriction on addresses that the
53C710 can process. The low order two bits
must be equal; thus, the the source address
must be on the same byte offset within a
longword as the destination. An illegal
instruction results if the two addresses are not
byte aligned. The 53C710 supports burst
sizes of 1, 2, 4, or 8 longwords.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 -19 11/13/90

SCSI SCRIPTS Machine Language Description

During this instruction's execution, the DMA
SCRIPTS Pointer Save register and the Data
Structure Address register are used (along
with the DNAD and TEMP) and will be
destroyed. These registers should be saved
before a Memory Move command and then
later restored, if the contents are significant.
To save the contents of a register, move its
contents to the scratch register and then move
the infonnation into memory. Any register
not used by the Memory Move command can
be written directly to memory. Because the
moving of data to the 53C710 is the last event
perfonned by the command, any register can
be written, including the ones used by the
command.

NCR 53C71 0 Programmer's Guide (Preliminary) 2 - 20 11/13/90

Chapter 3
Developing NCR SCSI SCRIPTS

To develop an executable SCSI SCRIPT, first
define the SCSI functions required. Identify
what functions will be executed in SCRIPTS
and what functions must be contained in
system frrmware. Then design the specific
algorithms for the functions that will be
executed in the SCSI SCRIPTS portion of the
SCSI logical I/O driver.

A SCSI SCRIPTS is comprised of two parts,
or areas:

Use the SCRIPTS compiler to code the
algorithms SCRIPTS. Then compile to create
the object code required as input by the
53C710. The compiler output is like an object
module, it includes relocation infonnation
required to load the SCRIPTS object module
into main memory, if any relocation is
required.

At load time, the SCRIPTS absolute jump
addresses must be resolved using one of the
utilities furnished in the software package. At
start I/O time, another utility is used to patch
in the correct buffer addresses, byte counts,
destination 1.0., and so forth, if the Table
Indirect mode is not used.

Writing a logical I/O driver is an easy task for
the 53C710. This is illustrated in the first
SCSI SCRIPTS example. This code will
perform a read or write function using the
53C710 in the high-level chained mode.
Because SCSI algorithms are so simple when
written in SCSI SCRIPTS, you can rapidly
prototype SCSI algorithms for a proof of
concept and concentrate later on more
complicated, realistic algorithms.

NCR 53C710, Programmer's Guide (Preliminary) 3-1

1) Defmition area
2) SCRIPT area

10/25/90

Developing NCR SCSI SCRIPTS

In the following example, the definition area is comprised of variable and absolute v31ues.
These values may describe a variable memory address location, variable byte count or a fixed
status byte value .

. * ,
;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
.* ,

Definition area INITIATOR ROLE

Target Device I.D. offset in the data table.
EXTERNAL device

status_adr
EXTERNAL status_adr

Ten byte buffer address offset.
EXTERNAL sendmsg

Ten byte buffer address offset.
EXTERNAL rcvmsg

Buffer address offset for the SCSI command
EXTERNAL cmd_adr

Address of user data buffer
EXTERNAL data_adr

.* ,
;* Absolute values are stored in DSPS Register *
;* for purposes of interrupt processing *
.**************************** ,

.**************************** ,
;* Note that OXO precedes the interrupt status *
;* values and designates a hex value *
.**************************** ,

NCR 53C71 0, Programmer's Guide (Preliminary) 3 - 2 10/25/90

Developing NCR SCSI SCRIPTS

Error -- not message out after selection

ABSOLUTE errl = OxOffOl

Error -- unexpected SCSI phase before command phase
ABSOLUTE err2 = OxOff02

Error -- unexpected SCSI phase after a command transfer
ABSOLUTE err3 = OxOff03

Error -- expected status phase
ABSOLUTE err4 = OxOff04

No Error -- good I/O
ABSOLUTE ok = OxOffOO

Error -- expected message outphase
ABSOLUTE errS = OxOff05

Error -- expected message command complete
ABSOLUTE err6 = OxOff06

.** ,
; The following shows how you can use the PASS capability *
; of the compiler to pass C code to the output file *
.** ,
PASS(include INCR.h")
PASS(extem char line[];)

NCR 53C710, Programmer's Guide (Preliminary) 3 - 3 10/25/90

Developing NCR SCSI SCRIPTS

Single-Tasking SCSI Example If an unpredictable event occurs on the SCSI
bus, a unique interrupt vector value is stored

The following is a simple SCSI SCRIPT that in the 53C710's DSPS register and is
performs a single-tasking SCSI operation available for interrupt processing.
without disconnecting.

PROC sample:
; select device with attention on
select atn from device, REL (resel_adr)

; if the next phase is not message out, interrupt
int err! when not MSG_OUT

; sent the Ld. message out to the target
move FROM sendmsg, when MSG_OUT

; if the next phase is not command, interrupt
int err2 when not CMD

; send the command bytes
move FROM cmd_adr, when C1vID

; go to process cleanup if status phase
jump REL (end) when STATUS

; process data in phase
jump REL (input_data) if DATA_IN

; or data out phase
jump REL (output_data) if DATA_OUT

; unexpected phase if here
int err3

; process the data in phase
input_data:
move FROM data_adr, when DATA_IN

; and go process status
jump REL (end)

; process the data out phase
output_data:
move FROM data_adr, when DATA_OUT

; interrupt if not status phase
end:
int err4 when not STATUS

NCR 53C710, Programmer's Guide (Preliminary) 3 - 4 10/25/90

Developing NCR SCSI SCRIPTSTM

; move the status byte into memory
move FROM status_adr, when STATUS

; interrupt if message in is not next
int errS when not MSG_IN

; move the command complete byte in
move FROM rcvmsg, when MSG_IN

; interrupt if it is not a command complete message
int err6 if not 00

; accept the message if there are no problems
clear ack

; wait for a physical disconnect
wait disconnect

; interrupt with an I/O complete
intok

resel_adr:
intok

NCR 53C710, Programmer's Guide 3-5 10/25/90

Chapter 4
SCSI SCRIPTS Compiler

SCSI SCRIPTS Compiler

The SCSI SCRIPTS Compiler takes a
source file and generates a C file which may
then be used in other C programs. The source
file may be created using any standard text
editor that creates ASCII file output.

To provide portability this compiler
does not support directory paths. The
compiler and the files to be compiled must
reside in the same directory.

Invoking the SCSI SCRIPTS Compiler

In the following examples, items
enclosed in double brackets "{ }" are
optional. The following format is used to
invoke the compiler.

scc sourcefIle {options}

Options;

-0 {OutputFilename}
This option determines if a C output

file will be generated and if so what the name
of the file will be. If the -0 is given without a
filename following, then the filename will
default to sourcefile.out.

-I {ListFilename}
This option determines if a listfile will

be generated and if so wh~t the name of the
filename will be. If the -1 option is given
without a filename following, then the
filename will default to sourcefile.1is. For
every instruction the listfIle lists

script,
an offset from the beginning of the

the long word instruction,
the long word address, and
the corresponding ASCII source

instruction

Labels appear on a line by themselves
as they are encountered in the SCRIPT.

Next is a list consisting of absolute or
relative variables, and their location in the
SCRIPT. This is followed by a list of labels
and label locations that appear in the SCRIPT.
The location is an offset from the beginning of
the SCRIPT.

NCR 53C71 0, Programmer's Guide (Preliminary) 4 - 1

The final list gives the label patches.
Label patches are offsets into the SCRIPT
where a label is referenced. They are called
patches because the absolute address of the
labels must be patched into the SCRIPT at
runtime.

-z {debugfilename}
This option will generate a file that is

necessary if the SCRIPT debugger is to be
used. If the debugger is used, this is the file
that is loaded to begin the debug process. If
the -z option is given without a filename
following, then the filename will default to
sourcefile.sod. The file produced when this
option is set is compatible with the pass 1
output flie of the C700 compiler.

-e {errorfilename}
This option will generate an error file

where all the error information will be stored.
If the -e option is used without a filename
following, then the filename will default to
sourcefile.err.

-v
This option will print all relevant

information about the compilation process to
the screen for the user to view.

-u
When this option is set the define

INSTRUCTIONS anddefmePATCHES
statements in the output file is suppressed.
This option is necessary if two or more output
files are being linked together.

10/25/90

SCSI SCRIPTS Compiler

SCSI SCRIPTS Compiler Output
When the compiler is writing to an

output flie, it will generate instruction array(s)
frrst unless the pass option is used before any
instructions are given. If the first instruction
is not preceeded by a proc label: statement,
then the instruction array name will default to
"SCRIPT". The fIrst column in the
instruction array contains the long word
instruction and the remaining columns contain
corresponding long word addresses. An
example is given below:

Source Code,·
PASS(#include "NCR.htl)
int7
PROC frrst:
int 8

Compiled Output,'
#include "NCR.h"
ULONG SCRIPTD = {

Ox98080000, Ox00000007
};

ULONG frrstD = {
Ox98080000, Ox00000008

};

The variable name prefIx will have an
"A_" for absolute or an "R_" for relative. The
value of the variable is used in a deflne
statement The defme statement is followed
by an array which contains the long word
offsets into the SCRIPT where the variable is
used. The array name is the variable name
appended with "_Used".

Exan212le,·
#deflne R_DATA_BUF OxOOOOOO20
ULONG R_DATA_BUF _UsedD ={
};

Then the SCRIPT entry label values
are defmed with a preflx of "Ent_".

Example,·
#deflne Ent_alt_addr OxOOOOO078

The SCRIPT entry labels values are
followed by an array of long word offsets for
labels in the SCRIPT. These offsets are used
to patch in the absolute addresses at runtime.

Example,'
ULONG LABELPATCHESD = {

OxOOOOOOOl, Ox00000019,
OxOOOOOOlb

};

The last item produced is the number
of instructions and patches in the SCRIPT.
Note that if the the undefine option is set "_u"
when invoking the compiler, these statements
will not be produced

Example.'
ULONG INSTRUCTIONS =

OxOOOOOO 11;
ULONG PATCHES = OxOOOOO003;

Appendix D shows the source fIle, the
list fIle, the debug flle and the output file from
the initiator script of the previous chapter.
This script was named sample and these flIes
resulted from the following invocation:

scc sample -1 -z -0

NCR 53C710, Programmer's Guide (Preliminary) 4 - 2 10/25/90

Chapter 5
NCR SCSI SCRIPTS Utilities

The following utilities are part of the Software
Development package which includes the
SCSI SCRIPTS Compiler.

Inltlallze_IOPO

Sets up the 53C710 for operation after power
up.

Save_lOP _State(savearea*)

Takes the pointer as an argument to a save area
and stores the status of the 53C710 at that
address. Information saved includes SCSI
SCRIPT pointer, current data counter, buffer
address, and all registers required to allow the
state of the chip to be restored later. This
routine is used during SCSI disconnect
handling, or save data pointer operations.

Restore_lOP _State(savearea*)

Takes the pointer as an argument to the save
area where Save_lOP_State has stored the
53C710 status data. Restores the chip state so
an interrupted I/O can be resumed after a
reselection or restore pointers operation.

NCR 53C710, Programmer's Guide (Preliminary) 5 - 1

lOP_Interrupt. StatusO

After the 53C710 experiences an interrupt, this
routine is called to decode the chip's interrupt
status information and report the reason for the
interrupt.

Relocate_Scrlpt_Address(rel_lnfo,base)

Relocates all transfer control addresses in a
SCSI SCRIPT to the specified base address.
ReI_info is a data structure produced by the
back end of the SCSI SCRIPTS compiler.

Patch_Scrlpt(rel_lnfo,symbol,value)

Using the.symbol name for byte count, device
i.d., or data address, and the reI_info data
structure, this routine will patch the locations
where the symbol is used with the input value.

10/25/90

NCR SCSI SCRIPTS Utilities

InltSIOPO

Declaration:
void InitSIOP(struct SlOp·)

InitSIOPO accepts a pointer to an SlOP struct
or NULL. If NULL then all the members in
SCSIREGS are assigned a value of O.
Otherwise copy the value from each member
of the passed struct into _SCSlREGS_ and
put those into the chip.

NOTE:
This function will, by default, assign one
structure to another. This is ANSI C
compatible, but older compilers may not
support it.

SetPhaseMMlntO

Declaration:
void SetPhaseMMlnt(BOOL)

SetPhaseMMIntO turns the phase mismatch
interrupt on or off.

SetComplnt(BOOL)

Declaration:
void SetComplnt(BOOL)

SetCompIntO turns the function complete
interrupt on or off.

SetSelTlmeoutintO

Declaration:
void SetSeITimeoutlnl(BOOL)

SetSelTimeoutIntO turns the select time out
interrupt on or off.

SetSelintO

Declaration:
void SetSellnt(BOOL)

SetSelIntO turns the select interrupt on or off.

SetGrossErrlnt()

Declaration:
void SetGrossErrlnt(BOOL)

SetGrossErrIntO turns the SCSI gross error
interrupt on or off.

SetUXDlsclnt()

Declaration:
void SetUXDisclnt(BOOL)

SetUXDiscIntO turns the Unexpected
disconnect interrupt on or off.

SetRSTlntO

Declaration:
void SetRSTlnt(BOOL)

SetRSTInt() turns the RSTI interrupt on or
off.

SetParlnt()

Declaration:
void SetParlnt(BOOL)

SetParIntO sets the parity error interrupt on or
off.

NCR 53C710, Programmer's Guide (Preliminary) 5 - 2 10/25/90

NCR SCSI SCRIPTS Utilities

Set286ModeO

Declaration:
void Set286Mode(BOOL)

Set286ModeO puts the chip in 80286 mode
when ON, otherwise it is in the 80386 mode.

ClearDMAFlfoO

Declaration:
void ClearDMARfoO

ClearDMAFifoO clears the DMA FIFO.

SetiOO

Declaration:
void SetlO(BOOL)

SetlOO tells the 53C710 to transfer data to an
I/O mapped device when ON, otherwise
transfers are to memory mapped devices.

Set16BltDBusO

Declaration:
void Set16BitDBus(BOOL)

Set16BitDBusO causes the 53C710 to perfonn
transfers 16-bits at a time when ON, otherwise
transfers are 32-bits at a time.

SetFlxedAddrO

Declaration:
void SetFixedAddr(BOOL)

SetFixedAddrO disables the address pointer in
the DNAD register so that it is ON, it will not
increment

SetAbortintO

Declaration:
void SetAbortlnt(BOOL)

SetAbortIntO makes the 53C710 drive the
INTI signal when an abort condition is
encountered and it is set to ON.

Setl NTI nstl ntO

Declaration:
void SetINTlnstlnt(BOOL)

SetINTInstIntO allows the 53C71 0 to drive
the INTI signal when it encounters an !NT
instruction in a script and it is set to ON.

SetWatchDoglntO

Declaration:
void SetWatchDoglnt(BOOL)

SetWatchDoglntO allows the 53C710 to drive
the INTI signal when the watch dog timer
decrements to 0 and it is set to ON.

SetiliegalinstintO

Declaration:
void Setlllegallnstlnt(BOOL)

SetDlegalInstIntO allows the 53C71 0 to drive
the INTI signal when an illegal instruction is
encountered in a SCRIPT and it is set to ON.

Set16BltScriptsO

Declaration:
void Set16BitScripts(BOOL)

Set16BitScriptsO makes the 53C710 fetch
script instructions 16-bits at a time when set to
ON. Otherwise fetches are 32-bits at a time.

NCR 53C71 O. Programmer's Guide (Preliminary) 5 - 3 10/25/90

NCR SCSI SCRIPTS Utilities

SelClkFreqO

Declaration:
void SeIClkFreq(UBYTE)

SetClkFreqO send the clock speed being used
by the system to the 53C710. It accepts 1 of 3
values; SLOW, MED, or FAST.

1* 0 FAST 37.51 to 50 MHz
1* 1 MED 25.01 to 37.5 MHz
1* 2 SLOW 16.67 to 25 MHz

SetHOSTIDO

Declaration:
BOOl SetHOSTID(UBYTE)

SetHOSTIDO accepts a byte value to be placed
into the SCID register. It will not allow a
value of 255 (FF hex) to be placed into this
register since the 53C710 cannot talk to itself.

SetParltyO

Declaration:
void SetParity(BOOl)

SetParityO, when ON, the 53C710 checks the
data bus for odd parity when receiving across
the SCSI bus.

SetAutoATNO

Declaration:
void SetAutoATN(BOOl)

SetAutoATNO, the 53C710 asserts the ATNI
signal when a parity error is detected and it is
ON.

SetSlowBusO

Declaration:
void SetSlowBus(BOOl)

SetSlowBusO, the 53C710 adds 1 extra clock
cycle to the data setup time when it is ON.

GetPhysAddrO

Declaration:
UlONG GetPhysAddr(UBYTE far *)

GetPhysAddrO accepts a far pointer in the
8Ox86 format. Then It takes the segment
portion, multiplies it by 16 and adds it to the
offset portion to return a physical address.

PatchLabels()

Declaration:
void Patchlabels(Base, PatchArray, Count)

UlONG Base[], PatchArray[];
UlONG Count;

PatchLabelsO patches a script that references
labels within that script. Three ULONGs are
passed to it.

The first ULONG is a pointer to the ULONG
array SCRIPT that is going to be manipulated.

The second is a pointer to the ULONG
PatchArray (LABELPATCHES), the array
whose elements contain the offsets into the
script to be manipulated.

The third ULONG is the count of the number
of elements in the patch array.

NCR 53C71 0, Programmer's Guide (Preliminary) 5 - 4 10/25/90

NCR SCSI SCRIPTS Utilities

PatchRelativeO

Declaration:
void Patch Relative (Script Base, Rel8ase,
RelArray, Count)

ULONG ScriptBase[], RelArray[];
ULONG RelBase, Count;

PatchRelativeO requires a little programmer
input. It is very similar to PatchLabelsO.
Passed to it are

a pointer to the ULONG Script array,

the physical relative data base address,

a pointer to the ULONG relative Data array,
and

a count of the number of elements in the
. relative array.

PatchlDO

Declaration:
void PatchID(lnstructions, Location, Value)

ULONG far *Instructions;
ULONG Location, Value;

PatchPhaseO

Declaration:
void PatchPhase (Instructions, Location, Value)

ULONG far *Instructions;
ULONG Location, Value;

NCR 53C710, Programmer's Guide (Preliminary) 5 - 5 10/25/90

Chapter 6
The NCR SCSI SCRIPTS Language Syntax

Notation

[] Items enclosed in brackets are
optional.

[] " " ... The item enclosed in the
brackets can be repeated as often
as necessary.

KEYWORD A word in all upper case is a
keyword. Case is ignored by
the compiler when looking for
keywords.

Phase must be replaced with only one of the
following keywords:

MSG_IN,
MSG_OUT,
DATA_IN,
DATA_OUT,
CIvID,
STATUS,
RES4,
RES5

The word 'address' means a 32-bit number.

The word 'value' means a 32-bit number.

The word 'count' means a 24 bit number.

The word 'id' means an eight bit number that
has exactly one bit set.

The word 'data' means an eight bit number.

The word 'expression' denotes a
mathematical expression with the form:

<identifier> [<addop> <identifier>]·

<identifier> is any valid variable name or a
numeric constant.

<addop> is the '+' or '-' character to
denote addition or subtraction respectively.

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 1

An 'expression' may be used in any place that
a numeric value would normally be used. The
value of all 'expressions' are automatically
extended to 32-bits. When expressions are
used in a context where the evaluated value is
less then 32-bits, the least significant bits will
be used. For instance, if an 'expression' is
used to represent a count for a move
instruction, the evaluated value will be
truncated to 24 bits. Notification that the
expression has been truncated will occur if the
value of the expression is changed.

The word 'name' represents a string of one
or more consecutive characters chosen from
the letters, the numbers, the underscore, and
the dollar sign. N ames used for labels,
externals, and variables in the relative data area
are passed on to the Host development
system.

If the Host development system has
restrictions on the fonnat of such names, it is
the responsibility of the SCSI SCRIPTS
writer's to avoid using such names. For
example, Turbo C, which is used as the Host
development system for this application, does
not allow names to begin with a digit or to
contain a dollar sign. Therefore, the SCSI
SCRIPTS writer for DOS and Turbo C should
avoid using names of this fonn.

Input Format

SCSI SCRIPTS consist of a series of lines.
Blank lines, lines containing only white space,
and anything after a semi-colon on an input
line are ignored by the front end.

The compiler is "token" oriented. It reads the
input stream and splits it up into tokens.
White space and anything from a semicolon to
the end of the line is not part of any token, and
is ignored by the compiler.

10/25/90

The NCR SCSI SCRIPTS Language Syntax

There are two types of tokens. A token is
any string of consecutive letters, numbers,
dollar signs, or underscores; a character can be
part of ONLY one token. The input stream is
split into tokens to minimize the number of
tokens. For example, the string "abc" would
be treated as one token ("abe") rather than
multiple tokens ("a" and "be").

The second type of token consists of
characters that are not part of other tokens.
Anything that is not a letter, a digit, an
underscore, or a dollar sign becomes a token.
For example, the string

xxx=Ox123 ; assign value to xxx

contains three tokens.

xxx
=
Ox123

Numeric values may be specified in decimal,
hexadecimal, octal, or binary.

Decimal numbers are specified by a string
of digits not beginning with zero.

Hex numbers are specified by a string
consisting of "Ox" or "OX" and the hex
digits of the number. Both upper and
lower case are allowed

A binary number is similar to a hex
number, except that "Ob" or "OB" is used
instead of "Ox" or "oxn.

An octal number is specified by a "0"
followed by the octal digits.

Language Directives

Several keywords provide infonnation to the
front end about the compilation of the SCSI
SCRIPTS. They define symbolic names and
indicate things to be passed to the output of the
compiler.

ENTRY label [,label ••.]

The ENTRY keyword indicates that the
specified labels are SCSI SCRIPTS entry
points. Their names and values are defmed at
the back end, which will also make them
available to the Host development system.

ABSOLUTE name =
expression [,name = expression •..]

This declares symbolic names for numeric
values. For example,

ABSOLUTE bad_cmd = Ox1200

allows the name
bad_cmd

to be used instead of a number in the SCSI
SCRIPTS. The SCSI SCRIPTS will be
compiled as if the number Ox1200 had been
specified instead of the name "bad_cmd" in
every instruction that uses "bad_cmd".

EXTERNAL name [,name •..]

This tells the compiler that the SCSI SCRIPTS
will refer to variables with specified names
that are declared outside of the SCSI
SCRIPTS. Some host development systems
are not able to support use of this word and
SCSI'SCRIPTS requiring this feature may not
be portable to all hosts.

RELATIVE name =
expression [,name = expression ...]

Use to declare relative data variables.

name the variable name.

expression the offset from the start of the
relative data area where the
variable is located

A name followed by a colon signifies a label.
Use a label name wherever there is a call for
an address.

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 2 10/25/90

The NCR SCSI SCRIPTS Language Syntax

The SCSI SCRIPTS Instructions

When an instruction call specifies a count, use
a 24-bit number or a symbolic constant
(declared using the ABSOLUTE keyword).

When an instruction requires an address, use

a 32-bit number,

the label name,

the variable name in the relative data area
(previously declared with the
RELATNE keyword) , or

the external variable name (previously
declared with the EX'IERNAL
keyword).

Labels, external variables, and relative .
variables all share the same name space. If a
name is declared more than once, the front end
resolves the conflict. If a problem possibly
exists, a warning will be issued.

If the address field of an instruction contains
an undefmed name, then the front end
assumes that it refers to a label that will be
defmed later. This is called forward
referencing. If the name is defined later as an
external or relative variable, this will create a
name ~onflict and the front end will resolve it.
A possible problem warning is issued.

Anywhere a 32-bit address can be used in a
SCRIPT, the PASS option can be substituted.
This option allows the user to pass through a
literal value to the output and thus to be input
into the C compiler. Any valid C Name (for
example, label, structure element) can be
passed through for fmal resolution by the C
compiler.

Even though the SCRIPTS compiler cannot
recognize the name, or resolve the value, it can
preserve it as a literal for the C output

BLOCK MOVE Command

There are several forms of the Block Move
instruction.

address Specify the address and byte count
count fields of the instruction. If the

optional keyword PTR is present,
then the indirect bit will be set.

Phase Specifies the phase field of the
instruction

WITH or Specify the Block Move function
WHEN codes

WITH signals the target role
which sets the phase values

WHEN is the initiator "test for
phase" feature

FROM Specifies that the byte count and
address are to be fetched from
memory. The 24-bit value is
combined with the Data Structure
Address register to form the 32-bit
fetch address.

The 53C710 waits for a valid phase (initiator)
or drives the phase lines (target). In the
initiator role, it performs a compare by looking
for a match between the phase specified in the
SCRIPT and the actual value on the bus. If
the phases do not match, an external interrupt
occurs. Data is then transferred in or out
according to the phase lines. When the count
goes to zero, the next sequential SCRIPTS
instruction is fetched.

MOVE count, [PTR] address, WITH Phase
MOVE count, [PTR] address, WHEN Phase

MOVE FROM address, WITH Phase
MOVE FROM address, WHEN Phase

Address can be replaced with PASS(C Name)
for the MOVE command.

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 3 10/25/90

The NCR SCSI SCRIPTS Language Syntax

JUMP Command ATN The target role version which is
required to test whether the initiator
has set A TN on the bus. The conditional JUMP instructions all have the

same general fonn.
NOT U sed for the inverse test of WHEN

and IF. "NOT Phase OR data" is
the negation of "Phase AND data".

Address The SCSI SCRIPTS address that
will be transferred to if the JUMP is
taken. Limited to 24 bits if the

REL option is used. MASK Always use with an 'AND' or 'OR'
keyword. The data following the
keyword 'MASK' allows a
SCRIPT to selectively compare the
bits within the data byte.

WHEN Sets the Wait bit in the SEQ CNTL
field.

IF

Phase

data

Do not set the Wait bit.

If NOT follows WHEN or IF, then
the TruelFalse bit of the SEQ CNTL
field is not set; otherwise, the bit
will be set.

When present, the compare Phase.
bit of SEQ CNTL will be set;
otherwise, it will be cleared.

When present, the compare Data bit
of SEQ CNTL will be set;
otherwise, it will be cleared.

If both 'Phase' and 'data' are
specified, they must be in that order
and they must be separated by the
keyword AND.

NOP
JUMP address
JUMP address, IF ATN
JUMP address, IF Phase
JUMP address, IF data

REL Used if the jump is to be relative to
the current program counter.

Note that the address values can be replaced
with a REL (Address). The value of the
address must be a signed 24 value. Also
PASS (Any valid C Name) can replace an
address.

Any bits that are ON eliminate the
corresponding bit in the data byte at the time of
the compare. Use this 'binary sort' to quickly
detennine the value of incoming bytes. For
example, a mask of '7F' and a data compare
of '80' allows the SCRIPTS processor to
determine if the high order bit is ON.

JUMP address, IF data, AND MASK data
JUMP address, IF ATN AND data
JUMP address, IF ATN AND data, AND MASK data
JUMP address, IF Phase AND data
JUMP address, IF Phase AND data, AND MASK data
JUMP address, WHEN Phase
JUMP address, WHEN data
JUMP address, WHEN data ,AND MASK data
JUMP address, WHEN Phase AND data
JUMP address, WHEN Phase AND data, AND MASK data
JUMP address, IF NOT ATN
JUMP address, IF NOT Phase
JUMP address, IF NOT data
JUMP address, IF NOT data, AND MASK data
JUMP address, IF NOT ATN OR data
JUMP address, IF NOT ATN OR data, AND MASK data
JUMP address, IF NOT Phase OR data

NCR 53C710 Programmer's Guide (Preliminary) 6 - 4 10/25/90

The NCR SCSI SCRIPTS Language Syntax

JUMP address, IF NOT Phase OR data, AND MASK data
JUMP address, WHEN NOT Phase
JUMP address, WHEN NOT data
JUMP address, WHEN NOT data, AND MASK data
JUMP address, WHEN NOT Phase OR data
JUMP address" WHEN NOT Phase OR data, AND MASK data
JUMP REL (Address) (An option for any "address" above)

PASS (Any valid C Name) can replace an address in the JUMP instruction.
REL (Address) can replace an address in the JUMP instruction.

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 5 10/25/90

The NCR SCSI SCRIPTSTM Language Syntax

CALL Command ATN The target role version which is
required to test whether the initiator
has set A TN on the bus. All conditional CALL instructions have the

same general fonn.
NOT U sed for the inverse test of WHEN

and IF. Address The SCSI SCRIPTS address
transferred to if the JUMP is taken.

WHEN

IF

Phase

data

Set the Wait bit in the SEQ CNTL
field.

"NOT Phase OR data" is the negation
of "Phase AND data".

MASK
Do not set the Wait bit

If WHEN or IF are followed by NOT,
then the TruelFalse bit of the SEQ
CNTL field is not set. Otherwise,

Always use with an 'AND' or 'OR'
keyword The data following the
keyword MASK allows a SCRIPT to
selectively compare the bits within
the data byte.

the bit will be set. REL Used if the jump is to be relative to
the current program counter.

When present, the compare Phase
bit of SEQ CNTL will be set;
otherwise, it will be cleared.

Note that the (iddress values can be replaced
with a REL(Address). The value of the address
must be a signed 24 value. Also PASS (Any
valid C Name) can replace an address. When present, the compare Data bit

of SEQ CNTL will be set;
otherwise, it will be cleared. Any bits that are ON eliminate the

corresponding bit in the data byte at the
compare. Use this 'binary sort' to quickly
detennine value of incoming bytes. For
example, a mask of '7F' and a data compare
of '80' allows the SCRIPTS processor to
determine if the high order bit is O~.

If both Phase and data are specified,
they must be in that order and they
must be separated by the keyword
AND; that is .. WH EN Phase AND
data ...

CALL address
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,

IF ATN
IF Phase
IF data
IF data, AND MASK data
IF ATN AND data
IF ATN AND data, AND MASK data
IF Phase AND data
IF Phase AND data, AND MASK data
WHEN Phase
WHEN data
WHEN data, AND MASK data
WHEN Phase AND data
WHEN Phase AND data, AND MASK data
IF NOT ATN
IF NOT Phase
IF NOT data
IF NOT data, AND MASK data
IF NOT ATN OR data
IF NOT ATN OR data, AND MASK data
IF NOT Phase OR data
IF NOT Phase OR data, AND MASK data
WHEN NOT Phase
WHEN NOT data
WHEN NOT data, AND MASK data

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 6 10/25/90

The NCR SCSI SCRIPTS Language Syntax

CALL address, WHEN NOT Phase OR data
CALL address, WHEN NOT Phase OR data, AND MASK data
CALL REL (address) (An option for any "address" above)

Pass (Any valid C Name) can replace an address in the CALL instruction.
REL (address) can replace an address in the CALL instruction.

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 7 10/25/90

The NCR SCSI SCRIPTS Language Syntax

RETURN Command ATN The target role version which is
required to test whether the initiator
has set ATN on the bus. All conditional RETURN instructions have the

same general form.
NOT U sed for the inverse test of WHEN

and IF. "NOT Phase OR data" is the
negation of "Phase AND data".

Address The SCSI SCRIPTS address that
will be transferred to if the JUMP is
taken.

WHEN Set the Wait bit in the SEQ CNTL
field.

MASK Always use with an 'AND' or 'OR'
keyword. The data following the
keyword 'MASK' allows a SCRIPT
to selectively compare the bits
within the data byte. IF Do not set the Wait bit

Phase

data

If WHEN or IF are followed by NOT,
then the True/False bit of the SEQ
CNTL field is not set. Otherwise,
the bit will be set

When present the compare Phase bit
of SEQ CNTL will be set;
otherwise, it will be cleared.

When present, the compare Data bit
of SEQ CNTL will be set;
otherwise, it will be cleared.

If both Phase and data are specified,
they must be in that order and they
must be separated by the keyword
AND.

RETURN
RETURN, IF ATN
RETURN, IF Phase
RETURN, IF data

Note that the address values can be replaced
with a REL(Address). The value of the address
must be a signed 24 value. Also PASS (Any
valid C Name) can replace an address.

Any bits that are ON eliminate the
corresponding bit in the data byte at the time of
the compare. Use this 'binary sort' to quickly
determine value of incoming bytes. For
example, a mask of '7F' and a data compare
of '80' allows the SCRIPTS processor to
determine if the high order bit is ON.

RETURN, IF data, AND MASK data
RETURN, IF ATN AND data
RETURN, IF ATN AND data, AND MASK data
RETURN, IF Phase AND data
RETURN, IF Phase AND data, AND MASK data
RETURN, WHEN Phase
RETURN, WHEN data
RETURN, WHEN data, AND MASK data
RETURN, WHEN Phase AND data
RETURN, WHEN Phase AND data, AND MASK data
RETURN, IF NOT ATN
RETURN, IF NOT Phase
RETURN, IF NOT data
RETURN, IF NOT data, AND MASK data
RETURN, IF NOT ATN OR data
RETURN, IF NOT ATN OR data, AND MASK data
RETURN, IF NOT Phase OR data
RETURN, IF NOT Phase OR data, AND MASK data
RETURN, WHEN NOT Phase
RETURN, WHEN NOT data
RETURN, WHEN NOT data, AND MASK data

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 8 10/25/90

The NCR SCSI SCRIPTSTM Language Syntax

RETURN, WHEN NOT Phase OR data
RETURN, WHEN NOT Phase OR data, AND MASK data

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 9 10/25/90

The NCR SCSI SCRIPTS Language Syntax

INTERRUPT Command If both Phase and data are specified,
they must be in that order and they
must be separated by the keyword
AND.

All conditional INT instructions have the same
general form.

value The data value that will be placed in
the DSPS register if the INT
condition is evaluated as true.

ATN The target role version which is
required to test whether the initiator
has set A TN on the bus.

WHEN Set the Wait bit in the SEQ CNTL
field.

NOT Used for the inverse test of WHEN
and IF. "NOT Phase OR data" is the
negation of "Phase AND data".

IF Do not set the Wait bit.

Phase

data

If WHEN or IF is followed by NOT,
then the True/False bit of the SEQ
CNTL field is not set. Otherwise,
the bit will be set.

When present, the compare Phase
bit of SEQ CNTL will be set;
otherwise, it will be cleared

When present, the compare Data bit
of SEQ CNTL will be set;
otherwise, it will be cleared

INT value
INT value, IF ATN
INT value, IF Phase
INT value, IF data

MASK Always use with an AND or OR
keyword The data following the
keyword MASK allows a SCRIPT to
selectively compare the bits within
the data byte.

Any bits that are ON eliminate the
corresponding bit in the data byte at the
compare. Use this 'binary sort' to quickly
determine value of incoming bytes. For
example, a mask of '7F' and a data compare
of '80' allows the SCRIPTS processor to
determine if the high order bit is ON.

INT value, IF data, AND MASK data
INT value, IF ATN AND data
INT value, IF ATN AND data, AND MASK data
INT value, IF Phase AND data
INT value, IF Phase AND data, AND MASK data
INT value, WHEN Phase
INT value, WHEN data
INT value, WHEN data, AND MASK data
INT value, WHEN Phase AND data
INT value, WHEN Phase AND data, AND MASK data
INT value, IF NOT ATN
INT value, IF NOT Phase
INT value, IF NOT data
INT value, IF NOT data, AND MASK data
INT value, IF NOT ATN OR data
INT value, IF NOT ATN OR data, AND MASK data
INT value, IF NOT Phase OR data
INT value, IF NOT Phase OR data, AND MASK data
INT value, WHEN NOT Phase
INT value, WHEN NOT data
INT value, WHEN NOT data, AND MASK data
INT value, WHEN NOT Phase OR data
INT value, WHEN NOT Phase OR data, AND MASK data

PASS (Any valid C Name) can replace a value in the INT instruction.

NCR 53C71 0 Programmer's Guide (Preliminary) 6 - 10 10/25/90

The NCR SCSI SCRIPTS Language Syntax

SCSI 1/0 Commands

SELECT [ATN] ID, REL (Address)
SELECT [ATN] FROM Address, REL
(Address)
SELECT [ATN] ID, Address
SELECT [ATN] FROM Address,
Address

Initiator mode function O.
If ATN is present, the "select with ATN"
bit is turned on. 'id' specifies the
destination SCSI ID. REL allows a
relative jump and FROM allows a table
indirect fetch of device id, offset and
period for synchronous transfers.

RES ELECT ID, address
RESELECT ID, REL (Address)
RESELECT FROM Address REL
(Address)
RESELECT FROM Address, Address

Target mode function 0

WAIT DISCONNECT

Initiator mode function 1

DISCONNECT

Target mode function 1

WAIT RESELECT Address
WAIT RESELECT REL (Address)

Initiator mode function 2

REL allows the alternate address to be
relative.

WAIT SELECT address
WAIT SELECT REL (Address)

Target mode function 2

If the 53C710 is connected as a target, the
following set and clear commands will

have no meaning. (The SCSI target role is
active) and should not be used.

Note:

Any address value/ollowing FROM or
REL must be a 24-bit signed value.

SET TARGET

Function 3 with the target bit set in the
flags field.

SET ACK

Function 3 with the ACK bit set in the
Flags field.

SET ATN

Function 3 with the A TN bit set in the
Flags field.

SET ACK and ATN and TARGET

Function 3 with ACK, A TN, and
TARGET bits set in the flag field. All
three or any two of the keywords (ACK,
A TN, or TARGET) may be used.

CLEAR TARGET

Function 4 with the target bit set in the
flags field.

CLEAR ACK

Function 4 with the ACK bit set in the
Flags field.

CLEAR ATN

Function 4 with the A TN bit set in the
Flags field.

NCR 53C71 0, Programmer's Guide (Preliminary) 6 - 11 10/25/90

The NCR SCSI SCRIPTS Language Syntax

CLEAR ACK and ATN and TARGET

Function 4 with ACK, ATN, and
TARGET bits set in the Rags field. All
three or any two of the keywords (ACK,
ATN, or TARGET) may be used.

REGISTER WRITE COMMAND

This instruction allows a read, modify, write,
or a move to SCSI First-byte Received
Register (SFBR) or a move from SFBR.

register: One of the registers must be
SFBR if the instruction allows
two register names (register to
register move). Both registers
must be the same for a read
modify write.

Valid register names are:

SCNTlO SCNTL1 SOlD SIEN
SCID SXFER SODl SOCl
SFBR SIDl SBDl SBCl
DSTAT SSTATO SSTAT1 SSTAT2
DSAO DSA1 DSA2 DSA3
CTESTO CTEST1 CTEST2 CTEST3
CTEST4 CTESTS CTEST6 CTEST7
TEMPO TEMP1 TEMP2 TEMP3
DFIFO ISTAT CTEST8 lCRC
DBCO DBC1 DBC2 DCMO
DNADO DNAD1 ONAD2 DNAD3
DSPO DSP1 OSP2 DSP3
DSPSO DSPS1 OSPS2 DSPS3
SCRATCH 0 SCRATCH 1 SCRATCH2 SCRATCH3
DMODE
ADDERO

data 8:

OlEN OWf DCNTl
ADDER1 ADDER2 ADDER3

REG(n), where n is a value from 0 to
hexadecimal 03f.

Only 8 bits of a register can be
operated on at one time.

An 8-bit data value or name of
an 8-bit value.

operator: Valid operators are OR, AND,
addition and subtraction.

Register writes are very useful, but caution
must be exercised when this mode is used.
Writing to certain registers could have
disastrous effects on the SCSI bus or

operation of the chip. When a register is
written or read, side effects may occur; the
degree and possibility of these effects must be
clearly understood.

A register-to-register move can be
accomplished by moving data from the source
register to the SFBR and then from the SFBR
to the destination register.

To compare for a value in a register (or a bit
ON), move the value to the SFBR (AND off
unwanted bits); then execute a COMPARE and
JUMP instruction.

In the following instructions, the two register
keywords in each line must be identical, or
one must be SFBR.

The Add or Subtract operator can be used for
an event or loop counter.

MOVE register TO register
MOVE data8 TO register
MOVE register I data8 TO register
MOVE register & data8 TO register
MOVE register + data8 TO register
MOVE register· data8 TO register

MEMORY-TO-MEMORY MOVE
Command

This instruction allows the 53C710 to become
a high-speed DMA chip. DATA is moved
from the source address into the chip's DMA
FIFO and then out to the destination address.
There is no indirect capability with this
command so that the physical 32-bit address
must be in the SCRIPT. The PASS option
can be used with either or both addresses to
allow the user to designate a C N arne that can
be resolved when the C code is compiled.

count

address

A 24-bit byte count for the
number of bytes to the
transferred by the MOVE
command.

A 32-bit physical address;
source is first, followed by the
destination data buffer
address.

NCR 53C710, Programmer's Guide (Preliminary) 6 - 12 10/25/90

The NCR SCSI SCRIPTS Language Syntax

The last two bits of the source and destination
must be equal, but there are no other
restrictions on the address values. Note that if
a 53C71 0 register address is the source or
destination, then this instruction can be used to
read or write system memory from SCRIPTS.
This capability is very useful for saving the
state of an I/O in a multi-threaded I/O
environment.

MOVE MEMORY count, source address,
destination address

PASS Option

To allow the SCSI SCRIPTS compiler more
flexibility in the C environment, an option is
included that allows the programmer to pass
32-character literal strings through to the C
compiler. This feature allows the programmer
to use any C Name that will be resolved when
the output is compiled. Strings can be placed
on a single line, or used in place of a 32-bit
address.

PASS (literal string)

This statement can be used to send an include
statement to the C compiler. Note that this
allows the two levels of include capability.
The fIrst level is implemented by using include
statements in the SCRIPTS code and using a
C preprocessor to bring in the desired code.
The second level uses the PASS option.
Everything between the left and right
parenthesis is sent to the output flie of the C
compatible SCSI SCRIPTS compiler. The
literal string must be placed before the SCSI
SCRIPTS instruction area.

Walt Reselect PASS(&alt_addr)
Move Memory 4, PASS(&buf.save),

PASS(&buf. resto re)

These two SCRIPTS instructions illustrate
how the PAS S option can be used to defer the
fIxing of addresses until link time. Any C
N arne can be referred to (limited to 32
characters) ifit will be converted to a 32-bit
address by the C compiler.

Addressing External Labels

A SCRIPTS programmer may want to write
modular code instead of one large routine. To
have modules, some type of external reference
must be allowed. Because the SCRIPTS
compiler does not have a link editor capability,
another mechanism allows the same feature
with minimal changes to the compiler.
Encountering the keyword PROC causes the
compiler to close out the current longword
array and generate a new array with the label
following the keyword PROC. Thus, the
narne "label" can be referenced by other SCSI
SCRIPTS in other modules. For example, a
JUMP instruction can transfer to an external
name, using the PASS option. At C compile
time, the reference will be resolved.

NCR 53C71 0, Programmer's Guide (Preliminary) 6 - 13 10/25/90

Chapter 7
SCRIPTS SCSI Use of Scatter-Gather

Virtual memory schemes are common in
today's systems; they are used to keep user
data in small, manageable pages in main
memory. Memory management units track
actual, physical locations. This memory
scheme is called scatter-gather because user
data is scattered through memory and gathered
for a write to disk. One I/O may include
several pages; therefore, current SCSI ports
must re-instruct the DMA controller at the
beginning of each user-data page.

The extra time required to re-instruct for each
page causes some delay for the external
processor interrupt and DMA set-up time. A
potentially undesirable side effect occurs when
the delay makes the disk slip a revolution
because there is no place to put data coming
off the media, or the data is not yet available
for writing to the media.

The 53C710 has an efficient solution to the
scatter-gather perfonnance degradation
problem. Each page of user data is
represented by a Block Move command. The
only overhead required to move to the next
page of data is a SCSI SCRIPTS fetch. No
finnware interrupt is required (normally a
minimum of 80 microseconds in a system
environment). Nor is firmware required to re­
instruct a DMA controller.

NCR 53C710, Programmer's Guide (preliminary) 7-1

Chapter 7 contains one possible SCSI
SCRIPTS model for the scatter-gather
situation. First, separate the set of Block
Move commands that are required to process
the user data and code the SCSI SCRIPTS to
call this user data section to move data.
Determine a maximum number of pages per
I/O and code one SCSI SCRIPTS Block
Move for each possible page. At the start I/O
time, the logical I/O routine determines exactly
how many block moves are required and
writes a return command over the next SCSI
SCRIPTS command after the last required
Block Move command. The group of Block
Move commands is called, the correct number
of moves is performed, and the return is
executed. At the completion of the I/O, the
return is overwritten with a Block Move to
prepare the set of Block Move commands for
the next I/O.

With the read/write capability of the 53C710,
another possible solution exists for the scatter
gather problem. The following SCSI SCRIPT
uses the increment register feature and the
table indirect feature to update the address and
count values in the chip's registers. By
fetching these values indirectly and adding 8 to
the DSA register each time through the loop,
the SCRIPT can continue to fetch user data
from various locations. The actual SCRIPT
is:

10/25/90

L1:

SCSI SCRIPTS to Support Use of Scatter-Gather

Loop:
; Perform the move

Move from ADDR when DATA OUT
; Increment to the next DSA entry -

Move DSA (0) +8 to SFBR
; Check for Wraparound

Jump L 1 if not 00
; handle a one-byte overflow

Move DSA(1)+ 1 to DSA(1)

; update the DSA register
Move SFBR to DSA(O)

; repeat until a phase change
Jump rel(Loop) when DATA_OUT

This SCRIPTS algorithm allows for a large
number (8196) of Data Structure Table entries
in the scatter- gather list An alternative to
simply waiting for a phase change is to use a
counter in the loop and exit on zero. To allow
for disconnects in the loop, save the Data
Structure Address (DSA) register value when
processing the disconnect message.

The 53C710 can process scatter/gather
requests in a very simple manner and
simultaneously, dramatically reduce I/O
overhead.

NCR 53C710, Programmer's Guide (Preliminary) 7 - 2 10/25/90

Chapter 8
NCR SCSI SCRIPTS for an Initiator

Definition area INITIATOR ROLE

; Target Device I.D. offset in the Data structure
Absolute device=<>

; Send message offset for count and address
Absolute sendmsg=8

; Receive message offset for count and address
Absolute rcvmsg=OXOIO

; SCSI command offset for count and address
Absolute cmd_adr=OX018

; User data buffer offset for count and address
Absolute data_adr=OX020

; Error -- not message out after selection
ABSOLUTEerrl=Ox&IDl

; Error -- unexpected SCSI phase before command phase
ABSOLUTE err2 = Ox&ID2

; Error -- unexpected SCSI phase after a command transfer
ABSOLUTE err3 = Ox&ID3

; Error -- not msg in phase after status phase
ABSOLUTE err4 = Ox&ID4

; No Error -- good I/O
ABSOLUTE ok = OxOffOO

; SCSI status returned is check condition
ABSOLUTE check_cond = OxOfffe

;0 SCSI status returned is busy
ABSOLUTE busy = OxOfffd

; SCSI status returned is reservation conflict
ABSOLUTE reserved = OxOfffc

NCR 53C710, Programmer's Guide (Preliminary) 8 - 1 ° 11/13/90

NCR SCSI SCRIPTS for an Initiator

; SCSI status returned is unknown
ABSOLUTE bad_status = OxOfftb

; Error -- unexpected phase after a data transfer
ABSOLUTE errS = OxOffOS

; Error -- unexpected msg in phase before command phase
ABSOLUTE err6 = OxOff06

Error -- extended msg present before a command phase
ABSOLUTE err7 = OxOff07

Error -- save data pointers before a command phase
ABSOLUTE err8 = OxOff08

Error -- disconnect before command phase
ABSOLUTE err9 = OxOff09

Error -- save data pointers after the command phase
ABSOLUTE err10 = OxOff10

Error -- unexpected msg after command phase
ABSOLUTE err11 = OxOff11

Error -- extended message present after the command phase
ABSOLUTE err12 = OxOff12

Error -- disconnect after a command phase
ABSOLUTE err13 = OxOff13

Error -- save data pointers after a data transfer
ABSOLUTE err14 = OxOff14

; Error -- unexpected message after a data transfer
ABSOLUTE err15 = OxOff15

. Error -- extended message after a data transfer
ABSOLUTE err16 = OxOff16

Error -- disconnect after a data transfer
ABSOLUTE err17 = OxOff17

Error -- Message in not received after reselection
ABSOLUTE err18 = OxOff18

Error -- Data in phase after reselection and i.d. msg rcvd
ABSOLUTE err19 = OxOff19

; Error -- Data out phase after reselection and i.d. msg rcvd
ABSOLUTE err20 = OxOff20

NCR 53C710, Programmer's Guide (Preliminary) 8 - 2 11/13/90

NCR SCSI SCRIPTS for an Initiator

; Error -- Msg in phase after reselection and i.d. msg rcvd
ABSOLUTEerr2l=Ox&~l

; Error -- Status phase after r.eselection and i.d. msg rcvd
ABSOLUTE err22 = Ox&~2

; Error -- Msg out phase after reselection and Ld. msg rcvd
ABSOLUTE err23 = Ox&~3

; Error -- Unknown phase afterreselection and Ld. msg rcvd
ABSOLUTE err24 = Ox&~4

; Error -- Selected as a target
ABSOLUTE err25 = Ox&~5

; Error -- Unexpected message rcvd instead of command complete
ABSOLUTE err26 = Ox&~6

SCSI I/O entry point. This address must be loaded into the
53C7l0 before initiating a SCSI I/O.

ENTRY start_up

SCRIPTS AREA

This is the entry point for a SCSI 110

start_up:

This is the SCRIPT for a standard SCSI I/O

First, select the· device with attention and go to an
alternate reselect address. If a reselection or selection
happens before the selection can execute, the chip will
change roles if required.

SELECf AlN FROM device, PASS(&Resel)

If the next phase is status, go to end. Wait for valid
; phase before performing the comparison.
JUMP REL(end), WHEN STATUS

If not msg out phase, interrupt. Do not wait for phase.
!NT errl, IF NOT MSG_OUT

NCR 53C710, Programmer's Guide (Preliminary) 8 - 3 11/13/90

retry:

NCR SCSI SCRIPTS for an Initiator

**
Label for retry loop to resend I.D. msg on error
**

The expected case after selection is I.D. message out to the
device. Move the LD. message from the send message buffer.

; Do not wait for a phase change.
MOVE FROM sendmsg, WHEN MSG_OUT

If the target remains in the message out phase after the
initial messages have been sent to the device, retransfer
the messages. Wait for a valid phase (req asserted).

JUMP REL(retry), WHEN MSG_OUT

Now check for all expected phases.
JUMP REL(end), IF STATUS

Process a message in before the command phase here
JUMP REL(msgl), IF MSG_IN

If it is not status, msg in, or command, stop
Interrupt if not command phase

!NT err2, IF NOT CMD

Transfer command bytes to the host
MOVE FROM cmd_adr, WHEN CMD

Detennine what is coming next. Is there a message in after
the command phase?

JUMP REL(msg2), WHEN MSG_IN

Status phase after the command?
JUMP REL(end), IF STATUS

Check for data in phase
JUMP REL(input_data), IF DATA_IN

Is this a data out phase?
JUMP REL(output_data), IF DATA_OUT

Error -- an unexpected phase after a command transfer
INTerr3

NCR 53C710, Programmer's Guide (Preliminary) 8 - 4 11/13/90

,
end:

NCR SCSI SCRIPTS for an Initiator

Label to process the status phase

; Move the status byte in to the buffer area
MOVE FROM status_adr, WHEN STATUS

NOTE: an alternative at this point is to detennine what the
status byte is and jump to a set of routines that will
process the command complete message, physical disconnect,
and then interrupt with the appropriate status byte error
value. Here, the algorithm interrupts if good I/O is not
the status byte returned by the target.

Was there a check condition
!NT check_cond, IF Ox02

Is the device busy
!NT busy, IF Ox08

; Is the device reserved
!NT reserved, IF OxO 18

Interrupt for unknown state
!NT bad_status, IF NOT OxOO I

Status value is good I/O, so process the command complete
Stop if the next phase is not message in.

!NT err4, WHEN NOT MSG_IN

; Message in if here. It should be a command complete.
MOVE FROM rcvmsg, WHEN MSG_IN

Process the message if it is not a command complete
!NT err26, IF NOT OxOO .

At this point, instead of interrupting, the best course
would be to examine the message received and react, or to
interrupt with a more specific error code.

Command complete was received, acknowledge it
CLEARACK

A physical disconnect should be next
WAIT DISCONNECf

Good I/O if here
INTok

NCR 53C71 0, Programmer's Guide (Preliminary) 8 - 5 11/13/90

,

NCR SCSI SCRIPTS for an Initiator

**
This the data out section of the algorithm
**

output_data:

,

If a scatter/gather requirement exists, then this section
can be multiple block moves to allow for multiple segments
of data. Also, this section could actually be a jump to a
group of block moves that can be patched appropriately at
start I/O for the number of segments needed. The overhead
between segment block moves is 500-600 nanoseconds.

**
Process what comes after the data transfer
**

check_out:

Status phase is the normal next step
JUMP REL(end), WHEN STATUS

Is there a message in phase after data transfer
JUMP REL(msg3), IF MSG_IN

Unexpected phase detected after data transfer
INTerrS

**
This is the data in phase portion of the algorithm
**

input_data:

If a scatter/gather requirement exists, then this section
can be multiple block moves to allow for multiple segments
of data. Also, this section could actually be a jump to a
group of block moves that can be patched appropriately at
start I/O for the number of segments needed. The overhead
between segment block moves is 500-600 nanoseconds.

Go check the phase after data in
JUMP REL(check_it)

NCR 53C710, Programmer's Guide (Preliminary) 8 - 6 11/13/90

,
msgl:

NCR SCSI SCRIPTS for an Initiator

**
Process a message in before the command phase
**

MOVE FROM rcvmsg, WHEN MSG_IN

; Is this an extended message?
JUMP REL(ext_msgl), IF OxOI

; Is this save data pointers? Interrupt with ACK set.
INT err8, IF Ox02

; Is this a disconnect?
JUMP PASS(&disc_proc), IF Ox04

Interrupt if any other message with ACK set
INTerr6

Message is an extended message
ext_msgl:

Acknowledge the message just received
CLEARACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have
available on the interrupt.

MOVE FROM ext_buf, WHEN MSG_IN

Interrupt the processor
INTerr7

, Message is a disconnect
discI:

Acknowledge the disconnect message
CLEARACK

Disconnect before the command if here
WAIT DISCONNECf

Interrupt the processor on a disconnect
INTen9

NCR 53C710, Programmer's Guide (Preliminary) 8 - 7 11/13/90

NCR SCSI SCRIPTS for an Initiator

Message in after the command phase
************************************ ,

msg2:
MOVE FROM rcvmsg, WHEN MSG_IN

; Is this an extended message?
JUMP REL(ext_msg2), 1F OxOl

; Is this save data pointers? Interrupt with ACK set.
INT errlO IF Ox02

; Is this a disconnect?
JUMP REL(disc2), 1F Ox04

Interrupt if any other message with ACK set
lNTerrll

Message is an extended message
ext_msg2:
; Acknowledge the message just received
CLEARACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have
available on the interrupt.

MOVE FROM ext_buf, WHEN MSG_IN

interrupt the processor
lNTerr12

. , Message is a disconnect
disc2:

Acknowledge the message
CLEARACK

; Disconnect after the command if here
WAIT DISCONNECT

Interrupt the processor on a disconnect
lNTerr13

NCR 53C710, Programmer's Guide (Preliminary) 8 - 8 11/13/90

NCR SCSI SCRIPTS for an Initiator

; Message in after the data transfer phase

msg3:
MOVE FROM rcvmsg, WHEN MSG_IN

; Is this an extended message?
JUMP REL(ext_msg3), IF OxOI

; Is this save data pointers? Interrupt with ACK set.
INT err 14, IF Ox02

Is this a disconnect?
JUMP PASS(&disc_PROC1), IF Ox04

Interrupt if any other message with ACK set
INTerr15 .

; Message is an extended message
ext_msg3:
; Acknowledge the message just received
CLEARACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have

; available on the interrupt.
MOVE FROM ext_buf, WHEN MSG_IN

; Interrupt the processor
INTerr16

. , Message is a disconnect
disc3:

Acknowledge the message
CLEARACK

Disconnect before the data transfer if here
WAIT DISCONNECT

Interrupt the processor on a disconnect
INTerr17

NCR 53C710, Programmer's Guide (Preliminary) 8 - 9 11/13/90

NCR SCSI SCRIPTS for an Initiator

This is the section of code to process a reselect or select
when a select 1/0 command was executed
*** ,

resel_adr:

Wait for res elect as the most probable event
WAIT RESELECf select_adr

The initiator was reselected, so process the possibilities
INT err18, WHEN NOT MSG_IN

LD. message in is the only expected SCSI phase here
MOVE FROM rcvmsg, WHEN MSG_IN

At this point, if the system integrator knows the possible
SCSI device LD.'s possible, the algorithm can compare for
each known 1.0. and react accordingly. An I/O could even be
restarted if the SCSI bus configuration is exactly known.

Data in phase after reselection and id. transfer
INTerr19, WHEN DATA_IN

Data out phase after reselection and i.d. transfer
!NT err20, IF DATA_OUT

Message in phase after res election and id. transfer
!NT err21, IF MSG_IN

Status phase after reselection and Ld. transfer
!NT err22, IF STATUS

Message out phase after reselection and i.d. transfer
INT err23, IF MSG_OUT

Unknown phase after reselection and i.d. transfer
INTerr24

NCR 53C71 0, Programmer's Guide (Preliminary) 8 - 10 11/13/90

NCR SCSI SCRIPTS for an Initiator

The chip was in an initiator role, but it has been selected
by another device on the SCSI bus. It is now in the target
role. One could implement the complete SCSI SCRIPTS target
algorithm here, or simply interrupt with an error message.

select_adr:

INTerr25

Definition Area TARGET ROLE

.********************************* ,
;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
.********************************* ,

offset for count and address
ABSOLUTE ms~buf=8

Command byte offset for count & address
ABSOLUTE cmd_buf=OxOlO

Input message offset for count and address
ABSOLUTE ms~buf2=Ox018

Buffer offset for the initiator i.d.
ABSOLUTE initiator=O

user data buffer offset for count and address
ABSOLUTE data_addr=Ox020

Status buffer offset for count and address
ABSOLUTE stat_adr=Ox0400

NCR 53C710, Programmer's Guide (Preliminary) 8 - 11 11/13/90

NCR SCSI SCRIPTS for an Initiator

.******************************* ,
;* Absolute values are stored in DNAD Register*
;* for purposes of interrupt processing *
.******************************* ,

ABSOLUTE errorl = OxOffOl

; A TN is on after the Ld. message is sent in to the initiator
ABSOLUTE error2 = OxOff02

; A TN is on after the command bytes are sent to the initiator
ABSOLUTE error3 = OxOff03

; Atn is on after the disconnect message is sent to the ;initiator
ABSOLUTE error4 = OxOff04

ATN on after i.d. message sent to the initiator after a
reselect operation is complete

ABSOLUTE errorS = OxOffOS

; A TN is on after user data is sent into the initiator
ABSOLUTE error6 = OxOff06

A TN is on after the status byte is sent
ABSOLUTE error7 = OxOff07

; A TN is on after the command complete message is sent
ABSOLUTE error8 = OxOff08

Entry Point for the target role
ENTRY start_up

Entry point for a target reselect
EN'IR. Y resel_in

NCR 53C710, Programmer's Guide (Preliminary) 8 - 12 11/13/90

NCR SCSI SCRIPTS for an Initiator

SCRIPTS AREA

This is the entry point for a SCSI target IlO

start_up:

First wait for a selection by the initiator and jump to the
alternate address if reselected

WAIT SELECT rel(resel_adr)

Move the Ld. message into the message buffer
retry_id:
MOVE FROM mstLbuf, WITH MSG_OUT

; If the initiator sets ATN, go process that condition
JUMP Rel(id_atn), IF A TN

Move the command bytes in to the target buffer
MOVE FROM cmd_buf, WITH CrvID

Note that though a 1 is in the command count field, the chip
will automatically transfer in the correct number of bytes
based on the SCSI command op code.
If the initiator sets A TN, go process that condition

JUMP REL(cmd_atn), IF ATN

In this algorithm, an automatic disconnect is assumed after
the SCSI command is received into the buffer. However, the
first byte of the command may be compared against a set of
opcode values to determine if this specific command should
disconnect or not.

Send in the disconnect message
MOVE FROM mstLbuf2, WITH MSG_IN

If the initiator sets ATN, go process that condition
JUMP REL(disc_atn), IF ATN

Now get off the bus
DISCONNECT

NCR 53C710, Programmer's Guide (Preliminary) 8 -13 11/13/90

NCR SCSI SCRIPTS for an Initiator

Entry point for reseiecting the initiator

. *** ,
resel_in:

Perfonn the reselect and jump to resel_adr if a reselection
happens while trying to do the reselect

RESELECf FROM initiator REL(resel_adr)

Move the res elect Ld message into the initiator
retry _resel:
MOVE FROM ms~buf2, WI1H MSG_IN

If the initiator sets ATN, go process that condition
JUMP REL(resel_atn), IF A TN

Now move the data bytes into the initiator
MOVE FROM data_adr, WI1H DATA_IN

Note that this could easily be changed to a data out command
by patching the phase section of the command, or using a
jump command that can be patched to transfer control to a
section of code that is either the data out or data in algorithm.
If the initiator sets A TN, go process that condition.

JUMP REL(data_atn), IF ATN

NCR 53C710, Programmer's Guide (Preliminary) 8 - 14 11/13/90

NCR SCSI SCRIPTS for an Initiator

**
If a scatter/gather requirement exists, then this data
transfer section can be multiple block moves for the
multiple segments of data. Also, the section could be a
jump to a group of block moves that had been patched
appropriately at start I/O for the exact number of segments desired.

Now move in the status byte
MOVE FROM stat_adr, WITH STATUS

If the initiator sets A TN, go process that condition
JUMP Rel(stat_atn), IF A TN

; Move the command complete message in
MOVE FROM ms~buf2, WITH MSG_IN

If the inip.ator sets A TN, go process that condition
JUMP REL(cc_atn), IF ATN

Now physically disconnect
DISCONNECf

**
If the wait for select or reselect fails, this is the label
for the alternate address
**

resel_adr:

INTerrorl

NCR 53C710, Programmer's Guide (Preliminary) 8 -15 11/13/90

NCR SCSI SCRIPTS for an Initiator

**
If the initiator turns on ATN after the i.d. message comes
out, this is the code for processing what comes next.
**

; Move the message byte from the initiator out to the message buffer
MOVE FROM ms~bufWI1H MSG_OUT

At this point, the user may decide to use scripts to program
at a very detailed level or simply interrupt with one user
error code. Scripts may be used to check for:

INTerror2

• no-op message -- ignore and jump to continue
• initiator detected error -- jump to retry
• message parity error -- jump to retry
• extended message -- as a minimum, get the opcode and

byte count before interrupting the processor

All the A TN subroutines have the same basic function

cmd_atn:
MOVE FROM ms~buf, WITH MSG_OUT
INTerror3

disc_atn:
MOVE FROM ms~buf, WITH MSG_OUT
INTerror4

resel_atn:
MOVE FROM ms~buf, WITH MSG_OUT
INTerror5

data_atn:
MOVE FROM ms~buf, WITH MSG_OUT
INTerror6

stat_atn:
MOVE FROM ms~buf, WITH MSG_OUT
INTerror7

cc_atn:
MOVE FROM ms~buf, WITH MSG_OUT
INTerror8

NCR 53C710, Programmer's Guide (Preliminary) 8 - 16 11/13/90

Chapter 9
Unique Initiator Sequences for the 53C710

Disk Drive Initiator Sequence

Arbitrate and Select With Atn
Transfer the I.D. message
Transfer the command bytes
Accept the message in -- DISCONNECf
Reselected -- I.D. message in
Data transfer of 1 - 4 user data blocks
Accept SCSI status byte, COMMAND COMPLETE nlessage and wait for bus free

53C710 Strengths in the Disk Drive
Environment

• A large number of commands are typically
issued to the disk, and the 53C710 offers
very little SCSI bus overhead and a
minimum of time to initiate an I/O in the
host computer.

• The 53C710 can continue to the next
scheduled SCSI I/O within SCRIPTS with
no interrupt to the external processor for
the following:

Compare for Good I/O status byte

Interrupt if non-zero

Jump to the next scheduled I/O if the
status is zero (Good I/O)

NCR 53C710, Programmer's Guide (Preliminary) 9 - 1

• The 53C71 0 can mask certain disk
idiosyncrasies.

For example, if the disk does a SA VB
DATA POINTERS before the first
DISCONNECf message after the
command bytes are transferred, the
53C710 can be programmed to absorb this
message with no interrupt to the external
processor.

• The 53C710 can process a disconnect
message from the disk. See Chapter 11
for a complete description.

10/25/90

Unique Initiator Sequences for the 53C71 a

Tape Drive Initiator Sequence

Arbitrate and Select With Atn
Transfer the I.D. message
Transfer the command bytes
Accept the message in -- DISCONNECT
Reflected -- I.D. message in
Data transfer of 16K of user data
Accept the message in -- SAVE DATA POINTERS followed by DISCONNECT.
Reselected --1.0. message in
Data transfer of 16K of user data

*
*
*

Reselected -- I.D. message in
Data transfer of 16k of user data
Accept SCSI status byte, COMMAND COMPLETE message and wait for bus free

Each disconnect (on a 16k boundary) causes
an interrupt to the external processor if there
are multiple SCSI devices on the SCSI bus.
Reselect causes an interrupt in the general
case. If this were a single device bus or the
system was designed to perform tape only
activity on the SCSI bus during backup, then
the 53C710 could be programmed specifically
for this system. Knowing the tape drive was
alone on the bus, the 53C710 could be
programmed to:

1) Absorb the SAVE DATA POINTERS.

2) Execute a SCRIPTS command of wait
for reselect.

3) Process the SCSI reselect sequence
with no interrupts.

4) Initiate the next 16k user data block
move.

5) If there is ever a restore pointers, the
53C710 interrupts to allow the external
processor to restart the tape I/O.

The 53C710 allows systems integration
designs using the SCSI bus with no
performance impact to I/O throughput

See Chapter 7 for another possible algorithm
for large blocks of data that use a SCSI
SCRIPTS loop.

NCR 53C710, Programmer's Guide (Preliminary) 9 - 2 10/25/90

Unique Initiator Sequences for the 53C71 0

SCSI Character Oriented Device
in the Initiator Role

A SCSI port can be dedicated by the system
designer for terminal control. First, a SCSI
read command is transferred to the target
tenninal controller. A stream of user data
typed in at the terminals, plus the inserted
control bytes in the stream comes back to the
initiator. A SCRIPT can be written which
looks at the byte stream coming in and sends
line control bytes to the processing buffer and
data bytes to the data buffer. When certain
control bytes are received, the 53C710 can
tenninate the READ operation and generate a
unique interrupt to the external processor.

Writes to the tenninal controller can begin
automatically when a certain read threshold is
reached. The 53C710 can process the READ
command cleanup, jump to the WRITE
command portion of the SCRIPTS, and
automatically start sending data to the tenninal
controller. The 53C710 can be used in
unusual areas to offload any processor and
improve performance.

Another implementation of the 53C710 is
SCSI printer design, where WRITE is the
only operation and control characters also play
an important role.

NCR 53C710, Programmer's Guide (Preliminary) 9 - 3 10/25/90

Chapter 10
Special SCSI SCRIPTS Situations

Transferring Large Blocks of User
Data

CASE 1

An unexpected Phase change occurs in the
middle of a data transfer.

The Block Move command was developed to
transfer 4K of user data, but anomalies such
as an unexpected phase change after
transferring 2K of the data, must be handled
by the processor.

Data may be left in the chip on a data out
phase, so an interrupt is required to:

1) Oean up the chip on Data Out Phase

2) Change the data address and byte count
in the active SCSI SCRIPTS or the
Indirect Data Table.

3) Receive the message byte via SCSI
SCRIPTS (e.g., load the new entry
point for resumption of the message in
operation).

After the message byte has been received,
verify that the message byte is a SA VB DATA
POINTERS (if not, interrupt the external
processor, or process that message), andjump
to the SCSI SCRIPTS entry point that will
resume the data transfer previously
interrupted.

CASE 2

The expected burst size is known ahead of
time and is extremely predictable.

At systems integration time, set this burst size,
so that each Block Move command can equal
the burst size. The SCSI SCRIPTS logic
becomes the following:

• Block Move of burst size.

• Call subroutine (after waiting) if the
next phase is not a data phase. (The
subroutine should process the SA VB
DATAPOIN1ERS message in and
return.)

• Block Move of burst size

• Call subroutine (after waiting) if the
next phase is not a data phase.

U sing this logic, all phase changes are
assumed to come on a Block Move command
boundary, so no bytes will be left in the chip
when a phase change occurs. There is a small
penalty for fetching the call subroutine
command (500 nanoseconds per SCSI
SCRIPTS). But a system interrupt (minimum
80 microseconds) will be saved by avoiding
the extra interrupt

CASE 3

The expected burst size is NOT known ahead
of time.

Use the same logic as in Case 2, but make the
Block Move byte count equal to the device
block size. The assumption is that a phase
change will come only on the device's block
boundary. The SCSI SCRIPTS fetching
overhead depends on the ratio of the device
block size to the burst size. However, an
extra 10 microseconds is small when
compared to the external processor interrupt
time of at least 80 microseconds. Refer to
Chapter 7 for another way of writing the SCSI
SCRIPTS to implement CASE 3.

NCR 53C71 0, Programmer's Guide (Preliminary) 10 - 1 10/25/90

Special SCSI Scripts Situations

How a SAVE DATA POINTERS
Can be Processed by the Initiator

CASE 1

A message received during a Block Move
command offers 2 possibilities:

1. Data in phase

2. Data out phase

Data-in Phase

During the data in phase, all bytes in the
53C710 are sent to the DMA core and into
system memory. When no bytes are left in the
chip, all execution stops and an interrupt is
generated to the external processor. To save
the I/O state, update the current SCSI
SCRIPTS with the memory address and byte
count located in the 53C710. Save a pointer
to this SCSI SCRIPTS in the system I/O
structure so that the I/O can easily be
rescheduled. The chip's SCSI SCRIPTS
pointer value is actually the current SCSI
SCRIPTS address plus eight. So the saved
value must be the SCSI SCRIPTS pointer
value minus eight

Data-out Phase

If the phase is data out, the 53C710 is full of
data bytes going out to the SCSI bus.
¥xecutio~ stops after the phase change and an
mterrupt IS generated to the external
processor. At that time, the processor should
calculate the number of bytes in the chip, add
this value to the chip's byte count, subtract
from the chip's memory address pointer, and
store these values in the current SCSI
SCRIPTS. A pointer to the SCSI SCRIPTS
(minus eight) must be saved in some I/O
structure for rescheduling. This saved value
is the entry point for resuming the data
transfer portion of the I/O, depending on the
outcome of the phase change.

CASE 2

A message comes in on a Block Move
command boundary.

If no test for data phase was placed between
Block Move commands, then the 53C710
will fetch the next command and start
processing it. When the phase change actually
occurs, the 53C710 may have data in it, so the
processing is exactly the same as CASE 1
above.

If a wait and test for data phase command is
inserted between each Block Move (burst size
is known or the block size is used in each
Block Move command), then an interrupt is
generated to signal the processor to save a
pointer to the next Block Move command. A
SCSI SCRIPTS to receive message bytes is
executed, and the I/O can be resumed by
reloading the saved SCSI SCRIPTS pointer.

Alternatively, the message processing SCSI
SCRIPTS could have a jump command as its
last command. The jump to address would be
the entry point of the resume SCSI SCRIPTS
pointer so that the interrupted I/O can start up
again easily~

This JUMP command must have been updated
by the external processor or by the 53C710 at
the time of a SAVE DATA POINTERS
message.

NCR 53C710, Programmer's Guide (Preliminary) 10 - 2 10/25/90

Chapter 11
Multi-Tasking I/O Using SCSI SCRIPTS

Multi-Threaded 1/0 Using SCSI
SCRIPTS

A design goal of the 53C710 is to allow the user
to perfonn multi-threaded I/O with no external
processor intervention.

Four distinct parts exist in a multi-threaded
SCSI SCRIPTS algorithm:

• A main SCRIPT.

• A scheduler SCRIPT.

• A reselect SCRIPT.

• A disconnect SCRIPT.

All are involved during multi-threaded I/O.
Some of the command areas must be written
by the 53C710; thus, key SCRIPTS must be
stored in random access memory (RAM).

Main SCRIPT

Only one copy of this SCRIPT is required to
service any number of outstanding I/Os. This
SCRIPT perfonns the standard operations
associated with a SCSI command (for
example, transfer messages, commands, data,
and sc forth). '

A context switch from one I/O to another is
perfonned by loading the Table Indirect Data
Structure Address into the Data Structure
Address (DSA) register and then loading the
SCRIPTS entry point into the 53C710.

Note that the entry point address is loaded
with a simple transfer control (JUMP or
CALL) instruction. Because a SCRIPT
register read or write can load the DSA
address, and the chip can perform a JUMP
SCRIPT, the context switch can easily start an
I/O or begin a new I/O or switch to a different
one. In the main SCRIPT, numerous resume
points exist When coding the algorithm, each
resume point must be identified as the
SCRIPT is coded. An answer to the question

NCR 53C710, Programmer's Guide (Preliminary) 11-1

"If a disconnect message arrived from the
target, where must the I/O resume?" must be
known throughout the main SCRIPT. In the
following paragraphs, which discuss multi­
threaded I/O, the importance of this major
point will become quite clear.

Scheduler SCRIPTS

This algorithm is executed when an I/O
completes, or the target changes to message-in
phase and sends in a disconnect message.
There is an entry in the scheduler for every
possible I/O the system allows to be
outstanding to the SCSI bus. Therefore, there
is an entry for every Indirect Data Structure
Table (that is, one per I/O allowed by the
operating system). Each entry in the scheduler
consists of the following SCRIPT:

or:

Move 4, memory _Address1, DSA
Jump entry_Point

move 4, memory _Address1 , DSA
NOP

An I/O is scheduled when the system
processor writes an entry to the scheduler
SCRIPT. The 53C710 driver routines must
identify an unused entry in the scheduler
SCRIPT and move a pointer to the data
structure into the appropriate memory address
of the unused entry. Then a JUMP command
must be written to the next line of code.
When the 53C710 has no more SCSI
SCRIPTS to execute for an I/O, it will jump to
the scheduler SCRIPT. For a scheduled I/O,
the value at a memory address will be moved
into DSA and then the chip will transfer to the
main SCRIPT entry point. A NOP is then
written to the jump just taken so that the same
I/O will not be restarted by the 53C710 before
it completes. Because the system will not re­
use the entry until the I/O is complete, the I/O
runs until completion. If there are no I/Os
scheduled, the 53C710 should interrupt or
wait for reselect if outstanding I/Os exist

9/27/90

Multi-Tasking I/O Using SCSI SCRIPTS

Disconnect SCRIPT

The target device can change phases on the
SCSI bus at any time to save state or to
disconnect temporarily. If a move. command
is executing during a phase change and the
byte count is not zero, an external interrupt
occurs. However, if the 53C710 has
completed the move operation, no external
interrupt is required and the chip can handle
the phase change using SCRIPTS. To
automatically process this phase change, the
programmer must identify the resume points
in the SCSI SCRIPTS as the algorithm is
being developed.

The disconnect routine assumes that the chip
is completely in the data indirect mode and that
an I/O data structure table exists for each
possible I/O. Each data structure has the
following entries in RAM:

Address SCRIPT

-16 write synchronous values to 53C71 0

-8

o

+8

Jump to the resume point

Label: move 4, SCRATCH, Label-4

Jump Scheduler

+16 I/O data structure values

The significance of these SCRIPTS will
become clear as the complete multi-threaded
SCRIPT is described as follows:

To implement the disconnect, detennine the
necessary action if a disconnect message
comes into the chip. Choose the SCSI
SCRIPTS label that should be jumped-to upon
the subsequent reselect operation. The
following SCRIPT illustrates this principle
and how several lines of extra code in the
main SCRIPT allows a save state upon receipt
of the disconnect message:

; jump around the resume label
Jump resume1

resume1 base:
; Place the resume address In TEMP

Call save_resume

resume1 :
•
•
•
•

; DISCONNECT Message was just received
; resume1 Is the restart label

Jump resume1_base

As this area of the code was written, the label
resume 1 is recognized as the restart point for
SCSI disconnects. When the DISCONNEcr
message is received, the chip transfers to one
statement before the resume point A CALL
instruction at this address will place the
address of resume 1 into TEMP and transfer
control to save_resume. At this routine, the
value in TEMP is moved to SCRATCH \\'ith
the following SCRIPT:

save resume:
; Address of the resume point Is In

TEMP

Move TEMP (0) to SFBR
Move SFBR to SCRATCH (0)

Move TEMP (1) to SFBR
Move SFBR to SCRATCH(1)

Move TEMP(2) to SFBR
Move SFBR to SCRATCH (2)

Move TEMP(3) to SFBR
Move SFBR to SCRATCH (3)

; the resume address Is now In
; SCRATCH

Because any register-to-register move must go
through the SCSI First Byte Received
(SFBR) register, eight SCRIPTS are required
to move one 32-bit register to another.
Because SCRATCH is not used by any
SCRIPT operation, the resume address must
be placed there before being written to
memory by the Memory Move SCRiPT.

NCR 53C710, Programmer's Guide (Preliminary) 11 - 2 11/13/90

Multi-Tasking 110 Using SCSI SCRIPTS

Next, the resume address must be written to
memory by the 53C710. At the address .
pointed to by the DSA register is a Memory
MOVE command that moves the value in
SCRATCH (now the resume point) into the
second four bytes of the JUMP command,
eight bytes above. The next step is for the
SCRIPT to jump to the address in the DSA
register.

; Move contents of DSA to TEMP
Move DSA (0) to SFBR
Move SFBR to TEMP(O)

Move DSA (3) to SFBR
Move SFBR to TEMP(3)

; now Return to the data structure
Return

Note that a return SCRIPT simply jumps to
the address in the TEMP register. At this
address, the resume address is saved, and the
execution continues at the scheduler SCRIPT.
Now a SCRIPT is all set to begin at the
correct resume point when the correct reselect
occurs.

RESUME SCRIPT

In SCSI terminology, the nexus is a
combination of device i.d., logical unit
number, and queue tag value. Upon
reselection, the 53C710 will decode the
nexus, using COMPARE and JUMP SCSI
SCRIPT instructions. Upon reselection, the
device Ld. is in the SFBR or optionally in
the Longitudinal Parity Register (LCRC).

After a series of COMPARE and JUMP
instructions, based on the unique nexus value,
the 53C710 will transfer to a unique Memory
MOVE command.

Move 4, address, DSA
Jump set_up

; DSA Reg Ister Is now correct

For each possible nexus allowed in the
system, there is one entry. "Address" points
to the memory location where the I/O's data
structure address is kept. At power-up, the

value of address is initialized after all data
structures are allocated, and the addres ses are
fixed in a nexus address table. There is not
necessarily a one-to-one correspondence
between possible I/Os and possible nexus
values. However, if the values are not all
fixed the memory-ta-memory MOVE
instruction must be updated with the correct
address at start I/O rather than at power-up.
The system designer can decide how to
allocate based on requirements.

Before resuming the I/O execution, only one
more step is required. At the set_up routine,
DSA is moved to TEMP, and a return is
executed to the DSA pointer, minus 16.

set_up:
Move DSA (0) to SFBR
Move SFBR to TEMP (0)

•

Move DSA (3) to SFBR
Move SFBR to TEMP (3)
Move TEMP (0) -16 to TEMP (0)
Return

At the data structure, minus sixteen is an
instruction that writes the synchronous offset
and period to the 53C710; there is then a jump
to the resume point

Upon completion of an I/O, the programmer
may want to signal the system processor by
one of several mechanisms allowed by the
53C710:

1) Execute an interrupt instruction.
A simple method, but it tenninates
the execution of SCSI SCRIPTS.

2) Write a value to system memory.
Termination is unnecessary; yet the
processor must poll a software sema­
phore. With some periodic I/O timer
interrupt followed by a read of I/O
status areas, this method can work
well.

3) Set the semaphore as in 2), but then
write to a user-defined pin (first on,
then off) to cause an external interrupt.
This allows completely interrupt­
driven I/O software.

NCR 53C710, Programmer's Guide (Preliminary) 11 - 3 11/13/90

Multi-Tasking I/O Using SCSI SCRIPTS

Compared to a system interrupt, fetching
SCRIPTS is very fast. More importantly, the
programmer is in control of the tradeoffs and
can allow the processor more or less work
depending on requirements. If system bus
latencies are large, then SCRIPTS can also be
stored in local memory on a host bus adapter
to eliminate the fetch times. There are enough
optional features in the 53C710 to allow
optimization of many configurations.

NCR 53C710, Programmer's Guide (Preliminary) 11 - 4 11/13/90

Appendix A
53C710 High Performance Considerations Compared to 53C90

This chapter compares frrmware required for
the 53C71 0 and the 53C90 to determine how
much of a performance boost the 53C710 can
offer at a system level (lIOs per second). One
microsecond is the time assumed for execution
of each external processor instruction.

Sample Input Data Structure

The following data structure is typical at the
SCSI hardware driver level when performing
an I/O.

Device id, Period & Offset
Byte count
Data address
Byte count
Data address

*
*

Byte count
Data address'

Initializing SCSI SCRIPTS for
an 1/0 and Starting I/O
Operations

53C710 Algorithm Description

Refer to the sample initiator SCSI, SCSI
SCRIPTS for details about the exact.sequence
and values to be updated At the fIrmware
level, the Initiator SCSI SCRIPTS must be
updated with the address and count for the
various SCSI data and user data required to
perform an I/O. In the sample initiator
algorithm, 15 values must be fetched
indirectly during execution of the SCRIPT.
Assuming the user data structure is in the
format required by the SCSI SCRIPT for
indirect fetching, there is no overhead
associated with starting the I/O. Using the
multi-threaded SCRIPTS algorithm, there is
no host processor interrupt upon disconnect or
at completion of the I/O.

NCR 53C710, Programmer's Guide (Preliminary) A - 1

Approx
time in us

Executing the initiator algorithm
takes about 30 SCSI SCRIPTS
fetches and indirect data fetches
and decodes.

The total overhead is 30

The total time is 3 0

U sing the interrupt and continue
feature allowed by user programmable
bits, in a multi-threaded environment,
the next I/O can proceed while the previ­
ous I/O complete interrupt is processed
by the system. Thus, the overhead of
this interrupt is ignored because work
is proceeding.

53C90 Algorithm Description.

The fmnware begins the sequence by
preloading the 53C90 FIFO with the SCSI
i.d. message followed by a 10-byte SCSI
command The firmware sequence involved
requires:

Loop:
Read Next Byte
Write Next Byte
Go To Loop If Count Not Zero

For 11 bytes, the above sequence requires
about 33 microseconds. Once the SCSI
operation begins, the 53C90 requires the
overhead listed below. (Note that each
interrupt requires some reads and processing
to detennine the exact cause of the chip's
interrupt.) Assume that an extra 20
microseconds is required for each interrupt for
a total of 100 (80 + 20) microseconds.

10/25/90

53C710 High Performance Considerations Compared to 53C90

The following sequence is required to perform
a SCSI operation.

~
Send the SCSI command 033
Interrupt - msg in phase 100
Interrupt -- msg accepted 100
Interrupt -- physical disc 100
Interrupt -- reselected 100
Initialize DMA Logic 025
Interrupt -- transfer complete 100
Interrupt -- completion seq 100
Interrupt -- msg accepted 100
Interrupt -- physical disc 100

Total time 858 microseconds

Conclusion

The 53C710 requires less than 5 % of the
normal firmware overhead associated with a
53C90, in the simplest case. To further
compare the chips, note that a SAVE DATA
POINTER operation in the 53C90 requires
two processor interrupts (200 J.1.sec) and no
interrupts using the 53C710

Each data segment in a scatter-gather situation
requires 125 J.1sec on the 53C90 (one interrupt
plus DMA initialize), but only 1 J.1.sec on the
53C710 (500 nanosecond instruction fetch,
plus indirect data fetch). Thus, an I/O that
required four data segments in a scatter-gather
mode would require 500 J.1.sec on the 53C90
and 4 J.1.sec on the 53C710 for user data
transfer. These factors translate into a four­
segment data transfer as follows.

53C90
(858) + (3x125) = (858+375)

1233 Jlsec per 110

53C710
34 Jlsec per 1/0

To translate this improvement mto I/O's per
second, assume a 4K data transfer size,
consisting of four lK segments in host
memory, a target overhead of one millisecond
(excluding seek times), and a 4-megabyte per
second user data transfer rate on the SCSI
bus.

Function 53C90 53C710
In msec In msec

Data Transfer Time 1.00 1.00

Target overhead 1.00 1.00

Host Overhead ~ ~

Tata/times 3.25 2.034

1/0's Per Second 307 491

In this projected environment, a system can
increase its throughput rate by sixty percent
by using the 53C710 and reducing host
computer frrmware overhead. With the types
of buffered SCSI disk drives currently
available, the 53C710 eliminates the host
computer frrmware as the high performance
bottleneck.

Remember that a 125 J.1.sec delay between user
data segments may cause a disk drive to slip a
revolution translating into a dramatic decrease
in data throughput.

Without the 53C710, to increase system level
performance, designers must eliminate each
delay. The 53C710 can remove much of the
host overhead associated with each I/O.

NCR 53C710, Programmer's Guide (Preliminary) A - 2 9/27/90

Appendix B
53C710 System Bus Utilization

The 53C710, in the laboratory environment
transfers 512 bytes of user data at the rate of
6,666 transfers per second (150 microseconds
per I/O). The synchronous SCSI burst rate is
set at 5 Mbytes per second. This I/O's per
second rate is a limit for the 53C710, because
no fmnware intervention is required.

A real concern is host bus utilization, or "Does
the 53C710 affect host computer performance
significantly?" This appendix provides
information about host bus usage when the
SCSI bus is saturated at a block size of 512
bytes.

Host Bus Time To Fetch A SCSI
SCRIPTS Command

80 nsec -- Arbitrate and bus settle
80 nsec -- Fetch 4 bytes
80 nsec -- Fetch 4 bytes
40 nsec -- Bus settle time
280 nsec -- Total time

Completing an I/O requires 14 SCSI
SCRIPTS.

select with ATN
jump error, when not MSG_OUT
move FROM mS9_buf, when MSG_OUT
jump error, when not CMD phase
move FROM cmd_buf, when CM D
jump error, when not DATA_IN
move FROM data_buf, when DATA_IN
jump error, when not STATUS
move FROM status_buf, when STATUS
jump error, when not MSG_IN
move FROM msg_buf, when MSG_IN
clearack
wait disconnect
int Ox001
error:
int OxOff

NCR 53C71 0, Programmers Guide (Preliminary) B-1

The time required to execute the SCSI
SCRIPTS with no exception conditions is as
follows.

Indirect fetch 5x280 =1.40J.1sec
SCRIPT fetch 14x 280 =5.32J.1sec

Total:

6.666 x 5.32 = 35.4 B/sec
(total fetch time per second)

The fetch time is 3.5 % of the available
system bus time (one second).

Fetching data across the system bus requires:

Time in
nsec Instruction

200 1.0. ms~ fetch - 80 (data fetch)

+ 80 (arbitrate)
+ 40 (settle)

360 command fetch- 240 (three data fetches)
+ 120 (arbitrate + settle)

200 Status byte fetch

200 COMMAND COMPLETE message

960 Total time per SCSI command

Total SCSI-related data fetch time is:

6,666 X 960 = 6.4 msec

which is 0.64% of the available system time
(one second).

Total overhead time is:

0.640/0 + 3.5% = 4.14% of the time available

The effective user data transfer rate is 3,333
Mbytes per second, or about 6.66% of the
available system bandwidth. Including time
for bus arbitration, the available system
bandwidth being absorbed by user data
transfer is about 8%.

9/27/90

53C710 System Bus Utilization

Conclusion

Therefore, the total time to saturate the SCSI
bus takes 12.20/0 of a processor bus available
with a block size of 512 bytes per SCSI
command.

Using larger block sizes lowers SCSI
command overhead (fewer commands per
second) and increases the data transfer rates.
As the block size increases, the SCSI
overhead per byte of user data decreases.

NCR 53C710, Programmer's Guide (Preliminary) B-2 10/25/90

Appendix C
Use of the Sig_p Bit

Use of the Sig_p Bit in the 53C710

Use of the standard commands to "route a bus
initiated interrupt, assuming that the 53C710
compatibility bit is on, and the device is in the
initiator role. The assumption is that silLP is
only used to signal that an I/O is ready for
execution, and has already been scheduled. If
selection is in progress or a selectlreselect
happens, then silLP can be reset, because the
new I/O will be executed when the scheduler
function gets to it. The system processor will
check the connected bit before setting the
silLP bit to signal that an I/O is to be executed
immediately.

SELECT FROM buffer, alternate1
; selection happened if execution gets here

•
alternate1 :
; assume a reselect if here

WAIT RESELECT, alternate2
; reselected if here. proceed with processing

alternate2:
; got here because of a sig-p bit set or was
; selected. Did the sig-p bit get set after the
; sel/resel occurred and just before the wait?

MOVE ISTAT and slg_blt to SFBR
; reset It and do the wait again

Move CTEST3 to SFBR
JUMP alternate1 If slg_blt

alt2:
; can only have been selected if here

WAIT SELECT, alternate3
SET TARGET

; selected if here. proceed with processing in
; target mode

•

alternate3 :
; got here because of a siQ-P bit set or error
; Did the sig-p bit get set after the select
; occurred and just before the wait select?

MOVE ISTAT and slg_bit to SFBR
; reset it and do the wait again

Move CTEST3 to SFBR
JUMP alt2 If sig_blt

; should never get here
INT big_error

Aborting a Wait Reselect or Wait Selection
SCSI SCRIPT, assuming that the 53C710
compatibility bit has been set and the device is
in the initiator role.

reselect_entry:
WAIT RESELECT, alt_slg_p1

; if here. got reselected

•

•

select_entry:
WAIT SELECT, alt_slg_p1
SET TARGET

; if here. got selected -- change to target

•
•
•

alt_slg_p1 :
MOVE 1ST AT and connect_bit to

SFBR
; test the SCSI connected bit

JUMP alt_slg_p2, If connect_bit
; either the chip got selected. reselected. or the
; sig-p bit was set

MOVE ISTAT and slg_blt to SFBR
; test the sig-p bit first

JUMP slg_p_set, If slg_blt
; big error if here - not connected and sig-p was
; not set

INT blg_error1
alt_slg_p2:
; Bus initiated interrupt occurred if here -
; connected bit is on. First reset the sig-p bit. so
; the alternate jump is NOT taken.

MOVE CTEST2 to SFBR
WAIT RESELECT, alt_slg_p3

; process the reselection

•

NCR 53C710. Programmer's Guide (Preliminary) C - 1 9/27/90

; got selected
SET TARGET

•
•
•

slg_p_set:
; System processor has set the sig-p bit.
; Reset it and service the system request.

MOVE CTEST2 to SFBR

•
•
•

Use of the SiS p Bit

NCR 53C71 0, Programmer's Guide (Preliminary) C - 2 9/27/90

Appendix D
Compiler Script Examples

SAMPLE SCSI SCRIPTS Scource File

.*** ,
;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
;***

Definition area INITIATOR ROLE

Target Device I.D. offset in the data table.
EXTERN device

EXTERN status adr

; Ten byte buffer address offset.
EXTERN"sendmsg

; Ten byte buffer address offset.
EXTERN rcvmsg

; Buffer address o£fset for the SCSI command
EXTERN cmd adr

; Address of user data buffer
EXTERN data adr

;***
;* Absolute values are stored in DSPS Register *
;* for purposes of interrupt processing *
;***

;***
;* Note that OxO precedes the interrupt status *
;* values and designates a hex value *
;***

ABSOLUTE errl = OxOffOl

; Error -- unexpected SCSI phase before command phase
ABSOLUTE err2 = OxOff02

; Error -- unexpected SCSI phase after a command
ABSOLUTE err3 = OxOff03

; Error -- expected status phase
ABSOLUTE err4 = OxOff04

; No Error -- good I/O
ABSOLUTE ok = OxOffOO

; Error -- expected message outphase
ABSOLUTE errS = OxOffOS

; Error -- expected message command complete
ABSOLUTE err6 = OxOff06

NCR 53C710. Programmer's Guide (Preliminary) 0-1 9/27/90

Compiler SCript Examples

.*** ,
;* The following shows how you can use the PASS *
;* capability of the compiler to pass C code to the *
;* output file *
.*** ,

PASS(#include "NCR.h")
PASS(extern char line[];)

FROC sample:
; select the device with attention on
select atn from device, REL (resel_adr)

; if the next phase is not msg_out, interrupt
int errl when not MSG_OUT

; sent the i.d. message out to the target
move FROM sendmsg, when MSG OUT

; if next phase is not command, interrupt
int err2 when not CMD

; send the command bytes
move FROM cmd_adr, when CMD

; go to process cleanup if status phase
jump REL (end) when STATUS

; process data in phase
jump REL (input_data) if DATA IN

; or data out phase
jump REL (output_data) if DATA_OUT

; unexpected phase if here
int eL'r3

; process the data in phase
input_data:
move FROM data_adr, when DATA IN

; and go process status
jump REL (end)

; process the data'out phase
output_data:
move FROM data_adr, when DATA_OUT

; interrupt if not status phase
end:
int err4 when not STATUS

; move the status byte into memory
move FROM status_adr, when STATUS

; interrupt if message in is not next
int errS when not MSG_IN

NCR 53C710, Programmer's Guide (Preliminary) D - 2 9/27/90

Compiler SCript Examples

; move the command complete byte in
move FROM rcvmsg, when MSG_IN

; interrupt if not command complete
int err6 if not 00

; accept the message if there are no problems
clear ack

; wait for a physical disconnect
wait disconnect

; interrupt with an I/O complete
int ok
resel_adr:
int ok

NCR 53C710, Programmer's Guide (Preliminary) D - 3 9/27/90

Compiler Script Examples

SAMPLE LIST FILE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

.*** ,
;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
.*** ,

Definition area INITIATOR ROLE

Target Device 1.0. offset in the data table.
EXTERN device

EXTERN status_adr

; Ten byte buffer address offset.
EXTERN sendmsg

; Ten byte buffer address offset.
EXTERN rcvmsg

; Buffer address offset for the SCSI command
EXTERN cmd adr

; Address of user data buffer
EXTERN data adr

;***
;* Absolute values are stored in DSPS Register *
;* for purposes of interrupt processing *
;***

;***
;* Note that OXO precedes the interrupt status *
;* values and designates a hex value *
;***

ABSOLUTE err1 = OxOff01

; Error -- unexpected SCSI phase before command phase
ABSOLUTE err2 = OxOff02

; Error -- unexpected SCSI phase after a command
ABSOLUTE err3 = OxOff03

; Error -- expected status phase
ABSOLUTE err4 = OxOff04

; No Error -- good I/O
ABSOLUTE ok = OxOffOO

; Error -- expected message outphase
ABSOLUTE errS = OxOff05

; Error -- expected message command complete
ABSOLUTE err6 = OxOff06

;***
; The following shows how you can use the PASS *

NCR 53C710, Programmer's Guide (Preliminary) D - 4 9/27/90

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Compiler SCript Examples

; capability of the compiler to pass C code to the *
; output file *
.*** ,
:/finclude "NCR.h" PASS(:/finclude "NCR.h")
extern char line[]; PASS (extern char line[];)

00000000: PROC sample:
; select the device with attention on

00000000: 47000000 00000098 select atn from device, REL (resel_adr)

; if next phase is not msg_out,interrupt
00000008: 9E030000 0000FF01 int err1 when not MSG_OUT

; sent the i.d. message out to the target
00000010: 1EOOOOOO 00000000 move FROM sendmsg, when MSG_OUT

; if next phase is not command, interrupt
00000018: 9A030000 0000FF02 int err2 when not CMD

; send the command bytes
00000020: 1AOOOOOO 00000000 move FROM cmd_adr, when CMD

; go to process cleanup if status phase
00000028: 838BOOOO 00000030 jump REL (end) when STATUS

; process data in phase
00000030: 818AOOOO 00000010 jump REL (input_data) if DATA IN

; or data out phase
00000038: 808AOOOO 00000018 jump REL (output_data) if DATA OUT

; unexpected phase if here
00000040: 98080000 0000FF03 int err3

; process the data in phase
00000048: input data:
00000048: 19000000 00000000 move FROM data_adr, when DATA IN

; and go process status
00000050: 80880000 00000008 jump REL (end)

; process the data out phase
00000058: output data:
00000058: 18000000 00000000 move FROM data_adr, when DATA_OUT

; interrupt if not status phase
00000060: end:
00000060: 9B030000 0000FF04 int err4 when not STATUS

; move the status byte into memory
00000068: 1BOOOOOO 00000000 move FROM status_adr, when STATUS

; interrupt if message in is not next
00000070: 9F030000 0000FF05 int errS when not MSG IN

; move the command complete byte in
00000078: 1FOOOOOO 00000000 move FROM rcvmsg, when MSG IN

NCR 53C710. Programmer's Guide (Preliminary) D - 5 9/27/90

Compiler Script Examples

115 i interrupt if not command complete
116 00000080: 98040000 0000FF06 int err6 if not 00
117
118 i accept the message if there are no problems
119 00000088: 60000040 00000000 clear ack
120
121 i wait for a physical disconnect
122 00000090: 48000000 00000000 wait disconnect
123
124 i interrupt with an I/O complete
125 00000098: 98080000 OOOOFFOO int ok
126 OOOOOOAO: resel_adr:
127 OOOOOOAO: 98080000 OOOOFFOO int ok

Symbol Name Value Type

device 00000000 EXTERNAL
status adr 00000000 EXTERNAL
sendmsg 00000000 EXTERNAL
rcvmsg 00000000 EXTERNAL
cmd adr 00000000 EXTERNAL
data_adr 00000000 EXTERNAL
err1 0000FF01 ABSOLUTE
err2 0000FF02 ABSOLUTE
err3 0000FF03 ABSOLUTE
err4 0000FF04 ABSOLUTE
ok OOOOFFOO ABSOLUTE
err5 0000FF05 ABSOLUTE
err6 0000FF06 ABSOLUTE
include "NCR.h" 00000000 PASS LABEL
extern char line[]i 00000000 PASS LABEL
sample 00000000 PROC LABEL
resel_adr OOOOOOAO LABEL (REL)
end 00000060 LABEL (REL)
input __ data 00000048 LABEL (REL)
output_data 00000058 LABEL (REL)

NCR 53C710, Programmer's Guide (Preliminary) D - 6 9/27/90

Compiler Script Examples

SAMPLE OUTPUT FILE

include "NCR.h"
extern char liner];
typedef unsigned long ULONG;

ULONG

} ;

#:define
ULONG

} ;

#:define
ULONG

} ;

#:define
ULONG

} ;

#:define
ULONG

} ;

sampler] = {
Ox47000000,
Ox9E030000,
OxlEOOOOOO,
Ox9A030000,
OxlAOOOOOO,
Ox838BOOOO,
Ox818AOOOO,
Ox808AOOOO,
Ox98080000,
Ox19000000,
Ox80880000,
Ox18000000,
Ox9B030000,
OxlBOOOOOO,
Ox9F030000,
OxlFOOOOOO,
Ox98040000,
Ox60000040,
Ox48000000,
Ox98080000,
Ox98080000,

E device
E - device Used []
OxOOOOOOOO

E_status_adr

Ox00000098,
OxOOOOFF01,
OxOOOOOOOO,
OxOOOOFF02,
OxOOOOOOOO,
Ox00000030,
Ox00000010,
Ox00000018,
OxOOOOFF03,
OxOOOOOOOO,
Ox00000008,
OxOOOOOOOO,
OxOOOOFF04,
OxOOOOOOOO,
OxOOOOFFOS,
OxOOOOOOOO,
OxOOOOFF06,
OxOOOOOOOO,
OxOOOOOOOO,
OxOOOOFFOO,
OxOOOOFFOO

OxOOOOOOOO
= {

OxOOOOOOOO
E status adr_Used[] = {
OxOOOOOOlb

E_sendmsg OxOOOOOOOO
E_sendmsg_Used [] = {
OxOOOOOOOS

E_rcvmsg OxOOOOOOOO
E_rcvmsg_Used [] = {
OxOOOOOOlf

#:define E cmd adr OxOOOOOOOO - -ULONG E cmd_adr_Used[] = {
Ox00000009

} ;

#define E data adr OxOOOOOOOO - -ULONG E data adr_Used[] = {

NCR 53C710, Programmer's Guide (Preliminary) 0 - 7 9/27/90

} ;

Ox00000013,
Ox00000017

ULONG INSTRUCTIONS
ULONG PATCHES

Compiler Script Examples

Ox00000015;
OxOOOOOOOO;

NCR 53C710, Programmer's Guide (Preliminary) D - 8 9/27/90

Appendix E
SCRIPTSTM Compiler Error Messages

Fatal Error: ..•

Fatal Error: No memory. Aborting complier ••. :

There is not enough available memory to read the SCRIPT into RAM.

Fatal Error: Local stack overflow. Aborting compile ..• :

Please contact NCR immediately, you have an obsolete version of SCRIPTS.

Fatal Error: Cannot open file:

The SCRIPT fue cannot be opened or one of the output files (.ERR or JCRF) are
corrupt Compilation is terminated.

Fatal Error: Cannot read file:

The file was opened, but could not be read. Compilation is terminated.

NCR 53C710, Programmer's Guide (Preliminary) E - 1 9-27-90

SCRIPTSTM Compiler Error Messages

Error: ...

Error: Expected digit:

While evaluating a number, a character other than a legal digit was encountered.

Error: Expected a separator:

A separator was expected, insert a comma, EOL character or any other legal
separator.

Error: Numeric constant has too many digits:

A number, either decimal, hex or binary contains too many digits.

Error: Expected a value:

A value was expected, but instead an operator, pseudo-op, or instruction was
encountered.

Error: Undefined variable:

A variable was encountered that was not defined at the beginning of the SCRIPT.

Error: Unknown Identifier:

An identifier was encountered that was not a "+", "_", or any other expected
separator.

Error: Expected an Identifier:

A reserved word was encountered where there should have been an identifier.

Error: Expected a variable:

A pseudo op, instruction, or reserved word was encountered where a variable was
expected.

Error: Expected an expression:

A mathematical expression was expected but not found. If you encounter this error
message, contact NCR, you have an old version of SCRIPTS.

Error: Expected a reserved word:

A reserved word was expected (WITH, WHEN, IF, etc.) but was not encountered.

NCR 53C71 0, Programmers Guide E-2 10/25/90

SCRIPTSTM Compiler Error Messages

Error: Expected a PHASE:

An instruction was used in which a phase was expected and but was not found in the
instructions.

Error: Cannot use a RELATIVE In a non address field:

A relative variable was used in a field that was not an address field.

NCR 53C71 0, Programmers Guide E-3 10/25/90

SCRIPTSTM Compiler Error Messages

Warning: .•.

Warning: Identifier truncated:

An identifier, such as a label contained more than 32 characters and was truncated.

Warning: Redefinition of variable:

A variable was defmed two or more times.

Warning: Duplicate ATN:

A TN has already been set and you are attempting to set it again.

Warning: Duplicate ACK:

ACK has already been set and you are attempting to set it again.

Warning: Undefined label used as entry point:

The label was not defined as an entry point

Warning: Unused variable:

A variable was defined but not used in the SCRIPT.

Warning: Lost resolution:

A number encountered was too large. For example, using 8 as a SCSI ID. SCSI 10
numbers can be no larger than 7.

Warning: Duplicate label:

A label was defmed more than once.

UNKNOWN ERROR!

You have just experienced a phenomenon known as cosmic ray bombardment. This is
believed to be associated with increased solar flare activity. Fortunately, the
effects are not permanent, try again.

NCR 53C71 O. Programmers Guide E-4 10/25/90

Appendix F
Miscellaneous Design Topics

The following paragraphs detail design topics. 1) Clear the value with a SCRIPTS write.

Design Topics 2) Move data through the 53C710.

The following design topics are discussed. 3) Move the generated byte to the SCSI
target to be stored with the data.

• SCSI Activity Timer

• Longitudinal Parity Register

• BiglLittle Endian Support

• SCRIPTS in a host adapter

SCSI Activity Timer

Some SCSI systems have a system
requirement with respect to activity on the
SCSI bus.

If there are long periods with no SCSI activity
then the SCSI driver must notify the system
software that a timeout has occurred. The
53C710 has a built-in 250 millisecond timer
that will cause an interrupt when the time
expires. If the interrupt is turned off, the
system does nothing when the timer expires.

Bit one of the DMA Interrupt Enable register
can tum on the timer. When the timer is
enabled, all SCSI activity is covered by the
timer. If there is no assertion of
Transfer! Acknowledge on the bus within 250
milliseconds after selection through
disconnect then the interrupt will occur.

Longitudinal Parity Register
(LCRC)

For a simple error check of any data passing
through the 53C710, there is an 8-bit register
that contains a continual exclusive OR of the
data. The value in the chip is cleared by any
write to the register. A designer can use the
information by performing the following:

NCR 53C710, Programmer's Guide (Preliminary) F- 1

4) Read in the extra byte on a read, and
compare it to the byte generated during
the move.

All the extra moves and compares can be done
by the 53C710 or by the system processor,
depending on the designer's preference.

Note that the LCRC doubles as the SFBR
during a select or reselect. The device i.d. is
always written into the LCRC. Because a
SCRIPT could be writing to the SFBR
during a SCSI bus-initiated interrupt, the
value could be destroyed. Optionally,
therefore, the chip can be set to write ~~e
device i.d. only to the LCRC.

Big/Little Endian Support

There is some support for both big and little
Endian in the 53C710. Five areas must be
considered when discussing the byte
ordering.

SCRIPTS Order

To ensure that all SCSI SCRIPTS are in the
correct order, each SCRIPT must be compiled
in the target architecture. The C output is a
longword value, which will be stored in the
memory by the processor and in the correct
order for the subsequent execution. If a little
Endian SCRIPT is to be executed on a big
Endian machine, the bytes will need to be
reversed before execution by the 53C710 (in
big Endian mode). Note that a PROM cannot
be moved from one environment to another
without re-ordering bytes within each word.

10/25/90

Miscellaneous Design Topics

53C710 Re~ster Access from Firmware

There is a big Endian and a little Endian
address mode for the registers. To develop
code ~at works in either mode, simply use
equates with an Endian switch that includes
the appropriate set of address values. Note
that the change is only for byte access. If 32
bits are accessed, there is no change from big
to little Endian.

53C710 Re~ster Access from SCSI
SCRIPTS

The compiler offers a set of logical names that
can be used to access registers. Names do not
change when the mode changes, and the
binary code required to access a register does
not change either.

User Data Byte Ordering

Data transfers to/from system memory from/to
the SCSI bus always start at the beginning
address and continue until the last byte is sent.
No internal re-ordering of the data for either
mode occurs. A serial stream of data is
assumed, and the flrst byte on the SCSI bus is
associated with the lowest address in system
memory.

SCRIPTS in a Host Adapter

Some designs require that SCSI SCRIPTS be
fetched from a local ROM rather than from
system memory across the bus. Typically,
this requirement comes from the desire to
avoid traffic on the bus ot: is caused by large
overheads associated with bus arbitration.
The 53C71 0 allows several options in the
placement of SCRIPTS and table indirect
data.

SCRIPTS and data structures can be placed in
system memory.

U sing the FETCH pin, external system bus
interface hardware can read SCRIPTS locally
and all other data from system memory.
During SCRIPT fetches, the pin is active, and
thus, the access can go locally rather than
across the system bus.

In the crEST8 register is the fetch mode bit
When set, the FETCH pin will deassert
during indirect and table indirect read
operations. FETCH will be active during
SCRIPT fetches only. Thus, external
hardware can drive the opcode fetch to one
memory area (local ROM) and table indirect
fetches to to another area (system RAM). If
the bit is not set, then fetch is asserted
throughout the instruction fetch.

Thus, the designer can place SCRIPTS, user
data, and table indirect data in the most
convenient area of memory. Note that the
options can be changed dynamically by
writing to the registers from SCRIPTS.

NCR 53C710, Programmer's Guide (Preliminary) F - 2 10/25/90

Appendix G
Using the 53C710 in Low Level Mode

Low-level SCSI Code

Pseudocode examples of selection, message out, command, data in, status, and message in.

Selection: *

parity check, generation
SCNTLO=OXCC

C700 i.d.=7, target i.d.=2
SODL=Ox84

assert BSY
SOCL=OX20

assert SODL, connected; if not connected, ATN cannot be asserted
SCNTL1=OXSO

low-level mode (Note: Disable low-level mode before starting the
SCRIPTS' processor.)

DCNTL=OX08

assert SEL, ATN, BSY
SOCL=OX38

deassert BSY, keep SEL, ATN
SOCL=OX18

wait for BSY, asserted by Target
(SBCL & OX20)=OX20

deassert SEL, keep ATN
SOCL=OX08

Message Out *

look for REQ and message out
(SBCL & OX87)=OX86

identify message
SODL

message-out phase; a phase match asserts SODL onto the SCSI bus
SOCL=OXOE

assert ACK, message out, keep ATN
SOCL=OX4E

wait for REQ deasserted
wait for (SBCL & OX80)=OXOO

NCR 53C700, Programmer's Guide (Preliminary) G-1 10/25/90

Using the 53C71 0 in Low Level Mode

deassert ACK, ATNi keep message out
SOCL=OX06

**
Command *
**

look for REQ and command
(SBCL & OXS7)=OXS2

initialize command byte
SODL=command byte

assert ACK, command
SOCL=OX42

wait for REQ deasserted
wait for (SBCL & OXSO)=OXOO

deassert ACK, keep command
SOCL=OX02

repeat until last command byte

Data In *

look for REQ and data in
(SBCL & OXS7)=OXSl

SBDL=data byte
assert ACK, data in

SOCL=OX41
wait for REQ deasserted

wait for (SBCL & OXSO)=OXO
deassert ACK, keep command

SOCL=OX02
repeat until last data byte

Status *

look for REQ and status
(SBCL & OXS7)=Ox83

ACK, status phase
SOCL=OX43

SBDL contains status byte
status=SBDL

wait for REQ deasserted
wait for (SBCL & OXSO)=OXOO

deassert ACKi keep status phase
SOCL=OX03

NCR 53C700, Programmer's Guide (Preliminary) G-2 10/25/90

Using the 53C71 0 in Low Level Mode

Message in . *

look for REQ and message in
(SBeL & OX87)=OX87

ACK, message in phase
SOCL=OX47

SBDL contains message byte
message in=SBDL

wait for REQ deasserted
wait for (SBCL & OXaO)=OXOO

deassert ACKi keep message-in phase
SOCL=OX07

NCR 53C700, Programmer's Guide (Preliminary) G-3 10/25/90

1
!I
it
!I
:1
'1
~ I
)1
~ 1
'1 :1
I
I
1
I
I
1
I
I
1
I

I

READER'S COMMENT FORM
F-8763 0687

BOOK TITLE I BOOK NO. I PRINT DATE

I

To help us plan future editions of this document, please take a few minutes to answer the following questions.
Explain in detail using the space provided. Include page numbers where applicable.

Are there any technical errors or misrepresentations in the document?

Is the material presented in a logical and consistent order?

Is it easy to locate specific information in the document?

--- ---- .. _-_ ... _- - -._--

Is there any information you would like to have added to the document?

Are the examples relevant to the task being described?

Could parts of the document be deleted without affecting the document's usefulness?

Did the document heip you to per forfH YUUI juu-;

Any general comments?

NAME ________________ _

TITLE ________________ _

COMPANY ________________________ _

ADDRESS _______________________ __

TELEPHONE NO. (

Thank you for your evaluation of this document.
Fold the form as indicated and mail to NCR. No postage is
necessary in the U.S.A.

---------------------------------fOld--------llflrr-------~~;~;;y~---i

• I. •• • IF MAILED

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 3 DAYTON. OHIO

POSTAGE Will BE PAID BY ADDRESSEE

NCR Corporation
ATTENTION: Publication Services
WHQ-4
1700 S. Patterson Blvd.
Dayton, Ohio 45409

IN THE
UNITED STATES

---------------------------------~d-------------------------------1

NCR Microelectronic Products Division - Sales Locations
For literature on any
NCR product or service
call the NCR hotUne toll-Cree

1-800--334-5454

Worldwide Sales Headquarten
1731 Technology Drive, Suite 600
San Jose, CA 95110
(408) 453-0303

Division Plant locations
NCR Microelectronic Products Division
2001 Danfield Court
Fort Collins, 00 80525
(303) 226-9500

Commercial ASIC Products
Customer Owned Tooling Products
Communication Products
Disk Array Products

NCR Microelectronic Products Division
1635 Aeroplaza Drive
Colorado Springs, CO 80916
(719) 596-5795

Automotir4 Products
SCSI Products
Graphics Products

NCR Microelectronic Products Division
2850A North EI Paso Street
Colorado Springs, CO 80907
(719) 578-3400

Multi-Chip Mbdule Products

North American Sales Offices
Northwest Sales
1731 Technology Drive, Suite 600
San Jose, CA 95110
(408) 441-1080

Southwest Sales
3300 Irvine Avenue, Suite 255
Newport Beach, CA 92660
(714)474-7095

North Central Sales
8000 Townline Avenue, Suite 209
Bloomington, MN 55438
(612) 941-7075

South Central Sales
17304 Preston Road, Suite 635
Dallas, TX 75252
(214) 733-3594

Northeast Sales
500 West Cummings Park, Suite 4000
Woburn, MA 01801
(617) 933-0778

Southeast Sala
1051 Cambridge Square, Suite C
Alpharetta, GA 30201
(404) 740-9151

International Sales Offices
European Sales Headquarten
Westemdstrasse 193
8000 Munchen 21
Post fach 210370
Germany
49 89 57931199

AslalPaclfic Sales Headquarten
35th Floor, Shun Tak Centre
200 Connaught Road
Central
Hong Kong
8528596044

J049211
OR92-5HX

NCR is the name
and mark of
NCR Corporation
©1992 NCR Corpora
Printed in U.S.A.

