
NCR 53C720
Programmer's Guide

PRELIMINARY

Copyright © 1991
By NCR Corporation,
Dayton, Ohio, U.S.A
All Rights Reserved,

Printed in U.S.A

This information has been checked for both accuracy and reliability. NCR assumes no responsibility for
either its use or any damages resulting from its use. NCR reserves the right to make any changes or
discontinue altogether without notice, any hardware or software product, or the technical content herein.

Preface
This manual is a programming guide for the NCR 53C720 SCSI 1/0 Processor chip. The 53C720 SCSI 1/0 Proces­
sor can be programmed using either high level NCR SCSI SCRIPTSTM or using low level register interface. This
manual contains a syntax level description of the NCR SCSI SCRIPTS instructions for high level programming
and a bit level instruction description for those who require more details for debugging. Examples of SCSI
SCRIPTS and how to use features are provided. To successfully use this manual the programmer should be
familiar with the 'C' programming language.

Trakemarks
NCR is the name and mark of NCR Corporation.
SCSI SCRIPrSTM is a registered trademark of NCR Corporation

Additional Information
NCR 53C720 SCSI I/O Processor Data Manual
NCR SCSI Engineering Noet 831, Comparison of 53C720 to 53C710

NCR SCSI SCRIPTS Examples
Logic Products Electronic Bullentin Board
(719) 596 - 1649
Communications parameters:
300/1200/2400 baud, 8 data bits, no parity, 1 stop bit

ANSI
1430 Broadway
New York, NY 10018
(212) 642-4900

SCSI Specifications

Ask for document number; X3.I3I-I986 (SCSI-I)

Global Engineering Documents
2805 McGaw
Irving, CA 92714
(800) 854-7179 or (714) 261-1455
Ask for document-number: x3.131-198X (SCSI-2)

ENDL Publications
14426 Black Walnut Curt
Saratoga, CA 95070
(408) 867-6642

Document name: SCSI Bench Reference

Prentice Hall
Englewood Cliffs, New Jersey 07632
(201) 767-5937
Ask for document number: ISBN 0-13-796855-8
Document name: SCSI - Understanding the Small Computer System Interface

Revision Record

Revision Date Affected Pages/Remarks

June 91 Preliminary - First Printing

Contents
Chapter 1
The NCR SCSI SCRIPTS

A SCSI Solution 1-1
NCR 53C720 SCSI 1/0 Processor Chip Block Diagram 1-2
The NCR SCSI 110 Processor 1-3
DMA Component 1-3
SCSI SCRIPTSTMProcessor .. 1-3
NCR SCSI SCRIPTSTMDescription .. 1-4
How SCSI SCRIPTS becomes part of a C Language Program ... 1-5
Example of a SCRIPTS Operation ' .. 1-6

Chapter 2
Developing NCR SCSI SCRIPTS

Single-Tasking SCSI Example ... 2-4

Chapter 3
SCSI SCRIPTS Compiler

Invoking the SCSI SCRIPTS Compiler .. 3-1
SCSI SCRIPTS Compiler Output ... 3-2

Chapter 4
The NCR SCSI SCRIPTS Language Syntax

SCSI SCRIPTS ... 4-1
SCRIPTS Keywords ... 4-1
Instruction Keywords 4-1
Phase Keywords .. 4-2
Register Keywords ... 4-2
Miscellaneous Keywords ... 4-3
Compiler Directives ~ ... 4-3
SCRIPTS Notation 4-4
Compiler Directives Syntax ... 4-5
Instruction Keywords .. 4-7
MOVE Instructions 4-7
1. Block Move 4-7

Direct Chained Block Move 4-7
Indirect Chained Block Move .. 4-7
Table Indirect Chained Block Move .. 4-8

i

2. Chained Block Move ... 4-8
Direct Chained Block Move .. 4-9
Indirect Chained Block Move .. 4-9
Table Indirect Chained Block Move .. 4-9

3. Memory -to-Memory Move 4-10
JUMP Instruction .. 4-11
CALL Instruction 4-12
RETURN Instruction ... 4-14
Interrupt Instruction ... 4-15
Interrupt on the Fly Instruction .. 4-16
Miscellaneous Instructions .. 4-17
Select Instruction 4-17
Reselect Instruction 4-17
Wait Disconnect Instruction 4-17
Disconnect Instruction 4-17
Wait Reselect Instruction 4-17
Wait Select Instruction.. 4-18
Set Instructions 4-18
Clear Instructions ... ; .. 4-18
Register Read/Write Instruction ... 4-19

Chapter 5
SCSI SCRIPTS Use of ScaHer/Gatter

Chapter 6
CSI SCRIPTS for an Initiator and Target

SCRIPTS for the Initiator Role ... 6-1
SCRIPTS for the Target Role .. 6-7

Chapter 7
Unique Initiator Sequences for the 53C720

Disk Drive Initiator Sequence .. 7-1
53C720 Strengths in the Disk Drive Environment ... 7-1
Tape Drive Initiator Sequence .. 7-1
SCSI Character Oriented Device in the Initiator Role 7-2

Chapter 8
Special SCSI SCRIPTS Situations

Transferring Large Blocks of User Data ... 8-1
Case 1 .. 8-1
Case 2 .. 8-1
Case 3 ... : .. 8-1

ii

How a SAVE DATA POINTERS Can be Processed by the Initiator ... 8-2
Case 1 .. 8-2

Data-in Phase 8-2
Data-out Phase...... 8-2

Case 2 .. 8-2

Chapter 9
Multi-Tasking I/O Using SCSI SCRIPTS

Multi-Threaded 1/0 Using SCSI SCRIPT .. 9-1
Main SCSI SCRIPT 9-1
Scheduler SCSI SCRIPT 9-1
Disconnect SCSI SCRIPT ... 9-2
Resume SCSI SCRIPT .. 9-3

Chapter 10
SCSI SCRIPTS Machine Language Description

Block Move Overview 10-2
Block Move Instruction (First SCRIPTS Word) .. 10-2

Bits 31-30 Block Move (00) 10-2
Bit 29 Indirect data address flag .. 10-2

Bit 29 = 0 Direct Addressing 10-2
Bit 29 = 1 Indirect Addressing ... 10-2

Bit 28 Table Indirect Field ... 10-2
Bit 28 = 0 Table Direct Mode ... 10-2
Bit 28 = 1 Table Indirect Mode .. 10-2

Bit 27 Block Move Opcode 10-3
Target Mode Bit 27 = 0 (MOVE) ... 10-3
Target Mode Bit 27 = 1 (CHMOV) .. 10-4
Initiator Mode Bit 27 = 0 (CHMOV) .. 10-4
Initiator Mode Bit 27 = 1 (MOVE) 10-4

Bits 26-24 SCSI Phase Lines 10-4
Bits 23-0 Block Move Byte Count .. 10-4

Block Move Instruction (Second SCRIPTS Word) ... 10-5
Bits 31-0 Data Start Address .. 10-5

Chained Move Feature .. · ... 10-5

110 Instruction Overview .. 10-7
110 Instruction (First SCRIPTS Word) .. 10-7

Bits 31-30 I/O Instruction (01) .. 10-7
Bits 29-27 1/0 Instruction Opcodes ... 10-7

Target Mode Bits 29-27 = 000 (Reselect) ... 10-8

iii

Target Mode Bits 29-27 = 001 (Disconnect) .. 10-8
Target Mode Bits 29-27 = 010 (Wait Select) .. 10-8
Target Mode Bits 29-27 = 011 (Set) ... 10-8
Target Mode Bits 29-27 = 100 (Reset) ... 10-8
Initiator Mode Bits 29-27 = 000 (Selection) 10-8
Initiator Mode Bits 29-27 = 001 (Wait Disconnect) .. 10-9
Initiator Mode Bits 29-27 = 010 (Wait Reselect) 10-9
Initiator Mode Bits 29-27 = 011 (Set) 10-9
Initiator Mode Bits 29-27 = 100 (Reset) 10-9

Bit 26 Relative Addressing Mode 10-10
Bit 25 Table Indirect Mode ... 10-10
Bit 24 SELECT With ATN .. 10-10
Bits 23-16 SCSIID 7-0 .. 10-10
Bits 15-0 Flags Field...... 10-10

Read/Write Register Instructions (First SCRIPTS Word) .. 10-11
Bits 31-30 Read/Write Instructiosn (01) 10-11

Read/Write Overview 10-11
Bits 29-27 = 101 (Move from SFBR) 10-12

Bits 26-25 = 00 .. 10-12
Bits 26-25 = 01 10-12
Bits 26-25 = 10 .. 10-12
Bits 26-25 = 11 .. 10-12

Bits 29-27 = 110 (Move to SFBR) 10-12
Bits 26-25 = 00 .. 10-12
Bits 26-25 = 01 .. 10-12
Bits 26-25 = 10 ... : .. 10-12
Bits 26-25 = 11 .. 10-12

Bits 29-27 = 111 (Read-Modify-Write) 10-13
Bits 26-25 = 00 10-13
Bits 26-25 = 01 .. 10-13
Bits 26-25 = 10 .. 10-13
Bits 26-25 = 11 ... 10-13

Bits 21-16 Register Address Field 10-13
Bits 15-8 Immediate Data Field .. 10-13

I/O Instruction (Second SCRIPTS Word) ... 10-13
Bit 31-0 Jump Address .. 10-13

Transfer Control Instructions (First SCRIPTS Word) : .. 10-14

Transfer Control Overview ... 10-14
Bits 31-30 SCSI I/O Processor (10) 10-15
Bits 29-27 Transfer Opcodes .. 10-15
Bits 29-27 = 000 (JUMP) .. 10-15
Bits 29-27 = 001 (CALL) 10-15

iv

Bits29-27=010 (RETURN) .. 10-15
Bits 29-27 = 011 (I nterru pt) 10-15
Bits 26-24 SCSI Phase Bits 10-15
Bit 23 Relative Addressing 10-16
Bits 22-20 Reserved Bits...... 10-16
Bits 19-16 Sequence Control Bits 10-16

Bit 19 ... 10-16
Bit 18 ... 10-16
Bit 17 10-16
Bit 16 10-16

Bits 15-8 Mask Bits 10-16
Bits 7-0 Data Byte 10-16

Transfer Control Instruction (Second SCRIPTS Word) .. 10-18
Bit 31-00 Data Jump Address .. 10-18

Memory-to-Memory Move Instructions (First SCRIPTS Word) 10-19

Memory Move Overview .. 10-19
Bits 31-30 SCSI I/O Processor Opcode 10-20
Bits 29-24 Reserved Section 10-20
Bits 23-00 24-bit Byte Count 10-20

Memory Move (Second SCRIPTS Word) ... 10-20
Bits 31-00 Source Address of the Memory Move .. 10-20

Memory Move (Third SCRIPTS Word) .. 10-21
Bits 31-00 Destination Address of the Memory Move ... ;........ 10-21

Appendix A
53C720 Performance Compared to 53C90

Sample Input Data Structure A-1
Initializing SCSI SCRIPTS for an I/O and Starting I/O Operations ... A-1
53C720 Algorithm Description ... A-1
53C90 Algorithm Description . .. " A-1
Conclusion A-2

Appendix B
53C720 System Bus Utilization

Host Bus Time To Fetch A SCSI SCRI PTS Command B-1
Conclusion B-2

v

Appendix C
Use of the Sig-p Bit in the 53C720

Appendix 0
Compiler SCRIPTS Examples
Sample SCSI SCRIPTS Scource File .. D-1
Sample List File .. D-3
Sample Output File ... D-6

Appendix E
53C720 Test SCRIPTS Examples

Appendix F
SCRIPTS TM Compiler Error Messages

Fatal Errors .. F-1
Errors .. F-2
Warning ... F-3

Appendix G
Miscellaneous Design Topics

Design Topics ... G-1
SCSI Timers G-1
Longitudinal Parity Register (SLPAR) .. G-1
Big/Little Endian Support G-1
1. SCRIPTS Order ... G-1
2. 53C720 Register Access from Firmware G-1
3. 53C720 Register Access from SCSI SCRIPTS G-1
4. User Data Byte Ordering .. G-2

SCRIPTS in a Host Adapter .. G-2

Appendix H
Using the 53C720 in Low Level Mode
Low-level SCSI Code H-1

Index

vi

Chapter 1

The NCR SCSI SCRIPTS

A SCSI Solution
First generation (NCR 5380) SCSI devices
are register oriented and require processor
intervention to make the most fundamental
protocol decisions. Users like the flexibility
of these devices because the low-level firm­
ware interface provides specific real time
information about the SCSI bus and improved
testability of the SCSI device. This genera­
tion of devices typically requires more than
4,000 lines of code to specify a SCSI -1 devic~
implementation.

Second generation (NCR 53C90) SCSI devices
provide on-chip state machines. Some com­
plex SCSI sequences can be performed auto­
matically which reduces protocol overhead.
However, these devices have no decision
making capability, because the internal
sequences are fixed in hardware at VLSI
design time. This generation of devices
typically requires more than 2,500 lines of
driver software to support implementation.

The flexibility of the SCSI bus creates a
dilemma for system integrators and OEM's
alike. The dilemma is: whether first and
second generation SCSI devices should be
used as non-intelligent, stand-alone devices
or should be integrated into intelligent host
adapter boards. Non-intelligent SCSI host
ports or host bus adapters require a fair
amount of processor intervention, but are
inexpensive to implement. Intelligent host
adapters are more expensive than non­
intelligent adapters. They provide slower
decision making capabilities (less powerful
CPU's), experience interpretation delays (2-8
msec required to start any I/O), and suffer
from interprocessor communication delays.
In systems not requiring a complex buffering
scheme, non -intelligent host adapters outper­
form their intelligent counterparts. For
peripheral controllers, space is at a premium
and complex peripheral interfaces require
powerful microprocessors to transfer data at
the high rates used by the peripheral inter­
face. SCSI chips requiring intense firmware
can overwork the controller microprocessor,
making it unable to perform required tasks.

NCR 53C720 Programmer's Guide

Limited space usually excludes adding an
extra processor or replacing it with a more
powerful one.

With MIPS increasing in the system CPU,
the delays caused by intelligent host adapter
cards and slow peripheral controllers pose
problems for the system integrator. The
simplest solution is to build complex, versatile
hardware sequences inside the SCSI compo­
nents or to add additional CPU power in the
SCSI device board. Both solutions are costly
(space and component cost) and do not
adequately address the problem.

Third generation (NCR 53Cl0017101720)
SCSI devices provide an additional level of
intelligence and integration as required for
the next generation of SCSI devices. Third
generation SCSI devices make execution
decisions based on phase compares on the
SCSI bus and incoming data value compares
which will result in a minimum number of
interrupts to the external processor. The
third generation of SCSI devices reduces the
cost of controller boards by relieving or
eliminating the requirement for an external
processor.

The third generation SCSI device is a pro­
grammable SCSI device that executes SCSI
oriented commands. It reduces interrupt
service routine complexities by providing
unique status values to the external processor
for any interrupts that do occur. Addition­
ally, it has a fully integrated DMA channel
that allows full use of available host bus
bandwidth. This is the key to overall I/O
performance given current use of virtual
memory schemes which require the ability to
support scatter/gather memory operations
without processor intervention. Also, inte­
gration reduces cost and increases reliability.

Third generation SCSI devices require only a
few hundred lines of driver code. This code
is required for exception conditions and for
passing addresses of the user data buffers to
the device. In second generation chips, the
firmware is required to manage every detail
of the error recovery mechanism, because the

1-1

Chapter 1

high level sequence in the user interface is
fixed and has only one entry point. Program­
mable SCSI chips allow error recovery using
the high level interface because the algo­
rithm can be entered at any command and
error specific SCSI SCRIPTSTM can be devel­
oped. Following is a block drawing of the
NCR 53C720 SCSI I/O Processor chip.

The NCR SCSI SCRIPTS

NCR 53C720 SCSI ItO Processor Chip Block Diagram

SCSI Data SCSI Control
~ ~

+ Sync Control I
I SCSI

4~ Sequences
SCSI
FIFO r Async Control I

I ~

(18-bytes)

SCSI Registers

SCSI Core Test and Reserved Registers
------ ---- -------- ------

DMA Core DMA Registers

DMA FIFO
SCRIPT Processor

(54-bytes)

VO Control

I Host Bus Control

4 ,
Host Data Host Control

1-2 NCR 53C720 Programmer's Guide

The NCR SCSI SCRIPTS

The NCR SCSI 110 Processor
The NCR 53C720 is an intelligent SCSI host
adapter on a chip. A high-performance
reusable SCSI core and an intelligent 32-bit
bus master DMA controller have been inte­
grated with the SCSI SCRIPTS processor to
accommodate the flexibility requirements of
SCSI-I, SCSI-2, and eventually SCSI-3. NCR
products support these requirements while
solving the protocol performance problems
that have plagued both intelligent and non­
intelligent adapter designs.

Unlike previous generation devices, the
53C720 SCSI core is controlled by an inte­
grated DMA through a high -level logical
interface. High level programming language
commands controlling the SCSI core are
fetched from external memory. These com­
mands instruct the SCSI core to select,
reselect, disconnect, wait for a disconnect,
transfer user data, transfer SCSI information,
change bus phases, and implement all aspects
of the SCSI protocol (initiator or target).

Also, the SCSI SCRIPTS processor will trans­
fer execution control (jump, call, return,
carry, interrupt and interrupt on the fly)
based on SCSI bus phase comparisons. Alter­
natively, a value in the SCSI SCRIPTS com­
mand can be compared to the input data
value on the SCSI bus, allowing transfer of
control based on input data comparison.

Using the wide SCSI option, data can be
transferred over the SCSI bus at 20 Mbytes
per second over a 16-bit single REQ/ ACK
cable (P-Cable). Also, 16 devices can be
attached to the wide SCSI bus.

DMA Component
The DMA component is a bus master DMA
chip that attaches easily to various processor
buses and is designed to be externally
adapted to ISA (AT), EISA, Micro Channel™,
SBus, etc.

The 53C720 supports 32-bit memory and
automatically supports misaligned DMA
transfers. Data bus enables are provided for

NCR 53C720 Programmer's Guide

Chapter 1

each byte lane. An on-chip, 64-byte FIFO
permits 2,4,8 or 16-long words to be burst
across the memory bus interface, providing
memory transfer rates in excess of 66 Mbytes
per second.

Sixteen bytes at a time can be burst into the
FIFO using the cache line burst feature,
supporting burst speeds in excess of 97
Mbytes per second. One, two, or four cache
line bursts can occur before the chip gets off
the system bus.

The DMA is tightly coupled to the SCSI core
through the SCSI SCRIPTS processor, which
supports uninterrupted scatter/gather
memory operations with only a 500 nanosec­
ond delay between memory segment trans­
fers.

Two other features of the 53C720 are the
programmable timer that provides a "bus
safety" feature and the flexible arbitration
scheme that allows daisy chained or 'OR'ed
memory bus request implementations.

SCSI SCRIPTSTM Processor
The SCSI SCRIPTS processor is a specially
designed 2 MIPS processor, located in the
chip, that permits instructions to be fetched
from external memory. Algorithms written
in the SCSI SCRIPTS language and then
compiled, control the SCSI and DMA mod­
ules and are executed from 16 or 32-bit sys­
tem memory. Complex SCSI bus sequences
are executed independently of the host CPU.

Using relative jumps and the Table Indirect
Mode for fetching data values, SCSI
SCRIPTS can be executed from a PROM.

The SCSI SCRIPTS processor can begin a
SCSI I/O operation in 500 nanoseconds. This
compares to the 2-8 milliseconds required for
traditional intelligent adapters. The SCSI
SCRIPTS processor offers performance and
customization. By designing your own algo­
rithms, you can tune SCSI bus performance,
adjusting it to new bus device types (i.e.
scanners, communication gateways, etc.),
changes in the SCSI logical definitions, or
quickly incorporate new or popular options.

1-3

Chapter 1

The 53C720 SCSI SCRIPTS processor is
the latest member of the NCR third
generation of SCSI chips. The 53C720
implements flexibility without sacrificing
I/O performance.

NCR SCSI SCRIPTSTM Description
SCSI SCRIPTS is a high level language
used by the NCR 53C720 to execute SCSI
sequences. The processor in the 53C720
chip exectues the SCRIPTS. Therefore,
SCRIPTS are independent of the CPU
and system bus. For example, SCRIPTS
for an EISA implementation on an 80386
or an 80386SX Micro Channel™ com­
puter can therefore be identical to the
SCRIPTS for a Motorola 68030 imple­
mentation.

After power up and initialization of the
53C720, the chip may be operated in one
of two modes:

1. Low level register interface

2. SCSI SCRIPTS chained mode.

• Operating in the low level register
interface mode, the user has access to the
DMA control logic and the SCSI bus
control logic and can operate the chip
much like an NCR 53C80. Access by an
external processor to the SCSI bus signals
and the low level DMA signals, allows
use of a complicated board level test
algorithm. The interface provides back­
ward compatibility with SCSI chips
requiring unique timings or bus sequences
to operate properly. Another low level
feature is loopback testing. In loopback
mode, the SCSI core (controlled by a
processor) can be directed to talk to the
DMA core (controlled by SCRIPTS),
allowing the internal data paths to be
tested all the way to the chip's pads.

• Operating in the SCSI SCRIPTS
chained mode, the 53C720 requires only a
SCSI SCRIPTS start address. All subse­
quent commands are fetched from exter-

1-4

The NCR SCSI SCRIPTS

nal memory. Four bytes (or optionally two)
at a time are fetched across the DMA inter­
face and loaded into the command register.
Command fetch and decode time is minimal
at about 500 nanoseconds, when the chip is
operating at its highest frequency.

In the Table Indirect Mode the Data Struc­
ture Address (DSA) register must be loaded
with the address of the data tables, and then
data values (for example, byte count and
address) are fetched after the SCSI SCRIPT
instruction bytes are in the chip.

A Data Structure Address (DSA) register is
provided for the data structure base address,
and a 24-bit signed value is in the SCSI
SCRIPT. Therefore, a complete context
switch involves loading a new DSA value and
then starting SCSI SCRIPT execution.

Commands are fetched until an interrupt is
encountered or until an external, unexpected
event (e.g. hardware error detected) causes an
interrupt to the external processor. The full
set of SCSI features in the command set
allows re-entry of the SCSI algorithm at any
point. A high level interface can be used for
both normal and exception conditions.
Therefore, switching to a low level mode for
error recovery is not normally required.

NCR 53C720 Programmer's Guide

The NCR SCSI SCRIPTS

How SCSI SCRIPTS becomes part of a C Language Program

1.

2.

3.

4.

5.

6.

7.

SCSI Interface Code for the 53C720

Operating System
Interface Code

Program.C
'C' Source Code

Program.OBJ

Executable Program

1. Write SCSI SCRIPTS source code

SCSI SCRIPTS
Source Code

SCRIPTS.C
or SCRIPTS.H
'c'r

SCRIPTS.OBJ

Program.EXE

SUPPORT.C

SUPPORT.OBJ

Chapter 1

2. Compile the SCSI SCRIPTS source code using the SCRIPTS compiler
Output is a C static array whose contents are the instructions that are executed by the
SCRIPTS processor

3. Write C Language source code .
4. Compile all code using the C language compiler
5. Results are object (.obj) code
6. Link all the object modules together
7. Results are an executable program.

NCR 53C720 Programmer's Guide 1-5

Chapter 1

Example of a SCRIPTS Operation
HOST SYSTEM

System Memory

SCRIPTS

SCSI Initiator Write Example:
• select A TN 0, alt_addr
• move 1, identify_n1S&-buf, when MSG_Our
• move 6, cmd_buf, when CMD
• move 512, data_buf, when DATA_Our
• move 1, stat_buf, when STATUS
• move 1, n1S&-in_buf, when MSG_IN
• clear ACK alt2
• wait discormect alt2
• int 10

Data Structure

Message Buffer
Command Buffer
Data Buffer
Status Buffer

User Data

The NCR SCSI SCRIPTS

SCSI
BUS

1. System processor writes Data Structure Address (DSA) value and SCRIPTS address into the
53C720 which starts the chip running

2. 53C720 becomes the bus master and fetches a SCRIPT

3. If required, the indirect data fetch gets address, byte counts, etc. for the execution

SCSI initiator write example:
• select the target
• move the message out
• move the command bytes
• move the data bytes out
• move the status byte in
• move the command complete message in
• accept the message byte
• wait for the bus free interrupt
• interrupt when the command is complete

4. User data is moved from memory out to the SCSI bus (on a WRITE instruction), during the
"move the data bytes out" operation, the main processor is freed up

1-6 NCR 53C720 Programmer's Guide

Chapter 2

Developing NCR SCSI SCRIPTS

To develop an executable SCSI SCRIPT, first
define the SCSI functions required. Identify
what functions will be executed in SCRIPTS
and what functions must be contained in
system firmware. Then design the specific
algorithms for the functions that will be
executed in the SCSI SCRIPTS portion of the
SCSI logical I/O driver.

Use the SCRIPTS language to write
SCRIPTS algorithms. Then compile them to
create the object code required as input by
the 53C720. The compiler output is like an
object module, it includes relocation informa­
tion required to load the SCRIPTS object
module into main memory, if any relocation
is required, and it can be directly included in
firmware written in the C language.

At load time, the SCRIPTS absolute jump
addresses must be resolved using one of the
utilities furnished in the software package.
At start I/O time, another utility is used to
patch in the correct buffer addresses, byte
counts, destination ID, and so forth, if the
Table Indirect mode is not used.

NCR 53C720 Programmer's Guide

Writing a logical I/O driver is an easy task
for the 53C720. This is illustrated in the first
SCSI SCRIPTS example. This code will
perform a read or write function using the
53C720 in the high -level chained mode.
Because SCSI algorithms are so simple when
written in SCSI SCRIPTS, you can rapidly
prototype SCSI algorithms for a proof of
concept and concentrate later on more com­
plete algorithms.

A SCSI SCRIPTS is comprised of two parts, or
areas:

1. Definition area

2. SCRIPT area

2-1

Chapter 2 Developing NCR SCSI SCRIPTS

In the following example, the definition area
is comprised of variable and absolute values.
These values may describe a variable
memory address location, variable byte count
or a fixed status byte value .

2-2

. ***************************** ,
; * The following are variable data values provided *
;* external to the compiler and resolved at run-time *
.***************************** ,

Definition area INITIATOR ROLE

EXTERNAL device ; Target Device I.D. offset in the data table.

EXTERNAL status_adr

EXTERNAL sendmsg ; Ten byte buffer address offset.

EXTERNAL rcvmsg ; Ten byte buffer address offset.

; Buffer address offset for the SCSI command

; Address of user data buffer

.************************************** ,
;* Absolute values are stored in the DSPS Register after an interrupt *
;* SCRIPT is executed for purposes of interrupt processing *
.************************************** ,

.* ,
; * Note that OXO precedes the interrupt status *
; * values and designates a hex value *
.* , .

NCR 53C720 Programmer's Guide

Developing NCR SCSI SCRIPTS

ABSOLUTE errl = OxOffOl ; Error - not message out after selection

ABSOLUTE err2 = OxOff02 ; Error- unexpected SCSI phase before command
phase

ABSOLUTE err3 = OxOff03 ; Error - unexpected SCSI phase after a command
transfer

ABSOLUTE err4 = OxOff04 ; Error - expec~d status phase

ABSOLUTE ok = OxOffOO ; No Error - good I/O

ABSOLUTE err5 = OxOff05 ; Error - expected message outphase

ABSOLUTE err6 = OxOff06 ; Error - expected message command complete

Chapter 2

ABSOLUTE err7 = OxOff07 ; Error - got selected or reselected on select SCRIPT

.********************************** ,
; The following shows how you can use the PASS capability *
; of the compiler to pass C code to the output file *
.********************************** ,

PASS(include "NCR.h")
PASS(extem char line[];)

.********************************** ,
; All of the text inside the parenthesis is passed directly to the *
; C compatible output. *
.********************************** ,

NCR 53C720 Programmer's Guide 2-3

Chapter 2

Single-Tasking SCSI Example

The following is a simple SCSI SCRIPT
that performs a single-tasking SCSI
operation without disconnecting.

PROC sample:

SELECT atn from device, REL (resel_adr)
!NT errl when not MSG_OUT

MOVE from sendmsg, when MSG_OUT

INT err2 when not CMD

MOVE from cmd_adr, when CMD
ruMP reI (endl) when STATUS
ruMP rei (input_data) if DATA_IN
ruMP reI (output_data) if DATA_OUT
!NT err3

INPUT_DATA:
MOVE from data_adr, when DATA_IN
ruMP reI (end)

OUTPUT_DATA:
MOVE from data_adr, when DATA_OUT

END:
INT err4 when not STATUS

ENDl:

2-4

MOVE from status_adr, when STATUS
INT errS when not MSG_IN
MOVE from rcvmsg, when MSG_IN
INT err6 if not 00

CLEARack

WAIT disconnect
INTok

Developing NCR SCSI SCRIPTS

If an unpredictable event occurs on the SCSI
bus, a unique interrupt vector value is stored
in the 53C720's DSPS register and is available
for interrupt processing.

; select device with attention on
; if the next phase is not message out,
interrupt

; sent the Ld. message out to the
target

; if the next phase is not command,
interrupt

; send the command bytes
; go to process cleanup if status phase
; process data in phase
; or data out phase
; unexpected phase if here

; process the data in phase
; and go process status

; process the data out phase

; interrupt if not status phase

; move the status byte into memory
; interrupt if message in is not next
; move the command complete byte in
; interrupt if it is not a command

complete message
; accept the message if there are no
.problems

; wait for a physical disconnect
; interrupt with an I/O complete

NCR 53C720 Programmer's Guide

Chapter 3

SCSI SCRIPTS Compiler

The SCSI SCRIPTS Compiler takes a source
file and generates a C file which may then be
used in other C programs. The source file
may be created using any standard text editor
that creates ASCII file output.

To provide portability this compiler does not
support directory paths. The compiler and
the files to be compiled must reside in the
same directory.

Invoking the SCSI SCRIPTS Compiler
In the following examples, items enclosed in
double brackets "[]" are optional. The fol­
lowing format is used to invoke the compiler.

sec sourcefile [options]

Options:

-0 [OutputFilename]

This option determines if a C output file
will be generated and if so what the name
of the file will be. If the -0 is given with­
out a filename following, then the
filename will default to sourcefile.out.

-I [ListFilename]

This option determines if a listfile will be
generated and if so what the name of the
filename will be. If the -1 option is given
without a filename following, then the
filename will default to sourcefilelis. For
every instruction the listfile lists an offset
from the beginning of the script,

the long word instruction,
the long word address, and
the corresponding ASCII source
instruction.

Labels appear on a line by themselves as
they are encountered in the SCRIPTS.

Next is a list consisting of absolute or
relative variables, and their location in
the SCRIPTS. This is followed by a list of
labels and label locations that appear in

NCR 53C720 Programmer's Guide

the SCRIPTS. The location is an offset
from the beginning of the SCRIPTS.

The final list gives the label patches.
Label patches are offsets into the
SCRIPTS where a label is referenced.
They are called patches because the
absolute address of the labels must be
patched into the SCRIPTS at runtime.

-z [debugfilename]

This option will generate a file that is
necessary if the SCRIPTS debugger is to
be used. If the debugger is used, this is
the file that is loaded to begin the debug
process. If the -z option is given without a
filename following, then the filename
will default to sourcefile.sod. The file
produced when this option is set is com­
patible with the pass 1 output file of the
C700 compiler.

-e [errorfilename]

-v

-u

-w

This option will generate an error file
where all the error information will be
stored. If the -e option is used without a
filename following, then the filename
will default to sourcefile.err.

This option will print all relevant infor­
mation about the compilation process to
the screen for the user to view.

When this option is set the define
INSTRUCTIONS and define PATCHES
statements in the output file is sup­
pressed. This option is necessary if two
or more output files are being linked
together.

When this option is set the compiler uses
the 53C720 mapping instead of the regu­
lar mapping for the 53C700 and the
53C710.

3-1

Chapter 3

SCSI SCRIPTS Compiler Output

When the compiler is writing to an output
file, it will generate instruction array(s) first
unless the pass option is used before any
instructions are given. If the first instruction
is not preceded by a proc label: statement,
then the instruction array name will default
to "SCRIPT". The first column in the
instruction array contains the long word
instruction and the remaining columns
contain corresponding long word addresses.
An example is given below:

Source Code:
P ASS(#incl ude "NCR.h")
int 7
PROC first:
int 8

Compiled Output:

#include "NCR.h"
ULONG SCRIPT[] = {
Ox98080000, Ox00000007

};

ULONG frrst[] = {
Ox98080000, OxOOOOOOO8
};

The variable name prefix will have an "A_"
for absolute or an "R "for relative. The
value of the variable is used in a define
statement. The define statement is followed
by an array which contains the long word
offsets into the SCRIPTS where the variable
is used. The array name is the variable name
appended with "_Used".

Example,·

3-2

#define R_DATA_BUF OxOOOOOO20
ULONG R_DATA_BUF_UsedO ={
};

SCSI SCRIPTS Compiler

Then the SCRIPTS entry label values are
defined with a prefix of "Ent_".

Example:
#define Ent_alt_addr Ox00000078

The SCRIPTS entry labels values are fol­
lowed by an array of long word offsets for
labels in the SCRIPTS. These offsets are
used to patch in the absolute addresses at
runtime.

Example:
ULONG LABELPATCHESO = {
OxOOOOOOOl, Ox00000019,
OxOOOOOOlb
};

The last item produced is the number of
instructions and patches in the SCRIPTS.
Note that if the undefined option is set "_u"
when invoking the compiler, these state­
ments will not be produced.

Example:
ULONG INSTRUCTIONS =
OxOOOOOOll;

ULONG PATCHES = Ox00000003;

Appendix D shows the source file, the list
file, the debug file and the output file from
the initiator script of the previous chapter.
This script was named sample and these files
resulted from the following invocation:

scc sample -1 -z -0

NCR 53C720 Programmer's Guide

Chapter 4

The NCR SCSI SCRIPTS language Syntax

SCSI SCRIPTS
NCR SCSI SCRIPTS is a high level language
used to control NCR's line of intelligent
processors (53C7X0). SCSI SCRIPTS consist
of a series of lines. Blank lines and anything
after a semi-colon on an input line are ig­
nored by the NCR SCSI SCRIPTS Compiler.
The front -end of the compiler receives SCSI
SCRIPTS, compiles them and the back-end
of the compiler outputs "C" compatible code.

The compiler is "token" oriented. The
compiler reads SCSI SCRIPTS and splits each
line up into tokens. White space and any­
thing from a semicolon to the end of the line
are ignored by the compiler and are not part
of a token.

A token is any string of consecutive letters,
underscores, dollar signs, or numbers.

A token that has a numeric value may be
specified in decimal, hexadecimal, binary, or
octal.

• Decimal numbers are specified by a
string of digits not beginning with
zero.

• Hexadecimal (hex) numbers are
specified by a string consisting of
"Ox" or "OX" and the hex digits of
the number. Both upper and lower
case are allowed.

• A binary number is similar to a hex
number, except that "Ob" or "OB" is
used instead of "Ox" or "OX".

• An octal number is specified by a "0"
(zero) followed by the octal digits.

SCRIPTS Keywords
A reserved word is a token that has a particu-
1ar and specific meaning when used in a
SCRIPTS program. Reserved words are often
called keywords because they "key" the
translator to what follows.

NCR 53C720, Programmer's Guide

Keywords the SCSI SCRIPTS compiler
recognizes are classified as instruction key­
words, phase keywords, register keywords,
miscellaneous keywords, and compiler direc­
tives.

Instruction Keywords
These keywords initiates a specific instruc­
tion.

CALL - Initiates a CALL instruction.
CALL transfers control to an address
location if given conditions are met.
Differs from JUMP instruction in
that the return address will be stored
in the TEMP register.

CHMOV - Chained Block Move handles
odd byte scatter/gather on wide SCSI.

CLEAR - This instruction clears specific
bits in registers.

DISCONNECT - In the target mode this
instruction causes the target to dis­
connect from the SCSI bus.

INTFL Y - The Interrupt on the Fly
instruction causes an interrupt that
will not halt the SCRIPTS processor.

INT - Interrupt initiates an INTERRUPT
instruction. Halts the SCRIPTS
processor.

JUMP - Initiates a JUMP instruction. This
transfers control to an address loca­
tion if given conditions are met.
Differs from CALL instruction in that
the return address is not stored in the
TEMP register.

MOVE - Initiates a Block Move instruction.
MOVE MEMORY - Initiates a move of a

specified number of bytes from the
source address to the destination
address.

NOP - Initiates a no operation instruction.
RESELECT - Initiates a Reselect I/O

instruction.
RETURN - Initiates a RETURN instruc­

tion. This will transfer control to an
address location that is stored in the
TEMP register. This is usuallY issued
in response to an earlier CALL in­
structton (one deep on the stack).

SELECT - Initiates a SELECT I/O instruc­
tion.

4-1

Chapter 4

SET - T~is instruction sets specific bits in
registers.

Phase Keywords
These keywords specify specific SCSI bus
phases

CMD - Command indicates the instruction
phase.

DATA_IN - Indicates the data-in phase.
DATA_OUT - Indicates the data-out phase.
MSG_IN - Indicates the message-in phase.
MSG_OUT - Indicates the message-out

phase.
RES4 - Reserved phase 4.
RES5 - Reserved phase 5.
ST AT US - Indicates status phase.

Register Keywords
The following keywords represent the
53C720 register set. See the 53C720 Data
Manual for more information.

ADDERO - Internal Adder Register 0
ADDER! - Internal Adder Register 1
ADDER2 - Internal Adder Register 2
ADDER3 - Internal Adder Register 3
CTESTO - Chip Test Register 0
CTESTl - Chip Test Register 1
CTEST2 - Chip Test Register 2
CTEST3 - Chip Test Register 3
CTEST4 - Chip Test Register 4
CTEST5 - Chip Test Register 5
CTEST6 - Chip Test Register 6
DB CO - DMA Byte Count Register 0
DBCl - DMA Byte Count Register 1
DBC2 - DMA Byte Count Register 2
DCMD - DMA Command Register
DCNTL - DMA Control Register
DFIFO - DMA FIFO Register
DIEN - DMA Interrupt Enable Register
DMODE - DMA Mode Register
DNADO - DMA Next Address for Data

Register 0
DNADI - DMA Next Address for Data

Register 1

4-2

The NCR SCSI SCRIPTS Language Syntax

DNAD2 - DMA Next Address for Data
Register 2

DNAD3 - DMA Next Address for Data
Register 3

DSAO - Data Structure Address Register 0
DSAl - Data Structure Address Register 1
DSA2 - Data Structure Address Register 2
DSA3 - Data Structure Address Register 3
DSPO - DMA Scripts Pointer Register 0
DSPl - DMA Scripts Pointer Register 1
DSP2 - DMA Scripts Pointer Register 2
DSP3 - DMA Scripts Pointer Register 3
DSPSO - DMA Scripts Pointer Save Register 0
DSPSI - DMA Scripts Pointer Save Register 1
DSPS2 - DMA Scripts Pointer Save Register 2
DSPS3 - DMA Scripts Pointer Save Register 3
DST A T - DMA Status Register
DWT - DMA Watchdog Timeout Register
GPREG - General Purpose
1ST A T - Interrupt Status Register
SBCL - SCSI Bus Control Lines Register
SBDLO - SCSI Bus Data Lines Register 0
SBDLl - SCSI Bus Data Lines Register 1
SCID - SCSI Chip ID Register
SCNTLO - SCSI Control Register 0
SCNTLl - SCSI Control Register 1
SCNTL2 - SCSI Control Register 2
SCNTL3 - SCSI Control Register 3
SCRA TCHAO - Scratch Pad A Register 0
SCRA TCHAl - Scratch Pad A Register 1
SCRA TCHA2 - Scratch Pad A Register 2
SCRA TCHA3 - Scratch Pad A Register 3
SCRA TCHBO - Scratch Pad B Register 0
SCRA TCHBl - Scratch Pad B Register 1
SCRA TCHB2 - Scratch Pad B Register 2
SCRA TCHB3 - Scratch Pad B Register 3
SDID - SCSI Destination ID Register
SFBR - SCSI First Byte Received Register
SIDLO - SCSI Input Data Latch Register 0
SIDLI - SCSI Input Data Latch Register 1
SIENO - SCSI Interrupt Enable Register 0
SIENl - SCSI Interrupt Enable Register 1
SISTO - SCSI Interrupt Status 0
SISTI - SCSI Interrupt Status 1

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

SLPAR - SCSI Longitudinal Parity
SOCL- SCSI Output Control Latch Register
SODLO - SCSI Output Data Latch Register 0
SODLI - SCSI Output Data Latch Register 1
SSID - SCSI Selector ID
SST A TO - SCSI Status Register 0
SST A Tl - SCSI Status Register 1
SST A T2 - SCSI Status Register 2
STESTO - SCSI Test 0
STESTI - SCSI Test 1
STEST2 - SCSI Test 2
STEST3 - SCSI Test 3
STIMEO - SCSI Timer 0
STIMEI - SCSI Timer I
SWIDE - SCSI Wide Residue Data
SXFER - SCSI Transfer Register
TEMPO - Temporary Stack Register 0
TEMPI - Temporary Stack Register I
TEMP2 - Temporary Stack Register 2
TEMP3 - Temporary Stack Register 3

Miscellaneous Keywords
The following keywords place conditions on
the instructions.

ACK - Acknowledge manipulates the
acknowledge flag bit in I/O instruc­
tions.

AND - Conditional AND operation.

ATN - Attention manipulates the attention
flag bit in I/O instructions.

CARRY - Decisions are made based on the
SCRIPTS processor carry bit.

FROM - Signifies that table indirect ad­
dressing is to be used in a block move
instruction or an I/O instruction.

IF - Conditional IF operation. When used
to compare phases in transfer control
instructions, the current latched phase
will be the phase that is evaluated.
This keyword should not be used for
block move operations. WHEN is the
correct keyword for block move
operations.

NCR 53C720, Programmer's Guide

Chapter 4

MASK - Performs masking operations on
data

MEMORY - Signifies the operation is to be
from host memory.

NOT - Causes the negation of the following
condition.

OR - Conditional OR operation.

PTR - Pointer signifies indirect addressing
is to be used in a block move instruc­
tion.

REG - Register allows the user to access
registers by a register number.

REL - Relative signifies that a transfer of
control will be relative to the current
program counter.

TARGET - Sets the processor to the target
mode of operation.

TO - Indicates a move instruction from
register TO register.

WAIT - Signifies that the SCSI processor
should remain idle until a condition is
met. (Le. WAIT DISCONNECT)

WHEN - Conditional WHEN operation.
When used to compare phases, the
phase of the next assertion of the REQ
line is the phase that is evaluated.
This is the keyword that should be
used for block move operations.

WITH - Used for target move operations.
The phase that follows the WITH
keyword will be asserted by the target
device.

Compiler Directives
These keywords are used as compiler direc­
tives and do not result in instructions being
generated.

ABSOLUTE - Declares symbolic names for
numeric values. Similar to the define
statement in the C programming
language.

4-3

Chapter 4

ENTRY - Declares that the variable(s)
following are entry points into the
SCSI SCRIPTS.

EXTERN or EXTERNAL - Declares the
variable(s) following are defined
external to the SCRIPTS program.
The assembler will keep an array
of offsets where the variable(s) are
used to facilitate replacing these
external variable(s) with their
absolute values.

PASS - Declares that the characters
between the parenthesis () will be
passed unaltered to the output file.
This permits the programmer to
pass C code through to the output
file.

PROC - Instructs the compiler to close
out the current SCRIPTS instruc­
tion array and generate a new
instruction array with the name of
the array being the name following
the PROC instruction. This allows
for multiple SCRIPTS arrays
within the same SCRIPTS file.

RELA TIVE - Declares that the buffer
names following are to be relative
to one another.

SCRIPTS Notation
[] Items enclosed in brackets are optional.

[]" .• " The item enclosed in the brackets
can be repeated as often as neces­
sary.

KEYWORD - A keyword is often called
a reserved word. Case is ignored by
the compiler when looking for
keywords.

Phase must be replaced with only one of
the following keywords:

4-4

MSG_IN,
MSG_OUT,
DATA_IN,
DATA_OUT,

The NCR SCSI SCRIPTS Language Syntax

CMD,
STATUS,
RES4,
RESS

The word 'address' means a 32-bit number.
The word 'offset' means a signed 24 bit number.
The word 'value' means a 32-bit number.
The word 'count' means a 24 bit number.
The word lid' means an eight bit number that
has exactly one bit set.
The word 'data' means an eight bit number.
The word 'ez:pression' denotes a mathematical
~xpression with the form:

<identifier> [<addop> <identifier>]

<identifier> is any valid variable name or
a numeric constant.

<addop> is the '+' or '-' character to
denote addition or subtraction respec­
tively

An expression may be used in any place that a
numeric value would normally be used. The
value of all expressions are automatically ex­
tended to 32-bits. When expressions are used in
a context where the evaluated value is less then
32-bits, the least significant bits will be used.
For instance, if an expression is used to represent
a count for a move instruction, the evaluated
value will be truncated to 24 bits. Notification
that the expression has been truncated will occur
if the value of the expression is changed.

The word 'name' represents a string of one or
more consecutive characters chosen from letters,
numbers, underscores, and the dollar sign.
Names used for labels, externals, and variables in
the relative data area are passed on to the host
development system.

If the host development system has restrictions
on the format of such names, it is the responsi­
bility of the SCSI SCRIPTS writer to avoid using
such names. For example, Turbo C, which is
used as the host development system for this
application, does not allow names to begin with a
digit or to contain a dollar sign. Therefore, the
SCSI SCRIPTS writer for DOS and Turbo C
should avoid using names of this form.

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

Compiler Directives Syntax
Compiler Directives do not produce opcodes,
but rather inform the compiler of certain
types of tokens and how these tokens will be
treated in SCRIPTS instructions.

ABSOLUTE name -
exprellion [.name - expreuion..1

This declares symbolic names for numeric
values. For example,

ABSOLUTE bad_cmd - 0x1200

allows the name
bad_cmd

to be used instead of a number in the SCSI
SCRIPTS. The SCSI SCRIPTS will be com­
piled as if the number Ox1200 had been
specified instead of the name "bad_cmd" in
every instruction that uses "bad_cmd".

ENTRY label [,label_1

The ENTRY keyword indicates that the
specified labels are SCSI SCRIPTS entry
points. Their names and values are defined
at the back-end, which will also make them
available to the Host development system.

EXTERNAL name [.name_1

Tells the compiler that the SCSI SCRIPTS
will refer to variables with specified names
that are declared outside of the SCSI
SCRIPTS. Some host development systems
are not able to support use of this word and
SCSI SCRIPTS requiring this feature may not
be portable to all hosts. The compiler outputs
an array that contains a list of instruction
offsets where the external name is used. Use
of the PASS option can help in this situation.

PASS Option

To allow the SCSI SCRIPTS compiler more
flexibility in the C environment, an option is
included that allows the programmer to pass

NCR 53C720, Programmer's Guide

Chapter 4

64-character literal strings through to the C
compiler. This feature allows the program­
mer to use any C expression that will be
resolved when the output is compiled.
Strings can be placed on a single line, or used
in place of a 32-bi t address.

PASS (Uteral Itring)

This statement can be used to send an in­
clude statement to the C compiler. Note that
this allows the two levels of include capabil­
ity. The first level is implemented by using
include statements in the SCRIPTS code and
using a C preprocessor to bring in the desired
code. The second level uses the PASS option.
Everything between the left and right paren­
thesis is sent to the output file of the C com­
patible SCSI SCRIPTS compiler. The literal
string must be placed before the SCSI
SCRIPTS instruction area

The following two SCRIPTS instructions
illustrate how the PASS option can be used to
defer the fixing of addresses until link time.
Any C expression can be referred to (limited
to 64-characters) if it will be converted to a
32-bit address by the C compiler.

Wait Relelect PASS(&alt_addr)
Move Memory 4, PASS(&buC .. ave),

P ASS(&buC.reltore)

A complete line of C code can be included in
a SCRIPTS program and transferred intact to
the C source output. For example,

PASS (#include "NCR.h")

results in

#include "NCR.h"
appearing in the final output.

PROC label

PROC is a way of addressing External La­
bels. A SCRIPTS programmer may want to
write modular code instead of one large
routine. To have modules, some type of

4-5

Chapter 4

external reference must be allowed.
Because the SCRIPTS compiler does not
have a link editor capability, another
mechanism allows the same feature with
minimal changes to the compiler. En­
countering the keyword PROC causes the
compiler to close out the current
longword array and generate a new array
with the label following the keyword
PROC. Thus, the name "label" can be
referenced by other SCSI SCRIPTS in
other modules. For example, a JUMP
instruction can transfer to an external
name, using the PASS option. At C com­
pile time, the reference will be resolved.

RELATIVE Dame -
ezprellioD [,name - ezprellion..]

Declares relative data variables.

name the variable name.

expression the offset from the start of
the relative data area where the
variable is located.

A name followed by a colon signifies a
label. Use a label name wherever there is
a call for an address.

KEYWORD count,

When an instruction call specifies a
count, use a 24-bit number or a symbolic
constant (declared using the ABSOLUTE
keyword).

KEYWORD count, addrell

When an instruction requires an address,
use a 32-bit number, the label name, the
variable name in the relative data area
(previously declared with the RELATIVE
keyword) , or the external variable name
(previously declared with the EXTER­
NAL keyword).

4-6

The NCR SCSI SCRIPTS Language Syntax

Labels, external variables, and relative vari­
ables all share the same name space. If a
name is declared more than once, the front­
end resolves the conflict. If a problem possi­
bly exists, a warning will be issued.

If the address field of an instruction contains
an undefined name, then the front-end
assumes that it refers to a label that will be
defined later. This is called forward refer­
encing. If the name is defined later as an
external or relative variable, this will create a
name conflict and the front-end will resolve
h. A possible problem warning is issued.

Anywhere a 32-bit address can be used in a
SCRIPT, the PASS option can be substituted.
This option allows the user to pass through
an expression to the output and thus to be
input into the C compiler. Any valid C
expression (for example, label, structure
element, etc.) can be passed through for final
resolution by the C compiler.

Even though the SCRIPTS compiler cannot
recognize the name, or resolve the value, it
can preserve it as a literal for the C output.

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

Instruction Keywords

MOVE Instructions

• Block Move

• Chained Block Move

• Memory to Memory Move

There are three types of move instructions;
Block Move, Chained Block Move, and
Memory to Memory Move. Block Move
instruction transfers data to (from) user
memory from (to) the SCSI bus. Chained
Block Move is for handling wide SCSI, odd
byte scatter/gather situations. Memory to
Memory Move is for copying a specified
number of bytes from a source address to the
destination address. Both Block Move and
Chained Block Move can use the three
addressing modes.

• Direct Block Move

• Indirect Block Move

• Table Indirect Block Move

The 53C720 waits for a valid phase (initiator)
or drives the phase lines (target). In the
initiator role, it performs a compare by
looking for a match between the phase
specified in the SCRIPTS and the actual
value on the bus. If the phases do not match,
an external interrupt occurs. If the phase
matches, then data is transferred in or out
according to the phase lines. When the count
goes to zero, the next sequential SCRIPTS
instruction is fetched.

NCR 53C720, Programmer's Guide

Chapter 4

1. Block Move

• Direct Block Move
In a Direct Block Move instruction
the 32-bit SCSI or user data start
address is uniquely specified in the
Block Move instruction.

Syntax MOVE count, address, WITH Phase
MOVE count, address, WHEN Phase

count Count is a 24-bit value specifying the
number of bytes to transfer.

address 32-bit start address specifies the
location where the Block Move is to
take place. Note: Address can be
replaced with "PASS (C expres­
sion)". See PASS option for more
details.

WITH/ Specify the Block Move
WHEN function codes

WITH signals the target role which
sets the phase values

WHEN is the initiator "test for
phase" feature

Phase Specifies the phase field of the
instruction

• Indirect Block Move
In an Indirect Block Move instruc­
tion the 32-bit SCSI or user data start
address is the address of a pointer to
the actual data buffer address.

Syntax MOVE count, PTR address, WITH Phase
MOVE count, PTR address, WHEN Phase

count Count is a 24-bit value specifying
the number of bytes to transfer.

. PTR

address

The PTR (pointer) keyword indi­
cates the Block Move is to be an
Indirect Block Move.

Specifies the address of a pointer
that points to the actual data buffer
address. Note: Address can be
replaced with "PASS (C expres­
sion)". See PASS option for more

4-7

Chapter 4

details.

WITH/Specify the Block Move
WHEN function codes.

WITH signals the target role
which sets the phase values.

WHEN is the initiator "test for
phase" feature.

Phase Specifies the phase field of the
instruction.

• Table Indirect Block Move
In a Table Indirect Block Move
instruction the 32-bit start
address is treated as a 24-bit
signed value. After the instruc­
tion is moved into the 53C720,
the 24 bits are added to the Data
Structure Address (DSA) register
to form a 32-bit physical address.

Syntax MOVE FROM offset, WITH Phase
MOVE FROM offset, WHEN Phase

FROM The FROM keyword indicates
the Block Move is to be a Table
Indirect Block Move.

offset A 24-bit signed value is com­
bined with the Data Structure
Address (DSA) register to form a
32-bit physical address where
the Block Move is to take place.
Note: PASS option can not be
used.

WITH/Specify the Block Move
WHEN function codes.

WITH signals the target role
which sets the phase values.

WHEN is the initiator "test for
phase" feature.

Phase Specifies the phase field of the
instruction.

4-8

The NCR SCSI SCRIPTS Language Syntax

2. Chained Block Move
Chained Block Move (CHMOV) is a second
type of Block Move. There are several
problems that can arise when the wide SCSI
bus is combined with odd byte scatter/gather
buffers in system memory. A simple example
can show one situation, from a system per­
spective.

·10 byte transfer with two 5 byte
scatter/gather pieces

• first move is a CHMOV to allow for the
odd byte size

• four bytes go on to the SCSI bus
• fifth byte is saved in the 53C720
• next move instruction is fetched
(AMOVE)

• sixth byte is matched with fifth byte for a
word transfer and sent out

• last four bytes are sent out

Host Memory SCSI Bus

00

04

08

oc

10

J-.-16 Bits-f

r--- 32-Bits ~I

CHMOV 5, OX03, WHEN DATA_OUT

move 5 bytes from address 03 in the host
memory to the SCSI bus (bytes 03, 04, 05
and 06 are moved and byte 07 remains in
the low order byte of the SCSI Output
Data Latch register and is married with
the first byte of the following move
instruction byte OE)

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

MOVE 5, OxOE, WHEN DATA_OUT

; move 5 bytes from address OE in the
host memory to the SCSI bus

Because the user is relieved of the odd byte
problems, the 53C720 is much simpler to use
in the wide SCSI environment. A user that
expects any odd byte transfers should use the
CHMOV instruction for a list of move in­
structions, all but the last move should be
CHMOV, and the last one should be a Block
Move.

• Direct Chained Block Move
In a Direct Chained Block Move instruction
the 32-bi t SCSI or user data start address is
uniquely specified in the Chained Block
Move instruction.

Syntax CHMOV count, address, WITH Phase
CHMOV count, address, WHEN Phase

count Count is a 24-bit value specifying
the number of bytes to transfer.

address 32-bi t start address specifies the
location where the Chained Block
Move is to take place. Note: Ad­
dress can be replaced with PASS (C
Name) (see PASS option for more
details).

WITH/Specify the Chained Block
WHEN Move function codes.

WITH signals the target role which
sets the phase values.

WHEN is the initiator "test for
phase" feature.

Phase Specifies the phase field of the
instruction.

• Indirect Chained Block Move
In an Indirect Chained Block Move instruc­
tion the 32-bit SCSI or user data start address
is the address of a pointer to the actual data
buffer address.

NCR 53C720, Programmer's Guide

Chapter 4

Syntax CHMOV count, PTR address, WITH
Phase
CHMOV count, PTR address, WHEN
Phase

count Count is a 24-bit value specifying
the number of bytes to transfer.

PTR The PTR (pointer) keyword indi­
cates the Block Move is to be an
Indirect Block Move.

address Specifies the address of a pointer
that points to the actual data buffer
address. Note: Address can be
replaced with PASS (C Name) (see
PASS option for more details).

WITH/Specify the Chained Block
WHEN Move function codes.

WITH signals the target role which
sets the phase values.

WHEN is the initiator "test for
phase" feature.

Phase Specifies the phase field of the
instruction.

• Table Indirect Chained Block Move
In a Table Indirect Chained Block Move
instruction the 32-bit start address is treated
as a 24-bit signed value. After the instruction
is moved into the 53C720, the 24 bits are
added to the Data Structure Address (DSA)
register to form a 32-bit physical address.

Syntax CHMOV FROM offset, WITH Phase
CHMOV FROM offset, WHEN Phase

FROM The FROM keyword indicates the
Chained Block Move is to be a
Table Indirect Chained Block Move.

offset A 24-bit signed value is combined
with the Data Structure Address
(DSA) register to form a 32-bit
physical address where the Block
Move is to take place. Note: PASS
option can not be used.

4-9

Chapter 4

WITH/Specify the Chained Block
WHEN Move function codes.

WITH signals the target role
which sets the phase values.

WHEN is the initiator "test for
phase" feature.

Phase Specifies the phase field of the
instruction.

4-10

The NCR SCSI SCRIPTS Language Syntax

3. Memory-to-Memory Move
The Memory-to-Memory Move instruction
is used to copy the specified number of bytes
from the source address to the destination
address. This instruction allows the 53C720
to become a high-speed DMA chip. DATA
is moved from the source address into the
chip's DMA FIFO and then out to the desti­
nation address. This instruction does not
destroy the TEMP or DSA register. There is
no indirect capability with this instruction so
that the physical 32-bit address must be in
the SCRIPTS. The PASS option can be used
with either or both addresses to allow the
user to designate a C Name that can be
resolved when the C code is compiled. A 24-
bit byte counter permits large moves to occur
with no intervention required by the proces­
sor.

Syntax MOVE MEMORY count, source address,
destination address

count A 24-bit byte count for the number
of bytes to be transferred by the
MOVE instruction.

address A 32-bit physical address; source is
first, followed by the destination
data buffer address.

The last two bits of the source and destina­
tion must be equal, but there are no other
restrictions on the address values. For ex­
ample, you can move a long-word or a byte
from 0 to 4,1 to 5,2 to 6, or from 3 to 7, etc.
But you can not move from 0 to 5 or 2 to 7,
etc. The source data and the destination
data needs to start on the same byte lane.
Note that if a 53C720 register address is the
source or destination, then this instruction
can be used to read or write system memory
from SCRIPTS. This capability is very
useful for saving the state of an I/O in a
multi -threaded I/O environment.

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

JUMP Instruction
JUMP transfers control to an address loca­
tion if given conditions are met. JUMP is
different from a CALL instruction because
the return address is not stored in the TEMP
register. The conditional JUMP instructions
all have the same general form.

Syntax
NOP
JUMP address
JUMP address, IF ATN
JUMP address, IF Phase
JUMP address, IF data
JUMP address, IF data, AND MASK data
JUMP address, IFATN AND data
JUMP address, IF A TN AND data,

AND MASK data
JUMP address, IF Phase AND data
JUMP address, IF Phase AND data,

AND MASK data
JUMP address, WHEN Phase
JUMP address, WHEN data
JUMP address, WHEN data, AND MASK data
JUMP address, WHEN Phase AND data
JUMP address, WHEN Phase AND data,

AND MASK data
JUMP address, IF NOT ATN
JUMP address, IF NOT Phase
JUMP address, IF NOT data
JUMP address, IF NOT data, AND MASK data
JUMP address, IF NOT ATN OR data
JUMP address, IF NOT ATN OR data,

AND MASK data
JUMP address, IF NOT Phase OR data
JUMP address, IF NOT Phase OR data,

AND MASK data
JUMP address, WHEN NOT Phase
JUMP address, WHEN NOT data
JUMP address, WHEN NOT data,

AND MASK data
JUMP address, WHEN NOT Phase OR data
JUMP address, WHEN NOT Phase OR data,

AND MASK data
JUMP address, IF CARRY
JUMP address, IF NOT CARRY
JUMP REL (Address)

(An option for any "address" above)

address The SCSI SCRIPTS address that will
be transferred to if the JUMP is
taken. Limited to 24 bits if the REL
option is used. Pass option can be
used.

NCR 53C720, Programmer's Guide

Chapter 4

WHEN Sets the Wait bit in the Transfer
Control Instruction.

IF Do not set the Wait bit.

If NOT follows WHEN or IF, then
the TrueIFalse bit of the Transfer
Control Instruction is not set. Oth­
erwise' the bit will be set.

Phase When present, the instruction will
compare the phase value to the
phase bits stored in the chip to
determine which SCRIPTS to
execute next.

data When present, the instruction will
compare the data value to the value
in the SCSI First Byte Received
(SFBR) register to determine which
SCRIPTS to execute next.

If both 'Phase' and 'data' are speci­
fied, they must be in that order and
they must be separated by the
keyword AND or OR.

CARRY When present (it is not valid with
phase or data), the instruction will
check the carry bit in the chip to
determine which SCRIPTS to
execute next.

ATN The target role version which is
required to test whether the initia­
tor has set A TN on the bus.

NOT Used for the inverse test of WHEN
and IF & CARRY. "NOT Phase OR
data" is the negation of "Phase
AND data" or "Phase OR data".

MASK Always use with an 'AND' keyword.
The data following the keyword
'MASK' allows a SCRIPTS to selec­
tively compare the bits within the
SCSI First Byte Received (SFBR)
register.

Any bits that are on in the MASK
value eliminate the corresponding
bit in the data byte at the time of
the compare. Use this 'binary sort'
to quickly determine the value of

4-11

Chapter 4

incoming bytes. For example, a
mask of '7F' and a data compare
of '80' allows the SCRIPTS
processor to determine if the
high order bit is on.

REL Used if the jump is to be relative
to the current program counter.

Note that the address values can
be replaced with a REL (Ad­
dress). The value of the address
must be a signed 24 bit value.

REL (Address) can replace an
address in the JUMP instruction
for a relative rather than abso­
lute JUMP.

PASS (any valid C expression) can replace
an address in the JUMP instruction.

For low level or bit information on the
Jump, Call, Return, Interrupt and
Interrupt on the Fly instructions see
"Transfer Control Instruction" in Chapter
10.

4-12

The NCR SCSI SCRIPTS Language Syntax

CALL Instruction
CALL instruction transfers control to an
address location if given conditions are met.
CALL is different from a JUMP instruction
in that the return address will be stored in
the TEMP register. All conditional CALL
instructions have the same general form. A
CALL can only be one level deep on the
stack.

Syntax
CALL address
CALL address, IF A TN
CALL address, IF Phase
CALL address, IF data
CALL address, IF data, AND MASK data
CALL address, IF A TN AND data
CALL address, IF A TN AND data, AND MASK

data
CALL address, IF Phase AND data
CALL address, IF Phase AND data, AND MASK

data
CALL address, WHEN Phase
CALL address, WHEN data
CALL address, WHEN data, AND MASK data
CALL address, WHEN Phase AND data
CALL address, WHEN Phase AND data,

AND MASK data
CALL address, IF NOT A TN
CALL address, IF NOT Phase
CALL address, IF NOT data
CALL address, IF NOT data, AND MASK data
CALL address, IF NOT A TN OR data
CALL address, IF NOT A TN OR data,

AND MASK data
CALL address, IF NOT Phase OR data
CALL address, IF NOT Phase OR data,

AND MASK data
CALL address, WHEN NOT Phase
CALL address, WHEN NOT data
CALL address, WHEN NOT data,

AND MASK data
CALL address, WHEN NOT Phase OR data
CALL address, WHEN NOT Phase OR data,

AND MASK data
CALL address, IF CARRY
CALL address, IF NOT CARRY
CALL REL (address)

(An option for any "address" above)

address The SCSI SCRIPTS address trans­
ferred to if the CALL is taken.

WHEN Set the Wait bit in the Transfer
Control Instruction.

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

IF Do not set the Wait bit.

If WHEN or IF are followed by
NOT, then the TruelFalse bit of the
Transfer Control Instruction is not
set. Otherwise, the bit will be set.

Phase When present, the instruction will
compare the phase value to the
phase bits stored in the chip to
determine which SCRIPTS to
execute next.

data When present, the instruction will
compare the data value to the value
in the SCSI First Byte Received
(SFBR) register to determine which
SCRIPTS to execute next.

If both 'Phase' and 'data' are speci­
fled, they must be in that order and
they must be separated by the
keyword AND or OR.

CARRY When present (it is not valid with
phase or data), the instruction will
check the carry bit in the chi p to
determine which SCRIPTS to
execute next.

ATN The target role version which is
required to test whether the
initiator has set A TN on the bus.

NOT Used for the inverse test of WHEN
and IF OR CARRY. "NOT Phase
OR data" is the negation of "Phase
AND data" or "Phase OR data ".

MASK Always use with an 'AND' keyword.
The data following the keyword
'MASK' allows a SCRIPTS to selec­
tively compare the bits within the
SCSI First Byte Received (SFBR)
register.

Any bits that are on in the MASK
value eliminate the corresponding
bit in the data byte at the compare.
Use this 'binary sort' to quickly
determine value of incoming bytes.
For example, a mask of '7F' and a
data compare of '80' allows the
SCRIPTS processor to determine if
the high order bit is on.

NCR 53C720, Programmer's Guide

Chapter 4

REL Used if the jump is to be relative to
the current program counter.

Note that the address values can be
replaced with a REL (Address).
The value of the address must be a
signed 24 bit value. Also PASS (Any
valid C expression) can replace an
address.

Pass (any valid C expression) can replace an
address in the CALL instruction. REL (ad­
dress) can replace an address in the CALL
instruction.

4-13

Chapter 4

RETURN Instruction
The RETURN instruction transfers
control to an address location that is
stored in the TEMP register. This is
usually issued in response to an earlier
CALL instruction (one deep on the stack).
All conditional RETURN instructions
have the same general form.

Syntax
RETURN
RETURN, IF A TN
RETURN, IF Phase
RETURN, IF data
RETURN, IF data, AND MASK data
RETURN, IF A TN AND data
RETURN, IF A TN AND data, AND MASK data
RETURN, IF Phase AND data
RETURN, IF Phase AND data,

AND MASK data
RETURN, WHEN Phase
RETURN, WHEN data
RETURN, WHEN data, AND MASK data
RETURN, WHEN Phase AND data
RETURN, WHEN Phase AND data,

AND MASK data
RETURN, IF NOT A TN
RETURN, IF NOT Phase
RETURN, IF NOT data
RETURN, IF NOT data, AND MASK data
RETURN, IF NOT A TN OR data
RETURN, IF NOT A TN OR data,

AND MASK data
RETURN, IF NOT Phase OR data
RETURN, IF NOT Phase OR data,

AND MASK data
RETURN, WHEN NOT Phase
RETURN, WHEN NOT data
RETURN, WHEN NOT data, AND MASK data
RETURN, WHEN NOT Phase OR data
RETURN, WHEN NOT Phase OR data,

AND MASK data
RETURN, IF CARRY
RETURN, IF NOT CARRY

Address The SCSI SCRIPTS address that
will be transferred to if the
RETURN is taken.

WHEN Set the Wait bit in the Transfer
Control Instruction.

I F Do not set the Wait bit.

If WHEN or IF are followed by

4-14

The NCR SCSI SCRIPTS Language Syntax

NOT, then the TruelFalse bit of the
Transfer Control Instruction is not
set. Otherwise, the bi t will be set.

Phase When present, the instruction will
compare the phase value to the
phase bits stored in the chip to
determine which SCRIPTS to
execute next.

data When present, the instruction will
compare the data value to the value
in the SCSI First Byte Received
(SFBR) register to determine which
SCRIPTS to execute next. .

If both 'Phase' and 'data' are speci­
fled, they must be in that order and
they must be separated by the
keyword AND or OR.

CARRY When present (it is not valid with
phase or data), the instruction will
check the carry bit in the chip to
determine which SCRIPTS to
execute next.

ATN The target role version which is
required to test whether the initia­
tor has set A TN on the bus.

NOT Used for the inverse test of WHEN
and IF OR CARRY. "NOT Phase
OR data" is the negation of "Phase
AND data" or "Phase OR data ".

MASK Always use with an 'AND' keyword.
The data following the keyword
'MASK' allows a SCRIPTS to selec­
tively compare the bits within the
SCSI First Byte Received (SFBR)
register.

Any bits that are on in the MASK
value eliminate the corresponding
bit in the data byte at the time of
the compare. Use this 'binary sort'
to quickly determine value of in­
coming bytes. For example, a mask
of '7F' and a data compare of '80'
allows the SCRIPTS processor to
determine if the high order bit is on.

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

Interrupt Instruction
The Interrupt (INT) instruction interrupts
the SCRIPTS processor. All conditional INT
instructions have the same general form.

Syntax
INTvalue
INT value, IF ATN
INT value, IF Phase
INT value, IF data
INT value, IF data, AND MASK data
INT value, IF A TN AND data
INT value, IF A TN AND data, AND MASK

data
INT value, IF Phase AND data
INT value, IF Phase AND data,

AND MASK data
INT value, WHEN Phase
INT value, WHEN data
INT value, WHEN data, AND MASK data
INT value, WHEN Phase AND data
INT value, WHEN Phase AND data,

AND MASK data
INT value, IF NOT A TN
INT value, IF NOT Phase
INT value, IF NOT data
INT value, IF NOT data, AND MASK data
INT value, IF NOT A TN OR data
INT value, IF NOT A TN OR data,

AND MASK data
INT value, IF NOT Phase OR data
INT value, IF NOT Phase OR data,

AND MASK data
INT value, WHEN NOT Phase
INT value, WHEN NOT data
INT value, WHEN NOT data,

AND MASK data
INT value, WHEN NOT Phase OR data
INT value, WHEN NOT Phase OR data,

AND MASK data
INT value, IF CARRY
INT value, IF NOT CARRY

value The 32-bit data value that will be
placed in the DSPS register if the
INT condition is evaluated as true.

WHEN Set the Wait bit in the Transfer
Control Instruction.

IF Do not set the Wait bit.

If WHEN or IF is followed by NOT,
then the TruelFalse bit of the
Transfer Control Instruction is not
set. Otherwise, the bi t will be set.

NCR 53C720, Programmer's Guide

Chapter 4

Phase When present, the instruction will
compare the phase value to the
phase bits stored in the chip to
determine which SCRIPTS to
execute next.

data When present, the instruction will
compare the data value to the value
in the SCSI First Byte Received
(SFBR) register to determine which
SCRIPTS to execute next.

If both 'Phase' and 'data' are speci­
fled, they must be in that order and
they must be separated by the
keyword AND or OR.

CARRY When present (it is not valid with
phase or data), the instruction will
check the carry bit in the chip to
determine which SCRIPTS to
execute next.

ATN The target role version which is
required to test whether the initia­
tor has set A TN on the bus.

NOT Used for the inverse test of WHEN
and IF OR CARRY. "NOT Phase
OR data" is the negation of "Phase
AND data" or "Phase OR data".

MASK Always use with an 'AND' keyword.
The data following the keyword
'MASK' allows a SCRIPTS to selec­
tively compare the bits within the
SCSI First Byte Received (SFBR)
register.

Any bits that are on in the MASK
value eliminate the corresponding
bit in the data byte at the compare.
Use this 'binary sort' to quickly
determine value of incoming bytes.
For example, a mask of '7F' and a
data compare of '80' allows the
SCRIPTS processor to determine if
the high order bit is on.

PASS (any valid C Name) can replace a value
in the INT instruction.

4-15

Chapter 4

Interrupt on the Fly Instruction
The Interrupt on the Fly (INTFLY)
instruction causes an interrupt that will
not halt the SCRIPTS processor. All
conditional INTFL Y instructions have
the same general form.

Syntax
INTFLY
INTFLY,IFATN
INTFLY, IF Phase
INTFL Y, IF data
INTFL Y, IF data, AND MASK data
INTFLY, IF ATN AND data
INTFLY, IFATN AND data,

AND MASK data
INTFLY, IF Phase AND data
INTFLY, IF Phase AND data,

AND MASK data
INTFLY, WHEN Phase
INTFL Y, WHEN data
INTFLY, WHEN data,

AND MASK data
INTFL Y, WHEN Phase AND data
INTFL Y, WHEN Phase AND data,

AND MASK data
INTFLY, IF NOT ATN
INTFLY, IF NOT Phase
INTFLY, IF NOT data
INTFLY, IF NOT data,

AND MASK data
INTFLY, IF NOT ATN OR data
INTFL Y, IF NOT A TN OR data,

AND MASK data
INTFLY, IF NOT Phase OR data
INTFLY, IF NOT Phase OR data,

AND MASK data
INTFLY, WHEN NOT Phase
INTFL Y, WHEN NOT data
INTFLY, WHEN NOT data,

AND MASK data
INTFL Y, WHEN NOT Phase OR data
INTFLY, WHEN NOT Phase OR data,

AND MASK data
INTFL Y, IF CARRY

INTFL Y, IF NOT CARRY

WHEN Set the Wait bit in the Transfer
Control Instruction.

IF Do not set the Wait bit.

4-16

If WHEN or IF is followed by
NOT, then the TruelFalse bit of
the Transfer Control Instruction
is not set. Otherwise, the bit will
be set.

The NCR SCSI SCRIPTS Language Syntax

Phase When present, the instruction will
compare the phase value to the
phase bits stored in the chip to
determine which SCRIPTS to
execute next.

data When present, the instruction will
compare the data value to the value
in the SCSI First Byte Received
(SFBR) register to determine which
SCRIPTS to execute next.

If both 'Phase' and 'data' are speci­
fled, they must be in that order and
they must be separated by the
keyword AND or OR.

CARRY When present (it is not valid with
phase or data), the instruction will
check the carry bit in the chip to
determine which SCRIPTS to
execute next.

ATN The target role version which is
required to test whether the initia­
tor has set A TN on the bus.

NOT Used for the inverse test of WHEN
and IF OR CARRY. "NOT Phase
OR data" is the negation of "Phase
AND data" or "Phase OR data".

MASK Always use with an 'AND' keyword.
The data following the keyword
'MASK' allows a SCRIPTS to selec­
tively compare the bits within the
SCSI First Byte Received (SFBR)
register.

Any bits that are on in the MASK
value eliminate the corresponding
bit in the data byte at the compare.
Use this 'binary sort' to quickly
determine value of incoming bytes.
For example, a mask of '7F' and a
data compare of '80' allows the
SCRIPTS processor to determine if
the high order bit is on.

PASS (any valid C Name) can replace a value
in the INT instruction.

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

Miscellaneous Instructions
The following miscellaneous instructions are
I/O instructions. These instructions are
either executed in the initiator or target
mode. Target mode instructions are:

• Reselect
• Disconnect
• Wait Select

Initiator mode instructions are:
• Select
• Wait Disconnect
• Wait Reselect
• Set
• Clear

Select Instruction
Select initiates a SELECT I/O instruction.
Select causes the 53C720 to arbitrate for the
SCSI bus by asserting the SCSI ID stored in
the SCID register. When the 53C720 wins
arbitration, it attempts to select the SCSI
device whose ID is defined in the destination
ID field of the instruction. If arbitration fails,
jumps to address.

Syntax
SELECT [ATN] 10, REL (Address)
SELECT [ATN] FROM offset,

REL (Address)
SELECT [ATN] 10, Address
SELECT [ATN] FROM offset, Address

If ATN is present, the "SELECT with ATN"
bit is turned on.

'ID' specifies the destination SCSI ID. REL
allows a relative jump and FROM allows a
table indirect fetch of device ID, offset and
period for synchronous transfers. Address
can use Pass.

Reselect Instruction
Reselect initiates a RESELECT I/O instruc­
tion. Reselect causes the 53C720 to arbitrate
for the SCSI bus by asserting the SCSI ID
stored in the SCID register. When the
53C720 wins arbitration, it attempts to
reselect the SCSI device whose ID is defined
in the destination ID field of the instruction.
If arbitration fails, jumps to address.

NCR 53C720, Programmer's Guide

Chapter 4

Syntax
RESELECT 10, address
RESELECT 10, REL (Address)
RESELECT FROM offset REL (Address)
RESELECT FROM offset, Address

'ID' specifies the destination SCSI ID. REL
allows a relative jump and FROM allows a
table indirect fetch of device ID, offset and
period for synchronous transfers. Address
can use Pass.

Wait Disconnect Instruction
The Wait Disconnect instruction causes the
53C720 to initiate a wait for the target to
perform a "legal" disconnect from the SCSI
bus. A "legal" disconnect occurs when BSY /
and SEL/ are inactive for a minimum of one
Bus Free Delay (400 ns), after the 53C720 has
received a Disconnect Message or a Com­
mand Complete Message.

Syntax
WAIT DISCONNECT

Disconnect Instruction
The Disconnect instruction causes the
53C720 to physically disconnect from the
SCSI bus.

Syntax
DISCONNECT

Wait Reselect Instruction
The Wait Reselect instruction causes the
53C720 to initiate a wait for a reselection
from a previously selected SCSI device. If the
operation completes as expected, then the
next instruction is fetched and executed by
the 53C720. However, if the chip is selected,
then the alternate jump address should
contain the address of an algorithm for a

. selection.

Syntax
WAIT RESELECT Address
WAIT RESELECT REL (Address)

REL allows the alternate address to be rela­
tive.

4-17

Chapter 4

Wait Select Instruction
The Wait Select instruction causes the
53C720 chip to wait for a SCSI selection
by another device on the SCSI bus. If the
chip is already selected, then the next
SCSI SCRIPTS is fetched and executed.
When a bus initiated interrupt or reselect
occurs, the chip optionally changes to the
initiator mode and fetches the next in­
struction from the address pointed to by
the 32-bi t jump address, and con tin ues
execution.

Syntax
WAIT SELECT address
WAIT SELECT REL (Address)

Set Instruction
When the ACK/ or ATN/ bits are set, the
corresponding bits in the SCSI Output
Control Latch (SOCL) register are set.
ACK/ or ATN/ should not be set except
for testing (diagnostic) purposes. When
the target bit is set, the corresponding bit
in the SCSI Control 0 (SCNTLO) register
is also set. When the carry bit is set the
corresponding bit in the AL U is set.

If the 53C720 is connected as a target, the
following set and clear instructions will
have no meaning (the SCSI target role is
active) and should not be used.

Syntax
SET TARGET
SETACK
SETATN
SET CARRY
SET ACK and ATN and TARGET

and CARRY

All four or three or any two of the key­
words (ACK, ATN, TARGET, or
CARRy) may be used.

Clear Instruction
When the ACK/ or A TN/ bits are set, the
corresponding bits in the SCSI Output
Control Latch (SOCL) register are cleared.
ACK/ or ATN/ should not be cleared

4-18

The NCR SCSI SCRIPTS Language Syntax

except for testing (diagnostic) purposes.
When the target bit is cleared, the corre­
sponding bit in the SCSI Control 0
(SCNTLO) register is cleared. Wh~n th~ .
carry bit is cleared the corresponding bit In
the AL U is cleared.

Syntax
CLEAR TARGET
CLEARACK
CLEARATN
CLEAR CARRY
CLEAR ACK and ATN and TARGET

and CARRY

All four or three or any two of the keywords
(ACK, ATN, TARGET, or CARRY) may be
used. Clear target can be used in both the
initiator and the target mode. In the target
mode, use CLEAR TARGET to get back to
the initiator mode. CLEAR CARRY can be
used in either the initiator or the target
mode.

F or low level or bit information on the
Reselect, Disconnect, Wait Select, Select,
Wait Disconnect, Wait Reselect, Set, and
Clear instructions see "I/O Instruction" in
Chapter 10.

NCR 53C720, Programmer's Guide

The NCR SCSI SCRIPTS Language Syntax

Register Read/Write Instruction
This instruction allows a read-modify­
write, or a move to SCSI First-Byte Re­
ceived (SFBR) register or a move from
SFBR.

register: One of the registers must be
SFBR if the instruction allows
two register names (register to
register move). Both registers
must be the same for a read
modify write.

Valid register names are:

ADDERO ADDER1 ADDER2
CTESTO CTEST1 CTEST2
CTEST4 CTESTS CTESTS
DBC1 DBC2 DCMD
DFIFO DIEN DMODE
DNAD1 DNAD2 DNAD3
DSA 1 DSA2 DSA3
DSP1 DSP2 DSP3
DSPS1 DSPS2 DSPS3
DWT GPREG ISTAT
SBDlO SBDl1 SCID

ADDER3
CTEST3
DBCO
DCNTL
DNADO
DSAO
DSPO
DSPSO
DSTAT
SBCL

SCNTlO SCNTl1 SCNTL2 SCNTl3
SCRATCHAO SCRATCHA1SCRATCHA2
SCRATCHA3
SCRATCHBO SCRATCHB1 SCRATCHB2
SCRATCHB3
SDID SFBR
SIENO SIEN1
SLPAR SOCL
SSID SSTATO
STESTO STEST1
STIMEO STIME1
TEMPO TEMP1

SIDLO
SISTO
SODLO
SSTAT1
STEST2
SWIDE
TEMP2

SIDL1
SIST1
SODL1
SSTAT2
STEST3
SXFER
TEMP3

REG(n), where n is a value from 0 to
hexadecimal OSf.

Only 8 bits of a register can be operated
on at one time.

data 8: - An 8-bit data value or name of
an 8-bit value.

operator: - Valid operators are OR (I),
AND (&), addition (+) and subtraction (-).

Register writes are very useful, but cau­
tion must be exercised when this mode is
used. Writing to certain registers could

NCR 53C720, Programmer's Guide

Chapter 4

have disastrous effects on the SCSI bus or
operation of the chip. When a register is
written or read, side effects may occur; the
degree and possibility of these effects must
be clearly understood.

A register-to-register move can be accom­
plished by moving data from the source
register to the SFBR register and then from
the SFBR register to the destination register.

To compare for a value in a register (or a bit
ON), move the value to the SFBR register
(AND off unwanted bits); then execute a
COMPARE and JUMP instruction.

In the following instructions, the two register
keywords in each line must be identical, or
one must be SFBR.

The Add or Subtract operator can be used for
an event or loop counter.

MOVE register TO register
MOVE data8 TO register
MOVE register I data8 TO register
MOVE register & data8 TO register
MOVE register + data8 TO register
MOVE register + data8 TO register WITH CARRY
MOVE register - data8 TO register

4-19

Chapter 4 The NCR SCSI SCRIPTS Language Syntax

Notes

4-20 NCR 53C720, Programmer's Guide

Chapter 5

SCSI SCRIPTS Use of Scatter/Gather
Virtual memory schemes are common in
today's systems; they are used to keep user
data in small, manageable pages in main
memory. Memory management units keep
track of actual, physical locations. This
memory scheme is called scatter/gather
because user data is scattered through
memory and must be gathered for a write to
disk. One I/O may include several entries in
the gather list; therefore, current SCSI ports
must re-instruct the DMA controller at the
beginning of each user-data piece, which
typically causes an external interrupt.

The extra time required to re-instruct for
each page causes some delay for the external
processor interrupt and DMA set-up time. A
potentially undesirable side effect occurs
when the delay makes the disk slip a revolu­
tion because there is no place to put data
coming off the media, or the data is not yet
available for writing to the media.

The 53C720 has an efficient solution to the
scatter/gather performance degradation
problem. Each page of user data is repre­
sented by a Block Move command. The only
overhead required to move to the next page
of data is a SCSI SCRIPTS fetch. No firm­
ware interrupt is required (normally a mini­
mum of 80 microseconds in a system envi­
ronment). Nor is firmware required to re­
instruct a DMA controller.

There is a simple SCSI SCRIPTS model for
the scatter/gather situation. First, separate
the set of Block Move commands that are
required to process the user data and code the
SCSI SCRIPTS to call this user data section to
move data. Determine a maximum number of
pages per I/O and code one SCSI SCRIPTS
Block Move for each possible piece. At the
start I/O time, the logical I/O routine deter­
mines exactly how many block moves are
required and writes a return command over
the next SCSI SCRIPTS command after the
last required Block Move command. The
group of Block Move commands is called, the
correct number of moves is performed, and
the return is executed. At the completion of
the I/O, the return is overwritten with a
Block Move to prepare the set of Block Move
commands for the next I/O.

NCR 53C720 Programmer's Guide

With the read/write capability of the 53C720,
another solution exists for the scatter/gather
problem. The following SCSI SCRIPT uses
the increment register feature and the table
indirect feature to update the address and
count values in the chip's registers. By fetch­
ing these values indirectly and adding 8 to
the Data Structure Address DSA register each
time through the loop, the SCRIPT can
continue to fetch user data from various
locations. The actual SCRIPT is:

Loop:

l1:

MOVE from ADDR when DATA_OUT
; Perform the move

MOVE DSA (0) +8 to SFBR
CLEAR CARRY

; Increment to the next DSA entry
JUMP L 1 IF NOT CARRY

; Check for Wraparound
MOVE DSA(1)+ 1 to DSA(1)

; handle a one-byte overflow

MOVE SFBR to DSA(O)
; update the DSA register

JUMP rel(Loop) when DATA_OUT
; repeat until a phase change

This SCRIPTS algorithm allows for a large
number (8192) of Data Structure Table en­
tries in the scatter/gather list. An alternative
to simply waiting for a phase change is to use
a counter in the loop and exit on zero. To
allow for disconnects in the loop, save the
Data Structure Address (DSA) register value
when processing the disconnect message.

The 53C720 can process scatter/gather
requests in a very simple manner and simul­
taneously, dramatically reduce I/O overhead.

5-1

Chapter 5 SCSI SCRIPTS Use of Scatter/Gather

Notes

5-2 NCR 53C720 Programmer's Guide

Chapter 6

SCSI SCRIPTS for an Initiator and Target

SCRIPTS for the Initiator Role
;===

Definition area INITIATOR ROLE
;========================--=====================--========================

ABSOLUTE device = OxOOO
ABSOLUTE sendmsg = Ox008
ABSOLUTE rcvmsg = OxOl0
ABSOLUTE cmd adr = Ox018
ABSOLUTE data-=adr = Ox020

; Target Device id offset in the Data structure
; Send message offset for count and address
; Receive message offset for count and address
; SCSI command offset for count and address
; User data buffer offset for count and address

ABSOLUTE ok = OxOffOO ; No ErrCJr - good I/O
ABSOLUTE check cond = OxOfffe ; SCSI status returned is check condition.
ABSOLUTE -busy = OxOfffd ; SCSI status returned is busy
ABSOLUTE reserved = OxOfffc ; SCSI status returned is reservation conflict
ABSOLUTE bad_status = OxOfffb ; SCSI status returned is unknown

ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE

errl = OxOffOl
err2 = OxOff02
err3 = OxOff03
err4 = OxOff04
err5 = OxOff05
err6 = OxOff06
err7 = OxOff07
err8 = OxOff08
err9 = OxOff09
errlO = OxOfflO
err 11 = OxOffll

errl2 = OxOffl2
errl3 = OxOffl3
errl4 = OxOffl4
err 15 = OxOffl5
errl6 = OxOffl6
errl7 = OxOffl7
err 18 = OxOffl8
errl9 = OxOffl9

err20 = OxOff20
err21 = OxOff21

err22 = OxOff22
err23 = OxOff23
err24 = OxOff24
err25 = OxOff25
err26 = OxOff26

; Error - not message-out after selection
; Error - unexpected SCSI phase before command phase
; Error - unexpected SCSI phase after a command transfer
; Error - not msg-in phase after status phase
; Error - unexpected phase after a data transfer
; Error - unexpected msg-in phase before command phase
; Error - extended msg present before a command phase
; Error - save data pointers before a command phase
; Error - disconnect before command phase
; Error - save data pointers after the command phase
; Error - unexpected msg after command phase
; Error - extended message present after the command phase
; Error - disconnect after a command phase
; Error - save data pointers after a data transfer
; Error - unexpected message after a data transfer
; Error - extended message after a data transfer
; Error - disconnect after a data transfer
; Error - Message-in not received after reselection
; Error - Data -in phase after reselection and id msg rcvd
; Error - Data-out phase after reselection and id msg rcvd
; Error - Msg -i n phase after reselection and id msg rcvd
; Error - Status phase after reselection and id msg rcvd
; Error - Msg-out phase after reselection and id msg rcvd
; Error - Unknown phase after reselection and id msg rcvd
; Error - Selected as a target
; Error - Unexpected message rcvd instead of command

complete

ENTR Y start_up ; SCSI I/O entry point. This address must be loaded into the
; 53C720 before initiating a SCSI I/O.

NCR 53C720 Programmer's Guide 6-1

Chapter 6 SCSI SCRIPTS for an Initiator and Target

; SCRIPTS AREA

.*********************************** ,
;This is the entry point for a SCSI 1/0
.*********************************** ,

start_up:
SELECT ATN FROM device, PASS(&Resel)

JUMP REL(end), WHEN STATUS

JUMP REL(cmd-phase), IF CMD
INT err!, IF NOT MSG_OUT

; This is the SCRIPT for a standard SCSI I/O
; First, select the device with attention and go
; to an alternate reselect address. If a
; reselection or selection happens before the
; selection can execute, the chip will change
; roles if required.
; If the next phase is status, go to end. Wait
; for valid phase before performing the
; comparison.

; If not msg -out phase, interrupt. Do not wait
; for phase .

. ** ,
; Label for retry loop to res end id msg on error
.** ,

retry:
MOVE FROM sendmsg, WHEN MSG_OUT

JUMP REL(retry), WHEN MSG_OUT

JUMP REL(end), IF STATUS
JUMP REL(msgl), IF MSG_IN

INT err2, IF NOT CMD

cmd-phase:
CLEARATN
MOVE FROM cmd_adr, WHEN CMD
JUMP REL(msg2), WHEN MSG_IN

; The expected case after selection is id
; message-out to the device. Move the id
; message from the send message buffer.
; Do not wait for a phase change.
; If the target remains in the message-out phase
; after the initial messages have been sent to the
; device, retransfer the messages. Wait for a
; valid phase (req asserted).
; Now check for all expected phases.
; Process a message-in before the command
; phase here
; If it is not status, msg-in, or command, stop
; Interrupt if not command phase

; Transfer command bytes to the host
; Determine what is coming next. Is there a
; message-in after the command phase?

JUMP REL(end), IF STATUS ; Status phase after the command?
JUMP REL(input_data), IF DATA_IN; Check for data-in phase
JUMP REL(output_data), IF DATA_OUT ; Is this a data-out phase?
INT err3 ; Error - an unexpected phase after a command

; t,ransfer

6-2 NCR 53C720 Programmer's Guide

SCSI SCRIPTS for an Initiator and Target Chapter 6

.******************************* ,
; Label to process the Itatus phase
.******************************* ,

end:
MOVE FROM status_adr, WHEN STATUS ; Move the status byte in to the buffer area

INT check_cond, IF Ox02
INT busy, IF Ox08
INT reserved, IF Ox018
INT bad_status, IF NOT OxOO
INT err4, WHEN NOT MSG_IN

MOVE FROM rcvmsg, WHEN MSG_IN

INT err26, IF NOT OxOO

MOVE SCNTL2 &Ox7F TO SCNTL2
CLEARACK

WAIT DISCONNECT
INTok

; NOTE: an alternative at this point is to
; determine what the status byte is and jump
; to aset of routines that will process the
; command complete message, physical
; disconnect, and then interrupt with the
; appropriate status byte error value. Here,
; the algorithm interrupts if good I/O is not
; the status byte returned by the target.

; Was there a check condition
; Is the device busy
; Is the device reserved
; Interrupt for unknown state
; Status value is good I/O, so process the
; command complete Stop if the next phase is
; not message-in.
; Message-in if here. It should be a command
; complete.
; Process the message if it is not a command
; complete

; At this point, instead of interrupting, the
; best course would be to examine the
; message received and react, or to interrupt
; with a mor specific error code.

; Allow the disconnect to occur.
; Command complete was received,
; acknowledge it
; A physical disconnect should be next
; Good I/O if here

.*** ,

output_data:

; This is the data-out lection of the algorithm
.*** ,

MOVE FROM data_adr, WHEN DATA_OUT

NCR 53C720 Programmer's Guide

; If a scatter/gather requirement exists, then
; this section can be multiple block moves to
; allow for multiple segments of data. Also,
; this section could actually be a jump to a
; group of block moves that can be patched
; appropriately at start I/O for the number of
; segments needed. The overhead between
; segment block moves is 500-600
; nanoseconds.

6-3

Chapter 6

check out:

SCSI SCRIPTS for an Initiator and Target

.*** ,
; Process what comes after the data transfer
.*** ,

JUMP REL(end), WHEN STATUS
JUMP REL(msg3), IF MSG_IN

; Status phase is the normal next step
; Is there a message-in phase after data
; transfer

INT errS ; Unexpected phase detected after data
; transfer

.** ,
; This is the data-in phase portion of the algorithm
.** ,

MOVE FROM data_adr, WHEN DATA_IN

; If a scatter/gather requirement exists, then this
, section can be multiple block moves to allow
; for multiple segments of data. Also, this
; section could actually be a jump to a group of
; block moves that can be patched appropriately
; at start I/O for the number of segments needed.
; The overhead between segment block moves is
; 500-600 nanoseconds.

JUMP REL(check_out) ; Go check the phase after data-in

.*** ,
; Process a message-in before the command phase
.*** ,

msgl:
MOVE FROM rcvmsg, WHEN MSG_IN
JUMP REL(ext_msgl), IF OxOl
INT err8, IF Ox02

JUMP PASS(&disc-proc), IF Ox04
INTerr6

ext_msgI:
MOVE SCNTL2 &Ox7F TO SCNTL2
CLEARACK
MOVE FROM ext_buf, WHEN MSG_IN

INTerr7
discI:

MOVE SCNTL2 &Ox7F TO SCNTL2
CLEARACK
WAIT DISCONNECT
INTerr9

6-4

; Is this an extended message?
; Is this save data pointers?
; Interrupt with ACKset.
; Is this a disconnect?
; Interrupt if any other message with ACK set
; Message is an extended message
; Allow the disconnect to occur.
; Acknowledge the message just received
; Move two more messages into the buffer to get
; the extended message length and opcode for
; the processor to have available on the interrupt.
; Interrupt the processor
; Message is a disconnect
; Allow the disconnect to occur.
; Acknowledge the disconnect message
; Disconnect before the command if here
; Interrupt the processor on a disconnect

NCR 53C720 Programmer's Guide

SCSI SCRIPTS for an Initiator and Target Chapter 6

.*********************************** ,
; Message-in after the command phase
.*********************************** ,

msg2:
MOVE FROM rcvmsg, WHEN MSG_IN
JUMP REL(ext_msg2), IF OxOl
INT errlO IF Ox02

JUMP REL(disc2), IF Ox04
INT errll

ext_msg2:
MOVE SCNTL2 &Ox7F TO SCNTL2
CLEARACK
MOVE FROM ext_buf, WHEN MSG_IN

INTerrl2
disc2:

MOVE SCNTL2 &Ox7F TO SCNTL2
CLEARACK
WAIT DISCONNECT
INT err13

; Is this an extended message?
; Is this save data pointers?
; Interrupt with AC set.
; Is this a disconnect?
; Interrupt if any other message with ACK set
; Message is an extended message
; Allow the disconnect to occur.
; Acknowledge the message just received
; Move two more messages into the buffer to get
; the extended message length and opcode for
; the processor to have available on the
; interrupt.
; interrupt the processor
; Message is a disconnect
; Allow the disconnect to occur.
; Acknowledge the message
; Disconnect after the command if here
; Interrupt the processor on a disconnect

.************************************** ,
; Message-in after the data transfer phase
.************************************** ,

msg3:
MOVE FROM rcvmsg, WHEN MSG_IN
JUMP REL(ext_msg3), IF OxOl
INT errl4, IF Ox02

JUMP PASS(&disc_PROCl), IF Ox04
INT err15

ext_msg3:
MOVE SCNTL2 &Ox7F TO SCNTL2
CLEARACK
MOVE FROM ext_buf, WHEN MSG_IN

INT err16
disc3:

MOVE SCNTL2 &Ox7F TO SCNTL2
CLEARACK
WAIT DISCONNECT
INT errl7

NCR 53C720 Programmer's Guide

; Is this an extended message?
; Is this save data pointers?
: Interrupt with ACKset.
; Is this a disconnect?
; Interrupt if any other message with ACK set
; Message is an extended message
; Allow the disconnect to occur.
; Acknowledge the message just received
; Move two more messages into the buffer to get
; the extended message length and opcode for
; the processor to have
; available on the interrupt.
; Interrupt the processor
; Message is a disconnect
; Allow the disconnect to occur.
; Acknowledge the message

. ; Disconnect before the data transfer if here
; Interrupt the processor on a disconnect

6-5

Chapter 6

resel adr:

SCSI SCRIPTS for an Initiator and Target

.** ,
; This is the section of code to process a reselect or select
; when a select I/O command was eltecuted
.** ,

WAIT RESELECT select_adr ; Wait for reselect as the most probable event
; The initiator was reselected, so process the INT err18, WHEN NOT MSG_IN
; possibilities

MOVE FROM rcvmsg, WHEN MSG_IN ; id message-in is the only expected SCSI phase
; here

; At this point, if the system integrator knows
; the possible SCSI device id's possible, the
; algorithm can compare for each known id and
; react accordingly. An I/O could even be
; restarted if the SCSI bus configuration is
; exactly known.

INT err19, WHEN DATA_IN
INTerr20,IF DATA_OUT
INT err21, IF MSG_IN

; Data-in phase after reselection and id transfer
; Data-out phase after reselection and id transfer
; Message-in phase after reselection and id
; transfer

INT err22, IF ST A TUS
INT err23, IF MSG_OUT

; Status phase after reselection and id transfer
; Message-out phase after reselection and id

INTerr24

select_adr:
INTerr25

6-6

; transfer
; Unknown phase after reselection and id
; transfer

.** ,
; The chip was in an initiator role, but it has been selected by
; another device on the SCSI bus. It is now in the target role.
; One could implement the complete SCSI SCRIPTS target
; algorithm here, or simply interrupt with an error message .
. ** ,

NCR 53C720 Programmer's Guide

SCSI SCRIPTS for an Initiator and Target Chapter 6

SCRIPTS for the Target Role
;==
,-

Definition Area TARGET ROLE

.******************************** ,
; The following are variable data values provided
; e:l:ternal to the compiler and resolved at run-time
.******************************** ,

ABSOL UTE initiator = OxOOO
ABSOLUTE msg_buf = Ox008
ABSOLUTE cmd_buf = OxOlO
ABSOLUTE msg_buf2 = Ox018
ABSOLUTE data addr = Ox020
ABSOLUTE stat_adr = Ox400

; Buffer offset for the initiator id
; offset for count and address
; Command byte offset for count & address
; Input message offset for count and address
; user data buffer offset for count and address
; Status buffer offset for count and address

ABSOLUTE
ABSOLUTE

ABSOLUTE

ABSOLUTE

ABSOLUTE

ABSOLUTE

ABSOLUTE
ABSOLUTE

.***************************** ,
; Absolute values are Itored in DN AD Register
; for purposes of interrupt processing
.***************************** ,

errod = OxOffOl
error2 = OxOff02

error3 = OxOff03

error4 = OxOff04

errorS = OxOffOS

error6 = OxOff06

error7 = OxOff07
error8 = OxOff08

; A TN is on after the id message is sent in to the
; initiator
; ATN is on after the command bytes are sent to
; the initiator
; Atn is on after the disconnect message is sent
; to the initiator
; ATN on after id message sent to the initiator
; after a reselect operation is complete
; A TN is on after user data is sent into the
; initiator
; A TN is on after the status byte is sent
; A TN is on after the command complete
; message is sent

; Entry Point for the target role

NCR 53C720 Programmer's Guide 6-7

Chapter 6

start_up:

SCSI SCRIPTS for an Initiator and Target

; SCRIPTS AREA

.*** ,
; This is the entry point for a SCSI target 1/0
.*** ,

WAIT SELECT rel(resel_adr) ; First wait for a selection by the initiator and
; jump to the

retry_id:
MOVE FROM msg_buf, WITH MSG_OUT

JUMP Rel(id_atn), IF ATN

continue id:
MOvE FROM cmd_buf, WITH CMD

JUMP REL(cmd_atn), IF ATN

continue_cmd:

MOVE FROM msg_buf2, WITH MSG_IN
JUMP REL(disc_atn), IF ATN

continue disc:
DISCONNECT

; alternate address if reselected.
; Move the id message into the message buffer

; If the initiator sets ATN, go process that
; condition

; Move the command bytes in to the target
; buffer
; Note that though a one is in the command
; count field, the chip will automatically
; transfer in the correct number of bytes
; based on the SCSI command opcode.
; If the initiator sets A TN, go process that
; condition

; In this algorithm, an automatic disconnect is
; assumed after the SCSI command is received
; into the buffer. However, the first byte of the
; command may be compared against a set of
; opcode values to determine if this specific
; command should disconnect or not.

; Send in the disconnect message
; If the initiator sets ATN, go process that
; condition

; Now get off the bus

.************************************* ,

resel_in:

; Entry point for rei electing the initiator
.************************************* ,

RESELECT FROM initiator REL(resel_adr) ; Perform the reselect and jump to resel_adr if a
; reselection happens while trying to do the
; reselect

retry _resel: ; Move the reselect id message into the initiator
MOVE FROM msg_buf2, WITH MSG_IN
JUMP REL(resel_atn), IF A TN ; If the initiator sets ATN, go process that

; condition
continue_resel:

MOVE FROM data_adr, WITH DATA_IN ; Now move the data bytes into the initiator

6-8 NCR 53C720 Programmer's Guide

SCSI SCRIPTS for an Initiator and Target Chapter 6

JUMP REL(data_atn), IF A TN ; Note that this could easily be changed to a data
; out command by patching the phase section of
; the command, or using a jump command that

con tinue_data:

; can be patched to transfer control to a
; section of code that is either the data-out or
; data-in algorithm. If the initiator sets ATN,
; go process that condition.

.*** ,
; If a scatter/gather requirement exists, then this data
; transfer section can be mUltiple block moves for the
; multiple segments of data. Also, the section could be a
; jump to a group of block moves that had been patched
; appropriately at start I/O for the exact number of
; segments desired •
. ** ,

MOVE FROM stat_adr, WITH STATUS
JUMP Rel(stat_atn), IF ATN

; Now move in the status byte
; If the initiator sets A TN, go process that
; condition

continue_stat:
MOVE FROM msg_buf2, WITH MSG_IN
JUMP REL(cc_atn), IF ATN

; Move the command complete message-in
; If the initiator sets A TN, go process that

continue_cc:
DISCONNECT

resel_adr:
INT error!

; condition

; Now physically disconnect

~** ,
; If the wait for select or reselect fails, this is the label
; for the alternate address
.*** ,

NCR 53C720 Programmer's Guide 6-9

Chapter 6 SCSI SCRIPTS for an Initiator and Target

.*** ,
; If the initiator turns on ATN after the id message comes
; out, this is the code for processing what comes next .
. *** ,

id_atn:
MOVE FROM msg_buf WITH MSG_OUT

INTerror2

cmd_atn:
MOVE FROM msg_huf, WITH MSG_OUT
INTerror3

disc_atn:
MOVE FROM msg_buf, WITH MSG_OUT
INT error4

resel_atn:
MOVE FROM msg_buf, WITH MSG_OUT
INTerror5

data_atn:
MOVE FROM msg_buf, WITH MSG_OUT
INT error6

stat_atn:
MOVE FROM msg_buf, WITH MSG_OUT
INT error?

cc_atn:
MOVE FROM msg_buf, WITH MSG_OUT
INT errorS

6-10

; Move the message byte from the initiator out
; to the message buffer

; At this point, the user may decide to use scripts
; to program at a very detailed level or simply
; interrupt with one user error code. Scripts may
; be used to check for:

• no-op message - ignore and jump to
continue

• initiator detected error - jump to
retry

• message parity error - jump to retry
• extended message - as a minimum,

get the opcode and byte count before
interrupting the processor

; All the A TN subroutines have the same basic
; function

NCR 53C720 Programmer's Guide

Chapter 7

Unique Initiator Sequences for the 53C720

Disk Drive Initiator Sequence

Arbitrate and Select with A TN
Transfer the id message
Transfer the command bytes
Accept the message-in - DISCONNECT
Reselected - id message-in
Data transfer of 1 - 4 user data blocks
Accept SCSI status byte, COMMAND

COMPLETE message and wait for
bus free

53C720 Strengths in the Disk Drive
Environment
• A large number of commands are typi­

cally issued to the disk, and the 53C720
offers very little SCSI bus overhead and a
minimum of time to initiate an 1/0 in the
host computer.

• The 53C720 can continue to the next
scheduled SCSI 1/0 within SCRIPTS with
no interrupt to the external processor for
the following:

• Compare for Good 1/0 status byte
• Interrupt if non -zero
• Jump to the next scheduled 1/0 if the

status is zero (Good 1/0)
• Use the interrupt on the fly (INTFL Y)

instruction to signal the system proces
sor that the current 1/0 is complete.

• The 53C720 can mask certain disk
idiosyncrasies.

For example, if the disk does a SAVE
DATA POINTERS before the first DIS­
CONNECT message after the command
bytes are transferred, the 53C720 can be
pro~rammed to absorb this message with
no Interrupt to the external processor.

• The 53C720 can process a disconnect
message from the disk without interrupt­
ing the system processor. See the Chapter
"Multi-Tasking 1/0 Using SCSI
SCRIPTS" for a complete description.

NCR 53C720 Programmer's Guide

• Because there can be a requirement for a
very high performance system disk
driver, a minimal algorithm can be devel­
oped that requires only a small number of
SCSI SCRIPTS. Other disks can use more
complex SCRIPTS. The designer can
decide where to put the 1/0 logic (in
firmware or in SCRIPTS) using this
archi tecture.

Tape Drive Initiator Sequence

Arbitrate and Select with A TN
Transfer the id message
Transfer the command bytes
Accept the message-in - DISCONNECT
Reflected - id message-in
Data transfer of 16K of user data
Accept the message-in - SA VE DATA

POINTERS followed by DISCON­
NECT.

Reselected - id message-in
Data transfer of 16K of user data

*
*
*

Reselected - id message-in
Data transfer of 16K of user data
Accept SCSI status byte,

COMMAND COMPLETE message
and
wait for bus free

Ea~h disconnect (on a 16K boundary) causes
an Interrupt to the external processor if there
are multiple SCSI devices on the SCSI bus.
Reselect causes an interrupt in the general
case. If this were a single device bus or the
system was designed to perform tape only
activity on the SCSI bus during backup, then
the 53C720 could be programmed specifically

. for this system. Knowing the tape drive was
alone on the bus, the 53C720 could be pro­
grammed to:

1. Absorb the SAVE DATA POINTERS.

2. Execute a SCRIPTS command of wait
for reselect.

7-1

Chapter 7

3. Process the SCSI reselect sequence
with no interrupts.

4. Initiate the next 16K user data block
move.

5. If there is ever a restore pointers, the
53C720 interrupts to allow the exter­
nal processor to restart the tape 1/0.

The 53C720 allows systems integration
designs using the SCSI bus with no perfor­
mance impact to 1/0 throughput. See the
Chapter "SCRIPTS SCSI Use of Scatterl
Gather" for another possible algorithm for
large blocks of data that use a SCSI SCRIPTS
loop.

SCSI Character Oriented Device in the
Initiator Role
A SCSI port can be dedicated by the system
designer for terminal control. First, a SCSI
read command is transferred to the target
terminal controller. A stream of user data
typed in at the terminals, pI us the inserted
control bytes in the stream comes back to the
initiator. A SCRIPT can be written which
looks at the byte stream coming in and sends
line control bytes to the processing buffer
and data bytes to the data buffer. When
certain control bytes are received, the 53C720
can terminate the READ operation and
generate a unique interrupt to the external
processor.

Writes to the terminal controller can begin
automatically when a certain read threshold
is reached. The 53C720 can process the
READ command cleanup, jump to the
WRITE command portion of the SCRIPTS,
and automatically start sending data to the
terminal controller. The 53C720 can be used
in unusual areas to offload any processor and
improve performance.

7-2

Unique Initiator Sequences for the 53C720

NCR 53C720 Programmer's Guide

Chapter 8

Special SCSI SCRIPTS Situations

Transferring Large Blocks of User Data

Case 1
An unexpected Phase change occurs in the
middle of a data transfer.

The Block Move command was developed to
transfer large amounts of user data, but
anomalies such as an unexpected phase
change after transferring 16K of the data,
must be handled by the processor.

Data may be left in the chip on a data-out
phase, so an interrupt is required to:

1) Clean up the chip on Data-Out Phase
using the external processor

2) Change the data address and byte
count in the active SCSI SCRIPTS or
the Indirect Data Table, using
SCRIPTS on the processor

3) Receive the message byte via SCSI
SCRIPTS and make the appropriate
changes for the subsequent reselect.

After the message byte has been received,
verify that the message byte is a SAVE DA T A
POINTERS (if not, interrupt the external
processor, or process that message), and jump
to the SCSI SCRIPTS entry point that will
resume the data transfer previously inter­
rupted, or received a DISCONNECT message

Case 2
The expected burst size is known ahead of time
and is extremely predictable.

At systems integration time, set this burst
size, so that each Block Move command can
equal the burst size. The SCSI SCRIPTS logic
becomes the following:

• Block Move of burst size.

• Call subroutine (after waiting) if the

NCR 53C720 Programmer's Guide

•

next phase is not a data phase. (The
subroutine should process the SAVE
DATA POINTERS message in and
return.)

Block Move of burst size

• Call subroutine (after waiting) if the
next phase is not a data phase.

Using this logic, all phase changes are as­
sumed to come on a Block Move command
boundary, so no bytes will be left in the chip
when a phase change occurs. There is a
small penalty for fetching the call subroutine
command (500 nanoseconds per SCSI
SCRIPTS). But a system interrupt (mini­
mum 80 microseconds) will be saved by
avoiding the extra interrupt.

Case 3
The expected burst size is NOT known ahead
of time.

Use the same logic as in Case 2, but make
the Block Move byte count equal to the
device block size. The assumption is that a
phase change will come only on the device's
block boundary. The SCSI SCRIPTS fetch­
ing overhead depends on the ratio of the
device block size to the burst size. However,
an extra 10 microseconds is small when
compared to the external processor interrupt
time of at least 80 microseconds. Refer to
Chapter 7 for another way of writing the
SCSI SCRIPTS to implement CASE 3.

Note that the overall penalty of this situation
is not great for many SCSI devices, because
the unexpected phase change is a low prob­
ability situation. When the interrupt occurs,
the external processor decodes the chip

. status (two register reads) and then loads in
the appropriate SCRIPT address for han­
dling data -in or data -out.

8-1

Chapter 8

Processing a SAVE DATA POINTERS
Message

Case 1
A message recei'Ded during a Block MO'De
command offers 2 possibilities:

1. Data-in phase

2. Data-out phase

Data-in Phase
During the data -in phase, all bytes in the
53C720 are sent to the DMA core and into
system memory. When no bytes are left in
the chip, all execution stops and an interrupt
is generated to the external processor. To
save the 1/0 state, update the current SCSI
SCRIPTS with the memory address and byte
count located in the 53C720. Save a pointer
to this SCSI SCRIPTS in the system 1/0
structure so that the 1/0 can easily be re­
scheduled. The chip's SCSI SCRIPTS pointer
value is actually the current SCSI SCRIPTS
address plus eight. So the saved value must
be the SCSI SCRIPTS pointer value minus
eight.

Data-out Phase
If the phase is data-out, the 53C720 is full of
data bytes going out to the SCSI bus. Execu­
tion stops after the phase change and an
interrupt is generated to the external proces­
sor. At that time, the processor should calcu­
late the number of bytes in the chip, add this
value to the chip's byte count, subtract from
the chip's memory address pointer, and store
these values in the current SCSI SCRIPTS. A
pointer to the SCSI SCRIPTS (minus eight)
must be saved in some 1/0 structure for
rescheduling. This saved value is the entry
point for resuming the data transfer portion
of the 1/0, depending on the outcome of the
phase change.

8-2

Special SCSI SCRIPTS Situations

Case 2
A message comes in on a Block M O'De com­
mand boundary.

If no test for data phase was placed be­
tween Block Move commands, then the
53C720 will fetch the next command and
start processing it. When the phase change
actually occurs, the 53C720 may have data­
In it, so the processing is exactly the same
as CASE 1 above.

If a wait and test for data phase command
is inserted between each Block Move
(burst size is known or the block size is
used in each Block Move command), then
a SCRIPT is executed to save a pointer to
the next Block Move command. A SCSI
SCRIPTS to receive message bytes is ex­
ecuted, and the 110 can be resumed by
reloading the saved SCSI SCRIPTS pointer.

NCR 53C720 Programmer's Guide

Chapter 9

Multi-Tasking 1/0 Using SCSI SCRIPTS

Multi-Threaded I/O Using SCSI
SCRIPTS
A design goal of the 53C720 is to allow the
user to perform multi -threaded I/O with no
external processor intervention.

Four distinct parts exist in a multi-threaded
SCSI SCRIPTS algorithm:

• Main SCSI SCRIPTS

• Scheduler SCSI SCRIPTS

• Disconnect SCSI SCRIPTS

• (Reselect) Resume SCSI SCRIPTS

All are involved during multi-threaded I/O.
Some of the command areas must be written
by the 53C720; thus, some script code must
be stored in random access memory (RAM).

Main SCSI SCRIPTS
Only one copy of this script is required to
service any number of outstanding I/0s.
This script performs the standard operations
associated with a SCSI command (for ex­
ample, transfer messages, commands, data,
and so forth).

A context switch from one 1/0 to another is
performed by loading the Table Indirect
Data Structure Address into the Data Struc­
ture Address (DSA) register and then load­
ing the SCSI SCRIPTS entry point into the
53C720 (a JUMP instruction).

Note that the entry point address is loaded
with a simple transfer control (JUMP or
CALL) instruction. Because a SCSI
SCRIPTS Memory to Memory MOVE can
load the DSA address, and the chip can
perform a JUMP SCRIPT, the context
switch can easily start an 1/0 or begin a new
lID or switch to a different one. In the Main
SCSI SCRIPTS, numerous resume points
exist. When coding the algori thm, each
resume point must be identified as the script

NCR 53C720 Programmer's Guide

is coded. An answer to the question "If a
disconnect message arrived from the target,
where must the I /0 resume?" must be known
throughout the Main SCSI SCRIPTS. In the
following paragraphs, which discuss multi­
threaded 110, the importance of this major
point will become quite clear.

Scheduler SCSI SCRIPTS
This algorithm is executed after an 1/0
completes, or the target changes to message­
in phase and sends in a disconnect message,
suspending the current 1/0. In the general
case, there is an entry in the scheduler for
every possible I/O the system allows to be
outstanding to the SCSI bus, or one entry for
every Indirect Data Structure Table (that is,
one per 1/0 allowed by the operating sys­
tem). Each entry in the scheduler consists of
the following SCSI SCRIPTS:

or:

Move 4, memory _Address1, DSA
Jump entry_Point

move 4, memory_Address1, DSA
NOP

An 1/0 is scheduled when the system proces­
sor writes an entry to the Scheduler. The
53C720 driver routines must identify an
unused entry in the Scheduler SCSI SCRIPTS
and move a pointer to the data structure into
the appropriate memory address of the
unused entry. Then a JUMP command must
be written to the next line of code. When
the 53C720 has no more SCSI SCRIPTS to
execute for an 1/0, it will jump to the
Scheduler SCSI SCRIPTS. For a scheduled II
0, the value at a memory address will be
moved into the DSA register and then the
chip will transfer to the main SCRIPT entry
point. A NOP is then written to the jump
just taken so that the same 1/0 will not be
restarted by the 53C720 before it completes.
Because the system will not re-use the entry
until the lID is complete, the 1/0 runs until
completion. If there are no I/0s scheduled,
the 53C720 should interrupt or wait for
reselect if outstanding I/0s exist.

To conserve RAM space, there may be fewer

9-1

Chapter 9

entries in the Scheduler. Once the NOP is
written by the 53C720, the entry can be
reused. Then the number of entries is the
maximum number of 110's scheduled but not
started. After the Select with ATN SCRIPT,
the scheduler entry is no longer needed.
Using a MOVE memory instruction, a NOP
can be written to the scheduler entry just
executed, leaving it open for the system to re­
use.

Disconnect SCSI SCRIPTS
The target device can change phases on the
SCSI bus at any time to save state or to dis­
connect temporarily. If a MOVE command is
executing during a phase change and the
byte count is not zero, an external interrupt
occurs. However, if the 53C720 has com­
pleted the move operation, no external
interrupt is required and the chip can handle
the phase change using SCSI SCRIPTS. To
automatically process this phase change, the
programmer must identify the resume points
In the SCSI SCRIPTS as the algorithm is
being developed.

The disconnect routine assumes that the chip
is completely in the data indirect mode and
that an 1/0 data structure table exists for
each possible 1/0. Each data structure has
the following entries in RAM:

Address SCRIPT

-16 write synchronous values to 53C720

-8 Jump to the resume point

o Label: move 4, SCRATCH, Label-4

+8 Jump Scheduler

+ 16 I/O data structure values

The significance of these SCSI SCRIPTS will
become clear as the complete multi-threaded
SCRIPT is described as follows.

To implement the disconnect, determine the
necessary action if a disconnect message

9-2

Multi-Tasking I/O Using SCSI SCRIPTS

comes into the chip. Choose the SCSI SCRIPTS
label that should be jumped-to upon the subse­
quent reselect operation. The following SCSI
SCRIPTS illustrates this principle and how
several lines of extra code in the Main SCSI
SCRIPTS allows a save state upon receipt of the
disconnect message:

Jump resume1
; jump around the resume label

resume1_base:
; Place the resume address In TEMP

Call save_resume

resume1:
•

; DISCONNECT Message was just received
; resume1 Is the restart label

Jump resume1_base

As this area of the code was written, the label
resume! is recognized as the restart point for
SCSI disconnects. When the DISCONNECT
message is received, the chip transfers to one
statement before the resume point. A CALL
instruction at this address will place the address
of resume! into TEMP and transfer control to
save_resume. At this routine, the value in
TEMP is moved to SCRATCH with the follow­
ing SCRIPT:

ABSOLUTE TEMP = Oxde01 c

save_resume:
; Address of the resume point Is In
; TEMP

Move Memory 4, TEMP, SCRATCH

; the resume address Is now In
; SCRATCH

Next, the resume address must be written to
memory by the 53C720. At the address pointed
to by the DSA register is a Memory MOVE
command that moves the value (now the re­
sume point) into the second four bytes of the
JUMP command, eight bytes above. The next

NCR 53C720 Programmer's Guide

Multi-Tasking I/O Using SCSI SCRIPTS

step is for the SCRIPT to jump to the address
in the DSA register.

Move 4, DSA, TEMP
; Move contents of DSA to TEMP

Return
; now Return to the data structure

Note that a return SCRIPT simply jumps to
the address in the TEMP register. At this
address, the resume address is saved, and the
execution continues at the scheduler
SCRIPT. Now a SCRIPT is all set to begin a(
the correct resume point when the correct
reselect occurs.

Resume SCSI SCRIPTS
In SCSI terminology, the nexus is a combi­
nation of device id, logical unit number, and
queue tag val ue. Upon reselection, the
53C720 will decode the nexus, using COM­
PARE and JUMP SCSI SCRIPTS instruc­
tions. Upon reselection, the device id is in
the SFBR or optionally in the Longitudinal
Parity Register (SLPAR).

After a series of COMPARE and JUMP
. instructions, based on the unique nexus

value, the 53C720 will transfer to a unique
Memory MOVE command.

Move 4, address, DSA
Jump set_up

; DSA Reg Ister Is now correct

For each possible nexus allowed in the sys­
tem, there is one entry. "Address" points to
the memory location where the 110's data
structure address is kept. At power-up, the
value of address is initialized after all data
structures are allocated, and the addresses are
fixed in a nexus address table. There is not
necessarily a one-to-one correspondence
between possible II0s and possible nexus
values. However, if the values are not all
fixed the memory-to-memory MOVE in­
struction must be updated with the correct
address at start 1/0 rather than at power-up.
The system designer can decide how to
allocate based on requirements.

NCR 53C720 Programmer's Guide

Chapter 9

Before resuming the 1/0 execution, only one
more step is required. At the set_up routine,
DSA is moved to TEMP, and a return is
executed to the DSA pointer, minus 16.

set_up:

Move 4, DSA, TEMP
Move TEMPO ·16 to TEMPO
Return

At the data structure, minus sixteen is an
instruction that writes the synchronous offset
and period to the 53C720; there is then a
jump to the resume point.

Upon completion of an 1/0, the programmer
may want to signal the system processor by
one of several mechanisms allowed by the
53C720:

1. Execute an interrupt instruction.

2. Execute an interrupt on the fly.

3. Write a value to system memory.
Termination is unnecessary; yet the
processor must poll a software sema­
phore. With some periodic 1/0 timer
interrupt followed by a read of 1/0
status areas, this method can work
well.

4. Set the semaphore as in 3), but then
write to a user-defined pin (first on,
then off) to cause an external
interrupt. This allows completely
interrupt-driven 1/0 software.

5. Set the semaphore as in 3) and then
execute an interrupt on the fly.
Compared to a system interrupt,
fetching SCRIPTS is very fast. More
importantly, the programmer is in
control of the tradeoffs and can allow
the processor more or less work de­
pending on requirements. If system
bus latencies are large, then SCRIPTS
can also be stored in local memory on
a host bus adapter to eliminate the
fetch times. There are enough op­
tional features in the 53C720 to allow
optimization of many configurations.

9-3

Chapter 9 Multi-Tasking I/O Using SCSI SCRIPTS

Notes

9-4 NCR 53C720 Programmer's Guide

Chapter 10

SCSI SCRIPTS Machine Language Description

This chapter describes in detail each SCSI
SCRIPTS instruction. Normally, you will use
the SCSI SCRIPTS compiler as described in
the previous chapters for programming the
53C720, but for debugging purposes, this
chapter contains a detail description of each
instruction. Each instruction consists of a bit
diagram, a brief overview, and a description
of each field within the instruction.

The 53C720 implements four types of in­
structions; Block Move, I/O or ReadlWrite,
Transfer Control, and Memory Move. Bits
31-30 of the first word of each instruction
define the SCSI I/O Processor instruction
type. Depending on instruction type, bits
29-0 have different functions. For example,
if bits 31-30 = 01 (I/O or ReadlWrite), bits
29-27 becomes opcode bits defining either
I/O or ReadlWrite.

Block Move Instructions

I/O
CID

MSGI
Op Code

Table Indirect Addressing
Indirect Addressing (53C700 compatible)

o -Instruction Type - Block Move
0- Instruction Type - Block Move

Opcode Instruction Type

00 Block Move Instruction
01 I/O Instruction or ReadlW ri te
10 Transfer Control Instruction
11 Memory Move Instruction

Each instruction consists of two or three
32-bit words. The first 32-bit word is always
loaded into the DMA Command (DCMD)
register and the DMA Byte Counter (DB C)
register and the second 32-bit word is loaded
into the DMA SCRIPTS Pointer Save (DSPS)
register. The third word, only used by the
Memory Move instruction, is loaded into a
shadowed Temporary Stack (TEMP)
register.

24-bit Block Move byte counter

DSPS Register

NCR 53C720 Programmer's Guide 10-1

Chapter 10

Block Move Overview
The Block Move instruction (MOVE or
CHMOV) transfers data to(from) user
memory from(to) the SCSI bus. No distinc­
tion is made between user data and SCSI
information, such as status or message bytes.
A series of SCSI SCRIPTS is written to move
all types of data, with no requirement for
separate firmware to distinguish between
user and SCSI data.

Note that the data may come from any
memory address, so Scatter/Gather opera­
tions for user data are transparent to the chip
and the external processor. One simply
writes a separate Block Move for each piece
of data to be moved. Use the 64-byte DMA
data buffer to speed data transfers between
user memory and the I/O Processor. Syn­
chronous SCSI data-in transfers uses the 8-
byte FIFO.

When the 53C720 executes several Chained
Move (CHMOV) instructions and one ends
on an odd byte boundary, the 53C720 tempo­
rarily stores the residual byte. It then takes
the first byte from the subsequent CHMOV
or MOVE instruction and line it up with the
residual byte in order to complete a wide
transfer and maintain a continuous data flow
on the SCSI bus.

Note: The possible fJalues for each field are
gifJen in binary.

Block Move Instruction
(Fir.t SCRIPTS Word)

Bits 31-30 Block Move (00)
An instruction type of 00 equates to a Block
Move.

Bit 29 Indirect data address flag

Bit 29 - 0 Direct Addrelling

SCSI data or user data is moved to (from) the
32-bi t data start address for the Block Move.
The value is loaded into the chip's address
register and incremented as data is trans­
ferred.

10-2

SCSI SCRIPTS Machine Language Description

Bit 29 -1 Indirect Addrellmg

The 32-bit SCSI data or user data start ad­
dress for the Block Move is the address of a
pointer to the actual data buffer address.
The value at the 32-bit data start address is
loaded into the chip's DSPS register via a
second long word (four-byte transfer across
the host computer bus).

This option implies three DMA long word
transfers, rather than two transfers. Once
the data buffer address is loaded, it is ex­
ecuted as if the chip were in the direct mode.
This indirect feature allows specification of a
table of data buffer addresses. Using the
NCR SCSI SCRIPTS compiler, the table
offset is placed in the script at compile time.
Then at the actual data transfer time, the 32
bit address is fetched from memory and data
is transferred from this address. This allows
the logical I/O driver to build a structure of
addresses for an I/O rather than treating
each address individually.

Bit 28 Table Indirect Field

Bit 28 - 0 Table Direct Mode

SCSI or user data is moved as described
previously. This option allows compatibility
with existing 53C700/710 SCSI SCRIPTS.
Bit 28 -1 Table Indirect Mode

The 32-bit start address is treated as a 24-bit
signed value. After the instruction is moved
into the 53C720, the 24 bits are added to the
Data Structure Address (DSA) register to
form a 32-bit physical address.

From this new address, the byte count (24
bits of count, plus 8 bits of high-order zeros),
and the Data Buffer Address (32 bits of
address) are fetched.

There are several programming implications
of-this feature.

First, a standard SCSI data structure can be
designed with values at predefined offsets.
The SCSI SCRIPT does not require the
actual 32-bit address or 24-bit count to be in
the SCRIPT itself. At the start of the an I/O,

NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Description

once the actual data structure is built, no
more firmware intervention is required
except loading the data table base address
into the DSA register.

Second, the SCRIPT may be placed in a
PROM because no dynamic alteration is
required at the start of an I/O.

Finally, there is a requirement for only one
copy of the main SCSI SCRIPT for all I/O,
using a fast context switch to change to
another liD. Only the data structure is
unique to each I/O, and the SCRIPT is re­
entrant.

In the Table Indirect mode, the user must
have stored the byte count and data address
in memory formatted as shown in the illus­
tration following this description.

The data must begin on a 4-byte boundary
and must be located at the 24-bit signed
offset from the address contained in the
Data Structure Address register

long wordrl byte count
(24 bits)

00 xx xx xx

long wordn + byte address 1 yy yy yy yy
Addr Addr Addr Addr (32 bits)
3 2 1 0

If the data is written to memory, four bytes
at a time from the processor, then the user
need not be concerned about Big or Little
Endian mode because the low order byte will
automatically be at the low order address. If
this is not the case, the user must ensure that
the bytes are in the proper order (that is, low
order byte at address zero; next byte at
address 1, etc.)

Bit 27 Block Move Opcode
The SCSI mode (target or initiator) causes
the chip to react differently, with respect to
the phase line values. A primary difference
between modes is whether the SCSI phase
lines are sensed or driven. There are also
major differences between the two modes in
the instruction phase. Therefore, the Block
Move functions are described for each SCSI
mode - target and initiator.

NCR 53C720 Programmer's Guide

Chapter 10

Target Mode Bit 27 - 0 (MOVE)

The target mode allows DMA of user or SCSI
data First the chip determines whether the
previous instruction has completed, or a
res elect has occurred. The SCSI phase bits
are asserted to the value requested by the
Block Move instruction.

In all phases, the chip will react in one of
several ways, after the SCSI SCRIPT is
loaded.

If the Indirect Addressing bit is 1, the 53C720
fetches the Data Buffer Start Address from
the location pointed to by the DMA Next
Address (DSPS) register. This fetched value
is then stored in the DSPS, and execution
begins.

If the Table Indirect bit is 1, then the byte
count is fetched, and the buffer address is
fetched.

An address for these values in the Table
Indirect mode is generated using the 24-bit
signed value in the start address field of the
SCSI SCRIPT, and the value of the DSA
register.

Note: Setting both the Indirect Addressing
and Table Indirect bits to 1 causes an illegal
instruction.

If the instruction phase has been requested,
the chip will:

• Wait for the first byte received.

• Decode the byte to determine the number
of SCSI instruction bytes to receive

• Write the instruction length into the DBC
register.

An invalid group code value causes the chip
. to use the original value in the DBC register.

A zero value stops processing, creates an
interrupt with the first byte, and stops trans­
ferring instruction bytes.

• Transfer the correct number of bytes into
the address designated by the Block Move
instruction.

10-3

Chapter 10

If any phase (other than instruction) is
requested, the chip transfers the number of
bytes requested to(from) the address re­
quested. Should the initiator turn on atten­
tion at any time during the transfer, the
transfer will optionally complete, and then
an interrupt will occur.

Target Mode Bit 27 -1 (CHMOV)

Refer to the Chained Move Feature discus­
sion that follow.

Initiator Mode Bit 27 - 0 (CHMOV)

Refer to the Chained Move Feature discus­
sion that follow.

Initiator Mode Bit 27 -1 (MOVE)

In the initiator mode, this operation waits for
a valid phase and DMA data. After verifica­
tion that the previous instruction is complete
or a reselect has occurred, the chip waits for
a previously un serviced phase before execut­
ing the Block Move instruction. You can
program the 53C720 to pause until the SCSI
device it is communicating with goes to the
next phase, using the Transfer Control
instructions or the Move instructions.

A comparison is made between the expected
phase bits in the SCSI SCRIPTS and the
latched phase value. If the two values are
not equal, the chip issues a phase mismatch
interrupt and halts execution. This wait
capability is normally used to allow the
target to pace the chip in the initiator mode.
When a phase change is expected, the wait
synchronizes the expected phase with the
Block Move for that phase.

To eliminate the possibility of these inter­
rupts, use the compare and jump features to
verify the phase before issuing the Block
Move instruction.

Please refer to the previous discussion of
how the table indirect or indirect address
features cause the chip to load byte count
and buffer address.

Bits 26-24 SCSI Phase Lines
These three SCSI phase lines are used to
compare to the actual SCSI bus phase lines.
The SCSI bus phase value is latched when
REQ goes active. The value is stored in

10-4

SCSI SCRIPTS Machine Language Description

SSTATI (bit 2 through bit 0 - MSG, C/D, &
I/O). Before any data is moved, the chip
compares the expected value with the actual
value. The following table describes the
possible combinations and the corresponding
SCSI phase.

0 0 0 Data Out

0 0 1 Data In

0 1 0 Command

0 1 1 Status

1 0 0 Reserved Out

1 0 1 Reserved In

1 1 0 Message Out

1 1 1 Message In

Bits 23-0 Block Move Byte Count
This count value specifies the exact number
of data bytes to be moved between the SCSI
bus and system memory. As the SCSI
SCRIPTS instruction is decoded, the value is
moved into the DBC register. When the user
specified burst size of data is available in the
DMA FIFO, the SCSI I/O Processor will:

• Gain access to the system bus.
• Transfer the burst size.
• Decrement the byte counter (byte count).
• Increment the next address register (data

address).

The process will continue until the byte
count is zero. At that time, the next SCSI
SCRIPTS instruction will be fetched.

If the chip is in Table Indirect mode, the
byte count will be fetched from the memory
address formed by adding the Data Structure
Address CDSA) register to the 24-bit signed
value in the DSPS register.

NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Description

Block Move Instruction
(Second SCRIPTS Word)

Bits 31-0 Data Start Address
This value specifies the address of data -in
memory (direct mode), the address of the
actual address (indirect mode), or the 24-bit
signed offset from the Data Structure Ad­
dress register (Table Indirect mode). The
DNAD register is updated with the address
of the actual data and is incremented with
each chip DMA transfer.

The Block Move instruction is very powerful
for several reasons.

• No distinction is made between user data
and SCSI instruction, message, or status data.

• Data can be stored in any area of system
memory with little performance impact (one
instruction fetch) to switch data buffer
addresses.

• The indirect feature allows a table of
addresses in stead of requiring the address to
be in the instruction.

• A Scatter/Gather operation has little
performance impact, because the only over­
head is 500 nanoseconds (direct mode) or 750
nanoseconds (indirect mode). Thus, one
Block Move instruction for each segment of
data-in memory is economical with the SCSI
I/O processor architecture.

The Table Indirect mode allows both byte
count and Data Buffer address to be fetched
from system memory. Having this informa­
tion brought into the chip, in the indirect
mode, causes 8 more bytes of information to
be fetched and separates data from SCRIPTS
code.

In the initiator mode, the Block Move wait
feature is useful for high performance SCSI
SCRIPTS that do not compare for any unex­
pected phases before executing a Block
Move instruction. If the phase does not
match, then an external interrupt is gener­
ated.

NCR 53C720 Programmer's Guide

Chapter 10

F or the high performance SCSI SCRIPTS
algorithm, exceptions are abnormal and are
handled by the external processor. Nor­
mally, the Conditional Transfer instruction
(see I/O Instruction) compares actual to
expected phase before executing any Block
Move. The first Conditional Transfer in­
struction must have the "wait" option on (to
synchronize the instructions with the actual
bus phase), and each subsequent instruction
should have the "wait" option turned off.

With the Table Indirect mode, I/O data
structures can be fetched directly, eliminat­
ing one more level of system software trans­
lation normally required to start an I/O. In
this mode, SCRIPTS do not need to be
patched at the start of an I/O. Once a stan­
dard I/O descriptor has been built by a SCSI
SCRIPT, the 53C720 can effectively execute
the data structure without processor inter­
vention.

For another method of placing a 32-bit
address into this instruction, refer to the
PASS option available in the SCSI SCRIPTS
compiler.

Chained Move Instruction
Because Wide SCSI transfers two bytes at a
time across the SCSI bus, rather complicated
combinations of DMA and SCSI odd byte
transfers can be envisioned. Because the
53C720 supports arbitrary DMA Scatter/
Gather, all odd byte handling must be re­
solved inside the 53C720, by the DMA
portion of the chip. A Chained Move
SCRIPT instruction (CHMOV) was defined
to solve the odd byte problem. The following
examples illustrate the possibilities. The
following example is from a system memory
perspective.

10-5

Chapter 10

Host Memory SCSI Bus

00

04

OB OA 09 08 08

OF OE 00 OC OC

13 12 11 10 10

OB OA

00 OC

r~--32Bit8 ~I t+16Bi~

• Ten byte transfer with two five byte
pieces (two block moves of 5 bytes each)

• First four bytes of data go onto the SCSI
bus

• Fifth byte is saved in the chip, because a
Chained Move is used

• A second Move SCRIPT is fetched by the
53C720 (a regular Move)

• The sixth byte is match with the fifth and
sent out to the SCSI bus.

• The last 4 bytes are then sent out.

Note that if an odd byte count is used and
the move is not in a series of Moves then the
odd byte is sent to the SCSI target which
must disregard the last byte, based on the
original byte count associated with the SCSI
instruction.

10-6

SCSI SCRIPTS Machine Language Description

When moving data through the 53C720 and
odd byte transfers is a possibility (from the
SCSI bus or system bus) all but the last
instruction should be a Chained Move
instruction. The cases are:

1. Data-Out From System Memory.
Chained Moves handle all the intermediated
moves, by saving an odd byte in the chip
until the subsequent move is fetched. The
last move is not chained, so it will match up
with any byte in the chip at start of execu­
tion, but if one exists at the end, the byte will
be sent on to the target device, which knows
which bytes are good by the original byte
count.

2. Data-In To System Memory. Two odd
byte situations exist for this case. First, the
byte count in a Scatter/Gather list may be
odd, so a byte will be held in the chip until
the next move is fetched. This implies that a
Chained Move instruction must also be used
until the last Scatter/Gather list entry when
a non Chained Move must be used. On the
last move, there may be a SCSI odd byte
situation in which the target changes phases
to Message-In and sends the Ignore Wide
Residue Message. This non wide transfer
will cause the 53C720 to drop the odd byte
and continue executing SCSI SCRIPTS. The
SCSI SCRIPTS algorithm must be prepared
to verify that after an odd byte transfer that
the next step is a message of Ignore Wide
Residue from the target. In the target mode,
the message must be sent any time one byte
of user data is sent to the initiator (Data-In).
On a Data-Out phase, the target will use the
byte count to determine whether the last
byte is good data.

NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Description Chapter 10

1/0 Instructions

First 32-bit word of the 1/0 Inltructionl

SCSI 100
SCSIID 1

SCSI 102
Set/Clear ACKI

SetIClear Target Mode SCSI 103
Reserved

Reserved
Reserved

Reserved
Select with ATN

Table Indirect Mode
Relative Address Mode

Op Code bitO
Op Code bit 1

Op Code bit2
1 - Instruction Type - I/O

0- Instruction Type - I/O

1/0 Instructions Overview
The I/O instruction performs SCSI opera­
tions such as select and reselect. Each func­
tion defined is a direct instruction to the
SCSI portion of the 53C720. The functions
vary if the chip is in the target or initiator
mode, so that the functions are described
separately for each mode.

A new set of register-to-register operations
has been defined for this opcode.

NCR 53C720 Programmer's Guide

Set/Clear/Carry

1/0 Instructions
(First SCRIPTS Word)

3 2 1 0

Bits 31·30 110 Instruction (01)
An instruction type of 01 equates to an I/O
Instruction or ReadlWrite. Bits 29-27 define
I/O instruction or ReadlW rite operation.

Bits 29·27 110 Instruction Opcodes
Five functions are defined for target and
initiator mode, three are used in register
operations.

10-7

Chapter 10

Target Mode Biu 29-27 - 000 (Relelect)

The chip arbitrates for the SCSI bus and then
performs a reselection. Arbitration cont!nues
until the chip is successful, unless there IS a
bus initiated interrupt (e.g. selection). If
arbitration terminates because of a bus
initiated interrupt (selection or reselection)
the chip uses the 32-bit jump address value
to fetch the next instruction and begin
execution at that address.

If the relative addressing bit is 1, then the 24-
bit signed value in the DSPS register is used
as a relative displacement from the DMA
SCRIPTS pointer. If the instruction is suc­
cessful, then the next sequential instruction
is fetched and executed.

If the Table Indirect mode bit is 1, the 24-bit
signed value in the DMA Byte C:ount (DBC)
register is used as an offset relative to the .
Data Structure Address register. The SCSI
destination device ID, the synchronous
offset, the synchronous period, th~ wi~e/
narrow bit, and the clock conversion bits are
loaded from the formed address. Using this
indirect mode, the SCRIPTS program can set
the values stored with the I/O data structure
and not require the user to alter SCRIPTS
instructions at the start of an I/O. Upon
reselect, the synchronous offset, the synchro­
nous period, the clock conversion and the
wide/narrow bit can be set using register
writes, with no need to cause an external
interrupt.

Note that the target/initiator mode automati­
cally changes to reflect what is actually
occurring on the bus, unless bit 0 (COM) of
the DCNTL register is set.

Target Mode Bitl 29-27 - 001 (Dilconnect)

The chip physically disconnects from the
SCSI bus.

Target Mode Bitl 29-27 - 010 (Walt Select)

The chip waits for a SCSI selection by ~n:
other device on the SCSI bus. If the chip IS
already selected, then the next SCSI
SCRIPTS is fetched and executed. When a
bus initiated interrupt or reselect occurs, the
chip optionally changes to the initiator mode
and fetches the next instruction from the

10:'8

SCSI SCRIPTS Machine Language Description

address pointed to by the 32-bit jump
address, and continues execution.

If the relative addressing bit is 1, then the
24-bit signed val?e in the DMA ~ext.
Address register IS used as a relative diS­
placement from the DMA SCRIPTS
pointer.

Target Mode Bitl 29-27 - 011 (Set)

The chip asserts the latches in the SCSI
output data register, but nothing is driven
onto the SCSI bus. Consequently, this
function should not be used in the target
mode.
Target Mode Bitl 29-27 -100 (Relet)

The chip resets the latches in the SCSI
output data register, but nothing is reset on
the SCSI bus. Consequently, this function
should not be used in the target mode.

Initiator Mode Bitl 29-27 - 000 (Selection)

The chip arbitrates for the SCSI bus and
then performs a selection. Arbitration
continues until the chip is successful or a
bus initiated interrupt (e.g., reselection)
occurs. If arbitration terminates because of
a bus initiated interrupt (as a result of a
select or reselect), the chip uses the 32-bit
jump address to fetch the next instruction
and begin execution at that address.

If the relative addressing bit is 1, then the
24-bit signed val?e in the DMA ~ext.
Address register IS used as a relative diS­
placement from the DMA SCRIPTS
pointer.

If the instruction is successful, then the
next sequential instruction is fetched and
executed.

If the Table Indirect mode bit is 1, the 24-
bit signed value in the DMA Byte Cou~t
(DBC) register is used as an offset relative
to the Data Structure Address register. The
SCSI destination device ID, the synchro­
nous offset, the synchronous period, the
wide/narrow bit, and the clock conversion
bits are loaded from the formed address.
Using this indirect mode, the SCRIPTS
program can set the values stor~d with the
I/O data structure and not reqwre the user

NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Descri ption

to alter SCRIPTS instructions at the start of
an I/O. Upon reselect, the synchronous
offset, the synchronous period, the clock
conversion and the wide/narrow bit can be
set using register writes, with no need to
cause an external interrupt.

If the selection is successful, the next in­
struction is fetched and executed. If bit 24
(the attention flag) is set, then the chip
performs a select with attention.

Note: Because the chip automatically
changes modes and jumps to an alternate
address if the select or reselectfails, a bus
initiated interrupt can be processed by the chip
with no external interfJention. The alternate
jump address should contain the address of an
algorithm for a selection or reselection. In­
clude in the address a waitfor selection (tar­
get mode) instruction. That instruction's
alternate address is the res election algorithm
(initiator mode). The 53Cl20 can determine
exactly what happened and transfer control to
the appropriate SCSI SCRIPTS algorithm.
See Appendix C for another solution to this
problem.

Initiator Mode Bitl 29-27 - 001 (Wait
Dilconnect)

The initiator waits for a disconnect from the
SCSI bus. In the SCSI Control #2 register,
there is the disconnect bit that can be set to
allow any disconnect to be legal and not
cause an interrupt. If it is reset, every dis­
connect (loss of busy and select for the
specified bus free time) causes an interrupt.
The user must alter the disconnect bit when
legal disconnects are expected, and change it
back so any disconnect should be illegal. If
the SCSI bus goes bus free and then the
53C720 is reselected before the Wait for
Disconnect SCRIPT is fetched, an infinite
wait will not occur.

Initiator Mode Bitl 29-27 - 010 (Wait Relelect)

The initiator waits for a reselection from a
previously selected SCSI device. If the opera­
tion completes as expected, then the next
instruction is fetched and executed by the
53C720. However, if the chip is selected,
then the alternate jump address should
contain the address of an algorithm for a
selection. Include in the address a Wait for

NCR 53C720 Programmer's Guide

Chapter 10

Selection (target mode) instruction. That
instruction's alternate address is the error
recovery algorithm (for initiator mode -
reselect). The chip can determine exactly
what happened and transfer control to the
appropriate SCSI SCRIPTS algorithm.

If the relative addressing bit is 1, then the 24-
bit signed value in the DMA Next Address
register is used as a relative displacement
from the DMA SCRIPTS pointer. If the
instruction is successful, then the next se­
quential instruction is fetched and executed.

Note: With the 53C720 byte compare capa­
bility of the transfer control instruction, the
SCSI SCRI PTS algorithm can determine
which target reselected the initiator and can
jump to the correct algorithm for that par­
ticular target. SCSI SCRIPTS can be tuned
for the various types of targets available and
executed with no external processor interven­
tion. Examine the SCSI selector valid I D bit
(SSI D, bit 7) which automatically sets when
two SCSI I D's are detected on the bus during
a bus-initiated selection or reselection. The
encoded destination ID bits (SSID, bits 3-0)
contain the ID of the initiator, selecting the
53Cl20, or the I D bit of the target, reselecting
the 53C720. See« Multi-tasking I/O" for
more discussion of this subject.

Initiator Mode Bitl 29-27 - 011 (Set)

The chip asserts the SCSI bus bits requested
in the flags field. Currently four bits are
defined, allowing the SCSI ACK, target
mode, Arithmetic Carry and ATN bits to be
set. Bit 10 is for the Arithmetic Carry, bit 9 is
for target, bit 6 is for Acknowledge, and bit 3
is for Attention.

Initiator Mode Bitl 29-27 -100 (Relet)

The chip resets the SCSI bus bits requested
in the flags field. Currently four bits are
defined, allowing the SCSI ACK, carry bit,

. target mode and A TN bits to be reset. Bit 10
is for the Arithmetic Carry, bit 9 is for target,
bit 6 is for Acknowledge, and bit 3 is for
Attention.

Note that these bits can also be set or reset
with the read/write register functions, except
for the Arithmetic Carry bit which can not
be (re)set directly by writing a register.

10-9

Chapter 10

Bit 26 Relative Addressing Mode
When this bit is set to 1, the 24-bit signed
value in the DMA Next Address register is
used as a relative displacement from the
current DMA SCRIPTS Pointer register.

Using this mode, the 32-bit physical address
is formed at execution time, and there is no
need to relocate a SCRIPT at system power­
up. This bit may be used with select,
reselect, wait_select, and wait_reselect
instructions.

Bit 25 Table Indirect Mode
When this bit is set to 1, the 24-bit signed
value in the DMA Byte Count register is
used as an offset relative to the value of the
Data Structure Address register. Using this
feature allows synchronous clock conversion,
enable wide SCSI, clock conversion factor,
SCSI device ID, synchronous offset, and
synchronous period to be fetched from an
I/O data structure that is built at start I/O.
Thus, an I/O can begin with no requirement
to write the values into the chip or into the
actual SCRIPT in memory. In the I/O data
structure the user must have written a four­
byte value of:

I
00 IDeVice ID I Peroid&Offset I 00

Byte Byte Byte Byte
Lane Lane Lane Lane

3 2 1 0

Information in byte lane 3 is mapped into
the SCSI Control 3 (SCNTL3) register (03).
Device ID is mapped into the SCSI destina­
tion ID (SDID) register (02), and period and
offset is mapped into the SCSI Transfer
(SXFER) register (05).

The data must begin on a four-byte bound­
ary and must be located at the 24-bit signed
offset from the address contained in the
Data Structure Address register.

If the four bytes are written from the proces­
sor into memory as a unit (one long word),
then the user need not be concerned about
Big or Little Endian mode. The low order

10-10

SCSI SCRIPTS Machine Language Description

byte must be at lane byte zero, next byte at
lane byte one, and so forth.

The SCNTL3 register contains Snychronous
Clock Conversion Factor (SCF2-0), Enable
Wide SCSI (EWS), and Clock Conversion
Factor (CCF2-0). The SDID register contains
Enable Response to Reselection (RRE),
Enable Response to Selection (SRE), and
Encoded 53C720 chip SCSI ID. The SXFER
register contains SCSI Synchronous Transfer
Peroid (TP2-O), and Max SCSI Synchronous
Offset (M03-MOO).

Bit 24 SELECT With ATN
If bit 24 is set, then the initiator SELECT
instruction will cause the SCSI attention line
to be set during the SELECT operation.
Attention on is valid only during the initiator
function 000. The bit is invalid for all other
functions and will cause an interrupt.

Bits 23-16 SCSI 10 7-0
This eight bit field is the ID for the SCSI chip
to be selected in the initiator mode and
reselected in the target mode. Set only one
bit for either of the functions requested.
These bits are not used for any function
other than select or reselect.

Bits 15-0 Flags Field
These bits are used during the set or clear
instruction. Bit 10, on places the chip in the
target/initiator mode. Bit 6, on sets/resets
the SCSI acknowledge. Bit 3, on sets/resets
the SCSI attention. Use the clear ACK
instruction after the last target message-in
byte has been verified for each separate
message data Block Move instruction. The
in~tiator has the opportunity to set attention
before acknowledging the last message byte
of a Block Move instruction. On each byte,
if a parity error was detected on the message
in operation, set A TN is issued before the
clear acknowledge is issued to accept the
message. Use Set Acknowledge to hand­
shake bytes across the SCSI bus.

NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Description

Read/Write Register Instructions

Fint 32-bit word of the ReadlWrite inltructionl

Immediate Data

AO~
A1 /'

A2 Register
A3 Address

-A4 /
A~

AS
o (Reserved)

Carry Enable
Operator 0

Operator 1
Op Code bit 0

Op Code bit 1
Op Code bit 2

o -Instruction Type - RNI
1 - Instruction Type - RNI

Second 32-blt word of the ReadlWrlte inltructionl

Read/Write Register Instructions
(Firlt SCRIPTS Word)

DSPS Register

Not uaeet. IDDIt be 0

Reserved
(must be 0)

Read/Write Overview

Chapter 10

Bits 31-30 Read/Write Instructions (01)
An instruction type of 01 equates to a Read/
Write or I/O Instruction. Bits 29-27 define
ReadlWrite operation or I/O instruction.
Opcode bits of 101, 110, and 111 are for Read/
Write operations. ReadlWrite operations are
modified by operator bits 26-25. Operator
bits define four modes.

In either initiator or target mode, the opcode

NCR 53C720 Programmer's Guide

. bits 29-27 (opcode 101, 110, and 111) are for a
set of register operations. The three opcodes
are modified by the operator field (bits.26-
25). The opcode bit operations are:

10-11

Chapter 10 SCSI SCRIPTS Machine Language Description

Bits 29-27 II: 101 (Move from SFBR) Bits 29-27 = 110 (Move to SFBR)
Move the SCSI First Byte Received (SFBR)
register to the specified register. Four
operator field values alter the meaning of the
function. They are:

Move the specified register value to the SCSI
First Byte Received (SFBR) register. Four
operator field values alter the meaning of the
function. They are as follows:

Bits 26-25 = 00

Move immediate data value to the
destination register value.

Bits 26-25 = 01

OR the immediate data value with
the SFBR, and write the result to the
destination register.

Bits 26-25 = 10

And the immediate data value with
the SFBR and write the result to the
destination value.

Bits 26-25 = 11

Add the immediate data value with
the SFBR and write the result to the
destination register with or without
carry.

Bits 26-25 = 00

Move immediate data to the SFBR
Bits 26-25 = 01

OR the immediate data value with
the specified register and write the
result to the SFBR

Bits 26-25 = 10

And the immediate data value with
the specified register and write the
result to the SFBR.

Bits 26-25 = 11

Add the immediate data value to the
specified register and write the result
to the SFBR with or without carry.

The following table is a summary of the possible operations allowed.

(Bits 26-25) (Bits 29-27) (Bits 29-27) (Bits 29-27)
Operator Opeode 7 (111) Ope ode 6 (110) Opeode 5 (101)

Field Read modify Write Move to SFBR Move from SFBR

00 Immediate data to Immediate data Immediate data
destination register to SFBR to destination register

01 Immediate data or'ed Immediate data Immediate data or'ed
with destination OR register to with SFBR to
register SFBR register destination

10 Immediate data Immediate data Immediate data and' ed
and'ed with AND register to with SFBR to
register destination register destination SFBR

11 Immediate data Immediate data Immediate data added
added to destination added with SFBR to destination
register with or without register to SFBR register with or without
carry with or without carry carry

10-12 NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Description

Bits 29-27 = 111 (Read-Modify-Write)
Read a specified register, modify it, and
write the result back into the register. Four
operator field values alter the meaning of the
function.

Bits 26-25 = 00

Move immediate data to the specified
register.

Bits 26-25 = 01

Or the immediate data value with the
specified register and write it back to
the specified register.

Bits 26-25 = 10

And the immediate data value with
the specified register and write it
back to the specified register.

Bits 26-25 = 11

Add the immediate data value to the
specified register and write it back to
the specified register.

Bit 24 Carry Enable
When this bit is set it allows the previous
carry value to be used by the present add
instruction. The carry value remains intact
unless it is modified by an add, set carry or
clear carry instruction. All other instructions
do not affect carry. If carry Enable is not set,
no carry in will be used during the present
add instruction.

Bit 23 Reserved

Bits 22-16 Register Address Field
These bits select one of the 8-bit registers in
the 53C720 to serve as source, destination, or
immediate register.

Bits 15-8 Immediate Data Field
These bits contain any immediate data that
is to be used in the operation specified by the
instruction.

The second 32-bit register in the instruction
is not used in the operations, but it should be
zero to ensure compatibility with future

NCR 53C720 Programmer's Guide

Chapter 10

instructions that may be defined.

Having a read/write register capability in
the 53C720 adds a new dimension of
SCRIPTS programming capability.

Several examples of how useful this capabil­
ity are explained in the following.

1. Set synchronous offset and period for a
target upon reselection. This operation will
typically require an interrupt to an external
processor. A 53C720 SCRIPT will be able to
write an immediate value to the correct
register once the reselecting device ID is
decoded, and resume data transfer immedi­
ately.

2. Write an interrupt service routine in the
SCSI SCRIPTS. After the external interrupt
is serviced, the processor SCRIPTS program
can determine the number of bytes left in
the chip-check status bits, and in general,
can clean up after an interrupt.

3. Keep a loop counter. Using the Add
instruction, the number of times through a
loop can be counted and stored. Thus, a Do
Loop construction can be programmed using
SCRIPTS.

Many other uses can be discovered. With
the 53C720, a user can write a SCRIPTS
program that will perform most of the opera­
tions done in external processor firmware.

Bits 7-0 Reserved
These bits should always be zero.

110 Instruction
(Second SCRIPTS Word)

Bits 31-0 Jump Address
If the select, wait reselect, or reselect instruc­
tion fails, this thirty-two bit field specifies
from which memory address to fetch the
next SCSI SCRIPTS for execution. Normally,
the next instruction is fetched in sequence if
the requested operation completes with no
bus initiated interrupt.

10-13

Chapter 10 SCSI SCRIPTS Machine Language Description

Transfer Control Instructions

Fint SZ-bit word of the Tranlfer ControllnltructioDi

54321 :1

Mask for compare

Wait for Valid Phase
Com~are Phase

Compare Data

Data to be compared
with the SCSI First

Byte Received

Jump if: True=1, False=O
Interrupt on the Fly

carry Test
o (Reserved)

Relative addressing mode
110

C/O
MSG

OpCode bit 0
Op Code bit 1

Op Code bit 2
o - Instruction Type - Transfer Control

1- Instruction Type - Transfer Control

Second SZ-bit word of the Tnm.lfer Controllnltructionl

DSPS Register

32-bit Jump Address

Transfer Control Overview

The Transfer Control Instruction contains
the JUMP, CALL, RETURN, and
INTERRUPT operation codes. Each opcode
is conditionally performed based on compare
of SCSI phase values and incoming SCSI data
values.

The Transfer control instruction allows
comparisons of current phase values on the
SCSI bus or the first byte of data on any
incoming bytes and transfers control to
another address depending on the results of
the test.

10-14

These instructions allow SCSI algorithms to
be written in SCSI SCRIPTS and give the
53C720 characteristics of a general purpose
SCSI processor. With transfer cont~ol in­
structions, you can program the ChiP, rather
than simply buffering instructions to be
serially executed with no real-time decision
making capabilities.

Transfer Control Instruction
(Fint SCRIPTS Word)

Bits 31·30 SCSI 1/0 Processor (10)

NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Description

Bits 29-27 Transfer Opcodes
Four opcodes are currently defined that
allow a transfer of control in the SCSI
SCRIPTS language. All undefined opcodes
cause an interrupt of illegal instruction.

Bits 29-27 = 000 (JUMP)
If the condition evaluates according to the
sequence control bits so the jump must be
taken, the next instruction is fetched from
memory at the 32-bit jump address. Other­
wise, the next sequential address will be used
as the instruction fetch address.

Bits 29-27 I:: 001 (CALL)
If the condition evaluates according to the
sequence control bits so the call must be
taken, the next instruction is fetched from
memory at the 32-bit call address. Other­
wise, the next sequential address will be used
as the instruction fetch address.

The address of the next sequential instruc­
tion is stored in the chip's TEMP register in
anticipation of a subsequent return address.
If two CALL instructions are executed
without any intervening RETURN instruc­
tion, then the first return address in the
chip's TEMP register is overwritten by the
second CALL.

Note that a call to an exit point, followed by
an interrupt at the exit point, will supply the
address (in the Temp register) of which
execution path led to the exit.

Bits 29-27 II: 010 (RETURN)
If the condition evaluates according to the
sequence control bits so the return must be
taken, the next instruction will be fetched
from memory at the 32-bit address contained
in the TEMP register, where it was stored by
the previous call instruction. Otherwise, the
next sequential address will be used as the
instruction fetch address. The contents of
the TEMP register may be undefined if a
call instruction was not previously executed.

NCR 53C720 Programmer's Guide

Chapter 10

Bits 29-27 = 011 (Interrupt)
If the condition evaluates according to the
sequence control bits so the software
interrupt must be taken, the chip halts
execution and issues an interrupt request to
the external processor. Otherwise, the next
sequential address will be used as the in­
struction fetch address.

The 32-bit jump address in the instruction is
available in the chip's instruction register at
the time of the interrupt. You can post a
four byte, user unique error status to be used
by the external processor's interrupt service
routine. Thus, the cause of the interrupt can
be easily decoded by firmware which re­
duces interrupt service routine overhead.
Also, the value could be a 32-bit firmware
(or a SCRIPT) address.

Bits 26-24 SCSI Phase Bits
In the SCSI initiator mode, these bits com­
pare the actual SCSI lines (MSG, CID, and II
0), if the phase compare bit is set in the
sequence control field. Actual SCSI lines are
a copy of the last valid SCSI phase line
values. These bits are set in the SCSI
SCRIPTS instruction to compare with the
current SCSI bus phase lines, then branch to
the SCSI SCRIPT that processes the particu-
1ar phase that is currently active. Bit 26 is
SCSI MSG, bit 25 is SCSI CID, and bit 24 is
SCSI lID. In the target mode, these bits are
ignored.

Bit 23 Relative Addressing
For the JUMP instruction or the CALL
instruction, the chip can execute a relative
transfer. The 24-bit signed value in the
DSPS register is used as a relative offset from
the DMA SCRIPTS Pointer register.

Bit 22 Reserved
This bit is reserved and must be zero.

Bit 21 Carry Test

When set, decisions based on the AL U carry
bit can be made. TruelFalse comparisons
are legal, but Data Compare and Phase
Compare are illegal.

10-15

Chapter 10

Bit 20 Interrupt on the Fly (lNTFLY)
When this bit is asserted, the interrupt
instruction will not halt the SCRIPTS pro­
cessor.

Bits 19-16 Sequence Control Bits
SCSI SCRIPTS can use the current condi­
tions on the SCSI bus to determine where to
transfer control and execute alternative
algorithms using the sequence control bits.
The bits are defined as follows:

Bit 19 Jump If

Transfer if TruelFalse. If the bit is set to 1, a
transfer of control occurs if the phase or data
values in the instruction are equal to the
actual phase value on the SCSI bus or the
first byte of the most recent asynchronous in
phase. The byte could be a message in, data­
in, or status for the initiator and message out,
instruction, or data-out for the target mode.
When the bit is set to zero, the transfer
control will occur if the comparison yields a
false.

Bit 18 Compare Data
Compare the data byte value (bit 7 - bit 0 in
the instruction) to the first byte of the most
recent data, message, instruction, or status
byte received.

The user's SCSI SCRIPTS program can
determine what routine to execute next,
based on actual data values received across
the SCSI bus. For example, the chip can
compare for specific message values and
process an extended message in SCSI
SCRIPTS, with no external interrupt to the
external processor.

Bit 17 Compare Phase
In the initiator mode, compare the SCSI
phase line value (bit 26 - bit 24) to the recent
valid SCSI phase line values saved in the
chip.

Using this feature, the chip can react to
actual bus conditions and determine which
routines to execute next based on SCSI bus
phase line values. Unexpected phase values
can be compared for and error conditions or

10-16

SCSI SCRIPTS Machine Language Descript.ion

low probability events can be processed by
SCSI SCRIPTS inside the chip.

In the target mode, bit 17 ON causes the chip
to test for the attention line on. If the initia­
tor has set attention, the chip (in the target
mode) can jump to a message out routine to
determine what the initiator needs. This is
normally placed after each SCSI phase to
allow the initiator to turn on attention if an
error is detected during the transfer.

Bit 16 Wait for Valid Phase
In the initiator mode, wait for a previously
unserviced phase change.

You can program the chip to pause until the
SCSI device it is communicating with has
proceeded to the next phase. One normally
uses this wait capability to pace the chip in
the initiator mode. When a phase change is
expected, the wait is used to synchronize the
expected phase with the actual phase de­
tected on the SCSI bus. If both data and
phase compare bits are set, the compare must
be both true or both false for the transfer to
occur.

Bits 15-8 Mask Bits
The mask bits allow selective comparison of
bits within the data byte using SCRIPTS.
During the compare, any bits that are on will
cause the corresponding bit in the data byte
to be ignored for the comparison. A user can
code a binary sort to quickly determine the
value of a byte.

For instance, a mask of'7F' and data com­
pare of '80' allows the SCRIPTS processor to
determine whether or not the high order bit
is on.

Bits 7-0 Data Byte
Compare this data byte value to the first
byte of the most recent asynchronous data,
message, instruction, or status byte received.
The user's SCSI SCRIPTS program can
determine what routine to execute next
based on actual data values received. Using
a series of these compares, the algorithm can
process complex sequences with no interven­
tion required by the external processor.

NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Description

Transfer Control Instruction
(Second SCRIPTS Word)

Bits 31-0 Data Jump Address
This value specifies the address of the next
instruction in memory to transfer control. It
is either a 32-bit physical address, or a 24-bit
signed value, used as an offset from the
DMA SCRIPTS Pointer register. The value
is ignored in both return and interrupt
instructions. However, the address is loaded
into the chip's instruction register and is
available to be read by firmware in the case
of an interrupt instruction.

If both data compare and phase compare bits
are set, then both comparisons must be true
or both must be false before the requested
transfer will occur. There is no way to test
one for false and the other for true.

If neither the phase or data bit are set, and if
the true/false bit is 1, the operation is ex­
ecuted unconditionally.

If neither the phase nor the data bit is set
and the true/false bit is 0, then the instruc­
tion has no operation assignment and can be
used as a delay function, or to reserve a SCSI
SCRIPTS patch area.

NCR 53C720 Programmer's Guide

Chapter 10

10-17

Chapter 10 SCSI SCRIPTS Machine Language Description

Memory-to-Memory Move Instructions

First 32-bit word of the Memory Move instruction

:1

o (Reserved)
o (Reserved) 24-blt Memory Move byte counter

o (Reserved)
o (Reserved)

o (Reserved)
o (Reserved)

1 -Instruction Type - Memory Move
1 - Instruction Type - Memory Move

Second 32-bit word (source address) of the ~Iemory Move instruction
DSPS Register

Third 32-bit word (destination address) of the Memory

Memory Move Overview
The Memory Move instruction is able to
transfer data from one 32-bit memory loca­
tion to another. A 24-bit byte counter allows
large moves to occur with no intervention
required by the processor.

10-18

If both addresses are in system memory,
then the 53C720 functions as a high -speed
DMA controller, able to move data at speeds
of (up to) 53 MBytes/sec without using the
processor or its cache memory. If the source
address is wi thin the 53C720's address space,
then the instruction is a write to external
memory. To perform a read from memory,
make the destination address be within the
53C720.

NCR 53C720 Programmer's Guide

SCSI SCRIPTS Machine Language Description

Memory-Io-Memory Move
(Firat SCRIPTS Word)

Bits 31-30 SCSI 110 Processor Opcode (11)

Bits 29-24 Reserved Section
These bits should always be zero.

Bits 23-00 24-bit Byte Count
This count value specifies the exact number
of bytes to be moved from the source addres~
and the destination address. As the SCSI
SCRIPTS instruction is decoded, the value is
moved into the DMA Byte Counter register.
The SCSI 1/0 Processor will:

• Gain access to the system bus.
• Transfer the burst size into the DMA

FIFO
• Decrement the byte count.
• Increment the source address.
• Gain access to the system bus.
• Transfer the burst size from the DMA

FIFO into system memory.
• Increment the destination address.
The process will continue until the byte
count is zero at the start of a byte transfer
into the DMA FIFO. At that time, the next
SCSI SCRIPTS instruction will be fetched.

The indirect mode is not allowed for the
Memory Move instruction; therefore, the
byte count must be in the actual SCRIPT.
A byte count can be any value; thus, an odd
number of bytes can be transferred. The
DSA and the TEMP registers are not de­
stroyed.

NCR 53C720 Programmer's Guide

Memory Move
(Second SCRIPTS Word)

Chapter 10

Bits 31-00 Source Address of the Memory
Move
This value specifies the address from which
data will be moved. An address must be the
full 32-bit physical address of the data
source. The indirect mode is not allowed in
the Memory Move instruction. The DMA
N ext Address register holds this source
address and is incremented with each chip
DMA transfer. If the value placed in the
chip is a 53C720 register address, data can be
moved from the 53C720 to a destination
address. Only one byte, or multiples of four
bytes, can be moved out of the chip. A
register-to-register move is possible if both
source and destination addresses are within
the 53C720's register address space.

For another method of placing a 32-bit
address in the instruction without resorting
to patching SCSI SCRIPTS, please refer to
the PASS option available in the SCSI
SCRIPTS compiler.

10-19

Chapter 10

Memory Move
(Third SCRIPTS Word)

Bits 31-00 Destination Address of the Memory
Move
This value specifies the address to which
data will be moved. An address must be the
full 32-bit physical address of the data
destination. The indirect mode is not al­
lowed in the Memory Move instruction.
The TEMP register holds this destination
address and is incremented with each chip
DMA transfer. If the value placed in the
chip is a 53C720 register address, then data
can be moved to the 53C720 from a source
address. One byte, or multiples of four bytes,
can be moved into the chip. A register-to­
register move is possible if both source and
destination addresses are within the
53C720's register address space.

For another method of placing a 32-bit
address in the instruction without resorting
to patching SCRIPTS, please refer to the
P ASS option available in the SCSI SCRIPTS
compiler.

There is one restriction on addresses that the
53C720 can process. The low order two bits
must be equal; thus, the source address must
be on the same byte offset within a longword
as the destination. An illegal instruction
results if the two addresses are not byte
aligned. The 53C720 supports burst sizes of
2, 4, 8, or 16 longwords.

During this instruction's execution, the
DMA SCRIPTS Pointer Save register and
the Data Structure Address register are used
(along with the DNAD and TEMP) and will
be destroyed. These registers should be
saved before a Memory Move instruction
and then later restored, if the contents are
significant. To save the contents of a regis­
ter, move its contents to the scratch register
and then move the information into memory.
Any register not used by the Memory Move
instruction can be written directly to
memory. Because the moving of data to the
53C720 is the last event performed by the
instruction, any register can be written,
including the ones used by the instruction.

10-20

SCSI SCRIPTS Machine Language Description

NCR 53C720 Programmer's Guide

Appendix A

53C720 Performance Compared to 53C90

This appendix compares firmware required
for the 53C720 and the 53C90 to determine
how much of a performance boost the
53C720 can offer at a system level (lIDs per
second). One microsecond is the time
assumed for execution of each external
processor instruction.

Sample Input Data Structure
The following data structure is typical at the
SCSI hardware driver level when performing
an 110.

Device id, Period & Offset
Byte count
Data address
Byte count
Data address

•
•
•

Byte count
Data address'

Initializing SCSI SCRIPTS for
an 110 and Starting 110
Operations

53C720 Algorithm Description
Refer to the sample initiator SCSI SCRIPTS
for details about the exact sequence and
values to be updated. At the firmware level,
the initiator SCSI SCRIPTS must be updated
with the address and count for the various
SCSI data and user data required to perform
an 110. In the sample initiator algorithm, 15
values must be fetched indirectly during
execution of the SCRIPT. Assuming the user
data structure is in the format required by the
SCSI SCRIPT for indirect fetching, there is no
overhead associated with starting the 110.
Using the multi-threaded SCRIPTS algo­
rithm, there is no host processor interrupt
upon disconnect or at completion of the 110
(with the Infly command).

NCR 53C720 Programmer's Guide

Executing the initiator algorithm takes about
30 SCSI SCRIPTS fetches and indirect data
fetches and decodes.

The total overhead is
The total time per 110 is

Approx
time in US

30 J.1Sec
30 J.1Sec

Using the interrupt and continue feature
allowed by user programmable bits, in a
multi -threaded environment, the next 110
can proceed while the previous 110 complete
interrupt is processed by the system. Thus,
the overhead of this interrupt is ignored
because work is proceeding.

53C90 Algorithm Description.
The firmware begins the sequence by
preloading the 53C90 FIFO with the SCSI
id message followed by a 10-byte SCSI
command. The firmware sequence involved
requires:

Loop:
Read Next Byte
Write Next Byte
Go To Loop If Count Not Zero

For 11 bytes, the above sequence requires
about 33 microseconds. Once the SCSI
operation begins, the 53C90 requires the
overhead listed below. (Note that each
interrupt requires some reads and processing
to determine the exact cause of the chip's
interrupt.) Assume that an extra 20 microsec­
onds is required for each interrupt for a total
of 100 (80 for the interrupt plus 20 for the
chip reads) microseconds.

A-I

Appendix A

The following sequence is required to per­
form a 53C90 SCSI operation.

~
Send the SCSI command 033
Interrupt - msg-in phase 100
Interrupt - msg accepted 100
Interrupt - physical disc 100
Interrupt - reselected 100
Initialize DMA Logic 025
Interrupt - transfer complete 100
Interrupt - completion seq 100
Interrupt - msg accepted 100
Interrupt - physical disc 100

Total time 858 microseconds

Conclusion
The 53C720 requires less than 5 % of the
normal firmware overhead associated with a
53C90, in the simplest case. To further
compare the chips, note that a SAVE DA T A
POINTER operation in the 53C90 requires
two processor interrupts (200 J.1Sec) and no
interrupts using the 53C720. Each data
segment in a scatter-gather situation requires
125 J.1Sec on the 53C90 (one interrupt plus
DMA initialize), but only 1 J..lSec on the
53C720 (500 nanosecond instruction fetch,
plus indirect data fetch). Thus, an I/O that
required four data segments in a scatter­
gather mode would require 500 J.1Sec on the
53C90 and 4 J.1Sec on the 53C720 for user data
transfer. These factors translate into a four­
segment data transfer as follows.

53C90
(858) + (3x125) = (858+375)

1233 Jl8ec per 1/0

53C720
34 J..lBec per 1/0

To translate this improvement into I/O's per
second, assume a 4K data transfer size,
consisting of four lK segments in host
memory, a target overhead of one millisecond
(excluding seek times), and a 4-megabyte per
second user data transfer rate on the SCSI
bus.

A-2

53C720 Compared to 53C90

Function 53C90 53C720
msec msec

Data Transfer Time 100 1.00

Target overhead 100 100

Host Overhead 125 0.034

Total times 3.25 2.034

I/O's Per Second 307 491

In this projected environment, a system can
increase its throughput rate by sixty per­
cent by using the 53C720 and reducing host
computer firmware overhead. At 20 Mbyte/
sec SCSI bus rates, the data transfer time is
reduced to 200 J,lSec giving an even more
dramatic performance boost. With the types
of buffered SCSI disk drives currently avail­
able, the 53C720 eliminates the host com­
puter firmware as the high performance
bottleneck.

Remember that a 125 J.lSec delay between
user data segments may cause a disk drive to
slip a revolution translating into a dramatic
decrease in data throughput.

Without the 53C720, to increase system level'
performance, designers must eliminate each
delay. The 53C720 can remove much of the
host overhead associated with each I/O.

NCR 53C720 Programmer's Guide

Appendix B

53C720 System Bus Utilization

The 53C720, in the laboratory environment
transfers 512 bytes of user data at the rate of
6,666 transfers per second (150 microseconds
per 1/0). The synchronous SCSI burst rate is
set at 5 Mbytes per second. This IIO's per
second rate is a limit for the 53C720, because
no firmware intervention is required.

A real concern is host bus utilization, or
"Does the 53Cl20 affect host computer perfor­
mance significantly?, This appendix provides
information about host bus usage when the
SCSI bus is saturated at a block size of 512
bytes.

Host Bus Time To Fetch A SCSI SCRIPTS
Command

80 nsec - Arbitrate and bus settle
80 nsec - Fetch 4 bytes
80 nsec - Fetch 4 bytes
40 nsec - Bus settle time
280 nsec - Total time

Completing an 1/0 requires 14 SCSI SCRIPTS.

select with A TN
jump error, when not MSG_OUT
move FROM msg_huf, when

MSG_OUT
jump error, when not CMD phase
move FROM cmd_buf, when CMD
jump error, when not DATA_IN
move FROM data_buf, when

DATA_IN
jump error, when not STATUS
move FROM status_buf, when STATUS
jump error, when not MSG_IN
move FROM msg_huf, when MSG_IN
clear ack
wait disconnect
int OxOOl

error:
int OxOff

NCR 53C720 Programmer's Guide

The time required to execute the SCSI
SCRIPTS with no exception conditions is as
follows:

Indirect fetch 5x280 = 1.40J.1Sec
SCRIPT fetch 14x 280 = 5.32J.1Sec

Total:
6,666 x 5.32 = 35.4 Blsec
(total fetch time per second)

The fetch time is 3.5% of the available system
bus time (one second).

Fetching data across the system bus requires:

Time in
nsec Instruction
200 ID msg fetch = 80 (data fetch)

+80 (arbitrate)
+40 (settle)

360 command fetch = 240 (three data fetches)
+ 120 (arbitrate + settle)

200 Status byte fetch
200 COMMAND COMPLETE message
960 Total time per SCSI command

Total SCSI -related data fetch time is:

6,666 X 960 = 6.4 msec

which is 0.64% of the available system time
(one second).

Total overhead time is:

0.64% + 35% = 4140/0 of the time available

The effective user data transfer rate is 3,333
Mbytes per second, or about 6.66% of the
available system bandwidth. Including time
for bus arbitration, the available system
bandwidth being absorbed by user data
transfer is about 8°/0.

B-1

Appendix B

Conclusion
Therefore, the total time to saturate the SCSI
bus takes 12.2°~ of a processor bus available
with a block size of 512 bytes per SCSI com­
mand.

U sing larger block sizes lowers SCSI com­
mand overhead (fewer commands per sec­
ond) and increases the data transfer rates. As
the block size increases, the SCSI overhead
per byte of user data decreases.

B-2

53C720 System Bus Utilization

NCR 53C720 Programmer's Guide

Appendix C

Use of the Sig_p Bit in the 53C720

Use of the standard commands to route a bus
initiated interrupt, assuming that the 53C720
compatibility bit is on, and the device is in the
initiator role. The assumption is that sig-p is
only used to signal that an I/O is ready for
execution, and has already been scheduled. If
selection is in progress or a select/reselect
happens, then sig-p can be reset, because the
new I/O will be executed when the scheduler
function gets to it. The system processor will
check the connected bit before setting the
sig-p bit to signal that an I/O is to be ex­
ecuted immediately.

SELECT FROM buffer, alternate1
; selection happened if execution gets here

•
•
•

alternate1 :
; assume a reselect if here

WAIT RESELECT, alternate2
; reselected if here, proceed with processing

•
•
•

alternate2:
; got here because of a sig-p bit set or was
; selected. Did the sig-p bit get set after the
; sel/resel occurred and just before the wait?

MOVE 1ST AT and slg_blt to SFBR
; reset it and do the wait again

Move CTEST3 to SFBR
JUMP alternate1 if sig_bit

alt2:
; can only have been selected if here

WAIT SELECT, alternate3
SET TARGET

; selected if here, proceed with processing in
; target mode

•
•
•

NCR 53C720 Programmer's Guide

alternate3:
; got here because of a sig-p bit set or error
; Did the sig-p bit get set after the select
; occurred and just before the wait select?

MOVE ISTAT and sig_bit to SFBR
; reset it and do the wait again

Move CTEST3 to SFBR
JUMP alt2 if sig_bit

; should never get here
INT big_error

Aborting a Wait Reselect or Wait Selection SCSI
SCRIPT, assuming that the 53C720 compatibility
bit has been set and the device is in the initiator
role.

reselect_entry:
WAIT RESELECT, alt_sig-p1

; if here, got reselected
•
•
•

select_entry:
WAIT SELECT, alt_sig-p1
SET TARGET

; if here,Ogot selected - change to target
•
•
•

alt_sig--p1 :
MOVE ISTAT and connect_bit to SFBR

; test the SCSI connected bit
JUMP alt_sig-p2, if connect_bit

; either the chip got selected, reselected, or the
; sig-p bit was set

MOVE 1ST AT and sig_bit to SFBR
; test the sig-p bit first

JUMP sig-p_set, if sig_bit
; big error if here - not connected and sig-p was
; not set

INT big_error1

C-l

Appendix C

alt_sigj)2:
; Bus initiated interrupt occurred if here-
; connected bit is on. First reset the sig-p bit, so
; the alternate jump is NOT taken.

MOVE CTEST2 to SFBR
WAIT RESELECT, alt_sig....p3

; process the reselection

alt_sigj)3:
; got selected

•
•
•

SET TARGET
•
•
•

sigj)_set:
; System processor has set the sig-p bit.
; Reset it and service the system request.

MOVE CTEST2 to SFBR
•
•
•

C-2

Use of the Sig_p Bit

NCR 53C720 Programmer's Guide

Appendix D
Compiler SCRIPTS Examples

SAMPLE SCSI SCRIPTS Source File

.*** ,
;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
.*** ,

EXTERN device
EXTERN status_adr
EXTERN sendmsg
EXTERN rcvmsg
EXTERN cmd_adr
EXTERN data_adr

; Definition area INITIATOR ROLE
; Target Device ID offset in the data table.

; Ten byte buffer address offset.
; Ten byte buffer address offset.
; Buffer address offset for the SCSI command
; Address of user data buffer

.*** ,
;* Absolute values are stored in DSPS Register *
;* for purposes of interrupt processing *
.*** ,

.*** ,
;* Note that OXO precedes the interrupt status *
;* values and designates a hex value *
.*** ,

ABSOLUTE errl = OxOffOl
ABSOLUTE err2 = OxOff02
ABSOLUTE err3 = OxOff03
ABSOLUTE err4 = OxOff04
ABSOLUTE ok = OxOffOO
ABSOLUTE err5 = OxOff05
ABSOLUTE err6 = OxOff06

; Error - unexpected SCSI phase before command phase
; Error - unexpected SCSI phase after a command
; Error - expected status phase
; No Error - good 110
; Error - expected message outphase
; Error - expected message command complete

.*** ,
;* The following shows how you can use the PASS
;* capability of the compiler to pass C code to the
;* output file

*
*
*

.*** ,

PASS(#include "NCR.h,,}
P ASS(extern char line[];)

PROC .ample:
select atn from device, REL (resel_adr)
int errl when not MSG_OUT
move FROM sendmsg, when MSG_OUT
int err2 when not CMD
move FROM cmd_adr, when CMD
jump REL (end) when STATUS
jump REL (input_data) if DATA_IN
jump REL (output_data) if DATA_OUT
int err3

NCR 53C720 Programmer's Guide

; select the device with attention on
; if the next phase is not msg_out, interrupt
; sent the id message out to the target
; if next phase is not command, interrupt
; send the command bytes
; go to process cleanup if status phase
; process data-in phase
; or data-out phase
; unexpected phase if here

D-l

Appendix D

input_data:
move FROM data_adr, when DATA_IN
jump REL (end)

output_data:
move FROM data_adr, when DATA_OUT

end:
int err4 when not STATUS
move FROM status_adr, when STATUS
int err5 when not MSG_IN
move FROM rcvmsg, when MSG_IN
int err6 if not 00
clear ack
wait disconnect
int ok

relel_adr:
int ok

D-2

Compiler SCRIPTS Examples

; process the data-in phase

; and go process status

; process the data-out phase

; interrupt if not status phase

; move the status byte into memory
; interrupt if message-in is not next
; move the command complete byte in
; interrurt if not command complete
; accept the message if there are no problems
; wait for a physical disconnect
; interrupt with an I/O complete

NCR 53C720 Programmer's Guide

Compiler SCRIPTS Examples Appendix D

SAMPLE LIST FILE

1
2
3
4
5
6
7

.*** ,
;* The following are variable data values provided
;* external to the compiler and resolved at run-time

*
*

.*** ,

; Definition area INITIATOR ROLE

8 ; Target Device ID offset in the data table.
9 EXTERN device
10
11 EXTERN status_adr
12
13
14 EXTERN sendmsg
15
16
17 EXTERN rcvmsg
18
19
20 EXTERN cmd_adr
21
22
23 EXTERN data_adr
24

; Ten byte buffer address offset.

; Ten byte buffer address offset.

; Buffer address offset for the SCSI command

; Address of user data buffer

25
26
27
28
29
30
31
32
33
34 .

.*** ,
;* Absolute values are stored in DSPS Register *
;* for purposes of interrupt processing *
.*** ,

.*** ,
;* Note that OXO precedes the interrupt status
;* values and designates a hex value

*
*

.*** ,

35 ABSOLUTE errl = OxOffOl
36
37
38 ABSOLUTE err2 = OxOff02
39
40
41 ABSOLUTE err3 = OxOff03
42
43
44 ABSOLUTE err4 = OxOff04
45
46
47 ABSOLUTE ok = OxOffOO
48
49
50 ABSOLUTE err5 = OxOff05
51

NCR 53C720 Programmer's Guide

; Error - unexpected SCSI phase before command phase

; Error - unexpected SCSI phase after a command

; Error - expected status phase

; No Error - good 1/0

; Error - expected message outphase

D-3

Appendix D

52
53 ABSOLUTE err6 = OxOff06
54

Compiler SCRIPTS Examples

; Error - expected message command complete

55 ;***
56 ; The following shows how you can use the PASS *
57 ; capability of the compiler to pass C code to the *
58 ; output file *
59 ;***
60 #include "NCR.h" PASS(#include "NCR.h")
61 extern char line[]; P ASS(extern char line[];)
62
63 00000000: PROC .ample:
64
65 00000000: 47000000 00000098
66
67
68 00000008: 9E0300oo OOooFFOI
69
70
71 00000010: lEOooOoo 00000000
72
73
74 00000018: 9A030oo0 0000FF02
75
76
77 00000020: lAOooOoo 00000000
78
79
80 00000028: 838BOOoo 00000030
81
82
83 00000030: 818AooOO 00000010
84
85
86 00000038: 808AOOoo 00000018
87
88
89 00000040: 98080000 0000FF03
90
91
92 00000048: input_data:
93 00000048: 19000000 00000000
94
95
96 00000050: 80880000 00000008
97
98
99 00000058: output_data:
100 00000058: 18000000 00000000
101
102
103 00000060: end:

D-4

; select the device with attention on
select atn from device, REL (resel_adr)

; if next phase is not msg_out,interrupt
int errl when not MSG_OUT

; sent the id message out to the target
move FROM sendmsg, when MSG_OUT

; if next phase is not command, interrupt
int err2 when not CMD

; send the command bytes
move FROM cmd_adr, when CMD

; go to process cleanup if status phase
jump REL (end) when STATUS

; process data-in phase
jump REL (input_data) if DATA_IN

; or data-out phase
jump REL (output_data) if DATA_OUT

; unexpected phase if here
int err3

; process the data-in phase

move FROM data_adr, when DATA_IN

; and go process status
jump REL (end)

; process the data-out phase

move FROM data_adr, when DATA_OUT

; interrupt if not status phase

NCR 53C720 Programmer's Guide

Compiler SCRIPTS Examples

104 00000060: 9B03OO00 0000FF04
105
106
107 00000068: 1BooOooO 00000000
108
109
llO 00000070: 9F03OO00 OooOFF05
III
112
113 00000078: lFOooOOO 00000000
ll4
115
ll6 00000080: 98040000 OooOFF06
ll7
ll8
ll9 00000088: 60000040 00000000
120
121
122 00000090: 48000000 00000000
123
124
125 00000098: 98080000 ooOOFFOO
126 ooOooOAO: resel_adr:
127 OooOooAO: 98080000 OooOFFoo

Symbol Name

device
status_adr
sendmsg
rcvmsg
cmd_adr
data_adr
errl
err2
err3
err4
ok
errS
err6
include "NCR.h"
extern char line[];
sample
resel_adr
end
input_data
output_data

NCR 53C720 Programmer's Guide

int err4 when not STATUS

; move the status byte into memory
move FROM status_adr, when STATUS

; interrupt if message in is not next
int errS when not MSG_IN

; move the command complete byte in
move FROM rcvmsg, when MSG_IN

; interrupt if not command complete
int err6 if not 00

; accept the message if there are no problems
clear ack

; wait for a physical disconnect
wait disconnect

; interrupt with an 1/0 complete
int ok

int ok

Value Type

00000000
00000000
00000000
00000000
00000000
00000000
OooOFFOl
0000FF02
0000FF03
OooOFF04
OooOFFoo
OooOFF05
OooOFF06
00000000
00000000
00000000
OooOooAO
00000060
00000048
00000058

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
PASS_LABEL
PASS_LABEL
PROC_LABEL
LABEL (REL)
LABEL (REL)
LABEL (REL)
LABEL (REL)

Appendix D

D-5

Appendix D

SAMPLE OUTPUT FILE

include "NCR.h"
extern char line[];
typedef unsigned long ULONG;

ULONG sample[] = (
Ox47000000,
Ox9E030000,
OxlEOOOOOO,
Ox9A030000,
OxlAOOOOOO,
Ox838BOOOO,
Ox818AOOOO,
Ox808AOOOO,
Ox98080000,
Oxl9000000,
Ox80880000,
Oxl8000000,
Ox9B030000,
OxlBOOOOOO,
Ox9F030000,
OxlFOOOOOO,
Ox98040000,
Ox60000040,
Ox48000000,
Ox98080000,
Ox98080000,

};

OxOOOOO098,
OxOOOOFFOl,
OxOOOOOOOO,
OxOOOOFF02,
OxOOOOOOOO,
OxOOOOOO30,
OxOOOOOOlO,
OxOOOOO0l8,
OxOOOOFF03,
OxOOOOOOOO,
OxOOOOOO08,
OxOOOOOOOO,
OxOOOOFF04,
OxOOOOOOOO,
OxOOOOFF05,
OxOOOOOOOO,
OxOOOOFF06,
OxOOOOOOOO,
OxOOOOOOOO,
OxOOOOFFOO,
OxOOOOFFOO

#define E_device OxOOOOOOOO
ULONG E_device_UsedD = (

OxOOOOOOOO
};

#define E_status_adr OxOOOOOOOO
ULONG E_status_adr_Used[] = (

OxOOOOOOlb
};

#define E_sendmsg OxOOOOOOOO
ULONG E_sendmsg_UsedD = (

OxOOOOOO05
};

#define E_rcvrnsg OxOOOOOOOO
ULONG E_rcvmsg_UsedD = (

OxOOOOOOlf
};

D-6

Compiler SCRIPTS Examples

NCR 53C720 Programmer's Guide

Compiler SCRIPTS Examples

#define E_cmd_adr OxOOOOOOOO
ULONG E_cmd_adr_UsedD = (

OxOOOOOOO9
);

#define E_data_adr OxOOOOOOOO
ULONG E_data_adr_Used[] = (

OxOOOOOO13,
OxOOOOOO17

);

ULONG INSTRUCTIONS = OxOOOOO0l5;
ULONG PATCHES = OxOOOOOOOO;

NCR 53C720 Programmer's Guide

Appendix D

D-7

Appendix D Compiler SCRIPTS Examples

Notes

D-8 NCR 53C720 Programmer's Guide

APPENDIX E

53C720 Test SCRIPTS Examples

.*** ,
; Filename: 720TEST .sS
; This sample SCRIPT shows the Memory to Memory Move, Carry, and
; Register ReadlWrite capabilities of the 53C720 .
. *** ,

; Memory to Memory Move instructions can be done to/from the 53C720's
; internal registers if the address given decodes to the memory mapped
; address of the 53C720. Below are the addresses for the SeRA TCHA and SCRATCHB
; registers in little endian mode when the base address of the card is DOOO.
; Converting DOOO:6034 to an absolute address gives OxD6034. Converting DOOO:
; 605C to an absolute address gives OxD605C.

ABSOLUTE ScratchA_Zero_Addr = OxOD6034
ABSOLUTE ScratchA_One_Addr = OxOD6035
ABSOLUTE ScratchA_Two_Addr = OxOD6036
ABSOLUTE ScratchA_Three_Addr = OxOD6037
ABSOLUTE ScratchB_Zero_Addr = OxOD605C
ABSOLUTE ScratchB_One_Addr = OxOD605D
ABSOLUTE ScratchB_Two_Addr = OxOD605E
ABSOLUTE ScratchB_Three_Addr = OxOD605F

; Note: When doing memory to memory moves to/from the chip's address space,
; the buffers must be long word alligned. This is because the chip's
; registers are long word aligned, and memory to memory move instructions
; require that the last two address bits of the source and destination
; addresses be the same. If the software doesn't load the SCRIPTS starting
; at a long word boundary, then the relative buffers will not be long word
; aligned and illegal instruction interrupts will occur when executing the
; memory to memory moves to/from the chips address space. A simple way to
; fix this is to add a small (1, 2, or 3) byte buffer to the beginning of
; the relative buffers that will force the rest of the buffers to be
; long word aligned. A better way to fix this is to force your software
; to load the SCRIPTS starting at a long word boundary.

; Relative buffers in memory

RELATIVE Temp_Buff! = 0
RELATIVE Temp_Buff2 = Temp_Buff! + 4
RELATIVE Byte_O = Temp_Buff2 + 4
RELATIVE Byte_1 = Byte_O+1
RELATIVE Byte_2 = Byte_1+1
RELA TIVE Byte_3 = By t e_2 +1

NCR 53C720 Programmer's Guide E-1

Appendix E

ENTRY start

start:

; Use Register Write to put OxFF's in SCRATCHA register
move OxFF to SCRATCHAO
move OxFF to SCRATCHAl
move OxFF to SCRATCHA2
move OxFF to SCRATCHA3

53C720 Test SCRIPTS Examples

; Use Memory-to-Memory Move instruction to cove 1 byte into the SCRATCHA
; register from memory.

move memory 1, Temp_Buffl, ScratchA_Zero_Addr

; Now move that byte back out of the SCRA TCHA register
move memory 1, ScratchA_Zero_Addr, Temp_Buff2

; Use 2 Register Read/Write instructions to copy one register to another.
; When moving from one register to another, the SFBR must be used as an
; intermediate step.

move SCRA TCHBO to SFBR
move SFBR to SCRA TCHAO

; Move 4 bytes from memory to the SCRATCHA register using 4 separate
; byte wide moves to show different allignments

move memory 1, Byte_O, ScratchA_Zero_Addr
move memory 1, Byte_I, ScratchA_One_Addr
move memory 1, Byte_2, ScratchA_ Two_Addr
move memory 1, Byte_3, ScratchA_Three_Addr

; Move 4 bytes out of the SCRA TCHA register and put them in memory
move memory 1, ScratchA_Zero_Addr, Byte_O
move memory 1, ScratchA_One_Addr, Byte_I
move memory 1, ScratchA_Two_Addr, Byte_2
move memory 1, ScratchA_Three_Addr, Byte_3

; Re-initialize the SCRA TCHA register to all OxFF's.
move OxFF to SCRATCHAO
move OxFF to SCRATCHAI
move OxFF to SCRATCHA2
move OxFF to SCRATCHA3

E-2 NCR 53C720 Programmer's Guide

53C720 Test SCRIPTS Examples

; Now move 4 bytes at a time from memory into the SCRATCHA register
; to show 32 bit accesses. Note that the address's of Temp_Buffl and
; ScratchA_Zero_Addr must have the same long word allignment (AO-AI
; must be the same).

move memory 4, Temp_Buffl, ScratchA_Zero_Addr

; Now move the data back out of the SCRA TCHA register using a long
; word access

move memory 4, ScratchA_Zero_Addr, Temp_Buff2

; Move 1 byte from memory to memory
move memory 1, Temp_Buffl, Temp_Buff2

; Move 2 bytes from memory to memory
move memory 2, Temp_Buffl, Temp_Buff2

; Move 3 bytes from memory to memory
move memory 3, Temp_Buffl, Temp_Buff2

; Move 4 bytes from memory to memory
move memory 4, Temp_Buffl, Temp_Buff2

; The next section implements a counter that counts from 0 to OxFFFF. It
; shows how the SFBR register can be used in conjunction with a transfer
; control instruction to compare for certain data values.

; Use Register Write to put OxOO's in SCRA TCHA register
move OxOO to SCRATCHBO
move OxOO to SCRATCHBI
move OxOO to SCRATCHB2
move OxOO to SCRATCHB3

addbyteO:
move SCRA TCHBO + OxOI to SCRATCHBO
move SCRA TCHBO to SFBR
jump addbyteO if not Oxff

move SCRA TCHBI + OxOI to SCRATCHBI
move SCRA TCHBI to SFBR
jump addbyteO if not Oxff

; End of 0 to OxFFFF counter routine

NCR 53C720 Programmer's Guide

Appendix E

E-3

Appendix E 53C720 Test SCRIPTS Examples

; The rest of this SCRIPT demonstrates how the carry can be used to make
; a 32 bit counter. As is, this SCRIPT will count from 0 to 232. This
; will most likely take hours depending on the hard ware surrounding the
; 53C720. To execute this SCRIPT in a reasonable amount of time, I
; recommend you put an interrupt instruction after the first two loops.
; This will make it count from 0 to 216 which doesn't take long at all.

; Use Register Write to put OxOO's in SCRA TCHA register
move OxOO to SCRATCHBO
move OxOO to SCRATCHBI
move OxOO to SCRATCHB2
move OxOO to SCRATCHB3
clear carry

addtest:
move SCRA TCHBO + OxOI to SCRATCHBO
jump addtest if not carry

move SCRA TCHBI + OxOO to SCRATCHBI with carry
jump addtest if not carry

; int OxOb
move SCRA TCHB2 + OxOO to SCRATCHB2 with carry
jump addtest if not carry

move SCRA TCHB3 + OxOO to SCRA TCHB3 with carry
jump addtest if not carry

; Interrupt saying we are all done

int OxOA

E-4 NCR 53C720 Programmer's Guide

Appendix F

SCRIPTS ™ Compiler Error Messages

The NCR SCSI SCRIPTS compiler diagnostic messages fall into four classes: Fatal Errors,
Errors, and Warnings.

Fatal Errors
When a fatal error occurs, compilation immediately stops. You must take appropriate action
and then restart compilation.

No memory. Aborting compiler
There is not enough available memory to read the SCRIPT into RAM.

Local stack overflow. Aborting compile
Please contact NCR immediately, you have an obsolete version of SCRIPTS.

Cannot open file
The SCRIPT file cannot be opened or one of the output files (.ERR or XRF) are

corrupt. Compilation is terminated.

Cannot read file
The file was opened, but could not be read. Compilation is terminated.

NCR 53C720 Programmer's Guide F-l

Appendix F SCRIPTSTM Compiler Error Messages

Errors
Errors indicate program syntax errors, disk or memory access errors, and command line errors.

Expected digit
While evaluating a number, a character other than a legal digit was encountered.

F-2

Expected a separator
A separator was expected, insert a comma, EOL character or any other legal separator.

Numeric constant has too many digits
A number, either decimal, hex or binary contains too many digits.

Expected a value
A value was expected, but instead an operator, pseudo-op, or instruction was
encountered.

Undefined variable
A variable was encountered that was not defined at the beginning of the SCRIPT.

Unknown identifier
An identifier was encountered that was not a "+", "-", or any other expected separator.

Expected an identifier
A reserved word was encountered where there should have been an identifier.

Expected a variable
A pseudo op, instruction, or reserved word was encountered where a variable was
expected.

Expected an expression
A mathematical expression was expected but not found. If you encounter this error
message, contact NCR, you have an old version of SCRIPTS.

Expected a reserved word
A reserved word was expected (WITH, WHEN, IF, etc.) but was not encountered.

Expected a PHASE
An instruction was used in which a phase was expected and but was not found in the
instructions.

Cannot use a RELATIVE in a non address field
A relative variable was used in a field that was not an address field.

NCR 53C720 Programmer's Guide

SCRIPTSTM Compiler Error Messages Appendix F

Warning
Warnings do not prevent the compilation from finishing.

Identifier truncated
An identifier, such as a label contained more than 32 characters and was truncated.

Redefinition of variable
A variable was defined two or more times.

Duplicate ATN
A TN has already been set and you are attempting to set it again.

Duplicate ACK
ACK has already been set and you are attempting to set it again.

Undefined label used as entry pOint
The label was not defined as an entry point.

Unused variable
A variable was defined but not used in the SCRIPT.

Lost resolution
A number encountered was too large. For example, using 8 as a SCSI ID.

SCSI ID numbers can be no larger than 7.

Duplicate label
A label was defined more than once.

NCR 53C720 Programmer's Guide F-3

Appendix F SCRIPTSTM Compiler Error Messages

Notes

F-4 NCR 53C720 Programmer's Guide

Appendix G

Miscellaneous Design Topics

The following paragraphs detail design
topics.

Design Topics
The following design topics are discussed.

• SCSI Timers
• Longitudinal Parity Register
• BiglLittle Endian Support
• SCRIPTS in a host adapter

SCSI Timers
Some SCSI systems have a system require­
ment with respect to activity on the SCSI bus.

If there are long periods with no SCSI activity
then the SCSI driver must notify the system
software that a time-out has occurred. The
53C720 provides programmable select!
reselect, handshake to handshake, and gen­
eral purpose timers. The time-out period is
programmable from 100 J.1Sec to greater than
1.6 seconds. A maskable interrupt is available
for each of the timers. Timers are masked in
the SIENl register and status of the timers are
checked in the SISTI register.

Longitudinal Parity Register (SLPAR)
For a simple error check of any data passing
through the 53C720, there is an 8-bit register
that contains a continual exclusive OR of the
data. The value in the chip is cleared by any
write to the register. A designer can use the
information by performing the following:

1. Clear the value with a SCRIPTS write.

2. Move data through the 53C720.

3. Move the generated byte to the SCSI
target to be stored with the data.

4. Read in the extra byte on a read, and
compare it to the byte generated during
the move.

All the extra moves and compares can be
done by the 53C720 or by the system proces­
sor, depending on the designer's preference.

NCR 53C720 Programmer's Guide

Note that the SLPAR doubles as the SFBR
during a select or reselect. The device id is
always written into the SLPAR. Because ~
SCRIPT could be writing to the SFBR dUring
a SCSI bus-initiated interrupt, the value
could be destroyed. Optionally, therefore,
the chip can be set to write the device id
only to the SLP AR.

Big/Little Endian Support
There is some support for both Big and Little
Endian in the 53C720. Four areas must be
considered when discussing the byte order­
ing.

L SCRIPTS Order

To ensure that all SCSI SCRIPTS are in the
correct order, each SCRIPT must be com­
piled in the target architecture .. The.C
output is a longword value, which Will be .
stored in the memory by the processor and In
the correct order for the subsequent execu­
tion. If a little Endian SCRIPT is to be
executed on a big Endian machine, th~ bytes
will need to be reversed before execution by
the 53C720 (in big Endian mode). Note t?at
a PROM cannot be moved from one envI­
ronment to another without re-ordering
bytes within each word.

Z. 53C720 Register Acceu from Firmware

There is a big Endian and a little Endian
address mode for the registers. To develop
code that works in either mode, simply use
equates with an Endian switch that includes
the appropriate set of address values. Note
that the change is only for byte access. If 32
bits are accessed, there is no change from big
to little Endian.

3. 53C7Z0 Replter Accell from SCSI SCRIPTS

The compiler offers a set of logical names
that can be used to access registers. Names
do not change when the mode changes, and
the binary code required to access a register
does not change either.

G-I

Appendix G

4. U.er Data Byte Ordering

Data transfers tolfrom system memory froml
to the SCSI bus always start at the beginning
address and continue until the last byte is
sent. No internal re-ordering of the data for
either mode occurs. A serial stream of data is
assumed, and the first byte on the SCSI bus is
associated with the lowest address in system
memory.

SCRIPTS in a Host Adapter
Some designs require that SCSI SCRIPTS be
fetched from a local ROM rather than from
system memory across the bus. Typically,
this requirement comes from the desire to
avoid traffic on the bus or is caused by large
overheads associated with bus arbitration.
The 53C720 allows several options in the
placement of SCRIPTS and table indirect
data

SCRIPTS and data structures can be placed
in system memory.

Using the FETCH pin, external system bus
interface hardware can read SCRIPTS locally
and all other data from system memory.
During SCRIPT fetches, the pin is active, and
thus, the access can go locally rather than
across the system bus.

In the CTESTB register is the fetch mode bit.
When set, the FETCH pin will deassert
during indirect and table indirect read opera­
tions. FETCH will be active during SCRIPT
fetches only. Thus, external hardware can
drive the opcode fetch to one memory area
(local ROM) and table indirect fetches to
another area (system RAM). If the bit is not
set, then fetch is asserted throughout the
instruction fetch.

Thus, the designer can place SCRIPTS, user
data, and table indirect data in the most
convenient area of memory. Note that the
options can be changed dynamically by
writing to the registers from SCRIPTS.

G-2

Compiler SCRIPT Examples

NCR 53C720 Programmer's Guide

Appendix H

Using the 53C720 in Low Level Mode

Low-level SCSI Code
Pseudocode examples of selection, message-out, command, data-in, status, and message-in.

Selection: *

parity check, generation
SCNTLO=OXCC

C700 id=7, target id=2
SODL=OX84

assert BSY
SOCL=OX20

assert SODL, connected; if not connected, ATN cannot be asserted
SCNTLl=OX50

low-level mode (Note: Disable low-level mode before starting the SCRIPTS' processor.)
DCNTL=OX08

assert SEL, ATN, BSY
SOCL=OX38

deassert BSY, keep SEL, ATN
SOCL=OX18

wait for BSY, asserted by Target
(SBCL & OX20)=OX20

deassert SEL, keep A TN
SOCL=OX08

Message-Out *

look for REQ and message-out
(SBCL & OX87)=OX86

identify message
SODL

message-out phase; a phase match asserts SODL onto the SCSI bus
SOCL=OXOE

assert ACK, message-out, keep A TN
SOCL=OX4E

wait for REQ deasserted
wait for (SBCL & OX80)=OXOO

deassert ACK, ATN; keep message-out
SOCL=OX06

NCR 53C720 Programmer's Guide H-l

Appendix H U sing the 53C720 in Low Level Mode

**

Command *
**

look for REQ and command
(SBCL & OX87)=OX82

initialize command byte
SODL=eommand byte

assert ACK, command
SOCL=OX42

wait for REQ deasserted
wait for (SBCL & OX80)=OXOO

deassert ACK, keep command
SOCL=OX02

repeat until last command byte

Data-In *

look for REQ and data-in
(SBCL & OX87)=OXBl

SBDL=data byte
assert ACK, data-in

SOCL=OX41
wait for REQ deasserted

wait for (SBCL & OXBO)=OXO
deassert ACK, keep command

SOCL=OX02
repeat until last data byte

Status *

look for REQ and status
(SBCL & OXB7)=OxB3

ACK, status phase
SOCL=OX43

SBDL contains status byte
status=SBDL

wait for REQ deasserted
wait for (SBCL & OXBO)=OXOO

deassert ACK; keep status phase
SOCL=OX03

H-2 NCR 53C720 Programmer's Guide

Using the 53C720 in Low Level Mode

Message-in *

look for REQ and message-in
(SBCL & OX87)=OX87

ACK, message-in phase
SOCL=OX47

SBDL contains message byte
message-in=SBDL

wait for REQ deasserted
wait for (SBCL & OX80)=OXOO

deassert ACK; keep message-in phase::
SOCL=OX07

NCR 53C720 Programmer's Guide

Appendix H

H-3

Appendix H U sing the 53C720 in Low Level Mode

Notes

H-4 NCR 53C720 Programmer's Guide

-e[errorfilename] - 3-1
-1[ListFilename] - 3-1
-o[OutputFile name] - 3-1
-u - 3-1
-v - 3-1
-w - 3-1
-z[debugfilename] - 3-1

53C7XO - 4-1
53C90 Algorithm Description. - A-I
53C720 Algorithm Description - A-I

Index

53C720 Performance Compared to 53C90 - A-I
53C720 Register Access from Firmware - G-l
53C720 Register Access from SCSI SCRIPTS - G-l
53C720 Strengths in the Disk Drive Environment - 7-1
53C720 System Bus Utilization - B-1
53C720 Test SCRIPTS Examples - E-l
68030 - 1-4
80386 - 1-4
80386SX - 1-4

A
A SCSI Solution - 1-1
ABSOLUTE - 2-3,4-3,4-5
ACK - 4-3
AND - 4-3
array - 1-5
ASCII - 3-1
ATN - 4-3

B
back-end - 4-1
Big/Little Endian Support - G-l
binary - 4-1
Bit 16 Wait for Valid Phase - 10-16
Bit 17 Compare Phase - 10-16
Bit 18 Compare Data - 10-16
Bit 19 Jump If - 10-16
Bit 20 Interrupt on the Fly (INTFL Y) - 10-16
Bit 21 Carry Test - 10-15

Index - 1

Bit 22 Reserved - 10-15
Bit 23 Relative Addressing - 10-15
Bit 23 Reserved - 10-13
Bit 24 Carry Enable - 10-13
Bit 24 SELECT With ATN - 10-10
Bit 25 Table Indirect Mode - 10-10
Bit 26 Relative Addressing Mode - 10-10
Bit 27 Block Move Opcode - 10-3
Bit 28 = 0 Table Direct Mode - 10-2
Bit 28 = 1 Table Indirect Mode - 10-2
Bit 28 Table Indirect Field - 10-2
Bit 29 = 0 Direct Addressing - 10-2
Bit 29 = 1 Indirect Addressing - 10-2
Bit 29 Indirect data address flag - 10-2
Bits 7-0 Data Byte - 10-16
Bits 7-0 Reserved - 10-13
Bits 15-0 Flags Field - 10-10
Bits 15-8 Immediate Data Field - 10-13
Bits 15-8 Mask Bits - 10-16
Bits 19-16 Sequence Control Bits - 10-16
Bits 22-16 Register Address Field - 10-13
Bits 23-0 Block Move Byte Count - 10-4
Bits 23-00 24-bit Byte Count - 10-19
Bits 23-16 SCSI ID 7-0 - 10-10
Bits 26-24 SCSI Phase Bits - 10-15
Bits 26-24 SCSI Phase Lines - 10-4
Bits 29-24 Reserved Section - 10-19
Bits 29-27 = 000 (JUMP) - 10-15
Bits 29-27 = 001 (CALL) - 10-15
Bits 29-27 = 010 (RETURN) - 10-15
Bits 29-27 = 011 (INTERRUPT) - 10-15
Bits 29-27 = 101 (Move from SFBR) -10-12
Bits 29-27 = 110 (Move to SFBR) - 10-12
Bits 29-27 = 111 (Read-Modify-Write) - 10-13
Bits 29-27 1/0 Instruction Opcodes - 10-7
Bits 29-27 Transfer Opcodes - 10-15
Bits 31-0 Data Jump Address - 10-17
Bits 31-0 Data Start Address - 10-5
Bits 31-0 Jump Address - 10-13
Bits 31-00 Destination Address of the Memory Move - 10-20
Bits 31-00 Source Address of the Memory Move - 10-19
Bits 31-30 Block Move (00) - 10-2
Bits 31-30 1/0 Instruction (01) - 10-7

Index - 2

Bits 31-30 Read/Write Instructions (01) -10-11
Bits 31-30 SCSI I/O Processor (10) - 10-14
Bits 31-30 SCSI I/O Processor Opcode (11) - 10-19
Block Move Instruction - 10-2
Block Move Instruction - 10-5
Block Move Instructions - 10-1
Block Move Overview - 10-2
Block Move - 4-7
brackets - 3-1

c
C Source Code - 1-5
CALL Instruction - 4-12
CALL - 4-1
Cannot open file - F-l
Cannot read file - F-l
Cannot use a RELATIVE in a non address field - F-2
CARRY - 4-3
Chained Block Move - 4-8
Chained Move Instruction - 10-5
chained mode - 1-4
CHMOV - 4-1
CLEAR - 4-1
Clear Instruction - 4-18
Compiled Output - 3-2
Compiler Directives Syntax - 4-5
Compiler Directives - 4-3
Compiler SCRIPTS Examples - D-l
compiler - 1-5
count - 4-4
CPU - 1-1,1-6

D
data - 4-4
Data-in Phase - 8-2
Data-out Phase - 8-2
debugger - 3-1
Decimal - 4-1
Definition area - 2-1
Design Topics - G-l
Direct Block Move - 4-7
Direct Chained Block Move - 4-9

Index - 3

DISCONNECT - 4-1
Disconnect Instruction - 4-17
Disconnect SCSI SCRIPTS - 9-2
Disk Drive Initiator Sequence - 7-1
DMA Component - 1-3
DMA - 1-1,1-3
DSA - 1-4
Duplicate ACK - F-3
Duplicate ATN - F-3
Duplicate label - F-3

E
ENTRY - 4-4, 4-5
Errors - F-2
Example of a SCRIPTS Operation - 1-6
Expected a PHASE - F-2
Expected a reserved word - F-2
Expected a separator - F-2
Expected a value - F-2
Expected a variable - F-2
Expected an expression - F-2
Expected an identifier - F-2
Expected digit - F-2
expression [,name = expression_l - 4-5
expression [,name = expression_l - 4-6
expression - 4-4
EXTERNAL name [,name-l - 4-5
EXTERNAL - 2-2

F
Fatal Errors - F-l
First 32-bit word of the 1/0 Instructions - 10-7
First generation - 1-1
FROM - 4-3
front-end - 4-1

H
hex - 4-1
Hexadecimal - 4-1
high level - 1-4
Host Bus Time To Fetch A SCSI SCRIPTS Command - B-1
Host System - 1-6
How SCSI SCRIPTS becomes part of a C Language Program - 1-5

Index - 4

I
I/O Instructions Overview - 10-7
I/O Instructions - 10-7, 10-13
id - 4-4
Identifier truncated - F-3
IF - 4-3
Indirect Block Move - 4-7
Indirect Chained Block Move - 4-9
Initiator Mode Bit 27 = 0 (CHMOV) - 10-4
Initiator Mode Bit 27 = 1 (MOVE) - 10-4
Initiator Mode Bits 29-27 = 000 (Selection) - 10-8
Initiator Mode Bits 29-27 = 001 (Wait Disconnect) - 10-9
Initiator Mode Bits 29-27 = 010 (Wait Reselect) - 10-9
Initiator Mode Bits 29-27 = 011 (Set) - 10-9
Initiator Mode Bits 29-27 = 100 (Reset) - 10-9
Instruction Keywords - 4-1, 4-7
INT - 4-1
INTERRUPT Instruction - 15
INTERRUPT on the FLY Instruction - 4-16
INTFLY - 4-1
Invoking the SCSI SCRIPTS Compiler - 3-1

J
JUMP Instruction - 4-11
JUMP - 4-1

K
KEYWORD count, address - 4-6
KEYWORD - 4-1, 4-4

L
Labels - 3-1
lines of code - 1-1
Linker - 1-5
Local stack overflow. Aborting compile - F-1
Longitudinal Parity Register (SLPAR) - G-1
Lost resolution - F-3
Low level - 1-4
Low-level SCSI Code - H-1

Index - 5

M
Main SCSI SCRIPTS - 9-1
MASK - 4-3
MEMORY MOVE - 10-19,10-20
MEMORY - 4-3
Memory Move Overview - 10-18
Memory to Memory Move - 4-10, 10-19, 10-18
MIPS - 1-1
Miscellaneous Design Topics - G-l
Miscellaneous Instructions - 4-16
Miscellaneous Keywords - 4-3
MOVE Instructions - 4-7
MOVEMEMORY - 4-1
MOVE - 4-1
Multi-Tasking I/O Using SCSI SCRIPTS - 9-1
Multi-Threaded I/O Using SCSI SCRIPTS - 9-1

N
name - 4-4
NCR 53C720 SCSI I/O Processor Chip Block Diagram - 1-2
NCR SCSI SCRIPTSTM Description - 1-4
No memory. Aborting compiler - F-l
NOP - 4-1
NOT - 4-3
Numeric constant has too many digits - F-2

o
octal - 4-1
offset - 4-4
OR - 4-3

p
P-Calbe - 1-3
PASS (#include "NCRh,,) - 4-5
P ASS (literal string) - 4-5
P ASS Option - 4-5
PASS - 2-3, 4-4
Phase Keywords - 4-2
Phase - 4-4
PROC label - 4-5

Index - 6

PROC - 4-4
Processing a SAVE DATA POINTERS Message - 8-2
PTR - 4-3

R
ReadlWrite Overview - 10-11
ReadlWrite Register Instructions - 10-11
Redefinition of variable - F-3
REG - 4-3
Register Keywords - 4-2
Register Read/Write Instruction - 4-18
REL - 4-3
RELATIVE name = - 4-6
RELATIVE - 4-4
RESELECT - 4-1
Reselect Instruction - 4-17
reserved word - 4-1
Resume SCSI SCRIPTS - 9-3
RETURN Instruction - 4-14
RETURN - 4-1

S
SAMPLE SCSI SCRIPTS Source File - D-1
Sample Input Data Structure - A-I
Scheduler SCSI SCRIPTS - 9-1
SCRIPT area - 2-1
SCRIPTS for the Initiator Role - 6-1
SCRIPTS for the Target Role - 6-7
SCRIPTS in a Host Adapter - G-2
SCRIPTS Keywords - 4-1
SCRIPTS Notation - 4-4
SCRIPTS Order - G-l
SCRIPTS TM Compiler Error Messages - F-1
SCSI Character Oriented Device in the Initiator Role - 7-2
SCSI SCRIPTS Compiler Output - 3-2
SCSI SCRIPTS Compiler - 1-5
SCSI SCRIPTS Machine Language Description - 10-1
SCSI SCRIPTS - 4-1
SCSI SCRIPTSTM Processor - 1-3
SCSI Timers - G-l
Second 32-bit word of the I/O Instructions - 10-7
Second generation - 1-1

Index -7

SELECT [ATN] FROM offset, Address - 4-17
SELECT [ATN] FROM offset, REL (Address) - 4-17
SELECT [A TN] ID, Address - 17
SELECT [A TN] ID, REL (Address) - 4-17
SELECT - 4-1
Select Instruction - 4-17
Set Instruction - 4-18
Source Code - 3-2
SSC Sourcefine Options - 3-1
Syntax - 4-18

T
Table Indirect Block Move - 4-8
Table Indirect Chained Block Move - 4-9
Tape Drive Initiator Sequence - 7-1
TARGET - 4-3
Target Mode Bit 27 = 0 (MOVE) - 10-3
Target Mode Bit 27 = 1 (CHMOV) - 10-4
Target Mode Bits 29-27 = 000 (Reselect) - 10-8
Target Mode Bits 29-27 = 001 (Disconnect) - 10-8
Target Mode Bits 29-27 = 010 (Wait Select) - 10-8
Target Mode Bits 29-27 = 011 (Set) - 10-8
Target Mode Bits 29-27 = 100 (Reset) - 10-8
The NCR SCSI I/O Processor - 1-3
The NCR SCSI SCRIPTS Language Syntax - 4-1
Third generation - 1-1
token - 4-1
TRANSFER CONTROL INSTRUCTION - 10-14,10-17
Transfer Control Instructions - 10-14
Transfer Control Overview - 10-14
Transferring Large Blocks of User Data - 8-1

U
Undefined label used as entry point - F-3
Undefined variable - F-2
Unknown identifier - F-2
Unused variable - F-3
Use of the Sig-p Bit in the 53C720 - C-l
User Data Byte Ordering - G-2
Using the 53C720 in Low Level Mode - H-l

v
Index - 8

value - 4-4
VLSI - 1-1

W
WAIT - 4-3
Wait Disconnect Instruction - 4-17
Wait Reselect Instruction - 4-17
Wait Reselect PASS(&alt_addr) - 4-5
Wait Select Instruction - 4-17
Warning - F-3
WHEN - 4-3
WITH - 4-3

Index - 9

Notes

Index - 10

READER'S COMMENT FORM
F-8763 0687

BOOK TITLE I BOOK NO. I PRINT DATE

To help us plan future editions of this document, please take a few minutes to answer the following questions.
Explain in detail using the space provided. Include page numbers where applicable.

Are there any technical errors or misrepresentations in the document?

Is the material presented in a logical and consistent order?

Is it easy to locate specific information in the document?

Is there any information you would like to have added to the document?

WI
~I
~: Are the examples relevant to the task being described?

1-1
~I
°1
~I
1-1
51

Could parts of the document be deleted without affecting the document's usefulness?

Did the document help you to perform your job?

Any general comments?

NAME ________________________________ __

TITLE ___________________ _

COMPANY __________________________ _

ADDRESS ______________________ _

TELEPHONE NO. (

Thank you for your evaluation of this document.
Fold the form as indicated and mail to NCR. No postage is
necessary in the U.S.A.

-------------------------------------fDld--------

llflrr
-------~1~ii£~;---i

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 3 DAYTON, OHIO

POSTAGE WILL BE PAID BY ADDRESSEE

NCR Corporation
ATIENTION: Publication Services
WHQ-4
1700 S. Patterson Blvd.
Dayton, Ohio 45409

IN THE
UNITED STATES

, - fold --1

NCR Corporation
Microelectronic Products Division

Colorado Springs, CO 80916
53C720 Programmer's Guide 0691

