
V20TM, V30TM

V20HLTM, V30HLTM

V40TM, V50TM

V40HLTM, V50HLTM

V33ATM

V53ATM

Document No. U11301EJ5V0UMJ1 (5th edition)
Date Published September 2000 N CP(K)
Printed in Japan

INSTRUCTION

16-BIT V SERIESTM

16-/8- AND 16-BIT MICROPROCESSORS

© 1996

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

M8E 00. 4

The information in this document is current as of February, 1997. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

V20, V30, V20HL, V30HL, V40, V50, V40HL, V50HL, V33A, V53A, and V series are trademarks of NEC

Corporation.

InterTool is a trademark of Intermetrics Microsystems Software, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil
Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

MAJOR REVISIONS IN THIS EDITION

Pages Contents

Throughout The following products have been deleted:

• µPD70208 (A) (V40)

• µPD70216 (A) (V50)

• µPD70270 (V41TM)

• µPD70280 (V51TM)

The mark shows major revised points.

PREFACE

Readers This manual is intended for engineers who wish to understand the functions of the

following 16-bit V series microprocessors and design application systems using them.

Parts Number Nick Name

µPD70108 V20

µPD70116 V30

µPD70108H V20HL

µPD70116H V30HL

µPD70208 V40

µPD70216 V50

µPD70208H V40HL

µPD70216H V50HL

µPD70136A V33A

µPD70236A V53A

Purpose This manual is to introduce the instruction functions of the above 16-bit V series

microprocessors.

Organization Two volumes of the User’s Manual of the above 16- bit V series microprocessors are

available: Hardware Manual and Instruction Manual (this manual).

 Hardware Manual Instruction Manual

General General

Pin Function Instruction Description

CPU Function Instruction Map

Internal Block Function Correspondence of Mnemonic between µPD8086 and 8088

Bus Control Function

Interrupt Function

Standby Function

Reset Function

Others

How to Read This Manual It is assumed that readers of this manual have a basic knowledge of electricity, logic

circuits, and microcontrollers. Unless otherwise specified, the descriptions in this

manual apply to all the models in the 16-bit V series microprocessors. Note that part

number “µPD70...” is referred to as “V...” in this manual.

To check the details of the function of an instruction whose mnemonic is known,

→ Refer to CHAPTER 2 INSTRUCTIONS (instructions are shown in alphabetic order

of the mnemonic)

To understand the details of each instruction,

→ Read this manual in the order of the Table of Contents.

To understand the hardware functions of each product,

→ Refer to the User’s Manual - Hardware (separate volume) for each product.

To find the electrical specifications

→ Refer to the data sheet for each product.

Legend Data significance : Left: high, right: low

Active low : ××× (top bar over pin or signal name)

Memory map address : Top: high, bottom: low

Address representation : x indicates a segment value, and y indicates an offset value

in the following case:

x: yH

Note : Explanation of items marked with Note in the text

Caution : Important information

Remark : Supplement

Numeric notation : Binary ... ×××× or ××××B

Decimal ... ××××
Hexadecimal ... ××××H

Related documents The documents referred to in this publication may include preliminary versions. However,

preliminary versions are not marked as such.

 Document Data Sheet User’s Manual Application Note Register Q & A

Parts Number Hardware Instruction Table

V20 IC-1827 IEM-871 This – – –

V30 IC-1828 manual

V20HL IC-3552 IEU-761 – – –

V30HL

V40 U10154E U10666E U10911E – U10554E

V50 Software

V40HL IC-3659 U11610E U10037E – U11123E

Hardware Design

V50HL U10911E

Software

V33A U10136E U10032E – – –

V53A U10120E U10108E U10188E – U10875E

Address Expansion,

Software

[MEMO]

– i –

TABLE OF CONTENTS

CHAPTER 1 GENERAL 1
1.1 Classification of Instructions by Function .. 2
1.2 Instruction Word Format ... 3
1.3 Functional Outline of Each Instruction .. 3

1.3.1 Data transfer instructions ... 3

1.3.2 Block manipulation instructions .. 3

1.3.3 Bit field manipulation instructions ... 3

1.3.4 I/O instructions ... 4

1.3.5 Operation instructions .. 4

1.3.6 BCD operation instructions .. 4

1.3.7 BCD adjustment instructions .. 5

1.3.8 Data conversion instruction .. 5

1.3.9 Bit manipulation instructions .. 5

1.3.10 Shift and rotate instructions .. 5

1.3.11 Stack manipulation instructions .. 5

1.3.12 Program branch instructions .. 6

1.3.13 CPU control instructions ... 6

1.3.14 Mode select instructions ... 6

CHAPTER 2 INSTRUCTIONS ... 7
2.1 Description of Instructions (in alphabetical order of mnemonic)7
2.2 Number of Instruction Execution Clocks ... 169

APPENDIX A REGISTER CONFIGURATION ... 185
A.1 General-Purpose Registers (AW, BW, CW, DW).. 185
A.2 Segment Registers (PS, SS, DS0, DS1) .. 185
A.3 Pointers (SP, BP) 185
A.4 Program Counter (PC) ... 185
A.5 Program Status Word (PSW)... 186
A.6 Index Registers (IX, IY) .. 190

APPENDIX B ADDRESSING MODES .. 1 91
B.1 Instruction Address ... 191
B.2 Memory Operand Address .. 193

APPENDIX C INSTRUCTION MAP 199

APPENDIX D CORRESPONDENCE OF MNEMONICS OF µPD8086 AND 8088203

APPENDIX E INSTRUCTION INDEX (mnemonic: by function) .. 205

APPENDIX F INSTRUCTION INDEX (mnemonic: alphabetical order) .. 207

– ii –

LIST OF FIGURES

Figure No. Title Page

1-1 Relations between Common Instructions and Dedicated Instructions of Each Model 1

1-2 Instruction Format .. 3

1-3 Operation of ALU When Operation Instruction Is Executed ... 4

2-1 Description Example .. 12

A-1 PSW Configuration... 186

LIST OF TABLES

Table No. Title Page

1-1 Classification of Instructions by Function ... 2

2-1 Example of Flag Operation .. 7

2-2 Example of Operand Type ... 8

2-3 Example of Instruction Word .. 9

2-4 Legend of Description of Instruction Format and Operand .. 10

2-5 Memory Addressing ... 11

2-6 Selecting 8-/16-Bit General-Purpose Register ... 11

2-7 Selecting Segment Register ... 11

2-8 Number of Instruction Execution Clocks .. 170

C-1 Instruction Map... 200

C-2 Group1, Group2, Imm, and Shift Codes .. 202

C-3 Group0 Codes .. 202

C-4 Group3 Codes .. 202

D-1 Register Correspondence with µPD8086 and 8088 ... 203

D-2 Mnemonic Correspondence with µPD8086 and 8088 ... 204

1

CHAPTER 1 GENERAL

The 16-bit V series microprocessors have 101 common instructions that are completely compatible in terms of

software, so that your software resources can be effectively utilized.

In addition to these common instructions, the V20, V30, V20HL, V30HL, V40, V50, V40HL, and V50HL have three

dedicated instructions (BRKEM, RETEM, and CALLN) to support emulation mode.

The V33A and V53A have two dedicated instructions (BRKXA and RETXA) to support the extended address mode.

Figure 1-1. Relations between Common Instructions and Dedicated Instructions of Each Model

Remark For the emulation mode and extended address mode, refer to the Hardware Manual of each model.

V20, V30, V20HL, V30HL,
V40 V50 V40HL, V50HL,

V33A, V53A

Dedicated emulation
mode instructions

BRKEM
RETEM
CALLN

16-bit V series common instructions (101 types)

Dedicated extended
address mode

instructions
BRKXA
RETXA

2

CHAPTER 1 GENERAL

1.1 Classification of Instructions by Function

The instructions of the 16-bit V series can be broadly divided by classification of function into the following 27 types.

Table 1-1. Classification of Instructions by Function

Instruction Group Mnemonic (alphabetical order)

Data transfer instructions LDEA, MOV, TRANS, TRANSB, XCH

Repeat prefix REP, REPC, REPE, REPNC, REPNE, REPNZ, REPZ

Primitive block transfer instructions CMPBK, CMPBKB, CMPBKW, CMPM, CMPMB, CMPMW, LDM, LDMB,

LDMW, MOVBK, MOVBKB, MOVBKW, STM, STMB, STMW

Bit field manipulation instructions EXT, INS

I/O instructions IN, OUT

Primitive I/O instructions INM, OUTM

Add/subtract instructions ADD, ADDC, SUB, SUBC

BCD operation instructions ADD4S, CMP4S, ROL4, ROR4, SUB4S

Increment/decrement instructions DEC, INC

Multiplication/division instructions DIV, DIVU, MUL, MULU

BCD adjustment instructions ADJ4A, ADJ4S, ADJBA, ADJBS

Data conversion instructions CVTBD, CVTBW, CVTDB, CVTWL

Compare instructions CMP

Complement operation instructions NEG, NOT

Logical operation instructions AND, OR, TEST, XOR

Bit manipulation instructions CLR1, NOT1, SET1, TEST1

Shift instructions SHL, SHR, SHRA

Rotate instructions ROL, ROLC, ROR, RORC

Subroutine control instructions CALL, RET

Stack manipulation instructions DISPOSE, POP, PREPARE, PUSH

Branch instruction BR

Conditional branch instructions BC, BCWZ, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH,

BNL, BNV, BNZ, BP, BPE, BPO, BZ, BV, DBNZ, DBNZE, DBNZNE

Interrupt instructions BRK, BRKV, CHKIND, RETI

CPU control instructions BUSLOCK, DI, EI, FPO1, FPO2, HALT, NOP, POLL

Segment override prefix DS0:, DS1:, PS:, SS:

Dedicated emulation mode instructionsNote 1 BRKEM, CALLN, RETEM

Dedicated extended address mode instructionsNote 2 BRKXA, RETXA

Notes 1. Except V33A and V53A

2. V33A and V53A only

3

CHAPTER 1 GENERAL

1.2 Instruction Word Format

Basically, an instruction word (object code) is in the following format.

Figure 1-2. Instruction Format

Remark op code : 8-bit code indicating type of instruction

Operand : Field indicating register and memory address to be manipulated by instructions. Indicated

as a field of 0 to 5 bytes.

1.3 Functional Outline of Each Instruction

1.3.1 Data transfer instructions

The data transfer instructions transfer data between two registers and between a register and memory, without

data manipulation. These instructions can be classified into the following four types.

To transfer general data (MOV) : Transfers a specified byte/word from the second operand to the first

operand. Can also directly transfer a numeric value to a register or

memory.

To transfer effective address (LDEA) : Transfers the offset address (effective address) of the second operand

to the first operand.

To transfer conversion table (TRANS) : Transfers 1 byte of a conversion table.

Exchanges general data (XCH) : Exchanges the contents of the first operand with those of the second

operand.

1.3.2 Block manipulation instructions

A block (successive data) of bytes or words can be transferred or compared by using a repeat prefix and a primitive

block transfer instruction.

The primitive block transfer instructions transfer, compare, and scan data, like the instructions that transfer data

with the accumulator in block units. If a 1-byte repeat prefix is used, repetitive processing by hardware can be

performed so that data can be manipulated successively.

1.3.3 Bit field manipulation instructions

The bit field manipulation instructions can be used to transfer data of specified length between a specified bit field

area and the AW register, with a contiguous memory area regarded as the bit field.

These instructions update a word offset (IX or IY register) and bit offset (8-bit general-purpose register) and

automatically specify successive bit field data after the instructions have been executed. These instructions are useful

for computer graphics and high-level languages and can support, for example, packed array of Pascal and data

structure of record type.

OP CODE Operand

4

CHAPTER 1 GENERAL

1.3.4 I/O instructions

The I/O instructions and primitive I/O instructions can read/write I/O devices.

The I/O devices transfer data with the CPU via the data bus by using these instructions.

1.3.5 Operation instructions

The following instructions can execute 8-/16-bit data operations.

Add/subtract, increment/decrement, multiplication, division, compare, complement operation, logical operation

The increment/decrement instructions can increment (+1) or decrement (–1) the 8-/16-bit data of the general-

purpose registers or memory.

Each operation instruction is not executed in a register or memory whose contents are to be manipulated, but

actually executed in the ALU. The result of the operation is set (1) or reset (0) to the flags of the program status word

(PSW).

Figure 1-3. Operation of ALU When Operation Instruction Is Executed

1.3.6 BCD operation instructions

The BCD operation instructions can be used to represent decimal numbers by using hexadecimal numbers for

calculation.

These instructions can also be used to execute arithmetic operation or comparison of BCD strings in memory.

Instructions that support rotating the BCD strings are also included.

Because the operand and comparison instructions are used to manipulate specific registers, they do not have an

operand that specifies a packed BCD string.

The first address of the source string (address of the byte data including LSD) is specified by the contents of the

IX register in data segment 0 (DS0).

The first address (address of the byte data including LSD) of the destination string is specified by the contents

of the IY register in data segment 1 (DS1).

The number of digits is specified by the contents of the CL register.

Because the destination string and source string must be of the same length, 0 is extended to the length of longer

string if the lengths of the two are different.

Operation ALU Register Memory Data

Flag

Operation instruction

Set result of operation

Set status of operation result

5

CHAPTER 1 GENERAL

1.3.7 BCD adjustment instructions

BCD operation is supported by executing a BCD adjustment instruction before or after arithmetic operation.

Because the BCD adjustment instructions are executed on the AL register, they do not have an operand. In the

case of addition and subtraction, adjustment can be made to both packed BCD and unpacked BCD. In the case of

multiplication and division, however, adjustment can be made to only unpacked BCD representation.

1.3.8 Data conversion instruction

The data conversion instructions can convert the type and word length of binary and decimal numbers.

The CVTBD and CVTDB instructions convert binary numbers and 2-digit unpacked BCD.

The CVTBW and CVTWL instructions extend the sign in a register.

1.3.9 Bit manipulation instructions

The bit manipulation instructions are used to execute logical operations on the bit data of the general-purpose

registers or memory.

The operand of the instruction format is “reg, bit” or “mem, bit”.

The first operand, reg or mem, specifies 8-/16-bit data including the bit data to be manipulated and codes a general-

purpose register or an effective address.

The second operand bit indicates the address of the bit data in a byte or word, and uses the contents of CL or

8-bit immediate data. If reg or mem is 8-bit data, only the low-order 3 bits are the valid bit address. If reg or mem

is 16-bit data, only the low-order 4 bits are the valid bit address, and the high-order bits are ignored.

1.3.10 Shift and rotate instructions

The shift or rotate instructions shift or rotate the 8-/16-bit data of a general-purpose register or memory 1 bit or

more (0 to 255).

The shift instructions are divided into arithmetic shift and logical shift instructions. Usually, the number of digits

to be shifted is 1, but it can be changed depending on the value of the CL register each time the instruction has been

executed if specified by the count operand of the instruction (255 max.). The arithmetic shift instruction inserts 0 to

the LSB of the data shifted if the data has been shifted 1 bit to the left, and 1 to the MSB of the data if the data has

been shifted 1 bit to the right. The logical shift instruction does not cause the value of the LSB or MSB to be changed

even when the data has been shifted 1 bit.

Like the shift instructions, the number of digits to be rotated by a rotate instruction is specified by the count operand

of the instruction. This value is the value stored to the CL register. As a result of executing the rotate instruction, the

CY and V flags are affected. The bit rotated out is always stored to the CY flag. The V flag always becomes undefined

if two or more digits have been rotated. If only one digit is rotated and the MSB (extension) of the destination is affected

as a result, the V flag is set to 1; otherwise, the flag is reset to 0. The CY flag can be used as the extension of the

destination when the ROLC or ROR instruction is used.

1.3.11 Stack manipulation instructions

The stack manipulation instructions are used to manipulate the stack in the memory.

The following four types of stack manipulation instructions are available.

PUSH : Saves data to the stack.

POP : Restores data from the stack.

PREPARE : Creates a stack frame and copies a frame pointer to secure an area for a local variable or to

reference a global variable.

DISPOSE : Restores the stack pointer (SP) and base pointer (BP) to the status before the PREPARE

instruction is executed.

6

CHAPTER 1 GENERAL

1.3.12 Program branch instructions

These instructions branch program execution to specified addresses. The following four types of branch

instructions are available.

Subroutine control instructions : Save the contents of the program counter (PC) to the stack (CALL) or restore

the contents of the PC from the stack (RET).

Branch instruction : Branches the flow of an instruction to a specified address.

Conditional branch instructions : Branch the flow of instruction execution to a specified address depending

on the value of a flag.

Interrupt instructions : Temporarily stop execution of the program and controls flow of program

execution by means of software interrupts if an external device requests for

interrupt or if an operation error occurs.

1.3.13 CPU control instructions

The CPU control instructions manipulate flags, synchronize the processor with an external device, or transfer data.

An instruction that causes the CPU to execute nothing (NOP) is also available.

1.3.14 Mode select instructions

(1) Emulation mode (except V33A and V53A)

The mode can be changed between the native and emulation modes by using a dedicated emulation mode

instruction.

(2) Extended address mode (V33A and V53A only)

The mode can be changed between the normal address mode and extended address mode by using a

dedicated extended address mode instruction.

7

CHAPTER 2 INSTRUCTIONS

2.1 Description of Instructions (in alphabetical order of mnemonic)

This chapter explains the following items for each instruction.

[Format]

[Operation]

[Operand]

[Flag]

[Description]

[Example]

[Number of bytes]

[Word format]

In [Format], [Operation], and [Operand], several identifiers are used.

Tables 2-2 through 2-4 show the identifiers used and their meanings, and Tables 2-5 through 2-7 explain how to

select memory addressing modes, general-purpose registers, and segment registers.

[Flag] shows, by using identifiers, the operations of the flags that are affected as a result of executing the given

instruction. Table 2-1 shows examples of operations of each flag.

Table 2-1. Example of Flag Operation

Identifier Description

Blank Not affected

0 Reset to 0

1 Set to 1

× Set to 1 or reset to 0 depending on result

U Undefined

R Restores previously saved value

8

CHAPTER 2 INSTRUCTIONS

Table 2-2. Example of Operand Type

Identifier Description

reg 8-/16-bit general-purpose register

(destination register for instruction using two 8-/16-bit general-purpose registers)

reg’ Source register for instruction using two 8-/16-bit general-purpose registers

reg8 8-bit general-purpose register

(destination register for instruction using two 8-bit general-purpose registers)

reg8’ Source register for instruction using two 8-bit general-purpose registers

reg16 16-bit general-purpose register

(destination register for instruction using two 16-bit general-purpose registers)

reg16’ Source register for instruction using two 16-bit general-purpose registers

mem 8-/16-bit memory address

mem8 8-bit memory address

mem16 16-bit memory address

mem32 32-bit memory address

dmem 16-bit direct memory address

imm 8-/16-bit immediate data

imm3 3-bit immediate data

imm4 4-bit immediate data

imm8 8-bit immediate data

imm16 16-bit immediate data

acc Accumulator (AW or AL)

sreg Segment register

src-table Name of 256-byte conversion table

src-block Name of source block addressed by IX register

dst-block Name of destination block addressed by IY register

near-proc Procedure in current program segment

far-proc Procedure in other program segments

near-label Label in current program segment

short-label Label in range of end of instruction –128 to +127 bytes

far-label Label in other program segments

regptr16 16-bit general-purpose register having offset of call address in current program segment

memptr16 16-bit memory address having offset of call address in current program segment

memptr32 32-bit memory address having offset and segment data of call address in other program segments

pop-value Number of bytes discarded from stack (0 to 64K, usually even number)

fp-op Immediate value identifying instruction code of floating-point coprocessor

R Register set (AW, BW, CW, DW, SP, BP, IX, IY)

DS1-spec DS1 or segment name/group name ASSUMEd to DS1

Seg-spec Any segment register name or segment name/group name ASSUMEd to segment register

[] Can be omitted

9

CHAPTER 2 INSTRUCTIONS

Table 2-3. Example of Instruction Word

Identifier Description

W Byte/word field (0, 1)

reg Register field (000 to 111)

reg’ Register field (000 to 111) (source register for instruction using two registers)

mod, mem Memory addressing specification bit (mod: 00 to 10, mem: 000 to 111)

 (disp-low) Low-order byte of option 16-bit displacement

 (disp-high) High-order byte of option 16-bit displacement

disp-low Low-order byte of 16-bit displacement for PC relative addition

disp-high High-order byte of 16-bit displacement for PC relative addition

imm3 3-bit immediate data

imm4 4-bit immediate data

imm8 8-bit immediate data

imm16-low Low-order byte of 16-bit immediate data

imm16-high High-order byte of 16-bit immediate data

addr-low Low-order byte of 16-bit direct address

addr-high High-order byte of 16-bit direct address

sreg Segment register specification bit (00 to 11)

s Sign extension specification bit (1: sign extension, 0: not sign extension)

offset-low Low-order byte of 16-bit offset data loaded to PC

offset-high High-order byte of 16-bit offset data loaded to PC

seg-low Low-order byte of 16-bit segment data loaded to PS

seg-high High-order byte of 16-bit segment data loaded to PS

pop-value-low Low-order byte of 16-bit data specifying number of bytes discarded from stack

pop-value-high High-order byte of 16-bit data specifying number of bytes discarded from stack

disp8 8-bit displacement relatively added to PC

X

XXX
 Operation codes of floating-point coprocessor

YYY

ZZZ

10

CHAPTER 2 INSTRUCTIONS

Table 2-4. Legend of Description of Instruction Format and Operand (1/2)

Identifier Description

dst Destination operand

dst1 Destination operand

dst2 Destination operand

src Source operand

src1 Source operand

src2 Source operand

target Target operand

AW Accumulator (16 bits)

AH Accumulator (high-order bytes)

AL Accumulator (low-order bytes)

BW BW register (16 bits)

CW CW register (16 bits)

CL CW register (low-order byte)

DW DW register (16 bits)

BP Base pointer (16 bits)

SP Stack pointer (16 bits)

PC Program counter (16 bits)

PSW Program status word (16 bits)

IX Index register (source) (16 bits)

IY Index register (destination) (16 bits)

PS Program segment register (16 bits)

SS Stack segment register (16 bits)

DS0 Data segment 0 register (16 bits)

DS1 Data segment 1 register (16 bits)

AC Auxiliary carry flag

CY Carry flag

P Parity flag

S Sign flag

Z Zero flag

DIR Direction flag

IE Interrupt enable flag

V Overflow flag

BRK Break mode

MD Mode flag (not provided to V33A and V53A)

 (...) Memory contents indicated by ()

disp Displacement (8/16 bits)

temp Temporary register (8/16/32 bits)

temp1 Temporary register (16 bits)

temp2 Temporary register (16 bits)

TA Temporary register A (16 bits)

TB Temporary register B (16 bits)

TC Temporary register C (16 bits)

ext-disp8 16-bits as result of sign-extending 8-bit displacement

seg Immediate segment data (16 bits)

offset Immediate offset data (16 bits)

11

CHAPTER 2 INSTRUCTIONS

Table 2-4. Legend of Description on Instruction Format and Operand (2/2)

Identifier Description

← Transfer direction

+ Add

– Subtract

× Multiply

÷ Divide

% Modulo

^ Logical product (AND)

v Logical sum (OR)

v Exclusive logical sum (XOR)

××H 2-digit hexadecimal value

××××H 4-digit hexadecimal value

Table 2-5. Memory Addressing

 mem mod 00 01 10

000 BW+IX BW+IX+disp8 BW+IX+disp16

001 BW+IY BW+IY+disp8 BW+IY+disp16

010 BP+IX BP+IX+disp8 BP+IX+disp16

011 BP+IY BP+IY+disp8 BP+IY+disp16

100 IX IX+disp8 IX+disp16

101 IY IY+disp8 IY+disp16

110 Direct address BP+disp8 BP+disp16

111 BW BW+disp8 BW+disp16

Table 2-6. Selecting 8-/16-Bit General- Table 2-7. Selecting Segment Register

Purpose Register

reg, reg’ W = 0 W = 1 sreg

000 AL AW 00 DS1

001 CL CW 01 PS

010 DL DW 10 SS

011 BL BW 11 DS0

100 AH SP

101 CH BP

110 DH IX

111 BH IY

12

CHAPTER 2 INSTRUCTIONS

Figure 2-1. Description Example

AdditionADD Add

[Format] ADD dst, src

[Operation] dst←dst+src

[Operand]

[Flag]

[Description] Adds the contents of the destination operand (dst) specified

by the first operand ...

[Example] MOV AW, 0

[Number of bytes]

[Word format]

Mnemonic Operand (dst, src)

ADD reg, reg’

mem, reg

AC CY V P S Z

× × × × × ×

...

Mnemonic Operand No. of Bytes

ADD reg, reg’ 2

mem, reg 2-4

 Mnemonic Operand Operation Code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ADD reg, reg’ 0 0 0 0 0 0 0 W 1 1 reg reg’

mem, reg’ 0 0 0 0 0 0 0 W mod reg mem

Full name

FunctionMnemonic

Describes basic description format of
instruction by using symbols.

Describes operation of instruction by using
symbols.

Describes operands that can be specified
for this instruction. For the description of
the symbol of each operand, refer to Tables
2-2 through 2-4.

Describes operation of flags that are affected
as a result of instruction execution. For the
symbol of each flag, refer to Table 2-4 . For
the symbol of flag operation, refer to Table
2-1.

Describes the operation of the instruction
in detail.

Shows an example of description based on
the description format of RA70116-I
(InterToolTM).

Indicates the instruction word length.

Indicates the instruction format. For the
symbol of each field, refer to Table 2-3 .
The Operation Code column shows the
following byte order (6 bytes max.).

Operation Code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

First byte Second byte

Third byte Fourth byte

Fifth byte Sixth byte

13

CHAPTER 2 INSTRUCTIONS

AdditionADD Add

[Format] ADD dst, src

[Operand, Operation]

[Flag]

[Description] Adds the contents of the destination operand (dst) specified by the first operand to the

contents of the source operand (src) specified by the second operand, and stores the result

to the destination operand (dst).

[Example] To add the contents of memory 0:50H (word data) to the contents of the DW register, and

store the result to 0:50H

MOV AW, 0

MOV DS1, AW

MOV IY, 50H

ADD DS1: WORD PTR [IY], DW

[Number of bytes]

Mnemonic Operand (dst, src) Operation

ADD reg, reg’ dst ← dst + src

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL ← AL + imm8

[When W = 1] AW ← AW + imm16

AC CY V P S Z

× × × × × ×

Mnemonic Operand No. of bytes

ADD reg, reg’ 2

mem, reg 2-4

reg, mem 2-4

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

14

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ADD reg, reg’ 0 0 0 0 0 0 1 W 1 1 reg reg‘

mem, reg 0 0 0 0 0 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 0 0 0 0 0 0 1 W mod reg mem

(disp-low) (disp-high)

reg, imm 1 0 0 0 0 0 s W 1 1 0 0 0 reg

imm8 or imm16-low imm16-high

mem, imm 1 0 0 0 0 0 s W mod 0 0 0 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 0 0 0 0 0 1 0 W imm8 or imm16-low

imm16-high —

15

CHAPTER 2 INSTRUCTIONS

Decimal additionADD4S
Add Nibble String

[Format] ADD4S [DS1-spec:] dst-string, [Seg-spec:] src-string

ADD4S

[Operation] BCD string (IY, CL) ← BCD string (IY, CL) + BCD string (IX, CL)

[Operand]

[Flag]

[Description] Adds the packed BCD string addressed by the IX register to the packed BCD string

addressed by the IY register, and stores the the result of the string addressed by the IY

register. The string length (number of BCD digits) is determined by the CL register (the

number of digits is d if the contents of CL is d) in a range of 1 to 254 digits.

The destination string must be always located in a segment specified by the DS1 register,

the segment cannot be overridden. Although the default segment register of the source

string is the DS0 register, the segment can be overridden, and the string can be located

in a segment specified by any segment register.

The format of a packed BCD string is as follows.

Mnemonic Operand (dst, src)

ADD4S [DS1-spec :] dst-string, [Seg-spec :] src-string

None

AC CY V P S Z

U × U U U ×

Caution The BCD string instruction always operates in units of an even number of

digits. If an even number of digits is specified, therefore, the result of the

operation and each flag operation are normal. If an odd number of digits

is specified, however, an operation of an even number of digits, or an odd

number of digits + 1, is executed. As a result, the result of the operation

is an even number of digits and each flag indicates an even number of

digits. To specify an odd number of digits, therefore, keep this in mind:

Execute the BCD addition instruction, if the number of digits is odd, after

clearing the high-order 4 bits of the most significant byte to “0”. As a result,

the carry is indicated by bit 4 of the most significant byte, and is not

reflected in the flag.

Memory

Byte offset

Digit offset

+m

+CL 0+1+2+3+4

+0+1

IX
IY
↓

16

CHAPTER 2 INSTRUCTIONS

[Example] MOV IX, OFFSET VAR_1

MOV IY, OFFSET VAR_2

MOV CL, 4

ADD4S

[Number of bytes] 2

[Word format]

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ADD4S [DS1-spec :] dst-string, [Seg-spec :] src-string 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0

None

17

CHAPTER 2 INSTRUCTIONS

Addition with carryADDC Add with Carry

[Format] ADDC dst, src

[Operand, Operation]

[Flag]

[Description] Adds the contents of the destination operand (dst) specified by the first operand to the

contents of the source operand (src) specified by the second operand with the contents

of the CY flag, and stores the result to the destination operand (dst).

[Example] SET1 CY ; Sets CY flag to 1.

XOR AW, AW ; AW = 0

MOV BW, 0FFH ; BW = 0FFH

ADDC AW, BW ; Contents of AW register = 100H

[Number of bytes]

Mnemonic Operand (dst, src) Operation

ADDC reg, reg’ dst ← dst + src + CY

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL ← AL + imm8 + CY

[When W = 1] AW ← AW + imm16 + CY

AC CY V P S Z

× × × × × ×

Mnemonic Operand No. of bytes

ADDC reg, reg’ 2

mem, reg 2-4

reg, mem 2-4

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

18

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ADDC reg, reg’ 0 0 0 1 0 0 1 W 1 1 reg reg‘

mem, reg 0 0 0 1 0 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 0 0 0 1 0 0 1 W mod reg mem

(disp-low) (disp-high)

reg, imm 1 0 0 0 0 0 s W 1 1 0 1 0 reg

imm8 or imm16-low imm16-high

mem, imm 1 0 0 0 0 0 s W mod 0 1 0 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 0 0 0 1 0 1 0 W imm8 or imm16-low

imm16-high —

19

CHAPTER 2 INSTRUCTIONS

Packed decimal adjustment of result of additionADJ4A
Adjust Nibble Add

[Format] ADJ4A

[Operation] Where AL ^ 0FH > 9 or AC = 1,

AL ← AL + 6

AC ← 1

Where AL > 9FH or CY = 1

AL ← AL + 60H

CY ← 1

[Operand]

[Flag]

[Description] Adjusts the contents of the AL register resulting from addition of two packed decimal

numbers into one packed decimal number.

[Example] ADJ4A

[Number of bytes] 1

[Word format]

Mnemonic Operand

ADJ4A None

AC CY V P S Z

× × U × × ×

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

ADJ4A None 0 0 1 0 0 1 1 1

20

CHAPTER 2 INSTRUCTIONS

Packed decimal adjustment of result of subtractionADJ4S
Adjust Nibble Subtract

[Format] ADJ4S

[Operation] Where AL ^ 0FH > 9 or AC = 1

AL ← AL – 6

AC ← 1

Where AL > 9FH or CY = 1

AL ← AL – 60H

CY ← 1

[Operand]

[Flag]

[Description] Adjusts the contents of the AL register resulting from subtracting two packed decimal

numbers into one packed decimal number.

[Example] SUB AW, BW

ADJ4S

[Number of bytes] 1

[Word format]

Mnemonic Operand

ADJ4S None

AC CY V P S Z

× × U × × ×

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

ADJ4S None 0 0 1 0 1 1 1 1

21

CHAPTER 2 INSTRUCTIONS

Unpacked decimal adjustment of result of additionADJBA
Adjust Byte Add

[Format] ADJBA

[Operation] Where AL ^ 0FH > 9 or AC = 1

AL ← AL + 6

AH ← AH + 1

AC ← 1

CY ← AC

AL ← AL ^ 0FH

[Operand]

[Flag]

[Description] Adjusts the contents of the AL register resulting from adding two unpacked decimal

numbers into one unpacked decimal number. The high-order 4 bits become 0.

[Example] ADJBA

[Number of bytes] 1

[Word format]

Mnemonic Operand

ADJBA None

AC CY V P S Z

× × U U U U

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

ADJBA None 0 0 1 1 0 1 1 1

22

CHAPTER 2 INSTRUCTIONS

Unpacked decimal adjustment of result of subtractionADJBS
Adjust Byte Subtract

[Format] ADJBS

[Operation] Where AL ^ 0FH > 9 or AC = 1

AL ← AL – 6

AH ← AH – 1

AC ← 1

CY ← AC

AL ← AL ^ 0FH

[Operand]

[Flag]

[Description] Adjusts the contents of the AL register resulting from subtracting two unpacked decimal

numbers into one unpacked decimal number. The high-order 4-bits become 0.

[Example] SUB AW, BW

ADJBS

[Number of bytes] 1

[Word format]

Mnemonic Operand

ADJBS None

AC CY V P S Z

× × U U U U

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

ADJBS None 0 0 1 1 1 1 1 1

23

CHAPTER 2 INSTRUCTIONS

Logical productAND And

[Format] AND dst, src

[Operand, Operation]

[Flag]

[Description] ANDs the contents of the destination operand (dst) specified by the first operand to the

contents of the source operand (src) specified by the second operand, and stores the result

to the destination operand (dst).

[Example] MOV DW, IY

AND DW, 7FFFH

[Number of bytes]

Mnemonic Operand (dst, src) Operation

AND reg, reg’ dst ← dst ^ src

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL ← AL ^ imm8

[When W = 1] AW ← AW ^ imm16

AC CY V P S Z

U 0 0 × × ×

Mnemonic Operand No. of bytes

AND reg, reg’ 2

mem, reg 2-4

reg, mem 2-4

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

24

CHAPTER 2 INSTRUCTIONS

[Word format]

Note The following code may be created depending on the assembler or compiler used.

Even in this case, the instruction is executed normally. Note, however, that some emulators do not support

the functions to disassemble and assemble this instruction.

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

AND reg, reg’ 0 0 1 0 0 0 1 W 1 1 reg reg‘

mem, reg 0 0 1 0 0 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 0 0 1 0 0 0 1 W mod reg mem

(disp-low) (disp-high)

reg, immNote 1 0 0 0 0 0 0 W 1 1 1 0 0 reg

imm8 or imm16-low imm16-high

mem, imm 1 0 0 0 0 0 0 W mod 1 0 0 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 0 0 1 0 0 1 0 W imm8 or imm16-low

imm16-high —

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 0 0 0 0 0 1 W 1 1 1 0 0 reg

imm8 –

25

CHAPTER 2 INSTRUCTIONS

Conditional branch where CY = 1BC
Branch if Carry

BL Branch if Lower

[Format] BC short-label

BL short-label

[Operation] Where CY = 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC when the CY flag is 1.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] TEST AL, BL

BC SHORT LP4 ; LP4 = label

TEST AL, BL

BL SHORT LP5 ; LP5 = label

LP4:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BC short-label

BL

AC CY V P S Z

...

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BC short-label 0 1 1 1 0 0 1 0 disp8

BL

26

CHAPTER 2 INSTRUCTIONS

Conditional branch where CW = 0BCWZ Branch if CW equals Zero

[Format] BCWZ short-label

[Operation] Where CW = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the value of the CW register is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes. If the above condition is not satisfied, execution goes on to

the next instruction.

[Example] LP22:

ADD AL, BL

BCWZ SHORT LP22 ; LP22 = label

[Number of bytes] 2

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BCWZ short-label 1 1 1 0 0 0 1 1 disp8

Mnemonic Operand

BCWZ short-label

AC CY V P S Z

...

27

CHAPTER 2 INSTRUCTIONS

Conditional branch where Z = 1BE
Branch if Equal

BZ Branch if Zero

[Format] BE short-label

BZ short-label

[Operation] Where Z = 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the Z flag is 1.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] AND AL, 2

BE SHORT LOOP ; LOOP = label

OR AH, BH

BZ SHORT LOOP1 ; LOOP1 = label

LOOP:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BE short-label

BZ

AC CY V P S Z

...

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BE short-label 0 1 1 1 0 1 0 0 disp8

BZ

28

CHAPTER 2 INSTRUCTIONS

Conditional branch where S v V = 0BGE
Branch if Greater Than or Equal

[Format] BGE short-label

[Operation] Where S v V = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the result of exclusive OR (XOR) between the S and V flags is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

Execution goes on to the next instruction if the above condition is not satisfied.

[Example] SHL AL, 1

BGE SHORT LP16 ; LP16 = label

LP16:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BGE short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BGE short-label 0 1 1 1 1 1 0 1 disp8

29

CHAPTER 2 INSTRUCTIONS

Conditional branch where (S v V) v Z = 0BGT Branch if Greater Than

[Format] BGT short-label

[Operation] (S v V) v Z = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the result of ORing between the result of exclusive OR (XOR) of the S

and V flags, and the Z flag is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

Execution goes on to the next instruction if the above condition is not satisfied.

[Example] LP18:

SHL AL, 1

BGT LP18

[Number of bytes] 2

[Word format]

Mnemonic Operand

BGT short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BGT short-label 0 1 1 1 1 1 1 1 disp8

30

CHAPTER 2 INSTRUCTIONS

Conditional branch where CY v Z = 0BH Branch if Higher

[Format] BH short-label

[Operation] Where CY v Z = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the result of ORing the CY and Z flags is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] ROL AL, 1

BH SHORT LP10 ; LP10 = label

LP10:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BH short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BH short-label 0 1 1 1 0 1 1 1 disp8

31

CHAPTER 2 INSTRUCTIONS

Conditional branch where (S v V) v Z = 1BLE Branch if Less than or Equal

[Format] BLE short-label

[Operation] (S v V) v Z = 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the result of ORing between the result of exclusive OR (XOR) of the S

and V flags, and the Z flag is 1.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

Execution goes on to the next instruction if the above condition is not satisfied.

[Example] LP17:

SHR AL, 1

BLE SHORT LP17

[Number of bytes] 2

[Word format]

Mnemonic Operand

BLE short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BLE short-label 0 1 1 1 1 1 1 0 disp8

32

CHAPTER 2 INSTRUCTIONS

Conditional branch where S v V = 1BLT Branch if Less Than

[Format] BLT short-label

[Operation] Where S v V = 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the result of exclusive OR between the S and Z flags is 1.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

Execution goes on to the next instruction if the above condition is not satisfied.

[Example] ADD AL, BL

BLT SHORT LP15 ; LP15 = label

LP15:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BLT short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BLT short-label 0 1 1 1 1 1 0 0 disp8

33

CHAPTER 2 INSTRUCTIONS

Conditional branch where S = 1BN
Branch if Negative

[Format] BN short-label

[Operation] Where S = 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the S flag is 1.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] ADD AL, BL

BN LP11 ; LP11 = label

LP11:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BN short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BN short-label 0 1 1 1 1 0 0 0 disp8

34

CHAPTER 2 INSTRUCTIONS

Conditional branch where CY = 0BNC
Branch if Not Carry

BNL Branch if Not Lower

[Format] BNC short-label

BNL short-label

[Operation] Where CY = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the CY flag is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] ROR AL, 1

BNC SHORT LP6 ; LP6 = label

ROR AL, 1

BNL SHORT LP7 ; LP7 = label

LP6:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BNC short-label

BNL

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BNC short-label 0 1 1 1 0 0 1 1 disp8

BNL

...

...

35

CHAPTER 2 INSTRUCTIONS

Conditional branch where Z = 0BNE
Branch if Not Equal

BNZ Branch if Not Zero

[Format] BNE short-label

BNZ short-label

[Operation] Where Z = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the Z flag is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] OR AL, BL

BNE SHORT LP8 ; LP8 = label

AND SH, BH

BNZ SHORT LP9 ; LP9 = label

LP8:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BNE short-label

BNZ

AC CY V P S Z

...

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BNE short-label 0 1 1 1 0 1 0 1 disp8

BNZ

36

CHAPTER 2 INSTRUCTIONS

Conditional branch where CY v Z = 1BNH
Branch if Not Higher

[Format] BNH short-label

[Operation] Where CY v Z = 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the result of OR between the CY and Z flags is 1.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] ROR AL, 1

BNH SHORT LP9 ; LP9 = label

LP9:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BNH short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BNH short-label 0 1 1 1 0 1 1 0 disp8

37

CHAPTER 2 INSTRUCTIONS

Conditional branch where V = 0BNV Branch if not Overflow

[Format] BNV short-label

[Operation] Where V = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the V flag is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] ROR AL, 1

BNV LP3

LP3:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BNV short-label

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BNV short-label 0 1 1 1 0 0 0 1 disp8

AC CY V P S Z

...

38

CHAPTER 2 INSTRUCTIONS

Conditional branch where S = 0BP
Branch if Positive

[Format] BP short-label

[Operation] Where S = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the S flag is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] SHR AL, 1

BP SHORT LP12 ; LP12 = label

LP12:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BP short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BP short-label 0 1 1 1 1 0 0 1 disp8

39

CHAPTER 2 INSTRUCTIONS

Conditional branch where P = 1BPE
Branch if Parity Even

[Format] BPE short-label

[Operation] Where P = 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the P flag is 1.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] ADD AL, BL

BPE SHORT LP13 ; LP13 = label

LP13:

[Number of bytes] 2

[Word format]

Mnemonic Operand

BPE short-label

AC CY V P S Z

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BPE short-label 0 1 1 1 1 0 1 0 disp8

40

CHAPTER 2 INSTRUCTIONS

Conditional branch where P = 0BPO Branch if Parity Odd

[Format] BPO short-label

[Operation] Where P = 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC if the P flag is 0.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] ADD AL, BL

BPO SHORT LP14 ; LP14 = label

LP14:

[Number of bytes] 2

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BPO short-label 0 1 1 1 1 0 1 1 disp8

Mnemonic Operand

BPO short-label

AC CY V P S Z

...

41

CHAPTER 2 INSTRUCTIONS

Unconditional branchBR Branch

[Format] BR target

[Operation, operand]

[Flag]

[Description] • When target = near-label

Transfers the current PC value with a 16-bit displacement (disp) added to the PC.

If the branch address is within a segment where this instruction is placed, the assembler

automatically executes this instruction.

• When target = short-label

Transfers the current PC value with an 8-bit displacement added (actually, sign-

extended 16 bits (ext-disp8)) to the PC.

If the branch address is within a segment where this instruction is placed, and within

a range of ±127 bytes, the assembler automatically executes this instruction.

• When target = regptr16 or target = memptr16

Transfers the contents of the target operand (target) to the PC. Execution can branch

to any address in the segment where this instruction is placed.

• When target = far-label

Transfers the 16-bit offset data at the second and third byte positions of the instruction

to the PC, and the 16-bit segment data at the fourth and fifth byte position of the

instruction to the PS.

Execution can branch to any address of any segment.

• When target = memptr32

Loads the high-order 2 bytes of a 32-bit memory area to the PS, and the low-order 2

bytes, to the PC.

Execution can branch to any address of any segment.

Mnemonic Operand (target) Operation

BR near-label PC ← PC + disp

short-label PC ← PC + ext-disp8

regptr16
PC ← target

memptr16

far-label PS ← seg

PC ← offset

memptr32 PS ← (memptr32 + 3, memptr32 + 2)

PC ← (memptr32 + 1, memptr32)

AC CY V P S Z

42

CHAPTER 2 INSTRUCTIONS

[Example] BR $ – 8

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

BR near-label 3

short-label 2

regptr16 2

memptr16 2-4

far-label 5

memptr32 2-4

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BR near-label 1 1 1 0 1 0 0 1 disp-low

disp-high —

short-label 1 1 1 0 1 0 1 1 disp8

regptr16 1 1 1 1 1 1 1 1 1 1 1 0 0 reg

memptr16 1 1 1 1 1 1 1 1 mod 1 0 0 mem

(disp-low) (disp-high)

far-label 1 1 1 0 1 0 1 0 offset-low

offset-high seg-low

seg-high —

memptr32 1 1 1 1 1 1 1 1 mod 1 0 1 mem

(disp-low) (disp-high)

43

CHAPTER 2 INSTRUCTIONS

Software trapBRK Break

[Format] BRK target

[Operand, operation]

[Flag]

[Description] Saves the values of PSW, PS, and PC to the stack and resets the IE and BRK flags to 0.

Then loads the low-order 2 bytes of vector 3 in the interrupt vector table to the PC, and

the high-order 2 bytes to the PS if target = 3.

If target = imm8, loads the low-order 2 bytes of the interrupt vector table (4 bits) specified

by the 8-bit immediate data to the PC, and the high-order 2 bytes to the PS.

[Example] • BRK 3

• BRK 5

[Number of bytes]

[Word format]

Mnemonic Operand (target) Operation

BRK 3 TA ← (00DH, 00CH)

TC ← (00FH, 00EH)

SP ← SP – 2, (SP + 1, SP) ← PSW

IE ← 0, BRK ← 0

SP ← SP – 2, (SP + 1, SP) ← PS

PS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

imm8 (≠ 3) TA ← (imm8 × 4 + 1, imm8 × 4)

TC ← (imm8 × 4 + 3, imm8 × 4 + 2)

SP ← SP – 2, (SP + 1, SP) ← PSW

IE ← 0, BRK ← 0

SP ← SP – 2, (SP + 1, SP) ← PS

PS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

AC CY V P S Z IE BRK

0 0

Mnemonic Operand No. of bytes

BRK 3 1

imm8 2

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BRK 3 1 1 0 0 1 1 0 0 —

imm8 1 1 0 0 1 1 0 1 imm8

44

CHAPTER 2 INSTRUCTIONS

Starts emulation modeBRKEM [except V33A and V53A]
Break for Emulation

[Format] BRKEM imm8

[Operation] TA ← (imm8 × 4 + 1, imm8 × 4)

TC ← (imm8 × 4 + 3, imm8 × 4 + 2)

SP ← SP – 2, (SP + 1, SP) ← PSW

MD ← 0: Write enable status

SP ← SP – 2, (SP + 1, SP) ← PS

PS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

[Operand]

[Flag]

[Description] This instruction starts the emulation mode. The values of the PSW, PS, and PC are saved

to the stack, the MD flag is reset to 0 to enable writing, and execution jumps to the emulation

address specified by the interrupt vector specified by the 8-bit immediate data described

as an operand.

When the instruction code of the interrupt service routine (for emulation) to which execution

has jumped is fetched, the CPU interprets this code as an instruction of the µPD8080AF

and executes. To return to the native mode from the emulation mode, use the RETEM or

CALLN instruction.

[Example] BRKEM 40H

[Number of bytes] 3

[Word format]

Mnemonic Operand

BRKEM imm8

AC CY V P S Z MD

0

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BRKEM imm8 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

imm8 —

45

CHAPTER 2 INSTRUCTIONS

Overflow exceptionBRKV
Break if Overflow

[Format] BRKV

[Operation] Where V = 1, TA ← (011H, 010H)

TC ← (013H, 012H)

SP ← SP – 2, (SP + 1, SP) ← PSW

IE ← 0, BRK ← 0

SP ← SP – 2, (SP + 1, SP) ← PS

PS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

[Operand]

[Flag]

[Description] Saves the values of PSW, PS, and PC to the stack and resets the IE and BRK flags to 0

if the V flag is set to 1. Then loads the low-order 2 bytes of vector 4 of the interrupt vector

table to the PC and the high-order 2 bytes to the PS if target = 3.

Execution proceeds to the next instruction if the V flag is reset to 0.

[Example] BRKV

[Number of bytes] 1

[Word format]

Mnemonic Operand

BRKV None

AC CY V P S Z IE BRK

0 0

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

BRKV None 1 1 0 0 1 1 1 0

46

CHAPTER 2 INSTRUCTIONS

Starts extended address modeBRKXA [V33A and V53A only]
Break Extended Address Mode

[Format] BRKXA imm8

[Operation] temp1 ← (imm8 × 4 + 1, imm8 × 4)

temp2 ← (imm8 × 4 + 3, imm8 × 4 + 2)

XA ← 1

PC ← temp1

PS ← temp2

[Operand]

[Flag]

[Description] Starts the extended address mode. Transfers control to an address stored to the entry of

the interrupt vector table specified by the operand, and sets the XA flag of the XAM register

(internal I/O address: FF80H) to 1.

If this instruction is executed in the normal address mode, the vector table on the address

in the normal address mode is read and then the extended address mode is set. Execution

jumps to the address of the vector table read first.

If this instruction is executed in the extended address mode, the vector table on the address

in the extended address mode is read, and execution jumps to the address of this vector

table.

The values of PC, PS, and PSW are not saved to the stack. To return from the extended

address mode, use the RETXA instruction. Note that execution cannot be returned from

this mode by the RETI instruction.

[Example] BRKXA 0AH

[Number of bytes] 3

[Word format]

Mnemonic Operand

BRKXA imm8

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BRKXA imm8 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0

imm8 —

47

CHAPTER 2 INSTRUCTIONS

Bus lock prefixBUSLOCK Bus Lock Prefix

[Format] BUSLOCK

[Operation] Bus Lock Prefix

[Operand]

[Flag]

[Description] • V20, V30, V20H, and V30HL

In large-scale mode : Outputs the bus lock signal (BUSLOCK) while the single instruction

following this instruction is executed. If this instruction is used

for a block processing instruction with a repeat prefix, the BUSLOCK

signal is continuously output until the block processing is completed.

In small-scale mode: Although the BUSLOCK signal is not output, the bus hold request

is disabled while the BUSLOCK signal is output in the large-scale

mode. Therefore, this instruction is useful for not accepting the

bus hold request during block processing.

Cautions 1. Do not place this instruction immediately before the POLL instruction.

2. The hardware interrupt requests (NMI and INT) and single-step break

are not accepted between this instruction and the next instruction.

• Other than V20, V30, V20HL, and V30HL

Outputs the bus lock signal (BUSLOCK) while the single instruction following this

instruction is executed.

If this instruction is used for a block processing instruction with a repeat prefix, the

BUSLOCK signal is continuously output until the block processing is completed.

Cautions 1. Do not place this instruction immediately before the POLL instruction.

2. The hardware interrupt requests (maskable interrupt and non- maskable

interrupt) and single-step break are not accepted between this instruction

and the next instruction.

[Example] BUSLOCK REP MOVBKB

[Number of bytes] 1

[Word format]

Mnemonic Operand

BUSLOCK None

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

BUSLOCK None 1 1 1 1 0 0 0 0

48

CHAPTER 2 INSTRUCTIONS

Conditional branch where V = 1BV
Branch if Overflow

[Format] BV short-label

[Operation] Where V= 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Loads the current PC value with an 8-bit displacement added (actually, sign-extended 16

bits) to the PC when the V flag is 1.

Execution can be branched in a segment where this instruction is placed and in an address

range of –128 to +127 bytes.

[Example] LP2:

SHL AL, 1

BV SHORT LP2

[Number of bytes] 2

[Word format]

AC CY V P S Z

Mnemonic Operand

BV short-label

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

BV short-label 0 1 1 1 0 0 0 0 disp8

49

CHAPTER 2 INSTRUCTIONS

Subroutine callCALL
Call

[Format] CALL target

[Operand, operation]

[Flag]

[Description] • When target = near-proc or target = regptr16

Saves the value of the PC to the stack and then transfers the next contents of the target

operand (target) to the PC.

When target = near-proc : 16-bit relative address

When target = regptr16 : Value of 16-bit register (offset)

• When target = memptr16

Saves the value of the PC to the stack and then transfers the contents of a 16-bit memory

area (offset) addressed by the target operand (target) to the PC.

Any address in the segment where this instruction is placed can be called.

Mnemonic Operand (target) Operation

CALL near-proc SP ← SP – 2

 (SP + 1, SP) ← PC

PC ← PC + disp

regptr16 SP ← SP – 2

 (SP + 1, SP) ← PC

PC ← regptr16

memptr16 TA ← (memptr16 + 1, memptr16)

SP ← SP – 2

 (SP + 1, SP) ← PC

PC ← TA

far-proc SP ← SP – 2

 (SP + 1, SP) ← PS

PS ← seg

SP ← SP – 2

 (SP + 1, SP) ← PC

PS ← offset

memptr32 TA ← (memptr32 + 1, memptr32)

TB ← (memptr32 + 3, memptr32 + 2)

SP ← SP – 2

 (SP + 1, SP) ← PS

PS ← TB

SP ← SP – 2

 (SP + 1, SP) ← PC

PC ← TA

AC CY V P S Z

50

CHAPTER 2 INSTRUCTIONS

• When target = far-proc

Saves the values of PC and PS to the stack and transfers the second and third bytes

of the instruction to the PC, and the fourth and fifth bytes to the PS.

This instruction can call any address in any segment.

• When target = memptr32

Saves the values of PC and PS to the stack and transfers the high-order 2 bytes of a

32-bit memory area addressed by the target operand (target) to the PS and the low-

order 2 bytes to the PC.

This instruction can call any address in any segment.

[Example] • CALL $ + 10

• CALL SUB1 ; SUB1 is label

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

CALL near-proc 3

regptr16 2

memptr16 2-4

far-proc 5

memptr32 2-4

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CALL near-proc 1 1 1 0 1 0 0 0 disp-low

disp-high —

regptr16 1 1 1 1 1 1 1 1 1 1 0 1 0 reg

memptr16 1 1 1 1 1 1 1 1 mod 0 1 0 mem

(disp-low) (disp-high)

far-proc 1 0 0 1 1 0 1 0 offset-low

offset-high seg-low

seg-high —

memptr32 1 1 1 1 1 1 1 1 mod 0 1 1 mem

(disp-low) (disp-high)

51

CHAPTER 2 INSTRUCTIONS

Native mode callCALLN [except V33A and V53A]
Call Native

[Format] CALLN imm8

[Operation] TA ← (imm8 × 4 + 1, imm8 × 4)

TC ← (imm8 × 4 + 3, imm8 × 4 + 2)

SP ← SP – 2, (SP + 1, SP) ← PSW

MD ← 1

SP ← SP – 2, (SP + 1, SP) ← PS

PS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

[Operand]

[Flag]

[Description] When this instruction is executed in the emulation mode (this instruction is interpreted as

an instruction of the µPD8080AF), the CPU saves the values of PS, PC, and PSW to the

stack (at this time, MD = 0 is saved), sets the MD flag to 1, and loads an interrupt vector

specified by the 8-bit immediate data described as an operand to the PS and PC.

In this way, an interrupt routine in the native mode can be called from the emulation mode.

To return to the emulation mode from this interrupt routine, use the RETI instruction.

[Example] CALLN 40H

[Number of bytes] 3

[Word format]

AC CY V P S Z MD

1

Mnemonic Operand

CALLN imm8

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CALLN imm8 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1

imm8 —

52

CHAPTER 2 INSTRUCTIONS

Index value checkCHKIND
Check Index

[Format] CHKIND reg16, mem32

[Operation] When (mem32) > reg16 or (mem32 + 2) < reg16

TA ← (015H, 014H)

TC ← (017H, 016H)

SP ← SP – 2, (SP + 1, SP) ← PSW

IE ← 0, BRK ← 0

SP ← SP – 2, (SP +1, SP) ← PS

PS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

[Operand]

[Flag] If interrupt condition is satisfied

If interrupt condition is not satisfied

[Description] This instruction checks whether an index value that specifies an element is in a defined

area if the data structure is of array type. If the index exceeds the defined area, the BRK

5 instruction is started. The defined area value is set to 2 words in memory in advance (the

first word is the lower-limit value and the second word is the higher-limit value).

As the index value, the register (any 16-bit register) used by an array manipulation program

is used.

Mnemonic Operand

CHKIND reg16, mem32

AC CY V P S Z IE BRK

0 0

AC CY V P S Z IE BRK

��������
��������

Upper limit

Lower limit

Array element
(Upper limit)

(Lower limit)

mem32+2

mem32

15 0

Memory

53

CHAPTER 2 INSTRUCTIONS

[Example] CHKIND AW, DWORD_VAR

[Number of bytes] 2 to 4

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CHKIND reg16, mem32 0 1 1 0 0 0 1 0 mod reg mem

(disp-low) (disp-high)

54

CHAPTER 2 INSTRUCTIONS

Resets bitCLR1
Clear bit

[Format] (1) CLR1 dst, src

(2) CRL1 dst

[Operation] Format (1): Bit n of dst (n is specified by src) ← 0

Format (2): dst ← 0

[Operand] Format (1) Format (2)

[Flag] Format (1)

Format (2) (when dst = CY)

Format (2) (when dst = DIR)

Mnemonic Operand (dst, src)

CLR1 reg8, CL

mem8, CL

reg16, CL

mem16, CL

reg8, imm3

mem8, imm3

reg16, imm4

mem16, imm4

Mnemonic Operand (dst)

CLR1 CY

DIR

AC CY V P S Z DIR

0

AC CY V P S Z

0

AC CY V P S Z

55

CHAPTER 2 INSTRUCTIONS

[Description] Format (1) : Resets bit n (n is the contents of the source operand (src) specified by the

second operand) of the destination operand (dst) specified by the first

operand, and stores the result to the destination operand (dst).

If the operand is reg8, CL or mem8, CL, only the low-order 3 bits (0 to 7) of

the value of CL are valid.

If the operand is reg16, CL or mem16, CL, only the low-order 4 bits (0 to 15)

of the value of CL are valid.

If the operand is reg8, imm3, only the low-order 3 bits of the immediate data

at the fourth byte position of the instruction are valid.

If the operand is mem8, imm3, only the low-order 3 bits of the immediate data

at the last byte position of the instruction are valid.

If the operand is reg16, imm4, only the low-order 4 bits of the immediate data

at the fourth byte position of the instruction are valid.

If the operand is mem16, imm4, only the low-order 4 bits of the immediate

data at the last byte of the instruction are valid.

Format (2) : Resets the CY flag if dst = CY.

Resets the DIR flag if dst = DIR. Also sets so that the index registers (IX and

IY) are auto-incremented when MOVBK, CMPBK, CMPM, LDM, STM, INM,

or OUTM instruction is executed.

[Example] CLR1 CY

SHL AL,1

BC $ + 6

[Number of bytes] Mnemonic Operand No. of bytes

CLR1 reg8, CL 3

mem8, CL 3-5

reg16, CL 3

mem16, CL 3-5

reg8, imm3 4

mem8, imm3 4-6

reg16, imm4 4

mem16, imm4 4-6

CY 1

DIR 1

56

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CLR1 reg8, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0

1 1 0 0 0 reg —

mem8, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0

mod 0 0 0 mem (disp-low)

(disp-high) —

reg16, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1

1 1 0 0 0 reg —

mem16, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1

mod 0 0 0 mem (disp-low)

(disp-high) —

reg8, imm3 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0

1 1 0 0 0 reg imm3

mem8, imm3 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0

mod 0 0 0 mem (disp-low)

(disp-high) imm3

reg16, imm4 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1

1 1 0 0 0 reg imm4

mem16, imm4 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1

mod 0 0 0 mem (disp-low)

(disp-high) imm4

CY 1 1 1 1 1 0 0 0 —

DIR 1 1 1 1 1 1 0 0 —

57

CHAPTER 2 INSTRUCTIONS

CompareCMP
Compare

[Format] CMP dst, src

[Operand, operation]

[Flag]

[Description] Subtracts the source operand (src) specified by the second operand from the destination

operand (dst) specified by the first operand.

The result of the subtraction is stored nowhere, and only the flags are affected.

[Example] • CMP BL, BYTE PTR [IX]

• CMP CW, [BP+4]

[Number of bytes]

Mnemonic Operand (dst, src) Operation

CMP reg, reg’ dst – src

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL – imm8

[When W = 1] AW – imm16

AC CY V P S Z

× × × × × ×

Mnemonic Operand No. of bytes

CMP reg, reg’ 2

mem, reg 2-4

reg, mem

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

58

CHAPTER 2 INSTRUCTIONS

[Format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CMP reg, reg’ 0 0 1 1 1 0 1 W 1 1 reg reg‘

mem, reg 0 0 1 1 1 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 0 0 1 1 1 0 1 W mod reg mem

(disp-low) (disp-high)

reg, imm 1 0 0 0 0 0 s W 1 1 1 1 1 reg

imm8 or imm16-low imm16-high

mem, imm 1 0 0 0 0 0 s W mod 1 1 1 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 0 0 1 1 1 1 0 W imm8 or imm16-low

imm16-high —

59

CHAPTER 2 INSTRUCTIONS

Decimal compareCMP4S
Compare Nibble String

[Format] CMP4S [DS1-spec:] dst-string, [Seg-spec:] src-string

CMP4S

[Operation] BCD string (IY, CL) ← BCD string (IX, CL)

[Operand]

[Flag]

[Description] Subtracts the packed BCD string addressed by the IX register from the packed BCD string

addressed by the IY register. The result is not stored and only the flags are affected. The

string length (number of BCD digits) is determined by the CL register (the number of digits

is d if the contents of CL is d) in a range of 1 to 254 digits.

The destination string must be always located in a segment specified by the DS1 register,

and the segment cannot be overridden. Although the default segment register of the source

string is the DS0 register, the segment can be overridden, and the string can be located

in a segment specified by any segment register. The format of a packed BCD string is as

follows.

Mnemonic Operand (dst, src)

CMP4S [DS1-spec :] dst-string, [Seg-spec :] src-string

None

AC CY V P S Z

U × U U U ×

Caution The BCD string instruction always operates in units of an even number of

digits. If an even number of digits is specified, therefore, the result of the

operation and each flag operation are normal. If an odd number of digits

is specified, however, an operation of an even number of digits, or an odd

number of digits + 1, is executed. As a result, the result of the operation

is an even number of digits and each flag indicates an even number of

digits.

To specify an odd number of digits, therefore, keep this in mind: Execute

the BCD compare instruction, if the number of digits is odd, after clearing

the high-order 4 bits of the most significant byte to “0”.

Memory

Byte offset

Digit offset

+m

+CL 0+1+2+3+4

+0+1

IX
IY
↓

60

CHAPTER 2 INSTRUCTIONS

[Example] MOV IX, OFFSET VAR_1

MOV IY, OFFSET VAR_2

MOV CL, 4

CMP4S

[Number of bytes] 2

[Word format]

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CMP4S [DS1-spec :] dst-string, [Seg-spec :] src-string 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0

None

61

CHAPTER 2 INSTRUCTIONS

Block compareCMPBK
Compare Block

CMPBKB Compare Block Byte

CMPBKW Compare Block Word

[Format] (repeat) CMPBK [Seg-spec:] src-block, [DS1-spec:] dst- block

(repeat) CMPBKB

(repeat) CMPBKW

[Operation] [When W = 0] (IX) – (IY)

DIR = 0: IX ← IX + 1, IY ← IY + 1

DIR = 1: IX ← IX – 1, IY ← IY – 1

[When W = 1] (IX + 1, IX) – (IY + 1, IY)

DIR = 0: IX ← IX + 2, IY ← IY + 2

DIR = 1: IX ← IX – 2, IY ← IY – 2

[Operand]

[Flag]

[Description] Repeatedly subtracts the block addressed by the IY register from the block addressed by

the IX register in byte or word units, and reflects the result on the flags.

The IX and IY registers are automatically incremented (+1/+2) or decremented (–1/–2) for

the next byte/word processing each time data of 1 byte/word has been processed. The

direction of the block is determined by the status of the DIR flag.

Whether data is processed in byte or word units is specified by the attribute of the operand

when the CMPBK instruction is used. When the CMPBKB and CMPBKW instructions are

used, the data is processed in byte and word units, respectively.

The destination block must be always located in a segment specified by the DS1 register,

and the segment cannot be overridden. On the other hand, although the default segment

register of the source block is the DS0 register, the segment can be overridden, and the

block can be located in a segment specified by any segment register.

[Example] CMPBK BYTE_VAR1, BYTE_VAR2

[Number of bytes] 1

Mnemonic Operand

CMPBK [Seg-spec :] src-block, [DS1-spec :] dst-block

CMPBKB None

CMPBKW

AC CY V P S Z

× × × × × ×

62

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0

CMPBK [Seg-spec :] src-block, [DS1-spec :] dst-block 1 0 1 0 0 1 1 W

CMPBKB None

CMPBKW

63

CHAPTER 2 INSTRUCTIONS

Block compare with accumulatorCMPM
Compare MultipleCMPMB Compare Multiple Byte

CMPMW Compare Multiple Word

[Format] (repeat) CMPM [DS1-spec:] dst-block

(repeat) CMPMB

(repeat) CMPMW

[Operation] [When W = 0] AL – (IY)

DIR = 0: IY ← IY + 1

DIR = 1: IY ← IY – 1

[When W = 1] AW – (IY + 1, IY)

DIR = 0: IY ← IY + 2

DIR = 1: IY ← IY – 2

[Operand]

[Flag]

[Description] Repeatedly subtracts the block addressed by the IY register from the value of the

accumulator (AL/AW) in byte or word units, and reflects the result on the flags.

The IY register is automatically incremented (+1/+2) or decremented (–1/–2) for the next

byte/word processing each time data of 1 byte/word has been processed. The direction

of the block is determined by the status of the DIR flag.

Whether data is processed in byte or word units is specified by the attribute of the operand

when the CMPM instruction is used. When the CMPMB and CMPMW instructions are used,

the data is processed in byte and word units, respectively.

The destination block must be always located in a segment specified by the DS1 register,

and the segment cannot be overridden.

[Example] • MOV AW, 5555H

MOV BW, 1000H

MOV IY, BW

REPC CMPM WORD PTR [IY]

• REPNC CMPMW

• REPZ CMPMB

[Number of bytes] 1

Mnemonic Operand

CMPM [DS1-spec :] dst-block

CMPMB None

CMPMW

AC CY V P S Z

× × × × × ×

64

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0

CMPM [DS1-spec :] dst-block 1 0 1 0 1 1 1 W

CMPMB None

CMPMW

65

CHAPTER 2 INSTRUCTIONS

Binary-to-unpacked decimal conversionCVTBD
Convert Binary to Decimal

[Format] CVTBD

[Operation] AH ← AL ÷ 0AH

AL ← AL%0AH

[Operand]

[Flag]

[Description] Converts the 8-bit binary number of the AL register into a 2- digit unpacked decimal number.

As a result, the value of the AH register is replaced with the quotient resulting from dividing

the value of the AL register by 10, and then the value of the AL register is replaced with

the remainder resulting from the division.

[Example] MOV AL, 30H

CVTBD

[Number of bytes] 2

[Word format]

AC CY V P S Z

U U U × × ×

Mnemonic Operand

CVTBD None

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CVTBD None 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0

66

CHAPTER 2 INSTRUCTIONS

Word sign extensionCVTBW
Convert Byte to Word

[Format] CVTBW

[Operation] When AL < 80H: AH ← 0

When AL ≥ 80H: AH ← FFH

[Operand]

[Flag]

[Description] Extends the sign of the byte in the AL register to the AH register. This instruction is useful

for obtaining a double- length dividend (word) from a certain byte before executing byte

division.

[Example] MOV AL, BUF1; BUF1 is byte variable

CVTBW

MOV DL, 60

DIV DL

[Number of bytes] 1

[Word format]

AC CY V P S Z

Mnemonic Operand

CVTBW None

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

CVTBW None 1 0 0 1 1 0 0 0

67

CHAPTER 2 INSTRUCTIONS

Unpacked decimal-to-binary conversionCVTDB
Convert Decimal to Binary

[Format] CVTDB

[Operation] AL ← AH × 0AH + AL

AH ← 0

[Operand]

[Flag]

[Description] Converts the 2-digit unpacked decimal number of the AH and AL registers into a 16-bit

binary number.

As a result, the value of the AL register is replaced with the sum of value of the AL register

and the result of multiplying the value of the AH register by 10, and the value of the AH

register is replaced with 0.

[Example] MOV AW, [BW]

CVTDB

[Number of bytes] 2

[Word format]

AC CY V P S Z

U U U × × ×

Mnemonic Operand

CVTDB None

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CVTDB None 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0

68

CHAPTER 2 INSTRUCTIONS

Double word sign extensionCVTWL
Convert Word to Long Word

[Format] CVTWL

[Operation] When AW < 8000H: DW ← 0

When AW ≥ 8000H: DW ← FFFFH

[Operand]

[Flag]

[Description] Extends the sign of the word of the AW register to the DW register. This instruction is useful

for obtaining a double-length (double word) dividend from a certain word before executing

word division.

[Example] MOV AW, BUFFER

CVTWL

DIV CW

[Number of bytes] 1

[Word format]

AC CY V P S Z

Mnemonic Operand

CVTWL None

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

CVTWL None 1 0 0 1 1 0 0 1

69

CHAPTER 2 INSTRUCTIONS

Conditional loop where CW ≠ 0DBNZ
Decrement and Branch if Not Zero

[Format] DBNZ short-label

[Operation] CW ← CW – 1

Where CW ≠ 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Decrements the value of the CW register (–1) and, if the value of the CW register is not

zero as a result, loads the current PC value with an 8-bit displacement added (actually,

sign-extended 16 bits) to the PC.

Execution can branch in the segment where this instruction is placed and in an address

range of –128 to +127 bytes. Execution goes on to the next instruction if the above condition

is not satisfied.

[Example] LP21:

SHL AL, 1

DBNZ LP21 ; LP21 = label

[Number of bytes] 2

[Word format]

AC CY V P S Z

Mnemonic Operand

DBNZ short-label

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

DBNZ short-label 1 1 1 0 0 0 1 0 disp8

70

CHAPTER 2 INSTRUCTIONS

Conditional loop where CW ≠ 0 and Z = 1DBNZE
Decrement and Branch if Not Zero and Equal

[Format] DBNZE short-label

[Operation] CW ← CW – 1

Where CW ≠ 0 and Z = 1: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Decrements the value of the CW register (–1) and, if the value of the CW register is not

zero and the Z flag is set to 1 as a result, loads the current PC value with an 8-bit

displacement added (actually, sign-extended 16 bits) to the PC.

Execution can branch in the segment where this instruction is placed and in an address

range of –128 to +127 bytes.

Execution goes on to the next instruction if the above condition is not satisfied.

[Example] LP20:

AND AL, BL

DBNZE LP20 ; LP20 = label

[Number of bytes] 2

[Word format]

AC CY V P S Z

Mnemonic Operand

DBNZE short-label

...

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

DBNZE short-label 1 1 1 0 0 0 0 1 disp8

71

CHAPTER 2 INSTRUCTIONS

Conditional loop where CW ≠ 0 and Z = 0DBNZNE
Decrement and Branch if Not Zero and Not Equal

[Format] DBNZNE short-label

[Operation] CW ← CW – 1

Where CW ≠ 0: PC ← PC + ext-disp8

[Operand]

[Flag]

[Description] Decrements the value of the CW register (–1) and, if the value of the CW register is not

zero and the Z flag is cleared as a result, loads the current PC value with an 8-bit

displacement added (actually, sign-extended 16 bits) to the PC.

Execution can branch in the segment where this instruction is placed and in an address

range of –128 to +127 bytes.

Execution goes on to the next instruction if the above condition is not satisfied.

[Example] LP19:

AND AL, 0FFH

DBNZNE SHORT LP19 ; LP19 = label

[Number of bytes] 2

[Word format]

AC CY V P S Z

Mnemonic Operand

DBNZNE short-label

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

DBNZNE short-label 1 1 1 0 0 0 0 0 disp8

...

72

CHAPTER 2 INSTRUCTIONS

DecrementDEC Decrement

[Format] DEC dst

[Operation] dst ← dst – 1

[Operand]

[Flag]

[Description] Decrements the contents of the destination operand (dst) (–1).

[Example] • DEC BW

• DEC BP

• DEC IX

• DEC IY

[Number of bytes]

[Word format]

Mnemonic Operand

DEC reg8

mem

reg16

AC CY V P S Z

× × × × ×

Mnemonic Operand No. of bytes

DEC reg8 2

mem 2-4

reg16 1

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

DEC reg8 1 1 1 1 1 1 1 0 1 1 0 0 1 reg

mem 1 1 1 1 1 1 1 W mod 0 0 1 mem

(disp-low) (disp-high)

reg16 0 1 0 0 1 reg —

73

CHAPTER 2 INSTRUCTIONS

Disable maskable interruptDI
Disable Interrupt

[Format] DI

[Operation] IE ← 0

[Operand]

[Flag]

[Description] Resets the IE flag to 0 and disables the maskable interrupt. This instruction does not disable

the non-maskable interrupt request and software interrupt request.

[Example] DI

PUSH R

[Number of bytes] 1

[Word format]

AC CY V P S Z IE

0

Mnemonic Operand

DI None

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

DI None 1 1 1 1 1 0 1 0

74

CHAPTER 2 INSTRUCTIONS

Deletes a stack frameDISPOSE
Dispose a Stack Frame

[Format] DISPOSE

[Operation] SP ← BP

BP ← (SP + 1, SP)

SP ← SP + 2

[Operand]

[Flag]

[Description] This instruction releases one frame of the stack frame created by the PREPARE instruction.

A pointer value indicating one frame before is loaded to the BP, and a pointer value

indicating the lowest frame is loaded to the SP.

[Example] DISPOSE

[Number of bytes] 1

[Word format]

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

DISPOSE None 1 1 0 0 1 0 0 1

AC CY V P S Z

Mnemonic Operand

DISPOSE None

75

CHAPTER 2 INSTRUCTIONS

Signed divisionDIV
Divide Signed

[Format] DIV dst

[Operand, operation]

[Flag]

Mnemonic Operand (dst) Operation

DIV reg8 temp ← AW

Where temp ÷ dst > 0 and temp ÷ dst ≤ 7FH or,

where temp ÷ dst < 0 and temp ÷ dst > 0 – 7FH – 1,

AH ← temp%dst

AL ← temp ÷ dst

Where temp ÷ dst > 0 and temp ÷ dst > 7FH or,

where temp ÷ dst < 0 and temp ÷ dst ≤ 0 – 7FH – 1,

quotient and remainder are undefined.

mem8 TA ← (001H, 000H)

TC ← (003H, 002H)

SP ← SP – 2, (SP + 1, SP) ← PSW

IE ← 0, BRK ← 0

SP ← SP – 2, (SP + 1, SP) ← PS

PS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

reg16 temp ← DW, AW

Where temp ÷ dst > 0 and temp ÷ dst ≤ 7FFFH or,

where temp ÷ dst < 0 and temp ÷ dst > 0 – 7FFFH – 1,

DW ← temp%dst

AW ← temp ÷ dst

Where temp ÷ dst > 0 and temp ÷ dst > 7FFFH or,

where temp ÷ dst < 0 and temp ÷ dst ≤ 0 – 7FFFH – 1,

quotient and remainder are undefined.

mem16 TA ← (001H, 000H)

TC ← (003H, 002H)

SP ← SP – 2, (SP + 1, SP) ← PSW

IE ← 0, BRK ← 0

SP ← SP – 2, (SP + 1, SP) ← PS

PS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

AC CY V P S Z

U U U U U U

76

CHAPTER 2 INSTRUCTIONS

[Description] • Where src = reg8 or src = mem8

Divides the value of the AW register by the contents of the destination operand (dst)

with sign.

The quotient is stored to the AL register, and the remainder is stored to the AH register.

The maximum value of the positive quotient is +127 (7FH), and the minimum value is

–127 (81H). If the quotient is positive and is greater than the maximum value, or if the

quotient is negative and is less than the minimum value, vector 0 interrupt occurs

(especially where src = 00H), and the quotient and remainder are undefined. If the

quotient is not an integer, it is rounded to an integer, and the remainder has the same

sign as the dividend.

• Where src = reg16 or src = mem16

Divides the values of the AW and DW registers by the contents of the destination

operand (dst) with sign.

The quotient is stored to the AW register, and the remainder is stored to the DW register.

The maximum value of the positive quotient is +32767 (7FFFH), and the minimum value

is –32767 (8001H). If the quotient is positive and is greater than the maximum value,

or if the quotient is negative and is less than the minimum value, vector 0 interrupt occurs

(especially where src = 0000H), and the quotient and remainder are undefined. If the

quotient is not an integer, it is rounded to an integer, and the remainder has the same

sign as the dividend.

[Example] To divide 32-bit data DW:AW by contents of memory 0:50

MOV BW, 0

MOV DS0, BW

MOV IX, 50H

DIV DS0:WORD PTR [IX]

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

DIV reg8 2

mem8 2-4

reg16 2

mem16 2-4

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

DIV reg8 1 1 1 1 0 1 1 0 1 1 1 1 1 reg

mem8 1 1 1 1 0 1 1 0 mod 1 1 1 mem

(disp-low) (disp-high)

reg16 1 1 1 1 0 1 1 1 1 1 1 1 1 reg

mem16 1 1 1 1 0 1 1 1 mod 1 1 1 mem

(disp-low) (disp-high)

77

CHAPTER 2 INSTRUCTIONS

Unsigned divisionDIVU
Divide Unsigned

[Format] DIVU dst

[Operand, operation]

[Flag]

Mnemonic Operand (dst) Operation

DIVU reg8 temp ← AW

Where temp ÷ dst ≥ FFH:

AH ← temp%dst

AL ← temp ÷ dst

Where temp ÷ dst > FFH:

TA ← (001H, 000H)

mem8 TC ← (003H, 002H)

SP ← SP – 2, (SP + 1, SP) ← PSW

IE ← 0, BRK ← 0

SP ← SP – 2, (SP + 1, SP) ← PS

RS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

reg16 temp ← DW, AW

Where temp ÷ dst ≥ FFFFH:

DW ← temp%dst

AW ← temp ÷ dst

Where temp ÷ dst > FFFFH:

TA ← (001H, 000H)

mem16 TC ← (003H, 002H)

SP ← SP – 2, (SP + 1, SP) ← PSW

IE ← 0, BRK ← 0

SP ← SP – 2, (SP + 1, SP) ← PS

RS ← TC

SP ← SP – 2, (SP + 1, SP) ← PC

PC ← TA

AC CY V P S Z

U U U U U U

78

CHAPTER 2 INSTRUCTIONS

[Description] • Where src = reg8 or src = mem8

Divides the value of the AW register by the contents of the destination operand (dst)

without sign. The quotient is stored to the AL register, and the remainder is stored to

the AH register.

If the quotient exceeds the capacity of the AL register (FFH), vector 0 interrupt occurs

(especially where src = 00H), and the quotient and remainder are undefined. If the

quotient is not an integer, it is rounded to an integer.

• Where src = reg16 or src = mem16

Divides the values of the AW and DW registers by the contents of the destination

operand (dst) without sign. The quotient is stored to the AW register, and the remainder

is stored to the DW register.

If the quotient exceeds the capacity of the AW register (FFFFH), vector 0 interrupt occurs

(especially where src = 0000H), and the quotient and remainder are undefined. If the

quotient is not an integer, it is rounded to an integer.

[Example] To divide 5 by 3

MOV AW, 5

MOV DL, 3

DIVU DL

; AH = 2 AL = 1

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

DIVU reg8 2

mem8 2-4

reg16 2

mem16 2-4

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

DIVU reg8 1 1 1 1 0 1 1 0 1 1 1 1 0 reg

mem8 1 1 1 1 0 1 1 0 mod 1 1 0 mem

(disp-low) (disp-high)

reg16 1 1 1 1 0 1 1 1 1 1 1 1 0 reg

mem16 1 1 1 1 0 1 1 1 mod 1 1 0 mem

(disp-low) (disp-high)

79

CHAPTER 2 INSTRUCTIONS

Segment override prefixDS0:
Data Segment 0DS1:
Data Segment 1

PS: Program Segment

SS: Stack Segment

[Format] DS0:

DS1:

PS:

SS:

[Operation] Segment override prefix

[Operand]

[Flag]

[Description] When a memory operand is accessed for which segment override is enabled, specifies a

segment register that is described as an operand and used. Even if this instruction is not

directly described, segment override can be specified by the assembler if the ASSUME

(assembler directive) is used.

Caution The hardware interrupt (maskable interrupt and non-maskable interrupt)

request and single-step break cannot be accepted between this instruction

and the next instruction.

[Example] MOV DW, DS1: [BW]; Default segment register is DS0

[Number of bytes] 1

[Word Format]

Mnemonic Operand

DS0: None

DS1:

PS:

SS:

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

DS0: None 0 0 1 sreg 1 1 0

DS1:

PS:

SS:

80

CHAPTER 2 INSTRUCTIONS

Enables maskable interruptEI
Enable Interrupt

[Format] EI

[Operation] IE ← 1

[Operand]

[Flag]

[Description] Sets the IE flag to 1 and enables the maskable interrupt. However, the interrupt is actually

enabled when the single instruction following the EI instruction is executed.

[Example] POP R

EI

[Number of bytes] 1

[Word format]

AC CY V P S Z IE

1

Mnemonic Operand

EI None

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

EI None 1 1 1 1 1 0 1 1

81

CHAPTER 2 INSTRUCTIONS

Extracts bit fieldEXT
Extract Bit Field

[Format] EXT dst, src

[Operation] AW ← 16-bit field

[Operand]

[Flag]

[Description] Loads bit field data of the bit length specified by the source operand (src) from a memory

area determined by byte offset addressed by the IX register and the bit offset specified by

the 8-bit register described as the first operand to the AW register. At this time, 0 is loaded

to the high-order bits of the AW register.

After completion of the transfer, the IX register and the 8-bit register specified by the first

operand are automatically updated to indicate the next bit field, as follows:

reg8 ← reg8 + src + 1

if reg8 > 15 then

 {

reg8 ← reg8 – 16

IX ← IX + 2

}

Mnemonic Operand (dst, src)

EXT reg8, reg8’

reg8, imm4

AC CY V P S Z

U U U U U U

����
↓

↓ ↓

��
��

15 0

0AW

Bit length Bit offset
(IX)

Byte offset

Byte boundary Segment base
(default DS0)

Memory

82

CHAPTER 2 INSTRUCTIONS

The value of the 8-bit register of the first operand that specifies a bit offset (15 bits max.)

must be 0 to 15. The value of the source operand (src) that specifies the bit length (16 bits

max.) must be 0 to 15. 0 indicates a length of 1 bit and 15 indicates a length of 16 bits.

The bit field data can straddle a byte boundary of memory.

The default segment register for the bit field of the source is the DS0 register, and segments

can be overridden. The data can be located in any segment that is specified by any segment

register.

Caution Clear the high-order 4 bits of reg8 or reg8’ to 0.

[Example] • EXT CL, DL

• EXT CL, 8

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

EXT reg8, reg8’ 3

reg8, imm4 4

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

EXT reg8, reg8’ 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1

1 1 reg’ reg –

reg8, imm4 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1

1 1 0 0 0 reg imm4

83

CHAPTER 2 INSTRUCTIONS

Controls floating-point coprocessorFPO1
Floating Point Operation 1

[Format] (1) FPO1 fp-op

(2) FPO1 fp-op, mem

[Operand, operation]

Format (1)

Format (2)

[Flag]

[Description] Format (1): This instruction is used to control an externally connected floating-point

coprocessor. When the CPU fetches this instruction, it executes nothing but

lets the coprocessor perform processing.

Format (2): This instruction is used to control an externally connected floating-point

coprocessor. When the CPU fetches this instruction, it lets the coprocessor

perform processing and, if necessary, executes only auxiliary processing

(such as effective address calculation, physical address generation, and

starting a memory read cycle). The CPU does not read the data on the data

bus in the memory read cycle started by CPU.

[Example] • FPO1 010101010B

• FPO1 0FFH

• FPO1 6, BYTE PTR [IX]

• FPO1 4, WORD_VAR

[Number of bytes]

Mnemonic Operand Operation

FPO1 fp-op No operation

Mnemonic Operand Operation

FPO1 fp-op, mem Data bus ← (mem)

AC CY V P S Z

Mnemonic Operand No. of bytes

FPO1 fp-op 2

fp-op, mem 2-4

84

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

FPO1 fp-op 1 1 0 1 1 X X X 1 1 Y Y Y Z Z Z

fp-op, mem 1 1 0 1 1 X X X mod Y Y Y mem

(disp-low) (disp-high)

85

CHAPTER 2 INSTRUCTIONS

Controls floating-point coprocessorFPO2
Floating Point Operation 2

[Format] (1) FPO2 fp-op

(2) FPO2 fp-op, mem

[Operand, operation]

Format (1)

Format (2)

[Flag]

[Description] Format (1): This instruction is used to control an externally connected floating-point

coprocessor. When the CPU fetches this instruction, it executes nothing but

lets the coprocessor perform processing.

Format (2): This instruction is used to control an externally connected floating-point

coprocessor. When the CPU fetches this instruction, it lets the coprocessor

perform processing and, if necessary, executes only auxiliary processing

(such as effective address calculation, physical address generation, and

starting a memory read cycle). The CPU does not read the data on the data

bus in the memory read cycle started by CPU.

[Example] • FPO2 010101010B

• FPO2 0FFH

• FPO2 0101B, BYTE PTR [IY]

• FPO2 1010B, WORD_VAR

[Number of bytes]

Mnemonic Operand Operation

FPO2 fp-op No operation

AC CY V P S Z

Mnemonic Operand Operation

FPO2 fp-op, mem Data bus ← (mem)

Mnemonic Operand No. of bytes

FPO2 fp-op 2

fp-op, mem 2-4

86

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

FPO2 fp-op 0 1 1 0 0 1 1 X 1 1 Y Y Y Z Z Z

fp-op, mem 0 1 1 0 0 1 1 X mod Y Y Y mem

(disp-low) (disp-high)

87

CHAPTER 2 INSTRUCTIONS

AC CY V P S Z

Mnemonic Operand

HALT None

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

HALT None 1 1 1 1 0 1 0 0

HaltHALT
Halt

[Format] HALT

[Operation] CPU Halt

[Operand]

[Flag]

[Description] Stops clock supply to the CPU and sets the standby mode. The standby mode is released

by the following:

• Reset input

• Maskable interrupt request input

• Non-maskable interrupt request input

[Example] HALT

[Number of bytes] 1

[Word format]

88

CHAPTER 2 INSTRUCTIONS

Mnemonic Operand (dst, src) Operation

IN acc, imm8 [When W = 0] AL ← (imm8)

[When W = 1] AH ← (imm8 + 1), AL ← (imm8)

acc, DW [When W = 0] AL ← (DW)

[When W = 1] AH ← (DW + 1), AL ← (DW)

AC CY V P S Z

Mnemonic Operand No. of bytes

IN acc, imm8 2

acc, DW 1

Data input from I/O deviceIN
Input

[Format] IN dst, src

[Operand, operation]

[Flag]

[Description] Transfers the register contents of the I/O device specified by the source operand (src) to

the accumulator (AL or AW register) specified by the destination operand (dst).

[Example] To transfer contents of port address 0DAH to AL register

MOV DW, 0DAH

IN AL, DW

[Number of bytes]

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

IN acc, imm8 1 1 1 0 0 1 0 W imm8

acc, DW 1 1 1 0 1 1 0 W —

89

CHAPTER 2 INSTRUCTIONS

IncrementINC
Increment

[Format] INC dst

[Operation] dst ← dst + 1

[Operand]

[Flag]

[Description] Increments the contents of the destination operand (dst) (+1).

[Example] • INC DW

• INC BP

• INC SP

[Number of bytes]

[Word format]

Mnemonic Operand (dst)

INC reg8

mem

reg16

AC CY V P S Z

× × × × ×

Mnemonic Operand No. of bytes

INC reg8 2

mem 2-4

reg16 1

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

INC reg8 1 1 1 1 1 1 1 0 1 1 0 0 0 reg

mem 1 1 1 1 1 1 1 W mod 0 0 0 mem

(disp-low) (disp-high)

reg16 0 1 0 0 0 reg —

90

CHAPTER 2 INSTRUCTIONS

Block transfer between I/O and memoryINM
Input Multiple

[Format] (repeat) INM [DS1-spec:] dst-block, DW

[Operation] [When W = 0] (IY) ← (DW)

DIR = 0: IY ← IY + 1

DIR = 1: IY ← IY – 1

[When W = 1] (IY + 1, IY) ← (DW + 1, DW)

DIR = 0: IY ← IY + 2

DIR = 1: IY ← IY – 2

[Operand]

[Flag]

[Description] Transfers the register contents of the I/O device addressed by the DW register to the

memory addressed by the IY register. The number of times the data is repeatedly

transferred is controlled by the REP instruction, a repeat prefix used in pairs with this

instruction. When the data is repeatedly transferred, the contents of the DW register

(address of the I/O device) are fixed, but the value of the IY register is automatically

incremented (+1/+2) or decremented (–1/–2) to transfer the next byte/word each time 1-

byte/word data has been transferred. The direction of the block is determined by the status

of the DIR flag.

Whether data is transferred in byte or word units is determined by the attribute of the

operand.

The INM instruction is used with a repeat prefix, REP instruction.

The destination block must be always located in a segment specified by the DS1 register

and segments cannot be overridden.

[Example] • To load contents of port address 0DAH (byte data) to memory work area

MOV AW, 0

MOV DS1, AW

MOV IY, 50H

MOV DW, 0DAH

INM DS1:BYTE PTR [IY], DW

• To load contents of port address 0DAH (byte data) to memory 0:0 through 0:FFH

MOV AW, 0

MOV DS1, AW

MOV IY, 0

MOV DW, 0DAH

MOV CW, 0FFH

REP INM DS1: BYTE PTR [IY], DW

Mnemonic Operand

INM [DS1-spec :] dst-block, DW

AC CY V P S Z

91

CHAPTER 2 INSTRUCTIONS

[Number of bytes] 1

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0

INM [DS1-spec :] dst-block, DW 0 1 1 0 1 1 0 W

92

CHAPTER 2 INSTRUCTIONS

Inserts bit fieldINS
Insert Bit Field

[Format] INS dst, src

[Operation] 16-bit field ← AW

[Operand]

[Flag]

[Description] Of the 16-bit data of the AW register, transfers the low-order bit data of the length specified

by the source operand (src) to a memory area that is determined by the byte offset

addressed by the DS1 and IY registers and the bit offset specified by the 8- bit register

described as the first operand.

After the data has been transferred, the IY register and the 8- bit register specified by the

first operand are automatically updated as follows to indicate the next bit field.

reg ← reg8 + src + 1

if reg8 > 15 then

{

reg8 ← reg8 – 16

IY ← IY + 2

}

Mnemonic Operand (dst, src)

INS reg8, reg8’

reg8, imm4

AC CY V P S Z

U U U U U U

���� ↓
↓

��
��

15 0

0AW

Bit offset
(IY)

Byte offset

Byte boundary
Segment base

(DS1)

Memory

src dst

↓

Bit length

93

CHAPTER 2 INSTRUCTIONS

The value of the 8-bit register of the first operand that specifies the bit offset (15 bits max.)

must be 0 to 15. The value of the source operand (src) that specifies the bit length (16 bits

max.) must be 0 to 15. 0 indicates a length of 1 bit and 15 indicates a length of 16 bits.

The bit field data can straddle a byte boundary of memory. The bit field of the destination

must be always located in a segment specified by the DS1 register, and segments can be

overridden.

Caution Clear the high-order 4 bits of reg8 or reg8’ to 0.

[Example] • INS DL, CL

• INS DL, 12

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

INS reg8, reg8’ 3

reg8, imm4 4

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

INS reg8, reg8’ 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1

1 1 reg’ reg —

reg8, imm4 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1

1 1 0 0 0 reg imm4

94

CHAPTER 2 INSTRUCTIONS

Loads effective addressLDEA
Load Effective Address

[Format] LDEA reg16, mem16

[Operation] reg16 ← mem16

[Operand]

[Flag]

[Description] Loads an effective address (offset) generated by the second operand to a 16-bit general-

purpose register specified by the first operand.

This instruction is used to set the first value of an operand address to a register that is

automatically used by the TRANS instruction or primitive block transfer instruction to

specify an operand.

[Example] To load offset of effective address of procedure INT_PROC to AW register

LDEA AW, INT_PROC

LDEA AW, [BP] VAR01 + 2

[Number of bytes] 2 to 4

[Word format]

Mnemonic Operand (dst, src)

LDEA reg16, mem16

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

LDEA reg16, mem16 1 0 0 0 1 1 0 1 mod reg mem

(disp-low) (disp-high)

95

CHAPTER 2 INSTRUCTIONS

Block loadLDM
Load MultipleLDMB Load Multiple Byte

LDMW Load Multiple Word

[Format] (repeat) LDM [Seg-spec:] src-block

(repeat) LDMB

(repeat) LDMW

[Operation] [When W = 0] AL ← (IX)

DIR = 0: IX ← IX + 1

DIR = 1: IX ← IX – 1

[When W = 1] AW ← (IX + 1, IX)

DIR = 0: IX ← IX + 2

DIR = 1: IX ← IX – 2

[Operand]

[Flag]

[Description] Repeatedly transfers the block addressed by the IX register to the accumulator (AL/AW)

in byte or word units.

The IX register is automatically incremented (+1/+2) or decremented (–1/–2) for the next

byte/word processing each time data of 1 byte/word has been processed. The direction

of the block is determined by the status of the DIR flag.

Whether data is processed in byte or word units is specified by the attribute of the operand

when the LDM instruction is used. When the LDMB and LDMW instructions are used, the

data is processed in byte and word units, respectively.

The default segment register of the source block is the DS0 register and segments can

be overridden. The source block can be located in a segment specified by any segment

register.

[Example] • REP LDM DS1: BYTE_VAR ; DS1 segment

• REP LDMB ; DS0 segment

[Number of bytes] 1

Mnemonic Operand

LDM [Seg-spec :] src-block

LDMB None

LDMW

AC CY V P S Z

96

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0

LDM [Seg-spec :]src-block 1 0 1 0 1 1 0 W

LDMB None

LDMW

97

CHAPTER 2 INSTRUCTIONS

Transfers dataMOV
Move

[Format] (1) MOV dst, src

(2) MOV dst1, dst2, src

[Operand, operation]

Format (1)

Format (2)

[Flag] Where operand is PSW or AH Other than left

Mnemonic Operand (dst, src) Operation

MOV reg, reg’ dst ← src

mem, reg

reg, mem

mem, imm

reg, imm

acc, dmem [When W = 0] AL ← (dmem)

[When W = 1] AH ← (dmem + 1), AL ← (dmem)

dmem, acc [When W = 0] (dmem) ← AL

[When W = 1] (dmem + 1) ← AH, (dmem) ← AL

sreg, reg16 dst ← src

sreg, mem16

reg16, sreg

mem16, sreg

AH, PSW AH ← S, Z, ×, AC, ×, P, ×, CY

PSW, AH S, Z, ×, AC, ×, P, ×, CY ← AH

Mnemonic Operand (dst1, dst2, src) Operation

DS0, reg16, mem32 reg16 ← (mem32)

DS0 ← (mem32 + 2)

DS1, reg16, mem32 reg16 ← (mem32)

DS1 ← (mem32 + 2)

AC CY V P S Z

× × × × ×

AC CY V P S Z

98

CHAPTER 2 INSTRUCTIONS

[Description] Format (1): Transfers the contents of the source operand (src) specified by the second

operand to the destination operand (dst) specified by the first operand.

If the operands are AH, PSW, the S, Z, AC, P, and CY flags are transferred

to the AH register. Bits 1, 3, and 5 of the AH register are undefined as a result.

If the operands are PSW, AH, bits 2, 4, 6, and 7 of the AH register are

transferred to the S, Z, AC, P, and CY flags of the PSW, respectively.

Caution If dst = sreg or src = sreg, the hardware interrupt (maskable

interrupt or non-maskable interrupt) request and single-step

break cannot be accepted between this instruction and the

next instruction.

Format (2): Transfers the low-order 16 bits (offset word of 32-bit pointer variable) of the

32-bit memory addressed by the source operand (src) to a 16-bit register

specified by destination operand 2 (dst2), and the high-order 16 bits (segment

word) of the 32-bit memory to a segment register (DS0 or DS1 register)

specified by destination operand 1 (dst1).

[Example] To write 55H to memory 0:50H

MOV AW, 0

MOV DS1, AW

MOV IY, 50H

MOV DL, 55H

MOV DS1: [IY], DL

[Number of Bytes] Mnemonic Operand No. of bytes

MOV reg, reg’ 2

mem, reg 2-4

reg, mem

mem, imm 3-6

reg, imm 2, 3

acc, dmem 3

dmem, acc

sreg, reg16 2

sreg, mem16 2-4

reg16, sreg 2

mem16, sreg 2-4

DS0, reg16, mem32

DS1, reg16, mem32

AH, PSW 1

PSW, AH

99

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

MOV reg, reg’ 1 0 0 0 1 0 1 W 1 1 reg reg’

mem, reg 1 0 0 0 1 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 1 0 0 0 1 0 1 W mod reg mem

(disp-low) (disp-high)

mem, imm 1 1 0 0 0 1 1 W mod 0 0 0 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

reg, imm 1 0 1 1 W reg imm8 or imm16-low

imm16-high —

acc, dmem 1 0 1 0 0 0 0 W addr-low

addr-high —

dmem, acc 1 0 1 0 0 0 1 W addr-low

addr-high —

sreg, reg16 1 0 0 0 1 1 1 0 1 1 0 sreg reg

sreg, mem16 1 0 0 0 1 1 1 0 mod 0 sreg mem

(disp-low) (disp-high)

reg16, sreg 1 0 0 0 1 1 0 0 1 1 0 sreg reg

mem16, sreg 1 0 0 0 1 1 0 0 mod 0 sreg mem

(disp-low) (disp-high)

DS0, reg16, mem32 1 1 0 0 0 1 0 1 mod reg mem

(disp-low) (disp-high)

DS1, reg16, mem32 1 1 0 0 0 1 0 0 mod reg mem

(disp-low) (disp-high)

AH, PSW 1 0 0 1 1 1 1 1 —

PSW, AH 1 0 0 1 1 1 1 0 —

100

CHAPTER 2 INSTRUCTIONS

Block transferMOVBK
Move BlockMOVBKB Move Block Byte

MOVBKW Move Block Word

[Format] (repeat) MOVBK [DS1-spec:] dst-block, [Seg-spec:] src-block

(repeat) MOVBKB

(repeat) MOVBKW

[Operation] [When W = 0] (IY) ← (IX)

DIR = 0: IX ← IX + 1, IY ← IY + 1

DIR = 1: IX ← IX – 1, IY ← IY – 1

[When W = 1] (IY + 1, IY) ← (IX + 1, IX)

DIR = 0: IX ← IX + 2, IY ← IY + 2

DIR = 1: IX ← IX – 2, IY ← IY – 2

[Operand]

[Flag]

[Description] Repeatedly transfers the block addressed by the IX register to the block addressed by the

IY register in byte or word units.

The IX and IY registers are automatically incremented (+1/+2) or decremented (–1/–2) for

the next byte/word processing each time data of 1 byte/word has been processed. The

direction of the block is determined by the status of the DIR flag.

Whether data is processed in byte or word units is specified by the attribute of the operand

when the MOVBK instruction is used. When the MOVBKB and MOVBKW instructions are

used, the data is processed in byte and word units, respectively.

The destination block must be always located in a segment specified by the DS1 register,

and segments cannot be overridden.

On the other hand, the default segment register of the source block is the DS0 register,

but segments can be overridden, and the source block can be located in a segment

specified by any segment register.

[Example] MOVBK BYTE_VAR1, BYTE_VAR2

MOVBK WORD_VAR1, WORD_VAR2

[Number of bytes] 1

Mnemonic Operand

MOVBK [DS1-spec :] dst-block, [Seg-spec :] src-block

MOVBKB None

MOVBKW

AC CY V P S Z

101

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0

MOBK [DS1-spec :]dst-block, [Seg-spec :] src-block 1 0 1 0 0 1 0 W

MOVBKB None

MOVBKW

102

CHAPTER 2 INSTRUCTIONS

Signed multiplyMUL
Multiply Signed

[Format] (1) MUL src

(2) MUL dst, src

(3) MUL dst, src1, src2

[Operand, operation]

Format (1)

Format (2)

Format (3)

[Flag]

Mnemonic Operand Operation

MUL reg8 AW ← AL × src

AH = Sign extension of AL: CY ← 0, V ← 0

mem8 AH ≠ Sign extension of AL: CY ← 1, V ← 1

reg16 DW, AW ← AW × src

DW = Sign extension of AW: CY ← 0, V ← 0

mem16 DW ≠ Sign extension of AW: CY ← 1, V ← 1

Mnemonic Operand Operation

MUL reg16, imm8 dst ← dst × src

Product ≤ 16 bits: CY ← 0, V ← 0

reg16, imm16 Product > 6 bits: CY ← 1, V ← 1

Mnemonic Operand Operation

MUL reg16, reg16’, imm8 dst ← src1 x src2

reg16, mem16, imm8 Product ≤ 16 bits: CY ← 0, V ← 0

reg16, reg16’, imm16 Product > 16 bits: CY ← 1, V ← 1

reg16, mem16, imm16

AC CY V P S Z

U × × U U U

103

CHAPTER 2 INSTRUCTIONS

[Description] Format (1): • Where src = reg8 or src = mem8

Multiplies the value of the AL register by the source operand (src) with sign,

and stores the double-length result to the AW register. If the upper half (AH

register) of the result is not the sign extension of the lower half (AL register)

at this time, the CY and V flags are set to 1. The AH register is an extension

register.

• Where src = reg16 or src = mem16

Multiplies the value of the AW register by the source operand (src) with sign,

and stores the double-length result to the AW and DW registers. If the upper

half (DW register) of the result is not the sign extension of the lower half

(AW register) at this time, the CY and V flags are set to 1. The DW register

is an extension register.

Format (2): Multiplies the destination operand (dst) by the source operand (src) with sign,

and stores the result to the destination operand (dst).

Format (3): Multiplies the first source operand (src1) by the second source operand (src2)

with sign, and stores the result to the destination operand (dst).

[Example] To multiply value of AW register by contents of memory 0:50H (word data)

MOV BW, 0

MOV DS0, BW

MOV IX, 50H

MUL WORD PTR [IX]

[Number of bytes]
Mnemonic Operand No. of bytes

MUL reg8 2

mem8 2-4

reg16 2

mem16 2-4

reg16, imm8 3

reg16, imm16 4

reg16, reg16’, imm8 3

reg16, mem16, imm8 3-5

reg16, reg16’, imm16 4

reg16, mem16, imm16 4-6

104

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

MUL reg8 1 1 1 1 0 1 1 0 1 1 1 0 1 reg

mem8 1 1 1 1 0 1 1 0 mod 1 0 1 mem

(disp-low) (disp-high)

reg16 1 1 1 1 0 1 1 1 1 1 1 0 1 reg

mem16 1 1 1 1 0 1 1 1 mod 1 0 1 mem

(disp-low) (disp-high)

reg16, imm8 0 1 1 0 1 0 1 1 1 1 reg reg’

imm8 —

reg16, imm16 0 1 1 0 1 0 0 1 1 1 reg reg’

imm16-low im16-high

reg16, imm16’, imm8 0 1 1 0 1 0 1 1 1 1 reg reg’

imm8 —

reg16, mem16, imm8 0 1 1 0 1 0 1 1 mod reg mem

(disp-low) (disp-high)

imm8 —

reg16, imm16’, imm16 0 1 1 0 1 0 0 1 1 1 reg reg’

imm16-low imm16-high

reg16, mem16, imm16 0 1 1 0 1 0 0 1 mod reg mem

(disp-low) (disp-high)

imm16-low imm16-high

105

CHAPTER 2 INSTRUCTIONS

Unsigned multiplyMULU
Multiply Unsigned

[Format] MULU src

[Operand, operation]

[Flag]

[Description] • Where src = reg8 or src = mem8

Multiplies the value of the AL register by the source operand (src) without sign, and

stores the double-length result to the AW register. If the upper half (AH register) of the

result is not zero at this time, the CY and V flags are set to 1. The AH register is an

extension register.

• Where src = reg16 or src = mem16

Multiplies the value of the AW register by the source operand (src) with sign, and stores

the double-length result to the AW and DW registers. If the upper half (DW register) of

the result is not zero at this time, the CY and V flags are set to 1. The DW register is

an extension register.

[Example] To multiply contents of AL register by contents of CL register

MULU CL

[Number of bytes]

Mnemonic Operand (src) Operation

MULU reg8 AW ← AL × src

mem8

reg16 DW, AW ← AW × src

DW = 0 : CY ← 0, V ← 0

mem16 DW ≠ 0 : CY ← 1, V ← 1

AC CY V P S Z

U × × U U U

Mnemonic Operand No. of bytes

MULU reg8 2

mem8 2-4

reg16 2

mem16 2-4

106

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

MULU reg8 1 1 1 1 0 1 1 0 1 1 1 0 0 reg

mem8 1 1 1 1 0 1 1 0 mod 1 0 0 mem

(disp-low) (disp-high)

reg16 1 1 1 1 0 1 1 1 1 1 1 0 0 reg

mem16 1 1 1 1 0 1 1 1 mod 1 0 0 mem

(disp-low) (disp-high)

107

CHAPTER 2 INSTRUCTIONS

2’s complementNEG
Negate

[Format] NEG dst

[Operation] dst ← dst + 1

[Operand]

[Flag]

Note CY = 1. However, CY = 0 if dst is 0 before execution.

[Description] Takes 2’s complement of the contents of the destination operand (dst).

[Example] • NEG DL

• NEG CW

• NEG IX

• NEG BP

[Number of bytes]

[Word format]

Mnemonic Operand (dst)

NEG reg

mem

AC CY V P S Z

× Note × × × ×

Mnemonic Operand No. of bytes

NEG reg 2

mem 2-4

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

NEG reg 1 1 1 1 0 1 1 W 1 1 0 1 1 reg

mem 1 1 1 1 0 1 1 W mod 0 1 1 mem

(disp-low) (disp-high)

108

CHAPTER 2 INSTRUCTIONS

No operationNOP
No Operation

[Format] NOP

[Operation] No operation

[Operand]

[Flag]

[Description] Executes nothing but consumes three clock cycles.

[Example] NOP

[Number of bytes] 1

[Word format]

Mnemonic Operand

NOP None

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

NOP None 1 0 0 1 0 0 0 0

109

CHAPTER 2 INSTRUCTIONS

Logical negationNOT
Not

[Format] NOT dst

[Operation] dst ← dst

[Operand]

[Flag]

[Description] Inverts the bit specified by the destination operand (dst) (logical negation), and stores the

result to the destination operand (dst).

[Example] • NOT AL

• NOT CW

• NOT IX

[Number of bytes]

[Word format]

Mnemonic Operand (dst)

NOT reg

mem

AC CY V P S Z

Mnemonic Operand No. of bytes

NOT reg 2

mem 2-4

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

NOT reg 1 1 1 1 0 1 1 W 1 1 0 1 0 reg

mem 1 1 1 1 0 1 1 W mod 0 1 0 mem

(disp-low) (disp-high)

110

CHAPTER 2 INSTRUCTIONS

Inverts bitNOT1 Not Bit

[Format] (1) NOT1 dst, src

(2) NOT2 dst

[Operation] Format (1): Bit n of dst (n is specified by src) ← Bit n of dst (n is specified by src)

Format (2): dst ← dst

[Operand] Format (1) Format (2)

[Flag] Format (1) Format (2)

[Description] Format (1): Logically inverts bit n (n is the contents of the source operand (src) specified

by the second operand) of the destination operand (dst) specified by the first

operand, and stores the result to the destination operand (dst).

If the operand is reg8, CL or mem8, CL, only the low-order 3 bits of the value

of CL (0 to 7) are valid.

If the operand is reg16, CL or mem16, CL, only the low-order 4 bits of the

value of CL (0 to 15) are valid.

If the operand is reg8, imm3, only the low-order 3 bits of the immediate data

at the fourth byte position of the instruction are valid.

If the operand is mem8, imm3, only the low-order 3 bits of the immediate data

at the last byte position of the instruction are valid.

If the operand is reg16, imm4, only the low-order 4 bits of the immediate data

at the fourth byte position of the instruction are valid.

If the operand is mem16, imm4, only the low-order 4 bits of the immediate

data at the last byte position of the instruction are valid.

Format (2): Logically negates the contents of the CY flag and then stores the result to

the CY flag.

Mnemonic Operand (dst, src)

NOT1 reg8, CL

mem8, CL

reg16, CL

mem16, CL

reg8, imm3

mem8, imm3

reg16, imm4

mem16, imm4

Mnemonic Operand (dst)

NOT1 CY

AC CY V P S Z AC CY V P S Z

×

111

CHAPTER 2 INSTRUCTIONS

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

NOT1 reg8, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0

1 1 0 0 0 reg —

mem8, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0

mod 0 0 0 mem (disp-low)

(disp-high) —

reg16, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1

1 1 0 0 0 reg —

mem16, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1

mod 0 0 0 mem (disp-low)

(disp-high) —

reg8, imm3 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0

1 1 0 0 0 reg imm3

mem8, imm3 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0

mod 0 0 0 mem (disp-low)

(disp-high) imm3

reg16, imm4 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1

1 1 0 0 0 reg imm4

mem16, imm4 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1

mod 0 0 0 mem (disp-low)

(disp-high) imm4

CY 1 1 1 1 0 1 0 1 —

[Example] IN AL, 0

NOT1 AL, 7

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

NOT1 reg8, CL 3

mem8, CL 3-5

reg16, CL 3

mem16, CL 3-5

reg8, imm3 4

mem8, imm3 4-6

reg16, imm4 4

mem16, imm4 4-6

CY 1

112

CHAPTER 2 INSTRUCTIONS

Logical sumOR Or

[Format] OR dst, src

[Operand, operation]

[Flag]

[Description] ORs the destination operand (dst) specified by the first operand with the source operand

(src) specified by the second operand, and stores the result to the destination operand

(dst).

[Example] OR AW, WORD PTR [IX]

[Number of bytes]

Mnemonic Operand (dst, src) Operation

OR reg, reg’ dst ← dst ∨ src

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL ← AL v imm8

[When W = 1] AW ← AW v imm16

AC CY V P S Z

U 0 0 × × ×

Mnemonic Operand No. of bytes

OR reg, reg’ 2

mem, reg 2-4

reg, mem 2-4

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

113

CHAPTER 2 INSTRUCTIONS

[Word format]

Note The following code may be generated depending on the assembler or compiler used.

Even in this case, the instruction is executed normally. Note, however, that some emulators

do not support a function to disassemble or assemble this instruction.

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

OR reg, reg’ 0 0 0 0 1 0 1 W 1 1 reg reg‘

mem, reg 0 0 0 0 1 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 0 0 0 0 1 0 1 W mod reg mem

(disp-low) (disp-high)

reg, immNote 1 0 0 0 0 0 0 W 1 1 0 0 1 reg

imm8 or imm16-low imm16-high

mem, imm 1 0 0 0 0 0 0 W mod 0 0 1 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 0 0 0 0 1 1 0 W imm8 or imm16-low

imm16-high —

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 0 0 0 0 0 1 W 1 1 0 0 1 reg

imm8 —

114

CHAPTER 2 INSTRUCTIONS

Output data to I/O deviceOUT
Output

[Format] OUT dst, src

[Operand, operation]

[Flag]

[Description] Transfers the contents of the accumulator (AL or AW register) to a register of the I/O device

specified by the destination operand (dst).

[Example] To transfer contents of AL register to port address 0D8H

MOV DW, 0D8H

OUT DW, AL

[Number of bytes]

[Word format]

Mnemonic Operand (dst, src) Operation

OUT imm8, acc [When W = 0] (imm8) ← AL

[When W = 1] (imm8 + 1) ← AH, (imm8) ← AL

DW, acc [When W = 0] (DW) ← AL

[When W = 1] (DW + 1) ← AH, (DW) ← AL

AC CY V P S Z

Mnemonic Operand No. of bytes

OUT imm8, acc 2

DW, acc 1

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

OUT imm8, acc 1 1 1 0 0 1 1 W imm8

DW, acc 1 1 1 0 1 1 1 W —

115

CHAPTER 2 INSTRUCTIONS

Block transfer between memory and I/OOUTM
Output Multiple

[Format] (repeat) OUTM DW, [Seg-spec:] src-block

[Operation] [When W = 0] (DW) ← (IX)

DIR = 0: IX ← IX + 1

DIR = 1: IX ← IX – 1

[When W = 1] (DW + 1, DW) ← (IX + 1, IX)

DIR = 0: IX ← IX + 2

DIR = 1: IX ← IX – 2

[Operand]

[Flag]

[Description] Transfers the memory contents addressed by the IX register to the I/O device addressed

by the DW register. The number of times the data is repeatedly transferred is controlled

by the REP instruction, a repeat prefix used in pairs with this instruction. When the data

is repeatedly transferred, the contents of the DW register (address of the I/O device) are

fixed, but the value of the IX register is automatically incremented (+1/+2) or decremented

(–1/–2) to transfer the next byte/word each time 1-byte/word data has been transferred.

The direction of the block is determined by the status of the DIR flag.

Whether data is transferred in byte or word units is determined by the attribute of the

operand.

The OUTM instruction is used with a repeat prefix, REP instruction.

Although the default segment register of the source block is the DS0 register, segments

can be overridden, and the source block can be located in a segment specified by any

segment register.

[Example] • To transfer contents of memory 0:50H to port address 0D8H (byte data)

MOV AW, 0

MOV DS0, AW

MOV IX, 50H

MOV DW, 0D8H

OUTM DW, DS0: WORD PTR [IX]

• To transfer contents of memory 0:0H through 0FFH to port address 0D8H (byte data)

MOV AW, 0

MOV DS0, AW

MOV IX, 0H

MOV DW, 0D8H

MOV CW, 0FFH

REP OUTM DW, DS0:PTR [IX]

Mnemonic Operand

OUTM DW, [Seg-spec :] src-block

AC CY V P S Z

116

CHAPTER 2 INSTRUCTIONS

[Number of bytes] 1

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0

OUTM DW, [Seg-spec :] src-block 0 1 1 0 1 1 1 W

117

CHAPTER 2 INSTRUCTIONS

Waits for floating-point coprocessorPOLL
Poll and wait

[Format] POLL

[Operation] POLL and wait

[Operand]

[Flag]

[Description] • Other than V33A and V53A

Places the CPU in the wait status until the POLL pin becomes active (low).

Caution The BUSLOCK instruction must not be placed immediately before this

instruction.

• V33A and V53A

With coprocessor connected : Places the CPU in the wait status until the CPBUSY pin

becomes inactive (high level).

Without coprocessor : Generates coprocessor non-existent interrupt (vector

7). At this time, the first byte of this instruction is saved

to the stack as an address.

Caution The BUSLOCK instruction must not be placed immediately before this

instruction.

[Example] POLL

[Number of bytes] 1

[Word format]

AC CY V P S Z

Mnemonic Operand

POLL None

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

POLL None 1 0 0 1 1 0 1 1

118

CHAPTER 2 INSTRUCTIONS

Restore from stackPOP
Pop

[Word format] POP dst

[Operand, operation]

[Flag] • When dst = PSW

Remark The V33A and V53A does not have an MD flag.

• Other than above

[Description] Transfers the contents of the stack to the destination operand (dst) (however, the stack

contents are not transferred to the PS if dst = sreg).

Cautions 1. When dst = sreg, the hardware interrupt (maskable interrupt and non-

maskable interrupt) request and single-step break cannot be accepted

between this instruction and the next instruction.

2. When dst = PSW, the MD flag is restored only in the write- enabled

status, and is not affected in the write-disabled status (except the V33A

and V53A).

3. If the PUSH and POP instructions are executed to the SP register in

combination, the value of the SP register before instruction execution

minus 2 is stored to the SP register.

Mnemonic Operand (dst) Operation

POP mem16 SP ← SP + 2

(mem16) ← (SP – 1, SP – 2)

reg16 SP ← SP + 2

sreg dst ← (SP – 1, SP – 2)

PSW

R IY ← (SP + 1, SP)

IX ← (SP + 3, SP + 2)

BP ← (SP + 5, SP + 4)

BW ← (SP + 9, SP + 8)

DW ← (SP + 11, SP + 10)

CW ← (SP + 13, SP + 12)

AW ← (SP + 15, SP + 14)

SP ← SP + 16

AC CY V P S Z

AC CY V P S Z MD DIR IE BRK

R R R R R R R R R R

119

CHAPTER 2 INSTRUCTIONS

[Example] • POP AW

• POP BW

• POP IY

• POP SP

MOV BP, SP

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

POP mem16 2-4

reg16 1

sreg

PSW

R 1

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

POP mem16 1 0 0 0 1 1 1 1 mod 0 0 0 mem

(disp-low) (disp-high)

reg16 0 1 0 1 1 reg —

sreg 0 0 0 sreg 1 1 1 —

PSW 1 0 0 1 1 1 0 1 —

R 0 1 1 0 0 0 0 1 —

120

CHAPTER 2 INSTRUCTIONS

Mnemonic Operand

PREPARE imm16, imm8

AC CY V P S Z

Creates stack frame
PREPARE Prepare New Stack Frame

[Format] PREPARE imm16, imm8

[Operation] (SP – 1, SP – 2) ← BP

SP ← SP – 2

After executing temp ← SP, executes the following operation “imm8-1” times

when imm8 > 0:

(SP – 1, SP – 2) ← (BP – 1 BP – 2)

SP ← SP – 2
∗1

BP ← BP – 2

Then executes

(SP – 1, SP – 2) ← temp
∗2

SP ← SP – 2

Then executes the following processing:

BP ← temp

SP ← SP – imm16

When imm8 = 1, repetitive operation ∗1 is not performed.

When imm8 = 0, operations ∗1 and ∗2 are not performed.

[Operand]

[Flag]

[Description] This instruction is used to generate a “stack frame” necessary for high-level languages of

block structure (such as Pascal and Ada). The stack frame includes a group of pointers

indicating the variables that can be referenced from the procedure and an area of local

variables.

This instruction copies the frame pointer to allow securing of a local variable area and

referencing global variables. The 16-bit immediate data described as the first operand

specifies the size (in bytes units) of the area secured for local variables, and the 8-bit

immediate data described as the second operand indicates the depth of the procedure

block (this depth is called a lexical level).

The base address of the frame created by this instruction is set to BP.

First, BP is saved to the stack. This is to restore the BP of the procedure at the calling side

when the procedure has been completed. Next, the frame pointer (saved BP) in a range

in which it can be referenced from the called procedure is pushed to the stack. The range

in which the frame pointer can be referenced is the value of the lexical level of that

procedure minus 1.

121

CHAPTER 2 INSTRUCTIONS

If the lexical level is greater than 1, the frame pointer of this instruction itself is also pushed

to the stack. This is to copy the frame pointer of the procedure called by this procedure

when the called procedure copies the frame pointer.

Next, the value of a new frame pointer is set, and the area of local variables used for that

procedure are secured on the stack. In other words, the SP is decremented by the number

of the local variables.

[Example] MOV SP, 60H

MOV BP, SP

CALL CHK

PREPARE 0006, 04

MOV AW, [BP + 0FAH]

ADD AW, [BP + 0F8A]

MOV [BP + 0FCH], AW

[Number of Bytes] 4

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

PREPARE imm16, imm8 1 1 0 0 1 0 0 0 imm16-low

imm16-high imm8

122

CHAPTER 2 INSTRUCTIONS

Saves to stackPUSH
Push

[Word format] PUSH src

[Operand, operation]

[Flag]

[Description] Saves the contents of the source operand (src) to the stack.

If 8-bit immediate data (imm8) is described as the operand, imm8 is sign-extended, and

saved to the stack addressed by the SP as 16-bit data.

[Example] • PUSH DS0

• PUSH SS

• PUSH DS1

Mnemonic Operand (src) Operation

PUSH mem16 SP ← SP – 2

(SP + 1, SP) ← (mem16 + 1, mem16)

reg16 SP ← SP – 2

sreg (SP + 1, SP) ← src

PSW

R temp ← SP

(SP – 1, SP – 2) ← AW

(SP – 3, SP – 4) ← CW

(SP – 5, SP – 6) ← DW

(SP – 7, SP – 8) ← BW

(SP – 9, SP – 10) ← temp

(SP – 11, SP – 12) ← BP

(SP – 13, SP – 14) ← IX

(SP – 15, SP – 16) ← IY

SP ← SP – 16

imm8 (SP – 1, SP – 2) ← sign extension of imm8

SP ← SP – 2

imm16 (SP – 1, SP – 2) ← imm16

SP ← SP – 2

AC CY V P S Z

123

CHAPTER 2 INSTRUCTIONS

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

PUSH mem16 1 1 1 1 1 1 1 1 mod 1 1 0 mem

(disp-low) (disp-high)

reg16 0 1 0 1 0 reg —

sreg 0 0 0 sreg 1 1 0 —

PSW 1 0 0 1 1 1 0 0 —

R 0 1 1 0 0 0 0 0 —

imm8 0 1 1 0 1 0 1 0 imm8

imm16 0 1 1 0 1 0 0 0 imm16-low

imm16-high —

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

PUSH mem16 2-4

reg16 1

sreg

PSW

R 1

imm8 2

imm16 3

124

CHAPTER 2 INSTRUCTIONS

Repeat prefix where Z = 1REP
RepeatREPE Repeat while Equal

REPZ Repeat while Zero

[Format] REP

REPE

REPZ

[Operation] [When CW ≠ 0] PS: executes byte instruction of PC + 1

CW ← CW – 1

When Z ≠ 1: PC ← PC + 2

When Z = 1: Re-executes

[When CW = 0] PC ← PC + 2

[Operand]

[Flag]

[Description] Executes the block transfer/compare/I/O instruction of the subsequent byte and decrements

the value of CW register (–1) while CW ≠ 0.

REP is used in combination with the MOVBK, LDM, STM, OUTM, or INTM instruction, and

repeatedly performs processing while CW ≠ 0, regardless of the value of the Z flag.

REPZ and REPE are used in combination with the CMPBK or CMPM instruction, and exits

from a loop if Z ≠ 1 or if CW = 0 as a result of comparison by each block instruction. The

CW register is checked before the block compare instruction is executed, i.e., immediately

before the REP/REPE/REPEZ instruction is executed.

Therefore, if the REP/REPE/REPEZ instruction is executed when CW = 0, the subsequent

block compare instruction is never executed, and the next instruction is executed. The Z

flag is checked as a result of executing the subsequent block compare instruction, and the

content of this flag immediately before the REPE/REPZ instruction is executed for the first

time is irrelevant.

Caution The hardware interrupt (maskable interrupt) and non- maskable interrupt

request and single-step break cannot be accepted between this instruction

and the next instruction.

[Example] • REP MOVBKW

• REPZ CMPBKW

[Number of bytes] 1

Mnemonic Operand

REP None

REPE

REPZ

AC CY V P S Z

125

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0

REP None 1 1 1 1 0 0 1 1

REPE

REPZ

126

CHAPTER 2 INSTRUCTIONS

Repeat prefix where CY = 1REPC
Repeat while Carry

[Format] REPC

[Operation] [When CW ≠ 0] PS: executes byte instruction of PC + 1

CW ← CW – 1

When CY ≠ 1: PC ← PC + 2

When CY = 1: Re-executes

[When CW = 0] PC ← PC + 2

[Operand]

[Flag]

[Description] Executes the block compare (CMPBK or CMPM) instruction of the subsequent byte and

decrements the value of the CW register (–1) while CW ≠ 0.

If CY ≠ 1 as a result of executing the block compare instruction, execution exits from a loop.

The CW register is checked before the block compare instruction is executed, i.e.,

immediately before the REPC instruction is executed. Therefore, if the REPC instruction

is executed when CW = 0, the subsequent block compare instruction is never executed,

and the next instruction is executed.

The CY flag is checked as a result of executing the subsequent block compare instruction,

and the content of this flag immediately before the REPC instruction is executed for the

first time is irrelevant.

Caution The hardware interrupt (maskable interrupt) and non-maskable interrupt

request and single-step break cannot be accepted between this instruction

and the next instruction.

[Example] REPC CMPBKW

[Number of bytes] 1

[Word format]

Mnemonic Operand

REPC None

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

REPC None 0 1 1 0 0 1 0 1

127

CHAPTER 2 INSTRUCTIONS

Repeat prefix where CY = 0REPNC
Repeat while Not Carry

[Format] REPNC

[Operation] [When CW ≠ 0] PS: executes byte instruction of PC + 1

CW ← CW – 1

When CY ≠ 1: Re-executes

When CY = 1: PC ← PC + 2

[When CW = 0] PC ← PC + 2

[Operand]

[Flag]

[Description] Executes the block compare (CMPBK or CMPM) instruction of the subsequent byte and

decrements the value of the CW register (–1) while CW ≠ 0.

If CY = 1 as a result of executing the block compare instruction, execution exits from a loop.

The CW register is checked before the block compare instruction is executed, i.e.,

immediately before the REPNC instruction is executed. Therefore, if the REPNC instruction

is executed when CW = 0, the subsequent block compare instruction is never executed,

and the next instruction is executed.

The CY flag is checked as a result of executing the subsequent block compare instruction,

and the content of this flag immediately before the REPNC instruction is executed for the

first time is irrelevant.

Caution The hardware interrupt (maskable interrupt) and non- maskable interrupt

request and single-step break cannot be accepted between this instruction

and the next instruction.

[Example] REPNC CMPMB

[Number of bytes] 1

[Word format]

Mnemonic Operand

REPNC None

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

REPNC None 0 1 1 0 0 1 0 0

128

CHAPTER 2 INSTRUCTIONS

Repeat prefix where Z = 0REPNE
Repeat while Not Equal

REPNZ Repeat while Not Zero

[Format] REPNE

REPNZ

[Operation] [When CW ≠ 0] PS: executes byte instruction of PC + 1

CW ← CW – 1

When Z ≠ 1: Re-executes

When Z = 1: PC ← PC + 2

[When CW = 0] PC ← PC + 2

[Operand]

[Flag]

[Description] Executes the block compare (CMPBK or CMPM) instruction of the subsequent byte and

decrements the value of the CW register (–1) while CW ≠ 0.

If Z ≠ 0 or if CW = 0 as a result of executing the block compare instruction, execution exits

from a loop.

The CW register is checked before the block compare instruction is executed, i.e.,

immediately before the REPNE/REPNZ instruction is executed. Therefore, if the REPNE/

REPNZ instruction is executed when CW = 0, the subsequent block compare instruction

is never executed, and the next instruction is executed.

The Z flag is checked as a result of executing the subsequent block compare instruction,

and the content of this flag immediately before the REPNC/REPNZ instruction is executed

for the first time is irrelevant.

Caution The hardware interrupt (maskable interrupt) and non-maskable interrupt

request and single-step break cannot be accepted between this instruction

and the next instruction.

[Example] • REPNE CMPMB

• REPNZ CMPBKW

[Number of bytes] 1

[Word format]

Mnemonic Operand

REPNE None

REPNZ

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

REPNE None 1 1 1 1 0 0 1 0

REPNZ

129

CHAPTER 2 INSTRUCTIONS

Return from subroutineRET
Return from Procedure

[Format] (1) RET

(2) RET pop-value

[Operand, operation]

• To return from call in segment

• To return from call outside segment

[Flag]

[Description] • To return from call in segment

Restores the PC from the stack. If pop-value is described as the operand, 16-bit pop-

value is added to the SP (this is useful for skipping the value of SP by the number of

unnecessary parameters if the parameters saved to the stack following the PC are

unnecessary).

The assembler automatically distinguishes this instruction from the RET instruction to

return from a call outside a segment.

• To return from call outside segment

Restores the PC and PS from the stack. If pop-value is described as the operand, 16-

bit pop-value is added to the SP (this is useful for skipping the value of SP by the number

of unnecessary parameters if the parameters saved to the stack following the PC are

unnecessary).

The assembler automatically distinguishes this instruction from the RET instruction to

return from a call in a segment.

Mnemonic Operand Operation

RET None PC ← (SP + 1, SP)

SP ← SP + 2

pop-value PC ← (SP + 1, SP)

SP ← SP + 2

SP ← SP + pop-value

Mnemonic Operand Operation

RET None PC ← (SP + 1, SP)

PS ← (SP + 3, SP + 2)

SP ← SP + 4

pop-value PC ← (SP + 1, SP)

PS ← (SP + 3, SP + 2)

SP ← SP + 4

SP ← SP + pop-value

AC CY V P S Z

130

CHAPTER 2 INSTRUCTIONS

[Example] POP R

RET

[Number of bytes]

[Word format] • To return from call in segment

• To return from call outside segment

Mnemonic Operand No. of bytes

RET None 1

pop-value 3

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RET None 1 1 0 0 1 0 1 1 —

pop-value 1 1 0 0 1 0 1 0 pop-value-low

pop-value-high —

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RET None 1 1 0 0 0 0 1 1 —

pop-value 1 1 0 0 0 0 1 0 pop-value-low

pop-value-high —

131

CHAPTER 2 INSTRUCTIONS

Return from emulation modeRETEM

[except V33A and V53A]

Return from Emulation

[Format] RETEM

[Operation] PC ← (SP + 1, SP)

PS ← (SP + 3, SP + 2)

PSW ← (SP + 5, SP + 4)

SP ← SP + 6

Disables MD from being written.

[Operand]

[Flag]

[Description] When the RETEM instruction is executed in the emulation mode (this instruction is

interpreted as an instruction of the µPD8080AF), the CPU returns from interrupt service

to the native mode by restoring the PS, PC, and PSW that have been saved by the BRKEM

instruction. The content in the native mode saved by the BRKEM instruction (i.e., “1”) is

restored to the MD flag. As a result, the CPU enters the native mode. After the RETEM

instruction has been executed, the MD flag is disabled from being written, and cannot be

restored even if the RETI or POP PSW instruction is executed.

[Example] RETEM

[Number of bytes] 2

[Word format]

Mnemonic Operand

RETEM None

AC CY V P S Z MD DIR IE BRK

R R R R R R R R R R

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RETEM None 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1

132

CHAPTER 2 INSTRUCTIONS

Return from interruptRETI
Return from Interrupt

[Format] RETI

[Operation] PC ← (SP + 1, SP)

PS ← (SP + 3, SP + 2)

PSW ← (SP + 5, SP + 4)

SP ← SP + 6

[Operand]

[Flag]

Remark The V33A and V53A do not have an MD flag.

[Description] Restores the contents of the stack to the PC, PS, and PSW. This instruction is used to return

execution from interrupt service.

Caution The MD flag is restored only in the write-enabled status, and is not affected

in the write-disabled status (except the V33A and V53A).

[Example] POP R

RETI

[Number of bytes] 1

[Word format]

Mnemonic Operand

RETI None

AC CY V P S Z MD DIR IE BRK

R R R R R R R R R R

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

RETI None 1 1 0 0 1 1 1 1

133

CHAPTER 2 INSTRUCTIONS

Return from extended address modeRETXA

[V33A, V53A only]

Return from Extended Address Mode

[Format] RETXA imm8

[Operation] temp1 ← (imm8 × 4 + 1, imm8 × 4)

temp2 ← (imm8 × 4 + 3, imm8 × 4 + 2)

XA ← 0

PC ← temp1

PS ← temp2

[Operand]

[Flag]

[Description] Releases the extended address mode.

Transfers control to the address stored in the entry of the interrupt vector table specified

by the instruction, and resets bit 0 (XA flag) of the XAM register (internal I/O address:

FF80H) to 0.

If this instruction is executed in the normal address mode, the vector table at the address

of the normal address mode is read and then execution jumps to the address of this vector

table.

If this instruction is executed in the extended address mode, the vector table at the address

of the extended address mode is read, the normal address mode is set, and then execution

jumps to the address read first.

The values of PC, PS, and PSW are not restored from the stack.

[Example] RETXA 0AH

[Number of bytes] 3

[Word format]

Mnemonic Operand

RETXA imm8

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RETXA imm8 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

imm8 —

134

CHAPTER 2 INSTRUCTIONS

Rotate leftROL
Rotate Left

[Format] ROL dst, src

[Operation]

[Operand]

[Flag] When src = 1 Others

[Description] • When src = 1

Shifts the contents of the destination operand (dst) specified by the first operand 1 bit

to the left. The data of the MSB (bit 7 or 15) of dst is shifted to the LSB (bit 0) position,

and is also transferred to the CY flag. If the MSB is affected, the V flag is set to 1; if

not, the V flag is reset to 0.

• When src = CL or src = imm8

Shifts the contents of the destination operand (dst) specified by the first operand to the

left the number of bits of the contents of the source operand (src) specified by the second

operand. The data of the MSB (bit 7 or 15) of dst is shifted to the LSB (bit 0) position,

and is also transferred to the CY flag.

[Example] MOV [IX], BL

ROL BYTE PTR [IX], 1

[Number of bytes]

Mnemonic Operand (dst, src)

ROL reg, 1

mem, 1

reg, CL

mem, CL

reg, imm8

mem, imm8

AC CY V P S Z

× ×

AC CY V P S Z

× U

Mnemonic Operand No. of bytes

ROL reg, 1 2

mem, 1 2-4

reg, CL 2

mem, CL 2-4

reg, imm8 3

mem, imm8 3-5

CY 15/7 0

135

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ROL reg, 1 1 1 0 1 0 0 0 W 1 1 0 0 0 reg

mem, 1 1 1 0 1 0 0 0 W mod 0 0 0 mem

(disp-low) (disp-high)

reg, CL 1 1 0 1 0 0 1 W 1 1 0 0 0 reg

mem, CL 1 1 0 1 0 0 1 W mod 0 0 0 mem

(disp-low) (disp-high)

reg, imm8 1 1 0 0 0 0 0 W 1 1 0 0 0 reg

imm8 —

mem, imm8 1 1 0 0 0 0 0 W mod 0 0 0 mem

(disp-low) (disp-high)

imm8 —

136

CHAPTER 2 INSTRUCTIONS

Rotate nibble to leftROL4
Rotate Nibble Left

[Format] ROL4 dst

[Operation]

[Operand]

[Flag]

[Description] Rotates the contents of the destination operand (dst) 1 digit to the left via the low-order

4 bits (ALL) of the AL register, handling the contents of the destination operand as a 2-digit

packed BCD.

As a result, the high-order 4 bits of the AL register are not guaranteed.

[Example] • MOV AL, 24H

ROL4 AL

• MOV AL, BYTE PTR [IX]

ROL4 AL

[Number of bytes]

[Word format]

Mnemonic Operand (dst)

ROL4 reg8

mem8

AC CY V P S Z

Mnemonic Operand No. of bytes

ROL4 reg8 3

mem8 3-5

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ROL4 reg8 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0

1 1 0 0 0 reg —

mem8 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0

mod 0 0 0 mem (disp-low)

(disp-high) —

dst

High-order 4 bits Low-order 4 bitsALL

137

CHAPTER 2 INSTRUCTIONS

Rotate left with carryROLC
Rotate Left with Carry

[Format] ROLC dst, src

[Operation]

[Operand]

[Flag] When src = 1 Others

[Description] • When src = 1

Shifts the contents of the destination operand (dst) specified by the first operand 1 bit

to the left via the CY flag. The data of the MSB (bit 7 or 15) of dst is transferred to the

CY flag, and the data of the CY flag is transferred to the LSB (bit 0). If the MSB is affected,

the V flag is set to 1; if not, the V flag is reset to 0.

• When src = CL or src = imm8

Shifts the contents of the destination operand (dst) specified by the first operand to the

left the number of bits of the contents of the source operand (src) specified by the second

operand via the CY flag. The data of the MSB (bit 7 or 15) of dst is transferred to the

CY flag, and the data of the CY flag is transferred to the LSB (bit 0).

[Example] • ROLC AL, 1

• ROLC CL, 1

• ROLC DW, 1

• ROLC AW, 1

Mnemonic Operand (dst, src)

ROLC reg, 1

mem, 1

reg, CL

mem, CL

reg, imm8

mem, imm8

AC CY V P S Z

× ×

AC CY V P S Z

× U

CY 15/7 0

138

CHAPTER 2 INSTRUCTIONS

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

ROLC reg, 1 2

mem, 1 2-4

reg, CL 2

mem, CL 2-4

reg, imm8 3

mem, imm8 3-5

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ROLC reg, 1 1 1 0 1 0 0 0 W 1 1 0 1 0 reg

mem, 1 1 1 0 1 0 0 0 W mod 0 1 0 mem

(disp-low) (disp-high)

reg, CL 1 1 0 1 0 0 1 W 1 1 0 1 0 reg

mem, CL 1 1 0 1 0 0 1 W mod 0 1 0 mem

(disp-low) (disp-high)

reg, imm8 1 1 0 0 0 0 0 W 1 1 0 1 0 reg

imm8 —

mem, imm8 1 1 0 0 0 0 0 W mod 0 1 0 mem

(disp-low) (disp-high)

imm8 —

139

CHAPTER 2 INSTRUCTIONS

Rotate rightROR
Rotate Right

[Format] ROR dst, src

[Operation]

[Operand]

[Flag] When src = 1 Others

[Description] • When src = 1

Shifts the contents of the destination operand (dst) specified by the first operand 1 bit

to the right. The data of the LSB (bit 0) of dst is shifted to the MSB (bit 7 or 15) position,

and is also transferred to the CY flag. If the MSB is affected, the V flag is set to 1; if

not, the V flag is reset to 0.

• When src = CL or src = imm8

Shifts the contents of the destination operand (dst) specified by the first operand to the

right the number of bits of the contents of the source operand (src) specified by the

second operand. The data of the LSB (bit 0) of dst is shifted to the MSB (bit 7 or 15)

position, and is also transferred to the CY flag.

[Example] • ROR AL, 3

• ROR CW, 6

• ROR IY, 2

Mnemonic Operand (dst, src)

ROR reg, 1

mem, 1

reg, CL

mem, CL

reg, imm8

mem, imm8

AC CY V P S Z

× ×

AC CY V P S Z

× U

CY 15/7 0

140

CHAPTER 2 INSTRUCTIONS

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

ROR reg, 1 2

mem, 1 2-4

reg, CL 2

mem, CL 2-4

reg, imm8 3

mem, imm8 3-5

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ROR reg, 1 1 1 0 1 0 0 0 W 1 1 0 0 1 reg

mem, 1 1 1 0 1 0 0 0 W mod 0 0 1 mem

(disp-low) (disp-high)

reg, CL 1 1 0 1 0 0 1 W 1 1 0 0 1 reg

mem, CL 1 1 0 1 0 0 1 W mod 0 0 1 mem

(disp-low) (disp-high)

reg, imm8 1 1 0 0 0 0 0 W 1 1 0 0 1 reg

imm8 —

mem, imm8 1 1 0 0 0 0 0 W mod 0 0 1 mem

(disp-low) (disp-high)

imm8 —

141

CHAPTER 2 INSTRUCTIONS

Rotate nibble to rightROR4
Rotate Nibble Right

[Format] ROR4 dst

[Operation]

[Operand]

[Flag]

[Description] Rotates the contents of the destination operand (dst) 1 digit to the right via the low-order

4 bits (ALL) of the AL register, handling the contents of the destination operand as a 2-digit

packed BCD. As a result, the high-order 4 bits of the AL register are not guaranteed.

[Example] • MOV AL, 24H

ROR4 AL

• MOV AL, BYTE PTR [IX]

ROR4 AL

[Number of bytes]

[Word format]

Mnemonic Operand (dst)

ROR4 reg8

mem8

AC CY V P S Z

Mnemonic Operand No. of bytes

ROR4 reg8 3

mem8 3-5

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

ROR4 reg8 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0

1 1 0 0 0 reg —

mem8 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0

mod 0 0 0 mem (disp-low)

(disp-high) —

dst

High-order 4 bits Low-order 4 bitsALL

142

CHAPTER 2 INSTRUCTIONS

Rotate right with carryRORC
Rotate Right with Carry

[Format] RORC dst, src

[Operation]

[Operand]

[Flag] When src = 1 Others

[Description] • When src = 1

Shifts the contents of the destination operand (dst) specified by the first operand 1 bit

to the right via the CY flag. The data of the LSB (bit 0) of dst is transferred to the CY

flag, and the data of the CY flag is transferred to the LSB (bit 7 or 15). If the MSB is

affected, the V flag is set to 1; if not, the V flag is reset to 0.

• When src = CL or src = imm8

Shifts the contents of the destination operand (dst) specified by the first operand to the

right by the number of bits of the contents of the source operand (src) specified by the

second operand via the CY flag. The data of the LSB (bit 0) of dst is transferred to the

CY flag, and the data of the CY flag is transferred to the MSB (bit 7 or 15).

[Example] • RORC AL, 1

• RORC BL, 1

• RORC CW, 1

• RORC IX, 1

Mnemonic Operand (dst, src)

RORC reg, 1

mem, 1

reg, CL

mem, CL

reg, imm8

mem, imm8

AC CY V P S Z

× ×

AC CY V P S Z

× U

CY 15/7 0

143

CHAPTER 2 INSTRUCTIONS

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

RORC reg, 1 2

mem, 1 2-4

reg, CL 2

mem, CL 2-4

reg, imm8 3

mem, imm8 3-5

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

RORC reg, 1 1 1 0 1 0 0 0 W 1 1 0 1 1 reg

mem, 1 1 1 0 1 0 0 0 W mod 0 1 1 mem

(disp-low) (disp-high)

reg, CL 1 1 0 1 0 0 1 W 1 1 0 1 1 reg

mem, CL 1 1 0 1 0 0 1 W mod 0 1 1 mem

(disp-low) (disp-high)

reg, imm8 1 1 0 0 0 0 0 W 1 1 0 1 1 reg

imm8 —

mem, imm8 1 1 0 0 0 0 0 W mod 0 1 1 mem

(disp-low) (disp-high)

imm8 —

144

CHAPTER 2 INSTRUCTIONS

Sets bitSET1
Set Bit

[Format] (1) SET1 dst, src

(2) SET1 dst

[Operation] Format (1): Bit n of dst (n is specified by src) ← 1

Format (2): dst ← 1

[Operand] Format (1) Format (2)

[Flag] Format (1)

Format (2) (when dst = CY)

Format (2) (when dst = DIR)

Mnemonic Operand (dst, src)

SET1 reg8, CL

mem8, CL

reg16, CL

mem16, CL

reg8, imm3

mem8, imm3

reg16, imm4

mem16, imm4

Mnemonic Operand (dst)

SET1 CY

DIR

AC CY V P S Z

AC CY V P S Z

1

AC CY V P S Z DIR

1

145

CHAPTER 2 INSTRUCTIONS

[Description] Format (1): Sets bit n (n is the contents of the source operand (src) specified by the

second operand) of the destination operand (dst) specified by the first

operand to 1, and stores the result to the destination operand (dst).

If the operand is reg8, CL or mem8, CL, only the low-order 3 bits of the value

of CL (0 to 7) are valid. If the operand is reg16, CL or mem16, CL, only the

low-order 4 bits of the value of CL (0 to 15) are valid.

If the operand is reg8, imm3, only the low-order 3 bits of the immediate data

at the fourth byte position of the instruction are valid.

If the operand is mem8, imm3, only the low-order 3 bits of the immediate data

at the last byte position of the instruction are valid.

If the operand is reg16, imm4, only the low-order 4 bits of the immediate data

at the fourth byte position of the instruction are valid.

If the operand is mem16, imm4, only the low-order 4 bits of the immediate

data at the last byte position of the instruction are valid.

Format (2): When dst = CY, sets the CY flag to 1.

When dst = DIR, sets the DIR flag to 1. Also sets so that the index registers

(IX and IY) are auto-decremented when the MOVBK, CMPBK, CMPM, LDM,

STM, INM, or OUTM instruction is executed.

[Example] MOV CL, 4

SET1 AL, CL

OUT 0DAH, AL

[Number of bytes]
Mnemonic Operand No. of bytes

SET1 reg8, CL 3

mem8, CL 3-5

reg16, CL 3

mem16, CL 3-5

reg8, imm3 4

mem8, imm3 4-6

reg16, imm4 4

mem16, imm4 4-6

CY 1

DIR 1

146

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SET1 reg8, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0

1 1 0 0 0 reg —

mem8, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0

mod 0 0 0 mem (disp-low)

(disp-high) —

reg16, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1

1 1 0 0 0 reg —

mem16, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1

mod 0 0 0 mem (disp-low)

(disp-high) —

reg8, imm3 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0

1 1 0 0 0 reg imm3

mem8, imm3 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0

mod 0 0 0 mem (disp-low)

(disp-high) imm3

rg16, imm4 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1

1 1 0 0 0 reg imm4

mem16, imm4 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1

mod 0 0 0 mem (disp-low)

(disp-high) imm4

CY 1 1 1 1 1 0 0 1 —

DIR 1 1 1 1 1 1 0 1 —

147

CHAPTER 2 INSTRUCTIONS

Shift leftSHL
Shift Left

[Format] SHL dst, src

[Operation]

[Operand]

[Flag] When src = 1 Others

[Description] • When src = 1

Shifts the contents of the destination operand (dst) specified by the first operand 1 bit

to the left. Zero is shifted in to the the LSB (bit 0) position of dst, and the data of the

MSB (bit 7 or 15) is set to the CY flag. The V flag is cleared if the sign bit (bit 7 or 15)

is not affected after shifting.

• When src = CL or src = imm8

Shifts the contents of the destination operand (dst) specified by the first operand to the

left the number of bits of the contents of the source operand (src) specified by the second

operand. Zero is shifted in to the LSB (bit 0) position of dst each time the data is shifted,

and the data of the MSB (bit 7 or 15) is set to the CY flag.

[Example] IN AW, 0C8H

MOV [IY], AW

SHL WORD PTR [IY], 12

Mnemonic Operand (dst, src)

SHL reg, 1

mem, 1

reg, CL

mem, CL

reg, imm8

mem, imm8

AC CY V P S Z

U × × × × ×

AC CY V P S Z

U × U × × ×

CY 15/7 0

0

148

CHAPTER 2 INSTRUCTIONS

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

SHL reg, 1 2

mem, 1 2-4

reg, CL 2

mem, CL 2-4

reg, imm8 3

mem, imm8 3-5

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SHL reg, 1 1 1 0 1 0 0 0 W 1 1 1 0 0 reg

mem, 1 1 1 0 1 0 0 0 W mod 1 0 0 mem

(disp-low) (disp-high)

reg, CL 1 1 0 1 0 0 1 W 1 1 1 0 0 reg

mem, CL 1 1 0 1 0 0 1 W mod 1 0 0 mem

(disp-low) (disp-high)

reg, imm8 1 1 0 0 0 0 0 W 1 1 1 0 0 reg

imm8 —

mem, imm8 1 1 0 0 0 0 0 W mod 1 0 0 mem

(disp-low) (disp-high)

imm8 —

149

CHAPTER 2 INSTRUCTIONS

Shift rightSHR
Shift Right

[Format] SHR dst, src

[Operation]

[Operand]

[Flag] When src = 1 Others

[Description] • When src = 1

Shifts the contents of the destination operand (dst) specified by the first operand 1 bit

to the right. Zero is shifted in to the the MSB (bit 7 or 15) position of dst, and the data

of the LSB (bit 0) is set to the CY flag. The V flag is cleared if the sign bit (bit 7 or 15)

is not affected after shifting.

• When src = CL or src = imm8

Shifts the contents of the destination operand (dst) specified by the first operand to the

right the number of bits of the contents of the source operand (src) specified by the

second operand. Zero is shifted in to the MSB (bit 7 or 15) position of dst each time the

data is shifted, and the data of the LSB (bit 0) is set to the CY flag.

[Example] • RCV: IN AL, 0DAH

SHR AL, 3

BC RCV

• SHR CW, 8

Mnemonic Operand (dst, src)

SHR reg, 1

mem, 1

reg, CL

mem, CL

reg, imm8

mem, imm8

AC CY V P S Z

U × × × × ×

AC CY V P S Z

U × U × × ×

CY 15/7 0

0

150

CHAPTER 2 INSTRUCTIONS

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

SHR reg, 1 2

mem, 1 2-4

reg, CL 2

mem, CL 2-4

reg, imm8 3

mem, imm8 3-5

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SHR reg, 1 1 1 0 1 0 0 0 W 1 1 1 0 1 reg

mem, 1 1 1 0 1 0 0 0 W mod 1 0 1 mem

(disp-low) (disp-high)

reg, CL 1 1 0 1 0 0 1 W 1 1 1 0 1 reg

mem, CL 1 1 0 1 0 0 1 W mod 1 0 1 mem

(disp-low) (disp-high)

reg, imm8 1 1 0 0 0 0 0 W 1 1 1 0 1 reg

imm8 —

mem, imm8 1 1 0 0 0 0 0 W mod 1 0 1 mem

(disp-low) (disp-high)

imm8 —

151

CHAPTER 2 INSTRUCTIONS

Arithmetic shift rightSHRA
Shift Right Arithmetic

[Format] SHRA dst, src

[Operation]

[Operand]

[Flag] When src = 1 Others

[Description] • When src = 1

Arithmetically shifts the contents of the destination operand (dst) specified by the first

operand 1 bit to the right. The original value is shifted in to the the MSB (bit 7 or 15)

position of dst, and the sign is not affected after shifting. The data of the LSB (bit 0) is

set to the CY flag.

• When src = CL or src = imm8

Shifts the contents of the destination operand (dst) specified by the first operand to the

right the number of bits of the contents of the source operand (src) specified by the

second operand. The original value is shifted in to the MSB (bit 7 or 15) of dst, and the

sign is not affected after shifting. The data of the LSB (bit 0) is set to the CY flag.

[Example] • MOV CL, 2

SHRA BL, CL

• MOV CL, 9

SHRA DW, CL

Mnemonic Operand (dst, src)

SHRA reg, 1

mem, 1

reg, CL

mem, CL

reg, imm8

mem, imm8

AC CY V P S Z

U × 0 × × ×

AC CY V P S Z

U × U × × ×

CY 15/7 0

152

CHAPTER 2 INSTRUCTIONS

[Number of bytes]

[Word format]

Mnemonic Operand No. of bytes

SHRA reg, 1 2

mem, 1 2-4

reg, CL 2

mem, CL 2-4

reg, imm8 3

mem, imm8 3-5

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SHRA reg, 1 1 1 0 1 0 0 0 W 1 1 1 1 1 reg

mem, 1 1 1 0 1 0 0 0 W mod 1 1 1 mem

(disp-low) (disp-high)

reg, CL 1 1 0 1 0 0 1 W 1 1 1 1 1 reg

mem, CL 1 1 0 1 0 0 1 W mod 1 1 1 mem

(disp-low) (disp-high)

reg, imm8 1 1 0 0 0 0 0 W 1 1 1 1 1 reg

imm8 —

mem, imm8 1 1 0 0 0 0 0 W mod 1 1 1 mem

(disp-low) (disp-high)

imm8 —

153

CHAPTER 2 INSTRUCTIONS

Block storeSTM
Store MultipleSTMB Store Multiple Byte

STMW Store Multiple Word

[Format] (repeat) STM [DS1-spec:] dst-block

(repeat) STMB

(repeat) STMW

[Operation] [When W = 0] (IY) ← AL

DIR = 0: IY ← IY + 1

DIR = 1: IY ← IY – 1

[When W = 1] (IY + 1, IY) ← AW

DIR = 0: IY ← IY + 2

DIR = 1: IY ← IY – 2

[Operand]

[Flag]

[Description] Repeatedly transfers the value of the AL or AW register to the block addressed by the IY

register in byte or word units.

The IY register is automatically incremented (+1/+2) or decremented (–1/–2) for the next

byte/word processing each time data of 1 byte/word has been processed. The direction

of the block is determined by the status of the DIR flag.

Whether data is processed in byte or word units is specified by the attribute of the operand

when the STM instruction is used.

When the STMB and STMW instructions are used, the data is processed in byte and word

units, respectively.

The destination block must be always located in a segment specified by the DS1 register,

and the segment cannot be overridden.

[Example] • REP STM DS1: WORD_VAR : DS1 segment

• REP STMB ; DS1 segment

[Number of bytes] 1

Mnemonic Operand

STM [DS1-spec :] dst-block

STMB None

STMW

AC CY V P S Z

154

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0

STM [DS1-spec :] dst-block 1 0 1 0 1 0 1 W

STMB None

STMW

155

CHAPTER 2 INSTRUCTIONS

SubtractSUB
Subtract

[Format] SUB dst, src

[Operand, Operation]

[Flag]

[Description] Subtracts the contents of the source operand (src) specified by the second operand from

the contents of the destination operand (dst) specified by the first operand, and stores the

result to the destination operand (dst).

[Example] To subtract contents of memory 0:50H from contents of DL register, and store result to DL

register

MOV AW, 0

MOV DS0, AW

MOV IX, 50H

SUB DL, DS0:BYTE PTR [IX]

[Number of bytes]

Mnemonic Operand (dst, src) Operation

SUB reg, reg’ dst ← dst – src

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL ← AL – imm8

[When W = 1] AW ← AW – imm16

AC CY V P S Z

× × × × × ×

Mnemonic Operand No. of bytes

SUB reg, reg’ 2

mem, reg 2-4

reg, mem 2-4

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

156

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SUB reg, reg’ 0 0 1 0 1 0 1 W 1 1 reg reg‘

mem, reg 0 0 1 0 1 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 0 0 1 0 1 0 1 W mod reg mem

(disp-low) (disp-high)

reg, imm 1 0 0 0 0 0 s W 1 1 1 0 1 reg

imm8 or imm16-low imm16-high

mem, imm 1 0 0 0 0 0 s W mod 1 0 1 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 0 0 1 0 1 1 0 W imm8 or imm16-low

imm16-high —

157

CHAPTER 2 INSTRUCTIONS

Decimal subtractionSUB4S
Subtract Nibble String

[Format] SUB4S [DS1-spec:] dst-string, [Seg-spec:] src-string

SUB4S

[Operation] BCD string (IY, CL) ← BCD string (IY, CL) – BCD string (IX, CL)

[Operand]

[Flag]

[Description] Subtracts the packed BCD string addressed by the IX register from the packed BCD string

addressed by the IY register, and stores the result to the string addressed by the IY register.

The string length (number of BCD digits) is determined by the CL register (the number of

digits is d if the contents of CL is d) in a range of 1 to 254 digits.

The destination string must be always located in a segment specified by the DS1 register,

the segment cannot be overridden. Although the default segment register of the source

string is the DS0 register, the segment can be overridden, and the string can be located

in a segment specified by any segment register.

The format of a packed BCD string is as follows.

Caution The BCD string instruction always operates in units of an even number of

digits. If an even number of digits is specified, therefore, the result of the

operation and each flag operation are normal. If an odd number of digits

is specified, however, an operation of an even number of digits, or an odd

number of digits + 1, is executed. As a result, the result of the operation

is an even number of digits and each flag indicates an even number of

digits.

To specify an odd number of digits, therefore, keep this in mind: Execute

the BCD subtraction instruction, if the number of digits is odd, after

clearing the high-order 4 bits of the most significant byte to “0”. If a borrow

occurs as a result, the high-order 4 bits of the most significant bit is “9”.

Mnemonic Operand (dst, src)

SUB4S [DS1-spec :] dst-string, [Seg-spec :] src-string

None

AC CY V P S Z

U × U U U ×

Memory

Byte offset

Digit offset

+m

+CL 0+1+2+3+4

+0+1

IX
IY
↓

158

CHAPTER 2 INSTRUCTIONS

[Example] MOV IX, OFFSET VAR_1

MOV IY, OFFSET VAR_2

MOV CL, 4

SUB4S

[Number of bytes] 2

[Word format]

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SUB4S [DS1-spec :] dst-string, [Seg-spec :] src-string 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0

None

159

CHAPTER 2 INSTRUCTIONS

Subtraction with carrySUBC
Subtract with Carry

[Format] SUBC dst, src

[Operand, Operation]

[Flag]

[Description] Subtracts the contents of the source operand (src) specified by the second operand from

the contents of the destination operand (dst) specified by the first operand, and stores the

result to the destination operand (dst).

[Example] SUBC DL, BYTE PTR [IX]

[Number of bytes]

Mnemonic Operand (dst, src) Operation

SUBC reg, reg’ dst ← dst – src – CY

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL ← AL + imm8 – CY

[When W = 1] AW ← AW – imm16 – CY

AC CY V P S Z

× × × × × ×

Mnemonic Operand No. of bytes

SUBC reg, reg’ 2

mem, reg 2-4

reg, mem 2-4

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

160

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SUBC reg, reg’ 0 0 0 1 1 0 1 W 1 1 reg reg‘

mem, reg 0 0 0 1 1 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 0 0 0 1 1 0 1 W mod reg mem

(disp-low) (disp-high)

reg, imm 1 0 0 0 0 0 s W 1 1 0 1 1 reg

imm8 or imm16-low imm16-high

mem, imm 1 0 0 0 0 0 s W mod 0 1 1 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 0 0 0 1 1 1 0 W imm8 or imm16-low

imm16-high —

161

CHAPTER 2 INSTRUCTIONS

TestTEST
Test

[Format] TEST dst, src

[Operand, operation]

[Flag]

[Description] ANDs the destination operand (dst) specified by the first operand with the source operand

(src) specified by the second operand. The result is not stored anywhere, but the flags are

affected.

[Example] IN AL, 0D8H

TEST AL, ‘A’

[Number of bytes]

Mnemonic Operand (dst, src) Operation

TEST reg, reg’ dst ^ src

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL ^ imm8

[When W = 1] AW ^ imm16

AC CY V P S Z

U 0 0 × × ×

Mnemonic Operand No. of bytes

TEST reg, reg’ 2

mem, reg 2-4

reg, mem

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

162

CHAPTER 2 INSTRUCTIONS

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

TEST reg, reg’ 1 0 0 0 0 1 0 W 1 1 reg’ reg

mem, reg 1 0 0 0 0 1 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 1 0 0 0 0 1 0 W mod reg mem

(disp-low) (disp-high)

reg, imm 1 1 1 1 0 1 1 W 1 1 0 0 0 reg

imm8 or imm16-low imm16-high

mem, imm 1 1 1 1 0 1 1 W mod 0 0 0 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 1 0 1 0 1 0 0 W imm8 or imm16-low

imm16-high —

163

CHAPTER 2 INSTRUCTIONS

Tests bitTEST1
Test Bit

[Format] TEST1 dst, src

[Operation] When bit n of dst = 0 (n is specified by src): Z ← 1

When bit n of dst = 1 (n is specified by src): Z ← 0

[Operand]

[Flag]

[Description] Sets the Z flag to 1 if bit n (n is the contents of the source operand (src) specified by the

second operand) of the destination operand (dst) specified by the first operand; otherwise,

resets the Z flag to 0.

If the operand is reg8, CL or mem8, CL, only the low-order 3 bits of the value of CL (0 to

7) are valid.

If the operand is reg16, CL or mem16, CL, only the low-order 4 bits of the value of CL (0

to 15) are valid.

If the operand is reg8, imm3, only the low-order 3 bits of the immediate data at the fourth

byte position of the instruction are valid.

If the operand is mem8, imm3, only the low-order 3 bits of the immediate data at the last

byte position of the instruction are valid.

If the operand is reg16, imm4, only the low-order 4 bits of the immediate data at the fourth

byte position of the instruction are valid.

If the operand is mem16, imm4, only the low-order 4 bits of the immediate data at the last

byte position of the instruction are valid.

[Example] MOV CL, 01

IN AL, 0DAH

TEST1 AL, CL; Tests bit 1

Mnemonic Operand (dst, src)

TEST1 reg8, CL

mem8, CL

reg16, CL

mem16, CL

reg8, imm3

mem8, imm3

reg16, imm4

mem16, imm4

AC CY V P S Z

U 0 0 U U ×

164

CHAPTER 2 INSTRUCTIONS

[Number of bytes]

[Word format]
Mnemonic Operand

Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

TEST1 reg8, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0

1 1 0 0 0 reg —

mem8, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0

mod 0 0 0 mem (disp-low)

(disp-high) —

reg16, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1

1 1 0 0 0 reg —

mem16, CL 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1

mod 0 0 0 mem (disp-low)

(disp-high) —

reg8, imm3 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0

1 1 0 0 0 reg imm3

mem8, imm3 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0

mod 0 0 0 mem (disp-low)

(disp-high) imm3

reg16, imm4 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1

1 1 0 0 0 reg imm4

mem16, imm4 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1

mod 0 0 0 mem (disp-low)

(disp-high) imm4

Mnemonic Operand No. of bytes

TEST1 reg8, CL 3

mem8, CL 3-5

reg16, CL 3

mem16, CL 3-5

reg8, imm3 4

mem8, imm3 4-6

reg16, imm4 4

mem16, imm4 4-6

165

CHAPTER 2 INSTRUCTIONS

Transfers conversion tableTRANS
Translate

TRANSB Translate Byte

[Format] TRANS src-table

TRANS

TRANSB

[Operation] AL ← (BW + AL)

[Operand]

[Flag]

[Description] Transfers 1 byte of the 256-byte conversion table addressed by the BW and AL registers

to the AL register. At this time, the BW register indicates the first address of the table, and

the AL register specifies an offset value within 256 bytes from the first address.

[Example] TRANS SIN_TBL

[Number of bytes] 1

[Word format]

Mnemonic Operand

TRANS src-table

None

TRANSB None

AC CY V P S Z

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0

TRANS src-table 1 1 0 1 0 1 1 1

None

TRANSB None

166

CHAPTER 2 INSTRUCTIONS

Exchanges dataXCH
Exchange

[Format] XCH dst, src

[Operation] dst ↔ src

[Operand]

[Flag]

[Description] Exchanges the contents of the destination operand (dst) specified by the first operand with

those of the source operand (src) specified by the second operand.

[Example] MOV AW, 100H

MOV BW, 50H

XCH AW, BW

; AW = 50H, BW = 100H

[Number of bytes]

[Word format]

Remark The operation code of the XCH AW, AW is the same as that of the NOP instruction.

Mnemonic Operand (dst, src)

XCH reg, reg’

mem, reg

reg, mem

AW, reg16

reg16, AW

AC CY V P S Z

Mnemonic Operand No. of bytes

XCH reg, reg’ 2

mem, reg 2-4

reg, mem

AW, reg16 1

reg16, AW

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

XCH reg, reg’ 1 0 0 0 0 1 1 W 1 1 reg reg’

mem, reg 1 0 0 0 0 1 1 W mod reg mem

(disp-low) (disp-high)

reg, mem 1 0 0 0 0 1 1 W mod reg mem

(disp-low) (disp-high)

AW, reg16 1 0 0 1 0 reg —

reg16, AW 1 0 0 1 0 reg —

167

CHAPTER 2 INSTRUCTIONS

Exclusive ORXOR
Exclusive Or

[Format] XOR dst, src

[Operand, operation]

[Flag]

[Description] Exclusive-ORs the destination operand (dst) specified by the first operand with the source

operand (src) specified by the second operand, and stores the result to the destination

operand (dst).

[Example] • XOR CL, DL

• XOR CW, CW; Clears CW register

• XOR AW, DW

[Number of bytes]

Mnemonic Operand (dst, src) Operation

XOR reg, reg’ dst ← dst ∨ src

mem, reg

reg, mem

reg, imm

mem, imm

acc, imm [When W = 0] AL ← AL ∨ imm8

[When W = 1] AW ← AW ∨ imm16

AC CY V P S Z

U 0 0 × × ×

Mnemonic Operand (dst, src) No. of bytes

XOR reg, reg’ 2

mem, reg 2-4

reg, mem 2-4

reg, imm 3, 4

mem, imm 3-6

acc, imm 2, 3

168

CHAPTER 2 INSTRUCTIONS

[Word format]

Note The following code may be generated depending on the assembler or compiler used.

Even in this case, the instruction is executed normally. Note, however, that some emulators

do not support a function to disassemble or assemble this instruction.

Mnemonic Operand
Operation code

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

XOR reg, reg’ 0 0 1 1 0 0 1 W 1 1 reg reg‘

mem, reg 0 0 1 1 0 0 0 W mod reg mem

(disp-low) (disp-high)

reg, mem 0 0 1 1 0 0 1 W mod reg mem

(disp-low) (disp-high)

reg, immNote 1 0 0 0 0 0 0 W 1 1 1 1 0 reg

imm8 or imm16-low imm16-high

mem, imm 1 0 0 0 0 0 0 W mod 1 1 0 mem

(disp-low) (disp-high)

imm8 or imm16-low imm16-high

acc, imm 0 0 1 1 0 1 0 W imm8 or imm16-low

imm16-high —

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 0 0 0 0 0 1 W 1 1 1 1 0 reg

imm8 —

169

CHAPTER 2 INSTRUCTIONS

2.2 Number of Instruction Execution Clocks

Table 2-8 shows the number of execution clocks of and the number of times word transfer is executed by each

instruction in the alphabetical order of the mnemonics.

(1) Clocks

The value indicated in the table is the time required for the execution unit to execute a given instruction and

is based on the following condition.

(a) This time does not include prefetch time, pre-decode time, and bus wait time.

(b) It is assumed that the number of wait cycles for memory access is 0.

Therefore, the number of clocks in one bus cycle is as follows:

• Other than V33A and V53A : 4 clocks

• V33A and V53A : 2 clocks

(c) It is assumed that the number of wait cycles for I/O access is 0.

(d) The primitive block transfer and primitive I/O instructions include the repeat prefix.

(e) When an odd address is accessed in word units, two bus cycles are started. The number of clocks required

for accessing an odd or even address is separately shown in the table.

(f) The external data bus width is as follows:

• V20, V20HL, V40, V40HL : 8 bits

• V30, V30HL, V50, V50HL, V33ANote , V53ANote : 16 bits

Note If the bus width is set to 16 bits by using the bus sizing function. To set the bus width to 8 bits,

increase the bus cycle to access word data in an even address by two-fold.

(g) The number of clocks of the V33A and V53A are shown in the normal address mode.

(2) Word transfers

“Word transfers” in the table indicates the number of words transferred, i.e., the number of times the word

data (16 bits) generated as a result of executing a given instruction is accessed on the bus.

By using this value, the number of instruction execution clocks when a wait state is inserted can be calculated

as follows:

• When an even address is accessed : (Number of instruction execution clocks with 0 wait)

+ (Number of times of word transfer) × (Number of wait statuses)

• When an odd address is accessed : (Number of instruction execution clocks with 0 wait)

+ (Number of times of word transfer) × (Number of wait statuses) × 2

170

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (1/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

ADD reg, reg’ 0 – 2 2 2 2 2

mem, reg 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, mem 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, imm 0 – 4 4 4 4 2

mem, imm 2 0 – 18 18 15 15 7

1 Odd 26 26 23 23 11

Even 18 15 7

acc, imm 0 – 4 4 4 4 2

ADD4SNote [DS1-spec :] dst-string, 0 – 19 × m + 7 19 × m + 7 19 × m + 7 19 × m + 7 18 × m + 2

[Seg-spec :] src-string

None 0 – 19 × m + 7 19 × m + 7 19 × m + 7 19 × m + 7 18 × m + 2

ADDC reg, reg’ 0 – 2 2 2 2 2

mem, reg 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, mem 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, imm 0 – 4 4 4 4 2

mem, imm 2 0 – 18 18 15 15 7

1 Odd 26 26 23 23 11

Even 18 15 7

acc, imm 0 – 4 4 4 4 2

ADJ4A None 0 – 3 3 3 3 2

ADJ4S None 0 – 3 3 3 3 2

ADJBA None 0 – 7 7 7 7 4

ADJBS None 0 – 7 7 7 7 4

AND reg, reg’ 0 – 2 2 2 2 2

mem, reg 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, mem 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, imm 0 – 4 4 4 4 2

mem, imm 2 0 – 18 18 15 15 7

1 Odd 26 26 23 23 11

Even 18 15 7

acc, imm 0 – 4 4 4 4 2

BC short-label 0 When CY = 1 14 14 14 14 6

 When CY = 0 4 4 4 4 3

BCWZ short-label 0 When CW ≠ 0 5 5 5 5 3

 When CW = 0 13 13 13 13 6

Note m: Number of BCD digits × 1/2

171

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (2/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

BE short-label 0 When Z = 1 14 14 14 14 6

When Z = 0 4 4 4 4 3

BGE short-label 0 When S ∨ V = 1 4 4 4 4 3

When S ∨ V = 0 14 14 14 14 6

BGT short-label 0 When (S ∨ V) ∨ Z = 1 4 4 4 4 3

When (S ∨ V) ∨ Z = 0 14 14 14 14 6

BH short-label 0 When CY ∨ Z = 1 4 4 4 4 3

When CY ∨ Z = 0 14 14 14 14 6

BL short-label 0 When CY = 1 14 14 14 14 6

When CY = 0 4 4 4 4 3

BLE short-label 0 When (S ∨ V) ∨ Z = 1 14 14 14 14 6

When (S ∨ V) ∨ Z = 0 4 4 4 4 3

BLT short-label 0 When S ∨ V = 1 14 14 14 14 6

When S ∨ V = 0 4 4 4 4 3

BN short-label 0 When S = 1 14 14 14 14 6

When S = 0 4 4 4 4 3

BNC short-label 0 When CY = 1 4 4 4 4 3

When CY = 0 14 14 14 14 6

BNE short-label 0 When Z = 1 4 4 4 4 3

When Z = 0 14 14 14 14 6

BNH short-label 0 When CY ∨ Z = 1 14 14 14 14 6

When CY ∨ Z = 0 4 4 4 4 3

BNL short-label 0 When CY = 1 4 4 4 4 3

When CY = 0 14 14 14 14 6

BNV short-label 0 When V = 1 4 4 4 4 3

When V = 0 14 14 14 14 6

BNZ short-label 0 When Z = 1 4 4 4 4 3

When Z = 0 14 14 14 14 6

BP short-label 0 When S = 1 4 4 4 4 3

When S = 0 14 14 14 14 6

BPE short-label 0 When P = 1 14 14 14 14 6

When P = 0 4 4 4 4 3

BPO short-label 0 When P = 1 4 4 4 4 3

When P = 0 14 14 14 14 6

BR near-label 0 – 13 13 13 13 7

short-label 0 – 12 12 12 12 7

regptr16 0 – 11 11 11 11 7

memptr16 1 – Odd 24 24 23 23 13

Even 20 19 11

far-label 0 – 15 15 15 15 7

memptr32 2 – Odd 35 35 34 34 17

Even 27 26 13

172

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (3/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

BRK 3 5 – Odd 50 50 50 50 24

Even 38 38 18

imm8 (≠3) 5 – Odd 50 50 50 50 24

Even 38 38 18

BRKEM imm8 5 – Odd 50 50 50 50 –

Even 38 38 –

BRKV None (when V = 1) 5 – Odd 52 52 52 52 26

Even 40 40 20

None (when V = 0) 5 – 3 3 3 3 3

BRKXA imm8 2 – – – – – 12

BUSLOCK None 0 – 2 2 2 2 2

BV short-label 0 When V = 1 14 14 14 14 6

When V = 0 4 4 4 4 3

BZ short-label 0 When Z = 1 14 14 14 14 6

When Z = 0 4 4 4 4 3

CALL near-proc 1 – Odd 20 20 20 20 9

Even 16 16 7

regptr16 1 – Odd 18 18 18 18 9

Even 14 14 7

memptr16 2 – Odd 31 31 31 31 15

Even 23 23 11

far-proc 2 – Odd 29 29 29 29 13

Even 21 21 9

memptr32 4 – Odd 47 47 47 47 23

Even 31 31 15

CALLN imm8 5 – Odd 58 58 58 58 –

Even 38 38 –

CHKIND reg16, mem32Note 7 – Odd 73-76 73-76 72-75 72-75 30-32
(when interrupt condition

is satisfied) Even 53-56 52-55 24-26

reg16, mem32 2 – Odd 26 26 25 25 14
(when interrupt condition

is not satisfied) Even 18 17 12

CLR1 reg8, CL 0 – 5 5 5 5 4

mem8, CL 0 – 14 14 11 11 9

reg16, CL 0 – 5 5 5 5 4

mem16, CL 2 – Odd 22 22 19 19 13

Even 14 11 9

reg8, imm3 0 – 6 6 6 6 4

mem8, imm3 0 – 15 15 12 12 9

reg16, imm4 0 – 6 6 6 6 4

mem16, imm4 2 – Odd 23 23 20 20 13

Even 15 12 9

CY 0 – 2 2 2 2 2

DIR 0 – 2 2 2 2 2

Note The number of clocks differs depending on the timing at which the interrupt is accepted.

173

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (4/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

CMP reg, reg’ 0 – 2 2 2 2 2

mem, reg 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, mem 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, imm 0 – 4 4 4 4 2

mem, imm 1 0 – 13 13 12 12 6

1 Odd 17 17 16 16 8

Even 13 12 6

acc, imm 0 – 4 4 4 4 2

CMP4SNote 1 [DS1-spec :] dst-string, 0 – 19 × m + 7 19 × m + 7 19 × m + 7 19 × m + 7 14 × m + 2

[Seg-spec :] src-string

None 0 – 19 × m + 7 19 × m + 7 19 × m + 7 19 × m + 7 14 × m + 2

CMPBKNote 2 [Sg-spec :] src-block, 2 × rep 0 – 7 + 14 × rep(13) 7 + 14 × rep(13) 7 + 14 × rep(13) 7 + 14 × rep(13) 12 × rep – 1(11)

[DS1-spec :] dst-block (2) 1 Odd, odd 7 + 22 × rep(21) 7 + 22 × rep(21) 7 + 22 × rep(21) 7 + 22 × rep(21) 16 × rep – 1(15)

Odd, even 7 + 18 × rep(17) 7 + 18 × rep(17) 14 × rep – 1(13)

Even, even 7 + 14 × rep(13) 7 + 14 × rep(13) 12 × rep – 1(11)

CMPBKBNote 2 None 2 × rep (2) 0 – 7 + 14 × rep(13) 7 + 14 × rep(13) 7 + 14 × rep(13) 7 + 14 × rep(13) 12 × rep – 1(11)

CMPBKWNote 2 None 2 × rep 1 Odd, odd 7 + 22 × rep(21) 7 + 22 × rep(21) 7 + 22 × rep(21) 7 + 22 × rep(21) 16 × rep – 1(15)

(2) Odd, even 7 + 18 × rep(17) 7 + 18 × rep(17) 14 × rep – 1(13)

Even, even 7 + 14 × rep(13) 7 + 14 × rep(13) 12 × rep – 1(11)

CMPMNote 2 [DS1-spec :] dst-block 1 × rep 0 – 7 + 10 × rep(7) 7 + 10 × rep(7) 7 + 10 × rep(7) 7 + 10 × rep(7) 10 × rep – 1(9)

(1) 1 Odd 7 + 14 × rep(11) 7 + 14 × rep(11) 7 + 14 × rep(11) 7 + 14 × rep(11) 12 × rep – 1(11)

Even 7 + 10 × rep(7) 7 + 10 × rep(7) 10 × rep – 1(9)

CMPMBNote 2 None 1 × rep 0 – 7 + 10 × rep(7) 7 + 10 × rep(7) 7 + 10 × rep(7) 7 + 10 × rep(7) 10 × rep – 1(9)

CMPMWNote 2 None 1 × rep 1 Odd 7 + 14 × rep(11) 7 + 14 × rep(11) 7 + 14 × rep(11) 7 + 14 × rep(11) 12 × rep – 1(11)

(1) Even 7 + 10 × rep(7) 7 + 10 × rep(7) 10 × rep – 1(9)

CVTBD None 0 – 15 15 15 15 12

CVTBW None 0 – 2 2 2 2 2

CVTDB None 0 – 7 7 7 7 8

CVTWLNote 3 None 0 – 4, 5 4, 5 4, 5 4, 5 2

DBNZ short-label 0 When CW ≠ 0 13 13 13 13 6

When CW = 0 5 5 5 5 3

DBNZE short-label 0 When CW ≠ 0 14 14 14 14 6

and Z = 1

Other than above 5 5 5 5 3

DBNZNE short-label 0 When CW ≠ 0 14 14 14 14 6

and Z = 0

Other than above 5 5 5 5 3

Notes 1. m: Number of BCD digits × 1/2

2. (): Applicable to processing that is performed only once

3. The number of clocks differs depending on the value of data (except the V33A and V53A).

174

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (5/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

DEC reg8 0 – 2 2 2 2 2

mem 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg16 0 – 2 2 2 2 2

DI None 0 – 2 2 2 2 2

DISPOSE None 1 – Odd 10 10 10 10 8

Even 6 6 6

DIVNote 1 reg8 0 – 29-34 29-34 29-34 29-34 17

mem8 0 – 34-39 34-39 34-39 34-39 20

reg16 0 – 38-43 38-43 38-43 38-43 24

mem16 1 – Odd 47-52 47-52 47-52 47-52 30

Even 43-48 43-48 28

DIVU reg8 0 – 19 19 19 19 11

mem8 0 – 25 25 24 24 15

reg16 0 – 25 25 25 25 19

mem16 1 – Odd 34 34 34 34 25

Even 30 30 23

DS0: None 0 – 2 2 2 2 2

DS1: None 0 – 2 2 2 2 2

EI None 0 – 2 2 2 2 2

EXTNote 2 reg8, reg8’ 1 or 2 – Odd 34-59 34-59 34-59 34-59 33-63

Even 26-55 26-55 29-61

reg8, imm4 1 or 2 – Odd 34-59 34-59 34-59 34-59 33-63

Even 26-55 26-55 29-61

FPO1 fp-op 0 – 2 2 2 2 Cannot be defined

fp-op, mem 1 – Odd 15 15 14 14 Cannot be defined

Even 11 10 Cannot be defined

FPO2 fp-op 0 – 2 2 2 2 Cannot be defined

fp-op, mem 1 – Odd 15 15 14 14 Cannot be defined

Even 11 10 Cannot be defined

HALT None 0 – 2 2 2 2 2

IN acc, imm8 1 0 – 9 9 9 9 5

1 Odd 13 13 13 13 7

EvenNote 3 9 9 5

acc,DW 1 0 – 8 8 8 8 5

1 Odd 12 12 12 12 7

EvenNote 3 8 8 5

INC reg8 0 – 2 2 2 2 2

mem 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg16 0 – 2 2 2 2 2

Notes 1. The number of clocks differs depending on the value of data (except the V33A and V53A).

2. The number of clocks differs depending on the value of data.

3. The number of clocks of the V50, V50HL, and V53A is the same as the number of execution clocks of an

odd address because the bus cycle is started two times when the internal DMAU is accessed in word units.

175

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (6/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

INMNote 1 [DS1-spec :] dst-block, DW 2 × rep 0 – 9 + 8 × rep (10) 9 + 8 × rep (10) 9 + 8 × rep (10) 9 + 8 × rep (10) Note 3

(2) 1 Odd, odd 9 + 16 × rep (18) 9 + 16 × rep (18) 9 + 16 × rep (18) 9 + 16 × rep (18)

Odd, even 9 + 12 × rep (14) 9 + 12 × rep (14)

Even, even 9 + 8 × rep (10) 9 + 8 × rep (10)

INSNote 2 reg8, reg8’ 2 or 4 – Odd 35-133 35-133 35-133 35-133 39-77

Even 31-117 31-117 37-69

reg8, imm4 2 or 4 – Odd 35-133 35-133 35-133 35-133 39-77

Even 31-117 31-117 37-69

LDEA reg16, mem16 0 – 4 4 4 4 2

LDMNote 1 [Seg-spec :] src-block 1 × rep 0 – 7 + 9 × rep (7) 7 + 9 × rep (7) 7 + 9 × rep (7) 7 + 9 × rep (7) 2 + 3 × rep (5)

(1) 1 Odd 7 + 13 × rep (11) 7 + 13 × rep (11) 7 + 13 × rep (11) 7 + 13 × rep (11) 2 + 5 × rep (7)

Even 7 + 9 × rep (7) 7 + 9 × rep (7) 2 + 3 × rep (5)

LDMBNote 1 None 1 × rep(1) 0 – 7 + 9 × rep (7) 7 + 9 × rep (7) 7 + 9 × rep (7) 7 + 9 × rep (7) 2 + 3 × rep (5)

LDMWNote 1 None 1 × rep 1 Odd 7 + 13 × rep (11) 7 + 13 × rep (11) 7 + 13 × rep (11) 7 + 13 × rep (11) 2 + 5 × rep (7)

(1) Even 7 + 9 × rep (7) 7 + 9 × rep (7) 2 + 3 × rep (5)

Notes 1. (): Applicable to processing that is performed only once

2. The number of clocks differs depending on the value of data.

3. The number of clocks of the V33A and V53A is as follows:

Mnemonic Operand
Word Condition Clocks

Transfers W Address V33A V53A

INM [DS1-spec :] dst-block, DW 2 × rep 0 – 4 + 8 × rep (12) 8 × rep (8)

(2) 1 Odd, odd 8 + 14 × rep (14) 14 × rep (14)

Odd, even If I/O address is odd: If I/O address is odd:

8 + 8 × rep (20) 12 × rep (12)

If memory address is odd: If memory address is odd:

4 + 10 × rep (14) 10 × rep (10)

Even, even 4 + 8 × rep (12) 8 × rep (8)

176

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (7/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

MOV reg, reg’ 0 – 2 2 2 2 2

mem, reg 1 0 – 9 9 7 7 3

1 Odd 13 13 11 11 5

Even 9 7 3

reg, mem 1 0 – 11 11 10 10 5

1 Odd 15 15 14 14 7

Even 11 10 5

mem, imm 1 0 – 11 11 9 9 3

1 Odd 15 15 13 13 5

Even 11 9 3

reg, imm 0 – 4 4 4 4 2

acc, dmem 1 0 – 10 10 10 10 5

1 Odd 14 14 14 14 7

Even 10 10 5

dmem, acc 1 0 – 9 9 9 9 3

1 Odd 13 13 13 13 5

Even 9 9 3

sreg, reg16 0 – 2 2 2 2 2

sreg, mem16 1 – Odd 15 15 14 14 7

Even 11 10 5

reg16, sreg 0 – 2 2 2 2 2

mem16, sreg 1 – Odd 14 14 12 12 5

Even 10 8 3

DS0, reg16, mem32 2 – Odd 26 26 25 25 14

Even 18 17 10

DS1, reg16, mem32 2 – Odd 26 26 25 25 14

Even 18 17 10

AH, PSW 0 – 2 2 2 2 2

PSW, AH 0 – 3 3 3 3 2

MOVBKNote [DS1-spec :] dst-block, 2 × rep 0 – 11 + 8 × rep (11) 11 + 8 × rep (11) 9 + 8 × rep (9) 9 + 8 × rep (9) 6 × rep (6)

[Seg-spec :] src-block (2) 1 Odd, odd 11 + 16 × rep (19) 11 + 16 × rep (19) 9 + 16 × rep (17) 9 + 16 × rep (17) 10 × rep (10)

Odd, even 11 + 12 × rep (15) 9 + 12 × rep (13) 8 × rep (8)

Even, even 11 + 8 × rep (11) 9 + 8 × rep (9) 6 × rep (6)

MOVBKBNote None 2 × rep (2) 0 – 11 + 8 × rep (11) 11 + 8 × rep (11) 9 + 8 × rep (9) 9 + 8 × rep (9) 6 × rep (6)

MOVBKWNote None 2 × rep 1 Odd, odd 11 + 16 × rep (19) 11 + 16 × rep (19) 9 + 16 × rep (17) 9 + 16 × rep (17) 10 × rep (10)

(2) Odd, even 11 + 12 × rep (15) 9 + 12 × rep (13) 8 × rep (8)

Even, even 11 + 8 × rep (11) 9 + 8 × rep (9) 6 × rep (6)

Note (): Applicable to processing that is performed only once.

177

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (8/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

MULNote reg8 0 – 33-39 33-39 33-39 33-39 8

mem8 0 – 39-45 39-45 38-44 38-44 12

reg16 0 – 41-47 41-47 41-47 41-47 12

mem16 1 – Odd 51-57 51-57 50-56 50-56 18

Even 47-53 46-52 16

reg16, imm8 0 – 28-34 28-34 28-34 28-34 12

reg16, imm16 0 – 36-42 36-42 36-42 36-42 12

reg16, reg16’, imm8 0 – 28-34 28-34 28-34 28-34 12

reg16, mem16, imm8 1 – Odd 38-44 38-44 37-43 37-43 18

Even 34-40 33-39 16

reg16, reg16’, imm16 0 – 36-42 36-42 36-42 36-42 12

reg16, mem16, imm16 1 – Odd 46-52 46-52 45-51 45-51 18

Even 42-48 41-47 16

MULUNote reg8 0 – 21, 22 21, 22 21, 22 21, 22 8

mem8 1 – 27, 28 27, 28 26, 27 26, 27 12

reg16 0 – 29, 30 29, 30 29, 30 29, 30 12

mem16 1 – Odd 39, 40 39, 40 38, 39 38, 39 18

Even 35, 36 34, 35 16

NEG reg 0 – 2 2 2 2 2

mem 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

NOP None 0 – 3 3 3 3 3

NOT reg 0 – 2 2 2 2 2

mem 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

NOT1 reg8, CL 0 – 4 4 4 4 4

mem8, CL 0 – 13 13 10 10 9

reg16, CL 0 – 4 4 4 4 4

mem16, CL 2 – Odd 21 21 18 18 13

Even 13 10 9

reg8, imm3 0 – 5 5 5 5 4

mem8, imm3 0 – 14 14 11 11 9

reg16, imm4 0 – 5 5 5 5 4

mem16, imm4 2 – Odd 22 22 19 19 13

Even 14 11 9

CY 0 – 2 2 2 2 2

Note The number of clocks differs depending on the value of data (except the V33A and V53A).

178

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (9/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

OR reg, reg’ 0 – 2 2 2 2 2

mem, reg 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, mem 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, imm 0 – 4 4 4 4 2

mem, imm 2 0 – 18 18 15 15 7

1 Odd 26 26 23 23 11

Even 18 15 7

acc, imm 0 – 4 4 4 4 2

OUT imm8, acc 1 0 – 8 8 8 8 3

1 Odd 12 12 12 12 5

EvenNote 3 8 8 3

DW, acc 1 0 – 8 8 8 8 3

1 Odd 12 12 12 12 5

EvenNote 3 8 8 3

OUTMNote 1 DW, [Seg-spec :] src-block 2 × rep 0 – 9 + 8 × rep (10) 9 + 8 × rep (10) 9 + 8 × rep (10) 9 + 8 × rep (10) Note 4

(2) 1 Odd, odd 9 + 16 × rep (18) 9 + 16 × rep (18) 9 + 16 × rep (18) 9 + 16 × rep (18)

Odd, even 9 + 12 × rep (14) 9 + 12 × rep (14)

Even, even 9 + 8 × rep (10) 9 + 8 × rep (10)

POLLNote 2 None 0 – 2 + 5 × poll 2 + 5 × poll 2 + 5 × poll 2 + 5 × poll 2 + 2 × cpbusy

Notes 1. (): Applicable to processing that is performed only once

2. poll: Number of times the POLL pin is sampled, cpbusy: Number of times the CPBUSY pin is sampled

3. The number of clocks of the V50, V50HL, and V53A is the same as the number of execution clocks of an

odd address because the bus cycle is started two times when the internal DMAU is accessed in word units.

4. The number of clocks of the V33A and V53A is as follows:

Mnemonic Operand
Word Condition Clocks

Transfers W Address V33A V53A

OUTM DW, [Seg-spec :] src-block 2 × rep 0 – 12 × rep – 6 (6) 8 × rep – 2 (6)

(2) 1 Odd, odd 22 × rep – 6 (16) 14 × rep – 2 (12)

Odd, even If I/O address is odd: If I/O address is odd:

20 × rep – 6 (10) 12 × rep – 2 (10)

If memory address is odd: If memory address is odd:

14 × rep – 6 (8) 10 × rep – 2 (8)

Even, even 12 × rep –6 (6) 8 × rep – 2 (6)

179

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (10/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

POP mem16 2 – Odd 25 25 24 24 9

Even 17 16 5

reg16 1 – Odd 12 12 12 12 7

Even 8 8 5

sreg 1 – Odd 12 12 12 12 7

Even 8 8 5

PSW 1 – Odd 12 12 12 12 7

Even 8 8 5

R 7 – Odd 75 75 75 75 38

Even 43 43 22

PREPARE imm16, imm8 1 – Odd 16 16 16 16 15

(When imm8 = 0) Even 12 12

imm16, imm8 2 × imm8 – Odd 23 + 16 (imm8-1) 21 + 16 (imm8-1) 21 + 16 (imm8-1) 21 + 16 (imm8-1) 17 + 12 (imm8-1)

(When imm8 ≥ 1) Even 19 + 8 (imm8-1) 17 + 8 (imm8-1) 15 + 8 (imm8-1)

PS: None 0 – 2 2 2 2 2

PUSH mem16 2 – Odd 26 26 23 23 9

Even 18 15 5

reg16 1 – Odd 12 12 10 10 5

Even 8 6 3

sreg 1 – Odd 12 12 10 10 5

Even 8 6 3

PSW 1 – Odd 12 12 10 10 5

Even 8 6 3

R 8 – Odd 67 67 65 65 36

Even 35 33 20

imm8 1 – Odd 11 11 9 9 5

Even 7 5 3

imm16 1 – Odd 12 12 10 10 5

Even 8 6 3

REP None 0 – 2 2 2 2 2

REPC None 0 – 2 2 2 2 2

REPE None 0 – 2 2 2 2 2

REPNC None 0 – 2 2 2 2 2

REPNE None 0 – 2 2 2 2 2

REPNZ None 0 – 2 2 2 2 2

REPZ None 0 – 2 2 2 2 2

RET None 1 – Odd 19 19 19 19 12

(call in segment) Even 15 15 10

None 2 – Odd 29 29 29 29 16

(call outside segment) Even 21 21 12

pop-value 1 – Odd 24 24 24 24 12

(call in segment) Even 20 20 10

pop-value 2 – Odd 32 32 32 32 16

(call outside segment) Even 24 24 12

RETEM None 3 – Odd 39 39 39 39 –

Even 27 27 –

180

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (11/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

RETI None 3 – Odd 39 39 39 39 19

Even 27 27 13

RETXA imm8 2 – – – – – 12

ROLNote reg, 1 0 – 6 6 6 6 2

mem, 1 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, CL 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, CL 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

reg, imm8 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, imm8 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

ROL4 reg8 0 – 13 13 13 13 9

mem8 0 – 28 28 25 25 15

ROLCNote reg, 1 0 – 6 6 6 6 2

mem, 1 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, CL 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, CL 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

reg, imm8 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, imm8 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

RORNote reg, 1 0 – 6 6 6 6 2

mem, 1 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, CL 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, CL 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

reg, imm8 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, imm8 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 19 + n

Even 19 + n 16 + n 6 + n

ROR4 reg8 0 – 17 17 17 17 13

mem8 0 – 32 32 29 29 19

Note n: Number of times of shift

181

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (12/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

RORCNote reg, 1 0 – 6 6 6 6 2

mem, 1 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, CL 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, CL 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

reg, imm8 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, imm8 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

SET1 reg8, CL 0 – 4 4 4 4 4

mem8, CL 0 – 13 13 10 10 9

reg16, CL 0 – 4 4 4 4 4

mem16, CL 2 – Odd 21 21 18 18 13

Even 13 10 9

reg8, imm3 0 – 5 5 5 5 4

mem8, imm3 0 – 14 14 11 11 9

reg16, imm4 0 – 5 5 5 5 4

mem16, imm4 2 – Odd 22 22 19 19 13

Even 14 11 9

CY 0 – 2 2 2 2 2

DIR 0 – 2 2 2 2 2

SHLNote reg, 1 0 – 6 6 6 6 2

mem, 1 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, CL 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, CL 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

reg, imm8 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, imm8 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

Note n: Number of times of shift

182

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (13/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

SHRNote 1 reg, 1 0 – 6 6 6 6 2

mem, 1 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, CL 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, CL 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

reg, imm8 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, imm8 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

SHRANote 1 reg, 1 0 – 6 6 6 6 2

mem, 1 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, CL 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, CL 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

reg, imm8 0 – 7 + n 7 + n 7 + n 7 + n 2 + n

mem, imm8 2 0 – 19 + n 19 + n 16 + n 16 + n 6 + n

1 Odd 27 + n 27 + n 24 + n 24 + n 10 + n

Even 19 + n 16 + n 6 + n

SS: None 0 – 2 2 2 2 2

STMNote 2 [DS1-spec :] dst-block 1 × rep 0 – 7 + 4 × rep (7) 7 + 4 × rep (7) 5 + 4 × rep (5) 5 + 4 × rep (5) 3 × rep (3)

(1) 1 Odd 7 + 8 × rep (11)7 + 8 × rep (11) 5 + 8 × rep (9) 5 + 8 × rep (9) 5 × rep (5)

Even 7 + 4 × rep (7) 5 + 4 × rep (5) 3 × rep (3)

STMBNote 2 None 1 × rep (2) 0 – 7 + 4 × rep (7) 7 + 4 × rep (7) 5 + 4 × rep (5) 5 + 4 × rep (5) 3 × rep (3)

STMWNote 2 None 1 × rep 1 Odd 7 + 8 × rep (11)7 + 8 × rep (11) 5 + 8 × rep (9) 5 + 8 × rep (9) 5 × rep (5)

(1) Even 7 + 4 × rep (7) 5 + 4 × rep (5) 3 × rep (3)

SUB reg, reg’ 0 – 2 2 2 2 2

mem, reg 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, mem 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, imm 0 – 4 4 4 4 2

mem, imm 2 0 – 18 18 15 15 7

1 Odd 26 26 23 23 11

Even 18 15 7

acc, imm 0 – 4 4 4 4 2

Notes 1. n: Number of times of shift

2. (): Applicable to processing that is performed only once

183

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (14/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

SUB4SNote [DS1-spec :] dst-string, 0 – 19 × m + 7 19 × m + 7 19 × m + 7 19 × m + 7 18 × m + 2

[Seg-spec :] src-string

None 0 – 19 × m + 7 19 × m + 7 19 × m + 7 19 × m + 7 18 × m + 2

SUBC reg, reg’ 0 – 2 2 2 2 2

mem, reg 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, mem 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, imm 0 – 4 4 4 4 2

mem, imm 2 0 – 18 18 15 15 7

1 Odd 26 26 23 23 11

Even 18 15 7

acc, imm 0 – 4 4 4 4 2

TEST reg, reg’ 0 – 2 2 2 2 2

mem, reg 1 0 – 10 10 9 9 6

1 Odd 14 14 13 13 8

Even 10 9 6

reg, mem 1 0 – 10 10 9 9 6

1 Odd 14 14 13 13 8

Even 10 9 6

reg, imm 0 – 4 4 4 4 2

mem, imm 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

acc, imm 0 – 4 4 4 4 2

TEST1 reg8, CL 0 – 3 3 3 3 4

mem8, CL 0 – 8 8 7 7 8

reg16, CL 0 – 3 3 3 3 4

mem16, CL 1 – Odd 12 12 11 11 10

Even 8 7 8

reg8, imm3 0 – 4 4 4 4 4

mem8, imm3 0 – 9 9 8 8 8

reg16, imm4 0 – 4 4 4 4 4

mem16, imm4 1 – Odd 13 13 12 12 10

Even 9 8 8

TRANS src-table 1 – 9 9 9 9 5

None 1 – 9 9 9 9 5

TRANSB None 1 – 9 9 9 9 5

Note m: Number of BCD digits × 1/2

184

CHAPTER 2 INSTRUCTIONS

Table 2-8. Number of Instruction Execution Clocks (15/15)

Mnemonic Operand
Word Condition Clocks

Transfers W Address V20,V20HL V30,V30HL V40,V40HL V50,V50HL V33A,V53A

XCH reg, reg’ 0 – 3 3 3 3 3

mem, reg 2 0 – 16 16 13 13 8

1 Odd 24 24 21 21 12

Even 16 13 8

reg, mem 2 0 – 16 16 13 13 8

1 Odd 24 24 21 21 12

Even 16 13 8

AW, reg16 0 – 3 3 3 3 3

reg16, AW 0 – 3 3 3 3 3

XOR reg, reg’ 0 – 2 2 2 2 2

mem, reg 2 0 – 16 16 13 13 7

1 Odd 24 24 21 21 11

Even 16 13 7

reg, mem 1 0 – 11 11 10 10 6

1 Odd 15 15 14 14 8

Even 11 10 6

reg, imm 0 – 4 4 4 4 2

mem, imm 2 0 – 18 18 15 15 7

1 Odd 26 26 23 23 11

Even 18 15 7

acc, imm 0 – 4 4 4 4 2

185

APPENDIX A REGISTER CONFIGURATION

A.1 General-Purpose Registers (AW, BW, CW, DW)

Four 16-bit general-purpose registers are provided. These registers can be used not only as 16-bit registers but

also as 8- bit registers (AH, AL, BH, BL, CH, CL, DH, and DL) with each register divided into the high-order and low-

order 8 bits.

Therefore, these registers are used as 8- or 16-bit registers with a variety of instructions such as transfer, arithmetic

operation, and logical operation instructions. Also each register is used as a default register to process specific

instructions as follows:

AW : Word multiplication/division, word input/output, data exchange

AL : Byte multiplication/division, byte input/output, BCD rotate, data exchange

AH : Byte multiplication/division

BW : Data exchange (table reference)

CW : Loop control branch, repeat prefix

CL : Shift instructions, rotate instructions, BCD operation

DW : Word multiplication/division, indirect addressing input/output

A.2 Segment Registers (PS, SS, DS0, DS1)

The 16-bit V series divides the memory space into 64K-byte logical segments and can manage four segments at

the same time (segment method). The first address of each segment is specified by the following segment registers:

• Program segment register (PS): Specifies base address of segment storing instructions

• Stack segment register (SS) : Specifies base address of segment performing stack operations

• Data segment 0 register (DS0) : Specifies base address of segment storing data

• Data segment 1 register (DS1) : Specifies base address of segment used by data transfer instruction as

transfer destination of data

A.3 Pointers (SP, BP)

A pointer consists of two 16-bit registers (stack pointer (SP) and base pointer (BP)). Each register is used as a

pointer that specifies a memory address and can also be referenced in instruction. When memory data is referenced,

however, it is used as an index register.

SP indicates the address in the stack segment that stores the latest data, and is used as a default register when

the stack is manipulated.

BP is used to restore data saved to the stack.

A.4 Program Counter (PC)

PC is a 16-bit binary counter that holds the offset information of the program memory address to be executed by

the execution unit (EXU).

The value of PC is automatically incremented (+1) each time the microprogram fetches an instruction byte from

the instruction queue.

When the branch, call, return, or break instruction is executed, a new location is loaded to PC. At this time, the

value of PC is the same as that of the prefetch pointer (PFP).

186

APPENDIX A REGISTER CONFIGURATION

A.5 Program Status Word (PSW)

PSW consists of six status flags and four control flags.

Status flags

• Overflow flag (V)

• Sign flag (S)

• Zero flag (Z)

• Auxiliary carry flag (AC)

• Parity flag (P)

• Carry flag (CY)

Control flags

• Mode flag (MD)Note

• Direction flag (DIR)

• Interrupt enable flag (IE)

• Break flag (BRK)

Note Except the V33A and V53A

The status flag is automatically set to 1 or reset to 0 according to the result (data value) of executing an instruction.

The CY flag is directly set, reset, or inverted by an instruction.

The control flag is set or reset by an instruction to control the operation of the CPU.

The IE and BRK flags are reset when interrupt service is started.

Only the MD flag is set to 1 by RESET input, and all the other flags are reset to 0.

PSW is manipulated in byte or word units by the following processing. If it is manipulated in byte units, only the

low-order 8 bits (including the status flags except the V flag) are manipulated.

Figure A-1. PSW Configuration

Note The V33A and V53A is not provided with the MD flag. Bit 15 of PSW is fixed to 1.

Bits 0 through 7 can be stored to or restored from AH by the MOV instruction.

All the bits of PSW are saved to the stack when an interrupt occurs or when the call instruction is executed, and

are restored from the stack by the return instruction (RETI or RETEM)Note . In addition, PSW can also be saved to

or restored from the stack by the PUSH PSW or POP PSW instructionNote.

Note The MD flag may be in the write-enabled or write-disabled status. In the write-disabled status, the MD flag

is not restored from the stack but retains the current status even if the RETI or POP PSW instruction is

executed. The MD flag is set in the write-disabled status by the reset operation and RETEM instruction,

and is enabled by the BRKEM instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M
D

1 1 1 V
D
I
R

I
E

B
R
K

S Z 0
A
C 0 P 1 C

Y

Note

187

APPENDIX A REGISTER CONFIGURATION

Each flag is placed in the following status when each instruction is executed.

(1) Carry flag (CY)

(a) Binary addition/subtraction

When a byte operation is executed, and if a carry or borrow occurs from bit 7 of the result of the operation,

the CY flag is set; otherwise, it is reset.

If a carry or borrow occurs from bit 15 of the result of executing a word operation, the CY flag is set;

otherwise, it is reset.

(b) Logical operation

The CY flag remains reset regardless of the result.

(c) Binary multiplication

If AH is 0 as a result of executing an unsigned byte operation, the CY flag is reset; otherwise it is set.

If AH sign-extends AL as a result of executing a signed byte operation, the CY flag is reset; otherwise,

it is set.

If DW is 0 as a result of executing an unsigned word operation, the CY flag is reset; otherwise, it is set.

If DW sign-extends AW as a result of executing signed word operation, the CY flag is reset; otherwise,

it is set.

When an 8-bit immediate operation is executed, and if the product is within 16 bits, the CY flag is reset;

if the product exceeds 16 bits, it is set.

(d) Binary division

Undefined

(e) Shift/rotate

If a shift or rotate operation including the CY flag is executed, and if the bit shifted to the CY flag is 1,

the CY flag is set; otherwise, it is reset.

(2) Parity flag (P)

(a) Binary addition/subtraction, logical operation, shift

If the number of bits that are 1 of the low-order 8 bits of the result of an operation is even, the parity flag

is set; if the number of bits that are 1 is odd, the P flag is reset.

If the result is all 0, the P flag is set.

(b) Binary multiplication/division

Undefined

188

APPENDIX A REGISTER CONFIGURATION

(3) Auxiliary carry flag (AC)

(a) Binary addition/subtraction

The AC flag is set if a carry from the low-order 4 bits to the high-order 4 bits or a borrow from the high-

order 4 bits to the low-order 4 bits occur as a result of a byte operation; otherwise, it is reset.

When a word operation is executed, the AC flag is set or reset according to the status of the low-order

byte.

(b) Logical operation, binary multiplication/division, shift/rotate

Undefined

(4) Zero flag (Z)

(a) Binary addition/subtraction, logical operation, shift/rotate

If all the 8 bits of the result of a byte operation are zero, or if all the 16 bits of the result of a word operation

are zero, the zero flag is set; otherwise, it is reset.

(b) Binary multiplication/division

Undefined

(5) Sign flag (S)

(a) Binary addition/subtraction, logical operation, shift/rotate

If bit 7 of the result of a byte operation is 1, the sign flag is set; otherwise, it is reset.

If bit 15 of the result of a word operation is 1, the sign flag is set; otherwise, it is reset.

(b) Binary multiplication/division

Undefined

(6) Overflow flag (V)

(a) Binary addition/subtraction

If carries from bits 7 and 6 are different as a result of a byte operation, the overflow flag is set; otherwise,

it is reset.

If carries from bits 15 and 14 are different as a result of a word operation, the V flag is set; otherwise it

is reset.

(b) Binary multiplication

If AH is 0 as a result of an unsigned byte operation, the V flag is set; if AH is other than 0, the flag is reset.

If AH sign-extends AL as a result of a signed byte operation, the V flag is reset; otherwise, it is reset.

If DW is 0 as a result of an unsigned word operation, the V flag is reset; if DW is other than 0, it is set.

If DW sign-extends AW as a result of a signed word operation, the V flag is reset; otherwise, it is set.

If the product resulting from an 8-bit immediate operation is within 16 bits, the V flag is reset; if the product

exceeds 16 bits, it is set.

(c) Binary division

The V flag is reset.

189

APPENDIX A REGISTER CONFIGURATION

(d) Logical operation

The V flag is reset.

(e) Shift/rotate

When a left 1-bit shift/rotate operation is executed, the V flag is set or reset as follows according to the

result of the operation.

CY = most significant bit: reset

CY ≠ most significant bit: set

When a right 1-bit shift/rotate operation is executed, the V flag is set or reset as follows according to the

result of the operation.

Most significant bit = second most significant bit: reset

Most significant bit ≠ second most significant bit: set

The V flag is undefined if a multi-bit shift/rotate operation is executed.

(7) Break flag (BRK)

This flag can be set by a memory manipulation instruction only when it is saved to the stack as a part of PSW.

After the BRK flag has been set and restored from the stack to PSW, setting the BRK flag is effective.

Once the BRK flag has been set, and when one instruction is executed, a software interrupt (interrupt vector

1) automatically occurs, and one instruction can be traced at a time.

(8) Interrupt enable flag (IE)

This flag is set by the EI instruction to enable the INT interrupt, and is reset by the DI instruction to disable

the INT interrupt.

(9) Direction flag (DIR)

This flag is set by the SET1 DIR instruction and is reset by the CLR1 DIR instruction.

When the DIR flag is set, and if a block transfer/input/output instruction is executed, the processing is

performed from the high-order address to the low-order address. If the DIR flag is reset, the processing is

performed from the low-order address to the high-order address.

(10) Mode flag (MD) (except V33A and V53A)

This flag is set by RESET input and sets the CPU in the native mode. It is reset by the BRKEM instruction

to set the CPU in the emulation mode.

The MD flag is also set by the CALLN and RETEM instructions to set the CPU in the native mode.

The RESET input and RETEM instruction disables the MD flag from being written. As a result, the MD flag

is not restored even if the RETI or POP PSW instruction is executed. The BRKEM instruction enables writing

the MD flag.

190

APPENDIX A REGISTER CONFIGURATION

A.6 Index Registers (IX, IY)

These two index registers are 16-bit registers. Each register can be referenced in an instruction, and is also used

as an index register to generate effective address when memory data is referenced. Moreover, each register has a

special role as follows when a specific instruction processing is performed.

IX : Source operand address register for block data manipulation instruction

Base register for variable-length bit field manipulation instruction

Source operand address register for BCD string operation instruction

IY : Destination operand address register for block data manipulation instruction

Base register for variable-length bit field manipulation instruction

Destination operand address register for BCD string operation instruction

191

APPENDIX B ADDRESSING MODES

B.1 Instruction Address

The instruction address is automatically incremented each time an instruction is executed. In addition, the

instruction execution sequence can be controlled in various ways, as follows:

(1) Direct addressing

In this addressing mode, 2- or 4-byte immediate data in the instruction byte is directly loaded to PC or PS or

both PC and PS, and is used as a branch address.

This addressing mode is used to execute the following instructions:

CALL far-proc

CALL memptr16

CALL memptr32

BR far-label

BR memptr16

BR memptr32

(2) Relative addressing

In this addressing mode, 1- or 2-byte immediate data in the instruction byte is added as a signed displacement

value to PC and is used as a branch address.

If an 8-bit displacement is used, it is sign-extended and is added to PC as 16-bit data.

When the displacement is added, the contents of PC indicate the first address of the following instructions,

and this addressing mode is used to execute the following instructions.

CALL near-proc

BR near-label

BR short-label

Conditional branch instruction short-label

(3) Register addressing

In this addressing mode, the contents of any 16-bit register specified by the 3-bit register specification field

in the instruction byte are loaded to PC as a branch address.

Unlike when data is used, all the eight 16-bit registers (AW, BW, CW, DW, IX, IY, SP, and BP) can be used.

This addressing mode is used to execute the following instructions:

Example

CALL regptr16 CALL AW

BR regptr16 BR BW

192

APPENDIX B ADDRESSING MODES

(4) Register indirect addressing

In this addressing mode, the contents (word or double word) of the memory addressed by a 16-bit register

(IX, IY, or BW) specified by the register specification field in the instruction byte are loaded to PC (or both

PC and PS) as a branch address.

Example

CALL memptr16 CALL WORD PTR [IX]

CALL memptr32 CALL DWORD PTR [IY]

BR memptr16 BR WORD PTR [BW]

BR memptr32 BR DWORD PTR [IX]

Remark The assembler generates the instruction code of memptr16 for the instruction for which WORD

PTR is specified, and the instruction code of memptr32 for the instruction for which DWORD PTR

is specified.

(5) Indexed addressing

In this addressing mode, the 1- or 2-byte immediate data in the instruction byte is added as a signed

displacement to a 16-bit index register (IX or IY), and the contents (word or double word) addressed by the

result of the addition are loaded to PC as a branch address.

This addressing mode is used to execute the following instructions.

Example

CALL memptr16 CALL var [IX] [2]

CALL memptr32 CALL var [IY]

BR memptr16 BR var [IY]

BR memptr32 BR var [IX+4]

Remark If variable var has a word attribute, the assembler generates the instruction code of memptr16.

If the variable has a double word attribute, the assembler generates the instruction code of

memptr32.

(6) Based addressing

In this addressing mode, the 1- or 2-byte immediate data in the instruction byte are added to a 16-bit base

register (BP or BW) as a signed displacement value, and the contents (word or double word) addressed by

the result of the addition are loaded to PC as a branch address.

This addressing mode is used to execute the following instructions.

Example

CALL memptr16 CALL var [BP+2]

CALL memptr32 CALL var [BP]

BR memptr16 BR var [BW] [2]

BR memptr32 BR var [BP]

Remark If variable var has a word attribute, the assembler generates the instruction code of memptr16.

If the variable has a double word attribute, the assembler generates the instruction code of

memptr32.

193

APPENDIX B ADDRESSING MODES

(7) Based indexed addressing

In this addressing mode, the 1- or 2-byte immediate data in the instruction byte as a signed displacement value,

the contents of a 16-bit base register (BP or BW), and the contents of a 16-bit index register (IX or IY) are

added, and the contents (word or double word) of memory addressed by the result of the addition are loaded

to PC as a branch address.

This addressing mode is used to execute the following instructions.

Example

CALL memptr16 CALL var [BP] [IX]

CALL memptr32 CALL var [BW+2] [IY]

BR memptr16 BR var [BW] [2] [IX]

BR memptr32 BR var [BP+4] [IY]

Remark If variable var has a word attribute, the assembler generates the instruction code of memptr16.

If the variable has a double word attribute, the assembler generates the instruction code of

memptr32.

B.2 Memory Operand Address

The following several modes are used to address registers and memory to be manipulated when an instruction

is executed.

(1) Register addressing

In this mode, the contents of the register specification field (reg = 3-bit field, sreg = 2-bit field) in the instruction

byte address the register to be manipulated.

reg specifies, in combination with 1 bit (W) that specifies a word or byte in the instruction byte, eight types

of word registers (AW, BW, CW, DW, BP, SP, IX, and IY) and eight types of byte registers (AL, AH, BL, BH,

CL, CH, DL, and DH).

sreg specifies four types of segment registers (PS, SS, DS0, and DS1).

In some cases, the operation code of an instruction specifies a specific register.

This addressing mode is used to execute the instructions having the following operand description format.

Format Description

reg AW, BW, CW, DW, SP, BP, IX, IY,

AL, AH, BL, BH, CL, CH, DL, DH

reg16 AW, BW, CW, DW, SP, BP, IX, IY

reg8 AL, AH, BL, BH, CL, CH, DL, DH

sreg PS, SS, DS0, DS1

acc AW, AL

Example

If the case of MOV reg, reg’

MOV BP, SP

MOV AL, CL

194

APPENDIX B ADDRESSING MODES

(2) Immediate addressing

In this addressing mode, the 1- or 2-byte immediate data in the instruction byte is manipulated as is.

This mode is used to execute the instruction having the following operand description format.

Format Description

imm 8-/16-bit immediate data

imm16 16-bit immediate data

imm8 8-bit immediate data

pop-value 16-bit immediate data

In the case of imm, the assembler judges the value of imm described as the operand or the attribute of another

operand described at the same time to identify whether the data is 8 or 16 bits long, to determine word/byte

specification bit W.

Example

In the case of MOV reg, imm

MOV AL, 5; Byte

In the case of MUL reg16, reg16, imm16

MUL AW, BW, 1000H

(3) Direct addressing

In this mode, the immediate data in the instruction byte addresses the memory to be manipulated.

This mode is used to execute the instruction having the following operand description format.

Format Description

mem 16-bit variable specifying 8- or 16-bit memory data

dmem 16-bit variable specifying 8- or 16-bit memory data

imm4 4-bit variable indicating bit length of bit field data

Example

In the case of MOV mem, imm

MOV WORD_VAR, 2000H

In the case of MOV acc, dmem

MOV AL, BYTE_VAR

(4) Register indirect addressing

A 16-bit register (IX, IY, or BW) specified by the memory specification field (mod, mem) in the instruction byte

addresses the memory to be manipulated.

This mode is used to execute the instruction having the following operand description format.

Format Description

mem [IX], [IY], [BW]

Example

In the case of SUB mem, reg

SUB [IX], [AW]

195

APPENDIX B ADDRESSING MODES

(5) Auto-increment/decrement addressing

This addressing mode is a type of the register indirect addressing mode. In this mode, the register or memory

to be manipulated is addressed by the contents of a default register, and then the contents of the default register

are automatically incremented/decremented (+1/–1 in the case of byte processing and +2/–2 in the case of

word processing).

By using this addressing mode, the address is automatically updated for the next byte/word operand

processing.

Whether the register is incremented or decremented is indicated by the direction flag (DIR). If DIR = 0, the

register is incremented; if it is 1, the register is decremented.

This addressing mode is applicable to all the following default registers and is used to execute the instruction

with the following operand description mode.

Format Default register

dst-block IY

src-block IX

This addressing mode is used in combination with a counter (CW) that counts the number of times a byte/

word operand is repeatedly processed to control block data processing.

(6) Indexed addressing

In this addressing mode, 1- or 2-byte immediate data in the instruction byte is added to a 16-bit index register

(IX or IY) as a signed displacement value, and the result of this addition is used to address the memory operand

to be manipulated.

This addressing mode is effective for accessing data of array type. The displacement specifies the start

address of the array, and the contents of the index register specifies an array at the nth position from the start

address.

This addressing mode is used to execute the instruction having the following operand description format.

Format Description

mem var [IX], var [IY]

mem16 var [IX], var [IY]

mem8 var [IX], var [IY]

Example

In the case of TEST mem, imm

TEST BYTE_VAR [IX], 7FH

TEST BYTE_VAR [IX+8], 7FH

TEST WORD_VAR [IX] [8], 7FFFH

Remark If variable var has a byte attribute, a byte operand is specified. If var has a word attribute, a word

operand is specified. The assembler generates an instruction code corresponding to each

operand.

196

APPENDIX B ADDRESSING MODES

(7) Based addressing

In this addressing mode, 1- or 2-byte immediate data in the instruction byte is added as a signed displacement

value to a 16- bit base register (BP or BW), and the result of the addition addresses the memory operand to

be manipulated.

This addressing mode is effective for accessing data of structure type that is located at several positions in

memory. The base register specifies the start address of each structure, and the displacement selects one

element in each structure.

This addressing mode is used to execute the instruction having the following description format.

Format Description

mem var [BP], var [BW]

mem16 var [BP], var [BW]

mem8 var [BP], var [BW]

Example

In the case of SHL mem, 1

SHL BYTE_VAR [BP], 1

SHL WORD_VAR [BP+2], 1

SHL BYTE_VAR [BP] [4], 1

Remark If variable var has a byte attribute, a byte operand is specified. If var has a word attribute, a word

operand is specified. The assembler generates an instruction code corresponding to each

operand.

(8) Based indexed addressing

In this addressing mode, 1- or 2-byte immediate data in the instruction byte as a signed displacement value,

the contents of a 16-bit base register (BP or BW), and the contents of a 16-bit index register (IX or IY) are

added, and the result of the addition addresses the memory operand to be manipulated.

Because one piece of data can be specified by changing the contents of both the base register and index

register, this addressing mode is very effective for accessing data of structure type including an array type.

The base register specifies the first address of each structure, the displacement value indicates an offset from

the first address of the structure to the first address of array data, and the index register indicates the nth

position of the array data.

This addressing mode is used to execute the instruction having the following operand description format.

Format Description

mem var [base register][index register]

mem16 var [base register][index register]

mem8 var [base register][index register]

Example

In the case of PUSH mem16

PUSH WORD_VAR [BP] [IX]

PUSH WORD_VAR [BP+2] [IX+6]

PUSH WORD_VAR [BP] [4] [IX] [8]

197

APPENDIX B ADDRESSING MODES

(9) Bit addressing

In this addressing mode, 3- or 4-bit immediate data in the instruction byte, or the low-order 3 or 4 bits of the

CL register specify 1 bit of the 8- or 16-bit register or memory to be manipulated.

If an instruction is executed in this addressing mode, a specific 1 bit of a register or memory can be tested

(judgment of 0 or 1), set, cleared, or inverted without your having to be aware of the contents of the other bits.

This means that byte or word data does not need to be prepared to manipulate only 1 bit, like when the AND

or OR instruction is used.

This addressing mode is used to execute the instruction having the following description format.

Format Description

imm4 Bit number of word operand

imm3 Bit number of byte operand

CL CL

Example

TEST1 reg8, CL

TEST1 AL, CL

NOT1 reg8, imm3

NOT1 CL, 5

CLR1 mem16, CL

CLR1 WORD_VAR [IX], CL

SET1 mem16, imm4

SET1 WORD_VAR [BP], 9

198

[MEMO]

199

APPENDIX C INSTRUCTION MAP

[Legend]

 Low Order
×0H

High Order

0×H ADD

b, f, rm

High-order nibble (Table C-1: high-order 4 bits of first byte, Tables C-3 and C-4: high-order 4 bits of second byte)

[Condition included in instruction code]

b : Executes byte operation

d : Uses direct addressing

f : Involves reading from registers in CPU

i : Uses immediate data

ia : Uses immediate data and writes data back to accumulator

id : Uses indirect addressing

l : Involves control between segments

m : Uses memory data

reg8 : Uses 8-bit register

rm : Has effective address field in second byte

s : Uses sign-extended 16-bit immediate data

sr : Uses segment register

t : Writes registers in CPU

v : Indirectly specifies port number

w : Executes word operation

For the symbols other than above, refer to Table 2-4 Legend of Description on Instruction Format and Operand .

– – – – – – – – – – –

Low-order nibble (Table C-1: low-order 4 bits of first byte,

Tables C-3 and C-4: low-order 4 bits of second byte)

Mnemonic

Condition included in instruction code (Refer to below.)

200

APPENDIX C INSTRUCTION MAP

– –

– –

– –

– –

– – – – – – –

– –

Table C-1. Instruction Map (1/2)

(a) Native mode

 Low
 Order

×0H ×1H ×2H ×3H ×4H ×5H ×6H ×7H ×8H ×9H ×AH ×BH ×CH ×DH ×EH ×FH
High
Order

0×H ADD ADD ADD ADD ADD ADD PUSH POP OR OR OR OR OR OR PUSH Group3

b, f, rm w, f, rm b, t, rm w, t, rm b, ia w, ia DS1 DS1 b, f, rm w, f, rm b, t, rm w, t, rm b, ia w, ia PS

1×H ADDC ADDC ADDC ADDC ADDC ADDC PUSH POP SUBC SUBC SUBC SUBC SUBC SUBC PUSH POP

b, f, rm w, f, rm b, t, rm w, t, rm b, ia w, ia SS SS b, f, rm w, f, rm b, t, rm w, t, rm b, ia w, ia DS0 DS0

2×H AND AND AND AND AND AND DS1: ADJ4A SUB SUB SUB SUB SUB SUB PS: ADJ4S

b, f, rm w, f, rm b, t, rm w, t, rm b, ia w, ia b, f, rm w, f, rm b, t, rm w, t, rm b, ia w, ia

3×H XOR XOR XOR XOR XOR XOR SS: ADJBA CMP CMP CMP CMP CMP CMP DS0: ADJBS

b, f, rm w, f, rm b, t, rm w, t, rm b, ia w, ia b, f, rm w, f, rm b, t, rm w, t, rm b, ia w, ia

4×H INC INC INC INC INC INC INC INC DEC DEC DEC DEC DEC DEC DEC DEC

AW CW DW BW SP BP IX IY AW CW DW BW SP BP IX IY

5×H PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH POP POP POP POP POP POP POP POP

AW CW DW BW SP BP IX IY AW CW DW BW SP BP IX IY

6×H PUSH POP CHKIND Undefined REPNC REPC FPO2 FPO2 PUSH MUL PUSH MUL INM INM OUTM OUTM

R R 0 1 w, i w, i s, i s, i b w b w

7×H BV BNV BC BNC BE BNE BNH BH BN BP BPE BPO BLT BGE BLE BGT

BL BNL BZ BNZ

8×H Imm Imm Imm Imm TEST TEST XCH XCH MOV MOV MOV MOV MOV LDEA MOV POP

b, rm w, rm b, s, rm w, s, rm b, rm w, rm b, rm w, rm b, f, rm w, f, rm b, t, rm w, t, rm sr, f, rm sr, t, rm rm

9×H NOPNote XCH XCH XCH XCH XCH XCH XCH CVTBW CVTWL CALL POLL PUSH POP MOV MOV

CW DW BW SP BP IX IY l, d PSW PSW PSW, AH AH, PSW

A×H MOV MOV MOV MOV MOVBK MOVBK CMPBK CMPBK TEST TEST STM STM LDM LDM CMPM CMPM

MOVBKB MOVBKB CMPBKB CMPBKB STMB STMB LDMB LDMB CMPMB CMPMB

MOVBKW MOVBKW CMPBKW CMPBKW STMW STMW LDMW LDMW CMPMW CMPMW

AL, m AW, m m, AL m, AW b w b w b, ia w, ia b w b w b w

B×H MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV

AL, i CL, i DL, I BL, I AH, i CH, i DH, i BH, i AW, i CW, i DW, i BW, i SP, i BP, i IX, i IY, i

C×H Shift Shift RET RET MOV MOV MOV MOV PREPARE DISPOSE RET RET BRK BRK BRKV RETI

b, i w, i (SP) DS1 DS0 b, i, rm w, i, rm 1, (SP) 1 3 1

D×H Shift Shift Shift Shift CVTBD CVTDB Undefined TRANS FPO1 FPO1 FPO1 FPO1 FPO1 FPO1 FPO1 FPO1

TRANSB

b w b, v w, v 0 1 2 3 4 5 6 7

E×H DBNZE DBNZE DBNZ BCWZ IN IN OUT OUT CALL BR BR BR IN IN OUT OUT

b w b w d d l, d si, d b, v w, v b, v w, v

F×H BUSLOCK Undefined REPNE REP HALT NOT1 Group1 Group1 CLR1 SET1 DI EI CLR1 SET1 Group2 Group2

REPNZ REPE

REPZ

CY b w CY CY DIR DIR b w

– –

– –

– –

– –

– –

– –

– –

– –

– –

– –

Note Same operation code as XCH AW, AW

Caution : The instruction in Groups 1 and 2, and Imm, and Shift are determined by bits 3 through 5
of the second byte of the instruction code (refer to Table C-2).
The instruction in Group3 is determined by the second byte of the instruction code (refer
to Table C-4).

201

APPENDIX C INSTRUCTION MAP

 Low
 Order

×0H ×1H ×2H ×3H ×4H ×5H ×6H ×7H ×8H ×9H ×AH ×BH ×CH ×DH ×EH ×FH
High
Order

0×H NOP LXI STAX INX INR DCR MVI RCL Undefined DAD LDAX DCX INR DCR MVI RRC

B, nn (nn) B B B B, n B B B C C C, n

1×H Undefined LXI STAX INX INR DCR MVI RAL Undefined DAD LDAX DCX INR DCR MVI RAR

D, nn (nn) D D D D, n D D D E E E, n

2×H Undefined LXI SHLD INX INR DCR MVI DAA Undefined DAD LHLD DXC INR DCR MVI CMA

H, nn (nn) H H H H, n H (nn) H L L L, n

3×H Undefined LXI STA INX INR DCR MVI SCF Undefined DAD LDA DCX INR DCR MVI CMC

SP, nn (nn) SP M M M, m SP (nn) SP A A A, n

4×H MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV

B, B B, C B, D B, E B, H B, L B, M B, A C, B C, C C, D C, E C, H C, L C, M C, A

5×H MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV

D, B D, C D, D D, E D, H D, L D, M D, A E, B E, C E, D E, E E, H E, L E, M E, A

6×H MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV

H, B H, C H, D H, E H, H H, L H, M H, A L, B L, C L, D L, E L, H L, L L, M L, A

7×H MOV MOV MOV MOV MOV MOV HLT MOV MOV MOV MOV MOV MOV MOV MOV MOV

M, B M, C M, D M, E M, H M, L M, A A, B A, C A, D A, E A, H A, L A, M A, A

8×H ADD ADD ADD ADD ADD ADD ADD ADD ADC ADC ADC ADC ADC ADC ADC ADC

B C D E H L M A B C D E H L M A

9×H SUB SUB SUB SUB SUB SUB SUB SUB SBB SBB SBB SBB SBB SBB SBB SBB

B C D E H L M A B C D E H L M A

A×H ANA ANA ANA ANA ANA ANA ANA ANA XRA XRA XRA XRA XRA XRA XRA XRA

B C D E H L M A B C D E H L M A

B×H ORA ORA ORA ORA ORA ORA ORA ORA CMP CMP CMP CMP CMP CMP CMP CMP

B C D E H L M A B C D E H L M A

C×H RNZ POP JNZ JMP CNZ PUSH ADI RST RZ RET JZ Undefined CZ CALL ACI RST

B nn nn nn B n 0 nn nn nn n I

D×H RNC POP JNC OUT CNC PUSH SBI RST RC Undefined JC IN CC Undefined SBI RST

D nn n nn D n 2 nn n nn n 3

E×H RPO POP JPO XTHL CPO PUSH ANI RST RPE PCHL JPE XCHG CPE Group0 XRI RST

H nn nn H n 4 nn nn n 5

F×H RP POP JP DI CP PUSH ORI RST RM SPHL JM EI CM Undefined CPI RST

PSW nn nn PSW n 6 nn nn n 7

– - –

– –

– –

– –

– –

– –

– –

Table C-1. Instruction Map (2/2)

(b) Emulation mode Note

– –

– –

– –

– –

– –

– -

– –

– –

– - – – – – – – – – – – – – – – – – – - – – – – – – – – – – – –

Caution : The instruction in Group0 is determined by the second byte of the instruction code (refer

to Table C-3).

Note Subject: other than V33A and V53A

202

APPENDIX C INSTRUCTION MAP

Table C-3. Group0 Codes Note

 Low
 Order

×0H ×DH ×FH
High
Order

0×H

E×H CALLN

i

F×H RETEM

Note Subject: other than V33A and V53A

Remark The blank column indicates an

undefined code.

Table C-2. Group1, Group2, Imm, and Shift Codes

 Note
000 001 010 011 100 101 110 111

Imm ADD OR ADDC SUB AND SUB XOR CMP

Shift ROL ROR ROLC RORC SHL SHR Undefined SHRA

Group1 TEST Undefined NOT NEG MULU MUL DIVU DIV

rm rm rm rm rm rm rm

Group2 INC DEC CALL CALL BR BR PUSH Undefined

rm rm id l, id id l, id rm

Note Bits 5 through 3 of second byte

– –

– –

– –

– –

Table C-4. Group3 Codes

 Low
 Order

×0H ×1H ×2H ×3H ×4H ×5H ×6H ×7H ×8H ×9H ×AH ×BH ×CH ×DH ×EH ×FH
High
Order

0×H

1×H TEST1 TEST1 CLR1 CLR1 SET1 SET1 NOT1 NOT1 TEST1 TEST1 CLR1 CLR1 SET1 SET1 NOT1 NOT1

b w b w b w b w i, b i, w i, b i, w i, b i, w i, b i, w

2×H ADD4S SUB4S CMP4S ROL4 ROR4

3×H INS EXT INS EXT

reg8 reg8 i i

E×H BRKXANote 1

i

F×H RETXANote 1 BRKEMNote 2

i i

– –

– – – – – –– – – – – – – – – – – –

– – – – – –

– – – – – –

– – – – – –

– – – – – –

– – – – – –

Notes 1. V33A and V53A only (undefined code for other than V33A and V53A)

2. Other than V33A and V53A (Undefined code for V33A and V53A)

Remark The blank column indicates an undefined code.

– – – – – –– – – – – – – – – – – – – – – – – –– – – – – –

– – – – – –

203

APPENDIX D CORRESPONDENCE OF MNEMONICS OF µPD8086 AND 8088

The instruction set of the 16-bit V series is upward-compatible with the µPD8086 and 8088.

Table D-1 shows register correspondence between the µPD8086/8088 and 16-bit V series, and Table D-2 shows

mnemonic correspondence.

Table D-1. Register Correspondence with µPD8086 and 8088

µPD8086, 8088 16-Bit V Series µPD8086, 8088 16-Bit V Series

AL AL AX AW

CL CL CX CW

DL DL DX DW

BL BL BX BW

AH AH SP SP

CH CH BP BP

DH DH SI IX

BH BH DI IY

204

Table D-2. Mnemonic Correspondence with µPD8086 and 8088

µPD8086, 8088 16-Bit V Series

AAA ADJBA

AAD CVTDB

AAM CVTBD

AAS ADJBS

ADC ADDC

ADD ADD

AND AND

CALL CALL

CBW CVTBW

CLC CLR1 CY

CLD CLR1 DIR

CLI DI

CMC NOT1 CY

CMP CMP

CMPS CMPBK/

CMPBKB/

CMPBKW

CS: PS:

CWD CVTWL

DAA ADJ4A

DAS ADJ4S

DEC DEC

DIV DIVU

DS: DS0:

ES: DS1:

ESC FPO1

HLT HALT

IDIV DIV

IMUL MUL

IN IN

INC INC

INT BRK

INT 3 BRK 3

INTO BRKV

IRET RETI

JA BH

JAE BNC/BNL

µPD8086, 8088 16-Bit V Series

JB BC/BL

JBE BNH

JC BC/BL

JCXZ BCWZ

JE BE/BZ

JG BGT

JGE BGE

JL BLT

JLE BLE

JMP BR

JNA BNH

JNAE BC/BL

JNB BNC/BNL

JNBE BH

JNC BNC/BNL

JNE BNE/BNZ

JNG BLE

JNGE BLT

JNL BGE

JNLE BGT

JNO BNV

JNP BPO

JNS BP

JNZ BNE/BNZ

JO BV

JP BPE

JPE BPE

JPO BPO

JS BN

JZ BE/BZ

LAHF MOV AH, PSW

LDS MOV DS0

LEA LDEA

LES MOV DS1,

LOCK BUSLOCK

LODS LDM/LDMB/

LDMW

µPD8086, 8088 16-Bit V Series

LOOP DBNZ

LOOPE DBNZE

LOOPNE DBNZNE

LOOPNZ DBNZNE

LOOPZ DBNZE

MOV MOV

MOVS MOVBK

MOVSB MOVBKB

MOVSW MOVBKW

MUL MULU

NEG NEG

NOP NOP

NOT NOT

OR OR

OUT OUT

POP POP

POPF POP PSW

PUSH PUSH

PUSHF PUSH PSW

RCL ROLC

RCR RORC

REP REP

REPE REPE

REPNE REPNE

REPNZ REPNZ

REPZ REPZ

RET RET

ROL ROL

ROR ROR

SAHF MOV PSW, AH

SAL SHL

SAR SHRA

SBB SUBC

SCAS CMPM/

CMPMB/

CMPMW

SHL SHL

µPD8086, 8088 16-Bit V Series

SHR SHR

SS: SS:

STC SET1 CY

STD SET1 DIR

STI EI

STOS STM/STMB/

STMW

SUB SUB

TEST TEST

WAIT POLL

XCHG XCH

XLAT TRANS

XLATB TRANSB

XOR XOR

– ADD4S

– BRKEM

– BEKXA

– CALLN

– CHKIND

– CMP4S

– DISPOSE

– EXT

– FPO2

– INM

– INS

– OUTM

– PREPARE

– REPC

– REPNC

– RETEM

– RETXA

– ROL4

– ROR4

– SUB4S

– TEST1

Remark –: No corresponding instruction

APPENDIX D CORRESPONDENCE OF MNEMONICS OF µPD8086 AND 8088

205

APPENDIX E INSTRUCTION INDEX (mnemonic: by function)

[Data transfer]

LDEA ... 94

MOV ... 97

TRANS ... 165

TRANSB ... 165

XCH ... 166

[Repeat prefix]

REP ... 124

REPC ... 126

REPE ... 124

REPNC ... 127

REPNE ... 128

REPNZ ... 128

REPZ ... 124

[Primitive block transfer]

CMPBK ... 61

CMPBKB ... 61

CMPBKW ... 61

CMPM ... 63

CMPMB ... 63

CMPMW ... 63

LDM ... 95

LDMB ... 95

LDMW ... 95

MOVBK ... 100

MOVBKB ... 100

MOVBKW ... 100

STM ... 153

STMB ... 153

STMW ... 153

[Bit field manipulation]

EXT ... 81

INS ... 92

[Input/output]

IN ... 88

OUT ... 114

[Primitive input/output]

INM ... 90

OUTM ... 115

[Addition/subtraction]

ADD ... 13

ADDC ... 17

SUB ... 155

SUBC ... 159

[BCD operation]

ADD4S ... 15

CMP4S ... 59

ROL4 ... 136

ROR4 ... 141

SUB4S ... 157

[Increment/decrement]

DEC ... 72

INC ... 89

[Multiplication/division]

DIV ... 75

DIVU ... 77

MUL ... 102

MULU ... 105

[BCD adjustment]

ADJ4A ... 19

ADJ4S ... 20

ADJBA ... 21

ADJBS ... 22

[Data conversion]

CVTBD ... 65

CVTBW ... 66

CVTDB ... 67

CVTWL ... 68

[Compare]

CMP ... 57

[Complement operation]

NEG ... 107

NOT ... 109

206

[Logical operation]

AND ... 23

OR ... 112

TEST ... 161

XOR ... 167

[Bit manipulation]

CLR1 ... 54

NOT1 ... 110

SET1 ... 144

TEST1 ... 163

[Shift]

SHL ... 147

SHR ... 149

SHRA ... 151

[Rotate]

ROL ... 134

ROLC ... 137

ROR ... 139

RORC ... 142

[Subroutine control]

CALL ... 49

RET ... 129

[Stack manipulation]

DISPOSE ... 74

POP ... 118

PREPARE ... 120

PUSH ... 122

[Branch]

BR ... 41

[Conditional branch]

BC ... 25

BCWZ ... 26

BE ... 27

BGE ... 28

BGT ... 29

BH ... 30

BL ... 25

BLE ... 31

BLT ... 32

BN ... 33

BNC ... 34

BNE ... 35

BNH ... 36

BNL ... 34

BNV ... 37

BNZ ... 35

BP ... 38

BPE ... 39

BPO ... 40

BV ... 48

BZ ... 27

DBNZ ... 69

DBNZE ... 70

DBNZNE ... 71

[Interrupt]

BRK ... 43

BRKV ... 45

CHKIND ... 52

RETI ... 132

[CPU control]

BUSLOCK ... 47

DI ... 73

EI ... 80

FPO1 ... 83

FPO2 ... 85

HALT ... 87

NOP ... 109

POLL ... 117

[Segment override prefix]

DS0: ... 79

DS1: ... 79

PS: ... 79

SS: ... 79

[Emulation mode control]

BRKEM ... 44

CALLN ... 51

RETEM ... 131

[Extended address mode control]

BRKXA ... 46

RETXA ... 133

APPENDIX E INSTRUCTION INDEX (mnemonic: by function)

207

APPENDIX F INSTRUCTION INDEX (mnemonic: alphabetical order)

[A]

ADD ... 13

ADD4S ... 15

ADDC ... 17

ADJ4A ... 19

ADJ4S ... 20

ADJBA ... 21

ADJBS ... 22

AND ... 23

[B]

BC ... 25

BCWZ ... 26

BE ... 27

BGE ... 28

BGT ... 29

BH ... 30

BL ... 25

BLE ... 31

BLT ... 32

BN ... 33

BNC ... 34

BNE ... 35

BNH ... 36

BNL ... 34

BNV ... 37

BNZ ... 35

BP ... 38

BPE ... 39

BPO ... 40

BR ... 41

BRK ... 43

BRKEM ... 44

BRKV ... 45

BRKXA ... 46

BUSLOCK ... 47

BV ... 48

BZ ... 27

[C]

CALL ... 49

CALLN ... 51

CHKIND ... 52

CLR1 ... 54

CMP ... 57

CMP4S ... 59

CMPBK ... 61

CMPBKB ... 61

CMPBKW ... 61

CMPM ... 63

CMPMB ... 63

CMPMW ... 63

CVTBD ... 65

CVTBW ... 66

CVTDB ... 67

CVTWL ... 68

[D]

DBNZ ... 69

DBNZE ... 70

DBNZNE ... 71

DEC ... 72

DI ... 73

DISPOSE ... 74

DIV ... 75

DIVU ... 77

DS0: ... 79

DS1: ... 79

[E]

EI ... 80

EXT ... 81

[F]

FPO1 ... 83

FPO2 ... 85

[H]

HALT ... 87

[I]

IN ... 88

INC ... 89

INM ... 90

INS ... 92

[L]

LDEA ... 94

208

LDM ... 95

LDMB ... 95

LDMW ... 95

[M]

MOV ... 97

MOVBK ... 100

MOVBKB ... 100

MOVBKW ... 100

MUL ... 102

MULU ... 105

[N]

NEG ... 107

NOP ... 108

NOT ... 109

NOT1 ... 110

[O]

OR ... 112

OUT ... 114

OUTM ... 115

[P]

POLL ... 117

POP ... 118

PREPARE ... 120

PS: ... 79

PUSH ... 122

[R]

REP ... 124

REPC ... 126

REPE ... 124

REPNC ... 127

REPNE ... 128

REPNZ ... 128

REPZ ... 124

RET ... 129

RETEM ... 131

RETI ... 132

RETXA ... 133

ROL ... 134

ROL4 ... 136

ROLC ... 137

ROR ... 139

ROR4 ... 141

RORC ... 142

[S]

SET1 ... 144

SHL ... 147

SHR ... 149

SHRA ... 151

SS: ... 79

STM ... 153

STMB ... 153

STMW ... 153

SUB ... 155

SUB4S ... 157

SUBC ... 159

[T]

TEST ... 161

TEST1 ... 163

TRANS ... 165

TRANSB ... 165

[X]

XCH ... 166

XOR ... 167

APPENDIX F INSTRUCTION INDEX (mnemonic: alphabetical order)

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 00.6

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	MAJOR REVISIONS IN THIS EDITION
	PREFACE
	CHAPTER 1 GENERAL
	1.1 Classification of Instructions by Function
	1.2 Instruction Word Format
	1.3 Functional Outline of Each Instruction
	1.3.1 Data transfer instructions
	1.3.2 Block manipulation instructions
	1.3.3 Bit field manipulation instructions
	1.3.4 I/O instructions
	1.3.5 Operation instructions
	1.3.6 BCD operation instructions
	1.3.7 BCD adjustment instructions
	1.3.8 Data conversion instruction
	1.3.9 Bit manipulation instructions
	1.3.10 Shift and rotate instructions
	1.3.11 Stack manipulation instructions
	1.3.12 Program branch instructions
	1.3.13 CPU control instructions
	1.3.14 Mode select instructions

	CHAPTER 2 INSTRUCTIONS
	2.1 Description of Instructions (in alphabetical order of mnemonic)
	2.2 Number of Instruction Execution Clocks

	APPENDIX A REGISTER CONFIGURATION
	A.1 General-Purpose Registers (AW, BW, CW, DW)
	A.2 Segment Registers (PS, SS, DS0, DS1)
	A.3 Pointers (SP, BP)
	A.4 Program Counter (PC)
	A.5 Program Status Word (PSW)
	A.6 Index Registers (IX, IY)

	APPENDIX B ADDRESSING MODES
	B.1 Instruction Address
	B.2 Memory Operand Address

	APPENDIX C INSTRUCTION MAP
	APPENDIX D CORRESPONDENCE OF MNEMONICS OF uPD8086 AND 8088
	APPENDIX E INSTRUCTION INDEX (mnemonic: by function)
	APPENDIX F INSTRUCTION INDEX (mnemonic: alphabetical order)

