
VRSeries™

MIPS RISCompiler and
C Compiler

November 1995

Programmer's Guide

NEC

MIPS RISCompiler and C Programmer's Guide

November 1995
DocumentNo.50777

About This Book

The RISCompiler system provides a consistent programming environ­
ment for all currently supported languages. This book describes the com­
ponents and programming tools that comprise the compiler system.

Who Should Read This Book?
This book is intended for:

• C programmers

• Programmers using other MIPS high-level languages,
supplementing the information in the programmer's guides for
these languages.

What Does This Book Cover?
Although the programming environment includes all standard UNIX
driver commands and system tools, this book does not describe those
tools in detail. For details, you may need to refer to the User's Reference
Manual and other associated publications.

This book contains implementation details on the supported languages. It
does not contain detailed reference information giving the syntax and def­
inition of each language.

For C programmers, this book provides information on compiling and
linking programs, storage mapping, language interfaces, and other infor­
mation specific tu the MIPS C implementation.

This book also provides infomation about improving program perfor­
mance and debugging programs. This information may be useful to pro­
grammers using any of MIPS RISCompilers (Pascal, or Fortran).

This book has the following chapters:

• Chapter 1: The Compiler System. Gives an overview of
components of the compiler system.

RISCompiler and C Programmer's Guide iii

• Chapter 2: Linker and Object Tools. Describes the linker and object
tools of the compiler. It also provides reference and guide
information in using the various options provided by the compiler
drivers.

• Chapter 3: Storage Mapping. Describes storage mapping for
variables in C.

• Chapter 4: Language Interfaces. Provides reference and guide
information in writing programs in C that can communicate with
Pascal or Fortran programs.

• Chapter S: Improving Program Performance. Describes the
profiling and optimization facilities available to increase the
efficiency of your programs, and how to use them.

• ·Chapter 6: Debugging Your Code. Shows how to use the source
level debugger features.

• Chapter 7: MIPS-C Implementation. Describes extensions and
modifications supported by the C compiler that differ from other C
implementations.

• Chapter 8: ANSI C Implementation. Describes features that are
new or different from MIPS-C.

• Appendix A: Byte Ordering. Describes how the big endian and
little endian byte ordering affect the mapping of data in storage.

• Index. Contains index entries for this publication.

-
Summary of Changes By Edition

July 1991 Edition

iv

The following summarizes the changes made to the February 1991 edition
of this manual:

• Chapter t. The Link Editor, Archiver, and Object Tools information
was removed from this chapter. lnfotmation on Language default
options was added. Information on Dynamic Shared Objects was
added. This chapter was also reorganized.

• Chapter 2. This is a new chapter. It describes the Linker and Object
Tools. It also explains how to make and use Dynamic Shared
Objects.

• Chapters 3 - 8. These chapters have been renumbered to reflect the
addition of chapter 2.

RISCompilerand C Programmer's Guide

About This Book

• General. Numerous minor technical and editoral corrections have
been made throughout this manual.

February 1991 Edition

The following summarizes the changes made to the December 1989 edition
of this manual:

• Chapter 6. The C language information formerly in Appendix A is
now in Chpater 6.

• Chapter 7. This is a new chapter that describes ASNI C features and
extensions.

• Appendix B. The big and little endian information is now in
Appendix A.

December 1989 Edition

The following summarizes the changes made to the December 1988 edition
of this manual:

• Name Change. The name of this manual was changed from
RISCompiler Languages Programmre's Guide to RISCompiler and C
Programmer's Guide.

• All Pascal discussion has been moved to the new MIPS Pascal
Programmer's Guide. Chapter 3 of this manual has a discussion of the
Cf Pascal interface.

• Appendix A. A description of the stdarg.h macros and the alloca.h
header file have been added.

• General. Numerous minor technical and editoral corrections have
been made throughout this manual.

December 1988 Edition

The following summarizes the changes made to the February 1987 edition
of this manual that appear in this edition:

• New Compiler Options. The -cord and -feedback driver options
were added to the summary of driver options in the table on p. 1-8.
The Reducing Cache Conflicts section in Chapter 4 has been added to
show how use of these options can create Si).."'11ificant improvements
in program performance.

RISCompiler and C Programmer's Guide

• New Link Editor Options: The -jmopt, and -nojmpopt link editor
options ,ue described in Table 1.1 in Chapter t. The Filling /ump
Delay Slots section in Chapter 4 describes when to use these options.

• Pascal: the text in Chapter 2 (pg. 2-9) concerning the mapping of
Pascal objects has been greatly expanded with additional rules and
examples. Additional information has also been provided in
Chapter 3 (p. 3-2) on the interface between programs written in
Pascal and those written in C.

• Index. Approximately 200 entries have been added to the Index,
enhancing the ability to retrieve information from this manual more
efficiently.

• General. Numerous minor technical and editorial corrections have
been made throughout the manual.

For More Information

vi

You may need to refer to the following as you use this manual:

• MIPS Assembly Language Programmer's Guide (ASM-01-DOC)

• MIPS RISC/os Programmer's Reference Manual (ROS-01-DOC)

• MIPS RISC/os User's Reference Manual (ROS-02-DOC)

• MIPS Pascal Programmer's Guide (PAS-01-DOC)

• The C Programming l.Anguage by Kernighan and Ritchie (Prentice Hall,
1978).

RISCompiler and C Programmer's Guide

•

Contents

About This Book .
Who Should Read This Book? ... iii
What Does This Book Cover? .. iii
Summary of Changes By Edition .. iv

July 1991 Edition : ... iv
February 1991 Edition ... v
December 1989 Edition ... v
December 1988 Edition , .. v

For More Information ... vi

1
The Compiler System

Operational Overview .. 1-1
Driver .. 1-4

Languages Supported .. 1-4
Files ... 1-4
Default Options ... 1-5
Compiling Multi-Language Programs 1-7
Linking Objects ... 1-8

Compiler Options ... 1-9
System V Release 4 Options .. 1-14
Byte Ordering Options .. 1-14
Debugging Options .. 1-15
Profiling Option .. 1-15
Optimizer Options .. 1-15
Compiler Development Options .. 1-16

Including Common Files (Definition Files) 1-18
Dynainic Shared Objects.. 1-19

RISCompiler and C Programmer's Guide vii

2
Linker and Object Tools

Link Editor ... 2-1
Dynamic vs. Static Object Files : 2-2

Building Dynamic Shared Objects 2-2
Reference to so_locations ... 2-2
Dependencies .. 2-3

Building Static Objects .. 2-3
Using Dynamic Shared Objects ... 2-4

Why Use Dynamic Objects? .. 2-4
Requirement .. 2-4
Calling Conventions ... 2-4
Recommendations .. 2-5

Using Static Objects .. 2-5
Why Use Static Objects .. 2-5

~pecifying Libraries .. 2-5
Multiple Language Programs .. 2-5

Link Editor Options .. 2-6
Runtime Linker (rid) ... 2-11

Quickstart ... 2-11
Timestamp, Checksum and Interface Version 2-11

rld Options ... 2-11
Object File Tools ... 2-12

Dumping Selected Parts of Files (odump) 2-13
Listing Symbol Table Information (nm) 2-20
Determining a File's Type (file) .. 2-24
Determining a File's Section Sizes (size) 2-24

Archiver .. 2-26
ar Command Examples ... 2-26
Archiver Options .. 2-27

3
Storage Mapping

C Language ... ; 3-1
Alignment, Size, and Value Ranges ... 3-2
Storage of C Arrays, Structures, and Unions 3-3

Arrays ... 3-3
Structures .. 3-3

Unions : ... 3-7

viii RISCompiler and C Programmer's Guide

Storage Classes .. 3-7
Auto ... 3-7
Static .. 3-7
Register ... 3-7
Extern .. 3-7
Volatile .. 3-8

4
Language Interfaces

Pascal /C Interface ... 4-1
Single Precision floating point .. 4-2
Procedure and function parameters ... 4-2
Pascal by-value arrays ... 4-2
File Variables ... 4-3
Strings ... 4-3
Variable number of arguments .. 4-5
Type checking .. 4-5

Main() Routine .. 4-5
Calling Pascal from C ... 4-6

Return Values .. 4-6
C to Pascal arguments .. 4-7
Calling C from Pascal ... 4-10

FORTRAN/C Interface ... 4-14
Procedure and Function Names ... 4-14
Invocations ... 4-14
Arguments ... 4-15
Array Handling ... -18
Accessing Common Blocks of Data .. 4-19

5
Improving Program
Performance

Introduction .. 5-1
Profiling .. 5-2

Overview .. 5-2
How Basic Block Counting Works ... 5-8
Averaging Prof Results .. 5-10
PC-Sampling ... 5-10
Creating Multiple Profile Data Files 5-12

RJSCompiler and C Programmer's Guide ix

Running the Profiler (prof) .. 5-12
Global optimizer ... 5-15
Benefits ... 5-16
Optimization and Debugging 5-16
Optimization and Bounds Checking 5-16
Loop Optimization .. 5-16
Register Allocation ... 5-19
Optimizing Separate Compilation Units 5-19

Optimization Options .. 5-19
Full Optimization (-03) ... 5-22
Optimizing Large Programs ... 5-24
Optimizing Frequently Used Modules 5-24
Building a Ucode Object Library .. 5-27
Using Ucode Object Libraries ... 5-27
Improving Global Optimization ... 5-28

C, Pascal, and FORTRAN Programs 5-28
C and Pascal Programs .. 5-28
Pascal Programs Only .. 5-31
C Programs Only .. 5-31

Improving Other Optimization .. 5-32
C, Pascal, and FORTRAN Programs 5-32
C Programs Only .. 5-33
Pascal Programs Only .. 5-33

Limiting the Size of Global Data Area ... 5-34
Purpose of Global Data .. 5-34
Controlling the Size of Global Data Area 5-35
Obtaining Optimal Global Data Size 5-35
Examples (Excluding Libraries) ... 5-35
Example (Including Libraries) .. 5-36

Reducing Cache Conflicts .. 5-36
Filling Jump Delay Slots ... 5-39

6
Debugging Programs

Introduction ... 6-2
Why Use a Source-Level Debugger? 6-2
What Are Activation Levels? .. 6-3
Isolating Program Failures .. 6-4
Incorrect Output Results .. 6-4
A voiding Pitfalls ... 6-4

x RISCompiler and C Programmer's Guide

Running dbx ... 6-5
Compiling a Program for Debugging 6-5
Building a Command File .. 6-6
Invoking dbx .. 6-6
Ending dbx (quit) .. 6-8

Using dbx Commands .. 6-8
Command Syntax ... 6-8
Qualifying Variable Names ... 6-9
dbx Expressions and Precedence .. 6-10
dbx Data Types and Constants ... 6-11
Basic dbx Commands ... 6-12

Working with the dbx Monitor ... 6-13
Using the Command History .. 6-13
Editing the dbx Command Line .. 6-14
Entering Multiple Commands .. 6-15
Completing Symbol Names .. 6-16

Controlling dbx ... 6-16
Setting dbx Variables ... 6-16
Removing Variables ... 6-17
Predefined dbx Variables ... 6-18
Creating Command Aliases (alias) ... 6-22
Removing Command Aliases (urialias) 6-22
Predefined dbx Aliases .. 6-23
Recording Input .. 6-25
Recording Output (record output) .. 6-26
Playing Back Input ... 6-27
Playing Back Output ... 6-27
Invoking a Shell from dbx ... 6-28
Checking Shared Objects in Shared Environment 6-28
Checking the Status (status) .. ~-29
Deleting Status Items .. 6-29

Examining Source Programs ... 6-30
Specifying Source Directories ... 6-30
Moving to a Specified Procedure ... 6-31
Specifying Source Files ... 6-32
Listing Source Code .. 6-33
Searching Through Code ... 6-34
Calling an Editor from dbx (edit) ... 6-34
Printing Qualified Variable Names .. 6-35
Printing Type Declarations ... 6-35

Controlling the Program .. 6-36

RISCompiler and C Programmer's Guide xi

Running the Program ... 6-36
Executing Single Lines of Code .. 6-37
Returning from a Procedure Call ... 6-38
Starting at a Specified Line .. 6-39
Continuing after a Breakpoint .. 6-39
Assigning Values to Program Variables 6-40

Setting Breakpoints .. 6-41
Overview .. 6-41

· Setting Breakpoints at Lines .. 6-42
Setting Breakpoints in Procedures ... 6-43
Setting Conditional Breakpoints .. 6-44
Tracing Variables .. 6-44
Writing Conditional Code in dbx ... 6-45
Stopping at Signals ... 6-46

Examining Program State .. 6-47
Stack Traces ... 6-47
Changing Activation Level .. 6-48
Printing .. 6-49
Printing Register Values .. 6-50
Printing Information about Activation Level.. 6-51

Debugging Machine Code ... 6-52
Setting Breakpoints in Machine Code 6-53
Continuing after Breakpoints in Machine Code 6-54
Executing Single Lines of Machine Code.............................. 6-54
Printing the Contents of Memory .. 6-56

Debugger Command Summary .. 6-58
Sample Program .. 6-64

7
MIPS C Implementation

Introduction ... 7-1
Additional Driver Options .. 7-2

ccom options .. 7-2
Translation Limits ... 7-5
MIPSC ... 7-5

Varargs.h Macros .. 7-6
Stdarg.h Macros ; ... 7-8
Deviations .. 7-10
Extensions ... 7-10
Header Files ... 7-10

xii RISCompiler and C Programmer's Guide

Compatibility ... 7-11
Differences Between OldC and All Modes 7-11
OldC and MIPS C (-stdO) .. 7-12
OldC and ANSI C (-stdl) .. 7-12
MIPS-C (-stdO) and ANSI C (-stdl) 7-13
ANSI C (-stdl) and ANSI C with extensions (-std) 7-14
Special Options for Compatibility .. 7-14

8
ANSI C Implementation

Introduction .. 8-1
Translation Limits ... 8-2
Preprocessor : ... 8-3

Directives ... 8-3
New Directives .. 8-4

#Eli .. 8-4
#Error -... 8-4
#Pragma ... 8-4
Intrinsic Pragma .. 8-4
Function Pragma ... 8-5
Weak Pragma ... 8-5
Pack Pragma ... 8-5

Directives with Additional Functionality 8-6
Defined 8-6
#Include. 8-6
#Line ... 8-6

Macros .. 8-6
Operators ... ; 8-6
New macros ... 8-6
Predefined Macros .. 8-7

Expressions .. 8-7
Language .. 8-7

Trigraph sequences ... 8-7
main() .. 8-8
Declarations ... 8-8

Keywords... 8-8
Identifier Name Space .. 8-8
Constants .. 8-9
Unsigned Constants ~ 8-9
Floating-point Constants ... 8-9

RISCompiler and C Programmer's Guide xiii

Wide Constants ... 8-9
String Constants .. 8-9
Type modifiers ... 8-10
Types ... 8-10
Typedefs ... 8-10
Empty Declarations .. 8-11
Tag less declarations 8-11

Structs, Unions, Arrays .. 8-11
Arrays .. 8-11
Structures and Unions ... 8-11

Expressions .. 8-12
Operators ... 8-12
Arithmetic ... 8-12
Integral Promotions .. 8-12
Conversion Rules ... 8-13
Sequence Points ... 8-13

Pointers .. 8-14
Functions .. 8-14

Function Prototypes 8-14
Function Pointers .. 8-15

Implementation Defined Behavior ... 8-15
Translation ... 8-15
Environment .. 8-16
Identifiers ... 8-16
Characters ... 8-16
Integers .. 8-17
Floating Point .. 8-18
Arrays and Pointers .. 8-18
Registers ... 8-18
Structures, Unions, Enumerations, and Bit-fields 8-18
Qualifiers .. 8-19
Declarators ... 8-19
Statements .. 8-19
Preprocessing Directives ... 8-19
Library Functions .. 8-20

Quiet Changes ... 8-23
Extensions to ANSI C ... 8-24

Comments .. 8-25
alloca ... 8-25
alignof ... 8-25
cast lhs .. 8-25

xiv RISCompiler and C Programmer's Guide

A
Byte Ordering

What Is Byte Ordering? ... A-1
Big-Endian Byte Ordering .. ; ... A-1

RISCompiler and C Progrmnmrr's Guide xv

xvi RISCompiler and C Programmer's Guide

The Compiler System

1

This chapter provides an overview of the compiler system. the languages
supported and the tools used to create programs.

In addition to the compilers (e.g. C, Pascal) there are text editors for
writing and editing programs, a debugger, a profiler, utilities to examine
object files, and an archiver. The compiler tools and their functions are
summarized in Table 1.1.

Table 1.1: Compiler System and Functions

Task
Write and Edit programs
Compile, Link
and Load Programs
Debug Programs
Profile Programs
Optimize Programs
Examine Object File(s)
Build Libraries

Operational Overview

Tool
vi, emacs
cc, Id

dbx
pixie, prof
pixie, prof, cache
nm, file, size and odump
ar

Figure 1.1 shows the relationship between the major components of the
compiler system and their primary inputs and outputs.

RISCompiler and C Programmer's Guide 1-1

Chapter 1

~~
~CTI
Source files

l
Front Ends

Assembler (C, Pascal, Fortran) ~ Ucode library asO (cfe, upas, fcom)
.....
Y-03 or-j --

Ucode Link ~ (uld)

I
Procedure Merge

(umerge)

I

-02 Global Optimizer
_.. (uopt) (,I -

l
-S~ -01 Code Generator .. .s Assembler file .. (ugen) 0 -

l ~
_..-c l:J Assembled

Assemble
object file ... -

~~
(as1)

Glinked l Object file

•
0

Link Edit .. (Id) ~ Shared objects - ..
Figure 1.1: The Compiler System Driver

1-2 RISCompiler and C Programmer's Guide

The Compiler System

Note: FOR1RAN uses additional preprocessors (see Figure 1.2). For more
information, see the ejl(V, ratfor(1), and m4(1) manual pages in the
RISC/os User's Reference Manual.

efl

m4

ratfor

-cpp driver option

C Macro
Preprocessor (cpp)

FORTRAN
Front End

Figure 1.2: The FORTRAN Preprocessors

RJSCompiler and C Programmer's Guide

Source file

1-3

Chapter 1

Driver
Each language has its own driver. These driver programs invoke the
components of the compiler system to compile a program: the macro
preprocessor (cpp), the compilers (C, FORTRAN 77, 'Or Pascal), the
assembler, and the link editor.

Languages Supported

Files

1-4

The compiler system supports four languages. Please note that the
operands for each of the languages, except MIPS Assembly, are the same:
[compiler options], [link options] and [source name list]. MIPS Assembly
does not use [link options]. Table 1.2 lists the supported languages and
their drivers.

Table 1.2: Compiler Drivers

Lan_g_u~e Driver Name

c cc
FORTRANn tn
MIPS Assembly as
Pascal pc

Note: The languages supported by any one system are determined at the
time of purchase. The configuration of your particular system may not
support all of the languages. Each language requires different libraries at
link time. The driver program for a language passes the appropriate li­
braries to the link editor.

The driver recognizes the contents of an input file by the suffix assigned to
the filename, as shown in Table 1.3.

RISCompilerand C Programmer's Guide

Default Options

The Compiler System

Table 1.3: Driver Recognized File Suffixes

File Suffixes
Suffix _[)_esc r!P_tion
. a Static (non-shared} ob1ect library .
. B Ucode object library .
. c c source code .
. e Elf source .
.f Fortran 77 source .
.i Assumes the source code was already processed

by the C preprocessor and is in the language
expected by the driver. For example,

pc -c source.i
assumed source.i contains Pascal source statements.

. 0 Object file .

. p Pascal source code .

. r Ratfor source code .

. s Assembly source code .

. so Dynamic shared object library .

. u Ucode object file .

Note: The assembly driver as assumes that any file, regardless of the suf­
fix, contains assembly language statements; as accepts only one input
source file.

The driver predefines the following macros for each language. They are:

C (stdO mode):
-DLANGUAqE_C ·D_LANGUAGE_C
-Dunix -D_unix
-Dhost_mips -D_host_mips
-DCFE -D_CFE
-DSYSTYPE_SVR3 -D_SYSTYPE_SVR3
-DMIPSEB -D_MIPSEB
-Dmips=l -D_mips=l

For machines using R6000 architecture, _Drnips=2 is predefined instead of
_Dmips=l.

For machines using R4000 architecture, _Drnips=3 is predefined instead of
_Dmips=l.

RISCompiler and C Programmer's Guide 1-5

Chapter 1

1-6

C (stdl/std mode (alternative))
-O_LANGUAGE_C
-O_unix
-O_mips=l
-O_host_mips
-O_CFE
-O_SYSTYPE_SVR3
-O_MIPSEB

Assembly
-OLANGUAGE_ASSEMBLY
-Ounix
-Omips=l
-Ohost_mips
-SYSTYPE_SVR3
-OMIPSEB
-0_050_

FORTRAN (only with -cpp)
-OLANGUAGE_FORTRAN
-Dunix
-Omips=l
-Ohost_mips
-OSYSTYPE_SVR3
-OMIPSEB
-0_050_

Pascal
-OLANGUAGE_PASCAL
-Ounix
-Omips=l
-Ohost_mips
-DSYSTYPE_SVR3
-OMIPSEB
-0_050_

-O_LANGUAGE_ASSEMBLY
-O_unix
-O_mips=l
-O_host_mips
-O_SYSTYPE-SVR3
-O_MIPSEB

-O_LANGUAGE_FORTRAN
-O_unix
-O_mips=l
-O_host_mips
-O_SYSTYPE-SVR3
-D_MIPSEB

-D_LANGU AGE_PASCAL
-O_unix
-O_mips=l
-O_host_mips
-O_SYSTYPE-SVR3
-O_MIPSEB

RISCompiler and C Programmer's Guide

The Compiler System

Compiling Multi-Language Programs

When the source language of the main program differs from that of a
subprogram, compile each program separately with the appropriate
driver and link them in a separate step. It is possible to create objects
suitable for link editing by specifying the-c option, which stops the driver
immediately after the assembler phase.

For example:

% cc -c rnain.c more.c
% pc -c rest.p

produces the results shown in Figure 1.3.

El
main.c more.c

Preprocessor

C Front End

Code Generator

Assembler

El El
main.o more.o

El
rest.p

Preprocessor

Pascal
Front End

Code Generator

Assembler

El
rest.o

Figure 1.3: Compiler Control Flow with-<: Option

RISCompiler and C Programmer's Guide 1-7

Chapter 1

Linking Objects

1-8

A driver command is used to link edit separate objects into one executable
program. When the -< option is not used, the driver compiles and link
edits the specified modules. If the modules are all object files, they are
link-edited into one executable program. It is possible to link edit the
objects created in the last example using the Pascal driver pc, as shown
below:

% pc -o all main.a more.a rest.a

This command produces the executable object all. The example below
achieves the same result using the C driver cc:

% cc -o all main.a more.o rest.a -lp

The cc driver links with libc and libdw by default. It is your responsibility
to link code with any additional libraries. In the above example, -Ip spec­
ifies the Pascal runtime library.

The Pascal and FORTRAN drivers pc andf77 automatically link with the
necessary libraries, including libc.
Figure 1.4 shows the flow of control for both the pc and cc commands
shown above.

El El El
main.o more.a rest.o

w
~ I Pascal I

[] Link Editor --- ~ I Math

~ ~
a.out Link libraries

Figure 1.4: Compiler Control Flow of cc and pc

The link editor is described in more detail in Chapter 2. For a detailed list
of the default libraries used by each driver, see the cc(1), [77(1), or pc(1)
manual pages i~ the RISC/as User's Reference Manual.

RISCompiler and C Programmer's Guide

The Compiler System

Compiler Options
There are several different types of compiler options. These include:

• General Options

• Byte Ordering Options

• Debugging Options

• Profiling Options

• Optimizer Options

• Compiler Development Options

Some options.have defaults which are used when you do not specify an
option on the command line. The tables below summarize the different
types of options, ~d indicate which of the options are default options.

Table 1.4 summarizes the general compiler options.

Note: The table lists only the most frequently used options; it does not list
all available options. See the cc(1),p7(1), or pc(1) manual page in the
RISC/os User's Reference Manual for a ~omplete list of available options.

RISCompiler and C Programmer's Guide 1-9

Chapter 1

Table 1.4: Compiler Options, 1 of 4
General ComJtiler ODtions

fOPtion Name Purpose
-B string Append string to all names specified by the -t option.
-C C and Assembly drivers only. Used with the -P and -E

options. Prevents the macro preprocessor from stripping
comments. Use this option when you suspect the
preprocessor is not emitting the intended code to examine
the code with its comments.

-C Pascal and FORTRAN drivers only. Generates code that
causes range checking for arrays during program execution.

-c Prevents the link editor from linking the program after
compilation. This option forces the compiler to produce a .ofile.

-call_ shared Produce dynamic executable that uses sharable objects
during Nn-time (default).

-check_ bounds For C drivers only. Generates code that causes range
checking for arrays during program execution.

-cord Rearrange the procedures in the link edit object file to reduce
cache conflicts in the executable object (a.out). At least one
-feedback file must be specified. See Chapter 5 for more
information.

-cpp Run the C macro preprocessor on the source code before
compiling. The default varies from driver to driver. Refer to the
appropriate man page in RISC/os User's Reference Manual for
the individual driver.

-crtO Use crtO.o as the compiler startup routine in BSD-like
environments.

-crt1 Use crt1 .o and crtn.o as compiler startup and finish
routines in Sys V-like environments (default).

-Dnameor Define a macro name if a #define is specified ·in the
-Dname=def program. If =def is omitted, the compiler defines

the name to be 1.
·E Run only the C macro preprocessor and send the results to the

standard output. Specify -C to retain comments for C and
Assembly code. Use -E when you suspect the preprocessor
isn't emitting the intended code.

·edit (0-9] Invoke the eitor of choice when syntax or symantic errors
are detected by the compiler's frontend.

. -feedback file When used with the -Cord option produces an object with the
procedures rearranged to reduce cache conflicts.
file is the output produced when using the -prof and
-feedback options.

-float Cause the compiler not to promote expressions of type
float to type double.

1-10 RISCompiler and C Programmer's Guide

The Comj:Jiler System

Table 1.4: Compiler Options, 2 of 4
General Conutllar 0..J!tions

Option Name Pu~oae
-framepointer Assert the requirement of frame pointer for all procedures defined

in the source code
-G num num is a decimal number that specifies the maximum size in bytes

of an item to be placed in the global pointer area.
The default is 8 bytes. Change num to control the number of data
items placed in these sections. See Chapter 5 for more information.

-h path Use path rather than the directory where the name is normally
found.

-L When specified in addition to -L dirname, the compiler searches
the default directory.

-Ldirname Compiler searc'1es the current directory, dirname, and the default
directory, lusr/inc/ude, in this order, for the include file.

-j Similarto-c. Produces a .ufile containing ucode. Does not produce
a .o file, unless used with -c.

-k option option is one of the link editor options. The driver passes it to
the ucode loader, which then performs the link action specified
by option.

-ko filename filename is the name of the output file to be created by the
ucode loader.

-M Cause cpp to print, one per line on standard output, the path names
of included files.

-mips1 Generates mips1 instructions (R2000/R3000 architecture) and
object file. This is the default for all machines.

-mips2 Generate mips2 instruction (R6000 architecture) and object
file. The resultant binary will not be executable on a mips1
machine.

-mips3 Generate code using the instruction set of the R4000 RISC
Architecture.

-noinline Disable the inlining performed under the -03 option.
-nocpp Do not run the C macro preprocessor on C and Assembly source

files before processing.
-non_ shared Produce an executable that does not use shared objects.
-0 limit Specify the maximum size, in basic blocks, of a routine that will

be optimized by the global optimizer.
-o filename Assigns the name filename to the program object. When used

with the -c option, tells where to leave the .o file. The default
filename is a.out.

RISCompiler and C Programmer's Guide 1-11

Chapter 1

Table 1.4: Compiler Options, 3 of 4

General Compiler Options
Option Name Purpose

-oldc Use the old MIPS-C preprocessor (cpp) and C front end (ccom).
Use this option if the new preprocessor and front end (de), the
defaults, fail to compile or correctly execute code when compiled
with-stdO.

-oldcomment In the preprocessor, delete comments (replace with nothing),
rather than replace comments with a space. This allows
traditional token concatenation. This is the default in -stdO mode.

-P Similar to -E option, placing the results in a .ifile. Specify both
-P and -C to retain comments.

-po Do not permit any profiling (default).
-p1 or-p · Permit program counter (pc) sampling. This provides operational

statistics to use in improving program performance. This option
affects only the link editor. It is ignored by the compiler front ends.

-proto [is] Invoke the prototizer. This assists in the creation of function
prototypes and is useful in converting non-ASNI C programs to
ANSI C. This takes one or more source files as input and
creates a .Hfile for each. The .Hfile contains function
prototypes for all functions in the file. No .H file is created if the
file has compilation errors or if there are conflicting declarations.

-Q Cause cpp to use' (single quotes) for the string literal in the
FILE expansion (default it to use• (double quotes)).

-S Similar to -c, producing Assembly code in a .s file instead of
object code in a .o file.

-signed Cause all char declarations to be signed char declarations. Default
is unsigned char.

-std Cause cpp to define _STDC_ with the value O, and enforce
the ANSI C standard with popular extensions. Issues a
warning message when the compiler finds a non-standard feature
in the programming language of the source program.

-stdO Indicates that the programming language is MIPS-C (K & A with
extensions); the macro _STDC_ is undefined. This is the default.
See Chapter 7 for details on MIPS-C features and extensions.

-std1 Indicates the programming language is strict ANSI C and causes
the macro _STDC_=1 to be asserted by the preprocessor. Any
non-standard features used cause error messages. See
Chapter 8 for details on ANSI C.

1-12 RISCompiler and C Programmer's Guide

Ootion Name
-systype name

-trapuv

-Una me

-unsigned

-V

·V

-varargs
-verbose

-volatile
-w or -w1
·w2
-w3

-Zpn

The Compiler System

Table 1.4: Compiler Options, 4 of 4

j!ener~l~o~le_! _Qpt1ons
~ae

Use the specified compilation environment name. Supported
environments are bsd4, svr3 (default) and svr4.
This has the effect of changing the directory searched for
#include files and runtime libraries. /name is added to the .
beginning of the usual search path.
Forces all uninitialized stack, automatic and dynamically
allocated variables to be initialized with OxFFFASASA.
When used as a floating-point variable, it is treated as a
floating-point NaN and causes a floating-point trap. Do not
use as a pointer, because a segmentation violation occurs.
Overrides a definition of a macro name specified with the
-D option, or one that is defined automatically by the driver.
Cause all char declarations to be unsigned char
declarations.
Print the version number of the driver and its phases. Use
the version number when reporting a problem.
Lists compiler phases as they are executed. For BSD 4.3
users, this also prints resource usage of each phase.
Print warnings for lines that may require the varargs.h macros.
This option causes output of the long form of error and
warning messages. These may give the user some hint as to
the reason the compilation failed.
Cause all variables to be treated as volatile.·
Suppress warning messages.
Abort on warning message as if an error occurred.
Suppress warning messages, but exit with non-zero exit
status when warnings occur.
Align structure members on alignment specified by the integer
n.

Note: There are certain restrictions in mixing compiler options. These
include:

• The -oldc flag cannot be used with std1.

• The -oldc flag cannot be used with std.

RISCompiler and C Programmer's Guide 1-13

Chapter 1

Byte Ordering Options

The compiler can produce program objects which are executable on target
machines with either a big-endian or little-endian byte ordering scheme.
By default, the compiler produces program objects executable on target
machines with the same byte ordering scheme as the compilation machine.

Specify one of the options shown Table 1.5 when the byte ordering scheme
on the compilation machine differs from that on the target machine.

Table 1.5: Byte Ordering Compiler Options
Byte Ordering_ Options

0]lt1onl!ame ..e.llm.ose
·EB Produces an object file for a target machine that

uses a big-endian scheme. Use this option when
compiling on a little-endian machine.

-EL Produces an object file for a target machine that
uses little-endian scheme. Use this when
compiling on a big-endian machine.

See Appendix A for more information on big~ndian and little-endian
byte ordering.

Debugging Options

1-14

Table 1.6 shows the compiler options available for debugging source code
using dbx. Chapter 6 describes the functions and operations.

Table 1.6: Debugging Options
Oeb~n_i O_.e.tions

O_i;rtion Name PllmQ_se
-go Default option. Produces a program object without

debugging information. Reduces the size of the program
object and should be used when debugging is no longer
required. Retains all optimizaton.

-g1 Permits accurate, but limited, source level debugging.
Retains most optimizations.

-g or -g2 Permits full source level debugging. Often suppresses
optimizations that might interfere with full debugging.

-g3 Permits full, but inaccurate, debugging on fully
optimized code. Debugger output may be confusing or
misleading. Specify this option for programs that
malfunction only after attempting to optimize them.

RISCompiler and C Programmer's Guide

Profiling Option

The Compiler System

The pixie and prof programs (see Chapter 5) allow you to profile programs.
The-p option to the driver causes the program to be linked with a module
that produces a file man.out when the program is executed. man.out con­
tains program-counter sampling information.

Optimizer Options

Table 1.7 summarizes the options available for program optimization.
Refer to Optimization section in Chapter 5 for a detailed explaination of
optimizing code. See also the cc(1),f77(1), or pc(1) manual page, as
applicable, in the RISC/os User's Reference Manual for details on the-03
option, and the input and output files related to this option.

Table 1.7: Optimizer Options

O_Mimizer O~tions
0Jition Name Pu..m_ose
-0 or 02 Global optimization. Optimizes within the bounds of

-00

-01

-03

individual COfTl'.>ilation units. This option executes global
optimizer (uopt) phase.
No optimization. Prevents all optimizations, including the
minimal ones normally performed by the code generator
and the assembler.
The assember and the code generator perform as many
optimizations as possible without affecting performance.
This is the default.
Performs global register allocation across the bounds of
individual compilation units. Executes the uld, umerge
and uopt phases of the compiler system. This option
cannot be used with the -c compiler option. No shared
objects will be produced with this option.

Note: When the optimization level is -02 or less, the link editor defaults
to building an executable which uses shared objects. You cannot mix -03
optimization with [-call_shared].

Compiler Development Options

In addition to the standard options, each driver also has options which
primarily aid compiler development work. Table 1.8 shows the compiler
options available for development work. For complete information about
these options see the cc(1), pc(1), or f77(1) man page, as appropriate, in the
RJSC/os User's Reference Manual

RISCompiler and C Programmer's Guide 1-15

Chapter 1

Option Name
-He

-K

-t

Table 1.8: Compiler Development Options
Puroose
Halt compiling after the pass specified by the character c,
producing an intermediate file for the next pass. It selects
the compiler pass in the same way as the -t option. If this
option is used, the symbol table file produced and used
by the passes is the last component of the source file
with the suffix changed to . T and is not removed.
Build and use intermediate file names with the last
component of the source file's name. These intermediate
files are never removed even when a pass encounters a
fatal error. When ucode linking is performed and the -K
option is specified, the base name of the files created is
u.out by default.
Select the names from the list below. The names selected
are those designated by the characters following the -t option
according to those listed below. The arguments are
processed from left to right so their order is significant. The
-B option is always required when using -t.
Character Name
h include
pf cfe
p (with -oldc) cpp
f ccom (with -oldc), efe, fcom, upas
d ddopt
q uoptO
j ujoin
u uld
s usplit
m
0

c
a
b
I

umerge
uopt
ugen
asO
as1
Id

y ftoc
z cord
r [m]crt [1 n].o
n libprof1 .a
t btou, utob

-We [c ...]. arg1[.arg2 ...] Pass the argument[s] argito the compiler pas&'passes:
c {c ...]. The e's are one of [pfjusmocablyz). The e's select
the compiler pass in the same way as the -t option.

1-16 RISCompiler and C Programmer's Guide

The Compiler System

Including Common Files (Definition Files)
When writing programs, there are often header (or include) files that are
shared among a program's modules. These files define constants, the pa­
rameters for system calls, procedure prototypes, etc.

Header files have a .h suffix. Typically, the manual page for a library
routine or system call from the RISC/os Programmer's Reference Manual
indicates the required include files. Header files can be used in programs
written in different languages; header files are handled by the
preprocessor.

Note: If you intend to debug your program using dbx (see Chapter 6), do
not place executable code in an include file. The debugger interprets an
include file as one line of source code; none of the source lines in the file
appear during th~ debugging session.

You can include header files in program source files in one of two ways:

• Place the following line in a source file; it must begin in column 1:

#include "filename"

•

where filename is the name of the include file. The double quotes
around the filename indicate that the C macro preprocessor is to
search in sequence the current directory and the default directory,
/usr/include.

Place the following line in a source file; it must begin in column 1:

#inc 1 ude <filename>

where filename is the name of the include file. The greater-than and
less-than signs around the filename indicate that the C macro
preprocessor is to skip the current directory and search only the
default directory /usr/include for the include file. ·

The -systype name compiler option can be used to change the compilation
environment. Currently supported values for name are bsd43, svr3 and
svr4. The -systype option has the effect of changing the default directories
that are searched for include files and libraries. If no sys type is provided,
the compilers driver defaults to systype svr3.
C, Pascal, FORTRAN 77, and assembly code can reside in the same include
files, and then can be conditionally included in programs as required. To
set up a sharable include file, you must create a .h file and enter the
respective code as shown in Figure 1.5.

RJSCompiler and C Programmer's Guidi' 1-17

Chapter 1

#ifdef _LANGUAGE_C ..
#endif

Ccode

#ifdef _LANGUAGE_PASCAL

: ... Pascal code
#endif
#ifdef LANGUAGE_FORTRAN

._.,.. _____ Fortran code

#endif
#ifdef _LANGUAGE_ASSEMBLY

MIPS Assembly code
#endif

Figure 1.5: Sharable Include File

Dynamic Shared Objects

1-18

MIPS RISCompiler supports dynamic shared objects (dso). Dynamic
shared objects save disk storage. They have few restrictions on memory
placement.

Use the link editor (ld) to build dynamic shared objects.

Use the runtime linker (rid) to link dynamic shared objects.

Refer to Chapter 2 for more information on building and using dynamic
shared objects.

RISCompiler and C Programmer's Guide

Linker and Object Tools

Link Editor

2

This chapter describes the linker and object tools of the compiler system.
These tools include:

• Link Editor (ld)

• Runtime linker (rid)

• Object file tools (odu'!'p, nm, file, size, dump and string)

• Archiver (ar)

The link editor (Id) and the runtime linker (rid) both perform symbol
resolution by linking the symbol definition with the calling of that symbol
in a different part of a program. Each module of a program is searched
for definitions of undefined symbols.

One of the differences between the two linkers is when this symbol
resolution occurs. The link editor (Id) performs symbol resolution when
the executable is created (static linking), while the runtime linker (rid)
performs symbol resolution during program execution (dynamic linking).
For more information on rid, see the section entitled Runtime Linker.

The link editor (ld) performs static linking by combining one or more object
files (created by the assembler), and, or archives into one program object
file. This includes relocation, external symbol resolution, and any
processing necessary to create an executable object file.

The link editor is capable of creating either shared (dynamic) or non·
shared (static) object files.

RISCompiler and C Programmer's Guide 2-1

Chapter2

Dynamic vs. Static Object Files

2-2

Dynamic shared object files are:

• Shared by several users, and, or programs.

• Relocatable objects which contain Position Inde.pendent Code (PIC)
· and Global Offset Tables (GOT) for indirect references.

• Objects which have runtime data structures that allow the runtime
linker (rid) to relocate the dynamic executable during execution.

Static or non-shared objects are normal executable object files.

Building Dynamic Shared Objects

Run the link editor by entering Id on the command line of the shell or by
using one of the driver commands as described in Chapter 1, Linking
Objects.

The syntax of the Id command is as follows:

ld -option[s] objectl [object2 ... objectn]

The following command shows how to build the shared object Ube.so from
an archive Jibe.a:

ld -shared -o libc.so -all libc.a -set_v·ers:.on sys·1_4.'J

where:

-shared
Ube.so
-all
-set_version

Makes a shared object.
All shared objects have .so suffix.
Link all objects from archives following this option.
Specifies an interface version (e.g. sysv _4.0). See
Table 2.1 for a complete description of -set_ version.

Reference to so_locations

When a shared object is created, Id looks in so_locations for non-conflicting
memory addresses for the text and data portions of the object. so_locations
is a file in /usr/lib which contains the default addresses assigned to shared
objects. It also keeps track of addresses assigned to newly created shared
objects.

To avoid possible conflicts with MIPS supplied shared objects, the user
should place any newly created shared objects below address Ox60000000.
All third party shared libraries should be built with data placed right after
text.

RISCompiler and C Programmer's Guide

Linker and Object Tools

Dependencies

When building a shared object, any other shared objects upon which the
first depends must be specified. If, for example, shared object A uses a
global symbol which is defined in shared object B, then A is dependent upon
B.
The following command show how to build libcurses.so (which has
dependencies) from the archive libcurses.a:
ld -shared -transitive_link -o libcurses.so -&~: !ibc~rses.a•

-no_archive -le -set_version sysv_4. r1

where

-shared Ma.kes a shared object.
-transitive_link This causes Id to search for all dependent .so files

automatically.
libcurses.so Example of the output file name. All shared

objects have .so suffix.
-all Link all objects from archives following this

option.
-no_archive Do let any -I option argument use archive (.a) files.

The default is to use .a files only if .so files are
not found.

-set_version Specifies an interface version (e.g. sysv_4.0).

Building Static Objects

Run the link editor by entering Id on the command line of the shell or by
using one of the driver commands as described in Chapter l's section
entitled Linking Objects.

The syntax of the ld command is as follows:

ld -option[s] objectl [object2 ... objectn]

Note: The assembler driver as does not run the link editor. To link edit a
program written in assembly language:

• Assemble and link edit using one of the other driver commands (cc,
for example). The .s suffix of the assembly language source file
causes the driver to invoke the assembler.

or

• Assemble the file using as, then link edit the resulting object file with
the Id command.

Unless otherwise specified, the link editor names the program object file
a.out. You can execute the object file or use it as input for another link
editor command.

RlSCompiler and C Programmer's Guide 2-3

Chapter 2

Note: The link editor supports all the standard command line features of
other UNIX system link editors except System V ifiles. (An ifile holds a de­
scription of a load module.)

Using Dynamic Shared Objects

2-4

Why Use Dynamic Objects?

Reasons to use dynamic shared objects include:

• Shared objects can be relocated without having to recompile
applications.

• Shared objects reduce the dynamic memory needs of the system.

• Executables using shared objects require less disk space.

• Shared objects can be updated without having to relink the
applications which depend upon them.

In short, use dynamic shared objects because they save disk storage.

Requirement

Assembler code must abide by the System V Application Binary Interface
(ABI) calling conventions. The loader depends upon it. The link editor
traps some of the non<onforming usages by printing error messages.

Calling Conventions

• Calculations of a new value for the gp (global pointer) register must
occur in the first three instructions of a function which allocates a
stack frame.

• The stack pointer must allocate the stack frame prior to any other
use of the stack pointer register.

• Adjusting the stack pointer value to deallocate the stack frame must
occur only once and it must occur within the last basic block of the
function.

• Only one frame pointer may be used in a function which allocates a
stack frame.

• Only one exit from a stack adjustment function is allowed. This
must be done using the jump register instruction transferring control
to return address register $31.

• Branching to a different procedure is not allowed.

RISCompilerand C Programmer's Guide

Linker and Object Tools

Recommendations

To get optimal results when using shared objects:

• All symbols must be defined in some archive or user code. The
runtime linker (rid) has to resolve all undefined data symbols and
the "referenced text symbols" during runtime. This resolution of
undefined data symbols slows up the linking or causes a user
program to abort.

• Static uninitialized structures and arrays should be demand malloced
to reduce swap requirements. If they are not malloced, RISC/os
allocates swap space for these items whether or not they are used.
Swap requirements should be reduced.

Using Static Objects

Why Use Static Objects

· Although there are advantages to using dynamic objects, it does increase
system overhead and record keeping. There are times when it is more
appropriate to use static objects. 7zUse static objects if a process:

• Calls only a few small libraries, or

• Accesses only limited routines in a library.

Specifying Libraries

There are two kinds of libraries, shared and static.
A shared or dynamically linked library is a single object file which contains
the code for every function within the library. It is created by the link
editor (Jd). This file appears to the system and the user as individual
objects within a file system or directory. This shared library has a .so suffix.

The compiler looks for shared libraries by default. If one is not found, the
compiler looks for archives. The compiler prints a warning message if an
archive was found instead of a shared object.

A static library or archive, is a collection of object files which each contain
the code for functions within the library. It is created by the archiver (ar).
All of the files in a static library have a .a suffix.

Multiple Language Programs

To compile multi-language programs, explicitly load any required
runtime libraries. For example, if the main program is in C, and other
procedures are in Pascal, explicitly load the Pascal library libp.a or libp.so

RISCompiler and C Programmer's Guide 2-5

Chapter 2

and the math library libm.so or libm.a with the options -Ip and -Im
(abbreviations for the libraries lipb.so or libp.a and Iibm.so or libm.a), as
shown below, when linking the program.

% cc rnain.o rnore.o rest.o -lp -lm

To find the Pascal library, the link editor replaces the-I with lib and adds
a .so after p. It then searches the /usr/lib/cmplrs/cclpc directory for this
shared library libp.so first. If it cannot find libp.so, it searches for the archive
library libp.a .

. For a list of the libraries that a language uses, see the associated driver
manual page (cc(l), j77(1), or pc(l)) in the RISC/os Programmer's Reference
Manual.
You may need to specify libraries when using RISC/os system packages
that are not part of a particular language. Most of the manual pages for
these packages list the required libraries. For example, the plotting
subroutines require the libraries listed in the plot(3X) manual page; these
libraries are specified as follows:

% cc rnain.o rnore.o rest.o -lp -lpcot

To specify a library created with the archiver, enter the name of the library
as follows:

'Ii cc main.o more.o rest.o libfft.a (or libfft.so) -lp

Note: The link editor searches libraries in the order specified. Therefore,
if a library (for example libfft.so or libfft.a) uses data or procedures from
-Ip, you must specify libfft.so (or libfft.a) first.

Link Editor Options

2-6

Table 2.1 summarizes the link editor options. Refer also to the list of
general options in Chapter 1 and to the ld(1) manual page in the RISC/os
Programmer's Reference Manual for more information on options and
libraries that affect link editor processing.

RISCompiler and C Programmer's Guide

Linker and Object Tools

Table 2.1 Link Editor Options, 1 of 4
1Jnllditor oot1ons

O~tion Name Purpose
-A file Produces an object that may be read into an existing

program. The argument, file, is the name of the file whose
symbol table is used to base the definition of new symbols. Only
newly linked information is entered into the text and data
portions of a.out, the new symbol table reflects every symbol
defined before and after the incremental load.

-all archive name Link in all of the objects from archive name.
·B num Sets the starting address of the uninitialized data segment (bss)

to the hexadecimal address num. This option is valid only when
the -N link editor option is also used.

-Bstring Appends string to the library name created by the -Ix or -klx
option. The library is searched both with and without string.

·b Tells Id not to merge symbolic information entries from the same
file into one entry for that file. Use this option when a file
compiled for debugging has variables with the same names but
different attributes. This can occur when compiling two object
files that use the same include file, and variables with the same
name differ because of conditional compilation statements
within the file.

-call_ shared Produce shared executables ..
-check_registry file Check the location of this shared object's segments and make

sure the segments stay out of the way of others in the
so locations_ file. Multiple instances of this option are supported.

· This option can only be used in conjunction with -shared.
-Dnum Sets the starting address of the data segment (data) to the hexa-

decimal address num.
·EB Uses big-endian byte ordering when writing out header and

symbol table entries.
-EL Uses little-endian byte ordering when writing out header and

symbol table entries.
-e epsym Sets the default entry point address for the output file to the

specified symbol epsym.
-exact_ version obj Sets the LL_EXACT _MATCH flag in liblist flags files. This tells

rldthat obj must match the timestamp and checksum from
the liblist section in addition to the interface version.

-exclude_object Provides an all but facility. Used with -a//, this implies that when
linking all of the objects from the next archive, we skip the
specified object is skipped.

-For -z Creates a ZMAGIC file (an object file that loads on demand).
This is the default.

RISCompiler and C Programmer's Guide 2-7

Chapter 2

Table 2.1 Link Editor Options, 2 of 4
_1.._1n_k_ editor ~~ons

0_.2.tion Name Pu~osa
·fini symbol_name Add a call to function symbol_name in the .fini section.
-G num Specifies the maximum size (in decimal bytes) of a .comm item

that should be allocated in the small uninitialized data (sbss)
section for reference by the global pointers. The default is 8 bytes.

-bestGnum Prints the optimum value to be specified as the num value for -G.
The link editor uses the following options in determining which
objects are to be included or excluded in computing a value to be
specified in the -bestGnum option. For example, exclude any
object for which you do not have the source code for recompilation.

-count Objects that follow on the command line cannot be recompiled.
-nocount Objects that follow on the command line can be recompiled.
-countall Overrides any -nocount option appearing after it on the command

line.
·hidden objs Specifies that Id turns all external symbols from any objects

following this flag into local variables.
·hidden_symbols objs Specifies that Id turns the symbol following this flag into a local.
-ignore_version lib Specifies that at runtime, the shared object(s) within the library

following this option does not have to match the interface version
as specified at linktime. Sets LL_IGNORE_ VERSION flag in
liblist. Version are required to match at runtime by default.

-init symbol_name Add a call to function symbol_name in the .init section.
-jmpopt or Fill or don't fill the delay slots of jump instructions with the target
-nojmpopt of the jump and adjust the jump offset to jump past that

instruction. Disabled when the -gt, -g2or -gflag is present.
When enabled, this option can cause an out-of-memory
condition in the link editor.

·L Indicates that /usrlliblcmplrslcc should NOT be searched. Is useful
if dimame is the only directory that should be searched for libraries.

·L dimame Indicates that dirname should be searched for libraries specified
in the -Ix option before searching directory lusr/liblcmp/rs/cc. This
option must precede the -Ix option.

-Ix Specifies the name of a link library, where x is the library name.
The link editor searches for libx.a in /usrlliblcmplrslcc and lusrllib.
If a library relies on procedures or data from another library,
specify that library's name first. If a library resides in a directory
other than /usrlliblcmplrs/cc, use the -L option to specify the
appropriate directory for that library.
Note: If the byte-ordering (endian) scheme of the object module
differs from that of the machine on which the link editor executes,
the default libraries change. See the ld(t) manual page in the
RISC/os Programmer's Reference Manual for more information.

2-8 RISCompiler and C Programmer's Guide

Unker and Object Tools

Table 2.1 Link Editor Options, 3 of 4
Unk Editor Options

O__pJlon Name
·M
-m
-N

-n

-nN

PurDOse
Produces a link editor memory map in BSD format.
Produces a link editor memory map in System V format.
Creates an OMAGIC* file. The text segment isn't readable and
sharable by other users. The data segment follows immediately
after the text segment.
Creates an NMAGIC* file. The text segment is reack>nly and
sharable by all users of the file. •
Creates an NMAGIC* file. The data segment immediately follows
the text segment.

-no_preempt objs Tums all relocations for specified objects into local relocations.
This effectively disallows preempting externals in
these objects for this executables or shared object.

-no_preempt_symbol Tums all relocations for the symbol following this flag into local

-no_unresolveds

-non_hidden objs

-non_ shared

-none
-o filename

-p file

-r

-rpath
-S
-s

relocations. This effectively disallows preemption for this
executable or shared object.
This causes /dto exit with an error status when it encounters any
unresolved symbols. The default allows unresolved symbols in
shared executables and objects.
Tums off the effects of ·hidden. All external symbols in objects
following this flag are left as externals.
Make the output of this link run as non-shared, and use only the
archives. The -r, -N, and -n flags all imply non-shared.
Tums off -ell.
Specifies a name for your object file. If you don't specify a name
the link editor uses a.out as the default.
Preserves the symbol names listed in file when loading ucode
object files. The symbol names in file are separated by blanks,
tabs, or new lines. See Optimizing Frequently Used Modules in
Chapter 4 for an example.
Performs a partial link-edit, retaining relocation entries. This is
required if the object is to be re-link edited with other objects in
the future. The option causes the link editor not to define
common symbols and to suppress messages on unresolved
references.
Set the rpath (see the generic ABI) to the specified string.
Suppresses non-fatal error reporting.
Strips symbol table information from the program object, reducing
its size.

RISCompiler and C Programmer's Guide 2-9

Chapter 2

Table 2.1 Unk Editor Options, 4 of 4

T1riK Ed1to(Qe:t1ons

Ootlon Name Pl.HllOSe
-set_ version\ Used in conjundion with -shared flag. The specifies the version
version_ string included in the liblist section. The version_stringcan contain colon

separated version strings. When executables are linked against
this shared objed at linktime, the linker propagates the first version
from the shared object's version_string to the objlist of the
executable. The runtime linker will only map shared objects
whose interface version list contains liblist's version string.

-shared The output of the link is a shared object. This includes creating all
of the tables for runtime linking, converting the code to PIC and
resolving references to other specified shared objects.

-soname \ Set DT_SONAMEfor a shared object. The name may be a
shared_ object_ name single component name (e.g. libc.a) a full (starting with a slash),

or relative pathname (containing a slash). Single component
names use rpath, LD_LIBRARY_PA TH, and the default paths to
resolve their locations.

-T num Sets the origin for the text segment to the specified hexadecimal
number. The default origin is Ox400000. The contents and
format of the text segment are described in the MIPS Assembly
Language Programmer's Guide.

-transitive_link Use this to resolve any unknown or undefined shared object
dependencies.

-u symname Makes symname undefined so that library components that
define symname are loaded.

-update_registry file Register the location of this shared object's segments and make

-V

-VS num

-v
-x

2-10

sure they stay out of the way of others in so_locations.
so_locations is updated if it is writable. This option can only be
used in conjundion with -shared.
Prints the link editor version number. Use this number when
reporting a suspected bug in the link editor.
Puts the specified decimal version stamp num in the object file
that the link editor produces.
Prints the name of each file as it is processed by the link editor.
Retains external and static symbols in the symbol table to allow
some debugging facilities. Doesn't retain local {non-global)
symbols.

Note: There are certain restrictions in mixing compiler options. These in­
clude:

• -03 cannot be used with -call_shared.

• -mips2 cannot be used with -shared.

RISCompiler and C Programmer's Guide

linker and Object Tools

• -cord cannot be used with -shared.

• -trapuv cannot be used with -shared.

Runtime Linker (rid)

The runtime linker (rld) performs symbol resolution dynamically during
runtime (dynamic linking). It maps into memory the dynamic shared
objects (created by Id) which are used by the executable.

rid does the following:

Quickstart

• Checks·that the objects used at linktime are the same objects being
used at runtime; i.e. objects have not been added, or deleted.

• Checks that each shared object was mapped into its default location.

• Checks that the timestamp, checksum, and interface version of each
shared object has not changed since creation or since static linking.

• Constructs an explicit shared object list.

• Resolves each object's conflict list.

• Resolves each object's unresolved- variable list.

• Allocates common if needed.

MIPS Application Binary Interface (ABI) includes a number of data
structures, conventions, and implied mechanisms which constitute
Quickstart. Quickstart requires that all dependencies between shared
objects be resolved prior to runtime. It also requires that references
between shared objects do not refer to multiple version of the same library.

Quickstart references the so_locations addresses.

Tlmestamp, Checksum and Interface Version

Conditions may have changed in the time between creating and using
shared objects. For example, the list of objects used at link time may differ
from those used at runtime.

The timestamp, the checksum, and the interface version are each checked
separately by rid . If each of these match, then the Quickstart condition
exists, and the runtime linker (rid) will not have to resolve any variables.

rid Options

Options to rid can be specified by the _RLD_ARGS environment variable
to any combination of the options listed in the Table 2.2.

RISCompiler and C Programmer's Guide 2-11

Chapter 2

Option Name
-clearstack

Table 2.2 Runtime Linker Options
Runtime Linker Options

Purpose
This option forces rid to zero any stack it uses
before returning to user code.

-ignore_all_ versions Ignore versions on all objects.
-ignore_version shared_object Ignore the version.stamp checking on the object

-ignore_unresolved

-interact

-log file

-pixie
-stat
-trace
-v

specified.
This option does not complain or abort when
rid cannot resolve data symbols.
rid interactively prompts the user on standard
input to fix problems in the link (e.g. rid asks the
user to provide a full pathname for a missing
shared object).
Prints all messages to a log file instead of
standard output.
Includes rid in the pixie statistics.
Prints rid statistics to standard output.
Prints all actions done for the user by rid.
Prints general actions (less verbose than -trace).

Object File Tools

2-12

The following tools provide information on object files as indicated:

• odump: Displays the contents (including the symbol table and
header information) of an object file in COFF format.

• nm: Displays only symbol table information.

• file: Provides descriptive information on the general properties of
the specified file (for example, the programming language used).

• size: Prints the size of the .init, .text, .rdata, .data, .sdata, .lit8, .lit4 .bss,
and .sbss sections. The format of these sections is described in
Chapter 9 of the MIPS Assembly Language Programmer's Guide.

• dump: Displays the contents of an elf object file. For complete
information on elf, refer to Chaper 11 in the MIPS Assembly
Programmer's Guide.

• strings: Displays the printable strings in a file.

The sections that follow describe these tools in detail.

RISCompiler and C Programmer's Guide

Linker and Object Tools

Dumping Selected Parts of Flies (odump) ·

The odump tool displays headers, tables, and other selected parts of an
object or archive file.

The syntax for the odump command is as follows:

odurnp [options} filenamel [filename2 . . filenameN]

where:

options is one or more of the options and suboptions listed in Table 2.3 .

.filename[1 .. NJ are the names of one or more object files whose contents are
to be dumped.

Figure 2.1 shows examples of output produced by odump; the command
used to produce each is shown in a box. An explanation of the information
provided by odump can be found in Chapters 9 and 10 of the MIPS
Assembly Language Programmer's Guide.

RISCompiler and C Programmer's Guide 2-13

Chapter2

-c.
-0
-De
-Dg
-Oh
-Di
-DI
-Or
-Ds
-Dt
-F
-f
-G
-g

-h
-i
-L
-I
-0
• p
-R
-r
-s
-t
-u

2-14

Table 2.3 Odump Options
Main odum O tions

umps the arc ive ea er o each member o the
specified archive library file. ·
Dumps the string table.
Dumps the .dynamic section.
Dumps the .conflict section.
Dumps the GOT (global offset table) information.
Dumps the hash table information.
Dumps the register information.
Dumps the liblist information.
Dumps the .rel .dyn information.
Dumps the dynamic string information.
Dumps the dynamic symbol information.
Dumps the file descriptor table.
Dumps each file header.
Dumps the -G n histogram table.
Dumps the global symbols in the symbol table of
an archive library file.
Dumps the section headers.
Dumps the symbolic information header.
Interpret and print contents of the .Jib sections.
Dumps line number information.
Dumps each optional header.
Dumps the procedure descriptor table .
Dumps the relative file index table.
Dumps relocation information.
Dumps the section contents.
Dumps symbol table entries.
Underlines the name of the file for emphasis.

RISCompilerand C Programmer's Guide

;

Linker and Object Tools

Table 2.3 Odump Options, 2 o/2

umps t e section nu r, or a range o section num rs
that starts at the specified number and ends with the last
section number or the number you specify with +d.

+d number Dumps the sections in a range that begins with the first
section or with the section you specify with -d.

·n name Dumps information only for the named entry. Use this
option with ·h, ·I, ·r, -s, and ·t options.

·p Suppress the printing of headers.
·t index Dumps only the indexed symbol table entry. Specify a

range of table entries by using this option with +t.
+t index Dumps the symbol table entries in a range that ends with

the indexed entry. The range begins with the first symbol
table entry or with the section specified with ·t.

-v Dumps information in symbolic representation. Use this
option with all dump options except -s.

·Z name, number Dumps the line number entry or a range of entries that
start at the specified number for the named function.

+z number Dumps the line number that starts at the function name or
the number specified by ·Z, and ends at the number
specified at +z.

RISCompiler and C Programmer's Guide 2-15

Chapter 2

***STRING TABLE INFORMATION'••
(Offset] Name

sam.o:
[11 sam.c I % odump -c sam.o I [7] line
(12] string
[19] length
[26] linenumber
[37 J LINETYPE
[46] main
(51 I argc
[56] argv
(61] linel
[67] fd
(70] i
(72] i
(74] curlinenumber
[88] print line
(98] pline
(104] i
(107] /usr/local/mips/include/stdio.h
(139] _iobuf
[146] _enc
[151 J _per
(156] _base
[162] _bufsiz
[170] _flag
(176] _file
[182 J _name

•FILE HEADER* I% odump -f sam.o I
Magic Nscns Time/Date Symptr Nsyms Opt:hdr Flags

sam.o:
0000540 2 Oxlf22b3750x00000344 96 Ox0038 OxOOOO

1% odump -F sam.o I ***FILE DESCRIPTOR TABLE***

::lenarne lnOffset - - -- - -iBas.;,/ c:0<:nt-- - - - - - - - - - merge sex
cbLine sym line address

sam.o:
pd aux rfd :anguage

sam.c OxOOOOOOOO 0 0 0 0 0 0 --- el
23 27 103 2 40 0 c

ps/include/stdio.hOxOOOOOOOO 0 2 0 2 40 0 merge el
0 11 0 0 36 0 c

Figure 2.1 Example of Odump Utility Output, 1 of 4

2-16 RISCompilerand C Programmer's Guide

Linker and Object Tools

•••SECTION HEADER••• f % odump -h sam.o I
Name Paddr

Flags

Vaddr Scnptr Relptr

Nreloc

Lnnoptr

Nlnno Size
sarr,.o:

.text OxOOOOOOOO OxOOOOOOOO
OxO

Ox0000009c OxC000027c OxOOOOOOOO
0 OxOOOOOlaO 25

.sdata OxOOOOOlaO OxOOOOOlaO
OxOOOC0200

Ox0000023c Ox00000344 OxOOOOOOOO
0

vs tamp

cbLine
sarr .. o:
uxoc:~

2,

sar- .o:
L:.nes fo:-

sarr .. c:
0107
OlaO
0000

sar: .. c
rr.ain

Ox00000040 0

***SYMBO~IC INFORMATION HEADER••• I % odump -i sam.oj
--------------------iMax/cbOffset-----------------

pd !d line string sym xstring dn rfd ext aux

2 2 103 188 38 80 (I (1 12 76
956 2088 932 1820 1060 2008 0 0 2232 1516

•••LINE NUMBER INFORMA Tl ON• • • I % odump -I sam.o I syrrJ1dx/Paddr Lnno

!ile sarr .. c:
c. 17 1 . 17 2. 17
~ . . - '· l~ s. ::4 .
6. .i4 i. 24 fi. L:.
9. ~: 10. .;:: 11. .;::

i:::. L'. D. .i6 14. ~(
• <
J.~. if H. .i6 17. 'i,7

18. ... ! 19. 30 20. 3 ll

•••OPTIONAL HEADER in HEX••• 1% odump-o sam.ol

0015 OlaO 0000 0040 0000 0000 0000 0000 0000 0000 0000
0000 OleO 0000 ff f 6 b301 0000 0000 0000 0000 0000 0000
0000 8190 0000

•••PROCEDURE DESCRIPTOR TABLE••• I% odump -P sam.ol

add:-e.::£

[C f o: L]
OxOOOOOGOC,

isym iline iopt regmas~ regoff fpoff
lnC•ffset lnLow lnHigl. fl ,;.gmasJ.: frgoff

i (J -1 OxHC•(ll(!OOO -.i84 304
17 :.1 OxO Ol1ll0(1(1 (I (1

58 63 OxOOOOO(l(l(; 0

fp
pc

29
31
31

print:.:ne C:x00000138 78 -1 Ox800000CJ0 -l2 4(1 29

for OJ

Figure 2.1 Example of Odump Utility Output, 2 of 4

RJSCompiler and C Programmer's Guide 2-17

Chapter 2

•••RELOCATION INFORMATI0N' • •

Vaddr symndx Ty;:Qxtern I % odump -r sam.o I sam.o:
.text: Ox00000034 l 0 4

Ox00000038 l 0 s
Ox00000040 0 4 6
Ox0000003c 1 8 3
Ox00000044 1 9 3
OxOOOOOOSO 0 4 6
Ox00000058 1 1 3
Ox00000078 l 0 4
Ox0000007c l 0 s
oxouoooc:i;c; ll 4 f,

OxOOUUOfJH4 l h -'
OxOCi(JOQOSc 1 ':I 3
Ox00000-09c 1 s 3
OxOOOOOOac 1 10 3
OxOOOOOOec 0 4 6
OxOOOOOOfc 0 4 6
OxOOOOOlOO 0 1 3
OxOOOOO 110 1 5 3
OxOOOOOlSc 1 0 4
Ox00000160 l 0 5
Ox00000168 0 4 6
Ox00000170 1 8 3
Ox00000178 l 0 4
Ox00000180 l () :.
Ox0000017c l 11 3

.sdata:

***RELATIVE FILE INDEX TABLE*••

sam.o: I% odump -A sam.ol
sam.c [0 for OJ
!usr/local/mips/include/stdio.h[O for OJ

SECTION DATA in HEX I% odump -s sam.o I
sam.o:
. text:

27BD FEDO AFBF 0014 AFA4 0130 AFAS 0134 AFBO 0010 8FAE 0130
0000 0000 AFAE 0020 8FAF 0020 0000 0000 29El 0002 1020 0007
ooco :1000 3C01 0000 2424 003 (J ocoo 0000 278':. 8010 ocoo 0000
2004)001 8FB8 0134 278S 8024 8F04 0004 ocoo :)000 0000 0000
AFA2 0024 8FB9 0024 0000 0000 1720 0009 0000 0000 8FA8 0134
3C01 0000 2424 0030 8D06 0004 ocoo 0000 2785 8026 ocoo 0000
2004 0001 27A4 0028 8FA6 0024 ocoo 0000 2005 0100 1C40 OOlE

Figure 2.1 Example of Odump Utility Output, 3 of 4

2-18 RISCompiler and C Programmer's Guide

Linker and Object Tools

[Index]
sam.o:

•••SYMBOL TABLE INFORMATION•••

Name Value Sc lass

l % odump ·t sam.o J
Symtype Ref

[0]

I l J
r2 J
[3 j
[']
[5]
[6]
[7]

rs 1
[!I]
[10]

[~:'
r 1:;: ,
l .J.: J

[H~

r1:1

sarn.c OxOOOOOOOO
line OxOOOOOlOB
string OxOOOOOOOO
length oxoooooeoo
linenumberOxOOOOOB20

OxOOOOOOOO
LINETYPE OxOOOOOOOO
main
argc.
argv

linel
fd
i

i
[H j curlinenurnber
[17]

Ox00~'.)0000

OxOO'.: :00000
Ox00000004
Ox00000014
Oxfffffef8
(Jxfffffef4
CJxfffffefC1
OxOOOOOOac
OxfffffeeB
OxOOOOOlcll

OxOOOOOlOB
[l!; j
r!9:
(~ v J

C;x00000120
main Ox0000013B
print:ine OxOOOOOl38

OxOl
Ox Ob
Ox Ob
Ox Ob
Ox Ob
Ox Ob
Ox Ob
OxOl
Ox OS
oxo:.
OxOl
oxo:.
oxo:.
oxo:
OxOl
Ox OS
OxOd

OxOl

Ox Ob
Ox07
Ox09
Ox09
Ox09
OxOB
OxOa
Ox06
Ox03
Ox03
Ox07
Ox04
Ox04
Ox04
Ox07
Ox04
Ox02

OxOB
OxOl OxOB
OxOl OxOB
Ox Cl Ox06

~:!ne Ox0000000G OxOS Ox03
(2~j OxOOOOOOOc OxOl Ox07
[23] l Oxfffffffc OxOS Ox04
[2'l OxOOOD004c OxOl OxOB
[2:: print:ine Dx00000064 OxOl OxOS
;2f; sam.c OxOOOOOOOO OxOl OxOB
[27! 1usr/local/mips/include/stdio.hoxoooooooo oxOl
(2E} _iobuf OxOOOOOOlB OxOb Ox07
[29; _cnt OxOOOOOOOO OxOb Ox09
[3C; _ptr Ox00000020 OxOb Ox09
[31] _base Ox00000040 OxOb Ox09
[3~j _bufsiz Ox00000060 OxOb Ox09
(33] _flag OxOOOOOOBO OxOb Ox09
[34] _file oxoooooo90 OxOb Ox09
[3 :. ; _name OxDOOOOCJaO OxOb Ox09

OxOOlb
Ox0006
OxOOOe
Ox0004
OxOC04
OxOOOl
Ox0013
Ox0017
Ox0004
Ox0019
OxOOD
OxOOla
OxOOlc
0>:0004
Ox0012
Ox0004
()):0004

Ox000fo'
- oxuhoa

oxuoo7
oxoo1:.
OxOCJ24
OxOOl~

Ox0004
OxOOH
Oxll014
oxoooo

Ox Ob
oxoo2:.
Ox002c
Ox00'.:16
Ox0037
Ox002c
Ox002b
Ox0030
Ox003B

;3f] OxOOOOOOOO OxOb OxOS OxOOlc

0>:0026

::o"'] /Us::local/mips/include/stdic.h(lxOOOOOOOO OxOl OxOB OxOOlb
:~~: _iot OxOOODOleO Oxl5 OxOl 0>:0039
, : :. , !ope:: OxOOOOOCJOC1 OxOE. OxOf. oxc1r1:lf
: .; (: fdcpe:-. oxoooooooo oxoli:J:. OXO(l Ox Of.
[c: freoper. oxooooooor. oxowH. oxoo Ox06
l'"- ~ fte:l OxOOOOOOO(J Oxoo:n. 0xoo Ox06
[4:-1; fge::..:: OxOOOOOOOC1 Cixoo4a Ox Of. Ox06
f4'; pri:r.t:.ir.e_Ox0000013E: oxu1114 OxOl OX(lf,

'-':· 1 main C:xOOOOOOOC; uxooo7 OxOl Ox0€
fp:incf C:xDC:OOOUOO
exi::. OxOCOOOOOO

Ox of.
Ox06

O>:Of.
Ox06

llXOOl~

O>:OO:!O

Figure 2.1 Example of Odump Utility Output, 4 of 4

RISCompilerand C Programmer's Guide 2-19

Chapter2

Listing Symbol Table Information (nm)

2-20

The nm tool prints symbol table information for object files and archive
files.

The syntax for the nm command is as follows:

nm (options] finenamel (filename2 . . filenameN]

where:

options is one or more characters (listed in Table 2.2) that specify the type
of information to be printed.

ftlename{l..N] specify the object file(s) or archive file(s) from which symbol
table information is to be extracted. If you don't specify a file, nm assumes
a.out.
For more information, please see nm(l) in the RISC/os Programmer's
Rtference Manual.
Table 2.4: Symbol Table Dump (nm) Options (-systype svr3)

IQPJtonJ!ame

·A
-a

-B
-b
-d
-e
-g
-h
-n

-o

-p
-r

-T

-u
-V
-v
-x

Prints the listing in System V format.
Prints debugging information. Tums BSD output into
System V format.
Prints the liSting in BSD format.
Prints the value field in octal.
Prints the value field in decimal.
Prints only external and static variables.
Prints only global symbols.
Suppresses printing of headers.
Sorts external symbols by name for System V fonnat.
Sorts all symbols by value for BSD format.
Prints the value field in octal for System V output. Prints
the filename immediately before each symbol name for
BSD format.
Lists symbols in the order they appear in the Symbol table.
Reverses the sort which you specified for external
symbols with the -n and -v options.
Truncates characters in exceedingly long symbol names;
inserts an asterisk as the last character of the truncated
name. This may make the listing easier to read.
Prints only undefined symbols.
Prints the version number of nm.
Sorts external symbols by value.
Prints the value field in hexadecimal.

RISCompiler and C Programmer's Guide

Unker and Object Tools

Table 2.5: Symbol Table Dump (nm) Options (-systype svr4)

nm O~tions _{_svr.q
Option Name Purpose

-e
• f
·h
·n

·I
-o

• p
·r
-T
-u
-V
·V
·X

Prints only external and static variables, obsolete.
Produce full output, obsolete .
Suppresses printing of headers.
Sorts external symbols by name for System V format.
Sorts all symbols by value for BSD format.
Append an • to the key letter for weak symbols.
Prints the value field in octal for System V output. Prints
the filename immediately before each symbol name for
BSD format.
Produce terse output .
Prepend object file or archive name to each output line.
Truncate long symbol names, obsolete.
Prints only undefined symbols.
Prints the version number of nm.
Sorts external symbols by value.
Prints the value field in hexadecimal.

Figure 2.2 shows an example of an nm -B command and the output it
produces. Note that each item has a key describing its storage class.
Example:

%nm -B a.out
00004608 S Argc
0000460c S Argv
00004490 d blanks
00004700 b bufendtab
00003330 T cerror
00000cd4 T cleanup
000044e8 D ctype
OOOOlfaO T doprnt
00000de4 T exit
00001878 T filbuf
00000990 T filbuf
0000c560 N 9P
00004228 D lob
00004598 G lastbuf
00001£44 t lowdigit

% +
value
field

t + key symbol
name

Figure 2.2 Symbol Table in BSD Format (option -B)

Table 2.6 describes the meanings of the character keys shown in the
example above.

RISCompiler and C Programmer's Guide 2-21

Chapter 2

Table 2.6 nm Character Key Meanings

nm __giaracier JS_e_y_Q_e11n!!_ions
Ke¥ Descri_lltion
A External absolute data.
a Local absolute data.
B External zeroed data.
b Local zeroed data.
c Common data.
D External initialized data.
d Local initialized data.
E Small common data.
G External small initialized data.
N Nil storage class, which avoids loading

of unused external references.
R External read-only data.
r Local read-only data.
5 External small zeroed data.
s Local small zeroed data.
T External text.
t Local text.
u External undefined data.
v External small common data.

Figure 2.3 shows an example of nm output in System V format.

2-22 RISCompiler and C Programmer's Guide

Symbols from sam.o:

Name

san:. c

£t::-ing
length
linenumber

LIIJETYPE
mair:
argc
argv

fd

main

100000000/F!le
I 000002(.4 I Block

100000000/Member
100002048/Member
100002oso1Member
iOOOOOOOOIEnd
IOOOOOOOOITypdef
100000000/Proc
IOOOOOOOOIParam
1000000041param
1000000201Block
I -00002f.4 I Local
i -CJCIOG2f,f; I Local
: -f1(i(l(;:,;7:.; 1 Local
I 000(1(117 2 I Block
: -OCIC•C:280 I Local

i 00Ci004 Sf. I Static
1000002C41End
1000002881End
1000003121End
10000031:.;1proc
!OOOOOOOO/Param
I000000121Block
l-00000041Local
I 0000007 f, I End
i000001001End
IOOOOOOOOIEnd

/i.<£r.1 l o::al /mips /inc 11 00000000 I Fi le
_i~b~~ I000000241Block

::r;: I 00000000 I Member
_pt::- I000000321Mernber
_b::.se I OOOOOOf.4 IMe1nber
_bufsiz /000000961Member
_flag I0000012BIMember
_file 100000144/Member
_name I000001601Mernber

/OOOOOOOOIEnd

Unker and Object Tools

Size

lref=27
lref=6 I

/unsigned char [25CJ I
lint
lint
lref=l
lstruct line
lend=20 int
lint
!unsigned char **
/ref=l9
lstruct line
lstruct _iobuf •
lint
I ref=18
I int
lint

I ref=14
lref=lO
lref=7
lend=2f· btNil
/struct line•
I ref=2!'.·
lint
lref=22
lref=20
lref=O

/ref=38
/ref=37
I int
I unsigned char ..
I unsigned char '*
lint
/short
/unsigned char
/unsigned char *
I ref=28

I
I
I
I
I
I
I

I
I

I
I
I
I

:tndx Section

OIText
11 Info
2 I Infc
31 Info
4 I Info
5 I Info
6 I Info
71Text
8 IAbs
91Abs

lOIText
11 /Abs
12!Abs
13/Abs
14/Text
15 !Abs

I 16 I SData
I /Text

18/Text
19/Text
2C• I Text
211Abs
22/Text
231Abs
24 I Text
251Text
2€· I Text
27 I Text
281 Info
291Info
30 I Info
311Info
321 Info
33 I Info
341 Info
351 Info
36/Info

1 For information on these fields, refer to Chapter 10 of the MIPS Assembly Programmer's Guide

Figure 2.3 Symbol Table in System V Fonnat (option -A)

RISCompiler and C Programmer's Guide 2-23

Chapter 2

Determining a File's Type (file)

The file tool lists the properties of program source, text, object, and other
files. This tool often erroneously recognizes command files as C programs.
It does not recognize Pascal or LISP programs. For· more information, see
thefile(l) manual page in the RISC/os User's Reference Manual.
The syntax of the file command is as follows:

file filenamel [filename2 . . filenameN]

Example:

% file test.o a.out
test.o:mipsel demand paged pure executable not stripped
a.out: mipsel demand paged pureexecutable not stripped
%

Determining a File's Section Sizes (size)

2-24

The size tool prints information about the text, rdata, data, sdata, bss, and sbss
sections of the specified object or archive file(s). The contents and format
of section data are described in Chapter 9 of the Assembly Language
Programmer's Guide. ·
The syntax for the size command is as follows:

size [options} filenamel [filename2 .. finlenameN]

where:

options is in alphabetic character (listed in Table 2.6) that specifies the
format of the output.

filename[l .. N] specify the object or archive file(s) whose properties are to be
displayed. If a file name is not specified, size uses a.out.
For more information, see size(l) in the RISC/os Programmer's Reference
Manual.

RISCompiler and C Programmer's Guide

0

·B
·d
·F

.f

·n

. ·O

-V
·X

Unker and Object Tools

Table 2.7: Size Options

nnts data section ea ers m ystem ormat. e
default is determined by the UNIX version running on
your system.
Prints data section headers in BSD format.
Prints the section sizes in decimal.
Prinls the size and permission flags of each loadable
segment and the total of the loadable segments.
Prints the size and name of each allocatable section and
the total allocatable section size.
Prints non-loadable segment or non-allocatable section
size information.
Prints the section sizes in octal.
Prints the version of size currently being used.
Print the section sizes in hexadecimal.

Note: svr3 environment size options are: ·A, -B, -d, -o, -V, and -x.

Note: svr4 environment size options are: -F, ·f, ·n, -o, -V, -x.

Figure 2.4 shows an example of size output.

% i:ize test
Size of test:2777C.

Section Size Physical Address Virtual Address
. text 1984 0 4194(.72 4194672
.init 32 4214512 4214512
.rdata 107~ 2C.84354SC. 268435456
.data 4f .. 4f· 2 [,f;43 (,52~; 2f.8436528
.sde:ita 59:: 2 (.84411(.f; 2(.84411(.8
.stss (,4 2f.f;4417(,(1 268441760
.hn· 1:»:.f. 2f.B44H::4 268441824

Figure 2.4 Sample size output

RISCompiler and C Programmer's Guide 2-25

Chapter2

Archiver
An archive library is a file that contains one or more routines in object (.o)
file format; the term object as used in this chapter refers to an .o file that is
part of an archive library file. When a program calls an object not explicitly
included in the program, the link editor (Id) looks for that obj~t in an
archive library. The editor then loads only that object (not the whole
library) and links it with the calling program.

The archiver (ar) creates and maintains archive libraries and has the
following main functions:

• Copying new objects into the library.

• Replacing existing objects in the library.

• Moving objects within the library.

• ·Copying individual objects from the library into individual object
file.

The sections that follow describe the syntax of the ar (archiver) command
and give examples of how to use it. See the ar(l) manual page in the RISC/
os Programmer's Reference Manual for additional information.

The syntax of the ar command is as follows:
ar options [pos:CJbjectJ libName [t)b_'i.;,cc.:. ... c,b:;c::ccNj

where:

options is one or more characters (listed in Tables 2.7 and 2.8) that specify
the action that the archiver is to take. When specifying more than one
option character, group the characters together with no spaces between;
don't place a dash(-) character before the option characters.

posObject is the name of an object within an archive library. It specifies the
relative placement (either before or after posObject) of an object that is to be
copied into the library or moved within the library. A posObject is required
when them or r options are specified together with the a, b, or i suboptions.

libName is the name of the archive library you are creating, updating, or
extracting information from.

object [1..N] are the names of the object(s) Jr object file(s).

ar Command Examples

2-26

To create a new library and add routines to it:

% ar er libtest.a mcount.o monl.o string.o

Option c suppresses archiver messages during the creation process.
Option r creates the library libtest.a and adds mcount.o, mon1.o, and string.a.
To add or replace an object (.o) file to an existing library:

RISCompiler and C Programmer's Guide

Linker and Object Tools

% ar r libtest.a monl.o

Option r replaces mon1.o in the library libtest.a. If monl .o doesn't exist, the
new object monl.o is added.

Note: If you specify the same file twice in an argument list, it appears
twice in the archive.

To update the library's symdef table:

% ar ts libtest.a

Option s creates the symdef table and t lists the table of contents.

Note: After creating or changing a library, use the s option to update the
symdef (symbol definition) table of the archive library. The link editor uses
the symdef table to locate objects during the link process.

To add a new file immediately before a specified file in the library:

% ar rb mco'unt.o libtest.a new.o

Option r adds new.o in the library libtest.a. Option b followed by posObject
mcozmt.o causes the archiver to place new.o immediately before mcount.o.

Archiver Options

Table 2.7 Jists the archiver options. You must specify one of the following
options: d, m, p, q, r, or x. In addition, you can specify the c, 1, s, t, and v
options, and any of the archiver suboptions. ·

RISCompiler and C Programmer's Guide 2-27

Chapter 2

Table 2.8 Archiver Options

Archiver O~ions
·Option Name l'u~

c Suppresses the warning message that the ai:chiver issues
when it discovers that the specified archive doesn't exist.

d Deletes the specified objects from the archive.
I Puts the archiver temporary files in the current working

directory. Ordinarily the archiver puts those files in ltmp.
This option is useful when ltmp is full.

m Moves the specified files to the end of the archive. If you
want to move the object to a specific position in the archive
library, specify an a, b or i suboption together with the
posObject parameter.

p Prints the specified object(s) in the archive on the standard
output device (usually the terminal screen).

q Add~ the specified object files to the end of the archive. An
existing object file with the same name is not deleted, and
the link editor continues to use the old file. This option is
similar to the r option (described below) but it is faster. Use
it when creating a new library.

r Adds the specified object files to the archive. This option
deletes duplicate objects in the archive. To add the object
at a specific position in the archive library, specify an a, b,
or i suboption together with the posObject parameter. See
the examples in the preceding section for an example of using
the posObject parameter.
Use the r option when updating existing libraries.
See also the u suboption.

s Creates a symdeffile in the archive. Use this option each
time you create or change the archive library.
If all objects don't have the same endian byte ordering
scheme, the archiver issues an error message and doesn't
create a symcleftable. At least one of the following options
must be specified with the s option: m, p, q, r, or t.

t Prints a table of contents on the standard output (usually
the screen) for the specified object or archive file.

v Lists descriptive information during the process of creating
or modifying the archive. When specified with the t option,
produces a verbose table of contents.

x Copies the specified objects from the archive and places
them in the current directory. Duplicate files are
overwritten. The last modified date is the current date,
unless you specify the o suboption. Then the date stamp
on the archive file is the last modified.

2-28 RISCompiler and C Programmer's Guide

Linker and Object Tools

Table 2.8 lists the ar suboptions.

Table 2.9 Archiver Suboptions

Archiver Subo~tions
Suboption Use With Purpose
Name

a mor r Specifies that the object file follows the
posObject file specified in the ar statement.

b m or r Specifies that the object file precedes the
posObject file specified in the ar statement.

i mor r Same as b.
0 x Used when extracting a file from the

archive to the current directory. Forces the
last modified date of the extracted file to
match that of the archive file.

u r Replaces that existing object
file when the last modified data is earlier
(precedes) that of the new object file.

-z Suppresses symbol table building.

..

RISCompiler and C Programmer's Guide 2-29

Chapter 2

2-30 RISCompiler and C Programmer's Guide

Storage Mapping

C Language

3

This chapter describes the alignment; size, and value ranges for the C
language, and the storage of data in memory. The following topics are
discussed:

• Alignment, Size, and Value Ranges.

• Storage of C Arrays, Structures, and Unions.

• Storage Classes.

RJSCompiler and C Programmer's Guide 3-1

Chapter 3

Alignment, Size, and Value Ranges

3-2

Table 3.1 shows the C compiler size, alignment, and value ranges for the
data types.

Table 3.1 Size. Alignment, and Value Ranges for C Data Types

l Value Range

Type Size Alignment Signed Unsigned

int 32 bits Word1 -231to 2 311 o to 2 32-1 long

enum 32 bits Word1 -2 31to~1-1

short . 16 bits Halfword2 -32,768 to 32,767 Oto 65,535

char4 8 bits Byte -128 to 127 o to 255

float5 32 bits Word1 See note.

doubles 64 bits Ooubleworct'3 See note.

pointer 32 bit Word1 0 to f 2 -1

1Byte boundary divisible by four.
2syte boundary divisible by two.
3eyte boundary divisible by eight.
4char is assumed to be unsigned, unless the signed attribute is used.
51EEE single precision. See note following this table for valid ranges.
6iEEE double precision. See note following this table for valid ranges.

Note: Approximate valid ranges for float and double are:

1 Maximum Value

float 3.40282356•103
; 08

double 1 .7976931348623158*10

RISCompiler and C Programmer's Guide

Minimum Values

Denormalized Normalized

float 1.40129846·1 cr'6 1.17549429·10'38
-308

double 4.9406564584124554•10·324 2.2250738585072012·10

For characters to be treated as signed, use either the compiler option
-signed, or the keyword signed in conjunction with char, as shown in the
following example:

signed char c

The header files limits.hand jloat.h (found in /usr/include) contain C macros
that define minimum and maximum values for the various data types.
Refer to these files for the macro names and values.

The following sections describe how the data types shown in Table 3.1
affect arrays, structures, and unions.

Storage of C Arrays, Structures, and Unions.

Arrays

Arrays have the same boundary requirements as the data type specified
for the array. The size of an array is the size of the data type multiplied by
the number of elements. For example, for the following declaration:

double x[2)[3)

the size of the resulting array is 48 c2•3•s) bytes, where 8 is the size of the
double floating point type).

Structures

Each member of a structure begins at an offset from the structure base.
The offset corresponds to the order and size of the members within the
structure; the first member is at offset 0.

RISCompiler and C Programmer's Guide 3-3

Chapter 3

3-4

The size of a structure in the object file is the size of its combined members
plus padding added, where necessary, by the compiler. The following
rules apply to structures:

• A structure must align on the same boundary !lS that required by
the member with the most restrictive boundary requirement. The
boundary requirements by degree of restrictiveness are: byte,
halfword, word, and doubleword, with doubleword being the most
restrictive.

• The compiler terminates a structure on the same alignment
boundary on which it begins. For example, if a structure begins on
an even-byte boundary, it also ends on an even-byte boundary.

For example, the following structure:
struct s {

int v;
char n (10];

is mapped in storage as follows:

Big Endian

v I v I v I v no n1 n2 n3

Byte 0 1 2 3 4 5 6 7

n4 n5 n6 n7 I n8 I n9 I
Byte 8 9 10 11 12 13 14 15

Little Endian

n9 n8 n7 n6 n5 n4

Byte 15 14 13 12 11 10 9 8

n3 n2 n1 no v 1 v I v I v
Byte 7 6 5 4 3 2 1 0

O Padded bytes

See Appendix A for more information on big and little endian byte
ordering.
Note that the length of the structure is 16 bytes, even though the byte count
as defined by the int v and the char n components is only 14. int has a
stricter boundary requirement (word boundary) than char (byte

RISCompiler and C Programmer's Guide

boundary); the structure must end on a word boundary (a byte offset
divisible by four). The compiler adds two bytes of padding to meet this
requirement.

For example, if the above structure, struct s, were the element-type of
an array, some of the int v components wouldn't be aligned properly
without the two-byte pad.

Alignment requirements may require padding in the middle of a structure.
For example, by rearranging the structure in the last example to the
following:

struc>; s {
char n [10]
int v;

the compiler maps· the structure as follows:

Big Endian

no n1 n2 n3 n4 n5 n6 n7
Byte 0 1 2 3 4 5 6 7

nB n9 I· v 1 v I v I v

Byte 8 9 10 11 12 13 14 15

Little Endian

v I v I v I v n9 n8
Byte 15 14 13 12 11 10 9 8

n7 n6 n5 n4 n3 n2 n1 no
Byte 7 6 5 4 3 2 1 0

CJ Padded bytes

Note that the size of the structure remains 16 bytes, but two bytes of
padding follow then component to align v on a word boundary.

Bit fields are packed from the most significant bit to least significant bit in
a word and can be no longer than 32 bits; bit fields can be signed or
unsigned. The following structure:

RJSCompiler and C Programmer's Guide 3-5

Chapter 3

3-6

typedef struct
unsigned offset :12;
unsigned page :10
unsigned segment 9;
unsigned supervisor: l;

} virtual_address;

is mapped as follows:

Big Endian
Byte O 3

,~------o-tts_e_t----------.,----pa--ge----.l-se_g_m-en_t ___ I
Bit 31 19 9 1 '0

supervisoff
Little Endian

Byte 3 0

I I segment j page ottset

Bit 4 30 22 12 0
supervisor

The compiler moves fields that overlap a word boundary to the next word.

The compiler aligns a nonbit field that follows a bit-field declaration to the
next boundary appropriate for its type. For example, the following
structure:

struct {

unsigned a : 3 i
char b;
short c;

} x;

is mapped as follows:

Big Endian

I a I b c

31 28 23 16 0

Little Endian

c b

31 15 7 3

Padded bits.

RISCompiler and C Programmer's Guide

Unions

Note that five bits of padding are added after unsigned a so that char b
aligns on a byte boundary, as required.

A union must align on the same boundary as the member with the most
restrictive boundary requirement. For example, a union containing char,
int, and double data types must align on a a doubleword boundary, as
required by the double data type.

Storage Classes

Auto

Static

Register

Extern

An auto declaration indicates that storage is allocated at execution time
and exists onJy for the duration of that block activation.

The compiler allocates storage for a static declaration at compile time. This
allocation remains fixed for the duration of the program. Static variables
reside in the program bss section if they are not initialized, othen•:ise they
are placed in the data section.

The compiler allocates variables with the register storage class to registers.
For programs compiled using the-0 (optimize) option, the optimization
phase of the compiler tries to assign all variables to registers, regardless of
the storage class specified.

The extern storage class indicates that the variable refers to storage defined
in an external data definition. The compiler does not allocate storage to
extern variable declarations; extern's are defined and referenced as follows:
Extern is omitted. If an initializer is present, a definition for the symbol is
emitted. Having two or more such definitions among a program's source
files results in an error at link time or before. If no initializer is present, a
common definition is emitted. Any number of common definitions of the
same identifier may coexist.

RJSCompiler and C Programmer's Guide 3-7

Chapter 3

Volatile

3-8

Extern is present. The compiler assumes that declaration refers to a name
defined elsewhere. A declaration having an initializer is illegal. If a
declared identifier is never used, the compiler does not issue an external
reference to the linker.

The volatile storage class is specified for those variables that may be
modified in ways unknown to the compiler. For example, volatile might be
specified for an object corresponding to a memory mapped input I output
port or an object accessed by an asynchronously interrupting function.
Except for expression evaluation, no phase of the compiler optimizes any
of the code dealing with volatile objects.

Note: If a pointer specified as volatile is assigned to another pointer
without the volatile specification, the compiler treats the other pointer as
non-volatile. In the following example:

volatile int *i;
int *j;

(volatile*)j = i;
3108282356*10

the compiler treats j as a non-volatile pointer and the object it points to as
non-volatile, and may optimize it.

The compiler option -volatile causes all objects to be compiled as volatile.

RISCompiler and C Programmer's Guide

Language Interfaces

4

This chapter describes the calling interfaces between C and Pascal and C
and Fortran, including rules and examples for calling and passing
arguments between these languages.

You may need to refer to Chapter 3 for information on C data storage.

Pascal/C Interface

Calling C from Pascal and Pascal from C is fairly simple. Most data types
have natural counterparts in the other language. However, differences
do exist in the following areas:

• Single-precision floating point.

• Procedure and function parameters.

• Pascal by-value arrays.

• File variables.

• Passing string data between C and Pascal.

• Passing variable arguments.

RISCompiler and C Programmer's Guide 4-1

Chapter 4

These differences are discussed in the following sections.

Single Precision floating point

In function calls, C automatically converts single-precision floating point
values to double precision, whereas Pascal passes single-precision floating
by-value arguments directly. Follow these guidelines when passing
double-precision values between C and Pascal routines:

• If possible, write the Pascal routine so that it receives ·and returns
double-precision values, or

• If the Pascal routine cannot receive a double-precision value, write a
Pascal routine to accept double-precision values from C, then have
that routine call the single-precision Pascal routine, or

• Use C prototypes to cause floats to be passed directly.

There is no problem passing single-precision values by reference between
C and Pascal.

Procedure and function parameters

C function variables and parameters consist of a single pointer to machine
code, whereas Pascal procedure and function parameters consist of a
pointer to machine code and a pointer to the stack frame of the lexical
parent of the function. Such values can be declared as structures in C. To
create such a structure, put the C function pointer in the first word, and 0
in the second. C functions cannot be nested, and thus have no lexical
parent; therefore, the second word is irrelevant.

A C routine with a function parameter cannot be called from Pascal.

Pascal by-value arrays

4-2

C never passes arrays by value. In C, an array is actually a type of pointer;
passing an array passes its address, which corresponds to Pascal by­
reference (VAR) array passing. In practice this is not a serious problem
because passing Pascal arrays by value is not very efficient, and most

RISCompiler and C Programmer's Guide

File Variables

Strings

1.Anguage Interfaces

Pascal array parameters are VAR. When it is necessary to call a Pascal
routine with a by-value array parameter from C, pass a C structure
containing the corresponding array declaration.

The Pascal text type and the C stdio package's FILE• are compatible.
However, Pascal passes file variables only by reference; a Pascal routine
cannot pass a file variable by value to a C routine. C routines that pass files
to Pascal routines should pass the address of the following structure:

struct pascal_file {
FILE *stdiofile;
char *name;

} ;

C and Pascal programs handle strings differently. In Pascal, a string is
defined to be a packed array of characters, where the lower bound of the
array is 1, and the upper bound is an integer greater than 1. For example:

vars: packed array[l .. 100) of char;

RISCompiler and C Programmer's Guide 4-3

Chapter4

4-4

The upperbound (100 in this case) is large enough to efficiently handle
most processing requirements. This differs from the C style of indexing
arrays from 0 to MAX-I. In passing an array, Pascal passes the entire array
as specified, padding to the end of the array with spaces.

Most C programs treat strings as pointers to a single character and use
pointer arithmetic to step through the string. A null character (\0 in C)
terminates a string in C; therefore, when passing a string from Pascal to C,
always terminate the string with a null character (chr(O) in Pascal).

Figure4.1 shows a Pascal routine that calls theC routineatoi and passes the
strings. Note that the routine ensures that the string termiriates with a null
character.

type
astrindex = 1 .. 20;
astring = packed array [astrindex] of char;

function atoi(var c: astring): integer; external;

program ptest{output);
var

s: astring;
i: astrindex;

begin
argv(l, s); {Extension to Pascal)

writeln{output, s);
(Guarantee that the string isnull-terrninated

(but may bash the last character if the argument
is too long). •1bounct• and •hbounct• are

extensions. }
a[bbound(a)]:• chr(O);
for i := lbound(s) to h

if 5 [i l = ' ' then Terminates with
begin
s [i J : = chr (o -----:character
break;
end;

writeln(output, atoi(s));
end.

Figure 4.1: Calling a C Routine from Pascal

RJSCompiler and C Programmer's Guide

Language Interfaces

For more information on atoi, see the atofl3-BSD) or strtol(3c-SysV) man
page in the RISC/os Programmer's Manual. See Figure 4.5 for another
example of passing strings between C and PascaJ.

Variable number of arguments

Type checking

C functions can be defined that take a variable number of arguments
(print/<) and its variants are examples). Such functions cannot be caJled
from PascaJ.

Pascal checks certain variables for errors at execution time, whereas C
doesn't. For exa111ple, in a Pascal program, when a reference to an array
exceeds its bounds, the error is flagged (if runtime checks aren't
suppressed). You could not expect a C program to detect similar errors
when you pass data to it from a Pascal program.

MainO Routine

OnJy one main routine is allowed per program. The main routine can be
written either in Pascal or C. Figure 42 shows examples of C and Pascal
main routines:

Pascal
program p(input,output);
begin

writeln ("hi!•);
end.

Figure 4.2: main() routines

c
main()

printf(•hi\n!•);
}

RJSCompiler and C Programmer's Guide 4-5

Chapter4

Calling Pascal from C

4-6

To call a Pascal function from C, write a C extern declaration to describe
the return value type of the Pascal routine; write the call with the return
value type and argument types as required by the Pascal routine (see
Figure 4.1).

Return Values

Table 4.1 shows the return value type of a C function that accepts Pascal
return values.

Table 4.1: Declaration of Return Value Types

If Pascal function returns: Declare C function as:
integer, integer32 1 int

cardina12 unsigned int
integer16 short

char char
boolean char

enumeration unsigned, or corresponding enum
enum (C's enum are signed)

real float

double double

pointer type corresponding pointer type

record type -
corresponding structure or
union type

array type structure containing corresponding
array type.

1 Applies also to subranges withlowers bound <0.
2Applies also to subranges withlower bounds >=<>.

To call a Pascal procedure from C, write a C extern declaration of the form .
extern void name();

RISCompiler and C Programmer's Guide

Language Interfaces

and then call it with arguments with appropriate types. Table 4.2 shows
the values to pass corresponding to the Pascal declarations. C does not
permit declaration of the formal parameter types, but instead infers them
from the types of the actual arguments passed (see Figure 4.4).

C to Pascal arguments

Table 4.2 shows the C argument types to declare in order to match those
expected by the called Pascal routine.

Table 4.2: Pascal to C Argument Types

If Pascal expects:

integer, integer32

cardinal

integer16

subrange

char

boolean

enumeration

real

double

procedure

function

pointer types

~rameter
reference
record types

by-reference
array parameters

by-reference-file

by-value
array parameters

C argument should be:

integer or char value -231 .. 231 - 1

integer or char value 0 .. 232 -1

char value -2 1 ~. 2 1~1
integer or char value in subrange

integer or char (0 .. 255)

integer or char (0 or 1 only)

integer or char (O .. N-1)

none

float or double

struct {void •p(); int ·11
struct {function-type •to: int ·11
pointerty~
und <0. := lbound(s)

pointer to the appropriate type
structure or union type

corresponding array type

pointer to the appropriate structure

structure containing the corresponding
array

Note: To pass a pointer to a function in a call from C to Pascal, you must
pass a structure by value; the first word of the structure must contain the
function pointer and the second word a zero. Pascal requires this format
because it expects an environment specification in the second word.

RISCompiler and C Programmer's Guide 4-7

Chapter4

4-8

Example: Calling a Pascal function

Figure 4.3 shows an example of a C routine calling a Pascal function.

Pascal routine

function bah (
var f: text;
i: integer
) : double;

begin

end {bah};

C declaration of bah
extern double bah();

C call
int i; double d;
FILE *f;
d = bah(&f, i);

Figure 4.3: Calling a Pascal Function from C

Example: Calling a Pascal procedure

Figure 4.4 shows an example of a C routine calling a Pascal procedure.

Pascal routine
type

int_array = array[l .. 100] of integer;
procedure zero (.

var a: int_array;
n: integer
)

begin

end {zero};

C declaration
extern void zero();

C call
int a[lOO]; int n;
zero(a, n);

Figure 4.4: Calling a Pascal Procedure from C

RISCompiler and C Programmer's Guide

Language Interfaces

Example: Passing strings to a Pascal procedure

Figure 4.5 shows an example of a C routine that passes strings to a Pascal
procedure, which then prints them; the example illustrates two points:

• The Pascal routine must check for the null character (chr(O)), which
indicates the end of the string passed by the C routine.

• The Pascal routine does not write to output, but instead uses the file­
stream descriptor passed by the C routine.

C routine
/* Send the last command-line argument
to the Pascal routine */

atruct pfile {
PILE •atdiofile;

}; char •name;

winclude <stdio.h>
rnain(argc, argv)

int argc; char ••argv;
{
atruct pfil• temp;
temp.atdiofil• • atdout;
temp.name • "•tdout";
if (argc ! = 0)

p_routine(&temp, argv[argc -1]);

Pascal routine
{ We assume the s

will not exceed
type

ing passed to us by the C program
00 bytes in length } .

astring =packed a ray [1 .. 100) of char;
procedure p_routine(r f: text; var c: astring);

var
i: integer;

begin
i := lbound(c);
while (i < hbound(c))

begin

Checks for null
~character.

(c[i] <> chr(O)) do

write(f~ \.

~n~ ~ i ~ ; ~Writes to file-stream
:~~~eln (fl; descriptor passed by C.

Figure 4.5: Passing Strings to a Pascal Procedure from C

RISCompiler and C Programmer's Guide 4-9

Chapter4

Calling C from Pascal

4-10

Pascal to C arguments

To call a C routine from Pascal, write a Pascal declaration describing the C
routine. Use a procedure declaration or, if the C routine returns a value, a
function declaration. Parameter and return value declarations should
correspond to the C parameter types, as shown in Table 4.3.
Table 4.3: Pascal Parameter Data Type Expected by C

If C expects:

int 1

unsigned int 2
short 3 .

unsigned short

char4

signed char

float

double

enum type

string (char *)

pointer to function

FILE*
pointer type

struct type

union type

array type

Pascal parameter should be:

integer

cardinal
integer or integer16 (-32768 .. 32767)

cardinal (or 0 .. 65535)

char

integer (or ·128 .. 127)

float

double

corresponding enumeration type

packed character array passed by reference (VAR)

none

none
corresponding pointer type

or corresponding type passed by reference (VAR)

corresponding record type

corresponding record type

corresponding array type passedby reference
(VAR) '

1same as types signed int, long, signed long, signed

2same as types unsigned, unsigned long

3same as type signed short
4same as type unsigned char

Note: A Pascal routine cannot pass a function pointer to a C routine.

RISCompiler and C Programmer's Guide

Language Interfaces

Example: Calling a C procedure

Figure 4.6 shows an example of calling a C procedure from Pascal.

C routine:
void bah (i, f, s)

int i;
float f;
char *s;

Pascal declaration:
procedure bah (

i: integer;
f: double;
var ·s: packed array[l .. lOO]of char);

external;

Pascal call:
var str: string;
str : = "abc\ •
bah(i, 1.0, str)

Figure 4.6: Calling a C Procedure from Pascal

RJSCompiler and C Programmer's Guide 4-11

Chapter4

4-12

Example: Calling a C function

Figure 4.7 shows an example of calling a C function from Pascal.

C routine:
float humbug {f, x)

struct f {

{

}

} ;

FILE *stdiofile;
char *name;

struct scrooge *x;

Pascal declaration:
type

scrooge_ptr = ~scrooge;
function humbug {

var f: text;
x: scrooge_ptr
) : double:

external;

Pascal call:
var sp: scrooge_ptr;
x := hwnbug(input, sp);

Figure 4.7: Calling a C Function from Pascal

RISCompilerand C Programmer's Guide

l.Anguage Interfaces

Example: Passing arrays

Figure 4.8 shows an example of passing an array to a C function from
Pascal.

c routine:.
int sum (a, n)

int a[];
unsigned n;

Pascal declaration:
type

int_array = array[O .. 100) of integer;
function sum (

var a: int_array;
n: cardinal
) : integer:

external;
Pascal Call:
var samples: int_array;

avg .- sum(samples,hbound(samples) + 1) I
(hbound(samples)+l);

Figure 4.8: Passing Arrays Between Pascal and C

RISCompiler and C Programmer's Guide 4-13

Chapter4

FORTRAN/C Interface

This section discusses items to consider when writing a function call
between FORTRAN and C.

Procedure and Function Names

Invocations

4-14

In calling a FORTRAN subprogram from C, the C program must append
an underscore(_) to the name of the FORTRAN subprogram. For example,
if the name of the subprogram is matrix, then refer to it as matrix_. When
FORTRAN is calling a C function, the name of the C function must end
with an underscore.

Note that only one main routine is allowed per program. The main routine
can be written in either C or FORTRAN. Figure 4.9 shows an example of a
C and a FORTRAN main routine.

c

main() {
printf("hi!\n");

}

PORTRAN

write(6,10)
10 format ('hi!')

end

Figure 4.9: C and Fortran main() routines

Invoke a FORTRAN subprogram as if it were an integer-valued function
whose value specifies which alternate return to use. Alternate return
arguments (statement labels) are not passed to the subprogram but cause
an indexed branch in the calling subprogram. If the subprogram is not a
function and has no entry points with alternate return arguments, the
returned value is undefined. The FORTRAN statement

call nret(*l,*2,*3)

is treated exactly as if it were the computed goto

goto (1,2,3), nret()

RISCompiler and C Programmer's Guide

Language Interfaces

AC function that calls a FORTRAN subprogram can usually ignore the
return value of a FORTRAN subroutine; however, the C function should
not ignore the return value of a FORTRAN function. Figure 4.10 shows
equivalent function and subprogram declarations in C and FORTRAN
programs:

C Function Declaration FORTRAN Declaration

double dfort_ ()
float rfort ()

double precision function dfort()

real function rfort()

int ifort_ ()

int ifort_ ()

integer function ifort()

logical function lfort()

Figure 4.10: C and FORTRAN Function and Subprogram Declarations

Arguments

Note the following:

• Avoid calling FORTRAN functions of type complex and character from
c.

• You cannot return complex types between C and FORTRAN.

• A character-valued FORTRAN subprogram is equi\"alent to a C
langl;age routine with two extra initial arguments: a data address
and a length.

Thus:

character*lS function g(...)

is equivalent to:

char result[];
long int length;
g_(result. length l

and could be invoked in C by:

char chars [15 J;
g_(chars, 15);

The following rules apply to arguments passed between FORTRAN and C:

• All arguments must be passed by reference. That is, the argument
must specify an address rather than a value. Thus, to pass constants
or expressions, their values must be first stored in variables and the
address of the variable passed.

RISCompiler and C Programmer's Guide 4-15

Chapter4

4-16

• When passing the address of a variable, the data representations of
the variable in the calling and called routines must correspond, as
shown in Table 4.4.

Table 4.4: Equivalent FORTRAN and C Data Types

FORTRAN

integer•2 x

integer x

logical x

real x

double precision x

complex x

double complex x

character•6 x

c
short int x;

long int x; or just int x;

long int x;

float x;

double x;

struct { float real, irnag; }x;

struct {double dreal, dimag;} x;

char x [6];

Note that FORTRAN requires that each integer, logical, or real variable
occupy 32 bits of memory.

• The FORTRAN compiler may add items not explicitly specified in
the source code to the argument list. The compiler adds the
following items under the conditions specified:

• Destination address for character functions, when called.

• Length of a character string, when an argument is the address of a
character string.

When a C program calls a FORTRAN subprogram, the C program must
explicitly specify these items in its argument list in the following order:

a. Destination address of character functions.

b. Normal arguments (addresses of arguments or functions).

c. Length of character strings. The lengt11 must be specified as an abso­
lute value or integer variable.

RISCompiler and C Programmer's Guide

Language Interfaces

The next two examples illustrate these rules.

Example 1: Figure 4.11 shows how a C routine must specify the length of a
character string (which is only implied in a FORTRAN call).

FORTRAN call to sam•

external f
character*7 s

integer b(3)

Length is implicit.

call sam(f, b(2),

C call to sam•

int f () ;

char s [7];

long int b[3];

sam_ (f , &b (1] ,

Length of sis explicit.

• sam is a routine written in FORTRAN.

Figure 4.11: Character String length in C and FORTRAN

RJSCompiler and C Programmer's Guide 4-17

Chapter4

Example 2: Figure 4.12 shows how a C routine can specify the destination
address of a FORTRAN function (which is only implied in a FORTRAN
program).

FORTRAN Call to r

external f
character*lO f,g
g = f()_ _____ _

C Call tor

char s[lO)

!(ad~ress(g),length(f))
1mphed.

f_ (&s, lo l ; ... -.-----Address and length explicit.

Function r

character*lO function f()
f = '0123456789' ____ Moves value to location
return at passed address.
end

*f is a function wrinen in FORTRAN.

Figure 4.12: Address of a FORTRAN Function

Array Handling

4-18

FORTRAN stores arrays in column-major order with the leftmost
subscript varying the fastest. C, however, stores arrays in the opposite
arrangement, with the rightmost subscripts varying the fastest, which is
called row-major order. Figure 4.12 shows the layout of FORTRAN arrays
and C arrays:

FORTRAN

integer t(2,3)
t(l,l), t(2,l), t(l,2), t(2,2), t(l,3), t(2,3)

c
int t [2) (3);

t[O] [OJ, t[O) [1], t(O] [2], t[l) [OJ, t[l) (1), t(l] [2)

Figure 4.13: Array Storage in C and FORTRAN

RISCompiler and C Programmer's Guide

Language Interfaces

Note that the default for the lower bound of an array in FORTRAN is l,
whereas it is 0 in C.

When a C routine uses an array passed by a FORTRAN subprogram, the
dimensions of the array and the use of the subscripts must be
interchanged, as shown in Figure 4.14.

FORTRAN caller:

integer (2,
call p(a, ,)
write(6,10)a 1,3)

10 forrnat(lx,19
stop
end

I"':\. Dimensions nd subscripts
\!!) are reversed.

I'::\ 1 is subtracted from
\!:..) the indices. j and i are

pointers to integers.

C called routine:

void
P_(a, i, j .>-~--...
int * · * ·

Figure 4.14: Array Subscripts and Dimensions

The FOR1RAN caller prints out the value 99. Note the following:

Because arrays are stored in column-major order in FOR1RAN and row­
major order in C, the dimension and subscript specifications are reversed.

In FOR1RAN, the lower-bound default is 1, whereas it is 0 in C; therefore,
1 must be subtracted ti-om the indices in the C routine. Also, because
FOR1RAN passes parameters by reference, the •j and •17 are pointers used
in the C routine.

Accessing Common Blocks of Data

The following rules apply to accessing common blocks of data:

• FORTRAN common blocks must be declared by common statements;
C can use any global variable. Note that the common block name in
C (sam_) must end with an underscore.

RISCompiler and C Programmer's Guide 4-19

Chapter 4

4-20

• Data types in the FORTRAN and C programs must match unless you
desire equivalencing. If so, you must adhere to the alignment
restrictions for the data types described in Chapter 3.

• If multiple routines define the same common block with unequal
. lengths, the largest of the sizes is used to allocate space.

• Unnamed common blocks are given the name _BLNK_.

Figure 4.15 shows examples of C and FORTRAN routines that access
common blocks of data.

c

struct· s (int i; float j;} r_;
main() {
sam_();
printf("%d %f\n", r_.i, r_.j);

FORTRAN

subroutine sam()
common /r/i,r
i = 786
r = 3.2
return

Figure 4.15: Accessing Common Data in C and FORTRAN

The C routine prints out 786 and 3.2.

RISCompiler and C Programmer's Guide

Improving Program
Performance

Introduction

5

This chapter describes tools that can help reduce the execution time of
programs; the following topics are CQvered:

• Profiling and how to use it to isolate those portions of code where
execution is concentrated and provide reports that indicate where
improvements might be made.

• How to use Optimization and examples showing optimization
techniques.

• Limiting the Size of Global Data Area and how, through controlling
the size of variables and constants that the compiler places in this
area, program performance can be improved.

The best way to produce efficient code is to follow good programming
practices:

• Choose good algorithms and leave the details to the compiler.

• Avoid tailoring programs for any parti:ular release or quirk of the
compiler system.

RISCompiler and C Programmer's Guide 5-1

Chapter 5

Profiling

Overview

5-2

As technological advances cause MIPS to make changes to the current
compiler system, anything tailored now might negatively affect future
program performance. Moreover, tailored code might not work at all with
new versions of the system. Report any possible compiler inefficiencies
directly to MIPS.

This section describes the concept of profiling, its advantages and
disadvantages, and how to use the profiler.

Profiling helps find the areas of code where most of the execution time is
spent. In the typical program, execution time is confined to relatively few
sections of code; it's profitable to concentrate on improving coding
efficiency in only those sections.
Profiling provides the following information:

• Pc sampling (pc stands for program counter), which highlights the
execution time spent in various parts of a non-shared program.

You obtain pc sampling information by link editing source modules
using the -p option and executing the resulting object, which
generates profile data in raw format.

• Invocation counting, which gives the number of times each
procedure in the program is invo.ked.

• Basic block counting, which measures the execution of basic blocks
(a basic block is a sequence of instructions that is entered only at
the beginning and which exits only at the end). This option
provides statistics on individual lines.

You obtain invocation counting and basic block counting
information using the pixie program. Pixie creates a program
equivalent to your program containing additional code that counts
the execution of each basic block. Executing pixie and the
equivalent program generates the profile data in ·raw format.

Using the prof program, you can create a formatted display of the raw
profile data. The output can indicate where to improve code, substitute
better algorithms, or substitute assembly language. The output also
indicates if the program has exercised all portions of the code. The pixstats
program can also be used to analyze this data.

RlSCompiler and C Programmer's Guide

...

Improving Program Perfonnance

Figure 5.1: shows an example of output produced by a program compiled
with the -p compiler option; prof was used with the -procedure option to
produce the output.

Procedures: - PC Sampling
Profiler option: -procedure

-p[rocedures] using pc-sampling; ...
*

...
sorted in descending orderby total time spent in each procedure;
unexecuted procedures excluded ...

Each sample covers 8.00 byte(s) for 4.2% of 0.2400 seconds

%time

25.0
16.7
12.5

(12.5

seconds cum % cum sec procedure (file)

0.0600 25.0 0.06 main (fixfont .p)
0.0400 41. 7 0.10 write _string (.. /textoutput.c)
0.0300 54.2 0 .13 write char (.. /textout_£ut.c)
0.0300 66.7 0.16 write _integer (.. /textoutput.c))

Figure 5.1: Profiler Listing for PC Sampling

The highlighted line in the figure above shows:

a. .03 seconds or 12.5% of execution time was spent in write_integer.

b. .16 seconds or 66.7% of total execution time was spent in main,
write_string, write_char, and write_integer routines combined.

c. The name of the source file for write_integer is .. /textoutput.c.

Figures 5.2 through 5.6 show raw data produced by pixie. The prof option
used is given at the top of each figure.

RISCompiler and C Programmer's Guide 5-3

Chapters

..
*

*

Procedures: • Invocation Counting

Profiler option: -pixie -Invocation

-i [nvocations] .using basic-block counts;
the called procedures are sorted in descending order by number of
cal:s; a '?' in the columns marked '#calls' or 'line' means that data
is unavailable because partof the program was compiled without
r::=ofiling.

called procedure #calls %calls from line calling procedure (filei:

(eoin 4~~~ s;:~~ ~; main (p1x.p1)
4 ~ main (pix.pl
4.28 8.69 19 main (pix.pl
30 0.61 17 main !pix.pi

write_char 4014 81.75 43 main (pix.pl

5-4

Figure 5.2: Profiler Listing for Procedure Invocations

The circled text in the figure above shows:

a. eoln was called 4,017 times from line 37 of main. This represented
81.51 % of the calls to eoln.

b. The source code for main is the file pix.p.

Procedures: Basic Block Counts
Profiler option: -pixied -procedures

* -p[rocedures] using basic-block counts; *
* sorted in descending order by the number of cycles executed in each *
* procedure; unexecuted procedures are excluded *

148137751 cycles .. I Total number of program cycles.

cycles %cycles cum % cycles bytes procedure (file)
/call /line

48071708 32.45 32.45 34 32 write_char (.. /textoutput.cl
42443503 28.65 61.10 42443503 26 main (fixfont · ... 2)

{ .1.6 4 5 79 36 17.86 78.96 30 44 eoTn J: .. :Ztext_ir:m_ut .cI)
20662326 13.95 92.91 23· 27 read_char (.. /textinput.c}

Figure 5.3: Profiler Listing for Procedures 'Based on Basic Blocks Counts

RISCompilerand C Programmer's Guide

Improving Program Performance

The circled text in Figure 5.3 shows:

a. The statistics describe calls to eoln compiled from the source file
textoutput.c.

b. eoln used 26,457,936 cycles which represented 17.86% of the total pro­
gram cycles. ·

c. The cumulative total of cycles used by write_char, main and eoln is
78.96%.

d. eoln used an average of 30 cycles per call and 44 bytes per line . .
Procedures: - Basic Block Counts (with clock time)

Profiler option: -pixie -procedure -clock

-p[=ocedu=es~ usin; basic-block counts;
so!"ted ir. desce!"lding order by the number of cycles executed in each
proced~re: unexe=uted procedures are excluded-

:..;o.:_.--::: ::-:::-:.e2(:.~.:l-:. seccnds at 6.CIC> megahertz:)

"-

-,-
.;

--...

cycler !gc:,•c:e2 cum % --,;cond~ cycles byt.eE" procedure \file\

- .. ~,..
- . \,.l:..

c:: ~.
:: .., 9:;; f
€~2:.t

~ 7 ~~~
; e. 4 c: e.
73650
62700
""'0(',f'·~ , ·v~

Figure 5.4:

/call line

.:.C ~ - . 4:, t . ~~· (; 9 (~ 34 3:: writi:'_ch::.r (.. rtextoutput.c!
E. • (: f.1 . J. (i 5. 3 0:.4 2(mair. 1 fixfont .p)

.:-.•. ! E. 9;, J. 307:! 30 44 eolri 1 .. /textinput.cJ
::. . :: : SI:.. 91 ~. Sf;..!t 23 '•""'.' .. , read_ch.:.r I• ./textinput.c)
:.9: s.: .. f;:: (•. :.38 5 £2 8 write_chars (.. /textoutput.c)
2.4S 98. 3ll (1.45% 133 14 write_integer (.. /textoutput.c)
1. (•(99.3(0 .1967 29 16 write_string (.. /textoutput.c)
0.24 99.61 0.0453 26 67 readln (.. /textinput.cl

. : S' 99.80 \.2.0349 20 30 writeln (. ./textoutput.c) '

Profiler Listing for Procedures Based on Basic Blocks Counts (with clock times)

The listing in Figure 5.4 contains the same information as the listing shown
in Figure 5.3, and contains the number of seconds spent in each procedure.

The cirded text in the figure above shows that the profiler computes the
time in seconds based on the machine speed specified in the -clock option.

RISCompiler and C Programmer's Guide 5-5

Chapters

(

5-6

Heavy - Basic Block Counts
Profiler option: -pixie -heavy

--. -h[eavy] using basic-block counts; • . sorted in descending order by the number of cycles executed in each • . line; unexecuted lines are excluded *

procedure (file) line bytes cycles % cum%

write_char (.. /textoutput.c) 120 88 28276478 19.09 19.09
eoln (.. /text:i,iput.c) 31 116 22808688 15.40 34.48
main (fixfont :..E) 42 92 19069136 12.87 47.36
read_c~ar (.. It ext input . c : ""?:9 56 J!:881982 f,. 67 54.03)
main TI1x"Tont.pJ 43 40 B58j5l<. 5.79 59.82""
write_char (.. /textoutput.c) 105 20 7069725 4.77 64.59
read_char (.. /textinput.c) 60 28 539017?. 3.64 68.23
main (fixfont .p) 37 20 448%80 3.03 71. 26

Figure 5.5: Profiler Listing for Heavy Line Usage

The circled text in the figure above shows:

a. Line 59, which is located in procedure read_char and compiled from
source file textoutput.c is the fourth most heavily used line.

b. Line 59 has 56 bytes of code and used 9,881,982 cycles, or 6.67% of the
total program cycles.

c. Lines 120, 31, 42 and 59 combined executed 54.03% of the total
program cycles.

RISCompiler and C Programmer's Guide

Improving Program Performance

Lines - Basic Block Counts
Profiler option: - pixie - lines

.. -1 lines) using basic-blo.ck counts;
* grouped by procedure. sorted by cycles executed per procedure;
* '?' means that because a procedure was compiled without profiling,
* we lack line number information for it

procedure (file) line bytes cycles %cycles

105 20 7069725 4.77~
106 8 2827890 1.91

/G"rite_char i .. /textoutput.c;

111 8 2827890 l. 91
lOf. 4 141294!:· 0.95
112 1(. 1413945 0.95
113 72 (! 0.00
115 12 4:!4H::;~. ~.86
lH E"4 (i 0.00
117 28 0 0.00
120 88 2f..27f0 478 19.09

ma:n 1t1xtont.p; --n ou l!:i (: • ll(J

12 32 8 0.00
13 24 6 0. OC·
14 24 6 0.00
15 4 l 0.00
H 40 8490 0.01
17 24 Hf. 0.00

Figure 5.6: Profiler Listing for Line Information

The circled text in the figure above shows:

"
*
"
*

a. The statistics to the right describe lines of code in procedure write_char
compiled from the source file textoutput.c.

b. Line 105 in write_charcontains 20 bytes of code; it executed 7,069,725
times using 4.77% of the total program cycles.

c. Line 117 in write_char contains 28 bytes of code; no cycles were record­
ed for execution.

RISCompiler and C Programmer's Guide 5-7

Chapter 5

How Basic Block Counting Works

5-8

To obtain basic block counting data:

1. Compile and link-edit. Do not use the -p option. For example:

cc -c myprog.c
cc non_shared -o myprog myprog.o

2. Run the profiling program pixie. For example:

pixie -o myprog.pixie myprog

Pixie creates a program equivalent to myprog containing additional
code that counts the execution of each basic block. Pixie also
generates a file (myprog.Addrs) that contains the address of each of
the basic blocks. For more information, see the pixie(l) manual
page in the RISC/os User's Reference Manual.

3. Execute myprog.pixie, which was generated by pixie. For example:

myprog.pixie

This program generates the file myprog.Counts, which contains the
basic block counts.

4. Run the profile formatting program prof, which extracts information
from myprog.Addrs and myprog.Counts, and prints it in an easily read­
able format. For example:

prof -pixie myprog myprog.Addrs myprog.Counts

Note: Specifying myprog.Addrs and myprog.Counts is optional; pixie
searches by default for files with names of the form:

program_name .Addrs and program_name .counts.

You can run the program several times, altering the input data, and
create multiple profile data files. See Averaging Prof Results in this
chapter.

The steps for obtaining basic block count information are shown in Figure
5.7.
You can include or exclude information on specific procedures within a
program using the-only or-exclude options toprof(seeTableS.1). You can
also run pixstats to generate a detailed report on opcode frequencies,
interlocks, a mini profile, and more.

RISCompilerand C Programmer's Guide

Improving Program Performance

Step 1

Compile and link.

Step2

Step 3

Step.4

prof.~ption: IJ
-p1x1e l___,--J

Execute pixie

Execute ..
program.p1x1e

Execute prof

program

~·
~ ~ddra

pixie

prof options: _j ____ j_ -pixie ·feedback

For the cgmpi!er For the programmer

~formatted listina of profile stat1st1cs.
A feedback file used by the driver -cord
option in maximizing cache efficiency. See
Reducing Cache Conflicts in this chapter for
more information.

Figure 5.7: Obtaining Basic Block Count Information

RJSCompiler and C Programmer's Guide 5-9

Chapter 5

Averaging Prof Results

PC-Sampling

5-10

A single run of a program may not produce the required results. You can
repeatedly run the version of the program created by pixie, varying the
input with each run; then use the resulting .Counts files to produce a
consolidated report. For example:

l. Compile and link-edit; do not use the -p option:

cc -c rnyprog.c
cc -o rnyprog rnyprog.o

2. Run the profiling program pixie, as follows:

pixie -o myprog.pixie myprog

'.fhis command produces the myprog.Addrs file to be used in Step 4,
as well as the modified program myprog.pixie.
Run the profiled program as many times as desired. Each time the
program is run, a myprog.Counts file is created; rename this file
before executing pixie again. For example:

rnyprog.pixie < inputl > outputl
rnv rnyprog.Counts rnyprogl.Counts
rnyprog.pixie < input2 > output2
rnv rnyprog.Courits rnyprog2.Counts
myprog.pixie < input3 > output3
mv myprog.Counts myprog3.Counts

3. Run prof to _create the report as follows:

prof -pixie myprog myprog.Addrs myprog[l23] .Counts

prof averages the basic block data in the myprogl.Counts,
myprog2.Counts, and myprog3.Counts files to produce the profile
report.

To obtain pc-sampling data on a program:'

l. Compile and link-edit using the -p option, as follows:

cc -c myprog.c
cc -p -o rnyprog myprog.o

Note that the -p profiling option must be specified during the link
editing step to obtain pc sampling information.

RISCompiler and C Programmer's Guide

Improving Program Perjonnance

2. Execute the profiled program. During execution, profiling data is
saved in the profile data file (the default is man.out).

myprog

You can run the program several times, altering the input data, and
create multiple profile data files. See the section Averaging Prof
Results in this chapter.

3. Run the profile formatting program prof, which extracts information
from the profile data file(s) and prints it in an easily readable format.

prof -procedure myprog men.out

For more information on prof, see proj(1) in the RISC/as User's
Reference Manual.

You can include o.r exclude information on specific procedures within
your program by using the-()n/y or -exclude profiler options (see Table
5.1).

Figure 5.8 shows the steps required to obtain pc sampling information.

Step 1
Comp.iler
-p option

Step 2

Step3

prof format
option(s) ...

For the programmer

A formatted listing
of profile statistics.

Compile and link

Execute program

~
(collect data)

Pro(iile Data{lle
Run prof men.out

(format data) ~

r j
For the compiler

A feedback file used by the driver -cord
option in maximizing cache efficiency.
See Reducing Cache Conflicts in this
chapter for more information.

Figure 5.8: Obtaining PC Sampling Data

RISCompiler and C Programmer's Guide 5-11

Chapter 5

Creating Multiple Profile Data Files

When a program is run using pc-sampling, raw data is collected and saved
in the profile data file man.out. If you wish to collect profile data in several
files, or specify a different name for the profile data file, set the
environment variable PROFDIR as follows:
C Shell

setenv PROFDIR string

Bourne Shell

PROFDIR = string; export PROFDIR
The results are saved in the file string /pid.progname, where pid is the
process id of the executing program and progname is its name as it appears
in argv[O); string is the name of a directory you must create before running
the program.

Running the Profiler (prof)

5-12

The profiler program converts the raw profiling information into either a
printed listing or an output file for use by the compiler. To run the
program, enter prof followed by the optional parameters indicated below:
pr:::f (optlans) [pname) j [profilr.Jilmame ... I 1 [pname.Addrspname.Counts; i

where

options is one of the keyword or keyword abbreviations shown in Table 5.1.
You can specify either the entire name or the initial character of the option.

pname specifies the name of the program. The default file is a.out.
profile-filename specifies one or more files containing the profile data
gathered when the profiled program executed. If multiple files are
specified, prof sums the statistics in the resulting profile listings.
pname.Addrs is produced by running pixie and pname.Counts is produced by
running the pixie-modified version of the program.

The default for projile_/ilename is determined as follows:

• If you don't specify profile_Jilename, the profiler looks for the man.out
file; if this file doesn't exist, it looks for the profile input data file(s)
in the directory specified by the PROFDIR environment variable (see
the section Creating Multiple Profile Data Files).

• If you don't specify projile_/ilename, but do specify -pixie, then prof
looks for pname.Addrs and pname.counts and provides basic block
count information if these files are present.

RISCompiler and C Programmer's Guide

Name

-p[rocedures]

-pixie

·i[nvocations]

·l[ines]

Improving Program Perfonnance

The -merge option can be used when you have multiple profile data files;
this option merges the data into one file. See Table 5.1 for information on
the -merge option.
Table 5.1: Options for the Profile List Program (prof), 1 of 3

Profile List Program (prof} Options

Result

Displays the time spent in each procedure.
See Figure 5.3 for an example of the output.

Basic block counting. Indicates that information is to be
generated on basic block counting, and that the Addrs and Counts
file produced by pixie are to be used by default.
See Figure 5.3 through 5.6 for examples of sample output.

Basic block counting. Lists the number of times each procedure is
invoked. The -exclude and -only options described below apply to
called routines, but not to callers.

See Figure 5.2 for sample output.

Basic block counting. List statistics for each line of source code.

See Figure 5.6 for sample output.

-o[nly] proc_name Reports information on only the procedure specified by
procedure_narne, rather than on the entire program. You may
specify more than one -o option. If you specify uppercase -0, prof
uses only the named procedure(s), ratherthan the entire program, as
the base upon which it calculates percentages.

·e[xclude]
procedure_name

·z[ero]

Excludes information on the procedure(s) (and their descendants)
specified by procedure_name. If you specify uppercase -E for
Exclude, prof also omits that procedure from the base upon which it
calculates percentages.

If you use one or more -exclude options, the profiler omits the
specified procedure and its descendants from the listing.

Basic block counting. Prints a list of procedures that are never
invoked.

RISCompiler and C Programmer's Guide 5-13

Chapters

Table 5.1: Options for the Profile Ust Program <prof), 2 of 3

Profile List Program (prof) Options

Name Result

-q(uit) n
Allows you to condense output listings by truncating unwanted lines.

-quit n% You can truncate by specifying n in one of three ways:

-q[uit] ncumo/o n n is an integer. All Lines after n line are trun-
cat ed.

no/o n is an integer followed by the percentage
sign. AH lines after the line containing no/o
calls in the o/ocalls column are truncated.

ncumo/o n is an integer followed by the charaders cum
(for cumulative) and a percentage sign. All
lines after the line containing ncumo/o calls in
the cumo/o column are truncated.

Below are three examples of using the -q option. Any one of the
three s~ifications shown below would eliminate the items in the
box below.

-prof-q 4
-prof -q 13%
-prof -q 92cum%

calls tcalls cum%

48071708 32.45 32.45 6.0090
42443503 28.65 61.10 5.3054
26457936 17.86 78.96 3.3072
20662326 13.95 92.91 2.5828

4307932 2.91 95.82 0.5385
3678408 2.48 98.30 0.4598
1573858 1. 06 99.36 0.1967

362700 0.24 99.61 0.0453
279002 0.19 99.80 0.0349
251152 0.17 99.97 0.0314

30283 0.02 99.99 0.0038
13391 0.01 100.00 0.0017

2923 0.00 100.00 0.0004

5-14 RISCompiler and C Programmer's Guide

Improving Program Performance

Table 5.1: Options for the Profile Ust Program (prof>, 3 of 3

Profile List Program (prof) Options

Name Result

-h[eavy] Basic block counting. Same as the -lines option, but· sorts
the lines by their frequency of use.

See Figure 5.5 for a sample output listing.

-c[lock] n Basic block counting. Lists the number of seconds spent in
each routine, based on the CPU clock frequency n, ex-
pressed in megahertz; n defaults to 8.0 of omitted. Never
use the default if the next argument program_name or pro-
file_name begins with a digit.

See Figure 5.4 for a sample output listing.

-t[estcoverage] Basic block counting. Lists line numbers containing code
that is never executed.

-m[erge] filename This option is useful when multiple input files of profile data
(normally in man.out} are used. The option causes the pro-
filer to merge the input files into filename, making it possible
to specify the name of the merged file (instead of several file
names) on subsequent profiler runs.

-f[eedback] filename Produces a file used by the driver -cord option to maximize
cache efficiency. See Reducing Cache Conflicts in this

Optimization

· chapter for details.

This section describes the compiler optimization tools and their benefits,
the implications of optimizing and debugging, and the major optimizing
techniques.

Global optimizer

The global optimizer is a single program that improves the performance of
RISCompiler object programs by transforming existing code into more
efficient coding sequences. Although the same optimizer processes

RISCompiler and C Programmer's Guide 5-15

Chapters

5-16

optimizations for all languages, it does distinguish between the various
languages supported by the \USCompiler system to take advantage of the
different language semantics involved.

The compiler system performs both machine-independent and machine
dependent optimizations. RISComputers and other machines with RISC
architectures provide a better target for machine dependent optimizations;
the low-level instructions of RISC machines provide more optimization
opportunities than the high-level instructions in other machines. Even
optimizations that are machine-independent have been found to be
effective on machines with RISC architectures. Although most of the
optimizations performed by the global optimizer are machine
independent, they have been specifically tailored to the RISC/os
environment.

Benefits

The primary benefits of optimization are faster running programs and
smaller object code size. However, the optimizer can also speed up
development time. For example, coding time can be reduced by leaving it
up to the optimizer to relate programming details to execution time
efficiency. This allows you to focus on the more crucial global structure of
your program. Programs often yield optimizable code sequences
regardless of how well a program is written.

Optimization and Debugging

Optimize your programs only when they are fully developed and
debugged. Although the optimizer doesn't alter the flow of control within
a program, it may move operations around so that the object code doesn't
correspond to the source code. These changed sequences of code may
create confusion when using the debugger.

Optimization and Bounds Checking

The compiler option -C, which performs bounds checking in Pascal and
Fortran programs, inhibits some optimizations. Therefore, unless bounds
checking is crucial, do not specify the-C option when optimizing a Pascal
or Fortran program.

Loop Optimization

Optimizations are most useful in code that contain loops. The optimizer
moves loop-invariant code sequences outside loops so that they are
performed only once instead of multiple times. Apart from loop-invariant

RISCompiler and C Programmer's Guide

Improving Program Performance

code, loops often contain loop-induction expressions that can be replaced
with simple increments. In programs composed of many loops, global
optimization can often reduce the running time by half.

The following examples show the results of loop optimization. The source
code below was compiled with and without the-0 compiler optimization
option:

void
left(a, distance)

char a[];
int distance;
{
int j, length;

length = -strlen(a) - distance;
for (j = O; j < length;j++)

a[j] = a[j +distance];

Figure 5.9 shows the unoptimized and optimized code produced by the
compiler. Note that the optimized version contains fewer total
instructions and fewer instructions that reference memory. Wherever
possible, the optimizer replaces load.and store instructions (which
reference memory} with the faster computational instructions that
perform operations only in registers.

RJSCompiler and C Programmer's Guide 5-17

Chapter 5

5-18

Unoptimized:

loop is 13 instructions long using 8 memory references.

8

$32:
9

$33:

Optimized:

SW
ble

lw
lw
addu
lw
addu
lbu ·
ad du
sb
lw
ad du
SW
lw
blt

for (j=O; j<length; j++)
$0, 36($sp) # j = 0
$24, 0, $33 # length >= j

a[j] = a[j+distance];
$25, 36($sp) # j
$8, 44($sp) #distance
$9, $25, $8 # j+distance
$10, 40($sp) # address of a
$11, $10, $9 # address of a(j+distance]
$12, 0($11) # a[j+distance]
$13, $10, $25 # address of a[j]
$12, 0($13) # a[j]
$14, 36($sp) # j
$15, $14, 1 # j+l
$15, 36($sp) # j++
$3, 32($sp) # length
$15, $3, $32 # j < length

loop is 6 instructions long using 2 memory references.

8 for (j=O; j<length; j++)
move $5, $0 # j = 0
ble $4, 0, $33 # length >= j
move $2, $16 # address of a[j]
addu $6, $16, $17 # address of a[j+distance]

$32:
9 a[j] = a[j+distance];

lbu $3, 0($6) # a[j+distance]
sb $3, 0($2) # a[j]
addu $5, $5, 1 # j++
addu $2, $2, 1 # address of next a[j]
addu $6, $6, 1 # address of next a[j+distance]
blt $5, $4, $32 # j < length

$33: # address of nexta[j+distance]

Figure 5.9: Optimized and Unoptimized Code

RISCompiler and C Programmer's Guide

Improving Program Performance

Register Allocation

MIPS RISComputer architecture emphasizes the use of registers.
Therefore, register usage has significant impact on program performance.
For example, fetching a value from a register is significantly faster than
fetching a value from storage. Thus, to perform its intended function, the
optimizer must make the best possible use of registers.

In allocating registers, the optimizer selects those data items most suited
for registers, taking into account their frequency of use and their location
in the program structure. In addition, the optimizer assigns values to
registers se that their c:>ntents move minimally within loops and during
procedure invocations.

Optimizing Separate Compilation Units

The optimizer processes one procedure at a time. Large procedures offer
more opportunities for optimization, since more inter-relationships are
exposed in terms of constructs and regions. However, because of their
size, large procedures require more ti~e than smaller -Jleedback] filename
ones.

The uld and umerge phases of the compiler permit global optimization
among separate units in the same compilation. Often, programs are
divided into separate files, called modules or compilation units, which are
compiled separately. This saves time during program development, since
a change requires recompilation of only one module rather than the entjre
program.

Traditionally, program modularity restricted the optimization of code to a
single compilation unit at a time rather than over the full breadth of the
program. For example, calls to procedures that reside in other modules
couldn't be fully optimized with the code that called them.

The uld and umerge phases of the compiler system overcome this
deficiency. The uld phase links multiple compilation units into a single
compilation unit. Then, umerge orders the procedures for optimal
processing by the global optimizer (uopt).

Optimization Options

Figure 5.10 shows the processing phases of the compiler and how the-On
option determines the execution sequence. Table 5.2 summarizes the
functions of each of the -0 options.

RISCompiler and C Programmer's Guide 5-19

Chapter 5

5-20

Table 5.2: Optimizer Compiler Options

Option Result

-03

-02

-01

-00

The uld and umerge phases process th~ output from the
compilation phase of the compiler, which produces symbol
table information and the program text in an internal format
called ucode.

The u/d phase combines all the ucode files and symbol ·
tables, and passes control to umerge. Umerge reorders the
ucode for optimal processing by uopt. Upon completion,
umerge passes control to uopt, which performs global
optimizations on the program.

Uld and umerge are bypassed, and only the global
optimizer (uopt) phase executes. It performs optimization
only within the bounds of individual compilation units.

U/d, umerge, and uopt are bypassed. However, the code
generator and the assembler perform basic optimizations in
a more limited scope.

Uld, umerge, and uopt are bypassed, and the assembler
bypasses certain optimizations it normally performs.

Note: You should refer to the cc(1), [77(1), or pc(l) manual page, as appli­
cable, in the User's Reference Manual for details on the-03 option and the
input and output files related to this option.

The optimiz.ations performed under -02 or -03 rely to some extent on the
global optimizer's own estimates of the execution frequencies of different
parts of the program. In general, the optimizer assumes that loops are
executed at least one order of magnitude more frequently than the adjacent
code. The more deeply nested the code is, the more frequently it will be
executed. At two-way branches that come from if-then-else constructs, the
optimizer assumes that each branch has equal likelihood. to be taken.
Optimizations like register allocation and the inlining of procedure calls
can yield better results if such estimates are more accurate. The -feedback
compilation option is provided to let the optimizer take advantage of
profile data generated by earlier runs of the program being optimized, and
not rely on its own guesses as to the relative execution frequencies in
different parts of the program.

RISCompiler and C Programmer's Guide

Improving Program Performance

The -feedback option takes the name of a profile data file as an argument.
The profile data file is the binary form of the profile listing generated by
prof. This file is generated if the-f option is given to prof. Alternatively,
this profile data file can be generated by the feedback command, see
feedback<l).
It is best to generate the profile data file when the program is compiled
with the-g option. Under the -g option, the profile information is accurate
to within individual line numbers. Under -01, -02, and -03 compilations,
the compiler can move instructions across line boundaries, so that the
execution time associated with individu~l lines may not be accurate. The
degree to which the optimizer can make use of the profile data is also
affected by how clearly the code is separated across lines. If a lot of code
is packed into each line, or if the source program uses a lot of macros or
conditional expressions, the effect of profile feedback may be diminished.

Some programs behave differently when given different data. For these
programs, it is important that the run which generates the feedback file
represents ordinary conditions and behavior. The user can combine the
profile data from different runs so that the final profile data file represents
the average program behavior.

If the user follows these guidelines, a program optimized with the -
feedback option should always run at least as fast as the version compiled
without this option. In most cases, the program should run faster,
depending upon how much the run deviates from the compiler's own
guess of execution frequencies in the absence of real profile data.

The-feedback option has no effect on the compilation if it is specified with
the -01 and -g options.

RISCompiler and C Programmer's Guide 5-21

Chapters

-02

-01

Compilation

-03

Ucode Link
uloader

Code Generator 1---+-~
Binarv .

Assembler

Link Editor

assembler file.

Assembled
001ect file.

• F9 Linked
L__J object file.
a.out

Figure 5.10: Optimization Phases of the Compiler

Full Optimization (-03)

5-22

The following examples assume that the program Joo consists of three files:
a.c, b.c, and c.c.
To perform procedure merging optimizations (-03) on all three files, enter
the following command:

% cc -03 -o foe a.c b.c c.c

If you normally use the -c option to compile the .o object file, follow these
steps:

RISCompiler and C Programmer's Guide

Improving Program Performance

1. Compile each file separately using the-j option by entering the follow­
ing commands:

% cc -j a.c
% cc -j b.c
% cc -j c.c

The -j option causes the compiler driver to produce a .u file (the
standard compiler front-end output, which contains ucode; ucode
is an internal language used by the compiler). None of the
remaining compiler phases are executed, as illustrated below.
Figure 5.11 illustrates the results after execution of the three
commands shown above.

LlLlr:l
.. C Compiler a.c b.c c.c I

.. LlLlLl
a.u b.u c.u

Figure 5.11: 03 Optimization

2. Enter the following statement to perform optimization and complete
the compilation process.

% cc -03 -o foe a.u b.u c.u

Figure 5.12 illustrates the results of executing the above command.

RJSCompiler and C Programmer's Guide 5-23

Chapter 5

L1Ll
a.u b.u c.u

Global Optimizer
(uopt)

Code Generator

Assembler

Link Edit

Figure 5.12: Compiler Phases of 03 Optimization

Optimizing Large Programs

To ensure that all program modules are optimized regardless of size,
specify the -Olimit option at compilation time.

Because compilation time increases by the square of the program size, the
RISCompiler system enforces a top limit on the size of a program that can
be optimized. This limit was set for the convenience of users who place a
higher priority on the compilation turnaround time than on optimizing an
entire program. The-Olimit option removes the top limit and allows those
users who don't mind a long compilation to fully optimize their programs.

Optimizing Frequently Used Modules

5-24

You may want to optimize modules that are frequently called from other
programs. This can reduce the compile and optimization time required for
programs calling these modules.

RISCompiler and C Programmer's Guide

Improving Program Perfonnance

In the examples that follow, b.c and c.c represent two frequently used
modules to be optimized, retaining all information necessary to link them
with future programs; Juture.c represents one such program.

1. Compile b.c and c.c separately by entering the following commands:

% cc -j b.c
% cc -j c~c

The -j option causes the front end (first phase) of the compiler to
produce two ucode files b.u and c.u.

2. Create, using an editor, a file containing the external symbols in b.c
and c.c to whichfuture.c will refer. Each symbolic name must be sep­
arated by at least one blank. Consider the following skeletal contents
of b.c and c.c.

b.c foo()
{

••
}

bar()
{

••

zot ()
{

••

struct
{

••
) work;

c.c X()

{

••

help<)
{

••
}

struct
(

••

y ()
{

••

ddata;

In this example,/uture.c calls or references only Joo, 'bar, x, ddata, and
y in the b.c and c.c procedures. A file (named extern for this
example) must be created containing the following symbolic
names:

foo bar x ddata y

The structure work, and the procedures help and zot are used
internally only by b.c and c.c, and thus aren't included in extern.

RISCompiler and C Programmer's Guide 5-25

Chapter 5

5-26

If you omit an external symbolic name, an error message is
generated (see Step 4).

3. Optimize the b.u and c.u modules using the extern file as follows:

% cc -b3 -kp extern b.u c.u -o keep.o

· The -kp option designates that the link editor option p is to be
passed to the ucode loader.

Figure 5.13 illustrates Step 3.

. r:n:::1--. ~Ll
b.u c.u extern

~tyamrtf fFsT\~>

Code Generator

Assembler Ll
keep.o

Figure 5.13: Optimizing Phases

4. Create a ucode file and an optimized object code file (foo) for future. c as
follows:

% cc -j future.c
% cc -03 future.u keep.o -o foo

RISCompiler and C Programmer's Guide

Improving Program Perfonnance

The following message may appear; it means that the code in
future.c is using a symbol from the code in b.c or c.c that was not
specified in the file extern.
zot: multiply defined hidden external (should have
been preserved)

Go to Step 5 if this message appears.

5. Include zot, which the message indicates is missing, in the file extern
and recompile as follows:

% cc -03 -kp extern b.u c.u -o keep.o
% cc -03 future.u keep.o -o foo

Building a Ucode Object Ubrary

Building a ucode object library is similar to building a coff object library.
First, compile the source files into ucode object files using the compiler
driver option -j. To build a ucode library (lib/oo.b) containing object files
for a.c, b.c, and c.c, enter the following commands:

% cc -j a.c
% cc -j b.c
% cc -j c.c
% ar crs libfoo.b a.u ~.u c.u

Ucode libraries should have names with .bas a suffix.

Using Ucode Object Libraries

Using ucode object libraries is similar to using coff object files. To load
from a ucode library, specify the -klx option to the compiler driver or the
ucode loader. To load from the ucode library file created in the previous
example, enter the following command:

% cc -03 filel.u file2.u -klfoo -o output
Libraries are searched as they are encountered on the command line, so the
order in which they are specified on the command line is important. If a
library is made from both assembly and high level language routines, the
ucode object library contains code only for the high level language
routines and not all the routines as the coff object library. In this case, you
must specify to the ucode loader both the ucode object library and the coff
object library, to ensure that all modules are loaded from the proper
library.

RISCompiler and C Programmer's Guide 5-27

Chapter 5

If the compiler driver is to perform both a ucode load step and a final load
step, the object file created after the ucode load step is placed in the
position of the first ucode file specified or created on the command line in
the final load step.

Improving Global Optimization

5-28

This section contains coding hints to increase optimizing opportunities for
the global optimizer (uopt).

C, Pascal, and FORTRAN Programs

Do not use indirect calls (calls that use routines or pointers to functions as
arguments). Indirect calls cause unknown side effects (that is, change
global variables) that can reduce the amount of optimization.

C and Pascal Programs

Use functions to return values instead of reference parameters.

Use do while (for C) and repeat (for Pascal) instead of while or for when
possible. For do while and repeat, the optimizer doesn't have to duplicate
the loop condition in order to move code from within the loop to outside
the loop.

Avoid unions (in C) and variant records (in Pascal) that cause overlap
between integer and floating point data types. This keeps the optimizer
from assigning the fields to registers.

Use local variables and avoid global variables. In C programs, declare any
variable outside of a function as static, unless that variable is referenced by
another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as the use of
pointers.
Aliases can often be avoided by introducing local variables to store
dereferenced results. (A dereferenced result is the value obtained from a
specified address.) Dereferenced values are affected by indirect operations
and calls, whereas local variables are not; local variables can be kept in
registers. Figure 5.14 shows how the proper placement of pointers and the
elimination of aliasing lets the compiler produce better code.

Consider Figure 5.14, which uses pointers. Because the statement •p++=O
might modify len, the compiler, for optimal performance, cannot place it in
a register, but instead must load it from memory on each pass through the
loop.

RISCompiler and C Programmer's Guide

Improving Program Performance

Source Code:

int len = 10;
char a[lO];

void
zero()

{
char *p;
for (p = a; p != a • ien; >I *p•• = o;I
}

Generated Assembly Code:

8 for (p = len;) *p++ =
p = a

a + len !=
$32:

*p = 0
p++

len + a !=
$33:

Figure 5.14: Pointers and Optimiz.ation

O;

a

p

Two different methods can be used to increase the efficiency of this
example: using subscripts instead of pointers or using local variables to
store unchanging values.

Using subscripts instead of pointers. The use of subscripting in the
procedure azero eliminates aliasing; the compiler keeps the value of len in
a register, saving two instructions, and still uses a pointer to access a
efficiently, even though a pointer isn't specified in the source code (see
Figure 5.15).

RlSCompiler and C Programmer's Guide 5-29

Chapter 5

5-30

Source Code:

void
a zero ()

{ .

int i;
~or (i = O; i != len; i++) ~= O;

Generated Assembly Code:

for (i = O; i != len; i++) a [i] = 0;
move $2, $0 # i = 0
beq $4, 0, $37 # len ! = 0
la $5, a

$36:
sb $0, 0($5) # *a = 0
addu $2, $2, 1 # i++
addu $5, $5, 1 # a++
bne $2, $4, $36 # i != len

$37:

Figure 5.15: Using Subscripts insteizd of Pointers

Using local variables. Specifying Jen as a local variable or formal
argument (as shown below) ensures that aliasing can't take place and
permits the compiler to place /en in a register (see Figure 5.16).

RISCompiler and C Programmer's Guide

Improving Program Perfonnance

Source Code:
char a[lO];
void
lpzero(len)

qnt !en; I
char *p;
for (p = a; p != a + len;) *p++ = O;
}

Generated Assembly Code:

8 for (p = a; p
move
addu
beq

!= a + len;
$2, $6
$5, $6,· $4
$5, $6, $33

*p++ = O;
P = a

a + len != a
$32:

$33:

sb
ad du
bne

$0, 0 ($2)
$2, $2, 1
$5, $2, $32

*p = 0
p++
a+ len != p

Figure 5.16: Using Local Variables instead of Pointers

In Figure 5.16, the compiler generates slightly more efficient code for the
second method.

Pascal Programs Only

Packed arrays prevent moving induction expressions from within a loop
to outside the loop. Use packed arrays only when space is crucial.

C Programs Only

. Write straightforward code. For example, don't use++ and - operators
within an expression. When you use these operators for their values rather
than for their side-effects, you often get bad code. For example:

Bad Good

while (n--) while (n != 0) (
n--;

. }

RISCompiler and C Programmer's Guide 5-31

Chapter 5

Use register declarations liberally. The compiler automatically assigns
variables to registers. However, specifically declaring a register type lets
the compiler make more aggressive assumptions when assigning register
variables.

Avoid taking and passing addresses(&: values). This can create aliases,
make the optimizer store variables from registers to their home storage
locations, and significantly reduce optimization opportunities.
Avoid creating functions that take a variable number of arguments. This
causes the optimizer to unnecessarily save all parameter registers on entry.

Improving Other Optimization

5-32

The global optimizer processes programs only when you explicitly specify
the -02 or-03 option at compilation. However, the code generator and
assembler phases of the compiler always perform certain optimizations
(certain assembler optimizations are bypassed when you specify the-00
option at compilation).
This section contains coding hints that, when followed, increase
optimizing opportunities for the other passes of the compiler.

C, Pascal, and FORTRAN Programs

• Use tables rather than if-then-else or switch statements.

For example:

OK
if (i -- 1) c = • 1 • ;
else c = •o•;

More Efficient
c = ·oi-[il;

• As an optimizing technique, the compiler puts the first four
parameters of a parameter list into registers where they remain
during execution of the called routine. Therefore, you should
always declare as the first four parameters those variables that are
most frequently manipulated in the called routine with floating
point parameters preceding non-floating point.

• Use word-size variables instead of smaller ones if space is not a
consideration. This may use more space, but is more efficient.

RISCompilerand C Programmer's Guide

Improving Program Performance

C Programs Only

• Use libc functions (e.g. strcpy, strlen, strcmp, bcopy, bzero, memset,
memcpy) instead of writing similar routines. These functions are
hand-coded for efficiency.

• Use the unsigned data type for variables wherever possible for the
following reasons: (1) because the variable is always greater than
or equal to zero (>=0), the compiler can perform optimizations that
would not otherwise be possible, and (2) the compiler generates
fewer instructions for multiply and divide operations that use the
power of two. Consider the following example:

int i;
unsigned j;

return i/2 + j/2;

The compiler generates six instructions for the signed i/2
operations:

000000 20010002 li rl, 2
000004 0081001a div r4,rl
000008 14200002 bne rl, rO, Ox14
OOOOOc 00000000 nop
000010 03fe000d break 1022
000014 00001812 mflo r3

The compiler generates only one instruction for the unsigned j/2
operation:

000018 0005c042 srl r24, rs, 1 * j / 2

In the example, i/2 is an expensive expression; however, j/2 is
inexpensive.

Pascal Programs Only

Use predefined functions as much as possible. For example,

• Use max and min rather than if-then-else.

• Also, use shift and bit-wise and instead of dit1 and mod.

RISCompiler and C Programmer's Guide 5-33

Chapter 5

Limiting the Size of Global Data Area

The compiler places constants and variables in the .lit8, .lit4, .sdata and .sbss
portions of the data and bss segments shown in Figure 5.17. This area is
referred to as the global data area.

.text ~ text segment

.rdata

.data

.lit8 data segment

.lit4

.sdata

.sbss

.bss
bss segment

D Global pointer area

Figure 5.17: Global Data Area

(The .rdata, .data, .lit8, .lit4, and .sdata sections contain initialized data, and
the .sbss and .bss sections reserve space for uninitialized data that is created
by the kernel loader for the program before execution and filled with zeros.
For more information on section data, see Chapter 9 of the Assembly
Language Programmer's Guide.)

Purpose of Global Data

5-34

In general, the compiler system emits two machine instructions to access a
global datum. However, by using a register as a global pointer (called
$gp), the compiler creates the 65536-byte global data area where a
program can access any datum with a single machine instruction - half the
number of instructions required without a global pointer.

To maximize the number of individual variables and constants that a
program can access in the global data area, the compiler first places in the
global data area those variables and constants that take the fewest bytes of
memory. By default, the variables and constants occupying eight or fewer
bytes are placed in the global data area, and those occupying more than
eight bytes are placed in the .data and .bss sections.

RISCompiler and C Programmer's Guide

Improving Program Perfonnance

Controlling the Size of Global Data Area

The more data that the compiler places in the global data area, the faster a
program executes. However, if the data to be placed in the global data area
exceeds 65536 bytes, the link editor prints an error message and doesn't
create an executable object file. For most programs, the eight-byte default
produces optimal results. However, the compiler provides the -G option
to let you change the default size of data placed in the global data area. For
example, the specification

-G 12

causes the compiler to place variables and constants that occupy 12 or
fewer bytes in the global data area.

Obtaining Optimal Global Data Size

The compiler places some variables in the global data area regardless of
the setting of the -G option. For example, a program written in assembly
language may contain .sdata directives that cause variables and constants
to be placed into the global data area regardless of size. Moreover, the-G
option doesn't affect variables and constants in libraries and objects
compiled beforehand. To alter the allocation size for the global data area
for data from these objects, you must recompile them specifying the -G
option and the desired value.

Thus, two potential problems exist in specifying a maximum size in the
-G option:

• Using a value that is too small can reduce the speed of the program.

• Using a value that is too large can cause more than the maximum
65536 bytes to be placed in the data area, creating an error
condition and producing an unexecutable object module.

The link editor -bestGnum option helps overcome these problems by
predicting an optimal value to specify for the-G option. The next sections
give examples of using the-bestGnum option and the related -nocount and
-count options.

Examples (Excluding Libraries)

When using the -l1estGnum option exclusive of -nocount and -count, the
compiler driver assumes that you cannot recompile any libraries to which
it would link automatically; the driver causes the link editor not to
consider these libraries when predicting the optimal maximum size.
However, if you link to other system-supplied libraries, you must specify
-nocount before the library.

RJSCompiler and C Programmer's Guide 5-35

Chapter.5

For example:

cc -bestGnurn foo.c -nocount -lm
If you specify the option as shown below:

pc -bestGnum bogus.p

the compiler produces a message giving the best value for -G; if all
program data fits into the global data area, the following message is
displayed:

All data will fit into the global data area
Best -G num value to compile with is 80 (or greater)

Because all data fits into the global data area, no recompilation is.
necessary. Consider the following example, which specifies 70000 as the
maximum size of a data item to be placed in the global data area:

pc ersatz.p -G 70000 -bestGnum

The above example produces the following messages:

gp relocation out-of-range errors have occurred and bad
object file produced (corrective action must be taken)
Best -G num value to compile with is 1024

In this example, the link editor doesn't produce an executable load module
and recommends recompilation as follows:

pc real.p -G 1024

Example (Including Ubrarles)

You can explicitly specify that the link editor either include or exclude
specific libraries in predicting the -G value. Consider the following
example:

cc -o plotter -bestGnum plotter.o -nocount libieee.a \
-count liblaser.a

In the above example, the link editor assumes that libieee.a cannot be
recompiled and will continue to occupy the.same space in the global data
area. It assumes thatplotter.o and liblaser.a can be recompiled and produces
a recommended -G value to use upon recompilation.

Reducing Cache Conflicts

5-36

RISComputer hardware provides two high-speed caches-one for
program data and the other for instructions-that temporarily hold data or
instructions frequently used by the processor. During execution,
instructions or data from specified memory locations are placed in the
cache. Because the cache is much smaller than memory, a single cache
location is shared by many distinct memory locations. The first cache

RJSCompiler and C Programmer's Guide

Improving Program Performance

location is shared by the 0th, 64KBth, 128KBth, ... memory locations. This
mapping of every memory location to exactly one cache location is called
a direct mapped cache.
A cache conflict occurs when a program references two instructions or
data items that compete for the same location in the respective data or
instruction cache. Normally this is not a problem. When the references are
made repeatedly, as in a loop, such repeated conflicts can degrade
performance.

A serious instruction conflict could occur if, from within a loop, a call is
made to a function that is a multiple of the cache size away. Basically, the
function is placed in the cache, removing the instructions from the calling
loop. Upon return, the calling loop replaces the instructions of the
function, and this continues until the end of the loop.

You can eliminate major instruction cache misses within your programs by
using the -cord driver option in combination with the pixie and prof
programs. This option attempts to place the most frequently executed
sections of code in memory so that they don't conflict with each other. To
optimally reorganize the program index/, execute the following
commands:

% f77 -c -0 index.f
% f77 -o index index.a
% pixie -o index.pixie index
% index.pixie
% prof index -feedback feedfile
% f77 -o index index.o -feedback feedfile -cord

Figure 5.18 illustrates the steps for the reorganization of program indexf

RISCompiler and C Programmer's Guide 5-37

Chapter 5

5-38

index.f

E?
compile

---...---.J----•~ index.o

..----"'-----. ----~---------.
link L___J

'----....---... --....... index

.------,__E:J
pixie

.., lindexJixie

index.pixie
'---...----' --1• ... index.Counts ,.---__.___.,..__o

prof
feedfile

-~~-B
link

index

Figure 5.18: Using the _,;ord Option

index.Addrs

B

For more information, see proftl), pixie(l), or the _,;ord option in the
applicable driver manual page-cc(l), pc(l), or [77(1), in the RISC/os User's
Reference Manual.

RISCompiler and C Programmer's Guide

Improving Program Performance

Filling Jump Delay Slots
In jump instructions, there is a jump delay or latency of one instruction,
which is called a jump delay slot. Whenever possible, the compiler inserts
an instruction in the delay slot to avoid stalls in the execution pipeline of
instructions. (See delay slot in the MIPS RISC Architecture manual for a
detailed discussion.) The-jmpopt option enables the compiler to fill
additional delay slots at the cost of requiring more memory by the link
editor. The default is nojmpopt; this option ensures that most link edits do
not abort because of memory constraints.

For programs requiring high in performance, specify the -jmpopt option.
Then, the link editor attempts to insert executable instructions into those
delay slots that the compiler could not fill.

RISCompiler and C Programmer's Guide 5-39

Chapter 5

5-40 RISCompiler and C Programmer's Guide

Debugging Programs

6

This chapter describes the source-level debugger dbx and tells how to use
it. The debugger can be used with C, FORTRAN 77, Pascal, assembly
language, and machine code. This chapter describes how to invoke dbx
and all debugger commands, giving examples of each. The following
topics are covered in this chapter:

Introduction

Introduces new users to the debugger and discusses general debugging
issues, including where to start and how to isolate errors. It gives tips for
users new to source-level debugging. Users familiar with debuggers may
want to skip to the next section.
Running dbx

Shows how to run the debugger, including how to compile a program for
debugging, and how to invoke and quit dbx.

Using dbx Commands

Describes the dbx command syntax, expression precedence, data types,
and constants, and lists the most common commands.

Working with the dbx Monitor

Describes how to use history, edit the command line, enter multiple
commands, and use facilities that help you complete program symbol
names.

Controlling dbx

Describes how to work with variables, how to create command aliases,
record and playback input and output, invoke a shell from dbx, and use
the dbx status feature.

Examining Source Programs

RISCompiler and C Programmer's Guide 6-1

Chapter6

Introduction

Shows you how to specify source directories, move to a specified
procedure or source file, list source code, search through source code, call
an editor from dbx, print symbolic names, and print type declarations.

Controlling the Program

Describes how to run and rerun a program, execute single lines of code,
return from procedure calls, start at a specified line, continue after a
breakpoint, and assign values to program variables.

Setting Breakpoints

Describes how to set and remove breakpoints and continue executing a
program after a breakpoint.

Examining Program State

Describes how to print stack traces, move up and down the activation
levels of the stack, print register and variable values, and print information
about the activation levels in the stack.

Debugging at the Machine Level

Describes the commands used to debug machine code, including those to
examine memory addresses and disassemble source code.

This section introduces the debugger and some debugging concepts; it also
gives tips about how to approach a debugging session, including where to
start, how to isolate errors, and how to avoid common pitfalls.

If you're an experienced user, you may want to skip this section and go to
the dbx Command Summary section at the end of the chapter, which
contains a reference summary of all debugger commands.

Why Use a Source-Level Debugger?

6-2

dbx lets you trace problems in a program object at the source code, rather
than at the machine code level. With dbx, you control a program's
execution, monitoring program control flow, variables, and memory
locations. You can also use dbx to trace the logic and flow of control to
become familiar with a program written by someone else.

The advantages to using dbx include:

• Easy to use environment.

• High-Level language debugging.

• Remote debugging.

• Stack tracing.

• Single stepping.

RISCompiltr and C Programmer's Guide

Debugging Programs

• Expression evaluator.

• Assembly debugging.

• Breakpoints.

• Program state examination.

• Line-by-line variable tracing.

What Are Activation Levels?

Activation levels define the currently active scopes (usually procedures)
on the stack. An activation stack is a list of calls that starts with the initial
program (usually main()). The most recently called procedure or block is
number 0. The next procedure called is number 1. The last activation level
is always the main procedure (the procedure that controls the whole
program).

Activation levels can also consist of blocks that define local variables
within procedures. You see activation levels in stack traces (see the where
command) and when moving around the activation stack (see the up,
down, and June commands). Figure 6.1 shows the stack trace produced by
a where command.

>0 printline (pline=Ox7fff5b80) [•sarn.c• :58, Ox2f7]
printline is the most recently called
procedure from $block1

1 $blockl ["sarn.c":47, Ox2bb]
$block1 defines Its own local variables
even though it is part of mainO

2 main (argc=2, argv=Ox7fffeba0) ["sarn.c":47, Ox2bb]
main is the main program

Figure 6.1: Stack Trace

RISCompiler and C Programmer's Guide 6-3

Chapter6

Isolating Program Failures

dbx finds only runtime errors; you should fix compiler errors before
starting a debugging session.

To save time, start a debugging session using the more general commands
(Usted below), rather than debugging line by line. For example, if a
program fails during execution, you would:

1. Invoke the program under dbx.

2. Get a stack trace using the where command to locate the point of failure.

Note: If you haven't stripped symbol table information from the program
object, you can get a stack trace even if the program was not compiled with
the -g debug flag.

3. Set breakpoints to isolate the error using stop commands.

4. Print the values of variables using the 11rint command to see where a
variable may have been assigned an incorrect value.

If you still cannot find the error, other dbx commands may be useful. Using
dbx Commands in this chapter describes each dbx command.

Incorrect Output Results

If a program successfully terminates, but produces incorrect values or
output, follow these steps:

1. Set a breakpoint where you think the problem is happening-for ex-
ample, the code that generates the value or output.

2. Run the program.

3. Get a stack trace using the where command.

4. Print the values for the variables that might be causing the problem us­
ing the print command.

5. Return to Step 1 until the problem is found.

Avoiding Pitfalls

6-4

The debugger cannot solve all problems. For example, if your program has
incorrect logic, the debugger can only help you find the problem, not solve
it. When information displayed by the debugger appears confusing or
incorrect, taking the action listed below may correct the situation:

RISCompiler and C Programmer's Guide

Runningdbx

Debugging Programs

• Separate lines of source code into logical units wherever possible
(for example, after if conditions); the debugger might not recognize a
source statement written with several others on the same line.

• If executable code appears to be missing, it may have been contained
in an include file. The debugger treats include files as a single line.
If you wish to debug this code, remove it from the include file and
compile it as part of the program.

• Make sure you recompile the source code after changing it,
otherwise the source code displayed by the debugger won't match
the executable code.

• If you stop the debugger by using job control and then resume the
same debugging session, the debugger continues with the same
object module specified at the start of the session. This means that,
if you stop the debugger to fix a problem in the code, recompile, and
return, the debugger won't reflect the change. You must start a new
session.

• When printing an expression that has the same name as a dbx
keyword, you must enclose the expression within parentheses. For
example, in order to print output, a keyword in the playback and
record commands, you must specify:

print (output)

• If the debugger does not display any variables or executable code,
make sure you compiled the program with the -g option.

Before invoking dbx, you need to compile the program for debugging. You
may also want to create a .db:rinit file that will execute commands when the
debugger is started.

Compiling a Program for Debugging

To use the debugger, specify the -g option at compilation time. This
option inserts symbol table information in the program object, which dbx
uses to list source lines.

Do not optimize your program until it is fully developed and debugged.
Although the optimizer does not alter the flow of control within a
program, it may move operations around so that the object code doesn't
correspond to the source code. These changed sequences of code may
create confusion when you use the debugger.

RISCompiler and C Programmers Guide 6-5

Chapter 6

You can do limited debugging on code compiled without the-g flag. For
example, the following commands work without recompiling for
debugging:

• stop in PROCEDURE

• stepi

• continue

• conti

• (ADDRESS)/<COUNT><MODE>

• tracei

Although you can do limited debugging, it may be more useful to
recompile the program with-g. The debugger does not warn you if an
object file has been compiled without the-g flag.

Building a Command File

Invoking dbx

6-6

You can create a command file, called .dbxinit, that contains dbx
commands, using a system editor. When dbx is invoked, the commands
are executed (you are prompted for required input). A command file can
be used to customize the dbx environment or to specify a set of frequently
used dbx commands.

dbx looks for .dbxinit first in the current directory and then in your home
directory. If the file resides in your home directory, set the HOME
environment variable.

Figure 6.2 shows an example of a .dbxinit file:
set $page = 5
set $lines = 20
set $prompt = 177DBX>"
alias du dump

Figure 6.2: Sample .dbxinit file

You invoke dbx from the shell command line by entering dbx and the
optional parameters. After invocation, dbx sets the current function to the
first procedure of the program.

RISCompilerand C Programmer's Guide

Debugging Programs

Syntax:

Command

dbx (options) [obj file) (corefile)

Function

Invoke dbx from the
shell command line

If objfile is not specified, dbx uses a.out by default. If corefile is specified, dbx
lists the point of program failure. For core files, you can get a stack trace
and look at the code; however, you cannot run a program from a core file,
for example, set breakpoints or continue.

The available options are shown in Table 6.1.

Table 6.1: dbx Options

Option Function

-I dirname Tell dbx to look in the specified directory for source
files. To specify multiple directories, you must use a
separate -1 for each. Unless you specify this option
when you invoke dbx, it looks for source files in the
current directory and in the object file's directory.

-c filename
You can change directories with the use command.
Selects a command file other than your .dbxinitfile.

-i

-r
-k

Example:

% dbx

Uses interactive mode. This option does not treat #s as
comments in a file. It also prompts for source even when
it reads from a file. It has extra formatting as if for
a terminal.
Runs your program immediately upon entering dbx.
Tums on kernel debugging.

dbx version 3 of 3/30/86 14:51
Type 'help' for help.
enter object file name (default is 'a.out'): sam
reading symbolic information ...
main:23 if (arg <2) {
(dbx)

RJSCompiler and C Programmer's Guide 6-7

Chapter6

Ending dbx (quit)

Use the quit command to end a debugging session.

Syntax:

Command Function

quit End the debugging session

q

Example:

I !dbxl
quit

After entering quit, dbx prompts you to confirm that you want to exit.

Using dbx Commands

This section describes the conventions used for describing dbx command
syntax, expressions and precedence, displaying data and constants, and
some of the commonly used debugging commands.

Command Syntax

6-8

The following-conventions are used in the command descriptions:

• Words in lower-case typewriter font are literals, and must be
entered as they are shown.

• Words in italics indicate variable values that you specify.

• Square brackets ([]) surrounding an argument mean that the
argument is optional.

• dbx variable names appear in italics. •

• Words in upper-case typewriter font indicate variables for which
specific rules apply. These words are given in Table 6.2.

dbx lets you enter up to 10240 characters on an input line. Long lines can
be continued with a backslash(\). If a line gets too long, dbx prints an error
message (seefgets(1) in the User's Reference Manual>. The maximum string
length is also 10240.
The following example command illustrates the syntax conventions:

stop VAR in PROCEDURE if EXP

RISCompilerand C Programmer's Guide

Debugging Programs

Enter stop, in, and if as shown. Enter the values for VAR, PROCEDURE
and EXP as defined in Table 6.2.

Table 6.2: Keywords Used in Command Syntax Descriptions

Keyword

"(caret)

ADDRESS
ARGS

Value

Press the control key on your keyboard. Usually, used
in conjuction with another key.
Any expression specifying a machine address.
Program arguments (maximum allowed by dbx is 1000;
however, system limits may also appply.

COMMAND_LIST
DIR

One or more commands, each separated by semicolons.
A directory name.

FILE
EXP

INT
LINE
NAME
PROCEDURE
REG EX

SIGNAL

STRING
VAR

Filename.
Any express including program variable names for the
command. Expressions can contain dbx variables; for
example, ($1istwindow+2). If youwant to use the words
in, to or at in an expression, you must surround them with
parentheses; otherwise, dbx assumes that these words
are debugger key words.
Integer value.
A souce code line number.
dbx command name.
Procedure name or an activation level on the stack.
A regular expression string. See regcmp(3) in the RISC/os
Programmer's Reference Manual.
A RISC/os system signal. For BSD, see the sigvec(2)
manual page in the Programmer's Reference Manual.
For SysV, see the signa~2) manual page.
Any ASCII string.
Valid program variable or dbx predefined variable. For
machine-level debugging, VAR can also be an address.

Qualifying Variable Names

Variables in dbx are qualified by file, procedure, block, or structure. When
using commands like print to print a variable's value, dbx indicates the
scope of the variable when the scope could be ambiguous (for example,
you have a variable by the same name in different procedures). If scope is
wrong, you can specify the full scope of the variable by separating scopes
with periods. For example:

sam.main.i

where sam is the current file; main is the procedure; and i is the variable.

RISCompiler and C Programmer's Guide 6-9

Chapter6

dbx Expressions and Precedence

6-10

dbx recognizes expression operators from C, Pascal, and FORTRAN 77.
Operators follow the C language precedence (see Table 6.3).

Table 6.3: dbx Expression Operators
Dab••1111e_r_""" !I'S

Operator Syntax Description

(•FILE• #Exp) Uses the specified line number
(#EXP) in that file, returns the
address of the line.

(PROCEDURE #EXP) Uses the specified line number
(#EXP) in that procedure, returns
the address of the line.

(#EXP) Takes line number (#EXP) and
returns the address for that line.

Use the# operator to convert line number into address.

Tables 6.4, 6.5, and 6.6 show language operators; note that I I (instead
of/) is used for divide.

Table 6.4: C Expression Operators

C Language Operators

Unary &, +, -, * sizeof() -, //,(type); (type *)

Binary <<1 >>1" I ! I --, !:, <=, >=, <.>, &,

&&, I, II,+, -, *, %, [],->

Note: The sizeof operator specifies the number of bytes retrieved to get an
element, not (number_of_bits+7)/8. ·

Table 6.5: Pascal Expression Operators

Unary

Binary

Pascal Language OJ?-rators

not, ", -

<=, >=, <>, and, or, +, -
*, I I , div, mod, [] , .

RISCompiler and C Programmer's Guide

Debugging Programs

Table 6.6: FORTRAN Expression Operators

Unary

Binary

FORTRAN Operators

+, - * II

Note: FORTRAN array subscripts use[] instead of().

dbx Data Types and Constants

dbx commands can use the built-in data types described in Table 6.7.

Table 6.7: Built-in Data Types

Data Types
Data Types Description

$address Pointer

$unsigned Unsigned Integer

$char Character

$boolean Boolean

$real Double Precision Real

$integer Signed Integer

$float Single Precision Real

$double Double Precision Real

$uchar Unsigned Character

$short 16-bit integer
$signed Signed Integer
$void

The built-in data types can be for type coercion - for example, to print a
variable as a type that is different from its declaration.

The types of constants that are acceptable as input to dbx are shown in
Table 6.8. Constants that are output from dbx are displayed by default as
decimal values.

RISCompiler and C Programmer's Guide 6-11

Chapter6

Table 6.8: Input Constant

ln~ut Constants
Constant Description

false 0
true nonzero
nil 0
Ox number hexadecimal
Of.number decimal
Onumber octal
number decimal
number.[numberj[elE][+l·EXP] float

Note: Overflow on non-float uses the right-most digits. Overflow on
float uses the left-most digits of the mantissa and the highest or lowest
exponent possible.

The $octin dbx variable changes the default input expected to octal. The
$hexin variable changes the default input expected to hexadecimal. See
Predefined dbx Variables.
The $octints dbx variable changes the default output to octal. The Shexints
variable changes the default output to hexadecimal. See Predefined dbx
Variables.

Basic dbx Commands

6-12

dbx offers many commands; however, for most debugging sessions, the
commands shown in Table 6.9 are sufficient.

RISCompilerand C Programmer's Gu'ide

Debugging Programs

Table 6.9: Commonly Used Debugger Commands

Common Debuggln_g_ Commands
Command Select this command to ••.

\REGEX Search ahead in the source file for a specific string.
?REG EX Search back in the source file for a specific string.
continue Continue executing your program.
down EXP Move down the activation levels of the stack.
dump Get all information that dbx has about a procedure.
func PROCEDURE Select a procedure to examine.
list Look at the 1 O lines preceeding and following

the current line.
list EXP Look at line specified by EXP.
print EXP Print the value of any variable.
quit End the debugging session.
run Run the program being debugged.
rerun Run the program again with the same arguments

specified to the run command.
step EXP Step the specified number of lines.
stop at LINE Stop at specified lines in source file.
stop in PROCEDURE Set a breakpoint at the beginning of a procedure.
up EXP Move up the activation levels of the stack.
where Get a stack trace to see what procedures are

currently active.

Working with the dbx Monitor

dbx provides a command history, command line editing, and symbol name
completion. dbx also allows multiple commands on an input line. These
features can reduce the amount of input required or allow you to repeat
previously executed commands.

Using the Command History

The dbx command history allows you to re-execute debugger commands.
The debugger keeps a list of previously executed commands that can be
displayed with the history (alias h) command.

You can set the number of history lines saved using the $lines variable
using the set command. The default is 20. See Setting dbx Variables.

To repeat a command, use one of the exclamation point(!) commands (see
the syntax description for history).

RlSCompiler and C Programmer's Guide 6-13

Chapter6

Syntax:
Command Fundion

history
!string

Print the items in your history list.
Repeat the most recent command that starts
the specified string.

!INT

!·INT

Example:

Repeat the command associated with the specified
integer.
Repeat the command that occurted the specified
integer before the most recent command.

The following example prints the history list and then re-executes one of
the commands:

{dbx) history
10 print x
11 print y
12 print z

{dbx) !12
(!12 = printz)
123
{dbx)

Editing the dbx Command tine

6-14

dbx provides commands that permit command line editing. These
commands allow you to correct mistakes without re-entering an entire
command. The editing commands are the same as those used for csh
command line editing. See csh(1) in the RISC/os User's Reference Manual for
a description of the editing commands. Table 6.10 shows some of the
commonly used editing commands.

RISCompilerand C Programmer's Guide

Debugging Programs

Table 6.10: dbx Command Line Editing Commands

DBX Command Line Editin_g_
Command Function

carriage return Repeat the last command issued to dbx. This
feature is turned off by setting the $repreatmode
variable to 0. See Setting dbx Variables.

"A Move the cursor to the beginning of the command
line.

"8 Move the cursor back one character.
"D Delete the character at the cursor.
"E Move the cursor to the end of the line.
"F Move the cursor forward one character.
"H. DELETE Delete the character immediately preceding the

cursor.
"N Move forward one line. (This line comes from the

history list.)
"P Move back on line. (This line comes from the history

list.)

Note: In Table 6.10, the notation " represents the CTRL key. For example
"A indicates thatthe CTRL and A keys should be pressed simultaneously.

Entering Multiple Commands

You can enter multiple commands on the command line by using a
semicolon(;) as a separator. This can be useful when using the when
command. See Writing Conditional Code in dbx.

Syntax:

Command Function
COMMAND; COMMAND ~nter mulptiple commands on the command

line.

Example:

The following example stops the program and then re-runs it.

(dbx) stop at 58; rerun
[1] stop at 58 177sam.c":58
[1) stopped at [printline:58,0x2f8) pline->string
(dbx)

RISCompiler and C Programmer's Guide 6-15

Chapter 6

Completing Symbol Names

dbx provides symbol name completion; dbx completes names from a
unique prefix when the partial name is followed by CTRL-Z. If a unique
completion is found, dbx redisplays the input with it added; otherwise, all
possible completions are shown and you can choose one.

Syntax:

Command Function
STRING "Z

Example:

The following example displays all names beginning with the letter i.

(dbx) i "z
ioctl.ioctl .ioctl isatty.isatty .isatty i int
(dbx) i

Note: The display may include data types and library symbols.

(dbx) print
(dbx) print
Oxl24ac
(dbx)

file"z
file_header_ptr

t
dbx completes the
symbol name for you

Controlling dbx
dbx provides commands to set and unset dbx variables, create and remove
aliases, record and play back input, invoke a shell from dbx, and check and
delete items from the status.

Setting dbx Variables

6-16

The set command defines a dbx variable, sets an existing dbx variable to a
different type, or displays a list of existing dbx predefined variables.

You cannot define a debugger variable with the same name as a program
variable. The print command displays the values of variables. The dbx
predefined variables are listed in Table 6.12.

RISCompiler and C Programmer's Guide

Debugging Programs

Syntax:

Command
set
set VAR = EXP

Example:

The following example lists all debugger variables, changes one, and then
redisplays the list.

(dbx) set

$listwindow 10
$datacache 1
$main •main"
$pagewindow 22
$page 1
$maxstrlen 128
$curs reline 24
more (no?) no
(dbx) set $listwindow = 15
(dbx) set

$listwindow 15 1---------
$datacache 1
$main "main•
$pagewindow 22
$page 1
$maxstrlen 128
$cursrcline 24
more (no?) no
(dbx)

Removing Variables

new value

Use the unset command to remove a dbx variable. To see a full list of dbx
variables, use the set command.
Syntax:

ommand
unset VAR = EXP e va ue o a

RISCompiler and C Programmer's Guide 6-17

Chapter6

Example:

The following example assigns a value to a new variable and then removes
it using the unset command.

(dbx) set $test = 5
(dbx) set

Slistwindow 10
$datacache 1
$main •main"
$pagewindow 22
$test 5
$maxstrlen 128
$cursrcline 24
more (no?) no
(dbx) unset $test
(dbx) set

$listwindow 15
$datacache 1
$main •main"
$pagewindow 22

$maxstrlen 128
$cursrcline 24
more (no?) no
(dbx)

new variable
on list

new variable
removed from
list

Predefined dbx Variables

6-18

The predefined dbx variables are shown in Table 6.12. The variables that
are preset, but which you can change, are indicated by I, B, or S notations
in the Key column. Variables that only dbx can set, but are available for
information, are indicated by an R.

Table 6.11 summarizes the notations in the Key column of Table 6.12.

Table 6.11: Key Notations for Predefined Variables

Key

I
B
s
R

Description
Integer
Boolean
ASCII character string
Reset exclusively and periodically by the debugger

RISCompiler and C Programmer's Guide

Debugging Programs

Table 6.12: Predefined dbx Variables, 1 of 4

Debu_9.9.er Variables
Ke_y Variable Default Deacr~tion

s $addrfrmt "Ox%x" Specifies the format for addresses.
This can be set to anything you
can format with a C language
printf statement.

s $byteaccess Same as $addrfrmt.
B $casesense 0 Specifies whether source searching

and variables are case sensitive. A
nonzero value means case
insensitive; a 1 means case sensitive.

IR $curevent none Shows the last event number as
reported by the status command.

IR $curline none Shows the current line in the source
code.

IR $c/usrcline none Shows the last line listed plus 1 .
IR $curpc Shows the current address. Used

with the wi and Ii aliases.
B $datacache 1 Caches information from the data

space so that dbx only has to check
the data space once. If you are
debugging the operating system, set
this variable to O; otherwise, set it
to a nonzero value.

$debugflag 0 An internal debug flag used to debug
dbx.

SR $def a uh out •• Shows the name of the file that dbx
uses to store information when
using the record output command.

SR $def a uh in .. Shows the name of the file that dbx
uses to store information when using
the record input command.

$def in
$def out Used internally by dbx.
$dispix

B $hexchars 0 Displayed values are shown in hexa-
decimal when $hexchars is set to a
nonzero value; a nonzero value
overrides octal.

.B $hex in 0 A nonzero value indicates that input
constants are hexadecimal.

RISCompiler and C Programmer's Guide 6-19

Chapter6

Table 6.12 Predefined dbx Variables, 2of4

Debugger Variables
K~ Variable Default Deac~tion
B $hexints 0 Used to determine the default setting of

printing a char•. A 0 will cause output to
be the address and string content. A 1
will print only the address in hex value.

B $hexstrings 0 A nonzero value indicates that strings
are displayed in hexadecimal; other-
wise strings are shown as characters.

IA $historyevent none Shows the current history number.
I $lines 20 Specifies the size of dbx history list.
I $/istwindow TERM/2 Specifies the number of lines shown

by the list command.
s $main "main" Specifies the name of the procedure

where execution begins. dbx starts the
program at main() unless otherwise
specified.

I $maxstrlen 128 Specifies the number of characters of a
string dbx prints for pointers to strings.
dbx checks mutliples of 4 to see if it
exceeds the maximum.

B $octints 0 Changes the default output constants
to octal when set to a nonzero value.
Hexadecimal overrides octal.

B $octin 0 Changes the default input constants
to octal when set to a nonzero value.
Hexadecimal overrides octal.

B $page 1 Specifies whether to page long
information. A nonzero value turns on
paging; a 0 turns it off.

I $pagewindow 22 Specifies the number of lines displayed
when viewing information that is longer
than one screen. This variable should
be set to the number of lines on the
terminal. A value of O indicates a
minimum of 1 line.

s $pd bx port Port name from letclremote[.pdbx]
used to connect to target machine
for pdbx.

B $printwide 0 Specifies wide (useful for structures
or arrays} or vertical format for printing
variables. A nonzero value indicates
wide format; O indicates vertical.

6-20 RISCompiler and C Programmer's Guide

Debugging Programs

Table 6.12 Predefined dbx Variables, 3 of 3

Debugger Variables
K~ Variable Default Deacr~tion

B $printwhilestep 0 For use with the step[n] and stepi[n]
instructions. A nonzero value specifies
that all n line and/or instructions should
be printed. A O value specifies that only
the last line and/or instruction should
be printed.

B $readtextfile 1 When set to 1, dbx tries to read
instructions from the object file rather
than the process. This variable should
always be set to O when the process
being debugged copies in code during
the debugging process.

s $prompt "dbx" Sets the prompt for dbx.
B $regstyle 1 Specifies the type of register names to

be used. A value of 1 specifies hardware
names; a O specifies software
names as defined by the file regdefs.h.
This variable does not affect
coprocessor register names.

B $repeatmode 1 Specifies whether dbx should repeat
the last command when a carriage
return is pressed. A nonzero value
indicates that the command is repeated;
otherwise it is not repeated.

B $rimode 0 Records input when using the record
output command.

s $sigtramp sigtramp Tells dbx the name of the code called by
the system to invoke user signal
handlers.

B Sstop_in_main 0 Tells dbxto stop at mainO when set to 1.
When set to 0, tells dbx to debug the
dynamic linking process at start up time.

s $tagfile Contains a filename indicating the file in
which the tag command and the tabvalue
macro are to search for tags.

B Suse_rld_symbols 0 When set to 1, tells dbx to use rid
E symbols in precedence of user symbols;

this is useful in debuggind rid (runtime
linker), which may have collisions with
user symbols.

RJSCompiler and C Programmer's Guide 6-21

Chapter6

Creating Command Aliases (alias)

alias

The alias command defines a new alias or displays a list of all current
aliases.

The alias command allows you to rename any debugger command.
Enclose commands containing spaces within double or single quotation
marks. You can also define a macro as part of an alias.

dbx has a group of predefined aliases; you can modify these or add to the
list. Aliases can also be included in the .dbxinit file to use them in future
debugging sections.

For a complete list of predefined aliases, see Predefined dbx Aliases.

Syntax:

Command Function

alias NAMEl [(ARG ... ARGN)) "NAME2"
Displays a list of all aliases.
Defines a new alias. NAME1
is the new name. NAME2 is
the command to rename.
ARG1 ... ARGN are the
command arguments.

Example:

(dbx) alias ok (X) •stop at x•
(dbx) ok(58)
[l) Stop at 58 •sam.lilll~ .. • __
(dbx)

breakpoint set at line 58

Removing Command Aliases (unallas)

6-22

The unalias command removes an alias from a command. You must
specify the alias to remove; otherwise, a syntax error is displayed. The
alias is removed only for the current debugging session.

Syntax:

Comman..d..
unalias •name•

F-11n_ction
Remove an alias from a command, where
name is the alias name.

RISCompilerand C Programmer's Guide

Debugging Programs

Example:

The following example displays all the aliases and removes the history
alias.

(dbx) alias
h history
si stepi
Si nexti
ni nexti
pi playback input
ro recor& output
ri record input
a assign
t where
j status
bp stop in
b stop at
g goto
s step
More (n if no)?n
(dbx l unal ias h ____ the user decides to unalias h from
(dbx) alias history and it disappears from the
s i stepi list
Si nexti
ni nexti
pi playback input
ro record output
ri record input
a assign
t where
j status
bp stop in
b stop at
g goto
s
More (n
(dbx)

step
if no)?n

Predefined dbx Aliases

To list current aliases, use the alias command. You can override any
predefined alias by redefining it with the alias command or by removing it
from the list with the unalias command. Table 6.13 shows the debugger
predefined aliases.

RISCompiler and C Programmer's Guide 6-23

Chapter6

Table 6.13: Debugger Aliases
Debuaaer Aliases

Alias Command Function

a assign Assign a value to a program variable.
b stop at Set a breakpoint at a specified line.
bp stop in Stop in a specified procedure.
c continue Continue program execution after a breakpoint.
d delete Delete the specified item from the status list.
e file Look at the specified source file.
f func Move to the specified activation level on the stack.
g goto Go to the specified line and begin executing the

program there.
h history List all items currently on the history list.
j status Display the items on the status list.
I list List the next 1 O lines of source code.
norS next Step over the specified number of lines without

stepping into procedure calls.
nior nexti Set over the specified number of assembly code
SI instructions without stepping into procedure calls.
p print Print the value of the specified expression or variable.
pd printf"o/od\n" Print the value of the specified expression or

variable in decimal.
pi playback input Replay dbx commands saved with the record input

command.
po printt•o/oo\n: Print the value of the specified expression or

.variable in octal.
pr print regs Print values for all registers.
px printf"o/ox\n" Print the value of the specified expression or

variable in hexadecimal.
q quit End the debugging session.
r rerun Run the program again with the same arguments

specified with the run command.
ri record input Record every command entered in a file.
ro record output Record all debugger output in the specified file.
s step Step the next number of specified lines.
si stepi Step the specified number of assembly code

instructions.
t where Get a stack trace.
u list Scurlin-15:10 List the previous 10 lines.
w list Scurlin-10:20 List the 1 O lines preceding and following the current line.
wi List the 5 machine instruction preceding and following

the machine instruction.

6-24 RISCompiler and C Programmer's Guide

Debugging Programs

Recording Input

Use the record input command to record debugger input. This command
provides an excellent means for creating a command file. record input can
be used with the source or playback input commands to repeat a sequence of
command multiple times. See Playing Back the Input.

Syntax:
Command Function

record input [filename] Record all dbxcommands in a file.

dbx saves the recorded input in.filename. If .filename is omitted, dbx saves
the recorded input in a temporary file, which is deleted at the end of the
dbx session. The name of the temporary file is in the system variable
$defaultin; to display the temporary filename, use the print command:

print $defaultin

Use the temporary file to repeat previously executed dbx commands only
in the current debugging session; specify filename to create a command file
for use in subsequent dbx sessions. The status command indicates whether
record input is set. Use the delete command to stop record input.

Example:

The following example records input and displays the resulting file.

(dbx) record input
[2] record input /tmp/dbxt0013516 (0 lines)
(dbx) status
[l]record input /tmp/dbxt0013516 (Olines)
(dbx) stop in printline
[2) stop in printline
(dbx) when i = 19 {stop)
[3) traceif i = 19 {stop
(dbx)

The temporary file from the above dbx commands is as follows:

status
stop in printline
when i = 19 {stop)

RJSCompiler and C Programmer's Guide 6-25

Chapter6

Recording Output (record output)

6-26

Use the record output command to record dbx output during a debugging
session. For example, you might want to use this command for a program
with a large array that doesn't fit the screen. You can record the
infqrmation in a file and look at it later. To record input as well, set the dbx
variable Srimode. Use the playback output command to look at the recorded
information, or use any system editor.

Syntax:
Command Function

dbx saves the recorded output in.filename. If.filename is omitted, dl1x sa\'e::­
the recorded output in a temporary file, which is deleted at the end of the
dbx session. The name of the temporary file is in the system variable
$defaultout; to display the temporary filename, use the print command:

print Sdefaultout

Use the temporary file when you need to refer to the saved output only
during the current debugging session; specify filename to save information
required after exiting the current debugging session.

The status command indicates whether record output is set. Use the delete
command to stop record output.
Example:
(dbx) record output code ... filename
[3] record output code (0 lines)
(dbx) stop at 25
[4] stop at •sam.c":25
(dbx) run sam.c
[4] stopped at [main:25,8xlb0Jif (i<2) {
(dbx)

The above example writes the following output in the file code:

[3] record output code (0 lines)
(dbx) [4] stop at •sam.c• :25
(dbx) [4] stopped at [main:25,0x2lb0] if (i<2)

RISCompilerand C Programmer's Guide

Debugging Programs

Playing Back Input

Use these commands to replay the commands recorded with the record
input command. If a filename is not specified, dbx uses the current
temporary file that it created for the record input command. If the dbx
variable $pimode is set to l, the commands are printed as they are played
back.

Syntax:

Command Function
playback input [filename] ~xecute ffle commands from tne

specified file
source [FILE)

Example:

(dbx) playback input
status
[l] record input /tmp/dbxt0013516 (1 lines)
[2] stop in printline
[3] traceif i = 19 {stop)
stop in printline
[4] stop in printline
when i = 19 {stop}
[SJ traceif i=l9 {stop
(dbx)

Playing Back Output

This command displays output saved with the record output command.
The playback output command works the same as the cat command. If
filename is not specified, dbx uses the current temporary file created for the
record output command.
Syntax:

Command Function
playback output [filename] -P-rint the commands from the

specified file.

RlSCompiler and C Programmer's Guide 6-27

Chapter6

Example:

(dbxJ playback output~ 4- thefilename
(3) record output cod~ines)
(dbxJ (4) stop at •sam.c":25
(dbx) (4) stopped at [main:25, OxlbO] if(i<2) {

(dbxJ t
the contents of
the file

Invoking a Shell from dbx

To invoke a subshell, enter sh at the dbx prompt, or enter sh and a shell
command. To return to dbx from a subshell, enter exit or press "D.
Syntax:

Command Function
sh
sh (SHELL COMMAND)

Invoke a shell from dbx.
Execute the shell command.

Example:

(dbxJ sh
%

~--------invokes a shell

% date
Tue Apr 8 17:25:15 PST 1986

% exit
(dbx) sh date ~------invoke a shell and execute

the date command Tue Apr 8 17:29:34 PST 1986
(dbx)

Checking Shared Objects in Shared Environment

6-28

Use listobj to check what objects are linked in shared situations. dbx will
display the object names and text address ranges.

Syntax:

Command Function
listobj Check which objects are linked.

RISCompiler and C Programmer's Guide

Debugging Programs

Checking the Status (status)

Use the status command to check which, if any, of these commands are
currently set:

• stop or stopi commands for breakpoints

• trace or tracei commands for line-by-line variable tracing

• when command

• record input and record output commands for saving information in a
file

Syntax: ·

Command Function

status check the status of commands.

Example:

(dbx) status
[4) trace i in printline -

1
31 print plineA at 177sam.c":58
2 stop in printline r xfecord output /tmp/dbxt0018898

the status item number

Deleting Status Items

(0 lines)

Use the delete command to remove items from the status list. This
command is used to delete breakpoints.
Syntax:

Command Function

delete EXPl, ... EXPN Delete the specified status item (EXP)
from the status list.

delete all Delete all status items.

RISCompiler and C Programmer's Guide 6-29

Chapter6

Example:

(dbx) status
[4] trace i in printline
[3] print plineA at 177sam.c":58
[2] stop in printline
.[l] record output /tmp/dbxt0018898
(dbx) delete 4
(dbx) status
[3) print pline at •sam.c":58
[2] stop in printline
~] record output /tmp/dbxt0018890 ()
the status
Item number

(0 lines)

(Olines)

Examining Source Programs
This section describes how to list and edit source code, change directories,
change source files, search for strings in source code, print symbol names,
and print variable declarations.

Specifying Source Directories

6-30

If -I was not specified when invoking the debugger, dbx looks for source
files in the current directory or in the object file's directory. The use
command changes the directory and lists the directories currently in use.
The command recognizes absolute and relative pathnames (for example,
./);however, it doesn't recognize the C shell tilde(-).

Syntax:

Command

use

use DIRl

Example:

DIRN

Function

List the current directories.
Specify different directories.

The following example changes the directory searched for fiJes to
/usr/local/lib.

RISCompiler and C Programmer's Guide

Debugging Programs

(dbx) use
~----------- current directory

(dbx) use /usr/local/lib
(dbx) use
/usr/local/ll~cill-------­

(dbx)

Moving to a Specified Procedure

new directory

The June command moves up or down the activation stack. The activation
level can be specified by a procedure name or an activation level number.
To find the name or activation number for a specific procedure, get a stack
trace with the where command. You can also move through the activation
stack by using the up and down commands. For a definition of activation
levels, see What Are Activation Levels?

The June command changes the current line, the current file, and the
current procedure. This changes the scope of the variables you can access.
The June command can be used when a program isn't executing to examine
source code.

Syntax:

Command
func
func PROCEDURE

func ECP

RISCompiler and C Programmer's Guide

Function
Print the current activation levels.
Move to the activation level specified
by the procedure name.
Move the to activation level specified by
the expression.

6-31

Chapter6

Example:

The following example shows a stack trace and moves to the main
procedure.

(dbx) where
> 0 printline [pline = Ox7fff5b80) [177sarn.cl77:58,0x2f7]

1 $blockl [177sam.c•:47, Ox2bb)

~~~;ic:~:~:r~c=2 'pr:::V~=i::7(:flfi:::o)) [.SI am. c. '47. 'Tbb I 
(dbx) func main the current 
(dbx) the source program counte 

t proce- the procedure's file name 
dure name arguments the current 

the activation line 
level 

Specifying Source Files 

6-32 

The file command changes the current source file to a specified file. The 
new file becomes the current file, which you can search, list, and perform 
other operations on. 
Note: Before setting a breakpoint or trace, use the June command to get 
the correct procedure; the file command cannot be specific enough for the 
debugger to access the information necessary to set a breakpoint. 

Syntax: 

Command 

file 

file FILE 

Example: 

Function 

Print the name of the file currently in use. 

Change the current file to the specified 
file. 

.--~~~~~~~~~~~~~~~---.., 

(dbx) file 
sam.c ~ .. --~~~~­
(dbx) file data.c 
(dbx) file 
data.c ~4--~~~~­
(dbx) 

current file 

new file 

RISCompiler and C Programmer's Guide 



Debugging Programs 

Listing Source Code 

The list command displays lines of source code. The dbx variable 
$listwindow defines the number of lines dbx lists by default. The list 
command uses the current file, procedure, and line unless otherwise 
specified. It moves the current line forward. 

Syntax: 

Command Function 

list 
list EXP 
list EXP: INT 

List lines for $/istwindow lines starting at the current line. 

List the specified line. 

List the specified number of 

list PROCEDURE 

Example: 

lines (INT), starting at the specified 
line (EXP). 

List the specified procedure for $/istwindow lines. 

(dbx) list 53:2 4 theuserspecified 
s 3 a list starting at 
54 LINETYPE '*pline; line53fortwolines 

(dbx) 

If you use the predefined alias w, (see Predefined dbx Aliases), the output 
is as follows: 

(dbx) w 
53 
54 
55 
56 
57 

>'* 58 
59 
60 

(dbx) 

LINETYPE '*pline; 

fprintf{stdio, #53d. (%d)%s",pline->linenumber 
pline->string; 
ff;isj (stdout); current line 

} /'* printline */ 

Note: >shows the current line and" shows the location of the program 
counter (pc) at this activation level. 

RISCompiler and C Programmer's Guide 6-33 



Chapter6 

Searching Through Code 

The I and ? commands search for regular expressions in source code. The 
slash{/) searches forward; the question mark(?) searches back from the 
current line. Both commands wrap around at the end of the file if 
necessary, searching the entire file, from the point of invocation back to the 
same point. If you set the dbx variable $casesense to a nonzero value, dbx 
distinguishes upper-case letters from lower-case. 

Syntax: 
Command Function 
/REGEX 

?REGEX 

Example: 

( dbx) I lines 
continue; /*don't count blank lines •; 

(dbx) /lines 
linel.length=i 

(dbx) 
continue; /*don't count blank lines •; 

(dbx) 

Calling an Editor from dbx (edit) 

6-34 

The edit command lets you make changes to source code from within dbx. 
For the changes to become effective, you must exit dbx, recompile the 
program, and, to continue debugging, restart dbx. 
Syntax: 

Command 
edit 
edit [filename) 

Function 
Invoke an editor from dbx on the current file. 

Invoke an editor on the specified file. 

The edit command loads the editor indicated by the environment variable 
EDITOR. If EDITOR is not set, the vi editor is used. To return to dbx, exit 
the editor. 

RISCompiler and C Programmer's Guide 



Debugging Programs 

Printing Qualified Variable Names 

The which and whereis commands print program variables. These 
commands are useful for programs that have multiple variables with the 
same name occurring in different scopes. The commands follow the rules 
described in the section Qualifying Variable Names. 

Syntax: 

Command 
which VAR 
whereis V'~ 

Example: 

(dbx) which i 
sarn.rnain.i 
(dbx) whereis i 

Function 
Print the default version of the variable. 
Print all versions of the specified variable. 

sarn.printline.i sarn.main.$blockl.isarn.main.i 
(dbx) 

Printing Type Declarations 

The whatis command lists the type declaration for variables and 
procedures in a program. 

Syntax: 

Command 
whatis VAR 

RISCompiler and C Programmer's Guide 

Function 
Print the type declaration for the specified 
variable or procedure. 

6-35 



Chapter6 

Example: 

(dbx) whatis main 
int main(argc,argv) 
int argc; 
unsigned char **argv; 
(dbx) whatis i 
int i; 
(dbx) 

Controlling the Program 
This section describes the dbx commands to run a program, step through 
source code, return from a procedure call, start at a specified line, continue 
after stopping at a breakpoint, and assign values to program variables. 

Running the Program 

6-36 

The run and rerun commands start program execution. Each command 
accepts program arguments. If arguments are not specified for the run or 
rerun command, the last set of arguments is used. 

These commands can also be used to redirect program input and output in 
a manner similar to redirection in the C shell. The optional parameter 
<FILEl redirects input to the program from the specified file. >FILE2 
redirects output from the program to the specified file. The optional 
parameter >&cFILE2 redirects stde" and stdout output to the specified file. 
Note: This output differs from the output saved with the record output 
command. That command saves debugger (not program) output in a file. 
See Recording the Output. 

RISCompiler and C Programmer's Guide 



Debugging Programs 

Syntax: 

Command Function 

run [ARGl, ... ARGN] [<FILEl] [>FILE2] Run the program with the specified 
arguments. run [ARGl, ... ARGN] [<FILEl] [>&FILE2] 

rerun [ARGl ... ARGN] [<FILEl] [>FILE2] 
rerun [ARGl ... ARGN] [<FILEl] [>&FILE2] 

Rerun the program with the previ­
ously specified arguments or with 
new arguments. 

Example: 

! dbx l run sarn. c the argument is sam.c 
u. !19Jwinclude<stdio.h> 
1. (141 struct line { 
2. (22) char string[256]; 

!dbx) 
0. 
1. 
2. 

rerun 
(19l*include<stdio.h> 
Cl4) struct line { 
(22) char string[256]; 

program terminated normally 
(dbx) 

Executing Single Lines of Code 

The step and next commands execute a fixed number of source code lines 
as specified by EXP. If EXP is not specified for step and next, dbx executes 
one source code line; otherwise, dbx executes the source code Jines as 
follows: 

• dbx does not take comment lines into consideration in interpreting 
EXP. The program executes EXP source code lines, regardless of the 
number of comment lines interspersed among them. 

• For step, dbx considers EXP to apply to both the current procedure 
arid to called procedures. Program execution stops after executing 
EXP source lines in the current procedure and any called procedures. 

RISCompiler and C Programmer's Guide 6-37 



Chapter6 

• For next, dbx considers EXP to apply to only the current procedure. 
Program execution stops after executing EXP source lines in the 
current procedure, regardless of the number of source lines executed 
in any called procedures. 

Syntax: 

Command Function 

step [EXP] '* Execute the specified number of lines of source 
code. EXP refers to the number of lines to be executed in both 
the current procedure and any called procedures. 

next [EXP] '* Execute the specified number of lines of source 
code. EXP refers to the number of lines to be executed in only 

. the current procedure, regardless of any called procedures 
executed. 

'* Default is 1. 

Example: 

The following example shows the use of the step command. 

(dbx) rerun 
[3] stopped at [printline:58,0x2f8] pline->string); 
(dbx) step 2 
0 (19) #include <stdio.h> 
[$blockl:48,0x2bc] } /'*while'*/ 
(dbx) step 
[$blockl:41,0x260] i=strlen(linel.string); 
(dbx) 

Sblock1 gets created 
because it defines the 
scope for Its own local 
variables 

Returning from a Procedure Call 

6-38 

The return command is used in a called procedure to execute the remaining 
instructions in the proced·ure and stop at the first instruction on return 
from that procedure. 

RISCompiler and C Programmer's Guide 



Syntax: 

Command 

return 

return PROCEDURE 

Example: 

(dbx) rerun 

Debugging Programs 

Function 

Execute the current procedure and return 
to the next sequential line in the calling 
procedure. 
Execute the program until dbx returns to the 
specified procedure. 

[6] stopped at [printline:58, Ox2f8] pline->string); 
(dbx) return 
0 (19) #include <stdio.h> 
stopped at [$blockl:48,0x2bc] } /*while*/ 
(dbx) 

Starting at a Specified Line 

The goto command shifts program execution to the specified line. This 
command is useful in a when statement- for example, to skip a line known 
to cause problems. 

Syntax: 

Command 

goto LINE 

Example: 

Function 

Go to a specified line and continue 
execution. 

(dbx) when at 58 {goto 43) 
[l) start •sam.c• :48 at "sam.c" :58 
(dbx) 

Continuing after a Breakpoint 

The cont command resumes program execution after a breakpoint. If 
SIGNAL is specified as a parameter (see below), dbx sends the specified 
signal to the program and continues. 

RISCompifrr and C Progrmmnrr's Guide 6-39 



Chapter6 

Syntax: 

f command Function 

cont 

cont to LINE 

cont in PROCEDURE 

cont SIGNAL 

cont SIGNAL to LINE 

Continue from the current line. 

Continue until the specified line. 

Continue until the specified procedure. 

Continue from the current lineand 
send the signal. 

Continue until reaching the specified 
line and send the signal. 

cont SIGNAL in PROCEDURE Continue until reaching the specified 
procedure and send the signal. 

Example: 
{dbx) stop in printline 
(1) stop in printline 
{dbx) rerun 
[l) stopped at [printline:58,0x2f8) pline->string); 
{dbx) cont 

0 {19)#include <stdio.h> 
(1) stopped at [printline:58,0x2f8) pline ->string); 
{dbx) 

Assigning Values to Program Variables 

6-40 

The assign command changes the value of program variables. 

Syntax: 

Command 

assign EXPl = EXP2 

Function 

Assign a new value to a program 
variable. 

RISCompiler and C Programmer's Guide 



Debugging Programs 

Example: 

(dbx) print i 

19--------------- the value of i 
(dbx) assign i = 10 10- .,.,__ ________ _ 

the new value of i 
(dbx) assign '* ($integer'*) Ox455 = 1 ...... .,__ __ coerce the 
1 address to be 
( dbx l an integer 

and assign a 
1 to It 

Setting Breakpoints 

Overview 

A breakpoint stops program execution and lets you examine the 
program's state at that point. This section describes the dbx commands to 
set a breakpoint at a specific line or in a procedure, and stop for signals. 

When a program stops at a breakpoint, the debugger displays an 
informational message. For example, if a breakpoint is set in the sample 
program sam.c (see Sample Program at the end of the chapter) at line 23 in 
the main() procedure, the following message is displayed: 

[2) stopped at [ 
(dbx) 

if (argc < 2) { 

I 

._I ---- source 
line 

main,23[c] 

the current 

breakpoint 
status number 

line 
number 

procedure 
name 

program counter 
(use this number 
to print the assembly 
language instructions from 
this point (see Debugging at 
the Machine Level). 

Before setting a breakpoint in a program with multiple source files, be sure 
that you're setting the breakpoint in the right file. 

To select the right procedure, follow these steps: 

RJSCompiler and C Programmer's Guide 6-41 



Chapter6 

1. Use the June command and specify a procedure name. This command 
changes the activation level to the specified procedure. See Control­
ling the Program. 

2. List the lines of the procedure using the list command. See Controlling 
the Program. 

3. Use a stop command to set a breakpoint at the desired line. 

Setting Breakpoints at Lines 

6-42 

The stop at command sets a breakpoint at a specific line. dbx stops only at 
lines that have executable code. If you specify an unexecutable line, dbx 
sets the breakpoint at the next executable line. If you specify the VAR 
parameter, the debugger prints the variable and stops only when VAR 
changes; if you specify if EXP, dbx stops only when EXP is true. 

Note: The delete command is used to remove breakpoints. 

Syntax: 

Command 

stop [VAR) at 

stop [VAR) at LINE 

stop [VAR) at LINE 
if EXP 

Function 

Stop at the current line. 

Stop at a specified line. 

Stop at a specified line only if 
the expression is true. 

Note: if EXP is checked before VAR. 

RISCompilerand C Programmer's Guide 



Debugging Programs 

Example: 

(dbx) stop at 58 
[16] stop at 177sam.c":58 
(dbx) rerun 
[ 16 ] stopped at 
(dbx) 

[printline:58,0x2f8) pline->string); 

thJline 
number the 

procedure 
name 

the current 
program counter 

Setting Breakpoints in Procedures 

The stop in command sets a breakpoint at the beginning or, conditionally, 
for the duration of a procedure. 

Syntax: 

Command 

stop in PROCEDURE 

stop VAR in PROCEDURE 

stop in PROCEDURE if EXP 

stop VAR in PROCEDURE 

if EXP* 

Function 

Stop at the beginning of the procedure. 

Stop in the specified procedure when 
VAR changes. 

Stop in the specified procedure if EXP 
is true. 

Stop in the specified procedure when 
VAR changes and EXP is true. 

Note: EXP is checked before VAR. 
Specifying both VAR and EXP causes stops anywhere in the procedure, not 
just at the beginning. Using this feature is time consuming, because the de­
bugger must check the condition before and after each source line is exe­
cuted. 

RISCompiler and C Programmers Guide 6-43 



Chapter6 

Example: 

(dbx) stop in printline 
[15] stop in printline 
(dbx) rerun 
[15] stopped at [printline:58,02f8] pline->string); 
(dbx) 

the the line 
number procedure 

name the current 
program counter 

Setting Conditional Breakpoints 

The stop if command causes dbx to stop program execution under specified 
conditions. Because dbx must check the condition after the execution of 
each line, this command slows program execution markedly. Whenever 
possible, use stop at or stop in instead of stop if. 
Syntax: 

Command Function 

stop if EXP Stop if EXP is true. 
* Stop if VAR changes and EXP is true. stop VAR if EXP 

-
*EXP is checked before VAR. 

Tracing Variables 

6-44 

The trace commands list the value of a variable during program execution 
as well as determine the scope for the variables being traced. 

RISCompiler and C Programmer's Guide 



Command 
trace VAR 

trace VAR at 

trace VAR in 

~race VAR at 

trace VAR in 

Debugging Programs 

Syntax: 

1st t e spec 1 vana ea er eac 
source line is executed. 

line List the specified variable at the 
specified line. 

PROCEDURE List the specified variable in the 
specified procedure. 

line if EXP List the variable at the specified line when 
the expression is true. 

PROCEDURE if EXP List the variable in the specified procedure 
when the expression is true. 

Note: EXP is checked before VAR. 

Example: 

(dbx) trace i 
(15) trace i in $blockl 
(dbx) rerun 
[printline:58,0x2f8) :i=19 
(23] [printline: 58, Ox2f8] pline->string); 

0 ( 19) #include<stdio.h> 
[25] i changed before [177sam.c" :41): 

old value = 19; 
new value = l; 

[25) i changed before [177sam.c" :41): 
old value = l; 
new value = 14; 

[printline:58,0x2f8]: i=l4 
[23) [printline:58, Ox2f8) pline->string); 

1. ( 14 J struct line { 
[25) i changed before [177sam.c":41): 

old value = 14; 
new value = 22; 

More (n if no)n 
Escape from listing 
(dbx) 

Writing Conditional Code in dbx 

The when command allows debugger commands to be executed under 
specified conditions. 

RISCompiler and C Programmer's Guide 6-45 



Chapter6 

Syntax: 

Command Function 

when VAR [if EXP l { COMMAND_LIST) Execute the command list when 
VAR changes. 

when (VAR] at LINE [if EXP] 
{COMMAND_LIST) 

Execute the command list when 
VAR changes, EXP is true, and 
the debugger encounters LINE. 

when in PROCEDURE {COMMAND_LIST) Execute the command.list upon 
entering PROCEDURE. 

when [VAR] in PROCEDURE [if EXP] 
{COMMAND_LIST) 

Note: EXP is checked before VAR. 

Example: 

Execute the specified commands 
on each line of PROCEDURE when 
EXP is true and VAR changes. 

(dbx) when in printline {print i} 
[14] print i in printline 
(dbx) rerun 
[14) stopped at [printline:58,0x2f8] pline->string); 
(dbx) cont 
0. (19) #include <stdio.h> 

14 value of i 
[14] stopped at [printline:58,0x2f8] pline->string); 
(dbx) cont 
1. ( 14) struct line { 

22 value of i 
[14] stopped at [printline:58,0x2f8] pline->string); 
(dbx) when in printline {stop) 
[15) stop in printline 
(dbx) reurn 
[15) stopped at [printline:58, Ox2f8) pline->string); 
(dbx) I 

abx stops in th• 
procedure printlin• 

Stopping at Signals 

6-46 

The catch command lists the signals that dbx catches or specifies a signal for 
dbx to catch. If a child in the program encounters a specified signal, dbx 
stops the process. 

RISCompiler and C Programmer's Guide 



Debugging Programs 

Syntax: 

Command 
catch 
catch SIGNAL 
ignore 

£unction 
Print a list of all signals that dbx catches. 
Add a signal to the catch list. 
Print a list of all signals that dbx does not 
catch. 

ignore SIGNAL Remove a signal from the catch list and add 
it to the ignore list. 

Example: 

(dbxJ catch 
INT QUIT ILL TRAP IOT EMT FPE 
TTOU TINT SCPU XFSZ 
(dbx) ignore 
HUF Y.ILL ALRM TSTP CONT CHLD 
(dbxJ catch kill 
(dbx~ catch 
INT QUIT ILL TRAP ICT EMT FPE 
TTIN TTOU TINT X'.:'PU XFSZ 

BUS SEGV SYS PIPE TERM STOP TTIN 

adds KILL I to the catch 

'list 
KILL BUS SEGV SYS PIPE TERM STOP 

(dbxJ ignore removes KILL 
HUP ALRM TSTP CONT CHLD ..... _____ from the ignore 
(dbx) 

list 

Examining Program State 

Stack Traces 

When dbx is stopped at a breakpoint, the program state can be examined 
to determine what may have gone wrong. There are dbx commands for 
printing stack traces, variable values, and register values. dbx also 
provides commands to display information about the activation levels 
shown in the stack trace and move up and down the activation levels. 

The where command display a stack trace. A stack trace shows the current 
activation levels (procedures) of a program. 
Syntax: 

Command J:::unction 
where [EXP) Display the stack trace. 

RISCompiler and C Programmer's Guide 6-47 



Chapter6 

Example: 

If a breakpoint is set in printline in the sample program sam.c, (see Sample 
Program at the end of this chapter), the program runs and stops in the 
procedure main(). If you enter where, a stack trace is printed, providing the 
information shown below. 

(dbx) stop in printline 
[l] stop in printline 

(dbx) where 
>0 printline(pline = Ox7fff5b80)[177sam.c•:S8,0x2f7] 

1 $bloct1[177sam.c•:4 ,Ox2bb] r 
2 main( rgc = 2, argv - Ox7fffeba0") 7~am. •:47,0x2bb) 
dbx) 

the procedure · the line 
name be 

the activation the current num r 
level number - value of the source the program 
the > shows the argument file name counter 
that the user is pline 
examining this 
activation level 

Note: In the example, $block1 has the same program counter as main. This 
indicates that main() has a block with local variables, which do not appear 
to all of main(). 

Changing Activation Level 

6-48 

The up and down commands move up and down the activation levels in the 
stack. These commands are useful when examining a call from one level 
to another. You can also move up and down the activation stack with the 
June command. For a definition of activation levels, see What Are 
Activation Levels? 

RISCompiler and C Programmer's Guide 



Printing 

Syntax: 

Command 
up [EXP] 

down [EXP] 

Example: 

(dbx) where 

Debugging Programs 

Function 
Move up the specified number of activation 
levels in the stack. The default is one level. 
'Move down the specified number of 
activation levels in the stack. The default is 
one level. 

>0 printline(pline = Ox7fff5b80) [177sam.c":58,0x2f7] 
1 $block1[177sam.c":47,0x2bb] 
2 main(argc = 2, argv = Ox7fffeba0) [177sam.c":47,0x2bb] 

(dbx) down moves 
Sblockl [ 177sam. c•: 47, Ox2bb] down one level 
(dbx} where 
0 printline(pline = Ox7fff5b80} [177sam.c":58,0x2f7J 

>l $block1[177sam.c":47,0x2bb) 
2 main(argc = 2, argv = Ox7fffeba0} [177sam.c":47,0x2bb] 

( dbx l up moves up 
printline (pline = Ox7 ff f SbSO} [ 177sam. c": 58, Ox2f7 l one level 
(dbx} where 
>0 printline(pline = Ox7fff5b80} [177sam.c":58,0x2f7~ 

1 $block1[177sam.c":47,0x2bb] 
2 main(argc = 2, argv = Ox7fffeba0} [177sam.:47,0x2bb] 

(dbx) 

The print commands displays the value of one or more expressions. You 
can also use print to display the program counter and the current value of 
registers; see the next section, Printing Register Variables, for details. 

The printf command lists information in a specified format and supports 
all formats of the printf(3S) command except %s. For a full list of formats, 
see the printf(3S) manual page in the Programmer's Reference Manual. printf 
can be used to see a variable's value in a different number base. The 
command alias list has some useful aliases for printing the value of 
variables in different bases-octal {po), decimal (pd), and hexadecimal (px). 
The default number base is decimal. See Creating Command Aliases. 

RJSCompiler and C Programmer's Guide 6-49 



Chapter 6 

Syntax: 

Command 
up [EXP) 

down [EXP] 

Function 
MOve up the spec1t1ed number of act1vat1on 
levels in the stack. The default is one level. 
Move down the specified number of 
activation levels in the stack. The def auh is 
one level. 

Note: If the expression contains a name the same as a dbx keyword, it must 
be enclosed within parentheses. For example, in order to print output, a 
keyword in the playback and record commands, specify: 

print (output) 

Example: 

(dbx) print i 
14 decimal 
(dbxJ pd i 
14 decimal 
(dbx) po i 
016 octal 
(dbx) px i 
Oxe hexadecimal 
(dbx) 

Printing Register Values 

6-50 

The printregs command prints register values, both the real machine 
register names and the software (from the include file regdejs.h) names. A 
prefix before the register number specifies the type of register; the prefixes 
used and their meanings are as follows: 

Prefix 

$r 
$f 
$d 

$pc 

Register Type 

Machine register. 
Floating point. 
Double precision floating point. 
Program counter value. 

You can also specify prefixed registers in the print command to display a 
register value or the program counter. The following commands print the 
values of machine register 3 and the program counter: 

RISCompiler and C Programmer's Guide 



Debugging Programs 

print $r3 
print $pc 

Set the dbx variable $hexints to specify that the display be in hexadecimal. 

Syntax: 

Command Function 
printregs Print the current values of all registers. 

Example 

(dbx) printregs 
rO/zero=O rl/at=l r2/v0=19 r3/vl=0 
r4/a0=2147441472 r5/al=34838 r6/a2=4096 r7/a3=80 
r8/t0=19 r9/tl=34816 rl0/t2=19 rll/t3=0 
rl2/t4=1 rl3/t5=34820 rl4/t6=0 rl5/t7=1 
rl6/s0=2147441472rl7/sl=0 rl8/s2=0 rl9/s3=0 
r20/s4=0 r21/s5=0 r22/s6=0 r23/s7=0 
r24/t8=4086 r25/t9=255 r26/k0=0 r27/kl=O 
r28/gp=50529 r29/s0=2147441400r30/fp=2147442536 r31/ra=700 
$f0= 0.0 $fl= 0.0 $f2= 0.0 $f3: 0.0 
$f4= 0.0 $f5= 0.0 $f6= 0.0 $f7= 0.0 
$f8= o.o Sf9= o.o $fl0=0.0 $fll=0.0 
Sfl2=0.0 $fl3=0.0 $fl4=0.0 Sfl5=0.0 
$fl6=G.O Sfl7=0.0 $fl8=0.0 Sfl9=0.0 
$f20=0.0 Sf21=0.0 Sf22=0.0 Sf23=0.0 
Sf24=0.0 Sf25=0.0 Sf26=0.0 Sf27=0.0 
Sf28=0.0 Sf29=0.0 $f30=0.0 $f31=0.0 
$d0= 0.0 $d2= o.o Sd4= o.o $d6= o.o 
$d8= 0.0 $dl0:0.0 $dl2=0.0 $dl4=0.0 
$dl6:0.0 $dl8:0.0 $d20=0.0 $d22=0.0 
$d24:0.0 $d26=0.0 $d28=0.0 $d30:0.0 
$pc= 760 
(dbx) 

Printing Information about Activation Levels 

The dump command prints information about activation levels, including 
values for all variables local to a specified activation level. To see what 
activation levels are currently active in the program, use the where 
command to get a stack trace. 

RJSCompiler and C Programmer's Guide 6-51 



Chapter6 

Syntax: 

Command 
dump 

dump 

dump PROCEDURE 

Example: 

(dbx) where 

Function 
Print information about the current 
activation level. 
Print information about all activation levels 
in the program. 
Print information about the specified 
procedure (activation level). 

>0 printline (pline=Ox7fff5b80) [l77sam.c•:S8,0x2f7] 
1 $blockl [177sam.c•:47,0x2bb] 

(dbx) dump 
printline (pline=Ox7fff5b80) [177sam.c•:S8,0x2f7] 
(dbx) dump . 
> 0 printline(pline-Ox7fff5b80) [177sam.c•:S8,0x2f7) 

1 $blockl [177sam.c•:47,0x2bb) 
curlinenumber = 1 

i=19 
2 main (argc=2,argv=Ox7fffeba0) [177sam.c•:47,0x2bb) 

fd = Ox4270 
linel=struct ( 
string=177#include<stdio.h> 
• 
linenumber=O 
} 
in ••; 
(dbx) dump main 
main (argc=2, argv=Ox7fffeba0) [l77saam.c•:47,0x2bb] 
fd:Ox4270 
linel=struct { 
string=•struct line { 
length = 14 
linenumber = 1 
} 
(dbx) 

Debugging Machine Code 

6-52 

This section describes the dbx commands provided for debugging 
assembly code; these commands allows you to set breakpoints, step 
through instructions, trace variables, display the contents of memory 
addresses, and disassemble instructions. 

RISCompilerand C Programmer's Guide 



Debugging Programs 

Setting Breakpoints in Machine Code 

The stopi commands set breakpoints in machine code. These commands 
work in the same way as the stop at, stop in, and stop if commands as 
described in the section Setting Breakpoints, except for the stop at 
command, where an address instead of a line number is specified. 

Command 

stopi [VAR] at 

stopi [VAR) at ADDRESS 

stopi [VAR) at ADDRESS 

if EXP 

stopi if EXP 

stopi VAR if EXP 

stopi in PROCEDURE 

stopi VAR in PROCEDURE 

Function 

Stop at the current address. 

Stop at a specified address. 

Stop at a specified address only 
if EXP is true. 

Stop if EXP is true. 

Stop if VAR changes and EXP is true. 

Stop at the beginning of the procedure. 

Stop in the specified procedure when 
VAR changes. 

stopi in PROCEDURE if EXP Stop in the specified procedure ifEXP 
is true. 

stopi VAR in PROCEDURE 
if EXP* 

*EXP is checked before VAR . 

Example: 

ldbxJ stopi at Ox2f8 

Stop in the specified procedure when 

VAR changes and EXP is true. 

[2) stopi at 177sam.c":760 
(dbx) rerun 
(2) stopped at [printline:58,0x2f8]pline-> string); 
(db>:) 

RJSCompiler and C Programmer's Guide 6-53 



Chapter6 

Continuing after Breakpoints in Machine Code 

The conti commands continue executing assembly code after a breakpoint. 
Syntax: 

Command Function 
con ti 

con ti 

con ti 

con ti 

con ti 

SIGNAL 

to ADDRESS 

in PROCEDURE 

SIGNAL to ADDRESS 

SIGNAL in PROCEDURE 

Example: 

(dbx) conti 

Send the specified signal and 
continue. 
Continue until reaching the specified 
address. 
Continue until the beginning of the 
specified procedure. 
Continue until reaching the specified 
address, then send the signal. 

Continue until reaching the beginning 
of the specified procedure, then send 
signal. 

0 (19)#include <stdio.h> 
[2] stopped at [printline:S8,0x2f8] pline->stringO; 
lw r2,32(sp) 
(dbx) 

Executing Single Lines of Machine Code 

6-54 

The stepi and nexti commands execute a fixed number of machine 
instructions as specified by EXP. If EXP is not specified, dbx executes one 
machine instruction. If EXP is specified, dbx executes the machine 
instructions as follows: 

• dbx does not take comment lines into consideration in interpreting 
EXP. The program executes EXP machine instructions, regardless of 
the number of comment lines interspersed among them. 

• For stepi, dbx considers EXP to apply to both the current procedure 
and to procedure calls (jal and jalr). The program stops after 
executing EXP instructions in the current procedure and any called 
procedures. 

• For nexti, dbx considers EXP to apply to only the current procedure. 
The program stops after executing EXP instructions in the current 
procedure, regardless of the number of instructions executed in any 
procedure calls. 

RlSCompilerand C Programmer's Guide 



Debugging Programs 

Syntax: 

Command Function 

stepi [EXP) + Execute the specified number of lines of machine 
code. EXP refers to the number of lines to be ex· 
ecuted in both the current procedure and any pro· 
cedure calls. 

nexti [EXP) + Execute the specified number of lines of machine 
code. EXP refers to the number of lines to be ex-. ecuted in on/ythe current procedure, regardless of 
any procedure calls. 

*Default is 1. 

Example: 

(dbx) rerun 
[2) stopped at [printline:sa;ox2f8Jpline->string); 
(dbx) stepi 
[printline:S8+0x4,0x2fc) pline->string); 
lui rl,OxO 
(dbx) 

Tracing Variables in Machine Code 

The tracei commands track, one instruction at a time, changes to variables. 
The tracei commands work for machine instruction as the trace commands 
do for lines of source code. 

RISCompiler and C Programmer's Guide 6-55 



Chapter6 

Syntax: 

Command 
tracei 

tracei VAR at ADDRESS 

tracei VAR in PROCEDURE 

tracei VAR at ADDRESS if EXP 

tracei VAR in PROCEDURE if EXP 

Function 
Print the value of the variable 
as it changes. 
Print the value of the variable 
when it changes at the specified 
address. 
Print the value of the variable 
when it changes in the specified 
procedure. 
Print the value of the variable at 
the specified address when the 
expression is true. 
Print the value of the variable in 

the specified procedure when 
the expression is true. 

Printing the Contents of Memory 

6-56 

Memory contents can be displayed by specifying the address and the 
format of the display. address is the address of the first item to be 
displayed, count is the number of items to be shown, and mode indicates the 
format in which the items are displayed. The values for mode are shown in 
Table 6.14. 

Syntax: 
Command 
ADDRESS/<COUNT><MODE> 

J::unction 
Print the contents of the specified 
address for the specified count. 

RISCompiler and C Programmer's Guide 



Debugging Programs 

Table 6.14: Table 6.14 Modes for Printing Memory Addresses 

Mode Print Format 
"""'P"nrif a SflOn wore In aec1ma1. 
Print a long word in decimal. 
Print a short word in octal. 
Print a long word in Octal. 
Print a short word in hexadecimal. 
Print a long word in hexadecimal. 
Print a byte as a character. 

a 
D 
0 

0 
x 
x 
b 
s 
f 
g 

Print a string of characters that ends in a null byte. 
Print a single precision real number. 
Print a double precision real number. 
Print machine instructions. 

Example: 

The following example shows the output when printing memory 
addresses as instructions: 

(dbx) Ox2f8/10i 
[printline:58,0x2f8] lw r2,32(sp) 
[printline:58,0x2fc] lui rl,OxO 
[printline:58,0x300] addiu r4,rl,16860 
[printline:58,0x304] lui 
[printline:58,0x308] addiu 
[printline:58,0x30c] lw 
[printline:58,0x310) lw 
[printline:58,0x314] jal 
[printline:58,0x318] 
[printline:59,0x31c) 
[printline:59,0x320] 
[printline:59,0x324] 
(dbxJ Ox2f8/10d 

SW 

lui 
jal 
addiu 

rl,OxO 
rS,rl,16780 

r6,260(r2) 
r7,256(r2) 
fprintf ! ! 

r2,16(sp) 
rl,OxO 
fflush< ! 
r4,rl,16960 

000002f8: 32 3677 0 0 15361 1690 9252 0 15361 
00000308: 16780 9253 

(dbx) 

RISCompiler and C Programmer's Guide 6-57 



Chapter6 

Debugger Command Summary 

6-58 

Table 6.15 lists all commands (except for command line editing 
commands) and gives the syntax for each. 

Table 6.15: Command Summary, 1 of 7 

Command Alias Function Syntax 

I Search forward in the /REG EX 
code for the specified 
string. 

? Search backward in the ?REG EX 
code for the specified 
string. 

Execute a command !STRING 
from the history list. !INT 

!-INT 

alias List all aliases, or if an alias iNAME~ARG1 , ... 
argument is specified, RGN) STRING"] 
define a new alias. 

assign a Assign the specified assign EXP1 = EXP2 
expression to a 
specified program 
variable. 

catch List all signals that dbx catch [signal] 
catches, or if an argu-
ment is specified, add 
the signal to the catch 
list. 

cont c Continue executing cont 
a program after a cont in PROCEDURE 
breakpoint. cont to LINE 

cont SIGNAL to LINE 
cont SIGNAL in PROCE· 

DURE 

RISCompiler and C Programmer's Guide 



Debugging Programs 

Table 6.15 Command Summary, 2 of 7 

Command Alias Function Syntax 

conti Continue executing conti SIGNAL 

assembly code after conti to ADDRESS 

a breakpoint. conti in PROCEDURE 
conti SIGNAL to ADDRESS 
conti SIGNAL in PROCEDURE 

delete d Delete the specified delete EXP1 , ... EXPN 
item from the status delete ALL 
list. 

down Move down the down [EXP] 
specified number of 
activation levels in 
the stack. The de-

dump 
favlt is one level. 
Print variable informa- dump PROCEDURE 
tion about the proce- dump. 
dure. If a dot (.) is 
specified, information 
for all global variables 
is shown. 

edit Invoke and editor from 
dbx. 

edit [FILE] 

file e Print the name of the file [FILE] 
current file, or if a filena-
me is specified, change 
the current file to the 
specified file. 

tune f Move to the tune 
specified procedure tune EXP 
(activation level) tune PROCEDURE 
or print the current 
activation level. 

goto g 
Go to the specified 

goto LINE line. 

RlSCompiler and C Programmer's Guide 6-59 



Chapter6 

Table 6.15 Command Summary, 3 of 7 

Command Alias Function Syntax 

help ? Print a list of dbx com-
mands using more{1). 

help 

history h Print a list of previously history 
issued commands. The 
default list length is 20. 

ignore List all signals that dbx ignore [SIGNAL] 
does not catch, or if an 
argument is specified, 
add the specified signal 
to the ignore list. 

list List the specified list 
lines. The default list [EXP:INT] 
is 10 lines. list [EXP] 

next n Step over the next [INT] 
specified number of 
lines. The default 
is one. This com-
mand does not step 
into procedures. 

nexti ni Step over the specified 
number of machine in-

nexti [INT] 

structions. The default is 
1. This command does 
not step into procedures. 

playback pi Replay commands playback input [FILE! 
input saved with the record 

input command. 

6-60 RISCompilerand C Programmer's Guide 



Debugging Programs 

Table 6. 15 Command Summary, 4 of 7 

Command Alias Function Syntax 

playback po Replay debugger output playback output [FILE] 
output saved with the record 

output command. 

print p Print the value print EXP1 , ... ,EXPN 
of the specified 
expression. 

printf pd Print the value printf 177STRING", 
of the specified EXP1, ... EXPN 
expression, using 
C string formatting. 

print regs pr Print all register printregs 
values. 

quit q Exit dbx. quit 

record ri Record all commands record input [FILE] 
input entered to dbx. 

record ro Record all dbx output. record output [FILE] 
output 

return Continue executing return [PROCEDURE] 
until the procedure 
returns. If you 
don't specify a 
procedure, DBX 
assumes the next 
procedure. 

run Run the program. run [ARG1 ... ARGN] 
[<FILE1 ][>FILE2] 

rerun r Run the program again rerun [ARG1 ... ARGN] 
using the arguments [<FILE1 JI>FILE2] 
specified to the run 
command. 

RISCompiler and C Programmer's Guide 6-61 



Chapter6 

Table 6.15 Comma11d Summary, 5 of 7 

Command Alias Function Syntax 

set Display the list of de· set 
bugger variables and set VAR= EXP 
values, assign a value 
to a variable, or define a 
new variable and assign 
a value to it. 

sh Invoke a shell from sh [SHELL COMMAND J 
dbx, or execute a shell 
command. 

source Execute dbx commands source [FILE] 
from the specified file. If 
a filename is not speci-
fied, the file created with 
the record input com· 
mand is used. 

status Print a list of currently status 
set breakpoints, record 
commands, and traces. 

step s Step the specified num- step [INT] 
ber of lines. This com-
mand steps into proce-
dures. The default is 
one line. 

stepi si Step the specified num- stepi [INT] 
ber of instructions. This 
command steps into 
procedures. The default 
is one instruction. 

stop b Set a breakpoint at the stop VAR at 
bp specified loc~tion. stop VAR at LINE 

stop VAR in PROCEDURE 
stop VAR if EXP 
stop VAR at LINE if EXP 
stoP. VAR in PROCEDURE 

if ~XP 

6-62 RISCompiler and C Programmer's Guide 



Debugging Programs 

Table 6.15 Command Summary, 6 of 7 

Command Alias Function Syntax 

stopi Set a breakpoint stopi [VAR] at ADDRESS 
in machine code stopi [VAR] in PROCEDURE 
at the specified stopi [VAR] if EXP 
point. stopi ~AR] at ADDRESS if 

E p 
stopi ~AR] in PROCEDURE 

if XP 

trace tr Trace the specified trace VAR 
variable. trace VAR at LINE 

trace VAR in PROCEDURE 
trace VAR at LINE if 

EXP 
trace VAR in PROCEDURE 

if EXP 

tracei Trace the specified tracei VAR 
variable in the tracei VAR at ADDRESS 
machine instruction. tracei VAR in PROCEDURE 

tracei VAR at ADDRESS 
if EXP 

tracei VAR IN 
PROCEDURE if EXP 

unalias Remove specified alias. unalias ALIAS NAME 

unset Unset a debugger unset VAR 
variable. 

up Move the specified up [EXP] 
number of activation 
levels up the stack. 
The default is 1 . 

use Print a list of directories use [DIR1 DIR2 ... DIRN] 
which are searched for 
files. If one or more di-
rectory names are 
specified, change the 
list of directories to 
those specified. 

RISCompiler an~ C Programmers Guide 6-63 



Chapter6 

Table 6.15 Command Summary, 7 <?f 7 

Command Alias Function Syntax 

whatis Print the type whatis VAR 
declaration for the 
specified name. 

when Execute the specified when bVARlif EXP] 
dbx commands under {C MM ND_usn 
specified conditions. when~VAR] at LINE 

~ XP]{COMMAND_ 
1sn 

when~VAR] in PROCEDURE 
Lif XP]{COMMAND_ 
1sn 

where Get a stack trace. where 

where is Print all qualifications whereis VAR 
of the specified 
variable name. 

which Print the qualification which VAR 
of the variable name 
currently in use. 

Print the contents of ADDRESS/<COUNT><MODE::i 
the specified address 
in the format specified 
by MODE. 

Sample Program 

6-64 

The sample C program referred to in command examples, sam.c, is shown 
in Figure 6.3. 

#include <stdio.h> 

struct line { 
char string[256]; 
int length; 
int linenurnber; 

RISCompiler and C Programmer's Guide 



Debugging Programs 

typedef s:ruct line LINETYFE; 
.. ~-·~id t:::.~:nt line 1;; 

.:.nt arg::-; 
char "'•argv; 

FI:.E •fd; 
extern FILE •fopen(I; 
extern char •fgets(;; 

• • I arg::- < 2) 1 

fpnntfrstderr, #Usage sam filename\n"); 
e>::t {1 i; 

: :; : ~1,e:. 'a rgv i 1 J , "r" 1 ; 

. • I f ::l =: l,;'JLL i I 

:t::-::1~ f ( ~tde!"!"", ncannc1 t opeL ~s\r.", 

arg\' [2. Ji; 

4:-X:': ·: J; 

t.-.·~.::e··:o.:-:r ~:!"1i:-::.E"tr:ng, si::eof\linE:.2-c:-ing;, fd) 
I: r.:·::...:... 
:r.: : ; 
s:o4:1c c·1.1rline!"iumber = r"; 

i = £'trle:i:line1.string,i; 
if 1.i == 1 t!L& lir1el.strir1g[(1} 

continue; 
linel.length = i; 

, \n,) 

linel.linenumber = curlinenumber..+; 
printline(&linel); 

\':id r·:~n~line'.pline; 
:..:!:ETYF'E ~p~int-; 

fpri.:::i!F:d:·ut, "~L:.c;. 

t-: iri.::--- .--1 i:it-:iumbt-!·, 
r: ir1e- .... }o?~Jgt!., 
~;::rl'2->£'trir~g): 

:flu£!. '.£":dout;; 

Figure 6.3: Sample Program sam.c 

RISCompiler and C Programmer's Guide 6-65 



Chapter6 

6-66 RISCompilerand C Programmer's Guide 



MIPS C Implementation 

Introduction 

7 

The MIPS C compiler supports four variations of the C language: 

• C as defined in The C Programming 1.Anguage by Kernighan and 
Ritchie (Prentice Hall, 1978) with some ANSI C extensions (also 
known as MIPS-C) 

• ANSI C as defined in ANSI X3.159-1989 (American National 
Standards Institute, 1989), this document is referred to by section 
numbers, e.g. 3.2.2 

• ANSI C with extensions 

• An older version of MIPS C known as oldc 

These variations of Care available with the following cc options: 
-stdO MIPSC 
-std1 strict ANSI C 
-std ANSI C with extensions 
-oldc old version of MIPS C, uses the old cpp and ccom. 

instead of the new cfe. Olde will not be supported in 
future releases of MIPS RISCompilers. 

Note: The compiler that comes with RISC I os supports -stdO mode only. 
The ANSI C compiler supports all modes and defaults to -std. 
This chapter covers the following topics: 

• Additional options for the C driver. 

• Translation limits. 

• MIPS C extensions to C as defined in The C Programming Language 
by Kernighan and Ritchie (Prentice Hall, 1978). 

RISCompiler and C Programmer·s Guide 7-1 



Chapter 7 

• Compatibility issues between previous versions of MIPS-C 
(referred to as OldC) and ANSI C, ANSI C with extensions. 

The ANSI C Language and extensions to ANSI C are described in Chapter 
8 of this manual. 

Addltlonal Driver Options 

ccom options 

7-2 

In addition to the options discussed in Chapter 1 of this manual, the C 
driver, cc, has options that let you increase the amount of space allowed for 
various structures used by the compiler. These options are of the form 
-Wf,-XNz<number>, where z is one of the following: 

Table 7.1: Additional Driver Options for -oldc only 

o_p_tion meanin_g_ default 
a temporary string space 1024 
b temporary string space 4096 
c temporary string buffer 40 
d symbol table 3000 
e nesting levels 100 
f parameter stack space 1020 
g switch table space 500 
h tree space 100 
i delayed tree space 20 
j hash table space 20 
k file name space 100 
I string literal space 2048 
m initialization stack space 10 
n line length 515 
0 file stack size 1024 
p dimension table size 4200 
q block nesting size 100 

If more than one of these options is used, each must be of the form-Wf, 
-XNz<number>. These options are only useful with the -oldc flag. 

The ccom (invoked by the driver to compile C sources) options are shown 
in Table 7.2. The options may appear on the command line in any order 
and have the form -Xoption. 

RISCompiler and C Programmer's Guide 



option 
volatile 
varargs 

v 
signed 
float 
framepointer 
w 
F 
Stile 
c 
dollar 
d 

b 
trapuv 
t 
e 
x 
I 
T 
u 
p 
gn 

EB 
EL 
On 
mipsn 
std 
stdn 

MIPS C Implementation 

Table 7.2: ccom options for -oldc only, 1 of 2 

meaning 
makes all vanable declarations volatile 
prints warning message it address of parameter is taken in 
a non-varargs function 
verbose, prints out names of functions processed 
makes ·char' same as ·signed char' 
use single prexision math where possible 
generate a framepointer in each function 
test at the top for 'while' loops 
test at the top for 'for' loops 
write symbol table to file 
print warning message on pointer casts 
allow • $' in identifiers 
print debug info on def id and non-unique member references, 
multiple -Xds may be specified, each one yields more 
verbose output 
print debug info on initialization processing, multiple -Xi's 
may be specified, each one yields more verbose output 
print debug info on buildtree 
traps on uninitialized variables 
print debug info on tyrnatch 
print debug info on expression trees 
print debug info on'?:' processing 
intersperse source with object 
force all names to be <=8 chars 
generate ASCII ucode and ASCII symbol table 
obsolete, do not use 
n is a digit, if n<>O, then writes debugging information to 
the symbol table for dbx debugging 
set big endian mode 
set little endian mode 
0<=n<=3, sets optimization level, doesn't affect ccom 
1 <=n<=3, sets the mips architecture, doesn't affect ccom 
ANSI plus extension compliance 
n=O for traditional compliance, n=1 for strict ANSI 

compliance. Note that the ANSI implementation is 
incomplete. n=o is the default. 

RISCompiler and C Programmer's Guide 7-3 



Chapter 7 

7-4 

option 
Nxnnnn 

e 
w 
wn 

v 
framepointer 
f 
trapuv 

Table 7.2: ccom options for -oldc only, 2 of 2 

meanin_g_ 
changes internal table limits, nnnn is the new value. You can 
use an unkown letter to make ccom list the possibilities, 
e.g. -XNz999. The known values for x and the default values 
are listed below; 

a temporary string space (1024] 
b temporary string space (4096] 
c temporary string buffers (40] 
d symbol table space (3000] 
e nesting level (100] 
f parameter stack space (1020] 
g switch table space [500] 
h tree space [1000] 

delayed tree space [20] 
j hash table space [20] 
k file name space [100] 
I string literal space (2048] 
m initialization stack space [10] 
n line length (515] 
o files stack size [1024] 
p dimension table size [4200] 
q block nesting size [100] 

obsolete, don't use 
same as-Xe 
sameas-w1 
actions on warnings; n is one of: 

O print warnings, default if -w not specified 
1 don't print warnings 
2 print warnings, exit with nonzero exit status if any 

warnings occur 
3 don't print warnings, exit with nonzero exit status if 

any (not printed) warnings occur 
obsolete, don't use 
same as -Xframepointer 
print the tree in the second pass 
same as -Xtrapuv 

In addition, ccom accepts up to two filenames in the argument list. The first 
one, if present, is the input file. The second one, if there, is the output file. 
They default to stdin and stdout respectively. 

RISCompiler and C Programmer's Guide 



MIPS C Implementation 

Translation Limits 

MIPS-C 

TabJe 7.3 shows the maximum Jimits imposed on certain items by the C 
compiler. 

Table 7.3: C Compiler Limitations. 

C Specification 

Nesting levels 
Compound statements 
Iterations 
Selections 
Conditional compilations 

Maximum number of type 
modifiers (arrays, pointers, 
function, volatile) 

Case labels 

Function call parameters 

Significant characters 
External identifier 
Internal identifier 

• means no limit 

Maximum 

200 

• 

500 

• 

32 

This section covers the foJlowing topics: 

Maximum (-oldc) 

<30 

9 

<500 

150 

<32 

• Specifying vararg or stdarg macros, a requirement for all junctions 
that take a variable number of argument. 

• Deviations from and extensions to C as defined in The C 
Programming Language by Kernighan and Ritchie (Prentice-HalJ). 

• Compatibility with previous versions of MIPS-C. 

• New header files. 

RISCompiler and C Programmer's Guide 7-5 



Chapter 7 

Varargs.h Macros 

7-6 

Currently, the MIPS C compiler supports varargs.h. The compiler also 
supports the ANSI stdarg.h method of variable argument accessing. Use 
stdarg.h wherever possible as varargs.h will be obsolete in the future. 

If a function takes a variable number of arguments (for example, the C 
library functions printf and scan/), you must use the macros defined in the 
varargs.h header file. 

The va_dcl macro declares the formal parameters va_alist, which is either 
the format descriptor for the remaining parameters or a parameter itself. 

The va...start must be called within the body of the function whose 
argument list is to be traversed. The function can then transverse the list 
or pass its vajist pointer to other functions to transverse the list. The type 
of the va...start argument is va_list; it is defined by the typedef statement in 
varargs.h. 

The va_arg macro accesses the value of an argument rather than obtaining 
its address. The macro handles those type names that can be transformed 
into the appropriate pointer type by appending an asterisk ( .. '), which han­
dles most simple cases. The argument type in a variable argument list 
must never be an integer type smaller than int, and must never be float. The 
current implementation of varargs does not work for struct types. Further­
more, the first parameter must not be a double. 
For more information on the varargs.h macros, see varargs(3) in the RISC/os 
Programmer's Reference Manual. Figure 7.1 shows an example of the use of 
varargs macros; the expected output from the example is as follows: 

load I 0 4 
load I 4 4 
add I 
store I 0 4 

RISCompiler and C Programmer's Guide 



MIPS C Implementation 

#~ncl~6e <varargs.h> 
¥include <Etudio.h> 
enum ope!""a:.ions {load, store, add, sub!; 
mair.. '; 

\"·:.id emit \); 
emit (load, 'I', 0, 4); 
emit (load, 'I', 4, 4); 
err.:: I add, .. I' J ; 

er;:it i2tcre, 'I', 0, 4); 

emit iop, va_alist) 
/• emit takes a variable number of arguments and prints 

::;e;r according to the operation fonnat • :' 
e:-~...:r:. ,:1peratic·ns op; 

re~:s:er ~~: length, offset; 
register c:iar type; 
va_sta!·t (arg_ptr); 
2w:tc!: (op~ 1 

case add: /* print operation and length •; 
:ype=va_arg rarg_ptr, int); 
printf ("add %c\n", type); 
break; 

ca2e sub: /* print operation and length •; 
type=va_arg (arg_ptr, int); 
printf ("sub %C\n", type); 
brea}:; 

c;:,se L•ad: /* print oper::1tion, offset and length •, 
:ype=va_arg (arg_ptr, int); 
offset=va_arg (arg_ptr, int); 
length=va_arg (arg_ptr, int); 
printf ("load %c %d %d\n•, type, offset, length); 
break; 

cetst st.ore: 
type=va_arg (arg_ptr, int); 
cf:=set=va_arg {arg_ptr, int}; 
:er.g:h=vet_arg targ_ptr, int); 
!~!-int: (''stc·rE !tic ~d !-od\n 11

, tyf,t. cffse':, length); 

Figure 7.1 Passing a Variable Number of Argumellls 10 a C Function 

RJSCompi/er and C Programmer's Guide 7-7 



Chapter 7 

Stdarg.h Macros 

7-8 

This is the ANSI C variable argument header file which replaces varargs.h. 
It must be included in each module which defines functions expecting a 
variable number of arguments. There is also a prototype syntax used to de- . 
dare such functions, which must be used in modules that call stdarg func­
tions. Stdarg correct varargs limitations such as the inability to pass struct 
parameters and not allowing the first argument to be a double. 
As an example, the stdarg version of the varargs example would be coded 
as shown in Figure 7.2: 

RISCompilerand C Programmer's Guide 



MIPS C Implementation 

/'* exa:n;:;:-s- ·:1:1riable argument L::.ction '* / 

#inc:..ude <E:darg.h> 
#inc:ude <Et.d::.:.h> 

\r::-: -:.:::: e:-.:.Hr c'r)e:-a:i.:-:;, · · 
~~c~o:ype w~t~ ... nc~iation•/ 

-2:7.:: , : .: a::, ' r / I c I ~ ' ; 

e::.:: ._:::.:::, ·:;:·, 4, .;,. 

er:-.:: • • .. "T, 
; 8 :J:;,, .... I ; 

vvid 

'.,., c. 4 .. 

• r.::.;. i:rc:c::,·r-:- f:.i:iction defini:ion form*/ 
• e~l: :akeE 1:1 v1:1:1atle number of arguments 
• a::::: pr:r:: E : :.e:: ;:.ccc,rding tc· the open.ti on fonnat '* / 

• :he argument prior tu the var!atle part 
cf the function must be named here •/ 

s ... ·:tcr, :::i.-
c1:12-s- add: !" print operations and length */ 

:ype=·•a_arg 1 arg_pt.r, int) ; 
pr::.n:.:f :·add %c\n", type); 
l:.reak; 

c~Eo:- E~t: 1 • print operations and lenght */ 

typ12=·•a_arg (arg_ptr, int); 
~!'":..r::f "sub %c\n•, typE-l; 
brear:; 

case load: ;• print operation, offset and length */ 

::,·pe=va_arg ( arg_ptr, int); 
c!':'.set:va_arg I arg_ptr, int); 
leng:!c-va_arg 1arg_ptr, int); 
prir::: "}c,ad !tc %d\n", type, offset, lenght); 

case store: ;• print operation, offset and length */ 
t:,·r,e=·•a_arg (arg_ptr, .int); 
~f::set=vo_~rg (arg_ptr, int); 
:..er.gtL=va_1:1rg i arg_ptr, int); 
t,!.-:.r.t: ... ~':c!'t !tc,~d !&d/n•, type, offset, length.:; 

':.. ·- -· . -,_ ..... _ .='-!• - .. ; ' 

Figure 7.2: Passing a Variable Number of Arguments to a C Fu11ctio11 ( stardg version) 

RJSCompiler and C Programmer's Guide 7-9 



Chapter 7 

Deviations 

Extensions 

Header Flies 

7-10 

MIPS-C does not support the entry keyword, which has no defined use. 
Additionally, MIPS-C does not support the asm keyword, as implemented 
by some C compilers to allow for the inclusion of assembly language in­
structions. 

Extensions to K &: RC include the following: 

• A cast is allowed on the left side of an assignment operator. 

• The enumeration type, a set of values represented by identifiers 
called enumeration constants; enumeration constants are specified 
when the type is defined. For information on the alignment, size, 
and value ranges of the enumeration type, see Chapter 3. 

• The void type, which allows you to specify that no value be returned 
from a function. 

• void•, which is a generic pointer. Any pointer may be assigned or 
compared to a pointer to void. 

• The volatile type modifier, which is used when programming I/0 
devices and the signed type. In addition, the const keyword has 
been reserved for future use. For more information on the volatile 
modifier, see Chapter 3. 

• prototypes, which are function prototypes as defined by the ANSI 
standard for C. Function prototypes can assist in locating 
assumptions about type compatibilities that may not be true when 
code is ported. 

• C++ style comments are permitted. 

alloc.h 

This header file should be included if the built-in version of the C library 
routine alloca(3) is desired. The built-in version is more efficient than the 
portable libc version because space is allocated on the stack and freed on· 
exit. 

The header file redefines the name alloca: 
extern char *alloca(int size); 
#pragma intrinsic(alloca) 

RISCompiler and C Programmer's Guide 



Compatibility 

MIPS C Implementation 

This section describes the differences between the old MIPS C compiler 
(referred to as OldC, and available with the-f>ldc option) and the new 
compiler, which has three modes: 

• MIPS-C (-stdO) 

• ANSI C (-stdl) 

• ANSI C with extensions (-std) 

Differences Between OldC and All Modes 

A warning is issued if constants exceed the limits (the value of 
ULONG_MAX). A similar warning occurs if octal and hexadecimal 
character escapes exceed the value of UCHAR_MAX. OldC does not issue 
a warning in these cases. 

The value of the integer when a multi-character constant is converted may 
not be the same if the character type is signed and there are negative values 
in the constant. 

The ANSI standard requires that a backslash followed by a carriage 
return be stripped early in the translation phases. In OldC, the pair was 
stripped fairly late (around translation phase 5, section 2.1.1.2). The 
behavior of cpp will be different; programs containing such constructs may 
not work properly when fed into the new compiler. 

A typedef name used as a type specifier cannot be modified with a type 
modifier (i.e. signed, unsigned). A syntax error message is printed if this 
construct is found in a program. OldC permits modifying a user-defined 
type. 

In the ANSI standard, preprocessor directives can occur in any column of 
a line as long as there is no preprocessing token in front of the '#' sign. 
OldC recognizes directives only if the '#' sign is on the first column of a 
line. The assembly language style of comment can be compiled with the -
oldc option. To make this feature compatible, the new preprocessor con­
forms to the old style of directive if -DLANGU AGE_ASSEMBL Y is used 
on the command line. 

Declaring or defining a type within a function prototype causes the param­
eter to be incompatible with any other type. OldC permits this. For exam­
ple, in the following declaration, if stmct S has no previous declaration, 
any further type matching of the parameter list will result in an error; at 
the end of the prototype the scope closes, causing S to be forgotten. 

int foo( struct S;p; ); 

RISCompiler and C Programmer's Guide 7-11 



Chapter 7 

OldC allows casting of the left hand side of the assignment expression, if 
the object pointed to by the left hand side and right hand side expressions 
have the same size. This is no longer permitted. 

The cpp of OldC allows an #if directive in the middle of macro call. This is 
not permitted in any other mode. 

OldC is very liberal regarding placement of braces in initializers. For 
example: 

struct S {char i(lO]; inti} y = ((•aeiou•, l}}; 

is acceptable in OldC, even though all standards require that the array be 
initialized to the nested initializer. The new compiler will complain about 
the initializer containing too many initial values since the array element is 
single-valued whereas the initializer is multi-valued. 

Typedef names cannot be redeclared except within an inner block. 

OldC and MIPS C (-stdO) 

The ANSI standard requires that each comment be replaced by one space 
character during preprocessing. In OldC, a comment is deleted entirely. 
The new behavior does not permit a comment to be used as a concatena­
tion operator as in OldC. 

The ANSI specification defines a string as a contiguous sequence of char­
acters terminated by, and including, the first null character. As the result, 
a partial string is not a valid processing token, and it is not viable in the re­
placement list of a macro definition. The OldC preprocessor accepts a par­
tial string. For example, in OldC, the following code fragment defines a 
partial string: 

#define abc •123 

and could be used as follows: 
printf(abc 456•); 

In OldC, macros cannot be defined recursively. However, -stdO mode 
supports recursively defined macro expansion. 

OldC and ANSI C (-std1) 

7-12 

Local variables are allowed to hide externally declared variables at the 
same lexical level in OldC. This is treated as a redeclaration in ANSI C, and 
is an error: 

f () { 
extern int i; 
int i; 

RISCompiler and C Programmer's Guide 



MIPS C Implementation 

In ANSI C, hexadecimal escape sequences in character and string con­
stants are allowed. In OldC, this is not permitted. For example, '\x' is in­
terpreted as 'x' in OldC. 

The escape sequence '\a' is new to ANSI C. In OldC, this is translated to 
'a' in and a warning message issued. 

In ANSI C, a trailing comma in an enumerator list, as in: 
enum good_stuff { cake, pie, cookie, }; 

generates a warning message. OldC permitted this without warning. In 
strictly standard mode (-stdl), this is an error. 

In ANSI C, an empty declaration(";") at the top level generates an error 
message. The empty declaration is tolerated in -stdO mode. 

In ANSI C, top level variable declarations (not function definitions) where 
there is no declaration specifier generate an error. OldC assumes that the 
variable is extern int. 
A missing ending semicolon in the structure declaration list results in a 
warning message being issued. OldC permitted constructs such as: 

struct {int a,b} a; 

without warning. 

In OldC, to declare two mutually referencing structures within a block, 
declarations similar to the following are required: 

struct x { struct y *p; /* ... */ ); 
struct y { struct x *q; /* ... */ ); 

In ANSI C, if struct y is already defined in a containing block, the first field 
of struct x refers to the older declaration. Thus special meaning is given to 
the form: 

struct y; 

struct y now hides the outer declaration of struct y, and creates a new in­
stance of the structure in the current block. 

MIPS-C (-stdO) and ANSI C (-std1) 

In MIPS-C, array elements can have zero size; this is not allowed in ANSI 
C. For instance: 

extern struct file file [ J; /• struct file is incomplete • .· 

is accepted in -stdO mode, but not in -stdl mode. 

In MIPS-C, local variables are allowed to hide externally declared vari­
ables at the same lexical level. In ANSI C, this is treated as a redeclaration. 

In MIPS-C, array elements can have zero size. For example: 
extern struct file file[]; 

/* struct file is incomplete */ 

RISCompiler and C Programmer's Guide 7-13 



Chapter 7 

is accepted in MIPS-C, but is not permitted in ANSI C. 

In MIPS-C, integral constants can have type int or long. In ANSI C, integral 
constants can have type int, unsigned int, long, or unsigned long. In MIPS-C, 
the type is unsigned int or unsigned long if the 'u' or 'U' suffix is used. 

In MIPS-C, the preprocessor recognizes macro names inside strings in a 
macro expansion. This is not supported in ANSI C. In ANSI C, the# op­
erator should be used (see the Macros section in Chapter 8 of this manual). 

In ANSI C, a comment is replaced with one white-space character. In 
MIPS-C, a comment is removed. 

In ANSI C, the preprocessor supports trigraphs. These are not supported 
inMIPS-C. 

In MIPS-C, the preprocessor allows macro definitions to be redefined. 
This is not allowed in ANSI C. 

. Any macro name that is included from ANSI standard header file cannot 
be undefined, except in MIPS-C. 

In ANSI C, the preprocessor issues a warning message if the.re is a prepro­
cessing token following the #endif directive. In MIPS-C, no warning ap­
pears. 

In ANSI C, the preprocessor issues a warning message if non-unique pa­
rameter name is detected for a macro definition. 

In the following example: 
struct y; 
struct x { struct y *p; /* ... */ }; 
struct y { struct x *q; /* ... */ }; 

the reference to yin struct x, refers to the local declaration of y. In ANSI C, 
special meaning is given to the form: 

struct y; 

struct y now hides any declaration of struct yin an enclosing block, and cre­
ates a new instance in the current block. 

ANSI C (-std1) and ANSI C with extensions (-std) 

The C++ style comment is supported in ANSI C with extensions (-std 
mode). 

Special Options for Compatibility 

7-14 

Comments are removed in OldC; this feature can be used as a concatena­
tion operator in macro definitions. The -oldcomment option to the new 
compiler causes comments to be removed instead of replaced with a single 
space. 

RISCompiler and C Programmer's Guide 



ANSI C Implementation 

Introduction 

8 

The MIPS C compiler supports four variations of the C language: 

• C as defined in The C Programming 1.Anguage by Kernighan and 
Ritchie {Prentice Hall, 1978) with some ANSI C extensions (also 
known as MIPS C) 

• ANSI C as defined in ANSI X3.159-1989 (American National 
Standards Institute, 1989) 

• ANSI C with extensions 

• An older version of MIPS C known as oldc 

MIPS CThese variations of C are available with the following cc options: 

-stdO MIPS C 
-std1 strict ANSI C. 
-std ANSI C with extensions 
-oldc old version of MIPS C, uses the old cpp and ccom. 

instead of the new cfe. Olde wilJ not be supported in 
future releases of MIPS RISCompilers. 

If none of the above options are used on the cc command line, the default 
is -stdO unless an ANSI C license is acquired, in which case the default is 
-std. 
Chapter 7 contains a discussion of compatibility issues for the variations 
of~ provided by the MIPS compiler. 

RJSCompiler and C Programmer's Guide 8-1 



Chapter 8 

This chapter discusses new features of ANSI C. A complete description of 
the Language may be found in ANSI X3.159-1989. In addition to describ­
ing the C language, the ANSI standard for C describes the functionality of 
the preprocessor and the library routines. This chapter discusses the fol­
lowing topics: 

• Translation Limits 

• Preprocessor 

• Language 

• Library Routines 

• Implementation Defined Behavior 

• Quiet Changes 

• Extensions to ANSI C 

ANSI C is identical to MIPS C in many respects. Each of the following sec­
tions describes features of ANSI C that are not found in MIPS C. 

Note: With-systype bsd43 and -systype sysv, a confonningfreestanding im­
plementation of ANSI C is available and accepts any strictly conforming 
program in which the use of library routines is confined to those defined 
in the standard headers float.h, limits.h, stdarg.h, and stddef.h. 
A confonning hosted implementation of ANSI C is not yet available. This will 
be provided in a future release and will include the new and modified 
header files and libraries. 

Translation Limits 

8-2 

The MIPS C compiler uses dynamic data structures and therefore, program 
components are limited only by the amount of available memory. The 
following list indicates minimums which are guaranteed (i.e. a program 
that meets but does not exceed each minimum is guaranteed to compile). 
However, if a program significantly exceeds one or more minimums, it is 
possible to run out of memory and receive an error message on a 
component that has not yet reached its minimum. 

• Compound statements (a set of statements grouped with braces), 
iteration control statements, and selection control statements may be 
nested at least 15 levels. 

• Conditional include directives may be nested 8 levels. 

• Arithmetic, structure, union, or incomplete type declarations may 
have at least 12 pointer, array, and function declarators modifying 
them. 

RISCompilerand C Programmer's Guide 



ANSI C Implementation 

• A declaration may have at least 31 nested levels of parenthesized 
declarators. 

• An expression may have at least 32 nested levels of parenthesized 
expressions. 

• An internal identifier or macro name may have 32 significant 
characters. 

• An external identifier may have 32 significant initial characters. 

• A single translation unit may have at least 511 external identifiers. 

• A block may have at least 127 identifiers declared with block scope. 

• A single translation unit may have at least 1024 macro identifiers 
defined simultaneously. 

• A function definition may have at least 31 parameters and a function 
call 31 arguments. 

• A macro definition may have at least 31 parameters and a macro 
invocation 31 arguments. 

• A logical source line may have at least 509 characters. 

• A string literal or wide string literal may have at least 509 characters 
(after string concatenation). 

• An object may consist of at least 32767 bytes. 

• A switch statement may have 257 case labels (excluding any nested 
switch statements). 

• A single struct or union may have at least 127 members. 

• A single enumeration may have at least 127 enumeration constants. 

• A single structure declaration may have at least 15 levels of nested 
structure or union definitions. 

Preprocessor 

Directives 

Any token may be continued on the following line with a back-slash(\) 
followed by a new-line. Previously, only character strings could be con­
tinued in this fashion. 

The# and the directive name (i.e. line, ~fdej) are separate tokens. 

A null directive, consisting of a# followed by a new-line, is permitted and 
has no effect. 

RISCompiler and C Programmer's Guide 8-3 



Chapter8 

New Directives 

8-4 

White-space, consisting of any number of spaces and tabs, may appear in 
directives between preprocessing tokens anywhere in the line. Directives 
may be nested at least eight levels. 

#Elif 

The #elif (else if) directive allows nested #ifs to be simplified: 

#if x < 0 

#elif x -- 0 

#else 

"end if 

#Error 

The error directive is as follows: 

"error token-sequence 

This directive causes a warning diagnostic message to be generated that in­
cludes the specified token sequence. 

#Ptagma 

The pragma directive has the form: 

#pragma token-sequence 

The intrinsic, function, weak, and pack pragmas are supported. Any unrec­
ognized pragmas are ignored by the compiler and a warning diagnostic 
message is generated. 

Intrinsic Pragma 

Some library functions can be compiled in.a..line using the intrinsic pragma. 
This directive affects the specified function from the pragma until the end 
of the file or the next function function pragma that references the same 
function. 

#pragma intrinsic (junctionl [,function2J ... ) 

The following functions can be compiled in-line using the intrinsic prag­
ma: 

alloca(), sqrt(), strcpy() 

RISCompilerand C Programmer's Guide 



ANSI C Implementation 

Function Pragma 

The function name must be defined at the time the #pragma is processed. 
If a function name is not recognized as an intrinsic, no action is taken. In­
trinsic processing can be turned off using-D_NO_INTRINSICS on the 
command line. In-std1 and -std modes, intrinsics are enabled by default. 
In-stdO mode, intrinsics are disabled by default. To enable intrinsics, add 
-D_INTRINSICS to the command line. 

The function pragma escapes the in-line code generation. A function call is 
forced for the specified functions for all subsequent calls unless an intrinsic 
pragma is encountered further on. 

#pragma function (functionl [ ,/unction2] ... ) 
#pragma function () 

The second form of the function pragma disables intrinsic functionality of 
all currently intrinsic functions. 

The function and intrinsic pragmas can only be used at the file scope level. 

WeakPragma 

The weak pragma defines a new weak external symbol and associates this 
new symbol with an external symbol. 

#pragma weak(secondary_name, primary_name) 
#pragma weak secondary_name = primary_name 

These two forms of the weak pragma are equivalent and cause the prima­
ry_name to be a weak symbol and associate it with the secondary_name. If a 
weak symbol and a strong symbol of the same name exist, the strong sym­
bol is resolved and a warning is issued for the unresolved weak symbol. 

A third form of the weak pragma may be used to indicate that a global sym­
bol should not cause an error if it is not resolved by the linker: 

#pragma weak identifier 

PackPragma 

The pack pragma is used to change the alignment restrictions on structure 
members. 

#pragma pack(n) 
#pragma pack () 

In the first form, n specifies the new alignment restriction in bytes. If n is 
omitted, as in the second form, the default alignment restriction is used (8 
bytes, the alignment requirements for a double). 

RISCompiler and C Programmer's Guide 8-5 



Chapters 

Directives with Additional Functionality 

Macros 

8-6 

Defined 

The defined Una.ry operator is used with an #i./ and is equivalent to an #if def. 
The new form is provided to allow multiple tests in one directive. For 
example: 

#if defined (debug) && defined (error) 

#Include 

ANSI C defines #include as follows: 

#include identifier 

After all macro replacement is completed, the identifier must be either 
"filename• or <filename>. 

#Line 

The ANSI C line directive has the form 

#line line-number filename 

The line-number may be a macro that has a decimal value or a constant. 
The filename may be a macro, a string literal, or a filename. 

Operators 

There are two new operators for macro parameters. A# placed before a pa­
rameter causes the# and the parameter to be replaced with a string consist­
ing of the parameter name. For example, if the following macro 

#define print(x) printf(#x • = %d", x) 

is called as 

print(result); 

It is expanded to 
printf("result" • = %d", result) 

Adjacent string literals are concatenated, so the result of the macro call be­
comes 

printf(•result = %d", result); 

New macros 

ANSI C defines a new offsetof macro: 

offsetof(type, member) 

RISCompiler and C Programmer's Guide 



Expressions 

Language 

ANSI C Implementation 

The macro expands to an integral constant expression of type size_t and 
indicates the offset in bytes from the beginning of the structure to the 
indicated member. 

ANSI C defines errno as a macro that expands to a modifiable ]value of 
type int. 
ANSI C defines the macros EXIT _SUCCESS and EXIT _FAIL URE in 
stdlib.h. These macros expand to integral expressions that may be used as 
the argument to exit() (see exit(2)) to indicate successful or unsuccessful ter­
mination to the host environment. 

FOPEN_MAX is the minimum number of files that it is guaranteed can be 
open simultaneously. 

Predefined Macros 

All predefined macros begin with an underscore that is followed by a cap­
ital letter or another underscore. 

The following predefined macros provide information about the file being 
compiled and cannot be redefined or undefined: 

~DATE~ date the file was compiled 
~TIME~ time the file was compiled 
~FILE~ name of the file being compiled 
~LINE~ line number in the file being compiled 
~STDC~ has the value 1 if -stdl is used on the cc 

command line, 0 if -std is used, and is 
undefined if -stdO is used. 

Constant expressions in preprocessor directives may not contain casts or 
enums. 

Trigraph sequences 

A trigraph is a sequence of three characters that is used to represent a sin­
gle character. Trigraphs are intended to be used on machines where the 
character set does not contain all of the characters required by C. 

RlSCompiler and C Programmer's Guide 8-7 



Chapter 8 

main() 

Declarations 

8-8 

A trigraph sequence is two question marks followed by another character. 
The trigraphs and the characters they represent are as follows: 

.,.,., # 
??( [ 
??! \ 
??) ] 
??' A 

??< { 
??I I 
??> } 
??-

You should not need to use trigraph sequences. However, if any of these 
sequences appear in string literals in a source file, they will be interpreted 
as a trigraph which may cause unexpected results. 

Argv, the argument list passed to main(), ends with a NULL pointer. There­
fore the number of arguments reported by argc is one more than the num­
ber of parameters passed to the program. Argc and argv are modifiable by 
the user. 

Keywords 

ANSI C has defined the following new keywords: const, volatile, signed, 
enum, and void. 

Identifier Name Space 

The following categories of identifiers have separate name spaces: 

• Label names. 

• Tags of structs, unions, and enums. 

• Each struct or union has a separate name space for its members. 

• All other identifiers. 

The identifiers that are found in function prototypes have their own name 
space. The scope of these variables is from the name to the end of the pro­
totype definition. 

RISCompiler and C Programmer's Guide 



ANSI C Implementation 

Constants 

Unsigned Constants 

Unsigned constants have a u or U as a suffix: 

4321U or 4321u 

Unsigned long constants are suffixed with both u or U and I or L: 

987654321UL 

Floating-point Constants 

Floating-point constants are specified with an for F suffix: 

0.2F or le7f 

Floating-point constants can also be specified with a decimal point (4.321) 
or an exponent (6e-4) as in MIPS-C. 

Wide Constants 

A wide character constant has type wchar_t and an Las a prefix: 

L'z' 

The value of a wide character constant containing one multibyte character 
is the corresponding wide character code defined by the library function 
mbtowc. 

A wide string literal is prefixed with an L: 

L"abc" 

String Constants 

In ANSI C, string concatenation occurs when two string literals are adja­
cent. For example: 

printf("a character string that is continued" 
•on the next line"); 

String literals containing trigraph sequences (see the Trigraph Sequences 
section) may have unexpected results. For example, the string "what??!" 
becomes "what I" during preprocessing. 

There are two new escape sequences for use in string literals: 
'\a' alert 
'\v' vertical tab 

In addition, a '\ x' sequence introduces a hexadecimal escape sequence 
that represents a character. One or two hexadecimal digits may follow the 
'x'. 

'\xb' or '\xle' 

RISCompiler and C Programmer's Guide 8-9 



Chapters 

8-10 

All lower case alphabetic escape sequences are reserved for future use. 

Type modifiers 

ANSI C defines the following new type modifiers: 

const indicates that the variable or argument will not be changed. const 
variables are placed in the read only section of the object file. 

volatile is used to suppress undesirable optimizations (e.g. reads that may 
appear to be redundant). 

signed may modify short, int, long int, or char. If a type is not modified by 
either signed or unsigned, it defaults to signed, except for char which is 
unsigned by default (unless the-signed flag is used at compile time). 

Types 

Bit fields may be type int, unsigned int, or signed int only. 

ANSI C introduces a new floating-point type long double intended to give 
greater precision than double. In MIPS implementation, long double and 
double are the same. 

ANSI C defines the following new types: 

void is any empty set of values. This type is commonly used for return val­
ues of functions that do not return a value and as a generic pointer (void•). 
Any pointer type may be assigned to a pointer to void. void cannot be used 
to declare types. 

An enum is a s~t of named integer constants. For example: 

enum primary {red, yellow, blue}; 

Typedefs 

The following typedefs are available in ANSI C: 

jmp_buf is declared in jmpbufh. It is an array type suitable for holding 
information needed to restore a calling environment and may be used as 
the type of the argument to setjmp(3). 
size_tis defined in stddef.h and is an unsigr\ed integral type that is the result 
of the sizeof operator. 

ptrdiff_t is defined in stddefh and is a signed integral type that is the result 
of subtracting two pointers. 

sig_atomic_t is defined in signal.h and is an integral type that can be 
accessed as an atomic entity (even in the presence of asynchronous 
interrupts). 

RISCompiler and C Programmer's Guide 



ANSI C Implementation 

wchar _t is defined in stddef.h and is an integral type capable of holding 
values representing all codes of the largest extended character set among 
the supported locales. 

Empty Declarations 

Structures and unions may have empty declarations. This allows the user 
to define mutually referential structures and unions. For example: 

struct y; 
struct x (struct y * yptr;}; 
struct y (struct x * xptr;}; 

The first struct yin the above example has an empty declaration. This en­
sures that struct x refers to the local definition of struct y and not a global 
definition that may exist. 

Tagless declarations 

A struct or union that has no tag name following its declaration may be re­
ferred to only by the declaration in which it is found. 

struct ( 
int i; 

) a, b; 

A tagless enumeration can be used to define constants (which can also be 
defined with the #define preprocessor directive): 

enum {cow, sheep, goat, chicken}; 

Structs, Unions, Arrays 

Arrays 

Array dimensions must be constant integral expressions and greater than 
zero. 

In ANSI C, automatic arrays may be initialized provided the initializer list 
consists of constant expressions. 

Structures and Unions 

Automatic structs and unions may be initialized either with a constant 
expression or a non-constant expression of the same type. When an 
automatic union is initialized, the value stored is cast to the type of its first 
member. 

Structures and unions cannot be cast; a pointer to a structure or union can 
be cast to a pointer of another type. 

RISCompiler and C Programmer's Guide 8-11 



Chapters 

Expressions 

A structure or union can be passed as an argument to a function by value 
(the struct or union) as well as by address (a pointer to a struct or union) and 
can also be returned from a function by value or address. 

Any parentheses in expressions must be honored at execution time. 

Operators 

Assignment operators, such as += or•=, are a single token; no space is 
allowed between the operator and the=. Assignment operators of the form 
=op are not permitted. You should use the op= form. 

ANSI C provides a unary plus operator. In the following example: 

i = +10; 

10 is assigned to i. 

A cast expression is not an !value and cannot have a value assigned to it. 

Arithmetic 

When afloat is converted to an integral type, the fractional part is discard­
ed. 

The controlling expression of a switch statement must be an integral type. 

Integral Promotions 

A character, snort integer, or integer bit-field, whether signed or unsigned, 
or an enumeration may be used in expressions wherever an integer may be 
used. If all the values of the original type can be represented by an int, the 
value is converted to int; otherwise the value is converted to unsigned int. 
This is a value preserving method of integral promotion. 

Many C implementations have used an unsigned preseroing method of inte­
gral promotion. This approach promotes an unsigned character or un­
signed short integer to unsigned int. . 
In most cases, the two schemes give the same effective result. Both give the 
same result in even more cases in implementations with twos complement 
arithmetic and quiet wraparound on signed overflow (that is, most current 
implementations). In these implementations, differences between the two 
schemes appear when the following conditions are both true: 

• An expression involving an unsigned char or unsigned short produces 
an int length result in which the sign bit is set. 

8-12 RISCompilerand C Programmer's Guide 



ANSI C Implementation 

• The result of the preceding expression is used in a context in which 
its sign is significant. 

In such circumstances, value preserving integral promotion causes 
the negative signed integer to become a very large unsigned 
integer, which may not be the desired result. This can be avoided 
with the use of appropriate casts. 

Note: -stdO uses the unsigned preserving method. 

Conversion Rules 

The conversion rules for ANSI C are as follows: 

First, if either operand is long double, the other operand is converted to long 
double. 
Otherwise, if either operand is float, the other operand is converted to float. 
Otherwise, the integral promotions are performed on both operands. 
Then the following rules are applied: 

• If either operand is unsigned long int, the other operand is converted 
to unsigned long int. 

• Otherwise, if one operand is long int and the other is unsigned int, the 
unsigned int is converted to long int. 

• Otherwise, if either operand is long int, the other operand is 
converted to long int. 

• Otherwise, if either operand is unsigned int, the other operand is 
converted to unsigned int. 

• Otherwise, both operands are int . 

Sequence Points 

The following are known as sequence points: 

• A function call, after the arguments have been evaluated. 

• The end of the first operand of the following operators: logical AND 
(&&),logical OR (I I), conditional(?), and comma(,). 

• The end of a full expression: an initializer, the controlling expression 
of an if, switch, while, or do statement, each of the three expressions of 
a for statement, or the expression in a return statement. 

At a sequence point, all side effects of previous evaluations are complete 
and no side effects of subsequent evaluations have taken place. 

RISCompiler and C Programmer's Guide 8-13 



Chapters 

Pointers 

Functions 

8-14 

If processing is interrupted by a signal, only the value of objects as of the 
previous sequence point may be relied on. Objects modified since the last 
sequence point and before the next, need not have received their correct 
values. 

Note: Order of evaluation in expressions is unspecified except for se­
quence points. 

A function pointer cannot be cast to a data pointer or a pointer to void and 
a data pointer or pointer to void cannot be cast to a functfon pointer. 

A pointer cannot be converted to another pointer type without an explicit 
cast. 

ANSI C has a new style of function definition that is similar to function 
prototype style. The following function: 

surn(i, j) 
int i; 
int j; 
{ 

can now be defined as: 

init surn(int i, int j) 
{ 

return i; 

A function with no arguments would be defined as follows: 

print(void) 
{ 

Function Prototypes 

The following is an example of a function prototype: 

int surn(int x, int y); 

RISCompilerand C Programmer's Guide 



ANSI C Implementation 

This declaration indicates that the function sum expects two int arguments 
and returns an int. The definition of the function and each call to the func­
tion must agree with the prototype; otherwise, an error message is gener­
ated by the compiler. 

A prototype for a function with a variable number of arguments would be 
declared as follows: 

int print(char '*format, ... ); 

The ellipsis( ... ) indicates that the number and type of the arguments may 
vary and can only appear at the end of the argument list. At least one pa­
rameter must precede the ellipsis in the declaration. 

Function Pointers 

A function pointer may be used to call the function in either of the follow­
ing ways: 

( '*func_ptr) (); 

OR 

func_ptr(); 

Implementation Defined Behavior 

Translation 

The ANSI Standard for C allows implementations to vary in specific in­
stances. This section describes the implementation defined behavior of the 
MIPS ANSI C compiler. 

Diagnostic messages are identified as follows: 
conir:ler-r;f.~:::·~: -:-:r!'"or-typt-i: filename-, linE=-: error-Jrt'?£sagt-~ (section- L".J.!rir:t-:-

and are followed by the line in question and an indication of the location 
of the problem. For example: 

cfe: Error: rnisc.c, line 7: syntax error 
lon int '*c; 

The error message may be followed by the section number of the ANSI C 
standard that has been violated. 

RJSCompiler and C Programmt>r's Guide 8-15 



Chapter8 

Environment 

Identifiers 

Characters 

8-16 

The arguments to main() are: 

argv[O) 
argv[l) ... argv[argc - 1) 

· argv[argc] 

the name of the executable file 
command line parameters 
a null pointer 

An interactive device is a video display terminal. 

Only the first 31 characters of an internal identifier are significant. 

An external identifier has 6 significant characters. 

Case is significant for external identifiers. 

The source and execution character sets are identical and are as defined in 
the ANSI standard for C. 

The C locale is the default locale. Currently, no other locales are support­
ed; therefore, there are no shift states for encoding multibyte characters. 

There are eight (8) bits in a character in the execution character set. 

Source characters are mapped one-to-one into the execution character set. 

There are no invalid characters or escape sequences in the basic execution 
character set. 

The value of an integer character constant that contains more than one 
character or a wide character constant that contains more than one multi­
byte character is as follows for character constants with 2 to 4 characters: 

in big-endian mode: 

2 characters, "ab": 
'a'"'256 + (unsigned)'b' 

3 characters, "abc": 
'a' • 65536 + (unsigned}'b' • 256 + (unsigned)'c' 

4 characters, "abed": 
'a' • 16777216 + (unsigned}'b' • 65536 + 
(unsigned)'c' • 256 + (unsigned}'d' 

and in little-endian mode: 

2 characters, "ab": 
'b' • 256+ (unsigned}'a' 

RISCompiler and C Programmer's Guide 



Integers 

ANSI C Implementation 

3 characters, "abc": 
'c' .. 65536 + (unsigned)'b' .. 256 + (unsigned)'a' 

4 characters, "abed": 
'd' .. 16777216 + (unsigned)'c' • 65536 + 
(unsigned) 'b' .. 256 + (unsigned)'a' 

The C locale is used to convert multibyte characters into corresponding 
wide character codes. The value of the wide character is equal to the value 
of the first byte in the multibyte sequence (whose value is taken as an un­
signed value). 

A "plain" char has the same range of values as an unsigned char. 

The ranges of values for the integral types are: 

char 0 to255 
signed char -128 to 127 
short int -32768 to 32767 
int -2147483648 to 2147483647 
long int -2147483648 to 2147483647 
unsigned char 0 to 255 
unsigned short int 0 to 65535 
unsigned int Oto4294967295 
unsigned long int Oto4294967295 

Converting an integer to a shorter signed integer causes a representation 
change by discarding the high order bits. Converting an unsigned integer 
to a signed integer of equal length does not cause a representation change. 
However, the converted value may be negative. 

Bitwise operations on signed integers produce signed results, represented 
in two's complement. How the value is interpreted depends on whether 
the sign bit is on or off after the operation. The operation is performed on 
the data as if the values were unsigned. 

When the operator is % (remainder of integer division), if the dividend is 
negative and the divisor is positive, the result is negative. If the dividend 
is positive and the divisor is negative, the result is negative. If both are 
negative the result is negative. 

A right shift of a negative signed integral type causes the sign bit to be rep­
licated. 

RlSCompiler and C Programmers Guide 8-17 



Chapter 8 

Floating Point 

The ranges of values for the floating point types are: 

float 1.17549435e-38 F to 3.40282347e+38F 

double 2.2250738585072014e-308 ·to 
l .7976931348623157e+308 

long double 2.2250738585072014e-308 to 
l.7976931348623157e+308 

When an integral number is converted to a floating-point number that can­
not be exactly represented, the number is truncated to be nearest value that 
can be represented. 

When a floating-point number is converted to a narrower floating-point 
type, the value is truncated or rounded to the nearest value that can be rep­
resented by the narrower type. 

Arrays and Pointers 

Registers 

size_t is defined in stddefh to be unsigned int. 
Casting a pointer to an integer or vice versa does not cause any represen­
tation change. 

ptrdiff_t is defined in stddefh to be int. 

The register storage class specifier cannot be used with structure or array 
declarations. A register variable may be changed to a non-register type or a 
non-register type changed to register by the optimizer. 

Structures, Unions, Enumerations, and Bit-fields 

8-18 

Consider a union as a block of memory the size of the union. The result if 
a member of a union has a value stored in it and is subsequently accessed 
using a member of a different type is defined as the value of the accessed 
type at that block of memory. If the size of the type stored is smaller than 
the accessed type, the result is undefined. If the type stored is a structure 
with holes, and the accessed value overlaps any of the holes, the value is 
undefined. If a floating point value is stored, the bit pattern for the IEEE 
format for single or double precision numbers is stored. A NULL pointer· 
is stored as a bit-pattern of all zeroes. 

Each member of a structure is aligned on the boundary required by its 
type. Padding is added between members as necessary. See Chapter 2 of 
this manual for more details on alignment of data types. 

RISCompilerand C Programmer's Guide 



Qualifiers 

Declarators 

Statements 

ANSI C Implementation 

A plain int bit-field is a signed int bit-field. 

Bits within an integer bitfield are allocated most significant bit first in big­
endian mode and least significant bit first in little-endian mode 

A bit-field cannot straddle a storage unit boundary. 

The values of an enumeration declaration are type int. 

Each time a value is needed from a volatile object, a "read" access is made 
to it. Each time the value needs to be written, a "write" access is made. 
This ensures that volatile objects are accessed in the same way as in the ab­
stract semantics. However, the one exception is when a volatile bitfield is 
written to, the hardware constraints may force a "read" to occur prior to 
the "write", in order to read the values of the parts of the storage unit that 
are not changed in the write. Avoid using volatile bitfields unless you re­
ally know what you are doing. 

An arithmetic, structure, or union type may have at least 12 declarators 
modifying it. The maximum number of declarators allowed is limited only 
by the amount of available memory. 

The maximum number of case values in a switch statement is limited only 
the the amount of available memory. 

Preprocessing Directives 

The value of a single-character character constant in a constant expression 
that controls conditional inclusion matches the value of the same character 
constant in the execution character set. A single-character character con­
stant is an unsigned character and therefore cannot be negative. 

When an include file is specified as "filename", the current directory is 
searched first, and if not found, then /usr/include is searched. If an include 
file is specified as <filename>, /usr/include is the only directory searched. 
The -systype bsd43 or -systype sysv options to cc modify the directory 
searched. The-/ option can also be used to modify the directory Searched. 
See Chapter 1 of this manual or cc(l) in the User's Reference Manual. 
MIPS ANSI C supports the intrinsic, function, weak, and pack #pragmas. 

RISCompiler and C Programmer's Guide 8-19 



Chapter 8 

When the date or time of translation is not available, the definitions of the 
_DA TE_ and _TIME_ macros are January 1, 1970 and 00:00:00, respec­
tively. 

Library Functions 

8-20 

The macro NULL expands to the value zero (0). 

assert writes a message to the standard error output in the following form: 

Assertion failed: expression, file filename, line .u.u 
The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, 
isprint, and isupper functions are as follows: 

isalnwn 0-9, a-z, A-Z 

isalpha 

iscntrl 

islower 

isprint 

isupper 

a-z, A-Z 

the delete character (0177) andcharacters less than ASCII 
code 040. 

a-z 

any printable character (ASCII code 
040 to 0176) 

A-Z 

The value returned by the mathematics functions on domain errors is 
either EDOM (33) or ERANGE (34). 

The mathematics functions set the macro errno to the value of the ERANGE 
(34)on underflow range errors. 

When the ftnod function has a second argument of zero, zero is returned. 

RISCompiler and C Programmer's Guide 



Signal 

SIGHUP 
SIGINIT 
SIGQUIT 
SI GILL 
SIGTRAP 
SIGABRT 
SIGEMT 
SIGFPE 
SIGKILL 
SI GB US 
SIGSEGV 
SIGSYS 
SIGPIPE 
SIGALRM 
SIGTERM 
SIGUSRl 
SIGUSER2 
SIGCLD 
SIGSTOP 
SIGSTP 
SIGPOLL 
SIGIO 

SIGURG 
SI GWIN CH 

ANSI C Implementation 

The set of signals, and the default action for each, that are accepted by the 
signal function are as follows: 

Action Event 

Exit hangup 
Exit interrupt 
• quit 
• illegal instruction 
• trace trap .. abort . 
• EMT instruction 
• floating point exception 
Exit kill (cannot be caught or ignored) 
• bus error 
• segmentation violation 
• bad argument to system call 
Exit write on a pipe with no one to read it 
Exit alarm clock 
Exit software termination signal 
Exit User defined signal 1 
Exit User defined signal 2 
Ignore child status has changed 
Stop stop (cannot be caught or ignored) 
Stop stop signal generated from keyboard 
Exit selectable event pending 
Ignore 1/0 is possible on a descriptor 

(see /ent/(2)) 
Ignore urgent condition present on socket 
Ignore window size change 

SIGVTALRM Exit virtual time alarm (see 

SIGPROG 

SIGCONT 
SIGITIN 

SI GIT OU 

SIGXCPU 
SIGXFSZ 
SIGLOST 

getitimer(2)) 
Exit profiling timer alarm 

(see getitimer(2)) 
Stop continue after stop 
Stop background read attempt from 

control terminal 
Stop background write attempted to 

control terminal 
• cpu time limit exceeded 
• file size limit exceeded 
exit resource lost (e.g. record-lock) 

A • indicates that the action is to terminate the process and produce a core 
image. 

RISCompiler and C Programmer's Guide 8-21 



Chapters 

8-22 

The default handling is not reset if the SIGILL signal is received by a han­
dler specified to the signal function. 

The last line of a text stream does not require a terminating new-line char­
acter. 

Space characters that are written out to a text stream immediately before a 
new-line character appear when the text is read. 

In RISC/os, a binary stream is the same as a text stream. 

When a file is opened in append mode, the file position indicator is initially 
positioned at the end of the file. 

A write on a text stream does not cause the associated file to be truncated 
beyond that point. 

A zere>-length file actually exists. 

Valid file names consist of 1 to 14 characters. The null character and the 
slash(/) may not appear in a filename. 

It is permissible to open the same file multiple times. 

When the remove function is given the name of an open file as its argument, 
-1 is returned and the file is not removed. 

If a file with the new name exists prior to a call to the rename function, this 
file will be removed. 

The "lop conversion of the Jprintf function print the address indicated by the 
pointer in hexadecimal. 

The input for the %p conversion of the fscanf function is expected to be a 
pointer previously printed by Jprintf. 
A '-'character-that is neither the first nor the last character in the scan list 
for%[ conversion in the fscanf function indicates a range of values (e.g. 0-
9). The value preceding the'-' must be lexically less than or equal to the 
value after the'-'. 

When the fgetpos or /tell functions fail, the macro errno is set to EBADF. 

The perror function generates a message consisting of the text string, if any, 
that was passed to perror, followed by a colon and a space if the text string 
is non-empty, followed by the system m~ssage for the error number indi­
cated by the macro errno. 

If the calloc, malloc, or realloc functions are called with a size request of zero, 
the function returns zero. 

The abort function closes all open files before terminating the program. 

The status returned by the exit function if the value of the argument is oth­
er than zero, EXIT_SUCCESS, or EXIT _FAILURE, is the argument that was 
passed to the function. 

RISCompiler and C Programmer's Guide 



ANSI C Implementation 

putenv(3) is used to modify the environment list used by getenv. putenv is 
called as follows: 

putenv(char ~string) 

string is of the form "nnme=value". The environment variable nnme is set to 
vnlue by changing an existing variable or creating a new one. 

The system function expects a text string that is a shell command which it 
passes to sh(1 ). The function waits until the shell completes and returns 
the exit status of the shell. 

The error message string returned by the strerror function is the system 
message corresponding to the error number. 

The local time zone is PST and Daylight Saving Time is PDT. 

The era used by the clock function is 00:00:00 GMT, January 1, 1970. 

align of returns the alignment assigned to type by the compiler. This exten­
sion is independent of any mode (-std[ OJ]) and is supported when the user 
includes a/1g11of h. 

Quiet Changes 

This section describes the quiet changes that occurred in the ANSI C 
implementation. These are changes in the functionality of the compiler 
that are not noticeable at compile time, but produce different results 
during execution. 

For example, the following line of code 

i=-"p; 

has new meaning in ANSI C. Previously, this would decrement the value 
of i by the value stored in p. In ANSI C, the negated value stored in pis 
assigned to i. 

• Programs with character sequences such as ??! (a trigraph) in string 
constants, character constants, or header names produce different 
results. 

• A program that depends on internal identifiers matching only a 
limited number of significant characters may behave differently. 

• A program that relies on file scope rules may be valid under block 
scope rules but behave differently. 

• Unsuffixed integer constants may have different types. In K & R, 
unsuffixed decimal constants greater than INT_MAX, and 
unsuffixed octal or hexadecimal constants greater than UINT _MAX 
are of type long. 

RISCompiler and C Programmer's Guide 8-23 



Chapters 

• A constant of the form '\078' is valid, but has different meaning. It 
denotes a character constant whose value is the combination of the 
value of the two characters '\07' and '8'. In some implementations, 
the old meaning is the character whose code is 078 (equal to 64 
decimal). 

• A constant of the form '\a' or '\x' has different meaning. 

• A string of the form "\078" is valid, but has different meaning. The 
new meaning is the same as for a constant '\078'. 

• A string of the form "\a" or "\x" has different meaning. 

• Identical string literals may be represented by a single copy of the 
string in memory, but this is not required; a program that depends 
upon either scheme may behave differently. 

• Expressions of the form x=:-3 have different meaning. 

• A program that depends on unsigned preserving arithmetic 
conversions now behaves differently, probably without complaint. 

• Expressions with float operands may now be computed at lower 
precision. 

• A program that uses #if expressions to determine information about 
the execution environment may behave differently. 

• The empty declaration struct x; now has meaning. 

• A program which relies on a bottom-up parse of aggregate 
initializers with partially elided· braces does not yield the expected 
initialized object. 

• Expressions of type long and constants in switch statements are no 
longer truncated to int. 

• Functions that depend on parameters of type char or short being 
widened to int, or float to double, may behave differently. 

• A macro that relies on formal parameter substitution within a string 
literal now produces different results. 

• A program that relies on size zero allocation requests returning a 
non-null pointer now behaves differently. 

Extensions to ANSI C 

8-24 

The features discussed in this section are available with the -std option to 
the cc command (see cc(l)). 

RISCompiler and C Programmer's Guide 



Comments 

alloca 

align of 

cast lhs 

ANSI C Implementation 

The C++ style of comment 

printf("sun %d\n", il;// print results 

is permitted. The _comment is introduced by the 'I/' and extends to the 
end of the line. The comment characters 'I/' have no special meaning 
within a I I comment and are treated just like other characters. 

#include <alloca.h> 
char *alloca(int); 

alloca allocates the requested number of bytes of space in the stack frame 
of the caller. This temporary space is automatically freed on return. If 
alloca.h is included, alloca will be a built-in function. The built-in function 
is more efficient than the portable Jibe.a version, but can only be applied to 
integral types (char, signed and unsigned integer, and enumeration}. This 
extension is independent of any mode (-std[Ol]} and is supported when 
the user includes alloca.h. 

#include <alignof.h> 
unsigned int alignof(type); 

alignof returns the alignment assigned to type by the compiler. This exten­
sion is independent of any mode (-std[Ol]} and is supported when the user 
includes align of h. 

A cast is allowed on the left hand side of an assignment operator. 

RISCompiler and C Programmer's Guide 8-25 



Chapter 8 

8-26 RISCompilerand C Programmer's Guide 



Byte Ordering 

A 

What Is Byte Ordering? 

A machine's byte ordering scheme (or whether a machine is big-endian 
or little-endian) affects memory organization and defines the relationship 
between address and byte position of data in memory. MIPS machines 
can be big-endian or little-endian. 

Big-Endian Byte Ordering 

Big-endian machines number the bytes of a word from 0 to 3. Byte 0 holds 
the sign and most significant bits. For halfwords, big-endian machines 
number the bytes from 0 to 1. Again, byte 0 holds the sign and most sig­
nificant bits. Machines that use big-endian schemes include the 
IBM s/370 and Motorola MC68000. 

RISCompiler and C Programmer's Guide A-1 



Appendix A 

Word 

byte 0 byte 1 byte 2 byte 3 

0 .. 7 8 .. 15 16 .. 23 27 .. 31 

i 
Sign and most signficant bits 

i Halfword 

byte 0 byte 1 

0 .. 7 8 .. 15 

Figure A. l Big-endian byte ordering 

Little-Endian Byte Ordering 

A-2 

Little--endian machines number the bytes of a word from 3 to O. Byte 3 
holds the sign and most significant bits. For halfwords, little--endian ma­
chines number the bytes from 1 to O. Byte 1 holds the sign and most signif­
icant bits. Machines that use little--endian schemes include: DEC VAX & 
11/780, Intel 80286, and National Semiconductor 32000. 

RISCompiler and C Programmer's Guide 



Word 

byte 3 byte 2 byte 1 

31 .. 24 23 .. 16 15 .. 8 

r 
Sign and most signficant bits 

l Halfword 

byte 0 

15 ... 8 7 ... 0 

Figure A.2 Little-endian byte ordering 

RISCompiler and C Programmer·s Guide 

Byte Ordering 

byteO 

7 .. 0 

A-3 



Appendix A 

A-4 RISCompiler and C Programmer's Guide 



Index 

A 

accessing common blocks of data 4_ 19 
address 

dbx 6-56 
alias 

dbx 6-22 
ANSIC 

argc and argv 8-8 
arithmetic 8-12 
arrays 8-11 
arrays and pointers 8-18 
characters 8-16 
constants 8-9 
conversion rules 8-13 
declarations 8-8 
declarators 8-19 
defined 8-6 
directives 8-3 
directives with additional function-

ality 8-6 
elif 8-4 
empty declarations 8-11 
enumerations 8-18 
environment 8-16 
error 8-4 
expressions 8-7, 8-12 
extensions to 8-24 
floating point 8-18 
floating-point constants 8-9 

RISCompiler and C Programmer's Guide 

function pointers 8-15 
function pragma 8-5 
function prototypes 8-14 
functions 8-14 
identifiers 8-16 
include 8-6 
integers 8-17 
integral promotions 8-12 
intrinsic pragma 8-4 
keywords 8-8 
library functions 8-20 
line 8-6 
macro operators 8-6 
macros 8-6 
main() 8-8 
new macros 8-6 
operators 8-12 
pack pragma 8-5 
pointers 8-14 
pragma 8-4 
predefined macros 8-7 
preprocessing directives 8-19 
preprocessor 8-3 
qualifiers 8-19 
quiet changes 8-23 
registers 8-18 
sequence points 8-13 
statements 8-19 
string constants 8-9 

X-1 



Index 

structures 8-18 
structures and unions 8-11 
tagless declarations 8-11 

. translation 8-15 
translation limits 8-2 
trigraph 8-7 
type modifiers 8-10 
typedefs 8-10 
types 8-10 
unions 8-18 
unsigned constants 8-9 
weak pragma 8-5 
wide constants 8-9 

ANSI C extensions 
alignof 8-25 
alloca 8-25 
cast lhs 8-25 
comments 8-25 

ar command examples 2-26 
archiver (ar) 2-26 
archiver options 2-27 
arguments 

FORTRAN - C 4-15 
arrays 

storage mapping 3-3 
assign 

dbx 6-40 
auto declaration 3-7 
averaging prof results 5-10 

B 

basic block counting 5-8 
Basic dbx Commands 6-12 
breakpoint 

dbx 6-41 

c 
C language 

X-2 

three variations supponed 8-1 
C to Pascal arguments 4-7 
calling C from Pascal 4-10 
calling Pascal from C 4-6 
catch 

dbx 6-46 
compiler options 

byte ordering 1-14 
debugging 1-15 
general 1-10 
general - restrictions 1-13 
optimizer 1-15 
profiling 1-15 
svr4 options 1-14 
types 1-9 

compiler system 1-1 
control flow 1-7 
driver 1-4 
driver - figure 1-2 
file suffixes 1-5 
FORTRAN preprocessor 1-3 
languages supponed 1-4 
overview 1-1 
tasks and tools 1-1 

cont 

D 

dbx 

dbx 6-39 

activatiQn levels 6-3 
alias 6-22 
assign 6-40 
avoiding pitfalls 6-4 
basic commands 6-12 
breakpoints 6-41 
building a command file 6-6 
catch 6-46 
changing activation levels 6-48 

RISCompiler and C Programmer's Guide 



command history 6-13 
command line editing 6-14 
command summary 6-58 
command syntax 6-8 
compiler options 1-15 
compiling a program for debugging 6-

5 
cont 6-39 
data types and constants 6-11 
debugging machine code 6-52 
delete 6-29 

'dump 6-51 
edit 6-34 
ending (quiting) 6-8 
examining source programs 6-30 
file command 6-32 
-g option 6-5 
goto 6-39 
incorrect results 6-4 
invoke subshell 6-28 
invoking 6-6 
isolating progam failures 6-4 
listing source code 6-33 
machine code breakpoints 6-53 
move 6-31 
multiple commands 6-15 
play back output 6-27 
playback input 6-27 
predefined aliases 6-23 
predefined variables 6-18 
print 6-49 
printing memory contents 6-56 
printing registers 6-50 
program control 6-36 
reasons to use 6-2 
record input 6-25 
record output 6-26 
removing variables 6-17 

RJSCompiler and C Programmer's Guide 

Index 

return 6-38 
run and rerun commands 6-36 
running dbx 6-5 
sample program 6-64 
searching code 6-34 
set and unset 6-16 
setting variables 6-16 
shared objects in shared environment 

6-28 
specifying source directories 6-30 
specifying source files 6-32 
stack trace 6-47 
status 6-29 
step and next commands 6-37 
stop at 6-42 
stop if 6-44 
stop in 6-43 
symbol name completion 6-16 
tracing variables 6-44 
type declarations 6-35 
unalias - removing command aliases 

6-22 
up and down commands 6-48 
using commands 6-8 
variable names - qualifying 6-9 
when 6-45 
which and whereis 6-35 

debugging programs 
general introduction 6-2 

delete 
dbx 6-29 

down 
dbx 6-48 

dump 
dbx 6-51 

dynamic shared objects 
building 2-2 
general 2-2 

X-3 



Index 

E 

link editor options 2-6 
multiple language programs 2-5 
quickstart condition 2-11 
recommendations 2-5 
reference to so_locations 2-2 
requirement 2-4 
rld 2-11 
rld options 2-11 
using 2-4 
with dependencies 2-3 

edit command 
dbx 6-34 

endianness 
byte ordering 1-14 

Ending dbx 6-8 
extern 

storage class 3-7 

F 

file tool 2-24 
File Variables 4-3 
FORTRAN 

array handling 4-18 
FORTRAN/C Interface 4-14 
full optimization (-03) 5-22 

G 

global data area 5-34 
global optimization 5-28 

C and Pascal 5-28 
C, Pascal, and FORTRAN 5-28 

global optimizer 5-15 
goto 

dbx 6-39 

X-4 

improving program performance 5-1 
invocations 

FORTRAN 4-14 
Invoking dbx 6-6 

J 

jump delay slots 5-39 

L 

16-48 
language interfaces 4-1 
languages 

default options 1-5 
languages supponed 1-4 
link editor 2-1 

dynamic linking 2-1 
dynamic shared objects 2-2 
static linking 2-1 

linking objects 1-8 
list 

dbx 6-33 

M 

machine code 
setting breakpoints - dbx 6-53 
tracing variables - dbx 6-55 

main() routine 4-5 
MIPS-C 

alloc.h 7-10 
and ANSI C 7-13 
ccom options 7-2 
deviations 7-10 
differences 7-11 
driver options 7-2 
extensions 7-10 
header files 7-10 

RISCompiler and C Programmer's Guide 



Index 

oldC and ANSIC (stdl) 7-12 
oldC and MIPS-C (stdO) 7-12 
special options for compatibility 7-14 
starg.h macros 7-8 
translation limits 7-5 
varargs.h macros 7-6 

multiple language programs 1-7 

N 

next 
dbx 6-37 

nm 2-20 
non-shared objects 

building 2-3 
using 2-5 

0 

object file tools 2-12 
odump 2-13 
optimization 5-15 

compiler options 1-15 
optimization Options 5-19 
optimizing frequently used modules 5-24 
optimizing large programs 5-24 

p 

Pascal by-value arrays 4-2 
Pascal/C 

single precision floating point 4-2 
Pascal/C Interface 4-1 
PC-Sampling 5-10 
print 

dbx 6-49 
printregs 

dbx 6-50 
procedure and function names 4-14 
procedure and function parameters 4-2 
prof 

RISCompiler and C Programmer's Guide 

· compiler options 1-15 
profiling 5-2 

R 

Recommendations 2-5 
record input 

dbx 6-25 
record output 

dbx 6-26 
reducing cache conflicts 5-36 
register 

storage class 3-7 
Requirement 2-4 
rerun 

dbx 6-36 
return 

dbx 6-38 
rid 2-11 
rld options 2-11 
run 

dbx 6-36 
running prof 5-12 

s 
sh 

dbx 6-28 
size 2-24 
stack trace 

dbx 6-47 
static declaration 3-7 
status 

dbx 6-29 
step 

dbx 6-37 
stop at 

dbx 6-42 
stop if 

dbx 6-44 

X-5 



Index 

stop in 
dbx 6-43 

storage class 
extern 3-7 
volatile 3-8 

storage classes 3-7 
auto 3-7 

storage mapping 3-1 
C language - alignment 3-2 
C language - arrays 3-3 
C language - size, 3-2 
C language - structures 3-3 
C language - unions 3-7 

Strings 4-3 
structures 

storage mapping 3-3 
symbol table infonnation 2-20 

T 

trace 
dbx 6-44 

type checking 4-5 

u 
ucode object library 5-27 
unalias 

dbx -removing command aliases 6-22 
unions 

storage mapping 3-7 
up 

dbx 6-48 
Using dbx 6-8 

v 
variable number of arguments 4-5 
volatile 3-8 

X-6 

w 
when 

dbx 6-45 
whereis 

dbx 6-35 
which 

dbx 6-35 

RISCompiler and C Programmer's Guide 



MIPS RISCompiler Programmer's ~uide 

.. 
• 

NEC 
NEC Electronics Inc. 
CORPORATE HEADQUARTERS 
475 Ellis Street 
P.O. Box n41 
Mountain View, CA 94039 
TEL 415-960-6000 

C1995 NEC Electronics lnc./Printed In U.S.A. 

For literature, call toll-free 7 am. to 6 p.m. Pacific time: 1-800-366-9782 
or FAX your request to: 1-800-!29-9288 

No pan of this document may be copied or reproduc:ad In any lonn or by any rr.ans without the prior consent ol NEC Elec:tronlca Inc. (NECEL). 
The Information in this document is alAljllcl to changewtthout notice. DeYicel IOld by NECEL arw covered by the warranty and patent lndemnlicalion 
provisions appearing in NECEL TerlTl6 and Conditions of Sale only. NECEL nw.k.81 no warranty, expieu, llalutory, irrl:>lied or by delcrlp!ion, 
regarding the information Mii forth herein or regarding the freedom of the dMCribad devas from patent Infringement. NECEL maluls no warranty 
of merchantabUity or fitness for any purpoae. NECEL auumes no raeponsibility for any errors thal may appear in this doc:ument. NECEL maM& 
no commitment to update or to k8ep ament lnformalion contained in this doc:ument. The devices listed in thrs document are not aulabil for use 
in applications such as, but not limited to, aircraft, aerospace equipment, submarine cables, nuclear reactor control syst811"8 and IHe aupport 
system&. If OJatomens intend to use NEC devices in tti.e ,.ipliealions or they intend to UM •stanoaid" quality grade NEC devices in applications 
not intended by NECEL, please contacl our •ales people in advance. "Standard" quality grade 08Yices are recommended for cor!llUlera, office 
equipment, comrrunicalion equ~. test and measurement equipment, machine tools, industrial-·· auoio and visual equipment, and other 
consumer products. "Speciar qualty grade devices are recommended for automotive and transportation equipment, traffic control ayst81111, anti­
disaater and anti-crime syst811"8, etc. 

50m 


