VR Series™ ~ Programmer's Guide

MIPS RISCompiler and
C Compiler

November 1995

NEC

MIPS RISCompiler and C Programmer’s Guide

November 1995
Document No. 50777

About This Book

.

The RISCompiler system provides a consistent programming environ-
ment for all currently supported languages. This book describes the com-
ponents and programming tools that comprise the compiler system.

Who Should Read This Book?

This book is intended for:
e C programmers

* Programmers using other MIPS high-level languages,

supplementing the information in the programmer’s guides for
these languages.

What Does This Book Cover?v

Although the programming environment includes all standard UNIX
driver commands and system tools, this book does not describe those

tools in detail. For details, you may need to refer to the User’s Reference
Manual and other associated publications.

This book contains implementation details on the supported languages. It
does not contain detailed reference information giving the syntax and def-
inition of each language. .

For C programmers, this book provides information on compiling and
linking programs, storage mapping, language interfaces, and other infor-
mation specific to the MIPS C implementation.

This book also provides infomation about improving program perfor-
mance and debugging programs. This information may be useful to pro-
grammers using any of MIPS RISCompilers (Pascal, or Fortran).

This book has the following chapters:

e Chapter 1: The Compiler System. Gives an overview of
components of the compiler system.

R1SCompiler and C Programmer’s Guide iti

Chapter 2: Linker and Object Tools. Describes the linker and object
tools of the compiler. It also provides reference and guide
information in using the various options provided by the compiler
drivers.

Chaptér 3: Storage Mapping. Describes storage mapping for
variables in C.
Chapter 4: Language Interfaces. Provides reference and guide

information in writing programs in C that can communicate with
Pascal or Fortran programs.

Chapter 5: Improving Program Performance. Describes the
profiling and optimization facilities available to increase the
efficiency of your programs, and how to use them.

‘Chapter 6: Debugging Your Code. Shows how to use the source

level debugger features.

Chapter 7: MIPS-C Implementation. Describes extensions and
modifications supported by the C compiler that differ from other C
implementations.

Chapter 8: ANSI C Implementation. Describes features that are
new or different from MIPS-C.

Appendix A: Byte Ordering. Describes how the big endian and
little endian byte ordering affect the mapping of data in storage.

Index. Contains index entries for this publication.

Summary of Changes By Edition

July 1991 Edition

The following summarizes the changes made to the February 1991 edition
of this manual:

Chapter 1. The Link Editor, Archiver, and Object Tools information
was removed from this chapter. Infofmation on Language default
options was added. Information on Dynamic Shared Objects was
added. This chapter was also reorganized.

Chapter 2. This is a new chapter. It describes the Linker and Object
Tools. It also explains how to make and use Dynamic Shared
Objects.

Chapters 3 - 8. These chapters have been renumbered to reflect the
addition of chapter 2.

RISCompiler and C Programmer’s Guide

About This Book

¢ General. Numerous minor technical and editoral corrections have
been made throughout this manual.

February 1991 Edition

The following summarizes the changes made to the December 1989 edition
of this manual: -

¢ Chapter 6. The C language information formerly in Appendix A is
now in Chpater 6.

¢ Chapter 7. This is a new chapter that describes ASNI C features and
extensions.

¢ Appendix B. The big and little endian information is now in
Appendix A.

December 1989 Edition

The following summarizes the changes made to the December 1988 edition
of this manual:

* Name Change. The name of this manual was changed from
RISCompiler Languages Programmre’s Guide to RISCompiler and C
Programmer’s Guide.

e All Pascal discussion has been moved to the new MIPS Pascal
Programmmer’s Guide. Chapter 3 of this manual has a discussion of the
C/Pascal interface.

* Appendix A. A description of the stdarg.h macros and the alloca.h
header file have been added.

¢ General. Numerous minor technical and editoral corrections have
been made throughout this manual.

December 1988 Edition

The following summarizes the changes made to the February 1987 edition
of this manual that appear in this edition:

* New Compiler Options. The —cord and -feedback driver options
were added to the summary of driver options in the table on p. 1-8.
The Reducing Cache Conflicts section in Chapter 4 has been added to
show how use of these options can create significant improvements
in program performance.

RISCompiler and C Programmer’s Guide v

New Link Editor Options: The -jmopt, and -nojmpopt link editor
options are described in Table 1.1 in Chapter 1. The Filling Jump
Delay Slots section in Chapter 4 describes when to use these options.

Pascal: the text in Chapter 2 (pg. 2-9) concerning the mapping of
Pascal objects has been greatly expanded with additional rules and
examples. Additional information has also been provided in
Chapter 3 (p. 3-2) on the interface between programs written in
Pascal and those written in C.

Index. Approximately 200 entries have been added to the Index,
enhancing the ability to retrieve information from this manual more
efficiently.

General. Numerous minor technical and editorial corrections have

been made throughout the manual.

For More Information

You may need to refer to the following as you use this manual:

MIPS Assembly Language Programmer’s Guide (ASM-01-DOC)
MIPS RISC/os Programmer’s Reference Manual (ROS-01-DOC)
MIPS RISC/os User’s Reference Manual (ROS-02-DOC)

MIPS Pascal Programmer’s Guide (PAS-01-DOC)

The C Programming Language by Kernighan and Ritchie (Prentice Hall,
1978).

RISCompiler and C Programmer's Guide

Contents

About This Book

Who Should Read This BOOK?ccocuuuueenruiniteicnineeicscens iid
What Does This Book COVer? ...t iii
Summary of Changes By Edition...........cccceevuviriencmeiienieciciieee, iv
July 1991 Edition........ooviicticeccctcc e, iv
February 1991 Edition...........ccocovierceninccnecccenecerceee. \%
December 1989 Edition ..o, \%
December 1988 Edition e v
For More INformationciiiinncincccneececreecee s vi
1
The Compiler System
Operational OVerview............ccncericincnsneenenscenrenee s, 1-1
DIIIVET ettt sttt ne 14
Languages Supported...........c..coocunuumeveneenencuniinceeenerenesiieanes 14
FALES ..ottt sttt en 14
Default Optionscccoviiiiceneercneiirneietsereneeesese e 1-5
Compiling Multi-Language Programscccececeeuveerecnnenne. 1-7
Linking ObjJectscciieiiiiccticeece et 1-8
Compiler OPHIONSocoviiieiiicieiieieeeeseaetsnise st saenns 19
System V Release 4 Options.............cccoeeuurcurcuvemeeneenenrecnennes 1-14
Byte Ordering OptiONSccoooovvieiiicicicicrccccceenee 1-14
Debugging OPtions ...t 1-15
Profiling Option ..o s 1-15
Optimizer OPtiONScccocueiurereercenerecincesesereneeetseeeeceseneens 1-15
Compiler Development Optionscccooceuecuniceiciinnnnnnes 1-16
Including Common Files (Definition Files)......c...ccccccceuecuiinninnnes 1-18
Dynamic Shared Objects...........ccccoccuririncircciciicicciciriccinaes 1-19

RISCompiler and C Programmer’s Guide vii

2
Linker and Object Tools

Link EGEOT .oooneee e 2-1
Dynamic vs. Static Object Filescoouvromrrrmrrrnrcennirnrionne, 2-2
Building Dynamic Shared Objectsc.ccoorurrvrcninnnnne. 2-2
Reference to so_locations.........cccocveeeeuieiieicceccieeenne 2-2
Dependenciesccoooeummneriiiiciiicece 2-3
Building Static Objects ..o, 2-3
Using Dynamic Shared Objectsc.ccccoeuvevcuricininenne. 24
Why Use Dynamic Objects?ccccccovmrrininciicicenne. 24
Requirement ..o 24
Calling Conventions ..o, 24
Recommendationscovueeiviiiiicncieccicnee 2-5
Using Static Objectsccccccvuerminicincciccccnennne 2-5
Why Use Static Objectsc.ccooviiinncriiiniicccnee 2-5
Cpecifying Libraries ... 2-5
Multiple Language Programsccccccocovvnvinininucinnnee. 2-5
Link Editor Options..........cccooummeieiiicicciccccneicnecces 2-6
Runtime Linker (rld)ccccouoeeveeeireeeeceeeeecee e e 2-11
QUICKSEATE ..o eeeseesneseee s se e see e see s 2-11
Timestamp, Checksum and Interface Version......... 2-11
tld OPtions ..., 2-11
Object File TOOLScoceuiinieeiicciiinecicierce et 2-12
Dumping Selected Parts of Files (odump)ccccoeueee.. 2-13
Listing Symbol Table Information (nm)......c.....ccevvrrirnnnnee. 2-20
Determining a File’s Type (file)........c.cccccvvvrrviinnriinennnns 2-24
Determining a File’s Section Sizes (size)cccoceeveeennencs 2-24
ATChIVET ...ttt e 2-26
ar Command Examples ..o, 2-26
Archiver OPHORNScooveieeieeeiiree ettt 2-27
3
Storage Mapping
C LANGUAGE «.....cvvrcmrrniiietctirece ettt s 3-1
Alignment, Size, and Value Ranges..........ccccocovevemuiiniinninns 32
Storage of C Arrays, Structures, and Unions..............cceoccc.. 3-3
ATTAYS oot e s s 3-3
SETUCLUTES ...t 3-3
URUONS ...ttt vt 3-7

viii RISCompiler and C Programmer’s Guide

Storage ClASSes............oucuuniucinninniniiniinsineecicrssee s 3-7

A0 3-7
StAtIC ..o 3-7
REGIStEr ..o 3-7
EXteIM v 3-7
Volatile ... 3-8
4
Language Interfaces
Pascal/C INterface ...t 4-1
Single Precision floating point...........ccccevvuevcuniccrerrescuccncenne. 4-2
Procedure and function parametersccoooeiiiinnen, 4-2
Pascal by-value arrays..........cccccocvviiiiinciiiinnccccccnes 4-2
File Variables ... 4-3
SUINGS .ottt 4-3
Variable number of arguments..............ccccoooeoiiienininciccenicnennes 4-5
Type checking...........oeiimimicicccc e 4-5
Main() ROUtINEc.ooeveuerreirrerieiiee e, 4-5
Calling Pascal from C.......ccccocimeinimnieceniicrcrsenerceieese s 4-6
Return Values feere ettt n s e aenens 4-6
C to Pascal arguments.............cc.ecuvcuecrminrmeeruemmerenceseesenseesennes 4-7
Calling C from Pascalccccouuvenireernincenenereeesereeeeene 4-10
FORTRAN/C INterface........cccoeoovuruueenceneuernienieennesirsessisssesessenns 4-14
Procedure and Function Names............cccccoocnevuncucrcenenennce. 4-14
INVOCAIONS ..ottt e 4-14
ATGUMENLES ...ttt st 4-15
Array Handling ..o -18
Accessing Common Blocks of Datacccoeueeurcuveuvrerncnncnne 419
5
Improving Program
Performance
INtrOQUCHION ..o s 5-1
PrOfiliNg .coovoceiceee e e 5-2
OVEIVIBW .ot 5-2
How Basic Block Counting Works......... e 5-8
Averaging Prof Results ..o, 5-10
PC=SamPUNG ..ot s 5-10
Creating Multiple Profile Data Filesccccccccceovicvcunnace 5-12

RISCompiler and C Programmer’s Guide

ix

Running the Profiler (Prof)........cocecveuereeeueeeemurererececninnnnes 5-12

Global optimizer ... 5-15
Benefits ..o 5-16
Optimization and Debugging...........cccocvveevveviciinnn. 5-16
Optimization and Bounds Checking 5-16
Loop Optimization.............ccccocccucivecrnivcnnicricnncnnnn. 5-16
Register Alocationccceceeeveneneeeeecneesceencnnnee 5-19
Optimizing Separate Compilation Units.................. 5-19
Optimization OPHONScccocvvurimriencmmreerneesrsseienscrse e 5-19
Full Optimization (O3)ccccocuerrerneneneerere e 5-22
Optimizing Large Programsccoccecomeuerenneeereneecensueneernnns 5-24
Optimizing Frequently Used Modulesc..cocovrvenuunrnnce 5-24
Building a Ucode Object Library...........cccovcoeeveeucecurercnernenee 5-27
Using Ucode Object Libraries..........ccccoovreeeerurecrieerreseinnnnns 5-27
Improving Global Optimization...........ccc.cccecuuieneeeecuereecenennn. 5-28
C, Pascal, and FORTRAN Programs...........cccccccuc.. 5-28
C and Pascal Programsc.cceeuveeeunmcrncericennennes 5-28
Pascal Programs Onlycccccooeeovvcmiccccncinircrcnnnn. 5-31
C Programs Onlyccceivcviecencnniceceeeeenn. 5-31
Improving Other Optimizationccccocceenecnceneeneenceneenes 5-32
C, Pascal, and FORTRAN Programscccc....... 5-32
C Programs Onlyccocecemuccneunerncmeenceresneeseenes 5-33
Pascal Programs Onlycccccooecvcnvcnncnvcnencnnne 5-33
Limiting the Size of Global Data Area............cccccoecvuniriuncnnnnncncs 5-34
Purpose of Global Dataccccoviiiiiiiiniiiiccccee 5-34
Controlling the Size of Global Data Area...........cccccocuvunnnnne. 5-35
Obtaining Optimal Global Data Sizecc..ccccooooeruriniuncnnes 5-35
Examples (Excluding Libraries)c.ccccoooviinniiioninnnne. 5-35
Example (Including Libraries)ccoooovuvcuiiinnininccinnnes 5-36
Reducing Cache Conflictscccceuvvvimimiienicincmiececcieceennes 5-36
Filling Jump Delay SIotscccooiuiiieiiciicrciecia 5-39
6
Debugging Programs
INErOdUCHION ...t 6-2
Why Use a Source-Level Debugger?...........cccoceiieenennene. 6-2
What Are Activation Levels? ... 6-3
Isolating Program Failuresccooouvmiieiiicnnccnnee 6-4
Incorrect Output Results............ccoemeveeeneiceieieeieiecee, 6-4
Avoiding Pitfalls ... 6-4

RISCompiler and C Programmer’s Guide

Running dbX ...ttt 6-5

Compiling a Program for Debugging.........cc.cccooevrieeuirineiurianes 6-5
Building a Command File...........ccccoeurunriinninieecciie e, 6-6
INVOKING AbX....uvvierririreiieiete e, 6-6
Ending dbx (QUit)......ccoueumeiemeneriemirisiecciceenec s 6-8
Using dbx Commands.........ccovevuemiememuecuneiieiicreiee e 6-8
Command SYNEAXocecveciemiriiiieeinneeeee oo 6-8
Qualifying Variable Names..........c.ccccovriiviininccincccccinn, 6-9
dbx Expressions and Precedence.............cccooeuuiveinieerccnnnes 6-10
dbx Data Types and Constants..........c.cc..ccoevueueruueienininnninnes 6-11
Basic dbx Commandsccoeuueeeemeemmenniicereieice e, 6-12
Working with the dbx MOnitor ..., 6-13
Using the Command History ..., 6-13
Editing the dbx Command Linecccoooeeivririciinnnns 6-14
Entering Multiple Commandscccooevruemmricniicicicinnnns 6-15
Completing Symbol Namesccccccccveueiiicincvccoricccnnen. 616
Controlling dbX ..ot 6-16
Setting dbx Variables.............ccoeviuicieeeinccicrccceees 6-16
Removing Variables ..., 6-17
Predefined dbx Variables...........c.ccoovuieininiiiiiciicinn 6-18
Creating Command Aliases (alias)cc.eccovveververrereriernnns. 6-22
Removing Command Aliases (unalias)...........c..cccoeuveueuece. 6-22
Predefined dbx ALAsesccccoocuriueinemenecncuiceneenccieeeenes 6-23
Recording INput ... 6-25
Recording Output (record output).........ccccocuvuveuvercinceeenncnn. 6-26
Playing Back INPULt ...t 6-27
Playing Back Output ..., 6-27
Invoking a Shell from dbXcccccioimeuvcinicincneciicnnne 6-28
Checking Shared Objects in Shared Environment 6-28
Checking the Status (Status)...........ccccecvueeurceicencrvcrenrnnence. 6-29
Deleting Status Items............cooovuiiiiccicnccccccs 6-29
Examining Source Programsccccceveueecnceecncrnsceneneuennn. 6-30
Specifying Source Directoriescoceeuerveeeenruerneriennnnenne. 6-30
Moving to a Specified Procedurecccccovvvcruvccnnrnnene. 6-31
Specifying Source Files.........ccccocoeureenenirinneeesnesene, 6-32
Listing Source Code........c.coumrrrmmriimciniiciiiccicic e 6-33
Searching Through Code...........ccccoeeuuemnerinricrreneneeeeeen. 6-34
Calling an Editor from dbx (edit)ccccoceevrencnerrnrerncnnee. 6-34
Printing Qualified Variable Namesccccccccccociiinnic 6-35
Printing Type Declarationscccccoovveueciniccinniiccinnes 6-35
Controlling the Program ... 6-36

RISCompiler and C Programiner’s Guide

xi

Running the Program............cccccoiiiiiiincinnccncccceee 6-36

Executing Single Lines of Code...........ccccoecoeiiiiriinincrivcnnnnee 6-37
Returning from a Procedure Call...............ccccccoovciicnnnnne. 6-38
Starting at a Specified Line..........cccooooviiiiiiiiee, 6-39
Continuing after a Breakpointccccoovvvivviiiiciiinncnnnee, 6-39
Assigning Values to Program Variables.................c............. 6-40
Setting Breakpointsccccoceimiencmininieeniiccn e, 6-41
Overviewncccacnee. PO STTORON 6-41
- Setting Breakpoints at Lines............ccccccocuviiiiiincnccnnnns 6-42
Setting Breakpoints in Proceduresc.ccccoocoeininincnncene. 6-43
Setting Conditional Breakpointscc..cccoouoeiieiininronnnne. 6-44
Tracing Variables..........ccccceuiiiiciiiicicceeec, 6-44
Writing Conditional Code in dbxcccccceueeeencunirecevccnnnn. 6-45
Stopping at SigNalSscouvuniiieieceninnc e 6-46
Examining Program Stateccccocuoeuveiviniinicierincinennececnns 6-47
StaCk TIACESceinerccr e 6-47
Changing Activation Level ..o 6-48
PLANEING rrvreevvvveenssvs e ssssssssssssssssere e ssnsssoseseosoenenee 6-49
Printing Register Values............cccccocuveiviricincnncninen. 6-50
Printing Information about Activation Level...................... 6-51
Debugging Machine Code ..o 6-52
Setting Breakpoints in Machine Codeccc.coooocveeninnnne. 6-53
Continuing after Breakpoints in Machine Code................... 6-54
Executing Single Lines of Machine Code..........cccccccceuvnnni 6-54
Printing the Contents of Memorycccccccocviiiniiinicnnn. 6-56
Debugger Command Summary.........ccccooviviininuinniinnncicninnne 6-58
Sample Program.........co.ccoecueeueeiivecmeeieneceeees s 6-64
7
MIPS C Implementation
INtrodUCHON ..o 7-1
Additional Driver Options.........ccccocooooiiiiiiiniiciei 7-2
CCOM OPLIONS ...ttt s 7-2
Translation LIMits ..o 7-5
MIPS C ...ttt s 7-5
Varargs.h Macros..........ccovviiricecc, 7-6
Stdarg.h Macros............... etsressessasssesenansrnasareasasas et tn e e se s ns 7-8
Deviations ..., 7-10
EXtENSIONS ..o 7-10
Header Files..........cccooeimiicieeec B 7-10

xii RISCompiler and C Programmer’s Guide

Compatibilityccccevueiuiiiiiiiiciec e 7-11

Differences Between OldC and All Modes..........ccccoecunnee. 7-11
OIldC and MIPS C (=5td0)cccevuurvrmrinmricniriiicncceeenene 7-12
OIldC and ANSI C (=std1)ccceuvevirrunininccininiiceeeennaene 7-12
MIPS-C (-std0) and ANSI C (=std1)coeovimrrinrnienninnrnennenes 7-13
ANSI C (-std1) and ANSI C with extensions (-std) 7-14
Special Options for Compatibilitycccoooevriieininiicinnne. 7-14
8

ANSI C Implementation
INErodUCHIONcoiiiiiiitt s 8-1
Translation LIMitscccoimncniniincniniiccnsiccnecscscennes 8-2
Preprocessor ettt ettt e b et et st n s en s et ena b nesaene 8-3
DITECHIVESooeciiececirincrcicrcctecsee sttt ss s esesene 8-3
New Directives..........ccccuiviiveccncnniniccncneeseeercecncee e 8-4
HEL ..o 8-4
HEITOT .ot et 8-4
#Pragma ... 84
Intrinsic Pragma ..o 8-4
Function Pragmaccoooniiicie 8-5
Weak Pragmacooeiiiieiciniiccciccccccee 8-5
Pack Pragma.......c.coocvciivcinciicincicneccneeiicenaes 8-5
Directives with Additional Functionalityccccccceoeeurune. 8-6
Defined ... 8-6
#InClude ... 8-6
HLINE ..ot e 8-6
MACTOS ...t e e e 8-6
Operatorscmincienccennes SR 8-6
NeW MACTOScooviii e 8-6
Predefined Macrosccccccvueueievcmiccnnnecccceceene 8-7
EXPIesSionsccoviuiuiuiiiiicc e 8-7
LANGUAGE ..ottt 8-7
Trigraph seqUences ..o, 8-7
INAIN() ettt sttt sttt e st et sns e e s erees s seerareensens 8-8
Declarations ... 8-8
Keywords.........cccovueuiminiiciecciceneeeceeeeeene 8-8
Identifier Name Space ..o 8-8
CONSEANES......ecvieiiecei ettt 8-9
Unsigned Constants et 8-9
Floating—point Constants.............cc.ccccooeiieirieeinns 8-9

RISCompiler and C Programmer’s Guide xifi

Wide CONSLANES «eo..eoeeeeeee oo 8-9

String CONSLANESoovrvviciccc e, 8-9

Type modifiers........ccooueieiniiiiiicicecccc 8-10

TYPES e 8-10
Typedefs......oeie 8-10

Empty Declarationsccccoceeveiiciiccininiiciciniinccnnes 8-11
Tagless declarationsc.ccoeeieiiieiciiiiiiiicens 8-11
Structs, Unions, ATTAYSccocoeuiuieecmciniiiencriieinseenesce e 8-11
ATTAYS ..ot 8-11
Structures and Unionsccccvveecnnecrnncenienen 8-11
EXPressions ...t 8-12
OPeratorscouoveurirereeeeeee e 8-12
Arithmetic. ..o 8-12
Integral Promotionscccocovoeuriieininceieececeeene, 8-12
Conversion Rules...........ccccoenuimeinnirirriiee . 8-13
Sequence POIntscccveveuririrerninenicineree e 8-13
POINEETS.......viii ettt 8-14
FUNCHONS ...t 8-14
Function Prototypes...........cccocouvicinicincinncncnene. 8-14
Function Pointers.............cccccoviiiiiininnncncinns 8-15
Implementation Defined Behavior ..., 8-15
Translation ..o 8-15
ENVIironment..........c.cccoveeniiemieencenicnneee e 8-16
[AENtIfiersoviuiieicccicrc e 8-16
ChATACLETSeeeeier ettt 8-16
INEEGETS ..ottt e 8-17
Floating Pointccovvurmveeiicietec e 8-18
Arrays and Pointers ... 8-18
ReGISters ...t 8-18
Structures, Unions, Enumerations, and Bit-fields............... 8-18
QUALIFIBTS ... s v e e sresser e nans 8-19
Declarators ... 8-19
SEALEIMENLScoovveerieicieeii it srssa e 8-19
Preprocessing Directivescccocooeiinenciiieiicie, 8-19
Library FUNCHONS..........cccoemiieicecrccicc e 8-20
Quiet ChANEES ...t e 8-23
Extensions to ANSIC ... 8-24
COMMENLS ...t 8-25
ALLOCA ..o 8-25
AlgnOf ..o 8-25
CASE IS oo 8-25

xiv RISCompiler and C Programmer’s Guide

A

Byte Ordering
What Is Byte Ordering?...........ccccoviviveenrinccciniccenieccceccnns A-1
Big-Endian Byte Orderingccccceeueueenivincccrnencnccnnnninncncnenns A-1

RISCompiler and C Programmer’s Guide

xv

xvi

RISCompiler and C Programmer’s Guide

The Compiler System

v

g
3
7
>
[€))
[
2
Q
S
Q
o

This chapter provides an overview of the compiler system, the languages
supported and the tools used to create programs.

In addition to the compilers (e.g. C, Pascal) there are text editors for
writing and editing programs, a debugger, a profiler, utilities to examine
object files, and an archiver. The compiler tools and their functions are
summarized in Table 1.1.

Table 1.1: Compiler System and Functions

Task Tool
Write and Edit programs vi, emacs
Compile, Link cc, id
and Load Programs
Debug Programs dbx
Profile Programs pixie, prof
Optimize Programs pixie, prof, cache
Examine Object File(s) nm, file, size and odump
Build Libraries ar

Operational Overview

Figure 1.1 shows the relationship between the major components of the
compiler system and their primary inputs and outputs.

RISCompiler and C Programmer’s Guide 1-1

-

9]
Q
3
Q.
)
=
)]
<
@
@
3

Chapter 1

S P
. f
Source files
Front Ends
Assembler (C, Pascal, Fortran) .
as0 (cfe, upas, fcom) .B | Ucode library
{F -O3 or - ‘/
UcodeLink [—]
(uld)
] 4—/
Procedure Merge
(umerge)
l .
.02 Global Optimizer
O— (uopt)
-S
-01 Code Generator || . | Assembler file
Oo—» (ugen) i
<[o Agsemfblled
Assemble — object file
—
(as1) Linked
S0 a.outl Object file
N .] , > :
Link Edit
a |—» (id) —— | oo | Shared objects
Figure 1.1: The Compiler System Driver

RISCompiler and C Programmer’s Guide

The Compiler System

Note: FORTRAN uses additional preprocessors (see Figure 1.2). For more
information, see the ¢fl(1), ratfor(1), and m4(1) manual pages in the
RISC/os User’s Reference Manual.

—

E
2
w
>
)
|-
2
Q
E
S
O

Source file

f

-cpp driver option

C Macro ’/
Preprocessor (cpp)

~y
FORTRAN
Front End

Figure1.2: The FORTRAN Preprocessors

RISCompiler and C Programmer’s Guide 13

-~

9]
Q
3
)]
)
~
)
<
<23
D
3

Chapter 1

Driver

Each language has its own driver. These driver programs invoke the
components of the compiler system to compile a program: the macro
preprocessor (cpp), the compilers (C, FORTRAN 77, or Pascal), the
assembler, and the link editor.

Languages Supported

Files

The compiler system supports four languages. Please note that the
operands for each of the languages, except MIPS Assembly, are the same:
[compiler options), [link options] and [source name list]. MIPS Assembly
does not use [link options]. Table 1.2 lists the supported languages and
their drivers.

Table 1.2: Compiler Drivers
Language Driver Name

o] cc
FORTRAN 77 f77
MIPS Assembly as
Pascal pc

Note: The languages supported by any one system are determined at the
time of purchase. The configuration of your particular system may not
support all of the languages. Each language requires different libraries at
link time. The driver program for a language passes the appropriate li-
braries to the link editor.

The driver recognizes the contents of an input file by the suffix assigned to
the filename, as shown in Table 1.3.

14

RISCompiler and C Programmer’s Guide

The Compiler Systemn

Table 1.3: Driver Recognized File Suffixes

File Suffixes E -

Suffix Description kY
.a Static (non-shared) object library. 2
B Ucode object library. Cf
c C source code. 2
e Elf source. %
f Fortran 77 source. 8
N Assumes the source code was already processed

by the C preprocessor and is in the language

expected by the driver. For example,

pc -c source.i

assumed source.i contains Pascal source statements.
.0 Obiject file.
P Pascal source code.
g Ratfor source code.
.S Assembly source code.
.s0 Dynamic shared object library.
.u Ucode obiject file.

Note: The assembly driver as assumes that any file, regardless of the suf-
fix, contains assembly language statements; as accepts only one input
source file.

Default Options

The driver predefines the following macros for each language. They are:
C (std0 mode):

-DLANGUAGE_C -D_LANGUAGE_C

-Dunix -D__unix

-Dhost_mips -D__host_mips

-DCFE -D_CFE

-DSYSTYPE_SVR3 -D_SYSTYPE_SVR3

-DMIPSEB -D_MIPSEB

-Dmips=1 -D_mips=1
For machines using R6000 architecture, _Dmips=2 is predefined instead of
_Dmips=1.
For machines using R4000 architecture, _Dmips=3 is predefined instead of
_Dmips=1.

RISCompiler and C Programmer's Guide 1-5

-~

Q
o
3
2
)
~
W
<
o
®
3

Chapter 1

C (std1/std mode (alternative))
-D_LANGUAGE_C
-D__unix
-D_mips=1
-D__host_mips
-D_CFE
-D_SYSTYPE_SVR3
-D_MIPSEB

Assembly
-DLANGUAGE_ASSEMBLY
-Dunix
-Dmips=1
-Dhost_mips

- -SYSTYPE_SVR3
-DMIPSEB
-D_DSO__

FORTRAN (only with -cpp)
-DLANGUAGE_FORTRAN
-Dunix
-Dmips=1
-Dhost_mips
-DSYSTYPE_SVR3
-DMIPSEB
-D_DSO__

Pascal
-DLANGUAGE_PASCAL
-Dunix
-Dmips=1
-Dhost_mips
-DSYSTYPE_SVR3
-DMIPSEB
-D__DSO__

-D_LANGUAGE_ASSEMBLY
-D__unix

-D_mips=1

-D__host_mips
-D_SYSTYPE-SVR3
-D_MIPSEB

-D_LANGUAGE_FORTRAN
-D__unix

-D_mips=1

-D_host_mips
-D_SYSTYPE-SVR3
-D_MIPSEB

-D_LANGUAGE_PASCAL
-D__unix

-D_mips=1
-D__host_mips
-D_SYSTYPE-SVR3
-D_MIPSEB

1-6

RISCompiler and C Programmer’s Guide

The Compiler System

Compiling Multi-Language Programs

When the source language of the main program differs from that of a
subprogram, compile each program separately with the appropriate
driver and link them in a separate step. It is possible to create objects
suitable for link editing by specifying the — option, which stops the driver
immediately after the assembler phase.

v~

For example:

g
2
(%5}
>
w
“
2
Q
IS
Q
o

% cc -c main.c more.c
% pc -c rest.p

produces the results shown in Figure 1.3.

main.c more.c rest.p
]
Preprocessor Preprocessor
C Front End el
Code Generator Code Generator
Assembler Assembler
main.o more.o rest.o

Figure 1.3: Compiler Control Flow with —c Option

RISCompiler and C Programmer’s Guide 1-7

Chapter 1

Linking Objects

A driver command is used to link edit separate objects into one executable
program. When the — option is not used, the driver compiles and link
edits the specified modules. If the modules are all object files, they are
link-edited into one executable program. It is possible to link edit the
objects created in the last example using the Pascal driver pc, as shown
below:

Q
S
3
)
=
Q
2
<
<24
®©
3

% pc -o all main.o more.o rest.o

This command produces the executable object all. The example below
achieves the same result using the C driver cc:

~

% cc -o all main.o more.o rest.o -Ip
The cc driver links with libc and libdw by default. It is your responsibility
to link code with any additional libraries. In the above example, -Ip spec-
ifies the Pascal runtime library.
The Pascal and FORTRAN drivers pc and f77 automatically link with the
necessary libraries, including libc.
Figure 1.4 shows the flow of control for both the pc and cc commands
shown above.

1 1) | L 1
l] l] -]
main.o more.o rest.o

= | Pascal
Link Edtor | +——— | | =

s

a.out Link Libraries

Figure 1.4: Compiler Control Flow of cc and pc

The link editor is described in more detail in Chapter 2. For a detailed list
of the default libraries used by each driver, see the cc(1), f77(1), or pc(1)
manual pages in the RISC/os User’s Reference Manual.

1-8 RISCompiler and C Programmer’s Guide

The Compiler System

Compiler Options

There are several different types of compiler options. These include:
¢ General Options

* Byte Ordering Options

» Debugging Options

* Profiling Options

* Optimizer Options

* Compiler Development Options

Some options.have defaults which are used when you do not specify an
option on the command line. The tables below summarize the different
types of options, and indicate which of the options are default options.

Table 1.4 summarizes the general compiler options.

Note: The table lists only the most frequently used options; it does not list
all available options. See the cc(1), f77(1), or pc(1) manual page in the
RISC/os User’s Reference Manual for a complete list of available options.

—

g
o
w
>N
)
~
2
Q
&
S
O

RISCompiler and C Programmer’s Guide 1-9

Chapter 1

Table 1.4: Compiler Options, 1 of 4
General Compiler Options

g | Option Name Purpose

3 -B string Append string to all names specified by the -t option.

2 -C C and Assembly drivers only. Used with the -P and -E

e options. Prevents the macro preprocessor from stripping

A2 comments. Use this option when you suspect the

<2} preprocessor is not emitting the intended code to examine

1) sa

-3 the code with its comments.
-C * Pascal and FORTRAN drivers only. Generates code that
causes range checking for arrays during program execution.

-C Prevents the link editor from linking the program after

compilation. This option forces the compiler to produce a .ofile.
-call_shared Produce dynamic executable that uses sharable objects
- during run-time (default).

-check_bounds For C drivers only. Generates code that causes range

checking for arrays during program execution.

-cord Rearrange the procedures in the link edit object file to reduce
cache conflicts in the executable object (a.ouf). At least one
-feedback file must be specified. See Chapter 5 for more
information.

-cpp Run the C macro preprocessor on the source code before
compiling. The default varies from driver to driver. Refer to the
appropriate man page in RISC/os User’s Reference Manualfor
the individual driver.

-cnt0 Use crt0.0 as the compiler startup routine in BSD-like
environments.

-crt1 Use crt1.0and crtn.o as compiler startup and finish
routines in Sys V-like environments (default).

-Dname or Define a macro name if a #define is specified in the

-Dname=def program. If =defis omitted, the compiler defines
the name to be 1.

-E Run only the C macro preprocessor and send the results to the
standard output. Specify -C to retain comments for C and
Assembly code. Use -E when you suspect the preprocessor
isn't emitting the intended code.

-edit [0-9] Invoke the eitor of choice when syntax or symantic errors
are detected by the compiler’s frontend.

~feedback file When used with the -cord option produces an object with the
procedures rearranged to reduce cache conflicts.
file is the output produced when using the -prof and
-feedback options.

-float Cause the compiler not to promote expressions of type
float to type double.

1-10 RISCompiler and C Programmer’s Guide

The Compiler System

Table 1.4: Compiler Options, 2 of 4

General Compiler Options

Option Name Purpose _

-framepointer Assert the requirement of frame pointer for all procedures defined
in the source code

-G num num is a decimal number that specifies the maximum size in bytes
of an item to be placed in the global pointer area.
The default is 8 bytes. Change num to control the number of data
items placed in these sections. See Chapter 5 for more information.

-h path Use path rather than the directory where the name is normally
found.

-L When specified in addition to -L dirname, the compiler searches
the default directory.

-Ldirname Compiler searches the current directory, dirname, and the default
directory, /usr/include, in this order, for the include file.

“j Similar to -c. Produces a .ufile containing ucode. Does not produce
a .ofile, unless used with -c.

-k option option is one of the link editor options. The driver passes it to

-ko filename
-M
-mips1

-mips2
-mips3
-noinline
-hocpp

-non_shared
-O limit

-0 filename

~ filename is a.out.

the ucode loader, which then performs the link action specified
by option.

filename is the name of the output file to be created by the
ucode loader. _

Cause cpp to print, one per line on standard output, the path names
of included files.

Generates mips1 instructions (R2000/R3000 architecture) and
object file. This is the default for all machines.

Generate mips2 instruction (R6000 architecture) and object
file. The resultant binary will not be executable on a mips1
machine.

Generate code using the instruction set of the R4000 RISC
Architecture.

Disable the inlining performed under the -O3 option.

Do not run the C macro preprocessor on C and Assembly source
files before processing.

Produce an executable that does not use shared objects.

Specify the maximum size, in basic blocks, of a routine that will
be optimized by the global optimizer.

Assigns the name filename to the program object. When used
with the -c option, tells where to leave the .o file. The default

RISCompiler and C Programner’s Guide 1-11

E
A
wn
>
)
-
A
Q
£
S)
&)

>—

Chapter 1

Table 1.4: Compiler Options, 3 of 4

General Compiler Options
‘Option Name Purpose

-oldc Use the old MIPS-C preprocessor (cpp) and C front end (ccom).

. Use this option if the new preprocessor and front end (cfe), the
defaults, fail to compile or correctly execute code when compiled
with -std0.

-oldcomment In the preprocessor, delete comments (replace with nothing),
rather than replace comments with a space. This allows
traditional token concatenation. This is the default in -std0 mode.

Q)
s)

3

=3
)
=™

)
<

9
®©

3

-~

-P Similar to -E option, placing the results in a .ifile. Specify both
-P and -C to retain comments.

-p0 Do not permit any profiling (default).

-plor-p 'Permit program counter (pc) sampling. This provides operational

statistics to use in improving program performance. This option

affects only the link editor. It is ignored by the compiler front ends.
-proto [is] Invoke the prototizer. This assists in the creation of function

prototypes and is useful in converting non-ASNI C programs to

ANSI C. This takes one or more source files as input and

creates a .H file for each. The .H file contains function

prototypes for all functions in the file. No .H file is created if the

file has compilation errors or if there are conflicting declarations.

-Q Cause cpp to use ' (single quotes) for the string literal in the
__FILE__ expansion (default it to use " (double quotes)).

-S Similar to -c, producing Assembly code in a s file instead of
object code in a .ofile.

-signed Cause all char declarations to be signed char declarations. Default
is unsigned char.

-std Cause cpp to define _STDC_ with the value 0, and enforce

. the ANSI C standard with popular extensions. Issues a
warning message when the compiler finds a non-standard feature
in the programming language of the source program.

-std0 Indicates that the programming language is MIPS-C (K & R with
extensions); the macro _STDC_ is undefined. This is the default.
See Chapter 7 for details on MIPS-C features and extensions.

-std1 Indicates the programming language is strict ANSI C and causes
the macro _STDC_=1 to be asserted by the preprocessor. Any
non-standard features used cause error messages. See
Chapter 8 for details on ANSI C.

1-12 RISCompiler and C Programmer’s Guide

The Compiler System

Table 1.4: Compiler Options, 4 of 4

General Compiler Options
|Option Name Purpose QE) h
-systype name Use the specified compilation environment name. Supported §
environments are bsdd, svr3 (default) and svr4. ()
This has the effect of changing the directory searched for _§
#include files and runtime libraries. /name is added to the Q
beginning of the usual search path. é
-trapuv Forces all uninitialized stack, automatic and dynamically O
allocated variables to be initialized with OxFFFASAS5A.
When used as a floating-point variable, it is treated as a
floating-point NaN and causes a floating-point trap. Do not
use as a pointer, because a segmentation violation occurs.
-Uname Overrides a definition of a macro name specified with the
-D option, or one that is defined automatically by the driver.
-unsigned Cause all char declarations to be unsigned char
declarations.
-V Print the version number of the driver and its phases. Use
the version number when reporting a problem.
-v Lists compiler phases as they are executed. For BSD 4.3
users, this also prints resource usage of each phase.
-varargs Print warnings for lines that may require the varargs.h macros.
-verbose This option causes output of the long form of error and
waming messages. These may give the user some hint as to
the reason the compilation failed.
-volatile Cause all variables to be treated as volatile.:
-w or -w1 Suppress warning messages.
-w2 Abort on warning message as if an error occurred.
-w3 Suppress warning messages, but exit with non-zero exit
status when warnings occur.
-Zpn Align structure members on alignment specified by the integer
: n.

Note: There are certain restrictions in mixing compiler options. These
include:

e The -oldc flag cannot be used with stdl.
* The -oldc flag cannot be used with std.

RISCompiler and C Programmer’s Guide 1-13

Chapter 1

Byte Ordering Options

The compiler can produce program objects which are executable on target
machines with either a big-endian or little-endian byte ordering scheme.
By default, the compiler produces program objects executable on target

machines with the same byte ordering scheme as the compilation machine.

Specify one of the options shown Table 1.5 when the byte ordering scheme
on the compilation machine differs from that on the target machine.
Table 1.5: Byte Ordering Compiler Options

Byte Ordering Options

Option Name __Purpose

-EB Produces an object file for a target machine that
uses a big-endian scheme. Use this option when

. compiling on a little-endian machine.

-EL Produces an object file for a target machine that
uses little-endian scheme. Use this when
compiling on a big-endian machine.

Q
o)

3
2
)
=

2
<

<24
0]

3

-~

See Appendix A for more information on big-endian and little—endian
byte ordering.

Debugging Options

Table 1.6 shows the compiler options available for debugging source code
using dbx. Chapter 6 describes the functions and operations.

Table 1.6: Debugging Options

___Debugging Options

Option Name _Purpose

-go Default option. Produces a program object without
debugging information. Reduces the size of the program
object and should be used when debugging is no longer
required. Retains all optimizaton.

-g1 Permits accurate, but limited, source level debugging.
Retains most optimizations.

-g or -g2 Permits full source level debugging. Often suppresses
optimizations that might interfere with full debugging.

-g3 Permits full, but inaccurate, debugging on fully

optimized code. Debugger output may be confusing or
misleading. Specify this option for programs that
malfunction only after attempting to optimize them.

1-14 RISCompiler and C Programmer’s Guide

The Compiler System

Profiling Option

The pixie and prof programs (see Chapter 5) allow you to profile programs.
The -p option to the driver causes the program to be linked with a module
that produces a file mon.out when the program is executed. mon.out con-
tains program—counter sampling information.

Optimizer Options

Table 1.7 summarizes the options available for program optimization.
Refer to Optimization section in Chapter 5 for a detailed explaination of
optimizing code. See also the cc(1), f77(1), or pc(1) manual page, as
applicable, in the RISC/os User’s Reference Manual for details on the -O3
option, and the input and output files related to this option.

Table1.7: Optimizer Options
Optimizer Options

Option Name Purpose

-Oor 02 Global optimization. Optimizes within the bounds of
individual compilation units. This option executes global
optimizer (uopt) phase.

-00 No optimization. Prevents all optimizations, including the
minimal ones normally performed by the code generator
and the assembler.

-O1 The assember and the code generator perform as many

optimizations as possible without affecting performance.
This is the default.

-0O3 . Performs global register allocation across the bounds of
individual compilation units. Executes the uld, umerge
and uopt phases of the compiler system. This option
cannot be used with the -c compiler option. No shared
objects will be produced with this option.

Note: When the optimization level is -O2 or less, the link editor defaults
to building an executable which uses shared objects. You cannot mix -O3
optimization with [-call_shared).

Compiler Development Options

In addition to the standard options, each driver also has options which
primarily aid compiler development work. Table 1.8 shows the compiler
options available for development work. For complete information about
these options see the cc(1), pc(1), or f77(1) man page, as appropriate, in the
RISC/os User’s Reference Manual ’

RISCompiler and C Programmer’s Guide 1-15

£
)
7
BN
9))]
-
2
Q
E
@)
©)

—

Chapter 1

Table 1.8: Compiler Development Options

Option Name Purpose

-He Halt compiling after the pass specified by the character c,
producing an intermediate file for the next pass. It selects
the compiler pass in the same way as the -t option. If this
option is used, the symbol table file produced and used
by the passes is the last component of the source file
with the suffix changed to . T and is not removed.

-K Build and use intermediate file names with the last
component of the source file's name. These intermediate
files are never removed even when a pass encounters a
fatal error. When ucode linking is performed and the -K
option is specified, the base name of the files created is
u.out by default. :

-t : Select the names from the list below. The names selected
are those designated by the characters following the -t option
according to those listed below. The arguments are
processed from left to right so their order is significant. The
-B option is always required when using -t.

-~

Q)
®)
3
B
)
=
%2
<
2y
)
3

Character Name
h include
pf cfe

p (with -oldc) cpp

ccom (with -oldc), efe, fcom, upas

ddopt

uopt0

ujoin

uld

usplit

umerge

uopt

ugen

as0

asi

id

ftoc

cord

[mjert [1n].0

libprof1.a

btou, utob

-Wc [c...], arg1[,arg2...] Pass the argument[s] argi to the compiler pass/passes:
cfc...]. Thec's are one of [pfiusmocablyz]. The c's select
the compiler pass in the same way as the -t option.

~3"N<—-ODMMOOZOC—TOOQ™

1-16 RISCompiler and C Programmer’s Guide

The Compiler System

Including Common Files (Definition Files)

When writing programs, there are often header (or include) files that are
shared among a program’s modules. These files define constants, the pa-
rameters for system calls, procedure prototypes, etc.

Header files have a .h suffix. Typically, the manual page for a library
routine or system call from the RISC/os Programmer’s Reference Manual
indicates the required include files. Header files can be used in programs
written in different languages; header files are handled by the
preprocessor.

—

&
D
wn
>
9))
L.
2
Q
S
)
O

Note: If you intend to debug your program using dbx (see Chapter 6), do
not place executable code in an include file. The debugger interprets an
include file as one line of source code; none of the source lines in the file
appear during the debugging session.

You can include header files in program source files in one of two ways:
* Place the following line in a source file; it must begin in column 1:
#include “filename”

where filename is the name of the include file. The double quotes
around the filename indicate that the C macro preprocessor is to
search in sequence the current directory and the default directory,
/usrfinclude. :

* Place the following line in a source file; it must begin in column 1:
#include <filename>

where filename is the name of the include file. The greater-than and
less-than signs around the filename indicate that the C macro
preprocessor is to skip the current directory and search only the
default directory /usr/include for the include file.)

The -systype name compiler option can be used to change the compilation
environment. Currently supported values for name are bsd43, svr3 and
svrd. The -systype option has the effect of changing the default directories
that are searched for include files and libraries. If no systype is provided,
the compilers driver defaults to systype svr3.

C, Pascal, FORTRAN 77, and assembly code can reside in the same include
files, and then can be conditionally included in programs as required. To
set up a sharable include file, you must create a .1 file and enter the
respective code as shown in Figure 1.5.

RISCompiler and C Programmer’s Guide 1-17

Chapter 1

#ifdef _LANGUAGE_C

! @————— Ccode

#endif
#ifdef _LANGUAGE_PASCAL

- -<.—— Pascal code

Q
o

3

=
)
~

2]
<

2]
@

3

-

#endi
#?fdeg _LANGUAGE_FORTRAN
. <<@——— Fortran code

tendif
fdef _LANGUAGE_ASSEMBLY

~¢——————— MIPS Assembly code

#dendif

Figure 1.5: Sharable Include File

Dynamic Shared Objects

MIPS RISCompiler supports dynamic shared objects (dso). Dynamic
shared objects save disk storage. They have few restrictions on memory
placement.

Use the link editor (1d) to build dynamic shared objects.
Use the runtime linker (rld) to link dynamic shared objects.

Refer to Chapter 2 for more information on building and using dynamic
shared objects.

1-18 RISCompiler and C Programmer’s Guide

Linker and Object Tools

2

2

Object Tools

©
<
T
~
O
<
&
J

This chapter describes the linker and object tools of the compiler system.
These tools include: -

¢ Link Editor (Id)
¢ Runtime linker (rld)

* Obiject file tools (odump, nm, file, size, dump and string)
* Archiver (ar)

Link Editor

The link editor (Id) and the runtime linker (r/d) both perform symbol
resolution by linking the symbol definition with the calling of that symbol
in a different part of a program. Each module of a program is searched
for definitions of undefined symbols.

One of the differences between the two linkers is when this symbol
resolution occurs. The link editor (Id) performs symbol resolution when
the executable is created (static linking), while the runtime linker (rId)
performs symbol resolution during program execution (dynamic linking).
For more information on rld, see the section entitled Runtime Linker.
The link editor (Id) performs static linking by combining one or more object
files (created by the assembler), and, or archives into one program object
file. This includes relocation, external symbol resolution, and any
processing necessary to create an executable object file.

The link editor is capable of creating either shared (dynamic) or non-
shared (static) object files.

RISCompiler and C Programmer’s Guide ‘ 2-1

Chapter 2

Dynamic vs. Static Object Files

Dynamic shared object files are:
* Shared by several users, and, or programs.

* Relocatable objects which contain Position Independent Code (PIC)
-and Global Offset Tables (GOT) for indirect references.

* Objects which have runtime data structures that allow the runtime
linker (rld) to relocate the dynamic executable during execution.

Static or non-shared objects are normal executable object files.

Building Dynamic Shared Objects

Run the link editor by entering Id on the command line of the shell or by
using one of the driver commands as described in Chapter 1, Linking
Objects.

The syntax of the Id command is as follows:
ld -option[s] objectl [object2...objectn]

The following command shows how to build the shared object libc.so from
an archive libc.a:

lao

=
5
x
®
2
o
3
Q

1)
2
-
Qo
Q
7))

c

1d -shared -o libc.so -all libc.a -set_version sysv_4.9

where:
-shared Makes a shared object.
libc.so All shared objects have .so suffix.
-all Link all objects from archives following this option.

-set_version = Specifies an interface version (e.g. sysv_4.0). See
Table 2.1 for a complete description of -set_version.

Reference to so_locations

When a shared object is created, Id looks in so_locations for non-conflicting
memory addresses for the text and data portions of the object. so_locations
is a file in /usr/lib which contains the default addresses assigned to shared
objects. Italso keeps track of addresses assigned to newly created shared
objects. .

To avoid possible conflicts with MIPS supplied shared objects, the user
should place any newly created shared objects below address 0x60000000.
All third party shared libraries should be built with data placed right after
text.

2-2 RISCompiler and C Programmer’s Guide

Linker and Object Tools

Dependencies

When building a shared object, any other shared objects upon which the
first depends must be specified. If, for example, shared object A uses a
global symbol which is defined in shared object B, then A is dependent upon
B.

" The following command show how to build libcurses.so (which has
dependencies) from the archive libcurses.a:
12 -chared -trancsitive_link -o libcurses.so -zii libcurses.a:
-nco_archive -lc -set_version sysv_4.0

where "
-shared Makes a shared object. © 8(\‘
-transitive_link This causes Id to search for all dependent .so files <
automatically. EJ D
libcurses.so Example of the output file name. All shared < g
objects have .so suffix. =
-all Link all objects from archives following this
option.
-no_archive Do let any -1 option argument use archive (.a) files.
The default is to use .a files only if .so files are
not found.
-set_version Specifies an interface version (e.g. sysv_4.0).

Building Static Objects

Run the link editor by entering Id on the command line of the shell or by
using one of the driver commands as described in Chapter 1’s section
entitled Linking Objects.
The syntax of the Id command is as follows:

1d -option[s]) objectl [object2...objectn] _
Note: The assembler driver as does not run the link editor. To link edita
program written in assembly language:
* Assemble and link edit using one of the other driver commands (cc,

for example). The .s suffix of the assembly language source file
causes the driver to invoke the assembler.

or

* Assemble the file using as, then link edit the resulting object file with
the Id command.

Unless otherwise specified, the link editor names the program object file

a.out. You can execute the object file or use it as input for another link
editor command.

RISCompiler and C Programmer’s Guide 2-3

Chapter 2

Note: The link editor supports all the standard command line features of
other UNIX system link editors except System V ifiles. (An ifile holds a de-
scription of a load module.)

Using Dynamic Shared Objects

Why Use Dynamic Objects?

Reasons to use dynamic shared objects include:

* Shared objects can be relocated without having to recompile
applications.

* Shared objects reduce the dynamic memory needs of the system.
* Executables using shared objects require less disk space.

* Shared objects can be updated without having to relink the
applications which depend upon them.

a0

[y
5
x>
T
~
Q
3
Q

c

In short, use dynamic shared objects because they save disk storage.

I
Q
\i
o
Q
1%}

Requirement

Assembler code must abide by the System V Application Binary Interface
(ABI) calling conventions. The loader depends upon it. The link editor
traps some of the non-conforming usages by printing error messages.

Calling Conventions

* Calculations of a new value for the gp (global pointer) register must
occur in the first three instructions of a function which allocates a
stack frame.

¢ The stack pointer must allocate the stack frame prior to any other
use of the stack pointer register.

* Adjusting the stack pointer value to deallocate the stack frame must
occur only once and it must occur within the last basic block of the
function.

* Only one frame pointer may be used in a function which allocates a
stack frame.

¢ Only one exit from a stack adjustment function is allowed. This
must be done using the jump register instruction transferring control
to return address register $31.

* Branching to a different procedure is not allowed.

24 : RISCompiler and C Programmer’s Guide

Linker and Object Tools

Recommendations

To get optimal results when using shared objects:

* All symbols must be defined in some archive or user code. The
runtime linker (rld) has to resolve all undefined data symbols and
the “referenced text symbols” during runtime. This resolution of
undefined data symbols slows up the linking or causes a user
program to abort.

e Static uninitialized structures and arrays should be demand malloced
to reduce swap requirements. If they are not malloced, RISC/o0s
allocates swap space for these items whether or not they are used.
Swap requirements should be reduced.

2

Using Static Objects

Object Tools

©
c
T
L .
Q
x
&
3

Why Use Static Objects

" Although there are advantages to using dynamic objects, it does increase
system overhead and record keeping. There are times when it is more
appropriate to use static objects. 7zUse static objects if a process:

* Calls only a few small libraries, or
* Accesses only limited routines in a library.

Specifying Libraries

There are two kinds of libraries, shared and static.

A shared or dynamically linked library is a single object file which contains
the code for every function within the library. It is created by the link
editor (Id). This file appears to the system and the user as individual
objects within a file system or directory. This shared library has a .so suffix.

The compiler looks for shared libraries by default. If one is not found, the
compiler looks for archives. The compiler prints a warning message if an
archive was found instead of a shared object.

A static library or archive, is a collection of object files which each contain
the code for functions within the library. It is created by the archiver (ar).
All of the files in a static library have a .a suffix.

Multiple Language Programs

To compile multi-language programs, explicitly load any required
runtime libraries. For example, if the main program is in C, and other
procedures are in Pascal, explicitly load the Pascal library libp.a or libp.so

RISCompiler and C Programmer’s Guide 2-5

c

|y
5
>
T
~
QD
3
Q

o)
g
9]

]
g
S
1))

Chapter 2

and the math library libm.so or libin.a with the options -lp and -Im
(abbreviations for the libraries lipb.so or libp.a and libm.so or libm.a), as
shown below, when linking the program.

% cc main.o more.o rest.o -lp -Im

To find the Pascal library, the link editor replaces the -/ with lib and adds
a .so after p. It then searches the /usr/lib/cmplrs/cc/pc directory for this
shared library libp.so first. If it cannot find libp.so, it searches for the archive
library libp.a.

- For a list of the libraries that a language uses, see the associated driver

manual page (cc(1), f77(1), or pc(1)) in the RISC/os Programmer’s Reference
Manual.

You may need to specify libraries when using RISC/os system packages
that are not part of a particular language. Most of the manual pages for
these packages list the required libraries. For example, the plotting
subroutines require the libraries listed in the plot(3X) manual page; these
libraries are specified as follows:

% cc main.o more.o rest.o -lp -lpcot

To specify a library created with the archiver, enter the name of the library
as follows: :

% cc main.o more.o rest.o libfft.a (or libfft.so) -lp
Note: The link editor searches libraries in the order specified. Therefore,

if a library (for example libfft.so or libfft.a) uses data or procedures from
-lp, you must specify libfft.so (or libfft.a) first.

Link Editor Options

Table 2.1 summarizes the link editor options. Refer also to the list of
general options in Chapter 1 and to the ld(1) manual page in the RISC/os
Programmer’s Reference Manual for more information on options and
libraries that affect link editor processing.

2-6

RISCompiler and C Programmer’s Guide

Linker and Object Tools

Table 2.1 Link Editor Options, 1 of 4

Link Editor Options
Option Name Purpose

-A file Produces an object that may be read into an existing
program. The argument, file, is the name of the file whose
symbol table is used to base the definition of new symbols. Only
newly linked information is entered into the text and data
portions of a.out, the new symbol table reflects every symbol
defined before and after the incremental load.

-all archive name Link in all of the objects from archive name.

-B num Sets the starting address of the uninitialized data segment (bss)

to the hexadecimal address num. This option is valid only when - “é’w

the —N link editor option is also used. SR
-Bstring Appends string to the library name created by the ~ix or —kix 5

option. The library is searched both with and without string. = %
-b Tells /d not to merge symbolic information entries from the same 30

file into one entry for that file. Use this option when a file
compiled for debugging has variables with the same names but
different attributes. This can occur when compiling two object
files that use the same include file, and variables with the same
name differ because of conditional compilation statements
within the file.

-call_shared Produce shared executables.

-check_registry file Check the location of this shared object's segments and make
sure the segments stay out of the way of others in the
so locations_file. Multiple instances of this option are supported.

" This option can only be used in conjunction with -shared.

-D num Sets the starting address of the data segment (data) to the hexa- |
decimal address num.

-EB Uses big—endian byte ordering when writing out header and
symbol table entries.

-EL Uses little—endian byte ordering when writing out header and
symbol table entries.

-e epsym Sets the default entry point address for the output file to the

specified symbol epsym.
-exact_version obj Sets the LL_EXACT_MATCH flag in /iblist flags files. This tells
’ rid that obj must match the timestamp and checksum from
the liblist section in addition to the interface version.
-exclude_obiject Provides an all but facility. Used with -all, this implies that when
linking all of the objects from the next archive, we skip the
specified object is skipped.
-For-z ' Creates a ZMAGIC file (an object file that loads on demand).
This is the default.

RISCompiler and C Programmer’s Guide 2-7

Chapter 2

Table 2.1 Link Editor Options, 2 of 4

Link Editor Options
Option Name Purpose
-fini symbol_name Add a call to function symbol_name in the .fini section.
-G num Specifies the maximum size (in decimal bytes) of a .comm item

that should be allocated in the small uninitialized data (sbss)
section for reference by the global pointers. The default is 8 bytes.
-bestGnum Prints the optimum value to be specified as the num value for -G.
The link editor uses the following options in determining which
objects are to be included or excluded in computing a value to be
specified in the —bestGnum option. For example, exclude any
object for which you do not have the source code for recompilation.

-count Objects that follow on the command line cannot be recompiled.
8 5 -nocount Objects that follow on the command line can be recompiled.
Eo}‘ z -countall " Overrides any —nocount option appearing after it on the command
~ 0 line.
o § -hidden objs Specifies that /d turns all external symbols from any objects
'\‘% following this flag into local variables.

-hidden_symbols objs Specifies that Id turns the symbol following this flag into a local.

-ignore_version lib Specifies that at runtime, the shared object(s) within the library
following this option does not have to match the interface version
as specified at linktime. Sets LL_IGNORE_VERSION flag in
liblist. Version are required to match at runtime by default.

-init symbol_name Add a call to function symbol_name in the .init section.

-jmpopt or Fill or don't fill the delay slots of jump instructions with the target

—nojmpopt of the jump and adjust the jump offset to jump past that
instruction. Disabled when the —g1, —.g2 or —g flag is present.
When enabled, this option can cause an out-of-memory
condition in the link editor.

-L Indicates that /usr/lib/cmpirs/cc should NOT be searched. Is useful
if dirname is the only directory that should be searched for libraries.
-L dirname Indicates that dirname should be searched for libraries specified

in the —ix option before searching directory /usr/lib/cmpirs/cc. This
option must precede the -ix option.

-Ix Specifies the name of a link library, where x is the library name.
The link editor searches for libx.a in /usr/lib/cmplirs/cc and /usr/lib.
If a library relies on procedures or data from another library,
specify that library's name first. If a library resides in a directory
other than /usr/lib/cmplrs/cc, use the —L option to specify the
appropriate directory for that library.

Note: If the byte—ordering (endian) scheme of the object module
differs from that of the machine on which the link editor executes,
the default libraries change. See the /d(7) manual page in the
RISC/os Programmer’s Reference Manual for more information.

2-8 RISCompiler and C Programmer’s Guide

Linker and Object Tools

Table 2.1 Link Editor Options, 3 of 4

Link Edftor Options

Option Name Purpose
-M Produces a link editor memory map in BSD format.
-m Produces a link editor memory map in System V format.
-N Creates an OMAGIC" file. The text segment isn't readable and

sharable by other users. The data segment follows immediately

after the text segment.
-n Creates an NMAGIC" file. The text segment is read—only and

sharable by all users of the file. .
-nN Creates an NMAGIC* file. The data segment immediately follows o

the text segment.

-no_preempt objs Turns all relocations for specified objects into local relocations.
This effectively disallows preempting externals in
these objects for this executables or shared object.

-no_preempt_symbol Turns all relocations for the symbol following this flag into local
relocations. This effectively disallows preemption for this
executable or shared object.

-no_unresolveds This causes idto exit with an error status when it encounters any
unresolved symbols. The default allows unresolved symbols in
shared executables and objects.

-non_hidden objs Turns off the effects of -hidden. All external symbols in objects
following this flag are left as externals.

Object Tools

he]
<
G
o
4]
x
=
=
-

-non_shared Make the output of this link run as non-shared, and use only the
archives. The -r, -N, and -n flags all imply non-shared.

-none Turns off -all.

-0 filename Specifies a name for your object file. If you don't specify a name
the link editor uses a.out as the default.

-p file Preserves the symbol names listed in file when loading ucode

object files. The symbol names in file are separated by blanks,
tabs, or new lines. See Optimizing Frequently Used Modules in
Chapter 4 for an example.

-r Performs a partial link—edit, retaining relocation entries. This is
required if the object is to be re-link edited with other objects in
the future. The option causes the link editor not to define
common symbols and to suppress messages on unresolved

references. :
-rpath Set the rpath (see the generic ABI) to the specified string.
-S Suppresses non-fatal error reporting.
-5 Strips symbol table information from the program object, reducing
: its size.

RISCompiler and C Programmer’s Guide 2-9

Chapter 2

Table 2.1 Link Editor Options, 4 of 4
Link Editor Options

Option Name Purpose

-set_version\ Used in conjunction with -sharedflag. The specifies the version

version_string included in the liblist section. The version_string can contain colon
separated version strings. When executables are linked against
this shared object at linktime, the linker propagates the first version
from the shared object's version_string to the objlist of the
executable. The runtime linker will only map shared objects
whose interface version list contains liblist’s version string.

-shared The output of the link is a shared object. This includes creating all
of the tables for runtime linking, converting the code to PIC and
resolving references to other specified shared objects.

-soname \ - Set DT_SONAME for a shared object. The name may be a

shared_object_name single component name (e.qg. libc.a) a full (starting with a slash),
or relative pathname (containing a slash). Single component
names use rpath, LD_LIBRARY_PATH, and the default paths to
resolve their locations.

-T num Sets the origin for the text segment to the specified hexadecimal
number. The default origin is 0x400000. The contents and
format of the text segment are described in the MIPS Assembly
Language Programmer’s Guide.

=
3
x
3
QO
>
Q

c

Q
NSy
D
Q
—
o
Q.
1))

-transitive_link Use this to resolve any unknown or undefined shared object
dependencies.
-u symname Makes symname undefined so that library components that

define symname are loaded.

-update_registry file Register the location of this shared object's segments and make
sure they stay out of the way of others in so_/ocations.
so_locations is updated if it is writable. This option can only be
used in conjunction with -shared.

-V Prints the link editor version number. Use this number when
reporting a suspected bug in the link editor.

-VS num Puts the specified decimal version stamp num in the object file
that the link editor produces.

-v Prints the name of each file as it is processed by the link editor.

-X Retains external and static symbols in the symbol table to allow
some debugging facilities. Doesn't retain local (non—global)
symbols.

Note: There are certain restrictions in mixing compiler options. These in-
clude:

e -03 cannot be used with -call_shared.
e -mips2 cannot be used with -shared.

2-10 RISCompiler and C Programmer’s Guide

Linker and Object Tools

e -cord cannot be used with -shared.
* -trapuv cannot be used with -shared.

Runtime Linker (rid)

The runtime linker (rld) performs symbol resolution dynamically during
runtime (dynamic linking). It maps into memory the dynamic shared
objects (created by Id) which are used by the executable.

rld does the following:

* Checks-that the objects used at linktime are the same objects being
used at runtime; i.e. objects have not been added, or deleted.

¢ Checks that each shared object was mapped into its default location.

* Checks that the timestamp, checksum, and interface version of each
shared object has not changed since creation or since static linking.

* Constructs an explicit shared object list.
* Resolves each object’s conflict list.

2

Ovbject Tools

2
-
Q
X
S
-~

* Resolves each object’s unresolved variable list.
¢ Allocates common if needed.

Quickstart

MIPS Application Binary Interface (ABI) includes a number of data
structures, conventions, and implied mechanisms which constitute
Quickstart. Quickstart requires that all dependencies between shared
objects be resolved prior to runtime. It also requires that references
between shared objects do not refer to multiple version of the same library.

Quickstart references the so_locations addresses.

Timestamp, Checksum and Interface Version

Conditions may have changed in the time between creating and using

shared objects. For example, the list of objects used at link time may differ
from those used at runtime.

The timestamp, the checksum, and the interface version are each checked
separately by rld . If each of these match, then the Quickstart condition
exists, and the runtime linker (rld) will not have to resolve any variables.

rid Options

Options to rld can be specified by the _RLD_ARGS environment variable
to any combination of the options listed in the Table 2.2.

RISCompiler and C Programmer’s Guide 2-11

Chapter 2

Table 2.2 Runtime Linker Options
Runtime Linker Options

Option Name Purpose
-clearstack This option forces rid to zero any stack it uses
before returning to user code.
-ignore_all_versions Ignore versions on all objects.
-ignore_version shared_object Ignore the version stamp checking on the object
specified.
-ignore_unresolved This option does not complain or abort when
rld cannot resolve data symbols.
-interact rid interactively prompts the user on standard
input to fix problems in the link (e.g. rid asks the
8 g user to provide a full pathname for a missing
& = , shared object).
Q= -log file Prints all messages to a log file instead of
S 3 standard output.
NS < -pixie Includes rid in the pixie statistics.
-stat Prints rid statistics to standard output.
-trace Prints all actions done for the user by rid.
v Prints general actions (less verbose than -trace).

Object File Tools

The following tools provide information on object files as indicated:

* odump: Displays the contents (including the symbol table and
header information) of an object file in COFF format.

* nm: Displays only symbol table information.

* file: Provides descriptive information on the general properties of
the specified file (for example, the programming language used).

¢ size: Prints the size of the .init, .text, .rdata, .data, .sdata, .lit8, .lit4 .bss,
and .sbss sections. The format of these sections is described in
Chapter 9 of the MIPS Assembly Language Programmer’s Guide.

e dump: Displays the contents of an elf object file. For complete
information on elf, refer to Chaper 11 in the MIPS Assembly
Programmer’s Guide.

* strings: Displays the printable strings in a file.
The sections that follow describe these tools in detail.

2-12 RISCompiler and C Programmer's Guide

Linker and Object Tools

Dumping Selected Parts of Files (odump)

The odump tool displays headers, tables, and other selected parts of an
object or archive file.

The syntax for the odump command is as follows:

odump [options] filenamel [filename2. . filenameN]
where:
options is one or more of the options and suboptions listed in Table 2.3.

filename[1..N] are the names of one or more object files whose contents are
to be dumped.

Figure 2.1 shows examples of output produced by odump; the command
used to produce each is shown in abox. An explanation of the information
provided by odump can be found in Chapters 9 and 10 of the MIPS
Assembly Language Programmer’s Guide.

2

Object Tools

je)
-
v
~
<8}
x
S
-

RISCompiler and C Programmer's Guide 2-13

Chapter 2

Table 2.3 Odump Options

Main odump Options
Options Name Purpose
-a Dumps the archive header of each member of the
specified archive library file. '
. Dumps the string table.
-D Dumps the .dynamic section.
-Dc Dumps the .conflict section.
-Dg Dumps the GOT (global offset table) information.
-Dh Dumps the hash table information.
-Di Dumps the register information.
-DI Dumps the liblist information.
-Dr Dumps the .rel .dyn information.
-Ds Dumps the dynamic string information.
Dt - Dumps the dynamic symbol information.
-F Dumps the file descriptor table.
-f Dumps each file header.
-G Dumps the -G n histogram table.
-g Dumps the global symbols in the symbol table of
an archive library file.
-h Dumps the section headers.
-i Dumps the symbolic information header.
-L Interpret and print contents of the ./ib sections.
-l Dumps line number information.
-0 Dumps each optional header.
-P Dumps the procedure descriptor table.
-R Dumps the relative file index table.
- Dumps relocation information.
-s Dumps the section contents.
-t Dumps symbol table entries.
-u Underlines the name of the file for emphasis.

2-14 RISCompiler and C Programmer’s Guide

Linker and Object Tools

Table 2.3 Odump Options, 2 of 2

Auxiliary odump Options
Option Name Purpose

-d number Dumps the section number, or a range of section numbers
that starts at the specified number and ends with the last
section number or the number you specify with +d.

+d number Dumps the sections in a range that begins with the first
section or with the section you specify with -d.

-n name Dumps information only for the named entry. Use this
option with -h, -1, -r, -s, and -t options.

P Suppress the printing of headers.

<t index Dumps only the indexed symbol table entry. Specify a N
range of table entries by using this option with +t.

+t index Dumps the symbol table entries in a range that ends with

the indexed entry. The range begins with the first symbol
table entry or with the section specified with -t.

v Dumps information in symbolic representation. Use this
option with all dump options except -s.

-z name, number Dumps the line number entry or a range of entries that

start at the specified number for the named function.

+Z number Dumps the line number that starts at the function name or
the number specified by -z, and ends at the number
specified at +2.

Object Tools

©
<
T
~
)
-
S
~J

RISCompiler and C Programmer’s Guide 2-15

c

)
A3
)
S
\{
S)
Q
@

=
3
=
=
AN}
S
Q

Chapter 2

STRING TABLE INFORMATION®
[Offset] Name
sam.o:
(1] sam.c
(7] line % odump -c sam.o
[12] string
[19] length
{26} linenumber
(37) LINETYPE
[46] main
[S1) argc
[S6] argv
[61] linel
[67) fd
(70] i
[72] i
[74) curlinenumber
(88] printline
(98] pline
[104) i
[107) /usr/local/mips/include/stdio.h
(139] _iobuf
[146] _cne
[151) _ptr
[156]) _base
[162) _bufsiz
[170) _flag
[176) _file
[182] _nhame
***FILE HEADER*™* % odump -f sam.o
Magic Nscns Time/Date Symptr Nsyms Opthdr Flags
sam.o:
0000540 2 0x1£f22b3750x00000344 96 0x0038 0x0000
% odump -F sam.o *+**FILE DESCRIPTOR TABLE***
£ilename InOffset ------ iBase/zouint----==----- merge sex
3 = A D v 1 .
sam.o: address cbLine sym 1iine pd aux rfd language
sam.c 0x00000000 0 0 0 0 0 0 -—— el
N 23 27 103 2 40 0 C
ps/include/stdio.h0x00000000 0 2 0 2 40 0 merge el
0 11 0 0 36 0 ¢
Figure 2.1 Example of Odump Utility Output, 1 of 4
2-16 RISCompiler and C Programmer's Guide

Linker and Object Tools

SECTION HEADER % odump -h sam.o
Name Paddr Vaddr Scnptr Relptr Lnnoptr
Flags Size Nreloc Nlnno
sam.o: .
.text 0x00000000 0x00000000 0x0000009c (0xC000027c 0x00000000
0x0 0x000001a0 25 0
.sdata 0x000001a0 0x000001aC 0x0000023c 0x00000344 0x00060000
0x0060C0200 0x00000040 0 0
***SYMBOLIC INFORMATION HEADER®** % odump -i sam.o|
vStamp =-----=------------- iMax/cbOffset-------=ccce-o---
cbLine pd fd line string sym xstring dn rfd ext aux
sarn.c:)
Ux001it 2 2 103 188 38 80 ¢ 0 12 76
24 95€¢ 2088 932 1820 1060 2008 0 0 2232 1516
***LINE NUMBER INFORMATION®*®**
Symndx/Paddr Lnno % Odump -Isam.o
sar.o:
Lines for file sam.c:
C. 17 1. 17 2. 17
3. b 5. 1° g z4
€. 24 7. 24 - 8. 25
9. 2t 16. 25 11. 33
2. 3 13. 26 14. 26
1i5. z€ 1€. 26 17. 27
18. 7 19. 20 20. 30
OPTIONAL HEADER in HEX % odump -0 sam.o
sam.c
01C7 0015 01a0 0000 0040 0000 0000 0000 0000 0000 0000 0000
0la0 0000 0le0 0000 fffé Db301 0000 0000 0000 0000 0000 0000
0000 0000 8190 0000
***PROCEDURE DESCRIPTOR TABLE*"* % odump -P sam.ol
name address isym iline iopt regmasky regoff fpoff fp
InCffcet lnLow lnHigl fregmask <frgoff pc
gan.o:
san.c (€ for Z}
main Ux000000G0 7 0 -1 0Ox8G010000 -284 304 29
¢ 17 c 0x000000G0 0 3
18 58 63 0x00006000G 0 1
printliine tx0000013¢ 20 78 -1 OXSOO({O()(AO =12 40 29
/usr/iocal/mips/sinciude/stdic.n{2 for 0}

Figure 2.1 Example of Odump Utility Output, 2 of 4

RISCompiler and C Programmer’s Guide

2-17

Object Tools

©
=
T
-
Q
~x
<
~l

2

Chapter 2

***RELCCATION INFORMATION®**

sam.o: vaddr Symdx Typexcern % odump -r sam.o
-text: 0x00000034
0x00000038
0x00000040
0x0000003c
0x00000044
0x00000050
0x000000¢58
0x00000078
0x0000007¢
0x00000C88s
0x000000684
Ox0000008c
0x0000009c
0x000000ac
0x000000ec
0x000000fc
0x00000100
0x00000110
0x0000015¢
0x00000160
0x00000168
0x00000170
0x00000178
0x00000180
0x0000017¢c

o O O

,.
W OO B O ®me O

alqo

—

T O ;MO OV e O

=
5
=
®
~
Q
=)
Q

c

¥
-
O
o]
wn

U W W oD WWw W L. T nNds woWwwo N

e H O OCOR

won e WoN

—

.sdata:

RELATIVE FILE INDEX TABLE

sam.o: % odump -R sam.o
sam.c {0 for 0]
/usr/local/mips/include/stdio.h(0 for 0]

SECTION DATA in HEX % odump -S $am.o

sam.o:
.text:
27BD FEDO AFBF 0014 AFA4 0130 AFAS 0134 AFBO 0010 8FAE 0130
gooo 0000 AFAE 0020 B8FAF 0020 0000 0000 29El1 0002 1020 0007
00C0 7000 3C01 0000 2424 0030 0CO0 0000 27&8% 8010 0OCO0 0CCO
2004 2001 8FB8 0134 2785 8024 8F04 0004 0COO0 D000 0000 0000
AFA2 0024 8FB9 0024 0000 0000 1720 0009 (GUOO 0000 B8FA8 0134
3C01 0000 2424 0030 8D06 0004 0CO0 0000 2785 8026 0C00 0000
2004 0001 27A4 0028 B8FA6 0024 0CO00 0000 2005 0100 1C40 O0OlE

Figure 2.1 Example of Odump Utility Output, 3 of 4

2-18 RISCompiler and C Programmer's Guide

Linker and Object Tools

©, s
***SYMBOL TABLE INFORMATION®** % odump -t sam.o |

[Index] Name Value Sclass Symtype Ref
sam.o:

[0] sam.c 0x00000000 0x01 0x0b 0»001b

1) line 0x00000108 O0x0b 0x07 0x0006

12} string 0x00000000 0x0b 0x09 0x000e

(3] length 0x00000800 0x0b 0x09 0x0004

4] linenumber0x00000820 0x0b 0x09 0x0C04

[&] 0x00000000 0x0b 0x08 0x0001

(6] LINETYPE 0x006000000 0x0b 0Ox0a 0x0013

{7} main 0x03520000 0x01 0x06 0x0017

] argc . 0x002:0000 0x05 0x03 0x0004 L”N
[9] argv 0x00000004 0x0¢% 0x03 00019 = %
[10] 0x00000014 0x01 0x07 00013 ~ ~
[linel Oxfffffefe 0x0°% 0x04 0x001a = IS
iz a Oxfffffefd . Ox0% 0x04 0x001c 29
113) i OxfEfffefl 0x05 0x04 0x0004 T Q
134 0x000000ac 0x01 0x07 0x0012 <0
(182 i Oxfffffees 0x0°% 0x04 0x0004

[1€] curlinenumber 0x000001c8 ox0d 0x02 0x0004

[17) 0x00000108 0x01 0x08 0x000e

[1&] (x00000120 0x01 0x08 T 0x000a

(190 main 0x00000138 0x01 0x08 0x0007

{2&d printiine 0x00000138 0x01 0x06 0x001%

ol Filine 0x0000000¢C 0x0E 0x03 0x0024

[22] 0x0000000¢ 0x01 0x07 0x001y

1231 i OxXfffffffc 0x0% 0x04 0»0004

{241 0x000G004¢ 0x01 0x08 00016

[z printiine 0x00000064 0x01 0x08& 0x%0014

2€ san.c 0x00000000 0x01 0Ox0€& 0x000606

127 /usr/local/mipe/include/stdio . h0x00000000 0x01 Ox0b 0x0026

{28} _iobuf 0x00000018 0x0b 0x07 0x002¢&

129) _cnt 0x00000000 0x0b 0x09 0x002¢c

150] _ptr 0x00000020 Ox0b 0x09 0x0036

{3:) _base 0x00000040 0x0b 0x09 0x0037

[22] _bufsiz 0x00000060 Ox0b 0x09 0x002¢c

[33) _flag 0x00000080 Ox0b 0x09 0x%002b

[34] _file 0x00000C90 0x0b 0x09 0x0030

[35; _nhame 0x000000at 0x0b 0x09 0x0038

L3€ 0x00000000 0x0b 0x08 0x001c

(7] /usr/iocal/mips/include/stdic.h0x00000000 0x01 0x08 0x001b

ee _iok 0x000G02el 0x1it 0x01 0x0039

ae foper Gx00000000 0x06 0x0€ Ox00%f

Tal fdcper. 0x00000000C ox00 0x0€ 0%002E

(41 frecper. (x0006000C 0x00 OX06 0x0038

6L frell 0x%0000000G 0x00 0x06 0x003}.

142 fgets 0x00000000 0x0¢€. 0x06 0x004a

144 printline_0xG000013¢ 0x01 OX0¢€ Ox0014

145 main tx0000000¢ Ux01 Ox0€ %0067

1467 fprincs CXGO00000G Ox0€& Ox06 0x00le

147] exit 0x08000000 UX0€ Ox06 0x%0020

Figure 2.1 Example of Odump Utility Output, 4 of 4

RISCompiler and C Programmer’s Guide 2-19

Chapter 2

Listing Symbol Table Information (nm)

The nm tool prints symbol table information for object files and archive
files.

The syntax for the nm command is as follows:

nm [options] finenamel [(filename2 . . filenameN)
where:
options is one or more characters (listed in Table 2.2) that specify the type
of information to be printed.

filename[1..N] specify the object file(s) or archive file(s) from which symbol
table information is to be extracted. If you don't specify a file, nm assumes

a.out.

For more information, please see nin(1) in the RISC/os Programiner’s

Reference Manual.

Table 2.4: Symbol Table Dump (nmn) Options (-systype svr3)

nm Options (svr3)
Option Name Purpose

-A Prints the listing in System V format.

-a Prints debugging information. Turns BSD output into
System V format.

-B Prints the listing in BSD format.

-b Prints the value field in octal.

-d Prints the value field in decimal.

-e Prints only external and static variables.

-g Prints only global symbols.

-h Suppresses printing of headers.

-n Sorts external symbols by name for System V format.
Sorts all symbols by value for BSD format.

-0 Prints the value field in octal for System V output. Prints
the filename immediately before each symbol name for
BSD format.

-p Lists symbols in the order they appear in the Symbol table.

-r Reverses the sort which you specified for external
symbols with the -n and -v options.

-T Truncates characters in exceedingly long symbol names;
inserts an asterisk as the last character of the truncated
name. This may make the listing easier to read.

-u Prints only undefined symbols.

-V Prints the version number of nm.

v Sorts external symbols by value.

X Prints the value field in hexadecimal.

2-20 RISCompiler and C Programmer's Guide

Linker and Object Tools

Table 2.5: Symbol Table Dump (nm) Options (-systype svr4)
nm Options (svr4)

 Option Name Purpose
-e Prints only external and static variables, obsolete.
-f Produce full output, obsolete.
-h Suppresses printing of headers.
-n Sorts external symbols by name for System V format.

Sorts all symbols by value for BSD format.
-l Append an * to the key letter for weak symbols.

-0 Prints the value field in octal for System V output. Prints
the filename immediately before each symbol name for - %N
BSD format. : s
-P Produce terse output. N
-r Prepend obiject file or archive name to each output line. Q »&'\)
-T Truncate long symbol names, obsolete. S 8
-u Prints only undefined symbols. =
-V Prints the version number of nm.
v Sorts external symbols by value.
-X Prints the value field in hexadecimal.

Figure 2.2 shows an example of an nm —B command and the output it
produces. Note that each item has a key describing its storage class.

Example:

$nm -B a.out
00004608 S Argc
0000460c S Argv
00004490 4 blanks
00004700 b bufendtab
00003330 T cerror
00000cd4 T cleanup
000044e8 D ctype
00001fa0 T doprnt
00000ded4 T exit
00001878 T filbuf
00000990 T filbuf
0000c560 N gp
00004228 D iob
00004598 G lastbuf
00001f44 t lowdigit
4o

value ey symbol

field Y oy me

Figure 2.2 Symbol Table in BSD Format (option —B)

Table 2.6 describes the meanings of the character keys shown in the
example above.

RISCompiler and C Programmer’s Guide 2-21

Chapter 2

Table 2.6 nm Character Key Meanings

nm Character Key Definitions
ey Description
External absolute data.
Local absolute data.
External zeroed data.
Local zeroed data.
Common data.
External initialized data.
Local initialized data.
Small common data.
External small initialized data.
Nil storage class, which avoids loading
of unused external references.
External read-only data.
Local read-only data.
External small zeroed data.
Local small zeroed data.
External text.
Local text.
External undefined data.
External small common data.

X

a0

~
3
x=
3
~
D
)
Q

c

99)
o
-~
—
Q
1S4
1))

<CTHonm™"D ZOMAODOCT O >

Figure 2.3 shows an example of nm output in System V format.

2-22 RISCompiler and C Programmer’s Guide

Linker and Object Tools

-

cur_irnenumher

=2
Yo
jal

e
s
bae g2 pe
SIS
Mmoo

b

+

)

o

printline

sall. .

_iohuf

~nr
<nt

_ptr
_bacse
_bufciz
_flag
_file
_lale

Symbols from sam.o:
Name Value Class
sam.c 00000000 |File
line 1000002¢€4Block
string 100000000 | Member
length 100002048 |Menber
linenumber 100002080 |Member
|000000001End
LINETYPE 100000000 | Typdef
main 100000000 | Proc
argc 100000000 | Param
argv 100000004 | Param
100000020 Block
linel 1-0000264|Local

i-000G2651Local
. =00062721Local
100000172 1Block
{-006CG280] Local

i00060045¢6 1Static

100000264 1End
100000288 | End
1000002121 End
1000002121 Proc
100000000 | Param
100000012 Elock
|-0000004iLocal
10000007¢6 | End
i000001001End
1000000001 End

/usr/iccal/mips/incl 100000000 (File

100000024 |Block
100000000 | Member
100000022 |Member
100000064 | Member
100000096 |Member
100000128 |Member
100000144 |Member
100000160 | Member
1000000001 End

Type

lref=27
lref=6

lunsigned char (25¢]

lint

lint

lref=1
lstruct line
lend=20 int
lint

lunsigned char **

lref=19
lstruct
lstruct
lint
lref=1¢
lint
lint
lref=14
lref=10
lref=7
lend=2¢€
lstruct
lref=2¢%
lint
lref=22
lref=20
lref=0
lref=3¢
lref=37
lint
lunsigned
lunsigned
lint
Ishort
lunsigned
lunsigned
Ilref=28

line
_iobuf*

btNil
line*

char
char

char
char

Size

I

|
|
|
|
!
|
|
|
|

I
I
I
I
|
|
|
I
I

Indx Section

|
|
|
I
|
i
!
|
|
|
!
!
|
I
!
!
|
!
I

0| Text
llInfo
21Infc
31Info
41Info
S1Info
€lInfo
7 | Text
8| Abs
9|Abs
10! Text
111Abs
12 1Abs
131 Abs
141 Text
151Abs
1€ |SDhata
| Text
181 Text
19| Text
20| Text
211|Abs
22| Text
23 |Abs
24| Text
25| Text
26| Text
27 | Text
28iInfo
291Info
301Info
31lInfo
3211Info
331Info
341Info
351Info
361 Info

1 For information on these fields, refer to Chapter 10 of the MIPS Assembly Programmer's Guide

Figure 2.3 Symbol Table in System V Format (option -A)

RISCompiler and C Programmer’s Guide

2-23

ho!
Z
T
L.
D
x
S
~

Object Tools

2

Chapter 2

Determining a File’s Type (file)

The file tool lists the properties of program source, text, object, and other
files. This tool often erroneously recognizes command files as C programs.
It does not recognize Pascal or LISP programs. For more information, see
the file(1) manual page in the RISC/os User’s Reference Manual.
The syntax of the file command is as follows:

file filenamel [filename2 . . filenameN]
Example: -

% file test.o a.out

test.o:mipsel demand paged pure executable not stripped
a.out: mipsel demand paged pureexecutable not stripped
% .

=
)
x=
o
%
2
Q

c

Q
S
o
-
Q
Q
[9))

Determining a File’s Section Sizes (size)

The size tool prints information about the text, rdata, data, sdata, bss, and sbss
sections of the specified object or archive file(s). The contents and format
of section data are described in Chapter 9 of the Assembly Language
Programmer’s Guide. -
The syntax for the size command is as follows:

size [options] filenamel [filenamel..finlenameN]
where:
options is in alphabetic character (listed in Table 2.6) that specifies the
format of the output.
filename{1..N] specify the object or archive file(s) whose properties are to be
displayed. If a file name is not specified, size uses a.out.

For more information, see size(1) in the RISC/os Programmer’s Reference
Manual.

2-24 RISCompiler and C Programmer’s Guide

Linker and Object Tools

Table 2.7: Size Options

| _ size Options
Option Name Purpose

-A Prints data section headers in System V format. The
default is determined by the UNIX version running on
your system.

-B Prints data section headers in BSD format.

-d Prints the section sizes in decimal.

-F Prings the size and permission flags of each loadable
segment and the total of the loadable segments.

-f Prints the size and name of each allocatable section and By
the total allocatable section size. IS S

-n Prints non-loadable segment or non-allocatable section Ry 5
size information. 2o

-0 Prints the section sizes in octal. &3
-V Prints the version of size currently being used.
X Print the section sizes in hexadecimal.

Note: svr3 environment size options are: -A, -B, -d, -0, -V, and -x.
Note: svr4 environment size options are: -F, -f, -n, -0, -V, -x.
Figure 2.4 shows an example of size output.

% cize test
Size of test:27776
Section Size Physical Address Virtual Address
.text 19€40 4194672 4194672
.init 32 4214512 4214512
.rdata 1072 268435456 268435456
.data 46410 266436528 268436528
cdata 592 2684411¢¢ 268441168
ckes 64 265441760 268441760
.bee 152¢€ 2€68441¢8:4 268441824

Figure 2.4 Sample size output

RISCompiler and C Programmer’s Guide 2-25

—
5
x-
)
S
QD
Q

c

@)
S
®
9
\‘
o
Q
%)

Chapter 2

Archiver

An archive library is a file that contains one or more routines in object (.0)
file format; the term object as used in this chapter refers to an .o file that is
partof an archive library file. When a program calls an object not explicitly
included in the program, the link editor (Id) looks for that object in an
archive library. The editor then loads only that object (not the whole
library) and links it with the calling program.

The archiver (ar) creates and maintains archive libraries and has the

following main functions:

¢ Copying new objects into the library.

* Replacing existing objects in the library.

* Moving objects within the library.

. 'glopying individual objects from the library into individual object
e.

The sections that follow describe the syntax of the ar (archiver) command

and give examples of how to use it. See the ar(1) manual page in the RISC/
os Programmer’s Reference Manual for additional information.

The syntax of the ar command is as follows:

ar options [posObject] libName (obisctl . . . obreccdiy
where: '
options is one or more characters (listed in Tables 2.7 and 2.8) that specify
the action that the archiver is to take. When specifying more than one

option character, group the characters together with no spaces between;
don’t place a dash (-) character before the option characters.

posObject is the name of an object within an archive library. It specifies the
relative placement (either before or after posObject) of an object that is to be
copied into the library or moved within the library. A posObject is required
when the mor r options are specified together with the a, b, or i suboptions.

libName is the name of the archive library you are creating, updating, or
extracting information from.

object [1..N] are the names of the object(s) Jr object file(s).

ar Command Examples

To create a new library and add routines to it:
% ar cr libtest.a mcount.o monl.o string.o

Option c suppresses archiver messages during the creation process.
Option r creates the library libtest.a and adds mcount.o, monl.0, and string.o.

To add or replace an object (.0) file to an existing library:

2-26

RISCompiler and C Programmer’s Guide

Linker and Object Tools

% ar r libtest.a monl.o

Option r replaces monl.0 in the library libtest.a. If monl.o doesn't exist, the
new object monl.ois added.

Note: If you specify the same file twice in an argument list, it appears
twice in the archive.

To update the library’s symdef table:
% ar ts libtest.a
Option s creates the symdef table and t lists the table of contents.

Note: After creating or changing a library, use the s option to update the
symdef (symbol definition) table of the archive library. The link editor uses
the symdef table to locate objects during the link process.

To add a new file immediately before a specified file in the library:
% ar rb mcount.o libtest.a new.o

Option radds new.o in the library libtest.a. Option b followed by posObject
mcount.o causes the archiver to place new.o immediately before mcount.o.

2

Object Tools

©
c
©
b
o
x
S
~

Archiver Options

Table 2.7 lists the archiver options. You must specify one of the following
options: d, m, p, q, r, or x. In addition, you can specify the ¢, 1, s, t, and v
options, and any of the archiver suboptions.

RISCompiler and C Programmer’s Guide 2-27

Chapter 2

Table 2.8 Archiver Options
Archiver Options

Option Name Purpose
c Suppresses the warning message that the archiver issues
when it discovers that the specified archive doesn't exist.
d - Deletes the specified objects from the archive.

| Puts the archiver temporary files in the current working
directory. Ordinarily the archiver puts those files in /tmp.
This option is useful when Ampis full.

m Moves the specified files to the end of the archive. If you
want to move the object to a specific position in the archive
library, specify an a, b or i suboption together with the

—_ posObject parameter.
8 3 o]) Prints the specified object(s) in the archive on the standard
8 e output device (usually the terminal screen).
a N q Adds the specified object files to the end of the archive. An
S a existing object file with the same name is not deleted, and
N the link editor continues to use the old file. This option is

similar to the r option (described below) but it is faster. Use
it when creating a new library.

r Adds the specified object files to the archive. This option
deletes duplicate objects in the archive. To add the object
at a specific position in the archive library, specify an a, b,
or i suboption together with the posObject parameter. See
the examples in the preceding section for an example of using
the posObject parameter.
Use the r option when updating existing libraries.
See also the u suboption.

s Creates a symdeffile in the archive. Use this option each
time you create or change the archive library.
If all objects don't have the same endian byte ordering
scheme, the archiver issues an error message and doesn't
create a symdeftable. At least one of the following options
must be specified with the s option: m, p, q, r, or t.

t Prints a table of contents on the standard output (usually
the screen) for the specified object or archive file.
v Lists descriptive information during the process of creating

or modifying the archive. When specified with the t option,
produces a verbose table of contents.

X Copies the specified objects from the archive and places
them in the current directory. Duplicate files are
overwritten. The /ast modified date is the current date,
unless you specify the o suboption. Then the date stamp
on the archive file is the last modified.

2-28 RISCompiler and C Programmer’s Guide

Linker and Object Tools

Table 2.8 lists the ar suboptions.
Table 2.9 Archiver Suboptions

. Archiver Suboptions
Suboption Use With Purpose
Name .
a morr Specifies that the object file follows the
posObject file specified in the ar statement.
b morr Specifies that the object file precedes the
posObject file specified in the ar statement.
i morr Same as b.
o b Used when extracting a file from the

2

archive to the current directory. Forces the
last modified date of the extracted file to
" match that of the archive file.
u r Replaces that existing object
file when the last modified data is earlier
(precedes) that of the new object file.
-z Suppresses symbol table building.

Object Tools

°
T
“
QL
x
RS
-~

RISCompiler and C Programmer’s Guide 2-29

Chapter 2

.y
2
x
9]
~
Q
3
Q

c

Q
&
)

Q
\‘
o

Q
@

2-30 RISCompiler and C Programmer’s Guide

Storage Mapping

C Language

This chapter describes the alignment; size, and value ranges for the C
language, and the storage of data in memory. The following topics are
discussed:

3

* Alignment, Size, and Value Ranges.
* Storage of C Arrays, Structures, and Unions.
» Storage Classes.

o
£
Q
Q
I
S
®
>
R
2
»

RISCompiler and C Programmer’s Guide 31

Chapter 3

Alignment, Size, and Value Ranges

Table 3.1 shows the C compiler size, alignment, and value ranges for the

data types.
Table 3.1 Size, Alignment, and Value Ranges for C Data Types
Value Range
Type Size Alignment Signed Unsigned
hg 32bits Word' 2310 2314 0to22. 1
enum 32 bits Word 2 3 314
short .16 bits Halfword? -32,7681032,767 0to 65,535
char? 8bits Byte -12810 127 0to 255
fioat® 32bits Word! See note.
o double® 64 bits Doubleword® See note.
S
& pointer 32bit Word' 01027 -1
®
< 1 I
D Byte boundary divisible by four.
hs) yte boundary divisible by two.
wQ 3Byte boundary divisible by eight.
4char is assumed to be unsigned, unless the signed attribute is used.
SIEEE single precision. See note following this table for valid ranges.
SIEEE double precision. See note following this table for valid ranges.

Note: Approximate valid ranges for float and double are:

Maximum Value

38
float 3.40282356"10 5
double 1.7976931348623158°10

32 RISCompiler and C Programmer’s Guide

Minimum Values

Denormalized Normalized

float 1.40129846°10° 1.17549429°107
double 4.9406564584124654°10°2* 2.2250738585072012*10

For characters to be treated as signed, use either the compiler option
—signed, or the keyword signed in conjunction with char, as shown in the
following example:

signed char c

The header files limits.h and float.h (found in /usr/include) contain C macros
that define minimum and maximum values for the various data types.
Refer to these files for the macro names and values.

The following sections describe how the data types shown in Table 3.1
affect arrays, structures, and unions.

IS
Storage of C Arrays, Structures, and Unions. %
Q
@
Arrays S
‘)
Arrays have the same boundary requirements as the data type specified g’
for the array. The size of an array is the size of the data type multiplied by S
the number of elements. For example, for the following declaration: 0
double x[2]) (3]
the size of the resulting array is 48 (2*3*8) bytes, where 8 is the size of the
double floating point type).
Structures

Each member of a structure begins at an offset from the structure base.
The offset corresponds to the order and size of the members within the
structure; the first member is at offset 0.

RISCompiler and C Programmer’s Guide 3-3

Chapter 3

The size of a structure in the object file is the size of its combined members
plus padding added, where necessary, by the compiler. The following
rules apply to structures:

* A structure must align on the same boundary as that required by
‘the member with the most restrictive boundary requirement. The
boundary requirements by degree of restrictiveness are: byte,
halfword, word, and doubleword, with doubleword being the most
restrictive.

* The compiler terminates a structure on the same alignment
boundary on which it begins. For example, if a structure begins on
an even-byte boundary, it also ends on an even-byte boundary.

For example, the following structure:
struct s {

int v;
char n{10]};
)
is mapped in storage as follows:

Big Endian

v v v v n0 ni n2 n3
Byte 0 1 2 3 4 5 6 7

[na [ns]n6]nzfnsano] | |

Byte 8 g9 10 1 12 13 14 15

1)
Q
Q
Q
@
<
QD
S|
©
2.
(o]

£

Little Endian
| | [no|n8|n7|n6| ns| nal
Byte 15 14 13 12 11 10 9 8

n3 n2 ni n0 v v v v
Byte 7 6 5 4 3 2 1 0
[[] Paddedbytes

See Appendix A for more information on big and little endian byte
ordering.

Note that the length of the structure is 16 bytes, even though the byte count
as defined by the int v and the char n components is only 14. int has a
stricter boundary requirement (word boundary) than char (byte

3-4 RISCompiler and C Programmer's Guide

boundary); the structure must end on a word boundary (a byte offset
divisible by four). The compiler adds two bytes of padding to meet this
requirement.

For example, if the above structure, struct s, were the element-type of
an array, some of the int v components wouldn’t be aligned properly
without the two-byte pad.

Alignment requirements may require padding in the middle of a structure.
For example, by rearranging the structure in the last example to the

following:
struct s {
char n{(10)
int v;

)
the compiler maps the structure as follows:

Big Endian

n0 ni n2 n3 nd4 n5 n6 n7

Bte o0 1 2 3 4 5 6 7 .cé'l""
n8 n9 Y/ v v v §
Byte 8 9 10 11 12 13 14 15 %
T
S
n
Little Endian
v v v v n9 n8

Byte 15 14 13 12 11 10 9 8

n7 n6 n5 n4 n3 n2 n1 n0
Byte 7 6 5

H
w
N
Y
o

O Padded bytes

Note that the size of the structure remains 16 bytes, but two bytes of
padding follow the n component to align v on a word boundary.

Bit fields are packed from the most significant bit to least significant bit in
a word and can be no longer than 32 bits; bit fields can be signed or
unsigned. The following structure:

RISCompiler and C Programmer’s Guide 3-5

Chapter 3

typedef struct (

unsigned offset :12;
unsigned page :10
unsigned segment : 9;

unsigned supervisor: 1;
"} virtual_address;

is mapped as follows:

Big Endian
Byte 0 3
) offset page - |segment
Bit 31 19 9 1 ’ 0
_ superviso
Little Endian
Byte 3 0
segment page offset
Bt A30 22 12 0
” supervisor
S The compiler moves fields that overlap a word boundary to the next word.
<§ The compiler aligns a nonbit field that follows a bit-field declaration to the
= next boundary appropriate for its type. For example, the following
% structure:
'g. struct {
W aq unsigned a :3;
char b;
short c;
} x;
is mapped as follows:
Big Endian
lal | o | c |
31 28 23 16 0
Little Endian
I c [b | [a]
3 15 7 3
[Padded bits.

RISCompiler and C Programmer's Guide

Unions

Note that five bits of padding are added after unsigned a so that char b
aligns on a byte boundary, as required.

A union must align on the same boundary as the member with the most
restrictive boundary requirement. For example, a union containing char,
int, and double data types must align on a a doubleword boundary, as
required by the double data type.

Storage Classes

Auto

Static

Register

Extern

An auto declaration indicates that storage is allocated at execution time
and exists only for the duration of that block activation.

The compiler allocates storage for a static declaration at compile time. This
allocation remains fixed for the duration of the program. Static variables
reside in the program bss section if they are not initialized, otherwise they
are placed in the data section. :

The compiler allocates variables with the register storage class to registers.
For programs compiled using the —O (optimize) option, the optimization
phase of the compiler tries to assign all variables to registers, regardless of
the storage class specified.

The extern storage class indicates that the variable refers to storage defined
in an external data definition. The compiler does not allocate storage to

extern variable declarations; extern’s are defined and referenced as follows:

Extern is omitted. If an initializer is present, a definition for the symbol is
emitted. Having two or more such definitions among a program’s source
files results in an error at link time or before. If no initializer is present, a
common definition is emitted. Any number of common definitions of the
same identifier may coexist.

RISCompiler and C Programmer’s Guide 3-7

o
<
Q
Q
T
s
@
S
R
2
n

3

€

v
Q
Q
Q
®
<
)
kS|
°
2
Q

Chapter 3

Volatile

Extern is present. The compiler assumes that declaration refers to a name
defined elsewhere. A declaration having an initializer is illegal. If a
declared identifier is never used, the compiler does not issue an external
reference to the linker.

The wolatile storage class is specified for those variables that may be
modified in ways unknown to the compiler. For example, volatile might be
specified for an object corresponding to a memory mapped input/output
port or an object accessed by an asynchronously interrupting function.
Except for expression evaluation, no phase of the compiler optimizes any
of the code dealing with volatile objects.
Note: If a pointer specified as volatile is assigned to another pointer
without the volatile specification, the compiler treats the other pointer as
non-volatile. In the following example:

volatile int *i;

int *j;

(volatile*)j = i;

3108282356*10
the compiler treats j as a non-volatile pointer and the object it points to as
non-volatile, and may optimize it.
The compiler option —uwolatile causes all objects to be compiled as volatile.

RISCompiler and C Programmer’s Guide

Language Interfaces

4

This chapter describes the calling interfaces between C and Pascal and C
and Fortran, including rules and examples for calling and passing
arguments between these languages.

You may need to refer to Chapter 3 for information on C data storage.

Pascal/C Interface

Calling C from Pascal and Pascal from C is fairly simple. Most data types
have natural counterparts in the other language. However, differences
do exist in the following areas:

* Single-precision floating point.

* Procedure and function parameters.

¢ Pascal by-value arrays.

* File variables.

* Passing string data between C and Pascal.
* Passing variable arguments.

o5}
S B
T O
3 ®
S
%m
~ &

RISCompiler and C Programmer’s Guide 41

Chapter 4

These differences are discussed in the following sections.

Single Precision floating point

In function calls, C automatically converts single-precision floating point
values to double precision, whereas Pascal passes single-precision floating
by-value arguments directly. Follow these guidelines when passing
double-precision values between C and Pascal routines:

* If possible, write the Pascal routine so that it receives and returns
double-precision values, or

* If the Pascal routine cannot receive a double-precision value, write a
Pascal routine to accept double-precision values from C, then have
that routine call the single-precision Pascal routine, or

» Use C prototypes to cause floats to be passed directly.

There is no problem passing single-precision values by reference between
C and Pascal.

Procedure and function parameters

C function variables and parameters consist of a single pointer to machine
code, whereas Pascal procedure and function parameters consist of a
pointer to machine code and a pointer to the stack frame of the lexical
parent of the function. Such values can be declared as structures in C. To
create such a structure, put the C function pointer in the first word, and 0
in the second. C functions cannot be nested, and thus have no lexical
parent; therefore, the second word is irrelevant.

A C routine with a function parameter cannot be called from Pascal.

Pascal by-value arrays

C never passes arrays by value. In C, an array is actually a type of pointer;
passing an array passes its address, which corresponds to Pascal by-
reference (VAR) array passing. In practice this is not a serious problem
because passing Pascal arrays by value is not very efficient, and most

-~
3
3
Y
)
®
[}

sbenbue

42 RISCompiler and C Programmer’s Guide

Language Interfaces

Pascal array parameters are VAR. When it is necessary to call a Pascal
routine with a by-value array parameter from C, pass a C structure
containing the corresponding array declaration.

File Variables

The Pascal text type and the C stdio package’s FILE* are compatible.
However, Pascal passes file variables only by reference; a Pascal routine
cannot pass a file variable by value to a C routine. C routines that pass files
to Pascal routines should pass the address of the following structure:

struct pascal_file ({
FILE *stdiofile;
char *name;

}:

Strings

C and Pascal programs handle strings differently. In Pascal, a string is
defined to be a packed array of characters, where the iower bound of the
array is 1, and the upper bound is an integer greater than 1. For example:

var s: packed array([l1..100] of char;

4

o
S O
T o
S ©
S hw
%m
—- &

RI1SCompiler and C Programmer’s Guide 4-3

Chapter 4

The upperbound (100 in this case) is large enough to efficiently handle
most processing requirements. This differs from the C style of indexing
arrays from 0 to MAX-1. In passing an array, Pascal passes the entire array
as specified, padding to the end of the array with spaces.

Most C programs treat strings as pointers to a single character and use
pointer arithmetic to step through the string. A null character (\0 in C)
terminates a string in C; therefore, when passing a string from Pascal to C,
always terminate the string with a null character (chr(0) in Pascal).

Figure 4.1 shows a Pascal routine that calls the C routine atoi and passes the

string s. Note that the routine ensures that the string terminates with a null
character.

type
astrindex = 1 .. 20;
astring = packed array [astrindex] of char;

function atoi(var c: astring): integer; external;

program ptest (output);
var
s: astring;
i: astrindex;
begin
argv(l, s); { Extension to Pascal)

writeln(output, s);

{ Guarantee that the string isnull-terminated
(but may bash the last character if the argument

is too long). “"lbound” and “hbound” are
extensions,

a[hbound(n)]:i chr(0);

for i := lbound(s) to h d(s)do

if s[i] begin then Terminates with

3~ s[i] := chr(0rT character
=
o3 break;
QQ),% end;
R writeln(output, atoi(s));

«Q
® G end.

Figure 4.1: Calling a C Routine from Pascal

44 RISCompiler and C Programmer’s Guide

Language Interfaces

For more information on atoi, see the atof(3-BSD) or strtol(3c-SysV) man
page in the RISC/os Programmer’s Manual. See Figure 4.5 for another
example of passing strings between C and Pascal.

Variable number of arguments

C functions can be defined that take a variable number of arguments
(printf() and its variants are examples). Such functions cannot be called
from Pascal.

Type checking

Pascal checks certain variables for errors at execution time, whereas C
doesn’t. For example, in a Pascal program, when a reference to an array
exceeds its bounds, the error is flagged (if runtime checks aren’t
suppressed). You could not expect a C program to detect similar errors
when you pass data to it from a Pascal program.

Main() Routine

Only one main routine is allowed per program. The main routine can be
written either in Pascal or C. Figure 4.2 shows examples of C and Pascal
main routines:

Pascal o]
program p(input,output); main() |
begin printf(*hi\n!");
writeln(*hi!*); }
end. <

Figure 4.2: main() routines

o))
S @
T O
S @
SR
c%m
RS

RISCompiler and C Programmer’s Guide 4-5

Chapter 4

Calling Pascal from C

To call a Pascal function from C, write a C extern declaration to describe
the return value type of the Pascal routine; write the call with the return
value type and argument types as required by the Pascal routine (see
Figure 4.1).

Return Values

Table 4.1 shows the return value type of a C function that accepts Pascal
return values.

Table 4.1: Declaration of Return Value Types

if Pascal function returns: Declare C function as:

integer, integer32 1 int

cardinal 2 unsigned int

integer16 short

char char

boolean char

enumeration unsigned, or corresponding enum
enum (C's enum are signed)

real ' float

double double

pointer type corresponding pointer type
corresponding structure or

record type - union f;%e 9

array type structure containing corresponding
array type.

1 Applies also to subranges withlowers bound <0.
2Applies also to subranges withlower bounds >=0.

S
S
Q
o
®
w0

abenbue]

To call a Pascal procedure from C, write a C extern declaration of the form

extern void name();

46 RISCompiler and C Programmer’s Guide

Language Interfaces

and then call it with arguments with appropriate types. Table 4.2 shows
the values to pass corresponding to the Pascal declarations. C does not
permit declaration of the formal parameter types, but instead infers them
from the types of the actual arguments passed (see Figure 4.4).

C to Pascal arguments

Table 4.2 shows the C argument types to declare in order to match those
expected by the called Pascal routine.

Table 4.2: Pascal to C Argument Types

If Pascal expects: C argument should be:

integer, integer32 integer or char value -231 . 2%1 - 1

cardinal integer or char value 0..2%2 -1

integer16 char value -2 1?. 215—1

subrange integer or char value in subrange

char integer or char (0..255)

boolean integer or char (0 or 1 only)

enumeration integer or char (0..N-1)

real none ‘

double float or double

procedure struct {void *p(); int *I}

function struct {function-type *f(); int *I}

pointer types pointer type

und <0. := Ibound(s)

Ejf?,’;‘,?ég' pointer to the appropriate type

record types structure or union type L o
oV)

by-reference . TO

a¥ray parameters cormesponding array type ég
[

by-reference—file pointer to the appropriate structure 3 IS

by-value structure containing the corresponding

array parameters array

Note: To pass a pointer to a function in a call from C to Pascal, you must
pass a structure by value; the first word of the structure must contain the
- function pointer and the second word a zero. Pascal requires this format

because it expects an environment specification in the second word.

RISCompiler and C Programmer’s Guide

4-7

Chapter 4

Example: Calling a Pascal function

Figure 4.3 shows an example of a C routine calling a Pascal function.

Pascal routine

function bah (
var f: text;
i: integer
) : double;
begin

ené.ibah);

C declaration of bah
extern double bah();

C call

int i; double d;
FILE *f;
d = bah(&f, i);

Figure 4.3: Calling a Pascal Function from C

Example: Calling a P#scal procedure

Figure 4.4 shows an example of a C routine calling a Pascal procedure.

Pascal routine

type
int_array = array(1l..100] of integer;
procedure zero | -
var a: int_array;
?: integer

begin

S
3
D
o)
D
1)

ené'izero);

abenbue

C declaration
extern void zero();

C call

int a(100); int n;
zero(a, n);

Figure 4.4: Calling a Pascal Procedure from C

48 RISCompiler and C Programmer’s Guide

Language Interfaces

Example: Passing strings to a Pascal procedure
Figure 4.5 shows an example of a C routine that passes strings to a Pascal
procedure, which then prints them; the example illustrates two points:

» The Pascal routine must check for the null character (chr(0)), which
indicates the end of the string passed by the C routine.

* The Pascal routine does not write to output, but instead uses the file-
stream descriptor passed by the C routine.

C routine

/* Send the last command-line argument
to the Pascal routine */

struct pfile (
PILE *stdiofile;
) char *name;

#include <stdio.h>
main(argc, argv)
int argc; char **argv;

{
struct pfile temp;

temp.stdiofile = stdout;
temp.name = “gtdout”;

if (argc != 0)

p_routine(&temp, argvi{argc -1]);
}

Pascal routine
{ We assume the s
will not exceed)\00

ing passed to us by the C program

4

type

procedure p_routine(

astring = packed aXray [1

bytes in length }

100] of char;
r f: text; var c: astring);

var
i: integer; Checks for null
begin character.
i := lbound(c);
while (i < hbound(c))an§ (c[i] <> chr(0)) do
begin
write (£ [i1);
i := 1+ 1;
end; .
ol Writes to file-stream
bt é‘fe“ (£); descriptor passed by C.

Figure 4.5: Passing Strings to a Pascal Procedure from C

RISCompiler and C Programmer’s Guide

4-9

D
> O
T O
S ©
SN -
g o)
- &

=)
3
Q
o
@
1%}

abenbuel

Chapter 4

Calling C from Pascal

Pascal to C arguments

To call a C routine from Pascal, write a Pascal declaration describing the C
routine. Use a procedure declaration or, if the C routine returns a value, a
function declaration. Parameter and return value declarations should
correspond to the C parameter types, as shown in Table 4.3.

Table 4.3: Pascal Parameter Data Type Expected by C

If C expects: Pascal parameter should be:

int ! integer

unsigned int 2 cardinal

short 3 integer or integer16 (-32768..32767)

unsigned short
char4

signed char

float

double

enum type

string (char *)
pointer to function
FILE*

pointer type

struct type
union type
array type

cardinal (or 0..65535)

char

integer (or -128..127)

float

double

corresponding enumeration type

packed character array passed by reference (VAR)
none

none
corresponding pointer type

or corresponding type passed by reference (VAR)
corresponding record type
corresponding record type

corresponding arra ssedby reference
(VAR)po g array type pa y

1Same as types signed int, long, signed long, signed
ame as types unsigned, unsigned long
ame as type signed short

4Same as type unsigned char

Note: A Pascal routine cannot pass a function pointer to a C routine.

410

RISCompiler and C Programmer’s Guide

Language Interfaces

Example: Calling a C procedure

Figure 4.6 shows an example of calling a C procedure from Pascal.

C routine:

void bah (i,
int 1i;
float f;
char *s;

£,

{

)
Pascal declaration:

procedure bah (
i: integer;
f: double;

) external;

Pascal call:
var str: string;

str := "abc*
bah(i, 1.0, str)

var s: packed array[l..100]of char);

s)

Figure 4.6: Calling a C Procedure from Pascal

D
m?{i
T O
S ®©
S0
)
QT -~
—- &

RISCompiler and C Programmer’s Guide

4-11

Chapter 4

Example: Calling a C function

Figure 4.7 shows an example of calling a C function from Pascal.

C routine:

float humbug (f, x)
struct £ (
FILE *stdiofile;
char *name;
}:
struct scrooge *x;

{

}
Pascal declaration:
type
scrooge_ptr = “scrooge;
function humbug (
var f£f: text;
X: scrooge_ptr
) : double:
external;
Pascal call:

var sp: scrooge_ptr;
X := humbug(input, sp);

Figure 4.7: Calling a C Function from Pascal

S
3
QD
9]
4]
%7}

abenbue

412 ‘ : RISCompiler and C Programmer’s Guide

Language Interfaces

Example: Passing arrays

Figure 4.8 shows an example of passing an array to a C function from
Pascal.

C routine:.

int sum (a, n)
int al[];
unsigned n;

A

)

Pascal declaration:
type
int_array = array{0..100) of integer;
function sum (
var a: int_array;
n: cardinal
): integer:
external;
Pascal Call:

var samples: int_array;

avg := sum(samples,hbound(samples) + 1) /
(hbound (samples)+1) ;

Figure 4.8: Passing Arrays Between Pascal and C

4

[¢6}
¥
T O
S ®
O
%)
- &

RISCompiler and C Programmer’s Guide 4-13

Chapter 4

FORTRAN/C Interface

This section discusses items to consider when writing a function call
between FORTRAN and C.

Procedure and Function Names

Invocations

=)
3
joV)
o
®
»

abenbueq

In calling a FORTRAN subprogram from C, the C program must append
an underscore (_) to the name of the FORTRAN subprogram. For example,
if the name of the subprogram is matrix, then refer to it as matrix_. When
FORTRAN is calling a C function, the name of the C function must end
with an underscore.

Note that only one main routine is allowed per program. The main routine
can be written in either C or FORTRAN. Figure 4.9 shows an example of a
C and a FORTRAN main routine.

(o] FPORTRAN
main() (write(6,10)
printf(*hit\n"); 10 format(‘hi!’)
} end

Figure 4.9: Cand Fortran main() routines

Invoke a FORTRAN subprogram as if it were an integer-valued function
whose value specifies which alternate return to use. Alternate return
arguments (statement labels) are not passed to the subprogram but cause
an indexed branch in the calling subprogram. If the subprogram is not a
function and has no entry points with alternate return arguments, the
returned value is undefined. The FORTRAN statement

call nret(*1l,*2,*3)
is treated exactly as if it were the computed goto
goto (1,2,3), nret()

.

4-14

RISCompiler and C Programmer’s Guide

Language Interfaces

A C function that calls a FORTRAN subprogram can usually ignore the
return value of a FORTRAN subroutine; however, the C function should
not ignore the return value of a FORTRAN function. Figure 4.10 shows
equivalent function and subprogram declarations in C and FORTRAN
programs:

C Function Declaration FORTRAN Declaration

double dfort_() double precision function dfort ()
float rfort()

int ifort_() integer function ifort()
int ifort_{() logical function lfort()

real function rfort ()

Figure 4.10: C and FORTRAN Function and Subprogram Declarations

Arguments

Note the following:

* Avoid calling FORTRAN functions of type complex and character from
C

* You cannot return complex types between C and FORTRAN.

* A character-valued FORTRAN subprogram is equivalent to a C
language routine with two extra initial arguments: a data address
and a length.

Thus:

character*15 function g(...)
is equivalent to:

char result([];

long int length;

g_(result, length, ...)
and could be invoked in C by:

char chars{15];
g_(chars, 1%5);

o
S @
T O
3 ®©
O
S o
Q -~
~ &

The following rules apply to arguments passed between FORTRAN and C:

¢ All arguments must be passed by reference. That is, the argument
must specify an address rather than a value. Thus, to pass constants
or expressions, their values must be first stored in variables and the
address of the variable passed.

RI1SCompiler and C Programmer’s Guide 4-15

Chapter 4

* When passing the address of a variable, the data representations of
the variable in the calling and called routines must correspond, as
shown in Table 4.4.

Table 4.4: Equivalent FORTRAN and C Data Types

FORTRAN Cc

integer*2 x short int x;

integer x long int x; or just int x;
logical x long int x;

real x float x;

double precision x double x;

complex x struct {(float real, imag; }x;
double éomplex X struct { double dreal, dimag;)} x;
character*6 x char x(6];

Note that FORTRAN requires that each integer, logical, or real variable
occupy 32 bits of memory.

¢ The FORTRAN compiler may add items not explicitly specified in
the source code to the argument list. The compiler adds the
following items under the conditions specified:

¢ Destination address for character functions, when called.

¢ Length of a character string, when an argument is the address of a
character string.

When a C program calls a FORTRAN subprogram, the C program must
explicitly specify these items in its argument list in the following order:

a. Destination address of character functions.

b. Normal arguments (addresses of arguments or functions).

=)
3
o
Q
®
»

abenbueq

c. Length of character strings. The length must be specified as an abso-
lute value or integer variable.

4-16 RISCompiler and C Programmer’s Guide

Language Interfaces

The next two examples illustrate these rules.

Example 1: Figure 4.11 shows how a C routine must specify the length of a
character string (which is only implied in a FORTRAN call).

FORTRAN call to sam*

external f Length is implicit.
character*7 s ‘

integer b(3)

CGall sam(f, b(2), s)

C call to sam®

int £0); Length of s is explicit.
char s[7];
long int b[3]; '(

* sam is a routine written in FORTRAN.

Figure 4.11: Character String length in C and FORTRAN

4

(o)
> Q
T O
3 ®©
S
%m
—- &

RISCompiler and C Programmer’s Guide 4-17

Chapter 4

Example 2: Figure 4.12 shows how a C routine can specify the destination
address of a FORTRAN function (which is only implied in a FORTRAN
program).

FORTRAN Callto f*

external f
character*10 f,g

g = f() ¢——n-r g&aggggfs(g),length(f»

CCalitof*

char s[10]
f_(&s,10); .a———— Address and length explicit.

Function f*

character*10 function f()

£ = '0123456789' g——— Moves value to location

zggurn at passed address.

*f is a function written in FORTRAN.

Figure 4.12: Address ofa FORTRAN Function

Array Handling

FORTRAN stores arrays in column-major order with the leftmost
subscript varying the fastest. C, however, stores arrays in the opposite
arrangement, with the rightmost subscripts varying the fastest, which is
called row-major order. Figure 4.12 shows the layout of FORTRAN arrays
and C arrays:

S
(¢4}
Ry
9]
®
)

abenbueq

FORTRAN

integer t(2,3)
t(1,1), t(2,1), t(1,2), t(2,2), ¢t(1,3), t(2,3)
C
int t[2]([3
t[0][0],

1;
t[01(1], t[0]([2), €(1]1(0]), t(1]([1), t[1](2)

Figure 4.13: Array Storage in C and FORTRAN

418 RISCompiler and C Programmer’s Guide

Language Interfaces

Note that the default for the lower bound of an array in FORTRAN is 1,
whereas it is 0 in C.
When a C routine uses an array passed by a FORTRAN subprogram, the

dimensions of the array and the use of the subscripts must be
interchanged, as shown in Figure 4.14.

FORTRAN caller: ' C called routine:
integer void
call p(a,™ ™) P_(a, i, "

write(6,10)ajl, 3)
10 format (1x,19

stop

end

int *

Dimensions ind subscripts
are reversed.

e 1 is subtracted from
the indices. jand i are
pointers to integers.

Figure 4.14: Array Subscripts and Dimensions

The FORTRAN caller prints out the value 99. Note the following:

Because arrays are stored in column-major order in FORTRAN and row-
major order in C, the dimension and subscript specifications are reversed.

In FORTRAN, the lower-bound default is 1, whereas it is 0 in C; therefore,

1 must be subtracted from the indices in the C routine. Also, because
FORTRAN passes parameters by reference, the *j and *p are pointers used
in the C routine.

o)
S
T O
S ®©
S
%m
~ &

Accessing Common Blocks of Data

The following rules apply to accessing common blocks of data:

* FORTRAN common blocks must be declared by cominon statements;
C can use any global variable. Note that the common block name in
C (sam_) must end with an underscore.

RISCompiler and C Programmer’s Guide 4-19

Chapter 4

* Data types in the FORTRAN and C programs must match unless you
desire equivalencing. If so, you must adhere to the alignment
restrictions for the data types described in Chapter 3.

* [f multiple routines define the same common block with unequal
lengths, the largest of the sizes is used to allocate space.

* Unnamed common blocks are given the name _BLNK__.

Figure 4.15 shows examples of C and FORTRAN routines that access
common blocks of data.

C FORTRAN
struct’' S (int i; float j;})r_; subroutine sam()
main() { common /r/i,r
sam_(); i = 786
printf("%d %f\n", r_.i, r_.j); T = 3.2

return
)

Figure 4.15: Accessing Common Data in C and FORTRAN

The C routine prints out 786 and 3.2.

=}
3
oM
(9]
o
1)

abenbue

4-20 RISCompiler and C Programmer’s Guide

Improving Program
Performance

This chapter describes tools that can help reduce the execution time of
programs; the following topics are covered:

* Profiling and how to use it to isolate those portions of code where
execution is concentrated and provide reports that indicate where
improvements might be made.

* How to use Optimization and examples showing optimization
techniques.

¢ Limiting the Size of Global Data Area and how, through controlling
the size of variables and constants that the compiler places in this
area, program performance can be improved.

Introduction

The best way to produce efficient code is to follow good programming
practices:

¢ Choose good algorithms and lcave the details to the compiler.

5

* Avoid tailoring programs for any particular release or quirk of the
compiler system. :

@
O
<
©
S
S)

=
3

Q

g
T
e
>
e
Q
o
£
>
N
Q
£

RISCompiler and C Programmer’s Guide 5-1

g

o)
©
A
S
3
®
3
S
®

weiboiqd buinoidw

Chapter 5

Profiling

Overview

As technological advances cause MIPS to make changes to the current
compiler system, anything tailored now might negatively affect future
program performance. Moreover, tailored code might not work at all with

new versions of the system. Report any possible compiler inefficiencies
directly to MIPS.

This section describes the concept of profiling, its advantages and
disadvantages, and how to use the profiler.

Profiling helps find the areas of code where most of the execution time is
spent. In the typical program, execution time is confined to relatively few
sections of code; it’s profitable to concentrate on improving coding
efficiency in only those sections.

Profiling provides the following information:

* Pc sampling (pc stands for program counter), which highlights the
execution time spent in various parts of a non-shared program.

You obtain pc sampling information by link editing source modules
using the —p option and executing the resulting object, which
generates profile data in raw format.

* Invocation counting, which gives the number of times each
procedure in the program is invoked.

¢ Basic block counting, which measures the execution of basic blocks
(a basic block is a sequence of instructions that is entered only at
the beginning and which exits only at the end). This option
provides statistics on individual lines.

You obtain invocation counting and basic block counting
information using the pixie program. Pixie creates a program
equivalent to your program containing additional code that counts
the execution of each basic block. Executing pixie and the
equivalent program generates the profile data in raw format.

Using the prof program, you can create a formatted display of the raw
profile data. The output can indicate where to improve code, substitute
better algorithms, or substitute assembly language. The output also
indicates if the program has exercised all portions of the code. The pixstats
program can also be used to analyze this data.

5-2

RISCompiler and C Programmer’s Guide

Improving Program Performance

Figure 5.1: shows an example of output produced by a program compiled
with the —p compiler option; prof was used with the —procedure option to
produce the output.

Procedures: - PC Sampling
Profiler option: -procedure

-p[rocedures] using pc-sampling;
sorted in descending orderby total time spent in each procedure;
* unexecuted procedures excluded

- e - = - - = - = - == - = == -

Each sample covers 8.00 byteks) for 4.2% of 0.2400 seconds

$time seconds cum % cum sec procedure (file)

25.0 0.0600 25.0 0.06 main (fixfont.p)

16.7 0.0400 41.7 0.10 write_string (../textoutput.c)
12.5 0.0300 54.2 0.13 write_char (../textoutput.c)
(}2.5 0.0300 66.7 0.16 write_integer (../textoutput.c))

Figure 5.1: Profiler Listing for'PC Sampling

The highlighted line in the figure above shows:

a. .03 seconds or 12.5% of execution time was spent in write_integer.

b. .16 seconds or 66.7% of total execution time was spent in main,
write_string, write_char, and write_integer routines combined.

¢. The name of the source file for write_integer is ../ textoutput.c.

Figures 5.2 through 5.6 show raw data produced by pixie. The prof option
used is given at the top of each figure.

5

o)
O
<
T
S
(9]
‘g
Q

E
2
S
Q
Q
o
&
>
S
A~
Q
S

RISCompiler and C Programmer’s Guide 5-3

Chapter 5

Procedures: - invocation Counting
Profiler option: -pixie -invocation

* -i[nvocations] using basic-block counts; *
* the called procedures are sorted in descending order by number of *
* calls; a ‘?’ in the columns marked ’'#calls’ or ‘line’ means that data *
* is unavailable because partof the program was compiled without *
* profiling. *

called procedure #calls %calls from line calling procedure (file):

(Ceoln 4017 81.51 37 main {pix.p))
452 9.19 25 maln (pix.p)
‘428 8.69 19 main (pix.p)
30 0.61 17 main (pix.p)
write_char 4014 81.75 43 main (pix.p)

Figure 5.2: Profiler Listing for Procedure Invocations

The circled text in the figure above shows:

a. eoln was called 4,017 times from line 37 of main. This represented
81.51% of the calls to eoln.

b. The source code for main is the file pix.p.

Procedures: Basic Block Counts
Profiler option: -pixied -procedures

* -plrocedures] using basic-block counts; *
* gsorted in descending order by the number of cycles executed in each *
* procedure; unexecuted procedures are excluded *

148137751 cycles -ag————— | Total number of program cycles.

cycles %cycles cum % cycles bytes procedure (file)
/call /line

48071708 32.45 32.45 34 32 write_char (../textoutput.c)
42443503 28.65 61.10 42443503 26 main (fixfont.p)

(26457936 17.8€ 78.96 30 44 eoln (../textinput.c))
20662326 13.95 92.91 23 27 read_char (../textinput.c)

o]
©
A
S
)
3
o
S
)
@

Figure 5.3: Profiler Listing for Procedures Based on Basic Blocks Counts

S
weiboltq buinoiduwy

5-4 RISCompiler and C Programmer’s Guide

Improving Program Performance

The circled text in Figure 5.3 shows:

a. The statistics describe calls to eoln compiled from the source file
textoutput.c.

b. eoln used 26,457,936 cycles which represented 17.86% of the total pro-
gram cycles.-

c. The cumulative total of cycles used by write_char, main and eoln is
78.96%.

d. eoln used an average of 30 cycles per call and 44 bytes per line.

Procedures: - Basic Block Counts (with clock time)

Profiler option: -pixie -proceduré -clock

* ~-pirocedures! using basic-block counts; >
scrted in descending crder by the number of cycles executed in each
* rprocedurs; unexecuted procedures are excluded- *
selaTTIL :yrles(ﬁi.fl": ceccnds at £.00 megahertzD
cvcles &cycles cum % égﬁonds cycles bytes procedure (file!
/call iline
e Lo.4T 0 Ll.4% [SRaais 34 32 write_char (.. /textoutput.c!
[P S A 5.2054 2€ main (fixfont.p)
cf T e 7e.9¢ 3.3072 30 44 eoln {../textinput.c)
=€ 12088 YL.91 2.RE2E 23 27 read_char ../textinput.c)
P .97 9t.EC G.23¢E8 6z & write_chars (../textoutput.c)
Ge 2.4 98.30 0.459¢ 133 14 write_integer (../textoutput.c)
5¢ 1.0€ 99.3¢ 0.1967 29 16 write_string (../textoutput.c)
00 0.24 99.61 0.0453 26 67 readln (../textinput.c)
t2 (.1¢ 99.¢g0 K{LOBEg) 20 30 writeln (../textoutput.c)

Figure5.4: Profiler Listing for Procedures Based on Basic Blocks Counts (with clock times)

The listing in Figure 5.4 contains the same information as the listing shown
in Figure 5.3, and contains the number of seconds spent in each procedure.

The circled text in the figure above shows that the profiler computes the
time in seconds based on the machine speed specified in the -clock option.

RISCompiler and C Programmer's Guide 5-5

5

o
O
<
T
E
P
S
T
o
a

S
©
b
S
S
.
Q
o)
s
>
o
L
Q
S

Chapter 5

Heavy - Basic Block Counts
Profiler option: -pixie -heavy

-h{eavy] using basic-block counts; *
sorted in descending order by the number of cycles executed in each *
* line; unexecuted lines are excluded *
procedure (file) line bytes cycles % cum$
write_char (../textoutput.c) 120 88 28276478 19.09 19.09
eoln (../textigput.c) 31 116 22808688 15.40 34.48
main (fixfont.p) 42 92 19069136 12.87 47.36
(read_char (../textinput.c) 59 5€ 9861982 6.67 54.03)
Mmain (LiXLont.p) 13 30 B5E3512 5.79 59.82
write_char (../textoutput.c) 105 20 7069725 4.77 64.59
read_char (../textinput.c) 60 28 5390172 3.64 €8.23
main (fixfont.p) 37 20 4489680 2.03 71.26

Figure 5.5: Profiler Listing for Heavy Line Usage

The circled text in the figure above shows:

a. Line 59, which is located in procedure read_char and compiled from
source file textoutput.c is the fourth most heavily used line.

b. Line 59 has 56 bytes of code and used 9,881,982 cycles, or 6.67% of the
total program cycles.

c. Lines 120, 31, 42 and 59 combined executed 54.03% of the total
program cycles.

Y]
©
)
S
3
o
3
)
@

)
weiboid buinosdwy

5-6 RISCompiler and C Programmer’s Guide

Improving Program Performance

Lines - Basic Block Counts
Profiler option: - pixie - lines
* -1l{ines) using basic-block counts; d
* grouped by procedure, sorted by cycles executed per procedure; *
* ’'?’ means that because a procedure was compiled without profiling, =
* we lack line number information for it *
rocedure (file) line bytes cycles %cycles
(Gice_char {../textoutput.c) 105 20 7069725 4.7N
106 8 2827890 1.91
111 & 2827890 1.91
10¢ 4 141294¢% 0.95%
112 16 1413945 0.95
113 72 < .00
115 iz 4241825 Z.E€
11¢ 64 (! 0.00
\\‘ 117 28 0 0.0E’/
120 8¢& 26276478 19.0¢
main (LiXIonc.p) 1 &0 1% C. o0
12 32 & ¢.o0
13 24 € 0.0
14 24 € 0.G0
15 4 1 0.00
1€ 40 8490 0.01
17 24 16€ 0.00

Figure 5.6: Profiler Listing for Line Information

The circled text in the figure above shows:

a. Thestatistics to the right describe lines of code in procedure write_char
compiled from the source file textoutput.c.

b. Line 105 in write_char contains 20 bytes of code; it executed 7,069,725
times using 4.77% of the total program cycles.

¢. Line 117 in write_char contains 28 bytes of code; no cycles were record-
ed for execution.

RISCompiler and C Programmer’s Guide 5-7

£
T
oy
S)
S
.
Q
o)
<
>
o
A
Q
S

5

Q
O
c
@
&
S
T
O
Q

Chapter 5

How Basic Block Counting Works

To obtain basic block counting data:

1. Compile and link-edit. Do not use the —p option. For example:
cc -c myprog.c
cc non_shared -o myprog myprog.o

2. Run the profiling program pixie. For example:
pixie -o myprog.pixie myprog
Pixie creates a program equivalent to myprog containing additional
code that counts the execution of each basic block. Pixie also
generates a file (myprog.Addrs) that contains the address of each of

the basic blocks. For more information, see the pixie(1) manual
page in the RISC/os User’s Reference Manual.

3. Execute myprog.pixie, which was generated by pixie. For example:
myprog.pixie '
This program generates the file myprog.Counts, which contains the
basic block counts.

4. Run the profile formatting program prof, which extracts information
from myprog. Addrs and myprog.Counts, and prints it in an easily read-
able format. For example:

prof -pixie myprog myprog.Addrs myprog.Counts
Note: Specifying myprog.Addrs and myprog.Counts is optional; pixie
searches by default for files with names of the form:

program_name .Addrs and program_name .Counts.

You can run the program several times, altering the input data, and
create multiple profile data files. See Averaging Prof Results in this
chapter.

The steps for obtaining basic block count information are shown in Figure
5.7.

You can include or exclude information on specific procedures within a
program using the —only or —exclude options to prof (see Table 5.1). You can
also run pixstats to generate a detailed report on opcode frequencies,
interlocks, a mini profile, and more.

)
)
N
Qo
X
3
QO
S
\»)
@®

wesboid buinosdwy

S

5-8 RISCompiler and C Programmer's Guide

Improving Program Performance

Step 1
Compile and link. '\
program
Step 2
Execute pixie \\ ,
E program.Addrs
Step 3 program pixie
Execute
program.pixie \
ogram,Counts

Step 4 i/
Execute prof

prof option: . prof options:
-pixie . pixie -feedback

For the programmer Forthe compiler
A'fornf\?ned Iiséing A teedback file used by the driver —cord
ot profile statisticS. option in maximizing cache efficiency. See

Reducing Cache Conflicts in this chapter for
more information.

5

Figure 5.7: Obtaining Basic Block Count Information

E
3
S
SO
15
o))

s E
N

SRS
L,

Qo
gQ

RISCompiler and C Programmer’s Guide 5-9

Chapter 5

Averaging Prof Results

A single run of a program may not produce the required results. You can
repeatedly run the version of the program created by pixie, varying the
input with each run; then use the resulting .Counts files to produce a
consolidated report. For example:

1. Compile and link-edit; do not use the —p option:
cc -C myprog.c
cc -0 myprog myprog.o

2. Run the profiling program pixie, as follows:

pixie -o myprog.pixie myprog

This command produces the myprog.Addrs file to be used in Step 4,
as well as the modified program myprog.pixie.

Run the profiled program as many times as desired. Each time the
program is run, a myprog.Counts file is created; rename this file
before executing pixie again. For example:

myprog.pixie < inputl > outputl

mv myprog.Counts myprogl.Counts

myprog.pixie < input2 > output2

mv myprog.Counts myprog2.Counts

myprog.pixie < input3 > output3

mv myprog.Counts myprog3.Counts

3. Run prof to create the report as follows:

prof -pixie myprog myprog.Addrs myprog([123].Counts

prof averages the basic block data in the myprogl.Counts,
myprog2.Counts, and myprog3.Counts files to produce the profile
report.

PC-Sampling
To obtain pc-sampling data on a program:’
1. Compile and link-edit using the —p option, as follows:

cc -c myprog.c

CC -p -0 myprog myprog.o

Note that the -p profiling option must be specified during the link
editing step to obtain pc sampling information.

el
©
S
S)
3
QD
3
S
®

weiboid buinosduwy

)

5-10 RISCompiler and C Programmer's Guide

Iimproving Program Performance

2. Execute the profiled program. During execution, profiling data is
saved in the profile data file (the default is mon.out).

myprog

You can run the program several times, altering the input data, and
create multiple profile data files. See the section Averaging Prof
Results in this chapter.

3. Run the profile formatting program prof, which extracts information
from the profile data file(s) and prints it in an easily readable format.
prof -procedure myprog mon.out

For more information on prof, see prof(1) in the RISC/os User’s
Reference Manual.
You can include or exclude information on specific procedures within
your program by using the —only or —exclude profiler options (see Table
5.1).

Figure 5.8 shows the steps required to obtain pc sampling information.

Step 1
Compil —_ . .
-pog?)‘t)i'o%r Compile and link
Step 2
Execute program
(collect data)
Step 3
°p Pro(ﬁle Data Flle
prof format Run prof mon.out)

option(s) ———

(format data) -—

—

For the compiler

A feedback file used by the driver —cord
option in maximizing cache efficiency.
See Reducing Cache Conflicts in this
chapter for more information.

For the programmer

A formatted listing
of profile statistics.

5

Figure 5.8: Obtaining PC Sampling Data

E
S
S 3
5§
2E
= o
> O
e x
Qo
E(l

RISCompiler and C Programmer's Guide 5-11

g

e
3
)
X
3
QD
3
o
9]

wesboid bunosdwy

Chapter 5

Creating Multiple Profile Data Files

When a program is run using pc-sampling, raw data is collected and saved
in the profile data file mon.out. If you wish to collect profile data in several
files, or specify a different name for the profile data file, set the
.environment variable PROFDIR as follows:

C Shell
setenv PROFDIR string
Bourne Shell
PROFDIR = string; export PROFDIR

The results are saved in the file string /pid.progname, where pid is the
process id of the executing program and progname is its name as it appears
in argv[0]; string is the name of a directory you must create before running
the program.

Running the Profiler (prof)

The profiler program converts the raw profiling information into either a
printed listing or an output file for use by the compiler. To run the
program, enter prof followed by the optional parameters indicated below:
prcf {opuons) {pname) { |profile_filename. . .| | [pname . AGdrs pname .Counts: }
where

options is one of the keyword or keyword abbreviations shownin Table5.1.
You can specify either the entire name or the initial character of the option.

pname specifies the name of the program. The default file is a.out.

profile_filename specifies one or more files containing the profile data
gathered when the profiled program executed. If multiple files are
specified, prof sums the statistics in the resulting profile listings.

pname Addrs is produced by running pixie and pname.Counts is produced by
running the pixie-modified version of the program.

The default for profile_filename is determined as follows:

 If you don’t specify profile_filename, the profiler looks for the mon.out
file; if this file doesn’t exist, it looks for the profile input data file(s)
in the directory specified by the PROFDIR environment variable (see
the section Creating Multiple Profile Data Files).

 If you don't specify profile_filename, but do specify -pixie, then prof
looks for pname.Addrs and pname.Counts and provides basic block
count information if these files are present.

5-12

RISCompiler and C Programmer’s Guide

Improving Program Performance

The -merge option can be used when you have multiple profile data files;
this option merges the data into one file. See Table 5.1 for information on
the —merge option. 4

Table 5.1: Options for the Profile List Program (prof), 1 of 3

Profile List Program (prof) Options

Name Result

. Displays the time spent in each procedure.
plrocedures] See Figure 5.3 for an example of the output.

—pixie Basic block counting. Indicates that information is to be
generated on basic block counting, and that the Addrs and Counts
file produced by pixie are to be used by defautt.
See Figure 5.3 through 5.6 for examples of sample output.

-i[nvocations]) Basic block counting. Lists the number of times each procedure is
invoked. The —exclude and —only options described below apply to
called routines, but not to callers.

-l[ines] See Figure 5.2 for sample output.
Basic block counting. List statistics for each line of source code.
See Figure 5.6 for sample output.

-o[nly) proc_name Reports information on only the procedure specified by
procedure_name, rather than on the entire program. You may
specify more than one —o option. If you specify uppercase -O, prof
uses only the named procedure(s), rather than the entire program, as
the base upon which it calculates percentages.

-e[xclude) Excques information on the procedure(s) (and their descendants)
procedure_name specified by procedure_name. If you specify uppercase -£ for

- Exclude, prof also omits that procedure from the base upon which it
calculates percentages.

If you use one or more —exclude options, the profiler omits the
specified procedure and its descendants from the listing.

-z[ero) Basic block counting. Prints a list of procedures that are never
invoked.

RISCompiler and C Programmer’s Guide 5-13

E
©
~
S)
e
Q
>
<
N
S
~
Q
S

5

3
c
@
:
E
Q

Chapter 5

Table 5.1: Options for the Profile List Program (prof), 2 of 3

Profile List Program (prof) Options

Name ' Result
. Allows you to condense output listings by truncating unwanted lines.
:g[g“g 2% You can truncate by specifying n in one of three ways:
-q{uit] ncum% n nis an integer. All Lines after n line are trun-
cated.
n% n is an integer followed by the percentage

sign. All lines after the line containing n%
calls in the %calls column are truncated.

ncum% nis an integer followed by the characters cum
(for cumulative) and a percentage sign. All
lines after the line containing ncum% calls in
the cum% column are truncated.

Below are three examples of using the —q option. Any one of the
three specifications shown below would eliminate the items in the

box below.
-prof -q 4
-prof -q 13%
-prof -q 92cum%
calls $%calls cum$
48071708 32.45 32.45 6.0090 4
42443503 28.65 61.10 5.3054
26457936 17.86 78.96 3.3072
20662326 13.95 92.91 2.5828
4307932 2.91 95.82 0.5385
3678408 2.48 98.30 0.4598
1573858 1.06 99.36 0.1967
3 362700 0.24 99.61 0.0453
ST 279002 0.19 99.80 0.0349
32 251152 0.17 99.97 0.0314
Q<
53 30283 0.02 99.99 0.0038
S < 13391 0.01 100.00 0.0017
S 2923 0.00 100.00 0.0004
N
0 3

5-14 RISCompiler and C Programmer’s Guide

Improving Program Performance

Table 5.1: Options for the Profile List Program (prof), 3 of 3

Profile List Program (prof) Options

Name . Result

-hleavy] Basic block counting. Same as the ~/ines option, but sorts
the lines by their frequency of use.

See Figure 5.5 for a sample output listing.

-cflock] n Basic block counting. Lists the number of seconds spent in
each routine, based on the CPU clock frequency n, ex-
pressed in megahertz; n defaults to 8.0 of omitted. Never
use the default if the next argument program_name or pro-
file_name begins with a digit.

See Figure 5.4 for a sample output listing.

-t[estcoverage] Basic block counting. Lists line numbers containing code
that is never executed.

-m[erge]filename This option is useful when multiple input files of profile data
(normally in mon.out) are used. The option causes the pro-
filer to merge the input files into filename, making it possible
to specify the name of the merged file (instead of several file
names) on subsequent profiler runs.

—fleedback] filename Produces afile used by the driver —cord option to maximize
cache efficiency. See Reducing Cache Conflicts in this
" chapter for details.

Optimization

This section describes the compiler optimization tools and their benefits,
the implications of optimizing and debugging, and the major optimizing
techniques.

5

Global optimizer

The global optimizer is a single program that improves the performance of
RISCompiler object programs by transforming existing code into more
efficient coding sequences. Although the same optimizer processes

E
S
S 3
15
2E
N
> O
SIS
QL
EQ

RISCompiler and C Programmer's Guide 5-15

Chapter 5

optimizations for all languages, it does distinguish between the various
languages supported by the RISCompiler system to take advantage of the
different language semantics involved.

The compiler system performs both machine-independent and machine
dependent optimizations. RISComputers and other machines with RISC
architectures provide a better target for machine dependent optimizations;
the low-level instructions of RISC machines provide more optimization
opportunities than the high-level instructions in other machines. Even
optimizations that are machine-independent have been found to be
effective on machines with RISC architectures. Although most of the
optimizations performed by the global optimizer are machine
independent, they have been specifically tailored to the RISC/os
environment.

Benefits

The primary benefits of optimization are faster running programs and
smaller object code size. However, the optimizer can also speed up
development time. For example, coding time can be reduced by leaving it
up to the optimizer to relate programming details to execution time
efficiency. This allows you to focus on the more crucial global structure of
your program. Programs often yield optimizable code sequences
regardless of how well a program is written.

Optimization and Debugging

Optimize your programs only when they are fully developed and
debugged. Although the optimizer doesn’t alter the flow of control within
a program, it may move operations around so that the object code doesn't
correspond to the source code. These changed sequences of code may
create confusion when using the debugger.

Optimization and Bounds Checking

The compiler option —C, which performs bounds checking in Pascal and
Fortran programs, inhibits some optimizations. Therefore, unless bounds
checking is crucial, do not specify the ~C option when optimizing a Pascal
or Fortran program.

Loop thimization

Optimizations are most useful in code that contain loops. The optimizer
moves loop-invariant code sequences outside loops so that they are
performed only once instead of multiple times. Apart from loop-invariant

e
)
=y
Q
I
3
o]
3
o
®

weiboiq buinoidw)

S

5-16 RISCompiler and C Programmer’s Guide

Improving Program Performance

code, loops often contain loop-induction expressions that can be replaced
with simple increments. In programs composed of many loops, global
optimization can often reduce the running time by half.

The following examples show the results of loop optimization. The source
code below was compiled with and without the -O compiler optimization
option:

void
left (a, distance)
char all;
int distance;
{
int j, length;

length = 'strlen(a) - distance;

for (3 = 0; j < length;j++)
alj)] = a[j + distance];

}

Figure 5.9 shows the unoptimized and optimized code produced by the
compiler. Note that the optimized version contains fewer total
instructions and fewer instructions that reference memory. Wherever
possible, the optimizer replaces load and store instructions (which
reference memory) with the faster computational instructions that
perform operations only in registers.

5

&
S
S ©
£ O
15
o
<€ E
> O
° =
SEO)
Ell

RISCompiler and C Programmer's Guide 517

Chapter 5

Unoptimized:

loop is 13 instructions long using 8 memory references.

8 for (j=0; j<length; j++)
swW $0, 36(Ssp) # 3 =
ble $24, 0, $33 # length >= j
§32:
9 alj] = a[j+distance];
1w $25, 36($sp) # 3
lw $8, 44 (S$sp) # distance
addu $9, 825, $8 # j+distance
1w $10, 40(S$sp) # address of a
addu $11, $10, $9 # address of a[j+distance]
lbu - $12, 0(S$11) # a[j+distance]
addu $13, $10, $25 # address of al[j]
sb $12, 0($13) # alj]
lw $14, 36($sp) # j
addu $15, $14, 1 # j+1
sw $15, 36(S$sp) # J++
lw $3, 32($sp) # length
blt $15, $3, 832 # j < length
$33:
Optimized:

loop is 6 instructions long using 2 memory references.

8 for (j=0; j<length; j++)
move $§5, S0 # 3 =0
ble $4, 0, $33 # length >= j
move $2, $1e6 # address of alj]
addu $6, 816, $17 # address of a[j+distance]
$§32:
9 a[j] = a[j+distance];
lbu , 0(86) # a[j+distance]
sb $3, 0(82) # alj]
addu §5, 65, 1 # J++
addu $2, 82, 1 # address of next alj]
addu $6, $6, 1 # address of next a[j+distance]
blt §5, $4, $32 # j < length
333: # address of nextal[j+distance]

Figure 5.9: Optimized and Unoptimized Code

Re]
@
Iy
o
]
3
Q
3
@)
©

weiboid buinosdw

S

5-18 RISCompiler and C Programmer's Guide

Inproving Program Performance

Register Allocation

MIPS RISComputer architecture emphasizes the use of registers.
Therefore, register usage has significant impact on program performance.
For example, fetching a value from a register is significantly faster than
fetching a value from storage. Thus, to perform its intended function, the
optimizer must make the best possible use of registers.

In allocating registers, the optimizer selects those data items most suited
for registers, taking into account their frequency of use and their location
in the program structure. In addition, the optimizer assigns values to
registers se that their contents move minimally within loops and during
procedure invocations.

Optimizing Separate Compilation Units

The optimizer processes one procedure at a time. Large procedures offer
more opportunities for optimization, since more inter-relationships are
exposed in terms of constructs and regions. However, because of their
size, large procedures require more time than smaller —fleedback] filename
ones.

The uld and umerge phases of the compiler permit global optimization
among separate units in the same compilation. Often, programs are
divided into separate files, called modules or compilation units, which are
compiled separately. This saves time during program development, since
a change requires recompilation of only one module rather than the entire
program.

Traditionally, program modularity restricted the optimization of code to a
single compilation unit at a time rather than over the full breadth of the
program. For example, calls to procedures that reside in other modules
couldn’t be fully optimized with the code that called them.

The uld and umerge phases of the compiler system overcome this
deficiency. The uld phase links multiple compilation units into a single
compilation unit. Then, umerge orders the procedures for optimal
processing by the global optimizer (uopt).

Optimization Options

Figure 5.10 shows the processing phases of the compiler and how the -On
option determines the execution sequence. Table 5.2 summarizes the
functions of each of the —O options.

)
Q
<
T
3
S)
5
a

S
o
o))
e
Q.
o))
<
>
e
Q
E

RISCompiler and C Programmer’s Guide 5-19

RS]
®
3
Qo
S
3
jo¥)
3
S
®

S

weiboidq buinoidwy

Chapter 5

Table 5.2: Optimizer Compiler Options

Option Result

-02

The uld and umerge phases process the output from the
compilation phase of the compiler, which produces symbol
table information and the program text in an internal format
called ucode.

The uld phase combines all the ucode files and symbol
tables, and passes control to umerge. Umerge reorders the
ucode for optimal processing by uopt. Upon completion,
umerge passes control to uopt, which performs global
optimizations on the program.

Uld and umerge are bypassed, and only the global
optimizer (uopf) phase executes. It performs optimization
only within the bounds of individual compilation units.

Uld, umerge, and uopt are bypassed. However, the code
generator and the assembler perform basic optimizations in
a more limited scope.

Uld, umefge. and uopt are bypassed, and the assembler
bypasses certain optimizations it normally performs.

Note: You should refer to the cc(1), f77(1), or pc(1) manual page, as appli-
cable, in the User’s Reference Manual for details on the <03 option and the
input and output files related to this option.

The optimizations performed under -O2 or -O3 rely to some extent on the
global optimizer’s own estimates of the execution frequencies of different
parts of the program. In general, the optimizer assumes that loops are
executed at least one order of magnitude more frequently than the adjacent
code. The more deeply nested the code is, the more frequently it will be
executed. At two-way branches that come from if-then-else constructs, the
optimizer assumes that each branch has equal likelihood to be taken.
Optimizations like register allocation and the inlining of procedure calls
can yield better results if such estimates are more accurate. The -feedback
compilation option is provided to let the optimizer take advantage of
profile data generated by earlier runs of the program being optimized, and
not rely on its own guesses as to the relative execution frequencies in
different parts of the program.

5-20

RISCompiler and C Programmer’s Guide

Improving Program Performance

The -feedback option takes the name of a profile data file as an argument.
The profile data file is the binary form of the profile listing generated by
prof. This file is generated if the -f option is given to prof. Altematively,
this profile data file can be generated by the feedback command, see
feedback(1).

It is best to generate the profile data file when the program is compiled
with the -g option. Under the -g option, the profile information is accurate
to within individual line numbers. Under -O1, -O2, and -O3 compilations,
the compiler can move instructions across line boundaries, so that the
execution time associated with individual lines may not be accurate. The
degree to which the optimizer can make use of the profile data is also
affected by how clearly the code is separated across lines. If a lot of code
is packed into each line, or if the source program uses a lot of macros or
conditional expressions, the effect of profile feedback may be diminished.

Some programs behave differently when given different data. For these
programs, it is important that the run which generates the feedback file
represents ordinary conditions and behavior. The user can combine the
profile data from different runs so that the final profile data file represents
the average program behavior.

If the user follows these guidelines, a program optimized with the -
feedback option should always run at least as fast as the version compiled
without this option. In most cases, the program should run faster,
depending upon how much the run deviates from the compiler’s own
guess of execution frequencies in the absence of real profile data.

The -feedback option has no effect on the compilation if it is specified with
the -O1 and -g options.

5

o)
O
c
T
£
)
A
o)
Q

E
o
S
e
Q
>
S
>
S
—
Q
1S

RISCompiler and C Programmer’s Guide 5-21

Chapter 5

Compilation
|

.03*;

Ucode Link
(uloader)

Procedure Mergel
(umerge

o—=5—pm | Global Optlrmzer
(uopt)

-O1

=" p| Code Generator > Bina% .
| assembler file.
I ‘_J

Assembler

: > ssempled
[object file.

Link Editor

> Linked
object file.

a.out

Figure 5.10: Optimization Phases of the Compiler

Full Optimization (-03)

The following examples assume that the program foo consists of three files:
a.c,b.c,and c.c.

To perform procedure merging optimizations (-O3) on all three files, enter
the following command:

$ cc -03 -0 foo a.c b.c c.c

If you normally use the — option to compile the .0 object file, follow these
steps:

)
©
&)
S
3
Q
S
S
®

weiboid buinosdwy

S

5-22 RISCompiler and C Programmer's Guide

Improving Program Performance

1. Compile each file separately using the —j option by entering the follow-
ing commands:

$ cc -j a.c

$ cc -j b.c

% cc -j c.c

The -j option causes the compiler driver to produce a .u file (the
standard compiler front-end output, which contains ucode; ucode
is an internal language used by the compiler). None of the
remaining compiler phases are executed, as illustrated below.
Figure 5.11 illustrates the results after execution of the three
commands shown above.

|

ac bc cc

C Compiler —_— E E E

au bwu cu

Figure 5.11: O3 Optimization

2. Enter the following statement to perform optimization and complete
the compilation process.

$ cc -03 -0 foo a.u b.u c.u

Figure 5.12 illustrates the results of executing the above command.

5

S
8y
S
o D
~ 0O
e S
@)}

s E
>

RS
Qo
S Q.

RISCompiler and C Programmer’s Guide 5-23

Chapter 5

? -03
00— Ucode)Lihk

au b.wu cu

Frocedure Merge
(umerge)

Global Optimizer
(uopt)

Code Generator

Assembler

LinkEdit |—»L__]
foo

Figure 5.12: Compiler Phases of O3 Optimization

Optimizing Large Programs

To ensure that all program modules are optimized regardless of size,
specify the -Olimit option at compilation time.

Because compilation time increases by the square of the program size, the
RISCompiler system enforces a top limit on the size of a program that can
be optimized. This limit was set for the convenience of users who place a
higher priority on the compilation turnaround time than on optimizing an
entire program. The -Olimit option removes the top limit and allows those
users who don’t mind a long compilation to fully optimize their programs.

Optimizing Frequently Used Modules

You may want to optimize modules that are frequently called from other
programs. This can reduce the compile and optimization time required for
programs calling these modules.

e
)
3
i
3
QD
3
@)
®

)
weibold buinoiduwy

524 RISCompiler and C Programmer’s Guide

Improving Program Performance

In the examples that follow, b.c and c.c represent two frequently used
~ modules to be optimized, retaining all information necessary to link them
with future programs; future.c represents one such program.

1. Compile b.c and c.c separately by entering the following commands:
% cc -j b.c
$ cc -j c.c
The -j option causes the front end (first phase) of the compiler to
produce two ucode files b.u and c.u.

2. Create, using an editor, a file containing the external symbols in b.c
and c.c to which future.c will refer. Each symbolic name must be sep-
arated by at least one blank. Consider the following skeletal contents

of b.c and c.c.
b.c foo{) c.c x()
{ {
(1]
[1]
} }
bar () help()
{ {
oo : [1)
} }
zot () struct
{ {
(1] P
} } ddata;
struct yi{)
{ {
Py o0
} work;)

In this example, future.c calls or references only foo, bar, x, ddata, and
y in the b.c and c.c procedures. A file (named extern for this
example) must be created containing the following symbolic
names:

n

foo bar x ddata y

The structure work, and the procedures help and zot are used
internally only by b.c and c.c, and thus aren’t included in extern.

Performance

. Improving Program

RISCompiler and C Programmer’s Guide 5-25

i)
L)
=y
o}
X
3
QD
D
9
©

S

wesboid buinosdwy

Chapter 5

If you omit an external symbolic name, an error message is
generated (see Step 4).

3. Optimize the b.u and c.u modules using the extern file as follows:

% cc -03 -kp extern b.u c.u -o keep.o

- The -kp option designates that the link editor option p is to be
passed to the ucode loader.

Figure 5.13 illustrates Step 3.

y O3
'E @—» Ucode Link —»e:Dem
T) (handsriesiag)

Procedure Merge

(umerge)

Global Optimizer
(uopt)

Code Generator|

Assembler ﬁ

keep.o

Figure5.13: Optimizing Phases
4. Create a ucode file and an optimized object code file (foo) for future.c as
follows:

% cc —=j future.c
% cc -03 future.u keep.o —o foo

5-26

RISCompiler and C Programmer’s Guide

Iinproving Program Performance

The following message may appear; it means that the code in
future.c is using a symbol from the code in b.c or c.c that was not
specified in the file extern.

zot: multiply defined hidden external (should have
been preserved)

Go to Step 5 if this message appears.

5. Include zot, which the message indicates is missing, in the file extern
and recompile as follows:

% cc -03 -kp extern b.u c.u -o keep.o
% cc -03 future.u keep.oc -o foo

Building a Ucode Object Library

Building a ucode object library is similar to building a coff object library.
First, compile the source files into ucode object files using the compiler
driver option —j. To build a ucode library (libfoo.b) containing object files
fora.c, b.c, and c.c, enter the following commands:
cc -j a.c
cc -j b.c
cc -j c.c

% ar crs libfoo.b a.u b.u c.u
Ucode libraries should have names with .b as a suffix.

0P o 0P

Using Ucode Object Libraries

Using ucode object libraries is similar to using coff object files. To load
from a ucode library, specify the —kix option to the compiler driver or the
ucode loader. To load from the ucode library file created in the previous
example, enter the following command:

% cc -03 filel.u file2.u -klfoo -o output

Libraries are searched as they are encountered on the command line, so the
order in which they are specified on the command line is important. If a
library is made from both assembly and high level language routines, the
ucode object library contains code only for the high level language
routines and not all the routines as the coff object library. In this case, you
must specify to the ucode loader both the ucode object library and the coff
object library, to ensure that all modules are loaded from the proper
library. :

5

S
<
o))
S
Qa
o))
&
>
o
-
Q
S

Performance

RISCompiler and C Programmer’s Guide 5-27

Y,
)
=y
S
D
3
Y
3
)
®

S

weiboid buinoiduwy

Chapter 5

If the compiler driver is to perform both a ucode load step and a final load
step, the object file created after the ucode load step is placed in the
position of the first ucode file specified or created on the command line in
the final load step.

Improving Global Optimization

This section contains coding hints to increase optimizing opportunities for
the global optimizer (uopt).

C, Pascal, and FORTRAN Programs

Do not use indirect calls (calls that use routines or pointers to functions as
arguments). Indirect calls cause unknown side effects (that is, change
global variables) that can reduce the amount of optimization.

C and Pascal Programs

Use functions to return values instead of reference parameters.

Use do while (for C) and repeat (for Pascal) instead of while or for when
possible. For do while and repeat, the optimizer doesn’t have to duplicate
the loop condition in order to move code from within the loop to outside
the loop.

Avoid unions (in C) and variant records (in Pascal) that cause overlap
between integer and floating point data types. This keeps the optimizer
from assigning the fields to registers.

Use local variables and avoid global variables. In C programs, declare any
variable outside of a function as static, unless that variable is referenced by
another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

Use value parameters instead of reference parameters or global variables.
Reference parameters have the same degrading effects as the use of
pointers.

Aliases can often be avoided by introducing local variables to store
dereferenced results. (A dereferenced result is the value obtained from a
specified address.) Dereferenced values are affected by indirect operations
and calls, whereas local variables are not; local variables can be kept in
registers. Figure 5.14 shows how the proper placement of pointers and the
elimination of aliasing lets the compiler produce better code.

Consider Figure 5.14, which uses pointers. Because the statement *p++=0
might modify len, the compiler, for optimal performance, cannot place it in
a register, but instead must load it from memory on each pass through the
loop.

5-28

RISCompiler and C Programmer’s Guide

Improving Program Performance

Source Code:

int len = 10;
char a{10];

void

zero ()
{
char *p;
for (p = a; p != a + len;)| *p++ = 0;

Generated Assembly Code:

8 for (p=a; p!=a+ len;) *p++ = 0;
move 2 4 #p=a
lw___S3, len |
addu 24, S4, S$3
beg $§24, $4, $33 # a + len != a

$32:
sb $0, 0($2) # *p =0
o o [
lw ______S25, len]
addu 8, S$4, $25
bne $8, $2, $32 # len + a !=p
$33: ' .

Figure 5.14: Pointers and Optimization

Two different methods can be used to increase the efficiency of this
example: using subscripts instead of pointers or using local variables to
store unchanging values.

Using subscripts instead of pointers. The use of subscripting in the
procedure azero eliminates aliasing; the compiler keeps the value of len in
a register, saving two instructions, and still uses a pointer to access a
efficiently, even though a pointer isn’t specified in the source code (see
Figure 5.15).

5

D
O
c
©
S
)
T
D
Q

=
A~
©
.
>
o
g
Q
=
=
>
o
O
Q
S

RISCompiler and C Programmer's Guide 5-29

Chapter 5

Source Code:
void
azero()
(.
int i;
for (i = 0; i !'= len; i++) la[i)l|= 0;
}
Generated Assembly Code:
for (i = 0; i != len; i++) al[i] = 0;
move $2, $0 #1i=0
beq $4, 0, $37 # len != 0
la $5, a
$36: -
sb $0, 0(S8S) # *a =0
addu $§2, $2, 1 # i++
addu $5, §5, 1 # a++
bne $2, $4, S36 # i != len
§37:

Figure 5.15: Using Subscripts instead of Pointers

Using local variables. Specifying len as a local variable or formal
argument (as shown below) ensures that aliasing can’t take place and
permits the compiler to place len in a register (see Figure 5.16).

hs)
®
=y
o
by
3
QO
o |
|®)
@

)
wesboid buinoidwi |

5-30 RISCompiler and C Programmer’s Guide

Improving Program Performance

Source Code:
char a[10];
void

lpzero(len)

char *p;
for (p = a; p != a + len;) *p++ = 0;
)
Generated Assembly Code:
8 for (p=a; p '= a+ len;) *p++ = 0;
move $2, $6 #p=a
addu $5, $6, S4
beq $5, $6, $33 # a+ len != a
$32:
sb $0, 0($2) # *p =0
addu s2, $2, 1 # pres
bne $5, $2, $32 # a+ len != p
$33:

Figure 5.16: Using Local Variables instead of Pointers

In Figure 5.16, the compiler generates slightly more efficient code for the
second method.

Pascal Programs Only

Packed arrays prevent moving induction expressions from within a loop
to outside the loop. Use packed arrays only when space is crucial.

C Programs Only

Write straightforward code. For example, don’t use ++ and — operators
within an expression. When you use these operators for their values rather
than for their side-effects, you often get bad code. For example:

Q
&)
c
)
E
)

©
)

Q

©

while (n--) { while (n != 0) (S
oy i a
) g

>

e

Q

S

RISCompiler and C Programmer’s Guide 5-31

e
)
Y
)
X
3
QD
]
9]
®

S

wesboisq buinosduwy

Chapter 5

Use register declarations liberally. The compiler automatically assigns
variables to registers. However, specifically declaring a register type lets
the compiler make more aggressive assumptions when assigning register
variables.

Avoid taking and passing addresses (& values). This can create aliases,
make the optimizer store variables from registers to their home storage
locations, and significantly reduce optimization opportunities.

Avoid creating functions that take a variable number of arguments. This
causes the optimizer to unnecessarily save all parameter registers on entry.

Improving Other Optimization

The global optimizer processes programs only when you explicitly specify
the -O2 or -O3 option at compilation. However, the code generator and
assembler phases of the compiler always perform certain optimizations
(certain assembler optimizations are bypassed when you specify the -O0
option at compilation).

This section contains coding hints that, when followed, increase
optimizing opportunities for the other passes of the compiler.

C, Pascal, and FORTRAN Programs

* Use tables rather than if-then—else or switch statements.
For example:

OK More Efficient
if (i ==1) ¢ = *1*; c = "01"[i]);
else ¢ = "0";

e As an optimizing technique, the compiler puts the first four
parameters of a parameter list into registers where they remain
during execution of the called routine. Therefore, you should
always declare as the first four parameters those variables that are
most frequently manipulated in the called routine with floating
point parameters preceding non-floating point.

e Use word-size variables instead of smaller ones if space is not a
consideration. This may use more space, but is more efficient.

5-32

RISCompiler and C Programmer’s Guide

Improving Program Performance

C Programs Only

¢ Use libc functions (e.g. strcpy, strlen, strcmp, beopy, bzero, memset,
memcpy) instead of writing similar routines. These functions are
hand-coded for efficiency.

e Use the unsigned data type for variables wherever possible for the
following reasons: (1) because the variable is always greater than
or equal to zero (>=0), the compiler can perform optimizations that
would not otherwise be possible, and (2) the compiler generates
fewer instructions for multiply and divide operations that use the
power of two. Consider the following example:

int i;
unsigned j;

return i/2 + j/2;

The compiler generates six instructions for the signed i/2
operations:

000000 20010002 1i rl,2

000004 008100l1a div r4,rl

000008 14200002 bne rl,r0,0x14

00000c 00000000 nop

000010 03fe000d break 1022

000014 00001812 mflo r3

The compiler generates only one instruction for the unsigned j/2
operation:

000018 0005c042 srl r24,xr5,1 # 3 / 2

In the example, i/2 is an expensive expression; however, j/2 is
inexpensive.

Pascal Programs Only

Use predefined functions as much as possible. For example,
* Use max and min rather than if-then—else.

5

¢ Also, use shift and bit-wise and instead of div and mod.

Performance

E
o
>
e
Q
o
<
>
e
Q
S

RISCompiler and C Programmer’s Guide 5-33

Chapter 5

Limiting the Size of Global Data Area

The compiler places constants and variables in the ./it8, .lit4, .sdata and .sbss
portions of the data and bss segments shown in Figure 5.17. This area is
referred to as the global data area.

lext } text segment
.rdata

data

it8 data segment
lit4
.sdata
.sbss

bss segment
.bss

D Global pointer area

Figure 5.17: Global Data Area

(The .rdata, .data, .1it8, .lit4, and .sdata sections contain initialized data, and
the .sbss and .bss sections reserve space for uninitialized data thatis created
by the kernel loader for the program before execution and filled with zeros.
For more information on section data, see Chapter 9 of the Assembly
Language Programmer’s Guide.)

Purpose of Global Data

In general, the compiler system emits two machine instructions to access a
global datum. However, by using a register as a global pointer (called
$gp), the compiler creates the 65536-byte global data area where a
program can access any datum with a single machine instruction - half the
number of instructions required without a global pointer.

To maximize the number of individual variables and constants that a
program can access in the global data area, the compiler first places in the
global data area those variables and constants that take the fewest bytes of
memory. By default, the variables and constants occupying eight or fewer
bytes are placed in the global data area, and those occupying more than
eight bytes are placed in the .data and .bss sections.

s
@
I
e
3
D
3
S
®

[
wesboid buinosdwy

5-34 RISCompiler and C Programmer’s Guide

Improving Program Performance

Controlling the Size of Global Data Area

The more data that the compiler places in the global data area, the faster a
programexecutes. However, if the data to be placed in the global data area
exceeds 65536 bytes, the link editor prints an error message and doesn'’t
create an executable object file. For most programs, the eight-byte default
produces optimal results. However, the compiler provides the -G option
to let you change the default size of data placed in the global data area. For
example, the specification

-G 12

causes the compiler to place variables and coristants that occupy 12 or
fewer bytes in the global data area.

Obtaining Optimal Global Data Size

The compiler places some variables in the global data area regardless of
the setting of the -G option. For example, a program written in assembly
language may contain .sdata directives that cause variables and constants
to be placed into the global data area regardless of size. Moreover, the -G
option doesn’t affect variables and constants in libraries and objects
compiled beforehand. To alter the allocation size for the global data area
for data from these objects, you must recompile them specifying the -G
option and the desired value.

Thus, two potential problems exist in specifying a maximum size in the
-G option:

* Using a value that is too small can reduce the speed of the program.
* Using a value that is too large can cause more than the maximum

65536 bytes to be placed in the data area, creating an error
condition and producing an unexecutable object module.

The link editor —bestGnum option helps overcome these problems by
predicting an optimal value to specify for the -G option. The next sections
give examples of using the —bestGnum option and the related —nocount and
—count options.

Examples (Excluding Libraries)

5

When using the ~bestGnum option exclusive of —nocount and —count, the
compiler driver assumes that you cannot recompile any libraries to which
it would link automatically; the driver causes the link editor not to
consider these libraries when predicting the optimal maximum size.
However, if you link to other system-supplied libraries, you must specify
—nocount before the library.

E
o
>
S

Q
>
=
>
o
A
Q

£

Performance

RISCompiler and C Programmer's Guide ' 5-35

]
©
=Y
a
<
3
3
Y
3
|9
)

g

weiboid buinoidw

Chapter 5

For example:

cc -bestGnum foo.c -nocount -1lm
If you specify the option as shown below:
pc —bestGnum bogus.p

the compiler produces a message giving the best value for -G; if all
program data fits into the global data area, the following message is
displayed:)

All data will fit into the global data area

Best -G num value to compile with is 80 (or greater)
Because all data fits into the global data area, no recompilation is.
necessary. Consider the following example, which specifies 70000 as the
maximum size of a data item to be placed in the global data area:

pc ersatz.p -G 70000 —-bestGnum

The above example produces the following messages:

gp relocation out-of-range errors have occurred and bad
object file produced (corrective action must be taken)
Best -G num value to compile with is 1024

In this example, the link editor doesn’t produce an executable load module
and recommends recompilation as follows:

pc real.p -G 1024

Example (Including Libraries)

You can explicitly specify that the link editor either include or exclude

specific libraries in predicting the -G value. Consider the following

example:

cc -o plotter -bestGnum plotter.o -nocount libieee.a \
-count liblaser.a

In the above example, the link editor assumes that libieee.a cannot be
recompiled and will continue to occupy the.same space in the global data
area. Itassumes that plotter.o and liblaser.a can be recompiled and produces
a recommended -G value to use upon recompilation.

Reducing Cache Conflicts

RISComputer hardware provides two high-speed caches—one for
program data and the other for instructions—that temporarily hold data or
instructions frequently used by the processor. During execution,
instructions or data from specified memory locations are placed in the
cache. Because the cache is much smaller than memory, a single cache
location is shared by many distinct memory locations. The first cache

5-36

RISCompiler and C Programmer’s Guide

Improving Program Performance

location is shared by the Oth, 64KBth, 128KBth, ... memory locations. This
mapping of every memory location to exactly one cache location is called
a direct mapped cache.

A cache conflict occurs when a program references two instructions or
data items that compete for the same location in the respective data or
instruction cache. Normally this is not a problem. When the references are
made repeatedly, as in a loop, such repeated conflicts can degrade
performance.

A serious instruction conflict could occur if, from within a loop, a call is
made to a function that is a multiple of the cache size away. Basically, the
function is placed in the cache, removing the instructions from the calling
loop. Upon return, the calling loop replaces the instructions of the
function, and this continues until the end of the loop.

You can eliminate major instruction cache misses within your programs by
using the —cord driver option in combination with the pixie and prof
programs. This option attempts to place the most frequently executed
sections of code in memory so that they don’t conflict with each other. To
optimally reorganize the program index.f, execute the following
commands:

% £77 -c -0 index.f

f77 -o index index.o

pixie -o index.pixie index

index.pixie

prof index -feedback feedfile

% £77 -o index index.o -feedback feedfile -cord

Figure 5.18 illustrates the steps for the reorganization of program index.f.

oP P oP o°

5

IS
S
S8
+ 8
> ¢
>

S <
Qo
gEQ

RISCompiler and C Programmer’s Guide 5-37

Chapter 5

index.f
compile
Ip _‘> index.o
- index
T
L index.fixie index.Addrs
index.pixie
> index.Counts
-%
prof -t
feedfile
¢
link -
index

Figure 5.18: Using the —cord Option

For more information, see profi1), pixie(1), or the —cord option in the
applicable driver manual page-cc(1), pc(1), or f77(1), inthe RISC/os User’s
Reference Manual.

Ry,
)
=
o
S
3
o
)
S
®

weisboiq buinosduwy

g

5-38 RISCompiler and C Programmer’s Guide

Improving Program Performance

Filling Jump Delay Slots

In jump instructions, there is a jump delay or latency of one instruction,
which is called a jump delay slot. Whenever possible, the compiler inserts
an instruction in the delay slot to avoid stalls in the execution pipeline of
instructions. (See delay slot in the MIPS RISC Architecture manual for a
detailed discussion.) The —jmpopt option enables the compiler to fill
additional delay slots at the cost of requiring more memory by the link
editor. The default is nojmpopt; this option ensures that most link edits do
not abort because of memory constraints.

For programs requiring high in performance, specify the —jmpopt option.
Then, the link editor attempts to insert executable instructions into those
delay slots that the compiler could not fill.

5

)
)
<
T
E
~
~
)

T
)

a

g
S
b
S)
S
o
Q
S)
g
>
Q
Q
S

RISCompiler and C Programmer’s Guide 5-39

Chapter 5

e
)
=y
Q
]
3
D
)
o
@

wesbolsq buinosdwy

S

5-40 RISCompiler and C Programmer’s Guide

Debugging Programs

©

gging

)
&
R
>
2

Debu
P

6

This chapter describes the source-level debugger dbx and tells how to use
it. The debugger can be used with C, FORTRAN 77, Pascal, assembly
language, and machine code. This chapter describes how to invoke dbx
and all debugger commands, giving examples of each. The following
topics are covered in this chapter:

Introduction
Introduces new users to the debugger and discusses general debugging

issues, including where to start and how to isolate errors. It gives tips for

users new to source-level debugging. Users familiar with debuggers may
want to skip to the next section.

Running dbx

Shows how to run the debugger, including how to compile a program for
debugging, and how to invoke and quit dbx.

Using dbx Commands

Describes the dbx command syntax, expression precedence, data types,
and constants, and lists the most common commands.

Working with the dbx Monitor

Describes how to use history, edit the command line, enter multiple

commands, and use facilities that help you complete program symbol
names.

Controlling dbx

Describes how to work with variables, how to create command aliases,
record and playback input and output, invoke a shell from dbx, and use
the dbx status feature.

Examining Source Programs

RISCompiler and C Programmer’s Guide 6-1

Chapter 6

Shows you how to specify source directories, move to a specified
procedure or source file, list source code, search through source code, call
an editor from dbx, print symbolic names, and print type declarations.

Controlling the Program

d
d

Describes how to run and rerun a program, execute single lines of code,
return from procedure calls, start at a specified line, continue after a
breakpoint, and assign values to program variables.

Setting Breakpoints

Describes how to set and remove breakpoints and continue executing a
program after a breakpoint.

Examining Program State

Describes how to print stack traces, move up and down the activation
levels of the stack, print register and variable values, and print information
about the activation levels in the stack.

Debugging at the Machine Level

Describes the commands used to debug machine code, including those to
examine memory addresses and disassemble source code.

3
Q
Y
3
[}

(o))

6uibbnga

Introduction

This section introduces the debugger and some debugging concepts; it also
gives tips about how to approach a debugging session, including where to
start, how to isolate errors, and how to avoid common pitfalls.

If you’re an experienced user, you may want to skip this section and go to
the dbx Command Summary section at the end of the chapter, which
contains a reference summary of all debugger commands.

Why Use a Source-Level Debugger?

dbx lets you trace problems in a program object at the source code, rather
than at the machine code level. With dbx, you control a program’s
execution, monitoring program control flow, variables, and memory
locations. You can also use dbx to trace the logic and flow of control to
become familiar with a program written by someone else.

The advantages to using dbx include:
* Easy to use environment.

* High-Level language debugging.
* Remote debugging.

* Stack tracing.

* Single stepping.

6-2 RISCompiler and C Programmer's Guide

Debugging Programs

* Expression evaluator.

L]

Assembly debugging.

Breakpoints.

Program state examination.

©

gging

Line-by-line variable tracing.

%)
E
T
&)
N

Debu
P

What Are Activation Levels?

Activation levels define the currently active scopes (usually procedures)
on the stack. An activation stack is a list of calls that starts with the initial
program (usually main()). The most recently called procedure or block is
number 0. The next procedure called is number 1. The last activation level
is always the main procedure (the procedure that controls the whole
program).

Activation levels can also consist of blocks that define local variables
within procedures. You see activation levels in stack traces (see the where
command) and when moving around the activation stack (see the up,
down, and func commands). Figure 6.1 shows the stack trace produced by
a where command.

>0 printline (pline=0x7ff£f5b80) ["sam.c":58, 0x2f7]
printline is the most recently called
procedure from $blocki

1 $blockl [“sam.c":47, 0x2bb]
$block1 defines its own local variables
even though it is part of main()

2 main (argc=2, argv=0x7fffebal) [*sam.c":47, 0x2bb]
main is the main program

Figure 6.1: Stack Trace

RISCompiler and C Programmer’s Guide 6-3

Chapter 6

Isolating Program Failures

dbx finds only runtime errors; you should fix compiler errors before
starting a debugging session.

To save time, start a debugging session using the more general commands
(listed below), rather than debugging line by line. For example, if a
program fails during execution, you would:

d
a

3
S
jo))
3
[75)

buibbnga

(o))

1. Invoke the program under dbx.

2. Getastack trace using the where command to locate the point of failure.

Note: If you haven’tstripped symbol table information from the program
object, you can get a stack trace even if the program was not compiled with
the —¢ debug flag.

3. Set breakpoints to isolate the error using stop commands.

4. Print the values of variables using the print command to see where a
variable may have been assigned an incorrect value.

If you still cannot find the error, other dbx commands may be useful. Using
dbx Commands in this chapter describes each dbx command.

Incorrect Output Results

If a program successfully terminates, but produces incorrect values or
output, follow these steps:

1. Seta breakpoint where you think the problem is happening—for ex-
ample, the code that generates the value or output.

2. Run the program.
3. Geta stack trace using the where command.

4. Print the values for the variables that might be causing the problem us-
ing the print command.

5. Return to Step 1 until the problem is found.

Avoiding Pitfalls

The debugger cannot solve all problems. For example, if your program has
incorrect logic, the debugger can only help you find the problem, not solve
it. When information displayed by the debugger appears confusing or
incorrect, taking the action listed below may correct the situation:

6-4 RISCompiler and C Programmer’s Guide

Debugging Programs

* Separate lines of source code into logical units wherever possible
(for example, after if conditions); the debugger might not recognize a
source statement written with several others on the same line.

« If executable code appears to be missing, it may have been contained
in an include file. The debugger treats include files as a single line.
If you wish to debug this code, remove it from the include file and
compile it as part of the program.

©

againg

%)
E
S
&)
L

Debu
P

* Make sure you recompile the source code after changing it,
otherwise the source code displayed by the debugger won’t match
the executable code.

¢ If you stop the debugger by using job control and then resume the
same debugging session, the debugger continues with the same
object module specified at the start of the session. This means that,
if you stop the debugger to fix a problem in the code, recompile, and
return, the debugger won’t reflect the change. You must start a new
session.

* When printing an expression that has the same name as a dbx
keyword, you must enclose the expression within parentheses. For
example, in order to print output, a keyword in the playback and
record commands, you must specify:

print (output)

* If the debugger does not display any variables or executable code,
make sure you compiled the program with the —g option.

Running dbx

Before invoking dbx, you need to compile the program for debugging. You
may also want to create a .dbxinit file that will execute commands when the
debugger is started.

Compiling a Program for Debugging

To use the debugger, specify the g option at compilation time. This
option inserts symbol table information in the program object, which dbx
uses to list source lines.

Do not optimize your program until it is fully developed and debugged.
Although the optimizer does not alter the flow of control within a
program, it may move operations around so that the object code doesn’t
correspond to the source code. These changed sequences of code may
create confusion when you use the debugger.

RISCompiler and C Programmer’s Guide 6-5

Chapter 6

You can do limited debugging on code compiled without the —¢ flag. For
example, the following commands work without recompiling for
debugging:

e stop in PROCEDURE

d
d

+ stepi

3
Q
Q
3
»

buibbnga

e continue

(o))

« conti
« (ADDRESS) /<COUNT><MODE>

e tracei

Although you can do limited debugging, it may be more useful to
recompile the program with —g. The debugger does not warn you if an
object file has been compiled without the —¢ flag.

Building a Command File

You can create a command file, called .dbxinit, that contains dbx
commands, using a system editor. When dbx is invoked, the commands
are executed (you are prompted for required input). A command file can
be used to customize the dbx environment or to specify a set of frequently
used dbx commands.

dbx looks for .dbxinit first in the current directory and then in your home
directory. If the file resides in your home directory, set the HOME
environment variable.

Figure 6.2 shows an example of a .dbxinit file:

set $page = 5
set Slines = 20
set $prompt = 177DBX>"

alias du dump

Figure 6.2: Sample .dbxinit file

Invoking dbx

You invoke dbx from the shell command line by entering dbx and the
optional parameters. After invocation, dbx sets the current function to the

first procedure of the program.

6-6 RISCompiler and C Programmer’s Guide

Debugging Programs

Syntax:

Command Function

dbx [options] [objfile][corefile] invoke dbx from the
shell command line

If objfile is not spéciﬁed, dbx uses a.out by default. If corefile is specified, dbx
lists the point of program failure. For core files, you can get a stack trace
and look at the code; however, you cannot run a program from a core file,
for example, set breakpoints or continue.

The available options are shown in Table 6.1.

Table 6.1: dbx Options

Option Function

-| dirname Tell dbx to look in the specified directory for source
files. To specify multiple directories, you must use a
separate -l for each. Unless you specify this option
when you invoke dbx, it looks for source files in the
current directory and in the object file's directory.
You can change directories with the use command.

-c filename Selects a command file other than your .dbxinitfile.

-i Uses interactive mode. This option does not treat #s as
comments in a file. It also prompts for source even when
it reads from a file. It has extra formatting as if for

a terminal.
-r Runs your program immediately upon entering dbx.
-k Turns on kernel debugging.
Example:
% dbx

dbx version 3 of 3/30/86 14:51
Type " help’ for help.

enter object file name (default is ‘a.out’): sam
reading symbolic information...

main:23 if (arg <2) |

(dbx)

RISCompiler and C Programmer’s Guide 6-7

efellgle

(%)
g
I
=)
S

Debu
P

©

Chapter 6

Ending dbx (quit)

Use the quit command to end a debugging session.

Syntax:

Command Function

)
X
S
Q
o
3
&

buibbngag

(o))

quit End the debugging session

q

Example:

(dbx) quit
%

After entering quit, dbx prompts you to confirm that you want to exit.

Using dbx Commands

This section describes the conventions used for describing dbx command
syntax, expressions and precedence, displaying data and constants, and
some of the commonly used debugging commands.

Command Syntax

The following conventions are used in the command descriptions:

¢ Words in lower—case typewriter font are literals, and must be
entered as they are shown.

e Words in italics indicate variable values that you specify.

* Square brackets ([]) surrounding an argument mean that the
argument is optional.

¢ dbx variable names appear in italics. .

* Words in upper—case typewriter font indicate variables for which
specific rules apply. These words are given in Table 6.2.

dbx lets you enter up to 10240 characters on an input line. Long lines can
be continued with a backslash (\). If a line gets too long, dbx prints an error
message (see fgets(1) in the User’s Reference Manual). The maximum string
length is also 10240.

The following example command illustrates the syntax conventions:

stop VAR in PROCEDURE if EXP

6-8 RISCompiler and C Programmer’s Guide

Debugging Programs

Enter stop, in, and if as shown. Enter the values for VAR, PROCEDURE
and EXP as defined in Table 6.2.

Table 6.2: Keywords Used in Command Syntax Descriptions

Keyword Value D¢, ©
A (caret) Press the control key on your keyboard. Usually, used §§g

in conjuction with another key. 2 g’
ADDRESS Any expression specifying a machine address. oa
ARGS Program arguments (maximum allowed by dbx is 1000;

however, system limits may also appply.
COMMAND_LIST One or more commands, each separated by semicolons.
DIR A directory name.
FILE File name.
EXP Any express including program variable names for the

command. Expressions can contain dbx variables; for
example, ($listwindow+2). If youwant to use the words
in, to or atin an expression, you must surround them with
parentheses; otherwise, dbx assumes that these words
are debugger key words.

INT Integer value.
LINE A souce code line number.
NAME dbx command name.

PROCEDURE Procedure name or an activation level on the stack.
REGEX A regular expression string. See regemp(3) in the RISC/os
Programmer’s Reference Manual.

SIGNAL A RISC/os system signal. For BSD, see the sigvec(2)

manual page in the Programmer’s Reference Manual.
: For SysV, see the signaf2) manual page.
STRING Any ASCII string.
VAR Valid program variable or dbx predefined variable. For
machine-level debugging, VAR can also be an address.

Qualifying Variable Names

Variables in dbx are qualified by file, procedure, block, or structure. When
using commands like print to print a variable’s value, dbx indicates the
scope of the variable when the scope could be ambiguous (for example,
you have a variable by the same name in different procedures). If scope is
wrong, you can specify the full scope of the variable by separating scopes
with periods. For example:

sam.main.i

where sam is the current file; main is the procedure; and i is the variable.

RISCompiler and C Programmer’s Guide 6-9

Chapter 6

dbx Expressions and Precedence

dbx recognizes expression operators from C, Pascal, and FORTRAN 77.
Operators follow the C language precedence (see Table 6.3).

d
d

i)
QT Table 6.3: dbx Expression Operators
S Debugger Operators
o v Operator Syntax Description
(*FILE" #Exp) Uses the specified line number

(#EXP) in that file, returns the
address of the line.

(PROCEDURE #EXP) Uses the specified line number
(#EXP) in that procedure, returns
the address of the line.

(#EXP) Takes line number (#EXP) and
returns the address for that line.

Use the # operator to convert line number into address.

Tables 64, 6.5, and 6.6 show language operators; note that // (instead
of /) is used for divide.

Table 6.4: C Expression Operators

C Language Operators

Unary &, +, -, *, sizeof() ~, //,(type), (type *)
Binary <</ >>.", !, ==, !=, <=, >3, <.>, &,
&&, Il III +, =, %, %, []I->

Note: The sizeof operator specifies the number of bytes retrieved to get an
element, not (number_of_bits+7)/8. '

Table 6.5: Pascal Expression Operators
Pascal Language Operators

Unary not, *, -

Binary <=, >=, <>, and, or, +, -,
*, //, div, mod, [],.

6-10 RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.6: FORTRAN Expression Operators

FORTRAN Operators

Unary

O

aging

Binary 0=, % /)

%)
&
&
>
N

Debu
P

Note: FORTRAN array subscripts use [] instead of ().

dbx Data Types and Constants

dbx commands can use the built-in data types described in Table 6.7.
Table 6.7: Built—in Data Types

Data Types

Data Types Description
$address Pointer
$unsigned Unsigned Integer
$char Character
$boolean Boolean
$real Double Precision Real
Sinteger Signed Integer
$float Single Precision Real
$double Double Precision Real
$uchar Unsigned Character
$short 16-bit integer
$signed Signed Integer
$void

The built-in data types can be for type coercion - for example, to print a
variable as a type that is different from its declaration.

The types of constants that are acceptable as input to dbx are shown in
Table 6.8. Constants that are output from dbx are displayed by default as
decimal values.

RISCompiler and C Programmer’s Guide 6-11

Chapter 6

Table 6.8: Input Constant

Input Constants

v Constant Description

paii¢)

Qg false 0

g‘g true nonzero

» 53 nil 0

Ox number hexadecimal
Otnumber decimal
Onumber octal
number decimal
number.[numben[elE][+I-EXP] float

Note: Overflow on non-float uses the right-most digits. Overflow on
float uses the left-most digits of the mantissa and the highest or lowest
exponent possible.

The $octin dbx variable changes the default input expected to octal. The
$hexin variable changes the default input expected to hexadecimal. See
Predefined dbx Variables.

The $octints dbx variable changes the default output to octal. The $hexints
variable changes the default output to hexadecimal. See Predefined dbx
Variables.

Basic dbx Commands

dbx offers many commands; however, for most debugging sessions, the
commands shown in Table 6.9 are sufficient.

6-12 RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.9: Commonly Used Debugger Commands

Common Debugging Commands
Command Select this command to...

\REGEX Search ahead in the source file for a specific string. o
?REGEX Search back in the source file for a specific string. %‘é ©
continue Continue executing your program. ST
down EXP Move down the activation levels of the stack. s
dump Get all information that dbx has about a procedure. 8:{
func PROCEDURE Select a procedure to examine.
list Look at the 10 lines preceeding and following

the current line.
list EXP Look at line specified by EXP.
print EXP Print the value of any variable.
quit End the debugging session.
run Run the program being debugged.
rerun Run the program again with the same arguments

specified to the run command.
step EXP Step the specified number of lines.
stop at LINE Stop at specified lines in source file.
stop in PROCEDURE Set a breakpoint at the beginning of a procedure.
up EXP Move up the activation levels of the stack.
where Get a stack trace to see what procedures are

currently active.

Working with the dbx Monitor

dbx provides acommand history, command line editing, and symbol name
completion. dbx also allows multiple commands on an input line. These
features can reduce the amount of input required or allow you to repeat
previously executed commands.

Using the Command History

The dbx command history allows you to re-execute debugger commands.
The debugger keeps a list of previously executed commands that can be
displayed with the history (alias k) command.

You can set the number of history lines saved using the $lines variable
using the set command. The default is 20. See Setting dbx Variables.

To repeat a command, use one of the exclamation point (!) commands (see
the syntax description for history).

RISCompiler and C Programmer’s Guide 6-13

Chapter 6

Syntax:

Command Function

history Print the items in your history list.
Istring Repeat the most recent command that starts
. the specified string.
IINT Repeat the command associated with the specified
integer.
1INT Repeat the command that occurred the specified
integer before the most recent command.

)
<
Q
Q
Q
QD
3
®

buibbngag

(0

Example:

The following example prints the history list and then re-executes one of
the commands:

(dbx) history
10 print x
11 print y
12 print z

(dbx) !12

(112 = printz)

123

(dbx)

Editing the dbx Command Line

dbx provides commands that permit command line editing. These
commands allow you to correct mistakes without re-entering an entire
command. The editing commands are the same as those used for csh
command line editing. See csh(1) in the RISC/os User’s Reference Manual for
a description of the editing commands. Table 6.10 shows some of the
commonly used editing commands.

6-14 RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.10: dbx Command Line Editing Commands

DBX Command Line Editing
Command Function

carriage return Repeat the last command issued to dbx. This g’m ©
feature is turned off by setting the $repreatmode g%
variable to 0. See Setting dbx Variables. 25

A Move the cursor to the beginning of the command 80_
line.

"B Move the cursor back one character.

AD Delete the character at the cursor.

AE Move the cursor to the end of the line.

AF Move the cursor forward one character.

AH, DELETE Delete the character immediately preceding the
cursor.

AN Move forward one line. (This line comes from the
history list.)

AP Move back on line. (This line comes from the history

list.)

Note: In Table 6.10, the notation represents the CTRL key. For example
A indicates that the CTRL and A keys should be pressed simultaneously.

Entering Multiple Commands

You can enter multiple commands on the command line by using a
semicolon (;) as a separator. This can be useful when using the when
command. See Writing Conditional Code in dbx.

Syntax:
Command Function
COMMAND; COMMAND Enter mulptiple commands on the command
line.
Example:

The following example stops the program and then re-runs it.

(dbx) stop at 58; rerun
[1] stop at 58 177sam.c*:58

[1] stopped at [printline:58,0x2f8) pline->string
(dbx)

RISCompiler and C Programmer’s Guide 6-15

e}

d
a

3
Q
N
3
wn

buibbnga

Chapter 6

Completing Symbol Names

dbx provides symbol name completion; dbx completes names from a
unique prefix when the partial name is followed by CTRL-Z. If a unique
completion is found, dbx redisplays the input with it added; otherwise, all
possible completions are shown and you can choose one.

Syntax:
Command Function
STRING "2 Complete a symbol name or see what symbol
names contain the specified string
Example:
The following example displays all names beginning with the letter i.
(dbx) i~z
ioctl.ioctl .ioctl isatty.isatty .isatty i int
(dbx) 1

Note: The display may include data types and library symbols.

(dbx) print file*z

(dbx) print file_header_ptr
0xl24ac

(dbx)

dbx completes the
symbol name for you

Controlling dbx

dbx provides commands to set and unset dbx variables, create and remove
aliases, record and play back input, invoke a shell fromdbx, and check and

delete items from the status.

Setting dbx Variables

The set command defines a dbx variable, sets an existing dbx variable toa
different type, or displays a list of existing dbx predefined variables.

You cannot define a debugger variable with the same name as a program
variable. The print command displays the values of variables. The dbx
predefined variables are listed in Table 6.12.

6-16

RISCompiler and C Programmer's Guide

Debugging Programs

Syntax:
Command Function
set Display a list of dbx predelined variaples.
set VAR = EXP Assign a new value to a variable or define a new
variable.
Example:
The following example lists all debugger variables, changes one, and then
redisplays the list.
(dbx) set
$listwindow 10
Sdatacache 1
Smain ‘main"
Spagewindow 22
Spage 1
Smaxstrlen 128
Scursrcline 24
more (no?) no
(dbx) set S$listwindow = 15
(dbx) set
Slistwindow 15 - new value
$datacache 1
Smain ‘main*
$pagewindow 22
Spage 1
Smaxstrlen 128
$cursrcline 24

(dbx)

more (no?) no

Removing Variables

Use the unset command to remove a dbx variable. To see a full list of dbx
variables, use the set command.

Syntax:

"Command

Function

unset VAR = EXP

Unsel The value of a dbx variable.

RISCompiler and C Programmer's Guide

6-17

gging

%)
E
o
=)
N

Debu
P

©

Chapter 6

Example:

The following example assigns a value to a new variable and then removes

o it using the unset command.

38

Eﬂg (dbx) set Stest = §

3Q (dbx) set

(o)) &né

Slistwindow 10
Sdatacache 1
Smain *main®
$pagewindow 22
Stest 5 <g———— New variable
$maxstrlen 128 on list
Scursrcline 24

more (no?) no
(dbx) unset Stest

(dbx) set

$listwindow 15

S$datacache 1

Smain *main®

$pagewindow 22 iabl
$maxstrlen 128 ?:r:o\\//aercliafroem
Scursrcline 24 list

more (no?) no

(dbx)

Predefined dbx Variables

The predefined dbx variables are shown in Table 6.12. The variables that
are preset, but which you can change, are indicated by I, B, or S notations
in the Key column. Variables that only dbx can set, but are available for
information, are indicated by an R.

Table 6.11 summarizes the notations in the Key column of Table 6.12.

Table 6.11: Key Notations for Predefined Variables

Key Description

| Integer

B Boolean

S ASCII character string

R Reset exclusively and periodically by the debugger

6-18 RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.12: Predefined dbx Variables, 1 of 4

Debugger Variables

Key Variable Defautt Description

S S$addrfrmt *0x%x" Specifies the format for addresses. S’m ©
This can be set to anything you gg%
can format with a C language 25
printf statement. é’ S

S $byteaccess Same as $addrfrmt.

B $casesense 0 Specifies whether source searching

and variables are case sensitive. A
nonzero value means case
insensitive; a 1 means case sensitive.

IR $curevent none Shows the last event number as
reported by the status command.

IR S$curline none Shows the current line in the source
code.

IR $clusrcline none Shows the last line listed plus 1.

IR Scurpc Shows the current address. Used
with the wiand /i aliases.

B $datacache 1 Caches information from the data

space so that dbx only has to check
the data space once. If you are
debugging the operating system, set
this variable to 0; otherwise, set it

to a nonzero value.

$debugflag 0 An internal debug flag used to debug
dbx.
SR Sdefaultout - Shows the name of the file that dbx

uses to store information when
using the record output command.

SR $defaultin . Shows the name of the file that dbx
uses to store information when using
the record input command.

$defin
$defout Used internally by dbx.
Sdispix
B $hexchars 0] Displayed values are shown in hexa-
decimal when $hexchars is set to a
nonzero value; a nonzero value
overrides octal.
B $hexin 0 A nonzero value indicates that input

constants are hexadecimal.

RISCompiler and C Programmer’s Guide 6-19

Chapter 6

Table 6.12 Predefined dbx Variables, 2 of 4

Debugger Variables
R)S) Key Variable Defauit Description
B Shexints 0 Used to determine the default setting of

printinga char®. A 0 will cause output to
be the address and string content. A 1
will print only the address in hex value.

B $hexstrings 0 A nonzero value indicates that strings
are displayed in hexadecimal; other-
wise strings are shown as characters.

IR Shistoryevent none Shows the current history number.

| Slines 20 Specifies the size of dbx history list.

1 Slistwindow TERM/2 Specifies the number of lines shown
by the list command.

S S$main *main” Specifies the name of the procedure
where execution begins. dbx starts the
program at main() unless otherwise
specified.

| S$maxstrien 128 Specifies the number of characters of a
string dbx prints for pointers to strings.
dbx checks mutliples of 4 to see if it
exceeds the maximum.

B Soctints 0 Changes the default output constants
to octal when set to a nonzero value.
Hexadecimal overrides octal.

B Soctin 0 Changes the default input constants
to octal when set to a nonzero value.
Hexadecimal overrides octal.

B Spage 1 Specifies whether to page long
information. A nonzero value turns on
paging; a 0 tums it off.

| $pagewindow 22 Specifies the number of lines displayed
when viewing information that is longer
than one screen. This variable should
be set to the number of lines on the
terminal. A value of O indicates a
minimum of 1 line.

AS
3
Q
Q
o
3
&

buibbngs

)}

S Spdbxport Port name from /etc/remote[.pdbx]
used to connect to target machine
for pdbx.

B $printwide 0 Specifies wide (useful for structures

or arrays) or vertical format for printing
variables. A nonzero value indicates
wide format; 0 indicates vertical.

6-20 RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.12 Predefined dbx Variables, 3 of 3

Debugger Variables
Key Variable Default Description
B $printwhilestep 0 For use with the step[n] and stepifn]

instructions. A nonzero value specifies
that all n line and/or instructions should
be printed. A 0 value specifies that only
the last line and/or instruction should

be printed.

B $readtextfile 1 When set to 1, dbx tries to read
instructions from the object file rather
than the process. This variable should
always be set to 0 when the process
being debugged copies in code during

the debugging process.
S $prompt *dbx" Sets the prompt for dbx.
B $regstyle 1 Specifies the type of register names to

be used. A value of 1 specifies hardware
names; a 0 specifies software
names as defined by the file regdefs.h.
This variable does not affect
coprocessor register names.

B $repeatmode 1 Specifies whether dbx should repeat
the last command when a carriage
return is pressed. A nonzero value
indicates that the command is repeated;
otherwise it is not repeated.

B $rimode 0 Records input when using the record
output command.

S $sigtramp sigtramp Tells dbx the name of the code called by
the system to invoke user signal
handlers.

B $stop_in_main 0 Tells dbx to stop at main() when set to 1.

When set to 0, tells dbx to debug the
dynamic linking process at start up time.

S Stagfile Contains a filename indicating the file in
which the tag command and the tabvalue
macro are to search for tags.

B S$use_rid_symbols 0 When set to 1, tells dbx to use rid

E symbols in precedence of user symbols;
this is useful in debuggind r/d (runtime
linker), which may have collisions with
user symbols.

RISCompiler and C Programmer’s Guide 6-21

gging

wn
S
R
S)
S
.

Debu
P

©

Chapter 6

Creating Command Aliases (alias)

The alias command defines a new alias or displays a list of all current
aliases.

The alias command allows you to rename any debugger command.
Enclose commands containing spaces within double or single quotation
marks. You can also define a macro as part of an alias.

dbx has a group of predefined aliases; you can modify these or add to the
list. Aliases can also be included in the .dbxinit file to use them in future
debugging sections. '

For a complete list of predefined aliases, see Predefined dbx Aliases.

R
Q
Q
QO
3
v

o)}

buibbngag

Syntax:
Command Function
alias Displays a list of all aliases.
alias NAMEl [(ARG ...ARGN)] “NAME2* Defines a new alias. NAME1
is the new name. NAME2 is
the command to rename.
ARG1...ARGN are the
command arguments.
Example:
(dbx) alias ok (x) "stop at x"
(dbx) ok(58)
(1] Stop at 58 "sam.cg breakpoint set at line 58
(dbx)

Removing Command Aliases (unalias)

The unalias command removes an alias from a command. You must
specify the alias to remove; otherwise, a syntax error is displayed. The
alias is removed only for the current debugging session.

Syntax:
Command Function
unalias *“name" Remove an alias from a command, where

name is the alias name.

6-22 RISCompiler and C Programmer’s Guide

Debugging Programs

Example:
The following example displays all the aliases and removes the history
alias.

(dbx) alias

h history

si stepi

Si nexti

ni nexti

pi playback input

ro recora output

ri record input

a assign

t where

3 status

bp stop in

b stop at

g goto

s step

- 8]

bff;i;;) (Snﬁig:) };n the user decides to unalias h from

(dbx) alias history and it disappears from the

si stepi list

Si nexti

ni nexti

pi playback input

ro record output

ri record input

a assign

t where

J status

bp stop in

b stop at

g goto

s step

More (n if no)?n

(dbkx)

Predefined dbx Aliases

To list current aliases, use the alias command. You can override any
predefined alias by redefining it with the aliss command or by removing it
from the list with the unalias command. Table 6.13 shows the debugger
predefined aliases.

RISCompiler and C Programmer's Guide 6-23

aging

w
g
T
o~
S
S

Debu
P

©

Chapter 6

Table 6.13: Debugger Aliases

Debugger Aliases
Alias Command . Function
R]
S § a assign " Assign a value to a program variable.
0Q b stop at Set a breakpoint at a specified line.
™ (%g bp stop in Stop in a specified procedure.
Q@ c continue Continue program execution after a breakpoint.
d delete Delete the specified item from the status list.
e file Look at the specified source file.
f func Move to the specified activation level on the stack.
g goto Go to the specified line and begin executing the
program there.
h history List all items currently on the history list.
i status Display the items on the status list.
I list List the next 10 lines of source code.
norS next Step over the specified number of lines without
stepping into procedure calls.
nior nexti Set over the specified number of assembly code
Si instructions without stepping into procedure calls.
P print Print the value of the specified expression or variable.
pd printf“%d\n" Print the value of the specified expression or
variable in decimal.
pi playback input Replay dbx commands saved with the record input
command.
po printf*%o\n: Print the value of the specified expression or
variable in octal.
pr printregs Print values for all registers.
pX printf"%x\n" Print the value of the specified expression or
variable in hexadecimal.
q quit End the debugging session.
r rerun Run the program again with the same arguments
specified with the run command.
ri record input Record every command entered in a file.
ro record output Record all debugger output in the specified file.
s step Step the next number of specified lines.
si stepi Step the specified number of assembly code
instructions.
t where Get a stack trace.
u list $curlin-15:10 List the previous 10 lines.
w list $curlin-10:20 List the 10 lines preceding and following the current line.
wi List the 5 machine instruction preceding and following
the machine instruction.

6-24 RISCompiler and C Programmer’s Guide

Debugging Programs

Recording Input

Use the record input command to record debugger input. This command
provides an excellent means for creating a command file. record input can
be used with the source or playback input commands to repeat a sequence of

>
©
command multiple times. See Playing Back the Input. g,g
Syntax: ' §’c§,
Command Function o

record input [filename] Record all dbx commands in a file.

dbx saves the recorded input in filename. If filename is omitted, dbx saves
the recorded input in a temporary file, which is deleted at the end of the
dbx session. The name of the temporary file is in the system variable
$defaultin; to display the temporary filename, use the print command:

print S$defaultin

Use the temporary file to repeat previously executed dbx commands only
in the current debugging session; specify filename to create a command file
for use in subsequent dbx sessions. The statis command indicates whether
record input is set. Use the delete command to stop record input.

Example:

The following example records input and displays the resulting file.

(dbx) record input

[2] record input /tmp/dbxt0013516 (0 lines)
(dbx) status

[1]lrecord input /tmp/dbxt0013516 (0Olines)
(dbx) stop in printline

[2] stop in printline

(dbx) when i = 19 ({stop)

[3] traceif i = 19 {stop }

(dbx)

The temporary file from the above dbx commands is as follows:

status
stop in printline
when 1 = 19 (stop)

RISCompiler and C Programmer’s Guide 6-25

Chapter 6

Recording Output (record output)
Use the record output command to record dbx output during a debugging

RS (%J session. For example, you might want to use this command for a program
S S with a large array that doesn’t fit the screen. You can record the
E’ZS information in a file and look at it later. To record input as well, set the dbx
33 variable $rimode. Use the playback output command to look at the recorded
o ® piay
‘Q information, or use any system editor.
Syntax:
Command Function

record output |filename] Hecord all dbx commands in a file.

dbx saves the recorded output in filename. If filename is omitted, dbx saves
the recorded output in a temporary file, which is deleted at the end of the
dbx session. The name of the temporary file is in the system variable
$defaultout; to display the temporary filename, use the print command:

print $defaultout

Use the temporary file when you need to refer to the saved output only
during the current debugging session; specify filename to save information
required after exiting the current debugging session.

The status command indicates whether record output is set. Use the delete
command to stop record output.

Example:

(dbx) record output code -@—————— filename
[3] record output code (0 lines)

(dbx) stop at 25

[4]) stop at "sam.c":25

(dbx) run sam.c

[4] stopped at [main:25,8x1b0]if (i<2)

(dbx)

The above example writes the following output in the file code:

[3] record output code (0 lines)
(dbx) [4] stop at "sam.c":25
(dbx) (4] stopped at [main:25,0x21b0] if (i<2) {

6-26 RISCompiler and C Programmer's Guide

Debugging Programs

Playing Back Input

Use these commands to replay the commands recorded with the record
input command. If a filename is not specified, dbx uses the current

temporary file that it created for the record input command. If the dbx Sy ©
variable $pimode is set to 1, the commands are printed as they are played SE
back. §’ S
. o
Syntax: 8 &
Command Function
playback input [filename] EXxecute the commands from the

specified file
source [(FILE]

Example:

(dbx) playback input

status

[1) record input /tmp/dbxt0013516 (1 lines)
[2] stop in printline

[3] traceif i = 19 (stop)

stop in printline

[4]) stop in printline

when i1 = 19 (stop}

[S) traceif i=19 (stop }

(dbx)

Playing Back Output

This command displays output saved with the record output command.
The playback output command works the same as the cat command. If
filename is not specified, dbx uses the current temporary file created for the
record output command.

Syntax:
Command Function
playback output[filename] Printthe commands from the
specified file.

RISCompiler and C Programmer’s Guide 6-27

Chapter 6

Example:

(dbx) playback output -@4— the file name

[3] record output code (U lines)
(dbx) [4]) stop at *“sam.c":25
(dbx) [4]) stopped at [main:25,0x1b0] if(i<2){

(dbx)

d
a

3
Q
QO
3
wn

(o)}

buibbnga

the contents of
the file

invoking a Shell from dbx

To invoke a subshell, enter sh at the dbx prompt, or enter sh and a shell
command. To return to dbx from a subshell, enter exit or press AD.

Syntax:
Command Function
sh Invoke a shell from dbx.
sh [SHELL COMMAND] Execute the shell command.
Example:
(dbx) sh - invokes a shell
%
% date
Tue Apr 8 17:25:15 PST 1986
$ exit
(dbx) sh date - invoke a shell and execute
Tue Apr 8 17:29:34 PST 1986 the date command
(dbx)

Checking Shared Objects in Shared Environment

Use listobj to check what objects are linked in shared situations. dbx will
display the object names and text address ranges.

Syntax:
Command _ Function
listobj Check which objects are linked.

6-28 RISCompiler and C Programmer’s Guide

Debugging Programs

Checking the Status (status)

Use the status command to check which, if any, of these commands are
currently set:

* stop or stopi commands for breakpoints
e trace or tracei commands for line-by-line variable tracing
* when command

e record input and record output commands for saving information in a

file
Syntax: °
Command Function
status check the status of commands.
Example:

dbx) status

4] trace i in prlntllne -

31 print pline” at 177sam c":58
stop in printlin

L record output /tmp/dbxt0018898 (0 lines)
X)

the status item number

Deleting Status ltems

Use the delete command to remove items from the status list. This
command is used to delete breakpoints.

Syntax:

Command Function

delete EXP1, ...EXPN Delete the specified status item (EXP)
from the status list.

delete all Delete all status items.

RISCompiler and C Programmer’s Guide 6-29

gging

w
&
N
)
S
AL

Debu
P

©

Chapter 6

Example:

(dbx) status

[4] trace i1 in printline

[3] print pline” at 177sam.c":58

[2) stop in printline

{1] record output /tmp/dbxt0018898 (0 lines)
(dbx) delete 4

(dbx) status

[3) print pline at *“sam.c":58

[2) stop in printline

1] record output /tmp/dbxt00188%0 (0Olines)
(@bx)

d

buibbngag

~
Q
Q
~
QD
3
wn

()

the status
item number

Examining Source Programs

This section describes how to list and edit source code, change directories,
change source files, search for strings in source code, print symbol names,
and print variable declarations.

Specifying Source Directories

If -I was not specified when invoking the debugger, dbx looks for source

files in the current directory or in the object file’s directory. The use

command changes the directory and lists the directories currently in use.

The command recognizes absolute and relative pathnames (for example,
/); however, it doesn’t recognize the C shell tilde (~).

Syntax:
Command Function
use List the current directories.
use DIR1 ... DIRN Specify different directories.
Example:

The following example changes the directory searched for files to
fusr/local/lib.

6-30 RISCompiler and C Programmer’s Guide

Debugging Programs

(dbx) use

. -— current directory

(dbx) use /usr/local/lib o

(dbx) use cw ©

/usr/local/]l j@——————— new directory SE
S®

(dbx) SESY
Q3
QO I
Q

Q

Moving to a Specified Procedure

The func command moves up or down the activation stack. The activation
level can be specified by a procedure name or an activation level number.
To find the name or activation number for a specific procedure, get a stack
trace with the where command. You can also move through the activation
stack by using the up and down commands. For a definition of activation
levels, see What Are Activation Levels?

The func command changes the current line, the current file, and the
current procedure. This changes the scope of the variables you can access.

The func command can be used whena program isn’t executing to examine
source code.

Syntax:
Command Function
func Print the current activation levels.

func PROCEDURE Move to the activation level specified
by the procedure name.

func ECP Move the to activation level specified by
the expression.

RISCompiler and C Programmer’s Guide , 6-31

Chapter 6

Example:
The following example shows a stack trace and moves to the main
1O procedure. ’
ST
Qc (dbx) where
mgg > 0 printline [pline = OX7££f£5b80) ([177sam.cl77:58,0x2£7]
o 33 1 $blockl [177sam.c*:47, 0x2bb]
Q 2 main(argc=2, argv=0x7fffebal)["sam.c":47,0x2bb]
(dbx)| func 2 .)
main (47 printfline(&linel)
(dbx){func main the current
(dbx) , the source program counter
the proce- the procedure’s file name
dure name arguments the current
the activation line
level

Specifying Source Files

The file command changes the current source file to a specified file. The
new file becomes the current file, which you can search, list, and perform
other operations on.

Note: Before setting a breakpoint or trace, use the func command to get
the correct procedure; the file command cannot be specific enough for the
debugger to access the information necessary to set a breakpoint.

Syntax:
Command Function
file Print the name of the file currently in use.
file FILE Change the current file to the specified
file.
Example:
(dbx) file

sam.c -@————— current file
(dbx) file data.c

. (dbx) file
data.¢ g hew file
(dbx)

6-32 RISCompiler and C Programmer’s Guide

Debugging Programs

Listing Source Code

The list command displays lines of source code. The dbx variable
$listwindow defines the number of lines dbx lists by default. The list

command uses the current file, procedure, and line unless otherwise gnn ©
specified. It moves the current line forward. gg
, g g
Syntax: R
_____ QQ
Command Function
list List lines for $listwindow lines starting at the current line.
list EXP List the specified line.
list EXP:INT List the specified number of
lines (INT), starting at the specified
line (EXP).
list PROCEDURE List the specified procedure for $listwindow lines.

Example:

(dbx) 1list 53:2 -@———— the user specified
53 a list starting at
54 LINETYPE *pline; line 53 fortwo lines

(dbx)

If you use the predefined alias w, (see Predefined dbx Aliases), the output
is as follows:

(dbx) w
53
54 LINETYPE *pline;
5%
56 {
57 fprintf(stdio, #53d.(%d)%s",pline->linenumber
>* 58 pline-»string; .
59 ff;isj(stdout) ;=& current line
60) /* printline */
(dbx)

Note: > shows the current line and * shows the location of the program
counter (pc) at this activation level.

RISCompiler and C Programmer’s Guide 6-33

Chapter 6

Searching Through Code

The / and ? commands search for regular expressions in source code. The

;0(? slash (/) searches forward; the question mark (?) searches back from the
S8 current line. Both commands wrap around at the end of the file if
S% necessary, searching the entire file, from the point of invocation back to the
5 é S same point. If you set the dbx variable $casesense to a nonzero value, dbx
« distinguishes upper—case letters from lower—case.
Syntax:
Command Function
/REGEX Search forward in the code for the specitied
regular expression.
?REGEX Search backward in the code for the specified
regular expression.
Example:
(dbx) /lines
continue; /*don't count blank lines */
(dbx) /lines
linel.length=i
(dbx)
continue; /*don't count blank lines */
(dbx)

Calling an Editor from dbx (edit)

The edit command lets you make changes to source code from within dbx.
For the changes to become effective, you must exit dbx, recompile the
program, and, to continue debugging, restart dbx.

Syntax:
Command Function
edit Invoke an editor from dbx on the current file.

edit (filename] |nvoke an editor on the specified file.

The edit command loads the editor indicated by the environment variable
EDITOR. If EDITOR is not set, the vi editor is used. To return to dbx, exit

the editor.

6-34 RISCompiler and C Programmer’s Guide

Debugging Programs

Printing Qualified Variable Names

The which and whereis commands print program variables. These
commands are useful for programs that have multiple variables with the
same name occurring in different scopes. The commands follow the rules
described in the section Qualifying Variable Names.

Syntax:
Command Function
which VAR Print the default version of the variable.
whereis VAR Print all versions of the specified variable.
Example:

(dbx) which i

sam.main.1i

(dbx) whereis i

sam.printline.i sam.main.$blockl.isam.main.i
{dbx))

Printing Type Declarations

The whatis command lists the type declaration for variables and
procedures in a program.

Syntax:
Command Function
whatis VAR Print the type declaration for the specified

variable or procedure.

RISCompiler and C Programmer’s Guide 6-35

aging

®
S
3
o))
Q

Debu
P

©

e}

d
a

3
Q
N
3
&

buibbnga

Chapter 6

Example:

(dbx) whatis main

int main(argc,argv)
int argc;

unsigned char **argv;
(dbx) whatis i

int 1i;

(dbx)

Controlling the Program

This section describes the dbx commands to run a program, step through
source code, return from a procedure call, start at a specified line, continue
after stopping at a breakpoint, and assign values to program variables.

Running the Program

The run and rerun commands start program execution. Each command
accepts program arguments. If arguments are not specified for the run or
rerun command, the last set of arguments is used.

These commands can also be used to redirect program inputand output in
a manner similar to redirection in the C shell. The optional parameter
<FILE1 redirects input to the program from the specified file. >FILE2
redirects output from the program to the specified file. The optional
parameter >&FILE?2 redirects stderr and stdout output to the specified file.
Note: This output differs from the output saved with the record output
command. That command saves debugger (not program) output in a file.
See Recording the Output.

6-36

RISCompiler and C Programmer’s Guide

Debugging Programs

Syntax:

Command Function

run [ARGI, ...ARGN] [<FILE1] [>FILE2] Run the program with the specified
run [ARGI,...ARGN] [<FILE1] [>&FILE2) arguments.

©

aging

(%))
S
Ry
(=)
2

rerun [ARGI1...ARGN)[<FILE1][>FILE2] Rerunthe program with the previ-

ously specified arguments or with
rerun [ARGI...ARGN] [<FILE1) [>&FILE2] newyargumems. 9

Debu
P

Example:
(dbx) run sam.c the argument is sam.c
G. (19)#include<stdio.h>
1. (14) struct line {
2. (22) char string[256]);

(dbx) rerun

0. (19)#include<stdio.h>
1. (14) struct line {

2. (22) char string[256];

program terminated normally
(dbx)

Executing Single Lines of Code

The step and next commands execute a fixed number of source code lines
as specified by EXP. If EXP is not specified for step and next, dbx executes
one source code line; otherwise, dbx executes the source code lines as
follows:

* dbx does not take comment lines into consideration in interpreting
EXP. The program executes EXP source code lines, regardless of the
number of comment lines interspersed among them.

* For step, dbx considers EXP to apply to both the current procedure
and to called procedures. Program execution stops after executing
EXP source lines in the current procedure and any called procedures.

RISCompiler and C Programmer’s Guide 6-37

o)}

d
a

3
S
QO
3
1))

buibbnga

Chapter 6

e For next, dbx considers EXP to apply to only the current procedure.
Program execution stops after executing EXP source lines in the
current procedure, regardless of the number of source lines executed
in any called procedures.

Syntax:

Command Function

step [EXP] + Execute the specified number of lines of source
code. EXP refers to the number of lines to be executed in both
the current procedure and any called procedures.

Execute the specified number of lines of source

code. EXP refers to the number of lines to be executed in only
. the current procedure, regardless of any called procedures

executed.

next [EXP] *

* Default is 1.

Example:

The following example shows the use of the step command.

(dbx) rerun

[3] stopped at [printline:58,0x2f38] pline->string);
(dbx) step 2

0 (19) #include <stdio.h>

[Sblockl:48,0x2bc] } /*while*/

(dbx) step
[Sblockl:41,0x260) i=strlen(linel.string);
(dbx)

$block1 gets created
because it defines the
scope for its own local
variables

Returning from a Procedure Call

The return command is used in a called procedure to execute the remaining
instructions in the procedure and stop at the first instruction on return

from that procedure.

6-38

RISCompiler and C Programmer’s Guide

Debugging Programs

Syntax:
Command Function
return Execute the current procedure and return o
to the next sequential line in the calling cw ©
, procedure. g;g
return PROCEDURE Execute the program until dbx returns to the a3 S
specified procedure. oL
QQ
Example:

(dbx) rerun

[6] stopped at [printline:58, 0x2f8] pline->string):
(dbx) return

0 (19) #include <stdio.h>

stopped at [S$Sblockl:48,0x2bc])} /*while*/

dbx)

Starting at a Specified Line

The goto command shifts program execution to the specified line. This
command is useful in a when statement - for example, to skip a line known
to cause problems.

Syntax:
Command Function
goto LINE Go to a specified line and continue
execution.
Example:

(dbx) when at 58 {goto 43}
[1] start "sam.c":48 at "sam.c":58
(dkx)

Continuing after a Breakpoint

The cont command resumes program execution after a breakpoint. If
SIGNAL is specified as a parameter (see below), dbx sends the specified
signal to the program and continues.

RISCompiler and C Programmer’s Guide 6-39

(e)}

Y
Q
Q
W)
3
0

buibbnqag

Chapter 6

Syntax:
Command Function
cont Continue from the current line.
cont to LINE Continue until the specified line.
cont in PROCEDURE Continue until the specified procedure.
cont SIGNAL Continue from the current lineand
send the signal.
cont SIGNAL to LINE Continue until reaching the specified

cont SIGNAL in PROCEDURE Continue until reaching the specified

line and send the signal.

procedure and send the signal.

Example:

(dbx) stop in printline
[1] stop in printline
(dbx) rerun
[1] stopped at [printline:58,0x2£f8] pline->string);
(dbx) cont
0 (19)#include <stdio.h>
[1] stopped at [printline:58,0x2f8] pline ->string);
(dbx)

Assigning Values to Program Variables

The assign command changes the value of program variables.

Syntax:
Command Function
assign EXP1 = EXP2 Assign a new value to a program
variable.

6-40

RISCompiler and C Programmer’s Guide

Debugging Programs

Example:
(dbx) print i
19 et the value of i
(dbx) assign i = 10 »)
10— - the new value of i gg ©
(dbx) assign *(Sinteger*)0x455 = 1 4g4—— coerce the g)@
1 address to be 3 g’
(dbx) an integer o
and assign a
1toit

Setting Breakpoints

A breakpoint stops program execution and lets you examine the
program’s state at that point. This section describes the dbx commands to
set a breakpoint at a specific line or in a procedure, and stop for signals.

Overview

When a program stops at a breakpoint, the debugger displays an
informational message. For example, if a breakpoint is set in the sample
program sam.c (see Sample Program at the end of the chapter) at line 23 in
the main() procedure, the following message is displayed:

[2] stopped at [main:23,0xlcc) if(argec < 2) {
(dbx) ‘

I

line the current
. program counter
btretakpomt b number (,se this number
status number to print the assembly
z;c;::d ure language instructions from
this point (see Debugging at
the Machine Level).

source
line

Before setting a breakpoint in a program with multiple source files, be sure
that you're setting the breakpoint in the right file.

To select the right procedure, follow these steps:

RISCompiler and C Programmer's Guide 6-41

Chapter 6

1. Use the func command and specify a procedure name. This command
changes the activation level to the specified procedure. See Control-
ling the Program.

2. Listthelines of the procedure using the list command. See Controlling
- the Program.

D
S
<
N
3
®

(o))

3. Usea stop command to set a breakpoint at the desired line.

buibbnqgaq

Setting Breakpoints at Lines

The stop at command sets a breakpoint at a specific line. dbx stops only at
lines that have executable code. If you specify an unexecutable line, dbx
sets the breakpoint at the next executable line. If you specify the VAR
parameter, the debugger prints the variable and stops only when VAR
changes; if you specify if EXP, dbx stops only when EXP is true.

Note: The delete command is used to remove breakpoints.

Syntax:
Command Function
stop [VAR] at Stop at the current line.

stop [VAR] at LINE Stop at a specified line.

Stop at a specified line only if

stop [VAR] at LINE the expression is true.

if EXP

Note: if EXP is checked before VAR.

6-42 RISCompiler and C Programmer’s Guide

Debugging Programs

Example:

(dbx) stop at 58
[16) stop at 177sam.c":58
(dbx) rerun

o)
[16]) stopped at [printline:58,0x2f8] pline->string); gg ©
(dbx) : g@
38
the'line &i
the number
procedure the current
' name program counter

Setting Breakpoints in Procedures

The stop in command sets a breakpoint at the beginning or, conditionally,
for the duration of a procedure.

Syntax:

Command Function

stop in PROCEDURE Stop at the beginning of the procedure.

stop VAR in PROCEDURE Stop in the specified procedure when
VAR changes.

stop in PROCEDURE if EXP Stop in the specified procedure if EXP
is true.

stop VAR in PROCEDURE Stop in the specified procedure when

if EXP* VAR changes and EXP is true.

Note: EXP is checked before VAR.

Specifying both VAR and EXP causes stops anywhere in the procedure, not
just at the beginning. Using this feature is time consuming, because the de-
bugger must check the condition before and after each source line is exe-
cuted.

RISCompiler and C Programmer’s Guide 6-43

Chapter 6

Example:

(dbx) stop in printline
[15]) stop in printline
(dbx) rerun

d
a

XD
ng [15]) stopped at [(printline:58,02f8) pline->string);
ggg (dbx)
(o)) Cn(g
% b
procedure
name the current

program counter

Setting Conditional Breakpoints

The stop if command causes dbx to stop program execution under specified
conditions. Because dbx must check the condition after the execution of
each line, this command slows program execution markedly. Whenever
possible, use stop at or stop in instead of stop if.

Syntax:
Command Function
stop if EXP Stop if EXP is true.

stop VAR if EXP Stop if VAR changes and EXP is true.

~EXP is checked before VAR,

Tracing Variables

The trace commands list the value of a variable during program execution
as well as determine the scope for the variables being traced.

N

6-44 ' RISCompiler and C Programmer’s Guide

Debugging Programs

Syntax:
Command Function
trace VAR List the specified vanable after each
source line is executed. o
trace VAR at line List the specified variable at the c ‘é’ ©
' specified line. ST
trace VAR in PROCEDURE List the specified variable in the 3>
specified procedure. o
trace VAR at line if EXP List the variable at the specified line when
the expression is true.
trace VAR in PROCEDURE if EXP List the variable in the specified procedure
when the expression is true.

Note: EXP is checked before VAR.

Example:

(dbx) trace i

{15) trace i in S$blockl

(dbx) rerun

[printline:58, 0x2£8):1=19

[23]) [printline:58,0x2f8) pline->string);

¢ (19) #include<stdic.h>

[25] 1 changed before [177sam.c":41):
old value = 15;
new value = 1;

[25] i1 changed before [177sam.c":41):
old value = 1;
new value = 14;

[printline:58,0x2£f8): i=14

[23) [printline:58,0x2£8] pline->string);

1. (14) struct line (:

[25] i changed before [177sam.c":41):
old value = 14;
new value = 22;

More (n if no)n

Escape from listing

(dbx)

Writing Conditional Code in dbx

The when command allows debugger commands to be executed under
specified conditions.

RISCompiler and C Programmer’s Guide 6-45

Chapter 6

Syntax:
Command Function
5
S when VAR [if EXP] {COMMAND_LIST) Execute the command list when
S VAR changes.
o 5’,% when [VAR] at LINE [if EXP] Execute the command list when
Q (COMMAND_LIST) VAR changes, EXP is true, and

the debugger encounters LINE.

- Execute the command list upon
when in PROCEDURE {COMMAND_LIST} entering PROCEDURE.

when [VAR] in PROCEDURE [if EXP] Execute the specified commands
{ COMMAND_LIST) on each line of PROCEDURE when
EXP is true and VAR changes.

Note: EXP is checked before VAR.

Example:

(dbx) when in printline (print i)

[14]) print i in printline

(dbx) rerun :

[14] stopped at [printline:58,0x2£8] pline->string);

(dbx) cont
0. (19) #include <stdio.h>
14 value of i

[14] stopped at ([printline:58,0x2f8] pline->string);
(dbx) cont

1. (14) struct line (
22 value of i

[14]) stopped at [printline:58,0x2f8)] pline->string);
(dbx) when in printline (stop)

[15] stop in printline

(dbx) reurn .

[15] stopped at [printline:58, 0x2f8] pline->string);
(dbx)

dbx stops in the
procedure printline

Stopping at Signals

The catch command lists the signals that dbx catches or specifies a signal for
dbx to catch. If a child in the program encounters a specified signal, dbx
stops the process.

6-46 RISCompiler and C Programmer’s Guide

Debugging Programs

Syntax:
Command Function
catch Print a list of all signals that dbx catches.
catch SIGNAL Add a signal to the catch list. S
ignore Print a list of all signals that dbx does not %fé) ©
catch. ST
ignore SIGNAL Remove a signal from the catch list and add 3 S
it to the ignore list. Sa
Example:

(dbx) catch
INT QUIT ILL TRAP IOT EMT FPE BUS SEGV SYS PIPE TERM STOP TTIN
TTOU TINT SCPU XFSZ

(dbx) ignore adds KILL
HUF FKILL ALRM TSTP CONT CHLD to the catch
(dbx) catch kill list

(dbx) catch
INT QUIT ILL TRAP ICT EMT FPE KILL BUS SEGV SYS PIPE TERM STOP
TTIN TTOU TINT XTPU XFSZ

(dbx) ignore removes KILL
}(iggxz)u,m TSTP CONT CHLD g :ir:tm the ignore

Examining Program State

When dbx is stopped at a breakpoint, the program state can be examined
to determine what may have gone wrong. There are dbx commands for
printing stack traces, variable values, and register values. dbx also
provides commands to display information about the activation levels
shown in the stack trace and move up and down the activation levels.

Stack Traces

The where command display a stack trace. A stack trace shows the current
activation levels (procedures) of a program.

Syntax:

Command Function
where [EXP] Display the stack trace.

R1SCompiler and C Programmer’s Guide 6-47

Chapter 6

Example:

If a breakpoint is set in printline in the sample program sam.c, (see Sample
Program at the end of this chapter), the program runs and stops in the
procedure rmain(). If you enter where, a stack trace is printed, providing the
information shown below.

d
d

3
Q
9
3
&

6uibbngs

()}

(dbx) stop in printline
[1] stop in printline

(dbx) where

>0 printline(pline = 0x7f££f5b80)[177sam.c*:58, 0x2£7]

1 Sblockl[177sam.c":47}, 0x2bb]

2 main(3rgc = 2, argvie O0x7fffebald) (L773am.k*:47 J0x2bb)

dbx)
the procedure - ;
el o
s the current
the activation
level number - :::“f;me nt the source tcr;eug::rgram
the > shows arg file name

that the user is pline

examining this
activation level

Note: In the example, $block] has the same program counter as main. This
indicates that main() has a block with local variables, which do not appear
to all of main().

Changing Activation Level

The up and down commands move up and down the activation levels in the
stack. These commands are useful when examining a call from one level
to another. You can also move up and down the activation stack with the
func command. For a definition of activation levels, see What Are
Activation Levels?

6-48 RISCompiler and C Programmer’s Guide

Debugging Programs

Syntax:
Command Function
up [EXP] Move up the specified number of activation
levels inthe stack. The default is one level. o
down [EXP] ‘Move down the specified number of g)g’ ©
: activation levels in the stack. The default is S ©
one level. 3 4
.
Qo
Example:

(dbx) where

>0 printline(pline = Ox7£f££f5b80)[177sam.c":58, 0x2f7]

1 $blockl[177sam.c*:47,0x2bb]

2 main(argc = 2, argv = 0x7fffebal)[177sam.c*:47,0x2bb]
(dbx) down moves
Sblockl [177sam.c":47, 0x2bb] down one level
(dbx) where

0 printline(pline = Ox7£££5b80) [177sam.c”:58,0x2{7]
>1 Sblockl[177sam.c":47,0x2bb]

2 main(argc = 2, argv = O0x7fffebal)[177sam.c":47,0x2bb]
(dbx) up , moves up
printline(pline = Ox7f££f5b80)[177sam.c":58, 0x2£f7]) one level
(dbx) where
>0 printline(pline = 0x7ff.f5b80)[177sam.c“:58,0x2f77"I

1 Sblockl[1l77sam.c":47, 0x2bb]

2 main(argc = 2, argv = O0x7fffebal)[177sam.:47, 0x2bb]
(dbx)

Printing

The print commands displays the value of one or more expressions. You
can also use print to display the program counter and the current value of
registers; see the next section, Printing Register Variables, for details.

The printf command lists information in a specified format and supports
all formats of the printf(3S) command except %s. For a full list of formats,
see the printf(35) manual page in the Prograimimer’s Reference Manual. printf
can be used to see a variable’s value in a different number base. The
command alias list has some useful aliases for printing the value of
variables in different bases - octal (po), decimal (pd), and hexadecimal (px).
The default number base is decimal. See Creating Command Aliases.

RISCompiler and C Programmer's Guide 6-49

Chapter 6

Syntax:
Command Function
o up [(EXP] Move up the specified number of activation
g 2 . levels in the stack. The default is one level.
S down [EXP) Move down the specified number of
S‘g. ' activation levels in the stack. The default is
> °gq one level.

Note: If the expression contains a name the same as a dbx keyword, it must
be enclosed within parentheses. For example, in order to print output, a
keyword in the playback and record commands, specify:

print (output)

Example:
(dbx) print i .
14 == decimal
(dbx) pd i .
14 - decimal
(dbx) po i
016 -- octal
(dbx) px i
Oxe - hexadecimal
(dbx)

Printing Register Values

The printregs command prints register values, both the real machine
register names and the software (from the include file regdefs.h) names. A
prefix before the register number specifies the type of register; the prefixes
used and their meanings are as follows:

Prefix Register Type
$r Machine register.
Sf Floating point.
$d Double precision floating point.
$pc Program counter value.

You can also specify prefixed registers in the print command to display a
register value or the program counter. The following commands print the
values of machine register 3 and the program counter:

6-50 RISCompiler and C Programmer’s Guide

Debugging Programs

print $r3
print $pc
Set the dbx variable $hexints to specify that the display be in hexadecimal.
Syntax:
y 2 ©
Command Function g%
. . by
printregs Print the current values of all registers. a3 S
o5
Qg
Example
(dbx) printregs
r0/zero=0 rl/at=1 r2/v0=19 r3/vl=0
r4/a0=2147441472 r5/al1=34838 r6/a2=4096 r7/a3=80
r8/t0=19 r9/t1=34816 rl0/t2=19 rll/t3=0
rl2/t4=1 rl13/t5=34820 rl4/t6=0 rl5/t7=1
r16/s0=2147441472r17/s1=0 rl8/s2=0 rl9/s3=0
r20/s4=0 r21/s5=0 r22/s6=0 r23/s7=0
r24/t8=4086 r25/t9=255 r26/k0=0 r27/kl=0
r28/gp=50529 1r29/s0=2147441400r30/fp=2147442536 r31/ra=700
$f0= C.0 $fl= 0.0 $f2= 0.0 $£3= 0.0
$f4= 0.0 $£5= 0.0 $f6= 0.0 $f7= 0.0
$£8= 0.0 $£9= 0.0 $£10=0.0 $£11=0.0
$£12=0.0 $£13=0.0 $£14=0.0 $£15=0.0
S$£16=0.0 $£17=0.0 $£18=0.0 $£19=0.0
$£20=0.0 $£21=0.0 $£22=0.0 $£23=0.0
$£24=0.¢C $£25=0.0 $£26=0.C $£27=0.0
$£28=0.0 $£29=0.0 $£30=0.0 $£31=0.0
$d0= 0.0 $d2= 0.0 $d4= 0.0 $d6= 0.0
$d8= 0.0 $d10=0.0 $d12=0.0 $d14=0.0
$d16=0.0 $d18=0.0 $d20=0.0 $d422=0.0
$d24=0.0 $d26=0.0 $d428=0.0 $d30=0.0
Spc= 760
(dbx)

Printing Information about Activation Levels

The dump command prints information about activation levels, including
values for all variables local to a specified activation level. To see what
activation levels are currently active in the program, use the where
command to get a stack trace.

RISCompiler and C Programmer’s Guide _ 6-51

Chapter 6

Syntax:
Command Function
ol dump Print information about the current
S activation level.
S dump . Print information about all activation levels
=ShS in the program.
RS dump PROCEDURE Print information about the specified
procedure (activation level). .

Example:

(dbx) where

>0 printline (pline=0x7ff££f5b80)[177sam.c":58,0x2£f7])
1 Sblockl [177sam.c":47,0x2bb]

(dbx) dump
printline (pline=0x7f££5b80) [177sam.c*:58,0x2£f7])
(dbx) dump .

> 0 printline(pline-Ox7££f£5b80)[177sam.c":58, 0x2£7]
1 $Sblockl [177sam.c":47,0x2bb]
curlinenumber = 1
i=19
2 main (argc=2,argv=0x7fffebal) [177sam.c":47, 0x2bb]
fd = 0x4270
linel=struct (
string=177#include<stdio.h>

linenumber=0
}
in **;

(dbx) dump main

main (argc=2, argv=0x7fffebal)[177saam.c":47,0x2bb]
£fd=0x4270

linel=struct {

string="struct line {

length = 14

linenumber = 1

.

}
(dbx)

Debugging Machine Code

This section describes the dbx commands provided for debugging
assembly code; these commands allows you to set breakpoints, step
through instructions, trace variables, display the contents of memory
addresses, and disassemble instructions.

6-52 RISCompiler and C Programmer’s Guide

Debugging Programs

Setting Breakpoints in Machine Code

The stopi commands set breakpoints in machine code. These commands
work in the same way as the stop at, stop in, and stop if commands as
described in the section Setting Breakpoints, except for the stop at

)
cw ©
command, where an address instead of a line number is specified. ’g,%
25
Fanct RIS
Command unction
stopi [VAR] at Stop at the current address.
stopi [VAR] at ADDRESS Stop at a specified address.
stopi [VAR] at ADDRESS Stop at a specified address only
if EXP if EXP is true.
stopi if EXP Stop if EXP is true.
stopi VAR if EXP Stop if VAR changes and EXP is true.
stopi in PROCEDURE Stop at the beginning of the procedure.
stopi VAR in PROCEDURE Stop in the specified procedure when
VAR changes.
stopi in PROCEDURE if EXP Stop in the specified procedure fEXP
is true.
stopi VAR in PROCEDURE Stop in the specified procedure when
if EXP* VAR changes and EXP is true.
"EXP is checked before VAR.

Example:

(dbx) stopi at 0x2f38
[2] stopi at 177sam.c":760
(dbx) rerun

[2] stopped at [printline:58,0x2f8)pline-> string);
(dbx)

RISCompiler and C Programmner’s Guide 6-53

Chapter 6

Continuing after Breakpoints in Machine Code

The conti commands continue executing assembly code after a breakpoint.

%’(g Syntax:
gé Command - Function
o §) 35 conti SIGNAL Send the specified signal and
«Q continue.
conti to ADDRESS Continue until reaching the specified
address.
conti in PROCEDURE Continue until the beginning of the
specified procedure.
conti SIGNAL to ADDRESS Continue until reaching the specified
address, then send the signal.
conti SIGNAL in PROCEDURE Continue until reaching the beginning
of the specified procedure, then send
signal.
Example:

(dbx) conti
0 (19)#include <stdio.h>

[2] stopped at [printline:58,0x2£f8) pline->string0;
1w r2,32(sp)
(dbx)

Executing Single Lines of Machine Code

The stepi and nexti commands execute a fixed number of machine
instructions as specified by EXP. If EXP is not specified, dbx executes one
machine instruction. If EXP is specified, dbx executes the machine
instructions as follows:

¢ dbx does not take comment lines into consideration in interpreting
EXP. The program executes EXP machine instructions, regardless of
the number of comment lines interspersed among them.

e For stepi, dbx considers EXP to apply to both the current procedure
and to procedure calls (jal and jalr). The program stops after
executing EXP instructions in the current procedure and any called
procedures.

* For nexti, dbx considers EXP to apply to only the current procedure.
The program stops after executing EXP instructions in the current
procedure, regardless of the number of instructions executed in any
procedure calls.

6-54 RISCompiler and C Programmer's Guide

Debugging Programs

Syntax:
Command Function
stepi [EXP] * Execute the specified number of lines of machine ©

code. EXP refers to the number of lines to be ex-
ecuted in both the current procedure and any pro-
cedure calls.

gging

[%2)
S
&
S
e

Debu
P

nexti [EXP) * Execute the specified number of lines of machine
code. EXP refers to the number of lines to be ex-
: ecuted in onlythe current procedure, regardless of

any procedure calls.

*Default is 1.

Example:

(dbx) rerun

[2] stopped at [printline:58,0x2f8)pline->string);
(dbx) stepi

[printline:58+0x4,0x2fc] pline->string);

lui rl1,0x0

(dbx)

Tracing Variables in Machine Code

The tracei commands track, one instruction at a time, changes to variables.
The tracei commands work for machine instruction as the trace commands
do for lines of source code.

RISCompiler and C Programnmer’s Guide 6-55

Chapter 6

Syntax:
Command Function
oo tracei Print the value of the variable
32 as it changes.
‘s S tracei VAR at ADDRESS Print the value of the variable
3Q when it changes at the specified
> 0l address.
tracei VAR in PROCEDURE Print the value of the variable
when it changes in the specified
procedure.
tracei VAR at ADDRESS if EXP Print the value of the variable at
the specified address when the
expression is true.
tracei VAR in PROCEDURE if EXP Print the value of the variable in
the specified procedure when
the expression is true.

Printing the Contents of Memory

Memory contents can be displayed by specifying the address and the
format of the display. address is the address of the first item to be
displayed, count is the number of items to be shown, and mode indicates the
format in which the items are displayed. The values for mode are shown in

Table 6.14.
Syntax:

- Command Function
ADDRESS/<COUNT><MODE> Print the contents of the specified

address for the specified count.

656 RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.14: Table 6.14 Modes for Printing Memory Addresses

Mode Print Format

Pnint a short word in decimal.

Print a long word in decimal.

Print a short word in octal.

Print a long word in Octal.

Print a short word in hexadecimal.
Print a long word in hexadecimal.
Print a byte as a character.

Print a string of characters that ends in a null byte.
Print a single precision real number.
Print a double precision real number.
Print machine instructions.

©

aging

[%2)
S
<
S
L

Debu
p

—@ 0w OoOXX Q00O

Example:

The following example shows the output when printing memory
addresses as instructions:

(dbx) 0x2£f8/10i
[printline:58, 0x2£8)] 1lw r2,32(sp)
[printline:58,0x2fc] 1lui rl,0x0
[printline:58,0x300] addiu r4,rl, 16860
[printline:58,0x304] 1lui rl, 0x0
[printline:58,0x308)] addiu r5,rl1,16780
[printline:58,0x30c] 1w ré6,260(r2)
[printline:58,0x310] 1w r7,256(r2)
iprintline:58,0x314] jal fprintf!!
[printline:58,0x318) sw r2,16(sp)
[printline:59,0x31c] 1lui rl, 0x0
[printline:59,0x320]) jal fflush<!
[printline:59,0x324] addiu r4,rl,16960
(dbx) 0x2£8/104
000002£8: 32 3677 0 0 15361 1690 9252 0 15361
00000308: 16780 9253
(dbx)

RISCompiler and C Programmer’s Guide

6-57

Chapter 6

Debugger Command Summary

Table 6.15 lists all commands (except for command line editing

éo‘? commands) and gives the syntax for each.
‘Qg Table 6.15: Command Summary, 1 of 7
3<
(o)) "’(S
Command Alias Function Syntax
/ Search forward in the /REGEX
code for the specified
string.
? Searchbackwardinthe = ?REGEX
code for the specified
string.
] Execute a command ISTRING
from the history list. IINT
-INT
alias List all aliases, or if an alias [NAME(ARG?1,...
argument is specified, RGN) STRING"]
define a new alias.
assign Assign the specified assign EXP1 = EXP2
expression to a
specified program
variable.
catch List all signals that dbx catch [signal]
catches, or if an argu-
ment is specified, add
the signal to the catch
list.
cont Continue executing cont
a program after a cont in PROCEDURE
breakpoint. cont to LINE
cont SIGNAL to LINE
cont SIGNAL in PROCE-
DURE

6-58

RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.15 Command Summary, 2 of 7

Command Alias Function Syntax
. ; i conti SIGNAL

contl b ey contito ADDRESS

a breakpoint. conti in PROCEDURE
conti SIGNAL to ADDRESS
conti SIGNAL in PROCEDURE

delete d Delete the specified delete EXP1,...EXPN
item from the status delete ALL
list.

down Move down the down [EXP]
specified number of
activation levels in
the stack. The de-
fault is one level.

dump Print variable informa- dump PROCEDURE
tion about the proce- dump . :
dure. Ifadot (.)is
specified, information
for all global variables
is shown.

edit Invoke and editor from edit [FILE]
dbx.

file e Print the name of the file [FILE)
current file, or if a filena-
me is specified, change
the current file to the
specified file.

func f Move to the func
specified procedure func EXP
(activation level) func PROCEDURE
or print the current
activation level.

goto g ﬁi‘c:o the specified goto LINE

RISCompiler and C Programmer’s Guide

6-59

o)
£

S)
S)

Debu
Programs

6

Chapter 6

Table 6.15 Command Summary, 3 of 7

S Command Alias Function Syntax
S&
RS help ? Print a list of dbxcom- help
o é‘g mands using more(1).
Q

history h Print a list of previously history
issued commands. The
default list length is 20.

ignore List all signals that dbx ignore [SIGNAL)
does not catch, or if an
argument is specified,
add the specified signal
to the ignore list.

list | List the specified list
lines. The default list [EXP:INT]
is 10 lines. list [EXP]
next n Step over the next [INT]

specified number of
lines. The defauit
is one. This com-
mand does not step
into procedures.

nexti ni Step over the specified nexti [INT]
number of machine in-
structions. The default is
1. This command does
not step into procedures.

playpack pi Replaycommands playback input [FILE]
input saved with the record .
input command.

6-60 RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.15 Command Summary, 4 of 7

Command Alias Function Syntax
playback po ReplayAdebugger output playback output [FILE]
output saved with the record
output command.
print p Print the value print EXP1,....EXPN
of the specified
expression.
printf pd Print the value printf 177STRING",
of the specified EXP1,...EXPN
expression, using
C string formatting.
printregs pr Print all register printregs
values.
quit q Exit dbx. quit
record ri Record all commands record input [FILE]
input entered to dbx.
record ro Record all dbx output. record output [FILE]
output
return Continue executing return [PROCEDURE]
until the procedure
returns. If you
don't specify a
procedure, DBX
assumes the next
procedure.
run Run the program. run [ARG1 ... ARGN]
[<FILE1][>FILE2)
rerun r Run the program again rerun [ARG1 ... ARGN]
using the arguments [<FILE1][>FILE2)
specified to the run
command.

RISCompiler and C Programmer’s Guide

6-61

gging

1%}
E
o
(o)}
o
o

Debu
P

©

Chapter 6

Table 6.15 Command Summary, 5 of 7

Command Alias Function

set Display the list of de-
bugger variables and
values, assign a value
to a variable, or define a
new variable and assign
a value to it.

Syntax

d
ad

set
set VAR = EXP

3
Q
N
3
&

buibbnqa

(¢)}

sh Invoke a shell from
dbx, or execute a shell
command.

sh [SHELL COMMAND

Execute dbx commands
from the specified file. If
a filename is not speci-
fied, the file created with
the record input com-
mand is used.

source source [FILE]

Print a list of currently status
set breakpoints, record

commands, and traces.

status j

Step the specified num- step [INT]
ber of lines. This com-

mand steps into proce-

dures. The default is

one line.

step s

stepi

stop

si

bp

Step the specified num-
ber of instructions. This
command steps into
procedures. The default
is one instruction.

Set a breakpoint at the
specified location.

stepi [INT]

.

stop [VAR] at

stop [VAR] at LINE

stop [VAR] in PROCEDURE
stop [VAR] if EXP_

stop [VAR] at LINE if EXP
sto[?f V)a? in PROCEDURE

RISCompiler and C Programmer’s Guide

Debugging Programs

Table 6.15 Command Summary, 6 of 7

Command Alias Function Syntax 0 ©
stopi Set a breakpoint stopi [VAR] at ADDRESS S5
in machine code stopi [VAR] in PROCEDURE 3 S
at the specified stopi [VAR] if EXP 8 a
point. stopi [VAR] at ADDRESS if

EXP
stopi (VAR] in PROCEDURE
if EXP

trace tr Trace the specified trace VAR
variable. trace VAR at LINE
trace VAR in PROCEDURE
trace VAR at LINE i
EXP

trace VAR in PROCEDURE
if EXP

tracei Trace the specified tracei VAR
variable in the tracei VAR at ADDRESS
machine instruction. tracei VAR in PROCEDURE
tracei VAR at ADDRESS

if EXP
tracei VAR IN
PROCEDURE if EXP
unalias Remove specified alias. unalias ALIAS NAME
unset Unset a debugger unset VAR
variable.
up Move the specified up [EXP]

number of activation
levels up the stack.
The default is 1.
use Print a list of directories use [DIR1 DIR2...DIRN]
which are searched for
files. If one or more di-
rectory names are
specified, change the
list of directories to
those specified.

RISCompiler and C Programmer’s Guide 6-63

Chapter 6

Table 6.15 Command Summary, 7 of 7

Command Alias Function Syntax
S
@ g whatis Print the type whatis VAR
s : declaration for the
o mé specified name.
when Execute the specified when VAR](if EXP]
dbx commands under MMAND_LIST)

o e when VAR] at LINE
specified conditions. L'f XP}{COMMAND_

when é AR] in PROCEDURE

XP]{COMMAND
where t Get a stack trace. where
whereis Print all qualifications whereis VAR
of the specified

variable name.

which Print the qualification which VAR
of the variable name
currently in use.

Print the contents of ~ ADDRESS/<COUNT><MODE
the specified address
in the format specified
by MODE.

Sarhple Program

The sample C program referred to in command examples, sam.c, is shown
in Figure 6.3.

#include <stdio.h>

struct line (
char string(256];
int length;
int linenumber;

6-64 RISCompiler and C Programmer’s Guide

Debugging Programs

main(argc, argv
int argc; ©
char **argv;

efellgle

LINETYFE linel;

FILE *fc;

extern FILE *fopeni();
extern char *fgets(;;

w)
S
o
(o))
e

Debu
P

:f (argc < 2) |
fprintf(stderr, ”Usage cam filename\n”);
exitily;

‘e~

< = fiperntaravil), "r";
22 (f2 == NJLL) |

"cannct opern %s\n”,

while !

1C curlinenumber = ©;

trien linel.cstring:;

if 1 == 1 && linel.string!C} == '\n’)
continue;

linel.length = 1i;

linel.linenumber = curlinenumber++;

printline(&linel);

'™
1
- tn

L= T

of
(€%

L

ot
e,

llhie-cllinenumber,
N N

1e=

5

b1
rt
o~

Figure 6.3: Sample Program sam.c

RISCompiler and C Programmer’s Guide 6-65

Chapter 6

d

buibbngag

-
o
Q
=
QD
3
wn

(&)}

6-66 RISCompiler and C Programmer’s Guide

MIPS C Implementation

Introduction

The MIPS C compiler supports four variations of the C language:

C as defined in The C Programming Language by Kernighan and
Ritchie (Prentice Hall, 1978) with some ANSI C extensions (also
known as MIPS-C)

ANSI C as defined in ANSI X3.159-1989 (American National
Standards Institute, 1989), this document is referred to by section
numbers, e.g. 3.2.2

ANSI C with extensions
An older version of MIPS C known as oldc

These variations of C are available with the following cc options:

-std0 MIPSC

-std]l strict ANSIC

-std ANSI C with extensions :

-oldc old version of MIPS C, uses the old cpp and ccom.
instead of the new cfe. Oldc will not be supported in
future releases of MIPS RISCompilers.

Note: The compiler that comes with RISC/os supports —std0 mode only.
The ANSI C compiler supports all modes and defaults to -std.

This chapter covers the following topics:

Additional options for the C driver.
Translation limits.

MIPS C extensions to C as defined in The C Programming Language
by Kernighan and Ritchie (Prentice Hall, 1978).

RISCompiler and C Programmer’s Guide 7-1

Q
%)
=~
by

S
8]
T
c
0]
E
Q2
Q
E

N

Chapter 7

* Compatibility issues between previous versions of MIPS-C
(referred to as OldC) and ANSI C, ANSI C with extensions.

The ANSI C Language and extensions to ANSI C are described in Chapter
8 of this manual.

Additional Driver Options

In addition to the options discussed in Chapter 1 of this manual, the C
driver, cc, has options that let you increase the amount of space allowed for
various structures used by the compiler. These options are of the form
-Wf, =XNz<number>, where z is one of the following:

Table 7.1: Additional Driver Options for -oldc only

option meaning default

a temporary string space 1024
b temporary string space 4096
c temporary string buffer 40
d symbol table 3000
e nesting levels 100
f parameter stack space 1020
g switch table space 500
h tree space 100
i delayed tree space 20

j hash table space 20

k file name space 100
| string literal space 2048
m initialization stack space 10

n line length 515
o file stack size 1024
o] dimension table size 4200
q block nesting size 100

ccom options

If more than one of these options is used, each must be of the form -Wf,
-XNz<number>. These options are only useful with the —oldc flag.

The ccom (invoked by the driver to compile C sources) options are shown
in Table 7.2. The options may appear on the command line in any order
and have the form -Xoption.

7-2

RISCompiler and C Programmer’s Guide

MIPS C Implementation

Table 7.2: ccom options for -oldc only, 1 of 2

option meaning

volatile makes all variable declarations volatile

varargs prints waring message if address of parameter is taken in
a non-varargs function

v verbose, prints out names of functions processed

signed makes ‘char' same as 'signed char’

float use single prexision math where possible

framepointer
W

F

Sfile

c

dollar

d

IO

rapuv

Q@ Ve 4— X o~
omm S

mipsn
std
stdn

generate a framepointer in each function
test at the top for “while’ loops
test at the top for “for’ loops
write symbol table to file
print warning message on pointer casts
allow '$' in identifiers
print debug info on defid and non-unique member references,
multiple -Xd's may be specified, each one yields more
verbose output
print debug info on initialization processing, multiple -Xi’s
may be specified, each one yields more verbose output
print debug info on buildtree
traps on uninitialized variables

print debug info on tymatch

print debug info on expression trees
print debug info on *?:’ processing

intersperse source with object
force all names to be <=8 chars

generate ASCIl ucode and ASCIl symbol table
obsolete, do not use

nis a digit, if n<>0, then writes debugging information to
the symbol table for dbx debugging
set big endian mode

set little endian mode

O<=n<=3, sets optimization level, doesn't affect ccom
1<=n<=3, sets the mips architecture, doesn't affect ccom
ANSI plus extension compliance

n=0 for traditional compliance, n=1 for strict ANSI
compliance. Note that the ANSI implementation is
incomplete. n=o is the default.

RISCompiler and C Programmer’s Guide

7-3

0
wn
&
DS

c
L
IS
IS
)
E
2
Q
E

N

Chapter 7

Table 7.2: ccom options for -oldc only, 2 of 2

option meaning
Nxnnnn changes internal table limits, nnnn is the new value. You can
use an unkown letter to make ccom list the possibilities,
e.g. -XNz999. The known values for x and the default values
are listed below;
a temporary string space [1024]
b temporary string space [4096]
c temporary string buffers [40]
d symbol table space [3000]
- e nesting level [100]
3 = f parameter stack space [1020]
o g switch table space [500]
34 h tree space [1000]
3 i delayed tree space [20]
2 j hash table space [20]
~ S k file name space [100]
| string literal space [2048]
m initialization stack space [10]
n line length [515]
o files stack size [1024]
o] dimension table size [4200]
q block nesting size [100]
| obsolete, don't use
e same as -Xe
w same as -w1
wn actions on wamings; n is one of:
0 print warnings, default if -w not specified
1 don't print wamings
2 print warnings, exit with nonzero exit status if any
warnings occur
3 don'’t print wamings, exit with nonzero exit status if
any (not printed) warnings occur
v obsolete, don't use
framepointer same as -Xframepointer
f print the tree in the second pass
trapuv same as -Xtrapuv

In addition, ccom accepts hp to two filenames in the argument list. The first
one, if present, is the input file. The second one, if there, is the output file.
They default to stdin and stdout respectively.

7-4 RISCompiler and C Programmer’s Guide

MIPS C Implementation

Translation Limits

Table 7.3 shows the maximum limits imposed on certain items by the C

compiler.
Table 7.3: C Compiler Limitations.

C Specification Maximum Maximum (-oldc)
Nesting levels

Compound s{atements 200 <30

lterations N

Selections S

Conditional compilations =

<

Maximum number of type * 9 O g
modifiers (arrays, pointers, Lo
function, volatile) s %
Case labels 500 = <500
Function call parameters * 150
Significant characters 32 <32

External identifier
Internal identifier

* means no limit

MIPS-C

This section covers the following topics:

* Specifying vararg or stdarg macros, a requirement for all functions
that take a variable number of argument.

* Deviations from and extensions to C as defined in The C
Programming Language by Kernighan and Ritchie (Prentice-Hall).

* Compatibility with previous versions of MIPS-C.
¢ New header files.

RISCompiler and C Programmer’s Guide 7-5

~N

3
j=2
®©
3
@
2
Q
s
3

O-SdInN

Chapter 7

Varargs.h Macros

Currently, the MIPS C compiler supports varargs.h. The compiler also
supports the ANSI stdarg.h method of variable argument accessing. Use
stdarg.h wherever possible as varargs.h will be obsolete in the future.

If a function takes a variable number of arguments (for example, the C
library functions printf and scanf), you must use the macros defined in the
varargs.h header file.

The va_dcl macro declares the formal parameters va_alist, which is either
the format descriptor for the remaining parameters or a parameter itself.

The va_start must be called within the body of the function whose
argument list is to be traversed. The function can then transverse the list
or pass its va_list pointer to other functions to transverse the list. The type
of the va_start argument is va_list; it is defined by the typedef statement in
varargs.h.

The va_arg macro accesses the value of an argument rather than obtaining
its address. The macro handles those type names that can be transformed
into the appropriate pointer type by appending an asterisk (*), which han-
dles most simple cases. The argument type in a variable argument list
mustnever be an integer type smaller than int, and must never be float. The
current implementation of varargs does not work for struct types Further-
more, the first parameter must not be a double.

For more information on the varargs.h macros, see varargs(3) in the RISC/os
Programmer’s Reference Manual. Figure 7.1 shows an example of the use of
varargs macros; the expected output from the example is as follows:

load I 0 4

load I 4 4

add I

store I 0 4

RISCompiler and C Programmer’s Guide

MIPS C Implementation

#:includ v
#include <«g
enum operat
main ;¢
vold emit (); _
emit (load, ‘I’', 0, 4);
emit (load, “I’, 4, 4);
emit (add, ‘I’
emit (ctcre, “I', C, 4);

[i4]
A

a

N

(cp, va_alist)
/* emit takec a variable number of arguments and prints
cheir according tc the operation format */

ot

c
S
I
S
Qg
0N o
a3
SE

Ot om0

Fo sl ‘LS SANE B) B R
o

P N A

2]
a
]
1
[\
Q.
[e5

/* print operation and length */
“ype=va_arc larg_ptr, int);

printf (*add %c\n*, type);

break;

_arg (ar)
printf ("suk %c\n", type);
break;
czse load: /* print operation, offset and length *

type=va_arg (arg_ptr, int);
cffset=va_arg (arg_ptr, int);
length=va_arg (arg_ptr, int);
printf ("load %c %d %d\n", type, offset, length);
preak;
case store:

type=va_arg (arg_ptr, int);

cifset=va_arg (arg_ptr, int);

~ength=va_arg targ_ptr, int);

printf ("store %c %4 Wd\n", type, Cffiget, length);
A_SNTD LRII_TTY);

Figure 7.1 Passing a Variable Number of Arguments 10 a C Function

RISCompiler and C Programmer’s Guide 7-7

Chapter 7

Stdarg.h Macros

This is the ANSI C variable argument header file which replaces varargs.h.
It must be included in each module which defines functions expecting a
variable number of arguments. There s also a prototype syntax used to de- -
clare such functions, which must be used in modules that call stdarg func-
tions. Stdarg correct varargs limitations such as the inability to pass struct
parameters and not allowing the first argument to be a double.

As an example, the stdarg version of the varargs example would be coded
as shown in Figure 7.2:

O-SdIN

3
o
®
3
@
3
=
s
3

~N

7-8 RISCompiler and C Programmer’s Guide

MIPS C Implementation

s

case load:

/* example variable argument function */
#inciuqs <ctdarc.h>
#include <gtcic.h>
enun coperaticns -load, store,zdd, sub:;
malin

voiZoeniT enun operation, v

'* prototyps with notiation*/

emit .cad, "Iv, O, &)

ermit ..zzd, TI0, 4, 41

erit add, "It

eric igtcre “I', 0, 45

cate aqd /* print operations’and length */
~ype=Va_arc larg_ptr, int):
printf ("adc %c\n", type);
rreak;
czge suk: /7 print operations and lenght */
' typesva_ara (arg_ptr, int);
princi "sub %c\n", typel;

brear;

Type=va_arg (arg_ptr, int);

cficet=va_arc farg_ptr, int);

lengthi-va_arg (arg_ptr, int);

printf "*lcad %c %d\n", type, offset, lenght);
cace cstore: /* print operation, offset and length */

type=va_arg (arg_ptr, .int);

Jffsets=va_arg (arg_ptr, int);

length=va_arg targ_ptr, int);

PYLnts tstore %c,%d %d/n", type, oifcet, length:;

wie function definition form */
variable number of argumentes
.2 according te the operation format */

1

* the argument prior tc the variable part
c¢f the function must be named here */

/* print operation, offset and length */

Figure 7.2: Passing a Variable Number of Arguments to a C Function (stardg version)

RISCompiler and C Programmer’s Guide

7-9

c
S
T
o
O g
N ©
aq
SE

N

Chapter 7

Deviations
MIPS-C does not support the entry keyword, which has no defined use.
Additionally, MIPS-C does not support the asin keyword, as implemented
by some C compilers to allow for the inclusion of assembly language in-
structions.

Extensions

Extensions to K & R C include the following:
* A cast is allowed on the left side of an assignment operator.

* The enumeration type, a set of values represented by identifiers
called enumeration constants; enumeration constants are specified
when the type is defined. For information on the alignment, size,
and value ranges of the enumeration type, see Chapter 3.

O-SdIn

3
i1
®
3
@
=3
2
s
3

* The void type, which allows you to specify that no value be returned
from a function.

~N

* void *, which is a generic pointer. Any pointer may be assigned or
compared to a pointer to void.

* The volatile type modifier, which is used when programming I/O
devices and the signed type. In addition, the const keyword has
been reserved for future use. For more information on the volatile
modifier, see Chapter 3.

* prototypes, which are function prototypes as defined by the ANSI
standard for C. Function prototypes can assist in locating
assumptions about type compatibilities that may not be true when
code is ported. '

e C++ style comments are permitted.

Header Files

alloc.h

This header file should be included if the built-in version of the C library
routine alloca(3) is desired. The built-in version is more efficient than the
portable libc version because space is allocated on the stack and freed on
exit.

The header file redefines the name alloca:
extern char *alloca(int size);
#pragma intrinsic(alloca)

7-10 RISCompiler and C Programmer’s Guide

MIPS C Implementation

Compatibility

This section describes the differences between the old MIPS C compiler
(referred to as OldC, and available with the —oldc option) and the new
compiler, which has three modes:

e MIPS-C (—std0)
¢ ANSIC (-stdl)
¢ ANSI C with extensions (-std)

Differences Between OIdC and All Modes

A warning is issued if constants exceed the limits (the value of
ULONG_MAX). A similar warning occurs if octal and hexadecimal
character escapes exceed the value of UCHAR_MAX. OldC does not issue
a warning in these cases.

The value of the integer when a multi—character constant is converted may
not be the same if the character type is signed and there are negative values
in the constant. :

The ANSI standard requires that a backslash followed by a carriage
return be stripped early in the translation phases. In OldC, the pair was
stripped fairly late (around translation phase 5, section 2.1.1.2). The
behavior of cpp will be different; programs containing such constructs may
not work properly when fed into the new compiler.

A typedef name used as a type specifier cannot be modified with a type
modifier (i.e. signed, unsigned). A syntax error message is printed if this
construct is found in a program. OldC permits modifying a user-defined
type.

In the ANSI standard, preprocessor directives can occur in any column of
a line as long as there is no preprocessing token in front of the "#’ sign.
OIdC recognizes directives only if the "#’ sign is on the first column of a
line. The assembly language style of comment can be compiled with the ~
oldc option. To make this feature compatible, the new preprocessor con-
forms to the old style of directive if -DLANGUAGE_ASSEMBLY is used
on the command line.

Declaring or defining a type within a function prototype causes the param-
eter to be incompatible with any other type. OldC permits this. For exam-
ple, in the following declaration, if struct S has no previous declaration,
any further type matching of the parameter list will result in an error; at
the end of the prototype the scope closes, causing S to be forgotten.

int foo(struct S*p;);

RISCompiler and C Programmer’s Guide 7-11

Q
95
Q
S

<
)
T
S
[
&
Q@
Q
E

AN

N

3
St
®
3
®
2
2]
s
3

O-SdIn

Chapter 7

OIdC allows casting of the left hand side of the assignment expression, if
the object pointed to by the left hand side and right hand side expressions
have the same size. This is no longer permitted.
The cpp of OldC allows an #if directive in the middle of macro call. This is
not permitted in any other mode.
OldC is very liberal regarding placement of braces in initializers. For
example:

_ struct S { char i[10]; int i} y = {{("aeiou”, 1});
is acceptable in OldC, even though all standards require that the array be
initialized to the nested initializer. The new compiler will complain about
the initializer containing too many initial values since the array element is
single-valued whereas the initializer is multi-valued.

Typedef names cannot be redeclared except within an inner block.

OldC and MIPS C (-std0)

The ANSI standard requires that each comment be replaced by one space
character during preprocessing. In OldC, a comment is deleted entirely.
The new behavior does not permit a comment to be used as a concatena-
tion operator as in OldC.

The ANSI specification defines a string as a contiguous sequence of char-
acters terminated by, and including, the first null character. As the result,
a partial string is not a valid processing token, and it is not viable in the re-
placement list of a macro definition. The OldC preprocessor accepts a par-
tial string. For example, in OIdC, the following code fragment defines a
partial string:

#define abc ~123
and could be used as follows:

printf (abc 456”);

In OIdC, macros cannot be defined recursively. However, -std0 mode
supports recursively defined macro expansion.

0ldC and ANSI C (-std1)

Local variables are allowed to hide externally declared variables at the
same lexical level in OldC. This is treated as a redeclaration in ANSI C, and
is an error:
£() {
extern int 1i;
int 1i;
}

7-12

RISCompiler and C Programmer’s Guide

MIPS C Implementation

In ANSI C, hexadecimal escape sequences in character and string con-
stants are allowed. In OIdC, this is not permitted. For example, "\x’ is in-
terpreted as ‘x’ in OldC.
The escape sequence '\a’ is new to ANSI C. In OIdC, this is translated to
‘a’ in and a warning message issued.
In ANSI C, a trailing comma in an enumerator list, as in:

enum good_stuff {(cake, pie, cookie, };
generates a warning message. OldC permitted this without waming. In
strictly standard mode (-std1), this is an error.
In ANSI C, an empty declaration (”;”) at the top level generates an error
message. The empty declaration is tolerated in -std0 mode.
In ANSIC, top level variable declarations (not function definitions) where

there is no declaration specifier generate an error. OldC assumes that the
variable is extern int.

N

A missing ending semicolon in the structure declaration list results in a
warning message being issued. OldC permitted constructs such as:
struct {int a,b) a;

c
S
IS
&
O g
o
L3
S

without warning.
In OIdC, to declare two mutually referencing structures within a block,
declarations similar to the following are required:
struct x { struct y *p; /* ... */ };
struct y { struct x *q; /* ... */);
In ANSI C, if struct y is already defined in a containing block, the first field

of struct x refers to the older declaration. Thus special meaning is given to
the form:

struct y;

struct y now hides the outer declaration of struct y, and creates a new in-
stance of the structure in the current block.

MIPS-C (-std0) and ANSI C (-std1)

In MIPS-C, array elements can have zero size; this is not allowed in ANSI
C. For instance: »

extern struct file file([]);/* struct fileis incomplete */
is accepted in -std0 mode, but not in —std1 mode.
In MIPS-C, local variables are allowed to hide externally declared vari-
ables at the same lexical level. In ANSI C, this is treated as a redeclaration.
In MIPS-C, array elements can have zero size. For example:

extern struct file file[];

/* struct file is incomplete */

RISCompiler and C Programmer’s Guide 7-13

N

3
s
®
3
)
2
2
5
3

O-SdIN

Chapter 7

is accepted in MIPS-C, but is not permitted in ANSIC.

In MIPS-C, integral constants can have type int or long. In ANSIC, integral
constants can have type int, unsigned int, long, or unsigned long. In MIPS-C,
the type is unsigned int or unsigned long if the ‘u’ or ‘U’ suffix is used.

In MIPS-C, the preprocessor recognizes macro names inside strings in a
macro expansion. This is not supported in ANSI C. In ANSI C, the # op-
erator should be used (see the Macros section in Chapter 8 of this manual).

In ANSI C, a comment is replaced with one white-space character. In
MIPS-C, a comment is removed.

In ANSI C, the preprocessor supports trigraphs. These are not supported
in MIPS-C.

In MIPS-C, the preprocessor allows macro definitions to be redefined.
This is not allowed in ANSI C.

. Any macro name that is included from ANSI standard header file cannot

be undefined, except in MIPS-C.

In ANSI C, the preprocessor issues a warning message if there is a prepro-
cessing token following the #endif directive. In MIPS-C, no warning ap-
pears.

In ANSI C, the preprocessor issues a warning message if non-unique pa-
rameter name is detected for a macro definition.

In the following example:

struct y;
struct x (struct y *p; /* ... */ };
struct y (struct x *q; /* ... */);

the reference to y in struct x, refers to the local declaration of y. In ANSIC,
special meaning is given to the form:

struct y;
struct y now hides any declaration of struct y in an enclosing block, and cre-
ates a new instance in the current block.

ANSI C (-std1) and ANSI C with extensions (-std)

The C++ style comment is supported in ANSI C with extensions (-std
mode).

Special Options for Compatibility

Comments are removed in OldC; this feature can be used as a concatena-
tion operator in macro definitions. The —oldcomment option to the new
compiler causes comments to be removed instead of replaced with a single
space.

7-14

RISCompiler and C Programmer’s Guide

ANSI C Implementation

Introduction

The MIPS C compiler supports four variations of the C language:

* C as defined in The C Programming Language by Kernighan and
Ritchie (Prentice Hall, 1978) with some ANSI C extensions (also
known as MIPS C)

e ANSI C as defined in ANSI X3.159-1989 (American National
Standards Institute, 1989)

¢ ANSI C with extensions
¢ An older version of MIPS C known as oldc

MIPS CThese variations of C are available with the following cc options:

-std0 MIPS C

-stdl strict ANSI C.

-std ANSI C with extensions

-oldc old version of MIPS C, uses the old cpp and ccom.
instead of the new cfe. Oldc will not be supported in

future releases of MIPS RISCompilers.

If none of the above options are used on the cc command line, the default
is =std0 unless an ANSI C license is acquired, in which case the default is
-std.

Chapter 7 contains a discussion of compatibility issues for the variations
of C provided by the MIPS compiler.

8]

c
S
T
OO
S
S
ZQ
<&

RISCompiler and C Programmer’s Guide 81

8

3>
v 2
2d
o O
3
oy
5
3

Chapter 8

This chapter discusses new features of ANSI C. A complete description of
the Language may be found in ANSI X3.159-1989. In addition to describ-
ing the C language, the ANSI standard for C describes the functionality of
the preprocessor and the library routines. This chapter discusses the fol-
lowing topics:

¢ Translation Limits

* Preprocessor

* Language

¢ Library Routines

* Implementation Defined Behavior

* Quiet Changes

* Extensions to ANSI C

ANSI C is identical to MIPS C in many respects. Each of the following sec-
tions describes features of ANSI C that are not found in MIPS C.

Note: With —systype bsd43 and -systype sysv, a conforining freestanding im-
plementation of ANSI C is available and accepts any strictly conforming
program in which the use of library routines is confined to those defined
in the standard headers float.h, limits.h, stdarg.h, and stddef.h.

A conforming hosted implementation of ANSI C is not yet available. This will

be provided in a future release and will include the new and modified
header files and libraries.

Translation Limits

The MIPS C compiler uses dynamic data structures and therefore, program
components are limited only by the amount of available memory. The
following list indicates minimums which are guaranteed (i.e. a program
that meets but does not exceed each minimum is guaranteed to compile).
However, if a program significantly exceeds one or more minimums, it is
possible to run out of memory and receive an error message on a
component that has not yet reached its minimum.

e Compound statements (a set of statements grouped with braces),
iteration control statements, and selection control statements may be
nested at least 15 levels.

« Conditional include directives may be nested 8 levels.

* Arithmetic, structure, union, or incomplete type declarations may
have at least 12 pointer, array, and function declarators modifying
them.

8-2

RISCompiler and C Programmer’s Guide

ANSI C Implementation

* A declaration may have at least 31 nested levels of parenthesized
declarators.

¢ An expression may have at least 32 nested levels of parenthesized
expressions.

* An internal identifier or macro name may have 32 significant
characters.

¢ An external identifier may have 32 significant initial characters.
* A single translation unit may have at least 511 external identifiers.
* A block may have at least 127 identifiers declared with block scope.

* A single translation unit may have at least 1024 macro identifiers
defined simultaneously.

* A function definition may have at least 31 parameters and a function
call 31 arguments.

* A macro definition may have at least 31 parameters and a macro
invocation 31 arguments.

* A logical source line may have at least 509 characters.

©

* A string literal or wide string literal may have at least 509 characters
(after string concatenation).

* An object may consist of at least 32767 bytes.

* A switch statement may have 257 case labels (excluding any nested
switch statements).

c
S
T
o
Og
53
2 Q
<E

* A single struct or union may have at least 127 members.
* A single enumeration may have at least 127 enumeration constants.

* A single structure declaration may have at least 15 levels of nested
structure or union definitions.

Preprocessor

Directives

Any token may be continued on the following line with a back-slash (\)
followed by a new-line. Previously, only character strings could be con-
tinued in this fashion.

The # and the directive name (i.e. line, ifdef) are separate tokens.

A null directive, consisting of a # followed by a new-line, is permitted and
has no effect.

RISCompiler and C Programmer’s Guide 8-3

@

O ISNY

3
]
®©
3
@
3
2
Q
=
)
3

Chapter 8

New Directives

White-space, consisting of any number of spaces and tabs, may appear in
directives between preprocessing tokens anywhere in the line. Directives
may be nested at least eight levels.

#Elit

The #elif (else if) directive allows nested #ifs to be simplified:
#if x < 0

;éiif X ==
selse
vendif
#Error
The error directive is as follows:

serror token—sequence

This directive causes a warning diagnostic message to be generated that in-
cludes the specified token sequence.

#Pragma

The pragma directive has the form:
#pragma token-sequence

The intrinsic, function, weak, and pack pragmas are supported. Any unrec-
ognized pragmas are ignored by the compiler and a warning diagnostic
message is generated.

Intrinsic Pragma

Some library functions can be compiled insline using the intrinsic pragma.
This directive affects the specified function from the pragma until the end
of the file or the next function function pragma that references the same
function.

#pragma intrinsic (functionl [,function2] ...)
The following functions can be compiled in-line using the intrinsic prag-
ma:

alloca(), sqgrt(), strecpyl()

RISCompiler and C Programmer’s Guide

ANSI C Implementation

Function Pragma

The function name must be defined at the time the #pragma is processed.
If a function name is not recognized as an intrinsic, no action is taken. In-
trinsic processing can be turned off using -D_NO_INTRINSICS on the
command line. In -std1 and -std modes, intrinsics are enabled by default.
In —std0 mode, intrinsics are disabled by default. To enable intrinsics, add
-D_INTRINSICS to the command line.

The function pragma escapes the in-line code generation. A function call is
forced for the specified functions for all subsequent calls unless an intrinsic
pragina is encountered further on.

#pragma function (functionl [,function2] ...)
#pragma function ()

The second form of the function pragma disables intrinsic functionality of
all currently intrinsic functions.

The function and intrinsic pragmas can only be used at the file scope level.

Weak Pragma

The weak pragma defines a new weak external symbol and associates this
new symbol with an external symbol.

©

#pragma weak (secondary_name, primary_name)

#pragma weak secondary_name = primary_name
These two forms of the weak pragma are equivalent and cause the prima-
ry_name to be a weak symbol and associate it with the secondary_name. If a
weak symbol and a strong symbol of the same name exist, the strong sym-
bol is resolved and a warning is issued for the unresolved weak symbol.
A third form of the weak pragma may be used to indicate that a global sym-
bol should not cause an error if it is not resolved by the linker:

#pragma weak identifier

<
S
T

&
Og
Ho
ZQ
<E

Pack Pragma

The pack pragma is used to change the alignment restrictions on structure
members. ,

#pragma pack(n)

#pragma pack()
In the first form, n specifies the new alignment restriction in bytes. If n is

omitted, as in the second form, the default alignment restriction is used (8
bytes, the alignment requirements for a double).

RISCompiler and C Programmer’s Guide 8-5

o]

O ISNV

3
i<t
©
3
®
|
2
N
=
S
3

Chapter 8

Directives with Additional Functionality

Macros

Defined

The defined unary operator is used with an #if and is equivalent to an #ifdef.
The new form is provided to allow multiple tests in one directive. For
example:

#if defined (debug) && defined (error)

#include

ANSI C defines #include as follows:
#include identifier

After all macro replacement is completed, the identifier must be either
filename or <filename>.

#Line

The ANSI C line directive has the form
#line line-number filename

The line-number may be a macro that has a decimal value or a constant.
The filename may be a macro, a string literal, or a filename.

Operators

There are two new operators for macro parameters. A # placed beforea pa-
rameter causes the # and the parameter to be replaced with a string consist-
ing of the parameter name. For example, if the following macro

#define print(x) printf(#x " = %d*, x)
is called as

print (result);
Itis expanded to

printf(”“result” * = %d", result)

Adjacent string literals are concatenated, so the result of the macro call be-
comes

printf (“result = %d4”, result);
New macros

ANSI C defines a new offsetof macro:
offsetof (type, member)

RISCompiler and C Programmer’s Guide

ANSI C Implementation

The macro expands to an integral constant expression of type size_t and
indicates the offset in bytes from the beginning of the structure to the
indicated member.

ANSI C defines errno as a macro that expands to a modifiable lvalue of
type int.

ANSI C defines the macros EXIT_SUCCESS and EXIT_FAILURE in
stdlib.h. These macros expand to integral expressions that may be used as

the argument to exit() (see exit(2)) to indicate successful or unsuccessful ter-
mination to the host environment.

FOPEN_MAX is the minimum number of files that it is guaranteed can be
open simultaneously.

Predefined Macros

All predefined macros begin with an underscore that is followed by a cap-
ital letter or another underscore.

The following predefined macros provide information about the file being
compiled and cannot be redefined or undefined:

__DATE__ date the file was compiled

_TIME__ time the file was compiled c®
__FILE_ name of the file being compiled 8
__LINE__ 1line number in the file being compiled ‘g
__STDC__ has the value 1 if -stdl is used on the cc oo
. . . . ZE
command line, 0 if =-std is used, and is o
undefined if -std0 is used. <Q
<E
Expressions
Constant expressions in preprocessor directives may not contain casts or
enums.
Language

Trigraph sequences

A trigraph is a sequence of three characters that is used to represent a sin-
gle character. Trigraphs are intended to be used on machines where the
character set does not contain all of the characters required by C.

RISCompiler and C Programmer’s Guide 8-7

8

Ix»
D=
oW
30
2
Q
S
3

Chapter 8

main()

Declarations

A trigraph sequence is two question marks followed by another character.
The trigraphs and the characters they represent are as follows:

oa: #
7([
7/ \
1))]
77 A
7M< {
ol |
7> }
- ~

You should not need to use trigraph sequences. However, if any of these
sequences appear in string literals in a source file, they will be interpreted
as a trigraph which may cause unexpected results.

Argv, the argument list passed to main(), ends with a NULL pointer. There-
fore the number of arguments reported by argc is one more than the num-
ber of parameters passed to the program. Argc and argv are modifiable by
the user.

Keywords

ANSI C has defined the following new keywords: const, volatile, signed,
enum, and void.

Identifier Name Space

The following categories of identifiers have separate name spaces:

¢ Label names.

¢ Tags of structs, unions, and enums.

e Each struct or union has a separate name space for its members.
¢ All other identifiers.

The identifiers that are found in function prototypes have their own name
space. The scope of these variables is from the name to the end of the pro-
totype definition.

RISCompiler and C Programmer’s Guide

ANSI C Immplementation

Constants

Unsigned Constants

Unsigned constants have a u or U as a suffix:
4321U or 4321u

Unsigned long constants are suffixed with both u or U and / or L:
987654321UL

Floating-point Constants

Floating-point constants are specified with an f or F suffix:
0.2F or le7f

Floating—point constants can also be specified with a decimal point (4.321)
or an exponent (6e—4) as in MIPS-C.

Wide Constants

A wide character constant has type wchar_t and an L as a prefix:
L'z’ '
The value of a wide character constant containing one multibyte character

is the corresponding wide character code defined by the library function
mbtowc.

©

A wide string literal is prefixed with an L:
L”abc”

c
S
I
o
Og
$9
ZQ
<E

String Constants

In ANSI C, string concatenation occurs when two string literals are adja-
cent. For example:

printf (”"a character string that is continued”
"on the next line”);

String literals containing trigraph sequences (see the Trigraph Sequences
section) may have unexpected results. For example, the string “what??!”
becomes “what | ” during preprocessing.

There are two new escape sequences for use in string literals:

‘\a’ alert
‘\v’ wvertical tab

In addition, a "\x’ sequence introduces a hexadecimal escape sequence
that represents a character. One or two hexadecimal digits may follow the

1

X

‘\xb’ or "\xle’

RISCompiler and C Programmmer’s Guide 8-9

o)

O ISNV

3
]
®
3
@
2
2
5.
3

Chapter 8

All lower case alphabetic escape sequences are reserved for future use.

Type modifiers

ANSI C defines the following new type modifiers:

const indicates that the variable or argument will not be changed. const
variables are placed in the read only section of the object file.

volatile is used to suppress undesirable optimizations (e.g. reads that may
appear to be redundant).

signed may modify short, int, long int, or char. If a type is not modified by
either signed or unsigned, it defaults to signed, except for char which is
unsigned by default (unless the —signed flag is used at compile time).

Types

Bit fields may be type int, unsigned int, or signed int only.

ANSI C introduces a new floating-point type long double intended to give
greater precision than double. In MIPS implementation, long double and
double are the same.

ANSI C defines the following new types:

void is any empty set of values. This type is commonly used for return val-
ues of functions that do not return a value and as a generic pointer (void*).
Any pointer type may be assigned to a pointer to void. void cannot be used
to declare types.

An enum is a set of named integer constants. For example:

enum prj:mary {red, yellow, blue};

Typedefs

The following typedefs are available in ANSI C:

jmp_buf is declared in jmpbuf.h. Itis an array type suitable for holding
information needed to restore a calling environment and may be used as
the type of the argument to setjmp(3).

size_tis defined in stddef h and is an unsigned integral type that is the result
of the sizeof operator.

ptrdiff_t is defined in stddef.h and is a signed integral type that is the result
of subtracting two pointers.

sig_atomic_t is defined in signal.h and is an integral type that can be

accessed as an atomic entity (even in the presence of asynchronous
interrupts).

8-10

RISCompiler and C Programmer's Guide

ANSI C Implementation

wchar_t is defined in stddef.h and is an integral type capable of holding
values representing all codes of the largest extended character set among
the supported locales.

Empty Declarations

Structures and unions may have empty declarations. This allows the user
to define mutually referential structures and unions. For example:

struct y;
struct x (struct y * yptr;);
struct y (struct x * xptr;};

The first struct y in the above example has an empty declaration. This en-

sures that struct x refers to the local definition of struct y and not a global
definition that may exist.

Tagless declarations

A struct or union that has no tag name following its declaration may be re-
ferred to only by the declaration in which it is found.
struct (
int 1i;
} a,b;
A tagless enumeration can be used to define constants (which can also be
defined with the #define preprocessor directive):

S}

enum {cow, sheep, goat, chicken};

<
Q
T
)
o
~E
7]
ZQ
<E

Structs, Unions, Arrays

Arrays

Array dimensions must be constant integral expressions and greater than
zero.

In ANSI C, automatic arrays may be initialized provided the initializer list
consists of constant expressions.

Structures and Unions

Automatic structs and unions may be initialized either with a constant
expression or a non—constant expression of the same type. When an
automatic union is initialized, the value stored is cast to the type of its first
member.

Structures and unions cannot be cast; a pointer to a structure or union can
be cast to a pointer of another type.

RISCompiler and C Programmer's Guide 8-11

o}

3
i<}
Q)
3
@
3
N
=
S
3

O ISNV

Chapter 8

Expressions

A structure or union can be passed as an argument to a function by value
(the struct or union) as well as by address (a pointer to a struct or union) and
can also be returned from a function by value or address.

Any parentheses in expressions must be honored at execution time.

Operators

Assignment operators, such as += or *=, are a single token; no space is
allowed between the operator and the =. Assignmentoperators of the form
=0p are not permitted. You should use the op= form.

ANSI C provides a unary plus operator. In the following example:
i = +10;
10 is assigned to i. :
A cast expression is not an lvalue and cannot have a value assigned to it.

Arithmetic

When a float is converted to an integral type, the fractional part is discard-
ed.

The controlling expression of a switch statement must be an integral type.

Integral Promotions

A character, short integer, or integer bit-field, whether signed or unsigned,
or an enumeration may be used in expressions wherever an integer may be
used. If all the values of the original type can be represented by an int, the
value is converted to int; otherwise the value is converted to unsigned int.
This is a value preserving method of integral promotion.

Many C implementations have used an unsigned preserving method of inte-
gral promotion. This approach promotes an unsigned character or un-
signed short integer to unsigned int.

In most cases, the two schemes give the same effective result. Both give the
same result in even more cases in implementations with twos complement
arithmetic and quiet wraparound on signed overflow (that is, most current
implementations). In these implementations, differences between the two
schemes appear when the following conditions are both true:

* An expression involving an unsigned char or unsigned short produces
an int length result in which the sign bit is set.

8-12

RISCompiler and C Programmer’s Guide

ANSI C Implementation

» The result of the preceding expression is used in a context in which
its sign is significant.
In such circumstances, value preserving integral promotion causes
the negative signed integer to become a very large unsigned

integer, which may not be the desired result. This can be avoided
with the use of appropriate casts.

Note: —std(uses the unsigned preserving method.

Conversion Rules

The conversion rules for ANSI C are as follows:

First, if either operand is long double, the other operand is converted to long
double.

Otherwise, if either operand is float, the other operand is converted to float.
Otherwise, the integral promotions are performed on both operands.
Then the following rules are applied:

* If either operand is unsigned long int, the other operand is converted
to unsigned long int.

* Otherwise, if one operand is long int and the other is unsigned int, the
unsigned int is converted to long int.

S

» Otherwise, if either operand is long int, the other operand is
converted to long int.

* Otherwise, if either operand is unsigned int, the other operand is
converted to unsigned int.

c
S
IS
S
O
€&
B9
ZQ
<E

¢ Otherwise, both operands are int .

Sequence Points

The following are known as sequence points:
* A function call, after the arguments have been evaluated.

* The end of the first operand of the following operators: logical AND
(&&), logical OR (! I), conditional (?), and comma (,).

* The end of a full expression: an initializer, the controlling expression
of an if, switch, while, or do statement, each of the three expressions of
a for statement, or the expression in a return statement.

At a sequence point, all side effects of previous evaluations are complete
and no side effects of subsequent evaluations have taken place.

RISCompiler and C Programmer's Guide 8-13

(04}

O ISNY

3
°
©
3
®
pu]
2
o]
5
3

Chapter 8

If processing is interrupted by a signal, only the value of objects as of the
previous sequence point may be relied on. Objects modified since the last
sequence point and before the next, need not have received their correct
values.

Note: Order of evaluation in expressions is unspecified except for se-
quence points.

Pointers
A function pointer cannot be cast to a data pointer or a pointer to void and
a data pointer or pointer to void cannot be cast to a function pointer.
A pointer cannot be converted to another pointer type without an explicit
cast. '
Functions
ANSI C has a new style of function definition that is similar to function
prototype style. The following function:
sum(i, j)
int i;
int j;
(
)
can now be defined as:
init sum(int i, int j)
{
return i;
}
A function with no arguments would be defined as follows:
print (void)
{
)
Function Prototypes
The following is an example of a function prototype:
int sum(int x, int y):
8-14 RISCompiler and C Programmer's Guide

ANSI C Implementation

This declaration indicates that the function sum expects two int arguments
and returns an int. The definition of the function and each call to the func-
tion must agree with the prototype; otherwise, an error message is gener-
ated by the compiler.

A prototype for a function with a variable number of arguments would be
declared as follows:

int print(char *format, ...);

The ellipsis (...) indicates that the number and type of the arguments may
vary and can only appear at the end of the argument list. At least one pa-
rameter must precede the ellipsis in the declaration.

Function Pointers
A function pointer may be used to call the function in either of the follow-
ing ways:
(*func_ptrx) ();
OR
func_ptr();

Implementation Defined Behavior

Translation

comr.iler-rhass:

The ANSI Standard for C allows implementations to vary in specific in-
stances. This section describes the implementation defined behavior of the
MIPS ANSI C compiler.

Diagnostic messages are identified as follows:

crror-type: Ifilename, line: error-message’ {section- number:.
and are followed by the line in question and an indication of the location
of the problem. For example:

cfe: Error: misc.c, line 7: syntax error
lon int *c;
The error message may be followed by the section number of the ANSI C
standard that has been violated.

RISCompiler and C Programmer’s Guide 8-15

c
S
©
o
Og
5O
< Q
<E

@

0]

O ISNV

3
j=2
®©
3
®
2
o
5.
3

Chapter 8

Environment

Identifiers

Characters

The arguments to main() are:

argv[0] the name of the executable file
argv[1]...argv[argc - 1] command line parameters
“argv(argc] a null pointer

An interactive device is a video display terminal.

Only the first 31 characters of an internal identifier are significant.
An external identifier has 6 significant characters.
Case is significant for external identifiers.

The source and execution character sets are identical and are as defined in
the ANSI standard for C.

The C locale is the default locale. Currently, no other locales are support-
ed; therefore, there are no shift states for encoding multibyte characters.

There are eight (8) bits in a character in the execution character set.
Source characters are mapped one-to—one into the execution character set.

There are no invalid characters or escape sequences in the basic execution
character set.

The value of an integer character constant that contains more than one
character or a wide character constant that contains more than one multi-
byte character is as follows for character constants with 2 to 4 characters:

in big-endian mode:
2 characters, “ab”:
‘a™256 + (unsigned)’d’
3 characters, "abc”:
‘a’ * 65536 + (unsigned)’d’ * 256 + (unsigned)’c’

4 characters, "abcd”:
'a’ * 16777216 + (unsigned)’b’ * 65536 +
(unsigned)’c’ * 256 + (unsigned)’d’
and in little-~endian mode:

2 characters, “ab”:
‘b’ * 256+ (unsigned)’a’

8-16

RISCompiler and C Programmer’s Guide

ANSI C Implementation

3 characters, “abc”:
‘c’ * 65536 + (unsigned)’b’ * 256 + (unsigned)’a’
4 characters, "abcd”:
‘d’ * 16777216 + (unsigned)’c’ * 65536 +
(unsigned) ‘b’ * 256 + (unsigned)'a’
The C locale is used to convert multibyte characters into corresponding
wide character codes. The value of the wide character is equal to the value
of the first byte in the multibyte sequence (whose value is taken as an un-
signed value).

A “plain” char has the same range of values as an unsigned char.

Integers
The ranges of values for the integral types are:
char 0to 255
signed char -128 to 127
short int -32768 to 32767
int -2147483648 to 2147483647
long int -2147483648 to 2147483647 ©
unsigned char 0to 255
unsigned short int 0 to 65535
unsigned int 0 to 4294967295

unsigned long int (0 to 4294967295

Converting an integer to a shorter signed integer causes a representation
change by discarding the high order bits. Converting an unsigned integer
to a signed integer of equal length does not cause a representation change.
However, the converted value may be negative.

Bitwise operations on signed integers produce signed results, represented
in two’s complement. How the value is interpreted depends on whether
the sign bit is on or off after the operation. The operation is performed on
the data as if the values were unsigned.

When the operator is % (remainder of integer division), if the dividend is
negative and the divisor is positive, the result is negative. If the dividend
is positive and the divisor is negative, the result is negative. If both are
negative the result is negative.

A right shift of a negative signed integral type causes the sign bit to be rep-
licated.

c
S
T
o
Og
33
Q
<&

RISCompiler and C Prograiminer’s Guide - 8-17

(o]

O ISNV

3
js}
®©
3
®
=
]
s
3

Chapter 8

Floating Point

The ranges of values for the floating point types are:

float 1.17549435e-38 F to 3.40282347e+38F
~ double 2.2250738585072014e-308 to
1.7976931348623157e+308
long double 2.2250738585072014e-308 to
1.7976931348623157e+308

When an integral number is converted to a floating—point number that can-
not be exactly represented, the number is truncated to be nearest value that
can be represented.

When a floating-point number is converted to a narrower floating-point
type, the value is truncated or rounded to the nearest value that can be rep-
resented by the narrower type.

Arrays and Pointers

Registers

size_t is defined in stddef.h to be unsigned int.
Casting a pointer to an integer or vice versa does not cause any represen-
tation change.

ptrdiff_t is defined in stddef.h to be int.

The register storage class specifier cannot be used with structure or array
declarations. A register variable may be changed to a non-register type ora
non-register type changed to register by the optimizer.

Structures, Unions, Enumerations, and Bit-fields

Consider a union as a block of memory the size of the union. The result if
a member of a union has a value stored in it and is subsequently accessed
using a member of a different type is defined as the value of the accessed
type at that block of memory. If the size of the type stored is smaller than
the accessed type, the result is undefined. If the type stored is a structure
with holes, and the accessed value overlaps any of the holes, the value is
undefined. If a floating point value is stored, the bit pattern for the IEEE
format for single or double precision numbers is stored. A NULL pointer-
is stored as a bit—pattern of all zeroes.

Each member of a structure is aligned on the boundary required by its
type. Padding is added between members as necessary. See Chapter 2 of
this manual for more details on alignment of data types.

8-18

RISCompiler and C Programmer’s Guide

ANSI C Implementation

Qualifiers

Declarators

Statements

A plain int bit-field is a signed int bit-field.
Bits within an integer bitfield are allocated most significant bit first in big—-
endian mode and least significant bit first in little-endian mode

A bit-field cannot straddle a storage unit boundary.
The values of an enumeration declaration are type int.

Each time a value is needed from a volatile object, a “read” access is made
to it. Each time the value needs to be written, a “write” access is made.
This ensures that volatile objects are accessed in the same way as in the ab-
stract semantics. However, the one exception is when a volatile bitfield is
written to, the hardware constraints may force a “read” to occur prior to
the "write”, in order to read the values of the parts of the storage unit that
are not changed in the write. Avoid using volatile bitfields unless you re-
ally know what you are doing.

An arithmetic, structure, or union type may have at least 12 declarators
modifying it. The maximum number of declarators allowed is limited only
by the amount of available memory.

The maximum number of case values in a switch statement is limited only
the the amount of available memory.

Preprocessing Directives

The value of a single-character character constant in a constant expression
that controls conditional inclusion matches the value of the same character
constant in the execution character set. A single—character character con-
stant is an unsigned character and therefore cannot be negative.

When an include file is specified as “filename”, the current directory is
searched first, and if not found, then /usr/include is searched. If an include
file is specified as <filename>, /usr/include is the only directory searched.
The —systype bsd43 or —systype sysv options to cc modify the directory
searched. The -] option can also be used to modify the directory searched.
See Chapter 1 of this manual or cc(1) in the User’s Reference Manual.

MIPS ANSI C supports the intrinsic, function, weak, and pack #pragmas.

RISCompiler and C Programmer’s Guide 8-19

O
%)
<
<

<
9
T
c
)
£
A
Q
E

©

Chapter 8

When the date or time of translation is not available, the definitions of the
—DATE__and _TIME__ macros are January 1, 1970 and 00:00:00, respec-
tively.

Library Functions

The macro NULL expands to the value zero (0).
assert writes a message to the standard error output in the following form:
Assertion failed: expression, file filename, line xuxx

The sets of characters tested for by the isalnum, isalpha, iscntrl, islower,
isprint, and isupper functions are as follows:

isalnun 0-9, a~z, A-Z

isalpha a-z, A-Z

iscntrl the delete character (0177) andcharacters less than ASCII
code 040.

islower a-z

isprint any printable character (ASCII code
040 to 0176)

isupper A-Z

O ISNV

The value returned by the mathematics functions on domain errors is
either EDOM (33) or ERANGE (34).

The mathematics functions set the macro errno to the value of the ERANGE
(34)on underflow range errors.

When the fmod function has a second argument of zero, zero is returned.

3
il
®©
3
@
=
=
5
3

[0 ¢]

8-20 RISCompiler and C Programmer’s Guide

ANSI C Implementation

The set of signals, and the default action for each, that are accepted by the
signal function are as follows:

Signal Action Event
SIGHUP Exit hangup
SIGINIT Exit - interrupt
SIGQUIT * quit
SIGILL * illegal instruction
SIGTRAP * trace trap
SIGABRT * abort
SIGEMT * EMT instruction
SIGFPE * floating point exception
SIGKILL Exit kill (cannot be caught or ignored)
SIGBUS * bus error ,
SIGSEGV * segmentation violation
SIGSYS * bad argument to system call
SIGPIPE Exit write on a pipe with no one to read it
SIGALRM Exit alarm clock
SIGTERM Exit software termination signal
SIGUSR1 Exit User defined signal 1 e ®
SIGUSER2 Exit User defined signal 2 S
SIGCLD Ignore child status has changed IS
SIGSTOP Stop stop (cannot be caught or ignored) O S
SIGSTP Stop stop signal generated from keyboard — &
SIGPOLL Exit selectable event pending % %
SIGIO Ignore 1/Qis possible on a descriptor <k
(see fentl(2))
SIGURG Ignore urgent condition present on socket
SIGWINCH Ignore window size change
SIGVTALRM Exit virtual time alarm (see
getitimer(2))
SIGPROG Exit profiling timer alarm
(see getitimer(2))
SIGCONT Stop continue after stop
SIGTTIN Stop background read attempt from
control terminal
SIGTTOU Stop background write attempted to
control terminal
SIGXCPU * cpu time limit exceeded
SIGXFSZ * file size limit exceeded
SIGLOST exit resource lost (e.g. record-lock)

A * indicates that the action is to terminate the process and produce a core
image.

RISCompiler and C Programmer’s Guide 8-21

[0 o)

O ISNV

3
)<
®
3
®

2
2
s
S

Chapter 8

The default handling is not reset if the SIGILL signal is received by a han-
dler specified to the signal function.

The last line of a text stream does not require a terminating new-line char-
acter.

Space characters that are written out to a text stream immediately before a
new-line character appear when the text is read.

In RISC/o0s, a binary stream is the same as a text stream.

When a fileis opened in append mode, the file position indicator is initially
positioned at the end of the file.

A write on a text stream does not cause the associated file to be truncated
beyond that point.

A zero-length file actually exists.

Valid file names consist of 1 to 14 characters. The null character and the
slash (/) may not appear in a filename.

It is permissible to open the same file multiple times.

When the remmove function is given the name of an open file as its argument,
-1 is returned and the file is not removed.

If a file with the new name exists prior to a call to the renaime function, this
file will be removed.

The %p conversion of the fprintf function print the address indicated by the
pointer in hexadecimal.

The input for the %p conversion of the fscanf function is expected to be a
pointer previously printed by fprintf. ‘

A '~ character that is neither the first nor the last character in the scan list
for %[conversion in the fScanf function indicates a range of values (e.g. 0-
9). The value preceding the ‘-" must be lexically less than or equal to the
value after the '~'.

When the fgetpos or ftell functions fail, the macro errno is set to EBADF.
The perror function generates a message consisting of the text string, if any,
that was passed to perror, followed by a colon and a space if the text string

is non-empty, followed by the system message for the error number indi-
cated by the macro errno.

If the calloc, malloc, or realloc functions are called with a size request of zero,
the function returns zero.

The abort function closes all open files before terminating the program.

The status returned by the exit function if the value of the argument is oth-
er than zero, EXIT_SUCCESS, or EXIT_FAILURE, is the argument that was
passed to the function.

8-22

RISCompiler and C Programmer’s Guide

ANSI C Implementation

putenv(3) is used to modify the environment list used by getenv. putenv is
called as follows:

putenv(char *string)

string is of the form “name=value”. The environment variable name is set to
value by changing an existing variable or creating a new one.

The system function expects a text string that is a shell command which it
passes to sh(1). The function waits until the shell completes and returns
the exit status of the shell.

The error message string returned by the strerror function is the system
message corresponding to the error number.

The local time zone is PST and Daylight Saving Time is PDT.
The era used by the clock function is 00:00:00 GMT, January 1, 1970.

alignof returns the alignment assigned to type by the compiler. This exten-
sion is independent of any mode (-std[01]) and is supported when the user
includes alignof.h.

Quiet Changes

@

This section describes the quiet changes that occurred in the ANSI C
implementation. These are changes in the functionality of the compiler
that are not noticeable at compile time, but produce different results
during execution.

For example, the following line of code
i=-*p;
has new meaning in ANSI C. Previously, this would decrement the value

of i by the value stored in p. In ANSI C, the negated value stored in p is
assigned to .

c
S
I
o
@)
S
59
ZQ
<&

* Programs with character sequences such as ??! (a trigraph) in string

constants, character constants, or header names produce different
results.

* A program that depends on internal identifiers matching only a
limited number of significant characters may behave differently.

* A program that relies on file scope rules may be valid under block
scope rules but behave differently.

* Unsuffixed integer constants may have different types. InK & R,
unsuffixed decimal constants greater than INT_MAX, and

unsuffixed octal or hexadecimal constants greater than UINT_MAX
are of type long.

RISCompiler and C Programmer’s Guide 8-23

Chapter 8

A constant of the form '\078’ is valid, but has different meaning. It
denotes a character constant whose value is the combination of the
value of the two characters ‘\07’ and ‘8’. In some implementations,
the old meaning is the character whose code is 078 (equal to 64
decimal).

* A constant of the form "\a’ or "\x" has different meaning.

* A string of the form “\078" is valid, but has different meaning. The
new meaning is the same as for a constant '\078’.

¢ A string of the form “\a” or "\x” has different meaning.

¢ Identical string literals may be represented by a single copy of the
string in memory, but this is not required; a program that depends
upon either scheme may behave differently.

* Expressions of the form x=-3 have different meaning.

* A program that depends on unsigned preserving arithmetic
conversions now behaves differently, probably without complaint.

* Expressions with float operands may now be computed at lower
precision.

* A program that uses #if expressions to determine information about
the execution environment may behave differently.

* The empty declaration struct x; now has meaning.

O ISNV

* A program which relies on a bottom-up parse of aggregate
initializers with partially elided braces does not yield the expected
initialized object.

3
s
@
3
®
2
D
s
3

™

* Expressions of type long and constants in switch statements are no
longer truncated to int.

* Functions that depend on parameters of type char or short being
widened to int, or float to double, may behave differently.

e A macro that relies on formal parameter substitution within a string
literal now produces different results.

* A program that relies on size zero allbcation requests returning a
non-null pointer now behaves differently.

Extensions to ANSI C

The features discussed in this section are available with the —std option to
the cc command (see cc(1)).

8-24 : RISCompiler and C Programmer’s Guide

ANSI C Implementation

Comments

The C++ style of comment
printf(”sun %¥d\n”, i);// print results

is permitted. The comment is introduced by the ’/ /" and extends to the
end of the line. The comment characters '/ /" have no special meaning
within a // comment and are treated just like other characters.

alloca

#include <alloca.h>
char *alloca(int);

alloca allocates the requested number of bytes of space in the stack frame
of the caller. This temporary space is automatically freed on return. If
alloca.h is included, alloca will be a built-in function. The built-in function
is more efficient than the portable libc.a version, but can only be applied to
integral types (char, signed and unsigned integer, and enumeration). This
extension is independent of any mode (-std[01]) and is supported when
the user includes alloca.h.

o)

alignof

#include <alignof.h>
unsigned int alignof (type);

alignof returns the alignment assigned to type by the compiler. This exten-
sion is independent of any mode (-std[01]) and is supported when the user
includes alignof.h.

<
S
IS
oo
D€
7]
Z2Q
<E

cast lhs

A cast is allowed on the left hand side of an assignment operator.

RIS5Compiler and C Programmer's Guide 8-25

Chapter 8

O ISNY

3
)
®©
3
@
=2
N
=
IS
3

Q@

8-26 RISCompiler and C Programmer’s Guide

Byte Ordering

What Is Byte Ordering?

A machine’s byte ordering scheme (or whether a machine is big—endian
or little~endian) affects memory organization and defines the relationship
between address and byte position of data in memory. MIPS machines
can be big-endian or little-endian.

Big-Endian Byte Ordering

Big-endian machines number the bytes of a word from 0 to 3. Byte 0 holds
the sign and most significant bits. For halfwords, big-endian machines
number the bytes from (0 to 1. Again, byte 0 holds the sign and most sig-
nificant bits. Machines that use big-endian schemes include the

IBM s/370 and Motorola MC68000.

RI1SCompiler and C Programmer’s Guide A-1

Appendix A

Word
byte 0 byte 1 byte 2 byte 3
0.7 8..15 16 .. 23 27 .. 31
4

Sign and most signficant bits

‘L Halfword
byte0 / byte1
0.7 8..15

Figure A.1 Big—endian byte ordering

Littie-Endian Byte Ordering

Little-endian machines number the bytes of a word from 3 to 0. Byte 3
holds the sign and most significant bits. For halfwords, little-endian ma-

chines number the bytes from 1 to 0.

Byte 1 holds the sign and most signif-

icant bits. Machines that use little—endian schemes include: DEC VAX &
11/780, Intel 80286, and National Semiconductor 32000.

RISCompiler and C Programmer’s Guide

Byte Ordering

Word
byte 3 byte 2 byte 1 byte 0
31..24 23..16 15..8 7.0

T

Sign and most signficant bits

‘L Halfword
byte 1 byte 0
15...8 7..0

Figure A.2 Linle-endian byte ordering

RISCompiler and C Programmer’s Guide

A-3

Appendix A

A4 RISCompiler and C Programmer’s Guide

Index

A

accessing common blocks of data 4-19
address
dbx 6-56
alias
dbx 6-22
ANSIC
argc and argv 8-8
arithmetic 8-12
arrays 8-11
arrays and pointers 8-18
characters 8-16
constants 8-9
conversion rules 8-13
declarations 8-8
declarators 8-19
defined 8-6
directives 8-3

directives with additional function-

ality 8-6
elif 8-4
empty declarations 8-11
enumerations 8-18
environment 8-16
error 8-4
expressions 8-7, 8-12
extensions to 8-24
floating point 8-18
floating-point constants 8-9

function pointers 8-15
function pragma 8-5
function prototypes 8-14
functions 8-14
identifiers 8-16

include 8-6

integers §8-17

integral promotions §-12
intrinsic pragma 8-4
keywords 8-8

library functions 8-20
line 8-6

macro operators 8-6
macros 8-6

main() 8-8

new macros 8-6
operators 8-12

pack pragma 8-5
pointers 8-14

pragma 8-4

predefined macros 8-7
preprocessing directives 8-19
preprocessor 8-3
qualifiers 8-19

quiet changes 8-23
registers 8-18

sequence points 8-13
statements 8-19

string constants 8-9

RISCompiler and C Programmer’s Guide

X-1

Index

structures 8-18

structures and unions 8-11

tagless declarations 8-11
-translation 8-15
translation limits 8-2
trigraph 8-7
type modifiers 8-10
typedefs 8-10
types 8-10
unions 8-18
unsigned constants 8-9
weak pragma 8-5
wide constants 8-9
ANSI C extensions
alignof 8-25
alloca 8-25
cast lhs 8-25
. comments 8-25
ar command examples 2-26
archiver (ar) 2-26
archiver options 2-27

three variations supported 8-1
C to Pascal arguments 4-7
calling C from Pascal 4-10
calling Pascal from C 4-6
catch

dbx 6-46
compiler options

byte ordering 1-14

debugging 1-15

general 1-10

general - restrictions 1-13

optimizer 1-15

profiling 1-15

svr4 options 1-14

types 1-9
compiler system 1-1

control flow 1-7

driver 1-4

driver - figure 1-2

file suffixes 1-5

FORTRAN preprocessor 1-3

arguments languages supported 1-4
FORTRAN - C4-15 overview 1-1
arrays tasks and tools 1-1
storage mapping 3-3 cont
assign dbx 6-39
dbx 6-40
auto declaration 3-7 D
averaging prof results 5-10 dbx
B activatiqn levels 6-3
, : alias 6-22
basic block counting 5-8 assign 6-40
Basic dbx Commands 6-12 avoiding pitfalls 6-4
breakpoint basic commands 6-12
dbx 6-41 breakpoints 6-41 _
building a command file 6-6
c catch 6-46
C language changing activation levels 6-48
X-2 RISCompiler and C Programmer’s Guide

Index

command history 6-13
command line editing 6-14
command summary 6-58
command syntax 6-8
compiler options 1-15
compiling a program for debugging 6-
5

cont 6-39
data types and constants 6-11
debugging machine code 6-52
delete 6-29

“dump 6-51
edit 6-34
ending (quiting) 6-8
examining source programs 6-30
file command 6-32
-g option 6-5
goto 6-39
incorrect results 6-4
invoke subshell 6-28
invoking 6-6
isolating progam failures 6-4
listing source code 6-33
machine code breakpoints 6-53
move 6-31
multiple commands 6-15
play back output 6-27
playback input 6-27
predefined aliases 6-23
predefined variables 6-18
print 6-49
printing memory contents 6-56
printing registers 6-50
program control 6-36
reasons to use 6-2
record input 6-25
record output 6-26
removing variables 6-17

return 6-38

run and rerun commands 6-36

running dbx 6-5

sample program 6-64

searching code 6-34

set and unset 6-16

setting variables 6-16

shared objects in shared environment
6-28

specifying source directories 6-30

specifying source files 6-32

stack trace 6-47

status 6-29

step and next commands 6-37

stop at 6-42

stop if 6-44

stop in 6-43

symbol name completion 6-16

tracing variables 6-44

type declarations 6-35

unalias - removing command aliases
6-22

up and down commands 6-48

using commands 6-8

variable names - qualifying 6-9

when 6-45

which and whereis 6-35

debugging programs

general introduction 6-2

delete

dbx 6-29

down

dbx 6-48

dump

dbx 6-51

dynamic shared objects

building 2-2
general 2-2

RISCompiler and C Programmer’s Guide

Index

link editor options 2-6

multiple language programs 2-5
quickstart condition 2-11
recommendations 2-5

reference to so_locations 2-2
requirement 2-4

rid 2-11

rld options 2-11

using 2-4

with dependencies 2-3

edit command

dbx 6-34
endianness

byte ordering 1-14
Ending dbx 6-8
extern

storage class 3-7

F

file tool 2-24
File Variables 4-3
FORTRAN

array handling 4-18
FORTRAN/C Interface 4-14
full optimization (-O3) 5-22

G

global data area 5-34
global optimization 5-28

C and Pascal 5-28

C, Pascal, and FORTRAN 5-28
global optimizer 5-15 '

improving program performance 5-1
invocations

FORTRAN 4-14
Invoking dbx 6-6

J
jump delay slots 5-39

L

16-48
language interfaces 4-1
languages
default options 1-5
languages supported 1-4
link editor 2-1
dynamic linking 2-1
dynamic shared objects 2-2
static linking 2-1
linking objects 1-8
list
dbx 6-33

M

machine code
setting breakpoints - dbx 6-53
tracing variables - dbx 6-55
main() routine 4-5
MIPS-C
alloc.h 7-10
and ANSIC7-13
ccom options 7-2
deviations 7-10
differences 7-11

gotczibx 6-39 driver options 7-2
extensions 7-10
header files 7-10
X4 RISCompiler and C Programmer’s Guide

Index

oldC and ANSIC (std1) 7-12
oldC and MIPS-C (std0) 7-12
special options for compatibility 7-14
starg.h macros 7-8
translation limits 7-5
varargs.h macros 7-6
multiple language programs 1-7

N

next
dbx 6-37

nm 2-20

non-shared objects
building 2-3
using 2-5

(o)

object file tools 2-12
odump 2-13
optimization 5-15
compiler options 1-15
optimization Options 5-19
optimizing frequently used modules 5-24
optimizing large programs 5-24

P

Pascal by-value arrays 4-2
Pascal/C

single precision floating point 4-2
Pascal/C Interface 4-1
PC-Sampling 5-10
print

dbx 6-49
printregs

dbx 6-50
procedure and function names 4-14
procedure and function parameters 4-2
prof

- compiler options 1-15
profiling 5-2

R

Recommendations 2-5
record input

dbx 6-25
record output

dbx 6-26
reducing cache conflicts 5-36
register

storage class 3-7
Requirement 2-4
rerun

dbx 6-36
return

dbx 6-38
rid 2-11
rld options 2-11
run

dbx 6-36
running prof 5-12

S

sh
dbx 6-28
size 2-24
stack trace
dbx 6-47
static declaration 3-7
status
dbx 6-29
step
dbx 6-37

. stop at

dbx 6-42
stop if
dbx 6-44

R1SCompiler and C Programmer’s Guide

X-5

Index

stop in w
dbx 6-43 when
storage class
extern 3-7 whec::ixs 6-45
volatile 3-8
storage classes 3-7 _d:X 6-35
auto 3-7 whic
dbx 6-35

storage mapping 3-1
C language - alignment 3-2
C language - arrays 3-3
C language - size, 3-2
C language - structures 3-3
C language - unions 3-7
Strings 4-3
structures
storage mapping 3-3
symbol table information 2-20

T

trace
dbx 6-44
type checking 4-5

u

ucode object library 5-27
unalias
dbx - removing command aliases 6-22
unions
storage mapping 3-7
up
dbx 6-48
Using dbx 6-8

\

variable number of arguments 4-5
volatile 3-8

X-6 RISCompiler and C Programmer’s Guide

MIPS RISCompiler Programmer's Guide

NEC

NEC Electronics Inc.

For literature, call toll-free 7 a.m. to 6 p.m. Pacific time: 1-800-366-9782
or FAX your request to: 1-800-729-9288

CORPORATE HEADQUARTERS

475 Ellis Street

P.0. Box 7241

Mountain View, CA 94039
TEL 415-960-6000

©1995 NEC Electronics Inc/Printed in U.S.A.

No part of this document myboeapbdornprodue.d Inmylonnmbywmmmhmﬂlmwmd NEC Electronics inc. (NECEL).
The information inthis without notice. Devices sold by NECEL y the andpnuﬂindmnlkmbn
provisions appearing in NECEL Toml and Conditions of Sale only. NECEL makes no wlied or by description,
regarding the information set forth herein or regarding the freedom of the described devices from putont lnfnngomom NECEL makes no warranty
of merchantability or fitness for any purpose. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes
no commitment to update or to keep current information contained in this The devices listed in this di are not suitable for use
in applications such as, but not limited to, aircraft, aerospace equipment, submarine cables, nuclear reactor control systems and life support
systems. If customers intend to use NEC devices in these applications or they intend 1o use “standard” quality grade NEC devices in applications
notlmendodbyNECEL.pbauoonuaourubspoopbinm 'Sumam‘qumygm«mmmmm computers, office
equipment, communication equipment, test and measurement eq robots, audio and visual equipment, and other
consumer products. "Special” quality grade devices are neormmded for amomotmand transportation equipment, traffic control systems, anti-
disaster and anti-crime systems, etc.

50777

