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NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

Vr3000, Vr4400, VrR5000, VrR10000, VrR10000L, VR10000 Series, VrR12000, VrR12000A, and Vr12000L are
trademarks of NEC Corporation.

R2000, R3000, and R6000 are trademarks of MIPS Computer Systems Inc.

MIPS is aregistered trademark of MIPS Technologies, Inc. in the United States.

R4400, R8000, R10000, and R12000 are trademarks of MIPS Technologies, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.
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Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

The information in this document is current as of January, 2001. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior

written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative

purposes in semiconductor product operation and application examples. The incorporation of these

circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's

data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not

intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).
MSE 00.4
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Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

- Device availability
+ Ordering information

+ Product release schedule

- Availability of related technical literature

- Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

+ Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-3067-5800

Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 091-504-2787

Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388
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PREFACE

Readers This manual targets users who intends to understand the functions of the Vr10000 and Vr12000,
and to design application systems using this microprocessor.

Purpose This manual introduces the architecture and hardware functions of the VrR10000, Vr12000 to users,
following the organization described below.

Organization This manual consists of the following contents:
* Introduction
* Cache
* Hardware

e Coprocessor 0

* Floating-point unit

* Memory management system
»  Exception processing

e Ingtruction set details

How to read this manual It is assumed that the reader of this manua has general knowledge in the fields of electric
engineering, logic circuits, and microcomputers.

The R3000™ in this manual represents the VR3000™,
The R4400™ in this manual represents the Vr4400™,
The R10000™ in this manual represents the VrR10000 and Vr10000L .
The R12000™ in this manual represents the VrR12000, Vr12000A, and Vr12000L.
To learn about detailed function of a specific instruction.
— Read Chapter 12 Floating-Point Unit, Chapter 14 CPU Exceptions, or refer
to VR5000™ Vr10000 INSTRUCTION User’s Manual which is separately available.

To learn about the overall functions of the Vr10000 and Vr12000
- Read thismanual in sequential order.

To learn about electrical specifications,
- Refer to Data Sheet which is separately available.

Unless otherwise specified, the R10000 is treated as the representative model throughout
this document.

Legend Data significance: Higher on left and lower on right
Active low: XXX*
Numeric representation: binary ... XXXX or XXXX,
decimal ... XXXX
hexadecimal ... OXXXXX
Important information Underlined

Related Documents The related documents indicated here may include preliminary version. However, preliminary
versions are not marked as such.

¢ Data Sheet
uPD30700, 30700L, 30710 (Vr10000, Vr12000) Data Sheet U12703E

¢ User'sManua
VRr5000, VR10000 INSTRUCTION User's Manual U12754E
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1.

| ntroduction to the R10000 Processor

This user's manual describes the R10000 superscalar microprocessor for the system

designer, paying special attention to the external interface and the transfer protocols.

This chapter describes the following:
MIPS™ [SA
» what makes a generic superscalar microprocessor

»  gpecifics of the R10000 superscalar microprocessor
* implementation-specific CPU instructions
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Chapter 1 Introduction to the R10000 Processor

1.1 MIPSInstruction Set Architecture (1SA)
MIPS has defined an instruction set architecture (1SA), implemented in the following sets
of CPU designs:
e« MIPS I, implemented in the R2000™ and R3000
MIPS II, implemented in the R6000™
e MIPSIII, implemented in the R4400
*  MIPS 1V, implemented in the R8000™ and R10000
The original MIPS | CPU I SA has been extended forward three times, as shown in Figure

1-1; each extension is backward compatible. The ISA extensions are inclusive; each new
architecture level (or version) includes the former level st

MIPSII
MIPS 111

MIPS IV

Figure1-1 MIPSISA with Extensions

The practical result isthat a processor implementing MIPS IV isaso ableto run MIPSI,
MIPS 1, or MIPS 111 binary programs without change.

T For more | SA information, please refer to the MIPSIV Instruction Set Architecture, published
by MIPS Technologies, and written by Charles Price. Contact information is provided both
in the Preface, and inside the front cover, of this manual.
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Chapter 1 Introduction to the R10000 Processor

1.2 What isa Superscalar Processor ?
A superscalar processor is one that can fetch, execute and complete more than one

instruction in parallel.

Pipeline and Super pipeline Architecture

Previous MIPS processors had linear pipeline architectures, an example of such alinear
pipeline is the R4400 superpipeline, shown in Figure 1-2. In the R4400 superpipeline
architecture, an instruction is executed each cycle of the pipeline clock (PCycle), or each
pipe stage.

1 Pipe

e
Instruction 4|  |F IS| RF| EX| DF | DS | TC WB'

Instruction 3 IF IS| RF| EX| DF | DS | TC WB'
Instruction 2 IF IS| RF| EX| DF | DS | TC WB'

Instruction 1 | IF IS| RF| EX| DF| DS | TC | WB

Figure 1-2 R4400 Pipeline

Superscalar Architecture

The structure of 4-way superscalar pipelineis shown in Figure 1-3. At each stage, four
instructions are handled in parallel. Note that there is only one EX stage for integers.

Instruction 1 IF ID IS EX WB IF = instruction fetch
Instruction 2 IF D IS EX WB ID = instruction decode and dependency
IS = instruction issue

Instruction 3 IF ID IS EX WB
; ; ; ; EX = execution (1 only)
Instruction 4 IF ID IS EX WB WB = write back

Instruction 5 IF ID IS EX wB
Instruction 6 IF ID IS EX wB
Instruction 7 IF ID IS EX WB
Instruction 8 IF ID IS EX WB

Figure1-3  4-Way Superscalar Pipeline
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Chapter 1 Introduction to the R10000 Processor

1.3 What isan R10000 Microprocessor ?

The R10000 processor is a single-chip superscalar RISC microprocessor that is afollow-
on to the MIPS RISC processor family that includes, chronologically, the R2000, R3000,
R6000, R4400, and R8000.

20

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
seguential Dynamic Execution Scheduling.

The R10000 processor has the following major features (termsin bold are defined in the
Glossary):

it implements the 64-bit MIPS IV instruction set architecture (ISA)

it can decode four instructions each pipeline cycle, appending them to one of
three instruction queues

it has five execution pipelines connected to separate internal integer and
floating-point execution (or functional) units

it uses dynamic instruction scheduling and out-of-order execution
it uses speculative instruction issue (also termed “speculative branching”)

it uses a precise exception model (exceptions can be traced back to the
instruction that caused them)

it uses non-blocking caches

it has separate on-chip 32-Kbyte primary instruction and data caches

it has individually-optimized secondary cache and System interface ports
it has an internal controller for the external secondary cache

it has an internal System interface controller with multiprocessor support
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Chapter 1 Introduction to the R10000 Processor

R10000 Super scalar Pipeline

The R10000 superscalar processor fetches and decodes four instructionsin parallel each
cycle (or pipeline stage). Each pipelineincludes stagesfor fetching (stage 1 in Figure 1-4),
decoding (stage 2) issuing instructions (stage 3), reading register operands (stage 3),
executing instructions (stages 4 through 6), and storing results (stage 7).

7 Pipeline Stages

Stage 1
Fetch

B

5
Execution <
Pipelines

\

Primary
Instruction
Cache

Integer ALU Pipeline

Integer ALU Pipeline

Instruction Fetch Pipeline

Stage 2
Decode

FP Add Pipeline
(FP Queue)

FP Multiply Pipeline
(FP Queue)

(Integer Queue)

(Integer Queue)

Load/Store Pipeline
(Address Queue)

Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
Issue Execute Execute Execute Store
N
Issue | RF FAdd - 1 FAdd - 2 FAdd - 3 Result
Floating-Point Queue
Issue | RF FMpy -1 FMpy - 2 FMpy -3 |Result and Registers
N\
Issue | RF ALU1 Result
Issue | RF ALU2 Result > Integer Register Operands
Issue | RF | Addr.Calc: | Data Cache |Result

Decode

Branch Unit

2-way Interleaved Cache

Read operands from Floating-Point Translation-Lookaside Buffer

or Integer Register Files

Branch Address (one branch can be handled each cycle)

4 Instruction/Cycle Fetch and Decode

Functional Units (Execute Instruction)

Figure 1-4 Superscalar Pipeline Architecture in the R10000
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Chapter 1 Introduction to the R10000 Processor

I nstruction Queues

Execution Pipelines

Asshown in Figure 1-4, each instruction decoded in stage 2 is appended to one of three
instruction queues:

* integer queue
* address queue
» floating-point queue

The three instruction queues can issue (see the Glossary for a definition of issue) one new
instruction per cycle to each of the five execution pipelines:

» theinteger queue issues instructions to the two integer ALU pipelines

» the address queue issues one instruction to the Load/Store Unit pipeline

» the floating-point queue issues instructions to the floating-point adder and
multiplier pipelines

A sixth pipeline, the fetch pipeline, reads and decodes instructions from the instruction
cache.

L oad/store dependency is speculatively ignored (R12000)

When aload follows a store in program-order, and the address of the load is known to the
Address Queue (AQ) before the address of the store, then the AQ may speculatively issue
the load to tag-check and data access. When the address of the storeis determined, the AQ
can undo the effects of the load through the use of the “ soft-exception” mechanism. Since
almost all loads which are actually dependent on previous stores use the same registersto
form their addresses, normally either the two instructions are independent, or their

addresses are resolved in program order, so the soft-exception should occur rarely.

64-bit Integer ALU Pipeline

22

The 64-bit integer pipeline has the following characteristics:
* it has a 16-entry integer instruction queue that dynamically issues instructions

e it has a 64-hit 64-location integer physical register file, with seven read and
three write ports (32 logical registers; see register renaming in the Glossary)

e it has two 64-bit arithmetic logic units:

- ALUL1 contains an arithmetic-logic unit, shifter, and integer branch
comparator

- ALU2 contains an arithmetic-logic unit, integer multiplier, and divider
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Chapter 1 Introduction to the R10000 Processor

L oad/Store Pipeline

The load/store pipeline has the following characteristics:

64-bit Floating-Point Pipeline

it has a 16-entry address queue that dynamically issues instructions, and uses
the integer register file for base and index registers

it has a 16-entry address stack for use by non-blocking loads and stores
it has a 44-bit virtual address calculation unit

it has a 64-entry fully associative Translation-L ookaside Buffer (TLB),
which converts virtual addresses to physical addresses, using a 40-bit physical
address. Each entry maps two pages, with sizes ranging from 4 Kbytes to 16
Mbytes, in powers of 4.

The 64-bit floating-point pipeline has the following characteristics:

it has a 16-entry instruction queue, with dynamic issue

it has a 64-bit 64-location floating-point physical register file, with five read
and three write ports (32 logical registers)

it has a 64-bit parallel multiply unit (3-cycle pipeline with 2-cycle latency)
which also performs move instructions

it has a 64-bit add unit (3-cycle pipeline with 2-cycle latency) which handles
addition, subtraction, and miscellaneous floating-point operations

it has separate 64-bit divide and square-root units which can operate
concurrently (these units share their issue and completion logic with the
floating-point multiplier)

A block diagram of the processor and its interfacesis shown in Figure 1-5, followed by a
description of its major logical blocks.
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Chapter 1 Introduction to the R10000 Processor

24

Edge of Known World

External Agent
or Cluster Coordinator

v

Up to 4 R10000 Microprocessors may be directly connected.

v

A

System Bus: 64-bit data, 8-bit check, 12-bit command

System Interface

Secondary Cache Ctlr

Secondary Cache

128-bit refill
Instruction Cache
32 Khytes
2-way Set Associative

16-word blocks
Unaligned access

128-bit refill or writeback
Data Cache
32 Kbytes
2-way Set Associative

2 Banks
8-word blocks

Addr__Four 32-bit instr. fetch Addr___ 64-bit load or store
Y Switch |
= _,' Address|« TLB
) | Queue |
=1, |l > 1
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S
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s
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R10000

Figure1-5 Block Diagram of the R10000 Processor
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Chapter 1 Introduction to the R10000 Processor

Functional Units

The five execution pipelines allow overlapped instruction execution by issuing instructions
to the following five functional units:

* twointeger ALUs (ALU1 and ALU2)
» the Load/Store unit (address calculate)
» the floating-point adder

» the floating-point multiplier

There are also three “iterative” units to compute more complex results:

* Integer multiply and divide operations are performed by an Integer Multiply/
Divide execution unit; these instructions are issued to ALU2. ALU2 remains
busy for the duration of the divide.

» Floating-point divides are performed by the Divide execution unit; these
instructions are issued to the floating-point multiplier.

* Floating-point square root are performed by the Square-root execution unit;
these instructions are issued to the floating-point multiplier.

Increase in pre-decode buffering (R12000)

Up to 12 instruction may be buffered before being decoded. This should normally be
invisibleto the end user, but can be important when debugging systemsin uncached-mode,
since fetch and decode are now further de-coupled.

Primary Instruction Cache (I-cache)

The primary instruction cache has the following characteristics:

» it contains 32 Kbytes, organized into 16-word blocks, is 2-way set associative,
using a least-recently used (LRU) replacement algorithm

» it reads four consecutive instructions per cycle, beginning on any word
boundary within a cache block, but cannot fetch across a block boundary.

* itsinstructions are predecoded, its fields are rearranged, and a 4-bit unit select
code is appended

» it checks parity on each word
e it permits non-blocking instruction fetch

Primary Data Cache (D-cache)

The primary data cache has the following characteristics:
* it hastwo interleaved arrays (two 16 Kbyte ways)

e it contains 32 Khytes, organized into 8-word blocks, is 2-way set associative,
using an LRU replacement algorithm.

e it handles 64-bit load/store operations

e it handles 128-hit refill or write-back operations
* it permits non-blocking loads and stores

» it checks parity on each byte
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Chapter 1 Introduction to the R10000 Processor

Branch Target Address Cache (R12000)

This 32-entry two-way set-associative cache holdsthe target addresses of previously-taken
branches. When a branch is executed a hit in the BTAC eliminates the one-cycle fetch
bubble with the R10000 experiences for every taken branch. However, if abranch which
hitsinthe BTAC isactually predicted not-taken, then aone cyclefetch bubbleisintroduced
where none was present before. Performance simulations indicate that the BTAC is a net
win, but because of its*mixed-blessing” nature, amechanism has been provided to disable
it via software. (See description of changes to diag register).

I nstruction Decode And Rename Unit

Branch Unit

26

Theinstruction decode and rename unit has the following characteristics:

it processes 4 instructions in parallel

it replaces logical register numbers with physical register numbers (register
renaming)

- it maps integer registers into a 33-word-by-6-bit mapping table that has
4 write and 12 read ports

- it maps floating-point registers into a 32-word-by-6-bit mapping table
that has 4 write and 16 read ports

it has a 32-entry active list of al instructions within the pipeline.

The branch unit has the following characteristics:

it allows one branch per cycle
conditional branches can be executed speculatively, up to 4-deep
it has a 44-bit adder to compute branch addresses

it has a 4-quadword branch-resume buffer, used for reversing mispredicted
specul atively-taken branches

the Branch Return Cache contains four instructions following a subroutine
call, for rapid use when returning from leaf subroutines

it has program trace RAM that stores the program counter for each instruction
in the pipeline
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Chapter 1 Introduction to the R10000 Processor

External Interfaces

The external interfaces have the following characteristics:

* ab4-bit System interface allows direct-connection for 2-way to
4-way multiprocessor systems. 8-bit ECC Error Check and Correction is
made on address and data transfers.

» asecondary cache interface with 128-bit data path and tag fields. 9-bit ECC
Error Check and Correction is made on data quadwords, 7-bit ECC is made on
tag words. It allows connection to an external secondary cache that can range
from 512 Kbytes to 16 Mbytes, using external static RAMs. The secondary
cache can be organized into either 16- or 32-word blocks, and is 2-way set
associative.

Bit definitions are given in Chapter 3.

Additional cyclesfor System Interface transactions (R12000)

All transactions which go through the system interface unit (in particular, SCache refills
and writebacks) have one additional CPU-clock of latency added to them.
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Chapter 1 Introduction to the R10000 Processor

1.4 Instruction Queues

The processor keeps decoded instructions in three instruction queues, which dynamically
issue instructions to the execution units. The queues allow the processor to fetch
instructions at its maximum rate, without stalling because of instruction conflicts or
dependencies.

Each queue uses instruction tags to keep track of theinstruction in each execution pipeline
stage. These tags set a Done bit in the active list as each instruction is compl eted.

FP and I nteger-Queue I ssue Policy (R12000)

Integer Queue

Theinteger and floating-point queues are altered so that they are now composed of two 8-
entry banks. Instructions are issued into the two banksin an aternating fashion. Each bank
independently nominates instructions for the functional units. For each FU, the banks
nominate the oldest instruction they contain which is ready to execute. If both banks
nominate an instruction for agiven FU, awinner is chosen by apriority bit which alternates
between the two banks on each cycle.

Theinteger queue issuesinstructionsto the two integer arithmetic units: ALU1 and ALUZ2.

Theinteger queue contains 16 instruction entries. Up to four instructions may be written
during each cycle; newly-decoded integer instructions are written into empty entriesin no
particular order. Instructions remain in this queue only until they have been issued to an
ALU.

Branch and shift instructions can be issued only to ALU1. Integer multiply and divide
instructions can beissued only to ALU2. Other integer instructions can beissued to either
ALU.

Theinteger queue controls six dedicated portsto the integer register file: two operand read
ports and a destination write port for each ALU.

Address calculation for load/storeinstructions usesinteger queue (R12000)

28

When load, store, cacheop, or prefetch instructions are decoded, they are sent to both the
AQ and I1Q units. The 1Q treats the address-calculate unit as athird “ALU” and issues
instructions to it. When an instruction compl etes address cal culation, the results are
forwarded to the AQ. Unlike previously, if an address instruction must be retried for any
reason, address calculation is not redone. If the address queueisfull, but the integer queue
has free entries at the time aload/store instruction is decoded, the load/store is sent only to
the integer queue. When the address queue has an available entry the calculated addressis
forwarded to that entry and the remainder of the |oad/store execution continues.
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Floating-Point Queue

Address Queue

The floating-point queueissuesinstructionsto the floating-point multiplier and the floating-
point adder.

The floating-point queue contains 16 instruction entries. Up to four instructions may be
written during each cycle; newly-decoded floating-point instructions are written into empty
entriesin random order. Instructions remain in this queue only until they have been issued
to afloating-point execution unit.

The floating-point queue controls six dedicated portsto the floating-point register file: two
operand read ports and a destination port for each execution unit.

The floating-point queue uses the multiplier's issue port to issue instructions to the square-
root and divide units. These instructions also share the multiplier’s register ports.

The floating-point queue contains simple sequencing logic for multiple-pass instructions
such asMultiply-Add. Theseinstructions require one pass through the multiplier, then one
pass through the adder.

The address queue issues instructions to the load/store unit.

The address queue contains 16 instruction entries. Unlikethe other two queues, the address
gueue is organized asacircular First-In First-Out (FIFO) buffer. A newly decoded |oad/
store instruction is written into the next available sequential empty entry; up to four
instructions may be written during each cycle.

The FIFO order maintains the program’s original instruction sequence so that memory
address dependencies may be easily computed.

Instructions remain in this queue until they have graduated; they cannot be deleted
immediately after being issued, since the load/store unit may not be able to complete the
operation immediately.

The address queue contains more complex control logic than the other queues. An issued
instruction may fail to compl ete because of a memory dependency, a cache miss, or a
resource conflict; in these cases, the queue must continue to reissue the instruction until it
is completed.

The address queue has three issue ports:

» First, it issues each instruction once to the address calculation unit. This unit
uses a 2-stage pipeline to compute the instruction’s memory address and to
trandlate it in the TLB. Addresses are stored in the address stack and in the
gueue's dependency logic. This port controls two dedicated read ports to the
integer register file. If the cacheis available, it is accessed at the same time as
the TLB. A tag check can be performed even if the data array is busy.
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»  Second, the address queue can re-issue accesses to the data cache. The queue
allocates usage of the four sections of the cache, which consist of the tag and
data sections of the two cache banks. Load and store instructions begin with
atag check cycle, which checks to see if the desired address is already in
cache. If itisnot, arefill operation isinitiated, and this instruction waits until
it has completed. Load instructions also read and align a doubleword value
from the data array. This access may be either concurrent to or subsequent to
the tag check. If the datais present and no dependencies exist, the instruction
is marked done in the queue.

» Third, the address queue can issue store instructions to the data cache. A store
instruction may not modify the data cache until it graduates. Only one store
can graduate per cycle, but it may be anywhere within the four oldest
instructions, if all previous instructions are already completed.

The access and store ports share four register file ports (integer read and write, floating-
point read and write). These shared ports are also used for Jump and Link and Jump
Register instructions, and for move instructions between the integer and register files.
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1.5 Program Order and Dependencies

Instruction Dependencies

From a programmer’s perspective, instructions appear to execute sequentially, since they
are fetched and graduated in program order (the order they are presented to the processor
by software). When an instruction stores a new value in its destination register, that new
valueisimmediately available for use by subsequent instructions.

Internal to the processor, however, instructions are executed dynamically, and some results
may not be available for many cycles; yet the hardware must behave as if each instruction
is executed sequentially.

This section describes various conditions and dependencies that can arise from themin
pipeline operation, including:

e instruction dependencies

e execution order and stalling

e branch prediction and speculative execution
» resolving operand dependencies

» resolving exception dependencies

Each instruction depends on all previousinstructionswhich produced its operands, because
it cannot begin execution until those operands become valid. These dependencies
determine the order in which instructions can be executed.

Execution Order and Stalling

The actual execution order depends on the processor’s organization; in atypical pipelined
processor, instructions are executed only in program order. That is, the next sequential
instruction may begin execution during the next cycle, if all of its operands are valid.
Otherwise, the pipeline stalls until the operands do become valid.

Since instructions execute in order, stalls usually delay all subsequent instructions.

A clever compiler can improve performance by re-arranging instructions to reduce the
frequency of these stall cycles.

* Inanin-order superscalar processor, several consecutive instructions may
begin execution simultaneously, if all their operands are valid, but the
processor stalls at any instruction whose operands are still busy.

* Inan out-of-order superscalar processor, such as the R10000, instructions are
decoded and stored in queues. Each instruction is eligible to begin execution
as soon as its operands become valid, independent of the original instruction
sequence. In effect, the hardware rearranges instructions to keep its execution
units busy. This process is called dynamic issuing.
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Branch Prediction and Speculative Execution

Although one or moreinstructions may begin execution during each cycle, each instruction
takes several (or many) cyclesto complete. Thus, when abranch instruction isdecoded, its
branch condition may not yet be known. However, the R10000 processor can predict
whether the branch is taken, and then continue decoding and executing subsequent
instructions along the predicted path.

When abranch prediction iswrong, the processor must back up to the original branch and
takethe other path. Thistechniqueiscalled speculative execution. Whenever the processor
discovers amispredicted branch, it aborts all speculatively-executed instructions and
restoresthe processor’ s state to the state it held before the branch. However, the cache state
is not restored (see the section titled “ Side Effects of Speculative Execution”).

Branch prediction can be controlled by the CPO Diagnostic register. Branch Likely
instructions are always predicted astaken, which also meanstheinstruction in the delay slot
of the Branch Likely instruction will always be speculatively executed. Since the branch
predictor isneither used nor updated by branch-likely instructions, theseinstructionsdo not
affect the prediction of “normal” conditional branches.

Resolving Operand Dependencies

32

Operands include registers, memory, and condition bits. Each operand type hasits own
dependency logic. Inthe R10000 processor, dependencies are resolved in the following
manner:

* register dependencies are resolved by using register renaming and the
associative comparator circuitry in the queues

* memory dependencies are resolved in the Load/Store Unit

» condition bit dependencies are resolved in the active list and instruction
queues
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Resolving Exception Dependencies

Strong Ordering

In addition to operand dependencies, each instruction isimplicitly dependent upon any
previous instruction that generates an exception. Exceptions are caused whenever an
instruction cannot be properly completed, and are usually due to either an untransl ated
virtual address or an erroneous operand.

The processor design implements precise exceptions, by:
* identifying the instruction which caused the exception
e preventing the exception-causing instruction from graduating
» aborting all subsequent instructions

Thus, all register values remain the same as if instructions were executed singly.
Effectively, al previous instructions are completed, but the faulting instruction and all
subsequent instructions do not modify any values.

A multiprocessor system that exhibits the same behavior as a uniprocessor systemin a
multiprogramming environment is said to be strongly ordered.

The R10000 processor behaves as if strong ordering isimplemented, although it does not
actually execute all memory operations in strict program order.

In the R10000 processor, store operationsremain pending until the storeinstruction isready
to graduate. Thus, stores are executed in program order, and memory values are precise
following any exception.

For improved performance however, cached |oad operations my occur in any order, subject
to memory dependencies on pending store instructions. To maintain the appearance of
strong ordering, the processor detects whenever the reordering of acached |oad might alter
the operation of the program, backs up, and then re-executes the affected |oad instructions.
Specifically, whenever a primary data cache block isinvalidated due to an external
coherency request, itsindex is compared with all outstanding load instructions. If thereis
amatch and the load has been completed, the load is prevented from graduating. When it
isready to graduate, the entire pipelineisflushed, and the processor is restored to the state
it had before the load was decoded.

An uncached or uncached accelerated load or store instruction is executed when the
instruction is ready to graduate. This guarantees strong ordering for uncached accesses.

Since the R10000 processor behaves asif it implemented strong ordering, asuitable system
design allows the processor to be used to create a shared-memory multiprocessor system
with strong ordering.
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An Example of Strong Ordering

Given that locations X and Y have no particular relationship—that is, they are not in the
same cache block—an example of strong ordering is as follows:

*  Processor A performs a store to location X and later executes a load from
location Y.

* Processor B performs a store to location Y and later executes a load from
location X.

The two processors are running asynchronously, and the order of the above two sequences
is unknown.

For the system to be strongly ordered, either processor A must load the new value of Y, or
processor B must load the new value of X, or both processors A and B must load the new
valuesof Y and X, respectively, under all conditions.

If processors A and B both load old values of Y and X, respectively, under any conditions,
the system is not strongly ordered.

New Value Strongly
Processor A Processor B Ordered
No No No
Yes No Yes
No Yes Yes
Yes Yes Yes
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1.6 R10000 Pip€elines

Stage 1

Stage 2

This section describes the stages of the superscalar pipeline.

Instructions are processed in six partially-independent pipelines, as shown in Figure 1-4.
The Fetch pipeline reads instructions from the instruction cache', decodes them, renames
their registers, and placesthem in three instruction queues. The instruction queues contain
integer, address cal culate, and floating-point instructions. From these queues, instructions
are dynamically issued to the five pipelined execution units.

In stage 1, the processor fetches four instructions each cycle, independent of their
alignment in the instruction cache — except that the processor cannot fetch across a 16-
word cache block boundary. These words are then aligned in the 4-word Instruction
register.

If any instructions were left from the previous decode cycle, they are merged with new
words from the instruction cache to fill the Instruction register.

In stage 2, the four instructions in the Instruction register are decoded and renamed.
(Renaming determines any dependencies between instructions and provides precise
exception handling.) When renamed, the logical registers referenced in an instruction are
mapped to physical registers. Integer and floating-point registers are renamed
independently.

A logical register ismapped to anew physical register whenever that logical register isthe
destination of an instruction. Thus, when an instruction places anew value in alogical
register, that logical register is renamed (mapped) to a new physical register, whileits
previous value is retained in the old physical register.

As each instruction is renamed, its logical register numbers are compared to determine if
any dependencies exist between the four instructions decoded during thiscycle. After the
physical register numbers become known, the Physical Register Busy table indicates
whether or not each operand isvalid. The renamed instructions are loaded into integer or
floating-point instruction queues.

Only one branch instruction can be executed during stage 2. If the instruction register
contains a second branch instruction, this branch is not decoded until the next cycle.

The branch unit determines the next address for the Program Counter; if abranch istaken
and then reversed, the branch resume cache provides the instructions to be decoded during
the next cycle.

T The processor checks only the instruction cache during an instruction fetch; it does not check
the data cache.
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Stage 3

In stage 3, decoded instructions are written into the queues. Stage 3isalso the start of each
of the five execution pipelines.

Stages 4-6

36

In stages 4 through 6, instructions are executed in the various functional units. These units
and their execution process are described below.

Floating-Point Multiplier (3-stage Pipeline)

Single- or double-precision multiply and conditional move operations are executed in this
unit with a2-cyclelatency and a1l-cyclerepeat rate. The multiplicationiscompleted during
the first two cycles; the third cycle is used to pack and transfer the result.

Floating-Point Divide and Square-Root Units

Single- or double-precision division and sguare-root operations can be executed in parallel
by separate units. These units sharetheir issue and compl etion logic with the fl oating-point
multiplier.

Floating-Point Adder (3-stage Pipeline)

Single- or double-precision add, subtract, compare, or convert operations are executed with
a2-cyclelatency and al-cyclerepeat rate. Although afinal resultisnot calculated until the
third pipeline stage, internal bypass paths set a 2-cycle latency for dependent add or
multiply instructions.

Integer ALU1L (1-stage Pipeline)

Integer add, subtract, shift, and logic operations are executed with a 1-cycle latency and a
1-cyclerepeat rate. ThisALU also verifies predictions made for branches that are
conditional on integer register values.

Integer ALU2 (1-stage Pipeline)

Integer add, subtract, and logic operations are executed with a1-cyclelatency and al-cycle
repeat rate. Integer multiply and divide operations take more than one cycle.
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Address Calculation and Trandglation in the TLB

A single memory address can be calculated every cycle for use by either an integer or
floating-point load or store instruction. Address calculation and load operations can be
calculated out of program order.

The calculated address is translated from a 44-bit virtual address into a 40-bit physical
address using atrandlation-lookaside buffer. The TLB contains 64 entries, each of which
can translate two pages. Each entry can select a page size ranging from 4 Kbytesto 16
Mbytes, inclusive, in powers of 4, as shown in Figure 1-6.

Exponent 212 214 216 018 220 222 024
Page Size | 4 Kbytes || 16 Kbytes I 64 Kbytes I 256 KbytesI 1 Mbyte I 4 Mbytes I 16 Mbytesl
Virtual address ~ VA(11) VA(13) VA(15) VA(L7) VA(19) VA(21) VA(23)
Figure1-6 TLB Page Szes

Load instructions have a 2-cycle latency if the addressed data is already within the data
cache.

Store instructions do not modify the data cache or memory until they graduate.
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1.7 Implications of R10000 Microar chitecture on Software
The R10000 processor implements the MIPS architecture by using the following
techniques to improve throughput:
e superscalar instruction issue
»  speculative execution
» non-blocking caches

These microarchitectural techniques have specia implications for compilation and code
scheduling.

Superscalar Instruction I'ssue

The R10000 processor has parallel functional units, allowing up to four instructions to be
fetched and up to five instructions to be issued or completed each cycle. Anideal code
stream would match the fetch bandwidth of the processor with amix of independent
instructions to keep the functional units as busy as possible.

To create thisideal mix, every cycle the hardware would select one instruction from each
of the columns below. (Floating-point divide, floating-point square root, integer multiply
and integer divide cannot be started on each cycle.) The processor can look ahead in the

code, so the mix should be kept close to the ideal described below.

38

ColumnA | Column B ColumnC Column D Column E
FPadd FP mul FPload add/sub add/sub
FPdiv FPstore shift mul
FPsqrt load branch div
store logica logical

Data dependencies are detected in hardware, but limit the degree of parallelism that can be

achieved. Compilers can intermix instructions from independent code streams.
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Speculative Execution

Speculative execution increases parallelism by fetching, issuing, and completing
instructions even in the presence of unresolved conditional branches and possible
exceptions. Following are some suggestions for increasing program efficiency:

e Compilers should reduce the number of branches as much as possible
e “Jump Register” instructions should be avoided.

* Aggressive use of the new integer and floating-point conditional move
instructions is recommended.

*  Branch prediction rates may be improved by organizing code so that each
branch goes the same direction most of the time, since a branch that is taken
50% of the time has higher average cost than one taken 90% of the time. The
MIPS IV conditional move instructions may be effective in improving
performance by replacing unpredictable branches.

Side Effects of Speculative Execution

To improve performance, R10000 instructions can be speculatively fetched and executed.
Side-effects are harmless in cached coherent operations; however there are potential side-
effects with non-coherent cached operations. These side-effects are described in the
sections that follow.

Speculatively fetched instructions and speculatively executed loads or stores to a cached
addressinitiate a Processor Block Read Request to the external interface if it missesin the
cache. The speculative operation may modify the cache state and/or data, and this
modification may not be reversed even if the speculation turns out to be incorrect and the
instruction is aborted.

Speculative Processor Block Read Request to an |/O Address

Accesses to /0 addresses often cause side-effects. Typically, such 1/0 addresses are
mapped to an uncached region and uncached reads and writes are made as double/single/
partial-word reads and writes (non-block reads and writes) in R10000. Uncached readsand
writes are guaranteed to be non-speculative.

However, if R10000 hasa“ garbage” valuein aregister, a speculative block read request to
an unpredictable physical address can occur, if it speculatively fetches data due to a Load
or Jump Register instruction specifying thisregister. Therefore, speculative block accesses
to load-sensitive 1/O areas can present an unwanted side-effect.
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Unexpected Write Back Due to Speculative Store Instruction

When a Store instruction is speculated and the target address of the speculative Store
instruction is missing in the cache, the cache lineisrefilled and the state is marked to be
Dirty. However the refilled data may not be actually changed in the cache if this store
instruction is later aborted. This could present a side-effect in cases such as the one
described below:

»  The processor is storing data sequentially to memory area A, using a code-loop
that includes Store and Cond.branch instructions.

A DMA write operation is performed to memory area B.
 DMA areaB is contiguous to the sequential storage area A.
* The DMA operation is noncoherent.

»  The processor does not cache any lines of DMA area B.

If the processor and the DMA operations are performed in sequence, the following could
occur:

1. Dueto speculative execution at the exit of the code-loop, the line of data beyond the
end of the memory area A — that is, the starting line of memory area B — is refilled
to the cache. This cache lineisthen marked Dirty.

The DMA operation starts writing noncoherent data into memory area B.

3. A cacheline replacement is caused by later activities of the processor, in which the
cache lineiswritten back to the top of area B. Thus, the first line of the DMA area B
is overwritten by old cache data, resulting in incorrect DMA operation and data.

The OS can restrict the writable pages for each user process and so can prevent a user
process from interfering with an active DMA space. The kernel, on the other hand, retains
xkphys and kseg0 addressesin registers. Thereisno write protection against the speculative
use of the address values in these registers. User processes which have pages mapped to
physical spacesnot in RAM may a so have side-effects. These side-effects can be avoided
if DMA is coherent.

Speculative Instruction Fetch

Thechangein acacheline's state due to a speculative instruction fetch is not reversed if the
speculation is aborted. This does not cause any problems visible to the program except
during a noncoherent memory operation. Then the following side-effect exists: if a
noncoherent lineis changed to Clean Exclusive and thislineis also present in noncoherent
space, the noncoherent data could be modified by an external component and the processor
would then have stale data.
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Workarounds for Noncoherent Cached Systems

The suggestions presented bel ow are not exhaustive; the solutions and trade-offsare system
dependent. Any one or more of the items listed below might be suitable in a particular
system, and testing and simulations should be used to verify their efficacy.

1

The external agent can reject a processor block read request to any /O location in
which a speculative load would cause an undesired affect. Rejection is made by
returning an external NACK completion response.

A serializing instruction such as a cache barrier or a CPO instruction can be used to
prevent speculation beyond the point where speculative stores are allowed to occur.
This could be at the beginning of abasic block that includesinstructionsthat can cause
a store with an unsafe pointer. (Stores to addresses like stack-relative, global-pointer-
relative and pointers to non-1/0 memory might be safe.) Speculative loads can also
cause a side-effect. To make sure there is no stale data in the cache as a result of
undesired speculative loads, portions of the cache referred by the address of the DMA
read buffers could be flushed after every DMA transfer from the 1/0 devices.

Make references to appropriate 1/O spaces uncached by changing the cache coherency
attribute in the TLB.

Generally, arbitrary accesses can be controlled by mapping sel ected addressesthrough
the TLB. However, references to an unmapped cached xkphys region could have
hazardous affects on 1/0O. A solution for thisis given below:

First of all, notethat the xkphysregion is hard-wired into cached and uncached regions,
however the cache attributes for the ksegO region are programmed through the Config
register. Therefore, clear the KX bit (to a zero) and set (to ones) the SX and UX hitsin
the Satusregister. Thisdisablesaccessto the xkphys region and restricts accessto only
the User and Supervisor portions of the 64-bit address space.

In general, the system needs either a coherent or a noncoherent protocol — but not
both. Therefore these cache attributes can be used by the external hardware to filter
accesses to certain parts of the ksegO region. For instance, the cache attributes for the
kseg0 address space might be defined in the Config register to be cache coherent while
the cache attributes in the TLB for the rest of virtual space are defined to be cached-
noncoherent or uncached. The external hardware could be designed to reject all cache
coherent mode references to the memory except to that prior-defined safe spacein
ksegO within which there is no possibility of an I/O DMA transfer. Then before the
DMA read process and before the cacheisflushed for the DM A read buffers, the cache
attributesin the TLB for the I/O buffer address space are changed from noncoherent
to uncached. After the DMA read, the access modes are returned to the cached-
noncoherent mode.

Just beforeload/storeinstruction, use aconditional moveinstruction whichtestsfor the
reverse condition in the specul ated branch, and make all aborted branch assignments
safe. An example is given below:
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bne rl, r0, label

movn  ra, ro, r1 # test to see if rl != 0; if r1 != 0 then branch
# is mispredicted; move safe address (r0)
#into ra

Id r4, 0 (ra) # Without the previous movn, this Iid

# could create damaging read.

In the above example, without the MOV N the read to the address in register ra could
be speculatively executed and later aborted. It is possible that this load could be
premature and thus damaging. The MOV N guaranteesthat if thereis amisprediction
(rlisnot equal to 0) ra will be loaded with an address to which aread will not be
damaging.

6. Thefollowingissimilar to the conditional-move example given above, in that it
protects speculation only for a single branch, but in some instances it may be more
efficient than either the conditional move or the cache barrier workarounds.

This workaround uses the fact that branch-likely instructions are always predicted as
taken by the R10000. Thus, any incorrect speculation by the R10000 on a branch-
likely always occurs on ataken path. Sample codeiis:

beq| rx, rl, label
nop
sw r2, 0x0(r1)

The storeto r1 will never beto an address referred to by the content of rx, because the
storewill never be executed speculatively. Thus, the addressreferred to by the content
of rx is protected from any spurious write-backs.
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Nonblocking Caches

Thisworkaround is most useful when the branch is often taken, or when there are few
instructions in the protected block that are not memory operations. Note that no
instructionsin ablock following abranch-likely will beinitiated by speculation on that
branch; however, in the case of a serial instruction workaround, only memory
operations are prevented from speculative initiation. In the case of the conditional-
move workaround, speculativeinitiation of all instructions continues unimpeded. Also,
similar to the conditional -move workaround, this workaround only protects fall-
through blocks from speculation on the immediately preceding branch. Other
mechanisms must be used to ensure that no other branches speculate into the protected
block. However, if ablock that dominates' the fall-through block can be shown to be
protected, this may be sufficient. Thus, if block (a) dominates block (b), and block (b)
isthefall-through block shown above, and block (a) istheimmediately previous block
inthe program (i.e., only the single conditional branch that isbeing replaced intervenes
between (a) and (b)), then ensuring that (a) is protected by serial instruction means a
branch-likely can safely be used as protection for (b).

As processor speed increases, the processor’sdata latency and bandwidth requirementsrise
more rapidly than the latency and bandwidth of cost-effective main memory systems. The
memory hierarchy of the R10000 processor tries to minimize this effect by using large set-
associative caches and higher bandwidth cacherefillsto reduce the cost of oads, stores, and
instruction fetches. Unlike the R4400, the R10000 processor does not stall on data cache
misses, instead defers execution of any dependent instructions until the data has been
returned and continues to execute independent instructions (including other memory
operations that may missin the cache). Although the R10000 allows a number of
outstanding primary and secondary cache misses, compilers should organize code and data
to reduce cache misses. When cache misses are inevitable, the data reference should be
scheduled as early aspossible so that the data can befetched in parallel with other unrelated
operations.

As afurther antidote to cache miss stalls, the R10000 processor supports prefetch
instructions, which serve as hints to the processor to move data from memory into the
secondary and primary cacheswhen possible. Because prefetches do not cause dependency
stallsor memory management exceptions, they can be schedul ed as soon asthe dataaddress
can be computed, without affecting exception semantics. Indiscriminate use of prefetch
instructions can slow program execution because of the instruction-issue overhead, but
selective use of prefetches based on compiler miss prediction can yield significant
performance improvement for dense matrix computations.

T In compiler parlance, block (a) dominates block (b) if and only if every time block (b) is
executed, block (@) isexecuted first. Note that block (&) does not haveto immediately precede
block (b) in execution order; some other block may intervene.
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1.8 Performance

Asit executes programs, the R10000 superscalar processor performs many operationsin
paralel. Instructions can also be executed out of order. Together, these two facts greatly
improve performance, but they also make it difficult to predict the time required to execute
any section of a program, since it often depends on the instruction mix and the critical
dependencies between instructions.

The processor has five largely independent execution units, each of which are
individualized for a specific class of instructions. Any one of these units may limit
processor performance, even as the other unitssitidle. If this occurs, instructions which
use the idle units can be added to the program without adding any appreciable delay.
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User Instruction Latency and Repeat Rate

Table 1-1 shows the latencies and repeat rates for all user instructions executed in ALU1,
ALU2, Load/Store, Floating-Point Add and Floating-Point Multiply functiona units
(definitions of latency and repeat rate are given in the Glossary). Kernel instructions are
not included, nor are control instructions not issued to these execution units.

Table1-1 Latencies and Repeat Rates for User Instructions

Instruction Type Execution Unit | Latency ngte:t Comment

Integer Instructions
Add/Sub/Logical/Set ALU 12 1 1
MF/MT HI/LO ALU 12 1 1
Shift/LUI ALU1 1 1
Cond. Branch Evaluation ALU1 1 1
Cond. Move ALU1 1 1
MULT ALU 2 5/6 6 Latency relative to Lo/Hi
MULTU ALU 2 6/7 7 Latency relative to Lo/Hi
DMULT ALU 2 9/10 10 Latency relative to Lo/Hi
DMULTU ALU 2 10/11 11 Latency relative to Lo/Hi
DIV/DIVU ALU 2 34/35 35 Latency relative to Lo/Hi
DDIV/DDIVU ALU 2 66/67 67 Latency relative to Lo/Hi
Load (not include loads to CP1) Load/Store 2 1 Assuming cache hit
Store Load/Store - 1 Assuming cache hit

Floating-Point I nstructions
MTCL/DMTC1 ALU1 3 1
Add/Sub/Abs/Neg/Round/Trunc/
Ceil/Floor/C.cond FADD 2 !
CVT.SW/CVT.SL FADD 4 2 Repest rate is on average
CVT (others) FADD 2 1
Mul FMPY 2 1
MFCLUDMFC1 FMPY 2 1
Cond. Move/Move FMPY 2 1
DIV.S/RECIP.S FMPY 12 14
DIV.D/RECIP.D FMPY 19 21
SQRT.S FMPY 18 20
SQRT.D FMPY 33 35
RSQRT.S FMPY 30 20
RSQRT.D FMPY 52 35
Latency is 2 only if the result is used asthe

MADD FADD+FMPY 24 L operand specified by fr of another MADD
LWCL/LDC1/LWXC1/LDXC1 LoadStore 3 1 Assuming cache hit
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Please note the following about Table 1-1:

«  For integer instructions, conditional trap evaluation takes a single cycle,
like conditional branches.

e Branches and conditional moves are not conditionally issued.

* The repeat rate above for Load/Store does not include Load Link and
Store Conditional.

*  Prefetch instruction is not included here.

* Thelatency for multiplication and division depends upon the next
instruction.

* Aniinstruction using register Lo can be issued one cycle earlier than one
using Hi.

»  For floating-point instructions, CP1 branches are evaluated in the
Graduation Unit.

e CTC1 and CFC1 are not included in this table.

e The repeat pattern for the CVT.S.(W/L) is“l I x x | | x x ...”; the repeat
rate given here, 2, is the average.

e Thelatency for MADD instructions is 2 cycles if the result is used as the
operand specified by fr of the second MADD instruction.

e Load Linked and Store Conditional instructions (LL, LLD, SC, and SCD)
do not implicitly perform SYNC operations in the R10000. Any of the
following events that occur between a Load Linked and a Store
Conditional will cause the Store Conditional to fail: an exception;
execution of an ERET, aload, a store, a SYNC, a CacheOp, a prefetch, or
an external intervention/invalidation on the block containing the linked
address. Instruction cache misses do not cause the Store Conditional to
fail.

e Up to four branches can be evaluated at one cycl el

For moreinformation about implementationsof the LL, SC, and SYNC instructions, please
see the section titled, R10000-Specific CPU Instructions, in this chapter.

T Only one branch can be decoded at any particular cycle. Since each conditional branch is
predicted, the real direction of each branch must be “evaluated.” For example,

beq r2,r3,L1
nop

A comparison of r2 and r3 is made to determine whether the branch is taken or not. If the
branch prediction is correct, the branch instruction is graduated. Otherwise, the processor
must back out of the instruction stream decoded after this branch, and inform the |Fetch to
fetch the correct instructions. The evaluation ismadein the ALU for integer branchesand in
the Graduation Unit for floating-point branches. A single integer branch can be evaluated
during any cycle, but there may be up to 4 condition codeswaiting to be eval uated for floating-
point branches. Once the condition code is evaluated, all dependant FP branches can be
evaluated during the same cycle.
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Other Performance | ssues

Cache Performance

Table 1-1 shows execution times within the functional units only. Performance may aso
be affected by instruction fetch times, and especially by the execution of conditional
branches.

In an effort to keep the execution units busy, the processor predicts branches and
speculatively executes instructions along the predicted path. When the branch is predicted
correctly, this significantly improves performance: for typical programs, branch prediction
is 85% to 90% correct. When a branch is mispredicted, the processor must discard
instructions which were speculatively fetched and executed. Usually, this effort uses
resources which otherwise would have been idle, however in some cases specul ative
instructions can delay previous instructions.

The execution of load and store instructions can greatly affect performance. These
instructions are executed quickly if the required memory block is contained in the primary
datacache, otherwisethere are significant delaysfor accessing the secondary cache or main
memory. Out-of-order execution and non-blocking cachesreducethe performancelossdue
to these delays, however.

Thelatency and repeat rates for accessing the secondary cache are summarized in Table 1-
2. Theserates depend on the ratio of the secondary cache's clock to the processor’sinternal
pipeline clock. The best performance is achieved when the clock rates are equal; slower
external clocks add to latency and repeat times.

The primary data cache contains 8-word blocks, which are refilled using 2-cycle transfers
from the quadword-wide secondary cache. Latency runsto thetimein which the processor
can use the addressed data.

The primary instruction cache contains 16-word blocks, which are refilled using 4-cycle
transfers.

Table1-2 Latency and Repeat Rates for Secondary Cache Reads

SCCIKDiv Latency* e
Mode (PClk Cycles) (PCIk Cycles)
) 5 2 (data cache)
4 (instruction cache)
it 3 (data cache)
15 8-10 6 (instruction cache)
ot 4 (data cache)
2 9-12 8 (instruction cache)

+ Assumes the cache way was correctly predicted, and there are no conflicting requests.

* Repeat rate = PClk cycles needed to transfer 2 quadwords (data cache) or 4 quadwords (instruction
cache). Rateisvalid for burstsof 2 to 3 cache misses; if more than three cache missesin arow, there can
be a 1-cycle “bubble.”

T Clock synchronization causes variability.
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The processor mitigates access delays to the secondary cache in the following ways:

The processor can execute up to 16 load and store instructions speculatively
and out-of-order, using non-blocking primary and secondary caches. That is,
it looks ahead in its instruction stream to find load and store instructions
which can be executed early; if the addressed data blocks are not in the
primary cache, the processor initiates cache refills as soon as possible.

If a speculatively executed load initiates a cache refill, the refill is completed
even if the load instruction is aborted. It is likely the data will be referenced
again.

The data cache is interleaved between two banks, each of which contains
independent tag and data arrays. These four sections can be allocated
separately to achieve high utilization. Five separate circuits compete for
cache bandwidth (address calculate, tag check, load unit, store unit, external
interface.)

The external interface gives priority to its refill and interrogate operations.
The processor can execute tag checks, data reads for load instructions, or data
writes for store instructions. When the primary cache is refilled, any required
data can be streamed directly to waiting load instructions.

The external interface can handle up to four non-blocking memory accesses to
secondary cache and main memory.

Main memory typically has much longer latencies and lower bandwidth than the secondary
cache, which makeit difficult for the processor to mitigate their effect. Since main memory
accesses are hon-blocking, delays can be reduced by overlapping the latency of several
operations. However, although thefirst part of the latency may be concealed, the processor
cannot look far enough ahead to hide the entire latency.

Programmers may use pre-fetch instructionsto load datainto the cachesbeforeit is needed,
greatly reducing main memory delays for programs which access memory in a predictable
sequence.
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2.

System Configurations

The R10000 processor provides the capability for awide range of computer systems; this
chapter describes some of the uni- and multiprocessor alternatives.
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2.1 Uniprocessor Systems

Inatypical uniprocessor system, the System interface of the R10000 processor connectsin
apoint-to-point fashion with an external agent. Such asystemisshowninFigure2-1. The
external agent istypically an ASIC that provides a gateway to the memory and 1/0
subsystems; in fact, thisASIC may incorporate the memory controller itself.

If hardware I/O coherency is desired, the externa agent may use the multiprocessor
primitives provided by the processor to maintain cache coherency for interventions and
invalidations. External duplicate tags can be used by the external agent to filter external
coherency requests.
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Secondary
Cache

Secondary Cache Interface

R10000

System Interface

Tags |

External |
Agent

To Other System Resources

Figure2-1 Uniprocessor System Organization

User'sManual U10278EJ4V0UM



Chapter 2 System Configurations

2.2 Multiprocessor Systems

Two types of multiprocessor systems can be implemented with R10000 processor:

* adedicated externa agent interfaces with each R10000 processor

up to four R10000 processors and an external agent reside on a cluster bus

Multiprocessor Systems Using Dedicated External Agents

A multiprocessor system may be created with R10000 processors by providing adedicated
external agent for each processor; such asystemisshownin Figure 2-2. The external agent
provides a path between the processor System interface and some type of coherent
interconnect. In such asystem, the processor provides support for three coherency schemes:
*  snoopy-based
e snoopy-hased with external duplicate tags and control

directory-based with external directory structure and control

Secondary

Secondary
Cache

Cache

Secondary Cache Interface

Secondary Cache Interface

R10000 R10000

System Interface System Interface

_—_——— — — — — .

| Duplicate | ' Duplicate |
External . Tags External . Tags
Agent Agent
B Coherent Interconnect R
| Directory |
|
To Other System Resources lL Structure I

Figure2-2 Multiprocessor System Organization using Dedicated External Agents
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Multiprocessor Systems Using a Cluster Bus

52

A multiprocessor system may be created with R10000 processors by using a cluster bus
configuration. Such asystemisshownin Figure 2-3. A cluster busis created by attaching
the System interfaces of up to four R10000 processors with an external agent (the cluster
coordinator). The cluster coordinator is responsible for managing the flow of datawithin
the cluster.

This organization can reduce the number of ASICs and the pin count needed for a small
multiprocessor systems.

The cluster bus protocol supports three coherency schemes:
*  snoopy-based
*  snoopy-based with external duplicate tags and control
» directory-based with external directory structure and control

Secondary Secondary
Cache Cache

Secondary Cache Interface Secondary Cache Interface

R10000 R10000

System Interface System Interface

Cluster Bus
A

A
v

v

! Duplicate |

Cluster Tags |
Coordinator @ ~~ " °
| Directory |

: Structure !

To Other System Resources

Figure2-3 Multiprocessor System Organization Using the Cluster Bus
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3.

Interface Sgnal Descriptions

This chapter givesalist and description of the interface signals.
The R10000 interface signals may be divided into the following groups:
»  Power interface
»  Secondary Cache interface
»  System interface
* Test interface

Thefollowing sections present asummary of the external interface signalsfor each of these
groups. An asterisk (*) indicates signals that are asserted asalogical 0.
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3.1 Power Interface Signals

Table 3-1 presents the R10000 processor power interface signals.

Table3-1 Power Interface Sgnals

Signal Name Description Type

Vce Ve core Input
Vcc for the core circuits. P
Vcc output driver secondary cache

VeeRse Vcc for the secondary cache interface output drivers. Input
Vcc output driver system

VeeQSys Vcc for the System interface output drivers. Input
Voltage reference secondary cache

VrefSC Voltage reference for the secondary cache interface input receivers. Input
Voltage reference system

VrefSys Voltage reference for the System interface input receivers. Input
Voltage reference bypass

VrefByp Thispin must betied to Vss (preferably) or VrefSys, through at least a100 ohm | Input
resistor.

Vss Vss Input
Vssfor the core circuits and output drivers. b
Vce PLL analog

VecPa Vcc for the PLL analog circuits. Input

= VssPLL analog

v Vssfor the PLL analog circuits. Input
Vcc PLL digital

Veekd Vcc for the PLL digital circuits. Input
VssPLL digita

Vsshd Vssfor the PLL digita circuits. Input
DC voltages are OK

DCOk The external agent asserts these two signals when Vcc, Input

VceQ[SC,Syq], Vref[SC,Sys], Vec[Pa,Pd], and SysClk are stable.

User'sManual U10278EJ4V0UM




Chapter 3 Interface Sgnal Descriptions

3.2 Secondary Cache Interface Signals

Table 3-2 presents the R10000 processor secondary cache interface signals.

Table3-2  Secondary Cache Interface Sgnals

Signal Name | Description Type
SSRAM* Clock Signals
SCCIk(5:0) Secondary cache clock Output
SCClk* (5:0) Duplicated complementary secondary cache clock outputs. P
SSRAM Address Signals
) Secondary cache address bus
i’éﬁgg:&gg; SCBAddr is complementary SCAAddr 19-bit bus, which specifiesthe set address of the | Output
’ secondary cache data and tag SSRAM that is to be accessed.

Secondary cache tag L SB address
SCTagLSBAddr | Signal that specifiesthe least significant bit of the address for the secondary cachetag | Output

SSRAM.

SSRAM Data Signals

SCADWay Secondary cache data way
SCBDWay Duplicated signal that indicates the way of the secondary cache data SSRAM that isto | Output

be accessed.

i Secondary cache data bus N

SChata(127.0) 128-hit bus to read/write cache data from/to secondary cache data SSRAM. Bidirectional

Secondary cache data check bus
SCDataChk(9:0) | A 10-bit bus used to read/write ECC and even parity from/to the secondary cache data | Bidirectional

SSRAM.
SCADOE* Secondary cache data output enable Output
SCBDOE* Duplicated signal that enables the outputs of the secondary cache data SSRAM. P
SCADWr* Secondary cache data write enable Output
SCBDWr* Duplicated signal that enables writing the secondary cache data SSRAM. P
SCADCS* Secondary cache data chip select Output
SCBDCS* Duplicated signal that enables the secondary cache data SSRAM. P

t All cache static RAM (SRAM) are synchronous SRAM (SSRAM).
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Table 3-2 (cont.) Secondary Cache Interface Sgnals

Signal Name _| Description | Type
SSRAM Tag Signals
SCTWey gegr?;cﬁ% g;? 23 Etfmge \vaz{/ of the secondary cache tag SSRAM to be accessed. Output
SCTag(25:0) iegg?g?guzagnh?eﬁvsﬁe cache tags from/to the secondary cache tag SSRAM. Bidirectional
SCTagChk(6:0) ieg?;?irzscl?i]de tts?e(;ré?\(/:\ll(ri?gzcc from/to the secondary cache tag SSRAM. Bidirectiond
SCTOE! ,ie;c;r;ila%gtacmhzglai?ﬁép:;tzﬁgl; the secondary cache tag SSRAM. Output
SeTwr iegi(;Zila%gtacezzkflaegsvv\(/rriiﬁt?negn?ﬁtlaesecondary cache tag SSRAM. Output
SCTes ie;c;r;ilarv)(lriﬁhzfnzglgitﬁlgd sgz:;ndary cache tag SSRAM. Output

56
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3.3 System Interface Signals

Table 3-3 presents the R10000 processor System interface signals.

Table3-3  SystemInterface Sgnals

Signal Name | Description Type
System Clock Signals
SysClk System clock Inout
SysClk* Complementary system clock input. P
SysClkRet System clock return
SysClkRet* Complementary system clock return output used for termination of the system | Output
clock.
System Arbitration Signals
System request
SysReg* The processor asserts this signal when it wantsto perform a processor request | Output
and it is not already master of the System interface.
System grant
SysGnt* The external agent assertsthissignal to grant mastership of the System interface | Input
to the processor.
System release
. The master of the System interface asserts this signal for one SysClk cycleto e
SysRel indicatethat it will relinquish mastership of the Systeminterfaceinthefollowing Bidirectional
SysClk cycle.
System Flow Control Signals
System read ready
SysRdRdy* The external agent assertsthissignal to indicate that it can accept processor read | Input
and upgrade requests.
System write ready
SysWrRdy* Theexternal agent assertsthissignal toindicatethat it can accept processor write | Input
and eliminate requests.
System Address/Data Bus Signals
System command
SysCmd(11:0) A 12-hit bus for transferring commands between processor and the external Bidirectional
agent.
System command bus parity —
SysCmdPar Odd parity for the system command bus. Bidirectional
System address/data bus
SysAD(63:0) A 64-bit bus for transferring addresses and data between R10000 and the Bidirectiona

external agent.
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Table 3-3 (cont.) System Interface Sgnals

Signal Name

Description

Type

System State Bus Signals

SysADChk(7:0)

System address/data check bus
An 8-hit ECC bus for the system address/data bus.

Bidirectional

Sysval*

System valid
The master of the System interface asserts this signal when it isdriving valid
information on the system command and system address/data buses.

Bidirectional

SysState(2:0)

System state bus
A 3-bit bus used for issuing processor coherency state responses and also
additional statusindications.

Output

SysStatePar

System state bus parity
Odd parity for the system state bus.

Output

SysStateVal*

System state bus valid
The processor asserts this signal for one SysClk cycle when issuing a processor
coherency state response on the system state bus.

Output

System Response Bus Signals

SysResp(4:0)

System response bus

A 5-bit bus used by the external agent for issuing external completion responses.

Input

SysRespPar

System response bus parity
Odd parity for the system response bus.

Input

SysRespVal*

System response bus valid
The external agent asserts this signal for one SysClk cycle when issuing an
external completion response on the system response bus.

Input

System Miscellaneous Signals

SysReset*

System reset
The external agent assertsthis signal to reset the processor.

Input

SysNMI*

System non-maskabl e interrupt
The external agent asserts this signal to indicate a non-maskable interrupt.

Input

SysCorErr*

System correctable error
The processor asserts this signal for one SysClk cycle when a correctable error
is detected and corrected.

Output

SysuncErr*

System uncorrectable error
The processor assertsthissignal for one SysClk cyclewhen an uncorrectabletag
error is detected.

Output

SysGbl Perf*

System globally performed
The external agent assertsthis signal to indicate that all processor requests have
been globally performed with respect to all external agents.

Input

SysCyc*

System cycle
The external agent may usethissignal to define avirtual System interface clock
in a hardware emulation environment.

Input

58
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3.4 Test Interface Signals

Table 3-4 presents the R10000 processor test interface signals.

Table 3-4 Test Interface Sgnals

Signal Name Description Type
JTAG Signals

JTAG seria datainput

JTDI Serial datainpu. Input
JTAG serid data output

JTbO Serial data output. Output
JTAG clock

JTeK Clock input. Input
JTAG mode select

JTMS Mode select input. Input
JTAG reset input (active low)

JIRST Asynchronous reset input (R12000A only) Input

Miscellaneous Test Signals

TCA Testability control A (for manufacturing test only) Inout
This signal must betied to Vss, through a 100 ohm resistor. b

TCB Testability control B (for manufacturing test only) Inout
This signal must betied to Vss, through a 100 ohm resistor. b

. PLL disable (for manufacturing test only)

PLLDIs This signal must be tied to Vss through a 100 ohm resistor. Input

PLLRC PLL Control Node (for manufacturing test only)
There must be no connection made to this signal.

PLL Spare(1:4) These four pins must be tied to V'ss.

Spare(l,B)Jr These two pins must be tied to V'ss, through a 100 ohm resistor.
3-state Control

TriState The system asserts this signal to 3-state all outputs and input/output | Input
pads except for SCClk, SCCIk*, and JTDO.

SdDVCO Select differential VCO (for manufacturing test only) Input

Thissignal must betied to Vcc.

T The Spare(1, 3) are used in R12000 for diagnostic purpose and thus for R12000 should not be connected to anything.
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Unused I nputs

60

Severa input pins are unused during normal system operation, and should be tied to Vcc
through resistors:

« JTDI
« JTCK
« JTMS

«  JTRST (for R12000A only)

Several input pins are unused during normal system operation, and should be tied to Vss
through 100 ohm resistors:

e TCA,TCB
e PLLDis
e Sparel, Spare3 (for R10000)

Several input pins are unused during normal system operation, and should be tied to Vss:
e PLLSparel, PLLSpare2, PLL Spare3, PLL Spared
» SaDVCO

The following input pins are unused during normal system operation, and should be left
open:

e Sparel, Spare3 (for R12000)

Thefollowing input pinsmay be unused in certain system configurations, and each of them
should be tied to VccQSys, preferably, through aresistor of 100 ohms or grester value:

. SysNM [ *

Thefollowing input pinsmay be unused in certain system configurations, and each of them
should be tied to Vss, preferably, through a resistor of 100 ohms or greater value:

. SysRdRdy*
. SysWrRdy*
. SysGblPer f*
. SysCyc*

Thefollowing input pinsmay be unused in certain system configurations, and each of them
should be tied (preferably) to Vss, or VccQSys, through aresistor of 100 ohms or greater
value:

. SysADChk(7:0)
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4.

Cache Organization and Coherency

The processor implements atwo-level cache structure consisting of separate primary
instruction and data caches and a joint secondary cache.

Each cache is two-way set associative and uses awrite back protocol; that is, two cache
blocks are assigned to each set (as shown in Figure 4-1), and a cache store writes datainto
the cache instead of writing it directly to memory. Sometime later thisdatais
independently written to memory.

A write-invalidate cache coherency protocol (described later in this chapter) is supported
through a set of cache states and external coherency requests.
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4.1 Primary Instruction Cache

The processor has an on-chip 32-Kbyte primary instruction cache (also referred to simply
as the instruction cache), which is a subset of the secondary cache. Organization of the
instruction cache is shown in Figure 4-1.

Theinstruction cache has afixed block size of 16 wordsand istwo-way set associative with
aleast-recently-used (LRU) replacement algorithm."

Theinstruction cache isindexed with avirtual address and tagged with aphysical address.

Way 0 16 Kbytes Way 1 16 Kbytes
Word Data 0 Word Word Data 1 Word
Tag 0 0 15 Tag 1 0 15
Set{ [T T T TTTTTTITITT] [T T T T T TITTITITITITI
block
Virtual
Index

Figure4-1 Organization of Primary Instruction Cache

Each instruction cache block isin one of the following two states:
e Invalid
e \alid

T The preciseimplementation of the LRU algorithm is affected by the specul ative execution of
instructions.
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Aninstruction cache block can be changed from one state to the other asaresult of any one
of the following events:

e aprimary instruction cache read miss
e subset property enforcement
» any of various CACHE instructions

» externa intervention exclusive and invalidate requests

These events areillustrated in Figure 4-2, which shows the primary instruction cache state
diagram.

Subset enforcement

CACHE Index Invalidate (I)

CACHE Index Store Tag (1)

CACHE Hit Invalidate (I, S) i

CACHE Index WriteBack Invalidate (S) Read miss

CACHE Index Store Tag (I)

Q‘ Read hit

Intervention exclusive hit
| Invalidate hit

Legend:

Internally initiated action:. ——
Externally initiated action: — — — —
() Instruction cache
(S) Secondary cache

Figure4-2 Primary Instruction Cache Sate Diagram
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4.2 Primary Data Cache

The processor has an on-chip 32-Kbyte primary data cache (also referred to simply asthe
data cache), which is a subset of the secondary cache. The data cache uses afixed block
sizeof 8wordsand istwo-way set associative (that is, two cache blocks are assigned to each
set, as shown in Figure 4-3) with an LRU replacement aIgorithm.Jr

Way 0 16 Kbytes Way 1 16 Kbytes

Word Data 0 Word Word Data 1 Word
Tag 0 0 7 Tag 1 0 7
[ T T T T T 7 I I I I

Set {

Virtual
Index

Figure4-3 Organization of Primary Data Cache

The data cache uses awrite back protocol, which means a cache store writes data into the
cache instead of writing it directly to memory. Sometime later this data is independently
written to memory, as shown in Figure 4-4.

Time o
> Primary write back= Secondary write back> Main
Processor Cache Cache Memory
T T

Figure4-4 Write Back Protocol

Write back from the primary data cache goes to the secondary cache, and write back from
the secondary cache goes to main memory, through the system interface. The primary data
cache iswritten back to the secondary cache before the secondary cache iswritten back to
the system interface.

T The preciseimplementation of the LRU algorithm is affected by the specul ative execution of
instructions.
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The data cache isindexed with avirtual address and tagged with a physical address. Each
primary cache block isin one of the following four states:

e Invalid

» CleanExclusive
e DirtyExclusive
o Shared

A primary data cache block is said to be Inconsistent when the datain the primary cache
has been modified from the corresponding datain the secondary cache. The primary data
cacheis maintained as a subset of the secondary cache where the state of a block in the
primary data cache always matches the state of the corresponding block in the secondary
cache.

A data cache block can be changed from one state to another as aresult of any one of the
following events:

e primary data cache read/write miss
* primary data cache write hit

*  subset enforcement

* aCACHE instruction

e external intervention shared request
» intervention exclusive request

* invalidate request

These events areillustrated in Figure 4-5, which shows the primary data cache state
diagram.

DCache set locking relaxed (R12000)

In R10000, when an AQ entry accessesaDCacheline, that lineislocked into the cache until
the entry graduates, so that the entry will not be removed from the cache until the access
completes. If another entry which needs to access exactly the same line arrives in the AQ
before the first completes, the two may share the lock. In thisway, alineislocked in the
cache until all accessto it complete. In order to prevent adeadlock from arising, whenever
acachelineislocked in thisway, only the oldest AQ entry can obtain alock on the other
“way” of the same cache set, thus ensuring that forward progress can be made. This
algorithm can cause problems, because often the oldest entry in the AQ is the one which
already owns the lock on the first way - thus ensuring that no other entries can access the
second way of the cache for that set index. For some algorithms, most notably FFT's, this
can cause severe performance degradation. R12000 allows an entry to obtain the lock on
the second way of aset if it isthe oldest entry which does not already own alock. Thus, any
entries which have already acquired alock, including those locking the first way, will not
prevent another, younger, entry from accessing that second way.
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Subset enforcement

CACHE Index WriteBack Invalidate (D, S)
CACHE Index Store Tag (D)

CACHE Hit Invalidate (D, S)

CACHE Hit WriteBack Invalidate (D, S)

Read miss obtained CleanExclusive
CACHE Index Store Tag (D)

Clean

A Read hit
Exclusive

ya 7
/ . . . 7
, “Intervention exclusive hit %z
+Invalidate hit s
7 7
7/ 7/
‘ 7
s =
Vs =
/ B
7 =
’ =
7/
7
7
7 . .
» Intervention shared hit
7
7’ A 4

Intervention shared hit

Read hit

Dirty
Exclusive

Read hit

Shared Write hit

Intervention shared hit Write hit and Upgrade ACK
Subset enforcement

Write miss

Read miss obtained DirtyExclusive
CACHE Index Store Tag (D)

Read miss obtained Shared
CACHE Index Store Tag (D)

Legend:

Internally initiated action: ——
Externally initiated action: - — — — — — -
(S)  Secondary cache

(D) Data cache

Figure4-5 Primary Data Cache Sate Diagram
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4.3 Secondary Cache

The R10000 processor must have an external secondary cache, ranging in size from 512
Kbytesto 16 Mbytes, in powers of 2, as set by the SCSize mode bit. The SCBIkSize mode
bit selects ablock size of either 16 or 32 words.

The secondary cache is two-way set associative (that is, two cache blocks are assigned to
each set, as shown in Figure 4-6) with an LRU replacement algorithm."

The secondary cache usesawrite back protocol, which means a cache store writes datainto
the cache instead of writing it directly to memory. Sometime later thisdatais
independently written to memory.

The secondary cache isindexed with aphysical address and tagged with a physical address.

Way 0 256 Kbytes to 8 Mbytes Way 1 256 Kbytes to 8 Mbytes
Word Data 0 Word Word Data 1 Word
Tag 0 0 15/31 Tag 1 0 15/31

Figure4-6 Organization of Secondary Cache

Each secondary cache block isin one of the following four states:
e Invalid
» CleanExclusive
» DirtyExclusive
e  Shared

T The preciseimplementation of the LRU algorithm is affected by the specul ative execution of
instructions.
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A secondary cache block can be changed from one state to another as aresult of any of the
following events:

e primary cache read/write miss
e primary cache write hit to a Shared or CleanExclusive block
e secondary cache read miss
» secondary cache write hit to a Shared or CleanExclusive block
» aCACHE instruction
» external intervention shared request
e intervention exclusive request
e invalidate request
These events areillustrated in Figure 4-7, which shows the secondary cache state diagram.
S oo et

CACHE Hit Invalidate (S)
CACHE Hit WriteBack Invalidate (S)

Read miss obtained CleanExclusive
CACHE Index Store Tag (S)

Clean
Exclusive

Read hit

4 7/
s . . . s
+ Intervention exclusive hit s,
7 Invalidate hit 4
4 Ve
‘ s
7
s =
Vs <
4 2
7/ =
’ =
7/
7
7
7 . .
~Intervention shared hit
7
7’ A 4

Readhit\  /  \g - 2'&EROOSaled it . _

Read hit
Write hit

Dirty

Shared Exclusive

Intervention shared hit Write hit and Upgrade ACK

Write miss

Read miss obtained DirtyExclusive

Read miss obtained Shared CACHE Index Store Tag (S)

CACHE Index Store Tag (S)

Legend:

Internally initiated action:
Externally initiated action: - — — — — — -
(S) Secondary cache

Figure4-7 Secondary Cache Sate Diagram
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<R12000>

Pad-ring clock slowed

The clock used to drive datato/from SC around the pad-ring has been slowed to a2:3 clock
divisor, thus sometimes adding an additional cycle of latency to secondary-cache accesses.

SC refill blocking reduced

In R10000, during the time that an SCache line is being refilled from system interface via
the “incoming buffer (IB)”, no other accesses to the SCache are allowed. If the external
interface seesan ACK to alinethat isbeing refilled before the last words of the SCacheline
are received by R10000, this means that several cycles can elapse during which SCache
access is blocked. By breaking the SCache refill transaction into 64-byte blocks, and
allowing other requests to proceed during breaks between the blocks, this effect could be
reduced. R12000 pullsin SCache lines with two “ pause points.” This first occurs when
R12000 receivesthe ACK for arequest. If thefirst two quad-words are aready valid in the
Incoming Buffer at that time, then R12000 will proceed to refill the SCache with those two,
and forward the results to the DCache or | Cache at the same time as normal. The next two
quad-words will be refilled as they return, thus continuing to block any other accessto the
SCachejust astoday. If however, whentheinitial ACK isreceived, thefirst two arenot valid
(i.e., either 0 or 1 quad-words are valid at that time) then R12000 will “pause” the SCache
refill and wait for both of them to be brought in to the IB. Once the first half isfilled into
the SCache, R12000 will again check the IB to seeif an additional 3 quad-words arevalid
(thus 7 out of the 8 quad-words in the SCache line should have arrived into the IB).

Until that isthe case, R12000 will again “ pause” the SCacherefill and allow other accesses
to reach the SCache. These two pauses allow for other requeststo slip in during an SCache
refill. Using only two pauses both simplifies the logic and reduces bus turnarounds.

DCachewritebacks never piggyback

In R10000 when aDCache lineiswritten back to SCache, thefollowing linein the DCache
might be written back in a*“piggybacked” manner. In order for this to occur the following
line must have the same tag as the initially-written line, and must be in the “ dirty
inconsistent” state. Thisfeature is being dropped form R12000.

DCachewritebacks never bypass

In R10000 when a DCache line is written back to SCache, if the SCache interface is not
otherwise occupied when the writeback begins, the writeback is bypassed directly to the
SCache interface, avoiding the cycles required to write the data into the writeback buffer.
Thisfeature is being dropped form R12000.
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4.4 CacheAlgorithms

The behavior of the processor when executing load and store instructionsis determined by
the cache algorithm specified for the accessed address. The processor supportsfivedifferent
cache algorithms:

* uncached
»  cacheable noncoherent
» cacheable coherent exclusive
»  cacheable coherent exclusive on write
* uncached accelerated
Cache agorithms are specified in three separate places, depending upon the access:

» the cache algorithm for the mapped address space is specified on a per-page
basis by the 3-bit cache algorithm field in the TLB

» the cache algorithm for the ksegO address space is specified by the 3-bit KO
field of the CPO Config register

» the cache algorithm for the xkphys address space is specified by VA[61:59]

Table 4-1 presents the encoding of the 3-bit cache algorithm field used in the TLB;
EntryLo0 and EntryLo1 registers; CPO Config register KO field for the ksegO address space;
and VA[61:59] for the xkphys address space.

Table4-1 Cache Algorithm Field Encodings

Value CacheAlgorithm
0 Reserved

Reserved

Uncached

Cacheable noncoherent

Cacheable coherent exclusive

Cacheable coherent exclusive on write

Reserved
Uncached accelerated

N[O~ WIN|
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Descriptions of the Cache Algorithms
This section describes the cache algorithms listed in Table 4-1.

Uncached
L oads and stores under the Uncached cache algorithm bypass the primary and secondary
caches. They areissued directly to the System interface using processor double/single/
partial-word read or write requests.

Cacheable Noncoherent

Under the Cacheable noncoherent cache algorithm, load and store secondary cache misses
result in processor noncoherent block read requests. External agents containing caches
need not perform a coherency check for such processor requests.

Cacheable Coherent Exclusive

Under the Cacheable coherent exclusive cache algorithm, load and store secondary cache
misses result in processor coherent block read exclusive requests. Such processor requests
indicate to external agents containing cachesthat acoherency check must be performed and
that the cache block must be returned in an Exclusive state.

Cacheable Coherent Exclusive on Write

The Cacheable coherent exclusive on write cache algorithm is similar to the Cacheable
coherent exclusive cache algorithm except that |oad secondary cache misses result in
processor coherent block read shared requests. Such processor requestsindicateto external
agents containing caches that a coherency check must be performed and that the cache
block may be returned in either a Shared or Exclusive state.

Store hitsto a Shared block result in aprocessor upgrade request. Thisindicatesto external
agents containing caches that the block must be invalidated.
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Uncached Accelerated

The R10000 processor implements a new cache algorithm, Uncached accelerated. This
allowsthe kernel to mark the TLB entriesfor certain regions of the physical address space,
or certain blocks of data, as uncached while signalling to the hardware that data movement
optimizations are permissible. This permits the hardware implementation to gather a
number of uncached writes together, either a series of writes to the same address or
sequential writesto all addressesin the block, into an uncached accel erated buffer and then
issue them to the system interface as processor block write requests. The uncached
accelerated algorithm differs from the uncached algorithm in that block write gathering is
not performed.

There is no difference between an uncached accelerated |oad and an uncached load. Only
word or doubleword stores can take advantage of this mode.

Stores under the Uncached accel erated cache al gorithm bypass the primary and secondary
caches. Storesto identical or sequential addresses are gathered in the uncached buffer,
described in Chapter 6, the section titled “ Uncached Buffer.”

Completely gathered uncached accelerated blocks are issued to the System interface as
processor block write requests. Incompletely gathered uncached accelerated blocks are
issued to the System interface using processor double/single-word write requests; thisis
also described in Chapter 6, the section titled “ Uncached Buffer.”
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4.5 Relationship Between Cached and Uncached Operations

Uncached and uncached accelerated |oad and store instructions are executed in order, and
non-speculatively. Such accesses are buffered in the uncached buffer by the processor until

they can be issued to the System interface.

All uncached and uncached accel erated accesses retain program order within the uncached

buffer. The processor continuesissuing cached accesses while uncached accesses are

gueued in the uncached buffer.

NOTE: Cached accesses do not probe the uncached buffer for conflicts.

Buffered uncached stores prevent a SY NC instruction from graduating. However buffered

uncached accelerated stores do not prevent a SY NC instruction from graduating. The

processor continuesissuing cached accesses specul atively and out of order beyond aSYNC

instruction that is waiting to graduate.

An uncached load may be used to guarantee that the uncached buffer is flushed of all

uncached and uncached accelerated accesses.

A SYNC instruction and the SysGblPerf* signal may be used to guarantee that all cache
accesses and uncached stores have been globally performed as described in Chapter 6, the

section titled “ SysGblPerf* Signal”

An uncached load followed by a SY NC instruction may be used to guarantee that all cache

accesses, uncached accesses, and uncached accel erated accesses have been globally

performed.
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4.6 CacheAlgorithmsand Processor Requests

The cache algorithm determines the type of processor request generated for secondary
cache load misses, secondary cache store misses, and store hits.
Table 4-2 presents the relationship between the cache algorithm and processor requests.

Table4-2 Cache Algorithms and Processor Requests

CacheAlgorithm

Load Miss

Store Miss

Store Hit

Uncached

Double/single/partial-word read

Double/single/partial-word
write

NA

exclusive on write

Coherent block read shared

Coherent block read exclusive

Cacheable noncoherent Noncoherent block read Noncoherent block read Upgrade if Shared*
gxa(jt?\t,)ée coherent Coherent block read exclusive | Coherent block read exclusive | Upgrade if Shared*
Cacheable coherent

Upgrade if Shared

Uncached accelerated

Double/single/partial-word read

Gather identical or sequential
double/single-word storesinthe
uncached buffer. Block write
for completely gathered blocks.
Double/single-word write for
incompletely gathered blocks.
Partial-word write for partial-
word stores.

NA

$ Should not occur under normal circumstances. Most systems return the Exclusive state for a cacheable noncoherent line; therefore, the Shared state is not

normal.
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4.7 Cache Block Ownership

The processor requires cache blocks to have asingle owner at all times. The owner is
responsible for providing the current contents of the cache block to any requestor.

The processor uses the following ownership rules:

e The processor assumes ownership of a cache block if the state of the cache
block becomes DirtyExclusive. For a processor block read request, the
processor assumes ownership of the block after receiving the last doubleword
of a DirtyExclusive external block data response and an external ACK
completion response. For a processor upgrade request, the processor assumes
ownership of the block after receiving an external ACK completion response.

* The processor gives up ownership of a cache block if the state of the cache
block changes to Invalid, CleanExclusive, or Shared.

e CleanExclusive and Shared cache blocks are always considered to be owned
by memory.
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Secondary Cache Interface

The processor supports a mandatory secondary cache by providing an internal secondary
cache controller with a dedicated secondary cache port.

The cache's tag and data arrays each consist of an external bank of industry-standard
synchronous SRAM (SSRAM). This SSRAM must have registered inputs and outpults,
asynchronous output enables, and use the late write protocol (datais expected one cycle
after the address).
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Chapter 5 Secondary Cache Interface

5.1 Tag and DataArrays

The secondary cache consists of a 138-bit wide data array (128 data bits + 9 ECC bits+ 1
parity bit) and a 33-bit wide tag array (26 tag bits + 7 ECC hits), as shown in Figure 5-1.
ECC is supported for both the data and tag arrays to improve data integrity.

Data
Array

Tag
Array

10 Check Bits 128 Data Bits
137 136 127 0
\ii ECC : .
7 Check bits 26 Tag Bits
—_—
32 25 0
ECC ;

Figure5-1 Secondary Cache Data and Tag Array

The secondary cache isimplemented as a two-way set associative, combined instruction/
data cache, which is physically addressed and physically tagged, asdescribed in Chapter 4,
the section titled “ Cache Organization and Coherency.”

The SCSize mode bits specify the secondary cache size; minimum secondary cachesizeis
512 Kbytes and the maximum secondary cache sizeis 16 Mbytes, in power of 2 (512
Kbytes, 1 Mbyte, 2 Mbytes, etc.).

The SCBIkSize mode bit specifies the secondary cache block size. When negated, the
block sizeis 16 words, and when asserted, the block size is 32 words.
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5.2 Secondary Cache Interface Frequencies

78

The secondary cache interface operates at the frequency of SCCIk, which is derived from
PClk. The SCCIkDiv modebitsselect aPClk to SCCIk divisor of 1, 1.5, 2, 2.5, or 3, using
the formula described in Chapter 7, the section titled “ Secondary Cache Clock.”

Synchronization between the PClk and SCCIk is performed internally and isinvisible to
the system. The processor supplies six complementary copies of the secondary cache clock
on SCCIk(5:0) and SCCIk(5:0)*.

Theoutputsandinputsat thisinterface aretriggered by aninternal SCCIk. Therelationship
between the internal SCClk and the external SCCIk[5:0]/SCCIK[5:0]* can be
programmed during boot time by setting the SCCIK T ap mode bits (see the section titled
“Mode Bits’ in Chapter 8 for detail on mode hits).
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5.3 Secondary Cache Indexing

Indexing the Data Array

The secondary cache data array width is one quadword, and therefore PA(3:0), which
specify abyte within a quadword, are unused by the Secondary Cache interface.

Since the maximum secondary cache size is 16 Mbytes (8 Mbytes per way), each way
requires a maximum of 23 bitsto index a byte within a selected way, or 19 bitsto index a
guadword within away. Consequently, the processor supplies PA(22:4) on
SC(A,B)Addr(18:0) to index aquadword within away. The processor selects a secondary
cache data way with the SC(A,B)DWay signal.

Table 5-1 presents the secondary cache data array index for each secondary cache size; for
instance, a4 Mbyte cache uses the 17 address bits, PA(20:4) on SC(A,B)Addr (16:0),
concatenated with the way bit, SC(A,B)DWay, to index a quadword within a2 Mbyte way.

Table5-1 Secondary Cache Data Array Index

z .
Sl\%Bt?téjsee g:: ?:adgrzi Secondary Cache Data Array I ndex Phygﬁzlégec:jrees
0 512 Kbyte SC(A,B)DWay || SC(A,B)Addr(13:0) PA(17:4)
1 1 Mbyte SC(A,B)DWay || SC(A,B)Addr(14:0) PA(18:4)
2 2 Mbyte SC(A,B)DWay || SC(A,B)Addr(15:0) PA(19:4)
3 4 Mbyte SC(A,B)DWay || SC(A,B)Addr(16:0) PA(20:4)
4 8 Mbyte SC(A,B)DWay || SC(A,B)Addr(17:0) PA(21:4)
5 16 Mbyte SC(A,B)DWay || SC(A,B)Addr(18:0) PA(22:4)
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Indexing the Tag Array
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The processor supplies the secondary cache tag array’s least significant index bit on
SCTagL SBAddr to support two block sizeswithout system hardware changes. Thissignal
functions normally as aleast significant index bit when the secondary cache block size is
16 words. However, when the secondary cache block sizeis 32 words, thissignal isaways
negated, since only half as many tags are required. The processor supplies the secondary
cache tag way on SCTWay.

Table 5-2 presents the secondary cache tag array index for each secondary cache size; it
shows each index is composed of a physical address loaded onto SC(A,B)Addr (),
concatenated with SCTWay and SCTagL SBAddr.

Table5-2 Secondary Cache Tag Array Index

SCSize Secondar

Mode Ty Secondary Cache TagArray Index
. Cache Size

Bits

0 512 Kbyte SCTWay || SC(A,B)Addr(13:3) || SCTagL SBAddr
1 1 Mbyte SCTWay || SC(A,B)Addr(14:3) || SCTagL SBAddr
2 2 Mbyte SCTWay || SC(A,B)Addr(15:3) || SCTagL SBAddr
3 4 Mbyte SCTWay || SC(A,B)Addr(16:3) || SCTagL SBAddr
4 8 Mbyte SCTWay || SC(A,B)Addr(17:3) || SCTagL SBAddr
5 16 Mbyte SCTWay || SC(A,B)Addr(18:3) || SCTagL SBAddr

For a system design that only supports a secondary cache block size of 32 words, the
secondary cache tag array need not use SCTagL SBAddr as an index bit.
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5.4 Secondary CacheWay Prediction Table

The primary and secondary caches are two-way set associative. However, the
implementation of the secondary cache is different than the primary caches.

The primary caches read simultaneously from two separate tag arrays, corresponding to
each way in the cache, and then select the data based on the result of two parallel tag
compares.

The secondary cache does not use this implementation because it would either require too
many pinsto read in two full copies of the data and tags, or add latency to externally
multiplex two banks of memory. Instead, away prediction tableisused to determinewhich
way to read from first.

Theway prediction tableisinternal to the processor and has 8K one-bit entries, each entry
corresponding to apair of secondary cache blocks. The bit entry indicates which way of the
addressed set has been most-recently used (MRU). When the secondary cache is accessed,
this prediction bit is used as an address bit; thus the two ways in the secondary cache are
shared in the same SSRAM bank.

The secondary cache way prediction table is indexed with a subset of 11 to 13 bits of the
physical address, based on both the secondary cache block size, and the secondary cache
size, asshown in Table 5-3. “0|” indicates a zero bit concatenated to the address to pad
theindex out to afull 13-bits.

Table5-3  Secondary Cache Way Prediction Table Index

SCSize Secondary Cache SCBIkSize Secondary Cache Secondary Cache
M ode Bits Size M ode Bit Block Size Way Prediction Table Index

0 16-word 0| PA(17:6)

0 512 Kbyte
1 32-word 0|0 PA(L7:7)
0 16-word PA(18:6)

1 1 Mbyte
1 32-word 0] PA(18:7)
0 16-word PA(18:6)

2to5 2M to 16 Mbyte

1 32-word PA(19:7)
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Three states are possible in the way prediction table:
e thedesired data is in the predicted way
e thedesired data is in the non-predicted way
» thedesired datais not in the secondary cache

The tags for both ways are read “underneath” the data access cyclesin order to discern as
rapidly as possible which of these states are valid. Thisreading is possible because it takes
two accesses to read a primary data block (8 words) and 4 cyclesto read a primary
instruction block (16 words); thus the bandwidth needed to read the tag array twice exists
inal cases. Only an extra address pin to the tag array is needed to make this operation
parallel and thisisimplemented by the SCTWay pin.

The three possible states are handled in the following manner:

» |f, after reading the tags for both ways, it is discovered that the data exists in
the predicted way, the processor continues normally.

» |If the data exists in the non-predicted way, the processor accesses this non-
predicted way in the secondary cache and updates the way prediction table to
point to this way.

» |If the access misses in both ways of the secondary cache, the data is fetched
from the system interface. If the state of the predicted way is found to be
invalid, the fetched datais placed in it and the MRU is unchanged. However, if
the state of the predicted way is found to be valid then the fetched datais placed
into the non-predicted way, and the way prediction table is updated to point to
thisway since it is now the most-recently-used.

The way prediction table can cover up to a2 Mbyte secondary cache when the secondary
cache block sizeis 32 words. If the secondary cache exceeds this size, the accuracy of the
way prediction table diminishes dlightly. However, the extremely large performance gain
made by making the secondary cache larger far outstrips any performance loss in the way
prediction table.

Increased the Way Prediction Table (MRU table) to 16K single-bit entries

The size of the table has been increased to 16K entries, so that 4MB cacheswith 128B lines
or 2MB caches with 64B lines can be fully mapped.

Direct Cache Test M ode

Due to the increase size of the Way Prediction Table, Direct Cache Test Mode have been
modified for testing the Way Prediction Table.
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5.5 Secondary Cache Tag

SCTag(25:4), Physical Tag

The secondary cache tag, transferred on the SCTag(25:0) bus, is divided into three fields,
as shown in Figure 5-2 below.

25 4 3210
Physical Tag Pldx | State I
22 2 2

Figure5-2 Secondary Cache Tag Fields

The minimum secondary cache sizeis 512 Kbytes (256 Kbytes per way), so aminimum of
18 bitsarerequired to index adata byte within aselected way. Sincethe processor supports
40 physical bits, a maximum of 22 bits are required for the physical tag:

40 physical address bits - 18 minimumrequired = 22

Consequently, the processor supplies the 22 physical address bits, PA(39:18), on
SCTag(25:4) for the physical tag.

When the secondary cacheislarger than the minimum size, the secondary cache tag array
must still maintain the full physical tag supplied by the processor, even though some bits
are redundant.
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SCTag(3:2), Pldx

Bits SCTag(3:2) of the secondary cache tag contain the primary cache index, Pldx.

The Pldx field contains VA (13:12), which are the two lowest virtual address bits above the
minimum 4 Kbyte page size. Thisfield iswritten into the secondary cache tag during a
secondary cacherefill. For each processor-initiated secondary cache access, the virtual
address bits are compared with the Pldx field of the secondary cache tag. If a mismatch
occurs, avirtua coherency condition exists and the value of the Pldx field is used by
internal control logic to purge primary cache locations, so that all primary cache blocks
holding valid data have indices known to the secondary cache. Thismechanism, unlikethat
of the R4400 processor, isimplemented in hardware. It helps preserve the integrity of
cached accessesto aphysical addressusing different virtual addresses, an occurrence called
virtual aliasing. For each external coherency request, the Pldx field of the secondary cache
tag provides a mechanism to locate subset lines in the primary caches.

SCTag(1:0), Cache Block State

The lower two bits of the secondary cache tag, SCTag(1:0), contain the cache block state,
which can be Invalid, Shared, CleanExclusive, or DirtyExclusive as shown in Table 5-4.

Table5-4 Secondary Cache Tag State Field Encoding

SCTag(1:0) State
0 Invalid
1 Shared
2 CleanExclusive
3 DirtyExclusive

Since the secondary cache tags are updated immediately for stores to the primary data
cache, and al caches use awrite back protocol, the data in the secondary cache may not
always be consistent with data in the primary cache even though the tags always reflect the
correct state of a secondary cache block.
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5.6 Read Sequences

There are five basic read sequences:

* a4-word read

e an 8-word read

* al6-word read

e a32-word read

e atagread
The SCCIk referred in the secondary cache read and write timing diagramsis an internal
SCCIk. Therelationship between thisinternal SCCIk and the external SCCIk[5:0]/

SCCIK[5:0]* can be programmed during boot time by setting the SCCIkTap mode bits
(see the section titled “Mode Bits’ in Chapter 8 for detail on mode bits).

User'sManual U10278EJ4VOUM 85



Chapter 5 Secondary Cache Interface

4-Word Read Sequence

A 4-word read sequenceis performed by a CACHE Index L oad Data (S) instruction to read
a doubleword of data and 10 check bits from the secondary cache data array.

Figure 5-3 depicts a secondary cache 4-word read sequence. A quadword is read from the
index specified by PA(23:6), and the way specified by VA(0) of the CACHE instruction.

The doubleword specified by VA(3) isthen stored into the CPO TagHi and TagLo registers,
and the corresponding check bits are stored into the CPO ECC(9:0) register. The data may
be examined by copying the CPO TagHi, TagLo, and ECC registersto the general registers
with the MTCO instruction.

Cycle
SCClk

SCTagLSBAddr |
SC[A,B]DWay :
SCData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

Figure5-3 4-Word Read Sequence
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8-Word Read Sequence

Cycle
SCClk

SC[A,B]Addr(18:0) |: . XAdro X Adri)
: : X . )

SCTagLSBAddr
SC[A,B]DWay
SCbData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

An 8-word read sequence refills the primary data cache from the secondary cache after a
primary data cache miss.

Figure 5-4 depicts a secondary cache 8-word read sequence. Init, SC(A,B)DWay and

SCTWay aredriven with value X on thefirst address cycle, which is obtained from the way
prediction table.

Onthenext address cycle, SCT Way is complemented in order to read the tag from the non-
predicted way of the addressed set. SC(A,B)DWay isnot changed sinceit isassumed that

the way prediction tableis correct and the read is likely to hit in the predicted way.

The tag for the non-predicted way is returned to the processor in the same cycle asthe

second quadword of data. Readsthat missin the predicted way, but hit in the non-predicted
way, are noted by the internal control logic and reissued to the secondary cache as soon as

possible.

10

11

12

13

14

15

16

17

—
G S G R R S R
— g
e G G s S s S s s
S S G0 (0 S A S S A S

e
e e S e e s s s s s S

Figure5-4 8-Word Read Sequence
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16 or 32-Word Read Sequence

A 16-word read sequence refills the primary instruction cache from the secondary cache
after a primary instruction cache miss. A 16-word read sequence is aso performed when
the secondary cache block size is 16 words, and a DirtyExclusive secondary cache block
must be written back to the System interface.

A 32-word read sequence is performed when the secondary cache block sizeis 32 words,
and a DirtyExclusive secondary cache block must be written back to the System interface.

Figure 5-5 depicts a secondary cache 16 or 32-word read sequence. Thisissimilar to an 8-
word read sequence except that more addresses must be issued, in order to read the
appropriate number of quadwords.

Cycle K
scclk |
SCIA,BJAdr(18:0) ||
SCTagLSBAddr |
SC[A,B]DWay
SCData(127:0)
SCbDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

112131 4:!5 16! 7:819 11011121314 15! 16| 17 |

et B T I S PR
x

Figure5-5 16 or 32-Word Read Sequence
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Chapter 5 Secondary Cache Interface

Tag Read Sequence

Cycle
SCClk

A tag read sequenceis performed when the state of asecondary cache block isrequired, but
it is not necessary to access the data array. This sequenceis used for the CACHE Index
Load Tag (S) instruction.

Figure 5-6 depicts a secondary cache tag read sequence.

SCIAB]Addr(18:0) | XAdOX T T T T T T T T T T
SCTagLSBAddr |+ W ¥ + —+ &+ &+ &+
SC[A,B]DWay | : : : : - - - - - - - - - - - - - -
scomaor) |
SCDataChk(9:0) |— &+t ————
S N T T N N N O T
SCIABIDWr* |7 T .
SC[A,B]DCS* | ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | |
sy I
SCTag(25:0) | —— —
SCTagChk(6:0) |
SCTOE* O S S S SN SN SN SN U S S SN S N SN S S
SCTWr* | : : : : : : : : : : : : : : : :
scTs: S TS S S S SN S S N S S S —

Figure5-6 Tag Read Sequence
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5.7 Write Sequences

90

There are five basic write sequences:

e ad-word write.

* an 8-word write

* al6-word write

e a32-word write

e atag write
The SCCIk referred in the secondary cache read and write timing diagramsis an internal
SCCIk. Therelationship between thisinternal SCCIk and the external SCCIk[5:0]/

SCCIK[5:0]* can be programmed during boot time by setting the SCCIkTap mode bits
(see the section titled “Mode Bits’ in Chapter 8 for detail on mode bits).
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4-Word Write Sequence

A 4-word write sequence is performed by a CACHE Index Store Data (S) instruction to
store a quadword of data and 10 check bits into the secondary cache data array.

Figure 5-7 depicts a secondary cache 4-word write sequence. A quadword iswritten to the
index specified by PA(23:6), and the way specified by VA(0) of the CACHE instruction.

A doubleword specified by VA(3) is obtained from the CPO TagHi and TagLo registers, and
the other half of the doubleword is padded to zeros. Normal ECC and parity generation is
bypassed and the check field of the data array is written with the contents of the CPO
ECC(9:0) register.

Cycle IE152535455565758595105115125135145155165175
scelk QU AV AWl AW AW AW AW AW AW AWAW AW AW W Wa W
SC[A,B]Addr(18:0) | XaAdox_
SCTagLsBAddr |+
sclABDWay || : 'x X b( N S S S S S S S S S S S S
SCData(127:0) |t >—<j DatO'/ : : : 5 5 5 i i : i i i i
scoatachk©:0) | D—C >—<C
SCIABIDOE* |\ /N o
scmepowre I\
SgRSSS 1 S S O O O O O O O B
SCTway [
scrgese |
SCTagChk(6:0) |+ —+ @ @&+
N O O B
sowe
S S S S S N N

Figure5-7 4-Word Write Sequence
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8-Word Write Sequence

An 8-word write sequence writes back a dirty block from the primary data cache to the
secondary cache.

Figure 5-8 depicts a secondary cache 8-word write sequence. SC(A,B)DWay are driven
with the way hit obtained from the primary data cache tag. The secondary cachetagis not
written since it was previously updated when the primary data cache block was modified.

Cycle 11231 4:5:6:7:8: 911011112113 14 15 16 : 17 |

SCClk FEANV AN SN AN SN AN AR A0 NV A UV A N AR N AR N A N A N A N AN AN
SC[A,B]Addr(18:0) |:

X Adro X Adr1 X

scragussader | o
SC[A,B]DWay 1
schata(l27:0) | >—Kpawmypaiy——< T
sepatachk(e:0) | D>—C C p— T e
SC[A,B]DOE* I ! ! : : : : ! ! ! ! ! ! ! ! ! ! !
swsiowre TN Ly
SC[A,B]DCS* HEE R T T T T T R R T T R R S R
SCTWay | S S S S S S S S S S S S S
serageesio) | T e
SCTagChk(6:0) | - - : : : : : : - - - - - -

SCTOE" N R e
scTwr T T S S B R S B T A R
scTest N S S S S S S N S S S S S S S S

Figure5-8 8-Word Write Sequence
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16 or 32-Word Write Sequence

A 16- or 32-word write sequence refills a secondary cache block from the System interface
after asecondary cache miss. A 16-word write sequenceis performed when the secondary
cache block sizeis 16 words, and a 32-word write sequence is performed when the
secondary cache block size is 32 words.

Figure 5-9 depicts a secondary cache 16 or 32-word write sequence.

Cycle |
scclk |
SC[A,B]Addr(18:0) |:
SCTagLSBAddr ||
SC[A,B]DWay
SCbData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SCI[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

Figure5-9 16/ 32-Word Write Sequence
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Tag Write Sequence

A tag write sequence updatesthe secondary cachetag array without affecting the dataarray.

This sequenceis used for the following:

to reflect primary cache state changes in the secondary cache

for external coherency requests

for the CACHE Index Store Tag (S) instruction

Figure 5-10 depicts the secondary cache tag write protocol.

Y O R R [ A Y N R A [ R R’ D74 N A
©
A
DG N (R ) R O DY D A - G VI VAR D NS
(=)
3 < H u
<
- N> G N (R [ A S EDDRY D A JEUS> G N N (S B NS R,
S
g s ~ g 9
g A N TR S /) o
= < o =
S o= =030 S
L0209 282 5485 ..,
ekBmB,mms,B,B,mmgwmm
= (o] T ©
dCMTMDDMMMTTTTTT
S0 0000000000 o000 o0 o0
O o6 O 6 Oh O h O d o h O O O

Figure5-10 Tag Write Sequence
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6.

System Interface Operations

The R10000 System interface provides a gateway between processor, with its associated
secondary cache, and the remainder of the computer system.

For convenience, any device communicating with the processor through the System
interface is referred to as the external agent.
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6.1 Request and Response Cycles

The System interface supports the following request and response cycles:

» Processor requests are generated by the processor, when it requires a system
resource.

» External responses are supplied by an external agent in response to a
processor request.

» External requests are generated by an external agent when it requires a
resource within the processor.

»  Processor responses are supplied by the processor in response to an external
request.

6.2 System Interface Frequencies

The System interface operates at SysClk frequency, supplied by the external agent. The
internal processor clock, PCIKk, is derived from this same SysCIk.

The SysClkDiv mode hits select a PClk to SysClk divisor using the formula described in
Chapter 7, the section titled “ System Interface Clock and Internal Processor Clock
Domains” The selectable divisorsare 1, 1.5, 2, 2.5, 3, 3.5, and 4 in the R10000, or 2, 2.5,
3,35,4,45,5,5.5, and 6 in the R12000 (7 is also selectable in the R12000A only).

6.3 Register-to-Register Operation
The System interface is designed to operate in the following register-to-register fashion
with the external agent:

« al System interface outputs are sourced directly from registers clocked on the
rising edge of SysClk

« al System interface inputs directly feed registers that are clocked on therising
edge of SysClk

This allows the System interface to run at the highest possible clock frequency.
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6.4 System Interface Signals

The R10000 System interface is composed of:
* 3arbitration signals
» 2 flow-control input signals
* abidirectional 12-bit command bus
* abidirectional 64-bit multiplexed address/data bus
e a3-bit state output bus
e ab-hit response input bus

6.5 Master and Slave States

At any time, the System interface is either in master or slave state.

In master state, the processor drives the bidirectional System interface signalsand is
permitted to issue processor requests to the external agent.

In slave state, the processor tristates the bidirectional System interface signals and accepts
external requests from the external agent.

6.6 Connecting to an External Agent

In auni- or multiprocessor system using dedicated external agents, the System interface
connects to a single external agent.

In amultiprocessor system using the cluster bus (see below), the system can connect up to
four R10000 processors to an external agent. This external agent is referred to as the
cluster coordinator.
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6.7 Cluster Bus

98

Processor Request

(Master)
R10000

System Interface

l

In amultiprocessor system using the cluster bus, the cluster coordinator performsthe
cluster bus arbitration and data flow management. The arbitration scheme assures that
either one of the processors or the cluster coordinator is master at any given time, whilethe
remaining devices are slave.

A processor request issued by the master processor is observed as an external request by all
dlave R10000 processors, as shown in Figure 6-1. Similarly, a processor coherency data
responseissued by amaster processor is observed as an external dataresponse by the slave
processors.

(Slave) (Slave) (Slave)
R10000 R10000 R10000
System Interface System Interface System Interface

External Request

Cluster Bus

v

A

A

Cluster
Coordinator

Figure6-1 Processor Request Master/Save Satus

In amultiprocessor system using the cluster bus, a mode bit specifies whether processor
coherent requests are to target the external agent only, or all processors and the external
agent. This allows systems with efficient snoopy, duplicate tag, or directory-based
coherency protocols to be created.
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6.8 System Interface Connections

Uniprocessor System

Mem, /0 <P

The major System interface connections required for various system configurations are

presented in this section.

Figure 6-2 shows the major System interface connections required for atypical
uniprocessor system.

SysReqg*
External sysent
Ag ent SysRel*

SysRdRdy*
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

Figure 6-2

SysReq* SCTWr*
SysGnt* SCTCS*
SysRel* SCTOE*
R10000
SCTag(25:0)
SysRdRdy* SCTagChk(6:0)
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

SCTWay
SCTagLSBAddr

SC(A,B)Addr(18:0)

SC(A,B)DWay

SCData(127:0)
SCDataChk(9:0)

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*
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Multiprocessor System Using Dedicated External Agents

Coherent Interconnect

v

Figure 6-3 shows the major System interface connections required for atypical
multiprocessor system using dedicated external agents.

SysReqg*
External Sysontt
Ag ent SysRel*

SysRdRdy*
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

SysReqg*
External Sysont
Ag ent SysRel*

SysRdRdy*
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

SysReq* SCTWr*
SysGnt* SCTCS*
SysRel* SCTOE*
R10000 SCTag(25:0)
SysRdRdy* SCTagChk(6:0)
SysWrRdy*
SCTWay
SCTagLSBAddr
SysCmd(11:0)
SysCmdPar
SysAD(63:0) SC(A,B)Addr(18:0)

SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

SC(A,B)DWay

SCData(127:0)
SCDataChk(9:0)

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

i SysReq* SCTWr*
SysGnt* SCTCS*
SysRel* SCTOE*

R10000 SCTag(25:0)

SysRdRdy* SCTagChk(6:0)
SysWrRdy*

SCTWay
SCTagLSBAddr

SysCmd(11:0)

SysCmdPar
SysAD(63:0) SC(A,B)Addr(18:0)

SC(A,B)DWay

SCData(127:0)
SCDataChk(9:0)

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SNVYSS
Bel

SINVHSS
ereqg

Wr*
CS:
OE %
_|
Data ):E &
<
(7]
Addr

Data

SINVHSS
ereq

Figure 6-3 System Interface Connections for Multiprocessor using Dedicated External Agents
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Multiprocessor System Using the Cluster Bus

Mem, I/O

Figure 6-4 System Interface Connections for Multiprocessor Using the Cluster Bus

SysRel*

SysRdRdy*
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysResp(4:0)
SysRespPar
SysRespVal*

SysReq0*
SysGnt0*

Cluster
Coordinator

SysState0(2:0)
SysStatePar0
SysStateVal0o*

SysReq1*
SysGntl*

SysState1(2:0)
SysStateParl
SysStateVall*

Cluster Bus

Yy

Yy

AAAAA
YYVYYY

SysADChk(7:0)

SysVal*

SysState(2:0)

SysStatePar

SysStateVal*

SysResp(4:0)

Yvy

SysRespPar

SysRespVal*

SysReq*

Yy

Yy

SysADChk(7:0)

AAAAA
YYVYYY

SysVal*

SysState(2:0)

SysStatePar

SysStateVal*

SysResp(4:0)

Yvy

SysRespPar

SysRespVal*

SysReq* SCTWr*
SysGnt* SCTCS*
SysRel* R]_OOOO SCTOE*
N SCTag(25:0)
SysRdRdy SCTagChk(6:0)
SysWrRdy*
SCTWay
SCTagLSBAddr
SysCmd(11:0)
SysCmdPar
SysAD(63:0) SC(A,B)Addr(18:0)

SC(A,B)DWay

SCData(127:0)
SCDataChk(9:0)

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCTWr*

SysGnt* SCTCS*
SysRel* SCTOE*
Rloooo SCTag(25:0)
SysRdRdy* SCTagChk(6:0)
SysWrRdy*
SCTWay
SCTagLSBAddr
SysCmd(11:0)
SysCmdPar
SysAD(63:0) SC(A,B)Addr(18:0)

SC(A,B)DWay

SCData(127:0)
SCDataChk(9:0)

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

Figure 6-4 presents the major System interface connections required for atypical
multiprocessor system using the cluster bus.

SINVYSS
Be|
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6.9 System Interface Requests and Responses

The System interface supports the following:
s processor request
» external response
» externa request
e processor response

The following sections describe these request and response types, and their operations.

Processor Requests

Processor requests are generated by the processor when it requires a system resource. The
following processor requests are supported:

» coherent block read shared request

»  coherent block read exclusive request

» noncoherent block read request

» double/single/partial-word read request

*  block write request

» double/single/partial-word write request

* upgrade request

» eliminate request
Processor write and eliminate requests do not require or expect a response by the external
agent. However, if an external agent detects an error in a processor write or eliminate
request, it may use an interrupt to signal the processor. It isnot possibleto generate precise

exceptions for processor write and eliminate requests for which an external agent detects
an error.

Processor read and upgrade requests require some type of response by the external agent.
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External Responses
External responses are supplied by an external agent or another processor in responseto a
processor request. The following external responses are supported:
» block data response
» double/single/partial-word data response
» completion response

External Requests

External requests are generated by an external agent when it requires aresource within the
processor. The following external requests are supported:

* intervention shared request

* intervention exclusive request

» alocate request number request

e invalidate request

e interrupt request

External intervention and invalidate regquests require some type of response by the
processor.

Processor Responses
Processor responses are supplied by the processor in response to an external request. The
following processor responses are supported:
e coherency state response
» coherency data response

Outstanding Requests and Request Numbers

The processor allows requests and corresponding responses to be split transactions, which
enables additional processor and external requests to be issued while waiting for a prior
response. The System interface supports a request number field to link requests with their
corresponding responses, so responses can be returned out of order.

The processor allows a maximum of eight outstanding requests on the System interface
through a 3-bit request number. These outstanding requests may be composed of any mix
of processor and external requests.

Anindividual processor (as opposed to the System interface, above) supports a maximum
of four outstanding processor requests at any given time.
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Request and Response Relationship

The relationship between processor and external requests, and their acceptable responses,
ispresented in Table 6-1. The datain thistable is given with respect to a single processor,
in either auni- or multiprocessor system (independent of cluster/non-cluster configuration).

Table6-1 Request and Response Relationship

Request

Acceptable Response Sequences

Processor block read request

External NACK or ERR completion response

0 or more external block data responses followed by afinal external block data
response with a coincidental or subsequent external ACK, NACK, or ERR
completion response

Processor double/single/partial-word
read request

External NACK or ERR completion response

0 or more external double/single/partial-word data responses followed by afinal
external double/single/partial-word data response with a coincidental or
subsequent external ACK, NACK, or ERR completion response

Processor block write request

None

Processor double/single/partial-word
write request

None

Processor upgrade request

External ACK, NACK, or ERR completion response

0 or more external block data responses followed by afinal external block data
response with a coincidental or subsequent external ACK, NACK, or ERR
completion response

Processor eliminate request

None

External intervention request

Processor coherency state response followed by processor coherency data
response (if DirtyExclusive) with a coincidental or subsequent external ACK,
NACK, or ERR completion respons;ei

External allocate request number request

External ACK, NACK, or ERR completion r&sponsei

External invalidate request

Processor coherency state response followed by external ACK, NACK, or ERR
completion response*

External interrupt request

None

t External completion responseis required to free the request number.
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6.10 System Interface Buffers

Cluster Request Buffer

Cached Request Buffer

The processor containsthe following five buffersto enhance the performance of the System
interface and to simplify the system design:

e cluster request buffer
» cached request buffer
* incoming buffer
*  outgoing buffer
» uncached buffer

These buffers are described in the following sections.

The System interface contains an 8-entry cluster request buffer. This buffer maintains the
status of the eight possibl e outstanding requests on the System interface. When the System
interface isin master state, and it issues the address cycle of processor read or upgrade
request, the processor places an entry into the cluster request buffer. When the System
interfaceisin dlave state, and an external agent issues an external coherency or alocate
request number request, it places an entry into the cluster request buffer.

Once an entry is placed into the cluster request buffer, the associated request number
transitionsfrom freeto busy. An entry remainsbusy until the processor receives an external
completion response. Processor requeststhat are ready to beissued to the System interface
bus praobe the cluster request buffer to detect conflict conditions.

The System interface contains a four-entry cached request buffer. This buffer holds the
statusof thefour possible outstanding processor cached requests, including processor block
read and upgrade requests. The relative order of the requestsis maintained in the cached
request buffer.

External coherency requests probe the cached request buffer to detect conflict conditions.
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I ncoming Buffer

106

The System interface contains an incoming buffer for external block and double/single/
partial-word dataresponses. The four 32-word entries of theincoming buffer correspond to
the four possible outstanding processor requests. Block datain each entry of theincoming
buffer is stored in subblock order, beginning with a quadword-aligned address.

Theincoming buffer eliminatesthe need for the processor to flow-control the external agent
that isproviding the external dataresponses. Regardless of the cache bandwidth or internal
resource availability, the external agent may supply external data response data for all
outstanding read and upgrade requests at the maximum System interface data rate.

The external agent may issue any number of external dataresponsesfor aparticular request
number before issuing a corresponding external completion response. An external data
response remains in the incoming buffer until a corresponding external completion
responseisreceived. A former buffered external data response for a particular request
number is over-written by asubsequent external dataresponse for the same request number.

Anexternal ACK completion responsefrees buffered datato be forwarded to the cachesand
other internal resources while an external NACK or ERR completion response purges any
corresponding buffered data. For minimum latency, the external agent should issue an
external ACK completion response coincident with thefirst doubleword of an external data
response.

External coherency requests that target blocks residing in the incoming buffer are stalled
until the incoming buffer datais forwarded to the secondary cache, and the instruction that
caused the secondary missis satisfied.

Each doubleword of theincoming buffer hasan Uncorrectable Error flag. When an external
data response provides a doubleword, the processor asserts the corresponding incoming
buffer Uncorrectable Error flag if the data quality indicator, SysCmd[5], is asserted, or if
an uncorrectable ECC error is encountered on the system address/data bus and the ECC
check indication on SysCmd[Q] is asserted.

When the processor forwards block data from an incoming buffer entry after receiving an
external ACK compl etion response, the associated incoming buffer Uncorrectable Error
flags are checked, and if any are asserted, a single Cache Error exception is posted. When
the processor forwards doubl e/single/partial-word data from an incoming buffer entry after
receiving an external ACK completion response, the associated incoming buffer
Uncorrectable Error flag is checked, and if asserted, a Bus Error exception is posted.
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Outgoing Buffer

The System interface contains a five-entry outgoing buffer to provide buffering for the
following:

» DirtyExclusive blocks that are cast out of the secondary cache because of a
block replacement

e various CACHE instructions

* an externa intervention request.

Four 32-word typical entries are associated with the four possible outstanding processor
cached requests allowed by the processor. One 32-word special entry is reserved for
external intervention requestsonly. The dataiis stored in each entry of the outgoing buffer
in sequential order, beginning with a secondary cache block-aligned address.

An instruction or data access that misses in the secondary cache but targets an entry in the
outgoing buffer is stalled until the outgoing buffer entry isissued asaprocessor block write
request or coherency data response to the System interface bus.

External coherency requests probe the four typical outgoing buffer entries, with the
following results:

» |If an external intervention request hits a typical entry, that entry is converted
from a processor block write request to a processor coherency data response.

» |f an external invalidate request hits atypical outgoing buffer entry, that entry
is deleted.

» |f an external intervention request does not hit a typical outgoing buffer entry,
but hits a DirtyExclusive block in the secondary cache, the special outgoing
buffer entry is used to buffer the processor coherency data response.

A typical outgoing buffer entry containing a block writeis ready for issue to the System
interface buswhen thefirst quadword isreceived from the secondary cache. The processor
allows data to stream from the secondary cache to the System interface bus through the
outgoing buffer.

An outgoing buffer entry containing a coherency data responseis ready for issue to the
System interface bus when the quadword specified by the corresponding external
intervention request is received from the secondary cache. The processor then allows the
data to stream from the secondary cache to the System interface bus through the outgoing
buffer.
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Uncached Buffer

108

Each quadword of the outgoing buffer maintains an Uncorrectable Error flag. If an
uncorrectable error is encountered while a block is being cast out of the secondary cache,
the associated outgoing buffer quadword Uncorrectable Error flag is asserted. When the
processor empties an outgoing buffer entry by issuing aprocessor block write or coherency
data response, the outgoing buffer Uncorrectable Error flags are reflected by the data
quality indication on SysCmd[5].

The System interface contains an uncached buffer to provide buffering for uncached and
uncached accel erated | oad and store operations. All operationsretain program order within
the uncached buffer.

The uncached buffer is organized as a 4-entry FIFO followed by a 2-entry gatherer. Each
gathered entry has a capacity of 16 or 32 words, as specified by the SCBIk Size mode bit.

The uncached buffer begins gathering when an uncached accel erated double or singleword
block-aligned storeisexecuted. Gathering continuesif the subsequent uncached operation
executed is an uncached accel erated double or singleword store to a sequential or identical
address. Once a second uncached accelerated store is gathered, the gathering mode is
determined to be sequentia or identical. Gathering continues until one of the following
conditions occurs:

e acomplete block is gathered

» an uncached or uncached accelerated load is executed

» an uncached or uncached accelerated partial-word store is executed
* an uncached store is executed

e achange in the current gathering mode is observed

e achangein the uncached attribute is observed

When gathering terminates, the datais ready for issue to the System interface bus. A
processor uncached accelerated block write request is used to issue a completely gathered
uncached accelerated block. One or more disjoint processor uncached accelerated double
or singleword write requests are used to issue an incompl etely gathered uncached
accelerated block.

When gathering in an identical mode, uncached accelerated double or singleword stores
may be freely mixed. The uncached buffer packs the associated datainto the gatherer.
When gathering in sequential mode, uncached accel erated singleword stores must occur in
pairs, to prevent an address error exception. For instance, SW, SW, SD, SW, SW islegal.
SD, SW, SD, isnot.

External coherency requests have no effect on the uncached buffer.

CACHE instructions have no effect on the uncached buffer. SYNC instructions are
prevented from graduating if an uncached store resides in the uncached buffer.
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6.11 System Interface Flow Control

The System interface supports a maximum request rate of one request per SysClk cycle,
and a maximum data rate of one doubleword per SysClk cycle.

Various flow control mechanisms are provided to limit these rates, as described below.

Processor Write and Eliminate Request Flow Control

The processor can only issue a processor write or eliminate request if:
* the System interface is in master state
*  SysWrRdy* was asserted two SysClk cycles previously

Processor Read and Upgrade Request Flow Control

The processor can only issue a processor read or upgrade request if:
* the System interface is in master state
»  SysRdRdy* was asserted two SysClk cycles previously

e the maximum number of outstanding processor requests specified by the
PrcReqM ax mode bits is not exceeded

e thereis afree request number

Processor Coherency Data Response Flow Control

The processor can only issue a processor coherency data response if:
» the System interface is in master state
e SysWrRdy* was asserted two SysClk cycles previously

External Request Flow Control

When the System interfaceisin Save state, it is capable of accepting external requests. An
external agent may issue external requestsin adjacent SysClk cycles.

External Data Response Flow Control

Since the processor has an incoming buffer, an external agent may supply external data
response data in adjacent SysClk cycles, without regard to cache bandwidth or internal
resource availability.
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6.12 System Interface Block Data Ordering

During block data transfers on the System interface SysAD[63:0] bus, even doublewords
(Dat0, Dat2,...) always correspond to SCData[127:64], and odd doublewords (Dat1,
Dat3,...) always correspond to SCData[63:0].

External Block Data Responses

During the address cycle of processor block read and upgrade requests, the processor
specifies a quadword-aligned address. The processor expects the externa block data
response to be supplied in asubblock order sequence, beginning at the specified quadword-
aligned address.

Processor Coherency Data Responses

The address of external intervention requests are internally aligned by the processor to a
guadword address. If the processor determinesthat it must issueaprocessor coherency data
response, it supplies the datain a subblock order sequence beginning at the quadword-
aligned address specified by the corresponding external coherency request.

Processor Block Write Requests

110

During the address cycle of processor block write requests, the processor specifies a cache
block-aligned address. During the subsequent data cyclesfor typical processor block write
requests, the processor supplies the data in sequence, beginning with the secondary cache
block-aligned address.
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6.13 System Interface Bus Encoding

This section presents the encoding of the following four System interface buses:
e SysCmd[11:Q]

» SysAD[63:0]
e SysState[2:0]
*  SysResp[4:0]

SysCmd[11:0] Encoding
This section describes address and data cycle encodings for the system command bus,
SysCmd[11:0].
SysCmd[11] Encoding

When SysVal* isasserted, SysCmd[11] indicateswhether the SysAD[63:0] busrepresents
an address or a data cycle, as shown in Table 6-2.

Table6-2 Encoding of SysCmd[11]

SysCmd[11] Data/Address Cycle Indication
0 SysAD[63:0] address cycle
1 SysAD[63:0] datacycle

SysCmd[10:0] Address Cycle Encoding

During the address cycle of processor read and upgrade requests, SysCmd[10:8] contain
the request number, as shown in Table 6-3. The request number provides a mechanism to
associate an external response with the corresponding processor request.

Table 6-3 Encoding of SysCmd[10:8] for Processor Read and Upgrade Requests

| syscmd[10:8] | Request Number |
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During the address cycle of processor requests, SysCmd[7:5] contain the command, as
shown in Table 6-4.

Table 6-4 Encoding of SysCmd[7:5] for Processor Requests

SysCmd[7:5] Command

0 Coherent block read shared
Coherent block read exclusive
Noncoherent block read
Double/single/partial-word read
Block write

Double/single/partial-word write
Upgrade
Specia

N[O~ W|IN|

During the address cycle of processor read requests, SysCmd[4: 3] contain the read cause
indication, as shown in Table 6-5. Thisinformation is useful in handling the associated
external response.

Table6-5 Encoding of SysCmd[4:3] for Processor Read Requests

SysCmd[4:3] Read Cause Indication
0 Instruction access
1 Data typical access
2 DataLL/LLD access
3 Data prefetch access

During the address cycle of processor write requests, SysCmd[4: 3] contain the write cause
indication, as shown in Table 6-6. Thisinformation is useful in handling the associated
write data.

Table6-6 Encoding of SysCmd[4:3] for Processor Write Requests

SysCmd[4:3] Write Cause Indication
0 Reserved
1 Datatypical access
2 Data uncached accel erated sequential access
3 Data uncached accel erated identical access
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During the address cycle of processor upgrade requests, SysCmd|[4: 3] contain the upgrade
causeindication, as shown in Table 6-7. Thisinformation useful in handling the associated
external response.

Table6-7 Encoding of SysCmd[4:3] for Processor Upgrade Requests

SysCmd[4:3] Upgrade Cause I ndication
0 Reserved
1 Data typical access
2 Data SC/SCD access
3 Data prefetch access

During the address cycle of processor special requests, SysCmd[4: 3] contain the processor
special cause indication, as shown in Table 6-8. Thisinformation differentiates between
the various processor special requests.

Table6-8 Encoding of SysCmd][4:3] for Processor Special Requests

SysCmd[4:3] Special Cause I ndication
0 Reserved
1 Eliminate
2 Reserved
3 Reserved

During the address cycle of processor block read, typical block write, upgrade, and
eliminate requests, SysCmd|[2:1] contain the secondary cache block former state, as shown
in Table 6-9. Thisinformation may be useful for system designsimplementing a duplicate
tag or adirectory-based coherency protocol.

Table 6-9 Encoding of SysCmd[2:1] for Processor Block Read/\Write,
Upgrade, Eliminate Requests

SysCmd[2:1] Secondary Cache Block Former State
0 Invalid
1 Shared
2 CleanExclusive
3 DirtyExclusive
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During the address cycle of processor double/single/partial-word read and write requests,
SysCmd[2:0] contain the data size indication, as shown in Table 6-10.

Table 6-10 Encoding of SysCmd[2:0] for Processor Double/Single/Partial-Word Read/
Write Requests

SysCmd[2:0] Data Size Indication
0 One byte valid (Byte)

Two bytes valid (Halfword)

Three bytesvalid (Tribyte)

Four bytes valid (Word)

Five bytes valid (Quintibyte)

Six bytesvalid (Sextibyte)

Seven bytes valid (Septibyte)

Eight bytes valid (Doubleword)

N[O~ W|IN| PP

During the address cycle of external intervention and invalidate requests, SysCmd[10: 8]
contain the request number, as shown in Table 6-11. The request number provides a
mechanism to associate a potential processor coherency data response with the
corresponding external coherency request.

Table 6-11 Encoding of SysCmd[10:8] for External Intervention
and Invalidate Requests

| syscmd[10:8] | Request Number |

During the address cycle of external requests, SysCmd][7:5] contain the command, as
shown in Table 6-12.

Table 6-12 Encoding of SysCmd[7:5] for External Requests

SysCmd[7:5] Command
0 Intervention shared

Intervention exclusive

Allocate request number

Allocate request number
NOP

NOP

Invalidate

Specia

N[O~ W|IN| P
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During the address cycle of external special requests, SysCmd][4: 3] contain the external
special cause indication, as shown in Table 6-13. Thisinformation is used to differentiate
between the various external special regquests.

Table6-13 Encoding of SysCmd[4:3] for External Special Requests

SysCmd[4:3] Special Cause Indication
0 Reserved
1 NOP
2 Interrupt
3 Reserved

During external address cycles, SysCmd[0] specifies whether ECC checking and
correcting isto be performed for the SysAD[63:0] bus, as shown in Table 6-14. During the
address cycle of processor block read, data typical block write, upgrade, and eliminate
requests, the processor asserts SysCmd[0]. Consequently, in a multiprocessor system
using the cluster bus, ECC checking and correcting is enabled for external coherency
requests resulting from processor coherent block read and upgrade requests.

Table 6-14 Encoding of SysCmd[0] for External Address Cycles

SysCmd|[Q] ECC check indication
0 ECC checking and correcting disable
1 ECC checking and correcting enable

SysCmd[10:0] Data Cycle Encoding

During the data cycles of an external dataresponse or a processor coherency dataresponse,
SysCmd[10:8] contain the request number associated with the original request, as shown
in Table 6-15.

Table6-15 Encoding of SysCmd[10:8] for Data Responses

| SysCmd[10:8] | Request Number |

During data cycles, SysCmd[5] indicates the data quality, as shown in Table 6-16.

Table 6-16 Encoding of SysCmd[5] for Data Cycles

SysCmd[5] Data quality indication
0 Datais good
1 Dataisbad
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During datacycles, SysCmd[4: 3] indicate the datatype, asshownin Table 6-17. Processor
block write and double/single/partial -word write requests use request data and request last
datatypeindications. External data and processor coherency data responses use response
data and response last data type indications.

Table 6-17 Encoding of SysCmd[4:3] for Data Cycles

SysCmd[4:3] Data type Indication
0 Request data
1 Response data
2 Request |ast
3 Response last

During datacyclesof an external block dataresponse or processor coherency dataresponse,
SysCmd[2:1] contain the state of the cache block, as shown in Table 6-18.

Table6-18 Encoding of SysCmd[2:1] for Block Data Responses

SysCmd[2:1] Cache Block State
0 Reserved
1 Shared
2 CleanExclusive
3 DirtyExclusive

During data cycles, SysCmd[0] specifies whether ECC checking and correcting isto be
performed for the SysAD[63: 0] bus, as shown in Table 6-19. During processor datacycles,
the processor asserts SysCmd[0]. Consequently, in a multiprocessor system using the
cluster bus, ECC checking and correcting will be enabled for external block dataresponses
resulting from processor coherency data responses.

Table 6-19 Encoding of SysCmd[0] for External Data Cycles

SysCmd|[Q] ECC check indication
0 ECC checking and correcting disable
1 ECC checking and correcting enable
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SysCmd[11:0] Map
Table 6-20 presents a map for the SysCmd[11:0] bus.

Table6-20 SysCmd[11:0] Map

Command
Type 1109 |8[7]6] 5 4 | 3 ]2]1]o0
Coherent block read shared 0 0 0
Coherent block read exclusive 0 0 1 Block state 1
Request number Read cause
Noncoherent block read 0 1 0
Double/single/partial-word read 0 1 1 Datasize
Block write 1 0 0 Block state 1
Processor - - - 0 Write cause - |
address Double/single/partial-word write 0 1 0 1 Datasize
cycles Upgrade Request number 1 1 0 Upgrade cause | Block state | 1
Reserved Reserved 0 0 Reserved
| Bliminate 0 0 1 | Blokstate | 1
Specia 1 1 1 I 0
Reserved Reserved 1 1 Reserved
Double/single/partial-word write 0 0 0
Processor -
Block write 1 Datat 1
data cycles Data P Block state
Coherency data response Request number quality
Intervention shared 0 0 0
- - ECC
Intervention exclusive 0 0 1
Request number
0 1 0
Allocate request number
0 1 1 X
X
address 0 1 0 1
cycles Invalidate Requestnumber | 1 | 1 0 ECC
0 0
NOP X
0 1
Specia X 1 1 1 X
Interrupt 1 0 ECC
NOP 1 1 X
Block data response Block state
Externdl - : 1 | Request number Data Datat ECC
datacycles Double/single/partial-word data equest num quality atype X
response
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SysAD[63:0] Encoding
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This section describes the system address/data bus encoding.

SysAD[63:0] Address Cycle Encoding

SysAD[63:60]

Table 6-21 presents the encoding of the SysAD[63:0] bus for address cycles.

Table 6-21 Encoding of SysAD[63:0] for Address Cycles

SysAD[63:60] Target Indication
SysAD[63] Target processor with DevNum = 3
SysAD[62] Target processor with DevNum = 2
SysAD[61] Target processor with DevNum =1

SysADI[60] Target processor with DevNum =0

SysAD[59:58] Uncached attribute

SysAD[57] Secondary cache block way indication

SysAD[56:40] Reserved

SysAD[39:0] | Physical address

During the address cycle of processor noncoherent block read, double/single/partial-word
read, block write, double/single/partial-word write, and eliminate requests, the processor
always drives atarget indication of 0 on SysAD[63:60]. Thisindicates that the request
targets the external agent only. When the CohPrcRegTar mode bit is negated, during the
address cycle of processor coherent block read and upgrade requests, the processor also
drivesatarget indication of 0 on SysAD[63:60]. However, when the CohPrcReqTar mode
bit is asserted, during the address cycle of processor coherent block read and upgrade
requests, the processor drives atarget indication of OxF on SysAD[63:60]. This indicates
that the request targets all processors, together with the external agent, on the cluster bus.
In multiprocessor systems using the cluster bus, the CohPrcRegTar mode bit is asserted
for a snoopy-based coherency protocol, and negated for a duplicate tag or directory-based
coherency protocol.

When the processor isin slave state, an external agent uses the target indication field to
specify which processors are targets of an external request.

SysAD[59:58] Uncached Attribute

During the address cycle of processor double/single/partial-word read and write requests
and during the address cycle of processor Uncached accelerated block write requests, the
processor drivesthe uncached attribute onto SysAD[59:58]. Seethe section titled, Support
for Uncached Attribute, in this chapter for more information.
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SysAD[57]

During the address cycle of processor block read, typical block write, upgrade, and

eliminate requests, SysAD[57] contains the secondary cache block way indication. This
information may be useful for system designs implementing a duplicate tag or a directory-
based coherency protocol.

SysAD[56:40]

When processor isin master state, it drives SysAD[56:40] to zero during address cycles.

SysAD[39:0]

During the address cycle of processor and external requests, SysAD[39:0] contain the

physical address.

Table 6-22 presents the processor request address cycle address alignment.

Table 6-22 Processor Request Address Cycle Alignment

Processor Request Type AddressAlignment Adpfjrr:;?\ll;vt\ghc'fh
Block read Quadword 3.0
Doubleword read/write Doubleword 2:0
Singleword read/write Singleword 1.0
Halfword read/write Halfword 0
Bytg, tribyte, qui pti byte, sextibyte, Byte i
septibyte read/write
Block write Secondary cache block 28 Egg: Egzg z %
Upgrade Quadword 3.0
Eliminate Secondary cache block 28 Eig: ::gig i %

Table 6-23 presents the external coherency request address cycle address alignment.

Table 6-23 External Coherency Request Address Cycle Alignment

External Request Type

AddressAlignment

Address BitsWhich
Arelgnored

Intervention

Quadword

3.0

Invalidate

Secondary cache block

5:0 (SCBIkSize=0)
6:0 (SCBIkSize=1)
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SysAD[63:0] Data Cycle Encoding

SysState[2:0] Encoding

120

During System interface data cycles, when less than a doubleword is transferred on the
SysAD[63:0] bus, the valid byte lanes depend on the request address and the M emEnd
mode bit.

For example, consider the data cyclefor abyte request whose address modulo 8 is 1. When
MemEnd isnegated (little endian), the SysAD[15:8] bytelaneisvalid. When MemEnd is
asserted (big endian), the SysAD[55:48] byte laneisvalid.

The processor provides a processor coherency state response by driving the targeted
secondary cache block tag quality indication on SysState] 2], driving thetargeted secondary
cache block former state on SysState][1:0] and asserting SysStateVal* for one SysClk
cycle. Table 6-24 presents the encoding of the SysState[2: 0] bus when SysStateVal* is
asserted.

Table 6-24 Encoding of SysState[2:0] when SysStateVal* Asserted

SysState[ 2] Secondary cache block tag quality indication

0 Tag is good
1 Tagisbad

SysState[1:0] Secondary cache block former state
0 Invalid
1 Shared
2 CleanExclusive
3 DirtyExclusive

When SysStateVal* is negated, SysState[0] indicatesif a processor coherency data
responseisready for issue. Table 6-25 presentsthe encoding of the SysState[2: 0] buswhen
SysStateVal* is negated.

Table 6-25 Encoding of SysState[2:0] When SysStateVal* Negated

SysState[2: 1] Reserved

0 Reserved

1

2

3

SysState[0] Processor coherency data response indication

0 Not ready for issue
1 Ready for issue
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SysResp[4:0] Encoding

6.14 Interrupts

Hardware Interrupts

An external agent issues an external completion response by driving the request number
associated with the corresponding request on SysResp[4: 2], driving the completion
indication on SysResp[1:0], and asserting SysRespVal* for one SysClk cycle. Table 6-26
presents the encoding of the SysResp[4:0] bus.

Table 6-26 Encoding of SysResp[4:0]

SysResp[4:2] Request number
SysResp[1:0] Completion indication
0 Acknowledge (ACK)
1 Error (ERR)
2 Negative acknowledge (NACK)
3 Reserved

The processor supports five hardware, two software, one timer, and one nonmaskable
interrupt. The Interrupt exception is described in Chapter 15, the section titled * Interrupt
Exception.”

Five hardware interrupts are accessible to an external agent via external interrupt requests.

An external interrupt request consists of a single address cycle on the System interface.
During the address cycle, SysAD[63:60] specify the target indication, which allows an
external agent to define thetarget processors of the external interrupt request. 1f aprocessor
determinesit isan external interrupt request target, SysAD[20: 16] are the write enablesfor
the fiveindividual Interrupt register bits and SysAD[4:0] are the values to be written into
these bits, as shown in Figure 6-5. This allows any subset of the Interrupt register bits to
be set or cleared with asingle external interrupt request.

The Interrupt register is an architecturally transparent, level-sensitive register that is
directly readable as bits 14:10 of the Cause register. Sinceit is level-sensitive, an interrupt
bit must remain asserted until theinterrupt istaken, at which timetheinterrupt handler must
cause a second external interrupt request to clear the bit.

The processor clears the Interrupt register during any of the reset sequences.

User'sManual U10278EJ4VOUM 121



Chapter 6 System Interface Operations

Software Interrupts

Timer Interrupt

Nonmaskable I nterrupt
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SysAD(4:0)
Interrupt Value

4 3 2 1

20 19 | 18 | 17

SysAD(20:16)
Write Enables

it

16

8 | IP[O]

9 [ P[]
10 [ P12
11 [ 3]
12 | P14
13 [ P[5
14 M IP[6]

15 l IP[7]

Interrupt register
Cause(15:08)

Figure 6-5 Hardware Interrupts

The two software interrupts are accessible as bits 9:8 of the Cause register, as shown in

Figure 6-5. An MTCO instruction is used to write these bits.

The timer interrupt is accessible as bit 15 of the Cause register, | P[7], as shown in Figure

6-5. Thisbit is set when one of the following occurs:

» the Count register is equal to the Compare register

Software
Interrupts

Hardware
Interrupts

Timer
Interrupt

e either one of the two performance counters over flows

A nonmaskable interrupt is accessible to an external agent asthe SysNM I* signal. To post
anonmaskable interrupt, an external agent asserts SysNM | * for at least one SysClk cycle.

The processor recoghizes the nonmaskable interrupt on the first SysClk cycle that
SysNM | * is asserted. After the nonmaskable interrupt is serviced, an external agent may
post another nonmaskable interrupt by first negating SysNM I * for at least one SysClk

cycle, and reasserting SysNM I * for at least one SysClk cycle.
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6.15 Protocol Abbreviations

The following abbreviations are used in the System interface protocols:
SysCmd[11:0] Abbreviations

Cmd
BIkRd
Rdshd
RdExc
DSPRd
BIkWr
DSPWr
Ugd
Elm
IvnShd
IvhExc
Alc

Ivd

Int
ExtCoh
RegDat
RspDat
RegL st
RspL st
Empty

Unspecified command

Block read request command

Coherent block read shared request command
Coherent block read exclusive request command
Double/single/partial-word read command
Block write request command
Double/single/partial-word write request command
Upgrade request command

Eliminate request command

Intervention shared request command
Intervention exclusive request command
Allocate request number command

Invalidate request command

Interrupt request command

External coherency request command

Request data

Response data

Request last

Response last

Empty; SysCmd(11:0) and SysAD(63:0) are undefined

SysAD[63:0] Abbreviations

Adr
Dat
Dat<n>

Physical address
Unspecified data
Doubleword n of a block

SysState]2:0] Abbreviations

State
Ivd
Shd
CInExc
DrtExc

Unspecified state
Invalid

Shared
CleanExclusive
DirtyExclusive
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SysResp[4:0] Abbreviations

Rsp Unspecified completion response
ACK Acknowledge completion response
ERR Error completion response

NACK Negative acknowledge completion response
Master Abbreviations

EA External agent
Pn R10000 processor whose device number is n
- Dead cycle

6.16 System InterfaceArbitration

124

The processor supports a simple System interface arbitration protocol, which relies on an
external arbiter. This protocol isused in uniprocessor systems, multiprocessor systems
using dedicated external agents, and multiprocessor systems using the cluster bus. System
interface arbitration is handled by the SysReqg*, SysGnt*, and SysRel* signals (request,
grant, and release).

As described earlier in this chapter, the System interface resides in either master or slave
state; the processor enters slave state during all of the reset sequences.

When mastership of the System interface changes, there is always one dead SysClk cycle
during which the bidirectional signalsare not driven; the processor ignoresall bidirectional
signals during this dead SysClk cycle.

The protocol supports overlapped arbitration which allows arbitration to occur in parallel
with requests and responses. Thisresultsin fewer wasted cycles when mastership of the
System interface changes.

Grant parking is also supported, allowing a device to retain mastership of the System
interface as long as no other device requests the System interface.

In multiprocessor systems using the cluster bus, the external arbiter typically implementsa
round-robin priority scheme.
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System Interface Arbitration Rules

The rules for the System interface arbitration are listed below:

If the System interface is in slave state, and a processor request or coherency
data response is ready for issue, and the required resources are available (e.g.
a free request number, SysRdRdy* asserted, etc.), the processor asserts
SysReqg*. The processor will not assert SysReg* unless al of the above
conditions are met.

The processor waits for the assertion of SysGnt*.

When the processor observes the assertion of SysGnt* it negates SysReq*
two SysClk cycles later. Once the processor asserts SysReq*, it does not
negate SysReq* until the assertion of SysGnt*, even if the need for the
System interface bus is contravened by an external coherency request.

When the processor observes the assertion of SysRel*, it enters master state
two SysClk cycles later, and begins to drive the System interface bus.
SysRel* may be asserted coincidentally with or later than SysGnt*.

Once in master state, the processor does not relinquish mastership of the
System interface until it observes the negation of SysGnt*.

The processor indicates it is relinquishing mastership of the System interface
bus by asserting SysRel* for one SysClk cycle, two or more SysClk cycles
after the negation of SysGnt*. The processor may issue any type of processor
reguest or coherency data response in the two SysClk cycles following the
negation of SysGnt*. This may delay the assertion of SysRel*.
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Uniprocessor System
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Cycle

SysClk
Master
SysReq*
SysGnt*
SysRel*
SysCmd(11:0)
SysVal*

Figure 6-6 shows how the System interface arbitration signals are used in a uniprocessor
system. Note that this same configuration would be used in a multiprocessor system using
dedicated external agents.

SysReqg*
R10000 SysGnt*
SysRel*

»| SysReq*
SysGnt*
SysRel*

External
Agent

A

Figure 6-6 Arbitration Sgnalsfor Uniprocessor System

Figure 6-7 is an example of the operation of the System interface arbitration in a
uniprocessor system. The Master row in the following figures indicates which device is
driving the System interface bidirectional signals (P, and EA in

Figure 6-7). When this row contains adash (-), as shown in Cycle 12 of Figure 6-7,
mastership of the Systeminterfaceis changing and no deviceisdriving the Systeminterface
bidirectional signals for this one dead SysClk cycle.

The external agent generally asserts the SysGnt* signal, which allows the processor to
issue requests at any time.

When the external agent needs to return an external data response, it negates SysGnt* for
aminimum of one cycle, waitsfor the processor to assert SysRel*, and then begins driving
the System interface bus after one dead SysClk cycle.

Po ! - ! EA: PEA T - P

Po 1 Po i Po ) Po i Po i Po i Po | Po | Po | : : : : | |
. : : : : : : : / ——————»\ : >> : : : ;
| | | | | | | | | Minimum of 1 Cycle | | | |
| | YOSPWrXRegLstX X BIkRd X BIkRd X X BIkRd >

Figure 6-7 Arbitration Protocol for Uniprocessor System
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Multiprocessor System Using Cluster Bus

Figure 6-8 shows how the System interface arbitration signals are used in a four-processor

system using the cluster bus.

External
Agent

S5 o X &« o &

T 2 o 2 o N o Q%
o C o C Qo c O S O
x O x O x O x O x
R 3R 3R R
> >N > >N > >N > >N X
n un 0n un 0n un n nun
A A A A A

Figure 6-8 Arbitration Sgnals for Multiprocessor System Using the Cluster Bus

Figure 6-9 is an example of the System interface arbitration in a four-processor system

using the cluster bus.
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Figure6-9 Arbitration Protocol for Multiprocessor System Using the Cluster Bus
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6.17 System Interface Request and Response Protocol

Processor Request Protocol

128

The following sections detail the System interface request and response protocol. A 32-
word secondary cache block size is assumed in the examples bel ow.

A processor request is generated when the R10000 processor reguires a system resource.

The processor may only issue a processor request when the System interface isin master
state. If the System interfaceisin master state, the processor may issue a processor request
immediately. Processor requests may occur in adjacent SysClk cycles. If the System
interface is not in master state, the processor must first assert SysReq*, and then wait for
the external agent to relinquish mastership of the System interface bus by asserting
SysGnt* and SysRel*.

When multiple, nonconflicting processor requests and/or coherency data responses are
ready and meet all issue requirements, the processor uses the following priority:

block read and upgrade requests have the highest priority, followed by
processor coherency data responses,
processor eliminate and typical block write requests,

processor double/single/partial-word read/write and uncached accelerated
block write requests, which have the lowest priority.
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Processor Block Read Request Protocol

A processor block read request results from a cached instruction fetch, load, store, or
prefetch that missesin the secondary cache. Beforeissuing aprocessor block read request,
the processor changes the secondary cache state to Invalid. Additionally, if the secondary
cache block former state was DirtyExclusive, awrite back is scheduled. Note that if the
processor block read request receives an external NACK or ERR completion response, the
secondary cache block state remains Invalid.

The processor issues a processor block read request with a single address cycle. The
address cycle consists of the following:

negating SysCmd[11]

driving a free request number on SysCmd[10:8]

driving the block read command on SysCmd[7:5]

driving the read cause indication on SysCmd[4: 3]

driving the secondary cache block former state on SysCmd[2:1]
asserting SysCmd[Q]

driving the target indication on SysAD[63:60]

driving the secondary cache block way on SysAD[57]

driving the physical address on SysAD[39:0]

asserting Sysval*

The processor may only issue a processor block read request address cycle when the
following are true:

the System interface is in master state
SysRdRdy* was asserted two SysClk cycles earlier
there is no conflicting entry in the outgoing buffer

the maximum number of outstanding processor requests specified by the
PrcReqM ax mode bits is not exceeded

there is a free request number

the processor is not the target of a conflicting outstanding external coherency
request
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A single processor may have as many as four processor block read requests outstanding on
the System interface at any given time.

Figure 6-10 depicts four processor block read requests. Since the System interfaceis
initially in dlave state, the processor must first assert SysReg* and then wait until the
external agent relinquishes mastership of the System interface by asserting SysGnt* and
SysRel*.
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Figure 6-10 Processor Block Read Request Protocol
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Processor Double/Single/Partial-Word Read Request Protocol

A processor double/single/partial-word read request results from an uncached instruction
fetch or load.

The processor issues a processor double/single/partial-word read request with asingle
address cycle. The address cycle consists of:

negating SysCmd[11]

driving a free request number on SysCmd[10:8]

driving the double/single/partial-word read command on SysCmd[7:5]
driving the read cause indication on SysCmd[4: 3]

driving the data size indication on SysCmd[2:0]

driving the target indication on SysAD[63:60]

driving the uncached attribute on SysAD[59:58]

driving the physical address on SysAD[39:0]

asserting Sysval*

The processor may only issue a processor double/single/partial-word read request address
cycle when:

the System interface is in master state
SysRdRdy* was asserted two SysClk cycles previously

the maximum number of outstanding processor requests specified by the
PrcReqM ax mode bits is not exceeded

there is a free request number

A single processor may have amaximum of one processor double/single/partial -word read
request outstanding on the System interface at any given time.
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Figure 6-11 depicts a processor double/single/partial-word read request. Since the System

interfaceisinitially in slave state, the processor must first assert SysReg* and then wait
until the external agent gives up mastership of the System interface by asserting SysGnt*
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Figure6-11 Processor Double/Single/Partial-Word Read Request Protocol
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Processor Block Write Request Protocol

A processor block write request results from the following:

« replacement of a DirtyExclusive secondary cache block due to aload, store, or
prefetch secondary cache miss

e aCACHE Index WriteBack Invalidate (S) or Hit WriteBack Invalidate (S)
instruction

« acompletely gathered uncached accelerated block

Asshownin Figure 6-12, the processor issues a processor block write request with asingle
address cycle followed by 8 or 16 data cycles.

The address cycle consists of the following:
* negating SysCmd[11]
e driving the block write command on SysCmd[7:5]
e driving the write cause indication on SysCmd[4:3]
e driving the target indication on SysAD[63:60]
e driving the physical address on SysAD[39:0]
* asserting Sysval*

If the processor block write request results from the writeback of a secondary cache block,
the Dirty Exclusive secondary cache block former state is driven on SysAD[2:1], the
secondary cache block way is driven on SysAD[57] and SysCmd[0] is asserted.

If the processor block write request results from a completely gathered uncached
accelerated block, the uncached attribute is driven on SysAD[59:58] and SysCmd[0] is
negated.

Each data cycle consists of the following:
» asserting SysCmd[11]
» driving the data quality indication on SysCmd[5]
» driving the data type indication on SysCmd[4:3]
e driving the data on SysAD[63:0]
e asserting Sysval*

Thefirst 7 or 15 data cycles have arequest data type indication, and the last data cycle has
arequest last data type indication.
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The processor may negate SysVal* between data cycles of a processor block write request
only if the SCCIk frequency islessthan half of the SysClk frequency.

The processor may only issue a processor block write request address cycle when the
following are true:

* the System interface is in master state
*  SysWrRdy* was asserted two SysClk cycles previously

» the processor is not the target of a conflicting outstanding external coherency
request

Figure 6-12 depicts two adjacent processor block write requests. Since the System
interfaceisinitially in slave state, the processor must first assert SysReg* and then wait
until the external agent relinquishes mastership of the System interface by asserting
SysGnt* and SysRel*.
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Figure6-12 Processor Block Write Request Protocol
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Processor Double/Single/Partial-Word Write Request Protocol

A processor double/single/partial-word write request results from an uncached store or
incompletely gathered uncached accelerated block.

Asshown in Figure 6-13, the processor issues a processor double/single/partial-word write
request with a single address cycle immediately followed by a single data cycle.

The address cycle consists of the following:

negating SysCmd[11]

driving the double/single/partial-word write command on SysCmd[7:5]
driving the write cause indication on SysCmd[4:3]

driving the data size indication on SysCmd[2:0]

driving the target indication on SysAD[63:60]

driving the uncached attribute on SysAD[59:58]

driving the physical address on SysAD[39:0]

asserting Sysval*

The data cycle consists of the following:

asserting SysCmd[11]

driving the request last data type indication on SysCmd[4:3]
driving the write data on SysAD[63:0]

asserting Sysval*

The processor may only issue a processor double/single/partial-word write request address
cycle when the System interface isin master state and SysWrRdy* was asserted two
SysClk cycles previoudly.

User'sManual U10278EJ4VOUM 135



Chapter 6 System Interface Operations

Figure 6-13 depicts three processor double/single/partial write requests. Since the System
interfaceisinitially in slave state, the processor must first assert SysReg* and then wait
until the external agent relinquishes mastership of the System interface by asserting
SysGnt* and SysRel*.
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Figure 6-13 Processor Double/Single/Partial-Word Write Request Protocol
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Processor Upgrade Request Protocol

A processor upgrade request results from a store or prefetch exclusive that hits a Shared
block in the secondary cache.

As shown in Figure 6-14, the processor issues a processor upgrade request with asingle
address cycle. This address cycle consists of the following:

negating SysCmd[11]

driving a free request number on SysCmd[10:8]

driving the upgrade command on SysCmd[7:5]

driving the upgrade cause indication on SysCmd[4:3]

driving the secondary cache block former state on SysCmd[2: 1]
asserting SysCmd[0]

driving the target indication on SysAD[63:60]

driving the secondary cache block way on SysAD[57]

driving the physical address on SysAD[39:0]

asserting Sysval*

The processor may only issue a processor upgrade request address cycle when the
following are true:

the System interface is in master state
SysRdRdy* was asserted two SysClk cycles previously

the maximum number of outstanding processor requests specified by the
PrcReqM ax mode bits is not exceeded

there is a free request number

the processor is not the target of a conflicting outstanding external coherency
request

A single processor may have as many as four processor upgrade requests outstanding on
the System interface at any given time.
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Figure 6-14 depictsfour processor upgrade requests. Sincethe System interfaceisinitially
in slave state, the processor must first assert SysReq* and then wait until the external agent

relinquishes mastership of the System interface by asserting SysGnt* and SysRel*.
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Figure6-14 Processor Upgrade Request Protocol
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Processor Eliminate Request Praotaocol

A processor eliminate request results from the following:

a cached instruction fetch, load, store, or prefetch that misses in the secondary
cache and forces the replacement of a Shared or CleanExclusive secondary
cache block

a CACHE Index WriteBack Invalidate (S), Hit Invalidate (S), or Hit
WriteBack Invalidate (S) instruction that forces the invalidation of a Shared or
CleanExclusive secondary cache block

a CACHE Hit Invalidate (S) instruction that forces the invalidation of a
DirtyExclusive secondary cache block.

A processor eliminate request notifies the external agent that a Shared, CleanExclusive, or
DirtyExclusive block has been eliminated from the secondary cache. Such requests are
useful for systems implementing a directory-based coherency protocol, and are enabled by
asserting the PrcEImReq mode bit.

The processor issues aprocessor eliminate request with asingle addresscycle. Thisaddress
cycle consists of the following:

negating SysCmd[11]

driving the special command on SysCmd[7:5]

driving the eliminate specia cause indication on SysCmd[4:3]
driving the secondary cache block former state on SysCmd[2: 1]
asserting SysCmd[0]

driving the target indication on SysAD[63:60]

driving the secondary cache block way on SysAD[57]

driving the physical address of the eliminated secondary cache block on
SysADI[39:0]

asserting Sysval*

The processor may only issue a processor eliminate request address cycle when the
following are true:

the System interface is in master state
SysWrRdy* was asserted two SysClk cycles previously
the PrcEImReq mode bit is asserted

the processor is not the target of a conflicting outstanding external coherency
request
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Figure 6-15 depicts three processor eliminate requests. Since the System interfaceis
initially in slave state, the processor must first assert SysReq* and then wait until the

external agent relinquishes mastership of the System interface by asserting SysGnt* and
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Figure6-15 Processor Eliminate Request Protocol
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Processor Request Flow Control Protocol

The processor providesthesignals SysRdRdy* and Syswr Rdy* to allow an external agent
to control the flow of processor requests. SysRdRdy* controls the flow of processor read
and upgrade regquests whereas SyswWrRdy* controls the flow of processor write and
eliminate requests.

The processor can only issue a processor read or upgrade request address cycle to the
System interface if SysRdRdy* was asserted two SysClk cycles previously. Similarly, the
processor can only issue the address cycle of a processor write or eliminate request to the
System interface if SysWrRdy* was asserted two SysClk cycles previously.

To determine the processor request buffering requirements for the external agent, note that
the processor can issue any combination of processor requestsin adjacent SysCIk cycles.
Also, since the System interface operates register-to-register with the external agent, a
round trip delay of four SysClk cycles occurs between a processor request address cycle
which prompts the external agent for flow control, and the flow control actually preventing
any additional processor request address cycles from occurring. Consequently, if the
maximum number of outstanding processor regquests specified by the PrcRegM ax mode
bitsisfour, the external agent must be ableto accept at least four processor read or upgrade
requests. Also, the external agent must be able to accept at least four processor eliminate
requests, two processor double/single/partial-word write requests, or one processor block
write request.

Figure 6-16 depicts three processor double/single/partial-word write requests and four
processor block read requests. After sensing the first processor double/single/partia -word
write request, the external agent negates SysWrRdy*. The external agent must have
buffering sufficient for one additional processor write request before the flow control takes
effect.

The external agent negates SysRdRdy* upon observing the first processor read request.
The external agent must have buffering sufficient for three additional processor read
requests before the flow control takes effect.
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Figure6-16 Processor Request Flow Control Protocol
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External Response Protocol

The processor supports two classes of external responses:

» external dataresponses provide a double/single/partial-word of data or provide
a block of data using the SysAD[63:0] bus

» external completion responses provide an acknowledge, error, or negative
acknowledge indication using the SysResp[4:0] bus

An external agent may only issue an external data response to the processor when the
System interface isin dave state. If the System interface is not already in slave state, the
external agent must first negate SysGnt* and then wait for the processor to assert SysRel*.
If the Systeminterfaceisalready in slave state, the external agent may issue an external data
response immediately.

External dataresponses may be accepted by the processor in adjacent SysClk cyclesandin
arbitrary order, relative to corresponding processor requests.

An external agent may issue an external completion response when the System interfaceis
in either master or slave state. External completion responses may be accepted by the
processor in adjacent SysClk cyclesand in arbitrary order, relative to the corresponding
processor requests.

External Block Data Response Protocol

An external agent may issue an external block data response in response to a processor
block read or upgrade request.

An external agent issues an external block dataresponsewith 8 or 16 datacycles. Each data
cycle consists of the following:

e asserting SysCmd[11]

e driving the request number associated with the corresponding processor
request on SysCmd[10:8]

e driving the data quality indication on SysCmd|[5]
» driving the data type indication on SysCmd[4:3]
» driving the cache block state on SysCmd[2:1]
» driving the ECC check indication on SysCmd[0]
e driving the data on SysAD[63:0]
e  asserting Sysval*
Thefirst 7 or 15 data cycles have aresponse data type indication, and the last datacycle has

aresponse last datatype indication. The external agent may negate Sysval* between data
cycles of an external block data response.
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External block data response data must be supplied in subblock order, beginning with the
guadword-aligned address specified by the corresponding processor request.

External block data responses for processor coherent block read shared or noncoherent
block read requests may indicate a state of Shared, CleanExclusive, or DirtyExclusive.
External block data responses for processor coherent block read exclusive or upgrade
requests may indicate a state of CleanExclusive or DirtyExclusive.

Figure 6-17 depictstwo processor block read requests and the corresponding external block
data responses.
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Figure 6-17 External Block Data Response Protocol
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External Double/Single/Partial-Word Data Response Protocol
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An external agent may issue an externa double/single/partial-word dataresponsein

response to a processor double/single/partial-word read request.

An external agent issues an external double/single/partial-word dataresponse with asingle

data cycle; the data cycle consists of
» asserting SysCmd[11]

» driving the reguest number associated with the corresponding processor

request on SysCmd[10:8]
»  driving the data quality indication on SysCmd[5]
e driving the response last data type indication on SysCmd[4:3]
e driving the ECC check indication on SysCmd[Q]
e driving the data on SysAD[63:0]
* asserting Sysval*

Figure 6-18 depicts a processor double/single/partial-word read request and the
corresponding external double/single/partial-word data response.
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Figure6-18 External Double/Sngle/Partial-Word Data Response Pratocol
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External Completion Response Protocol

An external agent issuesan external completion responseto provide an acknowledge, error,
or negative acknowledge to an outstanding request, and to free the associated request
number.

An external agent issues an external completion response by driving the response on
SysResp[4:0] and asserting SysRespVal* for one SysClk cycle. SysResp[4:2] contains
the request number associated with the corresponding outstanding request and
SysResp[1:0] contains an acknowledge, error, or negative acknowledge indication, as
described below:

* The external agent issues an external ACK completion response for a
processor read or upgrade request to indicate that the request was successful.
An external ACK completion response may only be issued for a processor
read request if a corresponding external data response is coincidentally or
previously issued.

* The external agent issues an external ERR completion response for a
processor read or upgrade request to indicate that the request was
unsuccessful. Upon receiving an external ERR completion response, the
processor takes a Bus Error exception on the associated instruction. If the
processor read or upgrade request was caused by a PREFETCH instruction, no
exception is taken. Also, if the request was caused by a speculative
instruction, no exception is taken.

* The external agent issues an external NACK completion response for a
processor read or upgrade request to indicate that the request was not
accepted. Upon receiving an external NACK completion response, the
processor re-evaluates the associated instruction. Due to the speculative
nature of the R10000 processor, the re-evaluation may or may not result in the
reissue of a similar processor request.

An external ERR or NACK completion response issued in response to an external
intervention, allocate request number, or invalidate has no affect on the processor except to
free the request number.
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Figure 6-19 depicts a processor upgrade request and a corresponding external completion
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Figure6-19 External Completion Response Protocol
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External Request Protocol

148

An external agent issues an external request when it requires a resource within the
processor. The external agent refersto any device attached to the processor system
interface. It may be memory interface or cluster coordinator ASIC, or another processor
residing on the cluster bus.

An external agent may only issue an external request to the processor when the System
interfaceisin dave state. If the System interfaceis not already in save state, the external
agent must first negate SysGnt* and then wait for the processor to assert SysRel*. If the
System interface is already in slave state, the external agent may issue an external request
immediately. The total number of outstanding external requests, including interventions,
allocate request numbers, and invalidates, cannot exceed eight.

External requests may be accepted by the processor in adjacent SysClk cycles. External
intervention and invalidate requests are considered external coherency requests.
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External I ntervention Request Protocol
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An external agent issues an external intervention request to obtain a Shared or Exclusive
copy of a secondary cache block.

An external agent issues an external intervention request with a single address cycle; this
address cycle consists of the following:

* negating SysCmd[11]

» driving arequest number on SysCmd[10:8]

e driving the intervention command on SysCmd[7:5]

e driving the ECC check indication on SysCmd[Q]

e driving the target indication on SysAD[63:60]

e driving the physical address on SysAD[39:0]

* asserting Sysval*
An external agent may only issue an external intervention request address cycle when the
System interfaceisin dave state; typically afree request number is specified. An external

agent may have as many as eight external intervention requests outstanding on the System
interface at any given time.

Figure 6-20 depicts three external intervention requests. Since the System interfaceis
initially in master state, the external agent must first negate SysGnt* and then wait until the
processor relinquishes mastership of the System interface by asserting SysRel*.
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Figure 6-20 External Intervention Request Protocol
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External Allocate Request Number Request Protocol

An external agent issues an external allocate request number request to reserve a request
number for private use. Once allocated, the processor is prevented from using the request
number until an external completion response for the request number is received.

An external agent issues an external allocate request number request with a single address
cycle; this address cycle consists of the following:

* negating SysCmd[11]

» driving a free request number on SysCmd[10:8]

e driving the allocate request number command on SysCmd[7:5]

e  asserting Sysval*
An external agent may only issue an external all ocate request number request addresscycle
when the System interface isin slave state and thereis afree request number. The externa

agent may have as many as eight external allocate request number requests outstanding on
the System interface at any given time.

Figure 6-21 depicts three external allocate request number requests. Since the System
interfaceisinitially in master state, the external agent must first negate SysGnt* and then
wait until the processor relinquishes mastership of the System interface by asserting

SysRel*.
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Figure6-21 External Allocate Request Number Request Protocol
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External Invalidate Request Protocol

Cycle

SysClk

Master
SysReq*
SysGnt*
SysRel*
SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar
SysStateVal*
SysResp(4:0)
SysRespPar
SysRespVal*

An external agent issues an external invalidate request to invalidate a secondary cache
block.

An external agent issues an external invalidate request with a single address cycle. This
address cycle consists of the following:

* negating SysCmd[11]

» driving arequest number on SysCmd[10:8]

*  driving the invalidate command on SysCmd[7:5]

e driving the ECC check indication on SysCmd[Q]

e driving the target indication on SysAD[63:60]

e driving the physical address on SysAD[39:0]

* asserting Sysval*
An external agent may only issue an external invalidate request address cycle when the
System interfaceisin dave state; typically afree request number is specified. An external

agent may have as many as eight external invalidate requests outstanding on the System
interface at any given time.

Figure 6-22 depictsthree external invalidaterequests. Sincethe Systeminterfaceisinitially
in master state, the external agent must first negate SysGnt* and then wait until the
processor relinquishes mastership of the System interface by asserting SysRel*.
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Figure 6-22 External Invalidate Regquest Protocol
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External Interrupt Request Protocol

Cycle

SysClk

Master
SysReq*
SysGnt*
SysRel*
SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar
SysStateVal*
SysResp(4:0)
SysRespPar
SysRespVal*

An external agent issues an external interrupt request to interrupt the normal instruction
flow of the processor.

An external agent issues an external interrupt request with asingle address cycle. This
address cycle consists of the following:

* negating SysCmd[11]

» driving the special command on SysCmd[7:5]

e driving the interrupt special cause indication on SysCmd[4:3]
e driving the ECC check indication on SysCmd[Q]

e driving the target indication on SysAD[63:60]

» driving the Interrupt register write enables on SysAD[20:16]
o driving the Interrupt register values on SysAD[4:0]

* asserting Sysval*

An external agent may only issue an external interrupt request address cycle when the
System interface isin dave state.

Figure 6-23 depictsthree external interrupt requests. Sincethe Systeminterfaceisinitialy
in master state, the external agent must first negate SysGnt* and then wait until the
processor relinquishes mastership of the System interface by asserting SysRel*.
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Figure6-23 External Interrupt Request Protocol
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Processor Response Protocol

Processor responses are supplied by the processor in response to external coherency
requeststhat target the processor. The R10000 processor i ssues a processor coherency state
response for each external coherency request that targets the processor. The processor
issues a processor coherency data response for each external intervention request that
targets the processor and hits a DirtyExclusive secondary cache block.

Processor coherency state responses are issued by the processor in the same order that the
corresponding external coherency requests are received. Processor coherency state and
data responses may occur in adjacent SysClk cycles.
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Processor Coherency State Response Protocol

Cycle

SysClk

Master
SysReq*
SysGnt*
SysRel*
SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar
SysStateVal*
SysResp(4:0)
SysRespPar
SysRespVal*

A processor coherency state response results from an external coherency request that
targets the processor.

The processor issues a processor coherency state response by driving the secondary cache
block tag quality indication on SysState[2], driving the secondary cache block former state
on SysState[1:0], and asserting SysStateVal* for one SysClk cycle. The processor
coherency state responses are issued in an order designated by the external coherency
requestsand will alwaysbeissued before an associated processor coherency dataresponse.
Note that processor coherency state responses can be pipelined ahead of the associated
processor coherency data responses, and processor coherency data responses can be
returned out-of-order. These casestypically arise from external coherency requests hitting
outgoing buffer entries.

Figure 6-24 depictstwo external coherency requests and the resulting processor coherency
state responses.
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Figure6-24 Processor Coherency State Response Protocol
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Processor Coherency Data Response Protocol

A processor coherency data response results from an external intervention reguest that
targets the processor and hits a DirtyExclusive secondary cache block.

The processor issues a processor coherency data response with a single empty cycle
followed by either 8 or 16 datacycles. The empty cycle consists of negating Sysval* for a
single SysClk cycle. The data cycles consist of the following:

o asserting SysCmd[11]

o driving the request number associated with the corresponding external

coherency request on SysCmd[10:8]

» driving the data quality indication on SysCmd[5]

» driving the data type indication on SysCmd[4:3]

e driving the state of the cache block on SysCmd[2:1]

e asserting SysCmd[Q]

e driving the data on SysAD[63:0],

» asserting Sysval*
Thefirst 7 or 15 data cycles have aresponse data type indication, and the last datacycle has

aresponse last dataindication. The processor may negate SysVal* between data cycles of
aprocessor coherency data response only if the SCClk frequency isless than half of the

SysClk frequency.

The processor may only issue a processor coherency data response when the System
interface isin master state and SysWrRdy* was asserted two SysClk cycles previously.
Note that the empty cycleis considered the issue cycle for a processor coherency data
response. |If the System interface is not already in master state, the processor must first
assert SysReqg*, and then wait for the external agent to relinquish mastership of the System
interface bus by asserting SysGnt* and SysRel*. If the System interfaceisalready in
master state, the processor may issue a processor coherency data response immediately.
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Cycle

SysClk

Master
SysReq*
SysGnt*
SysRel*
SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar
SysStateVal*
SysResp(4:0)
SysRespPar
SysRespVal*
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When SysStateVal* is negated, SysState[0] provides the processor coherency data
responseindication. The processor assertsthe processor coherency dataresponseindication
when there are one or more processor coherency data responses pending issue in the
outgoing buffer. Once asserted, the indication is hegated when the first doubleword of the
last pending issue processor coherency dataresponseisissued to the system interface bus.
The processor coherency data response indication is not affected by SyswrRdy*.
However, as previously noted the processor may only issue a processor coherency data
response when SysWrRdy* was asserted two SysClk cycles previoudly.

Processor coherency data response data is supplied in subblock order, beginning with the
quadword-aligned address specified by the corresponding external coherency request.
Processor coherency data responses are not necessarily issued in the same order as the
external coherency requests; however each processor coherency data response always
follows the corresponding processor coherency state response. Note that more than one
processor coherency state response may be pipelined ahead of the corresponding processor
coherency data responses.

Figure 6-25 depicts one external coherency request and the resulting processor coherency
state and data responses.
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Figure6-25 Processor Coherency Data Response Protocol
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6.18 System Interface Coherency

The System interface supports external intervention shared, intervention exclusive, and
invalidate coherency requests. These requests are used by an external agent or other
R10000 processors on the cluster bus to maintain cache coherency.

Each external coherency request that targets an R10000 results in a processor coherency
state response. Additionally, each external intervention request that targets the R10000 and
hits a DirtyExclusive secondary cache block resultsin aprocessor coherency dataresponse.

External coherency requests and the corresponding processor coherency stateresponsesare
handled in FIFO order.

External Intervention Shared Request

An external intervention shared request is used by an external agent to obtain a Shared copy
of acache block. If the desired block residesin the processor cache, it is marked Shared.

If the secondary cache block’s former state was DirtyExclusive, the processor issues a
processor coherency data response.

External Intervention Exclusive Request

An externa intervention exclusive request is used by an external agent to obtain an

Exclusive copy of a cache block. If the desired block resides in the processor cache, it is
marked Invalid.

If the secondary cache block’s former state was DirtyExclusive, the processor issues a
processor coherency data response.

External Invalidate Request

An externa invalidate request is used by an external agent to invalidate a cache block. If
the desired block resides in the processor cache, it is marked Invalid.

Under normal circumstances, the secondary cache block former state should not be
CleanExclusive or DirtyExclusive.
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External Coherency Request Action
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Table 6-27 indicates the action taken for external coherency requests that target the

[processor.

Table 6-27 Action Taken for External Coherency Requests that Target the R10000 Processor '

Processor Coher-|Processor Co- |Processor Coher-
Secondary Cache Secondary
Block Type of CacheBlock | €% StateRe- | herency Data| ency Data Re-
Former State External Request New State sponse R&epqnse Re-| sponse State
SysState[1: 0] quired? SysCmd[2:1]
Intervention shared Invalid 0 No N/A
Invalid Intervention exclusive Invalid 0 No N/A
Invalidate Invalid 0 No N/A
Intervention shared Shared 1 No N/A
Shared Intervention exclusive Invalid 1 No N/A
Invalidate Invalid 1 No N/A
Intervention shared Shared 2 No N/A
CleanExclusive Intervention exclusive Invalid 2 No N/A
Invalidate* Invalid 2 No N/A
Intervention shared” Shared 3 Yes Shared
DirtyExclusive Intervention exclusive™ Invalid 3 Yes DirtyExclusive
Invalidate Invalid 3 No N/A

$ Thisshould not occur under normal circumstances.

* The processor coherency data response must be written back to memory.

T These actions are taken in cases where there are no internal coherency conflicts. For
exceptions due to internal coherency conflicts, please refer to Table 6-28.
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Coherency Conflicts

Coherency conflicts arise when a processor request and an external request target the same

secondary cache block. Coherency conflicts may be categorized as either internal or

external, and are described in this section.

Internal Coherency Conflicts

A processor request is considered to be pending issue when it is buffered in the processor
and has not yet been issued to the System interface bus. Internal coherency conflicts occur

when the processor has a processor request pending issue and a conflicting external

coherency reguest is received. Internal coherency conflicts are unavoidable and cannot be
anticipated by the external agent since it cannot anticipate when the processor will have
processor requests pending issue.

Table 6-28 describes the manner in which the processor resolves internal coherency

conflicts.
Table 6-28 Internal Coherency Conflict Resolution
Processor Request Pend- | Conflicting External Co- .
i Resolution
ing Issue herency Request
Intervention shared The processor allows the conflicting external
Intervention exclusive coherency request to proceed and provides an Invalid
processor coherency state response. The processor
Coherent block read _ stalls the processor coherent block read request until
Invalidate the conflicting external coherency request has
received an external completion response.
Intervention shared The processor allows the conflicting external
Intervention exclusive coherency request to proceed and provides a Shared
processor coherency state response. Once the
Upgrade conflicting external coherency request has received
Invalidate an external compl etion response, the processor
internally NACK s the processor upgrade request that
is pending issue.
Intervention shared The processor provides a DirtyExclusive processor
coherency state response and changes the processor
Intervention exclusive block write request that is pending issueinto a
Block write DirtyExclusive processor coherency data response.
The processor provides a DirtyExclusive processor
Invalidate coherency state response and del etes the processor
block write request that is pending issue.
Intervention shared The processor provides a Shared or CleanExclusive
Eliminate Intervention exclusive processor coherency state response and deletes the
Invalidate processor eliminate request that is pending issue.¥

¥ If the processor eliminate request that is pending issue has a DirtyExclusive state, a CleanExclusive processor coherency state response is

provided.
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External Coherency Conflicts

A processor request is considered to be pending response when it has been issued to the
System interface bus but has not yet received an external data or completion response.
External coherency conflicts occur when the processor has a processor request that is
pending response and a conflicting external coherency request is received. The processor
relies on the external agent to detect and resolve external coherency conflicts. If the
external agent choosesto issue an external coherency request to the processor which causes
an external coherency conflict, the external coherency request must be completed beforean
external response is given to the conflicting processor request.

External coherency conflicts may be avoided if the point of coherenceis the processor
System interface bus and only one request is alowed to be outstanding for any given
secondary cache block. However, in some system designs external coherency conflictsare
unavoidable.

Processor block write and eliminate requests are never pending response, and therefore
cannot cause external coherency conflicts.

Table 6-29 describes the manner in which the external agent resolves external coherency
conflicts.
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Table 6-29 External Coherency Conflict Resolution

Processor Requeststhat
are Pending Response

Conflicting External Co-
herency Request

Resolution

Coherent block read

Intervention shared

Intervention exclusive

Invalidate

Theexternal agent respondsto the external coherency
requestor that theblock isinvalid. At somelater time,
the external agent suppliesan external responseto the
processor coherent block read request that is pending
response.¥

Upgrade

Intervention shared

Theexternal agent respondsto the external coherency
reguestor that theblock isShared. At somelater time,
the external agent suppliesan external responseto the
processor upgrade request that is pending response.”

Intervention exclusive

Invalidate

The external agent issues the conflicting external
coherency request to the processor. The processor
alows the conflicting external coherency request to
proceed and supplies a Shared processor coherency
state response. After observing the processor
coherency state response, the external agent provides
an external ACK completion response for the
conflicting external coherency request. At somelater
time, the external agent supplies an external response
for the processor upgrade request that is pending
response. This external response may not be an
external ACK completion response unlessit is
associated with an external block data response.

¥ Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the processor

will return an invalid processor coherency state response.

* Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the processor

will return a shared processor coherency state response.
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External Coherency Request L atency

This section describesthe R10000 external coherency request latency. Figure 6-26 depicts
the following:

* an external coherency request which targets the processor
e theresulting processor coherency state response
» the potential processor coherency data response

Two external coherency request latency parameters are al so defined:

*  the processor coherency state response latency, tycs, specifies the time from
external coherency request to processor coherency state response

*  the processor coherency data response latency, tpeq,, specifies the time from
the external coherency request to the processor coherency data response if a
master, or to the assertion of the processor coherency data response indication
on SysState[0] if a slave.

Cycle
SysClk

Master

SysReq*
SysGnt*
SysRel*
SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar
SysStateVal*
SysResp(4:0)

SysRespPar

SysRespVal*

tpcdr

Figure 6-26 External Coherency Request Latency Parameters
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The external coherency request latency is presented in Table 6-30.

Table 6-30 External Coherency Request Latency

Latency* (PCIk cycles)

Processor Coherency State [Processor Coherency Data Re;
Response (tpcsr) sponse (tpcdr)

ScclkDiv | Min® Typ*fF Max™" | Min'T Typ“:¢ Max "
1 5 10 39 8 28 70
15 5 13 48 8 33 88
2 5 14 59 8 38 105
25 5 16 71 8 43 128
3 5 17 79 8 43 141

$ Thislatency assumes no other previously issued external coherency requests are outstanding. 1
to 3 additional PClk cycles may be required for synchronization with SysClk depending on the
SysCIkDiv mode hits.

* Thisvalue assumes a 32-word secondary cache block size.
T Thisvalue assumes the external coherency request hits a cached or outgoing buffer entry.

1t Thisvalue assumesthe external coherency request does not hit acached or outgoing buffer entry,
the secondary cache is not busy, and the external coherency request hitsin the MRU way of the
secondary cache. If the external coherency request misses in the most-recently used (MRU) way
of the secondary cache, 1 to 3 additional PCIk cycles are required to query the LRU way of the
secondary cache, depending on the SCCIkDiv mode bits.

** Thisvalue assumesthe external coherency request does not hit acached or outgoing buffer entry,
the secondary cache just commenced an index-conflicting CACHE Hit WriteBack Invalidate (S),
and the external coherency request misses in the secondary cache MRU way.

1T This value assumes the external coherency request hits an outgoing buffer entry.

$+f This value assumes the external coherency request does not hit a cached or outgoing buffer
entry, the secondary cacheis not busy, the external coherency request hitsin the MRU way of the
secondary cache, no subset primary data cache blocks are inconsistent, and the external
coherency request is secondary cache block-aligned. If the external coherency request missesin
the MRU way of the secondary cache, 1 to 3 additional PClk cycles are required to query the
LRU way of the secondary cache, depending on the SCCIkDiv mode hits.

*** This value assumes the external coherency request does not hit a cached or outgoing buffer
entry, the secondary cache just commenced an index-conflicting CACHE Hit WriteBack
Invalidate (S), the external coherency request hits in the LRU way of the secondary cache, all
subset primary data cache blocks are inconsistent, and the external coherency request is not
secondary cache block-aligned.
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SysGblPerf* Signal

The SysGblPerf* signal is provided for systemsimplementing a relaxed consistency
memory model. The external agent asserts this signal when all processor requests are
globally performed, thereby allowing the processor to graduate SYNC instructions. The
external agent negates this signal when some processor requests are not yet globally
performed, thereby preventing the processor from graduating SY NC instructions.

To prevent a SY NC instruction from graduating, the external agent must negate the
SysGblPerf* signal no later than the same SysClIk cycle in which it issued the external
completion response for a processor read or upgrade request which is not yet globally
performed. Also, the external agent must negate the SysGblPerf* signal no later than two
SysClk cycles after the address cycle of aprocessor double/single/partial-word write
request which has not yet been globally performed.

The SysGblPerf* signal may be permanently asserted in systems implementing a
sequential consistency memory model.

6.19 Cluster Bus Operation

164

A R10000 multiprocessor cluster may be created by directly attaching the System
interfaces of 2 to 4 R10000 processors, and providing an externa cluster coordinator to
handle arbitration and coherency management.

The cluster coordinator arbitrates the multiprocessors using the SysReqg*, SysGnt*, and
SysRel* signals.

A processor request issued by an R10000 processor in master state is observed as an
external request by any R10000 processors in the slave state on the cluster bus. Thisis
described Table 6-31.

Table6-31 Relationship Between Processor and External Requests for the Cluster Bus

Processor Request External Request
Coherent block read shared Intervention shared
Coherent block read exclusive Intervention exclusive
Noncoherent block read Allocate request number
Double/single/partial-word read Allocate request number
Block write NOP
Double/single/partial-word write NOP
Upgrade Invalidate
Eliminate NOP
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In the same manner, a processor coherency data response issued by a processor in the
master state is observed as an external block data response by any processorsin the slave
state.

External coherency requests that target a processor are handled in FIFO order and result in
processor coherency state responses. If an external coherency request that targets a
processor hits a DirtyExclusive secondary cache block, the processor also provides a
processor coherency data response.

Figure 6-27 presents an example of a processor read request with four R10000 processors
residing on the cluster bus. The CohPrcRegTar mode bit is asserted for a snoopy-based
coherency protocol. R10000; issues a processor coherent read exclusive request. Thisis
observed asan external intervention exclusiverequest by R10000,, R10000,, and R100005.
R10000, and R100005 respond with Invalid processor coherency state responses. R10000,
responds with a DirtyExclusive processor coherency state response. Based on these
processor coherency state responses, the cluster coordinator allows R10000, to become
master of the System interface so that it may provide a processor coherency data response,
which will be observed as an external block dataresponse by R10000,. Finaly, the cluster
coordinator issues an external ACK compl etion response to forward the external block data
response and to free the request number.

Figure 6-28 presents an example of a processor upgrade request with four R10000
processors residing on the cluster bus. The CohPrcRegTar mode bit is asserted for a
snoopy-based coherency protocol. R10000 issues a processor upgrade request, observed
as an external invalidate request by R10000,, R10000,, and R10000;. R10000, and
R100005 provide Shared processor coherency state responses. R10000, provides an
Invalid processor coherency state response. Based on these processor coherency state
responses, the cluster coordinator issues an external ACK completion response for the
processor upgrade request to indicate that the request was successful and to free the request
number.
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Cycle
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SysReq0*

SysGnt0*

SysReq1*
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SysStateVall*
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Figure 6-27 R10000 Multiprocessor Cluster Processor Read Request Example
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6.20 Support for 1/0

The processor assumes a memory-mapped 1/0 model. Consequentially, no special System
interface encodings are provided, or required to designate I/O accesses. Itisleft to the
programmer to ensure that 1/0 addresses have the appropriate TLB mappings.

The processor supports system designs utilizing hardware or software for coherent 1/O.
The external coherency requests are useful for creating systems with hardware 1/0
coherency, and the CACHE instruction is sufficient for creating a system with software 1/O
coherency.

6.21 Support for External Duplicate Tags
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Some system designs implement an external duplicate copy of the secondary cachetagsto
reduce the coherency request latency and also filter out unnecessary external coherency
requests made to the R10000 processor.

For such systems, it must be remembered that blocks may reside in either the secondary
cache or in the outgoing buffer. During the address cycle of processor block read requests,
the secondary cache block former stateis provided. The external agent may use this
information to maintain the external duplicate tags.

Typicaly, inamultiprocessor system using the cluster bus, the cluster coordinator specifies
afree request number for an external coherency request. However, in asystem using a
duplicate-tag or directory-based coherency protocol, where the CohPrcRegTar mode bit
is negated, the cluster coordinator may specify abusy request number for an external
coherency request, providing each targeted R10000 processor has the request number busy
due to an outstanding processor coherency request from another processor.

For example, suppose the processor in master state issues a processor coherent block read
or upgrade request. The processors in save state observe the processor request as an
external coherency request that targets the external agent only, causing the associated
request number to become busy. The cluster coordinator checks the duplicate tag or
directory structure to determine if the block residesin the cache of one of the processors
that wasin slave state. If necessary, the cluster coordinator issues an external coherency
request targeted at one or more of the processorsthat werein slave state. By using the same
request number as the original processor request, this external coherency request does not
consume a free request number, and allows a potential processor coherency data response
to be supplied as an external block data response to the original processor request.
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6.22 Support for a Directory-Based Coherency Protocol

Some system designs implement a directory-based coherency protocol.

For such systems, the processor provides the processor eliminate request cycle. If the
PrcEImReq mode bit is asserted, the processor issues a processor eliminate request
whenever it intends to eliminate a Shared, CleanExclusive, or DirtyExclusive block from
the secondary cache. During the address cycle of the processor eliminate request, the
physical address and the secondary cache block former state are provided. The externa
agent may then use this information to maintain an external directory structure.

6.23 Support for Uncached Attribute
The processor supports a 2-bit user-defined Uncached Attribute, which is driven on
SysAD[59:58] during the address cycle of the following:
» processor double/single/partial-word read requests
» double/single/partial-word write requests

»  block write requests resulting from completely gathered uncached accelerated
blocks

For unmapped accesses, the uncached attribute is sourced from VA[58:57].

For mapped accesses, the uncached attribute is sourced from the TLB Uncached Attribute
field. The TLB Uncached Attribute field may beinitialized in 64-bit mode using bits 63:62
of the CPO EntryLo0 and EntryLol registers.
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6.24 Support for Hardware Emulation

Cycle

SysClk
Master
SysReq*
SysGnt*
SysRel*
SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar
SysStateVal*
SysResp(4:0)
SysRespPar
SysRespVal*
SysCyc*
Virtual SysClk
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When using the R10000 processor in hardware emulation, it is desirable to operate the
Systeminterface at arelative low frequency (typically 1 MHz or below). Sincethe R10000
processor contains dynamic circuitry, an external agent cannot simply provide low
frequency SysClk, so a SysCyc* input to the processor allows an external agent to define
avirtual system clock, and yet supply a SysClk within the acceptable operating range. The
assertion of SysCyc* inaparticular SysClk cycle createsavirtual system clock pulsefour
SysClk cycleslater. SysCyc* may be asserted aperiodically.

In anormal system environment, the SysCyc* input should be permanently asserted.

Figure 6-29 depicts the use of SysCyc* to create avirtual SysClk of one-third the normal
SysClk frequency.

e e s G R o T
I G R GE N . G R S T R o b
e L e

Figure 6-29 Hardware Emulation Protocol

User'sManual U10278EJ4V0UM



Clock Sgnals

The R10000 processor has differential PECL clock inputs, SysClk and SysClk*, from
which all processor internal clock signals and secondary cache clock signals are derived.

Three major clock domains are in the processor:

e the System interface clock domain, which operates at the system clock
frequency and controls the System interface signals

» theinternal processor clock domain, which controls the processor core logic

» the secondary cache clock domain, which controls signals communicating
with the external secondary cache synchronous SRAM

These domains are described in this chapter.
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7.1 System Interface Clock and Internal Processor Clock Domains

172

In high performance systems, PECL -level differential clocks are routinely used to
minimize system clock skews. The R10000 processor receives differential system clock
signals at the SysClk and SysClk* pins; two additional pins, SysClkRet and SysClkRet*,
are the return paths for termination of these signals.

SysClk and SysClk* are used to drive an on-chip phase-locked loop (PLL), which
multiplies the system clock to create an internal processor clock, PCIK.

The R10000 processor always communicates with the system at the SysClk frequency, and
PClk alwaysruns at a frequency-multiple of SysClIk, according to the following formula:

PO k = Sysd k*(Sysd kDi v+1)/ 2
For example, in a50 MHz system with SysClkDiv = 7 and SCCIkDiv=2,
PClk=50*8/2 = 200 MHz.

NOTE: Itispreferredthat the R10000 processor usesadifferential PECL clock input.
However, in aless-aggressive system, a CMOS/TTL single-ended clock can be used
to drive the processor, provided its complementary clock input, SysClk*, istied to an
appropriate reference voltage (1.4V for TTL, Vcc/2 for CMQOS). Inany case, the
reference voltage applied to SysClk* should not be less than 1.2V.
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7.2 Secondary Cache Clock

The processor uses registered synchronous SRAMs for its secondary cache, to allow
pipelined accesses.

The processor provides 6 pairsof differential clock outputs, SCCIk(5:0) and SCCIk*(5:0),
to be used by the secondary cache synchronous SRAMSs. These outputs swing between
VeecQSC and Vss. The SCCIKTap mode bits (Mode bits are described in Chapter 8, the
sectiontitled “Mode Bits.”) specify the alignment of SCCIk(5:0) and SCClk* (5:0) relative
to the internal secondary cache clock. Note that the output buffer delay is not included.

The secondary cache interface clock is generated by dividing down the internal processor
clock, PCIk.

SCClk isrelated to SysClk according to the following formula:
SCA k = Sysd k*(Sysd kDi v+1) / ( SCO kDi v+1)

For example, in a50 MHz system with SysClkDiv=7 and SCCIkDiv=2,
SCClk =50*8/3 = 133 MHz.
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7.3 Phase-L ocked-L oop

The processor uses the internal PLL for clock generation and multiplication as shown in
Figure 7-1.

Values of the termination resistors for the SysClkRet/SysClkRet* signals are system-
dependent. The system designer must select a value based upon the characteristic
impedance of the board, therefore it is beyond the scope of this manual to specify values
for these termination resistors.

R10000

PLL
clock
generators

Figure 7-1 R10000 System and Secondary Cache Clock Interface

174

r— ==

L SysClkRet

PECL differential
input system clock

-¢

-
-¢

SysClkRet*
Termination resistors

\

Replicated
HSTL differential
output clocks

User'sManual U10278EJ4V0UM

SRAM



8. Initialization

This section describes initialization of the R10000 processor, including initialization of
logical registers.

Initialization of the processor occurs during areset sequence. The processor supportsthree
separate reset sequences:

e Power-on reset
e Cold reset
e Soft reset

These sequences are described in this chapter.

Also described are the mode hits.
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8.1 Initialization of Logical Registers

After a power-on or cold reset sequence, all logical registers (both in the integer and the
floating-point register files) must be written before they can beread. Failure to write any
of these registers before reading from them will have an unpredictable result.

NOTE: Ontheinitialization of the FPU after a power-on or cold reset, awrite for
initialization of the busy-hit table can be performed by using MTCL1 instruction with
FR=1 (during the initialization only) or DMTC1 instruction.

8.2 Power-On Resat Sequence

The Power-on Reset sequence is used to reset the processor after the initial power-on, or
whenever power or SysClk are interrupted.

The Power-on Reset sequence is as follows:

The external agent negates DCOK.

The external agent asserts SysReset*.
The external agent negates SysGnt*.
The external agent negates SysRespVal*.

Once Vcce, VecQ[SC,Syd], Vref[SC,Sys], Vec[Pa,Pd], and SysClk stabilize,
the external agent waits at least 1ms and then asserts DCOK.

At thistime, the System interface resides in slave state and all internal state is
initialized.

The SysClkDiv mode bits default to divide-by-1.

The SCCIkDiv mode bits default to divide-by-3.

After waiting at least 100 ms for the internal clocks to stabilize, the external
agent loads the mode bits into the processor by driving the mode bits on
SysAD[63:0], waiting at least two SysClk cycles, and then asserting SysGnt*
for at least one SysClk cycle.

After waiting at least another 100 ms for the internal clocks to restabilize, the
external agent synchronizes all clocks internal to the processor. Thisis
performed by asserting SysRespVal* for one SysClk cycle.

After waiting at least 100 ms for the internal clocks to again restabilize, (a
third 100 ms restabilization period) the external agent negates SysReset*.

The external agent must retain mastership of the System interface, refrain
from issuing external requests or nonmaskable interrupts, and ignore the
system state bus until the processor asserts SysReg*. The assertion of
SysReqg* indicates the processor is ready for operation. In a cluster
arrangement, all processors must assert SysReq*, indicating they are ready for
operation.

NOTE: If thevirtual SysClk isused during the reset sequence, the mode bits,
SysGnt*, SysRespVal*, and SysReset* should al bereferenced to thevirtual SysClk
that is created with SysCyc* . Thisapproach will cause the R10000 to come out of reset
synchronously with the virtual SysClk, which will allow repeatable and lock-step
operation (see Chapter 6, the section titled “ Support for Hardware Emulation,” for
description of virtual SysClk operation).
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Chapter 8 Initialization

Vcce
VceQ[SC,Sys]
Vref[SC,Sys]
Vcc[Pa,Pd]
SysClk
DCOk

Master
SysReset*
SysReq*
SysGnt*
SysRel*
SysAD(63:0)
SysRespVal*

During a Power-on Reset sequence, al internal stateisinitialized. A Power-on Reset
seguence causes the processor to start with the Reset exception.

Figure 8-1 shows the Power-on Reset sequence.
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Figure8-1 Power-On Reset Sequence
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Chapter 8 Initialization

8.3 Cold Reset Sequence

The Cold Reset sequence is used to reset the entire processor, and possibly alter the mode
bits while power and SysClk are stable.

Vcce
VccQ[SC,Sys]
Vref[SC,Sys]
Vcc[Pa,Pd]
SysClk
DCOk

Master
SysReset*
SysReq*
SysGnt*
SysRel*
SysAD(63:0)
SysRespVal*
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The Cold Reset sequenceis asfollows:

The external agent negates SysGnt* and SysRespVal*.
After waiting at least one SysClk cycle, the external agent asserts SysReset*.

After waiting at least 100 ms, the external agent loads the mode bits into
R10000. Thisis performed by driving the mode bits on SysAD[63:0], waiting
at least two SysClk cycles, and then asserting SysGnt* for at least one
SysClk cycle.

After waiting at least another 100 ms for the internal clocks to restabilize, the
external agent synchronizes all processor internal clocks by asserting
SysRespVal* for one SysClk cycle.

After waiting at least 100 ms for the internal clocks to again restabilize, (a
third 100 ms restabilization period) the external agent negates SysReset*.

The external agent must retain mastership of the System interface, refrain
from issuing external requests or nonmaskable interrupts, and ignore the
system state bus until the processor asserts SysReq*. The assertion of
SysReqg* indicates the processor is ready for operation. In a cluster
arrangement, all processors must assert SysReq*, indicating they are ready for
operation.

During a Cold Reset sequence all processor internal state isinitialized. A Cold Reset
seguence causes the processor to start with a Reset exception.

Figure 8-2 shows the cold reset sequence.

\(» =100ms \(» 2100ms~>‘ \(» 2100ms~>‘

—
[

Figure8-2 Cold Reset Sequence
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8.4 Soft Reset Sequence

A Soft Reset sequence is used to reset the external interface of the processor without
altering the mode bits while power and SysClk are stable.

The Soft Reset sequence is as follows:
e The external agent negates SysGnt* and SysRespVal*.

« After waiting at least one SysClk cycle, the external agent asserts SysReset*
for at least 16 SysClk cycles.

* The external agent must retain mastership of the System interface, refrain
from issuing external requests or nonmaskable interrupts, and ignore system
state bus until the processor asserts SysReq*. The assertion of SysReq*
indicates the processor is ready for operation. In a cluster arrangement, all
processors must assert SysReq*, indicating they are ready for operation.

During a Soft Reset sequence, all external interface state isinitialized. The internal and
secondary cache clocks are not affected by a Soft Reset sequence. The general purpose,
CPO, and CP1 registers are preserved, as well as the primary and secondary caches.

A Soft Reset sequence causes a Soft Reset exception, in which the Soft Reset exception
handler executes instructions from uncached space and uses CACHE instructions to
analyze and dump the contents of the primary and secondary caches. To resume normal
operation, a Cold Reset sequence must be initiated.

Figure 8-3 presents the Soft Reset sequence.

Vcc
VccQ[SC,Sys]
Vref[SC,Sys]
Vcc[Pa,Pd]
SysClk

DCOk

Master

SysReset*

SysReq*
SysGnt*
SysRel*
SysAD(63:0)
SysRespVal*

> 16 SysClk
cycles

Figure8-3 Soft Reset Sequence
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8.5 Mode Bits
The R10000 processor uses mode bits to configure the operation of the microprocessor.
These mode bits are loaded into the processor from the SysAD[63:0] bus during a power-
on or cold reset sequence while SysGnt* is asserted. The SysADChk[7:0] bus does not
have to contain correct ECC during mode bit initialization. During the reset sequence, the
mode bits obtained from SysAD[24:0] are written into bits 24:0 of the CPO Config register.
The mode bits are described in Table 8-1.
Table8-1 Mode Bits
. . M ode Setting
SysAD Bit Name and Function Value
R10000 R12000
0 Reserved
1 Reserved
2 Uncached
20 KsegOCA 3 Cacheable noncoherent
' Specifies the ksegO cache algorithm. 4 Cacheable coherent exclusive
5 Cacheable coherent exclusive on write
6 Reserved
7 Uncached accelerated
23 DevNum 0-3
' Specifies the processor device number.
CohPrcReqTar
5 Specifies the target of processor (1) E)r(;gca;aagent only
coherent requests issued on the System
interface by the processor.
PrcEImReq
6 Specifies whether to enable processor 0 Disable
eliminate requests onto the System 1 Enable
interface by the processor.
PrcRegMax . e
Specifies the maximum number of 0 L outstand! Ng processor request
) . 1 2 outstanding processor requests
8.7 outstanding processor requests allowed .
. 2 3 outstanding processor requests
on the System interface by the .
3 4 outstanding processor requests
processor.
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Table 8-1 (cont.) Mode Bits

: , M ode Setting
SysAD Bit Name and Function Value
R10000 R12000
0 Reserved Reserved
1 Result of division by 1 Reserved
2 Result of divisionby 1.5 | Reserved
3 Result of division by 2 Result of division by 2
4 Result of divisionby 2.5 | Result of division by 2.5
SysClkDiv 5 Result of division by 3 Result of division by 3
Sets PCIk to SysClk ratio; determinesthe 6 Result of divisionby 3.5 | Result of division by 3.5
129 System interface clock frequency; see 7 Result of division by 4 Result of division by 4
' Chapter 7, the section titled “ System 8 Reserved Result of division by 4.5
Interface Clock and Internal Processor 9 Reserved Result of division by 5
Clock Domains.” A Reserved Result of division by 5.5
B Reserved Result of division by 6
C Reserved Result of division by 7+
D Reserved Reserved
E Reserved Reserved
F Reserved Reserved
13 SCBIkSize 0 16-word
Specifies the secondary cache block size. 1 32-word
SCCorEn
14 Specifies the method of correcting (1) Ele\t/gyicgce?e;]:ﬁrg:g?;er?egor
secondary cache data array ECC errors.
15 MemEnd 0 Little endian
Specifies the memory system endianness. 1 Big endian
0 512 Kbyte
1 1 Mbyte
2 2 Mbyte
18:16 SCSize 3 4 Mbyte
' Specifies the size of the secondary cache. 4 8 Mbyte
5 16 Mbyte
6 Reserved
7 Reserved
0 Reserved Reserved
SCCIkDiv 1 Result of division by 1 Reserved
Sets PClk to SCCIk ratio; determines the 2 Result of divisionby 1.5 | Result of division by 1.5
2119 secondary cache clock frequency; see 3 Result of division by 2 Result of division by 2
' Chapter 7, the section titled “ System 4 Result of divisionby 2.5 | Result of division by 2.5
Interface Clock and Internal Processor 5 Result of division by 3 Result of division by 3
Clock Domains.” 6 Reserved Reserved
7 Reserved Result of division by 4
0 Reserved
1 Reserved
2 Reserved
3 Reserved
24:22 Reserved 4 Delay Speculative Dirty -

~N o O

fix for speculative store’
Reserved
Reserved
Reserved
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Table 8-1 (cont.) Mode Bits

. . M ode Setting
SysAD Bit Nameand Function Value
R10000 R12000
0 SCCIk same phase asinternal clock
1 SCClk 1/22 PCIk period earlier than internal clock
2 SCClk 2/12 PCIlk period earlier than internal clock
3 SCCIk 3/12 PCIk period earlier than internal clock
4 SCClk 4/12 PCIk period earlier than internal clock
5 SCCIk 5/12 PCIk period earlier than internal clock
SCClkTap 6 undefined
ogios | Specifiesthe alignment'™ of SCCIK[5:0] 7 undefined
' and SCCIk*[5:0] relative to the internal 8 SCCIk 6/12 PCIk period earlier than internal clock
secondary cache clock. 9 SCCIk 7/12 PCIk period earlier than internal clock
A SCClk 8/12 PCIk period earlier than internal clock
B SCCIk 9/12 PCIk period earlier than internal clock
C SCCIk 10/12 PCIk period earlier than internal clock
D SCClk 11/12 PCIk period earlier than internal clock
E undefined
F undefined
29* | Reserved 0
ODrainSys
30t Specifies whether or not to configure 0 Push-pull
select™T System interface bidirectional 1 Open drain
and output signals as open drain.
CT™M .
31 Specifies whether or not to enable cache 0 Disable
1 Enable
test mode.
63:32 Reserved 0

+f For R12000A only. This setting is reserved in the R12000 and R12000L .

T TheBoot Mode bit 24 corresponds to the Config register[24] bit and this controls DSD during user mode. However, the DSD mode can also be enabled in

the kernel mode by setting the Status register[24] bit. Config register[24] is read-only and can be set only at boot time.

If the DSD modeis set —

a) R12000 will not set the Dirty bit for a secondary cache block until the store instruction is the oldest in the Active List and is about to be executed. (An
interrupt could cause a case where the dirty bit is set (store is no longer speculative), but the store does not immediately graduate. We believe this case

should not cause any problem. This mode does prevent speculative stores from setting the dirty bit.)

b) Thismode will have slightly lower performance due to the delay in the setting of the Dirty bit. Thisdelay will occur just once per block refill from main
memory, when it is necessary to set the dirty bit. Setting the bit requires about ten cycles; but usually the processor will continue to overlap execution of

other instructions. Once a block becomes dirty in secondary cache, this mode has no performance effect.

182

User'sManual U10278EJ4V0UM




Chapter 8 Initialization

¢) Inthismode, amissin secondary cache, dueto astoreinstruction whichisnot aready the oldest in the pipeline, will cause arefill tothe“clean exclusive’
state. A hit to a shared line will immediately cause an upgrade to “clean exclusive’. Thus, bus operations (which are relatively slow) will still begin
speculatively.

Independent of the DSD mode, R12000 will delay a “cached, non-coherent” load until it is the oldest instruction. This change is implemented because a
speculative load accessing an unmapped “xkphys’ address as “cached, non-coherent” might bring data into the secondary cache without the proper
coherency checks.

R12000 is doing no changes to prevent it from speculatively refilling cache linesin shared or clean states except the “xkphys” case described above.

11 Does not include the output buffer delay.

TttSysReg*, SysRel*, SysCmd[11:0], SysCmdPar, SysAD[63:0], SysADChk[7:0], SysVal*, SysState[2:0], SysStatePar, SysStateVal*,
SysCorErr*, SysUncErr*

T Inthe R12000A, the Boot Mode bits 30:29 are assigned to HSTL Mode bits as below;

SysAD Bit Name and Function Value M ode Setting
HSTL Mode 0 HSTL 1
29 Specifiesthe HSTL class of output pins on the secondary cache
; 1 HSTL 2
interface.
30 HSTL Mode 0 HSTL 1
Specifiesthe HSTL class of output pins on the System interface. 1 HSTL 2
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9. Error Protection and Handling

This chapter presents the error protection and handling features provided by the R10000
processor.

Two types of errors can occur in an R10000 system:
e correctable
e uncorrectable

The following two sections describe them.
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9.1 CorrectableErrors

Correctable errors consist of:
e secondary cache tag array correctable ECC errors
» secondary cache data array correctable ECC errors
»  System interface address/data bus correctable ECC errors

When the processor detects a correctable error, the error is automatically corrected, and
normal operation continues. Secondary cache array scrubbing is not performed.

The processor informs the external agent that a correctable error was detected and then
corrected by asserting the SysCor Err* signal for one SysClk cycle.
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9.2 Uncorrectable Errors

186

Uncorrectable errors consist of:

Primary instruction cache array parity errors

Primary data cache array parity errors

Secondary cache tag array uncorrectable ECC errors
Secondary cache data array uncorrectable ECC errors
System interface command bus parity errors

System interface address/data bus uncorrectable ECC errors
System interface response bus parity errors

When the processor detects an uncorrectable error, a Cache Error exception is posted. In
general, the detection of an uncorrectable error does not disrupt any ongoing operations.
However, the instruction fetch and load/store units never use data which contains an
uncorrectable error.

To inform the external agent, the processor asserts SysUncErr* for one SysClk cycle
whenever any of the following uncorrectable errors are detected:

Primary instruction cache tag array parity errors
Primary data cache tag array parity errors
Secondary cache tag array uncorrectable ECC errors
System interface command bus parity errors

System interface address/data bus external address cycle uncorrectable ECC
errors

System interface response bus parity errors.

The processor informs the external agent that an uncorrectable tag error has been detected
by asserting SysUncErr* for one SysClk cycle.
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9.3 Propagation of UncorrectableErrors

The processor assists the external agent in limiting the propagation of uncorrectable errors
in the following manner:

During external block data response cycles, if the data quality indication on
SysCmd(5) is asserted, or if an uncorrectable ECC error is encountered on the
system address/data bus while the ECC check indication on SysCmd(0) is
asserted, the processor intentionally corrupts the ECC of the corresponding
secondary cache quadword after receiving an external ACK completion
response.

During processor data cycles, the processor asserts the data quality indication
on SysCmd(5) if the data is known to contain uncorrectable errors. The
System interface ECC is never intentionally corrupted; the SysCmd(5) bit is
used to indicate corrupted data.

If an uncorrectable cache tag error is detected, the processor asserts
SysUncErr* for one SysClk cycle.

An external coherency request that detects a secondary cache tag array
uncorrectable error asserts the secondary cache block tag quality indication on
SysState(2) during the corresponding processor coherency state response.

If an external coherency request requires a processor coherency data response,
and a primary data cache tag parity error is encountered during the primary
cache interrogation, or a secondary cache tag array uncorrectable error is
encountered during the secondary cache interrogation, the processor asserts
the data quality indication on SysCmd(5) for all doublewords of the
corresponding processor coherency data response.
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9.4 CacheError Exception
The processor indicates an uncorrectable error has occurred by asserting a Cache Error
exception.
The following four internal units detect and report uncorrectable errors:
* instruction cache
e datacache
» secondary cache
»  System interface
Each of these four units maintains a unique local CacheErr register.

A Cache Error exception isimprecise; that is, it is not associated with a particular
instruction. When any of the four units post a Cache Error exception, completed
instructions are graduated before the Cache Error exception istaken. If there are Cache
Error exceptions posted from more than one of the units, the exceptions are prioritized in
the following order:

1. instruction cache
2. datacache

3. secondary cache
4. Systeminterface.

The corresponding local CacheErr register istransferred to the CPO CacheErr register and
the CPO Satus register ERL bit is asserted. Instruction fetching begins from 0xa0000100
or 0xbfc00300, depending on the CPO Status register BEV bit. The CPO Error EPC register
isloaded with the virtual address of the next instruction that has not been graduated, so that
execution can resume after the Cache Error exception handler completes.

When ERL=1, the user address region becomes a 2-Gbyte uncached space mapped directly
to the physical addresses. This allows the Cache Error handler to save registersdirectly to
memory without having to use aregister to construct the address.

The processor does not support nested Cache Error exception handling. While the CPO
Satus register ERL bit is asserted, any subsequent Cache Error exceptions are ignored.
However, the detection of additional uncorrectable errorsis not inhibited, and additional
Cache Error exceptions may be posted.T

T The hardware does not handle the case of multiple Cache Error exceptions in any special
manner; caches are refilled as normal, and data forwarded to the appropriate functional units.
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9.5 CPO CacheErr Register EW Bit

When aunit detects an uncorrectable error, it recordsinformation about the error initslocal
CachekErr register and posts a Cache Error exception. If a subsequent uncorrectable error
occurs while waiting for the Cache Error exception to be taken and transfer of the local
CacheErr register to the CPO CacheErr register to complete, the EW bit is set initslocal
CacheErr register. Once the Cache Error exception is taken, the EW bit in the CPO
CachekErr register is set and the Cache Error exception handler now determines that a
second error has occurred.

Once the CP0O CacheErr register EW bit is set, it can only be cleared by areset sequence.

9.6 CPO Status Register DE Bit

Asserting the CPO Status register DE bit suppresses the posting of future Cache Error
exceptions. All local CacheErr registersare also prevented from being updated. Unlikethe
R4400 processor architecture, when the DE bit isasserted, cache hitsare not inhibited when
an uncorrectable error is detected. Correctable errors are handled normally when the DE
bit is set.
NOTE: Be careful when setting this bit, since it may cause erroneous data and/or
instructions to be propagated.

9.7 CACHE Instruction

Uncorrectableerror protection issuppressed for the Index Load Tag, Index Store Tag, Index
Load Data, and Index Store Data CACHE instruction variations. Thesefour variations may
be used within a Cache Error exception handler to examine the cache tags and data without
the occurrence of further uncorrectable errors.
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9.8 Error Protection Schemes Used by R10000

Error protection schemes used in the R10000 processor are:

e parity
*  sparse encoding
« ECC

These schemes are described in this section, and listed in Table 9-1.

Table9-1 Error Protection Schemes Used in the R10000 Processor

Error Detection Used What is Protected
Primary caches
Parity Secondary cache data
System interface buses
Sparse encoding Primary data cache state mod array
Secondary cache tag
ECC (SECDED) Secondary cache data

System interface address/data bus

Parity
Parity is used to protect the primary caches and various System interface buses. The
processor uses both odd and even parity schemes:

e inan odd parity scheme, the total number of ones on the protected data and
the corresponding parity bit should be odd

e inan even parity scheme, the total number of ones on the protected data and
the corresponding parity bit should be even.

Spar se Encoding

A sparse encoding is used to protect the primary data cache state mod array. In such a
scheme, valid encodings are chosen so that altering asingle bit creates an invalid encoding.

ECC

An error correcting code (ECC) is used to protect the secondary cache tag, the secondary
cache data, and the System interface address/databus. A distinct single-bit error correction
and double-hit error detection (SECDED) codeis used for each of these three applications.
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9.9 Primary Instruction Cache Error Protection and Handling

Error Protection

Error Handling

This section describes error protection and error handling schemes for the primary

instruction cache.

The primary instruction cache arrays have the following error protection schemes, aslisted

in Table 9-2.

Table9-2 Primary Instruction Cache Array Error Protection

Array Width Error Protection
Tag Address 27-bit Even parity
Tag State 1-bit Even parity
Data 36-bit Even parity
LRU 1-bit None

All primary instruction cache errors are uncorrectable. |f an error is detected, the

instruction cache unit posts a Cache Error exception and initializesthe D, TA, TS, and Pldx
fieldsin thelocal CacheErr register (see Chapter 11, the section titled “ CacheErr Register
(27),” for moreinformation). If an error is detected on the tag address or state array, the

processor informs the external agent that an uncorrectable tag error was detected by

asserting SysUncErr* for one SysClk cycle.
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9.10 Primary Data Cache Error Protection and Handling

Error Protection

Error Handling

192

This section describes error protection and error handling schemes for the primary data

cache.

The primary data cache arrays have the following error protection schemes, aslisted in

Table 9-3.

Table 9-3 Primary Data Cache Array Error Protection

Array Width Error Protection
Tag Address 28-hit Even parity
Tag State 3-hit Even parity
Tag Mod 3-bit Sparse encoding
Data 8-bit Even parity
LRU 1-hit None

All primary data cache errors are uncorrectable. If an error is detected, the data cache unit
posts a Cache Error exception and initializesthe EE, D, TA, TS, TM, and Pldx fieldsin the
local CacheErr register (see Chapter 11, the section titled “ CacheErr Register (27),” for
more information). If an error is detected on the tag address, state, or mod array, the
processor informs the external agent that an uncorrectable tag error was detected by

asserting SysUncErr* for one SysClk cycle.
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9.11 Secondary CacheError Protection and Handling

Error Protection

Error Handling

DataArray

This section describes error protection and error handling schemes for the secondary cache.

The secondary cache arrays have the following error protection schemes, aslisted in Table

9-4.

Table 9-4 Secondary Cache Array Error Protection

Array Width Error Protection
Data 128-hit 9-bit ECC + even parity
Tag 26-bit 7-bit ECC
MRU (Way prediction table) 1-bit None

Thissection describeserror handling for the dataarray and thetag array. AsshowninTable
9-4, errors are not detected for the way prediction table.

The 128-bit wide secondary cache data array is protected by a 9-bit wide ECC. An even
parity bit for the 128 bits of dataisused for rapid detection of correctable (single-hit) errors,
when a correctable parity error is detected, the dataiis sent through the data corrector. The

parity bit does not have any logical effect on the processor’s ability to either detect or

correct errors.

Whenever the processor writes the secondary cache data array, it drivesthe proper ECC on
SCDataChk(8:0) and even parity on SCDataChk(9).
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DataArray in Correction Mode

The secondary cache operatesin correction mode when the SCCor En mode bit is asserted.
Whenever the processor reads the secondary cache data array in correction mode, the data
is sent through a data corrector.

If acorrectable error is detected, in-line correction is automatically made without affecting
latency. The processor informsthe external agent that a correctable error was detected and
corrected by asserting SysCor Err* for one SysClk cycle.

If an uncorrectable error isdetected, the secondary cache unit postsaCache Error exception
and initializesthe D and Sdx fields in the local CacheErr register (see Chapter 11, the
section titled “ CacheErr Register (27),” for more information).

In correction mode, secondary-to-primary cache refill latency isincreased by two PCIk
cycles. Multiple processors, operating in alock-step fashion, remain synchronized in the
presence of secondary cache data array correctable errors.

Table 9-5 presents the ECC matrix for the secondary cache data array.
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DataArray in Noncorrection Mode

TagArray

When the SCCor En mode bit is negated, the secondary cache operates in noncorrection
mode. Whenever the processor reads the secondary cache data array in noncorrection
mode, it checks for even parity on SCDataChk(9). If aparity error is detected, it is
assumed that a correctable error has occurred, and the secondary cache block is again read
through a data corrector. During this re-read, the processor checks the SCDataChk(8:0)
bus for the proper ECC.

If acorrectable error is detected, correction is automatically performed in-line. To inform
the external agent that a correctable error had been detected and corrected, the processor
asserts SysCor Err* for one SysClk cycle.

If an uncorrectable error isdetected, the secondary cache unit postsa Cache Error exception
and initializes the D and Sdx fieldsin the local CacheErr register.

Secondary cache data array correctable errors are monitored with Performance Counter O.

The 26-bit-wide secondary cache tag array is protected by a 7-bit-wide ECC.
Table 9-6 presents the ECC matrix for the secondary cache tag array.

Table9-6 ECC Matrix for Secondary Cache Tag Array

Check Bit q 12 34 56
Data Bit op22 P2 11 11 [1111f11
532 {10 o8 [76  |5432[1098(7654/3210
11/o|o100]1000]1000[0001[1111]1000[1000[1000
13)0|1000|0100[0100|0010[1111|1111|0000[0100
11/1{0010|1000[0001|1000[0000|1111|0100[0010
Number of ;1191 00l0100]0010[01001000]01200[1111]0000
(ONES PETTOW 1 31911000|0001{1000/1000[0200/0000[1111|1111
1211/0010|0010[0100|0100{0010|0010|0010[1111
14)0|1111[1100[1100[1100|0001|0001{0001|000L
Number of ones [3(3331/3311[3311(3311(3333(3333(3333(3333
per column

Whenever the processor reads the secondary cachetag array, it checksthe SCTagChk(6:0)
bus for the proper ECC. If acorrectable error is detected, correction is automatically
performed in-line, without affecting latency. The processor asserts SysCor Err* for one
SysClk cycleto inform the external agent that a correctable error has been detected and
corrected. If an uncorrectable error is detected, the secondary cache unit posts a Cache
Error exception and initializes the TA and S dx fields in the local CacheErr register. The
processor asserts SysUncErr* for one SysClk cycle to inform the external agent that an
uncorrectable tag error has been detected.

Whenever the processor writes the secondary cache tag array, it drives the proper ECC on
the SCTagChk(6:0) bus.
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9.12 System Interface Error Protection and Handling

Error Protection

This section describes error protection and error handling schemesfor the System interface.

The System interface buses have the following error protection schemes, aslisted in Table

9-7.

Table9-7 System Interface Bus Error Protection

Bus Width Error Protection
SysCmd 12-hit Odd parity
SysAD 64-bit 8-bit ECC
SysState 3-bit Odd parity
SysResp 5-bit Odd parity
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Error Handling
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SysCmd(11:0) Bus

Thissection describeserror handling on the system command bus, system address/databus,
system state bus, and system response bus.

The 12-bit wide system command bus, SysCmd(11:0), is protected by odd parity.

Whenever the processor isin master state and it asserts Sysval* toindicatethat it isdriving
valid information on the SysCmd(11:0) bus, it also drives odd parity on the SysCmdPar
signal.

Whenever the processor isin slave state and an external agent asserts SysVal* to indicate
that it isdriving valid information on the SysCmd(11:0) bus, the processor checks the
SysCmdPar signal for odd parity. If aparity error is detected, the processor ignores the
SysCmd(11:0) and SysAD(63:0) buses for one SysClk cycle. The System interface unit
posts a Cache Error exception and sets the SC bit in the local CacheErr register.
Additionally, the processor informs the external agent by asserting SysUncErr* for one
SysClk cycle.

Caution: By ignoring the SysCmd(11:0) and SysAD(63:0) buses, the processor to

become unsynchronized with other processors or the external agent on the cluster
bus.
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SysAD(63:0) Bus
The 64-bit wide system address/data bus, SysAD(63:0), is protected by an 8-bit-wide ECC.

Processor in Master State

Whenever the processor isin master state and it asserts SysVal* to indicate it is driving
valid information on the SysAD(63:0) bus, it also drives the proper ECC on the
SysADChk(7:0) bus.

Processor in Slave State

Whenever the processor isin slave state, error checking is enabled with the assertion of
SysCmd(0), and an external agent asserts SysVal* toindicateit isdriving valid information
on the SysAD(63:0) bus, the processor checksthe SysADChKk(7:0) busfor the proper ECC.

Correctable Error Detected

If acorrectable error isdetected during an external address cycle, or during an external data
cycle for aprocessor read or upgrade request originated by the R10000 processor,
correction is automatically performed in-line without affecting latency. The processor
asserts SysCorErr* for one SysClk cycle to inform the external agent that a correctable
error has been detected and corrected.

Uncorrectable Error Detected

If an uncorrectable error is detected during an external address cycle, the processor ignores
the SysCmd(11:0) and SysAD(63:0) busesfor one SysClk cycle, and the System interface
unit posts a Cache Error exception and sets the SA bit in the local CacheErr register.
Additionally, the processor informs the external agent by asserting SysUncErr* for one
SysClk cycle.

Caution: By ignoring the SysCmd(11:0) and SysAD(63:0) buses, this processor
may become unsynchronized with other processors or the external agent on the
cluster bus.

If an uncorrectable error is detected or the data quality indication on SysCmd(5) isasserted
during an external data cycle for a processor read or upgrade request originated by the
processor, the R10000 asserts the corresponding incoming buffer uncorrectable error flag.

When the processor forwards block data from an incoming buffer entry after receiving an
external ACK completion response, the associated incoming buffer uncorrectable error
flags are checked, and if any are asserted, the System interface unit posts a single Cache
Error exception and initializes the EE, D, and S dx fieldsin the local CacheErr register.

When the processor forwards doubl e/single/partial-word data from an incoming buffer
entry after receiving an external ACK compl etion response, the associated incoming buffer
uncorrectable error flag is checked and, if asserted, the System interface unit posts a Bus
Error exception.

Table 9-8 presents the ECC matrix for the System interface address/data bus. ThisECC
matrix isidentical to that used by the R4X00 System interface.
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Table9-8 ECC Matrix for System Interface Address/Data Bus

Check Bit 43 52 70 61
Data Bit 666655 |555555 |5544|4444|4444(3333(3333[3322(2222[2222|1111(111111
321008 |[7654B32 |1098|7654[3210(9876|5432|1098|76543210{9876|5432[10 |9876/54 [3210
b7|1111|1100[1100[1000[2000[0000[1111{1111|0000|1000|1000|1000|1000]0000|1010/0100|1000/1000
p7|1111/1000[2000[1000[0100|0000{0000|0000[1111|02100{0100]0100{0100]1111|1100/1100/1010/0100
£7/0000/1000[1100[1010[0010[1111{1111|0000|{0000|0010{0010|0010|0010]1111|1000/1000/1100/0010
Number of  [27/0000|1010[0100[1100{0001{1111|0000|1111{1111|0001/0001|0001|0001|0000|1000[1100/1000{0001
(PNEs PETTOW H711000{0101/0011{0100{0000|1000]1000/1000]1000|1111(1111|0000/1111|1000{1100{0001|0100|0000
£7/01001100/0010[0101|1111{0100{0100|0100{0100|0000{0000|1111|1111/0100/0100/0011|0100/0000
£7/0010/0100/0011{1100[1111|0010{0010[0010{0010[1111|0000{0000{0000]0010]0100/00100101 1111
£7|0001{0100/0001/0100|0000{0001/0001/0002|0001/0000|1111{1111/0000{0001{0101|0011|1100[1111
Number of ones |3333[5511(3333(5511(3333(3333(3333(3333(3333(3333/333333333333|3333(5511|3333/5511(3333
per column
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SysState(2:0) Bus

The 3-bit wide system state bus, SysState(2:0), is protected by odd parity. The processor
drives odd parity on the SysStatePar signal.

SysResp(4:0) Bus
The 5-bit wide system response bus, SysResp(4:0), is protected by odd parity.

Whenever an external agent asserts SysRespVal* to indicateit isdriving valid information
on the SysResp(4:0) bus, the processor checks the SysRespPar signal for odd parity. If a
parity error is detected, the processor ignores the SysResp(4:0) bus for one SysClk cycle.
The System interface unit posts a Cache Error exception and sets the SR bit in the local
CacheErr register. Additionally, the processor informs the external agent by asserting
SysUncErr* for one SysClk cycle.

Caution: If the processor ignores the SysResp(4:0) bus, it may become
unsynchronized with other processors or the external agent on the cluster bus. Also,
the processor will “hang” if aparity error is detected on the SysResp[4:0] busduring
an external completion response cycle for a processor double/single/partial-word
read request originated by the processor. The external agent may initiate a Soft Reset
sequence to obtain the contents of the CacheErr register, and the CacheErr register
will indicate a System interface uncorrectabl e system response bus error.
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Protocol Observation

The processor continuously observes the protocol on the System interface.
Table 9-9 presents the supported protocol observations and the associated error handling

sequence.

Table 9-9 Protocol Observation

Protocol Observation

Error Handling

External response data cycle with an unexpected request number
during an external block data response for a processor block read
or upgrade request originated by the processor.

Ignore the external response data cycle

External block data response specifying a Reserved cache block
state for a processor block read or upgrade request originated by
the processor.

Override the cache block state to CleanExclusive

External block data response specifying a Shared cache block
state for a processor coherent block read exclusive or upgrade
request originated by the processor.

Override the cache block state to CleanExclusive

External completion response specifying a Reserved completion
indication.

Ignore the external completion response

External ACK completion response for a processor read request
originated by the processor that has not received an external data
response.

Override the external ACK completion responseto a
NACK
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10. JTAG Interface Operation

The JTAG interface isimplemented according to the standard |EEE 1149.1 test access port
protocol specifications.

The JTAG interface accesses the JTAG controller and instruction register aswell asa
boundary scan register. The JTAG operation does not require DCOK to be asserted or
SysClk to be running; however, if DCOK is asserted the SysClk must run at the specified
minimum frequency or the core logic may be damaged.
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10.1 Test AccessPort (TAP)

TAP Controller (Input)

204

The test access port (TAP) consists of four interface signals. These signals are used to
control the seria loading and unloading of instructions and test data, as well asto execute
tests.

The TAP consists of the following signals:

JTDI: Serial data input (Input signal)

JTDO: Serial data output (Output signal)

JTMS:. Mode select (Input signal)

JTCK: Clock (Input signal)

JTRST: Reset input (Input signal, active low)

The timing and the relationship of the TAP signals follows the IEEE 1149.1 standard
protocol.

The R10000 processor implements the 16-state TAP controller specified by the IEEE
1149.1 standard in the following manner:

* TheJTMS signal operates the state machine synchronized by the JTCK
signal.

» TheTAP controller is reset by keeping the JTM S signal asserted through five
consecutive edges of JTCK. Thisreset condition sets the reset state of the
controller.

e Inthe R12000, the TAP controller is also reset by asserting SysReset*. This
pin must not be asserted while using the boundary scan register.

e Inthe R12000A, the TAP controller is also reset by asserting JTRST. This
signal can be asserted asynchronously.
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10.2 Instruction Register

10.3 Bypass Register

The JTAG instruction register is four bits wide, permitting atotal of 16 instructionsto
control the selection of the bypass register, the boundary scan register, and other data
registers.

The encoding of the instruction register is given in Table 10-1:

Table 10-1 JTAG Instruction Register Encoding

MSB...LSB Selected Data Register
0000 Boundary Scan Register
0001 Sample - Preload
0010

to Data Register (not used)
1110
1111 Bypass Register

The 0001 valueis provided to represent sample-preload, but also selects the boundary scan
register.

During areset of the TAP controller, thevalue 1111 isloaded into the parallel output of the
instruction register, thus selecting the bypass register as the default.

During the Shift-IR state of the TAP controller, datais shifted serially into the instruction
register from JTDI, and the LSB of the instruction register is shifted out onto JTDO.

During the Update-IR state, the current state of the instruction register is shifted to its
paralel output for decoding.

The bypass register is 1 bit wide.

When the bypassregister is sel ected and the TAP controller isin the Shift-DR state, dataon
JTDI isshifted into the bypass register and the output of the bypass register is shifted out
onto JTDO.
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10.4 Boundary Scan Register

206

The bypass register is 1 bit wide.

The boundary scan data register is selected by loading 0000 into the instruction register.
The Shift-DR, Update-DR, and Capture-DR states of the TAP controller are used to operate
the boundary scan register according to the IEEE 1149.1 standard specifications.

Theboundary scan register provides serial accessto each of the processor interface pins, as
shown in Figure 10-1. Hence, the boundary scan register can be used to load and observe
specific logic values on the processor pins.

Integrated
Circuit
m._rs

s

74

[ | [ =4

IC package pin
Boundary scan cells []

|
/.

iy
TRE

Figure10-1 JTAG Boundary Scan Cells

The main application of the boundary scan register is board-level interconnect testing.

The use of the boundary scan register for applying datato and capturing data from the
internal microprocessor circuitry is not supported.

The boundary scan register list for rev 1.2 of the fab isgiven in Table 10-2. The TriState
signal will be eliminated from the BSR in rev 2.0 of the fab, and beyond.

An additional bit is provided in the boundary scan register to control the direction of
bidirectional pins. Asitisloaded through JTDI, thisbit isthefirst bit in the boundary scan
chain. Thelogic value of this hit islatched during the Update-DR state, and sets the
direction of al bidirectional pins asfollows:

Value Direction
0 Input
1 Output

Thevalueisset to 0 during reset, setting all bidirectional pinsto input prior to any boundary
scan operations.
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Table 10-2 Boundary Scan Register Pinlist, rev 1.2

Signal Signal Signal Signal Signal Signal
1. SCDataChk[1] | 2. SCData[63] 3. SCData62] 4. SCData[6]] 5. SCData[60] 6. SCData59]
7. SCData[58] 8. SCData[57] 9.  SCData[56] 10. SCData[55] 11. SCData[54] 12. SCDatg[53]
13. SCDatg[52] 14. SCDatg[51] 15. SCData[50] 16. SCData[49] 17. SCData[48] 18. SCDatd[47]
19. SCData[46] 20. SCData[45] 21. SCData[44] 22. SCData[43)] 23. SCData[42)] 24. SCData41]
25. SCData[40] 26. SCData[39] 27. SCData[38] 28. SCData[37] 29. SCData[36] 30. SCData[35]
31l. SCData[34] 32. SCData[33] 33. SCData[32] 34. SysAD[0] 35. SysAD[1] 36. SysAD[2]
37. SysAD[3] 38. SysAD[4] 39. SysAD[5] 40. SysAD[6] 41. SysAD[7] 42. SysAD[8]
43. SysAD[9] 44.  SysAD[10] 45. SysAD[11] 46. SysAD[12] 47. SysAD[13] 48. SysAD[14]
49. SysAD[15] 50. SCData[0] 51. SCDatd[1] 52. SCData[2] 53. SCData[3] 54. SCData[4]
55. SCData[5] 56. SCData[6] 57. SCDatd[7] 58. SCData[8] 59. SCData[9)] 60. SCData[10]
61. SCData[11] 62. SCData[12] 63. SCData[13] 64. SCData[14] 65. SCData[15] 66. SCData[16]
67. SCData[17] 68. SCData[18] 69. SCData[19] 70. SCData[20] 71. SCData[21] 72. SCData[22]
73. SCData[23] 74. SCData[24] 75. SCData[25] 76. SCData[26] 77. SCData[27] 78. SCData[28]
79. SCData[29)] 80. SCData[30] 81l. SCData[31] 82. SCDataChk([0] 83. SCAAdd[18] | 84. SCAAddI[17]
85. SCAAddr[16] | 86. SCAAddr{15] | 87. SCAAddr[14] | 88. SCAAddr[13] 89. SCAAdd[12] | 90. SCAAddr[11]
91. SCAAdd[10] | 92. SCAAddr[9] 93. SCDataChk[2] | 94. SCDataChk[4] 95. SCData[64] 96. SCData[65]
97. SCData[66] 98. SCData[67] 99. SCData[68] 100. SCData[69] 101. SCDatg[70] 102. SCDatg[71]
103. SCDataChk[9] | 104. SysCyc* 105. SysAD[32] 106. SysAD[33] 107. SysAD[34] 108. SysAD[35]
109. SysAD[36] 110. SysAD[37] 111. SysAD[38] 112. SysAD[39] 113. SysAD[40] 114. SysAD[41]
115. SysAD[42] 116. SysAD[43] 117. SysAD[44] 118. SysAD[45] 119. SysAD[46] 120. SysAD[47]
121. SCDatg[72] 122. SCDatd[73] 123. SCData[74] 124. SCDatg[75] 125. SCData[76] 126. SCDatd[77]
127. SCData[78] 128. SCDatd[79] 129. SCAAddI[0] 130. SCAAddr[1] 131. SCAAddr[2] 132. SCAAddI[3]
133. SCAAddr[4] 134. SCAAddI[5] 135. SCAAddI[6] 136. SCAAddI[7] 137. SCAAddI[8] 138. SCADWay
139. SCADCS* 140. SCADOE* 141. SCADWr* 142. SCData[80] 143. SCDatg[81] 144. SCDatd[82]
145. SCData[83] 146. SCData[84] 147. SCData[85] 148. SCData[86] 149. SCData[87] 150. SCData[88]
151. SCData[89] 152. SCData[90] 153. SCData[91] 154. SCData[92] 155. SCData[93] 156. SCData[94]
157. SCData[95] 158. SCDataChk[6] | 159. SCDataChk[8] | 160. Sparel 161. SCTCS* 162. SCTOE*
163. SCTWr* 164. SCTag[25] 165. SCTag[24] 166. SCTag[23] 167. SCTag[22] 168. SCTag[21]
169. SCTag[20] 170. SCTag[19] 171. SCTag[18] 172. SCTag[17] 173. SCTag[16] 174. SCTag[15]
175. SCTag[14] 176. SCTag[13] 177. SCTag[12] 178. SCTag[11] 179. SCTag[10] 180. SCTag[9]
181. SCTag[8] 182. SCTag[7] 183. SCTag|6] 184. SCTag[5] 185. SCTag[4] 186. SCTag[3]
187. SCTag[2] 188. SCTag[1] 189. SCTag[0] 190. SCTagL SBAddr 191. TriState’ 192. SCTWay
193. SCTagChk[6] | 194. SCTagChk[5] | 195. SCTagChk[4] | 196. SCTagChk[3] 197. SCTagChk[2] | 198. SCTagChk[1]
199. SCTagChk[0] | 200. SysCmd[0] 201. SysCmd[1] 202. SysCmd[2] 203. SysCmd[3] 204. SysCmd[4]
205. SysCmd[5] 206. SysCmd[6] 207. SysCmd[7] 208. SysCmd[8] 209. SysCmd[9] 210. SysCmd[10]
211. SysCmd[11] 212. SysCmdPar 213. Sysval* 214. SysReg* 215. SysRel* 216. SysGnt*
217. SysReset* 218. SysRespVal* 219. SysRespPar 220. SysResp[4] 221. SysResp[3] 222. SysResp[2]
223. SysResp[1] 224. SysResp[0] 225. SysGblPerf* 226. SysRdRdy* 227. SysWrRdy* 228. SysStateVal*
229. SysStatePar 230. SysState[2] 231. SysState[1] 232. SysState[0] 233. SysCorErr* 234. SysUncErr*
235. SysNMI* 236. SCDataChk[7] | 237. SCDataChk[5] | 238. SCData[127] 239. SCData[126] 240. SCData[125]
241. SCData[124] 242. SCData[123] 243. SCData[122] 244. SCData[121] 245. SCData[120] 246. SCData[119]
247. SCData[118] 248. SCData[117] 249, SCData[116] 250. SCData[115] 251. SCData[114] 252. SCData[113]
T Will be eliminated after rev. 1.2.
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Table 10-2 (cont.) Boundary Scan Register Pinlist, rev 1.2

Signal Signal Signal Signal Signal Signal
253. SCDaa[112] 254. SCBDWr* 255. SCBDOE* 256. SCBDCS* 257. SCBDWay 258. SCBAddI[8]
259. SCBAddI[7] 260. SCBAddr[6] 261. SCBAddr[5] 262. SCBAddr[4] 263. SCBAddr[3] 264. SCBAddr[2]
265. SCBAddr[1] 266. SCBAddr[0] 267. SCData[111] 268. SCDate[110] 269. SCData[109] 270. SCDate[108]
271. SCTag[g] 272. SCTag[7] 273. SCTag[6] 274. SCTag[5] 275. SCTag[4] 276. SCTag[3]
277. SCTag[2] 278. SCTag[1] 279. SCTag[0] 280. SCTagLSBAddr | 281. TriState? 282. SCTWay
283, SCTagChk[6] 284. SCTagChk(5] 285. SCTagChk[4] 286. SCTagChk([3] 287. SCTagChk[2] | 288. SCTagChk[1]
289. SCTagChk[0] 290. SysCmd[0] 291. SysCmd[1] 292. SysCmd[2] 293. SysCmd[3] 294. SysCmd[4]
295. SysCmd[5] 296. SysCmd[6] 297. SysCmd[7] 298. SysCmd[8] 299. SysCmd[9] 300. SysCmd[10]
301 SysCmd[11] 302. SysCmdPar 303. Sysval* 304. SysReq* 305. SysRel* 306. SysGnt*
307. SysReset* 308. SysRespval* 309. SysRespPar 310. SysResp[4] 311. SysResp[3] 312. SysResp[2]
313. SysResp[1] 314. SysResp[0] 315. SysGhlPerf* 316. SysRdRdy* 317. SysWrRdy* 318. SysStateval*
319, SysStatePar 320. SysState[2] 321, SysState[1] 322. SysState[0] 323. SysCorErr* 324. SysUncErr*
325. SysNMI* 326. SCDaaChk[7] | 327. SCDataChk[5] | 328. SCDate[127] 329. SCDate[126] 330. SCDate[125]
331 SCDate[124] 332. SCDae[123] 333. SCDate[122] 334. SCDate[121] 335. SCData[120] 336. SCDate[119]
337. SCDate[118] 338. SCDate[117] 339. SCDate[116] 340. SCDate[115] 341. SCData[114] 342, SCDate[113]
343. SCDate[112] 344. SCBDWr* 345. SCBDOE* 346. SCBDCS* 347. SCBDWay 348. SCBAddr[8]
349. SCBAddr[7] 350. SCBAddr[6] 351. SCBAddr[5] 352. SCBAddr[4] 353. SCBAddI[3] 354. SCBAddr[2]
355. SCBAddr[1] 356. SCBAddr[0] 357. SCDate[111] 358. SCDate[110] 359. SCData[109] 360. SCDate[108]
361. SCDate[107] 362. SCDate[106] 363. SCDate[105] 364. SCDate[104] 365. SysAD[63] 366. SysAD[62]
367. SysAD[61] 368. SysAD[60] 369. SysAD[59] 370. SysAD[58] 371 SysADI[57] 372. SysAD[56]
373. SysAD[55] 374. SysAD[54] 375. SysAD[53] 376. SysAD[52] 377. SysAD[51] 378. SysAD[50]
379. SysAD[49] 380. SysAD[48] 381. SysADChK[7] 382. SysADChk[6] 383. SysADChk[5] | 384. SysADChk[4]
385. SysADChk([3] 386. SysADChk[2] 387. SysADChk[1] 388. SysADChk[0] 389. SysAD[31] 390. SysAD[30]
391. SysAD[29] 392. SysAD[2g] 393. SysAD[27] 394. SysAD[26] 395. SysAD[25] 396. SysAD[24]
397. SysAD[23] 308. SysAD[22] 399. SysAD[21] 400. SysAD[20] 401. SysAD[19] 402. SysAD[18]
403. SysAD[17] 404. SysAD[16] 405. SCDate[103] 406. SCDate[102] 407. SCDae[101] | 408. SCDate[100]
409. SCDate[99] 410. SCData[98] 411, SCDate[97] 412. SCDate[96] 413. SCDataChk[3] | 414. SCBAdd[9]
415. SCBAddr[10] 416. SCBAddr[11] 417. SCBAddr[12] 418. SCBAddr[13] 419, SCBAddr[14] | 420. SCBAddr[15]
421. SCBAddr[16] 422. SCBAddr[17] 423. SCBAddr[18]

$ Will be eiminated after rev. 1.2.
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11. Coprocessor O

This chapter describes the Coprocessor 0 operation, concentrating on the CPO register
definitions and the R10000 processor implementation of CPO instructions.

The Coprocessor 0 (CPO0) registers control the processor state and report its status. These
registers can be read using MFCO instructions and written using MTCO instructions. CPO
registers arelisted in Table 11-1.
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Table11-1 Coprocessor 0 Registers

Register No. Register Name Description
0 Index Programmable register to select TLB entry for reading or writing
1 Random Pseudo-random counter for TLB replacement
2 EntryL o0 Low half of TLB entry for even VPN (Physical page number)
3 EntryL ol Low half of TLB entry for odd VPN (Physical page number)
4 Context Pointer to kernel virtual PTE table in 32-bit addressing mode
5 PageMask Mask that setsthe TLB page size
6 Wired Number of wired TLB entries (lowest TLB entries not used for random replacement)
7 Undefined Undefined
8 BadVAddr Bad virtual address
9 Count Timer count
10 EntryHi High half of TLB entry (Virtua page number and ASID)
11 Compare Timer compare
12 Status Processor Status Register
13 Cause Cause of the last exception taken
14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16 Config Configuration Register (secondary cache size, etc.)
17 LLAddr Load Linked memory address
18 WatchLo Memory reference trap address (low bits Adr[39:32])
19 WatchHi Memory reference trap address (high bits Adr[31:3])
20 XContext Pointer to kernel virtual PTE table in 64-bit addressing mode
21 FrameMask Mask the physical addresses of entries which are written into the TLB
22 Diagnostic Branch diagnostic register
23 Undefined Undefined
24 Undefined Undefined
25 Performance Counter | Performance count and control
26 ECC Secondary cache ECC and primary cache parity
27 Cachekrr Cache Error and Status register
28 TagLo Cache Tag register - low bits
29 TagHi Cache Tag register - high bits
30 ErrorEPC Error Exception Program Counter

210

Coprocessor Qinstructionsare enabled if the processor isin Kernel mode, or if bit 28 (CUQ)
isset in the Status register. Otherwise, executing one of these instructions generates a
Coprocessor 0 Unusable exception.
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Chapter 11 Coprocessor 0

11.1 Index Register (0)

TheIndex register isa 32-bit, read/write register containing six bitsto index an entry inthe
TLB. Thehigh-order hit of theregister showsthe successor failureof aTLB Probe (TLBP)
instruction.

The Index register also specifiesthe TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions.

Figure 11-1 shows the format of the Index register; Table 11-2 describes the Index register

fields.
Index Register
31 30 6 5 0
P 0 Index I
25 6
Figure11-1 Index Register
Table 11-2 Index Register Field Descriptions
Field Description
p Probe failure. Set to 1 when the previous TLBProbe (TLBP)
instruction was unsuccessful.
Index Index to the TLB entry affected by the TLBRead and
TLBWrite instructions
0 Reserved. Must be written as zeroes, and returns zeroes when
read.
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11.2 Random Register (1)

212

The Random register is aread-only register of which six bitsindex an entry in the TLB.
Thisregister decrements when any instruction graduates at that particular cycle, and its
values range between an upper and alower bound, as follows:

e Thelower bound is set by the number of TLB entries reserved for exclusive
use by the operating system (the contents of the Wired register).

e The upper bound is set by the total number of TLB entries minus 1
(64 — 1 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write
Random instruction. The register does not need to be read for this purpose; however, the
register is readable to verify proper operation of the processor.

To simplify testing, the Randomregister is set to the value of the upper bound upon system
reset. Thisregister isalso set to the upper bound when the Wired register iswritten.

Figure 11-2 shows the format of the Random register; Table 11-3 describes the Random
register fields.

Random Register
31 6 5 0

0 Random I

26 6
Figure 11-2 Random Register

Table 11-3 Random Register Field Descriptions

Field Description

Random TLB Random index

0 Reserved. Must be written as zeroes, and returns zeroes when read.
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11.3 EntryL o0 (2) and EntryL ol (3) Registers

The EntryLo register consists of two registers with identical formats:
e EntryLoO is used for even virtual pages.
» EntryLol is used for odd virtual pages.

The EntryLo0 and EntryLol registersare read/writeregisters. They hold the physical page
frame number (PFN) of the TLB entry for even and odd pages, respectively, when
performing TLB read and write operations. Figure 11-3 shows the format of these
registers.

EntryLoO and EntryLol Registers

63 62 61 34 33 6 5 3 2 1 0
uc 0 PFN C |D|V|G I
28 3 111
Figure11-3 Fields of the EntryLo0O and EntryL ol Registers
Table11-4 Description of EntryLo Registers' Fields
Field Description
ucC Uncached attribute
PFN Page frame number; the upper bits of the physical address.
C Specifies the TLB page coherency attribute.
Dirty. If thisbit isset, the pageismarked asdirty and, therefore, writable.
D This bit is actually awrite-protect bit that software can use to prevent

ateration of data.
Valid. If thishitisset, it indicatesthat the TLB entry isvalid; otherwise,

v aTLBL or TLBSinvalid exception occurs.

G Global. If thisbit is set in both LoO and Lo1, then the processor ignores
the ASID during TLB lookup.

0 Reserved. Must be written as zeroes, and returns zeroes when read.
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214

The PFN fields of the EntryLoO and EntryLol registers span bits 33:6 of the 40-bit physical
address.

Two additional bitsfor the mapped space’s uncached attribute can beloaded into bits 63:62
of the EntryLo register, which are then written into the TLB with aTLB Write. During the
address cycle of processor double/single/partial-word read and write requests, and during
the address cycle of processor uncached accelerated block write requests, the processor
drives the uncached attribute on SysAD[59:58]. The same EntryLo registers are used for
the 64-bit and 32-bit addressing modes. 1n both modes the registers are 64 bits wide,
however when the MIPS 111 1SA is not enabled (32-bit User and Supervisor modes) only
the lower 32 bits of the EntrylLo registers are accessible.

MIPS 111 is disabled when the processor isin 32-bit Supervisor or User mode. Loading of
the integer registersis limited to bits 310, sign-extended through bits 63:32.

EntryLo[ 33:31] or PFN[39:38] can only be set to al zeroes or al ones. In 32- and 64-hit
modes, the UC and PFN bits of both EntrylLo registers are written into the TLB. The PFN
bits can be masked by setting bitsin the FrameMask register (described in this chapter) but
the UC bits cannot be masked or initialized in 32-bit User or Supervisor modes. In 32-bit
Kernel mode, MIPSI 11 isenabled and 64-bit operations are always avail ableto program the
UC bits.

Thereisonly one G bit per TLB entry, and it iswritten with EntryLoO[ 0] and EntryLo1[ Q]
onaTLB write.
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11.4 Context Register (4)

The Context register is aread/write register containing the pointer to an entry in the page
table entry (PTE) array; this array is an operating system data structure that stores virtual-
to-physical addresstrandlations.

When thereisa TLB miss, the CPU loads the TLB with the missing translation from the
PTE array. Normally, the operating system uses the Context register to address the current
page map which resides in the kernel-mapped segment, kseg3. The Context register
duplicates some of the information provided in the BadVAddr register, but the information
isarranged in aform that is more useful for a software TLB exception handler.

Figure 11-4 shows the format of the Context register; Table 11-5 describes the Context
register fields.

Context Register
63 23 22 4 3 0

PTEBase BadVPN2 0

41 19 4
Figure 11-4 Context Register Format

Table 11-5 Context Register Fields

Field Description

Thisfield iswritten by hardware on amiss. It containsthe
BadVPN2 virtual page number (VPN) of the most recent virtual address
that did not have avalid translation.

Reserved. Must be written as zeroes, and returns zeroes when

0 read.
Thisfieldisaread/writefield for useby the operating system.
PTEBase It is normally written with a value that allows the operating

system to use the Context register as a pointer into the current
PTE array in memory.

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the TLB
miss; bit 12 is excluded because asingle TLB entry maps to an even-odd page pair. For a
4-K byte page size, thisformat can directly addressthe pair-table of 8-byte PTEs. For other
page and PTE sizes, shifting and masking this value produces the appropriate address.
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11.5 PageMask Register (5)

216

The PageMask register isaread/write register used for reading from or writing to the TLB;
it holds a comparison mask that sets the variable page size for each TLB entry, asshownin
Table 11-6. Format of the register is shown in Figure 11-5.

TLB read and write operations use this register as either a source or a destination; when
virtual addresses are presented for tranglation into physical address, the corresponding bits
inthe TLB identify which virtual addressbitsamong bits 24:13 are used in the comparison.
When the Mask field is not one of the values shown in Table 11-6, the operation of the TLB
isundefined. TheOfield isreserved; it must be written as zeroes, and returns zeroes when
read.

PageMask Register

25 24 13 12 0

MASK 0 |

12 13
Figure11-5 PageMask Register

Table11-6 Mask Field Values for Page Sizes

Page Size Bit

(Mask) 24 | 23| 2 | 21| 20| 19| 18 | 17 | 16 | 15 | 14 | 13
4 Kbytes o|lo]l]o|lo|lo]o[]o]o]o|]o|]o]oO
16 Kbytes o|lo|lo|lo|lo|]O|]O|]O|]O|O]|1]a1
64 Kbytes o|lo|lo|lo|loOo|oO|]O]|]O]|1|1/|1]|a1
25%6Kbytss [ O] O| O] O] O0O|Of121 1] 1] 1] 1|1
1 Mbyte o|lo|lo|o|1 |1 |21]21]|1|1|1]|a1
4 Mbytes o|lof| 121|122 |11 |1]|1|1]1
16 Mbytes 11|11 1|11 |1]1]1]1]|1
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11.6 Wired Register (6)

TheWredregister isaread/writeregister that specifiesthe boundary between thewired and
random entries of the TLB as shown in Figure 11-6. Wired entries are fixed,

nonreplaceable entries, which cannot be overwritten by a TLB write operation. Random
entries can be overwritten.

TLB
63
Range of Random entries
<« Wired
+ Register
* Range of Wired entries
0 This entry is Random, not Wired

Figure11-6 Wred Register Boundary

The Wired register is set to O upon system reset. Writing this register also setsthe Random
register to the value of its upper bound (see Random register, above). Figure 11-7 shows
the format of the Wired register; Table 11-7 describes the register fields.

Wired Register

31 6 5 0

0

Wired I
26 6

Figure 11-7 Wred Register

Table11-7 Wired Register Field Descriptions

Field Description
Wired TLB Wired boundary
0 Reserved. Must be written as zeroes, and returns zeroes
when read.
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11.7 BadVAddr Register (8)

TheBad Virtual Addressregister (BadVAddr) isaread-only register that displays the most
recent virtual addressthat caused either aTLB or Address Error exception. The BadVAddr
register remainsunchanged during Soft Reset, NMI, or Cache Error exceptions. Otherwise,
the architecture leaves this register undefined.

Figure 11-8 shows the format of the BadVAddr register.

BadVAddr Register

63 0
Bad Virtual Address I
64

Figure 11-8 BadVAddr Register Format

11.8 Count and Compare Registers (9 and 11)

The Count and Compare registers are 32-bit read/write registers whose formats are shown
in Figure 11-9.

The Count register acts as areal-timetimer. Like the R4400 implementation, the R10000
Count register isincremented every other PCIk cycle. However, unlike the R4400, the
R10000 processor has no Timer Interrupt Enable boot-mode bit, so the only way to disable
the timer interrupt is to negate the interrupt mask bit, IM[ 7], in the Status register. This
means the timer interrupt cannot be disabled without also disabling the Performance
Counter interrupt, since they share IM[7].

The Compare register can be programmed to generate an interrupt at a particular time, and
is continually compared to the Count register. Whenever their values equal, the interrupt
bit IP[ 7] in the Cause register is set. Thisinterrupt bit is reset whenever the Compare
register iswritten.

31 0

Count (9) 32-bit Counter (incremented every processor cycle)

Compare (11) 32-bit Compare Value

32-bit Equal-to Comparator '

Set IP7 in Cause Register

Figure11-9 Count and Compare Registers
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11.9 EntryHi Register (10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read and write
operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write
Indexed, and TLB Read Indexed instructions.

Figure 11-10 shows the format of thisregister and Table 11-8 describesthe register’sfields.

EntryHi Register
63 62 61 44 43 13 12 8 7 0
R Fill VPN2 0 ASID I
2 18 31 5 8

Figure11-10 EntryHi Register

Table11-8 EntryHi Register Fields

Field Description

Virtual page number divided by two (maps to two pages); upper bits of
the virtual address

Address space ID field. An 8-bit field that |ets multiple processes share
ASID the TLB; each process has a distinct mapping of otherwise identical
virtual page numbers.

Region. (00 - user, 01 - supervisor, 11 - kernel) used to match

VPN2

R VAder3m62
Fill Reserved. 0 on read; ignored on write.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

In 64-bit addressing mode, the VPN2 field contains bits 43:13 of the 44-bit virtual address.

In 32-bit addressing mode only the lower 32 bits of the EntryHi register are used, so the
format remains the same as in the R4400 processor’s 32-bit addressing mode. The FILL
field isignored on write and read as zeroes, asit was in the R4400 implementation.

When either aTLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi
register isloaded with the virtual page number (VPN2) and the ASID of the virtual address
that did not have a matching TLB entry.
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11.10 Status Register (12)
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The Satusregister (SR) is aread/write register that contains the operating mode, interrupt
enabling, and the diagnostic states of the processor. The following list describes the more
important Status register fields; Figure 11-11 shows the format of the entire register, and
Table 11-10 describes the Status register fields.

Some of the important fields include:

*  The4-bit Coprocessor Usability (CU) field controls the usability of 4 possible
coprocessors. Regardless of the CUO bit setting, CPO is always usable in
Kernel mode. The XX bit enables the MIPS IV ISA in User mode.

* By default, the R10000 processor implements the same user instruction set as
the R4400 processor. To enable execution of the MIPS IV instructions in User
mode, the MIPS IV User Mode bit, (XX) of the CPO Satus register must be
set.

The MIPS 1V instruction extension uses COP1X as the opcode; this designation

was COP3 in the R4400 processor. For this reason the CU3 bit is omitted in the
R10000 processor, and is used asthe XX bit. In Kernel and Supervisor modes, the
state of the XX bit isignored, and MIPS IV instructions are aways available.

Mode bit settings are shown in Table 11-9; dashesin the table represent don’t
cares.

Table11-9 |SA and Satus Register Settings for User, Supervisor and
Kernel Mode Operations

Mode UXx SX KX XX | MIPSII | MIPSIII MIPS IV
0 - - 0 Yes No No
0 - - 1 Yes No Yes
User
1 - - 0 Yes Yes No
1 - - 1 Yes Yes Yes
. - 0 - - Yes No Yes
Supervisor
- 1 - - Yes Yes Yes
Kernel - - - - Yes Yes Yes

NOTE: Operation with the MIPS 1V I1SA does not assume or require that the MIPS
I11 instruction set or 64-bit addressing be enabled — KX, SXand UX may all be set to
zero.
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e The Reduced Power (RP) bit is reserved and should be zero. The R10000
processor does not define a reduced power mode.

* The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the machine.
The processor can be configured as either little-endian or big-endian at system
reset; reverse-endian selection is available in Kernel and Supervisor modes,
and in the User mode when the RE bit is 0. Setting the RE bit to 1 inverts the
User mode endianness.

» The 9-bit Diagnostic Satus (DS) field is used for self-testing, and checks the
cache and virtual memory system. This field is described in Table 11-11 and
Figure 11-12.

* The 8-bit Interrupt Mask (IM) field controls the enabling of eight interrupt
conditions. Interrupts must be enabled before they can be asserted, and the
corresponding bits are set in both the Interrupt Mask field of the Status
register and the Interrupt Pending field of the Cause register.

*  The processor mode is undefined if the KSU field is set to 3 (11,). The
R10000 processor implements this as User mode.

Status Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S(31(3 o |@ i z |3 |
XX o133 RP|FR|RE[0*| O o TS|SRINMICH|CE|DE IM (8 bits) KX[SX|UX| KSU 1% IE
-
— ~~
Coprocessor
Usable Diagnostic Status Fields

* For R10000. This bit is used as DSD bit in the R12000.

Figure11-11 Satus Register
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Status Register Fields

222

Table 11-10 describes the Status register fields.

Table11-10 Status Register Fields

Field

Description

XX

Enables execution of MIPS |V instructionsin User mode.
1 - MIPSIV instructions usable
0 - MIPSIV instructions unusable

CuU

Controls the usahility of each of the four coprocessor unit
numbers. CPO is always usable when in Kernel mode, regardless
of the setting of the CUq, bit.

1 - usable

0 - unusable

RP

In the R4400 processor, this bit enables reduced-power operation
by reducing the internal clock frequency. Inthe R10000
processor, this bit should be set to zero.

FR

Enables additional floating-point registers
0 - 16 registers
1 - 32registers

RE

Reverse-Endian bit, valid in User mode.

DS

Diagnostic Satus field (see Figure 11-12).

Interrupt Mask: controls the enabling of each of the external,
internal, and softwareinterrupts. Aninterruptistakenif interrupts
are enabled, and the corresponding bitsare set in both the Interrupt
Mask field of the Satusregister and the Interrupt Pending field of
the Cause register.

0 - disabled

1 - enabled

KX

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception isused for TLB misses on kernel
addresses.

0 - 32-hit

1 - 64-hit

SX

Enables 64-hit addressing and operationsin Supervisor mode. The
extended-addressing TLB refill exception isused for TLB misses
on supervisor addresses.

0 - 32-hit

1 - 64-bit

UXx

Enables 64-bit addressing and operations in User mode. The
extended-addressing TLB refill exception isused for TLB misses
on user addresses.

0 - 32-hit

1 - 64-bit
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Diagnostic Status Field

Table 11-10 (cont.) Status Register Fields

Field Description
Mode bits
11, - Undefined (implemented as User mode)
KSU 10, - User
01, — Supervisor
00, — Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset, NMI, or
Cache Error exception are taken.

0 - norma

1 - error

EXL

Exception Level; set by the processor when any exception other
than Reset, Soft Reset, NMI, or Cache Error exception are taken.
0 - norma
1 - exception

Interrupt Enable
0 - disabledl interrupts
1 - enablesall interrupts

The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks the cache and
virtual memory system. Thisfield is described in Table 11-11 and shown Figure 11-12.

Some of the important DSfieldsinclude:

In the R4400, the TS bit of the diagnostic field indicates a TLB shutdown has
occurred due to matching of multiple virtual page entries during address
tranglation. In the R10000 processor, the TS bit indicates a TLB write has
introduced an entry that would allow matching of more than one virtual page
entry during trandlation. In this case, the TLB entries that allow the multiple
matches, even in the Wired area, are invalidated before the new TLB entry is
written. This prevents multiple matches during address translation.

The TShit is updated for each TLB write. It can also be read and written by
software (in the R4400, the TSbit is read-only); to clear the TSbit one needs to
writeaOintoit. Asinthe R4400, Reset/Soft Reset/NMI exceptions also clear the
TShit.

The NMI bit is new to the R10000 processor; it distinguishes between Soft
Reset and NMI exceptions. Both exceptions set the SR bit to 1; the NMI
exception sets the NMI bit to 1, whereas the Soft Reset exception sets it to 0.

The CE bit is reserved in the R10000 processor and should be a 0.
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24

23 22 21 20 19 18 17 16

0*

1

0 BEV TS SR NMI CH CE DE
1 1 1 1 1 1 1 1

* For R10000. This bit is used as DSD bit in the R12000.

Figure11-12 Diagnostic Satus Field

Table11-11 Status Register Diagnostic Satus Bits

Bit

Description

DSD

Specifies DSD mode (R12000 only). If thisbit is set, the R12000
will not set the Dirty bit for a secondary cache block until the store
instruction is the oldest in the Active List and is about to be
executed.

0 - normal

1 - delay speculative dirty (fix for speculative store)

BEV

Controls the location of TLB refill and general exception vectors.
0 - normal
1 - bootstrap

TS

Thisbit is set when a TLB write presents an entry that matches any
other virtual page entry inthe TLB. Should this occur, any TLB
entries that allow multiple matches, even in the Wired area, are
invalidated before this new entry can be written into the TLB. This
prevents multiple matches during address translation.

0 - normal

1 - TLB shutdown has occurred.

1 - Indicates a Soft Reset or NMI exception.

NMI

1 - Indicates a nonmaskable interrupt has occurred. Used to
distinguish between a Soft Reset and a nonmaskable interrupt in a
Soft Reset exception.

CH

Hit (tag match and valid state) or missindication for last CACHE
Hit Invalidate, Hit Write Back Invalidate for a secondary cache.
0 - miss
1 - hit

CE

Reserved in the R10000, and should be set to O.

DE

Specifies that cache parity or ECC errors cannot cause exceptions.
0 - parity/ECC remain enabled
1 -, disables parity/ECC

Reserved. Must be written as zeroes, and returns zeroes when read.
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Coprocessor Accessibility

Three Satusregister CU bits control coprocessor accessibility: CUO, CU1, and CU2 enable
coprocessors 0, 1, and 2, respectively. If acoprocessor is unusable, any instruction that
accesses it generates an exception.

The following describes the coprocessor implementations and operations on the R10000:

Coprocessor 0 is always enabled in kernel mode, regardless of the CUO hit.

Coprocessor 1 is the floating-point coprocessor. |If CUL is O (disabled), all
floating-point instructions generate a Coprocessor Unusable exception. In
MIPS 1V, the COP3 instruction is replaced with a second floating-point
instruction, COP1X. In addition, new functions are added to COP1 (see
VR®5000, V{10000 INSTRUCTION User’'s Manual). The floating-point
branch conditional and compare instructions are expanded to use the eight
Floating-Point Status register condition bits, instead of the original single bit.
If any of these extra bits are referenced (cc > 0) when not using the MIPS IV
ISA, an Unimplemented Instruction exception is taken. The integer
conditional move (MOVC) instruction tests a floating-point condition bit; it
causes a coprocessor unusable exception if coprocessor 1 is disabled.

Coprocessor 2 is defined, but does not exist in the R10000; its instructions
(COP2, LWC2, LDC2, SWC2, SDC2) always cause an exception, but the
exception code depends upon whether the coprocessor, as indicated by CU2,
is enabled.

Coprocessor 3 has been removed from the MIPS 111 ISA, and is no longer
defined. If MIPS IV isdisabled, the coprocessor 3 instruction (COP3) always
causes a Reserved Instruction exception.
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11.11 Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent exception.

Figure 11-13 shows the fields of this register; Table 11-12 describes the Cause register
fields. A 5-bit exception code (ExcCode) indicates one of the causes, aslisted in Table 11-
13.

All bitsin the Cause register, with the exception of the IP[1:0] bits, are read-only; IP[ 1: 0]
are used for software interrupts.

Table11-12 Cause Register Fields

Field Description
Indicates whether the last exception taken occurred in abranch delay slot.
BD 1 - delay slot
0 - normal
CE Coprocessor unit number referenced when a Coprocessor Unusable

exception istaken. Thisbit is undefined for any other exception.

Indicates an interrupt is pending. This bit remains unchanged for NMI,
Soft Reset, and Cache Error exceptions.

1 - interrupt pending

0 - nointerrupt

ExcCode Exception code field (see Table 11-13)
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Cause Register

31 30 29 28 27 16 15 8 7 6 21 0
BD| 0| CE 02 IP7 IPo o & | o
1 1 2 12 8 1 5 2

Figure 11-13 Cause Register Format
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Table 11-13 Cause Register ExcCode Field

Exception

CodeValue Mnemonic Description
0 Int Interrupt
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
3 TLBS TLB exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 - Reserved
15 FPE Floating-Point exception
1622 - Reserved
23 WATCH Reference to WatchHi/WatchLo address
24-30 - Reserved
31 - Reserved

User'sManual U10278EJ4V0UM

227



Chapter 11 Coprocessor 0

11.12 Exception Program Counter (14)

228

The Exception Program Counter (EPC)Jr isaread/writeregister that containsthe address at
which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

e thevirtual address of the instruction that was the direct cause of the exception,
or

e thevirtual address of the immediately preceding branch or jump instruction
(when the instruction isin a branch delay slot, and the Branch Delay bit in the
Cause register is set).

The processor does not write to the EPC register when the EXL bit in the Satus register is
settoal

Figure 11-14 shows the format of the EPC register.

EPC Register
63 0

EPC

64

Figure11-14 EPC Register Format

Tt The ErrorEPC register provides asimilar capability, described later in this chapter.
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11.13 Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains information
identifying theimplementation and revision level of the CPU and CPO. Figure 11-15 shows
the format of the PRId register; Table 11-14 describes the PRId register fields.

PRId Register

31 16 15 8 7 0

0 Imp (0x09) Rev

16 8 8

Figure11-15 Processor Revision |dentifier Register Format

Table11-14 PRId Register Fields

Field Description
Imp Implementation number
Rev Revision number

Reserved. Must be written as zeroes, and returns zeroes when
read.

The low-order byte (bits 7:0) of the PRId register isinterpreted as a revision number, and
the high-order byte (bits 15:8) is interpreted as an implementation number. The
implementation number of the R10000 processor is 0x09. The content of the high-order
halfword (bits 31:16) of the register are reserved.

Therevision number isstored asavalueintheformy.x, whereyisamajor revision number
in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however there is no guarantee
that changes to the chip will necessarily bereflected in the PRId register, or that changesto
the revision number necessarily reflect real chip changes. For this reason, software should
not rely on the revision number in the PRId register to characterize the chip.
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11.14 Config Register (16)

The R10000 processor’s Config register has adifferent format from that of the R4400, since
the R10000 processor has different mode bits and configurations, however somefields are
gtill compatible: KO, DC, IC, and BE. The value of bits 24:0 are taken directly from the
Mode bit settings during areset sequence; refer to Table 8-1 for these bit definitions. Table
11-15 shows the R10000 Config register fields, along with valueswhich are hardwired into
the register at boot time; Figure 11-16 shows the Config register format.

Table11-15 Config Register Field Definitions

. . Name Hardwired
Field | Bits R10000 | R12000 Values
Coherency agorithm
000, — reserved
001, - reserved
010, - uncached
KO 2.0 011, - cacheable noncoherent
100, - cacheable coherent exclusive
101, - cacheable coherent exclusive on write
110, - reserved
111, - uncached accelerated
DN 4:3 Device number
CT 5 CohPrcReqTar
PE 6 PrcEImReq
PM 8.7 PrcRegMax
EC 12:9 SysClkDiv
SB 13 SCBIkSize
SK 14 SCCorEn
BE 15 MemEnd
SS 18:16 | SCSize
SC 21:19 | SCCIkDiv
Reserved
25:92 Field | Bit Name 0
DSD | 24 | Delay Speculative Dirty
DC 28:26 | Primary data cache size (hardwired to 011,) 32 Kbytes
IC 31:29 | Primary instruction cache size (hardwired to 0112) 32 Kbytes
Config Register
31 29 28 26 25 24 23 2221 1918 16 15 14 13 12 9 8 7 6 5 4 32 0

230

IC DC 0 | O 0 | SC SS | BE | SK |SB EC |PM| PE| CT| DN KO
3 3 1 1 2 3 3 1 1 1 4 2 1 1 2 3

* For R10000. This bit is used as DSD bit in the R12000.

Figure 11-16 Config Register Format
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11.15 Load Linked Address (LLAddr) Register (17)

Physical addresses for Load Link instructions are no longer written into this register.
LLAddr isimplemented as a read/write scratch register used for NT compatibility.

Figure 11-17 shows the format of the LLAddr register.

LLAddr Register

31 0
RIW (NT) I
32

Figure 11-17 LLAddr Register Format
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11.16 WatchL o (18) and WatchHi (19) Registers

WatchHi and WatchLo are 32-bit read/write registers which contain a physical address of a
doubleword location in main memory. If enabled, any attempt to read or writethislocation
causes aWatch exception. This feature is used for debugging.

Bits 7:0 of the WatchHi register contain bits 39:32 of the trap physical address, shown in
Figure 11-18. The WatchL o register contains physical address bits 31:3. The remaining
bits of the register are ignored on write and read as zero.

Table 11-16 describes the WatchLo and WatchHi register fields.

WatchLo Register

31 1 0
PAddrO 0| R w
29 1 1

WatchHi Register

31 8 7 0
0 PAddr1 I
24 8

Figure 11-18 WatchLo and WatchHi Register Formats

Table11-16 WatchHi and WatchLo Register Fields

Field Description
PAddrl1 Bits 39:32 of the physical address
PAddroO Bits 31:3 of the physical address
R Trap on load referencesif setto 1
w Trap on store referencesif set to 1
0 Ignored on write and read as zero.
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11.17 XContext Register (20)

Theread/write XContext register containsapointer to an entry inthe pagetableentry (PTE)
array, an operating system datastructure that storesvirtual -to-physical addresstranslations.
When thereisa TLB miss, the operating system software loads the TL B with the missing
trandlation from the PTE array. The XContext register no longer shares the information
provided in the BadVAddr register, asit did in the R4400.

The XContext register isfor use with the XTLB refill handler, which loads TLB entries for
references to a 64-bit address space, and is included solely for operating system use. The
operating system setsthe PTE basefield in theregister, asneeded. Normally, the operating
system uses the Context register to address the current page map, which residesin the
kernel-mapped segment kseg3.

Figure 11-19 showstheformat of the XContext register; Table 11-17 describesthe XContext

register fields.
XContext Register
63 37 36 35 34 4 3 0
PTEBase R ‘ BadVPN2 0
27 2 31 4

Figure 11-19 XContext Register Format

The 31-bit BadVPN2 field holds bits 43:13 of the virtual addressthat caused the TLB miss;
bit 12 isexcluded because asingle TL B entry mapsto an even-odd page pair. For a4-Kbyte
page size, this format may be used directly to address the pair-table of 8-byte PTEs. For

other page and PTE sizes, shifting and masking this value produces the appropriate address.

Table11-17 XContext Register Fields

Field Description
BadVEN?2 The Bad Virtual Page Number/2 field is written by hardware on amiss. It contains the VPN of the most
recent invalidly trandated virtual address.
The Region field contains bits 63:62 of the virtual address.
R 002 = user
01, = supervisor
11, = kernel.
0 Reserved. Must be written as zeroes, and returns zeroes when read.
PTEBase The Page Table Entry Base read/write field is normally written with avalue that allows the operating

system to use the Context register as a pointer into the current PTE array in memory.
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11.18 FrameMask Register (21)

234

The FrameMask register is new with the R10000 processor. It masks bits of the EntryLoO
and EntryLol registers so that these masked bits are not passed to the TLB while doing a
TLB write (either TLBWI or TLBWR).

A zerointhe FrameMask register allowsits corresponding bit in the EntryLo[ 1,0] registers
to passto the TLB; aonein the FrameMask register masks off its corresponding bit in the
EntryLo registers and passes a zero to the TLB. Bits 15:0 of the FrameMask register
control bits 33:18 of the EntryLo registers.

Theremaining bits of this register are ignored on write and read as zeroes. The content of
thisregister is set to zero after a processor reset or a power-up event.

Figure 11-20 shows the FrameMask register format.

FrameMask Register

31 16 15 0

0 Mask bits, PA[39:24] I

16 16

Figure11-20 FrameMask Register Format
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11.19 Diagnostic Register (22)

CPO register 22, the Diagnostic register, is anew 64-bit register for processor-specific
diagnostic functions. (Sincethisregister isdesigned for local use, the diagnostic functions
are subject to change without notice.) Currently, this register helps test the ITLB, branch
caches, and the branch prediction scheme. In addition, it provides choices for branch
prediction algorithms, to help diagnostic program writing.

Figure 11-21 shows the format of the Diagnostic register.

63 52 51 48 47 32
0 ITLBM 0
12 4 16
31 28 27 26 23 22 21 20 19 18 17 16 15 14 131211 3 21 0
BRC BP
BS | o+| o~ |DBRC MP
Idx V|W|H Mode State [0*** |dx 0 (Op
4 1 4 1 1 1 1 1 2 2 2 9 1 2

* For R10000. This bit is used as “BTAC disable” bit in the R12000.

**  For R10000. This field is used as “ghistory enable” field in the R12000.

** For R10000. These two bits are used as the high-order bits of the /dx field in the
R12000.

Figure11-21 Diagnostic Register Format
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Table 11-18 describes the Diagnostic register fields.

Table 11-18 Diagnostic Register Fields

. Description
Field
R10000 R12000
ITLBM Thisfield isa4-bit read-only counter. Thisfield isincremented by onefor each ITLB miss, and any overflow
isignored. Itsvalueis undefined during reset, and its value is meaningless when used in an unmapped space.
Thisfield defines the entry in the branch stack to be used for the latest conditional branch decoded. Itsvalue
BSldx . : : "
ismeaninglessif the latest branch was an unconditional branch.
DBRC Thisfield disables the use of the branch return cache (BRC).
BRCV Thisfield indicates whether or not the branch return cache (BRC) isvalid. BRC has only one entry (four
instructions).
BRCW Thisfield indicates whether or not the latest branch (JAL, JALR rx, BGEZAL, BGEZALL, BLTZAL, or
BLTZALL) caused awriteinto BRC. It is not affected by any other type of branch.
BRCH Thisfield indicates whether or not the latest branch (JR r31 or JALR rx,r31) hasaBRC hit. It is not affected
by any other type of branch.
MP Thisfield indicates whether or not the latest conditional branch verified was mispredicted.
Thisisaread-write field for branch prediction algorithm control.
00, —» 2-bit counter scheme
01, — All conditional branches are predicted not taken
BPMode 10, — All conditional branches are predicted taken
11, - Forward conditional branches are predicted not taken and backward conditional branches are
predicted taken.
The default mode is 00 on processor reset.
BPState Thisfield contains the new 2-bit state for aconditional branch after it is verified. It is & so used to hold the 2-
bit state to read/write when a branch prediction table read/write operation is executed.
Contains the index to the Branch Prediction Table Contains the index to the Branch Prediction Table
(BPT) for BPT read/write/initialization operations. (BPT) for BPT read/write/initialization operations.
Thisfield should contain VA(11:3) of the branch for | Thisfield should contain VA(13:3) of the branch for
BPIdx BPT read/write/initialization operations. The upper | BPT read/write/initialization operations. The upper
six bits of thisfield contain the line addressfor BPT | eight bitsof thisfield contain thelineaddressfor BPT
line initialization operation; the lower three bits of line initialization operation; the lower three bits of
thisfield are ignored. thisfield are ignored.
Indicates the following BPT operations:
00, - BPT read
BPOp 01, - BPT write

10, — Initializes BPT lineto all zeroes (strongly not taken)
11, - Initializes BPT lineto all ones (strongly taken)

Reserved. Must be written as zeroes, and returns zeroes when read.
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In R12000 two fields are added to the Diagnostic Register - CPO Register 22. Onefield
is“ghistory enable’, bits 26:23. The other is“BTAC disable”, bit 27.

The definitions are:

Ghistory enable:

If bit 26 is set, branch prediction uses al eight bits of the global history register.
If bit 26 is not set, then bits 25:23 specify a count of the number of bits of global
history to be used. Thusif bits 26:23 are all zero, global history is disabled.

The global history contains arecord of the taken/not-taken status of recently
executed branches, and when used is XOR' ed with the PC of a branch being
predicted to produce a hashed value for indexing the BPT. Some programs with
small “working set of conditional branches” benefit significantly from the use of
such hashing, some see dlight performance degradation.

BTAC disable:

If bit 27 is set, the use of the Branch Target Address Cache (BTAC) is disabled.
The BTAC is used to reduce the instruction fetch penalty of taken branches by
providing the target address of fixed-address branch and jump instructions.

There are two ways to read the branch prediction state from the Branch Prediction Table

(BPT):

label:

Place an mfcO rx, CO_Diag (a Move From Diagnostic register to GPR rx) in
the delay slot of the conditional branch. This read of the Diagnostic register
returns the next predicted state from the branch stacks before the BPT is
updated.

Move the Index and the BPT read operation into the Idx and BPOp field of the
Diagnostic register. This mtcO into CPO_Diag graduates as soon as the write is
completed; however, there could be a significant delay in transferring the data
from BPT to CPO_Diag. This delay occurs because CO_Diag has a lower
priority to access the BPT as compared to the accesses by IFETCH and other
processes. Thus, the prediction state read from the CO_Diag may not reflect
the content of the BPT. Use the code sequence shown below to get the correct
prediction state from the BPT:

li rx # rx has index and BPT read for

# ldx and BPOp, respectively.
mtcO rx, CO_Diag # Set the Diagnostic register for reading the BPT
la ry, label # ry 1=r31; la could be replaced by a dla for 64-bits
jr ry # This gives priority for CO_Diag to access BPT
mfcO rz, CO_Diag # rz holds the state from BPT entry pointed by Idx
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11.20 Performance Counter Registers (25)

R10000 I mplementation

238

The R10000 processor defines two performance counters and two associated control
registers, which are mapped into CPO register 25. An encoding in the MTCO/MFCO
instructions on register 25 indicates which counter or control register is used.

Each counter is a 32-bit read/write register and is incremented by one each time the
countable event, specified in its associated control register, occurs. Each counter can
independently count one type of event at atime.

The counter asserts an interrupt, |P[ 7], when its most significant bit (bit 31) becomes one
(the counter overflows) and the associated performance control register enables the
interrupt.

The counting continues after counter overflow whether or not an interrupt is signalled.

The format of the control registers are shown in Figure 11-22.

31 9 8 5 4 3 2 1 0
0 Event IE|U| S| K| EXL
23 4 1 1 1 1 1

Figure11-22 Control Register Format (R10000)
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The fields of the Control register are:
» The Event field specifies the event to be counted, listed in Table 11-19.

Table 11-19 Counter Events (R10000)

Event Counter 0 Counter 1

0 Cycles Cycles

1 Instructions issued Instructions graduated

2 L oad/prefetch/sync/CacheOp issued L oad/prefetch/sync/CacheOp graduated

3 Stores (including store-conditional) issued Stores (including store-conditional) graduated

4 Store conditional issued Store conditional graduated

5 Failed store conditional Floating-point instructions graduated

6 Branches resolved Quadwords written back from primary data cache

7 Quadwords written back from secondary cache TLB refill exceptions

8 Correctable ECC errors on secondary cache data Branches mispredicted

9 Instruction cache misses SeconQary cache load/store and cache-ops
operations

10 Secondary cache misses (instruction) Secondary cache misses (data)

11 Secondary cache way mispredicted (instruction) Secondary cache way mispredicted (data)

12 External intervention reguests E_xt_ernal intervention request is determined to have
hit in secondary cache

13 External invalidate requests _External invalidate request is determined to have hit
in secondary cache

. . . Stores or prefetches with store hint to
14 Functional unit completion cycles CleanExclusive secondary cache blocks
15 Instructions graduated Stores or prefetches with store hint to Shared

secondary cache blocks

NOTE: Notethat the updated material reflectsthe functionality of siliconrevision 3.0
and later. The status of earlier silicon revisions are documented as silicon errata

available on www.sgi.com.

e The IE bit enables the assertion of 1P[7] when the associated counter

overflows.

e TheU, S K, and EXL hits indicate the processor modes in which the event is
counted: U is user mode; Sis supervisor mode; K is kernel mode when EXL
and ERL both are set to O; the system is in kernel mode and handling an
exception when EXL is set to 1, as shown in Table 11-23.

e 0: Reserved. Must be written as zeroes, and returns zeroes when read.

These modes can be set individually; for example, one could set al four bitsto count a
certain event in al processor modes except during a cache error exception.
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The performance counters and associated control registers are written by using an MTCO
instruction, as shown in Table 11-20.

Table 11-20 Wkiting Performance Registers Using MTCO (R10000)

Opcode[15:11] Opcode[1:0] Operation
11001 00 Move to Performance Control 0
11001 01 Move to Performance Counter O
11001 10 Move to Performance Control 1
11001 11 Move to Performance Counter 1

The performance counters and associated control registers are read by using aMFCO
instruction, as shown in Table 11-21.

Table 11-21 Reading Performance Registers Using MFCO (R10000)

Opcode[15:11] Opcode[1:0] Operation
11001 00 Move from Performance Control O
11001 01 Move from Performance Counter O
11001 10 Move from Performance Control 1
11001 11 Move from Performance Counter 1

The format of the performance control registers are shown in Table 11-22.

Table 11-22  Performance Control Register Format (R10000)

Bits Definition
85 Event select

4 IP[7] interrupt enable
3.0 Count enable (U/S/K/EXL)

The count enabl e field specifies whether counting isto be enabled during User, Supervisor,
Kernel, and/or Exception level mode. Any combination of count enable bits may be
asserted.

All unused bitsin the performance control registers are reserved.
All counting is disabled when the ERL bit of the CPO Status register is asserted.

Table 11-23 defines the operation of the count enable bits of the performance control
registers.

Table 11-23 Count Enable Bit Definition (R10000)

Count Enable Bit Count Qualifier (CPO Status Register Fields)
U KSU =2 (User mode), EXL =0, ERL =0
S KSU =1 (Supervisor mode), EXL =0, ERL =0
K KSU =0 (Kernel mode), EXL =0, ERL =0
EXL EXL=1,ERL=0
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The following rules apply:

Details of Counting Events

The performance counter registers may be preloaded with an MTCO
instruction, and counting is enabled by asserting one or more of the count
enable bits in the performance control registers.

The interrupt enable bit must be asserted to cause IP[7].

To determine the cause of the interrupt, the interrupt handler routine must
query the following:

- the performance counter register

- the interrupt enable bit of the associated performance control register of
both counters

If neither of the counters caused the interrupt, 1P[7] must be the result of the
CPO Count register matching the CPO Compare register.

In describing the rules that are applied for the counting of each eventslisted in Table 11-
19, following terminology is used:

Doneis defined as the point at which the instruction is successfully executed by the
functional unit but is not yet graduated.

Graduated is defined asthe point in timewhen theinstruction is successfully executed
(done), and it is the oldest instruction.

Secondary Cache Transaction Processing (SCTP) logic is on-chip logic in which up
to four internally-generated and one-externally generated secondary cache
transactions are queued to be processed.

The following rules apply for the counting of each event listed in Table 11-16:

Event O for Counter 0 and Counter 1: Cycles

The counter isincremented on each PClk cycle.
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Event 1 for Counter O: Instructions | ssued

The counter isincremented on each cycle by the sum of the three following events:

e Integer operations marked as done on the cycle. 0, 1 or 2 such operations can
be marked on each cycle. Since these operations (all except for MUL and DIV)
are marked done on the cycle following their being issued to a functiona unit,
this number is nearly identical to the number issued. The only differenceisthat
re-issues are not counted.

*  Floating point operations marked done in the active list. Possible values are 0, 1
or 2. Since these operations take more than one cycle to complete, it is possible
for an instruction to be issued and then aborted before it is counted, due to a
branch-misprediction or exception rollback.

» Load/store instructions first issued to the address calculation unit on the
previous cycle. Possible values are 0 or 1. Prefetch instructions are counted as
issued. Load/store instructions are counted as being issued only once, even
though they may have been issued more than one ti me. Any instruction which
does not go to the load/store unit, integer functional unit, or FP functiona is
counted. Some of those not counted are: nops, bcl{f t,fl,tl}, break, syscall, j,
ja, jr, jar, cp0 instructions.

Event 1 for Counter 1: Instruction Graduation.
The counter isincremented by the number of instructions that were graduated on the
previous cycle. When an integer multiply or divide instruction graduates, it is counted as
two instructions.

Event 2 for Counter 0: L oad/Prefetch/Sync/CacheOp | ssue.
Each of theseinstructions are counted asthey areissued. A load instructionisonly counted
once, even though it may have been issued more than one ti me.

Event 2 for Counter 1: L oad/Prefetch/Sync/CacheOp Graduation.

Each of theseinstructions are counted asthey are graduated. Up to four |oads can graduate
in onecycle.

t This could be aresult of DCache Tag being busy or four Instruction or Data cache misses
already present and waiting to be processed in the Secondary Cache Transaction Processing
(SCTP) logic.
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Event 3 for Counter 0: Stores (Including Store-Conditional) Issued.

The counter isincremented on the cycle after a store instruction isissued to the address-
calculation unit. Note that a store can only be counted as having been issued once, even

though it may actually be issued more than once due to DCache Tag being busy or there
already being four load/store cache misses waiting in the SCTP logic.

Event 3 For Counter 1: Store (Including Store-Conditional) Graduation.
Each graduating store (including SC) increments the counter. At most one store can
graduate per cycle.

Event 4 for Counter 0: Store-Conditional | ssued.

This counter isincremented on the cycle after astore conditional instructionisissued to the
address-cal culation unit. Note that an SC can only be counted as having been issued once,
even though it may actually be issued more than once due to DCache Tag being busy or
there already being four load/store cache misses waiting in the SCTP logic.

Event 4 for Counter 1: Store-Conditional Graduation.
At most, one store-conditional can graduate per cycle. This counter isincremented on the
cycle following the graduation of a store-conditional instruction.

Event 5 for Counter O: Failed Store Conditional.

This counter is incremented when a store-conditional instruction fails.

Event 5for Counter 1: Floating-Point Instruction Graduation.

This counter isincremented by the number of FP instructions which graduated on the
previous cycle. Any instruction that setsthe FP Status register bits (EVZOUI) is counted as
a graduated floating point instruction. There can be 0 to 4 such instructions each cycle.

Event 6 for Counter 0: Conditional Branch Resolved

This counter isincremented when a conditional branch is determined to have been
“resolved.” T Note that when multi plefloating-point conditional branchesareresolvedina
single cycle, this counter is till only incremented by one. Although thisisarare event, in
this case the count would be incorrect.

T In other words, this count is the sum of the conditional branches that are known to be both
correctly predicted and mispredicted.
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Event 6 for Counter 1: Quadwords Written Back From Primary Data Cache

This counter is incremented once each cycle that a quadword of datais written from
primary data cache to secondary cache.

Event 7 for Counter 0: Quadwords Written Back From Secondary Cache

This counter isincremented once each cycle that a quadword of datais written back from
the secondary cache to the outgoing buffer located in the on-chip system-interface unit.
(Notethat datafrom the outgoing buffer could beinvalidated by an external request and not
sent out of the processor.)

Event 7 for Counter 1: TLB Refill Exception (Due To TLB Miss)

This counter isincremented on the cycle after the TLB miss handler isinvoked. All TLB
misses are counted, whether they occur in the native code or within the TLB handler.

Event 8 for Counter 0: Correctable ECC ErrorsOn Secondary Cache Data.

This counter isincremented on the cycle after the correction of asingle-hit error on a
guadword read from the secondary cache data array.

Event 8 for Counter 1: Branch Misprediction.

Thiscounter isincremented on the cycle after abranch isrestored because of misprediction.
Note that the misprediction is determined on the same cycle that the conditional branchis
resolved. The misprediction rate isthe ratio of branch mispredicted count to conditional
branch resolve count.

Event 9 for Counter 0: Primary Instruction Cache Misses.

This counter isincremented one cycle after an instruction refill request is sent to the SCTP
logic.

Event 9 for Counter 1: Secondary Cache L oad/Store and Cache-ops Operations

This counter isincremented one cycle after arequest is entered into the SCTP logic,
provided the request wasinitially targeted at the primary data cache. Such requestsfall into
three categories:

e primary data cache misses

*  requests to change the state of primary and secondary and primary data cache
lines from Clean to Dirty, due to stores hitting a clean line in the primary data
cache

*  requests initiated by Cache-op instructions
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Event 10 for Counter 0. Secondary Cache Misses (I nstruction)
This counter isincremented the cycle after thelast quadword of aprimary instruction cache
line is written from the main memory, while the secondary cache refill continues.

Event 10 for Counter 1: Secondary Cache Misses (Data)
This counter isincremented the cycle after the second quadword of adata cachelineis
written from the main memory, while the secondary cache refill continues.

Event 11 for Counter 0: Secondary Cache Way Misprediction (I nstruction)

This counter isincremented when the secondary cache controller beginsto retry an access
to the secondary cache after it hit in the non-predicted way, provided the secondary cache
access was initiated by the primary instruction cache.

Event 11 for Counter 1: Secondary Cache Way Misprediction (Data)

This counter isincremented when the secondary cache controller beginsto retry an access
to the secondary cache because it hit in the non-predicted way, provided the secondary
cache access was initiated by the primary data cache.

Event 12 for Counter 0: External Intervention Requests
This counter isincremented on the cycle after an external intervention request enters the
SCTPlogic.

Event 12 for Counter 1: External Intervention Requests Hits In Secondary Cache
This counter isincremented on the cycle after an external intervention request is
determined to have hit in the secondary cache.

Event 13 for Counter 0: External Invalidate Requests
This counter isincremented on the cycle after an external invalidate request enters the
SCTPlogic.

Event 13 for Counter 1: External Invalidate Requests Hits In Secondary Cache

This counter isincremented on the cycle after an external invalidate request is determined
to have hit in the secondary cache.
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Event 14 for Counter 0. Functional Unit Completion Cycles
This counter isincremented once on the cycle after at least one of the functional units —
ALU1L, ALU2, FPU1, or FPU2 — marks an instruction as done.

Event 14 for Counter 1: Stores, or Prefetcheswith StoreHint to Clean Exclusive Secondary Cache
Blocks.

This counter isincremented on the cycle after arequest to change the Clean Exclusive state
of the targeted secondary cache line to Dirty Exclusive is sent to the SCTP logic.
Event 15 for Counter 0: Instruction Graduation.

This counter is incremented by the number of instructions that were graduated on the
previous cycle. When an integer multiply or divide instruction graduates, it is counted as
two graduated instructions.

Event 15 for Counter 1: Storesor Prefetcheswith Store Hint to Shared Secondary Cache Blocks.

This counter isincremented on the cycle after arequest to change the Shared state of the
targeted secondary cache line to Dirty Exclusive is sent to the SCTP logic.
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* R12000 Implementation

The R12000 processor defines four performance counters and four associated control
registers, which are mapped into CPO register 25. An encoding in the MTCO/MFCO
instructions on register 25 indicates which counter or control register is used.

Each counter is a 32-bit read/write register and is incremented by one each time the
countable event, specified in its associated control register, occurs. Each counter can
independently count one type of event at atime.

The counter asserts an interrupt, IP[ 7], when its most significant bit (bit 31) becomes one
(the counter overflows) and the associated performance control register enables the
interrupt.

The counting continues after counter overflow whether or not an interrupt is signalled.

Dueto cycletime constraints, events countsare updated 2 cycleslater in R12000, compared
to similar events in R10000. Also when setting a count mode by writing a performance
monitor control register, it is necessary to insert a‘delay’ instruction between the ‘ mtcO
r25" which does the write, and any initialization of the count register itself.

The format of the control registers are shown in Figure 11-23.

Performance control register O
31 17 16 15 14 1312 10 9 4 3 2 1 0

- | Cond,
T C
25

23318 8| Value

0*

Open
Trigger

Performance control register 1
31 17 16 15 14 1312 10 9 4 3 2 1 0

Cond,
Sount Event IE Uul| S K | EXL

o
Reserved
Reserved

n
ount

15 1 1 1 1 3 5 1 1 1 1 1
Performance control register 2
31 17 16 15 14 1312 10 9 5 4 3 2 1 0
8% |...|..| cond
0 g | 2 [gE5|E 5| Count Event IE | U|S | K]|EXL
8 g |283|88 Value
15 1 1 1 1 3 5 1 1 1 1 1

Performance control reglster 3
31 17 16 15 14 1312 10 9 4 3 2 1 0

ount Event E| uls | K|EXL

o
eserved
L2
Select

n
ount

15 1 1 1 1 3 5 1 1 1 1 1

* For R12000 and R12000L. Bits 31:23 are used as syndrome bits in the R12000A.

Figure11-23 Control Register Format (R12000)
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The fields of the Control register are:

e The Event field specifies the event to be counted, listed in Table 11-24.

Table 11-24 Counter Events (R12000)

Event Description
0 Cycles
1 Decoded instructions
2 Decoded loads
3 Decoded stores
4 Miss Handling Table Occupancy
5 Failed store conditional
6 Resolved conditional branches
7 Quadwords written back from secondary cache
8 Correctable ECC errors on secondary cache data
9 Instruction cache misses
10 Secondary cache misses (instruction)
11 Secondary cache way mispredicted (instruction)
12 External intervention requests
13 External invalidate requests
14 Not Used
15 Instructions graduated
16 Executed prefetch instructions
17 Primary data cache misses by prefetch instructions
18 Graduated loads
19 Graduated stores
20 Graduated store conditionals
21 Graduated floating point instructions
22 Quadwords written back from primary data cache
23 TLB misses
24 Mispredicted branches
25 Primary data cache misses
26 Secondary cache misses (data)
27 Misprediction from scache way prediction table (data)
28 State of external intervention hit in secondary cache
29 State of external invalidation hits in secondary cache
30 Store/prefetch exclusive to clean block in secondary cache
31 Store/prefetch exclusive to shared block in secondary cache
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e ThelE bit enables the assertion of 1P[7] when the associated counter

overflows.

« TheU, S K, and EXL bits indicate the processor modes in which the event is
counted: U is user mode; S is supervisor mode; K is kernel mode when EXL

and ERL both are set to O; the system is in kernel mode and handling an

exception when EXL is set to 1, as shown in Table 11-28.

e 0: Reserved. Must be written as zeroes, and returns zeroes when read.

These modes can be set individually; for example, one could set al four bits to count a
certain event in all processor modes except during a cache error exception.

The performance counters and associated control registers are written by using an MTCO
instruction, as shown in Table 11-25.

Table 11-25 Wkiting Performance Registers Using MTCO (R12000)

Opcode[15:11] Opcode]2:0] Operation
11001 000 Move to Performance Control O
11001 001 Move to Performance Counter O
11001 010 Move to Performance Control 1
11001 011 Move to Performance Counter 1
11001 100 Move to Performance Control 2
11001 101 Move to Performance Counter 2
11001 110 Move to Performance Control 3
11001 111 Move to Performance Counter 3

The performance counters and associated control registers are read by using aMFCO

instruction, as shown in Table 11-26.

Table11-26 Reading Performance Registers Using MFCO (R12000)

Opcode[15:11] Opcodg[2:0] Operation
11001 000 Move from Performance Control O
11001 001 Move from Performance Counter O
11001 010 Move from Performance Control 1
11001 011 Move from Performance Counter 1
11001 100 Move from Performance Control 2
11001 101 Move from Performance Counter 2
11001 110 Move from Performance Control 3
11001 111 Move from Performance Counter 3
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The format of the performance control registers are shown in Table 11-27.

Table 11-27 Performance Control Register Format (R12000)

Bits Definition
16 (Performance control register 0) Open Trigger

15 (Performance control register 0) One Shot Trigger
15 (Performance control register 3) L1/L2 select

14 Invert conditional count
13 Conditional count

12:10 Conditional count value
9:5 Event select
4 IP[7] Interrupt enable
3.0 Count enable (U/S/K/EXL)

The count enabl e field specifies whether counting isto be enabled during User, Supervisor,
Kernel, and/or Exception level mode. Any combination of count enable bits may be
asserted.

All unused bits in the performance control registers are reserved.
All counting is disabled when the ERL hit of the CPO Status register is asserted.

Table 11-28 defines the operation of the count enable bits of the performance control
registers.

Table 11-28 Count Enable Bit Definition (R12000)

Count Enable Bit Count Qualifier (CPO Status Register Fields)
U KSU =2 (User mode), EXL =0, ERL =0
S KSU =1 (Supervisor mode), EXL =0, ERL =0
K KSU =0 (Kernel mode), EXL =0, ERL =0
EXL EXL=1,ERL=0

The following rules apply:

»  The performance counter registers may be preloaded with an MTCO
instruction, and counting is enabled by asserting one or more of the count
enable bits in the performance control registers.

e Theinterrupt enable bit must be asserted to cause IP[7].

*  To determine the cause of the interrupt, the interrupt handler routine must
query the following:

- the performance counter register

- the interrupt enable bit of the associated performance control register of
both counters

e |If neither of the counters caused the interrupt, IP[ 7] must be the result of the
CPO Count register matching the CPO Compare register.
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Counters may each count any of 32 event types

All four counters are able to count any of 32 performance events. Accessto these eventsis
provided by extending the ‘event select’ field in the Performance Control Register. In
R12000, bitg[9:5] of the Performance Control Register specify the event to be counted.

Conditional counting

All four counters can be set to count an event only when the value of that event is equa to,
or not equal to, a specific value. Thisiscalled ‘conditional’ or ‘inverted conditional’
counting.

e Conditional counting is enabled for a counter by setting bit[13] of the
corresponding performance control register.

e Inverted conditional counting is enabled by setting bit[14] of the performance
control register.

e |If both bitg[13] and [14] are set, inverted conditional counting is enabled.

* The value to be compared against is set in bit[12:10] in the performance
control register.

If bit[13] is set, and bit[14] is not set, on every cycle the value of the selected event is
compared to the value of bits[12:10]. If the two values are equal, then the counter is
incremented by 1.

If bit[14] is set, regardless of the state of bit[13], the counter isincremented by 1 if the two
values are not equal.

Special casefor intervention/invalidate hit events

A special caseisused for events 28 and 29, external intervention and invalidate hits. The
default of non-conditional counting does not make sense for those events because they
encode cache-line state information and so should not be summed as usual. For those two
events, the sense of bit [14] isreversed. When aperformance control register specifies event
28 or 29, then if bit [14] in the control register is‘ 0", inverted conditional counting is
enabled. Similarly, when monitoring events 28 or 29, if bit[14] is ‘1’ then conditional
counting is enabled by bit [13], as usual. Thus, for these two event types, the normal
‘default’ of setting control register bits[14:10] to ‘00000 enables inverted conditional
counting with atarget value of zero, In this case corresponding count register is
incremented by one whenever a non-zero state is seen on the event lines. Such a counter
presentsacount of ‘generic’ intervention or invalidation hits, since any hit will set the event
to anon-zero value, and any miss will leave the value at zero. Consider an example. If a
user isinterested in obtaining a count of the number of intervention hits to dirty-exclusive
cache-lines, then the control register should be set to a value of:
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Table 11-29  Performance Control Register 1 Value

Bits Definition Value
16 Reserved 0
15 Reserved 0
14 Invert conditional count 1
13 Conditional count 1

12:10 Conditional count value 011
9:5 Event select 11100
4 IP[7] Interrupt enable 0
3.0 Count enable (U/S/K/EXL) 1000

Given this setting, the counter will test the event value on each cycle, and increment on
those cycles where the value is equal to ‘011'. Since an invalidate hit to adirty-exclusive
linewill set the event to *011’, the counter will contain a count of the number of such hits.
The default setting of 0'sfor all bits[14:10] means that the counter will increment by one
on each cyclethat aline in any state (except invalid) is hit by an external intervention.

Triggered counting

The operation of monitor register 0 can be selectively tied to that of registers1 and 2. When
bits[15] or [16] in control register 0 are set, then the performance event selected by control
register lisused asa‘window count’ and the event selected by control register 2 isused as
a‘trigger’. Thisfeature allows auser to set up counter register 0 to correlate the occurrence
of different types of events. Because of the generality of the control mechanism, severa
ways to use this mode result.

Two bits are used to specify this mode because there are two variants that are supported.
The operation of the system when bit [15] is set is described in detail, and then the
differences for what happenswhen bit [16] is set are given. When either bit [15] or bit [16]
of performance control register O is set, the performance counters are said to be in
‘triggering mode’ . When in triggering mode, then the event selected by control register 2is
used to enable counting of eventsin register 0 and 1. When an event monitored by register
2 occurs, bits[15:0] of counter register 1 are rel oaded with the last values written into those
bits of that register by the execution of an MTCO instruction. Bit [16] of counter register 1
issetto 1, and bits[31:17] areincremented as if they were a 15-bit unsigned integer. Also,
when aregister 2' event occurs, counters 0 and 1 begin counting their respective events.
Counting continues until the carry out of the low-order 16 bits of counter 1 causes bit [16]
in counter 1 becomesa‘0’, at which point counting in registers 0 and 1 ceases. Counting
restartsin registers 0 and 1 when anew event is seen on register 2.

NOTE: for the purpose of triggering the count mode, the triggering event monitored
onregister 2 must simply be non-zero. For event typesthat allow values other than zero
or one, counter 2 will continue to count normally, but the window will open only once,
and for the same number of counter 1'window' events, regardless of the value on

counter 2 which wasthetrigger. If conditional counting is enabled by setting bits[13]
(or [14]) in control register 2, then the triggering event must be equal to (or not equal
to) the values set in bits[12:10] of control register 2. In order to use thismode, the user
should first |oad monitor register 1 with avalue of (21° - {windowsize} ), so that when
{windowsize} events have been counted by count register 1, bit [16] of count register
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1 will be set and counting will stop. Then the user should load monitor registers 0 and
2 with avalue of 0. The three control registers should be set to count the events of
interest, and bit [15] should be set in control register O at the time that register is
written. When controlled by bit [15], trigger mode worksin a‘one shot’ manner. That
is, once counting is enabled by atrigger event, any further trigger events are ignored
until the window closes because bit 16 of count register 1 has become true. Only after
that occurswill anew trigger event cause the window to'reopen’ and counting to begin
again. If bit [16] is used to arm the trigger mode rather than bit [15], then a dlightly
different scheme results. In this case, whenever atrigger event occurs, the lower half
of count register 1 hasits value reset to the initial value, so that the window ‘remains
open’, in asense.

Note that when the performance monitor is used in triggering mode, the sum of trigger
eventsis availablein counter 2, and the number of ‘window closings’ is availablein the
upper half of counter 1. These two values may be different if the event which isused a
trigger can potentially take on values > 1 during a single cycle, or if multiple triggers can
occur during awindow interval.

Data-cache miss-address recording

Access to the miss-address information is provided by using opcode bit [3] in the MTCO
instruction to specify the miss-address register when accessing CPO register 25. If bit [3] is
set in the opcode of an MTCO instruction which accesses register 25, then the values of
opcode bits[2:0] areignored. When an MTCO-r25 instruction is executed with bit [ 3] of the
opcode set, the address of the most recently-refilled cache missistransferred from a
holding register into performance monitor register 3. From there it can be read viaa
DMFCO-r25 instruction with bits[0:1] set, so that it refersto performance counter register
3. This“arm then read” sequence is necessary due to implementation constraints. The use
of a“double move-from CO” instruction is necessary because 35 bits areretrieved from the
address holding register. The miss address holding register itself (unlike the other
performance monitor registers) is not writable, and there is no control register associated
with thisregister, either. Thereisno way to take an interrupt when the register iswritten or
to test the value or than by reading it. This address value in the holding register is updated
asynchronously to other operations of the processor, and so it does not necessarily represent
thelast datamissthat was generated. The mechanismthat isused closely approximatesthis.
The actual address held in the register is the address of the last line of the primary data
cacheto berefilled. Bit [15] in performance control register 3 determines whether the
address recorded corresponds to any primary cache miss or only those cache accesses
which also missed in the Scache. If bit [15] of the control register is set then only those
refills corresponding to primary cache misses which also missin the secondary cache will
have their addresses recorded.

Table11-30  Format of the “ Arm Cache-miss Register” Instruction.

Opcode[15:11] | Opcode[3] | Opcodel2:0] Operation
11001 1 XXX Move to DCache miss-address control
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The addressinformation is 35 bitsin size, and corresponds to the address of the cache-line
that wasrefilled. Thusitisaphysical addressand hasagranularity of 32 bytes. The address
isoutput in asplit format. The least significant bit returned by the cache-missregister is
always zero. Bits[31:1] represent bits[35:5] of the physical address. Bits[51:48] represent
bits [39:36] of the physical address.

Syndrome bits

In R12000A, the syndrome bits that are generated from the data coming into the processor
from the SCache are captured in a 9-bit register whenever thereis asingle or multiple bit
error. Therefore this register will always contain the syndrome bits generated for the most
recent error encountered. The register is uninitialized on power up and is not writable by
any other means. Architecturally, the 9-bit register appears as bits 31:23 of the CPO
Performance Counter (Cop 25) Control register 0. These bits were previously unused.
These 9 bits are read only bits. A write to this control register will not affect these bits.

The syndrome bits are generated for Secondary to Primary refills and Secondary to Main
memory writebacks, but not for CacheOp reads from Secondary cache.

The following are the equations used by the R12000A to generate the 9 syndrome hits:

DKOSyndrmP[8] := Parity(
SCData[127:120] || SCData[113:112] || SCData[111:104] ||
SCData[103:101] || SCData[97: 96] || SCData[90: 89] ||
SCData[87: 80] || SCData[74: 72] || SCData[69] ||
SCData[64] || SCData[62: 61] || SCData[57] ||
SCData[55: 54] || SCData[52] || SCData[47] ||
SCData[45: 44] || SCData[39: 38] || SCData[36] ||
SCData[21] || SCData[13] || SCData[ 7] ||
SCDataChk[8]

);

DKOSyndrmP[7] := Parity(
SCData[127:120] || SCData[119:112] || SCData]105:104] ||
SCData[99: 96] || SCData[95: 88] || SCData[82: 80] ||
SCData[73: 72] || SCData[71] || SCData] 69: 68] ||
SCData[65] || SCData[60] || SCData[51] ||
SCData[46] || SCData[43] || SCData[39: 38] ||
SCData[35] || SCData[25] || SCData[23] ||
SCData[20] || SCData[15] || SCData[12] ||
scoata5] |
SCDataChk[7]

);
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DKOSyndrmP[6] := Parity(
SCData[127] || SCData[121:120] || SCData[119:112] ||
SCData[111:104] || SCData[97: 96] || SCData] 90] ||
SCData[88] || SCData[81: 80] || SCData[79: 72] ||
SCDatd[ 70] || SCData[68: 66] || SCData[63] ||
SCData[55] || SCData[50] || SCData[42] ||
SCData[39: 38] || SCData]34] || SCData[29: 27] ||
SCDatd[22] || SCData[19] || SCData[14] ||
SCData[11] || SCData[6] || SCData[4] ||
SCDataChk[6]

);

DKOSyndrmP[5] := Parity(
SCData[126] || SCData[121] || SCData[119] ||
SCData[111] || SCData[100] || SCData[97] ||
SCData[95: 90] || SCData[87: 83] || SCData[81: 80] ||
SCData[79: 74] || SCData[69: 64] || SCData[63: 58] ||
SCData[56] || SCData[54: 53] || SCData[49] ||
SCData[41] || SCData[37] || SCData[33] ||
SCDatd[31] || SCData[26] || SCData[24] ||
SCDatg[18] || SCData[15: 14] || SCData[10] ||
SCData[3] |
SCDataChk[5]

);

DKOSyndrmP[4] := Parity(
SCData[125] || SCData[120] || SCData[118] ||
SCData[110] || SCData[105:104] || SCData[103: 96] ||
SCDatg[95] || SCData[87] || SCData[ 79] ||
SCData[ 74] || SCData[ 71: 64] || SCData[63: 56] ||
SCData[53] || SCData[48] || SCData[40] ||
SCData[32] || SCData[31: 24] || SCData[23: 22] ||
SCDate[17] || SCData[9] || SCData[7] ||
SCDate[2] |
SCDataChk[4]

);
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DKOSyndrmP[3] := Parity(
SCData[124] || SCData[117] || SCData[113:112] ||
SCData[109] || SCData[103] || SCData[96] ||
SCData[94] || SCData[90] || SCData[86] ||
SCDatd[ 78] || SCData[ 74: 73] || SCData[ 71] ||
SCData[69: 64] || SCData[63: 58] || SCData[53: 48] ||
SCData[47: 46] || SCData[44: 40] || SCData[37: 32] ||
SCData[30] || SCData]27: 26] || SCData[16] ||
SCData[8] || SCDate[6] || SCData[1] ||
SCDataChk[3]

);

DKOSyndrmP[2] := Parity(
SCData[123] || SCData[121] || SCData[116] ||
SCData[113] || SCData[108] || SCData[105] ||
SCData[100: 99] || SCData[93] || SCData[89: 88] ||
SCDatd[85] || SCData[77] || SCData[ 72] ||
SCDatd[63] || SCData[61: 59] || SCData[57] ||
SCData[55: 48] || SCData[47: 46] || SCData[39] ||
SCDatd[37] || SCData[31: 30] || SCData[28] ||
SCData[23: 16] || SCData[15: 8] || SCData[7: 6] ||
SCData[q] |
SCDataChk[2]

);

DKOSyndrmP[1] := Parity(
SCData[122] || SCData[115] || SCData[112] ||
SCData[107] || SCData[104] || SCData[102] ||
SCDatg[98] || SCData[92] || SCData[89: 88] ||
SCData[84] || SCData[81] || SCData[ 76] ||
SCData[67] || SCData[62] || SCData[59: 58] ||
SCData[56] || SCData[55: 54] || SCData[47: 45] ||
SCData[39: 32] || SCData[31: 29] || SCData[23: 22] ||
SCData[15: 8] || SCData[7: O] ||
SCDataChk[1]

);
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DKOSyndrmP[0] := Parity(
SCData[120] || SCData[114] || SCData[106] ||
SCData[101] || SCData[91] || SCData[89: 88] ||
SCData[83: 82] || SCData[80] || SCData[75] ||
SCData[73: 72] || SCData[ 70] || SCData[66: 64] ||
SCData[58] || SCData[55: 53] || SCData[47: 40] ||
SCData[38: 37] || SCData[31: 30] || SCData]25: 24] ||
SCData[23: 16] || SCData[15: 14] || SCData[7: O] ||
SCDataChk[0]

);
Details of Counting Events

In describing the rulesthat are applied for the counting of each eventslisted in Table 11-24,
following terminology is used:

Done isdefined as the point at which the instruction is successfully executed by the
functional unit but is not yet graduated.

Graduated is defined asthe point in time when theinstruction is successfully executed
(done), and it is the oldest instruction.

Secondary Cache Transaction Processing (SCTP) logic is on-chip logic in which up
tofour internally-generated and one-external ly generated secondary cachetransactions
are queued to be processed.

The following rules apply for the counting of each event listed in Table 11-24:

Event 0: Cycles

The counter isincremented on each PClk cycle.

Event 1. Decoded instructions
The counter isincremented by the total number of instructions decoded on the previous
cycle. Since decoded instructions may later be killed (for avariety of reasons) this count
reflects the overhead due to incorrectly speculated branches and exception processing.
Event 2: Decoded loads
This counter is incremented when aload instruction was decoded on the previous cycle.
Prefetch, cache-op and sync instructions are not included in the count of decoded loads.
Event 3: Decoded stores
The counter isincremented if astore instruction was decoded on the previous cycles. Store-
conditionals are included in this count.
Event 4: Miss Handling Table Occupancy

This counter isincremented on each cycle by the number of currently valid entriesin the
MissHandling Table (MHT). The MHT hasfive entries. Four entriesare used for internally
generated accesses; the fifth entry is reserved for externally-generated events. All five
entries are included in this count. See event 8 for arelated definition.
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Event 5: Failed Store Conditional.

This counter isincremented when a store-conditional instruction fails. A failed store-
conditional instruction will, in the normal course of events, graduate; so this event
represents a subset of the store-conditional instructions counted on event 20 (graduated
store-conditional s).

Event 6: Resolved Conditional Branch

This counter isincremented each time a branch is determined to have been mispredicted,
and each time a branch is determined to have been correctly predicted. This determination
of abranch-prediction’s accuracy is know as the branch being ‘resolved’. This counter
correctly reflects the case of multiple FP-conditional branches being resolved in asingle

cycle.
Event 7: Quadwords Written Back From Secondary Cache

This counter isincremented on each cyclethat the datafor aquadword iswritten back from
the secondary cache to the outgoing buffer located in the on-chip system-interface unit.
(Notethat datafrom the outgoing buffer could beinvalidated by an external request and not
sent out of the processor.)

Event 8: Correctable ECC Errors On Secondary Cache Data.
This counter isincremented on the cycle following the correction of asingle-bit error in a
guadword read from the secondary cache data array.

Event 9: Primary Instruction Cache Misses.
This counter isincremented one cycle after an instruction-fetch request is entered into the
Miss Handling Table.

Event 10: Secondary Cache Misses (Instruction)

This counter isincremented the cycle after arefill request is sent to the system-interface
module of the CPU. Thisisnormally just after the secondary cache tags are checked and a
miss is detected, but can be delayed if the system interface module is busy with another
request.

Event 11: Secondary Cache Way Misprediction (Instruction)

This counter isincremented when the secondary cache controller beginsto retry an access
because it hit in the not-predicted way, provided the access that initiated the access was an
instruction fetch.

Event 12: External I ntervention Requests

This counter isincremented on the cycle after an external intervention request is entered
into the Miss Handling Table, provided that the intervention is not an invalidate type.

Event 13: External Invalidate Requests

This counter isincremented on the cycle after an external invalidate request is entered into
the Miss Handling Table, provided that the intervention is an invalidate type.
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Event 14:

Event 15:

Event 16:

Event 17:

Event 18:

Event 19:

Event 20:

Event 21:

Event 22:

Event 23:

Not Used

This counter is not counting any event.

Instruction Graduation.
This counter isincremented by the number of instructions that were graduated on the
previous cycle. When an integer multiply or divide instruction graduates, it is counted as
two graduated instructions.

Executed prefetch instructions
This counter is incremented on the cycle after a prefetch instruction does its tag-check,
regardless of whether a primary data cache line refill is initiated.

Primary data cache misses by prefetch instructions
This counter isincremented on the cycle after a prefetch instruction doesiits tag-check and
arefill of the corresponding primary data cache lineisinitiated.

Graduated loads
This counter isincremented by the number of |oads which graduated on the previouscycle.
Prefetch instructions are included in this count. Up to four loads can graduate in one cycle.

Graduated stores
This counter isincremented on the cycle after a store graduates. At most one store can
graduate per cycle. Store-conditional’s are included in this count.

Graduated store conditionals

This counter isincremented on the cycle following the graduation of a store-conditional
instruction. Both failed and successful store-conditional instructions are included in this
count; so successful store-conditionals can be determined as the difference between this
event and event 5 (failed store-conditionals).

Graduated floating point instructions
This counter isincremented by the number of FP instructions which graduated on the
previous cycle. There can be 0 to 4 such instructions.

Quadwordswritten back from primary data cache
Thiscounter isincremented on each cyclethat aquadword of dataisvalid and being written
from primary data cache to secondary cache.

TLB misses

This counter isincremented on the cycle after the TLB miss handler isinvoked.
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Event 24: Mispredicted branches

This counter isincremented on the cycle after abranch is “restored” because it was
mispredicted.

Event 25: Primary data cache misses

This counter isincremented one cycle after arequest is entered into the SCTP logic,
provided that the request wasinitially targeted at the primary data cache. Such requestsfall
into three categories:

e Primary data cache misses.

» Reguests to change the state of secondary and primary data cache lines from
clean to dirty (“update” requests) due to stores that hit a clean line in the
primary data cache.

* Reguests initiated by cache-op instructions.

Event 26: Secondary cache misses (data)

This counter isincremented the cycle after arefill request is sent to the system-interface
module of the CPU. Thisisnormally just after the secondary cache tags are checked and a
missis detected, but can be delayed if the system interface module is busy with another
request.

Event 27: Misprediction from secondary cache way prediction table (data)

This counter isincremented when the secondary cache control begins to retry an access
becauseit hit in the not-predicted way, provided the access that initiated the access was not
an instruction fetch.

Event 28: Store of external intervention hit in secondary cache

Thisevent is set on the cycle after an external intervention is determined to have hit in the
secondary cache. The value of the event is equal to the state of the secondary cache line
which was hit.

Table11-31 State of external intervention hit in secondary cache

Event value State of secondary cache
00 Invalid, no hit seen
01 Clean, Shared
10 Clean, Exclusive
11 Dirty, Exclusive

Setting a performance control register to select this event has a special effect on the
conditional-counting behavior. If event 28 or 29 is selected, the sense of the “Negated
conditional counting” bit isinverted. Seethe description of conditional counting for details.
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Event 29: State of external invalidation hitsin secondary cache
Thisevent is set on the cycle after an external invalidate requests determined to have hitin
the secondary cache. It's value is equivalent to that described for event 28.

Event 30: Store/prefetch exclusiveto clean block in secondary cache
This counter isincremented on the cycle after an update request isissued for aclean linein
the secondary cache.

Event 31: Store/prefetch exclusive to shared block in secondary cache

This counter isincremented on the cycle after an update request is issued for a shared line
in the secondary cache.
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11.21 ECC Register (26)

262

The R10000 processor implements a 10-hit read/write ECC register which is used to read
and write the secondary cache data ECC or the primary cache data parity bits. (Tag ECC
and parity are loaded to and stored from the TagL o register.) Unlike the R4400, the only
CacheOps that use ECC register are Index Load Data and Index Sore Data.

In the R4400, both the primary instruction and data caches are parity byte-protected.

In the R10000 processor, the following protection schemes are used:

*  The primary instruction cache is word-protected (where one word contains 36
bits), and one parity bit is used for each instruction word (IP in Figure 11-24).

* The primary data cache is byte-protected, with four bits used for each 32-bit
data word (DP in Figure 11-24).

»  Each quadword of the secondary cache data uses nine bits of ECC and one bit
of parity (SP and ECC in Figure 11-24).

The primary instruction CacheOps |oad or store one instruction word at atime; therefore,
one bit isused in the ECC register. The primary data CacheOps |load or store four bytes at
atime; therefore, four bits are used in the ECC register. The secondary CacheOps use
ECCJ9] asthe parity bit and ECC[8:0] as the 9-bit ECC. For the Index Store Data
CacheOps, the unused bits are ignored. For Index Load Data CacheOps, the unused a bits
are with zeroes.

Figure 11-24 shows the format of the ECC register; Table 11-32 describes the register
fields.

31 10 9 8 o
1 9
0 SP ECC pL
22 1 9

Figure 11-24 ECC Register Format

Table11-32 ECC Register Fields

Field Description
sp A 1-hit field specifying the parity bit read from or written to a secondary
cache.
ECC An 9-bit field specifying the ECC bits read from or written to a secondary
cache.
DP An 4-hit field specifying the parity bits read from or written to a primary
data cache.
P An 1-bit field specifying the parity bit read from or written to a primary
instruction cache.
0 Reserved. Must be written as zeroes, and returns zeroes when read.
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11.22 CacheErr Register (27)

The CacheErr register is a 32-bit read-only register that handles ECC errorsin the
secondary cache or system interface, and parity errorsin the primary caches.
R10000 processor correction policy is as follows:

e Parity errors cannot be corrected.

e Single-bit ECC errors can be corrected by hardware without taking a Cache
Error exception.

» Double-bit ECC errors can be detected but not corrected by hardware.

» All uncorrectable errors take Cache Error exceptions unless the DE bit of the
Satus register is set.

» Asinthe R4400, cache errors are imprecise.

The CacheErr register provides cache index and status bits which indicate the source and
nature of the error; it isloaded when a Cache Error exception is taken.

CacheErr Register Format for Primary Instruction Cache Errors

Figure 11-25 shows the format of the CacheErr register when a primary instruction cache
error occurs.

31 30 29 28 27 26252423 22 21 14 13 65 0
00 [EW| O | D |[TA|TS 0 Pldx 0
2 1 1 2 2 2 8 8 6

Figure11-25 CacheErr Register Format for Primary Instruction Cache Errors

EW: set when CacheErr register is aready holding the values of a previous error
D: data array error (wayl| wayO)

TA: tag address array error (wayl| way0)

TS tag state array error (wayl| wayO0)

Pldx: primary cache virtual block index, VA[13:6]

0: Reserved. Must be written as zeroes, and returns zeroes when read.
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CacheErr Register Format for Primary Data Cache Errors

264

Figure 11-26 shows the format of the CacheErr register when a primary data cache error
occurs.

31 30 29 28 27 262524 232221 2019 14 13 3 2 0
01 ([EW|EE| D | TA|[TS|TM 0 Pldx 0
2 11 2 2 2 2 6 11 3

Figure11-26 CacheErr Register Format for Primary Data Cache Errors

EW: set when CacheErr register is already holding the values of a previous error
EE: tag error on an inconsistent block

D: data array error (wayl || wayO0)

TA: tag address array error (way1l || wayO)

TS tag state array error (wayl || wayO0)

TM: tag mod array error (way1l || wayO)

Pldx: primary cache virtual double word index, VA[13:6]

0: Reserved. Must be written as zeroes, and returns zeroes when read.
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CacheErr Register Format for Secondary Cache Errors

Figure 11-27 shows the format of the CacheErr register when a secondary cache error

occurs.
31 30 29 28 27262524 23 22 6 5 0
10 ([EW|( O | D TA 0 Sldx 0
2 1 1 2 2 1 17 6

Figure11-27 CacheErr Register Format for Secondary Cache Errors

EW: set when CacheErr register is already holding the values of a previous error
D: uncorrectable data array error (way1l || wayO)
TA: uncorrectable tag array error (wayl || wayO0)

S dx: secondary cache physical block index (PA[22:6] for 16-word block size or PA[22:7]
for 32-word block size)

0: Reserved. Must be written as zeroes, and returns zeroes when read.
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CacheErr Register Format for System Interface Errors
Figure 11-28 shows the format of the CacheErr register when a System interface error

occurs.
31 30 29 28 27 26 25 24 23 22 6 5 0
11 |EW|EE| D |SA|SC|SR Sldx 0

2 11 2 1 1 1 17 6

Figure11-28 CacheErr Register Format for System Interface Errors

EW: set when CacheErr register is already holding the values of a previous error
EE: data error on a CleanExclusive or DirtyExclusive

D: uncorrectable system block data response error (way1 || way0)

SA: uncorrectable system address bus error

SC: uncorrectable system command bus error

SR: uncorrectable system response bus error

Sdx: secondary cache physical block index

0: Reserved. Must be written as zeroes, and returns zeroes when read.
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11.23 TagL o (28) and TagHi (29) Registers
The TagHi and TagLo registers are 32-bit read/write registers used to hold the followi ng:Jr
e the primary cache tag and parity
» the secondary cache tag and ECC

* thedatain primary or secondary caches for certain CacheOps
TagHi/Lo formatsin the R10000 processor differ from those in the R4400 due to changes
in CacheOps and cache architecture. R10000 formats depend on the type of CacheOp
executed and the cache to which it is applied. The reserved fields are read as zeroes after

executing an Index Load Tag or an Index Load Data CacheOp and ignored when executing
an Index Sore Tag or an Index Sore Data CacheOp.

Toensure NT kernel compatibility, the TagLo register isimplemented asa 32-bit read/write
register. Thevaluewritten by an MTCO instruction can beretrieved by aMFCO instruction,
unless an intervening CACHE instruction has modified the content.

This section gives the TagL o and TagHi register formats for the following CacheOp and
cache combinations:

e CacheOp is Index Load/Store Tag
- primary instruction cache operation
- primary data cache operation
- secondary cache operation

e CacheOp is Index Load/Store Data
- primary instruction cache operation
- primary data cache operation
- secondary cache operation

CacheOp isIndex Load/Store Tag

This section describes the three states of the TaglLo and TagHi registers, when the CacheOp
isan Index Load/Sore Tag for the following operations:

e primary instruction cache operation

e primary data cache operation

» secondary cache operation

T Toensure NT kernel compatibility, the TagL o register isimplemented as a 32-bit read/write
register. The value written by a MTCO instruction can be retrieved by a MFCO instruction,
unless intervening CACHE instructions modify the content.
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Primary Instruction Cache Operation

If the CacheOp is an Index Load/Store Tag for a primary instruction cache operation, the
fields of the TagHi and TagL o registers are defined as follows:

PTagO0: contains physical address bits [35:12] stored in the cache tag

PSate: contains the primary instruction cache state for the line, as follows:
1=Valid
0 =Invalid

LRU: indicates which way is the least recently used of the set.

SP: state even parity bit for the PState field

TP: tag even parity bit.

PTagl: contains physical address bits [39:36] stored in the cache tag

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 11-29 shows the fields of the TagHi and TagLo registers.

31 8 7 6 5 4 3 2 1 0
PTag0 0 | PState 0 |LRU| SP| 0 |TP @l TaglLo
24 1 1 2 1 1 1 1
31 43 0
0 PTagl I TagHi
28 4

Figure 11-29 TagHi/Lo Register Fieldsin Primary Instruction Cache
When CacheOp is Index Load/Store Tag
Primary Data Cache Operation

If the CacheOp is an Index Load/Store Tag for primary data cache operations, the fields of
the TagHi and TagL o registers are defined as follows:

Sate Modifier: holds the status of the line, asfollows:
001, = neither refilled or written

010, = thisline may have been written and inconsistent from the secondary cache (W
bit)

100, = thisline is being refilled (Refill bit).
PTagl: contains physical address bits [39:36] stored in the cache tag
PTag0: contains physical address bits [35:12] stored in the cache tag
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PSate: together with the Refill bit of the Sate Modifier in the TagHi register, PState
determines the state of the cache block in the primary data cache, as shown in Table 11-33.

Table 11-33 PSate Field Definition in TagHi/Lo Registers, For Primary Data Cache Operation
When CacheOp is Index Load/Sore Tag

PState Refill=0 Refill=1
00, Invalid Refill clean (block isbeing
refilled)
01, Upgrade Share (converting
Shared shared to dirty)
10, Clean Upgrade Clean (converting
Exclusive clean to dirty).
Dirty Refill dirty (block isbeing
11, Exclusive refilled for a store)

LRU: indicates which way isthe least recently used of the set.

SP: state even parity bit for the PState field and the Way bit

Way: indicates which secondary cache set contains the primary cache line for thistag
TP: tag even parity bit.

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 11-30 shows the fields of the TagHi and TagLo registers.

31 87 6 4 3 2 1 0
PTag0 PState 0 LRU|SP |Way| TP fl TaglLo
24 2 2 1 1 1 1
31 29 28 3 0
State .
Modifier 0 PTagl TagHi
3 25 4

Figure 11-30 TagHi/Lo Register Fieldsin Primary Data Cache
When CacheOp is Index Load/Sore Tag
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Secondary Cache Operation

If the CacheOpis an Index Load/Store Tag for secondary cache operations, thefields of the
TagHi and TagLo registers are defined as follows:

STagO0: contains physical address bits [35:18] stored in the cache tag
SSate: contains the secondary cache state of the line, as follows:
00, = Invalid
01, = Shared
10, = Clean Exclusive
11, = Dirty Exclusive

VIndex (virtual index): contains only two bits of significance since the32 Kbyte 2-way set
associative primary caches are addressed using only two untranslated address bits
(VA[13:12]) plus the offset within the virtual page.

ECC: contains the ECC for the STag, State and VIndex fields.

MRU: indicates which way was the most recently used in the set.

STagl: contains the physical address bits [39:36] stored in the cache tag.
0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 11-31 shows the fields of the TagHi and TagLo registers.

31 14131211 10 9 8 76 0
STag0 0 | sstate [ 0 |VIndex ECC TagLo
18 2 2 1 2 7
31 30 43 0
MRU 0 STagl TagHi
1 27 4

Figure 11-31 TagHi/Lo Register Fields in Secondary Cache
When CacheOp is Index Load/Sore Tag
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CacheOp isIndex Load/Store Data

This section describesthe following three states of the TagLo and TagHi registers, when the
CacheOp is an Index Load/Sore Data:

e primary instruction cache operation
» primary data cache operation
» secondary cache operation

Primary Instruction Cache Operation

If the CacheOp is an Index Load/Store Data for the primary instruction cache, the TagHi
register stores the most significant four bits of a 36-bit instruction, as shown in Figure 11-
32; therest of the instruction is stored in the TagLo register.

0

31
Inst[31:0] I TagLo

32
31 43 0
0 Inst[35:32] I TagHi
28 4

Figure 11-32 TagHi/Lo Register Fieldsin Primary Instruction Cache
When CacheOp is Index Load/Sore Data

0: Reserved. Must be written as zeroes, and returns zeroes when read.
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Primary Data Cache Operation

If the CacheOp is Index Load/Store Data for primary data cache, the TagHi register is not
used. The TagLo registers contains a 32-bit dataword for the cache operation, as shownin

Figure 11-33.

31

Data Word[31:0] TagLo

32

0

31
Not Used I TagHi
32

Figure 11-33 TagHi/Lo Register Fieldsin Primary Data Cache
When CacheOp is Index Load/Sore Data

Secondary Cache Operation
If the CacheOp is Index Load/Store Data for the secondary cache, adoubleword of datais
required for the CacheOp. The TagHi register stores the upper 32 bits of the doubleword
and the TagL o register stores the lower 32 bits, as shown below in Figure 11-34.

0

31
Doubleword[31:0] I TagLo
32

0

31
Doubleword[63:32] I TagHi
32

Figure 11-34 TagHi/Lo Register Fieldsin Secondary Cache
When CacheOp is Index Load/Sore Data
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11.24 ErrorEPC Register (30)

TheErrorEPC register issimilar to the EPC register, except that ErrorEPC isused on ECC
and parity error exceptions. Itisalso used to store the program counter (PC) on Reset, Soft
Reset, and nonmaskable interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. Figure 11-35 shows the format of the

ErrorEPC register.
ErrorEPC Register
63 0
ErrorEPC I

64

Figure 11-35 ErrorEPC Register Format

User'sManual U10278EJ4VOUM 273



12. Floating-Point Unit

274

This section describes the operation of the FPU, including the register definitions.
The Floating-Point unit consists of the following functional units:

e add unit

o multiply unit

e divide unit

e sguare-root unit

The add unit performs floating-point add and subtract, compare, and conversion
operations. Except for Convert Integer To Single-Precision (float), all operations have a 2-
cyclelatency and a 1-cycle repeat rate.

The multiply unit performs single-precision or double-precision multiplication with a 2-
cycle latency and a 1-cycle repeat rate.

The divide and square-root units do single- or double-precision operations. They have
long latencies and low repeat rates (20 to 40 cycles).
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12.1 Floating-Point Unit Operations

Thefloating-point add, multiply, divide, and square-root unitsread their operands and store
their results in the floating-point register file. Values are loaded to or stored from the
register file by the load/store and move units.

A logic diagram of floating-point operationsis shown in Figure 12-1, in which data and
instructions are read from the secondary cache into the primary caches, and then into the
processor. There they are decoded and appended to the floating-point queue, passed into
the FP register file where each is dynamically issued to the appropriate functional unit.
After execution in the functional unit, results are stored, through the register file, in the
primary data cache.

Secondary
> Cache
(512 Kbyte to 16 Mbyte)
3 A
»| FP J
FP Adder System Bus
Register - >
32 Kbyte File > FP
y 2-way associative (64-by-64) Multiply. Refill | Copyback
Primary Register FP Divide 32Kbyte
Instruction Cache Instruction Rename & SORT Y 2-way associative
Decode/ Map T : Primary
Branch Cache Rename/ FP Queue »| Data
Branch Active and (16-entry) Cache
Unit Free Lists
Branch Address
T

Figure12-1 Logical Diagram of FP Operations

The floating-point queue can issue one instruction to the adder unit and one instruction to
the multiplier unit. The adder and multiplier each have two dedicated read ports and a
dedicated write port in the floating-point register file.

Because of their low repeat rates, the divide and square-root units do not have their own
issue port. Instead, they decode instructionsissued to the multiplier unit, using its operand
registers and bypass logic. They appropriate a second cycle later for storing their result.

When an instruction isissued, up to two operands are read from dedicated read portsin the
floating-point register file. After the operation hasbeen completed, theresult can bewritten
back into the register file using a dedicated write port. For the add and multiply units, this
write occurs four cycles after its operands were read.
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12.2 Floating-Point Unit Control
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The control of floating-point execution is shared by the following units;

» The floating-point queue determines operand dependencies and dynamically
issues instructions to the execution units. It also controls the destination
registers and register bypass.

e The execution units control the arithmetic operations and generate status.

*  The graduate unit saves the status until the instructions graduate, and then it
updates the Floating-Point Status register.

Eliminate trapsfor Denorm/NaN FP inputs (R12000)

The R10000 currently takes Unimplemented Exception when an FPU gets a NaN or
Denorm as an input. R12000 suppresses these traps whenever the FS it is set in the FCSR
(ref. VR5000, V{10000 INSTRUCTION User’sManual). R12000 simply passesthrough
NaN’s and Denorm’s when the bit is set. This change in no way affects the handling of
QNaNs and Denorms when they are produced, it only changes the way they are handled
when they are received as input operands.

Case of Denorm when the FS bit is set to 1: A Denorm received as an input to the FP unit
isflushed to zero before the FP unit beginsto processthe operand. The behavior of the unit
(when FSis 1) will beexactly that seen when theinput iszero. Specifically, if the zero input
would itself cause atrap (due to divide by zero, for example) then the that zero-generated
trap will be taken.

When a Denorm is seen at the input, the Inexact bit is set, except in the cases described
below:

The Inexact bit will not be set, even if FS=1 and a Denorm is seen on input, if the other
input to the FP operation is avalue which pre-determines the FP result (e.g. QNaN). When
the result is not affected by the presence or absence of the Denorm input, the result is
EXACT. Hence the Inexact bit should not be set, even if Flush to Zero modeis ON.

Case of QNaNswhen the FShit isset to 1: A QNaN received as an input operand for an FP
unit will cause the unit to produce the standard QNaN (which is not necessarily same asthe
input QNaN). Note that FP unitswill not propagate the QNaN to the output, but will always
produce the same, standard, QNaN.

When the FS bit is set to zero, the behavior will be exactly asin R10000.
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12.3 Floating-Point General Registers (FGRS)

32- and 64-Bit Operations

Status Bit FR=0
Sixteen 64-bit Physical Registers

The Floating-Point Unit is the hardware implementation of Coprocessor 1 inthe MIPS IV
Instruction Set Architecture. The MIPS IV ISA defines 32 logical floating-point general
registers (FGRs), as shown in Figure 12-2. Each FGR is 64 bits wide and can hold either
32-bit single-precision or 64-bit double-precision values. The hardware actually contains
64 physical 64-hit registersin the Floating-Point Register File, from which the 32 logical
registers are taken.

FP instructions use a 5-bit logical number to select an individual FGR. These logical
numbers are mapped to physical registers by the rename unit (in pipeline stage 2), before
the Foating-Point Unit executes them. Physical registers are selected using 6-bit
addresses.

The FR bit (26) in the Status register determines the number of logical floating-point
registers available to the program, and it alters the operation of single-precision load/store
instructions, as shown in Figure 12-2.

e FRisreset to 0 for compatibility with earlier MIPS | and MIPS |1 1SAs, and
instructions use only the 16 physical even-numbered floating-point registers
(32 logical registers). Each logical register is 32 bits wide.

e FRissetto1for normal MIPS Il and MIPS IV operations, and all 32 of the
64-bit logical registers are available.

Status Bit FR=1

Thirty-two 32-bit Logical Registers Thirty-two 64-bit Registers ) )
(MIPS | and MIPS Il compatible) (MIPS 1l and MIPS IV only) Physical Register
63 32 31 0 63 0
FGR = #1 FGR =#0 I FGR = #0 I Register #0
63 0
(Register is not implemented.) FGR = #1 I Register #1
63 32 31 0 63 0
FGR =#3 FGR =#2 I FGR = #2 I Register #2
63 0
(Register is not implemented.) FGR = #3 I Register #3
°
. °
.
°
°
63 32 31 0 63 0
FGR =#31 FGR =#30 I FGR =#30 I Register #30
63 0
(Register is not implemented.) FGR = #31 I Register #31

Figure 12-2 Floating-Point Registers

User'sManual U10278EJ4VOUM 277



Chapter 12 Floating-Point Unit

Load and Store Oper ations

When FR = 0, floating-point load and stores operate as follows:

* A doubleword load or store is handled the same as if the FR bit was set to 1,
as long as the register selected is even (0, 2, 4, etc.).

» If the register selected is odd, the load/store is invalid.
These operations are shown in Figure 12-3. Singleword loads/stores to even and odd
registers are also shown.
FR=0 16-Register Mode

Doubleword Load/Store
Same as FR=1 if register is even, else invalid.

Singleword [ oad/Store when Reqister is Even Singleword Load/Store when Register is Odd
31 0 31 0

Memory' I

MemoryJr

LWC1 ft,address (MTCL1 ft,rs) LWC1 ft,address (MTC1 ft,rs)

63 32 31 Y 0 63
Load 32-bit

31 0
Load 32-bit Unchanged I

Unchanged

SWCL1 ft,address (MFC1 rt,fs) SWC1 ft,address (MFC1 rt,fs)

32 31 63 0
fffffffff I
| Sign extend reg. l MemoryJr I
L e e e - = = =
TMove to/from selects an integer register instead. TMove to/from selects an integer register instead.
Moved 32-bit data is sign-extended in 64-bit register. Moved 32-bit data is sign-extended in 64-bit register.

Figure12-3 Loading and Soring Floating-Point Registersin 16-Register Mode

NOTE: Move (MOV) and conditional move (MOVC, MOVN, MOV Z are included
in these arithmetic operations, although no arithmetic is actually performed.
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When FR = 1, floating-point load and stores operate as follows:

e Single-precision operands are read from the low half of aregister, leaving the
upper half ignored. Single-precision results are written into the low half of
the register. The high half of the result register is architecturally undefined; in
the R10000 implementation, it is set to zero.

»  Double-precision arithmetic operations use the entire 64-bit contents of each
operand or result register.

Because of register renaming, every new result is written into atemporary register, and
conditional move instructions select between a new operand and the previous old value.
The high half of the destination register of a single-precision conditional move instruction
is undefined (shown in Figure 12-5), even if no move occurs.

Singleword and doubleword loads and stores with the FPU in 32-register mode (FR=1) are

shown in Figure 12-4.

FR=1 32-Register Mode

Doubleword Load/Store

63 0

MemoryJr (or 64-bit register)

LDC1 ft,address (DMTC1 ft,rs)

63 0

Load 64-bit Value

SDC1 ft,address (DMFC1 rt,fs)

63 0

| Memory™ (or 64-bit register) I

Singleword Load/Store

31 0

zero (dup)
LWC1 ft,address (MTC1 ft,rs)
63 32 31 0

Undefined 32-bit Value

SWC1 ft,address (MFC1 rt,fs)

0

TMove to/from selects an integer register instead.
Moved 32-bit data is sign-extended in 64-bit register.

Figure12-4 Loading and Soring Floating-Point Registersin 32-Register Mode
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Doubleword load, store and move to/from instructions load or store an entire 64-bit
floating-point register, as shown in Figure 12-5.

32-bit Single-Precision 64-bit Double-Precision
63 32 31 0 63 0
Unused 32-bit Value 64-bit Operand Value I
63 Y 0
zero Functional Unit I Functional Unit

63 l 32 31 \ 0 63 0

Undefined 32-bit Value I 64-bit Result Value I

In MIPS 1 and Il ISA, arithmetic operations are valid only for even-numbered registers.

Figure 12-5 Operatorson Floating-Point Registers

In MIPS | and MIPS 11 1SAs, al arithmetic instructions, whether single- or double-
precision, are limited to using even register numbers. Load, store and move instructions
transfer only asingleword. Even and odd register numbers are used to access the low and
high halves, respectively, of double-precision registers. When storing a floating-point
register (SWCL1 or MFCL1), the processor reads the entire register but writes only the
selected half to memory or to an integer register.

Because the register renaming scheme creates anew physical register for every destination,
itisnot sufficient just to enable writing half of the Floating-Point register file when loading
(LWC1 or MTC1); the unchanged half must also be copied into the destination. Thisold

valueisread using the shared read port, it isthen merged with the new word, and the merged
doubleword value iswritten. (A writeto the register file writes al 64 bitsin parallel.)

When instructions are renamed in MIPS | or |1, the low bit of any FGR field isforced to
zero. Thus, each even/odd logical register number pair is treated as an even-numbered
double-precision register. Odd numbered logical registers are not used in the mapping
tables and dependency logic, but they remain mapped to their latest physical registers.
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12.4 Floating-Point Control Registers
The MIPSI1V ISA permitsup to 32 control registersto be defined for each coprocessor, but
the Floating-Point Unit uses only two:
e Control register 0, the FP Implementation and Revision register
e Control register 31, the Floating-Point Satus register (FSR)

Floating-Point I mplementation and Revision Register
The following fields are defined for control register 0 in Coprocessor 1, the FP
Implementation and Revision register, as shown in Figure 12-6:

e The Implementation field holds an 8-bit number, 0x09, which identifies the
R10000 implementation of the floating-point coprocessor.

e The Revision field is an 8-bit number that defines a particular revision of the
floating-point coprocessor. Since it can be arbitrarily changed, it is not
defined here.

Implementation and Revision Register
31 16 15 87 0
0 Imp (0x09) Rev

16 8 8

Figure12-6 FP Implementation and Revision Register Format
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Floating-Point Status Register (FSR)

Figure 12-7 shows the Floating-Point Satus register (FSR), control register 31in
Coprocessor 1. It isimplemented in the graduation unit rather than the Floating-Point Unit,
because it is closely tied to the active list.

Bits22:18 are unimplemented and must be set to zero. All other bitsmay beread or written
using Control Move instructions from or to Coprocessor 1 (subfunctions CFC1 or CTC1).

These moveinstructions are fully interlocked; they are delayed in the decode stage until all
previous instructions have been graduated, and no subsequent instruction is decoded until
they have been completed.

FP Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

716(5|4|3|2]|1]|FS|o0 0 E|V|z|O|U|l |V]|z|Oo|U|Il [V]|z|O|U]I RM
11 1 1 1 1 1 1 1 5 i1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
AN J - AN AN J
T j ' ' Y
Condition Bits 7..0 Cause Enables Flags

Condition bits are True/False values set by floating-point compare instructions.
Flush (FS) bit: 0: A denormalized result causes an Unimplemented Operation exception.

1. A denormalized result is replaced with zero. No exception is flagged.
Cause bits indicate the status of each floating-point arithmetic instruction. (Not by load, store, or move.)
Enable bits enable an exception if the corresponding Cause bit is set.
Flag bits are set whenever the corresponding Cause bit is a 1. These bits are cumulative. Once a bit is set, it
remains set until the FSR is written by a CTC1 instruction.

E Unimplemented operation. This exception is always enabled.
IEEE 754 Exception bits: The following bits may be individually enabled:

4 Invalid operation.

V4 Division by zero. (Divide unit only.)

(0] Overflow.

U Underflow.

/ Inexact operation. (Result can not be stored precisely.)

Round Mode (RM) (IEEE specification)
RN, Round to nearest representable value. If two values are equally near,

set the lowest bit to zero.

1: RZ, Round toward Zero. Round to the closest value whose magnitude is not greater than
the result.

2: RP, Round to Plus Infinity. Round to the closest value whose magnitude is not less than
the result.

3: RM, Round to Minus Infinity. Round to the closest value whose magnitude is not greater.

Figure12-7 Floating-Point Status Register (FSR)
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Bit Descriptions of the FSR
Description of the bitsin the FSR are as follows:

Condition Bits[31:25,23]: The Condition bitsindicate the result of floating-point compare
instructions. The active list keepstrack of these bits.

Cause Bits[17:12]: Each functional unit can detect exceptional casesin their function
codes, operands, or results. These cases are indicated by setting one of six specific Cause
bits. The Cause bits indicate the status of the floating-point arithmetic instruction which
graduated most recently or caused an exception to be taken. The FSRis not modified by
load, store, or move instructions. All cause bits, except E, have corresponding Enable and
Flag bitsin the FSR.

E Unimplemented operation: the execution unit does not perform the specified
operation. Thisexception is aways enabled.

V Invalid operation: this operation is not valid for the given operands.

Z Division by zero: (divide unit only) the result of division by zero is not
defined.

O Overflow: the result istoo large in magnitude to be correctly represented in
the result format.

U Underflow: the result istoo small in magnitude to be correctly represented in
the result format.

| Inexact Result: the result cannot be represented exactly.

NOTE: TheFSRismodified only for instructionsissued by thefloating-point queue.
Move From (MFC or DMFC) instructions never set the Cause field; status bits from
the functional unit (multiplier) must beignored. Move or Move Conditional
instructions can set the Unimplemented Operation exception only in the Cause field.
Load and store instructions are issued by the address queue.)

Thefunctional units generate the Cause bits and send them to the graduation unit when the
operation is completed.

Enable Bits[11:7]: The five Enable hits individually enable (when set to a 1) or disable
(when set to a 0) exceptions when the corresponding Cause bit is set.

Flag Bits[6:2]: One of thefive Flag bitsis set when afloating-point arithmetic instruction
graduates, if the corresponding Cause bit is set. The Flag bits are sticky and remain set
until the FSRiswritten. Thus, the Flag bits indicate the status of all floating-point
instructions graduated since the FSR was last written. The Flag bits are not modified for
any instructions which cause an exception to be taken.
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284

Loading the FSR

Round Mode [ 1:0]: RM hits select one of the four |EEE rounding modes. Most floating-
point results cannot be precisely represented by the 32-bit or 64-bit register formats, and
must be truncated and rounded to arepresentable value. The modes selected by the RM bit
values are;

0: RN, round to nearest representable value. If two values are equally near, set the
lowest bit to zero.

1: RZ, round toward zero. Round to the closest value whose magnitude is not greater
than the resullt.

2: RP, round to plusinfinity. Round to the closest value whose magnitude is not less
than the resuilt.

3: RM, round to minusinfinity. Round to the closest value whose magnitude is not
greater.

The Round and Enable bits only change when the FSRis written by a CTC1 (Move To
Coprocessor 1 Control Register) instruction. Each CTC1 instruction is executed
sequentially, after all previous floating-point instructions have been completed, so these
FSR bits do not change while any floating-point instruction is active. These bits are
broadcast from the graduation unit to all the floating-point functiona units.

When a Cause hit is set and its corresponding Enable bit is also set, an exception is taken
on theinstruction. The result of the instruction is not stored, and the Flag bits are not
changed. If no exception istaken, the corresponding Flag bits are set.

The Cause and Flag bits may be read or written. 1f a CTC1 instruction sets both a Cause
bit and its Enable bit, an exception istaken immediately. The FSRiswritten, but the
exception is reported on the move instruction.

The FSR may be loaded from an integer register by a CTC1 instruction which selects
control register 31. Thisinstruction isexecuted serially; that is, it is delayed during decode
until the entire pipeline has emptied, and it is completed before the next instruction is
decoded. Thisinstruction writesall FSR hits.

If any Cause bit and its corresponding Enable bit are both set, an exception is taken after
FSR hasbeen modified. The CTCL instructionisaborted; it does not graduate, even though
it has changed the processor state.
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13. Memory Management

This section describes the R10000 processor memory management, including:
*  processor modes and exceptions
» virtual address space
e virtual address translation
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13.1 Processor M odes

Processor Operating M odes

The R10000 hasthree operating modes and two addressing modes. All aredescribed inthis
section.

The three operating modes are listed in order of decreasing system privilege:
» Kernel mode (highest system privilege): can access and change any register.
The innermost core of the operating system runs in kernel mode.

»  Supervisor maode: has fewer privileges and is used for less critical sections of
the operating system.

* User mode (lowest system privilege): prevents users from interfering with one
another.

Selection between the three modes can be made by the operating system (when in Kernal
mode) by writing into Statusregister’sKSU field. The processor isforced into Kernel mode
when the processor is handling an error (the ERL bit is set) or an exception (the EXL bit is
set). Table 13-1 shows the selection of operating modes with respect to the KSU, EXL and
ERL bits.

Table 13-1 also shows how different instruction sets and addressing modes are enabled by
the Status register’s XX, UX, SXand KX bits. A dash (“-" ) inthistableindicatesa“don’t
care” For detailed information on the address spaces available in each mode, refer to
section titled, “Virtual Address Space,” in this chapter.

The R10000 processor was designed for use with the MIPS IV |SA; however, for
compatibility with earlier machines, the useable | SAs can be limited to either MIPS11 or
MIPSI/IL.

Table 13-1 Processor Modes

XX |KX | SX |UX | KSU |ERL [EXL Descrintion ISA¥ | 1sAt Addressing Mode
31| 7 6 5 4:3 2 1 P 11 1V 32-Bit/64-Bit
o|l-|-]l]o]l1w]|] 0] o0 No | No 32

1 - - 0 10 0 0 User mode No Yes 32

0 - 1 10 0 0 ' Yes No 64

1 - - 1 10 0 0 Yes Yes 64

- - 0 - 01 0 0 Supervisor mode No Yes 32

-l -]1|-lo]|o]| o[ : Yes | Yes 64

- 0 - - 00 0 0 Kernel mode Yes | Yes 32

- 1 - - 00 0 0 ) Yes | Yes 64

- 0 - - - 0 1 . Yes | Yes 32

) 1 i i i 0 1 Exception Level ves | Ves 64

- 0 - - - 1 X Yes | Yes 32

) 1 i i i 1 X Error Level. ves | Ves 64

I No meansthe |SA isdisabled; Yes meansthe |SA is enabled.
* Dashes (-) are “don’t care.”
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Addressing Modes

The processor’s addressing mode determines whether it generates 32-bit or 64-bit memory
addresses.
Refer to Table 13-1 for the following addressing mode encodings:

* In Kernel mode the KX bit allows 64-bit addressing; all instructions are
always valid.

* In Supervisor mode, the SX bit allows 64-hit addressing and the MIPS 1|
instructions. MIPS 1V ISA is enabled all the time in Supervisor mode.

* In User mode, the UX bit allows 64-bit addressing and the MIPS |11
instructions; the XX bit allows the new MIPS |V instructions.

13.2 Virtual Address Space

The processor uses either 32-bit or 64-bit address spaces, depending on the operating and
addressing modes set by the Satus register. Table 13-1 lists the decoding of these modes.

The processor uses the following addresses:
e virtual address VA[43:0]
*  region bits VA[63:59]

If aregion is mapped, virtual addresses aretrandlated inthe TLB. BitsVVA[58:44] are not
trandated in the TLB and are sign extensions of bit VA[43].

In both 32-bit and 64-bit address mode, the memory address space is divided into many
regions, as shown in Figure 13-3. Each region has specific characteristics and uses. The
user can access only the useg region in 32-bit mode, or xuseg in 64-bit mode, as shown in
Figure 13-1. The supervisor can access user regions as well as sseg (in 32-bit mode) or
xsseg and csseg (in 64-bit mode), shown in Figure 13-2. The kernel can access al regions
except those restricted because bits VA[58:44] are not implemented in the TLB, as shown
in Figure 13-3.

The R10000 processor follows the R4400 implementation for data references only,
ensuring compatibility with the NT kernel. If any of the upper 33 bits are nonzero for an
instruction fetch, an Address Error is generated. Refer to Table 13-2 for delineation of the
address spaces.
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User Mode Operations

In User mode, asingle, uniform virtual address space—Ilabelled User segment—is
available; itssizeis:

« 2 Ghytes (2%1 bytes) in 32-bit mode (useg)

« 16 Thytes (2* bytes) in 64-bit mode (xuseg)

Figure 13-1 shows User mode virtual address space.

32-bit 64-bit
KSU =10, and KSU =10, and
EXL =0 and EXL =0 and
ERL =0 and ERL =0 and
UX=0 Ux=1
Ox FFFF FFFF Ox FFFF FFFF FFFF FFFF
Address Address
Error Error
0x 8000 0000 0x 0000 1000 0000 0000
0x 7FFF FFFF O0x 0000 OFFF FFFF FFFF
16 Thytes
u Xuseg
. Mapped
0x 0000 0000 O0x 0000 0000 0000 0000

Figure13-1 User Mode Virtual Address Space
The User segment starts at address 0 and the current active user process resides in either

useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB identically maps all references
to useg/xuseg from all modes, and controls cache accessibility.
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32-bit User M ode (useg)

In User mode, when UX = 0in the Status register, User mode addressing is compatible with
the 32-bit addressing model shown in Figure 13-1, and a 2-Gbyte user address space is
available, labelled useg.

All valid User mode virtual addresses have their most-significant bit cleared to O; any
attempt to reference an address with the most-significant bit set whilein User mode causes
an Address Error exception.

The system maps all references to useg through the TLB, and bit settings within the TLB
entry for the page determine the cacheability of areference.

64-bit User M ode (xuseg)

In User mode, when UX =1 in the Satus register, User mode addressing is extended to the
64-bit model shown in Figure 13-1. In 64-bit User mode, the processor providesasingle,
uniform virtual address space of 2** bytes, labelled xuseg.

All valid User mode virtual addresses have bits 63:44 equal to O; an attempt to reference an
address with bits 63:44 not equal to 0 causes an Address Error exception.

Although the system may be in 32-bit mode, addresslogic still generates 64-bit values. In
this case the high 32 bits must equal the sign bit (31), or an Address Error exception is
taken.
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Supervisor Mode Operations

Supervisor mode is designed for layered operating systemsin which atrue kernel runsin
processor Kernel mode, and the rest of the operating system runsin Supervisor mode.

The processor operates in Supervisor mode when the Satus register contains the
Supervisor-mode bit-values shown in Table 13-1.

Figure 13-2 shows Supervisor mode address mapping.

64-bit
KSU =01 and
EXL =0 and
ERL =0 and
SX=1
Ox FFFF FFFF FFFF FFFF
Address
; Error
32-bit 0x FFFF FFFF E000 0000
Ox FFFF FFFF DFFF FFFF
KSU =01 and 0.5 Gbytes csseg
EXL =0 and Mapped
ERL = 0 and 0x FFFF FFFF CD0OO 0000
SX=0 0x FFFF FFFF BFFF FFFF
Address
Ox FFFF FFFF Error
Address 0x 4000 1000 0000 0000
Error Ox 4000 OFFF FFFF FFFF
0x E000 0000
0x DFFF FFFF 16 Thytes
0.5 Gbytes Mapped XSsey
Mapped
0x G000 0000 0x 4000 0000 0000 0000
Ox BFFF FFFF Ox 3FFF FFFF FFFF FFFF
Address Address
Error Error X =
0x 8000 0000 0x 0000 1000 0000 0000 Address Error if UX=0
Ox 7FFF FFFF 0x 0000 OFFF FFFF FFFF J
2 Ghytes 0x 0000 0000 8000 0000| 16 Thytes }xsuseg
Mapped 0x 0000 0000 7FFF FFFF
0x 0000 0000 0x 0000 0000 0000 0000

Figure 13-2 Supervisor Mode Address Space

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Satus register and the most-significant bit of the
32-hit virtual addressisset to 0, the suseg virtual address spaceis selected; it coversthefull
231 bytes (2 Gbytes) of the current user address space. Thevirtual addressis extended with
the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through Ox7FFF FFFF.
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32-bit Supervisor M ode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Satus register and the three most-significant bits
of the 32-bit virtual address are 1105, the sseg virtual address space is selected; it covers
22%-pytes (512 Mbytes) of the current supervisor address space. The virtual addressis
extended with the contents of the 8-bit ASID field to form a unique virtua address.

This mapped space begins at virtual address 0xC000 0000 and runs through OXDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1in the Satus register and bits 63:62 of the virtual address
are set to 00, selection of the xsuseg virtual address space is dependent upon the UX bit.

« if UX =1, the entire space from 0x0000 0000 0000 0000 through 0000 OFFF
FFFF FFFF (16 Thytes) is selected.
* If UX =0, the address space 0x0000 0000 0000 0000 through 0000 0000

7FFF FFFF (2 Gbytes) is selected. Addressing the space ranging from 0000
0000 8000 0000 through 0000 OFFF FFFF FFFF will cause an address error.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

64-bit Supervisor Maode, Current Supervisor Space (Xsseg)

In Supervisor mode, when SX = 1in the Satus register and bits 63:62 of the virtual address
are set to 01, the xsseg current supervisor virtual address space is selected. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual
address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through
0x4000 OFFF FFFF FFFF.

64-bit Supervisor Mode, Separ ate Supervisor Space (csseg)

In Supervisor mode, when SX = 1in the Satus register and bits 63:62 of the virtual address
are set to 11, the csseg separate supervisor virtual address space is selected. Addressing
of the csseg is compatible with addressing sseg in 32-bit mode. The virtual addressis
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address OxFFFF FFFF C000 0000 and runs through
OXFFFF FFFF DFFF FFFF.
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Kernel Mode Oper ations

0x

0x

0x
0x

0x
0x

0x
0x

0x

292

The processor operatesin Kernel mode when the Status register contains the Kernel-mode
bit-values shown in Table 13-1.

Kernel mode virtual address space is divided into regions differentiated by the high-order
bits of the virtual address, as shown in Figure 13-3.

0x
0x
0x
0x
0x
. 0x
32-bit 0x
0x
(KSU =00 or EXL = 1 or ERL = 1) 0x
and KX =0
FFFE FFFF ox
0.5 Ghytes ksen3 0x
E000 0000 Mapped 9
0.5 Gbytes ox
00 oooo|  Mapped ksseg 0x
BFFF FFFF[™ 5 Gbytes
Unmapped ksegl 0x
000 0000 Uncached >0 0x
9FFF FFFF[~ 5 Gbytes o
Unmapped ksegO Ox
8000 0000 Cached
7FFF FFFF
0x
0x
2 Ghytes kuseg N
Mapped 0x
0x
0x
0000 0000 Ox

64-bit

(KSU=00o0r EXL=1o0r ERL=1)

and KX =1
FFFF FFFF FFFF FFFF
0.5 Ghytes
Mapped
FFFF FFFF E000 0000
FFFF FFFF DFFF FFFF
0.5 Ghytes
Mapped
FFFF FFFF CO00 0000
FFFF FFFF BFFF FFFF[" 0 5 Gbytes
Unmapped
FFFF FFFF A000 0000 | Uncached
FFFF FFFF OFFF FFFF[ 0.5 Gbytes
Unmapped
FFFF FFFF 8000 0000|  Cached
FFFF FFFF 7FFF FFFF
Address
Error
C000 OFFF 0000 0000
C000 OFFE FFFF FFFF
Mapped
€000 0000 0000 0000
BFFF FFFF FFFF FFFF
Unmapped
8000 0000 0000 0000
TFFF FFFF FFFF FFFF
Address
Error
4000 1000 0000 0000
4000 OFFF FFFF FFFF
16 Tbytes
Mapped
4000 0000 0000 0000
3FFF FFFF FFFF FFFF
Address
Error
0000 1000 0000 0000
0000 OFFF FFFF FFFF
0000 0000 8000 0000 16 Tbytes
0000 0000 7FFF FFFF[ ~ Mapped
(See Note below)
0000 0000 0000 0000

Figure13-3 Kernel Mode Address Space

ckseg3

cksseg

cksegl

ckseg0

xkseg

xkphys

Address Error if SX=0

J xksseg

Address Error if UX=0
J orERL=1

xkuseg

NOTE: If ERL = 1, the selected 2 Gbyte space becomes uncached and unmapped.
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32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-significant bit of the
virtual address, A31, is cleared, the 32-bit kuseg virtual address space is selected; it covers
the full 251 bytes (2 Gbytes) of the current user address space. The virtual addressis
extended with the contents of the 8-bit ASID field to form a unique virtual address.

32-bit Kernel Maode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Satus register and the most-significant three bits of
thevirtual address are 1005, 32-bit ksegO virtual address spaceis selected; it isthe 22%-byte
(512-Mbyte) kernel physical space. Referencesto ksegO are not mapped through the TLB;
the physical addressis selected by subtracting 0x8000 0000 from the virtual address. The
KO field of the Config register determines cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when KX = 0 in the Satus register and the most-significant three bits of
the 32-bit virtual address are 101,, 32-bit ksegl virtual address space is selected; it isthe
229-byte (512-Mbyte) kernel physical space.

Referencesto ksegl are not mapped through the TLB; the physical address is selected by
subtracting OxA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or memory-
mapped 1/0 device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of
the 32-bit virtual address are 110,, the ksseg virtual address space is selected; it isthe
current 229-byte (512-Mbyte) supervisor virtual space. Thevirtua addressisextended with
the contents of the 8-bit ASID field to form a unique virtual address.

References to ksseg are mapped through the TLB.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of
the 32-bit virtual address are 111, the kseg3 virtual address space is selected; it isthe
current 22%-byte (512-Mbyte) kernel virtual space. Thevirtual addressis extended with the
contents of the 8-bit ASID field to form a unique virtual address.

References to kseg3 are mapped through the TLB.
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64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 00,, selection of the xkuseg virtual address space is dependent upon the UX and
ERL bits.

« if UX=1and ERL =0, the entire space from 0x0000 0000 0000 0000 through
0000 OFFF FFFF FFFF (16 Tbytes) is selected.

 If UX=0or ERL =1, the address space 0x0000 0000 0000 0000 through
0000 0000 7FFF FFFF (2 Gbytes) is selected. Addressing the space ranging
from 0000 0000 8000 0000 through 0000 OFFF FFFF FFFF will cause an
address error. Moreover, if ERL=1, the selected 2-Gbyte address space
becomes unmapped and uncached.

The virtual addressis extended with the contents of the 8-bit ASID field to form a unique
virtual address.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-hbit virtual
address are 01,, selection of the xksseg virtual address space is dependent upon the SX bit.

» if SX =1, the entire space from 0x4000 0000 0000 0000 through 4000 OFFF
FFFF FFFF (16 Thytes) is selected.

e |f SX =0, access to any address in the space ranging from 0x4000 0000 0000
0000 through 4000 OFFF FFFF FFFF causes an address error.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

64-bit Kernel M ode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 105, the xkphys virtual address spaceis selected; it isaset of eight kernel
physical spaces. Each kernel physical space contains either one or four 2*°-byte physical

pages.

References to this space are not mapped; the physical address selected is taken directly
from bits 39:0 of the virtual address. Bits 61:59 of the virtual address specify the cache
algorithm, described in Chapter 4, the section titled “ Cache Algorithms.” If the cache
algorithm is either uncached or uncached accelerated (values of 2 or 7) the space contains
four physical pages; access to addresses whose bits 56:40 are not equal to 0 cause an
Address Error exception. Address bits 58:57 carry the uncached attribute (described in
Chapter 6, the section titled “ Support for Uncached Attribute”), and are not checked for
address errors.

If the cache agorithm is neither uncached nor uncached accelerated, the space contains a
single physical page, as on the R4400 processor. In this case, access to addresses whose
bits 58:40 are not equal to a zero cause an Address Error exception, as shown in Figure 13-
4.
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OX BFFFFFFF FFFFFFFF OX OFFFFFFF FFFFFFFF
Address Error Address Error
OX BE0OO0O100O 00000O0O0O 0X 98000100 000000O0O0
OX BEOOOOFF FFFFFFFF 0X 980000FF FFFFFFFF
Uncached Accelerated Cacheable Noncoherent
OX BEOOOOOO 00000O0O0O 0X 98000000 00O0OO0OOOO
OX BDFFFFFF FFFFFFFF OX 97FFFFFF FFFFFFFF
Address Error Address Error
0X BC0O00100 0000O0O0OO 0X 96000100 000000O0O0
OX BCOOOOFF FFFFFFFF 0OX 960000FF FFFFFFFF
Uncached Accelerated Uncached
0X BC0OOOOOO 0000O0OOO 0X 96000000 000000O0O
OX BBFFFFFF FFFFFFFF OX 95FFFFFF FFFFFFFF
Address Error Address Error
0OX BA0O0O0O100O 0000O0O0OO 0X 94000100 000000O0O
OX BAOOOOFF FFFFFFFF OX 940000FF FFFFFFFF
Uncached Accelerated Uncached
0OX BAOOOOOO 0000O0O0OO 0X 94000000 000000O0O
OX BOFFFFFF FFFFFFFF OX 93FFFFFF FFFFFFFF
Address Error Address Error
0X B8000100 00000O0O0O 0X 92000100 000000O0O
OX BBOOOOFF FFFFFFFF 0X 920000FF FFFFFFFF
Uncached Accelerated Uncached
0X B8000O0O0OO 00000O0O0O 0X 92000000 000000O0O
OX BTFFFFFF FFFFFFFF OX 91FFFFFF FFFFFFFF
Address Error Address Error
0X B0000100O0 0000O0O0O0O 0X 90000100 000000O0O
OX BOOOOOFF FFFFFFFF s OX 900000FF FFFFFFFF
Reserved Uncached
0X B0O0O0O0OOOO 0000O0O0OO 0X 90000000 00000OO0OO
OX AFFFFFFF FFFFFFFF OX 8FFFFFFF FFFFFFFF
Address Error Address Error
0X A8000100 0000O0O0OO 0X 88000100 000000O0O0
OX ABOOOOFF FFFFFFFF _ _ OX 880000FF FFFFFFFF s
Cacheable Exclusive Write Reserved
0X AB800000O0O 0000O0O0OO 0X 88000000 000000O0O
OX ATFFFFFF FFFFFFFF OX 87FFFFFF FFFFFFFF
Address Error Address Error
0OX A00O00100 00O0OOOOOO 0X 80000100 000000O0O
OX AOOOOOFF FFFFFFFF . OX800000FF FFFFFFFF t
OX A0D0000O 00000000 Cacheable Exclusive 0X 80000000 00000000 Reserved

T Accessing areserved space resultsin undefined behavior.

Figure 13-4  xkphys Virtual Address Space
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64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 11,, the address space selected is one of the following:

kernel virtual space, xkseg, the current kernel virtual space; the virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual
address

one of the four 32-bit kernel mode compatibility spaces (described below).

64-bit Kernel Mode, Compatibility Spaces (cksegl:0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Satus register, bits 63:62 of the 64-bit virtual address
are 11,, and bits 61:31 of the virtual address equal —1, the lower two bytes of address, as
shown in Figure 13-3, select one of the following 512-Mbyte compatibility spaces.

ckseg0. This 64-hit virtual address space is an unmapped region, compatible
with the 32-bit address model kseg0. The KO field of the Config register
controls cacheability and coherency.

cksegl. This 64-hit virtual address space is an unmapped and uncached
region, compatible with the 32-bit address model ksegl.

cksseg. This 64-hit virtual address space is the current supervisor virtual
space, compatible with the 32-bit address model ksseg.

ckseg3. This 64-hit virtual address space is kernel virtual space, compatible
with the 32-bit address model kseg3.

Address Space Access Privilege Differences Between the R4400 and R10000

In the R4400, the 64-bit Supervisor mode can access the entire xsuseg space, and the 64-bit
Kernel mode can access the entire xksseg and xkuseg spaces. Access privilegesin the
R10000 are aso dependent on the UX and SX bits:

296

Access to the 64-bit user space in 64-bit Supervisor or Kernel mode (xsuseg
or xkuseg) is controlled by the UX bit. If UX=0, the 64-bit Supervisor and
Kernel modes can only access the 32-bit user space (suseg or kuseg).

Access to the 64-bit supervisor space in Kernel mode (xksseg) is controlled by
the SX bit. If SX=0, the 64-bit Kernel mode can only access the 32-hit
supervisor space (ksseg).

An Address Error exception istaken on anillegal access.

The R10000 processor implements the same access privileges for 32-bit processor modes
asin the R4400. The Table 13-2 summarizes the access privileges for al processor modes
in the R10000 processor.
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Table 13-2  Access Privileges for User, Supervisor and Kernel Mode Operations

64-bit
Virtual Address

32-bit Mode

64-bit Mode

User*

Supervisor

Kerne

User

Supervisor

Kernd &
ERL=0

Kerne &
ERL=1

FFFFFFFF EO000000
TO
FFFFFFFF FFFFFFFF

FFFFFFFF 00000000
TO
FFFFFFFF DFFFFFFF

FFFFFFFF A0000000
TO
FFFFFFFF BFFFFFFF

FFFFFFFF 80000000
TO
FFFFFFFF 9FFFFFFF

QGO000FFF 00000000
TO
FFFFFFFF 7FFFFFFF

Q0000000 00000000
TO
CDOOOFFE FFFFFFFF

80000000 00000000
TO
BFFFFFFF FFFFFFFF

40001000 00000000
TO
7FFFFFFF FFFFFFFF

40000000 00000000
TO
40000FFF FFFFFFFF

00001000 00000000
TO
3FFFFFFF FFFFFFFF

00000000 80000000
TO
00000FFF FFFFFFFF

AddrErr

AddrErr

OK

OK

AddrErr

AddrErr

AddrErr

AddrErr

OK

AddrErr

OK

OK

AddrErr

AddrErr

OK

OK

OK

OK

AddrErr

AddrErr

OK

AddrErr if
SX=0

AddrErr if
SX=0

AddrErr

AddrErr

AddrErr

00000000 00000000
TO
00000000 7FFFFFFF

OK

OK

OK

OK

AddrErr if
UX=0

AddrErr if
UX=0

AddrErr

OK

OK

OK

For data references, the upper 32 bits of the virtual addresses are cleared before checking access privilege and TLB translation.
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13.3 Virtual Address Trandlation

Virtual Pages

Programs can operate using either physical or virtual memory addresses:
» physical addresses correspond to hardware locations in main memory

» virtual addresses are logical values only, and do not correspond to fixed
hardware locations

Virtual addresses must first betrandated (finding the physical address at which the virtual
address points) before main memory can be accessed. Thistrandlation is essential for
multitasking computer systems, because it allows the operating system to load programs
anywhere in main memory independent of the logical addresses used by the programs.

Thistrangdlation also implements amemory protection scheme, which limits the amount of
memory each program may access. The scheme prevents programs from interfering with
the memory used by other programs or the operating system.

Tranglated virtual addressesretrieve datain blocks, which are called pages. 1nthe R10000
processor, the size of each page may be selected from arange that runs from 4 Kbytesto
16 Mbytesinclusive, in powers of 4 (that is, 4 Kbytes, 16 Kbytes, 64 Kbytes, etc.).

The virtual address bits which select a page (and thus are trandated) are called the page

address. The lower bits which select a byte within the selected page are called the offset
and are not translated. The number of offset bits varies from 12 to 24 bits, depending on
the page size.

Virtual Page Size Encodings
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Page sizeisdefined in each TLB entry’s PageMask field. Thisfield isloaded or read using
the PageMask register, as described in Chapter 11, the section titled “ PageMask Register
(5).”

Each entry translates apair of physical pages. Thelow bit of the virtual address pageisnot
compared, because it is used to select between these two physical pages.
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Usingthe TLB

CacheAlgorithm Field

Format of aTLB Entry

Trandations are maintained by the operating system, using page tablesin memory. A
subset of these trandlations are loaded into a hardware buffer called the trandlation-
lookaside buffer or TLB. The contents of this buffer are maintained by the operating
system; if aninstruction needs atrandation which is not already in the buffer, an exception
is taken so the operating system can compute and load the needed trandation. If all the
necessary trandations are present, the program is executed without any delays.

The TLB contains 64 entries, each of which mapsapair of virtual pages. Formatsof TLB
entries are shown in Figure 13-5.

The Cache Algorithmfields of the TLB, EntryLo0O, EntryLol, and Config registersindicate
how datais cached. Cache algorithms are described in Chapter 4, the section titled “ Cache
Algorithms”

Figure 13-5 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an
entry hasacorresponding field in the EntryHi, EntryLo0, EntryLol, or PageMask registers,
asshown in Chapter 11; for examplethe PFN and uncached attribute (UC) fieldsof the TLB
entry are also held in the EntryLo registers.

255 217 216 205 204 192
0 MASK 0 I
39 12 13
191 190189 172 171 141 140139136 135 128
R 0 VPN2 G| O ASID I
2 18 31 1 4 8
127 125 98 97 70 69 67666564
uc 0 PFN C |D|V|0
2 30 28 3 111
63 61 34 33 6 5 321 0
uc 0 PFN C |D|V|O
) 30 28 3 111

Figure 13-5 Format of a TLB Entry

User'sManual U10278EJ4VOUM 299



Chapter 13 Memory Management

Address Trandation

Because a 64-hit addressis unnecessarily large, only thelow 44 address bits are transl ated.
The high two virtual address bits (bits 63:62) select between user, supervisor, and kernel
address spaces. The intermediate address bits (61:44) must either be all zeros or al ones,
depending on the address region. The TLB does not include virtual address bits 61:59,
because these are decoded only in the xkphys region, which is unmapped.

For data cache accesses, thejoint TLB (JTLB) trandates addresses from the address
calculate unit. For instruction accesses, the JTLB trandlates the PC address if it missesin
theinstruction TLB (ITLB). That entry is copied into the ITLB for subsequent accesses.
The ITLB istransparent to system software.

Address Space | dentification (ASID)

Global Processes (G)

Avoiding TLB Conflict
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Each independent task, or process, has a separate address space, assigned a unique 8-bit
Address Space Identifier (ASID). Thisidentifier is stored with each TLB entry to
distinguish between entries loaded for different processes. The ASID allows the processor
to move from one process to another (called acontext switch) without having to invalidate
TLB entries.

The processor’s current ASID is stored in the low 8 bits of the EntryHi register. These bits
are also used to load the AS D field of an entry during TLB refill.

The ASID field of each TLB entry is compared to the EntryHi register; if the ASIDs are
equal or if the entry is globa (see below), this TLB entry may be used to trandate virtua
addresses. The ASID comparison is performed only when a new value is loaded into the
EntryHi register; the one-hit result of the match is stored in astatic Enable latch. (This bit
is set whenever anew entry isloaded.)

A tranglation may be defined as global so that it can be shared by all processes. This G bit
issetin the TLB entry and enables the entry independent of its ASID value.

Setting the TShit in the Satus register indicates an entry being presented to the TLB
matches more than onevirtual pageentry inthe TLB. Any TLB entriesthat allow multiple
matches, evenin the Wired area, areinvalidated before the new entry can bewritten into the
TLB. This prevents multiple matches during address transl ation.
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14. CPU Exceptions

This chapter describes the processor exceptions—ageneral view of the cause and return of
an exception, exception vector locations, and the types of exceptions that are supported,
including the cause, processing, and servicing of each exception.
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14.1 Causing and Returning from an Exception

When the processor takes an exception, the EXL bit in the Satusregister is set to 1, which
means the system isin Kernel mode. After saving the appropriate state, the exception
handler typically changes the KSU bitsin the Satus register to Kernel mode and resets the
EXL bit back to 0. When restoring the state and restarting, the handler restoresthe previous
value of the KU field and sets the EXL bit back to 1.

Returning from an exception also resets the EXL bit to O (see the ERET instruction in
VRr5000, V{10000 INSTRUCTION User’s Manual).

14.2 Exception Vector L ocations
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The Cold Reset, Soft Reset, and NM| exceptions are aways vectored to the dedicated Cold
Reset exception vector at an uncached and unmapped address. Addresses for all other
exceptions are a combination of a vector offset and a base address.

The boot-time vectors (when BEV = 1 in the Satus register) are at uncached and unmapped
addresses. During normal operation (when BEV = 0) the regular exceptions have vectors
in cached address spaces; Cache Error is always at an uncached address so that cache error
handling can bypass a suspect cache.

The exception vector assignments for the R10000 processor shown in Table 14-1; the
addresses are the same as for the R4400.

Table 14-1 Exception Vector Addresses

) Exception Vector Address

BEV Exception Type - -

32-bit 64-bit
(l\:lf\);l? Reset/Soft Reset/ 0xBFCD0000 OxFFFFFFFF BFQ00000
TLB Refill (EXL=0) 0x80000000 OxFFFFFFFF 80000000
_ XTLB Refill (EXL=0) 0x80000080 OxFFFFFFFF 80000080
BEV=0 Cache Error 0xA0000100 OxFFFFFFFF A0000100
Others 0x80000180 OxFFFFFFFF 80000180
TLB Refill (EXL=0) 0xBFQD0200 OXxFFFFFFFF BFQD0200
BEV=1 XTLB Refill (EXL=0) 0xBFCD0280 OxFFFFFFFF BFQ00280
Cache Error 0xBFCD0300 OxFFFFFFFF BFQ00300
Others 0xBFCD0380 OxFFFFFFFF BFQ00380
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14.3 TL B R€fill Vector Selection

In all present implementations of the MIPS 111 ISA, there are two TLB refill exception
vectors:

« one for references to 32-bit address space (TLB Refill)
» one for references to 64-bit address space (XTLB Refill)

Table 14-2 lists the exception vector addresses.

The TLB refill vector selection is based on the address space of the address (user,
supervisor, or kernel) that caused the TLB miss, and the value of the corresponding
extended addressing bit in the Satusregister (UX, SX, or KX). The current operating mode
of the processor is not important except that it plays a part in specifying in which address
space an addressresides. The Context and XContext registers are entirely separate page-
table-pointer registersthat point to and refill from two separate page tables, however these
two registers share BadVPN2 fields (see Chapter 11 for more information). For all TLB
exceptions (Refill, Invalid, TLBL or TLBS), the BadVPN2 fields of both registers are
loaded as they were in the R4400.

In contrast to the R10000, the R4400 processor selects the vector based on the current
operating mode of the processor (user, supervisor, or kernel) and the value of the
corresponding extended addressing bit in the Satus register (UX, SX or KX). In addition,
the Context and XContext registers are not implemented as entirely separate registers; the
PTEbasefields are shared. A missto a particular address goes through either TLB Réfill or
XTLB Refill, depending on the source of the reference. There can be only be asingle page
table unless the refill handlers execute address-deciphering and page table selection in
software.

NOTE: Refillsfor the 0.5 Gbyte supervisor mapped region, sseg/ksseg, are controlled
by the value of KX rather than SX. This simplifies control of the processor when
supervisor mode is not being used.
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Table 14-2 lists the TLB refill vector locations, based on the address that caused the TLB
miss and its corresponding mode bit.

Table 14-2 TLB Refill Vectors

Space Address Range Regions Exception Vector
OXFFFF FFFF EO00 0000 Refill (KX=0)
to or
Kernel OXFFFF FFFF FFFF FFFF | KSeg3 XRefill (KX=1)
OXFFFF FFFF CD0O 0000 Refill (KX=0)
, to or
SUPEIVISOr | OxFFFF FFFF DFFF FFFF | SS89, ksseg XRefill (KX=1)
0xC000 0000 0000 0000
to - _
Kernel 0xQ000 OFFE FFFF FrrE | XKD XRefill(KX=1)
0x4000 0000 0000 0000
. to - _
Supervisor 0x4000 OFFE FFEF FFFE | XS89 xksseg XRefill (SX=1)
0x0000 0000 8000 0000
to XSUseg, Xuseg, - _
User 0X0000 OFFF FFFF FFFF | yiuseq XREefill (UX=1)
0x0000 0000 0000 0000 | useg, Xuseg, SUSEg, Refill (UX=0)
to xsuseg, kuseg, or
User 0x0000 0000 7FFF FFFF xkuseg XRefill (UX=1)
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Priority of Exceptions

The remainder of this chapter describes exceptionsin the order of their priority shownin
Table 14-3 (with certain of the exceptions, such asthe TL B exceptionsand I nstruction/Data
exceptions, grouped together for convenience). While more than one exception can occur

for asingle instruction, only the exception with the highest priority is reported. Some

exceptions are not caused by theinstruction executed at the time, and some exceptions may
bedeferred. Seetheindividual description of each exception in this chapter for more detail.

Table 14-3 Exception Priority Order

Cold Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NM1)*

Cache error — Instruction cache*

Cache error — Data cache*

Cache error — Secondary cache’

Cache error — System interface*

Address error — Instruction fetch

TLB refill — Instruction fetch

TLB invalid — Instruction fetch

Bus error — Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved I nstruction,
Coprocessor Unusable, or Floating-Point Exception

Address error — Data access

TLB refill — Data access

TLB invalid — Data access

TLB modified — Datawrite

Watch*

Bus error — Data access

Interrupt (lowest priority)ic

$ These exceptions are interrupt types, and may beimprecise. Priority may not be followed when

considering a specific instruction.

Generally speaking, the exceptions described in the following sections are handled
(“processed”) by hardware; these exceptions are then serviced by software.
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Cold Reset Exception

Cause

The Cold Reset exception istaken for a power-on or “cold” reset; it occurs when the
SysGnt* signal is asserted while the SysReset* signal isalso asserted.” This exceptionis
not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

location 0OXxBFCO 0000 in 32-bit mode
location OXFFFF FFFF BFCO 0000 in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the
hardware need not initialize the TLB or the cache to process this exception. It also means
the processor can fetch and execute instructions while the caches and virtual memory are
in an undefined state.

The contents of all registersin the CPU are undefined when this exception occurs, except
for the following register fields:

Servicing

In the Satus register, SR and TS are cleared to 0, and ERL and BEV are set to
1. All other bits are undefined.

Config register isinitialized with the boot mode bits read from the serial input.
The Random register isinitialized to the value of its upper bound.

The Wired register is initialized to 0.

The EW bit in the CacheErr register is cleared.

The ErrorEPC register gets the PC.

The FrameMask register is set to 0.

Branch prediction bits are set to 0.

Performance Counter register Event field is set to 0.

All pending cache errors, delayed watch exceptions, and external interrupts
are cleared.

The Cold Reset exception is serviced by:

initializing all processor registers, coprocessor registers, caches, and the
memory system

performing diagnostic tests
bootstrapping the operating system

T If SysGnt* remains deasserted (high) while SysReset* is asserted, the processor interprets
this as a Soft Reset exception.
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SoftT Reset Exception

Cause

Processing

The Soft Reset exception occursin response to a Soft Reset (See Chapter 8, the section
titled “ Soft Reset Sequence”).

A Soft Reset exception is not maskable.

The processor differentiates between a Cold Reset and a Soft Reset as follows:

e A Cold Reset occurs when the SysGnt* signal is asserted while the SysReset*
signal is also asserted.

e A Soft Reset occurs if the SysGnt* signal remains negated when a SysReset*
signal is asserted.

In R4400 processor, there is no way for software to differentiate between a Soft Reset
exception and an NMI exception. In the R10000 processor, a bit labelled NMI has been
added to the Status register to distinguish between these two exceptions. Both Soft Reset
and NMI exceptions set the SR bit and use the same exception vector. During an NMI
exception, the NMI bit is set to 1; during a Soft Reset, the NMI bit isset to O.

When a Soft Reset exception occurs, the SR bit of the Status register is set, distinguishing
this exception from a Cold Reset exception.

When a Soft Reset is detected, the processor initializes minimum processor state. This
allows the processor to fetch and execute the instructions of the exception handler, which
in turn dumps the current architectural state to external logic. Hardware state that loses
architectural state is not initialized unlessit is necessary to execute instructions from
unmapped uncached space that reads the registers, TLB, and cache contents.

The Soft Reset can begin on an arbitrary cycle boundary and can abort multicycle
operations in progress, so it may alter machine state. Hence, caches, memory, or other
processor states can be inconsistent: data cache blocks may stay at the refill state and any
cached | oads/storesto these blockswill hang the processor. Therefore, CacheOps should be
used to dump the cache contents.

After the processor state is read out, the processor should be reset with a Cold Reset
sequence.

T Soft Reset isaso known colloquially as Warm Reset.
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A Soft Reset exception preserves the contents of all registers, except for:
e ErrorEPC register, which contains the PC
* ERL bit of the Status register, which isset to 1

»  SRbit of the Satus register, which is set to 1 on Soft Reset or an NMI; 0 for
a Cold Reset

* BEV hit of the Satus register, which is set to 1

*  TShit of the Satus register, which is set to 0

e PCisset to the reset vector OXFFFF FFFF BFCO 0000
» clears any pending Cache Error exceptions

Servicing

A Soft Reset exception isintended to quickly reinitialize a previously operating processor
after afatal error.

It is not normally possible to continue program execution after returning from this
exception, since a SysReset* signal can be accepted anytime.
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NMI Exception

Cause

Processing

Servicing

The NMI exception is caused by assertion of the SysNM | * signal.
An NMI exception is not maskable.

In R4400 processor, there is no way for software to differentiate between a Soft Reset
exception and an NM1 exception. In the R10000 processor, a bit labelled NMI has been
added to the Status register to distinguish between these two exceptions. Both Soft Reset
and NMI exceptions set the SR bit and use the same exception vector. During an NMI
exception, the NMI bit is set to 1; during a Soft Reset, the NMI bit is set to O.

When an NMI exception occurs, the SR bit of the Status register is set, distinguishing this
exception from a Cold Reset exception.

An exception caused by an NMI istaken at the instruction boundary. 1t does not abort any
state machines, preserving the state of the processor for diagnosis. The Cause register
remains unchanged and the system jumps to the NMI exception handler (see Table 14-1).

An NMI exception preserves the contents of all registers, except for:
*  ErrorEPC register, which contains the PC
* ERL bit of the Status register, which is set to 1

* SRbit of the Satus register, which is set to 1 on Soft Reset or an NMI; 0 for
a Cold Reset

* BEV hit of the Satus register, which is set to 1

e TShit of the Satus register, which is set to 0

* PCisset to the reset vector OXFFFF FFFF BFCO 0000
* clears any pending Cache Error exceptions

TheNMI can beused for purposes other than resetting the processor while preserving cache
and memory contents. For example, the system might use an NM1 to cause an immediate,
controlled shutdown when it detects an impending power failure.

It is not normally possible to continue program execution after returning from this
exception, since an NMI can occur during another error exception.
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AddressError Exception
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Cause

Processing

Servicing

The Address Error exception occurs when an attempt is made to execute one of the
following:

» reference to an illegal address space

» reference the supervisor address space from User mode

» reference the kernel address space from User or Supervisor mode

e load or store a doubleword that is not aligned on a doubleword boundary
e load, fetch, or store aword that is not aligned on a word boundary

» load or store a halfword that is not aligned on a halfword boundary

This exception is not maskable.

The common exception vector is used for this exception. The AdEL or ADES code in the
Cause register is set, indicating whether the instruction caused the exception with an
instruction reference, load operation, or store operation shown by the EPC register and BD
bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that was not
properly aligned or that referenced protected address space. The contents of the VPN field
of the Context, XContext, and EntryHi registers are undefined, as are the contents of the
EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless
thisinstructionisin abranch delay slot. If itisin abranch delay slot, the EPC register
containsthe address of the preceding branch instruction and the BD hit of the Causeregister
is set asindication.

The process executing at thetimeishanded aUNI X™ g GSEGV (segmentation violation)
signal. Thiserror is usualy fatal to the process incurring the exception.
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TL B Exceptions

Three types of TLB exceptions can occur:

* TLB Réfill occurs when there is no TLB entry that matches an attempted
reference to a mapped address space.

e TLB Invalid occurs when avirtual address reference matchesa TLB entry that
is marked invalid.

» TLB Modified occurs when a store operation virtual address reference to
memory matches a TLB entry which is marked valid but is not dirty (the entry
is not writable).

The following three sections describe these TLB exceptions.

NOTE: TLB Refill vector selection is also described earlier in this chapter, in the
section titled, TLB Refill Vector Selection.
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TL B Ré€fill Exception

Cause

Processing

Servicing

The TLB refill exception occurs when thereisno TLB entry to match areference to a
mapped address space. This exception is not maskable.

There are two special exception vectors for this exception; one for references to 32-bit
address spaces, and one for references to 64-bit address spaces. The UX, SX, and KX bits
of the Satus register determine whether the user, supervisor or kernel address spaces
referenced are 32-bit or 64-bit spaces; the TLB refill vector is selected based upon the
address space of the address causing the TLB miss (user, supervisor, or kernel mode
address space), together with the value of the corresponding extended addressing bit in the
Satus register (UX, SX, or KX). The current operating mode of the processor is not
important except that it plays apart in specifying in which space an address resides. An
addressisin user spaceif it isin useg, suseg, kuseg, xuseg, xsuseg, or xkuseg (see the
description of virtual address spacesin Chapter 13). An addressisin supervisor spaceif it
isin sseg, ksseg, xsseg or xksseg, and an addressisin kernel spaceif itisin either kseg3 or
xkseg. KsegO, ksegl, and kernel physical spaces (xkphys) are kernel spaces but are not
mapped.

All references use these vectors when the EXL bit is set to 0 in the Satusregister. This
exception setsthe TLBL or TLBScode in the ExcCodefield of the Causeregister. Thiscode
indicates whether theinstruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold
the virtual address that failed address trandation. The EntryHi register also contains the
ASID from which the trandlation fault occurred. The Randomregister normally containsa
valid location in which to place the replacement TLB entry. The contents of the EntryLo
register are undefined. The EPC register contains the address of the instruction that caused
the exception, unless thisinstruction isin a branch delay dot, in which case the EPC
register containsthe address of the preceding branch instruction and the BD bit of the Cause
register is set.

To service this exception, the contents of the Context or XContext register are used as a
virtual address to fetch memory locations containing the physical page frame and access
control bitsfor apair of TLB entries. The two entries are placed into the EntryLo0/
EntryLol register; the EntryHi and EntryLo registers are written into the TLB.

Itis possible that the virtual address used to obtain the physical address and access control
information is on a page that is not resident in the TLB. This condition is processed by
allowing aTLB refill exception in the TLB refill handler. This second exception goes to
the common exception vector because the EXL bit of the Status register is set.
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TLB Invalid Exception

Cause

Processing

Servicing

The TLB invalid exception occurs when avirtual address reference matchesa TLB entry
that is marked invalid (TLB valid bit cleared). This exception is not maskable.

The common exception vector is used for this exception. The TLBL or TLBScode in the
ExcCodefield of the Causeregister isset. Thisindicates whether theinstruction, as shown
by the EPC register and BD bit in the Cause register, caused the miss by an instruction
reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address trandlation. The EntryHi register also
contains the ASID from which the translation fault occurred. The Random register
normally containsavalid location in which to put the replacement TLB entry. The contents
of the EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the exception unless
thisinstructionisinabranch delay slot, in which case the EPC register containsthe address
of the preceding branch instruction and the BD bit of the Cause register is set.

A TLB entry istypically marked invalid when one of the following is true:
* avirtual address does not exist
e thevirtual address exists, but is not in main memory (a page fault)

» atrapisdesired on any reference to the page (for example, to maintain a
reference bit)

After servicing the cause of aTLB Invalid exception, the TLB entry islocated with TLBP
(TLB Probe), and replaced by an entry with that entry’s Valid bit set.
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TLB Modified Exception

Cause

Processing

Servicing

The TLB modified exception occurs when a store operation virtual address reference to
memory matchesa TLB entry that is marked valid but is not dirty and therefore is not
writable. This exception is not maskable.

The common exception vector is used for this exception, and the Mod code in the Cause
register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address trandlation. The EntryHi register also
contains the ASID from which the trangdlation fault occurred. The contents of the EntryLo
register are undefined.

The EPC register contains the address of the instruction that caused the exception unless
that instruction isin abranch delay slot, in which casethe EPC register containsthe address
of the preceding branch instruction and the BD bit of the Cause register is set.

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The pageidentified may or may not permit write
accesses; if writes are not permitted, awrite protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel inits
own data structures. The TLBP instruction places the index of the TLB entry that must be
altered into the Index register. The EntryLo register isloaded with aword containing the
physical page frame and access control bits (with the D bit set), and the EntryHi and
EntryLo registers are written into the TLB.
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Cache Error Exception

The Cache Error exception is described in Chapter 9, the section titled “ Cache Error
Exception”.

Virtual Coherency Exception

The Virtual Coherency exception is not implemented in the R10000 processor, since the
virtual coherency conditionishandled in hardware. When the hardware detectsthe Virtua
Coherency exception, it invalidatesthelinesin all other segments of the primary cache that
could cause aliasing. Thistakes six cycles more than that needed to refill the primary cache
line (the refill would have occurred even if there was no Virtual Coherency exception
detected).

In the R4400 processor, aVirtual Coherency exception occurs when aprimary cache miss
hits in the secondary cache but VA[14:12] are not the same as the Pldx field of the
secondary cache tag, and the cache algorithm specifiesthat the pageis cached. When such
asituation is detected in the R10000 processor, the primary cache lines at the old virtual
index are invalidated and the Pldx field of the secondary cache is written with the new
virtual index.
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BusError Exception
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Cause

Processing

Servicing

A Bus Error exception occurs when a processor block read, upgrade, or double/single/
partial-word read request receives an external ERR completion response, or a processor
double/single/partial-word read request receives an external ACK completion response
where the associated external double/single/partial-word data response contains an
uncorrectable error. This exception is not maskable.

The common interrupt vector is used for a Bus Error exception. The IBE or DBE codein
the ExcCode field of the Cause register is set, signifying whether the instruction (as
indicated by the EPC register and BD bit in the Cause register) caused the exception by an
instruction reference, load operation, or store operation.

The EPC register contains the address of the instruction that caused the exception, unless
itisin abranch delay dot, in which case the EPC register contains the address of the
preceding branch instruction and the BD bit of the Cause register is set.

The physical address at which the fault occurred can be computed from information
available in the CPO registers.

» |If the IBE code in the Cause register is set (indicating an instruction fetch
reference), the instruction that caused the exception is located at the virtual
address contained in the EPC register (or 4+ the contents of the EPC register
if the BD bit of the Cause register is set).

» |If the DBE codeis set (indicating a load or store reference), the instruction
that caused the exception is located at the virtual address contained in the
EPC register (or 4+ the contents of the EPC register if the BD bit of the Cause
register is set).

Thevirtual address of the load and store reference can then be obtained by interpreting the
instruction. The physical address can be obtained by using the TLBP instruction and
reading the EntryL o registersto compute the physical page number. The process executing
at the time of thisexceptionishanded aUNIX SIGBUS (buserror) signal, which isusually
fatal.
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Integer Overflow Exception

Cause

Processing

Servicing

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or
DSUB instruction results in a2's complement overflow. This exception is not maskable.

The common exception vector is used for this exception, and the OV code in the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception unless
theinstruction isin abranch delay slot, in which case the EPC register containsthe address
of the preceding branch instruction and the BD bit of the Cause register is set.

The process executing at the time of the exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. Thiserror is
usually fatal to the current process.
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Trap Exception
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Cause

Processing

Servicing

The Trap exception occurs when aTGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI,
TLTI, TLTUI, TEQI, or TNEI instruction resultsin aTRUE condition. Thisexceptionisnot
maskable.

The common exception vector is used for this exception, and the Tr code in the Cause
register is set.

The EPC register contains the address of the instruction causing the exception unless the
instruction isin abranch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is set.

The process executing at the time of a Trap exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. Thiserror is
usually fatal.
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System Call Exception

Cause

Processing

Servicing

A System Call exception occurs during an attempt to execute the SY SCALL instruction.
This exception is not maskable.

The common exception vector is used for this exception, and the Sys code in the Cause
register is set.

The EPC register contains the address of the SY SCALL instruction unlessit isin abranch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

If the SYSCALL instructionisin abranch delay dot, the BD hit of the Satusregister is set;
otherwise thisbit is cleared.

When the System Call exception occurs, control is transferred to the applicable system
routine. Additiona distinctions can be made by analyzing the Codefield of the SY SCALL
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC
register contains.

To resume execution, the EPC register must be altered so that the SY SCALL instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC
register + 4) before returning.

If aSYSCALL instructionisin abranch delay slot, amore complicated algorithm, beyond
the scope of this description, may be required.
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Breakpoint Exception
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Cause

Processing

Servicing

A Breakpoint exception occurswhen an attempt is madeto executethe BREAK instruction.
This exception is not maskable.

The common exception vector is used for this exception, and the BP code in the Cause
register is set.

The EPC register contains the address of the BREAK instruction unlessit isin abranch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

If the BREAK instruction isin abranch delay slot, the BD bit of the Status register is set,
otherwise the bit is cleared.

When the Breakpoint exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the Code field of the BREAK
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC
register contains. A value of 4 must be added to the contents of the EPC register (EPC
register + 4) to locate the instruction if it residesin a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does
not re-execute; thisisaccomplished by adding avalue of 4 to the EPC register (EPC register
+ 4) before returning.

If aBREAK instructionisin abranch delay dot, interpretation of the branch instructionis
required to resume execution.
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Reserved I nstruction Exception

Cause

Processing

Servicing

The Reserved I nstruction exception occurs when one of the following conditions occurs:

* an attempt is made to execute an instruction with an undefined major opcode
(bits 31:26)

e an attempt is made to execute a SPECIAL instruction with an undefined minor
opcode (bits 5:0)

* an attempt is made to execute a REGIMM instruction with an undefined minor
opcode (bits 20:16)

* an attempt is made to execute 64-bit operations in 32-bit mode when in User
or Supervisor modes

* an attempt is made to execute a COP1X when the MIPS IV ISA is not enabled

64-bit operations are always valid in Kernel mode regardless of the value of the KX bitin
the Status register.

This exception is not maskable.

The common exception vector is used for this exception, and the Rl code in the Cause
register is set.

The EPC register contains the address of the reserved instruction unlessit isin a branch
delay dlot, in which case the EPC register contains the address of the preceding branch
instruction.

No instructionsin the MIPS ISA are currently interpreted. The process executing at the
time of thisexceptionishanded aUNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/
reserved operand fault) signal. This error isusually fatal.
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The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either:

» acorresponding coprocessor unit (CP1 or CP2) that has not been marked
usable, or

»  CPO instructions, when the unit has not been marked usable and the process
executes in either User or Supervisor mode.

This exception is not maskable.

The common exception vector is used for this exception, and the CpU code in the Cause
register is set. The contents of the Coprocessor Usage Error field of the coprocessor
Control register indicate which of the four coprocessors was referenced. The EPC register
contains the address of the unusable coprocessor instruction unlessit isin abranch delay
dot, in which case the EPC register contains the address of the preceding branch
instruction.

The coprocessor unit to which an attempted reference was made is identified by the
Coprocessor Usage Error field, which resultsin one of the following situations:

» If the process is entitled access to the coprocessor, the coprocessor is marked
usable and the corresponding user state is restored to the coprocessor.

» If the process is entitled access to the coprocessor, but the coprocessor does
not exist or has failed, interpretation of the coprocessor instruction is possible.

» |If the BD bit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and execution
resumed with the EPC register advanced past the coprocessor instruction.

» |If the processis not entitled access to the coprocessor, the process executing
at the time is handed a UNIX SIGILL/ILL_PRIVIN_FAULT (illegal
instruction/privileged instruction fault) signal. This error is usually fatal.
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Floating-Point Exception

Cause
The Foating-Point exception is used by the floating-point coprocessor. Thisexceptionis
not maskable.

Processing
The common exception vector is used for this exception, and the FPE code in the Cause
register is set.
The contents of the Floating-Point Control/Status register indicate the cause of this
exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point Control/
Satus register.
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Watch Exception
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Cause

Processing

Servicing

A Watch exception occurs when aload or store instruction references the physical address
specified in the WatchLo/WatchHi System Control Coprocessor (CPO) registers. The
WatchLo register specifies whether aload or store initiated this exception.

A Watch exception violatestherules of aprecise exceptionin thefollowing way: If theload
or store reference which triggered the Watch exception has acacheable addressand misses
in the data cache, the line will then be read from memory into the secondary cache if
necessary, and refilled from the secondary cache into the data cache. In all other cases,
cache state is not affected by an instruction which takes a Watch exception.

The CACHE instruction never causes aWatch exception.

The Watch exception is postponed if either the EXL or ERL hit is set in the Satus register.
If either bit is set, theinstruction referencing the WatchLo/WatchHi addressis executed and
the exception isdelayed until the delay conditioniscleared; that is, until ERL and EXL both
are cleared (set to 0). The EPC contains the address of the next unexecuted instruction.

A delayed Watch exception is cleared by system reset or by writing avalue to the WatchLo
register.t

Watch is maskable by setting the EXL or ERL bitsin the Status register.

The common exception vector is used for this exception, and the Watch code in the Cause
register is set.

The Watch exception is adebugging aid; typically the exception handler transfers control
to a debugger, allowing the user to examine the situation.

To continue program execution, the Watch exception must be disabled to execute the
faulting instruction. TheWatch exception must then be reenabled. Thefaulting instruction
can be executed either by interpretation or by setting breakpoints.

T An MTCO to the WatchLo register clears a delayed Watch exception.
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I nterrupt Exception

Cause

Processing

Servicing

The Interrupt exception occurs when one of the eight interrupt conditionsis asserted. The
significance of these interrupts is dependent upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the
Interrupt-Mask (IM) field of the Satusregister, and all of the eight interrupts can be masked
at once by clearing the |E bit of the Status register.

The common exception vector is used for this exception, and the Int code in the Cause
register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible that
more than one of the bits can be simultaneously set (or even no bits may be set) if the
interrupt is asserted and then deasserted before this register is read.

On Cold Reset, an R4400 processor can be configured with |P[ 7] either as asixth external
interrupt, or asaninternal interrupt set when the Count regi ster equalsthe Compareregister.
Thereisno such option on the R10000 processor; IP[ 7] isalways an internal interrupt that
is set when one of the following occurs:

» the Count register is equal to the Compare register
» either one of the two performance counters overflows

Software needs to poll each source to determine the cause of the interrupt (which could
come from more than one source at atime). For instance, writing a value to the Compare
register clears the timer interrupt but it may not clear IP[7] if one of the performance
counters is simultaneously overflowing. Performance counter interrupts can be disabled
individually without affecting the timer interrupt, but there is no way to disable the timer
interrupt without disabling the performance counter interrupt.

If the interrupt is caused by one of the two software-generated exceptions (described in
Chapter 6, the section titled “ Software Interrupts’), the interrupt condition is cleared by
setting the corresponding Cause register bit, IP[1:0], to 0. Software interrupts are
imprecise. Once the software interrupt is enabled, program execution may continue for
several instructions before the exception is taken. Timer interrupts are cleared by writing
to the Compareregister. The Performance Counter interrupt is cleared by writing a0 to bit
31, the overflow bit, of the counter.

Cold Reset and Soft Reset exceptions clear all the outstanding external interrupt requests,
IP[2] to IP[6].

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting the
condition causing the interrupt pin to be asserted.
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14.4 MIPSIV Instructions

The system must either bein Kernel or Supervisor mode, or have set the XX bit of the Satus
register toalin order to usethe MIPS IV instruction set. In User mode, if XX isa0 and
an attempt is made to execute MIPS IV instructions, an exception will be taken. The type
of exception that will be taken depends upon the type of instruction whose execution was
attempted; alistisgivenin Table 14-4. Notethat operating with MIPSIV instructions does
not require that MIPS 111 instruction set or 64-bit addressing is enabled.

MIPS IV instructions that use or modify the floating-point registers (CP1 state) are also
affected by the CU1 bit of the CPO Status register. If CU1 is not set, a Coprocessor

Unusable exception may be signaled.

The Reserved Instruction (RI), Coprocessor Unusable (CU), and Unimplemented
Operation (UO) exceptions for MIPS 1V instructions are listed in the Table 14-4 below.

Table14-4  MIPSIV Instruction Exceptions

Exceptions Instructions CUl | MIP+
RI CPU (undefined) - -
RI MOVN,Z - 0
RI - 0
T MOVT,F 0 1
RI PREF - 0
Ccu COPL1 (@l instructions) 0 -
uo (undefined) 1 -
RI BC (cc>0) 1 0
uo C (cc>0) 1 0
uo MOVN,ZT,F 1 0
uo RECIP, RSQRT 1 0
RI COP1X (all instructions) - 0
Cu (al instructions) 0 1
RI (undefined) 1 1
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14.5 COPO Instructions

Execution of an RFE instruction causes a Reserved Instruction exception in the R10000
processor.

The execution of undefined COPO functions is undefined in the R10000 processor.

14.6 COP1 Instructions

The R10000 and R4400 processors do not generate the same exceptions for undefined
COPLl instructions. Inthe R4400 processor, undefined opcodes or formats in the sub field
take an Unimplemented Operation exceptions. 1n the R10000 processor, undefined
opcodes (bits 25:24 are 0 or 1) take Reserved Instruction exceptions and undefined formats
(bits 25:24 are 2 or 3) take Unimplemented Operation exceptions.

In MIPS 11 on an R4400 processor, the execution of DMTC1, DMFC1, and L format take
Unimplemented Operation exceptions. In MIPS 11 on the R10000 processor, the execution
of DMTC1 and DMFC1 take Reserved Instruction exceptions

The attempted execution of the L format takes an Unimplemented Operation exception
when the MIPS I1I mode is not enabled.

A CTClinstruction that sets both Cause and Enable bits also forces an immediate fl oating-
point exception; the EPC register points to the offending CTCL instruction.

14.7 COP2 Instructions

If the CU2 bit of the CPO Status register is not set during an attempted execution of such
Coprocessor 2 instructions as COP2, LWC2, SWC2, LDC2, and SDC2, the system takes a
Coprocessor Unusable exception.

In the R4400 processor, if the CU2 hit is set, COP2 instructions are handled as NOPs; the
operations of Coprocessor 2 load/store instructions are undefined. 1n the R10000
processor, an execution of a Coprocessor 2 instruction takes a Reserved Instruction
exception when CU2 hit is set.
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15. Cache Test Mode

The R10000 processor provides a cache test mode that may be used during manufacturing
test and system debug to access the following internal RAM arrays.

e data cache data array

» data cache tag array

* instruction cache data array
* instruction cache tag array

e secondary cache way predication table
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15.1 Interface Signals

Cache test mode is accessed by using a subset of the system interface signals. By not
requiring the use of any secondary cacheinterface signals, theinternal RAM arrays may be
accessed for single-chip LGA aswell as R10000/secondary cache modul e configurations.

The following system interface signals are used during cache test mode:
* SysAD(57:0)
e Sysval*

Any input signalsnot listed above areignored by the processor when it isoperating in cache
test mode, and any output signals not listed above are undefined during cache test mode.

15.2 System Interface Clock Divisor

Cache test mode is supported for all system interface clock speeds. However, since cache
test mode repest rates and latencies are expressed in terms of PClk cycles, the external
agent must take care when operating at any system interface clock divisor other than
Divide-by-1.
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15.3 Entering Cache Test Mode

330

Cycle
SysClk
Master
SysReset*
SysGnt*
SysAD(63:0)
SysVal*
SysRespVal*

In order for the processor to enter cache test mode, the external agent must begin a Power-
on or Cold Reset sequence.

Rather than negating SysReset* at the end of the reset sequence, the external agent loads
the mode bits into the processor by driving the mode bits (with the CTM signal asserted)
on SysAD(63:0), waits at least two SysClk cycles, and then asserts SysGnt* for at |east
one SysClk cycle.

After waiting at |east another 100 ms, the external agent may issue the first cache test mode
command.

Figure 15-1 shows the cache test mode entry sequence.

R ey e o i CE R

<)
ni
' \

}‘ 2100ms~){ j }‘ 2100ms~){ K
Assert CTM mode bit First cache test mode command

Figure15-1 Cache Test Mode Entry Sequence

—
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15.4 Exit Sequence

Cycle
SysClk
Master
SysReset*
SysGnt*
SysAD(63:0)
SysVal*
SysRespVal*

To leave cache test mode, the external agent does the following:

» loads the mode bits into the processor by driving the mode bits (with the
CTM mode bhit negated) on SysAD(63:0)

* waits at least two SysClk cycles
o asserts SysGnt* for at least one SysClk cycle

After at least one SysClk cycle, the external agent may negate SysReset* to end the reset
sequence.

Figure 15-2 shows the cache test mode exit sequence.

Negate CTM mode bit ]
Figure15-2 Cache Test Mode Exit Sequence
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15.5 SysAD(63:0) Encoding

Encoding of the SysAD(63:0) bus during cache test mode is shown in Table 15-1.
“Unused” fields are read as “undefined,” and must be written as zeroes.

Table 15-1 Cache Test Mode SysAD(63:0) Encoding

332

Data Data Instruction Instruction nggggﬁg
SysAD Bit Cache Data CacheTag Cache Data CacheTag e Way
Arra Arra Arra Arra Predication
y y y y Array
0 Tag parity Tag parity MRU
1 SCWay Unused
2 State parity State parity
3 LRU LRU
4 Data
Unused Data Unused
5
6 State
State Unused
7 Unused
31:8
Tag Tag
35:32 Data parity
36 Data parity
StateMod
38:37 Unused Unused
Unused
39 Unused
0 1 2 3 4
42:40
Array select
43 Write/Read select
44 Auto-increment select
45 Way
57:46 Address
63:58 Unused
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15.6 Cache Test M ode Protocol

This section describes the cache test mode protocol in detail, including:
» normal write protocol
* auto-increment protocol
* normal read protocol
e auto-increment read protocol

Normal Write Protocol

Cycle
SysClk
Master
SysReset*
SysGnt*
SysAD(63:0)
SysVal*

A cachetest mode nor mal writeoperation writesaselected RAM array. Thewrite address,
way, array, and data are specified in the write command.

The external agent issues a normal write command by:
» driving the address on SysAD(57:46)
o driving the way on SysAD(45)
* negating the auto-increment select on SysAD(44)
e asserting the Write/Read select on SysAD(43)
e driving the array select on SysAD(42:40)
e driving the write data on SysAD(39:0)
o asserting Sysval* for one SysClk cycle
Normal writes have arepeat rate of 8 PClk cycles.

Figure 15-3 depicts two cache test mode normal writes.

EA + EA ' EA ' EA ' EA ' EA' EA' EA' EA " EA' EA' EA ' EA ' EA' EA ' EA ' EA

. G S S . VT G

Figure15-3 Cache Test Mode Normal Wkite Protocol
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Auto-Increment Write Protocol
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Cycle
SysClk
Master
SysReset*
SysGnt*
SysAD(63:0)
SysVal*

A cachetest mode auto-increment write operation writesaselected RAM array. Thewrite
address is obtained by incrementing the previous write address, and the write way is
obtained from the previous write way.

If an overflow occurs when incrementing the previous write address, the address wraps to
0, and the way is toggled.

The write datais identical to the previous write data.

For proper results, an auto-increment write must always be proceeded by a normal or auto-
increment write.

The external agent issues an auto-increment write command by:
e asserting the auto-increment select on SysAD(44)
e asserting the Write/Read select on SysAD(43)
o driving the array select on SysAD(42:40)
e asserting SysVal* for one SysClk cycle
Auto-increment writes have arepeat rate of one PCIk cycle.

Figure 15-4 depicts three cache test mode auto-increment writes.

EA + EA " EA ' EA ' EA+ EA* EA" EA" EA " EA" EA+' EA ' EA ' EA' EA ' EA ' EA

MWW W T

Figure 15-4 Cache Test Mode Auto-Increment Write Protocol
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Normal Read Protocol

Cycle
SysClk
Master
SysReset*
SysGnt*
SysAD(63:0)
SysVal*

A cache test mode normal read operation reads a selected RAM array. The read address,

way, and array are specified by the read command.

The external agent issues anormal read command by:
e driving the address on SysAD(57:46)
e driving the way on SysAD(45)
* negating the auto-increment select on SysAD(44)
* negating the Write/Read select on SysAD(43)
e driving the array select on SysAD(42:40)
e asserting SysVal* for one SysClk cycle.

After aread latency of 15 PCIk cycles, the processor provides the read response by:

e entering Master state
e driving the read data on SysAD(39:0)
o asserting Sysval* for one SysClk cycle.
In the following SysClk cycle, the processor revertsto Save state.

Normal reads have arepeat rate of 17 PClk cycles.

Figure 15-5 depicts two cache test mode normal reads.

N O S B R
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Figure15-5 Cache Test Mode Normal Read Protocol
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Chapter 15 Cache Test Mode

Auto-Increment Read Protocol
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Cycle
SysClk
Master
SysReset*
SysGnt*
SysAD(63:0)
SysVal*

A cache test mode auto-increment read operation reads a selected RAM array. The read
address is obtained by incrementing the previous access address, and the read way is
obtained from the previous access way.

If an overflow occurs when incrementing the previous access address, the address wrapsto
0, and the way is toggled.

The external agent issues an auto-increment read command by:
e asserting the auto-increment select on SysAD(44)
* negating the Write/Read select on SysAD(43)
e driving the array select on SysAD(42:40)
e asserting SysVal* for one SysClk cycle.
After aread latency of 15 PCIk cycles, the processor provides the read response by:
* entering Master state
e driving the read data on SysAD(39:0)
» asserting Sysval* for one SysClk cycle.
In the following SysClk cycle, the processor reverts to Save state.

Auto-increment reads have a repeat rate of 17 PCIk cycles.

Figure 15-6 depicts two cache test mode auto-increment reads.

J—T :((): T L

Figure15-6 Cache Test Mode Auto-Increment Read Protocol
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The following terms are defined in this Glossary:
*  superscalar processor
e pipeline
e pipeline latency
* pipeline repeat rate
» out-of-order execution
* dynamic scheduling
* instruction fetch, decode, issue, execution, completion, and graduation
* activelist
» freelist and busy registers
* register renaming and unnaming
* nonblocking loads and stores
*  speculative branching
» logical and physical registers
e register files
* ANDES architecture
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A.1 Superscalar Processor

A.2 Pipeline

A.3 Pipeline Latency

A superscalar processor is one that can fetch, execute and complete more than one
instruction in parallel. By implication, a superscalar processor has more than one pipeline
(see below).

In the processor pipeline, the execution of each instruction is divided into a sequence of
simpler suboperations. Each suboperation is performed by a separate hardware section
called a stage, and each stage passes its result to a succeeding stage.

Normally, each instruction only remains in each stage for asingle cycle, and each stage
begins executing a new instruction as previous instructions are being completed in later
stages. Thus, anew instruction can often begin during every cycle.

Pipelines greatly improve the rate at which instructions can be executed, aslong as there
are no dependencies. The efficient use of a pipeline requires that several instructions be
executed in parallel, however theresult of any instruction isnot availablefor several cycles
after that instruction has entered the pipeline. Thus, new instructions must not depend on
the results of instructions which are till in the pipeline.

Thelatency of an execution pipeline is the number of cycles between the time an
instruction isissued and the time a dependent instruction (which usesits result as an
operand) can be issued.

In the R10000 processor, most integer instructions have a single-cycle latency, load
instructions have a 2-cycle latency for cache hits, and floating-point addition and
multiplication have a 2-cycle latency. Integer multiply, floating-point square-root, and all
divide instructions are computed iteratively and have longer latencies.

A.4 Pipeline Repeat Rate

Therepeat rate of the pipeline isthe number of cyclesthat occur between the issuance of
one instruction and the issuance of the next instruction to the same execution unit. In the
R10000 processor, themain five pipelinesall have repeat rates of one cycle, but theiterative
units have longer repeat delays.

A.5 Out-of-Order Execution

338

The“program order” of instructionsisthe sequenceinwhich they arefetched and decoded.
In the R10000 processor, instructions may be issued, executed, and completed out of
program order. They are always graduated in program order.
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A.6 Dynamic Scheduling

The R10000 processor can issue instructions to functional units out of program order; this
capability is known as dynamic scheduling or dynamic issuing.

A.7 Instruction Fetch, Decode, Issue, Execution, Completion, and Graduation

A.8 ActiveList

The R10000 processor can dynamically issue an instruction as soon as all its operands are
available and the required execution unit isnot busy. Thus, aninstruction isnot delayed by

a stalled previous instruction unless it needs the results of that previousinstruction.

In general, instructions are fetched, decoded, and graduated in their original program order,
but may be issued, executed, and completed out of program order, as shown in Figure A-1.

* Instruction fetching is the process of reading instructions from the instruction

cache.

* Instruction decode includes register renaming and initial dependency checks.
For branch instructions, the branch path is predicted and the target address is
computed.

« Aninstruction is issued when it is handed over to a functional unit for
execution.

* Aninstruction is complete when its result has been computed and stored in a
temporary physical register.

* Aninstruction graduates when this temporary result is committed as the new
state of the processor. An instruction can graduate only after it and all

previous instructions have been successfully completed.

Instruction Fetch

In order In order
A S N
-~ D Out of order
Decode — Graduate
Issue Execute Complete

Y

Time

Figure A-1 Dynamic Scheduling

The R10000 processor’s active list is aprogram-order list of decoded instructions. For
each instruction, the active list indicates the physical register which contained the previous
value of the destination register (if any). If thisinstruction graduates, that previous value

is discarded and the physical register isreturned to the freelist. The active list records
status, such as those instructions that have completed, or those instructions that have

detected exceptions. Instructions are appended to the bottom of thelist asthey are decoded
and instructions are removed from the top as they graduate.
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<R12000>

Active List entries are increased to 48:

The active list has been enlarged so that it now contains 48 entries.
Active list accepts conservatively

The read pointer for the active list is now evaluated on four-instruction blocks at atime.
This has two effects:

a) Theremay be up to 11 empty slotsin the activelist and yet it will report to the decode
unit that it cannot accept any new instructions. However thislevel of blockage only lasts
for asingle cycle. At most three empty slots will remain empty for more than one cycle.
The time at which instructions are removed from the active list has also been changed.
Integer and |oad/store instructions now remain in the list for one cycle after they gradu-
ate. Thiswill be compensated for by the increased size of the activelist.

b) The graduation of someinstructions will be delayed, as the read pointer will not ad-
vance past the end of afour-instruction block during a cycle. Thus less than the maxi-
mum number of instructions might be graduated because the read pointer can get to them
that cycle.

A.9 FreelList and Busy Registers

A busy-bit tableindicates whether or not aresult has been written into each of the physical
registers. Each register isinitially defined to be busy when it is moved from thefreelist to
the active list; the register becomes available (“not busy”) when its instruction compl etes
and itsresult is stored in the register file.

The busy-hit table is read for each operand while an instruction is decoded, and these bits
are written into the queue with the instruction. 1f an operand is busy, the instruction must
wait in the queue until the operand is“not busy.” The queues determine when an operand
isready by comparing the register number of the result coming out of each execution unit
with the register number of each operand of the instructions waiting in the queue.

With afew exceptions, the integer and address queues have integer operand registers, and
the floating-point queue has floating-point operand registers.

A.10 Register Renaming

Asit executesinstructions, the processor generates a myriad of temporary register results.
These temporary values are stored in register files together with permanent values. The
temporary values become new permanent values when their corresponding instructions
graduate.

Register renaming is used to resolve data dependencies during the dynamic execution of
instructions.

To ensure each instruction is given correct operand values, the logical register numbers
(names) used in the instruction are mapped to physical registers. Eachtimeanew valueis
put in alogical register, it is assigned to a new physical register. Thus, each physical
register hasonly asinglevalue. Dependencies are determined using these physical register
numbers.
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An example of register renaming is shown below. The following Doubleword Shift Left
Logical instruction,

opcode rs rt dest sa function
spec - r2 r3 2 DSLL
DSLL r3,r2,2

has one register operand (r2) plus a 5-bit shift count of value two stored in the sa field; the
valueinr2 isshifted left by two and thisvalueis stored in r3.

The physical execution of the instruction above, with register renaming, is given below:
Physi cal execution Rename operation
p3—p2 shift left 2 r3 = p3

Whenthe DSLL instruction isexecuted, thelogical destination register r3isassigned anew
physical register, p3, from the freelist.

Register renaming also allows exceptionsto be handled in a precise manner. Out-of-order
execution means that an instruction can change its result register even before all prior
instructions have been completed. However, if any of the prior instructions cause an
exception, the original register value must be restored. Since each new register value is
loaded into a new physical register (physical register values are not overwritten until the
physical register isplaced in thefreelist), previous valuesremain unchanged in the original
physical registers and these previous values can be restored.

An instruction can be aborted up until the time it graduates, and all register and memory
values can be restored to a precise state following any exception. This state is restored by
unnaming the temporary physical registers assigned to subsequent instructions.

Registers are unnamed by writing the old destination register into the mapping table and
returning the new destination register to thefreelist. Unnaming isdonein reverse program
order, in case alogical register was used more than once. After renaming, the register files
contain only the permanent val ues which were created by instructions prior to the
exception.

Once an instruction has graduated, all previous values are lost.

A.11 Nonblocking Loadsand Stores

Loads and stores are nonblocking; that is, cache misses do not stall the processor. All other
parts of the processor may continue to work on non-dependent instructions while as many
as four cache misses are being processed.

T This same techniqueis used to reverse mispredicted speculative branches.
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A.12 Speculative Branching

Normally, about one of every six instructionsis abranch. Since four instructions are
fetched each cycle, the R10000 processor encounters, on average, a branch instruction
every other cycle, as shown in Figure A-2.

Cycle 1 Cycle 0
- )
15 11
16 12 On average, one of out
» > every six instructions
13 is a Branch
14
J
‘#

Figure A-2 Speculative Branching

When a branch instruction was encountered in previous processors, the instruction fetch
and instruction issue halted until it was determined whether or not to take the branch. For
instance, abranch delay slot was designed into the MIPS architecture to handletheintrinsic
delay of abranch and to keep the pipeline filled.

Since the processor fetches up to four instructions each clock cycle, there is not enough
time to resolve branches without stalling the fetch/decode circuitry. The processor
therefore predicts the outcome of every branch and speculatively executes the branch
based on this branch prediction.

The branch prediction circuit consists of a512-entry RAM, using a 2-bit prediction
scheme: two bits are assigned to a branch instruction, and indicate whether or not the
branch was taken the last timeit occurred. Thefour possible prediction states are: strongly
taken, weakly taken, weakly not taken, strongly not taken. If the branch wastaken the last
two times, there is a good probability it will be taken thistime too — or the inverse.’

The R10000 processor can speculate up to four branches deep. Shadow copies of the
mapping tables are kept every time a prediction is made, allowing the R10000 processor to
recover from amispredicted branch in asingle cycle.

T Simulations have shown the R10000 branch prediction algorithm to be over 90% accurate.
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<R12000>
Use of global history in branch-prediction:

The history register is 8 bits wide, and implements the ‘ gshare’ predictor (reference to
paper that defines will be provided later). The history register is updated speculatively,
with aone cycle delay after aprediction before the results are available for usein forming
another prediction index. As mentioned earlier, some programs with small “working set
of conditional branches’ benefit significantly from the use of such hashing; however, a
dlightly variable number of previously-executed branches may be omitted from the
predictions made for any given branch. Thiswill reduce prediction accuracy somewhat.
Global history register is enabled viabits 26:23 of the Diag Register (CPO register 22). If
bit 26 is set, branch prediction uses all eight bits of the global history register. If bit 26 is
not set, then hits 25:23 specify a count of the number of bits of global history register to
be used.

Increase in branch prediction table size:

The table size isincreased to 2048 2-bit entries.

A.13 Logical and Physical Registers

A.14 Register Files

Register renaming (described above) distinguishes between logical registers, which are
referenced within instruction fields, and physical registers, which are actually located in
the hardware register file. The programmer is only aware of logical registers; the
implementation of physical registersis entirely transparent.

Logical register numbers are dynamically mapped onto physical register numbers. This
mapping uses mapping tables which are updated after each instruction is decoded; each
new result iswritten into anew physical register. Thisvalueistemporary and the previous
contents of each logical register can be restored if itsinstruction must be aborted following
an exception or amispredicted branch.

Register renaming simplifies dependency checks. Logical register numbers can be
ambiguous when instructions are executed out of order, since a succession of different
values may be assigned to the same register. But physical register numbers uniquely
identify each result, making dependency checking unambiguous.

The queues and execution units use physical register numbers. Integer and floating-point
registers are implemented with separate renaming hardware and multi-port register files.

The R10000 processor has two 64-bit-wide register filesto store integer and floating-point
values. Each file contains 64 registers. The integer register file has seven read and three
write ports; the floating-point register file has five read and three write ports.

Theinteger and floating-point pipelines each use two dedicated operand ports and one
dedicated result port in the appropriate register file. The Load/Store unit usestwo dedicated
integer operand ports for address calculation. 1t must also load or store either integer or
floating-point values, sharing aresult port and aread port in both register files.
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These shared ports are a so used to move data between the integer and floating-point
register files, to store branch and link return addresses, and to read the target address for
branch register instructions.

A.15 ANDES Architecture

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
sequential Dynamic Execution Scheduling.
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R12000

The following items are described in this Appendix:

Mode bits changed in R12000

DSD (Delay Speculative Dirty)

Changes in the Branch Diag Register

Eliminate traps for Denorm/NaN FP inputs

Increase in pre-decode buffering

Increased penalty for indirect branches

Addition of a Branch Target Address Cache

Use of global history in branch-prediction

Increase in branch prediction table size

Address calculation for load/store instructions uses integer queue
L oad/store dependency is speculatively ignored

DCache set locking relaxed

SC refill blocking reduced

Increased the Way Prediction Table (MRU table) to 16K single-bit entries
Additional cycles for System Interface transactions

FP and Integer-Queue Issue Policy

Active List entires are increased to 48

Cache Error inhibits graduation

Changed Spare (1, 3) pins to NC (No Connection)

CacheOp Index Write Back Invalidate (D) aso clears Primary Tag
Summary of the differences
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B.1 Mode bits changed in R12000

Table B-1 Mode Bits 12:9 (SysCIkDiv)

Code Divisor SysClIk (for PCIk = 300 MHZz)
0000 - Reserved
0001 - Reserved
0010 - Reserved
0011 2 150 MHz
0100 25 120 MHz
0101 3 100 MHz
0110 35 85.70 MHz
0111 4 75.00 MHz
1000 45 66.00 MHz
1001 5 60.00 MHz
1010 55 54.55 MHz
1011 6 50.00 MHz
1100 - Reserved'
1101 - Reserved
1110 - Reserved
1111 - Reserved

T For R12000 and R12000L . This code can be set in the R12000A (See C.1).

Table B-2 Mode Bits 21:19 (SCCIkDiv)

Code Divisor SCCIk (for PClk =300 MHZz)
000 - Reserved

001 - Reserved

010 15 200MHz

011 2 150 MHz

100 25 120 MHz

101 3 100 MHz

110 - Reserved

111 4 75 MHz (added for testing silicon)

346
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Table B-3 Mode Bits 24:22

Code Name Comments

000 - Reserved

001 - Reserved

010 - Reserved

011 - Reserved

100 DSD Delay Speculative Dirty - fix for speculative store (see B.2)
101 - Reserved

110 - Reserved

111 - Reserved

B.2 DSD (Delay Speculative Dirty)

The Boot Mode hit 24 corresponds to the Config register[24] bit and this controls DSD
during user mode. However, the DSD mode can also be enabled in the kernel mode by
setting the Status register[24] bit. Config register[24] is read-only and can be set only at
boot time.

If the DSD modeis set -

a) R12000 will not set the Dirty bit for asecondary cache block until the store instruction
istheoldest inthe Active List and is about to be executed. (An interrupt could cause a
case where the dirty bit is set (store is no longer speculative), but the store does not
immediately graduate. We believe this case should not cause any problem. This mode
does prevent speculative stores from setting the dirty bit.)

b) This mode will have dightly lower performance due to the delay in the setting of the
Dirty bit. Thisdelay will occur just once per block refill from main memory, when it
isnecessary to set the dirty bit. Setting the bit requires about ten cycles; but usually the
processor will continue to overlap execution of other instructions. Once a block
becomes dirty in secondary cache, this mode has no performance effect.

¢) Inthismode, amissin secondary cache, dueto astoreinstruction whichisnot already
the oldest in the pipeline, will cause arefill to the “ clean exclusive” state. A hittoa
shared line will immediately cause an upgrade to “clean exclusive’. Thus, bus
operations (which arerelatively slow) will still begin speculatively.

Independent of the DSD mode, R12000 will delay a* cached, non-coherent” load until
it isthe oldest instruction. This change is implemented because a speculative load
accessing an unmapped “xkphys’ address as*“ cached, non-coherent” might bring data
into the secondary cache without the proper coherency checks.

R12000 is doing no changes to prevent it from speculatively refilling cachelinesin
shared or clean states except the “xkphys’ case described above.
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B.3 Changesin the Branch Diag Register

In R12000 two fields are added to the “Diag Register” - CP0 Register 22. Onefield is
“ghistory enable”, bits 26:23. The other is“BTAC disable”, hit 27.
The definitions are:

» Ghistory enable:
 If bit 26 is set, branch prediction uses all eight bits of the global history register.

 If bit 26 is not set, then bits 25:23 specify a count of the number of bits of
global history to be used.

Thus if bits 26:23 are all zero, global history is disabled.

The global history contains arecord of the taken/not-taken status of recently executed
branches, and when used is XOR’ ed with the PC of abranch being predicted to produce a
hashed value for indexing the BPT. Some programs with small “working set of conditional
branches” benefit significantly from the use of such hashing, some see slight performance
degradation.

« BTAC disable:

If bit 27 is set, the use of the Branch Target Address Cache (BTAC) isdisabled. The BTAC
is used to reduce the instruction fetch penalty of taken branches by providing the target
address of fixed-address branch and jump instructions.
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B.4 Eliminatetrapsfor Denorm/NaN FP inputs

The R10000 currently takes Unimplemented Exception when an FPU gets a NaN or
Denorm asan input. R12000 suppresses these traps whenever the FShit is set in the FCSR.
R12000 simply passes through NaN’s and Denorm’s when the bit is set. This change in no
way affects the handling of QNaNs and Denorms when they are produced, it only changes
the way they are handled when they are received as input operands.

Case of Denorm when the FS bit isset to 1: A Denorm received as an input to the FP unit
isflushed to zero before the FP unit beginsto process the operand. The behavior of the unit
(when FSis 1) will be exactly that seen when theinput iszero. Specifically, if the zero input
would itself cause atrap (due to divide by zero, for example) then the that zero-generated
trap will be taken. When a Denorm is seen at the input, the Inexact bit is set, except in the
cases described below:

The Inexact bit will not be set, even if FS=1 and aDenormis seen oninput, if the other
input to the FP operation is a value which pre-determines the FP result (e.g. QNaN).
When the result is not affected by the presence or absence of the Denorm input, the
result is EXACT. Hence the Inexact bit should not be set, even if Flush to Zero mode
isON.

Case of QNaNswhen the FShitisset to 1: A QNaN received as an input operand for an FP
unit will cause the unit to produce the standard QNaN (which is not necessarily same asthe
input QNaN). Note that FP unitswill not propagate the QNaN to the output, but will always
produce the same, standard, QNaN.

When the FShit is set to zero, the behavior will be exactly asin R10000.

When Denorms or QNaNs are produced by an FP operation, the behavior will be exactly
asin R10000, regardless of the FSbit setting.

Handling of signalling NaNswill be unaffected by this change. Only the handling of input
quiet NaNs and Denorms will be affected.

Arithmetic instructions (like add/sub/madd/cvt/div/sgrt/recip/rsgrt) will follow the above
behavior in all respects.

There are some instructions that deserve special mention:

» Moy, conditional mov will not be affected by this mode, i.e. no exceptions based
on QNaNs and Denorms. Denorms and QNaNs will be moved without
generating an exception, regardless of the FS state. This behavior is unchanged
from that of R10000.

* When FS=1, the Abs, Neg and Compare instructions will flush Denorm inputs to
zero just as the arithmetic operations do. This is different from the behavior of
the R8000, R4400 and R10000. In all  cases where flushing the Denorm to
zero made a difference in the result, the and inexact trap will be taken or the
Inexact bit will be set. Compatibility with R4400 and R10000 can be achieved
by setting FS=0.
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» The behavior of FP to INT conversion instructions will change in that when
FS=1, an input Denorm will be flushed to zero and the Inexact bit will be set.
With other inputs, FP to INT conversion will not be affected by the FS mode
bit. Previously, R10000 took an unimplemented exception whenever a
conversion from an FP value would result in a value that cannot be represented
in the target format. This will continue to be the case, with the noted exception
of Denorm inputs.

e FPto FP convert instructions will be affected in the same way as arithmetic
operations. That is, cvt FP to FP will not take exceptions on gNaN or Denorm
inputs, if and only if FS=1.

The above changes in R12000 will alow the compilers and applications can do more
aggressive optimizations during loop unrolling like if-conversion, speculative load
execution and specul ative code motion by making use of this feature. The change is gated
by the FS hit so that strict IEEE-compliance is possible, as before, by setting the FShit to
zero.

B.5 Increasein pre-decode buffering

Up to 12 instruction may be buffered before being decoded. This should normally be
invisibleto the end user, but can be important when debugging systemsin uncached-mode,
since fetch and decode are now further de-coupled.

B.6 Increased penalty for indirect branches

Indirect branches, which were already an expensive operation, have become even more so.
Instruction fetch now stalls for aminimum of 5 cycles, rather than the 4 for the R10000.
This additional cycle of delay is seen by both jr and jalr instructions.

B.7 Addition of a Branch Target Address Cache

350

This 32-entry two-way set-associative cache holdsthe target addresses of previously-taken
branches. When abranch is executed a hit in the BTAC eliminates the one-cycle fetch
bubble with the R10000 experiences for every taken branch. However, if abranch which
hitsin the BTAC isactually predicted not-taken, then aone cycle fetch bubbleisintroduced
where none was present before. Performance simulations indicate that the BTAC is a net
win, but because of its*mixed-blessing” nature, a mechanism has been provided to disable
it via software. (See description of changesto diag register)
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B.8 Useof global history in branch-prediction

The history register is 8 bits wide, and implements the ‘ gshare’ predictor (reference to
paper that defineswill be provided later). The history register isupdated speculatively, with
aone cycle delay after a prediction before the results are available for use in forming
another prediction index. As mentioned earlier, some programs with small “working set of
conditional branches” benefit significantly from the use of such hashing; however, adlightly
variable number of previously-executed branches may be omitted from the predictions
made for any given branch. Thiswill reduce prediction accuracy somewhat. Global history
register is enabled via bits 26:23 of the Diag Register (CPO register 22). If bit 26 is set,
branch prediction uses all eight bits of the global history register. If bit 26 is not set, then
bits 25:23 specify a count of the number of bits of global history register to be used.

B.9 Increasein branch prediction table size

Thetable sizeisincreased to 2048 2-bit entries.

B.10 Addresscalculation for load/storeinstructionsusesinteger queue

When load, store, cacheop, or prefetch instructions are decoded, they are sent to both the
AQ and 1Q units. The IQ treats the address-calculate unit as athird “ALU” and issues
instructions to it. When an instruction compl etes address calculation, the results are
forwarded to the AQ. Unlike previously, if an address instruction must be retried for any
reason, address calculation is not redone. If an the address queue is full, but the integer
gueue has free entries at the time aload/store instruction is decoded, the load/store is sent
only to the integer queue. When the address queue has an available entry the calcul ated
addressis forwarded to that entry and the remainder of the load/store execution continues.

B.11 Load/store dependency is speculatively ignored

When aload follows a store in program-order, and the address of the load is known to the
Address Queue (AQ) before the address of the store, then the AQ may speculatively issue
the load to tag-check and data access. When the address of the storeis determined, the AQ
can undo the effects of the load through the use of the “ soft-exception” mechanism. Since
almost all loads which are actually dependent on previous stores use the same registersto
form their addresses, normally either the two instructions are independent, or their

addresses are resolved in program order, so the soft-exception should occur rarely.
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B.12 DCache set locking relaxed

In R10000, when an AQ entry accesses aDcacheline, that lineislocked into the cache until
the entry graduates, so that the entry will not be removed from the cache until the access
completes. If another entry which needs to access exactly the same line arrives in the AQ
before the first completes, the two may share the lock. In thisway, alineislocked in the
cache until all accessto it complete. In order to prevent adeadlock from arising, whenever
acachelineislocked in this way, only the oldest AQ entry can obtain alock on the other
“way” of the same cache set, thus ensuring that forward progress can be made. This
algorithm can cause problems, because often the oldest entry in the AQ is the one which
already owns the lock on thefirst way - thus ensuring that no other entries can access the
second way of the cache for that set index. For some algorithms, most notably FFT’s, this
can cause severe performance degradation. R12000 allows an entry to obtain the lock on
the second way of aset if it isthe oldest entry which does not already own alock. Thus, any
entries which have already acquired alock, including those locking the first way, will not
prevent another, younger, entry from accessing that second way.

B.13 SC refill blocking reduced

In R10000, during the time that an SCache line is being refilled from system interface via
the “incoming buffer (IB)”, no other accesses to the SCache are allowed. If the external
interface seesan ACK to alinethat isbeing refilled before the last words of the SCacheline
are received by R10000, this means that several cycles can elapse during which SCache
access is blocked. By breaking the SCache refill transaction into 64-byte blocks, and
allowing other requests to proceed during breaks between the blocks, this effect could be
reduced. R12000 pullsin SCache lines with two “ pause points.” This first occurs when
R12000 receivesthe ACK for arequest. If thefirst two quad-words are aready valid in the
Incoming Buffer at that time, then R12000 will proceed to refill the SCache with those two,
and forward the results to the DCache or | Cache at the same time as normal. The next two
quad-words will be refilled as they return, thus continuing to block any other accessto the
SCachejust astoday. If however, when theinitial ACK isreceived, thefirst two arenot valid
(i.e., either 0 or 1 quad-words are valid at that time) then R12000 will “pause” the SCache
refill and wait for both of them to be brought in to the IB. Once the first half isfilled into
the SCache, R12000 will again check the IB to seeif an additional 3 quad-words are valid
(thus 7 out of the 8 quad-words in the SCache line should have arrived into the IB). Until
that isthe case, R12000 will again “pause” the SCache refill and allow other accesses to
reach the SCache. These two pauses allow for other requests to dip in during an SCache
refill. Using only two pauses both simplifies the logic and reduces bus turnarounds.

B.14 Increased the Way Prediction Table (MRU table) to 16K single-bit entries

The size of thetable has been increased to 16K entries, so that 4MB cacheswith 128B lines
or 2MB caches with 64B lines can be fully mapped.

B.15 Additional cyclesfor System Interface transactions

352

All transactions which go through the system interface unit (in particular, SCache refills
and writebacks) have one additional CPU-clock of latency added to them.
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B.16 FP and Integer-Queue | ssue Policy

Theinteger and floating-point queues are altered so that they are now composed of two 8-
entry banks. Instructions are issued into the two banks in an alternating fashion. Each bank
independently nominates instructions for the functional units. For each FU, the banks
nominate the oldest instruction they contain which is ready to execute. If both banks
nominate aninstruction for agiven FU, awinner is chosen by apriority bit which alternates
between the two banks on each cycle.

B.17 ActivelList entriesareincreased to 48

The active list has been enlarged so that it now contains 48 entries.

B.18 CacheError inhibits graduation

When a cache error is detected, all instruction graduation is inhibited on the following
cycle. Since cache errors arerare, and an exception will occur soon afterwards, this should
have minimal impact on performance.

B.19 Changed Spare(1, 3) pinsto NC (No Connection)
The Spare(1, 3) are used in R12000 for diagnostic purpose and thus for R12000 should not
be connected to anything.

B.20 CacheOp Index Write Back I nvalidate(D) also clears Primary Tag

Asaresult of the CacheOp Index Write Back Invalidate(D) instruction, the Primary Tagis
also cleared (set to zero) in addition to setting the cache state bitsto zeros or (invalid) as
described in Vg5000, Vg10000 INSTRUCTION User’sManual.
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B.21 Summary of the differences

354

Higher operation frequency.

Core operating voltage for R12000 2.6V.
Max case temperature for R12000 70°C.
L ess Power consumption.

Increased optionsfor PClk to SysClk and PClk to SCCIk ratios.

e Added bhoot-time mode bits to allow processor upgrade without change in
system interface and secondary cache interface frequency.

Added a mode in which the side effects of “ Speculative L oad/
Stores’ areavoided.

»  Speculative load/stores could cause problems in a system with non-
coherent 1/0. In this mode prevents the behavior that causes the side-
effects with some trade-off in performance. This mode is optional and can
be selected during boot-time.

Added an optional Branch Target Address Cachetoreduceinstruc-
tion fetch penalty.

*  Since there are trade-offs, this feature can be disabled.

Added an optional “Global History Table” to improve branch pre-
diction.

» Since not all the program benefit from this feature; so the feature can be
disabled.

Added an option to eliminate traps for Denorm/NAN FP inputs

e This allows the compilers and applications to do more aggressive
optimization. The change is optional if IEEE compliance is needed.

Quadrupled the branch prediction table size.

Doubled the MRU table for SCache way prediction to improve
SCache hit rate.

User'sManual U10278EJ4V0UM



Appendix B Differences between R10000 and R12000

I mproved perfor mance monitoring system.
Increased Activelist to 48 entriesto improve perfor mance.
Changed the Spare(1,3) pinsto NC (No Connection).

Other miscellaneous changesto improve performance and simplify
logic.
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R12000A

The following items are described in this Appendix:
Mode bits changed in R12000A
Changes in the Performance Counter Registers

Summary of the differences
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C.1 Mode bits changed in R12000A

Table C-1 Mode Bits 12:9 (SysCIkDiv)

Code Divisor SysClIk (for PCIk = 400 MHZz)
0000 - Reserved
0001 - Reserved
0010 - Reserved
0011 2 200 MHz
0100 25 160 MHz
0101 3 133.3 MHz
0110 35 114.3 MHz
0111 4 100 MHz
1000 45 88.89 MHz
1001 5 80 MHz
1010 55 72.73 MHz
1011 6 66.67 MHz
1100 7 57.14 MHz
1101 - Reserved
1110 - Reserved
1111 - Reserved

Table C-2 Mode Bits 21:19 (SCCIkDiv)

Code Divisor SCCIk (for PClk =400 MHz)
000 - Reserved

001 - Reserved

010 15 266.7 MHz

011 2 200 MHz

100 25 160 MHz

101 3 133.3 MHz

110 - Reserved

111 4 100 MHz (added for testing silicon)

NOTE: The selectable divisors of PClIk to SCCIk in the R12000A are the same as
those in the R12000. Table C-2 is only for indication of actual frequencies of SCClk
when each divisor is selected.
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Table C-3 Mode Bits 30:29 (HSTL Mode)

Code Comments

HSTL 1 on the outputs of the System interface

00 HSTL 1 on the outputs of the secondary cache interface

HSTL 1 on the outputs of the System interface

01 HSTL 2 on the outputs of the secondary cache interface
10 HSTL 2 on the outputs of the System interface

HSTL 1 on the outputs of the secondary cache interface
11 HSTL 2 on the outputs of the System interface

HSTL 2 on the outputs of the secondary cache interface

C.2 Changesin the Performance Counter Registers

In the R12000A, the syndrome bits that are generated from the data coming into the
processor from the SCache are captured in a 9-bit register whenever thereisasingle or
multiple bit error. Therefore this register will always contain the syndrome bits generated
for the most recent error encountered. The register is uninitialized on power up and is not
writable by any other means. Architecturally, the 9-bit register appears as bits 31:23 of the
CPO Performance Counter (Cop 25) Control register 0. These bits were previously unused.
These 9 bits are read only bits. A write to this control register will not affect these bits.

The syndrome hits are generated for Secondary to Primary refills and Secondary to Main
memory writebacks, but not for CacheOp reads from Secondary cache.

For details, see 11.20 Performance Counter Registers (25).

C.3 Summary of the differences
* Higher operation frequency.
» Coreoperating voltage for R12000A 1.9V.
* Increased an option for PClk to SysClk ratio.
» Added optionsfor HSTL modes of output pins.

* Added an error indication mechanism for received secondary
cache data.

» Changed the packaging to plastic BGA.

* Added JTRST signal for asynchronousinitialization of the TAP
controller in the JTAG interface.
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Numerics

16-word, cache refill

read sequence ... 88

write sequence ... 93
32-bit

address space ... 287

mode, TLB entry format ... 299
32-word, cache refill

read sequence ... 88

write sequence ... 93
4-word, cache refill

read sequence ... 86

write sequence ... 91
64-bit

address space ... 287

mode, TLB entry format ... 299
8-word, cache refill

read sequence ... 87

write sequence ... 92

A

access privileges, address space ... 296
ACK completion response ... 146
ACK, signdl ... 106
active list, definition of ... 339
add unit, FPU ... 274
address
encodings, mode ... 287
Kernel mode ... 292
mapping
Kernel mode ... 292
Supervisor mode ... 290
User mode ... 288
mode ... 287

page ... 298

queue ... 22, 29
instruction graduation ... 29
issue ports ... 29
number of entries ... 29

number of instructions written per cycle ...

organized as FIFO ... 29
sequencing ... 29
space
access privileges ... 296
kernel ... 287
supervisor ... 287
user ... 287
virtual ... 287
Supervisor mode ... 290
trandation ... 300
User mode ... 288
Address Error exception ... 310
Address Space Identifier, seealso ASID ... 300
address/data bus signals ... 57
AdEL, indication ... 310
AdES, indication ... 310
algorithms
cache, fivetypesof ... 70, 74
diasing, virtua ... 84
allocate request number requests, external ... 150
ALU (arithmetic logic unit)
No.1... 36
No. 2 ... 36
ALU1.. 25, 28
ALU2 ... 25, 28

ANDES, Architecture with Non-sequential Dynamic Execution

Scheduling ... 20, 344
arbitration protocol, System interface ... 124
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arbitration rules, System interface ... 125
arbitration signas ... 57
arbitration, cluster bus ... 98

Architecture with Non-sequential Dynamic Execution Scheduling,

see also ANDES ... 344

arithmetic instructions, FPU ... 283
arithmetic logic unit, seealso ALU ... 36
array ... 79
array, page table entry (PTE) ... 215
ASID (Address Space | dentifier)

context switch ... 300

relationship to Global (G) bitin TLB entry ... 300

stored in EntryHi register ... 300
ASID, field ... 219
auto-increment read, cache test mode ... 336
auto-increment write, cache test mode ... 334

B

Bad Virtual Addressregister (BadVAddr) ... 218
BadVAddr register ... 215, 233, 310
BadVPN2, field ... 215, 233
BD, (branch delay) hit ... 226, 228
BE, (memory endianness) hit ... 230
BEV, (boot exception vector) hit ... 188, 224, 302
block
instruction cache ... 25
primary datacache ... 25
secondary cache... 27
size
primary data cache ... 64
primary instruction cache ... 62
secondary cache ... 67
block datatransfers... 110
external block dataresponses... 110
processor block write requests ... 110
processor coherency data responses ... 110
boundary scan register, JTAG ... 206
BPIdx, field ... 236
BPMode, field ... 236
BPOp, field ... 236
BPState, field ... 236
branch
determining next address ... 35
instruction, limits on execution ... 35
prediction ... 32, 47, 342
prediction rates, improving ... 39

360

speculative ... 342
unit ... 26, 35

BRCH, field ... 236

BRCV, field ... 236
BRCW, field ... 236
Breakpoint exception ... 320
BSldx, field ... 236

BTAC disable, bit ... 237

buffer
cached request ... 105
cluster request ... 105
incoming ... 105, 106
outgoing ... 105, 107
uncached ... 105, 108
bus
SysAD ... 118
SysCmd ... 111
SysResp ... 121
SysState ... 120
Bus Error exception ... 316
busy-bit table ... 340

bypass register, JTAG ... 205

C

C, (coherency attribute) bit ... 213

cache... 20
algorithms.... 70
and processor requests ... 74

cacheable coherent exclusive on write, description of ...

cacheable coherent exclusive, description of ... 71
cacheable noncoherent, description of ... 71
fields, encoding of ... 70
for ksegO address space ... 70
for mapped address space ... 70
for xkphys address space ... 70
uncached accelerated, description of ... 72
uncached, description of ... 71
where specified ... 70
associativity ... 61
block ownership ... 75
misses ... 43
address recording ... 253
nonblocking ... 41, 43
ordering constraints ... 33

pages ... 298

primary ... 20

primary data ... 25
block size ... 64
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changing states ... 65
description of ... 64
diagram, state ... 66
error handling ... 192
index andtag ... 65
interleaving ... 48

way prediction table ... 80
write back protocol ... 67

strong ordering

exampleof ... 34

structure, two-level ... 61

Cache Error exception... 188, 315

refill ... 47 precision ... 188
state diagram ... 66 prioritization ... 188
states ... 65

Cache Error handler ... 188

CACHE instructions ... 189
support for 1/0 ... 168

cache missstalls ... 43

subset of secondary cache ... 65

write back protocol ... 64
primary instruction ... 25

block size ... 62

description of ... 62

diagram, state ... 63

error handling ... 191

error protection ... 191

index andtag ... 62

cache test mode
entry ... 330
exit ... 331

cacheable coherent exclusive on write, cache algorithm ... 70, 71
cacheable coherent exclusive, cache algorithm ... 70, 71

refill 47 cacheable noncoherent, cache algorithm ... 70, 71
state diagram ... 63 cached request buffer ... 105
states ... 62

CacheErr register ... 188, 189, 191, 192, 263
cause bits, FPU ... 283
Causeregister ... 121, 122, 218, 226, 228

rules, ownership of acacheblock ... 75
secondary ... 20
associativity ... 27, 67

block size ... 67 Causg, field (FP) ... 283
block state ... 84 CE, hit ... 223, 224, 226
blocks ... 27

CH, bit ... 224
chip revisions, R10000 ... 229
cksegO space ... 296

changing states ... 68
clock domain ... 173
dataarray ... 77

data array width ... 79
description of ... 67
diagram, state ... 68

cksegl space ... 296
ckseg3 space ... 296
cksseg space ... 296

ECC.. 27 clock

error handling ... 193 domain

index and tag ... 67 in secondary cache ... 173

indexing ... 79 internal processor clock domain ... 171

indexing the data array ... 79
indexing thetag array ... 80

secondary cache clock domain ... 171
System interface clock domain ... 171

interface frequencies ... 78 signdl

sizes... 27 PClk ... 172

specifying block size ... 77 SCCIK ... 173

specifying cache size ... 77 SysClk ... 171

state diagram ... 68 SysClkRet ... 172

states ... 67 signals, overview of ... 57
f;/;\droge bits ... 254 clock divisor, system interface ... 96, 329
tag and data array ECC ... 77 cluster bus 52, 98

wgaray .. 77 operation ... 164

way prediction ... 81 cluster coordinator ... 97, 98
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cluster request buffer ... 105 D

coherency conflicts ... 159 D, (dirty) bit ... 213

coherency protocol, directory-based ... 169

data cache
coherency request, external ... 154, 156 see also cache, primary data ... 64
coherency schemes ... 52 data dependencies ... 38
coherency, System interface data path, secondary cache ... 27

external intervention exclusive request ... 157
external intervention shared request ... 157
external invalidate request ... 157

CohPrcRegTar, mode hit ... 118, 165, 168, 180
DCOk, signa ... 54, 176
coldreset ... 175

sequence ... 178 DE, hit ... 189, 224

Cold Reset exception ... 302 debugging, and Watch registers ... 232
decoding, an instruction ... 339

data quality indication ... 108
DBRC, field ... 236
DC, (datacachesize) field ... 230

Compare register ... 122, 218

completing, an instruction ... 339 dependencies

completion, definition of ... 341 Conditi.on bit .. 32
exception ... 33

condition bit dependencies ... 32 instruction ... 31

Condition, field (FP) ... 283 memory ... 32

Config register ... 230 pipeline... 31

conflicts register ... 32, 343

coherency ... 159 DevNum, mode hits ... 180
internal ... 159 Diagnostic register ... 235

TLB, avoiding ... 300
Context register ... 215, 233
context switch ... 300
control registers, FPU ... 281
controller, TAP ... 204
coordinator, cluster ... 97
COPL instructions ... 327
COP2 ingtructions ... 327
Coprocessor 0, seealso CPO ... 209
Coprocessor 1 see also CP1, COP1 ... 225
Coprocessor 2 see also CP2, COP2 ... 225
Coprocessor 3 see also CP3, COP3 ... 225
Coprocessor Unusable exception ... 322
correctable error ... 185
Count register ... 122, 218

CPO (coprocessor 0) ... 209 E
instructions ... 327
registers, list of ... 210

directory-based coherency protocol ... 169
divide unit, FPU ... 274

division by zero, FP ... 283

divisor, clock, system interface ... 96, 329
DN, (device number) field ... 230

Done, bit ... 28

done, see also completion ... 341

DP, (primary data cache parity) field ... 262
DS, (diagnostic status) field ... 221, 222, 223
DSD, (delay speculative dirty) bit ... 224, 230
DSD, mode hits ... 181

duplicate, externa ... 50

dynamicissue... 31, 339

dynamic scheduling ... 339

EC, field ... 230
ECC (error correcting code)

Gsseg space ... 201 matrix for secondary cache data array ... 194
CT, bit ... 230 matrix for secondary cachetag array ... 196
CTM, mode bit ... 182, 330, 331 matrix for System interface ... 199

CU, (coprocessor usability) field ... 220, 222, 225 register ... 262

secondary cache... 27
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ECC register ... 86, 91
ECC, field ... 262
efficiency, program, suggestions for increasing ... 39
Enable, field (FP) ... 283
EntryHi register ... 219, 299
ASID fiddin ... 300
EntryL o registers, and FrameMask register ... 234
EntryLoO register ... 213, 299
EntryLol register ... 213, 299
EPC register ... 228
ERL, (error level) bit ... 188, 223, 286
ERR completion response ... 146
ERR, signa ... 106
error
correctable ... 185
handling ... 184
protocol ... 202
levels, in the Status register ... 286
protection ... 184
schemes used in R10000 ... 190
protection schemes, used in R10000
ECC ... 190
parity ... 190
sparse encoding ... 190
uncorrectable ... 186
handling an ... 188
limiting the propagation of ... 187
units that detect and report uncorrectable errors ... 188
error correcting code see also ECC ... 190
Error Exception Program Counter (ErrorEPC) register ... 273
Event, field ... 239, 248
EW, bit in CacheErr register ... 189
ExcCode, field ... 226, 227
exception levels, in the Status register ... 286
exception processing, CPU
exception types
Address Error ... 310
Breakpoint ... 320
Bus Error ... 316
Cache Error ... 188, 315
Coprocessor Unusable ... 322
Floating-Point ... 323
Integer Overflow ... 317
Interrupt ... 325
NMI ... 309
Reserved Instruction ... 321
Soft Reset ... 307

System Call ... 319
TLB ... 311
TLB Invalid ... 311, 313
TLB Modified ... 311, 314
TLB Réfill ... 311, 312
Trap ... 318
Virtual Coherency ... 315
Watch ... 324
exception vector location
Reset ... 302
TLB Réfill ... 302
exception vector selection ... 303
precise handling ... 33
priority of ... 303, 305
TLB refill vector locations ... 304
Exception Program Counter (EPC) register ... 228
executing, aninstruction ... 339
execution order ... 31
execution pipelines ... 22
execution units, iterative ... 344
execution, speculative ... 38, 342
EXL, (exception level) bit ... 223, 228, 286, 302
external ACK completion response ... 106, 146
externa agent ... 50, 51, 95
also referred to as cluster coordinator ... 97
connecting to ... 97

external alocate request number request protocol ... 150

external block dataresponse ... 110, 144
protocol ... 143

external coherency conflicts ... 160
externa coherency request latency ... 162
externa coherency requests, action taken ... 158

external completion response ... 147
protocol ... 146

externa double/single/partial-word data response protocol ... 145

externa duplicate tags, support for ... 168

external interface ... 27
memory accesses ... 48
priority operations ... 48

externa interrupt request ... 121
protocol ... 152

externa intervention exclusive request ... 157

external intervention request ... 149
protocol ... 149

external intervention shared request ... 157
external invalidate requestt ... 157
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protocol ... 151
external NACK completion response ... 146

external request ... 96, 103
protocol ... 148

external response ... 96, 103
protocol ... 143

F

fetch pipeline... 22, 35

fetching, an instruction ... 339

FGR (Floating-Point General register)
32-bit operations ... 277
5-bit select ... 277
64-hit operations ... 277
load operations ... 278
operations ... 277
Status register FR bit ... 277
store operations ... 278

Fill, field ... 219

flag
uncorrectable error ... 106
Flag, field (FP) ... 283
floating-point
adder ... 36
adder pipéline ... 22
divide... 36, 275
multiplier ... 36
pipeline... 23
queue ... 22, 29
instructions written each cycle ... 29
number of allowable entries ... 29
ports.... 29
sequencing ... 29
registers ... 277
rounding mode ... 284
square root ... 36
Floating-Point exception ... 323
Floating-Point Status register see also FSR ... 282
Floating-Point Unit, seealso FPU ... 274
flow control ... 109
external dataresponse... 109
external request ... 109
processor coherency data response ... 109
processor eliminate request ... 109
processor read request ... 109
processor upgrade request ... 109
processor write request ... 109
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signas... 57
format, TLB entry ... 299
FPU ... 274
Active Ligt, control of FSR ... 282
add unit ... 274
arithmetic instructions ... 283
cause bits, FSR ... 283
changing rounding mode using aCTC1 ... 284
compare ... 283
condition hits ... 283
control registers... 281
divide unit ... 274
FGRs (general registers) ... 277
FSR, (Status register in FPU) ... 282
graduation, control of FSR ... 282
latency ... 274
logic diagram ... 275
move to floating-point ... 280
multiply unit ... 274
operations ... 275
queue
controlling units ... 276
move unit, FPU ... 275
read ports ... 275
register file... 275
repest rate ... 274
rounding modes ... 284
seria dependency circuit ... 280
sguare-root unit ... 274
FR, field ... 222
FrameMask register ... 214, 234

freelist ... 340

freeing the request number, with completion response ...

FSR (Floating-Point Status register)
cause bits ... 283
condition hits ... 283
division by zero ... 283
enable hits ... 283
flag bits ... 283
inexact result ... 283
invalid operation ... 283
load exceptions ... 284
loading the FSR ... 284
overflow ... 283
RM, round to minus infinity ... 284
RN, round to nearest representable value ... 284
RP, round to plusinfinity ... 284
RZ, round toward zero ... 284
underflow ... 283
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unimplemented operation ... 283

functional unit ... 25

G

branch ... 26

floating-point adder ... 25
floating-point multiplier ... 25

instruction decode and rename ... 26
integer ALU ... 25

iterative ... 25

Load/Store Unit ... 25

G, (Globd) bitin TLB ... 214, 300
gathering data, in identical mode ... 108
gathering data, in sequential mode ... 108
ghistory enable, bit ... 237

global processes (G bitin TLB) ... 300
graduation

definition of ... 341
of aninstruction ... 339

Grant parking ... 124

H

hardware emulation, support for ... 170

hardware interrupts ... 121
HSTL Mode, mode bits ... 183

1/0, support for ... 168

IC, (instruction cache size) field ... 230
IE, (interrupt enable) bit ... 223, 239, 249
IM, (interrupt mask) field ... 221
implementation number, R10000 processor ... 229
incoming buffer ... 105, 106

Index Load Tag instruction ... 89

Index register ... 211

Index Store Data CACHE instruction ... 91
Index Store Tag CACHE instruction ... 94
indexing, the secondary cache ... 79
inexact result (FP) ... 283

initidlization ... 175

instruction

CACHE, see also CACHE instructions ...
completion ... 38, 339

COPO0 see also CPO ... 327

COP1 ... 327

189

COP2 ... 327
decoding ... 339
dependencies ... 31
DMFCL1 ... 283
execution ... 339
fetching ... 339
graduation ... 339
issue ... 38, 339
superscalar ... 38
latencies ... 45
MFCL1 ... 280, 283
prefetch ... 43
queue ... 28, 35
repest rates ... 45
serializing ... 41
SWCL1... 280
SYNC... 73, 164

instruction cache, block size see also cache, primary instruction ...

62

instruction register, JTAG ... 205

integer

queue 28

branch instructions ... 28
divideinstructions ... 28
multiply instructions ... 28
ports... 28
shift instructions ... 28

integer ALU pipdline ... 22
Integer Overflow exception ... 317
integer queue ... 22
interface, external ... 27
internal coherency conflicts ... 159
internal processor clock domain ... 172
Interrupt exception ... 325
interrupt mask, bit ... 218
Interrupt register ... 121
interrupt request, external ... 121
interrupts ... 121
hardware ... 121
nonmaskable ... 122
software ... 122
timer ... 122
invalid operation, FP ... 283
invalidate request, external ... 151
IP, (interrupt pending) bit ... 226, 262
ISA (Instruction Set Architecture)
MIPSI ... 18
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MIPSII ... 18

MIPSIII ... 18

MIPSIV ... 18, 277
issue, dynamic ... 339
issuing, an instruction ... 339
iterative execution units ... 344
ITLB (instruction TLB) ... 300
ITLBM, field ... 236

J

JTAG

boundary scan register ... 206

bypassregister ... 205

Capture-DR dtate ... 206

instruction register ... 205

interface ... 203
instruction register ... 205
JTCK signdl ... 204
JIDI signd ... 204
JIDOsignal ... 204
JTMSsignal ... 204
JTRST signd ... 204
Tap controller ... 204
test access port ... 204

Shift-DR state ... 205, 206

signals... 59

Update-DR state ... 206

Update-IR state ... 205

JTCK, signal ... 59, 60, 204
JTDI, signal ... 59, 60, 204, 205
JTDO, signal ... 59, 204, 205
JTLB (joint TLB) ... 300

JTMS, signal ... 59, 60, 204
JTRST, signdl ... 59, 60, 204

K

KO, field ... 230

Kernel mode ... 286

address mapping ... 292
ckseg0 space ... 296
cksegl space ... 296
ckseg3 space ... 296
cksseg space ... 296
ksegO space ... 293
ksegl space ... 293
kseg3 space ... 293
ksseg space ... 293

366

kuseg space ... 293
operations ... 292
xkphys space ... 294
xkseg space ... 296
xksseg space ... 294
xkuseg space ... 294

ksegO space ... 293

KsegOCA, mode bits ... 180

ksegl space ... 293

kseg3 space ... 293

ksseg space ... 293

KSU, field ... 221, 223, 302

kuseg space ... 293

KX, bit ... 222, 286

L

latency ... 45
accessing secondary cache ... 47
definition of ... 338
externa coherency request ... 162
FPU ... 274

least-recently used replacement algorithm (LRU) ...

list, free ... 340

LLAddr register ... 231

load operations, FPU registers ... 278
Load/Store Unit pipeline ... 22

loads
nonblocking ... 341

logic diagram, FPU ... 275
logical register
initialization (necessity for) ... 176
logical register, see also physical register ... 343

LRU (least-recently used) replacement algorithm ...

M

mapped, virtual addressregion ... 287
mapping table ... 343
Mask, field ... 216

master state ... 97
and flow control ... 109

matches, multiple, in TLB ... 300
MemEnd, mode bits ... 181
memory dependencies ... 32
memory ordering ... 33

memory protection ... 298
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MIPSI1 ISA, disabled and enabled ... 214
MIPS 1V, instruction set seealso ISA ... 326
miscellaneous system signals ... 58
mispredicted branch ... 47
mode
addressing ... 287
addressing, encodings ... 287
Kernel mode ... 287
Supervisor mode ... 287
User mode ... 287
operating ... 286
mode bits ... 180
CohPrcReqTar ... 118, 165, 168, 180
CTM ... 182, 330, 331
DevNum ... 180
DSD ... 181
HSTL Mode... 183
KsegOCA ... 180
MemEnd ... 181
ODrainSys... 182
PrcEImReqg ... 139, 169, 180
PrcRegMax ... 109, 129, 131, 137, 141, 180
SCBIkSize ... 67, 77, 108, 181
SCCIkDiv ... 78, 172, 176, 181
SCClkTap ... 173, 182
SCCorEn ... 181, 194, 196
SCSize... 67, 77, 181
SysClkDiv ... 96, 172, 176, 181
MP, field ... 236
MTCQO, instruction ... 86
multiple matches, in TLB ... 300
multiplier pipeline ... 22
multiply unit, FPU ... 274
multiprocessor system ... 51
arbitration ... 127
cluster bus... 51
with external agent ... 51
multiprocessor system, using dedicated external agents ... 100

multiprocessor system, using the cluster bus ... 101

N

NACK completion response ... 146
NACK, signd ... 106

NMI see also nonmaskable interrupt ... 273
NMI, bit ... 223, 224

nonblocking cache ... 43

nonblocking, loads and stores ... 341

Nonmaskable Interrupt (NMI) exception ... 122, 302, 309
normal read, cache test mode ... 335

normal write, cache test mode ... 333

NT compatibility, LLAddr register ... 231

number, request ... 103

O

ODrainSys, mode bit ... 182

offset, in page address ... 298

operating mode

Kernel ... 286, 292
Supervisor ... 286, 290
User ... 286, 288

operations, FPU ... 275
ordering, memory ... 33

ordering, strong ... 33

out of program order, execution ... 338
outgoing buffer ... 105, 107, 108

outst

anding requests ... 103

overflow (FP) ... 283

P

PAddrO, field ... 232
PAddri, field ... 232

page

page table entry (PTE) array ... 215
PageMask register ... 216, 298, 299

address ... 298
offset ... 298
size
code ... 298
defined ... 298
virtua ... 298

parity protection ... 190

PCIk, signdl ... 78, 96, 335, 336

PE, bit ... 230
performance

Performance Counter interrupt ... 218
Performance Counter register ... 238

branch prediction ... 47
cache... 47
R10000 ... 44, 47

permanent register ... 340

PFN

bits ... 214
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fields, in EntryLo registers ... 214
phase-locked loop ... 174
physical memory addresses ... 298
physical page frame number ... 213
physical register, see also logical register ... 343
Pldx, primary cacheindex ... 84
pipeline... 35

definition of ... 338

fetch ... 22, 35

floating-point ... 23

floating-point multiplier ... 22

integer ALU ... 22

latency ... 338

Load/Store Unit ... 22

out of order execution ... 338

repeat rate ... 338

sequence ... 338
stage (definition) ... 338
stagel... 35, 36
stage?2 ... 35
stages4-6 ... 36
salls... 31
PLL ... 174
PLLDis, signa ... 59, 60
PM, field ... 230

power interface signals, see also individual signals ... 54

power-onreset ... 175
sequence ... 176

PrcEImReq, mode bit ... 139, 169, 180

PrcRegMax, mode bits ... 109, 129, 131, 137, 141, 180

precise exceptions ... 33

prediction, branch ... 342

prediction, secondary cache, way ... 80

prefetch instruction ... 43

primary data cache, see also cache, primary data... 25

primary instruction cache, see also cache, primary instruction ... 25
processor block read request protocol ... 129

processor block write request ... 110
protocol ... 133

processor coherency dataresponse ... 110
protocol ... 155

processor coherency state response protocol ... 154

processor double/single/partial-word read request protocol ... 131
processor double/single/partial-word write request protocol ... 135
processor eliminate request protocol ... 139

processor reguest ... 96, 102

flow control protocol ... 141
protocol ... 128

processor response ... 96, 103
protocols ... 153

Processor Revision Identifier (PRId) register ...

processor upgrade request ... 147
protocol ... 137
program order ... 31
dynamic execution ... 31
instruction completion ... 339
instruction decoding ... 339
instruction execution ... 339
instruction fetching ... 339
instruction graduation ... 339
instruction issue ... 339
protection
ECC... 190
memory ... 298
parity ... 190
SECDED ... 190
sparse encoding ... 190
protocol
arbitration, System interface ... 124
error handling ... 202
write back ... 61
writeinvalidate cache coherency ... 61

PTE (page table entry) ... 215
PTEBase, field ... 215, 233

Q

queue
address ... 22
instruction ... 35
integer ... 22

R

R, (region) field ... 219, 233
R, bit ... 232
R10000 processor
ANDES architecture ... 20
caches ... 20
execution pipelines ... 22
overview ... 20
pipeline stages ... 21
superscalar pipeline ... 21
R4000 superpipdline ... 19
Random entries ... 217
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Random register ... 212
RE, (reverse endian) hit ... 221
read port, FPU ... 275

read sequences ... 85
16-word ... 88
32-word ... 88
4-word ... 86
8-word ... 87
tag ... 89
register
BadVAddr ... 215, 218, 233, 310
boundary scan, JTAG ... 206
bypass, JTAG ... 205
CacheErr ... 188, 189, 191, 192, 263
Cause ... 121, 122, 218, 226, 228
Compare ... 122, 218
Config ... 230
Context ... 215, 233
Count ... 122, 218
CPO (description of) ... 209
dependency ... 32, 343
Diagnostic ... 235
ECC ... 86, 91, 262
EntryHi ... 219
EntryLoO ... 213
EntryLol ... 213
EPC ... 228
Error Exception Program Counter (ErrorEPC) ... 273
Exception Program Counter (EPC) ... 228
file
FPU ... 275
ports... 343
FrameMask ... 214, 234
Index ... 211
instruction, JTAG ... 205
LLAddr ... 231
logical, see also physical register ... 35, 343
PageMask ... 216, 298
Performance Counter ... 238
permanent ... 340
physical, see also logical register ... 35, 343
Processor Revision Identifier (PRId) ... 229
Random ... 212
renaming ... 32, 340
Status ... 188, 189
ERL bit ... 286
EXL bit ... 286
SX bit ... 296
TShit ... 300

USL field ... 286

UX bit ... 296
TagHi ... 86, 91, 267
TagLo ... 86, 91, 267
temporary ... 340
unnamed ... 341
WatchHi ... 232
WatchLo ... 232
Wired ... 212, 217

write before reading (necessity for) ... 176

XContext ... 233
renaming, register ... 340
repest rate ... 45
accessing secondary cache ... 47
definition of ... 338
FPU ... 274

replacement algorithm, cache ... 25
request cycle ... 96

request number ... 103
freeing with completion response ... 146

request, outstanding ... 103
Reserved Instruction exception ... 321

reset
cold ... 175, 178
power-on ... 175, 176
soft (warm) ... 175, 179

response bus signals ... 58

response cycle ... 96

revision number, R10000 processor ... 229
RM, field (FP) ... 284

RN, field (FP) ... 284

rounding modes, in FSR ... 284

RP, (reduced power) bit ... 221

RP, field (FP) ... 284

rules, arbitration for System interface ... 125
Rz, field (FP) ... 284

S

SB, (secondary cache block size) bit ... 230
SC(A,B)Addr, signals ... 55, 79, 80
SC(A,B)DWay, signals ... 55, 79, 87, 92
SC, bit ... 230

SCADCS, signdl ... 55

SCADCOE, signdl ... 55

SCADWT, signdl ... 55

SCBDCS, signd ... 55
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SCBDOE, signd ... 55

SCBDWT, signd ... 55

SCBIkSize, mode bits ... 67, 77, 108, 181
SCCIk frequency ... 134, 155

SCCIk, signdl ... 55, 78, 173
SCCIkDiv, mode bits ... 78, 172, 176, 181
SCClkTap, mode bits ... 173, 182
SCCorEn, mode hits ... 181, 194, 196
SCData, signd ... 55

SCDataChk, bus ... 193, 196
SCDataChk, signal ... 55

scheduling, dynamic ... 339

SCSize, mode hits ... 67, 77, 181
SCTag, signas ... 56, 83

SCTagChk, bus ... 196

SCTagChk, signd ... 56

SCTagL SBAddr, signal ... 55, 80
SCTCS, signal ... 56

SCTOE, signal ... 56

SCTWay, signd ... 56, 80, 82, 87
SCTWr, signd ... 56

SECDED ... 190

secondary cache interface signals, see also individual signals... 55

secondary cache, see also cache, secondary ... 67
SelDVCO, signd ... 59, 60
serial operations ... 41
seriadlizing instruction ... 41
signals
power interface, see also individual signals ... 54

secondary cache interface, see also individual signals... 55

System interface, see also individual signals ... 57
test interface, see also individual signals ... 59

size, page in memory ... 298
SK, hit ... 230

dave state ... 97
and flow control ... 109

soft (warm) reset ... 175, 179

Soft Reset
exception ... 307

Soft Reset exception ... 302
software interrupts ... 122

SP, bit ... 262

sparse encoding protection ... 190
specia interrupt vector ... 306

speculative branching ... 342
speculative execution ... 32, 39, 342
sguare-root unit, FPU ... 274
SR, bit ... 224, 307, 309
SS, (secondary cache size) field ... 230
sseg space ... 291
SSRAM ... 76, 81

address signas ... 55

clock signals... 55

datasignas... 55

tag signals... 56
stage, definition of ... 338
stalls, improving performance ... 31
state

master ... 97

save... 97
state bus signals ... 58
Status register ... 188

in FPU, seealso FSR ... 277
store operations, FPU registers ... 278
stores

and uncached buffer ... 72

nonblocking ... 341
strong ordering ... 33

exampleof ... 34
superpipeline, architecture ... 19
superpipeling, R4000 ... 19
superscalar

pipeline... 19

processor

definition of ... 19, 338

superscalar processor ... 31
Supervisor mode ... 286

address mapping ... 290

csseg space ... 291
operations ... 290

sseg space ... 291
suseg space ... 290

Xsseg space ... 291
Xsuseg space ... 291
suseg space ... 290
switch, context ... 300
SX, hit ... 222, 286, 296
SYNC
instruction ... 73, 164
prevented from graduating ... 108
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SysAD, bussignals... 57, 111, 116, 118, 198, 199, 329, 331, 332,
333, 334, 335, 336

SysAD[20:16]

interrupt register ... 121
SysAD[39:0]

during address cycle ... 119
SysAD[56:40]

during address cycle ... 119
SysAD[57]

secondary cache block way indication ... 119
SysAD[59:58]

uncached attribute ... 118
SysAD[63:0]

address cycle encoding ... 118

data cycle encoding ... 120
SysAD[63:60]

addresscycle ... 118

interrupt ... 121
SysADChk, bus ... 199
SysADChk, signal ... 58, 180
SysClk cycle ... 109, 143, 164
SysClk, signdl ... 57, 96, 120, 122, 124, 125, 129, 137, 141, 170,

171, 335, 336

SysClkDiv, mode bits ... 172, 176, 181
SysClkRet, signd ... 57, 172, 174
SysCmd, bus ... 57, 111, 187, 198, 199
SysCmd[0] ... 106

ECC ... 116

processor datacycles... 116
SysCmd[10:8] ... 111

dataresponse ... 115

external intervention and invalidate requests ... 114
SysCmd[11] ... 111

map ... 117

protocal ... 123
SysCmd[2:0]

processor write requests ... 114
SysCmd[2:1]

block dataresponse ... 116

processor requests ... 113
SysCmd[4:3]

datacycles... 116

external special requests ... 115

processor read requests ... 112

processor upgrade requests ... 113
SysCmd[5], bit... 106

datacycles... 115

SysCmd[7:5]
externd requests ... 114
processor requests ... 112

SysCmdPar, signal ... 57, 198

SysCorErr, signal ... 58, 185, 194, 196, 199
SysCyc, signd ... 58, 170

SysGhlPerf, signd ... 58, 73, 164

SysGnt, signdl ... 57, 124, 125, 126, 128, 130, 132, 134, 136,
138, 140, 143, 148, 149, 150, 151, 152, 155, 164, 176,
178, 179, 306, 307, 330, 331

SysNMI, signal ... 58, 122, 309

SysRdRdy, signal ... 57, 125, 129, 131, 137, 141
and flow control ... 109

SysRel, signdl ... 57, 124, 126, 128, 130, 132, 134, 136, 138, 140,
143, 148, 149, 150, 151, 152, 155, 164

SysReq, signdl ... 57, 124, 125, 128, 130, 132, 134, 136, 138,
140, 155, 164, 178

SysReset, signadl ... 58, 176, 178, 179, 204, 306, 307, 308, 330,
331

SysResp, bus ... 58, 111, 121, 201

SysResp[4:0]
external completion response ... 146

SysResp[4:2]

driving completion indication ... 121
SysRespPar, signal ... 58, 201
SysRespVal, signdl ... 58, 146, 176, 178, 179, 201
SysState, bus ... 58, 111, 120, 187, 201

SysState[0]

processor coherency dataresponse ... 162
SysState]2:0]

encoding ... 120

SysStatePar, signal ... 58, 201
SysStateVal, signal ... 58, 120
System Call exception ... 319
system configuration
multiprocessor ... 51
uniprocessor ... 50

System interface

arbitration
in acluster bus system ... 98, 127
in auniprocessor system ... 126
protocol ... 124
rules... 125

block write request protocol ... 133

buffers... 105

bus encoding
description of buses... 111
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SysAD ... 118
SysCmd ... 111
SysResp ... 121
SysState ... 120

cached request buffer ... 105
clock domain ... 172
cluster bus ... 98
cluster request buffer ... 105
coherency ... 157
coherency conflicts, action taken ... 159
connecting to an external agent ... 97
connections to various system configurations ... 99
directory-based coherency protocol ... 169
error handling

on buses ... 198

on SysAD bus... 199

on SysCmd bus ... 198

on SysResp bus ... 201

on SysState bus ... 201

schemes ... 197
error protection

for buses ... 197

schemes ... 197
external agent ... 95
external allocate request number request protocol ... 150
external block data response protocol ... 143
external coherency requests, action taken ... 158
external completion response protocol ... 146
external dataresponse flow control ... 109, 110

external double/single/partial-word data response protocol ...

145

external duplicate tags, support for ... 168
external interrupt request protocol ... 152
external intervention exclusive request ... 157
external intervention request protocol ... 149
external intervention shared request ... 157
external invalidate request ... 157

protocol ... 151
external request ... 96, 103

flow control ... 109

protocol ... 148
external response ... 96, 103
protocol ... 143

flow control ... 109

frequencies ... 96

grant parking ... 124

hardware emulation, support for ... 170
1/0 ... 168

incoming buffer ... 106

internal coherency conflicts ... 159

interrupts ... 121
master state ... 97
multiprocessor connections

with cluster bus ... 101

with dedicated external agents... 100
outgoing buffer ... 107
outstanding processor requests ... 103
outstanding requests on the System interface ... 103
port ... 20
processor block read request protocol ... 129
processor coherency data response protocol ... 155
processor coherency state response protocol ... 154

processor double/single/partial-word read request protocol ...
131

processor double/single/partial-word write request protocol ...
135

processor eliminate request protocol ... 139
processor request ... 96, 102
flow control protocoal ... 141
protocol ... 128
processor response ... 96, 103
protocols ... 153
processor upgrade request protocol ... 137
register-to-register operation ... 96
request ... 102
cycle... 96
number field ... 103
protocol ... 128
response ... 102
cycle... 96
protocol ... 128
signas... 57, 97
dave state ... 97
split transaction ... 103
support for 1/0 ... 168
uncached attribute ... 169
uncached buffer ... 108
uniprocessor connections ... 99

System interface ... 27, 95
SysUnckErr, signdl ... 58, 186, 187, 191, 192, 196

Sysvdl, signd ... 58, 129, 131, 133, 135, 137, 139, 143, 145,
149, 150, 151, 152, 155, 198, 329, 333, 334, 335, 336

SysWrRdy, signd ... 57, 134, 135, 139, 141, 155
and flow control ... 109

T

table
busy-hit ... 340
mapping ... 343
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tag bus, secondary cache, SCTag ... 83
tag read sequence ... 89
tag write sequence ... 94
TagHi register ... 86, 91, 267
TagLoregister ... 86, 91, 267
tags, external, duplicate ... 168
TAP controller ... 204, 205
TCA, signd ... 59, 60
TCB, signd ... 59, 60
temporary register ... 340
test access port (TAP) ... 204
test interface signals, see also individual signals... 59
test mode, cache ... 330, 331
test signals, miscellaneous ... 59
Timer interrupt ... 122
disabling ... 218
TLB ... 299
32-bit-mode entry format ... 299
64-bit-mode entry format ... 299
address
translation, avoiding multiple matches ... 300
ASID field ... 300
avoiding conflict ... 300
Cache Algorithm fields ... 299
entry formats ... 299
exceptions ... 311
Globa (G) hit ... 300
ITLB ... 300
misses ... 215
multiple matches, avoiding ... 300
number of entries ... 299
page size code ... 298
used with Context register ... 215
TLB (Trandlation Lookaside Buffer) ... 23
JTLB ... 300
TLB Invalid exception ... 311, 313
TLB Modified exception ... 311, 314
TLB Probe (TLBP) instruction ... 211, 219
TLB Read (TLBR) instruction ... 211
TLB Read Indexed (TLBR) instruction ... 219
TLB Réfill ... 303
TLB Refill exception ... 311, 312
TLB Write Indexed (TLBWI) instruction ... 211, 219
TLB Write Random instruction ... 212, 219
Translation Look-Aside Buffer, seealso TLB ... 299

tranglation, virtual address ... 298, 300

Trap exception ... 318

trap physical address, and Watch registers ... 232
TriState, signal ... 206

TS, (TLB shutdown) bit ... 223, 224

TS, bit, in Status register ... 300

two-level cache structure ... 61

U

UC, (uncached attribute) bit ... 213
uncached
accelerated
blocks, completely gathered ... 72
blocks, incompletely gathered ... 72
stores... 72
attribute, support for ... 169
buffer ... 105, 108
cache agorithm ... 70, 71
uncached accelerated ... 214
uncached accelerated, cache algorithm ... 70, 72
uncached attribute ... 214
uncorrectable error ... 186
detection, suppressed ... 189
flag ... 106, 108
underflow (FP) ... 283
unimplemented operation (FP) ... 283
uniprocessor system ... 50, 99
arbitration rules ... 126
unnaming, register ... 341
useg space ... 288, 289
User mode ... 286
address mapping ... 288
operations ... 288
useg space ... 289
Xuseg space ... 289
UX, bit ... 222, 286, 296

V
V, (vaid) bit ... 213
Vcc, signd ... 54

VccPg, signal ... 54

VcePd, signdl ... 54

VeeQSC, signd ... 54

VceQSys, signdl ... 54

vector locations, TLB refill ... 304
vector, special interrupt ... 306
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virtual address
space ... 287
tranglation ... 298

virtual aliasing ... 84

Virtual Coherency exception ... 315
virtual memory addresses ... 298
VPN2, field ... 219

VrefByp, signd ... 54

VrefSC, signdl ... 54

VrefSys, signd ... 54

Vss, signdl ... 54

VssPg, signdl ... 54

VssPd, signdl ... 54

w

W, hit ... 232

Watch exception ... 324

WatchHi register ... 232

WatchL o register ... 232

way prediction table, secondary cache ... 81
Wired entries ... 217

Wired register ... 212, 217

write back protocol ... 61
primary data cache ... 64

write sequences ... 90
16-word ... 93
32-word ... 93
4-word ... 91
8-word ... 92
tag... 94

X

XContext register ... 233

xkphys
decoding virtual address bits VA(61:59) ... 300
space ... 294

xkseg space ... 296

xksseg space ... 294

xkuseg space ... 294

Xsseg space ... 291

Xsuseg space ... 291

XTLB Refill ... 303

XTLB refill handler, used with XContext register ... 233
Xuseg space ... 288, 289

XX, (MIPS 1V User mode) bit ... 220, 222, 286, 326
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