NEC

User’'s Manual

Vr4300™ Vr4305™ VR4310™

64-Bit Microprocessor

1/PD30200
1PD30210

Document No. U10504EJ7VOUMJ1 (7th edition)
Date Published August 2000 N CP(K)

© NEC Corporation 1996, 1998

© MIPS Technologies, Inc. 1994
Printed in Japan

[MEMO]

2 User's Manual U10504EJ7VOUMO0

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

VR Series, VR4300 Series, VR3000, VR4000, VR4100, VR4200, VR4300, VR4305, VR4310, and VR4400 are
trademarks of NEC Corporation.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries.
MC68000 is a trademark of Motorola Inc.

IBM370 is a trademark of International Business Machines Corporation.

iAPX is a trademark of Intel Corporation.

DEC VAX is a trademark of Digital Equipment Corporation.

MIPS is a registered trademark of MIPS Technologies, Inc. in the U.S.A.

User's Manual U10504EJ7VOUMO0

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

The information in this document is current as of October, 1999. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior

written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative

purposes in semiconductor product operation and application examples. The incorporation of these

circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

NEC semiconductor products are classified into the following three quality grades:

"Standard”, "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products” means any semiconductor product developed or manufactured by or for

NEC (as defined above).
M8E 00.4

4 User’s Manual U10504EJ7VOUMO00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

+ Device availability

Ordering information

Product release schedule

Availability of related technical literature

- Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 91-504-2787

Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

User’s Manual U10504EJ7VOUMO0

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore

Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil

Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

Major Revisionsin This Edition

Page Description
p.33 1.1 Characteristics Correction of description
p.35 1.4.1 Internal Block Configuration Correction of description
p.166 6.3.5 Status Register (12) Correction of description
p.198 6.4.17 Watch Exception Correction and addition of description
p.244 8.2.7 Unimplemented Operation Exception (E) Addition of description
p.254 9.3.1 Power Modes Correction of description
pp.259, 260 | 10.2 Basic System Clocks Correction of description
p.264 10.4 Low Power Mode Operation Correction of description
p.360 15.1 Features Correction of description
p.360 15.1.2 Low Power Mode Correction of description

17.5 FPU Instructions Addition of description to the following instructions

p.568 CEIL.L.fmt
p.570 CEIL.W.fmt
p.574 CVT.D.fmt
p.576 CVT.L.fmt
p.578 CVT.S.fmt
p.580 CVT.W.fmt
p.587 FLOOR.L.fmt
p.589 FLOOR.W.fmt
p.600 ROUND.L.fmt
p.602 ROUND.W.fmt
p.610 TRUNC.L.fmt
p.612 TRUNC.W.fmt
p.628 Table A-1 Differ ences Between the V4300, Vr4305, and Vz4310 Correction of description
p.630 B.1.3 Status Register Correction of description
p.632 Table B-1 Differencesin Software Correction of description
p.634 B.2.2 System Interface Correction of description
p.635 Table B-2 Differencesin System Design Correction of description
p.639 Table B-3 Other Differences Correction of description
p.644 C.2.2Clock Correction of description
pp.647, 648 | Appendix D Restrictions of V{4300 Addition

The mark s shows major revised points.

User’'s Manual U10504EJ7VOUMO0

Readers

Purpose

Organization

How to read this manual

PREFACE

This manual targets users who intends to understand the functions of
theV r4300, V 4305 (uPD30200, V4310 (uPD30210) and to design
application systems using this microprocessor.

This manual introduces the architecture functions of the V g4300,
VR4305, and V4310 to users, following the organization described
below.

This manual consists of the following contents:
* Introduction
e Pipeline operation
* Memory management system and cache
» Exception processing
* Foating-point operation
* Hardware
* Instruction set details

It isassumed that the readers of this manual has ageneral knowledge
of electric engineering, logic circuits, and microcomputers.

Unless otherwise specified, Vr4300 is described as arepresentative
product in this manual. When using this manual asthat for V g4305 or
VRr4310, read as follows.

VR4300 — V4305
VRA300 — V4310

The Vr4400™ in this manual represents the Vg4000™.
The Vr4000 series in this manual represents the Vg4100™,
VR4200™ V4300, V4305, Vr4310, and V g4400.

To learn about detailed function of a specific instruction,

— Referto Chapter 3 CPU Instruction Set Summary, Chapter 7
Floating-Point Operations, and Chapter 17 FPU I nstruction
Set Details.

User’s Manual U10504EJ7VOUMO0 7

Conventions

Related documents

To learn about the overall functions of the V4300,
— Read thismanual in sequential order.

To learn about electrical specifications of the V4300,
— Refer to the data sheet which is separately available.

Data significance:

Activelow
representation:
*.

Caution:
Remark:
Numerical
representation:

Higher digitson theleft and lower digitson
the right
xxx (overscore over pin or signal name)

Footnote for item marked with * in the text
Information requiring particular attention
Supplementary information

binary or decimal ... xxxx

hexadecimal Oxxxxx

Prefixes indicating power of 2 (address space, memory capacity):

K (kilo) 210=1024

M (mega) 220 = 10242
G (giga) 2°0=1024°
T (tera) 2% =1024*
P(peta) 2%0=1024°
E(exa) 250=10245

See also the following documents.
The related documents indicated in this publication may include
preliminary versions. However, preliminary versions are not marked

as such.
Document Name Document Number
VRr4300, Vg4305, VRr4310 User’s Manual This manual
uPD30200, 30210 Data Sheet U10116E
VR Series Application Note - Programming Guide U10710E
V r4000 Series Application Note - Simulation Guide U11788J (Japanese only)

User’s Manual U10504EJ7VOUMO0O

Chapter 1

11
12
13

14

141
14.2
143
144
145
146
147
15

151
152

16

Chapter 2

21

2.2

221
222
2.2.3
224
225

Chapter 3

31

3.2

321
322

CONTENTS

GENENAl.....ooe s 31
Char aCtEriSHICS. ..ot 32
Ordering INformationccoceeeeneienene e 33
64-Bit ArChitECIUN ... 33
VR4A300 PrOCESSON ..ot 33
Internal Block Configurationcccccveevevienieseseneseeseesee e 35
CPU REGISIErS....oveiivieeirieirieisees et sensssenes 37
CPU INStruction Set OVENVIEWccocevveerererieneneeseeseeneeneneenens 39
Data Formats and Addressingccceeeevevesenesessseseeseeseeseeens 41
System Control Coprocessor (CPO)ooeveierierere e 44
Floating-Point Unit (FPU), CPL........cccccoiiniinnineeneereenieieee 47
Internal Cacheccoveiiiiice e 47
Memory Management System (MMU)cccoevvinniinnicnnennne 48
Trangation Lookaside Buffer (TLB)c.ccoevereveeneeierereeeeee 48
OPErating MOES.......c.couiiriiirieee s 49
INSErUCtion PiPeEliNe. ... 49

Pin FUNCLIONS.........oooeceee e, 51
Pin Configuration (TOP VIEW).....cccceevirerinenie e 52
Pin FUNCLIONS ... e 54
System Interface SigNalS......ccoveererivere e 54
Clock/Control Interface SIgnals........cccceveeeericeese e 55
Interrupt Interface SIgNalS.........covveeiennenneseeeee e 57
Joint Test Action Group (JTAG) Interface Signals..........cceeeveee. 58
Initialization Interface SIgNalsccccveve e 58

CPU Instruction Set Summary.........ccccccoeevvervennnees 59
CPU INStruction FOrmMats.......cccceovverereneneneneneneeseeeseeeeeens 60
INSEFUCETION ClaSSEScuveuieeeeeeeeeeeeeee e 61
Load/StOre INSLFUCIONScooeririireeeeeiere e 61
Computational INSLrUCHIONS.........covveirieireireereeee s 68

User’'s Manual U10504EJ7VOUMO0 9

10

323
3.24
325
3.26

Chapter 4

4.1
411
4.2

43
4.4
45

4.6

46.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9

47
471

4.7.2
4.7.3
474
4.7.5
4.7.6
4.7.7
4.7.8
4.7.9

4.8
4.9

Jump/Branch INStrUCtiONS........ccoveieeieeeeeeeeeeecre e 77

SpeCial INSIIUCLIONSc.eiveiirieirieeeieseeie et 81
COoprocessor INSIUCHIONScovvvereveereeneseereeeeeee e 83
System Control Coprocessor (CPO) Instructions............ccocceeeene. 86
PIPEINE......o e 89
LCT= T o= | 90
Pipeling OPerations..........ccoeeererinene e 92
Branch DEl@y.......ccccoeeririenece e 94
(0= To [1= - 95
Pipeline Operation........ccccccvevieieniene e e 95
Interlock and Exception Handling........cccccceveveeecivnencnnnnenn 103
Pipeline Interlocks and EXCeptions........ccccoeevverivennieninenenn 106
Pipeling INterlockS........coviiiiririeee e 106
Instruction TLB MiSS (ITM) ..ccovciviienere e 107
Instruction Cache Busy (ICB)ccocoveririiiinieieeeeeereeesieiee 108
Multicycle Instruction Interlock (MCI)......covevrerninncnieee 109
[Ior='o 01 = g FoTe Q1 0] 110
Data Cache MiSS (DCM)cuviviiririieinieesieeseesieses e 111
Data Cache BUSy (DCB)ccoerrinirinieerieesees e 111
CACHE Operation (COP) ...ccovveeeerieieeserrieseeseeesseesesessesessessenees 112
Coprocessor 0 Bypass Interlock (CPOI)cccocveeeriercenenieneniene. 113
Pipeling EXCEPLIONS........cvvieiririie e 114
Instruction-1ndependent Exceptions
(Reset, NMI, and INterrupt)covereeerieeneereeseeseeseesee e 114
Instruction-Dependent EXCEPLioNS........cccevevevereeeeesieeeseenees 115
Interactions between Interlocks and Exceptions...........ccccoeuee. 115
Exception and Interlock Priorities.........ccoeevernennenncncee 116
WB-Stage Interlock and Exception Priorities.........ccocveevveviennene 117
DC-Stage Interlock and Exception Priorities..........ccceevenenene 117
EX-Stage Interlock and Exception Priorities............cocoevevvenenes 118
RF-Stage Interlock and Exception Priorities........ccccceeveeeeeiennene 118
BYPASSING ...veveeeieieeeieriese ettt e n 119
Code Compatibilityccccceoeveierireseseere e 119
Wt BUFFEN . 120

User’'s Manual U10504EJ7VOUMO0

Chapter 5

51

52

521
522
523
524

5.3
531
54
541

54.2
54.3

544
545
54.6
54.7
54.8
549
5.4.10
5411

Chapter 6

6.1
6.2

6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8

Memory Management System.........ccccovnreneeneene. 121
Trandation Lookaside Buffer (TLB).....ccccceeereneninccnenenne 122
Memory Management System Architecture..........ccccocevenene 122
Operating MOAESccovieeiireie e 127
Virtual Addressingin User Mode.........cccooevenerenienienienenenenne 127
Virtual Addressing in Supervisor Mode..........coeeveenecniecnene, 129
Virtual Addressingin Kernel Mode........ccccoevveeeencenceceneiennnns 133
System Control COPrOCESSOLccvveuerreerrereriererieresresesreseseenens 142
Format of @TLB ENLIYccoieiiiiiecee e 143
CPO REJISLES....cueceeeieeece ettt e sre e 146
INdeX REGISLEr (0) ..vvveeeeeeeeeeeeeeee st 146
RanNdom REGISLEr (1) ...cveerererieriesiesiese e seeee e sre e snens 147
EntryHi (10), EntryLoO0 (2), EntryLol (3), and
PageMask (5) REJISIENS.......ccueireririeeeririeiee s 148
Wired REQISLEN (B) ...cvevevereeeerieiirieierieeri et 150
Processor Revision Identifier (PRId) Register (15).......ccccceeuene 151
Config REGISIEN (16) ...ccueeuereerieriiniinie e 151
Load Linked Address (LLAddr) Register (17).....cccverereervreennnn 154
Cache Tag Registers[TagL o (28) and TagHi (29)]cccceevevenee. 154
Virtual-to-Physical Address Translation Process...........cccoceue.. 155
TLB MISSES ..ttt st e 158
TLB INSIIUCLIONS.....c.vvciiireieeeseseere e 158

EXCeption Processing.........coceeeineieeiisessesssisnonn, 159
Exception Processing Operationccocceeeeeneneneneniesenenenns 160
Precision of EXCEPLioNS.......ccovvviririneinieeseeseese e 161
Exception Processing REQISLENS......ccooeereeneieneienereseeeeee 161
Context REGISLEN (4) .ovveeeeeeeee et 163
BadVAddr REQISEN (8)....c.cvveeereeeriieriiireiee et 164
CouNnt REGISLEN (9) ..vveveeeeeeeere e sese e e e e e e e 164
Compare REGISLEr (11) .cceeverereiriinierierieie e 165
StatuS REGISIEN (12) ..voeeiiieiiieee e 165
Calse REGISEr (13) ..cvvveeereerereesierie e e eseeseeeeeee e e e sre e 171
Exception Program Counter (EPC) Register (14)cccocveenene 174
WatchLo (18) and WatchHi (19) Registers........cccoeevevrieennne, 175

User's Manual U10504EJ7VOUMO00 11

12

6.3.9

6.3.10
6.3.11
6.3.12

6.4

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18

6.5

Chapter 7

7.1

7.2

721
722
7.2.3
724
7.2.5

7.3

XContext REGIStEr (20)......cceierierieeiesieeieeeeree e seesee e e 176

Parity Error (PErT) RegIStEr (26)ccevvveerieerieerieenieresieseeeeee 178
Cache Error (CacheErr) Register (27) ...ccovvevvvveveereeceeereseseeen, 178
Error Exception Program Counter (Error EPC)
REGISEN (30) ...eveveeerereeieieireriei ettt 179
EXCEPtion DEtailS......coveiviiiriresiee e 180
EXCEPLION TYPES....cviieiirieiirieirieesieee ettt 180
EXception Vector LOCatiONS........cccvevrevereriereereeeeesesesesennens 180
Priority of EXCEPLIONS........ccccoviririniine e 182
Cold Resat EXCEPLION ..ot 183
Soft ReSet EXCEPLIONocvvcievevece e 184
Non-Maskable Interrupt (NMI) EXception.........cccoceeeeerienennene 185
Address Error EXCEPLIONcoieereeeriierieineieieseeeseeesee s 186
TLB EXCEPLIONS.....cceiiciirieiiestese e seeeeie e ese e sse e s 187
BUS Error EXCEPLIONcc.eierieriereieesiesie e 190
System Call EXCEPLIONccooveerieirieeneeseneseres e 191
Breakpoint EXCEPLIONccocvvereveces e 192
Coprocessor Unusable EXCEPLioN..........coevereeeeeriereeerene e 193
Reserved Instruction EXCEPLiON.........ccoeereerererenesieneseseeeeee 194
LI 0 (el o1 o 195
Integer Overflow EXCEPLionccocoverenevenieniereeeeeeeceieee 196
Floating-Point EXCEPLION.........coovireirieireeseese e 197
AVAYE (el g (el o1 g R 198
INterrupt EXCEPLION.......ooveieireeerere e 199
Exception Handling and Servicing Flowcharts.........c.ccce..... 200
Floating-Point Operations............cccoeveineineinnnes 207
(@Y1 YT T 208
FPU Programming Model ... 208
Floating-Point General Purpose Register (FGR)........ccccccevenene 208
Floating-Point RegiSters (FPR) ..o 210
Floating-Point Control Registers (FCRS)ccccoeeveveeieeeniesiennens 211
Control/Status Register (FCR3L)cceeevrerieenererieieienesirieeees 211
Implementation/Revision Register (FCRO)........cccoeevveeriecnnnes 216
Floating-Point FOrmats.........ccoceverene e 217

User’'s Manual U10504EJ7VOUMO0

74

7.5

751
752
7.5.3
754
755
7.5.6

7.6

Chapter 8

81

8.2

821
822
823
8.24
8.25
8.2.6
8.2.7

8.3
8.4

Chapter 9

9.1

9.2

921
922
9.2.3
9.3

931
932
9.3.3
9.34

Fixed-Point FOrmatccocooeveeiiieieccie et 220

FPU Set OVEIN VIBW.....cuciieeiieirieiseee et 221
Floating-Point Load/Store/Transfer Instructions...........cc.cceeeee. 221
ConVert INSIUCHIONScoeivireiinierie e 224
Computational INSIIUCLIONSc.eoerveiirenereneeerese e 226
Compare INSTUCLIONS........covveieree e 227
FPU Branch INStrUCLIONSccooirinenie e 229
FPU Instruction EXecution TiMe.........ccccuvererenerenieneneeenenens 230
FPU Pipeline Synchronization...........c.coeeeieneieninienenenenns 233

Floating-Point EXceptions...........ccccocovvineineennnene. 235
TYPES Of EXCEPLIONS......ocovieieiieie e 236
EXCEPLION ProCESSING.....cccveeeiiirriesiesesieseeie e e ese e e e 237
FLAOS -ttt 238
Inexact EXCEPLION (1) .oveveeeeeeeece e 240
Invalid Operation EXCEption (V)ccoceverereeneneneeeeereee s 240
Divide-by-Zero EXCEPLioN (Z).......ccoveereerieenieererisesesieee e 241
Overflow EXCeption (O)cccvvevereiesrrerereeeeieseeeees e sneees 242
Underflow EXCeption (U)cccevererereiiiniee e 242
Unimplemented Operation EXception (E)cccoerverreninennen 243
Saving and Returning State.........coooverereneinieneneneeeneeeeen 244
Handling of IEEE754 EXCEPLIONS........ccoeieierieeinineneseneane 245

Initialization Interface.........ccooeveneincnrinennene. 247
Functional OVErVIEWcccoeiiiinene e 248
Reset Signal DESCriptionccoevevereneerieieeeeeeeereeeeese s 249
POWEr-ON RESEL ..o 249
COld RESEL ...t 250
SOFt RESEL. ...ttt 251
VR4300 Processor MOGES..........couveerrermienrieneeseseeeseesennens 254
POWEr MOUES......cecuiiiirie e 254
Privilege MOES.........oceeiiieeceee et 255
Floating-Point REGISIENS........ccoirririeineereesees e 255
Reverse ENGianneSS.........ccviriinineineese e 256

User's Manual U10504EJ7VOUMO00 13

14

9.35 INStruction Trace SUPPOITccvreririrere e 256
9.3.6 Bootstrap Exception Vector (BEV).......cccveeerenerennenreseeee 256
9.3.7 Interrupt ENable (IE).......coovveireirerereree s 256
Chapter 10 Clock Interface........ccoovevevnrceiseieceeseesseseene 257
101 Signal Terminologyccoceveierinererieee e 258
10.2 BasiC System ClOCKS......cociireriresiese e 259
10.3 System Timing Parameters........cccooeveiereneienieneeeeesese e 263
10.3.1 Synchronization with SCIOCK.........ccccevereieeieeeeeeece e, 263
10.3.2 Synchronization with MasterClockccoceeeeereerierienienencnien, 263
10.3.3 Phase-Locked LOOP (PLL) ...ooeirieiieenierene e 263
104 Low Power Mode Operationccoccoereereereeneeenienesenesenens 264
105 Connecting Clocksto a Phase-L ocked Systemcccccee..e. 265
10.6 Connecting Clocksto a System without Phase L ocking....... 266
10.6.1 Connecting to aGate-Array DeVICe.....cccceveveceeceeieeeeereee e 266
10.6.2 Connecting to a CMOS Discrete Device.........cccceeeeeneneneniennn. 269
Chapter 11 Cache MemOory ... 273
111 Memory OrganiZation.........ccvvvereresereesereeseeeeesesesese e 274
11.2 Cache Organization..........ccoceveeverevesenere e 275
11.2.1 Organization of the Instruction Cache (I-Cache)cceuneee. 276
11.2.2 Organization of the Data Cache (D-Cache€)..........ccceovvrvriennnnnn 277
11.2.3 AccessiNg the CaChesS.......cccceieeiiciere e 278
11.3 Cache Operations.......ccocecvveiisene e 279
11.31 CacheWrIte POIICYcccereeirieerieeceeee e 280
11.3.2 DataCacheLine Replacementccccovevriennenniensienenenieeniene 280
11.3.3 Instruction Cache Line Replacement...........cccccevrieeieniencncnienne. 282
114 CaACNE SEALES ... e 283
115 Cache State Transition Diagrams.......ccccceveeeeevereeereeereseseenens 283
1151 DataCache State TranSitioncccceoceverereneecenieeieeeeerese e 284
1152 Ingtruction Cache State TranSitionccocoeevvernenenensenieenene 285
11.6 Manipulation of the Caches by an External Agent 285

User’'s Manual U10504EJ7VOUMO0

Chapter 12 System Interface........ccoovnrnnenncneeneessceneeens 287

121

12.2

1221
1222
12.2.3
12.2.4
12.25

12.3

1231
12.3.2
12.33
12.34

124

124.1
124.2
1243
12.4.4
1245
12.4.6

125

1251
1252
1253
1254
1255

12.6

126.1
12.6.2
12.6.3
12.6.4
12.6.5
12.6.6
12.6.7
12.6.8

12.7

I 80011 g Lol oo | SRR 288
System Interface DeSCription.........ocooeeeeereenienienenereneeeeen 289
Physical AdAreSSES........covvveirirece e sere e 289
INEEIfACE BUSES ..ot 291
Address and Data CyCIES.........ooeirririiiriireeeseeeseesee s 292
ISSUE CYCIES......o ittt 293
Handshake SIgnals..........ccoeieriniiinene e 295
System Interface ProtocolS.......cccevevevevevecceceeceeeee e, 296
Master and SIaVe SEALES.......ccevrererere e 296
Moving from Master to Slave State........ccoeeveveeveeceeeveecesese s 297
External Arbitration....... ..o 297
Uncompelled Change to Slave State.........ccoceveveeeeeeeceeeecneeene 298
Processor and External REQUESES.........coeeeveveeercnienenenee 298
Processor REQUESES.........oiveeierieeieseeie et see e seesree e nneens 300
Processor Read REQUESLccoiiiirierie e 301
Processor Write REQUESE............ecvrueeriirireieeiees e 301
EXtErnal REQUESES......ccveireeerere ettt e ene s 302
External Write REQUESL..........coeiiriiriee e 303
REB0 RESPONSE......ccviivirieieree e 303
Handling REQUESES.........cocoiiriieree e 304
FEECH IMISS . 304
LOBO MISS...ccuiieeiieiiiieisiecsieesiees st 304
0] £ 1Y TS 304
Loads or Storesto Uncached Area........cccoeeveverenerennenieenenns 305
CACHE INSITUCLIONS......coueiiiieiisienie e 305
Processor Request and External Request Protocals.............. 306
Processor Request ProtOCOIS.........oevvireniceneeneeseesieseee 306
Processor Read Request ProtoColccoveeveeveeeeieeieeenesennens 306
Processor Write Request Protocolcoeoeveneieriniencncicne 309
Flow Control of Processor REQUESE..........coevrereriererieniricsieeee 311
External Request ProtOCOlS.........cccvveievereeieieeeceeese e 312
External Arbitration Protocolcooovireieneneencenenee 313
External Write Request Protocolcccvevernennenncneeee 316
External Read Response ProtoColccceeevevveveeieneeenennnnens 317
Successive Processing of REQUESEccooeererenenneneereeeee 321

User's Manual U10504EJ7VOUMO00 15

16

12.7.1 Successive Processor Write REQUESESc..ooveeeeererenerenceiee, 321
12.7.2 Processor Write Request Followed by Processor
R0 REQUESL ...t 322
12.7.3 Processor Read Request Followed by Processor
WILE REQUESE ...ttt 323
12.7.4 Processor Write Request Followed by External
WIHEE REQUESE ..ottt 324
12.8 Discarding and Re-Executing Commands..........cccceevviviennnne 325
12.8.1 Re-Execution of Processor Commands..........cceceeervererereneennn 325
12.8.2 Discarding and Re-Executing Write Command.........cc.cccceeunee. 325
12.8.3 Discarding and Re-Executing Read Command..............ccccueeuee 327
12.8.4 Executing and Discarding Command..........c.ccceeeererenererenennnns 328
12.9 Data FIoW Control ... 330
12.9.1 Independent Transfer on SysAD(31:0) BUS.......ccccceevrevvcvrrrnnnnn. 331
12.9.2 System ENdianness.........ccceccveeeeciieierie e 331
1210 System Interface Cycle TIMe....ooeveveeceeieceeeee e 332
12.10.1 Release LatenCy TiMe . ..o 332
12.11 System Interface Commands and Data I dentifiers............... 333
12.11.1 Command and Data ldentifier Syntaxcccceeveeeeververiveereenennn, 333
12.11.2 System Interface Command SyntaXcccecceveeveeieeveseesennens 334
12.11.3 REA0 REQUESISccviieieiciesice sttt 334
12.11.4 WIit€ REQUESES......ccuevieieereiierieseeee e sne s 336
12.11.5 System Interface Dataldentifier Syntax.........c.cceecvvceeveiceesennns 337
12.11.6 Dataldentifier Bit Definitions...........ccocevereneininieeeecreee e 337
12.12 System Interface AddreSses.......oovevveeeveccee s 339
12.12.1 Addressing CONVENLIONS.........ccvrerereereereeneeseeeeesesesresseseseenees 339
12.12.2 Sequential and Subblock Ordering..........ccceeeeeeerenienincncnee, 339
Chapter 13 JTAG Interface........cccoooveveeveeceeeececceeseeeeeeene 341
131 Principles of Boundary SCanning.........ccocoveeererenenenenenenenns 342
13.2 SIgNal SUMMEBNY ..o e 343
133 JTAG Controller and REgISLErS......ccoveereireeriineereenieens 344
1331 INStruction REGISLEYccveiierieiiiieie e 344
13.3.2 BYPaSS REGISIEN ..ot e 345
13.3.3 Boundary-Scan REJISENcccvierevereeeeeseeeeee e 346
13.3.4 Test ACCESS POrt (TAP) ..o 347

User’'s Manual U10504EJ7VOUMO0

13.35 TAPCONrOHEr ..o 348
13.3.6 Controller RESEL........coiveieeirieeeeeee e 348
13.3.7 CoNtroller SEALES.......ccveerererrereerere et 348
134 Notes on Implementationcoeceereeneieneieneseseeseeeeee 350
Chapter 14 INtENTUPLS...c.ooecseeeeeeee s 351
141 Non-Maskable INter rupt ... 352
14.2 External Normal INterruptS ... ieneieeeereeeeesene e 353
14.3 SOftWar € INTEI TUPLS ..o 354
144 TIMEr INEEITUPL .o 354
145 Generation of Interrupt Request Signal.........cccccecerenieneniennn. 354
145.1 Detection of Hardware INterrupts.......ccceeeveveeveeveeieeceeienese e 356
145.2 Masking of Interrupt Request Signals........ccoeeeeeerieriencnicncnienn. 357
Chapter 15 Power Managementccccoceveeeveeeieessseseenennn. 359
151 FEALUINES ...t 360
1511 Normal POWEr MOEccoveireineeresese e 360
1512 LOW POWEr MOUE.........coiirrrereirereereeese e 360
15.1.3 Power Off MOGE.....c.oeuiirrieieiirerieieees et 361
Chapter 16 CPU Instruction Set Details..........ccccccvveerrecrnnene, 363
16.1 Instruction Notation Conventions...........cccoeevereereeneeneenes 364
16.2 Load and Store INStrUCtionS........ccceveerieeneeneese e 367
16.3 Jump and Branch Instructions..........c.cceveeveeneneicnencneens 369
16.4 COprocessor INSEFUCLIONS........coeireirieeriereee e 369
16.5 System Control Coprocessor (CP0) Instructions................... 370
16.6 CPU INSLHUCHIONS ...ccviieiiieieriee et 370
16.7 CPU Instruction Opcode Bit ENcodingcccceoevevererenerenene 544
Chapter 17 FPU Instruction Set Details............cccccovevevverrcrnnn. 547
171 INSErUCLION FOrMAaLS... oo 548

User's Manual U10504EJ7VOUMO00 17

18

17.2 Instruction Notation Conventions............ccuveevereeereeiereeennenes 552
17.3 Load and Store INStruCtions..........oveveerreeneenenesesesesesees 553
174 Floating-Point Computational I nstructions............c.cceceveneene 555
175 FPU INSIIUCLIONS. ...t 558
17.6 FPU Instruction Opcode Bit ENcoding........ccceceeeenenenenennns 613
Chapter 18 PLL Passive Elements.........cc.ccocoonnnrvnnninenen. 615
Chapter 19 Coprocessor O Hazards.........c.ccooeveveiceieescserecnne, 619

Appendix A Differences Between the Vr4300, V4305,

aNd VRA310........eeesieesiessieesiessesssesses 627
Appendix B Differencesfrom VR®4400...........cccccoommrrnnernennnn. 629
B.1 Differencesin Softwar ... 630
B.1.1 CACHE INSIUCHION ...ttt e 630
B.1.2 CaCheParity....ccccceeiiiiii e e s 630
B.1.3 SAUS REJISIEN c.ovciiecicce et 630
B.14 Config REQISIEN ..o e 631
B.1.5 Statusof FCR31 on Occurrence of Unimplemented Operation
EXCEPLION ...ttt 631
B.1.6 Integer Zero DiVISIONccoceierirerirene e 631
B.1.7 Cache Parity Error EXCEPLioN.........ccvovvvrerereieeeeeeeeeese e 632
B.2 Differencesin System Design.......cccccevererereneeienenesesene s 633
B.21 Initidization Of PrOCESSOr........cccoevirieerenene e 633
B.2.2 System INErfaCe......cccooiiineriiiee e 633
B.3 Other Differ @NCES.....oveivceree e 636
B.3.1 CACNE SIZE....oeeeeec e s 636
B.3.2 LB e 636
B.3.3 Hoating-Point Unit.........ccoceovreiiieiisenisenese e 637
B.3.4 PIPEINE. .o e 637
B.3.5 110 o S 638
B.3.6 Kernel Physical Address Segment Configuration...................... 638
B.3.7 JTAG ettt e 638

User’'s Manual U10504EJ7VOUMO0

Appendix C Differencesfrom VR4200...........cccouomivmernecerneeenns 641

(O Differencesin SOftWar ... iereiereeeeereeeeese e 642
O3 I O v o1 == 642
C.l2 StAUSREQISIEN ...c.coveeirieieteieiereete sttt sre e 642
C.13 Config REGISIEN ..ottt 642
C.14 CacheParity Error EXCEPLION.......ccccvveveieseeeeeeeeeee e 643
c.2 Differencesin System DeSigN.......cccoceveereieneienenesenesesese e 644
C.21 SysStem INterfaCe.... .o 644
L322 O Lo o 644
(O3 B = 0 - o L= Y 645
C3 Other DIiffEerencCeS......cocveveereresere e 645
C.31 PhySiCal AQArESS.....ccceiiviiieieieiesiete st 645
C.32 WIE BUIEr e 646
C.33 RESEL ..ot 646
C.34 StatUS(3:0) PiNS...coieieieeiceceeie st 646
Appendix D Restrictions of VR4300..........cooceminernnrineeneeinnes 647
APPENAIX E INUAEX ..o 649

User's Manual U10504EJ7VOUMO00 19

20

LIST OF FIGURES (1/6)

Figure No. Title Page

1-1 Internal Block Diagram
1-2 CPU REQISLEN'S ..o cesessesessesees e s nesessseneens
1-3 CPU INStruction FOrMALS ... seeseeseessessenns 39
1-4 Big-Endian Byte Orderingc.coceoeenerneneneeneereeereesereee s 41
1-5 Little-Endian Byte Orderingcccccveeeeveeevenncnercrseiesese e 41
1-6 Big-Endian Data in a Doublewordccccoeovrnnnesnenenees 42
1-7 Little-Endian Datain a Doublewordcccocnnnenenieneen. 42
1-8 Misaligned Word Addressing ... 43
1-9 CPOREJISLE'S ...ttt s 45
31 CPU INStruction FOrMats ... 60
3-2 Byte Access within a Doubleword ..., 63
4-1 PIpEling SLAGESovevceeceecee et s 90
4-2 Instruction Execution in the Pipeline ..., 91
4-3 Pipeline OPerationsc.cccccveeieeeeeeeceeeceeeceeesesee e e 92
4-4 Branch DEAY ... 4
4-5 Add Instruction Pipeline Operations............cccocoeeeeveecvecuneeennes 97
4-6 Jump and Link Register Instruction Pipeline Operations...98
4-7 Branch on Equal Instruction Pipeline Operations 99
4-8 Trap if LessThan Instruction Pipeline Operations 100
4-9 Load Word Instruction Pipeline Operations 101
4-10 StoreWord Instruction Pipeline Operations ..., 102
4-11 Interlocks, Exceptions, and Faultscccccocoevvevecveceennnee. 103
4-12 Correspondence of Pipeline Stage to Interlock and

Exception Condition ... 104
4-13 Instruction TLB MissInterlockccoevnnnenencnininenn. 107
4-14 Example of an Instruction Cache Busy Interlock 108
4-15 Example of a Multicycle Instruction Interlock 109
4-16 Exampleof aLoad INterlock ... 110
4-17 Example of a Data Cache Miss Followed by a L oad

INEEITOCK ettt 112

User’s Manual U10504EJ7VOUMO00

LIST OF FIGURES (2/6)

Figure No. Title Page
4-18 Example of a Coprocessor 0 Bypass Interlock (CPOI) 113
4-19 Execution and Interlock Prioritiesccnncncnecen. 116
4-20 Write Buffer FOrmat ..., 120
5-1 Overview of aVirtual-to-Physical Address Trandlation123
5-2 32-Bit Mode Virtual Address Tranglationc.ccoeeeuveeeinne. 125
5-3 64-Bit Mode Virtual Address Tranglationc.ccccoeeeveerennen. 126
5-4 User Mode Virtual Address SPacecceeneeveeneeneeneeneeneenns 128
5-5 Supervisor Mode Address Space
5-6 Kernel Mode Address SPACE ...
5-7 Details of XKphySField ..o
5-8 CPO Registersand the TLB
5-9 TLB ENtry FOrmat ..o
5-10 TLB ENtry REJISLEN'S ..ot
511 INAEX REJISLEN ...t
5-12 RaNdOM REGISLEN ..ottt
5-13 Wired Register Boundary ...
5-14 Wired REGISLEN ...
5-15 Processor Revision ldentifier Registerccocoeovvcnecnecenee 151
5-16 CONfig REGISLEN ..ot 152
5-17 [N [o [G = o 1= = OO 154
5-18 TagL o and TagHi REQISLEN ..., 155
5-19 TLB AddressTrangation ... 157
6-1 CONLEXE REJISLEN ...t
6-2 BadVAAAr REQISLEN ..ot e
6-3 COoUNE REJISLEN ..ot
6-4 CompPare REGISLEr ... s
6-5 SLALUS REGISLEN ..ot
6-6 Self-Diagnostic Status Field
6-7 CaAUSE REJISLES ...ttt
6-8 EPC REJISIEN ..ot

User's Manual U10504EJ7VOUMO00 21

22

LIST OF FIGURES (3/6)

Figure No. Title Page
6-9 WatchL o and WatchHi ReQIStErS......cocevveervevieeeceecee 175
6-10 XContext Register
6-11 PEIrr REQISLEN ...ttt e
6-12 CacheErr Register
6-13 ErrorEPC Register
6-14 General Purpose Exception Handler ... 201
6-15 TLB/XTLB MissException Handlercccccocveeivieivenninne. 203
6-16 Cold Reset, Soft Reset & NMI Exception Handler 205
7-1 FPU REQISLEN S ..ottt 209
7-2 Control/Status Register Bit ASSIgnmMents..........ccooccveeneerenn. 211
7-3 Control/Status Register (FCR31) Cause, Enable,

and Flag Bit FIelds ...
7-4 Implementation/Revision Register
7-5 Single-Precision Floating-Point Formatc.coocovvivinenne. 217
7-6 Double-Precision Floating-Point Formatcccccccecevninnnee. 217
7-7 32-Bit Fixed-Point Format
7-8 64-Bit Fixed-Point Format
7-9 DC-to-EX Hardware Interlock Bypasscccoveveneeneeneeneens 231
8-1 FCR31 Cause/Enable/Flag Bitscccoocvieviercreeceeceene 237
9-1
9-2
9-3
10-1 SIgNal TranSItioNScoerere et eeees 258
10-2 Clock-t0-Q DE @Y ..o e 258
10-3 When Freguency Ratio of Master Clock to

PCIOCK IS 1:1.5 et 261
10-4 When Frequency Ratio of Master Clock to

PCIOCK IS Li2 oottt sssenteneens 262
10-5 Phase-Locked SysStem ... 265

User’'s Manual U10504EJ7VOUMO0

LIST OF FIGURES (4/6)

Figure No. Title Page

10-6 Gate-Array System without Phase L ock,

Using the V{4300 ProCesSOr ..o, 267
10-7 Gate-Array and CMOS System without Phase L ock,

Using the VR4300 ProCessorc.eeeeenemeeeneseeeneenes 270
11-1 Logical Hierarchy of Memory
11-2 VR4A300 CaChe SUPPOITcerrieieitreieneireresinee e
11-3 VR4300 8-Word I-CacheLine Formatccccooeveninienienenn. 276
11-4 VR4300 4-Word Data CacheLine Formatccccovvveiennn. 277
11-5 Cache Data and Tag Organizationcccccceerecreseneereneen. 278
11-6 Data Cache State Diagram
11-7 Instruction Cache State Diagram
12-1 Data Seguence on I nstruction Cache Read Request 290
12-2 Data Sequence on Data Cache Read Requestcccoc....... 290
12-3 System Interface BUSES ... 291
12-4 EOK Signal Status of Processor REqUEStcc.coocveerveennenee. 293
12-5 Address Cycle Extended by EOK Signalcccocoooveevvenn, 294
12-6 System Interface Register-to-Register Operation 296
12-7 Requests and System EVENLS ... 299
12-8 Processor Request FIOW ... 300
12-9 External ReqUESt FIOW ... 302
12-10 ReEAd RESPONSE ..ot ses st 303
12-11 Unforcible Transition by Processor Read Request 308
12-12 Delayed Processor Read ReqUEStccoccveecereecereenneenneenen. 308
12-13 Processor Block Write Request

(Write Data Pattern: D) ... 310
12-14 Processor Block Write Request

(Write Data Pattern: DXX)cccocveervierniersieseieseseseisssesesse s 310
12-15 Delayed Processor Read ReqUEStcooccveecereecereecinceseneeneen. 311
12-16 Delayed Second Processor Write Requestcccecveveevenee, 312
12-17 Arbitration of External ReqUEStcccoeeveerecresneesneeren, 314
12-18 BusArbitration Of PrOCESSOLcconeinemieninereseneirerninnes 315
12-19 External Write Request Protocolcccoeneerecncenneeninnen. 317

User's Manual U10504EJ7VOUMO00 23

24

LIST OF FIGURES (5/6)

Figure No. Title Page
12-20 Read Request/Read Response Protocolcceceeeevevnaee, 318
12-21 Block Read Response in Slave Statusc.ccooeeereeerceeenceneeen. 318
12-22 External Write Request Following Read Response 319
12-23 When External Write Request Takes Precedence

While Processor Read Request isPending ... 320
12-24 Successive Block Write Requests

(Write Data Pattern: D)ocoovrenenneneeneeseeseeseeseeseeeneees 321
12-25 Successive Single Write Requests

(Write Data Pattern: DXX) ...ccccoceveerniernieseeieesseieseisssesssseses 321
12-26 Processor Write Request Followed by Processor

Read Request (Write Data Pattern: D)ccocoevvcnecnccenne 322
12-27 Processor Single Read Request Followed by Block

Write Request (Write Data Pattern: D)ccocovevenenincnnenn. 323
12-28 Successive Processor Write Requests Followed by

External Write Request (Write Data Pattern: D) 324
12-29 Discarding and Re-executing Processor Single

WIITE REQUESE ...ttt 326
12-30 Discarding and Re-executing Processor Single

REA0 REQUESL ...ttt ssesseeneens 327
12-31 Discarding Bus Master ship by External Agent by

Processor REQUESLcoeiiieieeceeee e 329
12-32 System Interface Command Syntax Bit Definition 334
12-33 Read Request SysCmd(4:0) Bus Bit Definition 334
12-34 Write Request SysCmd(4:0) Bus Bit Definition 336
12-35 Dataldentifier SysCmd(4:0) Bus Bit Definition 337
131 JTAG Boundary-Scan CellS ...
13-2 JTAG Interface Signals and Registers
13-3 INSLrUCtion REGISLEr ..o.eieiecereeree et
13-4 Bypass Register Operationoernneneneeneensnsnnnns
13-5 Output Enable Bit of Boundary-Scan Register 346
13-6 JTAG TeSt ACCESS POIT ...t 347
14-1 NMT SIGNAL ..ot 353
14-2 Interrupt Register Bitsand EnablesBits ..., 355

User’'s Manual U10504EJ7VOUMO0

LIST OF FIGURES (6/6)

Figure No. Title Page
14-3 Hardware Interrupt Request Signalsccccoevevecvecenenennee. 356
14-4 Masking of Interrupt REQUESESococuveeereeerenrcnecenecereeees 357
16-1 VR4300 Opcode Bit ENCOTINGc.vvuvvrereniirerienirieecineieeieeenenne 544
17-1 Load and Store Instruction FOrmatccccoevevevevnenennnnes 554
17-2 Computational Instruction FOrmatcccocooevenereeneeneeneenens 555
17-3 Bit Encoding for FPU InStructions...........cccveevveveecnecvnenennee. 613
18-1 Connection Example of PLL Passive Elements 616
18-2 Layout Example of QFP and Capacitor on PWB 617

User's Manual U10504EJ7VOUMO00 25

26

L1ST OF TABLES (1/4)

Table No. Title Page
1-1 Frequency Ratio Between PClock and Master Clock 35
1-2 System Control Coprocessor (CP0) Register Definitions46
2-1 System Interface Signals ... 54
2-2 Clock/Control Interface SIgnalsccococoveereernerneernereneneeen. 55
2-3 Interrupt Interface Signals ... 57
2-4 JTAG Interface SIgnals ... 58
2-5 Initialization Interface SIgNals ..., 58
31 Number of Cyclesfor Load and Store Instruction

DEAY SOt ...t b 62
3-2 L 0ad/Store INSEFUCLIONS ... 64
3-3 Load/Store I nstructions (Extended I SA) ..., 66
3-4 ALU Immediate INSIructionsoocvcveeresnennereeneeneenen 69
35 ALU Immediate Instruction (Extended | SA) ..o 70
3-6 Three-Operand Type INStructionccccoveeveevcsnenrcneeen. 71
3-7 Three-Operand Type Instructions (Extended 1SA) 72
3-8 SNIft INSEFUCLTIONS ..o
39 Shift Instructions (Extended | SA)
3-10 Multiply/Divide INSErUCLIONS ...
311 Multiply/Divide Instructions (Extended I SA)ccccceveevnee. 76
312 Number of Cycles Stalled by Multiply/

Divide INSEFUCLION ...t 76
313 Number of Delay Slot Cycles of Jump/

Branch INStrUCtION ..o 77
314 JUMP INSEFUCLIONS ..o 78
3-15 Branch INStrUCtIONSc.oeurieriercerceseeeeeeee e 79
3-16 Branch Instructions (Extended I SA)cccccoevvvecvevccerceerne 80
317 Special INStructionscooeeeeeneneeneinenn.
3-18 Special Instructions (Extended | SA)
3-19 Coprocessor INSLFUCLIONSc.eueeerceriereereieeieeeeeee e seeseesees 83
3-20 Coprocessor Instructions (Extended [SA)cocceeveeveicinee, 84
3-21 System Control Coprocessor (CPO) Instructions 86

User’s Manual U10504EJ7VOUMO0

LI1ST OF TABLES (2/4)

Table No. Title Page

4-1 Description of Pipeline Showing Stage in Which

Operations COMMENCE ..o seessesseens 93
4-2 Description of Pipeline EXCEPLIONScccocovveveeereceneerineenens 105
4-3 Description of Pipeline Interlocksccoevvvenenencnininn. 105
51 32-Bit and 64-Bit User Mode Segments........ccccoveevvevereernnen, 128
5-2 32-Bit and 64-Bit Supervisor Mode Segments.........c.ccoceveene. 131
5-3 32-Bit Kernel Mode Segments.........ccceeveeecveicreeesee e, 136
5-4 64-Bit Kernel Mode Segments.........ooeeeeneneneeneeneeneeneenenns 138
5-5 Use of Cache and xkphysAddress Spaceccococveveuvernaee. 140
5-6 Cache Algorithim ... 145
5-7 Mask Field Valuesfor Page SIZescccooeeeveeeeeeecvseecsenenan. 149
6-1 CPO Exception Processing REgISLErSccvvevreerenecerencereenens 162
6-2 Cause Register ExcCode Fieldcoocvievievieeeceeceeees 172
6-3 64-Bit M ode Exception Vector Base Addressesccc....... 181
6-4 32-Bit Mode Exception Vector Base Addresses 181
6-5 Exception Priority Order ... 182
7-1 Floating-Point Control Register Assignments ..o, 211
7-2 Flush Values of Denormalized Number Results 213
7-3 Rounding Mode Control BitS ..., 215
7-4 Equationsfor Calculating Valuesin Single-and

Double-Precision Floating-Point Formatc.ccceccuenenaee. 218
7-5 Floating-Point Format Parameter Valuescccovvvveeenee. 218
7-6 Minimum and Maximum Floating-Point Values 219
7-7 Load/Store/Transfer INStruCtionscocoocveevenceneeneencncencnenn. 223
7-8 CoNVErt INSEFUCLION .ottt
7-9 Computational Instructions
7-10 Compare INSLFUCLION ..o
7-11 M nemonics and Definitions of Compare

INstruction Conditions ..o 228
7-12 FPU Branch INStructions ... 229

User's Manual U10504EJ7VOUMO00 27

28

LIST OF TABLES (3/4)

Table No. Title Page
7-13 Number of L oad/Store/Transfer Instruction
EXECUtiON CYCIES ..o 230
7-14 Number of FPU Instruction Delay Cyclescooverneeenee 233
81 Default FPU IEEE754 Exception Valuesccovvevenennes 238
8-2 FPU Internal Resultsand Flag Statuscccccoeovvevcveininee. 239
101 Frequency Ratio Between PClock and Master Clock 259
11-1 Stall Cycle Count for Data Cache Miss.........ccccooecvecvvivnne, 281
11-2 Stall Cycle Count for Instruction Cache Miss.........ccccc........ 282
12-1 System Interface REQUESES ..o 306
12-2 Release Latency Timefor External Requests ... 332
12-3 Encoding of SysCmd3 for System Interface Commands ...334
12-4 Encoding of SysCmd2 for Read Requestsccccoverereeenee 335
12-5 Encoding of SysCmd(1:0) for Block Read Requests 335
12-6 Encoding of SysCmd(1:0) for Single Read Requests 335
12-7 Encoding of SysCmd2 for Write Requestscccoocvevenennes 336
12-8 Encoding of SysCmd(1:0) for Block Write Requests 336
12-9 Encoding of SysCmd(1:0) for Single Write Requests 336
12-10 Processor Data ldentifier Encoding of SysCmd(3:0) 338
12-11 External Data ldentifier Encoding of SysCmd(3:0) 338
131 JTAG Instruction Register Bit Encodingcccoevvveuvinnne. 344
13-2 JTAG SCAN OF BN ..ot 349
16-1 CPU Instruction Operation Notationsc.cccceceeeernevennnnn. 365
16-2 Load and Store Instruction Common Functions................... 367
16-3 Access Type Specifications for Load/Store Instructions368
17-1 Valid FPU Instruction FOrmatscccocoeveovnensnccnenenennnes 549
17-2 L ogical Reverse of Predicates by Condition True/False550

User's Manual U10504EJ7VOUMO0O

LIST OF TABLES (4/4)

Table No. Title Page
17-3 Load and Store I nstructions Common Functions 554
17-4 Format Field Decodingccocveereereeneineneeeeneneeseeseeseeseiseeenees 555
17-5 Floating-Point Computational I nstructionsand

OPErALIONS ..ot 556
19-1 Coprocessor O HAzards ... 621
19-2 Example of Calculating Number of CPO Hazards

and Number of Instructionsinsertedcccocoveeverneneen. 625
A-1 Differences Between the Vr4300, Vg4305, and VR4310628
B-1 Differencesin SOftWare ... 632
B-2 Differencesin System DESIgNcocvvemmereneineeneeneeneeneeneeeeenns 635
B-3 Other DIffEerenCeS ..o 639
C-1 Differencesin SOftWare ... 643
C-2 Differencesin System Designccccccvveevveerveecereeceeeceee s 645
C-3 Other DIffErenCeS ... 646

User's Manual U10504EJ7VOUMO0 29

[MEMO]

30 User's Manual U10504EJ7VOUMO0

General

This chapter outlines the RISC 64-bit microprocessor Vg4300, Vr4305
(uPD30200), and Vg4310 (uPD30210).

User’s Manual U10504EJ7VOUMO0

31

Chapter 1

1.1 Characteristics

32

The Vr4300, V4305, and V g4310 are members of the NEC Vi Series™ RISC
(Reduced Instruction Set Computer) microprocessors and is a high-performance
64-bit microprocessor employing the RISC architecture developed by MIPS™.

Its instructions are upward-compatible with the instructions of the V53000™

Series and are completely compatible with those of the V g4400 and V g4200.
Therefore, existing applications can be used asis with the Vg4300, V g4305, and
Vr4310.

The Vg4300, Vr4305, and Vr4310 have the following features:
* Interna operating frequency:
80 MHz max. (uPD30200-80),
100 MHz max. (uPD30200-100),
133 MHz max. (uPD30200-133, 30210-133),
167 MHz max. (uPD30210-167)
e 64-bit architecture supporting 64-bit data processing
» Optimized, 5-stage pipeline processing
e High-speed translation lookaside buffer (TLB) supporting virtual
addresses (of 32 double entries)
* Addressspace Physical: 32 hits
Virtual: 40 bits (64-bit mode)
31 hits (32-bit mode)
» Supports single-precision and double-precision floating-point
operations
e On-chip cache memories
Instruction: 16 KB
Data: 8 KB
e Employs write back cache system — store operation via system bus
decreased

e 32-bit externa bus interface facilitating system development

* Multiplies external operating frequency (input clock and bus

interface) to create internal operating frequency.

Multiple is selected on power application
(wPD30200-80: x1, x2, or x3)
(wPD30200-100: x1.5, x2, or x3)
(wPD30200-133: x2, x3, or x4)
(wPD30210-133: x2, x2.5, x3, or x4)
(wWPD30210-167: x2, x2.5, x3, x4, x5, or x6)

User’s Manual U10504EJ7VOUMO0

General

* Write buffer

* Low power mode (wPD30200-80, 30200-100 only)
Reduces internal and system bus clocks to 1/4 of normal level. Also
reduces power consumption

+ Software-compatible with Vg4400 and Vgr4200 and upward-
compatible with V3000 Series

e Supply voltage: 3.3V = 0.3V (uPD30200-80, 30200-100), 3.0 to 3.5
V (uPD30200-133, 30210-xxx)

1.2 Ordering Information

Part Number Package Maximum Operating

Frequency (MHz)
uPD30200GD-80-LBB 120-pin plastic QFP (28 x 28 mm) 80
uPD30200GD-100-MBB 120-pin plastic QFP (28 x 28 mm) 100
uPD30200GD-133-MBB 120-pin plastic QFP (28 x 28 mm) 133
uPD30210GD-133-MBB 120-pin plastic QFP (28 x 28 mm) 133
uPD30210GD-167-MBB 120-pin plastic QFP (28 x 28 mm) 167

1.3 64-Bit Architecture

The VRr4300 isa64-bit high-performance microprocessor. It can also execute 32-
bit applications even when it operates as a 64-bit microprocessor.

1.4 V{4300 Processor

Figure 1-1 shows the internal block diagram of the V g4300.

The V4300 is equipped with a full-associative high-speed translation lookaside
buffer (TLB) that has 32 entries with two pages corresponding to each entry; data
cache and instruction cache; and FPU, in addition to a high-performance integer
operation unit.

User's Manual U10504EJ7VOUMO0 33

Chapter 1

34

Data/Address Control MasterClock
System Clock Generator
Interface

Y

Instruction Cache

Data Cache

CPO

Y

Instruction Address

Pipeline Control

Y

Execution Unit

Figure1-1 Internal Block Diagram

User's Manual U10504EJ7VOUMO0

General

1.4.1 Internal Block Configuration

System | nterface allows the processor to access external resources such as
memories. It containsa32-bit multiplexed address/data bus, with per-byte parity,
clock signals, interrupt request signals, and various control signals. Itisnot
compatible with the System interface bus used on the V g4400 and V g4200.

Clock Generator generates a pipeline clock (PClock) based on an externally
input clock (MasterClock). The frequency of the PClock can be selected by
setting the frequency ratio between the Master Clock and the PClock. Thisratio
is set using the DivM ode pins on power application. (For setting of the DivM ode
pins, refer to Table 2-2 Clock/Control Interface Signals.) Table 1-1 indicates
the selectable frequency ratio. System interface clock (SClock) usually has the
same frequency as the M aster Clock.

Table1-1 Frequency Ratio Between PClock and Master Clock

Product Name

DivM ode Pin Selectable Frequency Ratio (Master Clock : PClock)

V4300

DivMode (1:0) | 1:15%1:2,1:3,1:4°2

V4305

DivMode (1:0) [1:1,1:2,1:3

VR4310

DivMode (2:0) | 1:2,1:25%3,1:3,1:4,1:5,1:6

*1. Selectable wi
2. Selectable wi
3. Selectable wi

th the 100 MHz model only (With the 133 MHz model, this setting is reserved.)
th the 133 MHz model only (With the 100 MHz model, this setting is reserved.)
th the 167 MHz model only (With the 133 MHz model, this setting is reserved.)

If the RP bit of the Status register is set to 1 during operation, the frequencies of
the PClock and SClock can be reduced to 1/4 of the normal frequency*. Because
the PLL (Phase-L ocked L oop) techniqueisemployed, the skew (phase difference)
between the external clock and internal operation clock can be minimized.

* 100 MHz model of the V4300 and the V g4305 only

Instruction Cache isdirect-mapped, virtually-indexed, and physically-tagged.
The capacity is 16 KB.

Execution Unit has the hardware resources to execute integer and floating-point
instructions. It has a64-hit register file, 64-bit integer/mantissa datapath, and 12-
bit exponent datapath. It is provided with a dedicated multiplexer in order to
process multiply instruction at a high speed.

User's Manual U10504EJ7VOUMO0 35

Chapter 1

36

Coprocessor 0 (CPO0) has the memory management unit (MMU) and handles
exception processing. The MMU handles address trandlation and checks memory
accesses that occur between different memory segments (user, supervisor, or
kernel). The trandation lookaside buffer (TLB) is used to tranglate virtual to
physical addresses.

Data Cacheis a direct-mapped, virtually-indexed and physically-tagged write-
back cache. The capacity is8 KB.

Instruction Addr ess cal culates the effective address of the next instruction to be
fetched. It contains the incrementer for the Program Counter (PC), the target
address adder, and the conditional branch address selector.

Pipeline Control ensures the instruction pipeline operates properly (should one
of the following conditions occur: pipeline stall or exception).

User’s Manual U10504EJ7VOUMO0

General

1.4.2 CPU Registers

The processor provides the following registers:

32 64-bit general purpose registers, GPRs
32 64-bit floating-point operation registers, FPRs

In addition, the processor provides the following special registers:

64-bit Program Counter, the PC register

64-bit HI register, containing the integer multiply and divide high-
order doubleword result

64-bit LO register, containing the integer multiply and divide low-
order doubleword result

1-bit Load/Link LLBit register
32-bit floating-point Implementation/Revision register, FCRO
32-bit floating-point Control/Status register, FCR31

Two of the General Purpose registers have assigned functions;

rO is hardwired to a value of zero, and can be used as the target
register for any instruction whose result is to be discarded. rO can
also be used as a source when a zero value is needed.

r31 isthe link register used by JAL and JALR instructions. It can be

used by other instructions. Make sure that other data used in

calculations does not overlap with the register used by the JAL/JALR

instruction.

Furthermore, the processor contains registers in the system control processor
(CPO) which perform the exception processing and address management.

CPU registers can operate as either 32-bit or 64-bit registers, depending on the
V r4300 processor mode of operation.

Figure 1-2 shows the CPU registers.

User's Manual U10504EJ7VOUMO0

37

Chapter 1

General Purpose Registers
63

r0=0

rl

r2

r29

r30

r31 = Link address

Floating-Point Registers
63

r0

rl

Multiply and Divide Registers

63 0
L#
63 0

LO I

Program Counter
63 0

—]

Load/Link Register
0

Floating-Point Control Registers

31 0
r0 = Implementation/Revision I
31 0

r31 = Control/Status I

Figure1-2 CPU Registers

The Vr4300 processor has no Program Status Word (PSW) register as such; this
is covered by the Status and Cause registers incorporated within the System
Control Coprocessor (CPQ). For CPO registers, refer to 1.4.5 System Control

Coprocessor (CPO).

38 User's Manual U10504EJ7VOUMO0

General

1.4.3 CPU Instruction Set Overview

Each CPU instruction is 32 bitslong. Asshown in Figure 1-3, there are three
instruction formats:

* immediate (I-type)
* jump (Ftype)
* register (R-type)

31 26 25 2120 1615 0
I-Type (Immediate) op rs rt immediate

31 26 25 0
J-Type (Jump) op target

31 2625 2120 1615 1110 65 0
R-Type (Register) Op ‘ rs ‘ rt ‘ rd ‘ sa ‘ fu nct

Figure1-3 CPU Instruction Formats

Theinstruction set can be further divided into the following groupings:

» Load and Storeinstructions move data between memory and general
purpose registers. They are al immediate (I-type) instructions, since
the only addressing mode supported is base register plus 16-hit,
signed immediate offset.

e Computational instructions perform arithmetic, logical, shift,
multiply, and divide operations on values in registers. They include
register (R-type, in which both the operands and the result are stored
in registers) and immediate (I-type, in which one operand is a 16-bit
signed immediate value) formats.

* Jump and Branch instructions change the control flow of a program.
Jumps are always made to an address formed by combining a 26-bit
target address with the high-order bits of the Program Counter (J-type
format) or register address (R-type format). Branch instructions are
performed to the 16-bit offset address relative to the program counter
(I-type). Jump And Link instructions save their return address in
register 31.

User's Manual U10504EJ7VOUMO0 39

Chapter 1

40

Coprocessor instructions (CPz) perform operations in the
coprocessors. Coprocessor load and store instructions are
I-type. As opposed to CPO instructions, CPz instructions are not
specific to any coprocessor. (Refer to Chapter 7 Floating-Point
Operations.)

Coprocessor 0 (system coprocessor, CP0) instructions perform
operations on CPO registers to control the memory-management and
exception-handling facilities of the processor.

Special instructions perform system call exception and breakpoint
exception operations, or cause a branch to the general exception-
handling vector based upon the result of a comparison. These
instructions occur in both R-type (both the operands and the result
are registers) and I-type (one operand is a 16-bit immediate value)
formats.

For each instruction, refer to Chapter 3 CPU Instruction Set Summary and
Chapter 16 CPU Instruction Set Details.

User's Manual U10504EJ7VOUMO0

General

1.4.4 Data Formatsand Addressing

The V r4300 processor uses four dataformats: a64-bit doubleword, a32-bit word,
a 16-bit halfword, and an 8-bit byte. Byte ordering within all of the larger data
formats—hal fword, word, doubleword—can be configured in either big-endian or
little-endian. When the V g4300 processor is configured as a big-endian system,
byte0isthe most-significant (leftmost) byte, thereby providing compatibility with
MC 68000™ and 1BM 370™ conventions. Figure 1-4 shows this configuration.

Higher Word

Address Address 31 2423 16 15 87 0
12 12 || 138 || 14 | 15 |
8 | 8 ||l o [10 | 1 |
4 [¢« [s | & | 7 |

e o oz

Address

Figure1-4 Big-Endian Byte Ordering

Remarks1l. The most-significant byte isthe lowest address.
2. A word is addressed by the address of the most-significant byte.

When configured as alittle-endian system, byte 0 is always the |east-significant
(rightmost) byte, which is compatible with iAPX™ x86 and DEC VAX™
conventions. Figure 1-5 shows this configuration.

Unless otherwise specified, the little endian is used throughout this manual.

Higher Word

Address Address 31 2423 16 15 87 0
12 15 | 14 | 13 | 12 |
8 | 1 | w0 | o | 8 |
2 | | T T (e

Lower 0 L s | 2 || 1+ | o |

Address

Figure1-5 Little-Endian Byte Ordering

Remarks1. Theleast-significant byteisthe lowest address.
2. A word is addressed by the address of the |east-significant byte.

User's Manual U10504EJ7VOUMO0 41

Chapter 1

Higher Doubleword W(I)rd Half\INord Byte
Address Address 63 32ll31 16115 8l7 0
ﬁ 16 \ 16 H 17 H 18 H 19 H 20 H 21 H 22 H 23 \

8 | 8 [o] 10 || 11 |[12 [13] 14 | 15 |
Lower o [ef2 s e s e T

Address

Figure1-6 Big-Endian Data in a Doubleword

Remarks1l. The most-significant byte isthe lowest address.
2. A word isaddressed by the address of the most-significant byte.

Higher Doubleword W(I)rd Half\llvord Byte
Address Address [63 32ll31 16115 8l7 0
ﬁ 16 \ 23 H 22 H 21 H 20 H 19 H 18 H 17 H 16 \

8 | 15 | 14 [138 | 12 [11 | 10 [o [8 |
Lower o [fe s e s 2T e

Address

Figure1-7 Little-Endian Data in a Doubleword

Remarks1. Theleast-significant byteisthe lowest address.
2. A word is addressed by the address of the least-significant byte.

42 User's Manual U10504EJ7VOUMO0

General

The CPU uses byte addressing for halfword, word, and doubleword accesses with
the following alignment constraints:

» Halfword accesses must be aligned on an even byte boundary (0, 2,
4..).

* Word accesses must be aligned on a byte boundary divisible by four
(©, 4, 8...).

* Doubleword accesses must be aligned on a byte boundary divisible
by eight (0, 8, 16...).

The following special instructions load and store words that are not aligned on 4-
byte (word) or 8-word (doubleword) boundaries:
LWL LWR SWL SWR

LDL LDR SDL SDR

These instructions are always used in pairs to access data not aligned at an
boundary. To access data not aligned at a boundary, additional 1P cycleis
necessary as compared when accessing data aligned at a boundary.

Figure 1-8 illustrates how aword misaligned and having byte address 3 is
accessed in big and little endian.

Higher
Address

31 24 23 1615 8 7 0

‘ 4 H S H 6 H ‘ Big-Endian
| H [[s |

Lower
Address

Higher
Address

31 24 23 1615 8 7 0

‘ H 6 H S H 4 ‘ Little-Endian
e [[|

Lower
Address

Figure1-8 Misaligned Word Addressing

User's Manual U10504EJ7VOUMO0 43

Chapter 1

1.4.5 System Control Coprocessor (CPO)

44

ISA of MIPS defines four types of coprocessors (CPO through CP3). CPOisan
internal system control coprocessor and supports a virtual memory system and
exception processing. CP1isaninternal floating-point unit. CP2 isreserved for
future definition. CP3 isalso reserved for expansion. If the CP3 instructionis
executed, areserved instruction exception occurs.

CPO convertsvirtual addressesinto physical addresses, selects an operating mode
(Kernel, supervisor, or user mode), and control exceptions. It also controls the
cache subsystem to analyze causes and return execution from error processing.
The CPO register of the Vr4300 is the same asthat of the Vg4200. Because the
V r4300 does not have a parity check function, however, its parity error register
(26) and cache error register (27) do not practically operate. Theseregistersare
defined to maintain compatibility with the VVg4200.

Figure 1-9 shows the CPO register. Table 1-2 briefly explains each register. For
the details of the registers related to the virtual memory system, refer to Chapter
5 Memory Management System, and for the details of the registers used for
exception processing, refer to Chapter 6 Exception Processing.

User's Manual U10504EJ7VOUMO0

General

Register Name Reg. # Register Name Reg. #
Index 0 Config 16
Random 1 LLAddr 17
EntryLoO 2 WatchLo 18
EntryLol 3 WatchHi 19
Context 4 XContext 20
PageMask 5 21
Wired 6 22
BadVAddr 8 24
Count 9 25
EntryHi 10 Parity Error 26
Compare 11 Cache Error 27
Satus 12 TagLo 28
Cause 13 TagHi 29
EPC 14 ErrorEPC 30
PRId

[] Memory Management

[] Exception Processing

Figure1-9 CPO Registers

User's Manual U10504EJ7VOUMO0

- For Future Use

45

Chapter 1

Table1-2 System Control Coprocessor (CP0O) Register Definitions

Number Register Description
0 Index Programmable pointer into TLB array
1 Random Pseudorandom pointer into TLB array (read only)
2 EntryLoO Low half of TLB entry for even virtual address (VPN)
3 EntryLol Low half of TLB entry for odd virtual address (VPN)
4 Context Pointer to kernel virtual page table entry (PTE) in 32-bit mode
5 PageMask Page size specification
6 Wired Number of wired TLB entries
7 — Reserved for future use
8 BadVAddr Display of virtual address that occurred an error last
9 Count Timer Count
10 EntryHi High half of TLB entry (including ASID)
11 Compare Timer Compare Vaue
12 Status Operation status setting
13 Cause Display of cause of last exception
14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16 Config Memory system mode setting
17 LLAddr Load Linked instruction address display
18 WatchLo Memory reference trap address low bits
19 WatchHi Memory reference trap address high bits
20 XContext Pointer to Kernel virtual PTE table in 64-bit mode
21-25 — Reserved for future use
26 Parity Error” Cache parity bits
27 Cache Error” | Cache Error and Status register
28 TagLo Cache Tag register low
29 TagHi Cache Tag register high
30 ErrorEPC Error Exception Program Counter
31 — Reserved for future use

* Theseregisters are defined to maintain compatibility with the Vg4200, and not used with the
hardware of the V g4300.

46 User's Manual U10504EJ7VOUMO0

General

1.4.6 Floating-Point Unit (FPU), CP1

Thefloating-point unit (FPU) operates as a coprocessor for the CPU and performs
arithmetic operations on floating-point values. The FPU, with associated system
software, fully conforms to the requirements of ANSI/IEEE Standard 7541985,
|IEEE Sandard for Binary Floating-Point Arithmetic.

The FPU includes:

* Full 64-bit Operation. The FPU can contain either 16 64-bit
registers to hold single-precision or double-precision values. Another
sixteen floating-point registers can be used by setting the FR bit of
the Status register to 1. Moreover, a 32-bit Control/Status register is
provided, conforming to the IEEE exception processing standard.

 Load and Store Instruction Set. Like the CPU, the FPU uses a
load- and store-based instruction set. Floating-point operations are
started in a single cycle, however execution of floating-point ops are
not allowed to overlap other operations.

* Sharing Hardware. There is no separate FPU on the V g4300;
floating-point operations are processed by the same hardware as is
used for integer instructions.

1.4.7 Internal Cache

The Vr4300 has an instruction cache and a data cache to enhance the efficiency
of pipelining. Each cache has a data width of 64 bits and can be accessed in 1
clock. Theinstruction cache and data cache can be accessed in parallel. The
instruction cache has a capacity of 16K bytes, while the data cache has a capacity
of 8K bytes.

For the details of the cache, refer to Chapter 11 Cache Memory.

User's Manual U10504EJ7VOUMO0 47

Chapter 1

1.5 Memory Management System (MM U)

The V k4300 processor has a 32-bit physical addressing range of 4 GB. However,
sinceit israre for systems to implement a physical memory space thislarge, the
CPU provides alogical expansion of memory space to the programmer by
tranglating addresses into the large virtual address space. The Vg4300 processor
supports the following two addressing modes:

* 32-bit mode, in which the virtual address space is divided into 2 GB
per user process and 2 GB for the kernel.

* 64-bit mode, in which the virtual address is expanded to
1 TB (2%0 bytes) of user virtual address space.

A detailed description of these address spacesis given in Chapter 5 Memory
M anagement System.

1.5.1 Trandation Lookaside Buffer (TLB)

48

Virtual memory mapping isassisted by atransl ation lookaside buffer, which holds
virtual-to-physical address tranglations. This fully-associative, on-chip TLB
contains 32 entries, each of which maps a pair of variable-sized pages of either 4
KB or 16 MB.

Joint TLB (JTLB)

The TLB can hold both instruction and data addresses, and isthus also referred to
asajoint TLB (JTLB).

An address trandlation value is tagged with the high-order bits of its virtual
address (the number of these bits depends upon the size of the page) and a per-
processidentifier. If thereisno matching entry inthe TLB, an exception occurs
and software writes the entry contents to the on-chip TLB from a page tablein
memory. The JTLB entry to be rewritten is selected by avaluein either the
Random or Index register.

User's Manual U10504EJ7VOUMO0

General

Instruction Micro-TLB (ITLB)

The VRr4300 processor has atwo-entry instruction micro-TLB (ITLB) which
assistsin instruction address translation. The ITLB can not be operated directly
by the software. Instructions access this TLB while data accesses the Joint TLB;
amissin the micro-TLB stalls the pipeline until the micro-TLB isrefilled from
thejoint TLB. The micro-TLB isfully associative, and uses the least-recently-
used (LRU) replacement algorithm. Each micro-TLB entry maps 4 KB of virtual
space to physical space. Thisensures each ITLB entry isa subset of any single
JTLB entry.

1.5.2 Operating Modes
The Vg4300 processor has three operating modes:
* User mode
» Supervisor mode
» Kernel mode

The manner in which memory addresses are translated or mapped depends on the
operating mode of the CPU; thisis described in Chapter 5 Memory
M anagement System.

1.6 Instruction Pipeline

The Vr4300 has a 5-stage instruction pipeline. This pipelineisused for floating-
point operations as well as for integer operations. In anormal environment, the
pipeline executes one instruction in 1 cycle.

The pipeline of the V4300 operates at afrequency determined depending on the
setting of the DivMode(1:0)* pins. For details, refer to Chapter 4 Pipeline.

* 1n V4300 and V4305. In V4310, DivMode(2:0).

User's Manual U10504EJ7VOUMO0 49

[MEMO]

50

User's Manual U10504EJ7VOUMO0

Pin Functions

User’s Manual U10504EJ7VOUMO0

51

Chapter 2

2.1 Pin Configuration (Top View)

e 120-pin plastic QFP (28 x 28 mm)
uPD30200GD-80-LBB
uPD30200GD-100-MBB
uPD30200GD-133-MBB
uPD30210GD-133-MBB
uPD30210GD-167-MBB

120 ——OGND

119 ——OVpp

118 |~<«—Qint3

117 |<«—>»OSysAD23
116 |<«——QODivMode0
115 |<«—>»(OSysAD24
114 ——OGND

113 ——OVpp

112 |<«——CODivModel
111 |<—>»OSysCmd4
110 |-«——-=QOColdReset
109 |-«—>»OSysCmd3
108 ——OGND

107 ———OVpp

106 |-«—»OSysCmd2
105 |-«——QOEValid
104 |-<«——COReset
103 |<«—>»QOSysCmd1
102 ———OGND

101 ——OVpp

100 |-—»OSysCmd0
99 | «——OEReq

98 |-«—>»OSysAD25
97 ——OGND

96 ———OVpp

95 ——OPMaster
94 |<«—>»OSysAD26
93 | <«——ONMI

92 ——OGND

91 ———OVpp

Voo

GND
SysAD22 Oe—»]
SysAD21 Oe—»]
Vpp O———]

GND

SysAD20 Oe—>»

(ooo\lmmbwwna\

PLLCap0 O——]
PLLCapl O——
VooPO—— |
GNDPO—]

Vpp (Div Mode2)o—|
MasterClcok O——]
GNDO— |

SyncOut Oe——21
SysAD19 Oe—»] 22
Vop O———{23
SyncinQO— .24
GNDQ______ |25
SysAD18 Oq——»| 26
SysAD17 Ogq—p] 27
40— 5|28

Vpp O———]29
GNDO____ |30

90
89
88
87
86
85
84
83
82
81
80
79
78
7
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61

—O Voo
—OGND
l«——O Int2
l«—>(SysAD27
l«—>(SysAD28
—O Voo
———OGND
l«—>» (O SysAD29
l«——Q EOK
l«—>(SysAD30
—O Voo
L OGND
——Q PValid
l«—>» (O SysAD31

«—>»(SysAD3
——Q JTDO
l«—>(SysAD4
l«———0O JTDI
—O Voo
L OGND

GNDO——— 31
Vpp O——— 32
SysAD16 O<—| 33
SysAD15 O<«—»| 34
GNDO——— 35
Vpp O——— 36
SysAD14 O<—>»| 37
SysAD13 O<«—>| 38
GNDO—— 39
Vpp O——— 40
SysAD12 O«—»| 41
SysAD11 O-«—»| 42
GNDO——— 43
Vpp O——— 44
SysAD10 O<«—| 45
Int0 O———»| 46
SysAD9 O<—>»| 47
GNDO—— 48
Vpp O———1 49
SysAD8 O<—>| 50
SysAD7 O<—>| 51
JTMS O———»| 52
GNDO—— 53
Vpp O——— 54
SysAD6 O<—>| 55
SysAD5 O<—>| 56
JTCKO—»| 57
IntlO——»| 58
GNDO——— 59
Vpp O—— 60

Remark (): Pin name of the uPD30210-xxx

52 User's Manual U10504EJ7VOUMO0

Pin Functions

PIN NAME
ColdReset

DivMode (1:0)*

EOK

EReq

Evdid

Int (4:0)
JTCK

JIDI

JIDO

JTMS
MasterClock
NMT
PLLCap (1:0)
PMaster
PReq

PVvdid

Reset

Syncln
SyncOut
SysAD (31:0)
SysCmd (4:0)
TClock

Vbb

GND

VppP
GNDP

* |n the uPD30200-xxx. DivMode (2:0) in the uPD30210- xxx.

. Cold Reset

: Divide Mode

. External OK

. External Request

. External Valid

. Interrupt Request

: JTAG Clock Input

: JTAG Dataln

: JTAG Data Out

: JTAG Command Signal

. Master Clock

: Non-maskable Interrupt Request
: Phase Locked Loop Capacitance
. Processor Master

. Processor Request

. Processor Valid

: Reset

: Synchronization Clock Input

. Synchronization Clock Output

. System Address/Data Bus

: System Command Data ID Bus
. Transmit Clock

. Power Supply

. Ground

: Vpp for PLL

: GND for PLL

User's Manual U10504EJ7VOUMO0

53

Chapter 2

2.2 Pin Functions

2.2.1 System Interface Signals

The system interface signals are used when the Vg4300 is connected with an
external devicein the system. Table 2-1 indicates the functions of these signals.

Table2-1 System Interface Sgnals

Signal Name Definition /0 Function
SysAD(31:0) | System address/data /0 32-bit address/data bus. Used to transmit or
bus receive data or address between the
processor and the external agent.

SysCmd(4:0) | Systemcommand/data /10 5-bit bus. Used to transfer commands or

ID bus dataidentifiers between the processor and
the external agent.

EReq External request Input | Asserted active when the external agent
requests the processor for the system
interface.

PReq Processor request Output | Asserted activewhen the processor requests
the external agent for the system interface.
If aprotocol error is detected in the system
interface, this signal is oscillated in
synchronization with MasterClock in a
cyclewhich isamultiple of SClock.

Evalid External agent valid Input | Asserted active when the external agent
drivesavalid address or valid data onto the
SysAD bus, and avalid command/data
identifier is on the SysCmd bus.

PValid Processor valid Output | Asserted active when the processor drivesa
valid address or data onto the SysAD bus,
and avalid command/data identifier ison
the SysCmd bus.

PMaster Processor master Output | Asserted active when the processor isthe
master of the system interface bus.

EOK External ready Input | Asserted active when the external agent is
ready to accept a processor request.

54 User's Manual U10504EJ7VOUMO0

Pin Functions

2.2.2 Clock/Control Interface Signals

These interface signals are used to supply or control clocks. Table 2-2 showsthe
functions of the signals.

Table 2-2 Clock/Control Interface Sgnals (1/3)

Signal Name Definition /0 Function

MasterClock | Master clock Input Inputsthe MasterClock from thispin. Theinternal
operating speed is determined by the frequency of
this signal and the contents of the DivMode

signals.
TClock Transmit/receive| Output | Outputs the transmit/receive clock at the same
clock frequency as the MasterClock.
SyncOut Synchronization | Output | Outputs a synchronization clock. Connect thispin
clock output to Syncln. Model the mutual connection between
TClock and external agent.
Syncln Synchronization | Input | Inputsasynchronization clock.
clock input
VppP Static Vpp for - Thispinsisstatic Vpp for theinternal PLL circuit.
PLL
GNDP Static GND for - Thispinisstatic GND for the internal PLL circuit.
PLL
PLLCap(1:0) | Adjusting PLL - This pin connects a capacitor for adjusting the
internal PLL circuit of the processor.
DivMode Internal Input | Indicatesthe ratio at which the internal PClock is generated
operating fl\:grrnng\l]le Mtf]zt?:u Sgrli of the TClock is the same as that of
frequency mode the Mast):e’rCIockE.Bq i

Do not change the value of these pins after setting the value on
power application.
Otherwise, the operation will not guaranteed.

The following indicates the relationship between the DivMode
values and frequency ratio of each product.

Remark The maximum value of PClock isthe same asthe
maximum internal operating frequencies of each
product regardless of the frequency ratio. (Refer to
1.2 Ordering Information.)

* V4300
wPD30200-100
DivM ode Master Clock : PClock : TClock
(1:0) Frequency ratio | Example[MHZ]

00 RFU -
01 2:3:2 66.7 : 100 : 66.7
10 1:2:1 50:100: 50
11 1:3:1 33.3:100:33.3

User's Manual U10504EJ7VOUMO0 55

Chapter 2

Table2-2 Clock/Control Interface Sgnals (2/3)

uPD30210-133

Signal Name Definition /0 Function
DivMode Internal Input | *VR4300
?perating uPD30200-133
requency mode DivMode Master Clock : PClock : TClock
(1:0 Frequency ratio | Example[MHZ]
00 1:4:1 33.3:133:333
01 RFU —
10 1:2:1 66.7 : 133: 66.7
11 1:3:1 44.3:133:443
* V4305
uPD30200-80
DivMode Master Clock : PClock : TClock
(1:0 Frequency ratio | Example[MHZ]
00 1:1:1 66.7 : 66.7 : 66.7
01 RFU -
10 1:2:1 40:80:40
11 1:3:1 20:60:20
* VR4310

Master Clock : PClock : TClock

DivMode
(2:0) Frequency ratio | Example[MHZ]

000 1:5:1 26.7:133:26.7
001 1:6:1 222:133:22.2
010 RFU -

011 1:3:1 33.3:100:33.3
100 1:4:1 33.3:133:333
101 RFU -

110 1:2:1 50: 100 : 50
111 1:3:1 33.3:100:333

56

User's Manual U10504EJ7VOUMO0

Pin Functions

Table 2-2 Clock/Control Interface Sgnals (3/3)

Signal Name Definition 1/0 Function
DivMode Internal Input | *Vg4310
operating uPD30210-167
frequency mode
DivMode Master Clock : PClock : TClock
(2:0 Frequency ratio | Example[MHZ]
000 1:5:1 33.3:167:333
001 1:6:1 27.8:167:27.8
010 2:5:2 66.7 : 167 : 66.7
011 1:3:1 33.3:100:333
100 1:4:1 33.3:133:333
101 RFU -
110 1:2:1 50:100: 50
111 1:3:1 33.3:100: 333

2.2.3 Interrupt Interface Signals

These signals are used by the external device to issue interrupt requests to the
VR4300. Table 2-3 showsthe functions of these signals.

Table 2-3 Interrupt Interface Sgnals

Signal Name Definition 1/0 Function
Int(4:0) Interrupt request Input | General purpose interrupt request pins.
acknowledge These pins are ORed with the bits 4 through
0 of theinternal interrupt register.
NMI Non-maskable Input | Thispinacceptsthe non-maskableinterrupt
interrupt signal. Itis ORed with the bit 6 of the

internal interrupt register.

User's Manual U10504EJ7VOUMO0 57

Chapter 2

2.2.4 Joint Test Action Group (JTAG) Interface Signals

Thesesignalsarefor interfacing the boundary scan of JTAG. Table 2-4 showsthe
functions of these signals.

Table 2-4 JTAG Interface Sgnals

Signal Name Definition /0 Function

JTDI JTAG datainput Input | Inputs datato be scanned serialy.

JTCK JTAG clock input Input | Inputsaserial clock. JTDI and JTMS are
read simultaneously at the rising edge of
thissignal.

Fix this signal to the low level when the
JTAG interfaceis not used.

JIDO JTAG data output Output | Outputs serially scanned data.

JTMS JTAG command Input | Inputsahigh level to thispinif the seria
datato be input next is a command of the
JTAG.

2.2.5 Initialization Interface Signals

These signals are used when the external device initializes the operation
parameters of the processor. Table 2-5 shows the functions of these signals.

Table 2-5 Initialization Interface Sgnals

Signal Name Definition /0 Function

ColdReset Cold reset Input | Asserted active at cold reset. SClock and
TClock start the cycle at the rising edge of
thissignal. Thissignal needs not be
asserted active or deasserted inactivein
synchronization with the MasterClock
signal.

Reset Reset Input | Make this pin active or inactivein
synchronization with MasterClock, or keep
it inactive at cold reset.

Make this pin active or inactivein
synchronization with MasterClock at soft
reset.

58 User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

This chapter is an overview of the central processing unit (CPU) instruction set;
refer to Chapter 16 CPU Instruction Set Details for detailed descriptions of
individual CPU instructions.

Because the FPU instruction is dependent upon the structure of the coprocessor,

refer to Chapter 7 Floating-Point Oper ationsand Chapter 17 FPU I nstruction
Set Details.

User's Manual U10504EJ7VOUMO0 59

Chapter 3

3.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on aword
boundary. There are three instruction formats—immediate (I-type), jump (F
type), and register (R-type)—as shown in Figure 3-1. By simplifying the
instruction format inthreeways, decoding instructionsissimplified. Complicated
and less frequently used operations and addressing modes are implemented by
combining two or more instructions by using a compiler.

I-Type (Immediate)
31 26 25 2120 16 15 0
op rs rt immediate

J-Type (Jump)
31 26 25 0

OE target .

R-Type (Register)

31 2625 2120 1615 1110 6 5 0
op rs rt rd sa | funct
op 6-bit operation code
rs 5-bit source register number

5-hit target (source/destination) register number or

"t branch condition

16-bit immediate value, branch displacement or

immediate address displacement

target 26-bit unconditional branch target address
rd 5-bit destination register number

sa 5-bit shift amount

funct 6-bit function field

Figure3-1 CPU Instruction Formats

60 User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Support of the MIPSISA

Even though the V g4300 processor does not support a multiprocessor operating
environment, the synchronization support instructions defined inthe MIPS 11 and
MIPS 111 1SA—the Load Linked and Store Conditiona instructions—are
processed correctly, in order to maintain compatibility with V 4400 and V g4200.
Theload link bit (LLbit) is set by the LL instruction, cleared by an ERET, and
tested by the SC instruction. The only operation to the LLbit that can be
implemented is areset due to cache invalidation.

Caution Notethat all load/storeinstructionsin this processor are executed
in program order sincethe SYNC instruction is handled asa NOP.

3.2 Instruction Classes

The CPU instructions can be classified into six classes.

3.2.1 Load/Storelnstructions

Load and store are immediate (I-type) instructions that move data between
memory and the general purposeregisters. Only amode that adds a 16-bit signed
immediate offset to the base register is available as the addressing mode of the
load/store instructions.

Scheduling a L oad Delay Slot

A load instruction whose loading result cannot be used by the instruction
immediately following is called adelayed load instruction. The instruction slot
immediately after adelayed load instruction is called aload delay slot. With the
V4000 Series, an instruction including the load destination register can be
described immediately after aload instruction. Inthiscase, however, theinterlock
count is generated equal to the number of necessary cycles. Therefore, although
any instruction can be described, it isrecommended to schedulethe load delay slot
to improve the performances of the V g4300 and to maintain its compatibility with
the Vr3000 Series (for details, refer to Chapter 4 Pipeline).

Store Delay Slot

In the V r4300 processor, a store instruction writing to the data cache keeps the
data cache busy during both its DC and WB stages. If the instruction immediately
following needs to access the data cache in its DC stage (e.g. aload instruction),
the hardware interlocks. Consequently, scheduling store delay slots can be
desirable for performance.

User's Manual U10504EJ7VOUMO0 61

Chapter 3

62

Table3-1 Number of Cycles for Load and Store Instruction Delay Sot

Instruction PCycles Required
Load 1
Store 1

Defining Access Types

Access type isthe size of the dataloaded/stored by the processor.

The op code of the load/store instruction determines the access type. Figure 3-2
shows the access type and the data to be loaded/stored. The address used for the
load/store instruction isthe least significant byte address (most significant bytein
big endian and the address indicating the least significant byte in little endian),
regardless of the access type and byte ordering (endianness).

The byte ordering in the doubleword of the data to be accessed is determined by
the access type and the low-order 3 bits of the address, as shown in Figure 3-2.
Combinations of an access type and the low-order bits of an address other than
those shownin Figure 3-2 are prohibited. If acombination other than those shown
in the figureis used, an address error exception occurs.

Table 3-2 lists the load/store instructions defined by ISA, and Table 3-3 lists the
instructions of the extended | SA.

User’s Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

AccessType | Low-Or der Bytes Accessed
Mnemonic ~ |AddressBits Big endian Little endian
(Value) 21110
Doubleword(7) | 0| O | O 3
) oj[0|O0 3
Septibyte (6) olol 3
_ o|o|o0 3
Sextibyte (5) ol 110 3
o 0/0|o0 3
Quintibyte (4) ERE 3
Word (3) 01019 . ..
100 4[5/6]7]7]6]54
000
Triplebyte (2) 2 g ; .n n
GE 5670 7]6]5]
oj[0|O
o(1}|0
Halfword (1) 11010
1(1/0
oj(0|O
001
oj1}|0
0O(1]1
Byte (0) 11010
1/0(1
1110
1111

Figure3-2 Byte Access within a Doubleword

User's Manual U10504EJ7VOUMO0 63

Chapter 3

Table3-2 Load/Store Instructions (1/2)

Instruction

Format and Description| op | base | rt | offset

Load Byte

LB rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Sign-extends the contents of a byte specified by the address and loads the
result to register rt.

Load Byte
Unsigned

LBU rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Zero-extends the contents of a byte specified by the address and loads the
result to register rt.

Load Halfword

LH rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Sign-extends the contents of a halfword specified by the address and loads
the result to register rt.

Load Hafword
Unsigned

LHU rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base

Zero-extends the contents of a halfword specified by the address and loads
the result to register rt.

Load Word

LW rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Sign-extends the contents of aword specified by the address (in the 64-bit
mode) and loads the result to register rt.

Load Word Left

LWL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Shifts aword specified by the address to the |eft, so that a byte specified by
the address is at the leftmost position of the word. Sign-extends (in the 64-
bit mode), merges the result of the shift and the contents of register rt, and
|oads the result to register rt.

Load Word Right

LWR rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Shiftsaword specified by the address to the right, so that a byte specified by
the addressis at the rightmost position of the word. Sign-extends (in the 64-
bit mode), merges the result of the shift and the contents of register rt, and
loads the result to register rt.

64

User’s Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Table3-2 Load/Store Instructions (2/2)

Instruction Format and Description| op | base | rt | offset |
Store Byte SB rt, offset (base)
Generates an address by adding a sign-extended offset to the contents of
register base.
Stores the contents of the low-order byte of register rt to the memory
specified by the address.

Store Halfword SH rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Stores the contents of the low-order halfword of register rt to the memory
specified by the address.

Store Word SW rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Stores the contents of the low-order word of register rt to the memory
specified by the address.

Store Word Left | SWL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Shifts the contents of register rt to the right so that the leftmost byte of the
word is at the position of the byte specified by the address. Stores the result
of the shift to the lower portion of the word in memory.

Store Word Right | SWR rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Shifts the contents of register rt to the left so that the rightmost byte of the
word is at the position of the byte specified by the address. Stores the result
of the shift to the higher portion of the word in memory.

User's Manual U10504EJ7VOUMO0 65

Chapter 3

Table 3-3 Load/Store Instructions (Extended | SA) (1/2)

Instruction

Format and Description| op | base | rt | offset

Load Doubleword

LD rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

L oads the contents of the doubleword specified by the address to register rt.

Load Doubleword
Left

LDL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Shifts the doubleword specified by the address to the |eft so that the byte
specified by the addressis at the leftmost position of the doubleword.
Merges the result of the shift and the contents of register rt, and loads the
result to register rt.

Load Doubleword
Right

LDR rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Shifts the doubleword specified by the address to the right so that the byte
specified by the addressis at the rightmost position of the doubleword.
Merges the result of the shift and the contents of register rt, and loads the
result to register rt.

Load Linked

LL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

L oads the contents of the word specified by the address to register rt nd sets
theLL bitto 1.

Load Linked
Doubleword

LLD rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

L oads the contents of the doubleword specified by the addressto register rt
and setsthe LL bit to 1.

Load Word
Unsigned

LWU rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Zero-extendsthe contents of the word specified by the address, and loadsthe
result to register rt.

66

User’s Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Table 3-3 Load/Store Instructions (Extended | SA) (2/2)

Instruction Format and Description| op | base | rt | offset |

Store Conditional | SC rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

If the LL bitis 1, stores the contents of the low-order word of register rt to
the memory specified by the address, and setsregister rt to 1.

If the LL bit is 0, does not store the contents of the word, and clears register

rtto 0.

Store Conditional | SCD rt, offset (base)

Doubleword Generates an address by adding a sign-extended offset to the contents of
register base.

If theLL bitis1, storesthe contents of register rt to the memory specified by
the address, and sets register rt to 1.

If theLL bitis0, doesnot storethe contentsof theregister, and clearsregister
rtto 0.

Store Doubleword | SD rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.

Stores the contents of register rt to the memory specified by the address.

Store Doubleword | SDL rt, offset (base)

Left Generates an address by adding a sign-extended offset to the contents of
register base.

Shifts the contents of register rt to the right so that the leftmost byte of a
doubleword is at the position of the byte specified by the address. Storesthe
result of the shift to the lower portion of the doubleword in memory.

Store SDR rf, offset (base)
Doubleword Generates an address by adding a sign-extended offset to the contents of
Right register base.

Shifts the contents of register rt to the left so that the rightmost byte of a
doubleword is at the position of the byte specified by the address. Storesthe
result of the shift to the higher portion of the doubleword in memory.

User's Manual U10504EJ7VOUMO0 67

Chapter 3

3.2.2 Computational Instructions

68

Computational instructions executes arithmetic operations, multiply/divide,
logical operations, and shift operations on the values of registers. These
instructions are classified into two types: R-type and I-type. The R-type
instructions uses registers as both the source, and the I-type instructions uses an
immediate value as one of the sources. The operationinstructionsaredivided into
the following four types by classification of operation.

(1) ALU immediate instructions (Refer to Tables 3-4 and 3-5.)
(2) 3-operand typeinstructions (Refer to Tables 3-6 and 3-7.)

(3) Shiftinstructions (Refer to Tables 3-8 and 3-9.)

(4) Multiply/Divide instructions (Refer to Tables 3-10 and 3-11.)

If compatibility of datais necessary in the 64-bit and 32-bit modes, the 32-bit
operands must be correctly sign-extended. Otherwise, the 32-bit value of the
result of the operation will be meaningless.

User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Table 3-4 ALU Immediate Instructions

Instruction Format and Description| op | rs [1t | immediate |

Add Immediate ADDI rt, rs, immediate
Sign-extends the 16-bit immediate and adds it to register rs. Storesthe
32-bit result to register rt (sign-extends the result in the 64-bit mode).
Generates an exception if a 2's complement integer overflow occurs.

Add Immediate ADDIU rt, rs, immediate

Unsigned Sign-extends the 16-bit immediate and addsit to register rs. Storesthe 32-bit
result to register rt (sign-extends the result in the 64-bit mode). Does not
generate an exception even if an integer overflow occurs.

Set OnLessThan | SLTI rt, rs, immediate

Immediate Sign-extends the 16-bit immediate and compares it with register rsasa
signed integer. If rsislessthan theimmediate, stores 1 to register rt;
otherwise, stores O to register rt.

Set On LessThan | SLTIU rt, rs, immediate

Immediate Sign-extends the 16-bit immediate and compares it with register rsas an

Unsigned unsigned integer. If rsislessthan theimmediate, stores 1 to register rt;
otherwise, stores O to register rt.

And Immediate ANDI rt, rs, immediate
Zero-extends the 16-bit immediate, ANDs it with register rs, and stores the
result to register rt.

Or Immediate ORI rt, rs, immediate
Zero-extends the 16-bit immediate, ORs it with register rs, and stores the
result to register rt.

Exclusive Or XORI rt, rs, immediate

Immediate Zero-extends the 16-bit immediate, exclusive-ORs it with register rs, and
stores the result to register rt.

Load Upper LUI rt, immediate

Immediate Shiftsthe 16-bit immediate 16 bitsto theleft, and clearsthelow-order 16 bits

of theword to O.
Stores the result to register rt (by sign-extending the result in the 64-bit
mode).

User’s Manual U10504EJ7VOUMO0

69

Chapter 3

Table3-5 ALU Immediate Instruction (Extended |SA)

Instruction Format and Description| op | rs [1t | immediate |

Doubleword Add | DADDI rt, rs, immediate

Immediate Sign-extendsthe 16-bit immediateto 64 bits, and addsit toregister rs. Stores
the 64-hit result to register rt. Generates an exception if an integer overflow
occurs.

Doubleword Add | DADDIU rt, rs immediate

Immediate Sign-extendsthe 16-bit immediateto 64 bits, and addsit to register rs. Stores

Unsigned the 64-bit result to register rt. Does not generate an exception even if an
integer overflow occurs.

70

User’s Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Table3-6 Three-Operand Type Instruction

Instruction Format and Description| op | rs | rt | rd | sa | funct |
Add ADD rd, rs, rt
Adds the contents of register rsand rt, and stores (sign-extends in the 64-bit
mode) the 32-bit result to register rd.
Generates an exception if an integer overflow occurs.
Add Unsigned ADDU rd, rs, rt
Adds the contents of register rs and rt, and stores (sign-extendsin the 64-bit
mode) the 32-hit result to register rd.
Does not generate an exception even if an integer overflow occurs.
Subtract SUB rd, rs, 1t
Subtracts the contents of register rsfrom register rt, and stores (sign-extends
in the 64-bit mode) the result to register rd.
Generates an exception if an integer overflow occurs.
Subtract SUBU rd, rs, rt
Unsigned Subtracts the contents of register rt from register rs, and stores (sign-extends
in the 64-bit mode) the 32-bit result to register rd.
Does not generate an exception even if an integer overflow occurs.
SetOnlLessThan | SLT rd, rs, rt
Compares the contents of registersrs and rt as signed integers.
If the contents of register rs are less than those of rt, stores 1 to register rd;
otherwise, stores 0 to rd.
SetOnlLessThan | SLTU rd, rs, rt
Unsigned Compares the contents of registersrs and rt as unsigned integers.
If the contents of register rs are less than those of rt, stores 1 to register rd;
otherwise, stores 0 to rd.
And AND rd, rs, rt
ANDs the contents of registersrsand rt in bit units, and stores the result to
register rd.
Or ORrd, rs, rt
ORs the contents of registersrsand rt in bit units, and stores the result to
register rd.
Exclusive Or XORrd, rs, 1t
Exclusive-ORs the contents of registersrs and rt in bit units, and stores the
result to register rd.
Nor NOR rd, rs, rt

NORs the contents of registersrsand rt in bit units, and stores the result to
register rd.

User's Manual U10504EJ7VOUMO0 71

Chapter 3

Table3-7 Three-Operand Type Instructions (Extended 1SA)

Instruction Format and Description| op | rs | rt | rd | sa | funct |
Doubleword Add | DADD rd, rs, rt
Addsthe contents of registersrsand rt, and stores the 64-bit result to register
rd.
Generates an exception if an integer overflow occurs.
Doubleword Add | DADDU rd, rs, rt
Unsigned Addsthe contents of registersrsand rt, and stores the 64-bit result to register
rd.
Does not generate an exception even if an integer overflow occurs.
Doubleword DSUB rd, rs, rt
Subtract Subtracts the contents of register rt from register rs, and stores the 64-bit
result to register rd.
Generates an exception if an integer overflow occurs.
Doubleword DSUBU rd, rs, rt
Subtract Unsigned | Subtracts the contents of register rt from register rs, and stores the 64-bit
result to register rd.
Does not generate an exception even if an integer overflow occurs.

72

User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Table3-8 Shift Instructions

Instruction Format and Description| op | rs | rt | rd | sa | funct |
Shift Left Logical | SLL rd, rt, sa
Shifts the contents of register rt sa bits to the left, and inserts O to the low-
order bits.
Sign-extends (in the 64-bit mode) the 32-bit result and storesit to register rd.
Shift Right SRL rd, rt, sa
Logical Shifts the contents of register rt sa bitsto the right, and inserts O to the high-
order hits.
Sign-extends (in the 64-bit mode) the 32-bit result and storesit to register rd.
Shift Right SRArd, rt, sa
Arithmetic Shiftsthe contents of register rt sabitsto the right, and sign-extendsthe high-
order hits.
Sign-extends (in the 64-bit mode) the 32-hit result and storesit to register rd.
Shift Left Logical | SLLV rd, rt, rs
Variable Shiftsthe contents of register rt to the left and inserts 0 to the low-order hits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 5 bits of register rs.
Sign-extends (in the 64-bit mode) the result and stores it to register rd.
Shift Right SRLV rd, rt, rs
Logical Variable | Shiftsthe contents of register rt to the right, and inserts O to the high-order
bits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 5 bits of register rs.
Sign-extends (in the 64-bit mode) the 32-bit result and storesiit to register rd.
Shift Right SRAV rd, t, rs
Arithmetic Shifts the contents of register rt to the right and sign-extends the high-order
Variable bits.

The number of bits by which the register contents are to be shifted is
specified by the low-order 5 bits of register rs.
Sign-extends (in the 64-bit mode) the 32-bit result and storesiit to register rd.

User's Manual U10504EJ7VOUMO0 73

Chapter 3

Table3-9 Shift Instructions (Extended | SA) (1/2)

Instruction Format and Description| op | rs | rt | rd | sa | funct |
Doubleword Shift | DSLL rd, rt, sa
Left Logica Shifts the contents of register rt sa bits to the left, and inserts O to the low-
order bits.
Stores the 64-bit result to register rd.
Doubleword Shift | DSRL rd, rt, sa
Right Logical Shifts the contents of register rt sabits to the right, and inserts 0 to the high-
order hits.
Stores the 64-bit result to register rd.
Doubleword Shift | DSRA rd, rt, sa
Right Arithmetic | Shiftsthe contents of register rt sabitsto theright, and sign-extendsthe high-
order bits.
Stores the 64-hit result to register rd.
Doubleword Shift | DSLLV rd, rt, rs
Left Logica Shiftsthe contents of register rt to the left, and inserts O to the low-order bits.
Variable The number of bits by which the register contents are to be shifted is
specified by the low-order 6 bits of register rs.
Stores the 64-bit result and storesiit to register rd.
Doubleword Shift | DSRLV rd, rt, rs
Right Logical Shifts the contents of register rt to the right, and inserts O to the higher bits.
Variable The number of bits by which the register contents are to be shifted is
specified by the low-order 6 bits of register rs.
Sign-extends the 64-hit result and storesiit to register rd.
Doubleword Shift | DSRAV rd, rt, rs
Right Arithmetic | Shiftsthe contents of register rt to the right, and sign-extends the high-order
Variable bits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 6 bits of register rs.
Sign-extends the 64-hit result and stores it to register rd.
Doubleword Shift | DSLL32 rd, rt, sa

Left Logical + 32

Shiftsthe contents of register rt 32+sabitsto theleft, and inserts 0 to the low-
order bits.
Stores the 64-bit result to register rd.

Doubleword shift
Right Logical
+ 32

DSRL32rd, rt, sa

Shifts the contents of register rt 32+sa bitsto the right, and inserts 0 to the
high-order bits.

Stores the 64-bit result to register rd.

74

User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Table3-9 Shift Instructions (Extended | SA) (2/2)

Instruction Format and Description| op | rs | rt | rd | sa | funct |

Doubleword Shift | DSRA32 rd, rt, sa

Right Arithmetic | Shifts the contents of register rt 32+sa bits to the right, and sign-extends the

+32 high-order bits.
Stores the 64-bit result to register rd.

Table 3-10 Multiply/Divide Instructions
Instruction Format and Description| op | rs | rt | rd | sa | funct |

Multiply MULT rs, rt
Multiplies the contents of register rs by the contents of register rt as a 32-bit
signed integer. Sign-extends (in the 64-bit mode) and stores the 64-hit result
to specid registersHI and LO.

Multiply MULTU rs, rt

Unsigned Multiplies the contents of register rs by the contents of register rt as a 32-bit
unsigned integer. Sign-extends (in the 64-bit mode) and stores the 64-bit
result to special registersHI and LO.

Divide DIV rs, 1t
Divides the contents of register rs by the contents of register rt. The operand
istreated as a 32-hit signed integer. Sign-extends (in the 64-bit mode) and
stores the 32-bit quotient to special register LO and the 32-bit remainder to
special register HI.

Divide Unsigned | DIVU rs, rt
Divides the contents of register rs by the contents of register rt. The operand
istreated as a32-bit unsigned integer. Sign-extends (in the 64-bit mode) and
stores the 32-bit quotient to special register LO and the 32-bit remainder to
special register HI.

Move From HI MFHI rd
Transfers the contents of special register HI to register rd.

Move From LO MFLO rd
Transfers the contents of special register LO to register rd.

Move To HI MTHI rs
Transfers the contents of register rsto special register HI.

MoveToLO MTLO rs

Transfers the contents of register rsto special register LO.

User's Manual U10504EJ7VOUMO0 75

Chapter 3

Table3-11 Multiply/Divide Instructions (Extended | SA)

Instruction Format and Description| op | rs | rt | rd | sa | funct |
Doubleword DMULT rs, rt
Multiply Multipliesthe contents of register rs by the contents of register rt asasigned
integer.
Stores the 128-hit result to special registers HI and LO.
Doubleword DMULTU rs, rt
Multiply Multiplies the contents of register rs by the contents of register rt asan
Unsigned unsigned integer.
Stores the 128-hit result to special registers HI and LO.
Doubleword DDIV rs, rt
Divide Divides the contents of register rs by the contents of register rt.

The operand istreated as a signed integer.
Stores the 64-bit quotient to special register LO, and the 64-bit remainder to
special register HI.

Doubleword DDIVU rs, rt

Divide Unsigned | Divides the contents of register rs by the contents of register rt.

The operand is treated as an unsigned integer.

Stores the 64-bit quotient to special register LO, and the 64-bit remainder to
special register HI.

When an integer multiply or divide instruction is executed, the V g4300 stallsthe
entire pipeline. The number of processor cycles (PCycles) stalled at thistimeis
shown below.

Table3-12 Number of Cycles Salled by Multiply/Divide Instruction

Instruction | MULT |MULTU| DIV DIVU DMULT | DMULTU | DDIV | DDIVU

Number of
required 5 5 37 37 8 8 69 69
cycles

76 User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

3.2.3 Jump/Branch Instructions

The jump and branch instructions change the flow of the program. All the jump
and branch instructions generate one delay slot. The instruction immediately
following ajump or branch instruction (i.e., the instruction in the delay dot) is
executed while the first instruction at the destination is fetched from the memory.

Instructionsinvolving link, such as JAL and BLTZAL, store the return addressto
register r31.

Table 3-13 Number of Delay Sot Cycles of Jump/Branch Instruction

Instruction Number of Required Cycles
Branch 1
Jump 1

Outline of Jump Instruction

Subroutine call described in a high-level language usually uses J or JAL
instruction. The Jand JAL instructions are J-type instructions. Aninstruction of
this type shifts a 26-bit target address 2 bits to the left and combinesit with the
high-order 4 bits of the current program counter to generate a 32- or 64-bit
absolute address.

To return, dispatch, or jJump between pages, the JR or JALR instruction is usually
used. Both of theseinstructionsare of R-type and referencesthe 32- or 64-bit byte
address of a general purpose register.

For details, refer to Chapter 16 CPU I nstruction Set Details.

Outline of Branch Instruction

The branch instruction has a signed 16-bit offset relative to the program counter.
Instructionsinvolving link, such as JAL and BLTZAL, store the return addressto
register r31.

Table 3-14 lists the jump instructions, and Table 3-15 shows the branch
instructions. Table 3-16 lists the branch instructions of the extended 1SA.

User's Manual U10504EJ7VOUMO0 77

Chapter 3

Table 3-14 Jump Instructions

Instruction Format and Description| op | target |

Jump J target
Shifts the 26-bit target address 2 bits to the left, and jumps to the address
coupled with the high-order 4 bits of the PC, delayed by one instruction.

Jump And Link JAL target

Shifts the 26-bit target address 2 bitsto the left, and jumps to the address
coupled with the high-order 4 bits of the PC, delayed by one instruction.
Stores the address of the instruction following the delay slot to r31 (link
register).

Instruction Format and Description| op | rs | rnt [rd [sa | funct |

Jump Register JRrs
Jumps to the address of register rs, delayed by one instruction.

Jump And Link JALR rs, rd
Register Jumps to the address of register rs, delayed by one instruction.
Stores the address of the instruction following the delay slot to register rd.

The following common limits are applied to Tables 3-15 and 3-16.

Branch Address

The branch addresses of all the branch instructions are cal culated by adding a 16-
bit offset (signed 64 bits shifted 2 bits to the | eft) to the address of the instruction
inthe delay slot. All the branch instructions generate one delay slot.

Operation during No Branch (Table 3-16)

If the branch condition of the branch likely instruction is not satisfied, the
instruction in the delay slot isinvalidated. Theinstruction in the delay slot are
unconditionally executed for all the other branch instructions.

Remark Theinstruction at the branch destination is fetched in the EX stage of
the branch instruction. Comparison of branch and calculation of the
target address are executed in phase 2 of the RF stage and phase 1 of
the EX stage of the branch instruction. One cycle of the branch delay
dot defined by thearchitectureisnecessary. Onecycle of thedelay slot
isalso necessary for the jump instruction. If the branch condition of
the branch likely instruction is not satisfied, the instruction in the
branch dot are invalidated.

78 User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Thefollowing symbolsin theinstruction format in Table 3-15 through Table 3-21

are special.

REGIMM : op code

Sub . sub operation code

(6(0) sub operation identifier

BC BC sub operation code

br . branch condition identifier

cofun coprocessor function area

op . operation code

Table 3-15 Branch Instructions
Instruction Format and Description| op | rs [1t | offset
Branch On Equal | BEQ rs, rt, offset
Branches to the branch addressiif register rs equalstort.
Branch On Not BNE rs, rt, offset
Equal Branches to the branch addressiif register rsis not equal to rt.
BranchOnlLess | BLEZrs, offset
ThanOr Equal To | Branchesto the branch addressif register rsislessthan O.
Zero
Branch On BGTZ rs, offset
Greater Than Branches to the branch address if register rsis greater than 0.
Zero
Instruction Format and Description[REGIMM| rs | sub | offset

Branch On Less

BLTZ rs, offset

Than Zero Branches to the branch addressiif register rsislessthan O.

Branch On BGEZ rs, offset

Greater Than Or | Branches to the branch address if register rsis greater than 0.

Equal To Zero

BranchOnLess | BLTZAL rs, offset

Than Zero And Stores the address of the instruction following the delay slot to register r31
Link (link register), and branches to the branch address if register rsislessthan 0.
Branch On BGEZAL rs, offset

Greater Than Or | Stores the address of the instruction following the delay slot to register r31
Equal To Zero (link register) and branchesto the branch addressif register rsisgreater than
And Link 0.

User's Manual U10504EJ7VOUMO0 79

Chapter 3

Table3-16 Branch Instructions (Extended 1SA)

Instruction Format and Description| op | rs [rt | offset |
Branch On Equal | BEQL rs, rt, offset
Likely Branches to the branch address if registers rs and rt are equal. If the branch
condition isnot satisfied, theinstruction in the branch delay slot is discarded.
Branch On Not BNEL rs, rt, offset
Equal Likely Branches to the branch address if registers rs and rt are not equal. If the

branch condition is not satisfied, the instruction in the branch delay slot is
discarded.

Branch On Less

BLEZL rs, offset

ThanOr Equal To | Branches to the branch address if register rs is less than 0. If the branch

Zero Likely condition is not satisfied, theinstruction in the branch delay slot is discarded.

Branch On BGTZL rs, offset

Greater Than Branches to the branch address if register rsis greater than 0. If the branch

Zero Likely condition isnot satisfied, theinstruction in the branch delay slot is discarded.
Instruction Format and Description|rRecimm| rs | sub | offset |

Branch On Less
Than Zero Likely

BLTZL rs, offset
Branches to the branch addressiif register rsislessthan 0. If the branch
conditionisnot satisfied, theinstruction in the branch delay slot isdiscarded.

And Link Likely

Branch On BGEZL rs, offset

Greater Than Or | Branches to the branch address if register rsis greater than 0. If the branch

Equal To Zero conditionisnot satisfied, theinstruction in the branch delay slot isdiscarded.

Likely

BranchOnLess | BLTZALL rs, offset

Than Zero And Stores the address of the instruction following the delay slot to register r31

Link Likely (link register). Branchesto the branch addressiif register rsislessthan 0. If
the branch condition is not satisfied, the instruction in the branch delay slot
is discarded.

Branch On BGEZALL rs, offset

Greater Than Or | Stores the address of the instruction following the delay slot to register r31

Equal To Zero (link register). Branchesto the branch addressif register rsisgreater than O.

If the branch conditionisnot satisfied, theinstruction in the branch delay slot
is discarded.

80

User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

3.2.4 Special Instructions

The specia instructions generate an exception by software. The instruction type
is R-type (Syscall, Break). The trap instructions are invalid with the V3000
Series. All the other instructions are valid with all the Vg Series.

Table 3-17 Special Instructions

Instruction Format and Description|special] rs | rt | rd | sa | funct |
Synchronize SYNC
Completesthe load/store instruction currently in the pipeline before the new
load/store instruction is executed.
System Call SYSCALL
Generates a system call exception and transfers control to the exception
processing program.
Breakpoint BREAK
Generates a breakpoint exception and transfers control to the exception
processing program.
Table 3-18 Special Instructions (Extended 1SA) (1/2)
Instruction Format and Description|special] rs | rt | rd | sa | funct |
Trap If Greater TGE rs, 1t
Than Or Equal Compares registersrs and rt as signed integers. If register rsis greater than
rt, generates an exception.
Trap If Greater TGEU rs, 1t
Than Or Equal Comparesregistersrsand rt asunsigned integers. If register rsisgreater than
Unsigned rt, generates an exception.

Trap If Less Than

TLTrs, 1t
Comparesregistersrsand rt as signed integers. If register rsislessthan rt,
generates an exception.

Trap If LessThan

TLTU s, 1t

Unsigned Comparesregistersrsand rt as unsigned integers. If register rsislessthan rt,
generates an exception.

Trap If Equal TEQ s, 1t
Generates an exception if registersrs and rt are equal.

Trap If Not Equal | TNE rs, rt

Generates an exception if registersrs and rt are not equal.

User's Manual U10504EJ7VOUMO0 81

Chapter 3

Table 3-18 Special Instructions (Extended 1SA) (2/2)

signed integer. If rscontents are less than the immediate, generates an
exception.

Instruction Format and Description [rRecivm| s | sub | immediate |
Trap If Greater TGEI rs, immediate
Than Or Equal Comparesthe contents of register rs with 16-bit sign-extended immediate as
Immediate signed integer. If rscontents are greater than the immediate, generates an

exception.

Trap If Greater TGEIU rs, immediate
Than Or Equal Comparesthe contents of register rswith 16-bit zero-extended immediate as
Immediate unsigned integer. If rscontents are greater than the immediate, generates an
Unsigned exception.
Traplf LessThan | TLTI rs, immediate
Immediate Comparesthe contents of register rswith 16-bit sign-extended immediate as

Trap If LessThan

TLTIU rs, immediate

Immediate Comparesthe contents of register rswith 16-bit zero-extended immediate as

Unsigned unsigned integer. If rs contents are less than the immediate, generates an
exception.

Trap If Equal TEQI rs, immediate

Immediate Generates an exception if the contents of register rs are equal to immediate.

TrapIf Not Equal | TNEI rs, immediate

Immediate Generates an exception if the contents of register rs are equal to immediate.

82

User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

3.2.5 Coprocessor Instructions

The coprocessor instructions are used to operate each coprocessor. The
coprocessor |oad and store instructions are I-type. The format of the operation
instruction of each coprocessor differs. Table 3-19 shows the coprocessor
instructions valid for all the Vg Series. Table 3-20 lists the coprocessor
instructions valid only with the V g4000 which is defined as extended | SA.

Table 3-19 Coprocessor Instructions (1/2)

Instruction

Format and Description| op | base | rt | offset |

Load Word To
Coprocessor z

LWCz rt, offset (base)

Sign-extends and adds offset to register base to generate an address.
L oads the contents of the word specified by the address to the general
purpose register rt of coprocessor z.

Store Word From

SWCz rt, offset (base)

Coprocessor z

Coprocessor z Sign-extends and adds offset to register base to generate an address.
Stores the contents of the general purpose register rt of coprocessor z to the
memory position specified by the address.
Instruction Format and Description| COPz| sub | rt | rd | 0 |
Move To MTCz rt, rd

Transfersthe contents of CPU register rt to the general purpose register rd of
COProcessor z.

Move From
Coprocessor z

MFCz rt, rd
Transfers the contents of the general purpose register rd of coprocessor z to
CPU register rt.

Move Control To

CTCzrt, rd

Coprocessor z

Coprocessor z Transfers the contents of CPU register rt to the coprocessor control register
rd of coprocessor z.

Move Control CFCzrt, rd

From Transfersthe contents of the coprocessor control register rd of coprocessor z

to CPU register rt.

Instruction

Format and Description| COPz | CO | cofun

Coprocessor z
Operation

COPz cofun
Coprocessor z executes an operation defined for each coprocessor.
The status of the CPU is not changed by the operation of the coprocessor.

User's Manual U10504EJ7VOUMO0 83

Chapter 3

Table3-19 Coprocessor Instructions (2/2)

Instruction

Format and Description| COPz| BC | br | offset

Branch On
Coprocessor z
True

BCzT offset

Shifts the 16-bit offset 2 bits to the |eft and sign-extendsiit to 32 bits. Adds
the result to the address of the instruction in the delay slot to calculate the
branch address.

If the condition signal of coprocessor z istrue, branches to the branch
address, delayed by oneinstruction.

Branch On
Coprocessor z
False

BCzF offset

Shifts the 16-bit offset 2 bits to the |eft and sign-extendsiit to 32 bits. Adds
the result to the address of the instruction in the delay slot to calculate the
branch address.

If the condition signal of coprocessor z is false, branchesto the branch
address, delayed by oneinstruction.

Table3-20 Coprocessor Instructions (Extended | SA) (1/2)

Coprocessor z

Instruction Format and Description| COPz| sub | rt | rd | 0
Doubleword DMTCz rt, rd
Move To Transfers the contents of the general purpose register rt of the CPU to the
Coprocessor z general purpose register rd of coprocessor z.
Doubleword DMFCz rt, rd
Move From Transfers the contents of the general purpose register rd of coprocessor z to

the general purpose register rt of the CPU.

Instruction

Format and Description| op | base | rt | offset

Load
Doubleword To
Coprocessor z

LDCz rt, offset (base)

Sign-extends and adds offset to register base to generate an address.

L oads the contents of the doubleword specified by the addressto the general
purpose register (rt if FR=1and rt and rt+1 if FR = 0) of coprocessor z.

Store
Doubleword
From
Coprocessor z

SDCz rt, offset (base)

Sign-extends and adds offset to register base to generate an address.
Stores the contents of the doubleword of the general purpose register
(rtif FR=1and rt and rt+1 if FR = 0) of coprocessor z to the memory
position specified by the address.

84

User's Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Table 3-20 Coprocessor Instructions (Extended | SA) (2/2)

Instruction Format and Description| COPz| BC | br | offset |
Branch On BCzTL offset
Coprocessor z Shifts the 16-bit offset 2 hits to the |eft and sign-extendsit. Adds the result
True Likely to the address of the instruction in the delay dlot to calculate the branch
address.
If the condition signal of coprocessor z istrue, branches to the branch
address, delayed by oneinstruction.
If the branch conditionis not satisfied, theinstruction in the branch delay slot
is discarded.
Branch On BCzFL offset
Coprocessor z Shiftsthe 16-bit offset 2 bits to the left and sign-extendsit. Adds the result
False Likely to the address of the instruction in the delay slot to calculate the branch

address.

If the condition signal of coprocessor z is false, branchesto the branch
address, delayed by oneinstruction.

If the branch conditionisnot satisfied, theinstruction in the branch delay slot
is discarded.

User's Manual U10504EJ7VOUMO0 85

Chapter 3

3.2.6 System Control Coprocessor (CPO) Instructions

The system control coprocessor (CPQ) instructions execute operations to the CPO
register to control the memory of the processor and to perform exception
processing.

Table3-21 System Control Coprocessor (CPO) Instructions (1/2)

Instruction Format and Description| COPO| sub | rt | rd | 0

Move To System | MTCO rt, rd

Control L oads the contents of the word of the general purpose register rt of the CPU

Coprocessor to the genera purpose register rd of CPO.

Move From MFCO rt, rd

System Control L oads the contents of the word of the general purpose register rd of CPO to

Coprocessor the general purpose register rt of the CPU.

Doubleword DMTCO rt, rd

Move To System | Loadsthe contents of the doubleword of the general purposeregister rt of the

Control CPU to the general purpose register rd of CPO.

Coprocessor

Doubleword DMFCO rt, rd

Move From L oads the contents of the doubleword of the general purpose register rd of

System Control CPO to the general purpose register rt of the CPU.

Coprocessor

Instruction Format and Description| COPO| CO | funct

Read Indexed TLBR

TLB Entry Loadsthe TLB entry indicated by the index register to the entry Hi, entry
L o0, entry Lol, and page mask registers.

Write Indexed TLBWI

TLB Entry L oads the contents of the entry Hi, entry Lo0, entry Lol, and page mask
registersto the TLB entry indicated by the index register.

Write Random TLBWR

TLB Entry L oads the contents of the entry Hi, entry Lo0O, entry Lo1, and page mask
registersto the TLB entry indicated by the random register.

Probe TLB For TLBP

Matching Entry L oads the address of the TLB entry coinciding with the contents of the entry
Hi register to the index register.

Return From ERET

Exception Returns from an exception, interrupt, or error trap.

86

User’s Manual U10504EJ7VOUMO0

CPU Instruction Set Summary

Table3-21 System Control Coprocessor (CPO) Instructions (2/2)

Instruction

Format and Description |CACHE| base | op | offset

Cache Operation

Cache op, offset (base)

Sign-extends the 16-hit offset to 32 bits and adds it to register base to
generate avirtual address. The virtual addressis converted into a physical
address by using the TLB, and a cache operation indicated by a 5-bit sub op
code is executed to that address.

User's Manual U10504EJ7VOUMO0

87

[MEMO]

88

User's Manual U10504EJ7VOUMO0

Pipeline

This chapter describes the operation of the Vr4300 processor pipeline.

User’s Manual U10504EJ7VOUMO0

89

Chapter 4

4.1 Generadl

The Vr4300 uses a 5-stage pipeline. The pipelineis usualy controlled by the
pipeline clock that is determined by the value of the DivMode(1:0)" pins. This
pipeline clock iscalled PClock and one cycle of it iscalled PCycle. Each stage of
the pipelineis executed in 1 PCycle. The PCycle has two stages, @1 and ®2, as
shown in Figure 4-1. Therefore, at least 5 PCycles are required to execute an
instruction. If the necessary datais not in the cache and must be fetched from the
main memory, morecyclesare necessary. When the pipelineflowssmoothly, five
instructions are executed simultaneously.

* 1n V4300 and Vg4305. In Vr4310, DivMode(2:0).

| MasterClock Cycle | PCycle |

o/ N/ N/ S S

phasel @1 | cI>2| 1 | <1>2| 1 | <1>2| 1 | <1>2| o1 | q>2|

Cycle IC

RF EX DC WB

Figure4-1 Pipeline Sages

Thefive pipeline stages are:

90

IC - Instruction Cache Fetch
RF - Register Fetch

EX - Execution

DC - Data Cache Fetch

WB - Write Back

User's Manual U10504EJ7VOUMO0

Pipeline

Figure 4-2 outlines the pipeline. The horizontal rowsin this figure indicate the
execution processes of instructions, and the vertical columns indicate the five
processes executed at the same time.

(5-Deep)
‘ PCycle ‘

| IC | RF | EX | DC | WB |

IC RF EX DC WB

IC RF EX DC WB

IC RF EX DC WB

IC RF EX DC WB

Current
CPU
Cycle

Figure4-2 Instruction Execution in the Pipeline

User's Manual U10504EJ7VOUMO0 91

Chapter 4

4.1.1 Pipeline Operations

Figure 4-3 shows the operations that can occur during each pipeline stage; Table
4-1 describes these pipeline activities.

PCycle

o/ N/ N/) N

phase | ®1| @2 | @1| @2 | o1| ®2| o1 92| @1| @2 |

Cycle IC RF EX DC WB
ICF
Instr Fetch
ITLB ITC
. RFR
Computational BCMP
IDEC ALU
DVA
Load/Store DCR LA | RFW
DTLB DTC DCW
Branch IVA

Figure4-3 Pipeline Operations

92 User's Manual U10504EJ7VOUMO0

Pipeline

Table4-1 Description of Pipeline Showing Stage in Which Operations Commence

Begins During

Cycle this Phase Mnemonic Descriptions
®1 — —
IC o ICF Instruction Cache Fetch
ITLB Instruction micro-TLB read
ol ITC Instruction cache Tag Check
RE RFR Register File Read
P2 IDEC Instruction DECode
IVA Instruction Virtual Address calculation
BCMP Branch Compare
EX o1 ALU Arithmetic Logic operation
DVA Data Virtual Address calculation
o1 DCR Data Cache Read
DTLB Datajoint-TLB read
bC 2 LA L oad data Alignment
DTC Data cache Tag Check
DCW Data Cache Write
WB *1 RFW Register File Write
P2 — —

User's Manual U10504EJ7VOUMO0

93

Chapter 4

4.2 Branch Delay
The pipeline of the V g4300 generates abranch delay of one cycleinthefollowing
Cases:
e When atarget address is calculated with a jump instruction

* When the branch condition of a branch instruction is satisfied and a
target address is calculated

Theinstruction address generated in the EX stage of ajump/branch instruction
cannot be used until the IC stage of the instruction to be executed after the next
instruction.

Figure 4-4 illustrates the branch delay and the location of the branch delay slot.

Branch IC RF EX DC WB

(Branch Delay Slot) IC RF EX DC WB A Single branch
Y delay

IC '] RF EX DC WB ~ instruction

Target
4—»‘

Branch Delay

Figure4-4 Branch Delay

94 User's Manual U10504EJ7VOUMO0

Pipeline

4.3 Load Delay

A load instruction that does not allow its result to be used by the instruction
immediately following is called adelayed load instruction. Theinstruction slot
immediately following thisdelayed load instruction isreferred to astheload delay
slot.

In the VVr4300 processor, theinstruction immediately following aload instruction
can use the contents of the loaded register, however in such cases hardware
interlocks insert additional delay cycles. Consequently, scheduling load delay
slots can be desirable, both for performance and V g-Series processor
compatibility.

4.4 Pipeline Operation

Theoperation of the pipelineisillustrated by the following examplesthat describe
how typical instructions are executed. The instructions described are: ADD,
JALR, BEQ, TLT, LW, and SW. Each instruction is taken through the pipeline
and the operations that occur in each relevant stage are described.

Floating-point instructions are executed in the pipeline in the same manner as
multicycle integer instructions.

User's Manual U10504EJ7VOUMO0 95

Chapter 4

96

Add Instruction

ADD rd,rs,rt

I C stage

RF stage

EX stage

DC stage

WB stage

In phase 2 of the IC stage, the fourteen low-order bits of the
virtual address are used to address the instruction cache. The
two high-order bits of this virtual address select one of four
instruction cache banks, and the remaining bits address the
selected bank. The ITLB selects the page.

In phase 1 of the RF stage, the cache index is compared with the
page frame number from the ITLB and the cache datais read out.
The cache hit/miss signal is valid late in phase 1 of the RF stage,
and the virtual PC is incremented by 4 so that the next
instruction can be fetched.

During phase 2, the rs and rt fields of the 2-port register file are
accessed and the register data is valid at the register file output.
At the same time, bypass multiplexers select inputs from either
the EX- or DC-stage output in addition to the register file output,
depending on the need for an operand bypass.

The ALU controls are set to do an A+B operation. The operands
flow into the ALU inputs, and the ALU operation is started. The
result of the ALU operation is latched into the ALU output latch
during phase 2.

This stage is a NOP for this instruction. The data from the
output of the EX stage (the ALU) is moved into the output latch
of the DC.

During phase 1, the WB latch feeds the data to the inputs of the
register file, which is addressed by the rd field. The file write
strobe is enabled. By the end of phase 1, the data is written into
the register file.

User's Manual U10504EJ7VOUMO0

Pipeline

o/ \ /N)

Cycle

phasel @1‘(1)2| ol | o2 | o1| @2| o1 @2 q>1‘q>2|
IC RF EX DC wWB
ICF ITC| RFR ALU RFW
ITLB IDEC
Figure4-5 Add Instruction Pipeline Operations
User's Manual U10504EJ7VOUMO00 97

Chapter 4

Jump and Link Register Instruction

JALR rd,rs

IC stage Same as the IC stage for the ADD instruction.

RF stage During phase 2 of the RF stage, the register addressed by the rs
field is read out of the file.

EX stage During phase 1 of the EX stage, the value of register rsis
clocked into the virtual PC latch. Thisvalueisused in phase 2 to
fetch the next instruction.

The value of the virtual PC incremented during the RF stage is
incremented again to produce the link address PC+8 where PC is
the address of the JALR instruction. The resulting value is the PC
to which the program will eventually return from the jump
destination. This value is placed in the Link output latch of the
Instruction Address unit.

DC stage The PC+8 value is moved from the Link output latch to the
output latch of the DC pipeline stage.

WB stage Refer to the ADD instruction. Note that if no value is explicitly
provided for rd then register 31 is used as the default. If rd is
explicitly specified, it cannot be the same register addressed by
rs; if it is, the result of executing such an instruction is
undefined.

SV N A A

phasel q>1‘¢2| o1 | @2 c1>1‘c1>2| o1 | @2 <I>1‘<I>2|
Cycle Ic RF EX DC WB
ICF ITC| RFR ALU RFW
ITLB IDEC
IVA

Figure4-6 Jump and Link Register Instruction Pipeline Operations

98 User's Manual U10504EJ7VOUMO0

Pipeline

Branch on Equal Instruction

BEQ rs,rt,offset

I C stage

RF stage

EX stage

DC stage

Same as the IC stage for the ADD instruction.

During phase 2, the register file is addressed with the rs and rt
fields and the contents of these registers are placed in the register
file output latch.

During phase 1, a check is performed to determine if each
corresponding bit position of these two operands has equal
values. If they are equal, the PC is set to PC+target, where
target is the sign-extended offset field. If they are not equal, the
PC is set to PC+4.

The next PC resulting from the branch comparison is valid at the
beginning of phase 2 for instruction fetch.

This stage is a NOP for this instruction.

WB stage This stage is a NOP for this instruction.

o/ N/ N/ N/

phasel cpl‘q>z| q>1‘<1>2 CI>1‘<I>2| @1‘¢2|q>1‘q>2|
Cycle Ic RF EX DC WB
ICF ITC RFR
ITLB IDEC BCMP
IVA

Figure4-7 Branch on Equal Instruction Pipeline Operations

User's Manual U10504EJ7VOUMO0 99

Chapter 4

Trap if Less Than Instruction

TLT rs,rt

I C stage
RF stage

EX stage

DC stage

WB stage

Same as the IC stage for the ADD instruction.
Same as the RF stage for the ADD instruction.

During the phase 1, the bypass multiplexers select inputs from
the RF-, EX- or DC-stage output latch, depending on the need
for an operand bypass. ALU controls are setto doan A — B
operation. The operands flow into the ALU inputs, and the ALU
operation is started.

The result of the ALU operation is latched into the ALU output
latch during phase 2.

The sign bits of operands and of the ALU output latch are
checked to determine if aless than condition istrue. If this
condition is true, a Trap Exception occurs. This, as with all
pipeline exceptions, implies a 2-cycle stall. The PC register is
loaded with the value of the exception vector and instructions
following in previous pipeline stages are killed.

The exception code is set in the ExCode field in the cause
register if the less than condition was met in the DC stage. The
PC value of thisinstruction is stored in the EPC register and BD
bit are updated appropriately according to the contents of the
EXL bit of the Status register. If the less than condition was not
met in the DC stage, no activity occurs in the WB stage.

o/ N/ N/ N\ S

prase | 1| @2 | @1| @2 | @1| 92| o1| @2 | 1| @2 |
Cycle ic RF EX DC WB
ICF ITC| RFR ALU RFW
ITLB IDEC
IVA

Figure4-8 Trapif Less Than Instruction Pipeline Operations

100

User's Manual U10504EJ7VOUMO0

Pipeline

Load Word Instruction

IW rt,offset(base)

I C stage

RF stage

EX stage

DC stage

WB stage

Same as the IC stage for the ADD instruction.

Same as the RF stage for the ADD instruction. Note that the base
field isin the same position as the rs field.

Refer to the EX stage for the ADD instruction. For LW, the
inputs to the ALU come from GPR[base] through the bypass
multiplexer and from the sign-extended offset field. The result of
the ALU operation that is latched into the ALU output latch in
phase 2 represents the effective virtual address of the operand
(DVA).

The data cache is accessed in parallel with the TLB, and the
cache tag field is compared with the Page Frame Number (PFN)
field of the TLB entry. After passing through the load aligner,
aligned data is placed in the DC output latch during phase 2.

During phase 1, the cache read data is written into the file
addressed by the rt field.

o/ N/ N/ N/

phase‘ q)l‘ @2‘ c1>1‘ D2 c1>1‘ @2‘ c1>1‘ @2‘ q)l‘ c1>2‘

Cycle

IC

RF EX DC wWB
ICF ITC| RFR DVA DCR LA | RFW
ITLB IDEC DTLB | DTC

Figure4-9 Load Word Instruction Pipeline Operations

User's Manual U10504EJ7VOUMO0 101

Chapter 4

Store Word Instruction

SW rt,offset(base)

I C stage
RF stage

EX stage

DC stage

WB stage

Same as the IC stage for the ADD instruction.
Same as the RF stage for the LW instruction.

Refer to the LW instruction for a calculation of the effective
address. From the RF output latch the GPR[rt] is sent through
the bypass multiplexer and into the main shifter, where the
shifter performs the byte-alignment operation for the operand.
The results of the ALU and the shift operations are latched in the
output latches during phase 2.

Refer to the LW instruction for a description of the cache access.
Additionally, the merged data from the load aligner is moved into
the store data output latch during phase 2.

If there was a cache hit, the content of the store data output latch
is written into the data cache at the appropriate word location.

Note that all store instructions use the data cache for two
consecutive PCycles. If the following instruction requires use of
the data cache, the pipeline is stalled for one PCycle to complete
the writing of an aligned store data.

o/ N/ N/)

prase | 1| @2 | @l| @2 | 1| @2| 01| @2 | 1| @2 |

Cycle IC RF EX DC WB
ICF ITC| RFR DVA DCR LA
ITLB IDEC DTLB |DTC DCW
Figure4-10 Sore Word Instruction Pipeline Operations
102 User's Manual U10504EJ7VOUMO0

Pipeline

4.5 Interlock and Exception Handling

Smooth pipeline flow isinterrupted when cache misses or exceptions occur, or
when datadependencies are detected. Interruptions handled using hardware, such
as cache misses, are referred to asinterlocks, while those that are handled using
software are called exceptions.

Asshownin Figure 4-11, al interlock and exception conditions are collectively
referred to as faults.

Faults

Software Hardware

Exceptions I Interlocks I

l l

Figure4-11 Interlocks, Exceptions, and Faults

At each cycle, exception and interlock conditions are checked for all active
instructions.

Because each exception or interlock condition correspondsto aparticular pipeline
stage, a condition can be traced back to the particular instruction in the exception/
interlock stage, as shown in Figure 4-12. For instance, an LDI Interlock israised
in the execution (EX) stage.

Tables4-2 and 4-3 describe the pipelineinterlocks and exceptionslisted in Figure
4-12.

User's Manual U10504EJ7VOUMO0 103

Chapter 4

cosk T\ /NN

PCycle | @1 | @2 | @1| @2 | @1| 02| 01| @2 | 1| @2

Pipeline Stage
State
IC RF EX DC wB
IT™ LDI DCM CPOI
Interlock ICB MCI DCB
COp
IADE SYSC RST
ITLB BRPT NMI
IBE CPU OVFL
RSVD TRAP
. FPE
Exceptions DADE
DTLB
WAT
INTR
DBE

Remark The conditions of the exceptions are shown starting from the
exception with the highest priority.
Figure4-12 Correspondence of Pipeline Stage to Interlock and Exception Condition

104 User's Manual U10504EJ7VOUMO0

Pipeline

Table4-2 Description of Pipeline Exceptions

Exception Description
IADE Instruction Address Error Exception
ITLB Instruction TLB Exception

IBE Instruction Bus Error Exception
SYSC SYSCALL Instruction Exception
BRPT Breakpoint Instruction Exception

CPU Coprocessor Unusable Exception
RSVD Reserved Instruction Exception

RST External Reset Exception

NMI External NMI Exception
OVFL Integer Overflow Exception
TRAP TRAP Instruction Exception

FPE Floating-point Exception
DADE Data Address Error Exception
DTLB Data TLB Exception
WAT Reference to Watch Address Exception
INTR Interrupt Exception

DBE Data Bus Error Exception

Table4-3 Description of Pipeline Interlocks

I nterlock Description
IT™M Instruction TLB Miss
ICB Instruction Cache Busy
LDI Load Interlock
MCI Multi-cycle Interlock
DCM Data Cache Miss
DCB Data Cache Busy
COp Cache Op
CPOI CPO Bypass Interlock

User's Manual U10504EJ7VOUMO0

105

Chapter 4

4.6 PipelineInterlocksand Exceptions

When an interlock or exception condition arises, pipeline flow isinterrupted.
Depending upon whether the condition is an interlock or an exception, one of the
following occurs:

e If aninterlock condition arises, the pipeline remains stalled until the
interlock is corrected by hardware.

e |If an exception occurs, the exception-causing instruction and all
pipelines that follow are aborted, the exception is resolved by
software, and the pipeline restarted and rel oaded.

Pipelineinterlocksand pipeline exceptions are described in the following section.
The exceptions themselves are described in Chapter 6 Exception Processing.

Bypassing, which allows data and conditions produced in the EX, DC and WB
stages of the pipelineto be made availableto the EX stage of the next cycle, isalso
described in this section.

4.6.1 PipelinelInterlocks

When an interlock condition occurs, the pipeline stalls and remains stalled until
theinterlock iscorrected. Should pipelinestall requestsfrom different stagesarise
simultaneously, the Pipeline Control Unit prioritizes the stall requests. For
instance, astall request from the DC stageis always allowed to be resolved before
a simultaneous RF-stage stall request, since both may require the same resource
(TLB, memory) to be resolved. The EX stageisallowed to stall in order to
complete amulticycle instruction aslong asthere is no load dependency between
itself (the EX stage) and the DC stage. |nterlock conditionsfor each pipeline stage
are shown in Figure 4-12 and described in Table 4-3.

The remainder of this section describesin detail the following pipeline interlocks:
e Instruction TLB Miss (ITM)
» Instruction Cache Busy (ICB)
* Load Interlock (LDI)
» Multicycle Instruction Interlock (MCI)
» Data Cache Miss (DCM)
e Data Cache Busy (DCB)
e Cache Operation (COp)
» CPO Bypass Interlock (CPOI)

106 User's Manual U10504EJ7VOUMO0

Pipeline

4.6.2 Instruction TLB Miss(ITM)

A pipelinestall dueto an Instruction TLB Miss occurswhen the virtual address of
the next instruction to be fetched is not found in the instruction micro-TLB
(ITLB).

The pipeline stalls when the micro-TLB missis detected in the RF stage,
whereupon the pipeline controller notifies the micro-TLB to proceed in servicing
thestall. The pipeline starts running again when the micro-TLB has been updated
from the JTLB.

A miss penalty of 3 PCyclesisincurred when the micro-TLB isupdated from the
JTLB.

If the virtual address also missesin the JTLB, an exception is taken which
overrides the stall to allow the handler to update the JTLB. Oncethe updateis
completed, theinstruction fetch isre-executed. Thisinitiates arepeat of the | TM
stall until themicro-TLB isupdated from the JTL B, which wasjust updated by the
exception handler.

‘ Run ‘ Stall ‘ Stall ‘ Stall ‘ Run ‘ Run ‘ Run ‘ Run ‘ Run ‘ Run ‘ Run

IT™ ™
| |

IC RF* RF | RF RF* EX | DC | WB

ITLB ITLB
Miss Access JTLB Update

IC | IC | IC | IC | RF | EX |DC|WB

Figure4-13 Instruction TLB Miss Interlock

User's Manual U10504EJ7VOUMO0 107

Chapter 4

4.6.3 Instruction Cache Busy (1CB)

A pipeline stall due to an Instruction Cache Busy interlock occurs when the next
instruction is not found in the instruction cache, and the cache cannot service the
Instruction Fetch. The pipeline stalls when the instruction cache missis detected
in the RF stage. After detecting the stall, the pipeline controller notifies the
instruction cache to proceed in servicing the stall.

The pipeline begins running again after the entire cache line has been written into
theinstruction cache.

When theinstruction cache is busy with a CACHE instruction and the Instruction
Fetch cannot be serviced, a Cache Operation (COp) interlock is taken, not ICB.

‘ Run ‘Stall ¢ ‘Stall ‘ Run ‘ Run ‘ Run ‘ Run ‘ Run ‘ Run ‘ Run
ICB @3
e o e RF RF* EX | DC | WB
I-Cﬁci:shse Refill I-cache I-chggtee
IC |IC | RF|EX |DC | WB

IC | RF | EX | DC | WB

Figure4-14 Example of an Instruction Cache Busy Interlock

108 User's Manual U10504EJ7VOUMO0

Pipeline

4.6.4 MulticycleInstruction Interlock (MCI)

A pipeline stall due to a Multicycle Interlock occurs when an instruction with an
execution latency of more than one pipeline clock enters the EX stage.

The pipeline begins running again during the multicycleinstruction’ slast clock of
operation in the EX stage.

‘Run ‘Run ‘Run ‘Run ‘Stall ‘ eee Stall eee ‘Run ‘Run

MCI —

! C

. I v I
MultAB| IC | RF | EX | EX e o o| EX| EX|DC | WB

Read MultHi| |C | RF | RF e ¢« o RF| RF| EX | DC

Read MultLo | IC | IC e o« o| IC |IC | RF| EX

Multiple
Cycle Instruction
Stall

A
Y

Figure4-15 Example of a Multicycle Instruction Interlock

User's Manual U10504EJ7VOUMO0 109

Chapter 4

4.6.,5 Load Interlock (LDI)

110

A pipeline stall dueto aLoad Interlock occurs when data fetched by aload
instruction isrequired by the next immediateinstruction. The pipeline stallswhen
the load-use instruction (the instruction using the load data), enters the EX stage.

The pipeline begins running again when the clock after the target of the load is
read from the data cache (in the DC stage of the“Load B” instruction in Figure 4-
16).

The Load Interlock is normally only active for one PClock cycle when the load
instruction isin the DC stage and the load-use instruction isin the EX stage. The
data returned from the data cache at the end of the DC stage is input into the EX
stage, using the bypass multiplexers.

If the data cache misses, the Data Cache Busy interlock extendsthe stall until the
data cache has been updated with the missing data. The LDl isstill active during
this time and extends the stall one clock beyond the Data Cache Interlock while
the data is bypassed from the data cache into the EX stage.

Thiscaseisillustrated in Figure 4-17.

‘ Run ‘ Run ‘ Run ‘ Run ‘Stall ‘ Run ‘ Run ‘ Run ‘ Run ‘ Run

Load A IC | RF | EX | DC | WB | WB

Load B

detected

IC | IC | RF | EX | DC | WB

Figure4-16 Example of a Load Interlock

User's Manual U10504EJ7VOUMO0

Pipeline

4.6.6 Data CacheMiss(DCM)

If a data cache miss occurs in the DC stage, the pipeline stallsfor 1 PCyclein
which the missis detected. The pipeline stalls regardless of whether the load or
storeinstruction is executed. The data cache busy (explained next) continues
stalling until anew cachelineis read.

When arequested word data has been read from the cache, the pipeline begins
running again.

Figure 4-17 illustrates DCM.

4.6.7 Data Cache Busy (DCB)

A pipeline stall due to the data cache being busy can occur in the following two
situations:

If the instruction immediately after a store instruction requires use of
the data cache then the pipeline is stalled in its DC stage while the
store writes the data to the cache during its WB stage. On a cache
store hit the pipeline only stalls for one PClock while the data is
written to the data cache. On a cache store miss the pipeline stalls
with the store in the DC stage until the cache line has been updated.
Once the line has been updated, the pipeline restarts and moves the
store instruction into the WB stage. If the instruction following the
“store” (i.e. the instruction currently in the DC stage) also requires
access to the data cache, the pipeline will then stall for one PCycle
while the store data is being written to the cache.

When a miss occurs on aload, the data cache signals it is busy while
it fetches the missed data word from external memory. Refer to
Figure 4-17.

The pipeline begins running again on aload when the missed dataword is
available from the data cache.

User's Manual U10504EJ7VOUMO0 111

Chapter 4

‘Run ‘Run ‘Run ‘Stall ‘Run ‘Run ‘Stall ‘---Stall secccee ‘Run ‘Run

AddAB | IC

Load C

A/
RF | EX | EX | DC | WB cee WB| WB| WB
DCB
DCM/ DCM DCB
14
IC | RF | RF | EX | DC"| DC .o

D-cache
LDI Miss D-cache

detected DI Miss
\J
IC | IC RF E)? coe

IC RFI RF| RF | RF | EX

Figure4-17 Example of a Data Cache Miss Followed by a Load Interlock

4.6.8 CACHE Operation (COp)

A pipeline stall due to a CACHE operation can occur in the following two
situations:

112

When an instruction cache operation instruction enters the DC stage,
the instruction cache operation continues to be serviced while the
pipeline stalls. The pipeline begins running again when the
instruction cache operation is complete, allowing the next instruction
fetch to proceed.

When the data cache operation instruction requiring an operation of 2
PCycles of the data cache has entered the DC stage.

User's Manual U10504EJ7VOUMO0

Pipeline

4.6.9 Coprocessor 0 BypassInterlock (CPOI)

A pipeline stall due to a CP0O Bypass Interlock occurs when an instruction which
caused an exception reaches the WB stage and the subsequent instruction in the
DC stage requests aread of any CPO register.

Thisinterlock causes a pipeline stall for one PCycle to allow the CPO register to
be written in the WB stage before allowing any CPO register to beread inthe DC

stage.

‘Run ‘Run ‘Run ‘ Run ‘Stall ‘ Run ‘ Run ‘Run ‘ Run
Instruction WB stage completes in
which causes IC RF | EX | DC | WB first phase of stage
exception

CP0O1 CPO1
A
Load LO IC | RF| EX |DC |DC | WB

IC| RF | EX | EX | DC | WB

IC| RF | RF | EX | DC | WB

Figure4-18 Example of a Coprocessor 0 Bypass Interlock (CPOI)

User's Manual U10504EJ7VOUMO0 113

Chapter 4

4.7 Pipeline Exceptions

When a pipeline exception condition occurs, the pipeline stallsfor 2 PCyclesand
the instruction causing the exception as well as all those that follow it in the
pipeline are aborted. Accordingly, any stall conditions and any later exception
conditions from any aborted instruction are inhibited; there is no benefit in
servicing stalls for an aborted instruction.

After aborting the instructions, an execution starts at a predefined exception
vector. System Control Coprocessor (CPQ) registers are loaded with information
that identifies the type of exception aswell as auxiliary information such as the
virtual address at which translation exceptions occur.

Exception conditions for each pipeline stage are shown in Figure 4-12 and
described in Table 4-2.

Exceptions can split into two groups:

» those that occur independently of instruction execution (Reset, NMI,
and interrupt exceptions)

» those exceptions that result from the execution of a particular
instruction (an instruction-dependent exception). This category
includes all other exceptions.

Exceptions arelogically precise.

4.7.1 Instruction-Independent Exceptions (Reset, NMI, and Interrupt)

114

Reset, NMI and interrupt exceptions are identified and processed as follows:

» Reset exception has the highest priority of all the possible exceptions;
when a Reset exception is asserted, instructions in all pipeline stages
except the WB are aborted regardless of any interlocks or other
exceptions that may be active.

* NMI and interrupt exception requests are accepted only if the
previous PCycle was a run cycle. When an NMI or interrupt
exception occurs, all pipeline stages except the WB are aborted.

User's Manual U10504EJ7VOUMO0

Pipeline

4.7.2 Instruction-Dependent Exceptions

Prioritizing between instruction-dependent exceptions and interlocks is made
according to these rules:

an exception reguest from a particular pipeline stage is only
processed if no stall condition from a later pipeline stage is active.

an exception request from a later pipeline stage always has a higher
priority than an exception from an earlier pipeline stage.

an exception reguest from a pipeline stage always has higher priority
than any stall request from the same or earlier pipeline stages.

4.7.3 Interactions between Interlocks and Exceptions

With the V4300, the processing of the EX and RF stages can be continued while
the pipeline stalls. The interaction between interlocking of the two stages and
exceptionsisrelatively simple.

Interaction between EX and RF Stages

The EX exception occurs only when an instruction that causes the EX exception
has entered apipeline stage. Because the RF interlock solving processing has not
yet been started at this time, the EX exception takes precedence because of the

stall request from the RF stage. Interactionsin various cases are described next.

When EX exception is stalled by DC interlock
The EX exception takes precedence over the RF stall request. Thisis
because the RF interlock is not solved during the DC stall period.

If instruction cache busy and multi-cycle instruction interlock
take place simultaneously

Both the RF and EX stages solve the respective interlocks.

The cause that has generated a floating-point exception is detected
before the instruction cache busy (ICB) stall ends, but the exception
occurs after execution has entered the DC stage. Therefore, the
exception condition is retained in the EX stage until the RF interlock
is solved, and the related stage is deleted.

If exception from EX stage and RF interlock take place
simultaneously

The EX exception takes precedence. This is because the instruction
that has caused the RF interlock is canceled and no request is issued
to the external memory.

User's Manual U10504EJ7VOUMO0 115

Chapter 4

Interaction between RF and DC Stages

If astall request is made at the same time in the RF and DC stages, the pipeline
controller givesthe priority to the processing of the DC stage. In other words, the
RF stall processing is started after the DC stall has been solved. Thisis because
the same resources (such as the system interface and TLB) are necessary for
solving the RF interlock and DC interlock.

4.7.4 Exception and Interlock Priorities

The priority for processing exceptions and interlocks within the same clock cycle
islisted below. Exception and interlock requests from the WB stage always have
priority over exception and interlock reguests from the DC stage. Exception and
interlock requests from the DC stage always have priority over exception and

interlock requests from the EX stage. EX-stage exception and interlock requests
inturn always have priority over any exception and interl ock requestsfrom the RF

stage.

Priority:
IC RF EX DC Higher

Lower

Current
CPU
Cycle

Figure4-19 Execution and Interlock Priorities
In the case of multiple exception requests from the same pipeline stage, the

highest-priority exception is processed first. The priority of the instruction-
dependent exceptions and interlocks are shown in the following sections.

116 User's Manual U10504EJ7VOUMO0

Pipeline

4.7.5 WB-Stage Interlock and Exception Priorities

Because there is only the following one exception or interlock in the WB stage,
thereisno priority.

4.7.6 DC-Stage Interlock and Exception Priorities

CP0 Bypeass interlock

Followingisaprioritized list of the exceptionsand interlocks processed inthe DC
pipeline stage.

Reset exception (highest)
NMI exception

Integer Overflow exception
Trap exception
Floating-Point exception
Data Address Error exception
Data TLB Miss exception
Data TLB Invalid exception
Data TLB Modification exception
Watch exception

Interrupt exception

Data Cache Miss interlock
Data Cache Busy interlock
CACHE Op interlock

Data Bus Error exception

User's Manual U10504EJ7VOUMO0

117

Chapter 4

4.7.7 EX-Stage Interlock and Exception Priorities

Followingisaprioritized list of the exceptions and interlocks processed in the EX

stage.

System Call exception
Breakpoint exception
Coprocessor Unusable exception
Reserved Instruction exception
Load interlock

Multicycle Instruction interlock

4.7.8 RF-Stage Interlock and Exception Priorities

Following isaprioritized list of the exceptions and interl ocks processed in the RF
pipeline stage.

Instruction Address Error exception
Instruction TLB Miss exception
Instruction TLB Invalid exception
Instruction TLB Miss interlock
Instruction Cache Busy interlock
Instruction Bus Error exception

If an Instruction Bus Error exception occurs during a cache refill, while an
Instruction Cache Busy interlock is active, the instruction cache only signals the
exception to the pipeline controller after the cacherefill iscomplete, and therefore
no stall is active.

Individual exceptions are described in detail in Chapter 6 Exception Processing.

118

User's Manual U10504EJ7VOUMO0

Pipeline

4.7.9 Bypassing

In some cases, data and conditions produced in the EX, DC and WB stages of the
pipeline are made available to the EX stage (only) through the bypass datapath.

Operand bypass allows an instruction in the EX stage to continue without having
towait for dataor conditionsto be written to the register file at the end of the WB
stage. Instead, the Bypass Control Unit ensures data and conditions from later
pipeline stages are available at the appropriate time for instructions earlier in the
pipeline.

The Bypass Control Unit also controls the source and destination register
addresses supplied from the register file.

4.8 Code Compatibility

The V4300 can execute any programs which can be executed on the Vg3000
series and V g4000 series*, but the reverse may not necessarily betrue. Standard
MIPS compilers produce code which will run on both. When hand-coding
assembly code, itisstrongly advised to maintain compatibility withtheV g Series.
For more information, refer to the each product’ s user’ s manuals.

* Theinstruction set on the V4100 differs partially from the other products.
(For example, FPU instructions are not supported.)

User's Manual U10504EJ7VOUMO0 119

Chapter 4

4.9 Write Buffer

120

The V r4300 processor contains an on-chip write buffer, used as atemporary data
storage for outgoing data. The write buffer stores one doubleword (8 bytes) of
datafor each PCycle, and can buffer atotal of eight words (32 bytes) of data, equal
to the data cache line size. When storing data, therefore, al the data lengths can
be used.

The write buffer can store any data aslong asit has a vacancy.

The format of the write buffer is shown below.

4 32 64
Size Physical Address Data
Size Physical Address Data
Size Physical Address Data
Size Physical Address Data

Figure4-20 Write Buffer Format

The write buffer can store the following:
* Four 32-bit physical addresses
* 4-hit size area indicating four types of transfer data size
e Data up to 4 doublewords

During an uncached store operation, datais held in this buffer until it can be
retrieved by the external interface. The processor pipeline continues to execute
while datais stored in the write buffer.

During either aload miss or astore missto a cache linein the dirty state (refer to
Chapter 11 Cache Memory for adescription of cache line states), dirty datais
stored inthisbuffer until therequested dataisreturned from the external interface.
The processor pipeline continues to run while the write buffer waits (for a
response from the external interface) to empty its contents to the external
interface/memory.

If the processor executes aload or store instruction requiring external resources
when the write buffer isfull, the pipelineis stalled until the write buffer has a
space for the data to be stored.

User's Manual U10504EJ7VOUMO0

Memory Management System

TheVg4300 processor providesafull-festured memory management unit (MM U)
which uses an on-chip trandation lookaside buffer (TLB) to trandlate virtual
addresses into physical addresses.

This chapter describes the operation of the TLB, those System Control
Coprocessor (CPO) registersthat providethe softwareinterfacetothe TL B and the
memory mapping method that translates the virtual address to the physical
address.

User's Manual U10504EJ7VOUMO0 121

Chapter 5

5.1 Trandation Lookaside Buffer (TLB)

A virtual addressis converted into aphysical address by using theinternal TLB".
Theinternal TLB isafull-associative memory having 32 entries, and one entry is
mapped with an odd and even numbersin pairs. The size of these pages can be
4K, 16K, 64K, 256K, 1M, 4M, or 16M, and can be specified for each entry. When
avirtual addressisgiven, each TLB entry checksthe 32 entrieswhether the virtual
address coincides with the virtual address appended with the ASID area stored to
the Entry Hi register.

If the addresses coincide (if ahit occurs), aphysical addressis generated from the
physical addressin the TLB and an offset.

If the addresses do not coincide (if amiss occurs), an exception occurs, and the
TLB entry iswritten by software from a page table on the memory. The software
either writesthe TLB entry over the entry selected by theindex register, or writes
it to arandom entry indicated by the random register.

If there are two or more TLB entries that coincide, the TLB operation is not
correctly executed. In this case, the TLB-Shutdown (TS) bit of the status register
is set to 1, and then the TLB cannot be used.

5.2 Memory Management System Architecture

The memory management system expands the address space of the CPU by
converting alarge virtual memory space into physical addresses.

The physical address space of the Vz4300 is4 GB with 32-bit addressesused. A
virtual addressis 32 bitswide in the case of the 32-bit mode, and the maximum
user areais2 GB (231). In the case of the 64-bit mode, the addressis 64 bitswide,
and the maximum user areais1 TB (2%9). For the TLB entry format in each mode,
refer to 5.3.1.

Thevirtual addressis expanded by the address space ID (ASID) (refer to Figures
5-2 and 5-3). ASID decreases the number of times of TLB flash when the context
isswitched. The ASID areais 8 bitswide and isin the entry Hi register of CPO.
The global bit (G) isin the entry LoO and entry Lol registers.

* There are virtual-to-physical address trandations that occur outside of the TLB. For example,
addresses in the kseg0 and ksegl spaces are unmapped trandations. In these spaces the physical
address is derived by subtracting the base address of the space from the virtual address.

122

User's Manual U10504EJ7VOUMO0

Memory Management System

Virtual address
1. Virtual address (VA) represented by the vir-
tual page number (VPN, high-order bit of the ASID

address) is compared with indicated area in VPN Offset I
TLB.

2. If thereisamatch, the page frame number G ASID VPN
(PFN) representing the high-order bits of
the physical address (PA) is output from >. TLB
the TLB. Entry
PFN
TLB

3. The Offset, which does not pass through the

TLB, isthen concatenated to the PFN. PFN | Offset I

Physical address

Figure5-1 Overview of a Virtual-to-Physical Address Translation

User's Manual U10504EJ7VOUMO0 123

Chapter 5

Virtual-to-Physical Address Translation

124

Converting avirtual addressto a physical address begins by comparing the virtual
address from the processor with the virtual addressesin the TLB; thereisamatch
when the virtual page number (VPN) of the addressis the same asthe VPN field
of the entry, and either:

e the Global (G) hit of the TLB entry is set, or

* the ASID field of the virtual address is the same as the ASID field of
the TLB entry.

ThismatchisreferredtoasaTLB hit. If thereisno match, aTLB Missexception
is taken by the processor and software is allowed to reference a page table of
virtual/physical addressesin memory and to write its contents to the TLB.

If thereisavirtual address match inthe TLB, the physical addressis output from
the TL B and concatenated with the Offset, which represents an address within the
page frame space. The Offset does not pass through the TLB. The lower bits of

the virtual address are output asis.

For details, refer to 5.4.9 Virtual-to-Physical Address Translation Process.
The next two sections describe the 32-bit and 64-bit address trandlations.

User's Manual U10504EJ7VOUMO0

Memory Management System

32-bit Mode Address Translation

Figure 5-2 shows the virtual-to-physical-address translation of a 32-bit mode
address. Thisfigureillustrates the two of seven possible page sizes: a
4 KB page (12 hits) and a 16 MB page (24 hits).

» The top portion of Figure 5-2 shows a virtual address with a 12-hit,
or 4 KB, page size, labelled Offset. The remaining 20 bits of the
address excluding ASID represent the VPN, and index the 1M-entry
page table.

* The bottom portion of Figure 5-2 shows a virtual address with a 24-
bit, or 16 MB, page size, labelled Offset. The remaining 8 bits of the
address excluding ASID represent the VPN, and index the 256-entry
page table.

Virtual Address with 1M (229 4 KB pages

39 3231 29 28 12 11 0
ASID VPN Offset
8 R Y J 12
Y 20
20 bits = 1M pages A /
Y Y
Virtual-to-physical Offset passed
translation in TLB unchanged to
Bits 31, 30 and 29 of the virtual TLB physical memory
address select User, 32-bit Physical Address
Supervisor, or Kernel address
spaces. 31 0
| PFN Offset I
Virtual-to-physical
translation in TLB uOrf]“szﬁatmp;esds?g
physical memory
14 A Y4 A N
39 3231 2928 24 23 0
ASID VPN Offset
8 IV — 24

8
8 bits = 256 pages
Virtual Address with 256 (28)16 MB pages

Figure5-2 32-Bit Mode Virtual Address Translation

User's Manual U10504EJ7VOUMO0 125

Chapter 5

64-bit Mode Address Trandation

Figure 5-3 shows the virtual-to-physical-address translation of a 64-bit mode
address. Thisfigureillustrates the two of seven possible page sizes: a
4 KB page (12 hits) and a 16 MB page (24 hits).

e Thetop portion of Figure 5-3 shows a virtual address with a
12-hit, or 4 KB, page size, labelled Offset. The remaining 28 bits of
the address excluding ASID represent the VPN, and index the 256M -
entry page table.

» The bottom portion of Figure 5-3 shows a virtual address with a 24-
bit, or 16 MB, page size, labelled Offset. The remaining 16 bits of
the address excluding ASID represent the VPN, and index the 64K-
entry page table.

Virtual Address with 256M (228) 4 KB pages
71 64 636261 40 39 28 bits = 256M pages 12 11 0

VPN Offset

~ I\ J
Virtual-to-physical Offset passed
translation in TLB unchanged to
. . physical memory
Bits 62 and 63 of the V|rtuall 32-bit Physical Address
address select User, Supervisor, 31 0
or Kernel address spaces.
PFN Offset
Virtual-to-physical Offset passed
translation in TLB unchanged to

physical memory

14 A e A N\
71 64 @E\ 61 4039 24 23 0
ASID 0or -1 VPN Offset
8 2 22 16 24

16 bits = 64K pages
Virtual Address with 64K (216)16 MB pages

Figure5-3 64-Bit Mode Virtual Address Trandation

126 User's Manual U10504EJ7VOUMO0

Memory Management System

5.2.1 Operating Modes

The processor has three operating modes that function in both 32- and 64-bit
operations:

e User mode
e Supervisor mode
 Kernel mode

The User mode and Kernel mode are common to all the Vg Series members.
Generally, the operating system is executed in the Kernel mode, and the
application program is executed in the user mode. The Vg4000 seriesis provided
with athird mode. This mode, called the supervisor mode, is intermediate
between the User and Kernel modes, and is used to organize a high security
system.

If an exception occurs, the CPU entersthe Kernel mode, and remainsin thismode
until an exception return instruction (ERET) is executed. The ERET instruction
restores the mode in which the processor was operating before the occurrence of
the exception.

5.2.2 Virtual Addressingin User Mode

In the single-user mode, avirtual address space (useg) of 2 GB (23! bytes) can be
used in the 32-hit mode, and a1 TB (2*° bytes) virtual address space (xuseg) can
be used in the 64-bit mode. Asshownin Figures5-2 and 5-3, each virtual address
is expanded to a separate virtual address by an 8-bit address space ID (ASID) for
up to 256 user processes. The system allocates each process with an ASID to
retain the contents of the TLB even when it has switched the context. useg and
xuseg arereferenced viaTLB. Whether the cache can be used or not is determined
for each page by the TLB entry (the C bit of the TLB entry determines whether
the cache can be used).

The user segment startsfrom address 0 and the currently valid user processresides
in useg (in the 32-bit mode) or xuseg (in the 64-bit mode).

The Vr4300 operates in the user mode when the values of the bitsin the Status
register is asfollows:

« KSU hits=10
 EXL=0
 ERL=0

In conjunction with these bits, the UX hit in the Satusregister selects between 32-
or 64-bit User mode addressing as follows:

User's Manual U10504EJ7VOUMO0 127

Chapter 5

UX = 0: Selects 32-bit useg

TLB missis processed by a 32-bit TLB miss exception handler.

UX = 1: Selects 64-bit xuseg

TLB missis processed by a 64-bit XTLB miss exception handler.

Table 5-1 lists the characteristics of the two user mode segments, useg and xuseg.

Ox 8000 0000
Ox 7HF HH

Ox 0000 0000

32-bit*

Address
Error

2GB

TLB Mapped

useg

Ox A A A FF

Ox 0000 0100 0000 0000
Ox 0000 OOFF A FH

Ox 0000 0000 0000 0000

64-bit

Address
Error

1TB

xuseg
TLB Mapped

* TheVRr4300 internally uses 64-bit addresses. Inthe Kernel mode, the pro-
cessor saves and restores each register to initialize the register before
switching the context. A 32-bit valueis used as an address, with bit 31
sign-extended to bits 32 through 63, in the 32-bit mode.

Usually, the program in the 32-bit mode does not generate invalid address-
es. If the context is switched and the processor enters the Kernel mode, a
value other than the 32-bit address previously sign-extended may be stored
to a64-bit register. Inthis case, the program in the user mode may gener-

ate invalid addresses.

Figure5-4 User Mode Virtual Address Space

Table5-1 32-Bit and 64-Bit User Mode Segments

Status Register
AddressBit . Segment . i
Values Bit Values Name Virtual AddressRange | Segment Size
KSU|EXL |ERL| UX

; 0x0000 0000

32-hit 2GB
10 |0 0 0 u through

A(31)=0 >0 OXTFFF PRFF (2** bytes)

; 0x0000 0000 0000 0000
64-hit 1TB

N 10 |0 0 1 Xuseg through 40

A(63:40) =0 0x0000 00FF FFFFFFFF | (27 bytes)

128

User’s Manual U10504EJ7VOUMO0

Memory Management System

useg (32-bit mode)

When the UX bit of the Statusregister is0 and the most significant bit of thevirtua
addressisO, thisvirtual address spaceisreferred to asuseg. If an attempt is made
to reference an address whose most significant bit is 1, an address error exception
occurs (refer to Chapter 6 Exception Processing).

xuseg (64-bit mode)

If the UX bit of the Status register is 1 and the bits (63:40) of the virtual address
areall O, the virtual address spaceisreferred to asxuseg. A user address space of
1TB (240 bytes) can be used. If an attempt is made to reference an address that
has 1 in bits (63:40), an address error exception occurs (refer to Chapter 6
Exception Processing).

5.2.3 Virtual Addressingin Supervisor Mode

The supervisor mode shown in Figure 5-5 is intended for hierarchical execution
of the operating system. Inthe Kernel mode, the Kernel operating system in the
highest hierarchy is executed, and the other operating systems are executed in the
supervisor mode.

Referencing suseg, sseg, xsuseg, xsseg, and csseqg (i.e., al spaces) is carried out
viaTLB. Whether the cache can be used or not is determined by the TLB entry of
each page (the C bit of the TLB entry determines whether the cache can be used).

The processor operates in the supervisor mode if the bits of the Satusregister are
in the following status:

« K&U=01
« EXL=0
* ERL=0

In addition, the addressing mode in the supervisor mode is determined by the SX
bit of the Satus register.

e SX =0: 32-hit supervisor space
TLB missis processed by a 32-bit TLB miss exception handler.

e SX = 1: 64-bit supervisor space
TLB missis processed by a 64-bit XTLB miss exception handler.

Table 5-2 shows the features of each segment in the supervisor mode.

User's Manual U10504EJ7VOUMO0 129

Chapter 5

0x

Ox
Ox

Ox
0x

0x
Ox

Ox

130

32-bit*

FFFF FFFF

E000 0000
DFFF FFFF

Q00 0000
BFFF FFFF

8000 0000
7FFF FFFF

0000 0000

Address Error

0.5GB

TLB Mapped ssed

Address Error

2GB
TLB Mapped fsus€9

(0%

0x
0x

0x
0x

0x
0x

0x
0x

(0%
0x

0x

FFFF FFFF FFFF FRFF

FFFF FFFF EDOO 0000
FFFF FFFF OFFF FFFF

FFFF FFFF (D00 0000
FFFF FFFF BFFF FFFF

4000 0100 0000 0000
4000 OOFF FFFF FHFF

4000 0000 0000 0000
3FFF FFFF FFFF FFFF

0000 0100 0000 0000
0000 OOFF FHAFF FFFF

0000 0000 0000 0000

64-bit
Address Error

0.5GB

TLB Mapped csseg

Address Error

1TB

TLB Mapped Xsseg

Address Error

1TB

TLB Mapped xsuseg

* TheVR4300 internally uses 64-bit addresses. In the 32-bit mode, a 32-bit
value with bits 32 through 63 sign-extended is used as an address.
Normally, the program in the 32-bit mode does not generate an invalid ad-
dress. However, there is a possibility that an integer overflow may occur
asaresult of an operation of base register + offset to calcul ate an address.
The address calculated at thistimeisinvalid, and the result is undefined.
Two causes of the overflow are cited below.

e When hit 15 of offset = 0, bit 31 of base register = 0, and bit 31 of
(base register + offset) = 1

e When hit 15 of offset = 1, bit 31 of base register = 1, and bit 31 of
(base register + offset) = 0

Figure5-5 Supervisor Mode Address Space

User's Manual U10504EJ7VOUMO0

Memory Management System

Table5-2 32-Bit and 64-Bit Supervisor Mode Segments

_ Status Register
AddressBit Bit Values gment Virtual Address Range Eegment
Values Name Size
KSU|EXL|ERL | SX
: 0x0000 0000
f’\z(sbl'; o o1 |0 |0 |0 |suseg through (2321 Sy?as)
OX7FFF FFFF
. 0xC000 0000
32-bit 512 MB
ey oL |0 0 0 | sseg through 29
A(31:29) = 110 OXDFFF FEFF (2%° bytes)
) 0x0000 0000 0000 0000
64-hit 1TB
e 01 |0 0 1 | xsuseg through 40
A(63:62) = 00 0X0000 00FF FFFE Frrr | (27 DY1e9)
) 0x4000 0000 0000 0000
64-bit 1TB
o 01 |0 0 1 | xsseg through 40
A(63:62) =01 0x4000 00FF FFFE FrrE | (2 PYt&9)
. OxFFFF FFFF C000 0000
64-bit 512 MB
e oL |0 0 1 | csseg through 29
A(63:62) = 11 OXFFFF FFFF DFFF FRFF | (& DYteS)

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Satus register and the most-significant
bit of the virtual addressis set to 0, the suseg virtual address space is selected; it
covers the full 231 bytes (2 GB) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Satus register and the three high-order
bits of the virtual address are 110, the sseg virtual address space is selected; it
covers 229 bytes (512 MB) of the current supervisor address space. The virtual
addressis extended with the contents of the 8-bit ASID field to form a unique
virtual address.

User's Manual U10504EJ7VOUMO0 131

Chapter 5

132

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Statusregister and bits 63:62 of thevirtual
address are set to 00, the xsuseg virtual address spaceis selected; it coversthefull
2%0bytes (1 TB) of the current user address space. Thevirtual addressis extended
with the contents of the 8-bit ASID field to form a unique virtual address.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 inthe Satusregister and bits 63:62 of thevirtual
address are set to 01, the xsseg current supervisor virtual address spaceis selected;
it covers the full 2% bytes (1 TB) of the current supervisor address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

64-bit Supervisor Mode, Separ ate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 inthe Satusregister and bits 63:62 of thevirtual
address are set to 11, the csseg separate supervisor virtual address spaceis
selected. Thevirtual addressis extended with the contents of the 8-bit ASID field
to form aunique virtual address.

User's Manual U10504EJ7VOUMO0

Memory Management System

5.2.4 Virtual Addressingin Kernel Mode

The processor operates in Kernel mode when the Satus register contains one or
more of the following values:

+ KSU=00
« EXL=1
« ERL=1

In conjunction with these bits, the KX bit in the Status regi ster selects between 32-
or 64-hit Kernel mode addressing space:

» when KX =0, 32-bit kernel space is selected
TLB missis processed by a 32-bit TLB miss exception handler.

* when KX = 1, 64-bit kernel space is selected
TLB missis processed by a 64-bit X TLB miss exception handler.

The processor enters Kernel mode whenever an exception is detected and it
remainsin Kernel mode until an Exception Return (ERET) instruction is executed
and resultsin ERL and/or EXL = 0. The ERET instruction restores the processor
to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the
high-order bits of the virtual address, as shown in Figure 5-6. Table 5-3 liststhe
characteristics of the 32-bit kernel mode segments, and Table 5-4 liststhe
characteristics of the 64-hit kernel mode segments.

User's Manual U10504EJ7VOUMO0 133

Chapter 5

Ox FFFF FFFF

0x ED00 0000
Ox OFFF FFFF

Ox Q000 0000
Ox BFFF FFFF

0x AD00 0000
Ox 9FFF FFFF

Ox 8000 0000
Ox 7FFF FFFF

Ox 0000 0000

134

32-bit*

0.5 GB
TLB Mapped

0.5GB
TLB Mapped

0.5GB
TLB Unmapped
Uncached

0.5GB
TLB Unmapped
Cacheable

2 GB
TLB Mapped

kseg3

ksseg

kseg1

kseg0

kuseg

(0%

0x
0x

(0
(0

0x
0x

0x
(0%

(0%
0x

0x
Ox

Ox
0x

0x
(0%

(0%
0x

(0%

FFFF FFFF FFFF FRFF

FFFF FFFF EDOO 0000
FFFF FFFF OFFF FFFF

FFFF FFFF D00 0000
FFFF FFFF BFFF FFFF

FFFF FFFF AO00 0000
FFFF FFFF OFFF FFFF

FFFF FFFF 8000 0000
FFFF FFFF 7FFF FFFF

Q000 OOFF 8000 0000
Q000 OOFF 7FFF FFFF

Q000 0000 0000 0000
BFFF FFFF FFFF FFFF

8000 0000 0000 0000
7FFF FFFF FFFF FFFF

4000 0100 0000 0000
4000 OOFF FFFF FFFF

4000 0000 0000 0000
3FFF FFFF FFFF FFFF

0000 0100 0000 0000
0000 OOFF FFFF FFFF

0000 0000 0000 0000

64-bit

0.5 GB
TLB Mapped

0.5GB
TLB Mapped

0.5GB
TLB Unmapped
Uncached

0.5GB
TLB Unmapped
Cacheable

Address Error

TLB Mapped

TLB Unmapped
(For details, refer to
Figure 5-7.)

Address Error

1TB
TLB Mapped

Address Error

1TB
TLB Mapped

ckseg3

cksseg

cksegl

ckseg0

xkseg

XxXkphys

xksseg

xkuseg

* TheVRr4300 internally uses 64-bit addresses. In the 32-bit mode, a 32-bit
value with bits 32 through 63 sign-extended is used as an address.
Normally, the program in the 32-bit mode uses 64-bit instructions. How-
ever, thereisapossibility that an integer overflow may occur as aresult of
an operation of base register + offset to calculate an address. The address
calculated at thistimeisinvalid, and theresult is undefined. Two causes of
the overflow are cited below.

» When bit 15 of offset = 0, bit 31 of base register = 0, and bit 31 of
(base register + offset) = 1

* When bit 15 of offset = 1, bit 31 of base register = 1, and bit 31 of
(base register + offset) = 0

Figure5-6 Kernel Mode Address Space

User's Manual U10504EJ7VOUMO0

Memory Management System

(0%

0x
0x

0x
(0%

(0%
0x

0x
Ox

Ox
(0%

(0%
0x

0x
0x

0x
(0%

(0%
0Ox

0Ox
0x

0x
0x

0x
0Ox

0Ox
0x

0x
0x

0x
Ox

Ox

BFFF FFFF FFFF FFFF

B300 0001 0000 0000
B3800 0000 FHF FFFF

B800 0000 0000 0000
B7FF FFFF FFFF FFFF

BO0OO 0001 0000 0000
BOOO 0000 FFFF FFFF

BOOO 0000 0000 0000
AFFF FFFF FFFF FRFF

AB800 0001 0000 0000
A800 0000 FFFF FHFF

AB00 0000 0000 0000
ATFF FFFF FFFF FRFF

A000 0001 0000 0000
AO00 0000 FFFF FHFF

A000 0000 0000 0000
9FFF FRFF FRRF FRAF

9800 0001 0000 0000
9800 0000 HAFF FFFF

9800 0000 0000 0000
97FF FFFF FFFF FFFF

9000 0001 0000 0000
9000 0000 FFHF FFHF

9000 0000 0000 0000
8FF FHHF FAFF FFFF

8800 0001 0000 0000
8800 0000 FFHF FFHF

8800 0000 0000 0000
87FF FFFF FFFF FFFF

8000 0001 0000 0000
8000 0000 FFFF FFFF

8000 0000 0000 0000

Address Error

4 GB
TLB Unmapped
Cacheable

Address Error

4 GB
TLB Unmapped
Cacheable

Address Error

4GB
TLB Unmapped
Cacheable

Address Error

4 GB
TLB Unmapped
Cacheable

Address Error

4 GB
TLB Unmapped
Cacheable

Address Error

4GB
TLB Unmapped
Uncached

Address Error

4 GB
TLB Unmapped
Cacheable

Address Error

4 GB
TLB Unmapped
Cacheable

Figure5-7 Details of xkphys Field

User's Manual U10504EJ7VOUMO0

135

Chapter 5

Table5-3 32-Bit Kernel Mode Segments

i Status Register . .
Address Bit Bit Value Segment Virtual Physical Segment
Values Name Address Address Size
KSU[EXL|ERL| KX
0x0000 0000 2GR
A(BD =0 0 kuseg through TLB map 31
OX7FFF FFFF (2°" bytes)
0x8000 0000 | 0x0000 0000 | 515 MR
A(31:29) = 100 0 kseg0 through through 229 Pyt
KSU = 00 OX9FFF FFFF | Ox1FFF FFFF| (27 bytes)
or 0xA000 0000 | 0x00000000 | 515 B
A(3L:29)=101| EXL =1 0 ksegl through through 229
or OXBFFF FFFF | OX1FFF FFFF | (27 bytes)
ERL =1 0xC000 0000 512 MB
A(31:29) = 110 0 ksseg through TLB map 29
OXDFFF FFFF (2= bytes)
A(31:29) =111 0 kseg3 through TLB map 229
OXFFFF FFFF (27 bytes)

136

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Satus register, and the most-significant bit
of the virtual address s cleared, the kuseg virtual address space is selected; it
covers the current 231 bytes (2 GB) user address space. The virtual addressis
extended with the contents of the 8-bit ASID field to form a unique virtual

address.

This space isreferenced via TLB. Whether the cache can be used or not is

determined by the value of the C hit of the TLB entry of each page.

If the ERL bit of the Satus register is 1, the user address areais a2 GB area that
cannot be cached without TLB mapping (i.e., the virtual addresses are used as
physical addresses asis). However, thisis afunction used by the V4400 to
processan ECC error inan exception handler. Thisfunctionisdefined to maintain
the compatibility of the V r4300 with the V4400 because the VV g4300 does not
have an ECC and a parity function.

User's Manual U10504EJ7VOUMO0

Memory Management System

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the high-order three bits
of thevirtual addressare 100, ksegO virtual address spaceis selected; it coversthe
current 22°-byte (512 MB) address space.

References to ksegO are not mapped through the TLB; the physical address
selected is defined by subtracting 0x8000 0000 from the virtual address.

The KO field of the Config register controls cacheability. (Refer to Chapter 6
Exception Processing.)

32-bit Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when KX = 0 in the Status register and the high-order three bits
of thevirtual addressare 101, ksegl virtual address spaceis selected; it coversthe
current 22%-byte (512 MB) address space.

References to ksegl are not mapped through the TLB; the physical address
selected is defined by subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped 1/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the high-order three bits
of thevirtual address are 110, the ksseg virtual address space is selected; it covers
the current 22°-byte (512 MB) virtual address space. The virtual addressis
extended with the contents of the 8-bit ASID field to form a unique virtual
address.

This space isreferenced via TLB. Whether the cache can be used or not is
determined by the value of the C hit of the TLB entry of each page.
32-bit Kernel Mode, Kernd Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the high-order three bits
of the virtual address are 111, the kseg3 virtual address spaceis selected; it isthe
current 22%-byte (512 MB) virtual address space. The virtual addressis extended
with the contents of the 8-bit ASID field to form a unique virtual address.

This space isreferenced via TLB. Whether the cache can be used or not is
determined by the value of the C hit of the TLB entry of each page.

User's Manual U10504EJ7VOUMO0 137

Chapter 5

Table5-4 64-Bit Kernel Mode Segments

Address Status Register Segment Physical Segment
Bit Value men '
Bit Values Name Virtual Address Address Size
K SUEXL[ERL| KX
00000 0000 0000 0000 118
A(63:62) =00 1 | xkuseg through TLB map 240 |
0x0000 00FF FFFF FFFF (2™ bytes)
04000 0000 0000 0000 118
A(63:62) =01 1 | xksseg through TLB map 240 |
0x4000 00FF FFFF FFFF (2™ bytes)
xkphys
Refer to
64-bit
Kernel
Mode, 0x8000 0000 0000 0000 | Ox0000 0000
A(63:62) = 10 1 |Physical through through | 232 bytes
Spaces |0XBFFF FFFF FFFF FFFFH OXFFFF FFFF
(xkphy)
KSU =00 on the
or following
EXL=1 page.
or 0xC000 0000 0000 0000 240 1 231
A(63:62) = 11| ERL =1 1 | xkseg through TLB map b
0xC000 OOFF 7FFF FFFF ytes
B — OxFFFF FFFF 8000 0000 | 0x0000 0000
ﬁ(gig? _ 11 1 | cksegO through through 252]§sz B
(61:31) =~ OXFFFF FFFF 9FFF FFFR OxLFFF FFFF|(27 bytes)
B — OXFFFF FFFF A000 0000| 0x0000 0000
ﬁ(gig? _ 11 1 | cksegl through through 252]§sz B
(61:31) =~ OXFFFF FFFF BFFF FFFF Ox1FFF FRFF| (27 bytes)
. — OxFFFF FFFF C000 0000
A(63:62) = 11 512 MB
poral 1 | cksseg through TLB map 29
A(61:31) =-1 OXFFFF FFFF DFFF FFFR (27 bytes)
. — OxFFFF FFFF E000 0000
A(63:62) = 11 512 MB
poral 1 | ckseg3 through TLB map 29
A(61:31) =-1 OXFFFF FFFF FFFF FFFH (27 bytes)

138

User's Manual U10504EJ7VOUMO0

Memory Management System

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the virtual
address are 00, the xkuseg virtual address space is selected; it covers the current
240-byte (1 TB) user address space. The virtual addressis extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This space isreferenced via TLB. Whether the cache can be used or not is
determined by the value of the C hit of the TLB entry of each page.

If the ERL bit of the status register is 1, the user address areais a2 GB areathat
cannot be cached without TLB mapping (i.e., the virtual addresses are used as
physical addresses asis). However, thisis afunction used by the Vg4400 to
processan ECC error inan exception handler. Thisfunctionisdefinedto maintain
the compatibility of the V r4300 with the V4400 because the VV gr4300 does not
have an ECC and a parity function.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the virtual
address are 01, the xksseg virtual address space is selected; it covers the current
supervisor virtual space. The virtual addressis extended with the contents of the
8-hit ASID field to form aunique virtual address.

This space isreferenced viaTLB. Whether the cache can be used or not is
determined by the value of the C bit of the TLB entry of each page.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the virtual
address are 10, one of the eight unmapped xkphys address spaces are sel ected,
either cached or uncached. Bits31:0 of the virtual address are used asthey are as
the physical address. Accesses with address bits 58:32 including 1 cause an
address error.

Use of the cacheisindicated by the bits 61 through 59 of thevirtual address. Table
5-5 shows the eight address spaces and use of the corresponding cache.

User's Manual U10504EJ7VOUMO0 139

Chapter 5

140

Table5-5 Use of Cache and xkphys Address Space

Bits 61 —59 Use of Cache Address

0 Used 0x8000 0000 0000 0000
through
0x8000 0000 FFFF FFFF

1 Used 0x8800 0000 0000 0000
through
0x8800 0000 FFFF FFFF

2 Not used 0x9000 0000 0000 0000
through
0x9000 0000 FFFF FFFF

3 Used 0x9800 0000 0000 0000
through
0x9800 0000 FFFF FFFF

4 Used 0xA 000 0000 0000 0000
through
0xA000 0000 FFFF FFFF

> Used 0xA800 0000 0000 0000
through
OxA800 0000 FFFF FFFF

6 Used 0xB000 0000 0000 0000
through
0xB000 0000 FFFF FFFF

! Used 0xB800 0000 0000 0000
through
0xB800 0000 FFFF FFFF

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the virtual
addressare 11 the address spaceisreferred to asxkseg. The address space selected
is one of the following:

» Kernel virtual space, xkseg, the current kernel virtual space; the virtua
address is extended with the contents of the 8-bit ASID field to form a
unique virtual address
This space is referenced via TLB. Whether the cache can be used or
not is determined by the value of the C bit of the TLB entry of each
page.

» one of the four 32-bit kernel compatibility spaces, as described in the
next section.

User's Manual U10504EJ7VOUMO0

Memory Management System

64-bit Kernel Mode, Compatibility Spaces (cksegl:0, cksseg, ckseg3)

In Kernel mode, when KX = 1in the Satusregister, bits 63:62 of the 64-bit virtual
addressare 11, and bits 61:32 of the virtual address are OXFFFF FFFF, bits 31:16
of the virtual address in the 64-bit mode are 0x8000-0xFFFF, as shown in Figure
5-6, select one of the following 512 MB compatibility spaces.

ckseg0. This space is an unmapped region, compatible with the kseg0
space in 32-bit mode. The KO field of the Config register controls
cacheability and coherency.

cksegl. This space is an unmapped and uncached region, compatible
with the ksegl space in 32-bit mode.

cksseg. This space is the current supervisor virtual space, compatible
with the ksseg space in 32-bit mode.

This space is referenced via TLB. Whether the cache can be used or
not is determined by the value of the C bit of the TLB entry of each
page.

ckseg3. This space is current supervisor virtual space, compatible
with the kseg3 space in 32-bit mode.

This space is referenced via TLB. Whether the cache can be used or
not is determined by the value of the C bit of the TLB entry of each

page.

User's Manual U10504EJ7VOUMO0 141

Chapter 5

5.3 System Control Coprocessor

The System Control Coprocessor (CPO) isimplemented as an integral part of the
CPU, and supports memory management, addresstransl ation, exception handling,
and other privileged operations. CPO contains the registers shown in Figure 5-8
plusa32-entry TLB. The sections that follow describe how the processor uses

each of the TLB-related registers.

Remark Each register isassigned a number called aregister number. For
details, refer to Chapter 1 General. For therelations among the CPO
function, exception processing, and registers, refer to Chapter 6
Exception Processing.

Used with memory

Used with exception

management system . processing
En”z)i'-oo Inc(j)gx Context BadVAddr
EntryHi : 4* 8*
10* EntryLol ;
3* Random ' Count Compare
1* ' o* 11*
31 Z
Page Mask | status Cause
S* ! 12* 13*
TLB Wired : EPC WatchLo
6* : 14* 18+
PRId '| watchHi JJ | XContext
_____________________ 15* ! 19*% 20*
(“Safe” entries) :
Refer to 5.4.4 Wired) : .
¢ eRregister (6).”e Config .|Parity Error CacheErr
o |127/255 16* : 26* 27*
LLAddr TaglLo TagHi l ErrorEPC
17+ 28* 20* ! 30*

* Register number

Figure5-8 CPO Registersand the TLB

142

User's Manual U10504EJ7VOUMO0

Memory Management System

5.3.1 Format of aTLB Entry

Figure 5-9 showsthe TLB entry formats for both 32- and 64-bit modes. Eachfield
of an entry has a corresponding field in the EntryHi, EntryLo0O, EntryLol, or

PageMask registers.
32-bit Mode
127 121 120 109 108 96
0 MASK 0 I
7 12 13
95 77 76 75 7271 64
VPN2 G| O ASID I
19 1 4 8
63 58 57 3837 353433 32
0 PEN C [(D|V|0
6 20 3 111
31 26 25 6 5 321 0
0 PFN C |D|V oI
6 20 3 111
64-bit Mode
255 217 216 205 204 192
0 MASK 0 I
39 12 13
191 190189 168 167 141140139136 135 128
R 0 VPN2 G| O ASID I
2 22 27 -)
127 90 89 70 69 6766 6564
0 PEN C |D|V|O I
38 20 3 111
63 26 25 6 5 321 0
0 PFN C |D| V|0
38 20 3 111

Figure5-9 TLB Entry Format

User's Manual U10504EJ7VOUMO0 143

Chapter 5

The formats of the EntryHi, EntryLo0, EntryLol, and PageMask registers are
almost the same asthe TLB entry. However, the G bit of TLB is undefined with
the entry Hi register.

PageMask Register

31 25 24 13 12 0
0 MASK 0
7 12 13
Mask : Page comparison mask. Determines the virtual page size of the corresponding entry.
0 : Reserved for future use (RFU). Must be written as zeroes, and returns zeroes when
read.

EntryHi Register

3 13 12 8 7 0
Sa-bt | VPN2 0 ASID
19 5 8
63 62 61 40 39 13 12 8 7 0
oot | R Fill VPN2 0 ASID
2 22 27 5 8

VPN2 : Virtual page number divided by two (maps to two pages).
ASID : Address space ID field. An 8-bit field that lets multiple processes share the TLB; virtual
addresses for each process can be shared.

R : Region. (00 — user, 01 — supervisor, 11 — Kernel) used to match vAddrgz g
Fill : RFU. Writing this data to this area is ignored. 0 is returned when this bit area read.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Figure5-10 TLB Entry Registers (1/2)

144 User's Manual U10504EJ7VOUMO0

Memory Management System

EntryLoO and EntryLol Registers
EntryLo0 3L 26 25 y y 9 65 32 10
32-bit 0 PFN c [plv|c I
Mode
6 20 3 1 1 1
EntryLol L 26 25 65 32 10
32-bit PFN c [pD|v|G I
Mode 6 20 3 1 1 1
EntryLo0 63 26 25 65 32 10
64-bit 0 PEN c [D|V|G I
Mode 38 20 3 1 1 1
EntryLol 63 26 25 65 32 10
64-bit 0 PFN C |[D|V GI
Mode
38 20 3 111

PFN : Page frame number; the high-order bits of the physical address.
C . Specifies the TLB page attribute; refer to Table 5-6.
D : Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is

actually a write-protect bit that software can use to prevent alteration of data.
\% : Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or

TLBS miss occurs.
G : Global. If this bit is set in both Entry LoO and Entry Lol, then the processor ignores the

ASID during TLB lookup.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Figure5-10 TLB Entry Registers (2/2)

Whether the cache is used when a page is referenced is specified by the page
coherency attribute (C) bit of the TLB. To usethe cache, specify “cacheis used”
or “cacheisnot used” by algorithm as a page attribute. Table 5-6 showsthe page
attributes selected by the C hit.

Table5-6 Cache Algorithm

Value of C Bit CacheAlgorithm
0 Cacheisused
Cacheisused

Cacheisnot used
Cacheisused
Cacheisused
Cacheisused
Cacheisused
Cacheisused

N OO~ W[IN|F

User's Manual U10504EJ7VOUMO0 145

Chapter 5

5.4 CPORegisters

Thefollowing sections describe the CPO registersthat can be accessed through the
memory management system and software (each register is followed by its
register number in parentheses).

5.4.1 Index Register (0)

The Index register is a 32-bit, read/write register containing six bitsto index an
entry inthe TLB. The most-significant bit of the register shows the success or
failure of aTLB Probe (TLBP) instruction.

The Index register also specifiesthe TLB entry affected by TLB Read (TLBR) or
TLB Write Index (TLBWI) instructions.

Although the Index register Index field is six bits wide, only the five least-
significant bits (4:0) are used in TLB operations, since the Vr4300 TLB has 32
entries. Bit 5 isreadable and writable, but isignored during TLB operations.

Thevalueof theindex register on reset isundefined. Therefore, initializethe Index
register in software.

Index Register

31 30 6 5 0
P 0 Index I
1 25 6

P : Probe success or failure. Set to 1 when the previous TLBProbe

(TLBP) instruction was unsuccessful; set to 0 when successful.
Index : Index to the TLB entry affected by the TLBRead and TLBWrite
instructions
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Figure5-11 Index Register

146 User's Manual U10504EJ7VOUMO0

Memory Management System

5.4.2 Random Register (1)

The Randomregister isaread-only register of which six bitsare used for referring
tothe TLB entry. Although the Randomfield is six bitswide, only the five low-
order bits(4:0) areused in TL B operations, sincethe Vg4300 TLB has 32 entries.

Bit 5 is readable and writable by software, but isignored during TLB operations.

Thisregister decrements as each instruction executes, and its values range
between an upper and alower bound, as follows:

* A lower bound is indicated by the contents of the Wired register.
e An upper bound limit is 31.
The Random register specifies the entry in the TLB that is affected by the TLB

Write Random instruction. The register does not need to be read for this purpose;
however, the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound
upon Cold Reset. Thisregister isalso set to the upper bound when the Wired
register iswritten.

Figure 5-12 shows the format of the Random register.

Random Register
31 6 5 0

0 Random I

26 6
Random: TLB Random index.

0 . RFU. Must be written as zeroes, and returns zeroes when read.

Figure5-12 Random Register

User's Manual U10504EJ7VOUMO0 147

Chapter 5

5.4.3 EntryHi (10), EntryL o0 (2), EntryLol (3), and PageM ask (5) Registers

Theseregistersareused to rewritethe TLB or to check coincidenceof aTLB entry
when addresses are converted. |f the TLB exception occurs, information on the
address that has caused the exception is loaded to these registers. Figure 5-10

shows the formats of the EntryHi, EntryLoO, EntryLol, and PageMask registers.

The values of these registers on reset are undefined. Therefore, initialize the
registers by software.

EntryHi Register

The EntryHi register is aread/write register and is used to access the high-order
bits of the internal TLB.

The EntryHi register retains the contents of the high-order bits of aTLB entry
when a TLB read or write operation is executed. If aTLB miss, TLB invalid, or
TLB modification exception occurs, the virtual page number (VPN2) of the
virtual address that has caused the exception and ASID are set to the EntryHi
register. For the details of the TLB exception, refer to Chapter 6 Exception
Processing.

ASID isused to write or read the ASID area of the TLB entry. When an address
is converted, it is verified against the ASID of the TLB entry asthe ASID of the
virtual address.

To access thisregister, usethe TLBP, TLBWR, TLBWI, or TLBR instruction.

EntryL o0 and EntryL 0l Registers

EntrylLo consists of two registers: EntryLoO for even virtual pages and EntryLol
for odd virtual pages. EntryLoO and Lol registers are read/write registers and are
used to access the low-order bits of the internal TLB. When a TLB read/write
operation is executed, Entryl 00 and Lol access the contents of the low-order bits
of the TLB entry on an even and odd pages.

148 User's Manual U10504EJ7VOUMO0

Memory Management System

PageM ask Register

The PageMask register is aread/write register used for reading from or writing to
the TLB; it holds a comparison mask that sets the page size for each TLB entry,
asshownin Table5-7. Thereare seven pagesizesselectable. TLB read and write
operations use this register as either a destination or a source; when virtual
addresses are presented for trangation into physical address, the bits 24:13 which
are used in the comparison are masked. When the Mask field is not one of the
values shown in Table 5-7, the operation of the TLB is undefined.

Table5-7 Mask Field Values for Page Szes

Page Size Bit

24 | 23| 2 |21 | 20| 19 | 18 | 17 | 16 | 15 | 14 | 13
4KB 0 0 0 0 0 0 0 0 0 0 0 0
16 KB 0 0 0 0 0 0 0 0 0 0 1 1
64 KB 0 0 0 0 0 0 0 0 1 1 1 1
256 KB 0 0 0 0 0 0 1 1 1 1 1 1
1MB 0 0 0 0 1 1 1 1 1 1 1 1
4MB 0 0 1 1 1 1 1 1 1 1 1 1
16 MB 1 1 1 1 1 1 1 1 1 1 1 1

User's Manual U10504EJ7VOUMO0 149

Chapter 5

5.4.4 Wired Register (6)

150

TheWired register isaread/write register that specifies the boundary between the
wired and random entries of the TLB as shown in Figure 5-13. Wired entriesare
fixed, nonreplaceabl e entries, which cannot be overwritten by aTLBWR (TLB
Write Random) operation. They can, however, be overwrittenby aTLBWI (TLB
Write Indexed) instruction. Random entries can be overwritten.

TLB
31
Range of Random entries
Value of
Wired
Register
Range of Wired entries
0

Figure5-13 Wired Register Boundary

Although the Wired field is six bitswide, only the five low-order bitsare used in
TLB operations, since the Vr4300 TLB has 32 entries. Bit 5 isreadable and
writable by software, but isignored during TLB operations.

The Wired register is set to 0 upon Cold Reset. Writing this register also setsthe
Random register to the value of its upper bound of 31 (Refer to 5.4.2 Random
Register (1)). Figure 5-14 shows the format of the Wired register.

Wired Register
31 65 0

0 Wired I
26 6

Wired : TLB Wired boundary.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Figure5-14 Wired Register

User's Manual U10504EJ7VOUMO0

Memory Management System

5.4.5 Processor Revision ldentifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains
information identifying the implementation and revision level of the CPU and
CPO. Figure 5-15 shows the format of the PRId register.

PRId Register

31 16 15 87 0
0 Imp Rev

16 8 8

Imp : Processor ID number (0xOB for the Vg4300 series™)
Rev : Processor revision number
0 . RFU. Must be written as zeroes, and returns zeroes when read.

Figure5-15 Processor Revision Identifier Register

The processor revision number isavalue in the format of yx. y isthe major
revision number contained in bits 7:4, and x is the minor revision number
contained in bits 3:0.

The processor revision number identifies revision of the chip. However, revision
of the chip is not always reflected on the PRID register. Conversely, achangein
the revision number does not always reflect on the actual change of the chip.
Therefore, develop your program so that it does not depend on the processor
revision number area.

5.4.6 Config Register (16)
This register displays or sets various processor statuses of the V g4300.

Although consideration is given to maintain compatibility of thisregister with the
Config register of the Vr4400, some pins of this register are fixed to 0.

The EP and BE area areinitialized on cold reset. These areas can be read or
written by software. The default values of these areas are as follows:

EP: 0000
BE: 1

The CU bit and KO area can be read or written in software. However, because
these bit and area are not initialized, the user must set the default values to them
after reset.

User's Manual U10504EJ7VOUMO0 151

Chapter 5

The values of the EP and BE areas can be changed only when initialization is
executed in the non-cache areaimmediately after cold reset and before a store
instruction isexecuted. The operationisnot guaranteed if thevalues of these areas
are changed at any other time. Figure 5-16 shows the format of the Config
register.

31 30 2827 2423 16 15 14 4 3 2 0

EC

152

00000110

11001000110

3 4 8 1 11 1 3

. Operating frequency ratio (read-only). The value displayed corresponds to the frequency

ratio set by the DivMode pins on power application.
(For details of DivMode pin setting, refer to Table 2-2 Clock/Control Interface Signals.)

uPD30200-80 (Vr4305)

110 — 1:1 (MasterClock: PClock)
111 - RFU

000 — 1:2

001 — 1:3

Others — RFU

uPD30200-100 (VR4300)

110 - RFU

111 — 1:1.5 (MasterClock: PClock)
000 — 1:2

001 — 1:3

Others — RFU

uPD30200-133 (VRr4300)

110 — 1:4 (MasterClock: PClock)
111 - RFU

000 — 1:2

001 — 1:3

Others — RFU

uPD30210-133 (VR4310)

010 — 1:5 (MasterClock: PClock)
011 — 1:6

100 — RFU

101 — 1:3

110 - 1:4

111 - RFU

000 — 1:2

001 — 1:3

Figure5-16 Config Register (1/2)

User's Manual U10504EJ7VOUMO0

Memory Management System

EP

BE

CuU :

KO

1
0

uPD30210-167 (VRr4310)

010 — 1:5 (MasterClock: PClock)
011 —1:6

100 — 1:2.5

101 — 1:3

110 - 1:4

111 - RFU

000 — 1:2

001 —1:3

. Sets transfer data pattern (single/block write request).

0 — D (default on cold reset)
6 — DxxDxx: 2 doublewords/6 cycles
Others — RFU

. Sets BigeEndianMem (endianness).

0 — Little endian
1 — Big endian (default on cold reset)
RFU. However, can be read or written by software.

: Sets coherency algorithm of ksegO (refer to Table 5-6 Cache Algorithm).

010 — Cache is not used
Others — Cache is used

. Returns 1 when read.
. Returns 0 when read.

Caution If the BE bit of this register is changed by using the MTCO instruction, insert two

or more NOP instructions or an instruction other than the load/store instruction in
between the MTCO and load/store instructions.

Figure5-16 Config Register (2/2)

User's Manual U10504EJ7VOUMO0 153

Chapter 5

5.4.7 Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the physical
address read by the most recent Load Linked instruction. Thisregister isfor
diagnostic purposes only.

Figure 5-17 showstheformat of the LLAddr register. The Paddr areain thefigure
shows the value with the high-order four bits of the physical address PA(31:4)
read on execution of the LL instruction zero-extended.

The contents of the LLAddr register are undefined on reset.

LLAddr Register

31 0
PAddr I
32

PAddr : Stores the bits 31 through 4 of the physical address read by the last
LL instruction to bits 27 through 0, and 0 to bits 31 through 28.

Figure5-17 LLAddr Register

5.4.8 Cache Tag Registers[TagL o (28) and TagHi (29)]

The TagLo and TagHi registers are 32-bit read/write registers that hold the
primary cache tag for cache initialization, cache diagnostics, or cache error
processing. The Tag registers are written by the CACHE and MTCO instructions.

Figure 5-18 shows the format of these registers.

The contents of these registers are undefined on reset.

154 User's Manual U10504EJ7VOUMO0

Memory Management System

31 2827 8 7 6 5 0
Taglo | 0 PTagLo PState 0
4 20 2 6
31 0
TagHi 0

PTagLo :
. Specifies the primary cache state

PState

0

Cautions 1.

32
Physical address bits 31:12

Data cache

11 =Valid

00 = Invalid
Instruction cache

10 = Valid

00 = Invalid
Others = Undefined

: RFU. Must be written as zeroes; returns zeroes when read

If 10 iswritten to PState by using the CACHE
(Index_Store Tag) instruction, the CACHE is Clean.
However, 11 isread when the PState valueisread by using the
CACHE (Index_L oad_Tag) instruction.

If 01 iswritten to PState by using the CACHE
(Index_Store Tag) instruction, the CACHE operation is not
guar anteed.

If 11 iswritten to PState by using the CACHE

(Index_Store Tag), the CACHE isDirty.

Figure5-18 TaglLo and TagHi Register

5.4.9 Virtual-to-Physical Address Translation Process

During virtual-to-physical address trandlation, the CPU compares the
8-bit ASID (if the Global bit, G, is hot set) of the virtual address to the ASID of
the TLB entry to seeif thereisamatch. One of the following comparisons are

also made:

* In 32-bit mode, the high-order bits* of the virtual address are
compared to the contents of the TLB entry, VPN2 (virtual page
number divided by two).

e In 64-hit mode, the high-order bits* of the virtual address are
compared to the contents of the TLB entry, VPN2 (virtual page
number divided by two).

User's Manual U10504EJ7VOUMO0 155

Chapter 5

156

If aTLB entry matches, the physical address and access control bits (C, D, and V)
are retrieved from the matching TLB entry. While the V bit of the entry must be
set for avalid translation to take place, it is not involved in the determination of a

matching TLB entry.

Figure 5-19 illustrates the TLB address translation process.

* The number of bits differs depending on the page size.
Here are examples where the page sizeis 16 MB and 4 KB:

Page Size
Mode 16 MB 4KB
32-bit mode A (31:25) A (31:13)
64-bit mode AB3, AB2, and A (39:25) | AB3, AB2, and A (39:13)

User's Manual U10504EJ7VOUMO0

Memory Management System

Virtual Address (Input)

VPN
and
ASID

Lega
Address?

Lega
Address?

Address
] Error

Exception

Exception
No Yes

Legal
Address?

':

Mapped_Yes VPN _No
Address?, > Match?,

No

Y

32-hit No
address?,

Yes

Yes

TLB
Mod

Exception

TLB TLB XTLB
Invalid Miss Miss

Exception Exception Exception

Access
Cache

Physical Address (Output)
Figure5-19 TLB Address Trandlation

User's Manual U10504EJ7VOUMO0 157

Chapter 5

5.4.10 TLB Misses

If thereisno TLB entry that matches the virtual address, a TLB miss exception
occurs.* |If the access control bits (D and V) indicate that the accessis not valid,
aTLB Modification exception or TLB Invalid exception occurs. If the C bits
equal 010, the physical addressthat isretrieved accesses main memory, bypassing
the cache.

* TLB miss exceptions are described in Chapter 6 Exception Processing.

5.4.11 TLB Instructions

The following instructions are used to control the TLB.

TLBP (Trandation L ookaside Buffer Probe)
LoadsaTLB number that matches the contents of the EntryHi register to the Index
register. If the TLB entry does not match, the most significant bit of the Index
register is set.

TLBR (Trandation L ookaside Buffer Read)
Writes the contents of the TLB entry indicated by the Index register to the
EntryHi, EntryLoO, EntryLol, and PageMask registers.

TLBWI (Trandation Lookaside Buffer Write Index)
Writes the contents of the EntryHi, EntryLoO, EntryLol, and PageMask registers
to the TLB entry indicated by the contents of the Index register.

TLBWR (Trandlation L ookaside Buffer Write Random)

Writes the contents of the EntryHi, EntryLo0, EntryLol, and PageMask registers
to the TLB entry indicated by the contents of the Random register.

158 User's Manual U10504EJ7VOUMO0

Exception Processing

This chapter describes the exception processing and the hardware used for the
exception processing. For the FPU exception, refer to Chapter 8 Floating-Point
Exceptions.

User's Manual U10504EJ7VOUMO0 159

Chapter 6

6.1 Exception Processing Operation

160

The processor receives exceptionsfrom anumber of sources, including trandlation
lookaside buffer (TLB) misses, arithmetic overflows, 1/O interrupts, and system
calls. When the CPU detects an exception, the normal sequence of instruction
execution is suspended and the processor enters Kernel mode (refer to Chapter 5
Memory Management System for a description of system operating modes).
The processor then disables interrupts and forces execution of a software
exception process (called an exception handler) located at afixed address. The
handler saves the context of the processor, including the contents of the program
counter, the current operating mode (User or Supervisor), and the status of the
interrupts (enabled or disabled). This context is saved so it can be restored when
the exception processing has been performed.

When an exception occurs, the CPU |oads the Exception Program Counter (EPC)
register with alocation where execution can restart after the exception processing
has been performed. Therestart location in the EPC register isthe address of the
instruction that caused the exception. If the instruction was executing in a branch
delay dot, the CPU loadsthe EPC register to the address of the branch instruction
immediately preceding the branch delay dot.
For the exception processing, the following modes can be set.
* Interrupt enable (1E)
» Base operating mode (User, Supervisor, or Kernel)
» Exception level (normal or exception, as indicated by the EXL bit in
the Status register)
» Error level (normal or error, as indicated by the ERL bit in the Status
register).

Each setting condition is described below.

Interrupt Enable

Interrupts are enabled if the following conditions are satisfied.
* |E (interrupt enable bit) = 1
+ EXLbit=0, ERL bit=0
e Bit of corresponding IM area in status register = 1

Base Operating Mode

The operating mode that is the basis when the exception level isnormal (0) is
specified by the KSU area of the Status register.

User's Manual U10504EJ7VOUMO0

Exception Processing

Exception/Error Level
The Kernel mode is set when either of the EXL or ERL bit isset to 1.

When execution returns from exception processing, the exception level isreset to
normal (0) (for details, refer to ERET Instruction of Chapter 16 CPU
Instruction Set Details).

In addition to the above, registersthat hold information on addresses, causes, and
statuses during exception processing are provided. For details, refer to 6.3
Exception Processing Registers. For details of the exception processing, refer to
6.4 Exception Details.

6.2 Precision of Exceptions

Vr4300 exceptions are logically precise; the instruction that causes an exception
and all those that follow it are aborted and can be re-executed after servicing the
exception. When succeeding instructions are killed, exceptions associated with
those instructions are also killed. Exceptions are not taken in the order detected,
but in instruction fetch order.

6.3 Exception Processing Registers

This section describes the CPO registers that are used in exception processing.
Table6-1 liststheseregisters, along with their number—each register hasaunique
identification number that isreferred to asits register number. The remaining
CPO registers are used in memory management, as described in Chapter 5
Memory Management System.

Software examines the CPO registers to determine the cause of the exception and
the state of the CPU at the time the exception occurred. Theregistersin Table 6-
1 are used in exception processing, and are described in the sections that follow.

User's Manual U10504EJ7VOUMO0 161

Chapter 6

162

Table6-1 CPO Exception Processing Registers

Register Name Reg. No.
Context 4
BadVAddr (Bad Virtual Address) 8
Count 9
Compare 11
Status 12
Cause 13
EPC (Exception Program Counter) 14
WatchLo 18
WatchHi 19
XContext 20
PErT* 26
Cachekrr (Cache Error)* 27
ErrorEPC (Error Exception Program Counter) 30

* Thisregister is defined to maintain compatibility between the V g4300 and

Vr4200, and is not used with the hardware of the V g4300.

Hazard of CPO

With the General Purposeregisters of the CPU, when theresult of an operationis
to be used by the next instruction, the hardware generates a stall and waits until
theresult can be used. However, the CPO register and TLB do not generate astall.
If avalueis stored to the CPO register, that value may not be used by the
immediately following instruction because the value is stored in the register
several cycleslater. When designing aprogram, therefore, you must takethisinto
consideration when setting values to the CPO register and TLB (for details, refer

to Chapter 19 Coprocessor 0 Hazards).

User’s Manual U10504EJ7VOUMO0

Exception Processing

6.3.1 Context Register (4)

The Context register is aread/write register containing the pointer to an entry in
the pagetable entry (PTE) array on memory; thisarray isan operating system data
structure that stores virtual-to-physical addresstranslations. WhenthereisaTLB
miss, the operating system loads the TLB with the missing translation from the
PTE array. The Context register is used by the TLB Miss exception handler to
load the TLB entry.

The Context register duplicates some of the information provided in the
BadVAddr register, but the information is arranged in aform that is more useful
for a software TLB exception handler.

Figure 6-1 shows the format of the Context register.

Context Register

31 23 22 4 3 0
32-bit | pTEBase BadVPN2 0
Mode
9 19 4
63 23 22 4 3 0
64-bit PTEBase BadVPN2 0
Mode
41 19 4

PTEBase : Base address of page table entry
BadVPN2 : Page number of virtual address whose translation is invalid divided by 2
0 . RFU. Must be written zeroes; returns zeroes when read

Figure6-1 Context Register

The Context register bit field is described below.

BadVPN2 field iswritten by hardwareonaTLB miss. It containsthevirtual page
number (VPN2), divided by 2, of the most recent virtual addressthat did not have
avalid trandation.

PTEBase area can be read or written and is controlled by the operating system. It
isused only by the software as a pointer to the current PTE array on the memory.

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused
the TLB miss; bit 12 is excluded because asingle TLB entry mapsto an even-odd
address pair. For a4 KB page size, thisformat can be used asthe pointer to refer
to the pair-table of 8-byte PTEs. For 16 KB page or larger, shifting and masking
this value produces the correct PTE reference address.

User's Manual U10504EJ7VOUMO0 163

Chapter 6

6.3.2 BadVAddr Register (8)

The Bad Virtual Address (BadVAddr) register is aread-only register and holds a
virtual address that was translated but became invalid last, or avirtual address at
which an addressing error occurred. Figure 6-2 showstheformat of the BadVAddr
register.

Caution Thisregister does not hold information even when abuserror
exception occurs becauseit isnot an addresserror exception.

BadVAddr Register

31 0
32-bit Bad Virtual Address I
Mode
63 32 0
64-bit Bad Virtual Address
Mode
64

BadVAddr : virtual address at which an address error occurred last or which failed
in address translation

Figure6-2 BadVAddr Register

6.3.3 Count Register (9)

164

Theread/write Count register actsasatimer, incrementing at aconstant rate—half
the PClock speed—whether or not instructions are being executed. This register
isafree-running type. When the register reachesall ones, it rolls over to zero and
continues counting. This register can be used for diagnostic purposes, system
initialization or synchronization between the processes.

Figure 6-3 shows the format of the Count register.

Count Register

31 0
Count I
32

Count : latest count value (incremented at frequency half PClock)

Figure6-3 Count Register

User’s Manual U10504EJ7VOUMO0

Exception Processing

6.3.4 Compare Register (11)

The Compare register is used to generate atimer interrupt; it maintains a stable
value that does not change on itsown. When the value of the Compare register
equals the value of the Count register (refer to 6.3.3), interrupt bit 1P(7) in the
Causeregister isset. This causes an interrupt in the DF stage as soon as the
interrupt is enabled. Writing avalue to the Compare register, as a side effect,
clears the timer interrupt.

For diagnostic purposes, the Compare register isaread/writeregister. However,
itisusually used asawriteregister. Figure 6-4 shows the format of the Compare

register.
Compare Register
31 0
Compare
32

Compare : value to be compared with count register
Figure 6-4 Compare Register

6.3.5 StatusRegister (12)

The Satus register (SR) is aread/write register that contains the operating mode,
interrupt enabling, and the diagnostic states of the processor. Figure 6-5 shows
the format of the entire register.

User's Manual U10504EJ7VOUMO0 165

Chapter 6

31

Status Register
28 2726 25 24 16 15 87 6 5432 1 O

Cu

(CU3:CU0) RP|FR|RE DS E IM(7:0) KX|SX|UX|KSU [ERL|EXL| IE I

4

Cu

RP

FR
RE

DS
IM(7:0) :

KX

SX

uUXx

KSU
ERL

EXL

11 1 9 8 111 2 1 1 1

: Controls the usability of each of the four coprocessor unit numbers.

(1 — usable, 0 — unusable)
CPO is always usable when in Kernel mode, regardless of the setting of the CUO bit.
CP2 and CP3 are reserved for future expansion.

: Enables low-power operation by reducing the internal clock frequency and the system

interface clock frequency to one-quarter speed.
(0 — normal, 1 — low power mode) (For details, refer to 15.1.2 Low Power Mode.)

: Enables additional floating-point registers

(0 — 16 registers, 1 — 32 registers)

. Reverse-Endian bit, enables reverse of system endianness in User mode.

(0 — disabled, 1 — reversed)

. Diagnostic Status field (see Figure 6-6, for details).

Interrupt Mask field, enables external, internal, coprocessors or software interrupts.
(0 — disabled, 1 — enabled)

IM(7) : Mask bit for timer interrupt

IM(6:2) : Mask bits for external interrupts Int[4:0], or external write requests
IM(1:0) : Mask bits for software interrupts and IP(1:0) of the Cause register

: Enables 64-bit addressing in Kernel mode. When this bit is set, XTLB miss exception is

generated on TLB misses in Kernel mode addresses space.
(0 — 32-bit, 1 — 64-bit)
64-bit operation is always valid in Kernel mode.

: Enables 64-bit addressing and operations in Supervisor mode. When this bit is set, XTLB

miss exception is generated on TLB misses in Supervisor mode addresses space.
(0 — 32-bit, 1 — 64-hit)

: Enables 64-bit addressing and operations in User mode. When this bit is set, XTLB miss

exception is generated on TLB misses in User mode addresses space.
(0 — 32-bit, 1 — 64-bit)

: Specifies and indicates mode bits

(10 — User, 01 — Supervisor, 00 — Kernel)

: Specifies and indicates error level

(0 — normal, 1 — error)

. Specifies and indicates exception level

(0 — normal, 1 — exception)

: Specifies and indicates global interrupt enable

(0 — disable interrupts, 1 — enable interrupts)

* The low power mode is supported only in the 100 MHz model of the Vkr4300 and theVr4305.
Fix the RP bit of the 133 MHz model of the Vg4300 and the Vg4310 to 0.

166

Figure6-5 Satus Register

User’s Manual U10504EJ7VOUMO0

Exception Processing

ITS

BEV

TS

SR

CH

CE, DE:

Figure 6-6 showsthe format of the self-diagnostic status (DS) area. All thebitsin
the DS area, except the TS hit, can be read or written.

Self-Diagnostic Status Field

24 23 22 21 20 19 18 17 16
ITS 0 BEV TS SR 0 CH CE DE
1 1 1 1 1 1 1 1 1

: Enables Instruction Trace Support.

For details, refer to 9.3.5 Instruction Trace Support.

: Controls the location of TLB miss and general purpose exception vectors.

0 — normal
1 — bootstrap

. Indicates TLB shutdown has occurred (read-only); used to avoid damage to the TLB if

more than one TLB entry matches a single virtual address.

0 — does not occur

1 — occur

After TLB shutdown, the processor must be reset to restart. TLB shutdown can occur
even when a TLB entry with which the virtual address has matched is set to be invalid
(V bit of the entry is cleared).

. 0 — Indicates a Soft Reset or NMI has not occurred.

1 — Indicates a Soft Reset or NMI has occurred.

. CPO condition bit.

0 — false

1 — true

Read/write access by software only; not accessible by hardware.

These bits are defined to maintain compatibility with the VR4200, and is not used by the
hardware of the Vr4300.

. RFU. Must be written as zeroes, and returns zeroes when read.

Figure6-6 Self-Diagnostic Satus Field

User's Manual U10504EJ7VOUMO0 167

Chapter 6

Fields of the Status register set the modes and access states described in the
sections that follow.

Instruction Trace Support

The V4300 can output the physical address at the branch destination from
SysAD(31:0) if theinstruction addressisinternally changed by the branch or jump
instruction, or occurrence of an exception. To use thisfunction, set the ITS hit to
1

Aninstruction cachemissisforcibly generated in thefollowing casesto output the
physical address at the branch destination.

» If the branch condition is satisfied when a branch instruction is
executed

» |If the value of PC is changed by ajump instruction or occurrence of
an exception

If an instruction cache miss is generated, SysAD(31:0) issues a processor block
read request, which allows an external device to learn a change of the address.

Return response data in response to the processor block read request in the same
manner asto the ordinary request. The addressto be output is not the value of the
PC (virtual address), but a physical address.

Interrupt Enable

Interrupts are enabled when all of the following conditions are satisfied:

 |E=1
« EXL=0
« ERL=0

e When corresponding bit of IM issetto 1

168 User's Manual U10504EJ7VOUMO0

Exception Processing

Operating Modes

The following Status register bit settings are required for User, Kernel, and
Supervisor modes.

* The processor isin User mode when KSU = 10, EXL = 0, and ERL =

0.

» The processor is in Supervisor mode when KSU = 01, EXL = 0, and
ERL = 0.

* Theprocessor isin Kernel mode when KSU = 00, or EXL = 1, or ERL
=1

32- and 64-bit M odes

The following Status register bit settings select 32- or 64-bit operation for User,
Kernel, and Supervisor operating modes. Enabling 64-bit operation permits the
execution of 64-bit opcodes and translation of 64-bit addresses. 64-bit operation
for User, Kernel and Supervisor modes can be set independently.

e 64-bit addressing for Kernel mode is enabled when KX = 1.
64-bit operations are always valid in Kernel mode.

e 64-bit addressing and operations are enabled for Supervisor mode

when SX = 1.
e 64-bit addressing and operations are enabled for User mode when UX
=1.

Kernel Address Space Accesses

Accessto the kernel address space is allowed when the processor isin Kernel
mode.

Supervisor Address Space Accesses

Accessto the supervisor address space is alowed when the processor isin Kernel
or Supervisor mode.

User Address Space Accesses

Access to the user address space is allowed in any of the three operating modes.

User's Manual U10504EJ7VOUMO0 169

Chapter 6

Status on Reset

The contents of the Status register on reset are undefined except for the following
bits:

e TSandRP=0

* ERLandBEV=1

e SR=0o0ncold reset; SR = 1 on soft reset or NMI interrupt

Inverting Endian

TheVR4300isset to big endian at reset. After that, the endian setting can changed
by using the BE bit of the Config register.
* WhenREbit=1

The endian setting in the Kernel and supervisor modes is specified by
the BE bit of the Config register. The endian setting in the User mode
is opposite to the specified endian setting.

e WhenRE bit=0

The endian setting in the Kernel, Supervisor mode, and User mode is
specified by the BE bit of the Config register.

170 User's Manual U10504EJ7VOUMO0

Exception Processing

6.3.6 Cause Register (13)

The Cause register is a 32-bit read/write register and holds the cause of the
exception that has occurred last. The 5 bitsin the exception code area of this
register indicate the cause of the exception (refer to Table 6-2). The remaining
areas hold detailed information on a specific exception. All the bits, except |P1
and PO, areread-only. ThelP1 and PO bits are used to generate the software
interrupt. Figure 6-7 shows the format of the Cause register, and Table 6-2
describes the exception code area.

Cause Register

31 30 29 2827 16 15 8 7 6 21 0
BD| 0| CE 02 IP(7:0) 0| Code | O
1 1 2 12 8 1 5 2
BD . Indicates whether the last exception occurred has been executed in a branch delay
slot.
1 — delay slot
0 — normal
CE : Coprocessor unit number referenced when a Coprocessor Unusable exception has
occurred. If this exception does not occur, undefined.
IP(7:0) : Indicates an interrupt is pending.

1 — interrupt pending
0 — no interrupt
IP(7) : Timer interrupt
IP(6:2) : External normal interrupts. Controlled by Int[4:0], or external write
requests
IP(1:0) : Software interrupts. Only these bits can cause interrupt exception when
they are set to 1 by software.
ExcCode : Exception code field (refer to Table 6-2 for details.)
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Figure6-7 Cause Register

User's Manual U10504EJ7VOUMO0 171

Chapter 6

Table6-2 Cause Register ExcCode Field

Exception . L
Code Value Mnemonic Description

0 Int Interrupt
1 Mod TLB Modification exception
2 TLBL TLB Miss exception (load or instruction fetch)
3 TLBS TLB Miss exception (store)
4 AdEL Address Error exception (load or instruction fetch)
5 AdES Address Error exception (store)
6 IBE Bus Error exception (instruction fetch)
7 DBE Bus Error exception (data reference: 1oad or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved Instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 - RFU
15 FPE Floating-Point exception

16-22 - RFU
23 WATCH Watch exception

24-31 - RFU

172

User's Manual U10504EJ7VOUMO0

Exception Processing

The VRr4300 has eight interrupt requests: IP7 through IP0. These interrupt
requests are used for the following purposes.

IP7

Indicates whether atimer interrupt request hasbeenissued. Thisinterrupt request
is set when the contents of the Count register have become equal to those of the
compare register.

I P6 through | P2

I P6 through I P2 reflect thelogical sum of thetwo internal registersof theV g4300.
Oneistheregister that |atches the status of an interrupt request pin in each cycle,
and the other is aregister to which datais written by the external write request of
the system interface.

IP1and PO
IP1 and IPO set or clear the software interrupt request by manipulating each bit.

For details, refer to Chapter 14 Interrupts.

The floating-point exception uses the exception code contained in the floating-point
control/status register (refer to Chapter 8 Floating-Point Exceptions).

User's Manual U10504EJ7VOUMO0 173

Chapter 6

6.3.7 Exception Program Counter (EPC) Register (14)

174

The Exception Program Counter (EPC) is aread/write register that contains the
address at which processing resumes after an exception has been serviced.

The EPC register contains either:
» thevirtual address of the instruction that was the direct cause of the
exception, or

e thevirtual address of the immediately preceding branch or jump
instruction (when the instruction that was the direct cause of the
exception is in a branch delay slot, and the Branch Delay hbit in the
Cause register is set).

The EXL bitinthe Statusregister isset to 1 to keep the processor from overwriting
the address of the exception-causing instruction contained in the EPC register in
the event of another exception.

Figure 6-8 shows the format of the EPC register.

EPC Register

31 0
32-bit
Mode EPC
32
63 0
Mode
64

EPC : Address from which program execution is resumed after an exception
processing

Figure 6-8 EPC Register

User's Manual U10504EJ7VOUMO0

Exception Processing

6.3.8 WatchL o (18) and WatchHi (19) Registers

The Vr4300 processor provides a debugging festure to detect request of
referencesto a selected physical address; |oad and store operations cause aWatch
exception. Figure 6-9 shows the format of the WatchLo and WatchHi registers.

Initialize the values of these registersin software since these val ues are undefined

on reset.
31 WatchLo Register 3 2 1 0
PAddrO 0| R | W
29 1 1 1
WatchHi Register

31 4 3 0
0 PAddrl I
28 4

PAddrl : Bits 35:32 of a physical address.
Because the most significant bit of a physical address handled by the
VRr4300 is bit 31, the value in this area is invalid.
This area is provided to maintain software compatibility of the
VRr4300 with the V{4400 and Vr4200, and all the 4 bits of this area

can be read.
PAddrO : Bits 31:3 of the physical address
R : Exception occurs when load instruction is executed if set to 1.
w : Exception occurs when store instruction is executed if set to 1.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Figure6-9 WatchLo and WatchHi Registers

User's Manual U10504EJ7VOUMO0 175

Chapter 6

6.3.9 XContext Register (20)

The XContext register is a read/write register and indicates one entry of the page
table entry array (PTE) onthe memory. The PTE array isthe data structure of the
operating system and preserves aconversion table that trand atesvirtual addresses
into physical addresses. If aTLB missoccurs, the operating system loadsthe data
that has caused the miss from the PTE to the TLB, and aremedia actionis
executed by the software.

The XContext register is used by the XTLB miss exception handler that loads a
TLB entry in the 64-bit addressing mode.

Although this register contains several pieces of information that overlap with
those of the BadVAddr register, it isin the format easy to be used by the XTLB
exception handler.

Thisregister isused by the operating system only. The PTEBase area of this
register is set as necessary.

Figure 6-10 shows the format of the XContext register.

XContext Register

63 3332 3130 4 3 0
PTEBase R ‘ BadVPN2 0
31 2 27 4

PTEBase : Base address of page table entry

R . Space identifier (bits 63 and 62 of virtual address)
00 — User
01 — Supervisor
11 — Kernel
BadVPN2 : Virtual address whose translation is invalid (bits 39:13)
0 . Must be written as zeroes, and returns zeroes when read.

Figure6-10 XContext Register

Each bit area of the XContext register is described next.

176 User's Manual U10504EJ7VOUMO0

Exception Processing

BadVPN2 Area

The BadVPN2 areais written by the hardware in case of a TLB miss.

R Area

The R areais written by the hardwarein case of a TLB miss.

PTEBase Area

The PTEBase areais aread/write area and is used by the operating system.

The 27-bit BadVPN2 area holds the values of the bits 39:13 of the virtual address that has
caused aTLB miss. Because a TLB entry consists of a pair of an even page and an odd
page, it does not include bit 12. Thisregister can be used as a pointer that references an 8-
byte PTE pair table asit iswhere the page sizeis4 KB. With the page size of 16 KB or
more, an appropriate PTE reference address can be generated by shifting or masking the
value of thisregister.

User's Manual U10504EJ7VOUMO0 177

Chapter 6

6.3.10 Parity Error (PErr) Register (26)

The Parity Error register is aread/write register. Thisregister is defined to
maintain the software compatibility of the Vr4300 with the Vr4200. Becausethe
Vr4300 does not have a parity, this register is not used by the hardware.

Figure 6-11 shows the format of the Parity Error register.

PErr Register

31 8 7 0
0 ‘ Diagnostic
24 8
Diagnostic : 8-bit self-diagnosis area
0 : RFU. Must be written as zeroes, and returns zeroes when
read.

Figure6-11 PErr Register

6.3.11 CacheError (CacheErr) Register (27)

The Cache Error register isaread-only register. Thisregister is defined to
maintain the compatibility of the V r4300 with the Vg4200. BecausetheVg4300
does not generate a cache error, thisregister is not used by the hardware.

Figure 6-12 shows the format of the Cache Error register.

CacheErr Register
31 0

I

32

0 : RFU. Must be written as zeroes, and returns zeroes when read.

Figure6-12 CacheErr Register

178 User's Manual U10504EJ7VOUMO0

Exception Processing

6.3.12 Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register. Itisalso used to storethe
program counter (PC) on Cold Reset, Soft Reset, and nonmaskabl e interrupt
(NMI) exceptions.

Theread/write ErrorEPC register containsthe virtual addressat which instruction
processing can resume after servicing an error. This address can be:
» thevirtual address of the instruction that caused the exception

e thevirtual address of the immediately preceding branch or jump
instruction, when the instruction which is the cause of the error
exception is in a branch delay slot.

There is no branch delay dot indication for the ErrorEPC register.
Figure 6-13 shows the format of the ErrorEPC register.

ErrorEPC Register

31 0
32-bit
Mode ErrorEPC I
32
63 0
64-bit ErrorEPC
Mode
64

ErrorEPC : Indicates the program counter on cold reset or soft reset, or in case of
the NMI exception.

Figure6-13 ErrorEPC Register

User's Manual U10504EJ7VOUMO0 179

Chapter 6

6.4 Exception Details

This section describesthe processor exceptions (cause, processing, manipulation).

6.4.1 Exception Types
This section gives sample exception handler operations for the following
exception types:
* Cold Reset
e Soft Reset
e nonmaskable interrupt (NMI)
* remaining processor exceptions
When the EXL and ERL bitsin the Satusregister are 0 in normal operation either
User, Supervisor, or Kernel operating mode is specified by the KSU bitsin the

Satusregister. If one of the EXL and REL bitsis 1, the processor is in the Kernel
mode.

If an exception occursin the processor, the EXL bit is set to 1, and the system
entersthe Kernel mode. After information has been saved, the EXL bit isreset to
0 by an exception handler in most of the cases. The EXL hit is set to 1 again by
an exception handler so that the information that has been saved is not lost due to
occurrence of another exception while the information is restored.

When execution exits from the exception processing, the EXL bitisresetto 0. For
details, refer to ERET Instruction of Chapter 16 CPU Instruction Set Details.

6.4.2 Exception Vector Locations

The Cold Reset, Soft Reset, and NMI exceptions are always vectored to:
» location OxBFCO 0000 in 32-bit mode
» location OxFFFF FFFF BFCO 0000 in 64-bit mode

These addresses are a non-cache, non-TLB mapping area.

Addresses for the remaining exceptions are a combination of avector offset and a
base address.

64-bit mode exception and 32-bit mode exception vectors, and their offsets are
shown next.

180 User's Manual U10504EJ7VOUMO0

Exception Processing

Table6-3 64-Bit Mode Exception Vector Base Addresses

Vector Base Address Vector Offset
Cold Reset, Soft Reset, | OxFFFF FFFF BFCO 0000 0X0000
and NMI (BEV hit isautomatically set to 1.)
TLB Miss, EXL=0 0x0000
. _ OxFFFF FFFF 8000 0000 (BEV=0)
XTLBMiss, EXL=0 | o crrr FEFF BECO 0200 (BEV=1) 0xQ080
Other 0x0180
Table 6-4 32-Bit Mode Exception Vector Base Addresses
Vector Base Address Vector Offset
Cold Reset, Soft Reset, | OxBFCO0 0000 0x0000
and NMI (BEV bit isautomatically setto 1.)
TLB Miss, EXL=0 0x0000
. — 0x8000 0000 (BEV=0)
XTLB Miss, EXL=0 OXBFCO 0200 (BEV=1) 0x0080
Other 0x0180

E.g. TLB Missvector (EXL =0): When BEV = 0, the vector base for this
exception vector isin ksegO (uncached, TLB unmapped space) (0x8000 0000 in
32-bit mode, OxFFFF FFFF 8000 0000 in 64-bit mode).

When BEV = 1, the vector base address for this exception vector is in ksegl
(uncached, TLB unmapped space) 0xBFCO0 0200 in 32-bit mode and OXFFFF
FFFF BFCO 0200 in 64-bit mode. Thisisa TLB unmapped space, allowing the
exception to bypassthe TLB.

E.g. General Exception vector: When BEV = 0, the vector base address for this
exception vector isin kseg0 (uncached, unmapped space) (0x8000 0180 in 32-hit
mode, OxFFFF FFFF 8000 0180 in 64-bit mode).

When BEV = 1, the vector base address for this exception vector isin ksegl
(uncached, TLB unmapped space) (0x8000 0180 in 32-bit mode and OxFFFF
FFFF BFCO 0380 in 64-bit mode).

This space is an uncached and TL B unmapped space, allowing the exception
handler to bypass the cache and TLB.

User's Manual U10504EJ7VOUMO0 181

Chapter 6

6.4.3 Priority of Exceptions

While more than one exception can occur for asingle instruction, only the
exception with the highest priority is reported.

The priority isasfollows:

Table 6-5 Exception Priority Order

Cold Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)
Address error — Instruction fetch
TLB/XTLB miss— Instruction fetch
TLB invalid — Instruction fetch

Bus error — Instruction fetch
System Call

Breakpoint

Coprocessor Unusable

Reserved Instruction

Trap

Integer overflow

Floating-Point Exception
Address error — Data access
TLB/XTLB miss— Data access
TLB invalid — Data access
TLB modification — Data write
Watch

Bus error — Data access

Interrupt (lowest priority)

Generally speaking, the exceptions described in the following sections are
handled (“processing”) by hardware; these exceptions are handled (“ servicing”)
by software.

182 User's Manual U10504EJ7VOUMO0

Exception Processing

6.4.4 Cold Reset Exception

Cause

The Cold Reset exception occurs when the ColdReset signal is asserted and then
deasserted. This exception is not maskable.

Processing
The CPU provides a special interrupt vector for this reset exception:
» location 0XBFCO 0000 in 32-bit mode
» location OxFFFF FFFF BFCO 0000 in 64-bit mode

The Cold Reset vector residesin unmapped and uncached CPU address space, so
the hardware need not initialize the TLB or the cache to processthis exception. It
also means the processor can fetch and execute instructions while the caches and
virtual memory are in an undefined state.

The contents of all registersin the CPU are undefined when this exception occurs,
except for the following register fields:

« TheTS SR, and RP bits of the Status register and the EP(3:0) bits of
the Config register are cleared to 0.

* The ERL and BEV bits of the Satus register and the BE bit of the
Config register are set to 1.

» The Random register is set to the upper-limit value (31).

* The EC(2:0) hits of the Config register are set to the contents of the
DivMode(1:0)* pins.

* In Vr4300 and V g4305. In V4310, DivMode(2:0).

Servicing
The Cold Reset exception is serviced by:

e initializing all processor registers, coprocessor registers, TLB, caches,
and the memory system

» performing diagnostic tests
» bootstrapping the operating system

User's Manual U10504EJ7VOUMO0 183

Chapter 6

6.4.5 Soft Reset Exception

Cause

A Soft Reset (sometimes called Warm Reset) occurs when the ColdReset signal
remains deasserted while the Reset pinis deasserted after assertion of more than
16 Master Clock cycles.

A Soft Reset immediately resetsall state machines, and setsthe SR bit of the Satus
register. Execution begins at the reset vector when a Soft Reset occurs.

This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception (same location as
Cold Resst):

* |ocation OxBFCO 0000 in 32-bit mode
* |ocation OxFFFF FFFF BFCO 0000 in 64-bit mode

This vector islocated within unmapped and uncached address space, so that the
cache and TLB need not beinitialized to process this exception. When a Soft
Reset occurs, the SR hit of the Satus register is set to distinguish this exception
from a Cold Reset exception.

When this exception occurs, the contents of all registers are preserved except for:

» The program counter value when this exception occurs is set to the
ErrorEPC register, when the ERL bit of the Status register is O.

e TSand RP bits of the Status register are cleared to 0.
e ERL, SR, and BEV bhits of the Satus register are set to 1.

Because the Soft Reset can abort cache and access to the system interface, cache
and memory state is undefined when this exception occurs.

Servicing

184

The Soft Reset exception is serviced by saving the current processor state for self-

diagnostic purposes, and reinitializing the system in the same manner asthe Cold
Reset exception.

User's Manual U10504EJ7VOUMO0

Exception Processing

6.4.6 Non-Maskable Interrupt (NM1) Exception

Cause

The Non-maskable Interrupt (NMI) exception occurs in response to the falling
edge of the NMI pin. An NMI can also be set by externally writing 1 to the bit 6
of the internal interrupt register through the SysAD6 bus.

Unlike al other interrupts, thisinterrupt is not maskable; it occurs regardless of
the settings of the EXL, ERL, and the | E bits in the Status register.

Processing

The CPU provides a special interrupt vector for this exception (same location as
Cold Resat):

» Jocation 0xBFCO 0000 in 32-bit mode
e |ocation OxFFFF FFFF BFCO 0000 in 64-bit mode

This vector islocated within unmapped and uncached address space so that the
cache and TLB need not be initialized to process this exception. When an NMI
exception occurs, the SR bit of the Satus register is set to differentiate this
exception from a Reset exception.

Unlike Cold Reset and Soft Reset, but like other exceptions, NMI istaken only at
instruction boundaries. The state of the caches and memory system are preserved
by this exception.

When this exception occurs, the contents of al registers are preserved except for:

* The program counter value when this exception occurs is set to the
ErrorEPC register.

» TShit of the Status register are cleared to 0.
* ERL, SR, and BEV hits of the Status register are set to 1.

Servicing

The NMI exception is serviced by saving the current processor state for self-

diagnostic purposes, and reinitializing the system in the same manner asthe Cold
Reset exception.

User's Manual U10504EJ7VOUMO0 185

Chapter 6

6.4.7 AddressError Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of
the following:

» Executethe LW or SW instruction to the word data that is not located
at the word boundary.

e Execute the LH or SH instruction to the halfword data that is not
located at the halfword boundary.

e Execute the LD or SD instruction to the doubleword data that is not
located at the doubleword boundary.

» Reference the Kernel address space from User or Supervisor mode
» Reference the supervisor address space from User mode

» Reference an address not in Kernel, Supervisor, or User space in 64-
bit Kernel, Supervisor, or User mode.

This exception is not maskable.

Processing

The common exception vector isused for thisexception. The AdEL or AdEScode
inthe Causeregister is set, indicating whether theinstruction caused the exception
with an instruction reference (AdEL), load operation (AdEL), or store operation
(AdES).

When this exception occurs, the BadVAddr register retainsthe virtual addressthat
was not properly aligned or was referenced in protected address space. The
contents of the VPN field of the Context and EntryHi registers are undefined, as
are the contents of the EntryLo register.

The EPC register contains the address of theinstruction that caused the exception,
unlessthisinstruction isin abranch delay dot. If itisin abranch delay dot, the
EPC register contains the address of the preceding branch instruction and the BD
bit of the Cause register is set.

Servicing

The process executing at the timeis handed a UNIX ™ SIGSEGV (segmentation
violation) signal by Kernel. Thiserror isusually fatal to the processincurring the
exception.

186 User's Manual U10504EJ7VOUMO0

Exception Processing

6.4.8 TLB Exceptions

Three types of TLB exceptions can occur:

* TLB Miss exception occurs when there is no TLB entry that matches
an attempted reference to a mapped address space.

* TLB Invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid (V bit = 0).

* TLB Maodification exception occurs when a store operation virtual
address reference to memory matches a TLB entry which is marked
valid but is not dirty (the entry is not writable, D bit = 0). As aresult,
this exception only occurs for the data cache, resulting in a lower
priority for this exception.

The following describe these TLB exceptions.
TLB Miss Exception (32-bit mode)/XTLB Miss Exception (64-bit mode)

Cause

The TLB (XTLB) Miss exception occurs when thereisno TLB entry to match an
address to be referenced. This exception is not maskable.

Processing

There are two special vectorsfor this exception. Oneisfor the 32-bit mode, and
the other isfor the 64-bit mode. The UX, SX, and KX bits of the Status register
determine whether the user, supervisor or Kernel address spaces referenced are
32-hit or 64-hit spaces. All TLB Miss exceptions use these two special vectors
when the EXL bit is set to 0 in the Satus register, and they use the common ex-
ception vector when the EXL bit is set to 1 in the Satus register.

This exception setsthe TLBL or TLBS code to the ExcCode area of the Cause reg-
ister. If the cause of the exception is an instruction reference or load operation,
the TLBL codeis set; if the cause is a store operation, the TLBS code is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers hold the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the translation fault occurred. The
Random register normally contains avalid location in which to place the
replacement TLB entry. The contents of the EntryLo register are undefined.

The EPC register containsthe address of theinstruction that caused the exception,
unless thisinstruction isin a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Causeregister is set.

User's Manual U10504EJ7VOUMO0 187

Chapter 6

188

Servicing

To servicethisexception, the contents of the Context or XContext register are used
asavirtual addressto load memory words containing the physical page frame and
access control bitsto apair of TLB entries. Memory words are written into the
TLB through the EntryLoO/EntryLol/EntryHi register.

It ispossiblethat the page frame and access control bit are placed on apage where
the virtual addressis not resident in the TLB. Thiscondition is processed by
allowing aTLB Missexceptioninthe TLB Miss exception handler. This second
exception goes to the common exception vector because the EXL bit of the Satus
register is set.

TLB Invalid Exception

Cause

The TLB Invalid exception occurs when avirtual address reference matches a
TLB entry that ismarked invalid (TLB valid bit cleared). Thisexception is not
maskable.

Processing

The common exception vector isused for thisexception. The TLBL or TLBScode
is set to the ExcCode field of the Cause register. |If the cause of the exceptionis

an instruction reference or load operation, the TLBL codeis set; if the causeisa

store operation, the TLBS code is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the trandlation fault occurred. The
contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception
unlessthisinstruction isin abranch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

User's Manual U10504EJ7VOUMO0

Exception Processing

Servicing
A TLB entry istypically marked invalid when one of the following is true:
» avirtual address does not exist
e thevirtual address exists, but is not in main memory (a page fault)

e atrapisdesired on any reference to the page (for example, to
maintain a reference hit)

After removing the cause of a TLB Invalid exception, place another entry to the
location of the TLB entry where the exception has occurred by the TLB Probe
(TLBP) instruction and set 1 to the V hit.

TLB Modification Exception

Cause

The TLB change exception occurs if the TLB entry that matches the virtual
address referenced by the store instruction is disabled from being written (the D
bit is 0), though the TLB entry isvalid (V bit is 1). This exception occurs only
when an attempt is made to write the data cache. Note, however, that the priority
of thisexception islow.

Processing

The common exception vector is used for this exception, and the Mod code is set
to the ExcCode field in the Cause register.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address trandation. The EntryHi
register also contains the ASID from which the tranglation fault occurred. The
contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception
unless that instruction isin abranch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Causeregister is set.

Servicing

The Kernel uses the failed virtual address or virtual page number to identify the
corresponding access control bits. The page identified may or may not permit
write accesses; if writes are not permitted, awrite protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the
Kernel in its own data structures.

User's Manual U10504EJ7VOUMO0 189

Chapter 6

The TLBP instruction places theindex of the TLB entry that must be altered into
the Index register. The EntryLo register isloaded with aword containing the
physical page frame and access control bits (with the D bit set), and the contents
of the EntryHi and EntryLo registers are written into the TLB.

6.4.9 BusError Exception

190

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus
time-out, local bus parity errors, and invalid physical memory addresses or access
types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached field
reference, or unbuffered write occurs synchronously; in concrete terms, a Bus
Error exception occursif SysCmd(0) indi catesthat the datacontainsan error when
it istransferred on the system bus, regardless of the direction of the transfer
between the system and the processor. An exception for the local bus error of the
system resulting from a buffered write transaction is generated using the interrupt
exception.

Processing

The common interrupt vector isused for aBus Error exception. The IBE or DBE
codeinthe ExcCodefield of the Causeregister isset. If the cause of the exception
isan instruction reference (instruction fetch), the IBE codeis set. If the causeisa
data reference (load/store), the DBE code is set.

The EPC register contains the address of theinstruction that caused the exception,
unlessit isin abranch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Causeregister is
Set.

User's Manual U10504EJ7VOUMO0

Exception Processing

Servicing

The physical address at which the fault occurred can be computed from
information available in the system control coprocessor registers.

» |If the IBE code in the Cause register is set (indicating an instruction
fetch), the virtual address is contained in the EPC register (or 4 + the
contents of the EPC register if the BD bit of the Cause register is set).

» |If the DBE codeis set (indicating aload or store), the virtual address
of the instruction that caused the exception (the address of the
preceding branch instruction if the BD bit of the Cause register is set)
is stored in the EPC register (or 4 + the contents of the EPC register
if the BD hit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by
interpreting the instruction. The physical address can be obtained by using the
TLBP instruction and reading the EntryLo register to compute the physical page
number.

The process executing at the time of this exception is handed a UNIX SIGBUS
(bus error) signal, which isusualy fatal.

6.4.10 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SY SCALL
instruction. This exception is hot maskable.

Processing

The common exception vector isused for this exception, and the Syscodeis set to
the ExcCode field in the Cause register.

The EPC register contains the address of the SY SCALL instruction unlessit isin
abranchdelay dot. If theSY SCALL instructionisinabranch delay slot, the EPC
register contains the address of the preceding branch instruction and the BD bit of
the Cause register is set; otherwise this bit is cleared.

User's Manual U10504EJ7VOUMO0 191

Chapter 6

Servicing

When this exception occurs, control is transferred to the applicable system
routine.

To resume execution, the EPC register must be altered so that the SY SCALL
instruction does not re-execute; this is accomplished by adding avalue of 4 to the
EPC register (EPC register + 4) before returning.

If aSYSCALL instruction isin abranch delay slot, the branch instruction is
decoded to branch and re-execute.

6.4.11 Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP codeis set to
the ExcCode in the Cause register.

The EPC register contains the address of the BREAK instruction unlessitisina
branch delay dot. If the BREAK instruction isin a branch delay slot, the EPC
register contains the address of the preceding branch instruction and the BD bit of
the Cause register is set, otherwise the bit is cleared.

Servicing

192

When the Breakpoint exception occurs, servicing istransferred to the applicable
system routine. Additional information can be passed using the unused bits of the
BREAK instruction (bits 25:6). Thisinformation can be obtained by reading the
contentsindicated by the EPC register asdata. (A value of 4 must be added to the
contents of the EPC register (EPC register + 4) tolocatetheinstruction if it resides
in abranch delay dot.)

To resume execution, the EPC register must be altered so that the BREAK
instruction does not re-execute; thisis accomplished by adding avalue of 4 to the
EPC register (EPC register + 4) beforereturning. If aBREAK instructionisina
branch delay dlot, decode the branch instruction to get the branch destination and
resume execution.

User's Manual U10504EJ7VOUMO0

Exception Processing

6.4.12 Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute
a coprocessor instruction for either:

If use of the corresponding coprocessor unit is not marked usable
(CU bits (3:1) of the Satus register = 0).

If the CPO instruction is executed in the User or Supervisor mode
when CPO cannot be used (CUO bit of the Status register = 0).

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CpU code is set
to the ExcCode in the Cause register.

The CE hits of the Cause register indicate which of the four coprocessors was
referenced.

The EPC register indicates the coprocessor instruction that caused an exception.
If the coprocessor instruction that caused the exception isin a branch delay slot,
the EPC register indicates the preceding branch instruction and the BD bit of the
Causeregister is set.

Servicing

The coprocessor unit to which an attempted reference was made is identified by
the CE bit of the Cause register, process as follows by a handler.

If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the coprocessor resumes execution.

If the process is entitled access to the coprocessor, but the
coprocessor does not exist or has failed, decoding of the coprocessor
instruction is possible.

If the BD hit is set in the Cause register, the branch instruction must
be decoded; then the coprocessor instruction can be emulated and
execution resumed by making the contents of the EPC register
advanced past the coprocessor instruction.

User's Manual U10504EJ7VOUMO0 193

Chapter 6

» If the process is not entitled access to the coprocessor, the Kernel
informs the current process of the UNIX SIGILL/ILL_PRIVIN_
FAULT (illegal instruction/privileged instruction fault) signal. This
exception is usually fatal.

6.4.13 Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions
oCCurs:

e an attempt is made to execute an instruction with an undefined
opcode (bits 31:26)

e an attempt is made to execute a SPECIAL instruction with an
undefined sub-opcode (bits 5:0)

e an attempt is made to execute a REGIMM instruction with an
undefined sub-opcode (bits 20:16)

e an attempt is made to execute 64-bit operations in 32-bit mode when
in User or Supervisor modes

64-bit operations are aways valid in Kernel mode regardless of the value of the
KX bit in the Status register.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Rl codeissetin
the ExcCode field in the Cause register.

The EPC register indicatestheinstruction that caused an exception if the reserved

instruction is not in a branch delay slot, in which case the EPC register indicates

the preceding branch instruction and the BD bit of the Cause register is set.
Servicing

All instructions in the MIPS | SA that are currently defined can be executed.

The process executing at the time of thisexception ishandled by aUNIX SIGILL/
ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal. This
exception isusualy fatal.

194 User's Manual U10504EJ7VOUMO0

Exception Processing

6.4.14 Trap Exception

Cause

The Trap exception occurswhenaTGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI,
TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction resultsin a TRUE condition.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr codeissetin
the ExcCode field in the Cause register.

The EPC register indicates the Trap instruction that caused the exception. If the
instruction isin abranch delay dot, the EPC register indicates the preceding
branch instruction and the BD hit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception ishanded aUNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal by
Kernel. This exceptionis usually afatal error.

User's Manual U10504EJ7VOUMO0 195

Chapter 6

6.4.15 Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI or DSUB instruction resultsin a 2's complement overflow. This
exception is not maskable.

Processing

The common exception vector isused for this exception, and the Ov codeissetin
the ExcCode field in the Cause register.

The EPC register indicates the instruction that caused the exception. If the
instruction isin abranch delay dot, the EPC register indicates the preceding
branch instruction and the BD hit of the Cause register is set.

Servicing

The process executing at the time of the exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal by
Kernel. Thisexception is usually afatal error to the current process.

196 User's Manual U10504EJ7VOUMO0

Exception Processing

6.4.16 Floating-Point Exception

Cause
The Floating-Point exception is generated by the floating-point coprocessor. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code is set
in the ExcCode field in the Cause register.

The contents of the Floating-Point Control/Status register indicate the cause of
this exception.

The EPC register indicates the reserved instruction if theinstructionisnot in a
branch delay slot. If theinstruction isin the branch delay dlot, the EPC register
indicates the preceding branch instruction and the BD bit of the Cause register is
Set.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point
Control/Satus register.

For an unimplemented instruction exception, the Kernel must emulate the
instruction; for other exceptions, the Kernel should pass the exception to the user
program that caused the exception.

User's Manual U10504EJ7VOUMO0 197

Chapter 6

6.4.17 Watch Exception

Cause

A Watch exception occurswhen aload or storeinstruction referencesthe physical
address specified in the WatchLo/WatchHi registers. The exception is caused by
thefollowing instructions: aload instruction when the R bit is set in the WatchLo
register; astore instruction when the Whit is set in the WatchLo register; aload or
store instruction when both the R and W bits are set in the WatchLo register.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if the EXL bit is set in the Satusregister. The
Watch exception is maskable by setting the EXL bit in the Status register to 1 or
by clearing the R and W bits in the WatchLo register to 0.

Processing

The common exception vector isused for this exception, and the Watch codeis set
in the ExcCode field in the Cause register.

The EPC register indicates the Load and Store instructionsiif they arenot in a
branch delay dot. If these instructions are in the branch delay slot, the EPC

register indicates the preceding branch instruction and the BD bit of the Cause
register is set.

Servicing

The Watch exception isadebugging aid; typically the exception handler transfers
control to adebugger, allowing the user to examinethe situation. To continue, the
Watch exception must be masked to execute the faulting instruction. The Watch
exception must then be reenabled.

Because the contents of the WatchLo/WatchHi registers become undefined after

reset, initialize the registers by software (especially clear the R and W bits to 0).
If not initialized, the Watch exception may occur.

198 User's Manual U10504EJ7VOUMO0

Exception Processing

6.4.18 Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions (one for
timer interrupt; fivefor hardwareinterrupt; two for softwareinterrupt) isasserted.
The significance of these interrupts is dependent upon the specific system
implementation. An interrupt request signal from a pin is detected by the level.

Each of the eight interrupts can be masked by clearing the corresponding bit in the
Int-Mask field of the Satus register, and all of the eight interrupts can be masked
at once by clearing the |E bit, setting the EXL hit, or setting the ERL bit of the
Satus register.

Processing

The common exception vector is used for this exception, and the Int codeissetin
the ExcCode field in the Cause register.

The IP field of the Cause register indicates current interrupt requests. Itis
possible before this register is read that more than one of the bits can be
simultaneoudly set if the interrupt request signal is asserted; or that more than one
of the bits can be simultaneously cleared if the interrupt request signal is
deasserted.

If the instruction that causes an exception is not in a branch delay slot the EPC
register indicates that instruction. If theinstructionisin the branch delay slot, the
EPC register indicates the preceding branch instruction and the BD bit of the
Causeregister is set.

Servicing

If theinterrupt is caused by one of the two software-generated exceptions (SW1 or
SW0), the interrupt condition is cleared by setting the corresponding Cause
register bit to O.

If an interrupt is generated by the hardware, the interrupt is cleared by asserting
inactive the interrupt request signal that has caused the interrupt.

If the timer interrupt request is generated, either clear the IP7 hit of the Cause
register or change the contents of the Compare register, to clear thisinterrupt.

User's Manual U10504EJ7VOUMO0 199

Chapter 6

6.5 Exception Handling and Servicing Flowcharts
The remainder of this chapter contains flowcharts for the following exceptions
and guidelines for their handlers:

e genera purpose exceptions handling and a guideline for their
exception handler

e TLB/XTLB miss exception handling and a guideline for their
exception handler

e Cold Reset, Soft Reset and NMI exceptions handling, and a guideline
for their handler.

Generally speaking, the exceptions are handled (“processing”) by hardware; the
exceptions are then handled (“servicing”) by software.

200 User's Manual U10504EJ7VOUMO0

Exception Processing

(a) Exceptions other than Cold Reset, Soft Reset, NMI,
or TLB/XTLB Miss Handling (Hardware)

Set FP Control Status Register
EnHi <- VPN2, ASID
X/Context <- VPN2

Set Cause Register

EXcCode, CE

BadVAddr Register Setting

Yes Instr. in

Br.Dly. Slot?

BD bit of Cause Register <- 1
EPC <- (PC-4)

BD bit of Cause Register <- 0
EPC <- PC

Comments
FP Control/Status Register are
only set if the respective exception
occurs.
EnHi, X/Context are set only for
TLB-Invalid, Modification & Miss
exceptions. Itis not set by bus
error exceptions, however.

Check for multiple
exception

=0 (normal)

EXL<-1

=1 (bootstrap)

Processor moves to Kernel Mode
& interrupt disabled

PC <- OxFFFF FFFF 8000 0000 + 180
(unmapped, cached)

PC <- OxFFFF FFFF BFCO 0200 + 180
(unmapped, uncached)

-l
ol

(_ To General Purpose Exception Servicing Guidelines)

Remark

Interrupts can be masked by IE or IMs and Watch is postponed if EXL = 1

Figure 6-14 General Purpose Exception Handler (1/2)

User's Manual U10504EJ7VOUMO0

201

Chapter 6

(b) General Purpose Exception Servicing Guidelines (Software)

(_ General Purpose Exception Servicing Guidelines)

No

MFCO Instruction Executed
X/Context
EPC
Status
Cause

MFCO Instruction Executed
(Set Status Bits:)
KSU<- 00
EXL<-0
IE=1

Check Cause Register &
Jump to appropriate
Service Routine

TS bit of
Status

Reset the processor

Register = 0?

Yes

Each exception routine
service '

- - - -

MFCO Instruction Executed
EPC
Status

(_ ERET)

Prevents TLB modification, TLB
invalid, and TLB miss exceptions
from occurring by using mapping
disable area

EXL=1 so Watch, Interrupt
exceptions disabled

OS/System to avoid all other
exceptions

Only Cold Reset, Soft Reset, NMI
exceptions possible.

Optional: Interrupts are enabled
in Kernel mode.

After EXL=0, all exceptions
allowed.

(except interrupt if masked by IE
or IM)

Optional: Check only if double
TLB miss

Save Register File

ERET is not allowed in the branch
delay slot of another Jump
Instruction

Processor does not execute the
instruction which is in the ERET
instruction’s branch delay slot
PC <- EPC, EXL <- 0, LLbit<-0

Figure 6-14 General Purpose Exception Handler (2/2)

202

User's Manual U10504EJ7VOUMO0

Exception Processing

(a) Hardware

EnHi <- VPN2, ASID
X/Context <- VPN2

Cause Register Setting
(EXcCode)

BadVAddr Register Setting

Yes

Instr. in

EXL =07? No

(SR bit 1)

Yes

BD bit of Cause Register <- 1
EPC <- (PC—4)

BD bit of Cause Register <- 0
EPC <- PC

Y

Comments

;. Check for multiple
exception

General Purpose Exception

Vec. Off.

= 0x080

XTLB Miss Exception
Vec. Off. = 0x080

TLB Miss Exception
Vec. Off. = 0x000

=0 (normal)

I y

¥
A

EXL<-1

BEV
(SR bit 22)

=1 (bootstrap)

;. Processor moves
to Kernel Mode
& interrupt
disabled

PC <- OxFFFF FFFF 8000 0000 + Vec. Off.

(unmapped, cached)

PC <- OxFFFF FFFF BFCO 0200 + Vec. Off.
(unmapped

, uncached)

-
>)

¢ To TLB/XTLB Exception Servicing Guidelines)

Figure6-15 TLB/XTLB Miss Exception Handler (1/2)

User's Manual U10504EJ7VOUMO0

203

Chapter 6

(b) TLB/XTLB Exception Servicing Guidelines (Software)

(TLB/XTLB Exception Servicing Guidelines)

Comments

; Prevents TLB modification, TLB invalid, and TLB Miss
exceptions from occurring by using mapping disable
MFCO Instruction Executed area
Context ; EXL=1 so Watch, Interrupt exceptions disabled
; OS/System to avoid all other exceptions
; Only Cold Reset, Soft Reset, NMI exceptions possible

rtooToT T T T T T 1 ; Load the physical address corresponding to the virtual
address in loaded in X/Context Register to Entry Lo
Register and Write into the TLB

; There could be a TLB miss again during the mapping of
the data or instruction address. The processor may
jump to the general purpose exception vector since the
EXL is 1.

; (Either processes TLB miss in general purpose
exception handler, or returns to user program by using
ERET instruction and generates TLB Miss exception

a again.)

Each Exception Routine
Servicing

; ERET is not allowed in the branch delay slot of another
Jump Instruction

; Processor does not execute the instruction which is in
the ERET instruction’s branch delay slot

; PC<-EPC,EXL<-0, LLbit<-0

Figure 6-15 TLB/XTLB Miss Exception Handler (2/2)

204 User's Manual U10504EJ7VOUMO0

Exception Processing

(Soft Reset or NMI Exception) (Cold Reset Exception)
Random <- 31
Status: Wired <- 0

RP <- 0 (soft reset) Update 31—4 bit of Config register

BEV <- 1 Status: RP <-0

TS<-0 BEV <- 1

SR<-1 TS<-0

ERL<-1 SR<-0
ERL<-1

\J
A

ErrorEPC <- PC

Cold Reset, Soft Reset & NMI Exception
Processing Guidelines (HW)

PC <- OxFFFF FFFF BFCO 0000

Comments

NMI? ; There is no indication from the
_________________ B processor to differentiate between

c
o
=
o
[}
O ~
L|>j = ! NMI E . ' NMI & Soft Reset; there must be a
—_ 0 - [Exception . No system level indication.
S ' Routine Service !
0 ' :
Z 0 e e e e e e e oo s
o3 .S
P .
3 S SR bit of =0
o> Status Register
xo
hudii @)
o c =1
(2T
PSS A A S \
o = (Optional) , \ .
a $. Servicing of soft reset ' ' Servicing of cold reset
4 (__ERET) - exception routine C exception routine .
E 1 1 1 1
o
@)

Figure 6-16 Cold Reset, Soft Reset & NMI Exception Handler

User's Manual U10504EJ7VOUMO0 205

[MEMO]

206 User's Manual U10504EJ7VOUMO0

Floating-Point Operations

User's Manual U10504EJ7VOUMO0 207

Chapter 7

7.1 Overview

All floating-point instructions, as defined in the MIPS | SA for the floating-point
coprocessor, CP1, can be processed by the V g4300. Logically, the Floating-Point
Arithmetic Unit (FPU) existsasan individual coprocessor; however, unlike those
of the Vr4400, the V4300 FPU is physically integrated into the Integer
Arithmetic Unit (CPU). The CPU and the FPU use acommon datapath and FPU
instructions are fully-implemented in the CPU hardware. Unlike the Vg4400
implementation, V r4300 integer instructions cannot be executed until a
multicycle floating-point instruction has been completed.

The execution of floating-point instructions can be disabled by the coprocessor
usability CU bit defined in the System Control Coprocessor (CP0) Status register.

7.2 FPU Programming M odel

This section describes the structure of the registers, memory, and data, and usable
General Purpose registers. Moreover, the FPU registers are described in detail.

7.2.1 Floating-Point General Purpose Register (FGR)

208

The FPU has one set of floating-point general purpose register (FGR) and two
Control registers (Control/Status register: FCR31, Implementation/Revision
register: FCRO). The general purpose register can be used in the following three
ways.

e As 32 General Purpose registers (32 FGRs), each of which is 32 bits
wide when the FR bit in the Status register equals 0; or as 32 General
Purpose registers (32 FGRs), each of which is 64-bits wide when FR
equals 1. The CPU accesses these registers through load, store, and
transfer instructions.

» As 16 floating-point registers (FPR) (see the next section for a
description of FPRS), each of which is 64-bits wide, when the FR bit
in the Status register equals 0. The FPRs hold valuesin either single-
or double-precision floating-point format. Each FPR corresponds to
adjacently numbered FGRs as shown in Figure 7-1.

e As 32 floating-point registers (FPR) (see the next section for a
description of FPRs), each of which is 64-bits wide, when the FR bit
in the Satus register equals 1. The FPRs hold values in either single-
or double-precision floating-point format. Each FPR corresponds to
an individual FGR as shown in Figure 7-1.

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

Floating-Point Floating-Point
Registers (FPR) General Purpose Registers

FPRO (Low-order) FGRO
(High-order) EGR1
Low-order

FPR2 (-) FGR2
(High-order) EGR3

(Low-order)

FPR28 (High-order)

(Low-order)
FPR30

(High-order)

Control/Status Register
(FCR31)

31

S

Floating-Point Floating-Point
Registers (FPR) General Purpose Registers
(FR bit=1)

63 (FGR) 0
FPRO FGRO
FPR1 FGR1
FPR2 FGR2
FPR3 FGR3
FPR28 FGR28
FPR29 FGR29
FPR30 FGR30
FPR31 FGR31

Floating-Point
Control Registers

(FCR) . »)
Implementation/Revision Register

(FCRO)
31 0

—_—

Figure7-1 FPU Registers

User's Manual U10504EJ7VOUMO0 209

Chapter 7

7.2.2 Floating-Point Registers (FPR)

210

CP1 provides:

» 16 Floating-Point registers (FPRs) when the FR bit in the Status
register equals 0, or

* 32 Floating-Point registers (FPRs) when the FR bit in the Status
register equals 1.

FPR possesses|ogical 64-bit registers, holds floating-point values during floating-
point operations, and is physically formed from the General Purpose registers
(FGRs). FPR can be accessed through a Floating-Point Arithmetic Instruction.
FPR s physically configured with General Purpose registers (FGRS). When the
FRbitinthe Satusregister equals0, the FPRisconfigured with two 32-bit FGRs.
When the FR bit inthe Satusregister equals 1, the FPRis configured with asingle
64-bit FGR.

The FPRs hold valuesin either single- or double-precision floating-point format.
If the FR bit equals 0, only even numbers (the least register, as shown in Figure 7-
1) can be used to address FPRs. When the FR bit equals 1, all FPR register
numbersarevalid. If the FRbit equals 0 during adouble-precision floating-point
operation, the FGR can be used in double pairs. Thus, in adouble-precision
operation, selecting Floating-Point Register 0 (FPRO) actually uses adjacent
Floating-Point General Purpose registers FGRO and FGR1.

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

7.2.3 Floating-Point Control Registers (FCRS)

TheFPU intheV R4000 Series (excluding VV g4100) has 32 control registers. With
the Vr4300, the following two FCRs are valid.

» The Control/Satus register (FCR31) controls and monitors
exceptions, holds the result of compare operations, and establishes
rounding modes.

* The Implementation/Revision register (FCRO) holds revision
information about the FPU.

Table 7-1 lists the assignments of the FCRs.

Table 7-1 Floating-Point Control Register Assignments

FCR Number Use
FCRO Coprocessor implementation/revision register
FCR1to FCR30 | Reserved
FCR31 Rounding mode, cause, exception enables, and flags

7.2.4 Control/Status Register (FCR31)

The Control/Satus register (FCR31) is aread/write register, and holds control
data and status data. FCR31 controls the rounding mode and enables occurrence
of the floating-point exception. It also indicatestheinformation on the exception
that has caused by the instruction executed last and information on the exceptions
that have been masked and therefore have not occurred. Figure 7-2 shows the
configuration of FCR3L1.

Control/Status Register (FCR31)

31 25 24 23 22 18 17 12 11 7 6 21 0
Cause Enables Flags RM
0 FS| C 0 EVZOUIl VZOUI | VZzOUI
7 1 1 5 6 5 5 2

Figure 7-2 Control/Satus Register Bit Assignments

User's Manual U10504EJ7VOUMO0 211

Chapter 7

212

Bit#17 16 15 14 13 12

Cause
| E \ Z 0) | Bits
[I I I I
Bit # 11 10 9 8 7
| Enable
\ Z ®)) [Bits
I I I I I
Bit # 6 5 4 3 2
Flag
Z O) | Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation

Unimplemented Operation

Figure7-3 Control/Satus Register (FCR31) Cause, Enable, and Flag Bit Fields

The contents of FCR31 and FCRO can be read by using the CFC1 instruction.

The bits of FCR31 can be set or cleared by using the CTC1 instruction. FCROis
aread-only register. The contents of aregister to which dataisto be written are
undefined when aninstruction that immediately followstheinstruction that writes
datato the register is executed. The pipeline does not interlock.

The IEEE754 specifies detection of an exception during a floating-point
operation, setting flags, and calling an exception handler in case of an exception.
With the MIPS architecture, these specifications are realized by the cause, enable,
and flag bits of the Control/Satusregister. Theflag bit conformsto the exception
statusflag of the IEEE754, and the cause and enabl e bits conform to the exception
handler of the |IEEE754.

Each bit of FCR31 is described next.

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

FSbit

C Bit

Cause,

The FShit enables a value that cannot be normalized (denormalized number) to
be flashed. When the FShit is set and the enable bit is not set for the underflow
exception and illegal exception, the result of the denormalized number does not
cause the unimplemented operation exception, but isflushed. Whether the flushed
result is 0 or the minimum normalized value is determined depending on the
rounding mode (refer to Table 7-2). If the result is flushed, the Flag and Cause
bits are set for the underflow and illegal exceptions.

Table 7-2 Flush Values of Denormalized Number Results

. Flushed Result
Denormalized Rounding M ode
Number Result

RN RZ RP RM
Positive +0 +0 i +0
Negative -0 -0 -0 -25mn

When afloating-point Compare operation takes place, theresult isstored at bit 23,
the Condition bit. The C bitissetto 1if the condition istrue; the bit is cleared to
0if the condition isfalse. Bit 23 is affected only by compare and CTC1
instructions.

Flag, and Enable Fields
Figure 7-3 illustrates the Cause, Enable, and Flag fields of the FCR31.

The Cause and Flag fields are updated by all conversion, computational (except
MOV .fmt), CTC1, reserved, and unimplemented operation instructions. All other
instructions have no affect on these fields.

Cause Bits

Bits 17:12 in the FCR31 contain Cause bhits which reflect the results of the most
recently executed floating-point instruction. The Cause bitsare alogical

extension of the CPO Causeregister; they identify the exceptionsraised by thelast
floating-point operation; and generate exceptions if the corresponding Enable bit

isset. If morethan one exception occurs on asingleinstruction, each appropriate
bit is set.

User's Manual U10504EJ7VOUMO0 213

Chapter 7

214

The Cause bits are updated by the floating-point operations (except load, store,
and transfer instructions). The unimplemented operation instruction (E) bit is set
toalif software emulation isreguired, otherwiseit remains0. The other bitsare
set to 0 or 1 to indicate the occurrence or non-occurrence (respectively) of an
|EEE754 exception.

If the floating-point operation exception occurs, the operation result is not stored,
and only the Cause bit isinfluenced. The type of the exception that has been
caused by the most-recently-executed floating-point operation can be identified
by reading the Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the
corresponding Enable bit are set. As soon as the Cause bit enabled through the
Floating-point operation, an exception occurs. When both Cause and Enable bits
are set by the CTC1 instruction, an exception also occurs.

There is no enable bit for unimplemented operation instruction (E). An
Unimplemented exception always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear the
Cause hits that are enabled to generate exceptions to prevent arepeat of
exceptions. Thus, User mode programs cannot observe the set Cause bits. To use
the information by the handler in User mode, save the value of the Status register
and then call the handler in User mode.

If the Cause bit is set but the corresponding Enable is not set, no floating-point
exception occurs and the default result defined by |IEEE754 isstored. Inthiscase,
whether the exceptions were caused by the immediately previous floating-point
operation can be determined by reading the Cause bit.

Flag Bits

The Flag bits are cumulative and indicate the exceptions that were raised after
reset. Flag bitsare set to 1 if an IEEE754 exception is raised but the occurrence
of the exceptionis prohibited. Otherwise, they remain unchanged. The Flag bits
are never cleared as a side effect of floating-point operations; however, they can
be set or cleared by writing anew valueinto the FCR31, using aCTC1l instruction.

Rounding Mode Control Bits

Bits1 and 0inthe FCR31 register constitute the Rounding Mode (RM) bits. These
bits specify the rounding mode that FPU uses for al floating-point operations.

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

Table 7-3 Rounding Mode Control Bits

RM bits , i
- - Mnemonic Description
Bitl | BitO
Round result to nearest representable value;

0 0 RN round to value with least-significant bit 0 when]
thetwo nearest representablevaluesareequally
near.

Round toward 0: round to value closest to and

0 1 Rz not greater in magnitude than the infinitely
precise result.

1 0 RP Round toward + o: round to value closest to
and not less than the infinitely precise result.

1 1 RM Round toward — o: round to value closest to
and not greater than theinfinitely preciseresult

User's Manual U10504EJ7VOUMO0 215

Chapter 7

7.2.5 Implementation/Revision Register (FCRO)

The Implementation/Revision register (FCRO) isaread-only register and holdsthe
implementation i dentification number and implementation revision number of the
FPU. Thisinformation is used to revise the coprocessor, determine the
performance level, and to execute self-diagnosis.

Figure 7-4 shows the layout of the register.

Implementation/Revision Register (FCRO)
31 16 15 87 0

0 Imp ‘ Rev
16 8 8

Imp : Implementation number (OxOB)
Rev : Revision number in the form of y.x
0 : RFU. Returns zeroes when read.

Figure7-4 Implementation/Revision Register

Theimplementation revision number isavaluein theformat of y.x, wherey isthe
major revision number stored to the bits 7:4, and x is the minor revision number
stored to bits 3:0. Revision of the chip can be identified by the implementation
revision number. However, the fact that a chip has been changed is not always
reflected on the revision number. Conversely, a change in the revision number
does not always reflect an actual change of the chip. Therefore, design the
program so that it does not depend on the revision number of this register.

216 User's Manual U10504EJ7VOUMO0

Floating-Point Operations

7.3 Floating-Point Formats

The FPU supports the performances of both 32-bit (single-precision) and 64-bit
(double-precision) |IEEE754 standard floating-point operations. The 32-bit
single-precision format has a 24-bit signed fraction field (s+f) and an 8-bit
exponent (€), as shown in Figure 7-5.

31 30 23 22 0
S e f

Sign Exponent Fraction
1 8 23

Figure7-5 Sngle-Precision Floating-Point Format

The double-precision format has a53-bit signed fraction field (s+f) and an 11-bit
exponent, as shown in Figure 7-6.

63 62 52 51 0
S e f
Sign Exponent Fraction
1 11 52

Figure7-6 Double-Precision Floating-Point Format
As shown in the above figures, numbersin floating-point format are composed of
threefields:
e signfield, s
* exponent, e = E + bias
» fraction, f = bybs....bp_; (value at first decimal place or beyond)

The range of the unbiased exponent E includes every integer between the two
values E,,ip, and E, 5 inclusive, together with two other reserved values:

* Epjin -1 (to encode +0 and denormalized numbers)
* Emqax +1 (to encode o and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero numerical
value has just one encoding.

For single- and double-precision formats, the value of a number, v, is determined
by the equations shown in Table 7-4.

User's Manual U10504EJ7VOUMO0 217

Chapter 7

Table 7-4 Equations for Calculating Values in Sngle-and Double-Precision
Floating-Point Format

No. Equation
NaN o .
(Not aNumber) if E = Eqaxt1 and = 0, then vis NaN, regardless of s
(Infinit:;z ;oumber) if E = Emaxtland f=0, then v=(-1)%
Normalized :
number if Emin < E < Emax then v = (-1)525(1.9
De':]%rr;"t‘;"'e'rzed if E = Ejy—1and f = 0, then v = (~1)S2EMIn(0. f

+0 (Zero) if E = Ein—1 and f = 0, then v = (-1)%0

NaN (Not a Number)

The |IEEE754 specifies a floating-point value called NaN (Not a Number). This
is not a numeric value and therefore, is not greater or smaller than anything.

For all floating-point formats, if vis NaN, the most-significant bit of f determines
whether the value isasignaling or quiet NaN: visasignaling NaN if the most-
significant bit of fisset, otherwise, visaquiet NaN. Table 7-5 definesthe values
for the format parameters.

Table 7-5 Floating-Point Format Parameter Values

Parameter - Format
Single Double

Emax +127 +1023
Emin -126 -1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
Fraction width in bits 24 53
Format width in bits 32 64

218 User's Manual U10504EJ7VOUMO0

Floating-Point Operations

The minimum and maximum values that can be expressed in this floating-point
format are shown in Table 7-6.

Table 7-6 Minimum and Maximum Floating-Point Values

Type Value

Single-precision floating-point Minimum 1.40129846e ™%
Single-precision floating-point Minimum 1.17549435c38

(Normal)

Single-precision floating-point Maximum 3.40282347¢+38
Double-precision floating-point Minimum 4.94065645841246546 324
Double-precision floating-point Minimum 2 99507385850720146~3%
(Normal)

Double-precision floating-point Maximum 1.7976931348623157e+308

User's Manual U10504EJ7VOUMO0 219

Chapter 7

7.4 Fixed-Point Format

Fixed-point values are held in 2's complement format. Unsigned fixed-point
values are not directly provided by the floating-point instruction set. Figure 7-7
illustrates 32-hit fixed-point format and Figure 7-8 illustrates 64-bit fixed-point

format.
31 30 0
S i
Sign Integer
1 31
S : sign bit

i : integer value (2's complement)

Figure 7-7 32-Bit Fixed-Point Format

63 62 0
S i

Sign Integer
1 63

S : sign bit

i : integer value (2’'s complement)

Figure 7-8 64-Bit Fixed-Point Format

220 User's Manual U10504EJ7VOUMO0

Floating-Point Operations

7.5 FPU Set Overview

All FPU instructions are 32 bits long, aligned on aword boundary. They can be
divided into the following groups:

e Load/Store/Transfer instructions move data between the FPU
General Purpose register, Control register, CPU, and memory.

e Conversion instructions perform conversion operations between the
various data formats.

e Computational instructions perform arithmetic operations on
floating-point values in FPU registers.

e Compare instructions perform comparisons of the contents of
registers and set the results to a condition bit of the FCR3L.

e FPU Branch instructions perform a branch to the specified target if
the specified coprocessor condition is met.

For details of each instruction, refer to Chapter 17 FPU Instruction Set Details.

7.5.1 Floating-Point L oad/Store/Transfer Instructions

L oads/Storesfrom/to CP1 and Memory

Loads/Stores from/to CP1 and memory are accomplished by using one of the
following instructions:
» Load Word To Coprocessor 1 (LWC1) or Store Word From
Coprocessor 1 (SWC1) instructions, which reference a single 32-bit
word of the FP general registers

* Load Doubleword (LDC1) or Store Doubleword (SDCL1) instructions,
which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions are
performed and therefore no floating-point exceptions can occur due to these
operations.

User's Manual U10504EJ7VOUMO0 221

Chapter 7

Transfers Between CP1 and CPU

Data can a so be moved directly between CP1 General Purpose registers and the
CPU by using one of the following instructions:

* Move To Coprocessor 1 (MTC1)

e Move From Coprocessor 1 (MFC1)

e Doubleword Move To Coprocessor 1 (DMTC1)

» Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations perform no
format conversions and never cause floating-point exceptions.

Datatransfer between CP1 control registersand the CPU isaccomplished with the
following instructions:

* Move Control Word To Coprocessor 1 (CTC1)
e Move Control Word From Coprocessor 1 (CFC1)

Load Delay and Hardwar e I nterlocks

Theinstruction immediately following aload or aMTC1 can use the contents of
the loaded register. In such cases the hardware interlocks, requiring additional
real cycles; for this reason, scheduling load delay dotsis desirable to avoid the
interlocks.

Data Alignment

All coprocessor loads and stores reference the following aligned data items:

e For word loads and stores, the access type is always WORD, and the
low-order 2 bits of the address must always be 0.

e For doubleword loads and stores, the access type is aways
DOUBLEWORD, and the low-order 3 bits of the address must
always be 0.
Endianness

Regardless of byte-numbering order (endianness) of the data, the address specifies
the byte that has the smallest byte addressin the addressed field. For abig-endian
system, it isthe leftmost byte; for alittle-endian system, it is the rightmost byte.

Table 7-7 lists load, store, and transfer instructions.

222 User's Manual U10504EJ7VOUMO0

Floating-Point Operations

Table 7-7 Load/Sore/Transfer Instructions

Instruction Format and Description| op | base | ft | offset |
Load Word To LWC1 ft, offset (base)
FPU Sign-extendsthe 16-bit offset and addsit to the CPU register baseto generate

an address. L oads the contents of the word specified by the address to the
FPU general purpose register ft.

Store Word From
FPU

SWC1 ft, offset (base)

Sign-extendsthe 16-bit offset and addsit to the CPU register baseto generate
an address. Stores the contents of the FPU general purpose register ft to the
memory position specified by the address.

Load
Doubleword To
FPU

LDCL1 ft, offset (base)

Sign-extendsthe 16-bit offset and addsit to the CPU register baseto generate
an address. L oads the contents of the doubleword specified by the address to
the FPU general purpose registers ft and ft+1 when FR = 0, or to the FPU
general purpose register ft when FR = 1.

Store SDCL1 ft, offset (base)

Doubleword Sign-extendsthe 16-bit offset and addsit to the CPU register baseto generate

From FPU an address. Stores the contents of the FPU general purpose registers ft and
ft+1 to the memory position specified by the address when FR = 0, and the
contents of the FPU general purpose register ft when FR = 1.

Instruction Format and Description| COP1| sub | rt | fs | 0 |

Move Word To MTC1rt, fs

FPU Transfers the contents of CPU general purpose register rt to FPU general
purpose register fs.

MoveWordFrom | MFC1 rt, ft

FPU Transfers the contents of FPU general purpose register fsto CPU genera
purpose register rt.

Move Control CTC1rt,fs

Word To FPU Transfers the contents of CPU general purpose register rt to FPU control
register fs.

Move Control CFC1rt, fs

Word From FPU

Transfers the contents of FPU control register fsto CPU general purpose
register rt.

Doubleword DMTC1t, fs

Move To FPU Transfers the contents of CPU general purpose register rt to FPU general
purpose register fs.

Doubleword DMFC1 rt, fs

Move From FPU

Transfers the contents of FPU general purpose register fsto CPU general
purpose register rt.

User's Manual U10504EJ7VOUMO0 223

Chapter 7

7.5.2 Convert Instructions

Convert instructions perform conversions between the various data formats such
as single- or double-precision, fixed- or floating-point formats. Table 7-8 lists
conversion instructions.

When converting along integer to a single- or double-precision floating-point

number (CVT.[S,D]. L), bits63:55 of the 64-bit integer must beall zeroesor ones,
otherwisethe V R4300 processor raises afloating-point instruction exception. The
floating-point instruction exception allows these cases to be handled by software.

Table 7-8 Convert Instruction (1/2)

Instruction Format and Description|COP1| fmt | 0 [fs [fd | funct |
Floating-point CVT.S.fmt fd, fs
Convert To Converts the contents of floating-point register fs from the specified format
Single Floating- | (fmt) to asingle-precision floating-point format. Storesthe rounded result to
point Format floating-point register fd.
Floating-point CVT.D.fmt fd, fs
Convert To Converts the contents of floating-point register fs from the specified format
Double Floating- | (fmt) to adouble-precision floating-point format. Stores the rounded result
point Format to floating-point register fd.
Floating-point CVT.L.fmt fd, fs
Convert To Long | Converts the contents of floating-point register fs from the specified format
Fixed-point (fmt) to a 64-bit fixed-point format. Stores the rounded result to floating-
Format point register fd.
Floating-point CVT.W.fmt fd, fs
Convert To Converts the contents of floating-point register fs from the specified format
Single Fixed- (fmt) to a 32-bit fixed-point format. Stores the rounded result to floating-
point Format point register fd.
Floating-point ROUND.L.fmt fd, fs
Round To Long Rounds the contents of floating-point register fsto a value closest to the 64-
Fixed-point bit fixed-point format and converts them from the specified format (fmt).
Format Stores the result to floating-point register fd.
Floating-point ROUND.W.fmt fd, fs
Round To Single | Rounds the contents of floating-point register fsto avalue closest to the 32-
Fixed-point bit fixed-point format and converts them from the specified format (fmt).
Format Stores the result to floating-point register fd.
Floating-point TRUNC.L.fmt fd, fs
TruncateToLong | Roundsthe contents of floating-point register fstoward 0 and converts them
Fixed-point from the specified format (fmt) to a 64-bit fixed-point format. Stores the
Format result to floating-point register fd.

224

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

Table 7-8 Convert Instruction (2/2)

Instruction Format and Description| COP1| fmt | 0 [fs [fd | funct |
Floating-point TRUNC.W.fmt fd, fs
Truncate To Rounds the contents of floating-point register fstoward 0 and converts them
Single Fixed- from the specified format (fmt) to a 32-bit fixed-point format. Stores the
point Format result to floating-point register fd.
Floating-point CEIL.L.fmt fd,fs
Ceiling ToLong | Rounds the contents of floating-point register fstoward +e and converts
Fixed-point them from the specified format (fmt) to a 64-bit fixed-point format. Stores
Format the result to floating-point register fd.
Floating-point CEIL.W.fmt fd,fs
Ceiling To Single | Rounds the contents of floating-point register fstoward +c and converts
Fixed-point them from the specified format (fmt) to a 32-bit fixed-point format. Stores
Format the result to floating-point register fd.
Floating-point FLOOR.L.fmt fd, fs
Floor To Long Roundsthe contents of floating-point register fstoward -co and convertsthem
Fixed-point from the specified format (fmt) to a 64-bit fixed-point format. Stores the
Format result to floating-point register fd.
Floating-point FLOOR.W.fmt fd, fs
Floor To Single Roundsthe contents of floating-point register fstoward -0 and convertsthem
Fixed-point from the specified format (fmt) to a 32-bit fixed-point format. Stores the
Format result to floating-point register fd.

User's Manual U10504EJ7VOUMO0 225

Chapter 7

7.5.3 Computational Instructions

Computational instructions perform arithmetic operations on floating-point
values, inregisters. Table 7-9 liststhe computational instructions. There aretwo
categories of computational instructions:
» 3-Operand Register-Type instructions, which perform floating-point
add, subtract, multiply, and divide operations
e 2-Operand Register-Type instructions, which perform floating-point
absolute value, transfer, square root, and negate operations.

Table 7-9 Computational Instructions

Instruction Format and Description| cOP1| fmt | ft | fs | fd | funct |

Floating-point ADD.fmt fd, fs, ft

Add Arithmetically adds the contents of floating-point registers fs and ft in the
specified format (fmt). Stores the rounded result to floating-point register fd.

Floating-point SUB.fmt fd, fs, ft

Subtract Arithmetically subtracts the contents of floating-point registersfsand ft in
the specified format (fmt). Stores the rounded result to floating-point register
fd.

Floating-point MUL.fmt fd, fs, ft

Multiply Arithmetically multiplies the contents of floating-point registersfsand ft in
the specified format (fmt). Storesthe rounded result to floating-point register
fd.

Floating-point DIV.fmt fd, fs, ft

Divide Arithmetically dividesthe contents of floating-point registersfsand ft in the
specified format (fmt). Stores the rounded result to floating-point register fd.

Floating-point ABS.fmt fd, fs

Absolute Value Calculates the arithmetic absolute value of the contents of floating-point
register fsin the specified format (fmt). Stores the result to floating-point
register fd.

Floating-point MOV.fmt fd, fs

Move Copies the contents of floating-point register fsto floating-point register fd
in the specified format (fmt).

Floating-point NEG.fmt fd, fs

Negate Arithmetically negates the contents of floating-point register fsin the
specified format (fmt). Stores the result to floating-point register fd.

Floating-point SQRT.fmt fd, fs

Square Root Calculates arithmetic positive square root of the contents of floating-point
register fsin the specified format. Stores the rounded result to floating-point
register fd.

226

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

fmt appended to the instruction op code of the arithmetic operation and compare
instruction indicates the data format. S indicates the single-precision floating
decimal point, D indicatesthe doubl e-precision floating decimal point, L indicates
the 64-bit fixed decimal point, and W indicatesthe 32-bit fixed decimal point. For
example, “ADD.D” meansthat the operand of the addition instruction isadouble-
precision floating-point value.

If the FR bit is 0, an odd-numbered register cannot be specified.

7.5.4 Compare Instructions

Thefloating-point compare (C.cond.fmt) instructionsinterpret the contents of two
FPU registers (fs, ft) in the specified format (fmt) and arithmetically compare
them. A result is determined based on the comparison and conditions (cond)
specified in theinstruction. Table 7-10 liststhe compare instructions. Table 7-11
lists the mnemonics for the compare instruction conditions.

Table 7-10 Compare Instruction

Instruction Format and Description| COP1| fmt | ft | fs [0 | funct |
Floating-point C.cond.fmt fs, ft
Compare Interprets and arithmetically compares the contents of FPU registersfsand ft

in the specified format (fmt). The result isidentified by comparison and the
specified condition (cond). After adelay of one instruction, the comparison
result can be used by the FPU branch instruction of the CPU.

User's Manual U10504EJ7VOUMO0 227

Chapter 7

Table 7-11 Mnemonics and Definitions of Compare Instruction Conditions

M nemonic Definition M nemonic Definition

T True F False

UN Unordered OR Ordered

EQ Equal NEQ Not Equal

Ordered or Less Than or

UEQ Unordered or Equal OLG Greater Than
OLT | Ordered LessThan UGE LEJgS;dered or Greater Than or
ULT Unordered or Less Than OGE Ordered Greater Than or Equal
OLE Ordered Less Than or Equal UGT Unordered or Greater Than
ULE Unordered or Less Than or Equal OGT Ordered Greater Than

SF Signaling False ST Signaling True

NGLE ggltjjreater Thanor LessThan or GLE (é;ﬁer Than, or Less Than or

SEQ Signaling Equal SNE Signaling Not Equal
NGL Not Greater Than or Less Than GL Greater Than or Less Than

LT Less Than NLT Not Less Than
NGE Not Greater Than or Equal GE Greater Than or Equal

LE Less Than or Equal NLE Not Less Than or Equal
NGT Not Greater Than GT Greater Than

228

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

7.5.5 FPU Branch Instructions

Table 7-12 lists the FPU branch instructions. These instructions can be used to
test theresult of the compare (C.cond.fmt) instruction. Thedelay lotinthistable
indicates the instruction that immediately follows a branch instruction. For
details, refer to Chapter 4 Pipeline.

Table 7-12 FPU Branch Instructions

Instruction Format and Description| COP1| BC | br | offset |

Branch On FPU BCLT offset

True Addstheinstruction addressin the delay slot and a 16-bit offset (shifted 2 bits
to the left and sign-extended) to calculate the branch target address.
If the FPU condition lineistrue, branchesto the target address (delay of one
instruction).

Branch On FPU BC1F offset

False Addstheinstruction addressin the delay slot and a16-bit offset (shifted 2 bits
to the left and sign-extended) to calculate the branch target address.
If the FPU condition lineisfalse, branchesto thetarget address (delay of one
instruction).

Branch On FPU BC1TL offset

True Likely Addstheinstruction addressinthedelay slot and a16-bit offset (shifted 2 bits
to the left and sign-extended) to calculate the branch target address.
If the FPU condition lineistrue, branchesto the target address (delay of one
instruction). If conditional branch does not take place, the instruction in the
delay dot isinvalidated.

Branch On FPU BC1FL offset

False Likely Addstheinstruction addressinthedelay slot and a 16-bit offset (shifted 2 bits

to the left and sign-extended) to calculate the branch target address.

If the FPU condition lineisfalse, branchesto the target address (delay of one
instruction). If conditional branch does not take place, the instruction in the
delay dot isinvalidated.

User's Manual U10504EJ7VOUMO0 229

Chapter 7

7.5.6 FPU Instruction Execution Time

230

Unlike the CPU, which executes almost all instructionsin asingle cycle, more
time must be used to execute FPU instructions.

All datatransfer between the floating-point and memory is accomplished by
coprocessor load and store operations. Data may be directly moved between the
floating-point coprocessor and the integer processor by load to and load from
coprocessor instructions as shown below:

Table 7-13 Number of Load/Store/Transfer Instruction Execution Cycles

Instruction Cycles
LWC1 2/1*
SWC1 1
LDC1 2/1*
SDC1 1
MTC1 1
MFC1 1
DMTC1 1
DMFC1 1
CTC1 1
CFC1 1

* Thehardwareinterlocksfor one cycleif the load result is used by the instruction in the
load delay slot.

To obtain optimum performance, the V g4300 pipeline does not perform abypass
from EX to EX stage of the next instruction for the floating-point result of a
compare, computational, LWC1, or LDC1 instruction. If the subsequent EX-
stage floating-point instruction depends on the result of the current EX-stage
floating-point instruction, the current floating-point instruction completes and its
EX-stage result is registered in the DC stage and the bypassis enabled.
Meanwhile, the RF-stage floating-point instruction advances to the EX-stage,
whereit isstalled for one pipeline clock to wait for the result to be bypassed from
DC to EX, beforeit begins execution.

Caution Thislimitation on bypassfrom EX to EX stage of the next
instruction does not apply to integer operations nor to float-
ing-point load/stor e/transfer instructions (except LWC1 and
LDC1).

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

‘ Run ‘ Run ‘ cee Stall ceoe ‘ Run ‘ Run

FP #1 IC | RF| EX |EX | EX | EX l——»| EX| DC

No Bypass allowed — Bypass

‘Run ‘Run ‘Run ‘Run ‘Run ‘Run ‘Run ‘Run‘

Y
rp#2 | IC | RF|RF |RF|RF | RF |—— 5| EX gx EX | ooe

Figure7-9 DC-to-EX Hardware Interlock Bypass

The execution unit of the V4300 can shorten the delay time of almost al the
floating-point instructions depending on the circumstances. By using thisfeature,
the performance can be improved and design can be simplified. Changesin the
delay time are simplified as much as possible. If occurrence of an exceptionis
detected by checking the source operand when amulticycleinstruction isexecuted
(if asource exception occurs), this multicycle instruction is executed for only 2
cycles, and exception processing is started. Similarly, if the result of an operation
isfound to be the value that does not cause an exception (zero or infinite) asa
result of checking the operand, the result (e.g., avalue other than cox0) iswritten
back 2 cycles after, and the operation ends.

Floating-point exceptions, except the source exception, are not aborted until
instruction execution is completed. In other words, an exception is reported not
when it has been found, but when instruction execution has been compl eted.

Next, the execution time of each instruction is described.

Floating-point Add/Subtract I nstructions

Floating point add and subtract terminate on the second cycleif asource exception
occurs, or if at least one operand is zero or infinity. Theinstruction completeson
the third cyclein all other cases.

User's Manual U10504EJ7VOUMO0 231

Chapter 7

232

Floating-point Multiply Instruction

A floating point multiply completesintwo cyclesif asource exceptionisdetected,
or if, during thefirst cycle, the result can be determined to be zero or infinity. A
floating-point multiply also finishesin the second cycleiif at least one of the
operandsisapower of 2. Inall other casesit takesthe full number (the maximum
specified for each format) of cyclesto complete. Thus, multiply does not finish
as soon as the remaining bits are zero. Also, there can be no overlap between
multiply and add.

Floating-point Divide/Square Root Instructions

Floating Point divide and square root complete in the second cycle on either a
source exception or if, during the first cycle, the result can be determined to be
either zero or infinity. Otherwise they continue, taking the maximum amount of
cycles.

Floating-point Convert Instruction

Floating-point convert instructions also complete in the second cycle for trivial
Cases.

Execution cycle numbers of floating-point instructions are listed in Table 7-14. If a
floating-point result for these instructionsis needed by the subsequent instruction, the
latency is the execution rate plus one, due to the fact that an EX-to-RF bypassis not
performed for the results of these instructions. All CPU/FPU instruction delay times that
are not mentioned in these tables have alatency of one pipeline clock cycle (1PClock).

User's Manual U10504EJ7VOUMO0

Floating-Point Operations

7.6 FPU Pipeline Synchronization

Since the integer and floating-point units share acommon hardware pipeline, a
CFC1 instruction is not needed to synchronize the pipeline operation.

Table 7-14 Number of FPU Instruction Delay Cycles 1

Pipeline Cycles “2
S D W L

Instruction

Add.fmt
Sub.fmt
Mul.fmt
Div.fmt
Sort.fmt
Abs.fmt
Mov.fmt
Neg.fmt
Round.W.fmt
Trunc.W.fmt
Ceil W.fmt
Floor W.fmt
Round.L.fmt
Trunc.L.fmt
Ceil.L.fmt
Floor.L.fmt
Cvt.S.fmt
Cvt.D.fmt
Cvt.W.fmt
Cvt.L.fmt
C.cond.fmt
BC1T °
BC1F3
BC1TL™®
BCI1FL 3

g1lw|w
lWw|w

N
©
a
(0]

N
©
a
(0]

gjlojoajfojgalo|o|R| k|-

Njojorjfojojonga|a|og|kR k|-

= o1

RiR Rk Rrla|a|r|:

*1. If theresult of afloating-point instruction is needed by the subsequent
instruction, one additional pipeline clock is required to perform a
hardware interlock bypass.

*2. The multicycle floating-point operation instructions whose results are
obvious are not described in thistable; it takes two pipeline clocks to
complete.

*3. Thearchitecturally defined branch delay slot of one cycle also applies
to all FPU branch instructions.

User's Manual U10504EJ7VOUMO0 233

[MEMO]

234 User's Manual U10504EJ7VOUMO0

Floating-Point Exceptions

This chapter explains how the FPU handles the floating-point exception.

User's Manual U10504EJ7VOUMO0 235

Chapter 8

8.1 Typesof Exceptions

The floating-point exception occurs if a floating-point operation or the result of
the operation cannot be handled by the ordinary method.
The FPU performs either of the following two operationsin case of an exception.

e When exception is enabled
Sets the Cause bit of the Control/Status register (FCR31) of the FPU,
and transfers servicing to the exception handler routine (software
servicing).

* When exception is disabled
Stores an appropriate value (default value) to the Destination register
of the FPU, sets the Cause bit and flag bit of FCR31, and continues
execution.
The FPU supports the five IEEE754 exceptions:
e Inexact (1)
e Overflow (O)
* Underflow (V)
» Division by Zero (2)
* Invalid Operation (V)
Cause bits, Enable bits, and Flag bits (Status flags) are used.
FPU has an unimplemented operation (E) as the sixth exception cause, which is
used when the floating-point operation cannot be executed with the standard
MIPS architecture (including when the FPU cannot correctly process exceptions).
This exception requires service by the software. The E bit does not exit in the

Enable or Flag bit. When this exception occurs, unimplemented exception
processing is executed (when interrupt input by the FPU to the CPU is enabled).

Figure 8-1 shows the bits of the FCR31 used to support the exception.

Remark The unimplemented operation exception is defined by the IEEE754
standard. With the V g4300, however, thisis an exception that occurs
if an operation not supported by the hardware is executed.

236 User's Manual U10504EJ7VOUMO0

Floating-Point Exceptions

Bit#17 16 15 14 13 12

Cause
| E \ Z 0) | Bits
I I I I I
Bit # 11 10 9 8 7
| Enable
V Z ®)) | Bits
I I I I I
Bit# 6 5 4 3 2
Flag
Z O 0) | Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation

Unimplemented Operation

Figure8-1 FCR31 Cause/Enable/Flag Bits

The five exceptions (V, Z, O, U, and |) of the IEEE754 are enabled when the
Enablebit is set. When an exception occurs, the corresponding Cause bit is set.
If the corresponding Enable bit is set, the FPU generates an interrupt to the CPU,
and starts exception processing. If occurrence of the exception is disabled, the
Cause and Flag bits corresponding to the exception are set.

8.2 Exception Processing

When afloating-point exception is taken, the Cause register of the CPO indicates
the FPU isthe cause of the exception. The Floating-Point Exception (FPE) code
isused, and the Cause bits of the FCR31 indicate the reason for the floating-point
exception. These bits are, in effect, an extension of the CPO Cause register.

User's Manual U10504EJ7VOUMO0 237

Chapter 8

8.2.1 Flags
Flag bits corresponding to the respective IEEE754 exceptions are provided. The
Flag bit is set when occurrence of the corresponding exception is disabled and
when the condition of the exception is detected. The flag bit can be reset by
writing a new value to the Status register by using the CTC1 instruction.
If an exception is disabled by the corresponding Enable bit, the FPU performs
predetermined processing. This processing gives the default value as the result,
instead of the result of the floating-point operation. This default valueis
determined by the type of the exception. In the case of the overflow and
underflow exceptions, the default value differs depending on the rounding mode
used at that time. Table 8-1 showsthe default valuesto be given by the respective
|EEE754 exceptions of the FPU.
Table8-1 Default FPU IEEE754 Exception Values
Field Description Rounding Default Values
Mode
\% Invalid operation - Supply a Quiet Not a Number (Q-NaN)
z Division by zero - Supply aproperly signed o
RN oo signed with intermediate result
RZ Maximum normal number signed with
intermediate result
Negative overflow: maximum negative normal
O | Overflow RP number
Positive overflow: +o
Positive overflow: maximum positive normal
RM number
Negative overflow: -
RN 0 signed with intermediate result
Rz 0 signed with intermediate result
Positive underflow: minimum positive normal
U | Underflow RP number
Negative underflow: 0
Negative underflow: minimum negative
RM normal number
Positive underflow: 0
I Inexact exception - Supply arounded result
238 User's Manual U10504EJ7VOUMO0

Floating-Point Exceptions

The FPU detects the nine exception causesinternally. When the FPU detects one
of these unusual situations, it causes either an IEEE754 exception or an
unimplemented operation exception (E). Table 8-2 lists the exception-causing
situations and compares the contents of the Cause bits of the FPU with the
|EEE754 standard when each exception occurs.

Table8-2 FPU Internal Results and Flag Satus

FPU Internal Exception|Exception

Result 'EEE7S4 | Enable | Disable Remarks
Inexact result I I I Loss of accuracy
Exponent overflow o't oY o, Normalized exponent > Epqy
Division by zero z z Z Z%r)o is(exponent = Epip-1, mantissy
Qverflow on convert to Vv E E Source out of integer range
integer
Signaling NaN
(S-NaN) source v v v
Invalid operation v v V2 | 000, etc.
Exponent underflow U E Ul Normalized exponent < E;i,
Denormalized source None E E Exponent = Ep-1 and

mantissa = 0

Q-NaN None E E

*1. With the IEEE754, the inexact operation exception occurs only if an
overflow occurs only when the overflow exception is disabled.
However, the V r4300 always generates the overflow exception and
inexact operation exception when an overflow occurs.

*2. If both the underflow exception and inexact operation exception are
disabled when the exponent underflow occurs, and if the FSbit of
FCR31isset, the Cause bit and Flag bit of the underflow exception and
inexact operation exception are set. Otherwise, the Cause bit of the
unimplemented operation exception is set.

Next, each FPU exception is described.

User's Manual U10504EJ7VOUMO0 239

Chapter 8

8.2.2 Inexact Exception (1)

The FPU generates the inexact operation exception in the following cases.
» |f the accuracy of the rounded result drops
» If the rounded result overflows

e |f the rounded result underflows and if the FSbit of FCR31 is set
with the underflow and illegal operation exceptions disabled

If Exception |s Enabled:

The Destination register isnot modified, the Sourceregistersare preserved and an
Inexact Operation exception occurs.

If Exception Is Not Enabled:

The rounded result or underflowed/overflowed result is delivered to the
Destination register if no other exception occurs.

8.2.3 Invalid Operation Exception (V)

The Invalid Operation exception is generated if one or both of the operands are
invalid. When the exception is not enabled, the MIPS I SA definestheresult asa
Quiet Not a Number (Q-NaN). The invalid operations are:

e Add or subtract: Add and Subtract of infinities, such as:
(to)+ (—e)or(—»)—(-=)

 Multiply: £+ 0 x + o

e Divide:+0+=+0,0r+o + =+

» Compare of predicatesinvolving < or > without ?, when the operands
are unordered

* Any arithmetic operation, when one or both operandsis a S-NaN. A
transfer (MOV) operation is not considered to be an arithmetic
operation, but absolute value (ABS) and negate (NEG) are.

» Compare or convert to floating-point operation when the operand is
S-NaN.

« Square root: ./x, where x is less than zero.

240 User's Manual U10504EJ7VOUMO0

Floating-Point Exceptions

Software can simulate the Invalid Operation exception for other operations that
areinvalid for the given source operands. Examples of these operations include
| EEE754-specified functionsimplemented in software, such asRemainder x REM
y, wherey is0 or x isinfinite; conversion of afloating-point number to adecimal
format whose value causes an overflow, isinfinity, or isNaN; and transcendental
functions, such asIn (-5) or cos™(3). Refer to Chapter 17 FPU Instruction Set
Details. Refer to Appendix B for examples or for routines to handle these cases.

I f Exception Is Enabled:

The Destination register is not modified, the Source registers are preserved, and
the Invalid Operation Exception occurs.

If Exception Is Not Enabled:

If any other exception does not occur, Q-NaN is stored to the Destination register.

8.2.4 Divide-by-Zero Exception (Z)

The Division-by-Zero exception occursif the divisor is zero and the dividendisa
finite nonzero number. Thisexception occursdueto other operationsthat produce
asigned infinity, such as In(0), sec(/2) or QL.

If Exception |s Enabled:

The contents of the Destination register are not changed, the contents of the
Source register are preserved, and the zero division exception occurs.

If Exception Is Not Enabled:

If any other exception does not occur, the infinite number (x) determined by the
sign of the operand is stored to the Destination register.

User's Manual U10504EJ7VOUMO0 241

Chapter 8

8.2.5 Overflow Exception (O)

The Overflow exception occurs when the magnitude of the rounded floating-point
result, with an unbounded exponent range, is larger than the largest finite number
of the destination format. (An Inexact exception and Flag bit is set.)

If Exception Is Enabled:

The contents of the Destination register is not modified, and the Source registers
are preserved, and the overflow exception occurs.

If Exception Is Not Enabled:

If any other exception does not occur, the default value determined by the
rounding mode is stored to the Destination register (refer to Table 8-1 Default
FPU |EEE754 Exception Values).

8.2.6 Underflow Exception (U)

Two related events generate the Underflow exception:
« If the operation result is —2E™MN to +2EMN (other than 0)

e extraordinary loss of accuracy during the arithmetic operation of such
tiny numbers by denormalized numbers.

The IEEE754 provides several methods of underflow detection. Note, however,
that the same detection method must be used for any processing.

The following two methods are used to detect an underflow.

» after rounding (when a nonzero result, computed as though the
exponent range were unbounded, would lie strictly between +2E™")

* before rounding (when a nonzero result, computed as though the
exponent range and the precision were unbounded, would lie strictly
between +2EMM)

The MIPS architecture detects an underflow after rounding.

To detect adrop in the accuracy, the following two methods are used.

e Denormalize loss (if a given result differs from the result calculated
when the exponent range is infinite)

» Inexact result (if agiven result differs from the result calculated when
the exponent range and accuracy are infinite)

The MIPS architecture detects a drop in the accuracy as an inexact resullt.

242 User's Manual U10504EJ7VOUMO0

Floating-Point Exceptions

If Exception Is Enabled:

If the underflow exception or inexact operation exception isenabled, or if the FS
bit of the FCR31 register is not set, the unimplemented operation exception (E)
occurs. At thistime, the contents of the destination register are not changed.

If Exception Is Not Enabled:

If the underflow exception and inexact operation exception are disabled, and if the
FShit of the FCR31 register are set, the default value determined by the rounding
mode is stored to the Destination register (refer to Table 8-1 Default FPU
|EEE754 Exception Values).

8.2.7 Unimplemented Oper ation Exception (E)

If an attempt is made to execute an instruction of an operation code or format code
reserved for future expansion, the E bit is set and an exception occurs. The
operand and the contents of the Destination register are not changed. Usually,
instructions are emulated by software. 1f the IEEE754 exceptions occur from an
emulated operation, simulate those exceptions.

The unimplemented operation exception also occursinthefollowing cases. These
are cases where an abnormal operand that cannot be handled correctly by
hardware, or an abnormal result is detected.

» |f the operand is a denormalized number (except compare instruction)
» |f the operand is Q-NaN (except compare instruction)

» If the result is a denormalized number or underflows when the
underflow/inexact operation exception is enabled and when the FS bit
of the FCR3L1 register is set

» If areserved instruction is executed
* If aunimplemented format is used
» |If aformat whose operation isinvalid is used (e.g., CVT.S.S)
Caution If thetype conversion or arithmetic operation instruction is
executed and if theoperand isa denor malized number or NaN, the
exception occurs. Theexception doesnot occur even if theoperand

isa denormalized number of NaN when thetransfer instruction is
executed.

How to use the unimplemented operation exception is arbitrarily determined by
the system. To maintain complete compatibility with the IEEE754, the
unimplemented operation exception can be handled by software if occurs.

User's Manual U10504EJ7VOUMO0 243

Chapter 8

If Exception Is Enabled:
The contents of the Destination register are not changed, the contents of the source
register are preserved, and the unimplemented operation exception occurs.

If Exception Is Not Enabled:
This exception cannot be disabled because there is no corresponding Enable bit.

Restrictions:

An unimplemented operation exception will occur in response to the execution of
atype conversion instruction in the following cases.

e If an overflow occurs during conversion to integer format
» |If the source operand is an infinite number

» |f the source operand is NaN

The type conversion instructions affected by this restriction are as follows.

CEIL.L.fmt fd,fs FLOOR.L.fmt fd, fs
CEILW.fmt fd, fs FLOORW.fmt fd, fs
CVT.D.fmt fd,fs ROUND.L.fmt fd,fs
CVT.Lfmt fd,fs ROUND.W.fmt fd, fs
CVT.Sfmt fd,fs TRUNC.L.fmt fd,fs
CVT.W.fimt fd,fs TRUNC.W.fmt fd, fs

8.3 Saving and Returning State

Sixteen doubleword” LDC1 or SDC1 operations save or return the coprocessor
floating-point register statein memory. Theinformation inthe Control and Satus
register can be saved or returned to the CPU register through CFC1 and CTC1
instructions. Normally, the Control/Status register is saved first and returned last.

When state is returned, state information in the Control/Status register indicates
the exceptions that are pending.

Writing a zero value to the Cause field of FCR31 register clears all pending
exceptions, permitting normal processingto restart after the floating-point register
state is returned.

* 32 doublewordsif the FR bit is set to 1.

244 User's Manual U10504EJ7VOUMO0

Floating-Point Exceptions

8.4 Handling of IEEE754 Exceptions

The IEEE754 recommends the exception handler for any of the five standard
exceptions; the exception handler can compute and restore a substitute result in
the Destination register.

By retrieving an instruction using the processor Exception Program Counter
(EPC) register, the exception handler determines:

* exceptions occurring during the operation
» the operation being performed
* the destination format

To obtain the correct rounded result if the overflow, underflow (except when the
conversion instruction is executed), or inexact operation exception occurs,
develop software that checks the Source register or that simulates the instructions
while an exception handler is executed.

On Invalid Operation and Divide-by-Zero exceptions, conversions, and on
Overflow or Underflow exceptions occurred on floating-point, the exception
handler gains access to the operand values by examining the Source registers of
the instruction.

The IEEE754 recommends that, if enabled, the overflow and underflow
exceptions take precedence over a separate inexact exception. This prioritization
is accomplished in software; hardware sets the bits for both the Overflow or
Underflow exception and the | nexact exception.

User's Manual U10504EJ7VOUMO0 245

[MEMO]

246 User's Manual U10504EJ7VOUMO0

Initialization Interface

This chapter describes the V g4300 Initialization interface, and the processor
modes. Thisincludesthe reset signal description and types, and initialization

sequence, with signals and timing dependencies, and the user-selectable V g4300
processor modes.

User's Manual U10504EJ7VOUMO0 247

Chapter 9

9.1 Functional Overview

248

The VRr4300 processor has the following three types of resets; they use the

ColdReset and Reset signals.

Power-ON Reset: When the ColdReset signal is asserted active after
the power is applied and has become stable all clocks are restarted.
A Power-ON Reset completely initializes the internal state of the
processor without saving any state information.

Cold Reset: When the ColdReset signal is asserted active while the
processor is operating all clocks are restarted. A Cold Reset
completely initializes the internal state of the processor without saving
any state information.

Soft Reset: restarts processor, but does not affect clocks. The major
part of the initial status of the processor can be retained by using soft
reset.

After reset, the processor is bus master and drives the SysAD(31:0) bus.

Care must be taken to coordinate system reset with other system elements. In
genera, bus errorsimmediately before, during, or after areset may result in
undefined operations. Sincetheinitialization of theinternal state by areset of the
Vr4300 processor is performed only for some parts, make sure to completely
initialize the processor through software.

The operation of each type of reset is described in sections that follow. Refer to
Figures 9-1to 9-3 later in this chapter for timing diagrams of the Power-ON,
Cold, and Soft Resets.

User’s Manual U10504EJ7VOUMO0

Initialization Interface

9.2 Reset Signal Description

This section describes the two reset signals, ColdReset and Reset.

ColdReset signal

The ColdReset signal must be asserted active to initialize the processor using
Power-ON Reset or Cold Reset. At thistime, the RESET signal can be asserted
active or inactive. Set DivMode (1:0)* before the Power-ON Reset.

Do not deassert the ColdReset signal inactive at least for 64000 M aster Clock
Cycles after the signal has been asserted active. The ColdReset signal may be
controlled not in synchronization with the M aster Clock. When the ColdReset
signal is deasserted inactive, the SClock, T Clock, and SyncOut clock signals
start operating in synchronization with the M aster Clock.

* 1n Vr4300 and V g4305. In Vz4310, DivMode(2:0).

Reset signal

Assert this pin active or inactive in synchronization with M aster Clock, or keep it
inactive at Power-ON Reset or Cold Reset.

Assert this pin active or inactive in synchronization with M aster Clock at soft
reset.

9.2.1 Power-ON Reset

Power-ON Reset is used to completely reset the processor. As aresult:

 TheTS SR, and RP bits of the Status register and EP (3:0) bits of the
Config register are cleared to 0.

* The ERL and REV bits of the Status register and BE bit of the Config
register are set to 1.

* The upper-limit value (31) is assigned to the Random register.

» The EC (2:0) bits of the Config register are assigned to the contents
of the DivM ode (1:0)* pins.

* All the other internal statuses are undefined.
* 1n Vr4300 and V g4305. In Vz4310, DivMode(2:0).

After the power supply to the processor has stabilized after Power-ON Reset,
assert the ColdReset signal active for the duration of 64000 MasterClock cycles
or more (0.96 ms during external 66.7-MHz operation).

User's Manual U10504EJ7VOUMO0 249

Chapter 9

Determine the DivM ode signal until the ColdReset signal is asserted active. The
DivM ode signal cannot be changed after that. If the DivM ode signal is changed
after the ColdReset signal has been asserted active, the operation of the processor
is ot guaranteed.

When asserting the ColdReset signal active, the Reset signal may be active or
inactive. However, do not change the value of the Reset signal during the reset
sequence.

Keep the Reset signal active for the duration of 16 Master Clock cycles
immediately after the ColdReset signal has been deasserted inactive.

The output signals of the system interface are as follows during the reset period.
« PVaidsigna :1
+ PRegsigna :1
+ PMaster signal: 0
e SysAD (31:0) : Undefined
e SysCmd (4:0) : Undefined
When resetting has been completed, the processor serves as the bus master and

drives SysAD (31:0). The processor branchesto a reset exception vector and
starts executing a reset exception code.

9.2.2 Cold Reset

250

A Cold Reset is used to completely reset the processor.

* theTS SR, and RP bits of the Status register and the EP (3:0) bits of
the Config register are cleared to 0

» the ERL and BEV bits of the Status register and the BE bit of the
Config register are set to 1

» the value of the upper bound (31) is set to the Random register
» al states other than above are undefined
When executing cold reset, keep the ColdReset signal active for the duration of

64000 M aster Clock cycles or more (0.96 ms during external 66.7-MHz
operation).

When asserting the ColdReset signal active, the Reset signal may be active or
inactive. However, do not change the value of the Reset signal during reset
sequence.

User’s Manual U10504EJ7VOUMO0

Initialization Interface

Keep the Reset signal active for the duration of 16 Master Clock cycles
immediately after the ColdReset signal has been deasserted inactive.

The output signals of the system interface are as follows during the reset period.
+ Pvalidsigna :1
+ PRegsignal :1
+ PMaster signal: 0
e SysAD (31:0) : Undefined
* SysCmd (4:0) : Undefined
When resetting has been completed, the processor serves as the bus master and

drives SysAD (31:0). The processor branchesto a reset exception vector and
starts executing areset exception code.

9.2.3 Soft Reset

A Soft Reset is used to reset the processor without affecting the output clocks; in
other words, a Soft Reset isalogic reset. 1n a Soft Reset, the processor retains as
much state information as possible; al state information except for the following
isretained:

» the Satus register BEV, SR, and ERL bits are set (to 1)

» the Status register TSand RP bit is cleared (to 0)
Because soft reset is executed as soon as the Reset signal has asserted active,

undefined data remains as aresult if amulticycle instruction or floating-point
instruction such as cache missis executed.

Keep the Reset signal asserted active at least for the duration of 16 M aster Clock
cycles. At thistime, satisfy the setup and hold times with the M aster Clock.

After the reset is compl eted, the processor becomes bus master and drives the
SysAD(31:0) bus, the processor branchesto the Reset exception vector and begins
executing the reset exception code.

If Reset signal is asserted in the middle of a SysAD(31:0) transaction, care must
be taken to reset all external agentsto avoid SysAD(31:0) bus contention.

User's Manual U10504EJ7VOUMO0 251

Chapter 9

MasterClock
(input) TAAAVYAAUARTE SRS SR VYA S
> tpH > Ipy
_ tps —> tpg — >
Reset 1 ¥ 5 i
(input) \ (()() 1
= 64000 MasterClock cycles <216 MasterC:c:ck cycles
ColdReset \ [/')

(input) S

DivMode(1:0)* 5 &
(input) -------- («

SyncOut -) -
roa Undefined roa [__/—_“_/—_7
(output) ' ' _____Mhdelined - - O]
TClock o) o
(output) . _)" ‘... Undefined (O ' ‘_7[__/—_%_/—_7

* Determine the DivM ode signal before the ColdReset signal is asserted active.
In VR4300 and Vzg4305. In VRr4310, DivMode(2:0).

.
L
Figure9-1 Power-ON Reset

sl M\
4% ton %% toH

- tDS < tDS
Reset —————— I
(input) «
= 64000 MasterClock cycles =16 Mastercl(?ck cycles_|
ColdReset —\ /')
(input)
SyncOut L) .
(output) o Undefined « o %_/—_7
TClock -] .
(utput) ' . Undefined G P I_]

Figure9-2 Cold Reset

(.
)

0

252 User's Manual U10504EJ7VOUMO0

Initialization Interface

MasterClock

oy

e A A AR A VY AR W A W A WA
94& toH »4«
« tbs - tps —>1 1
Reset) 1 I
(input) 55
_ =16 MasterClock cycles_ |
(— (C =
ColdReset ” »
(input)
SyncOut
s AR AR AR AR VAR AR AW AN A S
TClock
(output MMF\IWFL

Figure9-3 Soft Reset

User's Manual U10504EJ7VOUMO0

253

Chapter 9

9.3 VR4300 Processor Modes

The V k4300 processor supports several user-selectable modes. All modes except
DivMode are set/reset by writing to the Config register.

9.3.1 Power Modes

The V4300 supports three power modes: normal power, low power (100 MHz
model of the Vg4300 and the V g4305 only), and power-off.

Nor mal Power M ode

Normally the processor clock (PClock) is generated from the input clock
(MasterClock). Thefrequency ratio of the PClock to the Master Clock is set by
the DivM ode(1:0)*. For the setting, refer to Table 2-2 Clock/Control I nterface
Signals. The frequency of the system interface clock (SClock) is the same as
those of the M aster Clock.

Default stateisnormal clocking, and the processor returnsto default state after any
reset.

* 1n Vr4300 and V g4305. In Vz4310, DivMode(2:0).
R R R

L ow Power Mode (100 MHz model of V{4300 and Vr4305 only)

The user may set the processor to low power mode by setting the RP bit of the
Satusregister to 1. In RP mode, the processor stalls the pipeline and goesinto a
quiescent state—the store buffers empty and all cache missesresolved. However,
the RP mode operation is guaranteed only when the M aster Clock is 40 MHz or
more. The frequency of PClock dropsto the 1/4 of the normal level. The speeds
of SClock and TClock also drop to the 1/4 of the normal level.

This feature reduces the power consumed by the processor chip to 25% of its
normal value.

Software must guarantee the proper operation of the system upon setting or
clearing the RP bit.
1. Thefunctions of circuits such asthe DRAM refresh counter change if the

operating frequency changes. Therefore, write new valuesto the registers of
the external agent that are directly affected by changesin frequency.

2. Setthe system interface in the inactive status. For example, execute aread
instruction to the non-cache area, and make the write buffer empty before
completion of theinstruction execution. Then the RP bit can be set or cleared.

254 User's Manual U10504EJ7VOUMO0

Initialization Interface

3. Make sure that the eight instructions before and after the MTCO instruction
that sets or clears the RP bit do not generate exceptions such as cache miss
and TLB miss.

Power Off Mode

Before entering power off mode, the system retains as much information as
possible by writing the contents of the CPO, floating-point registers and the
Program Counter to the memory. Dirty data cache lines are also written out to
memory.

9.3.2 Privilege Modes

The V4300 supports three modes of system privilege: Kernel, Supervisor, and
User Extended addressing. This section describes these three modes.

Kernel Extended Addressing

When the KX bit is set to 1 by the Satus register, the expansion TLB miss
exception vector isused if the TLB miss exception of the Kernel address occurs.
In the Kernel mode, the MIPSI I instruction set can be always used regardless of
the KX bit.

Supervisor Extended Addressing

If the SX bit is set to 1 by the Satus register, the MIPSII1 instruction set can be
used in the supervisor mode, and the expansion TL B missexception vector isused
if the TLB miss exception of the supervisor address occurs. If thisbit is cleared,
the MIPSI and Il instruction sets and 32-bit virtual addresses are used.

User Extended Addressing

If the UX bit is set to 1 by the Status register, the MIPSIII instruction set can be
used in the User mode, and the expansion TL B miss exception vector isused if the
TLB miss exception of the user address occurs. If thisbit is cleared, the MIPS]
and Il instruction sets and 32-bit virtual addresses are used.

9.3.3 Floating-Point Registers

If the FR bit of the Satusregister isset to 1, al the thirty-two 64-bit floating-point
registersdefined by the MIPSI 1 architecture can be accessed. If thishitiscleared,
the processor accesses the sixteen 64-bit floating-point registers defined by the
MIPSII architecture.

User's Manual U10504EJ7VOUMO0 255

Chapter 9

9.3.4 Reverse Endianness

If the RE bit of the Status register is set to 1, the endian in the User modeis
reversed.

9.3.5 Instruction Trace Support

If the ITShit of the Status register is set to 1, the physical address at the branch
destination can be output from SysAD(31:0) when the instruction addressis
changed by execution of ajump or branch instruction or by occurrence of an
exception. Thisfunction is disabled when the ITShit is cleared.

Use this function to forcibly generate an instruction cache missin the following
Cases.

» If the branch condition is satisfied when a branch instruction is
executed

« If the contents of the PC are changed by execution of a jump
instruction or by occurrence of an exception

When the instruction cache miss occurs, a processor block read request is issued
from the SysAD(31:0). Thisinforms the change in the address to the outside.
Return the response data to the processor block read request in the same manner
asfor anormal request.

The addressto be output is not a PC value (virtual address) but aphysical address.

9.3.6 Bootstrap Exception Vector (BEV)

Thisbit is used when diagnostic tests cause exceptionsto occur prior to verifying
proper operation of the cache and main memory system. The Bootstrap Exception
Vector (BEV) bit isautomatically set to 1 at cold reset or soft reset and on
occurrence of the NMI exception. This bit can also be set by software.

When set, the Bootstrap Exception Vector (BEV) bit in the Status register causes
the TLB miss exception vector to be relocated to a virtual address of OxFFFF
FFFF BFCO 0200 and the general exception vector relocated to address OxFFFF
FFFF BFCO 0380.

When BEV is cleared, these vectors are located at OxFFFF FFFF 8000 0000 (TLB
refill) and OxFFFF FFFF 8000 0180 (general).

9.3.7 Interrupt Enable (IE)

256

When the |E bit in the Status register is cleared, interrupts are not allowed, with
the exception of reset and the non-maskable interrupt.

User's Manual U10504EJ7VOUMO0

Clock Interface

10

This chapter describesthe clock signals (“ clocks”) used in the V g4300 processor.

User's Manual U10504EJ7VOUMO0 257

Chapter 10

10.1 Signal Terminology
The following terminology is used in this chapter (and book) when describing
signals:
e Rising edge indicates a low-to-high transition.
» Falling edge indicates a high-to-low transition.

» Clock-to-Q delay is the amount of time that is taken for a signa to
move from the input of a device (clock) to the output of the device

Q.
Figures 10-1 and 10-2 illustrate these terms.

Single Clock Cycle
.

I
High-to-Low \
Transition Low-to-High

Transition

Figure10-1 Sgnal Transitions

Data Out

Data In

)

Clock Input

Clock-to-Q
Delay
-

Figure10-2 Clock-to-Q Delay

258 User's Manual U10504EJ7VOUMO0

Clock Interface

10.2 Basic System Clocks

The various clock signals used in the V 4300 processor are described below.

M aster Clock

The internal and external (system interface) clocks of the V4300 are generated
and operate based on the M aster Clock.

Syncln/SyncOut

PClock

TheVg4300 processor generates SyncOut at the samefrequency asM aster Clock
and aligns Syncl n with Master Clock.

SyncOut must be connected to Syncln either directly, or through an external
buffer. The processor can compensate for both output driver and input buffer
delays when aligning Syncln with Master Clock. When SyncOut is connected
to Syncl n through an external buffer asillustrated in Figure 10-7, delay caused by
external buffers connected to clock outputs can also be compensated.

The PClock is selected by setting the frequency ratio between the PClock and the
M aster Clock.

Thisratio is set by the DivM ode pins on power application. Table 10-1 indicates
the selectable frequency ratio. For details of the DivM ode pins settings, refer to
Table 2-2 Clock/Control Interface Signals.

When thelow power mode (100 MHz mode! of the V g4300 and the VV 4305 only)
is set by setting the RP bit of the Status register, the frequency of PClock
decreases to the 1/4 of the normal level.

All theinternal registers and latches use PClock.

Table 10-1 Frequency Ratio Between PClock and Master Clock

Product Name

DivM ode Pin Selectable Frequency Ratio (Master Clock : PClock)

V4300 DivMode (1:0) | 1:15%1:2,1:3,1:4°2
Vr4305 DivMode (1:0) [1:1,1:2,1:3
VR4310 DivMode (2:0) | 1:2,1:253,1:3,1:4,1:5,1:6

*1. Selectable with the 100 MHz model only (With the 133 MHz model, this setting is reserved.)
2. Selectable with the 133 MHz model only (With the 100 MHz model, this setting is reserved.)
3. Selectable with the 167 MHz model only (With the 133 MHz model, this setting is reserved.)

User's Manual U10504EJ7VOUMO0 259

Chapter 10

260

SClock

TClock

The frequency of the system interface clock (SClock) is equal to that of

Master Clock, and SClock is synchronized with M aster Clock. Because SClock
is generated from PClock, the frequency of SClock also drops to the 1/4 of the
normal level, likethefrequency of PClock, when the low power mode (100 MHz
model of the V4300 and the V g4305 only) is set. The output of the Vg4300 is
driven at the edge of SClock.

SClock risesin synchronization with the first rising edge of M aster Clock
immediately after ColdReset is deasserted inactive.

TClock (transfer/receive clock) is the reference clock of the output and input
registers of the external agent. Itisalso used asthe global clock of the external
agent, and aclock can be supplied to al the logic circuits in the external agent.

TClock isthe same as SClock in frequency, and its edge is accurately
synchronized with that of SClock. When Syncln is connected to SyncOut,
TClock can also be synchronized with Master Clock.

User’s Manual U10504EJ7VOUMO0

Clock Interface

o |2 | 2] s |4

Masterclock _ /] [\ [\
(input) t | |
MCkHigI—{ | |
|
|
|

momey S\
(internal)

o S U B U N U A
(internal)

v S U A WD B W N U
(output) | | \

SysAD(31:0) X
(Driven by ‘

|

|

} ‘

processor) L@J : :
| I

?gsée?ééé;‘é’y X (o) o) (o) o

processor J ws

‘ lpH
<P

> ‘

Figure 10-3 When Frequency Ratio of MasterClock to PClock is 1:1.5

User's Manual U10504EJ7VOUMO0 261

Chapter 10

262

Cycle |

MasterClock —\—/—\—/—\—/—\—
(input) | \ [

memay L S\
(internal) ‘ | |
SClock —\—/—\—/—\—/—\—
(internal) ‘ ‘ ‘

oupwy L/ [[
(output) ‘

SysAD(31:0)
(Driven by :X

processor)

SysAD(31:0) :X

(Received by
processor)

Figure 10-4

When Frequency Ratio of MasterClock to PClock is 1:2

User's Manual U10504EJ7VOUMO0

Clock Interface

10.3 System Timing Parameters

Asshown in Figures 10-3 and 10-4, data provided to the processor must be stable
aminimum of tpg nanoseconds (ns) before the rising edge of SClock and be held
valid for aminimum of tp ns after the rising edge of SClock.

10.3.1 Synchronization with SClock

Processor data becomes stable tpg ns after therising edge of SClock. Thisdrive-
time is the sum of the maximum delay through the processor output drivers
together with the maximum clock-to-Q delay of the processor output registers.

10.3.2 Synchronization with Master Clock

Certain processor inputs (specifically Reset) are sampled based on M aster Clock.
The same setup, hold, and off time, tpg, tpy, and tpo, shown in Figures 10-3 and
10-4, apply to these inputs, measured by Master Clock.

10.3.3 Phase-Locked Loop (PLL)

The processor synchronizes SyncOut, PClock, SClock, and T Clock withinternal

phase-locked loop (PLL) circuits that generate aligned clocks based on SyncOut/
Synclin. By their nature, PLL circuitsareonly capable of generating synchronized
clocks with the M aster Clock frequencies within alimited range.

Clocksgenerated using PLL circuits contain someinherent inaccuracy, or jitter; a
clock synchronized with M aster Clock by the PLL can lead or trail M aster Clock
by as much as the related maximum jitter (tycjitter)-

User's Manual U10504EJ7VOUMO0 263

Chapter 10

10.4 Low Power Mode Operation

264

Usually, PClock isgenerated based on M aster Clock at the frequency ratio set by
the DivM ode(1:0)" 1 pins (for the setting, refer to Table 2-2 Clock/Control
Interface Signals). The frequency of the system interface clock (SClock) isthe
same as that of Master Clock.

To set the low power mode (RP) "2, set the RP bit of the Status register by using a
transfer instruction. When the RP mode has been set, the processor stalls the
pipeline which then enters the pause (quiescent) status (in other words, the store
buffer becomes empty and all cache misses are solved). Next, the frequency of
PClock dropsto the /4 in the normal mode. Thefrequency of SClock also drops
to the 1/4 of the normal level (10 MHz).

The normal clocks can be restored by executing reset.
For the procedure to set or clear the RP bit, refer to Low Power Modein 9.3.1.

*1. In VRr4300 and Vr4305. In Vz4310, DivMode(2:0).
2. 100 MHz model of the Vr4300 and the V g4305 only

User’s Manual U10504EJ7VOUMO0

Clock Interface

10.5 Connecting Clocksto a Phase-L ocked System

MasterClock

When the processor is used in a phase-locked system, the external agent must
phase lock its operation to acommon Master Clock. In such a system, the
transmission of data and data sampling have common characteristics, even if the
components have different delay values. For example, transmission time (the
amount of time asignal takes to move from one component to another along a
trace on the board) between any two components A and B of a phase-locked
system can be calculated from the following equation:

Transmission Time = (SClock period) — (tpo for A) — (tpg for B) —
(Clock Jitter for A Max) — (Clock Jitter for B Max)

Figure 10-5 shows a block diagram of a phase-locked system using the V g4300
processor.

SyncOut

VR4300 External Agent
MasterClock MasterClock
SysCmd(4:0) SysCmd(4:0)
SysAD(31:0) SysAD(31:0)

Syncin

TClock

Figure 10-5 Phase-Locked System

User's Manual U10504EJ7VOUMO0 265

Chapter 10

10.6 Connecting Clocksto a System without Phase L ocking

When the V g4300 processor isused in asystem in which the external agent cannot
lock its phase to acommon Master Clock, the output clock TClock can clock the
remainder of the system. Two clocking methodol ogies are described in this
section: connecting to a gate-array device or connecting to CMOS discrete

devices.
10.6.1 Connectingto a Gate-Array Device

When the processor is connected to a gate array device, TClock is used asthe
transmit/receive clock in the gate array.

Figure 10-6 isablock diagram of a system without phase lock, using the V 4300
processor with an external agent implemented as a gate array.

266 User's Manual U10504EJ7VOUMO0

Clock Interface

MasterClock

VRr4300
MasterClock

SysCmd(4:0)

SysAD(31:0)

SyncOut
Syncin

TClock

o lnput)
Gate Register
Array
Output
Register
1
~N
N~
l/

Input
Register

CE

Register
CE

Figure10-6 Gate-Array System without Phase Lock, Using the V4300 Processor

User's Manual U10504EJ7VOUMO0

267

Chapter 10

Signal Transmission Time from Processor to External Agent

In a system without phase lock, the transmission time for asignal fromthe
processor to an external agent composed of gate arrays can be calculated from the
following equation:

Transmission Time = (1TClock period) — (tpg for Vr4300)
+ (Minimum External Clock Buffer Delay)
— (External Input Register Setup Time)
— (Maximum Clock Jitter for V4300 Internal Clocks)
— (Maximum Clock Jitter for TClock)

Signal Transmission Time from External Agent Processor

Thetransmission timefor asignal from an external agent composed as gate arrays
to the processor in a system without phase lock can be calculated from the
following equation:
Transmission Time = (1TClock period) — (tpg for Vg4300)

— (Maximum External Clock Buffer Delay)

— (Maximum External Output Register Clock-to-Q Delay)

— (Maximum Clock Jitter for TClock)
— (Maximum Clock Jitter for V4300 Internal Clocks)

268 User's Manual U10504EJ7VOUMO0

Clock Interface

10.6.2 Connectingto a CM OS Discrete Device

The processor uses a clock buffer that corrects the delay to supply asynchronous
clock to an external CMOS discrete device. The clock buffer that corrects the
delay isinserted into the SyncOut/Syncl n synchronization bus of the processor
to adjust the skew of SyncOut and TClock by delaying PClock synchronized
with M aster Clock, and advances SyncOut and T Clock from M aster Clock by
the buffer delay.

When using T Clock whose buffer delay has been corrected, the other delay
correcting clock buffers can be used.

The phase error of the buffered TClock can be obtained by adding up the
maximum delay error of the delay correcting clock buffer and the maximum clock
jitter of TClock.

Functioning as the global clock of the CMOS discrete devices that form the
external agent, the buffered TClock supplies a clock to the register that samples
the processor output and the register that drives the processor input.

The transmission time for asignal from the processor to an external agent
composed of CMOS discrete devices can be calculated from the following
equation:

Transmission Time = (1TClock period) — (tpg for Vg4300)
— (External Input Register Setup Time)
— (Maximum External Clock Buffer Delay Mismatch)
— (Maximum Clock Jitter for V4300 Internal Clocks)
— (Maximum Clock Jitter for TClock)

Figure 10-7 isablock diagram of a system without phase lock, employing the
V r4300 processor and an external agent composed of both a gate array and
CMOS discrete devices.

User's Manual U10504EJ7VOUMO0 269

Chapter 10

: Control
MasterClock I Gate Array Input
| .
| Reqgister
|
|
VRr4300 I
MasterClock :
|
SysCmd(4:0) :
|
|
SysAD(31:0 | output
ysAD(3L.0) I : Register
|
|
SyncOut I N
|
Synclin :
|
|
|
|
|
|
— .
|
|
|
|
|
|
|
|
|
|
|
L e e e e e e - - — — L - d - | — — — — — — — —
yARN
I
CE I CE

Memory

Figure10-7 Gate-Array and CMOS System without Phase Lock, Using the V4300 Processor

270 User's Manual U10504EJ7VOUMO0

Clock Interface

The transmission time for asignal from an external agent composed of CMOS
discrete devices can be calculated from the following equation:

Transmission Time = (1TClock period) — (tpg for Vg4300)
— (Maximum External Output Register Clock-to-Q Delay)
— (Maximum External Clock Buffer Delay Mismatch)
— (Maximum Clock Jitter for V4300 Internal Clocks)
— (Maximum Clock Jitter for TClock)

In this clocking methodology, the hold time of data driven from the processor to
an externa input register is an important parameter. To guarantee hold time, the
minimum output delay of the processor, tpo, must be greater than the sum of:

Minimum Hold Time for the External Input Register

+ Maximum Clock Jitter for V4300 Internal Clocks

+ Maximum Clock Jitter for TClock

+ Maximum Delay Mismatch of the External Clock Buffers

User's Manual U10504EJ7VOUMO0 271

[MEMO]

272 User's Manual U10504EJ7VOUMO0

Cache Memory

11

This chapter describes in detail the cache memory: its place in the Vg4300
memory organization, and individual organization of the caches.

This chapter uses the following terminology:
» The data cache may also be referred to as the D-cache.
» Theinstruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

User's Manual U10504EJ7VOUMO0 273

Chapter 11

11.1 Memory Organization

274

Figure 11-1 showsthe V g4300 system memory hierarchy. Inthelogica memory
hierarchy, the caches lie between the CPU and main memory. They are designed
to make the speedup of memory accesses transparent to the user.

Each functional block in Figure 11-1 has the capacity to hold more data than the
block aboveit. For instance, physical main memory hasalarger capacity than the
caches. At the sametime, each functional block takes longer to access than any

block aboveit. For instance, it takes longer to access datain main memory than
in the CPU on-chip registers.

| VR4300 CPU

! I
! ! A
| | 0
: Registers Registers o2
I : >
0]
| | x
! I
! |
: I-cache D-cache : 0
! L2
1 | <
| | O
! |
-
\
. P .
Main Memory s} Faster Access Increasing Data
g Time Capacity
=
A
K]
Disk, CD-ROM,]
Tape, etc. 2
=
g
\

Figure11-1 Logical Hierarchy of Memory

The Vr4300 processor has two on-chip caches: one holds instructions (the
instruction cache), the other holds data (the data cache). The instruction and data
caches can beread in one PClock cycle.

Data writes take two PClock cycles. Inthefirst cycle, the store addressis
generated and the tag is checked; in the second cycle, the data is written into the
data RAM.

User's Manual U10504EJ7VOUMO0

Cache Memory

11.2 Cache Organization

This section describes the organi zation of the on-chip dataand instruction caches.
Figure 11-2 provides ablock diagram of the Vr4300 cache and memory model.

V4300

Cache Controller > Main Memory

I-cache
Caches

D-cache

Figure11-2 Vg4300 Cache Support

CacheLineLengths

A cacheline isthe smallest unit of information that can be fetched from main
memory for the cache, and that is represented by a single tag.

Theline size for the instruction cache is 8 words (32 bytes) and the line size for
the data cache is 4 words (16 bytes).

For cachetags, refer to 11.2.1 Organization of theInstruction Cache (1-Cache)
and 11.2.2 Organization of the Data Cache (D-Cache).

Cache Sizes

The V4300 instruction cache is 16 KB; the data cacheis 8 KB.

User's Manual U10504EJ7VOUMO0 275

Chapter 11

11.2.1 Organization of the Instruction Cache (I-Cache)

Each line of I-cache data (although it is actually aninstruction, it isreferred to as
datato distinguish it from itstag) has an associated 21-bit tag that contains a 20-
bit physical address and Valid bit.

The Vr4300 processor |-cache has the following characteristics:
e direct-mapping method
* indexed with avirtual address
» checked with a physical tag
» organized with an 8-word (32-byte) cache line.

Figure 11-3 shows the format of an 8-word (32-byte) I-cache line.

20 19 0
\% PTag I
1 20
255 0
Data I

256

PTag : Physical tag (bits 31:12 of the physical address)
\% : Valid bit
Data : Cache data

Figure11-3 VRA300 8-Word I-Cache Line Format

276 User's Manual U10504EJ7VOUMO0

Cache Memory

11.2.2 Organization of the Data Cache (D-Cache)

Each line of D-cache data has an associated 22-hit tag that contains a 20-bit
physical address, a Valid bit, and a Dirty bit.

The V4300 processor D-cache has the following characteristics:
* write-back
» direct-mapping method
* indexed with a virtual address
» checked with a physical tag
e organized with a 4-word (16-byte) cache line.

Figure 11-4 shows the format of a 4-word (16-byte) D-cacheline.

21 20 19 0
V | D PTag
1 1 20
127 0
Data I
128
\ : Valid bit
D . Dirty bit (refer to 11.4 Cache States)

PTag : Physical tag (bits 31:12 of the physical address)
Data : D-cache data

Figure11-4 VgA300 4-Word Data Cache Line Format

User's Manual U10504EJ7VOUMO0 277

Chapter 11

11.2.3 Accessing the Caches

Figure 11-5 showsthe virtual address (VA) index into the caches. The number of
virtual address bits used to index the instruction and data caches depends on the

cache size.

Data Cache Addressing

VA(12:4) isused. Sincethecachesizeis8 KB, themost significant bitisVA12.
Furthermore, since the line sizeis 4 words (16 bytes), the least-significant bit is

VA4,

Instruction Cache Addressing

VA(13:5) isused. Sincethecachesizeis16 KB, themost-significant bitisVA13.
Furthermore, since the line size is 8 words (32 bytes), the least-significant hit is

VAS.

—

Tags Data

Tag Line Data Line

VA(12:4) for 8 KB D-cache
and
VA(13:5) for 16 KB I-cache

V Tag D Data

Figure11-5 Cache Data and Tag Organization

278 User's Manual U10504EJ7VOUMO0

Cache Memory

11.3 Cache Operations

As described earlier, caches provide temporary data storage, and they make the
speedup of memory accesses transparent to the user. In general, the processor
accesses cache-resident instructions or data through the following procedure:

1.

The processor, through the on-chip cache controller, attempts to access the
next instruction or data in the appropriate cache.

The cache controller checks to see if this requested instruction or datais
present in the cache.

» If the instruction/data is present, the processor retrieves it. Thisis
called a cache hit.

» If theinstruction/datais not present in the cache, the cache controller
must retrieve it from main memory. This is called a cache miss.

The processor retrieves the instruction/data from the cache and operation
continues.

Itis possible for the same datato be in two places simultaneously: main memory
and cache. Thisdataiskept consistent through the use of awrite-back
methodology; that is, modified datais not written back to main memory until the
cachelineisto be replaced.

Instruction and data cache line replacement operations are described in the
following sections.

User's Manual U10504EJ7VOUMO0 279

Chapter 11

11.3.1 Cache Write Policy

The V4300 processor manages its data cache by using awrite-back policy; that
is, it stores write data into the cache, instead of writing it directly to the main
memory.” Some time later this datais independently transferred into the main
memory. IntheVr4300implementation, amodified cachelineisnot written back
to the main memory until the cache line is to be replaced either in the course of
satisfying a cache miss, or during the execution of awrite-back CACHE
instruction.

When the cache-miss occurs and the processor writes the contents of a cache line
back to the main memory, it does not ordinarily retain a copy of the cache line,
and the state of the cache line is changed to Clean.

11.3.2 Data Cache Line Replacement

Since the data cache uses awrite-back methodology, acacheline load isissued to
main memory on aload or store miss, as described below. After the datafrom the
main memory is written to the data cache, the pipeline resumes execution.

The line replacement sequenceis based on a“ Critical Doubleword First” scheme
refer to subblock orderingin 12.2.1 Physical Addresses. The processor restarts
its pipeline as soon as the main memory supplies the desired word in the first
doubleword of ablock transfer. This sequence is summarized as follows:

1. Movethedataphysical addressto the SysAD(31:0). At the sametime, move
the dirty cache line to the write buffer.

2. Atthetiming of SClock rising edge, read the data from the main memory,
receiving the desired doubleword in two word data first.

3. Receive remaining doubleword in word data units. For all loads move the
datato target register. For byte, halfword and word stores, it is necessary to
do aread in the main memory followed by awrite procedure—read the 64-bit
data, write new datato thisread data, then write the 64-bit datato cache. As
thisis being done, interlock the data cache to prevent it from being accessed
by any subsequent instruction that triesto access this particular cache line.

Rules for replacement on data load and data store misses are given below.

* An dternative to this is a write-through cache, in which information is written simultaneously to
cache and memory.

280

User's Manual U10504EJ7VOUMO0

Cache Memory

Data Load Miss
If the missed cache lineis not dirty, it is replaced with anew line.
If the missed lineisdirty, itis moved to the write buffer. A new linereplacesthe
missed line, and the data in the write buffer is written to the main memory.
Data Store Miss

If the missed cache lineisnot dirty, it is replaced with the new cache line merged
with the store data.

If the missed cache lineisdirty, itismoved to the write buffer. A new cacheline
is merged with the store data and written to cache, and datain the write buffer is
written to the memory. The dataiswritten sequentially, starting from the first

address of the block (refer to sequential orderingin 12.2.1 Physical Addr esses).

The data cache miss stall in number of PClock cyclesis:

Table11-1 Sall Cycle Count for Data Cache Miss

Number Operation
of Cycles P
1 DC stage stall
1 Transfer address to write buffer and wait for the pipeline start
signa
1102 Synchronize with SClock and transfer address to internal SysAD
bus
2 Transfer to external SysAD bus
Time needed to access memory, measured in PClock cycles
2 Transfer the cache line from memory to the SysAD bus
1 Transfer the cache line from the external to internal bus and to
D-cache bus
0 Restart the DC stage

User's Manual U10504EJ7VOUMO0 281

Chapter 11

11.3.3 Instruction Cache Line Replacement

For an instruction cache miss, refill is done using sequentia ordering, reading
from the first word of the requested cache line.

During an instruction cache miss, amemory read request is issued by the
processor. That isthe requested cache lineisread from the main memory and
written to the instruction cache. At thistime the pipeline resumes execution, and
the instruction cache is reaccessed.

The replacement sequence for an instruction cache missis:

1. Movetheinstruction physical addressto the SysAD(31:0).

2. Read theinstruction data at the timing of SClock rising edge from the main
memory and write it out to the instruction cache.

3. Restart the pipeline operation.

Theinstruction cache miss stall in number of PClock cyclesis:

Table11-2 Sall Cycle Count for Instruction Cache Miss

Number ;
of Cycles Operation
1 RF stage stall
1 Transfer address to write buffer and wait for the pipéline start
signal
1102 Synchronize with SClock and transfer addressto internal SysAD
bus
2 Transfer to external SysAD bus
Time needed to access memory, measured in PClock cycles
8 Transfer the cache line from memory to the SysAD bus
1 Transfer the cache line from the external to internal bus and to
I-cache bus
0 Restart the RF stage

282 User's Manual U10504EJ7VOUMO0

Cache Memory

11.4 Cache States

CachelLine

The four terms below are used to describe the state of a cacheline:
* Valid: a cache line that contains valid information.

» Dirty: acache line containing data that has changed in valid status
since it was loaded from memory.

* Clean: acache line containing data that has not changed in valid
status since it was loaded from the main memory.

e Invalid: acache line that does not contain valid information must be
marked invalid, and cannot be used. For example, after a Soft Reset,
software sets all cache linesto invalid. A cache line in any other state
than invalid is assumed to contain valid information.

Neither a cold reset nor a soft reset makes the state of a cache invalid.
Software invalidates it.

Data Cache

The data cache supports three cache states:

. invalid
. clean
o dirty

Instruction Cache
Theinstruction cache supports two cache states:
e invaid
e vaid

The cachelinethat containsvalid information may be changed when the processor
executes the CACHE operation. For CACHE operation, refer to Chapter 16
CPU Instruction Set Details.

11.5 Cache State Transition Diagrams

The following section describes the cache state diagrams for the data and
instruction caches. These state diagrams do not cover theinitial state of the
system, sincetheinitial state is system-dependent.

User's Manual U10504EJ7VOUMO0 283

Chapter 11

11.5.1 Data Cache State Transition

The following diagram illustrates the data cache state transition sequence. A load
or store operation may include one or more of the atomic read and/or write
operations shown in the state diagram below, which may cause cache state

transitions.

Read(2)
Write(2)

284

. - Write(1)
Dirty | CACHE instruction _| Clean
Write Back

Read(1) indicates a read operation from memory to cache, inducing a
cache state transition.

Write(1) indicates a write operation from the processor to cache,
inducing a cache state transition

Read(2) indicates a read operation from cache to the processor, which
induces no cache state transition

Write(2) indicates a write operation from the processor to cache,
which induces no cache state transition

CACHE instruction /\ CACHE instruction
- | -

nvalid

\

Read(1)

Write(1)

Read(2)

Figure11-6 Data Cache State Diagram

User's Manual U10504EJ7VOUMO0

Cache Memory

11.5.2 Instruction Cache State Transition

The following diagram illustrates the instruction cache state transition sequence.

* Read(1) indicates a read operation from the main memory to cache,
inducing a cache state transition.

» Read(2) indicates a read operation from cache to the processor, which
induces no cache state transition.

Read(2) CACHE instruction - lid
ea Valid AlInvali
. B Read(1) {

Figure11-7 Instruction Cache State Diagram

11.6 Manipulation of the Caches by an External Agent

The Vr4300 does not provide any mechanisms for an external agent to examine
and manipulate the state and contents of the caches.

User's Manual U10504EJ7VOUMO0 285

[MEMO]

286 User's Manual U10504EJ7VOUMO0

System Interface

12

The System interface allows the processor to access external resources needed to
perform processing of cache misses and uncached areas, while permitting an
external agent to access to some of the processor internal resources.

This chapter describes the System interface between the processor and the
external agent.

The Vr4300 uses a subset of the System interface contained on the V g4400 and
Vr4200.

User's Manual U10504EJ7VOUMO0 287

Chapter 12

12.1 Terminology

The following terms are used in this chapter:

» Anexternal agent is any device connected to the processor, over the
System interface, that processes requests issued by the processor.

* A system event is an event that occurs within the processor and
reguires access to external resources. System events include: an
instruction fetch that misses in the instruction cache; a load/store
instruction that misses in the data cache; an uncached load or store
instructions; an execution of cache instructions.

* Sequence refers to the series of requests that a processor generates to
process a system event.

» Protocol refers to the cycle-by-cycle signal transitions that occur on
the System interface pins, which issue external request, or a
processor.

» Yyntax refers to the definition of bit patterns on encoded buses, such
as the command bus.

» Block indicates any data transfer of 8 bytes or longer across the
System interface.

* Single indicates any data transfer of 7 bytes or shorter across the
System interface.

» Fetch refers to the read of information from the instruction cache.
* Load refers to the read of information from the data cache.

288 User's Manual U10504EJ7VOUMO0

System Interface

12.2 System Interface Description

The processor uses the System interface to access external resources required for
performing cache misses and uncached area processing.

12.2.1 Physical Addresses

Physical addresses are output to SysAD(31:0) in the address cycle. The address
when the single read request and single write request are issued is determined by
the data length as follows.

» |If thedatais aword (4 bytes), the low-order 2 bits of the address are
0.

» |f the datais a halfword (2 bytes), the low-order 1 bit of the address
isO.

 Ifthedataisl, 3,5, 6, or 7 bytes, the supplied address is a byte
address (the 5-, 6-, or 7-byte data is divided into two single write
requests).

When a doubleword (2 words), 4 words, or 8 words are transferred, a block
request isissued. Theblock read request and block write request differ asfollows
in the physical address to be output.

Block Write Request

Thephysical addresswhen the block writerequest isissued isalwaysaligned with
the first word address of the block (sequentia ordering).

Block Read Request

* Instruction cache read request

The block read request when a miss occurs in the instruction cache,
the physical address is aligned with the 8-word data address (the low-
order 5 bits are 0) including the requested word and output. Figure
12-1 shows the sequence in which data are transferred from the main
memory when a block read request is issued to the instruction cache.
When an instruction cache read request is issued, data is always read
starting from WO (sequential ordering).

User's Manual U10504EJ7VOUMO0 289

Chapter 12

Transfer sequence

1 2 3 4 5 6 7 8 (Sequential ordering)

WO | W1 | W2 | W3 | W4 | W5 | W6 | W7

Output physical address Requested word

Figure12-1 Data Sequence on Instruction Cache Read Reguest

» Data cache read request

If ablock read request is issued when a miss occursin the data cache,
the physical address is aligned with the doubleword address (the low-
order 3 bits are 0) including the requested data and output. Figure
12-2 shows the data sequence in which data is transferred from the
main memory when a block read request is issued to the data cache.
When a data cache read request is issued, reading a doubleword
including the necessary data is started in word units (W2 in this case)
(refer to Sub block ordering in 12.12.2 Sequential and Subblock
Ordering).

Transfer sequence

3 4 1 2 (Subblock ordering)

7

Output physical address Requested word

WO | W 2

Figure12-2 Data Sequence on Data Cache Read Request

290 User's Manual U10504EJ7VOUMO0

System Interface

12.2.2 Interface Buses

Figure 12-3 shows the primary communication buses for the System interface: a
32-hit address/data bus, SysAD(31:0), and a 5-bit command bus, SysCmd(4:0).

These SysAD and the SysCmd buses are bidirectional; that is, they are driven by
the processor to issue a processor request, and by the external device to issue an
external request (refer to 12.4 Processor and External Requests).

A reguest through the System interface consists of :

* an address
* a System interface command that specifies the nature of the request

* response data to read request, and write data to write request

VR4300 External Agent

SysAD(31:0)

A

__ SysCmd(4:0)

Figure 12-3 System Interface Buses

User's Manual U10504EJ7VOUMO0 291

Chapter 12

12.2.3 Addressand Data Cycles

292

The SysCmd (4:0) bus identifies the contents of the SysAD(31:0) bus during any
cycleinwhichitisvalid. Cyclesinwhich the SysAD(31:0) bus containsavalid
address are called address cycles. Cyclesin which the SysAD(31:0) bus contains
valid dataare called data cycles. Themost significant bit of the SysCmd(4:0) bus
is always used to indicate whether the current cycleis an address cycle or adata
cycle. Validity is determined by the state of the EValid and PValid signals
(described in 12.2.2 I nter face Buses).

When the V g4300 processor isdriving the SysAD(31:0) and SysCmd(4:0) buses,
the System interface isin master state. When the external agent is driving them,
the System interface isin slave state.

« When the processor is master, it asserts the PValid signal when the
SysAD(31:0) and SysCmd(4:0) buses are valid.

« When the processor is slave, an external agent asserts the EValid
signal when the SysAD(31:0) and SysCmd(4:0) buses are valid.

SysCmd(4:0) indicate the following contentsif the PValid or EValid signal is
active.

* During address cycles [SysCmd4 = 0], the remainder of the
SysCmd(4:0) bus, SysCmd(3:0), contains a System interface
command (the encoding of System interface commands is detailed in
12.11 System Interface Commands and Data I dentifiers).

» During data cycles [SysCmd4 = 1], the remainder of the
SysCmd(4:0) bus, SysCmd(3:0), contains a data identifier command
(the encoding of data identifiersis detailed in 12.11 System Interface
Commands and Data I dentifiers).

User’s Manual U10504EJ7VOUMO0

System Interface

12.2.4 Issue Cycles

Processor Request

There are two types of processor issue cycles:
» processor read request

* processor write request
The issuance cycle of the processor read/write request is determined by the status
of theEOK signal. Theissuance cycleisacyclethat becomesvalidintheaddress

cycle of each processor request. Only oneissuance cycle existsfor one processor
request.

To define the issuance cycle of the address cycle, assert the EOK signal active at
the external agent side one cycle before the address cycle of the processor read/
write request as shown in Figure 12-4.

To define the address cycle as the issuance cycle, do not deassert the EOK signal
inactive until the address cycleis started.

scyde | 1| 2 | 3 | 4|5 | 6|
SClock
(internal) __/—_/—_/—_/—_/—_/

SysAD(i,l,gg \ Addr X

EOK
(input)
Issuance cycle

Figure12-4 EOK Sgnal Satus of Processor Request

The processor repeatedly outputs the address cycle until the address cycle of the
processor request becomes the issuance cycle. With the Vg4300, therefore, the
address cycle next to the cycle in which the EOK signal has become activeisthe
issuance cycle, and the address cycleis repeated up to that cycle. Figure 12-5
illustrates how the address cycleis extended by the EOK signal.

User's Manual U10504EJ7VOUMO0 293

Chapter 12

scye | 1| 2 | 3 | 4|5 |6 | 7|
SClock —\ ™\ M\ /\ /L
(internal)

SysAD(?:(illgg Y Addr (X

EOK
(input) Lﬁ\i

Issuance cycle

Figure12-5 Address Cycle Extended by EOK Sgnal

Processor and External Requests

The processor accepts external requests, even while attempting to issue a
processor request, by releasing the System interface to slave state in response to
EReq signal by the external agent.

When an issuance of processor reguest and external request compete with each
other, the processor either:

» completes the issuance of the processor request before the external
request is accepted, or

» releases the System interface to slave state without completing the
issuance of the processor request.

In the latter case, the processor issues the processor request (provided the
processor request is still necessary) after the external request is completed.

294 User's Manual U10504EJ7VOUMO0

System Interface

12.2.5 Handshake Signals

The processor manages the flow of requests through the following six control
signals:

EOK Signal

Thissignal is used by the external agent to indicate whether it can accept a new
read or write transactions.

EReq, PMaster and PReg Signals

These signals are used to transfer control of the SysAD(31:0) and SysCmd(4:0)
buses. EReq signal is used by an external agent to indicate a need to control the
interface. PMaster signal isdeasserted by the processor when it transfers control
of the System interface to the external agent. The PReq signal is used by the
processor to request the external agent, which holdstheright to control the system
interface, for the right of control.

PValid and EValid Signals

The V4300 processor uses PValid signal, and the external agent uses EValid
signal to indicate valid command/data on the SysCmd(4: 0)/SysAD(31:0) buses.

User's Manual U10504EJ7VOUMO0 295

Chapter 12

12.3 System Interface Protocols

Figure 12-6 showstheregister-to-register operation of the System interface. That
is, output signals of the processor come directly from output registers and begin
to change in synchronization with the rising edge of SClock.

Input signalsto the processor are fed directly to input registers that latch these
input signals with the rising edge of SClock.

VRr4300
Output data
E—
B Input data
SClock

Figure12-6 System Interface Register-to-Register Operation

12.3.1 Master and Slave States

296

When the V g4300 processor isdriving the SysAD(31:0) and SysCmd(4:0) buses,
the System interface isin master state. When the external agent is driving these
buses, the System interface is in slave state.

In master state, the processor asserts the PValid signal whenever the
SysAD(31:0) and SysCmd(4:0) buses are valid.

In slave state, the external agent asserts the EValid signal whenever the
SysAD(31:0) and SysCmd(4:0) buses are valid.

User’s Manual U10504EJ7VOUMO0

System Interface

12.3.2 Moving from Master to Slave State

The processor isthe default master of the system interface. An external agent
becomes master of the system interface through external arbitration, or after a
processor read request. The external agent returns mastership to the processor
after an external request completes.

The System interface remains in master state unless one of the following occurs:

* The external agent requests and is granted the System interface
control (external arbitration).

» The processor issues a read request (uncompelled change to slave
state).

The following sections describe these two cases.

12.3.3 External Arbitration

The System interface must be in slave state for the external agent to issue an
external request through the System interface. Thetransition from master stateto
dave state is arbitrated by the processor using the System interface handshake
signals EReq and PMaster. Thistransition is described by the following
procedure:

1. Anexternal agent transmits a request to issue an external request to the
processor by asserting EReq signal.

2. When the processor is ready to accept an external request, it releases the
System interface from master to slave state by deasserting PM aster signal.

3. The System interface returns to master state as soon as the issue of the
external request is completed.

This process is described in 12.6.6 External Arbitration Protocol.

User's Manual U10504EJ7VOUMO0 297

Chapter 12

12.3.4 Uncompelled Changeto Slave State

Anuncompelled changeto save stateisthetransition of the Systeminterfacefrom
master stateto slave state, performed by the processor itself when aprocessor read
request is pending. PMaster signal is deasserted automatically after aread
request. An uncompelled changeto slave state occurs either the first cycle after
the issue cycle of a processor read request.

When the processor returns from the uncompelled transition differs depending on
the cache status. The processor returns to the master status when the following
external reguest (read response or other external request) is completed after the
uncompelled transition to the slave status.

An external agent must confirm that the processor has performed an uncompelled
change to dave state, and begin driving the SysAD(31:0) bus along with the
SysCmd(4:0) bus. Aslong asthe System interface isin save state, the externa
agent can begin an external request without arbitrating for the System interface;
that is, without asserting EReq signal.

If EReq isinactive, at the time the external request is completed, the System
interface automatically returns to master state.

12.4 Processor and External Requests

298

There are two categories of requests: processor requests and external requests.

When a system event occurs, the processor issues a request through the system
interface to access some external resource necessary to servicethisevent. For this
to occur, the system interface must be connected to an external agent that
coordinates the access to system resources. An external agent requesting access
to an internal resource of the processor issues an external request.

Processor requests include the following:
» read requests, which provide a read address to an external agent

* writerequests, which provide an address and a single or block of data
to be written to an external agent.

External requests include the following:

» read responses, which provide a block or single transfer of data from
an external agent in response to read requests

* write reguests, which provide an address and a word of data to be
written to a processor resource

User's Manual U10504EJ7VOUMO0

System Interface

When an external agent receives aread request, it accesses the specified resource
and returns the response data as a read response, which may be returned at any
time after the read request is compl eted.

A processor read request is completed after the last response data has been
received from the external agent. A processor write request is completed after the
last word of data has been transferred.

The processor will not issue another request while aread request is pending
(before receiving the response data after issuing the read request).

System events and requests are shown in Figure 12-7.

VR4300 External Agent

Processor Requests
* Read T >
* Write

External Requests

* Read response
* Write

System Events
I + Fetch Miss

Load Miss

Store Miss

Load/Store to Uncached area
CACHE instructions

Figure12-7 Requests and System Events

User's Manual U10504EJ7VOUMO0 299

Chapter 12

12.4.1 Processor Requests

A processor request is arequest through the System interface, to access some
external resource. Processor requests are either read or write requests.

Outline Requests

Read request asks for a block, word, or partial word of data either from main
memory or from another system resource.

Write request provides a block, word, or partial word of data to be written either
to main memory or to another system resource.

Request | ssuance

The processor issues requestsin a strict sequential order; that is, the processor is
only allowed to have one request pending at any time. For example, the processor
issues aread request and waits for a read response before issuing any subsequent
requests. The processor issues awrite request only if there are no read requests
pending.

Request Control

The processor hasthe input signal EOK to allow an external agent to control the
flow of processor requests.

The processor reguest cycle sequence is shown in Figure 12-8.

VRr4300 External Agent

1. Processor issues read or write
request >

| 2. External system controls
acceptance of requests by
asserting EOK signal

Figure12-8 Processor Request Flow

300 User's Manual U10504EJ7VOUMO0

System Interface

12.4.2 Processor Read Request

When a processor issues a read request, the external agent must access the
specified resource and return the requested data.

A processor read request can be split by the external agent’s response data; in
other words, the external agent can initiate an unrelated external request before it
returns the response data for a processor read. A processor read request is
completed after thelast word of response data has been received from the external
agent.

Processor read requests that have been issued, but which data has not yet been
returned, are said to be pending. A read request remains pending until the
requested read datais returned.

Note that the dataidentifier associated with the response data can indicate that the
response data is erroneous, causing the processor to generate a bus error
exception.

The external agent must be capable of accepting a new processor read request at
any time when the following two conditions are met:

» No present processor read request pending.
* The EOK signal has been asserted for two or more cycles.

12.4.3 Processor Write Request

When a processor issues awrite request, the specified external resourceis
accessed and the datais written to it.

A processor write request is completed after the last word of data has been
transferred to the external agent.

The external agent must be capable of accepting anew processor write request at
any time the following two conditions are met:

* No present processor read request is pending.
* The EOK signal has been asserted for two or more cycles.

User's Manual U10504EJ7VOUMO0 301

Chapter 12

12.4.4 External Requests
External requests include read response and write requests.

Outline of Requests
Read response returns data in response to a processor read request.

Write request provides data to be written to the processor’ s internal resource.

Request Control

The processor controlstheflow of external requeststhrough the arbitration signals
EReq and PMaster, as shown in Figure 12-9. The external agent must acquire
mastership of the System interface beforeit issuesan external request; theexterna
agent acquires mastership of the System interface by asserting EReq signal and
then waiting for the processor to deassert PMaster signal for one cycle.

VR4300 External Agent

| 1. External system requests master-
ship by asserting EReq signal

2. Processor grants mastership by
deasserting PMaster signal >

3. External system issues an
external request

4. Processor regains mastership
when EReq signal becomes
inactive

Figure12-9 External Request Flow

Mastership of the System interface always returns to the processor when EReq
signal becomesinactive after an external request isissued. The processor does not
accept a subsequent external request until it has completed the current request.

Request | ssuance

If there are no processor requests pending, the processor decides, based on its
internal state, whether to accept the external request, or to issue a new processor
request. The processor can issue anew processor request even if the external
agent is requesting access to the System interface.

The external agent asserts EReq signal indicating that it wishesto begin an
external request. The processor releases mastership of the System interface by
deasserting PMaster signal. An external request can be accepted based on the
criterialisted below.

302 User's Manual U10504EJ7VOUMO0

System Interface

» The processor completes any processor request in execution.

e While waiting for the assertion of EOK signal to issue a processor
read/write request, EReq signal is input to the processor one or more
cycles before EOK signal is asserted.

« If waiting for the response to a read request after the processor has
made an uncompelled change to a slave state (the external agent can
issue an external request before providing the read response data).

12.4.5 External Write Request

When an external agent issues awrite request, the specified external resourceis
accessed and the dataiswrittentoit. An external write request is completed after
the word data has been transferred to the processor.

The only processor resource available to an external write request isthe Interrupt

register.

12.4.6 Read Response

A read response returns datain response to aprocessor read request. Whilearead
responseis an external request, it has one characteristic that differentiatesit from
al other external requests—it does not perform System interface arbitration
(requesting mastership of the System interface using EReq signal.

VR4300

1. Read request

External Agent

2. Read response

Figure 12-10 Read Response

User's Manual U10504EJ7VOUMO0 303

Chapter 12

12.5 Handling Requests

This section details the sequence, protocol, and syntax (Refer to 12.1
Terminology for definitions of these terms) of both processor and external
requests. The following system events are discussed here:

o fetch miss

* load miss

e store miss

* loads/stores to uncached area
» CACHE instructions

12.5.1 Fetch Miss

When the processor misses in the instruction cache on an instruction fetch, it
issues aread request for the cacheline acquisition. Anexternal agent returns data
as aread response.

12.5.2 Load Miss

When the processor misses in the data cache on aload, it issues aread request for
the cache line acquisition. An external agent returns data as a read response.

If the cache data to be replaced isin the dirty state, this dataiswritten to the
memory. The above read operation must be completed before the datain the dirty
state is written.

12.5.3 StoreMiss

If the processor store misses in the data cache, it issues aread request to retrieve
thetarget cacheline. After thetarget line has been retrieved by the external agent,
it is updated with the store data and written into the cache.

If the cache data to be replaced isin the dirty state, this datais written to the
memory. The above read operation must be completed before the datain the dirty
state is written.

When it is desirable to guarantee that cached data written by a store instruction is
consistent with main memory contents, the corresponding cache line must be
written back from the cache to the main memory using a CACHE instruction.
CACHE instructions are described in Chapter 16 CPU I nstruction Set Details.

304 User's Manual U10504EJ7VOUMO0

System Interface

12.5.4 Loadsor Storesto Uncached Area

When the processor performsaload to uncached area, it issuesaread request. An
external agent returns a single/block transfer as aread response data.

When the processor performsastoreto uncached area, it issuesawrite request and
provides a single/block transfer of datato the external agent.

12.5.5 CACHE Instructions

The processor provides a variety of CACHE operations to maintain the state and
contents of the caches. The processor can issue write requests unrelated with the
CACHE instruction during the execution of the CACHE instructions.

User's Manual U10504EJ7VOUMO0 305

Chapter 12

12.6 Processor Request and External Request Protocols

Thefollowing sections contain a cycle-by-cycle description of the bus arbitration
protocols for each type of processor and external request. Table 12-1 liststhe
definitions and abbreviations for each of the buses that are used in the timing
diagrams that follow.

Table12-1 System Interface Requests

Scope Abbreviation Meaning
Global Unsd Unused
Addr Physical address
SysAD(31:0) bus
Data<n> Data element number n of ablock of data
Cmd An unspecified System interface command
Read A processor or external read request command
SysCmd(4:0) bus Write A processor or external write request command
EOD A dataidentifier for the last data element
A dataidentifier for any dataelement other than thelast data
Data
element

12.6.1 Processor Request Protocols
Processor request protocols described in this section include:
e read

e write

12.6.2 Processor Read Request Protocol

A processor read request isissued by outputting aread command on the
SysCmd(4:0) bus and aread address on the SysAD(31:0) bus, and asserting
PValid. Only one processor read request may be pending at atime; the processor
must wait for an external read response before starting a subsequent read request.

The processor makes an uncompelled change to dave state after the cycle of the
read request by deasserting the PM aster signal. An external agent then returns
the requested data through a read response.

306 User's Manual U10504EJ7VOUMO0

System Interface

Once the processor enters slave state (starting at cycle 5 in Figure 12-11), the
external agent can return the requested data through aread response. The read
response returns the requested data or, if the requested data could not be
successfully retrieved, indicate to SysCmd(4:0) bus that the returned datais
erroneous as aread response. If the returned datais erroneous, the processor
generates a bus error exception.

Figure 12-11 illustrates a processor read request, coupled with an uncompelled
changeto slave state, that occurs astheread request isissued. Figure 12-12 shows
the processor read request delayed by the EOK signal.

The following sequence describes the protocol for a processor read request (the
numbered steps below correspond to Figures 12-11 and 12-12).

1. Theprocessor isin the master status. It outputs a read command to
SysCmd(4:0) and aread addressto SysAD(31:0) to issue aread request.
After theread request isissued, the processor entersthe pending status. Only
one read request can be pending at atime.

2. The processor asserts the PValid signal to indicate that the current data of
SysCmd(4:0) and SysAD(31:0) are valid.

3. Theexternal agent asserts the EOK signal for two consecutive cyclesto
enableissuance of aprocessor read request. If the EOK signal is deasserted,
the issuance cycle of the read request is delayed.

4. The processor deasserts the PM aster signal at the first cycle after the read
request is accepted, and shifts to the dlave status unforcibly.

5. The processor releases SysCmd(4:0) and SysAD(31:0) at the sametime as
the PMaster signal is deasserted.

6. An externa agent can drive SysCmd(4:0) and SysAD(31:0) from the first
cycle after the PMaster signal is deasserted.

User's Manual U10504EJ7VOUMO0 307

Chapter 12

SCycle

SClock
(internal)

SysAD(31:0)
(1/0)

SysCmd(4:0)
(I/0)

PValid
(output)
EValid
(input)
PMaster
(output)

EOK

(input)

SCycle

SClock
(internal)

SysAD(31:0)
(1/0)

SysCmd(4:0)
(I/0)

PValid
(output)
EValid
(input)
PMaster
(output)

EOK
(input)

308

<«——— Master ——»j«—————————————— Slave >
‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

[A v A W W W W W W W W

Hi-Z
XlAddl’ }5’ - - é<

\Read)} T2 (
\2. /
H
/a.
I

Figure12-11 Unforcible Transition by Processor Read Request

<« Master —— ple———— Slave —»

1|23 als |6 | 7|8]9 |10]u]w
AW A AN AN A A A
I Addr L
X Read)*Hj_fzf(
O \2 /
H
/4.
8)

Figure12-12 Delayed Processor Read Request

User's Manual U10504EJ7VOUMO0

System Interface

12.6.3 Processor Write Request Protocol

A processor write request isissued by outputting a write command on the
SysCmd(4:0) bus and awrite address on the SysAD(31:0) bus, and asserting
PValid signal.

After that, adataidentifier is output to SysCmd(4:0), write datais output to
SysAD(31:0), and the PValid signal isasserted activeto transfer during the cycles
necessary for transferring the data. The transfer rate at thistimeis set by the EP
bit of the Config register.
The data cycle differs depending on the size of the write request.

» 1to 4 bytes: Single data cycle

* 51to 7 bytes: Divided into two single write requests (one is 4 bytes
long, and the other is 1 to 3 bytes long)

* 8 bytes or more: Block data cycle in 4-byte units
The last data is appended with a dataidentifier EOD (End of Data).

Figure 12-13 showsthe processor block write request by write data pattern D, and
Figure 12-14 shows the processor block write request by write data pattern Dxx.

The following sequence describes the protocol of the processor write request (the
numbers correspond to the numbersin Figures 12-13 and 12-14).

1. The processor isin the master status. It outputs awrite command to
SysCmd(4:0) and awrite address to SysAD(31:0) to issue awrite request.

2. The processor asserts the PValid signal to indicate that the current data of
SysCmd(4:0) and SysAD(31:0) arevalid.

3. Theexternal agent asserts the EOK signal for two consecutive cyclesto
enableissuance of aprocessor writerequest. If theEOK signal isdeasserted,
the issuance cycle of the write request is delayed.

4. The processor outputs a data identifier to SysCmd(4:0) and write datato
SysAD(31:0).

5. The processor asserts the PValid signa for the cycles necessary for data
transfer, and transfer the data.

6. Thelast datais appended with data identifier EOD.

User's Manual U10504EJ7VOUMO0 309

Chapter 12

-« Master >
SCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

i S N A N A A N A VA A A N A N A U A NV A N A W
(internal)

SySAD(?ﬁ/:gg X Addr XDataOXDatalXData2XData3X
1. 4.
SysCdeAlll:oog XWriteX Data X Data X Data X E(gD X
Pvalid —— .
(output) 2. /
PMaster L >

(output)

EOK
(input) _\3—/

Figure 12-13 Processor Block Write Request (Write Data Pattern: D)

- Master >
seyde | 1| 2 | 3 | 4| 5|6 | 7|8 |9 |11 |12|

i S N A N A A N A VA A A N A N A U A NV A N A W
(internal)

SySAD(B(ll/:oog X Addr X DataO X Datal X
1. 4.
SysCmd(4:0 -
4 EI/O% XWnte X Data X X E%D X
PValid —\2—/—_/
(output) : s 5=
PMaster L))
(output)

EOK
(input) _\3—/

Figure 12-14 Processor Block Write Request (Write Data Pattern: Dxx)

310 User's Manual U10504EJ7VOUMO0

System Interface

12.6.4 Flow Control of Processor Request

The external agent usesthe EOK signal to control the flow of the processor read
request. The processor repeats the current address cycle until the EOK signal is
asserted active. Thisaddress cycle continuesfor 1 cycle after theEOK signal has
been asserted, and then theissuance cycle ends. TheEOK signal must be asserted
for at least two consecutive cycles.

Figures 12-15 and 12-16 show how to use the EOK signal (the numbersin the
description below correspond to the numbersin Figures 12-15 and 12-16.

1. Becausethe EOK signal 1 cycle beforeisinactive, the processor request is
delayed, and the address cycle does not end.

2. Becausethe EOK signal 1 cycle beforeisactive, the processor request is not
delayed, and the address cycle ends.

SCycle‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

SClock
(internal)

SysAD(31:0)
(I/0)

L
N
L
N—]

=
'N
i

SysCmd(4:0)
(I/0)

X
PValid ﬁ((l 2 /
(output)
EOK
(input) N \-é—/

PMaster /
(output)

Figure12-15 Delayed Processor Read Request

User's Manual U10504EJ7VOUMO0 311

Chapter 12

SCycle

SClock
(internal)

SysAD(31:0)
(1/0)

SysCmd(4:0)
(I/0)

PValid
(output)

EOK

(input)

PMaster
(output)

‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
AN WA WA WA W A W A W A W A W A W A
X Addr X Data X X Addr X Data X
() ()
X write X EOD X X 4 Write 4 Y EoDY
1. 2

I
\/1
N

L

Figure12-16 Delayed Second Processor Write Request

12.6.5 External Request Protocols

312

External requests can only be issued with the System interface in slave state.
EReq signal must be asserted EReq signal to arbitrate (refer to 12.6.6 External
Arbitration Protocol) for the System interface, and then wait for the processor to
release the System interface to slave state. If the System interfaceis already in
dave state—that is, the processor has previously performed an uncompelled
change to dave state—the external agent can begin an external request
immediately.

After issuing an external request, the external agent must return mastership of the
System interface to the processor, as described below.

Following the description of the arbitration protocol, this section aso describes
the following external regquest protocols:

e write

e read response

User's Manual U10504EJ7VOUMO0

System Interface

12.6.6 External Arbitration Protocol
Usually, the processor serves as the bus mastership. However, the processor
relinquishes control of the bus and enters the slave status in the following cases.

» |If the external agent issues a request and the system interface
responds to that request

» After the processor has issued a read request
Arbitration to allow the processor to enter the slave status from the master status

isrealized by using the handshake signals (EReq, PReq, and PM aster) of the
system interface.

Status Transition On Read Response

While the processor read request is kept pending, the processor enters the slave
status by deasserting the PM aster signal inactive, and the external agent returns
read response data.

If the EReq signal is deasserted inactive, the processor remainsin the dave status
until the read response data is returned, and then returns to the master status by
asserting the PM aster signal active.

The external agent can remain in the master status as long as the EReq signal
remains active when the read response is returned.

Acquiring Bus Master ship by EReq Signal

If the processor isin the master status when the external agent has issued an
external request, assert the EReq signal active and wait until the processor
deasserts the PM aster signal inactive. If the processor deasserts the PMaster
signal inactive, the external agent acquires the bus mastership.

Once the external agent has entered the master status, it can remain in the master
status as long as the EReq signal is asserted active. When the EReq signal is
deasserted, the processor acquires the bus mastership two cycles later.

Figure 12-17 shows the arbitration protocol of the external request issued by the
external agent.

The following sequence describes the arbitration protocol (the numbersin the
sequence correspond to the numbersin Figure 12-17).

User's Manual U10504EJ7VOUMO0 313

Chapter 12

The external agent continues asserting the EReq signal active to issue an
external request.

When the processor is ready to process the external request, it deassertsthe
PMaster signal inactive.

The processor sets SysAD(31:0) and SysCmd(4:0) in the high-impedance
state.

The external agent should drive SysAD(31:0) and SysCmd(4:0) one cycle
after the PMaster signal has been deasserted inactive.

The external agent should deassert the EReq signal inactive in the last cycle
of the external request (2 cycles before the external agent enters the dave
status), except when it executes another external request.

The external agent should set SysAD(31:0) and SysCmd(4:0) in the high-
impedance state on completion of the external request.

%Masteriﬁ Slave —»l« Master —»
SCycIe‘l‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
SClock

inema) V. /NSNS NSNS NSNS

SysAD(31:0)
(I/0)

SysCmd(4:0)
(I/0)

EValid
(input)

EReq
(input)

PMaster
(output)

314

(. |
‘)‘)):- Mz { External: address/data) fo",Z,<
D) 3 6

(. |

‘j(j) Az {__ External: command) ,HJ',Z,<
55 \ /

g %

/2. Q

Figure12-17 Arbitration of External Request

If the external agent has entered the master status by issuing the processor read
request, the external agent must always return read request data. If the external
agent has entered the master status by using the EReq signal, any command and
data can beissued in accordance with the arbitration process. This meansthat the
processor always satisfies any request from the external agent.

User's Manual U10504EJ7VOUMO0

System Interface

Restoring Bus Master ship by PReq Signal

Once the external agent has entered the master status, the processor cannot stop
the operation of the external agent. However, the processor can request bus
mastership by asserting the PReq signal. At thistime, the external agent must
deassert the EReq signa inactive in response to the request by the processor,
giving consideration to the priority of the mastership.

The processor asserts the PMaster signal two cycles after the EReq signal has
deasserted to inform the external agent that the processor has regained the bus
mastership.

Figure 12-18 illustrates how the processor requests the bus mastership and how
the external agent releases the bus in response.

At reset (when the Reset or ColdReset signal is active), the processor enters the
master status, and the external agent enters the slave status.

<«———— Slave 44 Master >
scyde | 1| 2 | 3 | a |5 |6 | 7|8 |9 || ||
SClock —_/%
(internal) SN\ S\
. (¢ i
SySAD(%l/'gg (}i External: data)I-Jl’Zi(Processor: address/data
. (¢ i
SysCmdgzlll.gg {{External: command)Hlef (Processor: command
PMaster 5
(output) \ O
PReq /
(output) \ < /
EReq ;@
(input) gg
EOK
(input) I

Figure 12-18 Bus Arbitration of Processor

User's Manual U10504EJ7VOUMO0 315

Chapter 12

12.6.7 External Write Request Protocol

316

External write requests are similar in operation to a processor single write except
that the EValid signal is asserted in place of the PValid signal.

An external write request outputs awrite command on the SysCmd(4:0) bus and
awrite address on the SysAD(31:0) bus when the processor isin slave state and
asserting EValid signal for one cycle. Thisisfollowed by outputting a data
identifier on the SysCmd(4:0) bus and data on the SysAD(31:0) bus and asserting
EValid signal for one more cycle. The dataidentifier of the data cycle must
contain an end of data cycle indication.

Keep the EReq signal active while the external write request is issued.

After thedatacycleisissued, thewrite request iscompleted and the external agent
releases the SysCmd(4:0) and SysAD(31:0) buses and allows the system
interface to return to master state.

An external writerequest with the processor generated in master stateisillustrated
in Figure 12-19.

Figure 12-22 shows an example in which the external agent issues an external
write request following aread response. The external write request cannot be
issued while read response datais transferred. It can beissued before data
response or after the last data response.

User's Manual U10504EJ7VOUMO0

System Interface

<—Master*>l<7 Slave —>l<7 Master ———»

SCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
SClock
i S VA W N W Y N A Y N N W N W
SysAD(31:0 S Hi-Z Hi-Z
YA,)% {addr)pata) "%
SysCmd(4:0 £ Hi-Z - Hi-Z
yeematios)" {wrie)Eop) A
PValid 55
(output)
PMaster
(output) qd / \
EValid 5 \ /
(input)

-
o)\

(¢
)

Figure12-19 External Write Request Protocol

Only an interrupt processing can be done by the processor in the external write
request.

12.6.8 External Read Response Protocol

An external agent returns data to the processor in response to a processor read
request by waiting for the processor to move to slave state, and then returning the
data through a single data cycle or anumber of data cycles sufficient for the
requested data size.

The SysCmd(4:0) and SysAD(31:0) buses are released after the last datacycleis
issued. If the EReq signal isinactive at thistime, the processor returns to master
state at the end of two cycles after the last data cycle.

The dataidentifier associated with adata cycle may indicate that data transferred
during this cycle is erroneous; however, an external agent must return a specific
data block whether or not the datais erroneous. If aread response includes one or
more erroneous data cycles, the processor generates a bus error exception.

Read response data can be transferred to the processor only when a processor read
request ispending. If aread response is transferred to the processor while no
processor read request is pending, the operation of the processor is undefined.

User's Manual U10504EJ7VOUMO0 317

Chapter 12

SCycle

SClock
(internal)

SysAD(31:0)
(1/0)

SysCmd(4:0)
(I/0)

PValid
(output)

PMaster
(output)

EReq
(input)

EValid
(input)

EOK
(input)

SCycle

SClock
(internal)

SysAD(31:0)
(I/0)

SysCmd(4:0)
(I/0)

PValid
(output)

A processor single read request followed by aread responseisillustrated in Figure
12-20. A read response for a processor block read with the processor already in
slave state isillustrated in Figure 12-21.

- Master»L— Slave —>l<f Master —»

1]z

s | a| s |6 | 7|8 |9 |10 11|

i (¢
\Adar)} T2 Q
i (¢
XRead) % :
T\ ’
/)
(. M
H R N
(¢
D) \4
/ ()()
Figure12-20 Read Request/Read Response Protocol
< Slave —ﬁi Master ———»
1| 23| a|s | 6| 7|8 |9 |1w0]|n 1|

AN WA WA WA W A W A W A W A W A W A

X Data0 X Datal X Data2 X Data3)

Hi-z. {

X

Data X Data X Data X EOD } 7H,i-,z,(

PMaster
(output)

EValid
(input)

318

A

Figure12-21 Block Read Response in Save Satus

User's Manual U10504EJ7VOUMO0

System Interface

Figure 12-22 shows the case where an external write request isissued following a
read response to a processor single read request. The following sequence
describesthe protocol (the numbersin the following description correspond to the
numbersin Figure 12-22).

1. Theexternal agent returns response datato the processor single read request.

2. Toissuean external request following the read response, assert the EReq
signal activein the cycleinwhich EOD isreturned. In this case, the PM aster
signal remains inactive two cycles after EOD.

3. Becausethe external agent isin the master status, it can issue the externa
write request.

4. Deassert the EReq signal inactive up to the data cycle of the external write
request. In thiscase, the PMaster signal is asserted active two cycles after
EOD, and the bus mastership is returned to the processor.

- Master»L— Slave —»L— Master ——»
SCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
SClock

(internal) __/—\M

SysADLO) HiZ. QZX Dat?)i) x/ Addr X Datg Hez

Sysemde s e Eop)\ /N wiite) EOD J\ ' E-
(m o\ / 7 3 \}ﬁ \
PVaser] R ?/ \//\

(irlsr?Tg S— ’ 2. 4.
Evard KA/ /
EReq N\~ /

Figure12-22 External Write Request Following Read Response

User's Manual U10504EJ7VOUMO0 319

Chapter 12

SCycle

SClock
(internal)

SysAD(31:0)
(1/0)

SysCmd(4:0)
(I/0)

PValid
(output)

PMaster
(output)
EOK
(input)

EValid
(input)

Figure 12-23 shows an example in which an external write request interrupts a
read response to a processor singleread request. Cycle5inthefigureisthewrite
datafor the externa write request in cycle4, and cycle 7 isthe read response data.

< Master—sle—— Slave—— e Master— »
1|28 a|s 6|7 |8 |9 |10|u 2|
U\ S\
’H’i-’z’(AddeDataX \Data) H(
— YRead) ™# {write {EOD Y EOD) ¢
o/
— \
-

\ /o

Figure12-23 When External Write Request Takes Precedence While Processor

320

Read Request is Pending

Asshownin thisfigure, even if the external regquest interrupts the processor read
request, the processor remains in the dave status until the read response datais
returned.

User's Manual U10504EJ7VOUMO0

System Interface

12.7 Successive Processing of Request

12.7.1 Successive Processor Write Requests

The processor write requests may be successively operated as follows.

* In the case of data pattern “D”

In this case, the processor write requests are processed without wait
status as shown in Figure 12-24.

e In the case of data pattern “Dxx”"
In this case, the processing is separated by a wait status of two cycles
as shown in Figure 12-25.

The processor write requests may be successively issued in the following four

cases.

A w D PR

Successive single write requests
Successive block write requests

Block write request after single write request
Single write request after block write request

For the timing of the processor single write request, refer to 12.6.3 Processor

Write Request Protocol.

Processor block write | Processor block write

Addr | Data0

Datal

Addr

Data0

Datal

Figure 12-24 Successive Block Write Requests (Write Data Pattern: D)

Processor . Processor
| Single write Wait single write
Addr | Data | Wait | Wait | Addr | Data

Figure12-25 Successive Sngle Write Requests (Write Data Pattern: Dxx)

User's Manual U10504EJ7VOUMO0

321

Chapter 12

12.7.2 Processor Write Request Followed by Processor Read Request

Figure 12-26 shows the case where a processor read reguest follows a processor
write request.

Master—>‘<; Slave % Master ——— »

SCycle ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘ 10 ‘ 11 ‘ 12 ‘
meray L S\
(internal)

SysAD(3(|1/:c0)g X Addr Y Data0 X Data1) Addr) Hi-Z -{ Data) Hi-z -
Sysemdli \ Write){ Data Y 0D Y(Read) % (Eop) HZ {

s T\ /

Paster / \
(o [\ /

Figure 12-26 Processor Write Request Followed by Processor Read Request
(Write Data Pattern: D)

322 User's Manual U10504EJ7VOUMO0

System Interface

12.7.3 Processor Read Request Followed by Processor Write Request

SCycle

SClock
(internal)

SysAD(31:0)
(I/0)

SysCmd(4:0)
(I/0)

PValid
(output)

PMaster
(output)
EOK
(input)

EValid
(input)

Figure 12-27 shows the case where a processor read request is followed by a

processor write request.

<—M&St8f—>‘<7 Slave Ai Master ——— »

1| 23| a|s |6 | 7| 8|09 |1w0]u]

[V U W A U W A U W A U W A W W

ij_fo(Data) Hi-Z. { Addr XData0 X Data1 X

H-2_ Eop) M2 (write \ Data Y EOD X

I \ /
I \
I A N

/

Figure 12-27 Processor Sngle Read Request Followed by Block Write Request

(Write Data Pattern: D)

User's Manual U10504EJ7VOUMO0

323

Chapter 12

12.7.4 Processor Write Request Followed by External Write Request

Figure 12-28 shows the case where processor write requests are followed by an
external write request.

‘4— Slave 4>1<— Master ——»
SCyCIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
sy S\

(internal)

Hi-Z.

<« Master

SysAD(31:0)

(/0) XAddro) Data XAddr1Y Data) ,HJ‘,Z,(

{ Addr X Data)

X write Y EOD X Write X EOD) Hi-Zz. { write X EOD) —HJ'Z—(

SysCmd(4:0)
(I/0)

Pvalid —\
(outr?ult) /

PMaster
(output) / \

EOK L
(input)

EValid \ /
(inp?ult)

ER

(inpﬁg \ /

Figure12-28 Successive Processor Write Requests Followed by External Write Request
(Write Data Pattern: D)

324 User's Manual U10504EJ7VOUMO0

System Interface

12.8 Discarding and Re-Executing Commands

12.8.1 Re-Execution of Processor Commands

The external agent executes and controls the processor commands by using the
EOK signal. When the processor serves asthe master, the processor cannot issue
acommand until the EOK signal is active for at least two cycles.

If the EOK signal is active for only one cycle before the processor issues a
command and then becomes inactive in the next cycle in which the command is
issued, this processor command is discarded. At thistime, the external agent
should ignore the discarded command.

If Write Command is Discarded

The processor issues write data and then the write command again. At thistime,
the external agent should ignore the write data following the discarded write
command.

If Read Command is Discarded

The processor entersthe slave status in the cycle following the address cycle of a
read request. If the EReq signal isinactive at thistime, the processor returns to
the master status again one cycle later, and reissues a read request.

12.8.2 Discarding and Re-Executing Write Command

Figure 12-29 illustrates how a processor single write request is discarded and re-
executed. The following sequence describes the protocol (the numbersin the
following description correspond to the numbersin Figure 12-29).

1

Becausethe EOK signal isactive one cycle before (cycle 2) the write request
of Data0, this cycleistheissuance cycle.

Because the EOK signal is active in the write request cycle of Data0 (cycle
3), the next cycleisanormal datacycle.

Because the EOK signal is active in one cycle (cycle 4) before the write
request of Datal, this cycleistheissuance cycle.

Becausethe EOK signal isinactivein thewrite request cycle of Datal (cycle
5), the data of the next cycleisdiscarded. At thistime, data/command is
output to SysAD(31:0) and SysCmd(4:0), which should be ignored by the
external agent.

Because the EOK signal isinactive one cycle (cycle 6) before the write
request of the second Datal, the write request is delayed.

User's Manual U10504EJ7VOUMO0 325

Chapter 12

SCycle

SClock
(internal)

SysAD(31:0)
(I/0)

SysCmd(4:0)
(/o

PValid

(output)

PMaster
(output)
EOK
(input)

— 7T Jffxf

6. Becausethe EOK signal isactivein one cycle (cycle 9) before the write
request of the second Datal, this cycleis the issuance cycle.

7. Becausethe EOK signal isactive in the write request cycle (cycle 10) of the
second Datal, the next cycleis anormal data cycle.

1| 23| a|s | 6| 7|8]9 |10]|n 1|
S\
X Addro X Data0 { Addr1 X Data1 X Addrl XData1)

X write X EOD X write X EOD X Write EOD

dddee—dd—

Figure12-29 Discarding and Re-executing Processor Sngle Write Request

326

User's Manual U10504EJ7VOUMO0

System Interface

12.8.3 Discarding and Re-Executing Read Command

SCycle

SClock
(internal)

SysAD(31:0)
(1/0)

SysCmd(4:0)
(I/0)
PMaster
(output)

EReq
(input)
EOK
(input)

PValid
(output)

EValid
(input)

Figure 12-30 illustrates how a processor single read request is discarded and re-
executed. The following sequence describes the protocol (the numbersin the
following description correspond to the numbersin Figure 12-30).

1. Becausethe EOK signal islow in cycle 5, the processor tries to issue an
address (cycle 6).

2. IftheEOK signal ishigh at this point, the processor discardsthisread request
and enters the slave status in the next cycle.

3. Becausethe EReq signal isinactive, the processor returnsto the master status
again and reissues aread request. Becausethe EOK signal islow in both the
cycles 7 and 8, the issuance cycle of the read request is determined.

4. The externa agent outputs data at the requested address.

Slave Master Master
<—Master—>\<—>l<—>\<7 Slave HL—>

1| 23| a|s |6 | 7|8 |9 |10]|n]1|

4.
\addr) ™% (agdr) M4 (Data) M2

\Read) /“j'z H-2 (Eop) H2 ¢
/ \

3.
/

H 1. 2

/S

N

Figure12-30 Discarding and Re-executing Processor Sngle Read Request

User's Manual U10504EJ7VOUMO0 327

Chapter 12

12.8.4 Executing and Discarding Command

When External Agent Requests Bus M aster ship

The external agent requests the bus mastership by asserting the EReq signal
active. Atthistime, the external agent can acquires the bus mastership after it has
accepted one processor read/write request only, or without accepting any request.

If the EReq signal is asserted active while the external agent delays the processor
request by deasserting EOK signal inactive, the external agent can forcibly
acquires the bus mastership.

When Processor Requests Bus M aster ship

328

The processor requests the bus mastership by asserting the PReq signal active. At
thistime, the external agent should transfer the bus mastership to the processor,
giving consideration to the priority of the system. If the external agent keepsthe
EReq signal inactive for more than one cycle, the bus is released.

The processor acquires the bus mastership by asserting the PM aster signal active
two cycles after the EReq signal hasbecomeinactive. If theEOK signal isactive
at thistime, the processor can issue a reguest.

Figure 12-31 shows an example where the external agent has entered the dave
status (the EReq signal isinactive) from the master status, and then acquires the
bus mastership again after accepting one processor request.

User's Manual U10504EJ7VOUMO0

System Interface

<« Slave 4#7 Master HL* Slave — »

SCycIe‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘
SClock
(internal)
SVSAD(?},l,:gg 3 H-Z. { Addr XData0 XData1}) - - Mz
Syscmd%ﬁg% 3 H-z {write X Data X EOD } - - Mz {
PMaster
(output) _F\ /
e M
(input)
EOK
(input) \ /
PReq
(output) / \
PValid
(output) \ /

Figure12-31 Discarding Bus Mastership by External Agent by Processor Request

User's Manual U10504EJ7VOUMO0 329

Chapter 12

12.9 Data Flow Control

The system interface supports a maximum data rate of one word per cycle.

Read Response

An external agent may transfer data to the processor at the maximum datarate of
the System interface. The rate at which dataistransferred to the processor can be
controlled by the external agent, which asserts EValid signal at the cycle which
dataistransferred. The processor acceptscyclesasvalid only when EValid signal
is asserted and the SysCmd(4:0) bus contains a data identifier; thereafter, the
processor continuesto accept datauntil it receivesthe dataword tagged asthe last
one.

Dataidentifier EOD must be attached to the last dataword. Without this, the
System interface hangs up as a protocol error. In this case, because the protocol
error state is identified with the PReq signal at double the cycle of SClock
oscillating in synchronization with the M aster Clock, the processor should be
reset and initialized.

Write Request

Therate at which the processor transfers data to an external agent is
programmable through the EP bit of the Config register (setting at reset is D)
signal. Data patterns are defined using the letters D and x, where D indicates a
data cycle and x indicates an unused cycle. For example, a Dxx data pattern
indicates a data rate of one word every three cycles.

The VRr4300 has two data transfer rates: D and Dxx. The processor continues
outputting data output in the period of D immediately before, while the processor
isin the master status and during the period of x.

A processor block write request with a Dxx data pattern (one word every three
cycles) is shown in Figure 12-14.

330 User's Manual U10504EJ7VOUMO0

System Interface

12.9.1 Independent Transfer on SysAD(31:0) Bus

In genera applications, the SysAD(31:0) busis a point-to-point connection,
running from the processor to a bidirectional register transceiver residing in an
external agent. For these applications, the SysAD(31:0) bushas only two possible
devices to connect, the processor or the external agent.

Certain applications may require connection of additional driversand receiversto
the SysAD(31:0) bus, to alow transfers over the SysAD(31:0) bus that the
processor isnot involved in. These are called independent transfers. To effect an
independent transfer, the external agent must coordinate mastership of the
SysAD(31:0) bus by using arbitration handshake signals (EReq, PMaster and
PReq signals).

An independent transfer on the SysAD(31:0) bus follows this procedure:

1. Theexterna agent asserts EReq signal, and requests mastership of the
SysAD(31:0) bus, to issue an external request.

2. Theprocessor deasserts PM aster signal, and releasesthe System interface to
slave state.

3. Theexternal agent then allows the independent transfer to take place on the

SysAD(31:0) bus, making sure that EValid signal is not asserted during the
transfer.

4. When the transfer is completed, the external agent deasserts EReq signal to
return the System interface to master state.

To connect multiple devices, separate enable signalsfor deviceto input/output are
required to allow the non-processor chipsto communicate.

12.9.2 System Endianness

The endianness of the system is set by the BE bit of the Config register: byte order
is big endian when this bit is set to 1, and little endian when this bit is set to O.
Thishitissetto 1 at cold reset. Set thishit first intheinitial sequencewith alittle
endian system.

Software can set the reverse endian (RE) bit in the Satusregister to oneto reverse
the User mode byte ordering during operation.

User's Manual U10504EJ7VOUMO0 331

Chapter 12

12.10 System Interface Cycle Time

The processor specifies minimum and maximum cycle counts for thetime
required for various processor transactions and for the processor response time to
external reguests. Processor requests themselves are constrained by the System
interface protocol, and request cycle counts can be determined by examining the
protocol. The following System interface interactions can vary within minimum
and maximum cycle counts:

* waiting period for the processor to release the System interface to
slave state in response to an external request (release latency).

The remainder of this section describes and tabul ates the minimum and maximum
cycle counts for these System interface interactions.

12.10.1 ReleaseLatency Time

332

Release latency timeis defined as the number of cycles the processor can wait to
release the System interface to slave state for an external request. When no
processor requests arein progress, internal activity can cause the processor to wait
some number of cycles before rel easing the System interface. Release latency
timeis therefore the number of cycles when EReq signal becomes active until
PMaster signal becomesinactive.

There are two categories of release latency time:

e Category 1: when the EReq signal is asserted by one cycle before
the last cycle of a processor request.

e Category 2: when the EReq signal is not asserted during a processor
request, or is asserted during the last cycle of a
processor reguest.

Table 12-2 shows the minimum and maximum rel ease latency time for requests
that fall into categories 1 and 2. Note that the maximum and minimum cycle
counts are subject to change.

Table12-2 Release Latency Time for External Requests

Category Minimum PCycles Maximum PCycles
1 4 6
2 4 24

User's Manual U10504EJ7VOUMO0

System Interface

12.11 System Interface Commands and Data | dentifiers

System interface commands specify the types and attributes of any System
interface request; this specification is made during the address cycle for the
request.

System interface data identifiers specify the attributes of datatransferred during a
System interface data cycle.

Thefollowing sections describe the syntax, that is, the bitwise encoding of System
interface commands and data identifiers.

Reserved hits and reserved fields should be set to 1 for System interface
commands and data identifiers associated with external regquests.

For System interface commands and data identifiers associated with processor
requests, reserved bitsand reserved fieldsin the commandsand dataidentifiersare
undefined.

12.11.1 Command and Data I dentifier Syntax

System interface commands and data identifiers are encoded in 5 bits and are
transferred on the SysCmd(4:0) bus from the processor to an external agent, or
from an external agent to the processor, during address and data cycles.

Bit 4 (the most-significant bit) of the SysCmd(4:0) bus determines whether the
current content of the SysCmd bus is acommand or a dataidentifier and,
therefore, whether the current cycleis an address cycle or adatacycle. For
System interface commands, SysCmd4 must be set to 0. For System interface data
identifiers, SysCmd4 must be set to 1.

Bit M eaning

SysCmd4 Attributes.
0: Command (address)
1: Dataidentifier

User's Manual U10504EJ7VOUMO0 333

Chapter 12

12.11.2 System Interface Command Syntax

This section describes the SysCmd(4:0) bus encoding for System interface
commands. Figure 12-32 showsacommon encoding used for all System interface

commands.
4 3 2 0
0 Request Request Details
Type

Figure12-32 System Interface Command Syntax Bit Definition

SysCmd4 must be set to 0 for al System interface commands.
SysCmd3 specify the System interface request type which may be read or write.

Table 12-3 Encoding of SysCmd3 for System Interface Commands

Bit Meaning
SysCmd3 Command.
0: Read Request
1: Write Request

SysCmd(2:0) are specific to each type of request and are defined in each of the
following sections.

12.11.3 Read Requests
For read requests, the encoding of the SysCmd(2:0) is as follows.
Figure 12-33 shows the format of a SysCmd read request.

4 3 2 0

Read Request Details
(see tables)

Figure 12-33 Read Request SysCmd(4:0) Bus Bit Definition

334 User's Manual U10504EJ7VOUMO0

System Interface

Tables 12-4 through 12-6 list the encodings of SysCmd(2:0) bit read attributesfor

read requests.

Table 12-4 Encoding of SysCmd2 for Read Requests

Bit M eaning
SysCmd2 Read Attributes.
0: Single Read
1. Block Read

Table 12-5 Encoding of SysCmd(1:0) for Block Read Requests

Bit

M eaning

SysCmd(1:0)

Read Block Size.
0: 2 words
1: 4 words (D-cache only)
2: 8 words (I-cache only)
3: Reserved

Table 12-6 Encoding of SysCmd(1:0) for Sngle Read Requests

Bit

M eaning

SysCmd(1:0)

Read Data Size.
0: 1 bytevalid (Byte)
1: 2 bytesvalid (Halfword)
2: 3bytesvalid
3: 4 bytesvalid (Word)

User's Manual U10504EJ7VOUMO0

335

Chapter 12

12.11.4 Write Requests

336

The encoding of SysCmd(2:0) for write request is shown below.
Figure 12-34 shows the format of a SysCmd write request.

Table 12-7 liststhe write attributes encoded in bits SysCmd2. Table 12-8liststhe
block write replacement attributes encoded in bits SysCmd(1:0). Table12-9lists
the single write request encoded in bits SysCmd(1:0).

4 3 2 0

Write Request Details
(see tables)

Figure12-34 Write Request SysCmd(4:0) Bus Bit Definition

Table 12-7 Encoding of SysCmd2 for Write Requests

Bit M eaning
SysCmd2 Write Attributes.
0: Single Write
1: Block Write

Table 12-8 Encoding of SysCmd(1:0) for Block Write Requests

Bit Meaning

SysCmd(1:0) Write Block Size.

0: 2 words

1: 4 words (for D-cache only)

2: 8 words (for I-cache only) (for test)
3: Reserved

Table 12-9 Encoding of SysCmd(1:0) for Sngle Write Requests

Bit M eaning

SysCmd(1:0) Write Data Size.

0: 1 bytevalid (Byte)

1: 2 bytesvalid (Halfword)
2: 3bytesvalid

3: 4 bytesvalid (Word)

User's Manual U10504EJ7VOUMO0

System Interface

12.11.5 System Interface Data Identifier Syntax
This section defines the encoding of the SysCmd(4:0) bus for System interface

dataidentifiers. Figure 12-35 shows a common encoding used for all System

interface data identifiers.

4 3 2 1 0
1 Command of | €ommand of | o mand of | Enables data
last data resdr;(igse error data check

Figure12-35 Data ldentifier SysCmd(4:0) Bus Bit Definition

SysCmd4 must be set to 1 for al System interface data identifiers.

12.11.6 Data ldentifier Bit Definitions

Bit definitions of SysCmd(3:0) are described next.
SysCmd3 marks the last data element.

SysCmd2 indicateswhether or not the dataisresponsedata. Responsedataisdata

returned in response to a read request.

SysCmd1 indicates whether or not the data element is error free. Erroneous data
contains an uncorrectable error and is returned to the processor, resulting a bus
error exception. Because the Vg4300 does not have a parity check function, the

processor does not transfer data by setting the error bit to 1.

SysCmd0 enables data check (reserved function).
Because the V r4300 does not have a data check function, the processor outputs 1
(datacheck disable) when it transfers data. When the external agent transfersdata,
the processor ignores this bit. But set this bit to 1 to disable checking.

Table 12-10 lists the encodings of SysCmd(3:0) for processor dataidentifiers.

Table 12-11 lists the encodings of SysCmd(3:0) for external dataidentifiers.

User's Manual U10504EJ7VOUMO0

337

Chapter 12

Table 12-10 Processor Data Identifier Encoding of SysCmd(3:0)

Bit

Meaning

SysCmd3

Last Data Element Indication.
0: Last data element, or data element on single transfer
1: Not the last data element

SysCmd2

Reserved

SysCmd1

Reserved: Error Data Indication.
The processor outputs O (error free).

SysCmdo

Reserved: Data check enabled
Processor outputs 1 (data check disabled).

Table12-11 External Data Identifier Encoding of SysCmd(3:0)

Bit

Meaning

SysCmd3

Last Data Element Indication.
0: Last data element or data element on single transfer
1: Not the last data element

SysCmd2

Response Data Indication.
0: Datais response data
1: Datais not response data

SysCmd1

Error Data Indication.
0: Datais error free
1: Datais erroneous

SysCmdo

Reserved: Data Checking Enable.
Processor ignores this bit. (external agent transfers 1)

338

User's Manual U10504EJ7VOUMO0

System Interface

12.12 System Interface Addresses

System interface addresses are full 32-bit physical addresses output to the
SysAD(31:0) bus during address cycles.

12.12.1 Addressing Conventions
Addresses associated with word or partial word data transfers are aligned for the
size of the data element. The system uses the following address conventions:

» Addresses associated with block requests are aligned to requested
doubleword boundaries; that is, the low-order 3 bits of address are 0.

* Word requests set the low-order 2 bits of address to 0.
» Halfword requests set the low-order bit of address to 0.
e Byte, tribyte requests use the byte address.

12.12.2 Sequential and Subblock Ordering

Sequential Ordering

Aninstruction cache read request returnsdatain sequential order, starting with the
first word (DWO) of the 8-word block, no matter which word is requested.

Subblock Ordering

When aread request is issued to the data cache, the low-order word of the
doubleword that includes the word required by the CPU isfirst returned, and then
the high-order word, the low-order word of the remaining doubleword, and the

high-order word of it isreturned in that order (for details, refer to 12.2.1 Physical
Addr esses).

User's Manual U10504EJ7VOUMO0 339

[MEMO]

340 User's Manual U10504EJ7VOUMO0

JTAG Interface

13

The V4300 processor is provided with aboundary-scan interface that is
compatiblewith Joint Test Action Group (JTAG) specifications, conforming to the
industry-standard JTAG protocol (IEEE Standard 1149.1/D6).

This chapter describes the functions related to JTAG interface.

User's Manual U10504EJ7VOUMO0 341

Chapter 13

13.1 Principlesof Boundary Scanning

342

With the evolution of integrated circuits (ICs), surface-mounted devices, double-
sided component mounting on printed-circuit boards (PCBs), and via hole
technology, in-circuit tests connected to boards and chips have become more and
more difficult to perform. The greater complexity of 1Cs has aso meant that
testing all the circuitsin achip have become much larger in size of the test pattern
and more difficult to write.

One solution to this difficulty has been the development of testing method using
boundary-scan circuits. A boundary-scan circuit is shift register organization of
a series of connected cells placed between each pin of the chip and the internal
circuitry of the IC, as shown in Figure 13-1. In normal operation these boundary-
scan cells are bypassed; in the test mode, however, the scan cells are directed by
the test program to pass data along the shift register path and perform various
diagnostic tests. To accomplish this, the tests use the four signals described in the
next section: JTDI, JTDO, JTMS, and JTCK.

i
NI
i
Y
i
j

N

N

N

Q_

Q—

> Integrated Circuit Chip

IC External Pin
Boundary-Scan Cells [

—Q—

N

N

3

Figure13-1 JTAG Boundary-Scan Cells

User's Manual U10504EJ7VOUMO0

JTAG Interface

13.2 Signal Summary

The JTAG interface signals used are listed below.
JTAG seria data input

JTDI

JTDO

JTM

S

JTCK

JTAG seria data output
JTAG test mode select
JTAG seria clock input

Caution When the JTAG interfaceisnot used, keep the JTCK signal low.

TAP
Controller

Figure13-2 JTAG Interface Sgnals and Registers

2 0
Oj
56 0

Instruction
Register

Bypass
Register

Boundary-
scan
Register

JTDI Pin

JTDO Pin

JTMS Pin

JTCK Pin

The JTAG boundary-scan mechanism (referred to as JTAG mechanismin this
chapter) allows testing of the connections between the processor, the printed
circuit board to which it is attached, and the other device on the board.

The JTAG mechanism does not provide any capability for testing the processor

itself.

User’s Manual U10504EJ7VOUMO0

343

Chapter 13

13.3 JTAG Controller and Registers

The processor contains the following registers and JTAG controller:
* Instruction register
* Boundary-scan register
* Bypass register
» Test Access Port (TAP) controller

The processor executes the standard JTAG EXTEST operation associated with
External Test function testing.

The basic operation of JTAG isfor the TAP controller state machine to monitor
the JTMSinput signal, asshownin Table 13-1. When it starts, the TAP controller
determines the test function to be implemented. Thisincludes either loading an
instruction register (IR), or beginning a serial data scan through a data register
(DR). Asthedataisscanned in, the state of the JTM S pin transmits each new data
word, and indicates the end of the data stream. The dataregister to be selected is
determined by the contents of the Instruction register.

13.3.1 Instruction Register

The JTAG Instruction register includes three shift register-organization cells; this
register is used to select the test to be performed and the test data register to be
accessed. Aslisted in Table 13-1, the register value setting selects either the
Boundary-scan register or the Bypass register.

Table13-1 JTAG Instruction Register Bit Encoding

MSB..... LSB Data Register
0 0O Boundary-scan register (external test only)
011 Setting prohibited
Others Bypass register

The Instruction register has two stages: shift register, and parallel output latch.
Refer t013.3.7 Controller Statesfor detail. Figure 13-3 showsthe format of the
Instruction register.

2 1 0
MSB LSB

Figure 13-3 Instruction Register

344 User's Manual U10504EJ7VOUMO0

JTAG Interface

13.3.2 Bypass Register

The Bypass register is 1 bit wide. When the TAP controller isin the Shift-DR
(Bypass) state, thedataon the JTDI pinisshifted into the Bypassregister, and the
data on Bypass register output shiftsto the JTDO output pin.

Actually the Bypass register is a short-circuit which allows bypassing of board-
level devices, in the boundary-scan chain, which do not require a specific test.
Thelogical location of the Bypass register in the boundary-scan chainis shownin
Figure 13-4. Use of the Bypass register speeds up access to boundary-scan
registersin those | Cs that remain active in the board-level test data path.

JTDI

Bypass

Board Register

Input

€
Board
Output

J1DI JTDO

N

IC Package ? Boundary-scan
7

Register Pad Cell

Board

Figure 13-4 Bypass Register Operation

User's Manual U10504EJ7VOUMO0 345

Chapter 13

13.3.3 Boundary-Scan Register

346

The Boundary-scan register retains states all of the input and output pins of the
V r4300 processor, except for some clock and phase lock loop signals. The
externa pins of the V r4300 can be configured to drive any arbitrary pattern
depending on scanning contents into the Boundary-scan register from the Shift-
DR state. Incoming data to the processor is examined by shifting while in the
Capture-DR state with the Boundary-scan register enabled.

The Boundary-scan register is a single bus comprised of 58-bit shift registers,
each bit of which is connected to all input and output pads one by one on the
Vr4300 processor. Figure 13-5 shows the most-significant bit of the Boundary-
scan register; this one bit controls the output enable signals on the various
bidirectional buses.

57 56 0
OE1l

Figure13-5 Output Enable Bit of Boundary-Scan Register

OEL1 (jSysADERN) isthe JTAG output enable bit for all outputs of the processor.
Output is enabled when this bit is set to 1 (default state).

The remaining 57 bits correspond to 57 signal pads. Outputs are enabled when
thishitisset to 1.

Table 13-2 lists the scan order of these scan bits.

User’s Manual U10504EJ7VOUMO0

JTAG Interface

13.3.4 Test AccessPort (TAP)

TheTest Access Port (TAP) consists of thefour signal pins: JTDI, JTDO,JTMS,
and JTCK. These pins control the test to be executed.

As Figure 13-6 shows, datais serially scanned into one of the three registers
(Instruction register, Bypass register, or the Boundary-scan register) from the
JTDI pin, or it is scanned from one of these three registers onto the JTDO pin.

Dataisinput to the JTDI pin from the least-significant bit (LSB) of the selected
register, whereas the most-significant bit (MSB) of the selected register appears
on the JTDO pin output.

The JTM S signal controls the state transitions of the main TAP controller state
machine.

The JTCK signa is adedicated test clock that allows serial JTAG datato be
shifted synchronously, independent of any chip-specific or system clock.

JTCK
JTMS and JTDI sampled A JTDO changes at A
at rising edge of JTCK falling edge of JTCK
Data scanned in serially Data scanned out serially

2

Instruction
Register

0

scan
Register

0

LSB
Bypass
Register

Boundary-

Instruction
Register

JTDI Pin JTDO Pin

JTMS Pin

Boundary-
scan
Register

Figure13-6 JTAG Test Access Port

TheJTDI and JTM S signals are sampled in synchronization with the rising edge
of the JTCK signal. State onthe JTDO signal changes in synchronization with
the falling edge of the JTCK signal.

User's Manual U10504EJ7VOUMO0 347

Chapter 13

13.3.5 TAP Controller

The processor incorporates a 16-state TAP controller conforming to the IEEE
JTAG standard.

13.3.6 Controller Reset

The TAP controller can be reset by one of the following:
« assert the ColdReset signal

» keep the JTM S signal asserted and input five rising edges of JTCK
signal
In either case, keeping JTM S signal asserted maintains the Reset state.

13.3.7 Controller States

The TAP controller has four states: Reset, Capture, Shift, and Update. They can
be further classified as Shift-R state or Capture-DR state, depending on whether
the type of signal isinstruction or data.

Reset State (TAP Controller)

Thevaue0x7 isloaded into the parallel output latch, selecting the Bypassregister
asdefault. The most-significant bits of the Boundary-scan register iscleared to O,
disabling the outputs.

Capture IR State

The value 0x4 is loaded into the shift register stage.

Capture DR (Boundary Scan) State

The data currently on the processor input and 1/0 pinsislatched into the
Boundary-scan register. In this state, the Boundary-scan register bits
corresponding to output pins are undefined and cannot be checked during the scan
out processing.

Shift IR State

Dataisloaded serially into the shift register stage of the Instruction register from
the JTDI input pin, and the MSB of the Instruction register’s shift register stage
is shifted out to the JTDO pin.

348 User's Manual U10504EJ7VOUMO0

JTAG Interface

Shift DR (Boundary Scan) State

Dataisserially shifted into the Boundary-scan register from the JT DI pin, and the
contents of the Boundary-scan register are serially shifted onto the JTDO pin.

Update IR State
The current datain the shift register stage isloaded into the parallel output latch.

Update DR (Boundary Scan) State

Datainthe Boundary-scan register islatched into theregister parallel output latch.
Bits corresponding to output pins, and those 1/0 pins whose outputs are enabled
by the MSB (OEL1) of the Boundary-scan register, are loaded onto the processor
pins.

Table 13-2 shows the boundary scan order of the processor signals.

Table 13-2 JTAG Scan Order

No. | Signal Name | No. | Signal Name | No. Signal Name No. | Signal Name
1 | SysAD4 16 | SysAD26 31 | SysAD23 46 | SysAD14
2 SysAD3 17 PMaster 32 nt3 47 SysAD13
3 SysAD2 18 SysAD25 33 SysAD22 48 SysAD12
4 | sysAD1 19 | EReq 34 | SysAD21 49 | SysAD11
5 | SysADO 20 | SysCmdo 35 | SysAD20 50 | SysAD10
6 PReq 21 | SysCmdi 36 | RFU (Input: always 1) 51 | Tnt0
7 SysAD31 22 | Reset 37 RFU (Input: dways 1) 52 SysAD9
8 PVaid 23 Evdid 38 TClock 53 SysADS8
9 SysAD30 24 SysCmd2 39 SyncOut 54 SysAD7
10 | EOK 25 | SysCmd3 40 | SysAD19 55 | SysAD6
11 SysAD29 26 ColdReset 41 SysAD18 56 SysAD5
12 SysAD28 27 SysCmd4 42 SysAD17 57 Tntl
13 | SysAD27 28 | DivModel 43 | Intd 58 | jSysADEn
14 nt2 29 SysAD24 44 SysAD16
15 NMT 30 DivMode0 45 SysAD15

User's Manual U10504EJ7VOUMO0 349

Chapter 13

13.4 Noteson Implementation

This section describes points to be noted of JTAG boundary-scan operation that
are specific to the processor.

e The Master Clock, Syncln, and SyncOut signal pads do not support
JTAG.

e The update function occurs on the falling edge of JTCK signal after
the TAP controller enters the Update-DR state. This conforms to the
|EEE standard.

The Vg4200 generates the update function at the next rising edge. In
other words, it is 1/2JTCK cycle late as compared with the V g4300.

350 User's Manual U10504EJ7VOUMO0

| nterrupts

14

Four types of interrupt are available on the Vg4300. These are:
* one non-maskable interrupt, NMI
» five external normal interrupts
» two software interrupts

e onetimer interrupt

These are described in this chapter.

User's Manual U10504EJ7VOUMO0 351

Chapter 14

14.1 Non-Maskable Interrupt

352

Thenon-maskableinterrupt request isaccepted by asserting theNMT signal (low),
forcing the processor to branch to the Reset Exception vector. NMT signal is
latched into an internal register in synchronization with the rising edge of SClock
signal, as shown in Figure 14-1. The NMT signal is edge-triggered, and NMI
request is acknowledged when the NMT signal is kept low for more than one
cycle. Thissignal must be high after an exception occurs. An NMI request can
also be set by an external write request through the SysAD(31:0) bus. Onthedata
cycle, SysAD6 actsasthe NMI request bit (1:requested) and SysAD22 actsasthe
write enable bit (1:enabl€) for SysADB.

NMI only takes effect when the processor pipelineisrunning. Thus NMI can be
used to recover the processor from a software hang up (for example, in aninfinite
loop) but cannot be used to recover the processor from a hardware hang up (for
example, no read response from an external device). NMI cannot cause drive
contention on the SysAD(31:0) bus and no reset of external agentsis required.

Thisinterrupt cannot be masked.

Figure 14-1 showstheinternal processing of theNMT signal. Thelow-level signal
input to NMT pin islatched into an internal register in synchronization with the
rising edge of SClock. Bit 6 of theinternal register isthen ORed with theinverted
value of latched NMT signa to transfer internally as the non-maskable interrupt
request.

User's Manual U10504EJ7VOUMO0

Interrupts

External Write Request

6 Interrupt Request
Register (6)

(Internal

Register) NMI
NMI >

SClock

Figure 14-1 NMI Sgnal

14.2 External Normal Interrupts

Theseinterrupt requests are accepted by asserting Tnt(4:0) signal (low). Int(4:0)
signals are level-triggered, and these signals must be kept low until an external
interrupt exception is generated. After an external interrupt exception occurs,
Int(4:0) signal must be high before the processor returnsto its normal routine, or
before multiple interrupts are enabled. Thisinterrupt request can be set by an
external write request through the SysAD(31:0) bus. During the data cycle,
SysAD(4:0) acts as the external interrupt request bit (1:requested) and
SysAD(20:16) acts as the write enable bit (1:enable) for SysAD(4:0).

After an external interrupt exception occurs, an external write request must be
issued to clear the corresponding bit of the interrupt register to O before the
processor returnsto its normal routine, or before multiple interrupts are enabled.

Theseinterrupt requests can be masked with the IM(6:2), IE, EXL, and ERL fields
of the Satusregister.

User's Manual U10504EJ7VOUMO0 353

Chapter 14

14.3 Software Interrupts

Theseinterrupt requests are accepted by setting bit 1 or O of theinterrupt pending,
IP, fieldinthe Causeregister to 1. Thesehits can bewritten by software, but there
is no hardware mechanism to set or clear these bits.

After a software interrupt exception occurs, the corresponding bit of the IP field
inthe Cause register must be cleared to 0 before the processor returnstoitsnormal
routine, or before multiple interrupts are enabled.

These interrupt requests are maskable with the IM(1:0), IE, EXL, and ERL fields
of the Satus register.

14.4 Timer Interrupt

These interrupt requests use bit 7 of the I P (interrupt pending) field in the Cause
register. Thetimer interrupt isautomatically set and accepted whenever thevalue
of the Count register equals the value of the Compare register.

To clear this interrupt request, either clear the IP7 bit of the Cause register, or
change the contents of the Compare register.

Thisinterrupt request is maskable through the IM7 bit and |E, EXL and ERL fields
of the Satus register.

14.5 Generation of Interrupt Request Signal

354

When an external agent issues an external write request, it iswritten to the
Interrupt register. Thisregister can be used in an external write cycle, but not in
an external read cycle.

When datais written to the Interrupt register, the processor ignores the address
issued by the external agent.

Thisregister cannot be read or written by software unlike the CPO register.

In the data cycle, bits SysAD20 through SysAD16 are used as individual write
enable bits corresponding to the 5 bits of the Interrupt register. The values
SysAD4 through SysADO are written to the bits of the Interrupt register.
Therefore, the bits 0 through 4 of the Interrupt register can be set or cleared by
issuing an external writerequest only once. Figure 14-2 illustratesthisalong with
the NMI described earlier.

User’s Manual U10504EJ7VOUMO0

Interrupts

SysAD(4:0)
Interrupt Set Value Interrupt Register
4 3 2 1 0 r
0
1
< 2 Refer to Figures
- > 14-3 and 14-4.
3
20 | 19| 18 | 17 | 16 4
\
SysAD(20:16)
Write Enables 6
—» Refer to Figure 14-1.
SysAD6
6
Nonmaskable Interrupt
22
SysAD22
Bit Meaning Setting
SysAD(4:0) External interruptrequest | 1: requested
Int (4:0) 0: no request
(for each bit)
SysAD(20:16) | Write enable bitsfor 1:enable
SysAD(4:0) 0: disable
(for each bit)
SysAD6 NMI 1: requested
0: no request
SysAD22 Write enable bit for 1:enable
SysAD6 0: disable

Figure14-2 Interrupt Register Bits and Enables Bits

User's Manual U10504EJ7VOUMO0 355

Chapter 14

14.5.1 Detection of Hardware Interrupts

Figure 14-3 shows how the Vg4300 hardware interrupt causes are detected
through the Cause register.

The timer interrupt signal, IP7, is directly detected as bit 15 of the

Cause register.

The other hardware interrupt signals are directly detected since bits
4:0 of the Interrupt register are ORed one by one with each signal of
the interrupt pins Tnt(4:0) and the result is input to bits 14:10 of the

Cause register.

IP(1:0) of the Causeregister arerelated to softwareinterrupts. (Refer to Chapter
6 Exception Processing for detail.) Thereis no hardware mechanism for setting
or clearing the software interrupts.

Timer Interrupt

356

Interrupt Register (4:0)

@— IP2

IP3

® P4

:D IP5
:D IP6

IP7

10
11

12
——» Refer to Figure 14-4.

13

14
15

Cause Register
(15:10)

(Internal Register)

Int3 Intl
Int4 Int2 Int0

Figure 14-3 Hardware Interrupt Request Sgnals

User’s Manual U10504EJ7VOUMO0

Interrupts

14.5.2 Masking of Interrupt Request Signals

Figure 14-4 shows the masking of the Vr4300 interrupt request signals.

Cause register bits 15:8 (IP7-1P0) are AND-ORed with Status register
interrupt mask bits 15:8 (IM7-IM0O) to mask individual interrupt

Timer Interrupt —»

signals.

Satus register bit 0 is a global Interrupt Enable (IE) bit. The output
of this bit is ANDed with the output of the AND-OR logic block to
produce the V4300 interrupt signal as shown in Figure 14-4. The
EXL bit in the Status register also enables these interrupts.

Status Register

SRO

ﬂ

Status Register

Software
Interrupts

External Normal

Interrupts

SR(15:8)

IMOJ 8

IM1Q 9

IM2§10

IM3j11 8
IM4j12 /

IM5)13

IM6 14

IM7 §15
——

IPOR 8
IP1Q 9
IP2] 10

iP3f11 8
12 /

P4
13
14 AND-OR

s

1P6

IP5
15 block

1P7
m—

Cause Register

(15:8)

Y

v,

AND
block

VRr4300 Interrupt

-

Bit

Meaning

Setting

IE

Enable all interrupts

1:enable
0: disable

IM(7:0)

Mask interrupts

1:enable
0: disable
(for each bit)

IP(7:0)

Interrupt requests

1: request pending
0: no pending
(for each bit)

Figure 14-4 Masking of Interrupt Requests

User’s Manual U10504EJ7VOUMO0

357

[MEMO]

358 User's Manual U10504EJ7VOUMO0

Power Management

15

One of the objectives of the design of the V g4300 processor isto minimize power
consumption in order to make the processor suitable for use in battery operated
systems, as well as in environments where low power consumption and heat
dissipation are desirable.

To accomplish this, the V r4300 has power management features which bring a
dynamic reduction of power consumption, described in this chapter.

User's Manual U10504EJ7VOUMO0 359

Chapter 15

15.1 Features

The Vr4300 has three processor-level operation modes: normal, low power (100
MHz model of the V r4300 and the VVg4305 only), and power off.

These modes allow processor power consumption to be managed by system logic.

Generally anotebook system has many different levels of power management. 1t
isthe responsibility of system logic to switch the processor between the three
available modesin order to reflect the power management state of the system.

15.1.1 Normal Power M ode

The normal pipeline clock (PClock) is generated based on the input clock
(Master Clock). Theratio of the frequency of PClock to that of Master Clock is
set by the DivM ode(1:0)* pins. For the details of setting, refer to 2.2.2 Clock/
Contral Interface Signals.

The frequency of the system interface clock (SClock) is the same as that of
Master Clock.

The processor operates in the normal mode as default condition. The processor
enters the default status after reset.

* In VR4300 and V g4305. In Vr4310, DivMode(2:0).
R R R

15.1.2 Low Power Mode

360

Thelow power modeis supported only in the 100 MHz model of the V 4300 and
the V g4305.

The processor operatesin the low power mode when the RP bit of the Status
register isset. In this mode, the processor once stalls the pipeline, entering the
quiescent status. In this status, the store buffer becomes empty, and al cache
misses are processed.

The frequency of PClock drops to the 1/4 of the normal level. The speeds of
SClock and TClock aso drop to the 1/4 of the normal level.

Example When DivMode (1:0) = 10 in 100 MHz model of the V g4300

MasterClock PClock SClock, TClock
Normal mode 50 MHz 100 MHz 50 MHz
Low power mode 50 MHz 25 MHz 12.5 MHz

Thelow power mode can reduce the power consumption of the processor to about
25% of the normal level. When setting or clearing the RP bit, guarantee the
normal operation of the system by software.

User’s Manual U10504EJ7VOUMO0

Power Management

15.1.3 Power

Also keep in mind the following points.

1. Thefunctions of circuits such asthe DRAM refresh counter change if the
operating frequency changes. Consequently, first write new valuesto the
registers of the external agent that are directly affected by changesin the
frequency.

2. Makesurethat the operation of the system interfaceisinactive. For example,
execute an instruction that reads the non-cache area, and vacate the write/
buffer after execution of the instruction. After that, the RP bit can be set or
cleared.

3. Make surethat eight instructions before and after the MTCO instruction that
sets or clearsthe RP bit do not cause an exception such as cachemissor TLB
miss exception.

Off Mode

In the power off mode, power supply to the processor is entirely cut off and
operation of the processor stops completely.

Before entering power off mode, the state of the processor is written to non-
volatilememory. When the processor returnsto the normal mode, al registersare
restored to their previous state.

In order to support power off mode, all internal state information necessary for
restoring the processor from the state of power off is read and write accessible.
Prior to power off, this information must be saved into non-volatile memory
connected externally.

It isthe system’s responsibility to power off the chip when the systemisinidlie
state. At thistimethe Load Link LL bit is not required to be saved sinceit is
automatically cleared by the cache start-up.

Cache content isnot retained, and therefore the cache should beinvalidated during
the power-on routine and written back to the memory during the power-off
routine. The Vr4300 chip supports the CACHE instructions and TLB operation
instructions which invalidate al caches and TLB contents.

User's Manual U10504EJ7VOUMO0 361

[MEMO]

362 User's Manual U10504EJ7VOUMO0

CPU Instruction St Details

16

This chapter provides a detailed description of the function of each Vg4300 CPU
instruction in both 32- and 64-bit modes. Theinstructions are listed in
alphabetical order.

For details of the FPU instruction set, refer to Chapter 17 FPU Instruction Set
Details.

User's Manual U10504EJ7VOUMO0 363

Chapter 16

16.1 Instruction Notation Conventions

364

In this chapter, all variable subfields in an instruction format (such asrs, rt,
immediate, etc.) are shown in lowercase characters. Instruction names (such as
ADD, SUB, etc.) are shown in upper case characters. For the sake of clarity,
sometimes an aliasisused for asubfield in the specific instructions. For example,
we users = base for load and storeinstructions. Such an diasis always lower
case characters, since it also refersto a subfield.

The actual encoding for al the mnemonics are located in 16.7 CPU Instruction

Opcode Bit Encoding, and the bit encoding also accompanies each instruction
description.

In the instruction descriptions, the Operation section describes the operation
performed by each instruction using ahigh-level language notation. The V4300
can operate in either 32- or 64-bit mode. Differencesin operations in each mode
areshowninoperation section. Special symbolsused inthe notation are described
in Table 16-1.

User’s Manual U10504EJ7VOUMO0

CPU Instruction Set Details

Table16-1 CPU Instruction Operation Notations

Symbol Meaning
-— Substitution
I Bit string concatenation.
xY Repetition of bit string x with a y-bit string. xis always a single-bit value.
Xy..z Selection of bits y through z for bit string x.
Little-endian bit notation is always used. If yis less than z, this expression is
an empty (zero length) bit string.
+ 2's complement or floating-point addition.
- 2’s complement or floating-point subtraction.
* 2’s complement or floating-point multiplication.
div 2's complement integer division.
mod 2’'s complement remainder.
/ Floating-point division.
< 2's complement less than comparison.
and Bit-wise logical AND.
or Bit-wise logical OR.
xor Bit-wise logical XOR.
nor Bit-wise logical NOR.
GPRI[X] General Purpose Register x. The content of GPR[0] is always zero.
Attempts to alter the content of GPR[0] have no effect.
CPR[z,X] Coprocessor unit z, general purpose register x.
CCR[z,X] Coprocessor unit z, control register x.
COC[Z7] Coprocessor unit z, condition signal.

BigEndianMem

Endian mode as configured at reset (0 — Little, 1 — Big).
Specifies the endianness of the memory interface (see LoadMemory and
StoreMemory), and the endianness of Kernel and Supervisor modes.

ReverseEndian

Signal to reverse the endianness of load and store instructions.

This feature is available in User mode only, and is effected by setting the RE
bit of the Status register. Thus, ReverseEndian is set to 1 only when the RE
bitis set in User mode.

BigEndianCPU | The endianness for load and store instructions (0 — Little, 1 — Big).
In User mode, this endianness is reversed by setting RE bit. Thus,
BigEndianCPU is calculated as BigEndianMem XOR ReverseEndian.
LLbit Bit showing synchronized state of instructions. Set by LL instruction, cleared
by ERET instruction and read by SC instruction.
T+ Indicates the time steps between operations. Each statement within a time

step are defined to be executed in sequential order (instruction execution
order may be changed by conditional branch and loop).

Operations which are marked T+i: are executed at instruction cycle i from the
start of execution of the instruction. Thus, an instruction which starts at time j
executes operations marked T+i. at time of / + jth cycle. The order is not
defined for instructions executed at the same time or operations.

User's Manual U10504EJ7VOUMO0 365

Chapter 16

Instruction Notation Examples

The following are examples of the instruction notations:

Example #1:

GPR[rf] < immediate || 0'®

Sixteen zero bits are concatenated with a low-order immediate
value (normally 16 bits), and the 32-bit string is substituted to
CPU General Purpose Register rt.

Example #2:

(immediate;) || immediate;s o

Bit 15 (the sign bit) of an immediate value is extended by
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to generate a 32-bit sign
extended value.

366 User's Manual U10504EJ7VOUMO0

CPU Instruction Set Details

16.2 Load and Storelnstructions

In the Vr4300, the instruction immediately following aload instruction may use
the loaded register contents. In such cases, the hardware interlocks by 1PCycle
only, so scheduling load delay slotsisdesirable toimprove performance, athough
not required as afunctional code.

Two special instructions are provided in the VV g4300 implementation of the MIPS
ISA, Load Link and Conditional Store Instructions. These instructions are used
in carefully coded sequencesto execute one of several synchronization primitives,
including test-and-set, bit-level locks, semaphores, and sequencers/event counter,
etc. This synchronization is essential in multi-processor systems. This
functionality isincluded in the Vr4300 primarily for reasons to keep
compatibility with the V4000 and V g4200.

In the load and store instruction descriptions, the functions listed below are used
to simplify the handling of virtual addresses and physical memory.

Table 16-2 Load and Sore Instruction Common Functions

Function Meaning

Uses TL B to search aphysical address from avirtual address. If

AddressTrandation TLB does not have the requested contents of conversion, this

function fails, and TLB non-coincidence exception occurs.

LoadMemory

Searches the cache and main memory to search for the contents
of the specified datalength stored in aspecified physical address.
If the specified data length is less than aword, the contents of a
data position taking the endian mode and reverse endian mode of
the processor into consideration areloaded. Thelow-order 3 bits
and accesstypefield of the address determinethe datapositionin
adataword. The dataisloaded to the cacheif the cacheis
enabled.

StoreMemory

Searches the cache, write buffer, and main memory to store the

contents of aspecified datalength to aspecified physical address.
If the specified data length is less than aword, the contents of a
data position taking the endian mode and reverse endian mode of
the processor into consideration are stored. The low-order 3 bits
and accesstypefield of the address determinethe datapositionin
adataword.

User's Manual U10504EJ7VOUMO0 367

Chapter 16

368

The Access Type field indicates the size of the data to be loaded or stored.
Regardless of accesstype or byte order (endianness), the address specifiesthe byte
which hasthe smallest byte addressin thefield accessed. For abig-endian system,
thisisthe leftmost byte and contains the sign for a2's complement value; for a

little-endian system, thisis the rightmost byte.

Table 16-3 Access Type Specifications for Load/Store Instructions

Access Type SysCmd(2:0) Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 hits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 hits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 hits)

The bytes within the accessed doubleword can be determined directly from the

access type and the low-order three hits of the address.

User’s Manual U10504EJ7VOUMO0

CPU Instruction Set Details

16.3 Jump and Branch Instructions

All jJump and branch instructions have structural delay of exactly one instruction.
That is, the instruction immediately following ajump or branch instruction (that
is, occupying the delay slot) is executed while the target instruction is being
fetched from the cache. A jump or branch instruction cannot be used in a delay
dot; however, if they are used, the error is not detected and the results of such an
operation are undefined.

If an exception or interrupt prevents the completion of the instruction duringitis
inadelay dot, the hardware sets avirtual addressto the EPC register at the point
of thejump or branch instruction that precedesit. When processing exceptions or
interrupts is completed and the program is restored, both the jump or branch
instruction and the instruction in the delay slot are reexecuted.

Because jump and branch instructions may be reexecuted after exception or
interrupt processing, register 31 (the register in which the link address is stored)
should not be used as a source register in jump and link/branch and link
instructions.

Since instructions must be word-aligned, a Jump Register or Jump and Link
Register instruction must use a register which contains an address whose |ow-
order two bits are zero. If these low-order two bits are not zero, an address
exception will occur when the jump destination instruction is fetched.

16.4 Coprocessor Instructions

Coprocessors are alternate execution units, which have register files separate from
the CPU. The MIPS architecture provides four coprocessor units and these
coprocessors have two register spaces, each space containing thirty-two 32-bit
registers.

» Thefirst space, coprocessor general purpose registers, is directly
loaded from and stored into the main memory, and their contents can
be transferred between the coprocessor and processor.

e The second space, coprocessor control registers, can only have their
contents transferred between the coprocessor and the processor.
Coprocessor instructions may alter registers in either space.

User's Manual U10504EJ7VOUMO0 369

Chapter 16

16.5 System Control Coprocessor (CPO) Instructions

There are some limitations imposed on operations involving CPO that is
incorporated withinthe CPU. Although load and storeinstructionsto transfer data
to/from coprocessors and to exchange control codes to/from coprocessor
instructions are generally permitted by the MIPS architecture, CPO is given a
somewhat protected status since it has responsibility for exception handling and
memory management. Therefore, the coprocessor transfer instructions are the
only valid way for writing to and reading from the CPO registers.

Some CPO instructions are defined to directly read, write, and probe TLB entries
and to change the operating modes in preparation for restoring to User mode or
interrupt-enabled states.

16.6 CPU Instructions

370

This section describesin detail each function of CPU instructions in 32- or 64-bit
mode.

Possible exceptions, which may occur are caused by instruction execution, and are
explained at the end of the description for each instruction. Refer to Chapter 6
Exception Processing for details of exceptions and their processing.

User’s Manual U10504EJ7VOUMO0

CPU Instruction Set Details

ADD Add ADD
31 26 25 21 20 16 15 11 10 6 0
SPECIAL s it rd 0 ADD
000000 00000 100000
6 5 5 5 5 6
Format:
ADD rd, rs, 1t
Description:
The contents of general purpose register rs and the contents of general purpose
register rt are added to store the result in general purpos