
User’s Manual

©

© MIPS Technologies, Inc. 1994
Printed in Japan

64-Bit Microprocessor

VR4300TM, VR4305TM, VR4310TM

µPD30200
µPD30210

Document No. U10504EJ7V0UMJ1 (7th edition)
Date Published August 2000 N CP(K)

1996, 1998

2

User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

3

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

V

R

 Series, V

R

4300 Series, V

R

3000, V

R

4000, V

R

4100, V

R

4200, V

R

4300, V

R

4305, V

R

4310, and V

R

4400 are

trademarks of NEC Corporation.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries.

MC68000 is a trademark of Motorola Inc.

IBM370 is a trademark of International Business Machines Corporation.

iAPX is a trademark of Intel Corporation.

DEC VAX is a trademark of Digital Equipment Corporation.

MIPS is a registered trademark of MIPS Technologies, Inc. in the U.S.A.

4 User’s Manual U10504EJ7V0UM00

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

M8E 00. 4

The information in this document is current as of October, 1999. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

5User’s Manual U10504EJ7V0UM00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil
Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

6

User’s Manual U10504EJ7V0UM00

Major Revisions in This Edition

The mark shows major revised points.

Page Description

p.33

1.1 Characteristics

 Correction of description

p.35

1.4.1 Internal Block Configuration

 Correction of description

p.166

6.3.5 Status Register (12)

 Correction of description

p.198

6.4.17 Watch Exception

 Correction and addition of description

p.244

8.2.7 Unimplemented Operation Exception (E)

 Addition of description

p.254

9.3.1 Power Modes

 Correction of description

pp.259, 260

10.2 Basic System Clocks

 Correction of description

p.264

10.4 Low Power Mode Operation

 Correction of description

p.360

15.1 Features

 Correction of description

p.360

15.1.2 Low Power Mode

 Correction of description

p.568
p.570
p.574
p.576
p.578
p.580
p.587
p.589
p.600
p.602
p.610
p.612

17.5 FPU Instructions

 Addition of description to the following instructions
CEIL.L.fmt
CEIL.W.fmt
CVT.D.fmt
CVT.L.fmt
CVT.S.fmt
CVT.W.fmt
FLOOR.L.fmt
FLOOR.W.fmt
ROUND.L.fmt
ROUND.W.fmt
TRUNC.L.fmt
TRUNC.W.fmt

p.628

Table A-1 Differences Between the V

R

4300, V

R

4305, and V

R

4310

 Correction of description

p.630

B.1.3 Status Register

 Correction of description

p.632

Table B-1 Differences in Software

 Correction of description

p.634

B.2.2 System Interface

 Correction of description

p.635

Table B-2 Differences in System Design

 Correction of description

p.639

Table B-3 Other Differences

 Correction of description

p.644

C.2.2 Clock

 Correction of description

pp.647, 648

Appendix D Restrictions of V

R

4300

 Addition

User’s Manual U10504EJ7V0UM00

7

PREFACE

Readers

This manual targets users who intends to understand the functions of
the V

R

4300, V

R

4305 (

m

PD30200, V

R

4310 (

m

PD30210) and to design
application systems using this microprocessor.

Purpose

This manual introduces the architecture functions of the V

R

4300,
V

R

4305, and V

R

4310 to users, following the organization described
below.

Organization

This manual consists of the following contents:
• Introduction
• Pipeline operation
• Memory management system and cache
• Exception processing
• Floating-point operation
• Hardware
• Instruction set details

How to read this manual

It is assumed that the readers of this manual has a general knowledge
of electric engineering, logic circuits, and microcomputers.

Unless otherwise specified, V

R

4300 is described as a representative
product in this manual. When using this manual as that for V

R

4305 or
V

R

4310, read as follows.

V

R

4300

®

 V

R

4305
V

R

4300

®

 V

R

4310

The V

R

4400

TM

 in this manual represents the V

R

4000

TM

.
The V

R

4000 series in this manual represents the V

R

4100

TM

,
V

R

4200

TM

, V

R

4300, V

R

4305, V

R

4310, and V

R

4400.

To learn about detailed function of a specific instruction,

®

Refer to

Chapter 3 CPU Instruction Set Summary

,

Chapter 7
Floating-Point Operations

, and

Chapter 17 FPU Instruction
Set Details

.

8

User’s Manual U10504EJ7V0UM00

To learn about the overall functions of the V

R

4300,

®

Read this manual in sequential order.

To learn about electrical specifications of the V

R

4300,

®

Refer to the

data sheet

 which is separately available.

Conventions

Data significance: Higher digits on the left and lower digits on
the right

Active low

´´´

 (overscore over pin or signal name)
representation:
*: Footnote for item marked with * in the text
Caution: Information requiring particular attention
Remark: Supplementary information
Numerical binary or decimal ...

´´´´

representation: hexadecimal0

´

´´´´

Prefixes indicating power of 2 (address space, memory capacity):
K (kilo) 2

10

 = 1024
M (mega) 2

20

 = 1024

2

G (giga) 2

30

 = 1024

3

T (tera) 2

40

 = 1024

4

P (peta) 2

50

 = 1024

5

E (exa) 2

60

 = 1024

6

Related documents

See also the following documents.
The related documents indicated in this publication may include
preliminary versions. However, preliminary versions are not marked
as such.

Document Name Document Number

V

R

4300, V

R

4305, V

R

4310 User’s Manual This manual

m

PD30200, 30210 Data Sheet U10116E

V

R

 Series Application Note - Programming Guide U10710E

V

R

4000 Series Application Note - Simulation Guide U11788J (Japanese only)

User’s Manual U10504EJ7V0UM00

9

CONTENTS

Chapter 1 General

..31

1.1 Characteristics

..32

1.2 Ordering Information

..33

1.3 64-Bit Architecture

...33

1.4 V

R

4300 Processor

...33

1.4.1 Internal Block Configuration ...35

1.4.2 CPU Registers ..37

1.4.3 CPU Instruction Set Overview...39

1.4.4 Data Formats and Addressing ..41

1.4.5 System Control Coprocessor (CP0) ...44

1.4.6 Floating-Point Unit (FPU), CP1...47

1.4.7 Internal Cache ..47

1.5 Memory Management System (MMU)

....................................48

1.5.1 Translation Lookaside Buffer (TLB) ...48

1.5.2 Operating Modes ..49

1.6 Instruction Pipeline

..49

Chapter 2 Pin Functions

..51

2.1 Pin Configuration (Top View)

...52

2.2 Pin Functions

..54

2.2.1 System Interface Signals ..54

2.2.2 Clock/Control Interface Signals ...55

2.2.3 Interrupt Interface Signals ..57

2.2.4 Joint Test Action Group (JTAG) Interface Signals......................58

2.2.5 Initialization Interface Signals ...58

Chapter 3 CPU Instruction Set Summary

.................................59

3.1 CPU Instruction Formats

..60

3.2 Instruction Classes

...61

3.2.1 Load/Store Instructions ..61

3.2.2 Computational Instructions ..68

10

User’s Manual U10504EJ7V0UM00

3.2.3 Jump/Branch Instructions...77

3.2.4 Special Instructions ..81

3.2.5 Coprocessor Instructions ..83

3.2.6 System Control Coprocessor (CP0) Instructions..........................86

Chapter 4 Pipeline

..89

4.1 General

..90

4.1.1 Pipeline Operations ..92

4.2 Branch Delay

...94

4.3 Load Delay

..95

4.4 Pipeline Operation

..95

4.5 Interlock and Exception Handling

..103

4.6 Pipeline Interlocks and Exceptions

...106

4.6.1 Pipeline Interlocks ..106

4.6.2 Instruction TLB Miss (ITM) ..107

4.6.3 Instruction Cache Busy (ICB) ..108

4.6.4 Multicycle Instruction Interlock (MCI)......................................109

4.6.5 Load Interlock (LDI) ..110

4.6.6 Data Cache Miss (DCM)..111

4.6.7 Data Cache Busy (DCB) ..111

4.6.8 CACHE Operation (COp) ..112

4.6.9 Coprocessor 0 Bypass Interlock (CP0I)113

4.7 Pipeline Exceptions

...114

4.7.1 Instruction-Independent Exceptions
(Reset, NMI, and Interrupt) ..114

4.7.2 Instruction-Dependent Exceptions ...115

4.7.3 Interactions between Interlocks and Exceptions115

4.7.4 Exception and Interlock Priorities ..116

4.7.5 WB-Stage Interlock and Exception Priorities117

4.7.6 DC-Stage Interlock and Exception Priorities117

4.7.7 EX-Stage Interlock and Exception Priorities118

4.7.8 RF-Stage Interlock and Exception Priorities..............................118

4.7.9 Bypassing ...119

4.8 Code Compatibility

..119

4.9 Write Buffer

..120

User’s Manual U10504EJ7V0UM00

11

CONTENTS

Chapter 5 Memory Management System

.................................121

5.1 Translation Lookaside Buffer (TLB)

......................................122

5.2 Memory Management System Architecture

..........................122

5.2.1 Operating Modes ..127

5.2.2 Virtual Addressing in User Mode...127

5.2.3 Virtual Addressing in Supervisor Mode.....................................129

5.2.4 Virtual Addressing in Kernel Mode ...133

5.3 System Control Coprocessor

...142

5.3.1 Format of a TLB Entry ...143

5.4 CP0 Registers

..146

5.4.1 Index Register (0) ...146

5.4.2 Random Register (1)...147

5.4.3 EntryHi (10), EntryLo0 (2), EntryLo1 (3), and
PageMask (5) Registers..148

5.4.4 Wired Register (6) ..150

5.4.5 Processor Revision Identifier (PRId) Register (15)....................151

5.4.6 Config Register (16) ...151

5.4.7 Load Linked Address (LLAddr) Register (17)...........................154

5.4.8 Cache Tag Registers [TagLo (28) and TagHi (29)]154

5.4.9 Virtual-to-Physical Address Translation Process.......................155

5.4.10 TLB Misses ..158

5.4.11 TLB Instructions...158

Chapter 6 Exception Processing

...159

6.1 Exception Processing Operation

...160

6.2 Precision of Exceptions

..161

6.3 Exception Processing Registers

...161

6.3.1 Context Register (4) ...163

6.3.2 BadVAddr Register (8)...164

6.3.3 Count Register (9) ..164

6.3.4 Compare Register (11) ...165

6.3.5 Status Register (12) ..165

6.3.6 Cause Register (13) ..171

6.3.7 Exception Program Counter (EPC) Register (14)174

6.3.8 WatchLo (18) and WatchHi (19) Registers................................175

12

User’s Manual U10504EJ7V0UM00

6.3.9 XContext Register (20)...176

6.3.10 Parity Error (PErr) Register (26) ..178

6.3.11 Cache Error (CacheErr) Register (27)..178

6.3.12 Error Exception Program Counter (Error EPC)
Register (30) ...179

6.4 Exception Details

..180

6.4.1 Exception Types ...180

6.4.2 Exception Vector Locations ...180

6.4.3 Priority of Exceptions...182

6.4.4 Cold Reset Exception ...183

6.4.5 Soft Reset Exception ..184

6.4.6 Non-Maskable Interrupt (NMI) Exception.................................185

6.4.7 Address Error Exception ..186

6.4.8 TLB Exceptions..187

6.4.9 Bus Error Exception ...190

6.4.10 System Call Exception ...191

6.4.11 Breakpoint Exception ...192

6.4.12 Coprocessor Unusable Exception...193

6.4.13 Reserved Instruction Exception..194

6.4.14 Trap Exception ...195

6.4.15 Integer Overflow Exception ...196

6.4.16 Floating-Point Exception..197

6.4.17 Watch Exception ..198

6.4.18 Interrupt Exception...199

6.5 Exception Handling and Servicing Flowcharts

.....................200

Chapter 7 Floating-Point Operations

...207

7.1 Overview

..208

7.2 FPU Programming Model

...208

7.2.1 Floating-Point General Purpose Register (FGR)........................208

7.2.2 Floating-Point Registers (FPR) ..210

7.2.3 Floating-Point Control Registers (FCRs)211

7.2.4 Control/Status Register (FCR31) ...211

7.2.5 Implementation/Revision Register (FCR0)................................216

7.3 Floating-Point Formats

..217

User’s Manual U10504EJ7V0UM00

13

CONTENTS

7.4 Fixed-Point Format

..220

7.5 FPU Set Overview

...221

7.5.1 Floating-Point Load/Store/Transfer Instructions........................221

7.5.2 Convert Instructions ...224

7.5.3 Computational Instructions ..226

7.5.4 Compare Instructions..227

7.5.5 FPU Branch Instructions ..229

7.5.6 FPU Instruction Execution Time..230

7.6 FPU Pipeline Synchronization

...233

Chapter 8 Floating-Point Exceptions

...235

8.1 Types of Exceptions

..236

8.2 Exception Processing

..237

8.2.1 Flags ...238

8.2.2 Inexact Exception (I) ..240

8.2.3 Invalid Operation Exception (V) ..240

8.2.4 Divide-by-Zero Exception (Z)..241

8.2.5 Overflow Exception (O) ...242

8.2.6 Underflow Exception (U) ...242

8.2.7 Unimplemented Operation Exception (E)243

8.3 Saving and Returning State

...244

8.4 Handling of IEEE754 Exceptions

..245

Chapter 9 Initialization Interface

..247

9.1 Functional Overview

..248

9.2 Reset Signal Description

..249

9.2.1 Power-ON Reset...249

9.2.2 Cold Reset ..250

9.2.3 Soft Reset..251

9.3 V

R

4300 Processor Modes

...254

9.3.1 Power Modes ..254

9.3.2 Privilege Modes..255

9.3.3 Floating-Point Registers ...255

9.3.4 Reverse Endianness ..256

14

User’s Manual U10504EJ7V0UM00

9.3.5 Instruction Trace Support ...256

9.3.6 Bootstrap Exception Vector (BEV)..256

9.3.7 Interrupt Enable (IE)...256

Chapter 10 Clock Interface

..257

10.1 Signal Terminology

..258

10.2 Basic System Clocks

...259

10.3 System Timing Parameters

..263

10.3.1 Synchronization with SClock ...263

10.3.2 Synchronization with MasterClock ..263

10.3.3 Phase-Locked Loop (PLL) ...263

10.4 Low Power Mode Operation

...264

10.5 Connecting Clocks to a Phase-Locked System

......................265

10.6 Connecting Clocks to a System without Phase Locking

.......266

10.6.1 Connecting to a Gate-Array Device ...266

10.6.2 Connecting to a CMOS Discrete Device....................................269

Chapter 11 Cache Memory

...273

11.1 Memory Organization

..274

11.2 Cache Organization

..275

11.2.1 Organization of the Instruction Cache (I-Cache)276

11.2.2 Organization of the Data Cache (D-Cache)................................277

11.2.3 Accessing the Caches ...278

11.3 Cache Operations

...279

11.3.1 Cache Write Policy...280

11.3.2 Data Cache Line Replacement ...280

11.3.3 Instruction Cache Line Replacement..282

11.4 Cache States

..283

11.5 Cache State Transition Diagrams

...283

11.5.1 Data Cache State Transition ...284

11.5.2 Instruction Cache State Transition ...285

11.6 Manipulation of the Caches by an External Agent

...............285

User’s Manual U10504EJ7V0UM00

15

CONTENTS

Chapter 12 System Interface

..287

12.1 Terminology

..288

12.2 System Interface Description

...289

12.2.1 Physical Addresses ...289

12.2.2 Interface Buses ...291

12.2.3 Address and Data Cycles..292

12.2.4 Issue Cycles ..293

12.2.5 Handshake Signals..295

12.3 System Interface Protocols

..296

12.3.1 Master and Slave States..296

12.3.2 Moving from Master to Slave State..297

12.3.3 External Arbitration..297

12.3.4 Uncompelled Change to Slave State ..298

12.4 Processor and External Requests

..298

12.4.1 Processor Requests ...300

12.4.2 Processor Read Request ...301

12.4.3 Processor Write Request...301

12.4.4 External Requests ...302

12.4.5 External Write Request...303

12.4.6 Read Response..303

12.5 Handling Requests

..304

12.5.1 Fetch Miss ..304

12.5.2 Load Miss ...304

12.5.3 Store Miss...304

12.5.4 Loads or Stores to Uncached Area ...305

12.5.5 CACHE Instructions...305

12.6 Processor Request and External Request Protocols

..............306

12.6.1 Processor Request Protocols...306

12.6.2 Processor Read Request Protocol...306

12.6.3 Processor Write Request Protocol ..309

12.6.4 Flow Control of Processor Request..311

12.6.5 External Request Protocols...312

12.6.6 External Arbitration Protocol ...313

12.6.7 External Write Request Protocol ..316

12.6.8 External Read Response Protocol ..317

12.7 Successive Processing of Request

..321

16

User’s Manual U10504EJ7V0UM00

12.7.1 Successive Processor Write Requests ..321

12.7.2 Processor Write Request Followed by Processor
Read Request ..322

12.7.3 Processor Read Request Followed by Processor
Write Request ...323

12.7.4 Processor Write Request Followed by External
Write Request ...324

12.8 Discarding and Re-Executing Commands

.............................325

12.8.1 Re-Execution of Processor Commands325

12.8.2 Discarding and Re-Executing Write Command325

12.8.3 Discarding and Re-Executing Read Command..........................327

12.8.4 Executing and Discarding Command...328

12.9 Data Flow Control

..330

12.9.1 Independent Transfer on SysAD(31:0) Bus331

12.9.2 System Endianness ...331

12.10 System Interface Cycle Time

...332

12.10.1 Release Latency Time ..332

12.11 System Interface Commands and Data Identifiers

...............333

12.11.1 Command and Data Identifier Syntax ..333

12.11.2 System Interface Command Syntax ...334

12.11.3 Read Requests ..334

12.11.4 Write Requests..336

12.11.5 System Interface Data Identifier Syntax.....................................337

12.11.6 Data Identifier Bit Definitions..337

12.12 System Interface Addresses

...339

12.12.1 Addressing Conventions...339

12.12.2 Sequential and Subblock Ordering...339

Chapter 13 JTAG Interface

..341

13.1 Principles of Boundary Scanning

..342

13.2 Signal Summary

..343

13.3 JTAG Controller and Registers

..344

13.3.1 Instruction Register ..344

13.3.2 Bypass Register ..345

13.3.3 Boundary-Scan Register...346

13.3.4 Test Access Port (TAP) ..347

User’s Manual U10504EJ7V0UM00

17

CONTENTS

13.3.5 TAP Controller ...348

13.3.6 Controller Reset..348

13.3.7 Controller States ...348

13.4 Notes on Implementation

...350

Chapter 14 Interrupts

...351

14.1 Non-Maskable Interrupt

..352

14.2 External Normal Interrupts

..353

14.3 Software Interrupts

..354

14.4 Timer Interrupt

..354

14.5 Generation of Interrupt Request Signal

.................................354

14.5.1 Detection of Hardware Interrupts...356

14.5.2 Masking of Interrupt Request Signals ..357

Chapter 15 Power Management

...359

15.1 Features

...360

15.1.1 Normal Power Mode ..360

15.1.2 Low Power Mode ...360

15.1.3 Power Off Mode ...361

Chapter 16 CPU Instruction Set Details

.....................................363

16.1 Instruction Notation Conventions

...364

16.2 Load and Store Instructions

..367

16.3 Jump and Branch Instructions

..369

16.4 Coprocessor Instructions

...369

16.5 System Control Coprocessor (CP0) Instructions

...................370

16.6 CPU Instructions

..370

16.7 CPU Instruction Opcode Bit Encoding

..................................544

Chapter 17 FPU Instruction Set Details

......................................547

17.1 Instruction Formats

..548

18

User’s Manual U10504EJ7V0UM00

17.2 Instruction Notation Conventions...552

17.3 Load and Store Instructions ..553

17.4 Floating-Point Computational Instructions555

17.5 FPU Instructions...558

17.6 FPU Instruction Opcode Bit Encoding...................................613

Chapter 18 PLL Passive Elements...615

Chapter 19 Coprocessor 0 Hazards...619

Appendix A Differences Between the VR4300, VR4305,
and VR4310..627

Appendix B Differences from VR4400...629

B.1 Differences in Software ..630

B.1.1 CACHE Instruction ..630

B.1.2 Cache Parity..630

B.1.3 Status Register ..630

B.1.4 Config Register...631

B.1.5 Status of FCR31 on Occurrence of Unimplemented Operation
Exception..631

B.1.6 Integer Zero Division ...631

B.1.7 Cache Parity Error Exception...632

B.2 Differences in System Design...633

B.2.1 Initialization of Processor...633

B.2.2 System Interface ...633

B.3 Other Differences..636

B.3.1 Cache Size ..636

B.3.2 TLB...636

B.3.3 Floating-Point Unit...637

B.3.4 Pipeline ...637

B.3.5 Interrupt ..638

B.3.6 Kernel Physical Address Segment Configuration638

B.3.7 JTAG ..638

User’s Manual U10504EJ7V0UM00 19

CONTENTSAppendix C Differences from VR4200...641

C.1 Differences in Software ..642

C.1.1 Cache Parity..642

C.1.2 Status Register ..642

C.1.3 Config Register...642

C.1.4 Cache Parity Error Exception...643

C.2 Differences in System Design...644

C.2.1 System Interface ...644

C.2.2 Clock...644

C.2.3 Package...645

C.3 Other Differences..645

C.3.1 Physical Address ..645

C.3.2 Write Buffer..646

C.3.3 Reset ...646

C.3.4 Status(3:0) Pins...646

Appendix D Restrictions of VR4300..647

Appendix E Index...649

LIST OF FIGURES (1/6)

Figure No. Title Page

20

User’s Manual U10504EJ7V0UM00

1-1 Internal Block Diagram

 ...34

1-2 CPU Registers

 ..38

1-3 CPU Instruction Formats

 ...39

1-4 Big-Endian Byte Ordering

 ..41

1-5 Little-Endian Byte Ordering

 ..41

1-6 Big-Endian Data in a Doubleword

 ...42

1-7 Little-Endian Data in a Doubleword

 ...42

1-8 Misaligned Word Addressing

 ...43

1-9 CP0 Registers

 ...45

3-1 CPU Instruction Formats

 ...60

3-2 Byte Access within a Doubleword

 ...63

4-1 Pipeline Stages

 ...90

4-2 Instruction Execution in the Pipeline

 ..91

4-3 Pipeline Operations

 ..92

4-4 Branch Delay

 ..94

4-5 Add Instruction Pipeline Operations

 ...97

4-6 Jump and Link Register Instruction Pipeline Operations

 ...98

4-7 Branch on Equal Instruction Pipeline Operations

99

4-8 Trap if Less Than Instruction Pipeline Operations

100

4-9 Load Word Instruction Pipeline Operations

101

4-10 Store Word Instruction Pipeline Operations

102

4-11 Interlocks, Exceptions, and Faults

 ...103

4-12 Correspondence of Pipeline Stage to Interlock and
Exception Condition

 ...104

4-13 Instruction TLB Miss Interlock

 ..107

4-14 Example of an Instruction Cache Busy Interlock

108

4-15 Example of a Multicycle Instruction Interlock

109

4-16 Example of a Load Interlock

 ...110

4-17 Example of a Data Cache Miss Followed by a Load
Interlock

 ..112

LIST OF FIGURES (2/6)

Figure No. Title Page

User’s Manual U10504EJ7V0UM00

21

4-18 Example of a Coprocessor 0 Bypass Interlock (CP0I)

113

4-19 Execution and Interlock Priorities

 ...116

4-20 Write Buffer Format

 ..120

5-1 Overview of a Virtual-to-Physical Address Translation

123

5-2 32-Bit Mode Virtual Address Translation

125

5-3 64-Bit Mode Virtual Address Translation

126

5-4 User Mode Virtual Address Space

 ..128

5-5 Supervisor Mode Address Space

 ...130

5-6 Kernel Mode Address Space

 ..134

5-7 Details of xkphys Field

 ...135

5-8 CP0 Registers and the TLB

 ..142

5-9 TLB Entry Format

 ...143

5-10 TLB Entry Registers

 ..144

5-11 Index Register

 ..146

5-12 Random Register

 ...147

5-13 Wired Register Boundary

 ...150

5-14 Wired Register

 ...150

5-15 Processor Revision Identifier Register

151

5-16 Config Register

 ..152

5-17 LLAddr Register

 ...154

5-18 TagLo and TagHi Register

 ..155

5-19 TLB Address Translation

 ..157

6-1 Context Register

 ..163

6-2 BadVAddr Register

 ...164

6-3 Count Register

 ...164

6-4 Compare Register

 ...165

6-5 Status Register

 ...166

6-6 Self-Diagnostic Status Field

 ..167

6-7 Cause Register

 ...171

6-8 EPC Register

 ..174

LIST OF FIGURES (3/6)

Figure No. Title Page

22

User’s Manual U10504EJ7V0UM00

6-9 WatchLo and WatchHi Registers

 ..175

6-10 XContext Register

 ...176

6-11 PErr Register

 ...178

6-12 CacheErr Register

 ..178

6-13 ErrorEPC Register

 ...179

6-14 General Purpose Exception Handler

201

6-15 TLB/XTLB Miss Exception Handler

203

6-16 Cold Reset, Soft Reset & NMI Exception Handler

205

7-1 FPU Registers

 ...209

7-2 Control/Status Register Bit Assignments

211

7-3 Control/Status Register (FCR31) Cause, Enable,
and Flag Bit Fields

 ..212

7-4 Implementation/Revision Register

 ...216

7-5 Single-Precision Floating-Point Format

217

7-6 Double-Precision Floating-Point Format

217

7-7 32-Bit Fixed-Point Format

 ..220

7-8 64-Bit Fixed-Point Format

 ..220

7-9 DC-to-EX Hardware Interlock Bypass

231

8-1 FCR31 Cause/Enable/Flag Bits

 ...237

9-1 Power-ON Reset

...252

9-2 Cold Reset

..252

9-3 Soft Reset

..253

10-1 Signal Transitions

 ..258

10-2 Clock-to-Q Delay

 ...258

10-3 When Frequency Ratio of MasterClock to
PClock is 1:1.5

 ..261

10-4 When Frequency Ratio of MasterClock to
PClock is 1:2

 ...262

10-5 Phase-Locked System

 ...265

LIST OF FIGURES (4/6)

Figure No. Title Page

User’s Manual U10504EJ7V0UM00

23

10-6 Gate-Array System without Phase Lock,
Using the V

R

4300 Processor

 ...267

10-7 Gate-Array and CMOS System without Phase Lock,
Using the V

R

4300 Processor

 ...270

11-1 Logical Hierarchy of Memory

 ...274

11-2 V

R

4300 Cache Support

 ..275

11-3 V

R

4300 8-Word I-Cache Line Format

276

11-4 V

R

4300 4-Word Data Cache Line Format

277

11-5 Cache Data and Tag Organization

 ...278

11-6 Data Cache State Diagram

 ...284

11-7 Instruction Cache State Diagram

 ...285

12-1 Data Sequence on Instruction Cache Read Request

290

12-2 Data Sequence on Data Cache Read Request

290

12-3 System Interface Buses

 ..291

12-4 EOK Signal Status of Processor Request

293

12-5 Address Cycle Extended by EOK Signal

294

12-6 System Interface Register-to-Register Operation

296

12-7 Requests and System Events

 ..299

12-8 Processor Request Flow

 ...300

12-9 External Request Flow

 ...302

12-10 Read Response

 ...303

12-11 Unforcible Transition by Processor Read Request

308

12-12 Delayed Processor Read Request

 ..308

12-13 Processor Block Write Request
(Write Data Pattern: D)

 ..310

12-14 Processor Block Write Request
(Write Data Pattern: Dxx)

 ..310

12-15 Delayed Processor Read Request

 ..311

12-16 Delayed Second Processor Write Request

312

12-17 Arbitration of External Request

 ...314

12-18 Bus Arbitration of Processor ..315

12-19 External Write Request Protocol ..317

LIST OF FIGURES (5/6)

Figure No. Title Page

24 User’s Manual U10504EJ7V0UM00

12-20 Read Request/Read Response Protocol318

12-21 Block Read Response in Slave Status318

12-22 External Write Request Following Read Response319

12-23 When External Write Request Takes Precedence
While Processor Read Request is Pending320

12-24 Successive Block Write Requests
(Write Data Pattern: D) ...321

12-25 Successive Single Write Requests
(Write Data Pattern: Dxx) ..321

12-26 Processor Write Request Followed by Processor
Read Request (Write Data Pattern: D)322

12-27 Processor Single Read Request Followed by Block
Write Request (Write Data Pattern: D)323

12-28 Successive Processor Write Requests Followed by
External Write Request (Write Data Pattern: D)324

12-29 Discarding and Re-executing Processor Single
Write Request ..326

12-30 Discarding and Re-executing Processor Single
Read Request ..327

12-31 Discarding Bus Mastership by External Agent by
Processor Request ...329

12-32 System Interface Command Syntax Bit Definition334

12-33 Read Request SysCmd(4:0) Bus Bit Definition334

12-34 Write Request SysCmd(4:0) Bus Bit Definition336

12-35 Data Identifier SysCmd(4:0) Bus Bit Definition337

13-1 JTAG Boundary-Scan Cells ...342

13-2 JTAG Interface Signals and Registers343

13-3 Instruction Register ..344

13-4 Bypass Register Operation ...345

13-5 Output Enable Bit of Boundary-Scan Register346

13-6 JTAG Test Access Port ...347

14-1 NMI Signal ..353

14-2 Interrupt Register Bits and Enables Bits355

LIST OF FIGURES (6/6)

Figure No. Title Page

User’s Manual U10504EJ7V0UM00 25

14-3 Hardware Interrupt Request Signals356

14-4 Masking of Interrupt Requests ...357

16-1 VR4300 Opcode Bit Encoding ..544

17-1 Load and Store Instruction Format ...554

17-2 Computational Instruction Format ..555

17-3 Bit Encoding for FPU Instructions ...613

18-1 Connection Example of PLL Passive Elements616

18-2 Layout Example of QFP and Capacitor on PWB617

LIST OF TABLES (1/4)

Table No. Title Page

26

User’s Manual U10504EJ7V0UM00

1-1 Frequency Ratio Between PClock and MasterClock

35

1-2 System Control Coprocessor (CP0) Register Definitions

46

2-1 System Interface Signals

 ...54

2-2 Clock/Control Interface Signals

 ..55

2-3 Interrupt Interface Signals

 ..57

2-4 JTAG Interface Signals

 ...58

2-5 Initialization Interface Signals

 ...58

3-1 Number of Cycles for Load and Store Instruction
Delay Slot

 ...62

3-2 Load/Store Instructions

 ...64

3-3 Load/Store Instructions (Extended ISA)

66

3-4 ALU Immediate Instructions

 ...69

3-5 ALU Immediate Instruction (Extended ISA)

70

3-6 Three-Operand Type Instruction

 ..71

3-7 Three-Operand Type Instructions (Extended ISA)

72

3-8 Shift Instructions

 ...73

3-9 Shift Instructions (Extended ISA)

 ..74

3-10 Multiply/Divide Instructions

 ..75

3-11 Multiply/Divide Instructions (Extended ISA)

76

3-12 Number of Cycles Stalled by Multiply/
Divide Instruction

 ...76

3-13 Number of Delay Slot Cycles of Jump/
Branch Instruction

 ...77

3-14 Jump Instructions

 ...78

3-15 Branch Instructions

 ..79

3-16 Branch Instructions (Extended ISA)

 ...80

3-17 Special Instructions

 ..81

3-18 Special Instructions (Extended ISA)

 ..81

3-19 Coprocessor Instructions

 ..83

3-20 Coprocessor Instructions (Extended ISA)

84

3-21 System Control Coprocessor (CP0) Instructions

86

LIST OF TABLES (2/4)

Table No. Title Page

User’s Manual U10504EJ7V0UM00

27

4-1 Description of Pipeline Showing Stage in Which
Operations Commence

 ...93

4-2 Description of Pipeline Exceptions

 ...105

4-3 Description of Pipeline Interlocks

 ...105

5-1 32-Bit and 64-Bit User Mode Segments

128

5-2 32-Bit and 64-Bit Supervisor Mode Segments

131

5-3 32-Bit Kernel Mode Segments

 ..136

5-4 64-Bit Kernel Mode Segments

 ..138

5-5 Use of Cache and xkphys Address Space

140

5-6 Cache Algorithm

 ..145

5-7 Mask Field Values for Page Sizes

 ..149

6-1 CP0 Exception Processing Registers

 ..162

6-2 Cause Register ExcCode Field

 ...172

6-3 64-Bit Mode Exception Vector Base Addresses

181

6-4 32-Bit Mode Exception Vector Base Addresses

181

6-5 Exception Priority Order

 ..182

7-1 Floating-Point Control Register Assignments

211

7-2 Flush Values of Denormalized Number Results

213

7-3 Rounding Mode Control Bits

 ...215

7-4 Equations for Calculating Values in Single-and
Double-Precision Floating-Point Format

218

7-5 Floating-Point Format Parameter Values

218

7-6 Minimum and Maximum Floating-Point Values

219

7-7 Load/Store/Transfer Instructions

 ...223

7-8 Convert Instruction

 ...224

7-9 Computational Instructions

 ..226

7-10 Compare Instruction

 ..227

7-11 Mnemonics and Definitions of Compare
Instruction Conditions

 ...228

7-12 FPU Branch Instructions

 ..229

LIST OF TABLES (3/4)

Table No. Title Page

28

User’s Manual U10504EJ7V0UM00

7-13 Number of Load/Store/Transfer Instruction
Execution Cycles

 ...230

7-14 Number of FPU Instruction Delay Cycles

233

8-1 Default FPU IEEE754 Exception Values

238

8-2 FPU Internal Results and Flag Status

239

10-1 Frequency Ratio Between PClock and MasterClock

259

11-1 Stall Cycle Count for Data Cache Miss

281

11-2 Stall Cycle Count for Instruction Cache Miss

282

12-1 System Interface Requests

 ..306

12-2 Release Latency Time for External Requests

332

12-3 Encoding of SysCmd3 for System Interface Commands

 ...334

12-4 Encoding of SysCmd2 for Read Requests

335

12-5 Encoding of SysCmd(1:0) for Block Read Requests

335

12-6 Encoding of SysCmd(1:0) for Single Read Requests

335

12-7 Encoding of SysCmd2 for Write Requests

336

12-8 Encoding of SysCmd(1:0) for Block Write Requests

336

12-9 Encoding of SysCmd(1:0) for Single Write Requests

336

12-10 Processor Data Identifier Encoding of SysCmd(3:0)

338

12-11 External Data Identifier Encoding of SysCmd(3:0)

338

13-1 JTAG Instruction Register Bit Encoding

344

13-2 JTAG Scan Order

 ...349

16-1 CPU Instruction Operation Notations

365

16-2 Load and Store Instruction Common Functions

367

16-3 Access Type Specifications for Load/Store Instructions

368

17-1 Valid FPU Instruction Formats

 ...549

17-2 Logical Reverse of Predicates by Condition True/False

550

LIST OF TABLES (4/4)

Table No. Title Page

User’s Manual U10504EJ7V0UM00

29

17-3 Load and Store Instructions Common Functions

554

17-4 Format Field Decoding

 ..555

17-5 Floating-Point Computational Instructions and
Operations

 ...556

19-1 Coprocessor 0 Hazards

 ..621

19-2 Example of Calculating Number of CP0 Hazards
and Number of Instructions Inserted

625

A-1 Differences Between the V

R

4300, V

R

4305, and V

R

4310

628

B-1 Differences in Software

 ..632

B-2 Differences in System Design

 ...635

B-3 Other Differences

 ...639

C-1 Differences in Software

 ...643

C-2 Differences in System Design

 ..645

C-3 Other Differences

 ..646

30

User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

31

General

1

This chapter outlines the RISC 64-bit microprocessor V

R

4300, V

R

4305
(

m

PD30200), and V

R

4310 (

m

PD30210).

Chapter 1

32

User’s Manual U10504EJ7V0UM00

1.1 Characteristics

The V

R

4300, V

R

4305, and V

R

4310 are members of the NEC V

R

 Series

TM

 RISC
(Reduced Instruction Set Computer) microprocessors and is a high-performance
64-bit microprocessor employing the RISC architecture developed by MIPS

TM

.

Its instructions are upward-compatible with the instructions of the V

R

3000

TM

Series and are completely compatible with those of the V

R

4400 and V

R

4200.
Therefore, existing applications can be used as is with the V

R

4300, V

R

4305, and
V

R

4310.

The V

R

4300, V

R

4305, and V

R

4310 have the following features:

• Internal operating frequency:

80 MHz max. (

m

PD30200-80),

100 MHz max. (

m

PD30200-100),

133 MHz max. (

m

PD30200-133, 30210-133),

167 MHz max. (

m

PD30210-167)

• 64-bit architecture supporting 64-bit data processing

• Optimized, 5-stage pipeline processing

• High-speed translation lookaside buffer (TLB) supporting virtual
addresses (of 32 double entries)

• Address space Physical: 32 bits
Virtual: 40 bits (64-bit mode)

31 bits (32-bit mode)

• Supports single-precision and double-precision floating-point
operations

• On-chip cache memories
Instruction: 16 KB
Data: 8 KB

• Employs write back cache system

®

 store operation via system bus
decreased

• 32-bit external bus interface facilitating system development

• Multiplies external operating frequency (input clock and bus
interface) to create internal operating frequency.
Multiple is selected on power application

(

m

PD30200-80:

´

1,

´

2, or

´

3)
(

m

PD30200-100:

´

1.5,

´

2, or

´

3)
(

m

PD30200-133:

´

2,

´

3, or

´

4)
(

m

PD30210-133:

´

2,

´

2.5,

´

3, or

´

4)
(

m

PD30210-167:

´

2,

´

2.5,

´

3,

´

4,

´

5, or

´

6)

User’s Manual U10504EJ7V0UM00

33

General

• Write buffer

• Low power mode (

m

PD30200-80, 30200-100 only)
Reduces internal and system bus clocks to 1/4 of normal level. Also
reduces power consumption

• Software-compatible with V

R

4400 and V

R

4200 and upward-
compatible with V

R

3000 Series

• Supply voltage: 3.3 V

±

 0.3 V (

m

PD30200-80, 30200-100), 3.0 to 3.5
V (

m

PD30200-133, 30210-

´´´

)

1.2 Ordering Information

1.3 64-Bit Architecture

The V

R

4300 is a 64-bit high-performance microprocessor. It can also execute 32-
bit applications even when it operates as a 64-bit microprocessor.

1.4 V

R

4300 Processor

Figure 1-1 shows the internal block diagram of the V

R

4300.
The V

R

4300 is equipped with a full-associative high-speed translation lookaside
buffer (TLB) that has 32 entries with two pages corresponding to each entry; data
cache and instruction cache; and FPU, in addition to a high-performance integer
operation unit.

Part Number Package
Maximum Operating

Frequency (MHz)

m

PD30200GD-80-LBB 120-pin plastic QFP (28

´

 28 mm) 80

m

PD30200GD-100-MBB 120-pin plastic QFP (28

´

 28 mm) 100

m

PD30200GD-133-MBB 120-pin plastic QFP (28

´

 28 mm) 133

m

PD30210GD-133-MBB 120-pin plastic QFP (28

´

 28 mm) 133

m

PD30210GD-167-MBB 120-pin plastic QFP (28

´

 28 mm) 167

Chapter 1

34

User’s Manual U10504EJ7V0UM00

Figure 1-1 Internal Block Diagram

System
 Interface

Clock Generator

Data/Address Control

Instruction Cache

Pipeline Control

Data Cache

Instruction Address Execution Unit

CP0 TLB

MasterClock

User’s Manual U10504EJ7V0UM00

35

General

1.4.1 Internal Block Configuration

System Interface

 allows the processor to access external resources such as
memories. It contains a 32-bit multiplexed address/data bus, with per-byte parity,
clock signals, interrupt request signals, and various control signals. It is not
compatible with the System interface bus used on the V

R

4400 and V

R

4200.

Clock Generator

 generates a pipeline clock (PClock) based on an externally
input clock (MasterClock). The frequency of the

PClock

 can be selected by
setting the frequency ratio between the

MasterClock

 and the

PClock

. This ratio
is set using the

DivMode

 pins on power application. (For setting of the

DivMode

pins, refer to

Table 2-2 Clock/Control Interface Signals

.) Table 1-1 indicates
the selectable frequency ratio. System interface clock (

SClock

) usually has the
same frequency as the

MasterClock

.

Table 1-1 Frequency Ratio Between PClock and MasterClock

*1.

Selectable with the 100 MHz model only (With the 133 MHz model, this setting is reserved.)

2.

Selectable with the 133 MHz model only (With the 100 MHz model, this setting is reserved.)

3.

Selectable with the 167 MHz model only (With the 133 MHz model, this setting is reserved.)

If the RP bit of the

Status

 register is set to 1 during operation, the frequencies of
the PClock and SClock can be reduced to 1/4 of the normal frequency

*

. Because
the PLL (Phase-Locked Loop) technique is employed, the skew (phase difference)
between the external clock and internal operation clock can be minimized.

*

100 MHz model of the V

R

4300 and the V

R

4305 only

Instruction Cache

 is direct-mapped, virtually-indexed, and physically-tagged.
The capacity is 16 KB.

Execution Unit

 has the hardware resources to execute integer and floating-point
instructions. It has a 64-bit register file, 64-bit integer/mantissa datapath, and 12-
bit exponent datapath. It is provided with a dedicated multiplexer in order to
process multiply instruction at a high speed.

Product Name DivMode Pin Selectable Frequency Ratio (MasterClock : PClock)

V

R

4300 DivMode (1 : 0) 1 : 1.5

*1

, 1 : 2, 1 : 3, 1 : 4

*2

V

R

4305 DivMode (1 : 0) 1 : 1, 1 : 2, 1 : 3

V

R

4310 DivMode (2 : 0) 1 : 2, 1 : 2.5

*3

, 1 : 3, 1 : 4, 1 : 5, 1 : 6

Chapter 1

36

User’s Manual U10504EJ7V0UM00

Coprocessor 0 (CP0)

 has the memory management unit (MMU) and handles
exception processing. The MMU handles address translation and checks memory
accesses that occur between different memory segments (user, supervisor, or
kernel). The translation lookaside buffer (TLB) is used to translate virtual to
physical addresses.

Data Cache

 is a direct-mapped, virtually-indexed and physically-tagged write-
back cache. The capacity is 8 KB.

Instruction Address

 calculates the effective address of the next instruction to be
fetched. It contains the incrementer for the Program Counter (PC), the target
address adder, and the conditional branch address selector.

Pipeline Control ensures the instruction pipeline operates properly (should one
of the following conditions occur: pipeline stall or exception).

User’s Manual U10504EJ7V0UM00 37

General

1.4.2 CPU Registers

The processor provides the following registers:

• 32 64-bit general purpose registers, GPRs

• 32 64-bit floating-point operation registers, FPRs

In addition, the processor provides the following special registers:

• 64-bit Program Counter, the PC register

• 64-bit HI register, containing the integer multiply and divide high-
order doubleword result

• 64-bit LO register, containing the integer multiply and divide low-
order doubleword result

• 1-bit Load/Link LLBit register

• 32-bit floating-point Implementation/Revision register, FCR0

• 32-bit floating-point Control/Status register, FCR31

Two of the General Purpose registers have assigned functions:

• r0 is hardwired to a value of zero, and can be used as the target
register for any instruction whose result is to be discarded. r0 can
also be used as a source when a zero value is needed.

• r31 is the link register used by JAL and JALR instructions. It can be
used by other instructions. Make sure that other data used in
calculations does not overlap with the register used by the JAL/JALR
instruction.

Furthermore, the processor contains registers in the system control processor
(CP0) which perform the exception processing and address management.

CPU registers can operate as either 32-bit or 64-bit registers, depending on the
VR4300 processor mode of operation.

Figure 1-2 shows the CPU registers.

Chapter 1

38 User’s Manual U10504EJ7V0UM00

Figure 1-2 CPU Registers

The VR4300 processor has no Program Status Word (PSW) register as such; this
is covered by the Status and Cause registers incorporated within the System
Control Coprocessor (CP0). For CP0 registers, refer to 1.4.5 System Control
Coprocessor (CP0).

r0 = 0

r1

r2

r31 = Link address

Multiply and Divide Registers

Program Counter

0

0

0

HI

LO

0

General Purpose Registers

PC

·
·
·
·

r29

r30

63

63

63

63

r0

r1

r2

r31 = Control/Status

0
Floating-Point Registers

·
·
·
·

r29

r30

63

Load/Link Register
0

LLbit

Floating-Point Control Registers
0

0

31

31

r0 = Implementation/Revision

r31

User’s Manual U10504EJ7V0UM00 39

General

1.4.3 CPU Instruction Set Overview

Each CPU instruction is 32 bits long. As shown in Figure 1-3, there are three
instruction formats:

• immediate (I-type)

• jump (J-type)

• register (R-type)

Figure 1-3 CPU Instruction Formats

The instruction set can be further divided into the following groupings:

• Load and Store instructions move data between memory and general
purpose registers. They are all immediate (I-type) instructions, since
the only addressing mode supported is base register plus 16-bit,
signed immediate offset.

• Computational instructions perform arithmetic, logical, shift,
multiply, and divide operations on values in registers. They include
register (R-type, in which both the operands and the result are stored
in registers) and immediate (I-type, in which one operand is a 16-bit
signed immediate value) formats.

• Jump and Branch instructions change the control flow of a program.
Jumps are always made to an address formed by combining a 26-bit
target address with the high-order bits of the Program Counter (J-type
format) or register address (R-type format). Branch instructions are
performed to the 16-bit offset address relative to the program counter
(I-type). Jump And Link instructions save their return address in
register 31.

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
11 10 6 5

rd saR-Type (Register)

J-Type (Jump)

I-Type (Immediate)

Chapter 1

40 User’s Manual U10504EJ7V0UM00

• Coprocessor instructions (CPz) perform operations in the
coprocessors. Coprocessor load and store instructions are
I-type. As opposed to CP0 instructions, CPz instructions are not
specific to any coprocessor. (Refer to Chapter 7 Floating-Point
Operations.)

• Coprocessor 0 (system coprocessor, CP0) instructions perform
operations on CP0 registers to control the memory-management and
exception-handling facilities of the processor.

• Special instructions perform system call exception and breakpoint
exception operations, or cause a branch to the general exception-
handling vector based upon the result of a comparison. These
instructions occur in both R-type (both the operands and the result
are registers) and I-type (one operand is a 16-bit immediate value)
formats.

For each instruction, refer to Chapter 3 CPU Instruction Set Summary and
Chapter 16 CPU Instruction Set Details.

User’s Manual U10504EJ7V0UM00 41

General

1.4.4 Data Formats and Addressing

The VR4300 processor uses four data formats: a 64-bit doubleword, a 32-bit word,
a 16-bit halfword, and an 8-bit byte. Byte ordering within all of the larger data
formats—halfword, word, doubleword—can be configured in either big-endian or
little-endian. When the VR4300 processor is configured as a big-endian system,
byte 0 is the most-significant (leftmost) byte, thereby providing compatibility with
MC 68000TM and IBM 370TM conventions. Figure 1-4 shows this configuration.

Figure 1-4 Big-Endian Byte Ordering

Remarks 1. The most-significant byte is the lowest address.
2. A word is addressed by the address of the most-significant byte.

When configured as a little-endian system, byte 0 is always the least-significant
(rightmost) byte, which is compatible with iAPXTM x86 and DEC VAXTM
conventions. Figure 1-5 shows this configuration.

Unless otherwise specified, the little endian is used throughout this manual.

Figure 1-5 Little-Endian Byte Ordering

Remarks 1. The least-significant byte is the lowest address.
2. A word is addressed by the address of the least-significant byte.

Higher
Address

Lower
Address

Word

4

8

12
Address

8 9 1110

4 5 76

0 1 32

12 13 1514

0

31 24 23 16 15 8 7 0

Higher
Address

Lower
Address

Word

4

8

12
Address

8911 10

457 6

013 2

121315 14

0

31 24 23 16 15 8 7 0

Chapter 1

42 User’s Manual U10504EJ7V0UM00

Figure 1-6 Big-Endian Data in a Doubleword

Remarks 1. The most-significant byte is the lowest address.
2. A word is addressed by the address of the most-significant byte.

Figure 1-7 Little-Endian Data in a Doubleword

Remarks 1. The least-significant byte is the lowest address.
2. A word is addressed by the address of the least-significant byte.

Higher
Address

Lower
Address

Doubleword

16
Address

16 17 18

8 9 10

0 1 2

63 32 15 831 16
20 21 2322

12 13 1514

4 5 76

7 0
19

11

3

Word Halfword Byte

8

0

Higher
Address

Lower
Address

Doubleword

16
Address

161718

8910

012

63 32 15 831 16
202123 22

121315 14

457 6

7 0
19

11

3

Word Halfword Byte

8

0

User’s Manual U10504EJ7V0UM00 43

General

The CPU uses byte addressing for halfword, word, and doubleword accesses with
the following alignment constraints:

• Halfword accesses must be aligned on an even byte boundary (0, 2,
4...).

• Word accesses must be aligned on a byte boundary divisible by four
(0, 4, 8...).

• Doubleword accesses must be aligned on a byte boundary divisible
by eight (0, 8, 16...).

The following special instructions load and store words that are not aligned on 4-
byte (word) or 8-word (doubleword) boundaries:

LWL LWR SWL SWR

LDL LDR SDL SDR

These instructions are always used in pairs to access data not aligned at an
boundary. To access data not aligned at a boundary, additional 1P cycle is
necessary as compared when accessing data aligned at a boundary.

Figure 1-8 illustrates how a word misaligned and having byte address 3 is
accessed in big and little endian.

Figure 1-8 Misaligned Word Addressing

Higher
Address

Lower
Address

Big-Endian4 5 6

3

31 24 23 16 15 8 7 0

Higher
Address

Lower
Address

Little-Endian456

3

31 24 23 16 15 8 7 0

Chapter 1

44 User’s Manual U10504EJ7V0UM00

1.4.5 System Control Coprocessor (CP0)

ISA of MIPS defines four types of coprocessors (CP0 through CP3). CP0 is an
internal system control coprocessor and supports a virtual memory system and
exception processing. CP1 is an internal floating-point unit. CP2 is reserved for
future definition. CP3 is also reserved for expansion. If the CP3 instruction is
executed, a reserved instruction exception occurs.

CP0 converts virtual addresses into physical addresses, selects an operating mode
(Kernel, supervisor, or user mode), and control exceptions. It also controls the
cache subsystem to analyze causes and return execution from error processing.
The CP0 register of the VR4300 is the same as that of the VR4200. Because the
VR4300 does not have a parity check function, however, its parity error register
(26) and cache error register (27) do not practically operate. These registers are
defined to maintain compatibility with the VR4200.

Figure 1-9 shows the CP0 register. Table 1-2 briefly explains each register. For
the details of the registers related to the virtual memory system, refer to Chapter
5 Memory Management System, and for the details of the registers used for
exception processing, refer to Chapter 6 Exception Processing.

User’s Manual U10504EJ7V0UM00 45

General

Figure 1-9 CP0 Registers

Index

Random

EntryLo0

EntryLo1

Context

PageMask

Wired

BadVAddr

Count

EntryHi

Compare

Status

Cause

EPC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

PRId 15

Config

LLAddr

WatchLo

WatchHi

Parity Error

Cache Error

TagLo

TagHi

ErrorEPC

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Register Name Reg. #Register Name Reg. #

For Future Use

XContext

Memory Management Exception Processing

Chapter 1

46 User’s Manual U10504EJ7V0UM00

Table 1-2 System Control Coprocessor (CP0) Register Definitions

* These registers are defined to maintain compatibility with the VR4200, and not used with the
hardware of the VR4300.

Number Register Description

0 Index Programmable pointer into TLB array

1 Random Pseudorandom pointer into TLB array (read only)

2 EntryLo0 Low half of TLB entry for even virtual address (VPN)

3 EntryLo1 Low half of TLB entry for odd virtual address (VPN)

4 Context Pointer to kernel virtual page table entry (PTE) in 32-bit mode

5 PageMask Page size specification

6 Wired Number of wired TLB entries

7 — Reserved for future use

8 BadVAddr Display of virtual address that occurred an error last

9 Count Timer Count

10 EntryHi High half of TLB entry (including ASID)

11 Compare Timer Compare Value

12 Status Operation status setting

13 Cause Display of cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Memory system mode setting

17 LLAddr Load Linked instruction address display

18 WatchLo Memory reference trap address low bits

19 WatchHi Memory reference trap address high bits

20 XContext Pointer to Kernel virtual PTE table in 64-bit mode

21–25 — Reserved for future use

26 Parity Error* Cache parity bits

27 Cache Error* Cache Error and Status register

28 TagLo Cache Tag register low

29 TagHi Cache Tag register high

30 ErrorEPC Error Exception Program Counter

31 — Reserved for future use

User’s Manual U10504EJ7V0UM00 47

General

1.4.6 Floating-Point Unit (FPU), CP1

The floating-point unit (FPU) operates as a coprocessor for the CPU and performs
arithmetic operations on floating-point values. The FPU, with associated system
software, fully conforms to the requirements of ANSI/IEEE Standard 754–1985,
IEEE Standard for Binary Floating-Point Arithmetic.

The FPU includes:

• Full 64-bit Operation. The FPU can contain either 16 64-bit
registers to hold single-precision or double-precision values. Another
sixteen floating-point registers can be used by setting the FR bit of
the Status register to 1. Moreover, a 32-bit Control/Status register is
provided, conforming to the IEEE exception processing standard.

• Load and Store Instruction Set. Like the CPU, the FPU uses a
load- and store-based instruction set. Floating-point operations are
started in a single cycle, however execution of floating-point ops are
not allowed to overlap other operations.

• Sharing Hardware. There is no separate FPU on the VR4300;
floating-point operations are processed by the same hardware as is
used for integer instructions.

1.4.7 Internal Cache

The VR4300 has an instruction cache and a data cache to enhance the efficiency
of pipelining. Each cache has a data width of 64 bits and can be accessed in 1
clock. The instruction cache and data cache can be accessed in parallel. The
instruction cache has a capacity of 16K bytes, while the data cache has a capacity
of 8K bytes.

For the details of the cache, refer to Chapter 11 Cache Memory.

Chapter 1

48 User’s Manual U10504EJ7V0UM00

1.5 Memory Management System (MMU)

The VR4300 processor has a 32-bit physical addressing range of 4 GB. However,
since it is rare for systems to implement a physical memory space this large, the
CPU provides a logical expansion of memory space to the programmer by
translating addresses into the large virtual address space. The VR4300 processor
supports the following two addressing modes:

• 32-bit mode, in which the virtual address space is divided into 2 GB
per user process and 2 GB for the kernel.

• 64-bit mode, in which the virtual address is expanded to
1 TB (240 bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 5 Memory
Management System.

1.5.1 Translation Lookaside Buffer (TLB)

Virtual memory mapping is assisted by a translation lookaside buffer, which holds
virtual-to-physical address translations. This fully-associative, on-chip TLB
contains 32 entries, each of which maps a pair of variable-sized pages of either 4
KB or 16 MB.

Joint TLB (JTLB)

The TLB can hold both instruction and data addresses, and is thus also referred to
as a joint TLB (JTLB).

An address translation value is tagged with the high-order bits of its virtual
address (the number of these bits depends upon the size of the page) and a per-
process identifier. If there is no matching entry in the TLB, an exception occurs
and software writes the entry contents to the on-chip TLB from a page table in
memory. The JTLB entry to be rewritten is selected by a value in either the
Random or Index register.

User’s Manual U10504EJ7V0UM00 49

General

Instruction Micro-TLB (ITLB)

The VR4300 processor has a two-entry instruction micro-TLB (ITLB) which
assists in instruction address translation. The ITLB can not be operated directly
by the software. Instructions access this TLB while data accesses the Joint TLB;
a miss in the micro-TLB stalls the pipeline until the micro-TLB is refilled from
the joint TLB. The micro-TLB is fully associative, and uses the least-recently-
used (LRU) replacement algorithm. Each micro-TLB entry maps 4 KB of virtual
space to physical space. This ensures each ITLB entry is a subset of any single
JTLB entry.

1.5.2 Operating Modes

The VR4300 processor has three operating modes:

• User mode

• Supervisor mode

• Kernel mode

The manner in which memory addresses are translated or mapped depends on the
operating mode of the CPU; this is described in Chapter 5 Memory
Management System.

1.6 Instruction Pipeline

The VR4300 has a 5-stage instruction pipeline. This pipeline is used for floating-
point operations as well as for integer operations. In a normal environment, the
pipeline executes one instruction in 1 cycle.

The pipeline of the VR4300 operates at a frequency determined depending on the
setting of the DivMode(1:0)* pins. For details, refer to Chapter 4 Pipeline.

* In VR4300 and VR4305. In VR4310, DivMode(2:0).

50 User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

51

Pin Functions

2

Chapter 2

52

User’s Manual U10504EJ7V0UM00

2.1 Pin Configuration (Top View)

• 120-pin plastic QFP (28

´

 28 mm)

m

PD30200GD-80-LBB

m

PD30200GD-100-MBB

m

PD30200GD-133-MBB

m

PD30210GD-133-MBB

m

PD30210GD-167-MBB

90 VDD
89 GND
88 Int2
87 SysAD27
86 SysAD28
85 VDD
84 GND
83 SysAD29
82 EOK
81 SysAD30
80 VDD
79 GND
78 PValid
77 SysAD31
76 VDD
75 GND
74 PReq
73 SysAD0
72 VDD
71 GND
70 SysAD1
69 SysAD2
68 VDD
67 GND
66 SysAD3
65 JTDO
64 SysAD4
63 JTDI
62 VDD
61 GND

12
0

G
N

D
11

9
V

D
D

11
8

In
t3

11
7

S
ys

A
D

23
11

6
D

iv
M

od
e0

11
5

S
ys

A
D

24
11

4
G

N
D

11
3

V
D

D
11

2
D

iv
M

od
e1

11
1

S
ys

C
m

d4
11

0
C

ol
dR

es
et

10
9

S
ys

C
m

d3
10

8
G

N
D

10
7

V
D

D
10

6
S

ys
C

m
d2

10
5

E
V

al
id

10
4

R
es

et
10

3
S

ys
C

m
d1

10
2

G
N

D
10

1
V

D
D

10
0

S
ys

C
m

d0
99

E
R

eq
98

S
ys

A
D

25
97

G
N

D
96

V
D

D
95

P
M

as
te

r
94

S
ys

A
D

26
93

N
M

I
92

G
N

D
91

V
D

D

VDD 1
GND 2

SysAD22 3
SysAD21 4

VDD 5
GND 6

SysAD20 7
VDD 8

VDDP 9
GNDP 10

PLLCap0 11
PLLCap1 12

VDDP 13
GNDP 14

VDD (Div Mode2) 15
MasterClcok 16

GND 17
TClock 18

VDD 19
GND 20

SyncOut 21
SysAD19 22

VDD 23
SyncIn 24

GND 25
SysAD18 26
SysAD17 27

Int4 28
VDD 29

GND 30

G
N

D
31

V
D

D
32

S
ys

A
D

16
33

S
ys

A
D

15
34

G
N

D
35

V
D

D
36

S
ys

A
D

14
37

S
ys

A
D

13
38

G
N

D
39

V
D

D
40

S
ys

A
D

12
41

S
ys

A
D

11
42

G
N

D
43

V
D

D
44

S
ys

A
D

10
45

In
t0

46
S

ys
A

D
9

47
G

N
D

48
V

D
D

49
S

ys
A

D
8

50
S

ys
A

D
7

51
JT

M
S

52
G

N
D

53
V

D
D

54
S

ys
A

D
6

55
S

ys
A

D
5

56
JT

C
K

57
In

t1
58

G
N

D
59

V
D

D
60

Remark (): Pin name of the mPD30210-xxx

User’s Manual U10504EJ7V0UM00

53

Pin Functions

PIN NAME

ColdReset : Cold Reset

DivMode (1:0)* : Divide Mode

EOK : External OK

EReq : External Request

EValid : External Valid

Int (4:0) : Interrupt Request

JTCK : JTAG Clock Input

JTDI : JTAG Data In

JTDO : JTAG Data Out

JTMS : JTAG Command Signal

MasterClock : Master Clock

NMI : Non-maskable Interrupt Request

PLLCap (1:0) : Phase Locked Loop Capacitance

PMaster : Processor Master

PReq : Processor Request

PValid : Processor Valid

Reset : Reset

Syncln : Synchronization Clock Input

SyncOut : Synchronization Clock Output

SysAD (31:0) : System Address/Data Bus

SysCmd (4:0) : System Command Data ID Bus

TClock : Transmit Clock

V

DD

: Power Supply

GND : Ground

V

DD

P : V

DD

 for PLL

GNDP : GND for PLL

*

 In the

m

PD30200-

´´´

. DivMode (2:0) in the

m

PD30210-

´´´

.

Chapter 2

54

User’s Manual U10504EJ7V0UM00

2.2 Pin Functions

2.2.1 System Interface Signals

The system interface signals are used when the V

R

4300 is connected with an
external device in the system. Table 2-1 indicates the functions of these signals.

Table 2-1 System Interface Signals

Signal Name Definition I/O Function

SysAD(31:0) System address/data
bus

I/O 32-bit address/data bus. Used to transmit or
receive data or address between the
processor and the external agent.

SysCmd(4:0) System command/data
ID bus

I/O 5-bit bus. Used to transfer commands or
data identifiers between the processor and
the external agent.

EReq External request Input Asserted active when the external agent
requests the processor for the system
interface.

PReq Processor request Output Asserted active when the processor requests
the external agent for the system interface.
If a protocol error is detected in the system
interface, this signal is oscillated in
synchronization with MasterClock in a
cycle which is a multiple of SClock.

EValid External agent valid Input Asserted active when the external agent
drives a valid address or valid data onto the
SysAD bus, and a valid command/data
identifier is on the SysCmd bus.

PValid Processor valid Output Asserted active when the processor drives a
valid address or data onto the SysAD bus,
and a valid command/data identifier is on
the SysCmd bus.

PMaster Processor master Output Asserted active when the processor is the
master of the system interface bus.

EOK External ready Input Asserted active when the external agent is
ready to accept a processor request.

User’s Manual U10504EJ7V0UM00

55

Pin Functions

2.2.2 Clock/Control Interface Signals

These interface signals are used to supply or control clocks. Table 2-2 shows the
functions of the signals.

Table 2-2 Clock/Control Interface Signals (1/3)

Signal Name Definition I/O Function

MasterClock Master clock Input Inputs the MasterClock from this pin. The internal
operating speed is determined by the frequency of
this signal and the contents of the DivMode
signals.

TClock Transmit/receive
clock

Output Outputs the transmit/receive clock at the same
frequency as the MasterClock.

SyncOut Synchronization
clock output

Output Outputs a synchronization clock. Connect this pin
to SyncIn. Model the mutual connection between
TClock and external agent.

SyncIn Synchronization
clock input

Input Inputs a synchronization clock.

V

DD

P Static V

DD

 for
PLL

– This pins is static V

DD

 for the internal PLL circuit.

GNDP Static GND for
PLL

– This pin is static GND for the internal PLL circuit.

PLLCap(1:0) Adjusting PLL – This pin connects a capacitor for adjusting the
internal PLL circuit of the processor.

DivMode Internal
operating
frequency mode

Input

Indicates the ratio at which the internal PClock is generated
from the MasterClock.
Normally, the frequency of the TClock is the same as that of
the MasterClock.
Do not change the value of these pins after setting the value on
power application.
Otherwise, the operation will not guaranteed.

The following indicates the relationship between the DivMode
values and frequency ratio of each product.

Remark

The maximum value of PClock is the same as the
maximum internal operating frequencies of each
product regardless of the frequency ratio. (Refer to

1.2 Ordering Information

.)

• V

R

4300

mPD30200-100
DivMode

(1 : 0)
MasterClock : PClock : TClock

Frequency ratio Example [MHz]
00 RFU –
01 2 : 3 : 2 66.7 : 100 : 66.7
10 1 : 2 : 1 50 : 100 : 50
11 1 : 3 : 1 33.3 : 100 : 33.3

Chapter 2

56

User’s Manual U10504EJ7V0UM00

DivMode Internal
operating
frequency mode

Input

• V

R

4300

• V

R

4305

• V

R

4310

Table 2-2 Clock/Control Interface Signals (2/3)

Signal Name Definition I/O Function

mPD30200-133

DivMode
(1 : 0)

MasterClock : PClock : TClock

Frequency ratio Example [MHz]

00 1 : 4 : 1 33.3 : 133 : 33.3

01 RFU –

10 1 : 2 : 1 66.7 : 133 : 66.7

11 1 : 3 : 1 44.3 : 133 : 44.3

mPD30200-80

DivMode
(1 : 0)

MasterClock : PClock : TClock

Frequency ratio Example [MHz]

00 1 : 1 : 1 66.7 : 66.7 : 66.7

01 RFU –

10 1 : 2 : 1 40 : 80 : 40

11 1 : 3 : 1 20 : 60 : 20

mPD30210-133

DivMode
(2 : 0)

MasterClock : PClock : TClock

Frequency ratio Example [MHz]

000 1 : 5 : 1 26.7 : 133 : 26.7

001 1 : 6 : 1 22.2 : 133 : 22.2

010 RFU –

011 1 : 3 : 1 33.3 : 100 : 33.3

100 1 : 4 : 1 33.3 : 133 : 33.3

101 RFU –

110 1 : 2 : 1 50 : 100 : 50

111 1 : 3 : 1 33.3 : 100 : 33.3

User’s Manual U10504EJ7V0UM00

57

Pin Functions

2.2.3 Interrupt Interface Signals

These signals are used by the external device to issue interrupt requests to the
V

R

4300. Table 2-3 shows the functions of these signals.

Table 2-3 Interrupt Interface Signals

DivMode Internal
operating
frequency mode

Input

•

V

R

4310

Signal Name Definition I/O Function

Int(4:0) Interrupt request
acknowledge

Input General purpose interrupt request pins.
These pins are ORed with the bits 4 through
0 of the internal interrupt register.

NMI Non-maskable
interrupt

Input This pin accepts the non-maskable interrupt
signal. It is ORed with the bit 6 of the
internal interrupt register.

Table 2-2 Clock/Control Interface Signals (3/3)

Signal Name Definition I/O Function

mPD30210-167

DivMode
(2 : 0)

MasterClock : PClock : TClock

Frequency ratio Example [MHz]

000 1 : 5 : 1 33.3 : 167 : 33.3

001 1 : 6 : 1 27.8 : 167 : 27.8

010 2 : 5 : 2 66.7 : 167 : 66.7

011 1 : 3 : 1 33.3 : 100 : 33.3

100 1 : 4 : 1 33.3 : 133 : 33.3

101 RFU –

110 1 : 2 : 1 50 : 100 : 50

111 1 : 3 : 1 33.3 : 100 : 33.3

Chapter 2

58

User’s Manual U10504EJ7V0UM00

2.2.4 Joint Test Action Group (JTAG) Interface Signals

These signals are for interfacing the boundary scan of JTAG. Table 2-4 shows the
functions of these signals.

Table 2-4 JTAG Interface Signals

2.2.5 Initialization Interface Signals

These signals are used when the external device initializes the operation
parameters of the processor. Table 2-5 shows the functions of these signals.

Table 2-5 Initialization Interface Signals

Signal Name Definition I/O Function

JTDI JTAG data input Input Inputs data to be scanned serially.

JTCK JTAG clock input Input Inputs a serial clock. JTDI and JTMS are
read simultaneously at the rising edge of
this signal.
Fix this signal to the low level when the
JTAG interface is not used.

JTDO JTAG data output Output Outputs serially scanned data.

JTMS JTAG command Input Inputs a high level to this pin if the serial
data to be input next is a command of the
JTAG.

Signal Name Definition I/O Function

ColdReset Cold reset Input Asserted active at cold reset. SClock and
TClock start the cycle at the rising edge of
this signal. This signal needs not be
asserted active or deasserted inactive in
synchronization with the MasterClock
signal.

Reset Reset Input Make this pin active or inactive in
synchronization with MasterClock, or keep
it inactive at cold reset.
Make this pin active or inactive in
synchronization with MasterClock at soft
reset.

User’s Manual U10504EJ7V0UM00

59

CPU Instruction Set Summary

3

This chapter is an overview of the central processing unit (CPU) instruction set;
refer to

Chapter 16 CPU Instruction Set Details

for detailed descriptions of
individual CPU instructions.

Because the FPU instruction is dependent upon the structure of the coprocessor,
refer to

Chapter 7 Floating-Point Operations

and

 Chapter 17 FPU Instruction
Set Details

.

Chapter 3

60

User’s Manual U10504EJ7V0UM00

3.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word
boundary. There are three instruction formats—immediate (I-type), jump (J-
type), and register (R-type)—as shown in Figure 3-1. By simplifying the
instruction format in three ways, decoding instructions is simplified. Complicated
and less frequently used operations and addressing modes are implemented by
combining two or more instructions by using a compiler.

Figure 3-1 CPU Instruction Formats

op 6-bit operation code

rs 5-bit source register number

rt
5-bit target (source/destination) register number or
branch condition

immediate
16-bit immediate value, branch displacement or
address displacement

target 26-bit unconditional branch target address

rd 5-bit destination register number

sa 5-bit shift amount

funct 6-bit function field

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
1110 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)

User’s Manual U10504EJ7V0UM00

61

CPU Instruction Set Summary

Support of the MIPS ISA

Even though the V

R

4300 processor does not support a multiprocessor operating
environment, the synchronization support instructions defined in the MIPS II and
MIPS III ISA—the Load Linked and Store Conditional instructions—are
processed correctly, in order to maintain compatibility with V

R

4400 and V

R

4200.
The load link bit (

LLbit

) is set by the LL instruction, cleared by an ERET, and
tested by the SC instruction. The only operation to the

LLbit

 that can be
implemented is a reset due to cache invalidation.

Caution Note that all load/store instructions in this processor are executed
in program order since the SYNC instruction is handled as a NOP.

3.2 Instruction Classes

The CPU instructions can be classified into six classes.

3.2.1 Load/Store Instructions

Load

and store are immediate (I-type) instructions that move data between
memory and the general purpose registers. Only a mode that adds a 16-bit signed
immediate offset to the base register is available as the addressing mode of the
load/store instructions.

Scheduling a Load Delay Slot

A load instruction whose loading result cannot be used by the instruction
immediately following is called a delayed load instruction. The instruction slot
immediately after a delayed load instruction is called a load delay slot. With the
V

R

4000 Series, an instruction including the load destination register can be
described immediately after a load instruction. In this case, however, the interlock
count is generated equal to the number of necessary cycles. Therefore, although
any instruction can be described, it is recommended to schedule the load delay slot
to improve the performances of the V

R

4300 and to maintain its compatibility with
the V

R

3000 Series (for details, refer to

Chapter 4 Pipeline

).

Store Delay Slot

In the V

R

4300 processor, a store instruction writing to the data cache keeps the
data cache busy during both its DC and WB stages. If the instruction immediately
following needs to access the data cache in its DC stage (e.g. a load instruction),
the hardware interlocks. Consequently, scheduling store delay slots can be
desirable for performance.

Chapter 3

62

User’s Manual U10504EJ7V0UM00

Table 3-1 Number of Cycles for Load and Store Instruction Delay Slot

Defining Access Types

Access type is the size of the data loaded/stored by the processor.

The op code of the load/store instruction determines the access type. Figure 3-2
shows the access type and the data to be loaded/stored. The address used for the
load/store instruction is the least significant byte address (most significant byte in
big endian and the address indicating the least significant byte in little endian),
regardless of the access type and byte ordering (endianness).

The byte ordering in the doubleword of the data to be accessed is determined by
the access type and the low-order 3 bits of the address, as shown in Figure 3-2.
Combinations of an access type and the low-order bits of an address other than
those shown in Figure 3-2 are prohibited. If a combination other than those shown
in the figure is used, an address error exception occurs.

Table 3-2 lists the load/store instructions defined by ISA, and Table 3-3 lists the
instructions of the extended ISA.

Instruction PCycles Required

Load 1

Store 1

User’s Manual U10504EJ7V0UM00

63

CPU Instruction Set Summary

Figure 3-2 Byte Access within a Doubleword

Access-Type
Mnemonic

(

Value

)

Low-Order
Address Bits

Bytes Accessed

Big endian
(63 0)

Little endian
(63 0)2 1 0

Doubleword (

7

) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (

6

)
0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (

5

)
0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (

4

)
0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (

3

)
0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte (

2

)

0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (

1

)

0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (

0

)

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

Chapter 3

64

User’s Manual U10504EJ7V0UM00

Table 3-2 Load/Store Instructions (1/2)

Instruction Format and Description

Load Byte

LB rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Sign-extends the contents of a byte specified by the address and loads the
result to register rt.

Load Byte
Unsigned

LBU rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Zero-extends the contents of a byte specified by the address and loads the
result to register rt.

Load Halfword

LH rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Sign-extends the contents of a halfword specified by the address and loads
the result to register rt.

Load Halfword
Unsigned

LHU rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base
Zero-extends the contents of a halfword specified by the address and loads
the result to register rt.

Load Word

LW rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Sign-extends the contents of a word specified by the address (in the 64-bit
mode) and loads the result to register rt.

Load Word Left

LWL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Shifts a word specified by the address to the left, so that a byte specified by
the address is at the leftmost position of the word. Sign-extends (in the 64-
bit mode), merges the result of the shift and the contents of register rt, and
loads the result to register rt.

Load Word Right

LWR rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Shifts a word specified by the address to the right, so that a byte specified by
the address is at the rightmost position of the word. Sign-extends (in the 64-
bit mode), merges the result of the shift and the contents of register rt, and
loads the result to register rt.

op base rt offset

User’s Manual U10504EJ7V0UM00

65

CPU Instruction Set Summary

Store Byte

SB rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Stores the contents of the low-order byte of register rt to the memory
specified by the address.

Store Halfword

SH rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Stores the contents of the low-order halfword of register rt to the memory
specified by the address.

Store Word

SW rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Stores the contents of the low-order word of register rt to the memory
specified by the address.

Store Word Left

SWL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Shifts the contents of register rt to the right so that the leftmost byte of the
word is at the position of the byte specified by the address. Stores the result
of the shift to the lower portion of the word in memory.

Store Word Right

SWR rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Shifts the contents of register rt to the left so that the rightmost byte of the
word is at the position of the byte specified by the address. Stores the result
of the shift to the higher portion of the word in memory.

Table 3-2 Load/Store Instructions (2/2)

Instruction Format and Description op base rt offset

Chapter 3

66

User’s Manual U10504EJ7V0UM00

Table 3-3 Load/Store Instructions (Extended ISA) (1/2)

Instruction Format and Description

Load Doubleword

LD rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Loads the contents of the doubleword specified by the address to register rt.

Load Doubleword
Left

LDL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Shifts the doubleword specified by the address to the left so that the byte
specified by the address is at the leftmost position of the doubleword.
Merges the result of the shift and the contents of register rt, and loads the
result to register rt.

Load Doubleword
Right

LDR rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Shifts the doubleword specified by the address to the right so that the byte
specified by the address is at the rightmost position of the doubleword.
Merges the result of the shift and the contents of register rt, and loads the
result to register rt.

Load Linked

LL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Loads the contents of the word specified by the address to register rt nd sets
the LL bit to 1.

Load Linked
Doubleword

LLD rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Loads the contents of the doubleword specified by the address to register rt
and sets the LL bit to 1.

Load Word
Unsigned

LWU rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Zero-extends the contents of the word specified by the address, and loads the
result to register rt.

op base rt offset

User’s Manual U10504EJ7V0UM00

67

CPU Instruction Set Summary

Store Conditional

SC rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
If the LL bit is 1, stores the contents of the low-order word of register rt to
the memory specified by the address, and sets register rt to 1.
If the LL bit is 0, does not store the contents of the word, and clears register
rt to 0.

Store Conditional
Doubleword

SCD rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
If the LL bit is 1, stores the contents of register rt to the memory specified by
the address, and sets register rt to 1.
If the LL bit is 0, does not store the contents of the register, and clears register
rt to 0.

Store Doubleword

SD rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Stores the contents of register rt to the memory specified by the address.

Store Doubleword
Left

SDL rt, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Shifts the contents of register rt to the right so that the leftmost byte of a
doubleword is at the position of the byte specified by the address. Stores the
result of the shift to the lower portion of the doubleword in memory.

Store
Doubleword
Right

SDR rf, offset (base)

Generates an address by adding a sign-extended offset to the contents of
register base.
Shifts the contents of register rt to the left so that the rightmost byte of a
doubleword is at the position of the byte specified by the address. Stores the
result of the shift to the higher portion of the doubleword in memory.

Table 3-3 Load/Store Instructions (Extended ISA) (2/2)

Instruction Format and Description op base rt offset

Chapter 3

68

User’s Manual U10504EJ7V0UM00

3.2.2 Computational Instructions

Computational instructions executes arithmetic operations, multiply/divide,
logical operations, and shift operations on the values of registers. These
instructions are classified into two types: R-type and I-type. The R-type
instructions uses registers as both the source, and the I-type instructions uses an
immediate value as one of the sources. The operation instructions are divided into
the following four types by classification of operation.

(1) ALU immediate instructions (Refer to

Tables 3-4

 and

3-5

.)

(2) 3-operand type instructions (Refer to

Tables 3-6

 and

3-7

.)

(3) Shift instructions (Refer to

Tables 3-8

 and

3-9

.)

(4) Multiply/Divide instructions (Refer to

Tables 3-10

 and

3-11

.)

If compatibility of data is necessary in the 64-bit and 32-bit modes, the 32-bit
operands must be correctly sign-extended. Otherwise, the 32-bit value of the
result of the operation will be meaningless.

User’s Manual U10504EJ7V0UM00

69

CPU Instruction Set Summary

Table 3-4 ALU Immediate Instructions

Instruction Format and Description

Add Immediate

ADDI rt, rs, immediate

Sign-extends the 16-bit immediate and adds it to register rs. Stores the
32-bit result to register rt (sign-extends the result in the 64-bit mode).
Generates an exception if a 2's complement integer overflow occurs.

Add Immediate
Unsigned

ADDIU rt, rs, immediate

Sign-extends the 16-bit immediate and adds it to register rs. Stores the 32-bit
result to register rt (sign-extends the result in the 64-bit mode). Does not
generate an exception even if an integer overflow occurs.

Set On Less Than
Immediate

SLTI rt, rs, immediate

Sign-extends the 16-bit immediate and compares it with register rs as a
signed integer. If rs is less than the immediate, stores 1 to register rt;
otherwise, stores 0 to register rt.

Set On Less Than
Immediate
Unsigned

SLTIU rt, rs, immediate

Sign-extends the 16-bit immediate and compares it with register rs as an
unsigned integer. If rs is less than the immediate, stores 1 to register rt;
otherwise, stores 0 to register rt.

And Immediate

ANDI rt, rs, immediate

Zero-extends the 16-bit immediate, ANDs it with register rs, and stores the
result to register rt.

Or Immediate

ORI rt, rs, immediate

Zero-extends the 16-bit immediate, ORs it with register rs, and stores the
result to register rt.

Exclusive Or
Immediate

XORI rt, rs, immediate

Zero-extends the 16-bit immediate, exclusive-ORs it with register rs, and
stores the result to register rt.

Load Upper
Immediate

LUI rt, immediate

Shifts the 16-bit immediate 16 bits to the left, and clears the low-order 16 bits
of the word to 0.
Stores the result to register rt (by sign-extending the result in the 64-bit
mode).

op rs rt immediate

Chapter 3

70

User’s Manual U10504EJ7V0UM00

Table 3-5 ALU Immediate Instruction (Extended ISA)

Instruction Format and Description

Doubleword Add
Immediate

DADDI rt, rs, immediate

Sign-extends the 16-bit immediate to 64 bits, and adds it to register rs. Stores
the 64-bit result to register rt. Generates an exception if an integer overflow
occurs.

Doubleword Add
Immediate
Unsigned

DADDIU rt, rs immediate

Sign-extends the 16-bit immediate to 64 bits, and adds it to register rs. Stores
the 64-bit result to register rt. Does not generate an exception even if an
integer overflow occurs.

op rs rt immediate

User’s Manual U10504EJ7V0UM00

71

CPU Instruction Set Summary

Table 3-6 Three-Operand Type Instruction

Instruction Format and Description

Add

ADD rd, rs, rt

Adds the contents of register rs and rt, and stores (sign-extends in the 64-bit
mode) the 32-bit result to register rd.
Generates an exception if an integer overflow occurs.

Add Unsigned

ADDU rd, rs, rt

Adds the contents of register rs and rt, and stores (sign-extends in the 64-bit
mode) the 32-bit result to register rd.
Does not generate an exception even if an integer overflow occurs.

Subtract

SUB rd, rs, rt
Subtracts the contents of register rs from register rt, and stores (sign-extends
in the 64-bit mode) the result to register rd.
Generates an exception if an integer overflow occurs.

Subtract
Unsigned

SUBU rd, rs, rt
Subtracts the contents of register rt from register rs, and stores (sign-extends
in the 64-bit mode) the 32-bit result to register rd.
Does not generate an exception even if an integer overflow occurs.

Set On Less Than SLT rd, rs, rt
Compares the contents of registers rs and rt as signed integers.
If the contents of register rs are less than those of rt, stores 1 to register rd;
otherwise, stores 0 to rd.

Set On Less Than
Unsigned

SLTU rd, rs, rt
Compares the contents of registers rs and rt as unsigned integers.
If the contents of register rs are less than those of rt, stores 1 to register rd;
otherwise, stores 0 to rd.

And AND rd, rs, rt
ANDs the contents of registers rs and rt in bit units, and stores the result to
register rd.

Or OR rd, rs, rt
ORs the contents of registers rs and rt in bit units, and stores the result to
register rd.

Exclusive Or XOR rd, rs, rt
Exclusive-ORs the contents of registers rs and rt in bit units, and stores the
result to register rd.

Nor NOR rd, rs, rt
NORs the contents of registers rs and rt in bit units, and stores the result to
register rd.

op rs rt sard funct

Chapter 3

72 User’s Manual U10504EJ7V0UM00

Table 3-7 Three-Operand Type Instructions (Extended ISA)

Instruction Format and Description

Doubleword Add DADD rd, rs, rt
Adds the contents of registers rs and rt, and stores the 64-bit result to register
rd.
Generates an exception if an integer overflow occurs.

Doubleword Add
Unsigned

DADDU rd, rs, rt
Adds the contents of registers rs and rt, and stores the 64-bit result to register
rd.
Does not generate an exception even if an integer overflow occurs.

Doubleword
Subtract

DSUB rd, rs, rt
Subtracts the contents of register rt from register rs, and stores the 64-bit
result to register rd.
Generates an exception if an integer overflow occurs.

Doubleword
Subtract Unsigned

DSUBU rd, rs, rt
Subtracts the contents of register rt from register rs, and stores the 64-bit
result to register rd.
Does not generate an exception even if an integer overflow occurs.

op rs rt sard funct

User’s Manual U10504EJ7V0UM00 73

CPU Instruction Set Summary

Table 3-8 Shift Instructions

Instruction Format and Description

Shift Left Logical SLL rd, rt, sa
Shifts the contents of register rt sa bits to the left, and inserts 0 to the low-
order bits.
Sign-extends (in the 64-bit mode) the 32-bit result and stores it to register rd.

Shift Right
Logical

SRL rd, rt, sa
Shifts the contents of register rt sa bits to the right, and inserts 0 to the high-
order bits.
Sign-extends (in the 64-bit mode) the 32-bit result and stores it to register rd.

Shift Right
Arithmetic

SRA rd, rt, sa
Shifts the contents of register rt sa bits to the right, and sign-extends the high-
order bits.
Sign-extends (in the 64-bit mode) the 32-bit result and stores it to register rd.

Shift Left Logical
Variable

SLLV rd, rt, rs
Shifts the contents of register rt to the left and inserts 0 to the low-order bits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 5 bits of register rs.
Sign-extends (in the 64-bit mode) the result and stores it to register rd.

Shift Right
Logical Variable

SRLV rd, rt, rs
Shifts the contents of register rt to the right, and inserts 0 to the high-order
bits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 5 bits of register rs.
Sign-extends (in the 64-bit mode) the 32-bit result and stores it to register rd.

Shift Right
Arithmetic
Variable

SRAV rd, rt, rs
Shifts the contents of register rt to the right and sign-extends the high-order
bits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 5 bits of register rs.
Sign-extends (in the 64-bit mode) the 32-bit result and stores it to register rd.

op rs rt sard funct

Chapter 3

74 User’s Manual U10504EJ7V0UM00

Table 3-9 Shift Instructions (Extended ISA) (1/2)

Instruction Format and Description

Doubleword Shift
Left Logical

DSLL rd, rt, sa
Shifts the contents of register rt sa bits to the left, and inserts 0 to the low-
order bits.
Stores the 64-bit result to register rd.

Doubleword Shift
Right Logical

DSRL rd, rt, sa
Shifts the contents of register rt sa bits to the right, and inserts 0 to the high-
order bits.
Stores the 64-bit result to register rd.

Doubleword Shift
Right Arithmetic

DSRA rd, rt, sa
Shifts the contents of register rt sa bits to the right, and sign-extends the high-
order bits.
Stores the 64-bit result to register rd.

Doubleword Shift
Left Logical
Variable

DSLLV rd, rt, rs
Shifts the contents of register rt to the left, and inserts 0 to the low-order bits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 6 bits of register rs.
Stores the 64-bit result and stores it to register rd.

Doubleword Shift
Right Logical
Variable

DSRLV rd, rt, rs
Shifts the contents of register rt to the right, and inserts 0 to the higher bits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 6 bits of register rs.
Sign-extends the 64-bit result and stores it to register rd.

Doubleword Shift
Right Arithmetic
Variable

DSRAV rd, rt, rs
Shifts the contents of register rt to the right, and sign-extends the high-order
bits.
The number of bits by which the register contents are to be shifted is
specified by the low-order 6 bits of register rs.
Sign-extends the 64-bit result and stores it to register rd.

Doubleword Shift
Left Logical + 32

DSLL32 rd, rt, sa
Shifts the contents of register rt 32+sa bits to the left, and inserts 0 to the low-
order bits.
Stores the 64-bit result to register rd.

Doubleword shift
Right Logical
+ 32

DSRL32 rd, rt, sa
Shifts the contents of register rt 32+sa bits to the right, and inserts 0 to the
high-order bits.
Stores the 64-bit result to register rd.

op rs rt sard funct

User’s Manual U10504EJ7V0UM00 75

CPU Instruction Set Summary

Table 3-10 Multiply/Divide Instructions

Doubleword Shift
Right Arithmetic
+ 32

DSRA32 rd, rt, sa
Shifts the contents of register rt 32+sa bits to the right, and sign-extends the
high-order bits.
Stores the 64-bit result to register rd.

Instruction Format and Description

Multiply MULT rs, rt
Multiplies the contents of register rs by the contents of register rt as a 32-bit
signed integer. Sign-extends (in the 64-bit mode) and stores the 64-bit result
to special registers HI and LO.

Multiply
Unsigned

MULTU rs, rt
Multiplies the contents of register rs by the contents of register rt as a 32-bit
unsigned integer. Sign-extends (in the 64-bit mode) and stores the 64-bit
result to special registers HI and LO.

Divide DIV rs, rt
Divides the contents of register rs by the contents of register rt. The operand
is treated as a 32-bit signed integer. Sign-extends (in the 64-bit mode) and
stores the 32-bit quotient to special register LO and the 32-bit remainder to
special register HI.

Divide Unsigned DIVU rs, rt
Divides the contents of register rs by the contents of register rt. The operand
is treated as a 32-bit unsigned integer. Sign-extends (in the 64-bit mode) and
stores the 32-bit quotient to special register LO and the 32-bit remainder to
special register HI.

Move From HI MFHI rd
Transfers the contents of special register HI to register rd.

Move From LO MFLO rd
Transfers the contents of special register LO to register rd.

Move To HI MTHI rs
Transfers the contents of register rs to special register HI.

Move To LO MTLO rs
Transfers the contents of register rs to special register LO.

Table 3-9 Shift Instructions (Extended ISA) (2/2)

Instruction Format and Description op rs rt sard funct

op rs rt sard funct

Chapter 3

76 User’s Manual U10504EJ7V0UM00

Table 3-11 Multiply/Divide Instructions (Extended ISA)

When an integer multiply or divide instruction is executed, the VR4300 stalls the
entire pipeline. The number of processor cycles (PCycles) stalled at this time is
shown below.

Table 3-12 Number of Cycles Stalled by Multiply/Divide Instruction

Instruction Format and Description

Doubleword
Multiply

DMULT rs, rt
Multiplies the contents of register rs by the contents of register rt as a signed
integer.
Stores the 128-bit result to special registers HI and LO.

Doubleword
Multiply
Unsigned

DMULTU rs, rt
Multiplies the contents of register rs by the contents of register rt as an
unsigned integer.
Stores the 128-bit result to special registers HI and LO.

Doubleword
Divide

DDIV rs, rt
Divides the contents of register rs by the contents of register rt.
The operand is treated as a signed integer.
Stores the 64-bit quotient to special register LO, and the 64-bit remainder to
special register HI.

Doubleword
Divide Unsigned

DDIVU rs, rt
Divides the contents of register rs by the contents of register rt.
The operand is treated as an unsigned integer.
Stores the 64-bit quotient to special register LO, and the 64-bit remainder to
special register HI.

Instruction MULT MULTU DIV DIVU DMULT DMULTU DDIV DDIVU

Number of
required
cycles

5 5 37 37 8 8 69 69

op rs rt sard funct

User’s Manual U10504EJ7V0UM00 77

CPU Instruction Set Summary

3.2.3 Jump/Branch Instructions

The jump and branch instructions change the flow of the program. All the jump
and branch instructions generate one delay slot. The instruction immediately
following a jump or branch instruction (i.e., the instruction in the delay slot) is
executed while the first instruction at the destination is fetched from the memory.

Instructions involving link, such as JAL and BLTZAL, store the return address to
register r31.

Table 3-13 Number of Delay Slot Cycles of Jump/Branch Instruction

Outline of Jump Instruction

Subroutine call described in a high-level language usually uses J or JAL
instruction. The J and JAL instructions are J-type instructions. An instruction of
this type shifts a 26-bit target address 2 bits to the left and combines it with the
high-order 4 bits of the current program counter to generate a 32- or 64-bit
absolute address.

To return, dispatch, or jump between pages, the JR or JALR instruction is usually
used. Both of these instructions are of R-type and references the 32- or 64-bit byte
address of a general purpose register.

For details, refer to Chapter 16 CPU Instruction Set Details.

Outline of Branch Instruction

The branch instruction has a signed 16-bit offset relative to the program counter.
Instructions involving link, such as JAL and BLTZAL, store the return address to
register r31.

Table 3-14 lists the jump instructions, and Table 3-15 shows the branch
instructions. Table 3-16 lists the branch instructions of the extended ISA.

Instruction Number of Required Cycles

Branch 1

Jump 1

Chapter 3

78 User’s Manual U10504EJ7V0UM00

Table 3-14 Jump Instructions

The following common limits are applied to Tables 3-15 and 3-16.

Branch Address

The branch addresses of all the branch instructions are calculated by adding a 16-
bit offset (signed 64 bits shifted 2 bits to the left) to the address of the instruction
in the delay slot. All the branch instructions generate one delay slot.

Operation during No Branch (Table 3-16)

If the branch condition of the branch likely instruction is not satisfied, the
instruction in the delay slot is invalidated. The instruction in the delay slot are
unconditionally executed for all the other branch instructions.

Remark The instruction at the branch destination is fetched in the EX stage of
the branch instruction. Comparison of branch and calculation of the
target address are executed in phase 2 of the RF stage and phase 1 of
the EX stage of the branch instruction. One cycle of the branch delay
slot defined by the architecture is necessary. One cycle of the delay slot
is also necessary for the jump instruction. If the branch condition of
the branch likely instruction is not satisfied, the instruction in the
branch slot are invalidated.

Instruction Format and Description

Jump J target
Shifts the 26-bit target address 2 bits to the left, and jumps to the address
coupled with the high-order 4 bits of the PC, delayed by one instruction.

Jump And Link JAL target
Shifts the 26-bit target address 2 bits to the left, and jumps to the address
coupled with the high-order 4 bits of the PC, delayed by one instruction.
Stores the address of the instruction following the delay slot to r31 (link
register).

Instruction Format and Description

Jump Register JR rs
Jumps to the address of register rs, delayed by one instruction.

Jump And Link
Register

JALR rs, rd
Jumps to the address of register rs, delayed by one instruction.
Stores the address of the instruction following the delay slot to register rd.

op target

op rs rt sard funct

User’s Manual U10504EJ7V0UM00 79

CPU Instruction Set Summary

The following symbols in the instruction format in Table 3-15 through Table 3-21
are special.

REGIMM : op code
Sub : sub operation code
CO : sub operation identifier
BC : BC sub operation code
br : branch condition identifier
cofun : coprocessor function area
op : operation code

Table 3-15 Branch Instructions

Instruction Format and Description

Branch On Equal BEQ rs, rt, offset
Branches to the branch address if register rs equals to rt.

Branch On Not
Equal

BNE rs, rt, offset
Branches to the branch address if register rs is not equal to rt.

Branch On Less
Than Or Equal To
Zero

BLEZ rs, offset
Branches to the branch address if register rs is less than 0.

Branch On
Greater Than
Zero

BGTZ rs, offset
Branches to the branch address if register rs is greater than 0.

Instruction Format and Description

Branch On Less
Than Zero

BLTZ rs, offset
Branches to the branch address if register rs is less than 0.

Branch On
Greater Than Or
Equal To Zero

BGEZ rs, offset
Branches to the branch address if register rs is greater than 0.

Branch On Less
Than Zero And
Link

BLTZAL rs, offset
Stores the address of the instruction following the delay slot to register r31
(link register), and branches to the branch address if register rs is less than 0.

Branch On
Greater Than Or
Equal To Zero
And Link

BGEZAL rs, offset
Stores the address of the instruction following the delay slot to register r31
(link register) and branches to the branch address if register rs is greater than
0.

op rs rt offsetrd funct

REGIMM rs sub offsetrd funct

Chapter 3

80 User’s Manual U10504EJ7V0UM00

Table 3-16 Branch Instructions (Extended ISA)

Instruction Format and Description

Branch On Equal
Likely

BEQL rs, rt, offset
Branches to the branch address if registers rs and rt are equal. If the branch
condition is not satisfied, the instruction in the branch delay slot is discarded.

Branch On Not
Equal Likely

BNEL rs, rt, offset
Branches to the branch address if registers rs and rt are not equal. If the
branch condition is not satisfied, the instruction in the branch delay slot is
discarded.

Branch On Less
Than Or Equal To
Zero Likely

BLEZL rs, offset
Branches to the branch address if register rs is less than 0. If the branch
condition is not satisfied, the instruction in the branch delay slot is discarded.

Branch On
Greater Than
Zero Likely

BGTZL rs, offset
Branches to the branch address if register rs is greater than 0. If the branch
condition is not satisfied, the instruction in the branch delay slot is discarded.

Instruction Format and Description

Branch On Less
Than Zero Likely

BLTZL rs, offset
Branches to the branch address if register rs is less than 0. If the branch
condition is not satisfied, the instruction in the branch delay slot is discarded.

Branch On
Greater Than Or
Equal To Zero
Likely

BGEZL rs, offset
Branches to the branch address if register rs is greater than 0. If the branch
condition is not satisfied, the instruction in the branch delay slot is discarded.

Branch On Less
Than Zero And
Link Likely

BLTZALL rs, offset
Stores the address of the instruction following the delay slot to register r31
(link register). Branches to the branch address if register rs is less than 0. If
the branch condition is not satisfied, the instruction in the branch delay slot
is discarded.

Branch On
Greater Than Or
Equal To Zero
And Link Likely

BGEZALL rs, offset
Stores the address of the instruction following the delay slot to register r31
(link register). Branches to the branch address if register rs is greater than 0.
If the branch condition is not satisfied, the instruction in the branch delay slot
is discarded.

op rs rt offsetrd funct

REGIMM rs sub offsetrd funct

User’s Manual U10504EJ7V0UM00 81

CPU Instruction Set Summary

3.2.4 Special Instructions

The special instructions generate an exception by software. The instruction type
is R-type (Syscall, Break). The trap instructions are invalid with the VR3000
Series. All the other instructions are valid with all the VR Series.

Table 3-17 Special Instructions

Table 3-18 Special Instructions (Extended ISA) (1/2)

Instruction Format and Description

Synchronize SYNC
Completes the load/store instruction currently in the pipeline before the new
load/store instruction is executed.

System Call SYSCALL
Generates a system call exception and transfers control to the exception
processing program.

Breakpoint BREAK
Generates a breakpoint exception and transfers control to the exception
processing program.

Instruction Format and Description

Trap If Greater
Than Or Equal

TGE rs, rt
Compares registers rs and rt as signed integers. If register rs is greater than
rt, generates an exception.

Trap If Greater
Than Or Equal
Unsigned

TGEU rs, rt
Compares registers rs and rt as unsigned integers. If register rs is greater than
rt, generates an exception.

Trap If Less Than TLT rs, rt
Compares registers rs and rt as signed integers. If register rs is less than rt,
generates an exception.

Trap If Less Than
Unsigned

TLTU rs, rt
Compares registers rs and rt as unsigned integers. If register rs is less than rt,
generates an exception.

Trap If Equal TEQ rs, rt
Generates an exception if registers rs and rt are equal.

Trap If Not Equal TNE rs, rt
Generates an exception if registers rs and rt are not equal.

SPECIAL rs rt sard funct

SPECIAL rs rt sard funct

Chapter 3

82 User’s Manual U10504EJ7V0UM00

Table 3-18 Special Instructions (Extended ISA) (2/2)

Instruction Format and Description

Trap If Greater
Than Or Equal
Immediate

TGEI rs, immediate
Compares the contents of register rs with 16-bit sign-extended immediate as
signed integer. If rs contents are greater than the immediate, generates an
exception.

Trap If Greater
Than Or Equal
Immediate
Unsigned

TGEIU rs, immediate
Compares the contents of register rs with 16-bit zero-extended immediate as
unsigned integer. If rs contents are greater than the immediate, generates an
exception.

Trap If Less Than
Immediate

TLTI rs, immediate
Compares the contents of register rs with 16-bit sign-extended immediate as
signed integer. If rs contents are less than the immediate, generates an
exception.

Trap If Less Than
Immediate
Unsigned

TLTIU rs, immediate
Compares the contents of register rs with 16-bit zero-extended immediate as
unsigned integer. If rs contents are less than the immediate, generates an
exception.

Trap If Equal
Immediate

TEQI rs, immediate
Generates an exception if the contents of register rs are equal to immediate.

Trap If Not Equal
Immediate

TNEI rs, immediate
Generates an exception if the contents of register rs are equal to immediate.

REGIMM rs sub immediaterd funct

User’s Manual U10504EJ7V0UM00 83

CPU Instruction Set Summary

3.2.5 Coprocessor Instructions

The coprocessor instructions are used to operate each coprocessor. The
coprocessor load and store instructions are I-type. The format of the operation
instruction of each coprocessor differs. Table 3-19 shows the coprocessor
instructions valid for all the VR Series. Table 3-20 lists the coprocessor
instructions valid only with the VR4000 which is defined as extended ISA.

Table 3-19 Coprocessor Instructions (1/2)

Instruction Format and Description

Load Word To
Coprocessor z

LWCz rt, offset (base)
Sign-extends and adds offset to register base to generate an address.
Loads the contents of the word specified by the address to the general
purpose register rt of coprocessor z.

Store Word From
Coprocessor z

SWCz rt, offset (base)
Sign-extends and adds offset to register base to generate an address.
Stores the contents of the general purpose register rt of coprocessor z to the
memory position specified by the address.

Instruction Format and Description

Move To
Coprocessor z

MTCz rt, rd
Transfers the contents of CPU register rt to the general purpose register rd of
coprocessor z.

Move From
Coprocessor z

MFCz rt, rd
Transfers the contents of the general purpose register rd of coprocessor z to
CPU register rt.

Move Control To
Coprocessor z

CTCz rt, rd
Transfers the contents of CPU register rt to the coprocessor control register
rd of coprocessor z.

Move Control
From
Coprocessor z

CFCz rt, rd
Transfers the contents of the coprocessor control register rd of coprocessor z
to CPU register rt.

Instruction Format and Description

Coprocessor z
Operation

COPz cofun
Coprocessor z executes an operation defined for each coprocessor.
The status of the CPU is not changed by the operation of the coprocessor.

op base rt offsetrd funct

COPz sub rt 0rd funct

COPz CO rt sard cofun

Chapter 3

84 User’s Manual U10504EJ7V0UM00

Table 3-19 Coprocessor Instructions (2/2)

Table 3-20 Coprocessor Instructions (Extended ISA) (1/2)

Instruction Format and Description

Branch On
Coprocessor z
True

BCzT offset
Shifts the 16-bit offset 2 bits to the left and sign-extends it to 32 bits. Adds
the result to the address of the instruction in the delay slot to calculate the
branch address.
If the condition signal of coprocessor z is true, branches to the branch
address, delayed by one instruction.

Branch On
Coprocessor z
False

BCzF offset
Shifts the 16-bit offset 2 bits to the left and sign-extends it to 32 bits. Adds
the result to the address of the instruction in the delay slot to calculate the
branch address.
If the condition signal of coprocessor z is false, branches to the branch
address, delayed by one instruction.

Instruction Format and Description

Doubleword
Move To
Coprocessor z

DMTCz rt, rd
Transfers the contents of the general purpose register rt of the CPU to the
general purpose register rd of coprocessor z.

Doubleword
Move From
Coprocessor z

DMFCz rt, rd
Transfers the contents of the general purpose register rd of coprocessor z to
the general purpose register rt of the CPU.

Instruction Format and Description

Load
Doubleword To
Coprocessor z

LDCz rt, offset (base)
Sign-extends and adds offset to register base to generate an address.
Loads the contents of the doubleword specified by the address to the general
purpose register (rt if FR = 1 and rt and rt+1 if FR = 0) of coprocessor z.

Store
Doubleword
From
Coprocessor z

SDCz rt, offset (base)
Sign-extends and adds offset to register base to generate an address.
Stores the contents of the doubleword of the general purpose register
(rt if FR = 1 and rt and rt+1 if FR = 0) of coprocessor z to the memory
position specified by the address.

COPz BC br offsetrd funct

COPz sub rt sard 0

op base rt offsetrd 0

User’s Manual U10504EJ7V0UM00 85

CPU Instruction Set Summary

Table 3-20 Coprocessor Instructions (Extended ISA) (2/2)

Instruction Format and Description

Branch On
Coprocessor z
True Likely

BCzTL offset
Shifts the 16-bit offset 2 bits to the left and sign-extends it. Adds the result
to the address of the instruction in the delay slot to calculate the branch
address.
If the condition signal of coprocessor z is true, branches to the branch
address, delayed by one instruction.
If the branch condition is not satisfied, the instruction in the branch delay slot
is discarded.

Branch On
Coprocessor z
False Likely

BCzFL offset
Shifts the 16-bit offset 2 bits to the left and sign-extends it. Adds the result
to the address of the instruction in the delay slot to calculate the branch
address.
If the condition signal of coprocessor z is false, branches to the branch
address, delayed by one instruction.
If the branch condition is not satisfied, the instruction in the branch delay slot
is discarded.

COPz BC br offsetrd funct

Chapter 3

86

User’s Manual U10504EJ7V0UM00

3.2.6 System Control Coprocessor (CP0) Instructions

The system control coprocessor (CP0) instructions execute operations to the CP0
register to control the memory of the processor and to perform exception
processing.

Table 3-21 System Control Coprocessor (CP0) Instructions (1/2)

Instruction Format and Description

Move To System
Control
Coprocessor

MTC0 rt, rd

Loads the contents of the word of the general purpose register rt of the CPU
to the general purpose register rd of CP0.

Move From
System Control
Coprocessor

MFC0 rt, rd

Loads the contents of the word of the general purpose register rd of CP0 to
the general purpose register rt of the CPU.

Doubleword
Move To System
Control
Coprocessor

DMTC0 rt, rd

Loads the contents of the doubleword of the general purpose register rt of the
CPU to the general purpose register rd of CP0.

Doubleword
Move From
System Control
Coprocessor

DMFC0 rt, rd

Loads the contents of the doubleword of the general purpose register rd of
CP0 to the general purpose register rt of the CPU.

Instruction Format and Description

Read Indexed
TLB Entry

TLBR

Loads the TLB entry indicated by the index register to the entry Hi, entry
Lo0, entry Lo1, and page mask registers.

Write Indexed
TLB Entry

TLBWI

Loads the contents of the entry Hi, entry Lo0, entry Lo1, and page mask
registers to the TLB entry indicated by the index register.

Write Random
TLB Entry

TLBWR

Loads the contents of the entry Hi, entry Lo0, entry Lo1, and page mask
registers to the TLB entry indicated by the random register.

Probe TLB For
Matching Entry

TLBP

Loads the address of the TLB entry coinciding with the contents of the entry
Hi register to the index register.

Return From
Exception

ERET

Returns from an exception, interrupt, or error trap.

COP0 sub rt 0rd funct

COP0 CO rt sard funct

User’s Manual U10504EJ7V0UM00 87

CPU Instruction Set Summary

Table 3-21 System Control Coprocessor (CP0) Instructions (2/2)

Instruction Format and Description

Cache Operation Cache op, offset (base)
Sign-extends the 16-bit offset to 32 bits and adds it to register base to
generate a virtual address. The virtual address is converted into a physical
address by using the TLB, and a cache operation indicated by a 5-bit sub op
code is executed to that address.

CACHE base op offsetrd funct

88 User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

89

Pipeline

4

This chapter describes the operation of the V

R

4300 processor pipeline.

Chapter 4

90

User’s Manual U10504EJ7V0UM00

4.1 General

The V

R

4300 uses a 5-stage pipeline. The pipeline is usually controlled by the
pipeline clock that is determined by the value of the DivMode(1:0)

*

 pins. This
pipeline clock is called PClock and one cycle of it is called PCycle. Each stage of
the pipeline is executed in 1 PCycle. The PCycle has two stages,

F

1 and

F

2, as
shown in Figure 4-1. Therefore, at least 5 PCycles are required to execute an
instruction. If the necessary data is not in the cache and must be fetched from the
main memory, more cycles are necessary. When the pipeline flows smoothly, five
instructions are executed simultaneously.

*

 In V

R

4300 and V

R

4305. In V

R

4310, DivMode(2:0).

Figure 4-1 Pipeline Stages

The five pipeline stages are:

• IC - Instruction Cache Fetch

• RF - Register Fetch

• EX - Execution

• DC - Data Cache Fetch

• WB - Write Back

IC RF EX DC WB

F1 F2

PClock

Phase

Cycle

F1 F2 F1 F2 F1 F2 F1 F2

PCycleMasterClock Cycle

User’s Manual U10504EJ7V0UM00

91

Pipeline

Figure 4-2 outlines the pipeline. The horizontal rows in this figure indicate the
execution processes of instructions, and the vertical columns indicate the five
processes executed at the same time.

Figure 4-2 Instruction Execution in the Pipeline

PCycle
(5-Deep)

Current
 CPU
Cycle

IC RF EX DC

IC RF EX WB

IC RF DC WB

IC EX DC WB

RF EX DC WB

WB

DC

EX

RF

IC

Chapter 4

92

User’s Manual U10504EJ7V0UM00

4.1.1 Pipeline Operations

Figure 4-3 shows the operations that can occur during each pipeline stage; Table
4-1 describes these pipeline activities.

Figure 4-3 Pipeline Operations

IC RF EX DC WB

F1 F2

PClock

Phase

Cycle

F1 F2 F1 F2 F1 F2 F1 F2

PCycle

Instr Fetch

Computational

Load/Store

Branch

ITC

ICF

ITLB

RFR

IDEC

BCMP

DVA

DCR

DTCDTLB

RFW

DCW

IVA

ALU

LA

User’s Manual U10504EJ7V0UM00

93

Pipeline

Table 4-1 Description of Pipeline Showing Stage in Which Operations Commence

Cycle
Begins During

this Phase
Mnemonic Descriptions

IC

F

1

— —

F

2

ICF Instruction Cache Fetch

ITLB Instruction micro-TLB read

RF

F

1

ITC Instruction cache Tag Check

F

2

RFR Register File Read

IDEC Instruction DECode

IVA Instruction Virtual Address calculation

EX

F

1

BCMP Branch Compare

ALU Arithmetic Logic operation

DVA Data Virtual Address calculation

DC

F

1

DCR Data Cache Read

DTLB Data joint-TLB read

F

2

LA Load data Alignment

DTC Data cache Tag Check

WB

F

1

DCW Data Cache Write

RFW Register File Write

F

2

— —

Chapter 4

94

User’s Manual U10504EJ7V0UM00

4.2 Branch Delay

The pipeline of the V

R

4300 generates a branch delay of one cycle in the following
cases:

• When a target address is calculated with a jump instruction

• When the branch condition of a branch instruction is satisfied and a
target address is calculated

The instruction address generated in the EX stage of a jump/branch instruction
cannot be used until the IC stage of the instruction to be executed after the next
instruction.

Figure 4-4 illustrates the branch delay and the location of the branch delay slot.

Figure 4-4 Branch Delay

Branch

Target

Branch Delay

Single branch
delay
instruction

IC RF EX WB

IC RF DC WB

IC EX DC WB

DC

EX

RF

(Branch Delay Slot)

User’s Manual U10504EJ7V0UM00

95

Pipeline

4.3 Load Delay

A load instruction that does not allow its result to be used by the instruction
immediately following is called a

delayed load instruction

. The instruction slot
immediately following this delayed load instruction is referred to as the

load delay
slot

.

In the V

R

4300 processor, the instruction immediately following a load instruction
can use the contents of the loaded register, however in such cases hardware
interlocks insert additional delay cycles. Consequently, scheduling load delay
slots can be desirable, both for performance and V

R

-Series processor
compatibility.

4.4 Pipeline Operation

The operation of the pipeline is illustrated by the following examples that describe
how typical instructions are executed. The instructions described are: ADD,
JALR, BEQ, TLT, LW, and SW. Each instruction is taken through the pipeline
and the operations that occur in each relevant stage are described.

Floating-point instructions are executed in the pipeline in the same manner as
multicycle integer instructions.

Chapter 4

96

User’s Manual U10504EJ7V0UM00

Add Instruction

ADD rd,rs,rt

IC

 stage In phase 2 of the IC stage, the fourteen low-order bits of the
virtual address are used to address the instruction cache. The
two high-order bits of this virtual address select one of four
instruction cache banks, and the remaining bits address the
selected bank. The ITLB selects the page.

RF

 stage In phase 1 of the RF stage, the cache index is compared with the
page frame number from the ITLB and the cache data is read out.
The cache hit/miss signal is valid late in phase 1 of the RF stage,
and the virtual PC is incremented by 4 so that the next
instruction can be fetched.

During phase 2, the

rs

 and

rt

 fields of the 2-port register file are
accessed and the register data is valid at the register file output.
At the same time, bypass multiplexers select inputs from either
the EX- or DC-stage output in addition to the register file output,
depending on the need for an operand bypass.

EX

 stage The ALU controls are set to do an A+B operation. The operands
flow into the ALU inputs, and the ALU operation is started. The
result of the ALU operation is latched into the ALU output latch
during phase 2.

DC

 stage This stage is a NOP for this instruction. The data from the
output of the EX stage (the ALU) is moved into the output latch
of the DC.

WB

 stage During phase 1, the WB latch feeds the data to the inputs of the
register file, which is addressed by the

rd

 field. The file write
strobe is enabled. By the end of phase 1, the data is written into
the register file.

User’s Manual U10504EJ7V0UM00

97

Pipeline

Figure 4-5 Add Instruction Pipeline Operations

IC RF EX DC WB

F1 F2

PClock

Phase

Cycle

F1 F2 F1 F2 F1 F2 F1 F2

ITCICF RFR

IDEC

RFWALU

ITLB

Chapter 4

98

User’s Manual U10504EJ7V0UM00

Jump and Link Register Instruction

JALR rd,rs

IC

 stage Same as the IC stage for the ADD instruction

.

RF

 stage During phase 2 of the RF stage, the register addressed by the

rs

field is read out of the file.

EX

 stage During phase 1 of the EX stage, the value of register

rs

 is
clocked into the virtual PC latch. This value is used in phase 2 to
fetch the next instruction.

The value of the virtual PC incremented during the RF stage is
incremented again to produce the link address PC+8 where PC is
the address of the JALR instruction. The resulting value is the PC
to which the program will eventually return from the jump
destination. This value is placed in the Link output latch of the
Instruction Address unit.

DC

 stage The PC+8 value is moved from the Link output latch to the
output latch of the DC pipeline stage.

WB stage Refer to the ADD instruction. Note that if no value is explicitly
provided for rd then register 31 is used as the default. If rd is
explicitly specified, it cannot be the same register addressed by
rs; if it is, the result of executing such an instruction is
undefined.

Figure 4-6 Jump and Link Register Instruction Pipeline Operations

IC RF EX DC WB

F1 F2

PClock

Phase

Cycle

F1 F2 F1 F2 F1 F2 F1 F2

ITCICF

ITLB

RFR

IDEC

RFW

IVA

ALU

User’s Manual U10504EJ7V0UM00 99

Pipeline

Branch on Equal Instruction

BEQ rs,rt,offset

IC stage Same as the IC stage for the ADD instruction.

RF stage During phase 2, the register file is addressed with the rs and rt
fields and the contents of these registers are placed in the register
file output latch.

EX stage During phase 1, a check is performed to determine if each
corresponding bit position of these two operands has equal
values. If they are equal, the PC is set to PC+target, where
target is the sign-extended offset field. If they are not equal, the
PC is set to PC+4.

The next PC resulting from the branch comparison is valid at the
beginning of phase 2 for instruction fetch.

DC stage This stage is a NOP for this instruction.

WB stage This stage is a NOP for this instruction.

Figure 4-7 Branch on Equal Instruction Pipeline Operations

IC RF EX DC WB

F1 F2

PClock

Phase

Cycle

F1 F2 F1 F2 F1 F2 F1 F2

ITCICF

ITLB

RFR

IDEC BCMP

IVA

Chapter 4

100 User’s Manual U10504EJ7V0UM00

Trap if Less Than Instruction

TLT rs,rt

IC stage Same as the IC stage for the ADD instruction.

RF stage Same as the RF stage for the ADD instruction.

EX stage During the phase 1, the bypass multiplexers select inputs from
the RF-, EX- or DC-stage output latch, depending on the need
for an operand bypass. ALU controls are set to do an A – B
operation. The operands flow into the ALU inputs, and the ALU
operation is started.

The result of the ALU operation is latched into the ALU output
latch during phase 2.

DC stage The sign bits of operands and of the ALU output latch are
checked to determine if a less than condition is true. If this
condition is true, a Trap Exception occurs. This, as with all
pipeline exceptions, implies a 2-cycle stall. The PC register is
loaded with the value of the exception vector and instructions
following in previous pipeline stages are killed.

WB stage The exception code is set in the ExCode field in the cause
register if the less than condition was met in the DC stage. The
PC value of this instruction is stored in the EPC register and BD
bit are updated appropriately according to the contents of the
EXL bit of the Status register. If the less than condition was not
met in the DC stage, no activity occurs in the WB stage.

Figure 4-8 Trap if Less Than Instruction Pipeline Operations

IC RF EX DC WB

F1 F2

PClock

Phase

Cycle

F1 F2 F1 F2 F1 F2 F1 F2

ITCICF

ITLB

RFR

IDEC

RFWALU

IVA

User’s Manual U10504EJ7V0UM00 101

Pipeline

Load Word Instruction

LW rt,offset(base)

IC stage Same as the IC stage for the ADD instruction.

RF stage Same as the RF stage for the ADD instruction. Note that the base
field is in the same position as the rs field.

EX stage Refer to the EX stage for the ADD instruction. For LW, the
inputs to the ALU come from GPR[base] through the bypass
multiplexer and from the sign-extended offset field. The result of
the ALU operation that is latched into the ALU output latch in
phase 2 represents the effective virtual address of the operand
(DVA).

DC stage The data cache is accessed in parallel with the TLB, and the
cache tag field is compared with the Page Frame Number (PFN)
field of the TLB entry. After passing through the load aligner,
aligned data is placed in the DC output latch during phase 2.

WB stage During phase 1, the cache read data is written into the file
addressed by the rt field.

Figure 4-9 Load Word Instruction Pipeline Operations

IC RF EX DC WB

F1 F2

PClock

Phase

Cycle

F1 F2 F1 F2 F1 F2 F1 F2

ITCICF

ITLB

RFR

IDEC

DVA DCR

DTCDTLB

RFWLA

Chapter 4

102 User’s Manual U10504EJ7V0UM00

Store Word Instruction

SW rt,offset(base)

IC stage Same as the IC stage for the ADD instruction.

RF stage Same as the RF stage for the LW instruction.

EX stage Refer to the LW instruction for a calculation of the effective
address. From the RF output latch the GPR[rt] is sent through
the bypass multiplexer and into the main shifter, where the
shifter performs the byte-alignment operation for the operand.
The results of the ALU and the shift operations are latched in the
output latches during phase 2.

DC stage Refer to the LW instruction for a description of the cache access.
Additionally, the merged data from the load aligner is moved into
the store data output latch during phase 2.

WB stage If there was a cache hit, the content of the store data output latch
is written into the data cache at the appropriate word location.

Note that all store instructions use the data cache for two
consecutive PCycles. If the following instruction requires use of
the data cache, the pipeline is stalled for one PCycle to complete
the writing of an aligned store data.

Figure 4-10 Store Word Instruction Pipeline Operations

IC RF EX DC WB

F1 F2

PClock

Phase

Cycle

F1 F2 F1 F2 F1 F2 F1 F2

ITCICF

ITLB

RFR

IDEC

DVA DCR

DTCDTLB

LA

DCW

User’s Manual U10504EJ7V0UM00 103

Pipeline

4.5 Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions occur, or
when data dependencies are detected. Interruptions handled using hardware, such
as cache misses, are referred to as interlocks, while those that are handled using
software are called exceptions.

As shown in Figure 4-11, all interlock and exception conditions are collectively
referred to as faults.

Figure 4-11 Interlocks, Exceptions, and Faults

At each cycle, exception and interlock conditions are checked for all active
instructions.

Because each exception or interlock condition corresponds to a particular pipeline
stage, a condition can be traced back to the particular instruction in the exception/
interlock stage, as shown in Figure 4-12. For instance, an LDI Interlock is raised
in the execution (EX) stage.

Tables 4-2 and 4-3 describe the pipeline interlocks and exceptions listed in Figure
4-12.

Hardware

Exceptions

Software

Interlocks

Faults

StallsAbort

Chapter 4

104 User’s Manual U10504EJ7V0UM00

Remark The conditions of the exceptions are shown starting from the
exception with the highest priority.

Figure 4-12 Correspondence of Pipeline Stage to Interlock and Exception Condition

State
Pipeline Stage

IC RF EX DC WB

Interlock

ITM LDI DCM CP0I

ICB MCI DCB

COp

Exceptions

IADE SYSC RST

ITLB BRPT NMI

IBE CPU OVFL

RSVD TRAP

FPE

DADE

DTLB

WAT

INTR

DBE

Clock

PCycle F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

User’s Manual U10504EJ7V0UM00 105

Pipeline

Table 4-2 Description of Pipeline Exceptions

Table 4-3 Description of Pipeline Interlocks

Exception Description

IADE Instruction Address Error Exception

ITLB Instruction TLB Exception

IBE Instruction Bus Error Exception

SYSC SYSCALL Instruction Exception

BRPT Breakpoint Instruction Exception

CPU Coprocessor Unusable Exception

RSVD Reserved Instruction Exception

RST External Reset Exception

NMI External NMI Exception

OVFL Integer Overflow Exception

TRAP TRAP Instruction Exception

FPE Floating-point Exception

DADE Data Address Error Exception

DTLB Data TLB Exception

WAT Reference to Watch Address Exception

INTR Interrupt Exception

DBE Data Bus Error Exception

Interlock Description

ITM Instruction TLB Miss

ICB Instruction Cache Busy

LDI Load Interlock

MCI Multi-cycle Interlock

DCM Data Cache Miss

DCB Data Cache Busy

COp Cache Op

CP0I CP0 Bypass Interlock

Chapter 4

106 User’s Manual U10504EJ7V0UM00

4.6 Pipeline Interlocks and Exceptions

When an interlock or exception condition arises, pipeline flow is interrupted.
Depending upon whether the condition is an interlock or an exception, one of the
following occurs:

• If an interlock condition arises, the pipeline remains stalled until the
interlock is corrected by hardware.

• If an exception occurs, the exception-causing instruction and all
pipelines that follow are aborted, the exception is resolved by
software, and the pipeline restarted and reloaded.

Pipeline interlocks and pipeline exceptions are described in the following section.
The exceptions themselves are described in Chapter 6 Exception Processing.

Bypassing, which allows data and conditions produced in the EX, DC and WB
stages of the pipeline to be made available to the EX stage of the next cycle, is also
described in this section.

4.6.1 Pipeline Interlocks

When an interlock condition occurs, the pipeline stalls and remains stalled until
the interlock is corrected. Should pipeline stall requests from different stages arise
simultaneously, the Pipeline Control Unit prioritizes the stall requests. For
instance, a stall request from the DC stage is always allowed to be resolved before
a simultaneous RF-stage stall request, since both may require the same resource
(TLB, memory) to be resolved. The EX stage is allowed to stall in order to
complete a multicycle instruction as long as there is no load dependency between
itself (the EX stage) and the DC stage. Interlock conditions for each pipeline stage
are shown in Figure 4-12 and described in Table 4-3.

The remainder of this section describes in detail the following pipeline interlocks:

• Instruction TLB Miss (ITM)

• Instruction Cache Busy (ICB)

• Load Interlock (LDI)

• Multicycle Instruction Interlock (MCI)

• Data Cache Miss (DCM)

• Data Cache Busy (DCB)

• Cache Operation (COp)

• CP0 Bypass Interlock (CP0I)

User’s Manual U10504EJ7V0UM00 107

Pipeline

4.6.2 Instruction TLB Miss (ITM)

A pipeline stall due to an Instruction TLB Miss occurs when the virtual address of
the next instruction to be fetched is not found in the instruction micro-TLB
(ITLB).

The pipeline stalls when the micro-TLB miss is detected in the RF stage,
whereupon the pipeline controller notifies the micro-TLB to proceed in servicing
the stall. The pipeline starts running again when the micro-TLB has been updated
from the JTLB.

A miss penalty of 3 PCycles is incurred when the micro-TLB is updated from the
JTLB.

If the virtual address also misses in the JTLB, an exception is taken which
overrides the stall to allow the handler to update the JTLB. Once the update is
completed, the instruction fetch is re-executed. This initiates a repeat of the ITM
stall until the micro-TLB is updated from the JTLB, which was just updated by the
exception handler.

Figure 4-13 Instruction TLB Miss Interlock

IC RF RF RF RF EX DC WB

ITM

ITLB
Miss Access JTLB

ITM

ITLB
Update

RunRun Stall Stall Run Run Run Run Run RunStall

IC IC IC IC RF EX DC WB

IC RF EX DC WB

IC RF EX DC WB

Chapter 4

108 User’s Manual U10504EJ7V0UM00

4.6.3 Instruction Cache Busy (ICB)

A pipeline stall due to an Instruction Cache Busy interlock occurs when the next
instruction is not found in the instruction cache, and the cache cannot service the
Instruction Fetch. The pipeline stalls when the instruction cache miss is detected
in the RF stage. After detecting the stall, the pipeline controller notifies the
instruction cache to proceed in servicing the stall.

The pipeline begins running again after the entire cache line has been written into
the instruction cache.

When the instruction cache is busy with a CACHE instruction and the Instruction
Fetch cannot be serviced, a Cache Operation (COp) interlock is taken, not ICB.

Figure 4-14 Example of an Instruction Cache Busy Interlock

RF RF EX DC WBIC RF

• • •

ICB

I-cache
Miss

Refill I-cache

ICB

• • •

I-cache
Update

RunRun Stall Stall Run Run Run Run Run Run

IC IC IC RF EX DC WB

IC RF EX DC WB

IC RF EX DC WB

User’s Manual U10504EJ7V0UM00 109

Pipeline

4.6.4 Multicycle Instruction Interlock (MCI)

A pipeline stall due to a Multicycle Interlock occurs when an instruction with an
execution latency of more than one pipeline clock enters the EX stage.

The pipeline begins running again during the multicycle instruction’s last clock of
operation in the EX stage.

Figure 4-15 Example of a Multicycle Instruction Interlock

• • • RunStall

IC RF EX EX

Run Stall RunRun Run Run • • •

Mult A,B

MCI

EX EX DC WB

MCI

IC RF RFRead MultHi

IC ICRead MultLo

Multiple
Cycle Instruction

Stall

RF RF EX DC

IC IC RF EX

• • •

• • •

• • •

Chapter 4

110 User’s Manual U10504EJ7V0UM00

4.6.5 Load Interlock (LDI)

A pipeline stall due to a Load Interlock occurs when data fetched by a load
instruction is required by the next immediate instruction. The pipeline stalls when
the load-use instruction (the instruction using the load data), enters the EX stage.

The pipeline begins running again when the clock after the target of the load is
read from the data cache (in the DC stage of the “Load B” instruction in Figure 4-
16).

The Load Interlock is normally only active for one PClock cycle when the load
instruction is in the DC stage and the load-use instruction is in the EX stage. The
data returned from the data cache at the end of the DC stage is input into the EX
stage, using the bypass multiplexers.

If the data cache misses, the Data Cache Busy interlock extends the stall until the
data cache has been updated with the missing data. The LDI is still active during
this time and extends the stall one clock beyond the Data Cache Interlock while
the data is bypassed from the data cache into the EX stage.

This case is illustrated in Figure 4-17.

Figure 4-16 Example of a Load Interlock

LDI

LDI
detected

Load A
I-cache

Run

Bypass

Run Stall Run Run Run Run

IC RF EX DC WB WB

Run Run Run

Load B I-cache
IC RF EX DC DC WB

I-cache
IC RF EX EX DC WBAdd A,B

LDI

I-cache
IC RF RF EX DC WB

I-cache
IC IC RF EX DC WB

User’s Manual U10504EJ7V0UM00 111

Pipeline

4.6.6 Data Cache Miss (DCM)

If a data cache miss occurs in the DC stage, the pipeline stalls for 1 PCycle in
which the miss is detected. The pipeline stalls regardless of whether the load or
store instruction is executed. The data cache busy (explained next) continues
stalling until a new cache line is read.

When a requested word data has been read from the cache, the pipeline begins
running again.

Figure 4-17 illustrates DCM.

4.6.7 Data Cache Busy (DCB)

A pipeline stall due to the data cache being busy can occur in the following two
situations:

• If the instruction immediately after a store instruction requires use of
the data cache then the pipeline is stalled in its DC stage while the
store writes the data to the cache during its WB stage. On a cache
store hit the pipeline only stalls for one PClock while the data is
written to the data cache. On a cache store miss the pipeline stalls
with the store in the DC stage until the cache line has been updated.
Once the line has been updated, the pipeline restarts and moves the
store instruction into the WB stage. If the instruction following the
“store” (i.e. the instruction currently in the DC stage) also requires
access to the data cache, the pipeline will then stall for one PCycle
while the store data is being written to the cache.

• When a miss occurs on a load, the data cache signals it is busy while
it fetches the missed data word from external memory. Refer to
Figure 4-17.

The pipeline begins running again on a load when the missed data word is
available from the data cache.

Chapter 4

112 User’s Manual U10504EJ7V0UM00

Figure 4-17 Example of a Data Cache Miss Followed by a Load Interlock

4.6.8 CACHE Operation (COp)

A pipeline stall due to a CACHE operation can occur in the following two
situations:

• When an instruction cache operation instruction enters the DC stage,
the instruction cache operation continues to be serviced while the
pipeline stalls. The pipeline begins running again when the
instruction cache operation is complete, allowing the next instruction
fetch to proceed.

• When the data cache operation instruction requiring an operation of 2
PCycles of the data cache has entered the DC stage.

LDI
LDI

detected

Load A
I-cache

Run

Bypass

Run Run Stall Run Run

IC RF EX DC DC WB

Run Run Stall

I-cache
IC RF EX EX DC WBAdd A,B

LDI

• • • Stall

LDI
detected

Load C

D-cache
Miss

IC RF

IC IC RF EX EX EX EX DC

WB WB WB

DC DC DC WB

RF RF RF EX

Bypass

DCB

IC RF RF EX DC

DCM DCM
DCB

D-cache

• • • • • • •

• • •

• • •

D-cache
Update

• • •

• • •

LDILDI

DC

Miss

User’s Manual U10504EJ7V0UM00 113

Pipeline

4.6.9 Coprocessor 0 Bypass Interlock (CP0I)

A pipeline stall due to a CP0 Bypass Interlock occurs when an instruction which
caused an exception reaches the WB stage and the subsequent instruction in the
DC stage requests a read of any CP0 register.

This interlock causes a pipeline stall for one PCycle to allow the CP0 register to
be written in the WB stage before allowing any CP0 register to be read in the DC
stage.

Figure 4-18 Example of a Coprocessor 0 Bypass Interlock (CP0I)

RF EX DC WB

CP01 CP01

RunRun Run Stall Run Run Run Run

IC RF EX DC DC WB

IC EXEX DC WB

Run

IC

RF

IC EXRF DC WBRF

Instruction
which causes
exception

Load LO

WB stage completes in
first phase of stage

Chapter 4

114 User’s Manual U10504EJ7V0UM00

4.7 Pipeline Exceptions

When a pipeline exception condition occurs, the pipeline stalls for 2 PCycles and
the instruction causing the exception as well as all those that follow it in the
pipeline are aborted. Accordingly, any stall conditions and any later exception
conditions from any aborted instruction are inhibited; there is no benefit in
servicing stalls for an aborted instruction.

After aborting the instructions, an execution starts at a predefined exception
vector. System Control Coprocessor (CP0) registers are loaded with information
that identifies the type of exception as well as auxiliary information such as the
virtual address at which translation exceptions occur.

Exception conditions for each pipeline stage are shown in Figure 4-12 and
described in Table 4-2.

Exceptions can split into two groups:

• those that occur independently of instruction execution (Reset, NMI,
and interrupt exceptions)

• those exceptions that result from the execution of a particular
instruction (an instruction-dependent exception). This category
includes all other exceptions.

Exceptions are logically precise.

4.7.1 Instruction-Independent Exceptions (Reset, NMI, and Interrupt)

Reset, NMI and interrupt exceptions are identified and processed as follows:

• Reset exception has the highest priority of all the possible exceptions;
when a Reset exception is asserted, instructions in all pipeline stages
except the WB are aborted regardless of any interlocks or other
exceptions that may be active.

• NMI and interrupt exception requests are accepted only if the
previous PCycle was a run cycle. When an NMI or interrupt
exception occurs, all pipeline stages except the WB are aborted.

User’s Manual U10504EJ7V0UM00 115

Pipeline

4.7.2 Instruction-Dependent Exceptions

Prioritizing between instruction-dependent exceptions and interlocks is made
according to these rules:

• an exception request from a particular pipeline stage is only
processed if no stall condition from a later pipeline stage is active.

• an exception request from a later pipeline stage always has a higher
priority than an exception from an earlier pipeline stage.

• an exception request from a pipeline stage always has higher priority
than any stall request from the same or earlier pipeline stages.

4.7.3 Interactions between Interlocks and Exceptions

With the VR4300, the processing of the EX and RF stages can be continued while
the pipeline stalls. The interaction between interlocking of the two stages and
exceptions is relatively simple.

Interaction between EX and RF Stages

The EX exception occurs only when an instruction that causes the EX exception
has entered a pipeline stage. Because the RF interlock solving processing has not
yet been started at this time, the EX exception takes precedence because of the
stall request from the RF stage. Interactions in various cases are described next.

• When EX exception is stalled by DC interlock
The EX exception takes precedence over the RF stall request. This is
because the RF interlock is not solved during the DC stall period.

• If instruction cache busy and multi-cycle instruction interlock
take place simultaneously
Both the RF and EX stages solve the respective interlocks.
The cause that has generated a floating-point exception is detected
before the instruction cache busy (ICB) stall ends, but the exception
occurs after execution has entered the DC stage. Therefore, the
exception condition is retained in the EX stage until the RF interlock
is solved, and the related stage is deleted.

• If exception from EX stage and RF interlock take place
simultaneously
The EX exception takes precedence. This is because the instruction
that has caused the RF interlock is canceled and no request is issued
to the external memory.

Chapter 4

116 User’s Manual U10504EJ7V0UM00

Interaction between RF and DC Stages

If a stall request is made at the same time in the RF and DC stages, the pipeline
controller gives the priority to the processing of the DC stage. In other words, the
RF stall processing is started after the DC stall has been solved. This is because
the same resources (such as the system interface and TLB) are necessary for
solving the RF interlock and DC interlock.

4.7.4 Exception and Interlock Priorities

The priority for processing exceptions and interlocks within the same clock cycle
is listed below. Exception and interlock requests from the WB stage always have
priority over exception and interlock requests from the DC stage. Exception and
interlock requests from the DC stage always have priority over exception and
interlock requests from the EX stage. EX-stage exception and interlock requests
in turn always have priority over any exception and interlock requests from the RF
stage.

Figure 4-19 Execution and Interlock Priorities

In the case of multiple exception requests from the same pipeline stage, the
highest-priority exception is processed first. The priority of the instruction-
dependent exceptions and interlocks are shown in the following sections.

Current
 CPU
Cycle

IC RF EX DC

IC RF EX

IC RF

IC

WB

DC

EX

RF

IC

Higher

Priority:

Lower

User’s Manual U10504EJ7V0UM00 117

Pipeline

4.7.5 WB-Stage Interlock and Exception Priorities

Because there is only the following one exception or interlock in the WB stage,
there is no priority.

• CP0 Bypass interlock

4.7.6 DC-Stage Interlock and Exception Priorities

Following is a prioritized list of the exceptions and interlocks processed in the DC
pipeline stage.

• Reset exception (highest)

• NMI exception

• Integer Overflow exception

• Trap exception

• Floating-Point exception

• Data Address Error exception

• Data TLB Miss exception

• Data TLB Invalid exception

• Data TLB Modification exception

• Watch exception

• Interrupt exception

• Data Cache Miss interlock

• Data Cache Busy interlock

• CACHE Op interlock

• Data Bus Error exception

Chapter 4

118 User’s Manual U10504EJ7V0UM00

4.7.7 EX-Stage Interlock and Exception Priorities

Following is a prioritized list of the exceptions and interlocks processed in the EX
stage.

• System Call exception

• Breakpoint exception

• Coprocessor Unusable exception

• Reserved Instruction exception

• Load interlock

• Multicycle Instruction interlock

4.7.8 RF-Stage Interlock and Exception Priorities

Following is a prioritized list of the exceptions and interlocks processed in the RF
pipeline stage.

• Instruction Address Error exception

• Instruction TLB Miss exception

• Instruction TLB Invalid exception

• Instruction TLB Miss interlock

• Instruction Cache Busy interlock

• Instruction Bus Error exception

If an Instruction Bus Error exception occurs during a cache refill, while an
Instruction Cache Busy interlock is active, the instruction cache only signals the
exception to the pipeline controller after the cache refill is complete, and therefore
no stall is active.

Individual exceptions are described in detail in Chapter 6 Exception Processing.

User’s Manual U10504EJ7V0UM00 119

Pipeline

4.7.9 Bypassing

In some cases, data and conditions produced in the EX, DC and WB stages of the
pipeline are made available to the EX stage (only) through the bypass datapath.

Operand bypass allows an instruction in the EX stage to continue without having
to wait for data or conditions to be written to the register file at the end of the WB
stage. Instead, the Bypass Control Unit ensures data and conditions from later
pipeline stages are available at the appropriate time for instructions earlier in the
pipeline.

The Bypass Control Unit also controls the source and destination register
addresses supplied from the register file.

4.8 Code Compatibility

The VR4300 can execute any programs which can be executed on the VR3000
series and VR4000 series*, but the reverse may not necessarily be true. Standard
MIPS compilers produce code which will run on both. When hand-coding
assembly code, it is strongly advised to maintain compatibility with the VR Series.
For more information, refer to the each product’s user’s manuals.

* The instruction set on the VR4100 differs partially from the other products.
(For example, FPU instructions are not supported.)

Chapter 4

120 User’s Manual U10504EJ7V0UM00

4.9 Write Buffer

The VR4300 processor contains an on-chip write buffer, used as a temporary data
storage for outgoing data. The write buffer stores one doubleword (8 bytes) of
data for each PCycle, and can buffer a total of eight words (32 bytes) of data, equal
to the data cache line size. When storing data, therefore, all the data lengths can
be used.

The write buffer can store any data as long as it has a vacancy.

The format of the write buffer is shown below.

Figure 4-20 Write Buffer Format

The write buffer can store the following:

• Four 32-bit physical addresses

• 4-bit size area indicating four types of transfer data size

• Data up to 4 doublewords

During an uncached store operation, data is held in this buffer until it can be
retrieved by the external interface. The processor pipeline continues to execute
while data is stored in the write buffer.

During either a load miss or a store miss to a cache line in the dirty state (refer to
Chapter 11 Cache Memory for a description of cache line states), dirty data is
stored in this buffer until the requested data is returned from the external interface.
The processor pipeline continues to run while the write buffer waits (for a
response from the external interface) to empty its contents to the external
interface/memory.

If the processor executes a load or store instruction requiring external resources
when the write buffer is full, the pipeline is stalled until the write buffer has a
space for the data to be stored.

4

Size Physical Address Data

Size Physical Address Data

Size Physical Address Data

Size Physical Address Data

32 64

User’s Manual U10504EJ7V0UM00

121

Memory Management System

5

The V

R

4300 processor provides a full-featured memory management unit (MMU)
which uses an on-chip translation lookaside buffer (TLB) to translate virtual
addresses into physical addresses.

This chapter describes the operation of the TLB, those System Control
Coprocessor (CP0) registers that provide the software interface to the TLB and the
memory mapping method that translates the virtual address to the physical
address.

Chapter 5

122

User’s Manual U10504EJ7V0UM00

5.1 Translation Lookaside Buffer (TLB)

A virtual address is converted into a physical address by using the internal TLB

*

.
The internal TLB is a full-associative memory having 32 entries, and one entry is
mapped with an odd and even numbers in pairs. The size of these pages can be
4K, 16K, 64K, 256K, 1M, 4M, or 16M, and can be specified for each entry. When
a virtual address is given, each TLB entry checks the 32 entries whether the virtual
address coincides with the virtual address appended with the ASID area stored to
the Entry Hi register.

If the addresses coincide (if a hit occurs), a physical address is generated from the
physical address in the TLB and an offset.

If the addresses do not coincide (if a miss occurs), an exception occurs, and the
TLB entry is written by software from a page table on the memory. The software
either writes the TLB entry over the entry selected by the index register, or writes
it to a random entry indicated by the random register.

If there are two or more TLB entries that coincide, the TLB operation is not
correctly executed. In this case, the TLB-Shutdown (TS) bit of the status register
is set to 1, and then the TLB cannot be used.

5.2 Memory Management System Architecture

The memory management system expands the address space of the CPU by
converting a large virtual memory space into physical addresses.

The physical address space of the V

R

4300 is 4 GB with 32-bit addresses used. A
virtual address is 32 bits wide in the case of the 32-bit mode, and the maximum
user area is 2 GB (2

31

). In the case of the 64-bit mode, the address is 64 bits wide,
and the maximum user area is 1 TB (2

40

). For the TLB entry format in each mode,
refer to

5.3.1

.

The virtual address is expanded by the address space ID (ASID) (refer to

Figures
5-2

 and

5-3

). ASID decreases the number of times of TLB flash when the context
is switched. The ASID area is 8 bits wide and is in the entry Hi register of CP0.
The global bit (G) is in the entry Lo0 and entry Lo1 registers.

* There are virtual-to-physical address translations that occur outside of the TLB. For example,
addresses in

the kseg0

 and

kseg1

 spaces are unmapped translations. In these spaces the physical
address is derived by subtracting the base address of the space from the virtual address.

User’s Manual U10504EJ7V0UM00

123

Memory Management System

Figure 5-1 Overview of a Virtual-to-Physical Address Translation

1. Virtual address (VA) represented by the vir-
tual page number (VPN, high-order bit of the
address) is compared with indicated area in
TLB.

Virtual address

2. If there is a match, the page frame number
(PFN) representing the high-order bits of
the physical address (PA) is output from
the TLB.

VPNASIDG

VPNASID

PFN

TLB

Physical address

PFN

Offset

Offset

TLB

3. The Offset, which does not pass through the
TLB, is then concatenated to the PFN.

Entry

Chapter 5

124

User’s Manual U10504EJ7V0UM00

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual
address from the processor with the virtual addresses in the TLB; there is a match
when the virtual page number (VPN) of the address is the same as the VPN field
of the entry, and either:

• the Global (

G

) bit of the TLB entry is set, or

• the ASID field of the virtual address is the same as the ASID field of
the TLB entry.

This match is referred to as a

TLB hit

. If there is no match, a TLB Miss exception
is taken by the processor and software is allowed to reference a page table of
virtual/physical addresses in memory and to write its contents to the TLB.

If there is a virtual address match in the TLB, the physical address is output from
the TLB and concatenated with the

Offset

, which represents an address within the
page frame space. The

Offset

 does not pass through the TLB. The lower bits of
the virtual address are output as is.

For details, refer to

 5.4.9 Virtual-to-Physical Address Translation Process

.

The next two sections describe the 32-bit and 64-bit address translations.

User’s Manual U10504EJ7V0UM00

125

Memory Management System

32-bit Mode Address Translation

Figure 5-2 shows the virtual-to-physical-address translation of a 32-bit mode
address. This figure illustrates the two of seven possible page sizes: a
4 KB page (12 bits) and a 16 MB page (24 bits).

• The top portion of Figure 5-2 shows a virtual address with a 12-bit,
or 4 KB, page size, labelled

Offset

. The remaining 20 bits of the
address excluding ASID represent the VPN, and index the 1M-entry
page table.

• The bottom portion of Figure 5-2 shows a virtual address with a 24-
bit, or 16 MB, page size, labelled

Offset

. The remaining 8 bits of the
address excluding ASID represent the VPN, and index the 256-entry
page table.

Figure 5-2 32-Bit Mode Virtual Address Translation

28 11 0

 20
12

 2931

VPN Offset

3239

ASID

8

23 0

8
24

Offset

39

Virtual Address with 256 (28)16 MB pages

8 bits = 256 pages

20 bits = 1M pages

12

ASID

8

28 293132

VPN

24

Virtual-to-physical
translation in TLB

Bits 31, 30 and 29 of the virtual
address select User,
Supervisor, or Kernel address
spaces.

Virtual-to-physical
translation in TLB

 TLB

 TLB

 31 0
PFN Offset

32-bit Physical Address

Virtual Address with 1M (220) 4 KB pages

Offset passed
unchanged to
physical memory

Offset passed
unchanged to
physical memory

Chapter 5

126

User’s Manual U10504EJ7V0UM00

64-bit Mode Address Translation

Figure 5-3 shows the virtual-to-physical-address translation of a 64-bit mode
address. This figure illustrates the two of seven possible page sizes: a
4 KB page (12 bits) and a 16 MB page (24 bits).

• The top portion of Figure 5-3 shows a virtual address with a
12-bit, or 4 KB, page size, labelled

Offset

. The remaining 28 bits of
the address excluding ASID represent the VPN, and index the 256M-
entry page table.

• The bottom portion of Figure 5-3 shows a virtual address with a 24-
bit, or 16 MB, page size, labelled

Offset

. The remaining 16 bits of
the address excluding ASID represent the VPN, and index the 64K-
entry page table.

Figure 5-3 64-Bit Mode Virtual Address Translation

11 0

12

63

VPN Offset

6471

ASID

8

Virtual Address with 256M (228) 4 KB pages

23 0

22 24

Offset

Virtual Address with 64K (216)16 MB pages

16 bits = 64K pages

28 bits = 256M pages 12

ASID VPN

6162 40 39

 28

0 or -1

636471 6162 40 24

8

39

 16

22

0 or -1

Virtual-to-physical
translation in TLB

Bits 62 and 63 of the virtual
address select User, Supervisor,
or Kernel address spaces.

Virtual-to-physical
translation in TLB TLB

 31 0
PFN Offset

 TLB

32-bit Physical Address

2

2

Offset passed
unchanged to
physical memory

Offset passed
unchanged to
physical memory

User’s Manual U10504EJ7V0UM00

127

Memory Management System

5.2.1 Operating Modes

The processor has three operating modes that function in both 32- and 64-bit
operations:

• User mode

• Supervisor mode

• Kernel mode

The User mode and Kernel mode are common to all the V

R

 Series members.
Generally, the operating system is executed in the Kernel mode, and the
application program is executed in the user mode. The V

R

4000 series is provided
with a third mode. This mode, called the supervisor mode, is intermediate
between the User and Kernel modes, and is used to organize a high security
system.

If an exception occurs, the CPU enters the Kernel mode, and remains in this mode
until an exception return instruction (ERET) is executed. The ERET instruction
restores the mode in which the processor was operating before the occurrence of
the exception.

5.2.2 Virtual Addressing in User Mode

In the single-user mode, a virtual address space (useg) of 2 GB (2

31

 bytes) can be
used in the 32-bit mode, and a 1 TB (2

40

 bytes) virtual address space (xuseg) can
be used in the 64-bit mode. As shown in Figures 5-2 and 5-3, each virtual address
is expanded to a separate virtual address by an 8-bit address space ID (ASID) for
up to 256 user processes. The system allocates each process with an ASID to
retain the contents of the TLB even when it has switched the context. useg and
xuseg are referenced via TLB. Whether the cache can be used or not is determined
for each page by the TLB entry (the C bit of the TLB entry determines whether
the cache can be used).

The user segment starts from address 0 and the currently valid user process resides
in useg (in the 32-bit mode) or xuseg (in the 64-bit mode).

The V

R

4300 operates in the user mode when the values of the bits in the

Status

register is as follows:

•

KSU

 bits = 10

•

EXL

 = 0

•

ERL

 = 0

In conjunction with these bits, the

UX

 bit in the

Status

 register selects between 32-
or 64-bit User mode addressing as follows:

Chapter 5

128

User’s Manual U10504EJ7V0UM00

• UX = 0: Selects 32-bit useg
TLB miss is processed by a 32-bit TLB miss exception handler.

• UX = 1: Selects 64-bit xuseg
TLB miss is processed by a 64-bit XTLB miss exception handler.

Table 5-1 lists the characteristics of the two user mode segments,

useg

 and

xuseg

.

* The V

R

4300 internally uses 64-bit addresses. In the Kernel mode, the pro-
cessor saves and restores each register to initialize the register before
switching the context. A 32-bit value is used as an address, with bit 31
sign-extended to bits 32 through 63, in the 32-bit mode.
Usually, the program in the 32-bit mode does not generate invalid address-
es. If the context is switched and the processor enters the Kernel mode, a
value other than the 32-bit address previously sign-extended may be stored
to a 64-bit register. In this case, the program in the user mode may gener-
ate invalid addresses.

Figure 5-4 User Mode Virtual Address Space

Table 5-1 32-Bit and 64-Bit User Mode Segments

Address Bit
Values

Status Register
Segment

Name
Virtual Address Range Segment SizeBit Values

KSU EXL ERL UX

32-bit
A(31) = 0

10 0 0 0 useg
0x0000 0000

through
0x7FFF FFFF

2 GB
(2

31

 bytes)

64-bit
A(63:40) = 0

10 0 0 1 xuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 TB
(2

40

 bytes)

useg xuseg

Address
Error

1 TB
TLB Mapped

32-bit* 64-bit

0x FFFF FFFF FFFF FFFF

0x 0000 0000 0000 0000

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

0x 0000 0100 0000

Address
Error

TLB Mapped
2 GB

0x 7FFF FFFF 0x 0000 00FF FFFF

0000

FFFF

User’s Manual U10504EJ7V0UM00

129

Memory Management System

useg

 (32-bit mode)

When the

UX

 bit of the

Status

 register is 0 and the most significant bit of the virtual
address is 0, this virtual address space is referred to as useg. If an attempt is made
to reference an address whose most significant bit is 1, an address error exception
occurs (refer to

Chapter 6 Exception Processing

).

xuseg

 (64-bit mode)

If the

UX

 bit of the

Status

 register is 1 and the bits (63:40) of the virtual address
are all 0, the virtual address space is referred to as xuseg. A user address space of
1 TB (2

40

 bytes) can be used. If an attempt is made to reference an address that
has 1 in bits (63:40), an address error exception occurs (refer to

Chapter 6
Exception Processing

).

5.2.3 Virtual Addressing in Supervisor Mode

The supervisor mode shown in Figure 5-5 is intended for hierarchical execution
of the operating system. In the Kernel mode, the Kernel operating system in the
highest hierarchy is executed, and the other operating systems are executed in the
supervisor mode.

Referencing suseg, sseg, xsuseg, xsseg, and csseg (i.e., all spaces) is carried out
via TLB. Whether the cache can be used or not is determined by the TLB entry of
each page (the C bit of the TLB entry determines whether the cache can be used).

The processor operates in the supervisor mode if the bits of the

Status

 register are
in the following status:

•

KSU

 = 01

•

EXL

 = 0

•

ERL

 = 0

In addition, the addressing mode in the supervisor mode is determined by the

SX

bit of the

Status

 register.

•

SX = 0: 32-bit supervisor space
TLB miss is processed by a 32-bit TLB miss exception handler.

• SX = 1: 64-bit supervisor space
TLB miss is processed by a 64-bit XTLB miss exception handler.

Table 5-2 shows the features of each segment in the supervisor mode.

Chapter 5

130 User’s Manual U10504EJ7V0UM00

* The VR4300 internally uses 64-bit addresses. In the 32-bit mode, a 32-bit
value with bits 32 through 63 sign-extended is used as an address.
Normally, the program in the 32-bit mode does not generate an invalid ad-
dress. However, there is a possibility that an integer overflow may occur
as a result of an operation of base register + offset to calculate an address.
The address calculated at this time is invalid, and the result is undefined.
Two causes of the overflow are cited below.

• When bit 15 of offset = 0, bit 31 of base register = 0, and bit 31 of
(base register + offset) = 1

• When bit 15 of offset = 1, bit 31 of base register = 1, and bit 31 of
(base register + offset) = 0

Figure 5-5 Supervisor Mode Address Space

suseg

sseg

xsuseg

xsseg

32-bit* 64-bit

csseg

Address Error

0.5 GB
TLB Mapped

Address Error

2 GB
TLB Mapped

0x FFFF FFFF

0x E000 0000
0x DFFF FFFF

0x C000 0000
0x BFFF FFFF

0x 8000 0000
0x 7FFF FFFF

0x 0000 0000

Address Error

0.5 GB
TLB Mapped

0x FFFF FFFF FFFF FFFF

Address Error

1 TB
TLB Mapped

Address Error

1 TB
TLB Mapped

0x FFFF FFFF E000 0000
0x FFFF FFFF DFFF FFFF

0x FFFF FFFF C000 0000
0x FFFF FFFF BFFF FFFF

0x 4000 0100 0000 0000
0x 4000 00FF FFFF FFFF

0x 4000 0000 0000 0000
0x 3FFF FFFF FFFF FFFF

0x 0000 0100 0000 0000

0x 0000 00FF FFFF FFFF

0x 0000 0000 0000 0000

User’s Manual U10504EJ7V0UM00 131

Memory Management System

Table 5-2 32-Bit and 64-Bit Supervisor Mode Segments

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-significant
bit of the virtual address is set to 0, the suseg virtual address space is selected; it
covers the full 231 bytes (2 GB) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three high-order
bits of the virtual address are 110, the sseg virtual address space is selected; it
covers 229 bytes (512 MB) of the current supervisor address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

Address Bit
Values

Status Register
Segment

Name
Virtual Address Range

Segment
Size

Bit Values

KSU EXL ERL SX

32-bit
A(31) = 0

01 0 0 0 suseg
0x0000 0000

through
0x7FFF FFFF

2 GB
(231 bytes)

32-bit
A(31:29) = 110

01 0 0 0 sseg
0xC000 0000

through
0xDFFF FFFF

512 MB
(229 bytes)

64-bit
A(63:62) = 00

01 0 0 1 xsuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 TB
(240 bytes)

64-bit
A(63:62) = 01

01 0 0 1 xsseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 TB
(240 bytes)

64-bit
A(63:62) = 11

01 0 0 1 csseg
0xFFFF FFFF C000 0000

through
0xFFFF FFFF DFFF FFFF

512 MB
(229 bytes)

Chapter 5

132 User’s Manual U10504EJ7V0UM00

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 00, the xsuseg virtual address space is selected; it covers the full
240 bytes (1 TB) of the current user address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 01, the xsseg current supervisor virtual address space is selected;
it covers the full 240 bytes (1 TB) of the current supervisor address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 11, the csseg separate supervisor virtual address space is
selected. The virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address.

User’s Manual U10504EJ7V0UM00 133

Memory Management System

5.2.4 Virtual Addressing in Kernel Mode

The processor operates in Kernel mode when the Status register contains one or
more of the following values:

• KSU = 00

• EXL = 1

• ERL = 1

In conjunction with these bits, the KX bit in the Status register selects between 32-
or 64-bit Kernel mode addressing space:

• when KX = 0, 32-bit kernel space is selected
TLB miss is processed by a 32-bit TLB miss exception handler.

• when KX = 1, 64-bit kernel space is selected
TLB miss is processed by a 64-bit XTLB miss exception handler.

The processor enters Kernel mode whenever an exception is detected and it
remains in Kernel mode until an Exception Return (ERET) instruction is executed
and results in ERL and/or EXL = 0. The ERET instruction restores the processor
to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the
high-order bits of the virtual address, as shown in Figure 5-6. Table 5-3 lists the
characteristics of the 32-bit kernel mode segments, and Table 5-4 lists the
characteristics of the 64-bit kernel mode segments.

Chapter 5

134 User’s Manual U10504EJ7V0UM00

* The VR4300 internally uses 64-bit addresses. In the 32-bit mode, a 32-bit
value with bits 32 through 63 sign-extended is used as an address.
Normally, the program in the 32-bit mode uses 64-bit instructions. How-
ever, there is a possibility that an integer overflow may occur as a result of
an operation of base register + offset to calculate an address. The address
calculated at this time is invalid, and the result is undefined. Two causes of
the overflow are cited below.

• When bit 15 of offset = 0, bit 31 of base register = 0, and bit 31 of
(base register + offset) = 1

• When bit 15 of offset = 1, bit 31 of base register = 1, and bit 31 of
(base register + offset) = 0

Figure 5-6 Kernel Mode Address Space

kuseg

kseg0

kseg1

ksseg

kseg3

xkuseg

ckseg0

ckseg1

xksseg

ckseg3

cksseg

xkseg

32-bit* 64-bit

xkphys

0x FFFF FFFF FFFF FFFF

0x FFFF FFFF E000 0000

0.5 GB
TLB Mapped

0.5 GB
TLB Unmapped

Uncached

0.5 GB
TLB Mapped

0.5 GB
TLB Unmapped

Cacheable

TLB Unmapped
(For details, refer to

Figure 5-7.)

Address Error

TLB Mapped

Address Error

1 TB
TLB Mapped

Address Error

1 TB
TLB Mapped

0x FFFF FFFF DFFF FFFF

0x FFFF FFFF C000 0000
0x FFFF FFFF BFFF FFFF

0x FFFF FFFF A000 0000
0x FFFF FFFF 9FFF FFFF

0x FFFF FFFF 8000 0000
0x FFFF FFFF 7FFF FFFF

0x C000 00FF 8000 0000
0x C000 00FF 7FFF FFFF

0x C000 0000 0000 0000
0x BFFF FFFF FFFF FFFF

0x 8000 0000 0000 0000
0x 7FFF FFFF FFFF FFFF

0x 4000 0100 0000 0000
0x 4000 00FF FFFF FFFF

0x 4000 0000 0000 0000
0x 3FFF FFFF FFFF FFFF

0x 0000 0100 0000 0000
0x 0000 00FF FFFF FFFF

0x 0000 0000 0000 0000

0.5 GB
TLB Mapped

0.5 GB
TLB Unmapped

Uncached

0.5 GB
TLB Mapped

0.5 GB
TLB Unmapped

Cacheable

2 GB
TLB Mapped

0x FFFF FFFF

0x E000 0000
0x DFFF FFFF

0x C000 0000
0x BFFF FFFF

0x A000 0000
0x 9FFF FFFF

0x 8000 0000
0x 7FFF FFFF

0x 0000 0000

User’s Manual U10504EJ7V0UM00 135

Memory Management System

Figure 5-7 Details of xkphys Field

0x BFFF FFFF FFFF FFFF

0x B800 0001 0000 0000
0x B800 0000 FFFF FFFF

0x B800 0000 0000 0000
0x B7FF FFFF FFFF FFFF

0x B000 0001 0000 0000
0x B000 0000 FFFF FFFF

0x B000 0000 0000 0000
0x AFFF FFFF FFFF FFFF

0x A800 0001 0000 0000
0x A800 0000 FFFF FFFF

0x A800 0000 0000 0000
0x A7FF FFFF FFFF FFFF

0x A000 0001 0000 0000
0x A000 0000 FFFF FFFF

0x A000 0000 0000 0000
0x 9FFF FFFF FFFF FFFF

0x 9800 0001 0000 0000

0x 97FF FFFF FFFF FFFF

0x 9000 0001 0000 0000

Address Error

4 GB
TLB Unmapped

Cacheable

Address Error

4 GB
TLB Unmapped

Cacheable

Address Error

4 GB
TLB Unmapped

Cacheable

Address Error

4 GB
TLB Unmapped

Cacheable

Address Error

4 GB
TLB Unmapped

Cacheable

Address Error

4 GB
TLB Unmapped

Uncached

Address Error

4 GB
TLB Unmapped

Cacheable

4 GB
TLB Unmapped

Cacheable

Address Error

0x 9800 0000 FFFF FFFF

0x 9800 0000 0000 0000

0x 9000 0000 FFFF FFFF

0x 9000 0000 0000 0000
0x 8FFF FFFF FFFF FFFF

0x 8800 0001 0000 0000
0x 8800 0000 FFFF FFFF

0x 8800 0000 0000 0000
0x 87FF FFFF FFFF FFFF

0x 8000 0001 0000 0000
0x 8000 0000 FFFF FFFF

0x 8000 0000 0000 0000

Chapter 5

136 User’s Manual U10504EJ7V0UM00

Table 5-3 32-Bit Kernel Mode Segments

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-significant bit
of the virtual address is cleared, the kuseg virtual address space is selected; it
covers the current 231 bytes (2 GB) user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual
address.

This space is referenced via TLB. Whether the cache can be used or not is
determined by the value of the C bit of the TLB entry of each page.

If the ERL bit of the Status register is 1, the user address area is a 2 GB area that
cannot be cached without TLB mapping (i.e., the virtual addresses are used as
physical addresses as is). However, this is a function used by the VR4400 to
process an ECC error in an exception handler. This function is defined to maintain
the compatibility of the VR4300 with the VR4400 because the VR4300 does not
have an ECC and a parity function.

Address Bit
Values

Status Register
Bit Value Segment

Name
Virtual
Address

Physical
Address

Segment
Size

KSU EXL ERL KX

A(31) = 0

KSU = 00
or
EXL = 1
or
ERL =1

0 kuseg
0x0000 0000

through
0x7FFF FFFF

TLB map
2 GB

(231 bytes)

A(31:29) = 100 0 kseg0
0x8000 0000

through
0x9FFF FFFF

0x0000 0000
through

0x1FFF FFFF

512 MB
(229 bytes)

A(31:29) = 101 0 kseg1
0xA000 0000

through
0xBFFF FFFF

0x0000 0000
through

0x1FFF FFFF

512 MB
(229 bytes)

A(31:29) = 110 0 ksseg
0xC000 0000

through
0xDFFF FFFF

TLB map
512 MB

(229 bytes)

A(31:29) = 111 0 kseg3
0xE000 0000

through
0xFFFF FFFF

TLB map
512 MB

(229 bytes)

User’s Manual U10504EJ7V0UM00 137

Memory Management System

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the high-order three bits
of the virtual address are 100, kseg0 virtual address space is selected; it covers the
current 229-byte (512 MB) address space.

References to kseg0 are not mapped through the TLB; the physical address
selected is defined by subtracting 0x8000 0000 from the virtual address.

The K0 field of the Config register controls cacheability. (Refer to Chapter 6
Exception Processing.)

32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the high-order three bits
of the virtual address are 101, kseg1 virtual address space is selected; it covers the
current 229-byte (512 MB) address space.

References to kseg1 are not mapped through the TLB; the physical address
selected is defined by subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the high-order three bits
of the virtual address are 110, the ksseg virtual address space is selected; it covers
the current 229-byte (512 MB) virtual address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual
address.

This space is referenced via TLB. Whether the cache can be used or not is
determined by the value of the C bit of the TLB entry of each page.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the high-order three bits
of the virtual address are 111, the kseg3 virtual address space is selected; it is the
current 229-byte (512 MB) virtual address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

This space is referenced via TLB. Whether the cache can be used or not is
determined by the value of the C bit of the TLB entry of each page.

Chapter 5

138 User’s Manual U10504EJ7V0UM00

Table 5-4 64-Bit Kernel Mode Segments

Address
Bit Values

Status Register
Bit Value Segment

Name
Virtual Address

Physical
Address

Segment
Size

KSUEXLERL KX

A(63:62) = 00

KSU = 00
or
EXL = 1
or
ERL =1

1 xkuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

TLB map
1 TB

(240 bytes)

A(63:62) = 01 1 xksseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

TLB map
1 TB

(240 bytes)

A(63:62) = 10 1

xkphys
Refer to
64-bit
Kernel
Mode,
Physical
Spaces
(xkphy)
on the
following
page.

0x8000 0000 0000 0000
through

0xBFFF FFFF FFFF FFFF

0x0000 0000
through

0xFFFF FFFF
232 bytes

A(63:62) = 11 1 xkseg
0xC000 0000 0000 0000

through
0xC000 00FF 7FFF FFFF

TLB map
240 to 231

bytes

A(63:62) = 11
A(61:31) = –1

1 ckseg0
0xFFFF FFFF 8000 0000

through
0xFFFF FFFF 9FFF FFFF

0x0000 0000
through

0x1FFF FFFF

512 MB
(229 bytes)

A(63:62) = 11
A(61:31) = –1

1 ckseg1
0xFFFF FFFF A000 0000

through
0xFFFF FFFF BFFF FFFF

0x0000 0000
through

0x1FFF FFFF

512 MB
(229 bytes)

A(63:62) = 11
A(61:31) = –1

1 cksseg
0xFFFF FFFF C000 0000

through
0xFFFF FFFF DFFF FFFF

TLB map
512 MB

(229 bytes)

A(63:62) = 11
A(61:31) = –1

1 ckseg3
0xFFFF FFFF E000 0000

through
0xFFFF FFFF FFFF FFFF

TLB map
512 MB

(229 bytes)

User’s Manual U10504EJ7V0UM00 139

Memory Management System

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the virtual
address are 00, the xkuseg virtual address space is selected; it covers the current
240-byte (1 TB) user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This space is referenced via TLB. Whether the cache can be used or not is
determined by the value of the C bit of the TLB entry of each page.

If the ERL bit of the status register is 1, the user address area is a 2 GB area that
cannot be cached without TLB mapping (i.e., the virtual addresses are used as
physical addresses as is). However, this is a function used by the VR4400 to
process an ECC error in an exception handler. This function is defined to maintain
the compatibility of the VR4300 with the VR4400 because the VR4300 does not
have an ECC and a parity function.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the virtual
address are 01, the xksseg virtual address space is selected; it covers the current
supervisor virtual space. The virtual address is extended with the contents of the
8-bit ASID field to form a unique virtual address.

This space is referenced via TLB. Whether the cache can be used or not is
determined by the value of the C bit of the TLB entry of each page.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the virtual
address are 10, one of the eight unmapped xkphys address spaces are selected,
either cached or uncached. Bits 31:0 of the virtual address are used as they are as
the physical address. Accesses with address bits 58:32 including 1 cause an
address error.

Use of the cache is indicated by the bits 61 through 59 of the virtual address. Table
5-5 shows the eight address spaces and use of the corresponding cache.

Chapter 5

140 User’s Manual U10504EJ7V0UM00

Table 5-5 Use of Cache and xkphys Address Space

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the virtual
address are 11 the address space is referred to as xkseg. The address space selected
is one of the following:

• Kernel virtual space, xkseg, the current kernel virtual space; the virtual
address is extended with the contents of the 8-bit ASID field to form a
unique virtual address
This space is referenced via TLB. Whether the cache can be used or
not is determined by the value of the C bit of the TLB entry of each
page.

• one of the four 32-bit kernel compatibility spaces, as described in the
next section.

Bits 61 – 59 Use of Cache Address

0 Used 0x8000 0000 0000 0000
through

0x8000 0000 FFFF FFFF

1 Used 0x8800 0000 0000 0000
through

0x8800 0000 FFFF FFFF

2 Not used 0x9000 0000 0000 0000
through

0x9000 0000 FFFF FFFF

3 Used 0x9800 0000 0000 0000
through

0x9800 0000 FFFF FFFF

4 Used 0xA000 0000 0000 0000
through

0xA000 0000 FFFF FFFF

5 Used 0xA800 0000 0000 0000
through

0xA800 0000 FFFF FFFF

6 Used 0xB000 0000 0000 0000
through

0xB000 0000 FFFF FFFF

7 Used 0xB800 0000 0000 0000
through

0xB800 0000 FFFF FFFF

User’s Manual U10504EJ7V0UM00 141

Memory Management System

64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit virtual
address are 11, and bits 61:32 of the virtual address are 0xFFFF FFFF, bits 31:16
of the virtual address in the 64-bit mode are 0x8000-0xFFFF, as shown in Figure
5-6, select one of the following 512 MB compatibility spaces.

• ckseg0. This space is an unmapped region, compatible with the kseg0
space in 32-bit mode. The K0 field of the Config register controls
cacheability and coherency.

• ckseg1. This space is an unmapped and uncached region, compatible
with the kseg1 space in 32-bit mode.

• cksseg. This space is the current supervisor virtual space, compatible
with the ksseg space in 32-bit mode.
This space is referenced via TLB. Whether the cache can be used or
not is determined by the value of the C bit of the TLB entry of each
page.

• ckseg3. This space is current supervisor virtual space, compatible
with the kseg3 space in 32-bit mode.
This space is referenced via TLB. Whether the cache can be used or
not is determined by the value of the C bit of the TLB entry of each
page.

Chapter 5

142 User’s Manual U10504EJ7V0UM00

5.3 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part of the
CPU, and supports memory management, address translation, exception handling,
and other privileged operations. CP0 contains the registers shown in Figure 5-8
plus a 32-entry TLB. The sections that follow describe how the processor uses
each of the TLB-related registers.

Remark Each register is assigned a number called a register number. For
details, refer to Chapter 1 General. For the relations among the CP0
function, exception processing, and registers, refer to Chapter 6
Exception Processing.

Figure 5-8 CP0 Registers and the TLB

EntryLo0
2*

EntryHi

Page Mask

Index

Random

Wired

Count

31

0

BadVAddr

TLB

(“Safe” entries)
Refer to 5.4.4 Wired

PRId

0127/255

8*

15*

Compare
11*

Config
16*

LLAddr
17*

WatchLo
18*

WatchHi
19*

TagLo
28*

TagHi
29*

Register (6).
Parity Error

26*

Used with exception
processing

Used with memory

EntryLo0
2*

3*
EntryLo1

EntryHi
10*

5*
Page Mask

Index
0*

Random
1*

Wired
6*

ErrorEPC
30*

Context
4*

Status
12*

Cause
13*

EPC
14*

management system

CacheErr
27*

XContext
20*

9*

* Register number

User’s Manual U10504EJ7V0UM00 143

Memory Management System

5.3.1 Format of a TLB Entry

Figure 5-9 shows the TLB entry formats for both 32- and 64-bit modes. Each field
of an entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or
PageMask registers.

Figure 5-9 TLB Entry Format

 12

127

13

96

MASK 0

95

VPN2 G

 19

64

1 4 8

ASID

7677

 20

63 32

PFN

31 0

7

0

121 120 109 108

75 72 71

58 57

6

C VD

3 1 1

3334353738

0

1

 20

PFN

26 25

6

C VD

3 1 1

12356

0

1

0

 0

0

 12

255

13

192

MASK 0

191

VPN2 G

 27

128

1 4 8

ASID

140141

 20

127 64

PFN

63 0

39

0

139136135

90 89

C VD

3 1 1

6566676970

0

1

 20

PFN

26 25

38

C VD

3 1 1

12356

0

1

0

0

32-bit Mode

64-bit Mode

38

0

167168

R

190 189

22

0

2

204205216217

Chapter 5

144 User’s Manual U10504EJ7V0UM00

The formats of the EntryHi, EntryLo0, EntryLo1, and PageMask registers are
almost the same as the TLB entry. However, the G bit of TLB is undefined with
the entry Hi register.

Figure 5-10 TLB Entry Registers (1/2)

 12

31

13

0

MASK

31

VPN2
 19

0

5 8

ASID

1213

7

25 24 13 12

8 7

PageMask Register

EntryHi Register

0 0

0

VPN2 : Virtual page number divided by two (maps to two pages).
ASID : Address space ID field. An 8-bit field that lets multiple processes share the TLB; virtual

addresses for each process can be shared.
R : Region. (00 ® user, 01 ® supervisor, 11 ® Kernel) used to match vAddr63...62

Fill : RFU. Writing this data to this area is ignored. 0 is returned when this bit area read.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

63

VPN2
27

0

5 8

ASID
1213 8 7

0
2

62 61 40 39

22

FillR

32-bit
Mode

64-bit
Mode

Mask : Page comparison mask. Determines the virtual page size of the corresponding entry.
0 : Reserved for future use (RFU). Must be written as zeroes, and returns zeroes when

read.

User’s Manual U10504EJ7V0UM00 145

Memory Management System

Figure 5-10 TLB Entry Registers (2/2)

Whether the cache is used when a page is referenced is specified by the page
coherency attribute (C) bit of the TLB. To use the cache, specify “cache is used”
or “cache is not used” by algorithm as a page attribute. Table 5-6 shows the page
attributes selected by the C bit.

Table 5-6 Cache Algorithm

Value of C Bit Cache Algorithm

0 Cache is used

1 Cache is used

2 Cache is not used

3 Cache is used

4 Cache is used

5 Cache is used

6 Cache is used

7 Cache is used

 20

31

PFN

31
6 3 1 1 1

 20

PFN

6

0

0

PFN : Page frame number; the high-order bits of the physical address.
C : Specifies the TLB page attribute; refer to Table 5-6.
D : Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is

actually a write-protect bit that software can use to prevent alteration of data.
V : Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or

TLBS miss occurs.
G : Global. If this bit is set in both Entry Lo0 and Entry Lo1, then the processor ignores the

ASID during TLB lookup.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

20

63

PFN

63
38

 20

PFN

2526

38

0

0

EntryLo0 and EntryLo1 Registers

26

GC VD

01235625

25

EntryLo0
32-bit
Mode

EntryLo1
32-bit
Mode

EntryLo0
64-bit
Mode

EntryLo1
64-bit
Mode

26

26

25

GC VD

012356

GC VD

012356

GC VD

012356

3 1 1 1

3 1 1 1

3 1 1 1

Chapter 5

146 User’s Manual U10504EJ7V0UM00

5.4 CP0 Registers

The following sections describe the CP0 registers that can be accessed through the
memory management system and software (each register is followed by its
register number in parentheses).

5.4.1 Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to index an
entry in the TLB. The most-significant bit of the register shows the success or
failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or
TLB Write Index (TLBWI) instructions.

Although the Index register Index field is six bits wide, only the five least-
significant bits (4:0) are used in TLB operations, since the VR4300 TLB has 32
entries. Bit 5 is readable and writable, but is ignored during TLB operations.

The value of the index register on reset is undefined. Therefore, initialize the Index
register in software.

Figure 5-11 Index Register

Index Register

31

1

30 6 5 0

25 6

 IndexP 0

P : Probe success or failure. Set to 1 when the previous TLBProbe
(TLBP) instruction was unsuccessful; set to 0 when successful.

Index : Index to the TLB entry affected by the TLBRead and TLBWrite
instructions

0 : RFU. Must be written as zeroes, and returns zeroes when read.

User’s Manual U10504EJ7V0UM00 147

Memory Management System

5.4.2 Random Register (1)

The Random register is a read-only register of which six bits are used for referring
to the TLB entry. Although the Random field is six bits wide, only the five low-
order bits (4:0) are used in TLB operations, since the VR4300 TLB has 32 entries.
Bit 5 is readable and writable by software, but is ignored during TLB operations.

This register decrements as each instruction executes, and its values range
between an upper and a lower bound, as follows:

• A lower bound is indicated by the contents of the Wired register.

• An upper bound limit is 31.

The Random register specifies the entry in the TLB that is affected by the TLB
Write Random instruction. The register does not need to be read for this purpose;
however, the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound
upon Cold Reset. This register is also set to the upper bound when the Wired
register is written.

Figure 5-12 shows the format of the Random register.

Figure 5-12 Random Register

Random Register
31 6 5 0

26 6

 Random0

Random : TLB Random index.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Chapter 5

148 User’s Manual U10504EJ7V0UM00

5.4.3 EntryHi (10), EntryLo0 (2), EntryLo1 (3), and PageMask (5) Registers

These registers are used to rewrite the TLB or to check coincidence of a TLB entry
when addresses are converted. If the TLB exception occurs, information on the
address that has caused the exception is loaded to these registers. Figure 5-10
shows the formats of the EntryHi, EntryLo0, EntryLo1, and PageMask registers.

The values of these registers on reset are undefined. Therefore, initialize the
registers by software.

EntryHi Register

The EntryHi register is a read/write register and is used to access the high-order
bits of the internal TLB.

The EntryHi register retains the contents of the high-order bits of a TLB entry
when a TLB read or write operation is executed. If a TLB miss, TLB invalid, or
TLB modification exception occurs, the virtual page number (VPN2) of the
virtual address that has caused the exception and ASID are set to the EntryHi
register. For the details of the TLB exception, refer to Chapter 6 Exception
Processing.

ASID is used to write or read the ASID area of the TLB entry. When an address
is converted, it is verified against the ASID of the TLB entry as the ASID of the
virtual address.

To access this register, use the TLBP, TLBWR, TLBWI, or TLBR instruction.

EntryLo0 and EntryLo1 Registers

EntryLo consists of two registers: EntryLo0 for even virtual pages and EntryLo1
for odd virtual pages. EntryLo0 and Lo1 registers are read/write registers and are
used to access the low-order bits of the internal TLB. When a TLB read/write
operation is executed, EntryLo0 and Lo1 access the contents of the low-order bits
of the TLB entry on an even and odd pages.

User’s Manual U10504EJ7V0UM00 149

Memory Management System

PageMask Register

The PageMask register is a read/write register used for reading from or writing to
the TLB; it holds a comparison mask that sets the page size for each TLB entry,
as shown in Table 5-7. There are seven page sizes selectable. TLB read and write
operations use this register as either a destination or a source; when virtual
addresses are presented for translation into physical address, the bits 24:13 which
are used in the comparison are masked. When the Mask field is not one of the
values shown in Table 5-7, the operation of the TLB is undefined.

Table 5-7 Mask Field Values for Page Sizes

Page Size
Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 KB 0 0 0 0 0 0 0 0 0 0 0 0

16 KB 0 0 0 0 0 0 0 0 0 0 1 1

64 KB 0 0 0 0 0 0 0 0 1 1 1 1

256 KB 0 0 0 0 0 0 1 1 1 1 1 1

1 MB 0 0 0 0 1 1 1 1 1 1 1 1

4 MB 0 0 1 1 1 1 1 1 1 1 1 1

16 MB 1 1 1 1 1 1 1 1 1 1 1 1

Chapter 5

150 User’s Manual U10504EJ7V0UM00

5.4.4 Wired Register (6)

The Wired register is a read/write register that specifies the boundary between the
wired and random entries of the TLB as shown in Figure 5-13. Wired entries are
fixed, nonreplaceable entries, which cannot be overwritten by a TLBWR (TLB
Write Random) operation. They can, however, be overwritten by a TLBWI (TLB
Write Indexed) instruction. Random entries can be overwritten.

Figure 5-13 Wired Register Boundary

Although the Wired field is six bits wide, only the five low-order bits are used in
TLB operations, since the VR4300 TLB has 32 entries. Bit 5 is readable and
writable by software, but is ignored during TLB operations.

The Wired register is set to 0 upon Cold Reset. Writing this register also sets the
Random register to the value of its upper bound of 31 (Refer to 5.4.2 Random
Register (1)). Figure 5-14 shows the format of the Wired register.

Figure 5-14 Wired Register

31

Value of

0

TLB

Register
Range of Wired entries

Wired

Range of Random entries

TLB

Wired Register
31 6 5 0

26 6

 Wired0

Wired : TLB Wired boundary.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

User’s Manual U10504EJ7V0UM00 151

Memory Management System

5.4.5 Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains
information identifying the implementation and revision level of the CPU and
CP0. Figure 5-15 shows the format of the PRId register.

Figure 5-15 Processor Revision Identifier Register

The processor revision number is a value in the format of yx. y is the major
revision number contained in bits 7:4, and x is the minor revision number
contained in bits 3:0.

The processor revision number identifies revision of the chip. However, revision
of the chip is not always reflected on the PRID register. Conversely, a change in
the revision number does not always reflect on the actual change of the chip.
Therefore, develop your program so that it does not depend on the processor
revision number area.

5.4.6 Config Register (16)

This register displays or sets various processor statuses of the VR4300.

Although consideration is given to maintain compatibility of this register with the
Config register of the VR4400, some pins of this register are fixed to 0.

The EP and BE area are initialized on cold reset. These areas can be read or
written by software. The default values of these areas are as follows:

EP: 0000

BE: 1

The CU bit and K0 area can be read or written in software. However, because
these bit and area are not initialized, the user must set the default values to them
after reset.

16 15

PRId Register

31 0

16

Imp

8 8

0

8

Rev

7

Imp : Processor ID number (0x0B for the VR4300 seriesTM)
Rev : Processor revision number
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Chapter 5

152 User’s Manual U10504EJ7V0UM00

The values of the EP and BE areas can be changed only when initialization is
executed in the non-cache area immediately after cold reset and before a store
instruction is executed. The operation is not guaranteed if the values of these areas
are changed at any other time. Figure 5-16 shows the format of the Config
register.

EC : Operating frequency ratio (read-only). The value displayed corresponds to the frequency
ratio set by the DivMode pins on power application.
(For details of DivMode pin setting, refer to Table 2-2 Clock/Control Interface Signals.)

mPD30200-80 (VR4305)
110 ® 1:1 (MasterClock: PCIock)
111 ® RFU
000 ® 1:2
001 ® 1:3
Others ® RFU
mPD30200-100 (VR4300)
110 ® RFU
111 ® 1:1.5 (MasterClock: PClock)
000 ® 1:2
001 ® 1:3
Others ® RFU
mPD30200-133 (VR4300)
110 ® 1:4 (MasterClock: PCIock)
111 ® RFU
000 ® 1:2
001 ® 1:3
Others ® RFU
mPD30210-133 (VR4310)
010 ® 1:5 (MasterClock: PCIock)
011 ® 1:6
100 ® RFU
101 ® 1:3
110 ® 1:4
111 ® RFU
000 ® 1:2
001 ® 1:3

Figure 5-16 Config Register (1 / 2)

0

31

EC EP BE CU K000000110 11001000110

30 28 27 24 23 1516 14 4 3 2 0

1 3 4 8 1 11 1 3

User’s Manual U10504EJ7V0UM00 153

Memory Management System

mPD30210-167 (VR4310)
010 ® 1:5 (MasterClock: PCIock)
011 ® 1:6
100 ® 1:2.5
101 ® 1:3
110 ® 1:4
111 ® RFU
000 ® 1:2
001 ® 1:3

EP : Sets transfer data pattern (single/block write request).
0 ® D (default on cold reset)
6 ® DxxDxx: 2 doublewords/6 cycles
Others ® RFU

BE : Sets BigEndianMem (endianness).
0 ® Little endian
1 ® Big endian (default on cold reset)

CU : RFU. However, can be read or written by software.
K0 : Sets coherency algorithm of kseg0 (refer to Table 5-6 Cache Algorithm).

010 ® Cache is not used
Others ® Cache is used

1 : Returns 1 when read.
0 : Returns 0 when read.

Caution If the BE bit of this register is changed by using the MTC0 instruction, insert two
or more NOP instructions or an instruction other than the load/store instruction in
between the MTC0 and load/store instructions.

Figure 5-16 Config Register (2 / 2)

Chapter 5

154 User’s Manual U10504EJ7V0UM00

5.4.7 Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the physical
address read by the most recent Load Linked instruction. This register is for
diagnostic purposes only.

Figure 5-17 shows the format of the LLAddr register. The Paddr area in the figure
shows the value with the high-order four bits of the physical address PA(31:4)
read on execution of the LL instruction zero-extended.

The contents of the LLAddr register are undefined on reset.

Figure 5-17 LLAddr Register

5.4.8 Cache Tag Registers [TagLo (28) and TagHi (29)]

The TagLo and TagHi registers are 32-bit read/write registers that hold the
primary cache tag for cache initialization, cache diagnostics, or cache error
processing. The Tag registers are written by the CACHE and MTC0 instructions.

Figure 5-18 shows the format of these registers.

The contents of these registers are undefined on reset.

PAddr : Stores the bits 31 through 4 of the physical address read by the last
LL instruction to bits 27 through 0, and 0 to bits 31 through 28.

LLAddr Register
31 0

PAddr

32

User’s Manual U10504EJ7V0UM00 155

Memory Management System

Cautions 1. If 10 is written to PState by using the CACHE
(Index_Store_Tag) instruction, the CACHE is Clean.
However, 11 is read when the PState value is read by using the
CACHE (Index_Load_Tag) instruction.

2. If 01 is written to PState by using the CACHE
(Index_Store_Tag) instruction, the CACHE operation is not
guaranteed.

3. If 11 is written to PState by using the CACHE
(Index_Store_Tag), the CACHE is Dirty.

Figure 5-18 TagLo and TagHi Register

5.4.9 Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the
8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID of
the TLB entry to see if there is a match. One of the following comparisons are
also made:

• In 32-bit mode, the high-order bits* of the virtual address are
compared to the contents of the TLB entry, VPN2 (virtual page
number divided by two).

• In 64-bit mode, the high-order bits* of the virtual address are
compared to the contents of the TLB entry, VPN2 (virtual page
number divided by two).

PTagLo : Physical address bits 31:12
PState : Specifies the primary cache state

Data cache
11 = Valid
00 = Invalid

Instruction cache
10 = Valid
00 = Invalid

Others = Undefined
0 : RFU. Must be written as zeroes; returns zeroes when read

31 0

32

TagLo

TagHi

31 0

20

8 7

PState

6 5

62

0PTagLo

0

28

0

4

27

Chapter 5

156 User’s Manual U10504EJ7V0UM00

If a TLB entry matches, the physical address and access control bits (C, D, and V)
are retrieved from the matching TLB entry. While the V bit of the entry must be
set for a valid translation to take place, it is not involved in the determination of a
matching TLB entry.

Figure 5-19 illustrates the TLB address translation process.

* The number of bits differs depending on the page size.
Here are examples where the page size is 16 MB and 4 KB:

Page Size
Mode

16 MB 4 KB

32-bit mode A (31:25) A (31:13)

64-bit mode A63, A62, and A (39:25) A63, A62, and A (39:13)

User’s Manual U10504EJ7V0UM00 157

Memory Management System

Figure 5-19 TLB Address Translation

User
Mode?

VPN
Match?

ASID
Match?G = 1?

Legal

V = 1?

D = 1?

No

Yes

Yes

Yes

No

No

Yes

Write?
Yes

No
Yes

TLB
Invalid

TLB
Mod

Exception

TLB
Miss

Exception

VPN
and

ASID

Virtual Address (Input)

Uncached?
Yes No

Access
Main Access

Cache

Physical Address (Output)

Memory

No

Valid

Dirty

Global

No

No

Mode?
Sup Address

Error

Exception

Yes No

Yes

Address
Error

Yes

Exception

No

No

No

Yes

32-bit
address?

Yes

XTLB
Miss

No

Address
Error

Yes

Address?
Legal

Address?

Legal
Address?

Mapped
Address?

Yes

No

Exception Exception

Chapter 5

158 User’s Manual U10504EJ7V0UM00

5.4.10 TLB Misses

If there is no TLB entry that matches the virtual address, a TLB miss exception
occurs.* If the access control bits (D and V) indicate that the access is not valid,
a TLB Modification exception or TLB Invalid exception occurs. If the C bits
equal 010, the physical address that is retrieved accesses main memory, bypassing
the cache.

* TLB miss exceptions are described in Chapter 6 Exception Processing.

5.4.11 TLB Instructions

The following instructions are used to control the TLB.

TLBP (Translation Lookaside Buffer Probe)

Loads a TLB number that matches the contents of the EntryHi register to the Index
register. If the TLB entry does not match, the most significant bit of the Index
register is set.

TLBR (Translation Lookaside Buffer Read)

Writes the contents of the TLB entry indicated by the Index register to the
EntryHi, EntryLo0, EntryLo1, and PageMask registers.

TLBWI (Translation Lookaside Buffer Write Index)

Writes the contents of the EntryHi, EntryLo0, EntryLo1, and PageMask registers
to the TLB entry indicated by the contents of the Index register.

TLBWR (Translation Lookaside Buffer Write Random)

Writes the contents of the EntryHi, EntryLo0, EntryLo1, and PageMask registers
to the TLB entry indicated by the contents of the Random register.

User’s Manual U10504EJ7V0UM00

159

Exception Processing

6

This chapter describes the exception processing and the hardware used for the
exception processing. For the FPU exception, refer to

Chapter 8 Floating-Point
Exceptions

.

Chapter 6

160

User’s Manual U10504EJ7V0UM00

6.1 Exception Processing Operation

The processor receives exceptions from a number of sources, including translation
lookaside buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system
calls. When the CPU detects an exception, the normal sequence of instruction
execution is suspended and the processor enters Kernel mode (refer to

Chapter 5
Memory Management System

 for a description of system

operating modes).
The processor then disables interrupts and forces execution of a software
exception process (called an exception

handler

) located at a fixed address. The
handler saves the context of the processor, including the contents of the program
counter, the current operating mode (User or Supervisor), and the status of the
interrupts (enabled or disabled). This context is saved so it can be restored when
the exception processing has been performed.

When an exception occurs, the CPU loads the

Exception Program Counter

 (

EPC

)
register with a location where execution can restart after the exception processing
has been performed. The restart location in the

EPC

 register is the address of the
instruction that caused the exception. If the instruction was executing in a branch
delay slot, the CPU loads the

 EPC

 register to the address of the branch instruction
immediately preceding the branch delay slot.

For the exception processing, the following modes can be set.

• Interrupt enable (

IE

)

• Base operating mode (User, Supervisor, or Kernel)

• Exception level (normal or exception, as indicated by the

 EXL

 bit in
the

Status

 register)

• Error level (normal or error, as indicated by the

 ERL

 bit in the

Status

register).

Each setting condition is described below.

Interrupt Enable

Interrupts are enabled if the following conditions are satisfied.

•

IE

 (interrupt enable bit) = 1

•

EXL

 bit = 0,

ERL

 bit = 0

• Bit of corresponding IM area in status register = 1

Base Operating Mode

The operating mode that is the basis when the exception level is normal (0) is
specified by the KSU area of the

Status

 register.

User’s Manual U10504EJ7V0UM00

161

Exception Processing

Exception/Error Level

The Kernel mode is set when either of the

EXL

 or

ERL

 bit is set to 1.

When execution returns from exception processing, the exception level is reset to
normal (0) (for details, refer to

ERET Instruction

of

 Chapter 16 CPU
Instruction Set Details)

.

In addition to the above, registers that hold information on addresses, causes, and
statuses during exception processing are provided. For details, refer to

6.3
Exception Processing Registers

. For details of the exception processing, refer to

6.4 Exception Details

.

6.2 Precision of Exceptions

V

R

4300 exceptions are logically precise; the instruction that causes an exception
and all those that follow it are aborted and can be re-executed after servicing the
exception. When succeeding instructions are killed, exceptions associated with
those instructions are also killed. Exceptions are not taken in the order detected,
but in instruction fetch order.

6.3 Exception Processing Registers

This section describes the

CP0

 registers that are used in exception processing.
Table 6-1 lists these registers, along with their number—each register has a unique
identification number that is referred to as its

register number

. The remaining

CP0

 registers are used in memory management, as described in

Chapter 5
Memory Management System

.

Software examines the

CP0

 registers to determine the cause of the exception and
the state of the CPU at the time the exception occurred. The registers in Table 6-
1 are used in exception processing, and are described in the sections that follow.

Chapter 6

162

User’s Manual U10504EJ7V0UM00

Table 6-1 CP0 Exception Processing Registers

* This register is defined to maintain compatibility between the V

R

4300 and
V

R

4200, and is not used with the hardware of the V

R

4300.

Hazard of CP0

With the

General Purpose

 registers of the CPU, when the result of an operation is
to be used by the next instruction, the hardware generates a stall and waits until
the result can be used. However, the

CP0

 register and TLB do not generate a stall.
If a value is stored to the

CP0

 register, that value may not be used by the
immediately following instruction because the value is stored in the register
several cycles later. When designing a program, therefore, you must take this into
consideration when setting values to the

CP0

 register and TLB (for details, refer
to

Chapter 19 Coprocessor 0 Hazards

).

Register Name Reg. No.

Context 4

BadVAddr (Bad Virtual Address) 8

Count 9

Compare 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

WatchLo 18

WatchHi 19

XContext 20

PErr* 26

CacheErr (Cache Error)* 27

ErrorEPC (Error Exception Program Counter) 30

User’s Manual U10504EJ7V0UM00

163

Exception Processing

6.3.1 Context Register (4)

The

Context

 register is a read/write register containing the pointer to an entry in
the page table entry (PTE) array on memory; this array is an operating system data
structure that stores virtual-to-physical address translations. When there is a TLB
miss, the operating system loads the TLB with the missing translation from the
PTE array. The

Context

 register is used by the TLB Miss exception handler to
load the TLB entry.

The

Context

register duplicates some of the information provided in the

BadVAddr

register, but the information is arranged in a form that is more useful
for a software TLB exception handler.

Figure 6-1 shows the format of the

Context

register.

Figure 6-1 Context Register

The

Context

 register bit field is described below.

BadVPN2 field is written by hardware on a TLB miss. It contains the virtual page
number (VPN2), divided by 2, of the most recent virtual address that did not have
a valid translation.

PTEBase area can be read or written and is controlled by the operating system. It
is used only by the software as a pointer to the current PTE array on the memory.

The 19-bit

BadVPN2

 field contains bits 31:13 of the virtual address that caused
the TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd
address pair. For a 4 KB page size, this format can be used as the pointer to refer
to the pair-table of 8-byte PTEs. For 16 KB page or larger, shifting and masking
this value produces the correct PTE reference address.

23 22 4 331 0

9

PTEBase BadVPN2

19 4

0

Context Register

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0

32-bit
Mode

64-bit
Mode

PTEBase : Base address of page table entry
BadVPN2 : Page number of virtual address whose translation is invalid divided by 2
0 : RFU. Must be written zeroes; returns zeroes when read

Chapter 6

164

User’s Manual U10504EJ7V0UM00

6.3.2 BadVAddr Register (8)

The

Bad Virtual Address

 (

BadVAddr

) register is a read-only register and holds a
virtual address that was translated but became invalid last, or a virtual address at
which an addressing error occurred. Figure 6-2 shows the format of the

BadVAddr

register.

Caution This register does not hold information even when a bus error
exception occurs because it is not an address error exception.

Figure 6-2 BadVAddr Register

6.3.3 Count Register (9)

The read/write

Count

 register acts as a timer, incrementing at a constant rate—half
the PClock speed—whether or not instructions are being executed. This register
is a free-running type. When the register reaches all ones, it rolls over to zero and
continues counting. This register can be used for diagnostic purposes, system
initialization or synchronization between the processes.

Figure 6-3 shows the format of the

Count

 register.

Figure 6-3 Count Register

BadVAddr Register
31 0

32

Bad Virtual Address

63 0

64

Bad Virtual Address

32-bit
Mode

64-bit
Mode

BadVAddr : virtual address at which an address error occurred last or which failed
in address translation

Count Register
31 0

32

 Count

Count : latest count value (incremented at frequency half PClock)

User’s Manual U10504EJ7V0UM00

165

Exception Processing

6.3.4 Compare Register (11)

The

Compare

 register is used to generate a timer interrupt; it maintains a stable
value that does not change on its own. When the value of the

Compare

register
equals the value of the

Count

 register (refer to

 6.3.3

), interrupt bit

 IP(7)

 in the

Cause

 register is set. This causes an interrupt in the DF stage as soon as the
interrupt is enabled. Writing a value to the

Compare

 register, as a side effect,
clears the timer interrupt.

For diagnostic purposes, the

Compare

 register is a read/write register. However,
it is usually used as a write register. Figure 6-4 shows the format of the

Compare

register.

Figure 6-4 Compare Register

6.3.5 Status Register (12)

The

Status

 register (

SR

) is a read/write register that contains the operating mode,
interrupt enabling, and the diagnostic states of the processor. Figure 6-5 shows
the format of the entire register.

Compare Register
31 0

32

Compare

Compare : value to be compared with count register

Chapter 6

166

User’s Manual U10504EJ7V0UM00

* The low power mode is supported only in the 100 MHz model of the V

R

4300 and theV

R

4305.
Fix the RP bit of the 133 MHz model of the V

R

4300 and the V

R

4310 to 0.

Figure 6-5 Status Register

Status Register

 4

31 1528 27 25 24 16

9

8 7 5 4 3 2 1 0

8 2 1 1 1

26

1

6

1 1 111

CU : Controls the usability of each of the four coprocessor unit numbers.
(1 ® usable, 0 ® unusable)
CP0 is always usable when in Kernel mode, regardless of the setting of the CU0 bit.
CP2 and CP3 are reserved for future expansion.

RP : Enables low-power operation by reducing the internal clock frequency and the system
interface clock frequency to one-quarter speed.
(0 ® normal, 1 ® low power mode)* (For details, refer to 15.1.2 Low Power Mode.)

FR : Enables additional floating-point registers
(0 ® 16 registers, 1 ® 32 registers)

RE : Reverse-Endian bit, enables reverse of system endianness in User mode.
(0 ® disabled, 1 ® reversed)

DS : Diagnostic Status field (see Figure 6-6, for details).
IM(7:0) : Interrupt Mask field, enables external, internal, coprocessors or software interrupts.

(0 ® disabled, 1 ® enabled)
IM(7) : Mask bit for timer interrupt
IM(6:2) : Mask bits for external interrupts Int[4:0], or external write requests
IM(1:0) : Mask bits for software interrupts and IP(1:0) of the Cause register

KX : Enables 64-bit addressing in Kernel mode. When this bit is set, XTLB miss exception is
generated on TLB misses in Kernel mode addresses space.
(0 ® 32-bit, 1 ® 64-bit)
64-bit operation is always valid in Kernel mode.

SX : Enables 64-bit addressing and operations in Supervisor mode. When this bit is set, XTLB
miss exception is generated on TLB misses in Supervisor mode addresses space.
(0 ® 32-bit, 1 ® 64-bit)

UX : Enables 64-bit addressing and operations in User mode. When this bit is set, XTLB miss
exception is generated on TLB misses in User mode addresses space.
(0 ® 32-bit, 1 ® 64-bit)

KSU : Specifies and indicates mode bits
(10 ® User, 01 ® Supervisor, 00 ® Kernel)

ERL : Specifies and indicates error level
(0 ® normal, 1 ® error)

EXL : Specifies and indicates exception level
(0 ® normal, 1 ® exception)

IE : Specifies and indicates global interrupt enable
(0 ® disable interrupts, 1 ® enable interrupts)

IM(7:0) KSU ERL EXL IEKX UXSX
(CU3:CU0)

CU RE DSRP FR

User’s Manual U10504EJ7V0UM00 167

Exception Processing

Figure 6-6 shows the format of the self-diagnostic status (DS) area. All the bits in
the DS area, except the TS bit, can be read or written.

Figure 6-6 Self-Diagnostic Status Field

Self-Diagnostic Status Field
24 22 21 20 19 18 17 16

TS SR CH CE DE

1 1 1 1 1 1 1

BEV

23

1

0 0

1

ITS

ITS : Enables Instruction Trace Support.
For details, refer to 9.3.5 Instruction Trace Support.

BEV : Controls the location of TLB miss and general purpose exception vectors.
0 ® normal
1 ® bootstrap

TS : Indicates TLB shutdown has occurred (read-only); used to avoid damage to the TLB if
more than one TLB entry matches a single virtual address.
0 ® does not occur
1 ® occur
After TLB shutdown, the processor must be reset to restart. TLB shutdown can occur
even when a TLB entry with which the virtual address has matched is set to be invalid
(V bit of the entry is cleared).

SR : 0 ® Indicates a Soft Reset or NMI has not occurred.
1 ® Indicates a Soft Reset or NMI has occurred.

CH : CP0 condition bit.
0 ® false
1 ® true
Read/write access by software only; not accessible by hardware.

CE, DE : These bits are defined to maintain compatibility with the VR4200, and is not used by the
hardware of the VR4300.

0 : RFU. Must be written as zeroes, and returns zeroes when read.

Chapter 6

168 User’s Manual U10504EJ7V0UM00

Fields of the Status register set the modes and access states described in the
sections that follow.

Instruction Trace Support

The VR4300 can output the physical address at the branch destination from
SysAD(31:0) if the instruction address is internally changed by the branch or jump
instruction, or occurrence of an exception. To use this function, set the ITS bit to
1.

An instruction cache miss is forcibly generated in the following cases to output the
physical address at the branch destination.

• If the branch condition is satisfied when a branch instruction is
executed

• If the value of PC is changed by a jump instruction or occurrence of
an exception

If an instruction cache miss is generated, SysAD(31:0) issues a processor block
read request, which allows an external device to learn a change of the address.

Return response data in response to the processor block read request in the same
manner as to the ordinary request. The address to be output is not the value of the
PC (virtual address), but a physical address.

Interrupt Enable

Interrupts are enabled when all of the following conditions are satisfied:

• IE = 1

• EXL = 0

• ERL = 0

• When corresponding bit of IM is set to 1

User’s Manual U10504EJ7V0UM00 169

Exception Processing

Operating Modes

The following Status register bit settings are required for User, Kernel, and
Supervisor modes.

• The processor is in User mode when KSU = 10, EXL = 0, and ERL =
0.

• The processor is in Supervisor mode when KSU = 01, EXL = 0, and
ERL = 0.

• The processor is in Kernel mode when KSU = 00, or EXL = 1, or ERL
= 1.

32- and 64-bit Modes

The following Status register bit settings select 32- or 64-bit operation for User,
Kernel, and Supervisor operating modes. Enabling 64-bit operation permits the
execution of 64-bit opcodes and translation of 64-bit addresses. 64-bit operation
for User, Kernel and Supervisor modes can be set independently.

• 64-bit addressing for Kernel mode is enabled when KX = 1.
64-bit operations are always valid in Kernel mode.

• 64-bit addressing and operations are enabled for Supervisor mode
when SX = 1.

• 64-bit addressing and operations are enabled for User mode when UX
= 1.

Kernel Address Space Accesses

Access to the kernel address space is allowed when the processor is in Kernel
mode.

Supervisor Address Space Accesses

Access to the supervisor address space is allowed when the processor is in Kernel
or Supervisor mode.

User Address Space Accesses

Access to the user address space is allowed in any of the three operating modes.

Chapter 6

170 User’s Manual U10504EJ7V0UM00

Status on Reset

The contents of the Status register on reset are undefined except for the following
bits:

• TS and RP = 0

• ERL and BEV = 1

• SR = 0 on cold reset; SR = 1 on soft reset or NMI interrupt

Inverting Endian

The VR4300 is set to big endian at reset. After that, the endian setting can changed
by using the BE bit of the Config register.

• When RE bit = 1

The endian setting in the Kernel and supervisor modes is specified by
the BE bit of the Config register. The endian setting in the User mode
is opposite to the specified endian setting.

• When RE bit = 0

The endian setting in the Kernel, Supervisor mode, and User mode is
specified by the BE bit of the Config register.

User’s Manual U10504EJ7V0UM00 171

Exception Processing

6.3.6 Cause Register (13)

The Cause register is a 32-bit read/write register and holds the cause of the
exception that has occurred last. The 5 bits in the exception code area of this
register indicate the cause of the exception (refer to Table 6-2). The remaining
areas hold detailed information on a specific exception. All the bits, except IP1
and IP0, are read-only. The IP1 and IP0 bits are used to generate the software
interrupt. Figure 6-7 shows the format of the Cause register, and Table 6-2
describes the exception code area.

Figure 6-7 Cause Register

Cause Register

 1

IP(7:0)

31 1527 16

2 12

8 7 6 2 0

8 1 251

0Exc
Code

1

00

282930

BD 0 CE

BD : Indicates whether the last exception occurred has been executed in a branch delay
slot.
1 ® delay slot
0 ® normal

CE : Coprocessor unit number referenced when a Coprocessor Unusable exception has
occurred. If this exception does not occur, undefined.

IP(7:0) : Indicates an interrupt is pending.
1 ® interrupt pending
0 ® no interrupt
IP(7) : Timer interrupt
IP(6:2) : External normal interrupts. Controlled by Int[4:0], or external write

requests
IP(1:0) : Software interrupts. Only these bits can cause interrupt exception when

they are set to 1 by software.
ExcCode : Exception code field (refer to Table 6-2 for details.)
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Chapter 6

172 User’s Manual U10504EJ7V0UM00

Table 6-2 Cause Register ExcCode Field

Exception
Mnemonic Description

Code Value

0 Int Interrupt

1 Mod TLB Modification exception

2 TLBL TLB Miss exception (load or instruction fetch)

3 TLBS TLB Miss exception (store)

4 AdEL Address Error exception (load or instruction fetch)

5 AdES Address Error exception (store)

6 IBE Bus Error exception (instruction fetch)

7 DBE Bus Error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved Instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 – RFU

15 FPE Floating-Point exception

16–22 – RFU

23 WATCH Watch exception

24–31 – RFU

User’s Manual U10504EJ7V0UM00 173

Exception Processing

The VR4300 has eight interrupt requests: IP7 through IP0. These interrupt
requests are used for the following purposes.

IP7

Indicates whether a timer interrupt request has been issued. This interrupt request
is set when the contents of the Count register have become equal to those of the
compare register.

IP6 through IP2

IP6 through IP2 reflect the logical sum of the two internal registers of the VR4300.
One is the register that latches the status of an interrupt request pin in each cycle,
and the other is a register to which data is written by the external write request of
the system interface.

IP1 and IP0

IP1 and IP0 set or clear the software interrupt request by manipulating each bit.

For details, refer to Chapter 14 Interrupts.

The floating-point exception uses the exception code contained in the floating-point
control/status register (refer to Chapter 8 Floating-Point Exceptions).

Chapter 6

174 User’s Manual U10504EJ7V0UM00

6.3.7 Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the
address at which processing resumes after an exception has been serviced.

The EPC register contains either:

• the virtual address of the instruction that was the direct cause of the
exception, or

• the virtual address of the immediately preceding branch or jump
instruction (when the instruction that was the direct cause of the
exception is in a branch delay slot, and the Branch Delay bit in the
Cause register is set).

The EXL bit in the Status register is set to 1 to keep the processor from overwriting
the address of the exception-causing instruction contained in the EPC register in
the event of another exception.

Figure 6-8 shows the format of the EPC register.

Figure 6-8 EPC Register

EPC Register
31 0

EPC

32

63 0

EPC

64

32-bit
Mode

64-bit
Mode

EPC : Address from which program execution is resumed after an exception
processing

User’s Manual U10504EJ7V0UM00 175

Exception Processing

6.3.8 WatchLo (18) and WatchHi (19) Registers

The VR4300 processor provides a debugging feature to detect request of
references to a selected physical address; load and store operations cause a Watch
exception. Figure 6-9 shows the format of the WatchLo and WatchHi registers.

Initialize the values of these registers in software since these values are undefined
on reset.

Figure 6-9 WatchLo and WatchHi Registers

 WatchLo Register
31

29 1

R WPAddr0

1 1

3 01

WatchHi Register

2

31

28 4

4 0

0 PAddr1

0

3

PAddr1 : Bits 35:32 of a physical address.
Because the most significant bit of a physical address handled by the
VR4300 is bit 31, the value in this area is invalid.
This area is provided to maintain software compatibility of the
VR4300 with the VR4400 and VR4200, and all the 4 bits of this area
can be read.

PAddr0 : Bits 31:3 of the physical address
R : Exception occurs when load instruction is executed if set to 1.
W : Exception occurs when store instruction is executed if set to 1.
0 : RFU. Must be written as zeroes, and returns zeroes when read.

Chapter 6

176 User’s Manual U10504EJ7V0UM00

6.3.9 XContext Register (20)

The XContext register is a read/write register and indicates one entry of the page
table entry array (PTE) on the memory. The PTE array is the data structure of the
operating system and preserves a conversion table that translates virtual addresses
into physical addresses. If a TLB miss occurs, the operating system loads the data
that has caused the miss from the PTE to the TLB, and a remedial action is
executed by the software.

The XContext register is used by the XTLB miss exception handler that loads a
TLB entry in the 64-bit addressing mode.

Although this register contains several pieces of information that overlap with
those of the BadVAddr register, it is in the format easy to be used by the XTLB
exception handler.

This register is used by the operating system only. The PTEBase area of this
register is set as necessary.

Figure 6-10 shows the format of the XContext register.

Figure 6-10 XContext Register

Each bit area of the XContext register is described next.

XContext Register

3130 4 363 0

31

PTEBase BadVPN2

27 4

0R

2

33 32

PTEBase : Base address of page table entry
R : Space identifier (bits 63 and 62 of virtual address)

00 ® User
01 ® Supervisor
11 ® Kernel

BadVPN2 : Virtual address whose translation is invalid (bits 39:13)
0 : Must be written as zeroes, and returns zeroes when read.

User’s Manual U10504EJ7V0UM00 177

Exception Processing

BadVPN2 Area

The BadVPN2 area is written by the hardware in case of a TLB miss.

R Area

The R area is written by the hardware in case of a TLB miss.

PTEBase Area

The PTEBase area is a read/write area and is used by the operating system.

The 27-bit BadVPN2 area holds the values of the bits 39:13 of the virtual address that has
caused a TLB miss. Because a TLB entry consists of a pair of an even page and an odd
page, it does not include bit 12. This register can be used as a pointer that references an 8-
byte PTE pair table as it is where the page size is 4 KB. With the page size of 16 KB or
more, an appropriate PTE reference address can be generated by shifting or masking the
value of this register.

Chapter 6

178 User’s Manual U10504EJ7V0UM00

6.3.10 Parity Error (PErr) Register (26)

The Parity Error register is a read/write register. This register is defined to
maintain the software compatibility of the VR4300 with the VR4200. Because the
VR4300 does not have a parity, this register is not used by the hardware.

Figure 6-11 shows the format of the Parity Error register.

Figure 6-11 PErr Register

6.3.11 Cache Error (CacheErr) Register (27)

The Cache Error register is a read-only register. This register is defined to
maintain the compatibility of the VR4300 with the VR4200. Because the VR4300
does not generate a cache error, this register is not used by the hardware.

Figure 6-12 shows the format of the Cache Error register.

Figure 6-12 CacheErr Register

PErr Register
31

24 8

8 07

0 Diagnostic

Diagnostic : 8-bit self-diagnosis area
0 : RFU. Must be written as zeroes, and returns zeroes when

read.

CacheErr Register

31

32

0

0

0 : RFU. Must be written as zeroes, and returns zeroes when read.

User’s Manual U10504EJ7V0UM00 179

Exception Processing

6.3.12 Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register. It is also used to store the
program counter (PC) on Cold Reset, Soft Reset, and nonmaskable interrupt
(NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. This address can be:

• the virtual address of the instruction that caused the exception

• the virtual address of the immediately preceding branch or jump
instruction, when the instruction which is the cause of the error
exception is in a branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.

Figure 6-13 shows the format of the ErrorEPC register.

Figure 6-13 ErrorEPC Register

ErrorEPC Register
31 0

ErrorEPC

32

63 0

ErrorEPC

64

32-bit
Mode

64-bit
Mode

ErrorEPC : Indicates the program counter on cold reset or soft reset, or in case of
the NMI exception.

Chapter 6

180 User’s Manual U10504EJ7V0UM00

6.4 Exception Details

This section describes the processor exceptions (cause, processing, manipulation).

6.4.1 Exception Types

This section gives sample exception handler operations for the following
exception types:

• Cold Reset

• Soft Reset

• nonmaskable interrupt (NMI)

• remaining processor exceptions

When the EXL and ERL bits in the Status register are 0 in normal operation either
User, Supervisor, or Kernel operating mode is specified by the KSU bits in the
Status register. If one of the EXL and REL bits is 1, the processor is in the Kernel
mode.

If an exception occurs in the processor, the EXL bit is set to 1, and the system
enters the Kernel mode. After information has been saved, the EXL bit is reset to
0 by an exception handler in most of the cases. The EXL bit is set to 1 again by
an exception handler so that the information that has been saved is not lost due to
occurrence of another exception while the information is restored.

When execution exits from the exception processing, the EXL bit is reset to 0. For
details, refer to ERET Instruction of Chapter 16 CPU Instruction Set Details.

6.4.2 Exception Vector Locations

The Cold Reset, Soft Reset, and NMI exceptions are always vectored to:

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

These addresses are a non-cache, non-TLB mapping area.

Addresses for the remaining exceptions are a combination of a vector offset and a
base address.

64-bit mode exception and 32-bit mode exception vectors, and their offsets are
shown next.

User’s Manual U10504EJ7V0UM00 181

Exception Processing

Table 6-3 64-Bit Mode Exception Vector Base Addresses

Table 6-4 32-Bit Mode Exception Vector Base Addresses

E.g. TLB Miss vector (EXL = 0): When BEV = 0, the vector base for this
exception vector is in kseg0 (uncached, TLB unmapped space) (0x8000 0000 in
32-bit mode, 0xFFFF FFFF 8000 0000 in 64-bit mode).

When BEV = 1, the vector base address for this exception vector is in kseg1
(uncached, TLB unmapped space) 0xBFC0 0200 in 32-bit mode and 0xFFFF
FFFF BFC0 0200 in 64-bit mode. This is a TLB unmapped space, allowing the
exception to bypass the TLB.

E.g. General Exception vector: When BEV = 0, the vector base address for this
exception vector is in kseg0 (uncached, unmapped space) (0x8000 0180 in 32-bit
mode, 0xFFFF FFFF 8000 0180 in 64-bit mode).

When BEV = 1, the vector base address for this exception vector is in kseg1
(uncached, TLB unmapped space) (0x8000 0180 in 32-bit mode and 0xFFFF
FFFF BFC0 0380 in 64-bit mode).

This space is an uncached and TLB unmapped space, allowing the exception
handler to bypass the cache and TLB.

Vector Base Address Vector Offset

Cold Reset, Soft Reset,
and NMI

0xFFFF FFFF BFC0 0000
(BEV bit is automatically set to 1.)

0x0000

TLB Miss, EXL=0

0xFFFF FFFF 8000 0000 (BEV=0)
0xFFFF FFFF BFC0 0200 (BEV=1)

0x0000

XTLB Miss, EXL=0 0x0080

Other 0x0180

Vector Base Address Vector Offset

Cold Reset, Soft Reset,
and NMI

0xBFC0 0000
(BEV bit is automatically set to 1.)

0x0000

TLB Miss, EXL=0
0x8000 0000 (BEV=0)
0xBFC0 0200 (BEV=1)

0x0000

XTLB Miss, EXL=0 0x0080

Other 0x0180

Chapter 6

182 User’s Manual U10504EJ7V0UM00

6.4.3 Priority of Exceptions

While more than one exception can occur for a single instruction, only the
exception with the highest priority is reported.

The priority is as follows:

Table 6-5 Exception Priority Order

Generally speaking, the exceptions described in the following sections are
handled (“processing”) by hardware; these exceptions are handled (“servicing”)
by software.

Cold Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)

Address error –– Instruction fetch

TLB/XTLB miss –– Instruction fetch

TLB invalid –– Instruction fetch

Bus error –– Instruction fetch

System Call

Breakpoint

Coprocessor Unusable

Reserved Instruction

Trap

Integer overflow

Floating-Point Exception

Address error –– Data access

TLB/XTLB miss –– Data access

TLB invalid –– Data access

TLB modification –– Data write

Watch

Bus error –– Data access

Interrupt (lowest priority)

User’s Manual U10504EJ7V0UM00 183

Exception Processing

6.4.4 Cold Reset Exception

Cause

The Cold Reset exception occurs when the ColdReset signal is asserted and then
deasserted. This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this reset exception:

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so
the hardware need not initialize the TLB or the cache to process this exception. It
also means the processor can fetch and execute instructions while the caches and
virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs,
except for the following register fields:

• The TS, SR, and RP bits of the Status register and the EP(3:0) bits of
the Config register are cleared to 0.

• The ERL and BEV bits of the Status register and the BE bit of the
Config register are set to 1.

• The Random register is set to the upper-limit value (31).

• The EC(2:0) bits of the Config register are set to the contents of the
DivMode(1:0)* pins.

* In VR4300 and VR4305. In VR4310, DivMode(2:0).

Servicing

The Cold Reset exception is serviced by:

• initializing all processor registers, coprocessor registers, TLB, caches,
and the memory system

• performing diagnostic tests

• bootstrapping the operating system

Chapter 6

184 User’s Manual U10504EJ7V0UM00

6.4.5 Soft Reset Exception

Cause

A Soft Reset (sometimes called Warm Reset) occurs when the ColdReset signal
remains deasserted while the Reset pin is deasserted after assertion of more than
16 MasterClock cycles.

A Soft Reset immediately resets all state machines, and sets the SR bit of the Status
register. Execution begins at the reset vector when a Soft Reset occurs.

This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception (same location as
Cold Reset):

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

This vector is located within unmapped and uncached address space, so that the
cache and TLB need not be initialized to process this exception. When a Soft
Reset occurs, the SR bit of the Status register is set to distinguish this exception
from a Cold Reset exception.

When this exception occurs, the contents of all registers are preserved except for:

• The program counter value when this exception occurs is set to the
ErrorEPC register, when the ERL bit of the Status register is 0.

• TS and RP bits of the Status register are cleared to 0.

• ERL, SR, and BEV bits of the Status register are set to 1.

Because the Soft Reset can abort cache and access to the system interface, cache
and memory state is undefined when this exception occurs.

Servicing

The Soft Reset exception is serviced by saving the current processor state for self-
diagnostic purposes, and reinitializing the system in the same manner as the Cold
Reset exception.

User’s Manual U10504EJ7V0UM00 185

Exception Processing

6.4.6 Non-Maskable Interrupt (NMI) Exception

Cause

The Non-maskable Interrupt (NMI) exception occurs in response to the falling
edge of the NMI pin. An NMI can also be set by externally writing 1 to the bit 6
of the internal interrupt register through the SysAD6 bus.

Unlike all other interrupts, this interrupt is not maskable; it occurs regardless of
the settings of the EXL, ERL, and the IE bits in the Status register.

Processing

The CPU provides a special interrupt vector for this exception (same location as
Cold Reset):

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

This vector is located within unmapped and uncached address space so that the
cache and TLB need not be initialized to process this exception. When an NMI
exception occurs, the SR bit of the Status register is set to differentiate this
exception from a Reset exception.

Unlike Cold Reset and Soft Reset, but like other exceptions, NMI is taken only at
instruction boundaries. The state of the caches and memory system are preserved
by this exception.

When this exception occurs, the contents of all registers are preserved except for:

• The program counter value when this exception occurs is set to the
ErrorEPC register.

• TS bit of the Status register are cleared to 0.

• ERL, SR, and BEV bits of the Status register are set to 1.

Servicing

The NMI exception is serviced by saving the current processor state for self-
diagnostic purposes, and reinitializing the system in the same manner as the Cold
Reset exception.

Chapter 6

186 User’s Manual U10504EJ7V0UM00

6.4.7 Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of
the following:

• Execute the LW or SW instruction to the word data that is not located
at the word boundary.

• Execute the LH or SH instruction to the halfword data that is not
located at the halfword boundary.

• Execute the LD or SD instruction to the doubleword data that is not
located at the doubleword boundary.

• Reference the Kernel address space from User or Supervisor mode

• Reference the supervisor address space from User mode

• Reference an address not in Kernel, Supervisor, or User space in 64-
bit Kernel, Supervisor, or User mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or AdES code
in the Cause register is set, indicating whether the instruction caused the exception
with an instruction reference (AdEL), load operation (AdEL), or store operation
(AdES).

When this exception occurs, the BadVAddr register retains the virtual address that
was not properly aligned or was referenced in protected address space. The
contents of the VPN field of the Context and EntryHi registers are undefined, as
are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception,
unless this instruction is in a branch delay slot. If it is in a branch delay slot, the
EPC register contains the address of the preceding branch instruction and the BD
bit of the Cause register is set.

Servicing

The process executing at the time is handed a UNIXTM SIGSEGV (segmentation
violation) signal by Kernel. This error is usually fatal to the process incurring the
exception.

User’s Manual U10504EJ7V0UM00 187

Exception Processing

6.4.8 TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Miss exception occurs when there is no TLB entry that matches
an attempted reference to a mapped address space.

• TLB Invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid (V bit = 0).

• TLB Modification exception occurs when a store operation virtual
address reference to memory matches a TLB entry which is marked
valid but is not dirty (the entry is not writable, D bit = 0). As a result,
this exception only occurs for the data cache, resulting in a lower
priority for this exception.

The following describe these TLB exceptions.

TLB Miss Exception (32-bit mode)/XTLB Miss Exception (64-bit mode)

Cause

The TLB (XTLB) Miss exception occurs when there is no TLB entry to match an
address to be referenced. This exception is not maskable.

Processing

There are two special vectors for this exception. One is for the 32-bit mode, and
the other is for the 64-bit mode. The UX, SX, and KX bits of the Status register
determine whether the user, supervisor or Kernel address spaces referenced are
32-bit or 64-bit spaces. All TLB Miss exceptions use these two special vectors
when the EXL bit is set to 0 in the Status register, and they use the common ex-
ception vector when the EXL bit is set to 1 in the Status register.

This exception sets the TLBL or TLBS code to the ExcCode area of the Cause reg-
ister. If the cause of the exception is an instruction reference or load operation,
the TLBL code is set; if the cause is a store operation, the TLBS code is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers hold the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the translation fault occurred. The
Random register normally contains a valid location in which to place the
replacement TLB entry. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception,
unless this instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

Chapter 6

188 User’s Manual U10504EJ7V0UM00

Servicing

To service this exception, the contents of the Context or XContext register are used
as a virtual address to load memory words containing the physical page frame and
access control bits to a pair of TLB entries. Memory words are written into the
TLB through the EntryLo0/EntryLo1/EntryHi register.

It is possible that the page frame and access control bit are placed on a page where
the virtual address is not resident in the TLB. This condition is processed by
allowing a TLB Miss exception in the TLB Miss exception handler. This second
exception goes to the common exception vector because the EXL bit of the Status
register is set.

TLB Invalid Exception

Cause

The TLB Invalid exception occurs when a virtual address reference matches a
TLB entry that is marked invalid (TLB valid bit cleared). This exception is not
maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code
is set to the ExcCode field of the Cause register. If the cause of the exception is
an instruction reference or load operation, the TLBL code is set; if the cause is a
store operation, the TLBS code is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the translation fault occurred. The
contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception
unless this instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

User’s Manual U10504EJ7V0UM00 189

Exception Processing

Servicing

A TLB entry is typically marked invalid when one of the following is true:

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page fault)

• a trap is desired on any reference to the page (for example, to
maintain a reference bit)

After removing the cause of a TLB Invalid exception, place another entry to the
location of the TLB entry where the exception has occurred by the TLB Probe
(TLBP) instruction and set 1 to the V bit.

TLB Modification Exception

Cause

The TLB change exception occurs if the TLB entry that matches the virtual
address referenced by the store instruction is disabled from being written (the D
bit is 0), though the TLB entry is valid (V bit is 1). This exception occurs only
when an attempt is made to write the data cache. Note, however, that the priority
of this exception is low.

Processing

The common exception vector is used for this exception, and the Mod code is set
to the ExcCode field in the Cause register.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the translation fault occurred. The
contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception
unless that instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of the
Cause register is set.

Servicing

The Kernel uses the failed virtual address or virtual page number to identify the
corresponding access control bits. The page identified may or may not permit
write accesses; if writes are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the
Kernel in its own data structures.

Chapter 6

190 User’s Manual U10504EJ7V0UM00

The TLBP instruction places the index of the TLB entry that must be altered into
the Index register. The EntryLo register is loaded with a word containing the
physical page frame and access control bits (with the D bit set), and the contents
of the EntryHi and EntryLo registers are written into the TLB.

6.4.9 Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus
time-out, local bus parity errors, and invalid physical memory addresses or access
types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached field
reference, or unbuffered write occurs synchronously; in concrete terms, a Bus
Error exception occurs if SysCmd(0) indicates that the data contains an error when
it is transferred on the system bus, regardless of the direction of the transfer
between the system and the processor. An exception for the local bus error of the
system resulting from a buffered write transaction is generated using the interrupt
exception.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE
code in the ExcCode field of the Cause register is set. If the cause of the exception
is an instruction reference (instruction fetch), the IBE code is set. If the cause is a
data reference (load/store), the DBE code is set.

The EPC register contains the address of the instruction that caused the exception,
unless it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is
set.

User’s Manual U10504EJ7V0UM00 191

Exception Processing

Servicing

The physical address at which the fault occurred can be computed from
information available in the system control coprocessor registers.

• If the IBE code in the Cause register is set (indicating an instruction
fetch), the virtual address is contained in the EPC register (or 4 + the
contents of the EPC register if the BD bit of the Cause register is set).

• If the DBE code is set (indicating a load or store), the virtual address
of the instruction that caused the exception (the address of the
preceding branch instruction if the BD bit of the Cause register is set)
is stored in the EPC register (or 4 + the contents of the EPC register
if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by
interpreting the instruction. The physical address can be obtained by using the
TLBP instruction and reading the EntryLo register to compute the physical page
number.

The process executing at the time of this exception is handed a UNIX SIGBUS
(bus error) signal, which is usually fatal.

6.4.10 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code is set to
the ExcCode field in the Cause register.

The EPC register contains the address of the SYSCALL instruction unless it is in
a branch delay slot. If the SYSCALL instruction is in a branch delay slot, the EPC
register contains the address of the preceding branch instruction and the BD bit of
the Cause register is set; otherwise this bit is cleared.

Chapter 6

192 User’s Manual U10504EJ7V0UM00

Servicing

When this exception occurs, control is transferred to the applicable system
routine.

To resume execution, the EPC register must be altered so that the SYSCALL
instruction does not re-execute; this is accomplished by adding a value of 4 to the
EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, the branch instruction is
decoded to branch and re-execute.

6.4.11 Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code is set to
the ExcCode in the Cause register.

The EPC register contains the address of the BREAK instruction unless it is in a
branch delay slot. If the BREAK instruction is in a branch delay slot, the EPC
register contains the address of the preceding branch instruction and the BD bit of
the Cause register is set, otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, servicing is transferred to the applicable
system routine. Additional information can be passed using the unused bits of the
BREAK instruction (bits 25:6). This information can be obtained by reading the
contents indicated by the EPC register as data. (A value of 4 must be added to the
contents of the EPC register (EPC register + 4) to locate the instruction if it resides
in a branch delay slot.)

To resume execution, the EPC register must be altered so that the BREAK
instruction does not re-execute; this is accomplished by adding a value of 4 to the
EPC register (EPC register + 4) before returning. If a BREAK instruction is in a
branch delay slot, decode the branch instruction to get the branch destination and
resume execution.

User’s Manual U10504EJ7V0UM00 193

Exception Processing

6.4.12 Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute
a coprocessor instruction for either:

• If use of the corresponding coprocessor unit is not marked usable
(CU bits (3:1) of the Status register = 0).

• If the CP0 instruction is executed in the User or Supervisor mode
when CP0 cannot be used (CU0 bit of the Status register = 0).

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CpU code is set
to the ExcCode in the Cause register.

The CE bits of the Cause register indicate which of the four coprocessors was
referenced.

The EPC register indicates the coprocessor instruction that caused an exception.
If the coprocessor instruction that caused the exception is in a branch delay slot,
the EPC register indicates the preceding branch instruction and the BD bit of the
Cause register is set.

Servicing

The coprocessor unit to which an attempted reference was made is identified by
the CE bit of the Cause register, process as follows by a handler.

• If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the coprocessor resumes execution.

• If the process is entitled access to the coprocessor, but the
coprocessor does not exist or has failed, decoding of the coprocessor
instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction must
be decoded; then the coprocessor instruction can be emulated and
execution resumed by making the contents of the EPC register
advanced past the coprocessor instruction.

Chapter 6

194 User’s Manual U10504EJ7V0UM00

• If the process is not entitled access to the coprocessor, the Kernel
informs the current process of the UNIX SIGILL/ILL_PRIVIN_
FAULT (illegal instruction/privileged instruction fault) signal. This
exception is usually fatal.

6.4.13 Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions
occurs:

• an attempt is made to execute an instruction with an undefined
opcode (bits 31:26)

• an attempt is made to execute a SPECIAL instruction with an
undefined sub-opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction with an
undefined sub-opcode (bits 20:16)

• an attempt is made to execute 64-bit operations in 32-bit mode when
in User or Supervisor modes

64-bit operations are always valid in Kernel mode regardless of the value of the
KX bit in the Status register.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code is set in
the ExcCode field in the Cause register.

The EPC register indicates the instruction that caused an exception if the reserved
instruction is not in a branch delay slot, in which case the EPC register indicates
the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

All instructions in the MIPS ISA that are currently defined can be executed.

The process executing at the time of this exception is handled by a UNIX SIGILL/
ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal. This
exception is usually fatal.

User’s Manual U10504EJ7V0UM00 195

Exception Processing

6.4.14 Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI,
TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE condition.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code is set in
the ExcCode field in the Cause register.

The EPC register indicates the Trap instruction that caused the exception. If the
instruction is in a branch delay slot, the EPC register indicates the preceding
branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal by
Kernel. This exception is usually a fatal error.

Chapter 6

196 User’s Manual U10504EJ7V0UM00

6.4.15 Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI or DSUB instruction results in a 2’s complement overflow. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the Ov code is set in
the ExcCode field in the Cause register.

The EPC register indicates the instruction that caused the exception. If the
instruction is in a branch delay slot, the EPC register indicates the preceding
branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of the exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal by
Kernel. This exception is usually a fatal error to the current process.

User’s Manual U10504EJ7V0UM00 197

Exception Processing

6.4.16 Floating-Point Exception

Cause

The Floating-Point exception is generated by the floating-point coprocessor. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code is set
in the ExcCode field in the Cause register.

The contents of the Floating-Point Control/Status register indicate the cause of
this exception.

The EPC register indicates the reserved instruction if the instruction is not in a
branch delay slot. If the instruction is in the branch delay slot, the EPC register
indicates the preceding branch instruction and the BD bit of the Cause register is
set.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point
Control/Status register.

For an unimplemented instruction exception, the Kernel must emulate the
instruction; for other exceptions, the Kernel should pass the exception to the user
program that caused the exception.

Chapter 6

198

User’s Manual U10504EJ7V0UM00

6.4.17 Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the physical
address specified in the

WatchLo/WatchHi

 registers. The exception is caused by
the following instructions: a load instruction when the

R

 bit is set in the

WatchLo

register; a store instruction when the

W

 bit is set in the

WatchLo

 register; a load or
store instruction when both the

R

 and

W

 bits are set in the

WatchLo

 register.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if the

EXL

 bit is set in the

Status

 register. The
Watch exception is maskable by setting the

 EXL

 bit in the

Status

 register to 1 or
by clearing the

R

 and

W

 bits in the

WatchLo

 register to 0.

Processing

The common exception vector is used for this exception, and the

Watch

 code is set
in the ExcCode field in the

Cause

 register.

The

EPC

register indicates the Load and Store instructions if they are not in a
branch delay slot. If these instructions are in the branch delay slot, the

EPC

register indicates the preceding branch instruction and the

BD

 bit of the

Cause

register is set.

Servicing

The Watch exception is a debugging aid; typically the exception handler transfers
control to a debugger, allowing the user to examine the situation. To continue, the
Watch exception must be masked to execute the faulting instruction. The Watch
exception must then be reenabled.

Because the contents of the

WatchLo/WatchHi

 registers become undefined after
reset, initialize the registers by software (especially clear the

R

 and

W

 bits to 0).
If not initialized, the Watch exception may occur.

User’s Manual U10504EJ7V0UM00 199

Exception Processing

6.4.18 Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions (one for
timer interrupt; five for hardware interrupt; two for software interrupt) is asserted.
The significance of these interrupts is dependent upon the specific system
implementation. An interrupt request signal from a pin is detected by the level.

Each of the eight interrupts can be masked by clearing the corresponding bit in the
Int-Mask field of the Status register, and all of the eight interrupts can be masked
at once by clearing the IE bit, setting the EXL bit, or setting the ERL bit of the
Status register.

Processing

The common exception vector is used for this exception, and the Int code is set in
the ExcCode field in the Cause register.

The IP field of the Cause register indicates current interrupt requests. It is
possible before this register is read that more than one of the bits can be
simultaneously set if the interrupt request signal is asserted; or that more than one
of the bits can be simultaneously cleared if the interrupt request signal is
deasserted.

If the instruction that causes an exception is not in a branch delay slot the EPC
register indicates that instruction. If the instruction is in the branch delay slot, the
EPC register indicates the preceding branch instruction and the BD bit of the
Cause register is set.

Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW1 or
SW0), the interrupt condition is cleared by setting the corresponding Cause
register bit to 0.

If an interrupt is generated by the hardware, the interrupt is cleared by asserting
inactive the interrupt request signal that has caused the interrupt.

If the timer interrupt request is generated, either clear the IP7 bit of the Cause
register or change the contents of the Compare register, to clear this interrupt.

Chapter 6

200 User’s Manual U10504EJ7V0UM00

6.5 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions
and guidelines for their handlers:

• general purpose exceptions handling and a guideline for their
exception handler

• TLB/XTLB miss exception handling and a guideline for their
exception handler

• Cold Reset, Soft Reset and NMI exceptions handling, and a guideline
for their handler.

Generally speaking, the exceptions are handled (“processing”) by hardware; the
exceptions are then handled (“servicing”) by software.

User’s Manual U10504EJ7V0UM00 201

Exception Processing

Figure 6-14 General Purpose Exception Handler (1/2)

BEV
=1 (bootstrap)= 0 (normal)

Yes

No

EXL=1?
(SR1)

(a) Exceptions other than Cold Reset, Soft Reset, NMI,
or TLB/XTLB Miss Handling (Hardware)

Start

Set FP Control Status Register
EnHi <- VPN2, ASID
X/Context <- VPN2
Set Cause Register
EXcCode, CE
BadVAddr Register Setting

Instr. in
Br.Dly. Slot?

Comments
; FP Control/Status Register are

only set if the respective exception
occurs.
EnHi, X/Context are set only for
TLB-Invalid, Modification & Miss
exceptions. It is not set by bus
error exceptions, however.

; Check for multiple
exception

BD bit of Cause Register <- 0
EPC <- PC

BD bit of Cause Register <- 1
EPC <- (PC–4)

EXL <- 1

PC <- 0xFFFF FFFF BFC0 0200 + 180
(unmapped, uncached)

PC <- 0xFFFF FFFF 8000 0000 + 180
(unmapped, cached)

; Processor moves to Kernel Mode
& interrupt disabled

To General Purpose Exception Servicing Guidelines

No

Yes

Remark Interrupts can be masked by IE or IMs and Watch is postponed if EXL = 1

Chapter 6

202 User’s Manual U10504EJ7V0UM00

Figure 6-14 General Purpose Exception Handler (2/2)

Comments

Yes

General Purpose Exception Servicing Guidelines

(b) General Purpose Exception Servicing Guidelines (Software)

; Prevents TLB modification, TLB
invalid, and TLB miss exceptions
from occurring by using mapping
disable area

; EXL=1 so Watch, Interrupt
exceptions disabled

; OS/System to avoid all other
exceptions

; Only Cold Reset, Soft Reset, NMI
exceptions possible.

; Optional: Interrupts are enabled
in Kernel mode.

MFC0 Instruction Executed
X/Context
EPC
Status
Cause

; After EXL=0, all exceptions
allowed.
(except interrupt if masked by IE
or IM)

; Optional: Check only if double
TLB miss

; Save Register File

; ERET is not allowed in the branch
delay slot of another Jump
Instruction

; Processor does not execute the
instruction which is in the ERET
instruction’s branch delay slot

; PC <- EPC, EXL <- 0, LLbit <- 0

ERET

MFC0 Instruction Executed
(Set Status Bits:)

KSU<- 00
EXL <- 0
IE=1

Check Cause Register &
Jump to appropriate

Service Routine

Each exception routine
service

EXL = 1

MFC0 Instruction Executed
EPC
Status

TS bit of
Status

Register = 0?

Reset the processor

No

User’s Manual U10504EJ7V0UM00 203

Exception Processing

Figure 6-15 TLB/XTLB Miss Exception Handler (1/2)

BEV =1 (bootstrap)= 0 (normal)

Yes

No

Instr. in
Br.Dly. Slot?

(a) Hardware

Start

EnHi <- VPN2, ASID
X/Context <- VPN2
Cause Register Setting
(EXcCode)
BadVAddr Register Setting

; Check for multiple
exception

BD bit of Cause Register <- 0
EPC <- PC

BD bit of Cause Register <- 1
EPC <- (PC–4)

EXL <- 1

PC <- 0xFFFF FFFF BFC0 0200 + Vec. Off.
(unmapped, uncached)

PC <- 0xFFFF FFFF 8000 0000 + Vec. Off.
(unmapped, cached)

; Processor moves
to Kernel Mode
& interrupt
disabled

To TLB/XTLB Exception Servicing Guidelines

EXL = 0?
(SR bit 1)

EXL = 0?
(SR bit 1)

Yes
No

Yes

XTLB
Exception?

XTLB Miss Exception
Vec. Off. = 0x080

TLB Miss Exception
Vec. Off. = 0x000

NoYes

(SR bit 22)

General Purpose Exception
Vec. Off. = 0x080

Comments
No

Chapter 6

204 User’s Manual U10504EJ7V0UM00

Figure 6-15 TLB/XTLB Miss Exception Handler (2/2)

Comments

TLB/XTLB Exception Servicing Guidelines

MFC0 Instruction Executed
Context

(b) TLB/XTLB Exception Servicing Guidelines (Software)

; Prevents TLB modification, TLB invalid, and TLB Miss
exceptions from occurring by using mapping disable
area

; EXL=1 so Watch, Interrupt exceptions disabled
; OS/System to avoid all other exceptions
; Only Cold Reset, Soft Reset, NMI exceptions possible

; Load the physical address corresponding to the virtual
address in loaded in X/Context Register to Entry Lo
Register and Write into the TLB

; There could be a TLB miss again during the mapping of
the data or instruction address. The processor may
jump to the general purpose exception vector since the
EXL is 1.

; (Either processes TLB miss in general purpose
exception handler, or returns to user program by using
ERET instruction and generates TLB Miss exception
again.)

; ERET is not allowed in the branch delay slot of another
Jump Instruction

; Processor does not execute the instruction which is in
the ERET instruction’s branch delay slot

; PC <- EPC, EXL <- 0, LLbit <- 0

Each Exception Routine
Servicing

ERET

User’s Manual U10504EJ7V0UM00 205

Exception Processing

Figure 6-16 Cold Reset, Soft Reset & NMI Exception Handler

NMI?
Yes

No

= 1

=0

ERET

(Optional)

Status:
RP <- 0 (soft reset)
BEV <- 1
TS <- 0
SR<- 1
ERL <- 1

Soft Reset or NMI Exception

Random <- 31
Wired <- 0
Update 31–4 bit of Config register
Status: RP <- 0

BEV <- 1
TS <- 0
SR<- 0
ERL <- 1

Cold Reset Exception

ErrorEPC <- PC

PC <- 0xFFFF FFFF BFC0 0000C
o

ld
 R

es
et

, S
o

ft
 R

es
et

 &
 N

M
I E

xc
ep

ti
o

n
P

ro
ce

ss
in

g
 G

u
id

el
in

es
 (

H
W

)

NMI Exception
Routine Service

SR bit of
Status Register

Servicing of soft reset
exception routine

Servicing of cold reset
exception routine

Comments

; There is no indication from the
processor to differentiate between
NMI & Soft Reset; there must be a
system level indication.

C
o

ld
 R

es
et

, S
o

ft
 R

es
et

 &
 N

M
I E

xc
ep

ti
o

n
S

er
vi

ci
n

g
 G

u
id

el
in

es
 (

S
W

)

206 User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

207

Floating-Point Operations

7

Chapter 7

208

User’s Manual U10504EJ7V0UM00

7.1 Overview

All floating-point instructions, as defined in the MIPS ISA for the floating-point
coprocessor, CP1, can be processed by the V

R

4300. Logically, the Floating-Point
Arithmetic Unit (FPU) exists as an individual coprocessor; however, unlike those
of the V

R

4400, the V

R

4300 FPU is physically integrated into the Integer
Arithmetic Unit (CPU). The CPU and the FPU use a common datapath and FPU
instructions are fully-implemented in the CPU hardware. Unlike the V

R

4400
implementation, V

R

4300 integer instructions cannot be executed until a
multicycle floating-point instruction has been completed.

The execution of floating-point instructions can be disabled by the coprocessor
usability

CU

 bit defined in the System Control Coprocessor (CP0)

Status

 register.

7.2 FPU Programming Model

This section describes the structure of the registers, memory, and data, and usable

General Purpose

 registers. Moreover, the

FPU

 registers are described in detail.

7.2.1 Floating-Point General Purpose Register (FGR)

The FPU has one set of floating-point general purpose register (FGR) and two

Control

 registers (

Control/Status

 register: FCR31,

Implementation/Revision

register: FCR0). The general purpose register can be used in the following three
ways.

• As 32

General Purpose

 registers (32 FGRs), each of which is 32 bits
wide when the

FR

 bit in the

 Status

 register equals 0; or as 32

General
Purpose

 registers (32 FGRs), each of which is 64-bits wide when

FR

equals 1. The CPU accesses these registers through load, store, and
transfer instructions.

• As 16 floating-point registers (FPR) (see the next section for a
description of FPRs), each of which is 64-bits wide, when the

FR

 bit
in the

Status

register equals 0. The FPRs hold values in either single-
or double-precision floating-point format. Each FPR corresponds to
adjacently numbered FGRs as shown in Figure 7-1.

• As 32 floating-point registers (FPR) (see the next section for a
description of FPRs), each of which is 64-bits wide, when the

FR

 bit
in the

Status

register equals 1. The FPRs hold values in either single-
or double-precision floating-point format. Each FPR corresponds to
an individual FGR as shown in Figure 7-1.

User’s Manual U10504EJ7V0UM00

209

Floating-Point Operations

Figure 7-1 FPU Registers

Control/Status Register

31 0 31 0

Implementation/Revision Register

Floating-Point
Control Registers

(FCR)

(FCR0)(FCR31)

Registers (FPR)
(FR bit = 0)

Floating-Point

FPR0

0

General Purpose Registers

(FGR)

FGR0

FGR1

FGR2

FGR31

FGR30

FGR29

31

FGR3

(Low-order)

(High-order)

FPR2

FPR30

FPR28
FGR28

Floating-Point

0

General Purpose Registers

(FGR)

FGR0

FGR1

FGR2

FGR31

FGR30

FGR29

63

FGR3

FGR28

Floating-Point
Registers (FPR)

(FR bit = 1)

 Floating-Point

FPR0

FPR2

FPR30

FPR28

FPR3

FPR1

FPR29

FPR31

•
•

•
•
•

•
•
•

•
•
•

•

(Low-order)

(High-order)

(Low-order)

(High-order)

(Low-order)

(High-order)

Chapter 7

210

User’s Manual U10504EJ7V0UM00

7.2.2 Floating-Point Registers (FPR)

CP1 provides:

• 16

Floating-Point

 registers (

FPR

s) when the

FR

 bit in the

Status

register equals 0, or

• 32

Floating-Point

 registers (

FPR

s) when the

FR

 bit in the

Status

register equals 1.

FPR

 possesses logical 64-bit registers, holds floating-point values during floating-
point operations, and is physically formed from the

General Purpose

 registers
(

FGR

s).

FPR

 can be accessed through a Floating-Point Arithmetic Instruction.

FPR

 is physically configured with

General Purpose

 registers (

FGR

s). When the

FR

 bit in the

Status

 register equals 0, the

FPR

 is configured with two 32-bit

FGR

s.
When the

FR

 bit in the

Status

register equals 1, the

FPR

 is configured with a single
64-bit

FGR.

The

FPR

s hold values in either single- or double-precision floating-point format.
If the

FR

 bit equals 0, only even numbers (the

 least

 register, as shown in Figure 7-
1) can be used to address

FPR

s. When the

FR

 bit equals 1, all

FPR

register
numbers are valid. If the

FR

 bit equals 0 during a double-precision floating-point
operation, the

FGR

 can be used in double pairs. Thus, in a double-precision
operation, selecting

Floating-Point Register 0

 (

FPR0

) actually uses adjacent

Floating-Point General Purpose

 registers

FGR0

 and

FGR1

.

User’s Manual U10504EJ7V0UM00

211

Floating-Point Operations

7.2.3 Floating-Point Control Registers (FCRs)

The FPU in the V

R

4000 Series (excluding V

R

4100) has 32 control registers. With
the V

R

4300, the following two FCRs are valid.

• The

Control/Status

register

 (FCR31)

 controls and monitors
exceptions, holds the result of compare operations, and establishes
rounding modes.

• The

Implementation/Revision

register

 (FCR0)

 holds revision
information about the FPU.

Table 7-1 lists the assignments of the

FCR

s.

Table 7-1 Floating-Point Control Register Assignments

7.2.4 Control/Status Register (FCR31)

The

Control/Status

 register (

FCR31

) is a read/write register, and holds control
data and status data.

FCR31

 controls the rounding mode and enables occurrence
of the floating-point exception. It also indicates the information on the exception
that has caused by the instruction executed last and information on the exceptions
that have been masked and therefore have not occurred. Figure 7-2 shows the
configuration of

FCR31

.

Figure 7-2 Control/Status Register Bit Assignments

 FCR Number Use

FCR0 Coprocessor implementation/revision register

FCR1 to FCR30 Reserved

FCR31 Rounding mode, cause, exception enables, and flags

Control/Status Register (FCR31)

31 24 23 22 18 17 12 11 7 6 2 1 0

7 1 5 6 5 5 2

C RMFlagsEnablesCause
0 0 E V Z O U I V Z O U I V Z O U I

25

FS

1

 (

Chapter 7

212

User’s Manual U10504EJ7V0UM00

Figure 7-3 Control/Status Register (FCR31) Cause, Enable, and Flag Bit Fields

The contents of

FCR31

 and

FCR0

 can be read by using the CFC1 instruction.

The bits of

FCR31

 can be set or cleared by using the CTC1 instruction.

FCR0

 is
a read-only register. The contents of a register to which data is to be written are
undefined when an instruction that immediately follows the instruction that writes
data to the register is executed. The pipeline does not interlock.

The IEEE754 specifies detection of an exception during a floating-point
operation, setting flags, and calling an exception handler in case of an exception.
With the MIPS architecture, these specifications are realized by the cause, enable,
and flag bits of the

Control/Status

 register. The flag bit conforms to the exception
status flag of the IEEE754, and the cause and enable bits conform to the exception
handler of the IEEE754.

Each bit of

FCR31

 is described next.

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits

User’s Manual U10504EJ7V0UM00

213

Floating-Point Operations

FS bit

The

FS

 bit enables a value that cannot be normalized (denormalized number) to
be flashed. When the

FS

 bit is set and the enable bit is not set for the underflow
exception and illegal exception, the result of the denormalized number does not
cause the unimplemented operation exception, but is flushed. Whether the flushed
result is 0 or the minimum normalized value is determined depending on the
rounding mode (refer to

Table 7-2

). If the result is flushed, the

Flag

 and

Cause

bits are set for the underflow and illegal exceptions.

Table 7-2 Flush Values of Denormalized Number Results

C Bit

When a floating-point Compare operation takes place, the result is stored at bit 23,
the Condition bit. The C bit is set to 1 if the condition is true; the bit is cleared to
0 if the condition is false. Bit 23 is affected only by compare and CTC1
instructions.

Cause, Flag, and Enable Fields

Figure 7-3 illustrates the Cause, Enable, and Flag fields of the FCR31.

The Cause and Flag fields are updated by all conversion, computational (except
MOV.fmt), CTC1, reserved, and unimplemented operation instructions. All other
instructions have no affect on these fields.

Cause Bits

Bits 17:12 in the FCR31 contain Cause bits which reflect the results of the most
recently executed floating-point instruction. The Cause bits are a logical
extension of the CP0 Cause register; they identify the exceptions raised by the last
floating-point operation; and generate exceptions if the corresponding Enable bit
is set. If more than one exception occurs on a single instruction, each appropriate
bit is set.

Denormalized
Number Result

Flushed Result
Rounding Mode

RN RZ RP RM

Positive +0 +0 +2Emin +0

Negative -0 -0 -0 -2Emin

Chapter 7

214 User’s Manual U10504EJ7V0UM00

The Cause bits are updated by the floating-point operations (except load, store,
and transfer instructions). The unimplemented operation instruction (E) bit is set
to a 1 if software emulation is required, otherwise it remains 0. The other bits are
set to 0 or 1 to indicate the occurrence or non-occurrence (respectively) of an
IEEE754 exception.

If the floating-point operation exception occurs, the operation result is not stored,
and only the Cause bit is influenced. The type of the exception that has been
caused by the most-recently-executed floating-point operation can be identified
by reading the Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the
corresponding Enable bit are set. As soon as the Cause bit enabled through the
Floating-point operation, an exception occurs. When both Cause and Enable bits
are set by the CTC1 instruction, an exception also occurs.

There is no enable bit for unimplemented operation instruction (E). An
Unimplemented exception always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear the
Cause bits that are enabled to generate exceptions to prevent a repeat of
exceptions. Thus, User mode programs cannot observe the set Cause bits. To use
the information by the handler in User mode, save the value of the Status register
and then call the handler in User mode.

If the Cause bit is set but the corresponding Enable is not set, no floating-point
exception occurs and the default result defined by IEEE754 is stored. In this case,
whether the exceptions were caused by the immediately previous floating-point
operation can be determined by reading the Cause bit.

Flag Bits

The Flag bits are cumulative and indicate the exceptions that were raised after
reset. Flag bits are set to 1 if an IEEE754 exception is raised but the occurrence
of the exception is prohibited. Otherwise, they remain unchanged. The Flag bits
are never cleared as a side effect of floating-point operations; however, they can
be set or cleared by writing a new value into the FCR31, using a CTC1 instruction.

Rounding Mode Control Bits

Bits 1 and 0 in the FCR31 register constitute the Rounding Mode (RM) bits. These
bits specify the rounding mode that FPU uses for all floating-point operations.

User’s Manual U10504EJ7V0UM00 215

Floating-Point Operations

Table 7-3 Rounding Mode Control Bits

RM bits
Mnemonic Description

Bit 1 Bit 0

0 0 RN

Round result to nearest representable value;
round to value with least-significant bit 0 when
the two nearest representable values are equally
near.

0 1 RZ
Round toward 0: round to value closest to and
not greater in magnitude than the infinitely
precise result.

1 0 RP
Round toward + ¥: round to value closest to
and not less than the infinitely precise result.

1 1 RM
Round toward – ¥: round to value closest to
and not greater than the infinitely precise result.

Chapter 7

216 User’s Manual U10504EJ7V0UM00

7.2.5 Implementation/Revision Register (FCR0)

The Implementation/Revision register (FCR0) is a read-only register and holds the
implementation identification number and implementation revision number of the
FPU. This information is used to revise the coprocessor, determine the
performance level, and to execute self-diagnosis.

Figure 7-4 shows the layout of the register.

Figure 7-4 Implementation/Revision Register

The implementation revision number is a value in the format of y.x, where y is the
major revision number stored to the bits 7:4, and x is the minor revision number
stored to bits 3:0. Revision of the chip can be identified by the implementation
revision number. However, the fact that a chip has been changed is not always
reflected on the revision number. Conversely, a change in the revision number
does not always reflect an actual change of the chip. Therefore, design the
program so that it does not depend on the revision number of this register.

16 15 7

Implementation/Revision Register (FCR0)

31 0

16

Rev

8 8

8

0 Imp

Imp : Implementation number (0x0B)
Rev : Revision number in the form of y.x
0 : RFU. Returns zeroes when read.

User’s Manual U10504EJ7V0UM00 217

Floating-Point Operations

7.3 Floating-Point Formats

The FPU supports the performances of both 32-bit (single-precision) and 64-bit
(double-precision) IEEE754 standard floating-point operations. The 32-bit
single-precision format has a 24-bit signed fraction field (s+f) and an 8-bit
exponent (e), as shown in Figure 7-5.

Figure 7-5 Single-Precision Floating-Point Format

The double-precision format has a 53-bit signed fraction field (s+f) and an 11-bit
exponent, as shown in Figure 7-6.

Figure 7-6 Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are composed of
three fields:

• sign field, s

• exponent, e = E + bias

• fraction, f = b1b2....bP–1 (value at first decimal place or beyond)

The range of the unbiased exponent E includes every integer between the two
values Emin and Emax inclusive, together with two other reserved values:

• Emin -1 (to encode ±0 and denormalized numbers)

• Emax +1 (to encode ±¥ and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero numerical
value has just one encoding.

For single- and double-precision formats, the value of a number, v, is determined
by the equations shown in Table 7-4.

31 30 23 22 0

FractionSign Exponent

231 8

s e f

63 62 52 51 0

FractionSign Exponent

521 11

s e f

Chapter 7

218 User’s Manual U10504EJ7V0UM00

Table 7-4 Equations for Calculating Values in Single-and Double-Precision
Floating-Point Format

NaN (Not a Number)

The IEEE754 specifies a floating-point value called NaN (Not a Number). This
is not a numeric value and therefore, is not greater or smaller than anything.

For all floating-point formats, if v is NaN, the most-significant bit of f determines
whether the value is a signaling or quiet NaN: v is a signaling NaN if the most-
significant bit of f is set, otherwise, v is a quiet NaN. Table 7-5 defines the values
for the format parameters.

Table 7-5 Floating-Point Format Parameter Values

No. Equation

NaN
(Not a Number)

if E = Emax+1 and f ¹ 0, then v is NaN, regardless of s

± ¥
(Infinite number)

if E = Emax+1 and f = 0, then v = (–1)s ¥

Normalized
number

if Emin £ E £ Emax, then v = (–1)s2E(1.f)

Denormalized
number

if E = Emin–1 and f ¹ 0, then v = (–1)s2Emin(0.f)

±0 (Zero) if E = Emin–1 and f = 0, then v = (–1)s0

Parameter
Format

Single Double

Emax +127 +1023

Emin –126 –1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

Fraction width in bits 24 53

Format width in bits 32 64

User’s Manual U10504EJ7V0UM00 219

Floating-Point Operations

The minimum and maximum values that can be expressed in this floating-point
format are shown in Table 7-6.

Table 7-6 Minimum and Maximum Floating-Point Values

Type Value

Single-precision floating-point Minimum 1.40129846e–45

Single-precision floating-point Minimum
(Normal)

1.17549435e–38

Single-precision floating-point Maximum 3.40282347e+38

Double-precision floating-point Minimum 4.9406564584124654e–324

Double-precision floating-point Minimum
(Normal)

2.2250738585072014e–308

Double-precision floating-point Maximum 1.7976931348623157e+308

Chapter 7

220

User’s Manual U10504EJ7V0UM00

7.4 Fixed-Point Format

Fixed-point values are held in 2’s complement format. Unsigned fixed-point
values are not directly provided by the floating-point instruction set. Figure 7-7
illustrates 32-bit fixed-point format and Figure 7-8 illustrates 64-bit fixed-point
format.

Figure 7-7 32-Bit Fixed-Point Format

Figure 7-8 64-Bit Fixed-Point Format

31 30 0

Sign

311

Integer

s : sign bit
i : integer value (2’s complement)

s i

63 62 0

631

s : sign bit
i : integer value (2’s complement)

Sign Integer
s i

User’s Manual U10504EJ7V0UM00 221

Floating-Point Operations

7.5 FPU Set Overview

All FPU instructions are 32 bits long, aligned on a word boundary. They can be
divided into the following groups:

• Load/Store/Transfer instructions move data between the FPU
General Purpose register, Control register, CPU, and memory.

• Conversion instructions perform conversion operations between the
various data formats.

• Computational instructions perform arithmetic operations on
floating-point values in FPU registers.

• Compare instructions perform comparisons of the contents of
registers and set the results to a condition bit of the FCR31.

• FPU Branch instructions perform a branch to the specified target if
the specified coprocessor condition is met.

For details of each instruction, refer to Chapter 17 FPU Instruction Set Details.

7.5.1 Floating-Point Load/Store/Transfer Instructions

Loads/Stores from/to CP1 and Memory

Loads/Stores from/to CP1 and memory are accomplished by using one of the
following instructions:

• Load Word To Coprocessor 1 (LWC1) or Store Word From
Coprocessor 1 (SWC1) instructions, which reference a single 32-bit
word of the FP general registers

• Load Doubleword (LDC1) or Store Doubleword (SDC1) instructions,
which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions are
performed and therefore no floating-point exceptions can occur due to these
operations.

Chapter 7

222 User’s Manual U10504EJ7V0UM00

Transfers Between CP1 and CPU

Data can also be moved directly between CP1 General Purpose registers and the
CPU by using one of the following instructions:

• Move To Coprocessor 1 (MTC1)

• Move From Coprocessor 1 (MFC1)

• Doubleword Move To Coprocessor 1 (DMTC1)

• Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations perform no
format conversions and never cause floating-point exceptions.

Data transfer between CP1 control registers and the CPU is accomplished with the
following instructions:

• Move Control Word To Coprocessor 1 (CTC1)

• Move Control Word From Coprocessor 1 (CFC1)

Load Delay and Hardware Interlocks

The instruction immediately following a load or a MTC1 can use the contents of
the loaded register. In such cases the hardware interlocks, requiring additional
real cycles; for this reason, scheduling load delay slots is desirable to avoid the
interlocks.

Data Alignment

All coprocessor loads and stores reference the following aligned data items:

• For word loads and stores, the access type is always WORD, and the
low-order 2 bits of the address must always be 0.

• For doubleword loads and stores, the access type is always
DOUBLEWORD, and the low-order 3 bits of the address must
always be 0.

Endianness

Regardless of byte-numbering order (endianness) of the data, the address specifies
the byte that has the smallest byte address in the addressed field. For a big-endian
system, it is the leftmost byte; for a little-endian system, it is the rightmost byte.

Table 7-7 lists load, store, and transfer instructions.

User’s Manual U10504EJ7V0UM00 223

Floating-Point Operations

Table 7-7 Load/Store/Transfer Instructions

Instruction Format and Description

Load Word To
FPU

LWC1 ft, offset (base)
Sign-extends the 16-bit offset and adds it to the CPU register base to generate
an address. Loads the contents of the word specified by the address to the
FPU general purpose register ft.

Store Word From
FPU

SWC1 ft, offset (base)
Sign-extends the 16-bit offset and adds it to the CPU register base to generate
an address. Stores the contents of the FPU general purpose register ft to the
memory position specified by the address.

Load
Doubleword To
FPU

LDC1 ft, offset (base)
Sign-extends the 16-bit offset and adds it to the CPU register base to generate
an address. Loads the contents of the doubleword specified by the address to
the FPU general purpose registers ft and ft+1 when FR = 0, or to the FPU
general purpose register ft when FR = 1.

Store
Doubleword
From FPU

SDC1 ft, offset (base)
Sign-extends the 16-bit offset and adds it to the CPU register base to generate
an address. Stores the contents of the FPU general purpose registers ft and
ft+1 to the memory position specified by the address when FR = 0, and the
contents of the FPU general purpose register ft when FR = 1.

Instruction Format and Description

Move Word To
FPU

MTC1 rt, fs
Transfers the contents of CPU general purpose register rt to FPU general
purpose register fs.

Move Word From
FPU

MFC1 rt, ft
Transfers the contents of FPU general purpose register fs to CPU general
purpose register rt.

Move Control
Word To FPU

CTC1 rt, fs
Transfers the contents of CPU general purpose register rt to FPU control
register fs.

Move Control
Word From FPU

CFC1 rt, fs
Transfers the contents of FPU control register fs to CPU general purpose
register rt.

Doubleword
Move To FPU

DMTC1 rt, fs
Transfers the contents of CPU general purpose register rt to FPU general
purpose register fs.

Doubleword
Move From FPU

DMFC1 rt, fs
Transfers the contents of FPU general purpose register fs to CPU general
purpose register rt.

op base ft offsetrd funct

COP1 sub rt fs funct0

Chapter 7

224 User’s Manual U10504EJ7V0UM00

7.5.2 Convert Instructions

Convert instructions perform conversions between the various data formats such
as single- or double-precision, fixed- or floating-point formats. Table 7-8 lists
conversion instructions.

When converting a long integer to a single- or double-precision floating-point
number (CVT. [S,D]. L), bits 63:55 of the 64-bit integer must be all zeroes or ones,
otherwise the VR4300 processor raises a floating-point instruction exception. The
floating-point instruction exception allows these cases to be handled by software.

Table 7-8 Convert Instruction (1/2)

Instruction Format and Description

Floating-point
Convert To
Single Floating-
point Format

CVT.S.fmt fd, fs
Converts the contents of floating-point register fs from the specified format
(fmt) to a single-precision floating-point format. Stores the rounded result to
floating-point register fd.

Floating-point
Convert To
Double Floating-
point Format

CVT.D.fmt fd, fs
Converts the contents of floating-point register fs from the specified format
(fmt) to a double-precision floating-point format. Stores the rounded result
to floating-point register fd.

Floating-point
Convert To Long
Fixed-point
Format

CVT.L.fmt fd, fs
Converts the contents of floating-point register fs from the specified format
(fmt) to a 64-bit fixed-point format. Stores the rounded result to floating-
point register fd.

Floating-point
Convert To
Single Fixed-
point Format

CVT.W.fmt fd, fs
Converts the contents of floating-point register fs from the specified format
(fmt) to a 32-bit fixed-point format. Stores the rounded result to floating-
point register fd.

Floating-point
Round To Long
Fixed-point
Format

ROUND.L.fmt fd, fs
Rounds the contents of floating-point register fs to a value closest to the 64-
bit fixed-point format and converts them from the specified format (fmt).
Stores the result to floating-point register fd.

Floating-point
Round To Single
Fixed-point
Format

ROUND.W.fmt fd, fs
Rounds the contents of floating-point register fs to a value closest to the 32-
bit fixed-point format and converts them from the specified format (fmt).
Stores the result to floating-point register fd.

Floating-point
Truncate To Long
Fixed-point
Format

TRUNC.L.fmt fd, fs
Rounds the contents of floating-point register fs toward 0 and converts them
from the specified format (fmt) to a 64-bit fixed-point format. Stores the
result to floating-point register fd.

COP1 fmt 0 fdfs funct

User’s Manual U10504EJ7V0UM00 225

Floating-Point Operations

Floating-point
Truncate To
Single Fixed-
point Format

TRUNC.W.fmt fd, fs
Rounds the contents of floating-point register fs toward 0 and converts them
from the specified format (fmt) to a 32-bit fixed-point format. Stores the
result to floating-point register fd.

Floating-point
Ceiling To Long
Fixed-point
Format

CEIL.L.fmt fd,fs
Rounds the contents of floating-point register fs toward +¥ and converts
them from the specified format (fmt) to a 64-bit fixed-point format. Stores
the result to floating-point register fd.

Floating-point
Ceiling To Single
Fixed-point
Format

CEIL.W.fmt fd,fs
Rounds the contents of floating-point register fs toward +¥ and converts
them from the specified format (fmt) to a 32-bit fixed-point format. Stores
the result to floating-point register fd.

Floating-point
Floor To Long
Fixed-point
Format

FLOOR.L.fmt fd, fs
Rounds the contents of floating-point register fs toward -¥ and converts them
from the specified format (fmt) to a 64-bit fixed-point format. Stores the
result to floating-point register fd.

Floating-point
Floor To Single
Fixed-point
Format

FLOOR.W.fmt fd, fs
Rounds the contents of floating-point register fs toward -¥ and converts them
from the specified format (fmt) to a 32-bit fixed-point format. Stores the
result to floating-point register fd.

Table 7-8 Convert Instruction (2/2)

Instruction Format and Description COP1 fmt 0 fdfs funct

Chapter 7

226 User’s Manual U10504EJ7V0UM00

7.5.3 Computational Instructions

Computational instructions perform arithmetic operations on floating-point
values, in registers. Table 7-9 lists the computational instructions. There are two
categories of computational instructions:

• 3-Operand Register-Type instructions, which perform floating-point
add, subtract, multiply, and divide operations

• 2-Operand Register-Type instructions, which perform floating-point
absolute value, transfer, square root, and negate operations.

Table 7-9 Computational Instructions

Instruction Format and Description

Floating-point
Add

ADD.fmt fd, fs, ft
Arithmetically adds the contents of floating-point registers fs and ft in the
specified format (fmt). Stores the rounded result to floating-point register fd.

Floating-point
Subtract

SUB.fmt fd, fs, ft
Arithmetically subtracts the contents of floating-point registers fs and ft in
the specified format (fmt). Stores the rounded result to floating-point register
fd.

Floating-point
Multiply

MUL.fmt fd, fs, ft
Arithmetically multiplies the contents of floating-point registers fs and ft in
the specified format (fmt). Stores the rounded result to floating-point register
fd.

Floating-point
Divide

DIV.fmt fd, fs, ft
Arithmetically divides the contents of floating-point registers fs and ft in the
specified format (fmt). Stores the rounded result to floating-point register fd.

Floating-point
Absolute Value

ABS.fmt fd, fs
Calculates the arithmetic absolute value of the contents of floating-point
register fs in the specified format (fmt). Stores the result to floating-point
register fd.

Floating-point
Move

MOV.fmt fd, fs
Copies the contents of floating-point register fs to floating-point register fd
in the specified format (fmt).

Floating-point
Negate

NEG.fmt fd, fs
Arithmetically negates the contents of floating-point register fs in the
specified format (fmt). Stores the result to floating-point register fd.

Floating-point
Square Root

SQRT.fmt fd, fs
Calculates arithmetic positive square root of the contents of floating-point
register fs in the specified format. Stores the rounded result to floating-point
register fd.

COP1 fmt ft fdfs funct

User’s Manual U10504EJ7V0UM00 227

Floating-Point Operations

fmt appended to the instruction op code of the arithmetic operation and compare
instruction indicates the data format. S indicates the single-precision floating
decimal point, D indicates the double-precision floating decimal point, L indicates
the 64-bit fixed decimal point, and W indicates the 32-bit fixed decimal point. For
example, “ADD.D” means that the operand of the addition instruction is a double-
precision floating-point value.

If the FR bit is 0, an odd-numbered register cannot be specified.

7.5.4 Compare Instructions

The floating-point compare (C.cond.fmt) instructions interpret the contents of two
FPU registers (fs, ft) in the specified format (fmt) and arithmetically compare
them. A result is determined based on the comparison and conditions (cond)
specified in the instruction. Table 7-10 lists the compare instructions. Table 7-11
lists the mnemonics for the compare instruction conditions.

Table 7-10 Compare Instruction

Instruction Format and Description

Floating-point
Compare

C.cond.fmt fs, ft
Interprets and arithmetically compares the contents of FPU registers fs and ft
in the specified format (fmt). The result is identified by comparison and the
specified condition (cond). After a delay of one instruction, the comparison
result can be used by the FPU branch instruction of the CPU.

COP1 fmt ft 0fs funct

Chapter 7

228 User’s Manual U10504EJ7V0UM00

Table 7-11 Mnemonics and Definitions of Compare Instruction Conditions

Mnemonic Definition Mnemonic Definition

T True F False

UN Unordered OR Ordered

EQ Equal NEQ Not Equal

UEQ Unordered or Equal OLG
Ordered or Less Than or
Greater Than

OLT Ordered Less Than UGE
Unordered or Greater Than or
Equal

ULT Unordered or Less Than OGE Ordered Greater Than or Equal

OLE Ordered Less Than or Equal UGT Unordered or Greater Than

ULE Unordered or Less Than or Equal OGT Ordered Greater Than

SF Signaling False ST Signaling True

NGLE
Not Greater Than or Less Than or
Equal

GLE
Greater Than, or Less Than or
Equal

SEQ Signaling Equal SNE Signaling Not Equal

NGL Not Greater Than or Less Than GL Greater Than or Less Than

LT Less Than NLT Not Less Than

NGE Not Greater Than or Equal GE Greater Than or Equal

LE Less Than or Equal NLE Not Less Than or Equal

NGT Not Greater Than GT Greater Than

User’s Manual U10504EJ7V0UM00 229

Floating-Point Operations

7.5.5 FPU Branch Instructions

Table 7-12 lists the FPU branch instructions. These instructions can be used to
test the result of the compare (C.cond.fmt) instruction. The delay slot in this table
indicates the instruction that immediately follows a branch instruction. For
details, refer to Chapter 4 Pipeline.

Table 7-12 FPU Branch Instructions

Instruction Format and Description

Branch On FPU
True

BC1T offset
Adds the instruction address in the delay slot and a 16-bit offset (shifted 2 bits
to the left and sign-extended) to calculate the branch target address.
If the FPU condition line is true, branches to the target address (delay of one
instruction).

Branch On FPU
False

BC1F offset
Adds the instruction address in the delay slot and a 16-bit offset (shifted 2 bits
to the left and sign-extended) to calculate the branch target address.
If the FPU condition line is false, branches to the target address (delay of one
instruction).

Branch On FPU
True Likely

BC1TL offset
Adds the instruction address in the delay slot and a 16-bit offset (shifted 2 bits
to the left and sign-extended) to calculate the branch target address.
If the FPU condition line is true, branches to the target address (delay of one
instruction). If conditional branch does not take place, the instruction in the
delay slot is invalidated.

Branch On FPU
False Likely

BC1FL offset
Adds the instruction address in the delay slot and a 16-bit offset (shifted 2 bits
to the left and sign-extended) to calculate the branch target address.
If the FPU condition line is false, branches to the target address (delay of one
instruction). If conditional branch does not take place, the instruction in the
delay slot is invalidated.

COP1 BC br offsetrd funct

Chapter 7

230 User’s Manual U10504EJ7V0UM00

7.5.6 FPU Instruction Execution Time

Unlike the CPU, which executes almost all instructions in a single cycle, more
time must be used to execute FPU instructions.

All data transfer between the floating-point and memory is accomplished by
coprocessor load and store operations. Data may be directly moved between the
floating-point coprocessor and the integer processor by load to and load from
coprocessor instructions as shown below:

Table 7-13 Number of Load/Store/Transfer Instruction Execution Cycles

To obtain optimum performance, the VR4300 pipeline does not perform a bypass
from EX to EX stage of the next instruction for the floating-point result of a
compare, computational, LWC1, or LDC1 instruction. If the subsequent EX-
stage floating-point instruction depends on the result of the current EX-stage
floating-point instruction, the current floating-point instruction completes and its
EX-stage result is registered in the DC stage and the bypass is enabled.
Meanwhile, the RF-stage floating-point instruction advances to the EX-stage,
where it is stalled for one pipeline clock to wait for the result to be bypassed from
DC to EX, before it begins execution.

Caution This limitation on bypass from EX to EX stage of the next
instruction does not apply to integer operations nor to float-
ing-point load/store/transfer instructions (except LWC1 and
LDC1).

Instruction Cycles

LWC1 2/1**

* The hardware interlocks for one cycle if the load result is used by the instruction in the
load delay slot.

SWC1 1

LDC1 2/1*

SDC1 1

MTC1 1

MFC1 1

DMTC1 1

DMFC1 1

CTC1 1

CFC1 1

User’s Manual U10504EJ7V0UM00 231

Floating-Point Operations

Figure 7-9 DC-to-EX Hardware Interlock Bypass

The execution unit of the VR4300 can shorten the delay time of almost all the
floating-point instructions depending on the circumstances. By using this feature,
the performance can be improved and design can be simplified. Changes in the
delay time are simplified as much as possible. If occurrence of an exception is
detected by checking the source operand when a multicycle instruction is executed
(if a source exception occurs), this multicycle instruction is executed for only 2
cycles, and exception processing is started. Similarly, if the result of an operation
is found to be the value that does not cause an exception (zero or infinite) as a
result of checking the operand, the result (e.g., a value other than ¥´0) is written
back 2 cycles after, and the operation ends.

Floating-point exceptions, except the source exception, are not aborted until
instruction execution is completed. In other words, an exception is reported not
when it has been found, but when instruction execution has been completed.

Next, the execution time of each instruction is described.

Floating-point Add/Subtract Instructions

Floating point add and subtract terminate on the second cycle if a source exception
occurs, or if at least one operand is zero or infinity. The instruction completes on
the third cycle in all other cases.

FP #1

• • •

I-cache

RunStallRun Run

IC RF EX EX EX EX

Run

FP #2

• • •

BypassNo Bypass allowed

EX DC WB

I-cache
IC RF RF RF RF RF EX EX EX • • •

• • •StallRun RunRun RunRun RunRun Run

Chapter 7

232 User’s Manual U10504EJ7V0UM00

Floating-point Multiply Instruction

A floating point multiply completes in two cycles if a source exception is detected,
or if, during the first cycle, the result can be determined to be zero or infinity. A
floating-point multiply also finishes in the second cycle if at least one of the
operands is a power of 2. In all other cases it takes the full number (the maximum
specified for each format) of cycles to complete. Thus, multiply does not finish
as soon as the remaining bits are zero. Also, there can be no overlap between
multiply and add.

Floating-point Divide/Square Root Instructions

Floating Point divide and square root complete in the second cycle on either a
source exception or if, during the first cycle, the result can be determined to be
either zero or infinity. Otherwise they continue, taking the maximum amount of
cycles.

Floating-point Convert Instruction

Floating-point convert instructions also complete in the second cycle for trivial
cases.

Execution cycle numbers of floating-point instructions are listed in Table 7-14. If a
floating-point result for these instructions is needed by the subsequent instruction, the
latency is the execution rate plus one, due to the fact that an EX-to-RF bypass is not
performed for the results of these instructions. All CPU/FPU instruction delay times that
are not mentioned in these tables have a latency of one pipeline clock cycle (1PClock).

User’s Manual U10504EJ7V0UM00 233

Floating-Point Operations

7.6 FPU Pipeline Synchronization

Since the integer and floating-point units share a common hardware pipeline, a
CFC1 instruction is not needed to synchronize the pipeline operation.

Table 7-14 Number of FPU Instruction Delay Cycles*1

*1. If the result of a floating-point instruction is needed by the subsequent
instruction, one additional pipeline clock is required to perform a
hardware interlock bypass.

*2. The multicycle floating-point operation instructions whose results are
obvious are not described in this table; it takes two pipeline clocks to
complete.

*3. The architecturally defined branch delay slot of one cycle also applies
to all FPU branch instructions.

Instruction
Pipeline Cycles *2

S D W L
Add.fmt 3 3
Sub.fmt 3 3
Mul.fmt 5 8
Div.fmt 29 58
Sqrt.fmt 29 58
Abs.fmt 1 1
Mov.fmt 1 1
Neg.fmt 1 1
Round.W.fmt 5 5
Trunc.W.fmt 5 5
Ceil.W.fmt 5 5
Floor.W.fmt 5 5
Round.L.fmt 5 5
Trunc.L.fmt 5 5
Ceil.L.fmt 5 5
Floor.L.fmt 5 5
Cvt.S.fmt - 2 5 5
Cvt.D.fmt 1 - 5 5
Cvt.W.fmt 5 5
Cvt.L.fmt 5 5
C.cond.fmt 1 1
BC1T*3 1

BC1F*3 1
BC1TL*3 1
BC1FL*3 1

234 User’s Manual U10504EJ7V0UM00

[MEMO][MEMO]

User’s Manual U10504EJ7V0UM00

235

Floating-Point Exceptions

8

This chapter explains how the FPU handles the floating-point exception.

Chapter 8

236

User’s Manual U10504EJ7V0UM00

8.1 Types of Exceptions

The floating-point exception occurs if a floating-point operation or the result of
the operation cannot be handled by the ordinary method.

The FPU performs either of the following two operations in case of an exception.

•

When exception is enabled

Sets the

Cause

 bit of the

Control/Status

 register (

FCR31

) of the FPU,
and transfers servicing to the exception handler routine (software
servicing).

•

When exception is disabled

Stores an appropriate value (default value) to the

Destination

 register
of the FPU, sets the

Cause

 bit and flag bit of

FCR31

, and continues
execution.

The FPU supports the five IEEE754 exceptions:

• Inexact (I)

• Overflow (O)

• Underflow (U)

• Division by Zero (Z)

• Invalid Operation (V)

Cause

 bits,

Enable

bits, and

Flag

 bits (

Status

 flags) are used.

FPU has an unimplemented operation (E) as the sixth exception cause, which is
used when the floating-point operation cannot be executed with the standard
MIPS architecture (including when the FPU cannot correctly process exceptions).
This exception requires service by the software. The

E

 bit does not exit in the

Enable

 or

Flag

 bit. When this exception occurs, unimplemented exception
processing is executed (when interrupt input by the FPU to the CPU is enabled).

Figure 8-1 shows the bits of the

FCR31

 used to support the exception.

Remark

The unimplemented operation exception is defined by the IEEE754
standard. With the V

R

4300, however, this is an exception that occurs
if an operation not supported by the hardware is executed.

User’s Manual U10504EJ7V0UM00

237

Floating-Point Exceptions

Figure 8-1 FCR31 Cause/Enable/Flag Bits

The five exceptions (V, Z, O, U, and I) of the IEEE754 are enabled when the

Enable

 bit is set. When an exception occurs, the corresponding

Cause

 bit is set.
If the corresponding

Enable

 bit is set, the FPU generates an interrupt to the CPU,
and starts exception processing. If occurrence of the exception is disabled, the

Cause

 and

Flag

 bits corresponding to the exception are set.

8.2 Exception Processing

When a floating-point exception is taken, the

Cause

 register of the CP0 indicates
the FPU is the cause of the exception. The Floating-Point Exception (FPE) code
is used, and the

Cause

 bits of the

FCR31

 indicate the reason for the floating-point
exception. These bits are, in effect, an extension of the CP0

Cause

 register.

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits

Chapter 8

238

User’s Manual U10504EJ7V0UM00

8.2.1 Flags

Flag

 bits corresponding to the respective IEEE754 exceptions are provided. The

Flag

 bit is set when occurrence of the corresponding exception is disabled and
when the condition of the exception is detected. The flag bit can be reset by
writing a new value to the

Status

 register by using the CTC1 instruction.

If an exception is disabled by the corresponding

Enable

 bit, the FPU performs
predetermined processing. This processing gives the default value as the result,
instead of the result of the floating-point operation. This default value is
determined by the type of the exception. In the case of the overflow and
underflow exceptions, the default value differs depending on the rounding mode
used at that time. Table 8-1 shows the default values to be given by the respective
IEEE754 exceptions of the FPU.

Table 8-1 Default FPU IEEE754 Exception Values

Field Description
Rounding

Mode
Default Values

V Invalid operation – Supply a Quiet Not a Number (Q-NaN)

Z Division by zero – Supply a properly signed

¥

O Overflow

RN

¥

 signed with intermediate result

RZ
Maximum normal number signed with
intermediate result

RP
Negative overflow: maximum negative normal
number
Positive overflow: +

¥

RM
Positive overflow: maximum positive normal
number
Negative overflow: -

¥

U Underflow

RN 0 signed with intermediate result

RZ 0 signed with intermediate result

RP
Positive underflow: minimum positive normal
number
Negative underflow: 0

RM
Negative underflow: minimum negative
normal number
Positive underflow: 0

 I Inexact exception – Supply a rounded result

User’s Manual U10504EJ7V0UM00

239

Floating-Point Exceptions

The FPU detects the nine exception causes internally. When the FPU detects one
of these unusual situations, it causes either an IEEE754 exception or an
unimplemented operation exception (E). Table 8-2 lists the exception-causing
situations and compares the contents of the

Cause

 bits of the FPU with the
IEEE754 standard when each exception occurs.

Table 8-2 FPU Internal Results and Flag Status

*1. With the IEEE754, the inexact operation exception occurs only if an
overflow occurs only when the overflow exception is disabled.
However, the V

R

4300 always generates the overflow exception and
inexact operation exception when an overflow occurs.

*2. If both the underflow exception and inexact operation exception are
disabled when the exponent underflow occurs, and if the

FS

 bit of

FCR31

 is set, the

Cause

 bit and

Flag

 bit of the underflow exception and
inexact operation exception are set. Otherwise, the

Cause

 bit of the
unimplemented operation exception is set.

Next, each FPU exception is described.

FPU Internal
Result

IEEE754
Exception

Enable
Exception

Disable
Remarks

Inexact result I I I Loss of accuracy

Exponent overflow O,I

*1

O,I O,I Normalized exponent > E

max

Division by zero Z Z Z
Zero is (exponent = E

min

-1, mantissa
= 0)

Overflow on convert to
integer

V E E Source out of integer range

Signaling NaN
(S-NaN) source

V V V

Invalid operation V V V

*2

0/0, etc.

Exponent underflow U E U, I Normalized exponent < E

min

Denormalized source None E E
Exponent = E

min

-1 and
mantissa

¹

 0

Q-NaN None E E

Chapter 8

240

User’s Manual U10504EJ7V0UM00

8.2.2 Inexact Exception (I)

The FPU generates the inexact operation exception in the following cases.

• If the accuracy of the rounded result drops

• If the rounded result overflows

• If the rounded result underflows and if the

FS

 bit of

FCR31

 is set
with the underflow and illegal operation exceptions disabled

If Exception Is Enabled:

The

Destination

 register is not modified, the

Source

 registers are preserved and an
Inexact Operation exception occurs.

If Exception Is Not Enabled:

The rounded result or underflowed/overflowed result is delivered to the

Destination

 register if no other exception occurs.

8.2.3 Invalid Operation Exception (V)

The Invalid Operation exception is generated if one or both of the operands are
invalid. When the exception is not enabled, the MIPS ISA defines the result as a
Quiet Not a Number (Q-NaN). The invalid operations are:

• Add or subtract: Add and Subtract of infinities, such as:
(+

¥

) + (–

¥

) or (–

¥

) – (–

¥

)

• Multiply:

±

 0

´

± ¥

• Divide:

±

 0

¸

±

 0, or

±

¥ ¸

±

¥

• Compare of predicates involving

<

or

>

without

?

, when the operands
are unordered

• Any arithmetic operation, when one or both operands is a S-NaN. A
transfer (MOV) operation is not considered to be an arithmetic
operation, but absolute value (ABS) and negate (NEG) are.

• Compare or convert to floating-point operation when the operand is
S-NaN.

• Square root:

, where x is less than zero.x

User’s Manual U10504EJ7V0UM00

241

Floating-Point Exceptions

Software can simulate the Invalid Operation exception for other operations that
are invalid for the given source operands. Examples of these operations include
IEEE754-specified functions implemented in software, such as Remainder

x

 REM

y

, where

y

 is 0 or

x

 is infinite; conversion of a floating-point number to a decimal
format whose value causes an overflow, is infinity, or is NaN; and transcendental
functions, such as ln (–5) or cos

–1

(3). Refer to

Chapter 17 FPU Instruction Set
Details

. Refer to

Appendix B

 for examples or for routines to handle these cases.

If Exception Is Enabled:

The Destination register is not modified, the

Source

 registers are preserved, and
the Invalid Operation Exception occurs.

If Exception Is Not Enabled:

If any other exception does not occur, Q-NaN is stored to the

Destination

 register.

8.2.4 Divide-by-Zero Exception (Z)

The Division-by-Zero exception occurs if the divisor is zero and the dividend is a
finite nonzero number. This exception occurs due to other operations that produce
a signed infinity, such as ln(0), sec(

p

/2) or Q

-1

.

If Exception Is Enabled:

The contents of the

Destination

 register are not changed, the contents of the

Source

 register are preserved, and the zero division exception occurs.

If Exception Is Not Enabled:

If any other exception does not occur, the infinite number (±¥) determined by the
sign of the operand is stored to the Destination register.

Chapter 8

242 User’s Manual U10504EJ7V0UM00

8.2.5 Overflow Exception (O)

The Overflow exception occurs when the magnitude of the rounded floating-point
result, with an unbounded exponent range, is larger than the largest finite number
of the destination format. (An Inexact exception and Flag bit is set.)

If Exception Is Enabled:

The contents of the Destination register is not modified, and the Source registers
are preserved, and the overflow exception occurs.

If Exception Is Not Enabled:

If any other exception does not occur, the default value determined by the
rounding mode is stored to the Destination register (refer to Table 8-1 Default
FPU IEEE754 Exception Values).

8.2.6 Underflow Exception (U)

Two related events generate the Underflow exception:

• If the operation result is –2Emin to +2Emin (other than 0)

• extraordinary loss of accuracy during the arithmetic operation of such
tiny numbers by denormalized numbers.

The IEEE754 provides several methods of underflow detection. Note, however,
that the same detection method must be used for any processing.

The following two methods are used to detect an underflow.

• after rounding (when a nonzero result, computed as though the
exponent range were unbounded, would lie strictly between ±2Emin)

• before rounding (when a nonzero result, computed as though the
exponent range and the precision were unbounded, would lie strictly
between ±2Emin).

The MIPS architecture detects an underflow after rounding.

To detect a drop in the accuracy, the following two methods are used.

• Denormalize loss (if a given result differs from the result calculated
when the exponent range is infinite)

• Inexact result (if a given result differs from the result calculated when
the exponent range and accuracy are infinite)

The MIPS architecture detects a drop in the accuracy as an inexact result.

User’s Manual U10504EJ7V0UM00 243

Floating-Point Exceptions

If Exception Is Enabled:

If the underflow exception or inexact operation exception is enabled, or if the FS
bit of the FCR31 register is not set, the unimplemented operation exception (E)
occurs. At this time, the contents of the destination register are not changed.

If Exception Is Not Enabled:

If the underflow exception and inexact operation exception are disabled, and if the
FS bit of the FCR31 register are set, the default value determined by the rounding
mode is stored to the Destination register (refer to Table 8-1 Default FPU
IEEE754 Exception Values).

8.2.7 Unimplemented Operation Exception (E)

If an attempt is made to execute an instruction of an operation code or format code
reserved for future expansion, the E bit is set and an exception occurs. The
operand and the contents of the Destination register are not changed. Usually,
instructions are emulated by software. If the IEEE754 exceptions occur from an
emulated operation, simulate those exceptions.

The unimplemented operation exception also occurs in the following cases. These
are cases where an abnormal operand that cannot be handled correctly by
hardware, or an abnormal result is detected.

• If the operand is a denormalized number (except compare instruction)

• If the operand is Q-NaN (except compare instruction)

• If the result is a denormalized number or underflows when the
underflow/inexact operation exception is enabled and when the FS bit
of the FCR31 register is set

• If a reserved instruction is executed

• If a unimplemented format is used

• If a format whose operation is invalid is used (e.g., CVT.S.S)

Caution If the type conversion or arithmetic operation instruction is
executed and if the operand is a denormalized number or NaN, the
exception occurs. The exception does not occur even if the operand
is a denormalized number of NaN when the transfer instruction is
executed.

How to use the unimplemented operation exception is arbitrarily determined by
the system. To maintain complete compatibility with the IEEE754, the
unimplemented operation exception can be handled by software if occurs.

Chapter 8

244

User’s Manual U10504EJ7V0UM00

If Exception Is Enabled:

The contents of the

Destination

 register are not changed, the contents of the source
register are preserved, and the unimplemented operation exception occurs.

If Exception Is Not Enabled:

This exception cannot be disabled because there is no corresponding

Enable

 bit.

Restrictions:

An unimplemented operation exception will occur in response to the execution of
a type conversion instruction in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

The type conversion instructions affected by this restriction are as follows.

CEIL.L.fmt fd, fs FLOOR.L.fmt fd, fs

CEIL.W.fmt fd, fs FLOOR.W.fmt fd, fs

CVT.D.fmt fd, fs ROUND.L.fmt fd, fs

CVT.L.fmt fd, fs ROUND.W.fmt fd, fs

CVT.S.fmt fd, fs TRUNC.L.fmt fd, fs

CVT.W.fmt fd, fs TRUNC.W.fmt fd, fs

8.3 Saving and Returning State

Sixteen doubleword

*

 LDC1 or SDC1 operations save or return the coprocessor
floating-point register state in memory. The information in the

Control

 and

Status

register can be saved or returned to the CPU register through CFC1 and CTC1
instructions. Normally, the

Control

/

Status

 register is saved first and returned last.

When state is returned, state information in the

Control

/

Status

 register indicates
the exceptions that are pending.

Writing a zero value to the

Cause

 field of

FCR31

 register clears all pending
exceptions, permitting normal processing to restart after the floating-point register
state is returned.

* 32 doublewords if the

FR

 bit is set to 1.

User’s Manual U10504EJ7V0UM00 245

Floating-Point Exceptions

8.4 Handling of IEEE754 Exceptions

The IEEE754 recommends the exception handler for any of the five standard
exceptions; the exception handler can compute and restore a substitute result in
the Destination register.

By retrieving an instruction using the processor Exception Program Counter
(EPC) register, the exception handler determines:

• exceptions occurring during the operation

• the operation being performed

• the destination format

To obtain the correct rounded result if the overflow, underflow (except when the
conversion instruction is executed), or inexact operation exception occurs,
develop software that checks the Source register or that simulates the instructions
while an exception handler is executed.

On Invalid Operation and Divide-by-Zero exceptions, conversions, and on
Overflow or Underflow exceptions occurred on floating-point, the exception
handler gains access to the operand values by examining the Source registers of
the instruction.

The IEEE754 recommends that, if enabled, the overflow and underflow
exceptions take precedence over a separate inexact exception. This prioritization
is accomplished in software; hardware sets the bits for both the Overflow or
Underflow exception and the Inexact exception.

246 User’s Manual U10504EJ7V0UM00

[MEMO][MEMO]

User’s Manual U10504EJ7V0UM00

247

Initialization Interface

9

This chapter describes the V

R

4300 Initialization interface, and the processor
modes. This includes the reset signal description and types, and initialization
sequence, with signals and timing dependencies, and the user-selectable V

R

4300
processor modes.

Chapter 9

248

User’s Manual U10504EJ7V0UM00

9.1 Functional Overview

The V

R

4300 processor has the following three types of resets; they use the

ColdReset

and

 Reset

signals.

•

Power-ON Reset

: When the

ColdReset

 signal is asserted active after
the power is applied and has become stable all clocks are restarted.
A Power-ON Reset completely initializes the internal state of the
processor without saving any state information.

•

Cold Reset

: When the

ColdReset

 signal is asserted active while the
processor is operating all clocks are restarted. A Cold Reset
completely initializes the internal state of the processor without saving
any state information.

•

Soft Reset

: restarts processor, but does not affect clocks. The major
part of the initial status of the processor can be retained by using soft
reset.

After reset, the processor is bus master and drives the

SysAD(31:0)

 bus.

Care must be taken to coordinate system reset with other system elements. In
general, bus errors immediately before, during, or after a reset may result in
undefined operations. Since the initialization of the internal state by a reset of the
V

R

4300 processor is performed only for some parts, make sure to completely
initialize the processor through software.

The operation of each type of reset is described in sections that follow. Refer to

Figures 9-1

 to

9-3

 later in this chapter for timing diagrams of the Power-ON,
Cold, and Soft Resets.

User’s Manual U10504EJ7V0UM00

249

Initialization Interface

9.2 Reset Signal Description

This section describes the two reset signals,

 ColdReset

and

 Reset

.

ColdReset signal

The

 ColdReset

 signal must be asserted active to initialize the processor using
Power-ON Reset or Cold Reset. At this time, the

RESET

 signal can be asserted
active or inactive. Set

DivMode

(1:0)*

 before the

Power-ON

 Reset.

Do not deassert the

ColdReset

 signal inactive at least for 64000

MasterClock

Cycles after the signal has been asserted active. The

ColdReset

 signal may be
controlled not in synchronization with the

MasterClock

. When the

ColdReset

signal is deasserted inactive, the

SClock

,

TClock

, and

SyncOut

 clock signals
start operating in synchronization with the

MasterClock

.

* In V

R

4300 and V

R

4305. In V

R

4310, DivMode(2:0).

Reset signal

Assert this pin active or inactive in synchronization with

MasterClock

, or keep it
inactive at Power-ON Reset or Cold Reset.

Assert this pin active or inactive in synchronization with

MasterClock

 at soft
reset.

9.2.1 Power-ON Reset

Power-ON Reset is used to completely reset the processor. As a result:

• The

TS

,

SR

, and

RP

 bits of the

Status

 register and

EP

 (3:0) bits of the

Config

 register are cleared to 0.

• The

ERL

 and

REV

 bits of the

Status

 register and

BE

 bit of the

Config

register are set to 1.

• The upper-limit value (31) is assigned to the

Random

 register.

• The

EC

 (2:0) bits of the

Config

 register are assigned to the contents
of the

DivMode (1:0)*

 pins.

• All the other internal statuses are undefined.

* In V

R

4300 and V

R

4305. In V

R

4310, DivMode(2:0).

After the power supply to the processor has stabilized after Power-ON Reset,
assert the

ColdReset

 signal active for the duration of 64000 MasterClock cycles
or more (0.96 ms during external 66.7-MHz operation).

Chapter 9

250

User’s Manual U10504EJ7V0UM00

Determine the

DivMode

 signal until the

ColdReset

 signal is asserted active. The

DivMode

 signal cannot be changed after that. If the

DivMode

 signal is changed
after the

ColdReset

 signal has been asserted active, the operation of the processor
is not guaranteed.

When asserting the

ColdReset

 signal active, the

Reset

 signal may be active or
inactive. However, do not change the value of the

Reset

 signal during the reset
sequence.

Keep the

Reset

 signal active for the duration of 16

MasterClock

 cycles
immediately after the

ColdReset

 signal has been deasserted inactive.

The output signals of the system interface are as follows during the reset period.

•

PValid

signal : 1

•

PReq

signal : 1

•

PMaster

 signal : 0

•

SysAD (31:0)

: Undefined

•

SysCmd (4:0)

: Undefined

When resetting has been completed, the processor serves as the bus master and
drives

SysAD (31:0)

. The processor branches to a reset exception vector and
starts executing a reset exception code.

9.2.2 Cold Reset

A Cold Reset is used to completely reset the processor.

• the

TS

,

SR

, and

RP

 bits of the

Status

 register and the

EP

 (3:0) bits of
the

Config

 register are cleared to 0

• the

ER

L and

BEV

 bits of the

Status

 register and the

BE

 bit of the

Config

 register are set to 1

• the value of the upper bound (31) is set to the

Random

 register

• all states other than above are undefined

When executing cold reset, keep the

ColdReset

 signal active for the duration of
64000

MasterClock

 cycles or more (0.96 ms during external 66.7-MHz
operation).

When asserting the

ColdReset

 signal active, the

Reset

 signal may be active or
inactive. However, do not change the value of the

Reset

 signal during reset
sequence.

User’s Manual U10504EJ7V0UM00

251

Initialization Interface

Keep the

Reset

 signal active for the duration of 16

MasterClock

 cycles
immediately after the

ColdReset

 signal has been deasserted inactive.

The output signals of the system interface are as follows during the reset period.

•

PValid

 signal : 1

•

PReq

 signal : 1

•

PMaster

 signal : 0

•

SysAD (31:0)

: Undefined

•

SysCmd (4:0)

: Undefined

When resetting has been completed, the processor serves as the bus master and
drives

SysAD (31:0)

. The processor branches to a reset exception vector and
starts executing a reset exception code.

9.2.3 Soft Reset

A Soft Reset is used to reset the processor without affecting the output clocks; in
other words, a Soft Reset is a logic reset. In a Soft Reset, the processor retains as
much state information as possible; all state information except for the following
is retained:

• the

Status

 register

BEV

,

SR

, and

ERL

 bits are set (to 1)

• the

Status register TS and RP bit is cleared (to 0)

Because soft reset is executed as soon as the Reset signal has asserted active,
undefined data remains as a result if a multicycle instruction or floating-point
instruction such as cache miss is executed.

Keep the Reset signal asserted active at least for the duration of 16 MasterClock
cycles. At this time, satisfy the setup and hold times with the MasterClock.

After the reset is completed, the processor becomes bus master and drives the
SysAD(31:0) bus, the processor branches to the Reset exception vector and begins
executing the reset exception code.

If Reset signal is asserted in the middle of a SysAD(31:0) transaction, care must
be taken to reset all external agents to avoid SysAD(31:0) bus contention.

Chapter 9

252 User’s Manual U10504EJ7V0UM00

Figure 9-1 Power-ON Reset

Figure 9-2 Cold Reset

tDH

tDS

tDH

tDS

 ³ 64000 MasterClock cycles ³ 16 MasterClock cycles

Undefined

Undefined

MasterClock
(input)

Reset
(input)

ColdReset
(input)

DivMode(1:0)*
(input)

SyncOut
(output)

TClock
(output)

* Determine the DivMode signal before the ColdReset signal is asserted active.
In VR4300 and VR4305. In VR4310, DivMode(2:0).

tDH

tDS

tDH

tDS

 ³ 64000 MasterClock cycles ³ 16 MasterClock cycles

Undefined

Undefined

MasterClock
(input)

Reset
(input)

ColdReset
(input)

SyncOut
(output)

TClock
(output)

User’s Manual U10504EJ7V0UM00 253

Initialization Interface

Figure 9-3 Soft Reset

tDH

tDStDS

 ³ 16 MasterClock cycles

MasterClock
(input)

Reset
(input)

ColdReset
(input)

SyncOut
(output)

TClock
(output)

H

tDH

Chapter 9

254 User’s Manual U10504EJ7V0UM00

9.3 VR4300 Processor Modes

The VR4300 processor supports several user-selectable modes. All modes except
DivMode are set/reset by writing to the Config register.

9.3.1 Power Modes

The VR4300 supports three power modes: normal power, low power (100 MHz
model of the VR4300 and the VR4305 only), and power-off.

Normal Power Mode

Normally the processor clock (PClock) is generated from the input clock
(MasterClock). The frequency ratio of the PClock to the MasterClock is set by
the DivMode(1:0)*. For the setting, refer to Table 2-2 Clock/Control Interface
Signals. The frequency of the system interface clock (SClock) is the same as
those of the MasterClock.

Default state is normal clocking, and the processor returns to default state after any
reset.

* In VR4300 and VR4305. In VR4310, DivMode(2:0).

Low Power Mode (100 MHz model of VR4300 and VR4305 only)

The user may set the processor to low power mode by setting the RP bit of the
Status register to 1. In RP mode, the processor stalls the pipeline and goes into a
quiescent state—the store buffers empty and all cache misses resolved. However,
the RP mode operation is guaranteed only when the MasterClock is 40 MHz or
more. The frequency of PClock drops to the 1/4 of the normal level. The speeds
of SClock and TClock also drop to the 1/4 of the normal level.

This feature reduces the power consumed by the processor chip to 25% of its
normal value.

Software must guarantee the proper operation of the system upon setting or
clearing the RP bit.

1. The functions of circuits such as the DRAM refresh counter change if the
operating frequency changes. Therefore, write new values to the registers of
the external agent that are directly affected by changes in frequency.

2. Set the system interface in the inactive status. For example, execute a read
instruction to the non-cache area, and make the write buffer empty before
completion of the instruction execution. Then the RP bit can be set or cleared.

User’s Manual U10504EJ7V0UM00 255

Initialization Interface

3. Make sure that the eight instructions before and after the MTC0 instruction
that sets or clears the RP bit do not generate exceptions such as cache miss
and TLB miss.

Power Off Mode

Before entering power off mode, the system retains as much information as
possible by writing the contents of the CP0, floating-point registers and the
Program Counter to the memory. Dirty data cache lines are also written out to
memory.

9.3.2 Privilege Modes

The VR4300 supports three modes of system privilege: Kernel, Supervisor, and
User Extended addressing. This section describes these three modes.

Kernel Extended Addressing

When the KX bit is set to 1 by the Status register, the expansion TLB miss
exception vector is used if the TLB miss exception of the Kernel address occurs.
In the Kernel mode, the MIPSIII instruction set can be always used regardless of
the KX bit.

Supervisor Extended Addressing

If the SX bit is set to 1 by the Status register, the MIPSIII instruction set can be
used in the supervisor mode, and the expansion TLB miss exception vector is used
if the TLB miss exception of the supervisor address occurs. If this bit is cleared,
the MIPSI and II instruction sets and 32-bit virtual addresses are used.

User Extended Addressing

If the UX bit is set to 1 by the Status register, the MIPSIII instruction set can be
used in the User mode, and the expansion TLB miss exception vector is used if the
TLB miss exception of the user address occurs. If this bit is cleared, the MIPSI
and II instruction sets and 32-bit virtual addresses are used.

9.3.3 Floating-Point Registers

If the FR bit of the Status register is set to 1, all the thirty-two 64-bit floating-point
registers defined by the MIPSIII architecture can be accessed. If this bit is cleared,
the processor accesses the sixteen 64-bit floating-point registers defined by the
MIPSII architecture.

Chapter 9

256 User’s Manual U10504EJ7V0UM00

9.3.4 Reverse Endianness

If the RE bit of the Status register is set to 1, the endian in the User mode is
reversed.

9.3.5 Instruction Trace Support

If the ITS bit of the Status register is set to 1, the physical address at the branch
destination can be output from SysAD(31:0) when the instruction address is
changed by execution of a jump or branch instruction or by occurrence of an
exception. This function is disabled when the ITS bit is cleared.

Use this function to forcibly generate an instruction cache miss in the following
cases.

• If the branch condition is satisfied when a branch instruction is
executed

• If the contents of the PC are changed by execution of a jump
instruction or by occurrence of an exception

When the instruction cache miss occurs, a processor block read request is issued
from the SysAD(31:0). This informs the change in the address to the outside.
Return the response data to the processor block read request in the same manner
as for a normal request.

The address to be output is not a PC value (virtual address) but a physical address.

9.3.6 Bootstrap Exception Vector (BEV)

This bit is used when diagnostic tests cause exceptions to occur prior to verifying
proper operation of the cache and main memory system. The Bootstrap Exception
Vector (BEV) bit is automatically set to 1 at cold reset or soft reset and on
occurrence of the NMI exception. This bit can also be set by software.

When set, the Bootstrap Exception Vector (BEV) bit in the Status register causes
the TLB miss exception vector to be relocated to a virtual address of 0xFFFF
FFFF BFC0 0200 and the general exception vector relocated to address 0xFFFF
FFFF BFC0 0380.

When BEV is cleared, these vectors are located at 0xFFFF FFFF 8000 0000 (TLB
refill) and 0xFFFF FFFF 8000 0180 (general).

9.3.7 Interrupt Enable (IE)

When the IE bit in the Status register is cleared, interrupts are not allowed, with
the exception of reset and the non-maskable interrupt.

User’s Manual U10504EJ7V0UM00

257

Clock Interface

10

This chapter describes the clock signals (“clocks”) used in the V

R

4300 processor.

Chapter 10

258

User’s Manual U10504EJ7V0UM00

10.1 Signal Terminology

The following terminology is used in this chapter (and book) when describing
signals:

•

Rising edge

 indicates a low-to-high transition.

•

Falling edge

 indicates a high-to-low transition.

•

Clock-to-Q delay

 is the amount of time that is taken for a signal to
move from the input of a device (

clock

) to the output of the device
(

Q

).

Figures 10-1 and 10-2 illustrate these terms.

Figure 10-1 Signal Transitions

Figure 10-2 Clock-to-Q Delay

1 2 3 4

High-to-Low
Transition Low-to-High

Transition

Single Clock Cycle

Clock Input

Q
Data In

Data Out

Clock-to-Q
Delay

User’s Manual U10504EJ7V0UM00

259

Clock Interface

10.2 Basic System Clocks

The various clock signals used in the V

R

4300 processor are described below.

MasterClock

The internal and external (system interface) clocks of the V

R

4300 are generated
and operate based on the

MasterClock

.

SyncIn/SyncOut

The V

R

4300 processor generates

SyncOut

 at the same frequency as

MasterClock

and aligns

SyncIn

 with

MasterClock

.

SyncOut

 must be connected to

SyncIn

 either directly, or through an external
buffer. The processor can compensate for both output driver and input buffer
delays when aligning

SyncIn

 with

MasterClock

. When

SyncOut

 is connected
to

SyncIn

 through an external buffer as illustrated in Figure 10-7, delay caused by
external buffers connected to clock outputs can also be compensated.

PClock

The

PClock

 is selected by setting the frequency ratio between the

PClock

 and the

MasterClock

.

This ratio is set by the

DivMode

 pins on power application. Table 10-1 indicates
the selectable frequency ratio. For details of the

DivMode

 pins settings, refer to

Table 2-2 Clock/Control Interface Signals

.

When the low power mode (100 MHz model of the V

R

4300 and the V

R

4305 only)
is set by setting the

RP

 bit of the

Status

 register, the frequency of

PClock

decreases to the 1/4 of the normal level.

All the internal registers and latches use

PClock

.

Table 10-1 Frequency Ratio Between PClock and MasterClock

*1.

Selectable with the 100 MHz model only (With the 133 MHz model, this setting is reserved.)

2.

Selectable with the 133 MHz model only (With the 100 MHz model, this setting is reserved.)

3.

Selectable with the 167 MHz model only (With the 133 MHz model, this setting is reserved.)

Product Name DivMode Pin Selectable Frequency Ratio (MasterClock : PClock)

V

R

4300 DivMode (1 : 0) 1 : 1.5

*1

, 1 : 2, 1 : 3, 1 : 4

*2

V

R

4305 DivMode (1 : 0) 1 : 1, 1 : 2, 1 : 3

V

R

4310 DivMode (2 : 0) 1 : 2, 1 : 2.5

*3

, 1 : 3, 1 : 4, 1 : 5, 1 : 6

Chapter 10

260

User’s Manual U10504EJ7V0UM00

SClock

The frequency of the system interface clock (

SClock

) is equal to that of

MasterClock

, and

SClock

 is synchronized with

MasterClock

. Because

SClock

is generated from

PClock

, the frequency of

SClock

 also drops to the 1/4 of the
normal level, like the frequency of

PClock

, when the low power mode (100 MHz
model of the V

R

4300 and the V

R

4305 only) is set. The output of the V

R

4300 is
driven at the edge of

SClock

.

SClock

 rises in synchronization with the first rising edge of

MasterClock

immediately after

ColdReset

 is deasserted inactive.

TClock

TClock

 (transfer/receive clock) is the reference clock of the output and input
registers of the external agent. It is also used as the global clock of the external
agent, and a clock can be supplied to all the logic circuits in the external agent.

TClock

 is the same as

SClock

 in frequency, and its edge is accurately
synchronized with that of

SClock

. When

SyncIn

 is connected to

SyncOut

,

TClock

 can also be synchronized with

MasterClock

.

User’s Manual U10504EJ7V0UM00

261

Clock Interface

Figure 10-3 When Frequency Ratio of MasterClock to PClock is 1:1.5

Cycle 1 2 3 4

MasterClock

tMCkHigh

tMCkLow

tMCkP

PClock

SClock

TClock

SysAD(31:0)
D D D D

tDO

D D D D

tDS

tDH

(input)

(internal)

(internal)

(output)

(Driven by

SysAD(31:0)
(Received by
processor)

processor)

Chapter 10

262

User’s Manual U10504EJ7V0UM00

Figure 10-4 When Frequency Ratio of MasterClock to PClock is 1:2

MasterClock

PClock

SClock

TClock

SysAD(31:0)

tMCkHigh

tMCkLow

tMCkP

Cycle 1 2 3 4

(input)

(internal)

(internal)

(output)

(Driven by
processor)

SysAD(31:0)
(Received by
processor)

tDO

tDS

tDH

D D D D

D D DD

User’s Manual U10504EJ7V0UM00

263

Clock Interface

10.3 System Timing Parameters

As shown in Figures 10-3 and 10-4, data provided to the processor must be stable
a minimum of t

DS

 nanoseconds (ns) before the rising edge of

SClock

 and be held
valid for a minimum of t

DH

 ns after the rising edge of

SClock

.

10.3.1 Synchronization with SClock

Processor data becomes stable t

DO

 ns after the rising edge of

SClock

. This drive-
time is the sum of the maximum delay through the processor output drivers
together with the maximum clock-to-Q delay of the processor output registers.

10.3.2 Synchronization with MasterClock

Certain processor inputs (specifically

Reset

) are sampled based on

MasterClock

.
The same setup, hold, and off time, t

DS

, t

DH

,

and

t

DO

, shown in Figures 10-3 and
10-4, apply to these inputs, measured by

MasterClock

.

10.3.3 Phase-Locked Loop (PLL)

The processor synchronizes

SyncOut

,

PClock, SClock, and TClock with internal
phase-locked loop (PLL) circuits that generate aligned clocks based on SyncOut/
SyncIn. By their nature, PLL circuits are only capable of generating synchronized
clocks with the MasterClock frequencies within a limited range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or jitter; a
clock synchronized with MasterClock by the PLL can lead or trail MasterClock
by as much as the related maximum jitter (tMCJitter).

Chapter 10

264

User’s Manual U10504EJ7V0UM00

10.4 Low Power Mode Operation

Usually,

PClock

 is generated based on

MasterClock

 at the frequency ratio set by
the

DivMode(1:0)

*1

 pins (for the setting, refer to

Table 2-2 Clock/Control
Interface Signals

). The frequency of the system interface clock (

SClock

) is the
same as that of

MasterClock

.

To set the low power mode (RP)

*2

, set the

RP

 bit of the

Status

 register by using a
transfer instruction. When the RP mode has been set, the processor stalls the
pipeline which then enters the pause (quiescent) status (in other words, the store
buffer becomes empty and all cache misses are solved). Next, the frequency of

PClock

 drops to the 1/4 in the normal mode. The frequency of

SClock

 also drops
to the 1/4 of the normal level (10 MHz).

The normal clocks can be restored by executing reset.

For the procedure to set or clear the

RP

 bit, refer to

Low Power Mode

 in

9.3.1

.

*1.

In V

R

4300 and V

R

4305. In V

R

4310, DivMode(2:0).

2.

100 MHz model of the V

R

4300 and the V

R

4305 only

User’s Manual U10504EJ7V0UM00 265

Clock Interface

10.5 Connecting Clocks to a Phase-Locked System

When the processor is used in a phase-locked system, the external agent must
phase lock its operation to a common MasterClock. In such a system, the
transmission of data and data sampling have common characteristics, even if the
components have different delay values. For example, transmission time (the
amount of time a signal takes to move from one component to another along a
trace on the board) between any two components A and B of a phase-locked
system can be calculated from the following equation:

Transmission Time = (SClock period) – (tDO for A) – (tDS for B) –

(Clock Jitter for A Max) – (Clock Jitter for B Max)

Figure 10-5 shows a block diagram of a phase-locked system using the VR4300
processor.

Figure 10-5 Phase-Locked System

MasterClock

VR4300

TClock

SysAD(31:0)

SysCmd(4:0)

MasterClock

SyncOut

SyncIn

MasterClock

External Agent

SysCmd(4:0)

SysAD(31:0)

Chapter 10

266 User’s Manual U10504EJ7V0UM00

10.6 Connecting Clocks to a System without Phase Locking

When the VR4300 processor is used in a system in which the external agent cannot
lock its phase to a common MasterClock, the output clock TClock can clock the
remainder of the system. Two clocking methodologies are described in this
section: connecting to a gate-array device or connecting to CMOS discrete
devices.

10.6.1 Connecting to a Gate-Array Device

When the processor is connected to a gate array device, TClock is used as the
transmit/receive clock in the gate array.

Figure 10-6 is a block diagram of a system without phase lock, using the VR4300
processor with an external agent implemented as a gate array.

User’s Manual U10504EJ7V0UM00 267

Clock Interface

Figure 10-6 Gate-Array System without Phase Lock, Using the VR4300 Processor

MasterClock

VR4300

TClock

SysAD(31:0)

SysCmd(4:0)

MasterClock

SyncOut

SyncIn

CE

Gate
Array

Output
Register

CE

Input
Register

Output
Register

Input
Register

Chapter 10

268 User’s Manual U10504EJ7V0UM00

Signal Transmission Time from Processor to External Agent

In a system without phase lock, the transmission time for a signal from the
processor to an external agent composed of gate arrays can be calculated from the
following equation:

Transmission Time = (1TClock period) – (tDO for VR4300)
+ (Minimum External Clock Buffer Delay)
– (External Input Register Setup Time)
– (Maximum Clock Jitter for VR4300 Internal Clocks)
– (Maximum Clock Jitter for TClock)

Signal Transmission Time from External Agent Processor

The transmission time for a signal from an external agent composed as gate arrays
to the processor in a system without phase lock can be calculated from the
following equation:

Transmission Time = (1TClock period) – (tDS for VR4300)
– (Maximum External Clock Buffer Delay)
– (Maximum External Output Register Clock-to-Q Delay)
– (Maximum Clock Jitter for TClock)
– (Maximum Clock Jitter for VR4300 Internal Clocks)

User’s Manual U10504EJ7V0UM00 269

Clock Interface

10.6.2 Connecting to a CMOS Discrete Device

The processor uses a clock buffer that corrects the delay to supply a synchronous
clock to an external CMOS discrete device. The clock buffer that corrects the
delay is inserted into the SyncOut/SyncIn synchronization bus of the processor
to adjust the skew of SyncOut and TClock by delaying PClock synchronized
with MasterClock, and advances SyncOut and TClock from MasterClock by
the buffer delay.

When using TClock whose buffer delay has been corrected, the other delay
correcting clock buffers can be used.

The phase error of the buffered TClock can be obtained by adding up the
maximum delay error of the delay correcting clock buffer and the maximum clock
jitter of TClock.

Functioning as the global clock of the CMOS discrete devices that form the
external agent, the buffered TClock supplies a clock to the register that samples
the processor output and the register that drives the processor input.

The transmission time for a signal from the processor to an external agent
composed of CMOS discrete devices can be calculated from the following
equation:

Transmission Time = (1TClock period) – (tDO for VR4300)
– (External Input Register Setup Time)
– (Maximum External Clock Buffer Delay Mismatch)
– (Maximum Clock Jitter for VR4300 Internal Clocks)
– (Maximum Clock Jitter for TClock)

Figure 10-7 is a block diagram of a system without phase lock, employing the
VR4300 processor and an external agent composed of both a gate array and
CMOS discrete devices.

Chapter 10

270 User’s Manual U10504EJ7V0UM00

Figure 10-7 Gate-Array and CMOS System without Phase Lock, Using the VR4300 Processor

Memory

VR4300

TClock

SysAD(31:0)

Memory

CE CE

SysCmd(4:0)

Control

MasterClock

MasterClock Gate Array

SyncOut

SyncIn

Input
Register

output
Register

User’s Manual U10504EJ7V0UM00 271

Clock Interface

The transmission time for a signal from an external agent composed of CMOS
discrete devices can be calculated from the following equation:

Transmission Time = (1TClock period) – (tDS for VR4300)
– (Maximum External Output Register Clock-to-Q Delay)
– (Maximum External Clock Buffer Delay Mismatch)
– (Maximum Clock Jitter for VR4300 Internal Clocks)
– (Maximum Clock Jitter for TClock)

In this clocking methodology, the hold time of data driven from the processor to
an external input register is an important parameter. To guarantee hold time, the
minimum output delay of the processor, tDO, must be greater than the sum of:

Minimum Hold Time for the External Input Register
+ Maximum Clock Jitter for VR4300 Internal Clocks
+ Maximum Clock Jitter for TClock
+ Maximum Delay Mismatch of the External Clock Buffers

272 User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

273

Cache Memory

11

This chapter describes in detail the cache memory: its place in the V

R

4300
memory organization, and individual organization of the caches.

This chapter uses the following terminology:

• The data cache may also be referred to as the D-cache.

• The instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

Chapter 11

274

User’s Manual U10504EJ7V0UM00

11.1 Memory Organization

Figure 11-1 shows the V

R

4300 system memory hierarchy. In the logical memory
hierarchy, the caches lie between the CPU and main memory. They are designed
to make the speedup of memory accesses transparent to the user.

Each functional block in Figure 11-1 has the capacity to hold more data than the
block above it. For instance, physical main memory has a larger capacity than the
caches. At the same time, each functional block takes longer to access than any
block above it. For instance, it takes longer to access data in main memory than
in the CPU on-chip registers.

Figure 11-1 Logical Hierarchy of Memory

The V

R

4300 processor has two on-chip caches: one holds instructions (the
instruction cache), the other holds data (the data cache). The instruction and data
caches can be read in one

PClock

 cycle.

Data writes take two

PClock

 cycles. In the first cycle, the store address is
generated and the tag is checked; in the second cycle, the data is written into the
data RAM.

RegistersRegisters

Main Memory

Cache

VR4300 CPU

I-cache D-cache

Increasing Data
Capacity

Disk, CD-ROM,
Tape, etc.

R
eg

is
te

rs
C

ac
he

s
M

em
or

y
P

er
ip

he
ra

ls

Faster Access
Time

User’s Manual U10504EJ7V0UM00

275

Cache Memory

11.2 Cache Organization

This section describes the organization of the on-chip data and instruction caches.
Figure 11-2 provides a block diagram of the V

R

4300 cache and memory model.

Figure 11-2 V

R

4300 Cache Support

Cache Line Lengths

A

cache line

 is the smallest unit of information that can be fetched from main
memory for the cache, and that is represented by a single tag.

The line size for the instruction cache is 8 words (32 bytes) and the line size for
the data cache is 4 words (16 bytes).

For cache tags, refer to

11.2.1 Organization of the Instruction Cache (I-Cache

)
and

11.2.2 Organization of the Data Cache (D-Cache)

.

Cache Sizes

The V

R

4300 instruction cache is 16 KB; the data cache is 8 KB.

VR4300

I-cache

Cache Controller

D-cache

Caches

Main Memory

Chapter 11

276

User’s Manual U10504EJ7V0UM00

11.2.1 Organization of the Instruction Cache (I-Cache)

Each line of I-cache data (although it is actually an instruction, it is referred to as
data to distinguish it from its tag) has an associated 21-bit tag that contains a 20-
bit physical address and

Valid

 bit.

The V

R

4300 processor I-cache has the following characteristics:

• direct-mapping method

• indexed with a virtual address

• checked with a physical tag

• organized with an 8-word (32-byte) cache line.

Figure 11-3 shows the format of an 8-word (32-byte) I-cache line.

Figure 11-3 V

R

4300 8-Word I-Cache Line Format

256

255 0

PTag : Physical tag (bits 31:12 of the physical address)
V : Valid bit
Data : Cache data

20

01920

1

V PTag

Data

User’s Manual U10504EJ7V0UM00

277

Cache Memory

11.2.2 Organization of the Data Cache (D-Cache)

Each line of D-cache data has an associated 22-bit tag that contains a 20-bit
physical address, a

Valid

 bit, and a

Dirty

 bit.

The V

R

4300 processor D-cache has the following characteristics:

• write-back

• direct-mapping method

• indexed with a virtual address

• checked with a physical tag

• organized with a 4-word (16-byte) cache line.

Figure 11-4 shows the format of a 4-word (16-byte) D-cache line.

Figure 11-4 V

R

4300 4-Word Data Cache Line Format

V : Valid bit
D : Dirty bit (refer to 11.4 Cache States)
PTag : Physical tag (bits 31:12 of the physical address)
Data : D-cache data

128

127 0
20

01920

1

D PTag

Data

21

V

1

Chapter 11

278

User’s Manual U10504EJ7V0UM00

11.2.3 Accessing the Caches

Figure 11-5 shows the virtual address (VA) index into the caches. The number of
virtual address bits used to index the instruction and data caches depends on the
cache size.

Data Cache Addressing

VA(12:4) is used. Since the cache size is 8 KB, the most significant bit is VA12.
Furthermore, since the line size is 4 words (16 bytes), the least-significant bit is
VA4.

Instruction Cache Addressing

VA(13:5) is used. Since the cache size is 16 KB, the most-significant bit is VA13.
Furthermore, since the line size is 8 words (32 bytes), the least-significant bit is
VA5.

Figure 11-5 Cache Data and Tag Organization

VA(12:4) for 8 KB D-cache
and

VA(13:5) for 16 KB I-cache

Tags Data

D Data

64

Tag Line Data Line

TagV

User’s Manual U10504EJ7V0UM00

279

Cache Memory

11.3 Cache Operations

As described earlier, caches provide temporary data storage, and they make the
speedup of memory accesses transparent to the user. In general, the processor
accesses cache-resident instructions or data through the following procedure:

1. The processor, through the on-chip cache controller, attempts to access the
next instruction or data in the appropriate cache.

2. The cache controller checks to see if this requested instruction or data is
present in the cache.

• If the instruction/data is present, the processor retrieves it. This is
called a cache

 hit

.

• If the instruction/data is not present in the cache, the cache controller
must retrieve it from main memory. This is called a cache

 miss

.

3. The processor retrieves the instruction/data from the cache and operation
continues.

It is possible for the same data to be in two places simultaneously: main memory
and cache. This data is kept consistent through the use of a

write-back

methodology; that is, modified data is not written back to main memory until the
cache line is to be replaced.

Instruction and data cache line replacement operations are described in the
following sections.

Chapter 11

280

User’s Manual U10504EJ7V0UM00

11.3.1 Cache Write Policy

The V

R

4300 processor manages its data cache by using a write-back

policy; that
is, it stores write data into the cache, instead of writing it directly to the main
memory.

*

 Some time later this data is independently transferred into the main
memory. In the V

R

4300 implementation, a modified cache line is not written back
to the main memory until the cache line is to be replaced either in the course of
satisfying a cache miss, or during the execution of a write-back CACHE
instruction.

When the cache-miss occurs and the processor writes the contents of a cache line
back to the main memory, it does not ordinarily retain a copy of the cache line,
and the state of the cache line is changed to Clean.

11.3.2 Data Cache Line Replacement

Since the data cache uses a write-back methodology, a cache line load is issued to
main memory on a load or store miss, as described below. After the data from the
main memory is written to the data cache, the pipeline resumes execution.

The line replacement sequence is based on a “Critical Doubleword First” scheme
refer to

subblock ordering

 in

12.2.1 Physical Addresses

. The processor restarts
its pipeline as soon as the main memory supplies the desired word in the first
doubleword of a block transfer. This sequence is summarized as follows:

1. Move the data physical address to the

SysAD(31:0)

. At the same time, move
the dirty cache line to the write buffer.

2. At the timing of SClock rising edge, read the data from the main memory,
receiving the desired doubleword in two word data first.

3. Receive remaining doubleword in word data units. For all loads move the
data to target register. For byte, halfword and word stores, it is necessary to
do a read in the main memory followed by a write procedure—read the 64-bit
data, write new data to this read data, then write the 64-bit data to cache. As
this is being done, interlock the data cache to prevent it from being accessed
by any subsequent instruction that tries to access this particular cache line.

Rules for replacement on data load and data store misses are given below.

* An alternative to this is a

write-through

 cache, in which information is written simultaneously to
cache and memory.

User’s Manual U10504EJ7V0UM00

281

Cache Memory

Data Load Miss

If the missed cache line is not dirty, it is replaced with a new line.

If the missed line is dirty, it is moved to the write buffer. A new line replaces the
missed line, and the data in the write buffer is written to the main memory.

Data Store Miss

If the missed cache line is not dirty, it is replaced with the new cache line merged
with the store data.

If the missed cache line is dirty, it is moved to the write buffer. A new cache line
is merged with the store data and written to cache, and data in the write buffer is
written to the memory. The data is written sequentially, starting from the first
address of the block (refer to

sequential ordering

 in

12.2.1 Physical Addresses

).

The data cache miss stall in number of

PClock

 cycles is:

Table 11-1 Stall Cycle Count for Data Cache Miss

Number
of Cycles

Operation

1 DC stage stall

1
Transfer address to write buffer and wait for the pipeline start
signal

1 to 2
Synchronize with

 SClock

 and transfer address to internal

SysAD

bus

2 Transfer to external

SysAD

 bus

M

 Time needed to access memory, measured in

PClock

 cycles

2 Transfer the cache line from memory to the

SysAD

 bus

1
Transfer the cache line from the external to internal bus and to
D-cache bus

0 Restart the DC stage

Chapter 11

282

User’s Manual U10504EJ7V0UM00

11.3.3 Instruction Cache Line Replacement

For an instruction cache miss, refill is done using sequential ordering, reading
from the first word of the requested cache line.

During an instruction cache miss, a memory read request is issued by the
processor. That is the requested cache line is read from the main memory and
written to the instruction cache. At this time the pipeline resumes execution, and
the instruction cache is reaccessed.

The replacement sequence for an instruction cache miss is:

1. Move the instruction physical address to the

SysAD(31:0)

.

2. Read the instruction data at the timing of

SClock

 rising edge from the main
memory and write it out to the instruction cache.

3. Restart the pipeline operation.

The instruction cache miss stall in number of

PClock

 cycles is:

Table 11-2 Stall Cycle Count for Instruction Cache Miss

Number
of Cycles

Operation

1 RF stage stall

1
Transfer address to write buffer and wait for the pipeline start
signal

1 to 2
Synchronize with

SClock

 and transfer address to internal

SysAD

bus

2 Transfer to external

SysAD

 bus

M

 Time needed to access memory, measured in

PClock

 cycles

8 Transfer the cache line from memory to the

SysAD

 bus

1
Transfer the cache line from the external to internal bus and to
I-cache bus

0 Restart the RF stage

User’s Manual U10504EJ7V0UM00

283

Cache Memory

11.4 Cache States

Cache Line

The four terms below are used to describe the

state

 of a cache line:

•

Valid

: a cache line that contains valid information.

•

Dirty

: a cache line containing data that has changed in valid status
since it was loaded from memory.

•

Clean

: a cache line containing data that has not changed in valid
status since it was loaded from the main memory.

•

Invalid

: a cache line that does not contain valid information must be
marked invalid, and cannot be used. For example, after a Soft Reset,
software sets all cache lines to invalid. A cache line in any other state
than invalid is assumed to contain valid information.
Neither a cold reset nor a soft reset makes the state of a cache invalid.
Software invalidates it.

Data Cache

The data cache supports three cache states:

• invalid

• clean

• dirty

Instruction Cache

The instruction cache supports two cache states:

• invalid

• valid

The cache line that contains valid information may be changed when the processor
executes the CACHE operation. For CACHE operation, refer to

Chapter 16
CPU Instruction Set Details

.

11.5 Cache State Transition Diagrams

The following section describes the cache state diagrams for the data and
instruction caches. These state diagrams do not cover the initial state of the
system, since the initial state is system-dependent.

Chapter 11

284

User’s Manual U10504EJ7V0UM00

11.5.1 Data Cache State Transition

The following diagram illustrates the data cache state transition sequence. A load
or store operation may include one or more of the atomic read and/or write
operations shown in the state diagram below, which may cause cache state
transitions.

• Read(1) indicates a read operation from memory to cache, inducing a
cache state transition.

• Write(1) indicates a write operation from the processor to cache,
inducing a cache state transition

• Read(2) indicates a read operation from cache to the processor, which
induces no cache state transition

• Write(2) indicates a write operation from the processor to cache,
which induces no cache state transition

Figure 11-6 Data Cache State Diagram

Invalid

CleanDirty

Read(1)

Write(1)
Read(2)

 Write Back

Write(2)

CACHE instructionCACHE instruction

CACHE instruction

Read(2)

Write(1)

User’s Manual U10504EJ7V0UM00

285

Cache Memory

11.5.2 Instruction Cache State Transition

The following diagram illustrates the instruction cache state transition sequence.

• Read(1) indicates a read operation from the main memory to cache,
inducing a cache state transition.

• Read(2) indicates a read operation from cache to the processor, which
induces no cache state transition.

Figure 11-7 Instruction Cache State Diagram

11.6 Manipulation of the Caches by an External Agent

The V

R

4300 does not provide any mechanisms for an external agent to examine
and manipulate the state and contents of the caches.

Valid Invalid
CACHE instruction

 Read(2) Read(1)

286

User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

287

System Interface

12

The System interface allows the processor to access external resources needed to
perform processing of cache misses and uncached areas, while permitting an
external agent to access to some of the processor internal resources.

This chapter describes the System interface between the processor and the
external agent.

The V

R

4300 uses a subset of the System interface contained on the V

R

4400 and
V

R

4200.

Chapter 12

288

User’s Manual U10504EJ7V0UM00

12.1 Terminology

The following terms are used in this chapter:

• An

external agent

 is any device connected to the processor, over the
System interface, that processes requests issued by the processor.

• A

system event

 is an event that occurs within the processor and
requires access to external resources. System events include: an
instruction fetch that misses in the instruction cache; a load/store
instruction that misses in the data cache; an uncached load or store
instructions; an execution of cache instructions.

•

Sequence

 refers to the series of requests that a processor generates to
process a system event.

•

Protocol

 refers to the cycle-by-cycle signal transitions that occur on
the System interface pins, which issue external request, or a
processor.

•

Syntax

 refers to the definition of bit patterns on encoded buses, such
as the command bus.

•

Block

 indicates any data transfer of 8 bytes or longer across the
System interface.

•

Single

 indicates any data transfer of 7 bytes or shorter across the
System interface.

•

Fetch

 refers to the read of information from the instruction cache.

•

Load

 refers to the read of information from the data cache.

User’s Manual U10504EJ7V0UM00

289

System Interface

12.2 System Interface Description

The processor uses the System interface to access external resources required for
performing cache misses and uncached area processing.

12.2.1 Physical Addresses

Physical addresses are output to

SysAD(31:0)

 in the address cycle. The address
when the single read request and single write request are issued is determined by
the data length as follows.

• If the data is a word (4 bytes), the low-order 2 bits of the address are
0.

• If the data is a halfword (2 bytes), the low-order 1 bit of the address
is 0.

• If the data is 1, 3, 5, 6, or 7 bytes, the supplied address is a byte
address (the 5-, 6-, or 7-byte data is divided into two single write
requests).

When a doubleword (2 words), 4 words, or 8 words are transferred, a block
request is issued. The block read request and block write request differ as follows
in the physical address to be output.

Block Write Request

The physical address when the block write request is issued is always aligned with
the first word address of the block (sequential ordering).

Block Read Request

• Instruction cache read request

The block read request when a miss occurs in the instruction cache,
the physical address is aligned with the 8-word data address (the low-
order 5 bits are 0) including the requested word and output. Figure
12-1 shows the sequence in which data are transferred from the main
memory when a block read request is issued to the instruction cache.
When an instruction cache read request is issued, data is always read
starting from W0 (sequential ordering).

Chapter 12

290

User’s Manual U10504EJ7V0UM00

Figure 12-1 Data Sequence on Instruction Cache Read Request

• Data cache read request

If a block read request is issued when a miss occurs in the data cache,
the physical address is aligned with the doubleword address (the low-
order 3 bits are 0) including the requested data and output. Figure
12-2 shows the data sequence in which data is transferred from the
main memory when a block read request is issued to the data cache.
When a data cache read request is issued, reading a doubleword
including the necessary data is started in word units (W2 in this case)
(refer to

Sub block ordering

 in

12.12.2 Sequential and Subblock
Ordering

).

Figure 12-2 Data Sequence on Data Cache Read Request

W0

1

W1

2

W2

3

W3

4

W4

5

W5

6

W6

7

W7

8

Transfer sequence

(Sequential ordering)

Output physical address Requested word

W0

3

W1

4

W2

1

W3

2

Transfer sequence

(Subblock ordering)

Output physical address Requested word

User’s Manual U10504EJ7V0UM00

291

System Interface

12.2.2 Interface Buses

Figure 12-3 shows the primary communication buses for the System interface: a
32-bit address/data bus,

SysAD(31:0)

, and a 5-bit command bus,

SysCmd(4:0)

.
These

SysAD

 and the

SysCmd

 buses are bidirectional; that is, they are driven by
the processor to issue a processor request, and by the external device to issue an
external request (refer to

12.4 Processor and External Requests

).

A request through the System interface consists of:

• an address

• a System interface command that specifies the nature of the request

• response data to read request, and write data to write request

Figure 12-3 System Interface Buses

VR4300 External Agent

SysAD(31:0)

SysCmd(4:0)

Chapter 12

292

User’s Manual U10504EJ7V0UM00

12.2.3 Address and Data Cycles

The

SysCmd (4:0)

 bus identifies the contents of the

SysAD(31:0)

 bus during any
cycle in which it is valid. Cycles in which the

SysAD(31:0)

 bus contains a valid
address are called

address cycles

. Cycles in which the

SysAD(31:0)

 bus contains
valid data are called

data cycles

. The most significant bit of the

SysCmd(4:0)

 bus
is always used to indicate whether the current cycle is an address cycle or a data
cycle. Validity is determined by the state of the

EValid

 and

PValid

 signals
(described in

12.2.2 Interface Buses

).

When the V

R

4300 processor is driving the

SysAD(31:0)

 and

SysCmd(4:0)

 buses,
the System interface is in

master state

. When the external agent is driving them,
the System interface is in

slave state

.

• When the processor is master, it asserts the

PValid

 signal when the

SysAD(31:0)

 and

SysCmd(4:0)

 buses are valid.

• When the processor is slave, an external agent asserts the

EValid

signal when the

SysAD(31:0)

 and

SysCmd(4:0)

 buses are valid.

SysCmd(4:0)

 indicate the following contents if the

PValid

 or

EValid

 signal is
active.

• During address cycles [

SysCmd4

 = 0], the remainder of the

SysCmd(4:0)

 bus,

SysCmd(3:0)

, contains a

System interface
command

 (the encoding of System interface commands is detailed in

12.11 System Interface Commands and Data Identifiers

).

• During data cycles [

SysCmd4

 = 1], the remainder of the

SysCmd(4:0)

 bus,

SysCmd(3:0)

, contains a

data identifier

command

(the encoding of data identifiers is detailed in

12.11 System Interface
Commands and Data Identifiers

).

User’s Manual U10504EJ7V0UM00

293

System Interface

12.2.4 Issue Cycles

Processor Request

There are two types of processor issue cycles:

• processor read request

• processor write request

The issuance cycle of the processor read/write request is determined by the status
of the

EOK

 signal. The issuance cycle is a cycle that becomes valid in the address
cycle of each processor request. Only one issuance cycle exists for one processor
request.

To define the issuance cycle of the address cycle, assert the

EOK

 signal active at
the external agent side one cycle before the address cycle of the processor read/
write request as shown in Figure 12-4.

To define the address cycle as the issuance cycle, do not deassert the

EOK

 signal
inactive until the address cycle is started.

Figure 12-4 EOK Signal Status of Processor Request

The processor repeatedly outputs the address cycle until the address cycle of the
processor request becomes the issuance cycle. With the V

R

4300, therefore, the
address cycle next to the cycle in which the

EOK

 signal has become active is the
issuance cycle, and the address cycle is repeated up to that cycle. Figure 12-5
illustrates how the address cycle is extended by the

EOK

 signal.

SClock
(internal)

SysAD(31:0)
(I/O)

EOK
(input)

SCycle 1 2 3 4 5 6

Addr

Issuance cycle

Chapter 12

294

User’s Manual U10504EJ7V0UM00

Figure 12-5 Address Cycle Extended by EOK Signal

Processor and External Requests

The processor accepts external requests, even while attempting to issue a
processor request, by releasing the System interface to slave state in response to

EReq

 signal by the external agent.

When an issuance of processor request and external request compete with each
other, the processor either:

• completes the issuance of the processor request before the external
request is accepted, or

• releases the System interface to slave state without completing the
issuance of the processor request.

In the latter case, the processor issues the processor request (provided the
processor request is still necessary) after the external request is completed.

SClock
(internal)

SysAD(31:0)
(I/O)

EOK
(input)

SCycle 1 2 3 4 5 6 7

Addr

Issuance cycle

User’s Manual U10504EJ7V0UM00

295

System Interface

12.2.5 Handshake Signals

The processor manages the flow of requests through the following six control
signals:

EOK

 Signal

This signal is used by the external agent to indicate whether it can accept a new
read or write transactions.

EReq, PMaster and PReq Signals

These signals are used to transfer control of the

SysAD(31:0)

 and

SysCmd(4:0)

buses.

EReq

 signal is used by an external agent to indicate a need to control the
interface.

PMaster

 signal is deasserted by the processor when it transfers control
of the System interface to the external agent. The

PReq

 signal is used by the
processor to request the external agent, which holds the right to control the system
interface, for the right of control.

PValid and EValid Signals

The V

R

4300 processor uses

 PValid

 signal, and the external agent uses

EValid

signal to indicate valid command/data on the

SysCmd(4:0)

/

SysAD(31:0)

 buses.

Chapter 12

296

User’s Manual U10504EJ7V0UM00

12.3 System Interface Protocols

Figure 12-6 shows the register-to-register operation of the System interface. That
is, output signals of the processor come directly from output registers and begin
to change in synchronization with the rising edge of

SClock.

Input signals to the processor are fed directly to input registers that latch these
input signals with the rising edge of

SClock

.

Figure 12-6 System Interface Register-to-Register Operation

12.3.1 Master and Slave States

When the V

R

4300 processor is driving the

SysAD(31:0)

 and

SysCmd(4:0)

 buses,
the System interface is in

master state

. When the external agent is driving these
buses, the System interface is in slave state.

In master state, the processor asserts the PValid signal whenever the
SysAD(31:0) and SysCmd(4:0) buses are valid.

In slave state, the external agent asserts the EValid signal whenever the
SysAD(31:0) and SysCmd(4:0) buses are valid.

VR4300

Input data

Output data

SClock

User’s Manual U10504EJ7V0UM00 297

System Interface

12.3.2 Moving from Master to Slave State

The processor is the default master of the system interface. An external agent
becomes master of the system interface through external arbitration, or after a
processor read request. The external agent returns mastership to the processor
after an external request completes.

The System interface remains in master state unless one of the following occurs:

• The external agent requests and is granted the System interface
control (external arbitration).

• The processor issues a read request (uncompelled change to slave
state).

The following sections describe these two cases.

12.3.3 External Arbitration

The System interface must be in slave state for the external agent to issue an
external request through the System interface. The transition from master state to
slave state is arbitrated by the processor using the System interface handshake
signals EReq and PMaster. This transition is described by the following
procedure:

1. An external agent transmits a request to issue an external request to the
processor by asserting EReq signal.

2. When the processor is ready to accept an external request, it releases the
System interface from master to slave state by deasserting PMaster signal.

3. The System interface returns to master state as soon as the issue of the
external request is completed.

This process is described in 12.6.6 External Arbitration Protocol.

Chapter 12

298 User’s Manual U10504EJ7V0UM00

12.3.4 Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the System interface from
master state to slave state, performed by the processor itself when a processor read
request is pending. PMaster signal is deasserted automatically after a read
request. An uncompelled change to slave state occurs either the first cycle after
the issue cycle of a processor read request.

When the processor returns from the uncompelled transition differs depending on
the cache status. The processor returns to the master status when the following
external request (read response or other external request) is completed after the
uncompelled transition to the slave status.

An external agent must confirm that the processor has performed an uncompelled
change to slave state, and begin driving the SysAD(31:0) bus along with the
SysCmd(4:0) bus. As long as the System interface is in slave state, the external
agent can begin an external request without arbitrating for the System interface;
that is, without asserting EReq signal.

If EReq is inactive, at the time the external request is completed, the System
interface automatically returns to master state.

12.4 Processor and External Requests

There are two categories of requests: processor requests and external requests.

When a system event occurs, the processor issues a request through the system
interface to access some external resource necessary to service this event. For this
to occur, the system interface must be connected to an external agent that
coordinates the access to system resources. An external agent requesting access
to an internal resource of the processor issues an external request.

Processor requests include the following:

• read requests, which provide a read address to an external agent

• write requests, which provide an address and a single or block of data
to be written to an external agent.

External requests include the following:

• read responses, which provide a block or single transfer of data from
an external agent in response to read requests

• write requests, which provide an address and a word of data to be
written to a processor resource

User’s Manual U10504EJ7V0UM00 299

System Interface

When an external agent receives a read request, it accesses the specified resource
and returns the response data as a read response, which may be returned at any
time after the read request is completed.

A processor read request is completed after the last response data has been
received from the external agent. A processor write request is completed after the
last word of data has been transferred.

The processor will not issue another request while a read request is pending
(before receiving the response data after issuing the read request).

System events and requests are shown in Figure 12-7.

Figure 12-7 Requests and System Events

VR4300 External Agent

Processor Requests
• Read
• Write

External Requests
• Read response
• Write

System Events
• Fetch Miss
• Load Miss
• Store Miss
• Load/Store to Uncached area
• CACHE instructions

Chapter 12

300 User’s Manual U10504EJ7V0UM00

12.4.1 Processor Requests

A processor request is a request through the System interface, to access some
external resource. Processor requests are either read or write requests.

Outline Requests

Read request asks for a block, word, or partial word of data either from main
memory or from another system resource.

Write request provides a block, word, or partial word of data to be written either
to main memory or to another system resource.

Request Issuance

The processor issues requests in a strict sequential order; that is, the processor is
only allowed to have one request pending at any time. For example, the processor
issues a read request and waits for a read response before issuing any subsequent
requests. The processor issues a write request only if there are no read requests
pending.

Request Control

The processor has the input signal EOK to allow an external agent to control the
flow of processor requests.

The processor request cycle sequence is shown in Figure 12-8.

Figure 12-8 Processor Request Flow

VR4300 External Agent

1. Processor issues read or write
request

2. External system controls
acceptance of requests by
asserting EOK signal

User’s Manual U10504EJ7V0UM00 301

System Interface

12.4.2 Processor Read Request

When a processor issues a read request, the external agent must access the
specified resource and return the requested data.

A processor read request can be split by the external agent’s response data; in
other words, the external agent can initiate an unrelated external request before it
returns the response data for a processor read. A processor read request is
completed after the last word of response data has been received from the external
agent.

Processor read requests that have been issued, but which data has not yet been
returned, are said to be pending. A read request remains pending until the
requested read data is returned.

Note that the data identifier associated with the response data can indicate that the
response data is erroneous, causing the processor to generate a bus error
exception.

The external agent must be capable of accepting a new processor read request at
any time when the following two conditions are met:

• No present processor read request pending.

• The EOK signal has been asserted for two or more cycles.

12.4.3 Processor Write Request

When a processor issues a write request, the specified external resource is
accessed and the data is written to it.

A processor write request is completed after the last word of data has been
transferred to the external agent.

The external agent must be capable of accepting a new processor write request at
any time the following two conditions are met:

• No present processor read request is pending.

• The EOK signal has been asserted for two or more cycles.

Chapter 12

302 User’s Manual U10504EJ7V0UM00

12.4.4 External Requests

External requests include read response and write requests.

Outline of Requests

Read response returns data in response to a processor read request.

Write request provides data to be written to the processor’s internal resource.

Request Control

The processor controls the flow of external requests through the arbitration signals
EReq and PMaster, as shown in Figure 12-9. The external agent must acquire
mastership of the System interface before it issues an external request; the external
agent acquires mastership of the System interface by asserting EReq signal and
then waiting for the processor to deassert PMaster signal for one cycle.

Figure 12-9 External Request Flow

Mastership of the System interface always returns to the processor when EReq
signal becomes inactive after an external request is issued. The processor does not
accept a subsequent external request until it has completed the current request.

Request Issuance

If there are no processor requests pending, the processor decides, based on its
internal state, whether to accept the external request, or to issue a new processor
request. The processor can issue a new processor request even if the external
agent is requesting access to the System interface.

The external agent asserts EReq signal indicating that it wishes to begin an
external request. The processor releases mastership of the System interface by
deasserting PMaster signal. An external request can be accepted based on the
criteria listed below.

VR4300 External Agent

1. External system requests master-
ship by asserting EReq signal

2. Processor grants mastership by
deasserting PMaster signal

3. External system issues an
external request

4. Processor regains mastership
when EReq signal becomes
inactive

User’s Manual U10504EJ7V0UM00 303

System Interface

• The processor completes any processor request in execution.

• While waiting for the assertion of EOK signal to issue a processor
read/write request, EReq signal is input to the processor one or more
cycles before EOK signal is asserted.

• If waiting for the response to a read request after the processor has
made an uncompelled change to a slave state (the external agent can
issue an external request before providing the read response data).

12.4.5 External Write Request

When an external agent issues a write request, the specified external resource is
accessed and the data is written to it. An external write request is completed after
the word data has been transferred to the processor.

The only processor resource available to an external write request is the Interrupt
register.

12.4.6 Read Response

A read response returns data in response to a processor read request. While a read
response is an external request, it has one characteristic that differentiates it from
all other external requests—it does not perform System interface arbitration
(requesting mastership of the System interface using EReq signal.

Figure 12-10 Read Response

VR4300 External Agent

1. Read request

2. Read response

Chapter 12

304 User’s Manual U10504EJ7V0UM00

12.5 Handling Requests

This section details the sequence, protocol, and syntax (Refer to 12.1
Terminology for definitions of these terms) of both processor and external
requests. The following system events are discussed here:

• fetch miss

• load miss

• store miss

• loads/stores to uncached area

• CACHE instructions

12.5.1 Fetch Miss

When the processor misses in the instruction cache on an instruction fetch, it
issues a read request for the cache line acquisition. An external agent returns data
as a read response.

12.5.2 Load Miss

When the processor misses in the data cache on a load, it issues a read request for
the cache line acquisition. An external agent returns data as a read response.

If the cache data to be replaced is in the dirty state, this data is written to the
memory. The above read operation must be completed before the data in the dirty
state is written.

12.5.3 Store Miss

If the processor store misses in the data cache, it issues a read request to retrieve
the target cache line. After the target line has been retrieved by the external agent,
it is updated with the store data and written into the cache.

If the cache data to be replaced is in the dirty state, this data is written to the
memory. The above read operation must be completed before the data in the dirty
state is written.

When it is desirable to guarantee that cached data written by a store instruction is
consistent with main memory contents, the corresponding cache line must be
written back from the cache to the main memory using a CACHE instruction.
CACHE instructions are described in Chapter 16 CPU Instruction Set Details.

User’s Manual U10504EJ7V0UM00 305

System Interface

12.5.4 Loads or Stores to Uncached Area

When the processor performs a load to uncached area, it issues a read request. An
external agent returns a single/block transfer as a read response data.

When the processor performs a store to uncached area, it issues a write request and
provides a single/block transfer of data to the external agent.

12.5.5 CACHE Instructions

The processor provides a variety of CACHE operations to maintain the state and
contents of the caches. The processor can issue write requests unrelated with the
CACHE instruction during the execution of the CACHE instructions.

Chapter 12

306 User’s Manual U10504EJ7V0UM00

12.6 Processor Request and External Request Protocols

The following sections contain a cycle-by-cycle description of the bus arbitration
protocols for each type of processor and external request. Table 12-1 lists the
definitions and abbreviations for each of the buses that are used in the timing
diagrams that follow.

Table 12-1 System Interface Requests

12.6.1 Processor Request Protocols

Processor request protocols described in this section include:

• read

• write

12.6.2 Processor Read Request Protocol

A processor read request is issued by outputting a read command on the
SysCmd(4:0) bus and a read address on the SysAD(31:0) bus, and asserting
PValid. Only one processor read request may be pending at a time; the processor
must wait for an external read response before starting a subsequent read request.

The processor makes an uncompelled change to slave state after the cycle of the
read request by deasserting the PMaster signal. An external agent then returns
the requested data through a read response.

Scope Abbreviation Meaning

Global Unsd Unused

SysAD(31:0) bus
Addr Physical address

Data<n> Data element number n of a block of data

SysCmd(4:0) bus

Cmd An unspecified System interface command

Read A processor or external read request command

Write A processor or external write request command

EOD A data identifier for the last data element

Data
A data identifier for any data element other than the last data
element

User’s Manual U10504EJ7V0UM00 307

System Interface

Once the processor enters slave state (starting at cycle 5 in Figure 12-11), the
external agent can return the requested data through a read response. The read
response returns the requested data or, if the requested data could not be
successfully retrieved, indicate to SysCmd(4:0) bus that the returned data is
erroneous as a read response. If the returned data is erroneous, the processor
generates a bus error exception.

Figure 12-11 illustrates a processor read request, coupled with an uncompelled
change to slave state, that occurs as the read request is issued. Figure 12-12 shows
the processor read request delayed by the EOK signal.

The following sequence describes the protocol for a processor read request (the
numbered steps below correspond to Figures 12-11 and 12-12).

1. The processor is in the master status. It outputs a read command to
SysCmd(4:0) and a read address to SysAD(31:0) to issue a read request.
After the read request is issued, the processor enters the pending status. Only
one read request can be pending at a time.

2. The processor asserts the PValid signal to indicate that the current data of
SysCmd(4:0) and SysAD(31:0) are valid.

3. The external agent asserts the EOK signal for two consecutive cycles to
enable issuance of a processor read request. If the EOK signal is deasserted,
the issuance cycle of the read request is delayed.

4. The processor deasserts the PMaster signal at the first cycle after the read
request is accepted, and shifts to the slave status unforcibly.

5. The processor releases SysCmd(4:0) and SysAD(31:0) at the same time as
the PMaster signal is deasserted.

6. An external agent can drive SysCmd(4:0) and SysAD(31:0) from the first
cycle after the PMaster signal is deasserted.

Chapter 12

308 User’s Manual U10504EJ7V0UM00

Figure 12-11 Unforcible Transition by Processor Read Request

Figure 12-12 Delayed Processor Read Request

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr
Hi-Z

Read

PMaster
(output)

Slave

1.
5. 6.

2.

Hi-Z

H

4.

3.

Master

EValid
(input)

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr
Hi-Z

Read

PMaster
(output)

Slave

1.
5. 6.

2.

Hi-Z

H

4.

3.

Master

EValid
(input)

User’s Manual U10504EJ7V0UM00 309

System Interface

12.6.3 Processor Write Request Protocol

A processor write request is issued by outputting a write command on the
SysCmd(4:0) bus and a write address on the SysAD(31:0) bus, and asserting
PValid signal.

After that, a data identifier is output to SysCmd(4:0), write data is output to
SysAD(31:0), and the PValid signal is asserted active to transfer during the cycles
necessary for transferring the data. The transfer rate at this time is set by the EP
bit of the Config register.

The data cycle differs depending on the size of the write request.

• 1 to 4 bytes: Single data cycle

• 5 to 7 bytes: Divided into two single write requests (one is 4 bytes
long, and the other is 1 to 3 bytes long)

• 8 bytes or more: Block data cycle in 4-byte units

The last data is appended with a data identifier EOD (End of Data).

Figure 12-13 shows the processor block write request by write data pattern D, and
Figure 12-14 shows the processor block write request by write data pattern Dxx.

The following sequence describes the protocol of the processor write request (the
numbers correspond to the numbers in Figures 12-13 and 12-14).

1. The processor is in the master status. It outputs a write command to
SysCmd(4:0) and a write address to SysAD(31:0) to issue a write request.

2. The processor asserts the PValid signal to indicate that the current data of
SysCmd(4:0) and SysAD(31:0) are valid.

3. The external agent asserts the EOK signal for two consecutive cycles to
enable issuance of a processor write request. If the EOK signal is deasserted,
the issuance cycle of the write request is delayed.

4. The processor outputs a data identifier to SysCmd(4:0) and write data to
SysAD(31:0).

5. The processor asserts the PValid signal for the cycles necessary for data
transfer, and transfer the data.

6. The last data is appended with data identifier EOD.

Chapter 12

310 User’s Manual U10504EJ7V0UM00

Figure 12-13 Processor Block Write Request (Write Data Pattern: D)

Figure 12-14 Processor Block Write Request (Write Data Pattern: Dxx)

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr Data0 Data1 Data2 Data3

Write Data Data Data EOD

PMaster
(output)

Master

1.

2.

3.

4.

6.

5.L

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr Data0 Data1

Write Data EOD

PMaster
(output)

Master

1.

2.

3.

4.

6.

5.L 5.

User’s Manual U10504EJ7V0UM00 311

System Interface

12.6.4 Flow Control of Processor Request

The external agent uses the EOK signal to control the flow of the processor read
request. The processor repeats the current address cycle until the EOK signal is
asserted active. This address cycle continues for 1 cycle after the EOK signal has
been asserted, and then the issuance cycle ends. The EOK signal must be asserted
for at least two consecutive cycles.

Figures 12-15 and 12-16 show how to use the EOK signal (the numbers in the
description below correspond to the numbers in Figures 12-15 and 12-16.

1. Because the EOK signal 1 cycle before is inactive, the processor request is
delayed, and the address cycle does not end.

2. Because the EOK signal 1 cycle before is active, the processor request is not
delayed, and the address cycle ends.

Figure 12-15 Delayed Processor Read Request

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr
Hi-Z

Read

PMaster
(output)

1. 2.

Hi-Z

Chapter 12

312 User’s Manual U10504EJ7V0UM00

Figure 12-16 Delayed Second Processor Write Request

12.6.5 External Request Protocols

External requests can only be issued with the System interface in slave state.
EReq signal must be asserted EReq signal to arbitrate (refer to 12.6.6 External
Arbitration Protocol) for the System interface, and then wait for the processor to
release the System interface to slave state. If the System interface is already in
slave state—that is, the processor has previously performed an uncompelled
change to slave state—the external agent can begin an external request
immediately.

After issuing an external request, the external agent must return mastership of the
System interface to the processor, as described below.

Following the description of the arbitration protocol, this section also describes
the following external request protocols:

• write

• read response

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr

Write

PMaster
(output)

1. 2.

Data

EOD

Addr

Write

Data

EOD

L

User’s Manual U10504EJ7V0UM00 313

System Interface

12.6.6 External Arbitration Protocol

Usually, the processor serves as the bus mastership. However, the processor
relinquishes control of the bus and enters the slave status in the following cases.

• If the external agent issues a request and the system interface
responds to that request

• After the processor has issued a read request

Arbitration to allow the processor to enter the slave status from the master status
is realized by using the handshake signals (EReq, PReq, and PMaster) of the
system interface.

Status Transition On Read Response

While the processor read request is kept pending, the processor enters the slave
status by deasserting the PMaster signal inactive, and the external agent returns
read response data.

If the EReq signal is deasserted inactive, the processor remains in the slave status
until the read response data is returned, and then returns to the master status by
asserting the PMaster signal active.

The external agent can remain in the master status as long as the EReq signal
remains active when the read response is returned.

Acquiring Bus Mastership by EReq Signal

If the processor is in the master status when the external agent has issued an
external request, assert the EReq signal active and wait until the processor
deasserts the PMaster signal inactive. If the processor deasserts the PMaster
signal inactive, the external agent acquires the bus mastership.

Once the external agent has entered the master status, it can remain in the master
status as long as the EReq signal is asserted active. When the EReq signal is
deasserted, the processor acquires the bus mastership two cycles later.

Figure 12-17 shows the arbitration protocol of the external request issued by the
external agent.

The following sequence describes the arbitration protocol (the numbers in the
sequence correspond to the numbers in Figure 12-17).

Chapter 12

314 User’s Manual U10504EJ7V0UM00

1. The external agent continues asserting the EReq signal active to issue an
external request.

2. When the processor is ready to process the external request, it deasserts the
PMaster signal inactive.

3. The processor sets SysAD(31:0) and SysCmd(4:0) in the high-impedance
state.

4. The external agent should drive SysAD(31:0) and SysCmd(4:0) one cycle
after the PMaster signal has been deasserted inactive.

5. The external agent should deassert the EReq signal inactive in the last cycle
of the external request (2 cycles before the external agent enters the slave
status), except when it executes another external request.

6. The external agent should set SysAD(31:0) and SysCmd(4:0) in the high-
impedance state on completion of the external request.

Figure 12-17 Arbitration of External Request

If the external agent has entered the master status by issuing the processor read
request, the external agent must always return read request data. If the external
agent has entered the master status by using the EReq signal, any command and
data can be issued in accordance with the arbitration process. This means that the
processor always satisfies any request from the external agent.

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

EValid
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

PMaster
(output)

Master

Hi-Z

Hi-Z

Slave

EReq
(input)

Master

External: address/data

External: command

Hi-Z

Hi-Z

1.

2.

3. 4. 6.

5.

User’s Manual U10504EJ7V0UM00 315

System Interface

Restoring Bus Mastership by PReq Signal

Once the external agent has entered the master status, the processor cannot stop
the operation of the external agent. However, the processor can request bus
mastership by asserting the PReq signal. At this time, the external agent must
deassert the EReq signal inactive in response to the request by the processor,
giving consideration to the priority of the mastership.

The processor asserts the PMaster signal two cycles after the EReq signal has
deasserted to inform the external agent that the processor has regained the bus
mastership.

Figure 12-18 illustrates how the processor requests the bus mastership and how
the external agent releases the bus in response.

At reset (when the Reset or ColdReset signal is active), the processor enters the
master status, and the external agent enters the slave status.

Figure 12-18 Bus Arbitration of Processor

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Master

Hi-Z

Hi-Z

Slave

PReq
(output)

Processor: address/data

Processor: command

L

External: data

External: command

PMaster
(output)

EReq
(input)

Chapter 12

316 User’s Manual U10504EJ7V0UM00

12.6.7 External Write Request Protocol

External write requests are similar in operation to a processor single write except
that the EValid signal is asserted in place of the PValid signal.

An external write request outputs a write command on the SysCmd(4:0) bus and
a write address on the SysAD(31:0) bus when the processor is in slave state and
asserting EValid signal for one cycle. This is followed by outputting a data
identifier on the SysCmd(4:0) bus and data on the SysAD(31:0) bus and asserting
EValid signal for one more cycle. The data identifier of the data cycle must
contain an end of data cycle indication.

Keep the EReq signal active while the external write request is issued.

After the data cycle is issued, the write request is completed and the external agent
releases the SysCmd(4:0) and SysAD(31:0) buses and allows the system
interface to return to master state.

An external write request with the processor generated in master state is illustrated
in Figure 12-19.

Figure 12-22 shows an example in which the external agent issues an external
write request following a read response. The external write request cannot be
issued while read response data is transferred. It can be issued before data
response or after the last data response.

User’s Manual U10504EJ7V0UM00 317

System Interface

Figure 12-19 External Write Request Protocol

Only an interrupt processing can be done by the processor in the external write
request.

12.6.8 External Read Response Protocol

An external agent returns data to the processor in response to a processor read
request by waiting for the processor to move to slave state, and then returning the
data through a single data cycle or a number of data cycles sufficient for the
requested data size.

The SysCmd(4:0) and SysAD(31:0) buses are released after the last data cycle is
issued. If the EReq signal is inactive at this time, the processor returns to master
state at the end of two cycles after the last data cycle.

The data identifier associated with a data cycle may indicate that data transferred
during this cycle is erroneous; however, an external agent must return a specific
data block whether or not the data is erroneous. If a read response includes one or
more erroneous data cycles, the processor generates a bus error exception.

Read response data can be transferred to the processor only when a processor read
request is pending. If a read response is transferred to the processor while no
processor read request is pending, the operation of the processor is undefined.

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

Ereq
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Master

Hi-Z

Hi-Z

Master

PMaster
(output)

Addr

Write

HPValid
(output)

EValid
(input)

Slave

Data

EOD
Hi-Z

Hi-Z

Chapter 12

318 User’s Manual U10504EJ7V0UM00

A processor single read request followed by a read response is illustrated in Figure
12-20. A read response for a processor block read with the processor already in
slave state is illustrated in Figure 12-21.

Figure 12-20 Read Request/Read Response Protocol

Figure 12-21 Block Read Response in Slave Status

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Master

Hi-Z

Hi-Z

Master

PMaster
(output)

Addr

Read

H

PValid
(output)

EReq
(input)

Slave

Data

EOD
Hi-Z

Hi-Z

EValid
(input)

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EValid
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Data0 Data1 Data2 Data3
Hi-Z

Data Data Data EOD

PMaster
(output)

Slave

H

Master

Hi-Z

User’s Manual U10504EJ7V0UM00 319

System Interface

Figure 12-22 shows the case where an external write request is issued following a
read response to a processor single read request. The following sequence
describes the protocol (the numbers in the following description correspond to the
numbers in Figure 12-22).

1. The external agent returns response data to the processor single read request.

2. To issue an external request following the read response, assert the EReq
signal active in the cycle in which EOD is returned. In this case, the PMaster
signal remains inactive two cycles after EOD.

3. Because the external agent is in the master status, it can issue the external
write request.

4. Deassert the EReq signal inactive up to the data cycle of the external write
request. In this case, the PMaster signal is asserted active two cycles after
EOD, and the bus mastership is returned to the processor.

Figure 12-22 External Write Request Following Read Response

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

EOK
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Master

Hi-Z

Hi-Z

Master

PMaster
(output)

Addr

Read

1.
PValid

(output)

EReq
(input)

Slave

Data

EOD
Hi-Z

Hi-Z

EValid
(input)

Data

EOD

Addr

Write

3.

2. 4.

Chapter 12

320 User’s Manual U10504EJ7V0UM00

Figure 12-23 shows an example in which an external write request interrupts a
read response to a processor single read request. Cycle 5 in the figure is the write
data for the external write request in cycle 4, and cycle 7 is the read response data.

Figure 12-23 When External Write Request Takes Precedence While Processor
Read Request is Pending

As shown in this figure, even if the external request interrupts the processor read
request, the processor remains in the slave status until the read response data is
returned.

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EValid
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr Addr Data Data
Hi-Z

Read Write EOD EOD

PMaster
(output)

Slave Master

Hi-ZHi-Z

Hi-Z

Master

EOK
(input)

User’s Manual U10504EJ7V0UM00 321

System Interface

12.7 Successive Processing of Request

12.7.1 Successive Processor Write Requests

The processor write requests may be successively operated as follows.

• In the case of data pattern “D”
In this case, the processor write requests are processed without wait
status as shown in Figure 12-24.

• In the case of data pattern “Dxx”
In this case, the processing is separated by a wait status of two cycles
as shown in Figure 12-25.

The processor write requests may be successively issued in the following four
cases.

1. Successive single write requests

2. Successive block write requests

3. Block write request after single write request

4. Single write request after block write request

For the timing of the processor single write request, refer to 12.6.3 Processor
Write Request Protocol.

Figure 12-24 Successive Block Write Requests (Write Data Pattern: D)

Figure 12-25 Successive Single Write Requests (Write Data Pattern: Dxx)

Addr Data0 Data1 Addr Data0 Data1

Processor block write Processor block write

Addr Data Wait Wait Addr Data

Processor
Waitsingle write

Processor
single write

Chapter 12

322 User’s Manual U10504EJ7V0UM00

12.7.2 Processor Write Request Followed by Processor Read Request

Figure 12-26 shows the case where a processor read request follows a processor
write request.

Figure 12-26 Processor Write Request Followed by Processor Read Request
(Write Data Pattern: D)

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EValid
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr Data1 Addr Data
Hi-Z

Write EOD Read EOD

PMaster
(output)

Slave Master

Hi-ZHi-Z

Hi-Z

Master

EOK
(input)

Data0

Data

User’s Manual U10504EJ7V0UM00 323

System Interface

12.7.3 Processor Read Request Followed by Processor Write Request

Figure 12-27 shows the case where a processor read request is followed by a
processor write request.

Figure 12-27 Processor Single Read Request Followed by Block Write Request
(Write Data Pattern: D)

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EValid
(input)

SCycle 1 2 3 4 5 6 7 8 9 1110

Addr Data Addr
Hi-Z

Read EOD Write

PMaster
(output)

Slave Master

Hi-Z Hi-Z

Hi-Z

Master

EOK
(input)

Data1

EOD

Data0

Data

Chapter 12

324 User’s Manual U10504EJ7V0UM00

12.7.4 Processor Write Request Followed by External Write Request

Figure 12-28 shows the case where processor write requests are followed by an
external write request.

Figure 12-28 Successive Processor Write Requests Followed by External Write Request
(Write Data Pattern: D)

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EValid
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr0 Addr1 Data Addr
Hi-Z

Write Write EOD Write

PMaster
(output)

Slave Master

Hi-ZHi-Z

Hi-Z

Master

EOK
(input)

Data

EOD

Data

EOD

EReq
(input)

L

User’s Manual U10504EJ7V0UM00 325

System Interface

12.8 Discarding and Re-Executing Commands

12.8.1 Re-Execution of Processor Commands

The external agent executes and controls the processor commands by using the
EOK signal. When the processor serves as the master, the processor cannot issue
a command until the EOK signal is active for at least two cycles.

If the EOK signal is active for only one cycle before the processor issues a
command and then becomes inactive in the next cycle in which the command is
issued, this processor command is discarded. At this time, the external agent
should ignore the discarded command.

If Write Command is Discarded

The processor issues write data and then the write command again. At this time,
the external agent should ignore the write data following the discarded write
command.

If Read Command is Discarded

The processor enters the slave status in the cycle following the address cycle of a
read request. If the EReq signal is inactive at this time, the processor returns to
the master status again one cycle later, and reissues a read request.

12.8.2 Discarding and Re-Executing Write Command

Figure 12-29 illustrates how a processor single write request is discarded and re-
executed. The following sequence describes the protocol (the numbers in the
following description correspond to the numbers in Figure 12-29).

1. Because the EOK signal is active one cycle before (cycle 2) the write request
of Data0, this cycle is the issuance cycle.

2. Because the EOK signal is active in the write request cycle of Data0 (cycle
3), the next cycle is a normal data cycle.

3. Because the EOK signal is active in one cycle (cycle 4) before the write
request of Data1, this cycle is the issuance cycle.

4. Because the EOK signal is inactive in the write request cycle of Data1 (cycle
5), the data of the next cycle is discarded. At this time, data/command is
output to SysAD(31:0) and SysCmd(4:0), which should be ignored by the
external agent.

5. Because the EOK signal is inactive one cycle (cycle 6) before the write
request of the second Data1, the write request is delayed.

Chapter 12

326 User’s Manual U10504EJ7V0UM00

6. Because the EOK signal is active in one cycle (cycle 9) before the write
request of the second Data1, this cycle is the issuance cycle.

7. Because the EOK signal is active in the write request cycle (cycle 10) of the
second Data1, the next cycle is a normal data cycle.

Figure 12-29 Discarding and Re-executing Processor Single Write Request

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr0 Data0 Addr1 Data1

Write EOD Write EOD

PMaster
(output)

EOK
(input)

Data1

EOD

Addr1

Write

L
1. 2. 3. 4. 5. 6. 7.

User’s Manual U10504EJ7V0UM00 327

System Interface

12.8.3 Discarding and Re-Executing Read Command

Figure 12-30 illustrates how a processor single read request is discarded and re-
executed. The following sequence describes the protocol (the numbers in the
following description correspond to the numbers in Figure 12-30).

1. Because the EOK signal is low in cycle 5, the processor tries to issue an
address (cycle 6).

2. If the EOK signal is high at this point, the processor discards this read request
and enters the slave status in the next cycle.

3. Because the EReq signal is inactive, the processor returns to the master status
again and reissues a read request. Because the EOK signal is low in both the
cycles 7 and 8, the issuance cycle of the read request is determined.

4. The external agent outputs data at the requested address.

Figure 12-30 Discarding and Re-executing Processor Single Read Request

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

EValid
(input)

SCycle 1 2 3 4 5 6 7 8 9 121110

Addr
Hi-Z

Read

PMaster
(output)

Slave
Slave

Hi-ZHi-Z

Hi-Z

Master

EOK
(input)

Addr

Read

EReq
(input)

Hi-Z

Hi-Z

Master

Data

EOD

Master

1. 2.

4.

H

3.

Chapter 12

328 User’s Manual U10504EJ7V0UM00

12.8.4 Executing and Discarding Command

When External Agent Requests Bus Mastership

The external agent requests the bus mastership by asserting the EReq signal
active. At this time, the external agent can acquires the bus mastership after it has
accepted one processor read/write request only, or without accepting any request.

If the EReq signal is asserted active while the external agent delays the processor
request by deasserting EOK signal inactive, the external agent can forcibly
acquires the bus mastership.

When Processor Requests Bus Mastership

The processor requests the bus mastership by asserting the PReq signal active. At
this time, the external agent should transfer the bus mastership to the processor,
giving consideration to the priority of the system. If the external agent keeps the
EReq signal inactive for more than one cycle, the bus is released.

The processor acquires the bus mastership by asserting the PMaster signal active
two cycles after the EReq signal has become inactive. If the EOK signal is active
at this time, the processor can issue a request.

Figure 12-31 shows an example where the external agent has entered the slave
status (the EReq signal is inactive) from the master status, and then acquires the
bus mastership again after accepting one processor request.

User’s Manual U10504EJ7V0UM00 329

System Interface

Figure 12-31 Discarding Bus Mastership by External Agent by Processor Request

SClock
(internal)

SysAD(31:0)
(I/O)

SysCmd(4:0)
(I/O)

PValid
(output)

PReq
(output)

SCycle 1 2 3 4 5 6 7 8 9 121110

PMaster
(output)

Slave

Hi-Z

Hi-Z

Slave

EOK
(input)

Data1

EOD

EReq
(input)

Data0

Data

Master

Addr

Write

Hi-Z

Hi-Z

Chapter 12

330 User’s Manual U10504EJ7V0UM00

12.9 Data Flow Control

The system interface supports a maximum data rate of one word per cycle.

Read Response

An external agent may transfer data to the processor at the maximum data rate of
the System interface. The rate at which data is transferred to the processor can be
controlled by the external agent, which asserts EValid signal at the cycle which
data is transferred. The processor accepts cycles as valid only when EValid signal
is asserted and the SysCmd(4:0) bus contains a data identifier; thereafter, the
processor continues to accept data until it receives the data word tagged as the last
one.

Data identifier EOD must be attached to the last data word. Without this, the
System interface hangs up as a protocol error. In this case, because the protocol
error state is identified with the PReq signal at double the cycle of SClock
oscillating in synchronization with the MasterClock, the processor should be
reset and initialized.

Write Request

The rate at which the processor transfers data to an external agent is
programmable through the EP bit of the Config register (setting at reset is D)
signal. Data patterns are defined using the letters D and x, where D indicates a
data cycle and x indicates an unused cycle. For example, a Dxx data pattern
indicates a data rate of one word every three cycles.

The VR4300 has two data transfer rates: D and Dxx. The processor continues
outputting data output in the period of D immediately before, while the processor
is in the master status and during the period of x.

A processor block write request with a Dxx data pattern (one word every three
cycles) is shown in Figure 12-14.

User’s Manual U10504EJ7V0UM00 331

System Interface

12.9.1 Independent Transfer on SysAD(31:0) Bus

In general applications, the SysAD(31:0) bus is a point-to-point connection,
running from the processor to a bidirectional register transceiver residing in an
external agent. For these applications, the SysAD(31:0) bus has only two possible
devices to connect, the processor or the external agent.

Certain applications may require connection of additional drivers and receivers to
the SysAD(31:0) bus, to allow transfers over the SysAD(31:0) bus that the
processor is not involved in. These are called independent transfers. To effect an
independent transfer, the external agent must coordinate mastership of the
SysAD(31:0) bus by using arbitration handshake signals (EReq, PMaster and
PReq signals).

An independent transfer on the SysAD(31:0) bus follows this procedure:

1. The external agent asserts EReq signal, and requests mastership of the
SysAD(31:0) bus, to issue an external request.

2. The processor deasserts PMaster signal, and releases the System interface to
slave state.

3. The external agent then allows the independent transfer to take place on the
SysAD(31:0) bus, making sure that EValid signal is not asserted during the
transfer.

4. When the transfer is completed, the external agent deasserts EReq signal to
return the System interface to master state.

To connect multiple devices, separate enable signals for device to input/output are
required to allow the non-processor chips to communicate.

12.9.2 System Endianness

The endianness of the system is set by the BE bit of the Config register: byte order
is big endian when this bit is set to 1, and little endian when this bit is set to 0.
This bit is set to 1 at cold reset. Set this bit first in the initial sequence with a little
endian system.

Software can set the reverse endian (RE) bit in the Status register to one to reverse
the User mode byte ordering during operation.

Chapter 12

332 User’s Manual U10504EJ7V0UM00

12.10 System Interface Cycle Time

The processor specifies minimum and maximum cycle counts for the time
required for various processor transactions and for the processor response time to
external requests. Processor requests themselves are constrained by the System
interface protocol, and request cycle counts can be determined by examining the
protocol. The following System interface interactions can vary within minimum
and maximum cycle counts:

• waiting period for the processor to release the System interface to
slave state in response to an external request (release latency).

The remainder of this section describes and tabulates the minimum and maximum
cycle counts for these System interface interactions.

12.10.1 Release Latency Time

Release latency time is defined as the number of cycles the processor can wait to
release the System interface to slave state for an external request. When no
processor requests are in progress, internal activity can cause the processor to wait
some number of cycles before releasing the System interface. Release latency
time is therefore the number of cycles when EReq signal becomes active until
PMaster signal becomes inactive.

There are two categories of release latency time:

• Category 1: when the EReq signal is asserted by one cycle before
the last cycle of a processor request.

• Category 2: when the EReq signal is not asserted during a processor
request, or is asserted during the last cycle of a
processor request.

Table 12-2 shows the minimum and maximum release latency time for requests
that fall into categories 1 and 2. Note that the maximum and minimum cycle
counts are subject to change.

Table 12-2 Release Latency Time for External Requests

Category Minimum PCycles Maximum PCycles

1 4 6

2 4 24

User’s Manual U10504EJ7V0UM00 333

System Interface

12.11 System Interface Commands and Data Identifiers

System interface commands specify the types and attributes of any System
interface request; this specification is made during the address cycle for the
request.

System interface data identifiers specify the attributes of data transferred during a
System interface data cycle.

The following sections describe the syntax, that is, the bitwise encoding of System
interface commands and data identifiers.

Reserved bits and reserved fields should be set to 1 for System interface
commands and data identifiers associated with external requests.

For System interface commands and data identifiers associated with processor
requests, reserved bits and reserved fields in the commands and data identifiers are
undefined.

12.11.1 Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in 5 bits and are
transferred on the SysCmd(4:0) bus from the processor to an external agent, or
from an external agent to the processor, during address and data cycles.

Bit 4 (the most-significant bit) of the SysCmd(4:0) bus determines whether the
current content of the SysCmd bus is a command or a data identifier and,
therefore, whether the current cycle is an address cycle or a data cycle. For
System interface commands, SysCmd4 must be set to 0. For System interface data
identifiers, SysCmd4 must be set to 1.

Bit Meaning

SysCmd4 Attributes.
 0: Command (address)
 1: Data identifier

Chapter 12

334 User’s Manual U10504EJ7V0UM00

12.11.2 System Interface Command Syntax

This section describes the SysCmd(4:0) bus encoding for System interface
commands. Figure 12-32 shows a common encoding used for all System interface
commands.

Figure 12-32 System Interface Command Syntax Bit Definition

SysCmd4 must be set to 0 for all System interface commands.

SysCmd3 specify the System interface request type which may be read or write.

Table 12-3 Encoding of SysCmd3 for System Interface Commands

SysCmd(2:0) are specific to each type of request and are defined in each of the
following sections.

12.11.3 Read Requests

For read requests, the encoding of the SysCmd(2:0) is as follows.

Figure 12-33 shows the format of a SysCmd read request.

Figure 12-33 Read Request SysCmd(4:0) Bus Bit Definition

Bit Meaning

SysCmd3 Command.
0: Read Request
1: Write Request

Request
Type

0 Request Details

4 3 2 0

0 0

4 3 2 0

Read Request Details
(see tables)

User’s Manual U10504EJ7V0UM00 335

System Interface

Tables 12-4 through 12-6 list the encodings of SysCmd(2:0) bit read attributes for
read requests.

Table 12-4 Encoding of SysCmd2 for Read Requests

Table 12-5 Encoding of SysCmd(1:0) for Block Read Requests

Table 12-6 Encoding of SysCmd(1:0) for Single Read Requests

Bit Meaning

SysCmd2 Read Attributes.
0: Single Read
1: Block Read

Bit Meaning

SysCmd(1:0) Read Block Size.
0: 2 words
1: 4 words (D-cache only)
2: 8 words (I-cache only)
3: Reserved

Bit Meaning

SysCmd(1:0) Read Data Size.
0: 1 byte valid (Byte)
1: 2 bytes valid (Halfword)
2: 3 bytes valid
3: 4 bytes valid (Word)

Chapter 12

336 User’s Manual U10504EJ7V0UM00

12.11.4 Write Requests

The encoding of SysCmd(2:0) for write request is shown below.

Figure 12-34 shows the format of a SysCmd write request.

Table 12-7 lists the write attributes encoded in bits SysCmd2. Table 12-8 lists the
block write replacement attributes encoded in bits SysCmd(1:0). Table 12-9 lists
the single write request encoded in bits SysCmd(1:0).

Figure 12-34 Write Request SysCmd(4:0) Bus Bit Definition

Table 12-7 Encoding of SysCmd2 for Write Requests

Table 12-8 Encoding of SysCmd(1:0) for Block Write Requests

Table 12-9 Encoding of SysCmd(1:0) for Single Write Requests

Bit Meaning

SysCmd2 Write Attributes.
0: Single Write
1: Block Write

Bit Meaning

SysCmd(1:0) Write Block Size.
0: 2 words
1: 4 words (for D-cache only)
2: 8 words (for I-cache only) (for test)
3: Reserved

Bit Meaning

SysCmd(1:0) Write Data Size.
0: 1 byte valid (Byte)
1: 2 bytes valid (Halfword)
2: 3 bytes valid
3: 4 bytes valid (Word)

10

4 3 2 0

Write Request Details
(see tables)

User’s Manual U10504EJ7V0UM00 337

System Interface

12.11.5 System Interface Data Identifier Syntax

This section defines the encoding of the SysCmd(4:0) bus for System interface
data identifiers. Figure 12-35 shows a common encoding used for all System
interface data identifiers.

Figure 12-35 Data Identifier SysCmd(4:0) Bus Bit Definition

SysCmd4 must be set to 1 for all System interface data identifiers.

12.11.6 Data Identifier Bit Definitions

Bit definitions of SysCmd(3:0) are described next.

SysCmd3 marks the last data element.

SysCmd2 indicates whether or not the data is response data. Response data is data
returned in response to a read request.

SysCmd1 indicates whether or not the data element is error free. Erroneous data
contains an uncorrectable error and is returned to the processor, resulting a bus
error exception. Because the VR4300 does not have a parity check function, the
processor does not transfer data by setting the error bit to 1.

SysCmd0 enables data check (reserved function).
Because the VR4300 does not have a data check function, the processor outputs 1
(data check disable) when it transfers data. When the external agent transfers data,
the processor ignores this bit. But set this bit to 1 to disable checking.

Table 12-10 lists the encodings of SysCmd(3:0) for processor data identifiers.
Table 12-11 lists the encodings of SysCmd(3:0) for external data identifiers.

4 3 1 02

1 Command of
last data

Command of
response

data

Command of
error data

Enables data
check

Chapter 12

338 User’s Manual U10504EJ7V0UM00

Table 12-10 Processor Data Identifier Encoding of SysCmd(3:0)

Table 12-11 External Data Identifier Encoding of SysCmd(3:0)

Bit Meaning

SysCmd3 Last Data Element Indication.
0: Last data element, or data element on single transfer
1: Not the last data element

SysCmd2 Reserved

SysCmd1 Reserved: Error Data Indication.
The processor outputs 0 (error free).

SysCmd0 Reserved: Data check enabled
Processor outputs 1 (data check disabled).

Bit Meaning

SysCmd3 Last Data Element Indication.
0: Last data element or data element on single transfer
1: Not the last data element

SysCmd2 Response Data Indication.
0: Data is response data
1: Data is not response data

SysCmd1 Error Data Indication.
0: Data is error free
1: Data is erroneous

SysCmd0 Reserved: Data Checking Enable.
Processor ignores this bit. (external agent transfers 1)

User’s Manual U10504EJ7V0UM00 339

System Interface

12.12 System Interface Addresses

System interface addresses are full 32-bit physical addresses output to the
SysAD(31:0) bus during address cycles.

12.12.1 Addressing Conventions

Addresses associated with word or partial word data transfers are aligned for the
size of the data element. The system uses the following address conventions:

• Addresses associated with block requests are aligned to requested
doubleword boundaries; that is, the low-order 3 bits of address are 0.

• Word requests set the low-order 2 bits of address to 0.

• Halfword requests set the low-order bit of address to 0.

• Byte, tribyte requests use the byte address.

12.12.2 Sequential and Subblock Ordering

Sequential Ordering

An instruction cache read request returns data in sequential order, starting with the
first word (DW0) of the 8-word block, no matter which word is requested.

Subblock Ordering

When a read request is issued to the data cache, the low-order word of the
doubleword that includes the word required by the CPU is first returned, and then
the high-order word, the low-order word of the remaining doubleword, and the
high-order word of it is returned in that order (for details, refer to 12.2.1 Physical
Addresses).

340 User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

341

JTAG Interface

13

The V

R

4300 processor is provided with a boundary-scan interface that is
compatible with Joint Test Action Group (JTAG) specifications, conforming to the
industry-standard JTAG protocol (IEEE Standard 1149.1/D6).

This chapter describes the functions related to JTAG interface.

Chapter 13

342

User’s Manual U10504EJ7V0UM00

13.1 Principles of Boundary Scanning

With the evolution of integrated circuits (ICs), surface-mounted devices, double-
sided component mounting on printed-circuit boards (PCBs), and via hole
technology, in-circuit tests connected to boards and chips have become more and
more difficult to perform. The greater complexity of ICs has also meant that
testing all the circuits in a chip have become much larger in size of the test pattern
and more difficult to write.

One solution to this difficulty has been the development of testing method using

boundary-scan

 circuits. A boundary-scan circuit is shift register organization of
a series of connected cells placed between each pin of the chip and the internal
circuitry of the IC, as shown in Figure 13-1. In normal operation these boundary-
scan cells are bypassed; in the test mode, however, the scan cells are directed by
the test program to pass data along the shift register path and perform various
diagnostic tests. To accomplish this, the tests use the four signals described in the
next section:

JTDI, JTDO

,

JTMS

, and

JTCK

.

Figure 13-1 JTAG Boundary-Scan Cells

Boundary-Scan Cells

IC External Pin

Integrated Circuit Chip

User’s Manual U10504EJ7V0UM00

343

JTAG Interface

13.2 Signal Summary

The JTAG interface signals used are listed below.

JTDI

JTAG serial data input

JTDO

JTAG serial data output

JTMS

JTAG test mode select

JTCK

JTAG serial clock input

Caution When the JTAG interface is not used, keep the JTCK signal low

.

Figure 13-2 JTAG Interface Signals and Registers

The JTAG boundary-scan mechanism (referred to as

JTAG mechanism

 in this
chapter) allows testing of the connections between the processor, the printed
circuit board to which it is attached, and the other device on the board.

The JTAG mechanism does not provide any capability for testing the processor
itself.

CPU

JTDO Pin

Context is
saved

Instruction
Register

Context is
saved

Boundary-
scan

Register

Context is
saved

Bypass
Register

02

0

056

JTDI Pin

JTMS Pin

JTCK Pin

Context is
saved

TAP
Controller

Chapter 13

344

User’s Manual U10504EJ7V0UM00

13.3 JTAG Controller and Registers

The processor contains the following registers and JTAG controller:

•

Instruction

 register

•

Boundary-scan

 register

•

Bypass

 register

• Test Access Port (TAP) controller

The processor executes the standard JTAG EXTEST operation associated with
External Test function testing.

The basic operation of JTAG is for the TAP controller state machine to monitor
the JTMS input signal, as shown in Table 13-1. When it starts, the TAP controller
determines the test function to be implemented. This includes either loading an
instruction register (IR), or beginning a serial data scan through a data register
(DR). As the data is scanned in, the state of the JTMS pin transmits each new data
word, and indicates the end of the data stream. The data register to be selected is
determined by the contents of the

Instruction

 register.

13.3.1 Instruction Register

The JTAG

Instruction

 register includes three shift register-organization cells; this
register is used to select the test to be performed and the test data register to be
accessed. As listed in Table 13-1, the register value setting selects either the

Boundary-scan

 register or the

Bypass

 register.

Table 13-1 JTAG Instruction Register Bit Encoding

The

Instruction

 register has two stages: shift register, and parallel output latch.
Refer to

13.3.7 Controller States

 for detail. Figure 13-3 shows the format of the

Instruction

 register.

Figure 13-3 Instruction Register

MSB. LSB Data Register

0 0 0 Boundary-scan register (external test only)

0 1 1 Setting prohibited

Others Bypass register

MSB LSB

12 0

User’s Manual U10504EJ7V0UM00

345

JTAG Interface

13.3.2 Bypass Register

The

Bypass

 register is 1 bit wide. When the TAP controller is in the Shift-DR
(Bypass) state, the data on the

JTDI

 pin is shifted into the

Bypass

 register, and the
data on

Bypass

 register output shifts to the

JTDO

 output pin.

Actually the

Bypass

 register is a short-circuit which allows bypassing of board-
level devices, in the boundary-scan chain, which do not require a specific test.
The logical location of the

Bypass

 register in the boundary-scan chain is shown in
Figure 13-4. Use of the

Bypass

 register speeds up access to boundary-scan
registers in those ICs that remain active in the board-level test data path.

Figure 13-4 Bypass Register Operation

Board

IC Package

JTDO

Bypass
Register

JTDI

JTDO

JTDIJTDO

JTDI

JTDOJTDI

Board
Input

Board
Output

JTDI

JTDO

Boundary-scan
Register Pad Cell

Chapter 13

346

User’s Manual U10504EJ7V0UM00

13.3.3 Boundary-Scan Register

The

Boundary-scan

 register retains states all of the input and output pins of the
V

R

4300 processor, except for some clock and phase lock loop signals. The
external pins of the V

R

4300 can be configured to drive any arbitrary pattern
depending on scanning contents into the

Boundary-scan

 register from the Shift-
DR state. Incoming data to the processor is examined by shifting while in the
Capture-DR state with the

Boundary-scan

 register enabled.

The

Boundary-scan

 register is a single bus comprised of 58-bit shift registers,
each bit of which is connected to all input and output pads one by one on the
V

R

4300 processor. Figure 13-5 shows the most-significant bit of the

Boundary-
scan

 register; this one bit controls the output enable signals on the various
bidirectional buses.

Figure 13-5 Output Enable Bit of Boundary-Scan Register

OE1 (jSysADEn)

 is the JTAG output enable bit for all outputs of the processor.
Output is enabled when this bit is set to 1 (default state).

The remaining 57 bits correspond to 57 signal pads. Outputs are enabled when
this bit is set to 1.

Table 13-2 lists the scan order of these scan bits.

57

OE1

056

User’s Manual U10504EJ7V0UM00

347

JTAG Interface

13.3.4 Test Access Port (TAP)

The Test Access Port (TAP) consists of the four signal pins:

JTDI

,

 JTDO

,

JTMS

,
and

JTCK

. These pins control the test to be executed.

As Figure 13-6 shows, data is serially scanned into one of the three registers
(

Instruction

 register,

Bypass

 register, or the

Boundary-scan

 register) from the

JTDI

 pin, or it is scanned from one of these three registers onto the

JTDO

 pin.

Data is input to the

JTDI

 pin from the least-significant bit (LSB) of the selected
register, whereas the most-significant bit (MSB) of the selected register appears
on the

JTDO

 pin output.

The

JTMS

 signal controls the state transitions of the main TAP controller state
machine.

The

JTCK

signal is a dedicated test clock that allows serial JTAG data to be
shifted synchronously, independent of any chip-specific or system clock.

Figure 13-6 JTAG Test Access Port

The

JTDI

 and

JTMS

 signals are sampled in synchronization with the rising edge
of the

JTCK

 signal. State on the

JTDO

 signal changes in synchronization with
the falling edge of the

JTCK

 signal.

JTDO Pin

CPU

Data scanned in serially

Context is
saved

Instruction
Register

Context is
saved

Boundary-
scan

Register

Context is
saved

Bypass
Register

Data scanned out serially

02

0

056

CPU

Context is
saved

Instruction
Register

Context is
saved

Boundary-
scan

Register

Context is
saved

Bypass
Register

02

0

056

LSB
(MSB)

JTDI Pin

JTMS Pin

JTMS and JTDI sampled
at rising edge of JTCK

JTCK

JTDO changes at
falling edge of JTCK

Chapter 13

348

User’s Manual U10504EJ7V0UM00

13.3.5 TAP Controller

The processor incorporates a 16-state TAP controller conforming to the IEEE
JTAG standard.

13.3.6 Controller Reset

The TAP controller can be reset by one of the following:

• assert the

ColdReset

 signal

• keep the

JTMS

 signal asserted and input five rising edges of

JTCK

signal

In either case, keeping

JTMS

 signal asserted maintains the Reset state.

13.3.7 Controller States

The TAP controller has four states: Reset, Capture, Shift, and Update. They can
be further classified as Shift-R state or Capture-DR state, depending on whether
the type of signal is instruction or data.

Reset State (TAP Controller)

The value 0x7 is loaded into the parallel output latch, selecting the

Bypass

 register
as default. The most-significant bits of the

Boundary-scan

 register is cleared to 0,
disabling the outputs.

Capture IR State

The value 0x4 is loaded into the shift register stage.

Capture DR (Boundary Scan) State

The data currently on the processor input and I/O pins is latched into the

Boundary-scan

 register. In this state, the

Boundary-scan

 register bits
corresponding to output pins are undefined and cannot be checked during the scan
out processing.

Shift IR State

Data is loaded serially into the shift register stage of the

Instruction

 register from
the

JTDI

 input pin, and the MSB of the

Instruction

 register’s shift register stage
is shifted out to the

JTDO

 pin.

User’s Manual U10504EJ7V0UM00

349

JTAG Interface

Shift DR (Boundary Scan) State

Data is serially shifted into the

Boundary-scan

 register from the

JTDI

 pin, and the
contents of the

Boundary-scan

 register are serially shifted onto the

JTDO

 pin.

Update IR State

The current data in the shift register stage is loaded into the parallel output latch.

Update DR (Boundary Scan) State

Data in the

Boundary-scan

 register is latched into the register parallel output latch.
Bits corresponding to output pins, and those I/O pins whose outputs are enabled
by the MSB (OE1) of the

Boundary-scan

 register, are loaded onto the processor
pins.

Table 13-2 shows the boundary scan order of the processor signals.

Table 13-2 JTAG Scan Order

No. Signal Name No. Signal Name No. Signal Name No. Signal Name

1 SysAD4 16 SysAD26 31 SysAD23 46 SysAD14

2 SysAD3 17 PMaster 32 Int3 47 SysAD13

3 SysAD2 18 SysAD25 33 SysAD22 48 SysAD12

4 SysAD1 19 EReq 34 SysAD21 49 SysAD11

5 SysAD0 20 SysCmd0 35 SysAD20 50 SysAD10

6 PReq 21 SysCmd1 36 RFU (Input: always 1) 51 Int0

7 SysAD31 22 Reset 37 RFU (Input: always 1) 52 SysAD9

8 PValid 23 EValid 38 TClock 53 SysAD8

9 SysAD30 24 SysCmd2 39 SyncOut 54 SysAD7

10 EOK 25 SysCmd3 40 SysAD19 55 SysAD6

11 SysAD29 26 ColdReset 41 SysAD18 56 SysAD5

12 SysAD28 27 SysCmd4 42 SysAD17 57 Int1

13 SysAD27 28 DivMode1 43 Int4 58 jSysADEn

14 Int2 29 SysAD24 44 SysAD16

15 NMI 30 DivMode0 45 SysAD15

Chapter 13

350

User’s Manual U10504EJ7V0UM00

13.4 Notes on Implementation

This section describes points to be noted of JTAG boundary-scan operation that
are specific to the processor.

• The MasterClock, SyncIn, and SyncOut signal pads do not support
JTAG.

• The update function occurs on the falling edge of JTCK signal after
the TAP controller enters the Update-DR state. This conforms to the
IEEE standard.

The VR4200 generates the update function at the next rising edge. In
other words, it is 1/2JTCK cycle late as compared with the VR4300.

User’s Manual U10504EJ7V0UM00

351

Interrupts

14

Four types of interrupt are available on the V

R

4300. These are:

• one non-maskable interrupt, NMI

• five external normal interrupts

• two software interrupts

• one timer interrupt

These are described in this chapter.

Chapter 14

352

User’s Manual U10504EJ7V0UM00

14.1 Non-Maskable Interrupt

The non-maskable interrupt request is accepted by asserting the

NMI

 signal (low),
forcing the processor to branch to the Reset Exception vector.

NMI

 signal is
latched into an internal register in synchronization with the rising edge of

SClock

signal, as shown in Figure 14-1. The

NMI

 signal is edge-triggered, and NMI
request is acknowledged when the

NMI

 signal is kept low for more than one
cycle. This signal must be high after an exception occurs. An NMI request can
also be set by an external write request through the

SysAD(31:0)

 bus. On the data
cycle,

SysAD6

 acts as the NMI request bit (1:requested) and

SysAD22

 acts as the
write enable bit (1:enable) for

SysAD6

.

NMI only takes effect when the processor pipeline is running. Thus NMI can be
used to recover the processor from a software hang up (for example, in an infinite
loop) but cannot be used to recover the processor from a hardware hang up (for
example, no read response from an external device). NMI cannot cause drive
contention on the

SysAD(31:0)

 bus and no reset of external agents is required.

This interrupt cannot be masked.

Figure 14-1 shows the internal processing of the

NMI

 signal. The low-level signal
input to

NMI

 pin is latched into an internal register in synchronization with the
rising edge of

SClock

. Bit 6 of the

internal

 register is then ORed with the inverted
value of latched

NMI

 signal to transfer internally as the non-maskable interrupt
request.

User’s Manual U10504EJ7V0UM00

353

Interrupts

Figure 14-1 NMI

Signal

14.2 External Normal Interrupts

These interrupt requests are accepted by asserting

Int(4:0)

 signal (low).

Int(4:0)

signals are level-triggered, and these signals must be kept low until an external
interrupt exception is generated. After an external interrupt exception occurs,

Int(4:0)

 signal must be high before the processor returns to its normal routine, or
before multiple interrupts are enabled. This interrupt request can be set by an
external write request through the

SysAD(31:0)

 bus. During the data cycle,

SysAD(4:0)

 acts as the external interrupt request bit (1:requested) and

SysAD(20:16)

 acts as the write enable bit (1:enable) for

SysAD(4:0)

.

After an external interrupt exception occurs, an external write request must be
issued to clear the corresponding bit of the interrupt register to 0 before the
processor returns to its normal routine, or before multiple interrupts are enabled.

These interrupt requests can be masked with the

IM(6:2)

,

IE

,

EXL,

and

ERL

 fields
of the

Status

 register.

6 Interrupt Request
Register (6)

NMI

OR Gate

NMI

Inverter
SClock

(Internal
Register)

External Write Request

Chapter 14

354

User’s Manual U10504EJ7V0UM00

14.3 Software Interrupts

These interrupt requests are accepted by setting bit 1 or 0 of the interrupt pending,

IP

, field in the

Cause

 register to 1. These bits can be written by software, but there
is no hardware mechanism to set or clear these bits.

After a software interrupt exception occurs, the corresponding bit of the

IP

 field
in the

Cause

 register must be cleared to 0 before the processor returns to its normal
routine, or before multiple interrupts are enabled.

These interrupt requests are maskable with the

IM(1:0)

,

IE

,

EXL

, and

ERL

 fields
of the

Status

 register.

14.4 Timer Interrupt

These interrupt requests use bit 7 of the IP (interrupt pending) field in the

Cause

register. The timer interrupt is automatically set and accepted whenever the value
of the

Count

 register equals the value of the

Compare

 register.

To clear this interrupt request, either clear the

IP7

 bit of the

Cause

 register, or
change the contents of the

Compare

 register.

This interrupt request is maskable through the

IM7

 bit and

IE

,

EXL

 and

ERL

 fields
of the

Status

 register.

14.5 Generation of Interrupt Request Signal

When an external agent issues an external write request, it is written to the

Interrupt

 register. This register can be used in an external write cycle, but not in
an external read cycle.

When data is written to the

Interrupt

 register, the processor ignores the address
issued by the external agent.

This register cannot be read or written by software unlike the

CP0

 register.

In the data cycle, bits

SysAD20

 through

SysAD16

 are used as individual write
enable bits corresponding to the 5 bits of the

Interrupt

 register. The values

SysAD4

 through

SysAD0

 are written to the bits of the

Interrupt

 register.
Therefore, the bits 0 through 4 of the

Interrupt

 register can be set or cleared by
issuing an external write request only once. Figure 14-2 illustrates this along with
the NMI described earlier.

User’s Manual U10504EJ7V0UM00

355

Interrupts

Figure 14-2 Interrupt Register Bits and Enables Bits

SysAD6

3 2 014

19 18 161720

SysAD(4:0)
Interrupt Set Value

SysAD(20:16)
Write Enables

Interrupt Register

Refer to Figures
14-3 and 14-4.

2

1

0

4

3

22

SysAD22

Nonmaskable Interrupt

6
Refer to Figure 14-1.

Bit

SysAD(4:0)

SysAD(20:16)

SysAD6

SysAD22

Meaning

External interrupt request
Int (4:0)

Write enable bits for
SysAD(4:0)

NMI

Write enable bit for
SysAD6

Setting

1 : requested
0 : no request
(for each bit)
1 : enable
0 : disable
(for each bit)
1 : requested
0 : no request
1 : enable
0 : disable

6

Chapter 14

356

User’s Manual U10504EJ7V0UM00

14.5.1 Detection of Hardware Interrupts

Figure 14-3 shows how the V

R

4300 hardware interrupt causes are detected
through the

Cause

 register.

• The timer interrupt signal,

IP7

, is directly detected as bit 15 of the

Cause

 register.

• The other hardware interrupt signals are directly detected since bits
4:0 of the

Interrupt

 register are ORed one by one with each signal of
the interrupt pins

Int(4:0)

 and the result is input to bits 14:10 of the

Cause

 register.

IP(1:0)

 of the

Cause

 register are related to software interrupts. (Refer to

Chapter
6 Exception Processing

 for detail.) There is no hardware mechanism for setting
or clearing the software interrupts.

Figure 14-3 Hardware Interrupt Request Signals

2 1 04 3

Cause Register
(15:10)

Interrupt Register (4:0)

Timer Interrupt

Refer to Figure 14-4.

Int4

1 03 24

(Internal Register)

Int0
Int3

Int2
Int1

IP4

IP3

IP2

IP6

IP5

IP7

12

11

10

14

13

15

User’s Manual U10504EJ7V0UM00

357

Interrupts

14.5.2 Masking of Interrupt Request Signals

Figure 14-4 shows the masking of the V

R

4300 interrupt request signals.

•

Cause

 register bits 15:8 (IP7-IP0) are AND-ORed with

Status

 register
interrupt mask bits 15:8 (IM7-IM0) to mask individual interrupt
signals.

•

Status

 register bit 0 is a global Interrupt Enable (IE) bit. The output
of this bit is ANDed with the output of the AND-OR logic block to
produce the V

R

4300 interrupt signal as shown in Figure 14-4. The

EXL

 bit in the

Status

 register also enables these interrupts.

Figure 14-4 Masking of Interrupt Requests

Bit

IE

IM(7:0)

IP(7:0)

Meaning

Enable all interrupts

Mask interrupts

Interrupt requests

Setting

1 : enable
0 : disable
1 : enable
0 : disable
(for each bit)
1 : request pending
0 : no pending
(for each bit)

Status Register
SR(15:8)

AND-OR
block

IM2
IM1
IM0

IM4
IM3

IM5
IM6
IM7

Cause Register
(15:8)

IP2
IP1
IP0

IP4
IP3

IP5
IP6
IP7

AND
block

VR4300 Interrupt

 IE

Status Register
SR0

1

8

8

1

Software
Interrupts

External Normal
Interrupts

Timer Interrupt

10
9
8

12
11

13
14
15

10
9
8

12
11

13
14
15

358 User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

359

Power Management

15

One of the objectives of the design of the V

R

4300 processor is to minimize power
consumption in order to make the processor suitable for use in battery operated
systems, as well as in environments where low power consumption and heat
dissipation are desirable.

To accomplish this, the V

R

4300 has power management features which bring a
dynamic reduction of power consumption, described in this chapter.

Chapter 15

360

User’s Manual U10504EJ7V0UM00

15.1 Features

The V

R

4300 has three processor-level operation modes: normal, low power (100
MHz model of the V

R

4300 and the V

R

4305 only), and power off.

These modes allow processor power consumption to be managed by system logic.

Generally a notebook system has many different levels of power management. It
is the responsibility of system logic to switch the processor between the three
available modes in order to reflect the power management state of the system.

15.1.1 Normal Power Mode

The normal pipeline clock (

PClock

) is generated based on the input clock
(

MasterClock

). The ratio of the frequency of

PClock

 to that of

MasterClock

 is
set by the

DivMode(1:0)*

 pins. For the details of setting, refer to

2.2.2 Clock/
Control Interface Signals

.

The frequency of the system interface clock (

SClock

) is the same as that of

MasterClock

.

The processor operates in the normal mode as default condition. The processor
enters the default status after reset.

* In V

R

4300 and V

R

4305. In V

R

4310, DivMode(2:0).

15.1.2 Low Power Mode

The low power mode is supported only in the 100 MHz model of the V

R

4300 and
the V

R

4305.

The processor operates in the low power mode when the RP bit of the

Status

register is set. In this mode, the processor once stalls the pipeline, entering the
quiescent status. In this status, the store buffer becomes empty, and all cache
misses are processed.

The frequency of

PClock

 drops to the 1/4 of the normal level. The speeds of

SClock

 and

TClock

 also drop to the 1/4 of the normal level.

Example

 When DivMode (1:0) = 10 in 100 MHz model of the V

R

4300

MasterClock PClock SClock, TClock

Normal mode 50 MHz 100 MHz 50 MHz

Low power mode 50 MHz 25 MHz 12.5 MHz

The low power mode can reduce the power consumption of the processor to about
25% of the normal level. When setting or clearing the

RP

 bit, guarantee the
normal operation of the system by software.

User’s Manual U10504EJ7V0UM00

361

Power Management

Also keep in mind the following points.

1. The functions of circuits such as the DRAM refresh counter change if the
operating frequency changes. Consequently, first write new values to the
registers of the external agent that are directly affected by changes in the
frequency.

2. Make sure that the operation of the system interface is inactive. For example,
execute an instruction that reads the non-cache area, and vacate the write/
buffer after execution of the instruction. After that, the

RP

 bit can be set or
cleared.

3. Make sure that eight instructions before and after the MTC0 instruction that
sets or clears the

RP

 bit do not cause an exception such as cache miss or TLB
miss exception.

15.1.3 Power Off Mode

In the power off mode, power supply to the processor is entirely cut off and
operation of the processor stops completely.

Before entering power off mode, the state of the processor is written to non-
volatile memory. When the processor returns to the normal mode, all registers are
restored to their previous state.

In order to support power off mode, all internal state information necessary for
restoring the processor from the state of power off is read and write accessible.
Prior to power off, this information must be saved into non-volatile memory
connected externally.

It is the system’s responsibility to power off the chip when the system is in idle
state. At this time the Load Link

LL

 bit is not required to be saved since it is
automatically cleared by the cache start-up.

Cache content is not retained, and therefore the cache should be invalidated during
the power-on routine and written back to the memory during the power-off
routine. The V

R

4300 chip supports the CACHE instructions and TLB operation
instructions which invalidate all caches and TLB contents.

362

User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

363

CPU Instruction Set Details

16

This chapter provides a detailed description of the function of each V

R

4300 CPU
instruction in both 32- and 64-bit modes. The instructions are listed in
alphabetical order.

For details of the FPU instruction set, refer to

Chapter 17 FPU Instruction Set
Details

.

Chapter 16

364

User’s Manual U10504EJ7V0UM00

16.1 Instruction Notation Conventions

In this chapter, all variable subfields in an instruction format (such as

rs, rt,
immediate

, etc.) are shown in lowercase characters. Instruction names (such as

ADD

,

SUB

,

etc.

) are shown in upper case characters. For the sake of clarity,
sometimes an alias is used for a subfield in the specific instructions. For example,
we use

rs = base

for load and store instructions. Such an alias is always lower
case characters, since it also refers to a subfield.

The actual encoding for all the mnemonics are located in

16.7 CPU Instruction
Opcode Bit Encoding

, and the bit encoding also accompanies each instruction
description.

In the instruction descriptions, the

Operation

section describes the operation
performed by each instruction using a high-level language notation. The V

R

4300
can operate in either 32- or 64-bit mode. Differences in operations in each mode
are shown in operation section. Special symbols used in the notation are described
in Table 16-1.

User’s Manual U10504EJ7V0UM00

365

CPU Instruction Set Details

Table 16-1 CPU Instruction Operation Notations

Symbol Meaning

¬

Substitution

|| Bit string concatenation.

x

y

Repetition of bit string

x

 with a

y

-bit string.

x

 is always a single-bit value.
x

y...z

Selection of bits

y

 through

z

 for bit string

x

.
Little-endian bit notation is always used. If

y

 is less than

z

, this expression is
an empty (zero length) bit string.

+ 2’s complement or floating-point addition.
– 2’s complement or floating-point subtraction.
* 2’s complement or floating-point multiplication.

div 2’s complement integer division.
mod 2’s complement remainder.

/ Floating-point division.
< 2’s complement less than comparison.

and Bit-wise logical AND.
or Bit-wise logical OR.
xor Bit-wise logical XOR.
nor Bit-wise logical NOR.

GPR[

x

] General Purpose Register x. The content of GPR[0] is always zero.
Attempts to alter the content of GPR[0] have no effect.

CPR[

z,x

] Coprocessor unit

 z

, general purpose register

x.

CCR[

z,x

] Coprocessor unit

 z

, control register

x.

COC[

z

] Coprocessor unit

z

, condition signal.
BigEndianMem Endian mode as configured at reset (0

®

 Little, 1

 ®

 Big).
Specifies the endianness of the memory interface (see LoadMemory and
StoreMemory), and the endianness of Kernel and Supervisor modes.

ReverseEndian Signal to reverse the endianness of load and store instructions.
This feature is available in User mode only, and is effected by setting the

RE

bit of the

Status

 register. Thus, ReverseEndian is set to 1 only when the

RE

bit

is set in User mode

.

BigEndianCPU The endianness for load and store instructions (0

®

 Little, 1

®

 Big).
In User mode, this endianness is reversed by setting

RE

 bit

.

Thus,
BigEndianCPU is calculated as BigEndianMem XOR ReverseEndian.

LLbit Bit showing synchronized state of instructions. Set by

LL

instruction, cleared
by

ERET

 instruction and read by

SC

instruction.
T+

i

: Indicates the time steps between operations. Each statement within a time
step are defined to be executed in sequential order (instruction execution
order may be changed by conditional branch and loop).
Operations which are marked

T+i:

 are executed at instruction cycle

 i

 from the
start of execution of the instruction. Thus, an instruction which starts at time

 j

executes operations marked T+

i

:

 at time

of

i + j

th cycle. The order is not
defined for instructions executed at the same time or operations.

Chapter 16

366

User’s Manual U10504EJ7V0UM00

Instruction Notation Examples

The following are examples of the instruction notations:

Example #1:

GPR[rt] ¬

Sixteen zero bits are concatenated with a low-order immediate
value (normally 16 bits), and the 32-bit string is substituted to
CPU General Purpose Register rt.

Example #2:

Bit 15 (the sign bit) of an immediate value is extended by
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to generate a 32-bit sign
extended value.

immediate || 016

(immediate15)16 || immediate15...0

User’s Manual U10504EJ7V0UM00

367

CPU Instruction Set Details

16.2 Load and Store Instructions

In the V

R

4300, the instruction immediately following a load instruction may use
the loaded register contents. In such cases, the hardware

interlocks by

1PCycle

only, so scheduling load delay slots is desirable to improve performance, although
not required as a functional code.

Two special instructions are provided in the V

R

4300 implementation of the MIPS
ISA, Load Link and Conditional Store Instructions. These instructions are used
in carefully coded sequences to execute one of several synchronization primitives,
including test-and-set, bit-level locks, semaphores, and sequencers/event counter,
etc. This synchronization is essential in multi-processor systems. This
functionality is included in the V

R

4300 primarily for reasons to keep
compatibility with the V

R

4000 and V

R

4200.

In the load and store instruction descriptions, the functions listed below are used
to simplify the handling of virtual addresses and physical memory.

Table 16-2 Load and Store Instruction Common Functions

Function Meaning

AddressTranslation
Uses TLB to search a physical address from a virtual address. If
TLB does not have the requested contents of conversion, this
function fails, and TLB non-coincidence exception occurs.

LoadMemory

Searches the cache and main memory to search for the contents
of the specified data length stored in a specified physical address.
If the specified data length is less than a word, the contents of a
data position taking the endian mode and reverse endian mode of
the processor into consideration are loaded. The low-order 3 bits
and access type field of the address determine the data position in
a data word. The data is loaded to the cache if the cache is
enabled.

StoreMemory

Searches the cache, write buffer, and main memory to store the
contents of a specified data length to a specified physical address.
If the specified data length is less than a word, the contents of a
data position taking the endian mode and reverse endian mode of
the processor into consideration are stored. The low-order 3 bits
and access type field of the address determine the data position in
a data word.

Chapter 16

368

User’s Manual U10504EJ7V0UM00

The

Access Type

 field indicates the size of the data to be loaded or stored.
Regardless of access type or byte order (endianness), the address specifies the byte
which has the smallest byte address in the field accessed. For a big-endian system,
this is the leftmost byte and contains the sign for a 2’s complement value; for a
little-endian system, this is the rightmost byte.

Table 16-3 Access Type Specifications for Load/Store Instructions

The bytes within the accessed doubleword can be determined directly from the
access type and the low-order three bits of the address.

Access Type SysCmd(2:0) Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

User’s Manual U10504EJ7V0UM00

369

CPU Instruction Set Details

16.3 Jump and Branch Instructions

All jump and branch instructions have structural delay of exactly one instruction.
That is, the instruction immediately following a jump or branch instruction (that
is, occupying the delay slot) is executed while the target instruction is being
fetched from the cache. A jump or branch instruction cannot be used in a delay
slot; however, if they are used, the error is not detected and the results of such an
operation are undefined.

If an exception or interrupt prevents the completion of the instruction during it is
in a delay slot, the hardware sets a virtual address to the

EPC

 register at the point
of the jump or branch instruction that precedes it. When processing exceptions or
interrupts is completed and the program is restored, both the jump or branch
instruction and the instruction in the delay slot are reexecuted.

Because jump and branch instructions may be reexecuted after exception or
interrupt processing, register

31

 (the register in which the link address is stored)
should not be used as a source register in jump and link/branch and link
instructions.

Since instructions must be word-aligned, a Jump Register

or Jump and Link

Register

instruction must use a register which contains an address whose low-
order two bits are zero. If these low-order two bits are not zero, an address
exception will occur when the jump destination instruction is fetched.

16.4 Coprocessor Instructions

Coprocessors are alternate execution units, which have register files separate from
the CPU. The MIPS architecture provides four coprocessor units and these
coprocessors have two register spaces, each space containing thirty-two 32-bit
registers.

• The first space, coprocessor general purpose registers

,

is directly
loaded from and stored into the main memory, and their contents can
be transferred between the coprocessor and processor.

• The second space, coprocessor control registers

,

can only have their
contents transferred between the coprocessor and the processor.
Coprocessor instructions may alter registers in either space.

Chapter 16

370

User’s Manual U10504EJ7V0UM00

16.5 System Control Coprocessor (CP0) Instructions

There are some limitations imposed on operations involving CP0 that is
incorporated within the CPU. Although load and store instructions to transfer data
to/from coprocessors and to exchange control codes to/from coprocessor
instructions are generally permitted by the MIPS architecture, CP0 is given a
somewhat protected status since it has responsibility for exception handling and
memory management. Therefore, the coprocessor transfer instructions are the
only valid way for writing to and reading from the CP0 registers.

Some CP0 instructions are defined to directly read, write, and probe TLB entries
and to change the operating modes in preparation for restoring to User mode or
interrupt-enabled states.

16.6 CPU Instructions

This section describes in detail each function of CPU instructions in 32- or 64-bit
mode.

Possible exceptions, which may occur are caused by instruction execution, and are
explained at the end of the description for each instruction. Refer to

Chapter 6
Exception Processing

 for details of exceptions and their processing.

User’s Manual U10504EJ7V0UM00

371

CPU Instruction Set Details

Format:

ADD rd, rs, rt

Description:

The contents of general purpose register

rs

and the contents of general purpose
register

rt

are added to store the result in general purpose register

rd

. In 64-bit
mode, the operands must be sign-extended, 32-bit values.

An integer overflow exception occurs if the carries out of bits 30 and 31 differ (2’s
complement overflow). The contents of destination register

rd

 is not modified
when an integer overflow exception occurs.

Operation:

Exceptions:

Integer overflow exception

ADDAdd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ADD

32 T: GPR[rd] ¬GPR[rs] + GPR[rt]

64 T: temp ¬ GPR[rs] + GPR[rt]

GPR[rd] ¬ (temp31)32 || temp31...0

Chapter 16

372 User’s Manual U10504EJ7V0UM00

Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
purpose register rs to store the result in general purpose register rt. In 64-bit
mode, the operand must be sign-extended, 32-bit values.

An integer overflow exception occurs if carries out of bits 30 and 31 differ (2’s
complement overflow). The contents of destination register rt is not modified
when an integer overflow exception occurs.

Operation:

 Exceptions:

Integer overflow exception

ADDI Add Immediate

31 2526 2021 1516 0

ADDI rs rt immediate

6 5 5 16
0 0 1 0 0 0

ADDI

32 T: GPR [rt] ¬ GPR[rs] +(immediate15)16 || immediate15...0

64 T: temp ¬ GPR[rs] + (immediate15)48 || immediate15...0

GPR[rt] ¬ (temp31)32 || temp31...0

User’s Manual U10504EJ7V0UM00 373

CPU Instruction Set Details

Format:

ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
purpose register rs to store the result in general purpose register rt. No integer
overflow exception occurs under any circumstance. In 64-bit mode, the operand
must be sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that
ADDIU instruction never causes an integer overflow exception.

Operation:

Exceptions:

None

ADDIU Add Immediate Unsigned

31 2526 2021 1516 0

ADDIU rs rt immediate

6 5 5 16
0 0 1 0 0 1

ADDIU

32 T: GPR [rt] ¬ GPR[rs] + (immediate15)16 || immediate15...0

64 T: temp ¬ GPR[rs] + (immediate15)48 || immediate15...0

GPR[rt] ¬ (temp31)32 || temp31...0

Chapter 16

374 User’s Manual U10504EJ7V0UM00

Format:

ADDU rd, rs, rt

Description:

The contents of general purpose register rs and the contents of general purpose
register rt are added to store the result in general purpose register rd. No integer
overflow exception occurs under any circumstance. In 64-bit mode, the operands
must be sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that
ADDU instruction never causes an integer overflow exception.

Operation:

Exceptions:

None

ADDU Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

ADDU

32 T: GPR[rd] ¬GPR[rs] + GPR[rt]

64 T: temp ¬ GPR[rs] + GPR[rt]

GPR[rd] ¬ (temp31)32 || temp31...0

User’s Manual U10504EJ7V0UM00 375

CPU Instruction Set Details

Format:

AND rd, rs, rt

Description:

The contents of general purpose register rs are combined with the contents of
general purpose register rt in a bit-wise logical AND operation. The result is
stored in general purpose register rd.

Operation:

Exceptions:

None

ANDAnd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

AND

32 T: GPR[rd] ¬ GPR[rs] and GPR[rt]

64 T: GPR[rd] ¬ GPR[rs] and GPR[rt]

Chapter 16

376 User’s Manual U10504EJ7V0UM00

Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general
purpose register rs in a bit-wise logical AND operation. The result is stored in
general purpose register rt.

Operation:

 Exceptions:

None

ANDI And Immediate

31 2526 2021 1516 0

ANDI rs rt immediate

6 5 5 16
0 0 1 1 0 0

ANDI

32 T: GPR[rt] ¬ 016 || (immediate and GPR[rs]15...0)

64 T: GPR[rt] ¬ 048 || (immediate and GPR[rs]15...0)

User’s Manual U10504EJ7V0UM00 377

CPU Instruction Set Details

Format:

BCzF offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. If CPz’s
condition signal (CpCond), as sampled during the previous instruction execution,
is false, then the program branches to the branch address with a delay of one
instruction.

Because the condition signal is sampled during the previous instruction execution,
there must be at least one instruction between this instruction and a coprocessor
instruction that changes the condition signal.

Operation:

* Refer to the table Opcode Bit Encoding on the next page, or 16.7 CPU
Instruction Opcode Bit Encoding.

BCzFBranch On Coprocessor z False

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCF

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 0 0

BCzF

T: target ¬ (offset15)14 || offset || 02
32 T–1: condition ¬ not COC[z]

T+1: if condition then
PC ¬ PC + target

endif

T: target ¬ (offset15)46 || offset || 02
64 T–1: condition ¬ not COC[z]

T+1: if condition then
PC ¬ PC + target

endif

Chapter 16

378 User’s Manual U10504EJ7V0UM00

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzF (continued)
Branch On Coprocessor z False BCzF

BCzF 31 30 29 28 27 26Bit # 25 0

BC0F

24 23 22 21

Coprocessor Number

Branch ConditionBC Sub-opcode

20 19 18 17 16

Opcode

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

31 30 29 28 27 26Bit # 25 0

BC1F

24 23 22 21 20 19 18 17 16

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

31 30 29 28 27 26Bit # 25 0

BC2F

24 23 22 21 20 19 18 17 16

0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

User’s Manual U10504EJ7V0UM00 379

CPU Instruction Set Details

Format:

BCzFL offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. If the
CPz’s condition signal (CpCond), as sampled during the previous instruction
execution, is false, the program branches to the branch address with a delay of one
instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Because the condition signal is sampled during the previous instruction execution,
there must be at least one instruction between this instruction and a coprocessor
instruction that changes the condition signal.

* Refer to the table Opcode Bit Encoding on the next page, or
16.7 CPU Instruction Opcode Bit Encoding.

BCzFL

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCFL

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 1 0

BCzFL Branch On Coprocessor z
False Likely

Chapter 16

380 User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL
(continued)

Branch On Coprocessor z BCzFLFalse Likely

T: target ¬ (offset15)14 || offset || 02
32 T–1: condition ¬ not COC[z]

T+1: if condition then
 PC ¬ PC + target

 endif

else
 NullifyCurrentInstruction

T: target ¬ (offset15)46 || offset || 02
64 T–1: condition ¬ not COC[z]

T+1: if condition then
 PC ¬ PC + target

 endif

else
 NullifyCurrentInstruction

BCzFL 31 30 29 28 27 26Bit # 25 0

BC0FL

24 23 22 21

Coprocessor Number

Branch ConditionBC Sub-opcode

20 19 18 17 16

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

31 30 29 28 27 26Bit # 25 0

BC1FL

24 23 22 21 20 19 18 17 16

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0

31 30 29 28 27 26Bit # 25 0

BC2FL

24 23 22 21 20 19 18 17 16

0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0

Opcode

User’s Manual U10504EJ7V0UM00 381

CPU Instruction Set Details

Format:

BCzT offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. If the
CPz’s condition signal (CpCond) sampled during the previous instruction
execution is true, then the program branches to the branch address with a delay of
one instruction.

Because the condition signal is sampled during the previous instruction execution,
there must be at least one instruction between this instruction and a coprocessor
instruction that changes the condition signal.

Operation:

* Refer to the table Opcode Bit Encoding on the next page, or
16.7 CPU Instruction Opcode Bit Encoding.

BCzTBranch On Coprocessor z True

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCT

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 0 1

BCzT

T: target ¬ (offset15)14 || offset || 02
32 T–1: condition ¬ COC[z]

T+1: if condition then
 PC ¬ PC + target
 endif

T: target ¬ (offset15)46 || offset || 02
64 T–1: condition ¬ COC[z]

T+1: if condition then
 PC ¬ PC + target
 endif

Chapter 16

382 User’s Manual U10504EJ7V0UM00

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzT (continued)
Branch On Coprocessor z True BCzT

BCzT 31 30 29 28 27 26Bit # 25 0

BC0T

24 23 22 21

Coprocessor Number

Branch ConditionBC Sub-opcode

20 19 18 17 16

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

31 30 29 28 27 26Bit # 25 0

BC1T

24 23 22 21 20 19 18 17 16

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

31 30 29 28 27 26Bit # 25 0

BC2T

24 23 22 21 20 19 18 17 16

0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1

Opcode

User’s Manual U10504EJ7V0UM00 383

CPU Instruction Set Details

Format:

BCzTL offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. If the
CPz’s condition signal (CpCond), as sampled during the previous instruction
execution, is true, the program branches to the branch address with a delay of one
instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Because the condition signal is sampled during the previous instruction execution,
there must be at least one instruction between this instruction and a coprocessor
instruction that changes the condition signal.

Operation:

* Refer to the table Opcode Bit Encoding on the next page,
or 16.7 CPU Instruction Opcode Bit Encoding.

BCzTLBranch On Coprocessor z

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCTL

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 1 1

BCzTL True Likely

T: target ¬ (offset15)14 || offset || 02
32 T–1: condition ¬ COC[z]

T+1: if condition then

PC ¬ PC + target

 endif

 else
 NullifyCurrentInstruction

T: target ¬ (offset15)46|| offset || 02
64 T–1: condition ¬ COC[z]

T+1: if condition then
PC ¬ PC + target

 endif

 else
 NullifyCurrentInstruction

Chapter 16

384 User’s Manual U10504EJ7V0UM00

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzTL
(continued)

Branch On Coprocessor z BCzTLTrue Likely

BCzTL 31 30 29 28 27 26Bit # 25 0

BC0TL

24 23 22 21

Coprocessor Number

Branch ConditionBC Sub-opcode

20 19 18 17 16

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

31 30 29 28 27 26Bit # 25 0

BC1TL

24 23 22 21 20 19 18 17 16

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1

31 30 29 28 27 26Bit # 25 0

BC2TL

24 23 22 21 20 19 18 17 16

0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1

Opcode

User’s Manual U10504EJ7V0UM00 385

CPU Instruction Set Details

Format:

BEQ rs, rt, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. The
contents of general purpose register rs and the contents of general purpose register
rt are compared. If the two registers are equal, then the program branches to the
branch address with a delay of one instruction.

Operation:

Exceptions:

None

BEQBranch On EqualBEQ
31 2526 2021 1516 0

BEQ rs rt offset

6 5 5 16
0 0 0 1 0 0

32 T: target ¬ (offset15)14 || offset || 02

condition ¬ (GPR[rs] = GPR[rt])
T+1: if condition then

PC ¬ PC + target
 endif
64 T: target ¬ (offset15)46 || offset || 02

condition ¬ (GPR[rs] = GPR[rt])
T+1: if condition then

PC ¬ PC + target
 endif

Chapter 16

386 User’s Manual U10504EJ7V0UM00

Format:

BEQL rs, rt, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. The
contents of general purpose register rs and the contents of general purpose register
rt are compared. If the two registers are equal, the program branches to the branch
address with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Operation:

Exceptions:

None

BEQL Branch On Equal Likely

31 2526 2021 1516 0

BEQL rs rt offset

6 5 5 16
0 1 0 1 0 0

BEQL

32 T: target ¬ (offset15)14 || offset || 02

condition ¬ (GPR[rs] = GPR[rt])
T+1: if condition then
 PC ¬ PC + target

 else

 endif
 NullifyCurrentInstruction

64 T: target ¬ (offset15)46 || offset || 02

condition ¬ (GPR[rs] = GPR[rt])

T+1: if condition then
 PC ¬ PC + target
 else

 endif
 NullifyCurrentInstruction

User’s Manual U10504EJ7V0UM00 387

CPU Instruction Set Details

Format:

BGEZ rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. If the
contents of general purpose register rs are equal to or larger than 0, then the
program branches to the branch address with a delay of one instruction.

Operation:

Exceptions:

None

BGEZOr Equal To Zero
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 1

BGEZ

32 T: target ¬ (offset15)14 || offset || 02

condition ¬ (GPR[rs]31 = 0)
T+1: if condition then

 PC ¬ PC + target
 endif

64 T: target ¬ (offset15)46 || offset || 02

condition ¬ (GPR[rs]63 = 0)
T+1: if condition then

 PC ¬ PC + target
 endif

Chapter 16

388 User’s Manual U10504EJ7V0UM00

Format:

BGEZAL rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended.
Unconditionally, the address of the instruction next to the delay slot is stored in
the link register, r31. If the contents of general purpose register rs are equal to or
larger than 0, then the program branches to the branch address, with a delay of one
instruction.

Generally, general purpose register r31 should not be specified as general purpose
register rs, because the contents of rs are destroyed by storing link address, and
then it may not be reexecutable. An attempt to execute this instruction does not
cause exception, however.

Operation:

Exceptions:

None

BGEZAL Or Equal To Zero And Link
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 0 1

BGEZAL

32 T: target ¬ (offset15)14 || offset || 02

 condition ¬ (GPR[rs]31 = 0)

T+1: if condition then
 PC ¬ PC + target
 endif

 GPR[31] ¬ PC + 8

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs]63 = 0)

T+1: if condition then
 PC ¬ PC + target
 endif

 GPR[31] ¬ PC + 8

User’s Manual U10504EJ7V0UM00 389

CPU Instruction Set Details

Format:

BGEZALL rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended.
Unconditionally, the address of the instruction next to the delay slot is stored in
the link register, r31. If the contents of general purpose register rs are equal to or
larger than 0, then the program branches to the branch address, with a delay of one
instruction. When it does not branch, instruction in the delay slot are discarded.
Generally, general purpose register r31 should not be specified as general purpose
register rs, because the contents of rs are destroyed by storing link address, and
then it may not be reexecutable. An attempt to execute this instruction does not
cause any exception, however.

Operation:

Exceptions:

None

BGEZALLOr Equal To Zero
Branch On Greater ThanBGEZALL

And Link Likely

31 2526 2021 1516 0

REGIMM rs BGEZALL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 1 1

32 T: target ¬ (offset15)14 || offset || 02

condition ¬ (GPR[rs]31 = 0)

T+1: if condition then
 PC ¬ PC + target

 endif

 GPR[31] ¬ PC + 8

 NullifyCurrentInstruction
else

64 T: target ¬ (offset15)46 || offset || 02

condition ¬ (GPR[rs]63 = 0)

T+1: if condition then
 PC ¬ PC + target

 endif

 GPR[31] ¬ PC + 8

 NullifyCurrentInstruction
else

Chapter 16

390 User’s Manual U10504EJ7V0UM00

Format:

BGEZL rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. If the
contents of general purpose register rs are equal to or larger than 0, then the
program branches to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Operation:

Exceptions:

None

BGEZL Than Or Equal To Zero Likely
Branch On Greater

31 2526 2021 1516 0

REGIMM rs BGEZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 1

BGEZL

32 T: target ¬ (offset15)14 || offset || 02

 condition ¬ (GPR[rs]31 = 0)
T+1: if condition then

 PC ¬ PC + target

 endif

 else
 NullifyCurrentInstruction

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs]63 = 0)
T+1: if condition then

 PC ¬ PC + target

endif

 else
 NullifyCurrentInstruction

User’s Manual U10504EJ7V0UM00 391

CPU Instruction Set Details

Format:

BGTZ rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. The
contents of general purpose register rs are larger than zero, then the program
branches to the branch address, with a delay of one instruction.

Operation:

Exceptions:

None

BGTZBranch On Greater Than Zero

31 2526 2021 1516 0

BGTZ rs 0 offset

6 5 5 16
0 0 0 1 1 1 0 0 0 0 0

BGTZ

32 T: target ¬ (offset15)14 || offset || 02

 condition ¬ (GPR[rs]31 = 0) and (GPR[rs] ¹ 032)

T+1: if condition then
 PC ¬ PC + target
 endif

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs]63 = 0) and (GPR[rs] ¹ 064)

T+1: if condition then
 PC ¬ PC + target
 endif

Chapter 16

392 User’s Manual U10504EJ7V0UM00

Format:

BGTZL rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. The
contents of general purpose register rs are larger than 0, then the program branches
to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Operation:

Exceptions:

None

BGTZL Than Zero Likely
Branch On Greater

31 2526 2021 1516 0

BGTZL rs 0 offset

6 5 5 16
0 1 0 1 1 1 0 0 0 0 0

BGTZL

32 T: target ¬ (offset15)14 || offset || 02

 condition ¬ (GPR[rs]31 = 0) and (GPR[rs] ¹ 032)
T+1: if condition then

 PC ¬ PC + target

 endif

 else
 NullifyCurrentInstruction

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs]63 = 0) and (GPR[rs] ¹ 064)
T+1: if condition then

 PC ¬ PC + target
 else
 NullifyCurrentInstruction
 endif

User’s Manual U10504EJ7V0UM00 393

CPU Instruction Set Details

Format:

BLEZ rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. If the
contents of general purpose register rs are equal to 0 or smaller than 0, then the
program branches to the branch address, with a delay of one instruction.

Operation:

Exceptions:

None

BLEZBranch On Less Than

31 2526 2021 1516 0

BLEZ rs 0 offset

6 5 5 16

Or Equal To Zero

0 0 0 1 1 0 0 0 0 0 0

BLEZ

32 T: target ¬ (offset15)14 || offset || 02

T+1: if condition then
 PC ¬ PC + target
 endif

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs]63 = 1) and (GPR[rs] = 064)
T+1: if condition then

 PC ¬ PC + target
 endif

 condition ¬ (GPR[rs]31 = 1) or (GPR[rs] = 032)

Chapter 16

394 User’s Manual U10504EJ7V0UM00

Format:

BLEZL rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. The
contents of general purpose register rs is equal to or smaller than zero, then the
program branches to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Operation:

Exceptions:

None

BLEZL Branch On Less Than

31 2526 2021 1516 0

BLEZL rs 0 offset

6 5 5 16

Or Equal To Zero Likely

0 1 0 1 1 0 0 0 0 0 0

BLEZL

32 T: target ¬ (offset15)14 || offset || 02

 condition ¬ (GPR[rs]31 = 1) or (GPR[rs] = 032)
T+1: if condition then

 PC ¬ PC + target

 endif

 else
 NullifyCurrentInstruction

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs]63 = 1) and (GPR[rs] = 064)
T+1: if condition then

 PC ¬ PC + target
 else
 NullifyCurrentInstruction
 endif

User’s Manual U10504EJ7V0UM00 395

CPU Instruction Set Details

Format:

BLTZ rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. If the
contents of general purpose register rs are smaller than 0, then the program
branches to the branch address, with a delay of one instruction.

 Operation:

Exceptions:

None

BLTZBranch On Less Than Zero

31 2526 2021 1516 0

REGIMM rs BLTZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 0

BLTZ

32 T: target ¬ (offset15)14 || offset || 02

condition ¬ (GPR[rs]31 = 1)
T+1: if condition then

 PC ¬ PC + target
 endif

64 T: target ¬ (offset15)46 || offset || 02

condition ¬ (GPR[rs]63 = 1)
T+1: if condition then

 PC ¬ PC + target
 endif

Chapter 16

396 User’s Manual U10504EJ7V0UM00

Format:

BLTZAL rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended.
Unconditionally, the address of the instruction next to the delay slot is stored in
the link register, r31. If the contents of general purpose register rs are smaller than
0, then the program branches to the branch address, with a delay of one
instruction.

Generally, general purpose register r31 should not be specified as general purpose
register rs, because the contents of rs are destroyed by storing link address, and
then it is not reexecutable. An attempt to execute this instruction does not
generate exceptions, however.

Operation:

Exceptions:

None

BLTZAL Than Zero And Link
Branch On Less

31 2526 2021 1516 0

REGIMM rs BLTZAL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 0 0

BLTZAL

32 T: target ¬ (offset15)14 || offset || 02

 condition ¬ (GPR[rs]31 = 1)

T+1: if condition then
 PC ¬ PC + target
 endif

 GPR[31] ¬ PC + 8

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs]63 = 1)

T+1: if condition then
 PC ¬ PC + target
 endif

 GPR[31] ¬ PC + 8

User’s Manual U10504EJ7V0UM00 397

CPU Instruction Set Details

Format:

BLTZALL rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended.
Unconditionally, the instruction next to the delay slot is stored in the link register,
r31. If the contents of general purpose register rs is smaller than 0, then the
program branches to the branch address, with a delay of one instruction.
If it does not branch, the instruction in the branch delay slot is discarded.
Generally, general purpose register r31 should not be specified as general purpose
register rs, because the contents of rs are destroyed by storing link address, and
then it is not reexecutable. An attempt to execute this instruction does not cause
exception, however.

Operation:

Exceptions:

None

BLTZALLThan Zero And Link Likely
Branch On Less

31 2526 2021 1516 0

REGIMM rs BLTZALL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 1 0

BLTZALL

32 T: target ¬ (offset15)14 || offset || 02

condition ¬ (GPR[rs]31 = 1)

T+1: if condition then
 PC ¬ PC + target

 endif

 GPR[31] ¬ PC + 8

 NullifyCurrentInstruction
else

64 T: target ¬ (offset15)46 || offset || 02

condition ¬ (GPR[rs]63 = 1)

T+1: if condition then
 PC ¬ PC + target

 endif

 GPR[31] ¬ PC + 8

 NullifyCurrentInstruction
else

Chapter 16

398 User’s Manual U10504EJ7V0UM00

Format:

BLTZL rs, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended.
Unconditionally, the instruction next to the delay slot is stored in the link register,
r31. If the contents of general purpose register rs are smaller than 0, then the
program branches to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

 Operation:

Exceptions:

None

BLTZL Branch On Less Than Zero Likely

31 2526 2021 1516 0

REGIMM rs BLTZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 0

BLTZL

32 T: target ¬ (offset15)14 || offset || 02

 condition ¬ (GPR[rs]31 = 1)
T+1: if condition then

 PC ¬ PC + target

 endif

 else
 NullifyCurrentInstruction

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs]63 = 1)
T+1: if condition then

 PC ¬ PC + target
 else
 NullifyCurrentInstruction
 endif

User’s Manual U10504EJ7V0UM00 399

CPU Instruction Set Details

Format:

BNE rs, rt, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. The
contents of general purpose register rs and the contents of general purpose register
rt are compared. If the two registers are not equal, then the program branches to
the branch address, with a delay of one instruction.

Operation:

Exceptions:

None

BNEBranch On Not Equal

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16
0 0 0 1 0 1

BNE

32 T: target ¬ (offset15)14 || offset || 02

condition ¬ (GPR[rs] ¹ GPR[rt])
T+1: if condition then

PC ¬ PC + target
endif

64 T: target ¬ (offset15)46 || offset || 02

condition ¬ (GPR[rs] ¹ GPR[rt])
T+1: if condition then

PC ¬ PC + target
endif

Chapter 16

400 User’s Manual U10504EJ7V0UM00

Format:

BNEL rs, rt, offset

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign-extended. The
contents of general purpose register rs and the contents of general purpose register
rt are compared. If the two registers are not equal, then the program branches to
the branch address, with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Operation:

Exceptions:

None

BNEL Branch On Not Equal Likely

31 2526 2021 1516 0

BNEL rs rt offset

6 5 5 16
0 1 0 1 0 1

BNEL

32 T: target ¬ (offset15)14 || offset || 02

 condition ¬ (GPR[rs] ¹ GPR[rt])
T+1: if condition then

 PC ¬ PC + target
 else

 endif
 NullifyCurrentInstruction

64 T: target ¬ (offset15)46 || offset || 02

 condition ¬ (GPR[rs] ¹ GPR[rt])
T+1: if condition then

 PC ¬ PC + target
 else

 endif
 NullifyCurrentInstruction

User’s Manual U10504EJ7V0UM00 401

CPU Instruction Set Details

Format:

BREAK

Description:

A breakpoint exception occurs after execution of this instruction, transferring
control to the exception handler.

The code area is available for use to transfer parameters to the exception handler,
the parameter is retrieved by the exception handler only by loading the contents
of the memory word containing the instruction as data.

Operation:

Exceptions:

Breakpoint exception

BREAKBreakpoint

31 2526

SPECIAL

6

0

BREAKcode

6 5

620
0 0 0 0 0 0 0 0 1 1 0 1

BREAK

32, 64 T: BreakpointException

Chapter 16

402 User’s Manual U10504EJ7V0UM00

Format:

CACHE op, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The virtual address is translated to a
physical address using the TLB, and the 5-bit sub-opcode op specifies a cache
operation contents for the specified address.

CP0 is not usable if the CP0 enable bit CU0 in the Status register in the User or
Supervisor mode is cleared, and a coprocessor unusable exception occurs after
execution of this instruction. The execution of this instruction on any cache/
operation combination not listed below, or on a secondary cache which is not
supplied to VR4300, is undefined. The execution of this instruction in uncached
area is also undefined.

The Index operation uses a part of the virtual address to specify a cache block. For
example a cache of 2CACHEBITS bytes with 2LINEBITS bytes per tag,
vAddrCACHEBITS ... LINEBITS specifies the block.

The Hit operation accesses the cache as normal data references, and performs the
specified cache operation only if the cache contains valid data of the specified
physical address (a hit). If data is not in the cache (a miss), the cache operation is
not executed.

CACHE Cache Operation

31 2526 2021 1516 0

CACHE base op offset

6 5 5 16
1 0 1 1 1 1

CACHE

User’s Manual U10504EJ7V0UM00 403

CPU Instruction Set Details

Write back from a cache goes to the main memory. The address in the main
memory to be written is the address in the cache tag and not the physical address
translated by using TLB.

The TLB miss exception and TLB invalid exception may occur when any cache
operation is performed. The Index* operation executed to the address in the
unmapped area is used to prevent occurrence of the TLB exception. The Index
operation never generates the TLB change exception. Bits 16 and 17 of the
instruction code indicate the cache subject to the operation as follows.

* Although a physical address is used to index the cache, it does not have to
coincide with the cache tag.

Bits 20:18 of this instruction specify the contents of the cache operation. For
details, refer to the following pages.

Code Symbol Cache

0 I instruction cache

1 D data cache

2 – reserved

3 – reserved

(continued)CACHE Cache Operation CACHE

Chapter 16

404 User’s Manual U10504EJ7V0UM00

op4...2 Caches Cache Operation Operation

0 I Index_Invalidate Set the cache state of the cache block to Invalid.

0 D Index_Write_Back
_Invalidate

Examine the cache state of the data cache block at
the Invalidate index specified by the virtual address.
If the state is not Invalid, then write back the block
to main memory.
The address to write is taken from the cache tag.
Set cache state of cache block to Invalid.

1 I, D Index_Load_Tag Read the tag for the cache block at the specified
index and place it into the TagLo register of the
CP0.

2 I, D Index_Store_Tag Write the contents of the Lo register of the CP0
register to the tag for the cache block at the
specified index.

3 D Create_Dirty_Exclusive This operation is used to load as little data as
possible from main memory when writing new data
into the entire cache block where the coherency is
kept. If the cache block does not contain the
specified address, and the block is dirty, write it
back to main memory. In all cases, set the cache
block tag to the specified physical address, set the
cache state to dirty.

4 I, D Hit_Invalidate If the cache block contains the specified address,
set the cache block state invalid.

5 D Hit_Write_Back_Invalidate If the cache block contains the specified address,
write back the data if it is dirty, and set the cache
block state invalid.

5 I Fill Fill the instruction cache block with the data from
main memory.

6 D Hit_Write_Back
If the cache block contains the specified address
and the cache state is in the dirty state, write back
the data to main memory.

6 I Hit_Write_Back
If the cache block contains the specified address,
write back the data unconditionally.

CACHE CACHE(continued)
Cache Operation

User’s Manual U10504EJ7V0UM00 405

CPU Instruction Set Details

Operation:

Exceptions:

Coprocessor unusable exception
TLB invalid exception
TLB miss exception
Bus error exception
Address error exception

CACHE CACHE(continued)
Cache Operation

32, 64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Chapter 16

406 User’s Manual U10504EJ7V0UM00

Format:

CFCz rt, rd

Description:

The contents of coprocessor control register rd of CPz are loaded to general
purpose register rt.

This instruction is not valid for CP0.

Operation:

 Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

* Refer to 16.7 CPU Instruction Opcode Bit Encoding.

Coprocessor zCFCz

11

Move Control From

31 2526 2021 1516

COPz CF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CFCz

32 T: data ¬ CCR[z, rd]
T+1: GPR[rt] ¬ data

64 T: data ¬ (CCR[z, rd]31)32 || CCR[z, rd]
T+1: GPR[rt] ¬ data

CFCz 31 30 29 28 27 26Bit # 25 0

CFC1

24 23 22 21

Coprocessor Number

Coprocessor Sub-opcodeOpcode

0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26Bit # 25 0

CFC2

24 23 22 21

0 1 0 0 1 0 0 0 0 1 0

User’s Manual U10504EJ7V0UM00 407

CPU Instruction Set Details

Format:

COPz cofun

Description:

A coprocessor operation is performed. The operation may specify and reference
internal coprocessor registers, and may change the state of the coprocessor
condition line, but does not modify state within the processor or the cache/main
memory. For details of coprocessor operations, refer to Chapter 17 FPU
Instruction Set Details.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception (CP1 only)

Opcode Bit Encoding:

* Refer to 16.7 CPU Instruction Opcode Bit Encoding.

COPzCoprocessor z Operation

31 25 2426

COPz

6

0

cofun

251

CO
0 1 0 0 x x* 1

COPz

32, 64 T: CoprocessorOperation (z, cofun)

COPz 31 30 29 28 27 26Bit # 25 0

COP0

Coprocessor Number
Coprocessor Sub-opcodeOpcode

0 1 0 0 0 0 1

31 30 29 28 27 26Bit # 25 0

COP1 0 1 0 0 0 1 1

31 30 29 28 27 26Bit # 25 0

COP2 0 1 0 0 1 0 1

Chapter 16

408 User’s Manual U10504EJ7V0UM00

Format:

CTCz rt, rd

Description:

The contents of general purpose register rt are loaded into coprocessor control
register rd of CPz. This instruction is not valid for CP0.

Operation:

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

* Refer to 16.7 CPU Instruction Opcode Bit Encoding.

CTCz

11

Move Control To Coprocessor z

31 2526 2021 1516

COPz CT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x * 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTCz

32,64 T: data ¬ GPR[rt]
T + 1: CCR[z, rd] ¬ data

CTCz 31 30 29 28 27 26Bit # 25 0

CTC1

24 23 22

Coprocessor Number
Coprocessor Sub-opcodeOpcode

0 1 0 0 0 1 0 0 1 1

31 30 29 28 27 26Bit # 25 0

CTC2

24 23 22 21

0 1 0 0 1 0 0 0 1 1 0

21

0

User’s Manual U10504EJ7V0UM00 409

CPU Instruction Set Details

Format:

DADD rd, rs, rt

Description:

The contents of general purpose register rs and the contents of general purpose
register rt are added, and the result is stored in general purpose register rd. An
integer overflow exception occurs if the carries out of bits 62 and 63 differ (2’s
complement overflow). The contents of the destination register rd are not
modified when an integer overflow exception occurs.

This operation is only defined for the VR4300 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Integer overflow exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DADDDoubleword Add

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

DADD

64 T: GPR[rd] ¬GPR[rs] + GPR[rt]

Chapter 16

410 User’s Manual U10504EJ7V0UM00

Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
purpose register rs, and the result is stored in general purpose register rt. An
integer overflow exception occurs if carries out of bits 62 and 63 differ (2’s
complement overflow). The contents of the destination register rt are not
modified when an integer overflow exception occurs.

This operation is only defined for the VR4300 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Integer overflow exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DADDI Doubleword Add Immediate

31 2526 2021 1516 0

DADDI rs rt immediate

6 5 5 16
0 1 1 0 0 0

DADDI

64 T: GPR [rt] ¬ GPR[rs] + (immediate15)48 || immediate15...0

User’s Manual U10504EJ7V0UM00 411

CPU Instruction Set Details

Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
purpose register rs, and the result is stored in general purpose register rt.

This operation is only defined for the VR4300 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

The only difference between this instruction and the DADDI instruction is that
DADDIU instruction never causes an integer overflow exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DADDIUDoubleword Add

31 2526 2021 1516 0

DADDIU rs rt immediate

6 5 5 16
0 1 1 0 0 1

DADDIU Immediate Unsigned

64 T: GPR [rt] ¬ GPR[rs] + (immediate15)48 || immediate15...0

Chapter 16

412 User’s Manual U10504EJ7V0UM00

Format:

DADDU rd, rs, rt

Description:

The contents of general purpose register rs and the contents of general purpose
register rt are added, and the result is stored in general purpose register rd.

This operation is only defined for the VR4300 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

The only difference between this instruction and the DADD instruction is that
DADDU instruction never causes an integer overflow exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DADDU Doubleword Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1

DADDU

 64 T: GPR[rd] ¬GPR[rs] + GPR[rt]

User’s Manual U10504EJ7V0UM00 413

CPU Instruction Set Details

Format:

DDIV rs, rt

Description:

The contents of general purpose register rs are divided by the contents of general
purpose register rt, treating both operands as signed integers. An integer overflow
exception never occurs, and the result of this operation is undefined when the
divisor is zero.

This instruction is usually executed after additional instructions to check for a zero
divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded
into special register LO, and the remainder word of the double result is loaded into
special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. To obtain the correct result, insert two or more
additional instructions between the MFHI or MFLO and DDIV instruction.

This operation is only defined for the VR4300 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DDIVDoubleword Divide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

DDIV

¬ undefined
¬ undefined
¬ undefined

T–2: LO ¬ undefined

T: LO ¬ GPR[rs] div GPR[rt]

HI
T–1: LO

HI

64

HI ¬ GPR[rs] mod GPR[rt]

Chapter 16

414 User’s Manual U10504EJ7V0UM00

Format:

DDIVU rs, rt

Description:

The contents of general purpose register rs are divided by the contents of general
purpose register rt, treating both operands as unsigned integers. An integer
overflow exception never occurs, and the result of this operation is undefined
when the divisor is zero.

This instruction is executed after the instructions to check for a zero division.

When the operation completes, the quotient (doubleword) is stored into special
register LO, and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. To obtain the correct result, insert two or more
instructions in between the MFHI or MFLO and DDIVU instructions.

This operation is only defined for the VR4300 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DDIVU Doubleword Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

DDIVU

¬ undefined
¬ undefined
¬ undefined

¬ (0 || GPR[rs]) mod (0 || GPR[rt])

T–2: LO ¬ undefined

T: LO ¬ (0 || GPR[rs]) div (0 || GPR[rt])

HI
T–1: LO

HI

64

HI

User’s Manual U10504EJ7V0UM00 415

CPU Instruction Set Details

Format:

DIV rs, rt

Description:

The contents of general purpose register rs are divided by the contents of general
purpose register rt, treating both operands as unsigned integers. An overflow
exception never occurs, and the result of this operation is undefined when the
divisor is zero. In 64-bit mode, the result must be sign-extended, 32-bit values.

This instruction is usually executed after the instructions to check for a zero
division and for overflow.

When the operation completes, the quotient (doubleword) is stored into special
register LO, and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. To obtain the correct result, insert two or more
additional instructions in between the MFHI or MFLO and DIV instructions.

DIVDivide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

DIV

Chapter 16

416 User’s Manual U10504EJ7V0UM00

Operation:

 Exceptions:

None

(continued)DIV Divide DIV

¬ undefined
¬ undefined
¬ undefined

HI ¬ GPR[rs] mod GPR[rt]

T–2: LO ¬ undefined

T: LO ¬ GPR[rs] div GPR[rt]

HI
T–1: LO

HI

¬ undefined
¬ undefined
¬ undefined

T–2: LO ¬ undefined

T: q ¬ GPR[rs]31...0 div GPR[rt]31...0

HI
T–1: LO

HI

LO ¬ (q31)32 || q31...0
HI ¬ (r31)32 || r31...0

r ¬ GPR[rs]31...0 mod GPR[rt]31...0

32

64

User’s Manual U10504EJ7V0UM00 417

CPU Instruction Set Details

Format:

DIVU rs, rt

Description:

The contents of general purpose register rs are divided by the contents of general
purpose register rt, treating both operands as unsigned integers. An integer
overflow exception never occurs, and the result of this operation is undefined
when the divisor is zero. In 64-bit mode, the result must be sign-extended, 32-bit
values.

This instruction is executed after the instructions to check for a zero division.

When the operation completes, the quotient (doubleword) is stored into special
register LO, and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. To obtain the correct result, insert two or more
additional instructions in between the MFHI or MFLO and DIVU instructions.

DIVU Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

DIVU

Chapter 16

418 User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

None

(continued)DIVU Divide Unsigned DIVU

¬ undefined
¬ undefined
¬ undefined

HI ¬ (0 || GPR[rs]) mod (0 || GPR[rt])

T–2: LO ¬ undefined

T: LO ¬ (0 || GPR[rs]) div (0 || GPR[rt])

HI
T–1: LO

HI

¬ undefined
¬ undefined
¬ undefined

T–2: LO ¬ undefined

T: q ¬ (0 || GPR[rs]31...0) div (0 || GPR[rt]31...0)

HI
T–1: LO

HI

LO ¬ (q31)32 || q31...0
HI ¬ (r31)32 || r31...0

r ¬ (0 || GPR[rs]31...0) mod (0 || GPR[rt]31...0)

32

64

User’s Manual U10504EJ7V0UM00 419

CPU Instruction Set Details

Format:

DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general purpose
register rt.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception. The contents of the source coprocessor
register rd are written to the 64-bit destination general purpose register rt. The
operation of DMFC0 instruction on a 32-bit register of the CP0 is undefined.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Coprocessor unusable exception (VR4300 in 64-/32-bit User mode and
Supervisor mode if CP0 is disabled)

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DMFC0 Doubleword Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 DMF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DMFC0

64 T: data ¬CPR[0,rd]

T+1: GPR[rt] ¬ data

Chapter 16

420 User’s Manual U10504EJ7V0UM00

Format:

DMTC0 rt, rd

Description:

The contents of general purpose register rt are loaded into coprocessor register rd
of the CP0.

This operation is defined for the VR4300 operating in 64-bit mode or in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

The contents of the source general purpose register rd are written to the 64-bit
destination coprocessor register rt. The operation of DMTC0 instruction on a 32-
bit register of the CP0 is undefined.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load instructions, store instructions, and TLB
operations immediately prior to and after this instruction are undefined.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Coprocessor unusable exception (VR4300 in 64-/32-bit User and Supervisor
mode if CP0 is disabled)

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DMTC0 Doubleword Move To

31 2526 2021 1516 0

COP0 rt

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0

DMTC0

rdDMT
0 0 1 0 1

5

1011

0
0 0 0 0 0 0 0 0 0 0 0

64 T: data ¬ GPR[rt]

T+1: CPR[0, rd] ¬ data

User’s Manual U10504EJ7V0UM00 421

CPU Instruction Set Details

Format:

DMULT rs, rt

Description:

The contents of general purpose registers rs and rt are multiplied, treating both
operands as signed integers. An integer overflow exception never occurs.

When the operation completes, the low-order doubleword is stored into special
register LO, and the high-order doubleword is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these
instructions are undefined. To obtain the correct result, insert two or more other
instructions in between the MFHI or MFLO and DMULT instructions.

This operation is only defined for the VR4300 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DMULT Doubleword Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

DMULT

64 T–2: LO ¬ undefined
HI ¬ undefined

T–1: LO ¬ undefined
HI ¬ undefined

T: t ¬ GPR[rs] * GPR[rt]
LO ¬ t63...0
H I ¬ t127...64

Chapter 16

422

User’s Manual U10504EJ7V0UM00

Format:

DMULTU rs, rt

Description:

The contents of general purpose register

rs

and the contents of general purpose
register

rt

are multiplied, treating both operands as unsigned integers. An
overflow exception never occurs.

When the operation completes, the low-order doubleword is stored into special
register

LO

, and the high-order doubleword is stored into special register

HI

.

If either of the two preceding instructions is MFHI or MFLO, the results of these
instructions are undefined. To obtain the correct result, insert two or more other
instructions in between the MFHI or MFLO and DMULTU instructions.

This operation is defined for the V

R

4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark

Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (V

R

4300 in 32-bit User or Supervisor mode)

DMULTUDoubleword Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

DMULTU Unsigned

64 T–2: LO ¬ undefined
HI ¬ undefined

T–1: LO ¬ undefined
HI ¬ undefined

T: t ¬ (0 || GPR[rs]) * (0 || GPR[rt])
LO ¬ t63...0
HI ¬t127...64

User’s Manual U10504EJ7V0UM00 423

CPU Instruction Set Details

Format:

DSLL rd, rt, sa

Description:

The contents of general purpose register rt are shifted left by sa bits, inserting
zeros into the low-order bits. The result is stored in general purpose register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSLLDoubleword Shift Left Logical

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 0 0

DSLL

0 0 0 0 0

64 T: s ¬ 0 || sa

GPR[rd] ¬ GPR[rt](63–s)...0 || 0s

Chapter 16

424 User’s Manual U10504EJ7V0UM00

Format:

DSLLV rd, rt, rs

Description:

The contents of general purpose register rt are shifted left by the number of bits
specified by the low-order six bits contained in general purpose register rs,
inserting zeros into the low-order bits. The result is stored in general purpose
register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSLLV Doubleword Shift Left

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 1 0 1 0 00 0 0 0 0

DSLLVLogical Variable

64 T: s ¬ GPR[rs]5...0

GPR[rd]¬ GPR[rt](63–s)...0 || 0s

User’s Manual U10504EJ7V0UM00 425

CPU Instruction Set Details

Format:

DSLL32 rd, rt, sa

Description:

The contents of general purpose register rt are shifted left by 32+sa bits, inserting
zeros into the low-order bits. The result is stored in general purpose register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSLL32 Doubleword Shift Left

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSLL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 0 0

DSLL32Logical + 32

0
0 0 0 0 0

64 T: s ¬ 1 || sa

GPR[rd]¬ GPR[rt](63–s)...0 || 0s

Chapter 16

426 User’s Manual U10504EJ7V0UM00

Format:

DSRA rd, rt, sa

Description:

The contents of general purpose register rt are shifted right by sa bits, sign-
extending the high-order bits. The result is stored in general purpose register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSRADoubleword

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1

DSRA Shift Right Arithmetic

64 T: s ¬ 0 || sa

GPR[rd] ¬ (GPR[rt]63)s || GPR[rt] 63...s

User’s Manual U10504EJ7V0UM00 427

CPU Instruction Set Details

Format:

DSRAV rd, rt, rs

Description:

The contents of general purpose register rt are shifted right by the number of bits
specified by the low-order six bits of general purpose register rs, sign-extending
the high-order bits. The result is stored in general purpose register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSRAV Doubleword Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

DSRAVArithmetic Variable

64 T: s ¬ GPR[rs]5...0

GPR[rd] ¬ (GPR[rt]63)s || GPR[rt]63...s

Chapter 16

428 User’s Manual U10504EJ7V0UM00

Format:

DSRA32 rd, rt, sa

Description:

The contents of general purpose register rt are shifted right by 32+sa bits, sign-
extending the high-order bits. The result is stored in general purpose register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

 Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSRA32Doubleword Shift Right

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

DSRA32 Arithmetic + 32

64 T: s ¬1 || sa

GPR[rd] ¬ (GPR[rt]63)s || GPR[rt] 63...s

User’s Manual U10504EJ7V0UM00 429

CPU Instruction Set Details

Format:

DSRL rd, rt, sa

Description:

The contents of general purpose register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is stored in general purpose register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSRLDoubleword

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 1 0

DSRL

0
0 0 0 0 0

Shift Right Logical

64 T: s ¬ 0 || sa

GPR[rd] ¬ 0s || GPR[rt]63...s

Chapter 16

430 User’s Manual U10504EJ7V0UM00

Format:

DSRLV rd, rt, rs

Description:

The contents of general purpose register rt are shifted right by the number of bits
specified by the low-order six bits of general purpose register rs, inserting zeros
into the high-order bits. The result is stored in general purpose register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSRLV Doubleword Shift Right

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 DSRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

DSRLVLogical Variable

rs

64 T: s ¬ GPR[rs]5...0

GPR[rd] ¬ 0s || GPR[rt]63...s

User’s Manual U10504EJ7V0UM00 431

CPU Instruction Set Details

Format:

DSRL32 rd, rt, sa

Description:

The contents of general purpose register rt are shifted right by 32+sa bits,
inserting zeros into the high-order bits. The result is stored in general purpose
register rd.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSRL32Doubleword Shift Right

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 1 0

DSRL32 Logical + 32

0
0 0 0 0 0

64 T: s ¬ 1 || sa

GPR[rd] ¬ 0s || GPR[rt]63...s

Chapter 16

432 User’s Manual U10504EJ7V0UM00

Format:

DSUB rd, rs, rt

Description:

The contents of general purpose register rt are subtracted from the contents of
general purpose register rs, and the result is stored in general purpose register rd.

An integer overflow exception takes place if the carries out of bits 62 and 63 differ
(2’s complement overflow). The contents of destination register rd are not
modified when an integer overflow exception occurs.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Integer overflow exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSUB DSUBDoubleword Subtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

64 T: GPR[rd] ¬ GPR[rs] – GPR[rt]

User’s Manual U10504EJ7V0UM00 433

CPU Instruction Set Details

Format:

DSUBU rd, rs, rt

Description:

The contents of general purpose register rt are subtracted from the contents of
general purpose register rs, and the result is stored in general purpose register rd.

The only difference between this instruction and the DSUB instruction is that
DSUBU instruction never causes an integer overflow exception.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

DSUBU Doubleword Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

DSUBU

64 T: GPR[rd] ¬ GPR[rs] – GPR[rt]

Chapter 16

434 User’s Manual U10504EJ7V0UM00

Format:

ERET

Description:

ERET is the VR4300 instruction for returning from an interrupt, exception, or
error exception. Unlike a branch or jump instruction, ERET does not execute the
next instruction.

ERET instruction must not itself be placed in a branch delay slot.

If the ERL bit of the Status register is set (SR2 = 1), load the contents of the
ErrorEPC register to the PC and clear the ERL bit to zero. Otherwise (SR2 = 0),
load the PC from the EPC, and clear the EXL bit of the Status register to zero
(SR1 = 0).

An ERET instruction executed between a LL instruction and SC instruction also
causes the SC instruction to fail, since ERET instruction clears the LL bit to zero.

Operation:

Exceptions:

Coprocessor unusable exception

ERETReturn From Exception

0

6

6 531 25 2426

COP0

6

0

ERET

191

CO
0 1 0 0 0 0 0 1 1 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERET

32, 64 T: if SR2 = 1 then
 PC ¬ ErrorEPC

SR ¬ SR31...3 || 0 || SR1...0
else

PC ¬ EPC
SR ¬ SR31...2 || 0 || SR0

endif
LLbit ¬ 0

User’s Manual U10504EJ7V0UM00 435

CPU Instruction Set Details

Format:

J target

Description:

The 26-bit target is shifted left two bits and combined with the high-order four bits
of the address of the delay slot to calculate the target address. The program
unconditionally jumps to this calculated address with a delay of one instruction.

Operation:

Exceptions:

None

J Jump

31 2526

J

6

0

target

26
0 0 0 0 1 0

J

32 T: temp ¬ target
T+1: PC ¬ PC31...28 || temp || 02

64 T: temp ¬ target
T+1: PC ¬ PC63...28 || temp || 02

Chapter 16

436 User’s Manual U10504EJ7V0UM00

Format:

JAL target

Description:

The 26-bit target is shifted left two bits and combined with the high-order four bits
of the address of the delay slot to calculate the address. The program
unconditionally jumps to this calculated address with a delay of one instruction.
The address of the instruction after the delay slot is placed in the link register, r31.

Operation:

Exceptions:

None

JAL Jump And Link

31 2526

JAL

6

0

target

26
0 0 0 0 1 1

JAL

GPR[31] ¬ PC + 8
32 T: temp ¬ target

T+1: PC ¬ PC 31...28 || temp || 02

GPR[31] ¬ PC + 8
64 T: temp ¬ target

T+1: PC ¬ PC 63...28 || temp || 02

User’s Manual U10504EJ7V0UM00 437

CPU Instruction Set Details

Format:

JALR rs
JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general purpose
register rs, with a delay of one instruction. The address of the instruction after the
delay slot is stored in general purpose register rd. The default value of rd, if
omitted in the assembly language instruction, is 31.

Register numbers rs and rd should not be equal, because such an instruction does
not have the same effect when re-executed. If they are equal, the contents of rs
are destroyed by storing link address. However, if an attempt is made to execute
this instruction, an exception will not occur, and the result of executing such an
instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction
must specify a target register (rs) which contains an address whose low-order two
bits are zero. If these low-order two bits are not zero, an address exception will
occur when the jump target instruction is fetched.

Operation:

Exceptions:

None

JALR Jump And Link Register

31 2526 2021 1516

SPECIAL rs 0

6 5 5

rd 0 JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 10 0 0 0 00 0 0 0 00 0 0 0 0 0

JALR

32, 64 T: temp ¬ GPR [rs]
GPR[rd] ¬ PC + 8

T+1: PC ¬ temp

Chapter 16

438 User’s Manual U10504EJ7V0UM00

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general purpose
register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction must
specify a target register (rs) which contains an address whose low-order two bits
are zero. If these low-order two bits are not zero, an address exception will occur
when the jump target instruction is fetched.

Operation:

Exceptions:

None

JRJump Register

21 2031 2526

SPECIAL

6

0

JRrs 0

6 5

5 15 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

JR

32, 64 T: temp ¬ GPR[rs]

T+1: PC ¬ temp

User’s Manual U10504EJ7V0UM00

439

CPU Instruction Set Details

Format:

LB rt, offset(base)

Description:

The 16-bit

offset

is sign-extended and added to the contents of general purpose
register

base

to form a virtual address. The contents of the byte at the memory
location specified by the address are sign-extended and loaded into general
purpose register

rt

.

Operation:

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception

LB Load Byte

31 2526 2021 1516 0

LB base rt offset

6 5 5 16
1 0 0 0 0 0

LB

T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

mem ¬ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ¬ vAddr2...0 xor BigEndianCPU3

GPR[rt] ¬ (mem7+8*byte)24 || mem7+8*byte...8*byte

pAddr ¬ pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

mem ¬ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ¬ vAddr2...0 xor BigEndianCPU3

GPR[rt] ¬ (mem7+8*byte)56 || mem7+8*byte...8*byte

pAddr ¬ pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

32

64

Chapter 16

440

User’s Manual U10504EJ7V0UM00

Format:

LBU rt, offset(base)

Description:

The 16-bit

offset

is sign-extended and added to the contents of general purpose
register

base

to form a virtual address. The contents of the byte at the memory
location specified by the address are zero-extended and loaded into general
purpose register

rt

.

Operation:

Exceptions:

TLB miss exception TLB invalid exception
Bus error exception Address error exception

LBULoad Byte Unsigned

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16
1 0 0 1 0 0

LBU

T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]

(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

pAddr ¬ pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

mem ¬ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ¬ vAddr2...0 xor BigEndianCPU3

GPR[rt] ¬ 024 || mem7+8* byte...8* byte

T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

pAddr ¬ pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)

mem ¬ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ¬ vAddr2...0 xor BigEndianCPU3

GPR[rt] ¬ 056 || mem7+8* byte...8* byte

32

64

User’s Manual U10504EJ7V0UM00

441

CPU Instruction Set Details

Format:

LD rt, offset(base)

Description:

The 16-bit

offset

is sign-extended and added to the contents of general purpose
register

base

to form a virtual address. The contents of the 64-bit doubleword at
the memory location specified by the address are loaded into general purpose
register

rt

.

If any of the low-order three bits of the address are not zero, an address error
exception occurs.

This operation is defined for the V

R

4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark

In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (V

R

4300 in 32-bit User or Supervisor mode)

LDLoad Doubleword

31 2526 2021 1516 0

LD base rt offset

6 5 5 16
1 1 0 1 1 1

LD

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
mem ¬ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ¬ mem

Chapter 16

442 User’s Manual U10504EJ7V0UM00

Format:

LDCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The processor loads a doubleword from
the addressed memory location to CPz. The manner in which each coprocessor
uses the data is defined by the individual coprocessor specifications.

If any of the low-order three bits of the address are not zero, an address error
exception takes place.

This instruction is not valid for use with CP0.

When the CP1 is specified, the FR bit of the Status register equals zero, and the
least-significant bit in the rt field is not zero; the operation of the instruction is
undefined. If FR bit equals one, an odd or even register is specified by the rt.

* Refer to the table Opcode Bit Encoding on next page, or
16.7 CPU Instruction Opcode Bit Encoding.

LDCz Load Doubleword To Coprocessor z

31 2526 2021 1516 0

LDCz base rt offset

6 5 5 16
1 1 0 1 x x*

LDCz

User’s Manual U10504EJ7V0UM00 443

CPU Instruction Set Details

Operation:

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)LDCz Load Doubleword To Coprocessor z LDCz

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
mem ¬ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
mem ¬ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

COPzLD (rt, mem)

LDCz 31 30 29 28 27 26Bit # 0

LDC1

Coprocessor NumberOpcode

1 1 0 1 0 1

31 30 29 28 27 26Bit # 0

LDC2 1 1 0 1 1 0

Chapter 16

444 User’s Manual U10504EJ7V0UM00

Format:

 LDL rt, offset(base)

Description:

This instruction is used in combination with the LDR instruction to load the
doubleword data in the memory that is not at the word boundary to general
purpose register rt. The LDL instruction loads the high-order portion of the data
to the register, while the LDR instruction loads the low-order portion.

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to generate a virtual address that can specify any byte. Of the
doubleword data in the memory whose most-significant byte is specified by the
generated address, only the data at the same word boundary as the target address
is loaded and stored to the high-order portion of general purpose register rt. The
remaining portion of the register is not affected. Depending on the address
specified, the number of bytes to be loaded changes from 1 to 8.

In other words, first the addressed byte is stored to the most-significant byte
position of general purpose register rt. If there is data of the low-order byte that
follows the same doubleword boundary, the operation to store this data to the next
byte of general purpose register rt is repeated. The remaining low-order byte is
not affected.

LDL Load Doubleword Left

31 2526 2021 1516 0

LDL base rt offset

6 5 5 16
0 1 1 0 1 0

LDL

address 0
address 8

memory
register

LDL $24,3($0)

$24

(big-endian)

before

after

10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

$243 4 5 6 7 F G H

loading

loading

User’s Manual U10504EJ7V0UM00 445

CPU Instruction Set Details

The contents of general purpose register rt are internally bypassed within the
processor so that no NOP instruction is needed between an immediately preceding
load instruction which targets general purpose register rt and a subsequent LDL
(or LDR) instruction.

The address error exception does not occur even if the specified address is not at
the doubleword boundary.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

(continued)LDL Load Doubleword Left LDL

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 0 then

 pAddr ¬ pAddrPSIZE–1...3 || 0
3

endif
byte ¬ vAddr2...0 xor BigEndianCPU3

mem ¬ LoadMemory (uncached, byte, pAddr, vAddr, DATA)
 GPR[rt] ¬ mem7+8*byte...0 || GPR[rt]55–8*byte...0

Chapter 16

446 User’s Manual U10504EJ7V0UM00

The relationship between the address given to the LDL instruction and the result
(bytes for registers) are shown below:

Remark Type: access type output to memory (Refer to Figure 3-2 Byte
Access within a Doubleword.)

Offset: pAddr2...0 output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

(continued)LDL Load Doubleword Left LDL

LDL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 P B C D E F G H 0 0 7 I J K L M N O P 7 0 0
1 O P C D E F G H 1 0 6 J K L M N O P H 6 0 1
2 N O P D E F G H 2 0 5 K L M N O P G H 5 0 2
3 M N O P E F G H 3 0 4 L M N O P F G H 4 0 3
4 L M N O P F G H 4 0 3 M N O P E F G H 3 0 4
5 K L M N O P G H 5 0 2 N O P D E F G H 2 0 5
6 J K L M N O P H 6 0 1 O P C D E F G H 1 0 6
7 I J K L M N O P 7 0 0 P B C D E F G H 0 0 7

BigEndianCPU = 0

vAddr2...0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM BEM LEM BEM

User’s Manual U10504EJ7V0UM00 447

CPU Instruction Set Details

Format:

LDR rt, offset(base)

Description:

This instruction is used in combination with the LDL instruction to load the word
data in the memory that is not at the word boundary to general purpose register rt.
The LDL instruction loads the high-order portion of the data to the register, while
the LDR instruction loads the low-order portion.

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to generate a virtual address that can specify any byte. Of the word
data in the memory whose least-significant byte is specified by the generated
address, only the data at the same doubleword boundary as the target address is
loaded and stored to the low-order portion of general purpose register rt. The
remaining portion of the register is not affected. Depending on the address
specified, the number of bytes to be loaded changes from 1 to 8.

In other words, first the addressed byte is stored to the least-significant byte
position of general purpose register rt. If there is data of the high-order byte that
follows the same doubleword boundary, the operation to store this data to the next
byte of general purpose register rt is repeated. The remaining high-order byte is
not affected.

LDRLoad Doubleword Right

31 2526 2021 1516 0

LDR base rt offset

6 5 5 16
0 1 1 0 1 1

LDR

A

LDR $24,4($0)

after

address 0
address 8

register

$24

(big-endian)

before
10 2 3 4 5 6 7
98 10 11 12 13 14 15

B C D E F G H

A $24B C 0 1 2 3 4

memory

loading

loading

Chapter 16

448 User’s Manual U10504EJ7V0UM00

The contents of general purpose register rt are bypassed within the processor so
that no NOP instruction is needed between an immediately preceding load
instruction which targets general purpose register rt and a subsequent LDR (or
LDL) instruction.

The address error exception does not occur even if the specified address is not
located at the doubleword boundary.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

(continued)
LDRLoad Doubleword RightLDR

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ¬ pAddr31...3 || 0
3

endif
byte ¬ vAddr2...0 xor BigEndianCPU3

mem ¬ LoadMemory (uncached, DOUBLEWORD - byte, pAddr, vAddr, DATA)
GPR[rt] ¬ GPR[rt]63...64-8*byte || mem63...8*byte

User’s Manual U10504EJ7V0UM00 449

CPU Instruction Set Details

The relationship between the address given to the LDR instruction and the result
(bytes for registers) is shown below:

Remark Type: access type output to memory (Refer to Figure 3-2 Byte
Access within a Doubleword.)

Offset: pAddr2...0 output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

(continued) LDRLoad Doubleword RightLDR

LDR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O P 7 0 0 A B C D E F G I 0 7 0
1 A I J K L M N O 6 1 0 A B C D E F I J 1 6 0
2 A B I J K L M N 5 2 0 A B C D E I J K 2 5 0
3 A B C I J K L M 4 3 0 A B C D I J K L 3 4 0
4 A B C D I J K L 3 4 0 A B C I J K L M 4 3 0
5 A B C D E I J K 2 5 0 A B I J K L M N 5 2 0
6 A B C D E F I J 1 6 0 A I J K L M N O 6 1 0
7 A B C D E F G I 0 7 0 I J K L M N O P 7 0 0

BigEndianCPU = 0

vAddr2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM BEM LEM BEM

Chapter 16

450 User’s Manual U10504EJ7V0UM00

Format:

LH rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of the halfword at the
memory location specified by the address are sign-extended and loaded into
general purpose register rt.

If the least-significant bit of the address is not zero, an address error exception
occurs.

Operation:

 Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception

LH Load Halfword

31 2526 2021 1516 0

LH base rt offset

6 5 5 16
1 0 0 0 0 1

LH

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 pAddr ¬ pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))
 mem ¬ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 byte ¬ vAddr2...0 xor (BigEndianCPU2 || 0)
 GPR[rt] ¬ (mem15+8*byte)16 || mem15+8*byte...8* byte

 pAddr ¬ pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))
 mem ¬ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

 byte ¬ vAddr2...0 xor (BigEndianCPU2 || 0)
 GPR[rt] ¬ (mem15+8*byte)16 || mem15+8*byte...8* byte

User’s Manual U10504EJ7V0UM00 451

CPU Instruction Set Details

Format:

LHU rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of the halfword at the
memory location specified by the address are zero-extended and loaded into
general purpose register rt.

If the least-significant bit of the address is not zero, an address error exception
occurs.

Operation:

Exceptions:

TLB miss exception TLB invalid exception
Bus error exception Address error exception

LHULoad Halfword Unsigned

31 2526 2021 1516 0

LHU base rt offset

6 5 5 16
1 0 0 1 0 1

LHU

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 mem ¬ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
 byte ¬ vAddr2...0 xor (BigEndianCPU2 || 0)

GPR[rt] ¬ 016 || mem15+8*byte...8*byte

 pAddr ¬ pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 mem ¬ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
 byte ¬ vAddr2...0 xor (BigEndianCPU2 || 0)

GPR[rt] ¬ 048 || mem15+8*byte...8*byte

 pAddr ¬ pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

Chapter 16

452 User’s Manual U10504EJ7V0UM00

Format:

LL rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of the word at the memory
location specified by the address are loaded into general purpose register rt. In 64-
bit mode, the loaded word is sign-extended. In addition, the specified physical
address of the memory is stored to the LLAddr register, and sets 1 to LLbit.
Afterward, the processor checks whether the address stored to the LLAddr register
is not rewritten by the other processors or devices.

Load Linked (LL) and Store Conditional (SC) instructions can be used to
atomically update memory:

This atomically increments the word addressed by T0. Changing the ADD
instruction to an OR instruction changes this to an atomic bit set.

This instruction is available in User mode, and it is not necessary to enable CP0.

This instruction is defined to maintain the software compatibility with the
VR4400.

LL Load Linked

31 2526 2021 1516 0

LL base rt offset

6 5 5 16
1 1 0 0 0 0

LL

L1:
LL T1, (T0)
ADD T2, T1, 1
SC T2, (T0)
BEQ T2, 0, L1
NOP

User’s Manual U10504EJ7V0UM00 453

CPU Instruction Set Details

If the specified address is in the non-cache area, the operation of the LL instruction
is undefined. A cache miss that occurs between the LL and SC instructions
hinders execution of the SC instruction. Usually, therefore, do not use a load or
store instruction between the LL and SC instructions. Otherwise, the operation of
the SC instruction is not guaranteed. If an exception frequently occurs, the
exception also hinders execution of the SC instruction. It is therefore necessary
to disable the exception temporarily.

If either of the low-order two bits of the address are not zero, an address error
exception takes place.

Operation:

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception

(continued)LL Load Linked LL

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ¬ vAddr2...0 xor (BigEndianCPU || 02)
GPR[rt] ¬ mem31+8*byte...8*byte
LLbit ¬ 1
LLAddr ¬ pAddr

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ¬ vAddr2...0 xor (BigEndianCPU || 02)
GPR[rt] ¬ (mem31+8*byte)32 || mem31+8*byte...8*byte
LLbit ¬ 1
LLAddr ¬ pAddr

Chapter 16

454 User’s Manual U10504EJ7V0UM00

Format:

LLD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of the doubleword at the
memory location specified by the address are loaded into general purpose register
rt. In addition, the specified physical address of the memory is stored to the
LLAddr register, and sets 1 to LLbit. Afterward, the processor checks whether the
address stored to the LLAddr register is not rewritten by the other processors or
devices.

Load Linked Doubleword (LLD) instruction and Store Conditional Doubleword
(SCD) instruction can be used to atomically update the memory:

This atomically increments the doubleword addressed by T0. Changing the
DADD instruction to an OR instruction changes this to an atomic bit set.

This instruction is defined to maintain the software compatibility with the
VR4400.

LLD Load Linked Doubleword

31 2526 2021 1516 0

LLD base rt offset

6 5 5 16
1 1 0 1 0 0

LLD

L1:
LLD T1, (T0)
DADD T2, T1, 1
SCD T2, (T0)
BEQ T2, 0, L1
NOP

User’s Manual U10504EJ7V0UM00 455

CPU Instruction Set Details

If the specified address is in the non-cache area, the operation of the LLD
instruction is undefined. A cache miss that may occur between the LLD and SCD
instructions hinders execution of the SCD instruction. Usually, therefore, do not
use a load or store instruction between the LLD and SCD instructions. Otherwise,
the operation of the SCD instruction will not be guaranteed. If an exception
frequently occurs, the exception also hinders execution of the SCD instruction. It
is therefore necessary to disable the exception temporarily.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

(continued)LLD Load Linked Doubleword LLD

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 mem ¬ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

 GPR[rt] ¬ mem
 LLbit ¬ 1

LLAddr ¬ pAddr

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 mem ¬ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

 GPR[rt] ¬ mem
 LLbit ¬ 1

LLAddr ¬ pAddr

Chapter 16

456 User’s Manual U10504EJ7V0UM00

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

(continued)LLD Load Linked Doubleword LLD

User’s Manual U10504EJ7V0UM00 457

CPU Instruction Set Details

Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and combined to 16 bits of zeros. The
result is placed into general purpose register rt. In 64-bit mode, the loaded word
is sign-extended to 64 bits.

Operation:

Exceptions:

None

LUI Load Upper Immediate

31 2526 2021 1516 0

LUI rt immediate

6 5 5 16
0 0 1 1 1 1

LUI

0
0 0 0 0 0

32 T: GPR[rt] ¬ immediate || 016

64 T: GPR[rt] ¬ (immediate15)32 || immediate || 016

Chapter 16

458 User’s Manual U10504EJ7V0UM00

Format:
LW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of the word at the memory
location specified by the address are loaded into general purpose register rt. In 64-
bit mode, the loaded word is sign-extended to 64 bits.

If either of the low-order two bits of the address is not zero, an address error
exception occurs.

Operation:

 Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception

LWLoad Word

31 2526 2021 1516 0

LW base rt offset

6 5 5 16
1 0 0 0 1 1

LW

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
mem ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] ¬ mem

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
mem ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] ¬ mem

User’s Manual U10504EJ7V0UM00 459

CPU Instruction Set Details

Format:

LWCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The processor loads a word at the
addressed memory location to the general purpose register rt of the CPz. The
manner in which each coprocessor uses the data is defined by the individual
coprocessor specifications.

If either of the low-order two bits of the address is not zero, an address error
exception occurs.

This instruction is not valid for use with CP0.

* Refer to the table Opcode Bit Encoding on next page, or
16.7 CPU Instruction Opcode Bit Encoding.

LWCz Load Word To Coprocessor z

31 2526 2021 1516 0

LWCz base rt offset

6 5 5 16
1 1 0 0 x x*

LWCz

Chapter 16

460 User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)LWCz Load Word To Coprocessor z LWCz

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ¬ vAddr2...0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached)¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ¬ vAddr2...0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

LWCz 31 30 29 28 27 26Bit # 0

LWC1

Coprocessor NumberOpcode

1 1 0 0 0 1

31 30 29 28 27 26Bit # 0

LWC2 1 1 0 0 1 0

User’s Manual U10504EJ7V0UM00 461

CPU Instruction Set Details

Format:

LWL rt, offset(base)

Description:

This instruction is used in combination with the LWR instruction to load the word
data in the memory that is not at the word boundary to general purpose register rt.
The LWL instruction loads the high-order portion of the data to the register, while
the LWR instruction loads the low-order portion.

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to generate a virtual address that can specify any byte. Of the word
data in the memory whose most-significant byte is specified by the generated
address, only the data at the same word boundary as the target address is loaded
and stored to the high-order portion of general purpose register rt. The remaining
portion of the register is not affected. Depending on the address specified, the
number of bytes to be loaded changes from 1 to 4.

In other words, first the addressed byte is stored to the most-significant byte
position of general purpose register rt. If there is data of the low-order byte that
follows the same word boundary, the operation to store this data to the next byte
of general purpose register rt is repeated.

The remaining low-order byte is not affected.

LWL Load Word Left

31 2526 2021 1516 0

LWL base rt offset

6 5 5 16
1 0 0 0 1 0

LWL

address 0
address 4

0 1 2 3
4 5 6 7

memory

A B C D

register

$24

(big-endian)

before

after
1 2 3 D $24

LWL $24,1($0)

loading

loading

Chapter 16

462 User’s Manual U10504EJ7V0UM00

The contents of general purpose register rt are bypassed within the processor so
that no NOP instruction is needed between an immediately preceding load
instruction which targets general purpose register rt and a subsequent LWL (or
LWR) instruction.

The address exception error does not occur even if the specified address is not
located at the word boundary.

Operation:

(continued)LWL Load Word Left LWL

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ¬ pAddrPSIZE–1...2 || 0
2

endif
byte ¬ vAddr1...0 xor BigEndianCPU2

word ¬ vAddr2 xor BigEndianCPU
mem ¬ LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp ¬ mem32*word+8*byte+7 || GPR[rt]23-8*byte...0
GRP[rt] ¬ temp

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ¬ pAddrPSIZE–1...2|| 02

endif
byte ¬ vAddr1...0 xor BigEndianCPU2

word ¬ vAddr2 xor BigEndianCPU
mem ¬ LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp ¬ mem32*word+8*byte+7 || GPR[rt]23-8*byte...0
GPR[rt] ¬ (temp31)32 || temp

User’s Manual U10504EJ7V0UM00 463

CPU Instruction Set Details

The relationship, between the address given to the LWL instruction and the result
(bytes for registers) is shown below:

Remark Type: access type output to memory (Refer to Figure 3-2 Byte
Access within a Doubleword.)

Offset: pAddr2...0 output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

S: sign-extension of destination bit 31

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception

LWL LWL(continued)
Load Word Left

LWL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S P F G H 0 0 7 S S S S I J K L 3 4 0
1 S S S S O P G H 1 0 6 S S S S J K L H 2 4 1
2 S S S S N O P H 2 0 5 S S S S K L G H 1 4 2
3 S S S S M N O P 3 0 4 S S S S L F G H 0 4 3
4 S S S S L F G H 0 4 3 S S S S M N O P 3 0 4
5 S S S S K L G H 1 4 2 S S S S N O P H 2 0 5
6 S S S S J K L H 2 4 1 S S S S O P G H 1 0 6
7 S S S S I J K L 3 4 0 S S S S P F G H 0 0 7

BigEndianCPU = 0

vAddr2...0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM BEM LEM BEM

Chapter 16

464 User’s Manual U10504EJ7V0UM00

Format:

LWR rt, offset(base)

Description:

This instruction is used in combination with the LWL instruction to load the word
data in the memory that is not at the word boundary to general purpose register rt.
The LWL instruction loads the high-order portion of the data to the register, while
the LWR instruction loads the low-order portion.

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to generate a virtual address that can specify any byte. Of the word
data in the memory whose least-significant byte is specified by the generated
address, only the data at the same word boundary as the target address is loaded
and stored to the low-order portion of general purpose register rt. The remaining
portion of the register is not affected. Depending on the address specified, the
number of bytes to be loaded changes from 1 to 4.

In other words, first the addressed byte is stored to the least-significant byte
position of general purpose register rt. If there is data of the high-order byte that
follows the same word boundary, the operation to store this data to the next byte
of general purpose register rt is repeated.

The remaining high-order byte is not affected.

LWRLoad Word Right

31 2526 2021 1516 0

LWR base rt offset

6 5 5 16
1 0 0 1 1 0

LWR

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

LWR $24,4($0)

$24

memory
(big-endian)

before

after
A B C 4 $24

loading

loading

User’s Manual U10504EJ7V0UM00 465

CPU Instruction Set Details

The contents of general purpose register rt are bypassed within the processor so
that no NOP instruction is needed between an immediately preceding load
instruction which targets general purpose register rt and a following LDL (or
LWR) instruction.

The address error exception does not occur even if the specified address is not
located at the word boundary.

Operation:

(continued) LWRLoad Word RightLWR

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ¬ pAddrPSIZE–31...3 || 0
3

endif
byte ¬ vAddr1...0 xor BigEndianCPU2

word ¬ vAddr2 xor BigEndianCPU
mem ¬ LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ¬ mem31...32-8*byte...0 || mem31+32*word-32*word+8*byte
GPR[rt] ¬ temp

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ¬ pAddrPSIZE–31...3 || 0
3

endif
byte ¬ vAddr1...0 xor BigEndianCPU2

word ¬ vAddr2 xor BigEndianCPU
mem ¬ LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ¬ mem31...32-8*byte...0 || mem31+32*word-32*word+8*byte
GPR[rt] ¬ (temp31)32 || temp

Chapter 16

466 User’s Manual U10504EJ7V0UM00

The relationship between the address given to the LWR instruction and the result
(bytes for registers) are shown below:

Remark Type: access type output to memory (Refer to Figure 3-2 Byte
Access within a Doubleword.)

Offset: pAddr2...0 output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

S: Sign-extension of destination bit 31
x: Not affected (in 32-bit mode)
Sign-extension of destination bit 31 (in 64-bit mode)

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception

LWRLWR (continued)
Load Word Right

LWR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S M N O P 3 0 4 X X X X E F G I 0 7 0
1 X X X X E M N O 2 1 4 X X X X E F I J 1 6 0
2 X X X X E F M N 1 2 4 X X X X E I J K 2 5 0
3 X X X X E F G M 0 3 4 S S S S I J K L 3 4 0
4 S S S S I J K L 3 4 0 X X X X E F G M 0 3 4
5 X X X X E I J K 2 5 0 X X X X E F M N 1 2 4
6 X X X X E F I J 1 6 0 X X X X E M N O 2 1 4
7 X X X X E F G I 0 7 0 S S S S M N O P 3 0 4

BigEndianCPU = 0

vAddr2...0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM BEM LEM BEM

User’s Manual U10504EJ7V0UM00 467

CPU Instruction Set Details

Format:

LWU rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of the word at the memory
location specified by the address are loaded into general purpose register rt. The
loaded word is zero-extended in 64-bit mode.

If either of the low-order two bits of the effective address is not zero, an address
error exception occurs.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark In the32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

LWULoad Word Unsigned

31 2526 2021 1516 0

LWU base rt offset

6 5 5 16
1 0 0 1 1 1

LWU

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]

 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
 mem ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

 GPR[rt] ¬ mem

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]

 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
 mem ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
 GPR[rt] ¬ 032 || mem

Chapter 16

468 User’s Manual U10504EJ7V0UM00

Exceptions:

TLB miss exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

(continued) LWULoad Word UnsignedLWU

User’s Manual U10504EJ7V0UM00 469

CPU Instruction Set Details

Format:

MFC0 rt, rd

Description:

The contents of general purpose register rd of the CP0 are loaded into general
purpose register rt.

Operation:

 Exceptions:

Coprocessor unusable exception (VR4300 in 64-/32-bit User and Supervisor
mode if CP0 is disabled)

MFC0 Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 MF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC0

32 T: data ¬ CPR[0,rd]

T+1: GPR[rt] ¬ data

64 T: data ¬ CPR[0,rd]

T+1: GPR[rt] ¬ (data31)32 || data31...0

Chapter 16

470 User’s Manual U10504EJ7V0UM00

Format:

MFCz rt, rd

Description:

The contents of general purpose register rd of CPz are loaded into general purpose
register rt.

Operation:

 Exceptions:

Coprocessor unusable exception

* Refer to the table Opcode Bit Encoding on next page, or
16.7 CPU Instruction Opcode Bit Encoding.

MFCz

11

Move From Coprocessor z

31 2526 2021 1516

COPz MF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFCz

32 T: data ¬ CPR[z,rd]

T+1: GPR[rt] ¬ data

64 T: if rd0 = 0 then

data ¬ CPR[z, rd4...1 || 0]31...0

else

data ¬ CPR[z, rd4...1 || 0]63...32

endif

T+1: GPR[rt] ¬ (data31)32 || data

User’s Manual U10504EJ7V0UM00 471

CPU Instruction Set Details

Opcode Bit Encoding:

(continued)MFCz MFCzMove From Coprocessor z

MFCz 31 30 29 28 27 26Bit # 25 0

MFC0

24 23 22 21

Coprocessor Number
Coprocessor Sub-opcodeOpcode

0 1 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26Bit # 25 0

MFC1

24 23 22 21

0 1 0 0 0 1 0 0 0 0 0

31 30 29 28 27 26Bit # 25 0

MFC2

24 23 22 21

0 1 0 0 1 0 0 0 0 0 0

Chapter 16

472 User’s Manual U10504EJ7V0UM00

Format:

MFHI rd

Description:

The contents of special register HI are loaded into general purpose register rd.

To ensure proper operation in the event of interruptions, the two instructions
which follow a MFHI instruction may not be any of the instructions which modify
the HI register: MULT, MULTU, DIV, DIVU, MTHI, DMULT, DMULTU,
DDIV, DDIVU.

Operation:

Exceptions:

None

MFHI

0

Move From HI

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFHI0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

MFHI

32, 64 T: GPR[rd] ¬ HI

User’s Manual U10504EJ7V0UM00 473

CPU Instruction Set Details

Format:

MFLO rd

Description:

The contents of special register LO are loaded into general purpose register rd.

To ensure proper operation in the event of interruptions, the two instructions
which follow a MFLO instruction may not be any of the instructions which
modify the LO register: MULT, MULTU, DIV, DIVU, MTLO, DMULT,
DMULTU, DDIV, DDIVU.

Operation:

Exceptions:

None

MFLOMove From LO

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFLO0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

MFLO

32, 64 T: GPR[rd] ¬ LO

Chapter 16

474 User’s Manual U10504EJ7V0UM00

Format:

MTC0 rt, rd

Description:

The contents of general purpose register rt are loaded into general purpose register
rd of CP0.

Because the contents of the TLB may be altered by this instruction, the operation
of load instructions, store instructions, and TLB operations immediately prior to
and after this instruction are undefined.

If the register manipulated by this instruction is used by an instruction before or
after this instruction, place that instruction at an appropriate position by referring
to Chapter 19 Coprocessor 0 Hazards.

Operation:

Exceptions:

Coprocessor unusable exception (VR4300 in 64-/32-bit User and Supervisor
mode if CP0 is disabled)

MTC0 Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 MT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

MTC0

32, 64 T: data ¬ GPR[rt]
T+1: CPR[0, rd] ¬ data

User’s Manual U10504EJ7V0UM00

475

CPU Instruction Set Details

Format:

MTCz rt, rd

Description:

The contents of general purpose register

rt

are loaded into general purpose register

rd

of CPz.

Operation:

Exceptions:

Coprocessor unusable exception

* Refer to the table

Opcode Bit Encoding

 on next page, or

16.7 CPU Instruction Opcode Bit Encoding

.

MTCz

11

Move To Coprocessor z

31 2526 2021 1516

COPz MT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

MTCz

32 T: data ¬ GPR[rt]
T+1: CPR[z, rd] ¬ data

64 T: data ¬ GPR[rt]31...0
T+1: if rd0 = 0

CPR[z, rd4...1 || 0] ¬ CPR[z, rd4...1 || 0]63...32 || data
else

CPR[z, rd4...1 || 0] ¬ data || CPR[z, rd4...1 || 0]31...0
endif

Chapter 16

476

User’s Manual U10504EJ7V0UM00

Opcode Bit Encoding:

MTCz Move To Coprocessor z MTCz(continued)

MTCz 31 30 29 28 27 26Bit # 25 0

MTC0

24 23 22 21

Coprocessor Number
Coprocessor Sub-opcode

Opcode

0 1 0 0 0 0 0 0 1 0 0

31 30 29 28 27 26Bit # 25 0

MTC1

24 23 22 21

0 1 0 0 0 1 0 0 1 0 0

31 30 29 28 27 26Bit # 25 0

MTC2

24 23 22 21

0 1 0 0 1 0 0 0 1 0 0

User’s Manual U10504EJ7V0UM00

477

CPU Instruction Set Details

Format:

MTHI rs

Description:

The contents of general purpose register

rs

are loaded into special register

HI

.

If the MTHI instruction is executed following the MULT, MULTU, DIV, or
DIVU instruction, the operation is performed normally. However, if the MFLO,
MFHI, MTLO, or MTHI instruction is executed following the MTHI instruction,
the contents of special register

LO

 are undefined.

Operation:

Exceptions:

None

rs

MTHI Move To HI

21 2031 2526

SPECIAL

6

0

MTHI0

6 5

5 15 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

MTHI

32,64 T–2: HI ¬ undefined

T–1: HI ¬ undefined

T: HI ¬ GPR[rs]

Chapter 16

478

User’s Manual U10504EJ7V0UM00

Format:

MTLO rs

Description:

The contents of general purpose register

rs

 are loaded into special register

LO.

If the MTLO instruction is executed following the MULT, MULTU, DIV, or
DIVU instruction, the operation is performed normally. However, if the MFLO,
MFHI, MTLO, or MTHI instruction is executed following the MTLO instruction,
the contents of special register

HI

 are undefined.

Operation:

Exceptions:

None

rs

MTLOMove To LO

21 2031 2526

SPECIAL

6

0

MTLO0

6 5

5 15 6
0 1 0 0 1 1

MTLO

32,64 T–2: LO ¬ undefined

T–1: LO ¬ undefined

T: LO ¬ GPR[rs]

User’s Manual U10504EJ7V0UM00

479

CPU Instruction Set Details

Format:

MULT rs, rt

Description:

The contents of general purpose registers

rs

and

rt

are multiplied, treating both
operands as 32-bit signed integers. An integer overflow exception never occurs.

In 64-bit mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded
into special register

LO

, and the high-order word of the double result is loaded into
special register

HI

. In the 64-bit mode, the respective results are sign-extended
and stored.

If either the two instructions immediately preceding this instruction is the MFHI
or MFLO instruction, the execution result of the transfer instruction is undefined.
To obtain the correct result, insert two or more other instructions in between the
MFHI or MFLO and MULT instruction.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

MULT Multiply MULT

Chapter 16

480

User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

None

MULT Multiply MULT(continued)

32 T–2: LO ¬ undefined
HI ¬ undefined

T–1: LO ¬ undefined
HI ¬ undefined

T: t ¬ GPR[rs] * GPR[rt]
LO ¬ t31...0
H I ¬ t63...32

64 T–2: LO ¬ undefined
HI ¬ undefined

T–1: LO ¬ undefined
HI ¬ undefined

T: t ¬ GPR[rs]31...0 * GPR[rt]31...0
LO ¬ (t31)32 || t31...0
HI ¬ (t63)32 || t63...32

User’s Manual U10504EJ7V0UM00

481

CPU Instruction Set Details

Format:

MULTU rs, rt

Description:

The contents of general purpose register

rs

and the contents of general purpose
register

rt are multiplied, treating both operands as 32-bit unsigned values. An
overflow exception never occurs.

In 64-bit mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the doubleword result is
loaded into special register LO, and the high-order word of the doubleword result
is loaded into special register HI. In 64-bit mode, these results are sign-extended
and loaded.

If either of the two preceding instructions is MFHI or MFLO, the execution results
of these transfer instructions are undefined. To obtain the correct result, insert two
or more additional instructions in between the MFHI or MFLO and MULT
instructions.

MULTUMultiply Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

MULTU

Chapter 16

482 User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

None

MULTUMultiply UnsignedMULTU (continued)

32 T–2: LO ¬ undefined
HI ¬ undefined

T–1: LO ¬ undefined
HI ¬ undefined

T: t ¬ (0 || GPR[rs]) * (0 || GPR[rt])
LO ¬ t31...0
HI ¬ t63...32

64 T–2: LO ¬ undefined
HI ¬ undefined

T–1: LO ¬ undefined
HI ¬ undefined

T: t ¬ (0 || GPR[rs]31...0) * (0 || GPR[rt]31...0)
LO ¬ (t31)32 || t31...0
HI ¬ (t63)32 || t63...32

User’s Manual U10504EJ7V0UM00 483

CPU Instruction Set Details

Format:

NOR rd, rs, rt

Description:

A logical NOR operation applied between the contents of general purpose
registers rs and rt is executed in bit units. The result is stored in general purpose
register rd.

Operation:

Exceptions:

None

NOR Nor

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

NOR

32, 64 T: GPR[rd] ¬ GPR[rs] nor GPR[rt]

Chapter 16

484 User’s Manual U10504EJ7V0UM00

Format:

OR rd, rs, rt

Description:

A logical OR operation applied between the contents of general purpose registers
rs and rt is executed in bit unites. The result is stored in general purpose register
rd.

Operation:

Exceptions:

None

OROr

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

OR

32, 64 T: GPR[rd] ¬ GPR[rs] or GPR[rt]

User’s Manual U10504EJ7V0UM00 485

CPU Instruction Set Details

Format:

ORI rt, rs, immediate

Description:

A logical OR operation applied between 16-bit zero-extended immediate and the
contents of general purpose register rs is executed in bit units. The result is stored
in general purpose register rt.

Operation:

Exceptions:

None

31 2526 2021 1516 0

ORI rs rt immediate

6 5 5 16
0 0 1 1 0 1

ORIOr ImmediateORI

32 T: GPR[rt] ¬ GPR[rs]31...16 || (immediate or GPR[rs]15...0)

64 T: GPR[rt] ¬ GPR[rs]63...16 || (immediate or GPR[rs]15...0)

Chapter 16

486 User’s Manual U10504EJ7V0UM00

Format:

SB rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The least-significant byte of register rt is
stored in the memory specified by the address.

Operation:

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SBStore Byte

31 2526 2021 1516 0

SB base rt offset

6 5 5 16
1 0 1 0 0 0

SB

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 data ¬ GPR[rt]63–8*byte...0 || 08*byte

 StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

 pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor ReverseEndian3)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]

 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 byte ¬ vAddr2...0 xor BigEndianCPU3

 data ¬ GPR[rt]63–8*byte...0 || 08*byte

 StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

 pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor ReverseEndian3)

 byte ¬ vAddr2...0 xor BigEndianCPU3

User’s Manual U10504EJ7V0UM00 487

CPU Instruction Set Details

Format:

SC rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of general purpose register rt
are stored at the memory location specified by the address only when the LL bit is
set.

If the other processor or device changes the physical address after the previous LL
instruction has been executed, or if the ERET instruction exists between the LL
and SC instructions, the register contents are not stored to the memory, and storing
fails.

The success or failure of the SC operation is indicated by the contents of general
purpose register rt after execution of the instruction. A successful SC instruction
sets the contents of general purpose register rt to 1; an unsuccessful SC instruction
sets it to 0.

The operation of SC is undefined when the address is different from the address
used in the last LL instruction.

This instruction is available in User mode; it is not necessary for CP0 to be
enabled.

If either of the low-order two bits of the address is not zero, an address error
exception takes place.

If this instruction both fails and causes an exception, the exception takes
precedence.

This instruction is defined to maintain software compatibility with the VR4400.

SC Store Conditional

31 2526 2021 1516 0

SC base rt offset

6 5 5 16
1 1 1 0 0 0

SC

Chapter 16

488 User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

(continued)SC Store Conditional SC

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ GPR[rt]31...0
if LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ¬ 031 || LLbit

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ GPR[rt]31...0
if LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ¬ 063 || LLbit

User’s Manual U10504EJ7V0UM00 489

CPU Instruction Set Details

Format:

SCD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of general purpose register rt
are stored at the memory location specified by the address only when the LL bit is
set.

If another processor or device changes the target address after the previous LLD
instruction has been executed, or if the ERET instruction exists between the LLD
and SCD instructions, the register contents are not stored to the memory, and
storing fails.

The success or failure of the SCD operation is indicated by the contents of general
purpose register rt after execution of the instruction. A successful SCD
instruction sets the contents of general purpose register rt to 1; an unsuccessful
SCD instruction sets it to 0.

The operation of SCD is undefined when the address is different from the address
used in the last LLD.

This instruction is available in User mode; it is not necessary for CP0 to be
enabled.

If either of the low-order three bits of the address is not zero, an address error
exception takes place.

If this instruction both fails and causes an exception, the exception takes
precedence.

This instruction is defined in the 64-bit mode and 32-bit Kernel mode. If this
instruction is executed in the 32-bit User or Supervisor mode, the reserved
instruction exception occurs.

This instruction is defined to maintain software compatibility with the VR4400.

SCD Store Conditional Doubleword

31 2526 2021 1516 0

SCD base rt offset

6 5 5 16
1 1 1 1 0 0

SCD

Chapter 16

490 User’s Manual U10504EJ7V0UM00

Operation:

Remark In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (32-bit User or Supervisor mode)

(continued)SCD Store Conditional Doubleword SCD

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ GPR[rt]
if LLbit then
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ¬ 063 || LLbit

User’s Manual U10504EJ7V0UM00 491

CPU Instruction Set Details

Format:

SD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of general purpose register rt
are stored at the memory location specified by the address.

If either of the low-order three bits of the address are not zero, an address error
exception occurs.

This operation is defined for the VR4300 operating in 64-bit mode and in 32-bit
Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a reserved instruction exception.

Operation:

Remark In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

SDStore Doubleword

31 2526 2021 1516 0

SD base rt offset

6 5 5 16
1 1 1 1 1 1

SD

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]

 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 data ¬ GPR[rt]
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]

 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 data ¬ GPR[rt]
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Chapter 16

492 User’s Manual U10504EJ7V0UM00

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (32-bit User or Supervisor mode)

SDStore DoublewordSD
(continued)

User’s Manual U10504EJ7V0UM00 493

CPU Instruction Set Details

Format:

SDCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. Register rt of coprocessor unit z sources a
doubleword, which the processor writes to the addressed memory location. The
stored data is defined by individual coprocessor specifications.

If any of the low-order three bits of the address is not zero, an address error
exception takes place.

This instruction is not valid for use with CP0.

When the CP1 is specified, the FR bit of the Status register equals 0, and the least-
significant bit in the rt field is not 0, the operation of this instruction is undefined.
If the FR bit equals 1, both odd and even registers can be specified by rt.

* Refer to the table, Opcode Bit Encoding on next page, or
16.7 CPU Instruction Opcode Bit Encoding.

SDCz Store Doubleword

31 2526 2021 1516 0

SDCz base rt offset

6 5 5 16
1 1 1 1 x x*

SDCzFrom Coprocessor z

Chapter 16

494 User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)
SDCz Store Doubleword SDCzFrom Coprocessor z

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ GPR(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ GPR(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

SDCz 31 30 29 28 27 26Bit # 0

SDC1

Coprocessor NumberOpcode

1 1 1 1 0 1

31 30 29 28 27 26Bit # 0

SDC2 1 1 1 1 1 0

User’s Manual U10504EJ7V0UM00 495

CPU Instruction Set Details

Format:

SDL rt, offset(base)

Description:

This instruction is used in combination with the SDR instruction to store the
doubleword data in the register to the doubleword in the memory that is not at the
doubleword boundary. The SDL instruction stores the high-order portion of the
data to the memory, while the SDR instruction stores the low-order portion.

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to generate a virtual address. Of the doubleword data in the memory
whose most-significant byte is specified by the generated address, only the high-
order portion of general purpose register rt is stored to the memory at the same
doubleword boundary as the target address. Depending on the address specified,
the number of bytes to be stored changes from 1 to 8.

In other words, first the most-significant byte position of general purpose register
rt is stored to the bytes in the addressed memory. If there is data of the low-order
byte that follows the same doubleword boundary, the operation to store this data
to the next byte of the memory is repeated.

SDL Store Doubleword Left

31 2526 2021 1516 0

SDL base rt offset

6 5 5 16
1 0 1 1 0 0

SDL

14

SDL $24,1($0)

after

address 0
address 8

memory
register

$24

(big-endian)

before
10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

address 0
address 8

0
98 10 11 12 13 15

B C D E F GA

storing

storing

Chapter 16

496 User’s Manual U10504EJ7V0UM00

The address error exception does not occur even if the specified address is not
located at the doubleword boundary. This operation is defined in the 64-bit mode
and 32-bit Kernel mode. If this instruction is executed in the 32-bit User or
Supervisor mode, the reserved instruction exception occurs.

Operation:

Remark In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

SDL Store Doubleword Left SDL(continued)

64 T: vAddr ¬ ((offset15)48 || offset 15...0) + GPR[base]

(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

pAddr ¬ pAddrPSIZE –1...3 || (pAddr2...0 xor ReverseEndian3)

If BigEndianMem = 0 then

pAddr ¬ pAddr31...3 || 03

endif

byte ¬ vAddr2...0 xor BigEndianCPU3

data ¬ 056–8*byte || GPR[rt]63...56–8*byte

Storememory (uncached, byte, data, pAddr, vAddr, DATA)

User’s Manual U10504EJ7V0UM00 497

CPU Instruction Set Details

The relationships between the addresses given to the SDL instruction and the
result (bytes for doubleword in the memory) are shown below:

Remark Type: access type output to memory (Refer to Figure 3-2 Byte
Access within a Doubleword.)

Offset: pAddr2...0 output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (32-bit User or Supervisor mode)

SDL Store Doubleword Left SDL(continued)

SDL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O A 0 0 7 A B C D E F G H 7 0 0
1 I J K L M N A B 1 0 6 I A B C D E F G 6 0 1
2 I J K L M A B C 2 0 5 I J A B C D E F 5 0 2
3 I J K L A B C D 3 0 4 I J K A B C D E 4 0 3
4 I J K A B C D E 4 0 3 I J K L A B C D 3 0 4
5 I J A B C D E F 5 0 2 I J K L M A B C 2 0 5
6 I A B C D E F G 6 0 1 I J K L M N A B 1 0 6
7 A B C D E F G H 7 0 0 I J K L M N O A 0 0 7

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM BEM LEM BEMvAddr2...0 typedestination destination type

Chapter 16

498 User’s Manual U10504EJ7V0UM00

Format:

SDR rt, offset(base)

Description:

This instruction is used in combination with the SDL instruction to store the
doubleword data in the register to the word data in the memory that is not at the
doubleword boundary. The SDL instruction stores the high-order portion of the
data to the memory, while the SDR instruction stores the low-order portion.

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to generate a virtual address. Of the doubleword data in the memory
whose least-significant byte is specified by the generated address, only the low-
order portion of general purpose register rt is stored to the memory at the same
doubleword boundary as the target address. Depending on the address specified,
the number of bytes to be stored changes from 1 to 8.

In other words, first the least-significant byte position of general purpose register
rt is stored to the bytes in the addressed memory. If there is data of the high-order
byte that follows the same doubleword boundary, the operation to store this data
to the next byte of the memory is repeated.

31 2526 2021 1516 0

SDR base rt offset

6 5 5 16
1 0 1 1 0 1

SDR Store Doubleword Right SDR

SDR $24,10($0)

after

Aaddress 0
address 8

register

$24

(big-endian)

before B C D E F G H

memory

address 0
address 8

10 2 3 4 5 6 7
98 10 11 12 13 14 15

4 5 6 7
98 10 11 12 13 14 15

E F G H

storing

storing

User’s Manual U10504EJ7V0UM00 499

CPU Instruction Set Details

The address error exception does not occur even if the specified address is not
located at the doubleword boundary. This operation is defined in the 64-bit mode
and 32-bit Kernel mode. If this instruction is executed in the 32-bit User or
Supervisor mode, the reserved instruction exception occurs.

Operation:

Remark In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

SDR Store Doubleword Right SDR(continued)

64 T: vAddr ¬ ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA

pAddr ¬ pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ¬ pAddrPSIZE – 1...3 || 03

endif
byte ¬ vAddr2...0 xor BigEndianCPU3

data ¬ GPR[rt]63–8*byte || 08*byte
StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr,
DATA)

Chapter 16

500 User’s Manual U10504EJ7V0UM00

The relationships between the addresses given to the SDR instruction and the
result (bytes for doubleword in the memory) are shown below:

Remark Type: access type output to memory (Refer to Figure 3-2 Byte
Access within a Doubleword.)

Offset: pAddr2...0 output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (32-bit User or Supervisor mode)

SDR Store Doubleword Right SDR(continued)

SDR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 A B C D E F G H 7 0 0 H J K L M N O P 0 7 0
1 B C D E F G H P 6 1 0 G H K L M N O P 1 6 0
2 C D E F G H O P 5 2 0 F G H L M N O P 2 5 0
3 D E F G H N O P 4 3 0 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 D E F G H N O P 4 3 0
5 F G H L M N O P 2 5 0 C D E F G H O P 5 2 0
6 G H K L M N O P 1 6 0 B C D E F G H P 6 1 0
7 H J K L M N O P 0 7 0 A B C D E F G H 7 0 0

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM BEM LEM BEM
vAddr2...0 typedestination destination type

User’s Manual U10504EJ7V0UM00 501

CPU Instruction Set Details

Format:

SH rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The least-significant halfword of register
rt is stored in the memory specified by the address.

If the least-significant bit of the address is not zero, an address error exception
occurs.

Operation:

SH Store Halfword

31 2526 2021 1516 0

SH base rt offset

6 5 5 16
1 0 1 0 0 1

SH

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

 byte ¬ vAddr2...0 xor (BigEndianCPU2 || 0)
 data ¬ GPR[rt]63–8*byte...0 || 08*byte

 StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

 pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]

 byte ¬ vAddr2...0 xor (BigEndianCPU2 || 0)
 data ¬ GPR[rt]63–8*byte...0 || 08*byte

 StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

 (pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
 pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

Chapter 16

502 User’s Manual U10504EJ7V0UM00

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SH Store Halfword SH
(Continued)

User’s Manual U10504EJ7V0UM00 503

CPU Instruction Set Details

Format:

SLL rd, rt, sa

Description:

The contents of general purpose register rt are shifted left by sa bits, inserting
zeros into the low-order bits. The result is stored in general purpose register rd.
In the 64-bit mode, the value resulting from sign-extending the shifted 32-bit
value is stored as a result. If the shift value is 0, the low-order 32 bits of the 64-
bit value is sign-extended. This instruction can generate a 64-bit value that sign-
extends a 32-bit value.

Operation:

Exceptions:

None

Caution If the shift value of this instruction is 0, the assembler may treats
this instruction as NOP. When using this instruction for sign
extension, check the specifications of the assembler.

SLLShift Left Logical

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0

SLL

0 0 0 0 0

32 T: GPR[rd] ¬ GPR[rt]31– sa...0 || 0sa

64 T: s ¬ 0 || sa

temp ¬ GPR[rt]31-s...0 || 0s

GPR[rd] ¬ (temp31)32 || temp

Chapter 16

504 User’s Manual U10504EJ7V0UM00

Format:

SLLV rd, rt, rs

Description:

The contents of general purpose register rt are shifted left the number of bits
specified by the low-order five bits of the contents of the general purpose register
rs, inserting zeros into the low-order bits. The result is stored in general purpose
register rd. In the 64-bit mode, the value resulting from sign-extending the shifted
32-bit value is stored as a result. If the shift value is 0, the low-order 32 bits of the
64-bit value is sign-extended. This instruction can generate a 64-bit value that
sign-extends a 32-bit value.

Operation:

Exceptions:

None

Caution If the shift value of this instruction is 0, the assembler may treats
this instruction as NOP. When using this instruction for sign
extension, check the specifications of the assembler.

SLLV Shift Left Logical Variable

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 SLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0

SLLV

rs

32 T: s ¬ GPR[rs]4...0

GPR[rd]¬ GPR[rt](31–s)...0 || 0s

64 T: s ¬ 0 || GPR[rs]4...0

temp ¬ GPR[rt](31–s)...0 || 0s

GPR[rd] ¬ (temp31)32 || temp

User’s Manual U10504EJ7V0UM00 505

CPU Instruction Set Details

Format:

SLT rd, rs, rt

Description:

The contents of general purpose register rt are subtracted from the contents of
general purpose register rs. Assuming these register contents as signed integers,
if the contents of general purpose register rs are less than the contents of general
purpose register rt, one is stored in the general purpose register rd; otherwise zero
is stored in the general purpose register rd.

An integer overflow exception never occurs. The comparison is valid even if the
subtraction used during the comparison overflows.

Operation:

Exceptions:

None

SLTSet On Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0

SLT

32 T: if GPR[rs] < GPR[rt] then
GPR[rd] ¬ 031 || 1

else
GPR[rd] ¬ 032

endif

64 T: if GPR[rs] < GPR[rt] then
GPR[rd] ¬ 063 || 1

else
GPR[rd] ¬ 064

endif

Chapter 16

506 User’s Manual U10504EJ7V0UM00

Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general
purpose register rs. Assuming these values are signed integers, if rs contents are
less than the sign-extended immediate, one is stored in the general purpose register
rt; otherwise zero is stored in the general purpose register rt.

An integer overflow exception never occurs. The comparison is valid even if the
subtraction overflows.

Operation:

Exceptions:

None

SLTI Set On Less Than Immediate

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16
0 0 1 0 1 0

SLTI

32 T: if GPR[rs] < (immediate15)16 || immediate15...0 then

GPR[rt] ¬ 031 || 1

else

GPR[rt] ¬ 032

endif

64 T: if GPR[rs] < (immediate15)48 || immediate15...0 then

GPR[rt] ¬ 063 || 1

else

GPR[rt] ¬ 064

endif

User’s Manual U10504EJ7V0UM00 507

CPU Instruction Set Details

Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general
purpose register rs. Assuming these values are unsigned integers, if rs contents
are less than the sign-extended immediate, one is stored in the general purpose
register rt; otherwise zero is stored in the general purpose register rt.

An integer overflow exception never occurs. The comparison is valid even if the
subtraction overflows.

Operation:

Exceptions:

None

SLTIUImmediate Unsigned
Set On Less Than

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16
0 0 1 0 1 1

SLTIU

32 T: if (0 || GPR[rs]) < (immediate15)16 || immediate15...0 then

GPR[rt] ¬ 031 || 1

else

GPR[rt] ¬ 032

endif

64 T: if (0 || GPR[rs]) < (immediate15)48 || immediate15...0 then

GPR[rt] ¬ 063 || 1

else

GPR[rt] ¬ 064

endif

Chapter 16

508 User’s Manual U10504EJ7V0UM00

Format:

SLTU rd, rs, rt

Description:

The contents of general purpose register rt are subtracted from the contents of
general purpose register rs. Assuming these values are unsigned integers, if the
contents of general purpose register rs are less than the contents of general
purpose register rt, one is stored in the general purpose register rd; otherwise zero
is stored in the general purpose register rd.

An integer overflow exception never occurs. The comparison is valid even if the
subtraction overflows.

Operation:

Exceptions:

None

SLTU Set On Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLTU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

SLTU

32 T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ¬ 031 || 1

else
GPR[rd] ¬ 032

endif

64 T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ¬ 063 || 1

else
GPR[rd] ¬ 064

endif

User’s Manual U10504EJ7V0UM00 509

CPU Instruction Set Details

Format:

SRA rd, rt, sa

Description:

The contents of general purpose register rt are shifted right by sa bits, inserting
signed bits into the high-order bits. The result is stored in the general purpose
register rd. In 64-bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

 Exceptions:

None

SRAShift Right Arithmetic

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SRA

32 T: GPR[rd] ¬ (GPR[rt]31)sa || GPR[rt] 31...sa

64 T: s ¬ 0 || sa

temp ¬ (GPR[rt]31)s || GPR[rt] 31...s

GPR[rd] ¬ (temp31)32 || temp

Chapter 16

510 User’s Manual U10504EJ7V0UM00

Format:

SRAV rd, rt, rs

Description:

The contents of general purpose register rt are shifted right by the number of bits
specified by the low-order five bits of general purpose register rs, sign-extending
the high-order bits. The result is stored in the general purpose register rd. In 64-
bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

Exceptions:

None

SRAV Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

SRAVArithmetic Variable

32 T: s ¬ GPR[rs]4...0

GPR[rd] ¬ (GPR[rt]31)s || GPR[rt]31...s

64 T: s ¬ GPR[rs]4...0

temp ¬ (GPR[rt]31)s || GPR[rt]31...s

GPR[rd] ¬ (temp31)32 || temp

User’s Manual U10504EJ7V0UM00 511

CPU Instruction Set Details

Format:

SRL rd, rt, sa

Description:

The contents of general purpose register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is stored in the general purpose register
rd. In 64-bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

Exceptions:

None

SRLShift Right Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0

SRL

0
0 0 0 0 0

32 T: GPR[rd] ¬ 0 sa || GPR[rt]31...sa

64 T: s ¬ 0 || sa

temp ¬ 0s || GPR[rt]31...s

GPR[rd] ¬ (temp31)32 || temp

Chapter 16

512 User’s Manual U10504EJ7V0UM00

Format:

SRLV rd, rt, rs

Description:

The contents of general purpose register rt are shifted right by the number of bits
specified by the low-order five bits of general purpose register rs, inserting zeros
into the high-order bits. The result is stored in the general purpose register rd. In
64-bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

Exceptions:

None

SRLV Shift Right Logical Variable

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

SRLV

32 T: s ¬ GPR[rs]4...0

GPR[rd] ¬ 0s || GPR[rt]31...s

64 T: s ¬ GPR[rs]4...0

temp ¬ 0s || GPR[rt]31...s

GPR[rd] ¬ (temp31)32 || temp

User’s Manual U10504EJ7V0UM00 513

CPU Instruction Set Details

Format:

SUB rd, rs, rt

Description:

The contents of general purpose register rt are subtracted from the contents of
general purpose register rs, and result is stored into general purpose register rd. In
64-bit mode, the sign-extended 32-bit values is stored as the result.

An integer overflow exception occurs if the carries out of bits 30 and 31 differ (2’s
complement overflow). The destination register rd is not modified when an
integer overflow exception occurs.

Operation:

Exceptions:

Integer overflow exception

SUB SUBSubtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

32 T: GPR[rd] ¬ GPR[rs] – GPR[rt]

64 T: temp ¬ GPR[rs] – GPR[rt]

GPR[rd] ¬ (temp31)32 || temp31...0

Chapter 16

514 User’s Manual U10504EJ7V0UM00

Format:

SUBU rd, rs, rt

Description:

The contents of general purpose register rt are subtracted from the contents of
general purpose register rs and the result is stored in general purpose register rd.
In 64-bit mode, the sign-extended 32-bit values is stored as the result.

The only difference between this instruction and the SUB instruction is that
SUBU never causes an integer overflow exception.

Operation:

Exceptions:

None

SUBU Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

SUBU

32 T: GPR[rd] ¬ GPR[rs] – GPR[rt]

64 T: temp ¬ GPR[rs] – GPR[rt]

GPR[rd] ¬ (temp31)32 || temp31...0

User’s Manual U10504EJ7V0UM00 515

CPU Instruction Set Details

Format:

SW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of general purpose register rt
are stored in the memory location specified by the address. If either of the low-
order two bits of the address are not zero, an address error exception occurs.

Operation:

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWStore Word

31 2526 2021 1516 0

SW base rt offset

6 5 5 16
1 0 1 0 1 1

SW

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]

(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

data ¬ GPR[rt]31...0

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

 64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ GPR[rt]31...0
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Chapter 16

516 User’s Manual U10504EJ7V0UM00

Format:

SWCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. Coprocessor register rt of the CPz is stored
in the addressed memory. The data to be stored is defined by individual
coprocessor specifications. This instruction is not valid for use with CP0.

If either of the low-order two bits of the address is not zero, an address error
exception occurs.

Operation:

* Refer to the table Opcode Bit Encoding on next page, or
16.7 CPU Instruction Opcode Bit Encoding.

SWCz Store Word From Coprocessor z

31 2526 2021 1516 0

SWCz base rt offset

6 5 5 16
1 1 1 0 x x*

SWCz

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
byte ¬ vAddr2...0 xor (BigEndianCPU || 02)
data ¬ COPzSW (byte, rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

pAddr ¬ pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
byte ¬ vAddr2...0 xor (BigEndianCPU || 02)
data ¬ COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

User’s Manual U10504EJ7V0UM00 517

CPU Instruction Set Details

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

SWCz Store Word From Coprocessor z SWCz(Continued)

SWCz 31 30 29 28 27 26Bit # 0

SWC1

Coprocessor NumberOpcode

1 1 1 0 0 1

31 30 29 28 27 26Bit # 0

SWC2 1 1 1 0 1 0

Chapter 16

518 User’s Manual U10504EJ7V0UM00

Format:

SWL rt, offset(base)

Description:

This instruction is used in combination with the SWR instruction to store the word
in the register to the word in the memory that is not at the word boundary. The
SWL instruction stores the high-order portion of the data to the memory, while the
SWR instruction stores the low-order portion.

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to generate a virtual address. Of the word data in the memory whose
most-significant byte is specified by the generated address, only the high-order
portion of general purpose register rt is stored to the memory at the same word
boundary as the target address.

Depending on the address specified, the number of bytes to be stored changes
from 1 to 4.

In other words, first the most-significant byte position of general purpose register
rt is stored to the bytes in the addressed memory. If there is data of the low-order
byte that follows the same word boundary, the operation to store this data to the
next byte of the memory is repeated.

No address exceptions occur due to the specified address which is not located at
the word boundary.

SWL Store Word Left

31 2526 2021 1516 0

SWL base rt offset

6 5 5 16
1 0 1 0 1 0

SWL

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

address 0
address 4

0
4 5 6 7

A B C

$24

memory
(big-endian)

before

after
SWL $24,1($0)

storing

storing

User’s Manual U10504EJ7V0UM00 519

CPU Instruction Set Details

Operation:

SWL Store Word Left SWL(Continued)

32 T: vAddr ¬ ((offset15)16 || offset 15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)

pAddr ¬ pAddrPSIZE –1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ¬ pAddr31...2 || 02

endif
byte ¬ vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ¬ 032 || 024-8*byte || GPR[rt]31...24-8*byte

else
data ¬ 024-8*byte || GPR[rt]31...24-8*byte || 032

endif
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddr31...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ¬ pAddr31...2 || 02

endif
byte ¬ vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ¬ 032 || 024-8*byte || GPR[rt]31...24-8*byte

else
data ¬ 024-8*byte || GPR[rt]31...24-8*byte || 032

endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

Chapter 16

520 User’s Manual U10504EJ7V0UM00

The relationships between the contents given to the SWL instruction and the result
(bytes for words in the memory) are shown below:

Remark Type: access type output to memory (Refer to Figure 3-2 Byte
Access within a Doubleword.)

Offset: pAddr2...0 output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWL Store Word Left SWL(Continued)

SWL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O E 0 0 7 E F G H M N O P 3 4 0
1 I J K L M N E F 1 0 6 I E F G M N O P 2 4 1
2 I J K L M E F G 2 0 5 I J E F M N O P 1 4 2
3 I J K L E F G H 3 0 4 I J K E M N O P 0 4 3
4 I J K E M N O P 0 4 3 I J K L E F G H 3 0 4
5 I J E F M N O P 1 4 2 I J K L M E F G 2 0 5
6 I E F G M N O P 2 4 1 I J K L M N E F 1 0 6
7 E F G H M N O P 3 4 0 I J K L M N O E 0 0 7

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM BEM LEM BEM
vAddr2...0 typedestination destination type

User’s Manual U10504EJ7V0UM00 521

CPU Instruction Set Details

Format:

SWR rt, offset(base)

Description:

This instruction is used in combination with the SWL instruction to store word
data in the register to the word data in the memory that is not at the word boundary.
The SWL instruction stores the high-order portion of the data to the memory,
while the SWR instruction stores the low-order portion.

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to generate a virtual address. Of the word data in the memory whose
least-significant byte is specified by the generated address, only the low-order
portion of general purpose register rt is stored to the memory at the same word
boundary as the target address. Depending on the address specified, the number
of bytes to be stored changes from 1 to 4.

In other words, first the least-significant byte position of general purpose register
rt is stored to the bytes in the addressed memory. If there is data of the high-order
byte that follows the same word boundary, the operation to store this data to the
next byte of the memory is repeated.

No address exceptions occur due to the specified address which is not located at
the word boundary.

31 2526 2021 1516 0

SWR base rt offset

6 5 5 16
1 0 1 1 1 0

SWR Store Word Right SWR

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

address 0
address 4

0
D 5 6 7

1 2 3

$24

memory
(big-endian)

before

after

SWR $24,4($0)

storing

storing

Chapter 16

522 User’s Manual U10504EJ7V0UM00

Operation:

SWR Store Word Right SWR(Continued)

32 T: vAddr ¬ ((offset15)16 || offset 15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
BigEndianMem = 0 then

pAddr ¬ pAddr31...2 || 02

endif
byte ¬ vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ¬ 032 || GPR[rt]31-8*byte...0 || 0

8*byte

else
data ¬ GPR[rt]31-8*byte...0 || 08*byte || 032

endif
Storememory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
pAddr ¬ pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ¬ pAddr31...2 || 02

endif
byte ¬ vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ¬ 032 || GPR[rt]31-8*byte...0 || 0

8*byte

else
data ¬ GPR[rt]31-8*byte...0 || 08*byte || 032

endif
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

User’s Manual U10504EJ7V0UM00 523

CPU Instruction Set Details

The relationships between the register contents given to the SWR instruction and
the result (bytes for words in the memory) are shown below:

Remark Type: access type output to memory (Refer to Figure 3-2 Byte
Access within a Doubleword.)

Offset: pAddr2...0 output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWR Store Word Right SWR(Continued)

SWR

A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L E F G H 3 0 4 H J K L M N O P 0 7 0
1 I J K L F G H P 2 1 4 G H K L M N O P 1 6 0
2 I J K L G H O P 1 2 4 F G H L M N O P 2 5 0
3 I J K L H N O P 0 3 4 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 I J K L H N O P 0 3 4
5 F G H L M N O P 2 5 0 I J K L G H O P 1 2 4
6 G H K L M N O P 1 6 0 I J K L F G H P 2 1 4
7 H J K L M N O P 0 7 0 I J K L E F G H 3 0 4

offset
BigEndianCPU = 1BigEndianCPU = 0

offset

LEM BEM LEM BEM
vAddr2...0 typedestination destination type

Chapter 16

524 User’s Manual U10504EJ7V0UM00

Format:

SYNC

Description:

The SYNC instruction is executed as a NOP on the VR4300. This operation
maintains compatibility with code that conforms to the VR4400.

This instruction is defined to maintain software compatibility with the VR4400.

Operation:

Exceptions:

None

SYNC Synchronize

31 2526

SPECIAL

6 20

0 SYNC

6

6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

SYNC

32, 64 T: SyncOperation ()

User’s Manual U10504EJ7V0UM00 525

CPU Instruction Set Details

Format:

SYSCALL

Description:

A system call exception occurs after this instruction is executed, unconditionally
transferring control to the exception handler.

A parameter can be sent to the exception handler by using the code area. If the
exception handler uses this parameter, the contents of the memory word including
the instruction must be loaded as data.

Operation:

Exceptions:

System Call exception

System Call

31 2526

SPECIAL

6 20

Code SYSCALL

6

6 5 0

0 0 0 0 0 0 0 0 1 1 0 0

SYSCALL SYSCALL

32, 64 T: SystemCallException

Chapter 16

526 User’s Manual U10504EJ7V0UM00

Format:

TEQ rs, rt

Description:

The contents of general purpose register rt are compared with general purpose
register rs. If the contents of general purpose register rs are equal to the contents
of general purpose register rt, a trap exception occurs.

A parameter can be sent to the exception handler by using the code area. If the
exception handler uses this parameter, the contents of the memory word including
the instruction must be loaded as data.

Operation:

Exceptions:

Trap exception

Trap If Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TEQ

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 0 0

TEQTEQ

32, 64 T: if GPR[rs] = GPR[rt] then

TrapException

endif

User’s Manual U10504EJ7V0UM00 527

CPU Instruction Set Details

Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared with the contents of general
purpose register rs. If the contents of general purpose register rs are equal to the
sign-extended immediate, a trap exception occurs.

Operation:

Exceptions:

Trap exception

TEQI Trap If Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTEQI

16

0

0 0 0 0 0 1 0 1 1 0 0

TEQI

32 T: if GPR[rs] = (immediate15)16 || immediate15...0 then

TrapException

endif

64 T: if GPR[rs] = (immediate15)48 || immediate15...0 then

TrapException

endif

Chapter 16

528 User’s Manual U10504EJ7V0UM00

Format:

TGE rs, rt

Description:

The contents of general purpose register rt are compared with the contents of
general purpose register rs. Assuming both register contents are signed integers,
if the contents of general purpose register rs are greater than or equal to the
contents of general purpose register rt, a trap exception occurs.

A parameter can be sent to the exception handler by using the code area. If the
exception handler uses this parameter, the contents of the memory word including
the instruction must be loaded as data.

Operation:

Exceptions:

Trap exception

TGETrap If Greater Than Or Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 0

TGE

32, 64 T: if GPR[rs] ³ GPR[rt] then
TrapException

endif

User’s Manual U10504EJ7V0UM00 529

CPU Instruction Set Details

Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared with the contents of general
purpose register rs. Assuming both values are signed integers, if the contents of
general purpose register rs are greater than or equal to the sign-extended
immediate, a trap exception occurs.

Operation:

Exceptions:

Trap exception

TGEI Trap If Greater Than Or Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEI

16

0

0 0 0 0 0 1 0 1 0 0 0

TGEI

32 T: if GPR[rs] ³ (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] ³ (immediate15)48 || immediate15...0 then
TrapException

endif

Chapter 16

530 User’s Manual U10504EJ7V0UM00

Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared with the contents of general
purpose register rs. Assuming both values are unsigned integers, if the contents
of general purpose register rs are greater than or equal to the sign-extended
immediate, a trap exception occurs.

Operation:

 Exceptions:

Trap exception

TGEIUTrap If Greater Than Or Equal

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEIU

16

0

Immediate Unsigned

0 0 0 0 0 1 0 1 0 0 1

TGEIU

32 T: if (0 || GPR[rs]) ³ (0 || (immediate15)16 || immediate15...0) then
TrapException

endif

64 T: if (0 || GPR[rs]) ³ (0 || (immediate15)48 || immediate15...0) then
TrapException

endif

User’s Manual U10504EJ7V0UM00 531

CPU Instruction Set Details

Format:

TGEU rs, rt

Description:

The contents of general purpose register rt are compared with the contents of
general purpose register rs. Assuming both values are unsigned integers, if the
contents of general purpose register rs are greater than or equal to the contents of
general purpose register rt, a trap exception occurs.

A parameter can be sent to the exception handler by using the code area. If the
exception handler uses this parameter, the contents of the memory word including
the instruction must be loaded as data.

Operation:

 Exceptions:

Trap exception

TGEU Trap If Greater Than Or Equal Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGEU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 1

TGEU

32, 64 T: if (0 || GPR[rs]) ³ (0 || GPR[rt]) then
TrapException

endif

Chapter 16

532 User’s Manual U10504EJ7V0UM00

Format:

TLBP

Description:

Searches a TLB entry that matches with the contents of the entry Hi register and
sets the number of that TLB entry to the index register. If a TLB entry that
matches is not found, sets the most significant bit of the index register.

The architecture does not specify the operation of memory references associated
with the instruction immediately after a TLBP instruction, nor is the operation
specified if more than one TLB entry matches.

Operation:

Exceptions:

Coprocessor unusable exception

TLBPProbe TLB For Matching Entry

0

6

6 531 25 2426

COP0

6

0

TLBP

191

CO
0 1 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBP

32 T: Index¬ 1 || 025 || Undefined6

for i in 0...TLBEntries–1
if (TLB[i]95...77 = EntryHi31...13) and (TLB[i]76 or
(TLB[i]71...64 = EntryHi7...0)) then

Index ¬ 026 || i 5...0
endif

endfor

64 T: Index¬ 1 || 025 || Undefined6

for i in 0...TLBEntries–1
if (TLB[i]167...141 and not (015 || TLB[i]216...205))

 = (EntryHi39...13 and not (015 || TLB[i]216...205)) and
(TLB[i]140 or (TLB[i]135...128 = EntryHi7...0)) then

Index ¬ 026 || i 5...0
endif

endfor

User’s Manual U10504EJ7V0UM00 533

CPU Instruction Set Details

Format:

TLBR

Description:

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry
pointed at by the contents of the Index register. The G bit (which controls ASID
matching) read from the TLB is written into both of the EntryLo0 and EntryLo1
registers.

The operation is invalid if the contents of the Index register are greater than the
number of TLB entries in the processor.

Operation:

Exceptions:

Coprocessor unusable exception

TLBR Read Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBR

191

CO
0 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBR

32 T: PageMask ¬ TLB[Index5...0]127...96
EntryHi ¬ TLB[Index5...0]95...64 and not TLB[Index5...0]127...96
EntryLo1 ¬TLB[Index5...0]63...33|| TLB[Index5...0]76
EntryLo0 ¬ TLB[Index5...0]31...1|| TLB[Index5...0]76

64 T: PageMask ¬ TLB[Index5...0]255...192
EntryHi ¬ TLB[Index5...0]191...128 and not TLB[Index5...0]255...192
EntryLo1 ¬TLB[Index5...0]127...65 || TLB[Index5...0]140
EntryLo0 ¬ TLB[Index5...0]63...1 || TLB[Index5...0]140

Chapter 16

534 User’s Manual U10504EJ7V0UM00

Format:

TLBWI

Description:

The TLB entry pointed at by the Index register is loaded with the contents of the
EntryHi and EntryLo registers. The G bit of the TLB is written with the logical
AND of the G bits in the EntryLo0 and EntryLo1 registers.

The operation is invalid if the contents of the Index register are greater than the
number of TLB entries in the processor.

Operation:

Exceptions:

Coprocessor unusable exception

TLBWI Write Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBWI

191

CO
0 1 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBWI

32, 64 T: TLB[Index5...0] ¬
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

User’s Manual U10504EJ7V0UM00 535

CPU Instruction Set Details

Format:

TLBWR

Description:

The TLB entry pointed at by the Random register is loaded with the contents of
the EntryHi and EntryLo registers. The G bit of the TLB is written with the logical
AND of the G bits in the EntryLo0 and EntryLo1 registers.

Operation:

Exceptions:

Coprocessor unusable exception

TLBWR Write Random TLB Entry TLBWR

0

6

6 531 25 2426

COP0

6

0

TLBWR

191

CO
0 1 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

32, 64 T: TLB[Random5...0] ¬
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Chapter 16

536 User’s Manual U10504EJ7V0UM00

Format:

TLT rs, rt

Description:

The contents of general purpose register rt are compared with general purpose
register rs. Assuming both values are signed integers, if the contents of general
purpose register rs are less than the contents of general purpose register rt, a trap
exception occurs.

A parameter can be sent to the exception handler by using the code area. If the
exception handler uses this parameter, the contents of the memory word including
the instruction must be loaded as data.

Operation:

Exceptions:

Trap exception

TLTTrap If Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLT

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 0

TLT

32, 64 T: if GPR[rs] < GPR[rt] then
TrapException

endif

User’s Manual U10504EJ7V0UM00 537

CPU Instruction Set Details

Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared with the contents of general
purpose register rs. Assuming both values are signed integers, if the contents of
general purpose register rs are less than the sign-extended immediate, a trap
exception occurs.

Operation:

Exceptions:

Trap exception

TLTI Trap If Less Than Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTI

16

0

0 0 0 0 0 1 0 1 0 1 0

TLTI

32 T: if GPR[rs] < (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] < (immediate15)48 || immediate15...0 then
TrapException

endif

Chapter 16

538 User’s Manual U10504EJ7V0UM00

Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared with the contents of general
purpose register rs. Assuming both values are unsigned integers, if the contents
of general purpose register rs are less than the sign-extended immediate, a trap
exception occurs.

Operation:

Exceptions:

Trap exception

TLTIUTrap If Less Than Immediate Unsigned

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTIU

16

0

0 0 0 0 0 1 0 1 0 1 1

TLTIU

32 T: if (0 || GPR[rs]) < (0 || (immediate15)16 || immediate15...0) then
TrapException

endif

64 T: if (0 || GPR[rs]) < (0 || (immediate15)48 || immediate15...0) then
TrapException

endif

User’s Manual U10504EJ7V0UM00 539

CPU Instruction Set Details

Format:

TLTU rs, rt

Description:

The contents of general purpose register rt are compared with general purpose
register rs. Assuming both values are unsigned integers, if the contents of general
purpose register rs are less than the contents of general purpose register rt, a trap
exception occurs.

A parameter can be sent to the exception handler by using the code area. If the
exception handler uses this parameter, the contents of the memory word including
the instruction must be loaded as data.

Operation:

Exceptions:

Trap exception

TLTU Trap If Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLTU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 1

TLTU

32, 64T: if (0 || GPR[rs]) < (0 || GPR[rt]) then

TrapException

endif

Chapter 16

540 User’s Manual U10504EJ7V0UM00

Format:

TNE rs, rt

Description:

The contents of general purpose register rt are compared with general purpose
register rs. If the contents of general purpose register rs are not equal to the
contents of general purpose register rt, a trap exception occurs.

A parameter can be sent to the exception handler by using the code area. If the
exception handler uses this parameter, the contents of the memory word including
the instruction must be loaded as data.

Operation:

Exceptions:

Trap exception

TNETrap If Not Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TNE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 1 0

TNE

32, 64T: if GPR[rs] ¹ GPR[rt] then

TrapException

endif

User’s Manual U10504EJ7V0UM00 541

CPU Instruction Set Details

Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared with the contents of general
purpose register rs. If the contents of general purpose register rs are not equal to
the sign-extended immediate, a trap exception occurs.

Operation:

Exceptions:

Trap exception

TNEI Trap If Not Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTNEI

16

0

0 0 0 0 0 1 0 1 1 1 0

TNEI

32 T: if GPR[rs] ¹ (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] ¹ (immediate15)48 || immediate15...0 then
TrapException

endif

Chapter 16

542 User’s Manual U10504EJ7V0UM00

Format:

XOR rd, rs, rt

Description:

The contents of general purpose register rs and the contents of general purpose
register rt are logical exclusive ORed bit-wise. The result is stored into general
purpose register rd.

Operation:

Exceptions:

None

XORExclusive Or

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 XOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 0 1 1 00 0 0 0 0

XOR

32, 64 T: GPR[rd] ¬ GPR[rs] xor GPR[rt]

User’s Manual U10504EJ7V0UM00 543

CPU Instruction Set Details

Format:

XORI rt, rs, immediate

Description:

The 16-bit zero-extended immediate and the contents of general purpose register
rs are logical exclusive ORed bit-wise.

The result is stored in general purpose register rt.

Operation:

 Exceptions:

None

XORI Exclusive Or Immediate

31 2526 2021 1516 0

XORI rs rt immediate

6 5 5 16
0 0 1 1 1 0

XORI

32 T: GPR[rt] ¬ GPR[rs] xor (016 || immediate)

64 T: GPR[rt] ¬ GPR[rs] xor (048 || immediate)

Chapter 16

544 User’s Manual U10504EJ7V0UM00

16.7 CPU Instruction Opcode Bit Encoding

 Figure 16-1 lists the VR4300 Opcode Bit Encoding.

Figure 16-1 VR4300 Opcode Bit Encoding (1/2)

 SPECIAL
ADDI
COP0

DADDIe DADDIUe LDLe LDRe * * * *
BEQL BNEL BLEZL BGTZL

LB
SB CACHE

LWUe

*

LL LDC1 LDC2 LDe
SC SDC1 SDC2 SDe

DSLLe * DSRLe DSRAe DSLL32e * DSRL32e DSRA32e

TGE TGEU TLT TLTU TEQ TNE

2...0

REGIMM rt18...16

SLL
 JR

MFHI
MULT
ADD

SLT

*
DSLLVe * DSRLVe DSRAVe
DMULTe DMULTUe DDIVe DDIVUe

DADDe DADDUe DSUBe DSUBUe* *

*

COPz rs

SPECIAL function

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

31...29
0
1
2
3
4
5
6

 5...3
0
1
2
3
4
5
6
7

20...19
0
1
2
3

7

28...26 Opcode
0 1 2 3 4 5 6 7

SYSCALL BREAK

SH SWL SW SWR
LWC1 LWC2 *
SWC1 SWC2 *

LH LWL LW LBU LHU LWR

SRL SRA SLLV SRLV SRAV
 JALR
MTHI MFLO MTLO

MULTU DIV DIVU
ADDU SUB SUBU AND OR XOR NOR

SLTU

COP1 COP2 *
ADDIU SLTI SLTIU ANDI ORI XORI LUI

REGIMM J JAL BEQ BNE BLEZ BGTZ

* *

BLTZL
TLTI

BLTZALL

BGEZL
TLTIU

BGEZALL
TNEITEQI

MF

23...21
0 1 2 3 4 5 6 725...24

0
1
2
3

CF
BC

MT CT

CO

DMFe g DMTe g

SDLe
LLDe

SCDe

SDRe

* * SYNC

d

g g g g g g g

* * * * * * * *
* * * *

* * * *
* *

BLTZ

BLTZAL

BGEZ

BGEZAL
TGEI TGEIU

User’s Manual U10504EJ7V0UM00 545

CPU Instruction Set Details

Figure 16-1 VR4300 Opcode Bit Encoding (2/2)

Key:

* If the operation code marked with an asterisk is executed with the
current VR4300, the reserved instruction exception occurs. This
code is reserved for future expansion.

g Operation codes marked with a gamma cause a reserved
instruction exception. They are reserved for future expansion.

d Operation codes marked with a delta are valid only for VR4000
processors with CP0 enabled, and cause a reserved instruction
exception on other processors.

f Operation codes marked with a phi are invalid but do not cause
reserved instruction exceptions in VR4300 operation.

x Operation codes marked with a xi cause a reserved instruction
exception on only VR4300 processors.

c Operation codes marked with a chi are valid only on VR4000
series processors.

e The operation code marked with an epsilon is valid in the 64-bit
mode and 32-bit Kernel mode. In the 32-bit User or Supervisor
mode, this code generates the reserved instruction exception.

BCF

18...16
0 1 2 3 4 5 6 720...19

0
1
2
3

BCFL
g g g g g g g

g gBCT BCTL g g
g

g g g g g g gg
g g g g g g gg

CP0 Function
2 ... 0

0 1 2 3 4 5 6 75 ... 3
0
1
2
3

TLBWITLBR TLBWR
TLBP

x

0
1
2
3

ERET c

f ff

f f f f f f ff

ff

f f f f f f ff
f f f f f f ff
f f f f f f ff
f f f f f f f
f f f f f f f
f f f f f f f

COPz rt

546 User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

547

FPU Instruction Set Details

17

This chapter provides a detailed description of each floating-point unit (FPU)
instruction in alphabetical order.

Chapter 17

548

User’s Manual U10504EJ7V0UM00

17.1 Instruction Formats

There are three basic instruction format types:

• I-Type, or Immediate format, which include load and store
instructions

• R-Type, or Register format, which include the two- and three-
register floating-point instructions

• Other, which includes Branch, and Transfer to and from
instructions

The instruction description subsections that follow show how these three basic
instruction formats are used by:

• Load and store instructions

• Transfer instructions

• Floating-Point arithmetic instructions

• Floating-Point branch instructions

Floating-point instructions are mapped onto the MIPS coprocessor instructions,
defining coprocessor unit number one (CP1) as the floating-point unit.

Each operation is valid only for certain formats. Implementations may support
some of these formats and operations through emulation, but they only need to
support combinations that are valid (marked

V

 in Table 17-1). Combinations
marked

R

 in Figure 17-1 are not currently specified by this architecture, and cause
an unimplemented instruction exception. They will be available for future
extensions of the architecture.

User’s Manual U10504EJ7V0UM00

549

FPU Instruction Set Details

Table 17-1 Valid FPU Instruction Formats

Operation
Source Format

Single Double Word Longword

ADD V V R R

SUB V V R R

MUL V V R R

DIV V V R R

SQRT V V R R

ABS V V R R

MOV V V

NEG V V R R

TRUNC.L V V

ROUND.L V V

CEIL.L V V

FLOOR.L V V

TRUNC.W V V

ROUND.W V V

CEIL.W V V

FLOOR.W V V

CVT.S V V V

CVT.D V V V

CVT.W V V

CVT.L V V

C V V R R

Chapter 17

550

User’s Manual U10504EJ7V0UM00

The FPU branch instruction can be used with the logic of the condition reversed.
To compare all the 32 conditions, therefore, comparison need only be performed
16 times, as shown in Table 17-2.

Table 17-2 Logical Reverse of Predicates by Condition True/False

Remark

F: False
T: True

Condition Relations Invalid
Operation

Exception If
Unordered

Mnemonic
Code

Greater
Than

Less
Than

Equal Unordered
True False

F T 0 F F F F No

UN OR 1 F F F T No

EQ NEQ 2 F F T F No

UEQ OGL 3 F F T T No

OLT UGE 4 F T F F No

ULT OGE 5 F T F T No

OLE UGT 6 F T T F No

ULE OGT 7 F T T T No

SF ST 8 F F F F Yes

NGLE GLE 9 F F F T Yes

SEQ SNE 10 F F T F Yes

NGL GL 11 F F T T Yes

LT NLT 12 F T F F Yes

NGE GE 13 F T F T Yes

LE NLE 14 F T T F Yes

NGT GT 15 F T T T Yes

User’s Manual U10504EJ7V0UM00

551

FPU Instruction Set Details

Floating-Point Loads, Stores, and Transfers

All movement of data between the floating-point unit (FPU) and memory is
accomplished by unit load and store instructions, which reference the floating-
point unit General Purpose registers. These instructions are unformatted; no
format conversions are performed and, therefore, no floating-point exceptions can
occur due to these instructions.

Data may also be directly moved between the floating-point unit and the processor
by

move to coprocessor

 (MTC) and

move from coprocessor

 (MFC) instructions.
Like the floating-point load and store instructions, these instructions perform no
format conversions and never cause floating-point exceptions.

In addition, two floating-point control registers can be used as the FPU registers.
These registers can support only the CTC1 and CFC1 instructions.

Floating-Point Operations

The floating-point unit instruction set includes:

• floating-point add

• floating-point subtract

• floating-point multiply

• floating-point divide

• floating-point square root

• convert between fixed-point and floating-point formats

• convert between floating-point formats

• floating-point compare

These operations satisfy the requirements of IEEE Standard 754 requirements for
accuracy. Specifically, these operations obtain a result which is identical to an
infinite-precision result rounded to the specified format, using the current
rounding mode.

Instructions must specify the format of their operands. Except for conversion
functions, mixed-format operations cannot be performed.

Chapter 17

552

User’s Manual U10504EJ7V0UM00

17.2 Instruction Notation Conventions

In this chapter, all variable subfields in an instruction format (such as

fs, ft,
immediate

, and so on) are shown in lowercase. Instruction names (such as ADD,
SUB, and so on) are shown in uppercase.

For the sake of clarity, we sometimes use an alias for a variable subfield in the
formats of specific instructions. For example, we use

rs = base

in the format for
load and store instructions. Such an alias is always lowercase, since it refers to a
variable subfield.

In some instructions, the instruction subfields

op

and

function

 have fixed 6-bit
values. These instructions use uppercase mnemonic. For instance, in the floating-
point ADD instruction we use

op

= COP1 and

function

= FADD. In other cases,
a single field has both fixed and variable subfields, so the name contains both
uppercase and lowercase characters. The actual code of all the mnemonics and
the codes in the function fields are indicated in

17.6 FPU Instruction Opcode Bit
Encoding

. The operation executed by each instruction by using representation in
a high-level language is explained in the description of the operation of each
instruction. For the meanings of the special symbols in the description, refer to

Table 16-1 CPU Instruction Operation Notations

.

Instruction Notation Examples

The following examples illustrate the application of some of the instruction
notations:

Example #1:

GPR[rt]

¬

immediate || 0

16

Sixteen zero bits are concatenated with a low-order immediate value (typically
16 bits), and the 32-bit string is assigned to General Purpose Register

rt

.

Example #2:

(immediate

15

)

16

 || immediate

15...0

Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and
the result is concatenated with bits 15 through 0 of the immediate value to
form a 32-bit sign-extended value.

Example #3:

CPR[1, ft]

¬

data

Data is assigned to general purpose register

 ft

 of CP1, in other words

Float-
ing-Point General Purpose

 register

FGR

.

User’s Manual U10504EJ7V0UM00

553

FPU Instruction Set Details

17.3 Load and Store Instructions

In the V

R

4300 implementation, the instruction immediately following a load may
use the contents of the register being loaded. In such cases, the hardware

interlocks

, by the number of cycles required for reading, so scheduling load delay
slots is still desirable, although not required for functional code when performance
is regarded as the most significant factor, or compatibility with the V

R

3000 series
is required.

The operation of the load and store instructions is dependent on the width of the

FGR

s.

• When the

FR

 bit in the

Status

 register equals zero, the

Floating-Point
general purpose register

s

(

FGR

s) are 32-bits wide.
To retain single-precision floating-point format data, sixteen even
number registers out of thirty-two

FGR

s can be accessed.
To retain double-precision floating-point format data, even number
registers are used for low-order bits of data, and odd number registers
for high-order bits.
The registers are used as even-odd pairs, and can retain sixteen
double-precision format data.

• When the

FR

 bit in the

Status

 register equals one, the

Floating-Point
general purpose register

s

(

FGR

s) are 64-bits wide.
To retain single-precision floating-point format data, low-order bits of
thirty-two

FGRs

 are used.
To retain double-precision floating-point format data, thirty-two

FGRs

 are used.

In the load and store operation descriptions, the functions listed in
Table 17-3 are used to summarize the handling of virtual addresses and physical
memory.

Chapter 17

554

User’s Manual U10504EJ7V0UM00

Table 17-3 Load and Store Instructions Common Functions

Figure 17-1 shows the I-Type instruction format used by load and store
instructions.

Figure 17-1 Load and Store Instruction Format

All coprocessor loads and stores reference data which is located at the word
boundary. Thus, for word loads and stores, the access type field is always WORD,
and the low-order two bits of the address must always be zero. For doubleword
loads and stores, the access type field is always DOUBLEWORD, and the low-
order three bits of the address must always be zero.

Regardless of byte-numbering order (endianness), the address specifies that byte
which has the smallest byte-address in the accessed field. For a big-endian
system, this is the leftmost byte; for a little-endian system, this is the rightmost
byte.

Function Meaning

AddressTranslation
Uses the TLB to find the physical address given by the virtual
address. The function fails and a TLB miss exception occurs if
the required translation is not present in the TLB.

LoadMemory

Searches cache and main memory to find contents of specified
physical address at specified data length (doubleword or word),
and loads contents. If cache is enabled, contents are loaded to
cache.

StoreMemory
Searches and stores cache, write buffer, and main memory to
store contents of specified physical address at specified data
length (doubleword or word).

op is a 6-bit opcode
base is the 5-bit base register specifier
ft is a 5-bit source (for stores) or destination (for loads) FPU register specifier
offset is the 16-bit signed immediate offset

31 25 21 20 16 0

I-Type (Immediate)

15

offset

26

ftbaseop

6 5 5 16

User’s Manual U10504EJ7V0UM00

555

FPU Instruction Set Details

17.4 Floating-Point Computational Instructions

Computational instructions include all of the floating-point computational
operations performed by the FPU.

Figure 17-2 shows the R-Type instruction format used for computational
operations.

Figure 17-2 Computational Instruction Format

The

function

 field indicates the floating-point operation to be performed.

Each floating-point instruction can be applied to a number of operand

formats

.
The operand format for an instruction is specified by the 5-bit

format

 field (fmt);
decoding for this field is shown in Table 17-4.

Table 17-4 Format Field Decoding

Table 17-5 lists all floating-point computational instructions.

Code Mnemonic Size Format

16 S Single (32 bits) Binary floating-point

17 D Double (64 bits) Binary floating-point

18 Reserved

19 Reserved

20 W 32 bits Binary fixed-point

21 L 64 bits Binary fixed-point

22–31 Reserved

COP1 is a 6-bit opcode
fmt is a 5-bit format specifier
fs is a 5-bit source1 register
ft is a 5-bit source2 register
fd is a 5-bit destination register
function is a 6-bit function field

31 0

R-Type (Register)

6 5 5 5 5 6

COP1 fmt ft fs fd function

11 1021 20 16 1526 25 6 5

Chapter 17

556

User’s Manual U10504EJ7V0UM00

Table 17-5 Floating-Point Computational Instructions and Operations

Code
(5: 0)

Mnemonic Operation

0 ADD Add

1 SUB Subtract

2 MUL Multiply

3 DIV Divide

4 SQRT Square root

5 ABS Absolute value

6 MOV Transfer

7 NEG Sign reverse

8 ROUND.L Convert to 64-bit fixed-point, rounded to nearest/even

9 TRUNC.L Convert to 64-bit fixed-point, rounded toward zero

10 CEIL.L Convert to 64-bit fixed-point, rounded to +

¥

11 FLOOR.L Convert to 64-bit fixed-point, rounded to –

¥

12 ROUND.W Convert to 32-bit fixed-point, rounded to nearest/even

13 TRUNC.W Convert to 32-bit fixed-point, rounded toward zero

14 CEIL.W Convert to 32-bit fixed-point, rounded to +

¥

15 FLOOR.W Convert to 32-bit fixed-point, rounded to –

¥

16–31 – Reserved

32 CVT.S Convert to single floating-point

33 CVT.D Convert to double floating-point

34 – Reserved

35 – Reserved

36 CVT.W Convert to 32-bit fixed-point

37 CVT.L Convert to 64-bit fixed-point

38–47 – Reserved

48–63 C Floating-point compare

User’s Manual U10504EJ7V0UM00

557

FPU Instruction Set Details

In the following pages, the notation

FGR

 means the 32 FPU

General Purpose

registers

FGR0

 through

FGR31

 of the FPU, and

FPR

 refers to the floating-point
registers of the FPU.

An FGR (for some parts, CPR is described instead) is used for the load/store
instructions, and the data transfer instruction to/from the CPU. FPR is used for
the transfer instruction, arithmetic instruction, and conversion instruction in the
CP1.

• When the

FR

 bit in the

Status

 register (26 bit) equals zero, only the
even floating-point registers are valid and the 32 FPUs are 32-bit
wide.

• When the

FR

 bit in the

Status

 register (26 bit) equals one, both odd
and even FPRs can be used and the 32 FPUs are 64-bit wide.

The following routines are used in the description of the floating-point operations
to retrieve the value of an FPR or to change the value of an FGR:

 32 Bit Mode

value <-- ValueFPR(fpr, fmt)
/* undefined for odd fpr */
case fmt of

S, W:
value <-- FGR[fpr+0]

D:
value <-- FGR[fpr+1] || FGR[fpr+0]

end

StoreFPR(fpr, fmt, value):
/* undefined for odd fpr */
case fmt of

S, W:
FGR[fpr+1] <-- undefined
FGR[fpr+0] <-- value

D:
FGR[fpr+1] <-- value63...32
FGR[fpr+0] <-- value31...0

end

Chapter 17

558

User’s Manual U10504EJ7V0UM00

17.5 FPU Instructions

This section describes in detail the floating-point (FPU) instructions.

The exceptions that may occur as a result of executing each instruction are
described at the end of the description of each instruction. For the details of the
exceptions and exception processing, refer to

Chapter 8 Floating-Point
Exceptions

.

 64 Bit Mode

value <-- ValueFPR(fpr, fmt)
case fmt of

S, W:
value <-- FGR[fpr]31...0

D, L:
value <-- FGR[fpr]

end

StoreFPR(fpr, fmt, value):
case fmt of

S, W:
FGR[fpr] <-- undefined32 || value

D, L:
FGR[fpr] <-- value

end

User’s Manual U10504EJ7V0UM00

559

FPU Instruction Set Details

Format:

ABS.fmt fd, fs

Description:

The absolute value of the contents of floating-point register

fs

 is taken and the
value to floating-point register

fd

 is stored. The operand is processed in the
floating-point format

fmt.

The absolute value operation is arithmetically performed. If the operand is NaN,
therefore, the invalid operation exception occurs.

This instruction is valid only in the single- and double-precision floating-point
formats.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined.

If the FR bit of the Status bit is 1, both the odd and even register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception
Invalid operation exception

ABS.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ABS

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1

ABS.fmtAbsolute Value

32, 64 T: StoreFPR (fd, fmt, AbsoluteValue (ValueFPR (fs, fmt)))

Chapter 17

560 User’s Manual U10504EJ7V0UM00

Format:

ADD.fmt fd, fs, ft

Description:

The contents of floating-point registers fs and ft are added, and stores the result is
stored to floating-point register fd. The operand is processed in the floating-point
format fmt. The operation is executed as if the accuracy were infinite, and the
result is rounded according to the current rounding mode.

This instruction is valid only in the single- and double-precision floating-point
formats.

If the FR bit of the status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status bit is 1, both the odd and even
register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact operation exception
Overflow exception
Underflow exception

ADD.fmtFloating-point Add

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd ADD

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0

ADD.fmt

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) + ValueFPR (ft, fmt))

User’s Manual U10504EJ7V0UM00 561

FPU Instruction Set Details

Format:

BC1F offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If
the CPz condition signal sampled while the instruction immediately preceding is
being executed is false (0), the program branches to the branch target address, with
a delay of one instruction.

Because the result of comparison is sampled while the instruction immediately
preceding is executed, at least one instruction must be inserted in between the
floating-point compare instruction and this instruction.

Operation:

Exceptions:

Coprocessor unusable exception

BC1F Branch On FPU False

16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC BCF

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

BC1F

32 T–1: condition ¬ not COC[1]
T: target ¬ (offset15)14 || offset || 02

T+1: if condition then
 PC ¬ PC + target
endif

64 T–1: condition ¬ not COC[1]
T: target ¬ (offset15)46 || offset || 02

T+1: if condition then
 PC ¬ PC + target
endif

Chapter 17

562 User’s Manual U10504EJ7V0UM00

Format:
BC1FL offset

Description:
A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If
the CPz condition signal sampled while the instruction immediately preceding is
being executed is false (0), the program branches to the branch target address, with
a delay of one instruction. If the branch is not taken, the instruction in the branch
delay slot is nullified.

Because the result of comparison is sampled while the instruction immediately
preceding is executed, at least one instruction must be inserted in between the
floating-point compare instruction and this instruction.

Operation:

 Exceptions:
Coprocessor unusable exception

25

BC
0 1 0 0 0

BCF
0 0 0 1 0

BC1FLBranch On FPU False Likely

31 26

COP1

6

0

16

offset

(Coprocessor 1)

0 1 0 0 0 1

BC1FL
16 15

5 5

21 20

64 T–1: condition ¬ not COC[1]
T: target ¬ (offset15)46 || offset || 02

T+1: if condition then
 PC ¬ PC + target

else
 NullifyCurrentInstruction

endif

32 T–1: condition ¬ not COC[1]
T: target ¬ (offset15)14 || offset || 02

T+1: if condition then
 PC ¬ PC + target
else

 NullifyCurrentInstruction
endif

User’s Manual U10504EJ7V0UM00 563

FPU Instruction Set Details

Format:

BC1T offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If
the CPz condition signal sampled while the instruction immediately preceding is
being executed is true (1), the program branches to the branch target address, with
a delay of one instruction.

Because the result of comparison is sampled while the instruction immediately
preceding is executed, at least one instruction must be inserted in between the
floating-point compare instruction and this instruction.

Operation:

Exceptions:

Coprocessor unusable exception

25

BC1T Branch On FPU True

31 26

COP1

6

0

16

offset

(Coprocessor 1)

0 1 0 0 0 1

BC1T
16 15

5

BC BCT

5

21 20

0 1 0 0 0 0 0 0 0 1

32 T–1: condition ¬ COC[1]
T: target ¬ (offset15)14 || offset || 02

T+1: if condition then
 PC ¬ PC + target

 endif

64 T–1: condition ¬ COC[1]
T: target ¬ (offset15)46 || offset || 02

T+1: if condition then
 PC ¬ PC + target

 endif

Chapter 17

564 User’s Manual U10504EJ7V0UM00

Format:
BC1TL offset

Description:
A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended. If
the result of the last floating-point compare is true (1), the program branches to the
branch target address, with a delay of one instruction. If the branch is not taken,
the instruction in the branch delay slot is nullified.

Because the result of comparison is sampled while the instruction immediately
preceding is executed, at least one instruction must be inserted in between the
floating-point compare instruction and this instruction.

Operation:

 Exceptions:

Coprocessor unusable exception

BC1TLBranch On FPU True Likely

5

16 15

BC

31 2526

COP1

6

0

16

offset

(Coprocessor 1)

BCTL

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1

BC1TL

32 T–1: condition ¬ COC[1]
T: target ¬ (offset15)14 || offset || 02

T+1: if condition then
PC ¬ PC + target

else
NullifyCurrentInstruction

 endif
64 T–1: condition ¬ COC[1]

T: target ¬ (offset15)46 || offset || 02

T+1: if condition then
PC ¬ PC + target

else
NullifyCurrentInstruction

 endif

User’s Manual U10504EJ7V0UM00 565

FPU Instruction Set Details

Format:

C.cond.fmt fs, ft

Description:

Compares the contents of floating-point register fs with those of floating-point
register ft based on compare condition cond, and sets the result to condition signal
COC [1]. The operand is processed in the floating-point format fmt. If one of the
values is NaN and if the most-significant bit of compare condition cond is set, the
invalid operation exception occurs (the result of the comparison is used to test the
FPU branch instruction). At least one instruction is necessary between this
instruction and the FPU branch instruction.

Comparison is performed normally, and does not overflow or underflow. One of
four mutually exclusive relations results, “less than”, “equal to”, “greater than”,
or “cannot be compared”, occurs. If one of or both the operands are NaN, the
result of the comparison is always “cannot be compared”.

During comparison, the sign of 0 is ignored (+0 = –0).

This instruction is valid only in the single- and double-precision floating-point
format.

If the FR bit of the status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the status bit is 1, both the odd and even
register numbers are valid.

* See 17.6 FPU Instruction Opcode Bit Encoding.

C.cond.fmt Floating-point

31 0

6 5 5 5 5 4

COP1 fmt ft fs 0 cond*

11 1021 20 16 1526 25

2

FC*

6 5 4 3

0 1 0 0 0 1 0 0 0 0 0

Compare C.cond.fmt

1 1

Chapter 17

566 User’s Manual U10504EJ7V0UM00

Operation:

 Exceptions:

Coprocessor unusable
Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception
Invalid operation exception

Compare C.cond.fmtFloating-point

(continued)
C.cond.fmt

32, 64 T: if NaN (ValueFPR (fs, fmt)) or NaN (ValueFPR (ft, fmt)) then
less ¬ false
equal ¬ false
unordered ¬ true
if cond3 then

signal InvalidOperationException
endif

else
less ¬ ValueFPR (fs, fmt) < ValueFPR (ft, fmt)
equal ¬ ValueFPR (fs, fmt) = ValueFPR (ft, fmt)
unordered ¬ false

endif
condition ¬ (cond2 and less) or (cond1 and equal) or

 (cond0 and unordered)
FCR[31]23 ¬ condition
COC[1] ¬ condition

User’s Manual U10504EJ7V0UM00 567

FPU Instruction Set Details

Format:

CEIL.L.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format, and the result is stored to floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the + ¥ direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 263 –1 to –263, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 263–1 is
returned.

This operation is defined in the 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User/Supervisor mode, a reserved instruction
exception occurs.

CEIL.L.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.L

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0

Ceiling To Long CEIL.L.fmt

Chapter 17

568

User’s Manual U10504EJ7V0UM00

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-point exception
Reserved instruction exception (V

R

4300 in 32-bit User or Supervisor mode)

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

(continued)

CEIL.L.fmt Floating-point

Fixed-point Format
Ceiling To Long CEIL.L.fmt

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

User’s Manual U10504EJ7V0UM00 569

FPU Instruction Set Details

Format:

CEIL.W.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a 32-bit
fixed-point format, and the result is stored to floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the +¥ direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 231 –1 to –231, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 231–1 is
returned.

CEIL.W.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.W

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0

Ceiling To Single CEIL.W.fmt

Chapter 17

570

User’s Manual U10504EJ7V0UM00

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

(continued)

CEIL.W.fmt Floating-point

Fixed-point Format
Ceiling To Single CEIL.W.fmt

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

User’s Manual U10504EJ7V0UM00 571

FPU Instruction Set Details

Format:

CFC1 rt, fs

Description:

The contents of the floating-point control register fs are loaded into general
purpose register rt.

This instruction is only defined when fs equals 0 or 31.

The contents of general purpose register rt are undefined while the instruction
immediately following this load instruction is being executed.

Operation:

 Exceptions:

Coprocessor unusable exception

(Coprocessor 1)CFC1

11

Move Control Word From FPU

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CFC1

32 T: temp ¬ FCR[fs]
T+1: GPR[rt] ¬ temp

64 T: temp ¬ FCR[fs]
T+1: GPR[rt] ¬ (temp31)32 || temp

Chapter 17

572 User’s Manual U10504EJ7V0UM00

Format:

CTC1 rt, fs

Description:
The contents of general purpose register rt are loaded to floating-point register fs.

This instruction is defined if fs is 0 or 31.

If the cause bit of the floating-point control/status register (FCR31) and the
corresponding enable bit are set by writing data to FCR31, the floating-point
exception occurs. Write the data to the register before the exception occurs.

The contents of the floating-point control register fs are undefined while the
instruction immediately following this instruction is executed.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Division by zero exception
Inexact operation exception
Overflow exception
Underflow exception

CTC1

11

Move Control Word To FPU

31 2526 2021 1516

COP1 CT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTC1

32 T: temp ¬ GPR[rt]
T+1: FCR[fs] ¬ temp

 COC[1] ¬ FCR[31]23

64 T: temp ¬ GPR[rt]31...0
T+1: FCR[fs] ¬ temp

COC[1] ¬ FCR[31]23

User’s Manual U10504EJ7V0UM00

573

FPU Instruction Set Details

Format:

CVT.D.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a
double-precision floating-point format, and the result is stored to floating-point
register

fd

. The source operand is processed in the floating-point format

fmt

.

This instruction is valid only for conversion from the single-precision floating-
point format, and 32-bit or 64-bit fixed floating-point format.

In the single-precision floating-point format or 32-bit fixed point format, this
conversion operation is executed correctly without the accuracy becoming
degraded.

If the

FR

 bit of the

Status

 register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the

FR

 bit of the

Status

 register is 1, both the odd and
even register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception

CVT.D.fmt Floating-point

Floating-point Format
Convert To Double CVT.D.fmt

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.D

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 1 0 0 0 0 10 0 0 0 0

32, 64 T: StoreFPR (fd, D, ConvertFmt (ValueFPR (fs, fmt) , fmt, D))

Chapter 17

574

User’s Manual U10504EJ7V0UM00

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

• Conversion from floating-point format to fixed-point format

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

• Conversion from fixed-point format to floating-point format

Essentially, if 64-bit fixed-point format data in which any of bits 55 to 62 is 1 is
converted to floating-point format data, an unimplemented operation exception
will occur.

CVT.D.fmt Floating-point

Floating-point Format
Convert To Double CVT.D.fmt

(continued)

User’s Manual U10504EJ7V0UM00 575

FPU Instruction Set Details

Format:

CVT.L.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format, and the result is stored to floating-point register fd. The source
operand is processed in the floating-point format fmt.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 263 –1 to –263, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 263–1 is
returned.

This operation is defined in the 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User/Supervisor mode, a reserved instruction
exception occurs.

CVT.L.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.L

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 10 0 0 0 0

Convert To Long CVT.L.fmt

Chapter 17

576

User’s Manual U10504EJ7V0UM00

Operation:

Remark

Same operation in the 32-bit Kernel mode.

Exceptions:

Coprocessor unusable exception
Floating-point exception
Reserved instruction exception (V

R

4300 in 32-bit User or Supervisor mode)

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

CVT.L.fmt Floating-point

Fixed-point Format
Convert To Long CVT.L.fmt

(continued)

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

User’s Manual U10504EJ7V0UM00

577

FPU Instruction Set Details

Format:

CVT.S.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a
single-precision floating-point format, and the result is stored to floating-point
register

fd

. The source operand is processed in the floating-point format

fmt

. The
result of the conversion is rounded according to the current rounding mode.

This instruction is valid only for conversion from the double-precision floating-
point format, and 32-bit or 64-bit fixed floating-point format.

If the

FR

 bit of the

Status

 register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the

FR

 bit of the

Status

 register is 1, both the odd and
even register numbers are valid.

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception
Underflow exception

CVT.S.fmtFloating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.S

11 1021 20 16 1526 25

Floating-point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 00 0 0 0 0

Convert To SingleCVT.S.fmt

32, 64 T: StoreFPR (fd, S, ConvertFmt (ValueFPR (fs, fmt) , fmt, S))

Chapter 17

578

User’s Manual U10504EJ7V0UM00

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

• Conversion from floating-point format to fixed-point format

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

• Conversion from fixed-point format to floating-point format

Essentially, if 64-bit fixed-point format data in which any of bits 55 to 62 is 1 is
converted to floating-point format data, an unimplemented operation exception
will occur.

CVT.S.fmt Floating-point

Floating-point Format
Convert To Single CVT.S.fmt

(continued)

User’s Manual U10504EJ7V0UM00

579

FPU Instruction Set Details

Format:

CVT.W.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a 32-bit
fixed-point format, and the result is stored to floating-point register

fd

. The source
operand is processed in the floating-point format

fmt

.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the

FR

 bit of the

Status

 register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the

FR

 bit of the

Status

 register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 2

31

 –1 to –2

31

, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 2

31

–1 is
returned.

CVT.W.fmt
Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.W

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 00 0 0 0 0

Convert To Single CVT.W.fmt

Chapter 17

580

User’s Manual U10504EJ7V0UM00

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

CVT.W.fmt
Floating-point

Fixed-point Format
Convert To Single CVT.W.fmt

(continued)

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

User’s Manual U10504EJ7V0UM00 581

FPU Instruction Set Details

Format:

DIV.fmt fd, fs, ft

Description:

The contents of floating-point register fs are divided by those of floating-point
register ft, and the result are stored to floating-point register rd. The operand is
processed in the floating-point format fmt. The operation is executed as if the
accuracy were infinite, and the result is rounded according to the current rounding
mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception Invalid operation exception
Division-by-zero exception Inexact operation exception
Overflow exception Underflow exception

DIV.fmtFloating-point Divide

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd DIV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 1

DIV.fmt

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt)/ValueFPR (ft, fmt))

Chapter 17

582 User’s Manual U10504EJ7V0UM00

Format:

DMFC1 rt, fs

Description:

The contents of Floating-Point General Purpose register fs are stored into CPU
general purpose register rt.

The contents of general purpose register rt are undefined while the instruction
immediately following this instruction is being executed.

The FR bit of the Status register indicates whether all the 32 registers of the
processor can be specified. If the FR bit is 0, and the least-significant bit of fs is
1, this instruction is undefined.

The operation is undefined if an odd number is specified when the FP bit of the
status register is 0. If the FR bit is 1, both the odd-numbered and even-numbered
registers are valid.

This operation is defined in 64-bit mode or 32-bit Kernel mode.

DMFC1 Doubleword Move From FPU

fs

11 10

5

31 2526 2021 1516 0

COP1 DMF rt 0

6 5 5 11

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

DMFC1

User’s Manual U10504EJ7V0UM00 583

FPU Instruction Set Details

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Coprocessor unusable exception
Floating-point exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

Floating-Point Exceptions:

Unimplemented operation exception

DMFC1 Doubleword Move From FPU
(Coprocessor 1) DMFC1

(continued)

64 T: if SR26 = 1 then
data ¬ FGR [fs]

else

if fs0 = 0 then
data ¬ FGR [fs + 1] || FGR [fs]

else
data ¬ undefined64

endif
T+1: GPR[rt] ¬ data

Chapter 17

584 User’s Manual U10504EJ7V0UM00

Format:

DMTC1 rt, fs

Description:

The contents of general purpose register rt are loaded into Floating-Point General
Purpose register fs.

The contents of fs are undefined while the instruction immediately following this
instruction is being executed.

The FR bit of the Status register indicates whether all the 32 registers of the
processor can be specified. If the FR bit is 0, and the least-significant bit of fs is
1, this instruction is undefined.

The operation is undefined if an odd number is specified when the FR bit of the
status register is 0. If the FR bit is 1, both the odd-numbered and even-numbered
registers are valid.

This operation is defined in 64-bit mode or 32-bit Kernel mode.

DMTC1 Doubleword Move To FPU

fs

11 10

5

31 2526 2021 1516 0

COP1 DMT rt 0

6 5 5 11

(Coprocessor 1)

0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

DMTC1

User’s Manual U10504EJ7V0UM00 585

FPU Instruction Set Details

Operation:

Remark Same operation in the 32-bit Kernel mode.

Exceptions:

Coprocessor unusable exception
Floating-point exception
Reserved instruction exception (VR4300 in 32-bit User or Supervisor mode)

Floating-Point Exceptions:

Unimplemented operation exception

DMTC1 Doubleword Move To FPU
(Coprocessor 1) DMTC1

(continued)

64 T: data ¬ GPR[rt]

T+1: if SR26 = 1 then
FGR [fs] ¬ data

else

if fs0 = 0 then
FGR [fs+1] ¬ data63..32
FGR [fs] ¬ data31..0

else
undefined_result

endif

Chapter 17

586 User’s Manual U10504EJ7V0UM00

Format:

FLOOR.L.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format, and the result is stored to floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the – ¥ direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 263 –1 to –263, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 263–1 is
returned.

This operation is defined in the 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User/Supervisor mode, a reserved instruction
exception occurs.

FLOOR.L.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.L

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1

Floor To Long FLOOR.L.fmt

User’s Manual U10504EJ7V0UM00

587

FPU Instruction Set Details

Operation:

Remark

Same operation in the 32-bit Kernel mode.

Exceptions:

Coprocessor unusable exception
Floating-point exception
Reserved instruction exception (V

R

4300 in 32-bit User or Supervisor mode)

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

FLOOR.L.fmt Floating-point

Fixed-point Format
Floor To Long FLOOR.L.fmt

(continued)

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

Chapter 17

588 User’s Manual U10504EJ7V0UM00

Format:

FLOOR.W.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a 32-bit
fixed-point format, and the result is stored to floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the – ¥ direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 231 –1 to –231, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 231–1 is
returned.

FLOOR.W.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.W

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 0 0 1 1 1 10 0 0 0 0

Floor To Single FLOOR.W.fmt

User’s Manual U10504EJ7V0UM00

589

FPU Instruction Set Details

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

FLOOR.W.fmt Floating-point

Fixed-point Format
Floor To Single FLOOR.W.fmt

(continued)

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

Chapter 17

590

User’s Manual U10504EJ7V0UM00

Format:

LDC1 ft, offset (base)

Description:

The 16-bit

offset

 is sign-extended and added to the contents of general purpose
register

base

 to form a virtual address.

If the

FR

 bit of the

Status

 register is 0, the contents of the doubleword at the
memory location specified by the virtual address are loaded to floating-point
registers ft and ft+1. At this time, the high-order 32 bits of the doubleword are
stored to an odd-numbered register specified by ft+1, and the low-order 32 bits are
stored to an even-numbered register specified by

ft

. The operation is undefined if
the least significant bit in the

ft

 field is not 0.

If the

FR

 bit is 1, the contents of the doubleword at the memory location specified
by the virtual address are loaded to floating-point register

ft

.

If any of the low-order three bits of the address are not zero, an address error
exception occurs.

LDC1 Load Doubleword To FPU

31 2526 2021 1516 0

LDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 1 0 1

LDC1

User’s Manual U10504EJ7V0UM00 591

FPU Instruction Set Details

Operation:

Exceptions:

Coprocessor unusable
TLB miss exception
TLB invalid exception
Bus error exception
Address error exception

LDC1 Load Doubleword To FPU
(Coprocessor 1) LDC1

(continued)

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then

FGR [ft] ¬ data
elseif ft0 = 0 then

FGR [ft+1] ¬ data63...32
FGR [ft] ¬ data31...0

else
undefined_result

endif

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ Address Translation (vAddr, DATA)
data ¬ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then

FGR [ft] ¬ data
elseif ft0 = 0 then

FGR [ft+1] ¬ data63...32
FGR [ft] ¬ data31...0

else
undefined_result

endif

Chapter 17

592 User’s Manual U10504EJ7V0UM00

Format:

LWC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of the word at the memory
location specified by the virtual address are loaded to floating-point register ft.

If the FR bit of the Status register is 0 and if the least-significant bit in the ft field
is 0, the contents of the word are stored to the low-order 32 bits of floating-point
register ft. If the least-significant bit in the ft area is 1, the contents of the word
are stored to the high-order 32 bits of floating-point register ft-1.

If the FR bit is 1, all the 64-bit floating-point registers can be accessed; therefore,
the contents of the word are stored to floating-point register ft. The value of the
high-order 32 bits is undefined.

If either of the low-order two bits of the address is not zero, an address error
exception occurs.

LWC1Load Word To FPU

31 2526 2021 1516 0

LWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 0 0 1

LWC1

User’s Manual U10504EJ7V0UM00 593

FPU Instruction Set Details

Operation:

Exceptions:

Coprocessor unusable exception
TLB miss exception
TLB invalid exception
Bus error exception
Address error exception

LWC1Load Word To FPU
(Coprocessor 1)LWC1

(continued)

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
if SR26 = 1 then

FGR [ft] ¬ undefined32 || data
else

FGR [ft] ¬ data
endif

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
if SR26 = 1 then

FGR [ft] ¬ undefined32 || data
else

FGR [ft] ¬ data
endif

Chapter 17

594 User’s Manual U10504EJ7V0UM00

Format:

MFC1 rt, fs

Description:

The contents of floating-point general purpose register fs are stored to the general
purpose register rt of the CPU register rt.

The contents of general purpose register rt are undefined while the instruction
immediately following this instruction is being executed.

If the FR bit of the Status register is 0 and if the least-significant bit in the ft field
is 0, the low-order 32 bits of floating-point register ft are stored to the general
purpose register rt. If the least-significant bit in the ft area is 1, the high-order 32
bits of floating-point register ft-1 are stored to the general purpose register rt.

If the FR bit is 1, all the 64-bit floating-point registers can be accessed; therefore,
the low-order 32 bits of floating-point register ft are stored to the general purpose
register rt.

Operation:

Exceptions:

Coprocessor unusable exception

MFC1

11

Move Word From FPU

31 2526 2021 1516

COP1 MF rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC1

32 T: data ¬ FGR [fs]31...0
T+1: GPR [rt] ¬ data

64 T: data ¬ FGR [fs]31...0

T+1: GPR[rt] ¬ (data31)32 || data

User’s Manual U10504EJ7V0UM00 595

FPU Instruction Set Details

Format:

MOV.fmt fd, fs

Description:

The contents of floating-point register fs are stored to floating-point register fd.
The operand is processed in the floating-point format fmt.

This instruction is not executed arithmetically, and the IEEE754 exception does
not occur.

This instruction is valid only in the single- and double-precision floating-point
formats.

If the FR bit of the status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the status bit is 1, both the odd and even
register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception

MOV.fmtFloating-point Move

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd MOV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 00 0 0 0 0

MOV.fmt

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt))

Chapter 17

596 User’s Manual U10504EJ7V0UM00

Format:

MTC1 rt, fs

Description:

The contents of general purpose of the CPU register rt are loaded into the floating-
point general purpose register fs.

The contents of floating-point register fs is undefined while the instruction
immediately following this instruction is being executed.

The FR bit of the Status register specifies the method of access to the Floating-
Point General Purpose registers.

If FR bit equals zero, all 32 Floating-Point General Purpose registers can be
accessed. Access an odd-numbered register for the high-order 32 bits and an
even-numbered register for the low-order 32 bits in the format of the floating-
point operation instruction when transferring double-precision data.

If the FR bit is 1, all the 32 floating-point general purpose registers can be
accessed, but the low-order 32 bits of the register are accessed for data.

Operation:

Exceptions:

Coprocessor unusable exception

MTC1

11

Move To FPU

31 2526 2021 1516

COP1 MT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0

MTC1

32, 64 T: data ¬ GPR [rt]231..0
T+1: if SR26= 1 then

FGR [fs] ¬ undefined32 || data
else

FGR [fs] ¬ data
endif

User’s Manual U10504EJ7V0UM00 597

FPU Instruction Set Details

Format:

MUL.fmt fd, fs, ft

Description:

The contents of floating-point register fs are multiplied by those of floating-point
register ft, and the result is stored to floating-point register fd. The operand is
processed in the floating-point format fmt.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
 Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact operation exception
Overflow exception
Underflow exception

MUL.fmtFloating-point Multiply

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd MUL

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 0

MUL.fmt

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) * ValueFPR (ft, fmt))

Chapter 17

598 User’s Manual U10504EJ7V0UM00

Format:

NEG.fmt fd, fs

Description:

The sign of the contents of floating-point register fs is inverted and the result to
floating-point register fd is stored. The operand is processed in the floating-point
format fmt.

The sign is inverted arithmetically. Therefore, the instruction is invalid if NaN is
specified as the operand.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception
Invalid operation exception

NEG.fmt Floating-point Negate

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd NEG

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 10 0 0 0 0

NEG.fmt

32, 64 T: StoreFPR (fd, fmt, Negate (ValueFPR (fs, fmt)))

User’s Manual U10504EJ7V0UM00 599

FPU Instruction Set Details

Format:

ROUND.L.fmt fd, fs

Description:

The contents of floating-point register fs are converted into the 64-bit fixed-point
format, and the result is stored to floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion is rounded to the closest value or even number
regardless of the current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 263 –1 to –263, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 263–1 is
returned.

This operation is defined in the 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User/Supervisor mode, a reserved instruction
exception occurs.

ROUND.L.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.L

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Round To Long ROUND.L.fmt

Chapter 17

600

User’s Manual U10504EJ7V0UM00

Operation:

Remark

 Same operation in the 32-bit Kernel mode.

Exceptions:

Coprocessor unusable exception
Floating-point exception
Reserved instruction exception (V

R

4300 in 32-bit User or Supervisor mode)

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

ROUND.L.fmt Floating-point

Fixed-point Format
Round To Long ROUND.L.fmt

(continued)

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

User’s Manual U10504EJ7V0UM00 601

FPU Instruction Set Details

Format:

ROUND.W.fmt fd, fs

Description:

The contents of floating-point register fs are converted into the 32-bit fixed-point
format, and the result is stored to floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion is rounded to the closest value or even number
regardless of the current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 231 –1 to –231, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 231–1 is
returned.

ROUND.W.fmtFloating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.W

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 00 0 0 0 0

Round To Single
ROUND.W.fmt

Chapter 17

602

User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

ROUND.W.fmtFloating-point

Fixed-point Format
Round To Single

ROUND.W.fmt

(continued)

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

User’s Manual U10504EJ7V0UM00

603

FPU Instruction Set Details

Format:

SDC1 ft, offset(base)

Description:

The 16-bit

offset

 is sign-extended and added to the contents of general purpose
register

base

 to form a virtual address.

The contents of floating-point registers

ft

 and ft+1 are stored to the memory
position specified by the virtual address as a doubleword if the

FR

 bit of the

Status

register is 0. At this time, the contents of the odd-numbered register specified by
ft+1 correspond to the high-order 32 bits of the doubleword, and the contents of
the even-numbered register specified by ft correspond to the low-order 32 bits.

If the least significant bit in the ft field is not 0, this instruction is not defined.

If the

FR

 bit is 1, the contents of floating-point register

ft

 are stored to the memory
location specified by the virtual address as a doubleword.

If any of the low-order three bits of the address are not zero, an address error
exception occurs.

SDC1Store Doubleword From FPU

31 2526 2021 1516 0

SDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 1 0 1

SDC1

Chapter 17

604 User’s Manual U10504EJ7V0UM00

Operation:

Exceptions:

Coprocessor unusable
TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SDC1Store Doubleword From FPU
(Coprocessor 1)SDC1

(continued)

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR [base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
if SR26 = 1

data ¬ FGR [ft]63...0
elseif ft0 = 0 then

data ¬ FGR [ft+1]31...0 || FGR [ft]31...0
else

data ¬ undefined64

endif
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR [base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
if SR26 = 1

data ¬ FGR [ft]63...0
elseif ft0 = 0 then

data ¬ FGR [ft+1]31...0 || FGR [ft]31...0
else

data ¬ undefined64

endif
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

User’s Manual U10504EJ7V0UM00 605

FPU Instruction Set Details

Format:

SQRT.fmt fd, fs

Description:
The positive arithmetic square root of the contents of floating-point register fs is
calculated and the result is stored to floating-point register fd. The operand is
processed in the floating-point format fmt. The result is rounded as if calculated
to infinite precision and then rounded according to the current rounding mode. If
the value of the source operand is –0, the result will be –0. The result is placed in
the floating-point register specified by fd.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact operation exception

SQRT.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt fs fd SQRT

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 0 0

Square Root SQRT.fmt

0
0 0 0 0 0

32, 64 T: StoreFPR (fd, fmt, SquareRoot (ValueFPR (fs, fmt)))

Chapter 17

606 User’s Manual U10504EJ7V0UM00

Format:

SUB.fmt fd, fs, ft

Description:

The contents of floating-point register ft from those of floating-point register fs,
and the result is stored to floating-point register fd. The result is rounded as if
calculated to infinite precision and then rounded according to the current rounding
mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact operation exception
Overflow exception
Underflow exception

SUB.fmtFloating-point Subtract

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd SUB

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 1

SUB.fmt

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) – ValueFPR (ft, fmt))

User’s Manual U10504EJ7V0UM00 607

FPU Instruction Set Details

Format:

SWC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general purpose
register base to form a virtual address. The contents of the floating-point general
purpose register ft are stored at the memory location of the specified address.

If the FR bit of the Status register is 0 and the least-significant bit in the ft field is
0, the contents of the low-order 32 bits of floating-point register ft are stored. If
the least-significant bit in the ft field is 1, the contents of the high-order 32 bits of
floating-point register ft-1 are stored.

If the FR bit is 1, all the 64-bit floating-point registers can be accessed; therefore,
the contents of the low-order 32 bits in the ft field are stored.

If either of the low-order two bits of the address are not zero, an address error
exception occurs.

SWC1 Store Word From FPU

31 2526 2021 1516 0

SWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 0 0 1

SWC1

Chapter 17

608 User’s Manual U10504EJ7V0UM00

Operation:

 Exceptions:

Coprocessor unusable
TLB miss exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWC1 Store Word From FPU
(Coprocessor 1) SWC1

(continued)

32 T: vAddr ¬ ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ FGR [ft]31...0
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ¬ ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ¬ AddressTranslation (vAddr, DATA)
data ¬ FGR [ft]31...0
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

User’s Manual U10504EJ7V0UM00 609

FPU Instruction Set Details

Format:

TRUNC.L.fmt fd, fs

Description:

The contents of floating-point register fs are converted into the 64-bit fixed-point
format, and the result is stored to floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion is rounded toward the 0 direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 263 –1 to –263, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 263–1 is
returned.

This operation is defined in the 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User/Supervisor mode, a reserved instruction
exception occurs.

TRUNC.L.fmt Floating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.L

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 01

Truncate To Long TRUNC.L.fmt

Chapter 17

610

User’s Manual U10504EJ7V0UM00

Operation:

Remark

 Same operation in the 32-bit Kernel mode.

Exceptions:

Coprocessor unusable exception
Floating-point exception
Reserved instruction exception (V

R

4300 in 32-bit User or Supervisor mode)

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

TRUNC.L.fmt Floating-point

Fixed-point Format
Truncate To Long TRUNC.L.fmt

(continued)

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

User’s Manual U10504EJ7V0UM00 611

FPU Instruction Set Details

Format:

TRUNC.W.fmt fd, fs

Description:

The contents of floating-point register fs are arithmetically converted into a 32-bit
fixed-point single format, and the result is stored to floating-point register fd. The
source operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the 0 direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as a floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit of the Status register is 1, both the odd and
even register numbers are valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 231 –1 to –231, the invalid operation exception occurs. If the invalid
operation exception is not enabled, the exception does not occur, and 231 –1 is
returned.

TRUNC.W.fmtFloating-point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.W

11 1021 20 16 1526 25

Fixed-point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 10 0 0 0 0

Truncate To SingleTRUNC.W.fmt

Chapter 17

612

User’s Manual U10504EJ7V0UM00

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-point exception

Floating-Point Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact operation exception
Overflow exception

Restrictions:

An unimplemented operation exception will occur in the following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

Essentially, if any of bits 53 to 62 of the result of conversion from a floating-point
format to a fixed-point format is 1, an unimplemented operation exception will
occur. This includes cases when there is an overflow during conversion.

TRUNC.W.fmtTRUNC.W.fmt Floating-point

Fixed-point Format
Truncate To Single

(continued)

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

User’s Manual U10504EJ7V0UM00 613

FPU Instruction Set Details

17.6 FPU Instruction Opcode Bit Encoding

 Figure 17-3 lists the Bit Encoding for FPU instructions.

Figure 17-3 Bit Encoding for FPU Instructions (1/2)

31...29
0
1
2
3
4
5
6

7

28...26
Opcode

br

0 1 2 3 4 5 6 7

0
1

g

g g g g

23...21
sub

0 1 2 3 4 5 6 725...24

g g g

g

LWC1
SWC1

COP1

LDC1

SDC1

DMFh

Lh g g
g g g gg g gg

MF
BC

CF MT

S

CT

D2
3

0
1

* *

* * * *

18...16
0 1 2 3 4 5 6 720...19

* * *

BCF BCFLBCT BCTL

2
3

* *

*

Wg g

* * * ** * **
* * * ** * **

DMTh

Chapter 17

614 User’s Manual U10504EJ7V0UM00

Figure 17-3 Bit Encoding for FPU Instructions (2/2)

Key:

* When the operation code marked with an asterisk is executed, the
reserved instruction exception occurs. This code is reserved for
future expansion.

g Operation codes marked with a gamma cause unimplemented
operation exceptions in all current implementations and are
reserved for future expansion.

h When the operation code marked with an eta is executed, the result
is valid only when use of the MIPS III instruction set is enabled.
If the operation code is executed when use of the instruction set is
disabled (in the 32 bit User/Supervisor mode), the unimplemented
operation exception occurs.

 0 1 2 3 4 5 6 7
2...0

5...3
function

0
1
2
3
4
5
6

 ADD SUB

7

g g g g

CVT.S

C.F

MUL DIV ABS MOV NEGSQRT
ROUND.Lh TRUNC.Lh CEIL.Lh FLOOR.Lh ROUND.W TRUNC.W CEIL.W FLOOR.W

g g g g

CVT.D CVT.W

C.UN C.EQ C.UEQ C.OLE C.ULE
C.LT C.NGEC.SF C.NGLE C.SEQ C.NGL C.LE C.NGT

C.OLT C.ULT

g g g gg g g g
g g CVT.Lh g g

g g ggg g g g

User’s Manual U10504EJ7V0UM00

615

PLL Passive Elements

18

Chapter 18

616

User’s Manual U10504EJ7V0UM00

Connect several passive elements externally to the V

R

4300 so that the processor
can operate normally. Connect the elements to the PLLCap0, PLLCap1, V

DD

P,
and GNDP pins.

 Figure 18-1 shows the connections of the passive elements for PLL.

Remarks 1.

 C1, C2, C3, Cp%1, Cp%2, R, and L are mounted on the board.

 2.

Either R or L may do in a system where it has been confirmed
through experiment that noise is not superimposed on V

DD

P and
GNDP.

 3.

The value of each element differs depending on the system. Find
the appropriate values for each system through experiment.

Figure 18-1 Connection Example of PLL Passive Elements

C1

Cp

C2

R

R L

L

%2

Cp
%1

VR4300

C3

VDDP

VDD

PLLCap1

GNDP

PLLCap0

GND

User’s Manual U10504EJ7V0UM00

617

PLL Passive Elements

Figure 18-2 shows a layout example of 120-pin plastic QFP and capacitor on
PWB.

Remarks

x : GND-V

DD

 Bypass Capacitors
C2 : GNDP-V

DD

P Bypass Capacitors
%1, %2 : PLL Capacitors

Figure 18-2 Layout Example of QFP and Capacitor on PWB

Separate the wiring of the power (V

DD

P) and ground (GNDP) for PLL from the
normal power (V

DD

) and ground (GND) wiring. Here is an example of the value
of each element.

R = 5

W

 C1 = 1 nF C2 = 82 nF

C3 = 10

m

F Cp = 470 pF

Because the optimum values of filter elements differ depending on the application
and noise environment of the system. Therefore, the above values are given for
reference only. Find the optimum values for users’ application through trial and
error. A choke element (inductor: L) may be used instead of the resistor (R) used
as a power filter.

x

x

x

x

C2

%2

%1

mP
D

30200G
D

PWB

618

User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

619

Coprocessor 0 Hazards

19

Chapter 19

620

User’s Manual U10504EJ7V0UM00

If a conflict of internal resources takes place between instructions (such as when
the contents of the destination register are used as the source for the next
instruction), the V

R

4300 interlocks the pipeline to prevent conflict of internal
resources. Therefore, it is not necessary to insert a NOP instruction between
instructions.

However, the

CP0

 register and TLB are not interlocked. When developing a
program that uses the

CP0

 register and TLB, therefore, take conflict of the internal
resources into consideration. CP0 hazard defines the number of NOP instructions
to be inserted between instructions to avoid conflict of internal resources, or the
number of instructions independent of the conflict. This chapter explains this CP0
hazard.

The value of V

R

4300 CP0 hazards is equivalent or less than those of the V

R

4400;
Table 19-1 lists the V

R

4300 CP0 hazards. Code which complies with these
hazards will run without modification on the V

R

4400 or V

R

4200.

When the data of the

CP0

 register or bit is defined in the Source column in the
following table, that data can be used as a source. If data is stored in the

CP0

register or bit shown in the Destination column, that data is used as the destination.

The number of NOP instructions between the instructions related to the

CP0

register and TLB, or the number of the instructions independent of the conflict can
be calculated from the following expression, using this table.

(Number of destination hazards of instruction A) -

{(Number of source hazards of instruction B) +1}

As an example, to find the number of instructions required between an MTC0 and
a subsequent MFC0 instruction, this is:

(7) - (4 + 1) = 2 instructions

Caution The hazard related to CP0 does not generate the interlock of the
pipeline. Therefore, control the number of required instructions
by program.

User’s Manual U10504EJ7V0UM00

621

Coprocessor 0 Hazards

Table 19-1 Coprocessor 0 Hazards

 Operation

Source Destination

Name
Number

of
Hazard

Name
Number

of
Hazard

MTC0 cpr rd 7
MFC0 cpr rd 4

TLBR Index, TLB 5-7
PageMask, EntryHi
EntryLo0, EntryLo1

8

TLBWI
TLBWR

Index or Random
PageMask, EntryHi,
EntryLo0, EntryLo1

5-8 TLB 8

TLBP PageMask, EntryHi 3-6 Index 7

ERET
EPC or ErrorEPC,
Status, TLB

4

g

Status.EXL,
Status.ERL

4-8

a

LLbit 7
CACHE Index Load Tag TagLo, TagHi, ECC 8

b

CACHE Index Store Tag TagLo, TagHi, ECC 7
CACHE Hit ops. Status.CH 8

Coprocessor usable test
Status.CU, Status.KSU
Status.EXL, Status.ERL

2

Instruction fetch

EntryHi.ASID
Status.KSU, Status.EXL,
Status.ERL, Status.RE,
Config.K0

0

TLB 2

Instruction fetch
exception

EPC, Status 8
Cause, BadVAddr,
Context

3

Interrupt
Cause.IP, Status.IM
Status.IE, Status.EXL
Status.ERL

3

Load/Store

EntryHi.ASID
Status.KSU, Status.EXL,
Status.ERL, Status.RE,
Config.K0, TLB

4

WatchHi, WatchLo 4-5

Load/Store exception
EPC, Status, Cause

8
BadVAddr, Context

TLB shutdown Status.TS 7

Chapter 19

622

User’s Manual U10504EJ7V0UM00

Remarks 1.

A hazard is associated when an instruction related to the bit
specified by the source or destination is executed. For example,
if CP1 is enabled by setting Status.C to 1 by the MTC0
instruction, all the instructions using CP1 (FPU) are subject to
hazard.

 2.

a

Status.EXL and Status.ERL are cleared in stage 8, but the
effect of clearing them is visible at the time of an instruction
fetch starting at the beginning of stage 4.

b

One instruction to separate Index Load Tag and MFC0 Tag
will do, even though

a

 above would imply three instructions.

• The instruction following a MTC0 instruction must not
be a MFC0 instruction.

• The five instructions following a MTC0 instruction to

Status

 register that changes KSU bit and sets EXL or
ERL bits may be executed in the new mode, and not in
the Kernel mode. This can be avoided by setting EXL
bit first, leaving KSU bit set to Kernel, and later
changing KSU bit.

• There must be two non-load, non-CACHE instructions
between a store instruction and a CACHE instruction
directed to the same cache line as the store destination.

g

An ERET instruction following an MTC0 instruction that sets
the ERL bit in the

Status

 register (Status.ERL) must be
separated from the MTC0 instruction by three instructions.

Cautions 1. If the K0 bit of the config register is changed to the non-cache
mode by using the MTC0 instruction, the non-cache area is set
when the instruction fetch two instructions after the MTC0
instruction is executed.

2. If a jump or branch instruction is executed immediately after
the ITS bit of the

Status

 register has been set, a stall lasting
for several instructions will occur.

User’s Manual U10504EJ7V0UM00

623

Coprocessor 0 Hazards

The status in which CP0 hazard must be taken into consideration when each
instruction is executed is explained below.

(1) MTC0

Destination: Completion of writing to

destination

 register (CP0) by MTC0
instruction

(2) MFC0

Source: Determination of

source

 register (CP0) of MFC0 instruction

(3) TLBR

Source: Determination of TLB status and

Index

 register before execution of TLBR
instruction

(4) TLBWI, TLBWR

Source: Determination of

 source

 register of TLBWI and TLBWR instructions and
register used for TLB entry specification
Destination: Completion of writing to TLB by TLBWI and TLBWR instructions

(5) TLBP

Source: Determination of

PageMask

 register and

EntryHi

 register before
execution of TLBP instruction
Destination: Completion of writing result of TLBP instruction execution to

Index

register

(6) ERET

Source: Determination of register holding information necessary for ERET
instruction execution
Destination: Completion of processor status transition due to ERET instruction
execution

(7) CACHE Index Load Tag

Destination: Completion of writing execution of this instruction to each register

(8) CACHE Index Store Tag

Source: Determination of register holding information necessary for execution of
this instruction

(9) Coprocessor use test

Source: Determination of mode set by bit value of

CP0

 register in Source column

Chapter 19

624

User’s Manual U10504EJ7V0UM00

Examples 1.

When accessing the

CP0

 register in the user mode after changing
the content of the

Status.CU0

 bit or when executing an instruction
using the resources of

CP0

 (such as TLB instruction, Cache
instruction, or branch instruction)

2.

When accessing the

CP0

 register in the operating mode used after
the contents of the

Status.KSU

,

EXL

, and

ERL

 bits have been
changed

3.

When using the FPU (CP1) after the content of the

Status.CU1

 bit
has been changed

(10) Instruction fetch

Source: Determination of operating mode and TLB necessary for instruction fetch

Examples 1.

When fetching instructions after the mode has been changed from
User to Kernel after the contents of the

Status.KSU

,

EXL

, and

ERL

 bits have been changed

2.

When rewriting TLB and fetching an instruction by using its TLB
entry

(11) Instruction fetch exception

Destination: Completion of writing to each register holding information related to
an exception when the exception has occurred as a result of instruction fetch

(12) Interrupt

Source: Determination of each register that identifies an exception generation
condition when an interrupt cause occurs

(13) Load/store

Source: Determination of operating mode related to address generation by load/
store instruction, determination of TLB entry, determination of cache mode set by
the

Config.K0

 bit, and determination of a register that sets a watch exception
generation condition

Example

When executing the load/store instruction in the kernel area after
the mode has been changed from User to Kernel

(14) Load/store exception

Destination: Completion of writing to each register holding information related to
an exception when the exception occurs as a result of a load/store operation

(15) TLB shut down

Destination: Completion of writing to

Status.TS

 bit when TLB shut down occurs

User’s Manual U10504EJ7V0UM00

625

Coprocessor 0 Hazards

Table 19-2 shows examples of calculating the number of CP0 hazards and the
number of instructions to be inserted.

Table19-2 Example of Calculating Number of CP0 Hazards and Number of Instructions Inserted

*

The number of hazards is undefined if the execution sequence is changed
by an exception. In this case, the minimum number of hazards until the val-
ue of the

IE

 bit is determined and the maximum number of hazards until a
pending and enabled interrupt occurs may be the same.

Destination Source
Conflicting

Internal
Resources

Number of
Instructions

Inserted
Expression

TLBWR/TLBWI TLBP TLB Entry 3 8–(4+1)

TLBWR/TLBWI
Load/store using newly
rewritten TLB

TLB Entry 3 8–(4+1)

TLBWR/TLBWI
Instruction fetch using
newly rewritten TLB

TLB Entry 5 8–(2+1)

MTC0, Status [CU]
Coprocessor instruction
requiring setting of CU

Status
[CU]

4 7–(2+1)

TLBWR MFC0 EntryHi EntryHi 3 8–(4+1)
MTC0 EntryLo0 TLBWR/TLBWI EntryLo0 1 7–(5+1)
TLBP MFC0 Index Index 2 7–(4+1)
MTC0 EntryHi TLBP EntryHi 1 7–(5+1)
MTC0 EPC ERET EPC 2 7–(4+1)
MTC0 Status ERET Status 3 7–(3+1)

MTC0 Status [IE]*
Instruction causing
interrupt

Status [IE] 3 7–(3+1)

626

User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

627

Differences Between the V

R

4300, V

R

4305, and V

R

4310

A

The following table describes the differences between the V

R

4300, V

R

4305, and
V

R

4310.

Appendix A

628

User’s Manual U10504EJ7V0UM00

Table A-1 Differences Between the V

R

4300, V

R

4305, and V

R

4310

*1.

The 1.5 times frequency setting is allowed with the 100 MHz model only.
(With the 133 MHz model, this setting is reserved.)

*2.

The 4 times frequency setting is allowed with the 133 MHz model only.
(With the 100 MHz model, this setting is reserved.)

*3.

The 2.5 times frequency setting is allowed with the 167 MHz model only.
(With the 133 MHz model, this setting is reserved.)

*4.

The 133 MHz model of the V

R

4300 is not supported.

Parameter V

R

4300 V

R

4305 V

R

4310

System bus Write data transfer Two buses (D/D

´´

)

Initial value setting
pins at reset time

DivMode (1:0)
(Can be set on power application
only)

DivMode (2:0)
(Can be set on
power
application only)

Block write access Sequential ordering

State after final data
write

Final data retained in transfer rate setting

Non-cache high-
speed write

Provided

Integer
operation unit

Corresponding
instructions

MIPS I, II, and III instruction sets

Cache memory Data protection None

JTAG interface Provided

SyncOut-Syncln path Provided

Clock
interface

Input vs. internal
multiplication rate

1.5

*1

, 2, 3, 4

*2

1, 2, 3 2, 2.5

*3

, 3, 4, 5, 6

Internal vs. bus
frequency division
rate

1.5

*1

, 2, 3, 4

*2

1, 2, 3 2, 2.5

*3

, 3, 4, 5, 6

Power mode Low power mode Pipeline/system bus operated at a
quarter of the normal rate

*4

None

Wait mode None

PRId register Imp = 0

´

 0B

User’s Manual U10504EJ7V0UM00

629

Differences from V

R

4400

B

The V

R

4300 is slightly different from the V

R

4400 in terms of system design and
software. This Appendix describes the differences between the V

R

4300 and
V

R

4400.

The major differences lie in cache handling. This is because the V

R

4300 does not
support a secondary cache control function and a multi-processing function and
because it employs a 32-bit external bus interface.

Appendix B

630

User’s Manual U10504EJ7V0UM00

B.1 Differences in Software

The logical differences in software are the specifications of the CP0 registers.
These differences are shown in Table B-1.

B.1.1 CACHE Instruction

Up to 4 MB of a secondary cache memory can be connected to the V

R

4400. By
contrast, the V

R

4300 does not support a secondary cache. Therefore, the
operations of the CACHE instructions that reference SD (secondary data cache)
and SI (secondary instruction cache) are undefined.

All write back processing is transfer from the primary cache to the main memory.

The CACHE instruction Hit Set Virtual that is used to access the SD and SI with
the V

R

4400 is undefined with the V

R

4300.

The Dirty bit (W bit of the V

R

4400) of the data cache can be cleared by the
CACHE instruction Hit_Write_Back.

The V

R

4300 has a cache state bit. The V

R

4400 has two cache state bits to support
multi-processing. To manipulate this bit of the V

R

4300, write the bit 7 of the
TagLo register using a CACHE instruction (Index_Store_Tag_D). With the
V

R

4400, the bits 6 and 7 of the TagLo register are written.

B.1.2 Cache Parity

Because the V

R

4300 does not check the cache data by using a parity, the cache
error register (27) always outputs 0, and writing this register is ignored. The parity
error register (26) can be used for only self-diagnosis and cannot be used to
manipulate the cache.

B.1.3 Status Register

The bit specifications of the status registers are slightly different between the
V

R

4300 and V

R

4400.

The fixed bits (bits 24 and 27) of the status register of the V

R

4400 function as an
instruction trace support (ITS) bit (bit 24) and low power mode

*

 (RP) bit (bit 27)
with the V

R

4300.

* The low power mode is supported only in the 100 MHz model of the V

R

4300
and the V

R

4305. Fix the RP bit of the 133 MHz model of the V

R

4300 and the
V

R

4310 to 0.

User’s Manual U10504EJ7V0UM00

631

Differences from V

R

4400

The CH bit of the V

R

4300 can be written only by software. With the V

R

4400,
however, this bit is set or cleared by hardware when a secondary cache instruction
is executed.

The

CE

 and

DE

 bits of the

Status

 register of the V

R

4300 are used to manipulate
the parity and do not affect the operation.

For details, refer to

6.3.5 Status Register (12)

.

B.1.4 Config Register

The

Config

 register of the V

R

4300 only supports part of the bit functions of the

Config

 register of the V

R

4400.

For details, refer to

5.4.6 Config Register (16)

.

B.1.5 Status of FCR31 on Occurrence of Unimplemented Operation Exception

If the floating-point unimplemented operation exception occurs with the V

R

4400,
the cause bits of the FCR31 for the floating-point operation exception other than
the unimplemented operation exception bit (E) are undefined. The exception
handler for the unimplemented operation should ignore the cause bits other than
the E bit.

The V

R

4300 is more strictly defined. If the unimplemented operation exception
occurs, the cause bits of the other floating-point operation exceptions are not set.

B.1.6 Integer Zero Division

If an integer is divided by zero, the result is undefined with MIPS ISA (Instruction
Set Architecture). This illegal operation returns the following values to the
registers of the V

R

4300 and V

R

4400.

Processor Dividend Lo Register Hi Register

V

R

4400

³

 0 0xFFFF FFFF Dividend

< 0 0x0000 0001 Dividend

V

R

4300

³

 0 0x7FFF FFFF Dividend

< 0 0x8000 0001 Dividend

Appendix B

632

User’s Manual U10504EJ7V0UM00

B.1.7 Cache Parity Error Exception

Because the V

R

4300 does not check data by using a cache parity, a parity error
exception does not occur.

Table B-1 Differences in Software

* 100 MHz model of the V

R

4300 and the V

R

4305 only

Product Name
Function

V

R

4300 V

R

4400

CACHE
instruction

Secondary cache Not supported Supported

Parity None Provided

Status register Bit 27 Low power mode

*

0

Bit 24 Instruction trace support 0

CE and DE bits
Do not affect processor
operation

Used for parity

Config register Only part of bit functions
supported

All supported

Unimplemented operation
exception

Cause bits other than E bit
cleared

Cause bits other than E bit
undefined

Integer zero division Value returned to register differs

Cache error exception Does not occur Always normal operation

User’s Manual U10504EJ7V0UM00

633

Differences from V

R

4400

B.2 Differences in System Design

Next, the differences in system design between the V

R

4300 and V

R

4400 are
described. Table B-2 shows these differences.

B.2.1 Initialization of Processor

With the V

R

4400, many modes must be set on boot. Setting mode of the V

R

4300
is more simple. This is because the V

R

4300 sets mode not by software but by
using external pins.

The

Reset

 signal of the V

R

4300 may be active or inactive during cold reset.
However, do not change the value of this signal during reset sequence.

At soft reset, assert the

Reset

 signal of the V

R

4300 active for the duration of
16MasterClock or longer. With the V

R

4400, the

Reset

 signal must be asserted
active for the duration of at least 64MasterClock cycles.

B.2.2 System Interface

The SysAD bus of the V

R

4400 is 64 bits wide, but the V

R

4300 has a 32-bit SysAD
bus without a parity check function.

Multi-Processing Function and Secondary Cache Control Function

The V

R

4300 uses the same SysAD bus protocol as the V

R

4400. But because the
V

R

4300 does not support a multi-processing function and a secondary cache
control function, its external bus is provided with only part of the SysAD bus
specifications.

The operations related to the multi-processing function and secondary cache that
are defined for the V

R

4400 are undefined with the V

R

4300.

Line Size of Cache

The line size of the cache of the V

R

4300 is as follows.

Instruction cache : 8 words (32 bytes)

Data cache : 4 words (16 bytes)

Appendix B

634

User’s Manual U10504EJ7V0UM00

Data Transfer Rate

The V

R

4400 has nine data rates (D, DDx, DDxx, DxDx, DDxxx, DDxxxx,
DxxDxx, DDxxxxx, and DxxxDxxx).

The V

R

4300 has two data rates (D and Dxx). These data rates are selected by
using the

EP

 bit of the

Config

 register.

The V

R

4400 requires at least 4 cycles as processor request cycles. Consequently,
if successive single read request are made, or if write requests and read requests
are made successively, two idle cycles are inserted in between two requests, like
“ADxxAD”.

If write or read are performed successively in the fastest mode (data rate: D) of the
V

R

4300, however, no idle cycle is needed between write/read cycles, like
“ADAD”.

When data is input from an external device, the V

R

4300 can support any data
transfer via the SysAD bus. The V

R

4300 can input data at a data rate of
“DDDDDDDD”, but cannot input a data stream exceeding 8 words (32 bytes).

TClock and RClock

The V

R

4400 has two TClock pins.

The V

R

4300 has only one TClock pin to reduce the power consumption.

The V

R

4400 has RClock as the reception clock of the external agent, but the
V

R

4300 does not have RClock because it transfers or receives data by using
TClock.

 Effect of RP Bit

With the V

R

4400, SClock and TClock are not affected by the RP bit. The
V

R

4300, in contrast, can reduce the clock frequencies of SClock and TClock to
the 1/4 of the normal level by using the

RP

 bit

*

.

To use this function, if there is an external circuit (such as a DRAM refresh
counter) that is affected by changes in the frequency of the clock supplied by the
V

R

4300 to external devices, incorporate a process that supports frequency
conversion of the external circuit into the software.

* 100 MHz model of the V

R

4300 and the V

R

4305 only

User’s Manual U10504EJ7V0UM00

635

Differences from V

R

4400

Table B-2 Differences in System Design

* 100 MHz model of the V

R

4300 and the V

R

4305 only

Product Name
Function

V

R

4300 V

R

4400

Initialization of processor Set by external pins Set by software

System
interface

Bus width 32 64

Data check Not performed Parity/ECC selectable

Multi-processing and
secondary cache

Not supported Supported

Line size of cache Instruction: 8 words
Data: 4 words

4/8 words selectable for
both instruction/data cache

Data rate 2 types 9 types

TClock 1 2

RClock None 2

Effect of RP bit Reduces frequencies of
TClock and SClock to 1/4

*

Does not affect TClock and
SClock

Appendix B

636 User’s Manual U10504EJ7V0UM00

B.3 Other Differences

In addition to the above differences, the VR4300 and VR4400 differ in the
following points. The differences described in this section are summarized in
Table B-3.

B.3.1 Cache Size

The specifications of the primary cache of the VR4000, VR4400, and VR4300 are
shown in the following table.

To initialize or invalidate, or program each routine of flash, keep in mind the
differences in cache size.

B.3.2 TLB

TLB Entry

The VR4300 has a full-associate TLB with 32 entries. Each entry is mapped to the
even/odd page of a page frame number.

The TLB of the VR4400 is the same as that of the VR4300 in structure, but has 48
entries.

Interaction between IMT and TLB Manipulations

The operation of the VR4400 is undefined when the TLB instruction accesses
JTLB during the instruction TLB miss (IMT) stall, and consequently, the TLB
invalid exception may occur. This exception is likely to occur especially when an
entry different from the one that has caused the instruction TLB miss is accessed
by software for read/write manipulation (TLBWI, TLBWR, or TLBR).

This does not apply to the VR4300.

Product Name
Item

VR4300 VR4000 VR4400

Cache
capacity

Instruction 16 KB 8 KB 16 KB

Data 8 KB 8 KB 16 KB

Line size Instruction: 8 words (32 bytes)
Data: 4 words (16 bytes)

4/8 words selectable

Method Direct map, virtual index

User’s Manual U10504EJ7V0UM00 637

Differences from VR4400

B.3.3 Floating-Point Unit

Floating-Point Data Path

The floating-point operation of the VR4300 is executed by using the main pipeline
and data path of the integer operation unit. While a multicycle instruction of
floating-point operation is executed, therefore, the pipeline of integer operation
stalls.

The VR4400 has a dedicated floating-point data path in addition to an integer data
path. Therefore, if a program with the floating-point operation instruction and
integer operation instruction optimized for the VR4400 is executed with the
VR4300, not much effect can be expected.

Instruction Execution Time

The VR4300 completely executes any multicycle instruction that has caused a
source exception (exception of the source operand of an instruction) in one cycle.
Instead, it issues the default result to the cycle according to the trap enable flag, or
notifies occurrence of a trap exception in the next cycle. In addition, calculation
such as 0 x 0 can be executed with the fewer cycles than the ordinary calculation.

The VR4400 always executes each multicycle instruction with the same number
of cycles, regardless of whether or not an exception occurs.

Cvt. [s,d] .I Instruction

When converting a 64-bit integer into a single- or double-precision floating-point
number, the VR4400 generates a floating-point unimplemented operation
exception unless all the bits 63 through 52 of the integer are 0 or 1.

The VR4300 generates the floating-point unimplemented operation exception
unless all the bits 63 through 55 of a 64-bit integer are 0 or 1.

B.3.4 Pipeline

The VR4400 uses an 8-stage super pipeline.

The VR4300 uses a 5-stage pipeline like that of the VR3000. The pipeline of the
VR4300 is not a super pipeline, but is not different from the super pipeline in terms
of functions. However, if the program is optimized, the performance of the
pipeline may be influenced.

The number of stall cycles that are generated by the VR4300 is fewer than that of
the VR4400.

Appendix B

638 User’s Manual U10504EJ7V0UM00

B.3.5 Interrupt

The bit 15 of the cause register of the VR4300 is dedicated to the timer interrupt
that occurs if the value of the counter register coincides with the value of the
compare register. Therefore, the VR4300 is not provided with the Int5 pin that is
provided to the VR4400.

Because the VR4300 does not have bit 5 in the interrupt register*, it does not
operate even if data is written to the interrupt register via the system interface.

With the VR4400, the user can select whether to use the timer interrupt, or the bit
5 of the interrupt register, by using the bit 15 of the cause register.

* This register cannot be directly written by the user via software.

B.3.6 Kernel Physical Address Segment Configuration

The VR4300 supports two algorithms (uncached and non-coherent) to maintain
the coherency of the cache. While the VR4400 supports a 36-bit physical address
space, the VR4300 supports a 32-bit physical address space. These two points
affect the virtual address mapping of the Kernel physical address space segment
(xkphys) that does not use the TLB.

Both the VR4400 and VR4300 has eight address spaces in this segment, but the
size of each area in these spaces is different between the VR4400 and VR4300.
Each area in the address spaces of the VR4400 is 64 GB, while that of the VR4300
is 4 GB.

B.3.7 JTAG

The VR4300 conforms to IEEE149.1-1990. Consequently, the JTDO signal
becomes active in the shift IR and shift DR modes.

Because the VR4400 conforms to the previous version of the IEEE149.1, the
JTDO signal is not driven.

User’s Manual U10504EJ7V0UM00

639

Differences from V

R

4400

Table B-3 Other Differences

* 100 MHz model of the V

R

4300 and the V

R

4305 only

Product Name
Item

V

R

4300 V

R

4000 V

R

4400

Instruction cache size 16 KB 8 KB 16 KB

Data cache size 8 KB 8 KB 16 KB

TLB TLB size 32 entries 48 entries

Interaction between
IMT and TLB
manipulations

TLB operation is corrected TLB invalid exception
occurs

Floating-point
operation

Data path Shared with integer
operation pipeline

Processed by dedicated
pipeline

Instruction
execution time

All multi-cycle
instructions are executed
in 1 cycle when source
exception occurs.

Each multi-cycle
instruction is executed in
the same number of cycles
regardless of whether
exception occurs.

Cvt.[s, d].I
instruction
(checking of
floating-point
unimplemented
operation exception)

All bits 63 to 55 are 1 or 0 All bits 63 to 52 are 1 or 0

Effect of RP bit Reduces operating
frequency to 1/4

*

Does not affect operating
frequency

Pipeline 5 stages
Basic pipeline

8 stages
Super pipeline

Interrupt Cause register
(bit 15)

Dedicated to timer
interrupt

Selectable by user

Interrupt register
(bit 5)

None

Kernel physical
address segment
configuration
(xkphys)

Physical
address space
supported

32 bits 36 bits

Valid address
space

8 5

JTAG JTDO active in shift IR
and shift DR modes

JTDO not driven in shift
IR and shift DR modes

640 User’s Manual U10504EJ7V0UM00

[MEMO]

User’s Manual U10504EJ7V0UM00

641

Differences from V

R

4200

C

The V

R

4300 is slightly different from the V

R

4200 in terms of system design and
software. This Appendix describes the differences between the V

R

4300 and
V

R

4200.

The major differences are that the V

R

4300 employs a new 32-bit system interface
and deletes the data check function by parity.

Appendix C

642

User’s Manual U10504EJ7V0UM00

C.1 Differences in Software

The logical differences in software are the specifications of the

CP0

 registers.
These differences are shown in Table C-1.

C.1.1 Cache Parity

Because the V

R

4300 does not check the cache data by using a parity, the

Cache
Error

 register (27) always outputs 0, and writing this register is ignored. The

Parity Error

 register (26) can be used for only self-diagnosis and cannot be used
to manipulate the cache.

C.1.2 Status Register

The bit specifications of the

Status

 registers are slightly different between the
V

R

4300 and V

R

4200. The

CE

 and

DE

 bits of the

Status

 register of the V

R

4300
are used to manipulate the parity and do not affect the operation.

C.1.3 Config Register

The bit specifications slightly differ.

The

BE

 bit and EP area of the V

R

4200 set information on the external pins
BigEndian and

DataRate

 by hardware on reset which can be read by software.

With the V

R

4300, the default values are set to the

BE

 bit and EP area at the time
of cold reset. The default value of the EP area is 0000 and that of the

BE

 bit is 1.
After that, the values of these area and bit can be changed by software. Bits 18
and 19 which are 00 with the V

R

4200 are 01 with the V

R

4300.

For details, refer to

5.4.6 Config Register (16)

.

User’s Manual U10504EJ7V0UM00

643

Differences from V

R

4200

C.1.4 Cache Parity Error Exception

Because the V

R

4300 does not check data by using the cache parity, it does not
generate the parity error exception.

The V

R

4200 generates the cache parity error exception (DCPE) in the WB stage.

Table C-1 Differences in Software

Product Name
Function

V

R

4300 V

R

4200

Cache parity Not supported Supported

Status register CE and DE bits do not
function

Used to manipulate parity

Config register BE bit and EP area Set default values Set information on
external pins

Bits 18 and 19 01 00

Appendix C

644

User’s Manual U10504EJ7V0UM00

C.2 Differences in System Design

Next, the differences in system design between the V

R

4300 and V

R

4200 are
described. Table C-2 shows these differences.

C.2.1 System Interface

The system interface of the V

R

4200 is a 64-bit bus with a parity check function,
but that of the V

R

4300 is a 32-bit bus without a parity check function. For details,
refer to

Chapter 12 System Interface

.

During block write of an instruction, the V

R

4200 executes doubleword data
transfer four times with one idle cycle. The V

R

4300 executes word data transfer
eight times to write the main memory.

During block write of data, the V

R

4200 executes doubleword data transfer two
times. The V

R

4300 executes word data transfer four times to write the main
memory.

The V

R

4200 has two data rates, “DDx” and “Dxx”. The V

R

4300 also has two data
rates, “D” and “Dxx”. The V

R

4200 can set a data rate by using the

DataRate

 pin.
The data rate of the V

R

4300 is set by software, by using the EP area of the config
register. The table below shows the transfer data patterns in the EP area.

C.2.2 Clock

The V

R

4300 does not output the

MasterOut

 and

RClock

 signals.

The frequency of the pipeline clock (

PClock

) of the V

R

4400 and V

R

4200 is
usually two times faster than

MasterClock

. The V

R

4300 can change the
frequency ratio by using the value of DivMode(1:0)

*1

 pins. (Refer to

Table 2-2
Clock/Control Interface Signals

.) The frequency ratio

PClock

:

MasterClock

can be selected from 2:1, 3:1, 4:1 or 3:2

*2

. The V

R

4200 usually generates

SClock

and

TClock

 by dividing

PClock

 by 2. The

PClock

 of the V

R

4300 is usually at
the same frequency as

MasterClock

.

In the low power mode

*3

, the speeds of

PClock

,

SClock

, and

TClock

 of the
V

R

4300 can be reduced to the 1/4 of the normal level like the V

R

4200.

*

1.

In V

R

4300 and V

R

4305. In V

R

4310, DivMode(2:0).

EP Area Transfer Pattern

0000 D

0110 DxxDxx

User’s Manual U10504EJ7V0UM00

645

Differences from V

R

4200

*

2.

In V

R

4300. In V

R

4305, the frequency ratio can be set to 1:1, 2:1, or 3:1. In
V

R

4310, it can be set to 2:1, 3:1 4:1, 5:1, 6:1, or 5:2.

*

3.

100 MHz model of the V

R

4300 and the V

R

4305 only

C.2.3 Package

The V

R

4200 employs a 208-pin plastic QFP. The V

R

4300 is housed in a 120-pin
plastic QFP.

Table C-2 Differences in System Design

C.3 Other Differences

In addition to the above differences, the V

R

4300 and V

R

4200 differ in the
following points. The differences described in this section are summarized in
Table C-3.

C.3.1 Physical Address

The physical address and address space of the V

R

4200 are 33 bits wide, and those
of the V

R

4300 are 32 bits wide. Consequently, the tag of the cache and the page
frame number area of the TLB entry are 20 bits each at Hi and Lo sides.

Product Name
Function

V

R

4300 V

R

4200

System
interface

SysAD bus No parity, 32 bits With parity, 64 bits

Instruction
block write

Word data, 8 times Doubleword data, 4 times

Data block
write

Word data, 4 times Doubleword data, 2 times

Data pattern Set by config register
(D, Dxx)

Set by external pins
(DDx, Dxx)

Clock MasterOut,
RClock

Not output Output

PClock Frequency ratio to
MasterClock variable

Frequency two times higher
than normal MasterClock

TClock Same frequency as normal
MaterClock

PClock divided by two

Package 120-pin plastic QFP 208-pin plastic QFP

Appendix C

646

User’s Manual U10504EJ7V0UM00

C.3.2 Write Buffer

The write buffer of the V

R

4200 is a doubleword buffer with two entries. The
V

R

4300 has a 4-entry word buffer to improve the performance during uncache
write.

C.3.3 Reset

The V

R

4200 simultaneously asserts the

ColdReset and Reset signals active.
These signals of the VR4300 need not to be asserted active at the same time. The
Reset signal of the VR4300 may be active or inactive during cold reset. However,
do not change the value of this signal during reset sequence.The ColdReset signal
of the VR4300 needs not to be synchronized with the MasterClock signal.

C.3.4 Status(3:0) Pins

The Status(3:0) pins provided to the VR4200 are not provided to the VR4300.

With the VR4300, when the ITS bit of the status register is set, an instruction cache
miss occurs when a branch instruction is executed, and the branch destination
address is output to SysAD(31:0). However, because the VR4300 does not have
Status(3:0) pins, the internal status of the processor cannot be output.

Table C-3 Other Differences

Product Name
Function

VR4300 VR4200

Physical address 32 bits 33 bits

Write buffer 4-entry
Word buffer

2-entry
Doubleword buffer

ColdReset signal and
MasterClock

Need not to be synchronized Must be synchronized

Status (3:0) pins Not provided Provided

User’s Manual U10504EJ7V0UM00

647

Restrictions of V

R

4300

D

Appendix D

648

User’s Manual U10504EJ7V0UM00

An unimplemented operation exception will occur in response to the execution of
a type conversion instruction of the floating-point operation instruction in the
following cases.

• If an overflow occurs during conversion to integer format

• If the source operand is an infinite number

• If the source operand is NaN

The type conversion instructions affected by this restriction are as follows.

CEIL.L.fmt fd, fs FLOOR.L.fmt fd, fs

CEIL.W.fmt fd, fs FLOOR.W.fmt fd, fs

CVT.D.fmt fd, fs ROUND.L.fmt fd, fs

CVT.L.fmt fd, fs ROUND.W.fmt fd, fs

CVT.S.fmt fd, fs TRUNC.L.fmt fd, fs

CVT.W.fmt fd, fs TRUNC.W.fmt fd, fs

User’s Manual U10504EJ7V0UM00

649

Index

E

Appendix E

650

User’s Manual U10504EJ7V0UM00

A

Address cycle ... 292

Address error exception ... 186

Address translation ... 125, 126

Addressing ... 41

B

BadVAddr register ... 164

Basic system clock ... 259

BEV ... 256

Block read request ... 289

Block write request ... 289

Bootstrap exception vector (BEV) ... 256

Boundary scan ... 342

Boundary scan register ... 346

Branch address ... 78

Branch delay ... 94

Branch instruction ... 77, 369

Breakpoint exception ... 192

Bus error exception ... 190

Bus mastership ... 313, 328

Bypass ... 119

Bypass register ... 345

C

Cache error register ... 178

CACHE instruction ... 112, 305

Cache line ... 275, 283

Cache line replacement ... 280, 282

Cache memory ... 273

Cache operation ... 279

Cache state transition ... 283

Cache states ... 283

Cause register ... 171

Clock generator ... 35

Clock interface ... 257

Clock-to-Q delay ... 258

CMOS discrete device ... 269

Code compatibility ... 119

Cold reset ... 248, 250

Cold reset exception ... 183

Command ... 328

Compare instruction ... 227

Compare register ... 165

Computational instruction ... 68, 226

Config register ... 151

Context register ... 163

Control/status register ... 211

Convert instruction ... 224

COp ... 112

Coprocessor 0 (CP0) ... 35

Coprocessor instruction ... 83, 369

Coprocessor unusable exception ... 193

Count register ... 164

CP0 ... 35

CP0I ... 113

CP0 bypass interlock ... 113

CP0 register ... 146

CPU instruction ... 370

CPU instruction set ... 39, 59, 363

CPU register ... 37

D

Data cache ... 36, 277, 283

Data cache addressing ... 278

Data cache busy ... 111

Data cache miss ... 111

Data cache read request ... 290

Data cycle ... 292

Data format ... 41

Data identifier ... 333, 337

Data load miss ... 281

Data store miss ... 281

DCB ... 111

DCM ... 111

User’s Manual U10504EJ7V0UM00

651

Index

Defining Access Types ... 62

Discarding command ... 325

Divide-by-zero exception ... 241

E

Endianness ... 331

EntryHi register ... 148

EntryLo register ... 148

EPC register ... 174

Error EPC register ... 179

Exception ... 103, 106, 180

Exception processing ... 159, 200, 237

Exception processing register ... 161

Exception program counter register ... 174

Exception vector location ... 180

Execution time ... 230

Execution unit ... 35

External agent ... 268

External arbitration ... 297, 313

External normal interrupt ... 353

External request ... 294, 298, 302, 306, 312

External write request ... 303, 316

F

FCR ... 211

FCR0 ... 216

FCR31 ... 211

Fetch miss ... 304

FGR ... 208

Fixed-point format ... 220

Flag ... 238

Floating-point computational instruction ... 226, 555

Floating-point control register ... 211

Floating-point exception ... 235

Floating-point format ... 217

Floating-point general purpose register ... 208

Floating-point load instruction ... 221, 553

Floating-point register ... 210, 255

Floating-point store instruction ... 221, 553

Floating-point transfer instruction ... 221

Floating-point unit ... 47, 207

Flow control ... 311, 330

FPR ... 210

FPU branch instruction ... 229

FPU instruction ... 221, 558

FPU instruction set ... 547

G

Gate array ... 266

H

Handshake signal ... 295

Hardware interrupt ... 356

Hazard of CP0 ... 162

I

ICB ... 108

IE ... 256

IEEE754 exception ... 244

Implementation/Revision register ... 216

Independent transfer ... 331

Index register ... 146

Inexact exception ... 240

Initialization interface ... 247

Instruction address ... 36

Instruction cache ... 35, 276, 283

Instruction cache addressing ... 278

Instruction cache busy ... 108

Instruction cache read request ... 289

Instruction-dependent exception ... 115

Instruction format ... 60

Instruction-independent exception ... 114

Instruction micro-TLB ... 49

Instruction pipeline ... 49

Appendix E

652

User’s Manual U10504EJ7V0UM00

Instruction register ... 344

Instruction TLB miss ... 107

Instruction trace support ... 168, 256

Integer overflow exception ... 196

Interface bus ... 291

Interlock ... 103, 106

Internal cache ... 47

Interrupt ... 351

Interrupt enable (IE) ... 168, 256

Interrupt exception ... 199

Interrupt request signal ... 354

Invalid operation exception ... 240

Inverting endian ... 170

Issue cycle ... 293

ITLB ... 49

ITM ... 107

J

Joint TLB ... 48

JTAG ... 341

JTLB ... 48

Jump instruction ... 77, 369

K

Kernel address space ... 169

Kernel extended addressing mode ... 255

Kernel mode ... 133

L

LDI ... 110

LLAddr register ... 154

Load delay ... 95

Load delay slot ... 61

Load instruction ... 61, 367, 553

Load interlock ... 110

Load miss ... 304

Low power mode ... 254, 264, 360

M

Master state ... 296

MasterClock ... 259, 263

MCI ... 109

Memory hierarchy ... 274

Memory management system ... 48, 121

Multicycle instruction interlock ... 109

N

NaN ... 218

NMI ... 352

NMI exception ... 185

Non-maskable interrupt (NMI) ... 352

Normal power mode ... 254, 360

Number of delay cycles ... 233

O

Opcode bit encoding ... 544, 613

Operating mode ... 49, 127, 169

Operation during no branch ... 78

Overflow exception ... 242

P

PageMask register ... 148, 149

Parity error register ... 178

PClock ... 259

Phase-locked loop (PLL) ... 263

Phase-locked system ... 265, 266

Physical address ... 123, 289

Pin configuration (Top View) ... 52

Pin function ... 51, 54

Pipeline ... 36, 89

Pipeline exception ... 114

PLL ... 263

PLL passive element ... 615

Power-ON reset ... 248, 249

Privilege mode ... 255

User’s Manual U10504EJ7V0UM00

653

Index

Processor read request ... 301, 306

Processor request ... 293, 298, 306

Processor revision identifier register ... 151

Processor write request ... 301, 309

Power mode ... 254

Power off mode ... 255, 361

Precision of exception ... 161

Priority (exception) ... 182

Priority (exception and interlock) ... 116

PRId register ... 151

R

Random register ... 147

Read command ... 327

Read request ... 334

Read response ... 303, 313, 317, 330

Re-executing command ... 325

Release latency time ... 332

Request control ... 300, 302

Request issuance ... 300, 302

Reserved instruction exception ... 194

Reverse endianness ... 256

S

Saving and returning ... 244

SClock ... 260, 263

Sequential ordering ... 339

Slave state ... 298

Soft reset ... 248, 251

Soft reset exception ... 184

Software interrupt ... 354

Special instruction ... 81

Subblock ordering ... 339

Supervisor address space ... 169

Supervisor extended addressing mode ... 255

Supervisor mode ... 129

Status register ... 165

Status on reset ... 170

Store delay slot ... 61

Store instruction ... 61, 367, 553

Store miss ... 304

Successive processing of request ... 321

SyncIn/CyncOut ... 259

System call exception ... 191

System control coprocessor (CP0) ... 44, 142

System control coprocessor (CP0)
instruction ... 86, 370

System event ... 299

System interface ... 35, 289, 296

System interface address ... 339

System interface cycle time ... 332

System timing parameter ... 263

T

TagHi register ... 154

TagLo register ... 154

TAP ... 347

TAP controller ... 348

TClock ... 260

Test access port ... 347

Timer interrupt ... 354

TLB ... 48, 122

TLB entry ... 143

TLB exception ... 187

TLB invalid exception ... 188

TLB instruction ... 158

TLB miss ... 158

TLB miss exception ... 187

TLB modification exception ... 189

Translation lookaside buffer ... 48, 122

Transmission time ... 268

Trap exception ... 195

Appendix E

654

User’s Manual U10504EJ7V0UM00

U

Uncached area ... 305

Uncompelled change to slave state ... 298

Underflow exception ... 242

Unimplemented operation exception ... 243

User address space ... 169

User extended addressing mode ... 255

User mode ... 127

V

Virtual address ... 124

Virtual address translation ... 155

W

Watch exception ... 198

WatchHi register ... 175

WatchLo register ... 175

Wired register ... 150

Write buffer ... 120

Write command ... 325

Write request ... 330, 336

X

XContext register ... 176

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 00.6

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Major Revisions in This Edition
	PREFACE
	Chapter 1 General
	1.1 Characteristics
	1.2 Ordering Information
	1.3 64-Bit Architecture
	1.4 VR4300 Processor
	1.4.1 Internal Block Configuration
	1.4.2 CPU Registers
	1.4.3 CPU Instruction Set Overview
	1.4.4 Data Formats and Addressing
	1.4.5 System Control Coprocessor (CP0)
	1.4.6 Floating-Point Unit (FPU), CP1
	1.4.7 Internal Cache

	1.5 Memory Management System (MMU)
	1.5.1 Translation Lookaside Buffer (TLB)
	1.5.2 Operating Modes

	1.6 Instruction Pipeline

	Chapter 2 Pin Functions
	2.1 Pin Configuration (Top View)
	2.2 Pin Functions
	2.2.1 System Interface Signals
	2.2.2 Clock/Control Interface Signals
	2.2.3 Interrupt Interface Signals
	2.2.4 Joint Test Action Group (JTAG) Interface Signals
	2.2.5 Initialization Interface Signals

	Chapter 3 CPU Instruction Set Summary
	3.1 CPU Instruction Formats
	3.2 Instruction Classes
	3.2.1 Load/Store Instructions
	3.2.2 Computational Instructions
	3.2.3 Jump/Branch Instructions
	3.2.4 Special Instructions
	3.2.5 Coprocessor Instructions
	3.2.6 System Control Coprocessor (CP0) Instructions

	Chapter 4 Pipeline
	4.1 General
	4.1.1 Pipeline Operations

	4.2 Branch Delay
	4.3 Load Delay
	4.4 Pipeline Operation
	4.5 Interlock and Exception Handling
	4.6 Pipeline Interlocks and Exceptions
	4.6.1 Pipeline Interlocks
	4.6.2 Instruction TLB Miss (ITM)
	4.6.3 Instruction Cache Busy (ICB)
	4.6.4 Multicycle Instruction Interlock (MCI)
	4.6.5 Load Interlock (LDI)
	4.6.6 Data Cache Miss (DCM)
	4.6.7 Data Cache Busy (DCB)
	4.6.8 CACHE Operation (COp)
	4.6.9 Coprocessor 0 Bypass Interlock (CP0I)

	4.7 Pipeline Exceptions
	4.7.1 Instruction-Independent Exceptions (Reset, NMI, and Interrupt)
	4.7.2 Instruction-Dependent Exceptions
	4.7.3 Interactions between Interlocks and Exceptions
	4.7.4 Exception and Interlock Priorities
	4.7.5 WB-Stage Interlock and Exception Priorities
	4.7.6 DC-Stage Interlock and Exception Priorities
	4.7.7 EX-Stage Interlock and Exception Priorities
	4.7.8 RF-Stage Interlock and Exception Priorities
	4.7.9 Bypassing

	4.8 Code Compatibility
	4.9 Write Buffer

	Chapter 5 Memory Management System
	5.1 Translation Lookaside Buffer (TLB)
	5.2 Memory Management System Architecture
	5.2.1 Operating Modes
	5.2.2 Virtual Addressing in User Mode
	5.2.3 Virtual Addressing in Supervisor Mode
	5.2.4 Virtual Addressing in Kernel Mode

	5.3 System Control Coprocessor
	5.3.1 Format of a TLB Entry

	5.4 CP0 Registers
	5.4.1 Index Register (0)
	5.4.2 Random Register (1)
	5.4.3 EntryHi (10), EntryLo0 (2), EntryLo1 (3), and PageMask (5) Registers
	5.4.4 Wired Register (6)
	5.4.5 Processor Revision Identifier (PRId) Register (15)
	5.4.6 Config Register (16)
	5.4.7 Load Linked Address (LLAddr) Register (17)
	5.4.8 Cache Tag Registers [TagLo (28) and TagHi (29)]
	5.4.9 Virtual-to-Physical Address Translation Process
	5.4.10 TLB Misses
	5.4.11 TLB Instructions

	Chapter 6 Exception Processing
	6.1 Exception Processing Operation
	6.2 Precision of Exceptions
	6.3 Exception Processing Registers
	6.3.1 Context Register (4)
	6.3.2 BadVAddr Register (8)
	6.3.3 Count Register (9)
	6.3.4 Compare Register (11)
	6.3.5 Status Register (12)
	6.3.6 Cause Register (13)
	6.3.7 Exception Program Counter (EPC) Register (14)
	6.3.8 WatchLo (18) and WatchHi (19) Registers
	6.3.9 XContext Register (20)
	6.3.10 Parity Error (PErr) Register (26)
	6.3.11 Cache Error (CacheErr) Register (27)
	6.3.12 Error Exception Program Counter (Error EPC) Register (30)

	6.4 Exception Details
	6.4.1 Exception Types
	6.4.2 Exception Vector Locations
	6.4.3 Priority of Exceptions
	6.4.4 Cold Reset Exception
	6.4.5 Soft Reset Exception
	6.4.6 Non-Maskable Interrupt (NMI) Exception
	6.4.7 Address Error Exception
	6.4.8 TLB Exceptions
	6.4.9 Bus Error Exception
	6.4.10 System Call Exception
	6.4.11 Breakpoint Exception
	6.4.12 Coprocessor Unusable Exception
	6.4.13 Reserved Instruction Exception
	6.4.14 Trap Exception
	6.4.15 Integer Overflow Exception
	6.4.16 Floating-Point Exception
	6.4.17 Watch Exception
	6.4.18 Interrupt Exception

	6.5 Exception Handling and Servicing Flowcharts

	Chapter 7 Floating-Point Operations
	7.1 Overview
	7.2 FPU Programming Model
	7.2.1 Floating-Point General Purpose Register (FGR)
	7.2.2 Floating-Point Registers (FPR)
	7.2.3 Floating-Point Control Registers (FCRs)
	7.2.4 Control/Status Register (FCR31)
	7.2.5 Implementation/Revision Register (FCR0)

	7.3 Floating-Point Formats
	7.4 Fixed-Point Format
	7.5 FPU Set Overview
	7.5.1 Floating-Point Load/Store/Transfer Instructions
	7.5.2 Convert Instructions
	7.5.3 Computational Instructions
	7.5.4 Compare Instructions
	7.5.5 FPU Branch Instructions
	7.5.6 FPU Instruction Execution Time

	7.6 FPU Pipeline Synchronization

	Chapter 8 Floating-Point Exceptions
	8.1 Types of Exceptions
	8.2 Exception Processing
	8.2.1 Flags
	8.2.2 Inexact Exception (I)
	8.2.3 Invalid Operation Exception (V)
	8.2.4 Divide-by-Zero Exception (Z)
	8.2.5 Overflow Exception (O)
	8.2.6 Underflow Exception (U)
	8.2.7 Unimplemented Operation Exception (E)

	8.3 Saving and Returning State
	8.4 Handling of IEEE754 Exceptions

	Chapter 9 Initialization Interface
	9.1 Functional Overview
	9.2 Reset Signal Description
	9.2.1 Power-ON Reset
	9.2.2 Cold Reset
	9.2.3 Soft Reset

	9.3 VR4300 Processor Modes
	9.3.1 Power Modes
	9.3.2 Privilege Modes
	9.3.3 Floating-Point Registers
	9.3.4 Reverse Endianness
	9.3.5 Instruction Trace Support
	9.3.6 Bootstrap Exception Vector (BEV)
	9.3.7 Interrupt Enable (IE)

	Chapter 10 Clock Interface
	10.1 Signal Terminology
	10.2 Basic System Clocks
	10.3 System Timing Parameters
	10.3.1 Synchronization with SClock
	10.3.2 Synchronization with MasterClock
	10.3.3 Phase-Locked Loop (PLL)

	10.4 Low Power Mode Operation
	10.5 Connecting Clocks to a Phase-Locked System
	10.6 Connecting Clocks to a System without Phase Locking
	10.6.1 Connecting to a Gate-Array Device
	10.6.2 Connecting to a CMOS Discrete Device

	Chapter 11 Cache Memory
	11.1 Memory Organization
	11.2 Cache Organization
	11.2.1 Organization of the Instruction Cache (I-Cache)
	11.2.2 Organization of the Data Cache (D-Cache)
	11.2.3 Accessing the Caches

	11.3 Cache Operations
	11.3.1 Cache Write Policy
	11.3.2 Data Cache Line Replacement
	11.3.3 Instruction Cache Line Replacement

	11.4 Cache States
	11.5 Cache State Transition Diagrams
	11.5.1 Data Cache State Transition
	11.5.2 Instruction Cache State Transition

	11.6 Manipulation of the Caches by an External Agent

	Chapter 12 System Interface
	12.1 Terminology
	12.2 System Interface Description
	12.2.1 Physical Addresses
	12.2.2 Interface Buses
	12.2.3 Address and Data Cycles
	12.2.4 Issue Cycles
	12.2.5 Handshake Signals

	12.3 System Interface Protocols
	12.3.1 Master and Slave States
	12.3.2 Moving from Master to Slave State
	12.3.3 External Arbitration
	12.3.4 Uncompelled Change to Slave State

	12.4 Processor and External Requests
	12.4.1 Processor Requests
	12.4.2 Processor Read Request
	12.4.3 Processor Write Request
	12.4.4 External Requests
	12.4.5 External Write Request
	12.4.6 Read Response

	12.5 Handling Requests
	12.5.1 Fetch Miss
	12.5.2 Load Miss
	12.5.3 Store Miss
	12.5.4 Loads or Stores to Uncached Area
	12.5.5 CACHE Instructions

	12.6 Processor Request and External Request Protocols
	12.6.1 Processor Request Protocols
	12.6.2 Processor Read Request Protocol
	12.6.3 Processor Write Request Protocol
	12.6.4 Flow Control of Processor Request
	12.6.5 External Request Protocols
	12.6.6 External Arbitration Protocol
	12.6.7 External Write Request Protocol
	12.6.8 External Read Response Protocol

	12.7 Successive Processing of Request
	12.7.1 Successive Processor Write Requests
	12.7.2 Processor Write Request Followed by Processor Read Request
	12.7.3 Processor Read Request Followed by Processor Write Request
	12.7.4 Processor Write Request Followed by External Write Request

	12.8 Discarding and Re-Executing Commands
	12.8.1 Re-Execution of Processor Commands
	12.8.2 Discarding and Re-Executing Write Command
	12.8.3 Discarding and Re-Executing Read Command
	12.8.4 Executing and Discarding Command

	12.9 Data Flow Control
	12.9.1 Independent Transfer on SysAD(31:0) Bus
	12.9.2 System Endianness

	12.10 System Interface Cycle Time
	12.10.1 Release Latency Time

	12.11 System Interface Commands and Data Identifiers
	12.11.1 Command and Data Identifier Syntax
	12.11.2 System Interface Command Syntax
	12.11.3 Read Requests
	12.11.4 Write Requests
	12.11.5 System Interface Data Identifier Syntax
	12.11.6 Data Identifier Bit Definitions

	12.12 System Interface Addresses
	12.12.1 Addressing Conventions
	12.12.2 Sequential and Subblock Ordering

	Chapter 13 JTAG Interface
	13.1 Principles of Boundary Scanning
	13.2 Signal Summary
	13.3 JTAG Controller and Registers
	13.3.1 Instruction Register
	13.3.2 Bypass Register
	13.3.3 Boundary-Scan Register
	13.3.4 Test Access Port (TAP)
	13.3.5 TAP Controller
	13.3.6 Controller Reset
	13.3.7 Controller States

	13.4 Notes on Implementation

	Chapter 14 Interrupts
	14.1 Non-Maskable Interrupt
	14.2 External Normal Interrupts
	14.3 Software Interrupts
	14.4 Timer Interrupt
	14.5 Generation of Interrupt Request Signal
	14.5.1 Detection of Hardware Interrupts
	14.5.2 Masking of Interrupt Request Signals

	Chapter 15 Power Management
	15.1 Features
	15.1.1 Normal Power Mode
	15.1.2 Low Power Mode
	15.1.3 Power Off Mode

	Chapter 16 CPU Instruction Set Details
	16.1 Instruction Notation Conventions
	16.2 Load and Store Instructions
	16.3 Jump and Branch Instructions
	16.4 Coprocessor Instructions
	16.5 System Control Coprocessor (CP0) Instructions
	16.6 CPU Instructions
	16.7 CPU Instruction Opcode Bit Encoding

	Chapter 17 FPU Instruction Set Details
	17.1 Instruction Formats
	17.2 Instruction Notation Conventions
	17.3 Load and Store Instructions
	17.4 Floating-Point Computational Instructions
	17.5 FPU Instructions
	17.6 FPU Instruction Opcode Bit Encoding

	Chapter 18 PLL Passive Elements
	Chapter 19 Coprocessor 0 Hazards
	Appendix A Differences Between the VR4300, VR4305, and VR4310
	Appendix B Differences from VR4400
	B.1 Differences in Software
	B.1.1 CACHE Instruction
	B.1.2 Cache Parity
	B.1.3 Status Register
	B.1.4 Config Register
	B.1.5 Status of FCR31 on Occurrence of Unimplemented Operation Exception
	B.1.6 Integer Zero Division
	B.1.7 Cache Parity Error Exception

	B.2 Differences in System Design
	B.2.1 Initialization of Processor
	B.2.2 System Interface

	B.3 Other Differences
	B.3.1 Cache Size
	B.3.2 TLB
	B.3.3 Floating-Point Unit
	B.3.4 Pipeline
	B.3.5 Interrupt
	B.3.6 Kernel Physical Address Segment Configuration
	B.3.7 JTAG

	Appendix C Differences from VR4200
	C.1 Differences in Software
	C.1.1 Cache Parity
	C.1.2 Status Register
	C.1.3 Config Register
	C.1.4 Cache Parity Error Exception

	C.2 Differences in System Design
	C.2.1 System Interface
	C.2.2 Clock
	C.2.3 Package

	C.3 Other Differences
	C.3.1 Physical Address
	C.3.2 Write Buffer
	C.3.3 Reset
	C.3.4 Status(3:0) Pins

	Appendix D Restrictions of VR4300
	Appendix E Index

