NEC

User’'s Manual

Vr5000™ V{10000™

64-BIT MICROPROCESSOR

INSTRUCTION

LPD30500
LPD30700

Document No. U12754EJ1VOUMJ1 (1st edition)
Date Published August 2000 N CP(K)

© NEC Corporation 1995, 1997
© MIPS Technologies, Inc. 1994
Printed in Japan

[MEMO]

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

VRrR4200, Vr4300, VrR4400, VR5000, VR10000, and Vr Series are trademarks of NEC Corporation.
R4000 is a trademark of MIPS Computer Systems, Inc.

MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.

R4200, R4300, R4400, R5000, and R10000 are trademarks of MIPS Technologies, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through

X/Open Company, Ltd.

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

The information in this document is current as of May, 1997. The information is subject to change

without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data

books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior

written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC semiconductor products listed in this document or any other

liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative

purposes in semiconductor product operation and application examples. The incorporation of these

circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers

agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize

risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

NEC semiconductor products are classified into the following three quality grades:

"Standard”, "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special”: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).
M8E 00.4

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

+ Device availability

Ordering information

Product release schedule

Availability of related technical literature

- Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 91-504-2787

Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore

Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil

Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

[MEMO]

Readers

Purpose

Organization

How to read this manual

Legend

Related Documents

PREFACE

This manual targets users who wish to understand the functions af368%and the
VR10000 and design application systems using these microprocessors.

This manual introduces the instruction set of tm&®00 and the ¥10000.
This manual consists of the following contents:

« CPU Instruction set
* FPU Instruction set

It is assumed that the reader of this manual has general knowledge in the fields of
electric engineering, logic circuits, and microcomputers.

The R4200" in this manual represents th&200™.
The R4300" in this manual represents th&B800™.
The R4400" in this manual represents th@A00™.
The R5000 in this manual represents th&3000.

The R10000" in this manual represents th@M000.

To learn about detailed function of a specific instruction.
-> Read this manual in sequential order.

To learn about architecture and hardware functions.
-> Refer toUser’'s Manual of each device.

To learn about electrical specifications.
-> Refer toData Sheetof each device.

Data significance: Higher on left and lower on right
Active low: XXX*
Numeric representation: binary ... XXXX or XXXX
decimal ... XXXX
hexadecimal ... OXXXXX
Prefixes representing an exponent of 2 (for address space or memory capacity):
K (kilo) 210=1024
M (mega) 2°= 1024
G (giga) 2°=1024
T (tera) 20=1024
P (peta) ¥ =1024
E (exa) 20=1024

The related documents indicated here may include preliminary version. However,
preliminary versions are not marked as such.

Document Namepata Shee User’'s Manual
Product Name Hardware | Architecture| Instruction
VR5000 U12031E | U11761E U12754E
VR10000 Planned U10278E (This manqjal)

[MEMO]

CONTENTS

1 CPU Instruction Set

11
12

13
14

15
16

[L0018 T A) IR

Functional INSEFUCLION GrOUPS......couiiierererere ettt et sae e
121 Load and StOre INSITUCHIONS.coveieeeereeeeeese et
122 Computational INStrUCHIONS.......ccceiveirireeeeisesesese et esae e e e e sse e eneses
1.2.3 Jump and BranCh INSEIUCHIONSccceeririrereniesiesie e
124 Miscallan@ous INSLIUCHIONScoveieeeeeeeeeeiese et ene e
125 COprocessor INSIIUCHIONSccuevueeeeeere et sesiestes e e seeste e saeseesee e e e esessessesnesreses

(08 = O a1 U o o] TS

CACHE INSEFUCHION ..ottt s
142 INdeX INVAITAEEE (1) cveuveveeeiirieierieeree e
1.4.2 Index Writeback INvalidate (D)ccceeeeeeereriesesiesesesesesesesee e ese e srenes
143 Index Writeback Invalidate (S) (R10000 ONlY)ovueruereeniereererieieeieeesesese e
144 Flash (S) (R5000 ONIY) .o.ecuirieiirieirieirieirieesieeeies et
S 1T 1= Qoo I I I ()
O G I 1 0T [Qoo I =" I () ISR
147 INdEX LOBA TAG (S) ..eerveeerireeiirieiirieirieirieesie ettt
O S I 10T [QS (o) (RN Ir="o [()
149 INdeX SOre Tag (D) ...cceoereeeieeeeeieer ettt et sae s
1420 INAEX SEOME TG (S)..euervereerereererieierieirieiriee sttt ettt
1.4.11 Create Dirty Exclusive (D) (R5000 ONIY)....cccoeverieierenenieseereeieseeseeeeeseeeesenes
1412 Hit INVAIAEEE (1) c.erereeeieerieeeeerisieee ettt
14213 Hit INVAIIAAEE (D)..oviueeeeeeeiieierieereere e
1.4.14 Hit Invalidate (S) (R10000 ONIY) ...ccurereeeriresresesesiesteseseeseseeseeseeeesessessessesees
1415 Fill (I) (R5000 ONIY) ..ottt sesas e e sess s seseenas
1416 Cache Barrier (R10000 ONlY)corieirieiriiiriiisiesieesie e
1.4.17 Hit Writeback INValidate (D)ccccveerereeeeere e ae s sre e
1.4.18 Hit Writeback Invalidate (S) (R10000 ONIY)cererererueererinieeresisieenesesesieeseseneas
1419 PageInvalidate (S) (R5000 ONIY) ...ceiviiriireriiiriinieesieesie e
1.4.20 Hit Writeback (1) (R5000 ONIY) ..cuveuereereeieeisesiesese et sne e
1.4.21 Hit Writeback (D) (R5000 ONIY)cccvvrurueirinirieinesisieieesesesiee s sesesseseseseneas
1.422 Index Load Data (1) (R10000 ONlY)eeriiriruiniriirieierieesieesie e
1.4.23 Index Load Data (D) (R10000 ONIY) ...cceeverereresiesiesiesiesieseeseeeeeeseesessesse e ssenes
1.4.24 Index Load Data (S) (R10000 ONIY) ...cveveuerererueuenirerenieeseresieiesesesieieesesessesesesennas
1.4.25 Index Store Data (1) (R10000 ONIY)....ceruireriirireinieirieenieesie e
1.4.26 Index Store Data (D) (R10000 ONIY) ...oouveveeievereeniesieseestesieseeseseeseeseeeeese e sseees
1.4.27 Index Store Data (S) (R10000 ONIY)coeruiriereririenierienienie e seeee e seas

DEfiNING ACCESS TYPESeeviuitiietteet ettt e e e

MEMOTY ACCESS TYPES ...ttt s sn s e
1.6.1 Mixing References with Different ACCESS TYPES.....cccvvvvieveeveereriereeieeese e
1.6.2 Cache Coherence Algorithms and ACCESS TYPES.....cvuerveriereereereereereeesesese e
163 Implementation-SPecific ACCESS TYPES ...ocvvuiriririeirieerieesie et

1.7

1.8

19
110
111

DeSCription Of @N TNSEFUCTION ...ttt b e bbbttt st b e bbb e s besee b et s 34

1.7.1 Instruction MNemMONIC and NAMIEoouiiiiie ettt st sttt et e eae e s beeaeesreeneesaeeneesrean 34
1.7.2 INStruction ENCOOING PICIUIEcciiiiisiese e ettt sttt st a e e e enessesnesreseesneneeeees 35
R T 01 7= TP TR O PP URPRP 35
L7.4 PUIMPOSE ..ottt sttt ettt r bt h b e s e e e e et h e e R e R e SR e e R £ Rt SR e R e e e e e s e he e e e Rt e R Rt R r e R nr e r e n s 35
T I === o] o4 o] 1 S 35
G T (= (o1 o TSSO P O 36
O B © o 1o TSSOSO P TR PPP 36
R S o o1 36
179 Programming Notes, Implementation NOLES..........cooiiiiiirirreeere e e 37
Operation Section Notation and FUNCLIONSoiiiiieeeeeenicee et sae e b seeseen 37
1.81 PSEUAOCOUE LBNGUBGEoueiveerteietereete ettt sttt sttt b e s st b e s b e bbbttt b et bbbttt 37
NS TOZ 2 = < 0o ot [Y 0] oo SR 37
RS TS T = < U (oTola T L= W gt 0] LSRR 39
Individual CPU INSIrUCLION DESCIIPLIONScveuiieeeirieierieesieesie ettt 46
CPU INSIIUCLION FOrMELES......coiiiiiiiieciccieciecte ettt et et te st e st e e e e st e eaaesbeeasesbeeaseebeensesaeessesaeessessaestesnsestennsensenns 210
L4 = O 1 o ES W Tt o 18 =1 oo o 1o T 211
1111 INSEIUCHON DECOUE. ...ttt ettt ettt ettt b e b s et s b e b e se et et et et e b e e be e st ebesbesaesretas 211
1.11.2 Instruction Subsets of MIPS 1 and MIPS IV PrOCESSOIS.......ccueoiririririsiene e sees e seeseees e eesese e sreseas 211
1.11.3 Non-CPU INstructionS in the TabIES.........ccviiiierie e 212

FPU Instruction Set

21
22

2.3

24
25

26

[gL A oo [N Toi A o] o F TSROSO URURURPRIN 223
FFPU DAA TYPES ...veveeeeiitiresiiistiseetestetesaesestesessesessesessessssessssessssessesessesessesessessssensesensssensesesesessesessensssensssensesensnsensans 224
221 FlOating-POINT FOMIBES...... .ot iieuiieeierieieseee sttt et sttt sttt bbbt b ettt et b e 225
222 FIXEO-POINT FOMMIBES ...c.eetieetiieeteseete sttt sttt st st b et bbbt st e et et st e et e et e e nbe e ns 228
FlOAtING-POINT REQISLEN S ...oiiicii ettt et et e e et este et e saeeaeesaeeatesaeentesteentesseentesseanseeneaneeanes 228
2.3 1 OFQANIZALION ...ttt sttt sttt ettt b et b et b et b et b e s e b e seeb e s e e bt e e e Rt e R R e e R AR et bRt b et bt b et e b 229
I = 1107 VA D r= U - = = £ 229
2.3.3 FOrmatted OPEraNd LAYOUL..........ccceiuiruirierieriiniesie sttt ettt sbe st sae e bt e e e e b e e e e e e e e e aeesesbesaesaeebenaeses 231
234 Implementation and REVISION REJISIENcccoeiiiiiiiriiiirieriete sttt 232
235 FPU Control and Status ReGIStEr — FCSRoiiicceeceeesreser e 232
V= L 1= S LT e 2 U= o 11 = R 235
[U (= o1 o T OSSRV URUPP 237
251 PreCiSE EXCEPLION MOUE.......cooiiiiieeieriet ettt et b ettt b et bt b et et b e 237
252 IMprecise EXCEPtiON MOUE........cooiiiiice ettt st st e e ne e eneeresnesaenee e nes 238
253 Exception Condition DEfiNITIONS.coiiiiiiriiieseeee e et sb e s sre e e 238
FUNCLION@I INSEFUCLTION GEOUPS ... ettt sttt sttt saeshe e b e b e et s b e beseese e e et e e et eseeaeeaeebesbeseeseeeas 241
2.6.1 DataTransfer INSITUCHIONScciiiiieieeesesies e seesee ettt st e et e e see e e e e e eneeseesesaesaesreneenes 241
2.6.2 ATItNMELIC INSITUCLIONS ... ccviieetireeiesiee sttt sttt sttt sttt e et st ne b e 243
2.6.3 CONVEIrSION INSLIUCHIONS.ciueiutetirtertietestesie st teseesee e e e e e esesaesaesbesbesaeseesbesbesee s e nbesee e eneeseeneeaeabesaesaesbeseeses 244

264 Formatted Operand Value MOVE INSITUCLIONScouiieiiiiireeeei ettt s 244

2.6.5 Conditional BranCh INSITUCHIONS..........ccuiiieiiiicie ettt e et e e s esbesaeesreeaeesreeaesresnnesteensesrenns 245
26.6 MiSCElANEOUS INSITUCLIONScueiveiiieiiriee ettt sttt sttt ettt et 245
2.7 Valid Operandsfor FP INSIFUCLIONS.......cccciiiiicice e st e s eae ettt st s see e e e e e e eseeseenessesresnesrenns 246
2.8 DesCription Of @N INSEFUCTION ..ottt b b e e b e e et e e et e s e e beeaesbesbesbesbennas 247
2.9 Operation Notation Conventions and FUNCLIONS..........ooiioiirieeieere e e 248
2.10 Individual FPU INStruCtion DESCIIPLIONS........cciuiirterieterieterieteseete sttt b e b seebese b seeseseesesnenesreneas 248
2.11 FPU INSIFUCLION FOMMALES.......oiiiiiiiicie ettt ettt ettt e e s teetesaeesbesaeesbesbeebesaaebeessasbeeasesbeensesseensesanessesaean 312
2.12 FPU (CP1) Instruction Opcode Bit ENCOUINGcccvieiiirerierierieierececeerese st se s stes e seeseesseeeseeessessessessessessessenses 315
2121 INSIUCLION DECOME.eoueeuiiieiieetieterie ettt sttt a et sb e b bt sh e b b e e b e b e e et e se e bt e st ebeebenaesaesbe e nes 315
2.12.2 Instruction Subsets of MIPS 1 and MIPS IV PrOCESSOIS.........ccceiueeiiecieeiteeeesteeeesteeseesreesaeseessesseessesseens 316

3 R5000 Instruction Hazar ds

G I T I o4 o o ¥ o1 { o I 337
I A I o A N g = (U To (o g I oV = T o 338
APPENAIX TNAEX ...ttt st 339

[MEMO]

LIST OF FIGURES

Figure No. Title Page
1-1 Example INSIrUCION DESCITPLIONeeieiiieieeeeie ettt ettt st te et e s e be s e st e e sa e beessesteeneesaeensesreeneesaeeneesnean 34
1-2 Unaligned Doubleword Load using LDL @n0d LDRcooiiiiiiie ettt nneens 108
1-3 Unaligned Doubleword Load using LDR @nd LDLccoiiiieiice ettt s nneens 110
1-4 Unaligned Word Load uSINg LWL @nN0 LWRc.oo oottt st aesne e e st enaenneens 122
1-5 Unaligned Word Load USINg LWR @A LWLcuiiiiie ettt st st sne e st enaenneens 125
1-6 Unaligned Doubleword Store With SDL and SDR......cc.ooioiiiie ettt sreens 160
1-7 Unaligned Doubleword Store With SDR @nd SDLcc.oceoiiiieieee ettt sreens 162
1-8 Unaligned Word Store using SWL and SWR.........oo ottt ae e e sreeaenneens 180
1-9 Unaligned Word Store using SWR @A SWL ..ottt ettt e e s aesre e st enaenneens 183
1-10 CPU INSIIUCHION FOMMEES.......cveeetieetie ettt e e st n et n et et r et r e n e 210
2-1 Single-Precision Floating-POoiNt FOIMEL (S)c.civeiiiieiiciesi ettt sttt ae e sreennas 225
2-2 Double-Precision Floating-Point FOrMEL (D)ccviieiieieiecie e e sttt et eee e ae e naesreeneesneens 226
2-3 Word FiXed-POINE FOIMEAL (VW) ..ottt s ae s ae e tesaa e beenae b e eneenteennenneenns 228
2-4 Longword FiXed-POiNt FOMEL (L)cceeieieeieeiese et st sttt st et s ae e sae e e sneenaesreeneesreensenreens 228
2-5 Coprocessor 1 General REGISLEIS (FGRS)ccuviieiiiieiiecieste ettt ete st ste s ste e s e e s e s e te et e sseesesseessesneesresnnas 229
2-6 Effect of FPU Word Load or MOVE-10 OPEIraliONS.........cccceieiieeierieesieeiiesteeesteesiesseesseeeesseeeesaeesaesseessesseensessaens 230
2-7 Effect of FPU Doubleword Load or MOVE-t0 OPErationS............coceieeierieeiiesieesieeeesteeeesveeseeseesseeseessesseesesneens 230
2-8 Floating-point Operand Register (FPR) OrganiZation.............ccoieeieieeieseese e eeeste e sreeseesreeseeseeseessessesseens 231
2-9 Single Floating Point (S) or Word Fixed (W) Operand in an FPR........cco oo 231
2-10 Double Floating Point (D) or Long Fixed (L) Operand in @an FPRccooiiieii e 232
2-11 FPU Implementation and REVISION REQISIENcoieieiiiie ettt e e e sreeae e aesreeneenreens 232
2-12 MIPS1 - FPU Control and Status RegiSter (FCSR)ooveiiiee ettt et s sneens 233
2-13 MIPS 11 - FPU Control and Status RegiSter (FCSR)ooveieirereeeriere sttt 233
2-14 MIPS 1V - FPU Control and Status RegIiSter (FCSR)........coiiiie ettt s sneens 233
2-15 The Effect of FPU Operations on the Format of Values Held in FPRS........c.ccocviieie e 236
2-16 FPU INSIIUCHION FOMMIELS........covieeitieiriiet sttt s e s s b s e s et nn s 312

[MEMO]

- Vi -

LIST OF TABLES (1/3)

Table No. Title Page
1-1 Load/Store Operations Using Register + Offset Addressing MOdecccveieiieieese e 3
1-2 Load/Store Operations Using Register + Register Addressing MOdEccveveeeeiiceece e 3
1-3 Normal CPU LOa0/StOr€ INSITUCHIONS........coveeerereerereereseeie sttt sttt sttt n et et 4
1-4 Unaligned CPU LOad/StOre INSLIUCLIONScc.ccieiiieeeieeeesieeieesteeieseesiesree e e e estesasessesnaesseesesaeensesseessessessessesnsenns 4
1-5 Atomic Update CPU L0ad/StOre INSLIUCLIONSccveiiiiieriiciesteeie st ete e see st ste e s sae e e e st esaesteensesseensesneenesns 5
1-6 Coprocessor Load/StOre INSIFUCLIONScieiiieiieiieiiesieeeee st s et s e e s e sae e s sae st e e stesseenseeseesesnnessesneeseeenensrenn 5
1-7 FPU Load/Store Instructions Using Register + Register AAUreSSINg........cecvevereeieeseeireseeseseeseseesesaesesssesseens 5
1-8 ALU Instructions With an Immediate OPErandcccceeuieieeieiicice e ae s ae st a e reeae e eneens 6
1-9 3-0pPerand ALU INSITUCLIONSooiiiiiiiie ettt e e et este e e s e e te s ae e tesse e beesaesteeseanseeneaaseensesneensesnnenseas 7
1-10 SITEINSITUCTIONS ...ttt bbbt e bt e st e e et Rt n et r et re e r e 7
1-11 MUItiPlY/DIVIAE INSIFUCLIONS eevicieciece ettt s st se et e s aeesseeaeesaeenaesaeensesseensessaentenneensenns 8
1-12 Jump Instructions Jumping Within a 256 Megabyte REJIONcccccieieeieiieie et 9
1-13 Jump INStructionS 10 ADSOIULE AQAIESSeoceiciecece ettt e e e e b e ae e s aeeneesreeaesreeneenrean 9
1-14 PC-Relative Conditional Branch Instructions Comparing 2 REJISIESccvcieieeciiiieie e 9
1-15 PC-Relative Conditional Branch Instructions Comparing AQaiNSt ZEN0ccueeveeeereeieseese e sesee e ssae e esenseens 9
1-16 System Call and Breakpoint INSIFUCLIONSc.coveiiiiieiieeiesie ettt ae st et e s reesne e e snesneesreeneeseenn 9
1-17 Trap-on-Condition Instructions Comparing TWO REJISLEIS.........cccvvcueiiiiesieieseee et sreens 10
1-18 Trap-on-Condition Instructions Comparing an IMMEdIaleccccevieieiicie s 10
1-19 SEi@liZatiON INSITUCLIONS ..ottt ettt e b e bt b et et r et r et r et r et r et r e 10
1-20 CPU Conditional MOVE INSIIUCTIONSccviriirerieiiiecitrieie ettt sttt 10
1-21 Prefetch Using Register + Offset AAAreSSIMOUEcueiiueeie it nae s 11
1-22 Prefetch Using Register + Register AAAreSS MOUE........ocueeiiiieie et 11
1-23 Coprocessor Definition and Usein the MIPS ArChitECIUIE.........c.ocveciieeiii e 11
1-24 Coprocessor Operation INSITUCTIONSc.ciiiiie ettt e st e a e saeeae s e e tesreestesteentesneenseeneenseanes 12
1-25 CPO INSITUCKIONS. ... vttt ettt e b e st se et e et Rt R et E et e R se e R s e e Rt s e e b e s e e bt e e bt ee bt e st r et e r et e r et nr e ns 12
1-26 CPO MOVE INSIIUCKIONS ...ttt sttt sttt sttt r et b et r e e b e s e b s e b e e bR b e nn et bt r et e n et nr e r e 13
1-27 CACHE Instruction Op FIeld ENCOOINGocuiiiiieiiie ettt ettt sttt et eene e e e sneenneens 17
1-28 Byte Access Within @ DOUDIEWOIToouiiiiicee ettt et e st e e s ae e e e sreeaesreeneennean 31
1-29 Symbolsin Instruction Operation SLALEMENES cccveieiieieciereee ettt besre e reeneareenes 38
1-30 Coprocessor General Register ACCESS FUNCLIONS.........ccuiiieieiicie ettt st sre et sne e e enes 40
1-31 AccessLength Specifications for LOAOS/ SLOIESc.oieeiiiieiiciese ettt ne e 43
1-32 CACHE Instruction Op FIeld ENCOOINGccviiieieiiee ettt sttt ettt ste et eeneenesneenneens 70
1-33 Bytes Loaded by LDL INSIIUCLIONcc.ociiiiieieeieieceeste sttt s st e et te st seesae s e e saesneesaesnaeseeeneesseensensanns 109
1-34 Bytes Loaded by LDR INSLIUCLION.........ccouiiiieiiceeiieceeste et see s sae e e te st te et et sseeae s e e saesneesnesnaesreensessennsensenns 111

- Vil -

LIST OF TABLES (2/3)

Table No. Title Page
1-35 Bytes Loaded by LWL INSITUCHIONc.veiiiieciceece ettt sttt et s esae e e snesnaesreeneesreennenraens 123
1-36 Bytes Loaded by LWR INSITUCLION.........ccviiiiciecieie ettt sttt ete e e saesneesaesnaesreeneessennsensenns 126
1-37 Values of Hint Field for PrefetCh INSIIUCTIONc.oiviiiciecc e 148
1-38 Bytes Stored by SDL INSIFUCHION.........ccuiiiiecicceece ettt re et e e saesaeesaesnaesreeneesteensenreens 161
1-39 Bytes Stored by SDR INSLIUCLION.........cc.viiiiiiciiciee et ste e ee s te sttt aeeae e e saeeneessesnaesaeeneessennsensenns 163
1-40 Bytes Stored by SWL INSIIUCLIONc.vciiiecieceee ettt s e st te st te sttt e st s aeesaeeneesresnaesreeneesreensenraens 181
1-41 Bytes Stored by SWR INSIFUCHION........cviiieicieceeeceese sttt sttt et et sae e s ae e e snesnaesreeneesreensenreens 184
1-42 CPU Instruction Encoding - MIPS | AFChITECIUIEccviiiiiiceeeeee ettt 213
1-43 CPU Instruction Encoding - MIPS [T ArChItECLUIEocvieiieieee ettt 214
1-44 CPU Instruction Encoding - MIPS T AFChITECIUEocveevieieeeeie ettt 215
1-45 CPU Instruction Encoding - MIPS IV ATChITECIUNE.........c.oiueiriiirieriere et 216
1-46 Architecture Level in Which CPU Instructions are Defined or EXtended...........cooovveereineeneienenenesesenesreens 217
1-47 CPU Instruction Encoding Changes - MIPS T REVISIONcccoiieiiiieii et s 218
1-48 CPU Instruction Encoding Changes - MIPS T REVISIONocveiiiiieie e s 219
1-49 CPU Instruction Encoding Changes - MIPS TV REVISIONocieiiiieie ettt 220
2-1 Parameters of Floating-POINt FOMMALSc.cciiiieicecse ettt et e esaeeaesaeeeesreentenreens 225
2-2 Value of Single or Double Floating-Point Format ENCOTINGc.coiveiiiiieiiiiesie e 226
2-3 Value Supplied when anew QUiet NaN 1S Created...........coveueciieieiiciiseccc et e 228
2-4 Default Result for IEEE Exceptions NOt Trapped PreCiSElYvvviiecieiieeceseeese et 239
2-5 FPU Loads and Stores Using Register + Offset AddreSSMOEc.cooeiiieiiicicieccse e 242
2-6 FPU Loads and Stores Using Register + Register AddreSSMOEoocvveieciieiiciese et 242
2-7 FPU MOVE TO/FIOM INSITUCLIONSveueetieeeiseeecne et n e 242
2-8 FPU [EEE AFthmEtiC OPEIatiONScccieiieeiiieieiiieeesteeee st see s e s aesteestesteetesseesseeseessesaeessesnsessesneessesnsessesnsessenns 243
2-9 FPU Approximate Arithmetic OPEraLiONSccecieeeiiieeieeieeseeieeseestestee e etesseesse e e sseeeesaeeeesreensesseensessenns 243
2-10 FPU Multiply-Accumulate Arithmetic OPEralioNScccceeceeieeie it e e s sae e tesneens 243
2-11 FPU Conversion Operations Using the FCSR Rounding MOGEcccoceeiiiieiiciese e 244
2-12 FPU Conversion Operations Using a Directed ROUNAiNg MOEcccovvveiieieiiciese e 244
2-13 FPU Formatted Operand MOVE INSITUCLIONS.........cc.eiieiiiiieiiecieseeie st ete st e sttt sae e sae e e sneeaesaeesesreensesseens 244
2-14 FPU Conditional Move on True/FalSe INSIIUCLIONSccovoeivireirireerire e 245
2-15 FPU Conditional Move 0n Zero/NONZEro INSIIUCLIONS covovevireerireeirecienie e 245
2-16 FPU Conditional Branch INSITUCLIONScocerieiieerieerieesees s 245
2-17 CPU Conditional Move on FPU True/FalSe INSIIUCHIONSccovveirieeriiinieseee e 245
2-18 FPU Operand Format Field (fmt, fmt3) DECOINGccviieieiie e ereens 246
2-19 Valid FOrmatS fOor FPU OPEIalionScciceeieiieseiee e sees e see sttt e s ae e stesaeesaesseestessaesbesnaebesssenseensenseenns 247

- viii -

LIST OF TABLES (3/3)

Table No. Title Page
2-20 FPU Comparisons Without Special Operand EXCEPLIONScceceiirieiieiecieseeeese et seesee s eaesreens 260
2-21 FPU Comparisons With Special Operand Exceptions for QNaNSccccccivieiiciese e 261
2-22 Values of Hint Field for PrefetCh INSIIUCTIONc.oiviiiciicccn e 298
2-23 FPU (CP1) Instruction Encoding - MIPS T ArChItECIUIEcccieeiieiicie e et 317
2-24 FPU (CP1) Instruction Encoding - MIPS IT ArChitECIUIE oveeee et 319
2-25 FPU (CP1) Instruction Encoding - MIPS TTT ArChiteCIUIeccoeiuieieiicce e 321
2-26 FPU (CP1) Instruction Encoding - MIPS IV AFChItECIUIE...........eeoie ettt s 323
2-27 Architecture Level In Which FPU Instructions are Defined or EXtended...........ocovveiveeneneinenneneseseereens 326
2-28 FPU Instruction Encoding Changes - MIPS [l REVISION.........cciveieiiiie e ceesteeee e eee e eee e sae e sae s eaesneens 329
2-29 FPU Instruction Encoding Changes - MIPS I REVISIONc.cceeieiieie e eeesteeee e eee e s sneens 331
2-30 FPU Instruction Encoding Changes - MIPS TV REVISION cceoiiiieie ettt sneens 333

[MEMO]

CPU Instruction Set

1.1 Introduction

This chapter describes the instruction set architecture (ISA) for the central processing unit
(CPU) inthe MIPS™ |V architecture. The CPU architecture defines the non-privileged
instructions that execute in user mode. It does not define privileged instructions providing
processor control executed by the implementation-specific System Control Processor.
Instructions for the floating-point unit are described in Chapter 2.

The original MIPS | CPU | SA has been
extended in a backward-compatible fashion
threetimes. ThelSA extensionsareinclusive
asthe diagram illustrates; each new
architecture level (or version) includes the
former levels. The description of an
architectural featureincludesthe architecture
level in which the featureis (first) defined or
extended. Thefeatureisalso availableinal
later (higher) levels of the architecture.

MIPS 11
MIPS 111

MIPS IV

MIPS Architecture Extensions

The practical result isthat a processor implementing MIPS IV isalso ableto run MIPSI,
MIPS 1, or MIPS 111 binary programs without change.

Chapter 1 CPU Instruction Set

The CPU instruction set is first summarized by functional group then each instruction is
described separately in alphabetical order. This manual describe the organization of the
individual instruction descriptions and the notation used in them (including FPU
instructions). It concludes with the CPU instruction formats and opcode encoding tables.

1.2 Functional Instruction Groups

CPU ingtructions are divided into the following functional groups:
* Load and Store
e ALU
e Jump and Branch
* Miscellaneous
» Coprocessor

1.2.1 Load and Store Instructions

Load and store instructions transfer data between the memory system and the general
register setsin the CPU and the coprocessors. There are separate instructions for different
purposes. transferring various sized fields, treating loaded data as signed or unsigned
integers, accessing unaligned fields, selecting the addressing mode, and providing atomic
memory update (read-modify-write).

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or
doubleword is the smallest byte address among the bytes forming the object. For big-
endian ordering thisisthe most-significant byte; for alittle-endian ordering thisisthe least-
significant byte.

Except for the few specialized instructionslisted in Table 1-4, loads and stores must access
naturally aligned objects. An attempt to load or store an object at an address that is not an
even multiple of the size of the object will cause an Address Error exception.

L oad and store operations have been added in each revision of the architecture:
MIPSII
» 64-bit coprocessor transfers
e atomic update
MIPSIII
* 64-bit CPU transfers
* unsigned word load for CPU
MIPS IV
* register + register addressing mode for FPU

Chapter 1 CPU Instruction Set

Tables 1-1 and 1-2 tabulate the supported load and store operations and indicate the MIPS
architecturelevel at which each operation wasfirst supported. Theinstructionsthemselves
arelisted in the following sections.

Table1-1 Load/Sore Operations Using Register + Offset Addressing Mode

CPU coprocessor (except 0)
Data Size Load Load Store Load Store
Signed Unsigned
byte I I I
halfword | | |
word I 11 | | |
doubleword I 11 Il Il

unaligned word | |
unaligned doubleword 11 Il

linked word 1 1
(atomic modify)

linked doubleword 11 11
(atomic modify)

Table1-2 Load/Sore Operations Using Register + Register Addressing Mode

floating-point coprocessor only

Data Size Load Store
word v v
doubleword v \Y

(1) Delayed Loads

The MIPS | architecture defines delayed loads; an instruction scheduling restriction
requiresthat an instruction immediately following aload into register Rn cannot use Rn as
asourceregister. The time between the load instruction and the time the datais available
isthe “load delay slot”. If no useful instruction can be put into the load delay dot, then a
null operation (assembler mnemonic NOP) must be inserted.

In MIPS 1, thisinstruction scheduling restriction is removed. Programs will execute
correctly when the loaded data is used by the instruction following the load, but this may
require extrareal cycles. Most processors cannot actually load data quickly enough for
immediate use and the processor will be forced to wait until the datais available.
Scheduling load delay slotsis desirable for performance reasons even when it is not
necessary for correctness.

Chapter 1 CPU Instruction Set

(2) CPU Loadsand Stores

There areinstructionsto transfer different amounts of data: bytes, halfwords, words, and
doublewords. Signed and unsigned integers of different sizes are supported by loads that
either sign-extend or zero-extend the data loaded into the register.

Table1-3 Normal CPU Load/Store Instructions

Mnemonic Description Defined in
LB Load Byte MIPSI
LBU Load Byte Unsigned |
SB Store Byte |
LH Load Halfword I
LHU Load Halfword Unsigned |
SH Store Halfword I
LW L oad Word |
Lwu Load Word Unsigned I
SW Store Word |
LD Load Doubleword I
SD Store Doubleword "

Unaligned words and doublewords can be loaded or stored in only two instructions by
using apair of special instructions. The load instructions read the |eft-side or right-side
bytes (left or right side of register) from an aligned word and merge them into the correct
bytes of the destination register. MIPS|1, though it prohibits other use of loaded datain the
load delay dlot, permits LWL and LWR instructions targeting the same destination register
to be executed sequentially. Store instructions select the correct bytes from a source
register and update only those bytes in an aligned memory word (or doubleword).

Table1-4 Unaligned CPU Load/Sore Instructions

Mnemonic Description Defined in
LWL Load Word Left MIPSI
LWR Load Word Right I
SWL Store Word Left I
SWR Store Word Right I
LDL Load Doubleword L eft 11
LDR Load Doubleword Right 11
SDL Store Doubleword Left 11

SDR Store Doubleword Right 11

Chapter 1 CPU Instruction Set

(3) Atomic Update L oads and Stores

There are paired instructions, Load Linked and Store Conditional, that can be used to
perform atomic read-modify-write of word and doubleword cached memory locations.
These instructions are used in carefully coded sequences to provide one of severa
synchronization primitives, including test-and-set, bit-level locks, semaphores, and
sequencers/event counts. Theindividual instruction descriptions describe how to usethem.

Table1-5 Atomic Update CPU Load/Store Instructions

Mnemonic Description Defined in
LL Load Linked Word MIPSII
SC Store Conditional Word I
LLD Load Linked Doubleword 11
SCD Store Conditional Doubleword 11

(4) Coprocessor Loadsand Stores

These loads and stores are coprocessor instructions, however it seems more useful to
summarize al load and store instructionsin one place instead of listing them in the
coprocessor instructions functional group.

If aparticular coprocessor is not enabled, |oads and stores to that processor cannot execute
and will cause a Coprocessor Unusable exception. Enabling a coprocessor is a privileged
operation provided by the System Control Coprocessor.

Table1-6 Coprocessor Load/Sore Instructions

Mnemonic Description Defined in
LwCz Load Word to Coprocessor-z MIPSI
SWCz Store Word from Coprocessor-z I
LDCz Load Doubleword to Coprocessor-z I
SDCz Store Doubleword from Coprocessor-z I

Table1-7 FPU Load/Sore Instructions Using Register + Register Addressing

Mnemonic Description Defined in
LWXC1 Load Word Indexed to Floating Point MIPS IV
SWXC1 Store Word Indexed from Floating Point v
LDXC1 Load Doubleword Indexed to Floating Point v
SDXC1 Store Doubleword Indexed from Floating Point v

Chapter 1 CPU Instruction Set

1.2.2 Computational Instructions

(1) ALU

Two's complement arithmetic is performed on integers represented in two’'s complement
notation. There are signed versions of add, subtract, multiply, and divide. There are add
and subtract operations, called “unsigned”, that are actually modulo arithmetic without
overflow detection. There are unsigned versions of multiply and divide. Thereisafull
complement of shift and logical operations.

MIPS | provides 32-bit integers and 32-bit arithmetic. MIPS I11 adds 64-bit integers and
provides separate arithmetic and shift instructions for 64-bit operands. Logical operations
are not sensitive to the width of the register.

Some arithmetic and logical instructions operate on one operand from aregister and the
other from a 16-bit immediate value in the instruction word. Theimmediate operand is
treated as signed for the arithmetic and compare instructions, and treated as logical (zero-
extended to register length) for the logical instructions.

Table1-8 ALU Instructions With an Immediate Operand

Mnemonic Description Defined in
ADDI Add Immediate Word MIPS |
ADDIU Add Immediate Unsigned Word |
SLTI Set on Less Than Immediate I
SLTIU Set on Less Than Immediate Unsigned |
ANDI And Immediate I
ORI Or Immediate I
XORI Exclusive Or Immediate |
LUI Load Upper Immediate |
DADDI Doubleword Add Immediate 11

DADDIU Doubleword Add Immediate Unsigned Il

Chapter 1 CPU Instruction Set

Table1-9 3-Operand ALU Instructions

Mnemonic Description Defined in
ADD Add Word MIPSI
ADDU Add Unsigned Word |
SuB Subtract Word I
SUBU Subtract Unsigned Word |
DADD Doubleword Add Il
DADDU Doubleword Add Unsigned Il
DSuB Doubleword Subtract 11
DSUBU Doubleword Subtract Unsigned I
SLT Set on Less Than |
SLTU Set on Less Than Unsigned |
AND And |
OR Or I
XOR Exclusive Or I
NOR Nor |

(2) Shifts

There are shift instructions that take the shift amount from a 5-bit field in the instruction
word and shift instructions that take a shift amount from the low-order bits of a general
register. Theinstructions with afixed shift amount are limited to a 5-bit shift count, so
there are separate instructions for doubleword shifts of 0-31 bits and 32-63 hits.

Table1-10 Shift Instructions

Mnemonic Description Defined in
SLL Shift Word Left Logical MIPSI
SRL Shift Word Right Logical |
SRA Shift Word Right Arithmetic I
SLLV Shift Word Left Logical Variable |
SRLV Shift Word Right Logical Variable |
SRAV Shift Word Right Arithmetic Variable |
DSLL Doubleword Shift Left Logical I
DSRL Doubleword Shift Right Logical Il
DSRA Doubleword Shift Right Arithmetic 11l

DSLL32 Doubleword Shift Left Logical + 32 11
DSRL32 Doubleword Shift Right Logical + 32 11
DSRA32 Doubleword Shift Right Arithmetic + 32 Il
DSLLV Doubleword Shift Left Logical Variable I
DSRLV Doubleword Shift Right Logical Variable I
DSRAV Doubleword Shift Right Arithmetic Variable I

Chapter 1 CPU Instruction Set

(3) Multiply and Divide

The multiply and divide instructions produce twice as many result bits asistypical with
other processorsand they deliver their resultsintothe HI and LO special registers. Multiply
produces a full-width product twice the width of the input operands; the low half isput in
LO and the high half isput in HI. Divide produces both aquotient in LO and a remainder
in HI. The results are accessed by instructions that transfer data between HI/LO and the
genera registers.

Table1-11 Multiply/Divide Instructions

Mnemonic Description Defined in
MULT Multiply Word MIPSI
MULTU Multiply Unsigned Word |
DIV Divide Word |
DIVU Divide Unsigned Word |

DMULT Doubleword Multiply 11
DMULTU Doubleword Multiply Unsigned I

DDIV Doubleword Divide 1
DDIVU Doubleword Divide Unsigned "
MFHI Move From HI |
MTHI Move To HI |
MFLO Move From LO |
MTLO MoveTo LO |

1.2.3 Jump and Branch Instructions

The architecture defines PC-relative conditional branches, a PC-region unconditional
jump, an absolute (register) unconditional jump, and asimilar set of procedure calls that
record areturn link addressin ageneral register. For convenience this discussion refersto
them al as branches.

All branches have an architectural delay of one instruction. When a branch is taken, the
instruction immediately following the branch instruction, in the branch delay dlot, is
executed beforethe branch to thetarget instruction takes place. Conditional branchescome
intwo versionsthat treat the instruction in the delay slot differently when the branch is not
taken and execution fallsthrough. The “branch” instructions execute the instruction in the
delay slot, but the “branch likely” instructions do not (they are said to nullify it).

By convention, if an exception or interrupt prevents the completion of an instruction
occupying a branch delay dot, the instruction stream is continued by re-executing the
branch instruction. To permit this, branches must be restartable; procedure calls may not
use the register in which the return link is stored (usually register 31) to determine the
branch target address.

Chapter 1 CPU Instruction Set

Table1-12 Jump Instructions Jumping Within a 256 Megabyte Region

Mnemonic Description Defined in

J Jump MIPS |

JAL Jump and Link I

Table 1-13 Jump Instructions to Absolute Address

Mnemonic Description Defined in

JR Jump Register MIPSI

JALR Jump and Link Register |

Table1-14 PC-Relative Conditional Branch Instructions Comparing 2 Registers
Mnemonic Description Defined in

BEQ Branch on Equal MIPSI

BNE Branch on Not Equal I

BLEZ Branch on Less Than or Equal to Zero |

BGTz Branch on Greater Than Zero I

BEQL Branch on Equal Likely I

BNEL Branch on Not Equal Likely I

BLEZL Branch on Less Than or Equal to Zero Likely I

BGTZL Branch on Greater Than Zero Likely I
Table1-15 PC-Relative Conditional Branch Instructions Comparing Against Zero
Mnemonic Description Defined in
BLTZ Branch on Less Than Zero MIPSI
BGEZ Branch on Greater Than or Equal to Zero |
BLTZAL Branch on Less Than Zero and Link |
BGEZAL Branch on Greater Than or Equal to Zero and Link |
BLTZL Branch on Less Than Zero Likely I
BGEZL Branch on Greater Than or Equal to Zero Likely Il
BLTZALL BranchonLess Than Zero and Link Likely Il
BGEZALL Branch on Greater Than or Equal to Zero and Link Likely I

1.2.4 Miscellaneous I nstructions

(1) Exception Instructions

Exception instructions have as their sole purpose causing an exception that will transfer
control to a software exception handler in the kernel. System call and breakpoint
instructions cause exceptions unconditionally. The trap instructions cause exceptions
conditionally based upon the result of a comparison.

Table1-16 System Call and Breakpoint Instructions
Mnemonic Description Defined in
SYSCALL System Call MIPSI
BREAK Breakpoint I

Chapter 1 CPU Instruction Set

Table1-17 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Description Defined in
TGE Trap if Greater Than or Equal MIPS I
TGEU Trap if Greater Than or Equal Unsigned I
TLT Trap if Less Than Il
TLTU Trap if Less Than Unsigned I
TEQ Trap if Equal I
TNE Trap if Not Equal Il

Table 1-18 Trap-on-Condition Instructions Comparing an Immediate

Mnemonic Description Defined in
TGEI Trap if Greater Than or Equal Immediate MIPSII
TGEIU Trap if Greater Than or Equal Unsigned Immediate I
TLTI Trap if Less Than Immediate I
TLTIU Trap if Less Than Unsigned Immediate I
TEQI Trap if Equal Immediate I
TNEI Trap if Not Equal Immediate I

(2) Serialization Instructions

The order in which memory accesses from load and store instruction appear outside the
processor executing them, in a multiprocessor system for example, is not specified by the
architecture. The SYNC instruction creates a point in the executing instruction stream at
which the relative order of some loads and stores is known. Loads and stores executed
before the SYNC are completed before loads and stores after the SYNC can start.

Table1-19 Serialization Instructions

Mnemonic Description Defined in
SYNC Synchronize Shared Memory MIPS I

(3) Conditional Move Instructions

Instructions were added in MIPS IV to conditionally move one CPU general register to
another based on the value in athird general register.

Table1-20 CPU Conditional Move Instructions

Mnemonic Description Defined in
MOVN Move Conditional on Not Zero MIPS IV
MOvVZ Move Conditional on Zero v

(4) Prefetch (R10000 only)

There are two prefetch advisory instructions; one with register+offset addressing and the
other with register+register addressing. Theseinstructions advise that memory islikely to
be used in aparticular way in the near future and should be prefetched into the cache. The
PREFX instruction using register+register addressing mode is coded in the FPU opcode
space along with the other operations using register+register addressing.

Chapter 1 CPU Instruction Set

Table 1-21 Prefetch Using Register + Offset Address Mode

Mnemonic Description
PREF Prefetch Indexed

Defined in
MIPS IV

Table 1-22 Prefetch Using Register + Register Address Mode

Mnemonic
PREFX

Description
Prefetch Indexed

Defined in
MIPS IV

1.2.5 Coprocessor Instructions

Coprocessors are alternate execution units, with register files separate from the CPU. The
MIPS architecture provides an abstraction for up to 4 coprocessor units, numbered 0 to 3.
Each architecture level defines some of these coprocessors as shown in Table 1-23.
Coprocessor 0 isalways used for system control and coprocessor 1 is used for the floating-
point unit. Other coprocessors are architecturally valid, but do not have areserved use.
Some coprocessors are not defined and their opcodes are either reserved or used for other
purposes.

Table 1-23 Coprocessor Definition and Use in the MIPS Architecture

MIPS architecture level

COprocessor | I Il v

0 Sys Control Sys Control Sys Control Sys Control
1 FPU FPU FPU FPU

2 unused unused unused unused

3 unused unused not defined FPU (COP 1X)

The coprocessors may havetwo register sets, coprocessor general registersand coprocessor
control registers, each set containing up to thirty two registers. Coprocessor
computational instructions may alter registersin either set.

System control for all M1PS processorsisimplemented as coprocessor 0 (CP0), the System
Control Coprocessor. It provides the processor control, memory management, and
exception handling functions. The CPO instructions are specific to each CPU and are
documented with the CPU-specific information.

If a system includes a floating-point unit, it isimplemented as coprocessor 1 (CP1). In
MIPS IV, the FPU al so uses the computation opcode space for coprocessor unit 3, renamed
COP1X. The FPU instructions are documented in Chapter 2.

11

Chapter 1 CPU Instruction Set

The coprocessor instructions are divided into two main groups:
e Load and store instructions that are reserved in the main opcode space.
» Coprocessor-specific operations that are defined entirely by the coprocessor.

(1) Coprocessor Load and Store

Load and store instructions are not defined for CPO; the move to/from coprocessor
instructions are the only way to write and read the CPO registers.

The loads and stores for coprocessors are summarized in 1.2.1 L oad and Store
Instructions.
(2) Coprocessor Operations

There are up to four coprocessors and the instructions are shown generically for
coprocessor-z. Within the operation main opcode, the coprocessor has further coprocessor-
specific instructions encoded.

Table 1-24 Coprocessor Operation Instructions

Mnemonic Description Defined in
COPz Coprocessor-z Operation MIPS |

1.3 CPO Instructions
Table 1-25 lists the CPO instructions defined for the R5000 and the R10000 processors.

Table 1-25 CPO Instructions

Mnemonic Description Defined in
CACHE Cache Operation MIPSIII
DMFCO Doubleword Move From CPO MIPSI1I
DMTCO Doubleword Move To CPO MIPS 1
ERET Exception Return MIPSIII
MFCO Move from CPO MIPS|
MTCO Move to CPO MIPS|
TLBP Probe TLB for Matching Entry MIPSI
TLBR Read Indexed TLB Entry MIPSI
TLBWI Write Indexed TLB Entry MIPSI
TLBWR Write Random TLB Entry MIPSI

12

Chapter 1 CPU Instruction Set

(1) Hazards

The R5000 has someinstruction hazards and the results of executing certain combinations
of instructions are unpredictable. For details, see Chapter 3 R5000 I nstruction Hazar ds.

The R10000 detects most of the pipeline hazards in hardware, including CPO hazards and
load hazards. No NOP instructions are required to correct instruction sequences.

(2) Branch on Coprocessor 0

On the R4400 processor, CacheOps that hit in the specified cache set the CH bit in the
Diagnostic field of the CPO Statusregister (bit 18). Though it was undocumented, this bit
could be tested by the Branch on Coprocessor 0 instructions (BCOT, BCOF, BCOTL,
BCOFL).

The R5000 and the R10000 processors a so implement the CH bit but it is not associated
with a Coprocessor 0 condition. Instead, execution of a branch on Coprocessor 0
instruction takes a Reserved I nstruction exception.

(3) CPO Movelnstructions

The R5000 and the R10000 processors implement Coprocessor 0 move instructions,
MTCO, MFCO, DMTCO, and DMFCO, exactly the same as in the R4400 processor, even
though some operations are undefined during certain conditions. The exact operations of
CPO move instructions on 32/64-bit CPO registers are summarized Table 1-26.

Table1-26 CPO Move Instructions

Instruction CPO Register Size MIPS 3 Enable? Operation
MFCO rt,rd 320r 64 Don't care rt <- rdg; 2 || rdgy o
MTCO rt,rd 32 Don't care rd<-rtz; o
64 Don't care rd <-rtg3 o
DMFCO rt,rd 32 Yes undefined (1t <- 0%?|| rd3; o)
64 Yes rt<-rdgz o
32 0r 64 No Reserved Instruction exception
DMTCO rt,rd 32 Yes undefined (rd <- rtz;)
64 Yes rd <- rtgz o
32 0r 64 No Reserved Instruction exception.

The returned value of MFCO/DMFCO from a non-existing CPO register is undefined.

13

Chapter 1 CPU Instruction Set

1.4 CACHE Instruction

14

(1) Virtual Address

(2) Physical Address

(3) CPO Not Usable

This section describes the operations of the CACHE instructions in the R5000 and the
R10000 processors.

NOTE: The operation of any operation/cache combination not listed below is
undefined, and the operation of this instruction on uncached addressesis also
undefined.

The CACHE instruction uses the following portions of the VA to specify a primary cache
block and way:

<R5000>
* VA[13:5] defines a 32-byte block in the primary data or instruction cache
array.
» VAJ[14] defines the way needed by Index operations.
<R10000>

* VAJ[13:5] defines a 32-byte block in the primary data cache array.
* VAJ[13:6] defines a 64-byte block in the primary instruction cache array.

* In both cases, VA[Q] defines the way needed by Index operations.
Since VA[Q] is used to indicate the way, it does not cause alignment errors.

When accessing datain the primary caches, VA[Blocksize-1] isalso used to read or write
a specific word.

The CACHE instruction usesthe following portions of the PA to specify asecondary cache
block and way:

<R5000>

* PA[Size of secondary cache:Block size of secondary cache] is used to
access the secondary cache.

<R10000>

» PA[Size of secondary cache - 2:Blocksize of secondary cache] is used to
access the secondary cache.

* PA[Q] is used to specify the way needed by Index operations.
Since PA[0Q] is used to indicate the way during CACHE Index operations,
alignment errors are suppressed.

When accessing datain the secondary cache, PA[Blocksize-1:3] is also used to read or
write a specific doubleword.

If the CPO is not usable (if not in Kernel mode, CUO must be set in the Status register for
CPO to be usable), a Coprocessor Unusable exception is taken.

Chapter 1 CPU Instruction Set

(4) TLB Refill and TLB Invalid Exceptions on CacheOps

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index operations,
where the address (virtual address for the primary caches, physical address for the
secondary cache) is used to index the cache but need not match the cache tag, unmapped
addresses may be used to avoid TLB exceptions. The operation never causes TLB
Modified exceptions.

(5) Hit Operation Accesses

(6) Watch Exception

A Hit operation accesses the specified cache as anormal data reference, and performs the
specified operation if the cache block contains valid data at the specified physical address
(ahit).

The operation is undefined if a CacheOp hit occurs in both ways of the cache.

There is no Watch exception for CacheOps.

(7) AddressError Exception

(8) WriteBack

(9) Invalidation

(10) CE Bit

During an Index CacheOp, bit 0 is not checked for an Address Error exception since this
bit is used as the Way indicator bit, and may be non-zero. Bit 1 of an Index CacheOp can
still generate an Address Error exception if it is not set to zero.

For all remaining CacheOps, the low-order two bits of the instruction must be set to zero,
or else they will generate an Address Error exception.

A CacheOp is never checked for alignment Address Error exceptions, only for privilege-
type Address Error exceptions.

Write back from the primary data cache goesto the secondary cache. Write back from a
secondary cache always goes to the System interface unit.

A secondary write back always writes the most recent data; the primary data cache must be
interrogated, and any dirty inconsistent datawritten back to the secondary cache before the
secondary block iswritten back to the system interface unit. The address to be written is
specified by the cache tag and not the trandated PA.

When ablock isinvalidated in the secondary cache, all subset blocksin the primary cache
arealsoinvalidated. The StateMod bits on invalidated block in the primary data cache are
set to “001” (Normal) during any invalidation.

The R5000 and the R10000 processors do not support the CE bit. The functionality of the
CE hit has been replaced by the Index Load Data and Index Store Data instructions.

15

Chapter 1 CPU Instruction Set

16

(11) CH Bit

The CH bit is supported in the R5000 and the R10000 processors. It is modified by a Hit
Invalidate (S) or Hit WriteBack Invalidate (S) CACHE instruction. CH issetif thereisa
hit in the secondary cache, and cleared if thereisamiss. The CH bit can also be modified
by aMTCO instruction.

(12) Serial Operation of CACHE Instructions

All CACHE instruction variations are performed serially. From the aspect of the primary
cache, this means CA CHE instructions can impede the instruction stream. For thisreason,
load/store speculation is not allowed beyond a CACHE instruction until the CACHE
instruction has graduated. All load/store accesses, including writebacks to the external
agent, must be complete before the CACHE instruction can graduate, and any load/store
following a CACHE instruction cannot be issued speculatively until the CACHE
instruction graduates. Uncached operations and instruction fetches are not affected.

(13) Instructions Not Supported
The processors do not support the following CACHE instructions:
<R5000>
» Cache Barrier
* Index Load Data
* Index Store Data
e Hit Set Virtual Variations
<R10000>
e Create DirtyExclusive
* Hit WriteBack

o« Fll (I
e Hit Set Virtual variations
 Flash

e Page Invalidate

Chapter 1 CPU Instruction Set

(14) Op Field Encoding

Table 1-27 presentsthe Op field encoding for the CACHE instruction. Encodingsnot listed

in this table are undefined.

Table 1-27 CACHE Instruction Op Field Encoding

Op Field CACHE Instruction Variation Target Cache
R5000 | R10000

00000 Index Invalidate |
00100 Index Load Tag |
01000 Index Store Tag |
10000 Hit Invalidate |
10100 Fill Cache Barrier 1 (Fill)
11000 Hit Writeback Index Load Data |
11100 - Index Store Data I
00001 Index Writeback Invalidate D
00101 Index Load Tag D
01001 Index Store Tag D
01101 Create Dirty Exclusive - D
10001 Hit Invalidate D
10101 Hit Writeback Invalidate D
11001 Hit Writeback Index Load Data D
11101 - Index Store Data D
00011 Flash Index Writeback Invalidate S
00111 Index Load Tag S
01011 Index Store Tag S
10011 - Hit Invalidate S
10111 Page Invalidate Hit Writeback Invalidate S
11011 - Index Load Data S
11111 - Index Store Data S

17

Chapter 1 CPU Instruction Set

1.4.1 Index Invalidate (1)

Index Invalidate (I) sets ablock in the primary instruction cache to Invalid. VA[13:5]
(R5000) or VA[13:6] (R10000) defines the address and VA[14] (R5000) or VA[Q]
(R10000) defines the way to be invalidated.

Theinvalidationtakes place by writing the primary instruction cache state bit to O (Invalid).
This also sets the instruction cache state parity bit to O.

The LRU bit (R10000) does not change.
Parity check is suppressed.

1.4.2 Index Writeback Invalidate (D)

Index Writeback Invalidate (D) setsablock in the primary datacacheto Invalid. VA[13:5]
defines the address and VA[14] (R5000) or VA[Q] (R10000) defines the way to be
invalidated.

The invalidation takes place by writing the following bits:
» primary data cache state bits are set to 00 (Invalid)
» the SCWay bit is set to 0 (R10000)
e the StateMod bits = 001 (Normal) (R10000)
e the state parity is set to 0 (R10000).

The LRU bit (R10000) does not change.

If the StateM od of the block to be invalidated = 010, (Inconsistent), the block in the
primary data cache must be written back to the secondary cache (R10000).

The address and way in the secondary cache to be written back to are read out of the
primary data cache tag address and secondary way fields and all 32 bytes are written back
(R10000).

Only the datafield of the secondary cache is modified by this instruction since the
processor follows state and data subset rules.

Since the CE bit is not defined in the R5000 and the R10000 processors, thisinstruction no
longer has a CPO ECC register mode.

1.4.3 Index Writeback Invalidate (S) (R10000 only)

18

The Index Writeback Invalidate (S) instruction sets a block in the secondary cacheto
Invalid and writes back any dirty datato the System interface unit. This operation extends
to any blocksin the primary data or instruction caches which are subsets of the secondary
cache block.

The CACHE instruction physical address, PA[Cachesize-2..Blocksize], defines the
address and PA[Q] defines the way to be invalidated.

Chapter 1 CPU Instruction Set

1.4.4 Flash (S) (R5000 only)

The invalidation occurs in the following sequence:

1.

Theprocessor readsthe ST ag, Pl dx, and State bitsfrom the secondary cachetag array.
If State =00 (Invalid) no further activity takesplace. If thereisavalid entry, thenthe
STag isused to interrogate the primary instruction and data caches.

The processor reads each subset block from the primary instruction cache. If ITag =
STag and | State = 1 (Valid) then the block isinvalidated by writing the | State bit to
0 (Invalid) and the | State parity bit to 0.

Read each subset block from the primary data cache. If DTag = STag and DStateis
not equal to 00 (Invalid), then write the DState bits = 00 (Invalid), the StateM od bits
=001 (Normal), the SCWay bit = 0, and the DState parity bit = 0. If theoriginal block
isDState= 11, (Dirty) and StateM od = 010, (Inconsistent), also write thisblock back
to the secondary cache using the DT ag and the SCWay bit from the primary data tag
array.

Set the state of the secondary cache block to 00 (Invalid). Since the secondary cache
is designed so all tag bits must be written at once, the Tag, VA, and ECC hits are also
written. The tag is written with the PA and VA[13:12] (virtual index) of the original
CACHE instruction address. The ECC is generated.

If the secondary cache block’ soriginal State bitswere 11, (Dirty), the block iswritten
back to the system interface unit. If the block’s State was Shared or CleanExclusive
the system interface unit is notified with a Tag Invalidation request that the block has
been deleted.

The MRU bit is set to point away from the block invalidated unless the line was already
invalid.

Flash the entire secondary cache in one operation for tag RAMs which support this
function.

19

Chapter 1 CPU Instruction Set

1.4.5 Index Load Tag (I)

Index Load Tag (1) reads the primary instruction cache tag fields into the CPO TagLo and
TagHi registers. VA[13:5] (R5000) or VA[13:6] (R10000) definesthe addressand VA[14]
(R5000) or VA[OQ] (R10000) defines the way of the tag to be read.

All parity errors caused by Index Load Tag (1) are ignored.
The following mapping defines the operation:

<R5000>
TagL 0[] = Tag parity bit
TagL 0o[5:2] = Predecode bits
TagL o[7:6] = State bits
TaglL 0[31:8] = Tag[35:12]
<R10000>
TagL o[0] = Tag parity bit
TagL o[2] = State parity bit
TagL o[3] = LRU hit
TagL o[6] = State hit
TagL o[31:8] = Tag[35:12]
TagHi[3:0] = Tag[39:36]

All other CPO TagLo and TagHi bitsare set to 0.

20

Chapter 1 CPU Instruction Set

1.4.6 Index Load Tag (D)

Index Load Tag (D) reads the primary data cache tag fieldsinto the CPO TagLo and TagHi
registers. VA[13:5] defines the address and VA[14] (R5000) or VA[Q] (R10000) defines

the way of the tag to be read.

All parity errors caused by Index Load Tag (D) areignored. The following mapping
defines the operation:

<R5000>
TagL 0[] = Tag parity bit
TaglL o[7:6] = State bits
TagL 0[31:8] = Tag[35:12]
<R10000>
TagL o[(] = Tag parity bit
TagL o[1] = SCWay
TagL o[2] = State parity bit
TagL o[3] = LRU hit
TaglL o[7:6] = State bits
TagL o[31:8] = Tag[35:12]
TagHi[3:0] = Tag[39:36]

TagHi[31:29] = StateMod bits
All other CPO TagLo and TagHi bits are set to O.

21

Chapter 1 CPU Instruction Set

1.4.7 Index Load Tag (S)

Index Load Tag (S) reads the secondary cache tag fields into the CPO TagLo and TagHi
registers. The PA[Cachesize..Blocksize] (R5000) or PA[Cachesize-2..Blocksize]
(R10000) defines the address and PA[Q] (R10000) defines the way to be read.

All parity and ECC errors caused by Index Load Tag (D) areignored.
The following mapping defines the operation:
<R5000>

TaglL 0[9:7] = Virtual index bits

TagLo[12:10] = State bits

TagLo[31:13] = Tag[35:17]

<R10000>
TagL 0[6:0] = Tag ECC bits
TaglL o[8:7] = Virtual index bits

TagLo[11:10] = State bits
TagLo[31:14] = Tag[35:18]
TagHi[3:0] = Tag[39:36]
TagHi[31] = MRU Bit
All other CPO TagLo and TagHi register bits are set to O.

22

Chapter 1 CPU Instruction Set

1.4.8 Index StoreTag (l)

Index Store Tag (1) storesthe CPO TagLo and TagHi registersinto the primary instruction
cachetag array. VA[13:5] (R5000) or VA[13:6] (R10000) definesthe address and VA[14]
(R5000) or VA[Q] (R10000) defines the way of the tag to be written.

The following mapping defines the operation:
<R5000>
Tag parity bit = TagL 0[0]
Predecode bits = TagL 0[5:2]

State bits =TaglL 0[7:6]
Tag[35:12] = TagLo[31:8]
<R10000>

Tag parity bit = TagLo[0]
State parity bit = TaglL o[2]

LRU bit = TagL o[3]
State bit = TagL o[6]
Tag[35:12] = TagLo[31:8]
Tag[39:36] = TagHi[3:0]

All the Tag fields, including parity, are directly written.

Parity check is suppressed for all Index Store Tags.

23

Chapter 1 CPU Instruction Set

1.4.9 Index Store Tag (D)

24

Index Store Tag (D) stores the CPO TagLo and TagHi registersinto the primary data cache
tag array. VA[13:5] defines the address and VA[14] (R5000) or VA[Q] (R10000) defines
the way of the tag to be written.

The following mapping defines the operation:

<R5000>
Tag parity bit = TagL 0[0]
State bits =TagL [7:6]
Tag[35:12] = TaglL 0[31:8]
<R10000>
Tag parity bit = TagLo[0]
SCWay = TagLo[1]
State parity bit = TagL o[2]
LRU bit = TagL o[3]
State bits =TagL 0[7:6]
Tag[35:12] = TagL 0[31:8]
Tag[39:36] = TagHi[3:0]

StateMod bits = TagHi[31:29]
All Tag fields, including parity, are directly written.
Parity check is suppressed for all Index Store Tags.

Chapter 1 CPU Instruction Set

1.4.10 Index Store Tag (S)

Index Store Tag (S) stores fields from the CPO TagLo and TagHi registersinto the
secondary cache tag and MRU array fields. The PA[Cachesize..Blocksize] (R5000) or
PA[Cachesize-2..Blocksize] (R10000) defines the address and PA[0] (R10000) defines
the way to be read.

The following mapping defines the operation:

<R5000>
Virtual index bits = TagL 0[9:7]
Status bits =TaglL 0[12:10]
Tag[35:17] = TaglL o[31:13]
<R10000>
Tag ECC bits = TagL 0[6:0]
Virtual index bits = TagL 0[8:7]
Status bits = TagL 0[11:10]
Tag[35:18] = TagL 0[31:14]
Tag[39:36] = TagHi[3:0]
MRU bit = TagHi[31]

All Tag fields, including ECC, are directly written.
Parity check is suppressed for all Index Store Tags.

1.4.11 Create Dirty Exclusive (D) (R5000 only)

1.4.12 Hit Invalidate (1)

This operation is used to avoid loading data needlessly from secondary cache or memory
when writing new contents into an entire cache block.

If the cache block does not contain the specified address, and theblock isdirty, writeit back
to the secondary cache (if present) and to memory.

In all cases, set the cache block tag to the specified physical address, set the cache state to
Dirty Exclusive.

Hit Invalidate (1) invalidates an entry in the instruction cache which matches the PA of the
CACHE instruction. Both way tags at VA[13:5] (R5000) or VA[13:6] (R10000) are read
from the instruction cache.

If the PStateis 1 (Valid), and the PA of the CACHE instruction matches the Tag from the
instruction cache tag array, the PState bit of the entry iswritten to O (Invalid) and the
PState parity bit iswritten to 0 (R10000).

The LRU bit (R10000) does not change.
Parity error is checked.
Hit CacheOps can cause cache error exceptionsif they check ECC or parity bits.

25

Chapter 1 CPU Instruction Set

1.4.13 Hit Invalidate (D)

26

Hit Invalidate (D) invalidates an entry in the data cache which matches the PA of the
CACHE instruction. Both waystags at VA[13:5] are read from the data cache.

If the PStateisnot equal to 00 (Invalid) and the PA of the CACHE instruction matchesthe
DTag from the data cache tag array, then the PState bits are written to 00 (Invalid), the
SCWay bit = 0 (R10000), the StateM od bits = 001, (Normal) (R10000), and the PState
parity = 0 (R10000).

The LRU bit (R10000) is left unchanged.
Parity check is enabled.
Hit CacheOps can cause cache error exceptionsif they check ECC or parity bits.

Chapter 1 CPU Instruction Set

1.4.14 Hit Invalidate (S) (R10000 only)

Hit Invalidate (S) invalidates all entriesin the secondary, primary instruction, and primary
data caches which match the PA of the CACHE instruction. The following sequence takes
place:

1. The processor reads the Tags from both ways of the secondary cache at the address
pointed to by the PA of the CACHE instruction. If the tag entry’s STag matches the
CACHE instruction PA, and the State of the entry is not equal to 00 (Invalid), then a
Hit has occurred in that entry. If thereisno Hit, the CACHE instruction completes.

2. Theprocessor checkseach entry inthe primary cachesto determinewhich corresponds
to the CACHE instruction PA and the Pldx read from the secondary cache tag array.
Any entry which matchesisinvalidated. No write back isrequired by Hit Invalidate
(S).

3. The processor setsthe tag array entry of the secondary cache block which was hit to
State= 00 (Invalid), Tag = PA of CACHE instruction, and Pldx = VA[13:12] of
CACHE instruction.

ECC is generated.
The MRU bit iswritten to point to the way opposite to that being invalidated.

If the processor Eliminate Request mode bit, PrcEImReq, isset, aprocessor eliminate
request is sent to notify the external agent that ablock in the secondary cache has been
invalidated.

Hit Invalidate (S) setsthe CH bit if it hitsin the secondary cache.

Once the CH hit is set it stays set until cleared by a MTCO instruction, or the next
CacheOp that can change the CH bit.

Hit CacheOps can cause cache error exceptionsif they check ECC or parity bits.

1.4.15 Fill (1) (R5000 only)

Fill the primary instruction cache block from secondary cache or memory.

1.4.16 CacheBarrier (R10000 only)

Cache Barrier does not change any cache fields. It is used when serialization of a CACHE
instruction is needed without unwanted side effects. For more information, seethe section
titled Serial Operation of CACHE Instructions, in this chapter.

27

Chapter 1 CPU Instruction Set

1.4.17 Hit Writeback Invalidate (D)

Hit Writeback Invalidate (D) invalidates an entry in the primary data cache which matches
the PA of the CACHE instruction. In addition, it writes back to the secondary cache any
DirtyExclusive or Inconsistent data found in the primary data cache. Both way DTags at
VA[13:5] are read from the data cache.

If the PState is not equal to 00 (Invalid) and PA of the CACHE instruction matches the
DTag, then the PState bits of the entry are set to 00 (Invalid), the SCWay is set to O, the
PState parity is set to 0 (R10000), and the StateM od bits are set to 001, (Normal)
(R10000).

The LRU bit (R10000) is left unchanged.

If the state of the block to be invalidated was found to be StateM od = 010, (Inconsistent),
the block in the primary data cache must be written back to the secondary cache. The
address and way in the secondary cache to be written back to are read out of the primary
data cache Tag Address and secondary way fields, and all 32 bytes are written back
(R10000).

Only the datafield of the secondary cache is modified by this instruction since the
processor obeys State and data subset rules.

Since the CE bit is not defined in the R5000 and the R10000 processors, thisinstruction no
longer has an ECC register mode.

Hit CacheOps can cause cache error exceptionsif they check ECC or parity bits.

1.4.18 Hit Writeback Invalidate (S) (R10000 only)

28

Hit Writeback Invalidate (S) checksfor ablock which matchesthe CACHE instruction PA
inthe secondary cache, invalidatesit, and writes back any dirty datato the System interface
unit. This operation extends to any blocksin the primary data or instruction caches which
are subsets of the secondary cache block. The operation takes place in the following
sequence:

1. The processor reads the STag, Pldx, and State bits from both ways of the secondary
tag array.

2. |If the PA of the CACHE instruction matches the ST ag, and the State does not equal
00 (Invalid), a hit has occurred. If thereisahit, the STag is used to interrogate the
primary caches. If thereis not ahit, the instruction ends.

3. Theprocessor reads each subset block from the primary instruction cache. If thereisa
match then invalidate the block by writing the | State bit to O (Invalid) and the | State
parity bit to 0.

4. Read each subset block from the primary data cache. If there is a match then write the
DState bits= 00 (Invalid), the StateM od bits= 001 (Normal), the SCWay bit =0, and
the DState parity bit = 0. If the original State of any subset block is StateM od = 010,
(Inconsistent), also write it back to the secondary cache using the DTag and the
secondary way bit from the primary datatag array.

Chapter 1 CPU Instruction Set

5. Writethe State of the secondary cacheblock =00 (Invalid). Sincethe secondary cache
is designed so all tag bits must be written at once, the STag, Pldx, and ECC hits are
also written. The STag iswritten with whatever the PA and VA[13:12] of the origina
CACHE instruction were. The Tag ECC is generated.

6. If the secondary block’s original State bits were 11, (Dirty) then the block iswritten
back to the system interface unit. If the block’s State was Shared or CleanExclusive
the system interface unit issimply notified that the block has been deleted with a“ Tag
Invalidation” request.

7. TheMRU hit is set to point away from the block invalidated.

Hit WriteBack Invalidate (S) set the CH bit if it hitsin the secondary cache. Once the CH
bit is set it stays set until cleared by aMTCO Instruction.

Hit CacheOps can cause cache error exceptionsif they check ECC or parity hits.

1.4.19 Page Invalidate (S) (R5000 only)

The processor will generate apage invalidate by doing aburst of 128 lineinvalidatesto the
secondary cache at the page specified by the effective address generated by the CACHE
instruction, which must be page aligned. Interrupts are deferred during page invalidates.

1.4.20 Hit Writeback (1) (R5000 only)

If the cache block contains the specified address, datais written back unconditionally.

1.4.21 Hit Writeback (D) (R5000 only)

If the cache block contains the specified address, and its state is Dirty, write back the data
and clear the state to not Dirty.

1.4.22 Index Load Data (I) (R10000 only)

Index Load Data (1) loads a single instruction from the primary instruction cache into the
CPO TagHi, TagLo, and ECC registers. A predecoded instruction in R10000 is 36 bits of
data and one bit of parity. The address of the target instructionis VA[13:2] of the CACHE
instruction. The way of the target instruction is VA[0] of the CACHE instruction. The
instruction itself isloaded into CPO TagHi[3:0] and TagLo[31:0]. The parity bit isloaded
into CPO ECC[Q]. Thetag field is not read.

Parity checking is suppressed during operation of Index Load Data (1).

1.4.23 Index Load Data (D) (R10000 only)

Index Load Data (D) loads a singleword of data and the corresponding four bits of byte
parity into CPO TagLo and ECC. The address of the target singleword is VA[13:2] of the
CACHE ingtruction. Theway of thetarget singleword isVA[0] of the CACHE instruction.
The singleword of datawill be loaded into the CPO TagLo register. The byte parity will be
loaded into CPO ECC[3:0] register. Thetag field is not read.

Parity checking is suppressed during operation of Index Load Data (D).

29

Chapter 1 CPU Instruction Set

1.4.24 Index Load Data (S) (R10000 only)

Index Load Data (S) loads adoubleword of dataand all 10 check bits into the CPO TagHi,
TagLo, and ECC registers. The address of the target doublewords comes from the PA of
the CACHE instruction. The way comes from PA[0] of the CACHE instruction. The high
word will be loaded into CPO TagHi and the low word of datawill be loaded into CPO
TagLo. The check bits will be loaded into CPO ECC[9:0]. The MRU field is unmodified.

ECC correction and checking is suppressed during Index Load Data (S).

1.4.25 Index Store Data (1) (R10000 only)

Index Store Data (1) stores a single instruction into the primary instruction cache. The
address where thisinstruction will be written comes from VA[13:2] of the CACHE
instruction. The way where the datawill be written comes from VA[0] of the CACHE
instruction. Theinstructionitself comesfrom CPO TagHi[3:0] and TagLo[31:0]. The parity
bit is also stored. This comes from CPO ECC[0]. The data to be stored bypasses the
predecode and iswritten directly into the instruction cache. Thetag field is unmodified.

1.4.26 Index Store Data (D) (R10000 only)

Index Store Data (D) stores aword of data and its byte parity into the data cache from the
CPO TagLo and ECC registers. The address where this word will be written is defined by
VA[13:2] of the CACHE instruction. The way is defined by VA[Q]. The dataword comes
from CPO TagLo. The parity bits come from CPO ECC[3:0]. The data cache tag array
including the LRU bit isleft unchanged.

1.4.27 Index Store Data (S) (R10000 only)

30

Index Store Data (S) stores a quadword of dataand 10 check hits into the secondary cache
data array. It stores a doubleword of data from CPO TagHi and TagLo and pads the
remaining doubleword with zeroes. Thisallowsthe ECC and parity, which are based on the
quadword, to be valid for the doubleword of data stored. The address of the quadword
stored is defined by the PA of the CACHE instruction, and the way is defined by PA[0].
The data stored in the non-padded doubleword comes from CPO TagHi and TagLo. The
check bits are stored from ECC[9:0]. The tag array including the MRU bit is | eft
unchanged.

Chapter 1 CPU Instruction Set

1.5 Defining Access Types

Access type indicates the size of the R5000 and the R10000 processors data item to be

loaded or stored, set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address given specifies the
low-order byte in the addressed field. For a big-endian configuration, the low-order byteis
the most-significant byte; for alittle-endian configuration, the low-order byte is the | east-

significant byte.

The access type, together with the three low-order bits of the address, define the bytes

accessed within the addressed doubleword (shown in Table 1-28). Only the combinations
shown in Table 1-28 are permissible; other combinations cause address error exceptions.

Table 1-28 Byte Access within a Doubleword

A T Low Order Bytes Accessed
ccess Type - - - -
Mnemor)wliF:: A%d:&s Big endian Little endian
its
(Value) (63 31 0) | (63 31 0)
211]0 Byte Byte
Doubleword(7) [0 [0 | O 112|345 77 5(4(3|2|1|0
Septibyte (6) 0o(0|o0 112(3|4]|5 5(4(3|2|1|0
ibyte
Y 0|01 112|3|4|5|6|7|7|6|5|4|3|2]|1
. 0|0|0|0|1|2(3[|4]|5 5(4(3|2|1|0
Sextibyte (5)
o(1]|o0 2(3|4|5|6|7|7|6|5|4]|3]|2
. 0{0|0|0|1]|2]|3|4 413[2[1]|0
Quintibyte (4)
0O[1(1 3/4|5(6|7|7|6|5[4|3
o|jojojof1|2|3 32|10
Word (3)
1({0|0 4|5|6|7[7|6|5|4
0j0j0]|O 2 0
Triplebyte 2 0|01 213 3
ri e
pleby 1/0/|0 4(5|6 6 4
1(0(1 5/6|7|7]|6
0j|0j0|0|1 1(0
0|10 213 3|2
Halfword (1)
1({0|0 415 5|4
1(1|0 67|76
o|0j0]|O 0
0({0]|1 1 1
0|10 2 2
Byte (0) 0O|1(1 3 3
e
y 1/0/|0 4 4
1(0(1 5 5
1(1|0 6 6
1(1|1 7\7

31

Chapter 1 CPU Instruction Set

1.6 Memory Access Types

32

(1) Uncached

(2) Cached Noncoherent

(3) Cached Coherent

(4) Cached

MIPS systems provide afew memory access types that are characteristic waysto use
physical memory and caches to perform a memory access. The memory accesstypeis
specified as a cache coherence algorithm (CCA) in the TLB entry for a mapped virtual
page. The accesstype used for alocation is associated with the virtual address, not the
physical address or the instruction making the reference. Implementations without
multiprocessor (MP) support provide uncached and cached accesses. |mplementations
with MP support provide uncached, cached noncoherent and cached coherent accesses.
The memory access types use the memory hierarchy as follows:

Physical memory is used to resolve the access. Each reference causes aread or writeto
physical memory. Caches are neither examined nor modified.

Physical memory and the caches of the processor performing the access are used to resolve
the access. Other caches are neither examined nor modified.

Physical memory and al caches in the system containing a coherent copy of the physical
location are used to resolve the access. A copy of alocation is coherent (noncoherent) if
the copy was placed in the cache by a cached coherent (cached noncoherent) access.
Caches containing a coherent copy of the location are examined and/or modified to keep
the contents of the location coherent. It is unpredictable whether caches holding a
noncoherent copy of the location are examined and/or modified during a cached coherent
access.

For early 32-bit processors without MP support, cached is equivalent to cached
noncoherent. If an instruction description mentions the cached noncoherent access type,
the comment applies equally to the cached access type in a processor that has the cached
access type.

For processors with MP support, cached is a collective term, e.g. “ cached memory” or
“cached access’, that includes both cached noncoherent and cached coherent. Such a
collective use does not imply that cached is an access type, it means that the statement
applies equally to cached noncoherent and cached coherent access types.

Chapter 1 CPU Instruction Set

1.6.1 Mixing Referenceswith Different Access Types

It is possible to have more than one virtual location simultaneously mapped to the same
physical location. The memory accesstype used for the virtual mappings may be different,
but it isnot generally possible to use mappings with different access types at the sametime.

A processor executing load and store instructions must observe the effect of the load and
storeinstructionsto aphysical location in the order that they occur in theinstruction stream
(i.e. program order) for all accessesto virtual |ocations with the same memory accesstype.

If a processor executes aload or store using one access type to a physical location, the
behavior of asubsequent load or storeto the samelocation using adifferent memory access
type is undefined unless a privileged instruction sequence is executed between the two
accesses. Each implementation has a privileged implementation-specific mechanism that
must be used to change the access type being used to access a location.

The memory access type of alocation affects the behavior of I-fetch, load, store, and
prefetch operations to the location. In addition, memory access types affect some
instruction descriptions. Load linked (LL, LLD) and store conditional (SC, SCD) have
defined operation only for locations with cached memory accesstype. SYNC affectsonly
load and stores made to |ocations with uncached or cached coherent memory access types.

1.6.2 Cache Coherence Algorithms and Access Types

The memory access types are specified by implementation-specific cache coherence
algorithms (CCASs) in TLB entries. Slightly different cache coherence algorithms such as
“cached coherent, update on write” and “cached coherent, exclusive on write” can map to
the same memory access type, in this case they both map to cached coherent. In order to
map to the same access type the fundamental mechanism of both CCAs must be the same.
When it affects the operation of the instruction, the instructions are described in terms of
the memory accesstypes. Theload and store operationsin aprocessor proceeds according
to the specific CCA of the reference, however, and the pseudocode for load and store
common functionsin 1.8.3 (2) L oad and Store M emory Functions use the CCA value
rather than the corresponding memory access type.

1.6.3 Implementation-Specific Access Types

An implementation may provide memory access types other than uncached, cached
noncoherent, or cached coherent. Implementation-specific documentation will define the
properties of the new access types and their effect on all memory-related operations.

33

Chapter 1 CPU Instruction Set

1.7 Description of an Instruction

The CPU instructions are described in a phabetic order. Each description contains several
sections that contain specific information about the instruction. The content of the section
isdescribed in detail below. An example description is shown in Figure 1-1.

Instruction mnemonic
and descriptive name “~_|

[
constant and variable -\

field names and values N 31 26 25 21 20 16 15 1110 E 5 0
Architecture level at SPECIAL s t it 0 EXAMPLE
which instruction was oooooo popoo | oooooao
defined/redefined and 3 g g 5 5 B
assembler format(s)
for each definition \

Format: EXAMPLE rdrsnt MIPS |

Short description —} > Pupose:

Symbolic description -//
This section describes the operation of the instruction in text, tables, and pictures. It will
Full description of /

Ta do an exampleop on 32-bit integers,

Descripfion: rd « rs exampleop rt

include information about the instruction that is hard to encode in the Operation section sa
they must be used together to completely understand the instruction,

| » Reshictions:

. Thiz section lists any restrictions for the instruction. Things which maybe restricted
Restrictions on . . . ot . iy
. . include the values of instruction encading filelds such az register specifiers, operand values,
instruction and : , ‘ .
operand formats, address alignment, instruction scheduling hazards, and type of memory
operands

access for addressed locations.

instruction operation

High-level language Operction:
description of —

. N . * i i i i i i i igh-|
instruction operation * This section describes the operation of the instruction in & high-level language.

* Itis precise in ways that the Jescription section is not, but it is also missing
* information that is hard to express in pseudocode */

temp «GPR[rs] exampleop GPR[r]

Exceptions that GPR[rd] «—sign_extend(tempay o)

instruction can cause ———»Excepiions:

Alist of the exceptions taken by the instruction, such as

Integer Cverflow

Notes for programmers «—}—>frogramming Notes:

This contains information useful for programmers, but not necessary ta describe the
operation of the instruction,

Notes for implementors——}—Implementction Notes:

Like Programming Notes, except for processor implementors,

Figure 1-1 Example Instruction Description

1.7.1 Instruction Mnemonic and Name

The instruction mnemonic and name are printed as page headings for each page in the
instruction description.

Chapter 1 CPU Instruction Set

1.7.2 Instruction Encoding Picture

1.7.3 Format

1.7.4 Purpose

1.7.5 Description

Theinstruction word encoding is shown in pictoria form at the top of the instruction
description. This picture shows the values of all constant fields and the opcode hames for
opcodefieldsin upper-case. It labelsall variablefieldswith lower-case namesthat are used
intheinstruction description. Fieldsthat contain zeroes but are not named are unused fields
that are required to be zero. A summary of the instruction formats and a definition of the
terms used to describe the contents can be found in 1.10 CPU Instruction Formats.

Theassembler formatsfor theinstruction and the architecture level at which theinstruction
was originally defined are shown. If the instruction definition was later extended, the
architecture levels at which it was extended and the assembler formats for the extended
definition are shown in order of extension. The MIPS architecture levels are inclusive;
higher architecture levelsinclude all instructionsin previous levels. Extensionsto
instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

The assembler format is shown with literal parts of the assembler instruction in upper-case
characters. The variable parts, the operands, are shown as the lower-case names of the
appropriate fieldsin the instruction encoding picture. The architecture level at which the
instruction wasfirst defined, e.g. “MIPS1”, is shown at the right side of the page.

There can be more than one assembler format per architecturelevel. Thisissometimesan
alternate form of the instruction. Floating-point operations on formatted data show an
assembly format with the actual assembler mnemonic for each valid value of the “fmt”
field. For examplethe ADD.fmt instruction shows ADD.Sand ADD.D.

The assembler format lines sometimes have comments to the right in parentheses to help
explain variations in the formats. The comments are not a part of the assembler format.

Thisisavery short statement of the purpose of the instruction.

If aone-line symbolic description of the instruction isfeasible, it will appear immediately
to the right of the Description heading. The main purpose isto show how fieldsin the
instruction are used in the arithmetic or logical operation.

The body of the section is a description of the operation of the instruction in text, tables,
and figures. This description complements the high-level language description in the
Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU General Purpose
Register specified by the instruction field rt. “FPR fs” isthe Floating Point Operand
Register specified by theinstruction field fs. “CP1 register fd” isthe coprocessor 1 General
Register specified by theinstruction field fd. “FCSR” is the floating-point control and
status register.

35

Chapter 1 CPU Instruction Set

1.7.6 Restrictions

1.7.7 Operation

1.7.8 Exceptions

36

This section documentsthe restrictions on theinstruction. Most restrictionsfall into one of
Six categories:

» Thevalid values for instruction fields (see floating-point ADD.fmt).
* The alignment requirements for memory addresses (see LW).

» The valid values of operands (see DADD).

e Thevalid operand formats (see floating-point ADD.fmt).

e The order of instructions necessary to guarantee correct execution. These
ordering constraints avoid pipeline hazards for which some processors do not
have hardware interlocks (see MUL).

e Thevalid memory access types (see LL/SC).

This section describes the operation of the instruction as pseudocode in a high-level
language notation resembling Pascal. The purpose of this section is to describe the
operation of the instruction clearly in aform with less ambiguity than prose. Thisformal
description complements the Description section; it is not completein itself because many
of therestrictions are either difficult to include in the pseudocode or omitted for readability.

There will be separate Operation sections for 32-bit and 64-bit processors if the operation
isdifferent. Thisisusually necessary because the path to memory is adifferent size on
these processors.

See 1.8 Operation Section Notation and Functions for more information on the formal
notation.

This section liststhe exceptionsthat can be caused by oper ation of theinstruction. 1t omits
exceptionsthat can be caused by instruction fetch, e.g. TLB Refill. It omits exceptionsthat
can be caused by asynchronous external events, e.g. Interrupt. Although the Bus Error
exception may be caused by the operation of aload or storeinstruction this section does not
list BusError for load and storeinstructions because the rel ationship between | oad and store
instructions and external error indications, like Bus Error, are implementation dependent.

Reserved Instruction is listed for every instruction not in MIPS | because the instruction
will causethisexception onaMIPS | processor. To executeaMIPSII, MIPSIII, or MIPS
IV instruction, the processor must both support the architecture level and have it enabled.
The mechanism to do this isimplementation specific.

The mechanism used to signal afloating-point unit (FPU) exception isimplementation
specific. Some implementations use the exception named “Floating Point”. Others use
externa interrupts (the Interrupt exception). This section lists Floating Point to represent
all such mechanisms. The specific FPU traps possible are listed, indented, under the
Floating Point entry.

An instruction may cause implementation-dependent exceptionsthat are not present in the
Exceptions section.

Chapter 1 CPU Instruction Set

1.7.9 Programming Notes, | mplementation Notes

These sections contain material that is useful for programmers and implementors
respectively but that is not necessary to describe the instruction and does not belong in the
description sections.

1.8 Operation Section Notation and Functions

In an instruction description, the Operation section describes the operation performed by
each instruction using a high-level language notation. The contents of the Operation
section are described here. The special symbols and functions used are documented here.

1.8.1 Pseudocode L anguage

Each of the high-level language statementsis executed in sequential order (as modified by
conditional and loop constructs).

1.8.2 Pseudocode Symbols
Specia symbols used in the notation are described in Table 1-29.

37

Chapter 1 CPU Instruction Set

38

Table 1-29 Symbolsin Instruction Operation Statements

Symbol Meaning
- Assignment.
= £ Tests for equality and inequality.
[Bit string concatenation.
xY A y-bit string formed by y copies of the single-bit value x.
X Selection pf bitsy through zof bit s_trin_g X. Little-endian bit notati on (rightmost bitis0)is
y.Z used. If yislessthan z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating-point arithmetic: addition, subtraction.
* X 2's complement or floating-point multiplication (both used for either).
div 2's complement integer division.
mod 2's complement modulo.
/ Floating-point division.
< 2's complement |ess than comparison.
nor Bit-wise logical NOR.
Xor Bit-wise logical XOR.
and Bit-wise logical AND.
or Bit-wise logical OR.
GPRLEN | Thelengthin bits (32 or 64), of the CPU General Purpose Registers.
GPR[X] CPU General Purpose Register x. The content of GPR[0] is always zero.
FPR[X] Floating-Point operand register x.
FCClcc] Floating-Point condition code cc. FCC[0] has the same value as COC[1].
FGRI[X] Floating-Point (Coprocessor unitl), general register x.
CPR[zX] Coprocessor unit z, general register x.
CCR[z,X] | Coprocessor unit z, control register x.
COC[Z] Coprocessor unit z condition signal.
Endian mode as configured at chip reset (0 ALittle, 1 £ Big). Specifies the endianness of
BigEndianMem | the memory interface (see LoadMemory and StoreMemory), and the endianness of Kernel

and Supervisor mode execution.

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is availablein
User mode only, and is effected by setting the RE bit of the Status register. Thus,
ReverseEndian may be computed as (SRrg and User mode).

BigEndianCPU

The endianness for load and store instructions (0 4 Little, 1 £ Big). In User mode, this
endianness may be switched by setting the RE bit in the Status Register. Thus,
BigEndianCPU may be computed as (BigEndianMem XOR ReverseEndian).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-
modify-write. Itisset when alinked load occurs. It istested and cleared by the conditional
store. Itiscleared, during other CPU operation, when a store to the location would no
longer be atomic. In particular, it is cleared by exception return instructions.

Chapter 1 CPU Instruction Set

Table 1-29 (cont.) Symbolsin Instruction Operation Satements

Symbol

Meaning

I+n:,
I-n:

This occurs as a prefix to operation description lines and functionsasalabel. It indicates
the instruction time during which the effects of the pseudocode lines appears to occur (i.e.
when the pseudocode is “executed”). Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label
isequivalent to atime label of “I:”. Sometimes effects of an instruction appear to occur
either earlier or later — during the instruction time of another instruction. When that
happens, the instruction operation is written in sections labelled with the instruction time,
relativeto the current instruction |, in which the effect of that pseudocode appearsto occur.
For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction will have the portion of the instruction operation
description that writes the result register in a section labelled “1+1:”.

The effect of pseudocode statements for the current instruction labelled “1+1:” appears to
occur “at the sametime” as the effect of pseudocode statements labelled “1:” for the
following instruction. Within one pseudocode sequence the effects of the statements takes
placein order. However, between sequences of statements for different instructions that
occur “at the same time”, there is no order defined. Programs must not depend on a
particular order of evaluation between such sections.

The Program Counter value. During theinstruction time of aninstruction thisisthe address
of the instruction word. The address of the instruction that occurs during the next
instruction timeis determined by assigning avalue to PC during an instruction time. |f no
valueisassigned to PC during an instruction time by any pseudocode statement, it is
automatically incremented by 4 before the next instruction time. A taken branch assignsthe
target address to PC during the instruction time of the instruction in the branch delay dlot.

PSIZE

The SIZE, number of bits, of Physical addressin an implementation.

1.8.3 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to
make the pseudocode more readabl e, to abstract implementation specific behavior, or both.
The functions are defined in this section.

(1) Coprocessor General Register Access Functions

Defined coprocessors, except for CPO, have instructions to exchange words and
doublewords between coprocessor general registers and the rest of the system. What a
coprocessor doeswith aword or doubleword supplied to it and how a coprocessor supplies
aword or doubleword is defined by the coprocessor itself. Thisbehavior isabstracted into

functions:

39

Chapter 1 CPU Instruction Set

Table 1-30 Coprocessor General Register Access Functions

COP_LW (z, rt, memword)

z The coprocessor unit number.
rt: Coprocessor general register specifier.
memword: A 32-bit word value supplied to the coprocessor.

Thisisthe action taken by coprocessor zwhen supplied with aword from memory during
aload word operation. The action is coprocessor specific. Thetypical action would be
to store the contents of memword in coprocessor general register rt.

COP_LD (z, rt, memdouble)

Z The coprocessor unit number.
rt: Coprocessor general register specifier.

memdouble: 64-bit doubleword value supplied to the coprocessor.
Thisisthe action taken by coprocessor zwhen supplied with adoubleword from memory
during aload doubleword operation. The action is coprocessor specific. The typical
action would be to store the contents of memdouble in coprocessor general register rt.

dataword - COP_SW (z, rt)

z The coprocessor unit number.
rt: Coprocessor general register specifier.
dataword: 32-bit word value.

This defines the action taken by coprocessor zto supply aword of data during a store
word operation. The action is coprocessor specific. Thetypical action would beto
supply the contents of the low-order word in coprocessor general register rt.

datadouble — COP_SD (z, rt)

z The coprocessor unit number.

rt: Coprocessor general register specifier.

datadouble: 64-bit doubleword value.
This defines the action taken by coprocessor zto supply a doubleword of data during a
store doubleword operation. The action is coprocessor specific. Thetypical action
would be to supply the contents of the doubleword in coprocessor general register rt.

(2) Load and Store Memory Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or
doubleword is the smallest byte address among the bytes forming the object. For big-
endian ordering thisisthe most-significant byte; for alittle-endian ordering thisisthe least-
significant byte.

In the operation description pseudocode for |oad and store operations, the functions shown
below are used to summarize the handling of virtual addresses and accessing physical
memory. The size of the dataitem to be loaded or stored is passed in the AccessLength
field. Thevalid constant names and values are shown in Table 1-31. The byteswithin the
addressed unit of memory (word for 32-bit processors or doubleword for 64-bit processors)
which are used can be determined directly from the AccessL ength and the two or three low-
order bits of the address.

Chapter 1 CPU Instruction Set

(pAddr, CCA) — AddressTrandation (vAddr, lorD, LorS)

pAddr: Physical Address.

CCA: Cache Coherence Algorithm: the method used to access caches
and memory and resolve the reference.

VvAddr: Virtual Address.

lorD: Indicates whether accessisfor INSTRUCTION or DATA.

LorS: Indicates whether accessisfor LOAD or STORE.

Tranglate a virtual addressto a physical address and a cache coherence algorithm
describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference isto Instructions or Data
(lorD), find the corresponding physical address (pAddr) and the cache coherence
algorithm (CCA) used to resolve the reference. |If the virtual addressisin one of the
unmapped address spaces the physical address and CCA are determined directly by the
virtual address. If thevirtual addressisin one of the mapped address spacesthenthe TLB
isused to determine the physical addressand accesstype; if therequired translation isnot
present inthe TLB or the desired accessis not permitted the function fails and an
exception istaken.

MemElem ~ LoadMemory (CCA, AccessLength, pAddr, vAddr, lorD)
MemElem: Dataisreturned in afixed width with anatural alignment. The
width is the same size as the CPU general purpose register, 32
or 64 bits, aligned on a 32 or 64-hit boundary respectively.
CCA: Cache Coherence Algorithm: the method used to access caches
and memory and resolve the reference.
AccessLength: Length, in bytes, of access.

pAddr: Physical Address.
vAddr: Virtual Address.
lorD: Indicates whether access is for Instructions or Data.

Load avalue from memory.

Uses the cache and main memory as specified in the Cache Coherence Algorithm (CCA)
and the sort of access (lorD) to find the contents of AccessLength memory bytes starting
at physical location pAddr. The datais returned in the fixed width naturally-aligned
memory element (MemElem). The low-order two (or three) bits of the address and the
AccessLength indicate which of the bytes within MemElem needs to be given to the
processor. If the memory access type of the reference is uncached then only the
referenced bytes are read from memory and valid within the memory element. If the
accesstypeiscached, and the datais not present in cache, animplementation specific size
and alignment block of memory is read and loaded into the cache to satisfy aload
reference. At aminimum, the block is the entire memory element.

41

Chapter 1 CPU Instruction Set

42

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

CCA: Cache Coherence Algorithm: the method used to access caches
and memory and resolve the reference.

AccessLength: Length, in bytes, of access.

MemElem: Datain the width and alignment of amemory element. The
width isthe same size asthe CPU general purpose register, 4 or
8 bytes, aligned on a4 or 8-byte boundary. For apartial-
memory-element store, only the bytes that will be stored must

bevalid.
pAddr: Physical Address.
vAddr: Virtual Address.

Store avalue to memory.

The specified datais stored into the physical location pAddr using the memory hierarchy
(data caches and main memory) as specified by the Cache Coherence Algorithm (CCA).
The MemElem contains the data for an aligned, fixed-width memory element (word for
32-bit processors, doubleword for 64-bit processors), though only the bytes that will
actually be stored to memory need to bevalid. Thelow-order two (or three) bits of pAddr
and the AccessLength field indicates which of the byteswithin the MemElem data should
actually be stored; only these bytesin memory will be changed.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

CCA: Cache Coherence Algorithm: the method used to access caches
and memory and resolve the reference.
pAddr: physical Address.
VAddr: Virtual Address.
DATA: Indicates that accessisfor DATA.
hint: hint that indicates the possible use of the data.
Prefetch data from memory.

Prefetch is an advisory instruction for which an implementation specific action istaken.
The action taken may increase performance but must not change the meaning of the
program or alter architecturally-visible state.

Chapter 1 CPU Instruction Set

Table 1-31 AccessLength Specifications for Loads/Stores

AccessLength Name | Value Meaning
DOUBLEWORD 7 8 bytes (64 hits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 hits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 hits)
BYTE 0 1 byte (8 hits)

(3) Access Functionsfor Floating-Point Registers

The details of the relationship between CP1 general registers and floating-point operand
registersisencapsulated in the functionsincluded in this section. See 2.7 Valid Operands
for FP Instructions for more information.

This function returns the current logical width, in bits, of the CP1 general registers. All

32-bit processors will return “32”. 64-bit processors will return “32” when in 32-bit-CP1-

register emulation mode and “64” when in native 64-bit mode.

The following pseudocode referring to the Statusgg bit is valid for all existing
MIPS 64-bit processors at the time of this writing, however this is a privileged

processor-specific mechanism and it may be different in some future

processor.

SizeFGR() -- current size, in bits, of the CP1 general registers

size « SizeFGR()
if 32_bit_processor then
size « 32
else
[* 64-bit processor */
if Statusggr = 1 then
size « 64
else
size « 32
endif
endif

43

Chapter 1 CPU Instruction Set

This pseudocode specifies how the unformatted contents|oaded or moved-to CP1 registers
areinterpreted to form aformatted value. If an FPR containsavaluein someformat, rather
than unformatted contents from aload (uninterpreted), it is valid to interpret the valuein
that format, but not to interpret it in a different format.

ValueFPR() -- Get a formatted value from an FPR.
value « ValueFPR (fpr, fmt) /* get a formatted value from an FPR */
if SizeFGR() = 64 then

case fmt of
S, W:
value « FGRIfpr]3; o
D, L:
value — FGR[fpr]
endcase
elseif fprg = 0 then [* fpr is valid (even), 32-bit wide FGRs */
case fmt of
S, W:
value «— FGRJfpr]
D, L:
value « FGR[fpr+1] || FGR[fpr]
endcase
else /* undefined for odd 32-bit FGRs */
UndefinedResult

endif

Chapter 1 CPU Instruction Set

This pseudocode specifiesthe way that a binary encoding representing aformatted valueis
stored into CP1 registers by acomputational or move operation. Thisbinary representation
isvisibleto storeor move-frominstructions. Oncean FPR containsavaluevia StoreFPR(),
itisnot valid to interpret the value with ValueFPR() in a different format.

StoreFPR() -- store a formatted value into an FPR.

StoreFPR(fpr, fmt, value): /* place a formatted value into an FPR */
if SizeFGR() = 64 then /* 64-bit wide FGRs */
case fmt of
S, W:
FGRI[fpr] < undefined®? || value
D, L:
FGR[fpr] « value
endcase
elseif fprg = 0 then [* fpr is valid (even), 32-bit wide FGRs */
case fmt of
S, W:

FGR[fpr+1] « undefined3?
FGR[fpr] « value

D, L:
FGR[fpr+1] « valuegs 32
FGR[fpr] «— Value31‘_0

(4) Miscellaneous Functions

endcase
else /* undefined for odd 32-bit FGRs */
UndefinedResult
endif
SyncOperation(stype)
stype: Type of load/store ordering to perform.

order loads and stores to synchronize shared memory.
Perform the action necessary to make the effects of groups synchronizable loads and
stores indicated by stype occur in the same order for all processors.

Signal Exception(Exception)
Exception The exception condition that exists.
Signal an exception condition.
Thiswill result in an exception that aborts the instruction. The instruction operation
pseudocode will never see areturn from this function call.

UndefinedResult()

This function indicates that the result of the operation is undefined.

45

Chapter 1 CPU Instruction Set

NullifyCurrentlnstruction()

Nullify the current instruction.

This occurs during the instruction time for some instruction and that instruction is not
executed further. Thisappearsfor branch-likely instructions during the execution of the
instruction in the delay slot and it killsthe instruction in the delay slot.

CoprocessorOperation (z, cop_fun)

z Coprocessor unit number

cop_fun Coprocessor function from function field of instruction
Perform the specified Coprocessor operation.

1.9 Individual CPU Instruction Descriptions

46

The user-mode CPU instructions are described in a phabetic order. See 1.7 Description of
an Instruction for adescription of the information in each instruction description.

Chapter 1 CPU Instruction Set

Add Word ADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADD
000000 00000 100000

6 5 5 5 5 6
Format: ADD rd, rs, rt MIPS |
Purpose: To add 32-bit integers. If overflow occurs, then trap.

Description: rd « rs+rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit
result. If the addition resultsin 32-bit 2's complement arithmetic overflow then the destination
register is not modified and an Integer Overflow exception occurs. If it does not overflow, the
32-hit result is placed into GPR rd.

Restrictions:

On 64-hit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.
Operation:
if (NotWordValue(GPR]rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
temp — GPR][rs] + GPR]rt]
if (32_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
GPRJ[rd] —sign_extend(tempsq o)
endif
Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but, does not trap on overflow.

47

Chapter 1 CPU Instruction Set

ADD' Add Immediate Word
31 26 25 21 20 16 15 0
ADDI rs rt immediate
001000
6 5 5 16
Format: ADDI tt, rs, immediate MIPS |
Purpose: To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: rt « rs + immediate

The 16-bit signed immediate is added to the 32-bit valuein GPR rsto produce a 32-bit resullt.
If the addition resultsin 32-bit 2’ s complement arithmetic overflow then the destination register
is not modified and an Integer Overflow exception occurs. If it does not overflow, the 32-bit
result is placed into GPR rt.

Restrictions:
On 64-hit processors, if GPR rs does not contain a sign-extended 32-bit value
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rs])) then UndefinedResult() endif
temp ~ GPR]rs] + sign_extend(immediate)
if (32_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
GPRJrt] ~sign_extend(tempzq o)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but, does not trap on overflow.

Chapter 1 CPU Instruction Set

Add Immediate Unsigned Word ADD'U
31 26 25 21 20 16 15 0
ADDIU rs rt immediate
001001
6 5 5 16
Format: ADDIU rt, rs, immediate MIPS |
Purpose: To add a constant to a 32-bit integer.

Description: rt « rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic
result is placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
On 64-hit processors, if GPR rs does not contain a sign-extended 32-bit value
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rs])) then UndefinedResult() endif
temp ~GPR]rs] + sign_extend(immediate)
GPRJrt] — sign_extend(temps; o)

Exceptions:

None

Programming Notes:

Theterm “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo
arithmetic that does not trap on overflow. It isappropriate for arithmetic which is not signed,
such asaddress arithmetic, or integer arithmetic environmentsthat ignore overflow, suchas“C”
language arithmetic.

49

Chapter 1 CPU Instruction Set

50

ADDU Add Unsigned Word

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADDU
000000 00000 100001
6 5 5 5 5 6
Format: ADDU rd, rs, rt MIPS |

Purpose: To add 32-hit integers.

Description: rd « rs+rt

The 32-bit word valuein GPR rt isadded to the 32-bit valuein GPR rsand the 32-bit arithmetic
result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
On 64-hit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
temp ~GPR][rs] + GPRJrt]
GPRJrd] — sign_extend(tempsq o)

Exceptions:

None

Programming Notes:

Theterm “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo
arithmetic that does not trap on overflow. It isappropriate for arithmetic which is not signed,
such asaddress arithmetic, or integer arithmetic environmentsthat ignore overflow, suchas“C”
language arithmetic.

Chapter 1 CPU Instruction Set

And AND

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 AND
000000 00000 100100
6 5 5 5 5 6
Format: AND rd, rs, rt MIPS |
Purpose: To do abitwise logical AND.

Description: rd « rs AND rt

The contents of GPR rs are combined with the contents of GPR rt in abitwise logical AND
operation. The result is placed into GPR rd.

Restrictions:

None

Operation:
GPRJ[rd] « GPR[rs] and GPRrt]
Exceptions:

None

51

Chapter 1 CPU Instruction Set

AND' And Immediate

31 26 25 21 20 16 15 0
ANDI rs rt immediate
001100
6 5 5 16
Format: ANDI rt, rs, immediate MIPS |
Purpose: To do abitwise logical AND with a constant.

Description: rt « rs AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin
abitwise logical AND operation. Theresult is placed into GPR rt.

Restrictions:

None

Operation:
GPR]rt] ~ zero_extend(immediate) and GPR]rs]
Exceptions:

None

Chapter 1 CPU Instruction Set

Branch on Equal B EQ

31 26 25 21 20 16 15 0
BEQ rs rt offset
000100
6 5 5 16
Format: BEQ rs, rt, offset MIPS |
Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs = rt) then branch

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

None

Operation:

I: tgt_offset — sign_extend(offset || 0%)
condition — (GPR][rs] = GPR]rt])
[+1:if condition then
PC ~ PC +tgt_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

53

Chapter 1 CPU Instruction Set

B EQL Branch on Equal Likely

31 26 25 21 20 16 15 0
BEQL rs rt offset
010100
6 5 5 16
Format: BEQL rs, rt, offset MIPS Il
Purpose: To compare GPRsthen do aPC-relative conditional branch; executethe delay slot

only if the branch is taken.

Description: if (rs = rt) then branch_likely

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsand GPR rt are equal, branch to the target address after the instruction
inthe delay slot is executed. If the branch is not taken, the instruction in the delay slot is not
executed.

Restrictions:

None

Operation:
I tgt_offset — sign_extend(offset || 0?9
condition — (GPR][rs] = GPR]rt])
[+1:if condition then
PC ~ PC +tgt_offset
else
NullifyCurrentinstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 1 CPU Instruction Set

Branch on Greater Than or Equal to Zero BGEZ
31 26 25 21 20 16 15 0
REGIMM rs BGEZ offset
000001 00001
6 5 5 16
Format: BGEZ rs, offset MIPS |
Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs = 0) then branch

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective
target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I tgt_offset — sign_extend(offset || 0?)
condition — GPR[rs] = QGPRLEN
[+1:if condition then
PC ~ PC +tgt_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

55

Chapter 1 CPU Instruction Set

56

BGEZAL Branch on Greater Than or Equal to Zero and Link
31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
6 5 5 16
Format: BGEZAL rs, offset MIPS |
Purpose: To test a GPR then do a PC-relative conditiona procedure call.

Description: if (rs = 0) then procedure_call

Place thereturn addresslink in GPR 31. Thereturn link isthe address of the second instruction
following the branch, where execution would continue after a procedure call.

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective
target address after the instruction in the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is undefined.
Thisrestriction permits an exception handler to resume execution by re-executing the branch
when an exception occursin the branch delay slot.

Operation:

I tgt_offset — sign_extend(offset || 0?9
condition — GPR[rs] = QGPRLEN
GPR[31] - PC +8

[+1:if condition then

PC ~ PC +tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump and link (JAL) or jump and link register (JALR) instructions for procedure callsto more
distant addresses.

Chapter 1 CPU Instruction Set

Branch on Greater Than or Equal to Zero and Link Likely BGEZAL L

31 26 25 21 20 16 15 0
REGIMM rs BGEZALL offset
000001 10011
6 5 5 16
Format: BGEZALL rs, offset MIPS I
Purpose: To test aGPR then do a PC-relative conditional procedure call; execute the delay

dot only if the branch is taken.

Description: if (rs = 0) then procedure_call_likely

Place thereturn addresslink in GPR 31. Thereturn link isthe address of the second instruction
following the branch, where execution would continue after a procedure call.

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective
target address after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is undefined.
Thisrestriction permits an exception handler to resume execution by re-executing the branch
when an exception occursin the branch delay slot.

Operation:

I tgt_offset — sign_extend(offset || 0?9
condition — GPR[rs] = QGPRLEN
GPR[31] -« PC+8

[+1:if condition then

PC ~ PC +tgt_offset
else

NullifyCurrentinstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump and link (JAL) or jump and link register (JALR) instructions for procedure callsto more
distant addresses.

57

Chapter 1 CPU Instruction Set

58

BGEZL Branch on Greater Than or Equal to Zero Likely

31 26 25 21 20 16 15 0

REGIMM rs BGEZL offset
000001 00011

6 5 5 16

Format: BGEZL rs, offset MIPS I

Purpose: Totest aGPR then do aPC-relative conditional branch; executethe delay slot only
if the branch is taken.

Description: if (rs = 0) then branch_likely

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective
target address after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:

None

Operation:
I tgt_offset — sign_extend(offset || 0?9
condition — GPR[rs] = QGPRLEN
[+1:if condition then
PC ~ PC +tgt_offset
else
NullifyCurrentinstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 1 CPU Instruction Set

Branch on Greater Than Zero BGTZ
31 26 25 21 20 16 15 0
BGTZ rs 0 offset
000111 00000
6 5 5 16
Format: BGTZ rs, offset MIPS |
Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs > 0) then branch

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the
effective target address after the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I tgt_offset — sign_extend(offset || 0?)
condition — GPR[rs] > QGPRLEN
[+1: if condition then
PC ~ PC +tgt_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

59

Chapter 1 CPU Instruction Set

60

BGTZL Branch on Greater Than Zero Likely

31 26 25 21 20 16 15 0

BGTZL s 0
010111 00000

6 5 5 16

offset

Format: BGTZL rs, offset MIPS I

Purpose: Totest aGPR then do aPC-relative conditional branch; executethe delay slot only
if the branch is taken.

Description: if (rs > 0) then branch_likely

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the
effective target address after the instruction in the delay dlot is executed. |If the branch is not
taken, the instruction in the delay dot is not executed.

Restrictions:

None

Operation:
I tgt_offset — sign_extend(offset || 0?9
condition — GPR[rs] > QGPRLEN
[+1:if condition then
PC ~ PC +tgt_offset
else
NullifyCurrentinstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 1 CPU Instruction Set

Branch on Less Than or Equal to Zero B L EZ
31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
6 5 5 16
Format: BLEZ rs, offset MIPS |
Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs < 0) then branch

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsareless than or equal to zero (sign bitis 1 or value is zero), branch to
the effective target address after the instruction in the delay slot is executed.

Restrictions:
None

Operation:

I tgt_offset — sign_extend(offset || 0?)
condition — GPR[rs] < QGPRLEN
[+1:if condition then
PC ~ PC +tgt_offset

endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

61

Chapter 1 CPU Instruction Set

62

B LEZL Branch on Less Than or Equal to Zero Likely

31 26 25 21 20 16 15 0

BLEZL rs 0 offset
010110 00000

6 5 5 16

Format: BLEZL rs, offset MIPS I

Purpose: Totest aGPR then do aPC-relative conditional branch; executethe delay slot only
if the branch is taken.

Description: if (rs < 0) then branch_likely

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsareless than or equal to zero (sign bitis 1 or value is zero), branch to
the effective target address after the instruction in the delay slot isexecuted. |If the branchisnot
taken, the instruction in the delay dot is not executed.

Restrictions:

None

Operation:
I tgt_offset — sign_extend(offset || 0?9
condition — GPR[rs] < QGPRLEN
[+1:if condition then
PC ~ PC +tgt_offset
else
NullifyCurrentinstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 1 CPU Instruction Set

Branch on Less Than Zero B LTZ
31 26 25 21 20 16 15 0
REGIMM rs BLTZ offset
000001 00000
6 5 5 16
Format: BLTZ rs, offset MIPS |
Purpose: To test a GPR then do a PC-relative conditional branch.

Description: if (rs < 0) then branch

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsare lessthan zero (sign bit is 1), branch to the effective target address
after the instruction in the delay dlot is executed.

Restrictions:

None

Operation:

I tgt_offset — sign_extend(offset || 0?)
condition — GPR][rs] < QGPRLEN
[+1:if condition then
PC ~ PC +tgt_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

63

Chapter 1 CPU Instruction Set

B LTZAL Branch on Less Than Zero And Link

31 26 25 21 20 16 15 0
REGIMM rs BLTZAL offset
000001 10000
6 5 5 16
Format: BLTZAL rs, offset MIPS |
Purpose: To test a GPR then do a PC-relative conditiona procedure call.

Description: if (rs < 0) then procedure_call

Place thereturn addresslink in GPR 31. Thereturn link isthe address of the second instruction
following the branch (not the branch itself), where execution would continue after a procedure
call.

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch, in the branch delay dlot, to form a PC-relative effective target
address.

If the contents of GPR rsare lessthan zero (sign bit is 1), branch to the effective target address
after the instruction in the delay dlot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is undefined.
Thisrestriction permits an exception handler to resume execution by re-executing the branch
when an exception occursin the branch delay slot.

Operation:

I tgt_offset — sign_extend(offset || 0?9
condition — GPR][rs] < QGPRLEN
GPR[31] - PC +8

[+1:if condition then

PC ~ PC +tgt_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump and link (JAL) or jump and link register (JALR) instructions for procedure callsto more
distant addresses.

Chapter 1 CPU Instruction Set

Branch on Less Than Zero And Link Likely B LTZAL L

31 26 25 21 20 16 15 0
REGIMM rs BLTZALL offset
000001 10010
6 5 5 16
Format: BLTZALL rs, offset MIPS I
Purpose: To test aGPR then do a PC-relative conditional procedure call; execute the delay

dot only if the branch is taken.

Description: if (rs < 0) then procedure_call_likely

Place thereturn addresslink in GPR 31. Thereturn link isthe address of the second instruction
following the branch (not the branch itself), where execution would continue after a procedure
call.

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch, in the branch delay slot, to form a PC-relative effective target
address.

If the contents of GPR rsare lessthan zero (sign bit is 1), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in
the delay dot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is undefined.
Thisrestriction permits an exception handler to resume execution by re-executing the branch
when an exception occursin the branch delay slot.

Operation:

I tgt_offset — sign_extend(offset || 0?9
condition — GPR][rs] < QGPRLEN
GPR[31] -« PC+8

[+1:if condition then

PC ~ PC +tgt_offset
else

NullifyCurrentinstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump and link (JAL) or jump and link register (JALR) instructions for procedure callsto more
distant addresses.

Chapter 1 CPU Instruction Set

66

B LTZL Branch on Less Than Zero Likely

31 26 25 21 20 16 15 0

REGIMM rs BLTZL offset
000001 00010

6 5 5 16

Format: BLTZ rs, offset MIPS I

Purpose: Totest aGPR then do aPC-relative conditional branch; executethe delay slot only
if the branch is taken.

Description: if (rs < 0) then branch_likely

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rsare lessthan zero (sign bit is 1), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in
the delay dot is not executed.

Restrictions:

None

Operation:
I tgt_offset — sign_extend(offset || 0?9
condition — GPR][rs] < QGPRLEN
[+1:if condition then
PC ~ PC +tgt_offset
else
NullifyCurrentinstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 1 CPU Instruction Set

Branch on Not Equal B NE
31 26 25 21 20 16 15 0
BNE rs rt offset
000101
6 5 5 16
Format: BNE rs, rt, offset MIPS |
Purpose: To compare GPRs then do a PC-relative conditional branch.

Description: if (rs # rt) then branch

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after
the instruction in the delay slot is executed.

Restrictions:

None

Operation:

I tgt_offset — sign_extend(offset || 0?)
condition — (GPR][rs] # GPR]rt])
[+1:if condition then
PC ~ PC +tgt_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

67

Chapter 1 CPU Instruction Set

B N EL Branch on Not Equal Likely
31 26 25 21 20 16 15 0
BNEL rs rt offset
010101
6 5 5 16
Format: BNEL rs, rt, offset MIPS Il
Purpose: To compare GPRsthen do aPC-relative conditional branch; executethe delay slot

only if the branch is taken.

Description: if (rs # rt) then branch_likely

An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after
theinstructioninthedelay slotisexecuted. If thebranchisnot taken, theinstruction inthedelay
slot is not executed.

Restrictions:

None

Operation:

I tgt_offset — sign_extend(offset || 0?9
condition — (GPR][rs] # GPR]rt])
[+1:if condition then
PC ~ PC +tgt_offset
else
NullifyCurrentinstruction()
endif

Exceptions:
Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 1 CPU Instruction Set

Breakpoint B REAK
31 26 25 65 0
SPECIAL code BREAK
oo00O0O0 001101
6 20 6
Format: BREAK MIPS |

Purpose: To cause a Breakpoint exception.
Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the

exception handler.

The codefield isavailable for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Restrictions:
None
Operation:
SignalException(Breakpoint)
Exceptions:
Breakpoint

69

Chapter 1 CPU Instruction Set

Cache

31 26 25 21 20 16 15
CACHE base op offset
101111 (see Table below)
6 > 5 16
Format: CACHE op, offset(base) MIPS Il
Description:

The 16 bit offset is sign-extended and added to the contents of general register base to form a

CacheOp virtual address (VA). The VA istranslated to a physical address (PA) through the

TLB, and the 5-bit opcode (decoded in Table 1-32) specifies acache operation for that address,
together with the affected cache. Operation of thisinstruction on any combination not listed in
the tables below isundefined. The operation of this instruction on uncached addressesis also

undefined.
Table 1-32 CACHE Instruction Op Field Encoding
Op Field CACHE Instruction Variation Target Cache
R5000 | R10000

00000 Index Invalidate |
00100 Index Load Tag |
01000 Index Store Tag |
10000 Hit Invalidate |
10100 Fill Cache Barrier I (Fill)
11000 Hit Writeback Index Load Data |
11100 - Index Store Data I
00001 Index Writeback Invalidate D
00101 Index Load Tag D
01001 Index Store Tag D
01101 Create Dirty Exclusive - D
10001 Hit Invalidate D
10101 Hit Writeback Invalidate D
11001 Hit Writeback Index Load Data D
11101 - Index Store Data D
00011 Flash Index Writeback Invalidate S
00111 Index Load Tag S
01011 Index Store Tag S
10011 - Hit Invalidate S
10111 Page Invalidate Hit Writeback Invalidate S
11011 - Index Load Data S
11111 - Index Store Data S

70

Chapter 1 CPU Instruction Set

Cache CACH E

Fill, Create Dirty, Hit WriteBack and Hit Set Virtual are not supported in the R5000 and the
R10000 processors.

The R5000 and the R10000 processors add two new CacheOps: Index Load Data (110,) and
Index Sore Data (111,). These changes are also reflected in the CPO TagHi, TagLo and ECC
registers.
Both of the primary instruction and data caches of the R5000 have a block size of 32 bytes (8
datawords).
The primary instruction and data caches of the R10000 have a block size of 16 words and 32
bytes (8 data words), respectively.

NOTE: A 32-bit instruction is predecoded into a 36-bit instruction word before

entering the primary instruction cache. The instruction fetch addresses remain the
same and are not affected by the predecode.

The secondary cache, aunified cache, has ablock size of 32 bytes (R5000) or either 64 or 128
bytes (R10000), configurated during reset.

For a cache of 2CACHESIZE pytes with 2BLOCKSIZE pytes per tag,
VA3 5 (R5000)
VAcacHEsIZE-2..BLock size (R10000)

specifies the block for the primary cache, and
PAcacHEsIZE. BLock size (R5000)
PAcacHEsIZE-2.BLock size (R10000)

specifies the block for the secondary cache.

For the Index CacheOps of the R5000, virtual address bit 14 is used to specify theway, O or 1,
for the CacheOp.

For the Index CacheOps of the R10000, address bit 0 is used to specify theway, 0 or 1, for the
CacheOp. For thisreason, bit 0 is not checked for alignment-type Address Error exception for
the Index CacheOps.

For CacheOps that access datain caches,

VAgLocksize-1..2 (R5000)
VAgLocksize-1..2 (R10000)

specifies aword within ablock for primary caches, and

PABLocksizE-1..2 (R5000)
PABLocksizE-1..3 (R10000)

specifies a doubleword in the secondary cache.

A cache hit accesses the specified cache as normal data references, and performs the specified
operation if the cache block contains valid data at the specified physical address. If the cache
lineisinvalid or containsadiffering physical address (acachemiss), no operationisperformed.
Since the R5000 and the R10000 processors use 2-way set associative caches, the Hit operation
performs tag comparison in both ways of the cache. No index needs to be provided for such
CacheOps. If both ways register a hit, the execution of the CacheOp is undefined.

71

Chapter 1 CPU Instruction Set

CACHE Cache

Write back from the primary data cache goes to the secondary cache, and write back from the
secondary cache goes to the system interface. The primary data cache is written back to the
secondary cache before the secondary cache iswritten back to the system interface; the address
to be written is based by the cache tag, rather than the translated PA from the CacheOp
instruction. A secondary cachewrite back also interrogatesthe primary datacachefor any dirty
inconsistent data.

When alineisinvalidated in the secondary cache, all subset linesin the primary caches are also
invalidated.

CacheOps are serialized with respect to cached |oads/stores and CPO instructions. Therefore, in
general, there are no hazards for CacheOps. However, if the CacheOps modify the current
instruction fetching stream, they may not work properly since the instruction fetch pipeline
usually prefetches and buffers instructions and CacheOps are not serialized with respect to the
instruction fetch pipeline. Programmersshould be aware of such potential hazards; one solution
isto put a COPO instruction after the CacheOp to prevent the speculative execution and force
the CacheOp to complete, and then use a Jump Register instruction to flush the instruction fetch
pipeline. Succeeding instructions will then be re-fetched from caches.

If CPO isnot usable, a Coprocessor Unusable exception istaken. CacheOps may induce
Address Error or TLBL exceptions (Refill or Invalid) during address translation, but never take
aTLBSor Mod exception. The virtual addressis used to index the cache for an Index
CacheOp, but need not match the cache physical tag; unmapped addresses may be used to avoid
TLB exceptions.

The R5000 and the R10000 processors do not support the CE bit, and programmers must supply
correct parity bits or ECC for some CacheOps.

The R5000 and the R10000 processors support the CH bit for secondary CacheOps, Hit
Invalidate, and Hit WriteBack Invalidate. Asin the R4400, a hit setsthe CH bit of the Status
register, and amissresetsit. This bit is readable and writable by software.

Operation:

VAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable

Chapter 1 CPU Instruction Set

Coprocessor Operation CO PZ
31 26 25 0
COPz cop_fun
0100zz
6 26
Format: COPO cop_fun MIPS |

COP1 cop_fun
COP2 cop_fun
COP3 cop_fun

Purpose: To execute a coprocessor instruction.

Description:

The coprocessor operation specified by cop_funis performed by coprocessor unit zz. Details of
coprocessor operations must be found in the specification for each coprocessor.

Each MIPS architecture level defines up to 4 coprocessor units, numbered 0 to 3 (see
1.2.5 Coprocessor Instructions). The opcodes corresponding to coprocessors that are not
defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessors is controlled by system software. Each coprocessor has a
“coprocessor usable” bit in the System Control coprocessor. The usable bit must be set for a
user program to execute a coprocessor instruction. If the usable bit is not set, an attempt to
execute the instruction will result in a Coprocessor Unusable exception. An unimplemented
coprocessor must never be enabled. The result of executing this instruction for an
unimplemented coprocessor when the usable bit is set, is undefined.

See specification for the specific coprocessor being programmed.
Operation:

CoprocessorOperation (z, cop_fun)
Exceptions:

Reserved Instruction

Coprocessor Unusable

Coprocessor interrupt or Floating-Point Exception (CP1 only for some processors)

73

Chapter 1 CPU Instruction Set

74

DADD Doubleword Add

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DADD
000000 00000 101100

6 5 5 5 5 6
Format: DADD rd, rs, rt MIPS llI
Purpose: To add 64-bit integers. If overflow occurs, then trap.

Description: rd « rs+rt

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rsto produce a
64-bit result. If the addition resultsin 64-bit 2's complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does not
overflow, the 64-bit result is placed into GPR rd.

Restrictions:

None
Operation: 64-bit processors
temp « GPR][rs] + GPR]rt]
if (64_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
GPRJrd] ~ temp
endif

Exceptions:
Integer Overflow
Reserved Instruction

Programming Notes:
DADDU performs the same arithmetic operation but, does not trap on overflow.

Chapter 1 CPU Instruction Set

Doubleword Add Immediate DADDI
31 26 25 21 20 16 15 0
DADDI rs rt immediate
011000
6 5 5 16
Format: DADDI tt, rs, immediate MIPS Il
Purpose: To add a constant to a 64-bit integer. If overflow occurs, then trap.

Description: rt « rs + immediate

The 16-bit signed immediate is added to the 64-bit valuein GPR rsto produce a 64-bit resullt.
If the addition resultsin 64-bit 2' s complement arithmetic overflow then the destination register
is not modified and an Integer Overflow exception occurs. If it does not overflow, the 64-bit
result is placed into GPR rt.
Restrictions:
None
Operation: 64-bit processors
temp — GPR][rs] + sign_extend(immediate)
if (64_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
GPR]rt] ~ temp
endif

Exceptions:
Integer Overflow
Reserved Instruction

Programming Notes:

DADDIU performs the same arithmetic operation but, does not trap on overflow.

75

Chapter 1 CPU Instruction Set

76

DADDl U Doubleword Add Immediate Unsigned
31 26 25 21 20 16 15 0
DADDIU rs rt immediate
011001
6 5 5 16
Format: DADDIU rt, rs, immediate MIPS Il
Purpose: To add a constant to a 64-bit integer.

Description: rt « rs + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs and the 64-bit arithmetic
result is placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None
Operation: 64-bit processors

GPRJrt] « GPRJrs] + sign_extend(immediate)
Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo
arithmetic that does not trap on overflow. It isappropriate for arithmetic which is not signed,
such asaddressarithmetic, or integer arithmetic environmentsthat ignore overflow, such as“C”
language arithmetic.

Chapter 1 CPU Instruction Set

Doubleword Add Unsigned DADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DADDU
000000 00000 | 101101
6 5 5 5 5 6
Format: DADDU rd, rs, rt MIPS Il

Purpose: To add 64-hit integers.

Description: rd « rs+rt

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs and the 64-bit
arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
None
Operation: 64-bit processors
GPR[rd] - GPR][rs] + GPR]rt]
Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo
arithmetic that does not trap on overflow. It isappropriate for arithmetic which is not signed,
such asaddressarithmetic, or integer arithmetic environmentsthat ignore overflow, such as“C”
language arithmetic.

77

Chapter 1 CPU Instruction Set

78

DDlV Doubleword Divide

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DDIV
000000 00 0000 O0O0O0O 011110
6 5 5 10 6
Format: DDIV rs, 1t MIPS Il

Purpose: To divide 64-bit signed integers.

Description: (LO, HI) « rs/rt

The 64-bit doubleword in GPR rsis divided by the 64-bit doubleword in GPR rt, treating both
operands as signed values. The 64-bit quotient is placed into special register LO and the 64-bit
remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either of the two preceding instructionsis MFHI or MFLO, the result of the MFHI or MFLO
isundefined. Reads of the HI or LO special registers must be separated from subsegquent
instructions that write to them by two or more other instructions.

If the divisor in GPR rt is zero, the arithmetic result value is undefined.
Operation: 64-bit processors
-2, 1-1: LO, HI « undefined

I LO < GPRIrs] div GPR]r]
HI — GPR][rs] mod GPRJr]

Exceptions:

Reserved Instruction

Programming Notes:
See the Programming Notes for the DIV instruction.

Chapter 1 CPU Instruction Set

Doubleword Divide Unsigned DDlVU
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DDIVU
oooo00O0 000000 O0O0O0O 011111
6 5 5 10 6
Format: DDIVU rs, 1t MIPS llI

Purpose: To divide 64-bit unsigned integers.

Description: (LO, HI) « rs/rt

The 64-bit doubleword in GPR rsis divided by the 64-bit doubleword in GPR rt, treating both
operands as unsigned values. The 64-bit quotient is placed into special register LO and the
64-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either of the two preceding instructionsis MFHI or MFLO, the result of the MFHI or MFLO
isundefined. Reads of the HI or LO special registers must be separated from subsegquent
instructions that write to them by two or more other instructions.

If the divisor in GPR rt is zero, the arithmetic result value is undefined.
Operation: 64-bit processors
-2, 1-1: LO, HI « undefined

I LO < (0] GPRIrs]) div (O || GPRIrt])
HI < (0]] GPRIrs]) mod (0 || GPR]rt])

Exceptions:
Reserved instruction

Programming Notes:
See the Programming Notes for the DIV instruction.

79

Chapter 1 CPU Instruction Set

80

DIV Divide Word

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIV
(ONONONORON0] 00 0000 O0O0O0O 011010
6 5 5 10 6
Format: DIV rs, 1t MIPS |
Purpose: To divide 32-hit signed integers.

Description: (LO, HI) « rs/rt

The 32-bit word valuein GPR rsisdivided by the 32-bit valuein GPR rt, treating both operands
assigned values. The 32-bit quotient is placed into special register LO and the 32-bit remainder
is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-hit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

If either of the two preceding instructionsis MFHI or MFLO, the result of the MFHI or MFLO
isundefined. Reads of the HI or LO special registers must be separated from subsegquent
instructions that write to them by two or more other instructions.

If the divisor in GPR rt is zero, the arithmetic result value is undefined.

Operation:
if (NotWordValue(GPR]rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
[-2:, I-1: LO, HI < undefined
I: g GPR[rS]31__O div GPR[rt]31__0
LO ~ sign_extend(ds;_ o)
r GPRIrs]z;. g mod GPRIrt]z1 o
HI ~ sign_extend(rz;_o)

1

1

Exceptions:

None

Programming Notes:

In some processors the integer divide operation may proceed asynchronously and allow other
CPU instructionsto execute beforeit iscomplete. Anattempt toread LO or HI beforetheresults
are written will wait (interlock) until the results are ready. Asynchronous execution does not
affect the program result, but offersan opportunity for performanceimprovement by scheduling
the divide so that other instructions can execute in parallel.

Chapter 1 CPU Instruction Set

Divide Word DIV

No arithmetic exception occurs under any circumstances. |If divide-by-zero or overflow
conditions should be detected and some action taken, then the divide instruction is typically
followed by additional instructionsto check for azero divisor and/or for overflow. If thedivide
is asynchronous then the zero-divisor check can execute in parallel with the divide. The action
taken on either divide-by-zero or overflow is either a convention within the program itself or
moretypically, the system software; one possibility isto take aBREAK exception with acode
field value to signal the problem to the system software.

As an example, the C programming language in a UNIX™ environment expects division by
zero to either terminate the program or execute a program-specified signal handler. C does not
expect overflow to cause any exceptional condition. If the C compiler usesadivide instruction,
it also emits code to test for a zero divisor and execute a BREAK instruction to inform the
operating system if oneis detected.

81

Chapter 1 CPU Instruction Set

82

DIVU Divide Unsigned Word
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIVU
ooo0o00O0 000000 O0O0O0O 011011

6 5 5 10 6
Format: DIVU rs, 1t MIPS |
Purpose: To divide 32-bit unsigned integers.

Description: (LO, HI) « rs/rt

The 32-bit word valuein GPR rsisdivided by the 32-bit valuein GPR rt, treating both operands
as unsigned values. The 32-bit quotient is placed into special register LO and the 32-bit
remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-hit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

If either of the two preceding instructionsis MFHI or MFLO, the result of the MFHI or MFLO
isundefined. Reads of the HI or LO special registers must be separated from subsegquent
instructions that write to them, like this one, by two or more other instructions.

If the divisor in GPR rt is zero, the arithmetic result is undefined.

Operation:

if (NotWordValue(GPR]rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
[-2:, I-1: LO, HI < undefined

I q — (0| GPRIrs]a1.0) div (0 || GPRIrt]31 o)
LO ~ sign_extend(dss_ o)
r ~ (0 || GPRIrs]z1. 0) mod (0 || GPRIrt]3; o)
HI ~ sign_extend(rz;_o)
Exceptions:
None

Programming Notes:
See the Programming Notes for the DIV instruction.

Chapter 1 CPU Instruction Set

Doubleword Move From System Control Coprocessor DMFCO
31 26 25 21 20 16 15 1110 0
COPO DMF rt rd 0
010000 00001 000 0000 0000
6 5 5 5 11
Format: DMFCO rt, rd MIPS llI
Description:

The contents of coprocessor register rd of the CPO are loaded into general register rt.

This operation is defined for the R5000 and the R10000 operating in 64-bit mode and in 32-bit
kernel mode. Execution of thisinstruction in 32-bit user or supervisor mode causes areserved
instruction exception. All 64-bits of the general register destination are written from the
coprocessor register source. The operation of DMFCO on a 32-bit coprocessor O register is
undefined.

Operation: 64-bit processors
data — CPRJ[O,rd]
GPRJrt] ~ data

Exceptions:
Coprocessor unusable

Reserved instruction (In 32-bit user mode
In 32-bit supervisor mode)

83

Chapter 1 CPU Instruction Set

DMTCO Doubleword Move To System Control Coprocessor
31 26 25 21 20 16 15 1110 0
COPO DMT rt rd 0
010000 00101 000 0000 0000
6 5 5 5 11
Format: DMTCO rt, rd MIPS llI
Description:

The contents of general register rt are loaded into coprocessor register rd of the CPO.

This operation is defined for the R5000 and the R10000 operating in 64-bit mode or in 32-bit
kernel mode. Execution of thisinstruction in 32-bit user or supervisor mode causes areserved
instruction exception.

All 64-bits of the coprocessor O register are written from the general register source. The
operation of DMTCO on a 32-bit coprocessor O register is undefined.

Because the state of the virtual addresstranslation system may be altered by thisinstruction, the
operation of load instructions, store instructions, and TLB operationsimmediately prior to and
after this instruction are undefined.

Operation: 64-bit processors

data — GPRJrt]
CPR[O,rd] ~ data

Exceptions:

Coprocessor unusable (In 32-bit user mode
In 32-bit supervisor mode)

Chapter 1 CPU Instruction Set

Doubleword Multiply DMULT

31 26 25 21 20 16 15 6 5 0
SPECIAL rs it 0 DMULT
000000 0000000000 011100

6 5 5 10 6
Format: DMULT rs, rt MIPS Il

Purpose: To multiply 64-bit signed integers.
Description: (LO, HI) « rs xrt

The 64-hit doubleword valuein GPR rtismultiplied by the 64-bit valuein GPR rs, treating both
operands as signed val ues, to produce a 128-bit result. The low-order 64-bit doubleword of the
result is placed into special register LO, and the high-order 64-bit doubleword is placed into
special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either of the two preceding instructionsis MFHI or MFLO, the result of the MFHI or MFLO
isundefined. Reads of the HI or LO special registers must be separated from subsegquent
instructions that write to them by two or more other instructions.

Operation: 64-bit processors
[-2:, 1-1: LO, HI ~ undefined
I: prod ~ GPR]rs] * GPR]rt]
LO ~ prodgz o
HI < prodi»7_ 64

Exceptions:

Reserved Instruction

Programming Notes:

In some processorstheinteger multiply operation may proceed asynchronously and allow other
CPU instructionsto execute beforeit iscomplete. Anattempt toread LO or HI beforetheresults
are written will wait (interlock) until the results are ready. Asynchronous execution does not
affect the program result, but offersan opportunity for performanceimprovement by scheduling
the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

85

Chapter 1 CPU Instruction Set

86

DMULTU Doubleword Multiply Unsigned

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DMULTU
000000 0000000000 011101
6 5 5 10 6
Format: DMULTU rs, 1t MIPS Il
Purpose: To multiply 64-bit unsigned integers.

Description: (LO, HI) « rs xrt

The 64-hit doubleword valuein GPR rtismultiplied by the 64-bit valuein GPR rs, treating both
operands as unsigned values, to produce a 128-hit result. The low-order 64-bit doubleword of
theresult is placed into special register LO, and the high-order 64-bit doubleword is placed into
special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either of the two preceding instructionsis MFHI or MFLO, the result of the MFHI or MFLO
isundefined. Reads of the HI or LO special registers must be separated from subsegquent
instructions that write to them by two or more other instructions.

Operation: 64-bit processors
[-2:, I-1: LO, HI — undefined
I: prod ~ (0| GPR]rs]) * (0 || GPR(rt])
LO « prodgs o
HI « prodip7 64

Exceptions:

Reserved Instruction

Chapter 1 CPU Instruction Set

Doubleword Shift Left Logical DSL L
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL
000000 00000 111000
6 5 5 5 5 6
Format: DSLL rd, rt, sa MIPS Il

Purpose: To left shift a doubleword by afixed amount O O to 31 hits.

Description: rd — rt<<sa

The 64-bit doubleword contents of GPR rt are shifted |ft, inserting zerosinto the emptied bits;
theresult isplaced in GPR rd. The bit shift count in the range 0 to 31 is specified by sa.

Restrictions:
None
Operation: 64-bit processors

S <~ 0]l sa
GPR[rd] - GPR[rt]g3s) 0o |l 0s

Exceptions:

Reserved Instruction

87

Chapter 1 CPU Instruction Set

88

DSL L32 Doubleword Shift Left Logical Plus 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL32
000000 00000 111100
6 5 5 5 5 6
Format: DSLL32 rd,rt, sa MIPS Il

Purpose: To left shift a doubleword by afixed amount O 32 to 63 hits.

Description: rd « rt << (sa+32)

The 64-bit doubleword contents of GPR rt are shifted |ft, inserting zerosinto the emptied bits;
theresult isplaced in GPR rd. The bit shift count in the range 32 to 63 is specified by sa+32.

Restrictions:
None
Operation: 64-bit processors

S 1] sa [* 32+sa */
GPR[rd] - GPR(rt]g3-s).0 l 0s

Exceptions:

Reserved Instruction

Chapter 1 CPU Instruction Set

Doubleword Shift Left Logical Variable DSL LV
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSLLV
000000 00000 010100
6 5 5 5 5 6
Format: DSLLV rd, t,rs MIPS Il

Purpose: To left shift a doubleword by a variable number of bits.

Description: rd — rt<<rs

The 64-bit doubleword contents of GPR rt are shifted |ft, inserting zerosinto the emptied bits;
theresult isplaced in GPR rd. The bit shift count in the range O to 63 is specified by the low-
order six bitsin GPR rs.

Restrictions:
None
Operation: 64-bit processors

S ~ 0| GPRIrs]5 g
GPR[rd] ~ GPR[rt](63_S)__O || 0S

Exceptions:

Reserved Instruction

89

Chapter 1 CPU Instruction Set

90

DSRA Doubleword Shift Right Arithmetic

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL 0 rt rd sa DSRA
000000 00000 111011

6 5 5 5 5 6

Format: DSRA rd, 1t, sa MIPS llI
Purpose: To arithmetic right shift a doubleword by afixed amount O 0 to 31 hits.

Description: rd — rt>>sa (arithmetic)
The 64-bit doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the
emptied bits; the result isplaced in GPR rd. The bit shift count in therange 0 to 31 is specified
by sa.

Restrictions:
None

Operation: 64-bit processors

S < 0]l sa
GPRIrd] - (GPRIrtlg3)° || GPRIrt] g3

Exceptions:

Reserved Instruction

Chapter 1 CPU Instruction Set

Doubleword Shift Right Arithmetic Plus 32 DS RA32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRA32
000000 00000 111111
6 5 5 5 5 6
Format: DSRA32 rd, rt, sa MIPS llI

Purpose: To arithmetic right shift a doubleword by afixed amount O 32-63 hits.

Description: rd « rt>>(sa+32) (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the
emptied bits; theresultisplacedin GPR rd. Thebit shift count in the range 32 to 63 is specified
by sa+32.

Restrictions:
None
Operation: 64-bit processors

S 1] sa [* 32+sa */
GPRIrd] - (GPRIrtlg3)° || GPRIrt] g3

Exceptions:

Reserved Instruction

91

Chapter 1 CPU Instruction Set

92

DSRAV Doubleword Shift Right Arithmetic Variable

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 DSRAV
000000 00000 010111

6 5 5 5 5 6

Format: DSRAV rd, it, rs MIPS Il
Purpose: To arithmetic right shift a doubleword by a variable number of bits.

Description: rd — rt>>rs (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the
emptied bits; the result isplaced in GPR rd. The bit shift count in the range 0 to 63 is specified
by the low-order six bitsin GPR rs.

Restrictions:
None
Operation: 64-bit processors

S ~ GPR]rsls o
GPR[rd]<_ (GPR[rt]eg)S || GPR[rt]63__S

Exceptions:

Reserved Instruction

Chapter 1 CPU Instruction Set

Doubleword Shift Right Logical DSRL
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRL
000000 00000 111010
6 5 5 5 5 6
Format: DSRL rd, rt, sa MIPS Il

Purpose: Tological right shift adoubleword by afixed amount O O to 31 hits.

Description: rd — rt>>sa (logical)

The doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the
result is placed in GPR rd. The bit shift count in the range O to 31 is specified by sa.

Restrictions:
None
Operation: 64-bit processors

S <~ 0]l sa
GPR[rd] — 0° || GPR[rtle3 s

Exceptions:

Reserved Instruction

93

Chapter 1 CPU Instruction Set

94

DSRL32 Doubleword Shift Right Logical Plus 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRL32
000000 00000 111110
6 5 5 5 5 6
Format: DSRL32 rd, rt, sa MIPS Il

Purpose: Tological right shift adoubleword by afixed amount O 32 to 63 hits.

Description: rd « rt>>(sa+32) (logical)

The 64-bit doubleword contentsof GPR rt are shifted right, inserting zerosinto the emptied bits;
theresult isplaced in GPR rd. The bit shift count in the range 32 to 63 is specified by sa+32.

Restrictions:
None
Operation: 64-bit processors

S 1] sa [* 32+sa */
GPR[rd] — 0° || GPR[rtle3 s

Exceptions:

Reserved Instruction

Chapter 1 CPU Instruction Set

Doubleword Shift Right Logical Variable DSRLV
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSRLV
000000 00000 010110
6 5 5 5 5 6
Format: DSRLV rd, 1t, rs MIPS Il

Purpose: To logical right shift adoubleword by avariable number of bits.

Description: rd « rt>>rs (logical)

The 64-bit doubleword contentsof GPR rt are shifted right, inserting zerosinto the emptied bits;
theresult isplaced in GPR rd. The bit shift count in the range O to 63 is specified by the low-
order six bitsin GPR rs.

Restrictions:
None
Operation: 64-bit processors

S ~ GPR]rsls o
GPR[rd]~ 0° || GPR[rtlg3 s

Exceptions:

Reserved Instruction

95

Chapter 1 CPU Instruction Set

96

DSUB Doubleword Subtract

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSUB
000000 00000 101110
6 5 5 5 5 6
Format: DSUB rd, rs, rt MIPS llI
Purpose: To subtract 64-bit integers; trap if overflow.

Description: rd < rs-rt

The 64-bit doubleword valuein GPR rt issubtracted from the 64-bit valuein GPR rsto produce
a64-bit result. If the subtraction resultsin 64-bit 2's complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does not
overflow, the 64-bit result is placed into GPR rd.

Restrictions:

None
Operation: 64-bit processors
temp ~ GPR[rs] — GPRrt]
if (64_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
GPRJrd] ~ temp
endif

Exceptions:
Integer Overflow
Reserved Instruction

Programming Notes:
DSUBU performs the same arithmetic operation but, does not trap on overflow.

Chapter 1 CPU Instruction Set

Doubleword Subtract Unsigned DSUBU
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSUBU

000000 00000 101111
6 5 5 5 5 6
Format: DSUBU rd, rs, rt MIPS llI
Purpose: To subtract 64-bit integers.

Description: rd < rs-rt

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs and the
64-bit arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.
Restrictions:

None
Operation: 64-bit processors

GPRJ[rd] « GPR[rs] — GPR]rt]
Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo
arithmetic that does not trap on overflow. It isappropriate for arithmetic which is not signed,
such asaddressarithmetic, or integer arithmetic environmentsthat ignore overflow, such as“C”
language arithmetic.

97

Chapter 1 CPU Instruction Set

98

ERET Exception Return

31 26 2524 65 0
COPO CcoO 0 ERET
010000 1 00000000000 O0O0O0O0OOOO0O 011000
6 1 19 6
Format: ERET MIPS Il
Description:

ERET isthe R5000 and the R10000 instruction for returning from an interrupt, exception, or
error trap. Unlike abranch or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay dlot.

If the processor is servicing an error trap (SR, = 1), then load the PC from the ErrorEPC and
clear the ERL bit of the Satus register (SR,). Otherwise (SR, = 0), load the PC from the EPC,
and clear the EXL bit of the Satus register (SRy).

An ERET executed between aLL and SC also causes the SC to fail.

If there is no exception (EXL=0 and ERL=0 in the Satus register), execution of an ERET
instruction is meaningless.

Execution of an ERET when ERL=0, regardless of the state of EXL, sets EXL to 0 and ajump
is taken to the address presently held in the EPC register, even when there is no exception.

Operation:

if SR, =1 then

PC ~ ErrorEPC

SR < SR3; 30 SRy. o
else

PC - EPC

SR « SRy 2110 SRy
endif
LLbit — O

Exceptions:

Coprocessor unusable

Chapter 1 CPU Instruction Set

Jump J
31 26 25 0
J instr_index
000010

6 26

Format: J target MIPS |

Purpose: To branch within the current 256 MB aligned region.

Description:

ThisisaPC-region branch (not PC-relative); the effective target addressisin the“ current” 256
MB aligned region. The low 28 bits of the target addressistheinstr_index field shifted left 2
bits. The remaining upper bits are the corresponding bits of the address of theinstructionin the
delay dot (not the branch itself).

Jump to the effective target address. Execute the instruction following the jump, in the branch
delay slot, before jJumping.
Restrictions:
None
Operation:
:41: PC « PCgpRrLen. 28 |l instr_index || 02
Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed
offset to the PC is an advantage if all program code addresses fit into a 256 M B region aligned
on a 256 MB boundary. It alows abranch to anywhere in the region from anywhere in the
region which a signed relative offset would not allow.

This definition creates the boundary case where the branch instructionisin the last word of a
256 MB region and can therefore only branch to the following 256 MB region containing the
branch delay dlot.

99

Chapter 1 CPU Instruction Set

100

JAL Jump And Link

31 26 25 0
JAL instr_index
000011
6 26
Format: JAL target MIPS |
Purpose: To procedure call within the current 256 MB aligned region.
Description:

Place thereturn addresslink in GPR 31. Thereturn link isthe address of the second instruction
following the branch, where execution would continue after a procedure call.

ThisisaPC-region branch (not PC-relative); the effective target addressisin the“ current” 256
MB aligned region. The low 28 bits of the target addressistheinstr_index field shifted left 2
bits. The remaining upper bits are the corresponding bits of the address of theinstructionin the
delay dot (not the branch itself).

Jump to the effective target address. Execute the instruction following the jump, in the branch
delay slot, before jJumping.

Restrictions:
None

Operation:

l: GPR[31] — PC+38

1+1: PC ~ PCGPRLEN..28 || inStr_indeX || 02
Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed
offset to the PC is an advantage if all program code addresses fit into a 256 M B region aligned
on a 256 MB boundary. It alows abranch to anywhere in the region from anywhere in the
region which a signed relative offset would not allow.

This definition creates the boundary case where the branch instructionisin the last word of a
256 MB region and can therefore only branch to the following 256 MB region containing the
branch delay dlot.

Chapter 1 CPU Instruction Set

Jump And Link Register JALR
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rd JALR
000000 00000 00000 001001
6 5 5 5 5 6
Format: JALR rs (rd = 31 implied) MIPS |

JALR rd, rs
Purpose: To procedure call to an instruction address in aregister.

Description: rd — return_addr, PC — rs

Placethereturn addresslink in GPR rd. Thereturn link isthe address of the second instruction
following the branch, where execution would continue after a procedure call.

Jump to the effective target addressin GPR rs. Execute the instruction following the jump, in
the branch delay dlot, before jumping.

Restrictions:

Register specifiersrs and rd must not be equal, because such an instruction does not have the
same effect when re-executed. The result of executing such an instruction is undefined. This
restriction permits an exception handler to resume execution by re-executing the branch when
an exception occurs in the branch delay dlot.

The effective target addressin GPR rs must be naturally aligned. If either of the two least-
significant bits are not -zero, then an Address Error exception occurs, not for the jump
instruction, but when the branch target is subsegquently fetched as an instruction.

Operation:
I: temp — GPR][rs]
GPR[rd] -« PC+8
I+1.PC ~ temp

Exceptions:
None

Programming Notes:

Thisisthe only branch-and-link instruction that can select aregister for thereturn link; all other
link instructions use GPR 31 The default register for GPRrd, if omitted in the assembly
language instruction, is GPR 31.

101

Chapter 1 CPU Instruction Set

102

JR

Jump Register

31 26 25 2120 65 0
SPECIAL rs JR
000000 000 0000 O0O0O0OO0O0OOOO 001000
6 5 15 6
Format: JR rs MIPS |
Purpose: To branch to an instruction addressin aregister.

Description: PC « rs

Jump to the effective target addressin GPR rs. Execute the instruction following the jump, in
the branch delay slot, before jumping.

Restrictions:

The effective target addressin GPR rs must be naturally aligned. If either of the two least-
significant bits are not -zero, then an Address Error exception occurs, not for the jump
instruction, but when the branch target is subsequently fetched as an instruction.

Operation:

I: temp —~ GPRJrs]
I+1:PC ~ temp

Exceptions:

None

Chapter 1 CPU Instruction Set

Load Byte L B
31 26 25 21 20 16 15 0
LB base rt offset
100000
6 5 5 16
Format: LB rt, offset(base) MIPS |
Purpose: To load a byte from memory as asigned value.

Description: rt « memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are
fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents
of GPR base to form the effective address.

Restrictions:

None

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, LOAD)
PAddr — pAddrpgize.1y.. 2 || (PAddry o xor ReverseEndian?)
memword — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, o xor BigEndianCPU?
GPR(rt] — sign_extend(memwordz.g«pyte. gsbyte)

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgze_1 3 |l (PAddr, o xor ReverseEndian®)
memdouble ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, g xor BigEndianCPU3
GPR(rt] ~ sign_extend(memdouble7.,g«pyte. g+byte)

Exceptions:
TLB Refill, TLB Invalid

Address Error

103

Chapter 1 CPU Instruction Set

104

LBU Load Byte Unsigned
31 26 25 21 20 16 15 0
LBU base rt offset
100100
6 5 5 16
Format: LBU rt, offset(base) MIPS |
Purpose: To load a byte from memory as an unsigned value.

Description: rt « memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are
fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents
of GPR base to form the effective address.

Restrictions:

None

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgze —1 2 || (PAddr; o xor ReverseEndian?)
memword — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr; o xor BigEndianCPU?
GPR(rt] — zero_extend(memwordy.gs pyte. g+ byte)

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrps;ze_1 3 || (PAddr, o xor ReverseEndian®)
memdouble ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, g xor BigEndianCPU3
GPR(rt] — zero_extend(memdoublez,g« yte g byte)

Exceptions:
TLB Réfill, TLB Invalid

Address Error

Chapter 1 CPU Instruction Set

Load Doubleword

LD

31 26 25 21 20 16 15 0
LD base rt offset
110111
6 5 5 16
Format: LD rt, offset(base) MIPS Il
Purpose: To load a doubleword from memory.

Description: rt « memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective
address are fetched and placed in GPR rt. The 16-bit signed offset is added to the contents of

GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If any of the three least-significant bits of the

address are non-zero, an Address Error exception occurs.

MIPSIV: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the

instruction is undefined.

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]

if (vAddr, q) # 08 then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
memdouble — LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR]rt] « memdouble
Exceptions:

TLB Refill, TLB Invalid

Bus Error

Address Error

Reserved Instruction

105

Chapter 1 CPU Instruction Set

106

LDCZ Load Doubleword to Coprocessor
31 26 25 21 20 16 15 0
LDCz base rt offset
1101zz
6 5 5 16
Format: LDC1 rt, offset(base) MIPS Il

LDC2 rt, offset(base)
Purpose: To load adoubleword from memory to a coprocessor general register.

Description: rt « memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective
address are fetched and made available to coprocessor unit zz. The 16-bit signed offset is added
to the contents of GPR base to form the effective address.

The manner in which each coprocessor uses the data is defined by the individual coprocessor
specifications. The usual operation would place the data into coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered O to 3 (see
1.2.5 Coprocessor Instructions). The opcodes corresponding to coprocessors that are not
defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessorsiis controlled by system software. Each coprocessor has a
“coprocessor usable” bit in the System Control coprocessor. The usable bit must be set for a
user program to execute a coprocessor instruction. If the usable bit is not set, an attempt to
execute the instruction will result in a Coprocessor Unusable exception. An unimplemented
coprocessor must never be enabled. The result of executing thisinstruction for an
unimplemented coprocessor when the usable bit is set, is undefined.

Thisinstruction is not available for coprocessor 0, the System Control coprocessor, and the
opcode may be used for other instructions.

The effective address must be naturally aligned. If any of the three least-significant bits of the
effective address are non-zero, an Address Error exception occurs.

MIPSI1V: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddr,) # 03 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)

memdouble ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COP_LD (z, rt, memdouble)

Chapter 1 CPU Instruction Set

Load Doubleword to Coprocessor LDCZ
Operation: 64-bit processors

vAddr — sign_extend(offset) + GPR[base]

if (vAddr,) # 0° then SignalException(AddressError) endif

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, LOAD)

memdouble —~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COP_LD (z, rt, memdouble)

Exceptions:
TLB Réfill, TLB Invalid
Bus Error
Address Error
Reserved Instruction

Coprocessor Unusable

107

Chapter 1 CPU Instruction Set

108

L DL Load Doubleword Left
31 26 25 21 20 1615 0
LDL base rt offset
011010
6 5 5 16
Format: LDL rt, offset(base) MIPS Il
Purpose: To load the most-significant part of a doubleword from an unaligned memory
address.

Description: rt — rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr isthe address of the most-significant of eight consecutive bytes forming a
doubleword in memory (DW) starting at an arbitrary byte boundary. A part of DW, the most-
significant oneto eight bytes, isin the aligned doubleword containing EffAddr. Thispart of DW
isloaded appropriately into the most-significant (left) part of GPR rt leaving the remainder of
GPR rt unchanged.

Thefigure below illustrates this operation for big-endian byte ordering. The eight consecutive
bytesin 2..9 form an unaligned doubleword starting at location 2. A part of DW, six bytes, is
contained in the aligned doubleword containing the most-significant byteat 2. First, LDL loads
these six bytesinto the left part of the destination register and |eaves the remainder of the
destination unchanged. Next, the complementary LDR loads the remainder of the unaligned
doubleword.

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

most — significance — least
lo|1]2][3/4 5/ 6 7]8) 9 1011]12]13/14/15] Memory
[]

‘a‘b‘c‘d‘e‘ f‘g‘h‘ GPR 24: Initial contents

‘2‘3‘4‘5‘6‘7‘9‘ h‘ After executing LDL $24, 2($0)

Then after LDR $24, 9($0)

[2[s[4]s]e]7]8]9]

Figure1-2 Unaligned Doubleword Load using LDL and LDR

Chapter 1 CPU Instruction Set

Load Doubleword Left L DL

The bytes loaded from memory to the destination register depend on both the offset of the
effective addresswithin an aligned doubleword, i.e. thelow three bits of the address (vAddr,),
and the current byte ordering mode of the processor (big- or little-endian). The table below
shows the bytes loaded for every combination of offset and byte ordering.

Table 1-33 Bytes Loaded by LDL Instruction

Memory contents and byte offsets (vAddr, g) Initial contents of

most —significance — least Destination Register

0 1 2 3 4 5 6 7 < big- most —significance— least
afk(ulmlnlolpl [alblelale]r[an

7 6 5 4 3 2 1 0 - little-endian offset
Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering VvAddr, o Little-endian byte ordering

IJKLMNOPOP‘bcdefgh
JKLMNOP‘h 1 OP‘cdefgh
KLMNOP‘gh 2 NOP‘defgh
L M NOFP[f gh 3 M N OPle f g h
MNOP‘efgh 4 LMNOP‘fgh
NOP‘defgh 5 KLMNOP‘gh
OP‘cdefgh 6 JKLMNOP‘h
P‘bcdefgh 7 Il JKLMNOP

Restrictions:

None

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpsize-1).3 || (PAddr; o Xor ReverseEndian3)
if BigEndianMem = 0 then
pPAddr — pAddrpsize.1). 31l 0°
endif
byte — vAddr, ¢ xor BigEndianCPU3
memdouble — LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR(rt] — memdoublez.g«pyte. 0 || GPRr]s5_g+byte .0

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error

Reserved Instruction

109

Chapter 1 CPU Instruction Set

LDR Load Doubleword Right
31 26 25 21 20 16 15 0
LDR base rt offset
011011
6 5 5 16
Format: LDR tt, offset(base) MIPS Il
Purpose: To load the least-significant part of a doubleword from an unaligned memory
address.

Description: rt — it MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr isthe address of the least-significant of eight consecutive bytes forming a
doubleword in memory (DW) starting at an arbitrary byte boundary. A part of DW, the least-
significant oneto eight bytes, isin the aligned doubleword containing EffAddr. Thispart of DW
isloaded appropriately into the least-significant (right) part of GPR rt leaving the remainder of
GPR rt unchanged.

Thefigure below illustrates this operation for big-endian byte ordering. The eight consecutive
bytesin 2..9 form an unaligned doubleword starting at location 2. A part of DW, two bytes, is
contained in the aligned doubleword containing the least-significant byteat 9. First, LDR loads
these two bytes into the right part of the destination register and leaves the remainder of the
destination unchanged. Next, the complementary LDL loads the remainder of the unaligned
doubleword.

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

most — significance — least
lo|1]2[3/4 5/ 6/ 7]8) 9 1011]12]13/14/15] Memory
[]

‘a‘b‘c‘d‘e‘ f‘g‘h‘ GPR 24: Initial contents

‘ a ‘ b ‘ c ‘ d ‘ e ‘ f ‘ 8 ‘ 9 ‘ After executing LDR $24, 9($0)

Then after LDL $24, 2($0)

[2[s]4]s]6]7]8]0]

Figure1-3 Unaligned Doubleword Load using LDR and LDL

110

Chapter 1 CPU Instruction Set

Load Doubleword Right L DR

The bytes loaded from memory to the destination register depend on both the offset of the
effective addresswithin an aligned doubleword, i.e. thelow three bits of the address (vAddr,),
and the current byte ordering mode of the processor (big- or little-endian). The table below
shows the bytes loaded for every combination of offset and byte ordering.

Table 1-34 Bytes Loaded by LDR Instruction

Memory contents and byte offsets (vAddr, o) Initial contents of

most —significance — least Destination Register

0 1 2 3 4 5 6 7 « big- most —significance — least
e lk[cunlolp] [alolcle]e]t aln]

7 6 5 4 3 2 1 0 - little-endian offset
Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr, o Little-endian byte ordering

abcdefg‘l 0 Il JKLMNOP
abcdef‘l\] 1 a‘IJKLMNO
abcde‘IJK 2 ab‘IJKLMN
abcd‘IJKL 3 abc‘IJKLM
abc‘IJKLM 4 abcd‘IJKL
ab‘IJKLMN 5 abcde‘IJK
a‘IJKLMNO 6 abcdef\lJ
Il J K LMNOP 7 abcdefg‘l

Restrictions:

None

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpsize-1).3 || (PAddry o xor ReverseEndian®)
if BigEndianMem = 1 then
pPAddr — pAddrpsize.1) 31l 0°
endif
byte — vAddr, ¢ xor BigEndianCPU3
memdouble — LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPRIrt] — GPRIrt]g3_64-g+byte || Memdoublegs g-pyte

Exceptions:
TLB Refill, TLB Invalid
Bus Error
Address Error

Reserved Instruction

111

Chapter 1 CPU Instruction Set

112

L H Load Halfword
31 26 25 21 20 16 15 0
LH base rt offset
100001
6 5 5 16
Format: LH rt, offset(base) MIPS |
Purpose: To load a halfword from memory as a signed value.

Description: rt « memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective
address are fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset is added to
the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If theleast-significant bit of the addressis non-
zero, an Address Error exception occurs.

MIPSIV: Thelow-order bit of the offset field must be zero. If it is not, the result of the
instruction is undefined.

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddrg) # 0 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgize 1.2 || (pPAddry g xor (ReverseEndian || 0))
memword — LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr; g xor (BigendianCPU || 0)
GPR(rt] — sign_extend(memwords.g«yte. .8 byte)
Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddrg) # 0 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgize —1 3 || (PAddr, o xor (ReverseEndian || 0))
memdouble ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte — vAddr, ¢ xor (BigEndianCPU? || 0)
GPR(rt] ~ sign_extend(memdouble;s.gpyte. 8+ byte)

Exceptions:
TLB Refill , TLB Invalid
Bus Error

Address Error

Chapter 1 CPU Instruction Set

Load Halfword Unsigned L H U
31 26 25 21 20 16 15 0
LHU base rt offset
100101
6 5 5 16
Format: LHU rt, offset(base) MIPS |
Purpose: To load a halfword from memory as an unsigned value.

Description: rt « memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective
address are fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to
the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If theleast-significant bit of the addressis non-
zero, an Address Error exception occurs.

MIPSIV: Thelow-order bit of the offset field must be zero. If it is not, the result of the
instruction is undefined.

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddrg) # 0 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgize 1.2 || (pPAddry g xor (ReverseEndian || 0))
memword — LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte — vAddr; g xor (BigEndianCPU || 0)
GPR(rt] — zero_extend(memword;s.g«yte. g+byte)

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddrg) # 0 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpsize _ 1 3 || (PAddr, o xor (ReverseEndian? || 0))
memdouble — LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU? || 0)
GPR(rt] — zero_extend(memdouble s, g«pyte. g+byte)

Exceptions:
TLB Réfill, TLB Invalid

Address Error

113

Chapter 1 CPU Instruction Set

114

LL Load Linked Word
31 26 25 21 20 16 15 0
LL base rt offset
110000
6 5 5 16
Format: LL rt, offset(base) MIPS Il
Purpose: To load aword from memory for an atomic read-modify-write.

Description: rt « memory[base+offset]

The LL and SC instructions provide primitives to implement atomic Read-Modify-Write
(RMW) operations for cached memory locations.

The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched, sign-extended to the GPR register length if necessary, and written into
GPRrt. Thisbeginsa RMW sequence on the current processor.

Thereis one active RMW sequence per processor. When an LL is executed it starts the active
RMW sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SC instruction that either completes the
RMW sequence atomically and succeeds, or does not and fails. Seethe description of SC for a
list of eventsand conditionsthat causethe SC to fail and an exampleinstruction sequence using
LL and SC.

Executing LL on one processor does not cause an action that, by itself, would cause an SC for
the same block to fail on another processor.

An execution of LL does not have to be followed by execution of SC; aprogram is free to
abandon the RMW sequence without attempting awrite.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined (see 1.6 M emory
Access Types).

The effective address must be naturally aligned. If either of thetwo least-significant bits of the
effective address are non-zero an Address Error exception occurs.

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Chapter 1 CPU Instruction Set

Load Linked Word LL

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddry q) # 02 then SignalException(AddressError) endif
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, LOAD)
memword —~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] — memword
LLbit « 1

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddry q) # 02 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%))
memdouble ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, ¢ xor (BigEndianCPU || 0?)
GPR(rt] ~ sign_extend(memdoublezy,g«pyte. gbyte)
LLbit « 1

Exceptions:
TLB Réfill, TLB Invalid
Address Error

Reserved Instruction

Programming Notes:
Thereisno Load Linked Word Unsigned operation corresponding to Load Word Unsigned.
Implementation Notes:

An LL on one processor must not take action that, by itself, would cause an SC for the same
block on another processor to fail. If animplementation depends on retaining the datain cache
during the RMW seguence, cache misses caused by LL must not fetch datain the exclusive
state, thus removing it from the cache, if it is present in another cache.

115

Chapter 1 CPU Instruction Set

116

LLD Load Linked Doubleword
31 26 25 21 20 16 15 0
LLD base rt offset
110100
6 5 5 16
Format: LLD rt, offset(base) MIPS Il
Purpose: To load a doubleword from memory for an atomic read-modify-write.

Description: rt « memory[base+offset]

The LLD and SCD instructions provide primitives to implement atomic Read-Modify-Write
(RMW) operations for cached memory locations.

The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The contents of the 64-bit doubleword at the memory location specified by the aligned effective
address are fetched and written into GPR rt. This begins a RMW seguence on the current
processor.

Thereisone active RMW sequence per processor. When an LLD isexecuted it startsthe active
RMW sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SCD instruction that either compl etes the
RMW sequence atomically and succeeds, or does not and fails. See the description of SCD for
alist of events and conditions that cause the SCD to fail and an example instruction sequence
using LLD and SCD.

Executing LLD on one processor does not cause an action that, by itself, would cause an SCD
for the same block to fail on another processor.

An execution of LLD does not have to be followed by execution of SCD; aprogram isfreeto
abandon the RMW sequence without attempting awrite.

Restrictions:

The addressed location must be cached; if it is not, the result is undefined (see 1.6 M emory
Access Types).

The effective address must be naturally aligned. If either of the three least-significant bits of
the effective address are non-zero an Address Error exception occurs.

MIPSIV: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Chapter 1 CPU Instruction Set

Load Linked Doubleword LLD

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddr,) # 0° then SignalException(AddressError) endif
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, LOAD)
memdouble —~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR]rt] « memdouble
LLbit « 1

Exceptions:
TLB Refill, TLB Invalid
Address Error

Reserved Instruction
Programming Notes:

Implementation Notes:

An LLD on one processor must not take action that, by itself, would cause an SCD for the same
block on another processor to fail. If animplementation depends on retaining the datain cache
during the RMW sequence, cache misses caused by LLD must not fetch datain the exclusive
state, thus removing it from the cache, if it is present in another cache.

117

Chapter 1 CPU Instruction Set

LUl Load Upper Immediate
31 26 25 21 20 16 15 0
LUI 0 rt immediate
001111 00000
6 5 5 16
Format: LUI rt, immediate MIPS |
Purpose: To load a constant into the upper half of aword.

Description: rt — immediate || 018

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros.
The 32-bit result is sign-extended and placed into GPR rt.

Restrictions:

None

Operation:
GPRrt] — sign_extend(immediate || 016)

Exceptions:

None

118

Chapter 1 CPU Instruction Set

Load Word LW

31 26 25 21 20 16 15 0
LW base rt offset
100011
6 5 5 16
Format: LW rt, offset(base) MIPS |
Purpose: To load aword from memory as asigned value.

Description: rt « memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective
addressarefetched, sign-extended to the GPR register lengthif necessary, and placedin GPR rt.
The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits of the
address are non-zero, an Address Error exception occurs.

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddry) # 02 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
memword — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] — memword

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddry q) # 02 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%))
memdouble ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0?)
GPR(rt] ~ sign_extend(memdoublez;g«yte. g byte)

Exceptions:
TLB Refill, TLB Invalid
Bus Error

Address Error

119

Chapter 1 CPU Instruction Set

120

LWCZ Load Word To Coprocessor
31 26 25 21 20 16 15 0
LWCz base rt offset
1100zz
6 5 5 16
Format: LWC1 rt, offset(base) MIPS |

LWC2 t, offset(base)
LWC3 r, offset(base)

Purpose: To load aword from memory to a coprocessor general register.

Description: rt —« memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched and made available to coprocessor unit zz. The 16-bit signed offset is added
to the contents of GPR base to form the effective address.

The manner in which each coprocessor uses the data is defined by the individual coprocessor
specification. The usual operation would place the data into coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered O to 3 (see
1.2.5 Coprocessor Instructions). The opcodes corresponding to coprocessors that are not
defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessorsiis controlled by system software. Each coprocessor has a
“coprocessor usable” bit in the System Control coprocessor. The usable bit must be set for a
user program to execute a coprocessor instruction. |f the usable bit is not set, an attempt to
execute the instruction will result in a Coprocessor Unusable exception. An unimplemented
coprocessor must never be enabled. The result of executing thisinstruction for an
unimplemented coprocessor when the usable bit is set, is undefined.

Thisinstruction is not available for coprocessor 0, the System Control coprocessor, and the
opcode may be used for other instructions.

The effective address must be naturally aligned. If either of thetwo least-significant bits of the
address are non-zero, an Address Error exception occurs.

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit processors
I: vAddr — sign_extend(offset) + GPR[base]
if (vAddry q) # 02 then SignalException(AddressError) endif
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, LOAD)
memword — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
[+1: COP_LW (z, rt, memword)

Chapter 1 CPU Instruction Set

Load Word To Coprocessor LWCZ
Operation: 64-bit processors

vAddr — sign_extend(offset) + GPR[base}

if (vAddry q) # 02 then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)

pAddr — pAddrpgze.1.3 || (PAddr, g xor (ReverseEndian || 02))

memdouble — LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

byte — vAddr, o xor (BigEndianCPU || 0?)

memword — memdoublez .g«yyte. ghyte

COP_LW (z, rt, memdouble)

Exceptions:
TLB Refill, TLB Invalid

Bus Error
Address Error

Coprocessor Unusable

121

Chapter 1 CPU Instruction Set

122

LWL

Load Word Left

31 26 25 21 20 16 15 0
LWL base rt offset
100010
6 5 5 16
Format: LWL rt, offset(base) MIPS |
Purpose: To load the most-significant part of aword as a signed value from an unaligned

memory address.

Description: rt — rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address

(EffAddr). EffAddr isthe address of the most-significant of four consecutive bytes forming a
word in memory (W) starting at an arbitrary byte boundary. A part of W, the most-significant
oneto four bytes, isin the aligned word containing EffAddr. This part of W isloaded into the
most-significant (left) part of the word in GPR rt. The remaining least-significant part of the
word in GPR rt is unchanged.

If GPRrtisa64-bit register, the destination word is the low-order word of the register. The
loaded value istreated as a signed value; the word sign bit (bit 31) is always loaded from
memory and the new sign bit value is copied into bits 63..32.

Word at byte 2 in memory, big-endian byte order, - each mem byte contains its address

most | - significance - | least
‘ 0 ‘ 1|2 ‘ 3 I 4 ‘ 5|6 ‘ 7 I 8 ‘ 9% Memory initial contents
J]
e | f 32-bit GPR 24: Initial contents
lalblc|d]e]T 64-bit GPR 24

sign bit (31) extend

NN

ol

sign bit (31) extend

After executing LW. $24, 2($0)

Then after LMR $24, 5($0)

Figure 1-4 Unaligned Word Load using LWL and LWR

Chapter 1 CPU Instruction Set

Load Word Left LWL

The figure above illustrates this operation for big-endian byte ordering for 32-hit and 64-bit
registers. The four consecutive bytesin 2..5 form an unaligned word starting at location 2. A
part of W, two bytes, isin the aligned word containing the most-significant byteat 2. First, LWL
loads these two bytesinto the left part of the destination register word and leaves the right part
of the destination word unchanged. Next, the complementary LWR loads the remainder of the
unaligned word.

The bytes loaded from memory to the destination register depend on both the offset of the
effective addresswithin an aligned word, i.e. thelow two bits of the address (vAddr;_), and the
current byte ordering mode of the processor (big- or little-endian). The table below shows the
bytes loaded for every combination of offset and byte ordering.

Table 1-35 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 - big-endian 64-bit register
13K | L| offset (vAddr o) la|blcld|e t]g]|n]
3 2 1 0 - little-endian most — significance — least
most least 32-bit register ‘ e ‘ f ‘ g ‘ h ‘
— significance —

Destination 64-bit register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr; g Little-endian byte ordering
signbit(31)extended) | J K L 0 sign bit (31) extended| L ‘ f g h
signbit 31) extended) J K L \ h 1 |signbit(31) extended| K L \ g h
sign bit (31) extended| K L ‘ g h 2 |signbit(3l)extended J K L ‘ h
sign bit (31) extended| L ‘ f g h 3 signbit (31)extended| | J K L

The word sign (31) is always loaded and the value is copied into bits 63..32.

32-bit register Big-endian vAddr; g Little-endian
I J K L 0 L \ f g h

J K Li|h 1 K Llg n

L|g n 2 J K Ln

L \ f g h 3 I J K L

Theunaligned loads, LWL and LWR, are exceptionsto the load-delay scheduling restrictionin
the MIPS | architecture. An unaligned load instruction to GPR rt that immediately follows
another load to GPR rt can “read” theloaded data. It will correctly mergethe 1to 4 loaded bytes
with the data loaded by the previous instruction.

123

Chapter 1 CPU Instruction Set

124

LWL Load Word Left

Restrictions:

MIPS | scheduling restriction: The loaded datais not available for use by the following
instruction. The instruction immediately following this one, unlessit is an unaligned load
(LWL, LWR), may not use GPR rt asa source register. If thisrestriction isviolated, the result
of the operation is undefined.

Operation: 32-bit processors
VAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
PAddr — pAddrpsize.1y..2 || (PAddry o Xor ReverseEndian?)
if BigEndianMem = 0 then
PAddr pAddrpsize.1).2 || 07
endif
byte — vAddr; o xor BigEndianCPU?
memword —~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] — memwordz.gsyte..0 Il GPRIr]23_gxpyte..0

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgize.1).3 || (PAddr; o Xor ReverseEndian®)
if BigEndianMem = 0 then
pPAddr « pAddrpsize.1). 31l 0°
endif
byte — 0]| (vAddr; o xor BigEndianCPU?)
word ~ vAddr, xor BigEndianCPU
memdouble — LoadMemory (uncached, byte, pAddr, vAddr, DATA)

temp — memdoublez.3oxyord-g+byte..32*word || GPRIM]23.g4hyte..0
GPR][rt] — (temps;)3? || temp

Exceptions:
TLB Refill, TLB Invalid
Bus Error

Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, i.e.
zeroing bits 63..32 of the destination register when bit 31 isloaded. See SLL or SLLV for a
single-instruction method of propagating the word sign bit in aregister into the upper half of a
64-bit register.

Chapter 1 CPU Instruction Set

Load Word Right

LWR

31 26 25 21 20 16 15 0
LWR base rt offset
100110
6 5 5 16
Format: LWR rt, offset(base) MIPS |
Purpose: To load the least-significant part of aword from an unaligned memory address as
asigned value.

Description: rt — rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr isthe address of the least-significant of four consecutive bytes forming a
word in memory (W) starting at an arbitrary byte boundary. A part of W, the |least-significant
oneto four bytes, isin the aligned word containing EffAddr. This part of W isloaded into the
least-significant (right) part of the word in GPR rt. The remaining most-significant part of the
word in GPR rt is unchanged.

If GPRrtisa64-bit register, the destination word is the low-order word of the register. The
loaded valueistreated asasigned value; if theword sign bit (bit 31) isloaded (i.e. when all four
bytes are |oaded) then the new sign bit value is copied into bits 63..32. If bit 31 is not loaded
then the value of bits 63..32 is implementation dependent; the value is either unchanged or a
copy of the current value of bit 31. Executing both LWR and LWL, in either order, deliversin
a sign-extended word value in the destination register.

Word at byte 2 in memory, big-endian byte order, - each mem byte contains its address

most | - significance - | least
‘ 0 ‘ 12 ‘ 3 | 4 ‘ 5|6 ‘ 7 I 8 ‘ 9% Memory initial contents
7 -
e| f|lg|h 32-bit GPR 24: Initial contents
lalb/c|d|e|f|g|h 64-bit GPR 24
e | f After executing LWR $24, 5($0)
nocngorsignext | e | f

4|5 Then after LWL $24, 2($0)

N | N

sign bit (31) extend

Figure1-5 Unaligned Word Load using LWR and LWL

125

Chapter 1 CPU Instruction Set

126

LWR Load Word Right

The figure above illustrates this operation for big-endian byte ordering for 32-hit and 64-bit
registers. The four consecutive bytesin 2..5 form an unaligned word starting at location 2. A
part of W, two bytes, isinthe aligned word containing theleast-significant byteat 5. First, LWR
loads these two bytes into the right part of the destination register. Next, the complementary
LWL loads the remainder of the unaligned word.

The bytes loaded from memory to the destination register depend on both the offset of the
effective addresswithin an aligned word, i.e. thelow two bits of the address (vAddr;_), and the
current byte ordering mode of the processor (big- or little-endian). The table below shows the
bytes loaded for every combination of offset and byte ordering.

Table1-36 Bytes Loaded by LWR Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 < big-endian 64-bit register
L[K| L] offset (vAddr o) la|bfcldlelf|g|n|
3 2 1 0 - little-endian most — significance — least
most least 32-bit register ‘ e ‘ f ‘ g ‘ h ‘
— significance —

Destination 64-bit register contents after instruction (shaded is unchanged)

Big-endian byte ordering VvAddr; g Little-endian byte ordering
Nocngorsignextend e f g ‘ | 0 signbit(3l)extended| | J K L
Nocngorsign-extend e f ‘ I J 1 No cng or sign-extend e ‘ I J K
No cng or sign-extend e ‘ I J K 2 Nocngorsign-extend e f ‘ I J
signbit(31)extended| | J K L 3 Nocngorsignextend e f g ‘ I

When the word sign bit (31) is loaded, its value is copied into bits 63..32. When it
is not loaded, the behavior is implementation specific. Bits 63..32 are either
unchanged or a the value of the unloaded bit 31 is copied into them.

32-bit register big-endian VvAddr; g little-endian
e f gl 0 I J K L
e f11 J 1 el 1 J K
el 1 3 K 2 e fl1 3
I J K L 3 e f g \ |

The unaligned loads, LWL and LWR, are exceptions to the load-delay scheduling restrictionin
the MIPS | architecture. Anunaligned load to GPR rt that immediately follows another [oad to
GPR rt can “read” theloaded data. It will correctly mergethe 1 to 4 loaded bytes with the data
loaded by the previous instruction.

Chapter 1 CPU Instruction Set

Load Word Right LWR

Restrictions:

MIPS | scheduling restriction: The loaded datais not available for use by the following
instruction. The instruction immediately following this one, unlessit is an unaligned load
(LWL, LWR), may not use GPR rt asa source register. If thisrestriction isviolated, the result
of the operation is undefined.

Restrictions:

None

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgize-1).2 || (PAddry g Xor ReverseEndian?)
if BigEndianMem = 0 then
pPAddr — pAddrpsize.1). 2 || 02
endif
byte — vAddr; o xor BigEndianCPU?
memword — LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] — memwords;_zp.gyte || GPRIM31-g+byte..0

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgize-1).3 || (PAddr o Xor ReverseEndian?)
if BigEndianMem = 1 then
pPAddr — pAddrpsize.1) 3l 0°
endif
byte — vAddr; o xor BigEndianCPU?
word ~ vAddr, xor BigendianCPU
memdouble — LoadMemory (uncached, 0O || byte, pAddr, vAddr, DATA)

temp — GPRIrt]3;. 32-g*hyte || memdoubles; . 3o+word. .32 word+8*byte
if byte = 4 then

utemp — (temp31)32 /* loaded bit 31, must sign extend */
else
one of the following two behaviors:
utemp — GPR[rt]g3. 32 [* leave what was there alone */
utemp « (G PR[rt]31)32 /* sign-extend bit 31 */

endif
GPR[rt] — utemp || temp

Exceptions:
TLB Refill, TLB Invalid
Bus Error

Address Error

127

Chapter 1 CPU Instruction Set

LWR Load Word Right

Programming Notes:

Thearchitecture provides no direct support for treating unaligned words as unsigned values, i.e.
zeroing bits 63..32 of the destination register when bit 31 isloaded. See SLL or SLLV for a

single-instruction method of propagating the word sign bit in aregister into the upper half of a
64-bit register.

128

Chapter 1 CPU Instruction Set

Load Word Unsigned

LWU

31 26 25 21 20 16 15 0
LWuU base rt offset
100111
6 5 5 16
Format: LWU rt, offset(base) MIPS Il

Purpose:

Description: rt « memory[base+offset]

To load aword from memory as an unsigned value.

The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to

the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits of the

address are non-zero, an Address Error exception occurs.

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]

if (vAddry) # 02 then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgze.1 3 || (PAddr, o xor (ReverseEndian || 0?)
memdouble — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0?)
GPRIrt] — 0% || memdoubleggyte stbyte

Exceptions:

TLB Refill, TLB Invalid

Bus Error
Address Error

Reserved Instruction

129

Chapter 1 CPU Instruction Set

130

MFCO Move From System Control Coprocessor
31 26 25 21 20 16 15 1110 0
COPO MF rt rd 0
010000 | 000OO 00000000000
6 5 5 5 11
Format: MFCO rt, rd MIPS |
Description:

The contents of coprocessor register rd of the CPO are loaded into general register rt.

Operation: 32-bit processors
data —~ CPR[O,rd]
GPRJrt] ~ data
Operation: 64-bit processors
data —~ CPR[O,rd]
GPR[rt] — (datag;)3? || datag; g
Exceptions:

Coprocessor unusable

Chapter 1 CPU Instruction Set

Move From HI Register MFHI
31 26 25 16 15 1110 6 5 0
SPECIAL 0 rd 0 MFHI
000000 |OO0O0OOOOOOOO 00000 010000
6 10 5 5 6
Format: MFHI rd MIPS |

Purpose: To copy the specia purpose HI register to a GPR.

Description: rd « HI
The contents of special register HI are loaded into GPR rd.

Restrictions:

The two instructions that follow an MFHI instruction must not be instructions that modify the
HI register: DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MTHI, MULT, MULTU. If
thisrestriction is violated, the result of the MFHI is undefined.

Operation:
GPR[rd] — HI
Exceptions:

None

131

Chapter 1 CPU Instruction Set

132

M FLO Move From LO Register
31 26 25 16 15 1110 6 5 0
SPECIAL 0 rd 0 MFLO
000000 |00 0000 O0COO0O 00000 010010
6 10 5 5 6
Format: MFLO rd MIPS |

Purpose: To copy the specia purpose LO register to a GPR.

Description: rd — LO
The contents of special register LO are loaded into GPR rd.

Restrictions:

The two instructions that follow an MFLO instruction must not be instructions that modify the
LOregister: DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MTLO, MULT, MULTU. If
thisrestriction is violated, the result of the MFLO is undefined.

Operation:
GPR][rd] — LO
Exceptions:

None

Chapter 1 CPU Instruction Set

Move From Performance Counter (R10000 only) MFPC
31 26 25 21 20 16 15 11 10 6 5 10
COPO 00000 rt 11001 00000 reg 1
010000
6 5 5 5 5 5 1
Format: MFPC rt, reg
Description:

The contents of a performance counter reg of the CPO are loaded into general register rt. Only
0 and 1 are valid for reg in the R10000 implementation.
Operation: 32-bit processors
data — CPR[O,reg]
GPRJrt] ~ data
Operation: 64-bit processors
data — CPR[0O,reg]
GPRIrt] — (datag;)®? || datag; o
Exceptions:

Coprocessor Unusable

133

Chapter 1 CPU Instruction Set

134

MFPS (R10000 only) Move From Performance Event Specifier

31 26 25 21 20 16 15 1110 6 5 10
COPO 00000 rt 11001 00000 reg 0
010000
6 5 5 5 5 5 1
Format: MFPS rt, reg
Description:

The contents of a performance event specifier reg of the CPO areloaded into general register rt.
Only 0 and 1 are valid for reg in the R10000 implementation.
Operation: 32-bit processors
data — CPR[O,reg]
GPRJrt] ~ data
Operation: 64-bit processors
data — CPR[0O,reg]
GPRIrt] — (datag;)®? || datag; o
Exceptions:

Coprocessor Unusable

Chapter 1 CPU Instruction Set

Move Conditional on Not Zero MOVN

31 26 25 21 20 16 15 1110 6 5 0
SPECIAL s t d 0 MOVN
000000 00000 001011

6 5 5 5 5 6
Format: MOVN rd, rs, rt MIPS IV
Purpose: To conditionally move a GPR after testing a GPR value.

Description: if (t#0) thenrd — rs

If thevaluein GPR rtis not equal to zero, then the contents of GPR rsare placed into GPR rd.

Restrictions:
None

Operation:

if GPR][rt] # 0 then
GPRJrd] « GPR]rs]
endif

Exceptions:
Reserved Instruction

Programming Notes:

The nonzero value tested here is the “ condition true” result fromthe SLT, SLTI, SLTU, and
SLTIU comparison instructions.

135

Chapter 1 CPU Instruction Set

136

MOVZ Move Conditional on Zero

31 26 25 21 20 16 15 1110 6 5 0
SPECIAL s t d 0 MOVZ
000000 00000 001010

6 5 5 5 5 6
Format: MOVZ rd, rs, rt MIPS IV
Purpose: To conditionally move a GPR after testing a GPR value.

Description: if (t=0)thenrd rs

If thevaluein GPR rtis equal to zero, then the contents of GPR rs are placed into GPR rd.
Restrictions:

None
Operation:

if GPR][rt] = 0 then

GPRJrd] « GPR]rs]
endif

Exceptions:
Reserved Instruction

Programming Notes:

Thezerovauetested hereisthe“conditionfalse” result fromthe SLT, SLTI, SLTU, and SLTIU
comparison instructions.

Chapter 1 CPU Instruction Set

Move To System Control Coprocessor

MTCO

31 26 25 21 20 16 15 11 10 0
COPO MT rt rd 0
010000 00100 000 0000 O0OOO0
6 5 5 5 11
Format: MTCO rt, rd MIPS |
Description:

The contents of general register rt are loaded into coprocessor register rd of CPO.

Operation:

data — GPRJrt]
CPR[O,rd] ~ data

Exceptions:

Coprocessor Unusable

137

Chapter 1 CPU Instruction Set

138

MTH | Move To HI Register

31 26 25 21 20 6 5 0
SPECIAL rs 0 MTHI
000000 0O 0000 0000 0OOOCO OO 010001

6 5 15 6
Format: MTHI rs MIPS |
Purpose: To copy a GPR to the specia purpose HI register.

Description: HI < rs
The contents of GPR rs are loaded into special register HI.

Restrictions:

If either of thetwo preceding instructionsis MFHI, theresult of that MFHI isundefined. Reads
of the HI or LO special registers must be separated from subsequent instructions that write to
them by two or more other instructions.

A computed result written to the HI/LO pair by DDIV, DDIVU, DIV, DIVU, DMULT,
DMULTU, MULT, or MULTU must beread by MFHI or MFL O beforeancther result iswritten
into either HI or LO. If an MTHI instruction is executed following one of these arithmetic
instructions, but before aMFLO or MFHI instruction, the contents of LO are undefined. The
following example shows thisillegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO

code not containing mfhi or mflo

MTHI 16

code not containing mflo

MFLO r3 # this mflo would get an undefined value
Operation:

[-2:, I-1: HI « undefined

I: HI —« GPR]rs]
Exceptions:

None

Chapter 1 CPU Instruction Set

Move To LO Register MTLO

31 26 25 21 20 6 5 0
SPECIAL rs 0 MTLO
000000 0 0000 0000 0000 0O 010011

6 5 15 6
Format: MTLO rs MIPS |
Purpose: To copy a GPR to the specia purpose LO register.

Description: LO « rs
The contents of GPR rs are loaded into special register LO.

Restrictions:

If either of the two preceding instructionsis MFLO, the result of that MFL O is undefined.
Reads of the HI or LO special registers must be separated from subsequent instructions that
write to them by two or more other instructions.

A computed result written to the HI/LO pair by DDIV, DDIVU, DIV, DIVU, DMULT,
DMULTU, MULT, or MULTU must beread by MFHI or MFL O beforeancther result iswritten
into either HI or LO. If an MTLO instruction is executed following one of these arithmetic
instructions, but before a MFLO or MFHI instruction, the contents of HI are undefined. The
following example shows thisillegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO

code not containing mfhi or mflo

MTLO r6

code not containing mfhi
MFHI 3 # this mfhi would get an undefined value
Operation:

I-2:, I-1: LO ~ undefined
I: LO « GPRJrs]

Exceptions:

None

139

Chapter 1 CPU Instruction Set

140

MTPC (R10000 only) Move To Performance Counter
31 26 25 21 20 16 15 11 10 6 5 10
COPO 00100 rt 11001 00000 reg 1
010000
6 5 5 5 5 5 1
Format: MTPC rt, reg
Description:

The contents of general register rt areloaded into a performance counter reg of CPO. Only 0 and
1 arevalid for reg in the R10000 implementation.

Operation:

data — GPRJrt]
CPRIO, reg] ~ data

Exceptions:
Coprocessor Unusable

Chapter 1 CPU Instruction Set

Move To Performance Event Specifier (R10000 only) MTPS
31 26 25 21 20 16 15 11 10 6 5 10
COPO 00100 rt 11001 00000 reg 0
010000
6 5 5 5 5 5 1
Format: MTPS rt, reg
Description:

The contents of general register rt are loaded into a performance event specifier reg of CPO.
Only 0 and 1 are valid for reg in the R10000 implementation.

Operation:

data — GPRJrt]
CPRIO, reg] ~ data

Exceptions:

Coprocessor Unusable

141

Chapter 1 CPU Instruction Set

142

MULT Multiply Word

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULT
000000 0000000000 011000

6 5 5 10 6
Format: MULT rs, rt MIPS |
Purpose: To multiply 32-bit signed integers.

Description: (LO, HI) « rs xrt
The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as signed values, to produce a 64-bit result. The low-order 32-bit word of the result
isplaced into special register LO, and the high-order 32-bit word is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-hit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

If either of the two preceding instructionsis MFHI or MFLO, the result of the MFHI or MFLO
isundefined. Reads of the HI or LO special registers must be separated from subsegquent
instructions that write to them by two or more other instructions.

Operation:
if (NotWordValue(GPR]rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
[-2:, I-1: LO, HI < undefined
I: prOd — GPR[rS]31__O * GPR[rt]31__O
LO ~ sign_extend(prodz; o)
HI ~ sign_extend(prodgz 3»)

Exceptions:

None

Programming Notes:

In some processors theinteger multiply operation may proceed asynchronously and allow other
CPU instructionsto execute beforeit iscomplete. Anattempt toread LO or HI beforetheresults
are written will wait (interlock) until the results are ready. Asynchronous execution does not
affect the program result, but offersan opportunity for performanceimprovement by scheduling
the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Chapter 1 CPU Instruction Set

Multiply Unsigned Word MULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULTU
000000 0000000000 011001
6 5 5 10 6
Format: MULTU rs, 1t MIPS |
Purpose: To multiply 32-bit unsigned integers.

Description: (LO, HI) « rs xrt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both
operands as unsigned values, to produce a64-bit result. The low-order 32-bit word of the result
isplaced into special register LO, and the high-order 32-bit word is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-hit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

If either of the two preceding instructionsis MFHI or MFLO, the result of the MFHI or MFLO
isundefined. Reads of the HI or LO special registers must be separated from subsegquent
instructions that write to them by two or more other instructions.

Operation:
if (NotWordValue(GPR]rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
[-2:, I-1: LO, HI < undefined
I prod ~ (0| GPRIrs]s; o) * (0 || GPRIrt]3; o)
LO ~ sign_extend(prodz; o)
HI ~ sign_extend(prodgz 3»)

Exceptions:

None

Programming Notes:

In some processors theinteger multiply operation may proceed asynchronously and allow other
CPU instructionsto execute beforeit iscomplete. Anattempt toread LO or HI beforetheresults
are written will wait (interlock) until the results are ready. Asynchronous execution does not
affect the program result, but offersan opportunity for performanceimprovement by scheduling
the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

143

Chapter 1 CPU Instruction Set

144

NOR Not Or

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format: NOR rd, rs, rt MIPS |
Purpose: To do abitwiselogical NOT OR.

Description: rd — rs NOR rt

The contents of GPR rs are combined with the contents of GPR rt in abitwise logical NOR
operation. Theresult is placed into GPR rd.

Restrictions:

None

Operation:
GPRJ[rd] « GPR[rs] nor GPR|rt]

Exceptions:

None

Chapter 1 CPU Instruction Set

OR

Or
31 26 25 21 20 16 15 11 10 6 0
SPECIAL rs rt rd 0 OR
000000 00000 100101
6 5 5 5 5 6
Format: OR rd,rs, rt MIPS |
Purpose: To do abitwise logical OR.

Description: rd — rs OR 1t

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR

operation. Theresult is placed into GPR rd.
Restrictions:

None

Operation:
GPRJ[rd] « GPRJrs] or GPR]rt]
Exceptions:

None

145

Chapter 1 CPU Instruction Set

OR' Or Immediate

31 26 25 21 20 16 15 0
ORI rs rt immediate
001101
6 5 5 16
Format: ORI rt, rs, immediate MIPS |
Purpose: To do abitwise logical OR with a constant.

Description: rd — rs OR immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin
abitwise logical OR operation. The result is placed into GPR rt.

Restrictions:

None

Operation:
GPR]rt] ~ zero_extend(immediate) or GPR]rs]

Exceptions:

None

146

Chapter 1 CPU Instruction Set

Prefetch (R10000 only) PREF
31 26 25 21 20 16 15 0
PREF base hint offset
110011
6 5 5 16
Format: PREF hint, offset(base) MIPS IV
Purpose: To prefetch data from memory.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte
address. It advises that data at the effective address may be used in the near future. The hint
field suppliesinformation about the way that the data is expected to be used.

PREF is an advisory instruction. It may change the performance of the program. For al hint
values and all effective addresses, it neither changes architecturally-visible state nor alters the
meaning of the program. An implementation may do nothing when executing a PREF
instruction.

If MIPS 1V instructions are supported and enabled, PREF does not cause addressing-related
exceptions. If it raises an exception condition, the exception condition isignored. If an
addressing-related exception condition is raised and ignored, no datawill be prefetched, Even
if no datais prefetched in such a case, some action that is not architecturally-visible, such as
writeback of adirty cache line, might take place.

PREF will never generate a memory operation for alocation with an uncached memory access
type (see 1.6 Memory Access Types).

If PREF results in a memory operation, the memory access type used for the operation is
determined by the memory accesstype of the effective address, just asit would beif the memory
operation had been caused by aload or store to the effective address.

PREF enables the processor to take some action, typically prefetching the datainto cache, to
improve program performance. The action taken for a specific PREF instruction is both system
and context dependent. Any action, including doing nothing, is permitted that does not change
architecturally-visible state or alter the meaning of a program. It is expected that
implementations will either do nothing or take an action that will increase the performance of
the program.

For a cached location, the expected, and useful, action is for the processor to prefetch a block
of datathat includes the effective address. The size of the block, and the level of the memory
hierarchy it is fetched into are implementation specific.

147

Chapter 1 CPU Instruction Set

148

PREF (R10000 only) Prefetch

The hint field suppliesinformation about the way the datais expected to be used. No hint value
causes an action that modifies architecturally-visible state. A processor may use ahint valueto
improve the effectiveness of the prefetch action. The defined hint values and the recommended
prefetch action are shown in the table below. The hint table may be extended in future

implementations.

Table 1-37 Values of Hint Field for Prefetch Instruction

Value Name Data use and desired prefetch action
0 load Datais expected to be loaded (not modified).
Fetch data asiif for aload.
1 store Datais expected to be stored or modified.
Fetch data asif for astore.
2-3 Not yet defined.

4 load_streamed

Datais expected to be loaded (not modified) but not reused
extensively; it will “stream” through cache.

Fetch data asif for aload and placeit in the cache so that it
will not displace data prefetched as “retained” .

5 store_streamed

Datais expected to be stored or modified but not reused exten-
sively; it will “stream” through cache.

Fetch data asif for astore and place it in the cache so that it
will not displace data prefetched as “retained” .

6 load_retained

Datais expected to be loaded (not modified) and reused exten-
sively; it should be “retained” in the cache.

Fetch data asif for aload and placeit in the cache so that it
will not be displaced by data prefetched as “ streamed”.

7 store retained

Datais expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Fetch dataasif for astore and placeit in the cache so that will
not be displaced by data prefetched as “ streamed”.

8-31

Not yet defined.

Restrictions:

None

Operation:

VAddr « GPR[base] + sign_extend(offset)
(pAddr, uncached) — AddressTranslation(vAddr, DATA, LOAD)
Prefetch(uncached, pAddr, vAddr, DATA, hint)

Exceptions:

Reserved Instruction

Chapter 1 CPU Instruction Set

Prefetch (R10000 only) PREF

Programming Notes:

Prefetch can not prefetch data from amapped location unless the trandlation for that location is
present in the TLB. Locationsin memory pages that have not been accessed recently may not
have trandations in the TLB, so prefetch may not be effective for such locations.

Prefetch does not cause addressing exceptions. 1t will not cause an exception to prefetch using
an address pointer value before the validity of apointer is determined.

Implementation Notes:
It is recommended that areserved hint field value either cause a default prefetch action that is
expected to be useful for most cases of data use, such asthe“load” hint, or causetheinstruction
to be treated as a NOP.

149

Chapter 1 CPU Instruction Set

SB Store Byte

31 26 25 21 20 16 15 0
SB base rt offset
101000
6 5 5 16
Format: SB rt, offset(base) MIPS |
Purpose: To store a byte to memory.

Description: memory[base+offset] — rt

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the
effective address. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

None

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddrpgze.1 2 || (PAddr; o xor ReverseEndian?)
byte — vAddr; o xor BigEndianCPU?
dataword — GPR{rtlg;_gspyte o || 05"
StoreMemory (uncached, BYTE, dataword, pAddr, vAddr, DATA)

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor ReverseEndian®)
byte — vAddr, o xor BigEndianCPU3
datadouble — GPR{rtlg3_gepyte. o || 05"
StoreMemory (uncached, BYTE, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid
TLB Modified

Bus Error

Address Error

150

Chapter 1 CPU Instruction Set

Store Conditional Word SC
31 26 25 21 20 16 15 0
SC base rt offset
111000
6 5 5 16
Format: SC 1t offset(base) MIPS Il
Purpose: To store aword to memory to complete an atomic read-modify-write.

Description: if (atomic_update) then memory[base+offset] — rt, 1t — lelsert « 0

The LL and SC instructions provide primitives to implement atomic Read-Modify-Write
(RMW) operations for cached memory locations.

The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC compl etes the RMW sequence begun by the preceding LL instruction executed on the
processor. If it would completethe RMW sequence atomically, then the least-significant 32-bit
word of GPR rt is stored into memory at the location specified by the aligned effective address
and aone, indicating success, iswritten into GPR rt. Otherwise, memory isnot modified and a
zero, indicating failure, iswritten into GPR rt.

If any of the following events occurs between the execution of LL and SC, the SC will fail:

A coherent store is completed by another processor or coherent I/O module into the
block of physical memory containing the word. The size and alignment of the block is
implementation dependent. It is at least one word and is at most the minimum page
size.

An exception occurs on the processor executing the LL/SC.

An implementation may detect “an exception” in one of three ways:

1) Detect exceptions and fail when an exception occurs.

2) Fail after the return-from-interrupt instruction (RFE or ERET) is executed.
3) Do both 1 and 2.

If any of the following events occurs between the execution of LL and SC, the SC may succeed
or it may fail; the success or failure is unpredictable. Portable programs should not cause one
of these events.

A load, store, or prefetch is executed on the processor executing the LL/SC.

The instructions executed starting with the LL and ending with the SC do not liein a
2048-byte contiguous region of virtual memory. The region does not have to be
aligned, other than the alignment required for instruction words.

The following conditions must be true or the result of the SC will be undefined:

Execution of SC must have been preceded by execution of an LL instruction.

151

Chapter 1 CPU Instruction Set

152

SC Store Conditional Word

« A RMW sequence executed without intervening exceptions must use the same address
inthe LL and SC. The address is the same if the virtual address, physical address, and
cache-coherence algorithm are identical.

Atomic RMW isprovided only for cached memory locations. The extent to which the detection
of atomicity operates correctly depends on the system implementation and the memory access
type used for the location. See 1.6 Memory Access Types.

MP atomicity: To provide atomic RMW among multiple processors, all accesses to the
location must be made with a memory access type of cached coherent.

Uniprocessor atomicity: To provide atomic RMW on asingle processor, all accesses to the
location must be made with memory access type of either cached noncoherent or cached
coherent. All accesses must be to one or the other access type, they may not be mixed.

I/0O System: To provide atomic RMW with a coherent 1/0 system, all accesses to the location
must be made with a memory access type of cached coherent. If the I/O system does not use
coherent memory operations, then atomic RMW cannot be provided with respect to the I/O
reads and writes.

The definition above applies to user-mode operation on all MIPS processors that support the
MIPS 11 architecture. There may be other implementation-specific events, such as privileged
CPO instructions, that will cause an SC instruction to fail in some cases. System programmers
using LL/SC should consult implementati on-specific documentation.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached
coherent; if it does not, the result is undefined (see 1.6 Memory Access Types).

The effective address must be naturally aligned. If either of the two least-significant bits of the
address are non-zero, an Address Error exception occurs.

MIPSI1V: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit processors

vAddr — sign_extend(offset) + GPR[base]
if (vAddry q) # 02 then SignalException(AddressError) endif
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, STORE)
dataword — GPRrt]
if LLbit then
StoreMemory (uncached, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] — 031 || LLbit

Chapter 1 CPU Instruction Set

Store Conditional Word SC
Operation: 64-bit processors

vAddr — sign_extend(offset) + GPR[base]

if (vAddry q) # 02 then SignalException(AddressError) endif

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, STORE)

pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 02))

byte — vAddr, g xor (BigEndianCPU || 02)

datadouble — GPR{t]g3.gspyte o Il 05V

if LLbit then

StoreMemory (uncached, WORD, datadouble, pAddr, vAddr, DATA)
endif
GPR[rt] — 053] LLbit

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction
Programming Notes:

LL and SC are used to atomically update memory locations as shown in the example atomic
increment operation below.

L1:
LL T1, (TO) # load counter
ADDI T2,T1,1 #increment
SC T2, (TO) # try to store, checking for atomicity
BEQ T2,0,L1 #if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided.
Some examples of these are arithmetic operations that trap, system calls, floating-point
operations that trap or require software emulation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel
programs can be run on uniprocessor systems that do not support cached coherent memory
access types.

Implementation Notes:
The block of memory that is“locked” for LL/SC istypically the largest cache linein use.

153

Chapter 1 CPU Instruction Set

154

SCD Store Conditional Doubleword
31 26 25 21 20 16 15 0
SCD base rt offset
111100
6 5 5 16
Format: SCD rt, offset(base) MIPS Il
Purpose: To store a doubleword to memory to complete an atomic read-modify-write.

Description: if (atomic_update) then memory[base+offset] — rt, 1t — lelsert « 0
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SCD completes the RMW sequence begun by the preceding LLD instruction executed on
the processor. If it would complete the RMW sequence atomically, then the 64-bit doubleword
of GPR rt is stored into memory at the location specified by the aligned effective addressand a
one, indicating success, iswritten into GPR rt. Otherwise, memory is not modified and a zero,
indicating failure, iswritten into GPR rt.

If any of the following events occurs between the execution of LLD and SCD, the SCD will fail:

* A coherent store is completed by another processor or coherent 1/0O module into the
block of physical memory containing the word. The size and alignment of the block is
implementation dependent. It is at least one doubleword and is at most the minimum
page size.

* An exception occurs on the processor executing the LLD/SCD.
An implementation may detect “an exception” in one of three ways:
1) Detect exceptions and fail when an exception occurs.
2) Fail after the return-from-interrupt instruction (RFE or ERET) is executed.
3) Do both 1 and 2.

If any of the following events occurs between the execution of LLD and SCD, the SCD may
succeed or it may fail; the success or failure is unpredictable. Portable programs should not
cause one of these events.

* A memory access instruction (load, store, or prefetch) is executed on the processor
executing the LLD/SCD.

» Theinstructions executed starting with the LLD and ending with the SCD do not liein
a 2048-byte contiguous region of virtual memory. The region does not have to be
aligned, other than the alignment required for instruction words.

The following conditions must be true or the result of the SCD will be undefined:

» Execution of SCD must have been preceded by execution of an LLD instruction.

Chapter 1 CPU Instruction Set

Store Conditional Doubleword SCD

« A RMW sequence executed without intervening exceptions must use the same address
inthe LLD and SCD. The address is the same if the virtual address, physical address,
and cache-coherence algorithm are identical.

Atomic RMW is provided only for memory locations with cached noncoherent or cached
coherent memory accesstypes. The extent to which the detection of atomicity operates
correctly depends on the system implementation and the memory access type used for the
location. See 1.6 Memory Access Types.

MP atomicity: To provide atomic RMW among multiple processors, all accesses to the
location must be made with a memory access type of cached coherent.

Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the
location must be made with memory access type of either cached noncoherent or cached
coherent. All accesses must be to one or the other access type, they may not be mixed.

/0 System: To provide atomic RMW with a coherent 1/0 system, all accesses to the location
must be made with a memory access type of cached coherent. If the I/O system does not use
coherent memory operations, then atomic RMW cannot be provided with respect to the I/O
reads and writes.

The defemination above appliesto user-mode operation on all M1PS processorsthat support the
MIPS 111 architecture. There may be other implementation-specific events, such as privileged
CPOinstructions, that will cause an SCD instruction to fail in some cases. System programmers
using LLD/SCD should consult implementati on-specific documentation.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached
coherent; if it does not, the result is undefined (see 1.6 Memory Access Types). The 64-bit
doubleword of register rt is conditionally stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR baseto form
the effective address.

The effective address must be naturally aligned. If any of the three least-significant bits of the
address are non-zero, an Address Error exception occurs.

MIPSI1V: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddr,) # 03 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
datadouble —~ GPR]rt]
if LLbit then
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)
endif
GPR[rt] — 053] LLbit

155

Chapter 1 CPU Instruction Set

SCD Store Conditional Doubleword
Exceptions:

TLB Refill, TLB Invalid

TLB Modified

Address Error

Reserved Instruction

Programming Notes:

LLD and SCD are used to atomically update memory locations as shown in the example atomic
increment operation below.

L1:
LLD T1, (TO) # load counter
ADDI T2, T1,1 #increment
SCD T2, (TO) # try to store, checking for atomicity
BEQ T2,0,L1 #if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LLD and SCD cause SCD to fail, so persistent exceptions must be
avoided. Some examples of these are arithmetic operations that trap, system calls, floating-
point operations that trap or reguire software emulation assistance.

LLD and SCD function on asingle processor for cached noncoherent memory so that parallel
programs can be run on uniprocessor systems that do not support cached coherent memory
access types.

Implementation Notes:
The block of memory that is“locked” for LLD/SCD istypically the largest cachelinein use.

156

Chapter 1 CPU Instruction Set

Store Doubleword

31 26 25 21 20 16 15 0
SD base rt offset
111111
6 5 5 16
Format: SD 1, offset(base) MIPS Il

Purpose:

Description: memory[base+offset] — rt

To store a doubleword to memory.

The 64-bit doubleword in GPR rt is stored in memory at the location specified by the aligned
effective address. The 16-bit signed offset is added to the contents of GPR base to form the

effective address.

Restrictions:

The effective address must be naturally aligned. If any of the three least-significant bits of the
effective address are non-zero, an Address Error exception occurs.

MIPSIV: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation:

64-bit processors

vAddr — sign_extend(offset) + GPR[base]

if (vAddr, q) # 08 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)

datadouble — GPR[r]
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Réfill, TLB Invalid

TLB Modified
Address Error

Reserved Instruction

157

Chapter 1 CPU Instruction Set

158

SDCZ Store Doubleword From Coprocessor
31 26 25 21 20 16 15 0
SDCz base rt offset
1111zz
6 5 5 16
Format: SDC1 t, offset(base) MIPS Il

SDC2 t, offset(base)
Purpose: To store a doubleword from a coprocessor general register to memory.

Description: memory[base+offset] « rt

Coprocessor unit zz supplies a 64-bit doubleword which is stored at the memory location
specified by the aligned effective address. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

The data supplied by each coprocessor is defined by the individual coprocessor specifications.
The usual operation would read the data from coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered O to 3 (see
1.2.5 Coprocessor Instructions). The opcodes corresponding to coprocessors that are not
defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessorsiis controlled by system software. Each coprocessor has a
“coprocessor usable” bit in the System Control coprocessor. The usable bit must be set for a
user program to execute a coprocessor instruction. If the usable bit is not set, an attempt to
execute the instruction will result in a Coprocessor Unusable exception. An unimplemented
coprocessor must never be enabled. The result of executing thisinstruction for an
unimplemented coprocessor when the usable bit is set, is undefined.

Thisinstruction is not defined for coprocessor 0, the System Control coprocessor, and the
opcode may be used for other instructions.

The effective address must be naturally aligned. If any of the three least-significant bits of the
effective address are non-zero, an Address Error exception occurs.

MIPSI1V: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddr,) # 03 then SignalException(AddressError) endif
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA, STORE)
datadouble — COP_SD(z, rt)
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Chapter 1 CPU Instruction Set

Store Doubleword From Coprocessor SDCZ
Operation: 64-bit processors

vAddr — sign_extend(offset) + GPR[base]

if (vAddr,) # 0° then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)

datadouble — COP_SD(z, rt)

StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid
TLB Modified

Address Error

Reserved Instruction
Coprocessor Unusable

159

Chapter 1 CPU Instruction Set

160

SDL Store Doubleword Left
31 26 25 21 20 16 15 0
SDL base rt offset
101100
6 5 5 16
Format: SDL 1t, offset(base) MIPS Il
Purpose: To store the most-significant part of a doubleword to an unaligned memory
address.

Description: memory[base+offset] — Some_Bytes_From rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr isthe address of the most-significant of eight consecutive bytes forming a
doubleword in memory (DW) starting at an arbitrary byte boundary. A part of DW, the most-
significant one to eight bytes, isin the aligned doubleword containing EffAddr. The same
number of most-significant (Ieft) bytes of GPR rt are stored into these bytes of DW.

Thefigure below illustrates this operation for big-endian byte ordering. The eight consecutive
bytesin 2..9 form an unaligned doubleword starting at location 2. A part of DW, six bytes, is
contained in the aligned doubleword containing the most-significant byteat 2. First, SDL stores
the six most-significant bytes of the source register into these bytesin memory. Next, the
complementary SDR instruction stores the remainder of DW.

Doubleword at byte 2 in memory (big-endian) - each memory byte contains its address

most — significance — least
lo|1]2]3]4 5|6|7]|8) 9|10 11]12]13/14/15] Memory

'AlB|Cc|D|E|F|G|H| GPR24

After executing
SDL $24, 2($0)

\0\1 A\B\C\D\E\Hs\g

Then after
SDR $24, 9($0)

\0\1 A\B\C\D\E\HG\H 10\...

~ A

Figure1-6 Unaligned Doubleword Store with SDL and SDR

Chapter 1 CPU Instruction Set

Store Doubleword Left SDL

The bytes stored from the source register to memory depend on both the offset of the effective
address within an aligned doubleword, i.e. thelow three bits of the address (vAddr,), and the
current byte ordering mode of the processor (big- or little-endian). The table below shows the
bytes stored for every combination of offset and byte ordering.

Table 1-38 Bytes Sored by SDL Instruction

Initial Memory contents and byte offsets Contents of
most —significance — least Source Register
0 1 2 3 4 5 6 7 < big- most —significance — least
Lifi]e] 1 [m[n]o]p] [alelc|p[e[F[o]H]

7 6 5 4 3 2 1 0 - little-endian
Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr, o Little-endian byte ordering

A B CDETFGH 0 ijklmno‘A
i‘ABCDEFG 1 ijkImn‘AB
ij‘ABCDEF 2 ijklm‘ABC
ijk‘ABCDE 3 ijkI‘ABCD
ijkl‘ABCD 4 |jk‘ABCDE
|jkIm‘ABC 5 |j‘ABCDEF
ijklmn‘AB 6 .\ABCDEFG
|jklmno‘A 7 A B CDETF G H

Restrictions:

None

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
PAddr — pAddrpsize.1).3 || (PAddry o xor ReverseEndian®)
If BigEndianMem = 0 then
PAddr « pAddrpsize.).3 | 0°
endif
byte — vAddr, o, xor BigEndianCPU®
datadouble — 0°¢8Y®® || GPR[rt]s3 56 _gebyte
StoreMemory (uncached, byte, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid
TLB Modified

Bus Error

Address Error

Reserved Instruction

161

Chapter 1 CPU Instruction Set

162

SDR Store Doubleword Right
31 26 25 21 20 16 15 0
SDR base rt offset
101101
6 5 5 16
Format: SDR rt, offset(base) MIPS Il
Purpose: To store the least-significant part of a doubleword to an unaligned memory
address.

Description: memory[base+offset] — Some_Bytes_From rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr isthe address of the least-significant of eight consecutive bytes forming a
doubleword in memory (DW) starting at an arbitrary byte boundary. A part of DW, the |east-
significant one to eight bytes, isin the aligned doubleword containing EffAddr. The same
number of least-significant (right) bytes of GPR rt are stored into these bytes of DW.

Thefigure below illustrates this operation for big-endian byte ordering. The eight consecutive
bytesin 2..9 form an unaligned doubleword starting at location 2. A part of DW, two bytes, is
contained in the aligned doubleword containing the least-significant byteat 9. First, SDR stores
the two least-significant bytes of the source register into these bytesin memory. Next, the
complementary SDL stores the remainder of DW.

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address

most — significance — least
lo|1]2]3]4 5|6|7]|8) 9|10 11]12]13/14/15] Memory

'AlB|Cc|D|E|F|G|H| GPR24

)
After executing
\0\1 2\3\4\5\6\7|G\H 10\...3 SDR $24, 9($0)
7
/
Then after
lo|1[A[B[C D/E|[F]|G|H 10 ..< SDL $24, 2($0)

Figure1-7 Unaligned Doubleword Store with SDR and SDL

Chapter 1 CPU Instruction Set

Store Doubleword Right

SDR

The bytes stored from the source register to memory depend on both the offset of the effective
address within an aligned doubleword, i.e. the low three bits of the address (vAddr,), and the
current byte ordering mode of the processor (big- or little-endian). The table below shows the

bytes stored for every combination of offset and byte ordering.

Table 1-39 Bytes Sored by SDR Instruction

Initial Memory contents and byte offsets Contents of
most — significance —least Source Register

0 1 2 3 4 5 6 7 < big- most — significance —least

[ili[x[t]m[nfo]p] [Alef[c[p[e[F[c[H]

7 6 5 4 3 2 1 0 - little-endian

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering VAddr, o Little-endian byte ordering

Hlj kK I m n o p 0 A B CDE F G H
GH‘k l m n o p 1 BCDEFGH‘p
FGH‘I m n o p 2 CDEFGH‘O p
EFGH‘mnop 3 DEFGH‘nop
DEFGH‘nop 4 EFGH‘mnop
CDEFGH‘op 5 FGH‘Imnop
BCDEFGH‘p 6 GH‘kImnop
A B CDTETFGH 7 H\j k I m n o p

Restrictions:

None

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
PAddr — pAddrpsize.1).3 || (PAddry o xor ReverseEndian®)
If BigEndianMem = 0 then
PAddr « pAddrpsize.).3 | 0°
endif
byte — vAddr; o xor BigEndianCPU®
datadouble — GPR{rtlg3_geyte || 05

StoreMemory (uncached, DOUBLEWORD-byte, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Réfill, TLB Invalid
TLB Modified

Bus Error

Address Error

Reserved Instruction

163

Chapter 1 CPU Instruction Set

164

S H Store Halfword
31 26 25 21 20 16 15 0
SH base rt offset
101001
6 5 5 16
Format: SH 1t offset(base) MIPS |
Purpose: To store a halfword to memory.

Description: memory[base+offset] — rt

The least-significant 16-bit halfword of register rt is stored in memory at the location specified
by the aligned effective address. The 16-bit signed offset is added to the contents of GPR base
to form the effective address.

Restrictions:

The effective address must be naturally aligned. If theleast-significant bit of the addressis non-
zero, an Address Error exception occurs.

MIPSIV: Thelow-order bit of the offset field must be zero. If it is not, the result of the
instruction is undefined.

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddrg) # 0 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddrpgize.1 > || (pPAddry g xor (ReverseEndian || 0))
byte — vAddr, o xor (BigEndianCPU || 0)
dataword — GPRIrtlg;_geyte. o || 052
StoreMemory (uncached, HALFWORD, dataword, pAddr, vAddr, DATA)

Operation: 64-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddrg) # 0 then SignalException(AddressError) endif
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddrpgize.1 3 || (PAddr, g xor (ReverseEndian2 || 0))
byte — vAddr, o xor (BigEndianCPU2 [| 0)
datadouble — GPRIrtlg3_gebyte o Il 05
StoreMemory (uncached, HALFWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid
TLB Modified
Address Error

Chapter 1 CPU Instruction Set

Shift Word Left Logical SL L
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SLL
000000 00000 000000
6 5 5 5 5 6
Format: SLL rd,rt, sa MIPS |

Purpose: To left shift aword by afixed number of bits.

Description: rd — rt<<sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeroes into the
emptied bits; the word result is placed in GPR rd. The bit shift count is specified by sa. If rd
is a 64-bit register, the result word is sign-extended.

Restrictions:

None

Operation:

S « sa
temp « GPR[rt](31.5).0 Il 0°
GPRJrd] ~ sign_extend(temp)

Exceptions:

None

Programming Notes:

Unlike nearly al other word operations the input operand does not have to be a properly sign-
extended word value to produce avalid sign-extended 32-bit result. The result word is always
sign extended into a 64-bit destination register; thisinstruction with a zero shift amount
truncates a 64-bit value to 32 bits and sign extendsiit.

Some assemblers, particularly 32-bit assemblers, treat this instruction with a shift amount of
zero asaNOP and either delete it or replace it with an actual NOP.

165

Chapter 1 CPU Instruction Set

166

SL LV Shift Word Left Logical Variable
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLLV
000000 00000 000100
6 5 5 5 5 6
Format: SLLV rd, t, rs MIPS |

Purpose: To left shift aword by a variable number of bits.

Description: rd — rt<<rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeroes into the

emptied bits; the result word is placed in GPR rd. The bit shift count is specified by the low-

order five bitsof GPR rs. If rd isa 64-bit register, the result word is sign-extended.
Restrictions:

None

Operation:

S — GP[rs]s o
temp GPR[rt](31.5) 0 Il 0°
GPRJrd] ~ sign_extend(temp)

Exceptions:

None

Programming Notes:

Unlike nearly al other word operations the input operand does not have to be a properly sign-
extended word value to produce avalid sign-extended 32-bit result. The result word is always
sign extended into a 64-bit destination register; thisinstruction with a zero shift amount
truncates a 64-bit value to 32 bits and sign extendsiit.

Some assemblers, particularly 32-bit assemblers, treat this instruction with a shift amount of
zero asaNOP and either delete it or replace it with an actual NOP.

Chapter 1 CPU Instruction Set

Set On Less Than S LT
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format: SLT rd,rs, rt MIPS |

Purpose: To record the result of aless-than comparison.

Description: rd « (rs <rt)

Comparethe contents of GPR rsand GPR rt as signed integers and record the Boolean result of
the comparison in GPR rd. If GPR rsislessthan GPR rt the result is 1 (true), otherwise O
(false).

The arithmetic comparison does not cause an Integer Overflow exception.
Restrictions:
None

Operation:

if GPR[rs] < GPR]rt] then
GPRIrd] — 0GPREEN-L |1
else
GPR[rd] — QGPRLEN
endif

Exceptions:

None

167

Chapter 1 CPU Instruction Set

168

SLTl Set on Less Than Immediate
31 26 25 21 20 16 15 0
SLTI rs rt immediate
001010
6 5 5 16
Format: SLTI rt, rs, immediate MIPS |
Purpose: To record the result of aless-than comparison with a constant.

Description: rt « (rs <immediate)

Compare the contents of GPR rsand the 16-bit signed immediate as signed integers and record
the Boolean result of the comparison in GPR rt. If GPR rsislessthan immediate the result is
1 (true), otherwise O (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:
if GPR][rs] < sign_extend(immediate) then
GPRIrd] — 0CPREEN-)I 1
else
GPR[rd] — QGPRLEN
endif

Exceptions:

None

Chapter 1 CPU Instruction Set

Set on Less Than Immediate Unsigned SLT'U
31 26 25 21 20 16 15 0
SLTIU rs rt immediate
001011
6 5 5 16
Format: SLTIU rt, rs, immediate MIPS |
Purpose: To record the result of an unsigned less-than comparison with a constant.

Description: rt « (rs <immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers
and record the Boolean result of the comparison in GPR rt. If GPR rsislessthan immediate
theresult is 1 (true), otherwise O (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction is able to
represent the smallest or largest unsigned numbers. The representable values are at the
minimum [0, 32767] or maximum [max_unsighed-32767, max_unsigned] end of the unsigned
range.

The arithmetic comparison does not cause an Integer Overflow exception.
Restrictions:
None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPRIrd] — 0GPREEN-L |1

else
GPR[rd] — QGPRLEN

endif

Exceptions:

None

169

Chapter 1 CPU Instruction Set

170

SLTU Set on Less Than Unsigned
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLTU
000000 00000 101011
6 5 5 5 5 6
Format: SLTU rd,rs, 1t MIPS |

Purpose: To record the result of an unsigned less-than comparison.

Description: rd « (rs <rt)

Comparethe contents of GPR rsand GPR rt as unsigned integers and record the Bool ean result
of the comparison in GPR rd. If GPRrsislessthan GPR rt theresult is 1 (true), otherwise O
(false).

The arithmetic comparison does not cause an Integer Overflow exception.
Restrictions:
None
Operation:
if (0]| GPRJrs]) < (0 || GPRrt]) then
GPRI[rd] ~ 0CPREEN-L |11
else

GPRIrd] — QCGPRLEN
endif

Exceptions:

None

Chapter 1 CPU Instruction Set

Shift Word Right Arithmetic SRA
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRA
000000 00000 000011
6 5 5 5 5 6
Format: SRA rd, t, sa MIPS |

Purpose: To arithmetic right shift aword by afixed number of bits.

Description: rd — rt>>sa (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit
(bit 31) in the emptied bits; the word result isplaced in GPR rd. The bit shift count is specified
by sa. If rdisa64-bit register, the result word is sign-extended.

Restrictions:
On 64-hit processors, if GPR rt doesnot contain asign-extended 32-bit value (bits 63..31 equal)
then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rt])) then UndefinedResult() endif
S < sa

temp — (GPRIrt]3;)° || GPRIrtl3; s

GPR[rd] — sign_extend(temp)

Exceptions:

None

171

Chapter 1 CPU Instruction Set

172

SRAV Shift Word Right Arithmetic Variable
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6
Format: SRAV rd, t, rs MIPS |

Purpose: To arithmetic right shift aword by a variable number of bits.

Description: rd — rt>>rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit
(bit 31) in the emptied bits; the word result isplaced in GPR rd. The bit shift count is specified
by the low-order five bits of GPR rs. If rd isa64-bit register, the result word is sign-extended.

Restrictions:

On 64-hit processors, if GPR rt doesnot contain asign-extended 32-bit value (bits 63..31 equal)
then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rt])) then UndefinedResult() endif
S — GPR]rsls o

temp — (GPRIrt]3;)° || GPRIrtl3; s

GPR[rd] — sign_extend(temp)

Exceptions:

None

Chapter 1 CPU Instruction Set

Shift Word Right Logical SRL
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRL
000000 00000 000010
6 5 5 5 5 6
Format: SRL rd, i, sa MIPS |

Purpose: Tologica right shift aword by afixed number of bits.

Description: rd — rt>>sa (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the
emptied bits; the word result is placed in GPR rd. The bit shift count is specified by sa. If rd
is a 64-bit register, the result word is sign-extended.

Restrictions:
On 64-hit processors, if GPR rt doesnot contain asign-extended 32-bit value (bits 63..31 equal)
then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rt])) then UndefinedResult() endif
S < sa

temp ~ 0°| GPRIrt]3; ¢

GPR[rd] — sign_extend(temp)

Exceptions:

None

173

Chapter 1 CPU Instruction Set

174

SRLV Shift Word Right Logical Variable
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRLV
000000 00000 000110
6 5 5 5 5 6
Format: SRLV rd,rt, rs MIPS |

Purpose: To logical right shift aword by a variable number of bits.

Description: rd « rt>>rs (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the
emptied bits; the word result is placed in GPR rd. The bit shift count is specified by the low-
order five bitsof GPR rs. If rd isa 64-bit register, the result word is sign-extended.

Restrictions:
On 64-hit processors, if GPR rt doesnot contain asign-extended 32-bit value (bits 63..31 equal)
then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rt])) then UndefinedResult() endif
S — GPR]rsls o

temp ~ 0°| GPRIrt]3; ¢

GPR[rd] — sign_extend(temp)

Exceptions:

None

Chapter 1 CPU Instruction Set

Subtract Word SU B

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUB
000000 00000 100010
6 5 5 5 5 6
Format: SUBrd, rs, 1t MIPS |
Purpose: To subtract 32-bit integers. If overflow occurs, then trap.

Description: rd < rs-rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rsto produce a
32-bit result. If the subtraction resultsin 32-bit 2's complement arithmetic overflow then the
destination register is not modified and an Integer Overflow exception occurs. If it does not
overflow, the 32-bit result is placed into GPR rd.

Restrictions:
On 64-hit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
temp — GPR[rs] - GPR]rt]
if (32_bit_arithmetic_overflow) then
SignalException(IntegerOverflow)
else
GPR][rd] ~temp
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but, does not trap on overflow.

175

Chapter 1 CPU Instruction Set

176

SUBU Subtract Unsigned Word
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUBU

000000 00000 100011
6 5 5 5 5 6
Format: SUBU rd, rs, rt MIPS |
Purpose: To subtract 32-bit integers.

Description: rd < rs-rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit
arithmetic result is placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:
On 64-hit processors, if either GPR rt or GPR rs do not contain sign-extended 32-bit values
(bits 63..31 equal), then the result of the operation is undefined.

Operation:

if (NotWordValue(GPR]rs]) or NotWordValue(GPR[rt])) then UndefinedResult() endif
temp — GPR[rs] - GPRJrt]
GPR][rd] ~temp

Exceptions:

None

Programming Notes:

Theterm “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo
arithmetic that does not trap on overflow. It isappropriate for arithmetic which is not signed,
such asaddress arithmetic, or integer arithmetic environmentsthat ignore overflow, suchas“C”
language arithmetic.

Chapter 1 CPU Instruction Set

Store Word SW

31 26 25 21 20 16 15 0
SW base rt offset
101011
6 5 5 16
Format: SW 1, offset(base) MIPS |
Purpose: To store aword to memory.

Description: memory[base+offset] — rt

The least-significant 32-bit word of register rt is stored in memory at the location specified by
the aligned effective address. The 16-bit signed offset is added to the contents of GPR base to
form the effective address.

Restrictions:

The effective address must be naturally aligned. If either of the two least-significant bits of the
address are non-zero, an Address Error exception occurs.

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit Processors

vAddr — sign_extend(offset) + GPR[base]

if (vAddry) # 02 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
dataword — GPR]rt]

StoreMemory (uncached, WORD, dataword, pAddr, vAddr, DATA)

Operation: 64-bit Processors

vAddr — sign_extend(offset) + GPR[base]

if (vAddry q) # 02 then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%)

byte — vAddr, ¢ xor (BigEndianCPU || 0%)

datadouble — GPR{rtlg3 gepyte || 05

StoreMemory (uncached, WORD, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invaid
TLB Modified
Address Error

177

Chapter 1 CPU Instruction Set

178

SWCZ Store Word From Coprocessor
31 26 25 21 20 16 15 0
SWCz base rt offset
1110zz
6 5 5 16
Format: SWC1 t, offset(base) MIPS |

SWC2 rt, offset(base)
SWC3 rt, offset(base)

Purpose: To store aword from a coprocessor general register to memory.

Description: memory[base+offset] — rt

Coprocessor unit zz supplies a 32-bit word which is stored at the memory location specified by
the aligned effective address. The 16-bit signed offset is added to the contents of GPR base to
form the effective address.

The data supplied by each coprocessor is defined by the individual coprocessor specifications.
The usual operation would read the data from coprocessor general register rt.

Each MIPS architecture level defines up to 4 coprocessor units, numbered 0 to 3 (see
1.2.5 Coprocessor Instructions). The opcodes corresponding to coprocessors that are not
defined by an architecture level may be used for other instructions.

Restrictions:

Access to the coprocessorsiis controlled by system software. Each coprocessor has a
“coprocessor usable” bit in the System Control coprocessor. The usable bit must be set for a
user program to execute a coprocessor instruction. |f the usable bit is not set, an attempt to
execute the instruction will result in a Coprocessor Unusable exception. An unimplemented
coprocessor must never be enabled. The result of executing thisinstruction for an
unimplemented coprocessor when the usable bit is set, is undefined.

Thisinstruction is not available for coprocessor 0, the System Control coprocessor, and the
opcode may be used for other instructions.

The effective address must be naturally aligned. If either of thetwo least-significant bits of the
address are non-zero, an Address Error exception occurs.

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit processors
vAddr — sign_extend(offset) + GPR[base]
if (vAddry q) # 02 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
dataword — COP_SW (z, rt)
StoreMemory (uncached, WORD, dataword, pAddr, vAddr, DATA)

Chapter 1 CPU Instruction Set

Store Word From Coprocessor SWCZ
Operation: 64-bit processors

vAddr — sign_extend(offset) + GPR[base]

if (vAddry q) # 02 then SignalException(AddressError) endif

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA, STORE)

pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 0?)

byte — vAddr, g xor (BigEndianCPU || 02)

dataword - COP_SW (z, rt)

datadouble — 03280t || dataword || 08"Vt

StoreMemory (uncached, WORD, datadouble, pAddr, vAddr DATA)

Exceptions:
TLB Refill, TLB Invalid
TLB Modified
Address Error
Reserved Instruction

Coprocessor Unusable

179

Chapter 1 CPU Instruction Set

180

SWL Store Word Left

31 26 25 21 20 16 15 0
SWL base rt offset
101010
6 5 5 16
Format: SWL 1, offset(base) MIPS |
Purpose: To store the most-significant part of aword to an unaligned memory address.

Description: memory[base+offset] — rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr isthe address of the most-significant of four consecutive bytes forming a
word in memory (W) starting at an arbitrary byte boundary. A part of W, the most-significant
oneto four bytes, isin the aligned word containing EffAddr. The same number of the most-
significant (left) bytes from the word in GPR rt are stored into these bytes of W.

If GPRrtisa64-bit register, the source word is the low word of the register.

The figure below illustrates this operation for big-endian byte ordering for 32-bit and 64-hit
registers. The four consecutive bytesin 2..5 form an unaligned word starting at location 2. A
part of W, two bytes, is contained in the aligned word containing the most-significant byte at 2.
First, SWL stores the most-significant two bytes of the low-word from the source register into
these two bytesin memory. Next, the complementary SWR stores the remainder of the
unaligned word.

Word at byte 2 in memory, big-endian byte order, - each mem byte contains its address
most — significance — least

‘ 0 ‘ 12 ‘ 3 I 4 ‘ 5|6 ‘ 7 I 8 ‘ § Memory: Initial contents

64-bit GPR 24 \A\B\C\D E|F
32-hit GPR 24 E|F|G|H
_

@
s

o|1[E[F]|4|5 After executing SW. $24, 2($0)

o1]E|F|G|H[6].Y Then after SUR $24, 5($0)
7

Figure1-8 Unaligned Word Sore using SWL and SWR

Chapter 1 CPU Instruction Set

Store Word Left SWL

The bytes stored from the source register to memory depend on both the offset of the effective
address within an aligned word, i.e. the low two bits of the address (vAddr,_g), and the current
byte ordering mode of the processor (big- or little-endian). The table below shows the bytes
stored for every combination of offset and byte ordering.

Table 1-40 Bytes Sored by SAWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 - big-endian 64-bit register
il k] offset (vAddry o) |A|B|C|D|E|F|G|H|
3 2 1 0 -« little-endian most — significance — least
most least 32-bit register ‘ E ‘ F ‘ G ‘ H ‘
— significance —

Memory contents after instruction (shaded is unchanged)

e, i, e
E F G H 0 ik \ E
i \ E F G 1 i \ E F
i \ E F 2 i \ E F G
ik \ E 3 E F G H

Operation: 32-bit Processors

vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddrpsize.1).2 || (PAddry o xor ReverseEndian?)
If BigEndianMem = 0 then
pPAddr — pAddrpsize.1). 2 || 07
endif
byte — vAddr; o xor BigEndianCPU?
dataword — 0248V || GPRIrt]3; 24 gunyte
StoreMemory (uncached, byte, dataword, pAddr, vAddr, DATA)

181

Chapter 1 CPU Instruction Set

SWL Store Word Left

Operation: 64-bit Processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
PAddr — pAddrpsize.1).3 || (PAddry o xor ReverseEndian®)
If BigEndianMem = 0 then
PAddr « pAddr(psize-1).2 Il 02
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
datadouble — 032 || 0248 || GPRIrt]3; 4.yt
else
datadouble — 028V || GPR[rt]3; 4 gpyte || 032
endif
StoreMemory(uncached, byte, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid
TLB Modified

Bus Error

Address Error

182

Chapter 1 CPU Instruction Set

Store Word Right SWR

31 26 25 21 20 16 15 0
SWR base rt offset
101110
6 5 5 16
Format: SWR rt, offset(base) MIPS |
Purpose: To store the least-significant part of aword to an unaligned memory address.

Description: memory[base+offset] — rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr isthe address of the least-significant of four consecutive bytes forming a
word in memory (W) starting at an arbitrary byte boundary. A part of W, the |least-significant
oneto four bytes, isin the aligned word containing EffAddr. The same number of the least-
significant (right) bytes from the word in GPR rt are stored into these bytes of W.

If GPR rtisa64-bit register, the source word is the low word of the register.

The figure below illustrates this operation for big-endian byte ordering for 32-bit and 64-hit
registers. The four consecutive bytesin 2..5 form an unaligned word starting at location 2. A
part of W, two bytes, is contained in the aligned word containing the least-significant byte at 5.
First, SWR stores the | east-significant two bytes of the low-word from the source register into
these two bytesin memory. Next, the complementary SWL stores the remainder of the
unaligned word.

Word at byte 2 in memory, big-endian byte order, - each mem byte contains its address
most — significance — least

‘ 0 ‘ 1] 2 ‘ 3 I 4 ‘ 5| 6 ‘ 7 I 8 ‘g Memory: Initial contents
7

64-bit GPR 24 \A\B\C\D E|F|G|H
32-hit GPR 24 E|F|G|H

/1

‘ 0 ‘ 1] 2 ‘ 3 I G ‘ H| 6 ‘§| After executing SWR $24, 5($0)

7

‘0‘1 E‘FIG‘H 6‘...3 Then after SW. $24, 2($0)

Figure1-9 Unaligned Word Store using SWR and SWL

183

Chapter 1 CPU Instruction Set

SWR Store Word Right

The bytes stored from the source register to memory depend on both the offset of the effective
address within an aligned word, i.e. the low two bits of the address (vAddr,_g), and the current
byte ordering mode of the processor (big- or little-endian). The tabel below shows the bytes
stored for every combination of offset and byte ordering.

Table 1-41 Bytes Stored by SWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 - big-endian 64-bit register
il k] offset (vAddry o) |A|B|C|D|E|F|G|H|
3 2 1 0 -« little-endian most — significance — least
most least 32-bit register ‘ E ‘ F ‘ G ‘ H ‘
— significance —

Memory contents after instruction (shaded is unchanged)

e, i e
H \ ik 0 E F G H
G H \ Ko 1 F G H \ |
F G H \ | 2 G H \ Ko
E F G H 3 H \ ik

Restrictions:

None

Operation: 32-bit Processors

vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA, STORE)
PAddr — pAddrpsize.1).2 || (PAddry g xor ReverseEndian?)
BigEndianMem = 0 then
PAddr « pAddr(psize-1).2 Il 02
endif
byte — vAddr; o xor BigEndianCPU?
dataword « GPR[It]g;_gspyte || 052
StoreMemory (uncached, WORD-byte, dataword, pAddr, vAddr, DATA)

Chapter 1 CPU Instruction Set

Store Word Right SWR

Operation: 64-bit Processors
vAddr — sign_extend(offset) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
PAddr — pAddrpsize.1).3 || (PAddry o xor ReverseEndian®)
If BigEndianMem = 0 then
PAddr « pAddr(psize-1).2 Il 02
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
datadouble — 032 || GPRIrt]3;.geyte. o || 08V
else
datadouble — GPRIrtlz; geyte o Il 05 || 032
endif
StoreMemory(uncached, WORD-byte, datadouble, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid
TLB Modified

Bus Error

Address Error

185

Chapter 1 CPU Instruction Set

186

SYNC Synchronize Shared Memory
31 26 25 11 10 6 5 0
SPECIAL 0 stype SYNC
ooo0o00O0 00 0000 0000 OOOO O 001111
6 15 5 6
Format: SYNC (stype = 0 implied) MIPS Il

Purpose: To order loads and stores to shared memory in a multiprocessor system.
Description:

To serve abroad audience, two descriptions are given. A simple description of SYNC that
appealstointuition isfollowed by a precise and detailed description.

A Simple Description:

SYNC affects only uncached and cached coherent loads and stores. The loads and stores that
occur prior to the SYNC must be completed before the loads and stores after the SYNC are
allowed to start.

L oads are completed when the destination register is written. Stores are completed when the
stored value is visible to every other processor in the system.

A Precise Description:

If the stype field has a value of zero, every synchronizable load and store that occursin the
instruction stream prior to the SYNC instruction must be globally performed before any
synchronizable load or store that occurs after the SYNC may be performed with respect to any
other processor or coherent 1/0 module.

Sync does not guarantee the order in which instruction fetches are performed.
The stype values 1-31 are reserved; they produce the same result as the value zero.

Synchronizable: A load or storeinstruction is synchronizable if the load or store occursto a
physical location in shared memory using avirtual location with amemory accesstype of either
uncached or cached coherent. Shared memory is memory that can be accessed by more than
one processor or by a coherent 1/0 system module.

1.6 Memory Access Types contains information on memory access types.

Performed load: A load instruction is performed when the value returned by the load has been
determined. Theresult of aload on processor A has been deter mined with respect to processor
or coherent 1/0 module B when a subsequent store to the location by B cannot affect the value
returned by the load. The store by B must use the same memory access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on
processor A is observable with respect to processor or coherent 1/0 module B when a
subsequent load of the location by B returnsthe value written by the store. Theload by B must
use the same memory access type as the store.

Chapter 1 CPU Instruction Set

Synchronize Shared Memory SYNC

Globally performed load: A load instruction is globally performed when it is performed with
respect to all processors and coherent 1/0O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed whenit is globally
observable. It isglobally observable when it observable by all processors and I/O modules
capable of loading from the location.

Coherent /O module: A coherent I/O module is an Input/Output system component that
performs coherent Direct Memory Access (DMA). It reads and writes memory independently
asthough it were aprocessor doing loads and stores to locations with a memory access type of
cached coherent.

Restrictions:

The effect of SYNC on the global order of the effects of loads and stores for memory access
types other than uncached and cached coherent is not defined.

Operation:
SyncOperation(stype)

Exceptions:

Reserved Instruction

Programming Notes:

A processor executing load and store instructions observes the effects of the loads and stores
that use the same memory accesstypein the order that they occur in theinstruction stream; this
isknown as programorder. A parallel program has multiple instruction streams that can
execute at the same time on different processors. In multiprocessor (MP) systems, the order in
which the effects of |oads and stores are observed by other processors, the global order of the
loads and stores, determines the actions necessary to reliably share datain parallel programs.

When all processors observe the effects of |oads and stores in program order, the system is
strongly ordered. On such systems, parallel programs can reliably share data without explicit
actionsin the programs. For such a system, SY NC has the same effect asa NOP. Executing
SYNC on such a system is not necessary, but is also not an error.

If amultiprocessor system is not strongly ordered, the effects of load and store instructions
executed by one processor may be observed out of program order by other processors. On such
systems, parallel programs must take explicit actionsin order to reliably share data. At critical
pointsin the program, the effects of loads and stores from an instruction stream must occur in
the same order for all processors. SYNC separates the |oads and stores executed on the
processor into two groups and the effects of these gr oups are seen in program order by all
processors. The effect of al loads and stores in one group is seen by all processors before the
effect of any load or storein the other group. In effect, SYNC causes the system to be strongly
ordered for the executing processor at the instant that the SYNC is executed.

187

Chapter 1 CPU Instruction Set

188

SYNC Synchronize Shared Memory

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they
operate as strongly ordered for at least one memory accesstype. The MIPS architecture also
permits MP systems that are not strongly ordered. SYNC enables the reliable use of shared
memory on such systems. A parallel program that does not use SY NC will generally not operate
on asystem that is not strongly ordered, however a program that does use SYNC will work on
both types of systems. System-specific documentation will describe the actions necessary to
reliably share datain parallel programs for that system.

Thebehavior of aload or store using one memory accesstypeisundefined if aload or storewas
previously made to the same physical location using a different memory access type. The
presence of a SYNC between the references does not alter this behavior. See 1.6.1 Mixing
References with Different Access Types for amore complete discussion.

SYNC affects the order in which the effects of load and store instructions appears to all
processors; it not generally affect the physical memory-system ordering or synchronization
issues that arise in system programming. The effect of SYNC on implementation specific
aspects of the cached memory system, such as writeback buffers, is not defined. The effect of
SYNC onreadsor writesto memory caused by privileged implementation-specificinstructions,
such as CACHE, is not defined.

Prefetch operations have no effects detectabl e by user-mode programs so ordering the effects of
prefetch operations is not meaningful.

Chapter 1 CPU Instruction Set

Synchronize Shared Memory SYNC

EXAMPLE: These code fragments show how SYNC can be used to coordinate the use of
shared data between separate writer and reader instruction streams in a multiprocessor
environment. The FLAG location is used by the instruction streams to determine whether the
shared dataitem DATA isvalid. The SYNC executed by processor A forcesthe store of DATA
to be performed globally before the storeto FLAG is performed. The SYNC executed by
processor B ensuresthat DATA isnot read until after the FLAG value indicates that the shared
dataisvalid.

Processor A (writer)

Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B.

SW R1, DATA # change shared DATA value
LI R2,1
SYNC # perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid
Processor B (reader)
LI R2,1
1 LW R1, FLAG # get FLAG
BNE R2,R1,1B # if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA reads
LW R1, DATA # read (valid) shared DATA values

Implementation Notes:

There may be side effects of uncached loads and stores that affect cached coherent load and
store operations. To permit the reliable use of such side effects, buffered uncached stores that
occur beforethe SY NC must bewritten to memory before cached coherent loads and stores after
the SYNC may be performed.

189

Chapter 1

CPU Instruction Set

190

SYSCALL

System Call
31 26 25 0
SPECIAL Code SYSCALL
000000 001100
6 20 6

Format: SYSCALL MIPS |
Purpose: To cause a System Call exception.
Description:

A system call exception occurs, immediately and unconditionally transferring control to the

exception handler.

The codefield isavailable for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Restrictions:
None
Operation:
SignalException(SystemCall)
Exceptions:
System Call

Chapter 1 CPU Instruction Set

Trap if Equal TEQ
31 26 25 21 20 16 15 0
SPECIAL rs rt code TEQ
000000 110100
6 5 5 10 6
Format: TEQ rs, 1t MIPS Il

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs = rt) then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsisequal to GPR rt

then take a Trap exception.

The contents of the codefield are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction

word from memory.

Restrictions:

None
Operation:
if GPR[rs] = GPR]rt] then
SignalException(Trap)
endif
Exceptions:

Reserved Instruction

Trap

191

Chapter 1 CPU Instruction Set

192

TEQ' Trap if Equal Immediate
31 26 25 21 20 16 15 0
REGIMM rs TEQI immediate
000001 01100
6 5 5 16
Format: TEQI rs, immediate MIPS Il
Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs = immediate) then Trap
Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs
isequal to immediate then take a Trap exception.

Restrictions:

None

Operation:
if GPR][rs] = sign_extend(immediate) then
SignalException(Trap)
endif
Exceptions:

Reserved Instruction
Trap

Chapter 1 CPU Instruction Set

Trap if Greater or Equal

31 26 25 21 20 16 15 0
SPECIAL rs rt code TGE
000000 110000
6 5 5 10 6
Format: TGE rs, 1t MIPS Il
Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs = rt) then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rsis greater than or

equal to GPR rt then take a Trap exception.

The contents of the codefield are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction

word from memory.

Restrictions:

None

Operation:
if GPR[rs] = GPR][rt] then
SignalException(Trap)
endif

Exceptions:

Reserved Instruction
Trap

193

Chapter 1 CPU Instruction Set

194

TGE' Trap if Greater or Equal Immediate
31 26 25 21 20 16 15 0
REGIMM rs TGEI immediate
000001 01000
6 5 5 16
Format: TGEI rs, immediate MIPS I
Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs = immediate) then Trap
Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs
is greater than or equal to immediate then take a Trap exception.

Restrictions:

None

Operation:
if GPR][rs] = sign_extend(immediate) then
SignalException(Trap)
endif
Exceptions:

Reserved Instruction
Trap

Chapter 1 CPU Instruction Set

Trap If Greater Or Equal Immediate Unsigned TGE'U
31 26 25 21 20 16 15 0
REGIMM rs TGEIU immediate
000001 01001
6 5 5 16
Format: TGEIU rs, immediate MIPS I
Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs = immediate) then Trap

Compare the contents of GPR rsand the 16-bit sign-extended immediate as unsigned integers;
if GPR rsisgreater than or equal to immediate then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction is able to
represent the smallest or largest unsigned numbers. The representable values are at the
minimum [0, 32767] or maximum [max_unsigned-32767, max_unsigned] end of the unsigned
range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) = (0 || sign_extend(immediate)) then
SignalException(Trap)
endif

Exceptions:

Reserved Instruction
Trap

195

Chapter 1 CPU Instruction Set

196

TG EU Trap If Greater or Equal Unsigned
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TGEU
000000 110001
6 5 5 10 6
Format: TGEU rs, 1t MIPS I

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs = rt) then Trap

Compare the contents of GPR rsand GPR rt as unsigned integers; if GPR rsis greater than or
equal to GPR rt then take a Trap exception.

The contents of the codefield are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction
word from memory.

Restrictions:

None

Operation:
if (0 || GPR[rs]) = (0 || GPR]rt]) then
SignalException(Trap)
endif

Exceptions:

Reserved Instruction
Trap

Chapter 1 CPU Instruction Set

Probe TLB For Matching Entry TLB P
31 26 25 24 65 0
COPO (6{0) 0 TLBP

010000 1 000 000000000000 OOOOO 001000
6 1 19 6
Format: TLBP MIPS |
Description:

The Index register isloaded with the address of the TLB entry whose contents match the
contents of the EntryHi register. 1f no TLB entry matches, the high-order bit of the Index
register is set to 0x80000000, asit isin the R4400 processor.

The architecture does not specify the operation of memory references associated with the
instruction immediately after aTLBP instruction, nor isthe operation specified if morethan one
TLB entry matches.

Operation: 32-bit processors

Index — 1 || 0%° || undefined®
foriin O0... TLBEntries—1
if (TLB[|]95 77= EntryH|31 12) and (TLB[|]76 or
(TLBIil71...64 = EntryHiz o)) then
Index — 026 ||i5 o
endif
endfor

Operation: 64-bit processors

Index — 1 || 0 ?° || undefined®
foriin 0... TLBEntries—1
it (TLB[i];71...141 and not (02 | TLB[ils6..205))
= EntryHi,3_13) and not (0° || TLBIi],16_20s5)) and
(TLBIl140 Or (TLBIil135 128 = EntryHiz 0)) then
Index — 0%® ||is o
endif
endfor

Exceptions:

Coprocessor Unusable

197

Chapter 1 CPU Instruction Set

198

TLB R Read Indexed TLB Entry
31 26 25 24 65 0
COPO (6{0)] 0 TLBR
010000 1 000 000000000000 O0OCOOO 000001

6 1 19 6
Format: TLBR MIPS |
Description:

The G bit (which controls ASID matching) read from the TLB iswritten into both of the
EntryLoO and EntryLol registers.

The EntryHi and EntryL o registers are loaded with the contents of the TLB entry pointed at by
the contents of the TLB Index register.

In the R4400, thisinstruction had to be executed in unmapped spaces, and in the R5000 and the
R10000 processor it can be executed in unmapped spaces without any hazard. In addition,
TLBR can be executed in mapped spaces.

Operation: 32-bit processors

PageMask — TLB[Indexs gli27. 06

EntryHi — TLB[Indexs_glos 64 and not TLB[Indexs_ol127..96
EntryLol <_TLB[Index5“_0]63”_32

EntryLoO — TLB[Indexs ol31 o

Operation: 64-bit processors

PageMask —~ TLB[Indexs gloss 192

EntryHi — TLB[Indexs _glig1. 128 and not TLB[Indexs los5. 192
EntryLol —TLB[IndeXs_ol127..65 || TLB[IndeXxs_ ol140

EntryLOO — TLB[lndeX5___0]63___l “ TLB[lndeX5___0]140

Exceptions:

Coprocessor Unusable

Chapter 1 CPU Instruction Set

Write Indexed TLB Entry TL BWI

31 26 25 24 65 0
COPO co 0 TLBWI
010000 1 000 0000 000000000000 000010
6 1 19 6
Format: TLBWI MIPS |
Description:

The G bit of the TLB iswritten with thelogical AND of the G bitsin the EntryLoO and EntryLol
registers.

The TLB entry pointed at by the contents of the TLB Index register is loaded with the contents
of the EntryHi and EntryLo registers.

The operation isinvalid (and the results are unspecified) if the contents of the TLB Index
register are greater than the number of TLB entries in the processor.

In the R4400, thisinstruction had to be executed in unmapped spaces, and in the R5000 and the
R10000 processor it can be executed in unmapped spaces without any hazard.

Thereis no hazard to executing a TLB write in mapped space unless the write affects those
instructions that have been fetched and buffered by the processor. If necessary, aflush to the
instruction-fetch pipeline, such asexecution of ajump register instruction, after aTLB writecan
avoid this hazard.

In the R4400 processor, a TLB write instruction is used to write the whol e page frame number
from the EntryLo registersto the TLB entry. Depending on the page size specified in the
corresponding PageMask register, the lower bits of PFN may not be used for address
trandation. Inthe R5000 and the R10000 processor, the lower bits not used for address
trandation are forced to zeroes during a TLB write. This does not affect TLB address

trand ation, however a TLB read may not retrieve what was originally written.

Operation:

TLB[Indexs g] «
PageMask || (EntryHi and not PageMask) || EntryLo1l || EntryLoO

Exceptions:

Coprocessor Unusable

199

Chapter 1 CPU Instruction Set

200

TL BWR Write Random TLB Entry

31 26 25 24 6 5 0
COPO co 0 TLBWR
010000 1 0000000 000000000000 000110
6 1 19 6
Format: TLBWR MIPS |
Description:

The G bit of the TLB iswritten with thelogical AND of the G bitsin the EntryLoO and EntryLol
registers.

The TLB entry pointed at by the contents of the TLB Random register isloaded with the
contents of the EntryHi and EntryLo registers.

In the R4400, thisinstruction had to be executed in unmapped spaces, and in the R5000 and the
R10000 processor it can be executed in unmapped spaces without any hazard.

Thereis no hazard to executing a TLB write in mapped space unless the write affects those
instructions that have been fetched and buffered by the processor. If necessary, aflush to the
instruction-fetch pipeline, such asexecution of ajump register instruction, after aTLB writecan
avoid this hazard.

In the R4400 processor, a TLB write instruction is used to write the whol e page frame number
from the EntryLo registersto the TLB entry. Depending on the page size specified in the
corresponding PageMask register, the lower bits of PFN may not be used for address
trandation. Inthe R5000 and the R10000 processor, the lower bits not used for address
trandlation are forced to zeroes during a TLB write. This does not affect TLB address
trandlation, however a TLB read may not retrieve what was originally written.

Operation:

TLB [Randomg o] <
PageMask || (EntryHi and not PageMask) || EntryLo1l || EntryLoO

Exceptions:

Coprocessor Unusable

Chapter 1 CPU Instruction Set

Trap if Less Than

TLT

31 26 25 21 20 16 15 0
SPECIAL rs rt code TLT
000000 110010
6 5 5 10 6
Format: TLT rs, 1t MIPS Il
Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs < rt) then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsislessthan GPR rt

then take a Trap exception.

The contents of the codefield are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction

word from memory.

Restrictions:

None

Operation:
if GPR[rs] < GPR]rt] then
SignalException(Trap)
endif
Exceptions:

Reserved Instruction
Trap

201

Chapter 1 CPU Instruction Set

202

TLTl Trap if Less Than Immediate
31 26 25 21 20 16 15 0
REGIMM rs TLTI immediate
000001 01010
6 5 5 16
Format: TLTI rs, immediate MIPS I
Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs < immediate) then Trap
Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs
isless than immediate then take a Trap exception.

Restrictions:

None

Operation:

if GPR][rs] < sign_extend(immediate) then
SignalException(Trap)
endif

Exceptions:

Reserved Instruction
Trap

Chapter 1 CPU Instruction Set

Trap if Less Than Immediate Unsigned TLTlU
31 26 25 21 20 16 15 0
REGIMM rs TLTIU immediate
000001 01011
6 5 5 16
Format: TLTIU rs, immediate MIPS I
Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs < immediate) then Trap

Compare the contents of GPR rsand the 16-bit sign-extended immediate as unsigned integers;
if GPR rsislessthan immediate then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction is able to
represent the smallest or largest unsigned numbers. The representable values are at the
minimum [0, 32767] or maximum [max_unsigned-32767, max_unsigned] end of the unsigned
range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)
endif

Exceptions:

Reserved Instruction
Trap

203

Chapter 1 CPU Instruction Set

204

TLTU Trap if Less Than Unsigned
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TLTU
000000 110011
6 5 5 10 6
Format: TLTU rs, 1t MIPS I

Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs < rt) then Trap

Comparethe contents of GPR rsand GPR rt asunsigned integers; if GPR rsislessthan GPR rt
then take a Trap exception.

The contents of the codefield are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction
word from memory.

Restrictions:

None

Operation:
if (0]| GPRJrs]) < (0 || GPRrt]) then
SignalException(Trap)
endif

Exceptions:

Reserved Instruction
Trap

Chapter 1 CPU Instruction Set

Trap if Not Equal

TNE

31 26 25 21 20 16 15 0
SPECIAL rs rt code TNE
000000 110110
6 5 5 10 6
Format: TNE rs, 1t MIPS Il
Purpose: To compare GPRs and do a conditional Trap.

Description: if (rs # rt) then Trap

Comparethe contents of GPR rsand GPR rt assigned integers; if GPR rsisnot equal to GPR rt

then take a Trap exception.

The contents of the codefield are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction

word from memory.

Restrictions:

None

Operation:
if GPR][rs] # GPR][rt] then
SignalException(Trap)
endif
Exceptions:

Reserved Instruction
Trap

205

Chapter 1 CPU Instruction Set

206

TNEI Trap if Not Equal Immediate
31 26 25 21 20 16 15 0
REGIMM rs TNEI immediate
000001 01110
6 5 5 16
Format: TNEI rs, immediate MIPS I
Purpose: To compare a GPR to a constant and do a conditional Trap.

Description: if (rs # immediate) then Trap
Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs
is not equal to immediate then take a Trap exception.

Restrictions:

None

Operation:

if GPR][rs] # sign_extend(immediate) then
SignalException(Trap)
endif

Exceptions:

Reserved Instruction
Trap

Chapter 1 CPU Instruction Set

Enter Standby Mode (R5000 only) WAIT
31 26 25 24 6 5 0
COPO CcO 0 WAIT
010000 1 0000000 0O0O0OO0OOOO0OOOOO 100000

6 1 19 6
Format: WAIT

Purpose: To put the CPU into Standby Mode.

Description:

In Standby Mode, most of the internal clocks are shut down which freezes the pipeline and
reduces power consumption. See V5000 User’s Manual for more details.

Restrictions:
None

Operation:

if SysAD bus is idle then
Enter Standby Mode

endif
Exceptions:

Coprocessor Unusable

207

Chapter 1 CPU Instruction Set

208

XOR Exclusive OR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 XOR
000000 00000 100110
6 5 5 5 5 6
Format: XOR rd, rs, rt MIPS |
Purpose: To do abitwise logical EXCLUSIVE OR.

Description: rd — rs XOR rt

Combine the contents of GPR rsand GPR rt in a bitwise logical exclusive OR operation and
place the result into GPR rd.

Restrictions:

None

Operation:
GPRJrd] « GPR]rs] xor GPR]rt]
Exceptions:

None

Chapter 1 CPU Instruction Set

Exclusive OR Immediate XORI
31 26 25 21 20 16 15 0
XORI rs rt immediate
001110
6 5 5 16
Format: XORI rt, rs, immediate MIPS |
Purpose: To do abitwise logical EXCLUSIVE OR with a constant.

Description: rt — rs XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical
exclusive OR operation and place the result into GPR rt.

Restrictions:

None
Operation:

GPRJrt] « GPRJrs] xor zero_extend(immediate)
Exceptions:

None

209

Chapter 1 CPU Instruction Set

1.10 CPU Instruction Formats

A CPU instructionisasingle 32-bit aligned word. Themajor instruction formatsare shown

in Figure 1-10.

I-Type (Immediate).

31 26 25 21 20 16 15 0
opcode rs rt offset
6 5 5 16
J-Type (Jump).
31 26 25 0
opcode instr_index
6 26
R-Type (Register).
31 26 25 21 20 16 15 11 10 6 5 0
opcode rs rt rd sa function
6 5 5 5 5 6
opcode 6-bit primary operation code
rd 5-bit destination register specifier
rs 5-bit source register specifier
t 5-bit target (source/destination) register specifier or used to
specify functions within the primary opcode value REGIMM
immediate 16-bit signed immediate used for: logical operands, arithmetic
signed operands, load/store address byte offsets, PC-relative
branch signed instruction displacement
instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of
the jump target address.
sa 5-bit shift amount
function 6-bit function field used to specify functions within the primary

210

operation code value SPECIAL.

Figure 1-10 CPU Instruction Formats

Chapter 1 CPU Instruction Set

1.11 CPU Instruction Encoding

This section describes the encoding of user-level, i.e. non-privileged, CPU instructionsfor
thefour levels of the MIPS architecture, MIPS | through MIPS IV. Each architecturelevel
includestheinstructionsin the previouslevel TMIPSIV includes all instructionsin MIPS
I, MIPSII, and MIPS111. This section presents eight different views of the instruction
encoding.

» Separate encoding tables for each architecture level.

A MIPSIV encoding table showing the architecture level at which each opcode
was originally defined and subsequently modified (if modified).

» Separate encoding tables for each architecture revision showing the changes made
during that revision.

1.11.1 Instruction Decode
Instruction field names are printed in bold in this section.

The primary opcodefield is decoded first. Most opcode values completely specify an
instruction that has an immediate value or offset. Opcode values that do not specify an
instruction specify an instruction class. Instructions within a class are further specified by
valuesin other fields. The opcode values SPECIAL and REGIMM specify instruction
classes. The COPO, COP1, COP2, COP3, and COP1X instruction classes are not CPU
instructions; they are discussed in 1.11.3 Non-CPU Instructionsin the Tables.

(1) SPECIAL Instruction Class

The opcode=SPECIAL instruction class encodes 3-register computational instructions,
jump register, and some special purpose instructions. The classis further decoded by
examining the format field. The format values fully specify the CPU instructions; the
MOVCI instruction classis not a CPU instruction class.

(2) REGIMM Instruction Class

The opcode=REGIMM instruction class encodes conditional branch and trap immediate
instructions. Theclassisfurther decode, and theinstructionsfully specified, by examining
thert field.

1.11.2 Instruction Subsetsof MIPSI1I1 and MIPS 1V Processors

MIPS 111 processors, such as the R4200, R4300, and R4400, have a processor modein
which only the MIPS I instructions are valid. The MIPS |1 encoding table describes the
MIPS I1-only mode except that the Coprocessor 3 instructions (COP3, LWC3, SWCS3,
LDC3, SDC3) are not available and cause a Reserved Instruction exception.

T An exception to this rule is that the reserved, but never implemented, Coprocessor 3 instructions were removed or
changed to another use starting in MIPS I1I.

211

Chapter 1 CPU Instruction Set

MIPS IV processors, such as the R5000 and the R10000, have processor modes in which

only the MIPS 11 or MIPS 11 instructionsarevalid. The MIPS Il encoding table describes
the MIPS I1-only mode except that the Coprocessor 3 instructions (COP3, LWC3, SWC3,
LDC3, SDC3) are not available and cause a Reserved I nstruction exception. The MIPS 11

encoding table describes the MIPS I11-only mode.

1.11.3 Non-CPU Instructionsin the Tables

212

The encoding tables show all values for the field they describe and by doing this they
include some entries that are not user-level CPU instructions. The primary opcode table
includes coprocessor instruction classes (COPO, COP1, COP2, COP3/COP1X) and
coprocessor |oad/store instructions (LWCx, SWCx, LDCx, SDCx for x=1, 2, or 3). The
opcode=SPECIAL + function=MOVCI instruction classis an FPU instruction.

(1) Coprocessor 0- COPO

COPO0 encodes privileged instructions for Coprocessor 0, the System Control Coprocessor.
The definition of the System Control Coprocessor is processor-specific and further
information on these instructions are not included in this document.

(2) Coprocessor 1 - COP1, COP1X, MOVCI, and CP1 |load/store

Coprocessor 1 isthe floating-point unit in the MIPS architecture. COP1, COP1X, and the
(opcode=SPECIAL + function=MOVCI) instruction classes encode floating-point
instructions. LWC1, SWC1, LDC1, and SDC1 are floating-point loads and stores. The
FPU instruction encoding is documented in 2.12 FPU (CP1) Instruction Opcode Bit
Encoding.

(3) Coprocessor 2 - COP2 and CP2 load/store

Coprocessor 2 is optional and implementation-specific. None of the V g-Series™
processors have implemented coprocessor 2. At thistime the Vg-Series processors are:
R4200, R4300, R4400, R5000, and R10000.

(4) Coprocessor 3 - COP3 and CP3load/store

Coprocessor 3 isoptional and implementation-specific in the MIPS | and MIPS 11
architecture levels. It wasremoved from MIPS 111 and later architecture levels. Note that
in MIPS IV the COP3 primary opcode was reused for the COP1X instruction class. None
of the V g-Series processors have implemented coprocessor 2. At thistime the Vg-Series
processors are: R4200, R4300, R4400, R5000, and R10000.

Chapter 1 CPU Instruction Set

Table 1-42 CPU Instruction Encoding - MIPS| Architecture

31 26 0
opcode
bits 28..26 Instructions encoded by opcode field.
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000 | SPECIAL 53| REGIMM 5 J JAL BEQ BNE BLEZ BGTZ
1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 010 | COPO 5| COP1 5,n| COP2 51 |COP3 5,mk * * * *
3 Oll * * * * * * * *
4 100 LB LH LWL LW LBU LHU LWR *
5 101 SB SH SWL SW * * SWR *
6 110 * LWC1n LWC2n | LWC3nk * * * *
7 111 * SWC1n | SWC2n | SWC3nk * * * *
31 26 5 0
opcode
= SPECIAL function
bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 SLL * SRL SRA SLLV * SRLV SRAV
1 001 JR JALR * * SYSCALL| BREAK * *
2 010 MFHI MTHI MFLO MTLO * * * *
3 011| MULT MULTU DIV DIVU * * * *
4 100 ADD ADDU SuB SUBU AND OR XOR NOR
5 101 * * SLT SLTU * * * *
6 110 * * * * * * * *
7 111 * * * * * * * *
31 26 20 16 0
opcode
= REGIMM r
bits 18..16 Instructions encoded by thert field when opcode field = REGIMM.
bits 0 1 2 3 4 5 6 7
20.19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ 0 0 O 0O 0O 0O
1 01 a O 0 0 0 0 0 O
2 10 | BLTZAL | BGEZAL a O O 0 0 0
3 11 a O 0 O 0 0 0 O

213

Chapterl CPU Instruction Set

214

Table 1-43 CPU Instruction Encoding - MIPS Il Architecture

31 26 0
opcode
bits 28..26 Instructions encoded dyycodefield.
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000|SPECIALs|REGIMM3 J JAL BEQ BNE BLEZ BGTZ
1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 010| COPOsm| COP1smn| COP2sn|COP35mk BEQL BNEL BLEZL BGTZL
3 011 * * * * * * * *
4 100 LB LH LWL LW LBU LHU LWR *
5 101 SB SH SWL SW * * SWR r
6 110 LL LWC1n | LWC2n | LWC3nk * LDC1n | LDC2n | LDC3mk
7 111 SC SWChk | SWC2n | SWC3nk * SDC1n | SDC2n | SDC3mnk
31 26 5 0
opcode f .
= SPECIAL unction
bits 2..0 Instructions encoded function field when opcode field = SPECIAL.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 SLL * SRL SRA SLLV * SRLV SRAV
1 o001 JR JALR * * SYSCALL BREAK * SYNC
2 010 MFHI MTHI MFLO MTLO * * * *
3 011| MULT MULTU DIV DIVU * * * *
4 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 101 * * SLT SLTU * * * *
6 110 TGE TGEU TLT TLTU TEQ * TNE *
7 111 * * * * * * * *
31 26 20 16 0
opcode
= REGIMM r
bits 18..16 Instructions encoded by thdield when opcode field = REGIMM.
bits 0 1 2 3 4 5 6 7
20.19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ BLTZL BGEZL * * * *
1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 10| BLTZAL | BGEZAL |BLTZALL BGEZALL * * * *
3 11 * * * * * * * *

Chapterl CPU Instruction Set

Table 1-44 CPU Instruction Encoding - MIPS Il Architecture

31 26 0
opcode
bits 28..26 Instructions encoded dyycodefield.
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000|SPECIALS|REGIMM3 J JAL BEQ BNE BLEZ BGTZ
1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 010| COPOsm| COP1sm| COP25,n * BEQL BNEL BLEZL BGTZL
3 011| DADDI | DADDIU LDL LDR * * * *
4 100 LB LH LWL LW LBU LHU LWR LWU
5 101 SB SH SWL SW SDL SDR SWR p
6 110 LL LWC1n | LWC2n * LLD LDCl n | LDC2n LD
7 111 SC SWChk | SWC2n * SCD SDC1n SDC2n SD
31 26 5 0
opcode .
= SPECIAL function
bits 2..0 Instructions encoded function field when opcode field = SPECIAL.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 SLL * SRL SRA SLLV * SRLV SRAV
1 o001 JR JALR * * SYSCALL BREAK * SYNC
2 010 MFHI MTHI MFLO MTLO DSLLV * DSRLV DSRAV
3 011| MULT MULTU DIV DIVU DMULT |DMULTU | DDIV DDIVU
4 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 101 * * SLT SLTU DADD DADDU DSUB DSUBU
6 110 TGE TGEU TLT TLTU TEQ * TNE *
7 111 DSLL * DSRL DSRA DSLL32 * DSRL32| DSRA32
31 26 20 16 0
opcode
= REGIMM r
bits 18..16 Instructions encoded by thdield when opcode field = REGIMM.
bits 0 1 2 3 4 5 6 7
20.19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ BLTZL BGEZL * * * *
1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 10| BLTZAL | BGEZAL |BLTZALL BGEZALL * * * *
3 11 * * * * * * * *

215

Chapter 1 CPU Instruction Set

216

Table 1-45 CPU Instruction Encoding - MIPS IV Architecture

31 26
opcode
bits 28..26 Instructions encoded by opcode field.
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000 |SPECIAL 5| REGIMM & J JAL BEQ BNE BLEZ BGTZ
1 001| ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 010 | COPQ 5,m| COP1 5| COP2 5m|COP1X 5 BEQL BNEL BLEZL BGTZL
3 011| DADDI | DADDIU LDL LDR * * *
4 100 LB LH LWL Lw LBU LHU LWR Lwu
5 101 SB SH SWL SW SDL SDR SWR p
6 110 LL LWC1ln | LWC2n PREF LLD LDCln | LDC2n LD
7 111 SC SWCln | SWC2n * SCD SDC1n SDC2 n SD
31 26 5
opcode
= SPECIAL function
bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 SLL MOVCI &,u SRL SRA SLLV * SRLV SRAV
1 001 JR JALR MOvVZ MOVN |SYSCALL| BREAK * SYNC
2 010| MFHI MTHI MFLO MTLO DSLLV * DSRLV DSRAV
3 011| MULT MULTU DIV DIVU DMULT | DMULTU| DDIV DDIVU
4 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 101 * * SLT SLTU DADD DADDU DSUB DSUBU
6 110 TGE TGEU TLT TLTU TEQ * TNE *
7 111| DSLL * DSRL DSRA DSLL32 * DSRL32 | DSRA32
31 26 20 16 0
opcode
= REGIMM r
bits 18..16 Instructions encoded by thert field when opcode field = REGIMM.
bits 0 1 2 3 4 5 6 7
20.19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ BLTZL BGEZL * * * *
1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 10 | BLTZAL | BGEZAL | BLTZALL |BGEZALL * * * *
3 11 * * * * * * * *

Chapter 1 CPU Instruction Set

Table 1-46 Architecture Level in Which CPU Instructions are Defined or Extended

The architecture level in which each MIPS | Vencoding was defined isindicated by a subscript 1, 2, 3, or 4 (for
architecture level 1, I1, 111, or IV). If aninstruction or instruction class was later extended, the extending level
isindicated after the defining level.

31 26 0
opcode
bits 28..26 Instructions encoded by opcode field.
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000 | SPECIAL 14 REGIMM 1, Ji AL, BEQ; BNE; BLEZ, | BGTZ;
1 001 ADDI; | ADDIU; | SLTI; | SLTIU; | ANDI, ORI 4 XORI 4 LUl
2 010| COPO; |COPl;,34] COP2; | COP1X, | BEQL, | BNEL, | BLEZL, | BGTZL,
3 011 | DADDI 5 | DADDIU ;| LDL4 LDR4 * * * *q
4 100| LB, LH, LWL 4 LW 4 LBU, LHU 4 LWR 4 LWU 4
5 101| SB, SH, SWL SW SDL 4 SDR; | SWR; Py
6 110 LL, LWC1,; | LWC2; | PREF, LLD4 LDC1, | LDC2, LD4
7 111| SC, SWC1; | SwcC2; O SCD 4 SbC1l, | SDC2, SD 5
31 26 5 0
opcode .
= SPECIAL function
bits 2..0 Instructions encoded by function field when opcode field = SPECIAL.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000| SLL; | MOVCl, | SRL; SRA 4 SLLV 3 * SRLV; | SRAV,;
1 001 JR1 JALR; | MOVZ, | MOVN, | SYSCALL; | BREAK ; * SYNC,
2 010| MFHI4{ | MTHI; | MFLO; | MTLO; | DSLLV 4 * DSRLV 5 | DSRAV 5
3 011| MULT; | MULTU,| DIV, DIVU,; | DMULT 3 |DMULTU3| DDIV 5 | DDIVUj4
4 100 ADD, | ADDU; | SUB; SUBU; | AND; OR; XOR ¢ NOR
5 101 * * SLT, SLTU; | DADD3 | DADDU;| DSUB5 | DSUBU4
6 110| TGE, TGEU , TLT, TLTU, TEQ, * TNE, *
7 111| DSLLg4 * DSRL; | DSRA; | DSLL324 * DSRL32, | DSRA324
31 26 20 16 0
opcode
= REGIMM r
bits 18..16 Instructions encoded by thert field when opcode field = REGIMM.
bits 0 1 2 3 4 5 6 7
20.19 000 001 010 011 100 101 110 111
0 00| BLTZ, | BGEZ, | BLTZL, | BGEZL, * * * *
1 01| TGEl, | TGEIU, | TLTl, | TLTIU, | TEQI, * TNEI » *
2 10 |BLTZAL ;|BGEZAL { BLTZALL ,| BGEZALL * * * *
2
3 1 *1 *1 *1 *1 *1 *1 *1 *1

217

Chapter 1 CPU Instruction Set

218

Table 1-47 CPU Instruction Encoding Changes - MIPSII Revision

31

26

opcode

An instruction encoding is shown if the instruction is added in this revision.

bits 28..26 Instructions encoded by opcode field.
bits 0 1 2 3 4 5 6 7
31..29 000 001 010 011 100 101 110 111
0 000
1 001
2 010 BEQL BNEL BLEZL | BGTZL
3 o011
4 100
5 101 r
6 110 LL LDCln | LDC2n | LDC3n
7 11 sc SDCln | SDC2n | SDC3n
31 26 5
opcode .
= SPECIAL function
bits2..0 Instructions encoded by function field when opcode field = SPECIAL.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000
1 001 SYNC
2 010
3 011
4 100
5 101
6 110 TGE TGEU TLT TLTU TEQ TNE
7 111
31 26 20 16
opcode
= REGIMM r
bits 18..16 Instructions encoded by thert field when opcode field = REGIMM.
bits 0 1 2 3 4 5 6 7
20.19 000 001 010 011 100 101 110 111
0 00 BLTZL | BGEZL
1 01| TGH TGEIU TLTI TLTIU TEQI TNEI
2 10 BLTZALL |BGEZALL
3 1

Chapterl CPU Instruction Set

Table 1-48 CPU Instruction Encoding Changes - MIPS Ill Revision

31 26 0

opcode

An instruction encoding is shown if the instruction is added or modified in this revision.

bits 28..26

Instructions encoded tyycodefield.

bits 0 1 2 3 4 5 6 7
31..29 000 001 010 011 100 101 110 111
0 000
1 o001
2 010 *

(wasCOP3
3 011 DADDI | DADDIU LDL LDR
4 100 LWuU
5 101 SDL SDR
6 110 * LLD LD
(was LWC3 (was LDC3)
7 111 * SCD SD
(was SWC3 (was SDC3)
31 26 5 0
opcode .
= SPECIAL function
bits 2..0 Instructions encoded function field when opcode field = SPECIAL.

bits 0 1 2 3 4 5 6 7

5.3 000 001 010 011 100 101 110 111
0 000
1 001
2 010 DSLLV DSRLV DSRAV
3 011 DMULT | DMULTU | DDIV DDIVU
4 100
5 101 DADD DADDU DSUB DSUBU
6 110
7 111 DSLL DSRL DSRA DSLL32 DSRL32 DSRA32

31 26 20 16 0
opcode
= REGIMM rt

bits 18..16

bits

20..19

W N - O

00
01
10
11

0
000

Instructions encoded by thdield when opcode field = REGIMM.
1 2 3 4 5 6 7
001 010 011 100 101 110 111

219

Chapter 1 CPU Instruction Set

Table 1-49 CPU Instruction Encoding Changes - MIPSIV Revision

31 26

opcode

An instruction encoding is shown if the instruction is added or modified in this revision.

bits 28..26 Instructions encoded by opcode field.
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000
1 001
2 010 COP1X 51
3 011
4 100
5 101
6 110 PREF
7 111
31 26 5
opcode .
= SPECIAL function
bits 2.0 Instructions encoded by function field when opcode field = SPECIAL.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 MOVCI 5.u
1 001 MOVZ MOVN
2 010
3 011
4 100
5 101
6 110
7 111
31 26 20 16
opcode
= REGIMM r
bits 18..16 Instructions encoded by thert field when opcode field = REGIMM.
bits 0 1 2 3 4 5 6 7
20.19 000 001 010 011 100 101 110 111
0 00
1 0
2 10
3 11

220

Chapter 1 CPU Instruction Set

Key to notesin CPU instruction encoding tables:

*

O

This opcode is reserved for future use. An attempt to execute it causes a Reserved
Instruction exception.

This opcode is reserved for future use. An attempt to execute it produces an
undefined result. The result may be a Reserved Instruction exception but thisis
not guaranteed.

(also italic opcode name) This opcode indicates an instruction class. The
instruction word must be further decoded by examing additional tables that show
values for another instruction field.

This opcode is a coprocessor operation, not a CPU operation. If the processor
state does not allow access to the specified coprocessor, the instruction causes a
Coprocessor Unusable exception. It isincluded in the table because it uses a
primary opcode in the instruction encoding map.

This opcode is removed in alater revision of the architecture. If a MIPSIII or
MIPS IV processor is operated in MIPS I1-only mode this opcode will cause a
Reserved Instruction exception.

This opcode indicates a class of coprocessor 1 instructions. If the processor state
does not allow access to coprocessor 1, the opcode causes a Coprocessor Unusable
exception. Itisincluded in the table because the encoding uses a location in what
is otherwise a CPU instruction encoding map. Further encoding information for
this instruction class is in the FPU Instruction Encoding tables.

This opcode is reserved for Coprocessor 0 (System Control Coprocessor)
instructions that require base+offset addressing. If the instruction is used for
COPO in an implementation, an attempt to execute it without Coprocessor 0 access
privilege will cause a Coprocessor Unusable exception. If the instruction is not
used in an implementation, it will cause a Reserved Instruction exception.

221

[MEMO]

222

FPU Instruction Set

2.1 Introduction

This chapter describes the instruction set architecture (1SA) for the floating-point unit
(FPU) inthe MIPS IV architecture. Inthe MIPS architecture, the FPU is coprocessor 1, an
optional processor implementing |EEE Standard 754" floati ng-point operations. The FPU
also provides a few additional operations not defined by the |EEE standard.

The original MIPS | FPU ISA has been
extended in a backward-compatible fashion
threetimes. Thel SA extensionsareinclusive
asthe diagram illustrates; each new
architecture level (or version) includes the
former levels. The description of an
architectural featureincludesthe architecture
level in which the featureis (first) defined or
extended. Thefeatureisalso availablein al
later (higher) levels of the architecture.

MIPS 11
MIPS 11

MIPS IV

MIPS Architecture Extensions

T |EEE Standard 754-1985, “1EEE Standard for Binary Floating-Point Arithmetic”

223

Chapter 2 FPU Instruction Set

2.2 FPU Data Types

224

Inaddition to an I SA, the architecture definition includes processing resources, such asthe
coprocessor general register set. The 32-bit registersin MIPS | were changed to 64-bit
registersin MIPS 111 in away that is not backwards compatible. For changes such asthis,
processors implementing higher levels of the architecture have away to provide the
processing resource model for earlier levels. For the FPU there is a mode to select the
32-hit or 64-hit register model. The practical result isthat a processor implementing MIPS
IV isalso ableto run MIPS I, MIPS I, or MIPS I11 binary programs without change.

If coprocessor 1 isnot enabled, an attempt to execute afloating-point instruction will cause
a Coprocessor Unusable exception. Enabling coprocessor 1 is a privileged operation

provided by the System Control Coprocessor. Every system environment will either enable
the FPU automatically or provide a means for an application to request that it be enabled.

Beforetheinstruction set is described, thereisan overview of the FPU datatypes, registers,
and computational model. The FPU instruction set issummarized by functional group then
each operation is described separately in alphabetical order. The description concludes
with the FPU instruction formats and opcode encoding tables. See 1.7 Description of an
Instruction for adescription of the organization of the individua instruction descriptions
and the notation used in them.

The architecture of the floating-point coprocessor consists of
 Datatypes
» Operations
* A computational model
* Processing resources (registers)
* Aninstruction set

The |EEE standard defines the floating-point number data types, the basic arithmetic,
comparison, and conversion operations, and a computational model.

The | EEE standard defines neither specific processing resources nor aninstruction set. The
MIPS architecture defines fixed-point (integer) data types, FPU register sets, control and
exception mechanisms, and an instruction set. The architecture include non-IEEE FPU
control operations, and arithmetic operations (multiply-add, reciprocal, and reciprocal
square root) that may not supply results that match the |EEE precision rules.

The FPU provides both floating-point and fixed-point data types. The single and double
precision floating-point data types are those specified by the IEEE standard. The fixed-
point types are the signed integers provided by the CPU architecture

Chapter 2 FPU Instruction Set

2.2.1 Floating-Point For mats

There are two floating-point data types provided by the FPU.

32-hit Single precision floating-point (type S)
64-bit Double precision floating-point (type D)

The floating-point formats represents numeric values as well as other specia entities:

1. Numbers of the form: (-1)° 25 by. by by ..oy 4
where (see Table 2-1):

s=0or1l

2. Twoinfinities, +co0 and -0

3. Signaling non-numbers (SNaNs)

4. Quiet non-numbers (QNaNs)

Table2-1 Parameters of Floating-Point Formats

E = any integer between E_min and E_max, inclusive
b; = 0 or 1 (the high bit, by, is to the left of the binary point)
p is the precision

parameter Single Double
bits of mantissa precision, p 24 53
maximum exponent, E_max +127 +1023
minimum exponent, E_min -126 -1022
exponent bias +127 +1023
bitsin exponent field, e 8 11
representation of by integer bit hidden hidden
bitsin fraction field, f 23 52
total format width in bits 32 64

The single and double floating-point formats are composed of three fields whose sizeis
listed in Table 2-1. Thelayouts are pictured in the figures below.

31

A 1-bit sign, s.

A biased exponent, e = E + bias

A binary fraction, f = .by by ...by 4

30 23

22

sign

exponent

fraction

1

Figure2-1 Sngle-Precision Floating-Point Format (S

8

23

(the by bit is not recorded)

225

Chapter 2 FPU Instruction Set

226

63 62 52

51

sign exponent

fraction

1 11

52

Figure2-2 Double-Precision Floating-Point Format (D)

Values are encoded in the formats using the unbiased exponent, fraction, and sign values

shown in Table 2-2. The high-order bit of the fraction field, identified asbq, isaso

important for NaNs.

Table2-2 Value of Sngle or Double Floating-Point Format Encoding

unbiased E f S b, value v type of value
1 SNaN Signaling NaN
E max+1 z0
0 QNaN Quiet NaN
1 - 00 minus infinity
E_max +1 0
0 + o plusinfinity
E_max 1 - @9(.f) negative normalized number
to E L. .
E min 0 + (25(1.1) positive normalized number
1 - (22"MM0.f) negative denormalized number
E min-1 %0 !
0 + (25-MM(0.1) positive denormalized number
1 -0 negative zero
E min-1 0
0 +0 positive zero

(1) Normalized and Denormalized Numbers

For single and double formats, each representable nonzero numerical value has just one
encoding; numbers are kept in normalized form. The high-order hit of the p-bit mantissa,
which liesto theleft of the binary point, is“hidden”, and not recorded in the fraction field.
The encoding rules permit the value of this bit to be determined by looking at the value of
the exponent. When the unbiased exponent isin the range E_min to E_max, inclusive, the
number is normalized and the hidden bit must be 1. If the numeric value cannot be
normalized because the exponent would be less than E_min, then the representation is
denormalized and the encoded number has an exponent of E_min-1 and the hidden bit has
the value 0. Plus and minus zero are special casesthat are not regarded as denormalized
values.

(2) Reserved Operand Values— Infinity and NaN

A floating-point operation can signal |EEE exception conditions, such as those caused by
uninitialized variables, violations of mathematical rules, or results that cannot be
represented. If aprogram does not choose to trap | EEE exception conditions, a
computation that encounters these conditions proceeds without trapping but generates a

Chapter 2 FPU Instruction Set

result indicating that an exceptional condition arose during the computation. To permit
this, each floating-point format defines representations, shown in Table 2-2, for +infinity
(+00), -infinity (-o0), quiet NaN (QNan), and signaling NaN (SNaN).

Infinity represents a number with magnitude too large to be represented in the format; in
essence it exists to represent a magnitude overflow during a computation. A correctly
signed « is generated as the default result in division by zero and some cases of overflow;
details are in the | EEE exception condition descriptions and Table 2-4 "Default Result for
|EEE Exceptions Not Trapped Precisely".

Once created as adefault result, co can become an operand in a subsequent operation. The
infinities are interpreted such that -0 < (every finite number) < +oo. Arithmetic with oo is
thelimiting case of real arithmetic with operands of arbitrarily large magnitude, when such
limitsexist. Inthese cases, arithmetic on « is regarded as exact and exception conditions
do not arise. The out-of-range indication represented by the o is propagated through
subsequent computations. For some cases there is no meaningful limiting casein real
arithmetic for operands of « and these cases raise the Invalid Operation exception
condition. See the description of the Invalid Operation exception for alist of these cases.

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs
are useful values to put uninitialized variables. SNaN is never produced as aresult value.

NOTE: ThelEEE 754 Standard states that “Whether copying asignaling NaN
without a change of format signals the invalid operation exception is the
implementor’s option”. The MIPS architecture has chosen to make the formatted
operand moveinstructions (MOV.fmt MOV T.fmt MOV F.fmt MOV N.fmt MOV Z.fmt)
non-arithmetic and they do not signal |EEE exceptions.

QNaNs are intended to afford retrospective diagnostic information inherited from invalid
or unavailable data and results. Propagation of the diagnostic information requires that
information contained in the QNaNs be preserved through arithmetic operations and
floating-point format conversions.

QNaN operands do not cause arithmetic operationsto signal an exception. When afloating-
point result is to be delivered, a QNaN operand causes an arithmetic operation to supply a
QNaN result. Theresult QNaN isone of the operand QNaN valueswhen possible. QNaNs
do have effects similar to SNaNs on operations that do not deliver a floating-point result,
specifically comparisons. See the detailed description of the floating-point compare
instruction (C.cond.fmt) for information.

When certain invalid operations not involving QNaN operands are performed but do not
cause atrap (because the trap is not enabled), anew QNaN valueis created. Table 2-3
shows the QNaN val ue generated when no input operand QNaN value can be copied. The
valueslisted for the fixed-point formats are the val ues supplied to satisfy the | EEE standard
when aQNaN or infinite floating-point valueis converted to fixed point. Thereisno other
feature of the architecture that detects or makes use of these “integer QNaN” values.

227

Chapter 2 FPU Instruction Set

2.2.2 Fixed-Point Formats

Table 2-3 Value Supplied when a new Quiet NaN is Created

Format New QNaN value

Single floating point 7fbf ffff
Double floating point 7if7 ffff ffff ffff
Word fixed point TEfEf ffff
Longword fixed point 7Eff ffff ffff ffff

There are two floating-point data types provided by the FPU.
» 32-bit Word fixed-point (type W)
e 64-bit Longword fixed-point (type L) (defined in MIPS I11)

Thefixed-point values are held in thetwo’ s complement format used for signed integersin
the CPU. Unsigned fixed-point datatypes are not provided in the architecture; application
software may synthesize computations for unsigned integers from the existing instructions
and data types.

31 30 0

sign int

1 31

Figure2-3 Word Fixed-Point Format (W)

63 62 0

sign int

1 63

Figure2-4 Longword Fixed-Point Format (L)

2.3 Floating-Point Registers

228

This section describes the organization and use of the two separate coprocessor 1 (CP1)
register sets. The coprocessor general registers, also called Floating General Registers
(FGRs) are used to transfer binary data between the FPU and the rest of the system. The
general register set isalso used to hold formatted FPU operand values. There are only two
control registers and they are used to identify and control the FPU.

There are separate 32-bit and 64-bit wide register models. MIPS | defines the 32-bit wide
register model. MIPS I11 defines the 64-bit model. To support programs for earlier
architecture definitions, processors providing the 64-bit MIPS 111 register model also
provide the 32-bit wide register model as amode selection. Selecting 32 or 64-bit register
model is an implementation-specific privileged operation.

Chapter 2 FPU Instruction Set

2.3.1 Organization

The CP1 register organization for 32-bit and 64-bit register modelsis shown in Figure 2-5.

The coprocessor general registersarethe samewidth asthe CPU registers. Thetwo defined

control registers are 32-bits wide.

MIPSI

32-bit reg model

31

0

reg# 0

30

31

31

MIPSIII
64-bit register model

63

w N - o

30

31

FPU - Control Registers (FCRs)

0

#0

31

Implementation and Revision #
0

FP Control and Status
31

Figure2-5 Coprocessor 1 General Registers (FGRS)

2.3.2 Binary Data Transfers

The data transfer instructions move words and doublewords between the CP1 general
registers and the remainder of the system. The operation of the load and move-to

31

instructionsis shown in Figure 2-6 and Figure 2-7. The store and move-from instructions
operate in reverse, reading data from the location that the corresponding load or move-to

instruction wrote it.

229

Chapter 2 FPU Instruction Set

MIPSI MIPS I
32-bit reg model operation 64-bit register model
31 0 63 0
#0 empty #0 empty
1 empty 1 empty
U LWCL f0,0(r0) / MICL fO,r0]
dataword O 0 | undefined/unused i dataword 0
1 empty 1 empty
U LWCL f1,4(r0) / MICL f1,r4 U
dataword O 0 | undefined/unused | dataword O
1 dataword 4 1 | undefined/unused | dataword 4

Figure2-6 Effect of FPU Word Load or Move-to Operations

Doubleword transfers to/from 32-bit registers access an aligned pair of CP1 general
registerswith theleast-significant word of the doubleword in the lowest-numbered register.

MIPSII
32-bit reg model MIPS 11
L oads/Stores operation 64-bit register model
(see note below)
31 0 63 0
#0 empty #0 empty
1 empty 1 empty
U LDCL f0,0(r0) / DVICL fO,r0]
0 lower word (0) 0 data doubleword 0
upper word (4) 1 empty
O LDCL f1,8(r0) / DVMICL f1,r8 [
| invalid toload | 0 data doubleword 0
doubletoodd | 1 data doubleword 8

register

NOTE: No 64-bit transfers are defined for the MIPS | 32-bit register model.
MIPS I defines the 64-bit |oads/stores but not 64-bit moves.

Figure2-7 Effect of FPU Doubleword Load or Move-to Operations

230

Chapter 2 FPU Instruction Set

2.3.3 Formatted Operand L ayout

FPU instructions that operate on formatted operand values specify the floating-point

register (FPR) that holds avalue. An FPR is not necessarily the same as a CP1 general
register because an FPR is 64 bits wide; if thisiswider than the CP1 general registers, an
aligned set of adjacent CP1 genera registersis used asthe FPR. The 32-bit register model
provides 16 FPRs specified by the even CP1 general register numbers. The 64-bit register
model provides 32 FPRs, one per CP1 general register. Operandsthat areonly 32 bitswide
(W and Sformats), use only half the spacein an FPR. The FPR organization and the way
that operand datais stored in them is shown in the following figures. A summary of the
data transfer instructions can be found in 2.6.1 Data Transfer |nstructions.

30

MIPSI
32-hit reg model

16 x 64-bit

operand registers

(FPRs)

w N &

30
31

MIPS I
64-bit register model

32 x 64-bit
operand registers (FPRs)

Figure2-8 Floating-point Operand Register (FPR) Organization

MIPS|
32-bit reg model

31

0

data word

undefined/unused

MIPSIII
64-bit register model
63 0

undefined/unused i dataword

empty — available to hold an operand

Figure2-9 Sngle Floating Point (S) or Word Fixed (W) Operand in an FPR

231

Chapter 2 FPU Instruction Set

32 bil\t/I rlggsr:wdel MIPS 11l
(see note below) 64-bit register model
31 0 63 0
#0 lower word #0 data doubleword
upper word 1 | empty — available to hold an operand

NOTE: MIPS I supports the Double floating-point (D) type; the fixed-point longword (L)
operand is available starting in MIPS 111

Figure2-10 Double Floating Point (D) or Long Fixed (L) Operand in an FPR

2.3.4 Implementation and Revision Register

Coprocessor control register 0 contains values that identify the implementation and
revision of the FPU. Only the low-order two bytes of thisregister are defined as shown in
Figure 2-11.

32 16 15 8 7 0

0 Implementation Revision

16 8 8

Figure2-11 FPU Implementation and Revision Register

Theimplementation field identifies aparticular FPU part, but the revision number may not
berelied on to reliably characterize the FPU functional version.

2.3.5 FPU Control and Status Register — FCSR

Coprocessor control register 31 Isthe FPU Control and Status Register (FCSR). Accessto
the register is not privileged; it can be read or written by any program that can execute
floating-point instructions. It controls some operations of the coprocessor and shows status
information:

e Selects the default rounding mode for FPU arithmetic operations.

» Selectively enables traps of FPU exception conditions.

* Controls some denormalized number handling options.

» Reports |IEEE exceptions that arose in the most recently executed instruction.
* Reports IEEE exceptions that arose, cumulatively, in completed instructions.
e Indicates the condition code result of FP compare instructions.

232

Chapter 2 FPU Instruction Set

The contents of this register are unpredictable and undefined after a processor reset or a

power-up event. Software should initialize this register.
Figure2-12 MIPSI - FPU Control and Satus Register (FCSR)
31 24 23 22 18 17 121 76 210
0 c 0 cause enables flags RM
8 1 5 6 5 5 2
E|V|z|OlU|l|V|Z|OJU|l|V|Z|OlU|I
1716151413121110 9 8 7 6 5 4 3 2
Figure2-13 MIPSIII - FPU Control and Status Register (FCSR)
31 25 24 23 22 18 17 121 76 210
0 FS| c 0 cause enables flags RM
7 101 5 6 5 5 2

E|V|Z|OU|I|V|Z|OJU|I|V|Z|O|U|I

1716 151413121110 9 8 7 6 5 4 3 2

Figure2-14 MIPSIV - FPU Control and Status Register (FCSR)

31 25 24 23 22 18 17 1211 7 6 210
FCC FS|Fcc 0 cause enables flags RM
7 111 5 6 5 5 2
7l6]s/al3]2]1] |o] ElV|z|Olu|l|V|z|olu|l|Vv|z|O|U]I
31302928272625 23 17161514 13121110 9 8 7 6 5 4 3 2

All fieldsin the FCSR are readable and writable.

FCC

FS

Floating-Point Condition Codes. These bitsrecord theresult of FP comparesand are
tested for FP conditional branches; the FCC bit to useis specified in the compare or
branch instruction. The 0™ FCC bit is the same as the ¢ bit in MIPS .

Flush to Zero. When FSiis set, denormalized results are flushed to zero instead of
causing an unimplemented operation exception. When a denormalized operand
valueisencountered, zero may be used instead of the denorm; thisisimplementation
specific.

Condition Bit. This bit records the result of FP compares and is tested by FP
conditional branches. In MIPS 1V this becomes the 0" FCC bit.

233

Chapter 2 FPU Instruction Set

cause

enables

flags

RM

Cause bits.

These bitsindicate the exception conditionsthat arise during the execution of an FPU
arithmeticinstruction in precise exception mode. A hitissetto 1if the corresponding
exception condition arises during the execution of an instruction and O otherwise. By
reading the registers, the exception conditions caused by the preceding FPU
arithmetic instruction can be determined. The meaning of the individual bitsis:

Unimplemented Operation
Invalid Operation
Divide by Zero

Overflow

C O N < m

Underflow
| Inexact Result

Enable bits (see cause field for bit names).

These bitscontrol, for each of thefive conditionsindividually, whether atrap istaken
when the | EEE exception condition occurs. The trap occurs when both an enable bit
and the corresponding cause bit are set during an FPU arithmetic operation or by
moving avaueto the FCSR. The meaning of theindividual bitsisthe same asthe
causebits. Notethat the“E” causebit hasno corresponding enable bit; the non-|EEE
Unimplemented Operation exception defined by MIPS is always enabled.

Flag bits. (see causefield for bit names)

This field shows the exception conditions that have occurred for completed
instructions since it was last reset. For a completed FPU arithmetic operation that
raises an exception condition the corresponding bits in the flag field are set and the
others are unchanged. Thisfield is never reset by hardware and must be explicitly
reset by user software.

Rounding Mode. The rounding mode used for most floating-point operations (some
FP instructions use a specific rounding mode). The rounding modes are:

0 RN -- Round to Nearest
Round result to the nearest representable value. When two representable
values are equally near, round to the value that has aleast significant bit of
zero (i.e. iseven).

1 RZ -- Round toward Zero
Round result to the value closest to and not greater in magnitude then the
result.

2 RP -- Round toward Plusinfinity

Round result to the value closest to and not less than the result.

3 RM -- Round toward Minus infinity
Round result to the value closest to and not greater than the result.

Chapter 2 FPU Instruction Set

2.4 Valuesin FP Registers

Unlike the CPU, the FPU does not interpret the binary encoding of source operands or
produce abinary encoding of resultsfor every operation. The value held in afloating-point
operand register (FPR) has aformat, or type and it may only be used by instructions that
operate on that format. The format of avalue is either uninterpreted, unknown, or one of
thevalid numeric formats: single and doubl e floating-point and word and long fixed-point.
The way that the formatted value in an FPR is set and changed is summarized in the state
diagram in Figure 2-15 and is discussed below.

Thevaluein an FPR is always set when avalue is written to the register. When adata
transfer instruction writes binary datainto an FPR (aload), the FPR getsabinary value that
isuninterpreted. A computational or FP register moveinstruction that produces aresult of
type fmt puts a value of type fmt into the result register.

When an FPR with an uninter preted valueis used as a source operand by an instruction that
requires avalue of format fmt, the binary contents are interpreted as an encoded valuein
format fmt and the value in the FPR changes to avalue of format fmt. The binary contents
cannot be reinterpreted in a different format.

If an FPR contains avalue of format fmt, acomputational instruction must not use the FPR
as a source operand of adifferent format. If this occurs, the value in the register becomes
unknown and the result of the instruction is also avalue that is unknown. Using an FPR
containing an unknown value as a source operand produces a result that has an unknown
value.

The format of the valuein the FPR is unchanged when it is read by a data transfer
instruction (astore). A datatransfer instruction produces a binary encoding of the value
contained in the FPR. If the value in the FPR is unknown, the encoded binary value
produced by the operation is not defined.

235

Chapter 2 FPU Instruction Set

Load
Store

Vaue
uninter preted
(binary
encoding)
Rdlt

unknown
RSt A

SrcA
(interpret)

Src A Vauein
Rdt A format
Store A

Rt SrcB
unknown

SrcB
(interpret)

Rslt A

SrcA
SrcB
Store Load

A, B: Example formats

Load: Destination of LWC1, LDC1, MTC1, or DMTCLI instructions.
Store: Source operand of SWC1, SDC1, MFC1, or DMFC1 instructions.
Src fmt: Source operand of computational instruction expecting format “fmt”.
Rslt fmt: Result of computational instruction producing value of format “fmt”.

Figure2-15 The Effect of FPU Operations on the Format of Values Held in FPRs

236

Chapter 2 FPU Instruction Set

2.5 FPU Exceptions

The |EEE 754 standard specifies that:

There are five types of exceptions that shall be signaled when detected.
The signal entails setting a status flag, taking a trap, or possibly doing
both. With each exception should be associated a trap under user control,

Thisfunctionisimplemented in the MIPS FPU architecture with the cause, enable, and flag
fields of the control and status register. The flag bits implement |EEE exception status
flags, and the cause and enabl e bits control exception trapping. Each field hasabit for each
of the five |IEEE exception conditions and the cause field has an additional exception hit,
Unimplemented Operation, used to trap for software emulation assistance.

There may be two exception modes for the FPU, precise and imprecise, and the operation
of the FPU when exception conditions arise depends on the exception mode that is
currently selected. Every processor is able to operate the FPU in the precise exception
mode. Some processors aso have an imprecise exception mode in which floating-point
performance is greater. Selecting the exception mode, when there isachoice, isa
privileged implementation-specific operation.

2.5.1 Precise Exception Mode

In precise exception mode, an exception (trap) caused by afloating-point operation is
precise. A precise trap occurs before the instruction that causes the trap, or any following
instruction, completes and writes results. If desired, the software trap handler can resume
execution of the interrupted instruction stream after handling the exception.

The cause hit field reports per-instruction exception conditions. The cause bits are written
during each floating-point arithmetic operation to show the exception conditionsthat arose
during the operation. The bitsare set to 1 if the corresponding exception condition arises
and O otherwise.

A floating-point trap is generated any time both a cause bit and the corresponding enable
bit are set. This occurs either during the execution of afloating-point operation or by
moving avalue into the FCSR. Thereis no enable for Unimplemented Operation; this
exception condition always generates a trap.

In atrap handler, the exception conditions that arose during the floating-point operation
that trapped are reported in the causefield. Before returning from afloating-point interrupt
or exception, or setting cause bits with a move to the FCSR, software must first clear the
enabled cause hits by amove to the FCSR to prevent the trap from being retaken. User-
mode programs can never observe enabled cause bits set. If thisinformationisrequiredin
auser-mode handler, then it must be passed somewhere other than the status register.

For afloating-point operation that sets only non-enabled cause bits, no trap occurs and the
default result defined by the | EEE standard is stored (see Table 2-4). When afloating-point
operation does not trap, the program can see the exception conditions that arose during the
operation by reading the cause field.

237

Chapter 2 FPU Instruction Set

The flag bit field is a cumulative report of | EEE exception conditions that arise during
instructions that complete; instructions that trap do not update the flag bits. The flag bits
areset to 1if the corresponding | EEE exception is raised and unchanged otherwise. There
isno flag bit for the M1PS Uniplemented Operation exception condition. Theflag bitsare
never cleared as a side effect of floating-point operations, but may be set or cleared by
moving a new value into the FCSR.

2.5.2 Imprecise Exception Mode

In imprecise exception mode, an exception (trap) caused by an | EEE floating-point
operation isimprecise (Unimplemented Operation exceptions must still be signaled
precisely). Animprecisetrap occurs at some point after the exception condition arises. In
particular, it does not necessarily occur before the instruction that causes the exception, or
following instructions, have completed and written results. The software trap handler can
generally neither determine which instruction caused the trap nor continue execution of the
interrupted instruction stream; it can record the trap that occurred and abort the program.

The meaning of the cause bit field when reading the FCSR is not defined. When a cause
bit iswritten in the FCSR by moving data to it, the corresponding flag bit is also set.

All floating-point operations, whether they cause atrap or not, complete in the sense that
they write aresult and record exception condition bitsin the flag field. When an IEEE
exception condition arises during an operation, the default result defined by the IEEE
standard is stored (see Table 2-4).

A floating-point trap is generated when an exception condition arises during a floating-
point operation and the corresponding enable bit isset. A trap will also be generated when
avalue with corresponding cause and enable bits set is moved into the FCSR. Thereisno
enable for Unimplemented Operation; this exception condition always generates a trap.

The flag bit field is a cumulative report of | EEE exception conditions that arise during
instructions that complete. Because al instructions complete in this mode, unlike precise
exception mode, the flag bits include exception conditions that cause traps. The flag bits
are set to 1if the corresponding | EEE exception israised and unchanged otherwise. There
isno flag bit for the M1PS Uniplemented Operation exception condition. Theflag bitsare
never cleared as a side effect of floating-point operations, but may be set or cleared by
moving a new value into the FCSR.

2.5.3 Exception Condition Definitions

238

The five exception conditions defined by the |EEE standard are described in this section.
It also describes the M I PS-defined exception condition, Unimplemented Operation, that is
used to signal a need for software emulation assistance for an instruction.

Normally an IEEE arithmetic operation can cause only one exception condition; the only
case in which two exceptions can occur at the same time are inexact with overflow and
inexact with underflow.

Chapter 2 FPU Instruction Set

At the program’ sdirection, an | EEE exception condition can either cause atrap or not. The
| EEE standard specifies the result to be delivered in case the exception is not enabled and
no trap istaken. The MIPS architecture supplies these results whenever the exception
condition does not result in a precise trap (i.e. no trap or an imprecise trap). The default
action taken depends on the type of exception condition, and in the case of the Overflow,
the current rounding mode. The default result is mentioned in each description and
summarized inTable 2-4.

Table2-4 Default Result for IEEE Exceptions Not Trapped Precisely

Bit Description Default Action

VvV Invalid Supply aquiet NaN.
Operation

Z Divideby Supply aproperly signed infinity.
zero

U Underflow Supply arounded result.

| Inexact Supply arounded result. If caused by an overflow without the overflow trap
enabled, supply the overflowed resuilt.

O Overflow Dependson the rounding mode as shown below
0 (RN) Supply an infinity with the sign of the intermediate result.

1(RZ) Supply theformat's largest finite number with the sign of the intermediate
result.

2 (RP) For positive overflow values, supply positive infinity. For negative overflow
values, supply the format’s most negative finite number.

3 (RM) for positive overflow values supply the format’s largest finite number. For
negative overflow values, supply minus infinity.

(D Invalid Operation exception

Theinvalid operation exceptionissignaled if one or both of the operandsareinvalid for the
operation to be performed. The result, when the exception condition occurs without a
precisetrap, isaquiet NaN. Theinvalid operations are:

» One or both operands is a signaling NaN (except for the non-arithmetic
MOV .fmt MOV T.fmt MOVF.fmt MOVN.fmt and MOV Z.fmt instructions)

» Addition or subtraction: magnitude subtraction of infinities, such as: (+) +
(-00) or (-o0) - (-o9)

e Multiplication: 0 x co, with any signs

e Division: 0/ 0or e / o, with any signs

e Squareroot: An operand less than O (-0 is a valid operand value).

» Conversion of a floating-point number to a fixed-point format when an
overflow, or operand value of infinity or NaN, precludes a faithful
representation in that format.

* Some comparison operations in which one or both of the operands is a QNaN
value. The definition of the compare operation (C.cond.fmt) has tables
showing the comparisons that do and do not signal the exception.

239

Chapter 2 FPU Instruction Set

240

(2) Division By Zero exception

(3) Overflow exception

(4) Underflow exception

(5) Inexact exception

The division by zero exception is signaled on an implemented divide operation if the
divisor is zero and the dividend is afinite nonzero number. The result, when no precise
trap occurs, is acorrectly signed infinity. The divisions (0/0) and (co/0) do not cause the
division by zero exception. Theresult of (0/0) isan Invalid Operation exception condition.
Theresult of («/0) isacorrectly signed infinity.

The overflow exception is signaled when what would have been the magnitude of the
rounded floating-point result, were the exponent range unbounded, is larger than the
destination format’ s largest finite number. The result, when no precise trap occurs, is
determined by the rounding mode and the sign of the intermediate result as shownin Table
2-4.

Two related events contribute to underflow. Oneisthe creation of atiny non-zero result
between +25-MN which, because it is tiny, may cause some other exception later such as
overflow ondivision. The other isextraordinary loss of accuracy during the approximation
of such tiny numbers by denormalized numbers. The |IEEE standard permits a choicein
how these events are detected, but requires that they must be detected the same way for all
operations.

The |EEE standard specifiesthat “tininess” may be detected either: “after rounding” (when
anonzero result computed as though the exponent range were unbounded would lie strictly
between +2E-M M, or “before rounding” (when a nonzero result computed as though both
the exponent range and the precision were unbounded would lie strictly between +25-"1).

The MIPS architecture specifies that tininess is detected after rounding.

The |EEE standard specifies that loss of accuracy may be detected as either
“denormalization loss’ (when the delivered result differs from what would have been
computed if the exponent range were unbounded), or “inexact result” (when the delivered
result differs from what would have been computed if both the exponent range and
precision were unbounded). The MIPS architecture specifies that loss of accuracy is
detected as inexact result.

When an underflow trap is not enabled, underflow is signaled only when both tininess and
loss of accuracy have been detected. The delivered result might be zero, denormalized, or
+2EMN \When an underflow trap isenabled (viathe FCSR enable field bit), underflow is
signaled when tininess is detected regardless of loss of accuracy.

If the rounded result of an operationisnot exact or if it overflowswithout an overflow trap,
then the inexact exception is signaled.

Chapter 2 FPU Instruction Set

(6) Unimplemented Operation exception

This MIPS defined (non-1EEE) exception is to provide software emulation support. The
architecture is designed to permit a combination of hardware and software to fully
implement the architecture. Operations that are not fully supported in hardware cause an
Unimplemented Operation exception so that software may perform the operation. Thereis
no enable bit for this condition; it always causes atrap. After the appropriate emulation or
other operation is done in a software exception handler, the original instruction stream can
be continued.

2.6 Functional Instruction Groups

The FPU instructions are divided into the following functional groups:
e Data Transfer
» Arithmetic
e Conversion
* Formatted Operand Value Move
» Conditiona Branch

* Miscellaneous

2.6.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers and coprocessor
control registers. The FPU has aload/store architecture; all computations are done on data
held in coprocessor general registers. The control registers are used to control FPU
operation. Dataistransferred between registers and the rest of the system with dedicated
load, store, and move instructions. The transferred datais treated as unformatted binary
data; no format conversions are performed and, therefore, no | EEE floating-point
exceptions can occur.

The supported transfer operations are:

e FPUgenerdreg o~ memory (word/doubleword load/store)
e« FPUgenerdreg o CPU genera reg (word/doubleword move)
e FPUcontrolreg - CPU genera reg (word move)

All coprocessor loads and stores operate on naturally-aligned dataitems. An attempt to
load or storeto an address that is not naturally aligned for the data item will cause an
Address Error exception. Regardless of byte-numbering order (endianness), the address of
aword or doubleword isthe smallest byte address among the bytesin the object. For abig-
endian machine thisisthe most-significant byte; for alittle-endian machinethisisthe least-
significant byte.

The FPU hasloads and stores using the usual register+offset addressing. For the FPU only,
there are load and store instructions using register+register addressing.

241

Chapter 2 FPU Instruction Set

242

MIPS | specifies that loads are delayed by one instruction and that proper execution must
beinsured by observing an instruction scheduling restriction. Theinstructionimmediately
following aload into an FPU register Fn must not use Fn as a source register. Thetime
between the load instruction and the time the datais available isthe “load delay slot”. If
no useful instruction can be put into the load delay slot, then a null operation (NOP) must
be inserted.

In MIPS 1, thisinstruction scheduling restriction is removed. Programs will execute
correctly when the loaded data is used by the instruction following the load, but this may
require extrarea cycles. Most processors cannot actually load data quickly enough for
immediate use and the processor will be forced to wait until the datais available.
Scheduling load delay slotsis desirable for performance reasons even when it is not
necessary for correctness.

Table 2-5 FPU Loads and Stores Using Register + Offset Address Mode

Mnemonic Description Defined in

LwcCi L oad Word to Floating-Point MIPSI
SWC1 Store Word to Floating-Point I
LDC1 Load Doubleword to Floating-Point 1
SDC1 Store Doubleword to Floating-Point 1

Table 2-6 FPU Loads and Stores Using Register + Register Address Mode

Mnemonic Description Defined in

LWXC1 Load Word Indexed to Floating-Point MIPS IV
SWXC1 Store Word Indexed to Floating-Point v
LDXC1 Load Doubleword Indexed to Floating-Point v
SDXC1 Store Doubleword Indexed to Floating-Point v

Table 2-7 FPU Move To/From Instructions

Mnemonic Description Defined in
MTC1 Move Word To Floating-Point MIPSI
MFC1 Move Word From Floating-Point I

DMTC1 Doubleword Move To Floating-Point 11
DMFC1 Doubleword Move From Floating-Point 11

CTC1 Move Control Word To Floating-Point |
CFC1 Move Control Word From Floating-Point |

Chapter 2 FPU Instruction Set

2.6.2 Arithmetic Instructions

The arithmetic instructions operate on formatted data values. The result of most floating-
point arithmetic operations meets the | EEE standard specification for accuracy; aresult
which isidentical to an infinite-precision result rounded to the specified format, using the
current rounding mode. The rounded result differs from the exact result by less than one
unit in the least-significant place (ulp).

Table 2-8 FPU IEEE Arithmetic Operations

Mnemonic Description Defined in

ADD.fmt Floating-Point Add MIPSI
SUB.fmt Floating-Point Subtract I
MUL.fmt Floating-Point Multiply I
DIV.fmt Floating-Point Divide I
ABS.fmt Floating-Point Absolute Vaue |
NEG.fmt Floating-Point Negate |
SQRT.fmt Floating-Point Square Root I
C.cond.fmt Floating-Point Compare I, 1V

Two operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root
Approximation (RSQRT), may be less accurate than the | EEE specification. The result of
RECIP differs from the exact reciprocal by no more than one ulp. Theresult of RSQRT
differs by no more than two ulp. Within these error limits, the result of these instructions
isimplementation specific.

Table 2-9 FPU Approximate Arithmetic Operations

Mnemonic Description Defined in
RECIPfmt Floating-Point Reciprocal Approximation MIPS IV
RSQRT.fmt Floating-Point Reciprocal Square Root Approximation v

There are four compound-operation instructions that perform variations of multiply-
accumulate: multiply two operands and accumul ate to athird operand to produce aresult.
The accuracy of the result depends which of two alternative arithmetic modelsis used for
the computation. The unrounded model is more accurate than a pair of |EEE operations
and the rounded model meets the |EEE specification.

Table2-10 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Description Defined in

MADD.fmt Floating-Point Multiply Add MIPS IV
MSUB.fmt Floating-Point Multiply Subtract I\
NMADD.fmt Floating-Point Negative Multiply Add v
NMSUB.fmt Floating-Point Negative Multiply Subtract v

243

Chapter 2 FPU Instruction Set

2.6.3 Conversion Instructions

There are instructions to perform conversions among the floating-point and fixed-point
datatypes. Each instruction converts values from a number of operand formatsto a
particular result format. Some convert instructions use the rounding mode specified in the
Floating Control and Status Register (FCSR), others specify the rounding mode directly.

Table 2-11 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Description Defined in

CVT.S.fmt Floating-Point Convert to Single Floating-Point MIPSI, I11
CVT.D.fmt Floating-Point Convert to Double Floating-Point I, 11
CVT.W.fmt Floating-Point Convert to Word Fixed-Point |

CVT.L.fmt Floating-Point Convert to Long Fixed-Point 11

Table2-12 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Description Defined in
ROUND.W.fmt Floating-Point Round to Word Fixed-Point I
ROUND.L.fmt Floating-Point Round to Long Fixed-Point I

TRUNC.W.fmt Floating-Point Truncate to Word Fixed-Point I
TRUNC.L.fmt Floating-Point Truncate to Long Fixed-Point 11

CEIL W.fmt Floating-Point Ceiling to Word Fixed-Point I
CEIL.L.fmt Floating-Point Ceiling to Long Fixed-Point 11

FLOOR.W.fmt Floating-Point Floor to Word Fixed-Point I
FLOOR.L.fmt Floating-Point Floor to Long Fixed-Point 11

2.6.4 Formatted Operand Value Move Instructions

244

These instructions all move formatted operand values among FPU general registers. A
particular operand type must be moved by the instruction that handles that type. Thereare
three kinds of move instructions:

* Unconditional move

e Conditional move that tests an FPU condition code

* Conditional move that tests a CPU general register value against zero
The conditional move instructions operatein away that may be unexpected. They always
force the value in the destination register to become a value of the format specified in the
instruction. If the destination register does not contain an operand of the specified format
before the conditional move is executed, the contents become undefined. Thereis more

information in 2.4 Valuesin FP Registersand in the individual descriptions of the
conditional move instructions themselves.

Table2-13 FPU Formatted Operand Move Instructions

Mnemonic Description Defined in
MOV.fmt Floating-Point Move MIPS |

Chapter 2 FPU Instruction Set

Table 2-14 FPU Conditional Move on True/False I nstructions

Mnemonic Description Defined in
MOVT.fmt Foating-Point Move Conditional on FP True MIPS IV
MOVFEfmt Floating-Point Move Conditional on FP False v

Table 2-15 FPU Conditional Move on Zero/Nonzero Instructions

Mnemonic Description Defined in
MOVZ.fmt Floating-Point Move Conditional on Zero MIPS IV
MOVN.fmt Floating-Point Move Conditional on Nonzero v

2.6.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by
FPU compare instructions (C.cond.fmt).

All branches have an architectural delay of oneinstruction. When a branch is taken, the
instruction immediately following the branch instruction, in the branch delay slot, is
executed beforethe branch to thetarget instruction takes place. Conditional branchescome
in two versionsthat treat the instruction in the delay slot differently when the branchis not
taken and execution fallsthrough. The “branch” instructions execute theinstruction in the
delay slot, but the “branch likely” instructions do not (they are said to nullify it).

MIPS | defines a single condition code which isimplicit in the compare and branch
instructions. MIPS 1V defines seven additional condition codes and includesthe condition
code number in the compare and branch instructions. The MIPS 1V extension keeps the
original condition bit as condition code zero and the extended encoding is compatible with
the MIPS | encoding.

Table2-16 FPU Conditional Branch Instructions

Mnemonic Description Defined in

BC1T Branch on FP True MIPS I, IV
BC1F Branch on FP False I, IV
BCI1TL Branch on FP True Likely I, v
BC1FL Branch on FP False Likely I, v

2.6.6 Miscdllaneous I nstructions

(1) CPU Conditional Move

There are instructions to move conditionally move one CPU general register to another
based on an FPU condition code.

Table2-17 CPU Conditional Move on FPU True/False Instructions

Mnemonic Description Defined in
MOvVZ Move Conditional on FP True MIPS IV
MOVN Move Conditional on FP False v

245

Chapter 2 FPU Instruction Set

2.7 Valid Operandsfor FP Instructions

246

The floating-point unit arithmetic, conversion, and operand move instructions operate on
formatted valueswith different precision and range limits and produce formatted valuesfor
results. Each representable value in each format has a binary encoding that isread from or
stored to memory. The fmt or fmt3 field of the instruction encodes the operand format
required for the instruction. A conversion instruction specifies the result type in the
function field; the result of other operations isthe same format as the operands. The
encoding of the fmt and fmt3 fields is shown in Table 2-18.

Table2-18 FPU Operand Format Field (fmt, fmt3) Decoding

fmt fmt3 Instructio_n Size . data type
Mnemonic name ‘ bits
0-15 - Reserved
16 0 S single 32 floating-point
17 1 D double 64 floating-point
18-19 2-3 Reserved
20 4 W word 32 fixed-point
21 5 L long 64 fixed-point
22-31 6-7 Reserved

Each type of arithmetic or conversioninstructionisvalid for operands of selected formats.
A summary of the computational and operand move instructions and the formats valid for
each of themislisted in Table 2-19. Implementations must support combinations that are
valid either directly in hardware or through emulation in an exception handler.

Theresult of an instruction using operand formats marked “U” isnot currently specified by
this architecture and will cause an exception. They are available for future extensionsto
the architecture. The exact exception mechanism used is processor specific. Most
implementationsreport thisasan Unimplemented Operation for aFloating Point exception.
Other implementations report these combinations as Reserved Instruction exceptions.

Theresult of aninstruction using operand formats marked “i” areinvalid and an attempt to
execute such an instruction has an undefined resullt.

Chapter 2 FPU Instruction Set

Table2-19 Valid Formats for FPU Operations

operand fmt | cOP1 |COP1X
Mnemonic Operation float | fixed |function| op4
s|p|w]|L | value | value
ABS Absolute value e ¢ U U 5
ADD Add e ¢ U U 0
C.cond Floating-point compare e ¢« U U 48-63
CEIL.L, Convert to longword fixed-point, . . i i 10(14)
(CEIL.W) round toward +oo
CVT.D Convert to double floating-point L 33
CVT.L Convert to longword fixed-point L 37
CVT.S Convert to single floating-point [I 32
CVT.W Convert to 32-bit fixed-point L 36
DIV Divide e ¢ U U 3
FLOORL.L, Convert to longword fixed-point, . . i i 11(5)
(FLOOR.W) round toward -
MADD Multiply-Add e ¢ U U 4
MOV Move Register o e 0 6
MOVC FP Move Conditional on condition e e 0 i 17
MOVN FP Move Conditional on GPR# zero « ¢ i i 19
MOvz FP Move Conditionalon GPR=zero « « i i 18
MSUB Multiply-Subtract e ¢« U U 5
MUL Multiply e ¢ U U 2
NEG Negate e o U U 7
NMADD Negative multiply-Add e ¢« U U 6
NMSUB Negative multiply-Subtract e ¢« U U 7
RECIP Reciprocal approximation e o U U 21
ROUND.L, Convert to longword fixed-point, e i i 82
(ROUND.W) round to nearest/even
RSQRT Z{sglrpc))rxc;crzggtsicgl:‘are root . « U U 29
SQRT Square root e o« U U
SUB Subtract e ¢ U U 1
TRUNC.L Convert to longword fixed-point, e e i i 9@
(TRUNC.W) round toward zero
Key: ‘ e —-Valid. U -Unimplemented or Reserved. i —Invalid.

2.8 Description of an Instruction

For the FPU instruction detail documentation, all variable subfieldsin an instruction format
(such asfs, ft, immediate, and so on) are shown in lower-case. The instruction name (such
as ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats of
specific instructions. For example, we users = basein the format for load and store
instructions. Such an adliasis always lower case, sinceit refersto avariable subfield.

In some instructions, the instruction subfields op and function can have constant 6-bit
values. When referenceis madeto theseinstructions, upper-case mnemonicsare used. For
instance, in the floating-point ADD instruction we use op = COP1 and function = ADD. In

247

Chapter 2 FPU Instruction Set

other cases, asinglefield has both fixed and variable subfields, so the name contains both
upper and lower case characters. Bit encodingsfor mnemonics are shown at the end of this
section, and are also included with each individual instruction.

2.9 Operation Notation Conventions and Functions

Theinstruction description includes an Operation section that describes the operation of
the instruction in a pseudocode. The pseudocode and terms used in the description are
described in 1.8 Operation Section Notation and Functions.

2.10 Individual FPU Instruction Descriptions

The FP instructions are described in alphabetic order. See 1.7 Description of an
Instruction for adescription of the information in each instruction description.

248

Chapter 2 FPU Instruction Set

Floating-Point Absolute Value

ABS.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ABS
010001 00000 000101

6 5 5 5 5 6
Format: ABS.S fd, fs MIPS |
ABS.D fd, fs
Purpose: To compute the absolute value of an FP value.

Description: fd — absolute(fs)

The absolute value of thevaluein FPR fsisplaced in FPR fd. The operand and result are values

in format fmt.

This operation is arithmetic; a NaN operand signalsinvalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point

Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable

Reserved Instruction

Floating-Point
Unimplemented Operation
Invalid Operation

249

Chapter 2 FPU Instruction Set

250

ADD.fmt Floating-Point Add
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd ADD
010001 000000
6 5 5 5 5 6
Format: ADD.S fd, fs, ft MIPS |

ADD.D fd, fs, ft
Purpose: To add FP values.

Description: fd « fs +ft
Thevauein FPR ft isadded to the value in FPR fs. Theresult is calculated to infinite precision,

rounded according to the current rounding mode in FCSR, and placed into FPR fd. The
operands and result are values in format fmt.

Restrictions:

Thefieldsfs, ft, and fd must specify FPRsvalid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operands must be valuesin format fmt; see 2.7 Valid Operandsfor FP Instructions. If
they are not, the result is undefined and the value of the operand FPRs becomes undefined.

Operation:
StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable

Reserved Instruction

Floating-Point
Unimplemented Operation
Invalid Operation
Inexact
Overflow
Underflow

Chapter 2 FPU Instruction Set

Branch on FP False BClF

31 26 25 21 20 18 1716 15 0
COP1 BC cc nd tf Offset
010001 01000 0|0
6 5 3 11 16
Format; BC1F offset (cc = 0 implied) MIPS |
BC1F cc, offset MIPS IV
Purpose: To test an FP condition code and do a PC-relative conditional branch.

Description: if (cc = 0) then branch
An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the FP condition code bit cc is false (0), branch to the effective target address after the
instruction in the delay slot is executed

An FP condition code is set by the FP compare instruction, C.cond.fmt.

The MIPS | architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C hit in the FP Control and Status register.
MIPSI, I1, and 111 architectures must have the cc field set to 0, which isimplied by the first
format in the Format section.

The MIPS IV architecture adds seven more condition code bitsto the original condition codeO.
FP compare and conditional branch instructions specify the condition code bit to set or test.
Both assembler formats are valid for MIPS1V.

Restrictions:
MIPSI, I1,111: There must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that testsit. Hardware does not detect a
violation of thisrestriction.

MIPSI1V: None.

251

Chapter 2 FPU Instruction Set

252

BClF Branch on FP False

Operation:

MIPS|, II, and 11l define asingle condition code; MIPS 1V adds 7 more condition codes. This
operation specification is for the general “Branch On Condition” operation with the tf (true/
false) and nd (nullify delay slot) fieldsasvariables. Theindividual instructions BC1F, BC1FL,
BC1T, and BC1TL have specific values for tf and nd.

MIPS |
I-1: condition — COC[1] = tf
I target_offset (offset;5)CPREEN-(16+2) || offset || 02
1+1: if condition then
PC —~ PC + target
endif

MIPS Il and MIPS Il
I-1: condition — COC[1] = tf
I: target offset— (offset,s)®PR-EN-(16+2) || offset || 02
1+1: if condition then
PC ~ PC + target
else if nd then
NullifyCurrentinstruction()
endif

MIPS IV:
I. condition « FCCJcc] = tf
target_offset — (offset;5) 5PRLEN-16+2) || offset || 02
1+1: if condition then
PC ~ PC + target
else if nd then
NullifyCurrentinstruction()
endif

Exceptions:
Coprocessor Unusable

Reserved Instruction
Floating-Point
Unimplemented Operation

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 2 FPU Instruction Set

Branch on FP False Likely BClFL

31 26 25 21 20 18 1716 15 0
COP1 BC cc nd tf Offset
010001 01000 1|0
6 5 3 11 16
Format; BC1FL offset (cc = 0 implied) MIPS Il
BC1FL cc, offset MIPS IV
Purpose: To test an FP condition code and do a PC-rel ative conditional branch; execute the

delay dot only if the branch istaken.

Description: if (cc = 0) then branch_likely
An 18-bit signed offset (the 16-hit offset field shifted | eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the FP condition code bit cc is false (0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay
slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

The MIPS | architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register.
MIPSI, I1, and 111 architectures must have the cc field set to 0, which isimplied by the first
format in the Format section.

TheMIPS IV architecture adds seven more condition code bitsto the original condition code O.
FP compare and conditional branch instructions specify the condition code bit to set or test.
Both assembler formats are valid for MIPS V.

Restrictions:
MIPSII, I11: Theremust beat least oneinstruction between the compare instruction that sets
a condition code and the branch instruction that testsit. Hardware does not detect a violation
of thisrestriction.

MIPSI1V: None.

253

Chapter 2 FPU Instruction Set

254

BClFL Branch on FP False Likely

Operation:

MIPSI, and Il define a single condition code; MIPS 1V adds 7 more condition codes. This
operation specification isfor the general “Branch On Condition” operation with the tf (true/
false) and nd (nullify delay slot) fieldsasvariables. Theindividual instructions BC1F, BC1FL,
BC1T, and BC1TL have specific values for tf and nd.

MIPS Il and MIPS Il
I-1: condition — COC[1] = tf
I target_offset— (offset;5)CPRLEN-(16+2) || offset || 02
1+1: if condition then
PC —~ PC + target
else if nd then
NullifyCurrentinstruction()
endif

MIPS IV:
I. condition « FCCJcc] = tf
target_offset — (offset;5) SPRLEN-16+2) || offset || 02
1+1: if condition then
PC ~ PC + target
else if nd then
NullifyCurrentinstruction()
endif

Exceptions:
Coprocessor Unusable

Reserved Instruction
Floating-Point
Unimplemented Operation

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 2 FPU Instruction Set

Branch on FP True BClT

31 26 25 21 20 18 1716 15 0
COP1 BC cc nd tf Offset
010001 01000 0|1
6 5 3 11 16
Format; BC1T offset (cc = 0 implied) MIPS |
BC1T cc, offset MIPS IV
Purpose: To test an FP condition code and do a PC-relative conditional branch.

Description: if (cc = 1) then branch
An 18-bit signed offset (the 16-hit offset field shifted |eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the FP condition code bit cc istrue (1), branch to the effective target address after the
instruction in the delay slot is executed

An FP condition code is set by the FP compare instruction, C.cond.fmt.

The MIPS | architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register.
MIPSI, I1, and 111 architectures must have the cc field set to 0, which isimplied by the first
format in the Format section.

TheMIPS IV architecture adds seven more condition code bitsto the original condition code O.
FP compare and conditional branch instructions specify the condition code bit to set or test.
Both assembler formats are valid for MIPS V.

Restrictions:
MIPSI, |1, 111: There must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that testsit. Hardware does not detect a
violation of thisrestriction.

MIPSI1V: None

255

Chapter 2 FPU Instruction Set

256

BClT Branch on FP True

Operation:

MIPSI, II, and l1l define asingle condition code; MIPS 1V adds 7 more condition codes. This
operation specification isfor the general “Branch On Condition” operation with the tf (true/
false) and nd (nullify delay slot) fieldsasvariables. Theindividual instructions BC1F, BC1FL,
BC1T, and BC1TL have specific values for tf and nd.

MIPS |
I-1: condition — COC[1] = tf
I target — (offset;5)CPRLEN-(16+2))| offset || 02
1+1: if condition then
PC —~ PC + target
endif

MIPS Il and MIPS Il
I-1: condition — COC[1] = tf
I: target — (offset;s)CPREEN-(16+2) || offset || 02
1+1: if condition then
PC ~ PC + target
else if nd then
NullifyCurrentinstruction()
endif

MIPS IV:
I. condition — FCC[cc] = tf
target — (offset;5)CPRLEN-(16+2) || offset || 02
1+1: if condition then
PC ~ PC + target
else if nd then
NullifyCurrentinstruction()
endif

Exceptions:
Coprocessor Unusable

Reserved Instruction
Floating-Point
Unimplemented Operation

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 2 FPU Instruction Set

Branch on FP True Likely BClTL

31 26 25 21 20 18 1716 15 0
COP1 BC cc nd tf Offset
010001 01000 1|1
6 5 3 11 16
Format; BC1TL offset (cc = 0 implied) MIPS Il
BCI1TL cc, offset MIPS IV
Purpose: To test an FP condition code and do a PC-rel ative conditional branch; execute the

delay dot only if the branch is taken.

Description: if (cc = 1) then branch_likely
An 18-bit signed offset (the 16-hit offset field shifted |eft 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay dlot, to form a
PC-relative effective target address.

If the FP condition code bit cc istrue (1), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay
slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

The MIPS | architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register.
MIPSI, I1, and 111 architectures must have the cc field set to 0, which isimplied by the first
format in the Format section.

TheMIPS IV architecture adds seven more condition code bitsto the original condition code O.
FP compare and conditional branch instructions specify the condition code bit to set or test.
Both assembler formats are valid for MIPS V.

Restrictions:
MIPSII, I11: Theremust beat least oneinstruction between the compare instruction that sets
a condition code and the branch instruction that testsit. Hardware does not detect a violation
of thisrestriction.

MIPSI1V: None.

257

Chapter 2 FPU Instruction Set

258

BClTL Branch on FP True Likely

Operation:

MIPSI, and Il define a single condition code; MIPS 1V adds 7 more condition codes. This
operation specification isfor the general “Branch On Condition” operation with the tf (true/
false) and nd (nullify delay slot) fieldsasvariables. Theindividual instructions BC1F, BC1FL,
BC1T, and BC1TL have specific values for tf and nd.

MIPS Il and MIPS I
I-1: condition — COC[1] = tf
I: target — (offset;s)CPREEN-(16+2) || offset || 02
1+1: if condition then
PC ~ PC + target
else if nd then
NullifyCurrentinstruction()
endif

MIPS IV:
I. condition — FCC[cc] = tf
target — (offset;5)CPRLEN-(16+2) || offset || 02
1+1: if condition then
PC ~ PC + target
else if nd then
NullifyCurrentinstruction()
endif

Exceptions:
Coprocessor Unusable

Reserved Instruction
Floating-Point
Unimplemented Operation

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use
jump (J) or jump register (JR) instructions to branch to more distant addresses.

Chapter 2 FPU Instruction Set

Floating-Point Compare C.cond.fmt
31 26 25 21 20 16 15 1110 8 7 65 4 3 0
COP1 fmt ft fs cc 0 | FC | cond
010001 00|11
6 5 5 5 3 2 2 4
Format: C.cond.S fs, ft (cc = 0 implied) MIPS |
C.cond.D fs,ft (cc = 0 implied)
C.cond.S cc,fs, ft MIPS IV

Purpose:

Description:

C.cond.D cc,fs, ft
To compare FP values and record the Boolean result in a condition code.

cc ~ fs compare _cond ft

Thevauein FPR fsis compared to the value in FPR ft; the values are in format fmt. The
comparison is exact and neither overflows nor underflows. |f the comparison specified by
cond, ; istruefor the operand values, thentheresult istrue, otherwiseitisfalse. If no exception
is taken, the result iswritten into condition code cc; trueis 1 and falseisO.

If condy is set and at least one of the valuesisaNaN, an Invalid Operation condition is raised;
the result depends on the FP exception model currently active.

» Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written and an Invalid Operation
exception is taken immediately. Otherwise, the Boolean result is written into condition

code cc.

There are four mutually exclusive ordering relations for comparing floating-point values; one
relationisalwaystrue and the othersarefalse. Thefamiliar relationsaregreater than, lessthan,
and equal. In addition, the |EEE floating-point standard defines the relation unordered which
istrue when at least one operand value is NaN; NaN compares unordered with everything,
including itself. Comparisonsignore the sign of zero, so +0 equals -0.

The comparison condition isalogical predicate, or equation, of the ordering relations such as

“lessthan or equa”, “equal”, “not less than”, or “unordered or equal”. Compare distinguishes
sixteen comparison predicates. The Boolean result of the instruction isobtained by substituting
the Boolean value of each ordering relation for the two FP valuesinto equation. If the equal
relation istrue, for example, then al four example predicates above would yield a true result.
If the unordered relation is true then only the final predicate, “unordered or equal” would yield

atrueresult.

Logica negation of acompare result allows eight distinct comparisons to test for sixteen
predicates as shown in Table 2-20. Each mnemonic tests for both a predicate and its logical
negation. For each mnemonic, compare tests the truth of the first predicate. When the first
predicate is true, the result is true as shown in the “if predicate istrue” column (note that the
False predicate is never true and False/True do not follow the normal pattern). When the first
predicate is true, the second predicate must be false, and vice versa. The truth of the second
predicate is the logica negation of the instruction result. After acompare instruction, test for
the truth of the first predicate with the Branch on FP True (BC1T) instruction and the truth of
the second with Branch on FP False (BC1F).

259

Chapter 2 FPU Instruction Set

260

C.cond.fmt Floating-Point Compare
Table2-20 FPU Comparisons Without Special Operand Exceptions
I nstr Comparison Predicate Cg(r:n%i!usﬁn I nstr
_ name of predicateand o relation If Inv ~ond field
cond logically negated predicate (abbreviation) values Op
Mne- pred- excp
monic s< = 2| S ifQ | 3 2.0
NaN
F False [this predicate is always False, FFFFF . 0
True (T) it never has a True result] TTTT
UN Unordered FFEET T
Ordered (OR) TITTF F 1
EQ | Equa FIFTF T ,
Not Equal (NEQ) TTFT F
UEQ | Unordered or Equal FFFTT T 3
Ordered or Greater than or Less than (OGL) TTFF F No | o
OLT | Ordered or Less Than FITFF T 4
Unordered or Greater than or Equal (UGE) TFTT F
ULT | Unordered or Less Than FITFTl T
Ordered or Greater than or Equal (OGE) TFTF F >
OLE | Ordered or Less than or Equal FFTTF T 5
Unordered or Greater Than (UGT) TFFT F
ULE | Unordered or Lessthan or Equél FITTT T .
Ordered or Greater Than (OGT) T FFF F

key: "?" =unordered, “>" = greater than, “<" = lessthan, “=" isequal,“T” = True, “F" = False

Thereis another set of eight compare operations, distinguished by aconds value of 1, testing
the same sixteen conditions. For these additional comparisons, if at least one of the operandsis
aNaN, including Quiet NaN, then an Invalid Operation condition israised. If the Invalid
Operation condition is enabled in the FCSR, then an Invalid Operation exception occurs.

Chapter 2 FPU Instruction Set

Floating-Point Compare C.cond.fmt
Table2-21 FPU Comparisons With Special Operand Exceptions for QNaNs
Instr Comparison Predicate Cgén%a;usﬂn Instr
_ name of pret_jicateand o relation 't Inv cond fidd
cond logically negated predicate (abbreviation) values Op
Mne- pred- excp
monic >l< = 2 iISC?rtSe ifQ| 3]2.0
NaN
SF Signaling False [this predicate always False] FIFFF e 0
Signaling True (ST) TTTT
NGL | Not Greater than or Less than or Equal FFFFT T
E Greater than or Lessthan or Equal (GLE) TTTF F !
SEQ | Signaling Equal FIFTEF T)
Signaling Not Equal (SNE) TTFT F
NGL | Not Greater than or Less than FIFTT T 3
Greater than or Lessthan (GL) T TFF F ves | 1
LT Lessthan FITFF T 4
Not Less Than (NLT) TFTT F
NGE | Not Greater than or Equal FFTFT T 5
Greater than or Equal (GE) TFTF F
LE Less than or Equal FFTTF T 5
Not Lessthan or Equal (NLE) T FFT F
NGT | Not Greater than FFTTT T -
Greater than (GT) T FFF F

key: “7? =unordered, “>" = greater than, “<“ = lessthan, “=" isequal,“T” = True, “F’ = False

The instruction encoding is an extension made in the MIPS IV architecture. In previous
architecture levels the cc field for thisinstruction must be O.

The MIPS | architecture defines a single floating-point condition code, implemented as the
coprocessor 1 condition signal (Cp1Cond) and the C bit in the FP Control and Status register.
MIPSI, II, and Il architectures must have the cc field set to 0, which isimplied by the first
format in the Format section.

TheMIPS IV architecture adds seven more condition code bitsto the original condition codeO.
FP compare and conditional branch instructions specify the condition code bit to set or test.
Both assembler formats are valid for MIPS V.

261

Chapter 2 FPU Instruction Set

262

C.cond.fmt Floating-Point Compare

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operands must be valuesin format fmt; see 2.7 Valid Operandsfor FP Instructions. If
they are not, the result is undefined and the value of the operand FPRs becomes undefined.

MIPSI, I1, 111: There must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that testsit. Hardware does not detect a
violation of thisrestriction.

Operation:

if NaN(Value FPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less — false
equal ~ false
unordered — true
if t then
SignalException(InvalidOperation)
endif
else
less — ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal « ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered — false
endif
condition — (cond, and less) or (cond; and equal) or (condy and unordered)
FCClcc] « condition
if cc = 0 then
COC[1] ~ condition
endif

Exceptions:

Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented Operation
Invalid Operation

Chapter 2 FPU Instruction Set

Floating-Point Compare C.cond.fmt

Programming Notes:
FP computational instructions, including compare, that receive an operand value of Signaling
NaN, will raise the Invalid Operation condition. The comparisons that raise the Invalid
Operation condition for Quiet NaNsin addition to SNaNs, permit asimpler programming model
if NaNs are errors. Using these compares, programs do not need explicit code to check for
QNaNs causing the unordered relation. Instead, they take an exception and allow the exception
handling system to deal with the error when it occurs. For example, consider a comparison in
which we want to know if two numbers are equal, but for which unordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4 # check for equal
nop
bclt L2 # it is equal
c.un.d $f2,$f4 #itis not equal, but might be unordered
bclt ERROR# unordered goes off to an error handler
not-equal-case code here

equal-case code here
L2:
#
comparison using comparisons that signal QNaN
c.seq.d $f2,$f4 # check for equal
nop
bclt L2 #itis equal
nop
it is not unordered here...
not-equal-case code here

#equal-case code here
L2:

263

Chapter 2 FPU Instruction Set

264

CEl L . L fmt Floating-Point Ceiling Convert to Long Fixed-Point

31 26 25 21 20 16 15 11 10 6 5 0

COP1 fmt 0 fs fd CEIL.L
010001 00000 001010
6 5 5 5 5 6

Format: CEIL.L.S fd, fs MIPS Il
CEILL.D fd,fs

Purpose: To convert an FP value to 64-hit fixed-point, rounding up.

Description: fd — convert_and_round(fs)
The valuein FPR fsin format fmt, is converted to avalue in 64-bit long fixed-point format
rounding toward +oo (rounding mode 2). Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 28310 2637,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 23-1, is
written to fd.

Restrictions:
Thefieldsfs and fd must specify valid FPRs; fsfor type fmt and fd for long fixed-point; see 2.3
Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it

is not, the result is undefined and the value of the operand FPR becomes undefined.
Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
Invalid Operation Unimplemented Operation
Inexact Overflow

Chapter 2 FPU Instruction Set

Floating-Point Ceiling Convert to Word Fixed-Point CEl L met

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CEILW
010001 00000 001110
6 5 5 5 5 6
Format: CEILW.S fd,fs MIPS I
CEILW.D fd,fs
Purpose: To convert an FP value to 32-hit fixed-point, rounding up.

Description: fd — convert_and_round(fs)
The valuein FPR fsin format fmt, is converted to avaluein 32-bit word fixed-point format
rounding toward +oo (rounding mode 2). Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 23110 2311,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 2311, is
written to fd.

Restrictions:
Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point; see
2.3 Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP I nstructions. If it
is not, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Invalid Operation
Unimplemented Operation
Inexact
Overflow

265

Chapter 2 FPU Instruction Set

266

CFC1

Move Control Word from Floating-Point

31 26 25 21 20 16 15 11 10 0
COP1 CF rt fs 0
010001 00010 0000000 0000O0
6 5 5 5 11
Format: CFC1 tt,fs MIPS |
Purpose: To copy aword from an FPU control register to a GPR.

Description:

rt —« FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control register fsinto GPR rt, sign-extending it
if the GPR is 64 hits.

Restrictions:

There are only a couple control registers defined for the floating-point unit. The result is not

defined if fs specifies aregister that does not exist.

For MIPS 1, MIPS 11, and MIPS 111, the contents of GPR rt are undefined for the instruction
immediately following CFCL.

Operation: MIPS | - 1lI
. temp ~ FCRIfs]
1+1: GPR]rt] — sign_extend(temp)
Operation: MIPS IV
temp ~ FCRIfs]

GPR]rt] — sign_extend(temp)

Exceptions:

Coprocessor Unusable

Chapter 2 FPU Instruction Set

Move Control Word to Floating-Point CTCl
31 26 25 21 20 16 15 11 10 0
COP1 CT rt fs 0
010001 00110 00000000000
6 5 5 5 11
Format: CTC1 tt,fs MIPS |
Purpose: To copy aword from a GPR to an FPU control register.

Description: FP_Control[fs] ~ rt
Copy the low word from GPR rt into FP (coprocessor 1) control register fs.

Writing to control register 31, the Floating-Point Control and Status Register or FCSR, causes
the appropriate exception if any cause bit and its corresponding enable bit are both set. The
register will be written before the exception occurs.

Restrictions:
There are only a couple control registers defined for the floating-point unit. The result is not
defined if fs specifies aregister that does not exist.

For MIPS 1, MIPS I, and MIPS 111, the contents of floating-point control register fsare
undefined for the instruction immediately following CTCL1.

Operation: MIPS | - 1lI

I temp < GPRIrt]z1 o
1+1: FCR[fs] —~ temp
COCJ1] ~ FCR[31]53

Operation: MIPS IV

temp ~ GPRIrtl3; o
FCR[fs] — temp
COC[1] ~ FCR[31],3

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented Operation
Invalid Operation
Division-by-zero
Inexact
Overflow
Underflow

267

Chapter 2 FPU Instruction Set

268

CVT.D.fmt Floating-Point Convert to Double Floating-Point
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.D
010001 00000 100001
6 5 5 5 5 6
Format: CVT.D.S fd,fs MIPS |

CVT.D.W fd,fs
CVT.D.L fd,fs MIPS Il
Purpose: To convert an FP or fixed-point value to double FP.

Description: fd — convert_and_round(fs)
Thevaluein FPR fsinformat fmt is converted to avaluein doubl e floating-point format rounded
according to the current rounding modein FCSR. Theresult isplaced in FPR fd.

If fmtis Sor W, then the operation is always exact.

Restrictions:
Thefieldsfsand fd must specify valid FPRs; fsfor type fmt and fd for doubl e floating-point; see
2.3 Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
is not, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Invalid Operation
Unimplemented Operation
Inexact
Overflow
Underflow

Chapter 2 FPU Instruction Set

Floating-Point Convert to Long Fixed-Point CVT.L.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.L
010001 00000 100101
6 5 5 5 5 6
Format: CVT.LS fd,fs MIPS Il

CVT.L.D fd,fs
Purpose: To convert an FP value to a 64-hit fixed-point.

Description: fd — convert_and_round(fs)
Convert the valuein format fmt in FPR fs to long fixed-point format, round according to the
current rounding mode in FCSR, and place the result in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 28310 2637,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active:

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 23-1, is
written to fd.

Restrictions:
Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point; see
2.3 Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP I nstructions. If it
is not, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Invalid Operation
Unimplemented Operation
Inexact
Overflow

269

Chapter 2 FPU Instruction Set

270

CVT.S.fmt Floating-Point Convert to Single Floating-Point
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.S
010001 00000 100000
6 5 5 5 5 6
Format: CVT.SD fd,fs MIPS |

CVT.S.W fd,fs
CVT.S.L fd,fs MIPS Il
Purpose: To convert an FP or fixed-point value to single FP.

Description: fd — convert_and_round(fs)
Thevauein FPR fsinformat fmt is converted to avaluein single floating-point format rounded
according to the current rounding modein FCSR. Theresult isplaced in FPR fd.

Restrictions:
Thefieldsfsand fd must specify valid FPRs; fsfor type fmt and fd for single floating-point; see
2.3 Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
is not, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Invalid Operation
Unimplemented Operation
Inexact
Overflow
Underflow

Chapter 2 FPU Instruction Set

Floating-Point Convert to Word Fixed-Point CVT.W.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.W
010001 00000 100100
6 5 5 5 5 6
Format: CVT.W.S fd, fs MIPS |

CVT.W.D fd,fs
Purpose: To convert an FP value to 32-bit fixed-paint.

Description: fd — convert_and_round(fs)
The valuein FPR fsin format fmt is converted to a value in 32-bit word fixed-point format
rounded according to the current rounding mode in FCSR. Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 23110 2311,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 2311, is
written to fd.

Restrictions:
Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point; see
2.3 Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP I nstructions. If it
is not, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Invalid Operation
Unimplemented Operation
Inexact
Overflow

271

Chapter 2 FPU Instruction Set

272

DIV.fmt Floating-Point Divide
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd DIV
010001 000011
6 5 5 5 5 6
Format: DIV.S fd, fs, ft MIPS |

DIV.D fd,fs, ft
Purpose: To divide FP values.

Description: fd « fs/ft
Thevaluein FPR fsisdivided by the valuein FPR ft. The result is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into FPR fd.
The operands and result are valuesin format fmt.

Restrictions:
Thefieldsfs, ft, and fd must specify FPRsvalid for operands of typefmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operands must be values in format fmt; see 2.7 Valid Operandsfor FP Instructions. If

they are not, the result is undefined and the value of the operand FPRs becomes undefined.
Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
Inexact Unimplemented Operation
Division-by-zero Invalid Operation
Overflow Underflow

Chapter 2 FPU Instruction Set

Doubleword Move From Floating-Point DMFCl
31 26 25 21 20 16 15 1110 0
COP1 DMF rt fs 0
010001 00001 000 0000 0000
6 5 5 5 11
Format: DMFC1 tt, fs MIPS Il
Purpose: To copy adoubleword from an FPR to a GPR.

Description: rt fs
The doubleword contents of FPR fs are placed into GPR rt.

If the coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit
register emulation mode in a 64-bit processor), FPR fsisheld in an even/odd register pair. The
low word is taken from the even register fs and the high word is from fs+1.

Restrictions:
If fs does not specify an FPR that can contain a doubleword, the result is undefined; see
2.3 Floating-Point Registers.

For MIPS 111, the contents of GPR rt are undefined for the instruction immediately following
DMFCL.

Operation: MIPS | - 1lI

I. if SizeFGR() = 64 then /* 64-bit wide FGRs */
data —~ FGR][fs]
elseif fsg = 0 then * valid specifier, 32-bit wide FGRs */
data —~ FGRJfs+1] || FGR]fs]
else /* undefined for odd 32-bit FGRs */
UndefinedResult()
endif

I1+1: GPR][rt] ~ data
Operation: MIPS IV

if SizeFGR() = 64 then /* 64-bit wide FGRs */
data — FGR[fs]

elseif fsg = 0 then * valid specifier, 32-bit wide FGRs */
data ~ FGR[fs+1] || FGR]fs]

else /* undefined for odd 32-bit FGRs */
UndefinedResult()

endif

GPR]rt] ~ data

Exceptions:

Reserved Instruction
Coprocessor Unusable

273

Chapter 2 FPU Instruction Set

274

DMTCl Doubleword Move To Floating-Point
31 26 25 21 20 16 15 1110 0
COP1 DMT rt fs 0
010001 00101 000 0000 0000
6 5 5 5 11
Format: DMTC1 tt, fs MIPS Il
Purpose: To copy adoubleword from a GPR to an FPR.

Description: fs « rt
The doubleword contents of GPR rt are placed into FPR fs.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register
emulation modein a64-bit processor), FPR fsisheld in an even/odd register pair. Thelow word
isplaced in the even register fs and the high word is placed in fs+1.

Restrictions:
If fs does not specify an FPR that can contain a doubleword, the result is undefined; see
2.3 Floating-Point Registers.

For MIPS 111, the contents of FPR fs are undefined for the instruction immediately following
DMTCL.

Operation: MIPS | - 1lI
I. data « GPR]rt]

I+1: if SizeFGR() = 64 then * 64-bit wide FGRs */
FGR][fs] ~ data
elseif fsg = 0 then * valid specifier, 32-bit wide FGRs */

FGR[fS"’l] — data63__32
FGR[fS] — data31__o

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Operation: MIPS IV
data — GPR]rt]

if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGR[fs] —~ data
elseif fsg = 0 then [* valid specifier, 32-bit wide FGRs */

FGR[fs+1] ~ data63_,32
FGRI[fs] — dataz; o

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:

Reserved Instruction
Coprocessor Unusable

Chapter 2 FPU Instruction Set

Floating-Point Floor Convert to Long Fixed-Point FLOOR L fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd FLOOR.L
010001 00000 001011
6 5 5 5 5 6
Format: FLOOR.L.S fd,fs MIPS Il
FLOOR.L.D fd,fs
Purpose: To convert an FP value to 64-bit fixed-point, rounding down.

Description: fd — convert_and_round(fs)
The valuein FPR fsin format fmt, is converted to avalue in 64-bit long fixed-point format
rounding toward -co (rounding mode 3). Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 28310 2637,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 23-1, is
written to fd.

Restrictions:
Thefieldsfs and fd must specify valid FPRs; fsfor type fmt and fd for long fixed-point; see 2.3
Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it

is not, the result is undefined and the value of the operand FPR becomes undefined.
Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
Invalid Operation Unimplemented Operation
Inexact Overflow

275

Chapter 2 FPU Instruction Set

276

FLOORmet Floating-Point Floor Convert to Word Fixed-Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd FLOOR.W
010001 00000 001111
6 5 5 5 5 6
Format: FLOOR.W.S fd, fs MIPS I
FLOOR.W.D f1d,fs
Purpose: To convert an FP value to 32-bit fixed-point, rounding down.

Description: fd — convert_and_round(fs)
The valuein FPR fsin format fmt, is converted to avaluein 32-bit word fixed-point format
rounding toward —o (rounding mode 3). Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 23110 2311,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 2311, is
written to fd.

Restrictions:
Thefieldsfsand fd must specify valid FPRs; fsfor type fmt and fd for word fixed-point; see 2.3
Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it

is not, the result is undefined and the value of the operand FPR becomes undefined.
Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
Invalid Operation Unimplemented Operation
Inexact Overflow

Chapter 2 FPU Instruction Set

Load Doubleword to Floating-Point LDCl
31 26 25 21 20 16 15 0
LDC1 base ft offset
110101
6 5 5 16
Format; LDC1 ft, offset(base) MIPS Il
Purpose: To load a doubleword from memory to an FPR.

Description: ft « memory[base+offset]
The contents of the 64-bit doubleword at the memory location specified by the aligned effective
address are fetched and placed in FPR ft. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register
emulation modein a64-bit processor), FPR ftisheld in an even/odd register pair. Thelow word
is placed in the even register ft and the high word is placed in ft+1.

Restrictions:
If ft does not specify an FPR that can contain a doubleword, the result is undefined; see
2.3 Floating-Point Registers.

An Address Error exception occursif EffectiveAddress, o # 0 (not doubleword-aigned).
MIPSIV: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation:

vAddr — sign_extend(offset) + GPR[base]

if vAddr, o # 0% then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)

data — LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)

if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGR[ft] - data
elseif ftg = 0 then * valid specifier, 32-bit wide FGRs */

FGR[ft+1] — data63__32
FGR[ft] - datagluo

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:

Coprocessor unusable
Reserved Instruction
TLB Refill, TLB Invalid
Address Error

277

Chapter 2 FPU Instruction Set

278

LDXCl Load Doubleword Indexed to Floating-Point
31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index 0 fd LDXC1
010011 000001
6 5 5 5 5 6
Format; LDXC1 fd, index(base) MIPS IV

Purpose: To load a doubleword from memory to an FPR (GPR+GPR addressing).

Description: fd « memory[base+index]
The contents of the 64-bit doubleword at the memory location specified by the aligned effective
address are fetched and placed in FPR fd. The contents of GPR index and GPR base are added
to form the effective address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register
emulation mode in a 64-bit processor), FPR fd is held in an even/odd register pair. Thelow
word is placed in the even register fd and the high word is placed in fd+1.

Restrictions:
If fd does not specify an FPR that can contain a doubleword, the result is undefined; see
2.3 Floating-Point Registers.

The Region hits of the effective address must be supplied by the contents of base. If
EffectiveAddressg; g, Z basegs e, the result is undefined.

An Address Error exception occursif EffectiveAddress, o # 0 (not doubleword-aigned).

MIPSIV: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation:

vAddr — GPR[base] + GPR[index]

if vAddr, o # 0% then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)

mem ~ LoadMemory(unchched, DOUBLEWORD, pAddr, vAddr, DATA)

if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGR[fd] ~ data
elseif fdg = 0 then * valid specifier, 32-bit wide FGRs */

FGR[fd+1] data63”32
FGR[fd] - data31_0

else /* undefined result for odd 32-bit FGRs */
UndefinedResult()

endif

Exceptions:
TLB Réfill, TLB Invalid
Address Error
Reserved Instruction
Coprocessor Unusable

Chapter 2 FPU Instruction Set

Load Word to Floating-Point LWCl
31 26 25 21 20 16 15 0
LwC1 base ft offset
110001
6 5 5 16
Format; LWCL1 ft, offset(base) MIPS |
Purpose: To load aword from memory to an FPR.

Description: ft « memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective
address arefetched and placed into thelow word of coprocessor 1 general register ft. The 16-bit
signed offset is added to the contents of GPR base to form the effective address.

If coprocessor 1 general registers are 64-bitswide, bits 63..32 of register ft become undefined.
See 2.3 Floating-Point Registers.

Restrictions:
An Address Error exception occursif EffectiveAddress; % 0 (not word-aligned).

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit Processors

I /*"mem” is aligned 64-bits from memory. Pick out correct bytes. */
vAddr — sign_extend(offset) + GPR[base]
if vAddr; o # 0% then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
mem « LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
I+1: FGR[ft] « mem

Operation: 64-bit Processors

/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
vAddr — sign_extend(offset) + GPR[base]

if vAddr; o # 02 then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%))
mem ~ LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
bytesel — vAddr, o xor (BigEndianCPU || 0%)

if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGRIft] — undefined®? || mems; . gumytesel s*bytesel

else /* 32-bit wide FGRs */
FGR[ft] - mem31+8*bytese|..8*bytese|

endif

279

Chapter 2 FPU Instruction Set

280

LWC1

Load Word to Floating-Point

Exceptions:
Coprocessor unusable
Reserved Instruction
TLB Refill, TLB Invaid
Address Error

Chapter 2 FPU Instruction Set

Load Word Indexed to Floating-Point LWXCl
31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index 0 fd LWXC1
010011 000000
6 5 5 5 5 6
Format; LWXC1 fd, index(base) MIPS IV

Purpose: To load aword from memory to an FPR (GPR+GPR addressing).

Description: fd « memory[base+index]
The contents of the 32-bit word at the memory location specified by the aligned effective
address are fetched and placed into the low word of coprocessor 1 general register fd. The
contents of GPR index and GPR base are added to form the effective address.

If coprocessor 1 general registers are 64-bits wide, bits 63..32 of register fd become undefined.
See 2.3 Floating-Point Registers.

Restrictions:
The Region bits of the effective address must be supplied by the contents of base. If
EffectiveAddresssz g, % basegs gp, the result is undefined.

An Address Error exception occurs if EffectiveAddress; o # 0 (not word-aligned).

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation:

vAddr — GPR[base] + GPR[index]

if vAddr, o # 02 then SignalException(AddressError) endif

(pAddr, uncached) — AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpsize.1 3 || (PAddr, o xor (ReverseEndian || 02))

/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
mem ~ LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
bytesel — vAddr, o xor (BigEndianCPU || 0%)

if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGRIfd] — undefined®? || memsy gpytesel. *bytesel

else /* 32-bit wide FGRs */
FGR[fd] i m(:J'm31+8*bytesel..8*bytese|

endif

Exceptions:
TLB Refill, TLB Invalid
Address Error

Reserved Instruction
Coprocessor Unusable

281

Chapter 2 FPU Instruction Set

282

MADD.fmt Floating-Point Multiply Add

31 26 25 21 20 16 15 11 10 6 5 32 0

COP1X fr ft fs fd MADD | fmt
010011 100
6 5 5 5 5 3 3
Format: MADD.S fd, fr, fs, ft MIPS IV
MADD.D fd, fr, fs, ft

Purpose: To perform a combined multiply-then-add of FP values.

Description: fd ~ (fs x ft) + fr
Thevaluein FPR fsismultiplied by the valuein FPR ft to produce aproduct. Thevauein FPR
fr isadded to the product. The result sum is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are
valuesin format fmt.

The accuracy of the result depends which of two alternative arithmetic modelsis used by the
implementation for the computation. The numeric models are explained in 2.6.2 Arithmetic
Instructions.

Restrictions:
Thefieldsfr, fs, ft, and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-
Point Registers. If they are not valid, the result is undefined.

The operands must be values in format fmt; see 2.7 Valid Operandsfor FP Instructions. If
they are not, the result is undefined and the value of the operand FPRs becomes undefined.

Operation:

vir « ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vft « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, vfr + vfs * vft)

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
Inexact Unimplemented Operation
Invalid Operation Overflow
Underflow

Chapter 2 FPU Instruction Set

Move Word From Floating-Point MFCl
31 26 25 21 20 16 15 11 10 0
COP1 MF rt fs 0
010001 00000 000 00000000
6 5 5 5 11
Format: MFC1 rt, fs MIPS |
Purpose: To copy aword from an FPU (CP1) general register to a GPR.

Description: rt fs
Thelow word from FPR fsis placed into the low word of GPR rt. If GPR rt is 64 bitswide,
then the value is sign extended. See 2.3 Floating-Point Registers.

Restrictions:
For MIPS 1, MIPS 11, and MIPS 111 the contents of GPR rt are undefined for the instruction
immediately following MFC1.

Operation: MIPS | - 1lI

I: word — FGR[fS]31__O
1+1: GPR[rt] — sign_extend(word)

Operation: MIPS IV

word - FGR[fS]3l“O
GPR]rt] ~ sign_extend(word)

Exceptions:
Coprocessor Unusable

283

Chapter 2 FPU Instruction Set

284

MOV.fmt Floating-Point Move

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd MOV
010001 00000 000110

6 5 5 5 5 6
Format: MOV.S fd, fs MIPS |
MOV.D fd, fs
Purpose: To move an FP value between FPRs.

Description: fd fs
Thevauein FPR fsisplaced into FPR fd. The source and destination are valuesin format fimt.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented Operation

Chapter 2 FPU Instruction Set

Move Conditional on FP False MOVF

31 26 25 2120 18 17 16 15 1110 6 5 0
SPECIAL s cc | Ot d 0 MOVCI
000000 olo 00000 000001

6 5 3 11 5 5 6
Format: MOVF rd, rs, cc MIPS IV
Purpose: To test an FP condition code then conditionally move a GPR.

Description: if (cc=0)thenrd — rs
If the floating-point condition code specified by cc is zero, then the contents of GPR rsare
placed into GPR rd.

Restrictions:
None

Operation:

active — FCCJcc] =tf
if active then

GPRJ[rd] « GPR]rs]
endif

Exceptions:

Reserved Instruction
Coprocessor Unusable

285

Chapter 2 FPU Instruction Set

286

MOVF.fmt Floating-Point Move Conditional on FP False
31 26 25 2120 18 17 16 15 1110 6 5 0
COP1 0] tf MOVCF

fmt cc fs fd
010001 olo 010001
6 5 3 11 5 5 6
Format: MOVF.S fd, fs, cc MIPS IV
MOVF.D fd,fs, cc
Purpose: To test an FP condition code then conditionally move an FP value.

Description: if (cc =0) then fd ~ fs
If the floating-point condition code specified by cc is zero, then the value in FPR fsis placed
into FPR fd. The source and destination are valuesin format fmt.

If the condition codeisnot zero, then FPR fsisnot copied and FPR fd containsits previousvalue
informat fmt. 1f fd did not contain a value either in format fmt or previously unused data from
aload or move-to operation that could beinterpreted in format fmt, then the value of fd becomes
undefined.

The move is non-arithmetic; it causes no | EEE 754 exceptions.

Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.

Operation:

if FCCl[cc] = tf then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented operation

Chapter 2 FPU Instruction Set

Floating-Point Move Conditional on Not Zero MOVN.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt It fs fd MOVN
010001 010011
6 5 5 5 5 6
Format: MOVN.S fd, fs, rt MIPS IV
MOVN.D fd, fs, rt
Purpose: To test a GPR then conditionally move an FP value.

Description: if (rt # 0) then fd ~ fs
If the valuein GPR rtis not equal to zero then the valuein FPR fsis placed in FPR fd. The
source and destination are valuesin format fmt.

If GPR rt contains zero, then FPR fsis not copied and FPR fd containsits previous value in
format fmt. If fd did not contain avalue either in format fmt or previously unused data from a
load or move-to operation that could be interpreted in format fmt, then the value of fd becomes
undefined.

The move is non-arithmetic; it causes no | EEE 754 exceptions.

Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.

Operation:

if GPR[rt] # 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented operation

287

Chapter 2 FPU Instruction Set

288

MOVT Move Conditional on FP True

31 26 25 2120 18 17 16 15 1110 6 5 0
SPECIAL rs cc |0 tf rd 0 MOVCI
000000 01 00000 000001

6 5 3 11 5 5 6
Format: MOVT rd, s, cc MIPS IV
Purpose: To test an FP condition code then conditionally move a GPR.

Description: if(cc=1)thenrd — rs
If the floating-point condition code specified by cc isonethen the contents of GPR rsare placed
into GPR rd.

Restrictions:
None

Operation:

if FCCJcc] = tf then
GPRJrd] — GPR]rs]
endif

Exceptions:

Reserved Instruction
Coprocessor Unusable

Chapter 2 FPU Instruction Set

Floating-Point Move Conditional on FP True

MOVT.fmt

31 26 25 2120 18 17 16 15 1110 6 5 0

COP1 ol tf MOVCF

fmt cc fs fd
010001 0l1 010001
6 5 3 11 5 5 6
Format: MOVT.S fd, fs, cc MIPS IV
MOVT.D fd, fs, cc
Purpose: To test an FP condition code then conditionally move an FP value.

Description: if (cc = 1) thenfd ~ fs

If the floating-point condition code specified by ccisonethen thevaluein FPR fsisplaced into

FPR fd. The source and destination are values in format fit.

If the condition codeis hot one, then FPR fsisnot copied and FPR fd containsits previous value
informat fmt. 1f fd did not contain a value either in format fmt or previously unused data from
aload or move-to operation that could be interpreted in format fmt, then the value of fd becomes

undefined.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point

Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.

Operation:

if FCCl[cc] = tf then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented operation

289

Chapter 2 FPU Instruction Set

MOVZ.fmt Floating-Point Move Conditional on Zero

31 26 25 21 20 16 15 11 10 6 5 0

COP1 fmt It fs fd MOvZ
010001 010010
6 5 5 5 5 6
Format: MOVZ.S fd, fs, rt MIPS IV
MOVzZ.D fd,fs, rt

Purpose: To test a GPR then conditionally move an FP value.

Description: if (rt = 0) then fd ~ fs
If thevaluein GPR rt is equal to zero then the valuein FPR fsis placed in FPR fd. The source
and destination are values in format fmt.

If GPR rtisnot zero, then FPR fsis not copied and FPR fd containsits previous value in format
fmt. If fd did not contain a value either in format fmt or previously unused data from aload or
move-to operation that could be interpreted in format fmt, then the value of fd becomes
undefined.

The move is hon-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.

Operation:

if GPR[rt] = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented operation

290

Chapter 2 FPU Instruction Set

Floating-Point Multiply Subtract MSUB.fmt

31 26 25 21 20 16 15 11 10 6 5 32 0

COP1X fr ft fs fd MSUB | fmt
010011 101
6 5 5 5 5 3 3
Format: MSUB.S fd, fr, fs, ft MIPS IV
MSUB.D fd, fr, fs, ft

Purpose: To perform a combined multiply-then-subtract of FP values.

Description: fd « (fs x ft) - fr
Thevaluein FPR fsismultiplied by thevaluein FPR ft to produce an intermediate product. The
valuein FPR fr is subtracted from the product. The subtraction result is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into FPR fd.
The operands and result are valuesin format fmt.

The accuracy of the result depends which of two alternative arithmetic modelsis used by the
implementation for the computation. The numeric models are explained in 2.6.2 Arithmetic
Instructions.

Restrictions:

Thefieldsfr, fs, ft, and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-
Point Registers. If they are not valid, the result is undefined.

The operands must be values in format fmt; see 2.7 Valid Operandsfor FP Instructions. If
they are not, the result is undefined and the value of the operand FPRs becomes undefined.

Operation:

vir « ValueFPR(fr, fmt)
vfs «~ ValueFPR(fs, fmt)
vit ~ ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs * vft) - vfr)

Exceptions:

Reserved Instruction
Coprocessor Unusable

Floating-Point
I nexact Unimplemented Operation
Invalid Operation Overflow
Underflow

291

Chapter 2 FPU Instruction Set

292

MTCl Move Word to Floating-Point
31 26 25 21 20 16 15 11 10 0
COP1 MT rt fs 0
010001 00100 0000000 0000O0
6 5 5 5 11
Format: MTCL1 rt, fs MIPS |
Purpose: To copy aword from a GPR to an FPU (CP1) general register.

Description: fs « rt
Thelow word in GPR rt is placed into the low word of floating-point (coprocessor 1) general
register fs. If coprocessor 1 general registers are 64-bits wide, bits 63..32 of register fs become
undefined. See 2.3 Floating-Point Registers.

Restrictions:
For MIPS 1, MIPS 11, and MIPS 11 the value of FPR fsis undefined for the instruction
immediately following MTCL.

Operation: MIPS | - 1lI
l: data — GPR[rt]3l_o

1+1: if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGR[fs] — undefined3? || data
else [* 32-bit wide FGRs */
FGR][fs] — data
endif

Operation: MIPS IV
data — GPR[rt]3l_o

if SizeFGR() = 64 then /* 64-bit wide FGRs */
FGR[fs] — undefined®? || data
else [* 32-bit wide FGRs */
FGR][fs] — data
endif
Exceptions:

Coprocessor Unusable

Chapter 2 FPU Instruction Set

Floating-Point Multiply MUL.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd MUL
010001 000010
6 5 5 5 5 6
Format: MUL.S fd, fs, ft MIPS |

MUL.D fd, fs, ft
Purpose: To multiply FP values.

Description: fd ~ fs x ft
Thevaluein FPR fsis multiplied by the value in FPR ft. The result is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into FPR fd.
The operands and result are values in format fmt.

Restrictions:
Thefieldsfs, ft, and fd must specify FPRsvalid for operands of typefmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operands must be values in format fmt; see 2.7 Valid Operandsfor FP Instructions. If

they are not, the result is undefined and the value of the operand FPRs becomes undefined.
Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
I nexact Unimplemented Operation
Invalid Operation Overflow
Underflow

293

Chapter 2 FPU Instruction Set

294

NEG.fmt Floating-Point Negate
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd NEG
010001 00000 000111
6 5 5 5 5 6
Format: NEG.S fd, fs MIPS |

NEG.D fd,fs
Purpose: To negate an FP value.

Description: fd < - (fs)
The valuein FPR fsis negated and placed into FPR fd. The valueis negated by changing the
sign bit value. The operand and result are valuesin format fmt.

This operation is arithmetic; a NaN operand signalsinvalid operation.

Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operand must be avalue in format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented Operation
Invalid Operation

Chapter 2 FPU Instruction Set

Floating-Point Negative Multiply Add NMADD.fmt

31 26 25 21 20 16 15 11 10 6 5 32 O

COP1X fr ft fs fd |NMADD| fmt
010011 110
6 5 5 5 5 3 3
Format: NMADD.S fd, fr, fs, ft MIPS IV
NMADD.D fd, fr, fs, ft

Purpose: To negate a combined multiply-then-add of FP values.

Description: fd < - ((fs x ft) + fr)
Thevaluein FPR fsismultiplied by thevaluein FPR ft to produce an intermediate product. The
valuein FPR fr is added to the product. The result sum is calculated to infinite precision,
rounded according to the current rounding modein FCSR, negated by changing the sign bit, and
placed into FPR fd. The operands and result are values in format fmt.

The accuracy of the result depends which of two alternative arithmetic modelsis used by the
implementation for the computation. The numeric models are explained in 2.6.2 Arithmetic
Instructions.

Restrictions:

Thefieldsfr, fs, ft, and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-
Point Registers. If they are not valid, the result is undefined.

The operands must be values in format fmt; see 2.7 Valid Operandsfor FP Instructions. If
they are not, the result is undefined and the value of the operand FPRs becomes undefined.

Operation:

vir « ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vit ~ ValueFPR(ft, fmt)
StoreFPR(fd, fmt, -(vfr + vfs * vft))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
I nexact Unimplemented Operation
Invalid Operation Overflow
Underflow

295

Chapter 2 FPU Instruction Set

296

N MSU B fmt Floating-Point Negative Multiply Subtract
31 26 25 21 20 16 15 11 10 6 5 32 O

COP1X fr ft fs fd |[NMSUB| fmt
010011 111
6 5 5 5 5 3 3

Format: NMSUB.S fd, fr, fs, ft MIPS IV
NMSUB.D fd, fr, fs, ft

Purpose: To negate a combined multiply-then-subtract of FP values.

Description: fd < - ((fs x ft) - fr)
Thevaluein FPR fsismultiplied by thevaluein FPR ft to produce an intermediate product. The
valuein FPR fr is subtracted from the product. The result is calculated to infinite precision,
rounded according to the current rounding modein FCSR, negated by changing the sign bit, and
placed into FPR fd. The operands and result are values in format fmt.

The accuracy of the result depends which of two alternative arithmetic modelsis used by the
implementation for the computation. The numeric models are explained in 2.6.2 Arithmetic
Instructions.

Restrictions:

Thefieldsfr, fs, ft, and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-
Point Registers. If they are not valid, the result is undefined.

The operands must be values in format fmt; see 2.7 Valid Operandsfor FP Instructions. If
they are not, the result is undefined and the value of the operand FPRs becomes undefined.

Operation:

vir « ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vit ~ ValueFPR(ft, fmt)
StoreFPR(fd, fmt, -((vfs * vft) - vir))

Exceptions:

Reserved Instruction
Coprocessor Unusable

Floating-Point
I nexact Unimplemented Operation
Invalid Operation Overflow
Underflow

Chapter 2 FPU Instruction Set

Prefetch Indexed (R10000 only) PREFX

31 26 25 21 20 16 15 11 10 6 5 0

COP1X base index hint 0 PREFX
010011 000O0O 001111

6 5 5 5 5 6

Format; PREFX hint, index(base) MIPS IV
Purpose: To prefetch locations from memory (GPR+GPR addressing).

Description: prefetch_memory[base+index]
PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte
address. It advises that data at the effective address may be used in the near future. The hint
field supplies information about the way that the data is expected to be used.

PREFX isan advisory instruction. It may change the performance of the program. For all hint
values, it neither changes architecturally-visible state nor altersthe meaning of the program. An
implementation may do nothing when executing a PREFX instruction.

If MIPS 1V instructions are supported and enabled and Coprocessor 1 isenabled (allowing
accessto CP1X), PREFX doesnot cause addressing-rel ated exceptions. If it raisesan exception
condition, the exception condition isignored. If an addressing-related exception condition is
raised and ignored, no datawill be prefetched. Evenif no datais prefetched in such acase, some
action that is not architecturally-visible, such aswriteback of a dirty cache line, might take
place.

PREFX will never generate amemory operation for alocation with an uncached memory access
type (see 1.6 Memory Access Types).

If PREFX resultsin amemory operation, the memory access type used for the operation is
determined by the memory accesstype of the effective address, just asit would beif the memory
operation had been caused by aload or store to the effective address.

PREFX enables the processor to take some action, typically prefetching the datainto cache, to
improve program performance. The action taken for a specific PREFX instruction is both
system and context dependent. Any action, including doing nothing, is permitted that does not
change architecturally-visible state or alter the meaning of a program. It is expected that
implementations will either do nothing or take an action that will increase the performance of
the program.

For a cached location, the expected, and useful, action is for the processor to prefetch a block
of data that includes the effective address. The size of the block, and the level of the memory
hierarchy it is fetched into are implementation specific.

297

Chapter 2 FPU Instruction Set

298

PREFX (R10000 only)

Prefetch Indexed

The hint field suppliesinformation about the way the datais expected to be used. No hint value
causes an action that modifies architecturally-visible state. A processor may use ahint valueto
improve the effectiveness of the prefetch action. The defined hint values and the recommended
prefetch action are shown in the table below. The hint table may be extended in future
implementations.

Table 2-22 Values of Hint Field for Prefetch Instruction

Vaue

Name

Data use and desired prefetch action

load

Datais expected to be loaded (not modified).
Fetch data asif for aload.

store

Datais expected to be stored or modified.
Fetch data asif for a store.

Not yet defined.

load streamed

Datais expected to be loaded (not modified) but not reused
extensively; it will “stream” through cache.

Fetch data asif for aload and placeit in the cache so that it
will not displace data prefetched as “retained” .

store_streamed

Datais expected to be stored or modified but not reused
extensively; it will “stream” through cache.

Fetch data asif for a store and place it in the cache so that it
will not displace data prefetched as “retained” .

load_retained

Datais expected to be loaded (not modified) and reused
extensively; it should be “retained” in the cache.

Fetch data asif for aload and placeit in the cache so that it
will not be displaced by data prefetched as “ streamed”.

store retained

Datais expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Fetch data asif for a store and place it in the cache so that
will not be displaced by data prefetched as “ streamed”.

8-31

Not yet defined.

Restrictions:

The Region bits of the effective address must be supplied by the contents of base. If
EffectiveAddressg; g 7 basess 6o, the result of the instruction is undefined.

Operation:

vAddr — GPR[base] + GPRJ[index]
(pAddr, uncached) — AddressTranslation(vAddr, DATA, LOAD)
Prefetch(uncached, pAddr, vAddr, DATA, hint)

Exceptions:
Reserved |

nstruction

Coprocessor Unusable

Chapter 2 FPU Instruction Set

Prefetch Indexed (R10000 only) PREFX

Programming Notes:
Prefetch can not prefetch data from a mapped location unless the tranglation for that location is
present inthe TLB. Locationsin memory pages that have not been accessed recently may not
have trandations in the TLB, so prefetch may not be effective for such locations.

Prefetch does not cause addressing exceptions. It will not cause an exception to prefetch using
an address pointer value before the validity of a pointer is determined.

Implementation Notes:
It isrecommended that areserved hint field value either cause a default prefetch action that is
expected to be useful for most cases of data use, such asthe“load” hint, or cause theinstruction

to be treated as a NOP.

299

Chapter 2 FPU Instruction Set

300

RECIP.fmt Reciprocal Approximation
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd RECIP
010001 00000 010101
6 5 5 5 5 6
Format: RECIP.S fd, fs MIPS IV

RECIP.D fd, fs
Purpose: To approximate the reciprocal of an FP value (quickly).

Description: fd — 1.0/fs
The reciprocal of the value in FPR fsis approximated and placed into FPR fd.
The operand and result are values in format fmt.

The numeric accuracy of this operation isimplementation dependent; it does not meet the
accuracy specified by the |EEE 754 Floating-Point standard. The computed result differsfrom
the both the exact result and the | EEE-mandated representation of the exact result by no more
than one unit in the least-significant place (ulp).

It isimplementation dependent whether the result is affected by the current rounding mode in
FCSR.

Restrictions:
The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.
Operation:
StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
I nexact Unimplemented Operation
Division-by-zero Invalid Operation
Overflow Underflow

Chapter 2 FPU Instruction Set

Floating-Point Round to Long Fixed-Point ROUND.L.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ROUND.L
010001 00000 001000
6 5 5 5 5 6
Format: ROUND.L.S fd,fs MIPS llI
ROUND.L.D fd,fs
Purpose: To convert an FP value to 64-bit fixed-point, rounding to nearest.

Description: fd — convert_and_round(fs)
The valuein FPR fsin format fmt, is converted to avalue in 64-bit long fixed-point format
rounding to nearest/even (rounding mode 0). Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 28310 2637,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 23-1, is
written to fd.

Restrictions:
Thefieldsfs and fd must specify valid FPRs; fsfor type fmt and fd for long fixed-point; see 2.3
Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it

is not, the result is undefined and the value of the operand FPR becomes undefined.
Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
I nexact Unimplemented Operation
Overflow Invalid Operation

301

Chapter 2 FPU Instruction Set

302

ROU N Dmet Floating-Point Round to Word Fixed-Point

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ROUND.W
010001 00000 001100
6 5 5 5 5 6
Format: ROUND.W.S fd, fs MIPS I
ROUND.W.D fd, fs
Purpose: To convert an FP value to 32-bit fixed-point, rounding to nearest.

Description: fd — convert_and_round(fs)
The valuein FPR fsin format fmt, is converted to avaluein 32-bit word fixed-point format
rounding to nearest/even (rounding mode 0). Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 28110 2311,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 2311, is
written to fd.

Restrictions:
Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point; see
2.3 Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP I nstructions. If it

is not, the result is undefined and the value of the operand FPR becomes undefined.
Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
I nexact Unimplemented Operation
Invalid Operation Overflow

Chapter 2 FPU Instruction Set

Reciprocal Square Root Approximation RSQRTfmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd RSQRT
010001 00000 010110
6 5 5 5 5 6
Format; RSQRT.S fd, fs MIPS IV

RSQRT.D fd, fs
Purpose: To approximate the reciprocal of the square root of an FP value (quickly).

Description: fd « 1.0/ sqrt(fs)
The reciprocal of the positive square root of the value in FPR fs is approximated and placed
into FPR fd. The operand and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the
accuracy specified by the IEEE 754 Floating-Point standard. The computed result differs
from the both the exact result and the IEEE-mandated representation of the exact result by
no more than two units in the least-significant place (ulp).

It is implementation dependent whether the result is affected by the current rounding
mode in FCSR.
Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operand must be a value in format fmt; see 2.7 Valid Operands for FP Instructions. If
it is not, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
Inexact Unimplemented Operation
Division-by-zero Invalid Operation
Overflow Underflow

303

Chapter 2 FPU Instruction Set

304

SDCl Store Doubleword from Floating-Point
31 26 25 21 20 16 15 0
SDC1 base ft offset
111101
6 5 5 16
Format; SDC1 ft, offset(base) MIPS Il
Purpose: To store a doubleword from an FPR to memory.

Description: memory[base+offset] — ft
The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned
effective address. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register
emulation modein a64-hit processor), FPR ftisheld in an even/odd register pair. Thelow word
is taken from the even register ft and the high word is from ft+1.

Restrictions:
If ft does not specify an FPR that can contain a doubleword, the result is undefined; see
2.3 Floating-Point Registers.

An Address Error exception occursif EffectiveAddress, o # 0 (not doubleword-aigned).

MIPSIV: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation:

vAddr — sign_extend(offset) + GPR[base]
if vAddr, o # 0% then SignalException(AddressError) endif
(pAddr, uncached) —~ AddressTranslation(vAddr, DATA, STORE)

if SizeFGR() = 64 then /* 64-bit wide FGRs */
data — FGR]ft]

elseif ftg = 0 then /* valid specifier, 32-bit wide FGRs */
data — FGR[ft+1] || FGRJft]

else /* undefined for odd 32-bit FGRs */
UndefinedResult()

endif

StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable
Reserved Instruction
TLB Refill, TLB Invalid
TLB Modified

Address Error

Chapter 2 FPU Instruction Set

Store Doubleword Indexed from Floating-Point SDXCl
31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index fs 0 SDXC1
010011 001001
5 5 5 5
Format; SDXC1 fs, index(base) MIPS IV

Purpose: To store a doubleword from an FPR to memory (GPR+GPR addressing).

Description: memory[base+index] ~ fs
The 64-bit doubleword in FPR fsis stored in memory at the location specified by the aligned
effective address. The contents of GPR index and GPR base are added to form the effective
address.

If coprocessor 1 general registers are 32-bits wide (a native 32-bit processor or 32-bit register
emulation modein a64-bit processor), FPR fsisheld in an even/odd register pair. Thelow word
is taken from the even register fs and the high word is from fs+1.

Restrictions:
If fs does not specify an FPR that can contain a doubleword, the result is undefined; see
2.3 Floating-Point Registers.

The Region hits of the effective address must be supplied by the contents of base. If
EffectiveAddressg; g, Z basegs g, the result is undefined.

An Address Error exception occursif EffectiveAddress, o # 0 (not doubleword-aigned).

MIPSIV: Thelow-order 3 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation:

vAddr — GPR[base] + GPR[index]

if vAddr, o # 0% then SignalException(AddressError) endif

(pAddr, uncached) —~ AddressTranslation(vAddr, DATA, STORE)

if SizeFGR() = 64 then /* 64-bit wide FGRs */
data — FGR][fs]

elseif fsg = 0 then * valid specifier, 32-bit wide FGRs */
data — FGR[fs+1] || FGR][fs]

else /* undefined for odd 32-bit FGRs */
UndefinedResult()

endif

StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid
TLB Modified

Address Error

Reserved Instruction
Coprocessor Unusable

305

Chapter 2 FPU Instruction Set

306

SQ RT.fmt Floating-Point Square Root
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd SQRT
010001 00000 000100
6 5 5 5 5 6
Format; SQRT.S fd, fs MIPS Il

SQRT.D fd, fs
Purpose: To compute the square root of an FP value.

Description: fd — SQRT(fs)
The sguare root of the value in FPR fsis calculated to infinite precision, rounded according to
the current rounding modein FCSR, and placed into FPR fd. The operand and result are values
in format fmt.

If the value in FPR fs corresponds to —0, the result will be -0.

Restrictions:
If thevaluein FPR fsisless than O, an Invalid Operation condition is raised.

The fields fs and fd must specify FPRs valid for operands of type fmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP Instructions. If it
isnot, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable
Reserved Instruction
Floating-Point
Unimplemented Operation
Invalid Operation
Inexact

Chapter 2 FPU Instruction Set

Floating-Point Subtract SUB.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd SUB
010001 000001
6 5 5 5 5 6
Format: SUB.S fd, fs, ft MIPS |

SUB.D fd, fs, ft
Purpose: To subtract FP values.

Description: fd ~ fs-ft
Thevalue in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into FPR fd.
The operands and result are valuesin format fmt.

Restrictions:
Thefieldsfs, ft, and fd must specify FPRsvalid for operands of typefmt; see 2.3 Floating-Point
Registers. If they are not valid, the result is undefined.

The operands must be values in format fmt; see 2.7 Valid Operandsfor FP Instructions. If

they are not, the result is undefined and the value of the operand FPRs becomes undefined.
Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) — ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
Inexact Unimplemented Operation
Invalid Operation Overflow
Underflow

307

Chapter 2 FPU Instruction Set

308

SWCl Store Word from Floating-Point
31 26 25 21 20 16 15 0
SWC1 base ft offset
111001
6 5 5 16
Format; SWC1 ft, offset(base) MIPS |
Purpose: To store aword from an FPR to memory.

Description: memory[base+offset] — ft
Thelow 32-bit word from FPR ft is stored in memory at the location specified by the aligned
effective address. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:
An Address Error exception occursif EffectiveAddress; % 0 (not word-aligned).

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation: 32-bit Processors

vAddr — sign_extend(offset) + GPR[base]

if vAddr, o # 07 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
data — FGR]ft]

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Operation: 64-bit Processors

VAddr — sign_extend(offset) + GPR[base]

if vAddry o % 02 then SignalException(AddressError) endif
(pAddr, uncached) — AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddrpgize-1 3 | | (PAddr, g xor (ReverseEndian || 0?))
bytesel — vAddr, g xor (BigEndianCPU || 02)

/* the bytes of the word are moved into the correct byte lanes */

if SizeFGR() = 64 then /* 64-bit wide FGRs */
data — 032:8"bytesel | FGRYft]5, , || 08"®V*®Sel/x top or bottom wd of 64-bit data */
else /* 32-bit wide FGRs */

data — 032-8"ytesel || FGR[ft] || 08"0Yesel/x top or bottom wd of 64-bit data */
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable
Reserved Instruction
TLB Refill, TLB Invalid
TLB Modified

Address Error

Chapter 2 FPU Instruction Set

Store Word Indexed from Floating-Point SWXCl
31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index fs 0 SWXC1
010011 001000

5 5 5 5 6
Format; SWXC1 fs, index(base) MIPS IV
Purpose: To store aword from an FPR to memory (GPR+GPR addressing).

Description: memory[base+index] ~ fs

Thelow 32-bit word from FPR fsis stored in memory at the location specified by the aligned
effective address. The contents of GPR index and GPR base are added to form the effective
address.

Restrictions:

The Region bits of the effective address must be supplied by the contents of base. If
EffectiveAddresssz g, % basegs gp, the result is undefined.

An Address Error exception occurs if EffectiveAddress; o # 0 (not word-aligned).

MIPSIV: Thelow-order 2 bits of the offset field must be zero. If they are not, the result of the
instruction is undefined.

Operation:

vAddr — GPR[base] + GPRJ[index]

if vAddr, o # 07 then SignalException(AddressError) endif
(pAddr, uncached) —~ AddressTranslation(vAddr, DATA, STORE)
pAddr — pAddrpsze.1 3 || (PAddr, o xor (ReverseEndian || 02))
bytesel — vAddr, o xor (BigEndianCPU || 0%)

/* the bytes of the word are moved into the correct byte lanes */

if SizeFGR() = 64 then /* 64-bit wide FGRs */
data — 032-8"bytesel || EGRIfs],, o || 08™Y®Sel/ top or bottom wd of 64-bit data */
else /* 32-bit wide FGRs */

data — 032-8"bytesel || EGRIfs] || 08"PYteSel/x top or bottom wd of 64-bit data */
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid
TLB Modified

Address Error

Reserved Instruction
Coprocessor Unusable

309

Chapter 2 FPU Instruction Set

310

TRUNC.L.fmt Floating-Point Truncate to Long Fixed-Point
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd TRUNC.L
010001 00000 001001
6 5 5 5 5 6
Format: TRUNC.L.S fd,fs MIPS llI

TRUNC.L.D fd,fs
Purpose: To convert an FP value to 64-hit fixed-point, rounding toward zero.

Description: fd — convert_and_round(fs)
The valuein FPR fsin format fmt, is converted to avalue in 64-bit long fixed-point format
rounding toward zero (rounding mode 1). Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 28310 2637,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 23-1, is
written to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed-point; see
2.3 Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP I nstructions. If it
is not, the result is undefined and the value of the operand FPR becomes undefined.

Operation:
StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable

Reserved Instruction

Floating-Point
I nexact Unimplemented Operation
Invalid Operation Overflow

Chapter 2 FPU Instruction Set

Floating-Point Truncate to Word Fixed-Point TRU NCmet

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd TRUNC.W
010001 00000 001101
6 5 5 5 5 6
Format: TRUNC.W.S fd, fs MIPS I
TRUNC.W.D fd,fs
Purpose: To convert an FP value to 32-hit fixed-point, rounding toward zero.

Description: fd — convert_and_round(fs)
Thevaluein FPR fsinformat fmt, isconverted to avaluein 32-bit word fixed-point format using
rounding toward zero (rounding mode 1)). Theresult is placed in FPR fd.

When the source valueis Infinity, NaN, or rounds to an integer outside the range 23110 2311,
the result cannot be represented correctly and an |EEE Invalid Operation condition exists. The
result depends on the FP exception model currently active.

* Precise exception model: The Invalid Operation flag is set in the FCSR. If the Invalid
Operation enable bit is set in the FCSR, no result is written to fd and an Invalid
Operation exception is taken immediately. Otherwise, the default result, 2311, is
written to fd.

Restrictions:
Thefields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed-point; see
2.3 Floating-Point Registers. If they are not valid, the result is undefined.

The operand must be avaluein format fmt; see 2.7 Valid Operandsfor FP I nstructions. If it

is not, the result is undefined and the value of the operand FPR becomes undefined.
Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable
Reserved Instruction

Floating-Point
Inexact Invalid Operation
Overflow Unimplemented Operation

311

Chapter 2 FPU Instruction Set

2.11 FPU Instruction Formats

312

An FPU instruction isasingle 32-hit aligned word. Thedistinct FPinstruction layouts are
shown in Figure 2-16. Variable information isin lower-case labdls, such as “offsat”.
Upper-case labels and any numbers indicate constant data. A table follows all the layouts
that explainsthefields used in them. Note that the same field may have different namesin
different instruction layout pictures. The field name is mnemonic to the function of that
fieldintheinstruction layout. The opcode tables and the instruction decode discussion use
the canonical field names: opcode, fmt, nd, tf, and function. The other fields are not used
for instruction decode.

Figure2-16 FPU Instruction Formats

Immediate: load/store using register + offset addressing.
31 26 25 21 20 16 15 0

opcode base ft offset

6 5 5 16

Register: 2-register and 3-register formatted arithmetic operations.

31 26 25 21 20 16 15 11 10 6 5 0

COP1 fmt ft fs fd function

6 5 5 5 5 6

Register Immediate: data transfer -- CPU « FPU register.

31 26 25 21 20 16 15 11 10 0

COP1 sub rt fs 0

6 5 5 5 11

Condition code, Immediate: conditional branches on FPU cc using PC + offset.

31 26 25 21 2018 1716 15 0
COP1 BC cc |nd|tf offset
6 5 3 11 16

Register to Condition Code: formatted FP compare.

31 26 25 21 20 16 15 11 10 8 7 6 5 0
COP1 fmt ft fs cc 0 function
6 5 5 5 3 2 4

Chapter 2 FPU Instruction Set

Figure 2-16 (cont.) FPU Instruction Formats

Condition Code, Register FP: FPU register move-conditional on FP cc.

31 26 25 21 20 18 1716 15 11 10 6 5 0
COP1 fmt cc |o|tf fs fd MOVCF
6 5 5 11 5 5 6

Register-4: 4-register formatted arithmetic operations.

31 26 25 21 20 16 15 11 10 6 5 32 0
function
COP1X fr ft fs fd op4 fmt3
6 5 5 5 5 3 3

Register Index: Load/store using register + register addressing.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X base index 0 fd function

6 5 5 5 5 6

Register Index hint: Prefetch using register + register addressing.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X base index hint 0 PREFX

6 5 5 5 5 6

Condition Code, Register Integer: CPU register move-conditional on FP cc.

31 26 25 21 20 181716 15 11 10 6 5 0
SPECIAL rs cC |0t rd 0 MOVCI
6 5 5 11 5 5 6

313

Chapter 2 FPU Instruction Set

Figure 2-16 (cont.) FPU Instruction Formats

BC
base
COP1
COP1X
cc

fd

fmt

fr

fs

ft
function

function:

opd +
fmt3

hint

index

MOvC

nd

offset

op
PREFX
rd

rs

rt
SPECIAL
sub

tf

314

Branch Conditional instruction subcode (op=COP1)

CPU register: base address for address calculations

Coprocessor 1 primary opcode value in op field.

Coprocessor 1 eXtended primary opcode valuein op field.

condition code specifier. For architecture levels prior to MIPS 1V it must be zero.

FPU register: destination (arithmetic, loads, move-to) or source (stores, move-from)

destination and/or operand type (“format”) specifier

FPU register: source

FPU register: source

FPU register: source (for stores, arithmetic) or destination (for loads)

function field specifying afunction within a particular op operation code.

op4 isa 3-bit function field specifying which 4-register arithmetic operation for
COP1X, fmt3isa 3-hit field specifying the format of the operands and destination.
The combinations are shown as several distinct instructions in the opcode tables.

hint field made available to cache controller for prefetch operation

CPU register, holds index address component for address cal cul ations

Vauein function field for conditional move. Thereisone value for the instruction
with op=COP1, another for the instruction with op=SPECIAL.

nullify delay. If set, branchisLikely and delay slot instruction isnot executed. This
must be zero for MIPS.

signed offset field used in address calculations

primary operation code (COP1, COP1X, LWC1, SWC1, LDC1, SDC1, SPECIAL)

Valuein function field for prefetch instruction for op=COP1X

CPU register: destination

CPU register: source

CPU register: source/ destination

SPECIAL primary opcode value in op field.

Operation subcode field for COPL1 register immediate mode instructions.

trueffalse. The condition from FP compare istested for equality with tf bit.

Chapter 2 FPU Instruction Set

2.12 FPU (CP1) Instruction Opcode Bit Encoding

2.12.1 Instruction Decode

This section describes the encoding of the Floating-Point Unit (FPU) instructions for the
four levels of the MIPS architecture, MIPS | through MIPS IV. Each architecture level
includestheinstructionsin the previouslevel TMIPSIV includes all instructionsin MIPS
I, MIPSII, and MIPS111. This section presents eight different views of the instruction
encoding.

» Separate encoding tables for each architecture level.

A MIPSIV encoding table showing the architecture level at which each
opcode was originally defined and subseguently modified (if modified).

» Separate encoding tables for each architecture revision showing the changes
made during that revision.

Instruction field names are printed in bold in this section.

The primary opcode field is decoded first. The opcode values LWC1, SWCL1, LDC1, and
SDCI1 fully specify FPU load and store instructions. The opcode values COP1, COP1X,
and SPECIAL specify instruction classes. Instructions within a class are further specified
by valuesin other fields.

(1) COP1Instruction Class

The opcode=COPL instruction class encodes most of the FPU instructions. Theclassis
further decoded by examining thefmt field. Thefmt valuesfully specify the CPU ~ FPU
register move instructions and specify the S D, W, L, and BC instruction classes.

The opcode=COP1 + fmt=BC instruction class encodes the conditional branch
instructions. The classis further decoded, and the instructions fully specified, by
examining the nd and tf fields.

The opcode=COP1 + fmt=(S D, W, or L) instruction classes encode instructions that
operate on formatted (typed) operands. Each of theseinstruction classesisfurther decoded
by examining the function field. With one exception the function values fully specify
instructions. The exception is the MOVCEF instruction class.

The opcode=COP1 + fmt=(Sor D) + function=MOVCEF instruction class encodes the
MOV T.fmt and MOV F.fmt conditional move instructions (to move FP values based on FP
condition codes). The classis further decoded, and the instructions fully specified, by
examining the tf field.

(2) COP1X Instruction Class

The opcode=COP1X instruction class encodes the indexed |oad/store instructions, the
indexed prefetch, and the multiply accumulate instructions. The class is further decoded,
and the instructions fully specified, by examining the function field.

T Anexception to this rule is that the reserved, but never implemented, Coprocessor 3 instructions were removed or
changed to another use starting in MIPS I1I.

315

Chapter 2 FPU Instruction Set

(3) SPECIAL Instruction Class

The opcode=SPECIAL instruction class is further decoded by examining the function
field. The only function value that applies to FPU instruction encoding is the MOVCI
instruction class. The remainder of the function values encode CPU instructions.

The opcode=SPECIAL + function=MOVCI instruction class encodes the MOV T and
MOVF conditional move instructions (to move CPU registers based on FP condition
codes). Theclassisfurther decoded, and theinstructionsfully specified, by examining the
tf field.

2.12.2 Instruction Subsetsof MIPSIII and MIPS IV Processors

316

MIPS I processors, such as the R4200, R4300, and R4400, have a processor mode in
which only the MIPS Il instructions are valid. The MIPS |1 encoding table describes the
MIPS [1-only mode.

MIPS IV processors, such as the R5000 and R10000, have processor modesin which only
the MIPS Il or MIPS 111 instructions are valid. The MIPS Il encoding table describes the
MIPS I1-only mode. The MIPS 111 encoding table describes the MIPS 111-only mode.

Chapter 2 FPU Instruction Set

Table2-23 FPU (CP1) Instruction Encoding - MIPSI Architecture
Instructions encoded by the opcode field.

31 26 0
opcode
bits 28..26
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000
1 001
3 on
4 100 X
5 101
6 110 LWC1
7 11 swc1

Instructions encoded by the fmt field when opcode=COP1.

31 26 25 21 0
opcode
=cop1 | fmt
bits 23..21
bits 0 1 2 3 4 5 6 7
25.24 000 001 010 011 100 101 110 111
0 00 MFC1 * CFC1 * MTC1 * cTC1 *
l Ol BC 6 * * * * * * *
2 10 S?% D5 * * K * * *
3 11 * * * * * * * *

Instructions encoded by the tf field when opcode=COP1 and fmt=BC.

31 26 25 21 16 0
opcode fmt t
=CoP1 | =BC f

t
f bit 16

0 1
| BCIF BCIT

317

Chapter 2 FPU Instruction Set

Table 2-23 (cont.) FPU (CP1) Instruction Encoding - MIPS| Architecture
Instructions encoded by the function field when opcode=COP1 and fmt= S D, or W

31 26 25 21
encoding when opcode fmt function
fmt=S = COP1 =S uncti
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 ADD SUB MUL DIV * ABS MOV NEG
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4 100 * CVT.D * * CVT.W * * *
5 101 * * * * * * * *
6 110 CFa C.UN a CEQ a CUEQ a | COLT a CULT a C.OLE a C.ULEa
7 111 CSF a CNGLE o | CSEQ a | C.NGL a CLT a C.NGE a CLE a CNGT «a
. 31 26 25 21
encoding when
— opcode fmt .
fmt=D = COP1 -D function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 ADD SUB MUL DIV * ABS MOV NEG
1 001 * * * * * * * *
2 010 * * * * * * * *
3 011 * * * * * * * *
4 100 | CVTS * * * CVT.W * * *
5 101 * * * * * * * *
6 110 CFa C.UN a CEQa | CUEQa | COLT a | CULT a | COLE o | CULE a
7 111 | CSFa |[CNGLEo| CSEQa | CNGL a | CLTa | CNGEa | CLE a | CNGT a
. 31 26 25 21
encoding when
N opcode fmt .
fmt=w = COP1 - W function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 OOO * * * * * * * *
l 001 * * * * * * * *
2 Olo * * * * * * * *
3 011 * * * * * * * *
4 100| CVTS CVT.D * * * * * *
5 101 * * * * * * * *
6 llo * * * * * * * *
7 lll * * * * * * * *

318

Chapter 2 FPU Instruction Set

Table2-24 FPU (CP1) Instruction Encoding - MIPSI1 Architecture

Instructions encoded by the opcode field.

31 26 0
opcode
bits 28..26
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000
1 001
2 010 COP1 &
3 011
X
4 100
5 101
6 110 LWC1 LDC1
7 111 Swci SDC1
Instructions encoded by the fmt field when opcode=COP1.
31 26 25 21 0
opcode
=copy [fmt
bits 23..21
bits 0 1 2 3 4 5 6 7
25.24 000 001 010 011 100 101 110 111
0 00 MFC1 * CFC1 * MTC1 * cTcl *
1 Ol BC 6 * * * * * * *
2 10 S3 D& * * WK * * *
3 11 * * * * * * * *

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

31 26 25 21 17 16 0
opcode fmt n|t
=Ccopl1 | =BC dff

H

f bit 16

n 0 1

0 BC1F BC1T

bit17 1| BCIFL BCITL

319

Chapter 2 FPU Instruction Set

Table 2-24 (cont.) FPU (CP1) Instruction Encoding - MIPSII Architecture
Instructions encoded by the function field when opcode=COP1 and fmt= S D, or W

31 26 25 21 0
encoding when opcode fmt function
fmt=S = COP1 =S uncti
bits 2.0

bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 001 * * * * ROUND.W | TRUNCW | CEILW | FLOORW
2 010 * * * * * * * *
3 011 * * * * * * * *
4 100 * CVT.D * * CVT.W * * *
5 101 * * * * * * * *
6 110 CFa C.UN a CEQ a CUEQ a | COLT a CULT a C.OLE a C.ULE a
7 111 CSF a CNGLE o | CSEQ a | C.NGL a CLT a C.NGE a CLE a CNGT «a
. 31 26 25 21 0
encoding when
— opcode fmt .
fmt=D = COP1 -D function
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 001 * * * * ROUND.W | TRUNCW | CEILW | FLOORW
2 010 * * * * * * * *
3 011 * * * * * * * *
4 100 | CVTS * * * CVT.W * * *
5 101 * * * * * * * *
6 110 CFa C.UN a CEQa | CUEQa | COLT a | CULT a | COLE o | CULE a
7 111 | CSFa |[CNGLEa| CSEQa | CNGL a | CLTa | CNGEa | CLE o | CNGT a
. 31 26 25 21 0
encoding when
N opcode fmt .
fmt=w = COP1 - W function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 OOO * * * * * * * *
l 001 * * * * * * * *
2 Olo * * * * * * * *
3 011 * * * * * * * *
4 100| CVTS CVT.D * * * * * *
5 101 * * * * * * * *
6 llo * * * * * * * *
7 lll * * * * * * * *

320

Chapter 2 FPU Instruction Set

Table2-25 FPU (CP1) Instruction Encoding - MIPSIII Architecture

Instructions encoded by the opcode field.

31 26 0
opcode
bits 28..26
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 11
0 000
1 001
2 010 COP1 3
3 011
Cc
4 100
5 101
6 110 LwWcC1 LDC1
7 111 SwcC1 SDC1
Instructions encoded by the fmt field when opcode=COP1.
31 26 25 21 0
opcode
=copy [fmt
bits 23..21
bits 0 1 2 3 4 5 6 7
25.24 000 001 010 011 100 101 110 111
0 00 MFC1 DMFC1 CFC1 * MTC1 DMTC1 cTc1 *
1 Ol BC 6 * * * * * * *
2 10 X D& * * w3 LS * *
3 11 * * * * * * * *

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

31 26 25 21 17 16 0
opcode fmt n|t
=Ccopl1 | =BC dff

H

f bit 16

n 0 1

0 BC1F BC1T

bit17 1| BCIFL BCITL

321

Chapter 2 FPU Instruction Set

Table 2-25 (cont.) FPU (CP1) Instruction Encoding - MIPSII1 Architecture
Instructions encoded by the function field when opcode=COP1 and fmt=S D, W, or L

31 26 25 21 0
encoding when opcode fmt function
fmt=S = COP1 =S uncti
bits 2.0

bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 001| ROUND.L | TRUNCL | CEILL | FLOORL | ROUND.W | TRUNCW | CEILW | FLOORW
2 010 * * * * * * *
3 011 * * * * * * * *
4 100 * CVT.D * * CVT.W CVT.L * *
5 101 * * * * * * * *
6 110 CFa C.UN a CEQ a CUEQ a | COLT a CULT a C.OLE a C.ULE a
7 111 CSF a CNGLE o | CSEQ a | C.NGL a CLT a C.NGE a CLE a CNGT «a
. 31 26 25 21 0
encoding when
— opcode fmt .
fmt=D = COP1 - function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 001| ROUND.L | TRUNCL | CEILL | FLOORL | ROUND.W | TRUNCW | CEILW | FLOORW
2 010 * * * * * * *
3 011 * * * * * * * *
4 100 | CVTS * * * CVT.W CVT.L * *
5 101 * * * * * * * *
6 110 CFa C.UN a CEQa | CUEQa | COLT a | CULT a | COLE o | CULE a
7 111 | CSFa |[CNGLEo| CSEQa |[CNGL an| CLTa | CNGEa | CLE a | CNGT a
. 31 26 25 21 0
encoding when opcode m
fmt=WorL =COP1 | =W,L function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 OOO * * * * * * * *
l 001 * * * * * * * *
2 Olo * * * * * * * *
3 011 * * * * * * * *
4 100| CVTS CVT.D * * * * * *
5 101 * * * * * * * *
6 llo * * * * * * * *
7 lll * * * * * * * *

322

Chapter 2 FPU Instruction Set

Table2-26 FPU (CP1) Instruction Encoding - MIPSIV Architecture

Instructions encoded by the opcode field.

31 26 0
opcode
bits 28..26
bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000 |SPECIAL 3,
1 001
2 010 COP1 & COP1X 3\
3 on X
4 100
5 101
6 110 LWC1 LDC1
7 111 Swc1 sbcl
Instructions encoded by the fmt field when opcode=COP1.
31 26 25 21 0
opcode
=copy [fmt
bits 23..21
bits 0 1 2 3 4 5 6 7
25.24 000 001 010 011 100 101 110 111
0 00 MFC1 DMFC1 CFC1 * MTC1 DMTC1 CcTC1 *
1 Ol BC 6 * * * * * * *
2 10 S3 D& * * WK L3 * *
3 11 * * * * * * * *

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

31 26 25 21 17 16 0
opcode fmt n|t
=Ccopl1 | =BC dff

t
f bit 16

n 0 1
d 0 BC1F BC1T

bit17 1| BCIFL BCITL

323

Chapter 2 FPU Instruction Set

Table 2-26 (cont.) FPU (CP1) Instruction Encoding - MIPSI1V Architecture

Instructions encoded by the function field when opcode=COP1 and fmt=S D, W, or L

31 26 25 21 0
encoding when opcode fmt function
fmt=S = COP1 =S uncti
bits 2.0

bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 001| ROUND.L | TRUNCL | CEILL | FLOORL | ROUND.W | TRUNCW | CEILW | FLOORW
2 010 * MOVCF &| MOVZ MOVN * RECIP RSQRT
3 011 * * * * * * * *
4 100 * CVT.D * * CVT.W CVT.L * *
5 101 * * * * * * * *
6 110 CFa C.UN a CEQ a CUEQ a | COLT a CULT a C.OLE a C.ULE a
7 111 CSF a CNGLE o | CSEQ a | C.NGL a CLT a C.NGE a CLE a CNGT «a
. 31 26 25 21 0
encoding when
fmt=D opcode fmt f i
= = COP1 — unction
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 ADD SUB MUL DIV SQRT ABS MOV NEG
1 001| ROUND.L | TRUNCL | CEILL | FLOORL | ROUND.W | TRUNCW | CEILW | FLOORW
2 010 * MOVCF &| MOVZ MOVN * RECIP RSQRT
3 011 * * * * * * * *
4 100 | CVTS * * * CVT.W CVT.L * *
5 101 * * * * * * * *
6 110 CFa C.UN a CEQa | CUEQa | COLT a | CULT a | COLE o | CULE a
7 111 | CSFa |[CNGLEo| CSEQa | CNGL a | CLTa | CNGEa | CLE a | CNGT a
. 31 26 25 21 0
encoding when opcode m
fmt=WorL =COP1 | =W,L function
bits 2..0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 OOO * * * * * * * *
l 001 * * * * * * * *
2 Olo * * * * * * * *
3 011 * * * * * * * *
4 100| CVTS CVT.D * * * * * *
5 101 * * * * * * * *
6 llo * * * * * * * *
7 lll * * * * * * * *

324

Chapter 2 FPU Instruction Set

Table 2-26 (cont.) FPU (CP1) Instruction Encoding - MIPSI1V Architecture
Instructions encoded by the function field when opcode=COP1X.

31 26 5 0
opcode .
= COP1X function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 | LWXC1 LDXC1 * * * * * *
1 001 | SWXC1 SDXC1 * * * * * PREFX
2 010 * * * * * * * *
3 011 * * * * * * * *
4 100 | MADD.S | MADD.D * * * * * *
5 101 | MSUB.S | MSUB.D * * * * * *
6 110 | NMADD.S | NMADD.D * * * * * *
7 111 | NMSUB.S | NMSUB.D * * * * * *

Instructions encoded by the tf field when opcode=COP1, fmt = Sor D, and function=MOVCF.

31 26 25 21 16 5 0
opcode fmt t function
= COP1 =SD f = MOVCF

These are the MOV F.fmt and MOV T.fmt instructions. They
should not be confused with MOVF and MOVT.

t | bit16 0 1
f | MOVF (fmt) | MOVT (fmt) |

Instruction class encoded by the function field when opcode=SPECIAL.

31 26 5 0
opcode .
= SPECIAL function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 MOVCI &
X
7 111

Instructions encoded by the tf field when opcode = SPECIAL and function=MOVCI.

31 26 16 5 0
opcode t function
= SPECIAL f = MOVCI

These arethe MOVF and MOVT instructions. They should not be
confused with MOVF.fmt and MOV T.fmt.

t | bit16 0 1
f | MOVF | MOVT |

325

Chapter 2 FPU Instruction Set

Table 2-27 Architecture Level In Which FPU Instructions are Defined or Extended

The architecture level in which each MIPS | Vencoding was defined isindicated by a subscript 1, 2, 3, or 4 (for
architecture level 1, I1, 111, or IV). If aninstruction or instruction class was later extended, the extending level
isindicated after the defining level.

Instructions encoded by the opcode field.

31 26 0

opcode

bits28..26 Architecture level is shown by asubscript 1, 2, 111, or 4.

bits 0 1 2 3 4 5 6 7
31.29 000 001 010 011 100 101 110 111
0 000 | SPECIALB,

1 o001

3 o1

4 100

5 101

6 110 LWC1, LDC1,

7 111 SWC1, sbci,

Instructions encoded by the fmt field when opcode=COP1.

31 26 25 21 0
opcode
=copy [fmt
bits 23..21 Architecture level is shown by a subscript 1, 2, 3, or 4.
bits 0 1 2 3 4 5 6 7
25.24 000 001 010 011 100 101 110 111
0 00| MFCl; | DMFCl, CFC1, * g MTC1,; | DMTCl; | CTCl, * g
1 01| BCyp4 *1 *1 *1 *1 *1 * *1
2 10 | Sio34 D234 *1 *1 Wi234 L34 *q *
3 1 *1 *1 *1 *1 *1 *1 *1 *1

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

31 26 25 21 17 16 0
opcode fmt n|t
=CcorP1 | =BC d|f
E Architecture level is shown by a subscript 1, 2, 3, or 4.
f bit 16

n 0 1
d| 0| BCIF;4 | BCIT 4

bit17 1| BCIFL,, | BCITL, 4

326

Chapter 2 FPU Instruction Set

Table 2-27 (cont.) Architecture Level (1-1V) In Which FPU Instructions are Defined or Extended
Instructions encoded by the function field when opcode=COP1 and fmt =S D, W, or L

31 26 25 21 0
encoding when opcode fmt :
fmt=S = COP1 =S function
bits2.0 Architecture level is shown by a subscript 1, 2, 3, or 4.

bits 0 1 2 3 4 5 6 7
5.3 000 001 010 o011 100 101 110 11
0 000| ADD, SUB MUL ; DIV 4 SQRT, ABS MOV, | NEG,
1 001 |ROUND.L 3| TRUNC.L 3| CEIL.L 3 | FLOOR.L 3| ROUND.W ,| TRUNCW ,| CEILW , |FLOOR.W ,
2 010 *1 MOVCF, | MOVZ, | MOVN, *1 RECIP, | RSQRT, *)
3 011 *1 1 1 1 1 1 1 1
4 100 *1 CVTDi3| * *1 CVTW, | CVTL, * *)
5 101 *1 1 1 1 1 1 1 1
6 110| CF;4 | CUN;, | CEQy4 | CUEQ 4| COLT, 4 | CULT 4 | COLE;,| CULE, 4
7 111| CSF;, |CNGLEy, CSEQi4| CNGLy,| CLTy, | CNGE;4 | CLEy, | CNGT 4
. 31 26 25 21 0
encoding when
_ opcode fmt .
fmt=D = COP1 -D function
bits2.0 Architecture level is shown by asubscript 1, 2, 3, or 4.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 o011 100 101 110 111
0 000| ADD, SUB MUL ; DIV, SQRT, ABS MOV, | NEG,
1 001 |ROUND.L 3| TRUNC.L 3| CEIL.L3 | FLOOR.L 3| ROUND.W ,| TRUNCW ,| CEILW , |FLOOR.W ,
2 010 *1 MOVCF, | MOVZ, | MOVN, *1 RECIP, | RSQRT, *)
3 011 1 *1 1 *1 *1 *1 1 *1
4 100 | CVTS,, *1 * *1 CVTW,; | CVTL, * *)
5 101 1 *1 1 *1 *1 *1 1 *1
6 110| CF,, | CUNy, | CEQy4 | CUEQ 4| COLT 4 | CULT 4 | COLE;,| CULE, 4
7 111| CSFy, |CNGLEy, CSEQi4| CNGLy,| CLTy, | CNGE,, | CLEy4 | CNGT 4
. 31 26 25 21 0
encoding when opcode m
fmt=WorL =COPL | =W, L function
bits2.0 Architecture level is shown by asubscript 1, 2, 3, or 4.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 "1 "1 "1 "1 "1 "1 "1 "1
1 001 *1 "1 "1 "1 "1 "1 "1 "1
2 010 *1 "1 "1 "1 "1 "1 "1 "1
3 01 *1 "1 "1 "1 "1 "1 "1 "1
4 100 | CVTS 1,3 CVT.D 1,3 *q *q *q *q *q *q
5 101 *1 "1 "1 "1 "1 "1 "1 "1
6 110 *1 "1 "1 "1 "1 "1 "1 "1
7 11 *1 "1 "1 "1 "1 "1 "1 "1

327

Chapter 2 FPU Instruction Set

Table 2-27 (cont.) Architecture Level (1-1V) In Which FPU Instructions are Defined or Extended
Instructions encoded by the function field when opcode=COP1X.

31 26 5
opcode .
= COP1X function
bits2.0 Architecturelevel is shown by asubscript 1, 2, 3, or 4.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 11
0 000 LWXCl, | LDXCl, * 4 * 4 * 4 * 4 *y * 4
1 001| SWXCl, | SDXCl, * 4 * 4 * 4 * 4 * 4 PREFX ,
2 010 * 4 * 4 * 4 ¥4 ¥4 ¥4 ¥4 ¥4
3 011 * 4 * 4 * 4 ¥4 ¥4 ¥4 ¥4 ¥4
4 100 | MADD.S, | MADD.D, * 4 * 4 * 4 * 4 *y * 4
5 101 | MSUB.S, | MSUB.D, * 4 * 4 * 4 * 4 *y * 4
6 110 | NMADD.S, | NMADD.D 4 * 4 * 4 * 4 * 4 *y * 4
7 111 | NMSUB.S, | NMSUB.D 4 * 4 * 4 * 4 * 4 *y * 4

Instructions encoded by the tf field when opcode=COP1, fmt = Sor D, and function=MOVCF.

31 26 25 21 16 5 0
opcode fmt t function
= COP1 =SD f = MOVCF

These are the MOV F.fmt and MOV T.fmt instructions. They
should not be confused with MOVF and MOVT.

t | bit16 0 1
f | MOVF (fmt) 4| MOVT (fmt) 4|

Instruction class encoded by the function field when opcode=SPECIAL.

31 26 5 0
opcode .
= SPECIAL function
bits2.0 Architecture level is shown by asubscript 1, 2, 3, or 4.
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 MOVCI 4
X
7 111

Instructions encoded by the tf field when opcode = SPECIAL and function=MOVCI.

31 26 16 5 0
opcode t function
= SPECIAL f = MOVCI

These are the MOVF and MOVT instructions. They should not be
confused with MOVFE.fmt and MOV T.fmt.

t | bit 16 0 1
f | MOVF, | MOVT, |

328

Chapter 2 FPU Instruction Set

Table2-28 FPU Instruction Encoding Changes - MIPSII Revision

Aninstruction encoding isshown if theinstruction isadded or extended in thisarchitecturerevision.
An instruction class, like COPL, is shown if the instruction class is added in this architecture
revision.

Instructions encoded by the opcode field.

31 26 0

opcode

bits 28..26

bits 0 1 2 3 4 5 6 7
3L.29 000 001 010 011 100 101 110 111
000
001
010
011
100
101
110 LDC1
111 sDC1

~N o b w N BE O

Instructions encoded by the fmt field when opcode=COP1.

31 26 25 21 0
opcode
=cop1 | fmt
bit523..21
bits 0 1 2 3 4 5 6 7
25.24 000 001 010 011 100 101 110 111
0 00
1 o1
2 10
3 11

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

31 26 25 21 17 16 0
opcode fmt n|t
=cor1 | =BC dif

t

f bit 16

n 0 1
dl o

bitl7 1| BCIFL BCI1TL

329

Chapter 2 FPU Instruction Set

330

Table 2-28 (cont.) FPU Instruction Encoding Changes - MIPSI11 Revision
Instructions encoded by the function field when opcode=COP1 and fmt =S D, or W

encoding when
fmt=S

bits2.0

bits 0
5.3 000

31

26 25

21

opcode
= COP1

fmt
=S

function

001

010

011

4
100

5
101

110

7
111

000

SQRT

001

ROUND.W

TRUNC.W

CEILW

FLOOR.W

010

011

100

101

110

~N o o~ WNBEFE O

111

encoding when
fmt=D

bits2.0

bits 0
5.3 000

31

26 25

21

opcode
= COP1

fmt

function

001

010

011

4
100

5
101

110

7
111

000

SQRT

001

ROUND.W

TRUNC.W

CEIL.W

FLOOR.W

010

011

100

101

110

~N o g b~ WDNBE O

111

encoding when
fmt=W

bits 2.0

bits 0
5.3 000

31

26 25

21

opcode
= COP1

function

100

101

110

111

000

001

010

011

100

101

110

~N o abh w N BE O

111

Chapter 2 FPU Instruction Set

Table2-29 FPU Instruction Encoding Changes - MIPSII1 Revision

Aninstruction encoding isshown if theinstruction isadded or extended in thisarchitecturerevision.
An instruction class, like COPL, is shown if the instruction class is added in this architecture

revision.

Instructions encoded by the opcode field.

31 26

opcode

bits 28..26

bits 0 1 2 3 4
31.29 000 001 010 011 100

101

110

111

000
001
010
011
100
101
110
111

~N o b w N BE O

Instructions encoded by the fmt field when opcode=COPL.

31 26 25 21

opcode
=cop1 | fmt

bits 23..21

bits 0 1 2 3 4
25.24 000 001 010 011 100

101

110

111

00 DMFC1

DMTC1

01

10

Lo

W N P O

11

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

31 26 25 21 17 16 0
opcode fmt n|t
=CoP1 | =BC d|f

t

f bit 16

n 0 1
d 0

bit17 1| BCIFL BCITL

331

Chapter 2 FPU Instruction Set

Table 2-29 (cont.) FPU Instruction Encoding Changes - MIPSIII Revision

Instructions encoded by the function field when opcode=COP1 and fmt=S D, or L.

31 26 25 21
encoding when opcode fmt .
fmt=S = COP1 =S function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 11
0 000
1 001 | ROUND.L | TRUNCL | CEILL | FLOORL
2 010
3 011
4 100 CVT.L
5 101
6 110
7 111
. 31 26 25 21
encoding when
— opcode fmt .
fmt=D = COP1 - function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 11
0 000
1 001 | ROUND.L | TRUNCL | CEILL | FLOORL
2 010
3 011
4 100 CVT.L
5 101
6 110
7 111
. 31 26 25 21
encoding when
N opcode fmt .
fmt=L = COP1 - function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 11
0 OOO * * * * * * * *
l 001 * * * * * * * *
2 Olo * * * * * * * *
3 011 * * * * * * * *
4 100| CVTS CVT.D * * * * * *
5 101 * * * * * * * *
6 llo * * * * * * * *
7 lll * * * * * * * *

Chapter 2 FPU Instruction Set

Table2-30 FPU Instruction Encoding Changes - MIPS 1V Revision

Aninstruction encoding isshown if theinstruction isadded or extended in thisarchitecturerevision.
Aninstruction class, like COP1X, is shown if the instruction classis added in this architecture
revision.

Instructions encoded by the opcode field.

31 26 0

opcode

bits 28..26

bits 0 1 2 3 4 5 6 7
3L.29 000 001 010 011 100 101 110 111
000
001
011
100
101
110
111

~N o b w N BE O

Instructions encoded by the fmt field when opcode=COPL.

31 26 25 21 0
opcode
=cop1 | fmt
bits23..21
bits 0 1 2 3 4 5 6 7
25.24 000 001 010 011 100 101 110 111
0 00
1 o1
2 10
3 11

Instructions encoded by the nd and tf fields when opcode=COP1 and fmt=BC.

31 26 25 21 17 16 0
opcode fmt n|t
=CcorPl1 | =BC d|f

t
f bit 16

n 0 1
dl o BCIF BCIT

bit17 1| BCIFL BCITL

333

Chapter 2 FPU Instruction Set

334

Table 2-30 (cont.) FPU Instruction Encoding Changes - MIPSIV Revision

Instructions encoded by the function field when opcode=COP1 and fmt=S D, W, or L.

31 26 25 21
encoding when opcode fmt .
fmt=S = COP1 =S function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000
1 001
2 010 MOVCF & | MOVZ MOVN RECIP RSQRT
3 o1l
4 100
5 101
6 110 CF C.UN CEQ C.UEQ COLT C.ULT C.OLE C.ULE
7 111 C.SF C.NGLE C.SEQ C.NGL CLT C.NGE CLE C.NGT
. 31 26 25 21
encoding when
fmt=D gpcode fmt function
= COP1 =
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000
1 001
2 010 MOVCF & | MOVZ MOVN RECIP RSQRT
3 o1
4 100
5 101
6 110 CF C.UN CEQ C.UEQ COLT C.ULT C.OLE C.ULE
7 11 C.SF C.NGLE C.SEQ C.NGL CLT C.NGE CLE C.NGT
. 31 26 25 21
encoding when opcode m
fmt=Wor L =COP1 | =W,L function
bits 2..0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000
1 001
2 010
3 o1l
4 100
5 101
6 110
7 111

Chapter 2 FPU Instruction Set

Table 2-30 (cont.) FPU Instruction Encoding Changes - MIPSIV Revision
Instructions encoded by the function field when opcode=COP1X.

31 26 5 0
opcode .
= COP1X function
bits 2.0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 | LWXC1 LDXC1 * * * * * *
1 001 | SWXC1 SDXC1 * * * * * PREFX
2 010 * * * * * * * *
3 011 * * * * * * * *
4 100 | MADD.S | MADD.D * * * * * *
5 101 | MSUB.S | MSUB.D * * * * * *
6 110 | NMADD.S | NMADD.D * * * * * *
7 111 | NMSUB.S | NMSUB.D * * * * * *

Instructions encoded by the tf field when opcode=COP1, fmt = Sor D, and function=MOVCF.

31 26 25 21 16 5 0
opcode fmt t function
= COP1 =SD f = MOVCF

These are the MOV F.fmt and MOV T.fmt instructions. They
should not be confused with MOVF and MOVT.

t | bit16 0 1
f | MOVF (fmt) | MOVT (fmt) |

Instruction class encoded by the function field when opcode=SPECIAL.

31 26 5 0
opcode .
= SPECIAL function
bits 2..0
bits 0 1 2 3 4 5 6 7
5.3 000 001 010 011 100 101 110 111
0 000 MOVCI &
X
7 111

Instructions encoded by the tf field when opcode = SPECIAL and function=MOVCI.

31 26 16 5 0
opcode t function
= SPECIAL f = MOVCI

These arethe MOVF and MOVT instructions. They should not be
confused with MOVF.fmt and MOV T.fmt.

t | bit16 0 1
f | MOVF | MOVT |

335

Chapter 2 FPU Instruction Set

336

Key to all FPU (CP1) instruction encoding tables:

*

(fmt)

This opcode is reserved for future use. An attempt to execute it causes either
a Reserved Instruction exception or a Floating Point Unimplemented
Operation Exception. The choice of exception is implementation specific.

The table shows 16 compare instructions with values named C.condition
where “condition” is a comparison condition such as “EQ”. These encoding
values are all documented in the instruction description titled “C.cond.fmt”.

The SPECIAL instruction class was defined in MIPS | for CPU instructions.
An FPU instruction was first added to the instruction classin MIPS V.

(also italic opcode name) This opcode indicates an instruction class. The
instruction word must be further decoded by examing additional tables that
show values for another instruction field.

The COP1X opcode in MIPS IV was the COP3 opcodein MIPS | and Il and a
reserved instruction in MIPS 11,

These opcodes are not FPU operations. For further information on them, look
in 1.11 CPU Instruction Encoding.

This opcode is a conditional move of formatted FP registers - either MOVF.D,
MOVFE.S, MOVT.D, or MOVT.S. It should not be confused with the
similarly-named MOVF or MOVT instruction that moves CPU registers.

R5000 I nstruction Hazards

3.1 Introduction

Thischapter identifiesthe R5000 I nstruction Hazards. Certain combinations of instructions
are not permitted because the results of executing such combinations are unpredictablein
combination with some events, such as pipeline delays, cache misses, interrupts, and
exceptions.

Most hazards result from instructions modifying and reading state in different pipeline
stages. Such hazards are defined between pairs of instructions, not on a single instruction
inisolation. Other hazards are associated with restartability of instructionsin the presence
of exceptions.

For the following code hazards, the behavior is undefined and unpredictable.

337

Chapter 3 R5000 Instruction Hazards

3.2 List of Instruction Hazards

338

Any instruction that would modify PageMask or EntryHi or EntryLoO or EntryLol
or Random CPO Registers should not be followed by a TLBWR instruction. There
should be at least two integer instructions between the register modification and
the TLBWR instruction.

Any instruction that would modify PageMask or EntryHi or EntryLoO or EntryL ol
or Index CPO Registers should not be followed by a TLBWI instruction. There
should be at least two integer instructions between the register modification and
the TLBWI instruction.

Any instruction that would modify the Index CPO Register or the contents of the
JTLB should not be followed by a TLBR instruction. There should be at least two
integer instructions between the register modification and the TLBR instruction.

Any instruction that would modify the PageMask or EntryHi or CPO Registers or
the contents of the JTLB should not be followed by a TLBP instruction. There
should be at least two integer instructions between the register modification and
the TLBP instruction.

Any instruction that would modify the EPC or ErrorEPC or Status CPO Registers
should not be followed by an ERET instruction. There should be at least two
integer instructions between the register modification and the ERET instruction.

A branch or jump instruction is not allowed to be in the delay-slot of another
branch/jump instruction. This sequence isillegal in the MIPs architecture.

The two instructions preceding any DIV, DIVU, DDIV, DDIVU, MULT, MULTU,
DMULT or DMULTU instructions should not read the HI or LO registers. There
should be at least two integer instructions between the register read and the
register modification.

Appendix Index

A

Access Functions for Floating-Point Registers... 43
ALU ...6

Arithmetic Instructions ... 243

Atomic Update Loads ... 5

Atomic Update Stores ... 5

B

Binary Data Transfers ... 229
Branch Instructions ... 8

C

Cache coherence Algorithms and Access Types... 33
Cache Noncoherent ... 32

Cached ... 32

Cached Coherent ... 32

Computationa Instructions... 6
Conditional Branch Instructions... 245
Conditional Move Instructions ... 10
Conversion Instructions ... 244

COPL1 Instruction class ... 315

COP1X Instruction class... 315
Coprocessor 0 ... 212

Coprocessor 1 ...212

Coprocessor 2 ...212

Coprocessor 3...212

Coprocessor General Register Access Functions... 39
Coprocessor Instructions ... 11
Coprocessor Loads...5

Coprocessor Operations ... 12
Coprocessor Stores... 5

CPU Conditional Move ... 245

CPU Instruction Encoding ... 211

CPU Ingtruction Formats ... 210

CPU Loads...4

CPU Stores ... 4

D
Data Transfer Instructions ... 241

Delayed Loads ... 3

Description ... 35

Description of an Instruction ... 34, 247
Divide...8

Division By Zero exception ... 240

E

Exceptions ... 36
Exception Condition Definitions ... 238
Exception Instructions ... 9

F

Fixed-point formats ... 228

Floating-point formats ... 225

Floating-Point Registers ... 228

Format ...35

Formatted Operand Layout ... 231

Formatted Operand Vaue Move Instructions.... 244
FPU Control and Status Register - FCSR ... 232
FPU (CP1) Instruction Opcode Bit Encoding ... 315
FPU DataTypes ... 224

FPU Exceptions ... 237

FPU Instruction Formats ... 312

Functional Instruction Groups ... 241

Implementation and Revision Register ... 232
Implementation Notes.... 37
Implementation-Specific Access Types... 33
Imprecise Exception Mode ... 238

Individual FPU Instruction Descriptions... 248
Inexact exception ... 240

Instruction Decode ... 211, 315

Instruction encoding picture ... 35

Instruction Hazards ... 337

Instruction mnemonic and name... 34

Instruction Subsets of MIPS 111 and MIPSIV Processors... 211, 316

Invalid Operation exception ... 239

339

Appendix Index

J

Jump Instructions ... 8

L

Load and Store Memory Functions... 40
Load Byte ...4

Load Byte Unsigned ... 4

Load Doubleword ... 4

Load Halfword ... 4

Load Halfword Unsigned ... 4

Load Instructions ... 2

Load Word ...4

Load Word Unsigned ... 4

M

Memory Access Types... 32

MIPS |
ABS.fmt ... 249
ADD ...47
ADD.fmt ... 250
ADDI ...48
ADDIU ...49
ADDU ...50
AND ...51
ANDI ...52
BC1F ... 252
BC1T ... 256
BEQ...53
BGEZ ...55
BGEZAL ...56
BGTZ ...59
BLEZ ...61
BLTZ ...63
BLTZAL ...64
BNE ...67
BREAK ...69
C.cond.fmt ... 259
CFC1...266
COPz ... 73
CTCl...267
CVT.D.fmt ... 268
CVT.Sfmt...270

CVT.W.fmt...271
DIV ...80
DIV.fmt ... 272
DIVU ...82
J...99

JAL ...100
JALR...101
JR...102

LB ...103
LBU ...104
LH...112
LHU ...113
LUI...118
LW ...119
LWC1...279
LWCz ...120
LWL ...122
LWR...125
MFCO ...130
MFC1 ...283
MFHI ... 131
MFLO ... 132
MOV.fmt ... 284
MTCO ... 137
MTC1...292
MTHI ... 138
MTLO ...139
MUL.fmt ... 293
MULT ...142
MULTU ...143
NEG.fmt ... 294
NOR ... 144
OR...145

ORI ... 146

SB ...150

SH ...164

SLL ...165
SLLV ...166
SLT...167
SLTI ...168
SLTIU ... 169
SLTU ...170

Appendix Index

SRA ...171
SRAV ...172
SRL ...173
SRLV ...174
SUB ...175
SUB.fmt ... 307
SUBU ...176
SW...177
SWC1...308
SWCz...178
SWL ...180
SWR... 183
SYSCALL ...190
TLBP...197
TLBR...198
TLBWI ...199
TLBWR ... 200
XOR ... 208
XORI ... 209

MIPSII

BC1FL ...253
BCI1TL ...257
BEQL ...54
BGEZALL ...57
BGEZL ...58
BGTZL ...60
BLEZL ...62
BLTZALL ...65
BLTZL ...66
BNEL ...68
CEIL.W.fmt ... 265
FLOOR.W.fmt ... 276
LDCz ...106

LL ...114
ROUND.W.fmt ... 302
SC...151

SDCz ... 158
SQRT.fmt ... 306
SYNC ... 186
TEQ...191

TEQI ...192

TGE ...193

TGEI ...194

TGEIU ...195

TGEU ...196

TLT ...201

TLTI ... 202

TLTIU ...203

TLTU ...204

TNE ... 205

TNEI ... 206
TRUNC.W.fmt ... 311

MIPSIII

CACHE...70
CEIL.L.fmt ... 264
CVT.D.fmt ... 268
CVT.L.fmt ...269
CVT.Sfmt...270
DADD ... 74
DADDI ... 75
DADDIU ... 76
DADDU ... 77
DDIV ...78
DDIVU ... 79
DMFCO ...83
DMFC1...273
DMTCO...84
DMTC1...274
DMULT ...85
DMULTU ...86
DSLL ...87
DSLL32...88
DSLLV ...89
DSRA ...90
DSRA32...91
DSRAV ...92
DSRL ...93
DSRL32...94
DSRLV ...95
DSUB ...96
DSUBU ...97
ERET ...98
FLOOR.L.fmt ...275
LD ...105

341

Appendix Index

LDC1...277

LDL ...108

LDR...110

LLD ...116

LWU ...129

ROUND.L.fmt ... 301

SCD ...154

SD ... 157

SDC1...304

SDL ...160

SDR ... 162

TRUNC.L.fmt...310
MIPS IV

BC1F ... 251

BC1FL ...253

BCIT ...255

BCA1TL ... 257

C.cond.fmt ... 259

LDXC1...278

LWXC1...281

MADD.fmt ... 282

MOVF ... 285

MOVF.fmt ... 286

MOVWN ...135

MOVN.fmt ... 287

MOVT ...288

MOVT.fmt ... 289

MOVZ ...136

MOVZ.fmt ... 290

MSUB.fmt ... 291

NMADD.fmt ... 295

NMSUB.fmt ... 296

PREF ... 147

PREFX ...297

RECIP.fmt ... 300

RSQRT.fmt ... 303

SDXC1 ...305

SWXC1 ...309
Miscellaneous Functions ... 45
Miscellaneous Instructions ... 9, 245
Mixing References with Different Access Types... 33
Multiply ...8

342

N

Non-CPU Instructionsin the Tables... 212
Normalized and Denormalized Numbers... 226

@]
Operation ... 36

Operation Notation Conventions and Functions... 248

Operation section Notation and Functions... 37
Organization ... 229
Overflow exception ... 240

P

Precise Exception Mode ... 237
Prefetch ... 10

Programming Notes ... 37
Pseudocode Functions ... 39
Pseudocode Language ... 37
Pseudocode Symbols.... 37
Purpose ... 35

R
REGIMM Instruction Class ... 211

Reserved Operand Values - Infinity and NaN ... 226

Restrictions ... 36

S

Serialization Instructions.... 10
Shifts...7

SPECIAL Instruction Class.... 211, 316
Store Byte...4

Store Doubleword ... 4

Store Halfword ... 4

Store Instructions ... 2

StoreWord ... 4
U
Uncached ... 32

Underflow exception ... 240
Unimplemented Operation exception ... 241

\Y,

Valid Operand for FP Instructions... 246
Valuesin FP Registers ... 235

NEC

=]l Message

Although NEC hastaken all possible steps
toensure thatthe documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we've taken, you may

Name encounter problemsinthe documentation.
Please complete this form whenever

Company you‘d like to report errors or suggest
improvements to us.

Tel. FAX

Address

Thank you for your kind support.

North America
NEC Electronics Inc.

Fax: 1-800-729-9288
1-408-588-6130

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Corporate Communications Dept.

Hong Kong, Philippines, Oceania

NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number:

Page number:

If possible, please fax the referenced page or drawing.

Document Rating
Clarity
Technical Accuracy

Organization

Excellent Goad
a a
a a
a a

Acceptable Poor
a a
a a
a a

CS 00.6

	COVER
	PREFACE
	1 CPU Instruction Set
	1.1 Introduction
	1.2 Functional Instruction Groups
	1.2.1 Load and Store Instructions
	1.2.2 Computational Instructions
	1.2.3 Jump and Branch Instructions
	1.2.4 Miscellaneous Instructions
	1.2.5 Coprocessor Instructions

	1.3 CP0 Instructions
	1.4 CACHE Instruction
	1.4.1 Index Invalidate (I)
	1.4.2 Index Writeback Invalidate (D)
	1.4.3 Index Writeback Invalidate (S) (R10000 only)
	1.4.4 Flash (S) (R5000 only)
	1.4.5 Index Load Tag (I)
	1.4.6 Index Load Tag (D)
	1.4.7 Index Load Tag (S)
	1.4.8 Index Store Tag (I)
	1.4.9 Index Store Tag (D)
	1.4.10 Index Store Tag (S)
	1.4.11 Create Dirty Exclusive (D) (R5000 only)
	1.4.12 Hit Invalidate (I)
	1.4.13 Hit Invalidate (D)
	1.4.14 Hit Invalidate (S) (R10000 only)
	1.4.15 Fill (I) (R5000 only)
	1.4.16 Cache Barrier (R10000 only)
	1.4.17 Hit Writeback Invalidate (D)
	1.4.18 Hit Writeback Invalidate (S) (R10000 only)
	1.4.19 Page Invalidate (S) (R5000 only)
	1.4.20 Hit Writeback (I) (R5000 only)
	1.4.21 Hit Writeback (D) (R5000 only)
	1.4.22 Index Load Data (I) (R10000 only)
	1.4.23 Index Load Data (D) (R10000 only)
	1.4.24 Index Load Data (S) (R10000 only)
	1.4.25 Index Store Data (I) (R10000 only)
	1.4.26 Index Store Data (D) (R10000 only)
	1.4.27 Index Store Data (S) (R10000 only)

	1.5 Defining Access Types
	1.6 Memory Access Types
	1.6.1 Mixing References with Different Access Types
	1.6.2 Cache Coherence Algorithms and Access Types
	1.6.3 Implementation-Specific Access Types

	1.7 Description of an Instruction
	1.7.1 Instruction Mnemonic and Name
	1.7.2 Instruction Encoding Picture
	1.7.3 Format
	1.7.4 Purpose
	1.7.5 Description
	1.7.6 Restrictions
	1.7.7 Operation
	1.7.8 Exceptions
	1.7.9 Programming Notes, Implementation Notes

	1.8 Operation Section Notation and Functions
	1.8.1 Pseudocode Language
	1.8.2 Pseudocode Symbols
	1.8.3 Pseudocode Functions

	1.9 Individual CPU Instruction Descriptions
	1.10 CPU Instruction Formats
	1.11 CPU Instruction Encoding
	1.11.1 Instruction Decode
	1.11.2 Instruction Subsets of MIPS III and MIPS IV Processors
	1.11.3 Non-CPU Instructions in the Tables

	2 FPU Instruction Set
	2.1 Introduction
	2.2 FPU Data Types
	2.2.1 Floating-Point Formats
	2.2.2 Fixed-Point Formats

	2.3 Floating-Point Registers
	2.3.1 Organization
	2.3.2 Binary Data Transfers
	2.3.3 Formatted Operand Layout
	2.3.4 Implementation and Revision Register
	2.3.5 FPU Control and Status Register - FCSR

	2.4 Values in FP Registers
	2.5 FPU Exceptions
	2.5.1 Precise Exception Mode
	2.5.2 Imprecise Exception Mode
	2.5.3 Exception Condition Definitions

	2.6 Functional Instruction Groups
	2.6.1 Data Transfer Instructions
	2.6.2 Arithmetic Instructions
	2.6.3 Conversion Instructions
	2.6.4 Formatted Operand Value Move Instructions
	2.6.5 Conditional Branch Instructions
	2.6.6 Miscellaneous Instructions

	2.7 Valid Operands for FP Instructions
	2.8 Description of an Instruction
	2.9 Operation Notation Conventions and Functions
	2.10 Individual FPU Instruction Descriptions
	2.11 FPU Instruction Formats
	2.12 FPU (CP1) Instruction Opcode Bit Encoding
	2.12.1 Instruction Decode
	2.12.2 Instruction Subsets of MIPS III and MIPS IV Processors

	3 R5000 Instruction Hazards
	3.1 Introduction
	3.2 List of Instruction Hazards

	Appendix Index

