User’'s Manual

Vr5000™ VrRS000A™

64-/32-bit Microprocessor

NEC

LPD30500
LPD30500A

Document No. U11761EJ6VOUMOO (6th edition)
Date Published April 2001 N CP(K)

© NEC Corporation 1997, 1999
© MIPS Technologies, Inc. 1995
Printed in Japan



[MEMO]

2 User's Manual U11761EJ6VOUM



NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

Vr4000, Vr4100, VrR4200, VrR4300, VrR4305, VrR4310, VrR4400, VR5000, VR5000A, VR10000, VR12000, VR Series,
VRrR3000 Series, VrR4000 Series, and VR10000 Series are trademarks of NEC Corporation.

MIPS is aregistered trademark of MIPS Technologies, Inc. in the United States.

MC68000 is a trademark of Motorola Inc.

IBM370 is a trademark of IBM Corp.

iAPX is a trademark of Intel Corp.

VAX is a trademark of Digital Equipment Corp.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

User's Manual U11761EJ6VOUM 3



Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

The information in this document is current as of March, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior

written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC semiconductor products listed in this document or any other

liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative

purposes in semiconductor product operation and application examples. The incorporation of these

circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers

agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize

risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

MSE 00.4

User’'s Manual U11761EJ6VOUM




Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
« Ordering information

« Product release schedule

Availability of related technical literature

+ Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

+ Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics lItaliana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-3067-5800

Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 091-504-2787

Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

User’'s Manual U11761EJ6VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810

Fax: 11-6462-6829

J01.2



MAJOR REVISIONSIN THISEDITION

Page Description
p. 143 Correction of description in7.2.5 (1) Status Register Format
p. 212 Modification of description in 9.4.6 Unimplemented I nstruction Exception (E)

The mark % shows major revised points.

User’'s Manual U11761EJ6VOUM




Readers

Purpose

Organization

How toread this manual

PREFACE

This manual targets users who wish to understand the functions of the V{5000

(uPD30500), VK5000A (1PD30500A) and design application systems using this
Mi Croprocessor.

This manual introduces the architecture and hardware functions of the Vg5000 and
VRr5000A to users, following the organization described below.

Thismanual consists of the following contents:

* Introduction

* Pipeline operation

» Memory management system and cache organization
 Exception processing

* Floating-point operation

System interface operation

It is assumed that the reader of this manua has general knowledge in the fields of
electric engineering, logic circuits, and microcomputers.

Unless otherwise specified, V{5000 is described as a representative product in this
manual. When using this manual as that for Vg5000A, read as follows.

Vg5000 — V55000A

The VRr4400™ in this manual represents the V g4000™.

The V4000 Series™ in this manual represents the VRz4100™, VRz4200™,
VR4300™, VR4305™, Vr4310™, and V g4400.

To learn about detailed function of a specific instruction,
-> Refer to Chapter 3 CPU Instruction Set Summary, Chapter 8 Floating
Point Unit, or V5000, V{r10000™ User’s Manual Instruction whichis

separately available.

To learn about the overall functions of the V g5000,
-> Read this manual in sequential order.

To learn about electrical specifications,
-> Refer to Data Sheet which is separately available.

User’'s Manual U11761EJ6VOUM 7



Legend Data significance: Higher on left and lower on right
Active low: XXX*
Numeric representation: binary ... XXXX or XXXX,

decimal ... XXXX
hexadecimal ... OXXXXX
Prefixes representing an exponent of 2 (for address space or memory capacity) :

K (kilo)  219=1024

M (mega) 2% =10242
G(giga) 2%0=1024°
T (tera)  2%0=1024*
P(peta)  2%0=1024°
E (exa) 260 = 10245

Related Documents See aso the following documents.
The related documents indicated here may include preliminary version. However,
preliminary versions are not marked as such.

Documents Related to Devices

Document Name Document No.
UPD30500, 30500A (VR5000, VR5000A) Data Sheet U12031E
VR5000, V/5000A User's Manual This Manual
uPD30700, 30700L, 30710 (Vg10000, VR12000TM) Data Sheet U12703E
V10000 Series™ User's Manual U10278E
VR5000, VR10000 INSTRUCTION User’s Manual U12754E

Application Note

Document Name Document No.

VSeries™ Application Note Programming Guide U10710E

8 User's Manual U11761EJ6VOUM



Table of Contents

Chapter 1 INEFOAUCTION ..o 25
11 Processor Char aCtEriSHICS. . ... 26
12 Ordering INfOrmation ..o 27
13 B4-Bit ArChHITECIUI @ ... 27
14 V R5000 PrOCESSON ......covmiirieiiicieeciseeisesis s sseenns 27

141 Internal Block CoNfiguIation ...........ccoccveiineneneniese e 29
14.2 CPU REJISIEIS ....eteieeiierieie ettt st e e e s e eneeneenas 30
143 CPU INSLrUCtioN Set OVEIVIBW ......c.oiveuereeierieierieieseeesiees e seere e 32
144 Data Formats and AddresSiNg .........coeeeeererenenenesese e seeesese e 34
145 System Control Coprocessor (CPO) .....c..cereerieerieerieeseesiesesre e 37
1.4.6 Floating-Point Unit (FPU)........ccceiereieieresece s enens 40
147 INternal CaCh .........oov o 40
15 Memory Management System (MMU) ..o 41
151 Tranglation Lookaside Buffer (TLB) .......ccooevereneninene e 41
152 OPErating MOES.........cuerieirieiriereete et ebe e 42
16 INSEFUCLION PIPEIINE.......oee ettt 42

Chapter 2 VR5000 Processor Signal DesCriptions...........cccoeeeneeenneenne. 43
21 System Interface SIgNalS.......ccccveccecicccee e 44
22 Clock INterface SIgNalS ... oo 46
2.3 Secondary Cache Interface Signals.........cccoeveeeicnncccicee s 46
24 Interrupt INterface SIgNalS ... e 48
25 Initialization Interface SIgNalS.........cooernnnee s 48
2.6 POWES SUPPIY ..ottt 50
2.7 Pin Configuration ...........cciiiieicce e 51

Chapter 3 CPU Instruction Set SUMMArY ... 58
31 Load and StOre INStFUCLIONS...........ccrviecrsceie e 59

311 Scheduling aLoad Delay SIOt........coooiriineineeeeeeeese e 60
312 DefiNiNg ACCESS TYPES ....ovieireeieeeeeeeere sttt e ene 60
32 Computational INSIFUCLIONS..........cccviiiiceecce s 62
321 B4-DIt OPEILIONS.......ceeieeeeieeieee ettt 62
322 Cycle Timing for Multiply and Divide Instructions ...........cccccceeeeeeeenenne. 62
323 Jump and Branch INStIUCLIONS..........cooveereieienese e 63
324 Special INSIIUCHIONS .....c.veveieeeeeeee et 64
325 COopProceSSOr INSIIUCHIONS.......cciviierereeie et ere e 64

User's Manual U11761EJ6VOUM 9



33 MIPS IV INStruction Set AAITIONS .....oveeveeeee e e et et ere e se e 64

331 Summary of Instruction Set Additions...........ccccooererinineneneee e, 67

332 Cycle Timing for Floating Point INStrUCITONS .........ccoevennennereee e 71

34 The Cache INSEFUCLION ........coicce s 72
35 Implementation SPecific INSIFUCLIONS ..., 75
351 Implementation Specific CPO INSLrUCIONS.........cccoveirenriieeeeeeee 76
Chapter 4 VR5000 Processor PipeliNe.........irreeeesisessesses 85
41 INStruction PIpeling SLAgES........cco e 86
4.2 BranCh DE@Y ...t 90
4.3 LOAA DEIQY ..ottt 90
4.4 Interlock and Exception HaNdliNg........ccccovvvvvvvvvcccceeeeeeeee e, 91
441 EXCeption CONAitioNS.........ccoiueirieirieenieesie et 94

44.2 Stall CONAILIONS......c.oiviiriiirieree e 95

443 SHIP CONAITIONS. ..o e 96

4.5 W BUFFE ..t 97
Chapter 5 Superscalar Issue Mechanism ... 98
Chapter 6 Memory Management UNit ... 101
6.1 Trangdation Lookaside Buffer (TLB) ... 102
6.1.1 HItS N0 MISSES ... 102

6.1.2 MUItIPIE MELCNES ..o e 102

6.2 PrOCESSOr MOUES........ceiiieiiieireieireseiee et 102
6.2.1 Processor Operating MOOES .........ccereieirerenere et 103

6.2.2 INSErUCION SEE MOTE........coieieeieiieeeee e 104

6.2.3 AdAressing MOES........coucereirieiricireree e 104

6.3 AJArESS SPACES.......coemiirieicieieie et 104
6.3.1 Virtual AdAreSS SPECE. .....ccevveereireee et 104

6.3.2 Physical AddreSs SPaCe..........ooeieiereeierereeer e 105

6.3.3 Virtual-to-Physical Address Tranglation...........ccocevcvveneneneneneneeceeenne 105

6.3.4 32-bit Mode Virtual Address Tranglation .........ccoeeeveeeneieseneseneseneeene 106

6.3.5 64-bit Mode Virtual Address Tranglation ...........cceceveveneneneeneeieeseeeenens 107

6.3.6 AJUrESS SPECES......cveeevireetireei et 108

6.3.7 USEr AAArESS SPACE.......cveeeeereeeeeeeresese e see e e e sees e saeseeseesesneeneesens 108

6.3.8 SUPEIVISON SPBCE......cctirueriieterie ettt se et see s e e enes 110

6.3.9 KEIMEl SPACE ......iieeiireeieree et e 113

10 User's Manual U11761EJ6VOUM



6.4

6.5

6.6
6.7
6.8

Chapter 7

7.1
7.2

7.3

System CoNntr ol COPrOCESSOL ........cccoiieiieiirereireee e ssaenas 118

6.4.1 Format Of @TLB ENIY.......coviiiiieecerieereerees e 119
CPO REJISIENS ...ttt sttt nnnens 123
6.5.1 INdEX REGISLEN (0)..nveeeeeieieeeeeee et e 124
6.5.2 RaNOM REGISLEN (1) ....vveveviirerrereeeresrere e 125
6.5.3 EntryL o0 (2), and EntryLol (3) REGISIENS......coovvvrirrireeeeseeneeee 126
6.54 PageMask REJISLEN (5) ..vcveuererererrrineririeieererieie e 126
6.5.5 Wired REQISLES () ...evereuererrereierrnreieeres s 127
6.5.6 EntryHi RegiSter (10) ......ceerrerrereinerinieieesesieteeseses e sees 128
6.5.7 Processor Revision Identifier (PRId) Register (15) ....ccccoocvrereneeieeeenene 128
6.5.8 Config REGISLEN (16) ....veeerereerererereereiiere e 129
6.5.9 Load Linked Address (LLAddr) RegISter (17) ...ocvvvveereereeenreenieenieenene 132
6.5.10 Cache Tag Registers[TagLo (28) and TagHi (29)] .....cecerererreereeneenennens 132
Virtual-to-Physical Address Trandation Process..........ccocovvvveveesiennene, 135
TLB EXCEPLIONS......ouciiiieieierieirieeeiseeiseseieesese s ssess s ssss st esssssssssssssens 137
TLB INSLFUCLIONS ..ottt 137

CPU EXCEPLION ProCESSING.......ovvureeeercereiieeieeesseeseesseessesssesesenacs 138
Overview of EXCEPLION ProCeSSING ..ot 138
EXxception Processing REJISLENS........covveieiciecesseee s 139
721 CoNtEXt REGISLEN (4) ...veteie ettt et e 140
722 Bad Virtual Address Register (BadVAdAr) (8).......ccoveveeerieieneerieene 141
7.2.3 Lo 1N 010l 2 e 11 = () IS 141
724 Compare REGISLEN (11) ...oveveeeeieeeeeierere ettt e 142
725 StAUS REGISIEN (12) ...ttt 142
7.2.6 0= TS ] 2 o 1 = (11 ) IS 147
727 Exception Program Counter (EPC) Register (14) .......cocvverereneeieeeenenn 149
7.2.8 XContext REGISLEN (20) ....coveeevereererieierieierieie ettt s 150
7.29 Error Checking and Correcting (ECC) Register (26)........ccecvvereereeeenenn 151
7.210  CacheError (CacheErr) RegiSter (27).....ccovveiiiineii e 152
7.211  Error Exception Program Counter (Error EPC) Register (30) ................ 154
Processor EXCEPLIONS.........cccovviviieeccessstseses sttt 154
731 EXCEPLION TYPES.. .ottt 155
732 EXCeption VeCtor LOCAtiONS. .......ccoereeeeereeesese e siese e seeee e 157
733 Priority of EXCEPLIONS ......cccoiueieiieieeeeeeeee et 160
734 RESEL EXCEPLION. ....eeeeieeeterte e 161
7.35 SOft RESEL EXCEPLION.....eiie et eneas 161
7.3.6 Non Maskable Interrupt (NMI) EXCEPLION.......cccevivirerireeeeeeeee 162

User's Manual U11761EJ6VOUM 11



1.4

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6

8.7
8.8
8.9

8.10

Chapter 9

9.1
9.2

12

737 Address Error EXCEPLION ........cccoeierieirere et 163

7.3.8 TLB EXCEPLIONS ....eeeeieeeeeieee e s ene e 164
7.39 Cache Error EXCEPLION .....c.coevieerereie et 167
7.3.10 BUS Error EXCEPLION.......oiviiterieieeieie ettt s 168
7.3.11 Integer OVerflow EXCEPtION.......ccocviieeriiieese e 169
7312 Trap EXCOPLON .ot s 169
7.3.13 System Call EXCEPLION ........ooeeieeeieerere et 170
7.3.14 Breakpoint EXCEPLION.......cco i 170
7.3.15  Reserved INstruction EXCEPLION ........ccoveireeereeneesee e 171
7.3.16 Coprocessor Unusable EXCEPLION ........ccccevererinenene e 172
7.3.17 Floating-Point EXCEPtION .......ccoieeeeeeeeeeee e 173
7.3.18 INEEITUPL EXCEPLION. ...ttt 173
Exception Handling and Servicing Flowcharts ..., 174

Floating POINt UNit ... 181
OVEINVIBW ..ottt sttt 182
FPU FEALUIES.......ceiieeee ettt sttt en 183
FPU Programming MOGE! ... 183
Floating-Point General Register S (FGRS) ..., 183
Floating-Point REQISLErS .......ccceiiceesece st 185
Floating-Point Control REJISLENS.........coiirirrceeeseeseesee s 186
8.6.1 Implementation and Revision Register (FCRO).........cccovevvrerinenenennenes 187
8.6.2 Control/Status Register (FCR3L) .......cocrirerererieniere e 188
Floating-Point FOrMaLS........cccceiiieescce st 192
Binary Fixed-PoiNt FOrMaL..........ccoiiiiicncecseeseeseesese s 194
Floating-Point Instruction Set OVEr VIEW..........ccccovvevvvvveveeeeeeeee e, 195
8.9.1 Floating-Point Load, Store, and Move INstructions.............ccoceveeeeeenee. 197
8.9.2 Floating-Point Conversion INStrUCtionS...........ccccvvvvvnevesenesereeeeeees 199
8.9.3 Floating-Point Computational INStructions............ccccveveveneneneieeeeenn 199
FPU Instruction Pipeling OVEr VIEW ..........cccoveeeeeiieceeseseee s 200
8.10.1 INSErUCLION EXECULION ...ttt 200
8.10.2 Instruction Execution Cycle TIiMe ..o 201
8.10.3 Instruction Scheduling CoNSLIAINES........ccvverierevinese e 203

Floating Point EXCEPLIONS...........cccooieiiceieieiie e 204
EXCEPLION TYPES. ...ttt 204
EXCEption Trap ProCeSSING ..ottt 206

User's Manual U11761EJ6VOUM



9.3 FLAOS ..ottt 206
94 FPU EXCEPLIONS......cuiiiiiciersictce sttt 208
94.1 INexact EXCEPLION (1) ....coeeieieiriereeeeiese e 208

9.4.2 Invalid Operation EXCEPtioN (V) ....ccveeverirenere e 209

9.4.3 Division-by-Zero EXCEPtioN (Z) ..ccvevveeveeeeeeeeresesese e sees e e 210

9.4.4 Overflow EXCEpLion (O).......coeiueeereeerireeeriere st 210

9.4.5 Underflow EXCEPtION (U)....ccveieieeeeeeeeeeeeeee et 210

9.4.6 Unimplemented Instruction EXCeption (E) .......ccocvvivvivvereriereneeeeeenenns 211

9.5 Saving and RESLOriNg SEALe........c.occrircirireee e 212
9.6 Trap Handlersfor IEEE Standard 754 EXCEpLions.........cccccceevevevevevcnnnen. 213
Chapter 10  Initialization Interface..........cccoooeveeveveeeieceeeeseeeee e, 214
10.1  Processor Reset SIgNals........cocoiceiiicicieseee et 214
10.11 POWEr-0N RESEL ......ooiiiiciee e 215

10.1.2 COIA RESEL ...t st et ene s 216

10.1.3 WA RESEL ... .ot s 217

10.14 Processor RESEL STALE .......evvviiiie i 218

10.2  Initialization SEQUENCE...........cccuevieicerceetete sttt 218
10.3  BOOt-MOUE SELLINGS......oeueeeieiiniiieieieeseiet e 219
Chapter 11  ClOCK INTEITACE ... 222
11.1  BaSIC SYSeM ClOCKS......cocoiciiriciccceeieeeee e 222
11.11 SYSCIOCK ..ttt st eneas 222

11.1.2 oo 222

11.1.3  AlIgNMENt t0 SYSCIOCK ....cveeeeeieieeeeeereeeee e 223

11.14 Phase-Locked LOOP (PLL) .cvoiieeeeeeeeeeeee e 223

11.2  Connecting Clocksto a Phase-Locked System.........cccoeieninccecnenennns 224
Chapter 12  Cache Organization and Operation...........ccccocceeveeeveieiessenenne, 225
121 Memory OrganiZation ...........ccceeerieieseiesesee et 226
122 Primary Cache OrganiZation ... 227
1221  CacheLine Lengths.........ccccvevriereeieeecese et 227

12.2.2 CACNE SIZES ... e 227

12.2.3  Organization of the Instruction Cache (I-Cach€) ..........cccccveiireienicnennen. 228

12.24  Organization of the Data Cache (D-Cach€) .......ccccvvvvvvevreneniereneeeenenn 229

12.3  Secondary Cache OrganiZation ...........coereereeneeenneenneeseneeenseessesesseseses 230

User's Manual U11761EJ6VOUM 13



Chapter 13 VR5000 Processor BusInterface........onneneenneinceneees 231

131 TeMSUSED ..ot 232
132 INtEIrfACEBUSES......cooccece e 232
Chapter 14  System Interface TranSactions.........ccccovreneenneeneeneeenseensineees 234
14.1  Processor REQUESES........cccovucieiiireteiisisie st s e en 234
1411  Rulesfor Processor REQUESES..........ccureerieerieierieesiesesie e 235

14.1.2 Processor Read REQUESE .........ocvvrveiereeeceeeee et 236

14.1.3  Processor Write REQUESE ........cc.oueerieeiierererere e 237

142  EXterNal REQUESES........cciuiiicieteece ettt 237
1421  External Write REQUESE .......couevveieeeeeeeeeeresiere e 239

14.2.2 REBH RESPONSE ... .ottt 239

14.3  HandliNg REQUESES ... 240
1431 (07 o 1V SRS 240

1432 SHOMEMISS...ociiiiirciire et 241

14.3.3 SEOFE HiL ..ttt bbb e e 243

14.34 Uncached Loads OF SLOrES.........coervereerieieeeeeese st 243

1435  Uncached INSruction FELCh..........covveiirireirce e 243

1436  Load Linked Store Conditional Operation............coceeerereenereeneeienennenne 243
Chapter 15  System Interface ProtOCols...........ccccvviveeieievseseecee e, 244
15.1  Addressand Data CYCIES........cooiervececieseete et 244
152 ISSUE CYCIES ...ttt 245
15.3  Handshake SIgNalS........ciiiiiccececee s enes 246
154  System Interface OPEration.........ccccevveiceicectesse e 247
15.4.1 Master and SlaVe SEALES ........ccoeeeviieiieceecee e 248

15.4.2 External Arbitration .......c..oocuveiieeiiceceeecee et 248

15.4.3 Uncompelled Change to Slave State........cccevevvevevvnievesenesereeeeeees 248

155 Processor Request ProtoCols...........oiininiiciccsesescesssscesnies 249
1551  Processor Read Request ProtoCOl............covevicinicicicicccc 250

155.2  Processor Write Request Protocol ... 251

1553  Processor Request Flow COontrol ..o 254

15.6  External Request ProtOCOIS........iiiicccceeeee e 258
156.1 External Arbitration ProtoCol ..........cocooeieieeninerese e 259

15.6.2 External Null Request ProtoCol.........coveveeeeresesesese e 260

15.6.3  External Write Request ProtoCol............ccocrerenerinene e 261

15.6.4  Read ReSPONSE ProtOCOL........coouruiieiieinieesieerie e 262

14

User's Manual U11761EJ6VOUM



157  SySADC[7:0] ProtOCOI .....cccciiiiiiciccccceeeeee e esenes 264
158 DataRat@ Control ..ot seseees 265
15.9 DataTransfer PatterNS ... 266
15.10 Independent Transmissions on the SYSAD BUS.......ccoeiiecveeeenenennns 267
15.11 System Interface ENAianNNESS..........cocoveecveiieceiseeee e 267
15.12 System Interface Cycle TIME.......oiriirereeee s 268
15.13 REEASE LALENCY ....ciiieiiiicectccccrce et 268
15.14 System Interface Commands/Data ldentifiers.........cocooveveevevcceverecnnn, 269
15.14.1 Command and Data Identifier SyntaX...........ccceeeverereneneeneniereeeeeeeee 269

15.14.2  System Interface Command SYNtaX ..........cccoeererrerenenineneeseeseeneene 270

15.14.3 System Interface Data ldentifier Syntax .......ccccceevevvcvvievenenieseseeseeeenen 273

15.15 System Interface AdArESSES. ..o 275
15.15.1  Addressing CONVENLIONS .....cccevevereeeeeneresesieseeseesees e seesesssesaeseesessesseens 275

15.15.2  SUDDIOCK Ordering ........coeeereerieieeeeeeeiere et 276

15.15.3 Processor Internal AddreSSMap .....c.coveerveerieiinienineseeee e 278

15.16  Error CheCKiNg ...t 278
15.16.1  Parity Error CheCKing .........ccoeeeerieireirieeriesesieesesesie s 278

15.16.2  Error Checking Operation.........ccccoeeeeeeeeriereseseseseeseseeseeeseeseeeeseseens 279
Chapter 16  Secondary Cache lnterface........ccoovvveeveisessescsecesee e 283
16.1  Secondary Cache TranSaACtiONS........ccoururiererirereeereeeseeeseeieeeie e 283
16.1.1  Secondary Cache Probe, Invalidate, and Clear ........ccccoovvveevecreeecneenene 284

16.1.2  Secondary Cache WHItE.........cooeiiieiieinreeeeee e 285

16.1.3  Secondary Cache REA.........ccooririeirieerieee e 286

16.2 Secondary Cache Read ProtOCol ... 287
16.21  Secondary Cache Read Hit........ccooueiieiniiinicreee e 288

16.2.2  Secondary Cache Read MiSS.......ccccevveririnenine et 289

16.2.3  Secondary Cache Read Miss with BUSEFTOX .........cccooeveninenicneeineene 291

16.3  Secondary CaCh@WHIIte ...t 292
16.4  Secondary CacheLinelnvalidate............onnnnneeseeeens 294
16.5 Secondary Cache Probe Protocol ... 295
16.6  Secondary CacheFlash Clear Protocol ..........ccccoovvveeevvccceseccceseceenee, 296
16.7  Secondary Cache Mode Configuration...........cc.cvereerneeeneeneeeeneeneens 296
Chapter 17  INEEITUPES .ttt 298
171 Hardware I NtErTUPLS.....cocciiccccccceceeee e 298
17.2  Nonmaskable INnterrupt (NM1) ... 299

User's Manual U11761EJ6VOUM 15



17.3  ASSEItING INTEMTUPES ... 299

Chapter 18  Standby Mode Operation ... 303
18.1  Entering Standby MOGE.........ccoouvicercicice e 303
Chapter 19 PLL Analog Power Filtering......cccooevevveveeveisesseseeseesee e 305
Chapter 20 VR5000 INStruction Hazar ds.............cooceeeeeeneenneeineeeeieeens 307
201 INEFOQUCLION ..ttt 307
20.2  List of INStruction Hazar ds...........ccooeeernnernnneeee e 308
Appendix A Cycle Countsfor VKR5000 Cache Operations............c.ccccoueeeneenne. 309
Al CycleCountsfor VKR5000 Cache MiSSES.........cccoummimienieereiniinsinreeeinsennens 309
A.ll IMINEMONICS.....cveetieeeeee et 309

Al2 DCACNE MISSES.....ocuiiieieeeieeie ettt et 310

A.l13 [CAChE MISSES ...t 311

A.2  CycleCountsfor V{5000 Cache Operations...........oerureirierieenienieniens 311
Appendix B SUBDIOCK Order ... 314
Appendix C  Driver Strength Control..........cccoonneeseeeeene. 317
Appendix D Differences between V{5000 and VR5000A ... 318
Appendix E  Differences between V{5000 and VR4310........cccocrinnciiincnnens 319
Appendix F VR5000 RESIFICLIONS........ccvriririiieesieieessesssesssesssessesseesens 321
APPENAIX G INUEX ..ottt 323

16 User's Manual U11761EJ6VOUM



List of Figures (1/5)

Fig. No. Title Page
11 VR5000 Processor Internal Block Diagram ... 28
1-2 V R5000 ProCeSSOr REJISIENS........cuiveeerieerriereiesiess e 31
1-3 CPU INSLIUCHION FOMMELS. .....cveuiiieiirieiriesesie ettt sttt st e 32
1-4 Big-Endian BYLe Ordering.........ccorueuereirieinieisieesiese ettt 34
1-5 Little-Endian Byte OFderiNg........cccveeeiieeiese et eee sttt st 34
1-6 Big-Endian Datain a DouBI@WOrd ..........cceveeeeeeecce e 35
1-7 Little-Endian Datain a DoUbIEWOId ..........ccooeieirireeieene e 35
1-8 Misaligned Word AdreSSiNG.......cceeeerieriereeiese e s esee e sae s sae e ste s e tesree e sseenes 36
1-9 L1 O (=0T (= £ 38
2-1 VR5000 ProCeSSOr SIQNEAIS......covrereirenrereieresre s a4
31 CPU INSLIUCHION FOIMELS. .....cvevirieiiiieirieresieseeie sttt s 59
3-2 VR5000 CACHE INStruction FOIMEL............ccocciiiiicii s 72
4-1 INStrUCtion PIPEling SLAgES .......coveirieieiiriee e e 86
4-2 CPU Pipelin€ ACHIVITIES......cceeie ettt st s snnens 89
4-3 CPU Pipeline BranCh DEl@Y .........ccceieveieeeeeeese et 90
4-4 CPU Pipeline Load DE@Y .......cccoeiiiiirieieneseeseereete et 91
4-5 Exception Detection MeChaniSM..........cccveiiiieii e 94
4-6 Servicing aData Cache MiSS........ccviiveieeieeecere e e ere e 95
4-7 Slips During an Instruction Cache MiSS.........ccoveireercirieneeserees e 96
51 Dual 1SSUE MECHBNISIM ...ttt sttt ene 99
6-1 Overview of a Virtual-to-Physical Address Translation ...........ccceeeeveeneeneceneenens 105
6-2 32-bit Mode Virtual Address Tranglation...........ccecevererererenene e 106
6-3 64-bit Mode Virtual Address Tranglation.........c.coceveereernennenee e 107
6-4 UserVirtual Address Space as Viewed from User Mode...........cooeveveneneneeiieeenene. 108
6-5 User and Supervisor Address Spaces as Viewed from Supervisor Mode................ 111
6-6 User, Supervisor, and Kernel Address Spaces as Viewed from Kernel Mode......... 114
6-7 CPO Registers and the TLB .......oovciieiiceee e 119
6-8 Format of @TLB ENFY ...cvoeeeecee et 120
6-9 Fields of the PageMask and EntryHi REQISLENS......cccovevrevievinere e 121
6-10 Fields of the EntryLo0 and EntryL 01 REQISLENS.........cccverererireninenieesiees e 122

User's Manual U11761EJ6VOUM 17



List of Figures (2/5)

Fig. No. Title Page
6-11 INOEX REGISIEN ...ttt 124
6-12 RENAOM REGISLEN ...ttt ettt reenesneennas 125
6-13 Wired RegISter BOUNTAIY ......ccccoueeeeeeeeeeeieiresestesiesee e ie e seesaenae e e enesnesneens 127
6-14 LT o B Lo 1 = SRR 127
6-15 Processor Revision Identifier Register FOrmat...........cccoovveeveviesenieseeceeeeeee e, 128
6-16 Config REQISIEr FOMMEL .......cccoiiiiieseseeee et s e e eneas 130
6-17 LLAJAr REQISIEr FOIMEL ........coveiieiireiieiiseeiesiees ettt 132
6-18 TaglLo and TagHi Register (P-cache) FOrmMats.........cccoovvceevevceevescee e 133
6-19 TaglL o and TagHi Register (S-cache) FOrmats........covevvvvievieverenieseseesee e 133
6-20 TLB Address Translalion ........c.coerereieieeeeceere s 136
7-1 Context REGISIEr FOIMEL .........ccoieirieiiieesieeste et 140
7-2 BadV Addr REQIStEr FOIMAL..........ccveeeeieeeecieee ettt s 141
7-3 CouNt REGISLEr FOMMEL ........eceiverieieriereeeee e et s e e seene e enennens 141
7-4 Compare REGISIEr FOMMEL........c.coeirieiieesieesiees et 142
7-5 S U Sy R o [ = S 143
7-6 Status ReQISter DS FIEld.......coiviieesece e enea 146
7-7 CalSE REGISIEN FOMAL .......cveveiiieeiiieee sttt s 149
7-8 [ O o TS = o 0 P 150
7-9 XContext REGISIEr FOMMEL........cciereeeeeeseeeeeeese s e e erenns 151
7-10 ECC REGISIEr FOIMMEL ......c.eveiirieiiiiirieesieee ettt 152
7-11 CacheErr RegiSter FOIMAEL .........ccceiieieiice ettt 153
7-12 ErrorEPC ReQIStEr FOMMEL .......ooeieecee et 154
7-13 Reset EXCEPLiON PrOCESSING.......ceiviereierierieienieesie ettt 155
7-14 Cache Error EXCEption PrOCESSING .......civveieiieeieeieieeeesteeeeseeeseeseeste e seesnee e eneenns 156
7-15 Soft Reset and NM I EXCEPLiON ProCESSING ....c.ccveererereresesie e seesieseesesseeeeseeseenens 156
7-16 General EXCEPLioN ProCESSING......c.coeirieririeesieresieneste st 157
7-17 General Exception Handler (HW) .....coo e 175
7-18 General Exception Servicing GUIdElINES (SW) ....c.veeeerere s seeeenens 176
7-19 TLB/XTLB Miss Exception Handler (HW) ......ccocvveiiiniiesiseseee e 177
7-20 TLB/XTLB Exception Servicing GUIAEliNES (SW) ...ccuveeeve e 178
7-21 Cache Error Exception Handling (HW) and Servicing Guidelines..........cccccceveuee. 179
7-22 Reset, Soft Reset & NMI Exception Handling..........ccveererninnenecneceeseeeee 180

18

User’s Manual U11761EJ6VOUM



List of Figures (3/5)

Fig. No. Title Page
81 FPU Functional BIOCK Di@gram ..........ccceeeerieineenieesiesesieesiesesie s 182
8-2 [ O I o TS = £ PR 184
8-3 Implementation/REVISION REJISIEN ......cccvive i st 187
8-4 FP Control/Status Register Bit ASSIGNMENTS.........cccveirerneniieeseese e 188
8-5 Control/Status Register Cause, Flag, and Enable Fields..........ccccoeveveveiicciene, 189
8-6 Single-Precision Floating-Point FOrMEL ..........cccceeererienieresesie e seesesieseeseeeeseeeenens 192
8-7 Double-Precision Floating-Point FOrMEL ...........c.ccveieinenneneeseese e 193
8-8 Binary FIXed-POINt FOIMEL...........ccceeiiiieiiceese e 195
89 FPU INStruction PIPElINE .......ccvieeieice et e 201
9-1 Control/Status Register Exception/Flag/Trap/Enable Bits.........cccceeevevererereeeenen. 205
10-1 Power-on Reset Timing Diagram........ccoceeecerereereeeresesese e see e seeseeeseeseenessesseens 216
10-2 Cold Reset TimMiNg Diagram.........cccoeireiieninieneeesesie st 217
10-3 Warm Reset Timing DIiagram ........cccceveeieieeie e ses e e e sre e e esaesreeneas 218
11-1 V£ @ oo G N1 11 o S 223
11-2 Phase-LoCKEA SYStEM.........cccvviriiiree et 224
12-1 Logical Hierarchy of MemMOIY ........c.ccciviereereeeeecee et 226
12-2 VR5000 Cathe SUPPOIT ........cocuiiiiicie s 227
12-3 Primary Instruction Cache Line FOrmMat..........ccocceeiviceeiecie s 228
12-4 Primary Data Cache Line FOrMEL.........cccceeviereieeeeeee st e 229
12-5 Secondary Cache Line FOIMEL ..........ccoerienieninereie st 230
13-1 SyStEM INLEITACE BUSES.......co ittt st 233
13-2 Secondary Cache INtErface........coocv e 233
14-1 Requests and SyStemM EVENLS........cccccieieiiceesie ettt 235
14-2 Processor Requests to EXtErnal AQeNt........cocoeveceeeeieeese e e 235
14-3 Processor Request FIOW CONtrol .........ccoiveinieineireereeseese e 236
14-4 External REQUESES t0 PIrOCESSON .......cccueiiieiicieccie ettt sttt 237
14-5 External Request Arbitration..........c.cccieiereeerereeeeee e e 238
14-6 External Agent Read ReSpONSE t0 PrOCESSO.........cviveerieerieirieesiesisiesee e 240
15-1 State of RARdy* Signal for Read REQUESES..........cooeireeirieineesieesee e 245

User's Manual U11761EJ6VOUM 19



List of Figures (4/5)

Fig. No. Title Page
15-2 State of WrRdy* Signal for Write REQUESES..........ccceirrerrereesieeseeee e 246
15-3 System Interface Register-to-Register Operation..........ccoevvveevevieevesieesesieseeeenns 247
154 Symbol for Undocumented CYClES........coueveieieirece e enens 250
15-5 Processor Read ReqUESt ProtOCOL ...........oiieirieirieirieeseeseseee e 251
15-6 Processor Non-Coherent Non-Block Write Request Protocol ..........ccccccveeeciveneenee. 252
15-7 Processor Non-Coherent, Non-Secondary Cache Block Write Request.................. 253
15-8 Processor Request FIOW CONtrol ..o 254
159 Two Processor Write Requests with Second Write Delayed ..........ccccoevvevevieenee. 255
15-10 V r4000-Compatible Back-to-Back Write Cycle Timing..........ccovovvevenneneenenenns 256
15-11 WHEE REISSUE ...ttt sttt sttt st e et e s 257
15-12 PIPEliNEA WIILES ...ttt nas 258
15-13 Arbitration Protocol for External REQUESES.........cccevvevereresenie e seeeee e 260
15-14 System Interface Release External NUll REQUESE ..........ccoveirieineicnecseee e 261
15-15 External Write Request, with System Interface Initially aBus Master.................... 262
15-16 Processor Word Read Request, Followed by a Word Read Response..................... 263
15-17 Block Read Response, System Interface already in Slave State...........coceveveneeee. 264
15-18 Read Response, Reduced Data Rate, System Interface in Slave State..................... 265
15-19 System Interface Command Syntax Bit Definition ..o, 270
15-20 Read Request SysCmd Bus Bit Definition..........cccoceoeeerineninene e 270
15-21 Write Request SysCmd Bus Bit Definition...........coccocvineiininene e 271
15-22 Null Request SysCmd Bus Bit Definition..........cccccveivenninninnenseseeseese e 272
15-23 Data Identifier SysCmd Bus Bit Definition..........cccccocverenieninenie e 273
16-1 Processor Requests to Secondary Cache and External Agent..........cccoeeeveienenennen. 284
16-2 Secondary Cache Invalidate and Clear..........cocveeeeieeese e 284
16-3 Secondary Cache Tag Probe.........cov e 285
16-4 Secondary Cache Write TRrough ..........coveiriiiinne e 285
16-5 Secondary Cache Read Hit..........ccooeoe i 286
16-6 Secondary Cache REA0 MiSS.......coeverierieiereeeeerese et e e s ene e enesnens 287
16-7 Secondary Cache Reat Hil...........ccoveiiiiieineeeeee e 289
16-8 Secondary Cache Read MISS.........coveeiieiecieeee et 291
16-9 Secondary Cache Read MissSWith BUSEITOF ........ccccvevveieiinesc e 292
16-10 Secondary Cache Write Operation............coeeeerererieereee st 293

20

User’s Manual U11761EJ6VOUM



List of Figures (5/5)

Fig. No. Title Page
16-11 Secondary Cache Line INValidate. ...........cccoevrernennisecsee e 294
16-12 Secondary Cache Probe (Tag RAM Read)......ccccveviviieri e 295
16-13 Secondary Cache Flash ClEAr ........ccoveveeeiereceeeee e enen 296
17-1 Interrupt Register Bits and ENaDIES..........ccceveveveeeeeccecece e 299
17-2 VR5000 INtErTUPE SIQNELS .......cveiiicicie e 300
17-3 VR5000 Nonmaskable Interrupt Signal ..o 301
17-4 Masking of the VR5000 INEEITUDL.........covereirerrreieresreeeresrereere e 302
18-1 Standby MOAE OPEIatiON........cceierieriereeieeereeeeeseee e e st see e seeseeseeseeneesens 304
19-1 L I 1 (= O (1 1 A ) 305
19-2 PLL Filter CIFCUIT (2)..cveiveeirieirieisriisisiseseeesie e esteses e e e e s e ssese e e ssessssensssns 306
B-1 Retrieving a Data Block in Sequential Order ..........ocooveiverninnenecneeseesieeee 314
B-2 Retrieving aDatain a Subblock Order..........oovveeve e 315

User's Manual U11761EJ6VOUM 21



List of Tables(1/3)

Table No. Title Page
1-1 System Control Coprocessor (CPO) Register Definitions.........coccovevvenenenccncenens 39
2-1 System INLErface SIgNaIS ......c.oiiriiere s 45
2-2 Clock INtErface SIGNEIS.......cceieriererereeere et e erenns 46
2-3 Secondary Cache INnterface SIgNalS........covereereereere e 47
2-4 Interrupt INterface SIgNaIS.........oo i 48
2-5 Initialization INterfate SIgNalS........cceeeceeererie e 49
2-6 POWET SUPPIY ..ottt 50
31 Byte Access within a DoubI@WOrd ... 61
3-2 Multiply/Divide Instruction Latency and Repeat RAteS.........cccvvevvreriereeneeieieeeennns 63
3-3 MIPS IV Instruction Set Additions and EXIENSIONS.........ccocevererereenienenieneeeeeeeeeens 65
3-4 VR5000 COPO INSITUCITONS ..ottt 66
35 Floating Point OPEratioNS...........cccvverierereerieseeseeesesesresesee e sses e seeseeseeseesessessessessens 71
4-1 Relationship of Pipeline Stage to Interlock Condition............cccoveeveeineicneicnicene 92
4-2 PipEliNg EXCEPLIONS......coueiiiieitiite sttt bbb ene s 93
4-3 LT o= T L=l g1 (= Lo 93
6-1 ProCeSSOr MOUES ......oouiiuiiiiesie ettt s 103
6-2 32-bit and 64-bit User Address Space Segments ........ccocevevererenenenieseeseeee e 109
6-3 SUpervisor Mode AdAreSSING .......ccevererereereceeeeeee e e e nnens 111
6-4 Kernel Mode AdAreSSING......c.coeeriiiriininesesie et 115
6-5 Cacheability and Coherency AttrDULES..........ccooririiineie e 117
6-6 TLB Page Coherency (C) Bit VAIUES........cccerereeerise e 123
6-7 Index Register Field DESCIIPLIONS.........cirierieirieeeiereeieseeiesee s 124
6-8 Random Register Field DeSCriptions..........cocoeeeererenenere s 125
6-9 Mask Field Values for Page SIZES.......cccvvrereereeercece st 126
6-10 Wired Register Field DESCIiPLiONS ..ot 127
6-11 PRIA REQISIEr FIEIAS. ..ot 128
6-12 Config REGIStEr FIEIAS.......coieiiii e sce e s nneas 130
6-13 Cache Tag RegiSter FIalds.........coeiieiiieirieesieee et 134
6-14 TLB INSIIUCHIONS.......eveeeireiiireesreeerese st er e s en e ene e 137
7-1 CPO EXception Processing REQISLEN'S.....cucveveeeirerecese s sesie s sees e saeeeseee s 139
7-2 Context REGISIEr FIEldS ........coueiieireeseese et 140

22

User’'s Manual U11761EJ6VOUM



List of Tables(2/3)

Table No. Title Page
7-3 Status REgISEr FIEIAS ..o 144
7-4 Status Register Diagnostic StatuS BitS.......cccveceeiericiececee e 146
7-5 Calse REGISLEr FIElUS......iiiceiesi e s e e nneas 148
7-6 Cause Register EXCCOAR Fild ..o 149
7-7 XContext ReGIStEr FIElAS .......ocveiicececeseees e 151
7-8 ECC ReQIStEr FIEIS......ceieiicese ettt 152
7-9 CaCheErr RegiSter FIElUS. .....couoiieiecsesee e 153
7-10 Exception Vector Base AQUrESSES........c.cccvieeiee i sttt 157
7-11 EXCEption VECtOr Off SELS ....cuvviiiiicc s 158
7-12 TLB REFIT VECIOIS.....ociiieeiiteisteieteseete ettt sttt ettt st sa et saetesaesesnas 159
7-13 EXCEPLioN Priority OFOEr .......ccveeieeeeee ettt e 160
8-1 Floating-Point Control Register ASSIgNMENES........ccccovevrereresesieseeseeseseeseeeeeeens 186
8-2 L OOl 1= o TSRS 187
8-3 Control/Status Register FIelds.........coovieeieiieecce e 188
8-4 Flush Values of Denormalized Number RESUILS........ccocevvirrinnincee e 190
8-5 Rounding Mode Bit DECOTING .......ccrveeruereriinieiirieiesieesie e 192
8-6 Calculating Valuesin Single and Double-Precision Formats...........ccoccevevvenieenene. 193
8-7 Floating-Point Format Parameter ValUES.........coeoveveeeenere e e 194
8-8 Minimum and Maximum Floating-Point ValUES ............cccoeerirnenecenecneceeeee 194
8-9 Binary Fixed-Point Format Fields..........ccciieiiicieie e 195
8-10 FPU Instruction Summary: Load, Move and Store Instructions...........cceceveeevenenee. 196
8-11 FPU Instruction Summary: Conversion INStrUCLiONS .........ccovererenieeneeneeseeeene 196
8-12 FPU Instruction Summary: Computational InStructions............c.cceeeveeeveeeenieeeenne. 197
8-13 FPU Instruction Summary: Compare and Branch Instructions...........c.cccccvecveennee. 197
8-14 Mnemonics and Definitions of Compare Instruction Conditions.............c.cccceeenee. 200
8-15 Floating-Point Operation LatenCI€S.........cccveveiiieeie ettt 202
9-1 Default FPU EXCEPtioN ACHONS.......ccciiiirieirieerie e 207
9-2 FPU Exception-Causing ConditioNS ..........coeverererenenene e 208
10-1 BOOt MOOE SEIINGS....cveeieeiieiiciecte ettt ettt re e sne e 220
14-1 Load Missto Primary CaChes.........ccvceiereiereeeeeese et 241
14-2 Store Missto Primary and Secondary Caches..........ccooeiveineineieneicneee e 242

User's Manual U11761EJ6VOUM 23



List of Tables(3/3)

Table No. Title Page
15-1 System INtErface REQUESES.......c.cieirieiieesieresie ettt 249
15-2 Transmit Data Rates and Patterns...........ccooeererieninene e 266
15-3 Release Latency for External REQUESES..........coeveeeerere e e 269
154 Encoding of SysCmd(7:5) for System Interface Commands............ccooeveveieeenee. 270
15-5 Encoding of SysCmd(4:3) for Read REqUESES..........cccoerererinine e 271
15-6 Encoding of SysCmd(1:0) for Block Read ReqUESL............cccovverevervneriereeeeeee 271
15-7 Read Request Data Size Encoding of SysCmd(2:0)........ccvvererernenneneineesieenee 271
15-8 Write Request Encoding of SySCMA(4:3) ....cceeerirerininene e 272
159 Block Write Request Encoding of SySCmd(2:0)......cccvevreverenerieveeneneseeseeeeeenenns 272
15-10 Write Request Data Size Encoding of SysCmd(2:0) ........coeveereinieieneeeenineseeeenes 272
15-11 External Null Request Encoding of SySCmd(4:3).....ccceoevererinene e 273
15-12 Processor Data Identifier Encoding of SysCmd(7:3) .....cccvvevvvvvrvvvneriereereeeeeenen 274
15-13 External Data ldentifier Encoding of SysSCmd(7:3) .....cceeverreneienieineeneesieeeene 275
15-14 Partial Word Transfer Byte Lan@ USa0e .......cc.ocveererirenenenesere e 277
15-15 Error Checking Operation for Internal Transactions...........ccccveevvvverenieseeresseeseenenn 281
15-16 Error Checking Operation for External TransaCtions..........cccvoeeeenieeneenenenienennene 282
A-1 Primary Data Cache OPErations..........ccoereierierieeeerenesrese st 312
A-2 Primary Instruction Cache Operations..........cocccveererrennennensesee e 313
A-3 Secondary Cache OPEralioNS..........c.evreirierinererenee s 313
B-1 Subblock Ordering Sequence: AdAresS 105 .......coeeeiriennereeree e 316
B-2 Subblock Ordering Sequence: AdAress 11y .....c.oovvrerirreererereres s 316
B-3 Subblock Ordering Sequence: Address 0L, ........covvciiiiriceireseeere e 316
C-1 OUutput Driver SEFENGEN ........coiiiiee e e 317

24

User’'s Manual U11761EJ6VOUM



Chapter 1 Introduction

The V5000 and Vg5000A are members of the NEC V g-Series RISC (Reduced
Instruction Set Computer) microprocessors and are high-performance 64-/32-hit
microprocessors employing the RISC architecture developed by MIPS™.

Their instructions are upward-compatible with those of the V3000 Series™ and
V r4000 Series and are completely compatible with those of the V 310000. Therefore,
existing applications can be used with the Vg5000 and V g5000A.

User's Manual U11761EJ6VOUM 25



Chapter 1 Introduction

1.1 Processor Char acteristics

The V5000 and Vg5000A have the following fetaures:

26

Maximum internal operating frequency:

150MHz (uPD30500-150) /180MHz (1PD30500-180) /
200MHz (uPD30500-200) /250MHz (1PD30500A-250)/
266MHz (uPD30500A-266)

64-bit architecture supporting 64-bit data processing
Dual-issue instruction mechanism

High-speed translation lookaside buffer (TLB) supporting virtual addresses (of
48 double entires)

Address space: Physical 36 bits
Virtual 40 bits (64-bit mode)
31 bhits (32-bit mode)

Supports single-precision and double-precision floating-point operations

On-chip primary cache: Instruction 32KB
Data 32KB

Up to 2MB optional Secondary cache
Employs writeback system -> store operation via system bus decreased

Up to 100 MHz external bus with frequency of /2, /2.5N%€, /3, /4, 5, /6, /7, I8
of internal operation

Write buffer

Upward-compatible with Vg3000 Series and V g4000 Series and completely
compatible with V510000
Supply voltage:  Vcc=3.3V£5% (VR{5000)
Core : Vcc=2.4V+0.1V (VR5000A, 100 to 235MHz),
Vce=2.5V+5% (VR5000A, 236 to 250MHz),
Vee=2.6V+0.1V (VR5000A, 251 to 266MHz)
/0 : Vel O=3.3V£5%(VRg5000A)

Note Selectable only when external operating frequency=100MHz

User’'s Manual U11761EJ6VOUM



Chapter 1 Introduction

1.2

1.3

1.4

Ordering Information

Maximum operating

Part Number Package frequency (MHZ2)
UPD30500RJ-150 223-pin ceramic PGA (48x48) 150
uPD30500RJ-180 223-pin ceramic PGA (48x48) 180
uPD30500RJ-200 223-pin ceramic PGA (48x48) 200
uPD30500S2-150 272-pin plastic BGA 150

(cavity down advanced type) (29x29)
uPD30500S2-180 272-pin plastic BGA 180
(cavity down advanced type) (29x29)
uPD30500S2-200 272-pin plastic BGA 200
(cavity down advanced type) (29x29)
UPD30500A S2-250 272-pin plastic BGA 250
(cavity down advanced type) (29x29)
UPD30500A S2-266 272-pin plastic BGA 266

(cavity down advanced type) (29x29)

64-Bit Architecture

The V5000 is a 64-bit high-performance microprocessor. It can also execute 32-bit
applications.

V r5000 Pr ocessor

Figure 1-1 shows the internal block diagram of the V g5000.

The V5000 is equipped with a full-associative high-speed translation lookaside
buffer (TLB) that has 48 entries with two pages corresponding to each entry; data
cache and instruction cache; external secondary cache interface, in addition to dual-
issue mechanism ALU.

User's Manual U11761EJ6VOUM 27



Chapter 1 Introduction

Data/Address  Control

L]

SysClock

|

System
Interface

Clock Generator

Y

Instruction Cache

Data Cache

CPO

TLB I<
—1

Instruction Address

Pipeline Control

Y

Y Y

Integer Operating
Unit

Floating Point
Unit

Figure 1-1 VR5000 Processor Internal Block Diagram

28

User’'s Manual U11761EJ6VOUM



Chapter 1 Introduction

141

Internal Block Configuration

System Interface allows the processor to access external resources such as memories
and secondary cache. It contains a 64-bit multiplexed address/data bus, with per-byte
parity, interrupt request signals, and various control signalsincluded for secondary
cache.

Clock Generator generates a pipeline clock (PClock) based on an externally input
clock (SysClock). The ratio of frequency of SysClock to that of PClock can be set to
1:2,1:2.5N0€ 1:3 1:4, 1:5 1:6, 1:7, or 1:8.

Note VR5000A only (Selectable only when SysClock=100MHz)

Instruction Cacheis 2-way set associative, virtually-indexed, and physically-
tagged. The capacity is 32KB.

Integer Operating Unit has the hardware resources to execute integer instruction. It
has a 64-hit register file and 64-bit integer datapath. It is provided with a dedicated
multiplier in order to process multiply instruction at a high speed.

Floating Point Unit has the hardware resources to execute floating point instruction.
It has a 64-hit register file, 64-bit mantissa datapath, and 12-bit exponent datapath. It
is provided with a dedicated multiplier and a dedicated div./sgrt. in order to process
multiply/multiplyadd and div./sgrt. instructions at a high speed.

Coprocessor 0 (CPO0) has the memory management unit (MMU) and handles
exception processing. The MMU handles address trandation and checks memory
accesses that occur between different memory segments (user, supervisor, or kernel).
The trandlation lookaside buffer (TLB) is used to trandate virtual to physical
addresses.

Data Cacheis a2-way set associative, virtually indexed and physically-tagged
writeback cache. The capacity is 32KB.

Instruction Address cal cul ates the effective address of the next instruction to be
fetched. It contains the incrementer for the Program Counter (PC), the branch address
adder, and the conditiona branch selector.

Pipeline Contr ol ensures the instruction pipeline operates properly causing either of
pipeline stall or exception.

User's Manual U11761EJ6VOUM 29



Chapter 1 Introduction

142

30

CPU Registers

The processor provides the following registers:
» 32 64-bit general purpose registers, GPRs
» 32 64-bit floating-point purpose registers, FPRs
In addition, the processor provides the following special registers:
e 64-bit Program Counter, the PC register
»  64-bit HI register, containing the integer multiply and divide high-order
doubleword result
*  64-bit LO register, containing the integer multiply and divide low-order
doubleword result
e 1-bit Load/Link LLBiIt register
»  32-hit floating-point Implementation/Revision register, FCRO
»  32-bit floating-point Control/Status register, FCR31

Two of the CPU genera purpose registers have assigned functions:

e r0ishardwired to a value of zero, and can be used as the target register
for any instruction whose result is to be discarded. rO can also be used as
a source when a zero value is needed.

* r3listhelink register used by JAL and JALR instructions. It can be used
by other instructions. Make sure that other data used in calculations does
not overlap with the register used by the JAL/JALR instruction.

Further more, the processor contains registers in the system control processor (CPQ)
which perform the exception processing and address management. CPU registers can
operate as either 32-bit or 64-bit registers, depending on the Vg5000 processor mode
of operation.

Figure 1-2 shows the V g5000 processor registers.

User’'s Manual U11761EJ6VOUM



Chapter 1 Introduction

General Purpose Registers

63 =0 0 Multiply and Divide Registers
v= 63 0
rl HI I
r2 63 0

: LO I

Program Counter
r29 63 0

r30 PC I

r31 = Link address

Load/Link Register

0
Floating-Point Registers LLbit
63 0
r0
rl

Floating-Point Control Registers

31 0
r0 = Implementation/Revision I
31 0

r31 = Control/Status I

Figure 1-2 VR5000 Processor Registers
The V5000 processor has no Program Status Word (PSW) register as such; thisis

covered by the Satus and Cause registers incorporated within the System Control
Coprocessor (CP0). CPO registers are described later in this chapter.

User's Manual U11761EJ6VOUM 31



Chapter 1 Introduction

143

32

CPU Instruction Set Overview
Each CPU instruction is 32 bitslong. Asshown in Figure 1-3, there are three
instruction formats:

* immediate (I-type)

*  jump (Jtype)

e register (R-type)

31 2625 2120 16 15 0
I-Type (Immediate) op rs rt immediate

31 26 25 0
J-Type (Jump) op target

31 2625 2120 1615 1110 65 0
R-Type (Register) op rs rt rd sa | funct

Figure 1-3 CPU Instruction Formats

Theinstruction set can be further divided into the following groupings:

» Load and Store instructions move data between memory and general
purpose registers. They are all immediate (I-type) instructions, since the
only addressing mode supported is base register plus 16-bit, signed

immediate offset.

e Computational instructions perform arithmetic, logical, shift, multiply,

and divide operations on values in registers. They include register (R-
type, in which both the operands and the result are stored in registers) and
immediate (I-type, in which one operand is a 16-bit signed immediate

value) formats.

* Jump and Branch instructions change the control flow of a program.
Jumps are always made to an address formed by combining a 26-bit target

address with the high-order bits of the Program Counter (J-type format)

or register address (R-type format). Branch instructions are performed to

the 16-bit offset address relative to the program counter (I-type). Jump

And Link instructions save their return address in register 31.

e Coprocessor instructions (CPz) perform operations in the coprocessors.
Coprocessor load and store instructions are I-type. As opposed to CPO

instructions, CPz instructions are not specific to any coprocessor. (Refer

to Chapter 8 Floating Point Unit.)

User’'s Manual U11761EJ6VOUM



Chapter 1 Introduction

» Coprocessor 0 (system coprocessor, CP0) instructions perform operations
on CPO registers to control the memory-management and exception-
handling facilities of the processor.

e Special instructions perform system call exception and breakpoint
exception operations, or cause a branch to the general exception-handling
vector based upon the result of a comparison. These instructions occur in
both R-type (both the operands and the result are registers) and I-type
(one operand is a 16-bit immediate value) formats.

For each instruction, refer to Chapter 3 CPU Instruction Set Summary and
VR5000, V{10000 User’'s Manual Instruction.

User's Manual U11761EJ6VOUM 33



Chapter 1 Introduction

144 Data Formats and Addressing

The V5000 processor uses four data formats: a 64-bit doubleword, a 32-bit word, a
16-bit halfword, and an 8-hit byte. Byte ordering within all of the larger data
formats—halfword, word, doubleword—can be configured in either big-endian or
little-endian. When the Vr5000 processor is configured as a big-endian system, byte
0 isthe most-significant (Ieftmost) byte, thereby providing compatibility with MC
68000™ and IBM 370™ conventions. Figure 1-4 shows this configuration.

Higher Word
Address Address 31 24 23 16 15 87 0
12 | 12 | 13 14 || 15
10 11
6 7
Lower 0 | 0 | 1 2 3
Address

Figure 1-4 Big-Endian Byte Ordering

Remarks 1. The most-significant byte isthe lowest address.
2. A word is addressed by the address of the most-significant byte.

When configured as alittle-endian system, byte 0 is always the |east-significant
(rightmost) byte, which is compatible with iIAPX™ x86 and DEC VAX™
conventions. Figure 1-5 shows this configuration.

Unless otherwise specified, the little endian is used throughout this manual.

Higher Word
Address Address 31 24 23 16 15 87 0
12 15 | 14 || 13 | 12 |
11 10
7 6 5
address O 3 2 |+ o |

Figure 1-5 Little-Endian Byte Ordering

Remarks 1. Theleast-significant byteisthe lowest address.
2. A word is addressed by the address of the |east-significant byte.

34 User's Manual U11761EJ6VOUM



Chapter 1 Introduction

Higher  Doubleword Wc|>rd Half\I/vord Byte
Address  Address  [63 32131 16l15 8l7 0
Z:E 16 | 16 || 17 || 18 | 19 || 20 || 21 || 22 | 23 |

8 [ 8 | 9 | 1o [ 11 12 | 13 14 | 15 |
Lower o [ o |1 |2 |3 |4 | 5 |6 || 7|
Address

Figure 1-6 Big-Endian Data in a Doubleword

Remarks 1. The most-significant byte is the lowest address.
2. A word is addressed by the address of the most-significant byte.

Higher  Doubleword Word Halfword Byte
Address Address 63 2231 Tol1s 8,_1_7 5
16 23 22 | 21 || 20 || 19 | 18 17 16
8 15 14 | 13 | 12 || 12 | 10 [ 9 | 8 |
Lower 0 | 7 |l 6 | 5 | 4 || 8 | 2 | 1 | o |
Address

Figure 1-7 Little-Endian Data in a Doubleword

Remarks 1. Theleast-significant byteisthe lowest address.
2. A word is addressed by the address of the |east-significant byte.

User's Manual U11761EJ6VOUM 35



Chapter 1 Introduction

The CPU uses byte addressing for halfword, word, and doubleword accesses with the
following alignment constraints:

» Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).

»  Word accesses must be aligned on a byte boundary divisible by four (0, 4,
8...).

*  Doubleword accesses must be aligned on a byte boundary divisible by
eight (O, 8, 16...).

Thefollowing special instructions load and store words that are not aligned on 4-byte
(word) or 8-word (doubleword) boundaries:
LWL LWR SWL SWR

LDL LDR SDL SDR

Theseinstructions are aways used in pairsto access data not aligned at an boundary.
To accessdatanot aligned at aboundary, additional 1P cycleisnecessary as compared
when accessing data aligned at a boundary.

Figure 1-8 illustrates how aword misaligned and having byte address 3 is accessed in
big and little endian.

Higher
Address

31 24 23 1615 8 7 0
L4 | s | s

| | | 3

Big-Endian

Lower
Address

Higher
Address

31 24 23 1615 8 7 0

6 S I—,4 | Little-Endian

3 |

Lower
Address

Figure 1-8 Misaligned Word Addressing

User’'s Manual U11761EJ6VOUM



Chapter 1 Introduction

145

System Control Coprocessor (CPO)

The CPU can operate with up to four coprocessors (CPO through CP3) closely coupled.
Coprocessors 1 and 2 are reserved for future use. Coprocessor 3 isassigned for MIPS
IV instruction set. Coprocessor 0 (CPQ) isan internal system control coprocessor and
supports the virtual memory system and exception processing. The virtual memory
system is executed by the on-chip TLB and CPO register.

CPO converts virtual addresses into physical addresses, selects an operating mode
(Kernel, supervisor, or user mode), and control exceptions. It also controls the cache
subsystem to analyze causes and return execution from error processing. The CPO
register of the V{5000 is the same as that of the VV gr4000.

Figure 1-9 shows the CPO register. Table 1-1 briefly explains each register. For the
details of the registers related to the virtual memory system, refer to Chapter 6
Memory Management Unit, and for the details of the registers used for exception
processing, refer to Chapter 7 CPU Exception Processing.

User's Manual U11761EJ6VOUM 37



Chapter 1 Introduction

Register Name Reg. # Register Name
Index* 0 Config*
Random* 1 LLAddr*
EntryLoO* 2 RFU
EntryLol* 3 RFU
Context** 4 XContext**
PageMask* 5 RFU

Wired* 6 RFU

RFU 7 RFU
BadVAddr** 8 RFU

Count** 9 RFU

EntryHi* 10 Parity Error**
Compare** 11 Cache Error**
Satus** 12 TagLo*
Cause** 13 TagHi*

EPC** 14 ErrorEPC**
PRId* 15 RFU

* For Memory Management
**  For Exception Processing
RFU Reserved for Future Use

Figure 1-9 CPO Registers

38 User's Manual U11761EJ6VOUM

Reg. #
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31



Chapter 1 Introduction

Table1-1 System Control Coprocessor (CP0) Register Definitions

Number Register Description
0 Index Programmable pointer into TLB array
1 Random Pseudorandom pointer into TLB array (read only)
2 EntryLoO Low half of TLB entry for even virtual address (VPN)
3 EntryLol Low half of TLB entry for odd virtual address (VPN)
4 Context Pointer to kernel virtual page table entry (PTE) in 32-bit mode
5 PageMask Page size specification
6 Wired Number of wired TLB entries
7 — Reserved for future use
8 BadVAddr Display of virtual address that occurred an error last
9 Count Timer Count
10 EntryHi High half of TLB entry (including ASID)
11 Compare Timer Compare Vaue
12 Status Operation status setting
13 Cause Display of cause of last exception
14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16 Config Memory system mode setting
17 LLAddr Load Linked instruction address display
18,19 — Reserved for future use
20 XContext Pointer to Kernel virtual PTE table in 64-bit mode
21-25 — Reserved for future use
26 Parity Error Cache parity bits
27 Cache Error Cache Error and Status register
28 TagLo Cache Tag register low
29 TagHi Cache Tag register high
30 ErrorEPC Error Exception Program Counter
31 — Reserved for future use

User’'s Manual U11761EJ6VOUM

39




Chapter 1 Introduction

1.4.6

14.7

40

Floating-Point Unit (FPU)

Thefloating-point unit (FPU) performs arithmetic operations on floating-point values.
The FPU, with associated system software, fully conforms to the requirements of
ANSI/IEEE Standard 754-1985, | EEE Sandard for Binary Floating-Point
Arithmetic.

The FPU includes:

*  Full 64-bit Operation. The FPU can contain either 16 64-bit registers to
hold single-precision or double-precision values. Another sixteen
floating-point registers can be used by setting the FR bit of the Status
register to 1. Moreover, a 32-bit Control/Status register is provided,
conforming to the IEEE exception processing standard.

* Load and Store Instruction Set. Like the CPU, the FPU uses a load-
and store-based instruction set. Floating-point operations are started in a
single cycle.

Internal Cache

The V5000 has an instruction cache and a data cache to enhance the efficiency of
pipelining. Each cache hasadatawidth of 64 bitsand can be accessedin 1 clock. The
instruction cache and data cache can be accessed in parallel. Both of the instruction
cache and data cache have a capacity of 32KB.

For the details of the cache, refer to Chapter 12 Cache Organization and
Operation.

User’'s Manual U11761EJ6VOUM



Chapter 1 Introduction

1.5

151

Memory Management System (MM U)

The V5000 processor has a 36-bit physical addressing range of 64 GB. However,
sinceit israre for systems to implement a physical memory space thislarge, the CPU
provides alogical expansion of memory space to the programmer by translating
addresses into the large virtual address space. The V(5000 processor supports the
following two addressing modes:

»  32-bit mode, in which the virtual address space is divided into 2 GB per
user process and 2 GB for the kernel.

*  64-bit mode, in which the virtual address is expanded to
1TB (240 bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 6 Memory
Management Unit.

Trandation Lookaside Buffer (TLB)

Virtual memory mapping is assisted by a translation lookaside buffer, which holds
virtual-to-physical addresstrandations. Thisfully-associative, on-chip TLB contains
48 entries, each of which maps apair of variable-sized pages of either 4 KB or 16 MB.

Joint TLB (JTLB)

The TLB can hold both instruction and data addresses, and isthus also referred to asa
joint TLB (JTLB).

An address trandlation value is tagged with the most-significant bits of its virtual
address (the number of these bits depends upon the size of the page) and a per-process
identifier. If thereisno matching entry inthe TLB, an exception occurs and software
writes the entry contentsto the on-chip TLB from apagetablein memory. The JTLB
entry to be rewritten is selected by avaluein either the Random or Index register.

User's Manual U11761EJ6VOUM 41



Chapter 1 Introduction

152

1.6

42

Operating Modes
The VR5000 processor has three operating modes:
* User mode
»  Supervisor mode
» Kernel mode
The manner in which memory addresses are trandlated or mapped depends on the

operating mode of the CPU; thisis described in Chapter 6 Memory M anagement
Unit.

I nstruction Pipeline

The VR5000 incorporates a simple dual-issue mechanism which allows a floating-
point ALU instruction to be issued simultaneously with any other instruction type and
has a five-stage instruction pipeline. For details, refer to Chapter 4 V{5000
Processor Pipeline and Chapter 5 Superscalar | ssue M echanism.

User’'s Manual U11761EJ6VOUM



Chapter 2 VR5000 Processor Sgnal Descriptions

This chapter describes the signals used by and in conjunction with the Vg5000
processor. The signalsinclude the System interface, the Clock interface, the
Secondary Cache interface, the Interrupt interface, and the Initialization interface.

Signalsarelisted in bold, and low active signals have atrailing asterisk—for instance,
thelow-active Read Ready signal isRdRdy*. Thearrowsusedin each signal for each
signals tellsif thesignal isaninput (the processor receivesit), an output (the processor
sendsit out), or bidirectional.

Figure 2-1 illustrates the functional groupings of the processor signals.

User's Manual U11761EJ6VOUM 43



Chapter 2 VR5000 Processor Sgnal Descriptions

System Interface

Clock Interface

| SysAD[63:0] 4768i> ScLine[15:0] |
SysADCI[7:0] <ﬁ9;> ScWord[1:0)] ©
SysCmd[8:0] <—~—> SCCWE*1:0] £
SysCmdP  «—» ScDCE*[1:0] c
Validin* — ScDOE* 2
validoutr  <——— SCTCE* S
ExtRgst* - SCTDE* g
Release* B — ScTOE* §
RdRdy* — ScCLR* §
WrRdy* R ScValid
- ScMatch
- VR5000 o
SysClock  ———> S"Ogic o] | 58
VccP — ymbol NMI* % E
VssP >
ModeClock
Modeln c
BigEndian '% §
VeeOk = E’
ColdReset* =
Reset* ]

Figure 2-1 VR5000 Processor Signals

System Interface Signals

System interface signals provide the connection between the V5000 processor and
the other componentsin the system. Table 2-1 lists the system interface signals.

User’'s Manual U11761EJ6VOUM



Chapter 2 V5000 Processor Signal Descriptions

Table 2-1 System Interface Sgnals

Name Definition Direction Description
An external agent asserts ExtRqst* to
. reguest use of the System interface. The
ExtRast Externdl request Input processor grants the request by asserting
Release*.
In response to the assertion of ExtRqst*, the
. processor asserts Release*, signalling to the
Release” Release interface Outtput requesting device that the System interfaceis
available.
The external agent asserts RARdy* to
. indicate that it can accept processor read
RdRdy Read read Input reguestsin either secondary or no-secondary
cache mode.
A 64-bit address and data bus for
SysAD(63:0) System address/ Input/ communication between the processor, the
data bus Output
secondary cache, and an external agent.
SySADC(7:0) System address/ Input/ An 8-hit bus containing parity for the SysAD
' data check bus Output bus. SysADC isvalid on data cycles only.
System command/ | Input/ A 9-bit bus for command and data identifier
SysCmd(8:0) R P transmission between the processor and an
dataidentifier Output
external agent.
System command/ Inout/ Always zero when driven by the processor.
SysCmdP | dataidentifier bus OSt Ut Never checked by the processor. Thissignal
parity P is defined to maintain V g4000 compatiblility.
Theexternal agent assertsValidln* whenitis
N - driving avalid address or data on the SysAD
validin Validinput Input busand avalid command or dataidentifier on
the SysCmd bus.
The processor asserts ValidOut* when it is
. . driving avalid address or data on the SysAD
*
Validout Valid output Output bus and avalid command or dataidentifier on
the SysCmd bus to the external agent.
" ;
WrRdy* Write ready Input The external agent asserts WrRdy* when it

can accept a processor write request.

User’'s Manual U11761EJ6VOUM

45




Chapter 2 V5000 Processor Signal Descriptions

2.2 Clock Interface Signals
The Clock interface signals make up the interface for clocking. Table 2-2 liststhe
Clock interface signals.
Table 2-2 Clock Interface Sgnals
Name Definition Direction Description
System clock input that establishes
SysClock System Clock Input the system interface operating
frequency and phase.
) Quiet Vcc for the internal phase
VccP Quiet Vecfor PLL Input locked loop.
, Quiet Vssfor theinternal phase
VssP Quiet Vssfor PLL Input locked loop.
2.3 Secondary Cache Interface Signals

Secondary Cache interface signals constitute the interface between the V g5000
processor and secondary cache. Table 2-3 lists the Secondary Cache interface signals
in alphabetical order.

46

User’'s Manual U11761EJ6VOUM




Chapter 2 V5000 Processor Signal Descriptions

Table 2-3 Secondary Cache Interface Sgnals

Name Definition Direction Description
Secondary Cache Clearsadl valid bitsin those Tag
*
SCCLR Flash Clear Output RAMs which support this function.
Asserted during writes to the
1. Secondary Cache secondary cache. Two signals are
SCCWE*(L:0) Write Enable Output provided to minimize loading from
the cache RAMs.
Chip Enable for Secondary Cache
. Data RAM Chip DataRAM. Two signalsare provided
*
SCDCE*(1:0) Enable Output to minimize loading from the cache
RAMs.
Data RAM Output Asserted by the external agent to
*
SCcDOE Enable Input enable data onto the SysAD bus
ScLine (15:0) E.E condary Cache Output Cache line index for secondary cache
Line Index
Secondary cache Asserted by Tag RAM on Secondary
ScMateh Tag Match Input cache tag match
Secondary cache .
SCTCE* Tag RAM Chip Output g: ';\)A enable for secondary cache tag
Enable ’
Secondary cache
SCTDE* Tag RAM Data Output gztlenablefor Secondary CacheTag
Enable '
Secondary cache
Tag RAM Output enable for
*
ScTOE 'IE'?gabll?:M Output | Output Secondary Cache Tag RAM
. Secondary cache Determines the double-word within
Seword (1:0) Word Index Input/Outtput the indexed secondary cache Index
Always driven by the CPU except
Scvalid \S/(;C io(?dary cache I nput/Output during a CACHE Probe operation,

where it isdriven by the Tag RAM.

User's Manual U11761EJ6VOUM 47



Chapter 2 VR5000 Processor Sgnal Descriptions

2.4 Interrupt Interface Signals

The Interrupt interface signals make up the interface used by external agentsto
interrupt the VR5000 processor. Table 2-4 lists the Interrupt interface signals.

Table 2-4 Interrupt Interface Sgnals

Name Definition Direction Description
General processor interrupts, bit-wise ORed with
* .
Int*(5:0) | Interrupt Input bits 5:0 of the interrupt register.
Nonmaskable Nonmaskabl e interrupt, ORed with bit 6 of the
NMI* | Input . .
interrupt interrupt register.
2.5 Initialization I nterface Signals

The Initiaization interface signals make up the interface by which an external agent

initializes the processor operating parameters. Table 2-5 liststhe Initialization
interface signals.

48 User's Manual U11761EJ6VOUM




Chapter 2 V5000 Processor Signal Descriptions

Table 2-5 Initialization Interface Sgnals

Name

Definition

Direction

Description

BigEndian

Endian Mode Select

Input

Allowsthe system to change the processor
addressing mode without rewriting the
mode ROM. If endiannessisto be
specified viathe BigEndian pin, program
mode ROM bit 8 to zero. If endiannessis
to be specified by the mode ROM, ground
the BigEndian pin.

ColdReset*

Cold reset

Input

Thissignal must be asserted for apower on
reset or acoldreset. ColdReset* must be
deasserted synchronously with SysClock.

M odeClock

Boot mode clock

Output

Seria boot-mode dataclock output; runsat
the system clock frequency divided by
256: (SysClock/256).

M odeln

Boot mode datain

Input

Serial boot-mode data input.

Reset*

Reset

Input

This signal must be asserted for any reset
sequence. It can be asserted
synchronously or asynchronously for a
cold reset, or synchronoudly to initiate a
warm reset. Reset* must be deasserted
synchronously with SysClock.

VccOk

Ve and VeclONote
arevalid

Input

When asserted, thissignal indicatesto the
processor that the +3.3 volt power supply
has been above 3.135 volts for more than
100 milliseconds and will remain stable.
The assertion of VccOK initiates the
initialization sequence.

Note VcclOisonly for VR5000A.

User’'s Manual U11761EJ6VOUM

49




Chapter 2 V5000 Processor Signal Descriptions

2.6 Power Supply

Table2-6 Power Supply

Name Definition Direction Description
Vss \éif;g:]gr;%r B Ground for the internal core logic and
s = processor 1/0 interface.
VRr5000 : Power s .
Positive power supply pin (3.3V
supply p pply pin ( )
Vee VRr5000A : - Power supply pin for core
Power supply for (100to0 235MHz: 2.4V, 236 t0 250MHz: 2.5V,
Processor Core 251 to 266MHz: 2.6V)
Note | Power supply for .
VcclO Processor 1/0 - Power supply pin for 1/0 (3.3V)

Note VR5000A only

Caution Two kind of power sources are provided with the VR5000A. The sequence of
the power application order isnot fixed. However, make surethat either of
the power supplies doesnot remain turned on for 1 second or morewhilethe
other remains off.

50 User's Manual U11761EJ6VOUM




Chapter 2 V5000 Processor Signal Descriptions

Pin Configuration

2.7

223-pin ceramic PGA (48 x 48)

UPD30500RJ-150

LPD30500R}-180

UPD30500RJ-200

Top View

Bottom View

ABCDEFGHJKLMNPRTUYV

Index mark

0 ™~

O0OO0OO0O0O00O0OO0O0OO0OO0OO0OO0OO0O0O0 |18

OO0O0O0O0O00OO0OODOOO0ObOOOO0O0O |17

OO0OO0OO0O0O0O0OO0OO0O0OO0OO0OOO0OOO0O0O |16

OO0OO0OO0OO0O0DO0OO0OO0OO0OOO0OOO0OO0OO0O0 |15

O0CO0OO0OO0 |14

O 000

0000 |13

O OO0 O

0000 |12

O 00O
O 000

O OO0 O

coo0o0 |11

ocoooo |10

0000 |g

(O eNeNNe]

o O
o O
o O
o O

O O
O O
O O
O O

0coo0o0 |5

cooo0 |g
O000000000000000O0O |4

O0O000O0O00O0OOOOOOOOOO |3
0000000000000 O0O0O0O0O |,
OOOOOOOOOOOOOOOOO/l
VUTRPNMLKIJIHGFEDCBA

O 000
O O 0O

51

User’'s Manual U11761EJ6VOUM



Chapter 2 V5000 Processor Signal Descriptions

Location...... Name

E18.rn vee | K17, VssP SysAD[51] | U9.......SysAD[63]
FLoo Ve | K18 Vss SysAD[55] | U10.....SysAD[13]
F2. Reserved | L1 Vss SysAD[27] | U1L.....SysAD[11]
F3 o Scvalid | L2....... SysCmd[8] SysAD[31] | U12......SysAD[9]
Fa oo, INT[L]* | L3....... SysCmd[7] SysAD[43] | U13.....SysAD[37]

F15.... SCDCE[O]* | L4....... SysCmd[5]

Ul4....SysAD[3]

F16.... SCCWE[O]* | L15......ScLine[12]

U15...... ScWord[0]

L16.....ScLing 14]

L17.....ScLing[15]

... Reserved

Reserved

ScCLR*

ScTCE*

T2..... SysAD[15]

........... Modeln

T3..... SysAD[47]

T4 ... SysAD[17]

T5...... SysAD[19]

T6....... SysAD[23]

N2....... SysCmd[3]

T7.... SysAD[57]

N3....... SysCmd[2]

T8...... SysAD[29]

N4......SysADC[7]

_.ScLing5]

B2 INT[O]* | KL.......#cC | P18
B3 INT[2]* | K2.......ScMatch | RL........... U4 SysAD[2]]
B4 INT[4]* SysADC[5] SysAD[53]

EI5......SysAD[32]

SysADC[3]

SysAD[25]

E16......ScDCE[1]*

........ BigEndian

U7...... SysAD[59]

E17.....SCCWE[1]*

SysAD[49]

US..... SysAD[61]

52

User’'s Manual U11761EJ6VOUM




Chapter 2 VR5000 Processor Signal Descriptions

272-pin plastic BGA (cavity down advanced type) (29 x 29)

UPD30500S2-150

pUPD30500S2-180

uPD30500S2-200

UPD30500A S2-250

UPD30500A S2-266

Top View

Bottom View

1

O0O0O00OO0OO0O00O0OO0OOOOOOODOOO0OO0 |21
O0O0O0O0O00O0OO0OO0OO0ODO0OO0OOOOOO0O0OO0 |20
O0O0O0O0O0OD0O0OO0OO0ODODOOOOOOOOOO |19
O0O0OO0O0OO0OO0O00O0OO0OODOOOOOOOO0OO |18

O O OO0 |17

o0 OO0
(Ol eeNe]
(Ol eeNe]
o0 OO0
0 O0OO0O0
(Ol eeNe]
O O0O0O0
0 O0OO0O0
(Ol eeNe]
O 00O
0000
(Ol eeNe]
O 00O

O OO0 |16

O O OO0 |15

O OO0OO |14

O OO0 |13

O OO0 |12

OO0O0O0 |11

OO OO |10

O OO0 |9

0000 (8

O OO0O0 |7

O OO0OO |6

OO0 O0O0 |5

O0O0O00000000O0OO0OO0OO0OO0O0OO0OO0O0 |4

O00O000O000D0O0O0ODO0OODOO0OO0O0OOO0O0 |3
O00O0000D0O0D0O0O0ODO0OODOO0OO0OOOO0O0 |2

O0O0OO0OO0OO0O0OOOOObOOOOOObOOOO

ABCDEFGHJKLMNPRTUVWYAA

AMAAYWVUTRPNMLKIHGFEDCBA

53

User’'s Manual U11761EJ6VOUM



Chapter 2 V5000 Processor Signal Descriptions

(1) uPD30500

Location....... Name | Location...... Name
Cl.iiinis Vss | Bl Vss
(73— Vce | E2........SysAD[36]
C3......ColdReset* | E3......... SysAD[4] N
CAh......SySAD[34] | B4, = W5.. _.Int*[5]
C5..... ScDCE*[1] E18...ccccins Vce We.. Int*[4]
C6......ScDCE*[0] | E19...... ScWord[1] w7 LInt*[1]
2 Vss | C7.....ScCWE*[0] | E20...... ScWord[0] WS.......... Reserved
E21....ccoiine Vss WO.......... Reserved
Fl. SysAD[8] W10........ Reserved
F2.......5ySAD[38] | L4 .ooovvcerrrr, Vce | T19....SysAD[19] | Wil........ Validin®
F3 . SysAD[6] | L18......cccoo..... Vee | T20....SysAD[51] | Wi2........ ScDOE*
[ Vss | L19....SysAD[45] | T21....SysAD[21] W13.....SysCmd[7]
Al3..e Vss | C13..... ScLing[13] W14.....SysCmd[4]
Al4....ScLing[12] | C14.... ScLing[11] Wi15.....SysCmd[1]
Al5..cii, Vss | C15....... ScLing[8] W16....SysADC[7]
Al6...... ScLing[7] | C16....... ScLine[5] . W17....SysADC[5]
Al7 e Vss | C17....... ScLine[4] [ PO Vss ...Vce W18.....SysAD[47]
Al8......ScLing[2] | C18......ScLinef0] | G2........SysAD[10] SysAD[17] | W19......BigEndian
G3......SysAD[40] | M18............. Vce | U20..... SysAD[49]
(7 S Vee | M19.... SysAD[29]

(ST Ve | M20.... SysAD[61]
G19....SysAD[35] | M21.... SysAD[31]
G20.......SysAD[5] | N1 Vss

B4.......SysAD[2] D

Y5 Int*[3]

......... SysAD[0Q]

(2]

Scvalid

B13..... ScLine[14] Vss | 2o SysAD[46]

B14 ... ScLing[10] _SysAD[14]

B15....... ScLing9] NG | Hi
B16....... ScLing[6] Vs | J18on
B17.....ScLind3] NVcc | 9. SysAD[9]
B18...ScLindl] | D18.........Vss | J20..... SysAD[41]

Continued on next page

54 User's Manual U11761EJ6VOUM




Chapter 2 V5000 Processor Signal Descriptions

Location....... Name | Location....... Name Location...... Name | Location....... Name | Location....... Name Location...... Name

AAIS....

AA16..SysCmd[2] | AAZL....... Vss

User's Manual U11761EJ6VOUM 55



Chapter 2 V5000 Processor Signal Descriptions

(2) uPD30500A

Location....... Name | Location...... Name | Location....... Name | Location....... Name
Cl.irieiens VsSS | Bl Vss | K3....... SysAD[62] | R18............. VceclO
[ 3 VeelO | E2......SysAD[36] | K4.....ooooe.... VcelO | R19..... SysAD[53]
C3......ColdReset* | E3......... SysAD[4] | K18............ VeelO | R20..... SysAD[23] .
CAh.....SySAD[34] | B4, = W5.. Int*[5]
C5..... ScDCE*[1] E18...cccovenne. Vce W6.. Int*[4]
C6......ScDCE*[0] | E19...... ScWord[1]
2 Vss | C7.....ScCWE*[0] | E20...... ScWord[0]

........................ SysAD[19] W11........vaidin*
................. Vee | T20..... SysAD[51] Wi12.........ScDOE*
..... SysAD[21] W13.....SysCmd[7]
W14.....SysCmd([4]
W15.....SysCmd[1]
W16....SysADC[7]
SysAD[56] " W17....SysADC[5]
SysAD[24] ..Vcc | W18....SysAD[47]
.............. VcelO SysAD[17] W19......BigEndian
............ VeelO | U20..... SysAD[49]
... SysAD[29]
... SysAD[6]]
G19......SysAD[35] | M21.... SysAD[31]
G20........ SysAD[5] | Nl...con Vss

B4......SysAD[2] D

Y5 Int*[3]

......... SysAD[0Q]

(2]

B13...ScLing(14] | D13 Vss | 220 SysAD[46]

B14 ... ScLing[10] _SysAD[14]

B15.....ScLing9] | D15.......VeC | Fvo
B16......ScLing(6] | D16..........Vss | J18.....m
B17.......ScLind3] VO | J9.... SysAD[9]
B18...ScLindl] | D18.........Vss | J20..... SysAD[41]

...VeelO 1S 24 Vss
..VeclO K1..... SysAD[60]
K2........ SysAD[30]

Continued on next page

56 User's Manual U11761EJ6VOUM




Chapter 2 V5000 Processor Signal Descriptions

Location....... Name | Location....... Name Location...... Name | Location....... Name | Location....... Name Location...... Name

AAIS....

AA16...SysCmd[2]

User's Manual U11761EJ6VOUM 57




Chapter 3 CPU Instruction Set Summary

58

The VR5000 processor executesthe MIPS IV instruction set, which isasuperset of the
MIPSII1 instruction set and is backward compatible. Each CPU instruction consists of
asingle 32-bit word, aligned on aword boundary. There are three instruction
formats—immediate (I-type), jump (Jtype), and register (R-type). The use of asmall
number of instruction formats simplifies instruction decoding, allowing the compiler
to synthesize more complicated (and less frequently used) operations and addressing
modes from these three formats as needed.

A summary of the MIPS IV instruction set additions is listed along with a brief
explanation of each instruction. For more information on the MIPS IV instruction set,
refer to VR5000, V{10000 User’s Manual I nstruction.

User’'s Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

3.1

There are three types of instruction types as shown in Figure 3-1.

[-Type (Immediate)
31 26 25 2120 16 15 0
0 rs rt immediate

J-Type (Jump)
31 26 25 0

OB targ et .

R-Type (Register)

31 26 25 21 20 16 15 1110 65 0
0 rs rt rd sa |funct
op 6-bit operation code
rs 5-bit source register specifier

5-bit target (source/destination) register or branch

" condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier
sa 5-bit shift amount

funct 6-bit function field

Figure 3-1 CPU Instruction Formats

In the MIPS architecture, coprocessor instructions are implementati on-dependent.

L oad and Storelnstructions

Load and store are immediate (I-type) instructions that move data between memory
and the general registers. The only addressing mode that integer load and store
instructions directly support is base register plus 16-bit signed immediate offset.
Floating point load and storeinstructions also support an indexed addressing, register+
register, addressing mode.

User's Manual U11761EJ6VOUM 59



Chapter 3 CPU Instruction Set Summary

311

312

60

Scheduling a Load Delay Slot

In the V R5000 processor, the instruction immediately following aload instruction can
use the contents of the loaded register, however in such cases hardware interlocks
insert additional real cycles. Consequently, scheduling load delay slots can be
desirable, both for performance and V g-Series processor compatibility. However, the
scheduling of load delay slotsis not absolutely required.

Defining Access Types

Access type indicates the size of aV {5000 processor dataitem to be loaded or stored,
set by the load or store instruction opcode.

Regardless of accesstype or byte ordering (endianness), the address given specifiesthe
low-order byte in the addressed field. For abig-endian configuration, the low-order
byte is the most-significant byte; for alittle-endian configuration, the low-order byte
isthe least-significant byte.

The accesstype, together with the three low-order bits of the address, define the bytes
accessed within the addressed doubleword (shown in Table 3-1). Only the
combinations shown in Table 3-1 are permissible; other combinations cause address
error exceptions.

User’'s Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

Table3-1 Byte Accesswithin a Doubleword

Low Order Bytes Accessed
AccessType  |AddressBits| X X X X
M nemonic Big endian Littleendian
(Value) 51110 (63 31 0) | (63 31 0)
Byte Byte
Doubleword(7) | 0| 0|0 |0|1|2|3|4|5 7|7 5/413[2|1]0
Septibyte (6) 0|0|0|0f1|2|3|4|5 51413|2|1]|0
ibyte
Y 0|01 1{2(3[4]|5 717 51413|2]|1
, 0|0|0|0f2|2|3|4|5 5/413[2|1]0
Sextibyte (5)
0|10 2|3|4|5|6|7|7|6|5]4]3]|2
Quintibyte (4) 0/0|0|0|1|2|3|4 413121110
uintibyte
4 0|11 3|14|5|/6|7|7|6|5|4]|3
0|0j0|0f2|2(3 3|12|1]|0
Word (3)
110|0 415|6|7|7|6|5|4
0|0j0|O 0
Triplebyte (2) 0|01 2|3 3|2
ri e
PIeby 1100 4|56 654
1101 7|7
0|0j0|0|1 1{0
0|10 2|3 3|2
Halfword (1)
1100 415 5|4
111|0 67|76
0|0j0|O 0
0|01 1 1
0|10 2 2
Byte (0) 0|11 3 3
e
Y 1100 4 4
1101 5 5
111|0 6 6
1111 7|7

User’'s Manual U11761EJ6VOUM

61



Chapter 3 CPU Instruction Set Summary

3.2

321

322

62

Computational Instructions

Computational instructions can be either in register (R-type) format, in which both
operands are registers, or inimmediate (I-type) format, in which one operand is a 16-
bit immediate.

Computational instructions perform the following operations on register values:
o arithmetic

* logica

» shift
multiply
e divide

These operationsfit in the following four categories of computational instructions:
* ALU Immediate instructions
e three-Operand Register-Type instructions
» shift instructions
*  multiply and divide instructions

64-bit Operations

The V5000 microprocessor is a 64-bit architecture which supports 32-bit operands.
These operands must be sign extended. Thirty-two bit operand opcodes include all
non-doubleword operations, such as: ADD, ADDU, SUB, SUBU, ADDI, SLL, SRA,
SLLV, etc. Theresult of operations that use incorrect sign-extended 32-bit valuesis
unpredictable. In addition, 32-bit data is stored sign-extended in a 64-bit register.

Cycle Timing for Multiply and Divide Instructions

MFHI and MFLO instructions are interlocked so that any attempt to read them before
prior instructions complete delays the execution of these instructions until the prior
instructions finish.

Table 3-2 gives the number of processor cycles (PCycles) required to resolve an
interlock or stall between various multiply or divide instructions, and a subsequent
MFHI or MFLO instruction.

User’'s Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

323

D

(2)

Table3-2 Multiply/Divide Instruction Latency and Repeat Rates

Instruction L atency Repeat Rate
MULT (32-bit x 16-bit) 4 3
MULT (32-bit x 32-hit) 5 4
MULTU 5 4
DIV 36 36
DIVU 36 36
DMULT 9 8
DMULTU 9 8
DDIV 68 68
DDIVU 68 68

Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and
branch instructions occur with adelay of oneinstruction: that is, the instruction
immediately following thejump or branch (thisisknown astheinstructionin the delay
dot) always executes while the target instruction is being fetched from storage.

Overview of Jump Instructions

Subroutine callsin high-level languages are usually implemented with Jump or Jump
and Link instructions, both of which are J-type instructions. In J-type format, the 26-
bit target address shiftsleft 2 bitsand combineswith the high-order 4 bits of the current
program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the
Jump Register or Jump and Link Register instructions. Both are R-type instructions
that take the 64-bit byte address contained in one of the general purpose registers.

Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the
instruction in the delay dot to the 16-bit offset (shiftsleft 2 bitsand is sign-extended to
64 bits). All branches occur with adelay of one instruction.

If a conditional branch is not taken, the instruction in the delay slot is nullified.

User's Manual U11761EJ6VOUM 63



Chapter 3 CPU Instruction Set Summary

324

3.25

3.3

64

Special Instructions

Specia instructions allow the software to initiate traps; they are aways R-type.
Exception instructions are extensions to the MIPS | SA.

Coprocessor Instructions

Coprocessor instructions perform operations in their respective coprocessors.
Coprocessor loads and stores are |-type, and coprocessor computational instructions
have coprocessor-dependent formats.

CPO instructions perform operations specifically on the System Control Coprocessor
registers to manipulate the memory management and exception handling facilities of
the processor.

MIPS 1V Instruction Set Additions

The VR5000 Microprocessor runs the MIPS IV instruction set, which is a superset of
the MIPS I11 instruction set and is backward compatible. The additions of these new
instructions enables the MIPS architecture to compete in the high-end numeric
processing market which has traditionally been dominated by vector architectures.

A set of compound multiply-add instructions has been added, taking advantage of the
fact that the magjority of floating point computations use the chained multiply-add
paradigm. The intermediate multiply result is rounded before the addition is
performed.

A register + register addressing mode for floating point loads and stores has been
added which eliminates the extrainteger add required in many array accesses.
However, issuing of a Register + Register load causes aone cycle stall inthe pipeline,
which makes it useful only for compatibility with other MIPS IV implementations.
Register + register addressing for integer memory operations is not supported.

User’'s Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

A set of four conditional move operators allows floating point arithmetic ‘ IF
statements to be represented without branches. ‘ THEN’ and ‘ELSE’ clauses are

computed unconditionally and the results placed in atemporary register. Conditional
move operators then transfer the temporary results to their true register. Conditional
moves must be ableto test both integer and floating point conditionsin order to supply

the full range of IF statements. Integer tests are performed by comparing a general

register against a zero value.

Floating point tests are performed by examining the floating point condition codes.
Since floating point conditional moves test the floating point condition code, the
VRr5000 microprocessor provides 8 condition codes to give the compiler increased

flexibility in scheduling the comparison and the conditional moves. Table 3-3 listsin
alphabetical order the new instructions which comprise the MIPS 1V instruction set.

Table3-3 MIPSIV Instruction Set Additions and Extensions

Instruction Definition
BC1F Branch on FP Condition Code False
BC1T Branch on FP Condition Code True
BC1FL Branch on FP Condition Code False Likely
BC1TL Branch on FP Condition Code True Likely
C.cond.fmt (cc) Floating Point Compare
LDXC1 Load Double Word indexed to COP1
LWXC1 Load Word indexed to COP1
MADD.fmt Floating Point Multiply-Add
MOVF Move conditional on FP Condition Code False
MOVN Move on Register Not Equal to Zero
MOVT Move conditional on FP Condition Code True
MOVZ Move on Register Equal to Zero
MOVFEfmt FP Move conditional on Condition Code False
MOVN.fmt FP Move on Register Not Equal to Zero
MOVT.fmt FP Move conditiona on Condition Code True

User’'s Manual U11761EJ6VOUM

65



Chapter 3 CPU Instruction Set Summary

66

Table3-3 MIPSIV Instruction Set Additions and Extensions (Continued)

Instruction Definition
MOVZ.fmt FP Move conditional on Register Equal to Zero
MSUB.fmt Floating Point Multiply-Subtract
NMADD.fmt Floating Point Negative Multipy-Add
NMSUB.fmt Floating Point Negative Multiply-Subtract
PREFX? Prefetch Indexed --- Register + Register
PREF2 Prefetch --- Register + Offset
RECIPfmt Reciprocal Approximation
RSQRT.fmt Reciprocal Square Root Approximation
SDXC1 Store Double Word indexed to COP1
SWXC1 Store Word indexed to COP1

a. Prefetch is not implemented in the V5000 microprocessor and these instruc-

tions are treated as no-ops.

Table 3-4 liststhe COPO instructionsfor the Vg5000 processor. COPO instructions are
those which are not architecturally visible and are used by the kernel.

Table 3-4 VR5000 COPO Instrucitons

COPO Instruction

Definition

ERET Return from Exception
TLBP Probe for TLB Entry
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
WAIT Enter Standby Mode

User’'s Manual U11761EJ6VOUM




Chapter 3 CPU Instruction Set Summary

331

D

(2)

Summary of Instruction Set Additions

Thefollowing is abrief description of the additions to the MIPS 11 instruction set.
These additions comprise the MIPS 1V instruction set.

Indexed Floating Point L oad

LWXC1 - Load word indexed to Coprocessor 1.
LDXC1 - Load doubleword indexed to Coprocessor 1.

The two Index Floating Point Load instructions are exclusive to the MIPS 1V
instruction set and transfer floating-point datatypesfrom memory to the floating point
registers using register + register addressing mode. There are no indexed loads to
general registers. The contents of the general register specified by the baseis added to
the contents of the general register specified by theindex to form avirtual address. The
contents of the word or doubleword specified by the effective address are loaded into
the floating point register specified in the instruction.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. Also, if the addressis not
aligned, an address exception occurs.

Indexed Floating Point Store

SWXC1 - Store word indexed to Coprocessor 1.
SDXC1 - Store doubleword indexed to Coprocessor 1.

The two Index Floating Point Store instructions are exclusive to the MIPS IV
instruction set and transfer floating-point datatypes from the floating point registersto
memory using register + register addressing mode. There are no indexed loads to
genera registers. The contents of the general register specified by the baseis added to
the contents of the general register specified by theindex to form avirtual address. The
contents of the floating point register specified in the instruction is stored to the
memory location specified by the effective address.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. Also, if the addressis not
aligned, an address exception occurs.

User's Manual U11761EJ6VOUM 67



Chapter 3 CPU Instruction Set Summary

68

3)

(4)

Prefetch

PREF - Register + offset format
PREFX - Register + register format

The two prefetch instructions are exclusive to the MIPS IV instruction set and allow
the compiler to issue instructions early so the corresponding data can be fetched and
placed as close as possible to the CPU. Each instruction contains a 5-bit *hint’ field
which gives the coherency status of the line being prefetched. The line can be either
shared, exclusive clean, or exclusive dirty. The contents of the general register
specified by the baseisadded either to the 16 bit sign-extended offset or to the contents
of the general register specified by the index to form avirtual address. This address
together with the *hint’ field is sent to the cache controller and amemory accessis
initiated.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. The prefetch instruction never
generates TLB-related exceptions. The PREF instruction is considered a standard
processor instruction while the PREFX instruction is considered a standard
Coprocessor 1 instruction. The Vg5000 microprocessor does not implement prefetch
and these instruction are executed as no-ops.

Branch on Floating Point Copr ocessor

BC1T - Branch on FP condition True
BC1F - Branch on FP condition False
BC1TL - Branch on FP condition True Likely
BC1FL - Branch on FP condition False Likely

The four branch instructions are upward compatible extensions of the Branch on
Floating point Coprocessor instructions of the MIPS instruction set. The BC1T and
BC1F instructions are extensions of MIPS |. BC1TL and BC1FL are extensions of
MIPS I11. These instructions test one of eight floating point condition codes. This
encoding is downward compatible with previous MIPS architectures.

The branch target address is computed from the sum of the address of the instruction
inthe delay dot and the 16-bit offset, shifted left two bitsand sign-extended to 64 bits.
If the contents of the floating point condition code specified intheinstruction are equal
tothetest value, thetarget addressis branched to with adelay of oneinstruction. If the
conditional branch is not taken and the nullify delay bit in the instruction is set, the
instruction in the branch delay dot is nullified.

User’'s Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

()

(6)

(7)

Integer Conditional M oves

MOVT - Move conditional on condition code true
MOVF - Move conditional on condition code false
MOVN - Move conditional on register not equal to zero
MOVZ - Move conditional on register equal to zero

Thefour integer moveinstructionsare exclusiveto the MIPSI1V instruction set and are
used to test a condition code or a general register and then conditionally perform an
integer move. Thevalue of thefloating point condition code specified in theinstruction
by the 3-bit condition code specifier, or the value of the register indicated by the 5-bit
general register specifier, is compared to zero. If the result indicates that the move
should be performed, the contents of the specified source register is copied into the
specified destination register.

Floating Point Multiply-Add

MADD - Foating Point Multiply-Add

M SUB - Floating Point Multiply-Subtract

NMADD - Floating Point Negative Multiply-Add
NM SUB - Floating Point Negative Multiply-Subtract

These four instructions are exclusive to the MIPS IV instruction set and accomplish
two floating point operations with one instruction. Each of these four instrucitons
performs intermediate rounding.

Floating Point Compare

C.cond.fmt - Compare the contents of two FPU registers

The contents of thetwo FPU sourceregisters specified intheinstruction areinterpreted
and arithmetically compared. A result is determined based on the comparison and the
conditions specified in the instruction.

User's Manual U11761EJ6VOUM 69



Chapter 3 CPU Instruction Set Summary

(8)

9)

Floating Point Conditional M oves

MOVT.fmt - Foating Point Conditional Move on condition code true
MOVF.fmt - Floating Point Conditional Move on condition code false
MOVN.fmt - Floating Point Conditional Move on register not equal to zero
MOVZ.fmt - Floating Point Conditional Move on register equal to zero

The four floating point conditional move instructions are exclusive to the MIPS 1V
instruction set and are used to test a condition code or a general register and then
conditionally perform afloating point move. The value of the floating point condition
code specified by the 3-bit condition code specifier, or the value of the register
indicated by the 5-bit general register specifier, is compared to zero. If the result
indicates that the move should be performed, the contents of the specified source
register is copied into the specified destination register. All of these conditional
floating point move operations are non-arithmetic. Consequently, no |EEE 754
exceptions occur as aresult of these instructions.

Reciprocal’s

RECIP.fmt - Reciproca
RSQRT.fmt - Reciproca Square Root

Thereciprocal instruction performs areciprocal on afloating point value. The
reciprocal of the value in the floating point source register is placed in a destination
register.

The reciprocal square root instruction performs areciprocal square root on a floating
point value. The reciprocal of the positive square root of avaluein the floating point
source register is placed in a destination register.

The V5000 meets full IEEE accuracy for the RECIP and RSQRT instructions.

On the V g5000 microprocessor, the RECI P instruction has the same latency asaDIV
instruction, but a RSQRT is faster than a SQRT followed by a RECIP.

User’'s Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

3.3.2 Cycle Timing for Floating Point Instrucitons

Table3-5 Floating Point Operations

Opcode Latency Repeat
ADD (sngl/dbl) 4 1
SUB (sngl/dbl) 4 1
MULT (sngl/dbl) 4/5 12
MADD (sngl/dbl) 4/5 12
MSUB (sngl/dbl) 4/5 12
NMADD (sngl/dbl) 4/5 12
NMSUB (sngl/dbl) 4/5 12
DIV (sngl/dbl) 21/36 19/34
SQRT (sngl/dbl) 21/36 19/34
RECIP (sngl/dbl) 21/36 19/34
RSQRT (sngl/dbl) 38/68 36/66
ROUND.W (sngl/dbl) 4/4 U1
ROUND.L (sngl/dbl) 4/4 U1
TRUNC.W (sngl/dbl) 4/4 U1
TRUNC.L (sngl/dbl) 4/4 U1
CEIL.W (sngl/dbl) 4/4 1
CEIL.L (sngl/dbl) 4/4 1
FLOOR.W (sngl/dbl) 4/4 U1
FLOOR.L (sngl/dbl) 4/4 U1
CVT.SD 4 1
CVT.SW 6 3
CVT.SL 6 3
CVT.D.S 4 1
CVT.D.W 4 1
CVT.D.L 4 1
CVT.W (sngl/dhl) 4 1
CVT.L (sngl/dbl) 4 1
CMP (sngl/dbl) 1 1
MOV (sngl/dbl) 1 1
MOVC (sngl/dbl) 1 1
ABS (sngl/dbl) 1 1
NEG (sngl/dbl) 1 1
LWC1, LWXC1 2 1

User’'s Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

Table 3-5 Floating Point Operations (Continued)

Opcode Latency Repeat
LDC1, LDXC1 2 1
SWC1, SWXC1 2 1
SDC1, SDXC1 2 1
MTC1, DMTC1 2 1
MFC1, DMFC1 2 1
CTC1 3 3
CFC1 2 2
BC1T, BC1TL 1 1
BC1F, BC1FL 1 1

34 The Cache Instruction

The CACHE instruction in the Vg5000 microprocessor isimplemented as follows:

31 2625 2120 1615 0
CACHE base op offset
101111
6 5 5 16

Figure 3-2 VR5000 CACHE Instruction Format

Format:
CACHE op, offset(base)

Description:

The 16-hit offset is sign-extended and added to the contents of general register baseto
formavirtual address. The virtual addressistranslated to aphysical addressusing the
TLB, and the 5-bit sub-opcode specifies a cache operation for that address.

If CPOisnot usable (User or Supervisor mode) the CPO enable bit in the Satus register
is clear, and a coprocessor unusable exception istaken. The operation of this
instruction on any operation/cache combination not listed below, or on a secondary
cache when none is present, is undefined. The operation of thisinstruction on
uncached addresses is also undefined.

72 User's Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

The Index operation uses part of the virtual address to specify a cache block.

For aprimary cache of 32 KB with 32 bytes per tag, vAddr3.5 specifiestheblock. In
addition, vAddr,, specifies which cache set to operate on.

For a secondary cache of 2CACHEBITS pytes with 2-NEBITS pytes per tag,
PAddrcacHesiTs ... LINEBITS SPecifies the block.

Index Load Tag also uses VAddr| |negiTs... 310 Select the doubleword for reading
parity. When the CE bit of the Status register is set, Hit WriteBack, Hit WriteBack
Invalidate, Index WriteBack Invalidate, and Fill also use vAddr |neg s .. 3 tO select
the doubleword that hasiits parity modified. This operation is performed
unconditionally.

TheHit operation accesses the specified cache asnormal datareferences, and performs
the specified operation if the cache block contains valid data with the specified
physical address (ahit). If the cache block isinvalid or contains adifferent address (a
miss), no operation is performed.

Write back from a primary cache goes to the secondary cache and to memory. If no
secondary cache is present, the data goes to memory. Data comes from the primary
data cache, if present, and ismodified (it is marked Dirty). Otherwise the data comes
from the secondary cache. The addressto be written is specified by the cache tag and
not the translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index
operations (where the physical addressis used to index the cache but need not match
the cache tag) unmapped addresses may be used to avoid TLB exceptions. This
operation never causes TLB Modified or Virtual Coherency exceptions.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache
0 I primary instruction
1 D primary data
2 -- Reserved
3 SD secondary cache

User's Manual U11761EJ6VOUM 73



Chapter 3 CPU Instruction Set Summary

Bits 20...18 (this valueislisted under the Code column) of the instruction specify the

operation asfollows:

Code | Caches Name Operation
Index .
0 | : Set the cache state of the cache block to Invalid.
Invalidate
Examine the cache state of the primary data cache block at the index
Index specified by the virtual address. If the state is Dirty, write the block back
0 D Writeback to the secondary cache (if present) and to memory. The address to write
Invalidate is taken from the primary cache tag. Set the cache state of primary
cache block to Invalid.
0 s Flash Flash Invalidate the entire secondary cache in one operation for tag
Invalidate RAMs which support this function.
1 Al Index Load Read the tag for the cache block at the specified index and place it iinto
Tag the TagLo and TagHi CPO registers, ignoring any parity errors.
2 D Index Store Write the tag for the cache block at the specified index from the TagLo
' Tag and TagHi CPO registers.
Index Store Write the tag for the cache block at the specified index with the tag value
2 S Ta from the effective address generated by the CACHE instruction and the
g valid bit from the TagLo CPO register.
This operation is used to avoid loading data needlessly from secondary
cache or memory when writing new contents into an entire cache block.
3 D Create Dirty If the cache block does not contain the specified address, and the block
Exclusive is dirty, write it back to the secondary cache (if present) and to memory.
In all cases, set the cache block tag to the specified physical address,
set the cache state to Dirty Exclusive.
2 D Hit Invalidate !f the_ cache block contains the specified address, mark the cache block
invalid.
5 D Hit Writeback | If the cache block contains the specified address, write the data back if
Invalidate it is dirty, and mark the cache block invalid.
The processor will generate a page invalidate by doing a burst of 128
5 S Page line invalidates to the secondary cache at the page specified by the
Invalidate effective address generated by the CACHE instruction, which must be
page-aligned. Interrupts are deferred during page invalidates.
5 | Fill Fill the primary instruction cache block from secondary cache or
memory.
. . If the cache block contains the specified address, and its state is Dirty,
6 D Hit Writeback write back the data and clear the state to not Dirty.
6 | Hit Writeback If the ce_lghe block contains the specified address, data is written back
unconditionally.
74 User's Manual U11761EJ6VOUM




Chapter 3 CPU Instruction Set Summary

Operation:

32,64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:
Coprocessor unusable exception

3.5 | mplementation Specific Instructions

Some of the VR5000 instructions are implementation specific and therefore are not
part of the MIPS1V Instruction Set. These are coprocessor instructions that perform
operations in their respective coprocessors. Coprocessor |oads and stores are I-type,
and coprocessor computational instructions have coprocessor-dependent formats.

User's Manual U11761EJ6VOUM 75



Chapter 3 CPU Instruction Set Summary

351 I mplementation Specific CPO Instructions

ERET Exception Return
31 26 25 24 6 5 0
COPO [CO 0 ERET
010000(1|0000000000000000000|011000
6 1 19 6
Format:
ERET
Description:

ERET isthe V{5000 instruction for returning from an interrupt, exception, or error
trap. Unlikeabranch or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR, = 1), then load the PC from the
ErrorEPC and clear the ERL bit of the Status register (SR,). Otherwise (SR, =0), load
the PC from the EPC, and clear the EXL bit of the Status register (SR,).

An ERET executed between aLL and AC also causes the SC to fail.

Operation:

T: if SR2: 1 then
PC —~ ErrorEPC
SR« SRy 3l 01l SRy 0
ese
PC - EPC
SR « SR315 0 SRg
endif
LLbit « O

Exceptions:
Coprocessor unusable exception.

76 User's Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

TLBR Read Indexed TLB Entry
31 26 25 24 6 5 0
COPO [CO 0 TLBR
010000(1|0000000000000000000|0000012

6 1 19
Format:
TLBR
Description:

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry
pointed at by the contents of the TLB Index register. The operationisinvalid (and the
results are unspecified) if the contents of the TLB Index register are greater than the
number of TLB entries in the processor.

The G bit (which controls ASID matching) read from the TLB is written into both of
the EntryLo0 and EntryLol registers.

Operation:

T: PageMask — TLB[Indexs qlzs5 192
EntryHi ~TL B[ | ndex5_'0] 191..128 and not TL B[| ndEX5uo] 255..192
EntryLOl ~ TL B[l ndeX5"0] 127..65 ” TL B[l ndeX5“0] 140
EntryLOO ~ TL B[l ndeX5"0] 63..1 ” TL B[l ndeX5uo] 140

Exceptions:

Coprocessor unusable exception.

User's Manual U11761EJ6VOUM 77



Chapter 3 CPU Instruction Set Summary

78

TLBP Probe TLB For Matching Entry
31 26 25 24 6 5 0
COP0O |CO 0 TLBP
010000(1|{0000000000000000O0OO0O| 001000
6 1 19 6
Format:
TLBP
Description:

The Index register isloaded with the address of the TLB entry whose contents match
the contents of the EntryHi register. 1f no TLB entry matches, the high-order bit of the
Index register is set.

The architecture does not specify the operation of memory references associated with
theinstruction immediately after a TLBP instruction, nor is the operation specified if

more than one TLB entry matches.

Operation:

T: Index —

endif
endfor

1” 031

ForiinO.. TLBEntries- 1
if (TLB[i]167.141 and not (0™ || TLBIi]p16.205))
= (EntryHisg_13 and not (0™ || TLB[i]216_205)) and
(TLB[i]140 Or (TLBJi]135 128 = EntryHi7..0)) then
Index — 0% || i5 o

Exceptions:

Coprocessor unusable exception.

User’'s Manual U11761EJ6VOUM




Chapter 3 CPU Instruction Set Summary

TLBWI Writelndexed TLB Entry
31 26 25 24 6 5 0
COPO [CO 0 TLBWI
010000(1|0000000000000000000|000010

6 1 19 6
Format:
TLBWI
Description:

The TLB entry pointed at by the contents of the TLB Index register isloaded with the
contents of the EntryHi and EntryL o registers.

The G bit of the selected TLB entry iswritten with the logical AND of the G bitsin the
EntryLoO and EntryL ol registers.

The operation isinvalid (and the results are unspecified) if the contents of theTLB
Index register are greater than the number of TLB entries in the processor.

Operation:

T: TLB[Indexs o] «

EntryHi[39:25] || (EntryHi[24:13] and not PageMask) || EntryLol
|| EntryLoO

Exceptions:

Coprocessor unusable exception.

User's Manual U11761EJ6VOUM 79



Chapter 3 CPU Instruction Set Summary

80

TLBWR Write Random TLB Entry
31 26 25 24 6 5 0
COPO [CO 0 TLBWR
010000(1|0000000000000000000|0001120

6 1 19 6
Format:
TLBWR
Description:

The TLB entry pointed to by the contents of the TLB Random register isloaded with
the contents of the EntryHi and EntryLo registers.

The G bit of the selected TLB entry iswritten with the logical AND of the G bitsin the
EntryLo0 and EntryLol registers.

Operation:

T: TLB[Randomg o] «
EntryHi[39:25] || (EntryHi[25:13] and not PageMask) || EntryLol
|| EntryLoO

Exceptions:

Coprocessor unsuable exception.

User’'s Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

DMTCO Doubleword Move To System Control
Copr ocessor
31 26 25 21 20 16 15 11 10 0
COPO DMT rt rd 0
010000({00101 00000000000
6 5 5 5 11
Format:
DMTCO rt, rd
Description:

The contents of general register rt are loaded into coprocessor register rd of CPO.

This operation isdefined in kernel mode regardless of the setting of the Status.K X hit.
Execution of thisinstruction in supervisor mode with Status.SX = 0 or in user mode
with UX = 0, causes a reserved instruction exception.

All 64-hits of the coprocessor O register are written from the general register source.
The operation of DMTCO on a 32-hit coprocessor O register is undefined.

Because the state of the virtual address trandation system may be altered by this
instruction, the operation of load instructions, store instructions, and TLB operations
immediately prior to and after this instruction are undefined.

Operation:

T: data —« GPR[rt]

T+1: CPR[O,d] ~ data

Exceptions:

Coprocessor unusable exception.

Reserved instruction exception for supervisor mode with Status.SX = 0 or user mode

with Status.UX = 0.

User's Manual U11761EJ6VOUM 81



Chapter 3 CPU Instruction Set Summary

MTCO M ove To System Control
Copr ocessor
31 26 25 21 20 16 15 11 10 0
COPO MT rt rd 0
010000{00100 00000000000
6 5 5 5 11
Format:
MTCO rt, rd
Description:

The contents of general register rt are loaded into coprocessor register rd of CPO.

Because the state of the virtual address trandation system may be altered by this
instruction, the operation of load instructions, store instructions, and TLB operations
immediately prior to and after this instruction are undefined.

Operation:

T: data — GPR[rt]

T+1: CPR[O,d] ~ data

Exceptions:

Coprocessor unusable exception.

82 User's Manual U11761EJ6VOUM



Chapter 3 CPU Instruction Set Summary

DMFCO Doubleword Move From System Control
Copr ocessor
31 26 25 21 20 16 15 11 10 0
COPO DMF rt rd 0
010000{00001 00000000000
6 5 5 5 11
Format:
DMFCO rt, rd
Description:

The contents of coprocessor register rd of the CPO are loaded into general register rt.

This operation isdefined in kernel mode regardless of the setting of the Status.K X hit.
Execution of thisinstruction in supervisor mode with Status.SX = 0 or in user mode
with UX = 0, causes a reserved instruction exception.

All 64-bits of the general register destination are written from the coprocessor register
source. The operation of DMFCO on a 32-bit coprocessor O register is undefined.

Operation:

T: data — GPR[O,rd]

T+1: CPR[rt] -~ data

Exceptions:
Coprocessor unusable exception.

Reserved instruction exception for supervisor mode with Status.SX = 0 or user mode
with Status.UX = 0.

User's Manual U11761EJ6VOUM 83



Chapter 3 CPU Instruction Set Summary

WAIT Enter Standby Mode
31 26 25 24 6 5 0
COPO [CO 0 WAIT
010000(1|0000000000000000000|100000

6 1 19
Format:
WAIT
Description:

The WAIT instruction is used to put the CPU into Standby Mode. In Standby Mode,
most of theinternal clocks are shut down which freezesthe pipeline and reduces power
consumption. See Chapter 18 Standby M ode Oper ation for more details.

Operation:
T: if SysAD busisidlethen
Enter Standby Mode
endif
Exceptions:

Coprocessor unusable exception.

84 User's Manual U11761EJ6VOUM



Chapter 4 VR5000 Processor Pipeline

The V5000 processor has a five-stage instruction pipeline. Each stage takes one
PCycle (one cycle of PClock, which runsat amultiple of the frequency of SysClock).
Thus, the execution of each instruction takes at |east five PCycles. Aninstruction can
take longer—for example, if the required datais not in the cache, the data must be
retrieved from main memory.

Once the pipeline has been filled, five instructions can be executed simultaneously.
Figure 4-1 shows the five stages of the instruction pipeline.

User's Manual U11761EJ6VOUM 85



Chapter 4 V5000 Processor Pipeline

4.1

86

|1 |2 |1R|2R]1A|2A[1D| 2D [1W|2w

| 1|21 [1R|2R[1A|2A|1D | 2D [1W]2W]|

| 1|21 [1R|2R[1A|2A|1D | 2D [1W]2w]|

| 1|21 [1R|2rR[1A|2A]1D | 2D [1w]2w]|

1| 21 [1R|2R[1A[2A]1D [ 2D [aw[2w]|

One

Cycle

Figure 4-1 Instruction Pipeline Stages

I nstruction Pipeline Stages

e 1l - Instruction Fetch, Phase One
e 2| - Instruction Fetch, Phase Two

. 1R -
. 2R -
. 1A -
. 2A -
. 1D -
. 2D -

Register Fetch, Phase One
Register Fetch, Phase Two
Execution, Phase One
Execution, Phase Two
Data Fetch, Phase One
Data Fetch, Phase Two

 1W - Write Back, Phase One
e 2W - Write Back, Phase Two

User’'s Manual U11761EJ6VOUM



Chapter 4 V5000 Processor Pipeline

1l - Instruction Fetch, Phase One

During the 1I phase, the following occurs:

» Branch logic selects an instruction address and the instruction cache fetch
begins.

» Theinstruction translation lookaside buffer (ITLB) begins the virtual-to-
physical address translation.

2l - Instruction Fetch, Phase Two

Theinstruction cache fetch and the virtual-to-physical address translation continues.

1R - Register Fetch, Phase One

During the 1R phase, the following occurs:
» Theinstruction cache fetch is completed.

» Theinstruction cache tag is checked against the page frame number
obtained from the ITLB

2R - Register Fetch, Phase Two

During the 2R phase, one of the following occurs:
* Theinstruction decoder decodes the instruction.
* Any required operands are fetched from the register file.

» Determine whether instruction is issued or delayed depending on
interlock conditions.

1A - Execution - Phase One

During the 1A phase, one of the following occurs:
e Calculate branch address (if applicable).
* Any result from the A or D stages are bypassed
e TheALU starts an integer operation.

» TheALU calculates the data virtual address for load and store
instructions.

» The ALU determines whether the branch condition is true.

2A - Execution - Phase Two

During the 2A phase, one of the following occurs:

* Theinteger operation begun in the 1A phase completes.

User's Manual U11761EJ6VOUM 87



Chapter 4 V5000 Processor Pipeline

88

» Data cache address decode.
» Store datais shifted to the specified byte positions.
e The DTLB begins the data virtual to physical address translation.

1D - Data Fetch - Phase One

During the 1D phase, one of the following occurs:
 The DTLB data address translation completes.
e The JTLB virtual to physical address translation begins.
» Data cache access begins

2D - Data Fetch - Phase Two

* The data cache access completes. Data is shifted down and extended.
* The JTLB address translation completes.

e The data cache tag is checked against the PFN from the DTLB or JTLB
for any data cache access.

1W - Write Back, Phase One

» This phase is used internally by the procesor to resolve all exceptionsin
preperation for the register write.

2W - Write Back, Phase Two

»  For register-to-register and load instructions, the result is written back to
the register file.

WB - Write Back

For register-to-register instructions, theinstruction result iswritten back to the register
file during the WB stage. Branch instructions perform no operation during this stage.

Figure 4-2 shows the activities occurring during each ALU pipeline stage, for load,
store, and branch instructions.

User’'s Manual U11761EJ6VOUM



Chapter 4 V5000 Processor Pipeline

Clock —\—/

-

[ e

Phase [ T 2 [ IR | 2R 1A | 2A D 2D [ 2w |
1CD ICA
IFetch  [ITLBM [ITLBR| ITC
and RE
Decode IDEC
ALU EX1 EX2
Load/Store DVA | DCAD | DCAA | DCLA
JTLB1 [ JTLB2
DTLBM|DTLBR| DTC WB
SA DCW
Branch BAC
ICD Instruction cache address decode ICA Instruction cache array access
ITLBM  Instruction address translation match ITLBR Instruction address translation read
ITC Instruction tag check RF Register operand fetch
IDEC Instruction address translation stage 2 EX1 Execute operation - phase 1
EX2 Execute operation - phase two WB Write back to register file
DVA Data virtual address calculation DCAD Data cache address decode
DCAA  Data cache array access DCLA  Data cache load align
JTLB1 JTLB address translation - phase 1 JTLB2  JTLB address translation - phase 2
DTLBM Data address translation match DTLBR Data address translation read
DTC Data tag check SA Store align
DCW  Data cache write BAC Branch address calculation

Figure 4-2 CPU Pipeline Activities

User’'s Manual U11761EJ6VOUM

89



Chapter 4 V5000 Processor Pipeline

4.2 Branch Delay

The CPU pipeline hasabranch delay of one cycleand aload delay of onecycles. The
one-cycle branch delay isaresult of the branch comparison logic operating during the
1A pipeline stage of the branch. Thisallowsthe branch target address calculated in the
previous stage to be used for the instruction access in the following 11 phase.

Figure 4-3 illustrates the branch delay.

|One | One | One | One | One |

Cycle | Cycle | Cycle | Cycle | Cycle
| 1|21 [1R|2R[1A|2A|1D | 2D [1w]2w]|
* * %

| 1] 21 [air] 2rR[1A [ 2A | 1D | 2D [1W|2W]

A

|1 |21 [1R|2rR]1A|2A]1D | 2D [aw[2w]|

Branch
Delay

*  Branch and fall-through address calcul ated
**  Address selection made

Figure 4-3 CPU Pipeline Branch Delay

4.3 L oad Delay

The completion of aload at the end of the 2D pipeline stage produces an operand that
isavailablefor the 1A pipeline phase of the subsequent instruction following the load
delay dot.

Figure 4-4 shows the load delay of two pipeline stages.

90 User's Manual U11761EJ6VOUM



Chapter 4 V5000 Processor Pipeline

4.4

One One One One One
| Cycle | Cycle | Cycle | Cycle | Cycle |
| 1|21 [1R|2R]1A|2A]1D | 2D [1w[2w]|

|1 ]2 [1r][2R]1A[2A 1D 2D [1W]2W]

y
| 1|21 [1R|2rR[1A|2A 1D [ 2D [aW[2W]|
Load
|De|ay|

Figure 4-4 CPU Pipeline Load Delay

Interlock and Exception Handling

Smooth pipeline flow isinterrupted when cache misses or exceptions occur, or when
data dependencies are detected. Interruptions handled using hardware, such as cache
misses, are referred to as interlocks, while those that are handled using software are
called exceptions.

There are two types of interlocks:

» Stalls, which are resolved by halting the pipeline.

»  Slips, which require one part of the pipeline to advance while another part
of the pipelineis held static.

At each cycle, exception and interlock conditions are checked for al active
instructions.

Because each exception or interlock condition corresponds to a particular pipeline
stage, a condition can be traced back to the particular instruction in the exception/
interlock stage. For instance, a Reserved Instruction (RI) exceptionisraised in the
execution (A) stage.

User's Manual U11761EJ6VOUM 91



Chapter 4 V5000 Processor Pipeline

Table4-1 Relationship of Pipeline Stage to Interlock Condition

State Pipeline Stage
I R A D
Stall IT™ ICM DCM
CPE
Slip LDI
MDSt
FCBusy
Exceptions ITLB IBE RI DBE
IPErr CUn NMI
BP Reset
SC DPErr
DTLB OVF
TLBMod| FPE
Intr

92 User's Manual U11761EJ6VOUM



Chapter 4 V5000 Processor Pipeline

Table 4-2 Pipeline Exceptions

Exception Description
ITLB Instruction Trandlation or Address Exception
Intr External Interrupt
IBE IBus Error
RI Reserved Instruction
BP Breakpoint
SC System Call
CUn Coprocessor Unusable
IPErT Instruction Parity Error
OVF Integer Overflow
FPE FP Interrupt
DTLB Data Trandation or Address Exception
TLBMod TLB Modified
DBE Data Bus Error
DPErr Data Parity Error
NMI Non-maskable Interrupt
Reset Reset

Table 4-3 Pipeline Interlocks

Interlock Description
ITM Instruction TLB Miss
ICM Instruction Cache Miss
CPE Coprocessor Possible Exception
DCM Data Cache Miss
LDI Load Interlock
MDSt Multiply/Divide Start
FCBsy FP Busy

User’'s Manual U11761EJ6VOUM

93



Chapter 4 V5000 Processor Pipeline

44.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow
it in the pipeline are cancelled. Accordingly, any stall conditions and any later
exception conditionsthat may havereferenced thisinstruction areinhibited; thereisno
benefit in servicing stallsfor acancelled instruction. When thisinstruction reachesthe
W stage, three events occur;

*  The exception flag causes the instruction to write various CPO registers
with the exception state,

» The current PC is changed to the appropriate exception vector address,
»  The exception bits of earlier pipeline stages are cleared.

Thisimplementation allows all instructions which occurred before the exception to
complete, and al instructionswhich occurred after theinstruction to be aborted. Hence
the value of the EPC is such that execution can be restarted. In addition, all exceptions
are guaranteed to be taken in order. Figure 4-5 illustrates the exception detection
mechanism for a Reserved Instruction (RI) exception.

One One | One One One
| Cycle | Cycle | Cycle | Cycle | Cycle |
Exception  ['1) [ 21 [1R[2R[1A]2A]1D] 2D 1W]2wW]

|1 [A\1R]|2R]1A|2A]1D] 2D [1w[2w]|

| 1|21 [1R|2R[|1A | 2A | 1D | 2D [1w]2w]|

Instructions
Aborted

| 1|21 [IR]|2rR[1A[2A|1D | 2D [1W]2W]|

| 1 N1 [1R[2R[1A |2Aa] 1D | 2D [1W[2w]|

Exception —
Vector Address | 1|21 [1R|2R]1A[2A]1D]2D [1W]

Figure 4-5 Exception Detection Mechanism

94 User's Manual U11761EJ6VOUM



Chapter 4 V5000 Processor Pipeline

4.4.2

Stall Conditions

A stal condition is used to suspend the pipline for conditions detected after the R
pipeline stage. When a stall occurs, the processor resolves the condition and then
restarts the pipeline. Once the interlock is removed, the restart sequence begins two
cycles before the pipeline resumes execution. The restart sequence reverses the
pipeline overrun by inserting the correct information into the pipeline. Figure 4-6
shows a data cache miss stall.

129
[tIR]A[D[wW]w]

[ IR]A[D[D] s [D]|D[D]|W]

LHIR[A[A] S [Ala]Aa]D|wW]

L RIR] & [RIR[R[A|D[W]

1 - Detect cache miss

2 - Start moving dirty cache line data to write buffer

3 - Fetch first doubleword into cache and restart pipeline

4 - Begin loading remainder of cache line into cache when Dcacheisidle

Figure 4-6 Servicing a Data Cache Miss

The data cache miss is detected in the D stage of the pipeline. If the cache line to be
replaced is dirty, the W bit is set and datais moved to the internal write buffer in the
next cycle. The squiggly line in Figure 4-6 indicates the memory access. Once the
memory is accessed and the first doubleword of datais returned, the pipelineis
restarted. The remainder of the cache lineis returned in subsequent cycles. The dirty
datain the write buffer is written out to memory after the cache line fill operationsis
compl eted.

User's Manual U11761EJ6VOUM 95



Chapter 4 V5000 Processor Pipeline

4.4.3 Slip Conditions

During the 2R and 1A pipeline stages, internal logic determines whether it is possible
to start the current instruction in this cycle. If al required source operands are
available, aswell asall hardware resources needed to complete the operation, then the
instruction isissued. Otherwise, theinstruction “dlips’. Slipped instructions areretried
on subsequent cycles until they areissued. Pipeline stages D and W advance normally
during dlipsin an attempt to resolve the conflict. NOP's are inserted into the bubbles
which are created in the pipeline. Branch -likely instructions, ERET, nor exceptionsdo
not cause slips.

Figure 4-7 shows how instructions can slip during an instruction cache miss.

1 - Detect cache miss
2 - Load cache line (4 doublewords) into Icache
3 - Restart pipeline

Figure 4-7 SipsDuring an Instruction Cache Miss

96 User's Manual U11761EJ6VOUM



Chapter 4 V5000 Processor Pipeline

4.5

Instruction cache misses are detected in the R-stage of the pipeline. Slips are detected
inthe A stage. Instruction cache misses never require awriteback operation as writes
are not allowed to the instruction cache. Unlike the data cache, early restart, where the
pipeline is restarted after only a portion of the cache line fill has occurred, is not
implemented for the instruction cache. The requested cache lineis loaded into the
instruction cache in its entirety before the pipeline is restarted.

Write Buffer

The VR5000 processor contains awrite buffer which improves the performance of
write operations to external memory. All write cycles use the write buffer. The write
buffer holds up to four 64-bit address and data pairs.

On acache missrequiring awrite-back, the entire buffer isused for the write-back data
and allows the processor to proceed in parallel with the memory update. For uncached
and write-through stores, the write buffer decouples the CPU from the write to
memory. If the write buffer isfull, additional stores are stalled until there is room for
them in the write buffer.

User's Manual U11761EJ6VOUM 97



Chapter 5 Superscalar Issue Mechanism

98

The VR5000 processor incorporates a simple dual -issue mechanism which allows two
instructionsto be dispatched per cycle under certain conditions. A FPU ALU operation
can be dispatched along with any other type of instruction, aslong as the other
instruction is not another FP ALU operation.

Figure 5-1 shows a simplfied diagram of the dual issue mechanism.

User’'s Manual U11761EJ6VOUM



Chapter 5 Superscalar Issue Mechanism

2-deep Read Integer
, buffer :Regisier File
Instr
*.:
cache | insir »{Read FP
- Register File)
| Sage R Sage
Integer Reg Integer Integer ALU
File Write i Load/Store ] Execution -
FP Register FP FP ALU <
File Write i Load/Store ] Execution
W Sage D Sage A Stage
Figure 5-1 Dual Issue Mechanism
| - Stage

Two instructions are fetched from the instruction cache and placed in a 2-deep
instruction buffer. Issue logic determinesthe type of instruction and which pipelinethe
instruction is routed to. Also, the instruction cache tag is checked against the page
frame number (PFN) obtained from the ITLB.

R - Stage

Any required operands are fetched from the appropriate register file, and the decision
is made to either proceed or slip the instruction based on any interlock conditions. For
branch instruction, the branch addressis cal cul ated.

A - Stage

The appropriate ALU beginsthearithmetic, logical, or shift operation. Thedatavirtual
addressis calculated for any load or store instructions. The appropriate ALU
determines whether the branch condition is true. The data cache accessis started.

User's Manual U11761EJ6VOUM 99



Chapter 5 Superscalar Issue Mechanism

100

D - Stage

The data cache access is completed. Datais shifted down and extended. Data address
trandation in the DTLB completes. The virtual to physical address trandlation in the
JTLB isperformed. The data cache tag is checked against the PFN from the DTLB or
JTLB for any data cache access.

W - Stage

The processor resolvesall exceptions. For register-to-register and load instructions, the
result is written back to the appropriate register file.

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

The V5000 processor provides a full-festured memory management unit (MMU)
which uses an on-chip trand ation lookaside buffer (TLB) to translate virtual addresses
into physical addresses.

This chapter describes the processor virtual and physical address spaces, the virtual-
to-physical address trand ation, the operation of the TLB in making these trand ations,
and those System Control Coprocessor (CPO) registers that provide the software
interfaceto the TLB.

User's Manual U11761EJ6VOUM 101



Chapter 6 Memory Management Unit

6.1

6.1.1

6.1.2

6.2

Tranglation Lookaside Buffer (TLB)

Mapped virtual addresses are translated into physical addresses using an on-chip
TLB.' TheTLBisaful ly associative memory that holds 48 entries, which provide
mapping to 48 odd/even page pairs (96 pages). When address mapping isindicated,
each TLB entry is checked simultaneously for a match with the virtual addressthat is
extended with an ASID stored in the EntryHi register.

The address mapped to a page rangesin size from 4 KB to 16 MB, in multiples of 4—
that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

Hitsand Misses

If thereisavirtual address match, or hit, in the TLB, the physical page number is
extracted from the TLB and concatenated with the offset to form the physical address
(see Figure 6-1).

If nomatch occurs (TLB miss), an exception istaken and softwarerefillsthe TLB from
the page table resident in memory. Software can write over aselected TLB entry or
use a hardware mechanism to write into arandom entry.

Multiple Matches

The V{5000 processor does not provide any detection or shutdown mechanism for
multiple matchesin the TLB. Unlike earlier designs, multiple matches do not
physically damage the TLB. Therefore, multiple match detection is not needed. The
result of this condition is undefined, and software is expected to never alow thisto
occur.

Processor M odes

The V5000 has three processor operating modes, an instruction set mode, and an
addressing mode. All are described in this section.

T There are virtual-to-physical address translations that occur outside of the TLB. For example,
addresses in the kseg0 and ksegl spaces are unmapped trandations. In these spaces the physical
address is 0x000 0000 0 11 VA[28:0].

102

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

6.2.1

Processor Operating M odes

The three operating modes are listed in order of decreasing system privilege:

» Kernel Mode (Highest system privilege): can access and change any
register. The innermost core of the operating system runs in kernel mode.

» Supervisor Mode: has fewer privileges and is used for less critical
sections of the operating system.

» User Mode (lowest system privilege): prevents users from interfering
with one another.

User modeis the processor’ s base operating mode. The processor isforced to Kernel
mode when the processor is handling an error (ERL bit is set) or an exception (EXL

bit is set).

The processor’ s operating modeis set by the Satus register’ sKSU field, together with
the ERL, EXL, KX, SX, UX and XX bits. Table 6-1 liststhe Satus register settings for
the three operating modes, as well as error and exception level settings; the blanksin

the table indicate don't cares.

Table 6-1 Processor Modes

XX
31

SX |UX |KSU

ERL
2

EXL
1

IE
0

Description

ISA
11

ISA
v

Addressing
Mode
32-Bit/64-Bit

10
10
10

SN e)

User mode

o

Supervisor mode

32
64
64
32
64

00
00

Kernel mode

32
64

PP OO OCO|OO0O0O

Exception level

32
64

P O|Fr OO

Error level

PR RPR|RPR|[PO|RR

PR|PR|RPR|[PR|lRPROO

32
64

O|PFP OO0 OO0C|OO0C|OOO0O

Interrupts are enabled

User’'s Manual U11761EJ6VOUM

103



Chapter 6 Memory Management Unit

6.2.2

6.2.3

6.3

6.3.1

104

I nstruction Set Mode

The processor’ sinstruction set mode determines which instruction set is enabled. By
default, the processor implementsthe MIPSI1V Instruction Set Architecture (ISA). For
compatibility with earlier machines, however, it can be limited to the MIPS 111 1SA or
the MIPS I/11 |SAs.

Addressing M odes

The processor’ s addressing mode determines whether it generates 32-bit or 64-bit
memory addresses.

Refer to Table 6-1 for the following addressing mode encodings:
* In Kernel mode the KX bit enables 64-bit addressing; all instructions are

always valid.
* In Supervsor mode, the SX bit enables 64-bit addressing and the MIPS 111
instructions.

* In User mode, the UX bit enables 64-bit addressing and the MIPS 111
instructions; the XX bit enables the new MIPS IV instructions.

Address Spaces

This section describesthe virtual and physical address spaces and the manner inwhich
virtual addresses are converted or “translated” into physical addressesin the TLB.

Virtual Address Space

The processor has three address spaces: kernel, supervisor, and user. Each space can
be independently configured to be a 32-hit or 64-hit space by the KX, SX, and UX bits
in the Status register.

e |f UX=0 (extended address bit = 0), user addresses are 32 bitswide. The
maximum user process size is 2 GB (2%1).

e |f UX=1 (extended address bit = 1), user addresses are 64 bitswide. The
maximum user process size is 1 TB (2%9).

Figure 6-1 shows the translation of avirtual addressinto a physical address.

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

1. Virtual address (VA) represented by the

Virtual address

virtual page number (VPN) is compared
with tag in TLB. The ASID portion of the ASID VPN Offset

VA is held in EnHI Register.

2. If there is a match, the page frame G | ASID VPN
number (PFN) representing the upper
bits of the physical address (PA) is >. TLB
output from the TLB.

3. The Offset, which does not pass through

the TLB, is then concatenated to the PFN. PFN | Offset I

6.3.2

6.3.3

Entry

PFN

TLB

Physical address

Figure 6-1 Overview of a Virtual-to-Physical Address Translation

Asshown in Figure 6-1, the virtual addressis extended with an 8-bit address space
identifier (ASID), which reduces the frequency of TLB flushing when switching

contexts. This8-bit ASID isinthe CPO EntryHi register. The Global bit (G) isineach
TLB entry.

Physical Address Space

Using a 36-hit address, the processor physical address space encompasses 64 GB.

Virtual-to-Physical Address Trandation

Converting avirtual address to a physical address begins by comparing the virtual
addressfrom the processor with thevirtual addressesinthe TLB; thereisamatch when

thevirtual page number (VPN) of the addressisthe same asthe VPN field of the entry,
and either:

» the Global (G) bit of the TLB entry is set, or

» the ASID field of the virtual address is the same as the ASID field of the
TLB entry.

User's Manual U11761EJ6VOUM 105




Chapter 6 Memory Management Unit

6.3.4

106

Thismatchisreferredto asaTLB hit. If thereisno match, aTLB Miss exception is
taken by the processor and software is allowed to refill the TLB from a page table of
virtual/physical addresses in memory.

If there isavirtual address match in the TLB, the physical addressis output from the
TLB and concatenated with the Offset, which represents an address within the page
frame space. The Offset does not pass through the TLB.

The next sections describe the 32-bit and 64-bit address trandl ations.

32-bit Mode Virtual Address Trandation

Figure 6-2 shows the virtual-to-physi cal -address transl ation of a 32-bit mode address.

»  The top portion of Figure 6-2 shows a virtual address with a 12-bit, or 4-
KB, page size, labelled Offset. The remaining 20 bits of the address
represent the VPN, and index the 1M-entry page table.

*  The bottom portion of Figure 6-2 shows a virtual address with a 24-bit, or
16-MB, page size, labelled Offset. The remaining 8 bits of the address
represent the VPN, and index the 256-entry page table.

Virtual Address with 1M (22%) 4-KB pages

39 32312928 20 bits = 1M pages 1211 0
ASID VPN Offset
8 20 12
Virtual-to-physical ‘ Offset passed unchanged
Bits 31, 30 and 29 of the TLB translation in TLB to physical memory
virtual address select 36-bit Physical Address

user, supervisor, or kernel
35
address spaces.
| PFN | Offset |
Virtual-to-physical A AOffset passed unchanged
translation in TLB to physical memory
39 32312928 2423 0
ASID VPN Offset
24

8
8 bits = 256 pages
Virtual Address with 256 (28) 16-MB pages

Figure 6-2 32-bit Mode Virtual Address Trandlation

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

6.3.5 64-bit Mode Virtual Address Trangation

Figure 6-3 showsthe virtual-to-physical-addresstrandation. Thisfigureillustratesthe
two extremes in the range of possible page sizes: a 4-KB page (12 bits) and a 16-MB
page (24 bits).

* The top portion of Figure 6-3 shows a virtual address with a

12-bit, or 4-KB, page size, labelled Offset. The remaining 28 bits of the
address represent the VPN, and index the 256M-entry page table.

»  The bottom portion of Figure 6-3 shows a virtual address with a 24-bit, or
16-MB, page size, labelled Offset. The remaining 16 bits of the address
represent the VPN, and index the 64K-entry page table.

Virtual Address with 256M (228) 4-KB pages

71 64636261 40 39 28 bits = 256M pages 12 11 0

ASID Oor-1 VPN Offset

24 W 28
~ N o
. . Offset passed
Virtual-to-physical
translation in TLB unch.anged to
physical
Bits 62 and 63 of the virtual 36-bit Physical Address memory
address select user, supervisor, 35 0
or kernel address spaces.
PFN Offset

_ ] Offset passed
Virtual-to-physical unchanged to
translation in TLB physical

memory
A

' A~ ~
71 64636261 40139 24 23 0

ASID Oor-1 VPN Offset

8 24 16 24
16 bits = 64K pages
Virtual Address with 64K (216)16-MB pages

Figure 6-3 64-bit Mode Virtual Address Trandlation

User's Manual U11761EJ6VOUM 107



Chapter 6 Memory Management Unit

6.3.6  Address Spaces
The processor has three address spaces.
e User address space
»  Supervisor address space
» Kernel address space
Each space can be independently configured as either 32- or 64-bit.
6.3.7 User Address Space
In User address space, asingle, uniform virtual address space—Iabelled User segment
(useg), isavailable; itssizeis:
e 2GB (221 bytes) if UX = 0 (useg)
« 1TB (2% bytes) if UX = 1 (xuseg)
Figure 6-4 shows the range of User virtual address space.
32-bit 64-bit
Ox FH HH- Ox A A A A=
Address Address
Error Error
Ox 8000 0000 0x 0000 0100 0000 0000
2GB 1TB
Xuseg
Mapped Mapped
Ox 0000 0000 Ox 0000 0000 0000 0000
Figure 6-4 UserVirtual Address Space as Viewed from User Mode
User space can be accessed from user, supervisor, and kernel modes.
The User segment starts at address 0 and the current active user processresidesin
either useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB identically maps all
references to useg/xuseg from all modes, and controls cache accessibility.
108 User's Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

The processor operates in User mode when the Satus register contains the following
bit-values:

«  KSU bits = 10,
- EXL=0
-« ERL=0

The UX bit in the Status register selects between 32- or 64-bit User address spaces as
follows:

» when UX = 0, 32-bit useg space is selected.
» when UX = 1, 64-hit xuseg space is selected.

Table 6-2 lists the characteristics of the two user address spaces, useg and xuseg.

Table 6-2 32-bit and 64-bit User Address Space Segments

Status Register
AddressBit . Segment !
Values Bit Values Name Address Range Segment Size
K SU|EXL |ERL | UX
32-bit 0| o | usg OX?r?%%gﬁoo 2GB
A(31)=0 OX7FFF FFFF (2% bytes)
any
64-bit o | 1 | xuesg 0x0000 ?r?%% gr?oo 0000 1TB
. — 40
A(63:40) =0 0x0000 00FF FFFF FFFF | (27 bytes)
(1) 32-bit User Space (useg)

In 32-bit User space, when UX = 0in the Satus register, all valid addresses have their
most-significant bit cleared to 0; any attempt to reference an address with the most-
significant bit set whilein User mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings within the
TLB entry for the page determine the cacheability of areference. TLB misseson
addresses in 32-bit User space (useg) use the TLB refill vector.

User's Manual U11761EJ6VOUM 109



Chapter 6 Memory Management Unit

(2)

6.3.8

110

64-bit User Space (xuseg)

In 64-bit User space, when UX =1 in the Status register, addressing is extended to 64-
bits. When UX=1, the processor provides asingle, uniform address space of 2*° bytes,
labelled xuseg.

All valid User mode virtual addresses have bits 63:40 equal to 0; an attempt to
reference an address with bits 63:40 not equal to O causes an Address Error exception.
TLB misses on addresses in 64-bit User (xuseg) space use the XTLB refill vector.

Supervisor Space

Supervisor address space is designed for layered operating systems in which atrue
kernel runsin Kernel mode, and the rest of the operating system runsin Supervisor
mode. The Supervisor address space provides code and data addresses for supervisor
mode.

Supervisor space can be accessed from supervisor mode and kernel mode.

The processor operates in Supervisor mode when the Satus register contains the
following bit-values:

b KSU = 012
e EXL=0
e ERL=0

The SX bit in the Satus register select between 32- or 64-bit Supervisor space
addressing:

» when SX = 0, 32-bit supervisor space is selected and TLB misses on
supervisor space addresses are handled by the 32-bit TLB refill exception
handler

e when SX = 1, 64-bit supervisor space is selected and TLB misses on
supervisor space addresses are handled by the 64-bit XTLB refill
exception handler. Figure 6-5 shows Supervisor address mapping. Table
6-3 lists the characteristics of the supervisor space segments; descriptions
of the address spaces follow.

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

Ox A FH
Ox ED0O 0000

Ox @00 0000

Ox AOOO 0000

Ox 8000 0000

Ox 0000 0000

Figure 6-5 User and Supervisor Address Spaces as Viewed from Supervisor Mode

32-bit

Address
error
0.5GB
Mapped
Address
error

Address
error

Ox A FH A FF
Ox A F EDOO 0000

Ox A A= Q000 0000

Ox 4000 0100 0000 0000

Ox 4000 0000 0000 0000

Ox 0000 0100 0000 0000

Ox 0000 0000 0000 0000

Table 6-3 Supervisor Mode Addressing

64-bit
Address

error
0.5GB
Mapped

Address
error

1TB
Mapped

Address
error

1TB
Mapped

. Segment Segment
A(63:62) Name Address Range Size
SX |UX
0x0000 0000 0000 0000 2GB
00, X | 0 | suseg through 2 bytey
0x0000 0000 7FFF FFFF Y
(0x0000 0000 0000 0000 178
002 X 1 Xsuseg through (240 o tes)
0x0000 00FF FFFF FFFF Y
0x4000 0000 0000 0000 178
0x4000 00FF FFFF FFFF Y
sseg | OXFFFF FFFF C000 0000
11, X | X |or through ( gzgzbl\/l[i)
csseg | OXFFFF FFFF DFFF FFFF Y

User’'s Manual U11761EJ6VOUM

111



Chapter 6 Memory Management Unit

112

D)

(2)

3)

(4)

32-bit Supervisor, User Space (suseg)

In Supervisor space, when SX = 0 in the Status register and the most-significant bit of
the 32-bit virtual addressisset to 0, the suseg virtual address spaceisselected; it covers
the full 231 bytes (2 GB) of the current user address space. The virtual addressis
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through Ox7FFF
FFFF.

32-bit Supervisor, Supervisor Space (sseg)

In Supervisor space, when SX = 0 in the Satus register and the three most-significant
bits of the 32-bit virtual address are 110,, the sseg virtual address space is selected; it
covers 22%-bytes (512 MB) of the current supervisor address space. Thevirtual address
is extended with the contents of the 8-bit ASID field to form aunique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through OXDFFF
FFFF.

64-bit Supervisor, User Space (xsuseg)

In Supervisor space, when SX = 1 in the Satus register and bits 63:62 of the virtual
address are set to 00, the xsuseg virtual address space is selected; it coversthefull 240
bytes (1 TB) of the current user address space. The virtual addressis extended with
the contents of the 8-bit ASID field to form a unique virtua address.

This mapped space starts at virtual address 0x0000 0000 0000 0000 and runs through
0x0000 OOFF FFFF FFFF.

64-bit Supervisor, Current Supervisor Space (xsseg)

In Supervisor space, when SX = 1 in the Satus register and bits 63:62 of the virtual
address are set to 01, the xsseg current supervisor virtual address space is selected.
The virtual addressis extended with the contents of the 8-bit ASID field to form a
unique virtual address.

Thismapped space begins at virtual address 0x4000 0000 0000 0000 and runsthrough
0x4000 00FF FFFF FFFF.

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

()

6.3.9

64-bit Supervisor, Separate Supervisor Space (csseg)

In Supervisor space, when SX = 1 in the Satus register and bits 63:62 of the virtual
address are set to 11,, the csseg separate supervisor virtual address space is selected.
Addressing of the csseg iscompatible with addressing ssegin 32-bit mode. Thevirtual
address is extended with the contents of the 8-bit ASID field to form a unique virtua
address.

This mapped space begins at virtual address OxFFFF FFFF C000 0000 and runs
through OxFFFF FFFF DFFF FFFF.

Kernel Space

The processor operates in Kernel mode when the Satus register contains one of the
following values:

. KSU=00,
. EXL=1
- ERL=1

The KX bit in the Status register selects between 32- or 64-bit Kernel space addressing:
» when KX =0, 32-bit kernel space is selected.
e when KX =1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected and it remains
there until an Exception Return (ERET) instruction isexecuted or EXL iscleared. The
ERET instruction restores the processor to the address space existing prior to the
exception.

Kernel virtual address space is divided into regions differentiated by the high-order
bits of the virtual address, as shown in Figure 6-6. Table 6-4 lists the characteristics
of the kernel mode segments.

User's Manual U11761EJ6VOUM 113



Chapter 6 Memory Management Unit

32-bit
0x FFFF FFFF
0.5GB
Mapped
Ox E000 0000 PP
0.5GB
Mapped
Ox C000 0000
0.5GB
Unmapped
0x A000 0000 | Yncached
0.5GB
Unmapped
0x 8000 0000 | Cached
2GB
Mapped
0x 0000 0000

ksegl

ksegO

kuseg

Ox A A A A

Ox A A EDOO 0000

Ox A A @00 0000

Ox FH+ FH A00O 0000

Ox F FF 8000 0000

Ox )00 OOF- 8000 0000

Ox )00 0000 0000 0000

Ox 8000 0000 0000 0000

Ox 4000 0100 0000 0000

0Ox 4000 0000 0000 0000

Ox 0000 0100 0000 0000

Ox 0000 0000 0000 0000

64-bit
0.5GB
Mapped

0.5GB
Mapped

0.5GB
Unmapped
Uncached

05GB
Unmapped
Cached

Address
error

Mapped
Unmapped

Address
error

1TB
Mapped

Address
error

1TB
Mapped

cksseg

cksegl

ckseg0

xkseg

xkphys

xksseg

xkuseg

Figure 6-6 User, Supervisor, and Kernel Address Spaces as Viewed from Kernel Mode

114

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

Table 6-4 Kernel Mode Addressing

A(63:62) Segment Address Range Segment
Name Size
KX | SX | UX
0x0000 0000 0000 0000 »GB
00, X | X | 0 |kuseg through S
0x0000 0000 7FFF FFFF | (27 bytes)
0x0000 0000 0000 0000 118
00, X | X | 1 |xkuseg through S0
0x0000 0OFF FFFF FFFF | (27 bytes)
0x4000 0000 0000 0000 118
01, X | 1| X | xksseg through o
0x4000 OOFF FFFF FFFF | (27 bytes)
0x8000 0000 0000 0000 ax
10 1| X | X | xkphys through 64 GB
2 Py 0x8000 000F FFFF FFFF | , 3¢
etc. (2°° bytes)
0xC000 0000 0000 0000 | (540_p31y
11, 1] X | X | xkseg through

0xC000 OOFF 7FFF FFFF bytes

OXFFFF FFFF 80000000 | 515 B
11, X | X | X | ksegO through 229 it
OXFFFF FFFF OFFF FFFF | (27 bytes)

OxFFFF FFFF A000 0000 512 MB
11, X | X | X |ksegl through 229
OXFFFF FFFF BFFF FFFF | ( ytes)

OxFFFF FFFF C000 0000 512 MB
11, X | X | X | ksseg through 229
OXFFFF FFFF DFFF FFFF | ( ytes)

OXFFFF FFFF E000 0000 | 515 MmB
11, X | X | X |kseg3 through 229 it
OXFFFF FFFF FFFF FRFF | (27 bytes)

(1) 32-bit Kernel, User Space (kuseg)

In Kernel space, when KX = 0 in the Status register, and the most-significant bit of the
virtual address, A31, is cleared, the 32-hit kuseg virtual address spaceis selected; it

coversthe full 231 bytes (2 GB) of the current user address space. The virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address.

User's Manual U11761EJ6VOUM 115



Chapter 6 Memory Management Unit

116

(2)

3)

(4)

(5)

32-bit Kernel, Kernel Space 0 (kseg0)

In Kernel space, when KX = 0 in the Status register and the most-significant three bits
of the virtual address are 100,, 32-bit ksegO virtual address space is selected; it isthe
2%9_pyte (512-MB) kernel physical space. References to ksegO are not mapped
through the TLB; the physical address selected is defined by subtracting 0x8000 0000
fromthevirtual address. The KO field of the Config register, described in this chapter,
controls cacheability and coherency.

32-bit Kernel, Kernel Space 1 (ksegl)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits
of the 32-bit virtual address are 101,, 32-bit ksegl virtual address space is selected; it
is the 22%-byte (512-MB) kernel physical space.

Referencesto ksegl are not mapped through the TLB; the physical address selected is
defined by subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accessesto these addresses, and physical memory (or memory-
mapped 1/0O device registers) are accessed directly.

32-bit Kernel, Supervisor Space (ksseg)

In Kernel space, when KX = 0 in the Status register and the most-significant three bits
of the 32-bit virtual address are 110,, the ksseg virtual address space is selected; itis
the current 229-byte (512-MB) supervisor virtual space. The virtual addressis
extended with the contents of the 8-bit ASID field to form a unique virtual address.

32-bit Kernel, Kernel Space 3 (kseg3)

In Kernel space, when KX = 0 in the Status register and the most-significant three bits
of the 32-bit virtual address are 111, the kseg3 virtual address space is selected; it is
the current 22%-byte (512-MB) kernel virtual space. The virtual addressis extended
with the contents of the 8-bit ASID field to form a unique virtual address.

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

(6)

(7)

(8)

64-bit Kernel, User Space (xkuseg)

In Kernel space, when KX = 1in the Status register and bits 63:62 of the 64-bit virtual
address are 00,, the xkuseg virtual address space is selected; it covers the current user
address space. Thevirtual addressisextended with the contents of the 8-bit ASID field
to form aunique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte

unmapped (that is, mapped directly to physical addresses) uncached address space.

64-bit Kernel, Current Supervisor Space (xksseg)

In Kernel space, when KX =1 in the Satus register and bits 63:62 of the 64-bit virtual
address are 01,, the xksseg virtual address spaceis selected; it isthe current supervisor
virtual space. Thevirtual addressisextended with the contents of the 8-bit ASID field
to form aunique virtual address.

64-bit Kernel, Physical Spaces (xkphys)

In Kernel space, when KX = 1in the Status register and bits 63:62 of the 64-bit virtual
address are 10,, the xkphys virtual address spaceis selected; itisaset of eight 2%6-byte
kernel physical spaces. Accesses with address bits 58:36 not equal to O cause an
address error.

References to this space are not mapped; the physical address selected is taken from
bits 35:0 of the virtual address. Bits 61:59 of the virtual address specify the
cacheability and coherency attributes, as shown in Table 6-5.

Table 6-5 Cacheability and Coherency Attributes

Value (61:59) | Cacheability and Coherency Attributes Starting Address

0

Cacheable, noncoherent, write-through, no

write allocate 0x8000 0000 0000 0000

Cacheable, noncoherent, write-through, write

0x8800 0000 0000 0000
alocate

Uncached 0x9000 0000 0000 0000

Cacheable, noncoherent 0x9800 0000 0000 0000

4-7

Reserved 0xA 000 0000 0000 0000

User's Manual U11761EJ6VOUM 117



Chapter 6 Memory Management Unit

(99 64-bit Kerne, Kernel Space (xkseg)

In Kernel space, when KX = 1in the Status register and bits 63:62 of the 64-bit virtual
address are 11,, the address space selected is one of the following:

*  kernel virtual space, xkseg, the current kernel virtual space; the virtual
address is extended with the contents of the 8-bit ASID field to form a
unique virtual address

» oneof thefour 32-bit kernel compatibility spaces, as described in the next
section.

(10) 64-bit Kernel, Compatibility Spaces

In Kernel space, when KX =1 inthe Satusregister, bits 63:62 of the 64-bit virtual

address are 115, and bits 61:31 of the virtual address equal —1. The lower two

bytes of address, as shown in Figure 6-6, select one of the following 512-MB

compatibility spaces.

» cksegO. This 64-bit virtual address space is an unmapped region,
compatible with the 32-bit address model kseg0. The KO field of the
Config register controls cacheability and coherency.

» cksegl. This 64-bit virtual address space is an unmapped and uncached
region, compatible with the 32-bit address model ksegl.

» cksseg. This 64-bit virtual address space is the current supervisor virtual
space, compatible with the 32-bit address model ksseg.

» ckseg3. This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.

6.4 System Control Coprocessor

The System Control Coprocessor (CPO) isimplemented as an integral part of the CPU,
and supports memory management, address translation, exception handling, and other
privileged operations. CPO contains the registers shown in Figure 6-7 plus a 48-entry
TLB. The sections that follow describe how the processor uses the memory
management-rel ated registers.

Each CPO register has a unique number that identifiesit; this number is referred to as
the register number. For instance, the Page Mask register is register number 5.

118 User's Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

10*

EntryHi

EntryLoO
2*

EntryLol
3*

Index

Context

47

(“Safe” entries)
(See Random Register,
contents of TLB Wired)

TLB

PRId
15*

Config
16*

6.4.1

LLAddr

17~

TagLo
28*

Used with memory

management system.

TagHi
29*

*Register number

ECC
26*

[ EEL

CacheErr
27*

0* 4 Bad\éA*ddr
Random J.| Count Compare
1* X o* 11*
Page Mask : Status Cause
S* . 12* 13*
Wired : EPC XContext
14> 20*

ErrorEPC
30*

L

Used with exception
processing. See

Figure 6-7 CPO Registersand the TLB

Format of aTLB Entry

Chapter 7 for details.

Figure 6-8 showsthe TLB entry formats for both 32- and 64-bit modes. Each field of
an entry has a corresponding field in the EntryHi, EntryLoO, EntryLol, or PageMask
registers.

User’'s Manual U11761EJ6VOUM

119



Chapter 6 Memory Management Unit

128-bit TLB entry
in 32-bit mode of
VR5000 processor

256-bit TLB entry
in 64-bit mode of
VRKR5000 processor

32-bit Mode
127 121 120 109 108 96
0 MASK 0 I
12 13
95 7776 75 7271 64
VPN2 G ASID I
19 1 4 8

63 62 61 3837 35343332
0 PFN C |D|V|O

2 24 3 111
3130 29 65 321 0
0 PFN C D|V OI

2 24 3 111

64-bit Mode
255 217 216 205 204 192
0 MASK 0 I
39 12 13
191 190189 168 167 141 140139136 135 128
R 0 VPN2 G| O ASID I
2 22 27 1 4 8

127 94 93 70 69 6766 6564

0 PFN C |D|V|0

34 24 3 111

63 30 29 65 321 0
0 PFN C [D|V OI

34 24 3 111

Figure 6-8 Format of a TLB Entry

Theformat of the EntryHi, EntryLoO, EntryLol, and PageMask registersare nearly the
same asthe TLB entry. The one exception isthe Global field
(G bit), whichiisused in the TLB, but isreserved in the EntryHi register. Figure 6-9
and Figure 6-10 describe the TLB entry fields shown in Figure 6-8.

120

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

PageMask Register

31 25 24 13 12 0
0 MASK 0 |
7 12 13
Mask.....Page comparison mask.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.

EntryHi Register

a2bit 31 13 12 8 7 0

e | VPN2 0 ASID |
19 5 8

63 62 61 40 39 13 12 8 7 0

sabit g FILL VPN2 0 ASID I
2 22 27 5 8

VPN?Z2 ... Virtual page number divided by two (maps to two pages).
ASID .... Address space ID field. An 8-bit field that lets multiple processes share the TLB;
each process has a distinct mapping of otherwise identical virtual page numbers.

R Region. (00 - user, 01 — supervisor, 11 - kernel) used to match vAddrgs g>
Fill........ Reserved. 0 on read; ignored on write.
(0 Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 6-9 Fields of the PageMask and EntryHi Registers

User's Manual U11761EJ6VOUM 121



Chapter 6 Memory Management Unit

EntryLoO and EntryLol Registers

31 3029 65 3210
32-bit
S0t | g PFN D |V o]
2 24 3 111
31 3029 65 3210
32-bit
Mode 0 PFN D|V|G
2 24 3 1 11
b 63 30 29 65 3210
64-bit
oo 0 PFN p|v]|c I
34 24 3 111
. 63 30 29 65 3210
ot 0 PFN c |p|v|c I
34 24 3 111
PFEN...... Page frame number; the upper bits of the physical address.
C.cee. Specifies the TLB page coherency attribute; see Table 6-6.
D..... Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is
actually a write-protect bit that software can use to prevent alteration of data.
|72 Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS
miss occurs.
(C— Global. If this bit is set in both LoO and Lo1, then the processor ignores the ASID during
TLB lookup.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 6-10 Fields of the EntryLoO and EntrylLol Registers

122 User's Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

6.5

The TLB page coherency attribute (C) bits specify whether references to the page
should be cached; if cached, the algorithm selects between several coherency
attributes. Table 6-6 shows the coherency attributes selected by the C bits.

Table 6-6 TLB Page Coherency (C) Bit Values

C(5:3) Value Page Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
1 Cacheable, noncoherent, write-through, write allocate
2 Uncached
3 Cacheable noncoherent (noncoherent)
4 Reserved
5 Reserved
6 Reserved
7 Reserved
CPO Registers

The following sections describe the CPO registers that are assigned specificaly asa
software interface with memory management (each register isfollowed by itsregister
number in parentheses).

Index register (CPO register number 0)
Random register (1)

EntryLoO (2) and EntryLol (3) registers
PageMask register (5)

Wired register (6)

EntryHi register (10)

PRId register (15)

Config register (16)

LLAddr register (17)

TagLo (28) and TagHi (29) registers

User's Manual U11761EJ6VOUM 123



Chapter 6 Memory Management Unit

6.5.1 Index Register (0)

The Index register is a 32-bit, read/write register containing six bitsto index an entry
inthe TLB. The high-order bit of the register shows the success or failure of aTLB
Probe (TLBP) instruction.

The Index register also specifiesthe TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions.

Figure 6-11 shows the format of the Index register; Table 6-7 describes the Index

register fields.
Index Register
31 30 6 5 0
P 0 Index I
1 25 6
Figure 6-11 Index Register
Table 6-7 Index Register Field Descriptions
Field Description
p Probe failure. Set to 1 when the previous TLBProbe (TLBP)
instruction was unsuccessful.
Index Index to the TLB entry affected by the TLBRead and
TLBWrite instructions
0 Reserved. Must be written as zeroes, and returns zeroes when
read.

124 User's Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

6.5.2

Random Register (1)

TheRandomregister isaread-only register of which six bitsindex an entry inthe TLB.
Thisregister decrements as each instruction executes, and its values range between an
upper and alower bound, as follows:

e A lower bound is set by the number of TLB entries reserved for exclusive

use by the operating system (the contents of the Wired register).
* An upper bound is set by the total number of TLB entries (47 maximum).
The Random register specifiesthe entry in the TLB that is affected by the TLB Write

Random instruction. The register does not need to be read for this purpose; however,
the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon
system reset. Thisregister is also set to the upper bound when the Wired register is
written.

Figure 6-12 showsthe format of the Randomregister. Table 6-8 describesthe Random
register fields.

Random Register
31 6 5 0

0 Random I

26 6
Figure 6-12 Random Register

Table 6-8 Random Register Field Descriptions

Field Description
Random TLB Random index

Reserved. Must be written as zeroes, and returns zeroes when
read.

User's Manual U11761EJ6VOUM 125



Chapter 6 Memory Management Unit

6.5.3 EntryL o0 (2), and EntryL ol (3) Registers
The EntryLo register consists of two registers that have identical formats:
e EntryLoO is used for even virtual pages.
* EntryLol is used for odd virtual pages.
The EntryLo0 and EntryLol registers are read/writeregisters. They hold the physical
page frame number (PFN) of the TLB entry for even and odd pages, respectively, when
performing TLB read and write operations. Figure 6-10 shows the format of these
registers.
6.5.4 PageM ask Register (5)
The PageMask register is aread/write register used for reading from or writing to the
TLB; it holds a comparison mask that sets the variable page size for each TLB entry.
TLB read and write operations use thisregister aseither asource or adestination; when
virtual addresses are presented for translation into physical address, the corresponding
bitsin the TLB identify which virtual address bits among bits 24:13 are used in the
comparison. When the Mask field is not one of the values shown in Table 6-9, the
operation of the TLB is undefined.
Table6-9 Mask Field Values for Page Szes
! Bit
Page Size
24 | 23| 22 | 21| 20| 19 | 18 | 17 | 16 | 15 | 14 | 13
4KB 0 0 0 0 0 0 0 0 0 0 0 0
16 KB 0 0 0 0 0 0 0 0 0 0 1 1
64 KB 0 0 0 0 0 0 0 0 1 1 1 1
256 KB 0 0 0 0 0 0 1 1 1 1 1 1
1MB 0 0 0 0 1 1 1 1 1 1 1 1
4 MB 0 0 1 1 1 1 1 1 1 1 1 1
16 MB 1 1 1 1 1 1 1 1 1 1 1 1

126

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit
6.55  Wired Register (6)

The Wired register is aread/write register that specifies the boundary between the
wired and randomentriesof the TLB asshownin Figure 6-13. Wired entriesarefixed,
nonreplaceabl e entries, which cannot be overwritten by a TLB write operation.
Random entries can be overwritten.

TLB
47

!

Range of Random entries

v

< Wired
Register
Range of Wired entries

0
Figure 6-13 Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also setsthe
Random register to the value of its upper bound (see Random register, above). Figure
6-14 shows the format of the Wired register; Table 6-10 describes the register fields.

Wired Register
31 6 5 0

0

Wired I
26 6

Figure 6-14 Wired Register

Table 6-10 Wired Register Field Descriptions

Field Description
Wired TLB Wired boundary
0 Reserved. Must be written as zeroes, and returns zeroes
when read.

User's Manual U11761EJ6VOUM 127



Chapter 6 Memory Management Unit

6.5.6 EntryHi Register (10)

The EntryHi register holds the high-order bits of aTLB entry for TLB read and write
operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write
Indexed, and TLB Read Indexed instructions.

When either aTLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi
register is loaded with the virtual page number (VPN2) and the ASID of the virtual
address that did not have amatching TLB entry.

6.5.7 Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains
information identifying the implementation and revision level of the CPU and CPO.
Figure 6-15 shows the format of the PRId register; Table 6-11 describes the PRId
register fields.

PRId Register

31 16 15 87 0

0 Imp Rev

16 8 8

Figure 6-15 Processor Revision Identifier Register Format

Table6-11 PRId Register Fields

Field Description
Imp Implementation number
Rev Revision number

Reserved. Must be written as zeroes, and returns zeroes when
read.

128 User's Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

6.5.8

The low-order byte (bits 7:0) of the PRId register isinterpreted as a revision number,
and the high-order byte (bits 15:8) isinterpreted as an implementation number. The
implementation number of the V{5000 processor is 0x23. The content of the high-
order halfword (bits 31:16) of the register are reserved.

Therevision number is stored as avaluein the formy.x, wherey isamajor revision
number in bits 7:4 and x isaminor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however thereis no
guarantee that changesto the chip will necessarily be reflected in the PRId register, or
that changes to the revision number necessarily reflect real chip changes. For this
reason, these values are not listed and software should not rely on the revision number
in the PRId register to characterize the chip.

Config Register (16)
The Config register specifies various configuration options which can be selected.

Some configuration options, as defined by Config bits 31:13,11:3 are set by the
hardware during reset and are included in the Config register as read-only status bits
for the softwareto access. Other configuration options are read/write (asindicated by
Config register bits 12 and 3:0) and controlled by software; on reset these fields are
undefined.

Certain configurations have restrictions. The Config register should be initialized by
software before cachesare used. Caches should be written back to memory beforeline
sizes are changed, and caches should be reinitialized after any change is made.

Figure 6-16 shows the format of the Config register; Table 6-12 describes the Config
register fields.

User's Manual U11761EJ6VOUM 129



Chapter 6 Memory Management Unit

31 30 28 27 242322 212019181716 151413 1211 9 8 6 54 3 2

Config Register

0| EC EP SB SS | EW |SC| 1 |BEEM|EB|SH IC DC |IB|DB| 0 KO

1 3 4 2 11 2 111111 3 3 111
Figure 6-16 Config Register Format
Table 6-12 Config Register Fields
Field Description
System clock ratio:
0 - processor clock frequency divided by 2
1 - processor clock frequency divided by 3
2 - processor clock frequency divided by 4
EC 3 - processor clock frequency divided by 5
4 -, processor clock frequency divided by 6
5 - processor clock frequency divided by 7
6 — processor clock frequency divided by 8
7 - Reserved
Transmit data pattern (pattern for write-back data):
0-D Doubleword every cycle
1 - DDxDDx 2 Doublewords every 3 cycles
2 - DDxxDDxx 2 Doublewords every 4 cycles
Ep 3 - DxDxDxDx 2 Doublewords every 4 cycles
4 _, DDxxxDDxxx 2 Doublewords every 5 cycles
5 - DDxxxXDDxxxx 2 Doublewords every 6 cycles
6 — DXxxDxxDxxDxx 2 Doublewords every 6 cycles
7 — DDxxxxxxDDxxxxxx 2 Doublewords every 8 cycles
8 - DxxxDxxxDxxxDxxx 2 Doublewords every 8 cycles
Secondary Cache block size. On the V5000 thisis set to 8 words.
SB 1 - 8words
00, 10, 11 - Reserved
Secondary Cache Size
00 - 512KB
SS 01 - 1MB
10 - 2MB
11 - None
SysAD buswidth. On the VR®5000 thisis set to 64-hit.
EW 00 - 64-hit

01, 10, 11 - Reserved

130

User’'s Manual U11761EJ6VOUM




Chapter 6 Memory Management Unit

Field Description

Secondary Cache present.
SC 0 — Secondary cache present
1 - Secondary cache not present

Big Endian Mode:
BE 0 - Little Endian
1 - Big Endian

ECC mode enable. On the Vg5000 this must be set to parity.
EM 0 - ECC mode
1 - Parity mode

Block ordering. On the Vg5000 this must be set to sub-block.
EB 0 - Sequentia
1 - Sub-block

Secondary Cache Enable (software writeable)
SE 0 - Disabled
1 - Enabled

Primary |-cache Size (I-cache size = 212*'C bytes). In the VR5000 processor,
this must be set to 32 KB.

Primary D-cache Size (D-cache size = 212*PC bytes). Inthe V g5000 processor,
this must be set to 32 KB.

Primary I-cacheline size. In the VR5000 processor, this must be set to 32 bytes.
1B 0 - 16 bytes
1 - 32bytes

Primary D-cachelinesize. IntheVg5000 processor, this must be set to 32 bytes.
DB 0 - 16 bytes
1 - 32bytes

kseg0 coherency algorithm (see EntryLo0 and EntryLol registersand the C field

KO of Table 6-6) (software writeable)

User's Manual U11761EJ6VOUM 131



Chapter 6 Memory Management Unit

6.5.9

6.5.10

132

Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the physical address
read by the most recent Load Linked instruction.

Thisregister isfor diagnostic purposes only, and serves no function during normal
operation.

Figure 6-17 shows the format of the LLAddr register; PAddr represents bits of the
physical address, PA(35:4).

LLAddr Register

31 0

PAddr(35:4) I

32
Figure 6-17 LLAddr Register Format

Cache Tag Registers[TagL o (28) and TagHi (29)]

The TagLo and TagHi registers are 32-bit read/write registers that hold either the
primary cache tag and parity, or the secondary cache tag and ECC during cache
initialization, cache diagnostics, or cache error processing. The Tag registers are
written by the CACHE and MTCQO instructions.

The P and ECC fields of these registers are ignored on Index Store Tag operations.
Parity and ECC are computed by the store operation.

Figure 6-18 shows the format of these registers for primary cache operations. Figure
6-19 shows the format of these registers for secondary cache operations.

Table 6-13 lists the field definitions of the TagLo and TagHi registers.

User’'s Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

TagLo

TagHi

TagLo

TagHi

31 8 7 6 5 1 0
PTagLo PState | Undefined | P
24 2 5 1
31 0
Undefined

31

32

Figure 6-18 TaglLo and TagHi Register (P-cache) Formats

1514 1312

10 9

31

STagLo

17

0 | SState

2

3

0
10

0

32

Figure 6-19 TaglLo and TagHi Register (S-cache) Formats

User’'s Manual U11761EJ6VOUM

Undefined I

133



Chapter 6 Memory Management Unit

Table 6-13 Cache Tag Register Fields

Field

Description

PTagLo

Specifies the physical address bits 35:12

PState

Specifies the primary cache state
0 - Invadid
1 - Reserved
2 - Reserved
3 - vdid

Specifies the primary tag even parity bit

STagLo

Specifies the physical address bits 35:19

SState

Specifies the secondary cache state

0 - Invalid

1 - Reserved

2 - Reserved

3 - Reserved

4 - Valid

5 5 Reserved

6 - Reserved

7 - Reserved

0

Reserved. Must be written as zeroes, and returns zeroes when read.

Undefined

These fields should not be used.

134

User’'s Manual U11761EJ6VOUM




Chapter 6 Memory Management Unit

6.6

Virtual-to-Physical Address Tranglation Process

During virtual-to-physical address tranglation, the CPU compares the
8-bit ASID (if the Global bit, G, is hot set) of the virtual address to the ASID of the
TLB entry to seeif thereisamatch. One of the following comparisons are a so made:
* In 32-bit mode, the highest 7-to-19 bits (depending upon the page size) of
the virtual address are compared to the contents of the TLB virtual page
number.
* In 64-bit mode, the highest 15-to-27 bits (depending upon the page size)
of the virtual address are compared to the contents of the TLB virtual
page number.

If aTLB entry matches, the physical address and access control bits (C, D, and V) are
retrieved from the matching TLB entry. Whilethe V bit of the entry must be set for a
valid trandation to take place, it is not involved in the determination of a matching
TLB entry.

Figure 6-20 illustrates the TLB address translation process.

User's Manual U11761EJ6VOUM 135



Chapter 6 Memory Management Unit

Virtual Address (Input)

For valid
address space, see
the section describing
Operating Modes
in this chapter.

Address
\ Error /-

Exception

Address
] Error .

Exception

Yes
Unmapped
"\ Access

Yes

/" Valid
Address?

No
Address
.

Exception

\

No

.
?

\J

32-bit No
address?

Yes

\

Y

TLB TLB } - TLB . XTLB
Mod Invalid Refill Refill
. No '
Exception Exception

Access
Main

Y
/ Access \
Memory Cache

Physical Address (Output)

Figure 6-20 TLB Address Trandlation

136 User's Manual U11761EJ6VOUM



Chapter 6 Memory Management Unit

TLB Exceptions

If thereisno TLB entry that matchesthe virtual address, a TLB missexception occurs.
If the access control bits (D and V) indicate that the accessis not valid, aTLB
modification or TLB invalid exception occurs. If the C bits equal 010, the physical
address that is retrieved accesses main memory, bypassing the cache.

TLB Instructions

Table 6-14 lists the instructions that the CPU provides for working with the TLB.

Table6-14 TLB Instructions

Op Code Description of Instruction
TLBP Trandation Lookaside Buffer Probe
TLBR Trandlation Lookaside Buffer Read
TLBWI Tranglation Lookaside Buffer Write Index
TLBWR Trandation Lookaside Buffer Write Random

User's Manual U11761EJ6VOUM 137



Chapter 7 CPU Exception Processing

7.1

138

This chapter describes the CPU exception processing, including an explanation of
exception processing, followed by the format and use of each CPU exception register.

Overview of Exception Processing

The processor receives exceptions from a number of sources, including translation
lookaside buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system calls.
When the CPU detects one of these exceptions, the normal sequence of instruction
execution is suspended and the processor enters Kernel mode.

The processor then disables interrupts and forces execution of a software exception
processor (called ahandler) located at afixed address. The handler saves the context
of the processor, including the contents of the program counter, the current operating
mode (User or Supervisor), and the status of the interrupts (enabled or disabled). This
context is saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC)
register with alocation where execution can restart after the exception has been
serviced. Therestart location in the EPC register is the address of the instruction that
caused the exception or, if the instruction was executing in a branch delay dlot, the
address of the branch instruction immediately preceding the delay slot.

The registers described later in the section assist in this exception processing by
retaining address, cause and status information.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

1.2

Exception Processing Registers

This section describes the CPO registers that are used in exception processing. Table
7-1 lists these registers, along with their number—each register has a unique
identification number that isreferred to asitsregister number. For instance, the ECC
register is register number 26. The remaining CPO registers are used in memory
management.

Software examines the CPO registers during exception processing to determine the
cause of the exception and the state of the CPU at the time the exception occurred. The
registersin Table 7-1 are used in exception processing, and are described in the
sections that follow.

Table7-1 CPO Exception Processing Registers

Register Name Reg. No.

Context

BadVAddr (Bad Virtual Address) 8
Count 9
Compare register 11
Status 12
Cause 13
EPC (Exception Program Counter) 14
XContext 20
ECC 26
CacheErr (Cache Error and Status) 27
ErrorEPC (Error Exception Program Counter) 30

CPU general registers are interlocked and the result of an instruction can normally be
used by the next instruction; if theresult isnot available right away, the processor stalls
until itisavailable. CPOregistersand the TLB arenot interlocked, however; there may
be some delay before a value written by one instruction is available to following
instructions.

User's Manual U11761EJ6VOUM 139



Chapter 7 CPU Exception Processing

721

140

Context Register (4)

The Context register is aread/write register containing the pointer to an entry in the
pagetableentry (PTE) array; thisarray isan operating system datastructure that stores
virtual-to-physical address trandlations. When thereisa TLB miss, the operating
system loads the TL B with the missing translation from the PTE array. Normally, the
operating system uses the Context register to address the current page map which
residesin the kernel-mapped segment, kseg3. The Context register duplicates some of
the information provided in the BadVAddr register, but the information isarranged in
aformthat ismore useful for asoftware TLB exception handler. Figure 7-1 showsthe
format of the Context register; Table7-2 describes the Context register fields.

Context Register

31 23 22 43 0
32-bit
Mode PTEBase BadVPN2 0
) 10 )
63 23 22 43 0
‘,\5,,40'32 PTEBase BadVPN2 0
o) 0

Figure 7-1 Context Register Format

Table 7-2 Context Register Fields

Field

Description

BadVPN2

Thisfield iswritten by hardware on amiss. It containsthe
virtual page number (VPN) of the most recent virtual address
that did not have avalid translation.

PTEBase

Thisfieldisaread/writefield for use by the operating system.
It is normally written with avalue that allows the operating
system to use the Context register as a pointer into the current
PTE array in memory.

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the
TLB miss; bit 12 is excluded because asingle TLB entry maps to an even-odd page
pair. For a4-KB page size, thisformat can directly address the pair-table of 8-byte
PTEs. For other page and PTE sizes, shifting and masking this value produces the

appropriate address.

User’'s Manual U11761EJ6VOUM




Chapter 7 CPU Exception Processing

1.2.2

7.2.3

Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) isaread-only register that displaysthe
most recent virtual address that caused one of the following exceptions: TLB Invalid,
TLB Modified, TLB Refill, or Address Error.

Figure 7-2 shows the format of the BadVAddr register.

BadVAddr Register

31 0

A Bad Virtual Address I
32

63 0

&4532 Bad Virtual Address I
64

Figure 7-2 BadVAddr Register Format

Note: The BadVAddr register does not save any information for bus errors, since bus
errors are not addressing errors.

Count Register (9)

The Count register acts as atimer incrementing at a constant rate whether or not an
instruction is executed, retired, or any forward progress is made through the pipeline.
On the VR5000 the count register can be configured at reset time to count either half
the maximum issue rate or at the maximum issuerate. The default behavior isto count
at half the maximum issue rate.

Thisregister can beread or written. It can bewritten for diagnostic purposesor system
initialization; for example, to synchronize processors.

Figure 7-3 shows the format of the Count register.

Count Register

31 0
Count I
32

Figure 7-3 Count Register Format

User's Manual U11761EJ6VOUM 141



Chapter 7 CPU Exception Processing

124

7.2.5

142

Compare Register (11)

The Compareregister acts asatimer (see also the Count register); it maintains a stable
value that does not change on its own.

When the value of the Count register equals the value of the Compare register,
interrupt bit 1P(7) in the Cause register is set. This causes an interrupt as soon asthe
interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt.

For diagnostic purposes, the Compare register is aread/writeregister. Innormal use
however, the Compare register iswrite-only. Figure 7-4 shows the format of the
Compare register.

Compare Register
31 0

Compare

32
Figure 7-4 Compare Register Format

Status Register (12)

The Status register (SR) is aread/write register that contains the operating mode,
interrupt enabling, and the diagnostic states of the processor. The following list
describes the more important Status register fields.

*  The 8-bit Interrupt Mask (IM) field controls the enabling of eight
interrupt conditions. Interrupts must be enabled before they can be
asserted, and the corresponding bits are set in both the Interrupt Mask
field of the Status register and the Interrupt Pending field of the Cause
register. IM[1:0] are software interrupt masks, while IM[7:2] correspond
to Int[5:0].

e The 3-bit Coprocessor Usability (CU) field controls the usability of 3
possible coprocessors. Regardless of the CUO hit setting, CPO is always
usable in Kernel mode. For all other cases, an access to an unusable
COProcessor causes an exception.

*  The 9-bit Diagnostic Satus (DS) field is used for self-testing, and checks
the cache and virtual memory system.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

» The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the
machine. The processor can be configured as either little-endian or big-
endian at system reset; reverse-endian selection is used in Kernel and
Supervisor modes, and in the User mode when the RE bit is 0. Setting the
RE bit to 1 inverts the User mode endianness.

(1) StatusRegister Format

Figure 7-5 shows the format of the Satus register. Table 7-3 describes the Satus
register fields. Figure 7-6 and Table 7-4 provide additional information on the
Diagnostic Status (DS) field. All bitsin the DSfield are readable and writable.

Status Register

31 30 28 27 26 25 24 16 15 87 6 5432 1 0
cu 2 ) |

XX| cuzcuof © |FR|RE[ DS IM7 - IMO KX|SX| UX|KSU|ERL EXL| IE

1 3 1 1 1 9 8 111 2 1 1 1

Figure 7-5 Status Register

User's Manual U11761EJ6VOUM 143



Chapter 7 CPU Exception Processing

144

Table 7-3 Satus Register Fields

Field

Description

XX

Enables execution of MIPS |V instructions in user-mode
1 - MIPSIV instructions usable
0 - MIPS1V instructions unusable

CuU

Controls the usability of each of the four coprocessor unit
numbers. CPQ is aways usable when in Kernel mode, regardless
of the setting of the CUq, bit. Setting CU3 enables the MIPS IV
instruction set,

1 - usable

0 - unusable

Reserved. Set to 0.

FR

Enables additional floating-point registers
0 - 16 registers
1 - 32registers

RE

Reverse-Endian bit, valid in User mode.

DS

Diagnostic Satus field (see Figure 7-6).

Interrupt Mask: controls the enabling of each of the external,
internal, and softwareinterrupts. Aninterruptistakenif interrupts
are enabled, and the corresponding bitsare set in both the Interrupt
Mask field of the Satus register and the Interrupt Pending field of
the Cause register.

0 - disabled

1- enabled

KX

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception is used for TLB misses on kernel
addresses.

0 - 32-hit

SX

Enables 64-hit addressing and operationsin Supervisor mode. The
extended-addressing TLB refill exception isused for TLB misses
on supervisor addresses.

0 - 32-hit

UXx

Enables 64-bit addressing and operations in User mode. The
extended-addressing TLB refill exception isused for TLB misses
on user addresses.

0 — 32-hit

User’'s Manual U11761EJ6VOUM




Chapter 7 CPU Exception Processing

Field Description
Mode bits
102 - User
KSU 01, — Supervisor
00, — Kerndl
Error Level; set by the processor when Reset, Soft Reset, NMI, or
Cache Error exception are taken.
0 - normal
1 - error
When ERL is set:
ERL Interrupts are disabled.
The ERET instruction will use the return address held in
ErrorEPC instead of EPC.
Kuseg and xkuseg are treated as unmapped and uncached
regions.This allows main memory to be accessed in the presence
of cache errors.
Exception Level; set by the processor when any exception other
than Reset, Soft Reset, NMI, or Cache Error exception are taken.
0 - normal
1 - exception
EXL When EXL issq:
Interrupts are disabled.
TLB refill exceptionswill use the general exception vector
instead of the TLB refill vector.
EPC will not be updated if another exception is taken.
Interrupt Enable
IE 0 - disableinterrupts

1 - enablesinterrupts

User's Manual U11761EJ6VOUM 145




Chapter 7 CPU Exception Processing

146

(2)

Diagnostic Status Field

24 23 22 21 20 19 18 17 16
0 BEV 0 SR 0 0 CE DE
2 1 1 1 1 1 1 1

Figure 7-6 Satus Register DSField

Table 7-4 Satus Register Diagnostic Satus Bits

Bit Description
Controls the location of TLB refill and general exception vectors.
BEV 0 - normal
1- bootstrap
0 Reserved. Must be written as zeroes. Returns zeroes when read.

SR 1- Indicatesthat a Soft Reset or NM|I has occurred.

Contents of the ECC register set or modify the check bits of the

CE caches when CE = 1; see description of the ECC register.
Specifies that cache parity or ECC errors cannot cause exceptions.
DE 0 - parity/ECC remain enabled
1 - disables parity/ECC
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Status Register Modes and Access States

Fields of the Status register set the modes and access states described in the sections
that follow.

I nterrupt Enable: Interrupts are enabled when all of thefollowing conditionsaretrue:
e IE=1
e EXL=0
 ERL=0

If these conditions are met, the settings of the IM bits enable the interrupt.

Operating Modes. The following CPU Status register bit settings are required for
User, Kernel, and Supervisor modes.

* The processor isin User mode when KSU = 10,, EXL = 0, and ERL = 0.

*  The processor isin Supervisor mode when KSU = 01,, EXL = 0, and ERL
=0.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

3)

7.2.6

*  The processor isin Kernel mode when KSU = 00,, or EXL = 1, or ERL =
1

32- and 64-bit M odes. The following CPU Satusregister bit settings select 32- or 64-
bit operation for User, Kernel, and Supervisor operating modes. Enabling 64-bit
operation permits the execution of 64-bit opcodes and translation of 64-bit addresses.
64-bit operation for User, Kernel and Supervisor modes can be set independently.

e 64-bit addressing for Kernel mode is enabled when KX = 1. 64-hit
operations are always valid in Kernel mode.

*  64-bit addressing and operations are enabled for Supervisor mode when
X=1

*  64-bit addressing and operations are enabled for User mode when UX = 1.

Kernel Address Space Accesses: Accessto the kernel address spaceis allowed when
the processor isin Kernel mode.

Supervisor Address Space Accesses. Access to the supervisor address spaceis
allowed when the processor isin Kernel or Supervisor mode, as described aboveinthe
section titled, Operating Modes.

User Address Space Accesses. Accessto the user address spaceis allowed in any of
the three operating modes.

Status Register Reset

The contents of the Status register are undefined at reset, except for the following bits
in the Diagnostic Satusfield:

 ERLandBEV=1

The SR hit distinguishes between the Reset exception and the Soft Reset exception
(caused either by Reset* or Nonmaskable Interrupt [NMI]).

Cause Register (13)
The 32-bit read/write Cause register describes the cause of the most recent exception.

Figure 7-7 shows the fields of thisregister. Table 7-5 describes the Cause register
fields.

All bitsin the Cause register, with the exception of the IP(1:0) bits, are read-only;
IP(1:0) are used for software interrupts.

User's Manual U11761EJ6VOUM 147



Chapter 7 CPU Exception Processing

Table 7-5 Cause Register Fields

Field

Description

BD

Indicates whether the last exception taken occurred in a branch delay slot.
1 - delay dlot
0 - norma

CE

Coprocessor unit number referenced when a Coprocessor Unusable exception is
taken.

IP

Indicates an interrupt is pending.
1 - interrupt pending
0 - nointerrupt

ExcCode

Exception code field (see Table 7-6)

0

Reserved. Must be written as zeroes, and returns zeroes when read.

148

User’'s Manual U11761EJ6VOUM




Chapter 7 CPU Exception Processing

31 30 29

Cause Register

0

28 27 16 15 8 7
BD| 0| CE 0; IP7
1 1 2 12 8 1

Figure 7-7 Cause Register Format

Table 7-6 Cause Register ExcCode Field

IPO [0 code

Exception ) o
Mnemonic Description
Code Value

0 Int Interrupt
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
3 TLBS TLB exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpuU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 Reserved
15 FPE Floating-Point exception

16-31 —- Reserved

1.2.7 Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is aread/write register that contains the
address at which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

User’'s Manual U11761EJ6VOUM

149



Chapter 7 CPU Exception Processing

7.2.8

150

* thevirtua address of the instruction that was the direct cause of the
exception, or

» thevirtual address of the immediately preceding branch or jump
instruction (when the instruction is in a branch delay slot, and the Branch
Delay bit in the Cause register is set).

The processor doesnot writeto the EPC register when the EXL bit in the Statusregi ster
issettoal.

Figure 7-8 shows the format of the EPC register.

EPC Register

31 0
32-bit
Mode EPC
32
63 0
64-bit
Mode EPC
64

Figure 7-8 EPC Register Format

XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page table entry
(PTE) array, an operating system data structure that stores virtual-to-physical address
trandations. When thereisa TLB miss, the operating system software loadsthe TLB
with the missing translation from the PTE array. The XContext register duplicates
some of theinformation provided inthe BadVAddr register, and putsitin aform useful
for asoftware TLB exception handler. The XContext register isfor usewiththe XTLB
refill handler, which loads TLB entries for referencesto a 64-bit address space, and is
included solely for operating system use. The operating system setsthe PTE basefield
intheregister, asneeded. Normally, the operating system uses the Context register to
address the current page map, which resides in the kernel-mapped segment kseg3.
Figure 7-9 showstheformat of the XContext register; Table 7-7 describesthe XContext
register fields.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

XContext Register

63 3332 3130 4 3 0
PTEBase R BadVPN2 0
31 2 27 4

Figure 7-9 XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that caused the TLB
miss; bit 12 is excluded because asingle TLB entry maps to an even-odd page pair.
For a 4-KB page size, thisformat may be used directly to address the pair-table of 8-
byte PTEs. For other page and PTE sizes, shifting and masking this value produces
the appropriate address.

Table 7-7 XContext Register Fields

Field Description

The Bad Virtual Page Number/2 field iswritten by hardware on amiss. It contains

BadVPN2 the VPN of the most recent invalidly translated virtual address.

The Region field contains bits 63:62 of the virtual address.
00, = user
01, = supervisor
11, =kernel.

The Page Table Entry Base read/write field is normally written with a value that
PTEBase | alowsthe operating system to use the Context register as a pointer into the current
PTE array in memory.

7.2.9 Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes primary-
cache data parity bits for cache initialization, cache diagnostics, or cache error
processing. (Tag ECC and parity are loaded from and stored to the TagLo register.)

The ECC register isloaded by the Index Load Tag CACHE operation. Content of the
ECC register is:

* written into the primary data cache on store instructions (instead of the
computed parity) when the CE bit of the Status register is set.

» substituted for the computed instruction parity for the CACHE operation
Fill.

Figure 7-10 shows the format of the ECC register; Table 7-8 describes the register
fields.

User's Manual U11761EJ6VOUM 151



Chapter 7 CPU Exception Processing

ECC Register
31 8 7 0

0 ECC

24 8
Figure 7-10 ECC Register Format

Table 7-8 ECC Register Fields

Field Description

An 8-hit field specifying the parity bits read from or written to a primary
cache.

ECC field values for Index_Store Tag D, Index_Load Tag_D cache
operations:

ECC[0] Even parity for least significant byte of requested doubleword
ECC[1] Even parity for 2nd least significant byte

ECC[2] Even parity for 3rd least significant byte

ECC[3] Even parity for 4th |east significant byte

ECC ECC[4] Even parity for 4th most significant byte
ECC[5] Even parity for 3rd most significant byte
ECC[6] Even parity for 2nd most signficant byte
ECC[7] Even parity for most significant byte of requested doubleword
ECC field values for Index_Store Tag |, Index_Load Tag_| cache
operations:
ECC[0] Even parity for least significant word of requested doubleword
ECC[1] Even parity for most significant word of requested doubleword
0 Reserved. Must be written as zeroes, and returns zeroes when read.

7.2.10 CacheError (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes ECC errorsin the secondary cache
and parity errorsin the primary cache. Parity errors cannot be corrected.

The CacheErr register holds cache index and status bits that indicate the source and
nature of the error; it isloaded when a Cache Error exception is asserted.

Figure 7-11 shows the format of the CacheErr register and Table 7-9 describesthe
CachekErr register fields.

152 User's Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

31 30 29 28 27 26 25 24 23 22 21

CacheErr Register

321

0

ER|ECI|ED|ET| O |EE|EB| El

0|0 SIDX 0 |PIDX

111111111 1 19 1
Figure 7-11 CacheErr Register Format

Table 7-9 CacheErr Register Fields

Field

Description

ER

Type of reference
0 - instruction
1 - data

EC

Cache level of the error
0 - primary
1 - reserved

ED

Indicatesif adatafield error occurred
0 - noerror
1 - error

ET

Indicatesif atag field error occurred
0 - no error
1 - error

EE

Thisbit isset if the error occurred on the SysAD bus.

EB

Thisbit isset if adataerror occurred in addition to
theinstruction error (indicated by the remainder of
the bits). If so, this requires flushing the data cache
after fixing the instruction error.

El

Thisbit isset if the error occured on filling primary
on store miss.

SIDX

Physical address [21:3] of the reference that
encountered the error

PIDX

Virtual address[13:12] of the double word in error.
(used with SIDX to construct avirtual index for the
primary caches)

Reserved. Must be written as zeroes, and returns
zeroes when read.

User’'s Manual U11761EJ6VOUM

153



Chapter 7 CPU Exception Processing

7.2.11

7.3

154

Error Exception Program Counter (Error EPC)
Register (30)
The ErrorEPC register issimilar to the EPC register, except that ErrorEPC isused on

parity error exceptions. Itisalso used to storethe program counter (PC) on Reset, Soft
Reset, and nonmaskabl e interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. This address can be:

» thevirtual address of the instruction that caused the exception

» thevirtual address of the immediately preceding branch or jump
instruction, when this address is in a branch delay slot.

There is no branch delay dot indication for the ErrorEPC register.
Figure 7-12 shows the format of the ErrorEPC register.

ErrorEPC Register

31 0
32-bit
Modla ErrorEPC I
32
63 0
64-bit
Modle ErrorEPC I
64

Figure 7-12 ErrorEPC Register Format

Processor Exceptions

This section describes the processor exceptions—it describes the cause of each
exception, its processing by the hardware, and servicing by ahandler (software). The
types of exception, with exception processing operations, are described in the next
section.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

731

D

Exception Types
This section gives sample exception handler operations for the following exception
types:
* reset
»  soft reset
* nonmaskable interrupt (NMI)
e cache error
* remaining processor exceptions
When the EXL bit in the Satus register is O, either User, Supervisor, or Kernel

operating mode is specified by the KSU bitsin the Satus register. When the EXL bit
isal, the processor isin Kernel mode.

When the processor takes an exception, the EXL bit isset to 1, which meansthe system
isin Kernel mode. After saving the appropriate state, the exception handler typically
changes KSU to Kernel mode and resets the EXL bit back to 0. When restoring the
state and restarting, the handler restores the previous value of the KSU field and sets
the EXL bit back to 1.

Returning from an exception, also resets the EXL bit to O.

In the following sections, sample hardware processes for various exceptions are
shown, together with the servicing required by the handler (software).

Reset Exception Process

Figure 7-13 shows the Reset exception process.

T: undefined
Random ~ TLBENTRIES-1
Wired ~ 0
Config « O || EC || EP || 00000000 || BE || 110]] 010 || 1 || 1 || O || undefined

|| DC || undefined®

ErrorEPC ~ PC
SR « SR31.03 I 11| 0| O] SR1g3 1l 1 || SRy
PC . OXFFFF FFFF BFCO 0000

Figure 7-13 Reset Exception Processing

User's Manual U11761EJ6VOUM 155




Chapter 7 CPU Exception Processing

(2) CacheError Exception Process

Figure 7-14 shows the Cache Error exception process.

T: ErrorEPC ~ PC
CacheErr — ER||EC||ED || ET||ES || EE || ED || 0%°
SR « SR31:3 1| 1[ISR10
if SRy, = 1then  /*What is the BEV bit setting*/
PC ~ OxFFFF FFFF BFCO 0200 + 0x100 /*Access boot-PROM area*/
else
PC ~ OxFFFF FFFF A000 0000 + 0x100 /*Access main memory area*/

endif

Figure 7-14 Cache Error Exception Processing

(3) Soft Reset and NM I Exception Process

Figure 7-15 shows the Soft Reset and NMI exception process.

T: ErrorEPC ~ PC
SR « SR31.23 || 11| O]l 1] SR1g:3 1l L || SRy
PC — OxFFFF FFFF BFCO 0000

Figure 7-15 Soft Reset and NMI Exception Processing

156 User's Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

(4) General Exception Process

Figure 7-16 shows the process used for exceptions other than Reset, Soft Reset, NMI,
and Cache Error.

T: Cause — BD || 0| CE || 0*? || Cause;s.g || ExcCode || 07
if SR; = 0 then/* System is in User or Supervisor mode with no current exception */
EPC « PC
endif
SR « SR31: || 1I SRo
if SRZZ =1 then
PC ~ OxFFFF FFFF BFCO 0200 + vector /*access to uncached space*/
else
PC ~ OxFFFF FFFF 8000 0000 + vector /*access to cached space*/
endif

Figure 7-16 General Exception Processing

7.3.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location OxFFFF
FFFF BFCO 0000. Addressesfor all other exceptions are a combination of a vector
offset and a base address.

The base addres is determined by the BEV bit of the Status register.

Table 7-10 shows the 64-bit-mode vector base address for all exceptions; the 32-bit
mode addressisthelow-order 32 bits (for instance, the base addressfor NMI in 32-bit
mode is OxBFCO 0000).

Table 7-11 shows the vector offset added to the base address to create the exception
address.

Table 7-10 Exception Vector Base Addresses

BEV Bit VRr5000 Processor Vector Base Address
0 OxFFFF FFFF 8000 0000
1 OxFFFF FFFF BFCO 0200

User's Manual U11761EJ6VOUM 157



Chapter 7 CPU Exception Processing

158

D

Table 7-11 Exception Vector Offsets

Exception VRr5000 Processor Vector Offset
TLB refill, EXL =0 0x000
XTLB refill, EXL =0
(X = 64-bit TLB) 0x080
Cache Error 0x100
Others 0x180

When BEV = 0, the vector base address for the cache error exception changes from
ksegO (OxFFFF FFFF 8000 0000) to ksegl (OxFFFF FFFF A00O 0000). This change
indicates that the caches areinitialized and that the vector can be cached. When BEV
=1, the vector base for the cache error exception is OxFFFF FFFF BFCO 0200. Thisis
an uncached and unmapped space, allowing the exception to bypass the cache and the
TLB.

TLB Refill Vector Selection

Inall present implementations of the MIPS 111 1SA, therearetwo TLB refill exception
vectors:

» onefor references to 32-bit address space (TLB Réfill)
» one for references to 64-bit address space (XTLB Refill)

The TLB refill vector selection is based on the address space of the address (user,
supervisor, or kernel) that caused the TLB miss, and the value of the corresponding
extended addressing bit in the Satus register (UX, SX, or KX). The current operating
mode of the processor isnot important except that it playsapart in specifying inwhich
address space an address resides. The Context and XContext registers are entirely
separate page-table-pointer registers that point to and refill from two separate page
tables. For all TLB exceptions (Refill, Invalid, TLBL or TLBS), the BadVPN2 fields
of both registers are loaded as they were in the V g4000.

In contrast to the V g5000, the V g4000 processor selectsthe vector based on the current
operating mode of the processor (user, supervisor, or kernel) and the value of the
corresponding extended addressing bit in the Satus register (UX, SX or KX). In
addition, the Context and XContext registers are not implemented as entirely separate
registers; the PTEbase fields are shared. A missto a particular address goes through
either TLB Refill or XTLB Refill, depending on the source of the reference. Therecan
be only a single page table unless the refill handlers execute address-deciphering and
page table selection in software.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

Note: Refillsfor the 0.5 GB supervisor mapped region, sseg/ksseg, are controlled by
thevalue of KX rather than SX. Thissimplifiescontrol of the procesor when supervisor
mode is not being used.

Table 7-12 lists the TLB refill vector locations, based on the adress that caused the
TLB miss and its correspoinding mode bit.

Table 7-12 TLB Refill Vectors

Space Address Range Regions Exception Vector
OxFFFF FFFF EO0O 0000 Refill (KX=0)
Kernel to kseg3 or
OxFFFF FFFF FFFF FFFF XRefill (KX=1)
OxFFFF FFFF C000 0000 Refill (SX=0)
Supervisor to sseg, ksseg or
OXFFFF FFFF DFFF FFFF XRefill (SX=1)
0xC000 0000 0000 0000
Kernel to xkseg XRefill (KX=1)
0xCO000 OFFE FFFF FFFF
0x4000 0000 0000 0000
Supervisor to xsseg, Xksseg XREefill (SX=1)
0x4000 OFFF FFFF FFFF
0x0000 0000 8000 0000
User to Xsuseg, xuseg, xkuseg XRefill (UX=1)
0x0000 OFFF FFFF FFFF
(0x0000 0000 0000 0000 Refill (UX=0)
User to USeg, XUSg, SUseg, or
0X0000 0000 7FFF FFFE  [SUSe9 KUSeg, Xkuseg |y pocurt” =1

User’'s Manual U11761EJ6VOUM

159



Chapter 7 CPU Exception Processing

7.3.3 Priority of Exceptions

Table 7-13 describes exceptionsin the order of highest to lowest priority. Whilemore
than one exception can occur for a single instruction, only the exception with the
highest priority is reported.

Table 7-13  Exception Priority Order

Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)
Address error — Instruction fetch
TLB refill — Instruction fetch
TLB invaid — Instruction fetch
Cache error — Instruction fetch

Bus error — Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved Instruction,
Coprocessor Unusable, or Floating-Point Exception

Address error — Data access
TLB refill — Data access
TLB invalid — Data access
TLB modified — Data write
Cache error — Data access

Bus error — Data access

Interrupt (lowest priority)

Generally speaking, the exceptions described in the following sections are handled
(“processed”) by hardware; these exceptions are then serviced by software.

160 User's Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

734

7.3.5

Reset Exception

Cause

The Reset exception occurs when the ColdReset* signal is asserted and then
deasserted. This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:
» location OxFFFF FFFF BFCO 0000 in 64-bit mode

The Reset vector resides in unmapped and uncached CPU address space, so the
hardware need not initialize the TLB or the cache to process this exception. It also
means the processor can fetch and execute instructions while the caches and virtual
memory arein an undefined state.

The contents of all registersin the CPU are undefined when this exception occurs,
except for the following register fields:

e Inthe Satus register, SR is cleared to 0, and ERL and BEV are set to 1.
All other bits are undefined.

e Some Config register are initialized from the boot-time mode stream.
* The Random register is initialized to the value of its upper bound.
* The Wred register isinitialized to 0.

Servicing

The Reset exception is serviced by:

» initializing all processor registers, coprocessor registers, caches, and the
memory system

»  performing diagnostic tests
»  bootstrapping the operating system

Soft Reset Exception

Cause

The Soft Reset exception occursin response to assertion of the Reset* input Execution
begins at the Reset vector when the Reset* signal is negated.

The Soft Reset exception is not maskable.

User's Manual U11761EJ6VOUM 161



Chapter 7 CPU Exception Processing

7.3.6

162

Processing

The Reset vector is used for this exception. The Reset vector is located within
uncached and unmapped address space. Hence the cache and TLB need not be
initialized in order to process the exception. Regardless of the cause, when this
exception occurs the SR bit of the Status register is set, distinguishing this exception
from a Reset exception.

The primary purpose of the Soft Reset exception isto reinitialize the processor after a
fatal error during normal operation. Unlike an NMI, all cache and bus state machines
arereset by this exception.

When the Soft Reset exception occurs, all register contents are preserved with the
following exceptions:

e ErrorEPC register, which contains the restart PC.
* ERL, BEV, and SR hits of the Status Register, each of which is set to 1.

Because the Soft Reset can abort cache and bus operations, the cache and memory
states are undefined when the Soft Reset exception occurs.

Servicing

The Soft Reset exception is serviced by saving the current processor state for
diagnostic purposes, and reinitializing for the Reset exception.

Non Maskable Interrupt (NMI) Exception

Cause

The Non Maskable Interrupt exception occursin response to falling edge of the NMI
signal, or an external writeto the Int*[6] bit of the Interrupt Register. The NMI
interrupt is not maskable and occurs regardless of the settings of the EXL, ERL, and |E
bits in the Satus Register.

Processing

The Reset vector is used for this exception. The Reset vector is located within
uncached and unmapped address space. Hence the cache and TLB need not be
initialized in order to process the exception. Regardless of the cause, when this
exception occurs the SR bit of the Status register is set, distinguishing this exception
from a Reset exception.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

71.3.7

Because the NMI can occur in the midst of another exception, it istypically not
possible to continue program execution after servicing an NMI. An NMI exception is
taken only at instruction boundaries. The state of the caches and memory system are
preserved.

When the NMI exception occurs, all register contents are preserved with the following
exceptions:

e ErrorEPC register, which contains the restart PC.

 ERL, BEV, and SR hits of the Status Register, each of which is set to 1.

Servicing
The NMI exception is serviced by saving the current processor state for diagnostic
purposes, and reinitializing for the Reset exception.

Caution If apipeline cancelling logic (e.g. cacheerror, buserror) occurs after
the VRr5000 detects an NM|I by the V5000 startsthe NM 1 handling,
the NM I will be cancelled and only the pipeline cancelling logic will be
handled.

If an NMI cancellation occurred, make NM1* inactive once and then
makeit active again after the NMI cancellation.

Address Error Exception

Cause
The Address Error exception occurs when an attempt is made to execute one of the
following:
* load or store a doubleword that is not aligned on a doubleword boundary
» load, fetch, or store aword that is not aligned on a word boundary
» load or store a halfword that is not aligned on a halfword boundary
» reference the kernel address space from User or Supervisor mode
» reference the supervisor address space from User mode

This exception is not maskable.

User's Manual U11761EJ6VOUM 163



Chapter 7 CPU Exception Processing

7.3.8

164

Processing

The common exception vector is used for this exception. The AdEL or AdES codein
the Cause register is set, indicating whether the instruction caused the exception with
an instruction reference, load operation, or store operation shown by the EPC register
and BD bit in the Cause register.

When this exception occurs, the BadVAddr register retainsthe virtual addressthat was
not properly aligned or that referenced protected address space. The contents of the
VPN field of the Context and EntryHi registers are undefined, as are the contents of the
EntryLo register.

The EPC register contains the address of the instruction that caused the exception,
unlessthisinstruction isin abranch delay slot. If itisin abranch delay slot, the EPC
register contains the address of the preceding branch instruction and the BD bit of the
Cause register is set asindication.

Servicing

The process executing at thetimeis handed asegmentation violation signal. Thiserror
isusually fatal to the process incurring the exception.

Restriction

An address error exception will erroneously occur on a branch instruction that is the
second to last instruction of a segment (e.g., USEGO).

TLB Exceptions

Three types of TLB exceptions can occur:

» TLB Réfill occurs when thereisno TLB entry that matches an attempted
reference to a mapped address space.

e TLB Invalid occurs when avirtual address reference matchesa TLB entry
that is marked invalid.

» TLB Modified occurs when a store operation virtual address reference to
memory matches a TLB entry which is marked valid but is not dirty (the
entry is not writable).

The following three sections describe these TLB exceptions.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

TL B Refill Exception

Cause

The TLB refill exception occurs when thereisno TLB entry to match areferenceto a
mapped address space. This exception is hot maskable.

Processing

There are two specia exception vectorsfor this exception; onefor referencesto 32-bit
address spaces, and one for references to 64-bit address spaces. The UX, SX, and KX
bits of the Status register determine whether the user, supervisor or kernel address
spaces referenced are 32-bit or 64-bit spaces. All references use these vectors when
the EXL bitissetto 0inthe Statusregister. Thisexception setsthe TLBL or TLBScode
inthe ExcCodefield of the Causeregister. Thiscodeindicateswhether theinstruction,
as shown by the EPC register and the BD hit in the Cause register, caused the miss by
an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
hold the virtual address that failed address translation. The EntryHi register also
contains the ASID from which the trandation fault occurred. The Random register
normally contains avalid location in which to place the replacement TLB entry. The
contents of the EntryLo register are undefined. The EPC register contains the address
of theinstruction that caused the exception, unlessthisinstruction isin abranch delay
dlot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

To service this exception, the contents of the Context or XContext register are used as
avirtual address to fetch memory locations containing the physical page frame and
access control bitsfor apair of TLB entries. The two entries are placed into the
EntryLoO/EntryLol register; the EntryHi and EntrylLo registers are written into the
TLB.

It is possible that the virtual address used to obtain the physical address and access
control information is on a page that is not resident in the TLB. This condition is
processed by allowing a TLB refill exception in the TLB refill handler. This second
exception goes to the common exception vector because the EXL hit of the Status
register is set.

User's Manual U11761EJ6VOUM 165



Chapter 7 CPU Exception Processing

166

TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference matchesa TLB
entry that ismarked invalid (TLB valid bit cleared). Thisexception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBScode in
the ExcCode field of the Cause register is set. Thisindicates whether the instruction,
as shown by the EPC register and BD hit in the Cause register, caused the miss by an
instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address tranglation. The EntryHi register also
contains the ASID from which the trandation fault occurred. The Random register
normally contains avalid location in which to put the replacement TLB entry. The
contents of the EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception
unlessthisinstructionisin abranch delay slot, in which casethe EPC register contains
the address of the preceding branch instruction and the BD bit of the Cause register is
Set.

Servicing
A TLB entry istypically marked invalid when one of the following is true:
* avirtual address does not exist

» the virtual address exists, but is not in main memory (a page fault)

e atrapisdesired on any reference to the page (for example, to maintain a
reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with
TLBP (TLB Probe), and replaced by an entry with that entry’s Valid bit set.

TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual address reference
to memory matchesa TLB entry that is marked valid but is not dirty and thereforeis
not writable. This exception is not maskable.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

7.3.9

Processing

The common exception vector is used for this exception, and the Mod code in the
Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address translation. The EntryHi register also
contains the ASID from which the translation fault occurred. The contents of the
EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception
unlessthat instructionisin abranch delay slot, in which casethe EPC register contains
the address of the preceding branch instruction and the BD bit of the Cause register is
Set.

Servicing

The kernel usesthe failed virtual address or virtual page number to identify the
corresponding access control information. The pageidentified may or may not permit
write accesses; if writes are not permitted, awrite protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel
initsown datastructures. The TLBP instruction placestheindex of the TLB entry that
must be altered into the Index register. The EntrylLo register isloaded with aword
containing the physical page frame and access control bits (with the D bit set), and the
EntryHi and EntryLo registers are written into the TLB.

Cache Error Exception

Cause

The Cache Error exception occurs when either a primary or secondary cache parity
error is detected. This exception is maskable by the DE bit in the Status Register.
Processing

The processor setsthe ERL bit inthe Satusregister, savesthe exception restart address
in the ErrorEPC register, and then transfers the information to a specia vector in
uncached space;

If BEV =0, the vector is OxFFFF FFFF A000 0100.
If BEV = 1, the vector is OxFFFF FFFF BFCO 0300.

User's Manual U11761EJ6VOUM 167



Chapter 7 CPU Exception Processing

7.3.10

168

Servicing
All errors should belogged. To correct parity errors the system uses the CACHE
instruction to invalidate the cache block, overwrite the old data through a cache miss,

and resumes execution with an ERET. Other errors are not correctable and are likely
to be fatal to the current process.

BusError Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus time-
out, backplane bus parity errors, and invalid physical memory addresses or access
types. This exception is not maskable.

A Bus Error exception occurs when a cache miss refill, uncached reference, or an
unbuffered write occurs synchronously; a Bus Error exception resulting from a
buffered write transaction must be reported using the general interrupt mechanism.

Processing

The common interrupt vector isused for aBus Error exception. The|BE or DBE code
in the ExcCode field of the Cause register is set, signifying whether the instruction (as
indicated by the EPC register and BD bit in the Cause register) caused the exception
by an instruction reference, load operation, or store operation.

The EPC register contains the address of the instruction that caused the exception,
unlessitisin abranch delay slot, in which case the EPC register contains the address
of the preceding branch instruction and the BD hit of the Cause register is set.

Servicing

The physical address at which the fault occurred can be computed from information
available in the CPO registers.

e |f the IBE code in the Cause register is set (indicating an instruction fetch
reference), the virtual address is contained in the EPC register.

e |f the DBE codeis set (indicating a load or store reference), the
instruction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register if
the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by interpreting
the instruction. The physical address can be obtained by using the TLBP instruction
and reading the EntryLo register to compute the physical page number. The process
executing at the time of this exception is handed a bus error signal, which is usually
fatal.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

7.3.11

7.3.12

Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI
or DSUB instruction resultsin a2’s complement overflow. This exception is not
maskable.

Processing

The common exception vector isused for this exception, and the OV codein the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception
unlesstheinstruction isin abranch delay slot, in which case the EPC register contains
the address of the preceding branch instruction and the BD bit of the Cause register is
set.

Servicing

The process executing at the time of the exception is handed a fl oating-point
exception/integer overflow signal. This error is usually fatal to the current process.

Trap Exception

Cause

The Trap exception occurswhen aTGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI,
TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction resultsin a TRUE condition. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the Cause
register is set.

The EPC register contains the address of the instruction causing the exception unless
theinstruction isin abranch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a floating-point
exception/integer overflow signal. Thiserror is usually fatal.

User's Manual U11761EJ6VOUM 169



Chapter 7 CPU Exception Processing

7.3.13

7.3.14

170

System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SY SCALL
instruction. This exception is hot maskable.

Processing

The common exception vector isused for this exception, and the Sys codein the Cause
register is set.

The EPC register contains the address of the SY SCALL instruction unlessitisina
branch delay slot, in which case the EPC register containsthe address of the preceding
branch instruction.

If the SYSCALL instructionisin abranch delay slot, the BD bit of the Status register
is set; otherwise this bit is cleared.

Servicing

When this exception occurs, control is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SY SCALL
instruction does not re-execute; thisis accomplished by adding avalue of 4 to the EPC
register (EPC register + 4) before returning.

If aSYSCALL instruction isin abranch delay slot, a more complicated algorithm,
beyond the scope of this description, may be required.

Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK
instruction. This exception is hot maskable.

Processing

The common exception vector isused for this exception, and the BP codein the Cause
register is set.

The EPC register containsthe address of the BREAK instruction unlessitisinabranch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

7.3.15

If the BREAK instruction isin abranch delay slot, the BD bit of the Status register is
set, otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control istransferred to the applicable system
routine. Additional distinctions can be made by analyzing the unused bits of the
BREAK instruction (bits 25:6), and loading the contents of the instruction whose
address the EPC register contains. A value of 4 must be added to the contents of the
EPC register (EPC register + 4) to locate the instruction if it residesin abranch delay
slot.

To resume execution, the EPC register must be altered so that the BREAK instruction
does not re-execute; thisis accomplished by adding a value of 4 to the EPC register
(EPC register + 4) before returning.

If aBREAK instructionisin abranch delay slot, interpretation of the branch
instruction is required to resume execution.

Reserved I nstruction Exception

Cause
The Reserved Instruction exception occurs when one of the following conditions
OCCUrs:

e an attempt is made to execute an instruction with an undefined major
opcode (bits 31:26)

* an attempt is made to execute a SPECIAL instruction with an undefined
minor opcode (bits 5:0)

e an attempt is made to execute a REGIMM instruction with an undefined
minor opcode (bits 20:16)

e an attempt is made to execute 64-bit operations in 32-bit mode when in
User or Supervisor modes

64-bit operations are dwaysvalid in Kernel mode regardless of the value of the KX bit
in the Satus register.

This exception is not maskable.
Processing

The common exception vector isused for this exception, and the Rl code in the Cause
register is set.

User's Manual U11761EJ6VOUM 171



Chapter 7 CPU Exception Processing

7.3.16

172

The EPC register containsthe address of the reserved instruction unlessitisinabranch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

Servicing

No instructionsin the MIPS ISA are currently interpreted. The process executing at
thetime of thisexceptionishanded anillegal instruction/reserved operand fault signal.
Thiserror isusualy fatal.

Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either:

» acorresponding coprocessor unit that has not been marked usable, or

»  CPO instructions, when the unit has not been marked usable and the
process executes in either User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU codein the
Causeregister isset. The contents of the Coprocessor Usage Error field of the
coprocessor Control register indicate which of the four coprocessors was referenced.
The EPC register contains the address of the unusable coprocessor instruction unless
itisin abranch delay dot, in which case the EPC register contains the address of the
preceding branch instruction.

Servicing
The coprocessor unit to which an attempted reference was made is identified by the

Coprocessor Usage Error field, which results in one of the following situations:

» |If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the
COProcessor.

» If the process is entitled access to the coprocessor, but the coprocessor
does not exist or has failed, interpretation of the coprocessor instruction is
possible.

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

7.3.17

7.3.18

» |If the BD hit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the coprocessor
instruction.

» |f the processis not entitled access to the coprocessor, the process
executing at the time is handed an illegal instruction/privileged instruction
fault signal. This error is usually fatal.

Floating-Point Exception

Cause

The Floating-Point exception isused by the floating-point coprocessor. Thisexception
is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code in the
Causeregister is set.

The contents of the Floating-Point Control/Status register indicate the cause of this
exception.

Servicing

Thisexceptioniscleared by clearing the appropriate bit in the Floating-Point Control/
Satus register.

For an unimplemented instruction exception, the kernel should emulatetheinstruction;
for other exceptions, the kernel should pass the exception to the user program that
caused the exception.

Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is asserted.
The significance of these interrupts is dependent upon the specific system
implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the Int-
Mask field of the Status register, and all of the eight interrupts can be masked at once
by clearing the |E bit of the Satus register.

User's Manual U11761EJ6VOUM 173



Chapter 7 CPU Exception Processing

1.4

174

Processing
The common exception vector isused for thisexception, and the Int code in the Cause
register is set.

ThelP field of the Causeregister indicates current interrupt requests. Itispossiblethat
more than one of the bits can be simultaneously set (or even no bits may be set) if the
interrupt is asserted and then deasserted before this register is read.

Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW1 or
S\0), theinterrupt conditionis cleared by setting the corresponding Cause register bit
to 0.

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting
the condition causing the interrupt pin to be asserted.

Due to the on-chip write buffer, astore to an external device may not occur until after
other instructionsin the pipeline finish. Hence, the user must ensure that the store will
occur before the return from exception instruction (ERET) is executed. Otherwise the
interrupt may be serviced again even though thereis no actual interrupt pending.

Exception Handling and Servicing Flowcharts

The remainder of this section contains flowcharts for the following exceptions and
guidelines for their handlers:

e genera exceptions and their exception handler

* TLB/XTLB miss exception and their exception handler

» cache error exception and its handler

e reset, soft reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are
then serviced by software (SW).

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

Exceptions other than Reset, Soft Reset, NMI, CacheError or first-level TLB miss

Note: Interrupts can be masked by IE or IMs

Comments
Set FP Control Status Register| *FP Ciontr?l_fst:]atus Regifter i
. is only set if the respective exception
EnHi <- VPN2, ASID oCCUrs.
Context <- VPN2 *EnHi, X/Context are set only for
Set Cause Register TLB- Invalid, Modified,
EXCCode, CE & Refill exceptions
*BadVA is set for TLB-RE€fill,
TLB-invalid, TLB-Modified, Address

Error exceptions

Instr. in
Br.Dly. Slot?

Yes No

Cause 31 (BD) <- 1 Cause 31 (BD) <- 0
EXL =1 =1 EXL
(SR1) > (SR1)
=0 =0
Set Bad VA Set Bad VA
EPC < (PC - 4) EPC <-- PC
-

Processor forced to kernel mode
EXL<-1 and interrupts disabled

=0 (normal) =1 (bootstrap)

Y

Y

PC <- OxFFFF FFFF 8000 0000 + 180

PC <- OXxFFFF FFFF BFCO 0200 + 180

(unmapped, cached) (unmapped, uncached)

I - |
Y

To General Exception Servicing Guidelines

Figure 7-17 General Exception Handler (HW)

User's Manual U11761EJ6VOUM 175



Chapter 7 CPU Exception Processing

Comments
MFCO - * Unmapped vector so TLBMod, TLBInv,
X/Context TLB Refill exceptions not possible
EPC
Status * EXL=1 so Interrupt exceptions disabled
Cause ) )
* OS/System to avoid all other exceptions
*Only CacheError, Reset, Soft Reset, NMI
exceptions possible.
MTCO - )
(Set Status Bits:)
KSU<- 00
EXL<-0 (optional - only to enable Interrupts while keeping Kernel Mode)
IE=1

!

* After EXL=0, all exceptions allowed.
Check CAUSE REG. & Jump to (except interrupt if masked by IE or IM
appropriate Service Code and CacheError if masked by DE)

EXL=1
MTCO -
EPC
STATUS
Y * ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is

ERET in the ERET’s branch delay slot
*PC <-EPC; EXL<-0
* LLbit<-0

Figure 7-18 General Exception Servicing Guidelines (SW)

176 User's Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

Yes

\

EnHi <- VPN2, ASID

Context <- VPN2

Set Cause Reg.
EXCCode, CE and
Cause bit 31 (BD) <- 1

nstr. in

Br.Dly. Slot?

EnHi <- VPN2, ASID

Context <- VPN2

Set Cause Reg.
EXCCode, CE and
Cause bit 31 (BD) <- 0

Set BadVA
EPC <-- (PC -4)

Set BadVA
EPC <-- PC

Y
Vec. Off. = 0x080

| [

XTLB
Instruction?

\

/

Y

Vec. Off. = 0x000

Set BadVA

Vec. Off. = 0x180

|4

Points to Refill Exception

=0 (normal)

Y

(SR bit 22)

PC <- OxFFFF FFFF 8000 0000 + Vec.Off.
(unmapped, cached)

=1

Points to General Exception

Processor forced to Kernel Mode &
interrupt disabled

(bootstrap)

\J

PC <- OXFFFF FFFF BFCO 0200 + Vec.Off.
(unmapped, uncached)

[

To TLB/XTLB Exception Servicing Guidelines

Figure 7-19 TLB/XTLB Miss Exception Handler (HW)

User’'s Manual U11761EJ6VOUM

Check if exception within
another exception

177



Chapter 7 CPU Exception Processing

MFCO -

CONTEXT

Service Code

ERET

Comments

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions
not possible

* EXL=1 so Interrupt exceptions disabled
* OS/System to avoid all other exceptions

*Only CacheError, Reset, Soft Reset, NMI
exceptions possible.

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

* There could be a TLB miss again during the mapping
of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET's branch delay slot
*PC <-EPC; EXL<-0

* LLbit <- 0

Figure 7-20 TLB/XTLB Exception Servicing Guidelines (SW)

178

User’'s Manual U11761EJ6VOUM



Chapter 7 CPU Exception Processing

Note: Can be masked/disabled by DE (SR16) bit = 1

Set CacheErr Reg.

'

Y
ErrEPC <- (PC - 4) ErrEPC <- PC

Y

=0 (normal) =1 (bootstrap)

Cache Error Exception Handling (HW)

Y Y

PC <- OxFFFF FFFF A000 0000 + 100 PC <- OXxFFFF FFFF BFCO 0200 + 100
(unmapped, uncached) (unmapped, uncached)
| > < |
Y
l Comments

.................. * Unmapped Uncached vector so
TLB related & Cache Error Exception not possible

* ERL=1 so Interrupt exceptions disabled
* OS/System to avoid all other exceptions

Service Code :
! *Only Reset, Soft Reset, NMI

exceptions possible.

another Jump Instruction

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

* PC <- ErrorEPC; ERL <- 0
*LLbit<-0
Figure 7-21 Cache Error Exception Handling (HW) and Servicing Guidelines

________ l e * ERET is not allowed in the branch delay slot of

Servicing Guidelines (SW)

User's Manual U11761EJ6VOUM 179



Chapter 7 CPU Exception Processing

Soft Reset or NMI Exception Reset Exception
Status: Random <- TLBENTRIES - 1

BEV <-1 Wired <- 0

SR<- 1 Config <- Update(31:6)|| Undef(5:0)

ERL<-1 Status:
BEV <-1
SR<-0
ERL <-1

-
?

A

Y
ErrorEPC <- PC

Y

PC <- OXFFFF FFFF BFCO 0000

Reset, Soft Reset & NMI Exception Handling (HW)

Yes

fam)
5 ; Note: There is no indication from the
= (2 processor to differentiate between

%) NMI & Soft Reset; o
< 0 there must be a system level indication.
B
S .
x-s ¢ ) -
‘g O ' NMiService Code Status bit 20
Oo . X (SR)

[ = )

Lo =1
2
o n L e e e I I .

(Optional) ERET X

Figure 7-22 Reset, Soft Reset & NMI Exception Handling

180 User's Manual U11761EJ6VOUM



Chapter 8 Floating Point Unit

This chapter describes the floating-point unit (FPU) of the V5000 processor,
including the programming model, instruction set and formats, and the pipeline.

The FPU, with associated system software, fully conforms to the requirements of
ANSI/IEEE Standard 754-1985, | EEE Sandard for Binary Floating-Point
Arithmetic. In addition, the MIPS architecture fully supports the recommendations of
the standard and precise exceptions.

User's Manual U11761EJ6VOUM 181



Chapter 8 Floating Point Unit

8.1

182

Overview

The FPU operates as a coprocessor for the CPU (it isassigned coprocessor |abel CP1),
and extends the CPU instruction set to perform arithmetic operations on floating-point

values.

Figure 8-1 illustrates the functional organization of the FPU.

Data Cache
FCU
v _ 64 Control
= 64
FP Bypass
Pipeline Chain
Yy Y /
FP Mul/ FP FP
Add Ld/St ||Div/Sqrt
64 64 64
FP Reg File '

Figure 8-1 FPU Functional Block Diagram

User’'s Manual U11761EJ6VOUM



Chapter 8 Floating Point Unit

8.2

8.3

8.4

FPU Features

This section briefly describes the operating model, the load/store instruction set, and
the coprocessor interface in the FPU. A more detailed description is given in the
sections that follow.

*  Full 64-bit Operation. When the FR bit in the CPU Status register equals
0, the FPU is in 32-bit mode and contains thirty-two 32-bit registers that
hold single- or, when used in pairs, double-precision values. When the
FR bit in the CPU Satus register equals 1, the FPU is in 64-bit mode and
the registers are expanded to 64 bits wide. Each register can hold single-
or double-precision values. The FPU also includes a 32-bit Control/Satus
register that provides access to all |EEE-Standard exception handling
capabilities.

* Load and StorelInstruction Set. Like the CPU, the FPU uses aload- and
store-oriented instruction set, with single-cycle load and store operations.

» Tightly Coupled Coprocessor Interface. The FPU resides on-chip to
form atightly coupled unit with a seamless integration of floating-point
and fixed-point instruction sets. Since each unit receives and executes
instructionsin parallel, some floating-point instructions can execute at the
same single-cycle-per-instruction rate as fixed-point instructions.

FPU Programming Model

This section describes the set of FPU registers and their data organization. The FPU
registers include Floating-Point General Purpose registers (FGRs) and two control
registers: Control/Status and | mplementation/Revision.

Floating-Point General Registers (FGRS)

The FPU has a set of Floating-Point General Purpose registers (FGRs) that can be
accessed in the following ways:

User's Manual U11761EJ6VOUM 183



Chapter 8 Floating Point Unit

Floating-Point

Registers (FPR) General Purpose Registers

As 32 general purpose registers (32 FGRs), each of which is 32 bits wide
when the FR bit in the CPU Satus register equals O; or as 32 general
purpose registers (32 FGRs), each of which is 64-bits wide when FR
equals 1. The CPU accesses these registers through move, load, and store
instructions.

As 16 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the FR bit in the CPU Status
register equals 0. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to adjacently
numbered FGRs as shown in Figure 8-2.

As 32 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the FR bit in the CPU Status
register equals 1. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to an FGR as
shown in Figure 8-2.

Floating-Point Floating-Point Floating-Point

Registers (FPR) General Purpose Registers

FR=0 FR=1
( ) 31 (FGR) 0 ( ) 63 (FGR) 0
Fpro J (least) FGRO FPRO FGRO
(most) FGR1 FPR1 FGR1
Fprp J (eash FGR2 FPR2 FGR2
(most) FGR3 FPR3 FGR3
. . hd
. . hd
. . b
(least) FPR28 FGR28
FPR28
(most) FPR29 FGR29
Fpr3o < (leash FPR30 FGR30
(most) FPR31 FGR31

184

Floating-Point
Control Registers
(FCR)

Control/Status Register
31 FCR31 0 31

Implementation/Revision Register
FCRO 0

S

S

Figure 8-2 FPU Registers

User’'s Manual U11761EJ6VOUM



Chapter 8 Floating Point Unit

8.5

Floating-Point Registers

The FPU provides:

» 16 Floating-Point registers (FPRs) when the FR bit in the Status register
equals 0, or

» 32 Floating-Point registers (FPRs) when the FR bit in the Status register
equals 1.

These 64-bit registers hold floating-point val ues during floating-point operations and
are physically formed from the General Purpose registers (FGRs). When the FR bit
in the Satus register equals 1, the FPR references a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point format. 1f
the FR bit equals 0, only even numbers (the least register, as shown in Figure 8-2) can
be used to address FPRs. When the FR bit isset to a1, all FPR register numbers are
vaid.

If the FR bit equals O during a double-precision floating-point operation, the general
registersare accessed in double pairs. Thus, in adouble-precision operation, selecting
Floating-Point Register 0 (FPRO) actually addresses adjacent Floating-Point General
Purpose registers FGRO and FGRL.

User's Manual U11761EJ6VOUM 185



Chapter 8 Floating Point Unit

8.6 Floating-Point Control Registers

The FPU has 32 control registers (FCRs) that can only be accessed by move
operations. The FCRs are described below:

*  The Implementation/Revision register (FCRO) holds revision information
about the FPU.

»  The Control/Satus register (FCR31) controls and monitors exceptions,
holds the result of compare operations, and establishes rounding modes.

* FCRL1 to FCR30 are reserved.
Table 8-1 lists the assignments of the FCRs.

Table 8-1 Floating-Point Control Register Assignments

FCR Number Use
FCRO Coprocessor implementation and revision register
FCR1to FCR30 | Reserved
FCR31 Rounding mode, cause, trap enables, and flags

186 User's Manual U11761EJ6VOUM



Chapter 8 Floating Point Unit

8.6.1

Implementation and Revision Register (FCRO)

The read-only Implementation and Revision register (FCRO) specifiesthe
implementation and revision number of the FPU. Thisinformation can determine the
coprocessor revision and performance level, and can also be used by diagnostic
software.

Figure 8-3 shows the layout of the register; Table 8-2 describes the Implementation
and Revision register (FCRO) fields.

Implementation/Revision Register (FCRO)
31 16 15 87 0

0 Imp ‘ Rev
16 8 8

Figure 8-3 Implementation/Revision Register

Table8-2 FCRO Fields

Field Description
Imp Implementation number (0x23)
Rev Revision number in the form of y.x
0 :QGeazerved. Must bewritten as zeroes, and returns zeroeswhen

The revision number is avalue of the form y.x, where:

e yisamagor revision number held in bits 7:4.

e xisaminor revision number held in bits 3:0.
The revision number distinguishes some chip revisions; however, MIPS does not
guarantee that changesto its chips are necessarily reflected by the revision number, or
that changes to the revision number necessarily reflect real chip changes. For this

reason revision number values are not listed, and software should not rely on the
revision number to characterize the chip.

User's Manual U11761EJ6VOUM 187



Chapter 8 Floating Point Unit

8.6.2

31

Control/Status Register (FCR31)

The Control/Satus register (FCR31) contains control and status information that can
be accessed by instructionsin either Kernel or User mode. FCR31 also controls the
arithmetic rounding mode and enables User mode traps, as well as identifying any
exceptions that may have occurred in the most recently executed instruction, along
with any exceptions that may have occurred without being trapped.

Figure 8-4 showsthe format of the Control/Statusregister, and Table 8-3 describesthe
Control/Satus register fields. Figure 8-5 shows the Control/Satus register Cause,
Flag, and Enable fields.

Control/Status Register (FCR31)
25 24 23 22 18 17 12 11 7 6 21 0

CC7-CC1 |FS|CCO 0 EVZOUI| VZOUI | VZOUI

Cause Enables Flags RM

1 1 5 6 5 5 2

Legend: _
E = Unimplemented Operation 7 = Division by zero U = Underflow
V = Invalid Operation O = Overflow | = Inexact Operation

Figure 8-4 FP Control/Status Register Bit Assignments

Table 8-3 Control/Status Register Fields

Field

Description

CCr-CC1

Condition bits 7-1. See description of Control/Status register Condition bit.

FS

The FShit enables a value that cannot be normalized (denormarlized number) to be
flushed. When the FShit isset and the enable bit isnot set for the underflow exception
and illegal exception, the result of the denormalized number does not cause the
unimplemented operation exception, but isflushed. Whether the flushed result is O or
the minimum normalized value is determined depending on the rounding mode (refer
to Table 8-4). On the V{5000, even if the FS bit is set, if amadd, msub, nmadd or
nmsub instruction encounters adenormalized result during the multiply portion of the
calculation, an unimplemented operation exception is always taken.

CCo

Condition bit 0. See description of Control/Satus register Condition bit.

Cause

Cause bits. See description of Control/Satus register Cause, Flag, and Enable bits.

Enables

Enable bits. See description of Control/Status register Cause, Flag, and Enable bits.

Flags

Flag bits. See description of Control/Satus register Cause, Flag, and Enable bits.

RM

Rounding mode hits. See description of Control/Status register Rounding Mode
Control hits.

188

User’'s Manual U11761EJ6VOUM




Chapter 8 Floating Point Unit

D)

(2)

Cause
| E \ Z O U | Bits
[ I I I I
Bit # 11 10 9 8 7
| Enable
\ Z O U I Bits
I I I I I
Bit# 6 5 4 3 2
Flag
\% Z O U I Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation

Unimplemented Operation

Figure 8-5 Control/Satus Register Cause, Flag, and Enable Fields

Accessing the Control/Status Register

When the Control/Status register is read by a Move Control From Coprocessor 1
(CFC1) instruction, al unfinished instructionsin the pipeline are compl eted before the
contents of the register are moved to the main processor. |If afloating-point exception
occurs as the pipeline empties, the FP exception is taken and the CFC1 instruction is
re-executed after the exception is serviced.

The bitsin the Control/Status register can be set or cleared by writing to the register
using a Move Control To Coprocessor 1 (CTC1) instruction. FCR31 must only be
written to when the FPU is not actively executing fl oating-point operations; this can be
ensured by reading the contents of the register to empty the pipeline.

|EEE Standard 754

|EEE Standard 754 specifies that floating-point operations detect certain exceptional
cases, raise flags, and can invoke an exception handler when an exception occurs.
These features are implemented in the M1 PS architecture with the Cause, Enable, and
Flag fields of the Control/Satus register. The Flag bits implement IEEE 754
exception status flags, and the Cause and Enable bits implement exception handling.

User's Manual U11761EJ6VOUM 189



Chapter 8 Floating Point Unit

190

3)

(4)

(5)

Control/Status Register FS Bit

The FShit enables avalue that cannot be normalized (denormarlized number) to be
flushed. When the FShit is set and the enable bit is not set for the underflow exception
and illegal exception, the result of the denormalized number does not cause the
unimplemented operation exception, but is flushed. Whether the flushed result is O or
the minimum normalized value is determined depending on the rounding mode (refer
to Table 8-4).

However, for MADD.fmt, NMADD.fmt, MSUB.fmt, and NMSUB.fmt instructions,
the Vr5000 will alwaystake an unimplemented operation exception if theintermediate
multiply result is adenormalized value regardless of the value of the FShit.

Table 8-4 Flush Values of Denormalized Number Results

_ Flushed Result
Denormalized Rounding M ode
Number Result
RN RZ RP RM
Positive +0 +0 +25mn +0
Negative 0 -0 -0 -2

Control/Status Register Condition Bit

When afloating-point Compare operation takes place, the result is stored at bit 23 and
bits 31:25, the Condition bits, to save or restore the state of the conditionline. The CC
bit isset to 1 if the condition istrue; the bit iscleared to O if the conditionisfalse. Bit
23 and bits 31:25 are affected only by compare and Move Control To FPU instructions.

Control/Status Register Cause, Flag, and Enable Fields
Figure 8-5illustrates the Cause, Flag, and Enablefields of the Control/Status register.

CauseBits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in Figure

8-5, which reflect the results of the most recently executed instruction. The Cause hits
arealogical extension of the CPO Cause register; they identify the exceptions raised
by the last floating-point operation and raise an interrupt or exception if the
corresponding enable bit is set. If more than one exception occurs on asingle
instruction, each appropriate bit is set.

User’'s Manual U11761EJ6VOUM



Chapter 8 Floating Point Unit

The Cause bits are written by each floating-point operation (but not by load, store, or
move operations). The Unimplemented Operation (E) bit isset to a1 if software
emulationisrequired, otherwiseit remains0. The other bitsare set to 0 or 1 toindicate
the occurrence or non-occurrence (respectively) of an |EEE 754 exception.

When afloating-point exception is taken, no results are stored, and the only state
affected isthe Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the corresponding
Enable bit are set. A floating-point operation that sets an enabled Cause bit forces an
immediate exception, as does setting both Cause and Enable bits with CTC1.

There is no enable for Unimplemented Operation (E). Setting Unimplemented
Operation always generates a floating-point exception.

Before returning from afloating-point exception, software must first clear the enabled
Cause hitswith a CTC1 instruction to prevent arepeat of the interrupt. Thus, User
mode programs can never observe enabled Cause bits set; if thisinformation is
required in a User mode handler, it must be passed somewhere other than the Status
register.

For afloating-point operation that sets only unenabled Cause bits, no exception occurs
and the default result defined by IEEE 754 is stored. In this case, the exceptions that
were caused by the immediately previous floating-point operation can be determined
by reading the Cause field.

Flag Bits

The Flag bitsare cumulative and indicate that an exception was raised by an operation
that was executed since they were explicitly reset. Flag bitsaresetto 1if an IEEE 754
exceptionisraised, otherwise they remain unchanged. The Flag bitsare never cleared
as aside effect of floating-point operations; however, they can be set or cleared by
writing a new value into the Satus register, using aMove To Coprocessor Control
instruction.

When afloating-point exception istaken, the flag bits are not set by the hardware;
floating-point exception software is responsible for setting these bits before invoking
auser handler.

User's Manual U11761EJ6VOUM 191



Chapter 8 Floating Point Unit

(6) Control/Status Register Rounding M ode Control Bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM) field.

As shown in Table 8-5 these bits specify the rounding mode that the FPU uses for all
floating-point operations.

Table 8-5 Rounding Mode Bit Decoding

Rounding
Mode Mnemonic Description
RM (1:0)

Round result to nearest representable value; round to
0 RN value with least-significant bit 0 when the two nearest
representable values are equally near.

Round toward O: round to value closest to and not

! RZ greater in magnitude than the infinitely precise result.
Round toward +o0: round to value closest to and not
2 RP . .
less than the infinitely precise result.
3 RM Round toward — oo: round to value closest to and not

greater than the infinitely precise result.

8.7 Floating-Point For mats

The FPU performs both 32-hit (single-precision) and 64-bit (double-precision) |IEEE
standard floating-point operations. The 32-bit single-precision format has a 24-bit
signed-magnitude fraction field (f+s) and an 8-hit exponent (€), as shown in Figure 8-

6.
31 30 23 22 0
S e f
Sign Exponent Fraction
1 8 23

Figure 8-6 Sngle-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction field (f+9)
and an 11-bit exponent, as shown in Figure 8-7.

192 User's Manual U11761EJ6VOUM



Chapter 8 Floating Point Unit

62 52 51 0
e f
Exponent Fraction
11 52

Figure 8-7 Double-Precision Floating-Point Format

Asshowninthe abovefigures, numbersin floating-point format are composed of three
fields:

e signfield, s
» biased exponent, e = E + bias
« fraction, f = .biby...0y 4

The range of the unbiased exponent E includes every integer between the two values
Enin and Ep 5 inclusive, together with two other reserved values:

Emin -1 (to encode +0 and denormalized numbers)
*  Emax +1 (to encode +* and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero numerical value
has just one encoding.

For single- and double-precision formats, the value of a number, v, is determined by
the equations shown in Table 8-6.

Table 8-6 Calculating Valuesin Sngle and Double-Precision Formats

No. Equation

(1) |ifE=Emna*1landfz0,then vis NaN, regardless of s

(2 |IfE=Empatlandf=0,then v=(-1)°w

(3) | if Eqin < E < Emay then v= (=1)525(1.9)

(4) |ifE=Empp—1andfz0,then v=(=1)S2E™"(0.5)

(5) |ifE=Eppn—1andf=0,thenv=(-1)%

For all floating-point formats, if vis NaN, the most-significant bit of f determines
whether the value isasignaling or quiet NaN: visasignaling NaN if the most-
significant bit of f is set, otherwise, visaquiet NaN.

User's Manual U11761EJ6VOUM 193



Chapter 8 Floating Point Unit

Table 8-7 defines the values for the format parameters; minimum and maximum

floating-point values are given in Table 8-8.

Table 8-7 Floating-Point Format Parameter Values

Parameter - Format
Single Double

Emax +127 +1023
Enin -126 -1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
f (Fraction width in bits) 24 53
Format width in bits 32 64

Table 8-8 Minimum and Maximum Floating-Point Values

Type Value
Float Minimum 1.40129846e-45
Float Minimum Norm 1.17549435e-38
Float Maximum 3.40282347e+38
Double Minimum 4.9406564584124654e-324
Double Minimum Norm 2.2250738585072014e-308
Double Maximum 1.7976931348623157e+308

8.8 Binary Fixed-Point Format

Binary fixed-point values are held in 2's complement format. Unsigned fixed-point
values are not directly provided by the floating-point instruction set. Figure 8-8
illustrates binary fixed-point format; Table 8-9 lists the binary fixed-point format
fields.

194 User's Manual U11761EJ6VOUM



Chapter 8 Floating Point Unit

8.9

31

30 0

Sign Integer I

1

31

Figure 8-8 Binary Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 8-9 Binary Fixed-Point Format Fields

Field Description
sign sign bit
integer integer value

Floating-Point Instruction Set Overview

All FPU instructions are 32 bits long, aligned on aword boundary. They can be
divided into the following groups:

» Load, Store, and Move instructions move data between memory, the
main processor, and the FPU General Purpose registers.

e Conversion instructions perform conversion operations between the
various data formats.

e Computational instructions perform arithmetic operations on floating-
point values in the FPU registers.

e Compare instructions perform comparisons of the contents of registers
and set a conditional bit based on the results.

« Branch on FPU Condition instructions perform a branch to the specified
target if the specified coprocessor condition is met.

In the instruction formats shown in Table 8-10 through Table 8-13, the fmt appended
to the instruction opcode specifies the dataformat: S specifies single-precision binary
floating-point, D specifies double-precision binary floating-point, W specifies 32-bit
binary fixed-point, and L specifies 64-bit (long) binary fixed-point.

User's Manual U11761EJ6VOUM 195



Chapter 8 Floating Point Unit

Table8-10 FPU Instruction Summary: Load, Move and Store Instructions

OpCode Description
LwcCi Load Word to FPU
LWXC1 Load Word Indexed to FPU
SWC1 Store Word from FPU
SWXC1 Store Word Indexed from FPU
LDC1 Load Doubleword to FPU
LDXC1 Load Doubleword Indexed to FPU
SDC1 Store Doubleword From FPU
SDXC1 Store Doubleword Indexed From FPU
MTC1 Move Word To FPU
MFC1 Move Word From FPU
crci Move Control Word To FPU
CFC1 Move Control Word From FPU
DMTC1 Doubleword Move To FPU
DMFC1 Doubleword Move From FPU
PREFX Prefetch Indexed - Register + Register

Table8-11 FPU Instruction Summary: Conversion Instructions

OpCode Description
CVT.Sfmt Floating-point Convert to Single FP
CVT.D.fmt Floating-point Convert to Double FP
CVT.W.fmt Floating-point Convert to 32-bit Fixed Point
CVT.L.fmt Floating-point Convert to 64-bit Fixed Point
ROUND.W.fmt Floating-point Round to 32-bit Fixed Point
ROUND.L.fmt Floating-point Round to 64-bit Fixed Point
TRUNC.W.fmt Floating-point Truncate to 32-bit Fixed Point
TRUNC.L.fmt Floating-point Truncate to 64-bit Fixed Point
CEIL.W.fmt Floating-point Ceiling to 32-bit Fixed Point
CEIL.L.fmt Floating-point Ceiling to 64-bit Fixed Point
FLOOR.W.fmt Floating-point Floor to 32-hit Fixed Point
FLOOR.L.fmt Floating-point Floor to 64-bit Fixed Point

User’'s Manual U11761EJ6VOUM




Chapter 8 Floating Point Unit

8.9.1

D)

Table 8-12 FPU Instruction Summary: Computational Instructions

OpCode Description
ADD.fmt Floating-point Add
SUB.fmt Floating-point Subtract
MADD Floating-point Multiply-Add
MSUB Floating-point Multiply-Subtract
NMADD Floating-point Negative Multiply-Add
NMSUB Floating-point Negative Multiply-Subtract
MUL.fmt Floating-point Multiply
DIV.fmt Floating-point Divide
ABS.fmt Floating-point Absolute Value
MOV.fmt Floating-point Move
NEG.fmt Floating-point Negate
SQRT.fmt Floating-point Square Root
RECIP Floating-point Reciprocal
RSQRT Floating-point Reciprocal Square Root
Table 8-13 FPU Instruction Summary: Compare and Branch Instructions
OpCoaode Description
C.cond.fmt Floating-point Compare
BC1T Branch on FPU True
BC1F Branch on FPU False
BC1TL Branch on FPU True Likely
BC1FL Branch on FPU False Likely

Floating-Point Load, Store, and Move I nstructions

This section discusses the manner in which the FPU uses the load, store and move
instructions listed in Table 8-10.

Transfers Between FPU and Memory

All data movement between the FPU and memory isaccomplished by using one of the

following instructions:

User’'s Manual U11761EJ6VOUM

197



Chapter 8 Floating Point Unit

(2)

3)

(4)

198

* Load Word To Coprocessor 1 (LWC1) or Store Word From
Coprocessor 1 (SWCL) instructions, which reference a single 32-bit
word of the FPU general registers

e Load Doubleword (LDC1) or Store Doubleword (SDC1) instructions,
which reference a 64-bit doubleword.

Theseload and store operations are unformatted; no format conversions are performed
and therefore no floating-point exceptions can occur due to these operations.

Transfers Between FPU and CPU

Data can also be moved directly between the FPU and the CPU by using one of the
following instructions:

* Move To Coprocessor 1 (MTC1)

*  Move From Coprocessor 1 (MFC1)

* Doubleword Move To Coprocessor 1 (DMTC1)

* Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations perform no format
conversions and never cause floating-point exceptions.

L oad Delay and Hardwar e I nterlocks

Theinstruction immediately following aload can use the contents of the loaded
register. Insuch casesthe hardwareinterlocks, requiring additional real cycles; for this
reason, scheduling load delay slotsis desirable, although it is not required for
functional code.

Data Alignment

All coprocessor loads and stores reference the following aligned data items:

e For word loads and stores, the access type is aways WORD, and the low-
order 2 bits of the address must always be 0.

e For doubleword loads and stores, the access type is aways
DOUBLEWORD, and the low-order 3 bits of the address must always be
0.

User’'s Manual U11761EJ6VOUM



Chapter 8 Floating Point Unit

()

8.9.2

8.9.3

D)

(2)

Endianness

Regardless of byte-numbering order (endianness) of the data, the address specifiesthe
byte that has the smallest byte addressin the addressed field. For abig-endian system,
it isthe leftmost byte; for alittle-endian system, it is the rightmost byte.

Floating-Point Conversion Instructions

Conversioninstructions perform conversions between the various dataformats such as
single- or double-precision, fixed- or floating-point formats.

Floating-Point Computational Instructions
Computational instructions perform arithmetic operations on floating-point values, in
registers. There are two categories of computational instructions:

»  3-Operand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, and division

»  2-Operand Register-Type instructions, which perform floating-point
absolute value, move, negate, and square root operations

For a detailed description of each instruction, refer to the MIPS |V instruction set
manual.

Branch on FPU Condition Instructions

The Branch on FPU (coprocessor unit 1) condition instructions that can test the result
of the FPU compare (C.cond) instructions. For adetailed description of each
instruction, refer to the MIPS IV instruction set manual.

Floating-Point Compar e Oper ations

The floating-point compare (C.fmt.cond) instructions interpret the contents of two
FPU registers (fs, ft) in the specified format (fmt) and arithmetically comparethem. A
result is determined based on the comparison and conditions (cond) specified in the
instruction.

Table 8-14 lists the mnemonics for the compare instruction conditions.

User's Manual U11761EJ6VOUM 199



Chapter 8 Floating Point Unit

Table 8-14 Mnemonics and Definitions of Compare Instruction Conditions

Mnemonic Definition Mnemonic Definition

T True F False

OR Ordered UN Unordered
NEQ Not Equal EQ Equal
OLG %‘;ﬁred orLessThanorGreater | ;e | Ynordered or Equal
UGE Eglj’;ldered or Greater Than or OLT | Ordered LessThan
OGE Ordered Greater Than ULT Unordered or Less Than
UGT Unordered or Greater Than OLE Ordered Less Than or Equal
OGT Ordered Greater Than ULE LEngcj)gldered or Less Than or

ST Signaling True SF Signaling False
GLE grqﬁer Than, or Less Than or NGLE l(;lro'tE (?ur;ater Than or Less Than
SNE Signaling Not Equal SEQ Signaling Equal

GL Greater Than or Less Than NGL Not Greater Than or Less Than
NLT Not Less Than LT Less Than

GE Greater Than or Equal NGE Not Greater Than or Equal
NLE Not Less Than or Equal LE Less Than or Equal

GT Greater Than NGT Not Greater Than

8.10 FPU Instruction Pipeline Overview

8.10.1

200

The FPU provides an instruction pipeline that parallels the CPU instruction pipeline.
It shares the same five-stage pipeline architecture with the CPU.

I nstruction Execution

Figure 8-9 illustrates the 5-instruction overlap in the FPU pipeline.

User’'s Manual U11761EJ6VOUM




Chapter 8 Floating Point Unit

8.10.2

One One | One One One
| Cycle | Cycle | Cycle | Cycle | Cycle |
| 1|21 [1R|2rR[1A|2A|1D | 2D [1w]2w]|

| 1|21 [1R|2rR[1A|2A]1D | 2D [1w]2w]|

|1 ]2 [1rR[2R]1A[2A|1D | 2D [1W]2W]

1|2 [1R|2R]1A|2A]1D] 2D [aw[2ow]|

|1 |21 [1R]2R[1A[2A 1D 2D [aw|2wW]

Figure 8-9 FPU Instruction Pipeline

Figure 8-9 assumes that one instruction is completed every PCycle. Most FPU
instructions, however, require more than one cycle in the EX stage. This means the
FPU must stall the pipeline if an instruction execution cannot proceed because of
register or resource conflicts.

Instruction Execution Cycle Time

Unlike the CPU, which executes almost all instructionsin a single cycle, more time
may be required to execute FPU instructions.

Table 8-15 gives the minimum latency, in processor pipeline cycles, of each floating-
point operation for the currently implemented configurations. These latency
calculations assume the result of the operation isimmediately used in a succeeding
operation.

User's Manual U11761EJ6VOUM 201



Chapter 8 Floating Point Unit

Table 8-15 Floating-Point Operation Latencies

Pipeline Cycles Pipeline Cycles

Operation L atency/Repeat Operation | Latency/Repeat

S D w L S D
ADD.fmt 4/1 4/1 BC1T 1
SUB.fmt 4/1 4/1 BC1F vl
MUL.fmt 4/1 5/2 BCI1TL U1
DIV.fmt 21/19 | 36/34 BC1FL U1
SWC1,
SQRT.fmt 21/19 | 36/34 SDCL 2/1
LDC1,
RECIP 21/19 | 36/34 LWCL 2/11
LWXCL,
RSQRT 38/36 | 68/66 LDXC1 2/1
SWXC1,
ABS.fmt vl vl SDXC1 2/1
MTC1,
MOV.fmt U1 vl DMTCL 2/11
MFC1,
NEG.fmt vl vl DMECL 2/1
ROUND.W/

TRUNCW 4/1 4/1 CTC1 3/3
ROUND.L/ . xx
TRUNCL 4/1 4/1 CFC1 2/2

CEIL.W/

FLOORW 4/1 4/1 MADD 4/1 5/2

CEIL.L/ - .

FLOOR.L 4/1 4/1 MSUB 4/1 5/2
CVT.D.fmt 4/1 @ 41 | 4/1* NMADD 4/1 5/2
CVT.Sfmt @ 4/1 6/3 | 6/3* NMSUB 4/1 5/2
CVT.[W,L] 4/1 4/1
C.cond.fmt 1 1

() - These operations are illegal.
* e Trap on greater than 52 bits of significance.

FE e Trap on greater than 53 bits of significance.

202 User's Manual U11761EJ6VOUM




Chapter 8 Floating Point Unit

8.10.3 Instruction Scheduling Constraints

The FPU resource scheduler is kept from issuing instructions to the FPU op units
(adder, multiplier, and divider) by thelimitationsin their micro-architectures. AnFPU
ALU instruction can beissued at the sametime asany other non-FP-ALU instructions.
Thisincludes all integer instructions as well as floating-point loads and stores.

User's Manual U11761EJ6VOUM 203



Chapter 9 Floating Point Exceptions

9.1

204

This chapter describes FPU floating-point exceptions, including FPU exception types,
exception trap processing, exception flags, saving and restoring state when handling an
exception, and trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handl e either the operands
or the results of a floating-point operation in its normal way. The FPU responds by
generating an exception to initiate a software trap or by setting a status flag.

Exception Types

The FP Control/Satus register described in Chapter 8 contains an Enable bit for each
exception type; exception Enable bits determine whether an exception will cause the
FPU to initiate atrap or set a status flag.

e |If atrap istaken, the FPU remains in the state found at the beginning of
the operation and a software exception handling routine executes.

e If no trap is taken, an appropriate value is written into the FPU
destination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:
* Inexact ()
*  Underflow (V)
e Overflow (O)

User’'s Manual U11761EJ6VOUM



Chapter 9 Floating Point Exceptions

» Division by Zero (2)
* Invalid Operation (V)
Cause hits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E), to use when the
FPU cannot implement the standard M1 PS floating-point architecture, including cases
in which the FPU cannot determine the correct exception behavior. This exception
indicates the use of a software implementation. The Unimplemented Operation
exception has no Enable or Flag bit; whenever this exception occurs, an

unimplemented exception trap is taken (if the FPU interrupt input to the CPU is
enabled).

Figure 9-1 illustrates the Control/Status register bits that support exceptions.

Bit# 17 16 15 14 13 12

Cause
| E \Y Z O U | Bits
I I I I [
Bit # 11 10 9 8 7
| Enable
\% Z ®) U | Bits
I I I I I
Bit# 6 5 4 3 2
Flag
4 O U I Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation

Unimplemented Operation

Figure 9-1 Control/Satus Register Exception/Flag/Trap/Enable Bits

Each of the five |EEE Standard 754 exceptions (V, Z, O, U, I) is associated with atrap
under user control, and is enabled by setting one of the five Enable bits. When an
exception occurs, the corresponding Cause bit is set. If the corresponding Enable bit
isnot set, the Flag bitisalso set. If the corresponding Enable bit is set, the Flag bit is
not set and the FPU generates an interrupt to the CPU. Subsequent exception
processing allows atrap to be taken.

User's Manual U11761EJ6VOUM 205



Chapter 9 Floating Point Exceptions

9.2

9.3

206

Exception Trap Processing

When afloating-point exception trap is taken, the Cause register indicates the floating-
point coprocessor isthe cause of the exception trap. The Floating-Point Exception
(FPE) codeis used, and the Cause hits of the floating-point Control/Status register
indicate the reason for the floating-point exception. These bits are, in effect, an
extension of the system coprocessor Cause register.

Flags

A Flag bit is provided for each IEEE exception. This Flag bitissettoal onthe
assertion of its corresponding exception, with no corresponding exception trap
signaled.

The Flag bit isreset by writing a new value into the Satus register; flags can be saved
and restored by software either individually or as a group.

When no exception trap is signaled, floating-point coprocessor takes a default action,
providing a substitute value for the exception-causing result of the floating-point
operation. The particular default action taken depends upon the type of exception.
Table 9-1 lists the default action taken by the FPU for each of the |IEEE exceptions.

User’'s Manual U11761EJ6VOUM



Chapter 9 Floating Point Exceptions

Table9-1 Default FPU Exception Actions

Rounding

Fi Description D I ion
ed escriptiol Mode efault actio
I nexact
exception Any Supply arounded result
RN Modify underflow valuesto O with the sign of theintermediate
result
RZ Modify underflow valuesto O with the sign of theintermediate
U Underflow result
exception Modify positive underflows to the format’s smallest positive
RP o . ]
finite number; modify negative underflowsto -0
Modify negative underflowsto the format’ s smallest negative
RM L : -
finite number; modify positive underflowsto 0
RN Modify overflow valuesto ©0 with thesign of theintermediate
result
R7 Modify overflow values to the format’ s largest finite number
o Overflow with the sign of the intermediate result
exception Modify negative overflows to the format's most negative
RP L . o
finite number; modify positive overflowsto + ©0
Modify positive overflows to the format’s largest finite
RM . .
number; modify negative overflows to — 00
z Division by Any Supply aproperly signed co
zero
\% Invalid An Supply aquiet Not a Number (NaN)
operation Y PRy aq

Table 9-2 lists the exception-causing situations and contrasts the behavior of the FPU
with the requirements of the |EEE Standard 754.

User’'s Manual U11761EJ6VOUM

207



Chapter 9 Floating Point Exceptions

Table 9-2 FPU Exception-Causing Conditions

|IEEE
FPA Internal Trap Trap
Result Standard | able | Disable Notes
754
Inexact result I I I Loss of accuracy
Exponent overflow 0,12 o, o, Normalized exponent > E 5
Division by zero z z z zerols (e>_(ponent = EminL,
mantissa = 0)
Overflow on convert \% E E Source out of integer range
Signaling NaN source \% \% \
Invalid operation \Y, \Y, V 0/0, etc.
Exponent underflow U E E Normalized exponent < E i,
Denormalized or None E E Denormalizedis(exponent = Ey,in-1
QNaN and mantissa <> 0)

a The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is
disabled.

94 FPU Exceptions

The following sections describe the conditions that cause the FPU to generate each of
its exceptions, and details the FPU response to each exception-causing condition.

94.1 I nexact Exception (1)

The FPU generates the Inexact exception if one of the following occurs:
» therounded result of an operation is not exact, or
» therounded result of an operation overflows, or

» therounded result of an operation underflows and both the Underflow and
Inexact Enable bits are not set and the FS bit is set.

The FPU usually examines the operands of floating-point operations before execution
actually begins, to determine (based on the exponent values of the operands) if the
operation can possibly cause an exception. If there is apossibility of an instruction
causing an exception trap, the FPU uses a coprocessor stall to execute the instruction.

208 User's Manual U11761EJ6VOUM



Chapter 9 Floating Point Exceptions

9.4.2

It isimpossible, however, for the FPU to predetermineif an instruction will produce an
inexact result. If Inexact exception traps are enabled, the FPU uses the coprocessor
stall mechanism to execute al floating-point operations that require more than one
cycle. Since this mode of execution can impact performance, Inexact exception traps
should be enabled only when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the result register is not
modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to the
destination register if no other software trap occurs.

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operands are invalid
for an implemented operation. When the exception occurs without atrap, the MIPS
ISA definesthe result as aquiet Not a Number (NaN). The invalid operations are:

» Addition or subtraction: magnitude subtraction of infinities, such as:
(to )+ (-0)or(—ow )—(-w)

e Multiplication: O times o, with any signs

» Division: 0/0, or /e, with any signs

e Comparison of predicates involving < or > without ?, when the operands
are unordered

e Comparison or a Convert From Floating-point Operation on a signaling
NaN.

e Any arithmetic operation on a signaling NaN. A move (MOV) operation
is not considered to be an arithmetic operation, but absolute value (ABS)
and negate (NEG) are considered to be arithmetic operations and cause
this exception if one or both operands is a signaling NaN.

e Sqguare root: Vx, where x is less than zero
Software can simulate the Invalid Operation exception for other operations that are
invalid for the given source operands. Examples of these operations include |IEEE
Standard 754-specified functionsimplemented in software, such as Remainder: x REM
y, whereyisOor xisinfinite; conversion of afloating-point number to adecimal format
whose value causes an overflow, isinfinity, or is NaN; and transcendental functions,
such asIn (-5) or cos-1(3).

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: A quiet NaN isdelivered to the destination register if no other
software trap occurs.

User's Manual U11761EJ6VOUM 209



Chapter 9 Floating Point Exceptions

9.4.3

9.4.4

9.4.5

210

Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide operation if the
divisor iszero and the dividend is afinite nonzero number. Software can simulate this
exception for other operations that produce a signed infinity, such as In(0), sec(1v2),
csc(0), or 0

Trap Enabled Results: Theresult register isnot modified, and the sourceregistersare
preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly signed infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-point
result, with an unbounded exponent range, is larger than the largest finite number of
the destination format. (This exception also setsthe Inexact exception and Flag bits.)

Trap Enabled Results: Theresult register isnot modified, and the sourceregistersare
preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the
rounding mode and the sign of the intermediate result (aslisted in Table 9-1).

Underflow Exception (U)

Two related events contribute to the Underflow exception:

e creation of atiny nonzero result between +2EMiIN \yhich can cause some
later exception because it is so tiny

e extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers.

| EEE Standard 754 allows avariety of waysto detect these events, but requiresthey be
detected the same way for all operations.

Tininess can be detected by one of the following methods:

after rounding (when a nonzero result, computed as though the exponent
range were unbounded, would lie strictly between +2Emin

»  before rounding (when anonzero result, computed as though the exponent

range and the precision were unbounded, would lie strictly between
izEmin)_

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

User’'s Manual U11761EJ6VOUM



Chapter 9 Floating Point Exceptions

9.4.6

* denormalization loss (when the delivered result differs from what would
have been computed if the exponent range were unbounded)

* inexact result (when the delivered result differs from what would have
been computed if the exponent range and precision were both
unbounded).

The MIPS architecture requires that loss of accuracy be detected as an inexact result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the FShit is
not set, then an Unimplemented exception (E) is generated, and the result register is
not modified.

Trap Disabled Results: If Underflow and Inexact traps are not enabled and the FShit
is set, the result is determined by the rounding mode and the sign of the intermediate
result (aslisted in Table 9-1).

Unimplemented I nstruction Exception (E)

Any attempt to execute an instruction with an operation code or format code that has
been reserved for future definition sets the Unimplemented bit in the Cause field in the
FPU Control/Status register and traps. The operand and destination registers remain
undisturbed and theinstructionisemulated in software. Any of the |EEE Standard 754
exceptions can arise from the emulated operation, and these exceptionsin turn are
simulated.

The Unimplemented Instruction exception can also be signaled when unusual
operands or result conditions are detected that the implemented hardware cannot
handle properly. These include:

e Denormalized operand, except for Compare instruction
*  Quiet Not a Number operand, except for Compare instruction

e Denormalized result or Underflow, when either Underflow or Inexact
Enable bits are set or the FS bit is not set.

* Reserved opcodes
e Unimplemented formats
*  Operations which are invalid for their format (for instance, CVT.S.S)

NOTE: Denormalized and NaN operands are only trapped if theinstruction
isaconvert or computational operation. Moves do not trap if their operands
are either denormalized or NaNs.

On the V{5000 additional causes of the unimplemented exception include:

o |If the multiply portion of the madd, msub, nmadd, nmsub instruction
would produce an overflow, underflow or denormal output

User's Manual U11761EJ6VOUM 211



Chapter 9 Floating Point Exceptions

9.5

212

» A floating-point to 64-bit fixed-point conversion with an output that
would be greater than 2°3-1 (0x001F FFFF FFFF FFFF) or less than —2°3
(OxFFEO 0000 0000 0000)

Concerned instructions: CEIL.L.fmt, CVT.L.fmt, FLOOR.L.fmt,
ROUND.L.fmt, TRUNC.L.fmt

» A floating-point to 32-bit fixed-point conversion with an output that
would be greater than 2311 (0x7FFF FFFF) or less than —231 (0x8000
0000)

Concerned instructions: CEIL.W.fmt, CVT.W.fmt, FLOOR.W.fmt,
ROUND.W.fmt, TRUNC.W.fmt

» A 64-bit fixed-point to floating-point conversion with a source operand
that would be greater than 2°%—1 (0x000F FFFF FFFF FFFF) or less than
—252 (0xFFFO 0000 0000 0000)

Concerned instructions; CVT.D.fmt, CVT.S.fmt

* Attempting to execute a MIPS IV floating-point instruction if the MIPS
IV instruction set has not been enabled

The use of this exception for such conditionsis optional; most of these conditions are
newly developed and are not expected to be widely used in early implementations.
Loopholesare provided in the architecture so that these conditions can beimplemented
with assistance provided by software, maintaining full compatibility with the IEEE
Standard 754.

Trap Enabled Results: The original operand values are undisturbed.
Trap Disabled Results: Thistrap cannot be disabled.

Saving and Restoring State

Sixteen or thirty-two doubleword coprocessor |oad or store operations save or restore
the coprocessor floating-point register statein memory. The remainder of control and
status information can be saved or restored through Move To/From Coprocessor
Control Register instructions, and saving and restoring the processor registers.
Normally, the Control/Status register is saved first and restored last.

When the coprocessor Control/Status register (FCR31) isread, and the coprocessor is
executing one or more floating-point instructions, the instruction(s) in progress are
either completed or reported as exceptions. The architecture requiresthat no more than
one of these pending instructions can cause an exception. |If the pending instruction
cannot be completed, thisinstruction is placed in the Exception register, if present.

User’'s Manual U11761EJ6VOUM



Chapter 9 Floating Point Exceptions

9.6

Information indicating the type of exception is placed in the Control/Status register.
When state is restored, state information in the status word indicates that exceptions
are pending.

Writing a zero value to the Cause field of Control/Status register clears all pending
exceptions, permitting normal processing to restart after the floating-point register
state is restored.

The Causefield of the Control/Status register holds the results of only oneinstruction;
the FPU examines source operands before an operation isinitiated to determineif this
instruction can possibly cause an exception. If an exception is possible, the FPU
executes the instruction in stall mode to ensure that no more than one instruction (that
might cause an exception) is executed at atime.

Trap Handlersfor |EEE Standard 754 Exceptions

The |EEE Standard 754 strongly recommends that users be allowed to specify atrap
handler for any of the five standard exceptions that can compute; the trap handler can
either compute or specify a substitute result to be placed in the destination register of
the operation.

By retrieving an instruction using the processor Exception Program Counter (EPC)
register, the trap handler determines:

* exceptions occurring during the operation

» the operation being performed

* the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact
exceptions, the trap handler gains access to the correctly rounded result by examining
source registers and simulating the operation in software.

On Overflow or Underflow exceptions encountered on floating-point conversions, and
on Invalid Operation and Divide-by-Zero exceptions, the trap handler gains accessto
the operand values by examining the source registers of the instruction.

ThelEEE Standard 754 recommendsthat, if enabled, the overflow and underflow traps
take precedence over a separate inexact trap. This prioritization is accomplished in
software; hardware sets both bits.

User's Manual U11761EJ6VOUM 213



Chapter 10 Initialization Interface

The V{5000 processor has the following three types of resets; they use the VccOk,
ColdReset*, and Reset* input signals.

»  Power-on reset: starts when the power supply is turned on and completely
reinitializes the internal state machines of the processor without saving any
state information.

e Cold reset: restarts all clocks, but the power supply remains stable. A
cold reset completely reinitializes the internal state machines of the
processor without saving any state information.

»  Warm reset: restarts the processor, but does not affect clocks. A warm
reset preserves the processor internal state.

The Initialization interface is a serial interface that operates at the frequency of the
SysClock divided by 256: (SysClock/256). This low-frequency operation allows the
initialization information to be stored in alow-cost ROM device.

10.1  Processor Reset Signals

This section describes the three reset signals, VccOk, ColdReset*, and Reset*.

214 User's Manual U11761EJ6VOUM



Chapter 10 Initialization Interface

10.1.1

VccOk: When asserted’, V ccOKk indicates to the processor that the power supply
(Vcc) has been within the specific range for more than 100 milliseconds (ms) and is
expected to remain stable. The assertion of VccOKk initiates the reading of the boot-
time mode control serial stream (described in Initialization Segquence, in this chapter).

ColdReset*: The ColdReset* signal must be asserted (low) for either apower-on reset
or acold reset. ColdReset* must be deasserted synchronously with SysClock.

Reset*: the Reset* signal must be asserted for any reset sequence. It can be asserted
synchronously or asynchronously for acold reset, or synchronously to initiate awarm
reset. Reset* must be deasserted synchronously with SysClock.

M odel n: Serial boot mode datain.

ModeClock: Serial boot mode data clock, at the SysClock frequency divided by 256
(SysClock/256).

Power -on Reset

The sequence for a power-on reset is listed below.

1. Power-on reset appliesstable V¢ and V I ON® within the specific range from
the power supply to the processor. It also supplies a stable, continuous system
clock at the processor operational frequency.

2. After at least 100 msof stable Ve Vel ON®®and SysClock, the V Ok signal
is asserted to the processor. The assertion of V Ok initializes the processor
operating parameters. After the mode bits have been read in, the processor allows
itsinternal phase locked loops to lock, stabilizing the processor internal clock,
PClock.

3. ColdReset* isasserted for at least 64K (216) SysClock cycles after the assertion
of VccOk. Once the processor reads the boot-time mode control serial data
stream, ColdReset* can be deasserted. ColdReset* must be deasserted
synchronously with SysClock.

4. After ColdReset* isdeasserted synchronously, Reset* is deasserted to allow the
processor to begin running. (Reset* must be held asserted for at least 64
SysClock cycles after the deassertion of ColdReset*.) Reset* must be deasserted
synchronously with SysClock.

NOTE: ColdReset* must be asserted when V Ok asserts. The behavior of the
processor is undefined if V Ok asserts while ColdReset* is deasserted.

Note  VcclOisonly for VR5000A.

T Asserted meansthe signal istrue, or initsvalid state. For example, the low-activeReset* signal is
said to be asserted when it isin alow (true) state; the high-activeV Ok signal istrue when it is
asserted high.

User's Manual U11761EJ6VOUM 215



Chapter 10 Initialization Interface

Figure 10-1 shows the power-on system reset timing diagram.

Vce /' Notel
_/

Veal ONoteZ 7[ 3.135/

SR AVA\WAVAWAY A Eatal

o 100ms ™Y
VccOK
- —
256 SysClock Il
ModeClock - [\

|tMDS tMDH|
Modeln CBito Y {Bit1 ) || <Bit25»

tps

ColdReset*

-———=64K SysClock —— SysClpck

Reset*

Notes1. 3.135V (Vg5000), 2.3V (VR5000A, 100 to 235MHz),
2.375V (VR5000A, 236 to 250MHz),
2.5V (VR5000A, 251 to 266MHz)

2. VR5000A only
Figure 10-1 Power-on Reset Timing Diagram

10.1.2 Cold Reset

A cold reset can begin anytime after the processor has read the initialization data
stream, causing the processor to start with the Reset exception. A cold reset requires
the same sequence as a power-on reset except that the power is presumed to be stable
before the assertion of the reset inputs and the deassertion of V ccOK.

To begin the reset sequence, V Ok must be deasserted for aminimum of at |east 64
MasterClock cycles before reassertion.

Figure 10-2 shows the cold reset timing diagram.

216 User's Manual U11761EJ6VOUM



Chapter 10 Initialization Interface

10.1.3

VCC H
VCC' ONote "
S FAVA\WAVAUNAY AN Eatal
>64
| SysClock 4
VecOK f Nl -
256 SysClock .
ModeClock F /[
ItMDS tMDH|
Modeln Cito > Bit1 ) || <Bit255
?s
ColdReset* | \
<@ >64K SysClock 4;3;%} ok
Reset* T\

Note  VR5000A only
Figure 10-2 Cold Reset Timing Diagram

Warm Reset

To execute awarm reset, the Reset* input is asserted synchronously with SysClock.
It isthen held asserted for at least 64 SysClock cycles before being deasserted
synchronously with SysClock. The boot-time mode control serial data stream is not
read by the processor on awarmreset. A warm reset forcesthe processor to start with
a Soft Reset exception.

Figure 10-3 shows the warm reset timing diagram.

User's Manual U11761EJ6VOUM 217



Chapter 10 Initialization Interface

10.1.4

10.2

218

Vee A

VecloNete [y

SR Tatay NataVatalalal
VcOK H
ColdReset* H
tDS tDS
Reset* 1 ]
264 SysClock
-4

Note  VR5000A only
Figure 10-3 Warm Reset Timing Diagram

Processor Reset State

After apower-on reset, cold reset, or warm reset, al processor internal state machines
arereset, and the processor begins execution at the reset vector. All processor internal
states are preserved during awarm reset, although the precise state of the caches
depends on whether or not a cache miss sequence has been interrupted by resetting the
processor state machines.

Initialization Sequence

The boot-mode initialization sequence beginsimmediately after V-cOK is asserted.
Asthe processor reads the serial stream of 256 bits through the M odel n pin, the boot-
mode bits initialize all fundamental processor modes.

Theinitialization sequenceis listed below.

1. Thesystem deassertstheV Ok signal. The M odeClock output isheld asserted.

2. Theprocessor synchronizes the M odeClock output at thetime VcOK is
asserted. Thefirst rising edge of M odeClock occurs 256 SysClock cycles after
VccOKk is asserted.

User’'s Manual U11761EJ6VOUM



Chapter 10 Initialization Interface

3. Each hit of the initialization stream is presented at the M odel n pin after each
rising edge of the M odeClock. The processor samples 256 initialization bitsfrom
the Model n input.

10.3  Boot-M ode Settings

The following rules apply to the boot-mode settings:

* Bit 0 of the stream is presented to the processor when VcOK is first
asserted.

* Sdlecting areserved value results in undefined processor behavior.
*  Zeros must be scanned in for all reserved hits.

User's Manual U11761EJ6VOUM 219



Chapter 10 Initialization Interface

220

Table 10-1 shows the boot mode settings.

Table 10-1 Boot Mode Settings

Bit Value | M ode Setting

0 Reserved: must be zero
XmitDatPat: System interface data rate for block writes
only
0 DDDD
1 DDxDDx
2 DDxxDDxx

) 3 DxDxDxDx

L4 4 DDxxxDDxxx
5 DDxxxxDDxxxx
6 DxxDxxDxxDxx
7 DDXXXXXXDDXXXXXX
8 DXXXDXXXDxXXDxxX
9:15 Reserved
SysCkRatio: PClock to SysClock Multiplier.
0 Multiply by 2
1 Multiply by 3
2 Multiply by 4

5:7 3 Multiply by 5
4 Multiply by 6
5 Multiply by 7
6 Multiply by 8
7 Reserved
EndBit: Specifiesbyteordering. Logically ORed with the
BigEndian signal.

8 0 LitleEndian
1 Big Endian
Non-Block Write: Determines how non-block writes are
handled.
0 V r4x00 compatible

9:10
1 Reserved
2 Pipelined writes
3 Write-reissue
TmrintEn: Disables Timer Interrupt on Int*[5]

11 0 Timer Interrupt Enabled
1 Timer Interrupt Disabled

User’'s Manual U11761EJ6VOUM




Chapter 10 Initialization Interface

Bit

Value

| M ode Setting

12

Secondary Cache Enable

0

Secondary Cache Disabled

1

Secondary Cache Enabled

13:14

DrvOut: Output driver slew rate control

10

100% (fastest)

11

83%

00

67%

01

50% (Slowes))

15

Secondary cache SRAM protocol

0

Pipelined

1

Burst

16:17

Secondary cache size

0

512 KB secondary cache

1

1 MB secondary cache

2

2 MB secondary cache

3

Reserved

18

CPO Count Register Update Rate

0

1/2 x PClocK

1

1 x PClockK

19

Reserved: Must be zero

20

Reserved: Must be zero

However, must be set for Rev. 2.41 or lower of V5000

21:32

Reserved: Must be zero

33

Reserved: Must be zero

However, must be set for Rev. 2.41 or lower of V{5000

34:36

Reserved: Must be zero

37

Reserved: Must be zero

However, must be set for Rev. 2.x or lower of Vg5000

38

Enable 2.5PClock to SysClock Multiplier’Note 1, Note2

0

Disable

1

Enable

39:255

Reserved: Must be zero

Notes1. Thisisfor VR5000A. This bit must be zero for Vg5000.
In case bit38 is set, the SysCkRatio (bit5-7) isignored.

2.

User’'s Manual U11761EJ6VOUM

221



Chapter 11 Clock Interface

11.1

1111

11.1.2

222

Basic System Clocks

The various clock signals used in the V g5000 processor are described below, starting
with SysClock, upon which the processor bases al internal and external clocking.

SysClock

The processor bases al internal and external clocking on the single SysClock input
signal.

PClock

The processor generates an internal clock, PClock, at the initialization-interface-
specified frequency multiplier of SysClock and phase-aligned to SysClock. All
internal registers and latches use PClock.

User’'s Manual U11761EJ6VOUM



Chapter 11 Clock Interface

11.1.3

11.14

Alignment to SysClock

*  Processor output data changes a minimum of tpy, ns and becomes stable
amaximum of tpg ns after the rising edge of SysClock. This drive-time
is the sum of the maximum delay through the processor output drivers
together with the maximum clock-to-Q delay of the processor output
registers.

*  Processor input data must be stable for a maximum of tpg ns before the
rising edge of SysClock and must remain stable a minimum of tpy ns
after the rising edge of SysClock.

Phase-L ocked Loop (PLL)

The processor aligns PClock and SysClock with internal phase-locked loop (PLL)
circuitsthat generate aligned clocks. By their nature, PLL circuits are only capable of
generating aligned clocks for SysClock frequencies within alimited range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or jitter; a
clock aligned with SysClock by the PLL can lead or trail SysClock by as much asthe
related maximum jitter t;; allowed by theindividual vendor. Thet;; parameter must be
added to the tpg, tp, and tpo parameters, and subtracted from the tp)yy parameters to
get the total input and output timing parameters.

Figure 11-1 shows the SysClock timing parameters.

tcr  lcr i

Figure 11-1 SysClock Timing

User's Manual U11761EJ6VOUM 223



Chapter 11 Clock Interface

11.2

Connecting Clocksto a Phase-L ocked System

When the processor is used in a phase-locked system, the external agent must phase
lock its operation to a common SysClock. In such a system, the transmission of data
and datasampling have common characteristics, evenif the components have different
delay values. For example, transmission time (the amount of time asignal takesto
move from one component to another along a trace on the board) between any two
components A and B of a phase-locked system can be calculated from the following
equation:

Transmission Time = (SClock period) — (ipg for A) — (tpg for B) —
(Clock Jitter for A Max) — (Clock Jitter for B Max)

Figure 11-2 shows a block-level diagram of a phase-locked system using the V g5000
processor.

SysClock

224

VR5000 External Agent

SysClock SysClock

SysCmd(8:0) SysCmd(8:0)

SysAD(63:0) SysAD(63:0)

Figure 11-2 Phase-Locked System

User’'s Manual U11761EJ6VOUM



Chapter 12 Cache Organization and Operation

This chapter describes in detail the cache memory: its place in the Vg5000 memory
organization, and individual organization of the caches.

This chapter uses the following terminology:
» The data cache may also be referred to as the D-cache.
e Theinstruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

User's Manual U11761EJ6VOUM 225



Chapter 12 Cache Organization and Operation

12.1 Memory Organization

Figure 12-1 shows the V g5000 system memory hierarchy. In the logical memory
hierarchy, the caches lie between the CPU and main memory. They are designed to
make the speedup of memory accesses transparent to the user.

Each functional block in Figure 12-1 has the capacity to hold more data than the block
aboveit. For instance, physical main memory hasalarger capacity than the caches. At
the same time, each functional block takes longer to access than any block aboveit.

For instance, it takes longer to access datain main memory than in the CPU on-chip

registers.

....................... '
' VR5000 CPU '
. v o A
. ' g
. Registers Registers 2
: &
' I-cache D-cache :
. Primary Cache 3
: 5

IS

O

\J
Secondary Cache Faster Access Increasing Data
Time Capacity

A

Main Memory |

Memory

Disk, CD-ROM,

Tape, etc.

Peripherals

Figure 12-1 Logical Hierarchy of Memory

The V5000 processor has two on-chip caches: one holdsinstructions (theinstruction
cache), the other holds data (the data cache). The instruction and data caches can be
read in one PClock cycle.

226 User's Manual U11761EJ6VOUM



Chapter 12 Cache Organization and Operation

12.2

12.2.1

12.2.2

Data writes are pipelined and can complete at arate of one per PClock cycle. In the
first stage of the cycle, the store address is translated and the tag is checked; in the
second stage, the datais written into the data RAM.

Figure 12-2 provides a block diagram of the V{5000 cache and memory model.

VR5000

\

Main Memory

Cache Controller

I-cache

Secondary Cache

\

Caches

I-cache Instruction cache
D-cache Data cache

Figure 12-2 VR5000 Cache Support

Primary Cache Organization
This section describes the organization of the on-chip data and instructio caches.

CachelLineLengths

A cachelineisthe smallest unit of information that can be fetched from main memory
for the cache, and that is represented by a single tag.

Theline size fot the instruciton/data cache is 32 bytes.

Cache Sizes
The VR5000 instruciton cache is 32 KB; the data cache is 32 KB.

User's Manual U11761EJ6VOUM 227



Chapter 12 Cache Organization and Operation

12.2.3 Organization of the Instruction Cache (I-Cache)

The V5000 procesosr |-cache has the following characteristics:
e 2-way set associative
* indexed with a virtual address
» checked with a physical tag

organized with a 32-byte cache line.

26 25 24 23 0
P PState PTag
1 2 24

71 64 63 0

8 64

P: Even parity for the PTag

PState:  Primary cache state

PTag: Primary cache tag (bits 35:12 of the physical address)
DataP:  Even parity for the data

Data: I-cache data

Figure 12-3 Primary Instruction Cache Line Format

228 User's Manual U11761EJ6VOUM



Chapter 12 Cache Organization and Operation

12.2.4 Organization of the Data Cache (D-Cache)

The V5000 processor D-cache has the following characteristics:
e write-back or write-through
e 2-way set associative
* indexed with a virtual address
e checked with a physical tag

organized with a 32-byte cache line.

26 25 24 23 0
P PState PTag
1 2 24
71 64 63 0

8 64

P: Even parity for the PTag

PState:  Primary cache state

PTag: Primary cache tag (bits 35:12 of the physical address)
DataP.  Even parity for the data

Data D-cache data

Figure 12-4 Primary Data Cache Line Format

User's Manual U11761EJ6VOUM 229



Chapter 12 Cache Organization and Operation

12.3  Secondary Cache Organization

The V5000 has a secondary cache interface and can operate with an external
secondary cache.

The secondary cacheis:

Vidx:

SState:

STag:
DataP:
Data:

230

direct-mapped

indexed with a virtual address

checked with a physical tag

organized with an 8-word (32-byte) cache line
either 512 KB, 1 MB, or 2 MB in size.

37 35 34 32 31 0
Vidx SState STag
3 3 32

71 64 63 0

8 64

Virtual index of the associated primary cache line (bits 14:12 of the virtual address)
Secondary cache state

Secondary cache tag (bits 35:17 of the physical address)

Even parity for the data

Secondary cache data

Figure 12-5 Secondary Cache Line Format

User’'s Manual U11761EJ6VOUM



Chapter 13 VR5000 Processor Bus Interface

The System interface allows the processor to access external resources needed to
satisfy cache misses and uncached operations, while permitting an external agent
access to some of the processor internal resources.

The clock portion of the V5000 system interface has been simplified and many of the
externa clock signals have been deleted from the system interface of the V g4000
Series.

The VR5000 processor supports up to a 100 MHz pipelined SysAD bus. V5000 also
implements aunified, write-through secondary cache which has the same 32-byteline
size asthe primary caches. Secondary cache index and control signals are supplied by
the processor. Secondary cache sizes of 512 KB, 1 MB, and 2 MB are supported.

This chapter describes the System interface from the point of view of both the
processor and the external agent.

User's Manual U11761EJ6VOUM 231



Chapter 13 VR5000 Processor Bus Interface

13.1

13.2

232

TermsUsed

The following terms are used in this document:

An external agent is any logic device connected to the processor, over the
System interface, that allows the processor to issue requests.

A system event is an event that occurs within the processor and requires
access to external system resources.

Sequence refers to the precise series of requests that a processor generates
to service a system event.

Protocol refers to the cycle-by-cycle signal transitions that occur on the
System interface pins to assert a processor or external request.

Syntax refers to the precise definition of bit patterns on encoded buses,
such as the command bus.

I nterface Buses

Figure 13-1 showsthe primary communication pathsfor the System interface: a 64-bit
address and data bus, SysAD[63:0], and a 9-bit command bus, SysCmd[8:0]. The
SysAD and the SysCmd buses are bidirectional; that is, they are driven by the
processor to issue a processor request, and by the external agent to issue an external

request.

A reguest through the System interface consists of :

an address

a System interface command that specifies the precise nature of the
request

a series of data elements if the request is for a write or read response.

User’'s Manual U11761EJ6VOUM



Chapter 13 VR5000 Processor Bus Interface

External Agent

SysCmd[8:0]

SysAD[63:0]

Figure 13-1 System Interface Buses

Figure 13-2 shows the primary communication paths for a secondary cache
configuration. The secondary cache sharesthe SysAD and SysADC buses between the
processor and the external agent. The processor implements the ScLine and ScWord
address busesto the secondary cache to access a cache line within the secondary cache
and 64-bit cache doublewords within the cache line, respectively.

VR5000 External

SysCmd[8:0] Agent

.
’

SysAD[63:0]
SysADCJ7:0]

ScLine[15:0]
ScWord[1:0]
Secondary
Cache

Figure 13-2 Secondary Cache Interface

User's Manual U11761EJ6VOUM 233



Chapter 14 System Interface Transactions

There are two broad categories of transactions: processor requests and external
requests. This chapter describes them.

14.1  Processor Requests

The processor issues either a single request or a series of requests—called processor
requests—through the System interface, to access an external resource. For thisto
work, the processor System interface must be connected to an external agent that is
compatible with the System interface protocol, and can coordinate access to system
resources.

234 User's Manual U11761EJ6VOUM



Chapter 14 System Interface Transactions

An external agent requesting access to a processor internal resource generates an
external request. This access request passes through the System interface. System
events and reguest cycles are shown in Figure 14-1.

V55000 External Agent
>
Processor Requests
* Read
e Write External Requests
* Write
e Null
System Events
¢ Load Miss
§ « Store Miss
* Write Back
* Write Through
» Store Hit
* Uncached Load/Store

Figure 14-1 Requests and System Events

14.1.1 Rulesfor Processor Requests

A processor request is arequest or a series of requests, through the System interface,
to access some external resource. Asshownin Figure 14-2, processor requestsinclude
read and write.

VR5000 External Agent

Processor Requests
¢ Read
* Write

Figure 14-2 Processor Requeststo External Agent

Read request asks for ablock, doubleword, partial doubleword, word, or partial word
of data either from main memory or from another system resource.

User's Manual U11761EJ6VOUM 235



Chapter 14 System Interface Transactions

1412

236

Writerequest providesablock, doubleword, partial doubleword, word, or partial word
of datato be written either to main memory or to another system resource.

The processor is only alowed to have one request pending at any time. For example,
the processor issues aread request and waits for aread response before issuing any
subsequent requests. The processor submits awrite request only if there are no read
requests pending.

The processor has the input signals RdRdy* and WrRdy* to allow an external agent
to managetheflow of processor requests. RdRdy* controlsthe flow of processor read
requests, while WrRdy* controls the flow of processor write requests. The processor
request cycle sequence is shown in Figure 14-3.

V55000 External Agent

1. Processor issues read or write
_»

2. External system controls
acceptance of requests by
asserting RdRdy* or WrRdy*

Figure 14-3 Processor Request Flow Control

Processor Read Request

When a processor issues aread request, the external agent must access the specified
resource and return the requested data.

A processor read request can be split from the external agent’s return of the requested
data; in other words, the external agent caninitiate an unrelated external request before
it returnsthe response datafor aprocessor read. A processor read request is completed
after the last word of response data has been received from the external agent.

Note that the data identifier associated with the response data can signal that the
returned data is erroneous, causing the processor to take a bus error.

Processor read requests that have been issued, but for which data has not yet been
returned, are said to be pending. A read remains pending until the requested read data
isreturned.

The external agent must be capable of accepting a processor read request any timethe
following two conditions are met:

User’'s Manual U11761EJ6VOUM



Chapter 14 System Interface Transactions

* Thereis no processor read request pending.

* Thesignal RARdy* has been asserted for two or more cycles before the
issue cycle.

14.1.3 Processor Write Request

When aprocessor issues awrite request, the specified resourceis accessed and the data
iswrittento it. A processor write request is complete after the last word of data has
been transmitted to the external agent. The Vg5000 processor supports Vg4000
compatible, write-reissue and pipelined write operations as defined in Chapter 15.

The external agent must be capabl e of accepting aprocessor write request any timethe
following two conditions are met:

» No processor read request is pending.
* The signa WrRdy* has been asserted for two or more cycles.

14.2  External Requests

External requests include write, and null requests, as shown in Figure 14-4. This
section also includes a description of read response, a specia case of an external
request.

VR5000 External Agent

External Requests
* Write
e Null

Figure 14-4 External Requeststo Processor

Writerequest providesaword of datato be written to the processor’ sinternal resource.

User's Manual U11761EJ6VOUM 237



Chapter 14 System Interface Transactions

238

Null request requires no action by the processor; it provides a mechanism for the
external agent to return the System interface to the master state without affecting the
processor.

The processor controls the flow of external requests through the arbitration signals
ExtRqst* and Release*, as shown in Figure 14-5. The external agent must acquire
mastership of the System interface beforeit is allowed to issue an external request; the
external agent arbitrates for mastership of the System interface by asserting ExtRqst*
and then waiting for the processor to assert Release* for onecycle. If Release* is
asserted as part of an uncompelled change to slave state during a processor read
request, and the secondary cache is enabled, the secondary cache access must be
resolved and be a miss. Otherwise the system interface returns to the master state.

VR5000 External Agent

| 1. External system requests bus
mastership by asserting ExtRgst*

2. Processor grants mastership by
asserting Release* >

3. External system issues an
External Request

4. Processor regains bus mastership

Figure 14-5 External Request Arbitration

Mastership of the System interface always returns to the processor after an external
request isissued. The processor does not accept a subsequent external request until it
has completed the current request.

If there are no processor reguests pending, the processor decides, based onitsinterna
state, whether to accept the external request, or to issue a new processor request. The
processor can issue anew processor request even if the external agent is requesting
access to the System interface.

The external agent asserts ExtRqst* indicating that it wishes to begin an external
request. The external agent then waits for the processor to signal that it isready to
accept this request by asserting Release*. The processor signalsthat it isready to
accept an external request based on the criteria listed below.

*  The processor completes any request in progress.

User’'s Manual U11761EJ6VOUM



Chapter 14 System Interface Transactions

14.2.1

14.2.2

*  While waiting for the assertion of RARdy* to issue a processor read
request, the processor can accept an external request if the external
request is delivered to the processor one or more cycles before RARdy* is
asserted.

*  While waiting for the assertion of WrRdy* to issue a processor write
request, the processor can accept an external request provided the external
request is delivered to the processor one or more cycles before WrRdy*
is asserted.

» |f waiting for the response to a read request after the processor has made

an uncompelled change to a slave state, the external agent can issue an
external request before providing the read response data.

External Write Request

When an external agent issues awrite request, the specified resource is accessed and
the dataiswritten to it. An external write request is complete after the word of data
has been transmitted to the processor.

The only processor resource available to an external write request is the Interrupt
register. Refer to Chapter 17 for more information.

Read Response

A read response returns data in response to a processor read request, as shown in
Figure 14-6. While aread responseistechnically an external request, it has one
characteristic that differentiatesit from all other external requests—it does not perform
System interface arbitration. For this reason, read responses are handled separately
from al other external requests, and are simply called read responses.

The data identifier associated with the response data can signal that the returned data
is erroneous, causing the processor to take a bus error.

User's Manual U11761EJ6VOUM 239



Chapter 14 System Interface Transactions

14.3

143.1

240

VR5000 External Agent

1. Read request

2. Read response

Figure 14-6 External Agent Read Response to Processor

Handling Requests

This section details the sequence, protocol, and syntax of both processor and external
requests. The following system events are discussed:

load miss

store miss

store hit

uncached loads/stores
uncached instruction fetch
load linked store conditional

Load Miss

When a processor load missesin the primary cache, before the processor can proceed
it must obtain the cache line that contains the data element to be loaded from the
external agent.

If the new cache line replaces a current dirty exclusive or dirty shared cache line, the
current cache line must be written back before the new line can be loaded in the
primary cache.

User’'s Manual U11761EJ6VOUM



Chapter 14 System Interface Transactions

The processor examines the coherency attribute in the TLB entry for the page that
contains the requested cache line, and executes one of the following request:

* The coherency attribute is noncoherent, the processor issues a
noncoherent read request.

Table 14-1 shows the actions taken on aload missto primary cache.

Table14-1 Load Missto Primary Caches

) State of Data Cache Line Being Replaced
Page Attribute

Clean/Invalid Dirty (W=1)
Noncoherent NCBR NCBR/W
NCBR.....cccceeue. Processor noncoherent block read request
NCBR/W. ............ Processor noncoherent block read request followed by processor
block write request

The processor takes the following steps:

1. The processor issues a noncoherent block read request for the cache line that
contains the data element to be loaded. If the secondary cacheis enabled and the
page coherency attribute is write-back, the response datawill also be written into
the secondary cache.

The processor then waits for an external agent to provide the read response.

The processor restarts the pipeline after the first doubleword of the data cache
missis received. The remaining three doublewords are placed in the cache after
all three doublewords have been received and the dcache is otherwiseidle.

If the current cache line must be written back, the processor issues a block write
request to save the dirty cache linein memory. If the secondary cacheis enabled and
the page attribute is write-back, the write back datawill also be written into the
secondary cache.

14.3.2 StoreMiss

When a processor store missesin the primary cache, the processor may request, from
the external agent, the cache line that contains the target |ocation of the store for pages
that are either write-back or write-through with write-allocate only. The processor
examines the coherency attribute in the TLB entry for the page that contains the
requested cache line to see if the cache line is being maintained with either awrite-
allocate or no-write-allocate policy.

User's Manual U11761EJ6VOUM 241



Chapter 14 System Interface Transactions

242

The processor then executes one of the following requests:
e |If the coherency attribute is noncoherent write-back, or write-through

with write-allocate, a noncoherent block read request is issued.

e I the coherency attribute is noncoherent write-through with no write-

allocate, a non-block write request is issued.

Table 14-2 shows the actions taken on a store miss to the primary cache.

Table 14-2 Sore Missto Primary and Secondary Caches

State of Data Cache Line Being
Page Attribute Replaced
Clean/Invalid Dirty (W=1)
Noncoherent-write-back or noncoherent-write- RIW
through with write-allocate NCBR NCB
Noncoherent-write-through with no-write- NCW NA
alocate
NCBR......ccccoeuce. Processor noncoherent block read request
NCBR/W............ Processor noncoherent block read request followed by processor block
write request
NCW ... Processor noncoherent write request

If the coherency attribute is write-back, or write-through with write-allocate, the
processor issues a non-coherent block read request for the cache line that contains the
data element to be loaded, then waits for the external agent to provide read datain
response to the read request. If the secondary cache is enabled and the page coherency
attribute iswrite-back, the response datawill also be written into the secondary cache.
If the current cache line must be written back, the processor issues awrite request for

the current cache line.

If the page coherency attribute iswrite-through, the processor issues anon-block write

request.

For awrite-through, no-write-all ocate store miss, the processor issues a non-block

write request only.

User’'s Manual U11761EJ6VOUM




Chapter 14 System Interface Transactions

14.3.3

14.3.4

14.3.5

14.3.6

StoreHit

The action on the system bus is determined by whether the line is write-back or write-
through. For lines with awrite-back policy, a store hit does not cause any processor
request on the bus. For lines with awrite-through policy, the store generates a
processor non-block write request for the store data.

Uncached Loadsor Stores

When the processor performs an uncached load, it issues a noncoherent doubleword,
partial doubleword, word, or partial word read request. When the processor performs
an uncached store, it issues a doubleword, partial doubleword, word, or partial word
write request. All writes by the processor are buffered from the system interface by a
4-entry write buffer. The write requests are sent to the system bus only when no other
requests arein progress. However, once the emptying of the write buffer has begun, it
isalowedto complete. Therefore, if the write buffer contains any entrieswhen ablock
read is requested, the write buffer isallowed to empty before the block read request is
serviced. Uncached loads and stores do not affect the secondary cache.

Uncached I nstruction Fetch

The processor issues doubleword reads for instruction fetches to uncached addresses.
Thus any system ROM address space accessed during a processor boot-restart must
support 64-bit reads.

Load Linked Store Conditional Operation

The execution of aLoad-Linked/Store-Conditional instruction sequenceis not visible
at the System interface; that is, no special requests are generated due to the execution
of thisinstruction sequence.

User's Manual U11761EJ6VOUM 243



Chapter 15 System Interface Protocols

15.1

244

The following sections contain a cycle-by-cycle description of the system interface
protocols for each type of processor and external request.

Address and Data Cycles

Cyclesin which the SysAD bus contains avalid address are called address cycles.
Cyclesinwhich the SysAD bus contains valid data are called data cycles. Vdidity of
addresses and data from the processor is determined by the state of the ValidOut*
signal. Validity of addreses and datafrom the external agent is determined by the state
of the Validln* signal. Validity of datafrom the secondary cache is determined by
the state of the pipelined SCDCE* and SCCWE* signals from the processor and the
ScDOE* signal from the external agent.

The SysCmd bus identifies the contents of the SysAD bus during any cycle in which
it isvalid from the processor or the external agent. The most significant bit of the
SysCmd bus is always used to indicate whether the current cycle is an address cycle
or adatacycle.

e During address cycles SysCmd(8) = 0. The remainder of the SysCmd
bus, SysCmd(7:0), contains the encoded system interface command.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

*  During data cycles [SysCmd(8) = 1], the remainder of the SysCmd bus,
SysCmd(7:0), contains an encoded data identifier. Thereis no SysCmd
associated with a secondary cache read response.

15.2 IssueCycles

There are two types of processor issue cycles:
e processor read request.
*  processor write request.
The processor samplesthe signal RARdy* to determine theissue cycle for aprocessor

read; the processor samples the signal WrRdy* to determine the issue cycle of a
processor write request.

Asshown in Figure 15-1, RdRdy* must be asserted two cycles prior to the address
cycle of the processor read request in order to define the address cycle as the issue

cycle.
syscye || 1] 23] afs 6]
syscock |\ S
SysAD Bus | XAder

RARdy* | \

Figure 15-1 Sate of RdRdy* Signal for Read Requests

Asshown in Figure 15-2, WrRdy* must be asserted two cycles prior to the first
address cycle of the processor write request in order to define the address cycle asthe
issue cycle.

User's Manual U11761EJ6VOUM 245



Chapter 15 System Interface Protocols

15.3

246

syscycle || 1|2 3| afs |6
syscock |\ \ S\ Y
SysAD Bus | XAder

WrRdy* | \

Figure 15-2 Sate of WrRdy* Sgnal for Write Requests

The processor repeats the address cycle for the request until the conditions for avalid
issue cycle are met. After the issue cycle, if the processor request requires datato be
sent, the data transmission begins. Thereis only one issue cycle for any processor
request.

The processor accepts external requests, even while attempting to issue a processor
request, by releasing the System interface to slave state in response to an assertion of
ExtRqst* by the external agent.

Note that the rules governing the issue cycle of aprocessor request are strictly applied
to determine which action the processor takes. The processor can either:

» complete the issuance of the processor request in its entirety before the
external request is accepted, or

» release the System interface to slave state without completing the issuance
of the processor request.

In the latter case, the processor issues the processor request (provided the processor
request is still necessary) after the external request is complete. The rules governing
an issue cycle again apply to the processor request.

Handshake Signals

The VRr5000 processor manages the flow of requests through the following six control
signals:

 RdRdy*, WrRdy* are used by the external agent to indicate when it can
accept a new read (RdRdy*) or write (WrRdy*) transaction.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

» ExtRqgst*, Release* are used to transfer control of the SysAD and
SysCmd buses. ExtRqst* is used by an external agent to indicate a need
to control the interface. Release* is asserted by the processor when it
transfers the mastership of the System interface to the external agent. For
secondary cache reads, assertion of Release* to the external agent is
speculative, and is aborted if there is a hit in the secondary cache.

*  The VR5000 processor uses ValidOut* and the external agent uses
Validin* to indicate valid command/data on the SysCmd/SysAD buses.

*  The secondary cache uses the ScCDCE*, SCCWE* and SCDOE* signals
to control validation on the SysAD and SysADC buses.

15.4  System Interface Operation

Figure 15-3 shows how the system interface operatesfrom register toregister. That is,
processor outputs come directly from output registers and begin to change with the
rising edge of SysClock.

Processor inputsarefed directly to input registersthat latch theseinput signalswith the
rising edge of SysClock. Thisalows the System interface to run at the highest
possible clock frequency.

VR5000

OUTPUT
LATCH Output data

?

D63:0

Input data

SysClock

Figure 15-3 System Interface Register-to-Register Operation

User's Manual U11761EJ6VOUM 247



Chapter 15 System Interface Protocols

1541

1542

154.3

248

Master and Slave States

When the V g5000 processor is driving the SysAD and SysCmd buses, the System
interfaceisin master state. When the external agent isdriving the SysAD and SysCmd
buses, the System interfaceisin slave state. When the secondary cacheisdriving the
SysAD and SysADC buses, the System interface isin slave state.

In master state, the processor asserts the signal ValidOut* whenever the SysAD and
SysCmd buses are valid.

In dave state, the external agent assertsthe signal Validln* whenever the SysAD and
SysCmd buses are valid and the secondary cache drives the SysAD and SysADC
buses in response to the SCDCE*, ScCCWE*, and ScCDOE* signals.

The System interface remains in master state unless one of the following occurs:

* The external agent requests and is granted the System interface (external
arbitration).

*  The processor issues a read request.

External Arbitration

The System interface must be in slave state for the external agent to issue an external
request through the System interface. Thetransition from master state to slave stateis
arbitrated by the processor using the System interface handshake signals ExtRqst*
and Release*. Thistransition is described by the following procedure:

1. Anexternal agent signalsthat it wishes to issue an external request by asserting
ExtRgst*.

2. When the processor is ready to accept an external request, it releases the System
interface from master to slave state by asserting Release* for one cycle.

3. The System interface returns to master state as soon as the issue of the external
request is complete.

Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the System interface from
master state to slave state, initiated by the processor when a processor read request is
pending. Release* is asserted automatically at the same time aread request isissued
and an uncompelled change to slave state then occurs. This transition to slave state
allows the external agent to return read response data without arbitrating for bus
ownership.

If the secondary cache is enabled and a secondary cache hit occurs, then the busis
returned to master state.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

After an uncompelled change to slave state, the processor returnsto master state at the
end of the next external request. This can be aread response, or some other type of
external request. If the external agent issues some other type of external request while
thereisapending read request, the processor performs another uncompelled changeto
dave state by asserting Release* for one cycle.

An external agent must note that the processor has performed an uncompelled change
to slave state and begin driving the SysAD bus along with the SysCmd bus. Aslong
asthe Systeminterfaceisin slave state, the external agent can begin an external request
without arbitrating for the System interface; that is, without asserting ExtRqst*.

Table 15-1 lists the abbreviations and definitions for each of the busesthat are used in
the timing diagrams that follow.

Table15-1 System Interface Requests

Scope Abbreviation M eaning
Global Unsd Unused
Addr Physical address
SysAD bus
Data<n> Data element number n of ablock of data
Cmd An unspecified System interface command
Read A processor read request command
Write A processor or external write request command
SINUl A System interface release external null request
SysCmd bus u command
NData A noncoherent dataidentifier for a data element other
than the last data element
NEOD A noncoherent data identifier for the last data element

15,5  Processor Request Protocols

Processor request protocols described in this section include:

e read
e write

NOTE: Inthetiming diagrams, the two closely spaced, wavy vertical lines, such
asthose shownin Figure 15-4, indicate one or moreidentical cycleswhich are not
illustrated due to space constraints.

User's Manual U11761EJ6VOUM 249



Chapter 15 System Interface Protocols

1551

250

Figure 15-4 Symbol for Undocumented Cycles

Processor Read Request Protocol

The following sequence describes the protocol for doubleword, partial doubleword,
word, partial word, and non-secondary cache mode processor read requests. The
secondary cache block read request protocol is described later in this section. The
numbered steps below correspond to Figure 15-5.

1

RdRdy* is asserted low, indicating the external agent is ready to accept aread
request.

With the System interface in master state, a processor read request is issued by
driving aread command on the SysCmd bus and aread address on the SysAD bus.
The physical addressisdriven onto SysAD[35:0], and virtual address bits[13:12]
are driven onto SysAD[57:56]. All other bits are driven to zero.

At the same time, the processor asserts VValidOut* for one cycle, indicating valid
datais present on the SysCmd and the SysAD buses.

NOTE: Only one processor read request can be pending at atime.

The processor makes an uncompelled change to slave state during the issue cycle
of theread request. The external agent must not assert the signal ExtRgst* for the
purposes of returning aread response, but rather must wait for the uncompelled
changeto dave state. Thesignal ExtRgst* can be asserted before or during aread
response to perform an external request other than aread response.

The processor releases the SysCmd and the SysAD buses one SysClock after the
assertion of Release*.

The external agent drives the SysCmd and the SysAD buses within two cycles
after the assertion of Release*.

Once in slave state the external agent can return the requested data through a read
response. The read response can return the requested data or, if the requested data
could not be successfully retrieved, an indication that the returned data is erroneous.
If the returned datais erroneous, the processor takes a bus error exception.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

Master

SysCycle

SysClock

SysAD Bus | XAddr >—<
4 6
SysCmd Bus | /XRead)—(

ValidOut*

RdRdy*

Release*

155.2

Figure 15-5 illustrates a processor read request, coupled with an uncompelled change
to dave state, that occurs as the read request is issued.

Timingsfor the SysADC and SysCmdP buses are the same as those of the SysAD and
SysCmd buses, respectively.

-
'

Processor | External Agent

l2]2]s|a]s]|e] 78] 9 |w0]]|i]

BYAYAYAWAVAYAVYAWAWAWAWAN

A
|

|

Figure 15-5 Processor Read Request Protocol

Any time aread request has been issued (indicating aread request is pending), the
processor will assert Release* to perform an uncompelled changeto slave state. Once
in the dave state the processor will always accept either aread response or an
ExtRqst* (if aread is pending).

Processor Write Request Protocol

Processor write requests are issued using one of three protocols.

*  Doubleword, partial doubleword, word, or partial word writes use a non-
block write request protocol.

* Non-secondary cache block writes use a block write request protocol.
e Secondary cache block write request protocol.

Processor non-block write requests are issued with the System interface in master
state, as described below in the steps below; Figure 15-6 shows a processor
noncoherent non-block write request cycle.

User's Manual U11761EJ6VOUM 251



Chapter 15 System Interface Protocols

1. WrRdy* isasserted low, indicating the external agent is ready to accept awrite
request.

2. A processor single non-block write request isissued by driving awrite command
on the SysCmd bus and awrite address on the SysAD bus. The physical address
isdriven onto SysAD[35:0], and virtual address bits[13:12] are driven onto
SysAD[57:56]. All other bits are driven to zero.

3. The processor asserts ValidOut*.

The processor drives adataidentifier on the SysCmd bus and data on the SysAD
bus.

5. Thedataidentifier associated with the data cycle must contain alast data cycle
indication. At the end of the cycle, ValidOut* is deasserted.

NOTE: Timingsfor the SysADC and SysCmdP buses are the same as those of
the SysAD and SysCmd buses, respectively.

Processor

Master - >
syscyde || 1| 2] 3| a|s|e]| 7|8 |9 |1w0]|]a]
SysAD Bus | | Addr [Datao

SysCmd Bus | l)( Write [NEOD

validoutt |

WrRdy* \@

Figure 15-6 Processor Non-Coherent Non-Block Write Request Protocol

252 User's Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

Master
SysCycle
SysClock
SysAD
SysCmd
ValidOut*

WrRdy*

Figure 15-7 Processor Non-Coherent, Non-Secondary Cache Block Write Request

Figure 15-7 illustrates a non-secondary cache block write request.

Processor

-
’

<<
-

||1|2|3|4|5|6|7|8|9|10|1l|12|

BVAVAVAWAVAVAVAWAWAWERWAN

{ Addr {pata0)pata1}pata2)pata3)

| write {NData){ NData NData)(NEOD)(

\@

8/

7

User’'s Manual U11761EJ6VOUM

253



Chapter 15 System Interface Protocols

1553

Master
SysCycle
SysClock
SysAD
SysCmd
ValidOut*
Validin*
RdRdy*

Release*

254

Processor Request Flow Control

The external agent uses RdRdy* to control the flow of processor read requests.

Figure 15-8 illustrates this flow control, as described in the steps below.

1. The processor samples the RARdy* signal to determineif the external agent is
capable of accepting aread request.

Read request is issued to the external agent.

The external agent deasserts RdRdy*, indicating it cannot accept additional read
requests.

Theread request issue is stalled because RARdy* was negated two cycles earlier.
5. Read request is again issued to the external agent.

External External
Processor Agent Processor Agent
lalz2lsfals]e|7]8]o]w]

BYAYAYAYAVAVAVAWAWAS
| {addro) DO ) Addrl
| (Read) }—— Read }——{NEOD)
4 A
| -/ /\;_/7

| / ./ /S

\@ 5

| -/ \/

Figure 15-8 Processor Request Flow Control

Figure 15-9illustrates two processor write requests in which the issue of the second is
delayed for the state of WrRdy*.

1. WrRdy* isstate low, indicating the external agent is ready to accept awrite
request.

2. The processor asserts ValidOut*, awrite command on the SysCmd bus, and a
write address on the SysAD bus.

3. The second write request is delayed until the WrRdy* signal is again asserted.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

4. The processor does not complete the issue of awrite request until it issues an
address cycle in response to the write request for which the signal WrRdy* was
asserted two cycles earlier.

NOTE: Timingsfor the SysADC and SysCmdP bhuses are the same as those of
the SysAD and SysCmd buses, respectively.

Master - Processor -
syscyele || 1] 23| als]e] 7 ]88 ]9 1w]|n]i]
VAV AVAYAVAVAVAWAWAVAVAR
SysAD Bus | | Addr [Data0) X Addr {Datao)
SysCmd Bus | Y write (NEOD) X Write NEOD!

validout | \ / \ / [
WrRdy* |\ / \ /—

Figure 15-9 Two Processor Write Requests with Second Write Delayed

The V5000 processor interface requires that Wr Rdy* be asserted two system cycles
prior totheissue of awritecycle. An external agent that negatesWr Rdy* immediately
upon receiving thewritethat fillsitsbuffer will suspend any subsegquent writesfor four
system cycles in V g4000 non-block write-compatible mode. The processor always
insertsat least two unused system cyclesafter awrite address/datapair in order to give
the external agent time to suspend the next write.

Figure 15-10 shows back-to-back write cycles in VV R4000-compatible mode.
1. WrRdy* isasserted, indicating the processor can issue awrite request.

2. WrRdy* remains asserted, indicating the external agent can accept another write
request.

3. WrRdy* deasserts, indicating the external agent cannot accept another write
request, stalling the issue of the next write request.

User's Manual U11761EJ6VOUM 255



Chapter 15 System Interface Protocols

Master

- Processor

syscycle || 1] 23| a|s5]6|7 8] 9|10 12]13]14]

S VAVAVAVAVAVAVAVAVAVANAVAVAS

Cycles 1 2 3 4

SysAD Bus | X XAddr XData XUrlsedXUrusedX Addr X Data XUmsedXUmsedX Addr X DataX
- Y I
M Write #2 Write #3

ValidOut* |

WrRdy*

256

\@

Figure 15-10 VRA4000-Compatible Back-to-Back Write Cycle Timing

An address/datapair every four system cyclesisnot sufficiently high performancefor
all applications. For this reason, the VR5000 processor provides two protocol options
that modify the V g4000 back-to-back write protocol to allow an address/data pair
every two system cycles. These two protocols are as follows:

Write Reissue allows WrRdy* to be negated during the address cycle and forces
the write cycle to be re-issued.

Pipelined Writes |eave the sample point of WrRdy* unchanged and require that
the external agent accept one more write than dictated by the V g4000 protocol.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

The write re-issue protocol is shown in Figure 15-11. Writes issue when WrRdy* is
asserted both two cycles prior to the address cycle and during the address cycle.

1. WrRdy* isasserted, indicating the external agent can accept awrite request.

2. WrRdy* remainsasserted asthe writeisissued, and the external agent isready to
accept another write request.

3. WrRdy* deasserts during the address cycle. Thiswrite request is aborted and
reissued.

WrRdy* is asserted, indicating the external agent can accept awrite request.

5. WrRdy* remains asserted as the write isissued, and the external agent is ableto
accept another write request.

Master - Processor -
| No No No No
Issue Issue Issue Issue Issue Issue
syscyde | 1| 2] 3| als| 6| 7|8 9] 10| 11]
SysClock

SysAD | ><Add rOXDataO ><Addrl><D atal>< Addrl ><Data 1><:
SysCmd[8:0] | XWriteX\lEODXWriteXNEODX Write X\IEODX:

validout* |—\ /_

WrRdy* |

Figure 15-11 Wkite Reissue

User's Manual U11761EJ6VOUM 257



Chapter 15 System Interface Protocols

15.6

258

The pipelined write protocol is shown in Figure 15-2. Writesissue when WrRdy* is
asserted two cycles beforethe address cycle and the external agent isrequired to accept
one more write after WrRdy* is negated.

1
2.

WrRdy* is asserted, indicating the external agent can accept a write request.

WrRdy* remains asserted as the write isissued, and the external agent is able to
accept another write request.

WrRdy* is deasserted, indicating the external agent cannot accept another write
request; it does, however, accept this write.

WrRdy* is asserted, indicating the external agent can accept awrite request.

Master - Processor -

No No No
Issue Issue Issue Issue Issue Issue

SysCycle |1|2|3|4|5|6|7|8|9|10| 11|

S N AVAVAVAVAVAVAVAVAVAVAVAS
SysAD | ><AddrOXDataOXAddrlXDatalX Addr2 ><Data2><:

SysCmd[8:0] | ><Write>q\1 EO D>< WriteXNEODX Write X\l EO DX:
ValidOout* |—\ /_

wRdy: |

Figure 15-12 Pipelined Writes

External Request Protocols

External requests can only be issued with the System interface in slave state. An
external agent asserts ExtRqst* to arbitrate for the System interface, then waitsfor the
processor to release the System interface to slave state by asserting Release* before
the external agent issues an external request. If the Systeminterfaceisalready in slave
state—that is, the processor has previously performed an uncompelled changeto slave
state—the external agent can begin an external request immediately.

After issuing an external request, the external agent must return the System interface
to master state. If the external agent does not have any additional external requeststo
perform, ExtRgst* must be deasserted two cycles after the cycle in which Release*

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

was asserted. For astring of external requests, the ExtRqst* signal is asserted until
the last request cycle, whereupon it is deasserted two cycles after the cyclein which
Release* was asserted.

The processor continues to handle external requests as long as ExtRqst* is asserted;
however, the processor cannot release the System interface to slave state for a
subsequent external request until it has completed the current request. Aslong as
ExtRqst* isasserted, the string of external requestsis not interrupted by a processor
request.
This section describes the following externa request protocols:

« null

e write

e read response

15.6.1 External Arbitration Protocol

System interface arbitration uses the signals ExtRgst* and Release* as described
above. Figure 15-13isatiming diagram of the arbitration protocol, in which slave and
master states are shown.

The arbitration cycle consists of the following steps:

1. Theexterna agent asserts ExtRqgst* when it wishesto submit an external request.

2. The processor waits until it is ready to handle an external request, whereupon it
asserts Release* for one cycle.

3. The processor setsthe SysAD and SysCmd buses to tristate.

The external agent must wait at least two cycles after the assertion of Release*
before it drives the SysAD and SysCmd buses.

5. The external agent negates ExtRqgst* two cycles after the assertion of Release*,
unless the external agent wishes to perform an additional external request.

6. The external agent setsthe SysAD and the SysCmd buses to tristate at the
completion of an external request.

The processor can start issuing a processor reguest one cycle after the external agent
sets the bus to tristate.

NOTE: Timingsfor the SysADC and SysCmdP buses are the same as those of the
SysAD and SysCmd buses, respectively.

User's Manual U11761EJ6VOUM 259



Chapter 15 System Interface Protocols

External
Master < Processor | Agent | Processor =
SysCycle 5 | 6 8 | 9 |10]11] 12

SysAD Bus }——{ Addr YData0——

2 omd)iEod

SysCmd Bus |

SysClock | \ / >>_/_\ﬂﬂj_\J_\IW\J_LFL
)
\
/

ValidIn* \ ]
ExtRgst* | /
Release* \ /

/\//\/\\/\/

Figure 15-13 Arbitration Protocol for External Requests

15.6.2 External Null Request Protocol

The processor supports a system interface external null request, which returns the
System interface to master state from slave state without otherwise affecting the
processor.

External null requests require no action from the processor other than to return the
System interface to master state.

Figure 15-14 shows atiming diagram of an external null request, which consist of the
following steps:

1. Theexterna agent drives a system interface release external null request
command on the SysCmd bus, and assertsValidl n* for onecycleto return system
interface ownership to the processor.

2. The SysAD busisunused (does not contain valid data) during the address cycle
associated with an external null regquest.

3. After the address cycleisissued, the null request is complete.

For a System interface release external null request, the external agent releases the
SysCmd and SysAD buses, and expects the System interface to return to the master
state.

260 User's Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

Master

External Agent | Processor

SysCycle || 2 fsfals]el7]e]o]rw]u]r]

S AV AVAVAVAVAVAVAWAY AW WA
SysAD Bus | XUnsd>—<
SysCmd Bus | XSINuII)—(

validout |

N

ValidIn*

|
ExtRqgst* |
Release* |

Figure 15-14 System Interface Release External Null Reguest

15.6.3 External Write Request Protocol

External write requests use a protocol identical to the processor single word write
protocol except the Validln* signal is asserted instead of ValidOut*. Figure 15-15
shows atiming diagram of an external write request, which consists of the following
steps:

The external agent asserts ExtRqst* to arbitrate for the System interface.

The processor releases the System interface to slave state by asserting Release*.

The external agent drives awrite command on the SysCmd bus, awrite address
on the SysAD bus, and asserts Validln*.

4. Theexterna agent drivesadataidentifier on the SysCmd bus, dataon the SysAD
bus, and asserts ValidIn*.

5. Thedataidentifier associated with the data cycle must contain a coherent or
noncoherent last data cycle indication.

6. After the datacycleisissued, thewrite request is complete and the external agent
sets the SysCmd and SysAD buses to aftristate, allowing the System interface to
return to master state. Timingsfor the SysADC and SysCmdP buses arethe same
as those of the SysAD and SysCmd buses, respectively.

External write requests are only allowed to write aword of data to the processor.
Processor behavior in response to an external write request for any data element other
than aword is undefined.

User's Manual U11761EJ6VOUM 261



Chapter 15 System Interface Protocols

Master < Processor | External Agent | Processor .
syscyee || 1] 2 3 [afs|e|7]e|e|w0fn]r]
SysClock |

SysAD Bus | >—<Addr><DataO>—<
SysCmd Bus | ) A erteXNEOD>—<

validout |

ValidIn* |

ExtRqgst* | \ /

Release* |
Figure 15-15 External Write Request, with System Interface Initially a Bus Master

15.6.4 Read Response Protocol

An external agent must return data to the processor in response to a processor resd
request by using aread response protocol. A read response protocol consists of the
following steps:

1. Theexterna agent waits for the processor to perform an uncompelled change to
slave state.

The processor returnsthe datathrough asingle datacycle or aseriesof datacycles.

After the last data cycleisissued, the read response is complete and the external
agent setsthe SysCmd and SysAD busesto atristate.

4. The System interface returns to master state.

NOTE: The processor always performs an uncompelled change to dave state
after issuing aread request.

5. Thedataidentifier for data cycles must indicate the fact that this datais response
data.

6. Thedataidentifier associated with thelast datacyclemust contain alast data cycle
indication.

For read responses to non-coherent block read requests, the response data does not

need to identify theinitial cache state. The cache state is automatically assigned as
dirty exclusive by the processor.

262 User's Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

Master

SysCycle

The data identifier associated with a data cycle can indicate that the data transmitted
during that cycle is erroneous; however, an external agent must return a data block of
the correct size regardless of the fact that the data may bein error.

The processor only checks the error bit for the first doubleword of the block. The
remaining error bits for the block are ignored.

Read response data must only be delivered to the processor when a processor read
request is pending. The behavior of the processor is undefined when a read response
ispresented to it and there is no processor read pending.

Figure 15-16 illustrates a processor word read request followed by aword read
response. Figure 15-17 illustrates a read response for a processor block read with the
System interface already in slave state.

NOTE: Timingsfor the SysADC and SysCmdP buses are the same as those of
the SysAD and SysCmd buses, respectively.

Processor—> |<_ External Agent _>|4Processor->

9 |10 |11 ] 12

SysAD Bus | \ Addr — >> XDatao
SysCmd Bus | [Read }— §§ feo
validout | \ % N
validin® | << \
ExtRgst | <<

Release* | <<

Figure 15-16 Processor Word Read Request, Followed by a Word Read Response

User's Manual U11761EJ6VOUM 263



Chapter 15 System Interface Protocols

External Agent ——— | -«—— Processor ———»

syscyde || 1| 2|3 | a5 |6 | 7|8 |9 ]|10]n]1]

syscock |\ /SN

SysAD Bus | XDataOXDataJXDataj(DataS)—(
4
SysCmd Bus | /XNData&NDaIanDaIaXNEOD\)\—(

ValidOut* | \}J 6
validine | \ /

ExtRgst* |

Release* |

Figure 15-17 Block Read Response, System Interface already in Save Sate

15.7 SysADC]7:0] Protocol

The following rules apply to the use of SysADC[7:0] during a block read response.

« Datais checked on only the first doubleword of the transfer. If datais
erroneous (SysCmd[5]=1), the primary and secondary cache lines are
invalidated and a bus error exception is generated.

* A parity error on the first doubleword will be detected as it issused and
will cause a cache parity error exception. The cache line will be valid.
Parity errors in subsequent doubles will be detected if they are used.

*  On the following three doublewords; The data erroneous bit is ignored.
Parity for each of the three doublewords is written into the cache, but is
not checked until the data is referenced.

* Any read that will fill the secondary cache must receive correct parity for
all 4 doublewords (SysCmd[4]=0) for data going to the secondary cache.

*  For a secondary cache mode read hit cycle; Data erroneous is implicitly
OFF. Check parity isimplicitly ON, indicating that the secondary cache
must implement the SysADC hits.

264 User's Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

* If amemory error occurs during a block read operation, the SysADC bits
should be forced to bad parity for all bytes affected by the memory error
during the read response. Since the processor performs an early-restart on
data cache line fills, setting the SysCmd[5] bit on any transfer other than
the first doubleword does not cause a bus error. Forcing bad parity will
generate a cache error if any of the remaining three doublewords of the
transfer are referenced.

15.8 Data Rate Control

The System interface supports amaximum datarate of one doubleword per cycle. The
rate at which datais delivered to the processor can be determined by the external
agent—for example, the external agent can drive data and assert Validin* every n
cycles, instead of every cycle. Anexternal agent can deliver dataat any rateit chooses.

The processor only accepts cyclesasvalid when Validln* isasserted and the SysCmd
bus contains a dataidentifier; thereafter, the processor continuesto accept data until it
receives the data word tagged as the last one.

Figure 15-18 shows aread responsein which datais provided to the processor at arate
of two doublewords every three cycles using the data pattern DDx.

Master - External Agent ———— | <¢— Processor
syscyele || ]2 s |als e[ 7|89 |w0]ul]

S VATV AVAVAVAVAWAWAWAWAE
SysAD Bus | XDataOXDatalX XDataZXData3>—<
SysCmd Bus | XNDataXNDataX XNDataXNEOD)—(

validout |

W B W

ValidIn*

|
ExtRgst* |
Release* |

Figure 15-18 Read Response, Reduced Data Rate, System Interface in Save Sate

User's Manual U11761EJ6VOUM 265



Chapter 15 System Interface Protocols

15.9 Data Transfer Patterns

A datapatternisasequence of lettersindicating the data and unused cyclesthat repeat
to provide the appropriate datarate. For example, the data pattern DDxx specifies a
repeatable data rate of two doublewords every four cycles, with the last two cycles
unused. Table 15-2 lists the maximum processor data rate for each of the possible
block write modes that may be specified at boot time.

Table 15-2 Transmit Data Rates and Patterns
Maximum Data Rate Data Pattern
1 Double/1 SysClock Cycle DDDD
2 Doubles/3 SysClock Cycles DDxDDx
1 Double/2 SysClock Cycles DDxxDDxx
1 Double/2 SysClock Cycles DxDxDxDx
2 Doubles/5 SysClock Cycles DDxxxDDxxx
1 Double/3 SysClock Cycles DDxxxxDDxxxX
1 Double/3 SysClock Cycles DxxDxxDxxDxx
1 Double/4 SysClock Cycles DDXXXXXXDDXXXXXX
1 Double/4 SysClock Cycles DxXXDxxXDxXxXDxxx

In Table 15-2, data patterns are specified using the letters D and x; D indicates a data
cycle and x indicates an unused cycle.

266 User's Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

15.10

15.11

I ndependent Transmissions on the SysAD Bus

In most applications, the SysAD bus is a point-to-point connection, running from the
processor to a bidirectional registered transceiver residing in an external agent. For
these applications, the SysAD bus has only two possible drivers, the processor or the
external agent.

Certain applications may require connection of additional drivers and receiversto the
SysAD bus, to allow transmissions over the SysAD bus that the processor is not
involved in. These are called independent transmissions. To effect an independent
transmission, the external agent must coordinate control of the SysAD bus by using
arbitration handshake signals and external null requests.

An independent transmission on the SysAD bus follows this procedure:

1. Theexterna agent requests mastership of the SysAD bus, to issue an external
request.

The processor releases the System interface to slave state.

The external agent then allows the independent transmission to take place on the
SysAD bus, making sure that Validl n* is not asserted while the transmission is
occurring.

4. When the transmission is complete, the external agent must issue a System
interface release external null request to return the System interface to master
State.

System Interface Endianness

The endianness of the System interface is programmed at boot time through the boot-
time mode control interface and the BigEndian pin. The BigEndian pin alowsthe
system to change the processor addressing mode without rewriting the mode ROM. If
endiannessisto be specified viathe BigEndian pin, program mode ROM bit 8 to zero.
If endiannessis to be specified by the mode ROM, ground the BigEndian pin.
Software cannot change the endianness of the System interface and the external
system; software can set the reverse endian bit to reverse the interpretation of
endianness inside the processor, but the endianness of the System interface remains
unchanged.

User's Manual U11761EJ6VOUM 267



Chapter 15 System Interface Protocols

15.12

15.13

268

System Interface Cycle Time

The processor specifies minimum and maximum cycle counts for various processor
transactions and for the processor response time to external requests. Processor
requests themselves are constrained by the System interface request protocol, and
reguest cycle counts can be determined by examining the protocol. The following
System interface interactions can vary within minimum and maximum cycle counts:

e waiting period for the processor to release the System interface to slave
state in response to an external request (release latency)

e response time for an external request that requires a response (external
response latency).

The remainder of this section describes and tabul ates the minimum and maximum
cycle counts for these System interface interactions.

Release L atency

Release latency is generally defined as the number of cycles the processor can wait to
release the System interface to slave state for an external request. When no processor
requestsarein progress, internal activity can cause the processor to wait some number
of cycles before releasing the System interface. Release latency is therefore more
specifically defined as the number of cyclesthat occur between the assertion of
ExtRqst* and the assertion of Release*.

There are three categories of release latency:

e Category 1: when the external request signal is asserted two cycles before
the last cycle of a processor request.

» Category 2: when the external request signal is not asserted during a
processor request or is asserted during the last cycle of a processor
request.

e Category 3: when the processor makes an uncompelled change to slave
state.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

15.14

15.14.1

Table 15-3 summarizes the minimum and maximum rel ease latencies for requests that
fall into categories 1, 2, and 3. Note that the maximum and minimum cycle count
values are subject to change.

Table 15-3 Release Latency for External Requests

Category Minimum PCycles Maximum PCycles
1 4 6
2 4 24
3 0 0

System Interface Commands/Data | dentifiers

System interface commands specify the nature and attributes of any System interface
request; this specification is made during the address cycle for the request. System
interface data identifiers specify the attributes of data transmitted during a System
interface data cycle.

The following sections describe the syntax, that is, the bitwise encoding of System
interface commands and data identifiers.

Reserved bits and reserved fields in the command or dataidentifier should be set to 1
for System interface commands and dataidentifiers associated with external requests.
For System interface commands and data identifiers associated with processor
requests, reserved bits and reserved fields in the command and dataidentifier are
undefined.

Command and Data I dentifier Syntax

System interface commands and data identifiers are encoded in 9 bits and are
transmitted on the SysCmd bus from the processor to an external agent, or from an
external agent to the processor, during address and data cycles. Bit 8 (the most-
significant bit) of the SysCmd bus determines whether the current content of the
SysCmd busisacommand or adataidentifier and, therefore, whether the current cycle
isan addresscycle or adatacycle. For System interface commands, SysCmd(8) must
be set to 0. For System interface data identifiers, SysCmd(8) must be set to 1.

User's Manual U11761EJ6VOUM 269



Chapter 15 System Interface Protocols

15.14.2 System Interface Command Syntax

This section describes the SysCmd bus encoding for System interface commands.
Figure 15-19 shows a common encoding used for all System interface commands.

8 7 5 4 0

0 Request Type Request Specific

Figure 15-19 System Interface Command Syntax Bit Definition

SysCmd(8) must be set to 0 for all System interface commands.

SysCmd(7:5) specify the System interface request type which may be read, write, or
null. Table 15-4 shows the types of requests encoded by the SysCmd(7:5) bits.

Table 15-4 Encoding of SysCmd(7:5) for System Interface Commands

D

SysCmd(7:5) Command
0 Read Request
1 Reserved
2 Write Request
3 Null Request
4-7 Reserved

SysCmd(4:0) are specific to each type of request and are defined in each of the

following sections.

Read Requests

Figure 15-20 shows the format of a SysCmd read request.

8

7

5 4 3 2

1

0

0

000

(see tables)

[
Read Request Specific

Figure 15-20 Read Request SysCmd Bus Bit Definition

Tables 15-5 through 15-7 list the encodings of SysCmd(4:0) for read requests.

270 User's Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

Table 15-5 Encoding of SysCmd(4:3) for Read Requests

SysCmd(4:3) Read Attributes
0-1 Reserved
2 Noncoherent block read
3 Doubleword, partial doubleword, word, or partial word

Table 15-6 Encoding of SysCmd(1:0) for Block Read Request

SysCmd(21:0) Read Block Size
0 Reserved
1 8 words
2-3 Reserved

Table 15-7 Read Request Data Size Encoding of SysCmd(2:0)

SysCmd(2:0) Read Data Size
0 1 bytevalid (Byte)

2 bytesvalid (Hafword)

3 bytesvalid (Tribyte)

4 bytesvalid (Word)

5 bytes valid (Quintibyte)

6 bytes valid (Sextibyte)

7 bytes valid (Septibyte)

8 bytes valid (Doubleword)

N[{ojoa|b~|W|IN|F

(2) WriteRequests

Figure 15-21 shows the format of a SysCmd write request.

Table 15-8 lists the write attributes encoded in bits SysCmd(4:3). Table 15-9 liststhe
block write replacement attributes encoded in bits SysCmd(2:0). Table 15-10 liststhe
write request bit encodings in SysCmd(2:0).

8 7 5 4 3 2 1 0

0 010 Write Request Specific
(see tables)
| |

Figure 15-21 Write Request SysCmd Bus Bit Definition

User's Manual U11761EJ6VOUM 271



Chapter 15 System Interface Protocols

272

3)

Table 15-8 Write Request Encoding of SysCmd(4:3)

SysCmd(4:3) Write Attributes
0 Reserved
1 Reserved
2 Block write

Doubleword, partial doubleword, word, or

3 partial word

Table 15-9 Block Write Request Encoding of SysCmd(2:0)

SysCmd(2) Reserved
SysCmd(1:0) WriteBlock Size
0 Reserved
1 8 words
2-3 Reserved

Table 15-10 Write Request Data Size Encoding of SysCmd(2:0)

SysCmd(2:0) Write Data Size

0 1 bytevalid (Byte)

2 bytes valid (Halfword)

3 bytesvalid (Tribyte)

4 bytesvalid (Word)

5 bytes valid (Quintibyte)

6 bytes valid (Sextibyte)

7 bytes valid (Septibyte)

N[O~ W|IN|E

8 bytes valid (Doubleword)

Null Requests
Figure 15-22 shows the format of a SysCmd null request.

8 7 5 4 3 2 1 0

0 011 Null Request Specific
(see tables)
| |

Figure 15-22 Null Request SysCmd Bus Bit Definition

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

15.14.3

D

System interface release external null requests use the null request command. Table
15-11 lists the encodings of SysCmd(4:3) for external null requests.

SysCmd(2:0) are reserved for null requests.

Table 15-11 External Null Request Encoding of SysCmd(4:3)

SysCmd(4:3) Null Attributes
0 System Interface release
1-3 Reserved

System Interface Data | dentifier Syntax

This section defines the encoding of the SysCmd bus for System interface data
identifiers. Figure 15-23 showsacommon encoding used for all System interface data
identifiers.

8 7 6 5 4 3 2 0
See
1 Last Resp Err Note |Reserved| Cache
Data Data Data | below State

Figure 15-23 Data Identifier SysCmd Bus Bit Definition

SysCmd(8) must be set to 1 for all System interface data identifiers.

NOTE: SysCmd(4) isreserved for processor dataidentifier. Inanexternal data
identifier, SysCmd(4) indicates whether or not to check the data and check bits
for error.

Noncoherent Data

Noncoherent data is defined as follows:

» datathat is associated with processor block write requests and processor
doubleword, partial doubleword, word, or partial word write requests

e datathat is returned in response to a processor noncoherent block read
request or a processor doubleword, partial doubleword, word, or partia
word read request

e datathat is associated with external write requests
e datathat is returned in response to an external read request

User's Manual U11761EJ6VOUM 273



Chapter 15 System Interface Protocols

274

(2)

Data I dentifier Bit Definitions

SysCmd(7) marks the last data element and SysCmd(6) indicates whether or not the
datais response data, for both processor and external coherent and noncoherent data
identifiers. Response datais data returned in response to a read request.

SysCmd(5) indicates whether or not the data element is error free. Erroneous data
contains an uncorrectable error and isreturned to the processor, forcing abuserror. In
the case of ablock response, the entire line must be delivered to the processor no matter
how minimal the error. Note that the processor only checks SysCmd[5] during thefirst
doubleword of ablock read response.

SysCmd(4) indicatesto the processor whether to check the dataand check bitsfor this
data e ement, for both coherent and noncoherent external data identifiers.

SysCmd(3) isreserved for external data identifiers.
SysCmd(4:3) are reserved for noncoherent processor data identifiers.
SysCmd(2:0) are reserved for non-coherent data identifiers.

Table 15-12 lists the encodings of SysCmd(7:3) for processor dataidentifiers. Table
15-13 lists the encodings of SysCmd(7:3) for external dataidentifiers.

Table 15-12 Processor Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) Last Data Element Indication
0 Last data element
1 Not the last data element
SysCmd(6) Response Data I ndication
0 Datais response data
1 Datais not response data
SysCmd(5) Good Data I ndication
0 Datais error free
1 Datais erroneous
SysCmd(4) Data Parity Checking Enable
0 Check data parity
1 Ignore data parity
SysCmd(3) Reserved

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

15.15

15.151

Table 15-13 External Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) Last Data Element Indication
0 Last data element
1 Not the last data element
SysCmd(6) Response Data I ndication
0 Datais response data
1 Datais not response data
SysCmd(5) Good Data I ndication
0 Dataiserror free
1 Datais erroneous
SysCmd(4) Data Checking Enable
0 Check the data and check bits
1 Do not check the data and check bits
SysCmd(3) | Reserved

System Interface Addresses

System interface addresses are full 36-bit physical addresses presented on the least-
significant 36 bits (bits 35 through 0) of the SysAD bus during address cycles. Virtual
address bits VA[13:12] appear on SysAD[57:56]. The remaining bits of the SysAD
bus are unused during address cycles.

Addressing Conventions

Addresses associated with doubleword, partial doubleword, word, or partial word
transactions and update requests, are aligned for the size of the data element. The
system uses the following address conventions:

» Addresses associated with block requests are aligned to double-word
boundaries; that is, the low-order 3 bits of address are 0.
However, when the Branch instruction is used to jump to a word
boundary (SysAD[2:0]=100) which is not a double-word boundary
(SysAD[2:0]=000) of the non-cache area, LOW is not output for the low-
order 3rd bit of the address that is output to SysAD for instruction
fetching; instead, SysAD[2:0]=100 is output.

User's Manual U11761EJ6VOUM 275



Chapter 15 System Interface Protocols

In other words, when a jump to the non-cache area with a low-order byte
address of 0x4 and 0xC has occurred, double-word access occurs but the
low-order bytes of the output address remain as 0x4 and OxC.
Immediately after such a branch, the CPU uses the word data whose byte
addresses are indicated by 0x4 and OxC.

*  Doubleword requests set the low-order 3 bits of address to 0.
*  Word requests set the low-order 2 bits of address to 0.
» Halfword requests set the low-order bit of address to 0.

* Byte, tribyte, quintibyte, sextibyte, and septibyte requests use the byte
address.

15.15.2 Subblock Ordering

The order in which datais returned in response to a processor block read request is
subblock ordering. In subblock ordering, the processor delivers the address of the
requested doubleword within the block. An external agent must return the block of
data using subblock ordering, starting with the addressed doubleword.

For block write requests, the processor always delivers the address of the doubleword
at the beginning of the block; the processor delivers data beginning with the
doubleword at the beginning of the block and progresses sequentially through the
doublewords that form the block.

During data cycles, the valid byte lines depend upon the position of the data with
respect to the aligned doubleword (this may be a byte, halfword, tribyte, quadbyte/
word, quintibyte, sextibyte, septibyte, or an octalbyte/doubleword). For example, in
little-endian mode, on a byte request where the address modulo 8is0, SysAD(7:0) are
valid during the data cycles. Table 15-14 lists the byte lanes used for partial word
transfers for both big and little endian.

276 User's Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

Table 15-14 Partial Word Transfer Byte Lane Usage

#Bytes Address SysAD bytelanesused (Big Endian)
SysCmd[2:0] | Mod 8 [g3:56[55:48[47:40[39:32[31:24]23:16] 15:8 | 7:0
0 X
1 X
2 X
1 3 X
(000) 4 X
5 X
6 X
7 X
0 X | X
> 2 X | X
(001) 4 X | X
6 X | X
0 X | X [ X
3 1 X | X | X
(010) 4 X X X
5 X | X | X
4 0 X | X [ x| X
(011) 4 X | X | X | X
5 0 X | X [ X[ x[X
(100) 3 X | X | X | X | X
6 0 X | X [ X [ x [ x]X
(101) 2 X | X | X | X | X | X
7 0 X | X [ X[ X[ x| x]X
(110 1 X | X | X | X | X | X | X
8(111) 0 X | X [ X[ x [ X[ x ][ x]Xx

15:8

23:16

3124

39:32

47:40

55:48

63:56

SysAD byte lanes used (Little Endian)

User’'s Manual U11761EJ6VOUM

277




Chapter 15 System Interface Protocols

15.15.3

15.16

15.16.1

278

Processor |nternal Address Map

External reads and writes provide access to processor internal resourcesthat may be of
interest to an external agent. The processor decodes bits SysAD(6:4) of the address
associated with an external read or write request to determine which processor internal
resource isthetarget. However, the processor does not contain any resources that are
readable through an external read request. Therefore, in response to an externa read
request the processor returns undefined data and a data identifier with its Erroneous
Databit, SysCmd(5), set. Thelnterrupt register istheonly processor internal resource
availablefor write access by an external request. The Interrupt register isaccessed by
an external write request with an address of 000, on bits 6:4 of the SysAD bus.

Error Checking

Parity Error Checking
The VR5000 processor uses only parity (error detection only).

Parity isthe simplest error detection scheme. By appending abit to the end of anitem
of data—called a parity bit—single bit errors can be detected; however, these errors
cannot be corrected.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

15.16.2

There are two types of parity:

e Odd Parity adds 1 to any even number of 1sin the data, making the total
number of 1s odd (including the parity bit).

e Even Parity adds 1 to any odd number of 1sin the data, making the total
number of 1s even (including the parity bit).

Odd and even parity are shown in the example below:

Data(3:0) Odd Perity Bit Even Perity Bit
0010 0 1

The example above shows asingle bit in Data(3:0) with avalue of 1; thishitis
Data(1).

e In even parity, the parity bit is set to 1. This makes 2 (an even number)
the total number of bits with a value of 1.

e Odd parity makes the parity bit a 0 to keep the total number of 1-value
bits an odd number—in the case shown above, the single bit Data(1).

The example below shows odd and even parity bits for various data values:

Data(3:0) Odd Perity Bit Even Perity Bit
0110 1 0
00O00O 1 0
1111 1 0
1101 0 1

Parity allows single-bit error detection, but it does not indicate which bit isin error—
for example, suppose an odd-parity value of 00011 arrives. Thelast bit isthe parity
bit, and since odd parity demands an odd number (1,3,5) of 1s, thisdataisin error: it
has an even number of 1s. However it isimpossible to tell which bitisin error.

Error Checking Operation

The processor verifies data correctness by using parity asit passes data from the
System interface to/from the primary caches.

User's Manual U11761EJ6VOUM 279



Chapter 15 System Interface Protocols

280

D)

(2)

System I nterface

The processor generates correct check bitsfor doubleword, word, or partial-word data
transmitted to the System interface. Asit checks for data correctness, the processor
passes data check bits from the primary cache, directly without changing the bits, to
the System interface.

The processor does not check data received from the System interface for external
writes. By setting the SysCmd[4] bit in the dataidentifier, it is possible to prevent the
processor from checking read response data from the System interface.

The processor does not check addresses received from the System interface and does
not generate check hits for addresses transmitted to the System interface.

The processor does not contain a data corrector; instead, the processor takes a cache
error exception when it detects an error based on data check bits. Softwareis
responsible for error handling.

System Interface Command Bus

In the Vr5000 processor, the System interface command bus has a single parity bit,
SysCmdP, that provides even parity over the 9 bits of thisbus. The SysCmdP parity
bit is not generated when the system interface isin master state and is not checked
when the System interfaceisin slave state. Thissignal is defined to maintain V g4000
compatibility and is not functional in the Vg5000.

User’'s Manual U11761EJ6VOUM



Chapter 15 System Interface Protocols

3)

Error checking operations are summarized in Table 15-15 and 15-16.

Table 15-15 Error Checking Operation for Internal Transactions

Summary of Error Checking Operations

Primary Primary
BUS Uncached Uncached Cache Load CacheWriteto Cache
Load Store from System System Instruction
Interface Interface
Processor Data From system | Notchecked | From system Checked; Trap | Check on
interface on error cache write-
unchanged back; Trap
on error
System Address, | Not Not Not Not Not
Command, and Generated Generated Generated Generated Generated
Check bits;
Transmit
SystemAddress, | Not Checked | Not Checked | Not Checked Not Checked Not Checked
Command, and
Check Bits;
Receive
System Checked, From Checked on From primary | From primary
Interface Data Trap onerror | Processor requested cache cache
doubleword,
Trap on error
System Checked, Generated Checked on From primary | From primary
Interface Data Trap on error requested cache cache
Check Bits doubleword,
Trap on error

User’'s Manual U11761EJ6VOUM

281



Chapter 15 System Interface Protocols

Table 15-16 Error Checking Operation for External Transactions

Bus External Write

Processor Data NA

System Address, Command, and Check NA
bits; Transmit

System Address, Command, and Check Not Checked

Bits, Receive
System Interface Data Not Checked
System Interface Data Check Bits Not Checked

282 User's Manual U11761EJ6VOUM



Chapter 16 Secondary Cache Interface

The VR5000 processor supports an external secondary cache by providing an internal
secondary cache controller with a dedicated secondary cache port.

16.1  Secondary Cache Transactions

For processors configured with a secondary cache, the secondary cache is a special
form of external agent that isjointly controlled by both the processor and the external
agent. Figure Figure 16-1 illustrates a processor request to the secondary cache and
external agent.

User's Manual U11761EJ6VOUM 283



Chapter 16 Secondary Cache Interface

V5000

Processor Requests
¢ Read
e Write

External Agent

.
?

Secondary Cache

o
Y o

Figure 16-1 Processor Requeststo Secondary Cache and External Agent

16.1.1 Secondary Cache Probe, Invalidate, and Clear

For secondary cache invalidate, clear, and probe operations, the secondary cacheis
controlled by the processor and the external agent is not involved in these operations.
Issuance of secondary cache invalidate, clear, and probe operations is not flow-
controlled and proceeds at the maximum datarate. Figures 16-2 and 16-3 shows the
secondary cache invalidate and tag probe operations.

VR5000

1. Invalidate/Clear Request

Secondary Cache

.
?

Figure 16-2 Secondary Cache Invalidate and Clear

284 User's Manual U11761EJ6VOUM




Chapter 16 Secondary Cache Interface

16.1.2

VR5000

1. Probe Request

Secondary Cache

-
?

2. Tag Response

Figure 16-3 Secondary Cache Tag Probe

Secondary Cache Write

For secondary cache write-through, the processor issuesablock write operation that is
directed to both the secondary cache and the external agent. |ssuance of secondary

cachewritesiscontrolled by the norma WrRdy* flow control mechanism. Secondary
cache write data transfers proceed at the data transfer rate specified in the Mode ROM

for block writes. Figure

16-4 illustrates a secondary cache write operation.

VR5000

1. Block Write Request
2. Write Response

External Agent

-
Y o

Secondary Cache

-

?

Figure 16-4 Secondary Cache Write Through

User’'s Manual U11761EJ6VOUM

285



Chapter 16 Secondary Cache Interface

16.1.3

286

Secondary Cache Read

For secondary cache reads, the processor issues a block read speculatively to both the
secondary cache and the external agent.

- If the block is present in the secondary cache, the secondary cache
provides the read response and the block read to the external agent
is aborted.

- If the block is not present in the secondary cache, the secondary
cache read is aborted and the external agent provides the read
response to both the secondary cache and the processor.

Figures 16-5 and 16-6 shows a secondary cache read hit and miss respectively.

VRS000 External Agent

1. Block Read Request

.
?

.
’

3. Memory Read Abort

Secondary Cache

-
?

A

2. Tag Compare

3. Read Response

A

Figure 16-5 Secondary Cache Read Hit

User’'s Manual U11761EJ6VOUM



Chapter 16 Secondary Cache Interface

V55000 External Agent

1. Block Read Request

.
?

\

3. Read Response

Secondary Cache

e
?

2. Tag Compare

A

| 3. Fill Cache Line

Figure 16-6 Secondary Cache Read Miss

I ssuance of the secondary cacheread is controlled by the normal RdRdy* flow control
mechanism. Secondary cache read responses always proceed at the maximum data
transfer rate. External agent read responsesto the secondary cache proceed at the data
transfer rate generated by the external agent.

16.2  Secondary Cache Read Protocol

There are three possible scenarios which can occur on a secondary cache access.
1) Secondary cache read hit
2) Secondary cache miss

3) Secondary cache miss with bus error

User's Manual U11761EJ6VOUM 287



Chapter 16 Secondary Cache Interface

16.2.1

288

Secondary Cache Read Hit

Figure 16-7 shows the secondary cache read hit protocol. When a block read request
is speculatively issued to both the secondary cache and the external agent, but
completed by the secondary cache:

1.

The processor issues a block read request and also asserts the ScT CE*,
ScTDE*, and ScDCE* secondary cache control signals. In addition the
processor drives the cache index onto ScLing[15:0] and the sub-block order
doubleword onto ScWord[1:0]. Assertion of ScT CE*, along with ValidOut*
and SysCmd, indicates to the external agent that this is a secondary cache read
request. In addition, the assertion of SCT CE* initiates atag RAM probe. The
assertion of SCTDE* loads the tag portion of the SysAD businto the tag RAM.
The ScValid signal is asserted to probe for avalid cache tag. The assertion of
ScDCE* initiates a speculative read of the secondary cache data RAMs.

The ScM atch signal from the tag RAM is sampled by both the processor and the
external agent. Assertion of ScM atch indicates a secondary cachetag hit, causing
the external agent to abort the memory read. Hence there is no uncompelled
change to dave state. The data RAMs now own SysAD and supply the first of a
4 doubleword burst in response to the 4-cycle SCDCE* burst. The SysCmd bus
is not driven during the secondary cache read.

Ownership of the SysAD busis returned to the processor.

User’'s Manual U11761EJ6VOUM



Chapter 16 Secondary Cache Interface

Master <«— Processor _>| -«—— Secondary Cache —>|< Processor p»

SysCycle 1 | 2| 3] 4] 5 | 6| 7] 8] 9 | 10|

I
sisooc |\ L\
) <—
SysAD | >< Addr >—< Data0 >< Datal >< Data2 >< Data3

syscmdig:0] | Read ) -
ScLine15:0] | X Index A
Seword[1.0] | o X u X e s X
SCTCE* |

ScTDE* | \/

sovaid | [\

ScMatch | [ 2\
socer |\ /
ScSwE* |

ScDoE* |

vaiidout | \

coense |\

Figure 16-7 Secondary Cache Read Hit

16.2.2 Secondary Cache Read Miss

Figure 16-8 shows the secondary cache read miss protocol when a block read request
is speculatively issued to both the secondary cache and the external agent, but is
completed by the external agent with a response to both the secondary cache and the
processor.

1. The processor issues ablock read request and also asserts the ScT CE*,
ScTDE*, ScDCE*, and ScValid signals and drives the cache index onto
ScLing[15:0] and ScWord[1:0].

2. The ScMatch signal from the tag RAM is sampled by the processor and external
agent. Since the signal is negated, indicating a secondary cache miss, the SysAD
data from the secondary cacheisinvalid.

User's Manual U11761EJ6VOUM 289



Chapter 16 Secondary Cache Interface

290

The external agent negates SCDOE* to tri-state the data RAM outputs,
indicating that it will be supplying the read response. The processor tri-statesits
ScWord[1:0] outputs to allow the external agent to drive them during the read
response.

The processor asserts SCCWE* to prepare the data RAMs for awrite of the
response data.

The external agent supplies the first doubleword of the read response and asserts
Validln*. The datais both written into the secondary cache and accepted by the
processor. SysCmd indicates that datais not erroneous. Note that this response
may be delayed additional cycles.

The processor asserts ScT CE* to write the tag value stored in the tag RAM data
input register two cycles after Validln* is asserted.

The external agent asserts SCDOE* to indicate that it will supply the last
doubleword of the read response in the next cycle.

The processor negates SCDCE* two cycles after the next assertion of SCDOE*
in order to compl ete the secondary cache linefill.

User’'s Manual U11761EJ6VOUM



Chapter 16 Secondary Cache Interface

Master Processor | Secondary Cache, | External Agent
-« | > | =«

-
- >

SysCycle

| 1+ 1 2 3] 4] s | 6] 7| 8] 9| 10]
Y AYAWAWAWAWAWAWAWAN
SysAD |:>< Addr >—< Data0 >< Datal >—< Data0 >< Datal >< Data2 >< Data3 >—
syscmd(g:0] | ) Read ) { NData ) NData ) NData { NEOD ——
ScLinef1s:0] | Index —
seworaf:0] | J 10 Ju e J—{ 0 u o o }—
serce |\ @/ =
SCTDE* |_\_/

SCTOE* |

ScValid | J \

ScMatch | \@ /
scocer |\
Sccwer | \

ScDOE* | / \
vaidour | \___/
Release |\ /
validin | \ [

Figure 16-8 Secondary Cache Read Miss

AR

16.2.3 Secondary Cache Read Misswith BusError

Figure 16-9 shows a secondary cache read misswith bus error protocol. This protocol
is the same as the secondary cache read miss except:

1. Theexternal agent suppliesthefirst doubleword of the read response datawith the
data error bit set (SysCmd[5]=1). Note that the data error bit of SysCmd isonly
checked during the first coubleword of aread response.

2. The processor asserts SCTCE* and SCTDE* to write the new tag value into the
secondary cache tag RAM with ScValid negated to invalidate thisline.

User's Manual U11761EJ6VOUM 291



Chapter 16 Secondary Cache Interface

Master Processor | Secondary Cache, |: External Agent -
SysCycle 1 | 2| 3| 4] 5 | e | 7| 8 ] 9 | 10]

SysClock ||_\_/—\_/—\_/—\_/—\_/—\_/—\_/—\_/—\_/—\_
SysAD | X adar }———{patao ) patar )—{ patao ) pata1 ) pataz ) patas )——
syscmdis:0] | { Read ) { NData { NData { NData § NEOD ——
ScLiner15:0] | | Index —
sewordfzo] | o u e s 0 fn o o }—
sereer |\ / -/

ScTDE* |_\_/

SCTOE* |

ScValid | _/ \ \ /

ScMatch | \ /

soocer |\ [
/_

SCCWE* | \

ScDOE* | / \

ValidOut* | \ /
Release* | \ /
ValidIn* | \ /_

Figure 16-9 Secondary Cache Read Misswith Bus Error

16.3  Secondary CacheWrite

292

Figure 16-10 shows a secondary cache write protocol. For the external agent, this
protocol isthe same as a non-secondary cache mode block write to the external agent,
but the data is also written into the secondary cache.

User’'s Manual U11761EJ6VOUM



Chapter 16 Secondary Cache Interface

1. The processor issues a block write and also asserts ScT CE*, ScTDE*, and
ScCWE?* in order to write the tag portion of the address on SysAD into the
secondary cache tag RAM. The processor asserts ScValid to set the secondary
cachetagtovalid.

2. Theprocessor asserts SCDCE* to write the block into the secondary cache data
RAMs.

Master - Processor -
Syscycle | 1 | 2| 3| 4| 5 | 6| 7] 8 | 9 | 10]
ssco |\ S\ S
SysAD | X’kddressx Data0 X Datal X Data2 X Data3 ><
SysCmd([8:0] | X Write X NData X NData>< NData X NEODX
ScLine[15:0] | X Index )

ScWord[1:0]| X 10 X 11 >< 12 X 13 ><

ScTCE*

ScTDE*

ScTOE*

ScValid

ScDCE*

ScDOE*

ScCWE*

ValidOut*

|
| /
|
| [\
| \ /
|
| \ /
| \ /

Figure 16-10 Secondary Cache Write Operation

User's Manual U11761EJ6VOUM 293



Chapter 16 Secondary Cache Interface

16.4  Secondary CachelLinelnvalidate

The V5000 processor has the ability to invalidate either asingle line or 128
consecutive lines (address aligned) of the secondary cache. Theinvalidate operationis
analogous to writing to the Tag RAM and invalidating the linein question. The
ScTCE*, ScTDE*, and ScCCWE* signals are driven active in the same clock as the
SysAD and ScLine busses with ScValid negated. Invalidates are the only cache
operationswhich may occur back-to-back. Notethat ValidOut* isnot asserted during
secondary cache invalidate operations as the external agent does not participate in
secondary cache invalidates.

Figure 16-11 shows the secondary cache invalidate protocol.

Master ~—— Processor ———p»

syscyce | 1 | 2 | 3 | a4 | 5 |
Y AVAWAWAWN
sysaD | X Tag
Syscmdi:] | N wite )
ScLine[15:0] | X index )\

SCTCE* | \ /
SCTDE* | \ /

SCTOE* |

Scvalid | O /
ScDCE* |
sewer |\ /
vaidout |

Figure 16-11 Secondary Cache Line Invalidate

Therepeat ratefor cachelineinvalidate instructionsistwo SysClocks. The repeat
rate for cache page invalidate is one SysClock per line for 128 consecutive
SysClock cycles.

294 User's Manual U11761EJ6VOUM



Chapter 16 Secondary Cache Interface

16.5

Secondary Cache Probe Protocol

The secondary cache probe operation is analogousto a Tag RAM read operation. The
ScTCE* and ScTDE* signals are asserted in the same clock as system address and
the secondary cache lineindex. The processor then tri-statesthe SysAD bus. ScTOE*
is asserted one clock later and the tag information is driven onto the SysAD bus.
ValidOut* is not asserted during a secondary cache probe operation as the external
agent does not participate in secondary cache probes. The Tag RAM bits are driven
onto SysAD [35:19] and ScValid, which are the only SysAD signals valid during a
probe operation. Figure 16-12 shows atiming diagram of a secondary cache probe
protocol.

Secondary

Processor Cache
Master <—>|
SysCycle | 1 | 2] 3| 4| 5 |
syscoo | \/ S\
SysAD[36:19]] X adar ) { Tag )
SysCmd[8:0] | >< Read ><
ScLine{15:0] | \ index |

SCTCE* | \ /
SCTDE* | \ /
SCTOE* | \ /

ScValid Valid

|
ScDCE* |
|

ScCWE*

ValidOut* |

Figure 16-12 Secondary Cache Probe (Tag RAM Read)

User's Manual U11761EJ6VOUM 295



Chapter 16 Secondary Cache Interface

16.6

16.7

296

Secondary Cache Flash Clear Protocol

In addition to the line invalidate operation, the V5000 processor aso has the ability
to invalidate the entire secondary cache in one operation. This operation allows the
processor to clear the entire column of Tag RAM valid bits. In order to execute this
operation the Tag RAM must support aflash clear of the valid bit column. Aswith the
lineinvalidate operation, ValidOut* isnot asserted during the flash clear operation as
the external agent does not participate in flash clear operations. In addition, the
ScTCE*, ScTDE*, and SCCWE* signals heed not be asserted. The assertion of
ScCLR* isdl that is necessary for the Tag RAM to perform the requested operation.
Figure 16-13 illustrates the secondary cache flash clear protocol.

Processor
Master -< »>

syscyce | 1 | 2| 3| 4| 5 |

sscock |\ \ S\ S\
SCCLR* | \ /

Figure 16-13 Secondary Cache Flash Clear

Secondary Cache Mode Configuration

The secondary cache configuration is specified by the processor ROM mode serial bit
[15]. The state of thisbit isindicated by the Secondary Cache (SC) bit in the CPO
config register (bit 17). If bit [17] is zero, a secondary cache is present in the system.
If no secondary cache is present, or the secondary cache is disabled, the processor
drives all secondary cache signalsto their inactive state.

If no secondary cache is present and the mode ROM is configured for no secondary
cache, the ScM atch and ScCDOE* signals become don’t-care inputs and must be
terminated to valid logic levels. If the secondary cacheis present and enabled, then the
SysADC signals must implement valid parity during block read responses.

The doublewords transferred on SysAD during secondary cache block read
transactions are in sub-block order. The doublewords transferred on SysAD during
secondary cache block write transactions are in sequential order.

User’'s Manual U11761EJ6VOUM



Chapter 16 Secondary Cache Interface

The size of the secondary cacheisindicated by the processor mode ROM serial bits
[17:16], and are encoded as follows:

[17:16] = 00 - 512 KB

[17:16] =01- 1 MB

[17:16] =10- 2 MB

[17:16] = 11 - Reserved

The state of these bits appear as CPO config register bits [21:20].

User's Manual U11761EJ6VOUM 297



Chapter 17 Interrupts

The VR5000 processor supports the following interrupts: six hardware interrupts, one
internal “timer interrupt,” two software interrupts, and one nonmaskable interrupt.
The processor takes an exception on any interrupt. This chapter describes the six
hardware and single nonmaskable interrupts.

17.1 Hardwarelnterrupts

The six CPU hardware interrupts can be caused by either an external write request to
the Vr5000, or through dedicated interrupt pins. These pins are latched into an
internal register by the rising edge of SysClock.

298 User's Manual U11761EJ6VOUM



Chapter 17 Interrupts

17.2

17.3

Nonmaskable Interrupt (NM1)

The nonmaskableinterrupt is caused either by an external write request to the V g5000
or by adedicated pininthe Vg5000. Thispinislatchedinto aninternal register by the
rising edge of SysClock.

Caution If apipeine cancellinglogic (e.g. cacheerror, buserror) occurs after
the V{5000 detects an NM| by the V{5000 startsthe NM | handling,
the NM I will be cancelled and only the pipeline cancelling logic will be
handled.

If an NM1 cancellation occurred, make NMI* inactive once and then
makeit active again after the NM| cancellation.

Asserting Interrupts

External writesto the CPU are directed to various internal resources, based on an
internal address map of the processor. When SysAD[6:4] =0, an external writeto any
address writes to an architecturally transparent register called the Interrupt register;
thisregister is available for external write cycles, but not for external reads.

During adata cycle, SysAD[22:16] are the write enables for the seven individual
Interrupt register bitsand SysAD[6:0] arethe valuesto bewritteninto these bits. This
allows any subset of the Interrupt register to be set or cleared with a single write
request. Figure 17-1 showsthe mechanics of an external writeto the Interrupt register.

[ o ['nterrupt register
SysAD(6:0)
Interrupt Value
1
2 See Figures 17-2
—>  and 17-3.
{ |3
4
22 121|120 (19|18 | 17 | 16 5
SysAD(22:16) 6
Write Enables \

Figure 17-1 Interrupt Register Bits and Enables

User's Manual U11761EJ6VOUM 299



Chapter 17 Interrupts

Figure 17-2 shows how the V g5000 interrupts are readabl e through the Cause register.

e Bit 5 of the Interrupt register is OR’ ed with the Int*[5] pin and then
multiplexed with the TimerInterrupt signal. The result is directly
readable as bit 15 of the Cause register.

* Bits4:0 of the Interrupt register are bit-wise OR’ ed with the current value
of interupt pins Int*[4:0]. The result is directly readable as bits 14:10 of
the Cause register.

Interrupt register (5:0)

10

P2

11

IP3

See
Figure 17-4.

?

12

IP4

IP5

ﬁ) IP6

IP7

13

&

15 14

) Cause
Timer register
Interrupt

(Internal OR gate D

register)
muItipIexer:D7

Figure 17-2 V5000 Interrupt Sgnals

SysClock—»| 5

Int*(5) Int*(3) Int*(1)
Int*(4) Int*(2) Int*(0)

300 User's Manual U11761EJ6VOUM



Chapter 17 Interrupts

Figure 17-3 showstheinternal derivation of the NM1 signal for the V g5000 processor.

TheNMI* pinislatched by the rising edge of SysClock. Bit 6 of the Interrupt register
isthen OR’ ed with the inverted value of NM1* to form the nonmaskable interrupt.

Only the falling edge of the latched signal will cause the NMI.

(Internal
register)

NMI
(Internal)

Interrupt register (6)

Y

NMI*

Edge- [> D
SysClock  yriggered

Flip-flop Inverter OR gate

Figure 17-3 VR5000 Nonmaskable Interrupt Signal

Figure 17-4 shows the masking of the V5000 interrupt signal.

e Cause register bits 15:8 (1P7-1P0) are AND-ORed with Satus register
interrupt mask bits 15:8 (IM7-IM0) to mask individual interrupts.

*  Status register bit 0 is a global Interrupt Enable (IE). Itis ANDed with
the output of the AND-OR logic to produce the Vg5000 interrupt signal.

User’'s Manual U11761EJ6VOUM

301



Chapter 17 Interrupts

Status register
SR(0)

Status register
SR(15:8)

IMO
IM1
IM2
IM3] 8

IMAY /1
IM5

IM6
IM7

Y

1 1, VRr5000 Interrupt

\

IPO
IP1

P2

AND
P3| 8 :
B %» function
IP5
1P6 AND-OR

P7 function

|
Cause register
(15:8)

Figure 17-4 Masking of the V{5000 I nterrupt

302 User's Manual U11761EJ6VOUM



Chapter 18 Sandby Mode Operation

18.1

The Standby Mode operation is a means of reducing the internal core’s power
consumption when the CPU isin a“standby” state. Inthischapter, the Standby Mode
operation is discussed.

Entering Standby M ode

To enter Standby Mode, first execute the WAIT instruction. When the WAIT
instruction finishes the W pipe-stage, if the SysAD busis currently idle, the internal
clockswill shut down, thusfreezing the pipeline. ThePLL, internal timer, some of the
input pin clocks (Int[5:0]*, NM1*, ExtRqst*, Reset* and ColdReset*), and the
output clock (M odeClock) will continueto run. If these conditions are not correct
when the WAIT instruction finishesthe W pipe-stage (i.e., the SysAD busisnot idle),
the WAIT istreated as a NOP.

When the processor enters Standby Mode, the system interface signalsarein their idle
state and the processor is the master of the SysAD bus. The Int*, NM1*, ExtReg*,
Reset*, and ColdReset* signals are monitored for an interrupt or reset condition that
signals the end of Standby Mode.

Once the CPU isin Standby Mode, any interrupt, including ExtRgst* or Reset*, will
cause the CPU to exit Standby Mode. Figure 18-1 illustrates the Standby Mode
Operation.

User's Manual U11761EJ6VOUM 303



Chapter 18 Standby Mode Operation

V5000

SysAD
-

SysCmd
-

EEEE——
ExtRgst*
Int[5:01*
NMI*
Reset*
ColdReset*

Release*

WrRdy*

RdRdy*
—>

validin*
—>

ValidOut*

I/F

V r5000 samplesthe SysA D/SysCmd/Control pinson each rising edge of
MasterClock.

If BusActivity

When “Wait” instruction finishes the W-stage, the Detected

VR5000 will check for BUS ACTIVITY. j

If BusActivity “Wait” instruction is treated
Not Detected asa“NOP” instruction.

Oncein Standby Mode, PClock will shutdown, freezing
the pipeline; however, these signals and internal blocks
will remain active:

PLL ExtRqst* ModeClock
Internal Timer Int[5:0] MasterOut
NMI*
Reset*
ColdReset*

¢

If any of Int[5:0]*, NMI*, Reset* are asserted, or aninternal
timer interrupt occurs, Vg5000 will exit Standby Mode.

¢

After exiting Standby Mode, V5000 does not sample any Control/
SysAD/SysCmd bus signals on the first rising edge of SysClock. Also,
bus activity and other internal processeswill resume by using the latched
information that existed before entering Standby Mode.

Note: During Standby Mode, all control signalsfor the CPU must be deasserted or put into
the appropriate state, and all input signals, except Int[5:0]*, Reset*, ColdReset* and
ExtRqst*, must remain unchanged.

304

Figure 18-1 Sandby Mode Operation

User’'s Manual U11761EJ6VOUM



Chapter 19 PLL Analog Power Filtering

For noisy module environments afilter circuit of the following formis
recommended as shown in Figure 19-1.

10 ohm

Vee —A|\ . * o
10 uF l 0.1uF l l

100 pF
Vss T T T VssP

Figure 19-1 PLL Filter Circuit (1)

VccP

Because the optimum values of filter elements differ depending on the application
and noise environment of the system, the above values are given for reference
only. Find the optimum values for users’ application through trial and error. A
choke element (inductor) may be used instead of the resistor used asapower filter.

In the case that the processor’ s behavior is unstable with the above filter circuit,
as shown in Figure 19-1, please insert aresistor (e.g. 10 ohm) between Vg5 and
V sgP, as shown in Figure 19-2. Please make a full evaluation on your board to
insert the resistor.

User's Manual U11761EJ6VOUM 305



Chapter 19  PLL Analog Power Filtering

10 ohm
Vee —/W ° ° ° VccP
10 uF ‘L 0.1uF ‘L 100 pF l
Vss —A\ T T T VssP
10 ohm

Figure 19-2 PLL Filter Circuit (2)

306 User's Manual U11761EJ6VOUM



Chapter 20 V{5000 Instruction Hazards

20.1

I ntroduction

This chapter identifies the V5000 Instruction Hazards. Certain combinations of
instructions are not permitted because the results of executing such combinations
are unpredictablein combination with some events, such as pipeline delays, cache
misses, interrupts, and exceptions.

Most hazards result from instructions modifying and reading state in different
pipeline stages. Such hazards are defined between pairs of instructions, not on a
singleinstruction inisolation. Other hazards are associated with restartability of
instructions in the presence of exceptions.

For the following code hazards, the behavior is undefined and unpredictable.

User's Manual U11761EJ6VOUM 307



Chapter 20 VR5000 Instruction Hazards

308

20.2

List of Instruction Hazards

Any instruction that would modify PageMask or EntryHi or EntryL o0
or EntryLol or Random CPO Registers should not be followed by a
TLBWR instruction. There should be at |east two integer instructions
between the register modification and the TLBWR instruction.

Any instruction that would modify PageMask or EntryHi or EntryL o0
or EntryLol or Index CPO Registers should not be followed by a
TLBWI instruction. There should be at least two integer instructions
between the register modification and the TLBW!I instruction.

Any instruction that would modify the Index CPO Register or the
contents of the JTLB should not be followed by a TLBR instruction.
There should be at least two integer instructions between the register
modification and the TLBR instruction.

Any instruction that would modify the PageMask or EntryHi or CPO
Registers or the contents of the JTLB should not be followed by a
TLBP instruction. There should be at least two integer instructions
between the register modification and the TLBP instruction.

Any instruction that would modify the EPC or ErrorEPC or Status
CPO Registers should not be followed by an ERET instruction.
There should be at least two integer instructions between the register
modification and the ERET instruction.

A Branch or Jump instruction is not allowed to be in the delay-slot of
another Branch/Jump instruction. This sequence isillegal in the
MIPs architecture.

The two instructions preceding any DIV, DIVU, DDIV, DDIVU,
MULT, MULTU, DMULT or DMULTU instructions should not read
the HI or LO registers. There should be at least two integer
instructions between the register read and the register modification.

Any instruction that would modify Count Register should not be
followed by any instruction that would read Count Register when the
Boot Mode Serial bit 18 is 0. There should be at least two integer
instructions between the register modification and the register read.

User’'s Manual U11761EJ6VOUM



Appendix A Cycle Counts for VR5000 Cache Operations

A.l  CycleCountsfor VKR5000 Cache Misses

All M nemonics

To describe processor sequences that inlude a memory access, the number of cycles
must be cal culated based on the system response to amemory access. Such sequences
will be described with equations based on the following mnemonics:

e SYSDIV: The number of processor cycles per system cycle, ranges from
2-8.

e ML: Number of system cycles of memory latency defined as the
number of cyclesthe SysAD busis driven by the external agent before the
first doubleword of data appears.

« DD: Number of system cycles required to return the block of data,
defined to be the number of cycles beginning when the first doubleword
of data appears on the SysAD bus and ending when the last double word
of data appears on the SysAD bus inclusive.

« {0to(SYSDIV -1)}: Inmany equations thisterm isused. It hasa
value (number of cycles) between 0 and (SYSDIV - 1) depending on the
alignment of the execution of the cache miss or cache op with the system
clock.

User's Manual U11761EJ6VOUM 309



Appendix A Cycle Counts for VR5000 Cache Operations

Al2

310

DCache Misses
Caveats to DCache Misses:

1) All Cycle counts arein processor cycles.

2) DCache misses have lower priority than write backs, external requests, and | Cache
misses. |f the write back buffer contains unwritten data when a dcache miss occurs,
the write back buffer will be retired before the handling of the dcache missis begun.
Instruction cache misses are given priority over data cache misses. If anicache miss
occurs at the same time as a dcache miss, the icache miss will be handled first.
External requests will be completed before beginning the handling of a dcache miss.

3) For al data cache misses handling of the returning cache miss data must wait for
the store buffer and response buffer to empty (if they arefilled) and for dirty data (if
present) to be moved from the dcache to the write back buffer. It ispossiblethat if all
of the above occur, and the dcache miss hits in the secondary cache, the first
doubleword of datawill return before the data cache is available. In this casethefirst
doubleword of datawill hold in the response buffer for one or two cycles which will
add to the latency of the dcache miss.

4) In handling a dcache miss awrite back may be required which will fill the write
back buffer. Write backs can affect subsequent cache misses since they will stall until
the write back buffer iswritten back to memory.

5) All cycle counts are best case assuming no interference from the mechanisms
described above.

The following equations yield the number of stall cyclesfor data cache misses under
the specified circumstances.

Secondary cache hit:
Number_Of Cycles For_DCache Miss Secondary Cache Hit =
1+{0to (SYSDIV - 1)} + (3x SYSDIV) + 2
Secondary cache miss:
Number_Of Cycles For DCache Miss Secondary _Cache Miss =
1+{0to (SYSDIV - 1)} + (2x SYSDIV) + (ML X SYSDIV) + (1 X SYSDIV) + 2

Note: Memory Latency (ML) has a minimum of 3 to allow for the secondary cache
check.

User’'s Manual U11761EJ6VOUM



Appendix A Cycle Counts for VR5000 Cache Operations

A.13

A2

| Cache Misses
Caveatsto | Cache Misses

1) All cycle counts arein processor cycles.

2) |Cache misses have lower priority than write backs and external requests. If the
write back buffer contains unwritten data when an icache miss occurs, the write back
buffer will beretired before the handling of theicache missisbegun. External requests
will be completed before beginning the handling of an icache miss.

3) All cycle counts are best case assuming no interference from the mechanisms
described above.

The following equations yield the number of stall cyclesfor instruction cache misses
under the specified circumstances.

Secondary cache hit:
Number _Of Cycles For_ICache Miss Secondary Cache Hit =
1+{0to (SYSDIV - 1)} + (6x SYSDIV) + 3
Secondary cache miss:
Number_Of Cycles For_|Cache Miss Secondary Cache Miss =
1+{0to (SYSDIV - 1)} + (2 x SYSDIV) + (ML x SYSDIV) + (DD x SYSDIV) + 3

Note: Memory Latency (ML) hasaminimum of 3 to alow for the secondary cache
check.

Cycle Countsfor V5000 Cache Operations

Caveatsto Cache Operations

1) All cycle counts arein processor cycles.

2) All cache ops have lower priority than cache misses, write backs and external
requests. If thewrite back buffer contains unwritten datawhen acache op isexecuted,
the write back buffer will be retired before the cache op is begun. If aninstruction

User's Manual U11761EJ6VOUM 311



Appendix A Cycle Counts for VR5000 Cache Operations

cache miss occurs at the sametime asacache op isexecuted, theinstruction cache miss
will be handled first. Cache ops are mutually exclusive with respect to data cache
misses. External requests will be completed before beginning a cache op.

3) For al datacache opsthe cache op machine waits for the store buffer and response
buffer to empty before beginning the cache op. Thiscan add 3 cyclesto any datacache
op if thereisdatain the response buffer or store buffer. The response buffer contains
data from the last data cache miss that has not yet been written to the data cache. The
store buffer contains delayed store data waiting to be written to the data cache.

4) Cacheopsof theform xxxx_Writeback xxxx may perform awrite back which will
fill thewrite back buffer. Write backs can affect subsequent cache ops since they will
stall until the write back buffer is written back to memory. Cache opswhich fill the
write back buffer are noted in the following tables.

5) All cycle counts are best case assuming no interference from the mechanisms
described above.

Table A-1 Primary Data Cache Operations

Code Name Number of Cycles
O | Index Writeback_Invalidate_D 12 gyyg: . :I tﬂg giﬂg ::22 e gti@n (Write back)
Index_Load Tag D 7 Cycles
Index_Store Tag D 8 Cycles
10 Cyclesfor acache hit.
3 | Create Dirty Exclusive D 13 Cyclesfor acache missif the cachelineisclean.

15 Cyclesfor acache missif the cachelineisdirty.
(Writeback)

7 Cyclesfor acache miss.

Hit_Invalidate D 9 Cycles for acache hit.

7 Cyclesfor acache miss.

12 Cyclesfor acache hit if the cache lineis clean.
14 Cycles for a cache hit if the cache line is dirty.
(Writeback)

Hit_Writeback_Invalidate D

7 Cyclesfor acache miss.

10 Cyclesfor acache hit if the cache lineis clean.
14 Cycles for a cache hit if the cache line is dirty.
(Writeback)

Hit_Writeback D

312

User’'s Manual U11761EJ6VOUM



Appendix A Cycle Counts for VR5000 Cache Operations

Table A-2 Primary Instruction Cache Operations

Code Name Number of Cycles
0 Index_Invalidate | | 7 Cycles.
1 Index_Load Tag || 7 Cycles.
2 Index_Store Tag || 8 Cycles.
3 NA
. . 7 Cyclesfor acache miss.
4 Hit_Invalidate | 9 Cyclesfor acache hit.
This equation yields the number of processor cycles for a Fill_|l
cache op:
5 Fill 1 Number_Of Cycles For_A_Fill_I_Cacheop =
10+{0to (SYSDIV -1)} +(2x SYSDIV) + (ML x SYSDIV) + (DD
x SYSDIV).
. . 7 Cyclesfor acache miss.
6 Hit_Writeback | 20 Cyclesfor acache hit. (Writeback)
Table A-3 Secondary Cache Operations
Code Name Number of Cycles
This equation yields the number of processor cycles for a
. Flash_Invalidate S cache op:
0 Flash_Invalidate_S Number_Of Cycles For_Flash Invalidate S Cacheop =
3+{0to(SYSDIV - 1)} +(1x SYSDIV) +3
This equation yields the number of processor cycles for an
Index_Load Tag_ S cache op:
! Index_Load_Tag S Number_Of Cycles For_Index Load Tag S =
3+{0to(SYSDIV -1)} + (4x SYSDIV) + 3
This equation yields the number of processor cycles for an
5 Index_Store Tag | Index_Store Tag_S cache op:
S Number_Of Cycles For_Index_Store Tag S =
3+{0to(SYSDIV - 1)} +(1xSYSDIV) +3
3 NA
4 NA
This equation yields the number of processor cycles for a
. Page Invalidate S cache op:
5 Page.Invalidate_S Number_Of Cycles For_Page Invalidate S =
3+{0to(SYSDIV -1)} + (128 x SYSDIV) + 3
6 NA

User's Manual U11761EJ6VOUM 313



Appendix B Subblock Order

314

A block of data elements (whether bytes, halfwords, words, or doublewords) can be
retrieved from storagein two ways: in sequential order, or using asubblock order. This
appendix describes these retrieval methods, with an emphasis on subblock ordering.

Sequential ordering retrievesthe dataelementsof ablock in serial, or sequential, order.

Figure B-1 shows a sequential order in which doubleword 0 is taken first and
doubleword 3 istaken last.

|DWO|DW1|DW2|DW3|

/

Doubleword 0 Doubleword 3
taken first taken fourth
Doubleword 1 Doubleword 2
taken second taken third

Figure B-1 Retrieving a Data Block in Sequential Order

Subblock ordering allowsthe system to define the order in which the dataelementsare
retrieved. The smallest data element of ablock transfer for the V{5000 is a
doubleword, and Figure B-2 shows the retrieval of ablock of datathat consists of 4
doublewords, in which DW2 is taken first.

User’'s Manual U11761EJ6VOUM



Appendix B Subblock Order

octalword
A
quadword
Order of retrieval 2 3 0 1

| DWO | Dw1 | DwW2 | DW3 |

/

DWO DW 3
taken third taken second
DW1 DW2
taken fourth taken first

Figure B-2 Retrieving a Data in a Subblock Order

Using the subblock ordering shown in Figure B-2, the doubleword at the target address
isretrieved first (DW2), followed by the remaining doubleword (DW3) in this
quadword.

It may be easier way to understand subblock ordering by taking alook at the method
used for generating the address of each doubleword asit isretrieved. The subblock
ordering logic generates this address by executing a bit-wise exclusive-OR (XOR) of
the starting block address with the output of abinary counter that incrementswith each
doubleword, starting at doubleword zero (005).

Using this scheme, Table B-1 through Table B-3 list the subblock ordering of
doublewords for an 8-word block, based on three different starting-block addresses:
10,, 11,, and 01,. The subblock ordering is generated by an XOR of the subblock
address (either 10,, 11,, and 01,) with the binary count of the doubleword (00, through
11,). Thus, the third doubleword retrieved from ablock of datawith astarting address
of 10, isfound by taking the XOR of address 10, with the binary count of DW2, 10,.
Theresult is 00, or DWO.

Theremaining tablesillustrate this method of subblock ordering, using various address
permutations.

User's Manual U11761EJ6VOUM 315



Appendix B Subblock Order

316

Table B-1 Subblock Ordering Sequence: Address 10,

Starting Block . Double Word
Cycle Address Binary Count Retrieved
1 10 00 10
2 10 01 11
3 10 10 00
4 10 11 01
Table B-2 Subblock Ordering Sequence: Address 11,
Starting Block . Double Word
Cycle Address Binary Count Retrieved
1 11 00 11
2 11 01 10
3 11 10 01
4 11 11 00
Table B-3 Subblock Ordering Sequence: Address 01,
Starting Block . DoubleWord
Cycle Address Binary Count Retrieved
01 00 01
2 01 01 00
3 01 10 11
4 01 11 10

User’'s Manual U11761EJ6VOUM




Appendix C Driver Srength Control

The speed of the V5000 output driversis statically controlled at boot time. This
appendix discusses the output buffer strength control mechanism in the V g5000
processor.

Two of the boot time mode bits are used to control the strength of the output buffer.
These are boot mode bit 13 and 14.

The output driver strength can be from 100% (fastest) to 50% (slowest), based on the
value of boot mode bits 13 and 14. Table C-1 shows the encoding for these boot mode
bits and the selected driver strength.

TableC-1 Output Driver Strength

Boot Mode )

. Driver
Bits Strength
14 13 9
10 100%
11 83%
00 67%
01 50%

User's Manual U11761EJ6VOUM 317



Appendix D Differences between V{5000 and VR5000A

clock interface (input vs.

Parameter V5000 VR5000A
Maximum internal operat- | 150/180/200 MHz 250/266 MHz
ing frequency
Multiplication ratio for 2,3,4,5,6,7,8 2,25V 3 456,78

«272-pin plastic BGA
(cavity down advanced type)

internal)

Supply voltage 3.3V15% Core: 2.4V+0.1V (100 to 235 MHz)
2.5V+5% (236 to 250 MHz)
2.6V+0.1V (251 to 266 MHz)

/0 :3.3V+5%

Package *223-pin ceramic PGA 272-pin plastic BGA

(cavity down advanced type)

Note Selectable only when SysClock = 100MHz

318

User’'s Manual U11761EJ6VOUM




Appendix E Differences between V{5000 and V4310

Item VR®5000 VR4310
Operation Frequency | Internal 200 MHz MAX. 167 MHz MAX.
External 100 MHz MAX. 83.3 MHz MAX.
Pipeline 2-way superscalar 5-stage pipeline
5-stage pipeline
Cache On-chip Primary 32 KB (2-way set) 16 KB (direct map)
Instruction Cache
On-chip Primary Data Cache | 32 KB (2-way set) 8 KB (direct map)
Secondary Cache Interface Incorporated (direct N/A
map)
Data Protection Byte parity N/A
System Bus Write Data Transfer Rate 9 types 2 types
(DD, DDxDDx, (DD, DxxDxx)
DDxxDDxx, DxDx,
DDxxxDDxxX,
DDxxxXDDxxxX,
DxxDxXx,
DDXXXXXXDDXXXXXX,
DxxXDxxX)
SysAD Bus Used after Last | Unused for trailing x Maintainslast D cycle
D Cycle cycles value

User's Manual U11761EJ6VOUM 319



Appendix E Differences between V5000 and V4310

Item Vr5000 V4310
Boot Mode Setting Serial datainput from Specific by DivMode
Modeln pin (2:0)
Integer Operating Unit MIPSI, I1, 111, IV MIPSI, 11, Il instruction
instruction set set
JTAG Interface N/A Incorporated
Synclin - SyncOut Path N/A Available
Clock Interface PClock Divisor 2,3,4,56,7,0r8 15,2,25,3/4,50r6
System Bus Clock Divisor 2,3,4,56,7,0r8 15,2,25,3,4,5,0r6
Clock Output N/A TClock
Power Control Mode Standby mode N/A
(freezing pipeline)
PRId Register Imp = 0x23 Imp = 0x0B

320 User's Manual U11761EJ6VOUM



Appendix F V5000 Restrictions

* Any load-linked memory reference that hitsin the DTLB will cause
the LLAddr register to hold the virtual address of that reference
instead of the physical address.

e CO_CacheErr[2] does not report Virtual Address [14] of the parity
error location. This bit is always read as zero.

e |If apipeline cancelling logic (e.g. cache error, bus error) occurs after
the VR5000 detects a non-maskable interrupt (NMI) by the V{5000
starts the NMI handling, the NMI will be cancelled and only the
pipeline cancelling logic will be handled.

If an NMI cancellation occurred, make NMI* inactive once and then
make it active again after the NMI cancellation.

e AnLL or LLD instruction targeting 64-bit Kernel xkphys address
space issues a 4-byte uncached read request or 8-byte uncached read
request respectively. If the targeted primary data cache line for an LL/
LLD instruction is dirty, the cache data is ignored and an uncached
load from memory is executed, and consequently the consistency of
datais not guaranteed.

Therefore, write back the line from the primary data cache to
memory before the execution of an LL/LLD instruction targeting
xkphys address space.

Example of a program is as follows.

User's Manual U11761EJ6VOUM 321



Appendix F V{5000 Restrictions

322

example:
cache Hit_writeback_d, offset(base)
Il rt, offset(base)

sc rt, offset(base)

User’'s Manual U11761EJ6VOUM



Appendix G Index

Numerics

223-pin ceramic PGA ... see PGA
272-pin plastic BGA ... see BGA
A

accesstype... 60
address space ... 108

kernel ... 113
32-hit ... 115
64-bit ... 117

physica ... 105

supervisor ... 110
32-hit ... 112
64-bit ... 112

user ... 108
32-bit ... 109
64-bit ... 110

virtua ... 104

address trandation

32-bit virtud ... 106

64-bit virtua ... 107

virtual-to-physical ... 105
process... 135

B

Bad Virtual Address (BadVAddr)
register ... 141

BadVAddr register ... seeBad Virtual Address
register

basic system clocks ... 222

BGA ... 53

branch delay ... 90

businterface ... 231
termsused ... 232

C

cache
operation ... 225
organization ... 227
sizes... 227

Cache Error (CacheErr) register ... 152
CACHE instruction ... 72
cacheline
length ... 227
cachetag registers ... see TagLo or TagHi
register
CacheErr register ... see Cache Error register

User's Manual U11761EJ6VOUM 323



Appendix G Index

Causeregister ... 147
clock generator ... 29
clock interface ... 222
Cold Reset ... 216
Compareregister ... 142
Config register ... 129
Context register ... 140
Control/Status register (FCR31) ... 188
coprocessor O ... see CPO
Count register ... 141
CPO... 29, 37,118
registers ... 123
CPU registers ... 30

D

D-cache ... see data cache

data addressing ... 34

data cache (D-cache) ... 29
organization ... 229

dataformats ... 34

datarate control ... 265
datatransfer patterns ... 266
independent transmission on the SysAD
bus ... 267

Diagnostic Status (DS) field ... 146

driver strength control ... 317

E

ECC register ... see Error Checking and
Correcting register

EntryHi register ... 121, 128

EntryLoO register ... 122, 126

EntryLol register ... 122, 126

EPC register ... see Exception Program
Counter register

error checking ... 278

Error Checking and Correcting (ECC)
register ... 151

error checking operation ... 279
system interface ... 280
system interface command bus ... 280
parity error checking ... 278
typesof ... 279
Error Exception Program Counter (ErrorEPC)
register ... 154
ErrorEPC register ... see Error Exception
Program Counter register
ExcCodefield ... 149
exception handler
CacheError ... 179
genera ... 175
TLB/XTLB miss... 177
exception handling
NMI ... 180
Reset ... 180
Soft Reset ... 180
exception processing ... 138
registers ... 139
Exception Program Counter (EPC)
register ... 149
exception servicing guidelines
CacheError ... 179
genera ... 176
TLB/XTLB ... 178
exception types ... 155
FPU ... 204
exceptions ... 154
Address Error ... 163
Breakpoint ... 170
BusError ... 168
Cache Error ... 167
conditions ... 94
Coprocessor Unusable ... 172
detection mechanism ... 94
Divide-by-Zero ... 210
Floating-point ... 173
handling ... 174
Inexact ... 208
Integer Overflow ... 169

324 User's Manual U11761EJ6VOUM



Appendix G Index

Interrupt ... 173
Invalid Operation ... 209
Non Maskable Interrupt (NMI) ... 162

floating-point exceptions ... 204
actions ... 207
conditions ... 208

Overflow ... 210 flags ... 206

priority ... 160 trap ... 206

Reserved Instruciton ... 171 floating-point formats ... 192

Reset ... 161 floating-point general registers (FGRs) ... 183
servicing ... 174 floating-point registers ... 185

Soft Reset ... 161 floating-point unit ... 181

System Cdll ... 170 features ... 183

TLB ... 164 programming model ... 183

TLB, Invalid ... 166

TLB, Modified ... 166

TLB, Refill ... 165

Trap ... 169

types ... 155, 204

Underflow ... 210
Unimplemented Instruciton ... 211
vector locations ... 157

extrnal arbitration protocol ... 259
external request protocols ... 258

FPU ... seefloating-point unit

I-cache ... seeinstruciton cache

|EEE standard 754 ... 189

Implementation and Revision register
(FCRO) ... 187

Index register ... 124

initialization interface ... 214
boot-mode settings ... 219

null ... 260 reset state ... 218
read response ... 262 uence ... 218
write ... 261 o

externa requests ... 237

read response ... 239
write ... 239

instruction cache (I-cache) ... 29
organization ... 227

instruction execution
cycletime... 201

instruction hazards ... 308

F instruction latencies

FCR ... seefloating-point control registers floating point ... 202

FGR ... seefloating-point general registers integer ... 63
fixed-point format instruction pipeline
binary ... 194 FPU ... 200
floating-point control registers (FCRs) ... 186 instruciton scheduling
floating-point exception FPU ... 203

instruction set ... 58, 195

instruction set additions
branch on floating point coprocessor ... 68
floating point compare ... 69
floating point conditional moves ... 70
floating point multiply-add ... 69

saving and restoring state ... 212
trap handlers ... 213

User's Manual U11761EJ6VOUM 325



Appendix G Index

indexed floating point load ... 67
indexed floating point store ... 67
integer conditional moves ... 69
prefetch ... 68
reciproca’s ... 70
instruction set
CPU ... 58
floating-point ... 195
MIPSIV ... 64
additions and extensions ... 65
instructions
branch ... 63
computational ... 62
64-bit operation ... 62
cycletiming ... 62

divide ... 62
floating-point ... 199
multiply ... 62
conversion
FPU ... 199
COpProcessor ... 64
jump ... 63
load ... 59
FPU ... 197
specid ... 64
store ... 59
FPU ... 197
interface buses ... 232
interlock ... 91

condition ... 92
interrupts ... 298
asserting ... 299
hardware ... 298
nonmaskable (NMI) ... 299

J
joint TLB (JTLB) ... 41

L

LLAddr register ... see Load Linked Address

register

load delay ... 90

load delay dlot ... 60
scheduling ... 60

Load Linked Address (LLAddr)
register ... 132

M

memory management system (MMU) ... see

memory management unit
memory management unit ... 101
memory organization ... 226
MMU ... see memory management unit

N
NMI ... seeinterrupt, nonmaskable

P

PageMask register ... 121, 126
PClock ... 222
PGA ... 51
phase-locked loop (PLL) ... 223
phase-locked system ... 224
pin configuration ... 51
pipeline ... 85, 200
activities ... 89
pipeline stages ... 86
PLL ... see phase-locked loop
PLL analog power filtering ... 305
power-on reset ... 215
PRId register ... see Processor Revision
Identifier register
processor internal addressmap ... 278
processor modess ... 102
operating ... 103
instruction set ... 104
addressing ... 104

326 User's Manual U11761EJ6VOUM



Appendix G Index

processor request protocols ... 249
flow control ... 254

read ... 250

write ... 251
processor requests ... 234

read ... 236

rules... 235

write ... 237

Processor Revision Identifier (PRId)
register ... 128

R
Random register ... 125
requests

handling ... 240

reset signd ... 214

S

secondary cache interface ... 283
secondary cache operations

clear ... 284
invalidate ... 284
probe ... 284

secondary cache
mode configuration ... 296
protocol
flash clear ... 296
lineinvalidate ... 294
probe ... 295
write ... 292
read ... 286
read protocol ... 287
hit ... 288
miss ... 289
misswith buserror ... 291
transactions ... 283
write ... 285
signal ... 43

signals
clock interface ... 46
initialization interface ... 48
interrupt interface ... 48
secondary cache interface ... 46
systeminterface ... 44
dip
instruciton cache miss ... 96
dlip conditions ... 96
stall conditions ... 95
Status regsiter ... 142
subblock order ... 314
superscalar
issue mechanism ... 98
dud ... 99
SysClack ... 222
alignment to ... 223
system control coprocessor ... 37
system event
load linked store conditional
operation ... 243
load miss ... 240
store hit ... 243
store miss ... 241
uncached instruction fetch ... 243
uncached load ... 243
uncached store ... 243
systeminterface ... 234
addresses ... 275
addressing conventions ... 275
subblock ordering ... 276
command ... 269
syntax ... 270
null requests ... 272
read requests ... 270
write requests ... 271
cycletime... 268
release latency ... 268
dataidentifiers ... 269
syntax ... 273
bit definitions ... 274

User's Manual U11761EJ6VOUM 327



Appendix G Index

noncoherent data ... 273
endianness ... 267
handshake signals ... 246
protocols ... 244
addresscycle ... 244
datacycle... 244
external arbitration ... 248
issuecycle ... 245
master state ... 248
dave state ... 248
SysADC[7:0] ... 264
uncompelled change to
dave state ... 248
transactions ... 234

T

TagHi register ... 132
TagLoregister ... 132
TLB ... seetranglation lookaside buffer
TLB entry
format of ... 119
TLB exceptions ... 137
TLB instructions ... 137
trand ation lookaside buffer (TLB) ... 41, 102
hit ... 102
miss ... 102
multiple matches ... 102

\Y
VR5000 restrictions ... 321

w

Warm Reset ... 217
Wired register ... 127
write buffer ... 97

X
XContext register ... 150

328 User's Manual U11761EJ6VOUM



- - Although NEC hastaken all possible steps
aC S I I I l I e eSS ag e to ensure thatthe documentation supplied

to our customers is complete, bug free

and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we’'ve taken, you may
Name encounter problemsin the documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-250-3583

Fax: +1-800-729-9288
+1-408-588-6130

Europe Korea Japan

: NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
NEC Electronics (Europe) GmbH

ics (Europe) Seoul Branch Fax: +81- 44-435-9608

Technical Documentation Dept.

Fax: +49-211-6503-274 Fax: +82-2-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6462-6829 Fax: +886-2-2719-5951

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity a a a Qa
Technical Accuracy Qa Qa Qa Qa

Organization Qa Qa Qa Qa

CS 01.2



	Cover
	MAJOR REVISIONS IN THIS EDITION
	PREFACE
	Chapter 1 Introduction
	1.1 Processor Characteristics
	1.2 Ordering Information
	1.3 64-Bit Architecture
	1.4 V R 5000 Processor
	1.4.1 Internal Block Configuration
	1.4.2 CPU Registers
	1.4.3 CPU Instruction Set Overview
	1.4.4 Data Formats and Addressing
	1.4.5 System Control Coprocessor (CP0)
	1.4.6 Floating-Point Unit (FPU)
	1.4.7 Internal Cache

	1.5 Memory Management System (MMU)
	1.5.1 Translation Lookaside Buffer (TLB)
	1.5.2 Operating Mode

	1.6 Instruction Pipeline

	Chapter 2 V R 5000 Processor Signal Descriptions
	2.1 System Interface Signals
	2.2 Clock Interface Signals
	2.3 Secondary Cache Interface Signals
	2.4 Interrupt Interface Signals
	2.5 Initialization Interface Signals
	2.6 Power Supply
	2.7 Pin Configuration

	Chapter 3 CPU Instruction Set Summary
	3.1 Load and Store Instructions
	3.1.1 Scheduling a Load Delay Slot
	3.1.2 Defining Access Types

	3.2 Computational Instructions
	3.2.1 64-bit Operations
	3.2.2 Cycle Timing for Multiply and Divide Instructions
	3.2.3 Jump and Branch Instructions
	3.2.4 Special Instructions
	3.2.5 Coprocessor Instructions

	3.3 MIPS IV Instruction Set Additions
	3.3.1 Summary of Instruction Set Additions
	3.3.2 Cycle Timing for Floating Point Instrucitons

	3.4 The Cache Instruction
	3.5 Implementation Specific Instructions
	3.5.1 Implementation Specific CP0 Instructions


	Chapter 4 V R 5000 Processor Pipeline
	4.1 Instruction Pipeline Stages
	4.2 Branch Delay
	4.3 Load Delay
	4.4 Interlock and Exception Handling
	4.4.1 Exception Conditions
	4.4.2 Stall Conditions
	4.4.3 Slip Conditions

	4.5 Write Buffer

	Chapter 5 Superscalar Issue Mechanism
	Chapter 6 Memory Management Unit
	6.1 Translation Lookaside Buffer (TLB)
	6.1.1 Hits and Misses
	6.1.2 Multiple Matches

	6.2 Processor Modes
	6.2.1 Processor Operating Modes
	6.2.2 Instruction Set Mode
	6.2.3 Addressing Modes

	6.3 Address Spaces
	6.3.1 Virtual Address Space
	6.3.2 Physical Address Space
	6.3.3 Virtual-to-Physical Address Translation
	6.3.4 32-bit Mode Virtual Address Translation
	6.3.5 64-bit Mode Virtual Address Translation 
	6.3.6 Address Spaces
	6.3.7 User Address Space
	6.3.8 Supervisor Space
	6.3.9 Kernel Space

	6.4 System Control Coprocessor
	6.4.1 Format of a TLB Entry

	6.5 CP0 Registers
	6.5.1 Index Register (0)
	6.5.2 Random Register (1)
	6.5.3 EntryLo0 (2), and EntryLo1 (3) Registers
	6.5.4 PageMask Register (5)
	6.5.5 Wired Register (6)
	6.5.6 EntryHi Register (10)
	6.5.7 Processor Revision Identifier (PRId) Register (15)
	6.5.8 Config Register (16)
	6.5.9 Load Linked Address (LLAddr) Register (17)
	6.5.10 Cache Tag Registers [TagLo (28) and TagHi (29)]

	6.6 Virtual-to-Physical Address Translation Process
	6.7 TLB Exceptions
	6.8 TLB Instructions

	Chapter 7 CPU Exception Processing
	7.1 Overview of Exception Processing
	7.2 Exception Processing Registers
	7.2.1 Context Register (4)
	7.2.2 Bad Virtual Address Register (BadVAddr) (8)
	7.2.3 Count Register (9) 
	7.2.4 Compare Register (11)
	7.2.5 Status Register (12) 
	7.2.6 Cause Register (13)
	7.2.7 Exception Program Counter (EPC) Register (14)
	7.2.8 XContext Register (20)
	7.2.9 Error Checking and Correcting (ECC) Register (26)
	7.2.10 Cache Error (CacheErr) Register (27)
	7.2.11 Error Exception Program Counter (Error EPC) Register (30)

	7.3 Processor Exceptions
	7.3.1 Exception Types
	7.3.2 Exception Vector Locations
	7.3.3 Priority of Exceptions
	7.3.4 Reset Exception
	7.3.5 Soft Reset Exception
	7.3.6 Non Maskable Interrupt (NMI) Exception
	7.3.7 Address Error Exception
	7.3.8 TLB Exceptions
	7.3.9 Cache Error Exception
	7.3.10 Bus Error Exception
	7.3.11 Integer Overflow Exception
	7.3.12 Trap Exception
	7.3.13 System Call Exception
	7.3.14 Breakpoint Exception
	7.3.15 Reserved Instruction Exception
	7.3.16 Coprocessor Unusable Exception
	7.3.17 Floating-Point Exception
	7.3.18 Interrupt Exception

	7.4 Exception Handling and Servicing Flowcharts

	Chapter 8 Floating Point Unit
	8.1 Overview
	8.2 FPU Features
	8.3 FPU Programming Model
	8.4 Floating-Point General Registers (FGRs)
	8.5 Floating-Point Registers
	8.6 Floating-Point Control Registers
	8.6.1 Implementation and Revision Register (FCR0)
	8.6.2 Control/Status Register (FCR31)

	8.7 Floating-Point Formats
	8.8 Binary Fixed-Point Format
	8.9 Floating-Point Instruction Set Overview
	8.9.1 Floating-Point Load, Store, and Move Instructions
	8.9.2 Floating-Point Conversion Instructions
	8.9.3 Floating-Point Computational Instructions

	8.10 FPU Instruction Pipeline Overview
	8.10.1 Instruction Execution
	8.10.2 Instruction Execution Cycle Time
	8.10.3 Instruction Scheduling Constraints


	Chapter 9 Floating Point Exceptions
	9.1 Exception Types
	9.2 Exception Trap Processing
	9.3 Flags
	9.4 FPU Exceptions
	9.4.1 Inexact Exception (I)
	9.4.2 Invalid Operation Exception (V)
	9.4.3 Division-by-Zero Exception (Z)
	9.4.4 Overflow Exception (O)
	9.4.5 Underflow Exception (U)
	9.4.6 Unimplemented Instruction Exception (E)

	9.5 Saving and Restoring State
	9.6 Trap Handlers for IEEE Standard 754 Exceptions

	Chapter 10 Initialization Interface
	10.1 Processor Reset Signals
	10.1.1 Power-on Reset
	10.1.2 Cold Reset
	10.1.3 Warm Reset
	10.1.4 Processor Reset State

	10.2 Initialization Sequence
	10.3 Boot-Mode Settings

	Chapter 11 Clock Interface
	11.1 Basic System Clocks
	11.1.1 SysClock
	11.1.2 PClock
	11.1.3 Alignment to SysClock
	11.1.4 Phase-Locked Loop (PLL)

	11.2 Connecting Clocks to a Phase-Locked System

	Chapter 12 Cache Organization and Operation
	12.1 Memory Organization
	12.2 Primary Cache Organization
	12.2.1 Cache Line Lengths
	12.2.2 Cache Sizes
	12.2.3 Organization of the Instruction Cache (I-Cache)
	12.2.4 Organization of the Data Cache (D-Cache)

	12.3 Secondary Cache Organization

	Chapter 13 V R 5000 Processor Bus Interface
	13.1 Terms Used
	13.2 Interface Buses

	Chapter 14 System Interface Transactions
	14.1 Processor Requests
	14.1.1 Rules for Processor Requests
	14.1.2 Processor Read Request
	14.1.3 Processor Write Request

	14.2 External Requests
	14.2.1 External Write Request
	14.2.2 Read Response

	14.3 Handling Requests
	14.3.1 Load Miss
	14.3.2 Store Miss
	14.3.3 Store Hit
	14.3.4 Uncached Loads or Stores
	14.3.5 Uncached Instruction Fetch
	14.3.6 Load Linked Store Conditional Operation


	Chapter 15 System Interface Protocols
	15.1 Address and Data Cycles
	15.2 Issue Cycles
	15.3 Handshake Signals
	15.4 System Interface Operation
	15.4.1 Master and Slave States
	15.4.2 External Arbitration
	15.4.3 Uncompelled Change to Slave State

	15.5 Processor Request Protocols
	15.5.1 Processor Read Request Protocol
	15.5.2 Processor Write Request Protocol
	15.5.3 Processor Request Flow Control

	15.6 External Request Protocols
	15.6.1 External Arbitration Protocol
	15.6.2 External Null Request Protocol
	15.6.3 External Write Request Protocol
	15.6.4 Read Response Protocol

	15.7 SysADC[7:0] Protocol
	15.8 Data Rate Control
	15.9 Data Transfer Patterns
	15.10 Independent Transmissions on the SysAD Bus
	15.11 System Interface Endianness
	15.12 System Interface Cycle Time
	15.13 Release Latency
	15.14 System Interface Commands/Data Identifiers
	15.14.1 Command and Data Identifier Syntax
	15.14.2 System Interface Command Syntax
	15.14.3 System Interface Data Identifier Syntax

	15.15 System Interface Addresses
	15.15.1 Addressing Conventions
	15.15.2 Subblock Ordering
	15.15.3 Processor Internal Address Map

	15.16 Error Checking
	15.16.1 Parity Error Checking
	15.16.2 Error Checking Operation


	Chapter 16 Secondary Cache Interface
	16.1 Secondary Cache Transactions
	16.1.1 Secondary Cache Probe, Invalidate, and Clear
	16.1.2 Secondary Cache Write
	16.1.3 Secondary Cache Read

	16.2 Secondary Cache Read Protocol
	16.2.1 Secondary Cache Read Hit
	16.2.2 Secondary Cache Read Miss
	16.2.3 Secondary Cache Read Miss with Bus Error

	16.3 Secondary Cache Write
	16.4 Secondary Cache Line Invalidate
	16.5 Secondary Cache Probe Protocol
	16.6 Secondary Cache Flash Clear Protocol
	16.7 Secondary Cache Mode Configuration

	Chapter 17 Interrupts
	17.1 Hardware Interrupts
	17.2 Nonmaskable Interrupt (NMI)
	17.3 Asserting Interrupts

	Chapter 18 Standby Mode Operation
	18.1 Entering Standby Mode

	Chapter 19 PLL Analog Power Filtering
	Chapter 20 V R 5000 Instruction Hazards
	20.1 Introduction
	20.2 List of Instruction Hazards

	Appendix A Cycle Counts for V R 5000 Cache Operations
	A.1 Cycle Counts for V R 5000 Cache Misses
	A.1.1 Mnemonics
	A.1.2 DCache Misses
	A.1.3 ICache Misses

	A.2 Cycle Counts for V R 5000 Cache Operations

	Appendix B Subblock Order
	Appendix C Driver Strength Control
	Appendix D Differences between V R 5000 and V R 5000A
	Appendix E Differences between V R 5000 and V R 4310
	Appendix F V R 5000 Restrictions
	Appendix G Index

