

1

User’s Manual

Document No. U11761EJ6V0UM00 (6th edition)
Date Published April 2001 N CP(K)

© 1997, 1999
© MIPS Technologies, Inc. 1995
Printed in Japan

V

R

5000™,V

R

5000A™

64-/32-bit Microprocessor

µ

PD30500

µ

PD30500A

2

User’s Manual U11761EJ6V0UM

[MEMO]

User’s Manual U11761EJ6V0UM

3

V

R

4000, V

R

4100, V

R

4200, V

R

4300, V

R

4305, V

R

4310, V

R

4400, V

R

5000, V

R

5000A, V

R

10000, V

R

12000, V

R

 Series,
V

R

3000 Series, V

R

4000 Series, and V

R

10000 Series are trademarks of NEC Corporation.
MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.
MC68000 is a trademark of Motorola Inc.
IBM370 is a trademark of IBM Corp.
iAPX is a trademark of Intel Corp.
VAX is a trademark of Digital Equipment Corp.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

4

User’s Manual U11761EJ6V0UM

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

M8E 00. 4

The information in this document is current as of March, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).

•

•

•

•

•

•

User’s Manual U11761EJ6V0UM

5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-3067-5800
Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.2

6

User’s Manual U11761EJ6V0UM

The mark shows major revised points.

 MAJOR REVISIONS IN THIS EDITION

Page Description

p. 143 Correction of description in

7.2.5 (1) Status Register Format

p. 212 Modification of description in

9.4.6 Unimplemented Instruction Exception (E)

User’s Manual U11761EJ6V0UM

7

PREFACE

Readers

This manual targets users who wish to understand the functions of the V

R

5000

(

µ

PD30500), V

R

5000A

(

µ

PD30500A)

and design application systems using this
microprocessor.

Purpose

This manual introduces the architecture and hardware functions of the V

R

5000 and
V

R

5000A to users, following the organization described below.

Organization

This manual consists of the following contents:

• Introduction
• Pipeline operation
• Memory management system and cache organization
• Exception processing
• Floating-point operation
• System interface operation

How to read this manual

It is assumed that the reader of this manual has general knowledge in the fields of
electric engineering, logic circuits, and microcomputers.

Unless otherwise specified, V

R

5000 is described as a representative product in this
manual. When using this manual as that for V

R

5000A, read as follows.

V

R

5000

→

V

R

5000

Α

The V

R

4400™

in this manual represents the V

R

4000™.

The V

R

4000 Series™

in this manual represents the V

R

4100™, V

R

4200™,
V

R

4300™, V

R

4305™, V

R

4310™, and V

R

4400.

To learn about detailed function of a specific instruction,
-> Refer to

Chapter 3 CPU Instruction Set Summary

,

Chapter 8 Floating
Point Unit

, or

V

R

5000

,

V

R

10000™ User’s Manual Instruction

 which is
separately available.

To learn about the overall functions of the V

R

5000,
-> Read this manual in sequential order.

To learn about electrical specifications,
-> Refer to

Data Sheet

 which is separately available.

8

User’s Manual U11761EJ6V0UM

Legend

Data significance: Higher on left and lower on right
Active low: XXX*
Numeric representation: binary ... XXXX or XXXX

2

decimal ... XXXX
hexadecimal ... 0xXXXX

Prefixes representing an exponent of 2 (for address space or memory capacity) :

K (kilo) 2

10

 = 1024

M (mega) 2

20

 = 1024

2

G (giga) 2

30

 = 1024

3

T (tera) 2

40

 = 1024

4

P (peta) 2

50

 = 1024

5

E (exa) 2

60

 = 1024

6

Related Documents

See also the following documents.
The related documents indicated here may include preliminary version. However,
preliminary versions are not marked as such.

Documents Related to Devices

Document Name Document No.

µ

PD30500, 30500A (V

R

5000, V

R

5000A) Data Sheet U12031E

V

R

5000, V

R

5000A User’s Manual This Manual

µ

PD30700, 30700L, 30710 (V

R

10000, V

R

12000

™

) Data Sheet U12703E

V

R

10000 Series

™

 User’s Manual U10278E

V

R

5000, V

R

10000

INSTRUCTION User’s Manual U12754E

Application Note

Document Name Document No.

V

R

Series

™

 Application Note Programming Guide U10710E

User’s Manual U11761EJ6V0UM

9

Table of Contents

Chapter 1 Introduction

...25

1.1 Processor Characteristics

..26

1.2 Ordering Information

..27

1.3 64-Bit Architecture

...27

1.4 V

R

5000 Processor

..27

1.4.1 Internal Block Configuration ..29

1.4.2 CPU Registers ...30

1.4.3 CPU Instruction Set Overview..32

1.4.4 Data Formats and Addressing ...34

1.4.5 System Control Coprocessor (CP0) ..37

1.4.6 Floating-Point Unit (FPU)...40

1.4.7 Internal Cache ...40

1.5 Memory Management System (MMU)

..41

1.5.1 Translation Lookaside Buffer (TLB) ..41

1.5.2 Operating Modes...42

1.6 Instruction Pipeline

...42

Chapter 2 VR5000 Processor Signal Descriptions..43

2.1 System Interface Signals ..44

2.2 Clock Interface Signals ..46

2.3 Secondary Cache Interface Signals...46

2.4 Interrupt Interface Signals ...48

2.5 Initialization Interface Signals ...48

2.6 Power Supply..50

2.7 Pin Configuration ..51

Chapter 3 CPU Instruction Set Summary ..58

3.1 Load and Store Instructions ...59

3.1.1 Scheduling a Load Delay Slot...60

3.1.2 Defining Access Types ...60

3.2 Computational Instructions ..62

3.2.1 64-bit Operations...62

3.2.2 Cycle Timing for Multiply and Divide Instructions62

3.2.3 Jump and Branch Instructions...63

3.2.4 Special Instructions ...64

3.2.5 Coprocessor Instructions...64

10 User’s Manual U11761EJ6V0UM

3.3 MIPS IV Instruction Set Additions ..64

3.3.1 Summary of Instruction Set Additions..67

3.3.2 Cycle Timing for Floating Point Instrucitons ...71

3.4 The Cache Instruction..72

3.5 Implementation Specific Instructions ..75

3.5.1 Implementation Specific CP0 Instructions..76

Chapter 4 VR5000 Processor Pipeline...85

4.1 Instruction Pipeline Stages..86

4.2 Branch Delay ..90

4.3 Load Delay ..90

4.4 Interlock and Exception Handling ..91

4.4.1 Exception Conditions ..94

4.4.2 Stall Conditions...95

4.4.3 Slip Conditions..96

4.5 Write Buffer..97

Chapter 5 Superscalar Issue Mechanism ..98

Chapter 6 Memory Management Unit ...101

6.1 Translation Lookaside Buffer (TLB) ...102

6.1.1 Hits and Misses ...102

6.1.2 Multiple Matches ..102

6.2 Processor Modes ..102

6.2.1 Processor Operating Modes ..103

6.2.2 Instruction Set Mode ...104

6.2.3 Addressing Modes...104

6.3 Address Spaces ...104

6.3.1 Virtual Address Space...104

6.3.2 Physical Address Space...105

6.3.3 Virtual-to-Physical Address Translation...105

6.3.4 32-bit Mode Virtual Address Translation ...106

6.3.5 64-bit Mode Virtual Address Translation ...107

6.3.6 Address Spaces..108

6.3.7 User Address Space..108

6.3.8 Supervisor Space..110

6.3.9 Kernel Space ..113

User’s Manual U11761EJ6V0UM 11

6.4 System Control Coprocessor ..118

6.4.1 Format of a TLB Entry..119

6.5 CP0 Registers ...123

6.5.1 Index Register (0)..124

6.5.2 Random Register (1) ...125

6.5.3 EntryLo0 (2), and EntryLo1 (3) Registers ..126

6.5.4 PageMask Register (5) ..126

6.5.5 Wired Register (6)...127

6.5.6 EntryHi Register (10) ..128

6.5.7 Processor Revision Identifier (PRId) Register (15)128

6.5.8 Config Register (16)..129

6.5.9 Load Linked Address (LLAddr) Register (17)132

6.5.10 Cache Tag Registers [TagLo (28) and TagHi (29)]132

6.6 Virtual-to-Physical Address Translation Process135

6.7 TLB Exceptions..137

6.8 TLB Instructions ...137

Chapter 7 CPU Exception Processing...138

7.1 Overview of Exception Processing ..138

7.2 Exception Processing Registers..139

7.2.1 Context Register (4) ..140

7.2.2 Bad Virtual Address Register (BadVAddr) (8).......................................141

7.2.3 Count Register (9) ...141

7.2.4 Compare Register (11) ..142

7.2.5 Status Register (12) ...142

7.2.6 Cause Register (13) ...147

7.2.7 Exception Program Counter (EPC) Register (14)149

7.2.8 XContext Register (20) ...150

7.2.9 Error Checking and Correcting (ECC) Register (26)..............................151

7.2.10 Cache Error (CacheErr) Register (27)...152

7.2.11 Error Exception Program Counter (Error EPC) Register (30)154

7.3 Processor Exceptions ..154

7.3.1 Exception Types..155

7.3.2 Exception Vector Locations..157

7.3.3 Priority of Exceptions ...160

7.3.4 Reset Exception...161

7.3.5 Soft Reset Exception ...161

7.3.6 Non Maskable Interrupt (NMI) Exception..162

12 User’s Manual U11761EJ6V0UM

7.3.7 Address Error Exception ...163

7.3.8 TLB Exceptions ..164

7.3.9 Cache Error Exception ..167

7.3.10 Bus Error Exception..168

7.3.11 Integer Overflow Exception..169

7.3.12 Trap Exception ..169

7.3.13 System Call Exception ..170

7.3.14 Breakpoint Exception..170

7.3.15 Reserved Instruction Exception ..171

7.3.16 Coprocessor Unusable Exception ...172

7.3.17 Floating-Point Exception ..173

7.3.18 Interrupt Exception..173

7.4 Exception Handling and Servicing Flowcharts ...174

Chapter 8 Floating Point Unit ..181

8.1 Overview ..182

8.2 FPU Features ..183

8.3 FPU Programming Model ...183

8.4 Floating-Point General Registers (FGRs) ...183

8.5 Floating-Point Registers ..185

8.6 Floating-Point Control Registers...186

8.6.1 Implementation and Revision Register (FCR0)......................................187

8.6.2 Control/Status Register (FCR31) ..188

8.7 Floating-Point Formats ..192

8.8 Binary Fixed-Point Format...194

8.9 Floating-Point Instruction Set Overview...195

8.9.1 Floating-Point Load, Store, and Move Instructions197

8.9.2 Floating-Point Conversion Instructions ..199

8.9.3 Floating-Point Computational Instructions ...199

8.10 FPU Instruction Pipeline Overview ..200

8.10.1 Instruction Execution ..200

8.10.2 Instruction Execution Cycle Time ..201

8.10.3 Instruction Scheduling Constraints ...203

Chapter 9 Floating Point Exceptions...204

9.1 Exception Types ...204

9.2 Exception Trap Processing ...206

User’s Manual U11761EJ6V0UM 13

9.3 Flags ..206

9.4 FPU Exceptions ..208

9.4.1 Inexact Exception (I)...208

9.4.2 Invalid Operation Exception (V)...209

9.4.3 Division-by-Zero Exception (Z) ...210

9.4.4 Overflow Exception (O)..210

9.4.5 Underflow Exception (U)..210

9.4.6 Unimplemented Instruction Exception (E) ...211

9.5 Saving and Restoring State ...212

9.6 Trap Handlers for IEEE Standard 754 Exceptions....................................213

Chapter 10 Initialization Interface ..214

10.1 Processor Reset Signals ..214

10.1.1 Power-on Reset ...215

10.1.2 Cold Reset ...216

10.1.3 Warm Reset ...217

10.1.4 Processor Reset State ..218

10.2 Initialization Sequence ...218

10.3 Boot-Mode Settings ...219

Chapter 11 Clock Interface ..222

11.1 Basic System Clocks..222

11.1.1 SysClock ...222

11.1.2 PClock ...222

11.1.3 Alignment to SysClock ...223

11.1.4 Phase-Locked Loop (PLL)..223

11.2 Connecting Clocks to a Phase-Locked System...224

Chapter 12 Cache Organization and Operation ...225

12.1 Memory Organization ..226

12.2 Primary Cache Organization ...227

12.2.1 Cache Line Lengths...227

12.2.2 Cache Sizes ...227

12.2.3 Organization of the Instruction Cache (I-Cache)228

12.2.4 Organization of the Data Cache (D-Cache) ..229

12.3 Secondary Cache Organization ...230

14 User’s Manual U11761EJ6V0UM

Chapter 13 VR5000 Processor Bus Interface ..231

13.1 Terms Used ...232

13.2 Interface Buses ...232

Chapter 14 System Interface Transactions ...234

14.1 Processor Requests..234

14.1.1 Rules for Processor Requests ..235

14.1.2 Processor Read Request ..236

14.1.3 Processor Write Request ...237

14.2 External Requests..237

14.2.1 External Write Request ...239

14.2.2 Read Response ..239

14.3 Handling Requests ..240

14.3.1 Load Miss..240

14.3.2 Store Miss..241

14.3.3 Store Hit ..243

14.3.4 Uncached Loads or Stores...243

14.3.5 Uncached Instruction Fetch...243

14.3.6 Load Linked Store Conditional Operation..243

Chapter 15 System Interface Protocols ...244

15.1 Address and Data Cycles ...244

15.2 Issue Cycles ...245

15.3 Handshake Signals ..246

15.4 System Interface Operation ..247

15.4.1 Master and Slave States ..248

15.4.2 External Arbitration ..248

15.4.3 Uncompelled Change to Slave State ...248

15.5 Processor Request Protocols...249

15.5.1 Processor Read Request Protocol..250

15.5.2 Processor Write Request Protocol...251

15.5.3 Processor Request Flow Control ...254

15.6 External Request Protocols...258

15.6.1 External Arbitration Protocol ..259

15.6.2 External Null Request Protocol...260

15.6.3 External Write Request Protocol...261

15.6.4 Read Response Protocol..262

User’s Manual U11761EJ6V0UM 15

15.7 SysADC[7:0] Protocol ..264

15.8 Data Rate Control ...265

15.9 Data Transfer Patterns ..266

15.10 Independent Transmissions on the SysAD Bus ...267

15.11 System Interface Endianness..267

15.12 System Interface Cycle Time ..268

15.13 Release Latency..268

15.14 System Interface Commands/Data Identifiers ...269

15.14.1 Command and Data Identifier Syntax...269

15.14.2 System Interface Command Syntax ..270

15.14.3 System Interface Data Identifier Syntax ...273

15.15 System Interface Addresses ..275

15.15.1 Addressing Conventions ...275

15.15.2 Subblock Ordering ..276

15.15.3 Processor Internal Address Map ...278

15.16 Error Checking ..278

15.16.1 Parity Error Checking ...278

15.16.2 Error Checking Operation ...279

Chapter 16 Secondary Cache Interface ..283

16.1 Secondary Cache Transactions ..283

16.1.1 Secondary Cache Probe, Invalidate, and Clear284

16.1.2 Secondary Cache Write...285

16.1.3 Secondary Cache Read..286

16.2 Secondary Cache Read Protocol ...287

16.2.1 Secondary Cache Read Hit..288

16.2.2 Secondary Cache Read Miss...289

16.2.3 Secondary Cache Read Miss with Bus Error ..291

16.3 Secondary Cache Write ...292

16.4 Secondary Cache Line Invalidate..294

16.5 Secondary Cache Probe Protocol ..295

16.6 Secondary Cache Flash Clear Protocol ...296

16.7 Secondary Cache Mode Configuration ..296

Chapter 17 Interrupts ..298

17.1 Hardware Interrupts ..298
17.2 Nonmaskable Interrupt (NMI) ...299

16 User’s Manual U11761EJ6V0UM

17.3 Asserting Interrupts..299

Chapter 18 Standby Mode Operation ...303

18.1 Entering Standby Mode ...303

Chapter 19 PLL Analog Power Filtering ...305

Chapter 20 VR5000 Instruction Hazards ...307

20.1 Introduction ..307

20.2 List of Instruction Hazards ...308

Appendix A Cycle Counts for VR5000 Cache Operations................................309

A.1 Cycle Counts for VR5000 Cache Misses ..309

A.1.1 Mnemonics..309

A.1.2 DCache Misses..310

A.1.3 ICache Misses ...311

A.2 Cycle Counts for VR5000 Cache Operations..311

Appendix B Subblock Order ..314

Appendix C Driver Strength Control..317

Appendix D Differences between VR5000 and VR5000A..................................318

Appendix E Differences between VR5000 and VR4310319

Appendix F VR5000 Restrictions ..321

Appendix G Index..323

User’s Manual U11761EJ6V0UM 17

Fig. No. Title Page

1-1 VR5000 Processor Internal Block Diagram ...28

1-2 VR5000 Processor Registers...31

1-3 CPU Instruction Formats..32

1-4 Big-Endian Byte Ordering..34

1-5 Little-Endian Byte Ordering...34

1-6 Big-Endian Data in a Doubleword ...35

1-7 Little-Endian Data in a Doubleword ..35

1-8 Misaligned Word Addressing...36

1-9 CP0 Registers ...38

2-1 VR5000 Processor Signals..44

3-1 CPU Instruction Formats..59

3-2 VR5000 CACHE Instruction Format..72

4-1 Instruction Pipeline Stages ...86

4-2 CPU Pipeline Activities..89

4-3 CPU Pipeline Branch Delay ...90

4-4 CPU Pipeline Load Delay ..91

4-5 Exception Detection Mechanism..94

4-6 Servicing a Data Cache Miss..95

4-7 Slips During an Instruction Cache Miss...96

5-1 Dual Issue Mechanism ...99

6-1 Overview of a Virtual-to-Physical Address Translation ..105

6-2 32-bit Mode Virtual Address Translation...106

6-3 64-bit Mode Virtual Address Translation...107

6-4 UserVirtual Address Space as Viewed from User Mode ...108

6-5 User and Supervisor Address Spaces as Viewed from Supervisor Mode111

6-6 User, Supervisor, and Kernel Address Spaces as Viewed from Kernel Mode.........114

6-7 CP0 Registers and the TLB ..119

6-8 Format of a TLB Entry ...120

6-9 Fields of the PageMask and EntryHi Registers..121

6-10 Fields of the EntryLo0 and EntryLo1 Registers...122

List of Figures (1/5)

18 User’s Manual U11761EJ6V0UM

Fig. No. Title Page

6-11 Index Register...124

6-12 Random Register ..125

6-13 Wired Register Boundary ...127

6-14 Wired Register..127

6-15 Processor Revision Identifier Register Format...128

6-16 Config Register Format ..130

6-17 LLAddr Register Format ..132

6-18 TagLo and TagHi Register (P-cache) Formats...133

6-19 TagLo and TagHi Register (S-cache) Formats...133

6-20 TLB Address Translation ...136

7-1 Context Register Format ..140

7-2 BadVAddr Register Format..141

7-3 Count Register Format ...141

7-4 Compare Register Format...142

7-5 Status Register ..143

7-6 Status Register DS Field...146

7-7 Cause Register Format ...149

7-8 EPC Register Format..150

7-9 XContext Register Format..151

7-10 ECC Register Format ...152

7-11 CacheErr Register Format ..153

7-12 ErrorEPC Register Format ...154

7-13 Reset Exception Processing..155

7-14 Cache Error Exception Processing ...156

7-15 Soft Reset and NMI Exception Processing ..156

7-16 General Exception Processing..157

7-17 General Exception Handler (HW)..175

7-18 General Exception Servicing Guidelines (SW)..176

7-19 TLB/XTLB Miss Exception Handler (HW)...177

7-20 TLB/XTLB Exception Servicing Guidelines (SW) ...178

7-21 Cache Error Exception Handling (HW) and Servicing Guidelines..........................179

7-22 Reset, Soft Reset & NMI Exception Handling...180

List of Figures (2/5)

User’s Manual U11761EJ6V0UM 19

Fig. No. Title Page

8-1 FPU Functional Block Diagram ...182

8-2 FPU Registers...184

8-3 Implementation/Revision Register ...187

8-4 FP Control/Status Register Bit Assignments..188

8-5 Control/Status Register Cause, Flag, and Enable Fields ..189

8-6 Single-Precision Floating-Point Format ...192

8-7 Double-Precision Floating-Point Format ...193

8-8 Binary Fixed-Point Format...195

8-9 FPU Instruction Pipeline ..201

9-1 Control/Status Register Exception/Flag/Trap/Enable Bits.......................................205

10-1 Power-on Reset Timing Diagram...216

10-2 Cold Reset Timing Diagram...217

10-3 Warm Reset Timing Diagram ..218

11-1 SysClock Timing..223

11-2 Phase-Locked System...224

12-1 Logical Hierarchy of Memory..226

12-2 VR5000 Cache Support ..227

12-3 Primary Instruction Cache Line Format ...228

12-4 Primary Data Cache Line Format...229

12-5 Secondary Cache Line Format ...230

13-1 System Interface Buses...233

13-2 Secondary Cache Interface ...233

14-1 Requests and System Events ..235

14-2 Processor Requests to External Agent..235

14-3 Processor Request Flow Control ..236

14-4 External Requests to Processor ..237

14-5 External Request Arbitration..238

14-6 External Agent Read Response to Processor..240

15-1 State of RdRdy* Signal for Read Requests..245

List of Figures (3/5)

20 User’s Manual U11761EJ6V0UM

Fig. No. Title Page

15-2 State of WrRdy* Signal for Write Requests...246

15-3 System Interface Register-to-Register Operation...247

15-4 Symbol for Undocumented Cycles...250

15-5 Processor Read Request Protocol...251

15-6 Processor Non-Coherent Non-Block Write Request Protocol252

15-7 Processor Non-Coherent, Non-Secondary Cache Block Write Request253

15-8 Processor Request Flow Control ..254

15-9 Two Processor Write Requests with Second Write Delayed255

15-10 VR4000-Compatible Back-to-Back Write Cycle Timing...256

15-11 Write Reissue ...257

15-12 Pipelined Writes ...258

15-13 Arbitration Protocol for External Requests ..260

15-14 System Interface Release External Null Request ...261

15-15 External Write Request, with System Interface Initially a Bus Master....................262

15-16 Processor Word Read Request, Followed by a Word Read Response.....................263

15-17 Block Read Response, System Interface already in Slave State264

15-18 Read Response, Reduced Data Rate, System Interface in Slave State.....................265

15-19 System Interface Command Syntax Bit Definition ..270

15-20 Read Request SysCmd Bus Bit Definition...270

15-21 Write Request SysCmd Bus Bit Definition ..271

15-22 Null Request SysCmd Bus Bit Definition ..272

15-23 Data Identifier SysCmd Bus Bit Definition..273

16-1 Processor Requests to Secondary Cache and External Agent284

16-2 Secondary Cache Invalidate and Clear...284

16-3 Secondary Cache Tag Probe...285

16-4 Secondary Cache Write Through ...285

16-5 Secondary Cache Read Hit...286

16-6 Secondary Cache Read Miss ..287

16-7 Secondary Cache Read Hit...289

16-8 Secondary Cache Read Miss ..291

16-9 Secondary Cache Read Miss with Bus Error ...292

16-10 Secondary Cache Write Operation ...293

List of Figures (4/5)

User’s Manual U11761EJ6V0UM 21

Fig. No. Title Page

16-11 Secondary Cache Line Invalidate...294

16-12 Secondary Cache Probe (Tag RAM Read)...295

16-13 Secondary Cache Flash Clear...296

17-1 Interrupt Register Bits and Enables..299

17-2 VR5000 Interrupt Signals ...300

17-3 VR5000 Nonmaskable Interrupt Signal..301

17-4 Masking of the VR5000 Interrupt...302

18-1 Standby Mode Operation..304

19-1 PLL Filter Circuit (1)..305

19-2 PLL Filter Circuit (2)..306

B-1 Retrieving a Data Block in Sequential Order ...314

B-2 Retrieving a Data in a Subblock Order...315

List of Figures (5/5)

22 User’s Manual U11761EJ6V0UM

Table No. Title Page

1-1 System Control Coprocessor (CP0) Register Definitions ..39

2-1 System Interface Signals ..45

2-2 Clock Interface Signals...46

2-3 Secondary Cache Interface Signals ..47

2-4 Interrupt Interface Signals ..48

2-5 Initialization Interface Signals..49

2-6 Power Supply ...50

3-1 Byte Access within a Doubleword ...61

3-2 Multiply/Divide Instruction Latency and Repeat Rates ...63

3-3 MIPS IV Instruction Set Additions and Extensions ...65

3-4 VR5000 COP0 Instrucitons ..66

3-5 Floating Point Operations...71

4-1 Relationship of Pipeline Stage to Interlock Condition ...92

4-2 Pipeline Exceptions ..93

4-3 Pipeline Interlocks ..93

6-1 Processor Modes ...103

6-2 32-bit and 64-bit User Address Space Segments ...109

6-3 Supervisor Mode Addressing ...111

6-4 Kernel Mode Addressing..115

6-5 Cacheability and Coherency Attributes..117

6-6 TLB Page Coherency (C) Bit Values ...123

6-7 Index Register Field Descriptions ..124

6-8 Random Register Field Descriptions..125

6-9 Mask Field Values for Page Sizes ..126

6-10 Wired Register Field Descriptions ...127

6-11 PRId Register Fields...128

6-12 Config Register Fields..130

6-13 Cache Tag Register Fields..134

6-14 TLB Instructions...137

7-1 CP0 Exception Processing Registers..139

7-2 Context Register Fields ..140

List of Tables (1/3)

User’s Manual U11761EJ6V0UM 23

Table No. Title Page

7-3 Status Register Fields ...144

7-4 Status Register Diagnostic Status Bits ...146

7-5 Cause Register Fields ...148

7-6 Cause Register ExcCode Field ...149

7-7 XContext Register Fields ...151

7-8 ECC Register Fields ...152

7-9 CacheErr Register Fields..153

7-10 Exception Vector Base Addresses..157

7-11 Exception Vector Offsets ...158

7-12 TLB Refill Vectors ...159

7-13 Exception Priority Order ..160

8-1 Floating-Point Control Register Assignments..186

8-2 FCR0 Fields..187

8-3 Control/Status Register Fields..188

8-4 Flush Values of Denormalized Number Results ..190

8-5 Rounding Mode Bit Decoding ...192

8-6 Calculating Values in Single and Double-Precision Formats193

8-7 Floating-Point Format Parameter Values ...194

8-8 Minimum and Maximum Floating-Point Values ...194

8-9 Binary Fixed-Point Format Fields ..195

8-10 FPU Instruction Summary: Load, Move and Store Instructions196

8-11 FPU Instruction Summary: Conversion Instructions ...196

8-12 FPU Instruction Summary: Computational Instructions ..197

8-13 FPU Instruction Summary: Compare and Branch Instructions................................197

8-14 Mnemonics and Definitions of Compare Instruction Conditions.............................200

8-15 Floating-Point Operation Latencies..202

9-1 Default FPU Exception Actions ...207

9-2 FPU Exception-Causing Conditions ..208

10-1 Boot Mode Settings ..220

14-1 Load Miss to Primary Caches...241

14-2 Store Miss to Primary and Secondary Caches..242

List of Tables (2/3)

24 User’s Manual U11761EJ6V0UM

Table No. Title Page

15-1 System Interface Requests..249

15-2 Transmit Data Rates and Patterns...266

15-3 Release Latency for External Requests ..269

15-4 Encoding of SysCmd(7:5) for System Interface Commands270

15-5 Encoding of SysCmd(4:3) for Read Requests..271

15-6 Encoding of SysCmd(1:0) for Block Read Request...271

15-7 Read Request Data Size Encoding of SysCmd(2:0)...271

15-8 Write Request Encoding of SysCmd(4:3) ..272

15-9 Block Write Request Encoding of SysCmd(2:0)..272

15-10 Write Request Data Size Encoding of SysCmd(2:0) ...272

15-11 External Null Request Encoding of SysCmd(4:3)..273

15-12 Processor Data Identifier Encoding of SysCmd(7:3) ...274

15-13 External Data Identifier Encoding of SysCmd(7:3) ...275

15-14 Partial Word Transfer Byte Lane Usage ..277

15-15 Error Checking Operation for Internal Transactions..281

15-16 Error Checking Operation for External Transactions...282

A-1 Primary Data Cache Operations ...312

A-2 Primary Instruction Cache Operations ...313

A-3 Secondary Cache Operations..313

B-1 Subblock Ordering Sequence: Address 102 ...316

B-2 Subblock Ordering Sequence: Address 112 ...316

B-3 Subblock Ordering Sequence: Address 012 ...316

C-1 Output Driver Strength ...317

List of Tables (3/3)

User’s Manual U11761EJ6V0UM 25

Chapter 1 Introduction

The VR5000 and VR5000A are members of the NEC VR-Series RISC (Reduced
Instruction Set Computer) microprocessors and are high-performance 64-/32-bit
microprocessors employing the RISC architecture developed by MIPS™.

Their instructions are upward-compatible with those of the VR3000 Series™ and
VR4000 Series and are completely compatible with those of the VR10000. Therefore,
existing applications can be used with the VR5000 and VR5000A.

Chapter 1 Introduction

26 User’s Manual U11761EJ6V0UM

1.1 Processor Characteristics

The VR5000 and VR5000A have the following fetaures:

• Maximum internal operating frequency:
150MHz (µPD30500-150) /180MHz (µPD30500-180) /
200MHz (µPD30500-200) /250MHz (µPD30500A-250)/
266MHz (µPD30500A-266)

• 64-bit architecture supporting 64-bit data processing

• Dual-issue instruction mechanism

• High-speed translation lookaside buffer (TLB) supporting virtual addresses (of
48 double entires)

• Address space: Physical 36 bits
Virtual 40 bits (64-bit mode)

31 bits (32-bit mode)

• Supports single-precision and double-precision floating-point operations

• On-chip primary cache: Instruction 32KB
Data 32KB

• Up to 2MB optional Secondary cache

• Employs writeback system -> store operation via system bus decreased

• Up to 100 MHz external bus with frequency of /2, /2.5Note, /3, /4, /5, /6, /7, /8
of internal operation

• Write buffer

• Upward-compatible with VR3000 Series and VR4000 Series and completely
compatible with VR10000

• Supply voltage: Vcc=3.3V±5% (VR5000)
Core : Vcc=2.4V±0.1V (VR5000A, 100 to 235MHz),

Vcc=2.5V+5% (VR5000A, 236 to 250MHz),
Vcc=2.6V±0.1V (VR5000A, 251 to 266MHz)

I/O : VccIO=3.3V±5%(VR5000A)

Note Selectable only when external operating frequency=100MHz

User’s Manual U11761EJ6V0UM 27

Chapter 1 Introduction

1.2 Ordering Information

1.3 64-Bit Architecture

The VR5000 is a 64-bit high-performance microprocessor. It can also execute 32-bit
applications.

1.4 VR5000 Processor

Figure 1-1 shows the internal block diagram of the VR5000.

The VR5000 is equipped with a full-associative high-speed translation lookaside
buffer (TLB) that has 48 entries with two pages corresponding to each entry; data
cache and instruction cache; external secondary cache interface, in addition to dual-
issue mechanism ALU.

Part Number Package
Maximum operating

frequency (MHz)

µPD30500RJ-150 223-pin ceramic PGA (48×48) 150
µPD30500RJ-180 223-pin ceramic PGA (48×48) 180
µPD30500RJ-200 223-pin ceramic PGA (48×48) 200
µPD30500S2-150 272-pin plastic BGA

(cavity down advanced type) (29×29)
150

µPD30500S2-180 272-pin plastic BGA
(cavity down advanced type) (29×29)

180

µPD30500S2-200 272-pin plastic BGA
(cavity down advanced type) (29×29)

200

µPD30500AS2-250 272-pin plastic BGA
(cavity down advanced type) (29×29)

250

µPD30500AS2-266 272-pin plastic BGA
(cavity down advanced type) (29×29)

266

Chapter 1 Introduction

28 User’s Manual U11761EJ6V0UM

Figure 1-1 VR5000 Processor Internal Block Diagram

System
 Interface

Clock Generator

Data/Address Control

Instruction Cache

Pipeline Control

Data Cache

Instruction Address Integer Operating

CP0 TLB

SysClock

Unit
Floating Point

Unit

User’s Manual U11761EJ6V0UM 29

Chapter 1 Introduction

1.4.1 Internal Block Configuration

System Interface allows the processor to access external resources such as memories
and secondary cache. It contains a 64-bit multiplexed address/data bus, with per-byte
parity, interrupt request signals, and various control signals included for secondary
cache.

Clock Generator generates a pipeline clock (PClock) based on an externally input
clock (SysClock). The ratio of frequency of SysClock to that of PClock can be set to
1:2, 1:2.5Note, 1:3, 1:4, 1:5, 1:6, 1:7, or 1:8.

Note VR5000A only (Selectable only when SysClock=100MHz)

Instruction Cache is 2-way set associative, virtually-indexed, and physically-
tagged. The capacity is 32KB.

Integer Operating Unit has the hardware resources to execute integer instruction. It
has a 64-bit register file and 64-bit integer datapath. It is provided with a dedicated
multiplier in order to process multiply instruction at a high speed.

Floating Point Unit has the hardware resources to execute floating point instruction.
It has a 64-bit register file, 64-bit mantissa datapath, and 12-bit exponent datapath. It
is provided with a dedicated multiplier and a dedicated div./sqrt. in order to process
multiply/multiplyadd and div./sqrt. instructions at a high speed.

Coprocessor 0 (CP0) has the memory management unit (MMU) and handles
exception processing. The MMU handles address translation and checks memory
accesses that occur between different memory segments (user, supervisor, or kernel).
The translation lookaside buffer (TLB) is used to translate virtual to physical
addresses.

Data Cache is a 2-way set associative, virtually indexed and physically-tagged
writeback cache. The capacity is 32KB.

Instruction Address calculates the effective address of the next instruction to be
fetched. It contains the incrementer for the Program Counter (PC), the branch address
adder, and the conditional branch selector.

Pipeline Control ensures the instruction pipeline operates properly causing either of
pipeline stall or exception.

Chapter 1 Introduction

30 User’s Manual U11761EJ6V0UM

1.4.2 CPU Registers

The processor provides the following registers:

• 32 64-bit general purpose registers, GPRs

• 32 64-bit floating-point purpose registers, FPRs

In addition, the processor provides the following special registers:

• 64-bit Program Counter, the PC register

• 64-bit HI register, containing the integer multiply and divide high-order
doubleword result

• 64-bit LO register, containing the integer multiply and divide low-order
doubleword result

• 1-bit Load/Link LLBit register

• 32-bit floating-point Implementation/Revision register, FCR0

• 32-bit floating-point Control/Status register, FCR31

Two of the CPU general purpose registers have assigned functions:

• r0 is hardwired to a value of zero, and can be used as the target register
for any instruction whose result is to be discarded. r0 can also be used as
a source when a zero value is needed.

• r31 is the link register used by JAL and JALR instructions. It can be used
by other instructions. Make sure that other data used in calculations does
not overlap with the register used by the JAL/JALR instruction.

Further more, the processor contains registers in the system control processor (CP0)
which perform the exception processing and address management. CPU registers can
operate as either 32-bit or 64-bit registers, depending on the VR5000 processor mode
of operation.

Figure 1-2 shows the VR5000 processor registers.

User’s Manual U11761EJ6V0UM 31

Chapter 1 Introduction

Figure 1-2 VR5000 Processor Registers

The VR5000 processor has no Program Status Word (PSW) register as such; this is
covered by the Status and Cause registers incorporated within the System Control
Coprocessor (CP0). CP0 registers are described later in this chapter.

r0 = 0

r1

r2

r31 = Link address

Multiply and Divide Registers

Program Counter

0

0

0

HI

LO

0

General Purpose Registers

PC

•
•
•
•

r29

r30

63

63

63

63

r0

r1

r2

r31 = Control/Status

0
Floating-Point Registers

•
•
•
•

r29

r30

63

Load/Link Register
0

LLbit

Floating-Point Control Registers
0

0

31

31

r0 = Implementation/Revision

r31

Chapter 1 Introduction

32 User’s Manual U11761EJ6V0UM

1.4.3 CPU Instruction Set Overview

Each CPU instruction is 32 bits long. As shown in Figure 1-3, there are three
instruction formats:

• immediate (I-type)

• jump (J-type)

• register (R-type)

Figure 1-3 CPU Instruction Formats

The instruction set can be further divided into the following groupings:

• Load and Store instructions move data between memory and general
purpose registers. They are all immediate (I-type) instructions, since the
only addressing mode supported is base register plus 16-bit, signed
immediate offset.

• Computational instructions perform arithmetic, logical, shift, multiply,
and divide operations on values in registers. They include register (R-
type, in which both the operands and the result are stored in registers) and
immediate (I-type, in which one operand is a 16-bit signed immediate
value) formats.

• Jump and Branch instructions change the control flow of a program.
Jumps are always made to an address formed by combining a 26-bit target
address with the high-order bits of the Program Counter (J-type format)
or register address (R-type format). Branch instructions are performed to
the 16-bit offset address relative to the program counter (I-type). Jump
And Link instructions save their return address in register 31.

• Coprocessor instructions (CPz) perform operations in the coprocessors.
Coprocessor load and store instructions are I-type. As opposed to CP0
instructions, CPz instructions are not specific to any coprocessor. (Refer
to Chapter 8 Floating Point Unit.)

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
11 10 6 5

rd saR-Type (Register)

J-Type (Jump)

I-Type (Immediate)

User’s Manual U11761EJ6V0UM 33

Chapter 1 Introduction

• Coprocessor 0 (system coprocessor, CP0) instructions perform operations
on CP0 registers to control the memory-management and exception-
handling facilities of the processor.

• Special instructions perform system call exception and breakpoint
exception operations, or cause a branch to the general exception-handling
vector based upon the result of a comparison. These instructions occur in
both R-type (both the operands and the result are registers) and I-type
(one operand is a 16-bit immediate value) formats.

For each instruction, refer to Chapter 3 CPU Instruction Set Summary and
VR5000, VR10000 User’s Manual Instruction.

Chapter 1 Introduction

34 User’s Manual U11761EJ6V0UM

1.4.4 Data Formats and Addressing

The VR5000 processor uses four data formats: a 64-bit doubleword, a 32-bit word, a
16-bit halfword, and an 8-bit byte. Byte ordering within all of the larger data
formats—halfword, word, doubleword—can be configured in either big-endian or
little-endian. When the VR5000 processor is configured as a big-endian system, byte
0 is the most-significant (leftmost) byte, thereby providing compatibility with MC
68000™ and IBM 370™ conventions. Figure 1-4 shows this configuration.

Figure 1-4 Big-Endian Byte Ordering

Remarks 1. The most-significant byte is the lowest address.
2. A word is addressed by the address of the most-significant byte.

When configured as a little-endian system, byte 0 is always the least-significant
(rightmost) byte, which is compatible with iAPX™ x86 and DEC VAX™
conventions. Figure 1-5 shows this configuration.

Unless otherwise specified, the little endian is used throughout this manual.

Figure 1-5 Little-Endian Byte Ordering

Remarks 1. The least-significant byte is the lowest address.
2. A word is addressed by the address of the least-significant byte.

Higher
Address

Lower
Address

Word

4

8

12
Address

8 9 1110

4 5 76

0 1 32

12 13 1514

0

31 24 23 16 15 8 7 0

Higher
Address

Lower
Address

Word

4

8

12
Address

8911 10

457 6

013 2

121315 14

0

31 24 23 16 15 8 7 0

User’s Manual U11761EJ6V0UM 35

Chapter 1 Introduction

Figure 1-6 Big-Endian Data in a Doubleword

Remarks 1. The most-significant byte is the lowest address.
2. A word is addressed by the address of the most-significant byte.

Figure 1-7 Little-Endian Data in a Doubleword

Remarks 1. The least-significant byte is the lowest address.
2. A word is addressed by the address of the least-significant byte.

Higher
Address

Lower
Address

Doubleword

16
Address

16 17 18

8 9 10

0 1 2

63 32 15 831 16
20 21 2322

12 13 1514

4 5 76

7 0
19

11

3

Word Halfword Byte

8

0

Higher
Address

Lower
Address

Doubleword

16
Address

161718

8910

012

63 32 15 831 16
202123 22

121315 14

457 6

7 0
19

11

3

Word Halfword Byte

8

0

Chapter 1 Introduction

36 User’s Manual U11761EJ6V0UM

The CPU uses byte addressing for halfword, word, and doubleword accesses with the
following alignment constraints:

• Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).

• Word accesses must be aligned on a byte boundary divisible by four (0, 4,
8...).

• Doubleword accesses must be aligned on a byte boundary divisible by
eight (0, 8, 16...).

The following special instructions load and store words that are not aligned on 4-byte
(word) or 8-word (doubleword) boundaries:

LWL LWR SWL SWR

LDL LDR SDL SDR

These instructions are always used in pairs to access data not aligned at an boundary.
To access data not aligned at a boundary, additional 1P cycle is necessary as compared
when accessing data aligned at a boundary.

Figure 1-8 illustrates how a word misaligned and having byte address 3 is accessed in
big and little endian.

Figure 1-8 Misaligned Word Addressing

Higher
Address

Lower
Address

Big-Endian4 5 6

3

31 24 23 16 15 8 7 0

Higher
Address

Lower
Address

Little-Endian456

3

31 24 23 16 15 8 7 0

User’s Manual U11761EJ6V0UM 37

Chapter 1 Introduction

1.4.5 System Control Coprocessor (CP0)

The CPU can operate with up to four coprocessors (CP0 through CP3) closely coupled.
Coprocessors 1 and 2 are reserved for future use. Coprocessor 3 is assigned for MIPS
IV instruction set. Coprocessor 0 (CP0) is an internal system control coprocessor and
supports the virtual memory system and exception processing. The virtual memory
system is executed by the on-chip TLB and CP0 register.

CP0 converts virtual addresses into physical addresses, selects an operating mode
(Kernel, supervisor, or user mode), and control exceptions. It also controls the cache
subsystem to analyze causes and return execution from error processing. The CP0
register of the VR5000 is the same as that of the VR4000.

Figure 1-9 shows the CP0 register. Table 1-1 briefly explains each register. For the
details of the registers related to the virtual memory system, refer to Chapter 6
Memory Management Unit, and for the details of the registers used for exception
processing, refer to Chapter 7 CPU Exception Processing.

Chapter 1 Introduction

38 User’s Manual U11761EJ6V0UM

Figure 1-9 CP0 Registers

Index*

Random*

EntryLo0*

EntryLo1*

Context**

PageMask*

Wired*

BadVAddr**

Count**

EntryHi*

Compare**

Status**

Cause**

EPC**

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

PRId* 15

Config*

LLAddr*

RFU

RFU

Parity Error**

Cache Error**

TagLo*

TagHi*

ErrorEPC**

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Register Name Reg. #Register Name Reg. #

* For Memory Management
** For Exception Processing
RFU Reserved for Future Use

XContext**

RFU

RFU

RFU

RFU

RFU

RFU

RFU

User’s Manual U11761EJ6V0UM 39

Chapter 1 Introduction

Table 1-1 System Control Coprocessor (CP0) Register Definitions

Number Register Description

0 Index Programmable pointer into TLB array

1 Random Pseudorandom pointer into TLB array (read only)

2 EntryLo0 Low half of TLB entry for even virtual address (VPN)

3 EntryLo1 Low half of TLB entry for odd virtual address (VPN)

4 Context Pointer to kernel virtual page table entry (PTE) in 32-bit mode

5 PageMask Page size specification

6 Wired Number of wired TLB entries

7 — Reserved for future use

8 BadVAddr Display of virtual address that occurred an error last

9 Count Timer Count

10 EntryHi High half of TLB entry (including ASID)

11 Compare Timer Compare Value

12 Status Operation status setting

13 Cause Display of cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Memory system mode setting

17 LLAddr Load Linked instruction address display

18, 19 — Reserved for future use

20 XContext Pointer to Kernel virtual PTE table in 64-bit mode

21–25 — Reserved for future use

26 Parity Error Cache parity bits

27 Cache Error Cache Error and Status register

28 TagLo Cache Tag register low

29 TagHi Cache Tag register high

30 ErrorEPC Error Exception Program Counter

31 — Reserved for future use

Chapter 1 Introduction

40 User’s Manual U11761EJ6V0UM

1.4.6 Floating-Point Unit (FPU)

The floating-point unit (FPU) performs arithmetic operations on floating-point values.
The FPU, with associated system software, fully conforms to the requirements of
ANSI/IEEE Standard 754–1985, IEEE Standard for Binary Floating-Point
Arithmetic.

The FPU includes:

• Full 64-bit Operation. The FPU can contain either 16 64-bit registers to
hold single-precision or double-precision values. Another sixteen
floating-point registers can be used by setting the FR bit of the Status
register to 1. Moreover, a 32-bit Control/Status register is provided,
conforming to the IEEE exception processing standard.

• Load and Store Instruction Set. Like the CPU, the FPU uses a load-
and store-based instruction set. Floating-point operations are started in a
single cycle.

1.4.7 Internal Cache

The VR5000 has an instruction cache and a data cache to enhance the efficiency of
pipelining. Each cache has a data width of 64 bits and can be accessed in 1 clock. The
instruction cache and data cache can be accessed in parallel. Both of the instruction
cache and data cache have a capacity of 32KB.

For the details of the cache, refer to Chapter 12 Cache Organization and
Operation.

User’s Manual U11761EJ6V0UM 41

Chapter 1 Introduction

1.5 Memory Management System (MMU)

The VR5000 processor has a 36-bit physical addressing range of 64 GB. However,
since it is rare for systems to implement a physical memory space this large, the CPU
provides a logical expansion of memory space to the programmer by translating
addresses into the large virtual address space. The VR5000 processor supports the
following two addressing modes:

• 32-bit mode, in which the virtual address space is divided into 2 GB per
user process and 2 GB for the kernel.

• 64-bit mode, in which the virtual address is expanded to
1 TB (240 bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 6 Memory
Management Unit.

1.5.1 Translation Lookaside Buffer (TLB)

Virtual memory mapping is assisted by a translation lookaside buffer, which holds
virtual-to-physical address translations. This fully-associative, on-chip TLB contains
48 entries, each of which maps a pair of variable-sized pages of either 4 KB or 16 MB.

Joint TLB (JTLB)

The TLB can hold both instruction and data addresses, and is thus also referred to as a
joint TLB (JTLB).

An address translation value is tagged with the most-significant bits of its virtual
address (the number of these bits depends upon the size of the page) and a per-process
identifier. If there is no matching entry in the TLB, an exception occurs and software
writes the entry contents to the on-chip TLB from a page table in memory. The JTLB
entry to be rewritten is selected by a value in either the Random or Index register.

Chapter 1 Introduction

42 User’s Manual U11761EJ6V0UM

1.5.2 Operating Modes

The VR5000 processor has three operating modes:

• User mode

• Supervisor mode

• Kernel mode

The manner in which memory addresses are translated or mapped depends on the
operating mode of the CPU; this is described in Chapter 6 Memory Management
Unit.

1.6 Instruction Pipeline

The VR5000 incorporates a simple dual-issue mechanism which allows a floating-
point ALU instruction to be issued simultaneously with any other instruction type and
has a five-stage instruction pipeline. For details, refer to Chapter 4 VR5000
Processor Pipeline and Chapter 5 Superscalar Issue Mechanism.

User’s Manual U11761EJ6V0UM 43

Chapter 2 VR5000 Processor Signal Descriptions

This chapter describes the signals used by and in conjunction with the VR5000
processor. The signals include the System interface, the Clock interface, the
Secondary Cache interface, the Interrupt interface, and the Initialization interface.

Signals are listed in bold, and low active signals have a trailing asterisk—for instance,
the low-active Read Ready signal is RdRdy*. The arrows used in each signal for each
signals tells if the signal is an input (the processor receives it), an output (the processor
sends it out), or bidirectional.

Figure 2-1 illustrates the functional groupings of the processor signals.

Chapter 2 VR5000 Processor Signal Descriptions

44 User’s Manual U11761EJ6V0UM

Figure 2-1 VR5000 Processor Signals

2.1 System Interface Signals

System interface signals provide the connection between the VR5000 processor and
the other components in the system. Table 2-1 lists the system interface signals.

SysAD[63:0]

SysADC[7:0]

SysCmd[8:0]

SysCmdP

ValidIn*

ValidOut*

ExtRqst*

Release*

WrRdy*

BigEndian

SysClock

VccOk

ColdReset*

Reset*

VccP

VssP

ScWord[1:0)]

ScTCE*

ScTDE*

ScTOE*

ScCLR*

ScDCE*[1:0]

ScDOE*

ScLine[15:0]

ScMatch

Int*[5:0]

NMI*

ModeClock

ModeIn

ScCWE*[1:0]

In
iti

al
iz

at
io

n
In

te
rf

ac
e

S
ec

on
da

ry
 C

ac
he

 In
te

rf
ac

e
In

te
rr

up
t

S
ys

te
m

 In
te

rf
ac

e
C

lo
ck

 In
te

rf
ac

e

VR5000
Logic

Symbol

64

8

9

16

6

RdRdy*

In
te

rf
ac

e

2

ScValid

User’s Manual U11761EJ6V0UM 45

Chapter 2 VR5000 Processor Signal Descriptions

Table 2-1 System Interface Signals

Name Definition Direction Description

ExtRqst* External request Input

An external agent asserts ExtRqst* to
request use of the System interface. The
processor grants the request by asserting
Release*.

Release* Release interface Output

In response to the assertion of ExtRqst*, the
processor asserts Release*, signalling to the
requesting device that the System interface is
available.

RdRdy* Read ready Input

The external agent asserts RdRdy* to
indicate that it can accept processor read
requests in either secondary or no-secondary
cache mode.

SysAD(63:0)
System address/
data bus

Input/
Output

A 64-bit address and data bus for
communication between the processor, the
secondary cache, and an external agent.

SysADC(7:0)
System address/
data check bus

Input/
Output

An 8-bit bus containing parity for the SysAD
bus. SysADC is valid on data cycles only.

SysCmd(8:0)
System command/
data identifier

Input/
Output

A 9-bit bus for command and data identifier
transmission between the processor and an
external agent.

SysCmdP
System command/
data identifier bus
parity

Input/
Output

Always zero when driven by the processor.
Never checked by the processor. This signal
is defined to maintain VR4000 compatiblility.

ValidIn* Valid input Input

The external agent asserts ValidIn* when it is
driving a valid address or data on the SysAD
bus and a valid command or data identifier on
the SysCmd bus.

ValidOut* Valid output Output

The processor asserts ValidOut* when it is
driving a valid address or data on the SysAD
bus and a valid command or data identifier on
the SysCmd bus to the external agent.

WrRdy* Write ready Input
The external agent asserts WrRdy* when it
can accept a processor write request.

Chapter 2 VR5000 Processor Signal Descriptions

46 User’s Manual U11761EJ6V0UM

2.2 Clock Interface Signals

The Clock interface signals make up the interface for clocking. Table 2-2 lists the
Clock interface signals.

Table 2-2 Clock Interface Signals

2.3 Secondary Cache Interface Signals

Secondary Cache interface signals constitute the interface between the VR5000
processor and secondary cache. Table 2-3 lists the Secondary Cache interface signals
in alphabetical order.

Name Definition Direction Description

SysClock System Clock Input
System clock input that establishes
the system interface operating
frequency and phase.

VccP Quiet Vcc for PLL Input
Quiet Vcc for the internal phase
locked loop.

VssP Quiet Vss for PLL Input
Quiet Vss for the internal phase
locked loop.

User’s Manual U11761EJ6V0UM 47

Chapter 2 VR5000 Processor Signal Descriptions

Table 2-3 Secondary Cache Interface Signals

Name Definition Direction Description

ScCLR*
Secondary Cache
Flash Clear

Output
Clears all valid bits in those Tag
RAMs which support this function.

ScCWE*(1:0)
Secondary Cache
Write Enable

Output

Asserted during writes to the
secondary cache. Two signals are
provided to minimize loading from
the cache RAMs.

ScDCE*(1:0)
Data RAM Chip
Enable

Output

Chip Enable for Secondary Cache
Data RAM. Two signals are provided
to minimize loading from the cache
RAMs.

ScDOE*
Data RAM Output
Enable

Input
Asserted by the external agent to
enable data onto the SysAD bus

ScLine (15:0)
Secondary Cache
Line Index

Output Cache line index for secondary cache

ScMatch
Secondary cache
Tag Match

Input
Asserted by Tag RAM on Secondary
cache tag match

ScTCE*
Secondary cache
Tag RAM Chip
Enable

Output
Chip enable for secondary cache tag
RAM.

ScTDE*
Secondary cache
Tag RAM Data
Enable

Output
Data Enable for Secondary Cache Tag
RAM.

ScTOE*
Secondary cache
Tag RAM Output
Enable

Output
Tag RAM Output enable for
Secondary Cache Tag RAM

ScWord (1:0)
Secondary cache
Word Index

Input/Output
Determines the double-word within
the indexed secondary cache Index

ScValid
Secondary cache
Valid

Input/Output
Always driven by the CPU except
during a CACHE Probe operation,
where it is driven by the Tag RAM.

Chapter 2 VR5000 Processor Signal Descriptions

48 User’s Manual U11761EJ6V0UM

2.4 Interrupt Interface Signals

The Interrupt interface signals make up the interface used by external agents to
interrupt the VR5000 processor. Table 2-4 lists the Interrupt interface signals.

Table 2-4 Interrupt Interface Signals

2.5 Initialization Interface Signals

The Initialization interface signals make up the interface by which an external agent
initializes the processor operating parameters. Table 2-5 lists the Initialization
interface signals.

Name Definition Direction Description

Int*(5:0) Interrupt Input
General processor interrupts, bit-wise ORed with
bits 5:0 of the interrupt register.

NMI*
Nonmaskable
interrupt

Input
Nonmaskable interrupt, ORed with bit 6 of the
interrupt register.

User’s Manual U11761EJ6V0UM 49

Chapter 2 VR5000 Processor Signal Descriptions

Table 2-5 Initialization Interface Signals

Note VccIO is only for VR5000A.

Name Definition Direction Description

BigEndian Endian Mode Select Input

Allows the system to change the processor
addressing mode without rewriting the
mode ROM. If endianness is to be
specified via the BigEndian pin, program
mode ROM bit 8 to zero. If endianness is
to be specified by the mode ROM, ground
the BigEndian pin.

 ColdReset* Cold reset Input
This signal must be asserted for a power on
reset or a cold reset. ColdReset* must be
deasserted synchronously with SysClock.

ModeClock Boot mode clock Output
Serial boot-mode data clock output; runs at
the system clock frequency divided by
256: (SysClock/256).

ModeIn Boot mode data in Input Serial boot-mode data input.

Reset* Reset Input

This signal must be asserted for any reset
sequence. It can be asserted
synchronously or asynchronously for a
cold reset, or synchronously to initiate a
warm reset. Reset* must be deasserted
synchronously with SysClock.

VccOk
Vcc and VccIONote

are valid
Input

When asserted, this signal indicates to the
processor that the +3.3 volt power supply
has been above 3.135 volts for more than
100 milliseconds and will remain stable.
The assertion of VccOk initiates the
initialization sequence.

Chapter 2 VR5000 Processor Signal Descriptions

50 User’s Manual U11761EJ6V0UM

2.6 Power Supply

Table 2-6 Power Supply

Note VR5000A only

Caution Two kind of power sources are provided with the VR5000A. The sequence of
the power application order is not fixed. However, make sure that either of
the power supplies does not remain turned on for 1 second or more while the
other remains off.

Name Definition Direction Description

Vss
Vss for Processor
Core and Processor
I/O

–
Ground for the internal core logic and
processor I/O interface.

Vcc

VR5000 : Power
supply

–

Positive power supply pin (3.3V)

VR5000A :
Power supply for
Processor Core

Power supply pin for core
(100 to 235MHz: 2.4V, 236 to 250MHz: 2.5V,
251 to 266MHz: 2.6V)

VccIONote Power supply for
Processor I/O

– Power supply pin for I/O (3.3V)

User’s Manual U11761EJ6V0UM 51

Chapter 2 VR5000 Processor Signal Descriptions

2.7 Pin Configuration

• 223-pin ceramic PGA (48 × 48)
µPD30500RJ-150
µPD30500RJ-180
µPD30500RJ-200

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

ABCDEFGHJKLMNPRTUV VUTRPNMLKJHGFEDCBA

Index mark

Bottom View Top View

Chapter 2 VR5000 Processor Signal Descriptions

52 User’s Manual U11761EJ6V0UM

Location.......Name Location.......Name Location Name Location....... Name Location....... Name Location Name

A2Vcc C5 SysADC[6] E18 Vcc K17............... VssP R6 SysAD[51] U9........SysAD[63]

A3 Vss C6 SysAD[16] F1 Vcc K18..................Vss R7 SysAD[55] U10......SysAD[13]

A4Vcc C7 SysAD[50] F2 Reserved L1Vss R8 SysAD[27] U11......SysAD[11]

A5 Vss C8 SysAD[22] F3 ScValid L2 SysCmd[8] R9 SysAD[31] U12........SysAD[9]

A6 Vss C9 SysAD[24] F4INT[1]* L3 SysCmd[7] R10 SysAD[43] U13......SysAD[37]

A7Vcc C10 SysAD[28] F15 ScDCE[0]* L4 SysCmd[5] R11 SysAD[39] U14........SysAD[3]

A8 Vss C11 SysAD[62] F16 ScCWE[0]* L15ScLine[12] R12 SysAD[35] U15...... ScWord[0]

A9Vcc C12 SysAD[44] F17 ScTDE* L16ScLine[14] R13 SysAD[1] U16................. Vcc

A10 Vss C13 SysAD[10] F18Vss L17ScLine[15] R14 ScWord[1] U17..................Vss

A11Vcc C14 SysAD[38] G1....................Vss L18 Vcc R15ScLine[0] U18..................Vss

A12 Vss C15 SysAD[4] G2........... Reserved M1 Vcc R16ScLine[3] V1....................Vss

A13Vcc C16 SysAD[34] G3........... Reserved M2 SysCmd[6] R17ScLine[6] V2....................Vss

A14 Vss C17 SysAD[2] G4........... Reserved M3 SysCmd[4] R18Vss V3................... Vcc

A15 Vss C18 Vss G15.......... ScCLR* M4 SysCmd[1] T1Vss V4....................Vss

A16Vcc D1 Vss G16.......... ScTCE* M15ScLine[8] T2 SysAD[15] V5....................Vss

A17 Vss D2INT3* G17........... ModeIn M16ScLine[10] T3 SysAD[47] V6................... Vcc

A18 Vss D3INT5* G18................. Vcc M17ScLine[13] T4 SysAD[17] V7....................Vss

B1 Vss D4Release* H1................... Vcc M18Vss T5 SysAD[19] V8................... Vcc

B2 Vss D5Vcc H2........... Reserved N1....................Vss T6 SysAD[23] V9....................Vss

B3Vcc D6 SysADC[2] H3........... Reserved N2....... SysCmd[3] T7 SysAD[57] V10................. Vcc

B4 SysADC[4] D7 SysAD[48] H4........... Reserved N3....... SysCmd[2] T8 SysAD[29] V11..................Vss

B5 SysADC[0] D8 SysAD[52] H15............VccOK N4.......SysADC[7] T9 Vcc V12................. Vcc

B6 SysAD[18] D9 SysAD[56] H16.....ModeClock N15........ScLine[5] T10 SysAD[45] V13..................Vss

B7 SysAD[20] D10 SysAD[60] H17.........SysClock N16........ScLine[7] T11 SysAD[41] V14................. Vcc

B8 SysAD[54] D11 SysAD[14] H18..................Vss N17......ScLine[11] T12 SysAD[7] V15..................Vss

B9 SysAD[26] D12 SysAD[42] J1.....................Vss N18................. Vcc T13 SysAD[5] V16..................Vss

B10 SysAD[58] D13 SysAD[8] J2............. WrRdy* P1.................... Vcc T14 SysAD[33] V17................. Vcc

B11 SysAD[30] D14 SysAD[36] J3............. ValidIn* P2........ SysCmd[0] T15Reset* V18..................Vss

B12 SysAD[46] D15ColdReset* J4.............ExtReq* P3...........SysCmdP T16ScLine[1]

B13 SysAD[12] D16 SysAD[0] J15.......... Reserved P4........SysADC[1] T17 Vcc

B14 SysAD[40] D17ScTOE* J16.......... Reserved P15.........ScLine[2] T18 Vcc

B15 SysAD[6] D18Vcc J17.......... Reserved P16.........ScLine[4] U1................... Vcc

B16 Vss E1.................... Vss J18.................. Vcc P17.........ScLine[9] U2................... Vcc

B17Vcc E2............. INT[0]* K1................... Vcc P18...................Vss U3....................Vss

B18Vcc E3............. INT[2]* K2............ScMatch R1 Vcc U4....... SysAD[21]

C1Vcc E4............. INT[4]* K3.............RdRdy* R2SysADC[5] U5....... SysAD[53]

C2Vcc E15...... SysAD[32] K4............ScDOE* R3SysADC[3] U6....... SysAD[25]

C3ValidOut* E16......ScDCE[1]* K15......... Reserved R4 BigEndian U7....... SysAD[59]

C4 NMI* E17.....ScCWE[1]* K16............... VccP R5 SysAD[49] U8....... SysAD[61]

User’s Manual U11761EJ6V0UM 53

Chapter 2 VR5000 Processor Signal Descriptions

• 272-pin plastic BGA (cavity down advanced type) (29 × 29)
µPD30500S2-150
µPD30500S2-180
µPD30500S2-200
µPD30500AS2-250
µPD30500AS2-266

Bottom View Top View

21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

AA Y W V U T R P N M L K J H G F E D C B A A B C D E F G H J K L M N P R T U V W Y AA

Chapter 2 VR5000 Processor Signal Descriptions

54 User’s Manual U11761EJ6V0UM

(1) µPD30500
Location.......Name Location.......Name Location Name Location....... Name Location....... Name Location Name

A1 Vss C1 Vss E1Vss K3....... SysAD[62] R18 Vcc W2.................. Vcc

A2Vcc C2Vcc E2SysAD[36] K4................... Vcc R19 SysAD[53] W3.................. Vcc

A3 Vss C3ColdReset* E3SysAD[4] K18................. Vcc R20 SysAD[23] W4.................. Vcc

A4 SysAD[32] C4 SysAD[34] E4 Vcc K19..... SysAD[11] R21Vss W5..............Int*[5]

A5 Vss C5ScDCE*[1] E18 Vcc K20..... SysAD[43] T1 SysAD[16] W6..............Int*[4]

A6ScCWE*[1] C6ScDCE*[0] E19 ScWord[1] K21..... SysAD[13] T2SysADC[0] W7..............Int*[1]

A7 Vss C7ScCWE*[0] E20 ScWord[0] L1Vss T3SysADC[2] W8..........Reserved

A8 VccOK C8ScTCE* E21Vss L2 SysAD[58] T4Vss W9..........Reserved

A9 Vss C9ModeIn F1SysAD[8] L3 SysAD[28] T18Vss W10........Reserved

A10SysClock C10 Reserved F2SysAD[38] L4 Vcc T19 SysAD[19] W11.........ValidIn*

A11 Vss C11 VssP F3SysAD[6] L18 Vcc T20 SysAD[51] W12.........ScDOE*

A12 ScLine[15] C12 Reserved F4Vss L19 SysAD[45] T21 SysAD[21] W13.....SysCmd[7]

A13 Vss C13 ScLine[13] F18Vss L120 ... SysAD[63] U1....................Vss W14.....SysCmd[4]

A14 ScLine[12] C14 ScLine[11] F19SysAD[1] L21Vss U2.......SysADC[4] W15.....SysCmd[1]

A15 Vss C15 ScLine[8] F20SysAD[33] M1 SysAD[26] U3.......SysADC[6] W16....SysADC[7]

A16 ScLine[7] C16 ScLine[5] F21SysAD[3] M2 SysAD[56] U4................... Vcc W17....SysADC[5]

A17 Vss C17 ScLine[4] G1....................Vss M3 SysAD[24] U18................. Vcc W18.....SysAD[47]

A18 ScLine[2] C18 ScLine[0] G2........SysAD[10] M4 Vcc U19..... SysAD[17] W19......BigEndian

A19 Vss C19 Reset* G3........SysAD[40] M18 Vcc U20..... SysAD[49] W20................ Vcc

A20Vcc C20Vcc G4................... Vcc M19 SysAD[29] U21..................Vss W21.................Vss

A21 Vss C21 Vss G18................. Vcc M20 SysAD[61] V1................... Vcc Y1................... Vcc

B1Vcc D1Vcc G19......SysAD[35] M21 SysAD[31] V2................... Vcc Y2................... Vcc

B2Vcc D2Vcc G20........SysAD[5] N1....................Vss V3................... Vcc Y3................... Vcc

B3Vcc D3Vcc G21..................Vss N2....... SysAD[54] V4....................Vss Y4........... Release*

B4 SysAD[2] D4 Vss H1........SysAD[42] N3....... SysAD[22] V5................NMI* Y5...............Int*[3]

B5 SysAD[0] D5Vcc H2........SysAD[44] N4....................Vss V6....................Vss Y6...............Int*[2]

B6ScTOE* D6 Vss H3........SysAD[12] N18..................Vss V7................... Vcc Y7............. ScValid

B7 ScCLR* D7Vcc H4................... Vcc N19..... SysAD[27] V8................... Vcc Y8...........Reserved

B8 ScTDE* D8Vcc H18................. Vcc N20..... SysAD[59] V9....................Vss Y9...........Reserved

B9 ModeClock D9 Vss H19........SysAD[7] N21..................Vss V10................. Vcc Y10.........Reserved

B10 Reserved D10Vcc H20......SysAD[39] P1........ SysAD[50] V11................. Vcc Y11..........ExtReq*

B11 Reserved D11VccP H21......SysAD[37] P2........ SysAD[52] V12................. Vcc Y12.......... RdRdy*

B12NC D12Vcc J1.....................Vss P3........ SysAD[20] V13..................Vss Y13......SysCmd[8]

B13 ScLine[14] D13 Vss J2.........SysAD[46] P4.................... Vcc V14................. Vcc Y14......SysCmd[5]

B14 ScLine[10] D14Vcc J3.........SysAD[14] P18.................. Vcc V15................. Vcc Y15......SysCmd[3]

B15 ScLine[9] D15Vcc J4.....................Vss P19...... SysAD[25] V16..................Vss Y16......SysCmd[0]

B16 ScLine[6] D16 Vss J18...................Vss P20...... SysAD[57] V17................. Vcc Y17........SysCmdP

B17 ScLine[3] D17Vcc J19.........SysAD[9] P21...... SysAD[55] V18..................Vss Y18.....SysADC[1]

B18 ScLine[1] D18 Vss J20.......SysAD[41] R1Vss V19................. Vcc Y19......SysAD[15]

B19Vcc D19Vcc J21...................Vss R2 SysAD[18] V20................. Vcc Y20................. Vcc

B20Vcc D20Vcc K1........SysAD[60] R3 SysAD[48] V21................. Vcc Y21................. Vcc

B21Vcc D21Vcc K2........SysAD[30] R4 Vcc W1...................Vss AA1.................Vss

Continued on next page

User’s Manual U11761EJ6V0UM 55

Chapter 2 VR5000 Processor Signal Descriptions

AA2Vcc AA7 Vss AA12.......ScMatch AA17...............Vss

AA3 Vss AA8 Reserved AA13...............Vss AA18..SysADC[3]

AA4ValidOut* AA9 Vss AA14...SysCmd[6] AA19...............Vss

AA5.................Vss AA10..........WrRdy* AA15................Vss AA20..............Vcc

AA6............Int*[0] AA11.................Vss AA16...SysCmd[2] AA21..............Vss

Location.......Name Location.......Name Location Name Location....... Name Location....... Name Location Name

Chapter 2 VR5000 Processor Signal Descriptions

56 User’s Manual U11761EJ6V0UM

(2) µPD30500A
Location.......Name Location.......Name Location Name Location....... Name Location....... Name Location Name

A1 Vss C1 Vss E1Vss K3....... SysAD[62] R18VccIO W2.............. VccIO

A2VccIO C2VccIO E2........SysAD[36] K4...............VccIO R19 SysAD[53] W3.............. VccIO

A3 Vss C3ColdReset* E3SysAD[4] K18.............VccIO R20 SysAD[23] W4.............. VccIO

A4 SysAD[32] C4 SysAD[34] E4 Vcc K19..... SysAD[11] R21Vss W5..............Int*[5]

A5 Vss C5ScDCE*[1] E18 Vcc K20..... SysAD[43] T1 SysAD[16] W6..............Int*[4]

A6ScCWE*[1] C6ScDCE*[0] E19 ScWord[1] K21..... SysAD[13] T2SysADC[0] W7..............Int*[1]

A7 Vss C7ScCWE*[0] E20 ScWord[0] L1Vss T3SysADC[2] W8...................Vss

A8 VccOK C8ScTCE* E21Vss L2 SysAD[58] T4Vss W9...................Vss

A9 Vss C9ModeIn F1SysAD[8] L3 SysAD[28] T18Vss W10................ Vcc

A10SysClock C10NC F2SysAD[38] L4 Vcc T19 SysAD[19] W11.........ValidIn*

A11 Vss C11 VssP F3SysAD[6] L18 Vcc T20 SysAD[51] W12.........ScDOE*

A12 ScLine[15] C12 Vss F4Vss L19 SysAD[45] T21 SysAD[21] W13.....SysCmd[7]

A13 Vss C13 ScLine[13] F18Vss L120 ... SysAD[63] U1....................Vss W14.....SysCmd[4]

A14 ScLine[12] C14 ScLine[11] F19SysAD[1] L21Vss U2.......SysADC[4] W15.....SysCmd[1]

A15 Vss C15 ScLine[8] F20SysAD[33] M1 SysAD[26] U3.......SysADC[6] W16....SysADC[7]

A16 ScLine[7] C16 ScLine[5] F21SysAD[3] M2 SysAD[56] U4................... Vcc W17....SysADC[5]

A17 Vss C17 ScLine[4] G1....................Vss M3 SysAD[24] U18................. Vcc W18.....SysAD[47]

A18 ScLine[2] C18 ScLine[0] G2........SysAD[10] M4VccIO U19..... SysAD[17] W19......BigEndian

A19 Vss C19 Reset* G3........SysAD[40] M18VccIO U20..... SysAD[49] W20............ VccIO

A20VccIO C20VccIO G4............... VccIO M19 SysAD[29] U21..................Vss W21.................Vss

A21 Vss C21 Vss G18............. VccIO M20 SysAD[61] V1................... Vcc Y1............... VccIO

B1VccIO D1Vcc G19......SysAD[35] M21 SysAD[31] V2................... Vcc Y2............... VccIO

B2VccIO D2Vcc G20........SysAD[5] N1....................Vss V3................... Vcc Y3............... VccIO

B3VccIO D3Vcc G21..................Vss N2....... SysAD[54] V4....................Vss Y4........... Release*

B4 SysAD[2] D4 Vss H1........SysAD[42] N3....... SysAD[22] V5................NMI* Y5...............Int*[3]

B5 SysAD[0] D5Vcc H2........SysAD[44] N4....................Vss V6....................Vss Y6...............Int*[2]

B6ScTOE* D6 Vss H3........SysAD[12] N18..................Vss V7................... Vcc Y7............. ScValid

B7 ScCLR* D7VccIO H4................... Vcc N19..... SysAD[27] V8...............VccIO Y8....................Vss

B8 ScTDE* D8Vcc H18................. Vcc N20..... SysAD[59] V9....................Vss Y9....................Vss

B9 ModeClock D9 Vss H19........SysAD[7] N21..................Vss V10................. Vcc Y10..................Vss

B10 Vss D10VccIO H20......SysAD[39] P1........ SysAD[50] V11.............VccIO Y11..........ExtReq*

B11 Vss D11VccP H21......SysAD[37] P2........ SysAD[52] V12................. Vcc Y12.......... RdRdy*

B12 Vss D12Vcc J1.....................Vss P3........ SysAD[20] V13..................Vss Y13......SysCmd[8]

B13 ScLine[14] D13 Vss J2.........SysAD[46] P4.................... Vcc V14.............VccIO Y14......SysCmd[5]

B14 ScLine[10] D14VccIO J3.........SysAD[14] P18.................. Vcc V15................. Vcc Y15......SysCmd[3]

B15 ScLine[9] D15Vcc J4.....................Vss P19...... SysAD[25] V16..................Vss Y16......SysCmd[0]

B16 ScLine[6] D16 Vss J18...................Vss P20...... SysAD[57] V17.............VccIO Y17........SysCmdP

B17 ScLine[3] D17VccIO J19.........SysAD[9] P21...... SysAD[55] V18..................Vss Y18.....SysADC[1]

B18 ScLine[1] D18 Vss J20.......SysAD[41] R1Vss V19................. Vcc Y19......SysAD[15]

B19VccIO D19Vcc J21...................Vss R2 SysAD[18] V20................. Vcc Y20............. VccIO

B20VccIO D20Vcc K1........SysAD[60] R3 SysAD[48] V21................. Vcc Y21............. VccIO

B21VccIO D21Vcc K2........SysAD[30] R4VccIO W1...................Vss AA1.................Vss

Continued on next page

User’s Manual U11761EJ6V0UM 57

Chapter 2 VR5000 Processor Signal Descriptions

AA2VccIO AA7 Vss AA12.......ScMatch AA17...............Vss

AA3 Vss AA8 Vss AA13...............Vss AA18..SysADC[3]

AA4ValidOut* AA9 Vss AA14...SysCmd[6] AA19...............Vss

AA5.................Vss AA10..........WrRdy* AA15................Vss AA20..........VccIO

AA6............Int*[0] AA11.................Vss AA16...SysCmd[2] AA21..............Vss

Location.......Name Location.......Name Location Name Location....... Name Location....... Name Location Name

58 User’s Manual U11761EJ6V0UM

Chapter 3 CPU Instruction Set Summary

The VR5000 processor executes the MIPS IV instruction set, which is a superset of the
MIPS III instruction set and is backward compatible. Each CPU instruction consists of
a single 32-bit word, aligned on a word boundary. There are three instruction
formats—immediate (I-type), jump (J-type), and register (R-type). The use of a small
number of instruction formats simplifies instruction decoding, allowing the compiler
to synthesize more complicated (and less frequently used) operations and addressing
modes from these three formats as needed.

A summary of the MIPS IV instruction set additions is listed along with a brief
explanation of each instruction. For more information on the MIPS IV instruction set,
refer to VR5000, VR10000 User’s Manual Instruction.

User’s Manual U11761EJ6V0UM 59

Chapter 3 CPU Instruction Set Summary

There are three types of instruction types as shown in Figure 3-1.

Figure 3-1 CPU Instruction Formats

In the MIPS architecture, coprocessor instructions are implementation-dependent.

3.1 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory
and the general registers. The only addressing mode that integer load and store
instructions directly support is base register plus 16-bit signed immediate offset.
Floating point load and store instructions also support an indexed addressing, register+
register, addressing mode.

op 6-bit operation code

rs 5-bit source register specifier

rt
5-bit target (source/destination) register or branch
condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
1110 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)

Chapter 3 CPU Instruction Set Summary

60 User’s Manual U11761EJ6V0UM

3.1.1 Scheduling a Load Delay Slot

In the VR5000 processor, the instruction immediately following a load instruction can
use the contents of the loaded register, however in such cases hardware interlocks
insert additional real cycles. Consequently, scheduling load delay slots can be
desirable, both for performance and VR-Series processor compatibility. However, the
scheduling of load delay slots is not absolutely required.

3.1.2 Defining Access Types

Access type indicates the size of a VR5000 processor data item to be loaded or stored,
set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address given specifies the
low-order byte in the addressed field. For a big-endian configuration, the low-order
byte is the most-significant byte; for a little-endian configuration, the low-order byte
is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes
accessed within the addressed doubleword (shown in Table 3-1). Only the
combinations shown in Table 3-1 are permissible; other combinations cause address
error exceptions.

User’s Manual U11761EJ6V0UM 61

Chapter 3 CPU Instruction Set Summary

Table 3-1 Byte Access within a Doubleword

Access Type
Mnemonic

(Value)

Low Order
Address Bits

Bytes Accessed

Big endian
(63-----------31------------0)

Byte

Little endian
(63-----------31------------0)

Byte
2 1 0

Doubleword (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (6)
0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (5)
0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (4)
0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (3)
0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte (2)

0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (1)

0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (0)

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

Chapter 3 CPU Instruction Set Summary

62 User’s Manual U11761EJ6V0UM

3.2 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both
operands are registers, or in immediate (I-type) format, in which one operand is a 16-
bit immediate.

Computational instructions perform the following operations on register values:

• arithmetic

• logical

• shift

• multiply

• divide

These operations fit in the following four categories of computational instructions:

• ALU Immediate instructions

• three-Operand Register-Type instructions

• shift instructions

• multiply and divide instructions

3.2.1 64-bit Operations

The VR5000 microprocessor is a 64-bit architecture which supports 32-bit operands.
These operands must be sign extended. Thirty-two bit operand opcodes include all
non-doubleword operations, such as: ADD, ADDU, SUB, SUBU, ADDI, SLL, SRA,
SLLV, etc. The result of operations that use incorrect sign-extended 32-bit values is
unpredictable. In addition, 32-bit data is stored sign-extended in a 64-bit register.

3.2.2 Cycle Timing for Multiply and Divide Instructions

MFHI and MFLO instructions are interlocked so that any attempt to read them before
prior instructions complete delays the execution of these instructions until the prior
instructions finish.

Table 3-2 gives the number of processor cycles (PCycles) required to resolve an
interlock or stall between various multiply or divide instructions, and a subsequent
MFHI or MFLO instruction.

User’s Manual U11761EJ6V0UM 63

Chapter 3 CPU Instruction Set Summary

Table 3-2 Multiply/Divide Instruction Latency and Repeat Rates

3.2.3 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and
branch instructions occur with a delay of one instruction: that is, the instruction
immediately following the jump or branch (this is known as the instruction in the delay
slot) always executes while the target instruction is being fetched from storage.

(1) Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump
and Link instructions, both of which are J-type instructions. In J-type format, the 26-
bit target address shifts left 2 bits and combines with the high-order 4 bits of the current
program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the
Jump Register or Jump and Link Register instructions. Both are R-type instructions
that take the 64-bit byte address contained in one of the general purpose registers.

(2) Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the
instruction in the delay slot to the 16-bit offset (shifts left 2 bits and is sign-extended to
64 bits). All branches occur with a delay of one instruction.

If a conditional branch is not taken, the instruction in the delay slot is nullified.

Instruction Latency Repeat Rate

MULT (32-bit × 16-bit) 4 3

MULT (32-bit × 32-bit) 5 4

MULTU 5 4

DIV 36 36

DIVU 36 36

DMULT 9 8

DMULTU 9 8

DDIV 68 68

DDIVU 68 68

Chapter 3 CPU Instruction Set Summary

64 User’s Manual U11761EJ6V0UM

3.2.4 Special Instructions

Special instructions allow the software to initiate traps; they are always R-type.
Exception instructions are extensions to the MIPS ISA.

3.2.5 Coprocessor Instructions

Coprocessor instructions perform operations in their respective coprocessors.
Coprocessor loads and stores are I-type, and coprocessor computational instructions
have coprocessor-dependent formats.

CP0 instructions perform operations specifically on the System Control Coprocessor
registers to manipulate the memory management and exception handling facilities of
the processor.

3.3 MIPS IV Instruction Set Additions

The VR5000 Microprocessor runs the MIPS IV instruction set, which is a superset of
the MIPS III instruction set and is backward compatible. The additions of these new
instructions enables the MIPS architecture to compete in the high-end numeric
processing market which has traditionally been dominated by vector architectures.

A set of compound multiply-add instructions has been added, taking advantage of the
fact that the majority of floating point computations use the chained multiply-add
paradigm. The intermediate multiply result is rounded before the addition is
performed.

A register + register addressing mode for floating point loads and stores has been
added which eliminates the extra integer add required in many array accesses.
However, issuing of a Register + Register load causes a one cycle stall in the pipeline,
which makes it useful only for compatibility with other MIPS IV implementations.
Register + register addressing for integer memory operations is not supported.

User’s Manual U11761EJ6V0UM 65

Chapter 3 CPU Instruction Set Summary

A set of four conditional move operators allows floating point arithmetic ‘IF’
statements to be represented without branches. ‘THEN’ and ‘ELSE’ clauses are
computed unconditionally and the results placed in a temporary register. Conditional
move operators then transfer the temporary results to their true register. Conditional
moves must be able to test both integer and floating point conditions in order to supply
the full range of IF statements. Integer tests are performed by comparing a general
register against a zero value.

Floating point tests are performed by examining the floating point condition codes.
Since floating point conditional moves test the floating point condition code, the
VR5000 microprocessor provides 8 condition codes to give the compiler increased
flexibility in scheduling the comparison and the conditional moves. Table 3-3 lists in
alphabetical order the new instructions which comprise the MIPS IV instruction set.

Table 3-3 MIPS IV Instruction Set Additions and Extensions

Instruction Definition

BC1F Branch on FP Condition Code False

BC1T Branch on FP Condition Code True

BC1FL Branch on FP Condition Code False Likely

BC1TL Branch on FP Condition Code True Likely

C.cond.fmt (cc) Floating Point Compare

LDXC1 Load Double Word indexed to COP1

LWXC1 Load Word indexed to COP1

MADD.fmt Floating Point Multiply-Add

MOVF Move conditional on FP Condition Code False

MOVN Move on Register Not Equal to Zero

MOVT Move conditional on FP Condition Code True

MOVZ Move on Register Equal to Zero

MOVF.fmt FP Move conditional on Condition Code False

MOVN.fmt FP Move on Register Not Equal to Zero

MOVT.fmt FP Move conditional on Condition Code True

Chapter 3 CPU Instruction Set Summary

66 User’s Manual U11761EJ6V0UM

Table 3-4 lists the COP0 instructions for the VR5000 processor. COP0 instructions are
those which are not architecturally visible and are used by the kernel.

a. Prefetch is not implemented in the VR5000 microprocessor and these instruc-
tions are treated as no-ops.

MOVZ.fmt FP Move conditional on Register Equal to Zero

MSUB.fmt Floating Point Multiply-Subtract

NMADD.fmt Floating Point Negative Multipy-Add

NMSUB.fmt Floating Point Negative Multiply-Subtract

PREFXa Prefetch Indexed --- Register + Register

PREFa Prefetch --- Register + Offset

RECIP.fmt Reciprocal Approximation

RSQRT.fmt Reciprocal Square Root Approximation

SDXC1 Store Double Word indexed to COP1

SWXC1 Store Word indexed to COP1

Table 3-4 VR5000 COP0 Instrucitons

COP0 Instruction Definition

ERET Return from Exception

TLBP Probe for TLB Entry

TLBR Read Indexed TLB Entry

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

WAIT Enter Standby Mode

Table 3-3 MIPS IV Instruction Set Additions and Extensions (Continued)

Instruction Definition

User’s Manual U11761EJ6V0UM 67

Chapter 3 CPU Instruction Set Summary

3.3.1 Summary of Instruction Set Additions

The following is a brief description of the additions to the MIPS III instruction set.
These additions comprise the MIPS IV instruction set.

(1) Indexed Floating Point Load

LWXC1 - Load word indexed to Coprocessor 1.

LDXC1 - Load doubleword indexed to Coprocessor 1.

The two Index Floating Point Load instructions are exclusive to the MIPS IV
instruction set and transfer floating-point data types from memory to the floating point
registers using register + register addressing mode. There are no indexed loads to
general registers. The contents of the general register specified by the base is added to
the contents of the general register specified by the index to form a virtual address. The
contents of the word or doubleword specified by the effective address are loaded into
the floating point register specified in the instruction.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. Also, if the address is not
aligned, an address exception occurs.

(2) Indexed Floating Point Store

SWXC1 - Store word indexed to Coprocessor 1.

SDXC1 - Store doubleword indexed to Coprocessor 1.

The two Index Floating Point Store instructions are exclusive to the MIPS IV
instruction set and transfer floating-point data types from the floating point registers to
memory using register + register addressing mode. There are no indexed loads to
general registers. The contents of the general register specified by the base is added to
the contents of the general register specified by the index to form a virtual address. The
contents of the floating point register specified in the instruction is stored to the
memory location specified by the effective address.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. Also, if the address is not
aligned, an address exception occurs.

Chapter 3 CPU Instruction Set Summary

68 User’s Manual U11761EJ6V0UM

(3) Prefetch

PREF - Register + offset format

PREFX - Register + register format

The two prefetch instructions are exclusive to the MIPS IV instruction set and allow
the compiler to issue instructions early so the corresponding data can be fetched and
placed as close as possible to the CPU. Each instruction contains a 5-bit ‘hint’ field
which gives the coherency status of the line being prefetched. The line can be either
shared, exclusive clean, or exclusive dirty. The contents of the general register
specified by the base is added either to the 16 bit sign-extended offset or to the contents
of the general register specified by the index to form a virtual address. This address
together with the ‘hint’ field is sent to the cache controller and a memory access is
initiated.

The region bits (63:62) of the effective address must be supplied by the base. If the
addition alters these bits an address exception occurs. The prefetch instruction never
generates TLB-related exceptions. The PREF instruction is considered a standard
processor instruction while the PREFX instruction is considered a standard
Coprocessor 1 instruction. The VR5000 microprocessor does not implement prefetch
and these instruction are executed as no-ops.

(4) Branch on Floating Point Coprocessor

BC1T - Branch on FP condition True

BC1F - Branch on FP condition False

BC1TL - Branch on FP condition True Likely

BC1FL - Branch on FP condition False Likely

The four branch instructions are upward compatible extensions of the Branch on
Floating point Coprocessor instructions of the MIPS instruction set. The BC1T and
BC1F instructions are extensions of MIPS I. BC1TL and BC1FL are extensions of
MIPS III. These instructions test one of eight floating point condition codes. This
encoding is downward compatible with previous MIPS architectures.

The branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 64 bits.
If the contents of the floating point condition code specified in the instruction are equal
to the test value, the target address is branched to with a delay of one instruction. If the
conditional branch is not taken and the nullify delay bit in the instruction is set, the
instruction in the branch delay slot is nullified.

User’s Manual U11761EJ6V0UM 69

Chapter 3 CPU Instruction Set Summary

(5) Integer Conditional Moves

MOVT - Move conditional on condition code true

MOVF - Move conditional on condition code false

MOVN - Move conditional on register not equal to zero

MOVZ - Move conditional on register equal to zero

The four integer move instructions are exclusive to the MIPS IV instruction set and are
used to test a condition code or a general register and then conditionally perform an
integer move. The value of the floating point condition code specified in the instruction
by the 3-bit condition code specifier, or the value of the register indicated by the 5-bit
general register specifier, is compared to zero. If the result indicates that the move
should be performed, the contents of the specified source register is copied into the
specified destination register.

(6) Floating Point Multiply-Add

MADD - Floating Point Multiply-Add

MSUB - Floating Point Multiply-Subtract

NMADD - Floating Point Negative Multiply-Add

NMSUB - Floating Point Negative Multiply-Subtract

These four instructions are exclusive to the MIPS IV instruction set and accomplish
two floating point operations with one instruction. Each of these four instrucitons
performs intermediate rounding.

(7) Floating Point Compare

C.cond.fmt - Compare the contents of two FPU registers

The contents of the two FPU source registers specified in the instruction are interpreted
and arithmetically compared. A result is determined based on the comparison and the
conditions specified in the instruction.

Chapter 3 CPU Instruction Set Summary

70 User’s Manual U11761EJ6V0UM

(8) Floating Point Conditional Moves

MOVT.fmt - Floating Point Conditional Move on condition code true

MOVF.fmt - Floating Point Conditional Move on condition code false

MOVN.fmt - Floating Point Conditional Move on register not equal to zero

MOVZ.fmt - Floating Point Conditional Move on register equal to zero

The four floating point conditional move instructions are exclusive to the MIPS IV
instruction set and are used to test a condition code or a general register and then
conditionally perform a floating point move. The value of the floating point condition
code specified by the 3-bit condition code specifier, or the value of the register
indicated by the 5-bit general register specifier, is compared to zero. If the result
indicates that the move should be performed, the contents of the specified source
register is copied into the specified destination register. All of these conditional
floating point move operations are non-arithmetic. Consequently, no IEEE 754
exceptions occur as a result of these instructions.

(9) Reciprocal’s

RECIP.fmt - Reciprocal

RSQRT.fmt - Reciprocal Square Root

The reciprocal instruction performs a reciprocal on a floating point value. The
reciprocal of the value in the floating point source register is placed in a destination
register.

The reciprocal square root instruction performs a reciprocal square root on a floating
point value. The reciprocal of the positive square root of a value in the floating point
source register is placed in a destination register.

The VR5000 meets full IEEE accuracy for the RECIP and RSQRT instructions.

On the VR5000 microprocessor, the RECIP instruction has the same latency as a DIV
instruction, but a RSQRT is faster than a SQRT followed by a RECIP.

User’s Manual U11761EJ6V0UM 71

Chapter 3 CPU Instruction Set Summary

3.3.2 Cycle Timing for Floating Point Instrucitons

Table 3-5 Floating Point Operations

Opcode Latency Repeat

ADD (sngl/dbl) 4 1

SUB (sngl/dbl) 4 1

MULT (sngl/dbl) 4/5 1/2

MADD (sngl/dbl) 4/5 1/2

MSUB (sngl/dbl) 4/5 1/2

NMADD (sngl/dbl) 4/5 1/2

NMSUB (sngl/dbl) 4/5 1/2

DIV (sngl/dbl) 21/36 19/34

SQRT (sngl/dbl) 21/36 19/34

RECIP (sngl/dbl) 21/36 19/34

RSQRT (sngl/dbl) 38/68 36/66

ROUND.W (sngl/dbl) 4/4 1/1

ROUND.L (sngl/dbl) 4/4 1/1

TRUNC.W (sngl/dbl) 4/4 1/1

TRUNC.L (sngl/dbl) 4/4 1/1

CEIL.W (sngl/dbl) 4/4 1/1

CEIL.L (sngl/dbl) 4/4 1/1

FLOOR.W (sngl/dbl) 4/4 1/1

FLOOR.L (sngl/dbl) 4/4 1/1

CVT.S.D 4 1

CVT.S.W 6 3

CVT.S.L 6 3

CVT.D.S 4 1

CVT.D.W 4 1

CVT.D.L 4 1

CVT.W (sngl/dbl) 4 1

CVT.L (sngl/dbl) 4 1

CMP (sngl/dbl) 1 1

MOV (sngl/dbl) 1 1

MOVC (sngl/dbl) 1 1

ABS (sngl/dbl) 1 1

NEG (sngl/dbl) 1 1

LWC1, LWXC1 2 1

Chapter 3 CPU Instruction Set Summary

72 User’s Manual U11761EJ6V0UM

3.4 The Cache Instruction

The CACHE instruction in the VR5000 microprocessor is implemented as follows:

Figure 3-2 VR5000 CACHE Instruction Format

Format:

CACHE op, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to
form a virtual address. The virtual address is translated to a physical address using the
TLB, and the 5-bit sub-opcode specifies a cache operation for that address.

If CP0 is not usable (User or Supervisor mode) the CP0 enable bit in the Status register
is clear, and a coprocessor unusable exception is taken. The operation of this
instruction on any operation/cache combination not listed below, or on a secondary
cache when none is present, is undefined. The operation of this instruction on
uncached addresses is also undefined.

LDC1, LDXC1 2 1

SWC1, SWXC1 2 1

SDC1, SDXC1 2 1

MTC1, DMTC1 2 1

MFC1, DMFC1 2 1

CTC1 3 3

CFC1 2 2

BC1T, BC1TL 1 1

BC1F, BC1FL 1 1

Table 3-5 Floating Point Operations (Continued)

Opcode Latency Repeat

31 2526 2021 1516 0

CACHE base op offset

6 5 5 16
1 0 1 1 1 1

User’s Manual U11761EJ6V0UM 73

Chapter 3 CPU Instruction Set Summary

The Index operation uses part of the virtual address to specify a cache block.

For a primary cache of 32 KB with 32 bytes per tag, vAddr13:5 specifies the block. In
addition, vAddr14 specifies which cache set to operate on.

For a secondary cache of 2CACHEBITS bytes with 2LINEBITS bytes per tag,
pAddrCACHEBITS ... LINEBITS specifies the block.

Index Load Tag also uses vAddrLINEBITS... 3 to select the doubleword for reading
parity. When the CE bit of the Status register is set, Hit WriteBack, Hit WriteBack
Invalidate, Index WriteBack Invalidate, and Fill also use vAddrLINEBITS ... 3 to select
the doubleword that has its parity modified. This operation is performed
unconditionally.

The Hit operation accesses the specified cache as normal data references, and performs
the specified operation if the cache block contains valid data with the specified
physical address (a hit). If the cache block is invalid or contains a different address (a
miss), no operation is performed.

Write back from a primary cache goes to the secondary cache and to memory. If no
secondary cache is present, the data goes to memory. Data comes from the primary
data cache, if present, and is modified (it is marked Dirty). Otherwise the data comes
from the secondary cache. The address to be written is specified by the cache tag and
not the translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index
operations (where the physical address is used to index the cache but need not match
the cache tag) unmapped addresses may be used to avoid TLB exceptions. This
operation never causes TLB Modified or Virtual Coherency exceptions.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache

 0 I primary instruction

 1 D primary data

 2 -- Reserved

 3 SD secondary cache

Chapter 3 CPU Instruction Set Summary

74 User’s Manual U11761EJ6V0UM

Bits 20...18 (this value is listed under the Code column) of the instruction specify the
operation as follows:

Code Caches Name Operation

0 I
Index
Invalidate

Set the cache state of the cache block to Invalid.

0 D
Index
Writeback
Invalidate

Examine the cache state of the primary data cache block at the index
specified by the virtual address. If the state is Dirty, write the block back
to the secondary cache (if present) and to memory. The address to write
is taken from the primary cache tag. Set the cache state of primary
cache block to Invalid.

0 S
Flash
Invalidate

Flash Invalidate the entire secondary cache in one operation for tag
RAMs which support this function.

1 All
Index Load
Tag

Read the tag for the cache block at the specified index and place it iinto
the TagLo and TagHi CP0 registers, ignoring any parity errors.

2 I, D
Index Store
Tag

Write the tag for the cache block at the specified index from the TagLo
and TagHi CP0 registers.

2 S
Index Store
Tag

Write the tag for the cache block at the specified index with the tag value
from the effective address generated by the CACHE instruction and the
valid bit from the TagLo CP0 register.

3 D
Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from secondary
cache or memory when writing new contents into an entire cache block.
If the cache block does not contain the specified address, and the block
is dirty, write it back to the secondary cache (if present) and to memory.
In all cases, set the cache block tag to the specified physical address,
set the cache state to Dirty Exclusive.

4 I,D Hit Invalidate
If the cache block contains the specified address, mark the cache block
invalid.

5 D
Hit Writeback
Invalidate

If the cache block contains the specified address, write the data back if
it is dirty, and mark the cache block invalid.

5 S
Page
Invalidate

The processor will generate a page invalidate by doing a burst of 128
line invalidates to the secondary cache at the page specified by the
effective address generated by the CACHE instruction, which must be
page-aligned. Interrupts are deferred during page invalidates.

5 I Fill
Fill the primary instruction cache block from secondary cache or
memory.

6 D Hit Writeback
If the cache block contains the specified address, and its state is Dirty,
write back the data and clear the state to not Dirty.

6 I Hit Writeback
If the cache block contains the specified address, data is written back
unconditionally.

User’s Manual U11761EJ6V0UM 75

Chapter 3 CPU Instruction Set Summary

Operation:

Exceptions:

Coprocessor unusable exception

3.5 Implementation Specific Instructions

Some of the VR5000 instructions are implementation specific and therefore are not
part of the MIPS IV Instruction Set. These are coprocessor instructions that perform
operations in their respective coprocessors. Coprocessor loads and stores are I-type,
and coprocessor computational instructions have coprocessor-dependent formats.

32, 64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Chapter 3 CPU Instruction Set Summary

76 User’s Manual U11761EJ6V0UM

3.5.1 Implementation Specific CP0 Instructions

 ERET Exception Return

Format:

ERET

Description:

ERET is the VR5000 instruction for returning from an interrupt, exception, or error
trap. Unlike a branch or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from the
ErrorEPC and clear the ERL bit of the Status register (SR2). Otherwise (SR2 =0), load
the PC from the EPC, and clear the EXL bit of the Status register (SR1).

An ERET executed between a LL and AC also causes the SC to fail.

Operation:

Exceptions:

Coprocessor unusable exception.

31 26 25 24 6 5 0

6

0 1 0 1 1 0 0 01
COP0 0 ERETCO

1916

T: if SR2 = 1 then
 PC ← ErrorEPC
 SR ← SR31..3 || 0 || SR1..0

 else

 PC ← EPC

 SR ← SR31..2 0 SR0
 endif
 LLbit ← 0

User’s Manual U11761EJ6V0UM 77

Chapter 3 CPU Instruction Set Summary

TLBR Read Indexed TLB Entry

Format:

TLBR

Description:

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry
pointed at by the contents of the TLB Index register. The operation is invalid (and the
results are unspecified) if the contents of the TLB Index register are greater than the
number of TLB entries in the processor.

The G bit (which controls ASID matching) read from the TLB is written into both of
the EntryLo0 and EntryLo1 registers.

Operation:

Exceptions:

Coprocessor unusable exception.

31 26 25 24 6 5 0

6

0 1 0 11
COP0 0 TLBRCO

1916

T: PageMask ← TLB[Index5..0]255..192
EntryHi ← TLB[Index5..0]191..128 and not TLB[Index5..0]255..192
EntryLo1 ← TLB[Index5..0]127..65 || TLB[Index5..0]140
EntryLo0 ← TLB[Index5..0]63..1 || TLB[Index5..0]140

Chapter 3 CPU Instruction Set Summary

78 User’s Manual U11761EJ6V0UM

TLBP Probe TLB For Matching Entry

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match
the contents of the EntryHi register. If no TLB entry matches, the high-order bit of the
Index register is set.

The architecture does not specify the operation of memory references associated with
the instruction immediately after a TLBP instruction, nor is the operation specified if
more than one TLB entry matches.

Operation:

Exceptions:

 Coprocessor unusable exception.

31 26 25 24 6 5 0

6

0 1 0 1 0 0 01
COP0 0 TLBPCO

1916

T: Index ← 1 || 031

 For i in 0..TLBEntries - 1
 if (TLB[i]167..141 and not (015 || TLB[i]216..205))
 = (EntryHi39..13 and not (015 || TLB[i]216..205)) and
 (TLB[i]140 or (TLB[i]135..128 = EntryHi7..0)) then
 Index ← 026 || i5..0
 endif
 endfor

User’s Manual U11761EJ6V0UM 79

Chapter 3 CPU Instruction Set Summary

TLBWI Write Indexed TLB Entry

Format:

TLBWI

Description:

The TLB entry pointed at by the contents of the TLB Index register is loaded with the
contents of the EntryHi and EntryLo registers.

The G bit of the selected TLB entry is written with the logical AND of the G bits in the
EntryLo0 and EntryLo1 registers.

The operation is invalid (and the results are unspecified) if the contents of theTLB
Index register are greater than the number of TLB entries in the processor.

Operation:

Exceptions:

Coprocessor unusable exception.

31 26 25 24 6 5 0

6

0 1 0 1 01
COP0 0 TLBWICO

1916

T: TLB[Index5..0] ←
 EntryHi[39:25] || (EntryHi[24:13] and not PageMask) || EntryLo1
|| EntryLo0

Chapter 3 CPU Instruction Set Summary

80 User’s Manual U11761EJ6V0UM

 TLBWR Write Random TLB Entry

Format:

TLBWR

Description:

The TLB entry pointed to by the contents of the TLB Random register is loaded with
the contents of the EntryHi and EntryLo registers.

The G bit of the selected TLB entry is written with the logical AND of the G bits in the
EntryLo0 and EntryLo1 registers.

Operation:

Exceptions:

Coprocessor unsuable exception.

31 26 25 24 6 5 0

6

0 1 0 1 1 01
COP0 0 TLBWRCO

1916

T: TLB[Random5..0] ←
 EntryHi[39:25] || (EntryHi[25:13] and not PageMask) || EntryLo1
|| EntryLo0

User’s Manual U11761EJ6V0UM 81

Chapter 3 CPU Instruction Set Summary

DMTC0 Doubleword Move To System Control

 Coprocessor

Format:

DMTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of CP0.

This operation is defined in kernel mode regardless of the setting of the Status.KX bit.
Execution of this instruction in supervisor mode with Status.SX = 0 or in user mode
with UX = 0, causes a reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general register source.
The operation of DMTC0 on a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load instructions, store instructions, and TLB operations
immediately prior to and after this instruction are undefined.

Operation:

Exceptions:

Coprocessor unusable exception.

Reserved instruction exception for supervisor mode with Status.SX = 0 or user mode
with Status.UX = 0.

31 26 25 21 20 15 0

11

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 1
COP0 0DMT

556

0 0 1 0 1

5

rt rd
16 11 10

T: data ← GPR[rt]

T+1: CPR[0,rd] ← data

Chapter 3 CPU Instruction Set Summary

82 User’s Manual U11761EJ6V0UM

MTC0 Move To System Control

 Coprocessor

Format:

MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of CP0.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load instructions, store instructions, and TLB operations
immediately prior to and after this instruction are undefined.

Operation:

Exceptions:

Coprocessor unusable exception.

31 26 25 21 20 15 0

11

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0
COP0 0MT

556

0 0 1 0 1

5

rt rd
16 11 10

T: data ← GPR[rt]

T+1: CPR[0,rd] ← data

User’s Manual U11761EJ6V0UM 83

Chapter 3 CPU Instruction Set Summary

DMFC0 Doubleword Move From System Control

 Coprocessor

Format:

DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

This operation is defined in kernel mode regardless of the setting of the Status.KX bit.
Execution of this instruction in supervisor mode with Status.SX = 0 or in user mode
with UX = 0, causes a reserved instruction exception.

All 64-bits of the general register destination are written from the coprocessor register
source. The operation of DMFC0 on a 32-bit coprocessor 0 register is undefined.

Operation:

Exceptions:

Coprocessor unusable exception.

Reserved instruction exception for supervisor mode with Status.SX = 0 or user mode
with Status.UX = 0.

31 26 25 21 20 15 0

11

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1
COP0 0DMF

556

0 0 1 0 1

5

rt rd
16 11 10

T: data ← GPR[0,rd]

T+1: CPR[rt] ← data

Chapter 3 CPU Instruction Set Summary

84 User’s Manual U11761EJ6V0UM

WAIT Enter Standby Mode

Format:

WAIT

Description:

The WAIT instruction is used to put the CPU into Standby Mode. In Standby Mode,
most of the internal clocks are shut down which freezes the pipeline and reduces power
consumption. See Chapter 18 Standby Mode Operation for more details.

Operation:

Exceptions:

Coprocessor unusable exception.

31 26 25 24 6 5 0

6

0 1 0 1 0 0 0 0 01
COP0 0 WAITCO

1916

T: if SysAD bus is idle then
 Enter Standby Mode
 endif

User’s Manual U11761EJ6V0UM 85

Chapter 4 VR5000 Processor Pipeline

The VR5000 processor has a five-stage instruction pipeline. Each stage takes one
PCycle (one cycle of PClock, which runs at a multiple of the frequency of SysClock).
Thus, the execution of each instruction takes at least five PCycles. An instruction can
take longer—for example, if the required data is not in the cache, the data must be
retrieved from main memory.

Once the pipeline has been filled, five instructions can be executed simultaneously.
Figure 4-1 shows the five stages of the instruction pipeline.

Chapter 4 VR5000 Processor Pipeline

86 User’s Manual U11761EJ6V0UM

Figure 4-1 Instruction Pipeline Stages

4.1 Instruction Pipeline Stages

• 1I - Instruction Fetch, Phase One

• 2I - Instruction Fetch, Phase Two

• 1R - Register Fetch, Phase One

• 2R - Register Fetch, Phase Two

• 1A - Execution, Phase One

• 2A - Execution, Phase Two

• 1D - Data Fetch, Phase One

• 2D - Data Fetch, Phase Two

• 1W - Write Back, Phase One

• 2W - Write Back, Phase Two

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

One
Cycle

User’s Manual U11761EJ6V0UM 87

Chapter 4 VR5000 Processor Pipeline

1I - Instruction Fetch, Phase One

During the 1I phase, the following occurs:

• Branch logic selects an instruction address and the instruction cache fetch
begins.

• The instruction translation lookaside buffer (ITLB) begins the virtual-to-
physical address translation.

2I - Instruction Fetch, Phase Two

The instruction cache fetch and the virtual-to-physical address translation continues.

1R - Register Fetch, Phase One

During the 1R phase, the following occurs:

• The instruction cache fetch is completed.

• The instruction cache tag is checked against the page frame number
obtained from the ITLB

2R - Register Fetch, Phase Two

During the 2R phase, one of the following occurs:

• The instruction decoder decodes the instruction.

• Any required operands are fetched from the register file.

• Determine whether instruction is issued or delayed depending on
interlock conditions.

1A - Execution - Phase One

During the 1A phase, one of the following occurs:

• Calculate branch address (if applicable).

• Any result from the A or D stages are bypassed

• The ALU starts an integer operation.

• The ALU calculates the data virtual address for load and store
instructions.

• The ALU determines whether the branch condition is true.

2A - Execution - Phase Two

During the 2A phase, one of the following occurs:

• The integer operation begun in the 1A phase completes.

Chapter 4 VR5000 Processor Pipeline

88 User’s Manual U11761EJ6V0UM

• Data cache address decode.

• Store data is shifted to the specified byte positions.

• The DTLB begins the data virtual to physical address translation.

1D - Data Fetch - Phase One

During the 1D phase, one of the following occurs:

• The DTLB data address translation completes.

• The JTLB virtual to physical address translation begins.

• Data cache access begins

2D - Data Fetch - Phase Two

• The data cache access completes. Data is shifted down and extended.

• The JTLB address translation completes.

• The data cache tag is checked against the PFN from the DTLB or JTLB
for any data cache access.

1W - Write Back, Phase One

• This phase is used internally by the procesor to resolve all exceptions in
preperation for the register write.

2W - Write Back, Phase Two

• For register-to-register and load instructions, the result is written back to
the register file.

WB - Write Back

For register-to-register instructions, the instruction result is written back to the register
file during the WB stage. Branch instructions perform no operation during this stage.

Figure 4-2 shows the activities occurring during each ALU pipeline stage, for load,
store, and branch instructions.

User’s Manual U11761EJ6V0UM 89

Chapter 4 VR5000 Processor Pipeline

Figure 4-2 CPU Pipeline Activities

ICD Instruction cache address decode ICA Instruction cache array access

ITLBM Instruction address translation match ITLBR Instruction address translation read

ITC Instruction tag check RF Register operand fetch

IDEC Instruction address translation stage 2 EX1 Execute operation - phase 1

EX2 Execute operation - phase two WB Write back to register file

DVA Data virtual address calculation DCAD Data cache address decode

DCAA Data cache array access DCLA Data cache load align

JTLB1 JTLB address translation - phase 1 JTLB2 JTLB address translation - phase 2

DTLBM Data address translation match DTLBR Data address translation read

DTC Data tag check SA Store align

DCW Data cache write BAC Branch address calculation

Clock

Phase

IFetch

ALU
Load/Store

Branch

 and
Decode

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

ICD
ITLBM ITLBR

ICA
ITC

RF
IDEC

EX1 EX2
DVA DCAD DCAA DCLA

JTLB1 JTLB2
DTLBM DTLBR DTC WB

DCWSA
BAC

WB

Chapter 4 VR5000 Processor Pipeline

90 User’s Manual U11761EJ6V0UM

4.2 Branch Delay

The CPU pipeline has a branch delay of one cycle and a load delay of one cycles. The
one-cycle branch delay is a result of the branch comparison logic operating during the
1A pipeline stage of the branch. This allows the branch target address calculated in the
previous stage to be used for the instruction access in the following 1I phase.

Figure 4-3 illustrates the branch delay.

Figure 4-3 CPU Pipeline Branch Delay

4.3 Load Delay

The completion of a load at the end of the 2D pipeline stage produces an operand that
is available for the 1A pipeline phase of the subsequent instruction following the load
delay slot.

Figure 4-4 shows the load delay of two pipeline stages.

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

 One
Cycle

 One
Cycle

 One One
Cycle Cycle

 One
Cycle

Branch
Delay

* **

* Branch and fall-through address calculated
** Address selection made

User’s Manual U11761EJ6V0UM 91

Chapter 4 VR5000 Processor Pipeline

Figure 4-4 CPU Pipeline Load Delay

4.4 Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when
data dependencies are detected. Interruptions handled using hardware, such as cache
misses, are referred to as interlocks, while those that are handled using software are
called exceptions.

There are two types of interlocks:

• Stalls, which are resolved by halting the pipeline.

• Slips, which require one part of the pipeline to advance while another part
of the pipeline is held static.

At each cycle, exception and interlock conditions are checked for all active
instructions.

Because each exception or interlock condition corresponds to a particular pipeline
stage, a condition can be traced back to the particular instruction in the exception/
interlock stage. For instance, a Reserved Instruction (RI) exception is raised in the
execution (A) stage.

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

 One
Cycle

 One
Cycle

 One One
Cycle Cycle

 One
Cycle

Load
Delay

Chapter 4 VR5000 Processor Pipeline

92 User’s Manual U11761EJ6V0UM

Table 4-1 Relationship of Pipeline Stage to Interlock Condition

State
Pipeline Stage

I R A D W

Stall ITM ICM DCM
CPE

Slip LDI
MDSt

FCBusy

Exceptions ITLB IBE RI DBE
IPErr CUn NMI

BP Reset
SC DPErr

DTLB OVF
TLBMod FPE

Intr

User’s Manual U11761EJ6V0UM 93

Chapter 4 VR5000 Processor Pipeline

Table 4-2 Pipeline Exceptions

Table 4-3 Pipeline Interlocks

Exception Description

ITLB Instruction Translation or Address Exception

Intr External Interrupt

IBE IBus Error

RI Reserved Instruction

BP Breakpoint

SC System Call

CUn Coprocessor Unusable

IPErr Instruction Parity Error

OVF Integer Overflow

FPE FP Interrupt

DTLB Data Translation or Address Exception

TLBMod TLB Modified

DBE Data Bus Error

DPErr Data Parity Error

NMI Non-maskable Interrupt

Reset Reset

Interlock Description

ITM Instruction TLB Miss

ICM Instruction Cache Miss

CPE Coprocessor Possible Exception

DCM Data Cache Miss

LDI Load Interlock

MDSt Multiply/Divide Start

FCBsy FP Busy

Chapter 4 VR5000 Processor Pipeline

94 User’s Manual U11761EJ6V0UM

4.4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow
it in the pipeline are cancelled. Accordingly, any stall conditions and any later
exception conditions that may have referenced this instruction are inhibited; there is no
benefit in servicing stalls for a cancelled instruction. When this instruction reaches the
W stage, three events occur;

• The exception flag causes the instruction to write various CP0 registers
with the exception state,

• The current PC is changed to the appropriate exception vector address,

• The exception bits of earlier pipeline stages are cleared.

This implementation allows all instructions which occurred before the exception to
complete, and all instructions which occurred after the instruction to be aborted. Hence
the value of the EPC is such that execution can be restarted. In addition, all exceptions
are guaranteed to be taken in order. Figure 4-5 illustrates the exception detection
mechanism for a Reserved Instruction (RI) exception.

Figure 4-5 Exception Detection Mechanism

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

 One
Cycle

 One
Cycle

 One One
Cycle Cycle

 One
Cycle

Exception

1I 2I 1R 2R 1A 2A 1D 2D 1W
Exception
Vector Address

Instructions
Aborted

2I 1R 2R 1A 2A 1D 2D 1W 2W1I

User’s Manual U11761EJ6V0UM 95

Chapter 4 VR5000 Processor Pipeline

4.4.2 Stall Conditions

A stall condition is used to suspend the pipline for conditions detected after the R
pipeline stage. When a stall occurs, the processor resolves the condition and then
restarts the pipeline. Once the interlock is removed, the restart sequence begins two
cycles before the pipeline resumes execution. The restart sequence reverses the
pipeline overrun by inserting the correct information into the pipeline. Figure 4-6
shows a data cache miss stall.

Figure 4-6 Servicing a Data Cache Miss

The data cache miss is detected in the D stage of the pipeline. If the cache line to be
replaced is dirty, the W bit is set and data is moved to the internal write buffer in the
next cycle. The squiggly line in Figure 4-6 indicates the memory access. Once the
memory is accessed and the first doubleword of data is returned, the pipeline is
restarted. The remainder of the cache line is returned in subsequent cycles. The dirty
data in the write buffer is written out to memory after the cache line fill operations is
completed.

1 2 3 4

I R A D W W W W W

I R A D D WD D D

I R A A WDA A A

I R R WDAR R R

1 - Detect cache miss
2 - Start moving dirty cache line data to write buffer
3 - Fetch first doubleword into cache and restart pipeline
4 - Begin loading remainder of cache line into cache when Dcache is idle

Chapter 4 VR5000 Processor Pipeline

96 User’s Manual U11761EJ6V0UM

4.4.3 Slip Conditions

During the 2R and 1A pipeline stages, internal logic determines whether it is possible
to start the current instruction in this cycle. If all required source operands are
available, as well as all hardware resources needed to complete the operation, then the
instruction is issued. Otherwise, the instruction “slips”. Slipped instructions are retried
on subsequent cycles until they are issued. Pipeline stages D and W advance normally
during slips in an attempt to resolve the conflict. NOP’s are inserted into the bubbles
which are created in the pipeline. Branch -likely instructions, ERET, nor exceptions do
not cause slips.

Figure 4-7 shows how instructions can slip during an instruction cache miss.

Figure 4-7 Slips During an Instruction Cache Miss

1

W

D W

WR A D

A D W

WR R D

1 - Detect cache miss
2 - Load cache line (4 doublewords) into Icache
3 - Restart pipeline

Complete

Complete

Complete

Complete

R R A

2 222

I I I RI A D W

I R R R R

3

I I I I

User’s Manual U11761EJ6V0UM 97

Chapter 4 VR5000 Processor Pipeline

Instruction cache misses are detected in the R-stage of the pipeline. Slips are detected
in the A stage. Instruction cache misses never require a writeback operation as writes
are not allowed to the instruction cache. Unlike the data cache, early restart, where the
pipeline is restarted after only a portion of the cache line fill has occurred, is not
implemented for the instruction cache. The requested cache line is loaded into the
instruction cache in its entirety before the pipeline is restarted.

4.5 Write Buffer

The VR5000 processor contains a write buffer which improves the performance of
write operations to external memory. All write cycles use the write buffer. The write
buffer holds up to four 64-bit address and data pairs.

On a cache miss requiring a write-back, the entire buffer is used for the write-back data
and allows the processor to proceed in parallel with the memory update. For uncached
and write-through stores, the write buffer decouples the CPU from the write to
memory. If the write buffer is full, additional stores are stalled until there is room for
them in the write buffer.

98 User’s Manual U11761EJ6V0UM

Chapter 5 Superscalar Issue Mechanism

The VR5000 processor incorporates a simple dual-issue mechanism which allows two
instructions to be dispatched per cycle under certain conditions. A FPU ALU operation
can be dispatched along with any other type of instruction, as long as the other
instruction is not another FP ALU operation.

Figure 5-1 shows a simplfied diagram of the dual issue mechanism.

User’s Manual U11761EJ6V0UM 99

Chapter 5 Superscalar Issue Mechanism

Figure 5-1 Dual Issue Mechanism

I - Stage

Two instructions are fetched from the instruction cache and placed in a 2-deep
instruction buffer. Issue logic determines the type of instruction and which pipeline the
instruction is routed to. Also, the instruction cache tag is checked against the page
frame number (PFN) obtained from the ITLB.

R - Stage

Any required operands are fetched from the appropriate register file, and the decision
is made to either proceed or slip the instruction based on any interlock conditions. For
branch instruction, the branch address is calculated.

A - Stage

The appropriate ALU begins the arithmetic, logical, or shift operation. The data virtual
address is calculated for any load or store instructions. The appropriate ALU
determines whether the branch condition is true. The data cache access is started.

Instr
Cache

2-deep
buffer

2

instr

I Stage

Read Integer
Register File

Read FP
Register File

R Stage

Integer ALU
Execution

FP ALU
Execution

A Stage

Integer
Load/Store

FP
Load/Store

D Stage

Integer Reg
File Write

FP Register
File Write

W Stage

Chapter 5 Superscalar Issue Mechanism

100 User’s Manual U11761EJ6V0UM

D - Stage

The data cache access is completed. Data is shifted down and extended. Data address
translation in the DTLB completes. The virtual to physical address translation in the
JTLB is performed. The data cache tag is checked against the PFN from the DTLB or
JTLB for any data cache access.

W - Stage

The processor resolves all exceptions. For register-to-register and load instructions, the
result is written back to the appropriate register file.

User’s Manual U11761EJ6V0UM 101

Chapter 6 Memory Management Unit

The VR5000 processor provides a full-featured memory management unit (MMU)
which uses an on-chip translation lookaside buffer (TLB) to translate virtual addresses
into physical addresses.

This chapter describes the processor virtual and physical address spaces, the virtual-
to-physical address translation, the operation of the TLB in making these translations,
and those System Control Coprocessor (CP0) registers that provide the software
interface to the TLB.

Chapter 6 Memory Management Unit

102 User’s Manual U11761EJ6V0UM

6.1 Translation Lookaside Buffer (TLB)

Mapped virtual addresses are translated into physical addresses using an on-chip
TLB.† The TLB is a fully associative memory that holds 48 entries, which provide
mapping to 48 odd/even page pairs (96 pages). When address mapping is indicated,
each TLB entry is checked simultaneously for a match with the virtual address that is
extended with an ASID stored in the EntryHi register.

The address mapped to a page ranges in size from 4 KB to 16 MB, in multiples of 4—
that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

6.1.1 Hits and Misses

If there is a virtual address match, or hit, in the TLB, the physical page number is
extracted from the TLB and concatenated with the offset to form the physical address
(see Figure 6-1).

If no match occurs (TLB miss), an exception is taken and software refills the TLB from
the page table resident in memory. Software can write over a selected TLB entry or
use a hardware mechanism to write into a random entry.

6.1.2 Multiple Matches

The VR5000 processor does not provide any detection or shutdown mechanism for
multiple matches in the TLB. Unlike earlier designs, multiple matches do not
physically damage the TLB. Therefore, multiple match detection is not needed. The
result of this condition is undefined, and software is expected to never allow this to
occur.

6.2 Processor Modes

The VR5000 has three processor operating modes, an instruction set mode, and an
addressing mode. All are described in this section.

† There are virtual-to-physical address translations that occur outside of the TLB. For example,
addresses in the kseg0 and kseg1 spaces are unmapped translations. In these spaces the physical
address is 0x000 0000 0 11 VA[28:0].

User’s Manual U11761EJ6V0UM 103

Chapter 6 Memory Management Unit

6.2.1 Processor Operating Modes

The three operating modes are listed in order of decreasing system privilege:

• Kernel Mode (Highest system privilege): can access and change any
register. The innermost core of the operating system runs in kernel mode.

• Supervisor Mode: has fewer privileges and is used for less critical
sections of the operating system.

• User Mode (lowest system privilege): prevents users from interfering
with one another.

User mode is the processor’s base operating mode. The processor is forced to Kernel
mode when the processor is handling an error (ERL bit is set) or an exception (EXL
bit is set).

The processor’s operating mode is set by the Status register’s KSU field, together with
the ERL, EXL, KX, SX, UX and XX bits. Table 6-1 lists the Status register settings for
the three operating modes, as well as error and exception level settings; the blanks in
the table indicate don’t cares.

Table 6-1 Processor Modes

XX
31

KX
7

SX
6

UX
5

KSU
2

ERL
2

EXL
1

IE
0

Description
ISA
III

ISA
IV

Addressing
Mode

32-Bit/64-Bit

 0
 1

 0
 1
 1

 10
 10
 10

 0
 0
 0

 0
 0
 0

User mode
 0
 1
 1

 0
 0
 1

 32
 64
 64

 0
 1

 01
 01

 0
 0

 0
 0

Supervisor mode
 0
 1

 1
 1

 32
 64

 0
 1

 00
 00

 0
 0

 0
 0

Kernel mode
 1
 1

 1
 1

 32
 64

 0
 1

 0
 0

 1
 1

Exception level
 1
 1

 1
 1

 32
 64

 0
 1

 1
 1

 Error level
 1
 1

 1
 1

 32
 64

 0 0 1 Interrupts are enabled

Chapter 6 Memory Management Unit

104 User’s Manual U11761EJ6V0UM

6.2.2 Instruction Set Mode

The processor’s instruction set mode determines which instruction set is enabled. By
default, the processor implements the MIPS IV Instruction Set Architecture (ISA). For
compatibility with earlier machines, however, it can be limited to the MIPS III ISA or
the MIPS I/II ISAs.

6.2.3 Addressing Modes

The processor’s addressing mode determines whether it generates 32-bit or 64-bit
memory addresses.

Refer to Table 6-1 for the following addressing mode encodings:

• In Kernel mode the KX bit enables 64-bit addressing; all instructions are
always valid.

• In Supervsor mode, the SX bit enables 64-bit addressing and the MIPS III
instructions.

• In User mode, the UX bit enables 64-bit addressing and the MIPS III
instructions; the XX bit enables the new MIPS IV instructions.

6.3 Address Spaces

This section describes the virtual and physical address spaces and the manner in which
virtual addresses are converted or “translated” into physical addresses in the TLB.

6.3.1 Virtual Address Space

The processor has three address spaces: kernel, supervisor, and user. Each space can
be independently configured to be a 32-bit or 64-bit space by the KX, SX, and UX bits
in the Status register.

• If UX=0 (extended address bit = 0), user addresses are 32 bits wide. The
maximum user process size is 2 GB (231).

• If UX=1 (extended address bit = 1), user addresses are 64 bits wide. The
maximum user process size is 1 TB (240).

Figure 6-1 shows the translation of a virtual address into a physical address.

User’s Manual U11761EJ6V0UM 105

Chapter 6 Memory Management Unit

Figure 6-1 Overview of a Virtual-to-Physical Address Translation

As shown in Figure 6-1, the virtual address is extended with an 8-bit address space
identifier (ASID), which reduces the frequency of TLB flushing when switching
contexts. This 8-bit ASID is in the CP0 EntryHi register. The Global bit (G) is in each
TLB entry.

6.3.2 Physical Address Space

Using a 36-bit address, the processor physical address space encompasses 64 GB.

6.3.3 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual
address from the processor with the virtual addresses in the TLB; there is a match when
the virtual page number (VPN) of the address is the same as the VPN field of the entry,
and either:

• the Global (G) bit of the TLB entry is set, or

• the ASID field of the virtual address is the same as the ASID field of the
TLB entry.

1. Virtual address (VA) represented by the
virtual page number (VPN) is compared
with tag in TLB. The ASID portion of the
VA is held in EnHI Register.

Virtual address

2. If there is a match, the page frame
number (PFN) representing the upper
bits of the physical address (PA) is
output from the TLB.

VPN ASIDG

PFN

TLB

Physical address

PFN

Offset

Offset

TLB

3. The Offset, which does not pass through
the TLB, is then concatenated to the PFN.

Entry

VPNASID

Chapter 6 Memory Management Unit

106 User’s Manual U11761EJ6V0UM

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is
taken by the processor and software is allowed to refill the TLB from a page table of
virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from the
TLB and concatenated with the Offset, which represents an address within the page
frame space. The Offset does not pass through the TLB.

The next sections describe the 32-bit and 64-bit address translations.

6.3.4 32-bit Mode Virtual Address Translation

Figure 6-2 shows the virtual-to-physical-address translation of a 32-bit mode address.

• The top portion of Figure 6-2 shows a virtual address with a 12-bit, or 4-
KB, page size, labelled Offset. The remaining 20 bits of the address
represent the VPN, and index the 1M-entry page table.

• The bottom portion of Figure 6-2 shows a virtual address with a 24-bit, or
16-MB, page size, labelled Offset. The remaining 8 bits of the address
represent the VPN, and index the 256-entry page table.

Figure 6-2 32-bit Mode Virtual Address Translation

ASID VPN Offset

8 20 12

39 3231 2928 12 11 020 bits = 1M pages

ASID VPN Offset

8 8 24

39 32 31 29 28 24 23 0

OffsetPFN
35 0

TLB

TLB
Virtual-to-physical
translation in TLB

36-bit Physical Address

Offset passed unchanged
to physical memory

Offset passed unchanged
to physical memory

Bits 31, 30 and 29 of the
virtual address select
user, supervisor, or kernel
address spaces.

Virtual-to-physical
translation in TLB

Virtual Address with 1M (220) 4-KB pages

Virtual Address with 256 (28) 16-MB pages

8 bits = 256 pages

User’s Manual U11761EJ6V0UM 107

Chapter 6 Memory Management Unit

6.3.5 64-bit Mode Virtual Address Translation

Figure 6-3 shows the virtual-to-physical-address translation. This figure illustrates the
two extremes in the range of possible page sizes: a 4-KB page (12 bits) and a 16-MB
page (24 bits).

• The top portion of Figure 6-3 shows a virtual address with a
12-bit, or 4-KB, page size, labelled Offset. The remaining 28 bits of the
address represent the VPN, and index the 256M-entry page table.

• The bottom portion of Figure 6-3 shows a virtual address with a 24-bit, or
16-MB, page size, labelled Offset. The remaining 16 bits of the address
represent the VPN, and index the 64K-entry page table.

Figure 6-3 64-bit Mode Virtual Address Translation

11 0

12

63

VPN Offset

6471

ASID

 8

Virtual Address with 256M (228) 4-KB pages

23 0

24 24

Offset

Virtual Address with 64K (216)16-MB pages

16 bits = 64K pages

28 bits = 256M pages 12

ASID VPN

6162 40 39

28

0 or -1

636471 6162 40 24

 8

39

16

24

0 or -1

Virtual-to-physical
translation in TLB

Bits 62 and 63 of the virtual
address select user, supervisor,
or kernel address spaces.

Virtual-to-physical
translation in TLB TLB

 35 0
PFN Offset

 TLB

Offset passed
unchanged to
physical
memory

Offset passed
unchanged to
physical
memory

36-bit Physical Address

Chapter 6 Memory Management Unit

108 User’s Manual U11761EJ6V0UM

6.3.6 Address Spaces

The processor has three address spaces.

• User address space

• Supervisor address space

• Kernel address space

Each space can be independently configured as either 32- or 64-bit.

6.3.7 User Address Space

In User address space, a single, uniform virtual address space—labelled User segment
(useg), is available; its size is:

• 2 GB (231 bytes) if UX = 0 (useg)

• 1 TB (240 bytes) if UX = 1 (xuseg)

Figure 6-4 shows the range of User virtual address space.

Figure 6-4 UserVirtual Address Space as Viewed from User Mode

User space can be accessed from user, supervisor, and kernel modes.

The User segment starts at address 0 and the current active user process resides in
either useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB identically maps all
references to useg/xuseg from all modes, and controls cache accessibility.

useg xuseg

Address
Error

1 TB
Mapped

32-bit 64-bit

0x FFFF FFFF FFFF FFFF

0x 0000 0000 0000 0000

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

0x 0000 0100 0000 0000

Address
Error

Mapped
2 GB

User’s Manual U11761EJ6V0UM 109

Chapter 6 Memory Management Unit

The processor operates in User mode when the Status register contains the following
bit-values:

• KSU bits = 102

• EXL = 0

• ERL = 0

The UX bit in the Status register selects between 32- or 64-bit User address spaces as
follows:

• when UX = 0, 32-bit useg space is selected.

• when UX = 1, 64-bit xuseg space is selected.

Table 6-2 lists the characteristics of the two user address spaces, useg and xuseg.

Table 6-2 32-bit and 64-bit User Address Space Segments

(1) 32-bit User Space (useg)

In 32-bit User space, when UX = 0 in the Status register, all valid addresses have their
most-significant bit cleared to 0; any attempt to reference an address with the most-
significant bit set while in User mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings within the
TLB entry for the page determine the cacheability of a reference. TLB misses on
addresses in 32-bit User space (useg) use the TLB refill vector.

Address Bit
Values

Status Register
Segment

Name
Address Range Segment SizeBit Values

KSU EXL ERL UX

32-bit
A(31) = 0

any

0 0 useg
0x0000 0000

through
0x7FFF FFFF

2 GB
(231 bytes)

64-bit
A(63:40) = 0

0 1 xuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 TB
(240 bytes)

Chapter 6 Memory Management Unit

110 User’s Manual U11761EJ6V0UM

(2) 64-bit User Space (xuseg)

In 64-bit User space, when UX =1 in the Status register, addressing is extended to 64-
bits. When UX=1, the processor provides a single, uniform address space of 240 bytes,
labelled xuseg.

All valid User mode virtual addresses have bits 63:40 equal to 0; an attempt to
reference an address with bits 63:40 not equal to 0 causes an Address Error exception.
TLB misses on addresses in 64-bit User (xuseg) space use the XTLB refill vector.

6.3.8 Supervisor Space

Supervisor address space is designed for layered operating systems in which a true
kernel runs in Kernel mode, and the rest of the operating system runs in Supervisor
mode. The Supervisor address space provides code and data addresses for supervisor
mode.

Supervisor space can be accessed from supervisor mode and kernel mode.

The processor operates in Supervisor mode when the Status register contains the
following bit-values:

• KSU = 012

• EXL = 0

• ERL = 0

The SX bit in the Status register select between 32- or 64-bit Supervisor space
addressing:

• when SX = 0, 32-bit supervisor space is selected and TLB misses on
supervisor space addresses are handled by the 32-bit TLB refill exception
handler

• when SX = 1, 64-bit supervisor space is selected and TLB misses on
supervisor space addresses are handled by the 64-bit XTLB refill
exception handler. Figure 6-5 shows Supervisor address mapping. Table
6-3 lists the characteristics of the supervisor space segments; descriptions
of the address spaces follow.

User’s Manual U11761EJ6V0UM 111

Chapter 6 Memory Management Unit

Figure 6-5 User and Supervisor Address Spaces as Viewed from Supervisor Mode

Table 6-3 Supervisor Mode Addressing

A(63:62)
Segment

Name
Address Range

Segment
Size

SX UX

002 X 0 suseg
0x0000 0000 0000 0000

through
0x0000 0000 7FFF FFFF

2 GB
(231 bytes)

002 X 1 xsuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 TB
(240 bytes)

012 1 X xsseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 TB
(240 bytes)

112 X X
sseg
or
csseg

0xFFFF FFFF C000 0000
through

0xFFFF FFFF DFFF FFFF

512 MB
(229 bytes)

2 GB

Mapped

Mapped

suseg

Address

0.5 GB
error

sseg

Address
error

Address
error

Mapped

xsuseg

Address

0.5 GB

error

xsseg1 TB
Mapped

Address
error

32-bit 64-bit

csseg

0x FFFF FFFF FFFF FFFF

0x 4000 0100 0000 0000

0x 0000 0000 0000 0000

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 4000 0000 0000 0000

0x 0000 0100 0000 0000

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

0x E000 0000

0x C000 0000

0x A000 0000

Address
error

1 TB
Mapped

Chapter 6 Memory Management Unit

112 User’s Manual U11761EJ6V0UM

(1) 32-bit Supervisor, User Space (suseg)

In Supervisor space, when SX = 0 in the Status register and the most-significant bit of
the 32-bit virtual address is set to 0, the suseg virtual address space is selected; it covers
the full 231 bytes (2 GB) of the current user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF
FFFF.

(2) 32-bit Supervisor, Supervisor Space (sseg)

In Supervisor space, when SX = 0 in the Status register and the three most-significant
bits of the 32-bit virtual address are 1102, the sseg virtual address space is selected; it
covers 229-bytes (512 MB) of the current supervisor address space. The virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through 0xDFFF
FFFF.

(3) 64-bit Supervisor, User Space (xsuseg)

In Supervisor space, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 002, the xsuseg virtual address space is selected; it covers the full 240
bytes (1 TB) of the current user address space. The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000 and runs through
0x0000 00FF FFFF FFFF.

(4) 64-bit Supervisor, Current Supervisor Space (xsseg)

In Supervisor space, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 012, the xsseg current supervisor virtual address space is selected.
The virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through
0x4000 00FF FFFF FFFF.

User’s Manual U11761EJ6V0UM 113

Chapter 6 Memory Management Unit

(5) 64-bit Supervisor, Separate Supervisor Space (csseg)

In Supervisor space, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 112, the csseg separate supervisor virtual address space is selected.
Addressing of the csseg is compatible with addressing sseg in 32-bit mode. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual
address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs
through 0xFFFF FFFF DFFF FFFF.

6.3.9 Kernel Space

The processor operates in Kernel mode when the Status register contains one of the
following values:

• KSU = 002

• EXL = 1

• ERL = 1

The KX bit in the Status register selects between 32- or 64-bit Kernel space addressing:

• when KX = 0, 32-bit kernel space is selected.

• when KX = 1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected and it remains
there until an Exception Return (ERET) instruction is executed or EXL is cleared. The
ERET instruction restores the processor to the address space existing prior to the
exception.

Kernel virtual address space is divided into regions differentiated by the high-order
bits of the virtual address, as shown in Figure 6-6. Table 6-4 lists the characteristics
of the kernel mode segments.

Chapter 6 Memory Management Unit

114 User’s Manual U11761EJ6V0UM

Figure 6-6 User, Supervisor, and Kernel Address Spaces as Viewed from Kernel Mode

Address
error

2 GB

0.5 GB

0.5 GB

Mapped

Mapped

Unmapped

Unmapped

kuseg

kseg0

kseg1

0.5 GB

0.5 GB

Mapped

ksseg

kseg3

Uncached

Cached

xkuseg

ckseg0

ckseg1

xksseg

ckseg3Mapped
0.5 GB

Mapped
0.5 GB

0.5 GB
Unmapped
Uncached

0.5 GB
Unmapped

Cached

Unmapped

Address
error

cksseg

1 TB
Mapped

xksegMapped

xkphys

32-bit 64-bit

Address
error

0x FFFF FFFF FFFF FFFF

0x 4000 0100 0000 0000

0x 0000 0000 0000 0000

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 4000 0000 0000 0000

0x 0000 0100 0000 0000

0x 8000 0000 0000 0000

0x C000 0000 0000 0000

0x FFFF FFFF A000 0000

0x FFFF FFFF 8000 0000

0x C000 00FF 8000 0000

0x FFFF FFFF

1 TB
Mapped

0x E000 0000

0x C000 0000

0x A000 0000

0x 8000 0000

0x 0000 0000

User’s Manual U11761EJ6V0UM 115

Chapter 6 Memory Management Unit

Table 6-4 Kernel Mode Addressing

(1) 32-bit Kernel, User Space (kuseg)

In Kernel space, when KX = 0 in the Status register, and the most-significant bit of the
virtual address, A31, is cleared, the 32-bit kuseg virtual address space is selected; it
covers the full 231 bytes (2 GB) of the current user address space. The virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual address.

A(63:62)
Segment

Name
Address Range

Segment
Size

KX SX UX

002 X X 0 kuseg
0x0000 0000 0000 0000

through
0x0000 0000 7FFF FFFF

2 GB
(231 bytes)

002 X X 1 xkuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 TB
(240 bytes)

012 X 1 X xksseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 TB
(240 bytes)

102 1 X X xkphys

0x8000 0000 0000 0000
through

0x8000 000F FFFF FFFF
etc.

8×
64 GB

(236 bytes)

112 1 X X xkseg
0xC000 0000 0000 0000

through
0xC000 00FF 7FFF FFFF

(240–231)
bytes

112 X X X kseg0
0xFFFF FFFF 8000 0000

through
0xFFFF FFFF 9FFF FFFF

512 MB
(229 bytes)

112 X X X kseg1
0xFFFF FFFF A000 0000

through
0xFFFF FFFF BFFF FFFF

512 MB
(229 bytes)

112 X X X ksseg
0xFFFF FFFF C000 0000

through
0xFFFF FFFF DFFF FFFF

512 MB
(229 bytes)

112 X X X kseg3
0xFFFF FFFF E000 0000

through
0xFFFF FFFF FFFF FFFF

512 MB
(229 bytes)

Chapter 6 Memory Management Unit

116 User’s Manual U11761EJ6V0UM

(2) 32-bit Kernel, Kernel Space 0 (kseg0)

In Kernel space, when KX = 0 in the Status register and the most-significant three bits
of the virtual address are 1002, 32-bit kseg0 virtual address space is selected; it is the
229-byte (512-MB) kernel physical space. References to kseg0 are not mapped
through the TLB; the physical address selected is defined by subtracting 0x8000 0000
from the virtual address. The K0 field of the Config register, described in this chapter,
controls cacheability and coherency.

(3) 32-bit Kernel, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits
of the 32-bit virtual address are 1012, 32-bit kseg1 virtual address space is selected; it
is the 229-byte (512-MB) kernel physical space.

References to kseg1 are not mapped through the TLB; the physical address selected is
defined by subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or memory-
mapped I/O device registers) are accessed directly.

(4) 32-bit Kernel, Supervisor Space (ksseg)

In Kernel space, when KX = 0 in the Status register and the most-significant three bits
of the 32-bit virtual address are 1102, the ksseg virtual address space is selected; it is
the current 229-byte (512-MB) supervisor virtual space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

(5) 32-bit Kernel, Kernel Space 3 (kseg3)

In Kernel space, when KX = 0 in the Status register and the most-significant three bits
of the 32-bit virtual address are 1112, the kseg3 virtual address space is selected; it is
the current 229-byte (512-MB) kernel virtual space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

User’s Manual U11761EJ6V0UM 117

Chapter 6 Memory Management Unit

(6) 64-bit Kernel, User Space (xkuseg)

In Kernel space, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 002, the xkuseg virtual address space is selected; it covers the current user
address space. The virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte
unmapped (that is, mapped directly to physical addresses) uncached address space.

(7) 64-bit Kernel, Current Supervisor Space (xksseg)

In Kernel space, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 012, the xksseg virtual address space is selected; it is the current supervisor
virtual space. The virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address.

(8) 64-bit Kernel, Physical Spaces (xkphys)

In Kernel space, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 102, the xkphys virtual address space is selected; it is a set of eight 236-byte
kernel physical spaces. Accesses with address bits 58:36 not equal to 0 cause an
address error.

References to this space are not mapped; the physical address selected is taken from
bits 35:0 of the virtual address. Bits 61:59 of the virtual address specify the
cacheability and coherency attributes, as shown in Table 6-5.

Table 6-5 Cacheability and Coherency Attributes

Value (61:59) Cacheability and Coherency Attributes Starting Address

0
Cacheable, noncoherent, write-through, no
write allocate

0x8000 0000 0000 0000

1
Cacheable, noncoherent, write-through, write
allocate

0x8800 0000 0000 0000

2 Uncached 0x9000 0000 0000 0000

3 Cacheable, noncoherent 0x9800 0000 0000 0000

4-7 Reserved 0xA000 0000 0000 0000

Chapter 6 Memory Management Unit

118 User’s Manual U11761EJ6V0UM

(9) 64-bit Kernel, Kernel Space (xkseg)

In Kernel space, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 112, the address space selected is one of the following:

• kernel virtual space, xkseg, the current kernel virtual space; the virtual
address is extended with the contents of the 8-bit ASID field to form a
unique virtual address

• one of the four 32-bit kernel compatibility spaces, as described in the next
section.

(10) 64-bit Kernel, Compatibility Spaces

In Kernel space, when KX = 1 in the Status register, bits 63:62 of the 64-bit virtual
address are 112, and bits 61:31 of the virtual address equal –1. The lower two
bytes of address, as shown in Figure 6-6, select one of the following 512-MB
compatibility spaces.

• ckseg0. This 64-bit virtual address space is an unmapped region,
compatible with the 32-bit address model kseg0. The K0 field of the
Config register controls cacheability and coherency.

• ckseg1. This 64-bit virtual address space is an unmapped and uncached
region, compatible with the 32-bit address model kseg1.

• cksseg. This 64-bit virtual address space is the current supervisor virtual
space, compatible with the 32-bit address model ksseg.

• ckseg3. This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.

6.4 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part of the CPU,
and supports memory management, address translation, exception handling, and other
privileged operations. CP0 contains the registers shown in Figure 6-7 plus a 48-entry
TLB. The sections that follow describe how the processor uses the memory
management-related registers.

Each CP0 register has a unique number that identifies it; this number is referred to as
the register number. For instance, the Page Mask register is register number 5.

User’s Manual U11761EJ6V0UM 119

Chapter 6 Memory Management Unit

Figure 6-7 CP0 Registers and the TLB

6.4.1 Format of a TLB Entry

Figure 6-8 shows the TLB entry formats for both 32- and 64-bit modes. Each field of
an entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or PageMask
registers.

EntryLo0
2*

EntryHi

Page Mask

Index

Random

Wired

Count

47

0

BadVAddr

TLB

(“Safe” entries)
(See Random Register,

PRId

0127

8*

15*

Compare
11*

Config
16*

LLAddr
17*

TagLo
28*

TagHi
29*

contents of TLB Wired)

ECC
26*

*Register number

Used with exception
processing. See Used with memory

Chapter 7 for details.

EntryLo0
2*

3*
EntryLo1

EntryHi
10*

5*
Page Mask

Index
0*

Random
1*

Wired
6*

ErrorEPC
30*

Context

4*

Status
12*

Cause
13*

EPC
14*

management system.

CacheErr
27*

XContext

20*

9*

Chapter 6 Memory Management Unit

120 User’s Manual U11761EJ6V0UM

Figure 6-8 Format of a TLB Entry

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers are nearly the
same as the TLB entry. The one exception is the Global field
(G bit), which is used in the TLB, but is reserved in the EntryHi register. Figure 6-9
and Figure 6-10 describe the TLB entry fields shown in Figure 6-8.

 12

255

13

192

MASK 0

191

VPN2 G

 27

128

1 4 8

ASID

140141

 24

127 64

PFN

63 0

39

0

139136 135

94 93

C VD

3 1 1

6566676970

0

1

24

PFN

30 29

34

C VD

3 1 1

12356

0

1

0

0

34

0

167168

R

190 189

22

0

2

204205216217

31 0

24

PFN

30 29

2

C VD

3 1 1

12356

0

1

0

24

63 32

PFN

62 61

C VD

3 1 1

3334353738

0

12

0

12

127

13

96

MASK 0

7

0

108109120121

1

95

4

64

G 0

19

VPN2

72757677

ASID

8

71

256-bit TLB entry
in 64-bit mode of
VR5000 processor

128-bit TLB entry
in 32-bit mode of
VR5000 processor

32-bit Mode

64-bit Mode

User’s Manual U11761EJ6V0UM 121

Chapter 6 Memory Management Unit

Figure 6-9 Fields of the PageMask and EntryHi Registers

 12

31

13

0

MASK
7

25 24 13 12
PageMask Register

0 0

VPN2 ... Virtual page number divided by two (maps to two pages).
ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB;

each process has a distinct mapping of otherwise identical virtual page numbers.
R Region. (00 → user, 01 → supervisor, 11 → kernel) used to match vAddr63...62
Fill Reserved. 0 on read; ignored on write.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.

63

VPN2
 27

0

5 8

ASID
1213 8 7

0
2

62 61 40 39

22

FILLR

Mask.....Page comparison mask.
0Reserved. Must be written as zeroes, and returns zeroes when read.

31

VPN2
19

0

5 8

ASID
1213 8 7

0
32-bit
Mode

64-bit
Mode

EntryHi Register

Chapter 6 Memory Management Unit

122 User’s Manual U11761EJ6V0UM

Figure 6-10 Fields of the EntryLo0 and EntryLo1 Registers

G

D

PFN...... Page frame number; the upper bits of the physical address.
C Specifies the TLB page coherency attribute; see Table 6-6.
D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is

actually a write-protect bit that software can use to prevent alteration of data.
V Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS

miss occurs.
G Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during

TLB lookup.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

24

63

PFN

63 0

34

C VD

3 1 1 1

24

PFN

30 29

34

C V
3 1 1

12356

G
1

0

0

EntryLo0 and EntryLo1 Registers

30 29 012356

G

D

24

31

PFN

31 0

2

C VD

3 1 1 1

24

PFN

30 29

2

C V
3 1 1

12356

G
1

0

0

30 29 012356
32-bit
Mode

32-bit
Mode

64-bit
Mode

64-bit
Mode

User’s Manual U11761EJ6V0UM 123

Chapter 6 Memory Management Unit

The TLB page coherency attribute (C) bits specify whether references to the page
should be cached; if cached, the algorithm selects between several coherency
attributes. Table 6-6 shows the coherency attributes selected by the C bits.

Table 6-6 TLB Page Coherency (C) Bit Values

6.5 CP0 Registers

The following sections describe the CP0 registers that are assigned specifically as a
software interface with memory management (each register is followed by its register
number in parentheses).

• Index register (CP0 register number 0)

• Random register (1)

• EntryLo0 (2) and EntryLo1 (3) registers

• PageMask register (5)

• Wired register (6)

• EntryHi register (10)

• PRId register (15)

• Config register (16)

• LLAddr register (17)

• TagLo (28) and TagHi (29) registers

C(5:3) Value Page Coherency Attribute

0 Cacheable, noncoherent, write-through, no write allocate

1 Cacheable, noncoherent, write-through, write allocate

2 Uncached

3 Cacheable noncoherent (noncoherent)

4 Reserved

5 Reserved

6 Reserved

7 Reserved

Chapter 6 Memory Management Unit

124 User’s Manual U11761EJ6V0UM

6.5.1 Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to index an entry
in the TLB. The high-order bit of the register shows the success or failure of a TLB
Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions.

Figure 6-11 shows the format of the Index register; Table 6-7 describes the Index
register fields.

Figure 6-11 Index Register

Table 6-7 Index Register Field Descriptions

Field Description

P
Probe failure. Set to 1 when the previous TLBProbe (TLBP)
instruction was unsuccessful.

Index
Index to the TLB entry affected by the TLBRead and
TLBWrite instructions

0
Reserved. Must be written as zeroes, and returns zeroes when
read.

Index Register

31

1

30 6 5 0

25 6

 IndexP 0

User’s Manual U11761EJ6V0UM 125

Chapter 6 Memory Management Unit

6.5.2 Random Register (1)

The Random register is a read-only register of which six bits index an entry in the TLB.
This register decrements as each instruction executes, and its values range between an
upper and a lower bound, as follows:

• A lower bound is set by the number of TLB entries reserved for exclusive
use by the operating system (the contents of the Wired register).

• An upper bound is set by the total number of TLB entries (47 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write
Random instruction. The register does not need to be read for this purpose; however,
the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon
system reset. This register is also set to the upper bound when the Wired register is
written.

Figure 6-12 shows the format of the Random register. Table 6-8 describes the Random
register fields.

Figure 6-12 Random Register

Table 6-8 Random Register Field Descriptions

Field Description

Random TLB Random index

0
Reserved. Must be written as zeroes, and returns zeroes when
read.

Random Register
31 6 5 0

26 6

 Random0

Chapter 6 Memory Management Unit

126 User’s Manual U11761EJ6V0UM

6.5.3 EntryLo0 (2), and EntryLo1 (3) Registers

The EntryLo register consists of two registers that have identical formats:

• EntryLo0 is used for even virtual pages.

• EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the physical
page frame number (PFN) of the TLB entry for even and odd pages, respectively, when
performing TLB read and write operations. Figure 6-10 shows the format of these
registers.

6.5.4 PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to the
TLB; it holds a comparison mask that sets the variable page size for each TLB entry.

TLB read and write operations use this register as either a source or a destination; when
virtual addresses are presented for translation into physical address, the corresponding
bits in the TLB identify which virtual address bits among bits 24:13 are used in the
comparison. When the Mask field is not one of the values shown in Table 6-9, the
operation of the TLB is undefined.

Table 6-9 Mask Field Values for Page Sizes

Page Size
Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 KB 0 0 0 0 0 0 0 0 0 0 0 0

16 KB 0 0 0 0 0 0 0 0 0 0 1 1

64 KB 0 0 0 0 0 0 0 0 1 1 1 1

256 KB 0 0 0 0 0 0 1 1 1 1 1 1

1 MB 0 0 0 0 1 1 1 1 1 1 1 1

4 MB 0 0 1 1 1 1 1 1 1 1 1 1

16 MB 1 1 1 1 1 1 1 1 1 1 1 1

User’s Manual U11761EJ6V0UM 127

Chapter 6 Memory Management Unit

6.5.5 Wired Register (6)

The Wired register is a read/write register that specifies the boundary between the
wired and random entries of the TLB as shown in Figure 6-13. Wired entries are fixed,
nonreplaceable entries, which cannot be overwritten by a TLB write operation.
Random entries can be overwritten.

Figure 6-13 Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also sets the
Random register to the value of its upper bound (see Random register, above). Figure
6-14 shows the format of the Wired register; Table 6-10 describes the register fields.

Figure 6-14 Wired Register

Table 6-10 Wired Register Field Descriptions

Field Description

Wired TLB Wired boundary

0
Reserved. Must be written as zeroes, and returns zeroes
when read.

47

Wired

Range of Random entries

0

TLB

Register
Range of Wired entries

Wired Register
31 6 5 0

26 6

 Wired0

Chapter 6 Memory Management Unit

128 User’s Manual U11761EJ6V0UM

6.5.6 EntryHi Register (10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read and write
operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write
Indexed, and TLB Read Indexed instructions.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi
register is loaded with the virtual page number (VPN2) and the ASID of the virtual
address that did not have a matching TLB entry.

6.5.7 Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains
information identifying the implementation and revision level of the CPU and CP0.
Figure 6-15 shows the format of the PRId register; Table 6-11 describes the PRId
register fields.

Figure 6-15 Processor Revision Identifier Register Format

Table 6-11 PRId Register Fields

Field Description

Imp Implementation number

Rev Revision number

0
Reserved. Must be written as zeroes, and returns zeroes when
read.

16 15

PRId Register

31 0

16

Imp

8 8

0

8

Rev

7

User’s Manual U11761EJ6V0UM 129

Chapter 6 Memory Management Unit

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number,
and the high-order byte (bits 15:8) is interpreted as an implementation number. The
implementation number of the VR5000 processor is 0x23. The content of the high-
order halfword (bits 31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a major revision
number in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however there is no
guarantee that changes to the chip will necessarily be reflected in the PRId register, or
that changes to the revision number necessarily reflect real chip changes. For this
reason, these values are not listed and software should not rely on the revision number
in the PRId register to characterize the chip.

6.5.8 Config Register (16)

The Config register specifies various configuration options which can be selected.

Some configuration options, as defined by Config bits 31:13,11:3 are set by the
hardware during reset and are included in the Config register as read-only status bits
for the software to access. Other configuration options are read/write (as indicated by
Config register bits 12 and 3:0) and controlled by software; on reset these fields are
undefined.

Certain configurations have restrictions. The Config register should be initialized by
software before caches are used. Caches should be written back to memory before line
sizes are changed, and caches should be reinitialized after any change is made.

Figure 6-16 shows the format of the Config register; Table 6-12 describes the Config
register fields.

Chapter 6 Memory Management Unit

130 User’s Manual U11761EJ6V0UM

Figure 6-16 Config Register Format

Table 6-12 Config Register Fields

Field Description

EC

System clock ratio:
0 → processor clock frequency divided by 2
1 → processor clock frequency divided by 3
2 → processor clock frequency divided by 4
3 → processor clock frequency divided by 5
4 → processor clock frequency divided by 6
5 → processor clock frequency divided by 7
6 → processor clock frequency divided by 8
7 → Reserved

EP

Transmit data pattern (pattern for write-back data):
0 → D Doubleword every cycle
1 → DDxDDx 2 Doublewords every 3 cycles
2 → DDxxDDxx 2 Doublewords every 4 cycles
3 → DxDxDxDx 2 Doublewords every 4 cycles
4 → DDxxxDDxxx 2 Doublewords every 5 cycles
5 → DDxxxxDDxxxx 2 Doublewords every 6 cycles
6 → DxxDxxDxxDxx 2 Doublewords every 6 cycles
7 → DDxxxxxxDDxxxxxx 2 Doublewords every 8 cycles
8 → DxxxDxxxDxxxDxxx 2 Doublewords every 8 cycles

SB
Secondary Cache block size. On the VR5000 this is set to 8 words.

1 → 8 words
00, 10, 11 → Reserved

SS

Secondary Cache Size
00 → 512 KB
01 → 1 MB
10 → 2 MB
11 → None

EW
SysAD bus width. On the VR5000 this is set to 64-bit.

00 → 64-bit
01, 10, 11 → Reserved

Config Register

 2031

2 1

EW SC 1EP

1

19 18 1617 815

1 3

DBIB

1

4 2 0

 0 EC

1 3

30 28 27

4

24 23 22

SB

21

2 1

SS

1

BE

1

14

EM

1

13

EB

1

SE

12

1

11

IC

3

9 6

DC

5 3

31

 0 K0

User’s Manual U11761EJ6V0UM 131

Chapter 6 Memory Management Unit

SC
Secondary Cache present.

0 → Secondary cache present
1 → Secondary cache not present

BE
Big Endian Mode:

0 → Little Endian
1 → Big Endian

EM
ECC mode enable. On the VR5000 this must be set to parity.

0 → ECC mode
1 → Parity mode

EB
Block ordering. On the VR5000 this must be set to sub-block.

0 → Sequential
1 → Sub-block

SE
Secondary Cache Enable (software writeable)

0 → Disabled
1 → Enabled

IC
Primary I-cache Size (I-cache size = 212+IC bytes). In the VR5000 processor,
this must be set to 32 KB.

DC
Primary D-cache Size (D-cache size = 212+DC bytes). In the VR5000 processor,
this must be set to 32 KB.

IB
Primary I-cache line size. In the VR5000 processor, this must be set to 32 bytes.

0 → 16 bytes
1 → 32 bytes

DB
Primary D-cache line size. In the VR5000 processor, this must be set to 32 bytes.

0 → 16 bytes
1 → 32 bytes

K0
kseg0 coherency algorithm (see EntryLo0 and EntryLo1 registers and the C field
of Table 6-6) (software writeable)

Field Description

Chapter 6 Memory Management Unit

132 User’s Manual U11761EJ6V0UM

6.5.9 Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the physical address
read by the most recent Load Linked instruction.

This register is for diagnostic purposes only, and serves no function during normal
operation.

Figure 6-17 shows the format of the LLAddr register; PAddr represents bits of the
physical address, PA(35:4).

Figure 6-17 LLAddr Register Format

6.5.10 Cache Tag Registers [TagLo (28) and TagHi (29)]

The TagLo and TagHi registers are 32-bit read/write registers that hold either the
primary cache tag and parity, or the secondary cache tag and ECC during cache
initialization, cache diagnostics, or cache error processing. The Tag registers are
written by the CACHE and MTC0 instructions.

The P and ECC fields of these registers are ignored on Index Store Tag operations.
Parity and ECC are computed by the store operation.

Figure 6-18 shows the format of these registers for primary cache operations. Figure
6-19 shows the format of these registers for secondary cache operations.

Table 6-13 lists the field definitions of the TagLo and TagHi registers.

LLAddr Register
31 0

PAddr(35:4)

32

User’s Manual U11761EJ6V0UM 133

Chapter 6 Memory Management Unit

Figure 6-18 TagLo and TagHi Register (P-cache) Formats

Figure 6-19 TagLo and TagHi Register (S-cache) Formats

31 0

32

TagLo

TagHi

31

1

0

24

P

8 7

PState

6 5

52

PTagLo

Undefined

Undefined

1

31 0

32

Undefined

TagLo

TagHi

31

10

0

17

 0STagLo

13 12

SState

10 9

32

0

1415

Chapter 6 Memory Management Unit

134 User’s Manual U11761EJ6V0UM

Table 6-13 Cache Tag Register Fields

Field Description

PTagLo Specifies the physical address bits 35:12

PState

Specifies the primary cache state
 0 → Invalid
 1 → Reserved
 2 → Reserved
 3 → Valid

P Specifies the primary tag even parity bit

STagLo Specifies the physical address bits 35:19

SState

Specifies the secondary cache state
 0 → Invalid
 1 → Reserved
 2 → Reserved
 3 → Reserved
 4 → Valid
 5 → Reserved
 6 → Reserved
 7 → Reserved

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Undefined These fields should not be used.

User’s Manual U11761EJ6V0UM 135

Chapter 6 Memory Management Unit

6.6 Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the
8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID of the
TLB entry to see if there is a match. One of the following comparisons are also made:

• In 32-bit mode, the highest 7-to-19 bits (depending upon the page size) of
the virtual address are compared to the contents of the TLB virtual page
number.

• In 64-bit mode, the highest 15-to-27 bits (depending upon the page size)
of the virtual address are compared to the contents of the TLB virtual
page number.

If a TLB entry matches, the physical address and access control bits (C, D, and V) are
retrieved from the matching TLB entry. While the V bit of the entry must be set for a
valid translation to take place, it is not involved in the determination of a matching
TLB entry.

Figure 6-20 illustrates the TLB address translation process.

Chapter 6 Memory Management Unit

136 User’s Manual U11761EJ6V0UM

Figure 6-20 TLB Address Translation

User
Mode?

VPN
Match?

ASID
Match?

G
= 1?

Valid

V
= 1?

D
= 1?

No

Yes

Yes

Yes

No

No

Yes

Write?
Yes

No
Yes

TLB
Invalid

TLB
Mod

Exception

TLB
Refill

Exception

VPN
and

ASID

Virtual Address (Input)

C =
010?

Yes No

Access
Main Access

Cache

Physical Address (Output)

Memory

No

Valid

Dirty

Non-
cacheable

Global

No

No

Mode?
Sup

Address
Error

Exception

 No No

Unmapped
Access

Yes

Exception

No

Yes

No

Yes

32-bit
address?

Yes

XTLB
Refill

No

Address
Error

Yes

Address?

For valid
address space, see
the section describing
Operating Modes
in this chapter.

Valid
Address?

Valid
Address?

Address
Error

Exception
Yes

Yes
MSBs=10?

No

User’s Manual U11761EJ6V0UM 137

Chapter 6 Memory Management Unit

6.7 TLB Exceptions

If there is no TLB entry that matches the virtual address, a TLB miss exception occurs.
If the access control bits (D and V) indicate that the access is not valid, a TLB
modification or TLB invalid exception occurs. If the C bits equal 0102, the physical
address that is retrieved accesses main memory, bypassing the cache.

6.8 TLB Instructions

Table 6-14 lists the instructions that the CPU provides for working with the TLB.

Table 6-14 TLB Instructions

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

138 User’s Manual U11761EJ6V0UM

Chapter 7 CPU Exception Processing

This chapter describes the CPU exception processing, including an explanation of
exception processing, followed by the format and use of each CPU exception register.

7.1 Overview of Exception Processing

The processor receives exceptions from a number of sources, including translation
lookaside buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system calls.
When the CPU detects one of these exceptions, the normal sequence of instruction
execution is suspended and the processor enters Kernel mode.

The processor then disables interrupts and forces execution of a software exception
processor (called a handler) located at a fixed address. The handler saves the context
of the processor, including the contents of the program counter, the current operating
mode (User or Supervisor), and the status of the interrupts (enabled or disabled). This
context is saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC)
register with a location where execution can restart after the exception has been
serviced. The restart location in the EPC register is the address of the instruction that
caused the exception or, if the instruction was executing in a branch delay slot, the
address of the branch instruction immediately preceding the delay slot.

The registers described later in the section assist in this exception processing by
retaining address, cause and status information.

User’s Manual U11761EJ6V0UM 139

Chapter 7 CPU Exception Processing

7.2 Exception Processing Registers

This section describes the CP0 registers that are used in exception processing. Table
7-1 lists these registers, along with their number—each register has a unique
identification number that is referred to as its register number. For instance, the ECC
register is register number 26. The remaining CP0 registers are used in memory
management.

Software examines the CP0 registers during exception processing to determine the
cause of the exception and the state of the CPU at the time the exception occurred. The
registers in Table 7-1 are used in exception processing, and are described in the
sections that follow.

Table 7-1 CP0 Exception Processing Registers

CPU general registers are interlocked and the result of an instruction can normally be
used by the next instruction; if the result is not available right away, the processor stalls
until it is available. CP0 registers and the TLB are not interlocked, however; there may
be some delay before a value written by one instruction is available to following
instructions.

Register Name Reg. No.

Context 4

BadVAddr (Bad Virtual Address) 8

Count 9

Compare register 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

XContext 20

ECC 26

CacheErr (Cache Error and Status) 27

ErrorEPC (Error Exception Program Counter) 30

Chapter 7 CPU Exception Processing

140 User’s Manual U11761EJ6V0UM

7.2.1 Context Register (4)

The Context register is a read/write register containing the pointer to an entry in the
page table entry (PTE) array; this array is an operating system data structure that stores
virtual-to-physical address translations. When there is a TLB miss, the operating
system loads the TLB with the missing translation from the PTE array. Normally, the
operating system uses the Context register to address the current page map which
resides in the kernel-mapped segment, kseg3. The Context register duplicates some of
the information provided in the BadVAddr register, but the information is arranged in
a form that is more useful for a software TLB exception handler. Figure 7-1 shows the
format of the Context register; Table7-2 describes the Context register fields.

Figure 7-1 Context Register Format

Table 7-2 Context Register Fields

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the
TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd page
pair. For a 4-KB page size, this format can directly address the pair-table of 8-byte
PTEs. For other page and PTE sizes, shifting and masking this value produces the
appropriate address.

Field Description

BadVPN2
This field is written by hardware on a miss. It contains the
virtual page number (VPN) of the most recent virtual address
that did not have a valid translation.

PTEBase

This field is a read/write field for use by the operating system.
It is normally written with a value that allows the operating
system to use the Context register as a pointer into the current
PTE array in memory.

Context Register

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0

23 22 4 331 0

9

PTEBase BadVPN2

19 4

032-bit
Mode

64-bit
Mode

User’s Manual U11761EJ6V0UM 141

Chapter 7 CPU Exception Processing

7.2.2 Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that displays the
most recent virtual address that caused one of the following exceptions: TLB Invalid,
TLB Modified, TLB Refill, or Address Error.

Figure 7-2 shows the format of the BadVAddr register.

Figure 7-2 BadVAddr Register Format

Note: The BadVAddr register does not save any information for bus errors, since bus
errors are not addressing errors.

7.2.3 Count Register (9)

The Count register acts as a timer incrementing at a constant rate whether or not an
instruction is executed, retired, or any forward progress is made through the pipeline.
On the VR5000 the count register can be configured at reset time to count either half
the maximum issue rate or at the maximum issue rate. The default behavior is to count
at half the maximum issue rate.

This register can be read or written. It can be written for diagnostic purposes or system
initialization; for example, to synchronize processors.

Figure 7-3 shows the format of the Count register.

Figure 7-3 Count Register Format

BadVAddr Register

63 0

64

Bad Virtual Address

31 0

32

Bad Virtual Address
32-bit
Mode

64-bit
Mode

Count Register
31 0

32

 Count

Chapter 7 CPU Exception Processing

142 User’s Manual U11761EJ6V0UM

7.2.4 Compare Register (11)

The Compare register acts as a timer (see also the Count register); it maintains a stable
value that does not change on its own.

When the value of the Count register equals the value of the Compare register,
interrupt bit IP(7) in the Cause register is set. This causes an interrupt as soon as the
interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt.

For diagnostic purposes, the Compare register is a read/write register. In normal use
however, the Compare register is write-only. Figure 7-4 shows the format of the
Compare register.

Figure 7-4 Compare Register Format

7.2.5 Status Register (12)

The Status register (SR) is a read/write register that contains the operating mode,
interrupt enabling, and the diagnostic states of the processor. The following list
describes the more important Status register fields.

• The 8-bit Interrupt Mask (IM) field controls the enabling of eight
interrupt conditions. Interrupts must be enabled before they can be
asserted, and the corresponding bits are set in both the Interrupt Mask
field of the Status register and the Interrupt Pending field of the Cause
register. IM[1:0] are software interrupt masks, while IM[7:2] correspond
to Int[5:0].

• The 3-bit Coprocessor Usability (CU) field controls the usability of 3
possible coprocessors. Regardless of the CU0 bit setting, CP0 is always
usable in Kernel mode. For all other cases, an access to an unusable
coprocessor causes an exception.

• The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks
the cache and virtual memory system.

Compare Register
31 0

32

Compare

User’s Manual U11761EJ6V0UM 143

Chapter 7 CPU Exception Processing

• The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the
machine. The processor can be configured as either little-endian or big-
endian at system reset; reverse-endian selection is used in Kernel and
Supervisor modes, and in the User mode when the RE bit is 0. Setting the
RE bit to 1 inverts the User mode endianness.

(1) Status Register Format

Figure 7-5 shows the format of the Status register. Table 7-3 describes the Status
register fields. Figure 7-6 and Table 7-4 provide additional information on the
Diagnostic Status (DS) field. All bits in the DS field are readable and writable.

Figure 7-5 Status Register

Status Register

CU

 3

IM7 - IM0

31 1528 27 25 24 16

9

8 7 5 4 3 2 1 0

KSU ERL EXL IE

8 2 1 1 1

(Cu2:Cu0)
RE

26

1

DS KX UX

6

SX

1 1 111

 0 FR

30

XX

1

Chapter 7 CPU Exception Processing

144 User’s Manual U11761EJ6V0UM

Table 7-3 Status Register Fields

Field Description

XX
Enables execution of MIPS IV instructions in user-mode
 1 → MIPS IV instructions usable
 0 → MIPS IV instructions unusable

CU

Controls the usability of each of the four coprocessor unit
numbers. CP0 is always usable when in Kernel mode, regardless
of the setting of the CU0 bit. Setting CU3 enables the MIPS IV
instruction set,
1 → usable
0 → unusable

0 Reserved. Set to 0.

FR
Enables additional floating-point registers

0 → 16 registers
1 → 32 registers

RE Reverse-Endian bit, valid in User mode.

DS Diagnostic Status field (see Figure 7-6).

IM

Interrupt Mask: controls the enabling of each of the external,
internal, and software interrupts. An interrupt is taken if interrupts
are enabled, and the corresponding bits are set in both the Interrupt
Mask field of the Status register and the Interrupt Pending field of
the Cause register.

0 → disabled
1→ enabled

KX

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception is used for TLB misses on kernel
addresses.

0 → 32−bit
1 → 64−bit

SX

Enables 64-bit addressing and operations in Supervisor mode. The
extended-addressing TLB refill exception is used for TLB misses
on supervisor addresses.

0 → 32−bit
1 → 64−bit

UX

Enables 64-bit addressing and operations in User mode. The
extended-addressing TLB refill exception is used for TLB misses
on user addresses.

0 → 32−bit
1 → 64−bit

User’s Manual U11761EJ6V0UM 145

Chapter 7 CPU Exception Processing

KSU

Mode bits
102 → User
012 → Supervisor
002 → Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset, NMI, or
Cache Error exception are taken.

0 → normal
1 → error

When ERL is set:
Interrupts are disabled.
The ERET instruction will use the return address held in
ErrorEPC instead of EPC.
Kuseg and xkuseg are treated as unmapped and uncached
regions.This allows main memory to be accessed in the presence
of cache errors.

EXL

Exception Level; set by the processor when any exception other
than Reset, Soft Reset, NMI, or Cache Error exception are taken.

0 → normal
1 → exception

When EXL is set:
Interrupts are disabled.
TLB refill exceptions will use the general exception vector
instead of the TLB refill vector.
EPC will not be updated if another exception is taken.

IE
Interrupt Enable

0 → disable interrupts
1 → enables interrupts

Field Description

Chapter 7 CPU Exception Processing

146 User’s Manual U11761EJ6V0UM

Figure 7-6 Status Register DS Field

Table 7-4 Status Register Diagnostic Status Bits

(2) Status Register Modes and Access States

Fields of the Status register set the modes and access states described in the sections
that follow.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

If these conditions are met, the settings of the IM bits enable the interrupt.

Operating Modes: The following CPU Status register bit settings are required for
User, Kernel, and Supervisor modes.

• The processor is in User mode when KSU = 102, EXL = 0, and ERL = 0.

• The processor is in Supervisor mode when KSU = 012, EXL = 0, and ERL
= 0.

Bit Description

BEV
Controls the location of TLB refill and general exception vectors.

0 → normal
1→ bootstrap

0 Reserved. Must be written as zeroes. Returns zeroes when read.

SR 1→ Indicates that a Soft Reset or NMI has occurred.

CE
Contents of the ECC register set or modify the check bits of the
caches when CE = 1; see description of the ECC register.

DE
Specifies that cache parity or ECC errors cannot cause exceptions.

0 → parity/ECC remain enabled
1 → disables parity/ECC

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Diagnostic Status Field
24 22 21 20 19 18 17 16

0 SR 0 CE DE

2 1 1 1 1 1 1

BEV

23

1

0 0

User’s Manual U11761EJ6V0UM 147

Chapter 7 CPU Exception Processing

• The processor is in Kernel mode when KSU = 002, or EXL = 1, or ERL =
1.

32- and 64-bit Modes: The following CPU Status register bit settings select 32- or 64-
bit operation for User, Kernel, and Supervisor operating modes. Enabling 64-bit
operation permits the execution of 64-bit opcodes and translation of 64-bit addresses.
64-bit operation for User, Kernel and Supervisor modes can be set independently.

• 64-bit addressing for Kernel mode is enabled when KX = 1. 64-bit
operations are always valid in Kernel mode.

• 64-bit addressing and operations are enabled for Supervisor mode when
SX = 1.

• 64-bit addressing and operations are enabled for User mode when UX = 1.

Kernel Address Space Accesses: Access to the kernel address space is allowed when
the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address space is
allowed when the processor is in Kernel or Supervisor mode, as described above in the
section titled, Operating Modes.

User Address Space Accesses: Access to the user address space is allowed in any of
the three operating modes.

(3) Status Register Reset

The contents of the Status register are undefined at reset, except for the following bits
in the Diagnostic Status field:

• ERL and BEV = 1

The SR bit distinguishes between the Reset exception and the Soft Reset exception
(caused either by Reset* or Nonmaskable Interrupt [NMI]).

7.2.6 Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent exception.

Figure 7-7 shows the fields of this register. Table 7-5 describes the Cause register
fields.

All bits in the Cause register, with the exception of the IP(1:0) bits, are read-only;
IP(1:0) are used for software interrupts.

Chapter 7 CPU Exception Processing

148 User’s Manual U11761EJ6V0UM

Table 7-5 Cause Register Fields

Field Description

BD
Indicates whether the last exception taken occurred in a branch delay slot.

1 → delay slot
0 → normal

CE
Coprocessor unit number referenced when a Coprocessor Unusable exception is
taken.

IP
Indicates an interrupt is pending.

1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 7-6)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

User’s Manual U11761EJ6V0UM 149

Chapter 7 CPU Exception Processing

Figure 7-7 Cause Register Format

Table 7-6 Cause Register ExcCode Field

7.2.7 Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the
address at which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

Exception
Mnemonic Description

Code Value

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 ---- Reserved

15 FPE Floating-Point exception

16–31 –-- Reserved

Cause Register

 1

IP7

31 1527 16

2 12

8 7 6 2 0

8 1 251

0Exc
Code

1

00

282930

BD 0 CE IP0

Chapter 7 CPU Exception Processing

150 User’s Manual U11761EJ6V0UM

• the virtual address of the instruction that was the direct cause of the
exception, or

• the virtual address of the immediately preceding branch or jump
instruction (when the instruction is in a branch delay slot, and the Branch
Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the Status register
is set to a 1.

Figure 7-8 shows the format of the EPC register.

Figure 7-8 EPC Register Format

7.2.8 XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page table entry
(PTE) array, an operating system data structure that stores virtual-to-physical address
translations. When there is a TLB miss, the operating system software loads the TLB
with the missing translation from the PTE array. The XContext register duplicates
some of the information provided in the BadVAddr register, and puts it in a form useful
for a software TLB exception handler. The XContext register is for use with the XTLB
refill handler, which loads TLB entries for references to a 64-bit address space, and is
included solely for operating system use. The operating system sets the PTE base field
in the register, as needed. Normally, the operating system uses the Context register to
address the current page map, which resides in the kernel-mapped segment kseg3.
Figure 7-9 shows the format of the XContext register; Table 7-7 describes the XContext
register fields.

EPC Register

63 0

EPC

64

31 0

EPC

32

32-bit
Mode

64-bit
Mode

User’s Manual U11761EJ6V0UM 151

Chapter 7 CPU Exception Processing

Figure 7-9 XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that caused the TLB
miss; bit 12 is excluded because a single TLB entry maps to an even-odd page pair.
For a 4-KB page size, this format may be used directly to address the pair-table of 8-
byte PTEs. For other page and PTE sizes, shifting and masking this value produces
the appropriate address.

Table 7-7 XContext Register Fields

7.2.9 Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes primary-
cache data parity bits for cache initialization, cache diagnostics, or cache error
processing. (Tag ECC and parity are loaded from and stored to the TagLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation. Content of the
ECC register is:

• written into the primary data cache on store instructions (instead of the
computed parity) when the CE bit of the Status register is set.

• substituted for the computed instruction parity for the CACHE operation
Fill.

Figure 7-10 shows the format of the ECC register; Table 7-8 describes the register
fields.

Field Description

BadVPN2
The Bad Virtual Page Number/2 field is written by hardware on a miss. It contains
the VPN of the most recent invalidly translated virtual address.

R

The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel.

PTEBase
The Page Table Entry Base read/write field is normally written with a value that
allows the operating system to use the Context register as a pointer into the current
PTE array in memory.

XContext Register
3130 4 363 0

31

PTEBase BadVPN2

27 4

0R

2

33 32

Chapter 7 CPU Exception Processing

152 User’s Manual U11761EJ6V0UM

Figure 7-10 ECC Register Format

Table 7-8 ECC Register Fields

7.2.10 Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes ECC errors in the secondary cache
and parity errors in the primary cache. Parity errors cannot be corrected.

The CacheErr register holds cache index and status bits that indicate the source and
nature of the error; it is loaded when a Cache Error exception is asserted.

Figure 7-11 shows the format of the CacheErr register and Table 7-9 describes the
CacheErr register fields.

Field Description

ECC

An 8-bit field specifying the parity bits read from or written to a primary
cache.

ECC field values for Index_Store_Tag_D, Index_Load_Tag_D cache
operations:
ECC[0] Even parity for least significant byte of requested doubleword
ECC[1] Even parity for 2nd least significant byte
ECC[2] Even parity for 3rd least significant byte
ECC[3] Even parity for 4th least significant byte
ECC[4] Even parity for 4th most significant byte
ECC[5] Even parity for 3rd most significant byte
ECC[6] Even parity for 2nd most signficant byte
ECC[7] Even parity for most significant byte of requested doubleword

ECC field values for Index_Store_Tag_I, Index_Load_Tag_I cache
operations:
ECC[0] Even parity for least significant word of requested doubleword
ECC[1] Even parity for most significant word of requested doubleword

0 Reserved. Must be written as zeroes, and returns zeroes when read.

ECC Register
31

24 8

8 07

0 ECC

User’s Manual U11761EJ6V0UM 153

Chapter 7 CPU Exception Processing

Figure 7-11 CacheErr Register Format

Table 7-9 CacheErr Register Fields

Field Description

ER
Type of reference

0 → instruction
1 → data

EC
Cache level of the error

0 → primary
1 → reserved

ED
Indicates if a data field error occurred

0 → no error
1 → error

ET
Indicates if a tag field error occurred

0 → no error
1 → error

EE This bit is set if the error occurred on the SysAD bus.

EB

This bit is set if a data error occurred in addition to
the instruction error (indicated by the remainder of
the bits). If so, this requires flushing the data cache
after fixing the instruction error.

EI
This bit is set if the error occured on filling primary
on store miss.

SIDX
Physical address [21:3] of the reference that
encountered the error

PIDX
Virtual address [13:12] of the double word in error.
(used with SIDX to construct a virtual index for the
primary caches)

0
Reserved. Must be written as zeroes, and returns
zeroes when read.

CacheErr Register

31

EI

19

2 0

ER 0

1

30 28 25

1

24 23 22 21

0

1 1

 SIDX

2

0EBEE

111

ETEDEC

1 1

262729

1

0 PIDX

13

1

Chapter 7 CPU Exception Processing

154 User’s Manual U11761EJ6V0UM

7.2.11 Error Exception Program Counter (Error EPC)
Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used on
parity error exceptions. It is also used to store the program counter (PC) on Reset, Soft
Reset, and nonmaskable interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. This address can be:

• the virtual address of the instruction that caused the exception

• the virtual address of the immediately preceding branch or jump
instruction, when this address is in a branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.

Figure 7-12 shows the format of the ErrorEPC register.

Figure 7-12 ErrorEPC Register Format

7.3 Processor Exceptions

This section describes the processor exceptions—it describes the cause of each
exception, its processing by the hardware, and servicing by a handler (software). The
types of exception, with exception processing operations, are described in the next
section.

ErrorEPC Register

63 0

ErrorEPC

64

64-bit
Mode

31 0

ErrorEPC

32

32-bit
Mode

User’s Manual U11761EJ6V0UM 155

Chapter 7 CPU Exception Processing

7.3.1 Exception Types

This section gives sample exception handler operations for the following exception
types:

• reset

• soft reset

• nonmaskable interrupt (NMI)

• cache error

• remaining processor exceptions

When the EXL bit in the Status register is 0, either User, Supervisor, or Kernel
operating mode is specified by the KSU bits in the Status register. When the EXL bit
is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which means the system
is in Kernel mode. After saving the appropriate state, the exception handler typically
changes KSU to Kernel mode and resets the EXL bit back to 0. When restoring the
state and restarting, the handler restores the previous value of the KSU field and sets
the EXL bit back to 1.

Returning from an exception, also resets the EXL bit to 0.

In the following sections, sample hardware processes for various exceptions are
shown, together with the servicing required by the handler (software).

(1) Reset Exception Process

Figure 7-13 shows the Reset exception process.

Figure 7-13 Reset Exception Processing

T: undefined
Random ← TLBENTRIES–1
Wired ← 0
Config ← 0 || EC || EP || 00000000 || BE || 110 || 010 || 1 || 1 || 0 || undefined

 || DC || undefined6

ErrorEPC ← PC
SR ← SR31:23 || 1 || 0 || 0 || SR19:3 || 1 || SR1:0
PC ← 0xFFFF FFFF BFC0 0000

Chapter 7 CPU Exception Processing

156 User’s Manual U11761EJ6V0UM

(2) Cache Error Exception Process

Figure 7-14 shows the Cache Error exception process.

Figure 7-14 Cache Error Exception Processing

(3) Soft Reset and NMI Exception Process

Figure 7-15 shows the Soft Reset and NMI exception process.

Figure 7-15 Soft Reset and NMI Exception Processing

T: ErrorEPC ← PC
CacheErr ← ER || EC || ED || ET || ES || EE || ED || 025
SR ← SR31:3 || 1 ||SR1:0
if SR22 = 1 then /*What is the BEV bit setting*/
 PC ← 0xFFFF FFFF BFC0 0200 + 0x100 /*Access boot-PROM area*/
else
 PC ← 0xFFFF FFFF A000 0000 + 0x100 /*Access main memory area*/
endif

T: ErrorEPC ← PC
SR ← SR31:23 || 1 || 0 || 1 || SR19:3 || 1 || SR1:0
PC ← 0xFFFF FFFF BFC0 0000

User’s Manual U11761EJ6V0UM 157

Chapter 7 CPU Exception Processing

(4) General Exception Process

Figure 7-16 shows the process used for exceptions other than Reset, Soft Reset, NMI,
and Cache Error.

Figure 7-16 General Exception Processing

7.3.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xFFFF
FFFF BFC0 0000. Addresses for all other exceptions are a combination of a vector
offset and a base address.

The base addres is determined by the BEV bit of the Status register.

Table 7-10 shows the 64-bit-mode vector base address for all exceptions; the 32-bit
mode address is the low-order 32 bits (for instance, the base address for NMI in 32-bit
mode is 0xBFC0 0000).

Table 7-11 shows the vector offset added to the base address to create the exception
address.

Table 7-10 Exception Vector Base Addresses

BEV Bit VR5000 Processor Vector Base Address

0 0xFFFF FFFF 8000 0000

1 0xFFFF FFFF BFC0 0200

T: Cause ← BD || 0 || CE || 012 || Cause15:8 || ExcCode || 02
if SR1 = 0 then/* System is in User or Supervisor mode with no current exception */

 EPC ← PC
endif
SR ← SR31:2 || 1 || SR0
if SR22 = 1 then
 PC ← 0xFFFF FFFF BFC0 0200 + vector /*access to uncached space*/
else
 PC ← 0xFFFF FFFF 8000 0000 + vector /*access to cached space*/
endif

Chapter 7 CPU Exception Processing

158 User’s Manual U11761EJ6V0UM

Table 7-11 Exception Vector Offsets

When BEV = 0, the vector base address for the cache error exception changes from
kseg0 (0xFFFF FFFF 8000 0000) to kseg1 (0xFFFF FFFF A000 0000). This change
indicates that the caches are initialized and that the vector can be cached. When BEV
= 1, the vector base for the cache error exception is 0xFFFF FFFF BFC0 0200. This is
an uncached and unmapped space, allowing the exception to bypass the cache and the
TLB.

(1) TLB Refill Vector Selection

In all present implementations of the MIPS III ISA, there are two TLB refill exception
vectors:

• one for references to 32-bit address space (TLB Refill)

• one for references to 64-bit address space (XTLB Refill)

The TLB refill vector selection is based on the address space of the address (user,
supervisor, or kernel) that caused the TLB miss, and the value of the corresponding
extended addressing bit in the Status register (UX, SX, or KX). The current operating
mode of the processor is not important except that it plays a part in specifying in which
address space an address resides. The Context and XContext registers are entirely
separate page-table-pointer registers that point to and refill from two separate page
tables. For all TLB exceptions (Refill, Invalid, TLBL or TLBS), the BadVPN2 fields
of both registers are loaded as they were in the VR4000.

In contrast to the VR5000, the VR4000 processor selects the vector based on the current
operating mode of the processor (user, supervisor, or kernel) and the value of the
corresponding extended addressing bit in the Status register (UX, SX or KX). In
addition, the Context and XContext registers are not implemented as entirely separate
registers; the PTEbase fields are shared. A miss to a particular address goes through
either TLB Refill or XTLB Refill, depending on the source of the reference. There can
be only a single page table unless the refill handlers execute address-deciphering and
page table selection in software.

Exception VR5000 Processor Vector Offset

TLB refill, EXL = 0 0x000

XTLB refill, EXL = 0
(X = 64-bit TLB)

0x080

Cache Error 0x100

Others 0x180

User’s Manual U11761EJ6V0UM 159

Chapter 7 CPU Exception Processing

Note: Refills for the 0.5 GB supervisor mapped region, sseg/ksseg, are controlled by
the value of KX rather than SX. This simplifies control of the procesor when supervisor
mode is not being used.

Table 7-12 lists the TLB refill vector locations, based on the adress that caused the
TLB miss and its correspoinding mode bit.

Table 7-12 TLB Refill Vectors

Space Address Range Regions Exception Vector

Kernel
0xFFFF FFFF E000 0000

to
0xFFFF FFFF FFFF FFFF

kseg3
Refill (KX=0)

or
XRefill (KX=1)

Supervisor
0xFFFF FFFF C000 0000

to
0xFFFF FFFF DFFF FFFF

sseg, ksseg
Refill (SX=0)

or
XRefill (SX=1)

Kernel
0xC000 0000 0000 0000

to
0xC000 0FFE FFFF FFFF

xkseg XRefill (KX=1)

Supervisor
0x4000 0000 0000 0000

to
0x4000 0FFF FFFF FFFF

xsseg, xksseg XRefill (SX=1)

User
0x0000 0000 8000 0000

to
0x0000 0FFF FFFF FFFF

xsuseg, xuseg, xkuseg

XRefill (UX=1)

User
0x0000 0000 0000 0000

to
0x0000 0000 7FFF FFFF

useg, xuseg, suseg,
xsuseg, kuseg, xkuseg

Refill (UX=0)
or

XRefill (UX=1)

Chapter 7 CPU Exception Processing

160 User’s Manual U11761EJ6V0UM

7.3.3 Priority of Exceptions

Table 7-13 describes exceptions in the order of highest to lowest priority. While more
than one exception can occur for a single instruction, only the exception with the
highest priority is reported.

Table 7-13 Exception Priority Order

Generally speaking, the exceptions described in the following sections are handled
(“processed”) by hardware; these exceptions are then serviced by software.

Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)

Address error –– Instruction fetch

TLB refill –– Instruction fetch

TLB invalid –– Instruction fetch

Cache error –– Instruction fetch

Bus error –– Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved Instruction,
Coprocessor Unusable, or Floating-Point Exception

Address error –– Data access

TLB refill –– Data access

TLB invalid –– Data access

TLB modified –– Data write

Cache error –– Data access

Bus error –– Data access

Interrupt (lowest priority)

User’s Manual U11761EJ6V0UM 161

Chapter 7 CPU Exception Processing

7.3.4 Reset Exception

Cause

The Reset exception occurs when the ColdReset* signal is asserted and then
deasserted. This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Reset vector resides in unmapped and uncached CPU address space, so the
hardware need not initialize the TLB or the cache to process this exception. It also
means the processor can fetch and execute instructions while the caches and virtual
memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs,
except for the following register fields:

• In the Status register, SR is cleared to 0, and ERL and BEV are set to 1.
All other bits are undefined.

• Some Config register are initialized from the boot-time mode stream.

• The Random register is initialized to the value of its upper bound.

• The Wired register is initialized to 0.

Servicing

The Reset exception is serviced by:

• initializing all processor registers, coprocessor registers, caches, and the
memory system

• performing diagnostic tests

• bootstrapping the operating system

7.3.5 Soft Reset Exception

Cause

The Soft Reset exception occurs in response to assertion of the Reset* input Execution
begins at the Reset vector when the Reset* signal is negated.

The Soft Reset exception is not maskable.

Chapter 7 CPU Exception Processing

162 User’s Manual U11761EJ6V0UM

Processing

The Reset vector is used for this exception. The Reset vector is located within
uncached and unmapped address space. Hence the cache and TLB need not be
initialized in order to process the exception. Regardless of the cause, when this
exception occurs the SR bit of the Status register is set, distinguishing this exception
from a Reset exception.

The primary purpose of the Soft Reset exception is to reinitialize the processor after a
fatal error during normal operation. Unlike an NMI, all cache and bus state machines
are reset by this exception.

When the Soft Reset exception occurs, all register contents are preserved with the
following exceptions:

• ErrorEPC register, which contains the restart PC.

• ERL, BEV, and SR bits of the Status Register, each of which is set to 1.

Because the Soft Reset can abort cache and bus operations, the cache and memory
states are undefined when the Soft Reset exception occurs.

Servicing

The Soft Reset exception is serviced by saving the current processor state for
diagnostic purposes, and reinitializing for the Reset exception.

7.3.6 Non Maskable Interrupt (NMI) Exception

Cause

The Non Maskable Interrupt exception occurs in response to falling edge of the NMI
signal, or an external write to the Int*[6] bit of the Interrupt Register. The NMI
interrupt is not maskable and occurs regardless of the settings of the EXL, ERL, and IE
bits in the Status Register.

Processing

The Reset vector is used for this exception. The Reset vector is located within
uncached and unmapped address space. Hence the cache and TLB need not be
initialized in order to process the exception. Regardless of the cause, when this
exception occurs the SR bit of the Status register is set, distinguishing this exception
from a Reset exception.

User’s Manual U11761EJ6V0UM 163

Chapter 7 CPU Exception Processing

Because the NMI can occur in the midst of another exception, it is typically not
possible to continue program execution after servicing an NMI. An NMI exception is
taken only at instruction boundaries. The state of the caches and memory system are
preserved.

When the NMI exception occurs, all register contents are preserved with the following
exceptions:

• ErrorEPC register, which contains the restart PC.

• ERL, BEV, and SR bits of the Status Register, each of which is set to 1.

Servicing

 The NMI exception is serviced by saving the current processor state for diagnostic
purposes, and reinitializing for the Reset exception.

Caution If a pipeline cancelling logic (e.g. cache error, bus error) occurs after
the VR5000 detects an NMI by the VR5000 starts the NMI handling,
the NMI will be cancelled and only the pipeline cancelling logic will be
handled.
If an NMI cancellation occurred, make NMI* inactive once and then
make it active again after the NMI cancellation.

7.3.7 Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the
following:

• load or store a doubleword that is not aligned on a doubleword boundary

• load, fetch, or store a word that is not aligned on a word boundary

• load or store a halfword that is not aligned on a halfword boundary

• reference the kernel address space from User or Supervisor mode

• reference the supervisor address space from User mode

This exception is not maskable.

Chapter 7 CPU Exception Processing

164 User’s Manual U11761EJ6V0UM

Processing

The common exception vector is used for this exception. The AdEL or AdES code in
the Cause register is set, indicating whether the instruction caused the exception with
an instruction reference, load operation, or store operation shown by the EPC register
and BD bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that was
not properly aligned or that referenced protected address space. The contents of the
VPN field of the Context and EntryHi registers are undefined, as are the contents of the
EntryLo register.

The EPC register contains the address of the instruction that caused the exception,
unless this instruction is in a branch delay slot. If it is in a branch delay slot, the EPC
register contains the address of the preceding branch instruction and the BD bit of the
Cause register is set as indication.

Servicing

The process executing at the time is handed a segmentation violation signal. This error
is usually fatal to the process incurring the exception.

Restriction

An address error exception will erroneously occur on a branch instruction that is the
second to last instruction of a segment (e.g., USEG0).

7.3.8 TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Refill occurs when there is no TLB entry that matches an attempted
reference to a mapped address space.

• TLB Invalid occurs when a virtual address reference matches a TLB entry
that is marked invalid.

• TLB Modified occurs when a store operation virtual address reference to
memory matches a TLB entry which is marked valid but is not dirty (the
entry is not writable).

The following three sections describe these TLB exceptions.

User’s Manual U11761EJ6V0UM 165

Chapter 7 CPU Exception Processing

TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a reference to a
mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-bit
address spaces, and one for references to 64-bit address spaces. The UX, SX, and KX
bits of the Status register determine whether the user, supervisor or kernel address
spaces referenced are 32-bit or 64-bit spaces. All references use these vectors when
the EXL bit is set to 0 in the Status register. This exception sets the TLBL or TLBS code
in the ExcCode field of the Cause register. This code indicates whether the instruction,
as shown by the EPC register and the BD bit in the Cause register, caused the miss by
an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
hold the virtual address that failed address translation. The EntryHi register also
contains the ASID from which the translation fault occurred. The Random register
normally contains a valid location in which to place the replacement TLB entry. The
contents of the EntryLo register are undefined. The EPC register contains the address
of the instruction that caused the exception, unless this instruction is in a branch delay
slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing

To service this exception, the contents of the Context or XContext register are used as
a virtual address to fetch memory locations containing the physical page frame and
access control bits for a pair of TLB entries. The two entries are placed into the
EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers are written into the
TLB.

It is possible that the virtual address used to obtain the physical address and access
control information is on a page that is not resident in the TLB. This condition is
processed by allowing a TLB refill exception in the TLB refill handler. This second
exception goes to the common exception vector because the EXL bit of the Status
register is set.

Chapter 7 CPU Exception Processing

166 User’s Manual U11761EJ6V0UM

TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference matches a TLB
entry that is marked invalid (TLB valid bit cleared). This exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code in
the ExcCode field of the Cause register is set. This indicates whether the instruction,
as shown by the EPC register and BD bit in the Cause register, caused the miss by an
instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address translation. The EntryHi register also
contains the ASID from which the translation fault occurred. The Random register
normally contains a valid location in which to put the replacement TLB entry. The
contents of the EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception
unless this instruction is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction and the BD bit of the Cause register is
set.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page fault)

• a trap is desired on any reference to the page (for example, to maintain a
reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with
TLBP (TLB Probe), and replaced by an entry with that entry’s Valid bit set.

TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual address reference
to memory matches a TLB entry that is marked valid but is not dirty and therefore is
not writable. This exception is not maskable.

User’s Manual U11761EJ6V0UM 167

Chapter 7 CPU Exception Processing

Processing

The common exception vector is used for this exception, and the Mod code in the
Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address translation. The EntryHi register also
contains the ASID from which the translation fault occurred. The contents of the
EntryLo register is undefined.

The EPC register contains the address of the instruction that caused the exception
unless that instruction is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction and the BD bit of the Cause register is
set.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not permit
write accesses; if writes are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel
in its own data structures. The TLBP instruction places the index of the TLB entry that
must be altered into the Index register. The EntryLo register is loaded with a word
containing the physical page frame and access control bits (with the D bit set), and the
EntryHi and EntryLo registers are written into the TLB.

7.3.9 Cache Error Exception

Cause

The Cache Error exception occurs when either a primary or secondary cache parity
error is detected. This exception is maskable by the DE bit in the Status Register.

Processing

The processor sets the ERL bit in the Status register, saves the exception restart address
in the ErrorEPC register, and then transfers the information to a special vector in
uncached space;

 If BEV = 0, the vector is 0xFFFF FFFF A000 0100.

 If BEV = 1, the vector is 0xFFFF FFFF BFC0 0300.

Chapter 7 CPU Exception Processing

168 User’s Manual U11761EJ6V0UM

Servicing

All errors should be logged. To correct parity errors the system uses the CACHE
instruction to invalidate the cache block, overwrite the old data through a cache miss,
and resumes execution with an ERET. Other errors are not correctable and are likely
to be fatal to the current process.

7.3.10 Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus time-
out, backplane bus parity errors, and invalid physical memory addresses or access
types. This exception is not maskable.

A Bus Error exception occurs when a cache miss refill, uncached reference, or an
unbuffered write occurs synchronously; a Bus Error exception resulting from a
buffered write transaction must be reported using the general interrupt mechanism.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code
in the ExcCode field of the Cause register is set, signifying whether the instruction (as
indicated by the EPC register and BD bit in the Cause register) caused the exception
by an instruction reference, load operation, or store operation.

The EPC register contains the address of the instruction that caused the exception,
unless it is in a branch delay slot, in which case the EPC register contains the address
of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The physical address at which the fault occurred can be computed from information
available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an instruction fetch
reference), the virtual address is contained in the EPC register.

• If the DBE code is set (indicating a load or store reference), the
instruction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register if
the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by interpreting
the instruction. The physical address can be obtained by using the TLBP instruction
and reading the EntryLo register to compute the physical page number. The process
executing at the time of this exception is handed a bus error signal, which is usually
fatal.

User’s Manual U11761EJ6V0UM 169

Chapter 7 CPU Exception Processing

7.3.11 Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI
or DSUB instruction results in a 2’s complement overflow. This exception is not
maskable.

Processing

The common exception vector is used for this exception, and the OV code in the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception
unless the instruction is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction and the BD bit of the Cause register is
set.

Servicing

The process executing at the time of the exception is handed a floating-point
exception/integer overflow signal. This error is usually fatal to the current process.

7.3.12 Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI,
TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE condition. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the Cause
register is set.

The EPC register contains the address of the instruction causing the exception unless
the instruction is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a floating-point
exception/integer overflow signal. This error is usually fatal.

Chapter 7 CPU Exception Processing

170 User’s Manual U11761EJ6V0UM

7.3.13 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the Cause
register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a
branch delay slot, in which case the EPC register contains the address of the preceding
branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register
is set; otherwise this bit is cleared.

Servicing

When this exception occurs, control is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL
instruction does not re-execute; this is accomplished by adding a value of 4 to the EPC
register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm,
beyond the scope of this description, may be required.

7.3.14 Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code in the Cause
register is set.

The EPC register contains the address of the BREAK instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

User’s Manual U11761EJ6V0UM 171

Chapter 7 CPU Exception Processing

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register is
set, otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the unused bits of the
BREAK instruction (bits 25:6), and loading the contents of the instruction whose
address the EPC register contains. A value of 4 must be added to the contents of the
EPC register (EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the BREAK instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register
(EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch
instruction is required to resume execution.

7.3.15 Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions
occurs:

• an attempt is made to execute an instruction with an undefined major
opcode (bits 31:26)

• an attempt is made to execute a SPECIAL instruction with an undefined
minor opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction with an undefined
minor opcode (bits 20:16)

• an attempt is made to execute 64-bit operations in 32-bit mode when in
User or Supervisor modes

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit
in the Status register.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the Cause
register is set.

Chapter 7 CPU Exception Processing

172 User’s Manual U11761EJ6V0UM

The EPC register contains the address of the reserved instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process executing at
the time of this exception is handed an illegal instruction/reserved operand fault signal.
This error is usually fatal.

7.3.16 Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either:

• a corresponding coprocessor unit that has not been marked usable, or

• CP0 instructions, when the unit has not been marked usable and the
process executes in either User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU code in the
Cause register is set. The contents of the Coprocessor Usage Error field of the
coprocessor Control register indicate which of the four coprocessors was referenced.
The EPC register contains the address of the unusable coprocessor instruction unless
it is in a branch delay slot, in which case the EPC register contains the address of the
preceding branch instruction.

Servicing

The coprocessor unit to which an attempted reference was made is identified by the
Coprocessor Usage Error field, which results in one of the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the
coprocessor.

• If the process is entitled access to the coprocessor, but the coprocessor
does not exist or has failed, interpretation of the coprocessor instruction is
possible.

User’s Manual U11761EJ6V0UM 173

Chapter 7 CPU Exception Processing

• If the BD bit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the coprocessor
instruction.

• If the process is not entitled access to the coprocessor, the process
executing at the time is handed an illegal instruction/privileged instruction
fault signal. This error is usually fatal.

7.3.17 Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor. This exception
is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code in the
Cause register is set.

The contents of the Floating-Point Control/Status register indicate the cause of this
exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point Control/
Status register.

For an unimplemented instruction exception, the kernel should emulate the instruction;
for other exceptions, the kernel should pass the exception to the user program that
caused the exception.

7.3.18 Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is asserted.
The significance of these interrupts is dependent upon the specific system
implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the Int-
Mask field of the Status register, and all of the eight interrupts can be masked at once
by clearing the IE bit of the Status register.

Chapter 7 CPU Exception Processing

174 User’s Manual U11761EJ6V0UM

Processing

The common exception vector is used for this exception, and the Int code in the Cause
register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible that
more than one of the bits can be simultaneously set (or even no bits may be set) if the
interrupt is asserted and then deasserted before this register is read.

Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW1 or
SW0), the interrupt condition is cleared by setting the corresponding Cause register bit
to 0.

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting
the condition causing the interrupt pin to be asserted.

Due to the on-chip write buffer, a store to an external device may not occur until after
other instructions in the pipeline finish. Hence, the user must ensure that the store will
occur before the return from exception instruction (ERET) is executed. Otherwise the
interrupt may be serviced again even though there is no actual interrupt pending.

7.4 Exception Handling and Servicing Flowcharts

The remainder of this section contains flowcharts for the following exceptions and
guidelines for their handlers:

• general exceptions and their exception handler

• TLB/XTLB miss exception and their exception handler

• cache error exception and its handler

• reset, soft reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are
then serviced by software (SW).

User’s Manual U11761EJ6V0UM 175

Chapter 7 CPU Exception Processing

Figure 7-17 General Exception Handler (HW)

PC <- 0xFFFF FFFF BFC0 0200 + 180PC <- 0xFFFF FFFF 8000 0000 + 180

EXL <- 1

BEV
=1 (bootstrap)=0

To General Exception Servicing Guidelines

(unmapped, cached) (unmapped, uncached)

Exceptions other than Reset, Soft Reset, NMI, CacheError or first-level TLB miss
Note: Interrupts can be masked by IE or IMs

(normal)

Instr. in Yes No
Br.Dly. Slot?

EXL

Cause 31 (BD) <- 1 Cause 31 (BD) <- 0

*EnHi, X/Context are set only for
 TLB- Invalid, Modified,
 & Refill exceptions

Set Cause Register

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE

Set FP Control Status Register *FP Control Status Register
 is only set if the respective exception
 occurs.

Comments

(SR1)
EXL

(SR1)

= 0 = 0

Set Bad VA
EPC <-- PC

Set Bad VA
EPC <-- (PC - 4)

= 1 = 1

Processor forced to kernel mode
and interrupts disabled

 *BadVA is set for TLB-Refill,
 TLB-invalid, TLB-Modified, Address
 Error exceptions

Chapter 7 CPU Exception Processing

176 User’s Manual U11761EJ6V0UM

Figure 7-18 General Exception Servicing Guidelines (SW)

MFC0 -
X/Context
EPC
Status
Cause

EXL <- 0

Check CAUSE REG. & Jump to
appropriate Service Code

EXL = 1

MTC0 -
EPC

STATUS

ERET

* Unmapped vector so TLBMod, TLBInv,
TLB Refill exceptions not possible

* EXL=1 so Interrupt exceptions disabled

*Only CacheError, Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* After EXL=0, all exceptions allowed.
(except interrupt if masked by IE or IM
and CacheError if masked by DE)

Comments

 exceptions possible.

KSU<- 00
(optional - only to enable Interrupts while keeping Kernel Mode)

MTC0 -
(Set Status Bits:)

IE = 1

* PC <- EPC; EXL <- 0

* LLbit <- 0

* ERET is not allowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

another Jump Instruction

Service Code

User’s Manual U11761EJ6V0UM 177

Chapter 7 CPU Exception Processing

Figure 7-19 TLB/XTLB Miss Exception Handler (HW)

EXL <- 1

PC <- 0xFFFF FFFF BFC0 0200 + Vec.Off.PC <- 0xFFFF FFFF 8000 0000 + Vec.Off.

=0 (normal) =1

To TLB/XTLB Exception Servicing Guidelines

(unmapped, cached) (unmapped, uncached)

BEV
(SR bit 22)

XTLB NY

Vec. Off. = 0x000Vec. Off. = 0x080 Vec. Off. = 0x180

Instr. in Yes

Processor forced to Kernel Mode &

Check if exception within

(bootstrap)

Br.Dly. Slot?

EXL
(SR bit 1)

=1

=0

Instruction?

Points to General ExceptionPoints to Refill Exception

No

Set Cause Reg.

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE and
Set Cause Reg.

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE and

EPC <-- PC
Set BadVA

Cause bit 31 (BD) <- 1 Cause bit 31 (BD) <- 0

another exception

interrupt disabled

EXL
(SR bit 1)

=1

=0

EPC <-- (PC -4)
Set BadVA

Set BadVA

Chapter 7 CPU Exception Processing

178 User’s Manual U11761EJ6V0UM

Figure 7-20 TLB/XTLB Exception Servicing Guidelines (SW)

MFC0 -

CONTEXT

Service Code

ERET

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions

* EXL=1 so Interrupt exceptions disabled

*Only CacheError, Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* PC <- EPC; EXL <- 0

* LLbit <- 0

Comments

 exceptions possible.

* There could be a TLB miss again during the mapping

not possible

of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

* ERET is not allowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

another Jump Instruction

exception handler or ERET to the original instruction
and take the exception again)

User’s Manual U11761EJ6V0UM 179

Chapter 7 CPU Exception Processing

Figure 7-21 Cache Error Exception Handling (HW) and Servicing Guidelines

Set CacheErr Reg.

C
ac

h
e

E
rr

o
r

E
xc

ep
ti

o
n

 H
an

d
lin

g
 (

H
W

)

ERL <- 1

PC <- 0xFFFF FFFF BFC0 0200 + 100

BEV

PC <- 0xFFFF FFFF A000 0000 + 100

=1=0

(unmapped, uncached) (unmapped, uncached)

Note: Can be masked/disabled by DE (SR16) bit = 1

(bootstrap)(normal)

ErrEPC <- PC

Instr. in Yes

No

ErrEPC <- (PC - 4)

Br. Dly. Slot?

S
er

vi
ci

n
g

 G
u

id
el

in
es

 (
S

W
)

Service Code

ERET

* ERET is not allowed in the branch delay slot of

* Unmapped Uncached vector so
TLB related & Cache Error Exception not possible

* ERL=1 so Interrupt exceptions disabled

*Only Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* Processor does not execute the instruction which is

* PC <- ErrorEPC; ERL <- 0

* LLbit <- 0

Comments

 exceptions possible.

in the ERET’s branch delay slot

another Jump Instruction

Chapter 7 CPU Exception Processing

180 User’s Manual U11761EJ6V0UM

Figure 7-22 Reset, Soft Reset & NMI Exception Handling

R
es

et
, S

o
ft

 R
es

et
 &

 N
M

I E
xc

ep
ti

o
n

 H
an

d
lin

g
 (

H
W

) Random <- TLBENTRIES - 1

Wired <- 0

Config <- Update(31:6)|| Undef(5:0)

Status:
BEV <- 1
SR<- 0

ERL <- 1

ErrorEPC <- PC

PC <- 0xFFFF FFFF BFC0 0000

Status:
BEV <- 1

SR<- 1

ERL <- 1

Soft Reset or NMI Exception Reset Exception

NMI Service Code

Soft Reset Service Code

NMI?

Reset Service Code

Yes

No

Status bit 20

= 1

=0

ERET(Optional)

Note: There is no indication from the
processor to differentiate between

there must be a system level indication.

(SR)

R
es

et
, S

o
ft

 R
es

et
 &

 N
M

I
S

er
vi

ci
n

g
 G

u
id

el
in

es
 (

S
W

)

NMI & Soft Reset;

User’s Manual U11761EJ6V0UM 181

Chapter 8 Floating Point Unit

This chapter describes the floating-point unit (FPU) of the VR5000 processor,
including the programming model, instruction set and formats, and the pipeline.

The FPU, with associated system software, fully conforms to the requirements of
ANSI/IEEE Standard 754–1985, IEEE Standard for Binary Floating-Point
Arithmetic. In addition, the MIPS architecture fully supports the recommendations of
the standard and precise exceptions.

Chapter 8 Floating Point Unit

182 User’s Manual U11761EJ6V0UM

8.1 Overview

The FPU operates as a coprocessor for the CPU (it is assigned coprocessor label CP1),
and extends the CPU instruction set to perform arithmetic operations on floating-point
values.

Figure 8-1 illustrates the functional organization of the FPU.

Figure 8-1 FPU Functional Block Diagram

FP Mul/

Data Cache

FP Bypass
Pipeline Chain

FCU

64
64

FP

64

FP Reg File

Control

646464

64

FP
Div/Sqrt

64 64

6464

Add Ld/St

User’s Manual U11761EJ6V0UM 183

Chapter 8 Floating Point Unit

8.2 FPU Features

This section briefly describes the operating model, the load/store instruction set, and
the coprocessor interface in the FPU. A more detailed description is given in the
sections that follow.

• Full 64-bit Operation. When the FR bit in the CPU Status register equals
0, the FPU is in 32-bit mode and contains thirty-two 32-bit registers that
hold single- or, when used in pairs, double-precision values. When the
FR bit in the CPU Status register equals 1, the FPU is in 64-bit mode and
the registers are expanded to 64 bits wide. Each register can hold single-
or double-precision values. The FPU also includes a 32-bit Control/Status
register that provides access to all IEEE-Standard exception handling
capabilities.

• Load and Store Instruction Set. Like the CPU, the FPU uses a load- and
store-oriented instruction set, with single-cycle load and store operations.

• Tightly Coupled Coprocessor Interface. The FPU resides on-chip to
form a tightly coupled unit with a seamless integration of floating-point
and fixed-point instruction sets. Since each unit receives and executes
instructions in parallel, some floating-point instructions can execute at the
same single-cycle-per-instruction rate as fixed-point instructions.

8.3 FPU Programming Model

This section describes the set of FPU registers and their data organization. The FPU
registers include Floating-Point General Purpose registers (FGRs) and two control
registers: Control/Status and Implementation/Revision.

8.4 Floating-Point General Registers (FGRs)

The FPU has a set of Floating-Point General Purpose registers (FGRs) that can be
accessed in the following ways:

Chapter 8 Floating Point Unit

184 User’s Manual U11761EJ6V0UM

• As 32 general purpose registers (32 FGRs), each of which is 32 bits wide
when the FR bit in the CPU Status register equals 0; or as 32 general
purpose registers (32 FGRs), each of which is 64-bits wide when FR
equals 1. The CPU accesses these registers through move, load, and store
instructions.

• As 16 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the FR bit in the CPU Status
register equals 0. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to adjacently
numbered FGRs as shown in Figure 8-2.

• As 32 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the FR bit in the CPU Status
register equals 1. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to an FGR as
shown in Figure 8-2.

Figure 8-2 FPU Registers

Control/Status Register
31 0 31 0

Implementation/Revision Register

Floating-Point
Control Registers

(FCR)

FCR0FCR31

•
•

Registers (FPR)
(FR = 0)

Floating-Point

FPR0

0

General Purpose Registers

(FGR)

FGR0

FGR1

FGR2

FGR31

FGR30

FGR29

31

FGR3

(least)

(most)

FPR2
(least)

(most)

FPR30

FPR28
FGR28(least)

(most)

(least)

(most)

Floating-Point

0

General Purpose Registers

(FGR)

FGR0

FGR1

FGR2

FGR31

FGR30

FGR29

63

FGR3

FGR28

Floating-Point

•

Registers (FPR)
(FR = 1)

 Floating-Point

FPR0

FPR2

FPR30

FPR28

FPR3

FPR1

FPR29

FPR31

•
•

•
•
•

•
•
•

•

User’s Manual U11761EJ6V0UM 185

Chapter 8 Floating Point Unit

8.5 Floating-Point Registers

The FPU provides:

• 16 Floating-Point registers (FPRs) when the FR bit in the Status register
equals 0, or

• 32 Floating-Point registers (FPRs) when the FR bit in the Status register
equals 1.

These 64-bit registers hold floating-point values during floating-point operations and
are physically formed from the General Purpose registers (FGRs). When the FR bit
in the Status register equals 1, the FPR references a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point format. If
the FR bit equals 0, only even numbers (the least register, as shown in Figure 8-2) can
be used to address FPRs. When the FR bit is set to a 1, all FPR register numbers are
valid.

If the FR bit equals 0 during a double-precision floating-point operation, the general
registers are accessed in double pairs. Thus, in a double-precision operation, selecting
Floating-Point Register 0 (FPR0) actually addresses adjacent Floating-Point General
Purpose registers FGR0 and FGR1.

Chapter 8 Floating Point Unit

186 User’s Manual U11761EJ6V0UM

8.6 Floating-Point Control Registers

The FPU has 32 control registers (FCRs) that can only be accessed by move
operations. The FCRs are described below:

• The Implementation/Revision register (FCR0) holds revision information
about the FPU.

• The Control/Status register (FCR31) controls and monitors exceptions,
holds the result of compare operations, and establishes rounding modes.

• FCR1 to FCR30 are reserved.

Table 8-1 lists the assignments of the FCRs.

Table 8-1 Floating-Point Control Register Assignments

 FCR Number Use

FCR0 Coprocessor implementation and revision register

FCR1 to FCR30 Reserved

FCR31 Rounding mode, cause, trap enables, and flags

User’s Manual U11761EJ6V0UM 187

Chapter 8 Floating Point Unit

8.6.1 Implementation and Revision Register (FCR0)

The read-only Implementation and Revision register (FCR0) specifies the
implementation and revision number of the FPU. This information can determine the
coprocessor revision and performance level, and can also be used by diagnostic
software.

Figure 8-3 shows the layout of the register; Table 8-2 describes the Implementation
and Revision register (FCR0) fields.

Figure 8-3 Implementation/Revision Register

Table 8-2 FCR0 Fields

The revision number is a value of the form y.x, where:

• y is a major revision number held in bits 7:4.

• x is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, MIPS does not
guarantee that changes to its chips are necessarily reflected by the revision number, or
that changes to the revision number necessarily reflect real chip changes. For this
reason revision number values are not listed, and software should not rely on the
revision number to characterize the chip.

Field Description

Imp Implementation number (0x23)

Rev Revision number in the form of y.x

0
Reserved. Must be written as zeroes, and returns zeroes when
read.

16 15 7

Implementation/Revision Register (FCR0)

31 0

16

Rev

8 8

8

0 Imp

Chapter 8 Floating Point Unit

188 User’s Manual U11761EJ6V0UM

8.6.2 Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status information that can
be accessed by instructions in either Kernel or User mode. FCR31 also controls the
arithmetic rounding mode and enables User mode traps, as well as identifying any
exceptions that may have occurred in the most recently executed instruction, along
with any exceptions that may have occurred without being trapped.

Figure 8-4 shows the format of the Control/Status register, and Table 8-3 describes the
Control/Status register fields. Figure 8-5 shows the Control/Status register Cause,
Flag, and Enable fields.

Figure 8-4 FP Control/Status Register Bit Assignments

Table 8-3 Control/Status Register Fields

Field Description

CC7-CC1 Condition bits 7-1. See description of Control/Status register Condition bit.

FS

The FS bit enables a value that cannot be normalized (denormarlized number) to be
flushed. When the FS bit is set and the enable bit is not set for the underflow exception
and illegal exception, the result of the denormalized number does not cause the
unimplemented operation exception, but is flushed. Whether the flushed result is 0 or
the minimum normalized value is determined depending on the rounding mode (refer
to Table 8-4). On the VR5000, even if the FS bit is set, if a madd, msub, nmadd or
nmsub instruction encounters a denormalized result during the multiply portion of the
calculation, an unimplemented operation exception is always taken.

CC0 Condition bit 0. See description of Control/Status register Condition bit.

Cause Cause bits. See description of Control/Status register Cause, Flag, and Enable bits.

Enables Enable bits. See description of Control/Status register Cause, Flag, and Enable bits.

Flags Flag bits. See description of Control/Status register Cause, Flag, and Enable bits.

RM
Rounding mode bits. See description of Control/Status register Rounding Mode
Control bits.

Control/Status Register (FCR31)

31 24 23 22 18 17 12 11 7 6 2 1 0

7 1 5 6 5 5 2

CC0 RMFlagsEnablesCause
CC7-CC1 0 E V Z O U I V Z O U I V Z O U I

25

FS

1

Legend:
E = Unimplemented Operation
V = Invalid Operation

Z = Division by zero
O = Overflow

U = Underflow
I = Inexact Operation

User’s Manual U11761EJ6V0UM 189

Chapter 8 Floating Point Unit

Figure 8-5 Control/Status Register Cause, Flag, and Enable Fields

(1) Accessing the Control/Status Register

When the Control/Status register is read by a Move Control From Coprocessor 1
(CFC1) instruction, all unfinished instructions in the pipeline are completed before the
contents of the register are moved to the main processor. If a floating-point exception
occurs as the pipeline empties, the FP exception is taken and the CFC1 instruction is
re-executed after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to the register
using a Move Control To Coprocessor 1 (CTC1) instruction. FCR31 must only be
written to when the FPU is not actively executing floating-point operations; this can be
ensured by reading the contents of the register to empty the pipeline.

(2) IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect certain exceptional
cases, raise flags, and can invoke an exception handler when an exception occurs.
These features are implemented in the MIPS architecture with the Cause, Enable, and
Flag fields of the Control/Status register. The Flag bits implement IEEE 754
exception status flags, and the Cause and Enable bits implement exception handling.

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits

Chapter 8 Floating Point Unit

190 User’s Manual U11761EJ6V0UM

(3) Control/Status Register FS Bit

The FS bit enables a value that cannot be normalized (denormarlized number) to be
flushed. When the FS bit is set and the enable bit is not set for the underflow exception
and illegal exception, the result of the denormalized number does not cause the
unimplemented operation exception, but is flushed. Whether the flushed result is 0 or
the minimum normalized value is determined depending on the rounding mode (refer
to Table 8-4).

However, for MADD.fmt, NMADD.fmt, MSUB.fmt, and NMSUB.fmt instructions,
the VR5000 will always take an unimplemented operation exception if the intermediate
multiply result is a denormalized value regardless of the value of the FS bit.

(4) Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is stored at bit 23 and
bits 31:25, the Condition bits, to save or restore the state of the condition line. The CC
bit is set to 1 if the condition is true; the bit is cleared to 0 if the condition is false. Bit
23 and bits 31:25 are affected only by compare and Move Control To FPU instructions.

(5) Control/Status Register Cause, Flag, and Enable Fields

Figure 8-5 illustrates the Cause, Flag, and Enable fields of the Control/Status register.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in Figure
8-5, which reflect the results of the most recently executed instruction. The Cause bits
are a logical extension of the CP0 Cause register; they identify the exceptions raised
by the last floating-point operation and raise an interrupt or exception if the
corresponding enable bit is set. If more than one exception occurs on a single
instruction, each appropriate bit is set.

Table 8-4 Flush Values of Denormalized Number Results

Denormalized
Number Result

Flushed Result
Rounding Mode

RN RZ RP RM

Positive +0 +0 +2Emin +0

Negative –0 –0 –0 –2Emin

User’s Manual U11761EJ6V0UM 191

Chapter 8 Floating Point Unit

The Cause bits are written by each floating-point operation (but not by load, store, or
move operations). The Unimplemented Operation (E) bit is set to a 1 if software
emulation is required, otherwise it remains 0. The other bits are set to 0 or 1 to indicate
the occurrence or non-occurrence (respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the only state
affected is the Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the corresponding
Enable bit are set. A floating-point operation that sets an enabled Cause bit forces an
immediate exception, as does setting both Cause and Enable bits with CTC1.

There is no enable for Unimplemented Operation (E). Setting Unimplemented
Operation always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear the enabled
Cause bits with a CTC1 instruction to prevent a repeat of the interrupt. Thus, User
mode programs can never observe enabled Cause bits set; if this information is
required in a User mode handler, it must be passed somewhere other than the Status
register.

For a floating-point operation that sets only unenabled Cause bits, no exception occurs
and the default result defined by IEEE 754 is stored. In this case, the exceptions that
were caused by the immediately previous floating-point operation can be determined
by reading the Cause field.

Flag Bits

The Flag bits are cumulative and indicate that an exception was raised by an operation
that was executed since they were explicitly reset. Flag bits are set to 1 if an IEEE 754
exception is raised, otherwise they remain unchanged. The Flag bits are never cleared
as a side effect of floating-point operations; however, they can be set or cleared by
writing a new value into the Status register, using a Move To Coprocessor Control
instruction.

When a floating-point exception is taken, the flag bits are not set by the hardware;
floating-point exception software is responsible for setting these bits before invoking
a user handler.

Chapter 8 Floating Point Unit

192 User’s Manual U11761EJ6V0UM

(6) Control/Status Register Rounding Mode Control Bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM) field.

As shown in Table 8-5 these bits specify the rounding mode that the FPU uses for all
floating-point operations.

8.7 Floating-Point Formats

The FPU performs both 32-bit (single-precision) and 64-bit (double-precision) IEEE
standard floating-point operations. The 32-bit single-precision format has a 24-bit
signed-magnitude fraction field (f+s) and an 8-bit exponent (e), as shown in Figure 8-
6.

Figure 8-6 Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction field (f+s)
and an 11-bit exponent, as shown in Figure 8-7.

Table 8-5 Rounding Mode Bit Decoding

Rounding
Mode

RM(1:0)
Mnemonic Description

0 RN
Round result to nearest representable value; round to
value with least-significant bit 0 when the two nearest
representable values are equally near.

1 RZ
Round toward 0: round to value closest to and not
greater in magnitude than the infinitely precise result.

2 RP
Round toward +∞: round to value closest to and not
less than the infinitely precise result.

3 RM
Round toward – ∞: round to value closest to and not
greater than the infinitely precise result.

31 30 23 22 0

FractionSign Exponent

231 8

s e f

User’s Manual U11761EJ6V0UM 193

Chapter 8 Floating Point Unit

Figure 8-7 Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are composed of three
fields:

• sign field, s

• biased exponent, e = E + bias

• fraction, f = .b1b2....bp–1

The range of the unbiased exponent E includes every integer between the two values
Emin and Emax inclusive, together with two other reserved values:

• Emin -1 (to encode ±0 and denormalized numbers)

• Emax +1 (to encode ±∞ and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero numerical value
has just one encoding.

For single- and double-precision formats, the value of a number, v, is determined by
the equations shown in Table 8-6.

Table 8-6 Calculating Values in Single and Double-Precision Formats

For all floating-point formats, if v is NaN, the most-significant bit of f determines
whether the value is a signaling or quiet NaN: v is a signaling NaN if the most-
significant bit of f is set, otherwise, v is a quiet NaN.

No. Equation

(1) if E = Emax+1 and f ≠ 0, then v is NaN, regardless of s

(2) if E = Emax+1 and f = 0, then v = (–1)s ∞

(3) if Emin ≤ E ≤ Emax, then v = (–1)s2E(1.f)

(4) if E = Emin–1 and f ≠ 0, then v = (–1)s2Emin(0.f)

(5) if E = Emin–1 and f = 0, then v = (–1)s0

63 62 52 51 0

FractionSign Exponent

521 11

s e f

Chapter 8 Floating Point Unit

194 User’s Manual U11761EJ6V0UM

Table 8-7 defines the values for the format parameters; minimum and maximum
floating-point values are given in Table 8-8.

Table 8-7 Floating-Point Format Parameter Values

Table 8-8 Minimum and Maximum Floating-Point Values

8.8 Binary Fixed-Point Format

Binary fixed-point values are held in 2’s complement format. Unsigned fixed-point
values are not directly provided by the floating-point instruction set. Figure 8-8
illustrates binary fixed-point format; Table 8-9 lists the binary fixed-point format
fields.

Parameter
Format

Single Double

Emax +127 +1023

Emin –126 –1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

f (Fraction width in bits) 24 53

Format width in bits 32 64

Type Value

Float Minimum 1.40129846e–45

Float Minimum Norm 1.17549435e–38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e–324

Double Minimum Norm 2.2250738585072014e–308

Double Maximum 1.7976931348623157e+308

User’s Manual U11761EJ6V0UM 195

Chapter 8 Floating Point Unit

Figure 8-8 Binary Fixed-Point Format

Field assignments of the binary fixed-point format are:

8.9 Floating-Point Instruction Set Overview

All FPU instructions are 32 bits long, aligned on a word boundary. They can be
divided into the following groups:

• Load, Store, and Move instructions move data between memory, the
main processor, and the FPU General Purpose registers.

• Conversion instructions perform conversion operations between the
various data formats.

• Computational instructions perform arithmetic operations on floating-
point values in the FPU registers.

• Compare instructions perform comparisons of the contents of registers
and set a conditional bit based on the results.

• Branch on FPU Condition instructions perform a branch to the specified
target if the specified coprocessor condition is met.

In the instruction formats shown in Table 8-10 through Table 8-13, the fmt appended
to the instruction opcode specifies the data format: S specifies single-precision binary
floating-point, D specifies double-precision binary floating-point, W specifies 32-bit
binary fixed-point, and L specifies 64-bit (long) binary fixed-point.

Table 8-9 Binary Fixed-Point Format Fields

Field Description

sign sign bit

integer integer value

31 30 0

Sign

311

Integer

Chapter 8 Floating Point Unit

196 User’s Manual U11761EJ6V0UM

Table 8-10 FPU Instruction Summary: Load, Move and Store Instructions

Table 8-11 FPU Instruction Summary: Conversion Instructions

OpCode Description

LWC1 Load Word to FPU

LWXC1 Load Word Indexed to FPU

SWC1 Store Word from FPU

SWXC1 Store Word Indexed from FPU

LDC1 Load Doubleword to FPU

LDXC1 Load Doubleword Indexed to FPU

SDC1 Store Doubleword From FPU

SDXC1 Store Doubleword Indexed From FPU

MTC1 Move Word To FPU

MFC1 Move Word From FPU

CTC1 Move Control Word To FPU

CFC1 Move Control Word From FPU

DMTC1 Doubleword Move To FPU

DMFC1 Doubleword Move From FPU

PREFX Prefetch Indexed - Register + Register

OpCode Description

CVT.S.fmt Floating-point Convert to Single FP

CVT.D.fmt Floating-point Convert to Double FP

CVT.W.fmt Floating-point Convert to 32-bit Fixed Point

CVT.L.fmt Floating-point Convert to 64-bit Fixed Point

ROUND.W.fmt Floating-point Round to 32-bit Fixed Point

ROUND.L.fmt Floating-point Round to 64-bit Fixed Point

TRUNC.W.fmt Floating-point Truncate to 32-bit Fixed Point

TRUNC.L.fmt Floating-point Truncate to 64-bit Fixed Point

CEIL.W.fmt Floating-point Ceiling to 32-bit Fixed Point

CEIL.L.fmt Floating-point Ceiling to 64-bit Fixed Point

FLOOR.W.fmt Floating-point Floor to 32-bit Fixed Point

FLOOR.L.fmt Floating-point Floor to 64-bit Fixed Point

User’s Manual U11761EJ6V0UM 197

Chapter 8 Floating Point Unit

Table 8-12 FPU Instruction Summary: Computational Instructions

Table 8-13 FPU Instruction Summary: Compare and Branch Instructions

8.9.1 Floating-Point Load, Store, and Move Instructions

This section discusses the manner in which the FPU uses the load, store and move
instructions listed in Table 8-10.

(1) Transfers Between FPU and Memory

All data movement between the FPU and memory is accomplished by using one of the
following instructions:

OpCode Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract

MADD Floating-point Multiply-Add

MSUB Floating-point Multiply-Subtract

NMADD Floating-point Negative Multiply-Add

NMSUB Floating-point Negative Multiply-Subtract

MUL.fmt Floating-point Multiply

DIV.fmt Floating-point Divide

ABS.fmt Floating-point Absolute Value

MOV.fmt Floating-point Move

NEG.fmt Floating-point Negate

SQRT.fmt Floating-point Square Root

RECIP Floating-point Reciprocal

RSQRT Floating-point Reciprocal Square Root

OpCode Description

C.cond.fmt Floating-point Compare

BC1T Branch on FPU True

BC1F Branch on FPU False

BC1TL Branch on FPU True Likely

BC1FL Branch on FPU False Likely

Chapter 8 Floating Point Unit

198 User’s Manual U11761EJ6V0UM

• Load Word To Coprocessor 1 (LWC1) or Store Word From
Coprocessor 1 (SWC1) instructions, which reference a single 32-bit
word of the FPU general registers

• Load Doubleword (LDC1) or Store Doubleword (SDC1) instructions,
which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions are performed
and therefore no floating-point exceptions can occur due to these operations.

(2) Transfers Between FPU and CPU

Data can also be moved directly between the FPU and the CPU by using one of the
following instructions:

• Move To Coprocessor 1 (MTC1)

• Move From Coprocessor 1 (MFC1)

• Doubleword Move To Coprocessor 1 (DMTC1)

• Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations perform no format
conversions and never cause floating-point exceptions.

(3) Load Delay and Hardware Interlocks

The instruction immediately following a load can use the contents of the loaded
register. In such cases the hardware interlocks, requiring additional real cycles; for this
reason, scheduling load delay slots is desirable, although it is not required for
functional code.

(4) Data Alignment

All coprocessor loads and stores reference the following aligned data items:

• For word loads and stores, the access type is always WORD, and the low-
order 2 bits of the address must always be 0.

• For doubleword loads and stores, the access type is always
DOUBLEWORD, and the low-order 3 bits of the address must always be
0.

User’s Manual U11761EJ6V0UM 199

Chapter 8 Floating Point Unit

(5) Endianness

Regardless of byte-numbering order (endianness) of the data, the address specifies the
byte that has the smallest byte address in the addressed field. For a big-endian system,
it is the leftmost byte; for a little-endian system, it is the rightmost byte.

8.9.2 Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various data formats such as
single- or double-precision, fixed- or floating-point formats.

8.9.3 Floating-Point Computational Instructions

Computational instructions perform arithmetic operations on floating-point values, in
registers. There are two categories of computational instructions:

• 3-Operand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, and division

• 2-Operand Register-Type instructions, which perform floating-point
absolute value, move, negate, and square root operations

For a detailed description of each instruction, refer to the MIPS IV instruction set
manual.

(1) Branch on FPU Condition Instructions

The Branch on FPU (coprocessor unit 1) condition instructions that can test the result
of the FPU compare (C.cond) instructions. For a detailed description of each
instruction, refer to the MIPS IV instruction set manual.

(2) Floating-Point Compare Operations

The floating-point compare (C.fmt.cond) instructions interpret the contents of two
FPU registers (fs, ft) in the specified format (fmt) and arithmetically compare them. A
result is determined based on the comparison and conditions (cond) specified in the
instruction.

Table 8-14 lists the mnemonics for the compare instruction conditions.

Chapter 8 Floating Point Unit

200 User’s Manual U11761EJ6V0UM

Table 8-14 Mnemonics and Definitions of Compare Instruction Conditions

8.10 FPU Instruction Pipeline Overview

The FPU provides an instruction pipeline that parallels the CPU instruction pipeline.
It shares the same five-stage pipeline architecture with the CPU.

8.10.1 Instruction Execution

Figure 8-9 illustrates the 5-instruction overlap in the FPU pipeline.

Mnemonic Definition Mnemonic Definition

T True F False

OR Ordered UN Unordered

NEQ Not Equal EQ Equal

OLG
Ordered or Less Than or Greater
Than

UEQ Unordered or Equal

UGE
Unordered or Greater Than or
Equal

OLT Ordered Less Than

OGE Ordered Greater Than ULT Unordered or Less Than

UGT Unordered or Greater Than OLE Ordered Less Than or Equal

OGT Ordered Greater Than ULE
Unordered or Less Than or
Equal

ST Signaling True SF Signaling False

GLE
Greater Than, or Less Than or
Equal

NGLE
Not Greater Than or Less Than
or Equal

SNE Signaling Not Equal SEQ Signaling Equal

GL Greater Than or Less Than NGL Not Greater Than or Less Than

NLT Not Less Than LT Less Than

GE Greater Than or Equal NGE Not Greater Than or Equal

NLE Not Less Than or Equal LE Less Than or Equal

GT Greater Than NGT Not Greater Than

User’s Manual U11761EJ6V0UM 201

Chapter 8 Floating Point Unit

Figure 8-9 FPU Instruction Pipeline

Figure 8-9 assumes that one instruction is completed every PCycle. Most FPU
instructions, however, require more than one cycle in the EX stage. This means the
FPU must stall the pipeline if an instruction execution cannot proceed because of
register or resource conflicts.

8.10.2 Instruction Execution Cycle Time

Unlike the CPU, which executes almost all instructions in a single cycle, more time
may be required to execute FPU instructions.

Table 8-15 gives the minimum latency, in processor pipeline cycles, of each floating-
point operation for the currently implemented configurations. These latency
calculations assume the result of the operation is immediately used in a succeeding
operation.

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

 One
Cycle

 One
Cycle

 One One
Cycle Cycle

 One
Cycle

1I 2I 1R 2R 1A 2A 1D 2D 1W 2W

Chapter 8 Floating Point Unit

202 User’s Manual U11761EJ6V0UM

Table 8-15 Floating-Point Operation Latencies

(a).........These operations are illegal.
 *Trap on greater than 52 bits of significance.
 **Trap on greater than 53 bits of significance.

Operation
Pipeline Cycles
Latency/Repeat Operation

Pipeline Cycles
Latency/Repeat

S D W L S D

ADD.fmt 4/1 4/1 BC1T 1/1

SUB.fmt 4/1 4/1 BC1F 1/1

MUL.fmt 4/1 5/2 BC1TL 1/1

DIV.fmt 21/19 36/34 BC1FL 1/1

SQRT.fmt 21/19 36/34
SWC1,
SDC1

2/1

RECIP 21/19 36/34
LDC1,
LWC1

2/1

RSQRT 38/36 68/66
LWXC1,
LDXC1

2/1

ABS.fmt 1/1 1/1
SWXC1,
SDXC1

2/1

MOV.fmt 1/1 1/1
MTC1,
DMTC1

2/1

NEG.fmt 1/1 1/1
MFC1,
DMFC1

2/1

ROUND.W/
TRUNC.W

4/1 4/1 CTC1 3/3

ROUND.L/
TRUNC.L

4/1** 4/1** CFC1 2/2

CEIL.W/
FLOOR.W

4/1 4/1 MADD 4/1 5/2

CEIL.L/
FLOOR.L

4/1** 4/1** MSUB 4/1 5/2

CVT.D.fmt 4/1 (a) 4/1 4/1* NMADD 4/1 5/2

CVT.S.fmt (a) 4/1 6/3 6/3* NMSUB 4/1 5/2

CVT.[W,L] 4/1 4/1

C.cond.fmt 1/1 1/1

User’s Manual U11761EJ6V0UM 203

Chapter 8 Floating Point Unit

8.10.3 Instruction Scheduling Constraints

The FPU resource scheduler is kept from issuing instructions to the FPU op units
(adder, multiplier, and divider) by the limitations in their micro-architectures. An FPU
ALU instruction can be issued at the same time as any other non-FP-ALU instructions.
This includes all integer instructions as well as floating-point loads and stores.

204 User’s Manual U11761EJ6V0UM

Chapter 9 Floating Point Exceptions

This chapter describes FPU floating-point exceptions, including FPU exception types,
exception trap processing, exception flags, saving and restoring state when handling an
exception, and trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle either the operands
or the results of a floating-point operation in its normal way. The FPU responds by
generating an exception to initiate a software trap or by setting a status flag.

9.1 Exception Types

The FP Control/Status register described in Chapter 8 contains an Enable bit for each
exception type; exception Enable bits determine whether an exception will cause the
FPU to initiate a trap or set a status flag.

• If a trap is taken, the FPU remains in the state found at the beginning of
the operation and a software exception handling routine executes.

• If no trap is taken, an appropriate value is written into the FPU
destination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

• Inexact (I)

• Underflow (U)

• Overflow (O)

User’s Manual U11761EJ6V0UM 205

Chapter 9 Floating Point Exceptions

• Division by Zero (Z)

• Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E), to use when the
FPU cannot implement the standard MIPS floating-point architecture, including cases
in which the FPU cannot determine the correct exception behavior. This exception
indicates the use of a software implementation. The Unimplemented Operation
exception has no Enable or Flag bit; whenever this exception occurs, an
unimplemented exception trap is taken (if the FPU interrupt input to the CPU is
enabled).

Figure 9-1 illustrates the Control/Status register bits that support exceptions.

Figure 9-1 Control/Status Register Exception/Flag/Trap/Enable Bits

Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is associated with a trap
under user control, and is enabled by setting one of the five Enable bits. When an
exception occurs, the corresponding Cause bit is set. If the corresponding Enable bit
is not set, the Flag bit is also set. If the corresponding Enable bit is set, the Flag bit is
not set and the FPU generates an interrupt to the CPU. Subsequent exception
processing allows a trap to be taken.

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits

Chapter 9 Floating Point Exceptions

206 User’s Manual U11761EJ6V0UM

9.2 Exception Trap Processing

When a floating-point exception trap is taken, the Cause register indicates the floating-
point coprocessor is the cause of the exception trap. The Floating-Point Exception
(FPE) code is used, and the Cause bits of the floating-point Control/Status register
indicate the reason for the floating-point exception. These bits are, in effect, an
extension of the system coprocessor Cause register.

9.3 Flags

A Flag bit is provided for each IEEE exception. This Flag bit is set to a 1 on the
assertion of its corresponding exception, with no corresponding exception trap
signaled.

The Flag bit is reset by writing a new value into the Status register; flags can be saved
and restored by software either individually or as a group.

When no exception trap is signaled, floating-point coprocessor takes a default action,
providing a substitute value for the exception-causing result of the floating-point
operation. The particular default action taken depends upon the type of exception.
Table 9-1 lists the default action taken by the FPU for each of the IEEE exceptions.

User’s Manual U11761EJ6V0UM 207

Chapter 9 Floating Point Exceptions

Table 9-1 Default FPU Exception Actions

Table 9-2 lists the exception-causing situations and contrasts the behavior of the FPU
with the requirements of the IEEE Standard 754.

Field Description
Rounding

Mode
Default action

 I
Inexact
exception

Any Supply a rounded result

U
Underflow
exception

RN
Modify underflow values to 0 with the sign of the intermediate
result

RZ
Modify underflow values to 0 with the sign of the intermediate
result

RP
Modify positive underflows to the format’s smallest positive
finite number; modify negative underflows to -0

RM
Modify negative underflows to the format’s smallest negative
finite number; modify positive underflows to 0

O
Overflow
exception

RN
Modify overflow values to ∞ with the sign of the intermediate
result

RZ
Modify overflow values to the format’s largest finite number
with the sign of the intermediate result

RP
Modify negative overflows to the format’s most negative
finite number; modify positive overflows to + ∞

RM
Modify positive overflows to the format’s largest finite
number; modify negative overflows to – ∞

Z
Division by
zero

Any Supply a properly signed ∞

V
Invalid
operation

Any Supply a quiet Not a Number (NaN)

Chapter 9 Floating Point Exceptions

208 User’s Manual U11761EJ6V0UM

Table 9-2 FPU Exception-Causing Conditions

9.4 FPU Exceptions

The following sections describe the conditions that cause the FPU to generate each of
its exceptions, and details the FPU response to each exception-causing condition.

9.4.1 Inexact Exception (I)

The FPU generates the Inexact exception if one of the following occurs:

• the rounded result of an operation is not exact, or

• the rounded result of an operation overflows, or

• the rounded result of an operation underflows and both the Underflow and
Inexact Enable bits are not set and the FS bit is set.

The FPU usually examines the operands of floating-point operations before execution
actually begins, to determine (based on the exponent values of the operands) if the
operation can possibly cause an exception. If there is a possibility of an instruction
causing an exception trap, the FPU uses a coprocessor stall to execute the instruction.

a. The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is
disabled.

FPA Internal
Result

IEEE
Standard

754

Trap
Enable

Trap
Disable

Notes

Inexact result I I I Loss of accuracy

Exponent overflow O,Ia O,I O,I Normalized exponent > Emax

Division by zero Z Z Z
Zero is (exponent = Emin-1,
mantissa = 0)

Overflow on convert V E E Source out of integer range

Signaling NaN source V V V

Invalid operation V V V 0/0, etc.

Exponent underflow U E E Normalized exponent < Emin

Denormalized or
QNaN

None E E
Denormalized is (exponent = Emin-1
and mantissa <> 0)

User’s Manual U11761EJ6V0UM 209

Chapter 9 Floating Point Exceptions

It is impossible, however, for the FPU to predetermine if an instruction will produce an
inexact result. If Inexact exception traps are enabled, the FPU uses the coprocessor
stall mechanism to execute all floating-point operations that require more than one
cycle. Since this mode of execution can impact performance, Inexact exception traps
should be enabled only when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the result register is not
modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to the
destination register if no other software trap occurs.

9.4.2 Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operands are invalid
for an implemented operation. When the exception occurs without a trap, the MIPS
ISA defines the result as a quiet Not a Number (NaN). The invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities, such as:
(+ ∞) + (– ∞) or (– ∞) – (– ∞)

• Multiplication: 0 times ∞, with any signs

• Division: 0/0, or ∞/∞, with any signs

• Comparison of predicates involving < or > without ?, when the operands
are unordered

• Comparison or a Convert From Floating-point Operation on a signaling
NaN.

• Any arithmetic operation on a signaling NaN. A move (MOV) operation
is not considered to be an arithmetic operation, but absolute value (ABS)
and negate (NEG) are considered to be arithmetic operations and cause
this exception if one or both operands is a signaling NaN.

• Square root: √x, where x is less than zero

Software can simulate the Invalid Operation exception for other operations that are
invalid for the given source operands. Examples of these operations include IEEE
Standard 754-specified functions implemented in software, such as Remainder: x REM
y, where y is 0 or x is infinite; conversion of a floating-point number to a decimal format
whose value causes an overflow, is infinity, or is NaN; and transcendental functions,
such as ln (–5) or cos–1(3).

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: A quiet NaN is delivered to the destination register if no other
software trap occurs.

Chapter 9 Floating Point Exceptions

210 User’s Manual U11761EJ6V0UM

9.4.3 Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide operation if the
divisor is zero and the dividend is a finite nonzero number. Software can simulate this
exception for other operations that produce a signed infinity, such as ln(0), sec(π/2),
csc(0), or 0–1.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly signed infinity.

9.4.4 Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-point
result, with an unbounded exponent range, is larger than the largest finite number of
the destination format. (This exception also sets the Inexact exception and Flag bits.)

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the
rounding mode and the sign of the intermediate result (as listed in Table 9-1).

9.4.5 Underflow Exception (U)

Two related events contribute to the Underflow exception:

• creation of a tiny nonzero result between ±2Emin which can cause some
later exception because it is so tiny

• extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires they be
detected the same way for all operations.

Tininess can be detected by one of the following methods:

• after rounding (when a nonzero result, computed as though the exponent
range were unbounded, would lie strictly between ±2Emin)

• before rounding (when a nonzero result, computed as though the exponent
range and the precision were unbounded, would lie strictly between
±2Emin).

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

User’s Manual U11761EJ6V0UM 211

Chapter 9 Floating Point Exceptions

• denormalization loss (when the delivered result differs from what would
have been computed if the exponent range were unbounded)

• inexact result (when the delivered result differs from what would have
been computed if the exponent range and precision were both
unbounded).

The MIPS architecture requires that loss of accuracy be detected as an inexact result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the FS bit is
not set, then an Unimplemented exception (E) is generated, and the result register is
not modified.

Trap Disabled Results: If Underflow and Inexact traps are not enabled and the FS bit
is set, the result is determined by the rounding mode and the sign of the intermediate
result (as listed in Table 9-1).

9.4.6 Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format code that has
been reserved for future definition sets the Unimplemented bit in the Cause field in the
FPU Control/Status register and traps. The operand and destination registers remain
undisturbed and the instruction is emulated in software. Any of the IEEE Standard 754
exceptions can arise from the emulated operation, and these exceptions in turn are
simulated.

The Unimplemented Instruction exception can also be signaled when unusual
operands or result conditions are detected that the implemented hardware cannot
handle properly. These include:

• Denormalized operand, except for Compare instruction

• Quiet Not a Number operand, except for Compare instruction

• Denormalized result or Underflow, when either Underflow or Inexact
Enable bits are set or the FS bit is not set.

• Reserved opcodes

• Unimplemented formats

• Operations which are invalid for their format (for instance, CVT.S.S)

NOTE: Denormalized and NaN operands are only trapped if the instruction
is a convert or computational operation. Moves do not trap if their operands
are either denormalized or NaNs.

On the VR5000 additional causes of the unimplemented exception include:

• If the multiply portion of the madd, msub, nmadd, nmsub instruction
would produce an overflow, underflow or denormal output

Chapter 9 Floating Point Exceptions

212 User’s Manual U11761EJ6V0UM

• A floating-point to 64-bit fixed-point conversion with an output that
would be greater than 253–1 (0×001F FFFF FFFF FFFF) or less than –253
(0×FFE0 0000 0000 0000)

Concerned instructions: CEIL.L.fmt, CVT.L.fmt, FLOOR.L.fmt,
ROUND.L.fmt, TRUNC.L.fmt

• A floating-point to 32-bit fixed-point conversion with an output that
would be greater than 231–1 (0×7FFF FFFF) or less than –231 (0×8000
0000)

Concerned instructions: CEIL.W.fmt, CVT.W.fmt, FLOOR.W.fmt,
ROUND.W.fmt, TRUNC.W.fmt

• A 64-bit fixed-point to floating-point conversion with a source operand
that would be greater than 252–1 (0×000F FFFF FFFF FFFF) or less than
–252 (0×FFF0 0000 0000 0000)

Concerned instructions: CVT.D.fmt, CVT.S.fmt

• Attempting to execute a MIPS IV floating-point instruction if the MIPS
IV instruction set has not been enabled

The use of this exception for such conditions is optional; most of these conditions are
newly developed and are not expected to be widely used in early implementations.
Loopholes are provided in the architecture so that these conditions can be implemented
with assistance provided by software, maintaining full compatibility with the IEEE
Standard 754.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: This trap cannot be disabled.

9.5 Saving and Restoring State

Sixteen or thirty-two doubleword coprocessor load or store operations save or restore
the coprocessor floating-point register state in memory. The remainder of control and
status information can be saved or restored through Move To/From Coprocessor
Control Register instructions, and saving and restoring the processor registers.
Normally, the Control/Status register is saved first and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the coprocessor is
executing one or more floating-point instructions, the instruction(s) in progress are
either completed or reported as exceptions. The architecture requires that no more than
one of these pending instructions can cause an exception. If the pending instruction
cannot be completed, this instruction is placed in the Exception register, if present.

User’s Manual U11761EJ6V0UM 213

Chapter 9 Floating Point Exceptions

Information indicating the type of exception is placed in the Control/Status register.
When state is restored, state information in the status word indicates that exceptions
are pending.

Writing a zero value to the Cause field of Control/Status register clears all pending
exceptions, permitting normal processing to restart after the floating-point register
state is restored.

The Cause field of the Control/Status register holds the results of only one instruction;
the FPU examines source operands before an operation is initiated to determine if this
instruction can possibly cause an exception. If an exception is possible, the FPU
executes the instruction in stall mode to ensure that no more than one instruction (that
might cause an exception) is executed at a time.

9.6 Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to specify a trap
handler for any of the five standard exceptions that can compute; the trap handler can
either compute or specify a substitute result to be placed in the destination register of
the operation.

By retrieving an instruction using the processor Exception Program Counter (EPC)
register, the trap handler determines:

• exceptions occurring during the operation

• the operation being performed

• the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact
exceptions, the trap handler gains access to the correctly rounded result by examining
source registers and simulating the operation in software.

On Overflow or Underflow exceptions encountered on floating-point conversions, and
on Invalid Operation and Divide-by-Zero exceptions, the trap handler gains access to
the operand values by examining the source registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and underflow traps
take precedence over a separate inexact trap. This prioritization is accomplished in
software; hardware sets both bits.

214 User’s Manual U11761EJ6V0UM

Chapter 10 Initialization Interface

The VR5000 processor has the following three types of resets; they use the VccOk,
ColdReset*, and Reset* input signals.

• Power-on reset: starts when the power supply is turned on and completely
reinitializes the internal state machines of the processor without saving any
state information.

• Cold reset: restarts all clocks, but the power supply remains stable. A
cold reset completely reinitializes the internal state machines of the
processor without saving any state information.

• Warm reset: restarts the processor, but does not affect clocks. A warm
reset preserves the processor internal state.

The Initialization interface is a serial interface that operates at the frequency of the
SysClock divided by 256: (SysClock/256). This low-frequency operation allows the
initialization information to be stored in a low-cost ROM device.

10.1 Processor Reset Signals

This section describes the three reset signals, VccOk, ColdReset*, and Reset*.

User’s Manual U11761EJ6V0UM 215

Chapter 10 Initialization Interface

VCCOk: When asserted†, VCCOk indicates to the processor that the power supply
(Vcc) has been within the specific range for more than 100 milliseconds (ms) and is
expected to remain stable. The assertion of VccOk initiates the reading of the boot-
time mode control serial stream (described in Initialization Sequence, in this chapter).

ColdReset*: The ColdReset* signal must be asserted (low) for either a power-on reset
or a cold reset. ColdReset* must be deasserted synchronously with SysClock.

Reset*: the Reset* signal must be asserted for any reset sequence. It can be asserted
synchronously or asynchronously for a cold reset, or synchronously to initiate a warm
reset. Reset* must be deasserted synchronously with SysClock.

ModeIn: Serial boot mode data in.

ModeClock: Serial boot mode data clock, at the SysClock frequency divided by 256
(SysClock/256).

10.1.1 Power-on Reset

The sequence for a power-on reset is listed below.

1. Power-on reset applies stable VCC and VCCIONote within the specific range from
the power supply to the processor. It also supplies a stable, continuous system
clock at the processor operational frequency.

2. After at least 100 ms of stable VCC, VCCIONote
 and SysClock, the VCCOk signal

is asserted to the processor. The assertion of VCCOk initializes the processor
operating parameters. After the mode bits have been read in, the processor allows
its internal phase locked loops to lock, stabilizing the processor internal clock,
PClock.

3. ColdReset* is asserted for at least 64K (216) SysClock cycles after the assertion
of VCCOk. Once the processor reads the boot-time mode control serial data
stream, ColdReset* can be deasserted. ColdReset* must be deasserted
synchronously with SysClock.

4. After ColdReset* is deasserted synchronously, Reset* is deasserted to allow the
processor to begin running. (Reset* must be held asserted for at least 64
SysClock cycles after the deassertion of ColdReset*.) Reset* must be deasserted
synchronously with SysClock.

NOTE: ColdReset* must be asserted when VCCOk asserts. The behavior of the
processor is undefined if VCCOk asserts while ColdReset* is deasserted.

Note VCCIO is only for VR5000A.

† Asserted means the signal is true, or in its valid state. For example, the low-active Reset* signal is
said to be asserted when it is in a low (true) state; the high-active VCCOk signal is true when it is
asserted high.

Chapter 10 Initialization Interface

216 User’s Manual U11761EJ6V0UM

Figure 10-1 shows the power-on system reset timing diagram.

Notes 1. 3.135V (VR5000), 2.3V (VR5000A, 100 to 235MHz),
2.375V (VR5000A, 236 to 250MHz),
2.5V (VR5000A, 251 to 266MHz)

2. VR5000A only

Figure 10-1 Power-on Reset Timing Diagram

10.1.2 Cold Reset

A cold reset can begin anytime after the processor has read the initialization data
stream, causing the processor to start with the Reset exception. A cold reset requires
the same sequence as a power-on reset except that the power is presumed to be stable
before the assertion of the reset inputs and the deassertion of VCCOk.

To begin the reset sequence, VCCOk must be deasserted for a minimum of at least 64
MasterClock cycles before reassertion.

Figure 10-2 shows the cold reset timing diagram.

VccIONote 2

VccOK

SysClock

≥100 ms

ModeClock
256 SysClock

Bit0 Bit1 Bit255. .
tMDS tMDH

≥64K SysClock
 ≥64
SysClock

ModeIn

ColdReset*

Reset*

tDS

tDS

Note1Vcc

3.135V

User’s Manual U11761EJ6V0UM 217

Chapter 10 Initialization Interface

Note VR5000A only

Figure 10-2 Cold Reset Timing Diagram

10.1.3 Warm Reset

To execute a warm reset, the Reset* input is asserted synchronously with SysClock.
It is then held asserted for at least 64 SysClock cycles before being deasserted
synchronously with SysClock. The boot-time mode control serial data stream is not
read by the processor on a warm reset. A warm reset forces the processor to start with
a Soft Reset exception.

Figure 10-3 shows the warm reset timing diagram.

VCC H

VCCOK

SysClock

ModeClock

≥64

Bit0 Bit1 Bit255. .
tMDS tMDH

≥64K SysClock
 ≥64
SysClock

ModeIn

ColdReset*

Reset*

tDS

tDS

SysClock

VCCIO H

256 SysClock

Note

Chapter 10 Initialization Interface

218 User’s Manual U11761EJ6V0UM

Note VR5000A only

Figure 10-3 Warm Reset Timing Diagram

10.1.4 Processor Reset State

After a power-on reset, cold reset, or warm reset, all processor internal state machines
are reset, and the processor begins execution at the reset vector. All processor internal
states are preserved during a warm reset, although the precise state of the caches
depends on whether or not a cache miss sequence has been interrupted by resetting the
processor state machines.

10.2 Initialization Sequence

The boot-mode initialization sequence begins immediately after VCCOk is asserted.
As the processor reads the serial stream of 256 bits through the ModeIn pin, the boot-
mode bits initialize all fundamental processor modes.

The initialization sequence is listed below.

1. The system deasserts the VCCOk signal. The ModeClock output is held asserted.

2. The processor synchronizes the ModeClock output at the time VCCOk is
asserted. The first rising edge of ModeClock occurs 256 SysClock cycles after
VCCOk is asserted.

VCC H

VCCOK

SysClock

ColdReset*

Reset*

tDS
tDS

≥64 SysClock

VCCIONote H

H

H

User’s Manual U11761EJ6V0UM 219

Chapter 10 Initialization Interface

3. Each bit of the initialization stream is presented at the ModeIn pin after each
rising edge of the ModeClock. The processor samples 256 initialization bits from
the ModeIn input.

10.3 Boot-Mode Settings

The following rules apply to the boot-mode settings:

• Bit 0 of the stream is presented to the processor when VCCOk is first
asserted.

• Selecting a reserved value results in undefined processor behavior.

• Zeros must be scanned in for all reserved bits.

Chapter 10 Initialization Interface

220 User’s Manual U11761EJ6V0UM

Table 10-1 shows the boot mode settings.

Table 10-1 Boot Mode Settings

Bit Value Mode Setting
0 Reserved: must be zero

1:4

XmitDatPat: System interface data rate for block writes
only

0 DDDD

1 DDxDDx

2 DDxxDDxx

3 DxDxDxDx

4 DDxxxDDxxx

5 DDxxxxDDxxxx

6 DxxDxxDxxDxx

7 DDxxxxxxDDxxxxxx

8 DxxxDxxxDxxxDxxx

9:15 Reserved

5:7

SysCkRatio: PClock to SysClock Multiplier.

0 Multiply by 2

1 Multiply by 3

2 Multiply by 4

3 Multiply by 5

4 Multiply by 6

5 Multiply by 7

6 Multiply by 8

7 Reserved

8

EndBit: Specifies byte ordering. Logically ORed with the
BigEndian signal.

0 Little-Endian

1 Big Endian

9:10

Non-Block Write: Determines how non-block writes are
handled.

0 VR4x00 compatible

1 Reserved

2 Pipelined writes

3 Write-reissue

11

TmrIntEn: Disables Timer Interrupt on Int*[5]

0 Timer Interrupt Enabled

1 Timer Interrupt Disabled

User’s Manual U11761EJ6V0UM 221

Chapter 10 Initialization Interface

Notes 1. This is for VR5000A. This bit must be zero for VR5000.

2. In case bit38 is set, the SysCkRatio (bit5-7) is ignored.

12

Secondary Cache Enable

0 Secondary Cache Disabled

1 Secondary Cache Enabled

13:14

DrvOut: Output driver slew rate control

10 100% (fastest)

11 83%

00 67%

01 50% (slowest)

15

Secondary cache SRAM protocol

0 Pipelined

1 Burst

16:17

Secondary cache size

0 512 KB secondary cache

1 1 MB secondary cache

2 2 MB secondary cache

3 Reserved

18

CP0 Count Register Update Rate

 0 1/2 x PClocK

 1 1 x PClocK

19 Reserved: Must be zero

20
Reserved: Must be zero
However, must be set for Rev. 2.41 or lower of VR5000

21:32 Reserved: Must be zero

33
Reserved: Must be zero
However, must be set for Rev. 2.41 or lower of VR5000

34:36 Reserved: Must be zero

37
Reserved: Must be zero
However, must be set for Rev. 2.x or lower of VR5000

38

Enable 2.5PClock to SysClock MultiplierNote 1, Note 2

0 Disable

1 Enable

39:255 Reserved: Must be zero

Bit Value Mode Setting

222 User’s Manual U11761EJ6V0UM

Chapter 11 Clock Interface

11.1 Basic System Clocks

The various clock signals used in the VR5000 processor are described below, starting
with SysClock, upon which the processor bases all internal and external clocking.

11.1.1 SysClock

The processor bases all internal and external clocking on the single SysClock input
signal.

11.1.2 PClock

The processor generates an internal clock, PClock, at the initialization-interface-
specified frequency multiplier of SysClock and phase-aligned to SysClock. All
internal registers and latches use PClock.

User’s Manual U11761EJ6V0UM 223

Chapter 11 Clock Interface

11.1.3 Alignment to SysClock

• Processor output data changes a minimum of tDM ns and becomes stable
a maximum of tDO ns after the rising edge of SysClock. This drive-time
is the sum of the maximum delay through the processor output drivers
together with the maximum clock-to-Q delay of the processor output
registers.

• Processor input data must be stable for a maximum of tDS ns before the
rising edge of SysClock and must remain stable a minimum of tDH ns
after the rising edge of SysClock.

11.1.4 Phase-Locked Loop (PLL)

The processor aligns PClock and SysClock with internal phase-locked loop (PLL)
circuits that generate aligned clocks. By their nature, PLL circuits are only capable of
generating aligned clocks for SysClock frequencies within a limited range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or jitter; a
clock aligned with SysClock by the PLL can lead or trail SysClock by as much as the
related maximum jitter tji allowed by the individual vendor. The tji parameter must be
added to the tDS, tDH, and tDO parameters, and subtracted from the tDM parameters to
get the total input and output timing parameters.

Figure 11-1 shows the SysClock timing parameters.

Figure 11-1 SysClock Timing

SysClock

tCR tCF

tCH tCL ±tji

Chapter 11 Clock Interface

224 User’s Manual U11761EJ6V0UM

11.2 Connecting Clocks to a Phase-Locked System

When the processor is used in a phase-locked system, the external agent must phase
lock its operation to a common SysClock. In such a system, the transmission of data
and data sampling have common characteristics, even if the components have different
delay values. For example, transmission time (the amount of time a signal takes to
move from one component to another along a trace on the board) between any two
components A and B of a phase-locked system can be calculated from the following
equation:

Transmission Time = (SClock period) – (tDO for A) – (tDS for B) –

(Clock Jitter for A Max) – (Clock Jitter for B Max)

Figure 11-2 shows a block-level diagram of a phase-locked system using the VR5000
processor.

Figure 11-2 Phase-Locked System

SysClock

VR5000

SysAD(63:0)

SysCmd(8:0)

SysClock SysClock

External Agent

SysCmd(8:0)

SysAD(63:0)

User’s Manual U11761EJ6V0UM 225

Chapter 12 Cache Organization and Operation

This chapter describes in detail the cache memory: its place in the VR5000 memory
organization, and individual organization of the caches.

This chapter uses the following terminology:

• The data cache may also be referred to as the D-cache.

• The instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

Chapter 12 Cache Organization and Operation

226 User’s Manual U11761EJ6V0UM

12.1 Memory Organization

Figure 12-1 shows the VR5000 system memory hierarchy. In the logical memory
hierarchy, the caches lie between the CPU and main memory. They are designed to
make the speedup of memory accesses transparent to the user.

Each functional block in Figure 12-1 has the capacity to hold more data than the block
above it. For instance, physical main memory has a larger capacity than the caches. At
the same time, each functional block takes longer to access than any block above it.
For instance, it takes longer to access data in main memory than in the CPU on-chip
registers.

Figure 12-1 Logical Hierarchy of Memory

The VR5000 processor has two on-chip caches: one holds instructions (the instruction
cache), the other holds data (the data cache). The instruction and data caches can be
read in one PClock cycle.

Main Memory

Secondary Cache

Registers Registers

I-cache D-cache

Primary Cache

Disk, CD-ROM,
Tape, etc.

R
eg

is
te

rs
C

ac
he

s

M
em

or
y

P
er

ip
he

ra
ls

Faster Access
Time

Increasing Data
Capacity

VR5000 CPU

User’s Manual U11761EJ6V0UM 227

Chapter 12 Cache Organization and Operation

Data writes are pipelined and can complete at a rate of one per PClock cycle. In the
first stage of the cycle, the store address is translated and the tag is checked; in the
second stage, the data is written into the data RAM.

Figure 12-2 provides a block diagram of the VR5000 cache and memory model.

Figure 12-2 VR5000 Cache Support

12.2 Primary Cache Organization

This section describes the organization of the on-chip data and instructio caches.

12.2.1 Cache Line Lengths

A cache line is the smallest unit of information that can be fetched from main memory
for the cache, and that is represented by a single tag.

The line size fot the instruciton/data cache is 32 bytes.

12.2.2 Cache Sizes

The VR5000 instruciton cache is 32 KB; the data cache is 32 KB.

Main Memory

Secondary Cache

Cache Controller

D-cache

I-cache

Caches

VR5000

D-cache

I-cache

Data cache

Instruction cache

Chapter 12 Cache Organization and Operation

228 User’s Manual U11761EJ6V0UM

12.2.3 Organization of the Instruction Cache (I-Cache)

The VR5000 procesosr I-cache has the following characteristics:

• 2-way set associative

• indexed with a virtual address

• checked with a physical tag

organized with a 32-byte cache line.

Figure 12-3 Primary Instruction Cache Line Format

26 25 24 23 0

P PState PTag

2421

DataP Data

DataP Data

DataP Data

DataP Data

71 64 63 0

8 64

P: Even parity for the PTag
PState: Primary cache state
PTag: Primary cache tag (bits 35:12 of the physical address)
DataP: Even parity for the data
Data: I-cache data

User’s Manual U11761EJ6V0UM 229

Chapter 12 Cache Organization and Operation

12.2.4 Organization of the Data Cache (D-Cache)

The VR5000 processor D-cache has the following characteristics:

• write-back or write-through

• 2-way set associative

• indexed with a virtual address

• checked with a physical tag

organized with a 32-byte cache line.

Figure 12-4 Primary Data Cache Line Format

26 25 24 0

P PState PTag

2421

DataP Data

DataP Data

DataP Data

DataP Data

71 64 63 0

8 64

P: Even parity for the PTag
PState: Primary cache state
PTag: Primary cache tag (bits 35:12 of the physical address)
DataP: Even parity for the data
Data: D-cache data

23

Chapter 12 Cache Organization and Operation

230 User’s Manual U11761EJ6V0UM

12.3 Secondary Cache Organization

The VR5000 has a secondary cache interface and can operate with an external
secondary cache.

The secondary cache is:

• direct-mapped

• indexed with a virtual address

• checked with a physical tag

• organized with an 8-word (32-byte) cache line

• either 512 KB, 1 MB, or 2 MB in size.

Figure 12-5 Secondary Cache Line Format

37 35 0

VIdx STag

323

DataP Data

DataP Data

DataP Data

DataP Data

71 64 63 0

8 64

VIdx: Virtual index of the associated primary cache line (bits 14:12 of the virtual address)
SState: Secondary cache state
STag: Secondary cache tag (bits 35:17 of the physical address)
DataP: Even parity for the data
Data: Secondary cache data

34

SState

32 31

3

User’s Manual U11761EJ6V0UM 231

Chapter 13 VR5000 Processor Bus Interface

The System interface allows the processor to access external resources needed to
satisfy cache misses and uncached operations, while permitting an external agent
access to some of the processor internal resources.

The clock portion of the VR5000 system interface has been simplified and many of the
external clock signals have been deleted from the system interface of the VR4000
Series.

The VR5000 processor supports up to a 100 MHz pipelined SysAD bus. VR5000 also
implements a unified, write-through secondary cache which has the same 32-byte line
size as the primary caches. Secondary cache index and control signals are supplied by
the processor. Secondary cache sizes of 512 KB, 1 MB, and 2 MB are supported.

This chapter describes the System interface from the point of view of both the
processor and the external agent.

Chapter 13 VR5000 Processor Bus Interface

232 User’s Manual U11761EJ6V0UM

13.1 Terms Used

The following terms are used in this document:

• An external agent is any logic device connected to the processor, over the
System interface, that allows the processor to issue requests.

• A system event is an event that occurs within the processor and requires
access to external system resources.

• Sequence refers to the precise series of requests that a processor generates
to service a system event.

• Protocol refers to the cycle-by-cycle signal transitions that occur on the
System interface pins to assert a processor or external request.

• Syntax refers to the precise definition of bit patterns on encoded buses,
such as the command bus.

13.2 Interface Buses

Figure 13-1 shows the primary communication paths for the System interface: a 64-bit
address and data bus, SysAD[63:0], and a 9-bit command bus, SysCmd[8:0]. The
SysAD and the SysCmd buses are bidirectional; that is, they are driven by the
processor to issue a processor request, and by the external agent to issue an external
request.

A request through the System interface consists of:

• an address

• a System interface command that specifies the precise nature of the
request

• a series of data elements if the request is for a write or read response.

User’s Manual U11761EJ6V0UM 233

Chapter 13 VR5000 Processor Bus Interface

Figure 13-1 System Interface Buses

Figure 13-2 shows the primary communication paths for a secondary cache
configuration. The secondary cache shares the SysAD and SysADC buses between the
processor and the external agent. The processor implements the ScLine and ScWord
address buses to the secondary cache to access a cache line within the secondary cache
and 64-bit cache doublewords within the cache line, respectively.

Figure 13-2 Secondary Cache Interface

VR5000 External Agent

SysAD[63:0]

SysCmd[8:0]

SysCmd[8:0]

SysAD[63:0]

Secondary
Cache

VR5000 External
Agent

ScLine[15:0]
ScWord[1:0]

SysADC[7:0]

234 User’s Manual U11761EJ6V0UM

Chapter 14 System Interface Transactions

There are two broad categories of transactions: processor requests and external
requests. This chapter describes them.

14.1 Processor Requests

The processor issues either a single request or a series of requests—called processor
requests—through the System interface, to access an external resource. For this to
work, the processor System interface must be connected to an external agent that is
compatible with the System interface protocol, and can coordinate access to system
resources.

User’s Manual U11761EJ6V0UM 235

Chapter 14 System Interface Transactions

An external agent requesting access to a processor internal resource generates an
external request. This access request passes through the System interface. System
events and request cycles are shown in Figure 14-1.

Figure 14-1 Requests and System Events

14.1.1 Rules for Processor Requests

A processor request is a request or a series of requests, through the System interface,
to access some external resource. As shown in Figure 14-2, processor requests include
read and write.

Figure 14-2 Processor Requests to External Agent

Read request asks for a block, doubleword, partial doubleword, word, or partial word
of data either from main memory or from another system resource.

VR5000 External Agent

Processor Requests
• Read
• Write External Requests

• Write
• Null

System Events
• Load Miss
• Store Miss
• Write Back
• Write Through
• Store Hit
• Uncached Load/Store

VR5000 External Agent

Processor Requests
• Read
• Write

Chapter 14 System Interface Transactions

236 User’s Manual U11761EJ6V0UM

Write request provides a block, doubleword, partial doubleword, word, or partial word
of data to be written either to main memory or to another system resource.

The processor is only allowed to have one request pending at any time. For example,
the processor issues a read request and waits for a read response before issuing any
subsequent requests. The processor submits a write request only if there are no read
requests pending.

The processor has the input signals RdRdy* and WrRdy* to allow an external agent
to manage the flow of processor requests. RdRdy* controls the flow of processor read
requests, while WrRdy* controls the flow of processor write requests. The processor
request cycle sequence is shown in Figure 14-3.

Figure 14-3 Processor Request Flow Control

14.1.2 Processor Read Request

When a processor issues a read request, the external agent must access the specified
resource and return the requested data.

A processor read request can be split from the external agent’s return of the requested
data; in other words, the external agent can initiate an unrelated external request before
it returns the response data for a processor read. A processor read request is completed
after the last word of response data has been received from the external agent.

Note that the data identifier associated with the response data can signal that the
returned data is erroneous, causing the processor to take a bus error.

Processor read requests that have been issued, but for which data has not yet been
returned, are said to be pending. A read remains pending until the requested read data
is returned.

The external agent must be capable of accepting a processor read request any time the
following two conditions are met:

VR5000 External Agent

1. Processor issues read or write

2. External system controls
acceptance of requests by
asserting RdRdy* or WrRdy*

User’s Manual U11761EJ6V0UM 237

Chapter 14 System Interface Transactions

• There is no processor read request pending.

• The signal RdRdy* has been asserted for two or more cycles before the
issue cycle.

14.1.3 Processor Write Request

When a processor issues a write request, the specified resource is accessed and the data
is written to it. A processor write request is complete after the last word of data has
been transmitted to the external agent. The VR5000 processor supports VR4000
compatible, write-reissue and pipelined write operations as defined in Chapter 15.

The external agent must be capable of accepting a processor write request any time the
following two conditions are met:

• No processor read request is pending.

• The signal WrRdy* has been asserted for two or more cycles.

14.2 External Requests

External requests include write, and null requests, as shown in Figure 14-4. This
section also includes a description of read response, a special case of an external
request.

Figure 14-4 External Requests to Processor

Write request provides a word of data to be written to the processor’s internal resource.

VR5000 External Agent

External Requests
• Write
• Null

Chapter 14 System Interface Transactions

238 User’s Manual U11761EJ6V0UM

Null request requires no action by the processor; it provides a mechanism for the
external agent to return the System interface to the master state without affecting the
processor.

The processor controls the flow of external requests through the arbitration signals
ExtRqst* and Release*, as shown in Figure 14-5. The external agent must acquire
mastership of the System interface before it is allowed to issue an external request; the
external agent arbitrates for mastership of the System interface by asserting ExtRqst*
and then waiting for the processor to assert Release* for one cycle. If Release* is
asserted as part of an uncompelled change to slave state during a processor read
request, and the secondary cache is enabled, the secondary cache access must be
resolved and be a miss. Otherwise the system interface returns to the master state.

Figure 14-5 External Request Arbitration

Mastership of the System interface always returns to the processor after an external
request is issued. The processor does not accept a subsequent external request until it
has completed the current request.

If there are no processor requests pending, the processor decides, based on its internal
state, whether to accept the external request, or to issue a new processor request. The
processor can issue a new processor request even if the external agent is requesting
access to the System interface.

The external agent asserts ExtRqst* indicating that it wishes to begin an external
request. The external agent then waits for the processor to signal that it is ready to
accept this request by asserting Release*. The processor signals that it is ready to
accept an external request based on the criteria listed below.

• The processor completes any request in progress.

VR5000 External Agent

1. External system requests bus
mastership by asserting ExtRqst*

2. Processor grants mastership by
asserting Release*

3. External system issues an
External Request

4. Processor regains bus mastership

User’s Manual U11761EJ6V0UM 239

Chapter 14 System Interface Transactions

• While waiting for the assertion of RdRdy* to issue a processor read
request, the processor can accept an external request if the external
request is delivered to the processor one or more cycles before RdRdy* is
asserted.

• While waiting for the assertion of WrRdy* to issue a processor write
request, the processor can accept an external request provided the external
request is delivered to the processor one or more cycles before WrRdy*
is asserted.

• If waiting for the response to a read request after the processor has made
an uncompelled change to a slave state, the external agent can issue an
external request before providing the read response data.

14.2.1 External Write Request

When an external agent issues a write request, the specified resource is accessed and
the data is written to it. An external write request is complete after the word of data
has been transmitted to the processor.

The only processor resource available to an external write request is the Interrupt
register. Refer to Chapter 17 for more information.

14.2.2 Read Response

A read response returns data in response to a processor read request, as shown in
Figure 14-6. While a read response is technically an external request, it has one
characteristic that differentiates it from all other external requests—it does not perform
System interface arbitration. For this reason, read responses are handled separately
from all other external requests, and are simply called read responses.

The data identifier associated with the response data can signal that the returned data
is erroneous, causing the processor to take a bus error.

Chapter 14 System Interface Transactions

240 User’s Manual U11761EJ6V0UM

Figure 14-6 External Agent Read Response to Processor

14.3 Handling Requests

This section details the sequence, protocol, and syntax of both processor and external
requests. The following system events are discussed:

• load miss

• store miss

• store hit

• uncached loads/stores

• uncached instruction fetch

• load linked store conditional

14.3.1 Load Miss

When a processor load misses in the primary cache, before the processor can proceed
it must obtain the cache line that contains the data element to be loaded from the
external agent.

If the new cache line replaces a current dirty exclusive or dirty shared cache line, the
current cache line must be written back before the new line can be loaded in the
primary cache.

VR5000 External Agent

1. Read request

2. Read response

User’s Manual U11761EJ6V0UM 241

Chapter 14 System Interface Transactions

The processor examines the coherency attribute in the TLB entry for the page that
contains the requested cache line, and executes one of the following request:

• The coherency attribute is noncoherent, the processor issues a
noncoherent read request.

Table 14-1 shows the actions taken on a load miss to primary cache.

Table 14-1 Load Miss to Primary Caches

The processor takes the following steps:

1. The processor issues a noncoherent block read request for the cache line that
contains the data element to be loaded. If the secondary cache is enabled and the
page coherency attribute is write-back, the response data will also be written into
the secondary cache.

2. The processor then waits for an external agent to provide the read response.

3. The processor restarts the pipeline after the first doubleword of the data cache
miss is received. The remaining three doublewords are placed in the cache after
all three doublewords have been received and the dcache is otherwise idle.

If the current cache line must be written back, the processor issues a block write
request to save the dirty cache line in memory. If the secondary cache is enabled and
the page attribute is write-back, the write back data will also be written into the
secondary cache.

14.3.2 Store Miss

When a processor store misses in the primary cache, the processor may request, from
the external agent, the cache line that contains the target location of the store for pages
that are either write-back or write-through with write-allocate only. The processor
examines the coherency attribute in the TLB entry for the page that contains the
requested cache line to see if the cache line is being maintained with either a write-
allocate or no-write-allocate policy.

Page Attribute
State of Data Cache Line Being Replaced

Clean/Invalid Dirty (W=1)

Noncoherent NCBR NCBR/W

NCBR................. Processor noncoherent block read request

NCBR/W Processor noncoherent block read request followed by processor
block write request

Chapter 14 System Interface Transactions

242 User’s Manual U11761EJ6V0UM

The processor then executes one of the following requests:

• If the coherency attribute is noncoherent write-back, or write-through
with write-allocate, a noncoherent block read request is issued.

• If the coherency attribute is noncoherent write-through with no write-
allocate, a non-block write request is issued.

Table 14-2 shows the actions taken on a store miss to the primary cache.

Table 14-2 Store Miss to Primary and Secondary Caches

If the coherency attribute is write-back, or write-through with write-allocate, the
processor issues a non-coherent block read request for the cache line that contains the
data element to be loaded, then waits for the external agent to provide read data in
response to the read request. If the secondary cache is enabled and the page coherency
attribute is write-back, the response data will also be written into the secondary cache.
If the current cache line must be written back, the processor issues a write request for
the current cache line.

If the page coherency attribute is write-through, the processor issues a non-block write
request.

For a write-through, no-write-allocate store miss, the processor issues a non-block
write request only.

Page Attribute
State of Data Cache Line Being

Replaced

Clean/Invalid Dirty (W=1)

Noncoherent-write-back or noncoherent-write-
through with write-allocate

NCBR NCBR/W

Noncoherent-write-through with no-write-
allocate

NCW NA

NCBR................. Processor noncoherent block read request

NCBR/W............ Processor noncoherent block read request followed by processor block
write request

NCW Processor noncoherent write request

User’s Manual U11761EJ6V0UM 243

Chapter 14 System Interface Transactions

14.3.3 Store Hit

The action on the system bus is determined by whether the line is write-back or write-
through. For lines with a write-back policy, a store hit does not cause any processor
request on the bus. For lines with a write-through policy, the store generates a
processor non-block write request for the store data.

14.3.4 Uncached Loads or Stores

When the processor performs an uncached load, it issues a noncoherent doubleword,
partial doubleword, word, or partial word read request. When the processor performs
an uncached store, it issues a doubleword, partial doubleword, word, or partial word
write request. All writes by the processor are buffered from the system interface by a
4-entry write buffer. The write requests are sent to the system bus only when no other
requests are in progress. However, once the emptying of the write buffer has begun, it
is allowed to complete. Therefore, if the write buffer contains any entries when a block
read is requested, the write buffer is allowed to empty before the block read request is
serviced. Uncached loads and stores do not affect the secondary cache.

14.3.5 Uncached Instruction Fetch

The processor issues doubleword reads for instruction fetches to uncached addresses.
Thus any system ROM address space accessed during a processor boot-restart must
support 64-bit reads.

14.3.6 Load Linked Store Conditional Operation

The execution of a Load-Linked/Store-Conditional instruction sequence is not visible
at the System interface; that is, no special requests are generated due to the execution
of this instruction sequence.

244 User’s Manual U11761EJ6V0UM

Chapter 15 System Interface Protocols

The following sections contain a cycle-by-cycle description of the system interface
protocols for each type of processor and external request.

15.1 Address and Data Cycles

Cycles in which the SysAD bus contains a valid address are called address cycles.
Cycles in which the SysAD bus contains valid data are called data cycles. Validity of
addresses and data from the processor is determined by the state of the ValidOut*
signal. Validity of addreses and data from the external agent is determined by the state
of the ValidIn* signal. Validity of data from the secondary cache is determined by
the state of the pipelined ScDCE* and ScCWE* signals from the processor and the
ScDOE* signal from the external agent.

The SysCmd bus identifies the contents of the SysAD bus during any cycle in which
it is valid from the processor or the external agent. The most significant bit of the
SysCmd bus is always used to indicate whether the current cycle is an address cycle
or a data cycle.

• During address cycles SysCmd(8) = 0. The remainder of the SysCmd
bus, SysCmd(7:0), contains the encoded system interface command.

User’s Manual U11761EJ6V0UM 245

Chapter 15 System Interface Protocols

• During data cycles [SysCmd(8) = 1], the remainder of the SysCmd bus,
SysCmd(7:0), contains an encoded data identifier. There is no SysCmd
associated with a secondary cache read response.

15.2 Issue Cycles

There are two types of processor issue cycles:

• processor read request.

• processor write request.

The processor samples the signal RdRdy* to determine the issue cycle for a processor
read; the processor samples the signal WrRdy* to determine the issue cycle of a
processor write request.

As shown in Figure 15-1, RdRdy* must be asserted two cycles prior to the address
cycle of the processor read request in order to define the address cycle as the issue
cycle.

Figure 15-1 State of RdRdy* Signal for Read Requests

As shown in Figure 15-2, WrRdy* must be asserted two cycles prior to the first
address cycle of the processor write request in order to define the address cycle as the
issue cycle.

SysCycle 1 2 3 4 5 6

SysClock

SysAD Bus Addr

RdRdy*

Chapter 15 System Interface Protocols

246 User’s Manual U11761EJ6V0UM

Figure 15-2 State of WrRdy* Signal for Write Requests

The processor repeats the address cycle for the request until the conditions for a valid
issue cycle are met. After the issue cycle, if the processor request requires data to be
sent, the data transmission begins. There is only one issue cycle for any processor
request.

The processor accepts external requests, even while attempting to issue a processor
request, by releasing the System interface to slave state in response to an assertion of
ExtRqst* by the external agent.

Note that the rules governing the issue cycle of a processor request are strictly applied
to determine which action the processor takes. The processor can either:

• complete the issuance of the processor request in its entirety before the
external request is accepted, or

• release the System interface to slave state without completing the issuance
of the processor request.

In the latter case, the processor issues the processor request (provided the processor
request is still necessary) after the external request is complete. The rules governing
an issue cycle again apply to the processor request.

15.3 Handshake Signals

The VR5000 processor manages the flow of requests through the following six control
signals:

• RdRdy*, WrRdy* are used by the external agent to indicate when it can
accept a new read (RdRdy*) or write (WrRdy*) transaction.

SysCycle 1 2 3 4 5 6

SysClock

SysAD Bus Addr

WrRdy*

User’s Manual U11761EJ6V0UM 247

Chapter 15 System Interface Protocols

• ExtRqst*, Release* are used to transfer control of the SysAD and
SysCmd buses. ExtRqst* is used by an external agent to indicate a need
to control the interface. Release* is asserted by the processor when it
transfers the mastership of the System interface to the external agent. For
secondary cache reads, assertion of Release* to the external agent is
speculative, and is aborted if there is a hit in the secondary cache.

• The VR5000 processor uses ValidOut* and the external agent uses
ValidIn* to indicate valid command/data on the SysCmd/SysAD buses.

• The secondary cache uses the ScDCE*, ScCWE* and ScDOE* signals
to control validation on the SysAD and SysADC buses.

15.4 System Interface Operation

Figure 15-3 shows how the system interface operates from register to register. That is,
processor outputs come directly from output registers and begin to change with the
rising edge of SysClock.

Processor inputs are fed directly to input registers that latch these input signals with the
rising edge of SysClock. This allows the System interface to run at the highest
possible clock frequency.

Figure 15-3 System Interface Register-to-Register Operation

VR5000

Input data

Output data

SysClock

OUTPUT
LATCH

INPUT
LATCH

D63:0

Chapter 15 System Interface Protocols

248 User’s Manual U11761EJ6V0UM

15.4.1 Master and Slave States

When the VR5000 processor is driving the SysAD and SysCmd buses, the System
interface is in master state. When the external agent is driving the SysAD and SysCmd
buses, the System interface is in slave state. When the secondary cache is driving the
SysAD and SysADC buses, the System interface is in slave state.

In master state, the processor asserts the signal ValidOut* whenever the SysAD and
SysCmd buses are valid.

In slave state, the external agent asserts the signal ValidIn* whenever the SysAD and
SysCmd buses are valid and the secondary cache drives the SysAD and SysADC
buses in response to the ScDCE*, ScCWE*, and ScDOE* signals.

The System interface remains in master state unless one of the following occurs:

• The external agent requests and is granted the System interface (external
arbitration).

• The processor issues a read request.

15.4.2 External Arbitration

The System interface must be in slave state for the external agent to issue an external
request through the System interface. The transition from master state to slave state is
arbitrated by the processor using the System interface handshake signals ExtRqst*
and Release*. This transition is described by the following procedure:

1. An external agent signals that it wishes to issue an external request by asserting
ExtRqst*.

2. When the processor is ready to accept an external request, it releases the System
interface from master to slave state by asserting Release* for one cycle.

3. The System interface returns to master state as soon as the issue of the external
request is complete.

15.4.3 Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the System interface from
master state to slave state, initiated by the processor when a processor read request is
pending. Release* is asserted automatically at the same time a read request is issued
and an uncompelled change to slave state then occurs. This transition to slave state
allows the external agent to return read response data without arbitrating for bus
ownership.

If the secondary cache is enabled and a secondary cache hit occurs, then the bus is
returned to master state.

User’s Manual U11761EJ6V0UM 249

Chapter 15 System Interface Protocols

After an uncompelled change to slave state, the processor returns to master state at the
end of the next external request. This can be a read response, or some other type of
external request. If the external agent issues some other type of external request while
there is a pending read request, the processor performs another uncompelled change to
slave state by asserting Release* for one cycle.

An external agent must note that the processor has performed an uncompelled change
to slave state and begin driving the SysAD bus along with the SysCmd bus. As long
as the System interface is in slave state, the external agent can begin an external request
without arbitrating for the System interface; that is, without asserting ExtRqst*.

Table 15-1 lists the abbreviations and definitions for each of the buses that are used in
the timing diagrams that follow.

Table 15-1 System Interface Requests

15.5 Processor Request Protocols

Processor request protocols described in this section include:

• read

• write

NOTE: In the timing diagrams, the two closely spaced, wavy vertical lines, such
as those shown in Figure 15-4, indicate one or more identical cycles which are not
illustrated due to space constraints.

Scope Abbreviation Meaning

Global Unsd Unused

SysAD bus
Addr Physical address

Data<n> Data element number n of a block of data

SysCmd bus

Cmd An unspecified System interface command

Read A processor read request command

Write A processor or external write request command

SINull
A System interface release external null request
command

NData
A noncoherent data identifier for a data element other
than the last data element

NEOD A noncoherent data identifier for the last data element

Chapter 15 System Interface Protocols

250 User’s Manual U11761EJ6V0UM

Figure 15-4 Symbol for Undocumented Cycles

15.5.1 Processor Read Request Protocol

The following sequence describes the protocol for doubleword, partial doubleword,
word, partial word, and non-secondary cache mode processor read requests. The
secondary cache block read request protocol is described later in this section. The
numbered steps below correspond to Figure 15-5.

1. RdRdy* is asserted low, indicating the external agent is ready to accept a read
request.

2. With the System interface in master state, a processor read request is issued by
driving a read command on the SysCmd bus and a read address on the SysAD bus.
The physical address is driven onto SysAD[35:0], and virtual address bits [13:12]
are driven onto SysAD[57:56]. All other bits are driven to zero.

3. At the same time, the processor asserts ValidOut* for one cycle, indicating valid
data is present on the SysCmd and the SysAD buses.

NOTE: Only one processor read request can be pending at a time.

4. The processor makes an uncompelled change to slave state during the issue cycle
of the read request. The external agent must not assert the signal ExtRqst* for the
purposes of returning a read response, but rather must wait for the uncompelled
change to slave state. The signal ExtRqst* can be asserted before or during a read
response to perform an external request other than a read response.

5. The processor releases the SysCmd and the SysAD buses one SysClock after the
assertion of Release*.

6. The external agent drives the SysCmd and the SysAD buses within two cycles
after the assertion of Release*.

Once in slave state the external agent can return the requested data through a read
response. The read response can return the requested data or, if the requested data
could not be successfully retrieved, an indication that the returned data is erroneous.
If the returned data is erroneous, the processor takes a bus error exception.

User’s Manual U11761EJ6V0UM 251

Chapter 15 System Interface Protocols

Figure 15-5 illustrates a processor read request, coupled with an uncompelled change
to slave state, that occurs as the read request is issued.

Timings for the SysADC and SysCmdP buses are the same as those of the SysAD and
SysCmd buses, respectively.

Figure 15-5 Processor Read Request Protocol

Any time a read request has been issued (indicating a read request is pending), the
processor will assert Release* to perform an uncompelled change to slave state. Once
in the slave state the processor will always accept either a read response or an
ExtRqst* (if a read is pending).

15.5.2 Processor Write Request Protocol

Processor write requests are issued using one of three protocols.

• Doubleword, partial doubleword, word, or partial word writes use a non-
block write request protocol.

• Non-secondary cache block writes use a block write request protocol.

• Secondary cache block write request protocol.

Processor non-block write requests are issued with the System interface in master
state, as described below in the steps below; Figure 15-6 shows a processor
noncoherent non-block write request cycle.

65

3

4

2
1

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Addr

SysCmd Bus Read

ValidOut*

RdRdy*

Release*

Master
Processor External Agent

Chapter 15 System Interface Protocols

252 User’s Manual U11761EJ6V0UM

1. WrRdy* is asserted low, indicating the external agent is ready to accept a write
request.

2. A processor single non-block write request is issued by driving a write command
on the SysCmd bus and a write address on the SysAD bus. The physical address
is driven onto SysAD[35:0], and virtual address bits [13:12] are driven onto
SysAD[57:56]. All other bits are driven to zero.

3. The processor asserts ValidOut*.

4. The processor drives a data identifier on the SysCmd bus and data on the SysAD
bus.

5. The data identifier associated with the data cycle must contain a last data cycle
indication. At the end of the cycle, ValidOut* is deasserted.

NOTE: Timings for the SysADC and SysCmdP buses are the same as those of
the SysAD and SysCmd buses, respectively.

Figure 15-6 Processor Non-Coherent Non-Block Write Request Protocol

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Addr Data0

SysCmd Bus Write NEOD

ValidOut*

WrRdy*

Master
Processor

4

53
2

1

User’s Manual U11761EJ6V0UM 253

Chapter 15 System Interface Protocols

Figure 15-7 illustrates a non-secondary cache block write request.

Figure 15-7 Processor Non-Coherent, Non-Secondary Cache Block Write Request

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Addr Data0

SysCmd Write NData

ValidOut*

WrRdy*

Master
Processor

Data1 Data2 Data3

NData NEODNData

1

2
3

4

5

Chapter 15 System Interface Protocols

254 User’s Manual U11761EJ6V0UM

15.5.3 Processor Request Flow Control

The external agent uses RdRdy* to control the flow of processor read requests.

Figure 15-8 illustrates this flow control, as described in the steps below.

1. The processor samples the RdRdy* signal to determine if the external agent is
capable of accepting a read request.

2. Read request is issued to the external agent.

3. The external agent deasserts RdRdy*, indicating it cannot accept additional read
requests.

4. The read request issue is stalled because RdRdy* was negated two cycles earlier.

5. Read request is again issued to the external agent.

Figure 15-8 Processor Request Flow Control

Figure 15-9 illustrates two processor write requests in which the issue of the second is
delayed for the state of WrRdy*.

1. WrRdy* is state low, indicating the external agent is ready to accept a write
request.

2. The processor asserts ValidOut*, a write command on the SysCmd bus, and a
write address on the SysAD bus.

3. The second write request is delayed until the WrRdy* signal is again asserted.

SysCycle 1 2 3 4 5 6 7 8 9 10

SysClock

SysAD Addr0

RdRdy*

Master

External

D0 D1Addr1

SysCmd Read NEOD NEODRead

ValidOut*

ValidIn*

Release*

4 52 31

Processor Agent Processor
External
Agent

User’s Manual U11761EJ6V0UM 255

Chapter 15 System Interface Protocols

4. The processor does not complete the issue of a write request until it issues an
address cycle in response to the write request for which the signal WrRdy* was
asserted two cycles earlier.

NOTE: Timings for the SysADC and SysCmdP buses are the same as those of
the SysAD and SysCmd buses, respectively.

Figure 15-9 Two Processor Write Requests with Second Write Delayed

The VR5000 processor interface requires that WrRdy* be asserted two system cycles
prior to the issue of a write cycle. An external agent that negates WrRdy* immediately
upon receiving the write that fills its buffer will suspend any subsequent writes for four
system cycles in VR4000 non-block write-compatible mode. The processor always
inserts at least two unused system cycles after a write address/data pair in order to give
the external agent time to suspend the next write.

Figure 15-10 shows back-to-back write cycles in VR4000-compatible mode.

1. WrRdy* is asserted, indicating the processor can issue a write request.

2. WrRdy* remains asserted, indicating the external agent can accept another write
request.

3. WrRdy* deasserts, indicating the external agent cannot accept another write
request, stalling the issue of the next write request.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Addr Data0 Addr Data0

SysCmd Bus Write NEOD Write NEOD

ValidOut*

WrRdy*

Master Processor

1

2

43

Chapter 15 System Interface Protocols

256 User’s Manual U11761EJ6V0UM

Figure 15-10 VR4000-Compatible Back-to-Back Write Cycle Timing

An address/data pair every four system cycles is not sufficiently high performance for
all applications. For this reason, the VR5000 processor provides two protocol options
that modify the VR4000 back-to-back write protocol to allow an address/data pair
every two system cycles. These two protocols are as follows:

Write Reissue allows WrRdy* to be negated during the address cycle and forces
the write cycle to be re-issued.

Pipelined Writes leave the sample point of WrRdy* unchanged and require that
the external agent accept one more write than dictated by the VR4000 protocol.

SysCycle 1 2 3 4 5 6 7 8 9 10

SysClock

SysAD Bus Data Unused Addr Data

WrRdy*

Addr

1 2

Write #1 Write #2

3 4Cycles

Master Processor

11 12

Addr Data

Write #3

13

 ValidOut*

14

Unused UnusedUnused

321

User’s Manual U11761EJ6V0UM 257

Chapter 15 System Interface Protocols

The write re-issue protocol is shown in Figure 15-11. Writes issue when WrRdy* is
asserted both two cycles prior to the address cycle and during the address cycle.

1. WrRdy* is asserted, indicating the external agent can accept a write request.

2. WrRdy* remains asserted as the write is issued, and the external agent is ready to
accept another write request.

3. WrRdy* deasserts during the address cycle. This write request is aborted and
reissued.

4. WrRdy* is asserted, indicating the external agent can accept a write request.

5. WrRdy* remains asserted as the write is issued, and the external agent is able to
accept another write request.

Figure 15-11 Write Reissue

SysCycle

Issue Issue Issue Issue Issue Issue

SysClock

SysAD Addr0 Data0 Addr1 Data1 Addr1 Data1

SysCmd[8:0] Write NEOD Write NEOD Write NEOD

WrRdy*

No No No No

Master Processor

1 2 3 4 5 6 7 8 9 10 11

ValidOut*

1 2 3 4 5

Chapter 15 System Interface Protocols

258 User’s Manual U11761EJ6V0UM

The pipelined write protocol is shown in Figure 15-2. Writes issue when WrRdy* is
asserted two cycles before the address cycle and the external agent is required to accept
one more write after WrRdy* is negated.

1. WrRdy* is asserted, indicating the external agent can accept a write request.

2. WrRdy* remains asserted as the write is issued, and the external agent is able to
accept another write request.

3. WrRdy* is deasserted, indicating the external agent cannot accept another write
request; it does, however, accept this write.

4. WrRdy* is asserted, indicating the external agent can accept a write request.

Figure 15-12 Pipelined Writes

15.6 External Request Protocols

External requests can only be issued with the System interface in slave state. An
external agent asserts ExtRqst* to arbitrate for the System interface, then waits for the
processor to release the System interface to slave state by asserting Release* before
the external agent issues an external request. If the System interface is already in slave
state—that is, the processor has previously performed an uncompelled change to slave
state—the external agent can begin an external request immediately.

After issuing an external request, the external agent must return the System interface
to master state. If the external agent does not have any additional external requests to
perform, ExtRqst* must be deasserted two cycles after the cycle in which Release*

SysCycle

Issue Issue Issue Issue Issue Issue

SysClock

SysAD Addr0 Data0 Addr1 Data1 Addr2 Data2

SysCmd[8:0] Write NEOD Write NEOD Write NEOD

WrRdy*

No No No

1 2 3 4 5 6 7 8 9 10 11

Master Processor

ValidOut*

4321

User’s Manual U11761EJ6V0UM 259

Chapter 15 System Interface Protocols

was asserted. For a string of external requests, the ExtRqst* signal is asserted until
the last request cycle, whereupon it is deasserted two cycles after the cycle in which
Release* was asserted.

The processor continues to handle external requests as long as ExtRqst* is asserted;
however, the processor cannot release the System interface to slave state for a
subsequent external request until it has completed the current request. As long as
ExtRqst* is asserted, the string of external requests is not interrupted by a processor
request.

This section describes the following external request protocols:

• null

• write

• read response

15.6.1 External Arbitration Protocol

System interface arbitration uses the signals ExtRqst* and Release* as described
above. Figure 15-13 is a timing diagram of the arbitration protocol, in which slave and
master states are shown.

The arbitration cycle consists of the following steps:

1. The external agent asserts ExtRqst* when it wishes to submit an external request.

2. The processor waits until it is ready to handle an external request, whereupon it
asserts Release* for one cycle.

3. The processor sets the SysAD and SysCmd buses to tristate.

4. The external agent must wait at least two cycles after the assertion of Release*
before it drives the SysAD and SysCmd buses.

5. The external agent negates ExtRqst* two cycles after the assertion of Release*,
unless the external agent wishes to perform an additional external request.

6. The external agent sets the SysAD and the SysCmd buses to tristate at the
completion of an external request.

The processor can start issuing a processor request one cycle after the external agent
sets the bus to tristate.

NOTE: Timings for the SysADC and SysCmdP buses are the same as those of the
SysAD and SysCmd buses, respectively.

Chapter 15 System Interface Protocols

260 User’s Manual U11761EJ6V0UM

Figure 15-13 Arbitration Protocol for External Requests

15.6.2 External Null Request Protocol

The processor supports a system interface external null request, which returns the
System interface to master state from slave state without otherwise affecting the
processor.

External null requests require no action from the processor other than to return the
System interface to master state.

Figure 15-14 shows a timing diagram of an external null request, which consist of the
following steps:

1. The external agent drives a system interface release external null request
command on the SysCmd bus, and asserts ValidIn* for one cycle to return system
interface ownership to the processor.

2. The SysAD bus is unused (does not contain valid data) during the address cycle
associated with an external null request.

3. After the address cycle is issued, the null request is complete.

For a System interface release external null request, the external agent releases the
SysCmd and SysAD buses, and expects the System interface to return to the master
state.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Addr Data0

SysCmd Bus Cmd NEOD

ValidIn*

ExtRqst*

Release*

Processor Processor
External
 AgentMaster

3 4 6

5

2

1

User’s Manual U11761EJ6V0UM 261

Chapter 15 System Interface Protocols

Figure 15-14 System Interface Release External Null Request

15.6.3 External Write Request Protocol

External write requests use a protocol identical to the processor single word write
protocol except the ValidIn* signal is asserted instead of ValidOut*. Figure 15-15
shows a timing diagram of an external write request, which consists of the following
steps:

1. The external agent asserts ExtRqst* to arbitrate for the System interface.

2. The processor releases the System interface to slave state by asserting Release*.

3. The external agent drives a write command on the SysCmd bus, a write address
on the SysAD bus, and asserts ValidIn*.

4. The external agent drives a data identifier on the SysCmd bus, data on the SysAD
bus, and asserts ValidIn*.

5. The data identifier associated with the data cycle must contain a coherent or
noncoherent last data cycle indication.

6. After the data cycle is issued, the write request is complete and the external agent
sets the SysCmd and SysAD buses to a tristate, allowing the System interface to
return to master state. Timings for the SysADC and SysCmdP buses are the same
as those of the SysAD and SysCmd buses, respectively.

External write requests are only allowed to write a word of data to the processor.
Processor behavior in response to an external write request for any data element other
than a word is undefined.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Unsd

SysCmd Bus SINull

ValidOut*

ValidIn*

ExtRqst*

Release*

Master External Agent Processor

1

2

3

Chapter 15 System Interface Protocols

262 User’s Manual U11761EJ6V0UM

Figure 15-15 External Write Request, with System Interface Initially a Bus Master

15.6.4 Read Response Protocol

An external agent must return data to the processor in response to a processor read
request by using a read response protocol. A read response protocol consists of the
following steps:

1. The external agent waits for the processor to perform an uncompelled change to
slave state.

2. The processor returns the data through a single data cycle or a series of data cycles.

3. After the last data cycle is issued, the read response is complete and the external
agent sets the SysCmd and SysAD buses to a tristate.

4. The System interface returns to master state.

NOTE: The processor always performs an uncompelled change to slave state
after issuing a read request.

5. The data identifier for data cycles must indicate the fact that this data is response
data.

6. The data identifier associated with the last data cycle must contain a last data cycle
indication.

For read responses to non-coherent block read requests, the response data does not
need to identify the initial cache state. The cache state is automatically assigned as
dirty exclusive by the processor.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Addr Data0

SysCmd Bus Write NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

Master Processor External Agent Processor

3

2

5

6

1

4

User’s Manual U11761EJ6V0UM 263

Chapter 15 System Interface Protocols

The data identifier associated with a data cycle can indicate that the data transmitted
during that cycle is erroneous; however, an external agent must return a data block of
the correct size regardless of the fact that the data may be in error.

The processor only checks the error bit for the first doubleword of the block. The
remaining error bits for the block are ignored.

Read response data must only be delivered to the processor when a processor read
request is pending. The behavior of the processor is undefined when a read response
is presented to it and there is no processor read pending.

Figure 15-16 illustrates a processor word read request followed by a word read
response. Figure 15-17 illustrates a read response for a processor block read with the
System interface already in slave state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as those of
the SysAD and SysCmd buses, respectively.

Figure 15-16 Processor Word Read Request, Followed by a Word Read Response

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Addr Data0

SysCmd Bus Read NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

Processor External Agent ProcessorMaster

1

2 6

3 4

Chapter 15 System Interface Protocols

264 User’s Manual U11761EJ6V0UM

Figure 15-17 Block Read Response, System Interface already in Slave State

15.7 SysADC[7:0] Protocol

The following rules apply to the use of SysADC[7:0] during a block read response.

• Data is checked on only the first doubleword of the transfer. If data is
erroneous (SysCmd[5]=1), the primary and secondary cache lines are
invalidated and a bus error exception is generated.

• A parity error on the first doubleword will be detected as it issused and
will cause a cache parity error exception. The cache line will be valid.
Parity errors in subsequent doubles will be detected if they are used.

• On the following three doublewords; The data erroneous bit is ignored.
Parity for each of the three doublewords is written into the cache, but is
not checked until the data is referenced.

• Any read that will fill the secondary cache must receive correct parity for
all 4 doublewords (SysCmd[4]=0) for data going to the secondary cache.

• For a secondary cache mode read hit cycle; Data erroneous is implicitly
OFF. Check parity is implicitly ON, indicating that the secondary cache
must implement the SysADC bits.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Data0 Data1 Data2 Data3

SysCmd Bus NData NData NData NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

External Agent Processor

43

5 6
2

User’s Manual U11761EJ6V0UM 265

Chapter 15 System Interface Protocols

• If a memory error occurs during a block read operation, the SysADC bits
should be forced to bad parity for all bytes affected by the memory error
during the read response. Since the processor performs an early-restart on
data cache line fills, setting the SysCmd[5] bit on any transfer other than
the first doubleword does not cause a bus error. Forcing bad parity will
generate a cache error if any of the remaining three doublewords of the
transfer are referenced.

15.8 Data Rate Control

The System interface supports a maximum data rate of one doubleword per cycle. The
rate at which data is delivered to the processor can be determined by the external
agent—for example, the external agent can drive data and assert ValidIn* every n
cycles, instead of every cycle. An external agent can deliver data at any rate it chooses.

The processor only accepts cycles as valid when ValidIn* is asserted and the SysCmd
bus contains a data identifier; thereafter, the processor continues to accept data until it
receives the data word tagged as the last one.

Figure 15-18 shows a read response in which data is provided to the processor at a rate
of two doublewords every three cycles using the data pattern DDx.

Figure 15-18 Read Response, Reduced Data Rate, System Interface in Slave State

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD Bus Data0 Data1 Data2 Data3

SysCmd Bus NData NData NData NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

Master External Agent Processor

Chapter 15 System Interface Protocols

266 User’s Manual U11761EJ6V0UM

15.9 Data Transfer Patterns

A data pattern is a sequence of letters indicating the data and unused cycles that repeat
to provide the appropriate data rate. For example, the data pattern DDxx specifies a
repeatable data rate of two doublewords every four cycles, with the last two cycles
unused. Table 15-2 lists the maximum processor data rate for each of the possible
block write modes that may be specified at boot time.

Table 15-2 Transmit Data Rates and Patterns

In Table 15-2, data patterns are specified using the letters D and x; D indicates a data
cycle and x indicates an unused cycle.

Maximum Data Rate Data Pattern
1 Double/1 SysClock Cycle DDDD

2 Doubles/3 SysClock Cycles DDxDDx

1 Double/2 SysClock Cycles DDxxDDxx

1 Double/2 SysClock Cycles DxDxDxDx

2 Doubles/5 SysClock Cycles DDxxxDDxxx

1 Double/3 SysClock Cycles DDxxxxDDxxxx

1 Double/3 SysClock Cycles DxxDxxDxxDxx

1 Double/4 SysClock Cycles DDxxxxxxDDxxxxxx

1 Double/4 SysClock Cycles DxxxDxxxDxxxDxxx

User’s Manual U11761EJ6V0UM 267

Chapter 15 System Interface Protocols

15.10 Independent Transmissions on the SysAD Bus

In most applications, the SysAD bus is a point-to-point connection, running from the
processor to a bidirectional registered transceiver residing in an external agent. For
these applications, the SysAD bus has only two possible drivers, the processor or the
external agent.

Certain applications may require connection of additional drivers and receivers to the
SysAD bus, to allow transmissions over the SysAD bus that the processor is not
involved in. These are called independent transmissions. To effect an independent
transmission, the external agent must coordinate control of the SysAD bus by using
arbitration handshake signals and external null requests.

An independent transmission on the SysAD bus follows this procedure:

1. The external agent requests mastership of the SysAD bus, to issue an external
request.

2. The processor releases the System interface to slave state.

3. The external agent then allows the independent transmission to take place on the
SysAD bus, making sure that ValidIn* is not asserted while the transmission is
occurring.

4. When the transmission is complete, the external agent must issue a System
interface release external null request to return the System interface to master
state.

15.11 System Interface Endianness

The endianness of the System interface is programmed at boot time through the boot-
time mode control interface and the BigEndian pin. The BigEndian pin allows the
system to change the processor addressing mode without rewriting the mode ROM. If
endianness is to be specified via the BigEndian pin, program mode ROM bit 8 to zero.
If endianness is to be specified by the mode ROM, ground the BigEndian pin.
Software cannot change the endianness of the System interface and the external
system; software can set the reverse endian bit to reverse the interpretation of
endianness inside the processor, but the endianness of the System interface remains
unchanged.

Chapter 15 System Interface Protocols

268 User’s Manual U11761EJ6V0UM

15.12 System Interface Cycle Time

The processor specifies minimum and maximum cycle counts for various processor
transactions and for the processor response time to external requests. Processor
requests themselves are constrained by the System interface request protocol, and
request cycle counts can be determined by examining the protocol. The following
System interface interactions can vary within minimum and maximum cycle counts:

• waiting period for the processor to release the System interface to slave
state in response to an external request (release latency)

• response time for an external request that requires a response (external
response latency).

The remainder of this section describes and tabulates the minimum and maximum
cycle counts for these System interface interactions.

15.13 Release Latency

Release latency is generally defined as the number of cycles the processor can wait to
release the System interface to slave state for an external request. When no processor
requests are in progress, internal activity can cause the processor to wait some number
of cycles before releasing the System interface. Release latency is therefore more
specifically defined as the number of cycles that occur between the assertion of
ExtRqst* and the assertion of Release*.

There are three categories of release latency:

• Category 1: when the external request signal is asserted two cycles before
the last cycle of a processor request.

• Category 2: when the external request signal is not asserted during a
processor request or is asserted during the last cycle of a processor
request.

• Category 3: when the processor makes an uncompelled change to slave
state.

User’s Manual U11761EJ6V0UM 269

Chapter 15 System Interface Protocols

Table 15-3 summarizes the minimum and maximum release latencies for requests that
fall into categories 1, 2, and 3. Note that the maximum and minimum cycle count
values are subject to change.

Table 15-3 Release Latency for External Requests

15.14 System Interface Commands/Data Identifiers

System interface commands specify the nature and attributes of any System interface
request; this specification is made during the address cycle for the request. System
interface data identifiers specify the attributes of data transmitted during a System
interface data cycle.

The following sections describe the syntax, that is, the bitwise encoding of System
interface commands and data identifiers.

Reserved bits and reserved fields in the command or data identifier should be set to 1
for System interface commands and data identifiers associated with external requests.
For System interface commands and data identifiers associated with processor
requests, reserved bits and reserved fields in the command and data identifier are
undefined.

15.14.1 Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in 9 bits and are
transmitted on the SysCmd bus from the processor to an external agent, or from an
external agent to the processor, during address and data cycles. Bit 8 (the most-
significant bit) of the SysCmd bus determines whether the current content of the
SysCmd bus is a command or a data identifier and, therefore, whether the current cycle
is an address cycle or a data cycle. For System interface commands, SysCmd(8) must
be set to 0. For System interface data identifiers, SysCmd(8) must be set to 1.

Category Minimum PCycles Maximum PCycles

1 4 6

2 4 24

3 0 0

Chapter 15 System Interface Protocols

270 User’s Manual U11761EJ6V0UM

15.14.2 System Interface Command Syntax

This section describes the SysCmd bus encoding for System interface commands.
Figure 15-19 shows a common encoding used for all System interface commands.

Figure 15-19 System Interface Command Syntax Bit Definition

SysCmd(8) must be set to 0 for all System interface commands.

SysCmd(7:5) specify the System interface request type which may be read, write, or
null. Table 15-4 shows the types of requests encoded by the SysCmd(7:5) bits.

Table 15-4 Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(4:0) are specific to each type of request and are defined in each of the
following sections.

(1) Read Requests

Figure 15-20 shows the format of a SysCmd read request.

Figure 15-20 Read Request SysCmd Bus Bit Definition

Tables 15-5 through 15-7 list the encodings of SysCmd(4:0) for read requests.

SysCmd(7:5) Command

0 Read Request

1 Reserved

2 Write Request

3 Null Request

4-7 Reserved

Request Type0 Request Specific

8 7 5 4 0

000 0

8 7 5 4 03 2 1

Read Request Specific
(see tables)

User’s Manual U11761EJ6V0UM 271

Chapter 15 System Interface Protocols

Table 15-5 Encoding of SysCmd(4:3) for Read Requests

Table 15-6 Encoding of SysCmd(1:0) for Block Read Request

Table 15-7 Read Request Data Size Encoding of SysCmd(2:0)

(2) Write Requests

Figure 15-21 shows the format of a SysCmd write request.

Table 15-8 lists the write attributes encoded in bits SysCmd(4:3). Table 15-9 lists the
block write replacement attributes encoded in bits SysCmd(2:0). Table 15-10 lists the
write request bit encodings in SysCmd(2:0).

Figure 15-21 Write Request SysCmd Bus Bit Definition

SysCmd(4:3) Read Attributes

0-1 Reserved

2 Noncoherent block read

3 Doubleword, partial doubleword, word, or partial word

SysCmd(1:0) Read Block Size

0 Reserved

1 8 words

2-3 Reserved

SysCmd(2:0) Read Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

010 0

8 7 5 4 03 2 1

Write Request Specific
(see tables)

Chapter 15 System Interface Protocols

272 User’s Manual U11761EJ6V0UM

Table 15-8 Write Request Encoding of SysCmd(4:3)

Table 15-9 Block Write Request Encoding of SysCmd(2:0)

Table 15-10 Write Request Data Size Encoding of SysCmd(2:0)

(3) Null Requests

Figure 15-22 shows the format of a SysCmd null request.

Figure 15-22 Null Request SysCmd Bus Bit Definition

SysCmd(4:3) Write Attributes

0 Reserved

1 Reserved

2 Block write

3
Doubleword, partial doubleword, word, or
partial word

SysCmd(2) Reserved

SysCmd(1:0) Write Block Size

0 Reserved

1 8 words

2-3 Reserved

SysCmd(2:0) Write Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

0110

8 7 5 4 03 2 1

Null Request Specific
(see tables)

User’s Manual U11761EJ6V0UM 273

Chapter 15 System Interface Protocols

System interface release external null requests use the null request command. Table
15-11 lists the encodings of SysCmd(4:3) for external null requests.

SysCmd(2:0) are reserved for null requests.

Table 15-11 External Null Request Encoding of SysCmd(4:3)

15.14.3 System Interface Data Identifier Syntax

This section defines the encoding of the SysCmd bus for System interface data
identifiers. Figure 15-23 shows a common encoding used for all System interface data
identifiers.

Figure 15-23 Data Identifier SysCmd Bus Bit Definition

SysCmd(8) must be set to 1 for all System interface data identifiers.

NOTE: SysCmd(4) is reserved for processor data identifier. In an external data
identifier, SysCmd(4) indicates whether or not to check the data and check bits
for error.

(1) Noncoherent Data

Noncoherent data is defined as follows:

• data that is associated with processor block write requests and processor
doubleword, partial doubleword, word, or partial word write requests

• data that is returned in response to a processor noncoherent block read
request or a processor doubleword, partial doubleword, word, or partial
word read request

• data that is associated with external write requests

• data that is returned in response to an external read request

SysCmd(4:3) Null Attributes

0 System Interface release

1-3 Reserved

Last
Data

1

8 7 5 4 03 2

Resp
Data

6

Err
Data

See
Note
below

Cache
State

Reserved

Chapter 15 System Interface Protocols

274 User’s Manual U11761EJ6V0UM

(2) Data Identifier Bit Definitions

SysCmd(7) marks the last data element and SysCmd(6) indicates whether or not the
data is response data, for both processor and external coherent and noncoherent data
identifiers. Response data is data returned in response to a read request.

SysCmd(5) indicates whether or not the data element is error free. Erroneous data
contains an uncorrectable error and is returned to the processor, forcing a bus error. In
the case of a block response, the entire line must be delivered to the processor no matter
how minimal the error. Note that the processor only checks SysCmd[5] during the first
doubleword of a block read response.

SysCmd(4) indicates to the processor whether to check the data and check bits for this
data element, for both coherent and noncoherent external data identifiers.

SysCmd(3) is reserved for external data identifiers.

SysCmd(4:3) are reserved for noncoherent processor data identifiers.

SysCmd(2:0) are reserved for non-coherent data identifiers.

Table 15-12 lists the encodings of SysCmd(7:3) for processor data identifiers. Table
15-13 lists the encodings of SysCmd(7:3) for external data identifiers.

Table 15-12 Processor Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4) Data Parity Checking Enable

0 Check data parity

1 Ignore data parity

SysCmd(3) Reserved

User’s Manual U11761EJ6V0UM 275

Chapter 15 System Interface Protocols

Table 15-13 External Data Identifier Encoding of SysCmd(7:3)

15.15 System Interface Addresses

System interface addresses are full 36-bit physical addresses presented on the least-
significant 36 bits (bits 35 through 0) of the SysAD bus during address cycles. Virtual
address bits VA[13:12] appear on SysAD[57:56]. The remaining bits of the SysAD
bus are unused during address cycles.

15.15.1 Addressing Conventions

Addresses associated with doubleword, partial doubleword, word, or partial word
transactions and update requests, are aligned for the size of the data element. The
system uses the following address conventions:

• Addresses associated with block requests are aligned to double-word
boundaries; that is, the low-order 3 bits of address are 0.
However, when the Branch instruction is used to jump to a word
boundary (SysAD[2:0]=100) which is not a double-word boundary
(SysAD[2:0]=000) of the non-cache area, LOW is not output for the low-
order 3rd bit of the address that is output to SysAD for instruction
fetching; instead, SysAD[2:0]=100 is output.

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4) Data Checking Enable

0 Check the data and check bits

1 Do not check the data and check bits

SysCmd(3) Reserved

Chapter 15 System Interface Protocols

276 User’s Manual U11761EJ6V0UM

In other words, when a jump to the non-cache area with a low-order byte
address of 0x4 and 0xC has occurred, double-word access occurs but the
low-order bytes of the output address remain as 0x4 and 0xC.
Immediately after such a branch, the CPU uses the word data whose byte
addresses are indicated by 0x4 and 0xC.

• Doubleword requests set the low-order 3 bits of address to 0.

• Word requests set the low-order 2 bits of address to 0.

• Halfword requests set the low-order bit of address to 0.

• Byte, tribyte, quintibyte, sextibyte, and septibyte requests use the byte
address.

15.15.2 Subblock Ordering

The order in which data is returned in response to a processor block read request is
subblock ordering. In subblock ordering, the processor delivers the address of the
requested doubleword within the block. An external agent must return the block of
data using subblock ordering, starting with the addressed doubleword.

For block write requests, the processor always delivers the address of the doubleword
at the beginning of the block; the processor delivers data beginning with the
doubleword at the beginning of the block and progresses sequentially through the
doublewords that form the block.

During data cycles, the valid byte lines depend upon the position of the data with
respect to the aligned doubleword (this may be a byte, halfword, tribyte, quadbyte/
word, quintibyte, sextibyte, septibyte, or an octalbyte/doubleword). For example, in
little-endian mode, on a byte request where the address modulo 8 is 0, SysAD(7:0) are
valid during the data cycles. Table 15-14 lists the byte lanes used for partial word
transfers for both big and little endian.

User’s Manual U11761EJ6V0UM 277

Chapter 15 System Interface Protocols

Table 15-14 Partial Word Transfer Byte Lane Usage

Bytes
SysCmd[2:0]

Address
Mod 8

SysAD byte lanes used (Big Endian)

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

1
(000)

0 X

1 X

2 X

3 X

4 X

5 X

6 X

7 X

2
(001)

0 X X

2 X X

4 X X

6 X X

3
(010)

0 X X X

1 X X X

4 X X X

5 X X X

4
(011)

0 X X X X

4 X X X X

5
(100)

0 X X X X X

3 X X X X X

6
(101)

0 X X X X X X

2 X X X X X X

7
(110)

0 X X X X X X X

1 X X X X X X X

8 (111) 0 X X X X X X X X

7:0 15:8 23:16 31:24 39:32 47:40 55:48 63:56

SysAD byte lanes used (Little Endian)

Chapter 15 System Interface Protocols

278 User’s Manual U11761EJ6V0UM

15.15.3 Processor Internal Address Map

External reads and writes provide access to processor internal resources that may be of
interest to an external agent. The processor decodes bits SysAD(6:4) of the address
associated with an external read or write request to determine which processor internal
resource is the target. However, the processor does not contain any resources that are
readable through an external read request. Therefore, in response to an external read
request the processor returns undefined data and a data identifier with its Erroneous
Data bit, SysCmd(5), set. The Interrupt register is the only processor internal resource
available for write access by an external request. The Interrupt register is accessed by
an external write request with an address of 0002 on bits 6:4 of the SysAD bus.

15.16 Error Checking

15.16.1 Parity Error Checking

The VR5000 processor uses only parity (error detection only).

Parity is the simplest error detection scheme. By appending a bit to the end of an item
of data—called a parity bit—single bit errors can be detected; however, these errors
cannot be corrected.

User’s Manual U11761EJ6V0UM 279

Chapter 15 System Interface Protocols

There are two types of parity:

• Odd Parity adds 1 to any even number of 1s in the data, making the total
number of 1s odd (including the parity bit).

• Even Parity adds 1 to any odd number of 1s in the data, making the total
number of 1s even (including the parity bit).

Odd and even parity are shown in the example below:

Data(3:0) Odd Parity Bit Even Parity Bit

0 0 1 0 0 1

The example above shows a single bit in Data(3:0) with a value of 1; this bit is
Data(1).

• In even parity, the parity bit is set to 1. This makes 2 (an even number)
the total number of bits with a value of 1.

• Odd parity makes the parity bit a 0 to keep the total number of 1-value
bits an odd number—in the case shown above, the single bit Data(1).

The example below shows odd and even parity bits for various data values:

Data(3:0) Odd Parity Bit Even Parity Bit

0 1 1 0 1 0

0 0 0 0 1 0

1 1 1 1 1 0

1 1 0 1 0 1

Parity allows single-bit error detection, but it does not indicate which bit is in error—
for example, suppose an odd-parity value of 00011 arrives. The last bit is the parity
bit, and since odd parity demands an odd number (1,3,5) of 1s, this data is in error: it
has an even number of 1s. However it is impossible to tell which bit is in error.

15.16.2 Error Checking Operation

The processor verifies data correctness by using parity as it passes data from the
System interface to/from the primary caches.

Chapter 15 System Interface Protocols

280 User’s Manual U11761EJ6V0UM

(1) System Interface

The processor generates correct check bits for doubleword, word, or partial-word data
transmitted to the System interface. As it checks for data correctness, the processor
passes data check bits from the primary cache, directly without changing the bits, to
the System interface.

The processor does not check data received from the System interface for external
writes. By setting the SysCmd[4] bit in the data identifier, it is possible to prevent the
processor from checking read response data from the System interface.

The processor does not check addresses received from the System interface and does
not generate check bits for addresses transmitted to the System interface.

The processor does not contain a data corrector; instead, the processor takes a cache
error exception when it detects an error based on data check bits. Software is
responsible for error handling.

(2) System Interface Command Bus

In the VR5000 processor, the System interface command bus has a single parity bit,
SysCmdP, that provides even parity over the 9 bits of this bus. The SysCmdP parity
bit is not generated when the system interface is in master state and is not checked
when the System interface is in slave state. This signal is defined to maintain VR4000
compatibility and is not functional in the VR5000.

User’s Manual U11761EJ6V0UM 281

Chapter 15 System Interface Protocols

(3) Summary of Error Checking Operations

Error checking operations are summarized in Table 15-15 and 15-16.

Table 15-15 Error Checking Operation for Internal Transactions

Bus
Uncached

Load
Uncached

Store

Primary
Cache Load
from System

Interface

Primary
Cache Write to

System
Interface

Cache
Instruction

Processor Data From system Not checked From system
interface
unchanged

Checked; Trap
on error

 Check on
cache write-
back; Trap
on error

System Address,
Command, and
Check bits;
Transmit

Not
Generated

Not
Generated

Not
Generated

Not
Generated

Not
Generated

System Address,
Command, and
Check Bits;
Receive

Not Checked Not Checked Not Checked Not Checked Not Checked

System
Interface Data

Checked,
Trap on error

From
Processor

Checked on
requested
doubleword,
Trap on error

From primary
cache

From primary
cache

System
Interface Data
Check Bits

Checked,
Trap on error

Generated Checked on
requested
doubleword,
Trap on error

From primary
cache

From primary
cache

Chapter 15 System Interface Protocols

282 User’s Manual U11761EJ6V0UM

Table 15-16 Error Checking Operation for External Transactions

Bus External Write

Processor Data NA

System Address, Command, and Check
bits; Transmit

NA

System Address, Command, and Check
Bits; Receive

Not Checked

System Interface Data Not Checked

System Interface Data Check Bits Not Checked

User’s Manual U11761EJ6V0UM 283

Chapter 16 Secondary Cache Interface

The VR5000 processor supports an external secondary cache by providing an internal
secondary cache controller with a dedicated secondary cache port.

16.1 Secondary Cache Transactions

For processors configured with a secondary cache, the secondary cache is a special
form of external agent that is jointly controlled by both the processor and the external
agent. Figure Figure 16-1 illustrates a processor request to the secondary cache and
external agent.

Chapter 16 Secondary Cache Interface

284 User’s Manual U11761EJ6V0UM

Figure 16-1 Processor Requests to Secondary Cache and External Agent

16.1.1 Secondary Cache Probe, Invalidate, and Clear

For secondary cache invalidate, clear, and probe operations, the secondary cache is
controlled by the processor and the external agent is not involved in these operations.
Issuance of secondary cache invalidate, clear, and probe operations is not flow-
controlled and proceeds at the maximum data rate. Figures 16-2 and 16-3 shows the
secondary cache invalidate and tag probe operations.

Figure 16-2 Secondary Cache Invalidate and Clear

VR5000

Processor Requests
• Read
• Write

External Agent

Secondary Cache

VR5000

1. Invalidate/Clear Request

Secondary Cache

User’s Manual U11761EJ6V0UM 285

Chapter 16 Secondary Cache Interface

Figure 16-3 Secondary Cache Tag Probe

16.1.2 Secondary Cache Write

For secondary cache write-through, the processor issues a block write operation that is
directed to both the secondary cache and the external agent. Issuance of secondary
cache writes is controlled by the normal WrRdy* flow control mechanism. Secondary
cache write data transfers proceed at the data transfer rate specified in the Mode ROM
for block writes. Figure 16-4 illustrates a secondary cache write operation.

Figure 16-4 Secondary Cache Write Through

VR5000

1. Probe Request

Secondary Cache

2. Tag Response

VR5000
External Agent

Secondary Cache

1. Block Write Request
2. Write Response

Chapter 16 Secondary Cache Interface

286 User’s Manual U11761EJ6V0UM

16.1.3 Secondary Cache Read

For secondary cache reads, the processor issues a block read speculatively to both the
secondary cache and the external agent.

- If the block is present in the secondary cache, the secondary cache
provides the read response and the block read to the external agent
is aborted.

- If the block is not present in the secondary cache, the secondary
cache read is aborted and the external agent provides the read
response to both the secondary cache and the processor.

Figures 16-5 and 16-6 shows a secondary cache read hit and miss respectively.

Figure 16-5 Secondary Cache Read Hit

VR5000

1. Block Read Request

External Agent

Secondary Cache

2. Tag Compare

3. Read Response

3. Memory Read Abort

User’s Manual U11761EJ6V0UM 287

Chapter 16 Secondary Cache Interface

Figure 16-6 Secondary Cache Read Miss

Issuance of the secondary cache read is controlled by the normal RdRdy* flow control
mechanism. Secondary cache read responses always proceed at the maximum data
transfer rate. External agent read responses to the secondary cache proceed at the data
transfer rate generated by the external agent.

16.2 Secondary Cache Read Protocol

There are three possible scenarios which can occur on a secondary cache access.

1) Secondary cache read hit

2) Secondary cache miss

3) Secondary cache miss with bus error

VR5000

1. Block Read Request

External Agent

Secondary Cache

2. Tag Compare

3. Read Response

3. Fill Cache Line

Chapter 16 Secondary Cache Interface

288 User’s Manual U11761EJ6V0UM

16.2.1 Secondary Cache Read Hit

Figure 16-7 shows the secondary cache read hit protocol. When a block read request
is speculatively issued to both the secondary cache and the external agent, but
completed by the secondary cache:

1. The processor issues a block read request and also asserts the ScTCE*,
ScTDE*, and ScDCE* secondary cache control signals. In addition the
processor drives the cache index onto ScLine[15:0] and the sub-block order
doubleword onto ScWord[1:0]. Assertion of ScTCE*, along with ValidOut*
and SysCmd, indicates to the external agent that this is a secondary cache read
request. In addition, the assertion of ScTCE* initiates a tag RAM probe. The
assertion of ScTDE* loads the tag portion of the SysAD bus into the tag RAM.
The ScValid signal is asserted to probe for a valid cache tag. The assertion of
ScDCE* initiates a speculative read of the secondary cache data RAMs.

2. The ScMatch signal from the tag RAM is sampled by both the processor and the
external agent. Assertion of ScMatch indicates a secondary cache tag hit, causing
the external agent to abort the memory read. Hence there is no uncompelled
change to slave state. The data RAMs now own SysAD and supply the first of a
4 doubleword burst in response to the 4-cycle ScDCE* burst. The SysCmd bus
is not driven during the secondary cache read.

3. Ownership of the SysAD bus is returned to the processor.

User’s Manual U11761EJ6V0UM 289

Chapter 16 Secondary Cache Interface

Figure 16-7 Secondary Cache Read Hit

16.2.2 Secondary Cache Read Miss

Figure 16-8 shows the secondary cache read miss protocol when a block read request
is speculatively issued to both the secondary cache and the external agent, but is
completed by the external agent with a response to both the secondary cache and the
processor.

1. The processor issues a block read request and also asserts the ScTCE*,
ScTDE*, ScDCE*, and ScValid signals and drives the cache index onto
ScLine[15:0] and ScWord[1:0].

2. The ScMatch signal from the tag RAM is sampled by the processor and external
agent. Since the signal is negated, indicating a secondary cache miss, the SysAD
data from the secondary cache is invalid.

SysClock

SysAD Addr Data0 Data1 Data2 Data3

SysCmd[8:0] Read

ScLine[15:0] Index

ScWord[1:0] I0 I1 I2 I3

ScTCE*

ScTDE*

ScValid

ScMatch

ScDCE*

ValidOut*

Release*

 SysCycle 1 2 3 4 5 6 7 8 9 10

Processor Secondary Cache ProcessorMaster

ScSWE*

ScDOE*

2

1

3

Chapter 16 Secondary Cache Interface

290 User’s Manual U11761EJ6V0UM

3. The external agent negates ScDOE* to tri-state the data RAM outputs,
indicating that it will be supplying the read response. The processor tri-states its
ScWord[1:0] outputs to allow the external agent to drive them during the read
response.

4. The processor asserts ScCWE* to prepare the data RAMs for a write of the
response data.

5. The external agent supplies the first doubleword of the read response and asserts
ValidIn*. The data is both written into the secondary cache and accepted by the
processor. SysCmd indicates that data is not erroneous. Note that this response
may be delayed additional cycles.

6. The processor asserts ScTCE* to write the tag value stored in the tag RAM data
input register two cycles after ValidIn* is asserted.

7. The external agent asserts ScDOE* to indicate that it will supply the last
doubleword of the read response in the next cycle.

8. The processor negates ScDCE* two cycles after the next assertion of ScDOE*
in order to complete the secondary cache line fill.

User’s Manual U11761EJ6V0UM 291

Chapter 16 Secondary Cache Interface

Figure 16-8 Secondary Cache Read Miss

16.2.3 Secondary Cache Read Miss with Bus Error

Figure 16-9 shows a secondary cache read miss with bus error protocol. This protocol
is the same as the secondary cache read miss except:

1. The external agent supplies the first doubleword of the read response data with the
data error bit set (SysCmd[5]=1). Note that the data error bit of SysCmd is only
checked during the first coubleword of a read response.

2. The processor asserts ScTCE* and SCTDE* to write the new tag value into the
secondary cache tag RAM with ScValid negated to invalidate this line.

SysClock

SysAD Addr Data0 Data1 Data0 Data1 Data2 Data3

SysCmd[8:0] Read NData NData NData NEOD

ScLine[15:0] Index

ScWord[1:0] I0 I1 I2 I3 I0 I1 I2 I3

ScTCE*

ScTDE*

ScValid

ScMatch

ScDCE*

ScCWE*

ScDOE*

ValidOut*

Release*

ValidIn*

 SysCycle 1 2 3 4 5 6 7 8 9 10

Master Processor Secondary Cache External Agent

ScTOE*

3

6

8

7

4

5

2

1

Chapter 16 Secondary Cache Interface

292 User’s Manual U11761EJ6V0UM

Figure 16-9 Secondary Cache Read Miss with Bus Error

16.3 Secondary Cache Write

Figure 16-10 shows a secondary cache write protocol. For the external agent, this
protocol is the same as a non-secondary cache mode block write to the external agent,
but the data is also written into the secondary cache.

SysClock

SysAD Addr Data0 Data1 Data0 Data1 Data2 Data3

SysCmd[8:0] Read NData NData NData NEOD

ScLine[15:0] Index

ScWord[1:0] I0 I1 I2 I3 I0 I1 I2 I3

ScTCE*

ScTDE*

ScValid

ScMatch

ScDCE*

ScCWE*

ScDOE*

ValidOut*

Release*

ValidIn*

 SysCycle 1 2 3 4 5 6 7 8 9 10

 Master Processor Secondary Cache External Agent

ScTOE*

1

2

User’s Manual U11761EJ6V0UM 293

Chapter 16 Secondary Cache Interface

1. The processor issues a block write and also asserts ScTCE*, ScTDE*, and
ScCWE* in order to write the tag portion of the address on SysAD into the
secondary cache tag RAM. The processor asserts ScValid to set the secondary
cache tag to valid.

2. The processor asserts ScDCE* to write the block into the secondary cache data
RAMs.

Figure 16-10 Secondary Cache Write Operation

SysClock

SysAD Address Data0 Data1 Data2 Data3

SysCmd[8:0] Write NData NData NData NEOD

ScLine[15:0] Index

ScWord[1:0] I0 I1 I2 I3

ScTCE*

ScTDE*

ScValid

ScDCE*

ScCWE*

ValidOut*

 SysCycle 1 2 3 4 5 6 7 8 9 10

Master Processor

ScTOE*

ScDOE*

1

2

Chapter 16 Secondary Cache Interface

294 User’s Manual U11761EJ6V0UM

16.4 Secondary Cache Line Invalidate

The VR5000 processor has the ability to invalidate either a single line or 128
consecutive lines (address aligned) of the secondary cache. The invalidate operation is
analogous to writing to the Tag RAM and invalidating the line in question. The
ScTCE*, ScTDE*, and ScCWE* signals are driven active in the same clock as the
SysAD and ScLine busses with ScValid negated. Invalidates are the only cache
operations which may occur back-to-back. Note that ValidOut* is not asserted during
secondary cache invalidate operations as the external agent does not participate in
secondary cache invalidates.

Figure 16-11 shows the secondary cache invalidate protocol.

Figure 16-11 Secondary Cache Line Invalidate

The repeat rate for cache line invalidate instructions is two SysClocks. The repeat
rate for cache page invalidate is one SysClock per line for 128 consecutive
SysClock cycles.

SysClock

SysAD Tag

SysCmd[8:0] Write

ScLine[15:0] Index

ScTCE*

ScTDE*

ScDCE*

 SysCycle 1 2 3 4 5

Master Processor

ScValid

ValidOut*

ScCWE*

ScTOE*

User’s Manual U11761EJ6V0UM 295

Chapter 16 Secondary Cache Interface

16.5 Secondary Cache Probe Protocol

The secondary cache probe operation is analogous to a Tag RAM read operation. The
ScTCE* and ScTDE* signals are asserted in the same clock as system address and
the secondary cache line index. The processor then tri-states the SysAD bus. ScTOE*
is asserted one clock later and the tag information is driven onto the SysAD bus.
ValidOut* is not asserted during a secondary cache probe operation as the external
agent does not participate in secondary cache probes. The Tag RAM bits are driven
onto SysAD [35:19] and ScValid, which are the only SysAD signals valid during a
probe operation. Figure 16-12 shows a timing diagram of a secondary cache probe
protocol.

Figure 16-12 Secondary Cache Probe (Tag RAM Read)

SysClock

SysAD[36:19] Addr Tag

SysCmd[8:0] Read

ScLine[15:0] Index

ScTCE*

ScTDE*

ScTOE*

SysCycle 1 2 3 4 5

Master
Processor

Secondary
Cache

ScValid Valid

ScDCE*

ScCWE*

ValidOut*

Chapter 16 Secondary Cache Interface

296 User’s Manual U11761EJ6V0UM

16.6 Secondary Cache Flash Clear Protocol

In addition to the line invalidate operation, the VR5000 processor also has the ability
to invalidate the entire secondary cache in one operation. This operation allows the
processor to clear the entire column of Tag RAM valid bits. In order to execute this
operation the Tag RAM must support a flash clear of the valid bit column. As with the
line invalidate operation, ValidOut* is not asserted during the flash clear operation as
the external agent does not participate in flash clear operations. In addition, the
ScTCE*, ScTDE*, and ScCWE* signals need not be asserted. The assertion of
ScCLR* is all that is necessary for the Tag RAM to perform the requested operation.
Figure 16-13 illustrates the secondary cache flash clear protocol.

Figure 16-13 Secondary Cache Flash Clear

16.7 Secondary Cache Mode Configuration

The secondary cache configuration is specified by the processor ROM mode serial bit
[15]. The state of this bit is indicated by the Secondary Cache (SC) bit in the CP0
config register (bit 17). If bit [17] is zero, a secondary cache is present in the system.
If no secondary cache is present, or the secondary cache is disabled, the processor
drives all secondary cache signals to their inactive state.

If no secondary cache is present and the mode ROM is configured for no secondary
cache, the ScMatch and ScDOE* signals become don’t-care inputs and must be
terminated to valid logic levels. If the secondary cache is present and enabled, then the
SysADC signals must implement valid parity during block read responses.

The doublewords transferred on SysAD during secondary cache block read
transactions are in sub-block order. The doublewords transferred on SysAD during
secondary cache block write transactions are in sequential order.

SysClock

ScCLR*

SysCycle 1 2 3 4 5

Master
Processor

User’s Manual U11761EJ6V0UM 297

Chapter 16 Secondary Cache Interface

The size of the secondary cache is indicated by the processor mode ROM serial bits
[17:16], and are encoded as follows:

[17:16] = 00 - 512 KB

[17:16] = 01 - 1 MB

[17:16] = 10 - 2 MB

[17:16] = 11 - Reserved

The state of these bits appear as CP0 config register bits [21:20].

298 User’s Manual U11761EJ6V0UM

Chapter 17 Interrupts

The VR5000 processor supports the following interrupts: six hardware interrupts, one
internal “timer interrupt,” two software interrupts, and one nonmaskable interrupt.
The processor takes an exception on any interrupt. This chapter describes the six
hardware and single nonmaskable interrupts.

17.1 Hardware Interrupts

The six CPU hardware interrupts can be caused by either an external write request to
the VR5000, or through dedicated interrupt pins. These pins are latched into an
internal register by the rising edge of SysClock.

User’s Manual U11761EJ6V0UM 299

Chapter 17 Interrupts

17.2 Nonmaskable Interrupt (NMI)

The nonmaskable interrupt is caused either by an external write request to the VR5000
or by a dedicated pin in the VR5000. This pin is latched into an internal register by the
rising edge of SysClock.

Caution If a pipeline cancelling logic (e.g. cache error, bus error) occurs after
the VR5000 detects an NMI by the VR5000 starts the NMI handling,
the NMI will be cancelled and only the pipeline cancelling logic will be
handled.
If an NMI cancellation occurred, make NMI* inactive once and then
make it active again after the NMI cancellation.

17.3 Asserting Interrupts

External writes to the CPU are directed to various internal resources, based on an
internal address map of the processor. When SysAD[6:4] = 0, an external write to any
address writes to an architecturally transparent register called the Interrupt register;
this register is available for external write cycles, but not for external reads.

During a data cycle, SysAD[22:16] are the write enables for the seven individual
Interrupt register bits and SysAD[6:0] are the values to be written into these bits. This
allows any subset of the Interrupt register to be set or cleared with a single write
request. Figure 17-1 shows the mechanics of an external write to the Interrupt register.

Figure 17-1 Interrupt Register Bits and Enables

3 2 015 46

19 18 161721 2022

SysAD(6:0)
Interrupt Value

SysAD(22:16)
Write Enables

Interrupt register

See Figures 17-2
and 17-3.

2

1

0

4

3

5

6

Chapter 17 Interrupts

300 User’s Manual U11761EJ6V0UM

Figure 17-2 shows how the VR5000 interrupts are readable through the Cause register.

• Bit 5 of the Interrupt register is OR’ed with the Int*[5] pin and then
multiplexed with the TimerInterrupt signal. The result is directly
readable as bit 15 of the Cause register.

• Bits 4:0 of the Interrupt register are bit-wise OR’ed with the current value
of interupt pins Int*[4:0]. The result is directly readable as bits 14:10 of
the Cause register.

Figure 17-2 VR5000 Interrupt Signals

Cause
register

Interrupt register (5:0)

Int*(5)

Timer
Interrupt

multiplexer

OR gate

Int*(4)

2 1 04 35

1 03 24

See
Figure 17-4.

5SysClock
(Internal
register)

Int*(0)
Int*(3)

Int*(2)
Int*(1)

IP4

IP3

IP2

IP6

IP5

IP7

12
11

10
14

13
15

User’s Manual U11761EJ6V0UM 301

Chapter 17 Interrupts

Figure 17-3 shows the internal derivation of the NMI signal for the VR5000 processor.

The NMI* pin is latched by the rising edge of SysClock. Bit 6 of the Interrupt register
is then OR’ed with the inverted value of NMI* to form the nonmaskable interrupt.
Only the falling edge of the latched signal will cause the NMI.

Figure 17-3 VR5000 Nonmaskable Interrupt Signal

Figure 17-4 shows the masking of the VR5000 interrupt signal.

• Cause register bits 15:8 (IP7-IP0) are AND-ORed with Status register
interrupt mask bits 15:8 (IM7-IM0) to mask individual interrupts.

• Status register bit 0 is a global Interrupt Enable (IE). It is ANDed with
the output of the AND-OR logic to produce the VR5000 interrupt signal.

(Internal)

6 Interrupt register (6)

NMI*

NMI

SysClock

(Internal
register)

Edge-
triggered
Flip-flop Inverter OR gate

Chapter 17 Interrupts

302 User’s Manual U11761EJ6V0UM

Figure 17-4 Masking of the VR5000 Interrupt

Status register
SR(15:8)

AND-OR
function

IM2
IM1
IM0

IM4
IM3

IM5
IM6
IM7

Cause register
(15:8)

IP2
IP1
IP0

IP4
IP3

IP5
IP6
IP7

AND
function

VR5000 Interrupt

 IE

Status register
SR(0)

1

8

8

1

User’s Manual U11761EJ6V0UM 303

Chapter 18 Standby Mode Operation

The Standby Mode operation is a means of reducing the internal core’s power
consumption when the CPU is in a “standby” state. In this chapter, the Standby Mode
operation is discussed.

18.1 Entering Standby Mode

To enter Standby Mode, first execute the WAIT instruction. When the WAIT
instruction finishes the W pipe-stage, if the SysAD bus is currently idle, the internal
clocks will shut down, thus freezing the pipeline. The PLL, internal timer, some of the
input pin clocks (Int[5:0]*, NMI*, ExtRqst*, Reset* and ColdReset*), and the
output clock (ModeClock) will continue to run. If these conditions are not correct
when the WAIT instruction finishes the W pipe-stage (i.e., the SysAD bus is not idle),
the WAIT is treated as a NOP.

When the processor enters Standby Mode, the system interface signals are in their idle
state and the processor is the master of the SysAD bus. The Int*, NMI*, ExtReq*,
Reset*, and ColdReset* signals are monitored for an interrupt or reset condition that
signals the end of Standby Mode.

Once the CPU is in Standby Mode, any interrupt, including ExtRqst* or Reset*, will
cause the CPU to exit Standby Mode. Figure 18-1 illustrates the Standby Mode
Operation.

Chapter 18 Standby Mode Operation

304 User’s Manual U11761EJ6V0UM

Figure 18-1 Standby Mode Operation

VR5000 samples the SysAD/SysCmd/Control pins on each rising edge of
MasterClock.

When “Wait” instruction finishes the W-stage, the
VR5000 will check for BUS ACTIVITY.

“Wait” instruction is treated
as a “NOP” instruction.

Once in Standby Mode, PClock will shutdown, freezing
the pipeline; however, these signals and internal blocks
will remain active:

PLL ExtRqst* ModeClock
Internal Timer Int[5:0] MasterOut
 NMI*
 Reset*
 ColdReset*

If any of Int[5:0]*, NMI*, Reset* are asserted, or an internal
timer interrupt occurs, VR5000 will exit Standby Mode.

If Bus Activity
Detected

After exiting Standby Mode, VR5000 does not sample any Control/
SysAD/SysCmd bus signals on the first rising edge of SysClock. Also,
bus activity and other internal processes will resume by using the latched
information that existed before entering Standby Mode.

VR5000 I/F

SysCmd

SysAD

ExtRqst*
Int[5:0]*
NMI*
Reset*
ColdReset*

If Bus Activity
Not Detected

WrRdy*

RdRdy*

ValidIn*

ValidOut*

Note: During Standby Mode, all control signals for the CPU must be deasserted or put into
the appropriate state, and all input signals, except Int[5:0]*, Reset*, ColdReset* and
ExtRqst*, must remain unchanged.

Release*

User’s Manual U11761EJ6V0UM 305

Chapter 19 PLL Analog Power Filtering

For noisy module environments a filter circuit of the following form is
recommended as shown in Figure 19-1.

Figure 19-1 PLL Filter Circuit (1)

Because the optimum values of filter elements differ depending on the application
and noise environment of the system, the above values are given for reference
only. Find the optimum values for users’ application through trial and error. A
choke element (inductor) may be used instead of the resistor used as a power filter.

In the case that the processor’s behavior is unstable with the above filter circuit,
as shown in Figure 19-1, please insert a resistor (e.g. 10 ohm) between VSS and
VSSP, as shown in Figure 19-2. Please make a full evaluation on your board to
insert the resistor.

10 uF 0.1 uF 100 pF

Vcc

Vss

VccP

VssP

10 ohm

Chapter 19 PLL Analog Power Filtering

306 User’s Manual U11761EJ6V0UM

Figure 19-2 PLL Filter Circuit (2)

10 uF 0.1 uF 100 pF

Vcc

Vss

VccP

VssP

10 ohm

10 ohm

User’s Manual U11761EJ6V0UM 307

Chapter 20 VR5000 Instruction Hazards

20.1 Introduction

This chapter identifies the VR5000 Instruction Hazards. Certain combinations of
instructions are not permitted because the results of executing such combinations
are unpredictable in combination with some events, such as pipeline delays, cache
misses, interrupts, and exceptions.

Most hazards result from instructions modifying and reading state in different
pipeline stages. Such hazards are defined between pairs of instructions, not on a
single instruction in isolation. Other hazards are associated with restartability of
instructions in the presence of exceptions.

For the following code hazards, the behavior is undefined and unpredictable.

Chapter 20 VR5000 Instruction Hazards

308 User’s Manual U11761EJ6V0UM

20.2 List of Instruction Hazards

• Any instruction that would modify PageMask or EntryHi or EntryLo0
or EntryLo1 or Random CP0 Registers should not be followed by a
TLBWR instruction. There should be at least two integer instructions
between the register modification and the TLBWR instruction.

• Any instruction that would modify PageMask or EntryHi or EntryLo0
or EntryLo1 or Index CP0 Registers should not be followed by a
TLBWI instruction. There should be at least two integer instructions
between the register modification and the TLBWI instruction.

• Any instruction that would modify the Index CP0 Register or the
contents of the JTLB should not be followed by a TLBR instruction.
There should be at least two integer instructions between the register
modification and the TLBR instruction.

• Any instruction that would modify the PageMask or EntryHi or CPO
Registers or the contents of the JTLB should not be followed by a
TLBP instruction. There should be at least two integer instructions
between the register modification and the TLBP instruction.

• Any instruction that would modify the EPC or ErrorEPC or Status
CPO Registers should not be followed by an ERET instruction.
There should be at least two integer instructions between the register
modification and the ERET instruction.

• A Branch or Jump instruction is not allowed to be in the delay-slot of
another Branch/Jump instruction. This sequence is illegal in the
MIPs architecture.

• The two instructions preceding any DIV, DIVU, DDIV, DDIVU,
MULT, MULTU, DMULT or DMULTU instructions should not read
the HI or LO registers. There should be at least two integer
instructions between the register read and the register modification.

• Any instruction that would modify Count Register should not be
followed by any instruction that would read Count Register when the
Boot Mode Serial bit 18 is 0. There should be at least two integer
instructions between the register modification and the register read.

User’s Manual U11761EJ6V0UM 309

Appendix A Cycle Counts for VR5000 Cache Operations

A.1 Cycle Counts for VR5000 Cache Misses

A.1.1 Mnemonics

To describe processor sequences that inlude a memory access, the number of cycles
must be calculated based on the system response to a memory access. Such sequences
will be described with equations based on the following mnemonics:

• SYSDIV: The number of processor cycles per system cycle, ranges from
2 - 8.

• ML: Number of system cycles of memory latency defined as the
number of cycles the SysAD bus is driven by the external agent before the
first doubleword of data appears.

• DD: Number of system cycles required to return the block of data,
defined to be the number of cycles beginning when the first doubleword
of data appears on the SysAD bus and ending when the last double word
of data appears on the SysAD bus inclusive.

• {0 to (SYSDIV - 1)}: In many equations this term is used. It has a
value (number of cycles) between 0 and (SYSDIV - 1) depending on the
alignment of the execution of the cache miss or cache op with the system
clock.

Appendix A Cycle Counts for VR5000 Cache Operations

310 User’s Manual U11761EJ6V0UM

A.1.2 DCache Misses

Caveats to DCache Misses:

1) All Cycle counts are in processor cycles.

2) DCache misses have lower priority than write backs, external requests, and ICache
misses. If the write back buffer contains unwritten data when a dcache miss occurs,
the write back buffer will be retired before the handling of the dcache miss is begun.
Instruction cache misses are given priority over data cache misses. If an icache miss
occurs at the same time as a dcache miss, the icache miss will be handled first.
External requests will be completed before beginning the handling of a dcache miss.

3) For all data cache misses handling of the returning cache miss data must wait for
the store buffer and response buffer to empty (if they are filled) and for dirty data (if
present) to be moved from the dcache to the write back buffer. It is possible that if all
of the above occur, and the dcache miss hits in the secondary cache, the first
doubleword of data will return before the data cache is available. In this case the first
doubleword of data will hold in the response buffer for one or two cycles which will
add to the latency of the dcache miss.

4) In handling a dcache miss a write back may be required which will fill the write
back buffer. Write backs can affect subsequent cache misses since they will stall until
the write back buffer is written back to memory.

5) All cycle counts are best case assuming no interference from the mechanisms
described above.

The following equations yield the number of stall cycles for data cache misses under
the specified circumstances.

Secondary cache hit:

Number_Of_Cycles_For_DCache_Miss_Secondary_Cache_Hit =

 1 + {0 to (SYSDIV - 1)} + (3 x SYSDIV) + 2

Secondary cache miss:

Number_Of_Cycles_For DCache_Miss_Secondary _Cache_Miss =

 1 + {0 to (SYSDIV - 1)} + (2 x SYSDIV) + (ML x SYSDIV) + (1 x SYSDIV) + 2

Note: Memory Latency (ML) has a minimum of 3 to allow for the secondary cache
check.

User’s Manual U11761EJ6V0UM 311

Appendix A Cycle Counts for VR5000 Cache Operations

A.1.3 ICache Misses

Caveats to ICache Misses

1) All cycle counts are in processor cycles.

2) ICache misses have lower priority than write backs and external requests. If the
write back buffer contains unwritten data when an icache miss occurs, the write back
buffer will be retired before the handling of the icache miss is begun. External requests
will be completed before beginning the handling of an icache miss.

3) All cycle counts are best case assuming no interference from the mechanisms
described above.

The following equations yield the number of stall cycles for instruction cache misses
under the specified circumstances.

Secondary cache hit:

Number _Of_Cycles_For_ICache_Miss_Secondary_Cache_Hit =

 1 + {0 to (SYSDIV - 1)} + (6 x SYSDIV) + 3

Secondary cache miss:

Number_Of_Cycles_For_ICache_Miss_Secondary_Cache_Miss =

1 + {0 to (SYSDIV - 1)} + (2 x SYSDIV) + (ML x SYSDIV) + (DD x SYSDIV) + 3

Note: Memory Latency (ML) has a minimum of 3 to allow for the secondary cache
check.

A.2 Cycle Counts for VR5000 Cache Operations

Caveats to Cache Operations

1) All cycle counts are in processor cycles.

2) All cache ops have lower priority than cache misses, write backs and external
requests. If the write back buffer contains unwritten data when a cache op is executed,
the write back buffer will be retired before the cache op is begun. If an instruction

Appendix A Cycle Counts for VR5000 Cache Operations

312 User’s Manual U11761EJ6V0UM

cache miss occurs at the same time as a cache op is executed, the instruction cache miss
will be handled first. Cache ops are mutually exclusive with respect to data cache
misses. External requests will be completed before beginning a cache op.

3) For all data cache ops the cache op machine waits for the store buffer and response
buffer to empty before beginning the cache op. This can add 3 cycles to any data cache
op if there is data in the response buffer or store buffer. The response buffer contains
data from the last data cache miss that has not yet been written to the data cache. The
store buffer contains delayed store data waiting to be written to the data cache.

4) Cache ops of the form xxxx_Writeback_xxxx may perform a write back which will
fill the write back buffer. Write backs can affect subsequent cache ops since they will
stall until the write back buffer is written back to memory. Cache ops which fill the
write back buffer are noted in the following tables.

5) All cycle counts are best case assuming no interference from the mechanisms
described above.

Table A-1 Primary Data Cache Operations

Code Name Number of Cycles

 0 Index_Writeback_Invalidate_D
10 Cycles if the cache line is clean.
12 Cycles if the cache line is dirty. (Write back)

 1 Index_Load_Tag_D 7 Cycles

 2 Index_Store_Tag_D 8 Cycles

 3 Create_Dirty_Exclusive_D

10 Cycles for a cache hit.
13 Cycles for a cache miss if the cache line is clean.
15 Cycles for a cache miss if the cache line is dirty.
(Writeback)

 4 Hit_Invalidate_D
 7 Cycles for a cache miss.
 9 Cycles for a cache hit.

 5 Hit_Writeback_Invalidate_D

 7 Cycles for a cache miss.
12 Cycles for a cache hit if the cache line is clean.
14 Cycles for a cache hit if the cache line is dirty.
(Writeback)

 6 Hit_Writeback_D

 7 Cycles for a cache miss.
10 Cycles for a cache hit if the cache line is clean.
14 Cycles for a cache hit if the cache line is dirty.
(Writeback)

User’s Manual U11761EJ6V0UM 313

Appendix A Cycle Counts for VR5000 Cache Operations

Table A-2 Primary Instruction Cache Operations

Table A-3 Secondary Cache Operations

Code Name Number of Cycles

 0 Index_Invalidate_I 7 Cycles.

 1 Index_Load_Tag_I 7 Cycles.

 2 Index_Store_Tag_I 8 Cycles.

 3 NA

 4 Hit_Invalidate_I
 7 Cycles for a cache miss.
 9 Cycles for a cache hit.

 5 Fill_I

This equation yields the number of processor cycles for a Fill_I
cache op:
Number_Of_Cycles_For_A_Fill_I_Cacheop =
10 + {0 to (SYSDIV -1)} + (2 x SYSDIV) + (ML x SYSDIV) + (DD
x SYSDIV).

 6 Hit_Writeback_I
 7 Cycles for a cache miss.
20 Cycles for a cache hit. (Writeback)

Code Name Number of Cycles

 0 Flash_Invalidate_S

This equation yields the number of processor cycles for a
Flash_Invalidate_S cache op:
Number_Of_Cycles_For_Flash_Invalidate_S_Cacheop =
 3 + {0 to (SYSDIV - 1)} + (1 x SYSDIV) + 3

 1 Index_Load_Tag_S

This equation yields the number of processor cycles for an
Index_Load_Tag_S cache op:
Number_Of_Cycles_For_Index_Load_Tag_S =
 3 + {0 to (SYSDIV -1)} + (4 x SYSDIV) + 3

 2
Index_Store_Tag_
S

This equation yields the number of processor cycles for an
Index_Store_Tag_S cache op:
Number_Of_Cycles_For_Index_Store_Tag_S =
 3 + {0 to (SYSDIV - 1)} + (1 x SYSDIV) + 3

 3 NA

 4 NA

 5 Page_Invalidate_S

This equation yields the number of processor cycles for a
Page_Invalidate_S cache op:
Number_Of_Cycles_For_Page_Invalidate_S =
 3 + {0 to (SYSDIV -1)} + (128 x SYSDIV) + 3

 6 NA

314 User’s Manual U11761EJ6V0UM

Appendix B Subblock Order

A block of data elements (whether bytes, halfwords, words, or doublewords) can be
retrieved from storage in two ways: in sequential order, or using a subblock order. This
appendix describes these retrieval methods, with an emphasis on subblock ordering.

Sequential ordering retrieves the data elements of a block in serial, or sequential, order.

Figure B-1 shows a sequential order in which doubleword 0 is taken first and
doubleword 3 is taken last.

Figure B-1 Retrieving a Data Block in Sequential Order

Subblock ordering allows the system to define the order in which the data elements are
retrieved. The smallest data element of a block transfer for the VR5000 is a
doubleword, and Figure B-2 shows the retrieval of a block of data that consists of 4
doublewords, in which DW2 is taken first.

DW 0 DW 1 DW 2 DW 3

Doubleword 0
taken first

Doubleword 1
taken second

Doubleword 2
taken third

Doubleword 3
taken fourth

User’s Manual U11761EJ6V0UM 315

Appendix B Subblock Order

Figure B-2 Retrieving a Data in a Subblock Order

Using the subblock ordering shown in Figure B-2, the doubleword at the target address
is retrieved first (DW2), followed by the remaining doubleword (DW3) in this
quadword.

It may be easier way to understand subblock ordering by taking a look at the method
used for generating the address of each doubleword as it is retrieved. The subblock
ordering logic generates this address by executing a bit-wise exclusive-OR (XOR) of
the starting block address with the output of a binary counter that increments with each
doubleword, starting at doubleword zero (002).

Using this scheme, Table B-1 through Table B-3 list the subblock ordering of
doublewords for an 8-word block, based on three different starting-block addresses:
102, 112, and 012. The subblock ordering is generated by an XOR of the subblock
address (either 102, 112, and 012) with the binary count of the doubleword (002 through
112). Thus, the third doubleword retrieved from a block of data with a starting address
of 102 is found by taking the XOR of address 102 with the binary count of DW2, 102.
The result is 002, or DW0.

The remaining tables illustrate this method of subblock ordering, using various address
permutations.

DW0 DW1 DW2 DW3

DW0
taken third

DW1
taken fourth

DW2
taken first

DW 3
taken second

2 3 0 1Order of retrieval

quadword

octalword

Appendix B Subblock Order

316 User’s Manual U11761EJ6V0UM

Table B-1 Subblock Ordering Sequence: Address 102

Table B-2 Subblock Ordering Sequence: Address 112

Table B-3 Subblock Ordering Sequence: Address 012

Cycle
Starting Block

Address
Binary Count

Double Word
Retrieved

1 10 00 10

2 10 01 11

3 10 10 00

4 10 11 01

Cycle
Starting Block

Address
Binary Count

Double Word
Retrieved

1 11 00 11

2 11 01 10

3 11 10 01

4 11 11 00

Cycle
Starting Block

Address
Binary Count

Double Word
Retrieved

1 01 00 01

2 01 01 00

3 01 10 11

4 01 11 10

User’s Manual U11761EJ6V0UM 317

Appendix C Driver Strength Control

The speed of the VR5000 output drivers is statically controlled at boot time. This
appendix discusses the output buffer strength control mechanism in the VR5000
processor.

Two of the boot time mode bits are used to control the strength of the output buffer.
These are boot mode bit 13 and 14.

The output driver strength can be from 100% (fastest) to 50% (slowest), based on the
value of boot mode bits 13 and 14. Table C-1 shows the encoding for these boot mode
bits and the selected driver strength.

Table C-1 Output Driver Strength

Boot Mode
Bits

14 13

Driver
Strength

 1 0 100%

 1 1 83%

 0 0 67%

 0 1 50%

318 User’s Manual U11761EJ6V0UM

Appendix D Differences between VR5000 and VR5000A

Note Selectable only when SysClock = 100MHz

Parameter VR5000 VR5000A

Maximum internal operat-
ing frequency

150/180/200 MHz 250/266 MHz

Multiplication ratio for
clock interface (input vs.
internal)

2, 3, 4, 5, 6, 7, 8 2, 2.5Note, 3, 4, 5, 6, 7, 8

Supply voltage 3.3V±5% Core: 2.4V±0.1V (100 to 235 MHz)
2.5V±5% (236 to 250 MHz)
2.6V±0.1V (251 to 266 MHz)

I/O : 3.3V±5%

Package •223-pin ceramic PGA
•272-pin plastic BGA
(cavity down advanced type)

272-pin plastic BGA
(cavity down advanced type)

User’s Manual U11761EJ6V0UM 319

Appendix E Differences between VR5000 and VR4310

Item VR5000 VR4310

Operation Frequency Internal 200 MHz MAX. 167 MHz MAX.

External 100 MHz MAX. 83.3 MHz MAX.

Pipeline 2-way superscalar
5-stage pipeline

5-stage pipeline

Cache On-chip Primary
Instruction Cache

32 KB (2-way set) 16 KB (direct map)

On-chip Primary Data Cache 32 KB (2-way set) 8 KB (direct map)

Secondary Cache Interface Incorporated (direct
map)

N/A

Data Protection Byte parity N/A

System Bus Write Data Transfer Rate 9 types
(DD, DDxDDx,
DDxxDDxx, DxDx,
DDxxxDDxxx,
DDxxxxDDxxxx,
DxxDxx,
DDxxxxxxDDxxxxxx,
DxxxDxxx)

2 types
(DD, DxxDxx)

SysAD Bus Used after Last
D Cycle

Unused for trailing x
cycles

Maintains last D cycle
value

Appendix E Differences between VR5000 and VR4310

320 User’s Manual U11761EJ6V0UM

Boot Mode Setting Serial data input from
ModeIn pin

Specific by DivMode
(2:0)

Integer Operating Unit MIPS I, II, III, IV
instruction set

MIPS I, II, III instruction
set

JTAG Interface N/A Incorporated

SyncIn - SyncOut Path N/A Available

Clock Interface PClock Divisor 2, 3, 4, 5, 6, 7, or 8 1.5, 2, 2.5, 3, 4, 5, or 6

System Bus Clock Divisor 2, 3, 4, 5, 6, 7, or 8 1.5, 2, 2.5, 3, 4, 5, or 6

Clock Output N/A TClock

Power Control Mode Standby mode
(freezing pipeline)

N/A

PRId Register Imp = 0x23 Imp = 0x0B

Item VR5000 VR4310

User’s Manual U11761EJ6V0UM 321

Appendix F VR5000 Restrictions

• Any load-linked memory reference that hits in the DTLB will cause
the LLAddr register to hold the virtual address of that reference
instead of the physical address.

• C0_CacheErr[2] does not report Virtual Address [14] of the parity
error location. This bit is always read as zero.

• If a pipeline cancelling logic (e.g. cache error, bus error) occurs after
the VR5000 detects a non-maskable interrupt (NMI) by the VR5000
starts the NMI handling, the NMI will be cancelled and only the
pipeline cancelling logic will be handled.
If an NMI cancellation occurred, make NMI* inactive once and then
make it active again after the NMI cancellation.

• An LL or LLD instruction targeting 64-bit Kernel xkphys address
space issues a 4-byte uncached read request or 8-byte uncached read
request respectively. If the targeted primary data cache line for an LL/
LLD instruction is dirty, the cache data is ignored and an uncached
load from memory is executed, and consequently the consistency of
data is not guaranteed.
Therefore, write back the line from the primary data cache to
memory before the execution of an LL/LLD instruction targeting
xkphys address space.
Example of a program is as follows.

Appendix F VR5000 Restrictions

322 User’s Manual U11761EJ6V0UM

example:

 cache Hit_writeback_d, offset(base)

 ll rt, offset(base)

 :

 sc rt, offset(base)

User’s Manual U11761EJ6V0UM 323

Appendix G Index

Numerics

223-pin ceramic PGA … see PGA
272-pin plastic BGA … see BGA

A

access type … 60
address space … 108

kernel … 113
32-bit … 115
64-bit … 117

physical … 105
supervisor … 110

32-bit … 112
64-bit … 112

user … 108
32-bit … 109
64-bit … 110

virtual … 104
address translation

32-bit virtual … 106
64-bit virtual … 107
virtual-to-physical … 105

process … 135

B

Bad Virtual Address (BadVAddr)
register … 141

BadVAddr register … see Bad Virtual Address
register

basic system clocks … 222
BGA … 53
branch delay … 90
bus interface … 231

terms used … 232

C

cache
operation … 225
organization … 227
sizes … 227

Cache Error (CacheErr) register … 152
CACHE instruction … 72
cache line

length … 227
cache tag registers … see TagLo or TagHi

register
CacheErr register … see Cache Error register

Appendix G Index

324 User’s Manual U11761EJ6V0UM

Cause register … 147
clock generator … 29
clock interface … 222
Cold Reset … 216
Compare register … 142
Config register … 129
Context register … 140
Control/Status register (FCR31) … 188
coprocessor 0 … see CP0
Count register … 141
CP0 … 29, 37, 118

registers … 123
CPU registers … 30

D

D-cache … see data cache
data addressing … 34
data cache (D-cache) … 29

organization … 229
data formats … 34
data rate control … 265

data transfer patterns … 266
independent transmission on the SysAD
bus … 267

Diagnostic Status (DS) field … 146
driver strength control … 317

E

ECC register … see Error Checking and
Correcting register

EntryHi register … 121, 128
EntryLo0 register … 122, 126
EntryLo1 register … 122, 126
EPC register … see Exception Program

Counter register
error checking … 278
Error Checking and Correcting (ECC)

register … 151

error checking operation … 279
system interface … 280
system interface command bus … 280

parity error checking … 278
types of … 279

Error Exception Program Counter (ErrorEPC)
register … 154

ErrorEPC register … see Error Exception
Program Counter register

ExcCode field … 149
exception handler

Cache Error … 179
general … 175
TLB/XTLB miss … 177

exception handling
NMI … 180
Reset … 180
Soft Reset … 180

exception processing … 138
registers … 139

Exception Program Counter (EPC)
register … 149

exception servicing guidelines
Cache Error … 179
general … 176
TLB/XTLB … 178

exception types … 155
FPU … 204

exceptions … 154
Address Error … 163
Breakpoint … 170
Bus Error … 168
Cache Error … 167
conditions … 94
Coprocessor Unusable … 172
detection mechanism … 94
Divide-by-Zero … 210
Floating-point … 173
handling … 174
Inexact … 208
Integer Overflow … 169

User’s Manual U11761EJ6V0UM 325

Appendix G Index

Interrupt … 173
Invalid Operation … 209
Non Maskable Interrupt (NMI) … 162
Overflow … 210
priority … 160
Reserved Instruciton … 171
Reset … 161
servicing … 174
Soft Reset … 161
System Call … 170
TLB … 164
TLB, Invalid … 166
TLB, Modified … 166
TLB, Refill … 165
Trap … 169
types … 155, 204
Underflow … 210
Unimplemented Instruciton … 211
vector locations … 157

extrnal arbitration protocol … 259
external request protocols … 258

null … 260
read response … 262
write … 261

external requests … 237
read response … 239
write … 239

F

FCR … see floating-point control registers
FGR … see floating-point general registers
fixed-point format

binary … 194
floating-point control registers (FCRs) … 186
floating-point exception

saving and restoring state … 212
trap handlers … 213

floating-point exceptions … 204
actions … 207
conditions … 208
flags … 206
trap … 206

floating-point formats … 192
floating-point general registers (FGRs) … 183
floating-point registers … 185
floating-point unit … 181

features … 183
programming model … 183

FPU … see floating-point unit

I

I-cache … see instruciton cache
IEEE standard 754 … 189
Implementation and Revision register

(FCR0) … 187
Index register … 124
initialization interface … 214

boot-mode settings … 219
reset state … 218
sequence … 218

instruction cache (I-cache) … 29
organization … 227

instruction execution
cycle time … 201

instruction hazards … 308
instruction latencies

floating point … 202
integer … 63

instruction pipeline
FPU … 200

instruciton scheduling
FPU … 203

instruction set … 58, 195
instruction set additions

branch on floating point coprocessor … 68
floating point compare … 69
floating point conditional moves … 70
floating point multiply-add … 69

Appendix G Index

326 User’s Manual U11761EJ6V0UM

indexed floating point load … 67
indexed floating point store … 67
integer conditional moves … 69
prefetch … 68
reciprocal’s … 70

instruction set
CPU … 58
floating-point … 195
MIPS IV … 64

additions and extensions … 65
instructions

branch … 63
computational … 62

64-bit operation … 62
cycle timing … 62
divide … 62
floating-point … 199
multiply … 62

conversion
FPU … 199

coprocessor … 64
jump … 63
load … 59

FPU … 197
special … 64
store … 59

FPU … 197
interface buses … 232
interlock … 91

condition … 92
interrupts … 298

asserting … 299
hardware … 298
nonmaskable (NMI) … 299

J

joint TLB (JTLB) … 41

L

LLAddr register … see Load Linked Address
register

load delay … 90
load delay slot … 60

scheduling … 60
Load Linked Address (LLAddr)

register … 132

M

memory management system (MMU) … see
memory management unit

memory management unit … 101
memory organization … 226
MMU … see memory management unit

N

NMI … see interrupt, nonmaskable

P

PageMask register … 121, 126
PClock … 222
PGA … 51
phase-locked loop (PLL) … 223
phase-locked system … 224
pin configuration … 51
pipeline … 85, 200

activities … 89
pipeline stages … 86
PLL … see phase-locked loop
PLL analog power filtering … 305
power-on reset … 215
PRId register … see Processor Revision

Identifier register
processor internal address map … 278
processor modess … 102

operating … 103
instruction set … 104
addressing … 104

User’s Manual U11761EJ6V0UM 327

Appendix G Index

processor request protocols … 249
flow control … 254
read … 250
write … 251

processor requests … 234
read … 236
rules … 235
write … 237

Processor Revision Identifier (PRId)
register … 128

R

Random register … 125
requests

handling … 240
reset signal … 214

S

secondary cache interface … 283
secondary cache operations

clear … 284
invalidate … 284
probe … 284

secondary cache
mode configuration … 296
protocol

flash clear … 296
line invalidate … 294
probe … 295
write … 292

read … 286
read protocol … 287

hit … 288
miss … 289
miss with bus error … 291

transactions … 283
write … 285

signal … 43

signals
clock interface … 46
initialization interface … 48
interrupt interface … 48
secondary cache interface … 46
system interface … 44

slip
instruciton cache miss … 96

slip conditions … 96
stall conditions … 95
Status regsiter … 142
subblock order … 314
superscalar

issue mechanism … 98
dual … 99

SysClock … 222
alignment to … 223

system control coprocessor … 37
system event

load linked store conditional
operation … 243
load miss … 240
store hit … 243
store miss … 241
uncached instruction fetch … 243
uncached load … 243
uncached store … 243

system interface … 234
addresses … 275

addressing conventions … 275
subblock ordering … 276

command … 269
syntax … 270

null requests … 272
read requests … 270
write requests … 271

cycle time … 268
release latency … 268

data identifiers … 269
syntax … 273

bit definitions … 274

Appendix G Index

328 User’s Manual U11761EJ6V0UM

noncoherent data … 273
endianness … 267
handshake signals … 246
protocols … 244

address cycle … 244
data cycle … 244
external arbitration … 248
issue cycle … 245
master state … 248
slave state … 248
SysADC[7:0] … 264
uncompelled change to
slave state … 248

transactions … 234

T

TagHi register … 132
TagLo register … 132
TLB … see translation lookaside buffer
TLB entry

format of … 119
TLB exceptions … 137
TLB instructions … 137
translation lookaside buffer (TLB) … 41, 102

hit … 102
miss … 102
multiple matches … 102

V

VR5000 restrictions … 321

W

Warm Reset … 217
Wired register … 127
write buffer … 97

X

XContext register … 150

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we’ve taken, you may
encounter problems in the documentation.
Please complete this form whenever
you’d like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 01.2

Name

Company

From:

Tel. FAX

Facsimile Message

	Cover
	MAJOR REVISIONS IN THIS EDITION
	PREFACE
	Chapter 1 Introduction
	1.1 Processor Characteristics
	1.2 Ordering Information
	1.3 64-Bit Architecture
	1.4 V R 5000 Processor
	1.4.1 Internal Block Configuration
	1.4.2 CPU Registers
	1.4.3 CPU Instruction Set Overview
	1.4.4 Data Formats and Addressing
	1.4.5 System Control Coprocessor (CP0)
	1.4.6 Floating-Point Unit (FPU)
	1.4.7 Internal Cache

	1.5 Memory Management System (MMU)
	1.5.1 Translation Lookaside Buffer (TLB)
	1.5.2 Operating Mode

	1.6 Instruction Pipeline

	Chapter 2 V R 5000 Processor Signal Descriptions
	2.1 System Interface Signals
	2.2 Clock Interface Signals
	2.3 Secondary Cache Interface Signals
	2.4 Interrupt Interface Signals
	2.5 Initialization Interface Signals
	2.6 Power Supply
	2.7 Pin Configuration

	Chapter 3 CPU Instruction Set Summary
	3.1 Load and Store Instructions
	3.1.1 Scheduling a Load Delay Slot
	3.1.2 Defining Access Types

	3.2 Computational Instructions
	3.2.1 64-bit Operations
	3.2.2 Cycle Timing for Multiply and Divide Instructions
	3.2.3 Jump and Branch Instructions
	3.2.4 Special Instructions
	3.2.5 Coprocessor Instructions

	3.3 MIPS IV Instruction Set Additions
	3.3.1 Summary of Instruction Set Additions
	3.3.2 Cycle Timing for Floating Point Instrucitons

	3.4 The Cache Instruction
	3.5 Implementation Specific Instructions
	3.5.1 Implementation Specific CP0 Instructions

	Chapter 4 V R 5000 Processor Pipeline
	4.1 Instruction Pipeline Stages
	4.2 Branch Delay
	4.3 Load Delay
	4.4 Interlock and Exception Handling
	4.4.1 Exception Conditions
	4.4.2 Stall Conditions
	4.4.3 Slip Conditions

	4.5 Write Buffer

	Chapter 5 Superscalar Issue Mechanism
	Chapter 6 Memory Management Unit
	6.1 Translation Lookaside Buffer (TLB)
	6.1.1 Hits and Misses
	6.1.2 Multiple Matches

	6.2 Processor Modes
	6.2.1 Processor Operating Modes
	6.2.2 Instruction Set Mode
	6.2.3 Addressing Modes

	6.3 Address Spaces
	6.3.1 Virtual Address Space
	6.3.2 Physical Address Space
	6.3.3 Virtual-to-Physical Address Translation
	6.3.4 32-bit Mode Virtual Address Translation
	6.3.5 64-bit Mode Virtual Address Translation
	6.3.6 Address Spaces
	6.3.7 User Address Space
	6.3.8 Supervisor Space
	6.3.9 Kernel Space

	6.4 System Control Coprocessor
	6.4.1 Format of a TLB Entry

	6.5 CP0 Registers
	6.5.1 Index Register (0)
	6.5.2 Random Register (1)
	6.5.3 EntryLo0 (2), and EntryLo1 (3) Registers
	6.5.4 PageMask Register (5)
	6.5.5 Wired Register (6)
	6.5.6 EntryHi Register (10)
	6.5.7 Processor Revision Identifier (PRId) Register (15)
	6.5.8 Config Register (16)
	6.5.9 Load Linked Address (LLAddr) Register (17)
	6.5.10 Cache Tag Registers [TagLo (28) and TagHi (29)]

	6.6 Virtual-to-Physical Address Translation Process
	6.7 TLB Exceptions
	6.8 TLB Instructions

	Chapter 7 CPU Exception Processing
	7.1 Overview of Exception Processing
	7.2 Exception Processing Registers
	7.2.1 Context Register (4)
	7.2.2 Bad Virtual Address Register (BadVAddr) (8)
	7.2.3 Count Register (9)
	7.2.4 Compare Register (11)
	7.2.5 Status Register (12)
	7.2.6 Cause Register (13)
	7.2.7 Exception Program Counter (EPC) Register (14)
	7.2.8 XContext Register (20)
	7.2.9 Error Checking and Correcting (ECC) Register (26)
	7.2.10 Cache Error (CacheErr) Register (27)
	7.2.11 Error Exception Program Counter (Error EPC) Register (30)

	7.3 Processor Exceptions
	7.3.1 Exception Types
	7.3.2 Exception Vector Locations
	7.3.3 Priority of Exceptions
	7.3.4 Reset Exception
	7.3.5 Soft Reset Exception
	7.3.6 Non Maskable Interrupt (NMI) Exception
	7.3.7 Address Error Exception
	7.3.8 TLB Exceptions
	7.3.9 Cache Error Exception
	7.3.10 Bus Error Exception
	7.3.11 Integer Overflow Exception
	7.3.12 Trap Exception
	7.3.13 System Call Exception
	7.3.14 Breakpoint Exception
	7.3.15 Reserved Instruction Exception
	7.3.16 Coprocessor Unusable Exception
	7.3.17 Floating-Point Exception
	7.3.18 Interrupt Exception

	7.4 Exception Handling and Servicing Flowcharts

	Chapter 8 Floating Point Unit
	8.1 Overview
	8.2 FPU Features
	8.3 FPU Programming Model
	8.4 Floating-Point General Registers (FGRs)
	8.5 Floating-Point Registers
	8.6 Floating-Point Control Registers
	8.6.1 Implementation and Revision Register (FCR0)
	8.6.2 Control/Status Register (FCR31)

	8.7 Floating-Point Formats
	8.8 Binary Fixed-Point Format
	8.9 Floating-Point Instruction Set Overview
	8.9.1 Floating-Point Load, Store, and Move Instructions
	8.9.2 Floating-Point Conversion Instructions
	8.9.3 Floating-Point Computational Instructions

	8.10 FPU Instruction Pipeline Overview
	8.10.1 Instruction Execution
	8.10.2 Instruction Execution Cycle Time
	8.10.3 Instruction Scheduling Constraints

	Chapter 9 Floating Point Exceptions
	9.1 Exception Types
	9.2 Exception Trap Processing
	9.3 Flags
	9.4 FPU Exceptions
	9.4.1 Inexact Exception (I)
	9.4.2 Invalid Operation Exception (V)
	9.4.3 Division-by-Zero Exception (Z)
	9.4.4 Overflow Exception (O)
	9.4.5 Underflow Exception (U)
	9.4.6 Unimplemented Instruction Exception (E)

	9.5 Saving and Restoring State
	9.6 Trap Handlers for IEEE Standard 754 Exceptions

	Chapter 10 Initialization Interface
	10.1 Processor Reset Signals
	10.1.1 Power-on Reset
	10.1.2 Cold Reset
	10.1.3 Warm Reset
	10.1.4 Processor Reset State

	10.2 Initialization Sequence
	10.3 Boot-Mode Settings

	Chapter 11 Clock Interface
	11.1 Basic System Clocks
	11.1.1 SysClock
	11.1.2 PClock
	11.1.3 Alignment to SysClock
	11.1.4 Phase-Locked Loop (PLL)

	11.2 Connecting Clocks to a Phase-Locked System

	Chapter 12 Cache Organization and Operation
	12.1 Memory Organization
	12.2 Primary Cache Organization
	12.2.1 Cache Line Lengths
	12.2.2 Cache Sizes
	12.2.3 Organization of the Instruction Cache (I-Cache)
	12.2.4 Organization of the Data Cache (D-Cache)

	12.3 Secondary Cache Organization

	Chapter 13 V R 5000 Processor Bus Interface
	13.1 Terms Used
	13.2 Interface Buses

	Chapter 14 System Interface Transactions
	14.1 Processor Requests
	14.1.1 Rules for Processor Requests
	14.1.2 Processor Read Request
	14.1.3 Processor Write Request

	14.2 External Requests
	14.2.1 External Write Request
	14.2.2 Read Response

	14.3 Handling Requests
	14.3.1 Load Miss
	14.3.2 Store Miss
	14.3.3 Store Hit
	14.3.4 Uncached Loads or Stores
	14.3.5 Uncached Instruction Fetch
	14.3.6 Load Linked Store Conditional Operation

	Chapter 15 System Interface Protocols
	15.1 Address and Data Cycles
	15.2 Issue Cycles
	15.3 Handshake Signals
	15.4 System Interface Operation
	15.4.1 Master and Slave States
	15.4.2 External Arbitration
	15.4.3 Uncompelled Change to Slave State

	15.5 Processor Request Protocols
	15.5.1 Processor Read Request Protocol
	15.5.2 Processor Write Request Protocol
	15.5.3 Processor Request Flow Control

	15.6 External Request Protocols
	15.6.1 External Arbitration Protocol
	15.6.2 External Null Request Protocol
	15.6.3 External Write Request Protocol
	15.6.4 Read Response Protocol

	15.7 SysADC[7:0] Protocol
	15.8 Data Rate Control
	15.9 Data Transfer Patterns
	15.10 Independent Transmissions on the SysAD Bus
	15.11 System Interface Endianness
	15.12 System Interface Cycle Time
	15.13 Release Latency
	15.14 System Interface Commands/Data Identifiers
	15.14.1 Command and Data Identifier Syntax
	15.14.2 System Interface Command Syntax
	15.14.3 System Interface Data Identifier Syntax

	15.15 System Interface Addresses
	15.15.1 Addressing Conventions
	15.15.2 Subblock Ordering
	15.15.3 Processor Internal Address Map

	15.16 Error Checking
	15.16.1 Parity Error Checking
	15.16.2 Error Checking Operation

	Chapter 16 Secondary Cache Interface
	16.1 Secondary Cache Transactions
	16.1.1 Secondary Cache Probe, Invalidate, and Clear
	16.1.2 Secondary Cache Write
	16.1.3 Secondary Cache Read

	16.2 Secondary Cache Read Protocol
	16.2.1 Secondary Cache Read Hit
	16.2.2 Secondary Cache Read Miss
	16.2.3 Secondary Cache Read Miss with Bus Error

	16.3 Secondary Cache Write
	16.4 Secondary Cache Line Invalidate
	16.5 Secondary Cache Probe Protocol
	16.6 Secondary Cache Flash Clear Protocol
	16.7 Secondary Cache Mode Configuration

	Chapter 17 Interrupts
	17.1 Hardware Interrupts
	17.2 Nonmaskable Interrupt (NMI)
	17.3 Asserting Interrupts

	Chapter 18 Standby Mode Operation
	18.1 Entering Standby Mode

	Chapter 19 PLL Analog Power Filtering
	Chapter 20 V R 5000 Instruction Hazards
	20.1 Introduction
	20.2 List of Instruction Hazards

	Appendix A Cycle Counts for V R 5000 Cache Operations
	A.1 Cycle Counts for V R 5000 Cache Misses
	A.1.1 Mnemonics
	A.1.2 DCache Misses
	A.1.3 ICache Misses

	A.2 Cycle Counts for V R 5000 Cache Operations

	Appendix B Subblock Order
	Appendix C Driver Strength Control
	Appendix D Differences between V R 5000 and V R 5000A
	Appendix E Differences between V R 5000 and V R 4310
	Appendix F V R 5000 Restrictions
	Appendix G Index

