
User’s Manual

VR5432TM

64-Bit MIPS RISC Microprocessor

Document No.U13751EU5V0UMJ1
Date Published: May 2001 CP (K)

© NEC Electronics Inc. 2000
Printed in U.S.A.

Volume 1

µµµµPD30541GD

naoko usami

In North America: No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. All devices sold by NECEL are
covered by the provisions appearing in NECEL's Terms and Conditions of Sales only, including the limitation of liability, warranty, and
patent provisions. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or
regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may
appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The
devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace
equipment, submarine cables, nuclear reactor control systems and life support systems. “Standard” quality grade devices are
recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial
robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems,
anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the
reliability requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products
in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL
devices in applications not intended by NECEL, customers must contact the responsible NECEL salespeople to determine NECEL's
willingness to support a given application.

VR5432 Microprocessor User’s Manual
Document Number U13751EU5V0UMJ1

Revision History

NEC, the NEC logo, VR Series, VR3000, VR4000, VR4300, VR5000, VR5432 and VR10000 are registered trademarks of NEC
Corporation. All other product, brand, or trade names used in this publication are the trademarks or registered trademarks of their
respective trademark owners.

February 1999: First release
August 1999: Version 2, Preliminary
December 1999: Version 3, Preliminary update
February 2000: Version 4, Document release
May 2000: Version 5, Document corrections

Contents

Volume 1

Prefacexv

Chapter 1 Introduction .. 1

1.1 Device Features .. 2

1.2 Internal Architecture ... 3

1.2.1 Configuration.. 3

1.2.2 CPU Registers .. 6

1.2.3 CPU Instruction Set Overview .. 8

1.2.4 Data Formats and Addressing.. 10

1.2.5 System Control Coprocessor (CP0).. 13

1.2.6 Floating-Point Unit (FPU).. 16

1.2.7 Internal Cache... 16

1.3 Memory Management Unit (MMU)... 17

1.3.1 Translation Lookaside Buffer (TLB).. 17

1.3.2 Operating Modes.. 17

1.4 Instruction Pipeline .. 18

Chapter 2 Signal Descriptions ... 19

2.1 System Interface Signals ... 21

2.2 Power Inputs... 23

2.3 Clock Interface Signals.. 24

2.4 JTAG and Test Interface Signals.. 26

2.5 Interrupt Interface Signals ... 27

2.6 Initialization Interface Signals... 28

2.7 Pin Orientation .. 29
VR5432 Microprocessor User’s Manual iii

Contents
Chapter 3 Pipeline ... 31

3.1 Pipeline Stages.. 31

3.2 Branch Delay .. 34

3.3 Load Delay .. 34

3.4 Interlock and Exception Handling ... 36

3.4.1 Exception Conditions .. 38

3.4.2 Interrupt Latency.. 39

3.4.3 Stall Conditions.. 39

3.5 Transaction Buffer.. 40

Chapter 4 Memory Management Unit ... 41

4.1 Translation Lookaside Buffer.. 42

4.1.1 Hits and Misses .. 42

4.2 Processor Modes .. 42

4.2.1 Processor Operating Modes ... 43

4.2.2 Instruction Set Mode ... 44

4.2.3 Addressing Modes ... 45

4.3 Addresses and Address Spaces .. 45

4.3.1 Virtual Addresses... 46

4.3.2 Physical Addresses .. 47

4.3.3 Virtual-to-Physical Address Translation.. 47

4.3.4 32-Bit Mode Virtual Address Translation ... 48

4.3.5 64-Bit Mode Virtual Address Translation ... 50

4.3.6 User Address Space... 51

4.3.7 Supervisor Space.. 53

4.3.8 Kernel Space.. 56

4.4 System Control Coprocessor.. 63

4.4.1 TLB Entry Format ... 64

4.4.2 Instruction and Data Micro-TLBs... 68

4.5 CP0 Registers ... 69

4.5.1 Index Register (0) .. 70

4.5.2 Random Register (1) ... 71

4.5.3 EntryLo0 (2) and EntryLo1 (3) Registers.. 72

4.5.4 PageMask Register (5) .. 72

4.5.5 Wired Register (6) ... 74
iv VR5432 Microprocessor User’s Manual

Contents
4.5.6 EntryHi Register (10) .. 75

4.5.7 Processor Revision Identifier (PRId) Register (15) ... 76

4.5.8 Config Register (16) .. 77

4.5.9 Load Linked Address (LLAddr) Register (17) ... 80

4.5.10 Cache Tag Registers [TagLo (28) and TagHi (29)] ... 80

4.6 Virtual-to-Physical Address Translation Process .. 81

4.7 TLB Exceptions ... 83

4.8 TLB Instructions ... 83

Chapter 5 Cache Organization and Operation ... 85

5.1 Memory Organization ... 86

5.2 Primary Cache Organization ... 87

5.2.1 Cache Line Lengths ... 87

5.2.2 Cache Sizes ... 87

5.2.3 Instruction Cache Organization... 88

5.2.4 Data Cache Organization.. 89

Chapter 6 CPU Exceptions .. 91

6.1 Exception Processing Overview .. 92

6.2 Exception Processing Registers ... 93

6.2.1 Context Register (4) .. 94

6.2.2 Bad Virtual Address Register (BadVAddr) (8) .. 95

6.2.3 Count Register (9).. 95

6.2.4 Compare Register (11) .. 96

6.2.5 Status Register (12) ... 97

6.2.6 Cause Register (13) ... 102

6.2.7 Exception Program Counter (EPC) Register (14) .. 104

6.2.8 XContext Register (20) ... 105

6.2.9 WatchLo and WatchHi Registers (18 and 19) .. 106

6.2.10 Performance Counter Registers (25) .. 107

6.2.11 Parity Error (PErr) Register (26) ... 109

6.2.12 Cache Error (CacheErr) Register (27).. 110

6.2.13 Error Exception Program Counter (ErrorEPC) Register (30) 112

6.3 Processor Exceptions.. 112

6.3.1 Exception Types... 113
VR5432 Microprocessor User’s Manual v

Contents
6.3.2 Exception Vector Locations... 115

6.4 Exception Vector Offsets... 115

6.4.1 TLB Refill Vector Selection .. 116

6.4.2 Priority of Exceptions ... 118

6.4.3 Reset Exception.. 119

6.4.4 Soft Reset Exception ... 121

6.4.5 Nonmaskable Interrupt (NMI) Exception.. 122

6.4.6 Address Error Exception... 123

6.4.7 TLB Exceptions ... 124

6.4.8 Cache Error Exception .. 127

6.4.9 Bus Error Exception .. 128

6.4.10 Integer Overflow Exception... 129

6.4.11 Trap Exception ... 129

6.4.12 System Call Exception .. 130

6.4.13 Breakpoint Exception.. 131

6.4.14 Reserved Instruction Exception... 132

6.4.15 Coprocessor Unusable Exception ... 133

6.4.16 Floating-Point Exception .. 134

6.4.17 Watch Exception .. 134

6.4.18 Interrupt Exception .. 135

6.5 Exception Handling and Servicing Flowcharts... 136

6.6 Interrupts .. 143

6.6.1 Hardware Interrupts ... 143

6.6.2 Nonmaskable Interrupt (NMI)... 143

6.6.3 Asserting Interrupts ... 143

Chapter 7 Floating-Point Unit ... 149

7.1 Overview149

7.2 FPU Features .. 150

7.3 FPU Programming Model .. 150

7.4 Floating-Point General-Purpose Registers... 151

7.5 Floating-Point Registers .. 153

7.6 Floating-Point Control Registers .. 153

7.6.1 Implementation and Revision Register (FCR0) ... 154

7.6.2 Control/Status Register (FCR31) .. 155
vi VR5432 Microprocessor User’s Manual

Contents
7.7 Floating-Point Formats.. 159

7.8 Binary Fixed-Point Format .. 161

7.9 Floating-Point Instruction Set Overview .. 162

7.9.1 Floating-Point Load, Store, and Move Instructions ... 165

7.9.2 Floating-Point Conversion Instructions ... 166

7.9.3 Floating-Point Computational Instructions ... 167

7.10 FPU Instruction Pipeline Overview ... 169

7.10.1 Instruction Execution .. 169

7.10.2 Instruction Execution Cycle Time .. 169

7.10.3 Instruction Issuing Constraints with Multicycle Instructions..................................... 171

Chapter 8 Floating-Point Exceptions .. 173

8.1 Exception Types... 174

8.2 Exception Trap Processing ... 175

8.3 Flags176

8.4 FPU Exceptions.. 179

8.4.1 Inexact Operation Exception (I) .. 179

8.4.2 Invalid Operation Exception (V)... 180

8.4.3 Division by Zero Exception (Z) .. 181

8.4.4 Overflow Exception (O) ... 181

8.4.5 Underflow Exception (U) ... 181

8.4.6 Unimplemented Operation Instruction Exception (E)... 183

8.5 Saving and Restoring State... 184

8.6 Trap Handlers for IEEE Standard 754 Exceptions... 184

Chapter 9 Bus Interface... 187

9.1 Interface Buses In Native Mode .. 188

9.2 Interface Buses in R43K Mode.. 189

Chapter 10 System Interface Transactions (Native Mode).................................. 191

10.1 Terminology.. 192

10.2 Processor Requests ... 193

10.2.1 Rules for Processor Requests... 194

10.2.2 Processor Read Request.. 196

10.2.3 Processor Write Request... 197
VR5432 Microprocessor User’s Manual vii

Contents
10.3 External Requests ... 198

10.3.1 External Read Request .. 199

10.3.2 External Write Request ... 200

10.3.3 Read Response ... 200

10.4 Handling Requests .. 201

10.4.1 Load Miss.. 201

10.4.2 Store Miss.. 202

10.4.3 Store Hit... 203

10.4.4 Uncached Loads or Stores .. 203

10.4.5 Uncached Accelerated Stores .. 203

10.4.6 Uncached Instruction Fetch.. 204

10.4.7 Fetch Miss ... 204

Chapter 11 System Interface Protocols (Native Mode) .. 205

11.1 Address and Data Cycles... 206

11.2 Issue Cycles ... 206

11.3 Handshake Signals .. 208

11.4 System Interface Operation ... 208

11.4.1 Master and Slave States .. 209

11.4.2 External Arbitration... 210

11.4.3 Uncompelled Change to Slave State... 210

11.5 Processor Request Protocols .. 211

11.5.1 Processor Read Request Protocol.. 212

11.5.2 Processor Write Request Protocol... 214

11.5.3 Processor Request Flow Control ... 216

11.5.4 Processor Request Timing Modes... 218

11.6 External Request Protocols .. 227

11.6.1 External Arbitration Protocol... 228

11.6.2 External Read Request Protocol.. 229

11.6.3 External Null Request Protocol ... 231

11.6.4 External Write Request Protocol... 232

11.6.5 Read Response Protocol ... 233

11.7 SysADC (3:0) Protocol ... 236

11.8 Data Rate Control ... 236

11.9 Data Transfer Patterns .. 237
viii VR5432 Microprocessor User’s Manual

Contents
11.10 Word Transfer Ordering .. 239

11.11 Independent Transmissions on the SysAD Bus .. 242

11.12 System Interface Cycle Time ... 243

11.13 System Interface Commands/Data Identifiers .. 243

11.13.1 Command and Data Identifier Syntax .. 244

11.13.2 System Interface Command Syntax.. 244

11.13.3 Read Requests .. 245

11.13.4 System Interface Data Identifier Syntax .. 248

11.14 System Interface Addresses.. 250

11.14.1 Addressing Conventions ... 250

11.14.2 Subblock Ordering... 250

11.14.3 Processor Internal Address Map.. 251

Chapter 12 System Interface Transactions (R43K Mode) 253

12.1 Processor Requests ... 254

12.1.1 Rules for Processor Requests... 255

12.1.2 Processor Read Request.. 256

12.1.3 Processor Write Request... 257

12.2 External Requests ... 257

12.2.1 External Write Request ... 259

12.2.2 Read Response ... 259

12.3 Handling Requests .. 260

12.3.1 Fetch Miss ... 260

12.3.2 Load Miss.. 261

12.3.3 Store Miss.. 262

12.3.4 Store Hit... 262

12.3.5 Uncached Loads or Stores .. 263

12.3.6 Uncached Accelerated Stores .. 263

12.3.7 Uncached Instruction Fetch.. 264
VR5432 Microprocessor User’s Manual ix

Contents
Chapter 13 System Interface Protocols (R43K Mode) .. 265

13.1 Address and Data Cycles... 266

13.2 Issue Cycles ... 266

13.3 Handshake Signals .. 268

13.4 System Interface Operation ... 268

13.4.1 Master and Slave States .. 269

13.4.2 External Arbitration... 270

13.4.3 Uncompelled Change to Slave State... 270

13.5 Processor Request Protocols .. 271

13.5.1 Processor Read Request Protocol.. 272

13.5.2 Processor Write Request Protocol... 274

13.5.3 Processor Request Flow Control ... 276

13.5.4 Successive Processing of Requests ... 277

13.6 External Request Protocols .. 281

13.6.1 External Arbitration Protocol... 282

13.6.2 External Write Request Protocol... 286

13.6.3 External Read Response Protocol ... 287

13.7 Discarding and Re-Executing Commands ... 290

13.7.1 Re-Execution of Processor Commands.. 290

13.7.2 Discarding and Re-Executing a Write Command .. 291

13.7.3 Discarding and Re-Executing a Read Command ... 293

13.7.4 Executing and Discarding a Command.. 294

13.8 SysADC (3:0) Protocol ... 295

13.9 Data Flow Control... 295

13.9.1 Read Response ... 295

13.9.2 Write Request ... 295

13.9.3 Independent Transfer on the SysAD (31:0) Bus... 296

13.9.4 System Endianness .. 296

13.10 System Interface Cycle Time ... 297

13.10.1 Release Latency Time ... 297

13.11 System Interface Commands and Data Identifiers .. 298

13.12 Command and Data Identifier Syntax .. 298

13.12.1 System Interface Command Syntax.. 299

13.12.2 Read Requests .. 300

13.12.3 Write Requests ... 302
x VR5432 Microprocessor User’s Manual

Contents
13.12.4 System Interface Data Identifier Syntax .. 304

13.12.5 Data Identifier Bit Definitions ... 304

13.13 System Interface Addresses.. 305

13.13.1 Addressing Conventions ... 306

13.13.2 Sublock Order Data Retrieval.. 306

Chapter 14 Initialization Interface .. 307

14.1 Processor Reset Signals ... 307

14.1.1 Power-On Reset ... 308

14.1.2 Cold Reset ... 309

14.1.3 Warm Reset... 310

14.1.4 Processor Reset State .. 311

14.2 Processor Initialization Signals ... 311

Chapter 15 Clock Interface .. 313

15.1 Basic System Clocks ... 313

15.1.1 SysClock/MasterClock ... 313

15.1.2 PClock.. ..313

15.2 Alignment to SysClock... 314

15.3 Phase-Locked Loop (PLL).. 314

15.4 Bypass PLL Mode ... 316

Volume 2

Chapter 16 Instruction Set Overview .. 319

16.1 Instruction Set Architecture .. 320

16.2 Instruction Formats.. 321

16.3 Load and Store Instructions... 321

16.3.1 Delayed Load Instructions.. 323

16.3.2 Defining Access Types ... 323

16.4 Computational Instructions ... 326

16.4.1 64-Bit Operations... 327

16.5 Jump and Branch Instructions.. 328

16.5.1 Jump Instructions ... 328
VR5432 Microprocessor User’s Manual xi

Contents
16.5.2 Branch Instructions.. 328

16.6 Special Instructions .. 329

16.7 Coprocessor Instructions .. 329

16.7.1 Coprocessor Load and Store .. 330

16.7.2 Coprocessor Operations .. 330

16.8 Implementation-Specific Instructions ... 331

16.8.1 Overview ... 331

16.8.2 Implementation-Specific Instruction Descriptions... 333

16.9 Integer Rotate Instructions .. 337

16.10 Integer Multiply-Accumulate Instructions .. 338

16.11 Multimedia Extensions .. 339

16.12 Debugging Instructions ... 340

16.12.1 Instruction Notation Conventions ... 340

Chapter 17 CPU Instruction Set ... 345

17.1 Introduction .. 345

17.2 Functional Instruction Groups .. 345

17.2.1 Load and Store Instructions ... 346

17.2.2 Computational Instructions .. 348

17.2.3 Jump and Branch Instructions.. 353

17.2.4 Miscellaneous Instructions ... 354

17.3 System Control Coprocessor (CP0) Instructions ... 355

17.4 CPU Instructions ... 356

17.5 CPU Instruction Opcode Bit Encoding ... 565

Chapter 18 Floating-Point Unit Instruction Set .. 569

18.1 Instruction Formats.. 569

18.1.1 Floating-Point Loads, Stores, and Transfers ... 572

18.1.2 Floating-Point Operations .. 572

18.2 Floating-Point Computational Instructions... 575

18.3 FPU Instructions ... 578

18.4 FPU Instruction Opcode Bit Encoding ... 674
xii VR5432 Microprocessor User’s Manual

Contents
Chapter 19 Multimedia Instruction Set ... 677

19.1 Multimedia Extensions .. 677

19.2 Multimedia Instruction Format .. 681

19.3 Multimedia Instructions.. 682

19.4 Multimedia Instruction Opcode Bit Encoding .. 735

Chapter 20 Debug and Test Features .. 737

20.1 Overview738

20.2 Definition of Terms ... 739

20.3 Debug Mode.. 742

20.4 Internal Access ... 743

20.4.1 Debug Instructions... 744

20.4.2 Debug Registers ... 745

20.5 External Access .. 759

20.5.1 JTAG Port Signals ... 760

20.5.2 JTAG-Accessible Registers ... 766

20.5.3 N-Wire Monitor Data Download Example ... 779

20.5.4 N-Trace Packets ... 780

Appendix A Subblock Data Retrieval Order.. 787

Appendix B Comparing the VR4300, VR5000 and VR5432 Processors............791

Appendix C PLL Analog Power Filtering .. 795

Appendix D Instruction Hazards ... 797

Index799
VR5432 Microprocessor User’s Manual xiii

Contents
xiv VR5432 Microprocessor User’s Manual

Preface

The VR5432� microprocessor is an NEC VR Series� RISC
(reduced instruction set computer) microprocessor that implements
the high-performance 64-bit MIPS® IV architecture. This manual
describes the architecture and hardware functions of the VR5432
microprocessor.

Legend Data significance: Higher on left and lower on right
Active-high signal name: XXX
Active-low signal name: XXX*
Numeric representation: binary ... XXXX or XXXX2

decimal ... XXXX
hexadecimal ... 0xXXXX

Prefixes representing an exponent of 2 (for address space or memory
capacity):

K (kilo) 210 = 1024
M (mega) 220 = 10242

G (giga) 230 = 10243

T (tera) 240 = 10244

Manual Overview The manual is divided into two volumes. Volume 1 is the user manual,
containing processor architectural and functional information and
instructions. Volume 2 contains the instruction set information and
appendixes.

Volume 1 (U13751E)

Chapter 1: Introduction provides an overview of the device
features, CPU, Floating-Point Unit (FPU), and pipeline.

Chapter 2: Signal Descriptions discusses the pin configuration and
functions of the VR5432 processor signals.

Chapter 3: Pipeline describes the dual-issue instruction pipeline
stages, delays, and interlock and exception handling.
VR5432 Microprocessor User�s Manual xv

Preface
Chapter 4: Memory Management Unit discusses the processor’s
virtual and physical address spaces, the virtual-to-physical address
translation, the translation lookaside buffer (TLB) process, and the
system control coprocessor registers that provide the software
interface to the TLB.

Chapter 5: Cache Organization and Operation describes the cache
memory’s place in the VR5432 memory configuration and individual
cache organization.

Chapter 6: CPU Exceptions describes the processor’s exception
types, registers, vector offsets, processing handling, and interrupts.

Chapter 7: Floating-Point Unit describes the FPU coprocessor,
including the programming model, instruction set and formats, and
the pipeline.

Chapter 8: Floating-Point Exceptions discusses FPU exception
types, exception trap processing, exception flags, saving and restoring
states when handling an exception, and trap handlers for IEEE
Standard 754 exceptions.

Chapter 9: Bus Interface describes how the processor accesses the
external resources needed to satisfy cache misses and uncached
operations, while permitting an external agent access to some of the
processor’s internal resources.

Chapter 10: System Interface Transactions (Native Mode)
describes processor and external requests in the native system
interface protocol of the VR5432 processor.

Chapter 11: System Interface Protocols (Native Mode) contains a
cycle-by-cycle description of the system interface protocols for each
type of processor and external request in the native protocol of the
VR5432 processor.

Chapter 12: System Interface Transactions (R43K Mode) This
section describes processor and external requests as they occur in
R43K (VR4300 compatibility) mode.

Chapter 13: System Interface Protocols (R43K Mode) contains a
cycle-by-cycle description of the system interface protocols for each
type of processor and external request in R43K mode.

Chapter 14: Initialization Interface describes the processor reset
and initialization signals.
xvi VR5432 Microprocessor User’s Manual

Preface
Chapter 15: Clock Interface describes the basic system clocks,
SysClock and PClock, and Phase-Locked Loop (PLL) and Bypass
PLL modes.

Volume 2 (U15397E)

Chapter 16: Instruction Set Overview discusses the general
attributes of the CPU, FPU, multimedia, and debugging instructions
of the MIPS IV instruction set architecture (ISA) utilized by the
VR5432 processor.

Chapter 17: CPU Instruction Set describes the details of the CPU
instructions.

Chapter 18: Floating-Point Unit Instruction Set describes the
details of the FPU instructions.

Chapter 19: Multimedia Instruction Set describes the details of the
multimedia instructions.

Chapter 20: Debug and Test Features describes the VR5432
processor�s debug and test functions, Debug mode, and debug
instructions.

Appendix A: Sublock Order describes how a block of data elements
(bytes, halfwords, words, or doublewords) can be retrieved from
storage in sequential or nonsequential (sub-block) order.

Appendix B: Comparing the VR4300, VR5000, and VR5432
Processors delineates each processor�s attributes.

Appendix C: PLL Analog Power Filtering illustrates the phase-
locked loop circuit configuration.

Appendix D: Instruction Hazards identifies the VR5432 instruction
hazards that occur with certain instruction and event combinations
(such as pipeline delays, cache misses, interrupts, and exceptions).
VR5432 Microprocessor User�s Manual xvii

Preface
Related Documents See also the following documents. The related documents indicated
here may include preliminary versions. However, preliminary
versions are not marked as such.

Product Data Sheet
User�s Manual

Hardware Architecture Instruction Set
VR5432 U13504E U13751E U15397E
VR5000 U12031E U11761E U12754E

VR10000 U12703E U10278E U12754E
xviii VR5432 Microprocessor User�s Manual

Introduction

1

The VR5432™ microprocessor is an NEC VR Series™ RISC (reduced instruction
set computer) microprocessor that implements the high-performance 64-bit
MIPS® IV architecture.

The instruction set for the VR5432 processor is compatible with those of the
VR3000™ and VR4000™ microprocessor families, which are based on the MIPS
III architecture. It is also compatible with the MIPS IV architecture used on the
VR5000™ and VR10000™ microprocessors. Therefore, existing applications can
be implemented easily with the VR5432 processor.

The VR5432 processor (part number µPD30541GD) implements a 32-bit system
interface, which can operate in both VR5432 Native mode and R43K mode (which
emulates the interface used in the VR4300™ microprocessor). For most VR4300
applications, the VR5432 offers substantial performance improvement, minimal
product redesign, and fast time to market.
VR5432 Microprocessor User’s Manual 1

Chapter 1
1.1 Device Features

The VR5432 has the following features:

• MIPS IV instruction set with MACC (multiply and accumulate) and
DSP/multimedia extension

• 0.25-µm static CMOS technolog

• 64-bit architecture with 32-bit split-transaction external data bus

• Dual-issue superscalar implementatio

• 4K-entry branch prediction table with 2-bit saturating counter
mechanism

• 4-entry nonblocking data cache miss queue

• 4-entry transaction buffer (4 doublewords total

• 32 KB, 2-way set-associative, line-locked, 32-byte/block instruction
cache

• 32 KB, 2-way set-associative, write-through, write-back, line-locked
32-byte/block data cache

• 48-entry translation lookaside buffer (TLB), mapping two pages per
entry

• 4-entry instruction micro-TLB

• 4-entry data micro-TLB

• 40-bit virtual address space

• Physical address space: 36 bits are internal; the lower 32 bits are
external

• Single- and double-precision IEEE-754 floating-point operations

• Up to 83 MHz external bus with on-chip clock multiplier for internal
frequency of ×2, ×2.5, ×3, or ×4 the external clock

• N-Wire and N-Trace hardware debugging interfac

• Upward compatibility with V R300 ™ and VR4000 devices

• Bus protocol compatibility mode for R4300 system interface

• 2.5 V core logic with 3.3 V external interfac
2 VR5432 Microprocessor User’s Manual

Introduction
1.2 Internal Architecture

1.2.1 Configuration

Figure 1-1 is an internal block diagram of the VR5432 processor. Descriptions of
each block follow.

Figure 1-1 Block Diagram

D ata Cache
Data

M icro-TLB

D ata Virtua l Address (D VA)
G lue Logic

Load/Store Unit

Pads

Bus
Interface

Unit

Instruction C ache
Instruction

Branch H istory Program C ounter

Instruction F IFO

Fetch Unit

M icro-TLB

Table (BH T)

Vector

Execution Unit

D ata path 0 D ata path 1

M ultip ly/
Accum ulate

(M AC)
D ata path

C oprocessor 0
(C P0)
and

Joint TLB
(JTLB)

Pipe/Issue Contro l

D ata path

(BIU)

(PC)
VR5432 Microprocessor User’s Manual 3

Chapter 1
Fetch Unit

The fetch unit transfers instructions from the instruction cache to the load/store
unit (LSU) or the execution unit. The fetch unit includes the following elements.

Instruction Cache. The instruction cache is 32 KB and 2-way set associative,
with line-locking capability. It has a 64-bit read and a 64-bit write port. It is always
accessed on a doubleword boundary, providing two instructions each time it is
accessed.

Instruction Micro-TLB. The instruction micro-TLB (ITLB) has four entries,
each of which supports a variable page size and is refilled from the joint TLB
(JTLB) using a pseudo LRU algorithm. The instruction virtual address (IVA) is
translated by the ITLB. This TLB is completely invisible to software.

Branch History Table. The branch history table (BHT) has one entry per
instruction cache doubleword. The BHT implements a 2-bit saturating counter
branch prediction scheme.

Program Counter. The program counter (PC) keeps track of the program flow
and generates new program counters. The new program counters access
instructions from the instruction cache or from the main memory.

Instruction FIFO. This FIFO isolates instruction cache accesses from instruction
issue logic. As mentioned above, the VR5432 processor can fetch up to two
instructions per cycle. In some cases, both of these instructions cannot be issued.
The FIFO holds these instructions until they are ready to be issued; however, the
fetch unit continues to access instructions during this time.

Load/Store Unit

The load/store unit (LSU) loads and stores data to/from the data cache or main
memory. This unit also contains data alignment logic for Load instructions. The
LSU includes the following elements.

Data Virtual Address. When the LSU receives a Load/Store instruction from the
fetch unit, it calculates an address from which data is to be retrieved or where data
is to be stored. This address is the data virtual address (DVA). The LSU contains
the adder that calculates this address.

Data Cache. The data cache is 32 KB and 2-way set associative, with line-locking
capability. It has a 64-bit read and a 64-bit write port. It is always accessed on a
doubleword boundary, providing a doubleword each time it is accessed.
4 VR5432 Microprocessor User’s Manual

Introduction
Data Micro-TLB. The data micro-TLB (DTLB) has four entries, each of which
supports a variable page size and is refilled from the joint TLB (JTLB) using a
pseudo LRU algorithm. The DVA is translated by the DTLB. This TLB is
completely invisible to software.

Execution Unit

The VR5432 is a superscalar microprocessor that can issue two instructions
simultaneously. There are four execution datapaths in this processor. Data path 0
(DP0) and Data path 1 (DP1) execute both integer and floating-point instructions.
The multiply/accumulate (MAC) data path executes VR5432 processor-specific
MAC instructions. The vector data path works on VR5432 processor-specific
multimedia instructions.

Pipe/Issue Control

Pipeline flow and instruction execution are handled by the logic, which resides in
this block. This block also contains control logic, which handles interruptions that
affect the pipeline flow.

Coprocessor 0 and Joint TLB

The VR5432 processor executes the MIPS instruction set. MIPS architecture
defines several control and status registers, which are used to control the
processor. These registers reside in the Coprocessor 0 (CP0) block. The processor
also includes a 48-entry, MIPS-compatible JTLB, which supports even/odd page
sizes.

Bus Interface Unit

The bus interface unit (BIU) minimizes processor stalls and maximizes bus
utilization. The BIU isolates the bus from the processor core and makes the most
efficient use of the bus, performing burst transfers whenever possible.
VR5432 Microprocessor User’s Manual 5

Chapter 1
1.2.2 CPU Registers

The processor provides the following registers:

• 32 64-bit general-purpose registers (GPR

• 32 64-bit floating-point registers (FPR

In addition, the processor provides the following special registers:

• 64-bit HI register, to receive the integer multiply an divide high-
order doubleword result

• 64-bit LO register, to receive the integer multiply and divide low-
order doubleword result

• 1-bit Load/Link (LL) Bit register

• 192-bit Accumulator register, for operating on media instruction

• 32-bit floating-point Implementation/Revision register (FCR0

• 32-bit floating-point Control/Status register (FCR31)

Two of the CPU general-purpose registers have assigned functions:

• r0 is hardwired to a value of zero, and can be used as the target
register for any instruction where the result is to be discarded. r0 can
also be used as a source when a zero value is needed.

• r31 is the link register used by JAL and JALR instructions. It can be
used by other instructions. Make sure that other data used in
calculations does not overlap with the register used by the JAL/JALR
instruction

Furthermore, the processor contains dedicated registers in the system control
processor (CP0) that support exception processing and address management. CPU
registers can operate as either 32- or 64-bit registers, depending on the VR5432
processor operation mode.

Figure 1-2 shows the VR5432 processor registers.
6 VR5432 Microprocessor User’s Manual

Introduction
Figure 1-2 VR5432 Processor Registers

The VR5432 processor has no Program Status Word (PSW) register as such; this
function is covered by the Status and Cause registers included within the system
control coprocessor (CP0). CP0 registers are described later in this chapter.

r0 = 0

r1

r2

r31 = L ink address

Multiply and Divide Registers
0 0

0

HI

LO

General-Purpose Registers

•
•
•
•

r29

r30

63

63

63

r0

r1

r2

r31 = Contro l/S tatus

0
Floating-Point Registers

•
•
•
•

r29

r30

63

Load/Link Register
0

LL B it

Floating-Point Control Registers
0

0

31

31

r0 = Im plem entation/Revision

r31

Vector Accumulator
0

Accum ulator

191
VR5432 Microprocessor User’s Manual 7

Chapter 1
1.2.3 CPU Instruction Set Overview

Each CPU instruction is 32 bits long. As shown in Figure 1-3, there are three
instruction formats:

• Immediate (I-type)

• Jump (J-type)

• Register (R-type)

Figure 1-3 CPU Instruction Formats

015162021252631

015162021252631

0252631

op rs rt im m ediate

op target

functop rs rt

11 10 6 5

rd saR-Type (Register)

J-Type (Jum p)

I-Type (Im m ediate)
8 VR5432 Microprocessor User’s Manual

Introduction
The instructions can be further classified as follows.

• Load and Store instructions move data between memory and
general-purpose registers. They are all immediate (I-type
instructions, since the only addressing mode supported for general-
purpose-registers is base register plus 16-bit, signed immediate offset
(Indexed addressing is supported for floating-point registers.)

• Computational instructions perform arithmetic, logical, shift
multiply, and divide operations on values in registers. They includ
register (R-type, in which both the operands and the result are stored
in registers) and immediate (I-type, in which one operand is a 16-bit
signed immediate value) formats.

• Jump and Branch instructions change the control flow of a program.
Jumps are always made to an address formed by combining a 26-bit
target address with the high-order bits of the program counter (J-type
format) or register address (R-type format). Branch instructions ar
performed to the 16-bit offset address relative to the program counter
(I-type). Jump and Link instructions save their return address in
register 31.

• Coprocessor instructions were originally defined in the MIP
architecture to perform operations in coprocessors. However, “true”
coprocessors (in the sense of functional units that operate in parallel
with the CPU) are not implemented. For example, the original
coprocessor 1 was the FPU, but in the VR5432 the FPU instructions
are executed using the same data paths used for integer instructions
The Coprocessor 2 opcodes have been used for the multimedi
instruction set extensions

• Coprocessor 0 (system coprocessor, CP0) instructions perfor
operations on CP0 registers to control the memory management and
exception handling facilities of the processor.

• Exception instructions perform System Call exception an
Breakpoint exception operations, cause a branch to the general
exception handling vector based upon the result of a comparison, or
implement the MAC instruction set extensions. These instructions
occur in both R-type (both the operands and the result are registers)
and I-type (one operand is a 16-bit immediate value) formats

Refer to Chapter 16 for an overview of instructions, Chapter 17 for CPU
instruction details, Chapter 18 for FPU instruction details, Chapter 19 for
multimedia instruction details, and Chapter 20 for debug and test instructions.
VR5432 Microprocessor User’s Manual 9

Chapter 1
1.2.4 Data Formats and Addressing

The VR5432 processor uses four data formats: a 64-bit doubleword, a 32-bit word,
a 16-bit halfword, and an 8-bit byte. Byte ordering within all of the larger data
formats—halfword, word, doubleword—can be configured as either big or little
endian. When the VR5432 processor is configured as a big-endian system, byte 0
is the most-significant (left-most) byte, thereby providing compatibility with
Motorola’s MC 68000™ and IBM’s System/370™ conventions. Figure 1-4
shows this configuration.

Figure 1-4 Big-Endian Byte Ordering

Note: The most-significant byte has the lowest address. A word is ad-
dressed by the address of the most-significant byte.

When configured as a little-endian system, byte 0 is always the least-significant
(right-most) byte, which is compatible with Intel’s iAPX™ x86 and DEC VAX™
conventions. Figure 1-5 shows this configuration.

Unless otherwise specified, the little-endian system is used throughout this
manual.

Figure 1-5 Little-Endian Byte Ordering

Note: The least-significant byte has the lowest address. A word is ad-
dressed by the address of the least-significant byte.

Higher
Address

Lower
Address

W ord

4

8

12

Address

8 9 1110

4 5 76

0 1 32

12 13 1514

0

31 24 23 16 15 8 7 0

H igher
Address

Lower
Address

W ord

4

8

12

Address

8911 10

457 6

013 2

121315 14

0

31 24 23 16 15 8 7 0
10 VR5432 Microprocessor User’s Manual

Introduction
Figure 1-6 Big-Endian Data in a Doubleword

Note: The most-significant byte has the lowest address. A word is ad-
dressed by the address of the most-significant byte.

Figure 1-7 Little-Endian Data in a Doubleword

Note: The least-significant byte has the lowest address. A word is ad-
dressed by the address of the least-significant byte.

The CPU uses byte addressing for halfword, word, and doubleword accesses with
the following alignment constraints:

• Halfword accesses must be aligned on an even byte boundary (0, 2,
4...).

• Word accesses must be aligned on a byte boundary divisible by fou
(0, 4, 8...).

• Doubleword accesses must be aligned on a byte boundary divisibl
by eight (0, 8, 16...).

The following special instructions load and store words that are not aligned on
4-byte (word) or 8-byte (doubleword) boundaries:

LWL LWR SWL SWR

LDL LDR SDL SDR

Higher
Address

Lower
Address

Doubleword

16

Address

16 17 18

8 9 10

0 1 2

63 32 15 831 16

20 21 2322

12 13 1514

4 5 76

7 0

19

11

3

W ord H alfword Byte

8

0

H igher
Address

Lower
Address

Doubleword

16

Address

161718

8910

012

63 32 15 831 16

202123 22

121315 14

457 6

7 0

19

11

3

W ord H alfword Byte

8

0

VR5432 Microprocessor User’s Manual 11

Chapter 1
These instructions are always used in pairs to access data not aligned at a
boundary. To access data not aligned at a boundary, an additional PCycle is
necessary, compared to accessing data aligned at a boundary.

Figure 1-8 illustrates how a word misaligned and having byte address 3 is
accessed in big- and little-endian systems.

Figure 1-8 Misaligned Word Addressing

Higher
Address

Lower
Address

Big End ian4 5 6

3

31 24 23 16 15 8 7 0

H igher
Address

Lower
Address

Little Endian456

3

31 24 23 16 15 8 7 0
12 VR5432 Microprocessor User’s Manual

Introduction
1.2.5 System Control Coprocessor (CP0)

The original MIPS architecture defined up to four coprocessors (CP0 through
CP3). Coprocessor 1 was the FPU, and coprocessors 2 and 3 were reserved for
future use. However, with the introduction of the MIPS IV instruction set, the
coprocessor 3 opcodes were assigned to extensions of the floating-point
instruction set. On the VR5432 (and specific to this implementation), the
coprocessor 2 opcodes have been used for multimedia instruction set extensions.
Coprocessor 0 (CP0) remains the internal system control coprocessor and
supports the virtual memory system and exception processing. The virtual
memory system uses the on-chip TLB and CP0 registers.

CP0 converts virtual addresses into physical addresses, controls the operating
mode (Kernel, Supervisor, or User mode), and performs exception processing. It
also controls the cache subsystem to analyze causes and return execution from
error processing. CP0 also includes implementation-dependent test and debug
features.

Figure 1-9 shows the CP0 registers; Table 1-1 briefly explains each register. For
the details of the registers related to the virtual memory system, refer to Chapter
4; for the details of the registers used for exception processing, refer to Chapter 6.
VR5432 Microprocessor User’s Manual 13

Chapter 1
Figure 1-9 CP0 Registers

Index*

Random*

EntryLo0*

EntryLo1*

Context**

PageMask*

Wired*

BadVAddr**

Count**

EntryHi*

Compare**

Status**

Cause**

EPC**

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

PRId 15

Config*

LLAddr

WatchLo

WatchHi

Parity Error**

Cache Error**

TagLo

TagHi

ErrorEPC**

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Register Name Register #Register Name Register #

* For memory management
** For exception processing
RFU Reserved for future use

XContext**

RFU

PerfCtr

RFU

RFU

RFU

RFU

RFU
14 VR5432 Microprocessor User’s Manual

Introduction
Table 1-1 System Control Coprocessor (CP0) Register Definitio n

Register
Number

Register
Name

Description

0 Index Index into the TLB

1 Random Random pointer to the TLB

2 EntryLo0 Even PFN and page attributes for TLB entry

3 EntryLo1 Odd PFN and page attributes for TLB entry

4 Context Pointer to kernel PTE (32-bit addressing)

5 PageMask TLB page size mask

6 Wired Number of wired (locked) TLB entries

7  Unused

8 BadVAddr Bad virtual address

9 Count Timer count

10 EntryHi VPN and ASID for TLB entry

11 Compare Timer compare

12 SR Status register

13 Cause Cause of last exception

14 EPC Exception program counter

15 PRId Processor revision identifier

16 Config Configuration register

17 LLAddr Load linked address

18 WatchLo Memory reference trap address lower bits

19 WatchHi Memory reference trap address upper bits

20 XContext Pointer to the kernel PTE (64-bit addressing)

21−24  Unused

25 PerfCtr

Performance counter registers:
Performance Event Specifier/Control 0
Performance Counter 0
Performance Event Specifier/Control 1
Performance Counter 1

26 PErr Parity error in cache

27 CacheErr Cache error register

28 TagLo Cache tag register
VR5432 Microprocessor User’s Manual 15

Chapter 1
1.2.6 Floating-Point Unit (FPU)

The floating-point unit (FPU) performs arithmetic operations on floating-point
values. The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754–1985, IEEE Standard for Binary
Floating-Point Arithmetic.

The FPU includes:

• Full 64-bit operation. The FPU can contain sixteen 64-bit registers
to hold single-precision or double-precision values. Another sixteen
floating-point registers can be used by setting the FR bit of the Status
register to 1. In addition, a 32-bit Control/Status register is provided,
conforming to the IEEE exception processing standard.

• Load and Store instruction set. Like the CPU, the FPU uses a load
and store-based instruction set. Floating-point operations are starte
in a single cycle. Unlike the CPU, some FPU Load and Stor
instructions are R-type

1.2.7 Internal Cache

The VR5432 has an instruction cache and a data cache to enhance the efficiency
of pipelining. Each cache has a data width of 64 bits and can be accessed in 1
clock. The instruction cache and data cache can be accessed in parallel. Both the
instruction cache and data cache have a capacity of 32 KB.

For the details of each cache, refer to Chapter 5.

29 TagHi Cache tag register (reserved)

30 ErrorEPC Error exception program counter

31  Unused

Table 1-1 System Control Coprocessor (CP0) Register Definitions (continued)

Register
Number

Register
Name

Description
16 VR5432 Microprocessor User’s Manual

Introduction
1.3 Memory Management Unit (MMU)

The VR5432 processor has a usable 32-bit physical addressing range of 4 GB.
However, since it is rare for systems to implement a physical memory space this
large, the CPU provides a logical expansion of memory space to the programmer
by translating addresses into the large virtual address space. The VR5432
processor supports the following two address translation mechanisms:

• 32-bit mode, in which the virtual address space is divided into 2 GB
for user processes and 2 GB for the kernel

• 64-bit mode, in which the virtual address is expanded to
1 terabyte(40 bytes) of user virtual address space

A detailed description of these address spaces is given in Chapter 4.

1.3.1 Translation Lookaside Buffer (TLB)

Virtual memory mapping is performed by a translation lookaside buffer, which
holds virtual-to-physical address translations. This fully associative, on-chip TLB
contains 48 entries, each of which maps a pair of variable-sized pages of between
4 KB and 16 MB.

The TLB can hold both instruction and data addresses, and is sometimes referred
to as a joint TLB (JTLB). There are also two 4-entry micro-TLBs, one for
instructions and one for data. On a miss to either micro-TLB, the pipeline is stalled
while the micro-TLB is loaded from the TLB. Loading of the micro-TLBs is
handled in the hardware transparently to software.

A virtual address is concatenated with a process identifier and both are sent to the
JTLB for translation. If there is no matching entry in the JTLB, an exception
occurs and software writes the entry contents to the on-chip JTLB from a page
table in memory. The JTLB entry to be rewritten is selected by a value in either
the Random or Index register.

1.3.2 Operating Modes

The VR5432 processor has three operating modes:

• User mode

• Supervisor mode

• Kernel mode

The manner in which memory addresses are translated or mapped depends on the
operating mode of the CPU; this is described in Chapter 4.
VR5432 Microprocessor User’s Manual 17

Chapter 1
1.4 Instruction Pipeline

The VR5432 incorporates a dual-issue superscalar architecture that allows two
integer or floating-point instructions to be issued simultaneously to a five-stage
instruction pipeline. For details, refer to Chapter 3.
18 VR5432 Microprocessor User’s Manual

Signal Descriptions

2

This chapter describes the VR5432 hardware interface signals. The signals include
the power inputs and the interfaces for the system, clock, interrupt, initialization,
N-Wire/N-Trace hardware debugging, and Joint Test Action Group (JTAG)
testing.

The VR5432 supports two interface protocols: VR5432 native mode and R43K (a
compatibility mode that emulates the interface used on the VR4300). The mode is
selected by the level sampled on the OptionR43K* pin during a cold reset. As
described in subsequent sections, some signals are named and behave differently
in the two modes.

Figure 2-1 shows the processor signals by function. Signal names used in R43
mode are shown in brackets.

Note: In this manual, active-low signal names are spelled with a trailing
asterisk (e.g., the active-low, read-ready signal is RdRdy*).
VR5432 Microprocessor User’s Manual 19

Chapter 2
Figure 2-1 VR5432 Processor Signals

SysAD (31 :0) [SysAD (31:0)]

SysADC (3:0) [SysAD (3:0)]

SysCm d (8:0) [SysCm d (4:0)]

ValidIn*[EValid*]

ValidOut*[PValid*]

ExtRqst*[EReq*]

Release*[PM aster*]

W rRdy*[EOK*]

B igEndian[B igEndian]

BypassPLL*[BypassPLL*]

Co ldReset*[ColdReset*]

Reset*[Reset*]

VccP[VccP]

VssP[VssP]

Int* (4:0) [In t* (4:0)]

NM I*[NM I*]

JTD I[JTD I]

JTDO [JTDO]

JTM S[JTM S]

JTCK[JTC K]

In
iti

al
iz

at
io

n
In

te
rr

up
t

VR5432

Processor

32

4

9[5]

5

RdR dy*[Unused]

JT
A

G
/T

es
t

D ivM ode (1:0) [D ivM ode (1:0)]

Tristate [Tristate]

2

Vcc[Vcc]

VccIO [VccIO]

P
ow

er

PReq*[PReq*]

C
lo

ck
In

te
rf

ac
e

S ysC lock[M asterC lock]

Vss[Vss]

PLLC AP[PLLCAP]

4
TrcData (3:0) [T rcData (3:0)]
TrcEnd[TrcEnd]

TrcC lk[TrcC lk]

PLLtest[PLLtest]

O ptionR43K*

RM ode*/BkTgIO*
[RM ode*/BkTgIO *]

S
ys

te
m

 In
te

rf
ac

e

20 VR5432 Microprocessor User’s Manual

Signal Descriptions
2.1 System Interface Signals

System interface signals provide connections between the VR5432 processor and
the other components in the system. Table 2-1 lists the system interface signals.

Table 2-1 System Interface Signal

Name Definition Direction Description

ExtRqst*/
[EReq*]

External request
(OptionR43K* is
high)

Input

An external agent asserts ExtRqst* to request
use of the system interface. The processor
grants the request by asserting Release*.

External request
(OptionR43K* is
low)

An external agent asserts EReq* to request
use of the system interface. The processor
grants the request by asserting PMaster*.

Release*/
[PMaster*]

Release interface
(OptionR43K* is
high)

Output

In response to the assertion of ExtRqst*, the
processor asserts Release*, signaling to th
requesting device that th system interface is
available. Release* is also asserted for an
uncompelled change to slave state when one
or more read requests is outstanding.

Processor master
(OptionR43K* is
low)

Indicates the processor is the master of the
system interface bus. In response to the
assertion o EReq*, the processor deasserts
PMaster*, signaling to the requesting devi
that th system interface is available.
PMaster* is also deasserted for an
uncompelled change to slave state when one
read request is outstanding.

PReq*/[PReq*]

Processor request
(OptionR43K* is
high)

Output

Indicates that the processor has another
request that is pending. This is used to indicate
that the processor would like to send another
transaction. It is up to the external agent to
grant the request by releasing the system
interface with an external null request.

Processor request
(OptionR43K* is
low)

Indicates the processor is requesting system
interface bus ownership. Also, when the
processor experiences a protocol error (the
processor detects that an external agent has
violated the SysAD bus protocol), the
processor continuously toggles PReq*.
VR5432 Microprocessor User’s Manual 21

Chapter 2
RdRdy*/
[Unused]

Read ready
(OptionR43K* is
high)

Input

The external agent asserts RdRdy* to
indicate that it can accept processor read
requests.

Unused
(OptionR43K* is
low)

The signal is not used when the processor’s
interface protocol is compatible with the
VR4300 interface protocol.

SysAD (31:0)/
[SysAD (31:0)]

System address/data
bus (OptionR43K*
is high) Input/

Output

A 32-bit address and data bus fo
communication between the processor and an
external agent

System address/data
bus (OptionR43K*
is low)

A 32-bit address and data bus fo
communication between the processor and an
external agent

SysADC (3:0)/
[SysADC (3:0)]

System address/
data check bus
(OptionR43K* is
high) Input/

Output

A 4-bit bus containing parity for the SysAD
bus. SysADC is valid on data cycles only.

Cache test
(OptionR43K* is
low)

These pins are for cache test only.

SysCmd (8:0)/
[SysCmd (4:0)]

System command/
data identifier
(OptionR43K* is
high) Input/

Output

A 9-bit bus for command and data identifier
transmission between the processor and an
external agent

System command/
data identifier
(OptionR43K* is
low)

A 5-bit bus for command and data identifier
transmission between the processor and an
external agent. SysCmd (8:5) are unused.

ValidIn*/
[EValid*]

Valid input
(OptionR43K* is
high)

Input

The external agent asserts ValidIn when it is
driving a valid address or data on the SysAD
bus and a valid command or data identifier on
the SysCmd bus.

External valid input
(OptionR43K* is
low)

The external agent asserts EValid* when it is
driving a valid address or data on the SysAD
bus and a valid command or data identifier on
the SysCmd bus.

Table 2-1 System Interface Signals (continued)

Name Definition Direction Description
22 VR5432 Microprocessor User’s Manual

Signal Descriptions
2.2 Power Inputs

The VR5432 requires two power sources. The internal core logic runs off a 2.5 V
power supply to optimize internal speed and power. The processor I/O pins use a
3.3 V power supply to provide compatibility with logic technologies commonly
used in a system-level design. Table 2-2 lists the two types of power inputs.

Table 2-2 Power Inputs

ValidOut*/
[PValid*]

Valid output
(OptionR43K* is
high)

Output

The processor asserts ValidOut* when it is
driving a valid address or data on the SysAD
bus and a valid command or data identifier on
the SysCmd bus to the external agent.

Processor valid
output
(OptionR43K* is
low)

The processor assert PValid* when it is
driving a valid address or data on the SysAD
bus and a valid command or data identifier on
the SysCmd bus to the external agent.

WrRdy*/
[EOK*]

Write ready
(OptionR43K* is
high)

Input

The external agent asserts WrRdy* when it
can accept a processor write request.

External OK for
read/write
(OptionR43K* is
low)

The external agent asserts EOK* to indicate
that it can accept processor read/write
requests.

Name Definition Direction Description

Vss/[Vss]
Vss for processor core and
processor I/O

Input
Ground for the internal core logic
and processor I/O interface

Vcc/[Vcc] Vcc for processor core Input
2.5 V power for the internal core
logic

VccIO/[VccIO] Vcc for processor I/O Input
3.3 V power for the processor I/O
interface

Table 2-1 System Interface Signals (continued)

Name Definition Direction Description
VR5432 Microprocessor User’s Manual 23

Chapter 2
2.3 Clock Interface Signals

The clock interface signals connect the on-chip clock generator to the off-chip
clock source. Table 2-3 lists the clock interface signals.

Table 2-3 Clock Interface Signals

Name Definition Direction Description

SysClock/
[MasterClock]

System clock
(OptionR43K* is high)

Input

System clock (SysClock) input that
establishes the system interface
operating frequency and phase
during normal operation. In Bypass
PLL mode, this input becomes the
PClock internally and the system
interface operates at half the input
frequency.

System clock
(OptionR43K* is low)

System clock [MasterClock] input
that establishes the system interface
operating frequency and phase
during normal operation. In Bypass
PLL mode, this input becomes the
PClock internally and the system
interface operates at half the input
frequency.

BypassPLL*/
[BypassPLL*]

Bypass PLL
(Independent from
OptionR43K*)

Input

Forces SysClock input to bypass the
PLL and connect directly to the
internal processor clock buffers. The
system interface operates at half the
SysClock input frequency in this
mode.

PLLtest/
[PLLtest]

PLL test
(Independent from
OptionR43K*)

Output PLL testing
24 VR5432 Microprocessor User’s Manual

Signal Descriptions
VccP/[VccP]
Quiet Vcc for PLL
(Independent from
OptionR43K*)

Input

Quiet Vcc for the internal phase-
locked loop. This is 2.5 V power.
Each internal PLL requires a quiet
Vcc.

VssP/[VssP]
Quiet Vss for PLL
(Independent from
OptionR43K*)

Input
Quiet Vss for the internal phase-
locked loop. Each internal PLL
requires a quiet Vss.

PLLCAP/
[PLLCAP]

PLL capacitor
(Independent from
OptionR43K*)

Input

A resistor/capacitor network is
connected between PLLCAP and
VssP to ensure the proper operation
of the phase-locked loop. See
Appendix C for details.

Table 2-3 Clock Interface Signals (continued)

Name Definition Direction Description
VR5432 Microprocessor User’s Manual 25

Chapter 2
2.4 JTAG and Test Interface Signals

The JTAG and test interface signals include IEEE-1149.1 JTAG interface signals
as well as signals for specific test features of the VR5432 microprocessor. Table
2-4 lists the JTAG and test interface signals.

Table 2-4 JTAG and Test Interface Signals

Name Definition Direction Description

TrcData (3:0)/
[TrcData(3:0]

Trace data port
(Independent from
OptionR43K*)

Output
This bus is used to output all trace data codes
generated as a result of processor execution.

TrcEnd/
[TrcEnd]

Trace end
(Independent from
OptionR43K*)

Output

Assertion of this signal indicates the end of a
trace data packet from the TrcData port. Trace
packets can consist of a single clock cycle of
data from the TrcData port, or multiple cycles
of data from the TrcData port.

TrcClk/
[TrcClk]

Trace clock
(Independent from
OptionR43K*)

Output

The trace clock is the same as the system clock.
This output is generated for the benefit of test
equipment that requires the clock reference for
trace information.

RMode*/
BkTgIO*/
[RMode*/
BkTgIO*]

Reset mode
Break, Trigger I/O
(Independent from
OptionR43K*)

Input/
Output

This pin supports the N-Wire Reset mode, as
well as break and trigger functions. The pin
carries the RMode* signal until ColdReset* is
deasserted. It then carries the BkTgIO* signal
and serves as a break or trigger, as well as an
input or output, depending on the setup in
various Debug registers. See Chapter 20 for
complete details.

Tristate/
[Tristate]

Tristate all outputs
(Independent from
OptionR43K*)

Input
This signal tristates all VR5432 outputs to
allow a board-level test to isolate the VR5432
processo .

JTDI/[JTDI]
Test data in
(Independent from
OptionR43K*)

Input Data is serially scanned in through this signal.
26 VR5432 Microprocessor User’s Manual

Signal Descriptions
2.5 Interrupt Interface Signals

The interrupt interface signals make up the interface used by external agents to
interrupt the VR5432 processor. Table 2-5 lists the interrupt interface signals.

Table 2-5 Interrupt Interface Signals

JTCK/[JTCK]
Test clock input
(Independent from
OptionR43K*)

Input

The processor accepts a serial clock on JTCK.
On the rising edge of JTCK, both JTDI and
JTMS are sampled. The maximum frequenc
of JTCK is 33 MHz, and it runs
asynchronously to the SysClock.

JTDO/
[JTDO]

Test data out
(Independent from
OptionR43K*)

Output
Data is serially scanned out through this signal
on the falling edge of JTCK.

JTMS/
[JTMS]

Test mode select
(Independent from
OptionR43K*)

Input JTAG Test mode select signal

Name Definition Direction Description

Int* (4:0)/
[Int* (4:0)]

Interrupt
(Independent from
OptionR43K*)

Input
General processor interrupts, bitwise ORed with
bits 4:0 of the Interrupt register

NMI*/
[NMI*]

Nonmaskable
interrupt
(Independent from
OptionR43K*)

Input
Nonmaskable interrupt, ORed with bit 6 of the
Interrupt register

Table 2-4 JTAG and Test Interface Signals (continued)

Name Definition Direction Description
VR5432 Microprocessor User’s Manual 27

Chapter 2
2.6 Initialization Interface Signals

The initialization interface signals make up the interface by which an external
agent initializes the processor operating parameters. Table 2-6 lists the
initialization interface signals.

Table 2-6 Initialization Interface Signals

Table 2-7 DivMode (1:0) Settings and Frequencies

Name Definition Direction Description

OptionR43K* VR4300 mode Input
When OptionR43K* is driven active-low,
the VR5432 operates with the VR4300
protocol.

DivMode (1:0)/
[DivMode (1:0)]

Divide mode
(Independent from
OptionR43K*)

Input
Sets the PClock-to-SysClock ratio. See
Table 2-7 for the ratio that these pins
indicate.

BigEndian/
[BigEndian]

Endian mode select
(Independent from
OptionR43K*)

Input
Sets the VR5432 addressing mode to either
Big Endian or Little Endian.

 ColdReset*/
[ColdReset*]

Cold reset
(Independent from
OptionR43K*)

Input
This signal must be asserted for a power-on
reset or a cold reset. ColdReset* must be
deasserted synchronously with SysClock.

Reset*/
[Reset*]

Reset
(Independent from
OptionR43K*)

Input

This signal must be asserted for any reset
sequence. It can be asserted synchronously
or asynchronously for a cold reset, or
synchronously to initiate a warm reset.
Reset* must be deasserte synchronously
with SysClock.

DivMode (1:0) PClock SysClock Ratio

11 167 MHz 42 MHz 4:1

10 167 MHz 56 MHz 3:1

01 167 MHz 66 MHz 2.5:1

00 167 MHz 83 MHz 2:1
28 VR5432 Microprocessor User’s Manual

Signal Descriptions
2.7 Pin Orientation

Figure 2-2 shows the pin orientation for the 208-pin plastic quad flat package
(PQFP). Table 2-8 lists the signal names by pin number.

Figure 2-2 208-Pin PQFP Orientation (Top View)

208
1

157
156

104
105

52
53
VR5432 Microprocessor User’s Manual 29

Chapter 2
Table 2-8 VR5432 208-Pin PQFP Pin Assignment

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

1 Vss 44 Int2* 87 DivMode0 130 VccIO 173 ExtRqst*

2 Vss 45 Vcc 88 VccIO 131 Vcc 174 Vss

3 Sys_AD2 46 Int3* 89 BigEndian 132 Sys_AD3 175 Sys_Cmd0

4 VccIO 47 Vss 90 Vss 133 Vss 176 VccIO

5 Sys_AD2 48 Int4* 91 ColdReset* 134 Sys_AD2 177 Sys_Cmd1

6 Vcc 49 Vcc 92 Vcc 135 Vss 178 Vcc

7 Sys_AD1
50 RMode*/

BkTgIO*
93 Tristate 136 Sys_AD1 179 Reset*

8 Vss 51 VccIO 94 VccIO 137 VccIO 180 Vss

9 Vss 52 Vss 95 JTMS 138 Vss 181 VccIO

10 Sys_AD1 53 Vss 96 Vss 139 Vcc 182 OptionR43K*

11 VccIO 54 Vss 97 Vcc 140 Sys_AD0 183 Vcc

12 Sys_AD1 55 VccIO 98 JTCK 141 Vss 184 ValidIn*

13 Vss 56 TrcData0 99 Vss 142 Preq* 185 Vss

14 Sys_AD1 57 Vcc 100 JTDI 143 VccIO 186 Sys_Cmd2

15 Vcc 58 TrcData1 101 VccIO 144 Sys_AD31 187 VccIO

16 Sys_AD1 59 Vss 102 Vcc 145 Vss 188 Sys_Cmd3

17 Vss 60 TrcCLK 103 Vss 146 ValidOut* 189 Vss

18 Sys_AD1 61 Vss 104 Vss 147 Vcc 190 Sys_Cmd4

19 VccIO 62 VccIO 105 Vss 148 Sys_AD30 191 Vcc

20 Vss 63 Vcc 106 Vss 149 VccIO 192 Sys_Cmd5

21 Sys_AD1 64 TrcData2 107 JTDO 150 RdRdy* 193 VccIO

22 Vss 65 Vss 108 Vss 151 Vss 194 Sys_Cmd6

23 Sys_AD1 66 TrcData3 109 Sys_ADC0 152 WrRdy* 195 Vss

24 Vcc 67 Vss 110 VccIO 153 Vcc 196 Sys_Cmd7

25 VccIO 68 VccIO 111 Sys_ADC1 154 Sys_AD29 197 Vss

26 Vss 69 TrcEnd 112 Vcc 155 Vss 198 Sys_Cmd8

27 Sys_AD1 70 VccIO 113 Sys_ADC2 156 VccIO 199 VccIO

28 Vss 71 Vss 114 Vss 157 Vss 200 Vcc

29 Sys_AD1 72 VccIO 115 Sys_ADC3 158 Vss 201 Sys_AD24

30 Vss 73 Vss 116 VccIO 159 Vcc 202 Vss

31 VccIO 74 PLLtest 117 Vss 160 Sys_AD28 203 Sys_AD23

32 Vcc 75 Vcc 118 Vcc 161 Vss 204 Vss

33 Sys_AD 76 SysClock 119 Vss 162 VccIO 205 Vcc

34 Vss 77 Vss 120 Sys_AD7 163 Vss 206 Sys_AD22

35 Sys_AD 78 VccP 121 VccIO 164 Sys_AD27 207 VccIO

36 VccIO 79 PLLCAP 122 Sys_AD6 165 Vcc 208 Vss

37 Vss 80 VssP 123 Vss 166 Sys_AD26

38 NMI* 81 VccIO 124 Sys_AD5 167 Vss

39 Vcc 82 Vss 125 Vcc 168 Release*

40 Int0* 83 BypassPLL* 126 VccIO 169 VccIO

41 VccIO 84 Vcc 127 Vss 170 Sys_AD25

42 Int1* 85 DivMode1 128 Sys_AD4 171 Vcc

43 Vss 86 Vss 129 Vss 172 Vss
30 VR5432 Microprocessor User’s Manual

Pipeline

3

3.1 Pipeline Stages

The VR5432 instruction pipeline follows these five stages:

• IC: Instruction Fetch

• RF: Register Fetch

• EX: Executi

• DC: Data Cache Fetch

• WB: Write-back

Each stage takes one PCycle (one cycle of PClock, which runs at a multiple of the
frequency of SysClock). Therefore, the execution of each instruction takes at least
five PCycles (see Figure 3-1). An instruction can take longer—for example, if the
required data is not in the cache, the data must be retrieved from main memory.
VR5432 Microprocessor User’s Manual 31

Chapter 3
Figure 3-1 Instruction Pipeline Stages

Once the dual-issue pipelines have been filled, ten instructions can be executed
simultaneously. Figure 3-2 shows a simplified diagram of the dual-issue
mechanism. The blocks listed below are part of the execution unit.

The Load/Store unit handles load/store operations that load data from memory to
the general-purpose register or store data from the general-purpose register to
memory.

The dual data path units (DP0 and DP1) have the hardware resources to execute
integer and IEEE-754 single- and double-precision floating-point operations. The
symmetric, two-issue superscalar design allows two integer or floating-point
instructions to be issued simultaneously.

The vector unit handles parallel operations on packed vectors of unsigned 8-bit
integers for rapid processing of data for multimedia, such as sound and graphics.

The MAC unit handles DSP-like multiply-accumulate operations on signed or
unsigned integers.

RF EX DC W BIC

RF EX DC W BIC

RF EX DC W BIC

RF EX DC W BIC

RF EX DC W BIC

1 Cycle
32 VR5432 Microprocessor User’s Manual

Pipeline
Figure 3-2 Dual-Issue Mechanism

PC G eneration

Prediction
and Branch

Data C ache

(32K Bytes)

PC G eneration

Prediction
and Branch

Data C ache

(32 KB)

Data

Register F ile

Instruction Cache

Load/
Store
Unit

M AC
EX Stage

DC Stage

W B S tage

(8 x 8-b it)

Instruction Buffer

(64 x 64 b its)

(16 Entries)

(32 KB)

Vector
Packed

Unit
UnitPath 0

Data
Path 1

System

Interface

Address/
Data Contro l

IC S tage

RF Stage

Load/
S tore
Unit
VR5432 Microprocessor User’s Manual 33

Chapter 3
3.2 Branch Delay

The CPU pipeline has a delay of three cycles for mispredicted branches. The two-
cycle branch delay is a result of the branch comparison logic operating during the
EX pipeline phase of the Branch instruction. Figure 3-3 illustrates the branch
delay condition. Whenever the processor correctly predicts a branch, there is a 0-
cycle (0 instruction) branch delay.

Figure 3-3 CPU Pipeline Branch Delay

3.3 Load Delay

The CPU pipeline has a load delay of one cycle. The one-cycle load delay is a
result of the load completing in DC, while the instruction requesting the use of the
load data needs it in RF. Note that because the processor has a two-way
superscalar architecture, two to three instructions following the load cannot use
the load data. The processor will interlock if the instructions in the load delay slots
are dependent on the load data itself. This penalty could and should be minimized
with appropriate scheduling by the compiler. Figure 3-4 shows the load delay of
one pipeline stage.

R F EX DCIC

R F EXIC

RF EX DC W BIC

M ispredicted B ranch Instruction

Branch Target

W B

DC W B

Delay S lot
Instruction
34 VR5432 Microprocessor User’s Manual

Pipeline
Figure 3-4 CPU Pipeline Load Delay

The nominal miss penalty for loads is (9.5 + M) processor cycles in 2:1 mode,
where M is the external memory latency excluding the address and data transfer
time on the system bus. Loads are nonblocking, with hits under miss allowed.
Store misses incur an additional one-cycle penalty.

RF EX D CIC

RF EXIC

R F EX DC W BIC

Instruction that loads data

Requires data loaded by

W B

DC W B

Delay S lot
Instruction
(Does not require

n

n + 1

n + 2

instruction n

load data, otherw ise
a sta ll occurs)
VR5432 Microprocessor User’s Manual 35

Chapter 3
3.4 Interlock and Exception Handling

The VR5432 has a basic dual five-stage pipe that allows for a good overlap of
instruction execution. When a data dependency or resource conflict is
encountered, the smooth pipeline flow is interrupted. Interruptions handled using
hardware, such as cache misses, are referred to as interlocks, while those that are
handled using software are called exceptions. During each cycle, exception and
interlock conditions are checked for all active instructions.

Because each exception or interlock condition corresponds to a particular pipeline
stage, a condition can be traced back to the particular instruction in the exception/
interlock stage. For instance, a Reserved Instruction (RI) exception is raised in the
execution (EX) stage. Table 3-1 summarizes all stall and exception conditions.
Table 3-2 describes the stall and exception conditions.

Table 3-1 Pipeline Stalls and Exceptions

Stall Description Exception Description

ICM I cache miss IADE Instruction address error

ITM Target branch address I cache miss IBE Instruction bus error

BT Branch take IPErr Instruction parity error

CP0BI CP0 bypass interlock BP Breakpoint instruction

DPI Data path bypass interlock CpU Coprocessor unusabl

LDI Load data interlock DADE Data address error

MBI Multiply bypass interlock OVF Arithmetic overflow

MCI Multicycle cycle interlock RI Reserved instruction

COp Cache operation SysCall System call instruction

DCM Data cache miss Trap Trap instruction

ITLB Instruction TLB miss CPE Coprocessor error

DTLB Data TLB miss DBE Data bus error

DPErr Data parity error

Mod TLB modification

Int Interrupt

NMI Nonmaskable interrupt

Reset Reset

Watch Reference to watch addr.

ITLBEx Instruction TLB exception

DTLBEx Data TLB exception
36 VR5432 Microprocessor User’s Manual

Pipeline
Table 3-2 Relationship of Pipeline Stage to Interlock and Exception Conditions

State
Pipeline Stage

IC RF EX DC WB

Stall ICM BT MCI COp

ITM CP0BI DCM

ITLB DPI DTLB

LDI

MBI

Exceptions IADE IBE BP CPE

ITLBEx IPErr CpU DBE

DADE DPErr

OVF Mod

RI Int

SysCall NMI

Trap Reset

Watch

DTLBEx
VR5432 Microprocessor User’s Manual 37

Chapter 3
3.4.1 Exception Conditions

When an exception condition occurs, the processor aborts the instruction that
caused the exception and all those that follow it in the pipeline are canceled.
Accordingly, any stall conditions and any later exception conditions that may
have referenced this instruction are inhibited; there is no benefit in servicing stalls
for a canceled instruction. When an exception-generating instruction reaches the
WB stage, three events occur:

• Writes are made to various CP0 registers with the exception state and
cause.

• The exception vector program counter address is calculated.

• The exception bits of earlier pipeline stages are cleared

This implementation allows all instructions that occurred before the exception to
complete and all instructions that occurred after the exception to be aborted. The
value of the EPC (or ErrorEPC, if the ERL bit in the CP0 Status register is set) is
such that execution can be restarted at the point of exception. In addition, all
exceptions are guaranteed to be taken in order. Figure 3-5 illustrates the exception
detection mechanism for a Reserved Instruction (RI) exception.

Figure 3-5 Exception Detection Mechanism

R F EX DCIC

R F EXIC

R FIC

IC

RF EX D C W BIC

R I exception detected

Exception vector

Instructions killed

W B

DC

EX

RF
38 VR5432 Microprocessor User’s Manual

Pipeline
3.4.2 Interrupt Latency

External interrupts are processed in the WB stage of the pipeline. When an
enabled interrupt is detected, an Interrupt exception is taken, assuming there are
no higher priority exceptions. In some cases, the interrupt will not be processed
until the transaction buffer is empty. The nominal delay from when an enabled
external interrupt is received at the processor pins to when the processor fetches
the first instruction of the Interrupt Exception vector is 6 + N cycles, where N is
the number of cycles needed to empty the transaction buffer. N depends on the
types of transactions in the buffer and the system response time to perform those
transactions.

3.4.3 Stall Conditions

A stall condition is used to suspend the pipeline for conditions that require
additional cycles to complete, such as a bypass data interlock. When the interlock
condition is detected, the processor will stall the issue of the dependent instruction
in the RF stage. During the time the instruction issue is stalled, the processor
continues to execute instructions already issued. Figure 3-6 shows a data interlock
stall.

Figure 3-6 Servicing a Data Interlock Stall

RF EX D CIC

Data inte rlock detected

P ipe restarts

S tall un til in terlock is resolved

EX DC W BIC

RF EX DC W B

RF

IC

Previous instructions
continue executing

RF

IC

W B
VR5432 Microprocessor User’s Manual 39

Chapter 3
3.5 Transaction Buffer

The processor contains a transaction buffer that improves the performance of
operations to external memory. All system interface operations use the transaction
buffer. It is organized as a four-deep FIFO and can hold up to 256 bits of data. This
transaction buffer can be used to hold up to four read or uncached write operations
or one cache line write-back.

On a cache miss requiring a write-back, the entire cache line (write-back data) is
dumped into the transaction buffer, which allows the processor to proceed in
parallel with the memory update. For uncached and write-through stores, the
transaction buffer decouples the CPU from the write to memory. If the transaction
buffer is full, additional stores are stalled until there is room for them in the
transaction buffer. This transaction buffer mechanism is completely invisible to
software.
40 VR5432 Microprocessor User’s Manual

Memory Management Unit

4

The VR5432 processor provides a full-featured memory management unit (MMU)
that uses an on-chip translation lookaside buffer (TLB) to translate virtual
addresses into physical addresses.

This chapter describes the processor’s virtual and physical address spaces, the
virtual-to-physical address translation, the TLB translation process, and the
system control coprocessor (CP0) registers that provide the software interface to
the TLB.
VR5432 Microprocessor User’s Manual 41

Chapter 4
4.1 Translation Lookaside Buffer

Mapped virtual addresses are translated into physical addresses using an on-chip
TLB.† The TLB is a fully associative memory that holds 48 entries that provide
mapping to 48 odd/even page pairs (96 pages). When address mapping is
indicated, each TLB entry is checked simultaneously for a match with the virtual
address that is extended with an ASID (Address Space Identification) stored in the
EntryHi register.

The address mapped to a page ranges in size from 4 KB to 16 MB, in multiples of
4—that is, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, and 16 MB.

4.1.1 Hits and Misses

If there is a virtual address match or hit in the TLB, the physical page number is
extracted from the TLB and concatenated with the offset to form the physical
address (see Figure 4-1).

If no match occurs (a TLB miss), an exception is taken and software refills the
TLB from the page table resident in memory. Software can write over a selected
TLB entry or use a hardware mechanism to write into a random entry.

4.2 Processor Modes

The VR5432 has three processor operating modes, an instruction set mode, and an
addressing mode. All are described in this section.

† There are virtual-to-physical address translations that occur outside of the TLB. For example, addresses in
the kseg0 and kseg1 spaces are unmapped translations.
42 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.2.1 Processor Operating Modes

The three operating modes are listed in order of decreasing system privilege:

• Kernel Mode (highest system privilege) can access and change an
register. The innermost core of the operating system runs in Kernel
mode.

• Supervisor Mod has fewer privileges and is used for less critical
sections of the operating system.

• User Mode (lowest system privilege) prevents users from interfering
with one another.

User mode is used for application programs. Kernel mode is used for operating
system functions, such as exception handlers. Supervisor mode is an intermediate
privilege level between the operating system and the application, which can be
used for operating systems that implement both a kernel layer and a layer for
operating system extensions, such as device drivers.

The processor’s operating mode is controlled by the Status register’s KSU field
and the EXL and ERL bits. The EXL and ERL bits are set during the service of an
exception or error, respectively. Table 4-1 relates the operating mode to the states
of KSU, EXL, and ERL.

On an exception or error, the EXL and ERL bits are set independently of the KSU
bits. Interrupts are disabled whenever either of these bits is set. If the exception
handler clears EXL, for example to allow handling nested interrupts, the operating
mode will revert from Kernel mode to that specified by the current value of the
KSU bits. Therefore, it may be necessary for the exception handler to change the
value of the KSU bits before clearing EXL.

Table 4-1 Processor Operating Modes

KSU (1:0) EXL ERL Mode

10 0 0 User mode

01 0 0 Supervisor mode

00 0 0

Kernel mode  1

 1 
VR5432 Microprocessor User’s Manual 43

Chapter 4
4.2.2 Instruction Set Mode

The processor’s instruction set mode determines which instruction set is enabled.
By default, the processor implements the MIPS IV instruction set architecture
(ISA). For compatibility with earlier machines, however, it can be limited to the
MIPS III ISA or the MIPS I/II ISAs. The current instruction set mode is controlled
by the processor operating mode and the UX, SX, and CU3 bits of the Status
register, as shown in Table 4-2. (Dashes indicate “Don’t care”.)

Table 4-2 Instruction Set Mode

Operating Mode UX SX CU3
MIPS
I, II

MIPS
III

MIPS
IV

User mode

0  0 Yes No No

0  1 Yes No Yes

1  0 Yes Yes No

1  1 Yes Yes Yes

Supervisor mode
 0  Yes No Yes

 1  Yes Yes Yes

Kernel mode    Yes Yes Yes
44 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.2.3 Addressing Modes

The processor’s addressing mode determines whether it generates 32- or 64-bit
memory addresses.

Refer to Table 4-3 for the following addressing mode encodings:

• In Kernel mode, the KX bit enables 64-bit addressing; all
instructions are always valid.

• In Supervisor mode, the SX bit enables 64-bit addressing and th
MIPS III instructions

• In User mode, the UX bit enables 64-bit addressing and the MIPS II
instructions; the CU3 bit enables the new MIPS IV instruction set
extensions.

4.3 Addresses and Address Spaces

This section describes virtual and physical addresses, the manner in which virtual
addresses are translated into physical addresses by the TLB, and the three address
spaces: User, Supervisor, and Kernel.

Table 4-3 Addressing Modes

Operating Mode UX SX CU3 32/64-bit Addressing

User mode
0   32

1   64

Supervisor mode
 0  32

 1  64

Kernel mode
  0 32

  1 64
VR5432 Microprocessor User’s Manual 45

Chapter 4
4.3.1 Virtual Addresses

The processor has three types of address space: User, Supervisor, and Kernel.
Each space can be independently configured to be a 32-bit or 64-bit space by the
KX, SX, and UX bits in the Status register.

• If UX = 0 (extended address bit = 0), user addresses are 32 bits wide.
The maximum user process size is 2 GB (231).

• If UX = 1 (extended address bit = 1), user addresses are 64 bits wide.
The maximum user process size is 1 terabyte (240).

Figure 4-1 shows the translation of a virtual address into a physical address.

Figure 4-1 Virtual-to-Physical Address Translation

As shown in Figure 4-1, the virtual address is extended with an 8-bit address space
identifier (ASID bit), which reduces the frequency of TLB flushing when
switching contexts. This 8-bit ASID is in the CP0 EntryHi register. The Global bit
(G) is in each TLB entry.

V irtual address (VA) represented by the vir-
tual page num ber (VPN) is com pared w ith
tag in TLB . The ASID portion of the VA is
held in the EntryH i register.

Virtual Address

If there is a match, the page f r am e num-
ber (PFN) representing the upper bits of
the physical address (PA) is output fro m
the TLB .

VPN ASIDG

PFN

TLB

Physical Address

PFN

O ffset

O ffse t

TLB

The O ffset, which does not pass through the
TLB, is then concatenated to the PFN.

Entry

VPNASID
46 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.3.2 Physical Addresses

Using a 32-bit address, the processor physical address space encompasses 4 GB.

Caution: Although the VR5400 processor family MMU is designed to handle
up to 36 bits of physical address space, the VR5432 physical ad-
dress is limited to 32 bits, due to its System Multiplex Address/Data
(SysAD) bus size. A 32-bit physical address space provides 4 GB
of physical addressing. Any attempt to reference a physical address
with bits 35:32 not set to 0 will force an Address Error exception.

4.3.3 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual
address from the processor with the virtual addresses in the TLB. There is a match
when the virtual page number (VPN) of the address is the same as the VPN field
of the entry, and either:

• the Global (G) bit of the TLB entry is set, or

• the ASID field of the virtual address is the same as th ASID field o
the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception
is taken by the processor and software is allowed to refill the TLB from a page
table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from
the TLB and concatenated with the offset, which represents an address within the
page frame space. The offset does not pass through the TLB.

The next sections describe the 32- and 64-bit address translations.
VR5432 Microprocessor User’s Manual 47

Chapter 4
4.3.4 32-Bit Mode Virtual Address Translation

Figure 4-2 shows the virtual-to-physical address translation of a 32-bit mode
address.

• The top portion of Figure 4-2 shows a virtual address with a 12-bit or
4 KB page size, labeled Offset. The remaining 20 bits of the address
represent the VPN, and index the 1 M-entry page table.

• The bottom portion of Figure 4-2 shows a virtual address with a 24
bit or 16 MB page size, labele Offset. The remaining 8 bits of the
address represent the VPN, and index the 256-entry page table.

Figure 4-2 32-Bit Mode Virtual Address Translation

Note: In setting up the TLB entry for 32- or 64-bit mode virtual address
translation, set the upper four bits of the page frame number to 0, to
guarantee that the translated physical address will have bits 35:32
set to 0. (See Figure 4-3 and Figure 4-4.)

ASID VPN O ffse t

8 20 12

39 32 31 29 28 12 11 020 bits = 1-M pages

ASID VPN O ffset

8 8 24

39 32 31 29 28 24 23 0

O ffse tPFN

31 0

TLB

TLB

V irtual-to-physical
translation in TLB

32-bit Physical Address

O ffset passed unchanged to
physical m em ory

O ffset passed unchanged to
physical m em ory

Bits 31, 30, and 29 of the virtual
address select User, Superv isor,
or Kernel address spaces.

V irtual-to -physical
translation in TLB

Virtual Address with 1 M (220) 4 KB Pages

Virtual Address with 256 (28) 16 MB Pages

8 bits = 256 pages
48 VR5432 Microprocessor User’s Manual

Memory Management Unit
Figure 4-3 TLB Entry Format in 32-Bit Mode

Figure 4-4 TLB Entry Format in 64-Bit Mode

0 M ask 0

127 121 120 109 108 96

0 M ask 0

95 77 76 71 647275

VPN2 G 0 ASID

M ask 0

63 38 37 32

PFN

62 61 35 3334

0 DC V 0

M ask 0

31 6 5 0

PFN

30 29 3 2

0 DC V 0

1

0 M ask 0

255 217 216 205 204 192

0 M ask 0

191 190 141 136 128139140

0 VPN 2 G ASID

M ask 0

127 94 93 64

0

67 6566

DPFN V 0

189

R

168 167 135

0

70

C

69

M ask 0

63 30 29 0

0

3 12

DPFN V 0

6

C

5

VR5432 Microprocessor User’s Manual 49

Chapter 4
4.3.5 64-Bit Mode Virtual Address Translation

Figure 4-5 shows the virtual-to-physical address translation. This figure illustrates
the two extremes in the range of possible page sizes: a 4 KB page (12 bits) and a
16 MB page (24 bits).

• The top portion of Figure 4-5 shows a virtual address with a
12-bit or 4 KB page size, labeled Offset. The remaining 28 bits of the
address represent the VPN, and index the 256 M-entry page table.

• The bottom portion of Figure 4-5 shows a virtual address with a 24-
bit or 16 MB page size, labele Offset. The remaining 16 bits of th
address represent the VPN, and index the 64 K-entry page table

Figure 4-5 64-Bit Mode Virtual Address Translation

Note: In setting up the TLB entry for 32- or 64-bit mode virtual address
translation, the upper four bits of the physical frame number must
be set to 0, to guarantee that the translated page address will have
bits 35:32 set to 0. (See Figure 4-3 and Figure 4-4.)

11 0

12

63

VPN O ffse t

6471

ASID

 8

Virtual Address with 256 M (228) 4 KB Pages

23 0

24 24

O ffset

Virtual Address with 64 KB (216) 16 MB Pages

16 bits = 64 K pages

28 bits = 256 M pages 12

ASID VPN

6162 40 39

28

0 or -1

636471 6162 40 24

 8

39

16

24

0 or -1

V irtual-to-physical
translation in TLB

B its 62 and 63 of the virtual
address select U ser, Supervisor,
or Kernel address spaces.

V irtual-to-physical
translation in TLB TLB

 31 0

PFN Offset

 TLB

32-bit Physical Address

O ffset passed
unchanged to
physical m em ory

O ffset passed
unchanged to
physical m em ory
50 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.3.6 User Address Space

In User address space, a single, uniform virtual address space labeled user
segment (useg) is available. Its size is:

• 2 GB (231 bytes) if UX = 0 (useg)

• 1 terabyte (40 bytes) if UX = 1 (xuseg)

Figure 4-6 shows the range of user virtual address space.

Figure 4-6 Virtual Address Space in User Mode

User space can be accessed from the User, Supervisor, and Kernel modes.

The user segment starts at address 0 and the current active user process resides in
either useg (32-bit mode) or xuseg (64-bit mode). The TLB identically maps all
references to useg/xuseg from all modes, and controls cache accessibility.

The processor operates in User mode when the Status register contains all of the
following values:

• KSU = 102

• EXL = 0

• ERL = 0

The UX bit in the Status register selects between 32- or 64-bit user address spaces,
as follows:

• When UX = 0, 32-bit useg space is selected

• When UX = 1, 64-bit xuseg space is selected

useg xuseg

Address

Erro r

1 TB

TLB M apped

32 Bits 64 Bits

0x FFFF FFFF FFFF FFFF

0x 0000 0000 0000 0000

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

0x 0000 0100 0000 0000

Address

Error

TLB M apped

2 G B
VR5432 Microprocessor User’s Manual 51

Chapter 4
Table 4-4 lists the characteristics of the two user address spaces, useg and xuseg.

4.3.6.1 32-bit user space (useg)

In User mode, when UX = 0 in the Status register, all valid addresses have their
most-significant bit cleared to 0; any attempt to reference an address with the
most-significant bit set while in User mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings within
the TLB entry for the page determine the cacheability of a reference. TLB misses
on addresses in 32-bit user space (useg) use the TLB Refill vector.

4.3.6.2 64-bit user space (xuseg)

In User mode, when UX = 1 in the Status register, addressing is extended to 64
bits. When UX = 1, the processor provides a single, uniform address space of 240
bytes, labeled xuseg.

All valid User mode virtual addresses have bits 63:40 equal to 0. An attempt to
reference an address with bits 63:40 not equal to 0 causes an Address Error
exception. TLB misses on addresses in 64-bit user space use the XTLB Refill
vector.

Table 4-4 32-Bit and 64-Bit User Address Space Segment

Address Bit
Values

UX
Segment

Name
Address Range Segment Size

32 bits
A (31) = 0

0 useg
0x0000 0000
through
0x7FFF FFFF

2 GB
(231 bytes)

64 bits
A (63:40) = 0

1 xuseg
0x0000 0000 0000 0000
through
0x0000 00FF FFFF FFFF

1 TB
(240 bytes)
52 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.3.7 Supervisor Space

Supervisor address space is designed for layered operating systems in which a true
kernel runs in Kernel mode; the rest of the operating system runs in Supervisor
mode. The supervisor address space provides code and data addresses for
Supervisor mode. Supervisor space can be accessed from Supervisor and Kernel
modes.

The processor operates in Supervisor mode when the Status register contains all
of the following values:

• KSU = 012

• EXL = 0

• ERL = 0

The SX bit in the Status register selects between 32- or 64-bit supervisor space
addressing:

• When SX = 0, 32-bit supervisor space is selected and TLB misses o
supervisor space, addresses are handled by the 32-bit TLB Refill
exception handler.

• When SX = 1, 64-bit supervisor space is selected and TLB misses o
Supervisor space, addresses are handled by the 64-bit XTLB Refill
exception handler. Figure 4-7 shows supervisor address mapping
Table 4-5 lists the characteristics of the supervisor space segments;
descriptions of the address spaces follow.
VR5432 Microprocessor User’s Manual 53

Chapter 4
Figure 4-7 User and Supervisor Address Spaces in Supervisor Mode

Table 4-5 Supervisor Mode Addressi n

Address Bit
Values

SX
Segment

Name
Address Range

Segment
Size

32 bits
A (31) = 0

0 suseg
0x 0000 0000
through
0x 7FFF FFFF

2 GB
(231 bytes)

32 bits
A (31:29) = 1102

0 sseg
0x C000 0000
through
0x DFFF FFFF

512 MB
(229 bytes)

64 bits
A (63:62) = 002

1 xsuseg
0x0000 0000 0000 0000
through
0x0000 00FF FFFF FFFF

1 terabyte
(240 bytes)

64 bits
A (63:62) = 012

1 xsseg
0x4000 0000 0000 0000
through
0x4000 00FF FFFF FFFF

1 terabyte
(240 bytes)

64 bits
A (63:62) = 112

1 csseg
0xFFFF FFFF C000 0000
through
0xFFFF FFFF DFFF FFFF

512 MB
(229 bytes)

2 GB

TLB M apped

TLB M apped

suseg

Address

0.5 G B

Error

sseg

Address
Error

TLB M apped

xsuseg

Address

0.5 G B

Error

xsseg1 TB
TLB M apped

Address
Error

32 Bits 64 Bits

csseg

0x FFFF FFFF FFFF FFFF

0x 4000 0100 0000 0000

0x 0000 0000 0000 0000

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 4000 0000 0000 0000

0x 0000 0100 0000 0000

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

0x E000 0000

0x 0000

1 TB
M apped

C000

0x DFFFFFFF

0x BFFFFFFF

0x 7FFFFFFF

0x FFFF FFFFDFFF FFFF

0x FFFF FFFFBFFF FFFF

0x 4000 00FFFFFF FFFF

0x 3FFF FFFFFFFF FFFF

0x 0000 00FFFFFF FFFF

Address
Error
54 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.3.7.1 32-bit supervisor, user space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-significant
bit of the 32-bit virtual address is set to 0, the suseg virtual address space is
selected; it covers the full 231 bytes (2 GB) of the current user address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF
FFFF.

4.3.7.2 32-bit supervisor, supervisor space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three most-
significant bits of the 32-bit virtual address are 1102, the sseg virtual address space
is selected; it covers 229 bytes (512 MB) of the current supervisor address space.
The virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through
0xDFFF FFFF.

4.3.7.3 64-bit supervisor, user space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 002, the xsuseg virtual address space is selected; it covers the full
240 bytes (1 terabyte) of the current user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000 and runs
through 0x0000 00FF FFFF FFFF.

4.3.7.4 64-bit supervisor, current supervisor space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 012, the xsseg current supervisor virtual address space is
selected. The virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs
through 0x4000 00FF FFFF FFFF.
VR5432 Microprocessor User’s Manual 55

Chapter 4
4.3.7.5 64-bit supervisor, separate supervisor space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual
address are set to 112, the csseg separate supervisor virtual address space is
selected. Addressing csseg is compatible with addressing sseg in 32-bit mode. The
virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs
through 0xFFFF FFFF DFFF FFFF.

4.3.8 Kernel Space

The processor operates in Kernel mode when the Status register contains one of
the following values:

• KSU = 002

• EXL = 1

• ERL = 1

The KX bit in the Status register selects between 32- or 64-bit kernel space
addressing:

• When KX = 0, 32-bit kernel space is selected.

• When KX = 1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected and it
remains there until an Exception Return (ERET) instruction is executed or the
EXL bit is cleared. The ERET instruction restores the processor to the address
space existing prior to the exception.

Kernel virtual address space is divided into regions differentiated by the high-
order bits of the virtual address, as shown in Figure 4-8. Table 4-6 and Table 4-7
list the characteristics of the Kernel mode segments.
56 VR5432 Microprocessor User’s Manual

Memory Management Unit
Figure 4-8 User, Supervisor, and Kernel Address Spaces in Kernel Mode

Address
Error

2 G B

0.5 G B

0.5 G B

TLB M apped

TLB M apped

TLB U nm apped

TLB Unm apped

kuseg

kseg0

kseg1

0.5 G B

0.5 G B

TLB M apped

ksseg

kseg3

U ncached

Cached

xkuseg

ckseg0

ckseg1

xksseg

ckseg3
TLB M apped

0.5 G B

TLB M apped

0.5 GB

0.5 G B
TLB Unm apped

Uncached

0.5 G B
TLB Unm apped

Cached

TLB Unm apped

Address
Error

cksseg

1 TB
M apped

xksegTLB M apped

xkphys

32 Bits 64 Bits

Address
Error

0x FFFF FFFF FFFF FFFF

0x 4000 0100 0000 0000

0x 0000 0000 0000 0000

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 4000 0000 0000 0000

0x 0000 0100 0000 0000

0x 8000 0000 0000 0000

0x C000 0000 0000 0000

0x FFFF FFFF A000 0000

0x FFFF FFFF 8000 0000

0x C000 00FF 8000 0000

0x FFFF FFFF

1 TB
TLB M apped

0x E000 0000

0x C000 0000

0x A000 0000

0x 8000 0000

0x 0000 0000

0x DFFF FFFF

0x BFFF FFFF

0x 9FFF FFFF

0x 7FFF FFFF

0x FFFF FFFF DFFF FFFF

0x FFFF FFFF BFFF FFFF

0x FFFF FFFF 9FFF FFFF

0x FFFF FFFF 7FFF FFFF

0x 4000 00FF FFFF FFFF

0x 3FFF FFFF FFFF FFFF

0x 0000 00FF FFFF FFFF

0x C000 00FF 7FFF FFFF

0x BFFF FFFF FFFF FFFF

0x 7FFF FFFF FFFF FFFF
VR5432 Microprocessor User’s Manual 57

Chapter 4
Table 4-6 32-Bit Kernel Mode Addressing

Address Bit
Values

KX
Segment

Name
Address Range

Segment
Size

32 bits
A (31) = 0

0 kuseg
0x 0000 0000
through
0x 7FFF FFFF

2 GB
(231 bytes)

32 bits
A (31:29) = 1002

0 kseg0
0x 8000 0000
through
0x 9FFF FFFF

512 MB (229
bytes)

32 bits
A (31:29) = 1012

0 kseg1
0x A000 0000
through
0x BFFF FFFF

512 MB (229
bytes)

32 bits
A (31:29) = 1102

0 ksseg
0x C000 0000
through
0x DFFF FFFF

512 MB (229
bytes)

32 bits
A (31:29) = 1112

0 kseg3
0x E000 0000
through
0x FFFF FFFF

512 MB (229
bytes)
58 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.3.8.1 32-bit kernel, user space (kuseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant bit of
the virtual address, A31, is cleared, the kuseg virtual address space is selected; it
covers the full 231 bytes (2 GB) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

Table 4-7 64-Bit Kernel Mode Addressing

Address Bit
Values

KX
Segment

Name
Address Range

Segment
Size

64 bits
A (63:62) = 002

1 xkuseg
0x0000 0000 0000 0000
through
0x0000 00FF FFFF FFFF

1 terabyte
(240 bytes)

64 bits
A (63:62) = 012

1 xksseg
0x4000 0000 0000 0000
through
0x4000 00FF FFFF FFFF

1 terabyte
(240 bytes)

64 bits
A (63:62) = 102

1 xkphys
0x8000 0000 0000 0000
through
0xBFFF FFFF FFFF FFFF

8 232 byte
spaces

64 bits
A (63:62) = 112

1 xkseg
0xC000 0000 0000 0000
through
0xC000 00FF 7FFF FFFF

(240 – 231)
bytes

64 bits
A (63:62) = 112
A (61:31) = -1

1 ckseg0
0xFFFF FFFF 8000 0000
through
0xFFFF FFFF 9FFF FFFF

512 MB (229
bytes)

64 bits
A (63:62) = 112
A (61:31) = -1

1 ckseg1
0xFFFF FFFF A000 0000
through
0xFFFF FFFF BFFF FFFF

512 MB (229
bytes)

64 bits
A (63:62) = 112
A (61:31) = -1

1 ckseg2
0xFFFF FFFF C000 0000
through
0xFFFF FFFF DFFF FFFF

512 MB (229
bytes)

64 bits
A (63:62) = 112
A (61:31) = -1

1 ckseg3
0xFFFF FFFF E000 0000
through
0xFFFF FFFF FFFF FFFF

512 MB
(229 bytes)
VR5432 Microprocessor User’s Manual 59

Chapter 4
4.3.8.2 32-bit kernel, kernel space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-significant three
bits of the virtual address are 1002, the kseg0 virtual address space is selected; it
is the 229-byte (512 MB) kernel physical space. References to kseg0 are not
mapped through the TLB; the physical address selected is defined by subtracting
0x8000 0000 from the virtual address. The K0 field of the Config register,
described in this chapter, controls cache operation.

4.3.8.3 32-bit kernel, kernel space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-significant three
bits of the 32-bit virtual address are 1012, the kseg1 virtual address space is
selected; it is the 229-byte (512 MB) kernel physical space.

References to kseg1 are not mapped through the TLB; the physical address
selected is defined by subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) is accessed directly.

4.3.8.4 32-bit kernel, supervisor space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant three
bits of the 32-bit virtual address are 1102, the ksseg virtual address space is
selected; it is the current 229-byte (512 MB) supervisor virtual space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

4.3.8.5 32-bit kernel, kernel space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-significant three
bits of the 32-bit virtual address are 1112, the kseg3 virtual address space is
selected; it is the current 229-byte (512 MB) kernel virtual space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.
60 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.3.8.6 64-bit kernel, user space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit
virtual address are 002, the xkuseg virtual address space is selected; it covers the
current user address space. The virtual address is extended with the contents of the
8-bit ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte
unmapped (interpreted as a physical address without translation), uncached
address space.

4.3.8.7 64-bit kernel, current supervisor space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit
virtual address are 012, the xksseg virtual address space is selected; it is the current
supervisor virtual space. The virtual address is extended with the contents of the
8-bit ASID field to form a unique virtual address.

4.3.8.8 64-bit kernel, physical spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit
virtual address are 102, the xkphys virtual address space is selected; it is a set of
eight 232-byte kernel physical spaces. Accesses with address bits 58:32 not equal
to 0 cause an Address Error exception.

References to this space are not mapped; the physical address selected is taken
from virtual address bits 35:0 internally, 31:0 externally. Bits 61:59 of the virtual
address specify the cache attributes, as shown in Table 4-8.

Table 4-8 Cacheability and Coherency Attributes

Value (61:59) Cacheability Attributes Starting Address

0 Reserved 0x8000 0000 0000 0000

1 Cacheable, write-through 0x880 0 0000 0000 0000

2 Uncached 0x900 0 0000 0000 0000

3 Cacheable, write-back 0x9800 0000 0000 0000

4−6 Reserved 0xA000 0000 0000 0000

7 Uncached, accelerated 0xB800 0000 0000 0000
VR5432 Microprocessor User’s Manual 61

Chapter 4
4.3.8.9 64-bit kernel, kernel space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit
virtual address are 112, the address space selected is one of the following:

• xkseg, the current kernel virtual space (the virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual
address)

• One of the four 32-bit kernel compatibility spaces, as described in the
next sectio

4.3.8.10 64-bit kernel, compatibility spaces

In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit virtual
address are 112, and bits 61:31 of the virtual address equal –1, the lower two
bytes of the address, as shown in Figure 4-8, select one of the following 512 MB
compatibility spaces.

• ckseg0. This 64-bit virtual address space is an unmapped region,
compatible with the 32-bit address model kseg0. The K0 field of the
Config register controls cacheability.

• ckseg1. This 64-bit virtual address space is an unmapped and
uncached region, compatible with the 32-bit address model kseg1.

• cksseg. This 64-bit virtual address space is the current supervisor
virtual space, compatible with the 32-bit address model ksseg.

• ckseg3. This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.
62 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.4 System Control Coprocessor

The system control coprocessor (CP0) is implemented as an integral part of the
CPU and supports memory management, address translation, exception handling,
and other privileged operations. CP0 contains the registers shown in Figure 4-9,
plus a 48-entry TLB. The sections that follow describe how the processor uses the
memory management-related registers.

Figure 4-9 lists each CP0 register and its identification number. (For instance, the
PageMask register is register number 5.)

Figure 4-9 CP0 Registers and the TLB

EntryLo0
2*

EntryHi

Page Mask

Index

Random

Wired

Count

47

0

BadVAddr

���� ��

TLB

(“Safe ” en tries)
(See Random register,

PR Id

0127

8

15

Com pare
11

Config
16

LLAddr
17

TagLo
28

TagH i
29

contents of TLB W ired) PerfC tr
25

EntryLo0
2

3
EntryLo1

EntryH i
10

5
PageM ask

Index
0

Random
1

W ired
6

ErrorEPC
30

C ontext
4

Status
12

Cause
13

EPC
14

XContext
20

9

W atchLo

18

W atchH i

19

PErr
26

C acheErr
27
VR5432 Microprocessor User’s Manual 63

Chapter 4
4.4.1 TLB Entry Format

Figure 4-10 shows the TLB entry formats for both 32- and 64-bit modes. Each
field of an entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or
PageMask registers.

Caution: Although the VR5432 processor MMU is designed to handle up to
36 bits of physical address space, the VR5432 physical address is
limited to 32 bits, due to its System Multiplex Address/Data
(SysAD) bus size. A 32-bit physical address space provides 4 GB
of physical addressing. Any attempt to reference a physical address
with bits 35:32 not set to 0 will force an Address Error exception;
therefore, bits 35:32 should be set to zero.
64 VR5432 Microprocessor User’s Manual

Memory Management Unit

2

Figure 4-10 Format of a TLB Entry

Note: In setting up the TLB entry for 32- or 64-bit mode virtual address
translation, the upper four bits of the physical frame number must
be set to 0, to guarantee that the translated physical address will
have bits 35:32 set to 0. (See Figure 4-3 and Figure 4-4.)

 12

255

13

192

M ask 0

191

VPN2 G

 27

128

1 4 8

ASID

140141

 24

127 64

PFN

63 0

39

0

139 136 135

90 89

C VD

3 1 1

6566676970

0

1

24

PFN

90 89

34

C VD

3 1 1

12356

0

1

0

0

34

0

167168

R

190 189

22

0

2

204205216217

31 0

24

PFN

25 26

2

C VD

3 1 1

12356

0

1

0

24

63 32

PFN

58 57

C VD

3 1 1

3334353738

0

12

0

12

127

13

96

M ask 0

7

0

108109120121

1

95

4

64

G 0

19

VPN2

72757677

ASID

8

71

56-bit TLB entry
in 64-bit mode

128-bit TLB entry
in 32-bit mode

32-bit Mode

64-bit Mode
VR5432 Microprocessor User’s Manual 65

Chapter 4
The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers is nearly
the same as the TLB entry. The one exception is the Global field
(G bit), which is used in the TLB, but is reserved in the EntryHi register. Figure
4-11 and Figure 4-12 describe the TLB entry fields shown in Figure 4-10.

Figure 4-11 Fields of the PageMask and EntryHi Registers

 12

31

13

0

M ask

7

25 24 13 12
PageMask Register

0 0

VPN2: V irtual page num ber d ivided by two (m aps to two pages).
ASID : Address space ID fie ld. An 8-bit fie ld that lets multip le processes share the TLB; each process has a

d istinct m apping of otherw ise identical v irtual page num bers.
R : R egion . (00 → User, 01 → Supervisor, 11 → Kernel) used to m atch vAddr 63:62.
F ill: R eserved . 0 on read; ignored on w rite.
0: Reserved . M ust be w ritten as zero; returns zero w hen read .

63

VPN2

 27

0

5 8

ASID

1213 8 7

0

2

62 61 40 39

22

F illR

M ask: Page com parison m ask
0: Reserved. M ust be w ritten as zero; returns zero when read.

31

VPN2

19

0

5 8

ASID

1213 8 7

0
32-bit
Mode

64-bit
Mode

EntryHi Register
66 VR5432 Microprocessor User’s Manual

Memory Management Unit
Figure 4-12 Fields of the EntryLo0 and EntryLo1 Registers

G

D

PFN: Page fram e num ber; the upper bits of the physical address
C : Specifies the TLB page cache attribute; see Table 4-9.
D : D irty. If this bit is set , the page is marked as dir ty and, therefo re, wri table. This b i t is actua lly a wri te-protect bit

that software can use to prevent a lteration of data.
V: Valid. If this bit is set, it indicates that the TLB entry is val id ; otherwise, a TLBL or TL BS miss occurs.
G : G lobal. If this bit is set in both Lo0 and Lo1, then the processor ignores the AS ID dur ing TLB lookup.
0: Reserved. M ust be w ritten as zero; returns zero when read.

24

63

PFN

63 0

34

C VD

3 1 1 1

24

PFN

26 25

34

C V

3 1 1

12356

G

1

0

0

EntryLo0 and EntryLo1 Registers

26 25 012356

G

D

24

31

PFN

31 0

2

C VD

3 1 1 1

24

PFN

26 25

2

C V

3 1 1

12356

G

1

0

0

26 25 012356
32-bit
Mode

32-bit
Mode

64-bit
Mode

64-bit
Mode
VR5432 Microprocessor User’s Manual 67

Chapter 4
The TLB page cache attribute (C) field specifies whether references to the page
should be cached and, if so, the caching algorithm to use. Table 4-9 shows the
cache attributes selected by the C field.

4.4.2 Instruction and Data Micro-TLBs

In addition to the 48 double-entry TLB, the processor also implements two four-
entry micro-TLBs dedicated to instruction and data address translations. If there
is a miss in one of the micro-TLBs, there will be a pipeline stall while the ne
TLB entry is transferred from the TLB to the micro-TLB. The four-entry micro-
TLBs are fully associative with a psuedo Least Recently Used replacement
algorithm. Each micro-TLB entry contains a mapping in any of the supported page
sizes. The micro-TLBs are always guaranteed to be a subset of the TLB.

Table 4-9 TLB Page Cache Attribute (C) Field Encodings

C (5:3) Value Page Cache Attribute

0 Reserved

1 Cacheable, write-through, write allocate

2 Uncached

3 Cacheable write-back

4 Reserved

5 Reserved

6 Reserved

7 Uncached accelerated
68 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.5 CP0 Registers

The following sections describe the CP0 registers. For a complete list of the CP0
registers, see Figure 4-9. The CP0 registers are assigned specifically as a software
interface with memory management.

• Index register (0)

• Random register (1)

• EntryLo0 (2) and EntryLo1 (3) registers

• PageMask register (5)

• Wired register (6)

• EntryHi register (10)

• Config register (16)

CP0 also includes the following registers:

• PRId register (15)

• LLAddr register (17)

• TagLo (28) and TagHi (29) registers
VR5432 Microprocessor User’s Manual 69

Chapter 4
4.5.1 Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to index an
entry in the TLB. The high-order bit of the register shows the success or failure of
a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or
TLB Write Index (TLBWI) instructions. In a successful TLB Probe instruction,
this register holds the index of a TLB entry whose contents match those of the
EntryHi register. Although six bits are available to specify a TLB entry, the TLB
has only 48 entries. Specifying an index greater than 47 will fail to match any TLB
entry.

Figure 4-13 shows the format of the Index register; Table 4-10 describes the Index
register fields.

Figure 4-13 Index Register

Table 4-10 Index Register Field Descriptions

Field Description

P
Probe failure. Set to 1 when the previous TLB Probe (TLBP)
instruction was unsuccessful.

Index
Index to the TLB entry affected by the TLB Read and TLB
Write instructions

0 Reserved. Must be written as zero; returns zero when read.

Index Register

31

1

30 6 5 0

25 6

 IndexP 0
70 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.5.2 Random Register (1)

The Random register is a read-only register, of which six bits index an entry in the
TLB. This register decrements as each instruction executes; its values range
between an upper and a lower bound, as follows:

• A lower bound is set by the number of TLB entries reserved for
exclusive use by the operating system (the contents of the Wired
register).

• An upper bound is set by the total number of TLB entries (47
maximum).

The Random register specifies the entry in the TLB that is affected by the TLB
Write Random instruction. The register does not need to be read for this purpose;
however, the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound
upon system reset. This register is also set to the upper bound when the Wired
register is written.

Figure 4-14 shows the format of the Random register. Table 4-11 describes the
Random register fields.

Figure 4-14 Random Register

Table 4-11 Random Register Field Descriptions

Field Description

Random TLB random index

0 Reserved. Must be written as zero; returns zero when read.

Random Register
31 6 5 0

26 6

 Random0
VR5432 Microprocessor User’s Manual 71

Chapter 4
4.5.3 EntryLo0 (2) and EntryLo1 (3) Registers

The EntryLo register consists of two registers that have identical formats:

• EntryLo0 is used for even virtual pages.

• EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the
physical page frame number (PFN) of the TLB entry for even and odd pages,
respectively, when performing TLB read and write operations. Figure 4-12 shows
the format of these registers.

4.5.4 PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to
the TLB; it holds a comparison mask that sets the variable page size for each TLB
entry.

TLB read and write operations use this register as either a source or a destination;
when virtual addresses are presented for translation into physical addresses, the
corresponding bits in the TLB identify which virtual address bits among bits 24:13
are used in the comparison. When the Mask field is not one of the values shown
in Table 4-13, the operation of the TLB is undefined.

Figure 4-15 PageMask Register

Table 4-12 Random Register Field Descriptions

Field Description

Mask
Mask for virtual page number. Table 4-13 provides mask values
for all seven page sizes.

0 Reserved. Must be written as zero; returns zero when read.

PageMask Register

0 M ask 0

31 25 24 13 12 0
72 VR5432 Microprocessor User’s Manual

Memory Management Unit
Table 4-13 Mask Field Values for Page Sizes

Page Size
Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 KB 0 0 0 0 0 0 0 0 0 0 0 0

16 KB 0 0 0 0 0 0 0 0 0 0 1 1

64 KB 0 0 0 0 0 0 0 0 1 1 1 1

256 KB 0 0 0 0 0 0 1 1 1 1 1 1

1 MB 0 0 0 0 1 1 1 1 1 1 1 1

4 MB 0 0 1 1 1 1 1 1 1 1 1 1

16 MB 1 1 1 1 1 1 1 1 1 1 1 1
VR5432 Microprocessor User’s Manual 73

Chapter 4
4.5.5 Wired Register (6)

The Wired register is a read/write register that specifies the boundary between the
wired and random entries of the TLB, as shown in Figure 4-16. Wired entries are
fixed, nonreplaceable entries, which cannot be overwritten by a TLB write
operation. Random entries can be overwritten.

Figure 4-16 Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also sets the
Random register to the value of its upper bound (Section 4.5.2). Figure 4-17 shows
the format of the Wired register; Table 4-14 describes the register fields.

Figure 4-17 Wired Register

Table 4-14 Wired Register Field Descriptions

Field Description

Wired TLB wired boundary

0 Reserved. Must be written as zero; returns zero when read.

47

W ired

Range of random entries

0

TLB

register
Range of w ired entries

Wired Register
31 6 5 0

26 6

 W ired0
74 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.5.6 EntryHi Register (10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read and
write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB
Write Indexed, and TLB Read instructions.

When a TLB Refill, TLB Invalid, or TLB Modified exception occurs, the EntryHi
register is loaded with the virtual page number (VPN2) and the ASID of the virtual
address that did not have a matching TLB entry.

Figure 4-18 EntryHi Register

Table 4-15 EntryHi Register Field Descriptions

Field Description

VPN2 Virtual page number divided by two (maps to two pages)

ASID
Address space ID field. An 8-bit field that lets multiple processes share the
TLB; each process has a distinct mapping of otherwise identical virtual page
numbers.

R Region. (00 → User, 01 → Supervisor, 11 → Kernel) used to match vAddr 63:62

Fill Reserved. 0 on read; ignored on write.

0 Reserved. Must be written as zero; returns zero when read.

63

VPN2

 27

0

5 8

ASID

1213 8 7

0

2

62 61 40 39

22

FillR

31

VPN2

19

0

5 8

ASID

1213 8 7

0
32-bit
Mode

64-bit
Mode

EntryHi Register
VR5432 Microprocessor User’s Manual 75

Chapter 4
4.5.7 Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains
information identifying the implementation and revision level of the CPU and
CP0. Figure 4-17 shows the format of the PRId register; Table 4-16 describes the
PRId register fields.

Figure 4-19 Processor Revision Identifier Register Format

Table 4-16 PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision
number, and the high-order byte (bits 15:8) is interpreted as an implementation
number. The implementation number of the VR5432 processor is 0x54. The
contents of the high-order halfword (bits 31:16) of the register are reserved.

The revision number is 13. The revision number can distinguish some chip
revisions; however, there is no guarantee that changes to the chip will necessarily
be reflected in the PRId register, or that changes to the revision number
necessarily reflect real chip changes. For this reason, these values are not listed
and software should not rely on the revision number in the PRId register to
characterize the chip.

Field Description

Imp Implementation number

Rev Revision number

0 Reserved. Must be written as zero; returns zero when read.

16 15

PRId Register

31 0

16

Im p

8 8

0

8

Rev

7

76 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.5.8 Config Register (16)

The Config register specifies various configuration options that can be selected.

The Config register must only be initialized during reset initialization while
operating in uncached space; otherwise, the operation of the processor is
undefined. The EP, EM, and K0 fields are readable and writable by software and
there is no other mechanism for writing to these fields. Their values are undefined
following a cold or warm reset. The EC and BE fields are initialized by mode
settings on processor input pins and cannot be modified by software.

Figure 4-20 shows the format of the Config register; Table 4-17 describes the
Config register fields. Bits shown as 0 read as 0 and must be written as 0. Bits
shown as 1 read as 1 and must be written as 1.

Figure 4-20 Config Register Format

Config Register

 20

C

1

1 0EP

1

19 18 1617 815

1

11

1

4 2 0

 0 EC

1 3

30 28 27

4

24 23 22

EM

S

2 1 1

BE

1

14

1

1

13

1

1

0

12

1

11

3

9 6 5 3

1

 0 K0 1 1

1 1

 1 0

1

0 1

1

1

1

10 7

1

0 1

1

1

1

M
31

S
21

S
W

EW S
C

S
M

E
M

E
B

IC DC I
B

D
B

C
U

VR5432 Microprocessor User’s Manual 77

Chapter 4
Table 4-17 Config Register Fi e l d

Field Description

EC

Processor clock to system clock ratio, read only:
000 → 2:1
001 → 2.5:1
010 → 3:1
011 → 4:1
All others→ Reserved and undefined

EP

Transmit data pattern for write-back data (Native mode, read/write):
0000 → WWWWWWWW
0001 → WWxWWxWWxWWx
0010 → WWxxWWxxWWxxWWxx
0011 → WxWxWxWxWxWxWxWx
0100 → WWxxxWWxxxWWxxxWWxxx
0101 → WWxxxxWWxxxxWWxxxxWWxxxx
0110 → WxxWxxWxxWxxWxxWxxWxxWxx
0111 → WWxxxxxxWWxxxxxxWWxxxxxxWWxxxxxx
1000 → WxxxWxxxWxxxWxxxWxxxWxxxWxxxWxxx
All others→ Reserved and undefined

(W = cycle in which a word transfer occurs; x = cycle in which no transfer occurs)

Transmit data pattern for write-back data (VR4300 compatibility mode):
0000 → WWWWWWWW
0110 → WxxWxxWxxWxxWxxWxxWxxWxx
All others→ Reserved and undefined

(W = cycle in which a word transfer occurs; x = cycle in which no transfer occurs)

EM

SysAD mode (ignored in VR4300 compatibility mode):
00 → R4x00 compatible
01 → Multiple-split reads
10 → Pipelined writes
11 → Write reissue
78 VR5432 Microprocessor User’s Manual

Memory Management Unit
BE
Big-endian mode:

0 → Little endian
1 → Big endian

K0

kseg0 coherency algorithm (see EntryLo0 and EntryLo1 registers and the C field
of Table 4-9) (software writable):

001 → Cached, write-through
010 → Uncached
011 → Cached, write-back
111 → Uncached, accelerated

0 must be written as 0; returns zero when read.
1 must be written as 1; returns one when read.

Table 4-17 Config Register Fields (continued)

Field Description
VR5432 Microprocessor User’s Manual 79

Chapter 4
4.5.9 Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the physical
address read by the most recent Load Linked instruction.

This register is for diagnostic purposes only and serves no function during normal
operation.

Figure 4-21 shows the format of the LLAddr register; the PAddr field represents
bits of the physical address, PA (35:4). PA (35:32) are always zero.

Figure 4-21 LLAddr Register Format

4.5.10 Cache Tag Registers [TagLo (28) and TagHi (29)]

The TagLo and TagHi registers are 32-bit read/write registers used during cache
initialization and diagnostics to hold the cache tag and parity. The Tag registers
are written by the CACHE and MTC0 instructions.

The CACHE Index Store Tag instruction copies the PTagLo, PState, L, R, and P
bits into the cache. The CACHE Index Load Tag instruction copies the cache tag
PTagLo, PState, L, R, and P bits into the TagLo register.

Figure 4-22 shows the format of these registers. Table 4-18 lists the field
definitions of the TagLo and TagHi registers. The TagHi register is defined in the
architecture but is not used (it is reserved for future use).

Figure 4-22 TagLo and TagHi Register Formats

LLAddr Register

31 0

PAddr (35:4)

32

31 0

32

TagLo

TagHi

31

1

0

24

P

8 7

PState

6 5

32

PTagLo

0

0

14 3

1

R

1

L

80 VR5432 Microprocessor User’s Manual

Memory Management Unit
Table 4-18 Cache Tag Register Fields

4.6 Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the
8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID of
the TLB entry to see if there is a match. One of the following comparisons is also
made:

• In 32-bit mode, the highest 7 to 19 bits (depending upon the pag
size) of the virtual address are compared to the contents of the TL
virtual page number.

• In 64-bit mode, the highest 15 to 27 bits (depending upon the page
size) of the virtual address are compared to the contents of the TL
virtual page number.

If a TLB entry matches, the physical address and access control bits (C, D, and V)
are retrieved from the matching TLB entry. Although the V bit of the entry must
be set for a valid translation to take place, it is not involved in the determination
of a matching TLB entry.

Figure 4-23 illustrates the TLB address translation process.

Field Description

PTagLo Specifies the physical address bits 35:12; bits 35:32 are always zero.

PState

Specifies the cache state
 0 → Invalid
 1 → Reserved
 2 → Clean
 3 → Dirty

L Cache line lock bit

R Cache line LRU bit

P Cache line even parity bit

0 Reserved. Must be written as zero; returns zero when read.
VR5432 Microprocessor User’s Manual 81

Chapter 4
Figure 4-23 TLB Address Translation

User
m ode?

VPN
m atch?

ASID
m atch?

G
= 1?

Valid

V
= 1?

D
= 1?

N o

Yes

Yes

Yes

No

No

Yes

W rite?
Yes

No
Yes

TLB
Invalid

TLB
M ode

Exception

TLB
Refill

Exception

VPN
and

ASID

Virtual Address (Input)

C =
010 or

Yes No

Access
M ain Access

Cache

Physical Address (O utput)

M em ory

No

Valid

D irty

Non-
cacheable

G loba l

No

No

m ode?
Supervisor Address

Error

Exception

Yes No

Yes

U nm apped
Access

Yes

Exception

No

No

No

Yes

32-bit
address?

Yes

XTLB
Refill

No

Address
Error

Yes

address?
Valid

address?

Valid
address?

111?

For valid address spaces, see
Section 4.2.
82 VR5432 Microprocessor User’s Manual

Memory Management Unit
4.7 TLB Exceptions

If there is no TLB entry that matches the virtual address, a TLB Miss exception
occurs. If the access control bits (D and V) indicate that the access is not valid, a
TLB Modification or TLB Invalid exception occurs. If the C bits equal 0102, the
physical address that is retrieved accesses main memory, bypassing the cache.

4.8 TLB Instructions

Table 4-19 lists the instructions that the CPU provides for working with the TLB.

Table 4-19 TLB Instructions

Opcode Description

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random
VR5432 Microprocessor User’s Manual 83

Chapter 4
84 VR5432 Microprocessor User’s Manual

Cache Organization and Operation

5

This chapter describes the cache memory’s place in the VR5432 memory
configuration and individual cache organization.
VR5432 Microprocessor User’s Manual 85

Chapter 5
5.1 Memory Organization

Figure 5-1 shows the VR5432 system memory hierarchy. In the logical memory
hierarchy, the caches lie between the CPU and main memory. They are designed
to make the speed-up of memory accesses transparent to the user.

Each functional block in Figure 5-1 has the capacity to hold more data than the
block above it. For instance, main memory has a larger capacity than the caches.
At the same time, each functional block takes longer to access than any block
above it. For instance, it takes longer to access data in main memory than in the
CPU on-chip registers.

Figure 5-1 Logical Hierarchy of Memory

M ain M em ory

Registers Registers

Instruction Data

Primary Cache

D isk, CD-R OM ,
Tape, etc.

R
eg

is
te

rs
C

ac
h

es
M

em
o

ry

P
er

ip
h

er
al

s

Faster Access
T im e

Increasing Data
Capacity

VR5432 CPU

Cache Cache
86 VR5432 Microprocessor User’s Manual

Cache Organization and Operation
The VR5432 processor has two on-chip caches: one holds instructions (the
instruction cache, or I-cache), and the other holds data (the data cache, or D-
cache). The instruction and data caches can be read in one PClock cycle.

Data writes are pipelined and can complete at a rate of one per PClock cycle. In
the first stage of the cycle, the store address is translated and the tag is checked; in
the second stage, the data is written into the data RAM.

Figure 5-2 provides a block diagram of the VR5432 cache and memory model.

Figure 5-2 VR5432 Cache Support

5.2 Primary Cache Organization

This section describes the organization of the on-chip data and instruction caches.

5.2.1 Cache Line Lengths

A cache line is the smallest unit of information that can be fetched from main
memory for the cache and is represented by a single tag.

The line size for the instruction and data caches is 32 bytes each.

5.2.2 Cache Sizes

The VR5432 instruction and data caches are 32 KB each.

Main MemoryCache Controller

D-cache

I-cache

Caches

VR5432 CPU
VR5432 Microprocessor User’s Manual 87

Chapter 5
5.2.3 Instruction Cache Organization

The VR5432 processor I-cache has the following characteristics:

• Two-way set-associative structur

• Virtual address index

• Physical tag checks

• 32-byte line organizati

• Line-lockable opti

Figure 5-3 Primary Instruction Cache Line Format

27 4 0

ITag

124

DataP Data

DataP Data

DataP Data

DataP Data

71 64 63 0

8 64

Itag: Instruction tag
L: Lock
V: Valid
U : U nused
P: Even parity for ITag
DataP: Even parity for the data
Data: I-cache data

PUL V

23

1 1 1

1

88 VR5432 Microprocessor User’s Manual

Cache Organization and Operation
5.2.4 Data Cache Organization

The VR5432 processor D-cache has the following characteristics:

• Write-back or write-through cache algorithms

• Two-way set-associative structur

• Virtual address index

• Physical tag checks

• 32-byte line organizati

• Line-lockable opti

Figure 5-4 Primary Data Cache Line Format

DataP Data

DataP Data

DataP Data

DataP Data

71 64 63 0

8 64

D tag: Data tag
L: Lock
V: Valid
D : D irty
P : Even parity for DTag
DataP: Even parity for the data
Data: D -cache data

27 4 0

DTag

124

PDL V

23

1 1 1

1

VR5432 Microprocessor User’s Manual 89

Chapter 5
90 VR5432 Microprocessor User’s Manual

CPU Exceptions

6

This chapter describes CPU exception processing, including the format and use of
each CPU exception register.
VR5432 Microprocessor User’s Manual 91

Chapter 6
6.1 Exception Processing Overview

The processor receives exceptions from a number of sources, including translation
lookaside buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system
calls. When the CPU detects one of these exceptions, the normal sequence of
instruction execution is suspended and the processor enters Kernel mode.

The processor then disables interrupts and forces execution of a software
exception processor (called a handler) located at a fixed address. The handler
saves the context of the processor, including the contents of the program counter,
the current operating mode (User or Supervisor), and the status of the interrupts
(enabled or disabled). This context is saved so it can be restored when the
exception handler returns (i.e., executes an ERET instruction).

When an exception occurs, the CPU loads the Exception Program Counter (EPC)
register with a location where execution can restart after the exception has been
serviced. The restart location in the EPC register is the address of the instruction
that caused the exception or, if the instruction was executing in a branch delay slot,
the address of the Branch instruction immediately preceding the delay slot.

The registers described later in the section assist in this exception processing by
retaining address, cause, and status information.
92 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.2 Exception Processing Registers

This section describes the CP0 registers that are used in exception processing.
Table 6-1 lists these registers, along with their numbers—each register has a
unique identification number that is referred to as its register number. The
remaining CP0 registers are used in memory management.

Software examines the CP0 registers during exception processing to determine the
cause of the exception and the state of the CPU at the time the exception occurred.
The registers in Table 6-1 are used in exception processing, and are described in
the sections that follow.

Table 6-1 CP0 Exception Processing Registers

CPU general-purpose registers are interlocked and the result of an instruction can
normally be used by the next instruction; if the result is not available right away,
the processor stalls until it is available. CP0 registers and the TLB are not
interlocked, however. There may be some delay before a value written by one
instruction is available to following instructions.

Register Name Register Number

Context 4

BadVAddr (Bad Virtual Address) 8

Count 9

Compare 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

WatchLo 18

WatchHi 19

XContext 20

Performance Counter 25

PErr (Parity Error) 26

CacheErr (Cache Error and Status) 27

ErrorEPC (Error Exception Program Counter) 30
VR5432 Microprocessor User’s Manual 93

Chapter 6
6.2.1 Context Register (4)

The Context register is a read/write register containing the pointer to an entry in
the page table entry (PTE) array; this array is an operating system data structure
that stores virtual-to-physical address translations. When there is a TLB miss, the
operating system loads the TLB with the missing translation from the PTE array.
Normally, the operating system uses the Context register to address the current
page map, which resides in the kernel-mapped segment, kseg3. The Context
register duplicates some of the information provided in the BadVAddr register,
but the information is arranged in a form that is more useful for a software TLB
exception handler. Figure 6-1 shows the format of the Context register; Table 6-2
describes the Context register fields.

Figure 6-1 Context Register Format

Table 6-2 Context Register Fields

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused
the TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd
page pair. For a 4 KB page size, this format can directly address the pair-table of
8-byte PTEs. For other page and PTE sizes, shifting and masking this value
produces the appropriate address.

Field Description

BadVPN2
This field is written by hardware on a miss. It contains the
virtual page number (VPN) of the most recent virtual address
that did not have a valid translation.

PTEBase

This field is a read/write field for use by the operating system.
It is normally written with a value that allows the operating
system to use the Context register as a pointer into the current
PTE array in memory.

Context Register

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0

23 22 4 331 0

9

PTEBase BadVPN2

19 4

0
32-bit
Mode

64-bit
Mode
94 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.2.2 Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that displays
the most recent virtual address that caused one of the following exceptions: TLB
Invalid, TLB Modified, TLB Refill, or Address Error.

Figure 6-2 shows the format of the BadVAddr register.

Figure 6-2 BadVAddr Register Format

Note: The BadVAddr register does not save information for bus errors,
since bus errors are not addressing errors. Also, in the case of an In-
struction Virtual Address (IVA), bits 58:40 are fill bits, but in the
case of a Data Virtual Address (DVA), all of the 64 bits are calcu-
lated.

6.2.3 Count Register (9)

The Count register acts as a timer, incrementing at a constant rate whether or not
an instruction is executed, retired, or any forward progress is made through the
pipeline. On the VR5432, the timer counts at half the maximum issue rate (i.e., half
the PClock rate).

This register can be read or written. It can be written for diagnostic purposes or
system initialization; for example, to synchronize processors.

Figure 6-3 shows the format of the Count register.

Figure 6-3 Count Register Format

BadVAddr Register

63 0

64

Bad Virtual Address

31 0

32

Bad Virtual Address
32-bit
Mode

64-bit
Mode

Count Register

31 0

32

 Count
VR5432 Microprocessor User’s Manual 95

Chapter 6
6.2.4 Compare Register (11)

The Compare register acts as a timer (see also the Count register); it maintains a
stable value that does not change on its own.

When the value of the Count register equals the value of the Compare register,
interrupt bit IP (7) in the Cause register is set. This causes an interrupt as soon as
the interrupt is enabled.

Writing a value to the Compare register clears the timer interrupt as a side effect.

For diagnostic purposes, the Compare register is a read/write register. In normal
use however, the Compare register is write only. Figure 6-4 shows the format of
the Compare register.

Figure 6-4 Compare Register Format

IP (7) is also used by the Performance Counter. The interrupt handler for IP (7)
should take this into account.

Compare Register

31 0

32

Compare
96 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.2.5 Status Register (12)

The Status register (SR) is a read/write register that contains the operating mode,
interrupt enabling, and diagnostic states of the processor. The following list
describes the more important Status register fields.

• The 8-bit Interrupt Mask (IM) field controls the enabling of eight
interrupt conditions. Interrupts must be enabled before they can b
asserted, and the corresponding bits are set in both th Interrupt Mask
field of the Status register and the Interrupt Pending field of the
Cause register. IM (1:0) are software interrupt masks, IM (6:2)
correspond to Int (4:0), and IM (7) is a timer interrupt mask.

• The 4-bit Coprocessor Usability (CU) field controls the usability of
possible coprocessors. Regardless of the CU0 bit setting, CP0 is
always usable in Kernel mode. For all other cases, an access to a
unusable coprocessor causes an exception CU3 selects MIPS IV.

• The 9-bit Diagnostic Status (DS) field is used for self-testing, and
checks the cache and virtual memory system.

6.2.5.1 Status register format

Figure 6-5 shows the format of the Status register. Table 6-3 describes the Status
register fields. Figure 6-6 and Table 6-4 provide additional information on the
Diagnostic Status (DS) field. All bits in the DS field except TS are readable and
writable. Bits shown as 0 read as 0 and must be written as 0.

Bits 27, 25, 23, and 19 are unused and reserved. However, they are readable and
writable, and therefore must be written as 0 during the initialization process.

Bit 16 is unsused and reserved. However, it is readable and writable. Write a 1 to
this bit during initialization.

Special consideration must be taken when porting to an operating system or
application written for other versions of MIPS processors. For example, when the
VR5432 is configured to run in VR43xx Bus Protocol mode, the VR5432 can be
integrated with the system that was designed to run with a VR43xx processor. In
this case, the original operating system may interpret Status register bit 27 as
Reduced Power (RP) mode, as defined in the VR43xx processor specification.
VR5432 Microprocessor User’s Manual 97

Chapter 6

Figure 6-5 Status Register

Table 6-3 Status Register Fields

Field Description

CU3:CU0

Originally controlled the usability of each of the four coprocessor
unit numbers; redefined for the MIPS IV instruction set. Setting
CU3 enables the MIPS IV instruction set extensions. CP0 is always
usable when in Kernel mode, regardless of the setting of the CU0
bit.

1 → usable
0 → unusable

FR
Enables additional floating-point registers

0 → 16 registers
1 → 32 registers

DS Diagnostic status field (see Figure 6-6)

IM7:0

Interrupt Mask: Controls the enabling of each of the external,
internal, and software interrupts. An interrupt occurs if interrupts
are enabled, and the corresponding bits are set in both the Interrupt
Mask field of the Status register and the Interrupt Pending field of
the Cause register.

0 → disabled
1→ enabled

KX

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB Refill exception is used for TLB misses on kernel
addresses.

0 → 32-bit
1 → 64-bit

SX

Enables 64-bit addressing and operations in Supervisor mode. The
extended-addressing TLB Refill exception is used for TLB misses
on supervisor addresses.

0 → 32-bit
1 → 64-bit

Status Register

CU3:CU0

 4

IM7:0

1528 27 25 24 16

9

8 7 5 4 3 2 1 0

KSU ERL EX IE

8 2 1 1 1

0

26

1

DS KX UX

6

SX

1 1 111

 0 FR

31

EX
98 VR5432 Microprocessor User’s Manual

CPU Exceptions
UX

Enables 64-bit addressing and operations in User mode. The
extended-addressing TLB Refill exception is used for TLB misses
on user addresses.

0 → 32-bit
1 → 64-bit

KSU

Mode bits
102 → User
012 → Supervisor
002 → Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset, NMI, or
Cache Error exceptions are taken.

0 → normal
1 → error

When ERL is set:
Interrupts are disabled.
The KSU bits will indicate that the processor is in Kernel mode.
The ERET instruction will use the return address held in ErrorEPC
instead of EPC.
kuseg and xkuseg are treated as unmapped and uncached regions.
This allows main memory to be accessed in the presence of cache
errors.

EXL

Exception Level; set by the processor when any exception other
than Reset, Soft Reset, NMI, or Cache Error exceptions are taken.

0 → normal
1 → exception

When EXL is set:
Interrupts are disabled.
The KSU bits will indicate that the processor is in Kernel mode.
TLB Refill exceptions will use the general exception vector instead
of the TLB Refill vector.
EPC will not be updated if another exception is taken.

IE
Interrupt Enable

0 → disable interrupts
1 → enables interrupts

Table 6-3 Status Register Fields (continued)

Field Description
VR5432 Microprocessor User’s Manual 99

Chapter 6
Figure 6-6 Status Register DS Field

Table 6-4 Status Register Diagnostic Status Bits

Bit Description

DME

Enables entry into Debug mode.
0 → debug break events are ignored, and the DBREAK
instruction causes a Reserved Instruction exception
1 → debug break events and the DBREAK instruction cause
entry into Debug mode

BEV
Controls the location of TLB Refill and general exception vectors.

0 → normal
1 → bootstrap

TS

Indicates that a TLB shutdown has occurred (read only); used to
avoid damage to the TLB if more than one TLB entry matches a
single virtual address.
0 → did not occur
1 → did occur
After a TLB shutdown, the processor must be reset to restart. TLB
shutdowns can occur even when a TLB entry with which the virtual
address has matched is set to be invalid (V bit of the entry is cleared).

SR 1→ Indicates that a Soft Reset or NMI has occurred

CH
CP0 condition bit. Read/write access to software, unaffected by
hardware events.

CE
Create parity error for cache diagnostics. When set, the contents of
the PErr register are loaded into the cache parity bits rather than the
computed parity bits.

DE DE bit .

Diagnostic Status Field

24 22 21 20 19 18 17 16

TS SR CH CE 1

1 1 1 1 1 1 1

BEV

23

1

0 0

1

DME
100 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.2.5.2 Status register modes and access states

Fields of the Status register set the modes and access states described in the
sections that follow.

Interrupt Enable. Interrupts are enabled when all of the following conditions are
true:

• IE = 1

• EXL = 0

• ERL = 0

If these conditions are met, the settings of the IM bits enable the interrupt.

Operating modes. The following CPU Status register bit settings are required for
User, Supervisor, and Kernel modes.

• The processor is in User mode whe KSU = 102, EXL = 0, and
ERL = 0.

• The processor is in Supervisor mode when KSU = 012, EXL = 0, and
ERL = 0.

• The processor is in Kernel mode when KSU = 002, or EXL = 1, or
ERL = 1.

32- and 64-bit modes. The following CPU Status register bit settings select 32-
or 64-bit operation for User, Supervisor, and Kernel operating modes. Enabling
64-bit operation permits the execution of 64-bit opcodes and translation of 64-bit
addresses. 64-bit operation for User, Supervisor, and Kernel modes can be set
independently.

• 64-bit addressing and operations are enabled for User mode when
UX = 1.

• 64-bit addressing and operations are enabled for Supervisor mode
when SX = 1.

• 64-bit addressing for Kernel mode is enabled when KX = 1. 64-bit
operations are always valid in Kernel mode.

Kernel address space access. Access to the kernel address space is allowed when
the processor is in Kernel mode.

Supervisor address space access. Access to the supervisor address space is
allowed when the processor is in Kernel or Supervisor mode.

User address space access. Access to the user address space is allowed in any of
the three operating modes.
VR5432 Microprocessor User’s Manual 101

Chapter 6
6.2.5.3 Status register reset

The contents of the Status register are undefined at reset, except for the following
bits in the Diagnostic Status field:

• ERL and BEV = 1

The SR bit distinguishes between the Reset exception and the Soft Reset exception
(caused by either a Reset or Nonmaskable Interrupt [NMI]).

6.2.6 Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent
exception.

Figure 6-7 shows the fields of this register. Table 6-5 describes the Cause register
fields.

All bits in the Cause register, with the exception of the IP (1:0) bits, are read only;
IP (1:0) are used for software interrupts.

Table 6-5 Cause Register Fields

Field Description

BD

Indicates whether the EPC was adjusted because the last exception taken occurred
in a branch delay slot.

1 → delay slot
0 → normal

CE
Coprocessor unit number referenced when a Coprocessor Unusable exception is
taken.

IP7:0

Indicates that an interrupt is pending. IP (7) indicates a timer interrupt or
Performance Counter overflow. IP (6:2) are the external interrupts that are set by an
interrupt signal or a write on the SysAD bus. IP (1:0) are software interrupts, which
may be written to set or clear interrupts.

1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 6-6)

0 Reserved. Must be written as 0; returns 0 when read.
102 VR5432 Microprocessor User’s Manual

CPU Exceptions
Figure 6-7 Cause Register Format

Table 6-6 Cause Register ExcCode Field

Exception
Mnemonic Description

Code Value

0 Int Interrupt

1 Mod TLB Modified exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address Error exception (load or instruction fetch)

5 AdES Address Error exception (store)

6 IBE Bus Error exception (instruction fetch)

7 DBE Bus Error exception (data reference: load or store)

8 Sys System Call exception

9 Bp Breakpoint exception

10 RI Reserved Instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14  Reserved

15 FPE Floating-Point exception

16–22  Reserved

23 Watch Reference to WatchHi/WatchLo address

24–31  Reserved

Cause Register

 1

IP7:0

31 1527 16

2 12

8 7 6 2 0

8 1 251

0
Exc

Code

1

00

282930

BD 0 CE
VR5432 Microprocessor User’s Manual 103

Chapter 6
6.2.7 Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the
address where processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

• The virtual address of the instruction that was the direct cause of th
exception, or

• The virtual address of the immediately preceding Branch or Jump
instruction (when the instruction is in a branch delay slot, and th
Branch Delay bit in th Cause register is set

The processor does not write to the EPC register when the EXL bit in the Status
register is set to 1.

Figure 6-8 shows the format of the EPC register. In 32-bit mode, bits 40 through
58 will be the sign-extended 32-bit address. In 64-bit mode, these bits will be all
ones if the segment is ckseg0, ckseg1, cksseg, or ckseg3. For all other segments,
these bits will all be zero.

Figure 6-8 EPC Register Format

EPC Register

63 0

EP

40

31 0

EPC

32

32-bit
Mode

64-bit
Mode

EPC Reserved

59 58 40 39

195
104 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.2.8 XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page table
entry (PTE) array, an operating system data structure that stores virtual-to-
physical address translations. When there is a TLB miss, the operating system
software loads the TLB with the missing translation from the PTE array. The
XContext register duplicates some of the information provided in the BadVAddr
register and puts it in a form useful for a software TLB exception handler. The
XContext register is for use with the XTLB refill handler, which loads TLB entries
for references to a 64-bit address space and is included solely for operating system
use. The operating system sets the Page Table Entry Base (PTEBase) field in the
register, as needed. Figure 6-9 shows the format of the XContext register; Table
6-7 describes the XContext register fields.

Figure 6-9 XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that caused the
TLB miss; bit 12 is excluded because a single TLB entry maps to an even-odd
page pair. For a 4 KB page size, this format may be used directly to address the
pair-table of 8-byte PTEs. For other page and PTE sizes, shifting and masking this
value produces the appropriate address.

Table 6-7 XContext Register Fields

Field Description

BadVPN2
The Bad Virtual Page Number/2 field is written by hardware on a miss. It contains
the VPN of the most recent invalidly translated virtual address.

R

The Region field contains bits 63:62 of the virtual address.
002 = User
012 = Supervisor
112 = Kernel

PTEBase
The Page Table Entry Base read/write field is normally written with a value that
allows the operating system to use the Context register as a pointer into the current
PTE array in memory.

XContext Register

31 30 4 363 0

31

PTEBase BadVPN2

27 4

0R

2

33 32
VR5432 Microprocessor User’s Manual 105

Chapter 6
6.2.9 WatchLo and WatchHi Registers (18 and 19)

The processor provides a debugging feature to detect references to a selected
physical address; load and store operations can be programmed to cause a Watch
exception. Figure 6-10 shows the format of the WatchLo and WatchHi registers.
Table 6-8 describes the WatchLo and WatchHi register fields.

Figure 6-10 WatchLo and WatchHi Register Formats

Table 6-8 WatchLo and WatchHi Register Fields

Field Description

PAddress Physical address bits [35:3] for triggering Watch exception

R If set, triggers an exception on reads.

W If set, triggers an exception on writes.

0 Reserved. Must be written as 0; returns 0 when read.

WatchLo Register

31 0

29

R

2

1

PAddress

1

WatchHi Register

31 0

28 4

0

4

PAddress

3

1

W

3

1

0

106 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.2.10 Performance Counter Registers (25)

The processor has two Performance Counter registers and two associated
Performance Counter Control registers, which are mapped into CP0 register 25.
Use the MTPS/MFPS/MTPC/MFPC instructions to read or write the Performance
Counter and Control registers.

Each counter is a 32-bit read/write register and is incremented by one each time
the countable event, specified in its associated control register, occurs. Each
counter can independently count one type of event at a time. The format of the
Control register is shown in Figure 6-11; the register fields are described in Table
6-9.

The counter asserts an interrupt (IP7), when the counter overflows and the
associated Performance Control register enables the interrupt. Counting continues
after counter overflow whether or not an interrupt is signaled.

Figure 6-11 Performance Counter Control Register Format

Table 6-9 Performance Counter Control Register Fields

Field Description

Event Specifies the event to be counted. See Table 6-10.

IP Interrupt pending.

IE Enables the IP7 interrupt when the associated counter overflows.

U, S, K, EXL

Specifies a processor mode in which the event is counted.
 U → User mode
S → Supervisor mode
K → Kernel mode (except when ERL or EXL are 1)
EXL → Kernel mode (when EXL is 1)

The processor mode count enables can be set individually.

0 Reserved. Must be written as 0; returns 0 when read.

Performance Counter Control Register

31 0

22

K

2

1

0

1

1

EXL

3

1

SIE

5

1

4

1

U

4

Event

10 9

IP

6

1

VR5432 Microprocessor User’s Manual 107

Chapter 6
Table 6-10 Event Field Encoding

When using these counters, the following rules apply:

• An instruction is considered executed even if the instruction causes
an exception

• The Performance Counter registers may be preloaded with an MTPC
instruction

• The Interrupt Enabl bit must be set to trigger an IP7 interrupt

• The interrupt handler routine must check the Performance Counter
registers to determine if the interrupt was caused by a Performance
Counter or by the Count register matching the Compare register.

Event Code Description

0 Processor cycles (PClock)

1 (Instructions executed)/2 and truncated

2 Load, prefetch/CacheOps execution (no sync)

3 Store execution

4 Branch execution (no jumps or Jump registers)

5
(Floating-point instruction execution)/2 and truncated. The
instruction count includes COP1 and COP1X, but not LWC1,
LDC1, SWC1, or SDC1.

6 Doublewords flushed to main memory (no uncached stores)

7 JTLB refills

8 Data cache misses (no I-cache misses)

9 Instruction cache misses (no D-cache misses)

10 Branches mispredicted
108 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.2.11 Parity Error (PErr) Register (26)

The 8-bit Parity Error (PErr) register reads or writes the cache parity bits for cache
initialization, cache diagnostics, or cache error processing.

The PErr register is loaded from the cache parity bits by the Cache Load Index Tag
operation. The contents of the PErr register are written into the cache parity bits
on Store instructions (instead of the computed parity) when the CE bit of the
Status register is set.

Figure 6-12 shows the format of the PErr register; Table 6-11 describes the
register fields.

Figure 6-12 PErr Register Format

Table 6-11 PErr Register Fields

Field Description

Parity An 8-bit field specifying the parity bits read from or written to a cache

0 Reserved. Must be written as 0; returns 0 when read.

PErr Register

31

24 8

8 07

0 Parity
VR5432 Microprocessor User’s Manual 109

Chapter 6
6.2.12 Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register holds information for processing parity
errors in the cache. Parity errors cannot be corrected.

The CacheErr register holds status bits that indicate the source and nature of the
error; it is loaded when a Cache Error exception is asserted.

Figure 6-13 shows the format of the CacheErr register and Table 6-12 describes
the CacheErr register fields.

Figure 6-13 CacheErr Register Format

Table 6-12 CacheErr Register Fields

Field Description

ER
Type of reference

0 → instruction
1 → data

EC
Cache level of the error

0 → primary (i.e., on-chip cache)
1 → reserved

ED
Indicates if a data field error occurred

0 → no error
1 → error

ET
Indicates if a tag field error occurred

0 → no error
1 → error

ES
This bit is set if the error occurred on the first doubleword.

0 → not first doubleword
1 → first doubleword

CacheErr Register

31

25

0

ER ES

1

30 28 25

1

24

EBEE

111

ETEDEC

1 1

262729

0

110 VR5432 Microprocessor User’s Manual

CPU Exceptions
EE
This bit is set if the error occurred on the SysAD bus.

0 → not on SysAD bus
1 → on SysAD bus

EB

This bit is set if a data error occurred in addition to the
instruction error (indicated by the remainder of the bits). If so,
this requires flushing the data cache after fixing the instruction
error.

0 → error in one cache
1 → error in both caches

0 Reserved. Must be written as 0; returns 0 when read.

Table 6-12 CacheErr Register Fields (continued)

Field Description
VR5432 Microprocessor User’s Manual 111

Chapter 6
6.2.13 Error Exception Program Counter (ErrorEPC) Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used
on Parity Error exceptions. It is also used to store the program counter (PC) on
Reset, Soft Reset, and Nonmaskable Interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. This address can be:

• The virtual address of the instruction that caused the exceptio

• The virtual address of the immediately preceding Branch or Jump
instruction, when this address is in a branch delay slo

There is no branch delay slot indication for the ErrorEPC register.

Error EPC is not logged when parity is disabled.

Figure 6-14 shows the format of the ErrorEPC register. In 32-bit mode, bits 40
through 58 will be the sign-extended 32-bit address. In 64-bit mode, these bits will
be all ones if the segment is ckseg0, ckseg1, cksseg, or ckseg3. For all other
segments, these bits will all be zero.

Figure 6-14 ErrorEPC Register Format

6.3 Processor Exceptions

This section describes the processor exceptions; it describes the cause of each
exception, its processing by the hardware, and servicing by a handler (software).
The exception types and exception processing operations are described in Section
6.3.1.

ErrorEPC Register

63 0

ErrorEPC

40

64-bit
Mode

31 0

ErrorEPC

32

32-bit
Mode

ErrorEPC Reserved

59 58 40 39

195
112 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.3.1 Exception Types

This section gives sample exception handler operations for the following
exception types:

• Reset

• Soft Reset

• Nonmaskable Interrupt (NMI)

• Cache Error

• Remaining processor exception

When the EXL bit in the Status register is 0, either User, Supervisor, or Kernel
operating mode is specified by the KSU bits in the Status register. When the EXL
bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which means the
system is in Kernel mode. After saving the appropriate state, the exception handler
typically changes KSU to Kernel mode and resets the EXL bit back to 0 to re-
enable exceptions. By executing an ERET instruction, the handler restores the
previous value of the KSU field and sets the EXL bit back to 0.

In the following sections, sample hardware processes for various exceptions are
shown, together with the servicing required by the handler (software).

6.3.1.1 Reset exception process

Figure 6-15 shows the Reset exception process.

Figure 6-15 Reset Exception Process

T: undefined

Random ← TLBENTRIES–1

Wired ← 0

Config ← 0 || EC || xxxxxx || 110110 || BE || 110011011110 || xxx

ErrorEPC ← PC

SR ← xxxxxxx || 0 || x || 1 || 0 || 0 || xxxxxxxxxxxxxxxxx || 1 || xx

PC ← 0xFFFF FFFF BFC0 0000
VR5432 Microprocessor User’s Manual 113

Chapter 6
6.3.1.2 Cache Error exception process

Figure 6-16 shows the Cache Error exception process.

Figure 6-16 Cache Error Exception Process

6.3.1.3 Soft Reset and NMI exception process

Figure 6-17 shows the Soft Reset and NMI exception process.

Figure 6-17 Soft Reset and NMI Exception Process

6.3.1.4 General exception process

Figure 6-18 shows the process used for exceptions other than Reset, Soft Reset,
NMI, and Cache Error.

Figure 6-18 General Exception Processing

T: ErrorEPC ← PC
CacheErr ← ER || EC || ED || ET || ES || EE || EB || 025
SR ← SR31:3 || 1 || SR1:0
if SR22 = 1 then /*What is the BEV bit setting*/
 PC ← 0xFFFF FFFF BFC0 0200 + 0x100 /*Access boot-PROM area*/
else
 PC ← 0xFFFF FFFF A000 0000 + 0x100 /*Access main memory area*/
endif

T: ErrorEPC ← PC
SR ← SR31:23 || 1 || SR21 || 1 || SR19:3 || 1 || SR1:0
PC ← 0xFFFF FFFF BFC0 0000

T: Cause ← BD || 0 || CE || 012 || Cause15:8 || ExcCode || 0
2

if SR1 = 0 then/* System is in User or Supervisor mode, no current exception */

 EPC ← PC

endif

SR ← SR31:2 || 1 || SR0

if SR22 = 1 then

 PC ← 0xFFFF FFFF BFC0 0200 + vector /*access to uncached space*/

else

 PC ← 0xFFFF FFFF 8000 0000 + vector /*access to cached space*/

endif
114 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.3.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location
0xFFFF FFFF BFC0 0000. Addresses for all other exceptions are a combination
of a vector offset and a base address.

The base address is determined by the BEV bit of the Status register.

Table 6-13 shows the 64-bit mode vector base address for all exceptions; the 32-
bit mode address is the low-order 32 bits (for instance, the base address for NMI
in 32-bit mode is 0xBFC0 0000).

Table 6-14 shows the vector offset added to the base address to create the
exception address.

Table 6-13 Exception Vector Base Addresses

6.4 Exception Vector Offsets

Table 6-14 Exception Vector Offsets

When BEV = 0, the vector base address for the Cache Error exception changes
from kseg0 (0xFFFF FFFF 8000 0000) to kseg1 (0xFFFF FFFF A000 0000). This
change indicates that the caches are initialized and that the vector can be cached.
When BEV = 1, the vector base for the Cache Error exception is 0xFFFF FFFF
BFC0 0200. This is an uncached and unmapped space, allowing the exception to
bypass the cache and the TLB.

BEV Bit VR5432 Processor Vector Base Address

0 0xFFFF FFFF 8000 0000

1 0xFFFF FFFF BFC0 0200

Exception VR5432 Processor Vector Offset

TLB Refill, EXL = 0 0x000

XTLB Refill, EXL = 0
(X = 64-bit TLB)

0x080

Cache Error 0x100

Others 0x180
VR5432 Microprocessor User’s Manual 115

Chapter 6
6.4.1 TLB Refill Vector Selection

In all present implementations of the MIPS III ISA, there are two TLB Refill
exception vectors:

• TLB Refill: References to 32-bit address space

• XTLB Refill: References to 64-bit address space

The TLB Refill vector selection is based on the address space of the address (user,
supervisor, or kernel) that caused the TLB miss, and the value of the
corresponding extended addressing bit in the Status register (UX, SX, or KX). The
current operating mode of the processor is not important, except that it plays a part
in specifying in which address space an address resides. The Context and
XContext registers are entirely separate page-table-pointer registers that point to
and refill from two separate page tables. For all TLB exceptions (Refill, Invalid,
TLBL, or TLBS), the BadVPN2 fields of both registers are loaded as they were in
the VR4000.

In contrast to the VR5432, the VR4000 processor selects the vector based on the
current operating mode of the processor (User, Supervisor, or Kernel) and the
value of the corresponding extended addressing bit in the Status register (UX, SX,
or KX). In addition, the Context and XContext registers are not implemented as
entirely separate registers; the PTEbase fields are shared. A miss to a particular
address goes through either TLB Refill or XTLB Refill, depending on the source
of the reference. There can be only a single page table unless the refill handlers
execute address deciphering and page table selection in software.

Note: Refills for the 0.5 GB supervisor mapped region, sseg/ksseg, are
controlled by the value of KX rather than SX. This simplifies control
of the processor when Supervisor mode is not being used.

Table 6-15 lists the TLB Refill vector locations, based on the address that caused
the TLB miss and its corresponding mode bit.
116 VR5432 Microprocessor User’s Manual

CPU Exceptions
Table 6-15 TLB Refill Vectors

Space Address Range Regions Exception Vector

Kernel
0xFFFF FFFF E000 0000
to
0xFFFF FFFF FFFF FFFF

kseg3
Refill (KX = 0)
or
XRefill (KX = 1)

Supervisor
0xFFFF FFFF C000 0000
to
0xFFFF FFFF DFFF FFFF

sseg, ksseg
Refill (SX = 0)
or
XRefill (SX = 1)

Kernel
0xC000 0000 0000 0000
to
0xC000 0FFE FFFF FFFF

xkseg XRefill (KX = 1)

Supervisor
0x4000 0000 0000 0000
to
0x4000 0FFF FFFF FFFF

xsseg, xksseg XRefill (SX = 1)

User
0x0000 0000 8000 0000
to
0x0000 0FFF FFFF FFFF

xsuseg, xuseg, xkuseg

XRefill (UX = 1)

User
0x0000 0000 0000 0000
to
0x0000 0000 7FFF FFFF

useg, xuseg, suseg,
xsuseg, kuseg, xkuseg

Refill (UX = 0)
or
XRefill (UX = 1)
VR5432 Microprocessor User’s Manual 117

Chapter 6
6.4.2 Priority of Exceptions

Table 6-16 describes exceptions, ranging from highest to lowest priority.
Although more than one exception can occur for a single instruction, only the
exception with the highest priority is reported.

Table 6-16 Exception Priority Order

Generally speaking, the exceptions described in the following sections are
processed by hardware; these exceptions are then serviced by software.

Note: This table shows the priority of the processor control logic.
When the external exception signals (Ints, NMI) are asserted with
the same timing, the arriving timing for the control logic may be
different.

Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)

Debug Break Event––Instruction fetch

Address Error––Instruction fetch

TLB Refill––Instruction fetch

TLB Invalid––Instruction fetch

Cache Error––Instruction fetch

Bus Error––Instruction fetch

Integer Overflow, Trap, System Call, Breakpoint, Reserved Instruction,
Coprocessor Unusable, Floating-point, or Debug

Address Error––Data access

TLB Refill––Data access

TLB Invalid––Data access

TLB Modified––Data write

Cache Error––Data access

Bus Error––Data access

Watch

Interrupt (lowest priority)
118 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.4.3 Reset Exception

Cause

The Reset exception occurs when the ColdReset* signal is asserted and then
deasserted. This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

• Location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Reset vector resides in unmapped and uncached CPU address space, so the
hardware need not initialize the TLB or the cache to process this exception. It also
means the processor can fetch and execute instructions while the caches and
virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs,
except for the following register fields:

• In the Status register, SR is cleared to 0, and ERL and BEV are set to 1.
All other bits are undefined.

• Some Config registers are initialized from the boot-time mode stream

• The Random register is initialized to the value of its upper bound.

• The Wired register is initialized to 0.
VR5432 Microprocessor User’s Manual 119

Chapter 6
Servicing

The Reset exception is serviced by:

• Initializing all processor registers, coprocessor registers, caches, an
the memory system

• Performing diagnostic test

• Bootstrapping the operating system

Table 6-17 Register State

Register Name
Cold Reset

(Power-On Reset)
Soft Reset NMI

Status (SR) 0 1 1

(ERL) 1 1 1

(BEV) 1 1 1

(TS) 0 unchanged unchanged

Random 47 unchanged unchanged

Wired 0 unchanged unchanged

Config (EC) hardwired hardwired hardwired

(EM) 0 unchanged unchanged

(BE) hardwired hardwired hardwired

PRId (Impl) 0x54 0x54 0x54

ErrorEPC undefined restart PC restart PC

Other registers
All other register bits
are undefined.

All other register bits
are undefined.

All other register bits
are undefined.
120 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.4.4 Soft Reset Exception

Cause

The Soft Reset exception occurs in response to assertion of the Reset* input.
Execution begins at the Reset vector when the Reset* signal is negated.

The Soft Reset exception is not maskable.

Processing

The Reset vector is used for this exception. The Reset vector is located within
uncached and unmapped address space. Hence the cache and TLB need not be
initialized in order to process the exception. Regardless of the cause, when this
exception occurs, the SR bit of the Status register is set, distinguishing this
exception from a Reset exception.

The primary purpose of the Soft Reset exception is to reinitialize the processor
after a fatal error during normal operation. Unlike an NMI, all cache and bus state
machines are reset by this exception.

When the Soft Reset exception occurs, all register contents are preserved, with the
following exceptions:

• The ErrorEPC register, which contains the restart PC

• The ERL, BEV, and SR bits of the Status Register, each of which is set
to 1

Because the Soft Reset can abort cache and bus operations, the cache and memory
states are undefined when the Soft Reset exception occurs.

Servicing

The Soft Reset exception is serviced by saving the current processor state for
diagnostic purposes and reinitializing for the Reset exception.
VR5432 Microprocessor User’s Manual 121

Chapter 6
6.4.5 Nonmaskable Interrupt (NMI) Exception

Cause

The NMI exception occurs in response to the falling edge of the NMI* signal, or
an external write to the Int (6) bit of the Interrupt register. The NMI exception is
not maskable and occurs regardless of the settings of the EXL, ERL, and IE bits in
the Status register.

Processing

The Reset vector is used for this exception. The Reset vector is located within
uncached and unmapped address space. Hence the cache and TLB need not be
initialized in order to process the exception. Regardless of the cause, when this
exception occurs the SR bit of the Status register is set, distinguishing this
exception from a Reset exception.

Because the NMI can occur in the midst of another exception, it is typically not
possible to continue program execution after servicing an NMI. An NMI
exception is taken only at instruction boundaries. The state of the caches and
memory system are preserved.

When the NMI exception occurs, all register contents are preserved, with the
following exceptions:

• The ErrorEPC register, which contains the restart PC

• The ERL, BEV, and SR bits of the Status register, each of which is set
to 1

Servicing

 The NMI exception is serviced by saving the current processor state for
diagnostic purposes and reinitializing for the Reset exception.
122 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.4.6 Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of
the following:

• Load or store a doubleword that is not aligned on a doubleword
boundary

• Load, fetch, or store a word that is not aligned on a word boundar

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from User or Supervisor mode

• Reference the supervisor address space from User mode

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or AdES code
in the Cause register is set, indicating whether the instruction caused the exception
with an instruction reference, load operation, or store operation shown by the EPC
register and the BD bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that
was not properly aligned or that referenced protected address space. The contents
of the VPN field of the Context and EntryHi registers are undefined, as are the
contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception,
unless this instruction is in a branch delay slot. If it is in a branch delay slot, the
EPC register contains the address of the preceding Branch instruction and the BD
bit of the Cause register is set as indication.

Servicing

The process executing at the time receives a segmentation violation signal. This
error is usually fatal to the process incurring the exception.
VR5432 Microprocessor User’s Manual 123

Chapter 6
6.4.7 TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Refill occurs when there is no TLB entry that matches an
attempted reference to a mapped address space.

• TLB Invalid occurs when a virtual address reference matches a TL
entry that is marked invalid.

• TLB Modified occurs when a store operation virtual address
reference to memory matches a TLB entry that is marked valid but is
not dirty (the entry is not writable).

The following three sections describe these TLB exceptions.

6.4.7.1 TLB Refill exception

Cause

The TLB Refill exception occurs when there is no TLB entry to match a reference
to a mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to
32-bit address spaces, and one for references to 64-bit address spaces. The UX, SX,
and KX bits of the Status register determine whether the user, supervisor, or kernel
address spaces referenced are 32-bit or 64-bit spaces. All references use these
vectors when the EXL bit is set to 0 in the Status register. This exception sets the
TLBL or TLBS code in the ExcCode field of the Cause register. This code indicates
whether the instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction reference, load operation, or store
operation.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi
registers hold the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the translation fault occurred. The
Random register normally contains a valid location in which to place the
replacement TLB entry. The contents of the EntryLo register are undefined. The
EPC register contains the address of the instruction that caused the exception,
unless this instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding Branch instruction and the BD bit of the
Cause register is set.
124 VR5432 Microprocessor User’s Manual

CPU Exceptions
Servicing

To service this exception, the contents of the Context or XContext register are
used as a virtual address to fetch memory locations containing the physical page
frame and access control bits for a pair of TLB entries. The two entries are placed
into the EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers are
written into the TLB.

It is possible that the virtual address used to obtain the physical address and access
control information is on a page that is not resident in the TLB. This condition is
processed by allowing a TLB Refill exception in the TLB refill handler. This
second exception goes to the common exception vector because the EXL bit of the
Status register is set.

6.4.7.2 TLB Invalid exception

Cause

The TLB Invalid exception occurs when a virtual address reference matches a
TLB entry that is marked invalid (TLB Valid bit cleared). This exception is not
maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code
in the ExcCode field of the Cause register is set. This indicates whether the
instruction, as shown by the EPC register and the BD bit in the Cause register,
caused the miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi
registers contain the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the translation fault occurred. The
Random register normally contains a valid location in which to put the
replacement TLB entry. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception,
unless this instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding Branch instruction and the BD bit of the
Cause register is set.
VR5432 Microprocessor User’s Manual 125

Chapter 6
Servicing

A TLB entry is typically marked invalid when one of the following is true:

• A virtual address does not exist.

• The virtual address exists, but is not in main memory (a page fault)

• A trap is desired on any reference to the page (for example, to
maintain a reference bit).

After servicing the cause of a TLB Invalid exception, the TLB entry is located
with TLBP (TLB Probe) and replaced by an entry with that entry’s Valid bit set.

6.4.7.3 TLB Modified exception

Cause

The TLB Modified exception occurs when a store operation virtual address
reference to memory matches a TLB entry that is marked valid but is not dirty and
therefore is not writable. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the
Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi
registers contain the virtual address that failed address translation. The EntryHi
register also contains the ASID from which the translation fault occurred. The
contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception,
unless that instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding Branch instruction and the BD bit of the
Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not
permit write accesses; if writes are not permitted, a write protection violation
occurs.
126 VR5432 Microprocessor User’s Manual

CPU Exceptions
If write accesses are permitted, the page frame is marked dirty/writable by the
kernel in its own data structures. The TLBP instruction places the index of the
TLB entry that must be altered into the Index register. The EntryLo register is
loaded with a word containing the physical page frame and access control bits
(with the D bit set) and the EntryHi and EntryLo registers are written into the TLB.
VR5432 Microprocessor User’s Manual 127

Chapter 6
6.4.8 Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus
time-out, backplane bus parity errors, and invalid physical memory addresses or
access types. This exception is not maskable.

The Bus error exception occurs asynchronously because of the processor
nonblock cache structure. The Bus Error exception resulting must be reported
using the general interrupt mechanism.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE
code in the ExcCode field of the Cause register is set, signifying whether the
instruction (as indicated by the EPC register and the BD bit in the Cause register)
caused the exception by an instruction reference, load operation, or store
operation.

The EPC register contains the address of the instruction that received the
exception, unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding Branch instruction and the BD bit of the
Cause register is set.

Servicing

The EPC register may not have the instruction which caused the Bus error because
of the nonblocking cache structure. Therefore, it is very difficult to trace the error
address. The Bus error should be used for a fatal error and the system should be
rebooted. The Bus error is not recoverable.
128 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.4.9 Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI, or DSUB instruction results in a two’s-complement overflow. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV code in the
Cause register is set.

The EPC register contains the address of the instruction that caused the exception
unless the instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding Branch instruction and the BD bit of the
Cause register is set.

Servicing

The process executing at the time of the exception receives a Floating-point
exception/integer overflow signal. This error is usually fatal to the current process.

6.4.10 Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI,
TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE condition.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the
Cause register is set.

The EPC register contains the address of the instruction causing the exception
unless the instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding Branch instruction and the BD bit of the
Cause register is set.

Servicing

The process executing at the time of a Trap exception receives a Floating-point
exception/integer overflow signal. This error is usually fatal.
VR5432 Microprocessor User’s Manual 129

Chapter 6
6.4.11 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the
Cause register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in
a branch delay slot, in which case the EPC register contains the address of the
preceding Branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status
register is set; otherwise, this bit is cleared.

Servicing

When this exception occurs, control is transferred to the applicable system
routine.

To resume execution, the EPC register must be altered so that the SYSCALL
instruction does not re-execute; this is accomplished by adding a value of 4 to the
EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm,
beyond the scope of this description, may be required.
130 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.4.12 Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK
instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code in the
Cause register is set.

The EPC register contains the address of the BREAK instruction unless it is in a
branch delay slot, in which case the EPC register contains the address of the
preceding Branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register
is set; otherwise, the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable
system routine. Additional distinctions can be made by analyzing the unused bits
of the BREAK instruction (bits 25:6) and loading instruction contents at the
address contained by the EPC register. A value of 4 must be added to the contents
of the EPC register (EPC register + 4) to locate the instruction if it resides in a
branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK
instruction does not re-execute; this is accomplished by adding a value of 4 to the
EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the Branch
instruction is required to resume execution.
VR5432 Microprocessor User’s Manual 131

Chapter 6
6.4.13 Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions
occurs:

• An attempt is made to execute an instruction with an undefined major
opcode (bits 31:26).

• An attempt is made to execute a SPECIAL instruction with an
undefined minor opcode (bits 5:0).

• An attempt is made to execute a REGIMM instruction with an
undefined minor opcode (bits 20:16).

• An attempt is made to execute 64-bit operations in 32-bit mode when
in User or Supervisor modes.

64-bit operations are always valid in Kernel mode, regardless of the value of the
KX bit in the Status register.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the
Cause register is set.

The EPC register contains the address of the reserved instruction, unless it is in a
branch delay slot, in which case the EPC register contains the address of the
preceding Branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process executing
at the time of this exception receives an illegal instruction/reserved operand fault
signal. This error is usually fatal.
132 VR5432 Microprocessor User’s Manual

CPU Exceptions
6.4.14 Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute
a coprocessor instruction for either:

• A corresponding coprocessor unit that has not been marked usable, o

• CP0 instructions, when the unit has not been marked usable and the
process executes in either User or Supervisor mode

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU code in the
Cause register is set. The contents of the Coprocessor Usage Error field of the
coprocessor Control register indicate which of the four coprocessors was
referenced. The EPC register contains the address of the unusable coprocessor
instruction unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding Branch instruction.

Servicing

The coprocessor unit to which an attempted reference was made is identified by
the Coprocessor Usage Error field, which results in one of the following
situations:

• If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the
coprocessor.

• If the process is entitled access to the coprocessor, but th
coprocessor does not exist or has failed, interpretation of the
coprocessor instruction is possible.

• If the BD bit is set in the Cause register, the Branch instruction must
be interpreted; then the coprocessor instruction can be emulated an
execution resumed with the EPC register advanced past th
coprocessor instruction

• If the process is not entitled access to the coprocessor, the proces
executing at the time receives an illegal instruction/privileged
instruction fault signal. This error is usually fatal
VR5432 Microprocessor User’s Manual 133

Chapter 6
6.4.15 Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code in the
Cause register is set.

The contents of the Floating-Point Control/Status register indicate the cause of
this exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point
Control/Status register.

For an Unimplemented Operation exception, the kernel should emulate the
instruction; for other exceptions, the kernel should pass the exception to the user
program that caused the exception.

6.4.16 Watch Exception

Cause

The Watch exception occurs when a Load or Store instruction references the
physical address specified in the WatchLo and WatchHi system control
coprocessor registers. The WatchLo register also specifies whether Load, Store,
both, or neither initiated this exception. The CACHE instruction never causes a
Watch exception. The exception is postponed while the EXL bit is set in the Status
register. This exception is maskable only by setting EXL in the Status register.

Processing

The common exception vector is used for this exception. The Watch code in the
Cause register is set.

The EPC register contains the address of the instruction that caused the exception,
unless the instruction is in a branch delay slot, in which case the EPC register
contains the address of the preceding Branch instruction and the BD bit of the
Cause register is set.
134 VR5432 Microprocessor User’s Manual

CPU Exceptions
Servicing

This exception is intended as a debugging aid. Typically, the exception handler
will transfer control to a debugger, allowing the user to examine the situation. To
continue, the Watch exception must be disabled for the execution of the faulting
instruction and then re-enabled. Execution of the faulting instruction may be
accomplished by interpretation or by setting a breakpoint.

6.4.17 Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is
asserted. The significance of these interrupts is dependent upon the specific
system implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the
Int-Mask field of the Status register and all of the eight interrupts can be masked
at once by clearing the IE bit of the Status register.

Processing

The common exception vector is used for this exception, and the Int code in the
Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible
that more than one of the bits can be set simultaneously (or even no bits may be
set) if the interrupt is asserted and then deasserted before this register is read.

Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW1
or SW0), the interrupt condition is cleared by setting the corresponding Cause
register bit to 0.

If the interrupt is hardware generated, the interrupt condition is cleared by
correcting the condition causing the interrupt signal to be asserted.

Due to the on-chip write buffer, a store to an external device may not occur until
after other instructions in the pipeline finish. Hence, the user must ensure that the
store will occur before the Return from Exception instruction (ERET) is executed.
Otherwise the interrupt may be serviced again even though there is no actual
interrupt pending.
VR5432 Microprocessor User’s Manual 135

Chapter 6
6.5 Exception Handling and Servicing Flowcharts

The remainder of this section contains flowcharts for the following exceptions and
guidelines for their handlers:

• General exceptions and their exception handler

• TLB/XTLB Miss exceptions and their exception handle

• The Cache Error exception and its handler

• Reset, Soft Reset, and NMI exceptions and a guideline to their
handler

Generally speaking, the exceptions are handled by hardware (HW); the exceptions
are then serviced by software (SW).
136 VR5432 Microprocessor User’s Manual

CPU Exceptions
Figure 6-19 General Exception Handler (HW)

PC ← 0xFFFF FFFF BFC0 0200 + 180PC ← 0xFFFF FFFF 8000 0000 + 180

EXL ← 1

BEV
= 1 (bootstrap)= 0

To General Exception Servicing Guidelines

(unmapped, cached) (unmapped, uncached)

Exceptions other than Reset, Soft Reset, NMI, Cache Error, or first-level TLB Miss
Note: Interrupts can be masked by IEs or IMs

(normal)

Instr. in Yes No
Br.Dly. Slot?

EXL

Cause 31 (BD) ← 1 Cause 31 (BD ← 0

EnHi, XContext are set only for
TLB Invalid, Modified, and

Set Cause register

EnHi ← VPN2, ASID
Context ← VPN2

ExcCode, CE

Set FP Control/Status register FP Control/Status register
 is set only if the respective exception
 occurs.

Comments

(SR1)
EXL

(SR1)

= 0 = 0

Set BadVAddr
EPC ← PC

Set BadVAdd
EPC ← (PC – 4)

= 1 = 1

Processor forced to Kernel mode
and interrupts disabled

Refill exceptions
VR5432 Microprocessor User’s Manual 137

Chapter 6
Figure 6-20 General Exception Servicing Guidelines (SW)

��
��
��
��

�����
�����
�����
�����

MFC0 -
XContext
EPC
Status
Cause

EXL ← 0

Check Cause register and Jump to
appropriate Service Code

EXL = 1

MTC0 -
EPC

STATUS

ERET

Vector is unmapped so TLB Mod, TLB Inv,
TLB Refill exceptions are not possible.

EXL = 1, so Interrupt exceptions are disabled.

Only Cache Error, Reset, Soft Reset, and NMI

OS/system to avoid all other exceptions.

After EXL = 0, all exceptions are allowed
(except interrupt if masked by IE or I
and Cache Error if masked by DE).

Comments

 exceptions are possible.

KSU ← 00
(Optional: only to enable Interrupts during Kernel mode

MTC0 -
Set Status Bits:

IE = 1

PC ← EPC; EXL ← 0

LL bit ← 0

ERET is not allowed in the branch delay slot of

Processor does not execute the instruction that is
in the ERET’s branch delay slot.

another Jump instruction.

Service Code
138 VR5432 Microprocessor User’s Manual

CPU Exceptions
Figure 6-21 TLB/XTLB Miss Exception Handler (HW)

EXL ←1

PC ← 0xFFFF FFFF BFC0 0200 + Vec.Off.PC ← 0xFFFF FFFF 8000 0000 + Vec.Off.

= 0 (normal) = 1

To TLB/XTLB Exception Servicing Guidelines

(unmapped, cached) (unmapped, uncached)

BEV
(SR bit 22)

XTLB NY

Vec. Off. = 0x000Vec. Off. = 0x080 Vec. Off. = 0x180

Instr. in Yes

Processor forced to Kernel mode and

Check if exception within

(bootstrap)

Br.Dly. Slot?

EXL
(SR bit 1)

= 1

= 0

Instruction?

Points to General ExceptionPoints to Refill Exception

No

Set Cause register:

EnHi ← VPN2, ASID
Context ← VPN2

ExcCode, CE, and
Set Cause register:

EnHi ← VPN2, ASID
Context ← VPN2

ExcCode, CE, and

EPC ← PC
Set BadVAddr

Cause bit 31 (BD) ← 1 Cause bit 31 (BD) ← 0

another exception

interrupt disable

EXL
(SR bit 1)

= 1

= 0

EPC ← (PC -4)
Set BadVAddr
VR5432 Microprocessor User’s Manual 139

Chapter 6
Figure 6-22 TLB/XTLB Exception Servicing Guidelines (SW)

Figure 6-23 Cache Error Exception Handling (HW) and Servicing Guidelines

MFC0 -

Context

��
����
����
����
����
����
����
����
����
����
����
��

��
��
��
��
��
��
��
��
��
��
��
��

Service Code

ERET

Vector is unmapped, so TLB Mod, TLB Inv,
TLB Refill, or VCEP exceptions are

EXL = 1, so Interrupt exceptions are disabled.

Only Cache Error, Reset, Soft Reset, and NMI

OS/system to avoid all other exceptions.

PC ← EPC; EXL ← 0

LL bit ← 0

Comments

 exceptions are possible.

There could be a TLB miss again during the mapping

not possible.

of the data or instruction address. The processor will
jump to the general exception vector, since EXL is 1.
(Option to complete the first-level refill in the general

Load the mapping of the virtual address in Context register.
Move it to EnLo and write to the TLB.

ERET is not allowed in the branch delay slot of

Processor does not execute the instruction that is
in ERET’s branch delay slot.

another Jump instruction.

exception handler or ERET to the original instruction
and take the exception again.
140 VR5432 Microprocessor User’s Manual

CPU Exceptions
Figure 6-24 Reset, Soft Reset, and NMI Exception Handling

R
es

et
, S

o
ft

 R
es

et
 a

n
d

 N
M

I E
xc

ep
ti

o
n

 H
an

d
lin

g
 (

H
W

)

Random ← - TLB Entries - 1

Wired ← 0
Config ← Update (31:6) || Undef (5:0)

Status:
BEV ← 1
SR ← 0

ERL ← 1

ErrorEPC ← PC

PC ← 0xFFFF FFFF BFC0 0000

Status:
BEV ← 1

SR ← 1

ERL ← 1

Soft Reset or NMI Exception Reset Exception

��
��
��
��
��

��
��
��
��
��

NMI Service Code

��
����
����
����
��

��
��
��
��
��

Soft Reset Service Code

NMI?

��
����
����
����
��

�
�
�
�
�

Reset Service Code

Yes

No

Status bit 20

= 1

=0

ERET(Optional)

Note: There is no indication from the
processor to differentiate between

there must be a system-level indication.

(SR)

��� ���

R
es

et
, S

o
ft

 R
es

et
 a

n
d

 N
M

I
S

er
vi

ci
n

g
 G

u
id

el
in

es
 (

S
W

)

NMI and Soft Reset;
VR5432 Microprocessor User’s Manual 141

Chapter 6
6.6 Interrupts

The VR5432 processor supports the following interrupts: five hardware interrupts,
one internal timer interrupt, two software interrupts, and one nonmaskable
interrupt. The processor takes an exception on any interrupt. Note that there is no
priority mechanism specified for the processor among all these interrupts. This
section describes the five hardware and single nonmaskable interrupts.

6.6.1 Hardware Interrupts

The five CPU hardware interrupts can be caused by an external write request to
the VR5432 or through dedicated interrupt pins. These pins are latched into an
internal register by the rising edge of SysClock.

6.6.2 Nonmaskable Interrupt (NMI)

The nonmaskable interrupt is caused by an external write request to the VR5432
or by the dedicated NMI* signal on the VR5432. This signal is latched into an
internal register by the rising edge of SysClock.

6.6.3 Asserting Interrupts

External write requests to the CPU are accepted based on an internal address map
of the processor. When SysAD (6:4) = 0002, an external write request to an
architecturally transparent register called the Interrupt register occurs. This
register is available for external write cycles, but not for external read cycles.

During a data cycle, SysAD (22) and SysAD (20:16) are the write enable signals
for the six individual Interrupt register bits and SysAD (6) with SysAD (4:0) are
the values to be written into these bits. This allows any subset of the Interrupt
register to be set or cleared with a single write request. Figure 6-25 shows the
mechanics of an external write request to the Interrupt register.
142 VR5432 Microprocessor User’s Manual

CPU Exceptions
Figure 6-25 Interrupt Register Bits and Enables

3 2 0146

19 18 16172022

SysAD (6:0
Interrupt Value

SysAD (22:16
Write Enables

Interrupt Register

2

1

0

4

3

6

VR5432 Microprocessor User’s Manual 143

Chapter 6
Figure 6-26 shows how the VR5432 interrupts are readable through the Cause
register.

• Bit 5 of the Interrupt register is tied to the Timer Interrupt signal. Th
result is directly readable as bit 15 of the Cause register.

• Bits 4:0 of the Interrupt register are bitwise ORed with the current
value of interrupt pins Int* (4:0). The result is directly readable as
bits 14:10 of the Cause register.

Figure 6-26 VR5432 Interrupt Signals

Cause
Register

Interrupt Register (4:0)

Timer
Interrupt

Int* (4)

2 1 04 3

1 03 24SClock
Internal
Register

Int* (0)
Int* (3)

Int* (2)
Int* (1)

IP4

IP3

IP2

IP6

IP5

IP7

12
11

10
14

13
15
144 VR5432 Microprocessor User’s Manual

CPU Exceptions
Figure 6-27 shows the internal derivation of the NMI* signal for the VR5432
processor.

The NMI* signal is latched by the rising edge of SysClock. Bit 6 of the Interrupt
register is then ORed with the inverted value of NMI* to form the nonmaskable
interrupt. Only the falling edge of the latched signal will cause the NMI.

Figure 6-27 VR5432 Nonmaskable Interrupt Signal

��

��

��
��
��

�

�

�
�
�

����

����

����
����
����

����

����

����
����
����

(Internal

6 Interrupt Register (6)

NMI*

���

���

���
���
���

NMI

SClock

Internal
Register

Edge-triggered
Flip-flop
VR5432 Microprocessor User’s Manual 145

Chapter 6
Figure 6-28 shows the masking of the VR5432 interrupt signal.

• Cause register bits 15:8 (IP7−IP0) are AND-ORed with Status
register interrupt mask bits 15:8 IM7−ΙΜ0) to mask individual
interrupts.

• Status register bit 0 is a global Interrupt Enable (IE). It is ANDe
with the output of the AND-OR logic to produce th VR5432
interrupt signal.

Figure 6-28 Masking of VR5432 Interrupts

Status Register
SR (15:8)

AND-OR
Function

IM2
IM1
IM0

IM4
IM3

IM5
IM6
IM7

Cause Register
(15:8)

IP2
IP1
IP0

IP4
IP3

IP5
IP6
IP7

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

AND
Function

VR5432
Interrupt

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

 IE

Status Register
SR (0)

1

8

8

1

146 VR5432 Microprocessor User’s Manual

Floating-Point Unit

7

This chapter describes the floating-point unit (FPU), including the programming
model, instruction set and formats, and the pipeline.

The FPU, with associated system software, fully conforms to the requirements of
ANSI/IEEE Standard 754–1985, IEEE Standard for Binary Floating-Point
Arithmetic. In addition, the MIPS architecture fully supports the recommendations
of the standard and precise exceptions.

7.1 Overview

Architecturally, the FPU is a coprocessor for the CPU (it is assigned coprocessor
label CP1) and extends the CPU instruction set to perform arithmetic operations
on floating-point values. However, it is implemented using the same data paths
used to process integer instructions. This allows integer and floating-point
instructions to be assigned to either data path, maximizing the efficiency of the
dual-issue superscalar pipeline.
VR5432 Microprocessor User’s Manual 149

Chapter 7
7.2 FPU Features

This section briefly describes the architectural model, the Load and Store
instruction set, and the coprocessor interface to the FPU. A more detailed
description is given in the sections that follow.

• Full 64-bit operation. When the FR bit in the CPU Status register
equals 0, the FPU is in 32-bit mode and contains 32 32-bit registers
that hold single- or, when used in pairs, double-precision values. When
the FR bit in the CPU Status register equals 1, the FPU is in 64-bit
mode and the registers are expanded to 64 bits wide. In this mode, each
register can hold single- or double-precision values. The FPU also
includes a 32-bit Control/Status register that provides access to all
IEEE Standard exception handling capabilities.

• Load and Store instruction set. Like the CPU, the FPU uses a load
and store-oriented instruction set, with single-cycle load and stor
operations

7.3 FPU Programming Model

This section describes the FPU registers and their data organization. The FPU
registers include Floating-point General-purpose registers (FGRs) and two control
registers: Control/Status and Implementation/Revision.
150 VR5432 Microprocessor User’s Manual

Floating-Point Unit
7.4 Floating-Point General-Purpose Registers

The FPU has a set of Floating-Point General-Purpose registers (FGRs) that can be
accessed in the following ways:

• As 32 general-purpose registers (32 FGRs), each of which is 32 bits
wide when the FR bit in the CPU Status register equals 0; or as 32
general-purpose registers (32 FGRs), each of which is 64 bits wide
when FR equals 1. The CPU accesses these registers through Move,
Load, and Store instructions.

• As 16 floating-point registers (see the next section for a description
of FPRs), each of which is 64 bits wide, when the FR bit in the CPU
Status register equals 0. The FPRs hold values in either single- o
double-precision floating-point format. Each FPR corresponds t
adjacently numbered FGRs, as shown in Figure 7-1. Th FR bit ca
only be 0 when executing the MIPS I, II, or III instruction set
Executing a MIPS IV instruction with the FR bit equal to 0 results in
undefined behavior.

• As 32 floating-point registers (see the next section for a description of
FPRs), each of which is 64 bits wide, when the FR bit in the CPU
Status register equals 1. The FPRs hold values in either single- or
double-precision floating-point format. Each FPR corresponds to an
FGR, as shown in Figure 7-1.
VR5432 Microprocessor User’s Manual 151

Chapter 7
Figure 7-1 FPU Registers

Control/Status Register
31 0 31 0

Implementation/Revision Register

Floating-point
Control Registers

(FCR)

FCR0FCR3

•
•

Registers (FPR)
(FR = 0)

Floating-Point

FPR0

0

General-Purpose Registers

(FGR)

FGR0

FGR1

FGR2

FGR31

FGR30

FGR29

31

FGR3

(least)

(most)

FPR2
(least)

(most)

FPR30

FPR28
FGR28(least)

(most)

(least)

(most)

Floating-Point

0

General-Purpose Registers

(FGR)

FGR0

FGR1

FGR2

FGR3

FGR3

FGR2

63

FGR3

FGR2

Floating-Point

•

Registers (FPR)
(FR = 1)

 Floating-Point

FPR0

FPR2

FPR30

FPR28

FPR3

FPR1

FPR29

FPR31

•
•

•
•
•

•

•
•

•

152 VR5432 Microprocessor User’s Manual

Floating-Point Unit
7.5 Floating-Point Registers

The FPU provides:

• 16 floating-point registers (FPRs) when the FR bit in the Status
register equals 0, or

• 32 floating-point registers (FPRs) when the FR bit in the Status
register equals 1

These 64-bit registers hold floating-point values during floating-point operations
and are physically formed from the general-purpose registers (FGRs). When the
FR bit in the Status register equals 1, the FPR references a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point format.
If the FR bit equals 0, only even numbers (the least register, as shown in Figure
7-1) can be used to address FPRs. When the FR bit is set to a 1, all FPR register
numbers are valid.

If the FR bit equals 0 during a double-precision floating-point operation, the
general-purpose registers are accessed in double pairs. Therefore, in a double-
precision operation, selecting Floating-Point Register 0 (FPR0) actually addresses
adjacent Floating-Point General-Purpose registers FGR0 and FGR1.

7.6 Floating-Point Control Registers

The architecture reserves for the FPU 32 control registers (FCRs) that can only be
accessed by move operations. Two such registers are implemented. The FCRs are
described below:

• The Implementation/Revision register (FCR0) holds revision
information about the FPU.

• The Control/Status register (FCR31) controls and monitors
exceptions, holds the result of compare operations, and establishes
rounding modes.

• FCR1 to FCR30 are reserved.

Table 7-1 lists the assignments of the FCRs.

Table 7-1 Floating-Point Control Register Assignments

 FCR Number Use

FCR0 Coprocessor Implementation and Revision register

FCR1 to FCR30 Reserved

FCR31 Rounding Mode, Cause, Trap, Enable, and Flag
VR5432 Microprocessor User’s Manual 153

Chapter 7
7.6.1 Implementation and Revision Register (FCR0)

The read-only Implementation and Revision register (FCR0) specifies the
implementation and revision number of the FPU. This information can determine
the coprocessor revision and performance level, and can also be used by
diagnostic software.

Figure 7-2 shows the layout of the register; Table 7-2 describes the
Implementation and Revision register (FCR0) fields.

Figure 7-2 Implementation/Revision Register

Table 7-2 FCR0 Fields

The revision number is a value in the form y.x, where:

• y is a major revision number held in bits 7:4

• x is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, NEC does not
guarantee that changes to its chips are necessarily reflected by the revision number
or that changes to the revision number necessarily reflect real chip changes. For
this reason, revision number values are not listed, and software should not rely on
the revision number to characterize the chip.

Field Description

Imp Implementation number (0x54)

Rev Revision number in the form of y.x

0 Reserved. Must be written as 0; returns 0 when read.

16 15 7

Implementation/Revision Register (FCR0)

31 0

16

Rev

8 8

8

0 Im p
154 VR5432 Microprocessor User’s Manual

Floating-Point Unit
7.6.2 Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status information that
can be accessed by instructions in either Kernel or User mode. FCR31 also
controls the arithmetic rounding mode and enables User mode traps, as well as
identifying any exceptions that may have occurred in the most recently executed
instruction and any exceptions that may have occurred without being trapped.

Figure 7-3 shows the format of the Control/Status register; Table 7-3 describes the
Control/Status register fields. Figure 7-4 shows the Control/Status register Cause,
Flag, and Enable fields.

Figure 7-3 FP Control/Status Register Bit Assignments

Table 7-3 Control/Status Register Fields

Field Description

CC7:CC1 Condition bits 7:1. See description of Control/Status register Condition bit.

FS

When set, denormalized results are flushed to 0 instead of causing an
Unimplemented Operation exception. On the VR5432, even if the FS bit is set, if a
MADD, MSUB, NMADD, or NMSUB instruction encounters a denormalized
result during the multiply portion of the calculation, an Unimplemented Operation
exception is always taken.

CC0 Condition bit 0. See description of Control/Status register Condition bit.

Cause Cause bits. See description of Control/Status register Cause, Flag, and Enable bits.

Enable
Enable bits. See description of Control/Status register Cause, Flag, and Enable
bits.

Flag Flag bits. See description of Control/Status register Cause, Flag, and Enable bits.

RM
Rounding Mode bits. See description of Control/Status register Rounding Mode
Control bits.

Control/Status Register (FCR31)

31 24 23 22 18 17 12 11 7 6 2 1 0

7 1 5 6 5 5 2

CC0 RM
FlagEnableCause

CC7−CC1 0 E V Z O U I V Z O U I V Z O U I

25

FS

1

E : Unim plem ented O peration
V : Invalid Operation

Z: D ivision by Zero
O : O verflow

U: Underflow
I: Inexact Operation
VR5432 Microprocessor User’s Manual 155

Chapter 7
Figure 7-4 Control/Status Register Cause, Flag, and Enable Fields

7.6.2.1 Accessing the Control/Status register

When the Control/Status register is read by a Move Control from FPU
Coprocessor 1 (CFC1) instruction, all unfinished instructions in the pipeline are
completed before the contents of the register are moved to the main processor. If
a Floating-Point exception occurs as the pipeline empties, the FP exception is
taken and the CFC1 instruction is re-executed after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to the
register using a Move Control To FPU Coprocessor 1 (CTC1) instruction. FCR31
must only be written to when the FPU is not actively executing floating-point
operations; this can be ensured by reading the contents of the register to empty the
pipeline.

7.6.2.2 IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect certain
exceptional cases, raise flags, and can invoke an exception handler when an
exception occurs. These features are implemented in the MIPS architecture with
the Cause, Enable, and Flag fields of the Control/Status register. The Flag bits
implement IEEE-754 exception status flags, and the Cause and Enable bits
implement exception handling.

E Z O U IV

17 16 15 14 13 12

Unim plem ented O peration

Invalid O peration

D ivision by Zero

Inexact O peration

O verflow

Underflow

Z O U IV

11 10 9 8 7

Z O U IV

6 5 4 3 2

Cause

Bits

Flag
Bits

Enable

Bits
156 VR5432 Microprocessor User’s Manual

Floating-Point Unit
7.6.2.3 Control/Status register FS bit

When the FS bit is set, denormalized results are flushed to 0 instead of causing an
Unimplemented Operation exception.

However, for MADD.fmt, NMADD.fmt, MSUB.fmt, and NMSUB.fmt
instructions, the VR5432 will always take an Unimplemented Operation exception
if the intermediate multiply result is a denormalized value, regardless of the value
of the FS bit.

7.6.2.4 Control/Status register Condition bit

When a floating-point Compare operation takes place, the result is stored at bit 23
and bits 31:25, the Condition bits, to save or restore the state of the condition line.
The CC bit is set to 1 if the condition is true; the bit is cleared to 0 if the condition
is false. Bit 23 and bits 31:25 are affected only by Compare and Move Control To
FPU instructions.

7.6.2.5 Control/Status register Cause, Flag, and Enable fields

Figure 7-4 illustrates the Cause, Flag, and Enable fields of the Control/Status
register.

Cause bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in
Figure 7-4, that reflect the results of the most recently executed instruction. The
Cause bits are a logical extension of the CP0 Cause register; they identify the
exceptions raised by the last floating-point operation and raise an interrupt or
exception if the corresponding Enable bit is set. If more than one exception occurs
on a single instruction, each appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by load, store,
or move operations). The Unimplemented Operation (E) bit is set to a 1 if software
emulation is required; otherwise, it remains 0. The other bits are set to 0 or 1 to
indicate the occurrence or nonoccurrence (respectively) of an IEEE-754
exception.

When a floating-point exception is taken, no results are stored, and the only state
affected is that of the Cause bit.
VR5432 Microprocessor User’s Manual 157

Chapter 7
Enable bits

A Floating-Point exception is generated any time a Cause bit and the
corresponding Enable bit are set. A floating-point operation that sets an enabled
Cause bit forces an immediate exception, as does setting both Cause and Enable
bits with CTC1.

There is no enable for Unimplemented Operation (E). Setting Unimplemented
Operation always generates a Floating-Point exception.

Before returning from a Floating-Point exception, software must first clear the
enabled Cause bits with a CTC1 instruction to prevent a repeat of the interrupt.
Thus, User mode programs can never observe enabled Cause bits set; if this
information is required in a User mode handler, it must be passed somewhere
other than to the Status register.

For a floating-point operation that sets only unenabled Cause bits, no exception
occurs and the default result defined by IEEE-754 is stored. In this case, the
exceptions that were caused by the immediately previous floating-point operation
can be determined by reading the Cause field.

Flag bits

The Flag bits are cumulative and indicate that an exception was raised by an
operation that was executed since they were explicitly reset. Flag bits are set to 1
if an IEEE-754 exception is raised; otherwise, they remain unchanged. The Flag
bits are never cleared as a side effect of floating-point operations; however, they
can be set or cleared by writing a new value into the Status register, using a Move
Word to FPU Coprocessor Control instruction.

When a floating-point exception is taken, the flag bits are not set by the hardware;
floating-point exception software is responsible for setting these bits before
invoking a user handler.

7.6.2.6 Control/Status register Rounding mode Control bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM)
field.

As shown in Table 7-4, these bits specify the Rounding mode that the FPU uses
for all floating-point operations.
158 VR5432 Microprocessor User’s Manual

Floating-Point Unit
Table 7-4 Rounding Mode Bit Decoding

7.7 Floating-Point Formats

The FPU performs both 32-bit (single-precision) and 64-bit (double-precision)
IEEE-standard floating-point operations. The 32-bit single-precision format has a
24-bit signed-magnitude fraction field (f + s) and an 8-bit exponent (e), as shown
in Figure 7-5.

Figure 7-5 Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction field
(f + s) and an 11-bit exponent, as shown in Figure 7-6.

Figure 7-6 Double-Precision Floating-Point Format

Rounding
Mode RM

(1:0)
Mnemonic Description

0 RN

Round result to nearest representable value;
round to the value with least-significant bit 0
when the two nearest representable values are
equally near.

1 RZ
Round toward 0: round to the value closest to
and not greater in magnitude than the infinitely
precise result.

2 RP
Round toward + ∞: round to the value closest
to and not less than the infinitely precise result.

3 RM
Round toward – ∞: round to the value closest to
and not greater than the infinitely precise
result.

31 30 23 22 0

FractionS ign Exponent

231 8

s e f

63 62 52 51 0

FractionSign Exponent

521 11

s e f
VR5432 Microprocessor User’s Manual 159

Chapter 7
As shown in the above figures, numbers in floating-point format are composed of
three fields:

• Sign field, s

• Biased exponent, e = E + bias

• Fraction f = .b1b2....bp–1

The range of the unbiased exponent E includes every integer between the two
values Emin and Emax inclusive, together with two other reserved values:

• Emi – 1 (to encode ±0 and denormalized numbers

• Emax + 1 (to encode ±∞ and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero numerical
value has just one encoding.

For single- and double-precision formats, the value of a number, v, is determined
by the equations shown in Table 7-5.

Table 7-5 Calculating Values in Single- and Double-Precision Formats

For all floating-point formats, if v is NaN, the most-significant bit of f determines
whether the value is a signaling or quiet NaN: v is a signaling NaN if the most-
significant bit of f is set; otherwise, v is a quiet NaN.

No. Equation

(1) if E = Emax + 1 and f ≠ 0, then v is NaN, regardless of s

(2) if E = Emax + 1 and f = 0, then v = (–1)s∞
(3) if Emin ≤ E ≤ Emax, then v = (–1)s2E(1.f)

(4) if E = Emin – 1 and f ≠ 0, then v = (–1)s2Emin(0.f)

(5) if E = Emin – 1 and f = 0, then v = (–1)s0
160 VR5432 Microprocessor User’s Manual

Floating-Point Unit
Figure 7-6 defines the values for the format parameters; minimum and maximum
floating-point values are given in Table 7-7.

Table 7-6 Floating-Point Format Parameter Values

Table 7-7 Minimum and Maximum Floating-Point Values

7.8 Binary Fixed-Point Format

Binary fixed-point values are held in two’s-complement format. Unsigned fixed-
point values are not directly provided by the Floating-Point instruction set. Figure
7-7 illustrates binary fixed-point format; Table 7-8 lists the binary fixed-point
format fields.

Figure 7-7 Binary Fixed-Point Format

Parameter
Format

Single Double

Emax +127 +1023

Emin –126 –1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

f (Fraction width in bits) 24 53

Format width in bits 32 64

Type Value

Float Minimum 1.40129846e – 45

Float Minimum Norm 1.17549435e – 38

Float Maximum 3.40282347e + 38

Double Minimum 4.9406564584124654e – 324

Double Minimum Norm 2.2250738585072014e – 308

Double Maximum 1.7976931348623157e + 308

31 30 0

Sign

311

Integer
VR5432 Microprocessor User’s Manual 161

Chapter 7
Field assignments of the binary fixed-point format are:

Table 7-8 Binary Fixed-Point Format Fields

7.9 Floating-Point Instruction Set Overview

All FPU instructions are 32 bits long, aligned on a word boundary. They can be
divided into the following groups:

• Load, Store, and Move instructions move data between memory, th
main processor, and the FPU General-Purpose r gisters.

• Conversion instructions perform conversion operations between the
various data formats.

• Computational instructions perform arithmetic operations o
floating-point values in the FPU registers

• Compare instructions perform comparisons of the contents of
registers and set a conditional bit based on the results

• Branch on FPU Condition instructions perform a branch to the
specified target if the specified coprocessor condition is met

Field Description

Sign Sign bit

Integer Integer value
162 VR5432 Microprocessor User’s Manual

Floating-Point Unit
In the instruction formats shown in Table 7-9 through Table 7-12, the fmt
appended to the instruction opcode specifies the data format: S specifies single-
precision binary floating-point, D specifies double-precision binary floating-
point, W specifies 32-bit binary fixed-point, and L specifies 64-bit (long) binary
fixed-point.

Table 7-9 FPU Instruction Summary: Load, Move, Store Instructions

Opcode Description

LWC1 Load Word to FPU

LWXC1 Load Word Indexed to FPU

SWC1 Store Word from FP

SWXC1 Store Word Indexed from FPU

LDC1 Load Doubleword to FPU

LDXC1 Load Doubleword Indexed to FPU

SDC1 Store Doubleword from FPU

SDXC1 Store Doubleword Indexed from FPU

MTC1 Move Word to FPU

MFC1 Move Word from FPU

CTC1 Move Control Word to FPU

CFC1 Move Control Word from FPU

DMTC1 Doubleword Move to FPU

DMFC1 Doubleword Move from FPU

PREFX Prefetch Indexed: Register + Register
VR5432 Microprocessor User’s Manual 163

Chapter 7
Table 7-10 FPU Instruction Summary: Conversion Instructions

Opcode Description

CVT.S.fmt Floating-point Convert to Single FP

CVT.D.fmt Floating-point Convert to Double FP

CVT.W.fmt Floating-point Convert to Single Fixed-point

CVT.L.fmt Floating-point Convert to Long Fixed-point

ROUND.W.fmt Floating-point Round to Single Fixed-point

ROUND.L.fmt Floating-point Round to Long Fixed-point

TRUNC.W.fmt Floating-point Truncate to Single Fixed-point

TRUNC.L.fmt Floating-point Truncate to Long Fixed-point

CEIL.W.fmt Floating-point Ceiling to Single Fixed-point

CEIL.L.fmt Floating-point Ceiling to Long Fixed-point

FLOOR.W.fmt Floating-point Floor to Single Fixed-point

FLOOR.L.fmt Floating-point Floor to Long Fixed-point

Table 7-11 FPU Instruction Summary: Computational Instructio n

Opcode Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract

MADD.fmt Floating-point Multiply-Add

MSUB.fmt Floating-point Multiply-Subtract

NMADD.fmt Floating-point Negative Multiply-Add

NMSUB.fmt Floating-point Negative Multiply-Subtract

MUL.fmt Floating-point Multiply

DIV.fmt Floating-point Divide

ABS.fmt Floating-point Absolute Value

MOV.fmt Floating-point Move

NEG.fmt Floating-point Negate

SQRT.fmt Floating-point Square Root

RECIP.fmt Floating-point Reciprocal

RSQRT.fmt Floating-point Reciprocal Square Root
164 VR5432 Microprocessor User’s Manual

Floating-Point Unit
Table 7-12 FPU Instruction Summary: Compare and Branch Instructions

7.9.1 Floating-Point Load, Store, and Move Instructions

This section discusses the manner in which the FPU uses the Load, Store, and
Move instructions listed in Table 7-9.

7.9.1.1 Transfers between FPU and memory

All data movement between the FPU and memory is accomplished by using one
of the following instructions:

• Load Word to Coprocessor 1 (LWC1) or Store Word from
Coprocessor 1 (SWC1) instructions, which reference a single 32-bit
word of the FPU general-purpose registers

• Load Doubleword (LDC1) or Store Doubleword (SDC1) instructions
which reference a 64-bit doubleword

These load and store operations are unformatted; no format conversions are
performed and therefore no floating-point exceptions can occur due to these
operations.

7.9.1.2 Transfers between the FPU and CPU

Data can also be moved directly between the FPU and CPU by using one of the
following instructions:

• Move Word to FPU (Coprocessor 1 (MTC1)

• Move Word from FPU (Coprocessor 1 (MFC1)

• Doubleword Move to FPU (Coprocessor 1 (DMTC1)

• Doubleword Move from FPU (Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations perform no
format conversions and never cause floating-point exceptions.

Opcode Description

C.cond.fmt Floating-point Compare

BC1T Branch on FPU True

BC1F Branch on FPU False

BC1TL Branch on FPU True Likely

BC1FL Branch on FPU False Likely
VR5432 Microprocessor User’s Manual 165

Chapter 7
7.9.1.3 Load delay and hardware interlocks

The instruction immediately following a load can use the contents of the loaded
register. In such cases the hardware interlocks, requiring additional real cycles; for
this reason, scheduling load delay slots is desirable, although it is not required for
functional code.

7.9.1.4 Data alignment

All coprocessor loads and stores reference the following aligned data items:

• For word loads and stores, the access type is always WORD, and the
low-order 2 bits of the address must always be 0.

• For doubleword loads and stores, the access type is alway
DOUBLEWORD, and the low-order 3 bits of the address must
always be 0.

7.9.1.5 Byte-numbering order

Regardless of data byte-numbering order, the address specifies the byte that has
the smallest byte address in the addressed field. For a big-endian system, it is the
left-most byte; for a little-endian system, it is the right-most byte.

7.9.2 Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various data formats
such as single- or double-precision, fixed- or floating-point formats.

7.9.2.1 Conversion from floating-point to 64-bit fixed-point or long integer

For operations relating to the conversion from floating-point to fixed-point or
integer formats, the resulting range must be between −252 to 252 − 1. This
condition exists due to the 53-bit floating-point data path.

When the source value is not rounded to an integer outside the range of −252 to
252 − 1 and the result cannot be expressed correctly, an Unimplemented Operation
exception is taken. The result of the instruction is discarded.
166 VR5432 Microprocessor User’s Manual

Floating-Point Unit
The floating-point Unimplemented Operation exception condition applies to the
following conversion instructions:

• CEIL.L.[S/D]

• CVT.L.[S/D]

• FLOOR.L.[S/D]

• ROUND.L.[S/D]

• TRUNC.L. [S/D]

7.9.3 Floating-Point Computational Instructions

Computational instructions perform arithmetic operations on floating-point
values in registers. There are two categories of computational instructions:

• 3-Operand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, and divisi

• 2-Operand Register-Type instructions, which perform floating-point
absolute value, move, negate, and square root operation

For a detailed description of each instruction, refer to the MIPS IV instruction set
manual.

7.9.3.1 Branch on FPU Condition instructions

The Branch on FPU (Coprocessor unit 1) Condition instructions can test the result
of the FPU Compare (C.cond) instructions. For a detailed description of each
instruction, refer to the MIPS IV instruction set manual.

7.9.3.2 Floating-point Compare operations

The floating-point Compare (C.fmt.cond) instructions interpret the contents of
two FPU registers (fs, ft) in the specified format (fmt) and arithmetically compare
them. A result is determined based on the comparison and conditions (cond)
specified in the instruction.
VR5432 Microprocessor User’s Manual 167

Chapter 7
Table 7-13 lists the mnemonics for the Compare instruction conditions.

Table 7-13 Mnemonics and Definitions of Compare Instruction Conditions

Mnemonic Definition Mnemonic Definition

T True F False

OR Ordered UN Unordered

NEQ Not Equal EQ Equal

OLG
Ordered or Less Than or Greater
Than

UEQ Unordered or Equal

UGE
Unordered or Greater Than or
Equal

OLT Ordered Less Than

OGE Ordered Greater Than or Equal ULT Unordered or Less Than

UGT Unordered or Greater Than OLE Ordered Less Than or Equal

OGT Ordered Greater Than ULE
Unordered or Less Than or
Equal

ST Signaling True SF Signaling False

GLE
Greater Than, or Less Than or
Equal

NGLE
Not Greater Than or Less Than
or Equal

SNE Signaling Not Equal SEQ Signaling Equal

GL Greater Than or Less Than NGL Not Greater Than or Less Than

NLT Not Less Than LT Less Than

GE Greater Than or Equal NGE Not Greater Than or Equal

NLE Not Less Than or Equal LE Less Than or Equal

GT Greater Than NGT Not Greater Than
168 VR5432 Microprocessor User’s Manual

Floating-Point Unit
7.10 FPU Instruction Pipeline Overview

The FPU provides an instruction pipeline that parallels the CPU instruction
pipeline, utilizing the same five-stage architecture as the CPU.

7.10.1 Instruction Execution

FPU instructions execute using the CPU data path. FPU and CPU instructions
share the same issue logic, data path, and pipeline stages. Single-cycle FPU
instructions execute with the same pipeline sequence as single-cycle CPU
instructions. A multicycle FPU instruction will iterate in the EX stage until it
completes. Figure 7-8 illustrates a single-cycle and a multicycle FPU pipeline.

Figure 7-8 FPU Instruction Pipeline

7.10.2 Instruction Execution Cycle Time

Unlike the CPU, which executes almost all instructions in a single cycle, more
time may be required to execute FPU instructions.

Table 7-14 gives the minimum latency, in processor pipeline cycles, of each
floating-point operation for the currently implemented configurations. These
latency calculations assume that the result of the operation is immediately used in
a succeeding operation.

R F Single-Cycle CPU InstructionDC W BEX

R F Multicycle FPU InstructionEX DC W BEX EX

R F Single-Cycle FPU InstructionDC W BEX

M ulticycle Instruction S talls in EX Stage
VR5432 Microprocessor User’s Manual 169

Chapter 7
Table 7-14 Floating-Point Operation Latencies

Operation
Pipeline Cycles

Latency/Repeat1
Operation

Pipeline Cycles
Latency/Repeat1

S D S D

LDC1 3/26 3/26 CEIL.L.fmt 6/54 6/54

LDXC1 3/26 3/26 CEIL.W.fmt 6/5 6/5

LWC1 3/26 3/26 CVT.D.fmt 2/1 Note 2

LWXC1 3/26 3/26 CVT.D.fmt (W/L) 6/5 6/5

PREF 3/26 3/26 CVT.L.fmt 6/53 6/53

PREFX 3/26 3/26 CVT.S.fmt Note 2 3/2

SDC1 NA/1 NA/1 CVT.S.fmt (W/L) 6/5 6/53

SDXC1 NA/2 NA/2 CVT.W.fmt 6/5 6/5

SWC1 NA/1 NA/1 FLOOR.L.fmt 6/54 6/54

SWXC1 NA/2 NA/2 FLOOR.W.fmt 6/5 6/5

CFC1 NA5 NA5 ROUND.L.fmt 6/54 6/54

CTC1 NA5 NA5 ROUND.W.fmt 6/5 6/5

DMFC1 2/1 2/1 TRUNC.L.fmt 6/54 6/54

DMTC1 2/1 2/1 TRUNC.W.fmt 6/5 6/5

MFC1 2/1 2/1 ABS.fmt 2/1 2/1

MOV.fmt 2/1 2/1 ADD.fmt 4/3 4/3

MOVF 2/1 2/1 DIV.fmt 31/30 59/58

MOVF.fmt 2/1 2/1 MADD.fmt 9/8 10/9

MOVN.fmt 2/1 2/1 MSUB.fmt 9/8 10/9

MOVT 2/1 2/1 MUL.fmt 5/4 6/5

MOVT.fmt 2/1 2/1 NEG.fmt 2/1 2/1

MOVZ.fmt 2/1 2/1 NMADD.fmt 9/8 10/9

MTC1 2/1 2/1 NMSUB.fmt 9/8 10/9

BC1F NA/1 NA/1 RECIP.fmt 31/30 59/58

BC1FL NA/1 NA/1 RSQRT.fmt 61/60 121/120

BC1T NA/1 NA/1 SQRT.fmt 31/30 59/58
170 VR5432 Microprocessor User’s Manual

Floating-Point Unit
7.10.3 Instruction Issuing Constraints with Multicycle Instructions

While a multicycle instruction is issued and stalls in the EX stage, instruction
issuing will continue for one to three more instructions, depending on instruction
resource requirements. At that point, issue will stall, but all instructions issued will
continue to execute. When the multicycle instruction reaches the DC stage,
instruction issuing resumes. This behavior allows up to two multicycle
instructions in a four-instruction window to be executing simultaneously,
effectively hiding the execution latency of one instruction under the other.

BC1TL NA/1 NA/1 SUB.fmt 4/3 4/3

C.cond.fmt 2/1 2/1

Notes:
1. This is the throughput of a single data path. Except for memory operations, all instructions can be dual

issued.
2. These operations are illegal.
3. Trap on greater than 52 bits of significance.
4. Trap on greater than 53 bits of significance.
5. Serializing instruction.
6. Average best case.

Table 7-14 Floating-Point Operation Latencies (continued)

Operation
Pipeline Cycles

Latency/Repeat1
Operation

Pipeline Cycles
Latency/Repeat1

S D S D
VR5432 Microprocessor User’s Manual 171

Chapter 7
172 VR5432 Microprocessor User’s Manual

Floating-Point Exceptions

8

This chapter describes floating-point exceptions, including FPU exception types,
exception trap processing, exception flags, saving and restoring state when
handling an exception, and trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle either the
operands or the results of a floating-point operation in its normal way. The FPU
responds by generating an exception to initiate a software trap or by setting a
status flag.
VR5432 Microprocessor User’s Manual 173

Chapter 8
8.1 Exception Types

The FP Control/Status register described in Section 7.6.2 on page 155 contains an
Enable bit for each exception type. Exception Enable bits determine whether an
exception will cause the FPU to initiate a trap or set a status flag.

• If a trap is taken, the FPU remains in the state found at the beginnin
of the operation and a software exception handling routine executes.

• If no trap is taken, an appropriate value is written into the FPU
destination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

• Inexact Operation (

• Underflow (U)

• Overflow (O)

• Division by Zero (Z)

• Invalid Operation (V)

Cause, Enable, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E), to use when
the FPU cannot implement the standard MIPS floating-point architecture,
including cases in which the FPU cannot determine the correct exception
behavior. This exception indicates the use of a software implementation. The
Unimplemented Operation exception has no Enable or Flag bit; whenever this
exception occurs, an Unimplemented Operation exception trap is taken (if the
FPU interrupt input to the CPU is enabled).

Figure 8-1 illustrates the Control/Status register bits that support exceptions.
174 VR5432 Microprocessor User’s Manual

Floating-Point Exceptions
Figure 8-1 Control/Status Register Exception/Flag/Trap/Enable Bits

Each of the five IEEE Standard-754 exceptions (V, Z, O, U, I) is associated with
a trap under user control and is enabled by setting one of the five Enable bits.
When an exception occurs, the corresponding Cause bit is set. If the corresponding
Enable bit is not set, the Flag bit is also set. If the corresponding Enable bit is set,
the Flag bit is not set and the FPU generates an interrupt to the CPU. Subsequent
exception processing allows a trap to be taken.

8.2 Exception Trap Processing

When a floating-point exception trap is taken, the Cause register indicates that the
floating-point coprocessor is the cause of the exception trap. The Floating-Point
Exception (FPE) code is used, and the Cause bits of the Floating-Point Control/
Status register indicate the reason for the Floating-Point exception. These bits are,
in effect, an extension of the system coprocessor Cause register.

E Z O U IV

17 16 15 14 13 12

Unim plem ented O peration

Invalid O peration

D iv is ion by Zero

Inexact O peration

O verflow

Underflow

Z O U IV

11 10 9 8 7

Z O U IV

6 5 4 3 2

Cause

Bits

Flag
Bits

Enable

Bits
VR5432 Microprocessor User’s Manual 175

Chapter 8
8.3 Flags

A Flag bit is provided for each IEEE exception. This Flag bit is set to a 1 on the
assertion of its corresponding exception, with no corresponding exception trap
signaled.

The Flag bit is reset by writing a new value into the Status register. Flags can be
saved and restored by software individually or as a group.

When no exception trap is signaled, the floating-point coprocessor takes a default
action, providing a substitute value for the exception-causing result of the
floating-point operation. The particular default action taken depends upon the type
of exception. Table 8-1 lists the default action taken by the FPU for each of the
IEEE exceptions.
176 VR5432 Microprocessor User’s Manual

Floating-Point Exceptions
Table 8-1 Default FPU Exception Acti o n

Field Description
Rounding

Mode
Default Action

I
Inexact
Operation
exception

Any Supplies a rounded result

U
Underflow
exception

RN
Modifies underflow values to 0 with the sign of the
intermediate result

RZ
Modifies underflow values to 0 with the sign of the
intermediate result

RP
Modifies positive underflows to the format’s smallest
positive finite number; modifies negative underflows to 0

RM
Modifies negative underflows to the format’s smallest
negative finite number; modifies positive underflows to 0

O
Overflow
exception

RN
Modifies overflow values to ∞ with the sign of the
intermediate result

RZ
Modifies overflow values to the format’s largest finite
number with the sign of the intermediate result

RP
Modifies negative overflows to the format’s most negative
finite number; modifies positive overflows to + ∞

RM
Modifies positive overflows to the format’s largest finite
number; modifies negative overflows to – ∞

Z
Division by
Zero
exception

Any Supplies a properly signed ∞

V
Invalid
Operation
exception

Any Supplies a quiet Not a Number (NaN)
VR5432 Microprocessor User’s Manual 177

Chapter 8
Table 8-2 lists the exception-causing situations and contrasts the behavior of the
FPU with the requirements of IEEE Standard 754.

Table 8-2 FPU Exception Conditions

FPA Internal
Result

IEEE
Standard

754

Trap
Enable

Trap
Disable

Notes

Inexact operation I I I Loss of accuracy

Exponent overflow O, I1 O, I O, I Normalized exponent > Emax

Division by zero Z Z Z
Zero is (exponent = Emin− 1,
mantissa = 0)

Overflow on convert V E E Source out of integer range

Signaling NaN source V V V

Invalid operation V V V 0/0, etc.

Exponent underflow U E E Normalized exponent < Emin

Denormalized or QNaN None E E
Denormalized is (exponent = Emin− 1
and mantissa <> 0)

Note:
1. IEEE Standard 754 specifies an Inexact Operation exception on overflow only if the overflow trap is dis-

abled.
178 VR5432 Microprocessor User’s Manual

Floating-Point Exceptions
8.4 FPU Exceptions

The following sections describe the conditions that cause the FPU to generate each
of its exceptions and details the FPU response to each exception condition.

8.4.1 Inexact Operation Exception (I)

The FPU generates the Inexact Operation exception if one of the following occurs:

• The rounded result of an operation is not exact

• The rounded result of an operation overflows

• The rounded result of an operation underflows and both th
Underflo and Inexact Enable bits are not set and th FS bit is set

The FPU usually examines the operands of floating-point operations before
execution actually begins, to determine (based on the exponent values of the
operands) if the operation can possibly cause an exception. If there is a possibility
of an instruction causing an exception trap, the FPU uses a coprocessor stall to
execute the instruction.

It is impossible, however, for the FPU to predetermine if an instruction will
produce an inexact result. If Inexact Operation exception traps are enabled, the
FPU uses the coprocessor stall mechanism to execute all floating-point operations
that require more than one cycle. Since this mode of execution can affect
performance, Inexact Operation exception traps should be enabled only when
necessary.

Trap-enabled results. If Inexact Operation exception traps are enabled, the result
register is not modified and the source registers are preserved.

Trap-disabled results. The rounded or overflowed result is delivered to the
destination register if no other software trap occurs.
VR5432 Microprocessor User’s Manual 179

Chapter 8
8.4.2 Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operands are
invalid for an implemented operation. When the exception occurs without a trap,
the MIPS ISA defines the result as a quiet Not a Number (NaN). The invalid
operations are:

• Addition or subtraction: magnitude subtraction of infinities, such as:
(+ ∞) + (– ∞) or (– ∞) – (– ∞)

• Multiplication: × ∞, with any signs

• Division: 0/0, or ∞/∞, with any signs

• Comparison of predicates involving < or > without ?, when the
operands are unordered

• Comparison or a Convert from Floating-Point Operation on a
signaling Na

• Any arithmetic operation on a signaling NaN. A move (MOV)
operation is not considered an arithmetic operation, but absolut
value (ABS) and negate (NEG) are considered arithmetic operations
and cause this exception if one or both operands is a signaling NaN.

• Square root: √x, where x is less than zer

Software can simulate the Invalid Operation exception for other operations that
are invalid for the given source operands. Examples of these operations include
IEEE Standard 754-specified functions implemented in software, such as
Remainder: x REM y, where y is 0 or x is infinite; conversion of a floating-point
number to a decimal format whose value causes an overflow, is infinity, or is NaN;
and transcendental functions, such as ln (–5) or cos – 1(3).

Trap-enabled results. The original operand values are undisturbed.

Trap-disabled results. A quiet NaN is delivered to the destination register if no
other software trap occurs.
180 VR5432 Microprocessor User’s Manual

Floating-Point Exceptions
8.4.3 Division by Zero Exception (Z)

The Division by Zero exception is signaled on an implemented divide operation if
the divisor is zero and the dividend is a finite nonzero number. Software can
simulate this exception for other operations that produce a signed infinity, such as
ln(0), sec(π/2), csc(0), or 0–1.

Trap-enabled results. The result register is not modified, and the source registers
are preserved.

Trap-disabled results. The result, when no trap occurs, is a correctly signed
infinity.

8.4.4 Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-
point result, with an unbounded exponent range, is larger than the largest finite
number of the destination format. (This exception also sets the Inexact Operation
exception and Flag bits.)

Trap-enabled results. The result register is not modified, and the source registers
are preserved.

Trap-disabled results. The result, when no trap occurs, is determined by the
rounding mode and the sign of the intermediate result (as listed in Table 8-1).

8.4.5 Underflow Exception (U)

Two related events contribute to the Underflow exception:

• Creation of a small nonzero result between ±2Emi , which can cause
some later exception because it is so smal

• Extraordinary loss of accuracy during the approximation of such
small numbers by a denormalized number

IEEE Standard 754 allows a variety of ways to detect these events, but requires
that they be detected the same way for all operations.

These types of exceptions can be detected by one of the following methods:

• After rounding (when a nonzero result, computed as though th
exponent range were unbounded, would lie strictly between ±2Emin)

• Before rounding (when a nonzero result, computed as though the
exponent range and the precision were unbounded, would lie strictly
between ±2Emi)
VR5432 Microprocessor User’s Manual 181

Chapter 8
The MIPS architecture requires that these types of exceptions be detected after
rounding.

Loss of accuracy can be detected by one of the following methods:

• Denormalization loss (when the delivered result differs from what
would have been computed if the exponent range were unbounded)

• Inexact result (when the delivered result differs from what would
have been computed if the exponent range and precision were bot
unbounded)

The MIPS architecture requires that loss of accuracy be detected as an inexact
result.

Trap-enabled results. If Underflow or Inexact traps are enabled, or if the FS bit
is not set, then an Unimplemented Operation exception (E) is generated, and the
result register is not modified.

Trap-disabled results. If Underflow and Inexact traps are not enabled and the FS
bit is set, the result is determined by the rounding mode and the sign of the
intermediate result (as listed in Table 8-1).
182 VR5432 Microprocessor User’s Manual

Floating-Point Exceptions
8.4.6 Unimplemented Operation Exception (E)

Any attempt to execute an instruction with an operation code or format code that
has been reserved for future definition sets the Unimplemented bit in the Cause
field in the FPU Control/Status register and traps. The operand and destination
registers remain undisturbed and the instruction can be emulated in software. Any
of the IEEE Standard 754 exceptions can arise from the emulated operation, and
these exceptions in turn can be simulated.

The Unimplemented exception can also be signaled when unusual operands or
result conditions are detected that the implemented hardware cannot handle
properly. These include:

• Denormalized operand, except for a Compare instructi

• Quiet Not a Number (NaN) operand, except for a Compare
instructi

• Denormalized result or Underflow, when either Underflow or Inexact
Enabl bits are set or th FS bit is not set

• Reserved opcodes

• Unimplemented formats

• Operations that are invalid for their format (for instance, CVT.S.S

• Floating-point-to-integer conversions when the result overflows

• Result underflows when the Underflow trap and Flush-to-Zero mode
are both disabled

• Floating-point-to-long integer conversion operations when th
required result is wider than the shifter can support −252 to 252 − 1)

• SQRT in MIPS II mode

Note: Denormalized and NaN operands are only trapped if the instruction
is a conversion or computational operation. Moves do not trap if
their operands are either denormalized or NaNs. The processor will
raise an Unimplemented Operation exception for a CVT[s.d] in-
struction only when bits 63:55 of the 64-bit integer are not all zeros
or ones.

The use of this exception for such conditions is optional; most of these conditions
are newly developed and are not expected to be widely used in early
implementations. Loopholes are provided in the architecture so that these
conditions can be implemented with assistance provided by software, maintaining
full compatibility with IEEE Standard 754.

Trap-enabled results. The original operand values are undisturbed.
Trap-disabled results. This trap cannot be disabled.
VR5432 Microprocessor User’s Manual 183

Chapter 8
8.5 Saving and Restoring State

Sixteen or 32 doubleword coprocessor load or store operations save or restore the
coprocessor Floating-point register state in memory. The remainder of the control
and status information can be saved or restored through Move to/from
Coprocessor Control Register instructions and by saving and restoring the
processor registers. Normally, the Control/Status register is saved first and
restored last.

When the coprocessor Control/Status register (FCR31) is read and the
coprocessor is executing one or more floating-point instructions, the instruction(s)
in progress are either completed or reported as exceptions. The architecture
requires that no more than one of these pending instructions can cause an
exception. If the pending instruction cannot be completed, this instruction is
placed in the Exception register, if present. Information indicating the type of
exception is placed in the Control/Status register. When state is restored, state
information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of the Control/Status register clears all
pending exceptions, permitting normal processing to restart after the Floating-
Point register state is restored.

The Cause field of the Control/Status register holds the results of only one
instruction; the FPU examines source operands before an operation is initiated to
determine if this instruction can possibly cause an exception. If an exception is
possible, the FPU executes the instruction in Stall mode to ensure that no more
than one instruction (that might cause an exception) is executed at a time.

8.6 Trap Handlers for IEEE Standard 754 Exceptions

IEEE Standard 754 strongly recommends that users be allowed to specify a trap
handler for any of the five standard exceptions that can compute; the trap handler
can either compute or specify a substitute result to be placed in the destination
register of the operation.

By retrieving an instruction using the processor Exception Program Counter
(EPC) register, the trap handler determines:

• Exceptions occurring during the operatio

• The operation being performed

• The destination format
184 VR5432 Microprocessor User’s Manual

Floating-Point Exceptions
On Overflow or Underflow exceptions (except for conversions), and on Inexact
Operation exceptions, the trap handler gains access to the correctly rounded result
by examining source registers and simulating the operation in software.

On Overflow or Underflow exceptions encountered on floating-point conversions,
and on Invalid Operation and Division by Zero exceptions, the trap handler gains
access to the operand values by examining the source registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the Overflow and
Underflow traps take precedence over a separate Inexact trap. This prioritization
is accomplished in software; hardware sets both bits.
VR5432 Microprocessor User’s Manual 185

Chapter 8
186 VR5432 Microprocessor User’s Manual

Bus Interface

9

The system interface allows the processor to access the external resources needed
to satisfy cache misses and uncached operations, while permitting an external
agent access to some of the processor’s internal resources. The bus supports
multiple outstanding reads and split response on read transactions to increase
system bus efficiency.

The clock portion of the VR5432 system interface has been simplified and many
of the external clock signals have been deleted from the system interface of the
VR4000 device.

There is also a VR4300 compatibility mode in which the system interface protocol
emulates that of the VR4300 series devices. This mode is selected by driving the
OptionR43K* input signal low during a cold reset. Multiple-split reads and parity
are not supported in this mode.

This chapter describes the system interface of both the processor and the external
agent.
VR5432 Microprocessor User’s Manual 187

Chapter 9
9.1 Interface Buses In Native Mode

Figure 9-1 shows the primary communication paths for the system interface in
Native mode. These paths consists of a 32-bit multiplexed address and data bus,
SysAD (31:0), and a 9-bit command bus, SysCmd (8:0). The SysAD and SysCmd
buses are bidirectional.

A request through the system interface consists of:

• An address

• A system interface command that specifies the precise nature of the
request

• A series of data elements if the request is for a writ

• A read response for a read reques

Figure 9-1 System Interface Buses in Native Mode

VR5432 External Agent

SysAD (31:0)

SysC m d (8:0)
188 VR5432 Microprocessor User’s Manual

Bus Interface
9.2 Interface Buses in R43K Mode

Figure 9-2 shows the primary communication paths for the system interface in
R43K mode. A 32-bit multiplexed address/data bus, SysAD (31:0), transfers
addresses/data from the processor to the external agent and vice versa. A 5-bit
command bus, SysCmd (4:0), indicates processor/external agent commands. The
SysAD and SysCmd buses are bidirectional.

A request through the system interface consists of:

• An address

• A system interface command that specifies the precise nature of the
request

• A series of data elements if the request is for a writ

• A read response for a read reques

Figure 9-2 System Interface Buses in R43K Mode

VR5432A External Agent

SysAD (31:0)

SysC m d (4:0)
VR5432 Microprocessor User’s Manual 189

Chapter 9
190 VR5432 Microprocessor User’s Manual

System Interface Transactions (Native Mode)

10

This section describes processor and external requests in the native system
interface protocol of the VR5432 processor (i.e., the OptionR43K* input signal
sampled high during cold reset). The transactions used in R43K (VR4300
compatibility) mode are described in Chapter 12.

All system interface transactions using the VR5432 processor are noncoherent.
There is no hardware cache coherency support provided. Requests fall into three
categories:

• Cached

• Uncached

• Uncached accelerated
VR5432 Microprocessor User’s Manual 191

Chapter 10
10.1 Terminology

The following terms are used in Chapter 10 through Chapter 13:

• An external agent is any device connected to the processor, over the
system interface, that processes requests issued by the processor.

• A system event is an event that occurs within the processor and
requires access to external resources. System events include: an
instruction fetch that misses in the instruction cache; a Load/Store
instruction that misses in the data cache; an uncached Load or Stor
instruction; an execution of a CACHE instruction

• Sequen refers to the series of requests that a processor generates t
service a system event.

• Protocol refers to the cycle-by-cycle signal transitions that occur o
the system interface pins, through which external requests are issued.

• Syntax refers to the definition of the bit patterns that appear on
encoded buses, such as the command bus.
192 VR5432 Microprocessor User’s Manual

System Interface Transactions (Native Mode)
10.2 Processor Requests

When a system event occurs, the processor issues either a single request or a series
of requests—called processor requests—through the system interface, to access
an external resource and service the event. For this to work, the processor system
interface must be connected to an external agent that is compatible with the system
interface protocol and can coordinate access to system resources.

An external agent requesting access to a processor internal resource generates an
external request. This access request passes through the system interface. System
events and request cycles are shown in Figure 10-1.

Figure 10-1 Requests and System Events

VR5432 External Agent

Processor requests
• R ead
• W rite

Exte rnal requests
• Read
• W rite
• Null

System Events
• Load m iss
• Store m iss
• Store hit
• Uncached load/store
• Uncached accelerated store(s)
• Fetch m iss
• Uncached instruction fetch
VR5432 Microprocessor User’s Manual 193

Chapter 10
10.2.1 Rules for Processor Requests

A processor request is a request or a series of requests, through the system
interface, to access some external resource. As shown in Figure 10-2, processor
requests include read and write.

Figure 10-2 Processor Requests to External Agent

The read request asks for a block, doubleword, partial doubleword, word, or
partial word of data, either from main memory or from another system resource.

The write request provides a block, doubleword, partial doubleword, word, or
partial word of data to be written either to main memory or to another system
resource.

The VR5432 processor provides the option of supporting a single outstanding read
request like the R4x00/R5x00 processors, or supporting multiple outstanding
reads while continuing to allow write cycles during the time the outstanding reads
are being processed. The option is programmable in the Configuration register and
is called Multiple-Split Read mode.

In the R4x00/R5x00 single transaction scenario, the processor issues a read
request and waits for a read response before issuing any subsequent requests.
Also, in the single transaction case, the processor submits a write request only if
there are no read requests pending.

In the multiple-split read case, the VR5432 supports multiple outstanding read
requests and split transactions. This means the VR5432 allows multiple
outstanding read transactions, and allows write transactions to be interleaved
between the read request and the read response. These additional capabilities are
supported for processor requests, but are not supported for external requests.

VR5432 External Agent

Processor requests
• Read
• W rite
194 VR5432 Microprocessor User’s Manual

System Interface Transactions (Native Mode)
The processor has the input signals RdRdy* and WrRdy* to allow an external
agent to manage the flow of processor requests. RdRdy* controls the flow of
processor read requests, while WrRdy* controls the flow of processor write
requests. The processor request cycle sequence is shown in Figure 10-3.

Figure 10-3 Processor Request Flow Control

VR5432 External Agent

1. Processor issues read or w rite.

2. External system contro ls
acceptance of requests by
asserting RdRdy* or W rRdy*.
VR5432 Microprocessor User’s Manual 195

Chapter 10
10.2.2 Processor Read Request

When a processor issues a read request, the external agent must access the
specified resource and return the requested data.

A processor read request can be split from the external agent’s return of the
requested data; in other words, the external agent can initiate an unrelated external
request before it returns the response data for a processor read. A processor read
request is completed after the last word of response data has been received from
the external agent.

Note that the data identifier associated with the response data can signal that the
returned data is erroneous, causing the processor to make a bus error.

Processor read requests that have been issued, but for which data has not yet been
returned, are said to be pending. A read remains pending until the requested read
data is returned. For multiple outstanding read requests, the data must be returned
in the same order in which the read transactions were issued.

The addition of multiple-split-reads has also necessitated the addition of a read
address timing mode similar to the write timing options that were previously a part
of the R4x00/R5x00 processors. Therefore, the VR5432 includes support for
reissue timing for consecutive transactions (read or write) in the
Multiple-Split-Read mode.

In Single Transaction mode, the external agent must be capable of accepting a
processor read request any time the following two conditions are met:

• There is no processor read request pending.

• The RdRdy* signal was asserted two cycles before the issue cycle.

In Multiple-Split-Read mode, the external agent must be capable of accepting a
processor read request any time the following condition is met:

• The RdRdy* signal was asserted two cycles before the issue cycl
and conforms to the requirements of reissue timing
196 VR5432 Microprocessor User’s Manual

System Interface Transactions (Native Mode)
10.2.3 Processor Write Request

When a processor issues a write request, the specified resource is accessed and the
data is written to it. A processor write request is complete after the last word of
data has been transmitted to the external agent. The VR5432 processor supports
R4000-compatible, write reissue, and pipelined write operations, as defined in
Section 11.5. However, in Multiple-Split-Read mode, only reissue timing is
supported. This is fully explained in Section 11.5.4.

If the VR5432 is not in Multiple-Split-Read mode, the external agent must be
capable of accepting a processor write request any time the following two
conditions are met:

• No processor read request is pending

• The WrRdy* signal was asserted two cycles before the issue cycle,
and conforms to the timing mode programmed into the Configuration
register.

In Multiple-Split-Read mode, the external agent must be capable of accepting a
processor write request any time the following condition is met:

• The WrRdy* signal was asserted two cycles before the issue cycl
and conforms to the requirements of reissue timing. Reissue timing is
detailed in Section 11.5
VR5432 Microprocessor User’s Manual 197

Chapter 10
10.3 External Requests

External requests include read, write, and null requests, as shown in Figure 10-4.
This section also includes a description of a read response, a special case of an
external request.

Figure 10-4 External Requests to Processor

The read request asks for a word of data from the processor’s internal resource.

The write request provides a word of data to be written to the processor’s internal
resource.

The null request requires no action by the processor; it provides a mechanism for
the external agent to return the system interface to the master state without
affecting the processor.

The processor controls the flow of external requests through the arbitration signals
ExtRqst*, Release*, and PReq*, as shown in Figure 10-5. The external agent
must acquire mastership of the system interface before it is allowed to issue an
external request; the external agent arbitrates for mastership of the system
interface by asserting ExtRqst* and then waits for the processor to assert
Release* for one cycle. After the processor asserts Release*, the external agent
masters the bus until it issues a cycle to the processor.

However, the processor can assert PReq* to indicate that it has additional
transactions that it would like to perform. This signal is useful when the
processor builds up a number of transactions after releasing the bus for an external
request. The external agent can optionally return mastership to the processor by
issuing a null request. This action can optimize bus activity.

VR5432 External Agent

External requests
• Read
• W rite
• Null
198 VR5432 Microprocessor User’s Manual

System Interface Transactions (Native Mode)
Figure 10-5 External Request Arbitration

Mastership of the system interface always returns to the processor after an external
request is issued with ValidIn asserted. The processor does not accept a
subsequent external request until it has completed the current request.

The external agent asserts ExtRqst* to indicate that it wishes to begin an external
request. The external agent then waits for the processor to signal that it is ready to
accept this request by asserting Release*. The processor signals that it is ready to
accept an external request based on the following criteria:

• The processor completes the set of requests in progress

• The processor detects ExtRqst*

10.3.1 External Read Request

In contrast to a processor read request, data is returned directly in response to an
external read request; no other processor requests can be issued until the processor
returns the requested data. An external read request is complete after the processor
returns the requested word of data.

Note: The processor does not contain any resources that are readable by
an external read request; in response to an external read request, the
processor returns undefined data and a data identifier with its
Erroneous Data bit, SysCmd (5), set.

VR5432 External Agent
1. External system requests bus

m astership by asserting
ExtRqst*.2. Processor grants m astership by

asserting Release*.

4. External system issues an
external request.

5. P rocessor regains bus
m astership.

3. Processor can optionally re-
quest another cycle by asserting
PReq*.
VR5432 Microprocessor User’s Manual 199

Chapter 10
10.3.2 External Write Request

When an external agent issues a write request, the specified resource is accessed
and the data is written to it. An external write request is complete after the word
of data has been transmitted to the processor.

The only processor resource available to an external write request is the Interrupt
register.

10.3.3 Read Response

A read response returns data in response to a processor read request, as shown in
Figure 10-6. While a read response is technically an external request, it has one
characteristic that differentiates it from all other external requests—it does not
perform system interface arbitration. For this reason, read responses are handled
separately from all other external requests, and are simply called read responses.

When multiple read requests are outstanding from the processor, responses for all
outstanding reads must be asserted before mastership of the system interface
returns to the processor. The only exception to this is if an external request other
than a read response is asserted. The processor will take mastership of the bus after
an external read, write, or null cycle.

The processor can assert PReq* to indicate that it has additional transactions to
perform. The external agent can return mastership of the system interface to the
processor by asserting a null request cycle.

The data identifier associated with the response data can signal that the returned
data is erroneous, causing the processor to make a bus error.

Figure 10-6 External Agent Read Response to Processor Request

VR5432 External Agent

1. Read request

2. Read response
200 VR5432 Microprocessor User’s Manual

System Interface Transactions (Native Mode)
10.4 Handling Requests

This section details the sequence of both processor and external requests. The
following system events are discussed:

• Load miss

• Store miss

• Store hit

• Uncached loads/stores

• Uncached accelerated stores

• Uncached instruction fetch

• Fetch miss

10.4.1 Load Miss

When a processor load misses in the cache, before the processor can proceed it
must obtain the cache line that contains the data element to be loaded from the
external agent.

If the new cache line replaces a current dirty cache line, the current cache line must
be written back before the new line can be loaded in the cache.

Table 10-1 shows the actions taken on a load miss.

Table 10-1 Load Miss Actions

The processor takes the following steps:

1. The processor issues a block read request for the cache line that contains the
data element to be loaded.

2. The processor waits for an external agent to provide the read response.

3. The processor continues to execute instructions, unless data dependency is
detected between load data and a subsequent instruction. In this case, the
pipeline is stalled until the dependency can be resolved. The pipeline is also
stalled if a Load/Store instruction tries to access the same data cache line that
is under miss servicing.

Page Attribute
State of Data Cache Line Being Replaced

Clean/Invalid Dirty (D = 1)

Cached BR BR/BW

BR: Processor block read request
BR/BW: Processor block read request followed by processor block write request
VR5432 Microprocessor User’s Manual 201

Chapter 10
If the current cache line must be written back, the processor issues a block write
request to save the dirty cache line in memory. This write may be done between
the read request and the read response if multiple split reads are enabled in the
Configuration register.

10.4.2 Store Miss

When a processor store misses in the cache, the processor will request, from the
external agent, the cache line that contains the target location of the store.

The processor then executes the following actions:

• The processor issues a block read request for the cache line that
contains the data element to be loaded.

• The processor then waits for an external agent to provide the read
response.

• The processor continues to execute instructions, unless another Load
instruction attempts to access the same cache line that is bein
refilled or another Store instruction is executed. In either case, th
pipeline is stalled until cache refill is finished

• The cache line is loaded into the cache and the store data is merged
into the appropriate location

• If the page attribute is write-through, a nonblock write request is
issued

Table 10-2 shows the actions taken on a store miss to the primary cache.

Table 10-2 Store Miss Actions

If the page attribute is write-back or write-through, the processor issues a block
read request for the cache line that contains the data element to be loaded. If a
cache line must be written back due to replacement, the processor issues a write
request for that cache line. If the page attribute is write-through, the processor

Page Attribute
State of Data Cache Line Being

Replaced

Clean/Invalid Dirty (W = 1)

Write-back BR BR/BW

Write-through BR/W BR/BW/W

BR: Processor block read request for missed cache line
BW: Processor block write request for replaced dirty data
W: Processor nonblock write request for write-through data
202 VR5432 Microprocessor User’s Manual

System Interface Transactions (Native Mode)
issues a nonblock write request for the new data. Writes may be done between a
read request and a read response if multiple-split-reads are enabled in the
Configuration register.

10.4.3 Store Hit

The action on the system bus is determined by whether the line is write-back or
write-through. Write-back store hits cause no bus transactions. For lines with a
write-through policy, the store generates a processor nonblock write request for
the store data.

10.4.4 Uncached Loads or Stores

When the processor performs an uncached load, it issues a doubleword, partial
doubleword, word, or partial word read request. When the processor performs an
uncached store, it issues a doubleword, partial doubleword, word, or partial word
write request. All writes by the processor are buffered from the system interface
by a four-deep transaction buffer. Since this buffer behaves as a FIFO, previous
write requests in the buffer are completed before a following read request is
serviced.

10.4.5 Uncached Accelerated Stores

Uncached accelerated operations are uncached operations to a page with an
uncached accelerated cache algorithm. When the processor performs an uncached
accelerated store, it can perform a block write, or it can perform one or more
doubleword, partial doubleword, word, or partial word write requests. All writes
by the processor are buffered from the system interface by a four-deep transaction
buffer. Since this buffer behaves as a FIFO, previous write requests in the buffer
are completed before a following read request is serviced.

Uncached accelerated operations allow the user to combine several sequential
uncached word or doubleword operations into a single 32-byte block of write data
and only generate a single external SysAD bus transaction. In order for the
programmer to optimize these transactions, special attention should be paid to the
uncached accelerated data alignment and gathering rules.
VR5432 Microprocessor User’s Manual 203

Chapter 10
Uncached accelerated writes pass through the transaction buffer in FIFO order, the
same as all other types of transactions. However, successive uncached accelerated
transactions are assembled into up to four doubleword FIFO entries if the
uncached accelerated write gathering rules are followed. These rules are as
follows:

• The initial uncached accelerated transaction must be aligned on
mod 32-byte boundary

• All uncached accelerated transactions must be word or doublewor
sized.

• Word and doubleword transactions must be naturally aligned

• Word writes must happen in pairs in order to form a naturally aligned
doubleword.

• Addresses must increase sequentially.

Uncached accelerated write transactions that do not follow the rules stated above
will be treated as nonaccelerated uncached transactions. In addition, if a gathering
sequence is disrupted by any operation other than those making up the uncached
accelerated gather, the portion of the data that is gathered will be sent out as
uncached word or doubleword operations.

The uncached accelerated operation will also be disrupted if the processor enters
Debug mode. When Debug mode is entered, the transaction buffer is emptied. In
addition, it is likely that the gather operation will be disrupted if an exception is
taken.

10.4.6 Uncached Instruction Fetch

The processor issues word reads for instruction fetches to uncached addresses.
Word reads must conform to the byte alignment as indicated by the size encoded
on SysCmd (2:0). Thus, any system ROM address space accessed during a
processor boot restart must support properly aligned 32-bit reads.

10.4.7 Fetch Miss

When the processor misses the instruction cache during an instruction fetch, it
issues a read request for cache line acquisition. An external agent returns data as
a read response.
204 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)

11

The following sections contain a cycle-by-cycle description of the system
interface protocols for each type of processor and external request in the native
protocol of the VR5432. For the protocols followed in R43K (VR4300
compatibility) mode, see Chapter 13.
VR5432 Microprocessor User’s Manual 205

Chapter 11
11.1 Address and Data Cycles

Cycles in which the SysAD bus contains a valid address are called address cycles.
Cycles in which the SysAD bus contains valid data are called data cycles. Validity
of addresses and data from the processor is determined by the state of the
ValidOut* signal. Validity of the address and data from the external agent is
determined by the state of the ValidIn* signal.

The SysCmd bus identifies the contents of the SysAD bus during any cycle in
which it is valid from the processor or the external agent. The most-significant bit
of the SysCmd bus is always used to indicate whether the current cycle is an
address cycle or a data cycle.

• During address cycles SysCmd (8) = 0. The remainder of the
SysCmd bus SysCmd (7:0), contains the encoded system interface
command.

• During data cycles, SysCmd (8) = 1. The remainder of the SysCmd bus,
SysCmd (7:0), contains an encoded data identifier.

11.2 Issue Cycles

There are two types of processor issue cycles:

• Processor read reques

• Processor write reques

The processor samples the signal RdRdy* to determine the issue cycle for a
processor read; the processor samples the signal WrRdy* to determine the issue
cycle of a processor write request.

As shown in Figure 11-1, RdRdy* must be asserted two cycles prior to the first
address cycle of the processor read request in order to define the address cycle as
the issue cycle.

Figure 11-1 State of RdRdy* Signal for Read Requests

SysCycle 1 2 3 4 5 6

SysC lock

SysAD Bus Addr

RdRdy*
206 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
As shown in Figure 11-2, WrRdy* must be asserted two cycles prior to the first
address cycle of the processor write request to define the address cycle as the issue
cycle.

Figure 11-2 State of WrRdy* Signal for Write Requests

The processor repeats the address cycle for the request until the conditions for a
valid issue cycle are met. After the issue cycle, if the processor request requires
data to be sent, the data transmission begins. There is only one issue cycle for any
processor request.

The processor accepts external requests, even while attempting to issue a
processor request, by releasing the system interface to slave state in response to an
assertion of ExtRqst* by the external agent.

Note that the rules governing the issue cycle of a processor request are strictly
applied to determine which action the processor takes. The processor can either:

• Complete the issuance of the processor request in its entirety befor
the external request is accepted, o

• Release the system interface to slave state without completing th
issuance of the processor reques

In the latter case, the processor issues the processor request (if the processor
request is still necessary) after the external request is complete. The rules
governing an issue cycle again apply to the processor request.

SysCycle 1 2 3 4 5 6

SysC lock

SysAD Bus Addr

W rRdy*
VR5432 Microprocessor User’s Manual 207

Chapter 11
11.3 Handshake Signals

The VR5432 processor manages the flow of requests through the following six
control signals:

• RdRdy* and WrRdy* are used by the external agent to indicate whe
it can accept a new read (RdRdy*) or write (WrRdy*) transaction.

• ExtRqst* and Release* are used to transfer control of the SysAD and
SysCmd buses. ExtRqst* is used by an external agent to indicate a
need to control the interface. Release* is asserted by the processor
when it transfers control of the system interface to the external agent.

• The VR5432 processor uses ValidOut* and the external agent uses
ValidIn* to indicate valid commands and data on the SysCmd and
SysAD buses.

11.4 System Interface Operation

Figure 11-3 shows how the system interface operates from register to register.
That is, processor outputs come directly from output registers and begin to change
with the rising edge of SysClock.

Processor inputs are fed directly to input registers that latch these input signals
with the rising edge of SysClock. This allows the system interface to run at the
highest possible clock frequency.
208 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Figure 11-3 System Interface Register-to-Register Operation

11.4.1 Master and Slave States

When the VR5432 processor is driving the SysAD and SysCmd buses, the system
interface is in master state. When the external agent is driving the SysAD and
SysCmd buses, the system interface is in slave state.

In master state, the processor asserts the ValidOut* signal whenever the SysAD
and SysCmd buses are valid.

In slave state, the external agent asserts the ValidIn* signal whenever the SysA
and SysCmd buses are valid.

The system interface remains in master state unless one of the following events
occurs:

• The external agent requests and is granted the system interface
(external arbitration).

• The processor issues a read request and asserts the Release* signal as
an uncompelled change to slave state.

VR5432

Input Data

O utput Data

SysC lock

Output
Latch

Input
Latch

D (31:0)
VR5432 Microprocessor User’s Manual 209

Chapter 11
11.4.2 External Arbitration

External arbitration is performed by the processor. The system interface must be
in slave state for the external agent to issue an external request through the system
interface. The transition from master state to slave state is arbitrated by the master
processor, using the system interface handshake signals ExtRqst* and Release*.
This transition is described by the following procedure:

1. An external agent signals that it wishes to issue an external request by
asserting ExtRqst*.

2. When the processor is ready to accept an external request, it releases the
system interface from master to slave state by asserting Release* for one
cycle.

3. The system interface returns to master state as soon as the external request is
complete.

11.4.3 Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the system interface from
master state to slave state, initiated by the processor when a processor read request
is pending. Release* is asserted automatically after a read request; an uncompelled
change to slave state then occurs. This transition to slave state allows the external
agent to return read response data without arbitrating for bus ownership. In
Multiple-Split-Read mode, the uncompelled change to slave state may not occur
immediately after the read request occurs. In this case, it will occur depending on
the internal state of the processor and the state of the RdRdy*, WrRdy*, and
ExtRqst* signals.

After an uncompelled change to slave state, the processor returns to master state
at the end of the next external request. This can be a read response or some other
type of external request. In Multiple-Split Read mode, the processor will return to
master state if an external request occurs, or after a read response has been issued
for all outstanding reads. If the external agent issues an external request or there
is another pending read request, the processor performs another uncompelled
change to slave state as it requires by asserting Release* for one cycle. The
processor release is asserted depending on the internal state of the processor.

An external agent must note that the processor has performed an uncompelled
change to slave state and begin driving the SysAD bus along with the SysCmd
bus. As long as the system interface is in slave state, the external agent can begin
an external request without arbitrating for the system interface; that is, without
asserting ExtRqst*.
210 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Table 11-1 lists the abbreviations and definitions for each of the buses that are
used in the timing diagrams that follow.

Table 11-1 System Interface Requests

11.5 Processor Request Protocols

This section describes the read and write processor request protocols.

Note: In the timing diagrams, the two closely spaced, wavy vertical lines,
such as those shown in Figure 11-4, indicate one or more identical
cycles that are not illustrated due to space constraints.

Figure 11-4 Symbol for Undocumented Cycles

Scope Abbreviation Meaning

Global Unsd Unused

SysAD bus
Addr Physical address

Data<n> Data element number n of a block of data

SysCmd bus

Cmd An unspecified system interface command

Read A processor or external read request command

Write A processor or external write request command

SINull A system interface release external null request command

NData
A data identifier for a data element other than the last data
element

NEOD A data identifier for the last data element
VR5432 Microprocessor User’s Manual 211

Chapter 11
11.5.1 Processor Read Request Protocol

The following sequence describes the protocol for doubleword, partial
doubleword, word, and partial word processor read requests. The following steps
correspond to Figure 11-5.

1. RdRdy* is asserted low, indicating that the external agent is ready to accept
a read request.

2. With the system interface in master state, a processor read request is issued
by driving a read command on the SysCmd bus and a read address on the
SysAD bus. The physical address is driven onto SysAD (31:0). All other bits
are driven to zero.

3. At the same time, the processor asserts ValidOut* for one cycle, indicating
that valid data is present on the SysCmd and the SysAD buses.

4. The processor makes an uncompelled change to slave state. The external
agent must not assert the ExtRqst* signal for the purpose of returning a read
response, but rather must wait for the uncompelled change to slave state. The
signal ExtRqst* can be asserted before or during a read response to perform
an external request other than a read response.

5. The processor releases the SysCmd and the SysAD buses one SysClock after
the assertion of Release*.

6. The external agent drives the SysCmd and the SysAD buses within two cycles
after the assertion of Release*.

Once in slave state, the external agent can return the requested data through a read
response. The read response can return the requested data or, if the requested data
could not be successfully retrieved, an indication that the returned data is
erroneous. If the returned data is erroneous, the processor takes a Bus Error
exception.

Figure 11-5 illustrates a processor read request, coupled with an uncompelled
change to slave state that occurs as the read request is issued.

Note: Timing for the SysADC bus is the same as for the SysAD bus.
212 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Figure 11-5 Processor Read Request Protocol

The processor can accept either a read response, if a read is pending, or another
type of external request in response to a Release* assertion. It is up to the external
agent to maintain consistent behavior on the ExtRqst* signal.

If the processor releases the bus and an external request is not issued, it will not
release again unless ExtRqst* is asserted. In addition, if ExtRqst* is detected by
the processor, it can release the bus at any time, and the external agent must be
able to respond with an appropriate cycle.

However, if a read request is pending and an external request other than a read
response is issued, the processor will assert Release* for the pending read
response after processing the external request. When the processor becomes the
master of the bus due to an external request, it can assert additional transactions
as allowed by the current bus timing mode before releasing the bus for a read
response or an external request.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr

SysCm d Bus Read

ValidO ut*

RdRdy*

Release*

2
3

5

1

6

Processor External Agent

4

VR5432 Microprocessor User’s Manual 213

Chapter 11
11.5.2 Processor Write Request Protocol

Processor write requests are issued using one of the two following protocols.

• Word or partial word writes using a nonblock write request protoco

• Cached block writes and uncached, accelerated writes using a bloc
write request protocol

Processor nonblock write requests are issued with the system interface in master
state, as described in the steps below. Figure 11-6 shows a processor nonblock
write request cycle.

1. WrRdy* is asserted low, indicating that the external agent is ready to accept
a write request.

2. A processor single nonblock write request is issued by driving a write
command on the SysCmd bus and a write address on the SysAD bus. The
physical address is driven onto SysAD (31:0). All other bits are driven to
zero.

3. The processor asserts ValidOut*.

4. The processor drives a data identifier on the SysCmd bus and data on the
SysAD bus.

5. The data identifier associated with the data cycle must contain a
last-data-cycle indication. At the end of the cycle, ValidOut* is deasserted.

Note: Timing for the SysADC bus is the same as for the SysAD bus.

Figure 11-6 Processor Nonblock Write Request Protocol

Figure 11-7 illustrates a cache block write request. The steps for the block write
request are the same as those indicated for the nonblock write request.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr Data0

SysCm d Bus W rite NEOD

ValidO ut*

W rRdy*

53
2

4

Processor

1

214 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Figure 11-7 Processor Block Write Request

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Addr Data0

SysCm d W rite NData

ValidO ut*

W rRdy*

53
2

4

Processor

1

Data1 Data2 Data3

NData NDataNData NData NData NData NEO D

Data5Data4 D ata6 D ata7
VR5432 Microprocessor User’s Manual 215

Chapter 11
11.5.3 Processor Request Flow Control

The external agent uses RdRdy* to control the flow of processor read requests.

Figure 11-8 illustrates this flow control, as described in the steps below.

1. The processor samples the RdRdy* signal to determine if the external agent
is capable of accepting a read request.

2. A read request is issued to the external agent.

3. The external agent deasserts RdRdy*, indicating that it cannot accept
additional read requests.

4. The read request issue is stalled because RdRdy* was negated two cycles
earlier.

5. A read request is again issued to the external agent.

Figure 11-8 Processor Request Flow Control

SysCycle 1 2 3 4 5 6 7 8 9 10

SysC lock

SysAD Addr0

RdRdy*

4

Processor

Data0 Data2Addr1

321 5

SysCm d Read N Data NDataRead

ValidO ut*

ValidIn*

Release*

P rocessor

11 12

Data1

NEO D

Data3

NEO D
216 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Figure 11-9 illustrates two processor write requests in which the issue of the
second is delayed for the assertion of WrRdy*.

1. WrRdy* is asserted low, indicating the external agent is ready to accept a
write request.

2. The processor asserts ValidOut*, a write command on the SysCmd bus, and
a write address on the SysAD bus.

3. The second write request is delayed until the WrRdy* signal is again asserted.

4. The processor does not complete the issue of a write request until it issues an
address cycle in response to the write request for which the signal WrRdy*
was asserted two cycles earlier.

Note: Timing for the SysADC bus is the same as for the SysAD bus.

Figure 11-9 Two Processor Write Requests with Second Write Delayed

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr Data0 Addr Data0

SysCm d Bus W rite NEOD W rite NEO D

ValidO ut*

W rRdy*

4

1

Processor

2

3

VR5432 Microprocessor User’s Manual 217

Chapter 11
11.5.4 Processor Request Timing Modes

The VR5432 processor supports timing modes that allow it to be compatible with
the R4x00/R5x00 processors and provides new, more efficient timing modes that
are unique to the VR5432. The R4x00/R5x00 timing modes include R4000
compatible, write reissue, and pipelined writes. These modes are ignored in R43K
mode, as described in Chapter 13. The VR5432 processor also performs
multiple-split-reads.

The VR5432 processor interface requires that WrRdy* be asserted two system
cycles prior to the issue of a write cycle. An external agent that negates WrRdy*
immediately upon receiving the write that fills its buffer will suspend any
subsequent writes for four system cycles in R4000 nonblock write-compatible
mode. The processor always inserts at least two unused system cycles after a write
address/data pair in order to give the external agent time to suspend the next write.

Figure 11-10 shows back-to-back write cycles in R4000-compatible mode.

1. WrRdy* is asserted, indicating that the processor can issue a write request.

2. WrRdy* remains asserted, indicating that the external agent can accept
another write request.

3. WrRdy* deasserts, indicating that the external agent cannot accept another
write request, stalling the issue of the next write request.

Figure 11-10 R4000-Compatible Back-to-Back Write Cycle Timing

SysCycle 1 2 3 4 5 6 7 8 9 10

SysC lock

SysAD Bus Data Unsd Unsd Addr Data

W rRdy*

Addr

1 2

W rite #1 W rite #2

3 4Cycles

P rocessor

11 12

321

Unsd Unsd Addr Data

W rite #3

13

 ValidOut*

14
218 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
A read address that follows a write transaction will follow the unused cycle pattern
indicated by the R4000-compatible mode of one address every four cycles. This
is illustrated in Figure 11-11.

Figure 11-11 Read Cycle Following a Nonblock Write Cycle

An address/data pair every four system cycles is not sufficiently high performance
for all applications. For this reason, the VR5432 processor provides two protocol
options that modify the R4000 back-to-back write protocol to allow an address/
data pair every two system cycles. It also enhances the read protocol to allow
multiple outstanding read requests to exist, and to allow requests of any kind to be
issued at a rate of one address every two cycles. These protocols are as follows.

Write reissue allows WrRdy* to be negated during the address cycle and forces
the write cycle to be reissued.

Pipelined writes leave the sample point of WrRdy* unchanged, two cycles before
the issue cycle, and requires that the external agent accept one more write than
dictated by the R4000 protocol.

SysCycle 1 2 3 4 5 6 7 8 9 10

SysC lock

SysAD Bus Data Unsd Unsd Addr Unsd

W rRdy*

Addr

1 2

W rite Read

3 4C ycles

Processor

 ValidO ut*

RdRdy*
VR5432 Microprocessor User’s Manual 219

Chapter 11
Multiple-split read timing allows RdRdy* to be negated during the address cycle
and forces the read cycle to be reissued. It also allows WrRdy* to be negated
during the address cycle and forces the write cycle to be reissued. This is the same
timing as a write reissue, but it is extended to apply to both read and write
addresses. In addition, it allows subsequent read or write addresses to be issued
every two cycles. The unique characteristic of multiple-split-read behavior is that
it will continue to issue read or write transactions without asserting Release* until
one of the following conditions exists:

• The processor does not have any transactions to issue and a read
request is outstanding

• The resources required for the transaction are not available, as
indicated by RdRdy* or WrRdy*, and a read request is outstanding or
ExtRqst* is asserted.

• ExtRqst* is asserted, and the processor is at a transaction set
boundary.

• There are read requests outstanding and a set of write transactions
completes.

• The processor limit of four outstanding read requests is reached. Not
that the processor does not have an internal limit on write requests
and can issue write requests after the limit of four outstanding reads
is reached. However, the bus will be released before any additional
read requests are issued.

Read data is required to be returned in the order in which the read request was
issued. Also note that the write timing for Multiple-Split-Read mode is always
consistent with write reissue timing and does not use pipelined write timing.
220 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
The write reissue protocol is shown in Figure 11-12. Writes issue when WrRdy*
is asserted both two cycles prior to the address cycle and during the address cycle.

1. WrRdy* is asserted, indicating that the external agent can accept a write
request.

2. WrRdy* remains asserted as the write is issued, and the external agent is
ready to accept another write request.

3. WrRdy* deasserts during the address cycle. This write request is aborted and
reissued.

4. WrRdy* is asserted, indicating that the external agent can accept a write
request.

5. WrRdy* remains asserted as the write is issued, and the external agent is able
to accept another write request.

Figure 11-12 Write Reissue Protocol

SysCycle

Issue Issue Issue Issue Issue Issue

SysC lock

SysAD Addr0 Data0 Addr1 Data1 Addr1 Data1

SysCm d (8:0) W rite N EO D W rite N EO D W rite N EO D

W rRdy*

No No No No

Processor

1 2 3 4 5 6 7 8 9 10 11

53 41 2

ValidO ut*
VR5432 Microprocessor User’s Manual 221

Chapter 11
The pipelined write protocol is shown in Figure 11-13. Writes issue when
WrRdy* is asserted two cycles before the address cycle and the external agent is
required to accept one more write after WrRdy* is negated.

1. WrRdy* is asserted, indicating that the external agent can accept a write
request.

2. WrRdy* remains asserted as the write is issued, and the external agent is able
to accept another write request.

3. WrRdy* is deasserted, indicating that the external agent cannot accept
another write request; it does, however, accept this write.

4. WrRdy* is asserted, indicating that the external agent can accept a write
request.

Figure 11-13 Pipelined Write Cycles

SysCycle

Issue Issue Issue Issue Issue Issue

SysC lock

SysAD Addr0 Data0 Addr1 Data1 Addr2 Data2

SysCm d (8:0) W rite NEO D W rite NEO D W rite NEO D

W rRdy*

No No No

1 2 3 4 5 6 7 8 9 10 11

Processor

3 41 2

ValidO ut*
222 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Multiple-split-read protocol timing scenario #1 is shown in Figure 11-14. Read
cycles issue only when RdRdy* is asserted both two cycles prior to the address
cycle and during the address cycle. Also, write cycles issue when WrRdy* is
asserted both two cycles prior to the address cycle and during the address cycle.

1. RdRdy* is asserted, indicating that the external agent can accept a read
request.

2. RdRdy* remains asserted as the read is issued, indicating that the read request
is accepted.

3. RdRdy* deasserts during the address cycle. This read request is aborted and
will be reissued.

4. Release* is asserted when the resources are not available for the processor to
do the second read operation.

Figure 11-14 Multiple-Split-Read Cycle Scenario #1

SysCycle

Issue Issue

SysC lock

SysAD Addr0 Unsd Addr1 Unsd

SysC m d (8:0) R ead Unsd R ead Unsd

RdRdy*

No
Processor

1 2 3 4 5 6 7 8 9 10 11

3

4

1 2

ValidOut*

Release*

External Agent

Unsd

Unsd
VR5432 Microprocessor User’s Manual 223

Chapter 11
Multiple-split-read protocol timing scenario #2 is shown in Figure 11-15.

1. RdRdy* is asserted, indicating that the external agent can accept a read
request.

2. RdRdy* remains asserted as the first read is issued, indicating that the read
request is accepted.

3. RdRdy* remains asserted during the second read address cycle, making this
a valid read request cycle.

4. Release* is asserted when the processor has asserted all the operations it has
queued.

Note: Release* can be asserted in step 4 of this scenario, even if RdRdy*
is deasserted in the same cycle. In this case, only the first request is
successfully issued. In Multiple-Split-Read mode, it is possible for
the processor to assert Release* when the external agent has deas-
serted RdRdy* in what could have been an issue cycle. If this oc-
curs, and there are no other outstanding read requests, it is the re-
sponsibility of the external agent to issue a null or other external re-
quest to return bus control to the processor. The external agent
should always follow the Single Transaction mode rule and accept
a read request from the processor if there are no read requests pend-
ing and RdRdy* is asserted two cycles prior to an issue cycle.

Figure 11-15 Multiple-Split-Read Cycle Scenario #2

SysCycle

Issue Issue

SysC lock

SysAD Addr0 Unsd Addr1

SysCm d (8:0) Read Unsd Read

RdRdy*

Processor

1 2 3 4 5 6 7 8 9 10 11

4

1 2

ValidO ut*

Release*

External Agent

3

224 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Figure 11-16 shows the processor issuing two read cycles back-to-back, followed
by a block write cycle in Multiple-Split-Read mode. This shows one case where
multiple transactions can be issued, but the order and type of cycles is mixed. The
control for transaction issue is from RdRdy*, WrRdy*, ExtRqst*, and the
processor’s transaction queue. The case of a read followed by a write is a likely
case for a cache miss where data is being replaced in the cache.

1. RdRdy* is asserted, indicating that the external agent can accept a read
request.

2. RdRdy* remains asserted as the read is issued, indicating that the first read
request is accepted.

3. RdRdy* remains asserted as the second read is issued, indicating that the
second read request is accepted.

4. WrRdy* is asserted, indicating that the external agent can accept a write
request.

5. WrRdy* remains asserted as the write is issued, indicating that the write
request is accepted.

6. Release* is asserted when the processor has asserted all the operations it has
queued.

Figure 11-16 Multiple-Split-Read Cycles with Two Reads Split by One Write

SysCycle 1 2 3 4 5 6 7 8 9 10

SysC lock

SysAD Bus U nsd

RdRdy*

Addr

Read #1 W rite

P rocessor

11 12

21

Addr

Read #2

13

 ValidO ut*

14

W rRdy*

3

4 5

Release*

External
Agent

Addr Data0 Data1 Data Data7

6

Unsd

Issue IssueIssue
VR5432 Microprocessor User’s Manual 225

Chapter 11
An additional case presented by multiple-split-read cycles involves the PReq*
signal. PReq* allows the processor to convey to the external agent that it has
additional transactions to issue. To make the best use of the system interface
bandwidth, it is beneficial to allow the processor to use bus cycles that would
otherwise be wasted waiting for read data to be returned. The following sequence
is illustrated in Figure 11-17:

1. RdRdy* is asserted low, indicating that the external agent is ready to accept
a read request.

2. The processor makes an uncompelled change to slave state as the read request
is issued.

3. The processor asserts PReq* to indicate that it has additional bus transactions
pending.

4. The external agent issues a null request in order to allow the processor to
regain bus control. Null requests are explained in Section 11.6.3.

5. The processor resumes control of the bus.

Figure 11-17 PReq* After a Processor Read Cycle

SysC ycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr

SysC m d Bus Read

ValidO ut*

RdRdy*

Release*
2

3

5

1

Processor Exte rnal Agent

ValidIn*

Unsd

SINull

PReq*

4

Processor
226 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.6 External Request Protocols

External requests can only be issued with the system interface in slave state. An
external agent asserts ExtRqst* to arbitrate for the system interface, then waits for
the processor to release the system interface to slave state by asserting Release*
before the external agent issues an external request. If the system interface is
already in slave state—that is, the processor has previously performed an
uncompelled change to slave state—the external agent can begin an external
request immediately.

After issuing an external request, the external agent must return the system
interface to master state. If the external agent does not have any additional external
requests to perform, ExtRqst* must be deasserted two cycles after the cycle in
which Release* was asserted. For a string of external requests, the ExtRqst* signal
is asserted until the last request cycle, at which point it is deasserted two cycles
after the cycle in which Release* was asserted.

The processor continues to handle external requests as long as ExtRqst* is
asserted; however, the processor cannot release the system interface to slave state
for a subsequent external request until it has completed the current request. As
long as ExtRqst* is asserted, the string of external requests is not interrupted by a
processor request.

External write requests intended for the processor must have SysAD (6:4) = 0002
in the address cycle. If the address cycle does not assert the appropriate signals,
VR5432 will ignore the cycle. The processor will retake control of the system
interface.

This section describes the following external request protocols:

• Read

• Null

• Writ

• Read response
VR5432 Microprocessor User’s Manual 227

Chapter 11
11.6.1 External Arbitration Protocol

System interface arbitration uses the signals ExtRqst* and Release*, as described
previously. Figure 11-18 is a timing diagram of the arbitration protocol, in which
slave and master states are shown.

The arbitration cycle consists of the following steps:

1. The external agent asserts ExtRqst* when it wishes to submit an external
request.

2. The processor waits until it is ready to handle an external request, at which
point it asserts Release* for one cycle.

3. The processor puts the SysAD and SysCmd buses in tristate mode.

4. The external agent must wait at least two cycles after the assertion of
Release* before it drives the SysAD and SysCmd buses.

5. The external agent negates ExtRqst* two cycles after the assertion of
Release*, unless the external agent wishes to perform an additional external
request.

6. The external agent sets the SysAD and the SysCmd buses to tristate at the
completion of an external request.

The processor can start issuing a processor request one cycle after the external
agent sets the bus to tristate.

Note: Timing for the SysADC bus is the same as for the SysAD bus.

Figure 11-18 Arbitration Protocol for External Requests

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr Data0

SysCm d Bus Cm d NEOD

ValidIn*

ExtRqst*

Release*

1

2

3 4

5

6

Processor Processor
External
 Agent
228 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.6.2 External Read Request Protocol

External reads are requests for a word of data from a processor internal resource,
such as a register. External read requests cannot be split that is, no other request
can occur between the external read request and its read response.

Figure 11-19 shows a timing diagram of an external read request, which consists
of the following steps:

1. An external agent asserts ExtRqst* to arbitrate for the system interface.

2. The processor releases the system interface to slave state by asserting
Release* for one cycle and then deasserting Release*.

3. After Release* is deasserted, the SysAD and SysCmd buses are put in tristate
mode for one cycle.

4. The external agent drives a read request command on the SysCmd bus and a
read request address on the SysAD bus and asserts ValidIn* for one cycle.

5. After the address and command are sent, the external agent releases the
SysCmd and SysAD buses by setting them to tristate and allowing the
processor to drive them. The processor, having accessed the data that is the
target of the read, returns this data to the external agent. The processor
accomplishes this by driving a data identifier on the SysCmd bus, the
response data on the SysAD bus, and asserting ValidOut* for one cycle. The
data identifier indicates that this is last-data-cycle response data.

6. The system interface is in master state. The processor continues driving the
SysCmd and SysAD buses after the read response is returned.

Note: Timing for the SysADC bus is the same as for the SysAD bus.

External read requests are only allowed to read a word of data from the processor.
The processor response to external read requests for any data element other than
a word is undefined.
VR5432 Microprocessor User’s Manual 229

Chapter 11
Figure 11-19 External Read Request, System Interface in Master State

Note: The processor does not contain any resources that are readable by
an external read request; in response to an external read request, the
processor returns undefined data and a data identifier with its
Erroneous Data bit, SysCmd (5), set.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr Data0

SysCm d Bus Read NEO D

ValidO ut*

ValidIn*

ExtRqst*

Release*

6

1

2

3

5

6

4

Processor Processor
External
 Agent
230 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.6.3 External Null Request Protocol

The processor supports an external null request, which returns the processor
system interface to master state from slave state without otherwise affecting th
processor.

External null requests require no action from the processor other than to return the
system interface to master state.

Figure 11-20 shows a timing diagram of an external null request, which consists
of the following steps:

1. The external agent drives an external null request command on the SysCmd
bus, and asserts ValidIn* for one cycle to return system interface ownership
to the processor.

2. The SysAD bus is unused (does not contain valid data) during the address
cycle associated with the external null request.

3. After the address cycle is issued, the null request is complete.

For an external null request, the external agent releases the SysCmd and SysAD
buses; the processor should then return to the master state.

Figure 11-20 System Interface Release External Null Request

3

1

2

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Unsd

SysCm d Bus S INull

ValidO ut*

ValidIn*

ExtRqst*

Release*

External Agent P rocessor
VR5432 Microprocessor User’s Manual 231

Chapter 11
11.6.4 External Write Request Protocol

External write requests use a protocol identical to the processor single-word write
protocol, except that the ValidIn* signal is asserted instead of ValidOut*.
Figure 11-21 shows a timing diagram of an external write request, which consists
of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system interface.

2. The processor releases the system interface to slave state by asserting
Release*.

3. The external agent drives a write command on the SysCmd bus, a write
address on the SysAD bus, and asserts ValidIn*.

4. The external agent drives a data identifier on the SysCmd bus, data on the
SysAD bus, and asserts ValidIn*.

5. The data identifier associated with the data cycle must contain a
last-data-cycle indication.

6. After the data cycle is issued, the write request is complete and the external
agent sets the SysCmd and SysAD buses to a tristate, allowing the system
interface to return to master state. Timing for the SysADC bus is the same as
for the SysAD bus.

External write requests are only allowed to write a word of data to the processor.
Processor behavior in response to an external write request for any data element
other than a word is undefined.

Figure 11-21 External Write Request with System Interface Initially a Bus Master

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr Data0

SysCm d Bus W rite N EO D

ValidO ut*

ValidIn*

ExtRqst*

Release*

4 5

6

1

2

3

4

Processor Externa l Agent Processor
232 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.6.5 Read Response Protocol

An external agent must return data to the processor in response to a processor read
request by using a read response protocol. A read response protocol consists of the
following steps:

1. The external agent waits for the processor to perform an uncompelled change
to slave state.

2. The external agent returns the data through a single data cycle or a series of
data cycles.

3. After the last data cycle is issued, the read response is complete and the
external agent sets the SysCmd and SysAD buses to tristate.

4. The system interface returns to master state.

Note: The processor always performs an uncompelled change to slave
state after issuing a read request. However, the uncompelled change
to slave state may happen after more than one transaction in the
Multiple-Split-Read timing mode.

5. The data identifier for data cycles must indicate the fact that this data is
response data. The data identifier associated with the last data cycle must
contain a last-data-cycle indication.

Data must always be returned in the order it was requested for multiple-split-read
transactions.

The data identifier associated with a data cycle can indicate that the data
transmitted during that cycle is erroneous; however, an external agent must return
a data block of the correct size regardless of whether the data may be in error.

Read response data must only be delivered to the processor when a processor read
request is pending. The behavior of the processor is undefined when a read
response is presented to it and there is no processor read pending.

Figure 11-22 illustrates a processor word read request followed by a word read
response. Figure 11-23 illustrates a read response for a processor block read with
the system interface already in slave state.

Note: Timing for the SysADC bus is the same as for the SysAD bus.
VR5432 Microprocessor User’s Manual 233

Chapter 11
Figure 11-22 Processor Word Read Request Followed by a Word Read Response

Figure 11-23 Block Read Response, System Interface Already in Slave State

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Addr Data0

SysCm d Bus Read NEO D

ValidO ut*

ValidIn*

ExtRqst*

Release*

5

1

2

3 4

Processor External Agent P rocessor

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Data0 Data1 Data Data7

SysCm d Bus NData NData NData NEO D

ValidO ut*

ValidIn*

ExtRqst*

Release*

52

3 4

5

External Agent Processor
234 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.6.5.1 Read response in Multiple-Split-Read mode

Multiple-Split-Read timing mode implies that there can be more than one read
request issued before an uncompelled change to slave state occurs. Therefore, the
VR5432 processor allows the memory subsystem to assert more than one read
response cycle before the processor returns to master state. When an uncompelled
change to slave state occurs in Multiple-Split-Read mode, the processor will only
return to master state when one of the following occurs:

• Data for all outstanding reads is returned.

• An external read, write, or null cycle is issued.

If the read sequence shown in Figure 11-15 occurs, where the first read issued is
a block read and the second read issued is a nonblock read, the read response
sequence shown in Figure 11-24 can occur. Refer to the steps listed in the previous
section.

Figure 11-24 Two Consecutive Read Responses in Multiple-Split-Read Mode

Note: ValidIn* controls the flow of data for multiple responses.

If an error occurs during a read response and additional read transactions are
outstanding, read responses are still required for all outstanding transactions.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Bus Data0 Data1 Data Data7

SysCm d Bus NData NData NData NEO D

ValidO ut*

ValidIn*

ExtRqst*

Release*

52 5

External Agent Processor

Data0

NEO D

3 4
VR5432 Microprocessor User’s Manual 235

Chapter 11
11.7 SysADC (3:0) Protocol

The following rules apply to the use of SysADC (7:0) during a block read
response.

• The following actions are taken for each doubleword of the transfer. If
data is erroneous, i.e., SysCmd (5) = 1, or if parity checking is enabled,
i.e., SysCmd (4) = 0, and a parity error is detected, the primary cache
lines are invalidated. A Bus Error exception is generated when SysCmd
(5) = 1. A Cache Error exception is generated with the EE bit asserted
in the CacheErr register when a parity error is detected.

• If a memory error occurs during a block read operation, the SysADC
bits should be forced to bad parity for all bytes affected by the
memory error during the read response. Forcing bad parity will caus
the appropriate cache line to be invalidated

11.8 Data Rate Control

The system interface supports a maximum data rate of one word per cycle. The
rate at which data is delivered to the processor can be determined by the external
agent—for example, the external agent can drive data and assert ValidIn* every n
cycles, instead of every cycle. An external agent can deliver data at any rate
possible.

The processor only accepts cycles as valid when ValidIn* is asserted and the
SysCmd bus contains a data identifier; thereafter, the processor continues to
accept data until it receives the data word tagged as the last one. The behavior of
the processor is undefined if data is delivered in any pattern other than one valid
cycle for nonblock data or two or eight valid cycles for block data.
236 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.9 Data Transfer Patterns

A data pattern is a sequence of letters indicating the data and unused cycles that
repeat to provide the appropriate data rate. For example, the data pattern WWxx
specifies a repeatable data rate of two words every four SysClock cycles, with the
last two cycles unused. Table 11-2 lists the processor data rate for each of the
possible block write modes that may be specified at boot time by setting the EP
bit of the Config register.

Table 11-2 Transmit Data Rates and Patterns

Note:
W:Data cycle
 x :Unused cycle where the data is held on the SysAD bus.

Maximum Data Rate Data Pattern

1 Word/1 SysClock Cycle WWWWWWWW

2 Words/3 SysClock Cycles WWxWWxWWxWWx

2 Words/4 SysClock Cycles WWxxWWxxWWxxWWxx

1 Word/2 SysClock Cycles WxWxWxWxWxWxWxWx

2 Words/5 SysClock Cycles WWxxxWWxxxWWxxxWWxxx

2 Words/6 SysClock Cycles WWxxxxWWxxxxWWxxxxWWxxxx

1 Word/3 SysClock Cycles WxxWxxWxxWxxWxxWxxWxxWxx

2 Words/8 SysClock Cycles WWxxxxxxWWxxxxxxWWxxxxxxWWxxxxxx

1 Word/4 SysClock Cycles WxxxWxxxWxxxWxxxWxxxWxxxWxxxWxxx
VR5432 Microprocessor User’s Manual 237

Chapter 11
Figure 11-25 shows a read response in which data is provided to the processor at
a rate of two words every three cycles, using the data pattern WWx.

Figure 11-25 Read Response, Reduced Data Rate, System Interface in Slave State

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysC lock

SysAD Data0 Data2 D ata4

SysCm d

ValidO ut*

ValidIn*

ExtRqst*

Release*

Data1 Data7D ata6Data5Data3

13

NData N Data NDataNData N EO DNDataNDataN Data

Bus

Bus

External Agent
238 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.10 Word Transfer Ordering

The VR5432 bus transfers a 32-bit address in an address cycle and 32-bit data in
a data cycle. When it transfers a block, the VR5432 bus protocol takes two clock
cycles for each doubleword transfer. Within the two clocks, the transfer order
follows these rules:

• The lower 4 bytes (the low-order word), bits 31:0, of the doublewor
are transferred in the first bus clock in Little-Endian mode and in the
second bus clock in Big-Endian mode

• The higher 4 bytes (the high-order word), bits 63:32, of the
doubleword are transferred in the first bus clock in Big-Endian mod
and in the second bus clock in Little-Endian mode

A word transfer or a partial word transfer requires only one bus clock on the
VR5432 bus. Table 11-3 compares the block, doubleword, partial doubleword,
word, and partial word write schemes in Little-Endian and Big-Endian modes.

Table 11-3 Processor Data Write Orders

Transfer Types VR5432 (Little Endian) VR5432 (Big Endian)

Block

(Dn[31:0] is the
low-order word
and Dn[63:32] is
the high-order
word of the
doubleword
Dn[63:0])
(A is address)

1. A [31:0], D0[31:0]
2. D0[63:32]
3. D1[31:0]
4. D1[63:32]
5. D2[31:0]
6. D2[63:32]
7. D3[31:0]
8. D3[63:32]

1. A [31:0], D0[63:32]
2. D0[31:0]
3. D1[63:32]
4. D1[31:0]
5. D2[63:32]
6. D2[31:0]
7. D3[63:32]
8. D3[31:0]

Doubleword
1. A [31:0], D[31:0]
2. D[63:32]

1. A [31:0], D[63:32]
2. D[31:0]

Word
(or Partial Word)

1. A [31:0], W[31:0] 1. A [31:0], W[31:0]
VR5432 Microprocessor User’s Manual 239

Chapter 11
When the VR5432 retrieves a cache line from an external agent, the doubleword
read order follows the subblock order rule listed in Appendix A. With a
doubleword, the two-word transfers follow the rules above. When reading a
doubleword, a word, or a partial word, the transfer rules are the same as those for
writes. Table 11-4 compares the block, doubleword, word, and partial word read
order for VR5432 in Little-Endian and Big-Endian modes.

Table 11-4 Processor Data Read Orders

Transfer Types VR5432 (Little Endian) VR5432 (Big Endian)

Block

(A[4:3] = 00)
(A[2:0] = 000)

(Dn[31:0] is the
low-order word
and Dn[63:32] is
the high-order
word of the
doubleword
Dn[63:0])

1. D0[31:0]
2. D0[63:32]
3. D1[31:0]
4. D1[63:32]
5. D2[31:0]
6. D2[63:32]
7. D3[31:0]
8. D3[63:32]

1. D0[63:32]
2. D0[31:0]
3. D1[63:32]
4. D1[31:0]
5. D2[63:32]
6. D2[31:0]
7. D3[63:32]
8. D3[31:0]

Block

(A[4:3] = 01)
(A[2:0] = 000)

1. D1[31:0]
2. D1[63:32]
3. D0[31:0]
4. D0[63:32]
5. D3[31:0]
6. D3[63:32]
7. D2[31:0]
8. D2[63:32]

1. D1[63:32]
2. D1[31:0]
3. D0[63:32]
4. D0[31:0]
5. D3[63:32]
6. D3[31:0]
7. D2[63:32]
8. D2[31:0]

Block

(A[4:3] = 10)
(A[2:0] = 000)

1. D2[31:0]
2. D2[63:32]
3. D3[31:0]
4. D3[63:32]
5. D0[31:0]
6. D0[63:32]
7. D1[31:0]
8. D1[63:32]

1. D2[63:32]
2. D2[31:0]
3. D3[63:32]
4. D3[31:0]
5. D0[63:32]
6. D0[31:0]
7. D1[63:32]
8. D1[31:0]
240 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
The external agent can only write one word to the VR5432 at a time (see
Figure 11-21), so it takes one bus clock to transfer the word from the external
agent to the VR5432.

Block

(A[4:3] = 11)
(A[2:0] = 000)

1. D3[31:0]
2. D3[63:32]
3. D2[31:0]
4. D2[63:32]
5. D1[31:0]
6. D1[63:32]
7. D0[31:0]
8. D0[63:32]

1. D3[63:32]
2. D3[31:0]
3. D2[63:32]
4. D2[31:0]
5. D1[63:32]
6. D1[31:0]
7. D0[63:32]
8. D0[31:0]

Doubleword
1. D[31:0]
2. D[63:32]

1. D[63:32]
2. D[31:0]

Word (or Partial
Word)

1. W[31:0] 1. W[31:0]

Table 11-4 Processor Data Read Orders (continued)

Transfer Types VR5432 (Little Endian) VR5432 (Big Endian)
VR5432 Microprocessor User’s Manual 241

Chapter 11
11.11 Independent Transmissions on the SysAD Bus

In most applications, the SysAD bus is a point-to-point connection, running from
the processor to a bidirectional registered transceiver residing in an external agent.
For these applications, the SysAD bus has only two possible drivers, the processor
or the external agent.

Certain applications may require connection of additional drivers and receivers to
the SysAD bus, to allow transmissions over the SysAD bus with which the
processor is not involved. These are called independent transmissions. To effect
an independent transmission, the external agent must coordinate control of the
SysAD bus by using arbitration handshake signals and external null requests.

An independent transmission on the SysAD bus must follow this procedure:

1. The external agent requests control of the SysAD bus, to issue an external
request.

2. The processor releases the system interface to slave state.

3. The external agent then allows the independent transmission to take place on
the SysAD bus, making sure that ValidIn* is not asserted while the
transmission is occurring.

4. When the transmission is complete, the external agent must issue a system
interface release external null request to return the system interface to master
state.
242 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.12 System Interface Cycle Time

The processor specifies latency for various processor transactions and for the
processor response time to external requests as follows. Processor requests
themselves are constrained by the system interface request protocol, and request
cycle counts can be determined by examining the protocol. The following system
interface interactions can also occur in a VR5432 system:

• Waiting period for the processor to release the system interface to
slave state in response to an external request (release latency)

• Response time for an external request that requires a respons
(external response latency)

Release latency depends on the state of the system interface during the time of the
external request. The system interface will be released to the external agent
following the set of bus cycles in which the external request was detected. The
external request is detected two system bus cycles after it is asserted.

External response latency will be minimal for the VR5432. Write data will be
taken immediately, and read requests will be given an error indication on the
SysCmd (5) bit.

11.13 System Interface Commands/Data Identifiers

System interface commands specify the nature and attributes of any system
interface request; this specification is made during the address cycle for the
request. System interface data identifiers specify the attributes of data transmitted
during a system interface data cycle.

The following sections describe the syntax (the bitwise encoding) of system
interface commands and data identifiers.

For system interface commands and data identifiers associated with processor
requests, reserved bits and reserved fields in the command and data identifiers are
undefined.
VR5432 Microprocessor User’s Manual 243

Chapter 11
11.13.1 Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in nine bits and are
transmitted on the SysCmd bus from the processor to an external agent, or from
an external agent to the processor, during address and data cycles. Bit 8 (the most-
significant bit) of the SysCmd bus determines whether the current content of the
SysCmd bus is a command or a data identifier and, therefore, whether the current
cycle is an address cycle or a data cycle. For system interface commands, SysCmd
(8) must be set to 0. For system interface data identifiers, SysCmd (8) must be set
to 1.

11.13.2 System Interface Command Syntax

This section describes the SysCmd bus encoding for system interface commands.
Figure 11-26 shows a common encoding used for all system interface commands.

Figure 11-26 System Interface Command Syntax Bit Definition

SysCmd (8) must be driven as 0 for all system interface commands.

SysCmd (7:5) specify the system interface request type, which may be read, write,
or null. Table 11-5 shows the types of requests encoded by the SysCmd (7:5) bits.

Table 11-5 Encoding of SysCmd (7:5) for System Interface Commands

SysCmd (4:0) are specific to each type of request and are defined in each of the
following sections.

SysCmd (7:5) Command

0 Read request

1 Reserved

2 Write request

3 Null request

4–7 Reserved

Request Type0 Request Specific

8 7 5 4 0
244 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
11.13.3 Read Requests

Figure 11-27 shows the format of a SysCmd read request.

Figure 11-27 Read Request SysCmd Bus Bit Definition

Table 11-6 through Table 11-8 list the encodings of SysCmd (4:0) for read
requests.

Table 11-6 Encoding of SysCmd (4:3) for Read Requests

Table 11-7 Encoding of SysCmd (2:0) for Block Read Request

Table 11-8 Read Request Data Size Encoding of SysCmd (2:0)

SysCmd (4:3) Read Attributes

0, 1 Reserved

2 Block read

3 Word or partial word

SysCmd (2) Reserved

SysCmd (1:0) Read Block Size

0 2 words

1 8 words

2, 3 Reserved

SysCmd (2) Reserved

SysCmd (1:0) Read Block Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

000 0

8 7 5 4 03 2 1

Read Request Specific
(see tables)
VR5432 Microprocessor User’s Manual 245

Chapter 11
11.13.3.1 Write requests

Figure 11-28 shows the format of a SysCmd write request.

Figure 11-28 Write Request SysCmd Bus Bit Definition

Table 11-9 lists the write attributes encoded in bits SysCmd (4:3).

Table 11-9 Write Request Encoding of SysCmd (4:3)

Table 11-10 lists the block write replacement attributes encoded in bits SysCmd
(2:0).

Table 11-10 Block Write Request Encoding of SysCmd (2:0)

SysCmd (4:3) Write Attributes

0 Reserved

1 Reserved

2 Block write

3 Word or partial word

SysCmd (2) Cache Line Replacement Attributes (8 words only)

0 Cache line replaced

1 Cache line retained

SysCmd (1:0) Write Block Size

0 2 words; SysCmd (2) is reserved for this encoding

1 8 words

2, 3 Reserved

010 0

8 7 5 4 03 2 1

W rite Request Specific
(see tables)
246 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Table 11-11 lists the write request bit encodings in SysCmd (2:0).

Table 11-11 Write Request Data Size Encoding of SysCmd (2:0)

11.13.3.2 Null requests

Figure 11-29 shows the format of a SysCmd null request.

Figure 11-29 Null Request SysCmd Bus Bit Definition

System interface release external null requests use the null request command.
Table 11-12 lists the encodings of SysCmd (4:3) for external null requests.
SysCmd (2:0) are reserved for null requests.

Table 11-12 External Null Request Encoding of SysCmd (4:3)

SysCmd (2) Reserved

SysCmd (1:0) Write Data Size

0 1 byte valid (byte)

1 2 bytes valid (halfword)

2 3 bytes valid (tribyte)

3 4 bytes valid (word)

SysCmd (4:3) Null Attributes

0 System interface release

1−3 Reserved

0110

8 7 5 4 03 2 1

N ull Request Specific
(see tables)
VR5432 Microprocessor User’s Manual 247

Chapter 11
11.13.4 System Interface Data Identifier Syntax

This section defines the encoding of the SysCmd bus for system interface data
identifiers. Figure 11-30 shows encoding typically used for all system interface
data identifiers.

Figure 11-30 Data Identifier SysCmd Bus Bit Definition

SysCmd (8) must be set to 1 for all system interface data identifiers.

Note: SysCmd (4) is reserved for the processor data identifier. In an ex-
ternal data identifier, SysCmd (4) indicates whether or not to check
the data and check bits for errors.

11.13.4.1 Data identifier bit definitions

SysCmd (7) marks the last data element and SysCmd (6) indicates whether the data
is response data, for both processor and external data identifiers. Response data is
data returned in response to a read request.

SysCmd (5) indicates whether the data element is error free. Erroneous data
contains an error and is returned to the processor, forcing a bus error. In the case
of a block response, the entire line must be delivered to the processor, no matter
how minimal the error. The processor will not indicate erroneous data. The
external agent should ignore this bit.

SysCmd (4) indicates to the processor whether to check the data and check bits for
this data element.

SysCmd (3) is reserved for external data identifiers.

SysCmd (4:3) are reserved for processor data identifiers.

SysCmd (2:0) are reserved for data identifiers.

Last
Data

1

8 7 5 4 03 2

Re-
sponse

Data

6

Error
Data

See
Note

below
ReservedReserved
248 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Table 11-13 lists the encodings of SysCmd (7:0) for processor data identifiers.

Table 11-13 Processor Data Identifier Encoding of SysCmd (7:0)

Table 11-14 lists the encodings of SysCmd (7:0) for external data identifiers.

SysCmd (7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd (6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd (5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd (4:0) Reserved

Table 11-14 External Data Identifier Encoding of SysCmd (7:0)

SysCmd (7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd (6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd (5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd (4) Data Checking Enable

0 Check the data and check bits

1 Do not check the data and check bits

SysCmd (3:0) Reserved
VR5432 Microprocessor User’s Manual 249

Chapter 11
11.14 System Interface Addresses

System interface addresses are full 32-bit physical addresses presented on the 32
bits of the SysAD bus during address cycles. All bits of the SysAD bus are used
during address cycles.

11.14.1 Addressing Conventions

Addresses associated with doubleword, partial doubleword, word, or partial word
transactions and update requests are aligned for the size of the data element. The
system uses the following address conventions:

• Addresses associated with block requests are aligned to doubleword
boundaries; that is, the low-order 3 bits of the address are 0

• Doubleword requests set the low-order 3 bits of the address to 0.

• Word requests set the low-order 2 bits of the address to 0.

• Halfword requests set the low-order bit of the address to 0

• Byte and tribyte requests use the byte address

11.14.2 Subblock Ordering

The order in which data is returned in response to a processor block read request
is called “subblock ordering.” In subblock ordering, the processor delivers the
address of the requested doubleword within the block. An external agent must
return the block of data using subblock ordering, starting with the addressed
doubleword.

For block write requests, the processor always delivers the address of the
doubleword at the beginning of the block; the processor delivers data beginning
with the doubleword at the beginning of the block and progresses sequentially
through the doublewords that form the block. See Appendix A for more detail.

During data cycles, the valid byte lines depend upon the position of the data with
respect to the aligned doubleword (this may be a byte, halfword, tribyte, or
quadbyte/word). For example, in Little-Endian mode, on a byte request where the
address module 8 is 0, SysAD (7:0) are valid during the data cycles. Table 11-15
lists the byte lanes used for partial word transfers for both big- and little-endian
formats.
250 VR5432 Microprocessor User’s Manual

System Interface Protocols (Native Mode)
Table 11-15 Partial Word Transfer Byte Lane Usage

11.14.3 Processor Internal Address Map

External reads and writes provide access to processor internal resources that may
be useful to an external agent. The processor decodes SysAD (6:4) of the address
associated with an external read or write request to determine which processor
internal resource is the target. However, the processor does not contain any
resources that are readable through an external read request. Therefore, in
response to an external read request, the processor returns undefined data and a
data identifier with its Erroneous Data bit, SysCmd (5), set. The Interrupt register
is the only processor internal resource available for write access by an external
request. The Interrupt register is accessed by an external write request with an
address of 0002 for the processor.

Bytes
SysCmd(1:0)

Address
Mod 4

SysAD Byte Lanes Used

Little Endian Big Endian

31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0

1
(00)

0 X X

1 X X

2 X X

3 X X

2
(01)

0 X X X X

2 X X X X

3
(10)

0 X X X X X X

1 X X X X X X

4
(11)

0 X X X X X X X X
VR5432 Microprocessor User’s Manual 251

Chapter 11
252 VR5432 Microprocessor User’s Manual

System Interface Transactions (R43K Mode)

12

This section describes processor and external requests as they occur in R43K
(VR4300 compatibility) mode (the OptionR43K* input signal sampled low during
cold reset). The transactions used in the native system interface mode are
described in Chapter 10.

All system interface transactions using the VR5432 processor are noncoherent;
there is no hardware cache coherency support provided. Requests fall into three
categories:

• Cached

• Uncached

• Uncached accelerated
VR5432 Microprocessor User’s Manual 253

Chapter 12
12.1 Processor Requests

When a system event occurs, the processor issues either a single request or a series
of requests (called processor requests) through the system interface, to access an
external resource and service the event. For this to work, the processor system
interface must be connected to an external agent that is compatible with the system
interface protocol and can coordinate access to system resources.

An external agent requesting access to a processor internal resource generates an
external request. This access request passes through the system interface. System
events and request cycles are shown in Figure 12-1.

Figure 12-1 Requests and System Events

VR5432 External Agent

Processor R equests
• Read
• W rite

External Requests
• Read Response
• W rite

System Events
• Load m iss
• Store m iss
• Store hit
• Uncached load/store
• Fetch m iss
• Uncached instruction fetch
• Uncached accelerated store
254 VR5432 Microprocessor User’s Manual

System Interface Transactions (R43K Mode)
12.1.1 Rules for Processor Requests

A processor request is a request, through the system interface, to access some
external resource. As shown in Figure 12-2, processor requests include read and
write.

Figure 12-2 Processor Requests to External Agent

A read request asks for a block, doubleword, partial doubleword, word, or partial
word of data either from main memory or from another system resource. A read
request supplies an address to an external agent.

A write request provides a block, doubleword, partial doubleword, word, or partial
word of data to be written either to main memory or to another system resource.
A write request supplies an address and a block, doubleword, partial doubleword,
word, or partial word of data to an external agent.

Processor read requests that have been issued, but for which data has not yet been
returned, are said to be pending. The processor will not issue another request while
a read is already pending. A processor read request is said to be complete after the
last transfer of response data has been received from an external agent. A
processor write request is said to be complete after the last word of data has been
transmitted.

The processor input signal EOK* allows an external agent to manage the flow of
processor requests. EOK* controls the flow of processor read and write requests.

VR5432 External Agent

Processor Requests
• Read
• W rite
VR5432 Microprocessor User’s Manual 255

Chapter 12
The processor request cycle sequence is shown in Figure 12-3.

Figure 12-3 Processor Request Flow Control

12.1.2 Processor Read Request

When the VR5432 processor issues a read request, the external agent must access
the specified resource and return the requested data.

A processor read request can be split from the external agent’s return of the
requested data. In other words, the external agent can initiate an unrelated external
request before it returns the response data for a processor read. A processor read
request is completed after the last word of response data has been received from
the external agent.

Processor read requests that have been issued, but for which data has not yet been
returned, are said to be pending. A read remains pending until the requested read
data is returned.

Note that the data identifier associated with the response data can indicate that the
response data is erroneous, causing the processor to generate a Bus Error
exception.

The external agent must be capable of accepting a new processor read request at
any time when the following two conditions are met:

• There is no processor read request pending.

• The EOK* signal has been asserted for two or more cycles

VR5432 External Agent

1. Processor issues read or w rite

2. Externa l system contro ls
acceptance of requests by
asserting EO K*
256 VR5432 Microprocessor User’s Manual

System Interface Transactions (R43K Mode)
12.1.3 Processor Write Request

When a processor issues a write request, the specified resource is accessed and the
data is written to it. A processor write request is complete after the last word of
data has been transmitted to the external agent.

The external agent must be capable of accepting a processor write request any
time the following two conditions are met:

• No processor read request is pending

• The EOK* signal has been asserted for two or more cycles

12.2 External Requests

External requests include read response and write requests, as shown in
Figure 12-4.

Figure 12-4 External Requests to Processor

A read response returns data in response to a processor read request.

A write request provides a word of data to be written to the processor’s internal
resource.

The processor controls the flow of external requests through the arbitration signals
EReq* and PMaster*, as shown in Figure 12-5. The external agent must acquire
mastership of the system interface before it is allowed to issue an external request.
The external agent arbitrates for mastership of the system interface by asserting
EReq* and then waits for the processor to deassert the PMaster* signal.

VR5432 External Agent

External Requests
• Read Response
• W rite
VR5432 Microprocessor User’s Manual 257

Chapter 12
Figure 12-5 External Request Arbitration

Mastership of the system interface always returns to the processor when the
EReq* signal becomes inactive after an external request is issued. The processor
does not accept a subsequent external request until it has completed the current
request.

If there are no processor requests pending, the processor determines, based on its
internal state, whether to accept the external request or issue a new processor
request. The processor can issue a new processor request even if the external agent
is requesting access to the system interface.

The external agent asserts the EReq* signal to indicate that it wishes to begin an
external request. The processor releases mastership of the system interface by
deasserting the PMaster* signal. An external request can be accepted based on the
following criteria:

• The processor completes any processor request in execution

• While the processor is waiting for the assertion of the EOK* signal to
issue a processor read/write request, the EReq* signal is input to th
processor one or more cycles before the EOK* signal is asserted.

• If the processor is waiting for the response to a read request after the
processor has made an uncompelled change to a slave state (th
external agent can issue an external request before providing the rea
response data).

External Agent
1. External system requests bus

mastership by asserting EReq*

2. Processor grants mastership by
deasserting the PMaster* signal

3. External system issues an
external request

4. Processor regains bus mastership
when EReq* becomes inactive

VR5432
258 VR5432 Microprocessor User’s Manual

System Interface Transactions (R43K Mode)
12.2.1 External Write Request

When an external agent issues a write request, the specified resource is accessed
and the data is written to it. An external write request is complete after the word
of data has been transmitted to the processor.

The only processor resource available to an external write request is the Interrupt
register.

12.2.2 Read Response

A read response returns data in response to a processor read request, as shown in
Figure 12-6. While a read response is technically an external request, it has one
characteristic that differentiates it from all other external requests: it does not
perform system interface arbitration (requesting mastership of the system
interface using EReq*). For this reason, read responses are handled separately
from all other external requests, and are simply called read responses.

The data identifier associated with the response data can signal that the returned
data is erroneous, causing the processor to make a bus error.

Figure 12-6 External Agent Read Response to Processor

Vr5432 External Agent

1. Read request

2. Read response
VR5432 Microprocessor User’s Manual 259

Chapter 12
12.3 Handling Requests

This section details the sequence of both processor and external requests. The
following system events are discussed:

• Fetch miss

• Load miss

• Store miss

• Store hit

• Uncached loads/stores

• Uncached accelerated stores

• Uncached instruction fetch

12.3.1 Fetch Miss

When the processor misses in the instruction cache during an instruction fetch, it
issues a read request for cache line acquisition. An external agent returns data as
a read response.
260 VR5432 Microprocessor User’s Manual

System Interface Transactions (R43K Mode)
12.3.2 Load Miss

When a processor load misses in the primary cache, before the processor can
proceed it must obtain the cache line that contains the data element to be loaded
from the external agent.

If the new cache line replaces a current dirty cache line, the current cache line must
be written back before the new line can be loaded in the primary cache.

Table 12-1 shows the actions taken on a load miss to the primary cache.

Table 12-1 Load Miss to Primary Cache

The processor takes the following steps:

1. The processor issues a block read request for the cache line that contains the
data element to be loaded.

2. The processor waits for an external agent to provide the read response.

3. The processor completes the load after the first doubleword of the data cache
miss is received. The remaining three doublewords are placed in the cache as
they arrive.

If the cache data which the incoming line will replace contains valid dirty data,
this data is written to memory. The read completes before the write of the dirty
cast-out data.

Page Attribute
State of Data Cache Line Being Replaced

Clean/Invalid Dirty (D = 1)

Cached BR BR/BW

BR: Processor block read request
BR/BW: Processor block read request followed by processor block write request
VR5432 Microprocessor User’s Manual 261

Chapter 12
12.3.3 Store Miss

When a processor store misses in the primary cache, the processor will request,
from the external agent, the cache line that contains the target location of the store.

The processor then executes one of the following actions:

1. The processor issues a block read request for the cache line that contains the
data element to be loaded.

2. The processor then waits for an external agent to provide the read response.

3. The cache line is loaded into the cache, and the store data is merged into the
appropriate location.

4. If the page attribute is write-through, a nonblock write request is issued.

Table 12-2 shows the actions taken on a store miss to the primary cache.

Table 12-2 Store Miss to Primary Cache

If the page attribute is write-back or write-through, the processor issues a block
read request for the cache line that contains the data element to be loaded. If a
cache line must be written back due to replacement, the processor issues a write
request for that cache line. If the page attribute is write-through, the processor
issues a nonblock write request for the new data.

12.3.4 Store Hit

The action on the system bus is determined by whether the line is write-back or
write-through. Write-back store hits cause no bus transactions. For lines with a
write-through policy, the store generates a processor nonblock write request for
the store data.

Page Attribute
State of Data Cache Line Being

Replaced

Clean/Invalid Dirty (W = 1)

Write-back BR BR/BW

Write-through BR/W BR/BW/W

BR: Processor block read request for missed cache line
BW: Processor block write request for replaced dirty data
W: Processor nonblock write request for write-through data
262 VR5432 Microprocessor User’s Manual

System Interface Transactions (R43K Mode)
12.3.5 Uncached Loads or Stores

When the processor performs an uncached load, it issues a doubleword, partial
doubleword, word, or partial word read request. When the processor performs an
uncached store, it issues a doubleword, partial doubleword, word, or partial word
write request. All writes by the processor are buffered from the system interface
by a four-deep transaction buffer. Since this buffer behaves as a FIFO, previous
write requests in the buffer are completed before a following read request is
serviced.

12.3.6 Uncached Accelerated Stores

Uncached accelerated operations are uncached operations to a page with an
uncached accelerated cache algorithm. When the processor performs an uncached
accelerated store, it can perform a block write, or it can perform one or more
doubleword, partial doubleword, word, or partial word write requests. All writes
by the processor are buffered from the system interface by a four-deep transaction
buffer. Since this buffer behaves as a FIFO, previous write requests in the buffer
are completed before a following read request is serviced.

Uncached, accelerated operations allow the user to combine several sequential
uncached word or doubleword operations into a single 32-byte block of write data
and only generate a single external SysAD bus transaction. In order for the
programmer to optimize these transactions, special attention should be paid to the
uncached accelerated data alignment and gathering rules.

Uncached accelerated writes pass through the transaction buffer in FIFO order, the
same as all other types of transactions. However, successive uncached accelerated
transactions are assembled into up to four doubleword FIFO entries if the
uncached accelerated write gathering rules are followed. The rules are:

• The initial uncached accelerated transaction must be aligned on
mod 32-byte boundary

• All uncached accelerated transactions must be word or doublewor
sized.

• Word and doubleword transactions must be naturally aligned

• Word writes must happen in pairs in order to form a naturally aligned
doubleword.

• Addresses must increase sequentially.
VR5432 Microprocessor User’s Manual 263

Chapter 12
Uncached accelerated write transactions that do not follow the rules stated above
will be treated as nonaccelerated uncached transactions. In addition, if a gathering
sequence is disrupted by any operation other than those making up the uncached
accelerated gather, the portion of the data that is gathered will be sent out as
uncached word or doubleword operations.

The uncached accelerated operation will also be disrupted if the processor enters
Debug mode. When Debug mode is entered, the transaction buffer is emptied. In
addition, it is likely that the gather operation will be disrupted if an exception is
taken.

12.3.7 Uncached Instruction Fetch

The processor issues word reads for instruction fetches to uncached addresses.
Word reads must conform to the byte alignment as indicated by the size encoded
on SysCmd (1:0). Therefore, any system ROM address space accessed during a
processor boot restart must support properly aligned 32-bit reads.
264 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)

13

The following sections contain a cycle-by-cycle description of the system
interface protocols for each type of processor and external request in R43K
(VR4300 compatibility) mode of the VR5432 processor. For the protocols
followed in the native mode of the VR5432 processor, see Chapter 11.
VR5432 Microprocessor User’s Manual 265

Chapter 13
13.1 Address and Data Cycles

Cycles in which the SysAD bus contains a valid address are called address cycles.
Cycles in which the SysAD bus contains valid data are called data cycles. Validity
of addresses and data from the processor is determined by the state of the PValid*
signal. Validity of the address and data from the external agent is determined by
the state of the EValid* signal.

The SysCmd bus identifies the contents of the SysAD bus during any cycle in
which it is valid from the processor or the external agent. The most-significant bit
of the SysCmd bus is always used to indicate whether the current cycle is an
address cycle or a data cycle.

• During address cycles, i.e., SysCmd (4) = 0, the remainder of the
SysCmd bus SysCmd (3:0), contains the encoded system interface
command.

• During data cycles, i.e., SysCmd (4) = 1, the remainder of the
SysCmd bus SysCmd (3:0), contains an encoded data identifier.

When the processor is driving the SysAD (31:0) and SysCmd (4:0) buses, the
system interface is in master state. When the external agent is driving these buses,
the system interface is in slave state.

• When the processor is in master state and the SysAD (31:0) and
SysCmd (4:0) buses are valid, the processor asserts the PValid*
signal.

• When the processor is in slave state and the SysAD (31:0) and
SysCmd (4:0) buses are valid, an external agent asserts the EValid*
signal.

13.2 Issue Cycles

There are two types of processor issue cycles:

• Processor read reques

• Processor write reques

The issue cycle of the processor read/write request is determined by the state of
the EOK* signal. The issue cycle is a cycle that becomes valid in the address cycle
of each processor request. Only one issue cycle exists for each processor request.

To define the issue cycle of the address cycle, assert the EOK* signal active at the
external agent side one cycle before the address cycle of the processor read/write
request, as shown in Figure 13-1.
266 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
To define the address cycle as the issuance cycle, do not deassert the EOK* signal
inactive until the address cycle is started.

Figure 13-1 EOK* Signal Status of Processor Request

The processor repeats the address cycle for the request until the conditions for a
valid issue cycle are met. Figure 13-2 illustrates how the address cycle is extended
by the EOK* signal. There is only one issue cycle for any processor request.

Figure 13-2 Address Cycle Extended by EOK* Signal

The processor accepts external requests, even while attempting to issue a
processor request, by releasing the system interface to slave state in response to an
assertion of EReq* by the external agent.

The rules governing the issue cycle of a processor request are strictly applied to
determine which action the processor takes. The processor can either:

• Complete the issuance of the processor request in its entirety befor
the external request is accepted, o

• Release the system interface to slave state without completing th
issuance of the processor request

In the latter case, the processor issues the processor request (provided the
processor request is still necessary) after the external request is completed. The
rules governing an issue cycle again apply to the processor request.

SysCycle 1 2 3 4 5 6

SysCloc

SysAD Bus Addr

EOK*
Issue
Cycle

SysCycle 1 2 3 4 5 6

SysCloc

SysAD Bus Addr

EOK*
Issue
Cycle
VR5432 Microprocessor User’s Manual 267

Chapter 13
13.3 Handshake Signals

The VR5432 processor manages the flow of requests through the following six
control signals:

• EOK*—This signal is used by the external agent to indicate whethe
it can accept a new read or write transaction.

• EReq*, PMaster*, PReq*—These signals are used to transfer control
of the SysAD and SysCmd buses. EReq* is used by an external agent
to indicate a need to control the interface. PMaster* is deasserted by
the processor when it transfers the mastership of the system interfac
to the external agent. PReq* is used by the processor to request th
external agent to release control of the system interface.

• PValid*, EValid*—The VR5432 processor uses PValid* and th
external agent uses EValid* to indicate valid commands/data on the
SysCmd and SysAD buses.

13.4 System Interface Operation

Figure 13-3 shows how the system interface operates from register to register.
Processor outputs come directly from output registers and begin to change on the
rising edge of SysClock.

Processor inputs are fed directly to input registers that latch these input signals on
the rising edge of SysClock. This option allows the system interface to run at the
highest possible clock frequency.
268 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Figure 13-3 System Interface Register-to-Register Operation

13.4.1 Master and Slave States

When the VR5432 processor is driving the SysAD and SysCmd buses, the system
interface is in master state. When the external agent is driving the SysAD and
SysCmd buses, the system interface is in slave state. In master state, the processor
asserts PValid* whenever the SysAD and SysCmd buses are valid. In slave state,
the external agent asserts EValid* whenever the SysAD and SysCmd buses are
valid.

The system interface remains in master state unless:

• The external agent requests and is granted the system interface
(external arbitration).

• The processor issues a read request and deasserts PMaster* as an
uncompelled change to slave state

VR5432

Input Data

Output Data

SysCloc

Output
Latch

Input
Latch

D (31:0)
VR5432 Microprocessor User’s Manual 269

Chapter 13
13.4.2 External Arbitration

External arbitration is performed by the processor. The system interface must be
in slave state for the external agent to issue an external request through the system
interface. The transition from master state to slave state is arbitrated by the master
processor using the system interface handshake signals EReq* and PMaster*. This
transition is described by the following sequence:

1. An external agent signals the need to issue an external request by asserting
EReq*.

2. When the processor is ready to accept an external request, it releases the
system interface from master to slave state by deasserting PMaster*.

3. The system interface returns to master state as soon as the external request is
completed.

13.4.3 Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the system interface from
master state to slave state, initiated by the processor when a processor read request
is pending. PMaster* is deasserted automatically after a read request, and an
uncompelled change to slave state then occurs. This transition to slave state allows
the external agent to return read response data without arbitrating for bus
ownership. After an uncompelled change to slave state, the processor returns to
master state at the end of the next external request. This can be a read response or
some other type of external request.

When the processor returns from the uncompelled transition depends on the cache
status. The processor returns to the master state when the following external
request (read response or other external request) is completed after the
uncompelled transition to the slave state.

An external agent must note that the processor has performed an uncompelled
change to slave state and begin driving the SysAD bus along with the SysCmd
bus. As long as the system interface is in slave state, the external agent can begin
an external request without arbitrating for the system interface; that is, without
asserting EReq*.

If EReq* is inactive at the time the external request is completed, the system
interface automatically returns to master state.

Table 13-1 lists the abbreviations and definitions for each of the buses that are
used in the timing diagrams that follow.
270 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Table 13-1 System Interface Requests

13.5 Processor Request Protocols

Processor request protocols described in this section include:

• Read

• Writ

Note: In the timing diagrams, the two closely spaced, wavy vertical lines,
such as those shown in Figure 13-4, indicate one or more identical
cycles that are not illustrated due to space constraints.

Figure 13-4 Symbol for Undocumented Cycles

Scope Abbreviation Meaning

Global Unsd Unused

SysAD (31:0)
bus

Addr Physical address

Data<n> Data element number n of a block of data

SysCmd (4:0)
bus

Cmd An unspecified system interface command

Read
A processor or external read request
command

Write
A processor or external write request
command

NData
A data identifier for a data element other
than the last data element

NEOD A data identifier for the last data element
VR5432 Microprocessor User’s Manual 271

Chapter 13
13.5.1 Processor Read Request Protocol

A processor read request is issued by outputting a read command on the SysCmd
(4:0) bus, a read address on the SysAD (31:0) bus, and asserting PValid*. Only
one processor read request may be pending at a time; the processor must wait for
an external read response before starting a subsequent read request.

The processor makes an uncompelled change to slave state after the read request
cycle by deasserting the PMaster* signal. An external agent then returns the
requested data through a read response.

Once the processor enters slave state (starting at cycle 5 in Figure 13-5), the
external agent can return the requested data through a read response. The read
response returns the requested data or, if the requested data could not be
successfully retrieved, indicates on the SysCmd (4:0) bus that the returned data is
erroneous. If the returned data is erroneous, the processor generates a Bus Error
exception.

Figure 13-5 illustrates a processor read request, followed by an uncompelled
change to slave state, that occurs as the read request is issued. Figure 13-6 shows
the processor read request delayed by the EOK* signal.

The following sequence describes the protocol for a processor read request (the
numbered steps below correspond to Figure 13-5 and Figure 13-6).

1. The processor is in the master state. It outputs a read command to SysCmd
(4:0) and a read address to SysAD (31:0) to issue a read request. After the read
request is issued, the processor enters the suspended state. Only one read
request can be suspended at a time.

2. The processor asserts the PValid* signal to indicate that the current data on
SysCmd (4:0) and SysAD (31:0) is valid.

3. The external agent asserts the EOK* signal for two consecutive cycles to
enable issuance of a processor read request. If the EOK* signal is deasserted,
the issuance cycle of the read request is delayed.

4. The processor deasserts the PMaster* signal on the first cycle after the read
request is accepted, followed by an uncompelled shift to slave state.

5. The processor releases SysCmd (4:0) and SysAD (31:0) at the same time as
the PMaster* signal is deasserted.

6. An external agent can drive SysCmd (4:0) and SysAD (31:0) from the first
cycle after the PMaster* signal is deasserted.
272 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Figure 13-5 Uncompelled Transition Following Processor Read Request

Figure 13-6 Delayed Processor Read Request

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD (I/O) Addr

SysCmd (I/O) Read

PValid* (O)

EValid* (I)

PMaster* (O)

2

3

4

5
6

Processor External Agent

EOK* (I)

1

H

Hi-Z

Hi-Z

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD (I/O) Addr

SysCmd (I/O)

PValid* (O)

EValid* (I)

PMaster* (O)

2

3

4

5

6

Processor External Agent

EOK* (I)

1

H

Hi-Z

Hi-Z
Read
VR5432 Microprocessor User’s Manual 273

Chapter 13
13.5.2 Processor Write Request Protocol

Processor write requests are issued by outputting a write command on the SysCmd
(4:0) bus and a write address on the SysAD (31:0) bus, and asserting the PValid*
signal. After that, a data identifier is output on SysCmd (4:0), write data is output
on SysAD (31:0), and the PValid* signal is asserted active during the cycles
necessary for transferring the data. The transfer rate at this time is set by the EP
bits of the Config register.

The data cycle is based on the size of the write request.

• 1 to 4 bytes—Single data cycle

• 5 to 7 bytes—Divided into two single write requests (one is 4 byte
long and the other is 1 to 3 bytes long)

• 8 bytes or more—Block data cycle in 4-byte units

The last data is appended with an NEOD (End of Data) data identifier.

Figure 13-7 shows a processor block write request with write data pattern W, and
Figure 13-8 shows a processor block write request with write data pattern Wxx.

The following sequence describes the protocol of the processor write request (the
numbers correspond to the numbers in Figure 13-7 and Figure 13-8).

1. The processor is in the master state. It outputs a write command on SysCmd
(4:0) and a write address on SysAD (31:0) to issue a write request.

2. The processor asserts the PValid* signal to indicate that the current data on
SysCmd (4:0) and SysAD (31:0) are valid.

3. The external agent asserts the EOK* signal for two consecutive cycles to
enable issuance of a processor write request. If the EOK* signal is deasserted,
the issuance cycle of the write request is delayed.

4. The processor outputs a data identifier on SysCmd (4:0) and write data on
SysAD (31:0).

5. The processor asserts the PValid* signal for the cycles necessary for data
transfer, and transfers the data.

6. The last data is appended with the EOD data identifier.
274 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Figure 13-7 Processor Block Write Request (Write Data Pattern: W)

Figure 13-8 Processor Block Write Request (Write Data Pattern: Wxx)

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD (I/O)

SysCmd (I/O)

PValid* (O)

PMaster* (I)

5

3

2

4

Processor

1

EOK* (I)

Addr Data0 Data1 Data2 Data3

Write Data Data Data EOD
6

L

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD(I/O) Addr

SysCmd (I/O) Write Data

PValid* (O)

PMaster* (O)
5

3

2

4

Processor

1
Data0

EOD

Data1

5

6

L

EOK* (I)
VR5432 Microprocessor User’s Manual 275

Chapter 13
13.5.3 Processor Request Flow Control

The external agent uses the EOK* signal to control the flow of processor read
requests. The processor repeats the current address cycle until the EOK* signal is
asserted active. This address cycle continues for 1 cycle after the EOK* signal is
asserted, and then the issuance cycle ends. The EOK* signal must be asserted for
at least two consecutive cycles.

Figure 13-9 and Figure 13-10 show how to use the EOK* signal (the numbers in
the description below correspond to the numbers in Figure 13-9 and Figure 13-
10).

1. Because the EOK* signal on the previous cycle is inactive, the processor
request is delayed and the address cycle does not end.

2. Because the EOK* signal on the previous cycle is active, the processor
request is not delayed and the address cycle ends.

Figure 13-9 Delayed Processor Read Request

SysCycle 1 2 3 4 5 6 7 8 9 10

SysClock

SysAD (I/O) Addr

PMaster* (O)

Processor

21

SysCmd (I/O)

PValid* (O)

EOK* (I)

External Agent

11 12

Read
276 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Figure 13-10 Delayed Second Processor Write Request

13.5.4 Successive Processing of Requests

13.5.4.1 Successive processor write requests

The processor write requests may be successively operated as follows.

• Using data pattern “W”—the processor write requests are processed
without wait states, as shown in Figure 13-11

• Using data pattern “Wxx”—the write requests are separated by a wait
state of two cycles, as shown in Figure 13-12.

The processor write requests may be successively issued in the following four
cases:

• Successive single write request

• Successive block write request

• Block write request after single write reques

• Single write request after block write reques

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysCloc

SysAD (I/O) Add Data Addr Data

SysCmd (I/O) Write EOD Write EOD

PValid* (O)

EOK* (I)

1

Processor

2

PMaster* (O) L
VR5432 Microprocessor User’s Manual 277

Chapter 13
Figure 13-11 Successive Block Write Requests (Write Data Pattern: W)

Figure 13-12 Successive Single Write Requests (Write Data Pattern: Wxx)

Addr AddrData0 Data1 Data0 Data1

Processor B lock W rite Processor B lock W rite

Addr W aitData W ait Addr Data

Processor
S ingle W rite

Processor
S ingle W riteW ait
278 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.5.4.2 Processor write request followed by processor read request

Figure 13-13 shows a case where a processor read request follows a processor
write request using write data pattern W.

Figure 13-13 Processor Write Request Followed by Processor Read Request

SysCycle

SysClock

SysAD (I/O) Addr Data0 Data1 Add

SysCmd (I/O)

PMaster* (O)

1 2 3 4 5 6 7 8 9 10 11

PValid* (O)

Data
Hi-ZHi-Z

Write Data EOD Read EOD
Hi-ZHi-Z

Processor

External

Processor

EOK* (I)

EValid* (I)

Agent
VR5432 Microprocessor User’s Manual 279

Chapter 13
13.5.4.3 Processor read request followed by processor write request

Figure 13-14 shows a case where a processor write request follows a processor
read request using write data pattern W.

Figure 13-14 Processor Single Read Request Followed by Block Write Request

SysCycle

SysClock

SysAD (I/O) Addr Addr Data0Data1

SysCmd (I/O))

PMaster* (O)

1 2 3 4 5 6 7 8 9 10 11

PValid* (O)

Data
Hi-ZHi-Z

Processor
External

Processor

EOK* (I)

EValid* (I)

Read Write Data EODEOD
Hi-ZHi-Z

Agent
280 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.5.4.4 Processor write request followed by external write request

Figure 13-15 shows a case where processor write requests are followed by an
external write request using write data pattern W.

Figure 13-15 Processor Write Requests Followed by External Write Request

13.6 External Request Protocols

External requests can only be issued with the system interface in slave state. The
EReq* signal is asserted by the external agent to arbitrate for the system interface,
which then waits for the processor to release the system interface to slave state. If
the system interface is already in slave state, the external agent can begin an
external request immediately.

After issuing an external request, the external agent must return mastership of the
system interface to the processor, as described below.

Following the description of the arbitration protocol, this section also describes
the following external request protocols:

• Writ

• Read response

SysCycle

SysCloc

SysAD (I/O) Add Data Add Data

SysCmd (I/O)

PMaster* (O)

1 2 3 4 5 6 7 8 9 10 11

PValid* (O)

Addr
Hi-ZHi-Z

Processor External Agent Processor

EValid* (I)

EReq* (I)

Data

Write EOD Write EOD Write
Hi-ZHi-Z

EOD

EOK* (I) L
VR5432 Microprocessor User’s Manual 281

Chapter 13
13.6.1 External Arbitration Protocol

Usually, the processor serves as the bus master. However, the processor
relinquishes control of the bus and enters the slave state in the following cases:

• If the external agent issues a request and the system interf
responds to that request

• After the processor has issued a read request

Arbitration to allow the processor to enter the slave state from the master state is
performed using the handshake signals (EReq*, PReq*, and PMaster*) of the
system interface.

13.6.1.1 State transition on read response

While the processor read request is kept pending, the processor enters the slave
state by deasserting the PMaster* signal inactive, and the external agent returns
read response data.

If the EReq* signal is deasserted inactive, the processor remains in the slave state
until the read response data is returned, and then returns to the master state by
asserting the PMaster* signal active.

The external agent can remain in the master state as long as the EReq* signal
remains active when the read response is returned.
282 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.6.1.2 Acquiring bus control with EReq*

If the processor is in the master state when the external agent has issued an
external request, the external agent gains control of the bus by asserting the EReq*
signal active and waiting until the processor deasserts the PMaster* signal
inactive. When the processor deasserts the PMaster* signal inactive, the external
agent has bus control.

Once the external agent has entered the master state, it can remain in the master
state as long as the EReq* signal is asserted active. When EReq* is deasserted, the
processor acquires bus control two cycles later.

Figure 13-16 shows the arbitration protocol of the external request issued by the
external agent.

The following sequence describes the arbitration protocol (the numbers in the
sequence correspond to the numbers in Figure 13-16).

1. The external agent continues asserting the EReq* signal active to issue an
external request.

2. When the processor is ready to process the external request, it deasserts the
PMaster* signal inactive.

3. The processor puts SysAD (31:0) and SysCmd (4:0) in the high-impedance
state.

4. The external agent should drive SysAD (31:0) and SysCmd (4:0) one cycle
after the PMaster* signal has been deasserted inactive.

5. The external agent can deassert the EReq* signal inactive in the last cycle of
the external request (2 cycles before the external agent enters the slave state),
except when it executes another external request.

6. The external agent should put SysAD (31:0) and SysCmd (4:0) in the high-
impedance state on completion of the external request.

If the external agent has entered the master state by issuing the processor read
request, the external agent must always return read request data. If the external
agent has entered the master state by using the EReq* signal, any command and
data can be issued in accordance with the arbitration process. This means that the
processor always satisfies any request from the external agent.
VR5432 Microprocessor User’s Manual 283

Chapter 13
Figure 13-16 Arbitration of External Request

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysCloc

SysAD (I/O) External: Addr/Data

SysCmd (I/O)

EValid* (I)

EReq* (I)

PMaster* (O)

6

1

2

3

5

4

Processor Processor
External
 Agent

Hi-Z Hi-Z

External: Comman
Hi-Z Hi-Z
284 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.6.1.3 Restoring bus control with PReq*

Once the external agent has entered the master state, the processor cannot stop the
operation of the external agent. However, the processor can request bus control by
asserting the PReq* signal. At this time, the external agent must deassert the
EReq* signal inactive in response to the request by the processor, giving
consideration to the priority of the system.

The processor asserts the PMaster* signal two cycles after the EReq* signal has
deasserted to inform the external agent that the processor has regained bus control.

Figure 13-17 illustrates how the processor requests bus control and how the
external agent releases the bus in response.

At reset (when the Reset* or ColdReset* signal is asserted), the processor enters
the master state, and the external agent enters the slave state.

Figure 13-17 Bus Arbitration by the Processor

Processor Command
Hi-Z

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysCloc

SysAD (I/O) Processor Addr/Data

SysCmd (I/O)

PReq* (O)

EReq* (I)

PMaster* (O)

1

Processor
External
 Agent

Hi-Z

External Command

External Addr/Data

EOK* (I) L
VR5432 Microprocessor User’s Manual 285

Chapter 13
13.6.2 External Write Request Protocol

External write requests are similar in operation to a processor single write request,
except that the EValid* signal is asserted in place of the PValid* signal.

When the processor is in slave state, the external agent can perform an external
write request by outputting a write command on the SysCmd (4:0) bus, a write
address on the SysAD (31:0) bus, and asserting the EValid* signal for one cycle.
This is followed by outputting a data identifier on the SysCmd (4:0) bus, data on
the SysAD (31:0) bus, and holding EValid* asserted for one more cycle. The data
identifier of the data cycle must contain an end of data (NEOD) cycle indication.
The EReq* signal is kept asserted while the external write request is issued.

After the data cycle is issued, the write request is completed. The external agent
releases the SysCmd (4:0) and SysAD (31:0) buses and allows the system
interface to enter master state.

An external write request with the processor generated in master state is illustrated
in Figure 13-18.

Figure 13-21 shows an example in which the external agent issues an external
write request following a read response. The external write request cannot be
issued while read response data is transferred. It can be issued before the read
response or after the last read data response. Only interrupt processing can be
invoked by an external write request.

Figure 13-18 External Write Request Protocol

Write
Hi-Z Hi-ZEOD

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD (I/O) Addr

SysCmd (I/O)

EValid* (I)

EReq* (I)

PMaster* (O)

Processor ProcessorExternal
 Agent

Hi-Z Hi-ZData

PValid* (O) H
286 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.6.3 External Read Response Protocol

Before an external agent returns data to the processor, the processor sends a read
request, then moves to slave state. The external agent then returns the data through
a number of data cycles sufficient for the requested data size.

The SysCmd (4:0) and SysAD (31:0) buses are released after the last data cycle is
issued. If the EReq* signal is inactive at this time, the processor returns to the
master state two cycles after the last data cycle.

The data identifier associated with a data cycle may indicate that data transferred
during this cycle is erroneous; however, an external agent must return a specific
data block whether or not the data is erroneous. If a read response includes one or
more erroneous data cycles, the processor generates a Bus Error exception.

Read response data can be transferred to the processor only when a processor read
request is pending. If a read response is transferred to the processor while no
processor read request is pending, the operation of the processor is undefined.

A processor read request followed by a read response is illustrated in Figure 13-
19. A read response for a processor block read response with the processor already
in slave state is illustrated in Figure 13-20.

Figure 13-19 Read Request/Read Response Protocol

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD (I/O) Addr

SysCmd (I/O)

EValid* (I)

EReq* (I)

PMaster* (O)

Processor ProcessorExternal
 Agent

Hi-Z Hi-Z
Data

PValid* (O

H

Read
Hi-Z Hi-Z

EOD

EOK* (I)
VR5432 Microprocessor User’s Manual 287

Chapter 13
Figure 13-20 Block Read Response in Slave State

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD (I/O) Data0 Data1 Data2 Data3

SysCmd (I/O) Data Data Data EOD

PValid* (O)

EValid* (I)

PMaster* (O)

External Agent Processor

H

Hi-Z

Hi-Z
288 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Figure 13-21 shows the case of an external write request being issued following a
read response to a processor read request. The following sequence describes the
protocol (the numbers in the following description correspond to the numbers in
Figure 13-21).

1. The external agent returns response data to the processor read request.

2. To issue an external request following the read response, assert the EReq*
signal active in the cycle in which an EOD is returned. In this case, the
PMaster* signal remains inactive two cycles after the EOD.

3. Because the external agent is in the master state, it can issue the external write
request.

4. Deassert the EReq* signal inactive up to the data cycle of the external write
request. In this case, the PMaster* signal is asserted active two cycles after
the EOD and bus control is returned to the processor.

Figure 13-21 External Write Request Following Read Request

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD (I/O) Addr

SysCmd (I/O)

EReq* (I)

PMaster* (O)

Processor ProcessorExternal
 Agent

Hi-Z Hi-Z

EValid* (I

EOK* (I)

Data Add Data

Read
Hi-Z Hi-ZEOD Write EOD

PValid* (O)
1 2 3

4

VR5432 Microprocessor User’s Manual 289

Chapter 13
Figure 13-22 shows an example in which an external write request interrupts a
read response to a processor read request. Cycle 5 in Figure 13-22 transfers the
write data for the external write request in cycle 4, and cycle 7 transfers the read
response data.

Figure 13-22 External Write Request Interrupts Processor Read Request

As shown in Figure 13-22, even if the external request interrupts the processor
read request, the processor remains in the slave state until the read response data
is returned.

13.7 Discarding and Re-Executing Commands

13.7.1 Re-Execution of Processor Commands

The external agent executes and controls the processor command with the EOK*
signal. When the processor serves as the master, the processor cannot issue a
command until the EOK* signal is active for at least two cycles.

If the EOK* signal is active for only one cycle before the processor issues a
command and then becomes inactive in the next cycle in which the command is
issued, the processor command is discarded. At this time, the external agent must
ignore the discarded command.

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysCloc

SysAD (I/O Addr

SysCmd (I/O)

PMaster* (O)

Processor ProcessorExternal
 Agent

Hi-Z Hi-Z

EValid* (I)

EOK* (I)

Data DataAddr

PValid* (O)

Read
Hi-Z Hi-Z

EOD EODWrite
290 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.7.1.1 Discarding a write command

When a write command is discarded, the processor issues the write data and then
reissues the write command. The external agent must ignore the write data
following the discarded write command.

13.7.1.2 Discarding a read command

When a read command is discarded, the processor enters the slave state in the
cycle following the address cycle of the read request. If the EReq* signal is not
active at this time, the processor returns to the master state again one cycle later,
and reissues the read request.

13.7.2 Discarding and Re-Executing a Write Command

Figure 13-23 illustrates how a processor single write request is discarded and re-
executed. The following sequence describes the protocol (the numbers in the
following description correspond to the numbers in Figure 13-23).

1. Because the EOK* signal is active one cycle before (cycle 2) the write request
of Data0, this cycle is the issuance cycle.

2. Because the EOK* signal is active in the write request cycle of Data0 (cycle
3), the next cycle is a normal data cycle.

3. Because the EOK* signal is active one cycle (cycle 4) before the write request
of Data1, this cycle is the issuance cycle.

4. Because the EOK* signal is inactive in the write request cycle of Data1 (cycle
5), the data of the next cycle is discarded. At this time, data and command is
output to SysAD (31:0) and SysCmd (4:0), which must be ignored by the
external agent.

5. Because the EOK* signal is inactive one cycle (cycle 6) before the write
request of the second Data1, the write request is delayed.

6. Because the EOK* signal is active one cycle (cycle 9) before the write request
of the second Data1, this cycle is the issuance cycle.

7. Because the EOK* signal is active in the write request cycle (cycle 10) of the
second Data1, the next cycle is a normal data cycle.
VR5432 Microprocessor User’s Manual 291

Chapter 13
Figure 13-23 Discarding and Re-Executing a Processor Single Write Request

SysCycle 1 2 3 4 5 6 7 8 9 10 11 12

SysClock

SysAD (I/O) Addr1 Data1

SysCmd (I/O)

PValid* (O)

EOK* (I)

PMaster* (O)

4 5

61 2 3

Addr0 Data0 Data1Addr1

Write EODWrite EOD EODWrite

L

7

Processor
292 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.7.3 Discarding and Re-Executing a Read Command

Figure 13-24 illustrates how a processor single read request is discarded and re-
executed. The following sequence describes the protocol (the numbers in the
following description correspond to the numbers in Figure 13-24).

1. Because the EOK* signal is low in cycle 5, the processor tries to issue a
command and address (cycle 6).

2. If the EOK* signal is high at this point, the processor discards this read
request and enters the slave state in the next cycle.

3. Because the EReq* signal is inactive, the processor returns to the master state
again and reissues the read request. Because the EOK* signal is low in both
cycles 7 and 8, the issuance cycle of the read request is accepted.

4. The external agent outputs data from the requested address.

Figure 13-24 Discarding and Re-Executing a Processor Single Read Request

SysC ycle 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

SysC lock

SysA D Bus Addr

SysC m d Bus

PM aster* (O)

ER eq* (I)

EO K * (I)

PV a lid* (O)

1

2

3

D ataH i-Z Addr H i-Z H i-Z

R ead E O D
H i-Z

R ead
H i-Z H i-Z

H

EV alid* (I)

P rocessor
Exte rnal

ProcessorAgent
VR5432 Microprocessor User’s Manual 293

Chapter 13
13.7.4 Executing and Discarding a Command

13.7.4.1 When the external agent requests bus control

The external agent requests the bus by asserting the EReq* signal active. At this
time, the external agent can acquire bus control after it has accepted one processor
read/write request only, or without accepting any request.

If the EReq* signal is asserted active while the external agent delays the processor
request by deasserting the EOK* signal inactive, the external agent can forcibly
acquire bus control.

13.7.4.2 When the processor requests bus control

The processor requests bus mastership by asserting the PReq* signal active. At
this time, the external agent should transfer bus control to the processor, giving
consideration to the priority of the system. If the external agent keeps the EReq*
signal inactive for more than one cycle, control of the bus is released.

The processor acquires bus control by asserting the PMaster* signal active two
cycles after the EReq* signal has become inactive. If the EOK* signal is active at
this time, the processor can issue a request.

Figure 13-25 shows an example in which the external agent has entered the slave
state (i.e., the EReq* signal is inactive) from the master state, and then acquires
bus control again after accepting one processor request.

Figure 13-25 External Agent Releasing Bus Control in Response to Processor Request

S ysC ycle 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

S ysC lock

S ysA D (I/O) A ddr D ata0 D ata1

S ysC m d (I/O)

P M aster* (O)

E R eq* (I)

E O K * (I)

H i-ZH i-Z

 W rite D ata EO D
H i-ZH i-Z

P R eq* (O)

P Valid* (O)

P roce sso rE xte rna l A g e n t E x te rna l A g e n t
294 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.8 SysADC (3:0) Protocol

In the R43K mode, SysADC (3:0) are unused.

13.9 Data Flow Control

The system interface supports a maximum data rate of one word per cycle.

13.9.1 Read Response

An external agent may transfer data to the processor at the maximum data rate of
the system interface. The rate at which data is transferred to the processor can be
controlled by the external agent, which asserts the EValid* signal on the cycle in
which data is transferred. The processor accepts cycles as valid only when
EValid* is asserted and the SysCmd (4:0) bus contains a data identifier.
Thereafter, the processor continues to accept data until it receives the data word
tagged as the last one.

Data identifier EOD indicates the last data word. Without receiving this
indication, the system interface hangs up as a protocol error. In this case, the
protocol error state indicated by PReq* toggling at half the MasterClock (i.e.,
SysClock) rate should invoke a reset initialization.

13.9.2 Write Request

The rate at which the processor transfers data to an external agent is
programmable through the EP bits of the Config register (setting at reset is W)
signal. Data patterns are defined using the letters W and x, where W indicates a
word data cycle and x indicates an unused cycle. For example, a Wxx data pattern
indicates a data rate of one word every three cycles. The VR5432 in R43K mode
has two data transfer rates: W and Wxx. (A processor block write request with a
Wxx data pattern (one word every three cycles) was shown in Figure 13-8.)
VR5432 Microprocessor User’s Manual 295

Chapter 13
13.9.3 Independent Transfer on the SysAD (31:0) Bus

In general applications, the SysAD (31:0) bus is a point-to-point connection,
running from the processor to a bidirectional register transceiver residing in an
external agent. For these applications, the SysAD (31:0) bus has only two possible
devices to connect, the processor and the external agent.

Certain applications may require connection of additional drivers and receivers to
the SysAD (31:0) bus, to allow transfers over the SysAD (31:0) bus that the
processor is not involved in. These are called independent transfers. To perform
an independent transfer, the external agent must coordinate control of the SysAD
(31:0) bus by using arbitration handshake signals (i.e., EReq*, PMaster*, and
PReq*).

An independent transfer on the SysAD (31:0) bus follows this sequence:

1. The external agent asserts the EReq* signal and requests mastership of the
SysAD (31:0) bus, to issue an external request.

2. The processor deasserts the PMaster* signal and releases the system interface
to slave state.

3. The external agent then allows the independent transfer to take place on the
SysAD (31:0) bus, making sure that the EValid* signal is not asserted during
the transfer.

4. When the transfer is completed, the external agent deasserts EReq* to return
the system interface to master state.

To connect multiple devices, separate enable signals for controlling each device
are required to allow the nonprocessor chips to communicate.

13.9.4 System Endianness

The endianness of the system is determined by the BigEndian pin. Software can
check system endianness by reading the BE bit of the Config register. If this bit is
set to 1, the system is running in Big-Endian mode; otherwise, the system is
running in Little-Endian mode.
296 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.10 System Interface Cycle Time

The processor has minimum and maximum cycle counts for the time required for
various processor transactions and for the processor response time to external
requests. Processor requests themselves are constrained by the system interface
protocol, and request cycle counts can be determined by examining the protocol.
System interface interactions that can vary within minimum and maximum cycle
counts include the waiting period for the processor to release the system interface
to slave state in response to an external request (release latency).

The remainder of this section describes and tabulates the minimum and maximum
cycle counts for these system interface interactions.

13.10.1 Release Latency Time

Release latency time is defined as the number of cycles the processor can wait to
release the system interface to slave state in response to an external request. When
no processor requests are in progress, internal activity can cause the processor to
wait some number of cycles before releasing the system interface. Release latency
time is therefore the number of cycles from EReq* being asserted active until
PMaster* is deasserted inactive.

There are two categories of release latency time:

1. When the EReq* signal is asserted one cycle before the last cycle of a
processor request

2. When the EReq* signal is not asserted during a processor request, or is
asserted during the last cycle of a processor request

Table 13-2 shows the minimum and maximum release latency time for requests
that fall into categories 1 and 2.

Caution: The values in Table 13-2 are approximations and subject to change.

Table 13-2 Release Latency Time for External Requests

Category Minimum PCycles Maximum PCycles

1 4 6

2 4 24
VR5432 Microprocessor User’s Manual 297

Chapter 13
13.11 System Interface Commands and Data Identifiers

System interface commands specify the types and attributes of any system
interface request; this specification is made during the address cycle for the
request. System interface data identifiers specify the attributes of data transferred
during a system interface data cycle. The following sections describe the syntax
of the protocol, the encoding of the bit patterns used for system interface
commands, and data identifiers.

Reserved bits and reserved fields must be driven to 1 for system interface
commands and data identifiers associated with external requests. For system
interface commands and data identifiers associated with processor requests,
reserved bits and reserved fields in the commands and data identifiers are
undefined.

13.12 Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in 5 bits and are
transferred on the SysCmd (4:0) bus from the processor to an external agent, or
from an external agent to the processor, during address and data cycles.

Bit 4 (the most-significant bit) of the SysCmd (4:0) bus determines whether the
current content of the SysCmd bus is a command or a data identifier and therefore,
whether the current cycle is an address cycle or a data cycle. For system interface
commands, SysCmd (4) must be driven to 0. For system interface data identifiers,
SysCmd (4) must be driven to 1.

Table 13-3 Encoding of SysCmd (4) for System Interface Commands

Bit Meaning

SysCmd (4)
Attributes

0: Command (address)
1: Data identifier
298 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
13.12.1 System Interface Command Syntax

This section describes the SysCmd (4:0) bus encoding for system interface
commands. Figure 13-26 shows the common encoding used for all system
interface commands.

Figure 13-26 System Interface Command Bit Definition

SysCmd (4) must be driven to 0 for all system interface commands.

SysCmd (3) specifies the system interface request type, which may be read or
write.

Table 13-4 Encoding of SysCmd (3) for System Interface Commands

SysCmd (2:0) are specific to each type of request and are defined in the following
sections.

Bit Meaning

SysCmd (3)
Command

0: Read request
1: Write request

0 Request
Type Request Details

0234
VR5432 Microprocessor User’s Manual 299

Chapter 13
13.12.2 Read Requests

Figure 13-27 shows the format of a SysCmd read request.

Figure 13-27 Read Request SysCmd (4:0) Bit Definition

Table 13-5 through Table 13-7 list the encoding of SysCmd (2:0) bits for read
requests.

Table 13-5 Encoding of SysCmd (2) for Read Requests

Table 13-6 Encoding of SysCmd (1:0) for Block Read Requests

Note: The read block size of 8 words is available only when the address
starts at A[4:0] = 00000. Otherwise, the 8-word block is broken into
4-word blocks.

Table 13-7 Encoding of SysCmd (1:0) for Single Read Requests

Bit Meaning

SysCmd (2)
Read attributes

0: Single read
1: Block read

Bit Meaning

SysCmd (1:0)

Read block size
0: 2 words
1: 4 words
2: 8 words
3: Reserved

Bit Meaning

SysCmd (1:0)

Read data size
0: 1 byte valid (byte)
1: 2 bytes valid (halfword)
2: 3 bytes valid
3: 4 bytes valid (word)

0

0234

0
Read Request Details

(see tables)
300 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Table 13-8 Processor Read Orders

Transfer Types
VR5432 in R43K Mode
(Little-Endian System)

VR5432 in R43K Mode
(Big-Endian System)

Block

(A[4:0] = 00000)

(Dn[31:0] is the low-order word and
Dn[63:32] is the high-order word of the
doubleword Dn[63:0])

1. D0[31:0]
2. D0[63:32]
3. D1[31:0]
4. D1[63:32]
5. D2[31:0]
6. D2[63:32]
7. D3[31:0]
8. D3[63:32]

1. D0[63:32]
2. D0[31:0]
3. D1[63:32]
4. D1[31:0]
5. D2[63:32]
6. D2[31:0]
7. D3[63:32]
8. D3[31:0]

Block

(A[4:0] = 01000)

1. D1[31:0]
2. D1[63:32]
3. D0[31:0]
4. D0[63:32]

1. D1[63:32]
2. D1[31:0]
3. D0[63:32]
4. D0[31:0]

Block

(A[4:0] = 11000)

5. D3[31:0]
6. D3[63:32]
7. D2[31:0]
8. D2[63:32]

5. D3[63:32]
6. D3[31:0]
7. D2[63:32]
8. D2[31:0]

Block

(A[4:0] = 10000)

1. D2[31:0]
2. D2[63:32]
3. D3[31:0]
4. D3[63:32]

1. D2[63:32]
2. D2[31:0]
3. D3[63:32]
4. D3[31:0]

Block

(A[4:0] = 00000)

5. D0[31:0]
6. D0[63:32]
7. D1[31:0]
8. D1[63:32]

5. D0[63:32]
6. D0[31:0]
7. D1[63:32]
8. D1[31:0]

Block

(A[4:0] = 11000)

1. D3[31:0]
2. D3[63:32]
3. D2[31:0]
4. D2[63:32]

1. D3[63:32]
2. D3[31:0]
3. D2[63:32]
4. D2[31:0]

Block

(A[4:0] = 01000)

5. D1[31:0]
6. D1[63:32]
7. D0[31:0]
8. D0[63:32]

5. D1[63:32]
6. D1[31:0]
7. D0[63:32]
8. D0[31:0]

Doubleword
1. D[31:0]
2. D[63:32]

1. D[63:32]
2. D[31:0]

Word (or Partial Word) 1. W[31:0] 1. W[31:0]
VR5432 Microprocessor User’s Manual 301

Chapter 13
13.12.3 Write Requests

Figure 13-28 shows the format of a SysCmd write request.

Table 13-9 lists the write attributes encoded in SysCmd (2). Table 13-10 lists the
block write replacement attribute encoded in SysCmd (1:0). Table 13-11 lists the
single write request encoded in bits SysCmd (1:0).

Figure 13-28 Write Request SysCmd (4:0) Bus Bit Definition

Table 13-9 Encoding of SysCmd (2) for Write Requests

Table 13-10 Encoding of SysCmd (1:0) for Block Write Requests

Table 13-11 Encoding of SysCmd (1:0) for Single Write Requests

Bit Meaning

SysCmd (2)
Write attributes

0: Single write
1: Block write

Bit Meaning

SysCmd (1:0)

Write block size
0: 2 words
1: 4 words
2: Reserved
3: Reserved

Bit Meaning

SysCmd (1:0)

Write data size
0: 1 byte valid (byte)
1: 2 bytes valid (halfword)
2: 3 bytes valid
3: 4 bytes valid (word)

0

0234

1
Write Request Details

(see tables)
302 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Table 13-12 Processor Write Orders

The external agent can only write one word at a time to the VR5432; it takes one
bus clock to transfer the word from the external agent to the VR5432.

Transfer Types
VR5432 in R43K Mode
(Little-Endian System)

VR5432 in R43K Mode
(Big-Endian System)

Block

(Dn[31:0] is the low-order word and
Dn[63:32] is the high-order word of the
doubleword Dn[63:0])

First 4-word block:
1. D0[31:0]
2. D0[63:32]
3. D1[31:0]
4. D1[63:32]

Second 4-word block:
5. D2[31:0]
6. D2[63:32]
7. D3[31:0]
8. D3[63:32]

First 4-word block:
1. D0[63:32]
2. D0[31:0]
3. D1[63:32]
4. D1[31:0]

Second 4-word block:
5. D2[63:32]
6. D2[31:0]
7. D3[63:32]
8. D3[31:0]

Doubleword
1. D[31:0]
2. D[63:32]

1. D[63:32]
2. D[31:0]

Word (or Partial Word) 1. W[31:0] 1. W[31:0]
VR5432 Microprocessor User’s Manual 303

Chapter 13
13.12.4 System Interface Data Identifier Syntax

This section defines the encoding of the SysCmd (4:0) bus for system interface
data identifiers. Figure 13-29 shows a common encoding used for all system
interface data identifiers.

Figure 13-29 Data Identifier SysCmd (4:0) Bus Bit Definition

SysCmd (4) must be set to 1 for all system interface data identifiers.

13.12.5 Data Identifier Bit Definitions

This section describes SysCmd (3:0) bit definitions.

SysCmd (3) marks the last data element.

SysCmd (2) indicates whether or not the data is response data. Response data is
data returned in response to a read request.

SysCmd (1) indicates whether or not the data element is error free. Erroneous data
contains an uncorrectable error and is returned to the processor, resulting in a Bus
Error exception. Because the VR5432 in VR4300 Compatibility mode does not
have a parity check function, the processor does not transfer data by setting the
error bit to 1.

SysCmd (0) enables a data check (reversed function). Because the VR5432 in
R43K mode does not have a data check function, the processor outputs 1 (data
check disabled) when it transfers data. When the external agent transfers data, the
processor ignores this bit. However, set this bit to 1 to disable checking.

Table 13-13 lists the encoding of SysCmd (3:0) for processor data identifiers.

Table 13-14 lists the encoding of SysCmd (3:0) for external data identifiers.

1

0234 1

Command of
last data

Command of
response

data

Command of
error data

Enables data
check
304 VR5432 Microprocessor User’s Manual

System Interface Protocols (R43K Mode)
Table 13-13 Processor Data Identifier Encoding of SysCmd (3:0)

Table 13-14 External Data Identifier Encoding of SysCmd (3:0)

13.13 System Interface Addresses

System interface addresses are full 32-bit physical addresses output on the SysAD
(31:0) bus during address cycles.

Bit Meaning

SysCmd (3)

Last-data-element indication
0: Last data element, or data element on single
transfer
1: Not the last data element

SysCmd (2) Reserved

SysCmd (1)
Reserved: error data indication

The processor outputs 0 (error free)

SysCmd (0)
Reserved: data check enabled

Processor outputs 1 (data check disabled)

Bit Meaning

SysCmd (3)

Last-data-element indication
0: Last data element, or data element on single
transfer
1: Not the last data element

SysCmd (2)
Response data indication

0: Data is response data
1: Data is not response data

SysCmd (1)
Error data indication

0: Data is error free
1: Data is erroneous

SysCmd (0)
Reserved: data check enabled

Processor ignores this bit
(external agent transfers 1)
VR5432 Microprocessor User’s Manual 305

Chapter 13
13.13.1 Addressing Conventions

Addresses associated with word or partial word data transfers are aligned for the
size of the data element. The system uses the following address conventions.

• Addresses associated with block requests are aligned to requeste
doubleword boundaries; the low-order 3 bits of the address are 0

• Word requests set the low-order 2 bits of the address to 0.

• Halfword requests set the low-order bit of the address to 0

• Byte and tribyte requests use the byte address

13.13.2 Sublock Order Data Retrieval

Sublock order is the order in which data is returned in response to a processor
block read request. The processor delivers the address of the requested
doubleword within the block. An external agent must return the block of data in
sublock order, starting with the addressed doubleword.

For block write requests, the processor always delivers the address of the
doubleword at the beginning of the block; the processor delivers data beginning
with the doubleword at the beginning of the block and progresses sequentially
through the doublewords that form the block. See Appendix A for more details.
306 VR5432 Microprocessor User’s Manual

Initialization Interface

14

The VR5432 processor performs cold and warm resets, which use the ColdReset*
and Reset* input signals.

• Cold reset. Restarts all clocks and resets the JTAG logic after th
power supply is stable A cold reset completely reinitializes the
internal state machines of the processor without saving any state
information.

• Warm reset. Restarts the processor, but does not affect clocks or
JTAG circuitry. A warm reset preserves the processor’s internal state.

14.1 Processor Reset Signals

This section describes the ColdReset* and Reset* signals.

ColdReset*. The ColdReset* signal must be asserted (low) for either a power-on
reset or a cold reset. ColdReset* must be deasserted synchronously with
SysClock.

Reset*. The Reset* signal must be asserted for any reset sequence. It can be
asserted synchronously or asynchronously for a cold reset, or synchronously to
initiate a warm reset. Reset* must be deasserted synchronously with SysClock.
VR5432 Microprocessor User’s Manual 307

Chapter 14
14.1.1 Power-On Reset

The sequence for a power-on reset is listed below.

1. Power-on reset requires a stable Vcc of at least +2.35 volts from the +2.5-volt
power source to the processor and a VccIO of at least +3.0 volts from the
+3.3-volt power source to the processor. It also requires a stable, continuous
system clock at the processor operational frequency.

2. ColdReset* is asserted for at least 64 KB (216) SysClock cycles after the
power is stable. ColdReset* must be deasserted synchronously with
SysClock.

3. After ColdReset* is deasserted synchronously, Reset* is deasserted to allow
the processor to begin running. (Reset* must be held asserted for at least 64
SysClock cycles after the deassertion of ColdReset*.) Reset* must be
deasserted synchronously with SysClock.

The mode bits BigEndian, DivMode (1:0), and BypassPLL are latched one cycle
after deassertion of ColdReset*. All of these signals must be continuously driven
to the value desired by the user during ColdReset* assertion. Upon reset, the
processor drives the SysAD bus. After Reset* is deasserted, the processor
branches to the Reset exception vector and begins executing the Cold Reset
exception code.

Figure 14-1 shows the power-on system reset timing diagram.

Figure 14-1 Power-On Reset Timing Diagram

Vcc[IO] 2.35 V,

SysCloc

≥64 K SysClocks
 ≥64
SysClock

ColdReset*

Reset*

Tds

Tds

≥100 ms

3.0 V
308 VR5432 Microprocessor User’s Manual

Initialization Interface
14.1.2 Cold Reset

A cold reset requires the same sequence as a power-on reset except that the power
is presumed to be stable before the assertion of the reset inputs.

Figure 14-2 shows the cold reset timing diagram.

Figure 14-2 Cold Reset Timing Diagram

Vcc [IO]
2.5 V, 3.3 V

SysClock

≥64 K SysClocks
 ≥64
SysClocks

ColdReset*

Reset*

Tds

Tds
VR5432 Microprocessor User’s Manual 309

Chapter 14
14.1.3 Warm Reset

To execute a warm reset, the Reset* input is asserted synchronously with
SysClock. It is then held asserted for at least 64 SysClock cycles before being
deasserted synchronously with SysClock. A warm reset forces the processor to
start with a Soft Reset exception.

A warm reset is used to reset the processor without affecting the clocks; in other
words, a warm reset is a logic reset. This allows the processor to retain as much of
its state as possible for debugging. Because a warm reset takes effect immediately
upon assertion of the Reset* signal, multicycle operations such as a cache miss or
a Floating-Point instruction may be aborted, with some loss of data.

Upon reset, the processor drives the SysAD bus. After Reset* is deasserted, the
processor branches to the Reset exception vector and begins executing the Reset
exception code. If a reset is asserted in the middle of a SysAD transaction, care
must be taken to reset all external agents to avoid SysAD bus contention.

Figure 14-3 shows the warm reset timing diagram.

Figure 14-3 Warm Reset Timing Diagram

Vcc
3.3 V

SysClock

ColdReset*

Reset*

Tds
Tds

≥64 SysClocks
310 VR5432 Microprocessor User’s Manual

Initialization Interface
14.1.4 Processor Reset State

After a power-on reset, cold reset, or warm reset, all processor internal state
machines are reset, and the processor begins execution at the reset vector.

Upon warm reset, the processor states that have been updated by the time reset
was applied are preserved. The state that is committed but not updated is lost,
because all state machines abort and return to the reset state. Therefore, the precise
state of the caches depends on whether or not a cache miss sequence was
interrupted by the reset. Also, since the processor implements nonblocking loads,
the register update is killed if the Load instruction has not yet been completed. The
branch prediction table is initialized as well.

14.2 Processor Initialization Signals

The VR5432 processor provides four input signal types that are sampled at
processor initialization. These signals are used to set up the system
clock-to-processor clock ratio, the memory organization, the clock source, and the
system interface protocol.

• DivMode (1:0) sets up the clock ratio between the internal processo
clock (PClock) and the external system clock (SysClock). Supported
ratios are 4:1, 3:1, 2.5:1, and 2:1.

• The BigEndian input signal determines the byte ordering that the
processor will use during operation. When asserted, the memor
organization is big endian

• The BypassPLL* input signal selects whether the on-chip clock is
supplied externally or generated by the on-chip PLL in
synchronization with an external clock

• The OptionR43K* input signal selects whether the native R5432
system or VR4300-compatible protocol is used.
VR5432 Microprocessor User’s Manual 311

Chapter 14
312 VR5432 Microprocessor User’s Manual

Clock Interface

15

15.1 Basic System Clocks

The clock signals used in the VR5432 processor are described in the following
sections.

15.1.1 SysClock/MasterClock

The processor bases all internal and external clocking on the single SysClock
input signal. When the VR4300-compatible system interface protocol is selected,
this signal is referred to as MasterClock. However, the functionality does not
change, and it will be called SysClock for the remainder of this chapter.

15.1.2 PClock

The processor generates an internal clock, PClock, at the initialization interface
specified by the frequency multiplier of SysClock and phase-aligned to SysClock.
For half-frequency multipliers (i.e., 2.5:1), the PClock is aligned on the opposite
phase of SysClock.
VR5432 Microprocessor User’s Manual 313

Chapter 15
15.2 Alignment to SysClock

• Processor output data changes a minimum of Tdm ns and becomes
stable a maximum of Tdo ns after the rising edge of SysClock. This
drive time is the sum of the maximum delay through the processo
output drivers and the maximum clock-to-Q delay of the processor
output registers.

• Process r input data must be stable for a maximum of Tds ns before the
rising edge of SysClock and must remain stable a minimum of Tdh ns
after the rising edge of SysClock.

15.3 Phase-Locked Loop (PLL)

The processor aligns PClock and SysClock with internal phase-locked loop (PLL)
circuits that generate aligned clocks. By their nature, PLL circuits are only capable
of generating aligned clocks for SysClock frequencies within a limited range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or jitter; a
clock aligned with SysClock by the PLL can lead or trail SysClock by as much as
the related maximum jitter.

Figure 15-1 shows the SysClock timing parameters.

Figure 15-1 SysClock Timing

SysClock

Tcr Tcf

Tch Tcl
±Tj
314 VR5432 Microprocessor User’s Manual

Clock Interface
Figure 15-2 shows the input timing parameters.

Figure 15-2 Input Timing

Figure 15-3 shows the output timing parameters measured at the midpoint of the
rising clock edge.

Figure 15-3 Output Timing

Tds Tdh

Data

SysClock

Data

Tdo min.

Tdo max.

SysClock

Data Data
VR5432 Microprocessor User’s Manual 315

Chapter 15
The SysClock input must meet the maximum rise time (Tcr), maximum fall time
(Tcf), minimum Tch time, minimum Tcl time, and Tj input jitter parameters for
proper operation of the PLL.

15.4 Bypass PLL Mode

When the BypassPLL* signal is asserted, the VR5432 processor can be put into
Bypass PLL mode. This mode requires BypassPLL* to be asserted statically from
the cold reset sequence. When this occurs, the clock signal input to the chip using
the SysClock signal will be used internally as the core clock (PClock).

The core clock will operate in a 2:1 clock ratio with the system clock. The
alignment of the two clock signals is determined at the deassertion of the
ColdReset* signal. Internal circuitry detects the deassertion of ColdReset* and
causes the clock alignment to be consistent at that point. The setup for ColdReset*
is relative to the SysClock signal. The rising edge of the SysClock signal to which
ColdReset* sets up becomes a falling edge of the system clock internally.
Therefore, the following rising edge of SysClock will correspond to the rising
edge of the system clock, so that all signals coming into and leaving the chip will
be synchronous.

Figure 15-4 shows the two cases that can occur during the cold reset sequence
from the perspective of the internally generated system clock. As shown, the
SysClock signal becomes the core clock source, which runs twice as fast as the
system clock used to synchronize all external signals. When ColdReset* is
deasserted, the second rising edge of the SysClock signal corresponds to the
alignment of the clocks. In addition to the clock adjustment shown in
Figure 15-4, it also shows that data must be correctly set up to the edge
corresponding to the rising edge of the internal system clock.

The user also should be aware that there is a delay for the clocks internally due to
the internal clock distribution. Without an internal PLL operating, the delays can
be significant. Allowances should be made in the system or test environment for
this delay.
316 VR5432 Microprocessor User’s Manual

Clock Interface
Figure 15-4 Bypass PLL Reset Timing

Tbds

Tbds

SysClock

ColdReset*

Data

System Clock
(Internal Case 2)

Data

System Clock
(Internal Case 1)

Tbcycle
VR5432 Microprocessor User’s Manual 317

Chapter 15
318 VR5432 Microprocessor User’s Manual

Index

Numerics

32-bit

addressing ... 101

data format ... 10

instructions ... 321

operands, in 64-bit mode ... 327

single-precision FP format ... 159

32-bit mode

address space ... 17

address translation ... 81

FPU operations ... 150

TLB entry format ... 64

64-bit

addressing ... 101

bus, address and data ... 22

data format ... 10

double-precision FP format ... 159

floating-point registers ... 153

operations ... 327

virtual-to-physical address translation ... 50

64-bit mode

32-bit operands, handling of ... 327

address space ... 17

address translation ... 81

FPU operations ... 150

TLB entry format ... 64
VR5432 Microprocessor User’s Manual
A

address cycles ... 206

Address Error exception ... 123

address space identifier (ASID) ... 46

address spaces

64-bit translation of ... 50

address space identifier (ASID) ... 46

physical ... 47

virtual ... 46

virtual-to-physical translation of ... 47

addresses ... 45

addressing

and data formats ... 10

big-endian ... 10

Kernel mode ... 56

little-endian ... 10

Supervisor mode ... 53

User mode ... 51

virtual address translation ... 81

See also address spaces

array, page table entry (PTE) ... 94

ASID. See address space identifier

B

Bad Virtual Address register (BadVAddr) ... 95

big-endian, byte addressing ... 10, 166

binary fixed-point format ... 161

bit definition of

ERL ... 51, 53, 56, 101

EXL ... 51, 53, 56, 101, 104, 113

IE ... 101

KSU ... 51, 53, 56

KX ... 56, 101

SX ... 53, 101

UX ... 51, 101

branch delay ... 34
799

 Index
Branch instructions, CPU ... 9

Branch instructions, FPU ... 167

Break or Trigger I/O (BkTgIO*) Signal ... 762

Breakpoint exception ... 131

Bus Error exception ... 128

byte addressing

big-endian ... 10, 166

little-endian ... 10, 166

C

Cache Error (CacheErr) register ... 110

Cache Error exception ... 127

Cache Error exception process ... 114

Cause register ... 102

central processing unit (CPU)

data formats and addressing ... 10

exception processing ... 91

See also exception processing, CPU

instruction formats ... 8

instruction set

overview ... 8

instructions. See instructions, CPU

interrupts ... 143

See also interrupts, CPU

memory management

See also memory management

operating modes ... 17

registers

See also registers, CPU

System Control Coprocessor (CP0) ... 63

transfers between FPU and CPU ... 165

ckseg0 ... 62

ckseg1 ... 62

ckseg3 ... 62

cksseg ... 62

Clock interface ... 313
800
signals ... 24

cold reset ... 307

Compare instructions, FPU ... 167

Compare register ... 96

compatibility

DEC VAX ... 10

iAPX x86 ... 10

IBM 370 ... 10

MC68000 ... 10

computational instructions, CPU ... 9

64-bit operations ... 327

formats ... 326

computational instructions, FPU

floating-point ... 167

Config register ... 77

Context register ... 94

Control/Status register, FPU ... 153, 155

conversion instructions, FPU ... 166

coprocessor instructions ... 9

Coprocessor Unusable exception ... 133

Count register ... 95

CP0. See System Control Coprocessor

csseg ... 56

D

Data Access Breakpoint ... 754

Data Breakpoint Address Mask register ... 758

Data Breakpoint Address register ... 757

Data Breakpoint Control/Status register ... 755

Data Breakpoint Data Mask register ... 759

Data Breakpoint Data register ... 758

data cycles ... 206

data formats

and addressing ... 10

byte ordering ... 10

data identifiers ... 243
VR5432 Microprocessor User’s Manual

Index
data rate ... 237

DBA ... 757

DBAM ... 758

DBC ... 755

DBD ... 758

DBDM ... 759

DBREAK ... 744

DDATA0 ... 750

DDATA1 ... 751

Debug

Board Connector ... 763

Break or Trigger I/O (BkTgIO*) signal ... 762

Data Access Breakpoint ... 754

Data Breakpoint Address Mask register ... 758

Data Breakpoint Address register ... 757

Data Breakpoint Control/Status register ... 755

Data Breakpoint Data Mask register ... 759

Data Breakpoint Data register ... 758

Debug Break ... 739

Debug Data Monitor 0 and Monitor Data
register ... 750

Debug Data Monitor 1 register ... 751

Debug Exception PC register ... 750

Debug exception vector ... 739

Debug instructions ... 739, 744

Debug mode ... 739, 742

Debug Mode Enable (DME) Bit ... 747

Debug module ... 738, 740

Debug Module Control register ... 772

Debug module reset ... 740

Debug Module System register ... 771

Debug Register Control register ... 747

Debug registers ... 738, 740, 745

Debug Reset ... 740

Debug mode registers ... 740

External Access ... 738, 740, 759

Features ... 737
VR5432 Microprocessor User’s Manual
Hardware Breakpoint ... 740

Hardware Breakpoint registers ... 779

Instruction Breakpoint Address Mask register ...
753

Instruction Breakpoint Address register ... 753

Instruction Breakpoint Control/Status register
... 752

Instruction-Address Breakpoint ... 751

Internal Access ... 738, 741, 743

JTAG Boundary Scan register ... 769

JTAG Bypass register ... 768

JTAG Instruction register ... 767

JTAG Port signals ... 760

JTAG-Accessible registers ... 738, 741, 766

Monitor ... 741

Monitor Data register ... 777

Monitor example ... 779

Monitor Instruction register ... 776

N-Trace instruction summary ... 782

N-Trace packets ... 780

N-Trace System register ... 778

N-Wire and N-Trace functions ... 759

Processor Type register ... 770

Reset Mode (RMode*) signal ... 761

Trigger ... 741

Trigger Event ... 741

DEC VAX, compatibility with ... 10

Divide registers, CPU ... 6

Division by Zero exception ... 181

DM_CONTROL ... 772

DM_SYSTEM ... 771

DR0 ... 747

DR1 ... 750

DR12 ... 757

DR13 ... 758

DR14 ... 758

DR15 ... 759
801

 Index
DR2 ... 750

DR3 ... 751

DR4 ... 752

DR5 ... 755

DR8 ... 753

DR9 ... 753

DRET ... 744

E

EntryHi register ... 64, 75

EntryLo register ... 72

EntryLo0 register ... 64, 72

EntryLo1 register ... 64, 72

ERL bit ... 51, 53, 56, 101

Error Exception Program Counter (ErrorEPC)
register ... 112

exception processing, CPU

exception handler flowcharts ... 136

exception types

Address Error ... 123

Breakpoint ... 131

Bus Error ... 128

Cache Error ... 127

Cache Error exception process ... 114

Coprocessor Unusable ... 133

Floating-Point ... 134

general exception process ... 114

Integer Overflow ... 129

Interrupt ... 135

Nonmaskable Interrupt (NMI) exception
process ... 114

overview ... 113

Reserved Instruction ... 132

Reset ... 119

Reset exception process ... 113

Soft Reset ... 121

Soft Reset exception process ... 114

System Call ... 130
802
TLB ... 124

Trap ... 129

exception vector location

Reset ... 115

exception processing, FPU

exception types

Division by Zero ... 181

Inexact Operation ... 179

Invalid Operation ... 180

Overflow ... 181

overview ... 174

Underflow ... 181

Unimplemented Exception ... 183

flags ... 176

saving and restoring state ... 184

trap handlers ... 184

Exception Program Counter (EPC) register ... 104

EXL bit ... 51, 53, 56, 101, 104, 113

EXP ... 781

External Access ... 738, 740, 759

F

features

Floating-Point Unit (FPU) ... 150

Floating-Point exception ... 134

Floating-Point General-Purpose registers (FGRs) ...
151

Floating-Point registers (FPRs) ... 153

Floating-Point Unit (FPU)

designated as CP1 ... 16, 149

exception types ... 174

See also exception processing, FPU,
exception types

features ... 16, 150

formats

binary fixed-point ... 161

floating-point ... 159
VR5432 Microprocessor User’s Manual

Index
instruction execution cycle time ... 169

instruction pipeline ... 169

See also pipeline, FPU

instruction set, overview ... 162

overview ... 149

programming model ... 150

transfers between FPU and CPU ... 165

transfers between FPU and memory ... 165

FPU. See Floating-Point Unit

G

general exception

handler ... 137

process ... 114

servicing guidelines ... 138

H

hardware

interlocks ... 166

interrupts ... 143

Hardware Breakpoint ... 740

Hardware Breakpoint registers ... 779

I

iAPX x86, compatibility with ... 10

IBA ... 753

IBAM ... 753

IBC ... 752

IBM 370, compatibility with ... 10

IE bit ... 101

Implementation/Revision register, FPU ... 153–154

Index register ... 70

Initialization interface

cold reset ... 307, 309

power-on reset ... 308
VR5432 Microprocessor User’s Manual
reset signal description ... 307, 311

warm reset ... 307, 310

Instruction Breakpoint Address Mask register ... 753

Instruction Breakpoint Address register ... 753

instruction formats, CPU

types of ... 8

instruction set architecture (ISA)

overview ... 8

instruction set, CPU

overview ... 8

See also instructions, CPU

instruction set, FPU ... 162

Instruction-Address Breakpoint ... 751

instructions, CPU

branch ... 9

computational ... 9

64-bit operations ... 327

formats ... 326

coprocessor ... 9

jump ... 9

load

defining access types ... 323

overview ... 9

store

defining access types ... 323

overview ... 9

System Control Coprocessor (CP0) ... 9

translation lookaside buffer (TLB) ... 83

instructions, FPU

branch ... 167

compare ... 167

computational ... 167

conversion ... 166

load ... 165

move ... 165

store ... 165

Integer Overflow exception ... 129
803

 Index
interlocks, hardware ... 166

Internal Access ... 738, 741, 743

Interrupt exception ... 135

Interrupt interface, signals ... 27

Interrupt register ... 143–146

interrupts, CPU

accessing ... 143

hardware ... 143

Nonmaskable Interrupt (NMI) ... 143

Invalid Operation exception ... 180

J

Joint Test Action Group (JTAG) interface

signals ... 26

JTAG Boundary Scan register ... 769

JTAG Bypass register ... 768

JTAG Instruction register ... 767

JTAG port signals ... 760

JTAG test access port ... 759

JTAG-Accessible registers ... 738, 741, 766

Jump instructions, CPU ... 9

K

Kernel mode

and exception processing ... 92

ckseg0 ... 62

ckseg1 ... 62

ckseg3 ... 62

cksseg ... 62

kseg0 ... 60

kseg1 ... 60

kseg3 ... 60

ksseg ... 60

kuseg ... 59

operations ... 56

xkphys ... 61
804
xkseg ... 62

xksseg ... 61

xkuseg ... 61

kseg0 ... 60

kseg1 ... 60

kseg3 ... 60

ksseg ... 60

KSU bit ... 51, 53, 56

kuseg ... 59

KX bit ... 56, 101

L

latency

external response ... 243

FPU operation ... 169

release ... 243

little-endian, byte addressing ... 10, 166

load delay ... 166

Load instructions, CPU

defining access types ... 323

overview ... 9

Load instructions, FPU ... 165

Load Linked Address (LLAddr) register ... 80

LSEQ ... 781

M

master state ... 209

MC68000, compatibility with ... 10

memory management

address spaces ... 45

addressing ... 17

memory management unit (MMU) ... 41

register numbers ... 69

registers. See registers, CPU, memory
management

System Control Coprocessor (CP0) ... 63
VR5432 Microprocessor User’s Manual

Index
MFDR ... 745

MON_DATA ... 750, 777

MON_INST ... 776

Monitor ... 741, 779

Move instructions, FPU ... 165

MTDR ... 745

Multiply registers, CPU ... 6

N

NMI ... 122, 143

Nonmaskable Interrupt (NMI) exception

handling ... 142

process ... 114

NOP ... 781

Normal Mode ... 741

NSEQ ... 782

N-Trace ... 759

N-Trace Instruction summary ... 782

N-Trace packets ... 780

N-Trace System register ... 778

null request ... 231

N-Wire ... 759

O

operating modes ... 17

Kernel mode ... 56

User mode ... 51

OptionR43K* signal ... 19, 28, 253

Overflow exception ... 181

P

page table entry (PTE) array ... 94

PageMask register ... 64, 72

Parity Error (PErr) register ... 109

PClock ... 313
VR5432 Microprocessor User’s Manual
physical address space ... 47

pipeline

branch delay ... 34

cycle time ... 169

overview ... 169

pipelined writes ... 219

power-on reset ... 308

Processor Revision Identifier (PRId) register ... 76

R

Random register ... 71

registers, CPU

exception processing

Bad Virtual Address (BadVAddr) ... 95

Cache Error (CacheErr) ... 110

Cause ... 102

Compare ... 96

Config ... 77

Context ... 94

Count ... 95

Error Exception Program Counter
(ErrorEPC) ... 112

Exception Program Counter (EPC) ... 104

Load Linked Address (LLAddr) ... 80

Parity Error (PErr) ... 109

Processor Revision Identifier (PRId) ... 76

register numbers ... 93

Status ... 97

TagHi ... 80

TagLo ... 80

XContext ... 105

Interrupt ... 143–146

memory management

EntryHi ... 64, 75

EntryLo ... 72

EntryLo0 ... 64, 72

EntryLo1 ... 64, 72

Index ... 70
805

 Index
PageMask ... 64, 72

Random ... 71

Wired ... 71, 74

overview ... 6

System Control Coprocessor (CP0) ... 63

registers, FPU

Control/Status ... 153, 155

Floating-Point (FPRs) ... 153

Floating-Point General-Purpose (FGRs) ... 151

Implementation/Revision ... 153–154

requests ... 198

requests. See System interface

Reserved Instruction exception ... 132

Reset exception

handling ... 142

overview ... 119

process ... 113

Reset mode (RMode*) signal ... 761

resets

cold ... 307, 309

power-on ... 308

warm ... 307, 310

resident debugger ... 741

S

sequential ordering ... 250

shutdown ... 100

signals

Clock interface ... 24

descriptions ... 19

Interrupt interface ... 27

JTAG interface ... 26

request cycle control signals ... 208, 268

System interface ... 21

slave state ... 209

Soft Reset exception
806
handling ... 142

overview ... 121

process ... 114

sseg ... 55

Status register

access states ... 101

format ... 97

operating modes ... 101

Store instructions, CPU

defining access types ... 323

overview ... 9

Store instructions, FPU ... 165

subblock ordering ... 250

Supervisor mode

csseg ... 56

sseg ... 55

suseg ... 55

xsseg ... 55

xsuseg ... 55

suseg ... 55

SX bit ... 53, 101

SysClock ... 313

System Call exception ... 130

System Control Coprocessor (CP0)

instructions ... 9

register numbers ... 63

registers

used in exception processing ... 93

System interface

addressing conventions ... 250

buses ... 188

commands

overview ... 243

read requests ... 245

syntax ... 244

write requests ... 246

data identifiers
VR5432 Microprocessor User’s Manual

Index
overview ... 243

data identifiers, syntax ... 244, 248

data rate ... 237

data rate control

data transfer patterns ... 237, 297, 298

independent transmissions on SysAD bus
... 242

external request protocols

arbitration request ... 228, 283

null request ... 231, 287

overview ... 227, 281

read request ... 229, 286

write request ... 232, 290, 291, 293, 294,
296, 297, 298, 299, 300, 302,
304, 306

external requests

null request ... 231, 287

overview ... 257

read request ... 199

read response request ... 200, 259

write request ... 200, 259

handling requests

load miss ... 201–202, 261

store hit ... 203, 262

store miss ... 202–203, 262

uncached loads or stores ... 203, 263

independent transmission ... 242

issue cycles ... 206, 266

latency ... 243

master state ... 209, 269

null request ... 231

pipelined writes ... 219

processor internal address map ... 251

processor request protocols

cluster flow control ... 216, 218, 276, 277

read request ... 212, 272

write request ... 214, 274

processor requests

overview ... 194–195, 255–256
VR5432 Microprocessor User’s Manual
read request ... 196, 256

write request ... 197, 257

request ... 211

control signals ... 208, 268

rules ... 194, 255

sequential ordering ... 250

signals ... 21

slave state ... 209, 269

subblock ordering ... 250

write reissue ... 219

T

TagHi register ... 80

TagLo register ... 80

Test Features ... 737

TLB Invalid exception ... 125

TLB Modified exception ... 126

TLB Refill exception ... 124

TLB/XTLB Miss exception handler ... 139

TLB/XTLB Refill exception servicing guidelines ...
140

TPC ... 782

translation lookaside buffer (TLB)

and memory management ... 41

entry formats ... 64

exceptions ... 124

instructions ... 83

misses ... 83, 94, 136

page attributes ... 61

shutdown ... 100

translation, virtual to physical

64-bit ... 50

Trap exception ... 129

TRCSYS ... 778

Trigger ... 741

Trigger event ... 741
807

 Index
U

Underflow exception ... 181

Unimplemented exception ... 183

useg ... 51, 52

User mode

operations ... 51

useg ... 52

xuseg ... 52

UX bit ... 51, 101

V

virtual address space ... 46

virtual memory

hits and misses ... 42

mapping ... 17

virtual address translation ... 81

VR4300 compatibility mode ... xvi, 19, 28, 253, 265

W

warm reset ... 307, 310

Wired register ... 71, 74

write reissue ... 219

X

XContext register ... 105

xkphys ... 61

xkseg ... 62

xksseg ... 61

xkuseg ... 61

xsseg ... 55

xsuseg ... 55

xuseg ... 51, 52
808
 VR5432 Microprocessor User’s Manual

Some of the information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact a representative from the NEC office in your country to obtain a list of
authorized representatives and distributors who can verify the following:

! Device availability

! Ordering information

! Product release schedule

! Availability of related technical literature

! Development environment specifications (for example, specifications for third-party tools and components,
host computers, power plugs, AC supply voltages, and so forth)

! Network requirements

In addition, trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara
Tel: 800-366-9782
Fax: 800-729-9288

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics Singapore Pte.
Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, the Netherlands
Tel: 040-2445845
Fax: 040-2444580

©2000 NEC Electronics Inc./Printed in U.S.A. U13751EU5V0UMJ1

In North America: No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change
without notice. All devices sold by NECEL are covered by the provisions appearing in NECEL Terms and
Conditions of Sales only, including the limitation of liability, warranty, and patent provisions. NECEL makes no
warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the
freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that
may appear in this document. NECEL makes no commitments to update or to keep current information
contained in this document. The devices listed in this document are not suitable for use in applications such as,
but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control
systems and life support systems. �Standard� quality grade devices are recommended for computers, office
equipment, communication equipment, test and measurement equipment, machine tools, industrial robots,
audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic
control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the
responsible NECEL salesperson to determine the reliability requirements for any such application and any cost
adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in
any application where failure could result in injury or death. If customers wish to use NECEL devices in
applications not intended by NECEL, customers must contact the responsible NECEL salespeople to determine
NECEL's willingness to support a given application.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from use of a device described herein or any other liability
arising from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been
making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot
be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an
NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as
redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three
quality grades: �Standard,� �Special,� and �Specific.� The Specific quality grade applies only to devices
developed based on a customer-designated �quality assurance program� for a specific application. The
recommended applications of a device depend on its quality grade, as indicated below. Customers may check
the quality grade of each device before using it in a particular application. Standard: Computers, office
equipment, communications equipment, test and measurement equipment, audio and visual equipment, home
electronic appliances, machine tools, personal electronic equipment and industrial robots. Special:
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-
crime systems, safety equipment (not specifically designed for life support). Specific: Aircraft, aerospace
equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment
for life support, etc. The quality grade of NEC devices is �Standard� unless otherwise specified in NEC�s data
sheets or data books. If customers intend to use NEC devices for applications other than those specified for
Standard quality grade, they should contact an NEC sales representative in advance.

	COVER
	Preface
	Chapter 1 Introduction
	1.1 Device Features
	1.2 Internal Architecture
	1.2.1 Configuration
	1.2.2 CPU Registers
	1.2.3 CPU Instruction Set Overview
	1.2.4 Data Formats and Addressing
	1.2.5 System Control Coprocessor (CP0)
	1.2.6 Floating-Point Unit (FPU)
	1.2.7 Internal Cache

	1.3 Memory Management Unit (MMU)
	1.3.1 Translation Lookaside Buffer (TLB)
	1.3.2 Operating Modes

	1.4 Instruction Pipeline

	Chapter 2 Signal Descriptions
	2.1 System Interface Signals
	2.2 Power Inputs
	2.3 Clock Interface Signals
	2.4 JTAG and Test Interface Signals
	2.5 Interrupt Interface Signals
	2.6 Initialization Interface Signals
	2.7 Pin Orientation

	Chapter 3 Pipeline
	3.1 Pipeline Stages
	3.2 Branch Delay
	3.3 Load Delay
	3.4 Interlock and Exception Handling
	3.4.1 Exception Conditions
	3.4.2 Interrupt Latency
	3.4.3 Stall Conditions

	3.5 Transaction Buffer

	Chapter 4 Memory Management Unit
	4.1 Translation Lookaside Buffer
	4.1.1 Hits and Misses

	4.2 Processor Modes
	4.2.1 Processor Operating Modes
	4.2.2 Instruction Set Mode
	4.2.3 Addressing Modes

	4.3 Addresses and Address Spaces
	4.3.1 Virtual Addresses
	4.3.2 Physical Addresses
	4.3.3 Virtual-to-Physical Address Translation
	4.3.4 32-Bit Mode Virtual Address Translation
	4.3.5 64-Bit Mode Virtual Address Translation
	4.3.6 User Address Space
	4.3.7 Supervisor Space
	4.3.8 Kernel Space

	4.4 System Control Coprocessor
	4.4.1 TLB Entry Format
	4.4.2 Instruction and Data Micro-TLBs

	4.5 CP0 Registers
	4.5.1 Index Register (0)
	4.5.2 Random Register (1)
	4.5.3 EntryLo0 (2) and EntryLo1 (3) Registers
	4.5.4 PageMask Register (5)
	4.5.5 Wired Register (6)
	4.5.6 EntryHi Register (10)
	4.5.7 Processor Revision Identifier (PRId) Register (15)
	4.5.8 Config Register (16)
	4.5.9 Load Linked Address (LLAddr) Register (17)
	4.5.10 Cache Tag Registers [TagLo (28) and TagHi (29)]

	4.6 Virtual-to-Physical Address Translation Process
	4.7 TLB Exceptions
	4.8 TLB Instructions

	Chapter 5 Cache Organization and Operation
	5.1 Memory Organization
	5.2 Primary Cache Organization
	5.2.1 Cache Line Lengths
	5.2.2 Cache Sizes
	5.2.3 Instruction Cache Organization
	5.2.4 Data Cache Organization

	Chapter 6 CPU Exceptions
	6.1 Exception Processing Overview
	6.2 Exception Processing Registers
	6.2.1 Context Register (4)
	6.2.2 Bad Virtual Address Register (BadVAddr) (8)
	6.2.3 Count Register (9)
	6.2.4 Compare Register (11)
	6.2.5 Status Register (12)
	6.2.6 Cause Register (13)
	6.2.7 Exception Program Counter (EPC) Register (14)
	6.2.8 XContext Register (20)
	6.2.9 WatchLo and WatchHi Registers (18 and 19)
	6.2.10 Performance Counter Registers (25)
	6.2.11 Parity Error (PErr) Register (26)
	6.2.12 Cache Error (CacheErr) Register (27)
	6.2.13 Error Exception Program Counter (ErrorEPC) Register (30)

	6.3 Processor Exceptions
	6.3.1 Exception Types
	6.3.2 Exception Vector Locations

	6.4 Exception Vector Offsets
	6.4.1 TLB Refill Vector Selection
	6.4.2 Priority of Exceptions
	6.4.3 Reset Exception
	6.4.4 Soft Reset Exception
	6.4.5 Nonmaskable Interrupt (NMI) Exception
	6.4.6 Address Error Exception
	6.4.7 TLB Exceptions
	6.4.8 Bus Error Exception
	6.4.9 Integer Overflow Exception
	6.4.10 Trap Exception
	6.4.11 System Call Exception
	6.4.12 Breakpoint Exception
	6.4.13 Reserved Instruction Exception
	6.4.14 Coprocessor Unusable Exception
	6.4.15 Floating-Point Exception
	6.4.16 Watch Exception
	6.4.17 Interrupt Exception

	6.5 Exception Handling and Servicing Flowcharts
	6.6 Interrupts
	6.6.1 Hardware Interrupts
	6.6.2 Nonmaskable Interrupt (NMI)
	6.6.3 Asserting Interrupts

	Chapter 7 Floating-Point Unit
	7.1 Overview
	7.2 FPU Features
	7.3 FPU Programming Model
	7.4 Floating-Point General-Purpose Registers
	7.5 Floating-Point Registers
	7.6 Floating-Point Control Registers
	7.6.1 Implementation and Revision Register (FCR0)
	7.6.2 Control/Status Register (FCR31)

	7.7 Floating-Point Formats
	7.8 Binary Fixed-Point Format
	7.9 Floating-Point Instruction Set Overview
	7.9.1 Floating-Point Load, Store, and Move Instructions
	7.9.2 Floating-Point Conversion Instructions
	7.9.3 Floating-Point Computational Instructions

	7.10 FPU Instruction Pipeline Overview
	7.10.1 Instruction Execution
	7.10.2 Instruction Execution Cycle Time
	7.10.3 Instruction Issuing Constraints with Multicycle Instructions

	Chapter 8 Floating-Point Exceptions
	8.1 Exception Types
	8.2 Exception Trap Processing
	8.3 Flags
	8.4 FPU Exceptions
	8.4.1 Inexact Operation Exception (I)
	8.4.2 Invalid Operation Exception (V)
	8.4.3 Division by Zero Exception (Z)
	8.4.4 Overflow Exception (O)
	8.4.5 Underflow Exception (U)
	8.4.6 Unimplemented Operation Exception (E)

	8.5 Saving and Restoring State
	8.6 Trap Handlers for IEEE Standard 754 Exceptions

	Chapter 9 Bus Interface
	9.1 Interface Buses In Native Mode
	9.2 Interface Buses in R43K Mode

	Chapter 10 System Interface Transactions (Native Mode)
	10.1 Terminology
	10.2 Processor Requests
	10.2.1 Rules for Processor Requests
	10.2.2 Processor Read Request
	10.2.3 Processor Write Request

	10.3 External Requests
	10.3.1 External Read Request
	10.3.2 External Write Request
	10.3.3 Read Response

	10.4 Handling Requests
	10.4.1 Load Miss
	10.4.2 Store Miss
	10.4.3 Store Hit
	10.4.4 Uncached Loads or Stores
	10.4.5 Uncached Accelerated Stores
	10.4.6 Uncached Instruction Fetch
	10.4.7 Fetch Miss

	Chapter 11 System Interface Protocols (Native Mode)
	11.1 Address and Data Cycles
	11.2 Issue Cycles
	11.3 Handshake Signals
	11.4 System Interface Operation
	11.4.1 Master and Slave States
	11.4.2 External Arbitration
	11.4.3 Uncompelled Change to Slave State

	11.5 Processor Request Protocols
	11.5.1 Processor Read Request Protocol
	11.5.2 Processor Write Request Protocol
	11.5.3 Processor Request Flow Control
	11.5.4 Processor Request Timing Modes

	11.6 External Request Protocols
	11.6.1 External Arbitration Protocol
	11.6.2 External Read Request Protocol
	11.6.3 External Null Request Protocol
	11.6.4 External Write Request Protocol
	11.6.5 Read Response Protocol

	11.7 SysADC (3:0) Protocol
	11.8 Data Rate Control
	11.9 Data Transfer Patterns
	11.10 Word Transfer Ordering
	11.11 Independent Transmissions on the SysAD Bus
	11.12 System Interface Cycle Time
	11.13 System Interface Commands/Data Identifiers
	11.13.1 Command and Data Identifier Syntax
	11.13.2 System Interface Command Syntax
	11.13.3 Read Requests
	11.13.4 System Interface Data Identifier Syntax

	11.14 System Interface Addresses
	11.14.1 Addressing Conventions
	11.14.2 Subblock Ordering
	11.14.3 Processor Internal Address Map

	Chapter 12 System Interface Transactions (R43K Mode)
	12.1 Processor Requests
	12.1.1 Rules for Processor Requests
	12.1.2 Processor Read Request
	12.1.3 Processor Write Request

	12.2 External Requests
	12.2.1 External Write Request
	12.2.2 Read Response

	12.3 Handling Requests
	12.3.1 Fetch Miss
	12.3.2 Load Miss
	12.3.3 Store Miss
	12.3.4 Store Hit
	12.3.5 Uncached Loads or Stores
	12.3.6 Uncached Accelerated Stores
	12.3.7 Uncached Instruction Fetch

	Chapter 13 System Interface Protocols (R43K Mode)
	13.1 Address and Data Cycles
	13.2 Issue Cycles
	13.3 Handshake Signals
	13.4 System Interface Operation
	13.4.1 Master and Slave States
	13.4.2 External Arbitration
	13.4.3 Uncompelled Change to Slave State

	13.5 Processor Request Protocols
	13.5.1 Processor Read Request Protocol
	13.5.2 Processor Write Request Protocol
	13.5.3 Processor Request Flow Control
	13.5.4 Successive Processing of Requests

	13.6 External Request Protocols
	13.6.1 External Arbitration Protocol
	13.6.2 External Write Request Protocol
	13.6.3 External Read Response Protocol

	13.7 Discarding and Re-Executing Commands
	13.7.1 Re-Execution of Processor Commands
	13.7.2 Discarding and Re-Executing a Write Command
	13.7.3 Discarding and Re-Executing a Read Command
	13.7.4 Executing and Discarding a Command

	13.8 SysADC (3:0) Protocol
	13.9 Data Flow Control
	13.9.1 Read Response
	13.9.2 Write Request
	13.9.3 Independent Transfer on the SysAD (31:0) Bus
	13.9.4 System Endianness

	13.10 System Interface Cycle Time
	13.10.1 Release Latency Time

	13.11 System Interface Commands and Data Identifiers
	13.12 Command and Data Identifier Syntax
	13.12.1 System Interface Command Syntax
	13.12.2 Read Requests
	13.12.3 Write Requests
	13.12.4 System Interface Data Identifier Syntax
	13.12.5 Data Identifier Bit Definitions

	13.13 System Interface Addresses
	13.13.1 Addressing Conventions
	13.13.2 Sublock Order Data Retrieval

	Chapter 14 Initialization Interface
	14.1 Processor Reset Signals
	14.1.1 Power-On Reset
	14.1.2 Cold Reset
	14.1.3 Warm Reset
	14.1.4 Processor Reset State

	14.2 Processor Initialization Signals

	Chapter 15 Clock Interface
	15.1 Basic System Clocks
	15.1.1 SysClock/MasterClock
	15.1.2 PClock

	15.2 Alignment to SysClock
	15.3 Phase-Locked Loop (PLL)
	15.4 Bypass PLL Mode

