NEC

User’'s Manual

VR5432™

64-Bit MIPS® RISC Microprocessor

Volume 2

uPD30541GD

Document No.U15397EU5VOUMJ1
Date Published: May 2001 CP (K)

© NEC Electronics Inc. 2000
Printed in U.S.A.

NEC

VR5432 Microprocessor User’'s Manual
Document Number U15397EU5V0UMJ1

Revision History

February 1999: First release

August 1999: Version 2, Preliminary
December 1999: Version 3, Preliminary update
February 2000: Version 4, Document release
May 2000: Version 5, Document corrections

NEC, the NEC logo, VR Series, VR3000, VR4000, VR4300, VR5000, VR5432 and VR10000 are registered trademarks of NEC
Corporation. All other product, brand, or trade names used in this publication are the trademarks or registered trademarks of their
respective trademark owners.

In North America: No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. All devices sold by NECEL are
covered by the provisions appearing in NECEL's Terms and Conditions of Sales only, including the limitation of liability, warranty, and
patent provisions. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or
regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may
appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The
devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace
equipment, submarine cables, nuclear reactor control systems and life support systems. “Standard” quality grade devices are
recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial
robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems,
anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the
reliability requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products
in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL
devices in applications not intended by NECEL, customers must contact the responsible NECEL salespeople to determine NECEL's
willingness to support a given application.

Contents

Volume 1

PrEfACE e e XV

Chapter 1 INErOUCLIONooooooooceeveeeeeeeeeecesessssssssssssss s 1
11 DEVICE FEALUI ES......oocereeeieie ettt ettt 2
1.2 Internal ArChitECIUN @ ... 3
121 CONFIGUIBLTON. ...ttt 3
122 CPU REQISIES ...ttt bbbttt s st tee 6
123 CPU INSLIUCLTON SEE OVEIVIBW ...t eseeseeses st eesessssssssssssssssesssssssssssnens
124 Data Formats and Addressing...............
125 System Control Coprocessor (CPO)
126 Floating-Point UNit (FPU) ...ttt 16
127 INEEINEI CACNE........ceeeeec ettt 16
1.3 Memory Management Unit (MM U).......cccoominnnsssesessssseessensenees 17
131 Trandation Lookaside BUFfEr (TLB).......ccoveeireeneereieeeeneeeeneeseeseseeeseesssseseeessesens 17
132 OPEFALiNG MOUES........cocoeciceceie ettt bbb s 17
14 INSEFUCLION PIPEIINE ...t 18

Chapter 2 Signal DESCIPLIONS ... 19
21 SysStem INtErface SIGNaAIS ...t 21
22 POWEE TNPULS ..ot
2.3 Clock Interface Signals
24 JTAG and Test INterface SIgNalS.........cveiiiininieecenere e 26
25 Interrupt INterface SIgNaIS......coceinreie e 27
26 Initialization INterface SIgNalS. ... 28
2.7 PN OFIENTALION ..ottt 29

VR5432 Microprocessor User’s Manual iii

Contents

Chapter 3 PIPEIING. ... 31
31 PIPEIING SLAGES. ... verieerce ettt 31
3.2 Branch Delay
3.3 LOBA DEIAY ..ottt ettt
34 Interlock and EXception HaNAIiNG ..o 36
341 EXCEPLION CONAITIONS.......couierecerieeiieeiiereieesetsee ettt 38
34.2 INEEITUPL LBEEINCY ...ttt ettt st nn et 39
34.3 StAll CONUITTIONS......ooeerereieirereer ettt 39
35 TranSaCtion BUFFEN ...ttt 40

Chapter 4 Memory Management UNit ... 4
41 Trandation Lookaside BUFfer ... 42
41.1 HItS BN0 IMISSES ...ttt et s st ne s 42
4.2 PrOCESSOr IMOUES. ...ttt 42
4.2.1 Processor Operating MOUES ...t 43
422 INSEFUCLION SEE IMOUE ...ttt 44
4.2.3 AdAreSSING MOUES ..ottt senas 45
4.3 Addressesand AddreSS SPACES........cooureiinirntinieineti ettt 45
431 Virtual AQOrESSES.......ccocuieeiieereireeree et ees s
432 Physical Addresses
4.3.3 Virtual-to-Physical Address Tranglation...........ccccceveeeiienseniesseeee e 47
434 32-Bit Mode Virtual Address Translation ..o eseeeeeeees 48
435 64-Bit Mode Virtual Address Translation ..o 50
4.3.6 USEr AQArESS SPACE......c.oeeeerceeireeseereiseeeseises e 51
4.3.7 SUPEIVISOE SPCE.cuevieeiieeieieisiseseessiesssses s ssssss e s st s ss sttt s s s s st e b s ss s snsssessasens 53
4.3.8 KEIMEL SPACE. ...ttt 56
44 System CoNntrol COPIrOCESSOLcrrirerirrererieessesee st ses s ssies e sessseessessessssessensennes 63
44.1 TLB ENY FOIMMAL ...t
442 Instruction and Data Micro-TLBs
A5 CPOREQISIEN S ..ottt ettt
451 INAEX REGISIEN (0) .vuvreiieeiiereiee ettt ettt 70
452 RANAOM REGISLEN (L) ..vvveevirieeeieictesee ettt 71
453 EntryL o0 (2) and EntryLO1 (3) REQISLES.......crureiereireireieeiseeneiseiseiseesessee e 72
454 PageMask REGISLEN (5) ...vvcvrerrerririeeineireiseiisssei ettt 72
455 LATE= o RS o = [() I OO 74

VR5432 Microprocessor User’s Manual

Contents

45.6 EntryHi REQISLEN (L0)vieeviecieeceeee ettt ettt 75
45.7 Processor Revision Identifier (PRI) RegIiSter (15)c.vverereeneeneenerrereereeneeeeneeneees 76
458 CONfig REGISLEN (16)cvuiviveeieiictesee sttt s bbb nse b bes 77
45.9 Load Linked Address (LLAAAr) REGISIEr (17) ..o 80
4510 Cache Tag Registers[TagLo (28) and TagHi (29)]cccevereveineveseieisseseseeesinans 80
4.6 Virtual-to-Physical Address Translation ProCeSS.........ccoorrreneenenercenereneneesesenceens 81
4.7 TLB Exceptions
4.8 TLB INSIFUCHIONSttt ses ettt 83
Chapter 5 Cache Organization and Operation.............ceeeeeeeeeeennnns 85
5.1 MemOry OFrganiZAliON ..ot 86
52 Primary Cache OrganiZation........uininecniessssse s 87
521 CaChe LiNE LENGINS ..ottt 87
522 CACNE SIZES.....eee et 87
523 Instruction Cache OrganiZation.............c.c.crninieneenes s 88
524 Data Cache OrganiZation............cc.cveeveeeeescneesee ettt 89
Chapter 6 CPU EXCEPLIONS............ccocsissssssssssssssssssssssssseeessssssssssssesessssssssssssssessssnnns 21
6.1 EXCeption Processing OVEN VIEW ... ssssens 92
6.2 Exception Processing Registers
6.2.1 CONEXE REGISLEN (4) ..ottt sttt es
6.2.2 Bad Virtual Address Register (BadVAdAr) (8) ...c.ccveeereineenneeneineieineseresceeseiseineens 95
6.2.3 CoUNt REGISLEN (9) ...ttt ettt st b s en 95
6.24 ComMPAre REJISIEN (LL) ...ttt ess bt eb bbbt 96
6.2.5 SEUS REGISLEN (L12) ...ttt ettt a b 97
6.2.6 CalSE REGISIEN (L3) ..eueeceieeereeieereeeeeeesetsee ettt 102
6.2.7 Exception Program Counter (EPC) RegiSter (14)coovveevveeivcesieeseeeesesevevenns 104
6.2.8 XCONLEXE REGISLES (20)vveereeeereereereieereeeseeseeseesseiseesessees et ses st ssseees 105
6.2.9 WatchL o and WatchHi Registers (18 and 19)coccveveeeveesececeeessessee e 106
6.2.10 Performance Counter Registers (25)
6.2.11 Parity Error (PEIT) REQISEN (26)c.ccceeeeeerieeeeeeiesiese et snses
6.2.12 Cache Error (CacheErT) REGISIEr (27) ..o eeseessseeeenees 110
6.2.13 Error Exception Program Counter (ErrorEPC) Register (30)ccoovvevvervvveercvennnne, 112
6.3 PrOCESSOr EXCEPTIONS.....coiiieiiiirciiece sttt 112
6.3.1 EXCEPIION TYPES...cecvreeicereiei ettt ettt b 113

VR5432 Microprocessor User’s Manual \Y

Contents

6.3.2 Exception Vector Locations
6.4 EXCEPLION VECLOr OFfSELS......oiiiirieriiiiciittiniicee et
6.4.1 TLB REefill VECIOr SEIECHION ...ttt snes 116
6.4.2 Priority Of EXCEPLIONS ..ottt 118
6.4.3 Reset EXCEPLioN......c.cuvevvereeneineieeene
6.4.4 Soft Reset Exception
6.4.5 Nonmaskable Interrupt (NMI) EXCEPLION.......c.ocrvreieiineniireeese e 122
6.4.6 Address Error Exception
6.4.7 TLB EXCEPLIONS ..o
6.4.8 CaChe Error EXCEPLION ..ottt
6.4.9 BUS EFTON EXCEPUION ..ottt s
6.4.10 Integer OVErfloW EXCEPLION........ccoievieceeerecsee et 129
B.4.11 TraD EXCEPLION ...ttt 129
6.4.12 System Call EXCEPLION.........covcieceeeeeieesee et 130
6.4.13 Breakpoint EXCEDUION.c.oiiieeiriereieeisie ettt bttt 131
6.4.14 Reserved INStruction EXCEPLION.........cccvcvvecieceeccseeee et 132
6.4.15 Coprocessor Unusable EXCEPLION ...t eeesess s 133
6.4.16 Hoating-PoiNt EXCEPLION.........cccuiveieeiceeesee ettt sens 134
B.4.17 WaCh EXCEDIION ..ottt ettt 134
6.4.18 INLEITUPL EXCEPLION ..ottt 135
6.5 Exception Handling and Servicing FIOWCharts.......cooooerrrnencncnrneccecesseseeeeae 136
6.6 FNEEI TUPTS e s 143
6.6.1 Hardware INLEITUPLS..........coviveeieeiiecesee ettt sttt 143
6.6.2 Nonmaskable INErTUPE (NI ..ottt 143
6.6.3 Asserting Interrupts

Chapter 7 Floating-PoINt UNit ... 149
8 R © Y 1 T 149
1.2 FPU FEALUI S....coeeeeeee ettt bbbt 150
7.3 FPUProgramming MOGE ... sessssessessesnesns
7.4 Floating-Point General-Pur pose Registers
7.5 Floating-PoINt REJISLENS.....c.ciiiiicirieirsiee ettt
7.6 Floating-Point Control REJISLENS.......ccvieciniesese e ensen 153
76.1 Implementation and Revision Register (FCRO) ... 154
7.6.2 Control/Status RegISter (FCR3L)ccvvueiieiiiseerieres ettt ssssse s 155

Vi

VR5432 Microprocessor User’s Manual

Contents

7.7 Floating-Point Formats.
7.8 Binary FiXed-Point FOrMALccconrmiininieessneie et 161
7.9 Floating-Point INStruction Set OVEr VIEW ..o 162
79.1 Floating-Point Load, Store, and Move INSIrUCtioNS..........c.ccvveveevceeesseseeee e 165
792 Floating-Point Conversion INSIIUCLIONS ... eeesseseseenees
7.9.3 Floating-Point Computational Instructions
7.10 FPU Instruction PIPeliNng OVEN VIBW ..ot
7.10.1 INSIUCHION EXECULION ...ttt setsse e ssas et ssnssnsnn
7.10.2 Instruction EXecution CYCle TIMEccovcviieiicscesee et
7.10.3 Instruction Issuing Constraints with Multicycle Instructions
Chapter 8 Floating-Point EXCEPLIONS.............c.cccuvwmmimmimmmmissssseseesesssssssssessessssenns 173
8.1 Exception Types
8.2 Exception Trap Processing
8.3 FLAOS ..ttt st
84 FPU Exceptions
84.1 Inexact Operation Exception (1)
8.4.2 Invalid Operation Exception (V)
84.3 Division by Zero Exception (Z)
844 OVErflow EXCEPLION (O) ..eueveececieereeieeietseiree et ses ettt essessesse s
8.4.5 UNderflow EXCEPLION (U) ..ottt
8.4.6 Unimplemented Operation Instruction EXCEPLion (E).........oocvneneeneeneeninineineeneen. 183
85 Saving and RESIONING SLALE.......cccuvirrieririrrereeirir e nees 184
86 Trap Handlersfor IEEE Standard 754 EXCEPLIONS.......ccoerirnineecineeerneecinicieeeeenne 184
Chapter 9 BUSINTEITACE................oocvvvvevevveevieiiiiiessssssss s 187
9.1 Interface BuSESIN NaiVE MOUE.........ocimiirienirieitcie e 188
9.2 Interface BuseSin RASK MOE.........comiciininnieee st 189
Chapter 10 System Interface Transactions (Native Mode)..............cccccccooemee. 191
0.1 TEMINOIOGY ..ercerenrieeeiiertisieeee st stssts st bbbt
10.2 Processor Requests
10.21 Rulesfor Processor Requests
10.2.2 Processor Read REQUESL..........cccocueiieiiecieeccee et
10.2.3 Processor WHte REGUESE..........ciuu et

VR5432 Microprocessor User’'s Manual vii

Contents

10.3.1
10.3.2
10.33
104
104.1
10.4.2
10.4.3
104.4
10.4.5
10.4.6
10.4.7

Chapter 11 System Interface Protocols (Native Mode) ..., 205
11,1 Addressand Data CYCIES........oinerree et 206
11,2 ISSUE CYCIES ..ottt bbbt 206
11,3 HanNdShake SIQNalS......coeiiiiirieee et 208
114 System INterface OPEr@lion ... 208
1141 MaSter and SIAQVE SEALES.......coveeereeecereir ettt 209
1142 EXErnal ArDItration ..ottt 210
1143 Uncompelled Change to SIaVe SEAL.........cocvueerriereeeeeeneireeeeeeee e 210
115 Processor REQUESE PrOLOCOISttt 211
11.5.1 Processor Read ReqUESt ProtOCOL..........c.cccceieiieciieesessess e 212
1152 Processor Write REQUESE ProtOCOL.........c.cuu ettt seessse s 214
11.5.3 Processor Request FIOW CONLIOL ..ottt 216
1154 Processor Request TIMiNg MOUES.........c.ccverieeeneieeneieeineeseseeesessssesessesseeessesenes 218
11.6 External REQUESE ProtOCOIS. ...t
11.6.1 Externa Arbitration Protocal........
11.6.2 Externa Read Request Protocol
11.6.3 External Null Request Protocol
11.6.4 External Write REQUESE PrOtOCOLc.cccuieieeieeiseecieeesetese ettt 232
11.6.5 Read RESPONSE PIrOIOCOcoveierieieieiereieieiieeeseese e 233
11.7 SySADC (3:0) PIrOtOCOLccovuiieeerirtirerrerietintise ettt 236
11.8 Data Rate CONI Olccoiueeireiiririeieerieee ettt 236
11,9 Data Transfer PalterNS........cccieee e 237

viii

VR5432 Microprocessor User’s Manual

Contents

11.10 Word Transfer OrderinNg ...t 239

11.11 Independent Transmissions 0N the SYSAD BUScccierninnenieeeneeneesneeees 242

11.12 System INterface CYCle TIME ... 243

11.13 System Interface Commands/Data | dentifiers. ... 243

11.13.1 Command and Data ldentifier SYNtaXc.ccccvienieriienicsieeee s 244

11.13.2 System Interface COmMMAN SYNEBX........c.ouuriererrierieremeerneeseireeeesesseeeese s sesesseesessesseeees 244

11.13.3 REAH REUESES ..ottt sttt 245

11.13.4 System Interface Data |dentifier SYNtaX ... 248

11.14 System INterface AQArESSES........oicirine e 250

11.14.1 Addressing CONVENLIONS........ueureeeeieiereieeeeseseeeseiess e sessssssse s ssssssssseens 250

11.14.2 SUDDIOCK OFAEIING......cvieeieeireeeicieeseie ettt bbbt nnn 250

11.14.3 Processor Internal AdAreSS Map.........cocueeeeeneeeeeeneineeeeiesinee e sessssessessessessssesesns 251
Chapter 12 System Interface Transactions (R43K Mode) ... 253

12,1 ProCeSSOr REQUESES ..o iseieesee s sessse s senees 254

12.1.1 Rulesfor Processor Requests

12.1.2 Processor REad REQUESL........c.ooiriieireireeeeese ettt

12.1.3 Processor WHTE REQUESL...........ccoueueiieiieciniseis sttt sssebe st ses e

122 EXEErNAl REQUESES ..ottt

1221

12.2.2

12.3

1231

12.3.2

12.3.3

1234

12.35

12.3.6

12.3.7

VR5432 Microprocessor User’s Manual iX

Contents

Chapter 13 System Interface Protocols (R43K Mode€).........cvvvvvcccisenn. 265
131 Addressand Data CYClES........oinininiee et 266
132 ISSUE CYCIES....ouiececte ettt ettt 266
13.3 HaNdShake SIQNAIS........cveiiriirinretntie ettt 268
134 System INterface OPEralioN ..o 268
1341 MaSter and SIQVE SEALES.......covereeerceeeir ettt ea et 269
13.4.2 EXtErnal ArDitration ...t 270
13.4.3 Uncompelled Change to SIaVe SEAL..........ocvueerriereeeeeeneereeeeeeee et 270
13.5 Processor Request Protocols
1351 Processor Read ReqUESE PrOtOCOL..........cocuuieieiereieeeeneieeseeeeeseeneisee e sesseees 272
1352 Processor Write RequESt ProtOCOL...........cccviiveiiiieieiesee et 274
135.3 Processor Request FIOW CONLIOl ..o 276
1354 Successive Processing Of REQUESES..........ccieveiieieeceeecee et 277
13.6 External REQUESE ProtOCOIS ..ottt 281
13.6.1 External Arbitration ProtOCOLcocoonirinineseree e 282
13.6.2 Externa Write REQUESE PrOLOCOLc.cccuieiieiieisccteeeseetse et s 286
13.6.3 External Read ReSpPONSE PrOtOCOIc.ccueeuiereireeeeneieereeieeiseesese e setsesessessesseesssesenes 287
13.7 Discarding and Re-Executing Commands..........couerrnerernirnerneenmenerneseseeeennerseeens 290
13.7.1 Re-Execution of Processor COMMENGS............couerminieneineenieniseeeisineisessesseesseseeneens 290
13.7.2 Discarding and Re-Executing aWrite Command.............cccveeviieriieesenesesiseeenns 291
13.7.3 Discarding and Re-Executing a Read Command............c.ocverureneenceneremneencenenseneenees 293
13.7.4 Executing and Discarding a Command............cccccceveeuriireneeinieeeiensssse e sssssseens 294
13.8 SYSADC (3:0) PrOtOCOLocueeeiiecireireiie ittt 295
13.9 Data FIOW CONtIOl... ..ottt 295
13.9.1 REAUIREIDONSE ..ottt sttt sss ettt s bbb ss s s b s s s s 295
13.9.2 WITE REQUESE ..ottt st 295
13.9.3 Independent Transfer on the SySAD (31:0) BUS......cccccoeveeviireieeviseee e 296
13.9.4 SySIEM ENQIANNESSooieeieicieire ettt 296
13.10 System Interface CyCle TIME ... 297
13.10.1 REIEASE LALENCY T ..oiuieiirierieceriereiseeseeeseisee st seees s ssse s s s ssens 297
13.11 System Interface Commands and Data | dentifiersS........veneininincnenes 298
13.12 Command and Data | dentifier SYNTaX ... 298
13.12.1 System Interface COmMMAN SYNEBX........c.ouurieerreerieremeereeeseieeeesesseeeeseesessesesseeessesseeees 299
13.12.2 REAH REQUESES ..ottt sttt 300
13.12.3 WILE REQUESES ...ttt et s 302

X VR5432 Microprocessor User’s Manual

Contents

13.12.4 System Interface Data I dentifier Syntax
13.12.5 Dataldentifier Bit DEfINItIONS.........ccoiiririiririrereree et
13.13 System INterface AQAr ESSES........oiciririie e
13.13.1 Addressing CONVENLIONS...........ccouiueiiieiieiineseisssee s sssses s sesss st sssssessssssssessssssesns
13.13.2 Sublock Order Data Retrieval

Chapter 14 Initialization INtErfaCe........oooiisseeee s 307
14.1 Processor RESEL SIQNAIS ...ttt 307

14.1.1 Power-On Reset
14.1.2 Cold Reset
14.1.3 Warm Reset

14.1.4 ProCeSSOr RESEL SLALEc.oeiureeerereeereeereee ettt ensaeaeeen 311
14.2 Processor INitialization SIgNaIS. ... 311

Chapter 15 ClOCK INLEITACE.............oocciciscsiessesesssssses e 313
15.1 BaSiC SYSEM ClOCKS ..ottt
15.1.1 SySCIOCK/MASEEICIOCKoevueeeieieiieieieiieeisei et
I5. 1.2 PCIOCK. ...ttt ettt
152 AlGNMENt t0 SYSCIOCK ...
15.3 Phase-Locked Loop (PLL)
15.4 BYPASS PLL MOUE......c.ccoiiiiiiintircineietinti ettt ettt

Volume 2

Chapter 16 INStruction SEt OVEI VIBWcccuwveeeeemmmmmmmmisssnseeessssssssssssessssssssssnns 319
16.1 INStruction Set ArCRITECIUN @ ..o 320
16.2 INSEFUCETON FOMMALS.....ciiiieeieincireirieee st ses ettt 321
16.3 Load and StOre NS UCHIONS. ..ot 321
16.3.1 Delayed Load INSIIUCLIONS........ocieieieceriereiees et 323
16.3.2 DEfiNING ACCESS TYPES ...icuieeerietriiteeseie st ssss st sssse bbbt s e ss s sssesesans 323
16.4 Computational INSEFUCLIONSceuiiriirinicne s 326
16.4.1 B4-Bit OPEIaliONS.......ccevoeveieeieiieieiiteess ettt ettt st s s sses 327
16.5 Jump and Branch INSEFUCLIONS..........coierinieeeeeneeise e 328
16.5.1 JUMP INSEIUCHTIONSoiiieciciecieiei ettt 328

VR5432 Microprocessor User’'s Manual Xi

Contents

16.5.2 Branch Instructions

16.6 SPECIAl INSEFUCLIONSovniircitciiee ettt
16.7 COProceSSOr INSEFUCLIONS.......ccovuiieeeriereesiieee ettt 329
16.7.1 Coprocessor Load and SLOTE..........cccieurieiriiieesiesesieeseie st sssssesssssssse s 330
16.7.2 COPrOCESSOr OPEELIONS.....c.cuueeeeeireeeeereireesessesisee e sss bbbt 330
16.8 Implementation-SPeCifiC INSIIUCLIONS ...t 331
L16.8.1 OVEIVIBIW .ottt sttt st s b ses ettt s s seens 331
16.8.2 Implementation-Specific INStruction DESCIIPLIONS.........oc e 333
16.9 Integer ROtate INSIFUCLIONSccvvvivmieecriirie st
16.10 Integer Multiply-Accumulate I nstructions
16.11 MUlIMeEdia EXLENSIONS. ...ttt
16.12 Debugging INSIIUCLIONScuuvvrveeiieierienis et
16.12.1 Instruction NOtation CONVENTIONScoererrereeneieensreeseesesses e sesessesssnsnns 340
Chapter 17 CPU INSLFUCLION SEL ... 345
17.1 Introduction
17.2 Functional INSErUCtION GrOUPS......ccveiirereeieneiee ittt ssssessees 345
17.21 Load and StOre INSIUCHIONSccuvurerecereirieeee et sesse st ssessssssnens 346
17.2.2 Computational INSLIUCLIONS..........cccvieiiecriiesce et see 348
17.2.3 Jump and Branch INSIFUCLIONS.........c.eiiureueiieneiesecenssese ettt 353
17.2.4 Miscellaneous I nstructions
17.3 System Control Coprocessor (CPO) INSEFUCLIONS ... 355
17.4 CPU INSEFUCHIONS. ..ottt essesesesessesessasassssse e seses s ssesesesssesesessesenssssnsssssace 356
175 CPU Instruction Opcode Bit ENCOUING........cconrmerrimnemeenirneieerernersseesesnesseesssensennenes 565
Chapter 18 Floating-Point Unit INStruction Set....................oovvvvvvvvecieieeeseeeervvei. 569
18.1 INSEFUCETON FOMMALS.....ciiiieeieencireieeeeeiee st ses ettt 569
18.1.1 Floating-Point Loads, Stores, and TranSfers......ooo e seseeseeees 572
18.1.2 Floating-PoinNt OPErationsccccvieuniiiniiiesie st ssssesssssssesesssssees 572
18.2 Floating-Point Computational INStruCtiONS........c.occvrrniercr s 575
18.3 FPU INSIFUCLIONS ..ottt

18.4 FPU Instruction Opcode Bit Encoding

Xii

VR5432 Microprocessor User’s Manual

Contents

Chapter 19 Multimedia INStruCtion SEt ..., 677
19.1 MUliMedia EXTENSIONS.........ciiiirinicieti et
19.2 Multimedia Instruction Format
19.3 MUIMEdia INSEFUCHTIONS. ..ot
19.4 Multimedia Instruction Opcode Bit ENCOAING........covvvveverininieenincnceneens 735

Chapter 20 Debug and Test FEAtUIES...................wwevvsssesseeessssissssssseeesssssnnnnns 737
20.1 Overview
20.2 DEfiNITION OF TEIMMS. ..ottt 739
20.3 DEDUG MOUE.......oiiiiciiriieieeeitsetee ettt 742
20,4 INTEINAI ACCESS. ... oottt et ese st es e e bbbt ee sttt 743
20.4.1 DEDUG INSITUCLIONS.......couieiiieeiieeieireiseeiee et eee ettt es 744
20.4.2 DEDUG REQISLEIS ...ttt b bbb esesaen 745
20.5 EXEEINAl ACCESS......cortiiieiceeiitrtiriiseie ettt sss st 759
20.5.1 JTAG POt SIQNAIS....coieiiieisiieisicisistss ettt bbb nnn 760
2052 JTAG-ACCESSIDIE REGISIEIScoueeeeeieeeeieeirei ettt 766
20.5.3 N-Wire Monitor Data Download EXample............ccceeeveceviieiecessseeeeseee s 779
20.5.4 N-TraCEPACKELS ..ottt s sesssnnaenans 780

Appendix A Subblock Data Retrieval Order ..., 787

Appendix B Comparing the Vr4300, Vr5000 and Vr5432 Processors....... 791

Appendix C PLL Analog Power Filtering ... 795

Appendix D INStruction HAazar ds..............eeecessssseessessisssssseeee 797

INAEX s 799

VR5432 Microprocessor User’'s Manual Xiii

Contents

Xiv VR5432 Microprocessor User’s Manual

Preface

Legend

Manual Overview

The VR5432™ microprocessor is an NEC VR Series™ RISC
(reduced instruction set computer) microprocessor that implements
the high-performance 64-bit MIPS® IV architecture. This manual
describes the architecture and hardware functions of the VR5432
microprocessor.

Data significance: Higher on left and lower on right
Active-high signal name: XXX
Active-low signal name: ~ XXX*
Numeric representation: binary ... XXXX or XXXX,

decimal ... XXXX

hexadecimal ... 0xXXXX
Prefixes representing an exponent of 2 (for address space or memory
capacity):

K (kilo) 219=1024

M (mega) 220 = 10242
G (giga) 230 = 10243
T (tera) 240 = 10244

The manual is divided into two volumes. Volume 1 is the user manual,
containing processor architectural and functional information and
instructions. Volume 2 contains the instruction set information and
appendixes.

Volume 1 (UI3751E)

Chapter 1: Introduction provides an overview of the device
features, CPU, Floating-Point Unit (FPU), and pipeline.

Chapter 2: Signal Descriptions discusses the pin configuration and
functions of the VR5432 processor signals.

Chapter 3: Pipeline describes the dual-issue instruction pipeline
stages, delays, and interlock and exception handling.

VR5432 Microprocessor User’s Manual xv

Preface

Chapter 4: Memory Management Unit discusses the processor’s
virtual and physical address spaces, the virtual-to-physical address
tranglation, the translation lookaside buffer (TLB) process, and the
system control coprocessor registers that provide the software
interface to the TLB.

Chapter 5: Cache Organization and Oper ation describesthe cache
memory’s place in the VR5432 memory configuration and individual
cache organization.

Chapter 6: CPU Exceptions describes the processor’ s exception
types, registers, vector offsets, processing handling, and interrupts.

Chapter 7: Floating-Point Unit describes the FPU coprocessor,
including the programming model, instruction set and formats, and
the pipeline.

Chapter 8: Floating-Point Exceptions discusses FPU exception
types, exception trap processing, exception flags, saving and restoring
states when handling an exception, and trap handlers for |IEEE
Standard 754 exceptions.

Chapter 9: Bus Interface describes how the processor accesses the
external resources needed to satisfy cache misses and uncached
operations, while permitting an external agent access to some of the
processor’ s internal resources.

Chapter 10: System Interface Transactions (Native M ode)
describes processor and external requests in the native system
interface protocol of the VR5432 processor.

Chapter 11: System Interface Protocols (Native M ode) contains a
cycle-by-cycle description of the system interface protocols for each
type of processor and external request in the native protocol of the
VR5432 processor.

Chapter 12: System Interface Transactions (R43K Maode) This
section describes processor and external requests as they occur in
R43K (VR4300 compatibility) mode.

Chapter 13: System Interface Protocols (R43K Mode) contains a
cycle-by-cycle description of the system interface protocols for each
type of processor and external request in R43K mode.

Chapter 14: Initialization I nterface describes the processor reset
and initialization signals.

VR5432 Microprocessor User’s Manual

Preface

Chapter 15: Clock Interface describes the basic system clocks,
SysClock and PClock, and Phase-Locked Loop (PLL) and Bypass
PLL modes.

Volume 2 (U15397E)

Chapter 16: Instruction Set Overview discusses the general
attributes of the CPU, FPU, multimedia, and debugging instructions
of the MIPS IV instruction set architecture (ISA) utilized by the
VR5432 processor.

Chapter 17: CPU Instruction Set describes the details of the CPU
instructions.

Chapter 18: Floating-Point Unit Instruction Set describes the
details of the FPU instructions.

Chapter 19: Multimedia Instruction Set describes the details of the
multimedia instructions.

Chapter 20: Debug and Test Features describes the VR5432
processor’s debug and test functions, Debug mode, and debug
instructions.

Appendix A: Sublock Order describes how a block of data elements
(bytes, halfwords, words, or doublewords) can be retrieved from
storage in sequential or nonsequential (sub-block) order.

Appendix B: Comparing the Vr4300, VRS5000, and Vr5432
Processors delineates each processor’s attributes.

Appendix C: PLL Analog Power Filtering illustrates the phase-
locked loop circuit configuration.

Appendix D: Instruction Hazards identifies the VR5432 instruction
hazards that occur with certain instruction and event combinations
(such as pipeline delays, cache misses, interrupts, and exceptions).

VR5432 Microprocessor User’s Manual XVvii

Preface

See also the following documents. The related documents indicated

Related Documents
here may include preliminary versions. However, preliminary

versions are not marked as such.

User’s Manual
Product Data Sheet
Hardware Architecture Instruction Set
VR5432 U13504E U13751E U15397E
Vr5000 U12031E Ul1761E Ul12754E
Vr10000 U12703E U10278E Ul12754E

XViii VR5432 Microprocessor User’s Manual

| nstruction Set Overview

16

This chapter providesan overview of theinstruction set architecture (1ISA) utilized
by the VR5432 processor. For detailed information on each instruction type, refer
to the following chapters.

e Chapter 17, CPU Instruction Set, on page 3

e Chapter 18, Floating-Point Unit Instruction Set, on page 569
e Chapter 19, Multimedia Instruction Set, on page 677

e Chapter 20, Debug and Test Features, on page 737

VR5432 Microprocessor User’s Manual 319

Chapter 16

16.1 Instruction Set Architecture
The VR5432 processor executes the MIPS IV instruction set (a superset of the
MIPSIII instruction set) plusinstructions added by NEC specifically for VR5432
implementation. As Figure 16-1 illustrates, each new architecture level (or
version) includes the former levels. Therefore, a processor implementing MIPS
IV candsorun MIPS I, MIPSII, or MIPS |1 binary programs without change.

MIPS 1|

Figure 16-1 MIPS Architecture Extensions

The MIPS 1V instruction set for the VR5432 processor utilizes the following
instruction types.

* CPU instructions

* Floating-point instructions
* Multimedia instruction

e Test and debug instructions

In earlier MIPS architectures, coprocessor instructions were implementation
dependent. In the MIPS IV architecture, the Coprocessor 3 instruction formats
have been used for extensions to the floating-point instruction set. In the VR5432
implementation, the Coprocessor 2 instruction formats have been used for
implementati on-specific instruction set extensions. The new MIPS 1V, VR5432
processor-specific instructions are summarized and briefly explained in Section
16.8.

320 VR5432 Microprocessor User’s Manual

Instruction Set Overview

16.2 I nstruction For mats

Each instruction consists of a single 32-bit word aligned on aword boundary.
There are three instruction formats—immediate (I-type), jump (J-type), and
Register (R-type). The use of asmall number of instruction formats simplifies
instruction decoding, allowing the compiler to synthesize more complicated (and
less frequently used) operations and addressing modes from these three formats.
See the subsequent instruction chapters for details on the formats of each
instruction type.

16.3 Load and Store Instructions

Load and Store instructions are immediate (I-type) instructions that transfer data
between the memory system and the general-purpose register setsin the CPU and
coprocessors. There are separate instructions for different purposes: transferring
varioudly sized fields, treating |oaded data as sighed or unsigned integers,
accessing unaligned fields, selecting the addressing mode, and providing atomic
memory updates (read-modify-write cycles).

Regardless of byte ordering (big- or little-endian), the address of a halfword,
word, or doubleword is the smallest byte address among the bytes forming the
object. For big-endian ordering, thisis the most-significant byte; for little-endian
ordering, thisisthe least-significant byte.

Except for the few specialized instructionslisted in Table 17-2, Load and Store
instructions must access naturally aligned objects. An attempt to load or store an
object at an addressthat is not an even multiple of the size of the object will cause
an Address Error exception.

Load and Store operations have been added in each revision of the architecture:
MIPSII
* 64-bit coprocessor transfers
* Atomic update
MIPS 11
e 64-bit CPU transfer
e Unsigned word load for the CPU
MIPS IV: Register + r egister addressing mode for the FPU

Table 16-1 and Table 16-2 tabulate the supported L oad and Store operations and
indicate the MIPS architecture level at which each operation was first supported.
The instructions themselves are listed in the following sections.

VR5432 Microprocessor User’s Manual 321

Chapter 16

Table 16-1 Load/Sore Operations Using Register + Offset Addressing Mode

Coprocessor

cPU (except 0)

. L oad L oad
Data Size Signed | Unsigned Store L oad Store

Byte I I I
Halfword I I I
Word I " I I I
Doubleword " I I I
Unaligned word I I
Unaligned doubleword |11 11

Linked word
(atomic modify)

Linked doubleword
(atomic modify)

Table 16-2 Load/Sore Operations Using Register + Register Addressing Mode

Floating-Point Coprocessor Only
Data Size L oad Store
Word v v
Doubleword v v

322 VR5432 Microprocessor User’s Manual

Instruction Set Overview

16.3.1 Delayed Load Instructions

The MIPS | architecture defines delayed |oads; an instruction scheduling
restriction requires that an instruction immediately following aload into register
Rn cannot use Rn as a source register. The time between the Load instruction and
the timethe datais available is the “load delay slot.” If no useful instruction can
be put into the load delay slot, then anull operation (assembler mnemonic NOP)
must be inserted.

In MIPS 11, thisinstruction scheduling restriction is removed. Programs will
execute correctly when the loaded data is used by the instruction following the
load, but this may require extraread cycles. Most processors cannot actually load
data quickly enough for immediate use and the processor will be forced to wait
until the datais available. Scheduling load delay dlots can be desirable, both for
performance and compatibility with earlier VR Series processors. However, the
scheduling of load delay dotsis not required for correct operation of the
processor.

16.3.2 Defining Access Types

Access type indicates the size of a VR5432 processor data item to be loaded or
stored, as set by the Load or Store instruction opcode.

Regardless of accesstype or byte ordering (endianness), the address given
specifiesthe low-order bytein theaddressed field. For abig-endian configuration,
the low-order byte is the most-significant byte; for alittle-endian configuration,
the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the
bytes accessed within the addressed doubleword (shown in Table 16-3). Only the
combinations shown in Table 16-3 are permissible; other combinations cause
Address Error exceptions.

VR5432 Microprocessor User’s Manual 323

Chapter 16

Table 16-3 Byte Accesswithin a Doublew o r

AcessTYPe | mqreos Bis Dol
M nemonic - Blgiridlan o | L|ttle3I)Elnd|an 0
(Value) 21110 > Byte > Byte
Doubleword (7) 0|00
. 0[0|O
Septibyte (6) BRI
. 0/[0|O
Sextibyte (5) o110
- 0[0|O
Quintibyte (4) o111
Word (3) 01069
1/10]0
00O
Triplebyte (2) 0]0]1
1/0]0
1(0]1
00O
Halfword (1) 0]1]0
110]0
1(11]0
0[0|O
0|01
o110
0|11
Byte (0) TToTo
1(0]1
1(11]0
1(1]1

324

VR5432 Microprocessor User’s Manual

Instruction Set Overview

Table 16-4 Access Type Specifications for Load/Store Instruction

Access Type SysCmd (2:0) M eaning
Doubleword 7 8 bytes (64 bits)
Septibyte 6 7 bytes (56 hits)
Sextibyte 5 6 bytes (48 bits)
Quintibyte 4 5 bytes (40 bits)
Word 3 4 bytes (32 hits)
Triplebyte 2 3 bytes (24 hits)
Halfword 1 2 bytes (16 bits)
Byte 0 1 byte (8 bits)

VR5432 Microprocessor User’s Manual 325

Chapter 16

16.4 Computational Instructions

Computational instructionscan bein either register (R-type) format, in which both
operands are registers, or immediate (I-type) format, in which oneoperand isa 16-
bit immediate.
Two's-complement arithmetic is performed on integers represented in two's-
complement notation. There are signed versions of add, subtract, multiply, and
divide operations. There are add and subtract operations, called “unsigned,” that
are actually modulo arithmetic without overflow detection. There are unsigned
versions of multiply and divide. Thereisafull complement of shift and logical
operations.
MIPS | provides 32-bit integers and 32-bit arithmetic. M1 PSII1 adds 64-bit
integers and provides separate Arithmetic and Shift instructions for 64-bit
operands. Logical operations are not sensitive to the width of the register.
Computational instructions perform the following operations on register values:

e Arithmeti

e Logical

* Rotate

e Shift

o Multipl

» Divide

e Multiply-accumulat

» Parallel operations on packed bytes
These operationsfit in the following six categories of computational instructions:

* ALU immediate instruction

e Three-operand register-type instructions

* Rotate and Shift instructions

e Multiply and Divide instructions

* Multiply-accumulate instructions

» Packed byte instructions

326 VR5432 Microprocessor User’s Manual

Instruction Set Overview

16.4.1 64-Bit Operations

The VR5432 microprocessor has a 64-hit architecture that supports 32-bit
operands. These operands must be sign extended. Opcodes are availablefor 32-bit
operands for all of the basic arithmetic and logical instructions, such as: ADD,
ADDU, SUB, SUBU, ADDI, SLL, SRA, and SLLV. Operations that don’t use
sign-extended 32-bit values correctly are unpredictable. In addition, 32-bit datais
stored sign extended in a 64-bit register.

VR5432 Microprocessor User’s Manual 327

Chapter 16

16.5

1651

16.5.2

Jump and Branch Instructions

All Jump and Branch instructions have adelay s ot of exactly oneinstruction. That
is, the instruction immediately following a Jump or Branch instruction (the
instruction occupying the delay dlot) is executed while the target instruction is
being fetched from the cache. A Jump or Branch instruction cannot be used in a
delay dot; however, if they are used, the error is not detected and the results of
such an operation are undefined.

If an exception or interrupt prevents the completion of the instruction whileit is
in adelay dot, the hardware setsavirtual addressto the EPC register at the point
of the Jump or Branch instruction that precedes it. When exception or interrupt
processing is complete and the program is restored, both the Jump and Branch
instruction and the instruction in the delay slot are re-executed.

Because Jump and Branch instructions may be re-executed after exception or
interrupt processing, register 31 (the register in which the link addressis stored)
should not be used as a source register in Jump, Link/Branch, and Link
instructions.

Because instructions must be word-aligned, a Jump Register or Jump and Link
Register instruction must use aregister that contains an address where the low-
order two bits are zero. If these low-order two bits are not zero, an Address Error
Exception instruction at the Jump destination is fetched.

Jump Instructions

Subroutine callsin high-level languages are usually implemented with Jump or
Jump and Link instructions, both of which are J-type instructions. In J-type
format, the 26-bit target address is shifted left 2 bits and concatenated with the
high-order 4 bits of the current program counter to form an absol ute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the
Jump Register or Jump and Link Register instructions. Both are R-type
instructions that take the 64-bit byte address contained in one of the general-
purpose registers.

Branch Instructions

All Branch instruction target addresses are cal culated by adding the address of the
instruction in the delay slot to the 16-bit offset (shifted left by 2 bits and sign-
extended to 64 bits). All branches occur with adelay of one instruction.

328

VR5432 Microprocessor User’s Manual

Instruction Set Overview

If aconditional Branch Likely instruction is not taken, the instruction in the delay
dotisnullified (i.e., discarded without affecting any data).

16.6 Special Instructions

Specia instructions allow the software to initiate traps both conditionally and
unconditionally. These instructions can cause System Call (SysCall), Breakpoint
(Break), and Trap (Trap) conditionsin the processor. SysCall and Break are
unconditional, while Trap can specify acondition such as a Branch instruction.
The Synchronize (Sync) instruction allows the software to ensure that all pending
operations are complete. In the VR5432 processor implementation, the Sync
instruction is executed as an NOP.

16.7 Coprocessor Instructions

Coprocessors are alternate execution units with register files separate from the
CPU. The MIPS architecture provides an abstraction for up to 4 coprocessor units,
numbered 0 to 3. Each architecture level defines some of these coprocessors, as
shown in Table 16-5. Coprocessor 0 is always used for system control and
Coprocessor 1 is used for the floating-point unit. Other coprocessors are
architecturaly valid, but do not have areserved use. Some coprocessors are not
defined and their opcodes are either reserved or used for other purposes.

Table 16-5 Coprocessor Definition and Use in the MIPS Architect u r
MIPS Architecture Level

Coprocessor I I M1 1V
Sys. control | Sys. control | Sys. control | Sys. control
FPU FP FP FPU
Unused Unused Unused Unused
. FPU
3 Unused Unused Not defined (COP1X)

The coprocessors may have two register sets, Coprocessor general-purpose
registers and coprocessor control registers, with each set containing up to 32
registers. Coprocessor computational instructions may alter registersin either
Set.

VR5432 Microprocessor User’s Manual 329

Chapter 16

System control for all MIPS processorsis implemented as Coproce ssorO (CPQ),
the system control coprocessor. It provides the processor control, memory
management, and exception handling functions. The CPO instructions are specific
to each CPU and are documented with the CPU-specific information.

If a system includes a floating-point unit, it isimplemented as coproces sorl
(CP1). InMIPSI V, the FPU aso uses the computation opcode space for
Coprocessor unit 3, renamed COP1X. The FPU instructions are documented in
Chapter 18.

The coprocessor instructions are divided into two main groups:
e Load and Store instructions that are reserved in the main opcode

space
» Coprocessor-specific operations that are defined entirely by the
Coprocessor
16.7.1 Coprocessor Load and Store

Load and Store instructions are not defined for CPO; the Move to/from
Coprocessor instructions provide the only way to write and read the CPO registers.

16.7.2 Coprocessor Operations

Up to four coprocessors and their instructions are shown generically for
coprocessor z. Within the operation main opcode, the coprocessor has further
coprocessor-specific instructions encoded.

Table 16-6 Coprocessor Operation Instr uction

Defined in
MIPS...

Mnemonic Description

COPz Coprocessor z Operation I

330 VR5432 Microprocessor User’s Manual

Instruction Set Overview

16.8 I mplementation-Specific I nstructions

16.8.1 Overview

The MIPS 1V instructions added by NEC for the Vr5432 processor enable the
MIPS architecture to competein the high-end numeric processing market, which
has traditionally been dominated by vector architectures.

Compound Multiply-Add instructions are included, taking advantage of the fact
that most floating-point computations use the chained multiply-add paradigm.
The intermediate multiply result is rounded before the addition is performed.

A register + register addressing indexed mode for floating-point loads and stores
eliminates the extrainteger required in many array accesses. However, issuing a
register + register load causes a one-cycle stall in the pipeline, which makes it
useful only for compatibility with other MIPS IV implementations. Register +
register indexed addressing for integer memory operationsis not supported.

A set of four conditional move operators allows floating-point arithmetic IF
statements to be represented without branches. THEN and EL SE clauses are
computed unconditionally and the results are placed in atemporary register.
Conditional move operators then transfer the temporary resultsto their true
register. Conditional moves must be able to test both integer and floating-point
conditions in order to supply the full range of |IF statements. Integer tests are
performed by comparing a general-purpose register against a zero value.

Because floating-point conditional moves test the floating-point condition codes,
the VR5432 processor provides eight condition codes to give the compiler
increased flexibility in scheduling the comparison and the conditional moves.

Table 16-7 lists the new instructions that complete the MIPS IV instruction set;
these instructions are described in Section 16.8.2 on page 333.

VR5432 Microprocessor User’s Manual 331

Table 16-7 MIPSIV Instruction Additions

I nstruction Definition
BC1F Branch on FP condition code false
BC1T Branch on FP condition code true
BC1FL Branch on FP condition code false likely
BC1TL Branch on FP condition code true likely
C.cond.fmt (cc) Floating-point compare
LDXC1 L oad doubleword indexed to COP1
LWXC1 Load word indexed to COP1
MADD.fmt Floating-point multiply-add
MOVF Move conditional on FP condition code false
MOVN Move on register not equal to zero
MOVT Move conditional on FP condition code true
MOVZ Move on register equal to zero
MOVF.fmt FP move conditional on condition code false
MOVN.fmt FP move on register not equal to zero
MOVT.fmt FP move conditional on condition code true
MOVZ.fmt FP move conditional on register equal to zero
MSUB.fmt Floating-point multiply-subtract
NMADD.fmt Floating-point negative multiply-add
NMSUB.fmt Floating-point negative multiply-subtract
PREFX Prefetch indexed [register + register
PREF Prefetch L1 register + offset
RECIP.fmt Reciprocal
RSQRT.fmt Reciprocal square root
SDXC1 Store doubleword indexed from COP1
SWXC1 Store word indexed from COP1

VR5432 Microprocessor User’s Manual

Instruction Set Overview

16.8.2 I mplementation-Specific I nstruction Descriptions

This section describes the new instructions listed in Table 16-7.

16.8.2.1 Branch on floating-point Coprocessor instructions
BC1T: Branch on FP condition True
BC1F: Branch on FP condition False
BC1TL: Branch on FP condition True Likely
BC1FL: Branch on FP condition False Likely

The four Branch instructions are upwardly compatible extensions of the Branch
on floating-point coprocessor instructions of the MIPS instruction set. The BC1T
and BC1F instructions are extensions of MIPS|. BC1TL and BC1FL are
extensions of MIPS 111. These instructions test one of eight floating-point
condition codes. This encoding is upwardly compatible with previous MIPS
architectures.

The branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bitsand sign
extended to 64 bits. If the contents of the floating-point condition code specified
in theinstruction are equal to the test value, the target address isbranched to with
adelay of oneinstruction. If the conditional branch is not taken and the nullify
delay bit inthe instruction is set, the instruction in the branch delay slot is
nullified.

16.8.2.2 Floating-point Compare instructions
C.cond.fmt: Compares the contents of two FPU registers

The contents of the two FPU source registers specified in the instruction are
interpreted and arithmetically compared. A result is determined based on the
comparison and the conditions specified in the instruction.

VR5432 Microprocessor User’s Manual 333

Chapter 16

16.8.2.3

16.8.2.4

Indexed floating-point Load instructions
LWXC1: Load word indexed to Coprocessor 1
LDXC1: Load doubleword indexed to Coprocessor 1

The two indexed floating-point Load instructions are exclusive to the MIPS IV
instruction set and transfer floating-point data types from memory to the floating-
point registers using the register + register addressing mode. Thereare no indexed
loads to general-purpose registers. The contents of the general-purpose register
specified by the base are added to the contents of the general-purpose register
specified by the index to form avirtual address. The contents of the word or
doubleword specified by the effective address are |oaded into the floating-point
register specified in the instruction.

The region bits (63:62) of the effective address must be supplied by the base. If
the addition alters these bits, an Address Error exception occurs. Also, if the
addressis not aligned, an Address Error exception occurs.

Integer conditional Move instructions

MOVT: Move conditional on condition code True
MOVF: Move conditional on condition code False
MOVN: Move conditional on register not equal to zero
MOVZ: Move conditiona on register equal to zero

The four-integer Move instructions are exclusive to the MIPS IV instruction set
and are used to test a condition code or a general-purpose register and then
conditionally perform an integer move. The value of the floating-point condition
code specified in the instruction by the 3-bit condition code specifier, or the value
of the register indicated by the 5-bit general-purpose register specifier, is
compared to zero. If the result indicates that the move should be performed, the
contents of the specified source register are copied into the specified destination
register.

334

VR5432 Microprocessor User’s Manual

Instruction Set Overview

16.8.2.5 Floating-point Multiply-Add instructions
MADD: Floating-point Multiply-Add
M SUB: Floating-point Multiply-Subtract
NMADD: Floating-point Negative Multiply-Add
NM SUB: Floating-point Negative Multiply-Subtract

These four instructions are exclusive to the MIPS |V instruction set and
accomplish two floating-point operations with one instruction. Each of these four
instructions performsintermediate rounding.

16.8.2.6 Floating-point conditional Move instructions
MOVT.fmt: Floating-point conditional move on condition code True
MOVF.fmt: Floating-point conditional move on condition code False
MOV N.fmt: Floating-point conditional move on register not equal to zero
MOV Z.fmt: Floating-point conditional move on register equal to zero

The four floating-point Conditional Move instructions are exclusive to the MIPS
IV instruction set and are used to test a condition code or a general-purpose
register and then conditionally perform afloating-point move. The value of the
floating-point condition code specified by the 3-bit condition code specifier, or the
value of the register indicated by the 5-bit general-purpose register specifier, is
compared to zero. If the result indicates that the move should be performed, the
contents of the specified source register are copied into the specified destination
register. All of these conditional floating-point move operations are non-
arithmetic. Consequently, no IEEE-754 exceptions occur as aresult of these
instructions.

VR5432 Microprocessor User’s Manual 335

Chapter 16

16.8.2.7

16.8.2.8

Prefetch instructions
PREF: Register + offset format
PREFX: Register + register format

The two Prefetch instructions are exclusive to the MIPS 1V instruction set and
allow the compiler to issue instructions early so the corresponding data can be
fetched and placed as close as possible to the CPU. Each instruction contains a
5-bit “hint” field that gives the coherency status of the line being prefetched. The
line can be shared, exclusive clean, or exclusive dirty. The contents of the general -
purpose register specified by the base are added either to the 16-bit sign-extended
offset or to the contents of the general-purpose register specified by the index to
form avirtual address. Thisaddressand “hint” field are sent to the cache controller
and amemory accessisinitiated.

The region bits (63:62) of the effective address must be supplied by the base. If
the addition alters these bits, an Address Error exception occurs. The Prefetch
instruction never generates TLB-related exceptions. The PREF ingtruction is
considered a standard processor instruction, while the PREFX instruction is
considered a standard Coprocessor 1 instruction.

Reciprocal instructions
RECIP.fmt: Reciprocal
RSQRT .fmt: Reciprocal Square Root

The Reciprocal instruction performs areciprocal on afloating-point value. The
reciprocal of the value in the floating-point source register is placed in a
destination register.

The Reciprocal Square Root instruction performs a reciprocal sguare root on a
floating-point value. The reciprocal of the positive square root of avaluein the
floating-point source register is placed in a destination register.

The VR5432 meets full |EEE accuracy reguirements for the RECIP and RSQRT
instructions. On the VR5432 microprocessor, the RECI P instruction has the same
latency asa DIV ingtruction, but an RSQRT isfaster than a SQRT followed by a
RECIP.

336

VR5432 Microprocessor User’s Manual

Instruction Set Overview

16.8.2.9 Indexed floating-point Store instructions
SWXC1: Store word indexed from Coprocessor 1
SDXC1: Store doubleword indexed from Coprocessor 1

The two indexed floating-point Store instructions are exclusive to the MIPS IV
instruction set and transfer floating-point data types from the floating-point
registers to memory using the register + register addressing mode. There are no
indexed stores from general-purpose registers. The contents of the general-
purpose register specified by the base are added to the contents of the general-
purpose register specified by the index to form avirtual address. The contents of
the floating-point register specified in the instruction are stored to the memory
location specified by the effective address.

The region bits (63:62) of the effective address must be supplied by the base. If
the addition alters these bits, an Address Error exception occurs. Also, if the
addressis not aligned, an Address Error exception occurs.

16.9 Integer Rotate I nstructions

The VR5432 processor adds a set of Rotate instructions that are not part of the
standard MIPS instruction set.

Table 16-8 Rotate Instructi o n

Instruction Definition

DROR Doubleword rotate right
DROR32 Doubleword rotate right plus 32
DRORV Doubleword rotate right variable
ROR Rotate right

RORV Rotate right variable

VR5432 Microprocessor User’s Manual 337

Chapter 16

16.10 Integer Multiply-Accumulate I nstructions
The VR5432 processor includes aset of Multiply-Accumulateinstructionsthat are
not part of the standard MIPSinstruction set. Theseinstructions use half of the HI
and L O registers together as a 64-hit accumulator, with the upper 32 bits of the
accumulator mapped to the lower 32 bits of HI and the lower 32 bits of the
accumulator mapped to the lower 32 hits of LO. These instructions perform no
underflow or overflow detection and produce no exceptions. Table 16-9 liststhese
instructions.
Table 16-9 Multiply-Accumulate Instruction Set Extensions

Instruction Definition

MACC Multiply, accumulate, and move LO

MACCHI Multiply, accumulate, and move Hl

MACCHIU Unsigned multiply, accumulate, and move Hl

MACCU Unsigned multiply, accumulate, and move LO

MSAC Multiply, negate, accumulate, and move LO

MSACHI Multiply, negate, accumulate, and move Hi

MSACHIU Unsigned multiply, negate, accumulate, and move Hl

MSACU Unsigned multiply, negate, accumulate, and move LO

MUL Multiply and move LO

MULHI Multiply and move Hl

MULHIU Unsigned multiply and move HlI

MULS Multiply, negate, and move LO

MULSHI Multiply, negate, and move HlI

MULSHIU Unsigned multiply, negate, and move Hl

MULSU Unsigned multiply, negate, and move LO

MULU Unsigned multiply and move LO

338 VR5432 Microprocessor User’s Manual

Instruction Set Overview

16.11

Table 16-10 Multiply-Accumulate Instruction Latency and Repeat Rat e

Instruction L atency Repeat Rate
MACC, MACCHI, MACCHIU, MACCU 3 1
MSAC, MSACHI, MSACHIU, MSACU 3 1
MUL, MULHI, MULHIU, MULU 3 1
MULS, MULSHI, MULSHIU, MULSU 3 1

Multimedia Extensions

The VR5432 adds a set of instructions to operate on packed vectors of eight 8-bit
unsigned integers. These instructions are described in Chapter 19.

Table 16-11 Multimedia Extensions

Instruction Definition
ADD.OB Vector add
ALNI.OB Vector aign
AND.OB Vector AND
C.EQ.OB Vector compare equal
C.LE.OB Vector compare less than or equal
CLT.OB Vector compare |less than
MAX.OB Vector maximum
MIN.OB Vector minimum
MUL.OB Vector multiply
MULA.OB Vector multiply-accumulate
MULS.OB Vector multiply, negate, and accumulate
MULSL.OB Vector multiply, negate, and load accumulator
NOR.OB Vector NOR
OR.OB Vector OR
PICKF.OB Vector pick false
PICKT.OB Vector pick true
RzU.OB Vector scale, round, and clamp accumulator
SHFL.MIXH.OB Vector element shuffle
SHFL.MIXL.OB Vector element shuffle

SHFL.PACH.OB

Vector e ement shuffle

VR5432 Microprocessor User’s Manual

339

Chapter 16

Table 16-11 Multimedia Extensions (continued)

Instruction Definition
SHFL.PACL.OB Vector element shuffle
SLL.OB Vector shift left logical
SRL.OB Vector shift right logical
SUB.OB Vector subtract
XOR.OB Vector XOR
16.12 Debugging I nstructions

The VR5432 processor adds a set of instructionsto control the on-chip debugging
features described in Chapter 20.

Table 16-12 Debug Instructi on

Instruction Definition

DBREAK Debug break

DRET Debug return

MFDR Move from Debug register

MTDR Moveto Debug register
16.12.1 Instruction Notation Conventions

In the following instruction set chapters, all variable subfields in instruction
formats (such asrs, rt, fs, ft, immediate, and so on) are shown in lowercase.

For clarity, sometimes an aliasis used for a variable subfield in the formats of
specific instructions. For example, rs = base in the format for Load and Store
instructions. Such an diasis awayslowercase, sinceit refersto avariable
subfield.

In some instructions, the instruction subfields op and function have fixed 6-bit
values. These instructions use an uppercase mnemonic. For instance, in the
floating-point ADD instruction, op = COP1 and function = FADD. In other cases,
asingle field has both fixed and variable subfiel ds, so the name contains both
uppercase and lowercase characters. The actual encodings of all the mnemonics
and the codes in the function fields are shown in the instruction chapters. The
operation executed by each instruction is described in pseudocode notation, as
described in Table 16-13.

340 VR5432 Microprocessor User’s Manual

Instruction Set Overview

Table 16-13 Instruction Operation Notatio n
Symbol M eaning

- Substitution assignment

Il Bit string concatenation

W Repetiti on of bit string x with ay-bit string. x isaways a
single-bit value.
Selection of bitsy through zfor bit string x. Little-endian bit

XYy...Z notation isaways used. If yislessthan z, this expressionis
an empty (zero length) bit string.

+ Two's-complement or floating-point addition

- Two' s-complement or floating-point subtraction

* Two's-complement or floating-point multiplication

div Two's-complement integer division

mod Two' s-complement remainder

/ Floating-point division

< Two's-complement less than comparison

and Bitwiselogical AND

or Bitwiselogical OR

xor Bitwiselogical XOR

nor Bitwise logical NOR

GPRIX] General-purpose_register X. GPR (0) always reads as zero.
Attempts to modify the contents of GPR (0) have no effect.

CPR[z,X] Coprocessor unit z, general-purpose register x

CCR[zX] Coprocessor unit z, control register x

COoC[Z Coprocessor unit z condition signal
Endian mode as configured at reset (0 — Little, 1 — Big).
Specifies the byte order of the memory interface (see

BigEndianMem LoadMemory and StoreMemory), and the byte order of

Kernel and Supervisor modes. Controlled by the BE bit in
the Configuration register, which can only be modified
during reset initialization.

ReverseEndian

Signal to reverse the byte order of Load and Store
instructions. Thisfeature is available in User mode only,
and is enabled by setting the RE bit of the Status register.

VR5432 Microprocessor User’s Manual

341

Chapter 16

Table 16-13 Instruction Operation Notations (continued)

Symbol

M eaning

BigEndianCPU

Endian mode for Load and Store instructions (O — Little, 1
- Big).

In User mode, byte order can be reversed by setting the RE
bit. The byte order is also affected by the BE bit in the
Configuration register. BigEndianCPU is calculated as
BigEndianMem X OR ReverseEndian.

LLbit

Bit showing synchronized state of instructions. Set by LL
instruction, cleared by ERET instruction, and read by SC
instruction.

T+i:

I ndicates the time steps between operations. Each statement
within atime step is defined to be executed in sequential
order (instruction execution order may be changed by
conditional branch and loop). Operationsmarked T + i: are
executed at instruction cyclei from the start of execution of
the instruction. Thus, an instruction that starts at time j
executes operations marked T + i: at the time of thei + jth
cycle. The order is not defined for instructions executed at
the same time of operations.

342

VR5432 Microprocessor User’s Manual

Instruction Set Overview

The examplesin Figure 16-2 illustrate the application of some of the instruction
notations.

Example #1
GPR]rt] « immediate || 016

Sixteen zero bits are concatenated with an immediate value (typically 16 bits) and the
32-bit string is assigned to general-purpose register rt.

Example #2
(immediate5)'° || immediate,5_g

Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and th
result is concatenated with bits 15 through 0 of the immediate value to form a 32-bit
sign-extended value.

Example #3
CPR[1, ft] ~ data

Data is assigned to general-purpose register ft of CP1 (Floating-Point
General-Purpose register FGR).

Figure 16-2 Instruction Notation Examples

VR5432 Microprocessor User’s Manual 343

Chapter 16

344 VR5432 Microprocessor User’s Manual

CPU Instruction Set

17

17.1 I ntroduction

This chapter describes the instruction set architecture (1SA) for the central
processing unit (CPU) inthe MIPS IV architecture. (For ageneral overview of the
VR5432 MIPS IV instruction set, see Chapter 16.) The CPU architecture defines
the nonprivileged instructions that execute in User mode. It does not define
privileged instructions providing processor control executed by the
implementation-specific system control processor. Instructions for the floating-
point unit are described in Chapter 18.

17.2 Functional Instruction Groups

CPU instructions are divided into the following functional instruction groups:

Load and Store

Arithmetic and Logic Unit (ALU)
Jump and Branch

Miscellaneous

Coprocessor

VR5432 Microprocessor User’s Manual 345

Chapter 17

1721

Load and Store I nstructions

Theinstructionsin Table 17-1 transfer datain bytes, halfwords, words, and
doublewords. Signed and unsigned integers of different sizes are supported by
load operations that either sign extend or zero extend the dataloaded into the
register. Load and Store instructions are not defined for CPO; the Move to/from
coprocessor instructions provide the only way to write and read the CPO registers.

Table17-1 Normal CPU Load/Sore Instructions

M nemonic

Description

Defined in MIPS...

LB

Load Byte

LBU

Load Byte Unsigned

SB

Store Byte

LH

Load Halfword

LHU

L oad Halfword Unsigned

SH

Store Halfword

LW

Load Word

Lwu

Load Word Unsigned

SW

Store Word

LD

Load Doubleword

SD

Store Doubleword

Unaligned words and doublewords can be loaded or stored in only two
instructions by using a pair of special instructions (Table 17-2). The Load

instructions read the |eft-side or right-side bytes (Ieft or right side of the register)
from an aligned word and merge them into the correct bytes of the destination
register. MIPS |, though it prohibits other use of loaded datain the load delay dlot,
permits LWL and LWR instructions targeting the same destination register to be
executed sequentially. Store instructions select the correct bytes from a source
register and update only those bytesin an aligned memory word (or doubleword).

346

VR5432 Microprocessor User’s Manual

CPU Instruction Set

17211

Table 17-2 Unaligned CPU Load/Store Instructions

Mnemonic Description Defined in MIPS...
LWL Load Word L eft I
LWR Load Word Right I
SWL Store Word L eft I
SWR Store Word Right I
LDL Load Doubleword Left Il
LDR Load Doubleword Right Il
SDL Store Doubleword L eft Il
SDR Store Doubleword Right I

Atomic update Load and Store instructions

Paired instructions, Load Linked and Store Conditional, can beused to perform an
atomic read-modify-write access of word and doubleword cached memory
locations. Theseinstructions are used in carefully coded sequencesto provide one
of several synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers/event counts. The individual instruction descriptions
describe how to use them.

Table 17-3 Atomic Update CPU Load/Store Instructions

M nemonic Description Dlafllr;)esdm
LL Load Linked Word I
SC Store Conditional Word Il
LLD Load Linked Doubleword 11
SCD Store Conditional Doubleword 11

VR5432 Microprocessor User’s Manual 347

Chapter 17

17.2.2 Computational Instructions

17.2.2.1 Multiply and Divide instructions

The Multiply and Divide instructions produce twice as many result bitsasis
typical with other processors and they deliver their results into the HI and LO
specid registers. Multiply produces a full-width product twice the width of the
input operands; the low half isput in LO and the high half is put in HI. Divide
produces both aquotient in LO and aremainder in HI. The results are accessed by
instructions that transfer data between HI/L O and the general-purpose registers.

Table 17-4 Multiply/Divide Instructions

Mnemonic Description Defined in MIPS...
MULT Multiply Word I
MULTU Multiply Unsigned Word I
DIV Divide Word I
DIVU Divide Unsigned Word I
DMULT Doubleword Multiply 11
DMULTU Doubleword Multiply Unsigned 11
DDIV Doubleword Divide 11
DDIVU Doubleword Divide Unsigned 11
MFHI Move From HI I
MTHI Move To HI I
MFLO Move From LO I
MTLO MoveToLO I

348 VR5432 Microprocessor User’s Manual

CPU Instruction Set

Cycle Timing for Computational Instructions

The VR5432A processor performs most computational instructions with the
exception of Multiply and Divide instructions in asingle processor cycle
(PCycle). Multiply and Divide instructions require multiple iterations in the
functional unitsand require multiple processor cyclesto execute. Also, Divideand
some Multiply instructionsrequire the use of the MFLO and MFHI instructionsto
move the result back to the general register file. Since Multiply and Divide
instructions can be executed in parallel with other nondependent instructions, itis
desirable to schedule nondependent operations to gain performance. The
VR5432A will automatically interlock the pipe when a dependency on a
multicycle instruction is detected.

Table 17-5 gives the number of processor cycles (PCycles) required to execute
and resolve a stall between Multiply or Divide instructions, and a subsequent
dependent instruction.

Table 17-5 Multiply and Divide Instruction Latency and Repeat Rates

L atency'/Repeat Rate
Instruction (Cycles)/(Cycles)
Word Long
DIV /DIVU/DDIV / DDIVU 42/42 7474
MACC/MACCHI / MACCHIU / MACCU 3/1
MSAC/MSACHI / MSACHIU / MSACU 3/1
MUL / MULHI / MULHIU / MULU 3/1
MULS/MULSHI / MULSHIU / MULSU 3/1
MULT/MULTU/DMULT/DMULTU 3/1 4/2

Note:
1. Latency of the accumulator for back-to-back Multiply-accumulate instructionsis 1 cycle.

VR5432 Microprocessor User’s Manual 349

Chapter 17

17.2.2.2 ALU instructions
Some Arithmetic and L ogical instructions operate on one operand from a register
and the other from a 16-bit immediate value in the instruction word. The
immediate operand is treated as signed for the Arithmetic and Compare
instructions, and as logical (zero extended to register length) for the Logical
instructions.
Table 17-6 ALU Instructions With an Immediate Oper an
Mnemonic Description Defined in MIPS...
ADDI Add Immediate Word I
ADDIU Add Immediate Unsigned Word I
SLTI Set on Less Than Immediate I
SLTIU Set on Less Than Immediate Unsigned I
ANDI AND Immediate I
ORI OR Immediate I
XORI Exclusive OR Immediate I
LUI Load Upper Immediate I
DADDI Doubleword Add Immediate 11
DADDIU Doubleword Add Immediate Unsigned 11
350

VR5432 Microprocessor User’s Manual

CPU Instruction Set

Table 17-7 Three-Operand ALU Instructions

Mnemonic Description Dl\e/lf:rlloegm
ADD Add Word I
ADDU Add Unsigned Word I
SuUB Subtract Word I
SUBU Subtract Unsigned Word I
DADD Doubleword Add I
DADDU Doubleword Add Unsigned I
DSUB Doubleword Subtract I
DSuUBU Doubleword Subtract Unsigned I
SLT Set on Less Than I
SLTU Set on Less Than Unsigned I
AND AND I
OR OR I
XOR Exclusive OR I
NOR NOR I
VR5432 Microprocessor User’s Manual 351

Chapter 17

17.2.2.3 Shift instructions

There are Shift instructions that take the shift amount from a 5-bit field in the
instruction word and Shift instructions that take a shift amount from the low-order
bits of a general-purpose register. The instructions with afixed shift amount are
limited to a 5-bit shift count, so there are separate instructions for doubleword
shifts of 0—31 bits and 32-63 hits.

Table 17-8 Shift Instructions

Mnemonic Description Defined in MIPS...
SLL Shift Word Left Logical I
SRL Shift Word Right Logical I
SRA Shift Word Right Arithmetic I
SLLV Shift Word Left Logical Variable I
SRLV Shift Word Right Logical Variable |1
SRAV Shift Word Right Arithmetic Variable| |
DSLL Doubleword Shift Left Logical I
DSRL Doubleword Shift Right Logical 11
DSRA Doubleword Shift Right Arithmetic | 111

DSLL32 Doubleword Shift Left Logical +32 |11l

DSRL32 Doubleword Shift Right Logical + 32 | 111

Doubleword Shift Right Arithmetic +

DSRA32 20 11

DSLLV Doqbl eword Shift Left Logical i
Variable

DSRLV Dogbl eword Shift Right Logical i
Variable

DSRAV Dogbl eword Shift Right Arithmetic i
Variable

352 VR5432 Microprocessor User’s Manual

CPU Instruction Set

17.2.3 Jump and Branch Instructions

Table 17-9 Jump Instructions Jumping Within a 256 MB Reg i 0

Mnemonic Description Defined in MIPS...

J Jump |
JAL Jump and Link I

Table 17-10 Jump Instructions to Absolute Address

Mnemonic Description Defined in MIPS...
JR Jump Register I
JALR Jump and Link Register I

Table 17-11 PC-Relative Conditional Branches Comparing Two Registers

Mnemonic Description Dl\(jlf:r;esdm
BEQ Branch on Equal I
BNE Branch on Not Equal I
BLEZ Branch on Less Than or Equal to Zero I
BGTz Branch on Greater Than Zero I
BEQL Branch on Equal Likely I
BNEL Branch on Not Equal Likely I
BLEZL Branch on Less Than or Equal to Zero Likely |11
BGTZL Branch on Greater Than Zero Likely I

VR5432 Microprocessor User’s Manual 353

Chapter 17

Table 17-12 PC-Relative Conditional Branches Comparing Against Zer

. I Defined in
Mnemonic Description MIPS..
BLTZ Branch on Less Than Zero I
BGEZ Branch on Greater Than or Equal to Zero I

BLTZAL |Branchon Less Than Zero and Link |

BGEZAL |Branch on Greater Than or Equal to Zero and Link | |

BLTZL Branch on Less Than Zero Likely I

BGEZL Branch on Greater Than or Equal to Zero Likely |11

BLTZALL |Branch on Less Than Zero and Link Likely I

BGEZALL Branch on Greater Than or Equal to Zero and Link

Likely
17.2.4 Miscellaneous I nstructions
17.24.1 Exception instructions

Exception instructions cause exceptions that will transfer control to a software
exception handler in the kernel. System Call and Breakpoint instructions cause
exceptions unconditionally. Trap instructions cause exceptions based upon the
result of acomparison.

Table 17-13 System Call and Breakpoint Instructions

Mnemonic Description Defined in MIPS...
SYSCALL System Call I
BREAK Breakpoint I

34 VR5432 Microprocessor User’s Manual

CPU Instruction Set

Table 17-14 Trap-on-Condition Instructions Comparing Two Register

Mnemonic Description Defined in MIPS...
TGE Trap if Greater Than or Equal Il
TGEU Trap if Greater Than or Equal Unsigned | |1
TLT Trap if Less Than I
TLT Trap if Less Than Unsigned Il
TEQ Trap if Equal]
TNE Trap if Not Equal I

Table 17-15 Trap-on-Condition Instructions Comparing an Immediate

M nemonic Description Dslﬂlgegm
TGEI Trap if Greater Than or Equal Immediate]
TGEIU Trap if Greater Than or Equal Unsigned Immediate | 11
TLTI Trap if Less Than Immediate I
TLTIU Trap if Less Than Unsigned Immediate I
TEQI Trap if Equal Immediate I
TNEI Trap if Not Equal Immediate I
17.24.2 Conditional Move instructions

Instructionswereadded in MIPS 1V to move one CPU general-purpose register to
another, based on the value in athird general-purpose register.

Table17-16 CPU Conditional Move Instructio n

. . Defined in
Mnemonic Description MIPS..
MOVN Move Conditional on Not Zero v
MQOVZ Move Conditional on Zero v

VR5432 Microprocessor User’s Manual 355

Chapter 17

17.3

17.4

System Control Coprocessor (CPO) Instructions

There are some limitations imposed on operations involving a CPO that is
incorporated within the CPU. Although Load and Store instructions to transfer
data to and from coprocessors and to exchange control codesto and from
coprocessor instructions are generally permitted by the MI1PS architecture, CPOis
given a somewhat protected status because it has responsibility for exception
handling and memory management. Therefore, the coprocessor transfer
instructions are the only valid way of writing to and reading from the CPO
registers.

Some CPO instructions are defined to directly read, write, and probe TLB entries
and to change the operating modes in preparation for restoring to User mode or
interrupt-enabled states.

CPU Instructions

This section describesin detail each function of the CPU instructionsin 32- or 64-
bit mode. Exceptions that may occur are listed at the end of each instruction’s
description. For details regarding CPU exceptions and exception processing, refer
to Chapter 6.

356

VR5432 Microprocessor User’s Manual

CPU Instruction Set

ADD Add ADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADD
000000 00000 100000

6 5 5 5 5 6
Format:
ADD rd, rs, 1t (MIPS| format)
Description:

The contents of general-purpose register rs are added to the contents of general-
purpose register rt. The result is stored in general-purpose register rd. In 64-bit
mode, the operands must be sign-extended, 32-bit values.

An Integer Overflow exception occurs if the carries-out of bits 30 and 31 differ
(two’ s-complement overflow). The contents of destination register rd are not
modified when an Integer Overflow exception occurs.

Operation:

32 T: GPRIrd] « GPR[rs] + GPR]r]

64 T: temp ~ GPR[rs] + GPR]r]
GPRIrd] « (tempg;)® || tempg; o

Exceptions:

Integer Overflow exception

VR5432 Microprocessor User’s Manual 357

Chapter 17

ADDI

Add Immediate

ADDI

31 26 25 21 20 16 15 0
ADDI rs rt immediate
001000
6 5 5 16
Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign extended and added to the contents of general-
purpose register rs. The result is stored in general-purpose register rt. In 64-bit
mode, the operand must be sign-extended, 32-bit values.

(MIPS | format)

An Integer Overflow exception occurs if the carries-out of bits 30 and 31 differ
(two’ s-complement overflow). The contents of destination register rt are not
modified when an Integer Overflow exception occurs.

Operation:

32 T:GPR|[rt] —« GPR[rs] +(immediate;5)*® || immediate;s o

64 T: temp — GPR[rs] + (immediate;5)*® || immediate;s o
GPRI1t] — (tempg;)? || tempay o
Exceptions:

Integer Overflow exception

358

VR5432 Microprocessor User’s Manual

CPU Instruction Set

ADDIU

Add Immediate Unsigned

ADDIU

31

26 25

21 20

16 15

0

ADDIU
00100

1

I's

rt

immediate

6

16

Format:
ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign extended and added to the contents of general-
purpose register rs. The result is stored in general-purpose register rt. No Integer
Overflow exception occurs under any circumstance. In 64-bit mode, the operand

must be sign-extended, 32-bit values.

(MIPS | format)

The only difference between this instruction and the ADDI instruction isthat the
ADDIU instruction never causes an Integer Overflow exception.

Operation:

32

64

T: GPR [r] « GPR[rs] + (immediate;5)'® || immediate;s g

T:

GPRIrt] — (temps1)*? || tempsay_ g

temp ~ GPRJrs] + (immediatelg,)48 || immediate s g

Exceptions:

None

VR5432 Microprocessor User’s Manual

359

Chapter 17

ADDU

Add Unsigned

31

26 25

21 20

16 15

11 10 6 5 0

SPECIAL
000000

rs

rt

rd

00000 100001

6

5 6

Format

Descrip

Operati

ADDU rd, rs, rt

tion:

(MIPS | format)

The contents of general-purpose register rs are added to the contents of general-
purpose register rt. Theresult is stored in general-purpose register rd. No Integer
Overflow exception occurs under any circumstance. |n 64-bit mode, the operands

must be sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that the
ADDU instruction never causes an Integer Overflow exception.

on:

32 T

64 T

GPR[rd] — GPR]rs] + GPR]r{]

temp — GPR[rs] + GPR]rt]
GPRIrd] (temps1)* || tempay .o

Excepti

ons:

None

360

VR5432 Microprocessor User’s Manual

CPU Instruction Set

AND AND AND
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 AND
000000 00000 100100
6 5 5 5 5 6
Format:
AND rd, rs, rt (MIPS | format)

Description:

The contents of general-purpose register rs are bitwise ANDed with the contents
of general-purpose register rt. The result is stored in general-purpose register rd.

Operation:

32 T: GPR[rd] — GPR][rs] and GPR]rt]

64 T:. GPR[rd] - GPR][rs] and GPR]rt]

Exceptions:

None

VR5432 Microprocessor User’s Manual

361

Chapter 17

ANDI AND Immediate

ANDI

31 26 25 21 20 16 15 0
ANDI rs rt immediate
001100
6 5 5 16
Format:

ANDI rt, rs, immediate

Description:

(MIPS | format)

The 16-bit immediate is zero extended and bitwise ANDed with the contents of
general-purpose register rs. The result is stored in general -purpose register rt.

Operation:

32 T: GPRIt] « 0% (immediate and GPR([rs];5 o)

64 T. GPR[t] — 0%|| (immediate and GPR[rs]ys. o)

Exceptions:

None

362

VR5432 Microprocessor User’s Manual

CPU Instruction Set

BEQ

Branch on Equal

BEQ

31 26 25 21 20 16 15 0
BEQ rs rt offset
000100
6 5 5 16
Format:

BEQ s, rt, offset

Description:

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits |eft and sign extended. The
contents of general-purpose register rs and the contents of general-purpose
register rt are compared. If the two registers are equal, then the program branches
to the branch address with a delay of one instruction.

(MIPS | format)

Operation:
32 T: target — (offset;5)'* || offset || 02
condition — (GPR[rs] = GPR]rt])
T+1: if condition then
PC ~ PC + target
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR[rs] = GPR]rt])
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None

VR5432 Microprocessor User’s Manual

363

Chapter 17

B EQL Branch on Equal Likely

BEQL

31 26 25 21 20 16 15 0
BEQL rs rt offset
010100
6 5 5 16
Format:
BEQL rs, rt, offset (MIPS I format)
Description:

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended. The
contents of general-purpose register rs and the contents of general-purpose
register rt are compared. If the two registers are equal, the program branches to

the branch address with a delay of one instruction.

If it does not branch, the instruction in the delay slot is discarded.

Operation:

32 T: target — (offset;s)'* || offset || 02
condition — (GPR][rs] = GPR]rt])
T+1: if condition then
PC ~ PC + target

NullifyCurrentinstruction

else

endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPRJ[rs] = GPR]rt])
T+1: if condition then

PC ~ PC + target
else

NullifyCurrentlnstruction
endif

Exceptions:

None

364 VR5432 Microprocessor User’s Manual

CPU Instruction Set

Branch on Greater Than

B G EZ or Equal to Zero

BGEZ

31 26 25 21 20 16 15 0
REGIMM rs BGEZ offset
000001 00001
6 5 5 16
Format:
BGEZ rs, offset (MIPS | format)
Description:

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bitsleft and sign extended. If the
contents of general-purpose register rs are equal to or greater than 0, then the
program branches to the branch address with adelay of one instruction.

Operation:

32 T: target — (offset;5)'* || offset || 07
condition ~ (GPR[rs]3; = 0)
T+1: if condition then
PC ~ PC + target
endif
64 T: target — (offset;s)*® || offset || 0
condition « (GPR[rs]gz = 0)
T+1: if condition then
PC ~ PC + target
endif

Exceptions:

None

VR5432 Microprocessor User’s Manual

365

Chapter 17

BGEZAL

Branch on Greater Than
or Equal to Zero and Link

BGEZAL

31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
6 5 5 16
Format:
BGEZAL rs, offset (MIPS | format)
Description:
A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the address of the instruction after the delay ot is stored in the
link register, r31. If the contents of genera -purpose register rs are equal to or
greater than O, then the program branches to the branch address, with a delay of
one instruction.
Usually, general-purpose register r31 should not be specified as general-purpose
register rs, because the contents of rs are overwritten by storing the link address,
and then it may not be re-executable. An attempt to use r31 does not cause an
exception, however.
Operation:
32 T: target — (offset;5)'* || offset || 0
condition « (GPR[rs]z; = 0)
GPR[31] -« PC+8
T+1: if condition then
PC ~ PC + target
endif
64 T. target — (offset;s)*® || offset || 02
condition ~ (GPR][rs]gz =0)
GPR[31] - PC+8
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None
366 VR5432 Microprocessor User’s Manual

CPU Instruction Set

BGEZAL

L Branch on Greater Than

or Equal to Zero
and Link Likely

BGEZALL

31 26 25 21 20 16 15 0
REGIMM rs BGEZALL offset
000001 10011
6 5 5 16
Format:

BGEZALL rs, offset

Description:

(MIPS 1 format)

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the address of the instruction after the delay slot is stored in the
link register, r31. If the contents of genera -purpose register rs are equal to or
greater than 0, then the program branches to the branch address, with a delay of
one instruction. When it does not branch, the instruction in the delay slot is
discarded. Usually, general-purpose register r31 should not be specified as
general-purpose register rs, because the contents of rs are overwritten by storing
the link address, and then it may not be re-executable. An attempt to use r31 does
not cause an exception, however.

Operation:
32 T: target — (offset;5)'* || offset || 02
condition ~ (GPRJrs]3; =0)
GPR[31] — PC +8
T+1: if condition then
PC —~ PC +target
else . .
NullifyCurrentinstruction
endif
64 T: target — (offset;s)*® || offset || 02
condition «~ (GPRJrslgz = 0)
GPR[31] « PC +8
T+1: if condition then
PC ~ PC + target
else . .
NullifyCurrentinstruction
endif
Exceptions:
None

VR5432 Microprocessor User’s Manual

367

Chapter 17

BGEZL

Branch on Greater
Than or Equal to Zero Likely

BGEZL

31

26 25

21 20 16 15

REGIMM
000001

BGEZL
00011

s

offset

6

5 5

16

Format:

BGEZL rs, offset

Description:

(MIPS 11 format)

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rsare equal to or greater than 0, then the
program branches to the branch address, with a delay of oneinstruction.

If it does not branch, the instruction in the delay slot is discarded.

Operation:

32 T

T+1:

64 T:

T+1:

target — (offset;5)* || offset || 02
condition « (GPR[rs]z; = 0)
if condition then

PC ~ PC + target
else

NullifyCurrentinstruction
endif

target — (offset;5)* || offset || 02
condition « (GPR[rs]gz = 0)
if condition then
PC ~ PC + target
else

NullifyCurrentinstruction
endif

Exceptions:

None

368

VR5432 Microprocessor User’s Manual

CPU Instruction Set

B GTZ Branch on Greater Than Zero B GTZ

31 26 25 21 20 16 15 0
BGTzZ rs 0 offset
000111 00000
6 5 5 16
Format:
BGTZ rs, offset (MIPS | format)
Description:

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are greater than 0, then the program
branches to the branch address, with a delay of one instruction.

Operation:

32 T: target — (offset;s)'* || offset || 07
condition — (GPR[rs]s; = 0) and (GPR[rs] # 0%?)
T+1: if condition then

PC ~ PC + target
endif

64 T: target — (offset;5)*® || offset || 07
condition — (GPR[rs]gz = 0) and (GPR[rs] # 054
T+1: if condition then

PC ~ PC + target
endif

Exceptions:

None

VR5432 Microprocessor User’s Manual 369

Chapter 17

BGTZL

Branch on Greater
Than Zero Likely

BGTZL

31 26 25 21 20 16 15 0
BGTZL rs 0 offset
010111 00000
6 5 5 16
Format:
BGTZL rs, offset (MIPS 11 format)
Description:

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are greater than 0, then the program

branches to the branch address, with adelay of oneinstruction.

If it does not branch, the instruction in the delay slot is discarded.

Operation:

32 T

T+1:

64 T

T+1:

target — (offset;5)** || offset || 02
condition « (GPR(rs]3; = 0) and (GPR]rs] # 03?)
if condition then

PC ~ PC + target
else

NullifyCurrentinstruction
endif

target — (offset;5)*® || offset || 0
condition — (GPR[rs]g3 = 0) and (GPR]rs] # 0%%)
if condition then

PC ~ PC + target

else . .
NullifyCurrentinstruction

endif

Exceptions:

None

370

VR5432 Microprocessor User’s Manual

CPU Instruction Set

Branch on Less Than
B L EZ or Equal to Zero B I— EZ

31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
6 5 5 16
Format:
BLEZ rs, offset (MIPS | format)
Description:

A branch addressiscal cul ated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended. If the

contents of general-purpose register rsare equal to or lessthan 0, then the program
branches to the branch address, with a delay of one instruction.

Operation:

32 T: target — (offset;5)'* || offset || 02
condition — (GPR[rs]s; = 1) or (GPR][rs] = 0%?)
T+1: if condition then
PC ~ PC + target
endif

64 T. target — (offset;s)*® || offset || 02
condition — (GPR[rs]gz = 1) and (GPR[rs] = 0%%)
T+1: if condition then

PC ~ PC + target
endif

Exceptions:

None

VR5432 Microprocessor User’s Manual 371

Chapter 17

BLEZL

Branch On Less Than
or Equal to Zero Likely

BLEZL

31 26 25 21 20 16 15 0
BLEZL rs 0 offset
010110 00000
6 5 5 16
Format:
BLEZL rs, offset (MIPS 11 format)
Description:
A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bitsleft and sign extended. If the
contents of general-purpose register rsare equal to or lessthan 0, then the program
branches to the branch address, with adelay of one instruction.
If it does not branch, the instruction in the branch delay dlot is discarded.
Operation:
32 T: target — (offset;s)'* || offset || 07
condition — (GPR(rs]3; = 1) or (GPR][rs] = 0%?)
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
64 T: target — (offset;5)*® || offset || 02
condition « (GPR([rs]g3 = 1) and (GPR[rs] = 084
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
372 VR5432 Microprocessor User’s Manual

CPU Instruction Set

B LTZ Branch on Less Than Zero B LTZ
31 26 25 21 20 16 15 0
REGIMM rs BLTZ offset
000001 00000
6 5 5 16
Format:

BLTZ rs, offset

Description:

(MIPS | format)

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended. If the

contents of general-purposeregister rsare lessthan 0, then the program branches
to the branch address, with a delay of one instruction.

Operation:

32 T:

T+1:

64 T

target — (offset;5)* || offset || 02
condition —~ (GPRJrs]z; =1)

if condition then
PC —~ PC + target

endif

target — (offset;5)*® || offset || 02
condition « (GPR[rs]lgz = 1)

T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None

VR5432 Microprocessor User’s Manual

373

Chapter 17

BLTZAL

Branch on Less
Than Zero and Link

BLTZAL

31 26 25 21 20 16 15 0
REGIMM rs BLTZAL offset
000001 10000
6 5 5 16
Format:
BLTZAL rs, offset (MIPS | format)
Description:
A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the address of the instruction after the delay ot is stored in the
link register, r31. If the contents of general-purposeregister rsarelessthan 0, then
the program branches to the branch address, with adelay of one instruction.
Usually, general-purpose register r31 should not be specified as general-purpose
register rs, because the contents of rs are overwritten by storing the link address,
and then it is not re-executable. An attempt to use r31 does not generate an
exception, however.
Operation:
32 T: target — (offset;s)'* || offset || 0
condition « (GPR[rs]z; = 1)
GPR[31] -« PC+8
T+1: if condition then
PC ~ PC + target
endif
64 T. target — (offset;s)*® || offset || 0
condition ~ (GPR[rs]gz = 1)
GPR[31] -« PC+8
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None
374 VR5432 Microprocessor User’s Manual

CPU Instruction Set

BLTZALL

Branch on Less

Than Zero and Link Likely

BLTZALL

31 26 25 21 20 16 15 0
REGIMM rs BLTZALL offset
000001 10010
6 5 5 16
Format:

BLTZALL rs, offset

Description:

A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the instruction after the delay slot is stored in the link register,
r31. If the contents of general-purpose register rs are smaller than 0, then the
program branches to the branch address, with adelay of oneinstruction.

If it does not branch, the instruction in the branch delay dlot is discarded.
Usually, general-purpose register r31 should not be specified as general-purpose
register rs, because the contents of rs are overwritten by storing the link address,
and thenitisnot re-executable. An attempt to user31 does not cause an exception,
however.

Operation:

(MIPS I format)

32 T

T+1:

64 T:

T+1:

target — (offset;5)** || offset || 02
condition ~ (GPR[rs]z; = 1)
GPR[31] -« PC +8

if condition then

PC ~ PC + target

I . .
eise NullifyCurrentinstruction

endif

target (offset;5)*® || offset || 0
condition ~ (GPR[rs]lgz = 1)
GPR[31] - PC +8

if condition then

PC ~ PC + target

I . .
eise NullifyCurrentinstruction

endif

Exceptions:

None

VR5432 Microprocessor User’s Manual

375

Chapter 17

BLTZL

Branch on Less Than Zero Likely

BLTZL

31 26 25 21 20 16 15 0
REGIMM rs BLTZL offset
000001 00010
6 5 5 16
Format:
BLTZL rs, offset (MIPS 11 format)
Description:
A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the instruction after the delay slot is stored in the link register,
r31. If the contents of general-purposeregister rsarelessthan 0, then the program
branches to the branch address, with a delay of one instruction.
If it does not branch, the instruction in the branch delay dlot is discarded.
Operation:
32 T: target — (offset;5)'* || offset || 02
condition ~ (GPR[rsl3; = 1)
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentlnstruction
endif
64 T: target — (offset;5)*® || offset || 02
condition ~ (GPRJ[rslgz =1)
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
376

VR5432 Microprocessor User’s Manual

CPU Instruction Set

BNE

Branch on Not Equal

BNE

31 26 25 21 20 16 15 0
BNE rs rt offset
000101
6 5 5 16
Format:
BNE rs, rt, offset (MIPS | format)
Description:
A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits |eft and sign extended. The
contents of general-purpose register rs and the contents of general-purpose
register rt are compared. If the two registers are not equal, then the program
branches to the branch address, with a delay of one instruction.
Operation:
. 14 2
32 T target — (offsetys)™" || offset || O
condition — (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
endif
64 T:target — (offset;s)*® || offset || 02
condition «~ (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None

VR5432 Microprocessor User’s Manual

377

Chapter 17

BNEL

Branch on Not Equal Likely

BNEL

31 26 25 21 20 16 15 0
BNEL rs rt offset
010101
6 5 5 16
Format:
BNEL rs, rt, offset (MIPS 11 format)
Description:
A branch addressis cal culated from the sum of the address of theinstructioninthe
delay dot and the 16-bit offset, shifted two bits left and sign extended. The
contents of general-purpose register rs and the contents of general-purpose
register rt are compared. If the two registers are not equal, then the program
branches to the branch address, with adelay of oneinstruction.
If it does not branch, the instruction in the branch delay slot is discarded.
Operation:
32 T: target — (offset;s)'* || offset || 07
condition —~ (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
64 T. target — (offset;5)*® || offset || 02
condition — (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
378 VR5432 Microprocessor User’s Manual

CPU Instruction Set

BREAK Breakpoint BREAK

31 26 25 65 0
SPECIAL code BREAK
000000 001101

6 20 6
Format:
BREAK (MIPS| format)
Description:

A Breakpoint exception occurs after execution of thisinstruction, transferring
control to the exception handler.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

32, 64T: BreakpointException

Exceptions:
Breakpoint exception

VR5432 Microprocessor User’s Manual 379

Chapter 17

CACHE Cache Operation CACHE

31

26 25 21 20 16 15 0

base op offset

5 5 16

Format:

CACHE op, offset (base) (MIPS 111 format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form avirtual address. The virtual addressistranslated to a
physical address using the TLB, and the 5-bit sub-opcode specifies a cache
operation for that address.

The index operation uses part of the virtual address to specify a cache block.

For acache of 32 KB with 32 bytes per tag, vAddr,3.5 specifiesthe block. Bit O of
the virtual address is used to specify the associativity.

Index Load Tag uses VAddr| |negiTs... 310 Select the doubleword for reading
parity. When the CE bit of the Statusregister is set, Hit WriteBack, Hit WriteBack
Invalidate, Index WriteBack Invalidate, and Fill also use vAddr |negiTs . 3 tO
select the doubleword that hasits parity modified. This operation is performed
unconditionally.

The hit operation accesses the specified cache as normal data references and
performs the specified operation if the cache block contains valid data with the
specified physical address (a hit). If the cache block isinvalid or contains a
different address (amiss), ho operation is performed.

During a write-back operation, modified datain the cache (i.e., “dirty” data) is
written to main memory. The address to be written is specified by the cache tag
and not the translated physical address.

380

VR5432 Microprocessor User’s Manual

CPU Instruction Set

CACHE oty CACHE

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache
00 I Instruction
01 D Data
10 O Reserved
11 O Reserved

Bits 20 to 18 (thisvalueislisted under the Code column) of theinstruction specify
the operation asfollows:

Code | Cache Name Operation
000 I ! nde>§ Set the cache state of the cache block to Invalid and Unlocked.
Invalidate
Examine the cache state of the data cache block at the index
Index specified by the virtual address. If the state is Dirty and not
000 D WriteBack | Invalid, writes the block back to memory. The address to write
Invalidate istaken from the cache tag. Set the cache state of the cache
block to Invalid. May be used to unlock a cache block.

VR5432 Microprocessor User’s Manual 381

Chapter 17

CACHE

Cache Operation
(continued) CACHE

Code | Cache Name Operation
Reads the tag for the cache block at the specified index and
001 All Index Load |placesitinto the TagLo and TagHi CPO registers, ignoring any
Tag parity errors. In addition, the data parity from the specified
doubleword is |oaded into the PErr register.
Index Store Write the tag for the cache block at the specified index from the
010 I,D TaglLo and TagHi CPO registers, including the parity bit (P)
Tag .
from the TagL o register.
This operation is used to avoid loading data needlessly from
memory when writing new contentsinto an entire cache block.
. If the cache block doesnot contain the specified address and the
011 D Create Dirty block isdirty, writeit back to memory. In all cases, set the cache
block tag to the specified physical address and set the cache
state to Dirty.
382 VR5432 Microprocessor User’s Manual

CPU Instruction Set

CACHE oty CACHE

Code | Cache Name Operation
100 I'D Hit If the cache block containsthe specified address, mark the cache
' Invalidate block Invalid.
Hit) i .
oL [W | e e
Invalidate - '
101 I Fill Fill the instruction cache block from memory.
110 D Hit If the cache block contains the specified address and its stateis
WriteBack | Dirty, write back the data and clear the state to not Dirty.
This operation is used to lock a cache block. If the cache block
Fetch and does not contain the specified address, fill it from memory,
111 D Lock writing the original block back to memory using the tag address
if the block was dirty. In all cases, set the cache block tag to the
specified physical address and set the cache state to L ocked.
This operation is used to lock a cache block. If the cache block
111 | Fetch and does not contain the specified address, fill it from memory. In
Lock all cases, set the cache block tag to the specified physical
address and set the cache state to Locked.

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index
operations (where the physical addressis used to index the cache but need not
match the cache tag), unmapped addresses may be used to avoid TLB exceptions.
This operation never causes TLB Modified exceptions.

If CPOis not enabled (i.e., the CPO enable bit in the Status register isclear in User
or Supervisor mode) and thisinstruction is executed, a Coprocessor Unusable
exception is taken. The operation of thisinstruction on any operation/cache
combination not listed in the table is undefined. The operation of thisinstruction
on uncached addresses is also undefined.

The processor only fillsthe I-cache line using the cache instruction “Fill” when
the datais not stored in the cache.

VR5432 Microprocessor User’s Manual 383

Chapter 17

CACHE oty CACHE

Operation:

32,64T: vAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor Unusable exception

384

VR5432 Microprocessor User’s Manual

CPU Instruction Set

CFC1

Move Control Word from FPU
CFC1

(Coprocessor 1)

31 26 25 21 20 16 15 11 10 0
COP1 CF rt fs 0
010001 00010 0000000O0OOO
6 5 5 5 11
Format:
CFClrt,fs (MIPS | format)
Description:

The contents of the floating-point control register fs are loaded into general-
purpose register rt, with sign extension if the destination register is 64 hits.

Thisinstruction is only defined when fs equals O or 31.

For MIPSI, MIPSII, and MIPS 11, the contents of general-purpose register rt are
undefined while the instruction immediately following this Load instruction is
being executed.

Operation:

32

T: temp — FCR]fs]
T+1: GPRJrt] —~ temp

64 T: temp — FCR]fs]
T+1: GPR[rt] « (tempg,l)32 || temp
Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual 385

Chapter 17

CO PZ Coprocessor z Operation COPZ

31 26 2524 0
COPz CcO cofun
0100xx 1
6 1 25
Format:
COPz cofun (MIPS | format)
Description:

A coprocessor operation is performed. The operation may specify and reference
internal coprocessor registers, and may change the state of the coprocessor
condition line, but does not modify states within the processor, cache, or main
memory.

Operation:

32,64T: CoprocessorOperation (z, cofun)

Exceptions:

Coprocessor Unusable exception
Floating-Point exception (CP1 only)

Opcode Bit Encoding:

COPZ Bit#31 30 29 28 27 26 25 0
COPO

Bit# 31 30 29 28 27 26 25 0
COP1

Bit# 31 30 29 28 27 26 25 0
COP2

Opcode L— Coprocessor Sub-opcode
— Coprocessor Number

386 VR5432 Microprocessor User’s Manual

CPU Instruction Set

CTCl Move Control Word to FPU CTC 1

(Coprocessor 1)

31 26 25 21 20 16 15 11 10 0
COP1 CT rt fs 0
010001 00110 00000000000
6 5 5 5 11
Format:
CTCirt,fs (MIPS | format)
Description:

The contents of general-purpose register rt are stored in floating-point control
register fs. Thisinstruction is defined only if fsisO or 31.

If any cause bit of the Floating-Point Control/Status register (FCR31) and its
corresponding enable bit are set by writing data to FCR31, the Floating-Point
exception occurs. The datais written to the register before the exception occurs.

For MIPS I, MIPS 11, and MIPS 111, the contents of the Floating-Point Control
register fs are undefined while the instruction immediately following this
instruction is executed.

Operation:

32 T: temp —~ GPRIrt]
T+1: FCR[fs] ~ temp
COCI1] ~ FCR[31],3
64 T: temp « GPRIrt]3;1 o
T+1: FCR[fs] ~ temp
COCI1] ~ FCR[31],3

VR5432 Microprocessor User’s Manual 387

Chapter 17

Move Control Word to FPU
CTCl (Coprocessor 1) CTCl

(continued)

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Division by Zero exception

Inexact Operation exception
Overflow exception

Underflow exception

388 VR5432 Microprocessor User’s Manual

CPU Instruction Set

DADD Doubleword Add DADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs i rd 0 DADD
000000 00000 101100

6 5 5 5 5 6
Format:
DADDrd, rs, rt (MIPS 111 format)
Description:

The contents of general-purpose register rs and the contents of general-purpose
register rt are added, and the result is stored in general-purpose register rd. An
Integer Overflow exception occurs if the carries-out of bits 62 and 63 differ
(two’ s-complement overflow). The contents of the destination register rd are not
modified when an Integer Overflow exception occurs.

Thisoperation isonly defined for 64-bit mode and 32-bit Kernel mode. Execution
of thisinstructionin 32-bit User or Supervisor mode causes aReserved I nstruction
exception.

Operation:

64 T: GPR[rd] - GPR[rs] + GPRJr]

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Integer Overflow exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual 389

Chapter 17

DADDl Doubleword Add Immediate DADDI

31 26 25 21 20 16 15 0
DADDI rs rt immediate
011000
6 5 5 16
Format:

DADDI rt, rs, immediate (MIPS 111 format)

Description:

The 16-bit immediate is sign extended and added to the contents of general-
purpose register rs. The result is stored in general-purpose register rt. An Integer
Overflow exception occurs if the carries-out of bits 62 and 63 differ (two’s-
complement overflow). The contents of the destination register rt are not modified
when an Integer Overflow exception occurs.

This operation is only defined in 64-bit mode and 32-bit Kernel mode. Execution
of thisinstructionin 32-bit User or Supervisor mode causes aReserved Instruction
exception.

Operation:

64 T:GPR][rt] - GPR][rs] + (immediatelg,)48 |l immediate s g

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Integer Overflow exception
Reserved Instruction exception

390 VR5432 Microprocessor User’s Manual

CPU Instruction Set

DADDIU et Unetaned DADDIU

31 26 25 21 20 16 15 0
DADDIU rs It immediate
011001
6 5 5 16
Format:

DADDIU rt, rs, immediate (MIPS 111 format)

Description:

The 16-bit immediate is sign extended and added to the contents of general-
purpose register rs. The result is stored in general-purpose register rt.

This operation is only defined in 64-bit mode and in 32-bit Kernel mode.
Execution of thisinstruction in 32-bit User or Supervisor mode causes a Reserved
Instruction exception.

The only difference between thisinstruction and the DADDI instructionisthat the
DADDIU instruction never causes an Integer Overflow exception.

Operation:

64 T:GPRIrt] « GPR[rs] + (immediatelg,)48 [| immediate 5 g

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

VR5432 Microprocessor User’s Manual 391

Chapter 17

DADDU Doubleword Add Unsigned DADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DADDU
000000 00000 101101
6 5 5 5 5 6

Format:
DADDU rd, rs, rt (MIPS 111 format)
Description:

The contents of general-purpose register rs and the contents of general-purpose
register rt are added, and the result is stored in general-purpose register rd.

This operation is only defined in 64-bit mode and in 32-bit Kernel mode.
Execution of thisinstruction in 32-bit User or Supervisor mode causes a Reserved
Instruction exception.

The only difference between thisinstruction and the DADD instruction isthat the
DADDU instruction never causes an Integer Overflow exception.

Operation:

64 T: GPR|rd] -~ GPR[rs] + GPR]rt]

Note: Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

392 VR5432 Microprocessor User’s Manual

CPU Instruction Set

DBREAK Debug Break DBREAK

31 26 25 6 5 0
SPECIAL2 0 DBREAK
011100 000000000O0OOOOOOOOQOOO 111111

6 20 6
Format:
DBREAK (VR5432 format)
Description:

The DBREAK instruction forces entry into Debug mode by causing atrap to the
Debug Exception vector address (OxFFFF FFFF BFCO 1000). Thisinstruction
may only be executed in User, Supervisor, or Kernel mode. Execution in Debug
mode resultsin undefined behavior.

Execution transitions to Debug mode at an instruction boundary, the program
counter (PC) is saved in the DEPC register, and execution is redirected to the 64-
bit Debug Exception vector (location OxFFFF FFFF BFCO 1000).

Before the processor enters Debug mode, all instructions are flushed from the
pipeline and all outstanding external bus transactions are completed. There may
be a delay entering Debug mode to allow the pipeline flush and to allow all
outstanding external transactions to complete. The processor stalls during this
time.

The processor will not enter Debug mode at a branch delay slot instruction
boundary. Instead, it stops either at the Branch instruction or the target of the
branch. If a software or hardware breakpoint occurs for the branch delay ot
instruction, the breakpoint occurs at the corresponding Branch instruction. If a
single-step break isexecuted on aBranchinstruction, both the branch and its delay
slot are executed.

If the DME bit in the Status register is not set, a Reserved I nstruction exception
will occur when DBREAK isissued.

VR5432 Microprocessor User’s Manual 393

Chapter 17

DB REAK Debug Break

(Continued)

Operation:

DBREAK

32,64 T: DBreakOperation ()

Exceptions:

Reserved Instruction exception

394

VR5432 Microprocessor User’s Manual

CPU Instruction Set

DDIV

Doubleword Divide DDIV

31

26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt 0 DDIV
00000000O00O0 011110

6

5 5 10 6

Format:

DDIV rs, rt (MIPS 111 format)

Description:

The contents of general-purpose register rsare divided by the contents of general-
purposeregister rt, treating both operands as signed integers. Anlnteger Overflow
exception never occurs, and the result of this operation is undefined when the
divisor is zero.

Thisinstructionisusually executed after additional instructionsto check for azero
divisor and for overflow.

When the operation completes, the quotient word of the doubleword result is
stored in special register LO, and the remainder word of the doubleword result is
stored in special register HI.

If either of the two preceding instructionsis MFHI or MFLO, the results of those
instructions are undefined. To obtain correct results, insert two or more additional
instructions between MFHI or MFLO and the DDIV instruction.

This operation isonly defined in 64-bit mode and 32-bit Kernel mode. Execution
in 32-bit User or Supervisor mode causes a Reserved Instruction exception.

Operation:

64

T-2: LO
HI
T-1: LO

undefined

undefined

undefined
HI undefined

T: LO GPR([rs] div GPR]rt]
HI ~ GPR[rs] mod GPR]rt]

1

1

1

1

1

Excepti

Note: Same operation in 32-bit Kernel mode.

ons:

Reserved Instruction exception

VR5432 Microprocessor User’s Manual 395

Chapter 17

DDIVU

Doubleword Divide Unsigned D D IVU

31

26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt 0 DDIVU
00000000O00O0 011111

6

5 5 10 6

Format

DDIVU rs, 1t (MIPS 111 format)

Description:

The contents of general-purpose register rsare divided by the contents of general-
purpose register rt, treating both operands as unsigned integers. An Integer
Overflow exception never occurs, and the result of this operation is undefined
when the divisor is zero.

Thisinstruction is usually executed after instructions to check for azero divisor.

When the operation completes, the quotient (doubleword) is stored into specia
register LO and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructionsis MFHI or MFL O, the results of those
instructions are undefined. To obtain correct results, insert two or more
instructions between MFHI or MFLO and the DDIV U instruction.

This operation isonly defined for the VR5432 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of thisinstruction in 32-bit User or Supervisor mode
causes a Reserved I nstruction exception.

Operation:

64

T-2: LO
HI
T-1: LO

undefined

undefined

undefined
HI undefined

T: LO (0 || GPR]rs]) div (0 || GPR]rt])
HI ~ (0 || GPR]rs]) mod (0 || GPR]rt])

1

1

1

1

1

Excepti

Note: Same operation in 32-bit Kernel mode.
ons:

Reserved Instruction exception

396

VR5432 Microprocessor User’s Manual

CPU Instruction Set

D|V Divide DIV

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIV
000000 0000000000 011010
6 5 5 10 6
Format:
DIV rs, 1t (MIPS | format)
Description:

The contents of general-purpose register rsare divided by the contents of general-
purpose register rt, treating both operands as signed integers. An Overflow
exception never occurs, and the result of this operation is undefined when the
divisor is zero. In 64-bit mode, the result must be sign-extended, 32-bit values.

Thisinstruction is usually executed after instructions to check for azero divisor
and for overflow

When the operation completes, the quotient (doubleword) is stored into specia
register LO and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructionsis MFHI or MFL O, the results of those
instructions are undefined. To obtain correct results, insert two or more additional
instructions between MFHI or MFLO and the DIV instructions.

VR5432 Microprocessor User’s Manual 397

Chapter 17

DIV

Divide

(continued)

DIV

Operation:
32 T-2: LO ~ undefined
HI ~ undefined
T-1 LO ~ undefined
HI ~ undefined
T: LO ~ GPR[rs] div GPRrt]
HI ~ GPR[rs] mod GPR]rt]
64 T-2: LO ~ undefined
HI ~ undefined
T-1 LO ~ undefined
HI ~ undefined
T: q ~ GPRIrsl3;. o div GPR]rt]z1. o
r « GPR[rs]3;1. o mod GPR[rt]z1. o
LO ~ (a31)* Il 931..0
HI - (3% 31,0
Exceptions:
None

398

VR5432 Microprocessor User’s Manual

CPU Instruction Set

DIVU

Divide Unsigned DIVU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIVU
000000 0000000O0O0O 011011
6 5 5 10 6
Format:
DIVU rs, rt (MIPS | format)
Description:

The contents of general-purpose register rs are divided by the contents of general-
purpose register rt, treating both operands as unsigned integers. An Integer
Overflow exception never occurs, and the result of this operation is undefined
when the divisor is zero. In 64-bit mode, the result must be sign-extended, 32-hit
values.

Thisinstruction is usually executed after instructions to check for azero divisor.

When the operation completes, the quotient (doubleword) is stored into special
register LO and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructionsis MFHI or MFL O, the results of those
instructions are undefined. To obtain correct results, insert two or more additional
instructions between MFHI or MFLO and the DIV U instruction.

VR5432 Microprocessor User’s Manual 399

Chapter 17

DIVU

Divide Unsigned DIVU

(continued)

Operation:
32 T-2: LO ~ undefined
HI ~ undefined
T-1 LO — undefined
HI ~ undefined
T: LO ~ (0] GPR]rs]) div (0 || GPRI[rt])
HI < (0]] GPR][rs]) mod (0 || GPR]rt])
64 T-2: LO ~ undefined
HI ~ undefined
T-1 LO ~ undefined
HI ~ undefined
T q < (0| GPRrs]zy.. o) div (0 || GPRIrt]31...0)
r < (0]| GPRYrs]z;...0) mod (O || GPRIrt]3;..0)
LO - (a0)* Il 9z1..0
HI - (r30*2]I 1310
Exceptions:
None

400

VR5432 Microprocessor User’s Manual

CPU Instruction Set

Doubleword Move from
D M FCO System Control Coprocessor D M FCO

31 26 25 21 20 16 15 1110 0
COPO DMF rt rd 0
010000 | 00001 00000000000
6 5 5 5 11
Format:
DMFCOrt, rd (MIPS 11 format)
Description:

The contents of coprocessor register rd of CPO are stored in general-purpose
register rt.

Thisoperation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

The contents of the source coprocessor register rd are written to the 64-hit
destination general-purpose register rt. The operation of aDMFCO instruction on
a 32-hit register of CPO is undefined.

Operation:

64 T: data — CPRJ[O,rd]
T+1: GPRIrt] ~ data

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception (64-/32-bit User mode and Supervisor mode if
CPO is disabled)

Reserved Instruction exception (32-bit User or Supervisor mode)

VR5432 Microprocessor User’s Manual 401

Chapter 17

Doubleword Move to
D MTCO System Control Coprocessor D MTCO

31

26 25 21 20 16 15 0

COPO
010000

DMT d 0
00101 rt r 00000000000

6

5 5 16

Format:

DMTCOrt, rd (MIPS 111 format)

Description:

The contents of general-purpose register rt are loaded into coprocessor register rd
of CPO.

This operation is defined in 64-bit mode or in 32-bit Kernel mode. Execution of
thisinstruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

The contents of the source general-purpose register rd are written to the 64-bit
destination coprocessor register rt. The operation of aDMTCO instruction on a 32-
bit register of CPO is undefined.

Because the state of the virtual address trandation system may be atered by this
instruction, the operation of Load instructions, Store instructions, and TLB
operations for the instructions immediately before and after thisinstruction are
undefined.

Operation:

64

T: data — GPR]rt]
T+1: CPRJO, rd] ~ data

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusabl e exception (64-/32-bit User and Supervisor modeif CPO is
disabled)

Reserved Instruction exception (32-bit User or Supervisor mode)

402

VR5432 Microprocessor User’s Manual

CPU Instruction Set

DMULT

Doubleword Multiply

DMULT

Reserved Instruction exception

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DMULT
000000 0000000000 011100
6 5 5 10 6
Format:
DMULT rs, rt (MIPS 111 format)
Description:
The contents of general-purpose registersrs and rt are multiplied, treating both
operands as signed integers. An Integer Overflow exception never occurs.
When the operation completes, the low-order doubleword is stored into special
register LO and the high-order doubleword is stored into special register HI.
If either of the two preceding instructionsis MFHI or MFLO, the results of these
instructions are undefined. To obtain correct results, insert two or more other
instructions between MFHI or MFLO and the DMULT instruction.
This operation is only defined in 64-bit mode and in 32-bit Kernel mode.
Execution of thisinstruction in 32-bit User or Supervisor mode causes a Reserved
Instruction exception.
Operation:
64 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
Tt — GPRJrs] * GPRIrt]
LO < 163..0
HI < 112764
Note: Same operation in 32-bit Kernel mode.
Exceptions:

VR5432 Microprocessor User’s Manual

403

Chapter 17

DMULTU

Doubleword Multiply

Unsigned DMULTU

31

26 25

21 20

16 15 6 5 0

SPECIAL
000000

I's

rt

0
0000000O0O0O 011101

6

10 6

Format

Descrip

Operati

DMULTU

tion:

rs, rt

(MIPS 111 format)

The contents of general-purpose registersrsand rt are multiplied, treating both
operands as unsigned integers. An Overflow exception never occurs.

When the operation completes, the low-order doubleword is stored into special
register LO, and the high-order doubleword is stored into special register HI.

If either of the two preceding instructionsis MFHI or MFLO, the results of these
instructions are undefined. To obtain correct results, insert two or more other
instructions between MFHI or MFLO and the DMULTU instruction.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
thisinstruction in 32-bit User or Supervisor mode causes a Reserved Instruction

exception.

on:

64

T-2:

T-1:

T:

LO ~ undefined
HI — undefined
LO ~ undefined
HI — undefined
t < (0| GPRJrs]) * (O || GPR]rt])

LO < t63..0
HI —t127. 64

Note:

Exceptions:

Same operation in 32-bit Kernel mode.

Reserved Instruction exception

404

VR5432 Microprocessor User’s Manual

CPU Instruction Set

DRET

Debug Return DRET

31 26 25 6 5 0
SPECIAL2 0 DRET
011100 000000000O0OOOOOOOOQOOO 111110

6 20 6
Format:
DRET (VR5432 format)
Description:

The DRET instruction returns from Debug mode to the mode in effect (User,
Supervisor, or Kernel mode) when the last debug break event has occurred.
Control ispassed to theinstruction pointed to by the Debug Exception PC (DEPC)
register. Unlike most jumps and branches, the execution of which also executes
the next instruction (the oneinthe delay slot), DRET does not execute a delay slot
instruction. The DRET instruction must not be placed in a branch delay sot.

Operation:

32,64 T:

DRetOperation ()

Exceptions:

None

VR5432 Microprocessor User’s Manual 405

Chapter 17

DROR

Doubleword Rotate Right

DROR

31 26 25 21 20 16 15 11 10 6 5
SPECIAL 1 rt rd sa DROR
000000 00001 111010
6 5 5 5 5 6
Format:
DRORd, rt, sa (VR5432 format)
Description:

The contents of general-purpose register rt are rotated right by sa bits, and the

result is stored in general-purpose register rd.

Operation:

32, 64T:

GPR[rd] — GPR[t]sa.1..0 [l GPRIrle3. sa

Exceptions:

None

406

VR5432 Microprocessor User’s Manual

CPU Instruction Set

DROR32 O Riant Plus 32 DROR32

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 1 rt rd sa DROR32
000000 00001 111110
6 5 5 5 5 6
Format:
DROR32rd, rt, sa (VR5432 format)
Description:

The contents of general-purpose register rt are rotated right by sa + 32 bits, and
the result is stored in general-purpose register rd.

Operation:

32,64T: s=sa+32

GPR([rd] < GPR[rt]s.1.. o || GPRIrt]3.. s

Exceptions:

None

VR5432 Microprocessor User’s Manual 407

Chapter 17

DRORV " Right variable DRORV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 1 DRORV
000000 00001 010110
6 5 5 5 5 6
Format:
DRORV rd, rt, rs (VR5432 format)
Description:

The contents of general-purpose register rt are rotated right by the number of bits
specified by the low-order five bits of general-purpose register rs. Theresult is
stored in general-purpose register rd.

Operation:

32,64T: s « GPRIrsl; o

GPR[I’d] - GPR[rt]S_lmo || GPR[rt]Ggms

Exceptions:

None

408 VR5432 Microprocessor User’s Manual

CPU Instruction Set

DSLL

Doubleword Shift Left Logical

DSLL

Reserved Instruction exception

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL
000000 00000 111000
6 5 5 5 5 6
Format:
DSLL rd, rt, sa (MIPS 111 format)
Description:
The contents of general-purpose register rt are shifted left by sa bits, inserting
zeros into the low-order bits. The result is stored in general-purpose register rd.
This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
thisinstruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.
Operation:
64 T: s~0]sa
GPR[rd] — GPR[rt]3-s)..0 | 0°
Note: Same operation in 32-bit Kernel mode.
Exceptions:

VR5432 Microprocessor User’s Manual

409

Chapter 17

DSLLV el varibie. DSLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSLLV
000000 00000 010100
6 5 5 5 5 6

Format:
DSLLV rd, rt, rs (MIPS 111 format)
Description:

The contents of general-purpose register rt are shifted left by the number of bits
specified by the low-order six bits contained in general-purpose register rs,
inserting zeros into the low-order bits. The result is stored in general-purpose
register rd.

This operation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

64 T: s « GPRJrsls o
GPRI[rd] - GPRIrt]g3-s).0 Il 0°

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

410 VR5432 Microprocessor User’s Manual

CPU Instruction Set

DSLL32 > gtonl Pl 3z DSLL32

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL32
000000 00000 111100
6 5 5 5 5 6

Format:
DSLL32rd, rt, sa (MIPS 11 format)
Description:

The contents of general -purpose register rt are shifted left by 32 + sa bits, inserting
zeros into the low-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
thisinstruction in 32-bit User or Supervisor mode causes a Reserved Instruction

exception.

Operation:

64 T: s« 1]|sa
GPR[rd] — GPR[rt]3-s)..0 Il 0°

Note: Same operation in 32-bit Kernel mode.

Exceptions:
Reserved Instruction exception

VR5432 Microprocessor User’s Manual 411

Chapter 17

DSRA

Doubleword

Shift Right Arithmetic

DSRA

31 26 25 21 20 16 15 11 10 6 0
SPECIAL 0 rt rd sa DSRA
000000 00000 111011
6 5 5 5 5 6

Format:
DSRA rd, rt, sa (MIPS 111 format)
Description:

The contents of general-purpose register rt are shifted right by sa bits, sign
extending the high-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
thisinstruction in 32-bit User or Supervisor mode causes a Reserved Instruction

exception.

Operation:

64

T: s « 0]l sa

GPR[rd] ~ (GPR][rtlg3)° || GPR[rt] 63

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

412

VR5432 Microprocessor User’s Manual

CPU Instruction Set

DSRAV

Doubleword Shift Right

Arithmetic Variable

DSRAV

31

26 25

21 20

16 15

11 10 6

SPECIAL
000000

I's

rt

rd

00000

Format:
DSRAV rd, rt, rs

Description:

(MIPS 111 format)

The contents of general-purpose register rt are shifted right by the number of bits
specified by the low-order six bits of general-purpose register rs, sign extending
the high-order hits. Theresult is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
thisinstruction in 32-bit User or Supervisor mode causes a Reserved Instruction

exception.

Operation:

64 T

s < GPR(rs]5 o

GPR[rd] « (GPR(rtlg3)° || GPRIrtlg3. s

Note:

Exceptions:

Same operation in 32-bit Kernel mode.

Reserved Instruction exception

VR5432 Microprocessor User’s Manual

413

Chapter 17

DSRA32 DSRA32

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRA32
000000 00000 111111
6 5 5 5 5 6
Format:
DSRA32rd, rt, sa (MIPS 111 format)
Description:

The contents of general-purpose register rt are shifted right by 32 + sa bits, sign
extending the high-order bits. The result is stored in general-purpose register rd.

Thisoperation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction

exception.
Operation:
64 T: s <1] sa

GPR([rd] ~ (GPRIrt]e3)° || GPRII] 635

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

414 VR5432 Microprocessor User’s Manual

CPU Instruction Set

DSRL

Doubleword

Shift Right Logical

DSRL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRL
000000 00000 111010
6 5 5 5 5 6

Format:
DSRL rd, rt, sa (MIPS 111 format)
Description:

The contents of general-purpose register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
thisinstruction in 32-bit User or Supervisor mode causes a Reserved Instruction

exception.
Operation:
64 T: s~ 0]l sa
GPR[rd] < 0° || GPR[rt]g3...
Note: Same operation in 32-bit Kernel mode.
Exceptions:

Reserved Instruction exception

VR5432 Microprocessor User’s Manual

415

Chapter 17

DSRLV

Doubleword Shift Right
Logical Variable

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSRLV
000000 00000 010110
6 5 5 5 5 6
Format:

DSRLV rd, rt, rs

Description:

(MIPS 111 format)

The contents of general-purpose register rt are shifted right by the number of bits
specified by the low-order six bits of general-purpose register rs, inserting zeros
into the high-order bits. The result is stored in general-purpose register rd.

Thisoperation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction

exception.

Operation:

64

T:

s < GPR(rs]5 o

GPRIrd] — 0°|| GPR[rt]e3 _s

Note:

Exceptions:

Same operation in 32-bit Kernel mode.

Reserved Instruction exception

416

VR5432 Microprocessor User’s Manual

CPU Instruction Set

DSRL32

Doubleword Shift Right
Logical Plus 32

DSRL32

Reserved Instruction exception

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRL32
000000 00000 111110
6 5 5 5 5 6
Format:
DSRL32rd, rt, sa
Description:
The contents of general-purpose register rt are shifted right by 32 + sa bits,
inserting zeros into the high-order bits. The result is stored in general-purpose
register rd.
Thisoperation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.
Operation:
64 T: S~ 1| sa
GPR[rd] < 0° || GPR[rt]g3__s
Note: Same operation in 32-bit Kernel mode.
Exceptions:

VR5432 Microprocessor User’s Manual

417

Chapter 17

DSUB Doubleword Subtract DSUB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSUB
000000 00000 101110
6 5 5 5 5 6

Format:
DSUB rd, rs, rt (MIPS 111 format)
Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs, and the result is stored in general-purpose register rd.

An Integer Overflow exception takes place if the carries-out of bits 62 and 63
differ (atwo’ s-complement overflow). The contents of destination register rd are
not modified when an Integer Overflow exception occurs.

This operation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

64 T: GPR[rd] ~ GPR][rs] — GPR{[rt]

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Integer Overflow exception
Reserved Instruction exception

418 VR5432 Microprocessor User’s Manual

CPU Instruction Set

DSU B U Doubleword Subtract Unsigned DSU B U

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSUBU
000000 00000 101111

6 5 5 5 5 6
Format:
DSUBU rd, rs, rt (MIPS 111 format)
Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs, and the result is stored in genera -purpose register rd.

The only difference between this instruction and the DSUB instruction is that the
DSUBU instruction never causes an Integer Overflow exception.

This operation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

64 T: GPR[rd] — GPR[rs] - GPR]r]

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

VR5432 Microprocessor User’s Manual 419

Chapter 17

ERET

Return from Exception E R ET

31 26 2524 65 0
COPO CO 0 ERET
010000 1 00000000000O00OOOCOOOOO 011000
6 1 19 6
Format:
ERET (MIPS 111 format)
Description:
ERET isfor returning from an interrupt, exception, or error exception. Unlike a
Branch or Jump instruction, ERET does not execute a delay slot instruction.
The ERET instruction must not itself be placed in a branch delay dlot.
If the ERL bit of the Status register is set (SR, = 1), load the contents of the
ErrorEPC register to the PC and clear the ERL bit to zero. Otherwise (SR, = 0),
load the PC from the EPC, and clear the EXL bit of the Status register to zero
(SRl = 0)
An ERET instruction executed between an LL instruction and an SC instruction
causes the SC instruction to fail, since the ERET instruction clearsthe LL hit to
zero.
Operation:
32,64 T. if SR, =1then
PC ~ ErrorEPC
SR « SR31..3l10]I SR1..0
else
PC - EPC
SR < SR3;1. 2101 SR
endif
LLbit - O
Exceptions:
Coprocessor Unusable exception
420 VR5432 Microprocessor User’s Manual

CPU Instruction Set

J Jump J

31 26 25 0
J target
000010
6 26
Format:
Jtarget (MIPS | format)
Description:

The 26-bit target is shifted left two bits and combined with the high-order four bits
of the address of the delay slot to calculate the target address. The program
unconditionally jumps to this calculated address with a delay of one instruction.

Becauseinstructions must beword aligned, aJinstruction must specify an address
where the low-order two bits are zero. If these |ow-order two bits are not zero, an
Address Error exception will occur when the Jump target instruction is fetched.

Operation:

32 T: temp ~ target
T+l: PC « PCyy. g || temp || 0%

64 T: temp ~ target
T+l: PC « PCq3_ g || temp || 0%

Exceptions:

Address Error exception

VR5432 Microprocessor User’s Manual 421

Chapter 17

JAL

Jump and Link

JAL

31 26 25 0
JAL target
000011
6 26
Format:
JAL target (MIPS | format)
Description:
The 26-bit target is shifted left two bits and combined with the high-order four bits
of the address of the delay slot to calcul ate the address. The program
unconditionally jumps to this calculated address with a delay of one instruction.
The address of the instruction after the delay slot is placed inthelink register, r31.
Because instructions must be word aligned, a JAL instruction must specify an
addresswhere the low-order two bits are zero. If these low-order two bits are not
zero, an Address Error exception will occur when the Jump target instruction is
fetched.
Operation:
32 T: temp - target
GPR[31] -« PC+8
T+1: PC « PC 31 g || temp || 02
64 T. temp - target
GPR[31] - PC+8
T+1: PC « PC g3, 2g || temp || 02
Exceptions:
Address Error exception
422 VR5432 Microprocessor User’s Manual

CPU Instruction Set

JALR

Jump and Link Register JALR

31

26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs 0 rd 0 JALR
00000 00000 001001

6

5 5 5 5 6

Format:

JALRTrs (MIPS 1 format, rd = 31 implied)
JALRrd, rs (MIPS | format)

Description:

The program unconditionally jumps to the address contained in general -purpose
register rs, with adelay of oneinstruction. The address of theinstruction after the
delay dot is stored in general-purpose register rd. The default value of rd, if
omitted in the assembly language instruction, is 31.

Register numbersrsand rd should not be equal, because such an instruction does
not have the same effect when re-executed. If they are equal, the contentsof rsare
destroyed by storing alink address. However, if an attempt is made to execute this
instruction, an exception will not occur, and the result of executing such an
instruction is undefined.

Because instructions must be word aligned, a JALR instruction must specify a
target register (rs) that contains an address where the low-order two bits are zero.
If these low-order two bits are not zero, an Address Error exception will occur
when the Jump target instruction is fetched.

Operation:

32,64

T: temp « GPR [rs]
GPR[rd] ~ PC +8
T+1: PC ~ temp

Excepti

ons:

Address Error exception

VR5432 Microprocessor User’s Manual 423

Chapter 17

J R Jump Register J R

31 26 25 2120 65 0
SPECIAL rs 0 JR
000000 000000000000000O0 001000
6 5 15 6
Format:
JRrs (MIPS | format)
Description:

The program unconditionally jumps to the address contained in general -purpose
register rs, with adelay of oneinstruction.

Because instructions must be word aligned, a JR instruction must specify atarget
register (rs) that contains an address where thelow-order two bitsare zero. If these
low-order two bits are not zero, an Address Error exception will occur when the

Jump target instruction is fetched.

Operation:

32,64 T: temp — GPR[rs]
T+1: PC ~ temp

Exceptions:

Address Error exception

424 VR5432 Microprocessor User’s Manual

CPU Instruction Set

L B Load Byte L B

31 26 25 21 20 16 15 0
LB base rt offset
100000
6 5 5 16
Format:
LB rt, offset (base) (MIPS | format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form avirtual address. The contents of the byte at the memory
location specified by the address are sign extended and loaded into general -
purpose register rt.

Operation:

32 T: vAddr — ((offset;5)!® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize -1 3|l (pPAddr, o xor ReverseEndian3)
mem — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, o xor BigEndianCPU?
GPRIrt] ~ (mem7+8*byte)24 || memz.gepyte.. g byte

64 T: vAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vVAddr, DATA)
pAddr — pAddrps;ze _1 3l (PAddr, o xor ReverseEndian?)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, oxor BigEndianCPU3
GPRI] — (Mem7.guyte)>® Il MeMy.1gebyte. gebyte

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

VR5432 Microprocessor User’s Manual 425

Chapter 17

L B U Load Byte Unsigned

LBU

31 26 25 21 20 16 15 0
LBU base rt offset
100100
6 5 5 16
Format:
LBU rt, offset(base) (MIPS | format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form avirtual address. The contents of the byte at the memory
location specified by the address are zero extended and loaded into general-

purpose register rt.

Operation:

byte — vAddr, oxor BigEndianCPU®
GPR[t] — 0%* || mem7.g+ byte.. g+ byte

byte — vAddr, o xor BigEndianCPU3
GPR[r] 0° [| memz.g« pyte...8 byte

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpsize _1 3 || (PAddr, o xor ReverseEndian?)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

64 T: vAddr ~ ((offset15)48 || offset;s. o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize — 1.3 || (pPAddry_ o xor ReverseEndian3)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

Exceptions:
TLB Miss exception TLB Invalid exception
Bus Error exception Address Error exception

426 VR5432 Microprocessor User’s Manual

CPU Instruction Set

L D Load Doubleword L D
31 26 25 21 20 16 15 0
LD base rt offset
110111
6 5 5 16
Format:
LD rt, offset (base) (MIPS 111 format)
Description:
The 16-bit offset is sigh extended and added to the contents of general-purpose
register baseto form avirtual address. The contents of the 64-bit doubleword at
the memory location specified by the address are loaded into general -purpose
register rt.
If any of the low-order three bits of the address are not zero, an Address Error
exception occurs.
Thisoperation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.
Operation:
64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] « mem

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

Exceptions:

TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual 427

Chapter 17

L DCZ Load Doubleword to Coprocessor z L DCZ
31 26 25 21 20 16 15 0
LDCz base rt offset
1101xx
6 5 5 16
Format:

LDCz rt, offset (base)

Description:

(MIPS I format)

The 16-bit offset is sign extended and added to the contents of general-purpose
register baseto form avirtual address. The processor |oads adoubleword from the
addressed memory location to CPz. The manner in which each coprocessor uses
the datais defined by the individual coprocessor specifications.

If any of the low-order three bits of the address are not zero, an Address Error

exception takes place.

Thisinstruction is not valid for use with CPO.

When CPL is specified, the FR bit of the Status register equals zero and the least-
significant bitin the rt field is not zero; the operation of the instructionis
undefined. If the FR bit equals one, an odd or even register is specified by rt.

428

VR5432 Microprocessor User’s Manual

CPU Instruction Set

L DCZ Load Doubleword to Coprocessor z L DCZ

(continued)

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD (rt, mem)

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

Exceptions:

TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception
Coprocessor Unusable exception

Opcode Bit Encoding:

LDCZ Bit# 31 30 29 28 27 26 0
LDC1
Bit# 31 30 29 28 27 26 0
LDC2
Opcode Coprocessor Number

VR5432 Microprocessor User’s Manual 429

Chapter 17

L

DL

Load Doubleword Left L DL

31 26 25 21 20 1615 0
LDL base rt offset
011010
6 5 5 16
Format:
LDL rt, offset (base) (MIPS 111 format)
Description:

Thisinstruction is used in combination with the LDR instruction to load the
doubleword data in the memory that is not at the word boundary to general-
purposeregister rt. The LDL instruction loadsthe higher portion of the datato the
register, while the LDR instruction |oads the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address that can specify any byte. Of the
doubleword datain the memory wherethe most-significant byteis specified by the
generated address, only the data at the same word boundary as the target address
isloaded and stored to the higher portion of general-purpose register rt. The
remaining portion of the register is not affected. Depending on the address
specified, the number of bytesto be loaded changes from 1 to 8.

In other words, first the addressed byte is stored to the most-significant byte
position of general-purpose register rt. If there is data of the low-order byte that
follows the same doubleword boundary, the operation to store this datato the next
byte of general-purpose register rt isrepeated. The remaining low-order byteis
not affected.

Memory
(Big Endian) Register
address 8 8| 9|10|11|12|13|14|15 Before‘A‘B‘C‘D\E‘F‘G‘H‘$24
address0 | 0| 1|2 |3|4|5| 6| 7| loading
LDL $24,3($0)
oneing (3141516 [7[F[G[H] s24
430 VR5432 Microprocessor User’s Manual

CPU Instruction Set

LDL

Load Doubleword Left L DL

(continued)

The contents of general-purpose register rt are internally bypassed within the
processor, so that no NOP instruction is needed between an immediately
preceding Load instruction that targets general-purpose register rt and a
subsequent LDL (or LDR) instruction.

The Address Error exception does not occur even if the specified addressis not at
the doubleword boundary.

This operation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

64

T:

vAddr « ((offset15)48 || offset;s. o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1 3 || (PAddr, o xor ReverseEndian®)
if BigEndianMem = 0 then

pAddr « pAddrpgze_;. 3|l 0°
endif
byte — VAddr, g xor BigEndianCPU?®

mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPRrt] « memz.gpyte...0 || GPRIr]s5_gnyte..0

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

VR5432 Microprocessor User’s Manual 431

Chapter 17

Load Doubleword Left
LDL (continued) L DL

The relationship between the address given to the LDL instruction and the result
(bytes for registers) is shown below:

LDL

Register | A | B

Memory | J K L M N O P

BigEndianCPU =0 BigEndianCPU = 1
Offset Offset
VAddr, o Destination Type | LEM|BEM Destination Type| LEM BEM
0 PBCDEFGH| O 0|7 |I JKLMNOP| 7 0] 0
1 OPCDEFGH| 1 0|6 |JKLMNOPMH| 6 0 1
2 NOPDEFGH| 2 0|5 |[KL MNOPGH]| 5 o 2
3 MNOPEFGH| 3 0|4 |[LMNOPFGH| 4 0] 3
4 L MNOPFGH| 4 0|3 |[MNOPEFGH| 3 0| 4
5 KLMNOPGH| 5 0|2 [NOPDEFGH| 2 0| 5
6 J KL MNOPH| 6 0|1 | OPCDEFGH| 1 0] 6
7 I JKLMNOP| 7 0|0 |PBCDEFGH| O 0| 7
Note: Type: Accesstype output to memory (refer to Table 16-3 on
page 324 for information on byte access within adouble-

word)
Offset: pAddr, o Output to memory

LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

432

VR5432 Microprocessor User’s Manual

CPU Instruction Set

L D L Load Doubleword Left L D L

(continued)

Exceptions:

TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual 433

Chapter 17

LDR

Load Doubleword Right L DR

31 26 25 21 20 16 15 0
LDR base rt offset
011011
6 5 5 16
Format:
LDR rt, offset (base) (MIPS 111 format)
Description:

Thisinstruction iscombined with the LDL instruction to load the word datain the
memory that is not at the word boundary to general-purpose register rt. The LDL
instruction loads the higher portion of the datato the register, whilethe LDR
instruction loads the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address that can specify any byte. Of the word
datain memory where the least-significant byte is specified by the generated
address, only the data at the same doubleword boundary as the target address is
loaded and stored to the lower portion of general-purpose register rt. The
remaining portion of the register is not affected. Depending on the address
specified, the number of bytesto be loaded changes from 1 to 8.

In other words, first the addressed byte is stored to the least-significant byte
position of genera-purpose register rt. If thereis data of the high-order byte that
followsthe same doubleword boundary, the operation to store thisdatato the next
byte of general-purpose register rt is repeated. The remaining high-order byte is
not affected.

Memory
(Big Endian) Register
address 8| 8 | 9 [10 (1112 (13 [14[15 | .o
address0|0 |12 [3[4[5]6 7] loading |A]B]C|D|E]F]G[H]| $24
LDR $24,4($0)
Af
|oatledring\A\B\c\o\1\2\3\4\:{;24
434 VR5432 Microprocessor User’s Manual

CPU Instruction Set

L DR Load Doubleword Right L DR

(continued)

The contents of general-purpose register rt are bypassed within the processor so
that no NOP instruction is needed between an immediately preceding Load
instruction that targetsgeneral-purpose register rt and asubsequent LDR (or LDL)
instruction.

The Address Error exception does not occur even if the specified addressis not
located at the doubleword boundary.

This operation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

64 T:vAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1 3 || (PAddr, o xor ReverseEndian®)
if BigEndianMem = 1 then
pAddr — pAddrg;]| 0°
endif
byte — vAddr, g xor BigEndianCPU3
mem ~ LoadMemory (uncached, DOUBLEWORD - byte, pAddr, vAddr, DATA)
GPR[rt] — GPR{rtlg3_. 6a-g*byte || MEMe3__g+byte

Note: In 32-bit Kernel mode, the high-order 32 hits are ignored during
virtual address creation.

VR5432 Microprocessor User’s Manual 435

Chapter 17

LDR

Load Doubleword Right
(continued) L DR

The relationship between the address given to the LDR instruction and the result
(bytes for registers) is shown below:

LDR
Register A B C D E F G H
Memory I J K L M N O P
BigEndianCPU =0 BigEndianCPU = 1
Offset Offset
vAddr, Destination Type |LEM|BEM Destination Type|LEMBEM
0 I JKLMNOP| 7 0|0 | ABCDEFGI 0 710
1 Al J KL MNO| 6 110 ABCDEFI J| 1 6 0
2 ABIl JKLMN| 5 2|0 |[ABCDEI J K| 2 5|0
3 ABCIlJKLM 4 3]0 |ABCDI JKL| 3 410
4 ABCDI JKL| 3 410 |[ABCI JKL M| 4 3 0
5 ABCDEI JK| 2 510 |ABI JKLMN]| 5 2|0
6 ABCDEFI J| 1 6 |0 |Al JKLMNO| 6 1]0
7 A BCDEFGI 0 710 I J KLMNOP| 7 0 0

Note: Type: Access type output to memory (refer to Table 16-3 on

page 324 for information on byte accesswithin a double-
word)

Offset: pAddr, o Output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

436

VR5432 Microprocessor User’s Manual

CPU Instruction Set

L DR Load Doubleword Right L DR

(continued)

Exceptions:

TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual 437

Chapter 17

LH

Load Halfword L H

31

26 25 21 20 16 15 0

100001

LH

base rt offset

6

Format:

LH rt, offset (base) (MIPS | format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to formavirtual address. The contentsof the halfword at the memory
location specified by the address are sign extended and loaded into general-
purpose register rt.

If the least-significant bit of the addressis not zero, an Address Error exception
occurs.

Operation:

32

64

T:

vAddr « ((offsetlg,)16 || offsetis. o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpsize — 1.3 || (PAddry g xor (ReverseEndian2 || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU? || 0)

GPRIr] ~ (memlS+8*byte)l6 [l memys.gepyte...8* byte

VAddr — ((offset;s)*® || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr « pAddrpgize — 1.3 || (PAddry o xor (ReverseEndian2 [| 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCP 2 || 0)

GPRIrt] « (MeM;s5.guyte) ® || MeMisiguye.. 8+ byte

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

438

VR5432 Microprocessor User’s Manual

CPU Instruction Set

LHU

Load Halfword Unsigned L H U

31 26 25 21 20 16 15 0
LHU base rt offset
100101
6 5 5 16
Format:
LHU rt, offset (base) (MIPS | format)
Description:

Operati

The 16-bit offset is sign extended and added to the contents of general-purpose
register baseto formavirtual address. The contentsof the halfword at the memory
location specified by the address are zero extended and loaded into general-
purpose register rt.

If the least-significant bit of the addressis not zero, an Address Error exception
occurs.

on:

32 T

64 T

vAddr ~ ((offset15)16 || offsetis. o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize — 1.3 || (PAddry o Xxor (ReverseEndian2 [| 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, oxor (BigEndianCPU? || 0)

GPR[rt] ~ 0% || MEeM15+g+hyte...8*byte

vAddr « ((offsetlg,)48 || offsets. o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr « pAddrpgize — 1.3 || (pAddry o xor (ReverseEndian2 || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, oxor (BigEndianCPU? || 0)

GPRIrt] « 0% || memys.gyte. sbyte

Exceptions:

TLB Miss exception TLB Invalid exception
Bus Error exception Address Error exception

VR5432 Microprocessor User’s Manual 439

Chapter 17

LL

Load Linked L L

31 26 25 21 20 16 15 0
LL base rt offset
110000
6 5 5 16
Format:
LL rt, offset (base) (MIPS I1 format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register baseto form avirtual address. The contents of the word at the memory
location specified by the address areloaded into general -purpose register rt. In 64-
bit mode, the loaded word is sign extended. In addition, the specified physical
address of the memory is stored in the LLAddr register, and setsthe LL bit to 1.
Afterward, the processor checkswhether the address stored inthe LL Addr register
has been rewritten by the other processors or devices.

Thisinstruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities; however, the VR5432 does not implement
these facilities.

Load Linked (LL) and Store Conditional (SC) instructions can be used to update
memory atomically:

L1:
LL T1, (TO)
ADD T2,T1,1
SC T2, (TO)
BEQ T2,0,L1
NOP

This atomically increments the word addressed by TO. Changing the ADD
instruction to an OR instruction changes thisto an atomic bit set.

Thisinstruction isavailable in User mode; it is not necessary to enable CPO.

VR5432 Microprocessor User’s Manual

CPU Instruction Set

Load Linked
L L (continued) L L

If the specified addressisin the noncache area, the operation of the LL instruction
isundefined. A cache missthat occursbetweenthe LL and SCinstructionshinders
execution of the SC instruction. Usually, therefore, one should not use aL oad or
Storeinstruction between the LL and SC instructions. Otherwise, the operation of
the SCinstruction is hot guaranteed. If an exception frequently occurs, the
exception a so hinders execution of the SC instruction. It istherefore necessary to
disable the exception temporarily.

If either of the low-order two bits of the address is not zero, an Address Error
exception takes place.

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize-1..3 || (pPAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0%)
GPRIrt] — memgzy.g+yte.. g*byte
LLbit « 1
LLAddr — pAddr

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr « pAddrpgize-1..3 || (PAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0%)
GPR[1t] « (MeM31.gupyte)” || MEMa1.gubyte. sebyte
LLbit « 1
LLAddr « pAddr

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

VR5432 Microprocessor User’s Manual 441

Chapter 17

LLD Load Linked Doubleword LLD
31 26 25 21 20 16 15 0

LLD base rt offset

110100

6 5 5 16
Format:
LLD rt, offset (base) (MIPS 111 format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register baseto form avirtual address. The contents of the doubleword at the
memory location specified by the address are |oaded into general - purpose register
rt. In addition, the specified physical address of the memory is stored in the
LLAddr register, and setstheLL bit to 1. Afterward, the processor checkswhether
the address stored in the LLAddr register has been rewritten by the other
processors or devices.

Thisinstruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities; the VR5432 does not implement these
facilities.

The Load Linked Doubleword (LLD) instruction and the Store Conditional
Doubleword (SCD) instruction can be used to update the memory atomically:

L1:
LL T1, (TO)
DADD T2,T1,1
SCD T2, (TO)
BEQ T2,0, L1
NOP

This atomically increments the doubleword addressed by TO. Changing the
DADD instruction to an OR instruction changes this to an atomic bit set.

442

VR5432 Microprocessor User’s Manual

CPU Instruction Set

LLD Load Linked Doubleword LLD

(continued)

If the specified address isin anoncache area, the operation of the LLD instruction
is undefined. If adata cache miss occurs between the LLD and SCD instructions,
the operation of the SCD instruction is not guaranteed. Therefore, do not use a
Load or Store instruction between the LLD and SCD instructions. An exception
al so causes the operation of the SCD instruction to not be guaranteed, soit is
necessary to disable exceptions temporarily.

This operation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

32 T: VAddr — ((offset;s)'® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem «~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR][rt] « mem
LLbit « 1
LLAddr — pAddr

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR]rt] « mem
LLbit —~ 1
LLAddr « pAddr

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

VR5432 Microprocessor User’s Manual 443

Chapter 17

LLD Load Linked Doubleword LLD

(continued)

Exceptions:

TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual

CPU Instruction Set

L U I Load Upper Immediate L U I
31 26 25 21 20 16 15 0
LUI 0 rt immediate
001111 00000
6 5 5 16
Format:
LUI rt, immediate (MIPS | format)
Description:

The 16-bit immediate is shifted left 16 bits and extended on the right with 16 bits
of zeros. Theresult is placed into general -purpose register rt. In 64-bit mode, the

32-bit result is sign extended to 64 hits.

Operation:

32 T: GPR[r] « immediate || 0°

64 T. GPRIr] — (immediate;5)3? || immediate || 08

Exceptions:

None

VR5432 Microprocessor User’s Manual

Chapter 17

LW Load Word

LW

31 26 25 21 20 16 15 0
LW base rt offset
100011
6 5 5 16
Format:
LW rt, offset (base) (MIPS | format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register baseto form avirtual address. The contents of the word at the memory
location specified by the address are | oaded into general-purpose register rt. In 64-

bit mode, the loaded word is sign extended to 64 hits.

If either of the low-order two bits of the addressis not zero, an Address Error

exception occurs.

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]

GPR[rt] « mem

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]

GPR[rt] —« mem

(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

446 VR5432 Microprocessor User’s Manual

CPU Instruction Set

LWCz

Load Word to Coprocessor z

LWCz

31 26 25 21 20 16 15 0
LWCz base rt offset
1100xx*
6 5 5 16
Format:

LWCz 1, offset (base)

Description:

(MIPS | format)

The 16-bit offset is sign extended and added to the contents of general-purpose

register baseto formavirtual address. The processor loadsaword at the addressed
memory location to general -purpose register rt of CPz. The manner in which each

coprocessor usesthe datais defined by the individual coprocessor specifications.

exception occurs.

Thisinstruction is not valid for use with CPO.

If either of the low-order two bits of the addressis not zero, an Address Error

VR5432 Microprocessor User’s Manual

447

Chapter 17

Load Word to Coprocessor z
LWCZ (continued) LWCZ

Operation:

32 T VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORDé pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU || 09)
COPzLW (byte, rt, mem)

64 T: VvAddr —~ ((offset15)48 || offsetys. o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze.1. 3 || (PAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORDé pAddr, vAddr, DATA)
byte — vAddr,_ g xor (BigendianCPU || 0%)
COPzLW (byte, rt, mem)

Exceptions:

TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception
Coprocessor Unusable exception

Opcode Bit Encoding:

LWCZ Bit#31 30 29 28 27 26 0
LwcC1
Bit#31 30 29 28 27 26 0
LwC2
Opcode Coprocessor Number

448 VR5432 Microprocessor User’s Manual

CPU Instruction Set

LWL

Load Word Left LWL

31 26 25 21 20 16 15 0
LWL base rt offset
100010
6 5 5 16
Format:
LWL rt, offset (base) (MIPS | format)
Description:

This instruction is combined with the LWR instruction to load word datain
memory that is not at aword boundary to general-purpose register rt. The LWL
instruction loads the higher portion of the datato the register, while the LWR
instruction loads the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address that can specify any byte. Of the word
data in the memory where the most-significant byte is specified by the generated
address, only the data at the same word boundary as the target addressis |loaded
and stored to the higher portion of general-purpose register rt. The remaining
portion of the register is not affected. Depending on the address specified, the
number of bytesto be loaded changes from 1 to 4.

In other words, first the addressed byte is stored to the most-significant byte
position of general-purpose register rt. If thereis data of the high-order byte that
follows the same word boundary, the operation to store this data to the next byte
of general-purpose register rt is repeated.

The remaining higher byteis not affected.

address 4
address 0

I\/_Iemog{

(Big Enclan) Register

4 5 6 7

o] 1] 2] 3 E:Zgrneg‘/*\B\C\D\sm

LWL $24,1($0)

Aft
Ioa%lring‘ 1] 2] 3] D | g4

VR5432 Microprocessor User’s Manual 449

Chapter 17

LWL

Load Word Left LWL

(continued)

The contents of general-purpose register rt are bypassed within the processor, so
that no NOP instruction is needed between an immediately preceding Load
instruction that targets general-purpose register rt and a subsequent LWL (or
LWR) instruction.

The Address Error Exception does not occur, even if the specified address is not
located at the word boundary.

Operation:

32 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr « pAddrpsize_1..3 || (PAddry o Xxor ReverseEndian3)
if BigEndianMem = 0 then

pAddr « pAddrpgize_1. 2 || 07

endif
byte — vAddr; g xor BigEndianCPU?
word « vAddr; xor BigEndianCPU
mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp — mMeMganyord+grbyte+7 || GPRIM23-g+byte...0
GRPI[rt] —~ temp

64 T: VAddr — ((offset;5)*8 || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vVAddr, DATA)
pAddr « pAddrpsize_1..3 || (PAddry o xor ReverseEndian3)
if BigEndianMem = 0 then

pPAddr « pAddrpgize_1.. 2|l 0%
endif
byte — vAddr; g xor BigEndianCPU?
word « vAddr; xor BigEndianCPU
mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp — memgza«yorg+gebyte+7 || GPRIM]23.8+byte...0
GPR(rt] — (tempgy)*? || temp

450

VR5432 Microprocessor User’s Manual

CPU Instruction Set

LWL

Load Word Left
(continued)

LWL

The relationship between the address given to the LWL instruction and the result
(bytes for registers) is shown below:

LWL
Register A B C D E F G H
Memory I J K L M N o] P
BigEndianCPU =0 BigEndianCPU =1
Offset Offset
vAddr, o Destination Type LEMBEM Destination Type/LEM/BEM
0 S SSSPFGH| 0 0|7 |SSSSI JKL| 3 410
1 S SSSOPGH| 1 0|6 |[SSSSJKLH 2 4 | 1
2 S SSSNOPH| 2 0|5 |SSSSKLGH| 1 4 1 2
3 SSSSMNOP| 3 0|4 |[SSSSLFGH| 0 4 1 3
4 SSSSLFGH| O 413 | SSSSMNOP| 3 0| 4
5 S SSSKLGH| 1 4 |2 [SSSSNOPH| 2 0| 5
6 S SSSJKLH|l 2 4|11 [SSSSOPGH| 1 0| 6
7 SSSSI JKL| 3 4 10 |[SSSSPFGH| O 0| 7
Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte accesswithin a double-
word)
Offset: pAddr, o Output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)
S Sign extension of destination bit 31

VR5432 Microprocessor User’s Manual

451

Chapter 17

LWL Load Word Left LWL

(continued)

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

452 VR5432 Microprocessor User’s Manual

CPU Instruction Set

LWR

Load Word Right LWR

31 26 25 21 20 16 15 0
LWR base rt offset
100110
6 5 5 16
Format:
LWR rt, offset (base) (MIPS| format)
Description:

Thisinstruction is combined with the LWL instruction to load the word datainthe
memory that isnot at the word boundary to general-purpose register rt. The LWL
instruction loads the higher portion of the data to the register, while the LWR
instruction loads the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate avirtual address that can specify any byte. Of the word
datain the memory where the least-significant byte is specified by the generated
address, only the data at the same word boundary as the target addressis |loaded
and stored to the lower portion of general-purpose register rt. The remaining
portion of the register is not affected. Depending on the address specified, the
number of bytesto be loaded changes from 1 to 4.

In other words, first the addressed byte is stored to the least-significant byte
position of genera-purpose register rt. If thereis data of the high-order byte that
follows the same word boundary, the operation to store this data to the next byte
of general-purpose register rt is repeated.

The remaining high-order byte is not affected.

Memory
(Big Endian) Register
address 4 4 5 6 7 Before
; A B C D
address 0 0 1 2 3 loading | | | | $24
LWR $24,4($0)

Aft
Ioa((ajring‘ Al B |l cla] s

VR5432 Microprocessor User’s Manual 453

Chapter 17

LWR Load Word Right LWR

(continued)

The contents of general-purpose register rt are bypassed within the processor, so
that no NOP instruction is needed between an immediately preceding Load
instruction that targets general-purpose register rt and afollowing LDL (or LWR)
instruction.

The Address Error exception does not occur even if the specified addressis not
located at the word boundary.

Operation:

32 T: VAddr — ((offset;5)'® || offset;s_o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr « pAddrpsize_1.. 3 || (PAddry o Xxor ReverseEndian3)
if BigEndianMem = 1 then
pAddr « pAddrpsize_31. 31l 0°
endif
byte — vAddr; g xor BigEndianCPU?
word ~ vAddr, xor BigEndianCPU
mem ~ LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp — memsy 32.gsbyte...0 || MEM31+325w0rd-32*word+8*byte
GPR][rt] —~ temp

64 T: VAddr ((offset;5)*® || offset;s_o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize—1. 3 || (PAddry g xor ReverseEndian3)
if BigEndianMem = 1 then
pPAddr « pAddrpsize_31. 31l 0°
endif
byte — vAddr; g xor BigEndianCPU?
word ~ vAddr, xor BigEndianCPU
mem ~ LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp — memsy 32.gspyte...0 || MEM31+325w0rd-32*word+8*byte
GPRIrt] — (temps;)®? || temp

454

VR5432 Microprocessor User’s Manual

CPU Instruction Set

LWR

Load Word Right

(continued)

LWR

The relationship between the address given to the LWR instruction and the result
(bytes for registers) is shown below:

LWR
Register | A B C D E F G H
Memory I J K L M N 0] P
BigEndianCPU =0 BigEndianCPU =1
Offset Offset
vAddr, o Destination Type |LEM|BEM Destination Type|LEM|BEM
0 SSSSMNOP| 3 0] 4 XX XXEFGI 0 7 0
1 XXX XEMNO| 2 1] 4 XX XXEFI J 1 6 0
2 XXXXEFMN| 1 2|4 | XX XXEI J K| 2 5|0
3 XXXXEFGM| O 3|4 |SSSSI JKL| 3 410
4 SSSSI JKL| 3 410 XX XXEFGM| O 3 4
5 XXXXEI JK| 2 5/0 | XXXXEFMN| 1 2| 4
6 XXXXEFI J 1 6 |0 XX XXEMNO| 2 1 4
7 XXXXEFGI 0 7/0 |SSSSMNOP| 3 0| 4
Note: Type: Access type output to memory (refer to Table 16-3 on

page 324 for information on byte accesswithin a double-

word)

OffsetpAddr, o Output to memory
LEML.ittle-endian memory (BigEndianMem = 0)
BEMBIig-endian memory (BigEndianMem = 1)

Sign extension of destination bit 31

Not affected

VR5432 Microprocessor User’s Manual

455

Chapter 17

LWR Load Word Right LWR

(continued)

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

456 VR5432 Microprocessor User’s Manual

CPU Instruction Set

LWU

Load Word Unsigned

LWU

31

26 25 21 20

16 15

LWU

101111

base

rt

offset

6

16

Format:

LWU rt, offset (base)

Description:

(MIPS 111 format)

The 16-hit offset is sign extended and added to the contents of the general-purpose
register base to form avirtual address. The contents of the word at the memory

location specified by the address are |oaded into general-purpose register rt. The
loaded word is zero-extended in 64-bit mode.

If either of the low-order two bits of the effective addressis not zero, an Address

Error exception occurs.

This operation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction

exception.

Operation:

32

64

T:

vAddr ~ ((offset15)16 || offset;s. o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

mem — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR]rt] « mem

VvAddr ~ ((offset15)48 || offset;s. o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
mem — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR][rt] 0%? [| mem

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

VR5432 Microprocessor User’s Manual

457

Chapter 17

LWU Load Word Unsigned LWU

(continued)

Exceptions:

TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception
Reserved Instruction exception

458 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MACC e MACC

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MACC
000000 00101011000
6 5 5 5 11
Format:
MACCrd, rs, rt (VR5432 format)
Description:

Thesigned 32-bit operandsinthersand rt registersare multiplied, and the product
is added to the signed contents of the 64-bit accumulator formed by the least-
significant 32 bits of the HI and LO registers. A copy of the least-significant 32
bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MACC instruction.

Operation:

32,64 T: Higp 0llLO3;1. 0 « (Hizp ol LO31..0) + (GPRIrs] * GPRIrt])
GPR(rd]31.0 < ((Hl31..0 || LO31..0) + (GPRIrs] * GPRIrt]))z1..0

Exceptions:

None

VR5432 Microprocessor User’s Manual 459

Chapter 17

MACCHI e MACCHI

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MACCHI
000000 01101011000
6 5 5 5 11
Format:
MACCHI rd, rs, rt (VR5432 format)
Description:

Thesigned 32-bit operandsinthersand rt registersare multiplied, and the product
is added to the signed contents of the 64-bit accumulator formed by the least-
significant 32 bits of the HI and LO registers. A copy of the most-significant 32
bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MACCHI instruction.

Operation:

32,64 T: Higp 0llLO3;1. 0 « (Hizp ol LO31..0) + (GPRIrs] * GPRIrt])
GPRIrd]z; o < ((Hl31. o || LO31. o) + (GPR[rs] * GPR[rt]))s3. 32

Exceptions:

None

460 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MACCHIU o eamutate MACCHIU

and Move HI
31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MACCHIU
000000 01101011001
6 5 5 5 11
Format:
MACCHIU rd, rs, rt (VR5432 format)
Description:

The unsigned 32-bit operandsin the rs and rt registers are multiplied, and the
product is added to the unsigned contents of the 64-bit accumulator formed by the
least-significant 32 bits of the HI and LO registers. A copy of the most-significant
32 hits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MACCHIU instruction.

Operation:

32,64 T: Higp 0llLO31. 0 « (Hizz ol LO31.. 0) + (GPRIrs] * GPRIrt])
GPRIrd]z1 o < ((Hl31 o || LO31. o) + (GPR[rs] * GPR[rt]))s3. 32

Exceptions:

None

VR5432 Microprocessor User’s Manual 461

Chapter 17

Unsigned Multiply,
MACCU Accumulate, and Move LO MACCU

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MACCU
000000 00101011001
6 5 5 5 11
Format:
MACCU rd, rs, rt (VR5432 format)
Description:

The unsigned 32-bit operandsin the rs and rt registers are multiplied, and the
product is added to the unsigned contents of the 64-bit accumulator formed by the
least-significant 32 bits of the HI and LO registers. A copy of the least-significant
32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MACCU instruction.

Operation:

32, 64 T: H|31“0 ” LO31.“0 — (H|3l...0 || LO31“.0) + (GPR[I’S] * GPR[rt])
GPRIrd]31.0 « ((Hlz1..0 || LO3s1..0) + (GPRIrs] * GPRIrt]))z1..0

Exceptions:

None

462 VR5432 Microprocessor User’s Manual

CPU Instruction Set

Move from
M FCO System Control Coprocessor M FCO

31 26 25 21 20 16 15 1110 0
COPO MF rt rd 0
010000 00000 0000000O0O0OOO
6 5 5 5 11
Format:
MFCOrt, rd (MIPS | format)
Description:

The contents of general-purpose register rd of the CPO are loaded into general -
purpose register rt.

Operation:

32 T: data « CPR[O,rd]
T+1: GPR]rt] — data

64 T: data — CPR[O,rd]
T+1: GPR[rt] — (datag;)®? || datag; o

Exceptions:

Coprocessor Unusable exception (64-/32-bit User and Supervisor modeif CPOis
disabled)

VR5432 Microprocessor User’s Manual 463

Chapter 17

MFCZ Move from Coprocessor z MFCZ

31 26 25 21 20 16 15 11 10 0
COPz MF rt rd 0
0100xx*| 000O0O 000000O0O0O0OOO
6 5 5 5 11
Format:
MFCzrt, rd (MIPS | format)
Description:

The contents of general-purpose register rd of CPz are loaded into general-
purpose register rt.

Operation:

32 T: data — CPR[z,rd]
T+1: GPR][rt] < data

64 T: if rdg = O then

data < CPR(z,rdy 1 ([0l31..0
else
data — CPR[z,rds 1 || Olg3. 32
endif
T+1: GPR[rt] — (datag;)3? || data

Exceptions:

Coprocessor Unusable exception

464 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MFCz

Opcode Bit Encoding:

Move from Coprocessor z

(continued)

MFCz

MFCZ Bit# 31 30 29 28 27 26 25 24 23 22 21 0
MFCO
Bit# 31 30 29 28 27 26 25 24 23 22 21 0
MFC1
Bit# 31 30 29 28 27 26 25 24 23 22 21 0
MFC2
Opcode L Coprocessor Sub-opcode
Coprocessor Number
VR5432 Microprocessor User’s Manual 465

Chapter 17

MFDR bebu Regimter MFDR

31 26 25 21 20 16 15 1110 65 0
SPECIAL2 MFDR rt dr 0 Debug Move
011100 00000 00000 111101

6 5 5 5 5 6
Format:
MFDR rt, dr (VR5432 format)
Description:

The contents of debug register dr are loaded into general-purpose register rt.

Operation:

32,64T: GPR[rt] - DEBUG[dr]

Exceptions:

None

466 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MFEHI

Move from HI

MFHI

31 26 25 16 15 1110 5 0
SPECIAL 0 rd 0 MFHI
000000 | O0O0O0O0O0O0O0OOO 00000 010000
6 10 5 5 6
Format:
MFHI rd (MIPS | format)
Description:

Operati

The contents of special register HI are loaded into general-purpose register rd.

To ensure proper operation in the event of interrupts, the two instructions that
follow an MFHI instruction may not be any of the instructions that modify the HI
register: DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MAC, MACC,
MACCHI, MACCHIU, MACCU, MTHI, MUL, MULHI, MULHIU, MULT,

MULTU, or MULU.

on:

32,64

T: GPR[rd] ~ HI

Exceptions:

None

VR5432 Microprocessor User’s Manual

467

Chapter 17

MFLO Move from LO MFLO

31 26 25 16 15 1110 6 5 0
SPECIAL 0 rd 0 MFLO
000000 |O00O0O0O0O0OOOOO 00000 010010
6 10 5 5 6

Format:
MFLO rd (MIPS | format)

Description:
The contents of special register LO are loaded into genera -purpose register rd.
To ensure proper operation in the event of interruptions, the two instructions that
follow an MFL O instruction may not beany of theinstructionsthat modify the L
register: DDIV, DDIVU, DIV, DIVU, DMAC, DMULT, DMULTU, MAC,
MACC, MACCHI, MACCHIU, MACCU, MTLO, MUL, MULHI, MULHIU,
MULT, MULTU, or MULU.

Operation:

32,64 T: GPRJrd] ~ LO

Exceptions:
None

468

VR5432 Microprocessor User’s Manual

CPU Instruction Set

Move from
M FPC Performance Counter M FPC

31 26 25 21 20 16 15 1110 65 10
COPO MFPC rt CPO Move 0 reg 1
010000 00000 11001 00000
6 5 5 5 5 5 1
Format:
MFPC rt, reg (VR5432 format)
Description:

The contents of Performance Counter reg areloaded into general -purpose register
rt.

Operation:

32,64 T: GPR][rt] — CPR[O,req]

Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual 469

Chapter 17

Move f

MFPS

rom

Performance Event Specifier

MFPS

31 26 25 21 20 16 15 1110 65 10
COPO MFPS rt CPO Move 0 reg 0
010000 00000 11001 00000
6 5 5 5 5 5 1
Format:
MFPS rt, reg (VR5432 format)
Description:
The contents of performance event specifier reg are loaded into general-purpose
register rt.
Operation:
32,64 T: GPR][rt] — CPR[O,req]
Exceptions:
Coprocessor Unusable exception
470 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MOVN Move Conditional on Not Zero MOVN

31 26 25 2120 16 15 1110 65 0
SPECIAL rs rt rd 0 MOVN
000000 00000 (001011

6 5 5 5 5 6
Format:
MOVN rd, rs, rt (MIPS IV format)
Description:

If the value in general-purpose register rt is not equal to zero, then the contents of
general-purpose register rs are placed into general -purpose register rd.

Operation:

if GPR[rt] # 0 then
GPR[rd] « GPR]rs]
endif

Note: The nonzero value tested here is the condition true result from the
SLT, SLTI, SLTU, and SLTIU comparison instructions.

Exceptions:

Reserved Instruction exception

VR5432 Microprocessor User’s Manual 471

Chapter 17

M OVZ Move Conditional on Zero M OVZ

31 26 25 2120 16 15 1110 65 0
SPECIAL rs rt rd 0 MOVZ
000000 00000 (001010

6 5 5 5 5 6
Format:
MQOVZrd, rs, rt (MIPS IV format)
Description:

If the value in general-purpose register rt is equal to zero, then the contents of
general-purpose register rs are placed into general -purpose register rd.

Operation:

if GPR[rt] = 0 then
GPR[rd] « GPR]rs]
endif

Note: The nonzero value tested here is the condition fal se result from the
SLT, SLTI, SLTU, and SLTIU comparison instructions.

Exceptions:

Reserved Instruction exception

472 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MSAC Multiply, Negate, MSAC

Accumulate, and Move LO

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MSAC
000000 00111011000
6 5 5 5 11
Format:
MSACrd, rs, rt (VR5432 format)
Description:

Thesigned 32-bit operandsinthersand rt registersare multiplied, and the product
is subtracted from the signed contents of the 64-bit accumulator formed by the
least-significant 32 bits of theHI and LO registers. A copy of the least-significant
32 hits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MSAC instruction.

Operation:

32,64 T: Higp0llLO31.0 « (Hizz ol LO31..0) - (GPRIrs] * GPRIrt])
GPRIrd]31.0 « ((Hl31..0 |l LO3s...) - (GPRIrs] * GPRIrt]))31..0

Exceptions:

None

VR5432 Microprocessor User’s Manual 473

Chapter 17

MSACHI] MSACHI

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MSACHI
000000 01111011000
6 5 5 5 11
Format:
MSACHI rd, rs, rt (VR5432 format)
Description:

Thesigned 32-bit operandsinthersand rt registersare multiplied, and the product
is subtracted from the signed contents of the 64-bit accumulator formed by the
least-significant 32 bits of the HI and LO registers. A copy of the most-significant
32 hits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MSACHI instruction.

Operation:

32,64 T: Higp0llLO31.0 « (Hizz ol LO31..0) - (GPRIrs] * GPRIrt])
GPR[rd]31.0 < ((Hlz1 o[LO3y1..) - (GPRIrs] * GPRIrt]))e3.32

Exceptions:

None

474 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MSACHIU Noaate, Acoumutan MSACHIU

and Move HI
31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MSACHIU
000000 01111011001
6 5 5 5 11
Format:
MSACHIU rd, rs, rt (VR5432 format)
Description:

The unsigned 32-bit operandsin the rs and rt registers are multiplied, and the
product issubtracted from the unsigned contents of the 64-bit accumulator formed
by the least-significant 32 bits of the HI and LO registers. A copy of the most-
significant 32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction isthe
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MSACHIU instruction.

Operation:

32,64 T: Hizgp0llLO3z1.0 < (Hiz1 ol LO31..0) - (GPRIrs] * GPR(rt])
GPR[rd]31.0 < ((Hiz1 o[LO3z1..) - (GPR[rs] * GPRIrt]))e3.32

Exceptions:

None

VR5432 Microprocessor User’s Manual 475

Chapter 17

MSACU Unsigned Multiply, Negate, MSACU

Accumulate, and Move LO

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MSACU
000000 001110110012
6 5 5 5 11
Format:
MSACU rd, rs, rt (VR5432 format)
Description:

The unsigned 32-bit operandsin the rs and rt registers are multiplied, and the
product issubtracted from the unsigned contents of the 64-bit accumulator formed
by the least-significant 32 bits of the HI and LO registers. A copy of the least-
significant 32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MSACU instruction.

Operation:

32,64 T: Higp0llLO31.0 « (Hizz ol LO31..0) - (GPRIrs] * GPRIrt])
GPRIrd]31.0 « ((Hl31..0 |l LO3s...) - (GPRIrs] * GPRIrt]))31..0

Exceptions:

None

476 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MTCO

Move to

System Control Coprocessor

MTCO

The contents of general-purpose register rt are loaded into general-purpose

register rd of CPO.

31 26 25 21 20 16 15 1110 0
COPO MT rt rd 0
010000 00100 00000000000
6 5 5C 5 11
Format:
MTCOTt, rd (MIPS | format)
Description:

Because the contents of the TLB may be altered by this instruction, the operation
of Load and Store instructions and TLB operations for the instructions
immediately before and after thisinstruction are undefined.

Operation:

32,64 T data — GPRJrt]
T+1: CPRJO, rd] ~ data

Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual

477

Chapter 17

MTCZ Move to Coprocessor z MTCZ
0

31 26 25 21 20 16 15 11 10
COPz MT rt rd 0
0100 xx* 00100 00000000O0O0O
6 5 5 5 11
Format:
MTCzrt, rd (MIPS | format)
Description:

The contents of general-purpose register rt are loaded into general-purpose
register rd of CPz.

Operation:

32 T. data — GPR]r]
T+1: CPR[z, rd] ~ data

64 T: data — GPRJrt]s; o

T+1: ifrdg=0
CPR(z,rd4 1 || 0] — CPR[z, rd4,_ 1 || Ols3...32 || data
else
CPR(z, rd4, 1 || 0] ~ data || CPR[z, rdy_1 [O]31...0
endif
Opcode Bit Encoding:
MTCZ Bit#31 30 29 28 27 26 25 24 23 22 21 0
MTCO
Bit#31 30 29 28 27 26 25 24 23 22 21 0
MTC1
Bit#31 30 29 28 27 26 25 24 23 22 21 0
MTC2
Opcode
L Coprocessor Sub-opcode
Coprocessor Number

Exceptions:
Coprocessor Unusable exception

478 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MTDR

Move to
Debug Register

MTDR

31 26 25 21 20

16 15

1110

65

SPECIAL2
011100

MTDR rt

dr

0
00000

Debug Move
111101

6

5

6

Format:

MTDR 1t, dr

Description:

(VR5432 format)

The contents of general-purpose register rt are loaded into debug register dr.

Operation:

32,64T:

DEBUG[dr] — GPRr]

Exceptions:

None

VR5432 Microprocessor User’s Manual

479

Chapter 17

MTHI pove o MTHI

31 26 25 21 20 65 0
SPECIAL rs 0 MTHI
000000 00000000O0OOCOOOO 010001
6 5 15 6
Format:
MTHI rs (MIPS | format)
Description:

The contents of general-purpose register rs are loaded into special register HI.

If the MTHI instruction is executed following the MULT, MULTU, DIV, or
DIVU instruction, the operation is performed normally. However, if the MFLO,
MFHI, MTLO, or MTHI instruction is executed following the MTHI instruction,
the contents of special register LO are undefined.

Operation:
32,64 T-2: HI < undefined
T-1: HI <« undefined
T: Hl — GPR]rs]
Exceptions:
None

480

VR5432 Microprocessor User’s Manual

CPU Instruction Set

MTLO Hove 0 10 MTLO

31 26 25 2120 65 0
SPECIAL rs 0 MTLO
000000 000000000000O0O0O 010011
6 5 15 6
Format:
MTLOTrs (MIPS | format)
Description:

The contents of general-purpose register rs are loaded into special register LO.

If the MTLO instruction is executed following the MULT, MULTU, DIV, or
DIVU instruction, the operation is performed normally. However, if the MFLO,
MFHI, MTLO, or MTHI instruction is executed following the MTLO instruction,
the contents of specia register HI are undefined.

Operation:
32,64 T-2: LO « undefined
T-1: LO « undefined
T: LO < GPR][rs]
Exceptions:
None

VR5432 Microprocessor User’s Manual 481

Chapter 17

Move to
MTPC Performance Counter MTPC

31 26 25 21 20 16 15 1110 65 10
COPO MTPC rt CPO Move 0 reg 1
010000 00100 11001 00000
6 5 5 5 5 5 1
Format:
MTPC rt, reg (VR5432 format)
Description:
The contents of general-purpose register rt are loaded into Performance Counter
reg.
Operation:

32,64 T: CPRJ|O,reqg] « GPR]rt]

Exceptions:

Coprocessor Unusable exception

482 VR5432 Microprocessor User’s Manual

CPU Instruction Set

Move to
MTPS Performance Event Specifier MTPS

31 26 25 21 20 16 15 1110 65 10
COPO MTPS rt CPO Move 0 reg 0
010000 00100 11001 00000
6 5 5 5 5 5 1
Format:
MTPSTt, reg (VR5432 format)
Description:
The contents of general-purpose register rt are loaded into performance event
specifier reg.
Operation:

32,64 T: CPRJ|O,reqg] « GPR]rt]

Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual 483

Chapter 17

MUL Multiply and Move LO MUL

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MUL
000000 00001011000
6 5 5 5 11
Format:
MUL rd, rs, rt (VR5432 format)
Description:

Thesigned 32-bit operandsinthersand rt registersare multiplied, and the product
isstored in the 64-hit register formed by the least-significant 32 bits of the HI and
LO registers. A copy of the least-significant 32 bits of the result is stored in
general-purpose register rd.

An Integer Overflow exception never occurs.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MUL instruction.

Operation:

32, 64 T: HI31..O ” LO31.“0 — GPR[rS] * GPR[rt]
GPR[rd]31.0 « (GPR[rs] * GPR[rt])31 o

Exceptions:

None

484 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MULHI Multiply and Move HI MULHI

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MULHI
000000 01001011000
6 5 5 5 11
Format:
MULHI rd, rs, rt (VR5432 format)
Description:

Thesigned 32-bit operandsinthersand rt registersare multiplied, and the product
isstored in the 64-hit register formed by the least-significant 32 bits of the HI and
LO registers. A copy of the most-significant 32 bits of the result is stored in
general-purpose register rd.

An Integer Overflow exception never occurs.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULHI instruction.

Operation:

32, 64 T: HI31..O ” LO31.“0 — GPR[rS] * GPR[rt]
GPR(rd]z;.0 < (GPRIrs] * GPRIrt])s3..32

Exceptions:

None

VR5432 Microprocessor User’s Manual 485

Chapter 17

MULHIU MULHIU

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MULHIU
000000 010010110012

6 5 5 5 11
Format:
MULHIU rd, rs, rt (VR5432 format)
Description:

The unsigned 32-bit operandsin the rs and rt registers are multiplied, and the
product is stored in the 64-bit register formed by the least-significant 32 bits of the
HI and LO registers. A copy of the most-significant 32 bits of the result is stored
in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULHIU instruction.

Operation:

32,64 T: HiaollLO3 o — GPRIrs] * GPRIr]
GPR[rd]31. o < (GPR][rs] * GPR[rt])e3. 32

Exceptions:

None

486 VR5432 Microprocessor User’s Manual

CPU Instruction Set

M U L S Multiply, Negate, and Move LO M U L S

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MULS
000000 00011011000
6 5 5 5 11
Format:
MULSrd, rs, rt (VR5432 format)
Description:

Thesigned 32-bit operandsinthersand rt registersare multiplied, and the product
is negated and stored in the 64-bit register formed by the least-significant 32 bits
of the HI and LO registers. A copy of the least-significant 32 bits of the result is
stored in general-purpose register rd.

An Integer Overflow exception never occurs.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MUL S instruction.

Operation:

32, 64 T: HI31..O ” LO31.“0 ~ 0- @PR[rS] * GPR[rt])
GPR[rd]31.0 < (0 = GPR[rs] * GPRI[r]))31.0

Exceptions:

None

VR5432 Microprocessor User’s Manual 487

Chapter 17

MULSHI MULSH]I

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MULSHI
000000 01011011000
6 5 5 5 11
Format:
MULSHI rd, rs, rt (VR5432 format)
Description:

The signed 32-bit operandsin thersand rt registers are multiplied and the product
is negated and stored in the 64-bit register formed by the least-significant 32 bits
of the HI and LO registers. A copy of the most-significant 32 bits of the result is
stored in general-purpose register rd.

An Integer Overflow exception never occurs.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULSHI instruction.

Operation:

32, 64 T: HI31..O ” LO31.“0 ~ 0- @PR[rS] * GPR[rt])
GPR(rd]z;.0 < (0 = (GPR[rs] * GPR{rt]))e3..32

Exceptions:

None

4388 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MULSHIU Nonate and Move MUL SHIU

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MULSHIU
000000 010110110012

6 5 5 5 11
Format:
MULSHIU rd, rs, rt (VR5432 format)
Description:

The unsigned 32-bit operandsin the rs and rt registers are multiplied and the
product is negated and stored in the 64-bit register formed by the least-significant
32 bits of the HI and L O registers. A copy of the most-significant 32 bits of the
result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULSHIU instruction.

Operation:

32,64 T HiaollLOss o — O- GPR[rs] * GPRIrt])
GPR[rd]31. 0 < (0 — (GPR[rs] * GPR(rt]))s3. 32

Exceptions:

None

VR5432 Microprocessor User’s Manual 489

Chapter 17

MULSU Negate. and Nove Lo MULSU

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MULSU
000000 000110110012
6 5 5 5 11
Format:
MULSU rd, rs, rt (VR5432 format)
Description:

The unsigned 32-bit operandsin the rs and rt registers are multiplied and the
product is stored in the 64-bit register formed by the least-significant 32 bits of the
HI and LO registers. A copy of the least-significant 32 bits of the result is stored
in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULSU instruction.

Operation:

32,64 T HiaollLOss o — O- GPR[rs] * GPRIrt])
GPRI[rd]z;. o < (0 = GPR][rs] * GPR[rt]))31..0

Exceptions:

None

490 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MULT

Multiply MULT

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULT
000000 0000000O0O0O 011000
6 5 5 10 6

Format:
MULT rs, rt (MIPS | format)
Description:

The contents of general-purpose registersrsand rt are multiplied, treating both
operands as 32-bit signed integers. An Integer Overflow exception never occurs.

In 64-bit mode, the operands must be valid 32-hit, sign-extended values.

When the operation completes, the low-order word of the doubleword result is
loaded into specia register LO, and the high-order word of the doubleword result
isloaded into special register HI. Inthe 64-bit mode, the respectiveresultsaresign
extended and stored.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULT instruction.

VR5432 Microprocessor User’s Manual 491

Chapter 17

MULT

Multiply

MULT

(continued)

Operation:
32 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI — undefined
T t ~ GPRJrs] * GPRIrt]
LO <1310
HI < 163..32
64 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
Tt - GPngshl...O * GPRIrt]31. o
LO = (ta1) > 11310
HI < (te3)™ Il te3...32
Exceptions:
None

492

VR5432 Microprocessor User’s Manual

CPU Instruction Set

MULTU Unsigned Multiply MULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULTU
000000 0000000O0O0O 011001
6 5 5 10 6

Format:
MULTU rs, rt (MIPS | format)
Description:

The contents of general-purpose registersrs and rt are multiplied, treating both
operands as 32-bit unsigned values. An Integer Overflow exception never occurs.

In 64-bit mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the doubleword result is
loaded into special register LO, and the high-order word of the doubleword result

isloaded into special register HI. In 64-bit mode, these results are sign extended
and loaded.

If either of thetwo preceding instructionsisMFHI or MFL O, the execution results
of thesetransfer instructions are undefined. To obtain the correct result, insert two
or more additional instructions between MFHI or MFLO and the MULTU
instruction.

VR5432 Microprocessor User’s Manual 493

Chapter 17

MULTU R MULTU

Operation:
32 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
T: t ~ (0 || GPRJrs]) * (0 || GPRIrt])
LO ~131.0
HI < 163..32
64 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
Tt Al 3GZPR[VS]31...0) * (0| GPRIrt]31..0)
LO - ('f31)32 [lta1..0
HI — (t63)™ Il t63...32
Exceptions:
None

494 VR5432 Microprocessor User’s Manual

CPU Instruction Set

MULU Unsigned Multiply and Move LO MULU

31 26 25 21 20 16 15 1110 0
SPECIAL rs rt rd MULU
000000 000010110012
6 5 5 5 11
Format:
MULU rd, rs, rt (VR5432 format)
Description:

The unsigned 32-bit operandsin the rs and rt registers are multiplied and the
product is stored in the 64-bit register formed by the least-significant 32 bits of the
HI and LO registers. A copy of the least-significant 32 bits of the result is stored
in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULU instruction.

Operation:

32, 64 T Hig o]|LOs; o « GPRrs] * GPR]r]
GPR(rd]z; o < (GPR[rs] * GPR[rt])31. o

Exceptions:

None

VR5432 Microprocessor User’s Manual 495

Chapter 17

NOR NOR NOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format:
NORd, rs, rt (MIPS | format)
Description:

The contents of general-purpose register rs are bitwise NORed with the contents
of general-purpose register rt. Theresult is stored in general-purpose register rd.

Operation:

32, 64 T GPR[rd] — GPR]rs] nor GPR]rt]

Exceptions:

None

496 VR5432 Microprocessor User’s Manual

CPU Instruction Set

OR OR OR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 OR
000000 00000 100101
6 5 5 5 5 6
Format:
ORrd, rs, rt (MIPS | format)
Description:

The contents of general-purpose register rs are bitwise ORed with the contents of
general-purpose register rt. The result is stored in general-purpose register rd.

Operation:

32,64 T: GPR[rd] « GPR][rs] or GPRJrt]

Exceptions:

None

VR5432 Microprocessor User’s Manual 497

Chapter 17

ORI OR Immediate

ORI

31 26 25 21 20 16 15 0
ORI rs rt immediate
001101
6 5 5 16
Format:
ORI rt, rs, immediate (MIPS | format)
Description:

The 16-bit immediate is zero extended and bitwise ORed with the contents of
general-purpose register rs. The result is stored in general -purpose register rt.

Operation:

32 T: GPRJrt] « GPRJrs]z1._ 16 || immediate or GPRI[rs]5. g)
64 T: GPRIrt] — GPR[rsls3 .16 |l (immediate or GPR[rsli5 o)

Exceptions:

None

498 VR5432 Microprocessor User’s Manual

CPU Instruction Set

PREF

Prefetch P R E F

31 26 25 2120 16 15 0
PREF base hint offset
110011
6 5 5 16
Format:
PREF hint, offset (base) (MIPS IV format)
Description:

PREF addsthe 16-bit signed offset to the contents of general -purposeregister base
to form an effective byte address. It advisesthat data at the effective address may
be used in the near future. The hint field suppliesinformation about the way the
datais expected to be used.

Unlike the VR5000, in which the PREF instruction is executed as an NOP, the
VR5432 data may be prefetched into the data cache as aresult of executing this
instruction.

PREF is an advisory instruction that may change the performance of the program.
However, for al hint values and all effective addresses, it neither changesthe
architecturally visible state nor alters the meaning of the program.

If MIPS IV instructions are supported and enabled, PREF does not cause
addressing-related exceptions. If it does happen to raise an exception condition,
the exception condition isignored. If an addressing-related exception condition is
raised and ignored, no datais prefetched. However, even if no datais prefetched,
some action that is not architecturally visible—such aswrite-back of adirty cache
line—can take place.

If PREF results in amemory operation, the memory access type used for the
operation is determined by the memory access type of the effective address, just
asit would be if the memory operation had been caused by aload or store to the
effective address.

The hint field suppliesinformation about the way the data is expected to be used.
A hint value cannot cause an action to modify an architecturally visible state. A
processor may use a hint value to improve the effectiveness of the prefetch action.
The defined hint values are shown in Table 17-17.

VR5432 Microprocessor User’s Manual 499

Chapter 17

PREF

Prefetch P R E F

(continued)

Table 17-17 Values of Hint Field for PREF Instruction
Value Name Data Use and Desired Prefetch Action
0 load Datais expected to be loaded (not modified).
Fetch data asif for aload.
1 Sore Datais expected to be stored or modified.
Fetch data asif for astore.
2-3 Reserved
Datais expected to be loaded (not modified) but not reused
extensively; it “streams’ through the cache.
4 load_streamed Fetch dataasif for aload and placeit in the cache so that it does
not displace data prefetched as “retained.”
Datais expected to be stored or modified but not reused
5 store streamed extensively; it “streams’ through the cache.
= Fetchdataasif for astore and placeit in the cache so that it does
not displace data prefetched as “retained.”
Datais expected to be loaded (hot modified) and reused
6 load retained extensively; it should be “retained” in the cache.
- Fetch data asif for aload and placeit in the cache so that it is
not displaced by data prefetched as “ streamed.”
Datais expected to be stored or modified and reused
7 Sore retained extensively; it should be “retained” in the cache.
- Fetch data asif for astore and placeit in the cache so that it is
not displaced by data prefetched as “ streamed.”
8-24 Reserved
25 writeback_invalidate
26-31 Reserved
500 VR5432 Microprocessor User’s Manual

CPU Instruction Set

PREF Prefetch PREF

(continued)

PREF never generates a memory operation for alocation with an uncached
memory access type.

Prefetch cannot prefetch data from a mapped location unless the translation for
that location is present inthe TLB. L ocationsin memory pages that have not been
accessed recently may not have translations in the TLB, so prefetch may not be
effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to
prefetch using an address pointer value before the validity of apointer is
determined.

Operation:

vAddr — GPR[base] + sign_extend(offset)
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Reserved Instruction exception

VR5432 Microprocessor User’s Manual 501

Chapter 17

ROR

Rotate Right

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 1 rt rd sa ROR
000000 00001 000010
6 5 5 5 5 6

Format:
RORd, rt, sa (VR5432 format)

Description:
The contents of general-purpose register rt are rotated right by sa bits. The result
is stored in general-purpose register rd.

Operation:

32, 64T: GPR[rd] — GPR[rt]Sa_lmo ” GPR[rt]?’lmsa

Exceptions:
None

502 VR5432 Microprocessor User’s Manual

CPU Instruction Set

RORV Rotate Right Variable RO RV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 1 RORV
000000 00001 000110
6 5 5 5 5 6

Format:
RORV rd, rt, rs (VR5432 format)
Description:

The contents of general-purpose register rt are rotated right by the number of bits
specified by the low-order five bits of general-purpose register rs. Theresult is
stored in general-purpose register rd.

Operation:

32,64T: s « GPRIrsl; o

GPR[I’d] - GPR[rt]S_lmo || GPR[rt]31._s

Exceptions:

None

VR5432 Microprocessor User’s Manual 503

Chapter 17

S B Store Byte S B

31 26 25 21 20 16 15 0
SB base rt offset
101000
6 5 5 16
Format:
SB rt, offset (base) (MIPS | format)
Description:

The 16-bit offset is sigh extended and added to the contents of general-purpose
register base to form avirtual address. The least-significant byte of register rtis
stored at the memory location specified by the address.

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vVAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor ReverseEndiand)

byte — VAddr, g xor BigEndianCPU3

data — GPRItls3_gyte. o [| 0%

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)
64 T: VAddr — ((offset;s)*® || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vVAddr, DATA)

pAddr « pAddrpgize-1..3 || (PAddr, o xor ReverseEndian3)

byte — vAddr, g xor BigEndianCPU3

data — GPRIMtle3 gebyte. o I| 0%

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception

504 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SC

Store Conditional SC

31 26 25 21 20 16 15 0
SC base rt offset
111000
6 5 5 16
Format:
SC rt, offset (base) (MIPS I format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register baseto form avirtual address. The contents of general-purpose register rt
are stored at the memory location specified by the address only when theLL bitis
set. If another processor or device changes the physical address after the previous
LL instruction has been executed, or if the ERET instruction exists between the
LL and SCinstructions, the register contentsare not stored to memory, and storing
fails.

Thisinstruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities. The VR5432 does not implement these
facilities.

The success or failure of the SC operation isindicated by the contents of general-
purpose register rt after execution of the instruction. A successful SC instruction

setsthe contents of general-purpose register rt to 1; an unsuccessful SCinstruction
sets them to O.

The operation of SC is undefined when the address is different from the address
used inthelast LL instruction.

Thisinstruction is available in User mode; it is not necessary for CPO to be
enabled.

If either of the low-order two bits of the address is not zero, an Address Error
exception takes place.

If thisinstruction both fails and causes an exception, the exception takes
precedence.

VR5432 Microprocessor User’s Manual 505

Chapter 17

SC

Store Conditional
(continued) SC

Operation:

32

64

T:

VAddr — ((offset;s) || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vVAddr, DATA)
data < GPR]rtl31. g
if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] « 03| LLbit

VAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
data < GPR]rtl31. ¢
if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR(rt] — 0% LLbit

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception

506

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SCD

Store Conditional Doubleword SCD

31 26 25 21 20 16 15 0
SCD base rt offset
111100
6 5 5 16
Format:
SCD rt, offset (base) (MIPS 111 format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register baseto form avirtual address. The contents of general-purpose register rt
arestored at the memory location specified by the address only when theLL bitis
set. If another processor or device changes the target address after the previous
LL D instruction has been executed, or if the ERET instruction exists between the
LLD and SCD instructions, the register contents are not stored to memory, and
storing fails.

Thisinstruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities. The VR5432 does not implement these
facilities.

The success or failure of the SCD operation isindicated by the contents of general -
purposeregister rt after execution of theinstruction. A successful SCD instruction

sets the contents of general-purpose register rt to 1; an unsuccessful SCD
instruction sets them to 0.

The operation of SCD isundefined when the addressis different from the address
usedinthelast LLD.

Thisinstruction is available in User mode; it is not necessary for CPO to be
enabled.

If any of the low-order three bits of the addressis not zero, an Address Error
exception takes place. If thisinstruction both fails and causes an exception, the
exception takes precedence.

Thisinstruction is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed in the 32-bit User or Supervisor mode, the Reserved
Instruction exception occurs.

VR5432 Microprocessor User’s Manual 507

Chapter 17

Store Conditional Doubleword
SCD (continued) SCD

Operation:

64 T: VAddr -~ ((offset15)48|| offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
data — GPR]r]
if LLbit then
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR]rt] — 0% LLbit

Note: Inthe 32-bit Kernel mode, the high-order 32 bits areignored during
virtual address creation.

Exceptions:

TLB Miss exception

TLB Invalid exception

TLB Modified exception

Bus Error exception

Address Error exception
Reserved Instruction exception

508 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SD Store Doubleword SD

31 26 25 21 20 16 15 0
SD base rt offset
111111
6 5 5 16
Format:
SD rt, offset (base) (MIPS 111 format)
Description:

The 16-bit offset is sigh extended and added to the contents of general-purpose
register baseto form avirtual address. The contents of general-purpose register rt
are stored at the memory location specified by the address.

If any of the low-order three bits of the address are not zero, an Address Error
exception occurs.

Thisoperation isdefined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

32 T: vAddr ~ ((offset15)16 || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vVAddr, DATA)

data — GPRJrt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
64 T: VvAddr ((offset15)48 || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

data ~ GPRrt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Note: In 32-bit Kernel mode, the high-order 32 hits are ignored during
virtual address creation.

VR5432 Microprocessor User’s Manual 509

Chapter 17

SD

Store Doubleword
(continued)

Exceptions:

TLB Miss exception

TLB Invalid exception

TLB Modified exception

Bus Error exception

Address Error exception
Reserved Instruction exception

SD

510

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SDCZ Store Doubleword

from Coprocessor z

SDCz

31 26 25 21 20 16 15 0
SDCz base rt offset
1111xx*
6 5 5 16
Format:
SDCz rt, offset (base) (MIPS I1 format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form avirtual address. Register rt of coprocessor unit z sourcesa
doubleword, which the processor writes to the addressed memory location. The
stored datais defined by individual coprocessor specifications.

If any of the low-order three hits of the addressis not zero, an Address Error

exception takes place.

Thisinstruction is not valid for use with CPO.

When CPL1 is specified, the FR bit of the Status register equals 0 and the least-
significant bit inthert field isnot O, the operation of thisinstruction isundefined.
If the FR bit equals 1, both odd and even registers can be specified by rt.

VR5432 Microprocessor User’s Manual

511

Chapter 17

SDCZ Store Doubleword SDCZ

from Coprocessor z
(continued)

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
data — GPR(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
data —~ GPR(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB Miss exception

TLB Invalid exception

TLB Modified exception

Bus Error exception

Address Error exception
Coprocessor Unusable exception

Opcode Bit Encoding:

SDCZ Bit# 31 30 29 28 27 26 0
SDC1
Bit#31 30 29 28 27 26 0
SDC2
Opcode L Coprocessor Number

512 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SDL

Store Doubleword Left S D L

31 26 25 21 20 16 15 0
SDL base rt offset
101100
6 5 5 16
Format:
SDL rt, offset (base) (MIPS 111 format)
Description:

Thisinstruction is used in combination with the SDR instruction to store the
doubleword data in the register to the doubleword in the memory that isnot at the
doubleword boundary. The SDL instruction stores the higher portion of the data
to the memory, while the SDR instruction stores the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address. Of the doubleword datain the memory
where the most-significant byteis specified by the generated address, only the
lower portion of general-purpose register rt is stored to memory at the same
doubleword boundary as the target address. Depending on the address specified,
the number of bytes to be loaded changes from one to eight.

In other words, first the most-significant byte position of general-purpose register
rtis stored to the bytesin the addressed memory. If there is data of the low-order
byte that follows the same doubleword boundary, the operation to store this data
to the next byte of the memory is repeated.

Memory
(Big Endian)

address 8 | 8

Register
9 |10|11|12 13|14 |15 | gefore

address 0 | O

1203456 7]|storing Al B[C|D|E|F|G|H]| %24

SDL $24,1($0)

address8 | 8 | 9 | 10| 11|12|13| 14|15 |After

address0O |0 | A|B| Cc| D| E| F| G |storing

VR5432 Microprocessor User’s Manual 513

Chapter 17

Store Doubleword Left
SDI— (continued) SDL

The Address Error exception does not occur, even if the specified addressis not
located at the doubleword boundary. This operation is defined in the 64-bit mode
and 32-bit Kernel mode. If thisinstruction is executed in the 32-bit User or
Supervisor mode, the Reserved Instruction exception occurs.

Operation:

64 T: VvAddr ((offset15)48 || offset 15 o) + GPR[base]
(pAddr, uncached) — AddressTranslation
(vAddr, DATA)
pAddr — pAddrpgize 1 3 || (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrg; 3]l 03
endif
byte vAddr, o xor BigEndianCPU?
data — 0°° V€ || GPRIrtl3 56-snyte
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

Note: In 32-bit Kernel mode, the high-order 32 hits are ignored during
virtual address creation.

514 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SDL

Store Doubleword Left

(continued)

SDL

The relationships between the addresses given to the SDL instruction and the
result (bytes for doublewords in the memory) are shown below:

SDL
Register B C D E F G H
Memory J K L M N 0] P
BigEndianCPU =0 BigEndianCPU =1
Offset Offset
vAddr, g Destination Type| LEM|BEM Destination [Typel LEM|BEM
0 I JKLMNOA| O 0|7 ABCDEFGH| 7 0 0
1 I JKLMNAB| 1 0|6 | ABCDEF G| 6 0 1
2 I JKLMABC| 2 0|5 |1l JABCDE F | 5 0|2
3 I JKLABCD]| 3 0|4 Il JKABCDE]| 4 0 3
4 I JKABCDE| 4 013 I JKLABCD| 3 0 4
5 I JABCDEF| 5 0|2 |I JKLMABC| 2 0|5
6 | ABCDEFG| 6 0|1 I J KLMNAB | 1 0 6
7 ABCDEFGH| 7 010 I JKLMNOA]| O 0 7
Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte accesswithin a double-
word)
Offset: pAddr, o Output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)
Exceptions:

TLB Miss exception

TLB Invalid exception

TLB Modified exception

Bus Error exception

Reserved Instruction exception

VR5432 Microprocessor User’s Manual

515

Chapter 17

SDR

Store Doubleword Right SDR

31

26 25 21 20 16 15 0

SDR

101101

base rt offset

6

Format:

SDR rt, offset (base) (MIPS 11 format)

Description:

Thisinstruction is used in combination with the SDL instruction to store the
doubleword data in the register to the word datain the memory that is not at the
doubleword boundary. The SDL instruction stores the higher portion of the data
to the memory, while the SDR instruction stores the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address. Of the doubleword datain the memory
where the least-significant byte is specified by the generated address, only the
lower portion of general-purpose register rt is stored to memory at the same
doubleword boundary as the target address. Depending on the address specified,
the number of bytes to be loaded changes from 1 to 8.

In other words, first the least-significant byte position of general - purpose register
rt isstored to the bytes in the addressed memory. If there is data of the high-order
byte that follows the same doubleword boundary, the operation to store this data
to the next byte of the memory is repeated.

Memory

(Big Endian) Register

address 8

9110|11/12]13|14|15 Before

address 0

|AlB|c|p|E|F|G|H] $24

1|/2|3|a|5]|6| 7| storing

SDR $24,10($0)

address 8

(e¢]

9 |10|11]12|13 /14|15 After

address 0

storing

516

VR5432 Microprocessor User’s Manual

CPU Instruction Set

Store Doubleword Right
SDR - SDR

(continued)

The Address Error exception does not occur, even if the specified addressis not
located at the doubleword boundary. This operation is defined in the 64-bit mode
and 32-bit Kernel mode. If thisinstruction is executed in the 32-bit User or
Supervisor mode, the Reserved Instruction exception occurs.

Operation:

64 T: VAddr — ((offset;5)*®|| offset ;5 o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vVAddr, DATA
pAddr « pAddrps;ze — 1.3 || (pPAddr,_ o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr pAddrpgize 1.3 1| 0°
endif
byte — vAddr, o xor BlgEndlanCPU3
data — GPR[rt]g3_gpyte || 05V
StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr,
DATA)

Note: In 32-bit Kernel mode, the high-order 32 hits are ignored during
virtual address creation.

VR5432 Microprocessor User’s Manual 517

Chapter 17

Store Doubleword Right
SDR (continued) SDR

The relationships between the addresses given to the SDR instruction and the
result (bytes for doublewords in the memory) are shown below:

SDR
Register | A B C D E F G H
Memory I J K L M N O P
BigEndianCPU =0 BigEndianCPU =1
Offset Offset
vAddr, o Destination |Type |LEMBEM Destination Type|LEMBEM
0 ABCDEFGH| 7 0|0 HJ KLMNOP| O 710
1 BCDEFGHP| 6 1|0 [GHKL MNOP| 1 6 | O
2 CDEFGHOP| 5 210 FGHL MNOP| 2 5 0
3 DEFGHNOP| 4 3|0 |[EFGHMNOP| 3 4 |0
4 EFGHMNOP| 3 4|0 DEFGHNOP| 4 3|0
5 FGHLMNOP| 2 510 CDEFGHOP| 5 2 0
6 GHKLMNOP| 1 6 |0 |[BCDEFGHP| 6 110
7 HJKLMNOP| O 7/0 |[ABCDEFGH| 7 0| O
Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte accesswithin a double-
word)
Offset: pAddr, o Output to memory
LEM Little-endian memory (BigEndianMem = Q)
BEM Big-endian memory (BigEndianMem = 1)
Exceptions:

TLB Miss exception

TLB Invalid exception

TLB Modified exception

Bus Error exception

Reserved Instruction exception

518 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SH

Store Halfword S H

31 26 25 21 20 16 15 0
SH base rt offset
101001
6 5 5 16
Format:
SH rt, offset (base) (MIPS | format)
Description:
The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form avirtual address. The least-significant halfword of register
rt is stored in the memory specified by the address.
If the least-significant bit of the addressis not zero, an Address Error exception
OCCuUrs.
Operation:
32 T: VAddr — ((offset;s)'® || offset;s) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr « pAddrpgize-1..3 || (pPAddr, o xor (ReverseEndian2 || 0))
byte — vAddr, g xor (BigEndianCPU? || 0)
data — GPRIrtle3 g+byte. o Il 0%
StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)
64 T: VAddr — ((offset;5)* || offset;s) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr « pAddrpgize-1..3 || (pPAddr, o xor (ReverseEndian2 || 0))
byte — vAddr, g xor (BigEndianCPU? || 0)
data — GPRIrtlgz gy o Il 0%

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

VR5432 Microprocessor User’s Manual 519

Chapter 17

S H Store Halfword S H

(continued)

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception

520 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SLL

Shift Left Logical

SLL

None

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SLL
000000 00000 000000
6 5 5 5 5 6
Format:
SLLrd, rt,sa (MIPS | format)
Description:
The contents of general-purpose register rt are shifted left by sa bits, inserting
zerosinto the low-order bits. Theresult is stored in general-purpose registerrd. In
the 64-bit mode, the value resulting from sign-extending the shifted 32-bit value
isstored asaresult. If the shift valueis 0, the low-order 32 bits of the 64-bit value
aresign extended. Thisinstruction can generate a 64-bit value that sign-extends a
32-hit value.
Operation:
32 T: GPR[rd] « GPR[rt]3_sa o || 052
64 T: s~ 0]lsa
temp — GPRIrt]31.5 o || 0°
GPRI[rd] « (tempz;)3? || temp
Exceptions:

Caution: If the shift value of thisinstruction is0, the assembler may treat
thisinstruction asan NOP. When using thisinstruction for sign
extension, check the specifications of the assembler.

VR5432 Microprocessor User’s Manual

521

Chapter 17

SL LV Shift Left Logical Variable SL LV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLLV
000000 00000 000100
6 5 5 5 5 6
Format:
SLLV rd, rt, rs (MIPS | format)
Description:

The contents of general-purpose register rt are shifted left the number of bits
specified by the low-order five bits of general-purpose register rs, inserting zeros
into the low-order bits. The result is stored in general-purpose register rd. In the
64-bit mode, the value resulting from sign-extending the shifted 32-bit valueis
stored as aresult. If the shift valueis O, the low-order 32 bits of the 64-bit value
aresign extended. Thisinstruction can generate a 64-bit value that sign-extendsa
32-hit vaue.

Operation:

32 T: s « GPRJrsls o
GPR[rd] ~ GPRIrt]31-s).0 Il 0°
64 T: s « 0| GPRIrsls. o
temp — GPR[rt]31-5) o || 0°
GPRJrd] (tempgl)32 || temp

Exceptions:
None
Caution: If the shift value of thisinstruction is 0, the assembler may treat

thisinstruction asan NOP. When using thisinstruction for sign
extension, check the specifications of the assembler.

522 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SLT

Set On Less Than

SLT

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format:
SLTrd, rs, rt (MIPS | format)
Description:
The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs. Interpreting these values as signed integers, if the
contents of general-purpose register rs are less than the contents of general-
purposeregister rt, oneisstored in the general-purpose register rd; otherwise, zero
isstored in general-purpose register rd.
An Integer Overflow exception never occurs. The comparisonisvaid even if the
subtraction used during the comparison overflows.
Operation:
32 T. if GPR[rs] < GPR]|rt] then
GPR[rd] — 0%/ 1
else
GPR[rd] ~ 0%?
endif
64 T:. if GPR[rs] < GPR|rt] then
GPR[rd] — 053] 1
else
GPR[rd] — 0%
endif
Exceptions:
None

VR5432 Microprocessor User’s Manual

523

Chapter 17

SLTI

Set On Less Than Immediate

SLTI

31 26 25 21 20 16 15 0
SLTI rs rt immediate
001010
6 5 5 16
Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign extended and subtracted from the contents of
general-purpose register rs. Interpreting these values as signed integers, if rs
contents are less than the sign-extended immediate, one is stored in general-
purpose register rt; otherwise, zero is stored in the general-purpose register rt.

(MIPS | format)

An Integer Overflow exception never occurs. The comparisonisvaid even if the

subtraction overflows.

Operation:

32 T:

if GPR[rs] < (immediate;5)® || immediate;5 g then

GPR[rt] —« 0311

else
GPR]rt] — 0%
endif
64 T: if GPR[rs] < (immediate;5)*® || immediate;5 o then
GPR[r] — 0% 1
else
GPR[r] — 0%
endif
Exceptions:
None

524

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SLTIU Set On Less Than SLTIU

Immediate Unsigned

31 26 25 21 20 16 15 0
SLTIU rs rt immediate
001011
6 5 5 16
Format:
SLTIU rt, rs, immediate (MIPS | format)
Description:

The 16-bit immediate is sign extended and subtracted from the contents of
general-purpose register rs. Interpreting these values as unsigned integers, if rs
contents are less than the sign-extended immediate, oneis stored in the general-
purpose register rt; otherwise zero is stored in the general-purpose register rt.

An Integer Overflow exception never occurs. The comparisonisvaid even if the
subtraction overflows.

Operation:

32 T: if(0]] GPR[rs]) < (immediate15)16 || immediate 5 g then
GPRIrt] — 0311
else
GPR]rt] — 0%
endif

64 T: if(0] GPRrs]) < (immediate;5)*® || immediate;s o then
GPR[rt] — 0% |1
else
GPR[rt] — 0%
endif

Exceptions:

None

VR5432 Microprocessor User’s Manual 525

Chapter 17

SLTU

Set On Less Than Unsigned SLTU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLTU
000000 00000 101011
6 5 5 5 5 6

Format:
SLTUrd, rs, rt (MIPS | format)
Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs. Interpreting these values as unsigned integers, if the
contents of general-purpose register rs are less than the contents of general-
purpose register rt, oneis stored in general-purpose register rd; otherwise, zerois
stored in the general -purpose register rd.

An Integer Overflow exception never occurs. The comparisonisvalid evenif the
subtraction overflows.

Operation:
32 T: if (0] GPR[rs]) <0 || GPR[rt] then
GPR[rd] — 0% 1
else
GPR[rd] — 0%?
endif
64 T. if (0] GPR[rs]) <0 || GPRI[rt] then
GPR[rd] — 053] 1
else
GPR[rd] — 0%
endif
Exceptions:
None

526

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SRA

Shift Right Arithmetic

SRA

31 26 25 21 20 16 15 11 10 6 0
SPECIAL 0 rt rd sa SRA
000000 00000 000011
6 5 5 5 5 6

Format:
SRArd, rt, sa (MIPS | format)
Description:

The contents of general-purpose register rt are shifted right by sa bits, inserting
signed bitsinto the high-order bits. Theresult is stored in general-purpose register
rd. In 64-bit mode, the sign-extended 32-bit value is stored as the result.

GPRIrd] — (GPRIrt]31)** || GPRIrt] 31..sa

Operation:
32 T:
64 T: s~0]|sa
temp «— (GPRIrt]31)° || GPR[rt] 31 s
GPRJ[rd] — (tempz;)*? || temp
Exceptions:
None

VR5432 Microprocessor

User’'s Manual

527

Chapter 17

Shift Right
SRAV Arithmetic Variable SRAV
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6
Format:
SRAV rd, rt, rs (MIPS | format)

Description:

The contents of general-purpose register rt are shifted right by the number of bits
specified by thelow-order five bits of general-purpose register rs, sign-extending
the high-order bits. Theresult is stored in the general-purpose register rd. In 64-
bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

32 T: S « GPRIrsls o
GPR[rd] « (GPRIrt]31)® || GPRIrt]3;. s

64 T: s« GPR[rsls o
temp — (GPR(rt]31)° || GPRIrtl31. s
GPR[rd] « (tempz;)%? || temp

Exceptions:

None

528 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SRL Shift Right Logical SRL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRL
0000O0O0 00000 000010
6 5 5 5 5 6

Format:
SRL rd, rt, sa (MIPS | format)
Description:

The contents of general-purpose register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is stored in general-purpose register rd.
In 64-bit mode, the sign-extended 32-bit valueis stored as the result.

Operation:

32 T GPR[rd] « 0% || GPR[rt]31 sa

64 T: s<0sa
temp « 0°|| GPR{rt]3;. ¢
GPRI[rd] < (tempg;)3? || temp

Exceptions:

None

VR5432 Microprocessor User’s Manual 529

Chapter 17

SRLV

Shift Right Logical Variable SRLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRLV
oooo00O0 ooo00O0 000110
6 5 5 5 5 6

Format:
SRLV rd, rt, rs (MIPS 1 format)
Description:

The contents of general-purpose register rt are shifted right by the number of bits
specified by the low-order five bits of general-purpose register rs, inserting zeros
into the high-order bits. The result is stored in general-purpose register rd. In 64-
bit mode, the sign-extended 32-bit value is stored as the result.

Operation:
32 T: s« GPR[rsly ¢

GPR[rd] < 0°|| GPR{rt]3;
64 T: s« GPR[rsly o

temp — 0% || GPR[rt]3;

GPR][rd] ~ ('[empgl)32 || temp
Exceptions:

None

530

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SU B Subtract SU B
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SuUB
000000 00000 100010
6 5 5 5 5 6
Format:
SUB rd, rs, rt (MIPS | format)
Description:
The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs. The result is stored into general-purpose register rd.
In 64-bit mode, the sign-extended 32-bit valueis stored as the result.
An Integer Overflow exception occursif the carries-out of bits 30 and 31 differ (a
two’' s-complement overflow). The destination register rd isnot modified when an
Integer Overflow exception occurs.
Operation:
32 T: GPR[rd] « GPR[rs] — GPR]rt]
64 T: temp « GPRJ[rs]— GPR[r]
GPRIrd] (tempsy)*” || tempay._o
Exceptions:

Integer Overflow exception

VR5432 Microprocessor User’s Manual

531

Chapter 17

SU B U Subtract Unsigned SU B U

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUBU
000000 00000 100011

6 5 5 5 5 6
Format:
SUBU rd, rs, rt (MIPS | format)
Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs. The result is stored in general-purpose register rd. In
64-bit mode, the sign-extended 32-hit value is stored as the result.

Theonly difference between thisinstruction and the SUB instructionisthat SUBU
never causes an Integer Overflow Exception.

Operation:

32 T: GPR[rd] - GPR[rs] - GPR[r]

64 T: temp ~ GPR[rs] - GPRJr]
GPR[rd] « (tempg;)*? || tempz;_o

Exceptions:

None

532 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SW Store Word SW
31 26 25 21 20 16 15 0
SW base rt offset
101011
6 5 5 16
Format:

SW rt, offset (base)

Description:

Operati

(MIPS | format)

The 16-bit offset is sigh extended and added to the contents of general-purpose
register baseto form avirtual address. The contents of general-purpose register rt
are stored in the memory location specified by the address. If either of the low-
order two bits of the addressis not zero, an Address Error exception occurs.

on:

64

32 T:

T: VvAddr « ((offsetlg,)48 || offset;s. o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vVAddr, DATA)
data « GPR[I’t]31___0
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

vAddr — ((offset;5)!° || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)
data « GPR[rt]z1. o

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Excepti

ons:

TLB Miss exception

TLB Invalid exception

TLB Modified exception
Bus Error exception
Address Error exception

VR5432 Microprocessor User’s Manual

533

Chapter 17

SWCZ Store Word from Coprocessor z SWCZ
31 26 25 21 20 16 15 0
SWCz base rt offset
1110xx*
6 5 5 16
Format:
SWCz rt, offset (base) (MIPS | format)
Description:
The 16-bit offset is sigh extended and added to the contents of general-purpose
register baseto form avirtual address. Coprocessor register rt of the CPz isstored
in the addressed memory. The data to be stored is defined by individual
coprocessor specifications. Thisinstruction isnot valid for use with CPO.
If either of the low-order two bits of the address is not zero, an Address Error
exception occurs.
Operation:
32 T: vAddr ((offset;5)'8 Il offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize-1._3 || (PAddr,_ o xor (ReverseEndian || 02))
byte — vAddr, o xor (BigEndianCPU || 0?)
data — COPzSW (byte, rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
64 T: vAddr ((offset15)48 || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize-1._3 || (PAddr, o xor (ReverseEndian || 02))
byte — vAddr, o xor (BigEndianCPU || 0?)

data — COPzSW (byte,rt)

StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

534

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SWC Store Word from Coprocessor z
Z (continued)

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception
Coprocessor Unusable exception

Opcode Bit Encoding:

SWCz

SWCZ Bit#31 30 29 28 27 26

SWC1

Bit#31 30 29 28

27

26

SWC2

Opcode

L Coprocessor Number

VR5432 Microprocessor User’s Manual

535

Chapter 17

SWL

Store Word Left SWL

31

26 25 21 20 16 15 0

SWL

101010

base rt offset

6

Format:

SWL rt, offset (base) (MIPS | format)

Description:

Thisinstruction is used in combination with the SWR instruction to store aword
in aregister to aword in memory that is not at the word boundary. The SWL
instruction stores the higher portion of the datato memory, while the SWR
instruction stores the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate avirtual address. Of the word data in the memory where
the most-significant byte is specified by the generated address, only the higher
portion of general-purpose register rt is stored to memory at the same word
boundary as the target address.

Depending on the address specified, the number of bytes to be stored changes
from 1to 4.

In other words, first the most-significant byte position of general-purpose register
rt is stored to the bytesin the addressed memory. If there is data of the low-order
byte that follows the same word boundary, the operation to store this data to the

next byte of the memory is repeated.

No Address Error exceptions occur when the specified addressis not |ocated at the
word boundary.

address 4
address 0

address 4
address 0

Memory

(Big Endian) Register

5 6

Before ‘ A\ B‘ C‘

storing D ‘ $24

1

o|h~| |O|r

O~ |w|~

2
5 6
A B

After | SWL $24,1(30)
storing

536

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SWL Store Word Left SWL

(continued)

Operation:

32 T: vAddr —~ ((offset15)16 || offset 15 o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze 1 3 || (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrz; » || 07
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigEndianCPU) = 0 then
data — 0% || 0**¥"Y'® || GPRIMt]31._24.g:byte
else
data — 0?*¥"V'® || GPRIMtla1. 24-8+byte I| 0%
endif
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*® || offset ;5 o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrg; s || (PAddr, g xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrg; > || 0%
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigEndianCPU) = 0 then
data — 0% || 0**¥"'® || GPRIMt]31._24.gbyte
else
data « 0248V || GPR[rt]3; _24.gebyte I 032
endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

VR5432 Microprocessor User’s Manual 537

Chapter 17

SWL

Store Word Left
(continued)

SWL

The relationshi ps between the contents given to the SWL instruction and the result
(bytes for wordsin the memory) are shown below:

SWL
Register A B C D E F G H
Memory I J K L M N o P
BigEndianCPU =0 BigEndianCPU =1
Offset Offset
vAddr, o Destination |Type |LEM|BEM Destination Type|LEMBEM
0 I JKLMNOE| O 0|7 |[EFGHMNOP| 3 4 |0
1 I JKLMNEF| 1 0|6 || EFGMNOP| 2 4 |1
2 I JKLMEFG| 2 0|5 |1l JEFMNOP| 1 4 | 2
3 I JKLEFGH| 3 0|4 |[I J KEMNOP| O 4 | 3
4 I JKEMNOP| O 4 |3 |I J KLEFGH| 3 0| 4
5 I JEFMNOP| 1 412 |I J KLMEF G| 2 0| 5
6 | EFGMNOP| 2 411 |1 J KLMNEF| 1 0| 6
7 EFGHMNOP| 3 4 /0 |I J KLMNOE| O 0| 7
Note: Type: Accesstype output to memory (refer to Table 16-3 on
page 324 for information on byte accesswithin a double-
word)
Offset: pAddr, o Output to memory
LEM: Little-endian memory (BigEndianMem = 0)
BEM: Big-endian memory (BigendianMem = 1)
538 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SWL Store Word Left SWL

(continued)

Exceptions:

TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual 539

Chapter 17

SWR

Store Word Right SWR

31 26 25 21 20 16 15 0
SWR base rt offset
101110
6 5 5 16
Format:
SWR rt, offset (base) (MIPS | format)
Description:

Thisinstruction is used in combination with the SWL instruction to store word
datain aregister to aword in memory that is not at the word boundary. The SWL
instruction stores the higher portion of the datato memory, while the SWR
instruction stores the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address. Of the word datain the memory where
the least-significant byte is specified by the generated address, only the lower
portion of general-purpose register rt is stored to memory at the same word
boundary asthetarget address. Depending on the address specified, the number of
bytes to be stored changes from 1 to 4.

In other words, first the least-significant byte position of general -purpose register
rtisstored to the bytes in the addressed memory. If there is data of the high-order
byte that follows the same word boundary, the operation to store this data to the
next byte of the memory is repeated.

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SWR

Store Word Right

(Continued)

SWR

No Address Error exceptions occur when the specified addressis not located at the

word boundary.
Memory
(Big Endian) Register
address 4 4 5 6 Before
; A B C D
address0 | 0 1 2 storing | | | | | $24
SWR $24,4($0)
address 4 D 5 6 After
address O 0 1 2 storing
VR5432 Microprocessor User’s Manual 541

Chapter 17

SWR

Store Word Right
(continued)

Operation:

SWR

32

64

T: vAddr — ((offset;5)® || offset ;5 o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vVAddr, DATA)
pAddr « pAddrpgize — 1.3 || (PAddr, o xor ReverseEndian3)
BigEndianMem = 0 then
pAddr — pAddrz; » || 07
endif
byte — vAddr, o xor BigEndianCPU?
if (vAddr, xor BigeEndianCPU) = 0 then
data « 0% || GPRIrt]3;-gbyte.. o [| 0¥
else
data « GPRIrt]31-gvyte...0 I
endif

08*byte ” 032

Storememory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

T: vAddr « ((offset15)48 || offset 15 o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vVAddr, DATA)
pAddr « pAddresize — 1.3 || (PAddr, g xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrz; » || 07
endif
byte — vAddr, o xor BigEndianCPU?
if (vAddr, xor BigeEndianCPU) = 0 then
data — 0% || GPRItla1.g+byte. .0 Il 0%
else
data — GPRIt]31.gyte. 0 || 0% || 03
endif

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

542

VR5432 Microprocessor User’s Manual

CPU Instruction Set

SWR Store Word Right SWR

(continued)

The relationshi ps between the register contents given to the SWR instruction and
the result (bytes for words in the memory) are shown below:

SWR
Register A B C D E F G H

Memory I J K L M N O P
BigEndianCPU =0 BigEndianCPU =1

Offse Offset
VAddry o Destination TyPe [EMBEM Destination Tyrel | EMBEM
0 I JKLEFGH]| 3 0|4 HJ KLMNOP]|O 7 0
1 I JKLFGHP]| 2 114 GHKLMNOP| 1 6 0
2 I JKLGHOP | 1 2 |4 FGHL MNOP| 2 5 0
3 I JKLHNOP| O 314 EFGHMNOP]| 3 4 0
4 EFGHMNOP| 3 4 |0 I JKLHNOP]| O 3 4
5 FGHLMNOP | 2 510 I J KLGHOP | 1 2 4
6 GHKLMNOP | 1 6 |0 I J KLFGHP]| 2 1 4
7 HJKLMNOP| O 710 I J KLEFGH]| 3 0 4

Note: Type: Accesstype output to memory (refer to Table 16-3 on
page 324 for information on byte accesswithin a double-
word)

Offset: pAddr, o Output to memory
LEM: Little-endian memory (BigEndianMem = 0)
BEM: Big-endian memory (BigEndianMem = 1)

VR5432 Microprocessor User’s Manual 543

Chapter 17

SWR Store Word Right SWR

(continued)

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

544 VR5432 Microprocessor User’s Manual

CPU Instruction Set

SYNC Synchronize SYNC

31 26 25 1110 6 5 0
SPECIAL 0 stype SYNC
000000 00000000000OO0COOO 001111
6 15 5 6

Format:
SYNC (MIPS I format)
Description:

Thisinstruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities. The VR5432 does not implement these
facilities. Thisinstruction executes as an NOP on the VR5432.

Operation:

32,64 T: SyncOperation ()

Exceptions:
None

VR5432 Microprocessor User’s Manual 545

Chapter 17

SYSCALL System Call SYSCALL

31 26 25 6 5 0
SPECIAL code SYSCALL
000000 001100
6 20 6
Format:
SYSCALL (MIPS | format)
Description:
A System Call exception occurs after thisinstruction is executed, unconditionally
transferring control to the exception handler.
The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.
Operation:
32,64T: SystemCallException
Exceptions:
System Call exception
546 VR5432 Microprocessor User’s Manual

CPU Instruction Set

TEQ

Trap If Equal T EQ

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TEQ
000000 110100

6 5 5 10 6
Format:
TEQrTrs, rt (MIPS I format)
Description:

The contents of general-purpose register rt are compared with those of general-
purpose register rs. If the contents of general-purpose register rs are equal to the
contents of general-purpose register rt, a Trap exception occurs.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:
32,64 T: if GPR[rs] = GPRJrt] then
TrapException
endif
Exceptions:
Trap exception

VR5432 Microprocessor User’s Manual 547

Chapter 17

TEQI Trap If Equal Immediate TEQI

31 26 25 21 20 16 15 0
REGIMM rs TEQI immediate
000001 01100
6 5 5 16
Format:
TEQI rs, immediate (MIPS 11 format)
Description:

The 16-bit immediateis sign extended and compared with the contents of general-
purpose register rs. If the contents of general-purpose register rs are equal to the
sign-extended immediate, a Trap exception occurs.

Operation:

32 T: ifGPR[rs] = (immediate;5)'® || immediate;s o then
TrapException
endif

64 T: if GPR[rs] = (immediate;5)*® || immediate;s o then
TrapException
endif

Exceptions:
Trap exception

548 VR5432 Microprocessor User’s Manual

CPU Instruction Set

TGE

Trap If Greater Than or Equal

TGE

31 26 25 21 20 16 15 5 0
SPECIAL rs rt code TGE
000000 110000
6 5 5 10 6

Format:
TGE s, rt (MIPS 11 format)
Description:

The contents of general-purpose register rt are compared with the contents of
general-purpose register rs. Interpreting both register contents as signed integers,
if the contents of general-purpose register rs are greater than or equal to the
contents of general-purpose register rt, a Trap exception occurs.

The codefield is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the

contents of the memory word containing the instruction.

Operation:

32,64 T: if GPR[rs] = GPRJrt] then
TrapException
endif

Exceptions:

Trap exception

VR5432 Microprocessor User’s Manual

549

Chapter 17

TGEI

Trap If Greater Than or Equal Immediate

TGEI

31 26 25 21 20 16 15 0
REGIMM rs TGEI immediate
000001 01000
6 5 5 16
Format:

TGEI rs, immediate

Description:

(MIPS 11 format)

The 16-bit immediateis sign extended and compared with the contents of general-
purpose register rs. Interpreting both values as signed integers, if the contents of
general-purpose register rs are greater than or equal to the sign-extended
immediate, a Trap exception occurs.

Operation:
32 T: if GPR[rs] = (immediatelg,)16 [| immediate s g then
TrapException
endif
64 T: if GPR[rs] = (immediate;5)* || immediate;5_ then
TrapException
endif
Exceptions:
Trap exception

550

VR5432 Microprocessor User’s Manual

CPU Instruction Set

Trap If Greater Than or Equal
TGEIU Immediate Unsigned TGEIU

31 26 25 21 20 16 15 0
REGIMM rs TGEIU immediate
000001 01001
6 5 5 16
Format:
TGEIU rs, immediate (MIPS 11 format)
Description:

The 16-bit immediateis sign extended and compared with the contents of general-
purpose register rs. Interpreting both values as unsigned integers, if the contents
of general-purpose register rs are greater than or equal to the sign-extended
immediate, a Trap exception occurs.

Operation:

32 T: if (0]l GPRIrs]) = (0 || (immediatelg,)16 [| immediate 5) then
TrapException
endif

64 T: if (0] GPRrs]) = (0 || immediate;5)*® || immediate;5_) then
TrapException
endif

Exceptions:
Trap exception

VR5432 Microprocessor User’s Manual 551

Chapter 17

TG EU Trap If Greater Than or Equal Unsigned TG EU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TGEU
000000 110001
6 5 5 10 6

Format:
TGEU rs, rt (MIPS 11 format)
Description:

The contents of general-purpose register rt are compared with the contents of
general-purpose register rs. Interpreting both values as unsigned integers, if the
contents of general-purpose register rs are greater than or equal to the contents of
general-purpose register rt, a Trap exception occurs.

The codefield is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

32,64 T. if(0|| GPRIrs]) = (0 || GPRIr]) then

TrapException
endif
Exceptions:
Trap exception

552 VR5432 Microprocessor User’s Manual

CPU Instruction Set

TLBP

Probe TLB for Matching Entry

TLBP

31 26 2524 65 0
COPO (6{0) 0 TLBP
010000 1 000o0O0O0OO0OOOOOOOOOOOO 001000
6 1 19 6
Format:
TLBP (MIPS| format)
Description:

Searches for a TLB entry that matches with the contents of the EntryHI register
and stores an index for that TLB entry in the Index register. If aTLB entry that
matches is not found, sets the most-significant bit of the Index register.

Memory references by the instruction immediately after aTLBPinstruction, or in
cases in which more than one TLB entry is ahit, are undefined.

Operation:

32 T:

64 T:

Index — 1 || 0%° || Undefined®
foriin 0... TLBEntries — 1
if (TLB[i]gs...77 = EntryHig; 13y and (TLB(i]7 or
(TLB[i]71m64 = EntryH|70)) then
Index — 0% |i5_g
endif
endfor

Index — 1 || 0%° || Undefined®
foriin 0...TLBEntries — 1
if (TLB[]167.. 141 and not (0™ || TLBIil>16...205))
= (EntryHisg_ 13 and not (0 || TLB[i]y16. 205)) and
(TLBIi]140 Or (TLBI[i]135...108 = EntryHi7_ o)) then
Index — 0% ||is o
endif
endfor

Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor

User’'s Manual

553

Chapter 17

TL B R Read Indexed TLB Entry TL B R

31 26 2524 65 0
COPO (6{0) 0 TLBR
010000 1 0000O0000OOOOOOOOOOOO 000001
6 1 19 6
Format:
TLBR (MIPS | format)
Description:

The EntryHi and EntryL o registers are loaded with the contents of the TLB entry
selected by the contents of the Index register. The G bit (which controls ASID
matching) read from the TLB iswritten into both of the EntryL o0 and EntryL ol
registers.

The operationisinvalid (and the results are undefined) if the contents of the Index
register are greater than the number of TLB entriesin the processor.

Operation:

32 T: PageMask « TLB[Indexs gl127..96
EntryHi « TLB[Indexs _olos. g4 and not TLB[Indexs gli27. .96
EntryLol ~TLB[Indexs. oles..33ll TLB[Indexs_ol7e
EntryLoO « TLB[Indexs ol31. 1]l TLB[Indexs glzg

64 T: PageMask « TLB[Indexs gloss. 192
EntryHl — TLB[lndeX5m0]191m128 and not TLB[lndEX5lllo]255m192
EntryLol —TLB[Indexs_ol127..65 || TLB[Indexs_o]140
EntryLoO « TLB[Indexs_ oles...1 || TLB[IndeXs_ oli40

Exceptions:

Coprocessor Unusable exception

554 VR5432 Microprocessor User’s Manual

CPU Instruction Set

TL BWI Write Indexed TLB Entry TL BWI

31 26 2524 65 0
COPO (6{0) 0 TLBWI
010000 1 0000O0000OOOOOOOOOOOO 000010
6 1 19 6
Format:
TLBWI (MIPS| format)
Description:

The TLB entry selected by the Index register is loaded with the contents of the
EntryHi and EntryL o registers. The G hit of the TLB iswritten with the logical
AND of the G hitsin the EntryL o0 and EntryL ol registers.

The operation isinvalid (and the results are undefined) if the value in the Index
register is greater than the number of TLB entriesin the processor.

Operation:

32,64 T: TLB[Indexs g] «
PageMask || (EntryHi and not PageMask) || EntryLo1l || EntryLoO

Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual 555

Chapter 17

TLBWR

Write Random TLB Entry TL BWR

31 26 2524 65 0
COPO CO 0 TLBWR
010000 1 00000000000O00O00O0O0OOOOO 000110

6 1 19

Format:
TLBWR (MIPS| format)

Description:
The TLB entry selected by the Random register isloaded with the contents of the
EntryHi and EntryL o registers. The G hit of the TLB iswritten with the logical
AND of the G hitsin the EntryL o0 and EntryL ol registers.

Operation:

32,64 T: TLB[Randomsg g] «
PageMask || (EntryHi and not PageMask) || EntryLol || EntryLoO

Exceptions:

Coprocessor Unusable exception

556

VR5432 Microprocessor User’s Manual

CPU Instruction Set

TLT

Trap If Less Than TLT

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TLT
000000 110010
6 5 5 10 6
Format:
TLTrs, rt (MIPS 11 format)
Description:

The contents of general-purpose register rt are compared with general -purpose
register rs. Interpreting both values as signed integers, if the contents of general-
purpose register rsareless than the contents of general-purposeregister rt, aTrap
exception occurs.

The codefield is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

32,64

T:. if GPR[rs] < GPRJrt] then
TrapException
endif

Exceptions:

Trap exception

VR5432 Microprocessor User’s Manual 557

Chapter 17

TLTI

Trap If Less Than Immediate

TLTI

31 26 25 21 20 16 15 0
REGIMM rs TLTI immediate
000001 01010
6 5 5 16
Format:

TLTI rs, immediate

Description:

(MIPS 11 format)

The 16-bit immediateis sign extended and compared with the contents of general-
purpose register rs. Interpreting both values as signed integers, if the contents of
general-purpose register rs are less than the sign-extended immediate, a Trap
exception occurs.

Operation:
32 T: if GPRJrs] < (immediatelg,)16 [| immediate s g then
TrapException
endif
64 T: if GPRJ[rs] < (immediate;5)* || immediate;s o then
TrapException
endif
Exceptions:
Trap exception

558

VR5432 Microprocessor User’s Manual

CPU Instruction Set

TLTI U Trap If Less Than Immediate Unsigned TLTl U

31 26 25 21 20 16 15 0
REGIMM rs TLTIU immediate
000001 01011
6 5 5 16
Format:
TLTIU rs, immediate (MIPS I format)
Description:

The 16-bit immediateis sign extended and compared with the contents of general-
purpose register rs. Interpreting both values as unsigned integers, if the contents
of general-purpose register rs are less than the sign-extended immediate, a Trap
exception occurs.

Operation:
32 T: if (0 || GPR]rs]) < (0 || (immediate;5)*° || immediate;5_) then
TrapException
endif
64 T: if (0| GPR[rs]) < (0| (immediatelg,)48 [| immediate 5 _g) then
TrapException
endif
Exceptions:
Trap exception

VR5432 Microprocessor User’s Manual 559

Chapter 17

TLTU

Trap If Less Than Unsigned

TLTU

31 26 25 21 20 16 15 0
SPECIAL rs rt code TLTU
00000O 110011
6 5 5 10 6

Format:
TLTUrs, rt (MIPS 11 format)
Description:

The contents of general-purpose register rt are compared with general -purpose
register rs. Interpreting both values as unsigned integers, if the contents of
general-purpose register rs are less than the contents of general-purpose register

rt, a Trap exception occurs.

The codefield is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the

contents of the memory word containing the instruction.

Operation:

32,64T:

if (0 || GPR]rs]) < (0 || GPRI[rt]) then

TrapException

endif

Exceptions:

Trap exception

560

VR5432 Microprocessor User’s Manual

CPU Instruction Set

TNE

Trap If Not Equal TN E

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TNE
000000 110110
6 5 5 10 6
Format:
TNE s, rt (MIPS 11 format)
Description:

The contents of general-purpose register rt are compared with those of general-
purpose register rs. If the contents of general-purpose register rs are not equal to
the contents of general-purpose register rt, a Trap exception occurs.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

32,64T: if GPR[rs] # GPR][rt] then

TrapException
endif

Exceptions:

Trap exception

VR5432 Microprocessor User’s Manual 561

Chapter 17

TNEI

Trap If Not Equal Immediate

TNEI

31 26 25 21 20 16 15 0
REGIMM rs TNEI immediate
000001 01110
6 5 5 16
Format:
TNEI rs, immediate (MIPS 11 format)
Description:

The 16-bit immediateis sign extended and compared with the contents of general-
purpose register rs. If the contents of general-purpose register rs are not equal to
the sign-extended immediate, a Trap exception occurs.

Operation:
32 T: if GPR[rs] # (immediatelg—,)16 || immediate s o then
TrapException
endif
64 T: if GPR]rs] # (immediate;5)*® || immediate;s o then
TrapException
endif
Exceptions:
Trap exception

VR5432 Microprocessor User’s Manual

CPU Instruction Set

XOR Exclusive OR XOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 XOR
000000 00000 100110
6 5 5 5 5 6
Format:
XORd, rs, rt (MIPS | format)
Description:

The contents of general-purpose register rs are bitwise ORed with the contents of
general-purpose register rt. The result is stored into general-purpose register rd.

Operation:

32,64T: GPR[rd] — GPR[rs] xor GPR][rt]

Exceptions:

None

VR5432 Microprocessor User’s Manual 563

Chapter 17

XORI Exclusive OR Immediate XORI

31 26 25 21 20 16 15 0
XORI rs rt immediate
001110
6 5 5 16
Format:
XORI rt, rs, immediate (MIPS | format)
Description:

The 16-hit zero-extended immediate is bitwise ORed with the contents of general-
purpose register rs. The result is stored in general-purpose register rt.

Operation:

32 T: GPRIr] « GPR]rs] xor (0'® || immediate)
64 T GPRIrt] — GPR[rs] xor (0*® || immediate)

Exceptions:

None

564 VR5432 Microprocessor User’s Manual

CPU Instruction Set

17.5 CPU Instruction Opcode Bit Encoding
Figure 17-1 and Figure 17-2 list the VR5432 opcode bit encoding.

28...26 Opcode
31...29 0 1 2 3 4 5 6 7
0 SPECIAL | REGIMM J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COPO COP1 COP2 * BEQL BNEL BLEZL BGTZL
3 DADDIe |DADDIUe| LDLe LDRe DEBUG * * *
4 LB LH LWL LW LBU LHU LWR LWUe
5 SB SH SWL SW SDLe SDRe SWR |CACHEd
6 LL LWC1 LWC2 * LLDe LDC1 LDC2 LDe
7 SC SWC1 SWC2 * SCDe SDC1 SDC2 SDe
2..0 SPECIAL function
5.3 0 1 2 3 4 5 6 7
0 SLL * SRLp SRA SLLV * SRLVp SRAV
1 JR JALR * * SYSCALL| BREAK * SYNC
2 MFHI MTHI MFLO MTLO DSLLVe * DSRLVep| DSRAVe
3 MULTp | MULTUp DIV DIVU DMULTe IDMULTUe| DDIVe DDIVUe
4 ADD ADDU SuUB SUBU AND OR XOR NOR
5 * * SLT SLTU DADDe | DADDUe| DSUBe | DSUBUe
6 TGE TGEU TLT TLTU TEQ * TNE *
7 DSLLe * DSRLep | DSRAe | DSLL32e * DSRL32ep DSRA32e
18...16 REGIMM rt
20...19 0 1 2 3 4 5 6 7
0 BLTZ BGEZ BLTZL BGEZL * * * *
1 TGEI TGEIU TLTI TLTIU TEOI * TNEI *
2 BLTZAL | BGEZAL |BLTZALL |BGEZALL * * * *
3 * * * * * * * *
23..21 COPzrs
25, 24 0 1 2 3 4 5 6 7
0 MF DMFe | cF [g [MT | bMTe|] cT [g
1 BC g g g g g 9 g
2 co
3

Figure 17-1 VR5432 Opcode Bit Encoding (1 of 2)

VR5432 Microprocessor User’s Manual 565

Chapter 17

18...16 COPzrt
20..19 0 1 2 3 4 5 6 7
0 BCF | BCT | BCFL | BCTL | Vv y y y
1 y y y y y y y y
> y y y y y y y y
3 y y y y y y y y
s 0 CPO Function
5 3 0 1 2 3 4 5 6 7
0 @ | TLBR |[TLBWI | o ® @ |TLBWR | ®
1[TLBP | o 0 0 0 ® @ 9
2 3 ®)) ®)))
3 [ERETX] ¢ ® ¢ ¢ ¢ P ¢
4))))))))
5))))))))
6))))))))
7) ¢))))))
2 0 DEBUG Function
5.3 0 1 2 3 4 5 6 7
0 ® ® (0 (0 (0 (0 (0 (0
1)))) [0) [0)
2) Q))))))
3 [0)))))))
4))))))))
5))))))))
6))))))))
7 ¢ ¢ ¢ ¢ ¢ [MF/TDR| DRET |DBREAK

Figure 17-2 VR5432 Opcode Bit Encoding (2 of 2)

Key:

* If the operation code marked with an asterisk is executed, the
Reserved Instruction exception occurs. These codes are reserved
for future expansion.

y Operation codes marked with a gamma cause a Reserved

Instruction exception. They are reserved for future expansion

566 VR5432 Microprocessor User’s Manual

CPU Instruction Set

o Operation codes marked with a delta are valid only with CP
enabled and cause a Reserved Instruction exception on other
processors.

@ Operation codes marked with a phi areinvalid but do not caus

Reserved Instruction exceptions

& Operation codes marked with axi cause a Reserved Instructio
exception.
X Operation codes marked with a chi are valid only on VR4000 and

VR5000 processors.

€ Operation codes marked with an epsilon are valid in the 64-bit
mode and 32-bit Kernel mode. In the 32-bit User or Supervisor
mode, these codes generate the Reserved Instruction exception.

T Operation codes marked with a pi have been used for the
implementati on-specific instruction set extensions on th
VR5432, specifically the Multiply-Accumulate instructions and
the Rotate instructions

VR5432 Microprocessor User’s Manual 567

Chapter 17

568 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

18

This chapter provides a detailed description of each Floating-Point Unit (FPU)
instruction. (For a general overview of VR5432 instructions, see Chapter 16.)

18.1 Instruction Formats
The instruction description subsections that follow show how the three basic
instruction formats (I-, R-, and Jtype) are used by:
e Load and Store instructions
e Transfer instructions
* Foating-point arithmetic instructions
* Floating-point Branch instruction

Floating-Point instructions are mapped onto the MIPS coprocessor instructions,
defining Coprocessor one (CP1) as the floating-point unit.

Each operationis valid only for certain formats. |mplementations may support
some of these formats and operations through emulation, but they only need to
support combinations that are valid (marked V in Table 18-1). Combinations

VR5432 Microprocessor User’s Manual 569

Chapter 18

marked R (reserved) in Table 18-1 are not currently specified by this architecture,
and cause an Unimplemented I nstruction exception. They are reserved for future
extensions of the architecture.

Table18-1 Valid FPU Instruction Format

Sour ce Format

Operation .
Single Double Word Longword

ADD

SUB

MUL

DIV

SQRT

|V OD|D| 0|0
|0 0| 0| 0|0

ABS

MOV

NEG

TRUNC.L

ROUND.L

CEIL.L

FLOOR.L

TRUNC.W

RECIP

ROUND.W

RSQRT

CEIL.W

MENEGEGAEGENENAEGENAEYEGYREYEGEYREYEGREG RS

FLOOR.W

S IENEGEGAEGEGYEGNEGEGAEYEGEGYEGREYREYEGREG R R

CVT.S

<
<

CVT.D

CVT.W

<

CVT.L \%

< K| <1<

C \Y R R

The FPU Branch instruction can be used with the logic of the condition reversed,
so itisonly necessary to provide half of the 32 comparison predicates and
relations required by the IEEE-754 standard. A four-bit field in the C instruction

570

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

(comparison) specifies one of the 16 conditions shown in the “True” column of
Table 18-2. Inverting the sense of the condition in the Branch instruction provides
the 16 conditions shown in the“ False” column. Unordered conditionsresult when
one of the operandsisaNaN (i.e., a“Not aNumber” encoding), which has no
numerical order when compared to a number or another NaN.

Table 18-2 Logical Reverse of Predicates by Condition True/False

Condition Relations Invalid
; Operation
Mnemonie Code | Creater | Less Equal | Unordered Exzeption if
True False Than Than Unor dered
F T 0 F F F F No
UN OR 1 F F F T No
EQ NEQ 2 F F T F No
UEQ OGL 3 F F T T No
OLT UGE 4 F T F F No
ULT OGE 5 F T F T No
OLE UGT 6 F T T F No
ULE OoGT 7 F T T T No
SF ST 8 F F F F Yes
NGLE GLE 9 F F F T Yes
SEQ SNE 10 F F T F Yes
NGL GL 11 F F T T Yes
LT NLT 12 F T F F Yes
NGE GE 13 F T F T Yes
LE NLE 14 F T T F Yes
NGT GT 15 F T T T Yes
F: False
T: True

VR5432 Microprocessor User’s Manual 571

Chapter 18

18.1.1

18.1.2

Floating-Point L oads, Stores, and Transfers

All movement of data between the floating-point unit (FPU) and memory is
accomplished by load and store operations, which reference the Floating-Point
General-Purpose registers (FGRs). These operations are unformatted; no format
conversions are performed and, therefore, no floating-point exceptions can be
generated by these operations.

Datamay also be directly moved between the floating-point unit and the processor
by Moveto Coprocessor (MTC) and Move from Coprocessor (MFC) instructions.
Like the floating-point load and store operations, these operations perform no
format conversions and never cause floating-point exceptions.

In addition, two Floating-Point Control registers (FCRs) are provided for FPU
control bits, status bits, implementation level, and revision level. These registers
can only be accessed by the CTC1 and CFCL1 instructions.

Floating-Point Oper ations

The floating-point unit instruction set includes:
* Floating-point Add instructions
e Foating-point Subtract instruction
e Foating-point Multiply instruction
* Floating-point Divide instruction
* Floating-point Square Root instructions
* Floating-point Reciprocal instruction
* Floating-point Reciprocal Sgquare Root instructions
e Conversion between fixed-point and floating-point format
e Conversion between floating-point format
e Hoating-point Compare instructions

These operations satisfy the requirements of the | EEE-754 standard for accuracy.
Specifically, these operations obtain aresult identical to an infinite-precision
result rounded to the specified format, using the current rounding mode.

Instructions must specify the format of their operands. Except for conversion
functions, mixed-format operations cannot be performed.

Inthe VR5432 implementation, the instruction immediately following aload may
use the contents of the register being loaded. In such cases, the hardware
interlocks by the number of cycles required for reading. Scheduling load delay

572

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

slotsisnot required for functional code; however, it still may be desirable for
highest performance or compatibility with the V R3000 device (which lacks
interlocks).

Load and Store instruction behavior depends on FGR width.

* When the FR hit in the Status register is clear, the Floating-Point
General-Purpose registers (FGRs) are 32 bits wide.

e To hold single-precision floating-point format data, sixteen even-
numbered registers out of 32 FGRs are available.

e To hold double-precision floating-point format data, the 32-bit
registers are used in pairs as 16 64-bit registers

* When the FR hit in the Status register is set, the FGRs are 64 bits
wide.

* To hold single-precision floating-point format data, the low half of 32
FGRs are used.

e To hold double-precision floating-point format data, 32 FGRs are
used.

In the load and store operation descriptions, the functions listed in
Table 18-3 are used to represent the handling of virtual addresses and physical
memory.

Table 18-3 FPU Load/Sore Instructions Using Registe r +Register Addressing

M nemonic Description Dl\(jlﬁlr;esdm
LWXC1 Load Word Indexed to FPU v
SWXC1 Store Word Indexed from FPU v
LDXC1 Load Doubleword Indexed to FPU v
SDXC1 Store Doubleword Indexed from FPU v

VR5432 Microprocessor User’s Manual 573

Chapter 18

Figure 18-1 shows the I-type instruction format used by Load and Store
instructions.

I-type (Immediate)

31 26 25 21 20 16 15

op base ft offset

6 5 5 16
op: 6-bit opcod
base: 5-bit base register specifier

ft: 5-bit source (for stores) or destination (for loads) FPU register specifie
offset: 16-bit signed immediate offset

Figure 18-1 Load and Store Instruction Format

All coprocessor |oads and stores reference datathat is located at word boundaries.
For word loads and stores, the access type field is always word, and the low-order
two hits of the address must always be zero. For doubleword loads and stores, the

accesstypefield isalwaysdoubleword, and the low-order three bits of the address
must always be zero.

Regardless of byte-numbering order, the address specifies the byte that hasthe
smallest byte addressin the accessed field. For abig-endian system, thisisthe left-
most byte; for alittle-endian system, thisisthe right-most byte.

574 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

18.2 Floating-Point Computational I nstructions

Computational instructionsinclude all of the floating-point arithmetic operations
performed by the FPU.

Figure 18-2 shows the R-type instruction format used for computational
instructions.

R-type (Register)

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd function
6 5 5 5 5 6
COP1: 6-bit opcode
fmt: 5-bit format specifie
fs: 5-bit source 1 register
ft: 5-bit source 2 register
fd: 5-bit destination register
function: 6-bit function field
Figure 18-2 Computational Instruction Format
The function field indicates the floating-point operation to be performed.
Each floating-point instruction can be applied to a number of operand formats.
The operand format for an instruction is specified by the 5-bit format field (fmt);
decoding for thisfield is shown in Table 18-4.
Table 18-4 Format Field Decoding
Code Mnemonic ‘ Size ‘ Format
0-15 Reserved
16 S Single (32 bits) Binary floating-point
17 D Double (64 bits) Binary floating-point
18 Reserved
19 Reserved
20 W 32 bits Binary fixed-point
21 L 64 bits Binary fixed-point
22-31 Reserved

VR5432 Microprocessor User’s Manual 575

Chapter 18

Table 18-5 lists all floating-point computational instructions.

Table 18-5 Floating-Point Computational Instructions and Operations

((:5?8;3 M nemonic Operation
0 ADD Add
1 SUB Subtract
2 MUL Multiply
3 DIV Divide
4 SQRT Square root
5 ABS Absolute value
6 MOV Transfer
7 NEG Signreverse
8 ROUND.L Convert to 64-hit fixed-point, rounded to nearest even number
9 TRUNC.L Convert to 64-hit fixed-point, rounded toward zero
10 CEIL.L Convert to 64-bit fixed-point, rounded to + o
11 FLOOR.L Convert to 64-hit fixed-point, rounded to — oo
12 ROUND.W Convert to 32-hit fixed-point, rounded to nearest even number
13 TRUNC.W Convert to 32-bit fixed-point, rounded toward zero
14 CEIL.W Convert to 32-hit fixed-point, rounded to +
15 FLOOR.W Convert to 32-bit fixed-point, rounded to — co
16-31 0 Reserved
32 CVT.S Convert to single floating-point
33 CVT.D Convert to double floating-point
34 O Reserved
35 O Reserved
36 CVT.W Convert to 32-bit fixed-point
37 CVT.L Convert to 64-bit fixed-point
38-47 O Reserved
48-63 C Floating-Point Compare
576 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Thefollowing routines are used in the description of the floating-point operations
to retrieve the value of an FPR or to change the value of an FGR:

32-Bit Mode

end

end

value <-- ValueFPR(fpr, fmt)
/* undefined for odd fpr */
case fmt of
S, W:
value <-- FGR[fpr+0]
D:
value <-- FGR[fpr+1] || FGR[fpr+0]

StoreFPR(fpr, fmt, value):
/* undefined for odd fpr */
case fmt of
S, W:
FGR[fpr+1] <-- undefined
FGR[fpr+0] <-- value
D:
FGR[fpr+1] <-- value63...32
FGR[fpr+0] <-- value31...0

VR5432 Microprocessor User’s Manual

577

Chapter 18

18.3

64-Bit Mode

value <-- ValueFPR(fpr, fmt)
case fmt of
S, W:
value <-- FGR][fpr]31...0
D, L:
value <-- FGR[fpr]
end

StoreFPR(fpr, fmt, value):
case fmt of
S, W:
FGR[fpr] <-- undefined32 || value
D, L:
FGR[fpr] <-- value
end

FPU Instructions

This section describes in detail the FPU instructions.

Exceptions that may occur are listed at the end of each instruction’s description.
For details regarding FPU exceptions and exception processing, refer to Chapter

8.

578

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

ABS.fmt Abealute value ABS.fm

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ABS
010001 00000 000101
6 5 5 5 5 6

Format:
ABS.fmt fd, fs (MIPS | format)

Description:
The absolute value of the contents of floating-point register fsistaken and stored
in floating-point register fd. The operand is processed in the floating-point format
fmt.
The absolute value operation is arithmetically performed. If the operand is NaN,
therefore, the Invalid Operation exception occurs.
Thisinstruction isvalid only in the single- and doubl e-precision floating-point
formats.
If the FR bit of the Status register is0, only an even number can be specified asa
register number because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined.
If the FR bit is 1, both odd and even register numbers are valid.

Operation:

32,64T: StoreFPR (fd, fmt, AbsoluteValue (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception

VR5432 Microprocessor User’s Manual 579

Chapt

er 18

ADD.fmt

Floating-Point Add

ADD.fmt

31

26 25

21 20

16 15

11 10

6

5

0

COP1
010001

fmt

ft

fs

fd

ADD
000000

6

6

Format:
ADD.fmt fd, fs, ft

Description:

Operat

(MIPS | format)

The contents of floating-point registersfs and ft are added and the result is stored
in floating-point register fd. The operand is processed in the floating-point format
fmt. The operation is executed asif the accuracy were infinite, and the result is

rounded according to the current rounding mode.

Thisinstruction isvalid only in the single- and double-precision floating-point

formats.

If the FR bit of the Status register is 0, only an even number can be specified as
aregister number because adjacent even-numbered and odd-numbered registers
are used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are

valid.

ion:

32, 64T:

StoreFPR (fd, fmt, ValueFPR (fs, fmt) + ValueFPR (ft, fmt))

580

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

ADDfmt Floating-Point Add ADDfmt

(continued)

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception

Inexact Operation exception
Overflow exception

Underflow exception

VR5432 Microprocessor User’s Manual 581

Chapter 18

Branch on FPU False
BClF (Coprocessor 1) BClF
31 26 25 2120 1817 16 15 0
COP1 BC cc nd| tf offset
010001 01000 0
6 5 3 11 16
Format:
BC1F offset (MIPS I format, cc = Oisimplied)
BC1F cc, offset (MIPS IV format)
Description:

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the
address of theinstruction following the branch (not the branch itself) inthe branch
delay dlot to form a PC-relative effective target address. If the floating-point
condition code bit cc isfase (0), the program branches to the effective target
address after the instruction in the delay slot is executed.

A floating-point condition code is set by the floating-point Compare instruction,
C.cond.fmt.

The MIPS | architecture defines a single floating-point condition code,
implemented asthe Coprocess or1 condition signal (Cp1Cond) and the C bitinthe
FCR3L1 register. MIP Sl, 11, and 11 architectures must have the cc field set to 0,
whichisimplied by thefirst format in the“ Format” section above. Both assembler
formatsarevaid for MIPSIV.

The MIPS 1V architecture adds seven more condition code bitsto the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test. The condition code bit specified by the
cc field is modified by the tf (true/false) and nd (nullify delay dot) fields as
variables. Theindividual instructions BC1F, BC1FL, BC1T, and BC1TL have
specific values for tf and nd.

Inthe MIPSI, I1, and Il implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that testsit. Hardware does not detect a violation of this restriction. In
the MIPS IV instruction set, this restriction has been removed.

582

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

B Cll: Branch on FPU False B ClF

(Coprocessor 1)
(continued)

Operation:

MIPS I, Il, and lIl:
T-1: condition — FPConditionCode(0) =0
T target offset — (offset;5)®PR-EN-(16+2) || offset || 02
T+1: if condition then
PC —~ PC + target_offset
endif
MIPS IV:
T condition — FPConditionCode(cc) =0
target_offset — (offset;5)CPR-EN-(16+2) || offset || 02
T+1: if condition then
PC — PC +target_offset
endif

Note: With the 18-bit signed instruction offset, the conditional branch
range is £128K. Use the Jump (J) or Jump Register (JR) instruc-
tions to branch to addresses outside this range.

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

VR5432 Microprocessor User’s Manual 583

Chapter 18

BC1FL

Branch on FPU False Likely
(Coprocessor 1) BClFL

31

26 25 2120 18171615 0

COP1
010001

BC cc nd| tf offset
01000 1

6

5 3 11 16

Format:

BC1FL offset (MIPS | format, cc = Oisimplied)
BC1FL cc, offset (MIPS 1V format)

Description:

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the
address of theinstruction following the branch (not the branch itself) inthe branch
delay dlot to form a PC-relative effective target address. If the floating-point
condition code bit cc isfase (0), the program branches to the effective target
address after theinstruction in the delay slot is executed. If the branchis not taken,
theinstruction in the delay dot is not executed.

A floating-point condition code is set by the Floating-Point Compare instruction,
C.cond.fmt.

The MIPS | architecture defines a single floating-point condition code,
implemented asthe Coprocess or1 condition signal (Cp1Cond) and the C bitinthe
FCR31 register. MIP Sl, I1, and 111 architectures must have the cc field set to O,
whichisimplied by thefirst format in the“ Format” section above. Both assembler
formatsare vaid for MIPSIV.

The MIPS 1V architecture adds seven more condition code bits to the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test. The condition code bit specified by the
cc field is modified by the tf (true/false) and nd (nullify delay dot) fields as
variables. Theindividual instructions BC1F, BC1FL, BC1T, and BC1TL have
specific values for tf and nd.

Inthe MIPSI, 11, and I11 implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that testsit. Hardware does not detect a violation of this restriction. In
the MIPS 1V instruction set, this restriction has been removed.

584

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

B ClFL Branch on FPU False Likely B C].FL

(Coprocessor 1)
(continued)

Operation:

MIPS I, Il, and lIl:
T-1: condition — FPConditionCode(0) =0
T target offset — (offset;5)®PR-EN-(16+2) || offset || 02
T+1: if condition then
PC —~ PC + target_offset
else
NullifyCurrentinstruction()
endif
MIPS IV:
T condition — FPConditionCode(cc) =0
target_offset — (offset;5)®PR-EN-(16+2) || offset || 02
T+1: if condition then
PC —~ PC + target_offset
else
NullifyCurrentinstruction()
endif

Note: Software should only use thisinstruction when thereisavery high
probability (98% or more) that the branch will be taken. If the
branch is not likely to be taken or if the probability of ataken
branch is unknown, users are encouraged to use the BC1F instruc-
tion instead.

VR5432 Microprocessor User’s Manual 585

Chapter 18

B ClFL Branch on FPU False Likely B ClFL

(Coprocessor 1)
(continued)

Note: With the 18-bit signed instruction offset, the conditional branch
rangeis+128K. Use Jump (J) or Jump Register (JR) instructions to
branch to addresses outside this range.

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

586 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Branch on FPU True
BClT (Coprocessor 1) BClT
31 26 25 2120 1817 16 15 0
COP1 BC cc nd| tf offset
010001 01000 0
6 5 3 11 16
Format:
BCI1T offset (MIPS | format, cc = Oisimplied)
BCI1T cc, offset (MIPS IV format)
Description:

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the
address of theinstruction following the branch (not the branch itself) inthe branch
delay dot to form a PC-relative effective target address. If the floating-point
condition code bit cc isfase (0), the program branches to the effective target
address after the instruction in the delay slot is executed.

A floating-point condition code is set by the floating-point Compare instruction,
C.cond.fmt.

The MIPS | architecture defines a single floating-point condition code,
implemented asthe Coprocess or1 condition signal (Cp1Cond) and the C bitinthe
FCR3L1 register. MIP Sl, 11, and 11 architectures must have the cc field set to 0,
whichisimplied by thefirst format in the“ Format” section above. Both assembler
formatsare vaid for MIPSIV.

The MIPS 1V architecture adds seven more condition code bitsto the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test. The condition code bit specified by the
cc field is modified by the tf (true/false) and nd (nullify delay dot) fields as
variables. Theindividual instructions BC1F, BC1FL, BC1T, and BC1TL have
specific values for tf and nd.

Inthe MIPSI, I1, and Il implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that testsit. Hardware does not detect a violation of this restriction. In
the MIPS 1V instruction set, this restriction has been removed.

VR5432 Microprocessor User’s Manual 587

Chapter 18

BClT Branch on FPU True BClT

(Coprocessor 1)
(continued)

Operation:

MIPS I, Il, and lIl:
T-1: condition — FPConditionCode(0) =1
T target offset — (offset;5)®PR-EN-(16+2) || offset || 02
T+1: if condition then
PC —~ PC + target_offset
endif
MIPS IV:
T condition — FPConditionCode(cc) =1
target_offset — (offset;5)CPR-EN-(16+2) || offset || 02
T+1: if condition then
PC — PC +target_offset
endif

Note: With the 18-bit signed instruction offset, the conditional branch
rangeis+ 128K. Use Jump (J) or Jump Register (JR) instructions
to branch to addresses outside this range.

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

588 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Branch on FPU True Likely
BClTL (Coprocessor 1) BClTL
31 26 25 21 20 1817 16 15 0
COP1 BC cc nd| tf offset
010001 01000 1
6 5 3 11 16
Format:
BCI1TL offset (MIPS | format, cc = Oisimplied)
BCI1TL cc, offset (MIPS IV format)
Description:

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the
address of theinstruction following the branch (not the branch itself) inthe branch
delay dlot to form a PC-relative effective target address. If the floating-point
condition code bit cc isfase (0), the program branches to the effective target
address after theinstruction in the delay slot is executed. If the branchis not taken,
theinstruction in the delay dot is not executed.

A floating-point condition code is set by the floating-point Compare instruction,
C.cond.fmt.

The MIPS | architecture defines a single floating-point condition code,
implemented asthe Coprocess or1 condition signal (Cp1Cond) and the C bitinthe
FCR31 register. MIP Sl, I1, and 111 architectures must have the cc field set to O,
whichisimplied by thefirst format in the“ Format” section above. Both assembler
formatsare vaid for MIPSIV.

The MIPS 1V architecture adds seven more condition code bits to the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test. The condition code bit specified by the
cc field is modified by the tf (true/false) and nd (nullify delay dot) fields as
variables. Theindividual instructions BC1F, BC1FL, BC1T, and BC1TL have
specific values for tf and nd.

Inthe MIPSI, 11, and I11 implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that testsit. Hardware does not detect a violation of this restriction. In
the MIPS 1V instruction set, this restriction has been removed.

VR5432 Microprocessor User’s Manual 589

Chapter 18

BClTL Branch on FPU True Likely BClTL

(Coprocessor 1)
(continued)

Operation:

MIPS I, Il, and lIl:
T-1: condition — FPConditionCode(0) =1
T target offset — (offset;5)®PR-EN-(16+2) || offset || 02
T+1: if condition then
PC —~ PC + target_offset
else
NullifyCurrentinstruction()
endif
MIPS IV:
T condition — FPConditionCode(cc) =1
target_offset — (offset;5)®PR-EN-(16+2) || offset || 02
T+1: if condition then
PC —~ PC + target_offset
else
NullifyCurrentinstruction()
endif

Note: Software should only use thisinstruction when thereisavery high
probability (98% or more) that the branch will be taken. If the
branch is not likely to be taken or if the probability of ataken
branch is unknown, users are encouraged to use the BC1T instruc-
tion instead.

590 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

BClTL Branch on FPU True Likely BClTL

(Coprocessor 1)
(continued)

Note: With the 18-bit signed instruction offset, the conditional branch
rangeis+ 128K. Use Jump (J) or Jump Register (JR) instructions
to branch to addresses outside this range.

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

VR5432 Microprocessor User’s Manual 591

Chapter 18

Floating-Point

C.cond.fmt Compare C.cond.fmt

31

26 25 21 20 16 15 1110 876 543 0

COP1
010001

fmt ft fs cc 0 | FC cond
00|11

6

5 5 5 3 2 2 4

Format:

C.cond.fmt fs, ft (MIPS | format, cc = Oisimplied)
C.cond.fmt cc, fs, ft (MIPS IV format)

Description:

The value in floating-point register fsis compared to the value in floating-point
register ft; the values are in format fmt. The comparison is exact and neither
overflows nor underflows.

If the comparison specified by cond, 4 istruefor the operand values, theresult is
true; otherwise, theresult isfalse. If no exceptionistaken, theresult iswritten into
condition code cc; trueis 1 and falseisO.

If cond; is set and at least one of the valuesisaNaN, an Invalid Operation
condition israised; the result depends on the Floating-Point exception model
currently active:

Precise exception model: The Invalid Operation flag isset in the FCR31 register.
If the Invalid Operation Enablebit isset in the FCR31 register, no result iswritten
and an Invalid Operation exception istaken immediately. Otherwise, the Boolean
result is written into condition code cc.

I mpr ecise exception model (R8000® normal mode): The Boolean result is
written into condition code cc. No FCR3L1 register flag is set. If th Invalid
Operation Enabl bit is set in the FCR31 register, an Invalid Operation
exception istaken, imprecisely, at some future time

There arefour mutually exclusive ordering relations for comparing fl oating-point
values; one relation is always true and the others are false. The familiar relations
are greater than, lessthan, and equal. In addition, the | EEE floating-point
standard defines the relation unordered, which is true when at least one operand
valueis NaN; NaN compares unordered with everything, including itself.
Comparisons ignore the sign of zero, so +0 equals —0.

592

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

C.cond.fmt et C.cond.fmt

(continued)

The comparison condition is alogical predicate, or equation, of the ordering
relations such asless than or equal, equal, not less than, or unordered or equal.
Compare distinguishes among the 16 comparison predicates. The Boolean result
of the instruction is obtained by substituting the Boolean value of each ordering
relation for the two floating-point valuesin the equation. If the equal relationis
true, for example, then al four example predicates above yield atrue result. If the
unordered relationistrue, thenonly thefinal predicate, unordered or equal, yields
atrue result.

Logical negation of acompare result allows eight distinct comparisons to test for
the 16 predicates, as shown in Table 18-6. Each mnemonic tests for both a
predicate and its logical negation. For each mnemonic, compar e tests the truth of
the first predicate. When the first predicate is true, the result is true as shown in
the“If Predicatels True” column and the second predicate must be false, and vice
versa. (Notethat the False predicate is never true and False/True do not follow the
normal pattern.)

The truth of the second predicate is the logical negation of the instruction result.
After aCompareinstruction, atest for the truth of thefirst predicate can be made
with the Branch on FPU True (BCLT) instruction and the truth of the second can
be made with the Branch on FPU False (BC1F) instruction.

VR5432 Microprocessor User’s Manual 593

Chapter 18

C.cond.fmt Floating-Point C.cond.fmt

Compare
(continued)

Table 18-7 shows another set of eight compare operations, distinguished by a
cond; value of 1 and testing the same 16 conditions. For these additional
comparisons, if at least one of the operandsisaNaN, including a Quiet NaN
(QNaN), then an Invalid Operation condition israised. If the Invalid Operation
condition is enabled in the FCSR, an Invalid Operation exception occurs.

594

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

C.cond.fmt ! C.cond.fmt

(continued)

Table 18-6 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate Comparison CC |ns_truc-
Result tion
Relation Inv. Condi-
Condition Name of Predicate and Values Preé;(cate Eag tion Field
Mnemonic | Logically Negated Predicate (Abbreviation Cp-
>S|l<| =2 IsTrue if 3 |2.0
QNaN?
F False [thispredicateisawaysFase] |F |F |F |F F 0
True (T) T|T|T|T
Unordered FIE|F|T|T
UN 1
Ordered (OR) T|T|T|F|F
Equal FIF|T|F|T
EQ >
Not Equal (NEQ) TI|TI|F|T|F
Unordered or Equal FIF|T|T|T
UE 3
Q Ordered or Greater Thanor LessThan | |+ |- | £ | £
(OGL)
Ordered or Less Than FITI|F|F|T
OLT 4
Unordered or Greater Than or Equal TlelTITIE
(UGE)
ULT Unordered or Less Than FITIF[TIT No 10]
Ordered or Greater Than or Equal (OGE) | T |F |T |F |F
OLE Ordered or Less Than or Equal FIT|TI|F|T 6
Unordered or Greater Than (UGT) T|F|F|T|F
ULE Unordered or Less Than or Equal FIT|T|T|T .
Ordered or Greater Than (OGT) T|F |F |F |F
Key: ?=unordered, > = greater than, < = lessthan, =isequal, T = True, F = False

VR5432 Microprocessor User’s Manual 595

Chapter 18

C.cond.fmt

Floating-Point
Compare

(continued)

C.cond.fmt

Table 18-7 FPU Comparisons With Special Operand Exceptions for QNaN

Instruction Comparison Predicate Comparison CC Ins_truc-
Result tion
Relation Inv. Condi-
Condition Name of Predicate and Values Preclj{cate 522 tion Field
Mnemonic | Logically Negated Predicate (Abbreviation cp-
>|<|=]72]| IsTrue if 3 |2.0
QNaN?
Signaling False [this predicate is aways
FI|F|F|F
SF False] F 0
Signaling True (ST) T
Not Greater Than or LessThanor Equal |F |F |F [T |T
NGLE 1
Greater Than or Less Than or Equal TlriTlElE
(GLE)
Signaling Equal FIFI|T|F|T
SEQ 'g .g d 2
Signaling Not Equal (SNE) TI|T|F|T|F
Not Greater Than or Less Than FIF|T|T|T
NGL Yes |1 |3
Greater Than or Less Than (GL) T|T|F|F|F
Less Than FITI|FI|F|T
LT 4
Not Less Than (NLT) TIF|T|T]|F
NGE Not Greater Than or Equal FIT|FI|T|T .
Greater Than or Equal (GE) TI|F|T|F|F
LE Less Than or Equal FIT|T|F|T 6
Not Less Than or Equal (NLE) TI|F|F|T]|F
Not Greater Than FI|TI|T|T|T
NGT 7
Greater Than (GT) TI|F |F|F|F
Key: ?=unordered, > = greater than, < =lessthan, =isequal, T = True, F = False

596

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

C.cond.fmt et C.cond.fmt

(continued)

Theinstruction encoding is an extension made in the MIP SIV architecture. In
previous architecture levels, the cc field for this instruction must equal 0.

The MIPS | architecture defines a single floating-point condition code,
implemented asthe Coprocess or1 condition signal (Cp1Cond) and the C bitinthe
FCR31 register. MIP Sl, 11, and 111 architectures must have the cc field set to O,
whichisimplied by thefirst format in the “Format” section. Both assembler
formatsarevaid for MIPSIV.

The MIPS IV architecture adds seven more condition code bitsto the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test.

Thefields fs and ft must specify FPRs valid for operands of type fnt; if they are
not valid, the result is undefined.

The operands must be valuesin format fit; if they are not, the result is undefined
and the value of the operand FPRs becomes undefined.

Inthe MIPSI, 11, and I1l implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that testsit. Hardware does not detect a violation of thisrestriction. In
the MIPS 1V instruction set, this restriction has been removed.

VR5432 Microprocessor User’s Manual 597

Chapter 18

C.cond.fmt b C.cond.fmt

(continued)

Operation:

32,64 T if NaN (ValueFPR (fs, fmt)) or NaN (ValueFPR (ft, fmt)) then
less ~ false
equal - false
unordered « true
if conds then
signal InvalidOperationException

endif

else
less — ValueFPR (fs, fmt) < ValueFPR (ft, fmt)
equal — ValueFPR (fs, fmt) = ValueFPR (ft, fmt)
unordered ~ false

endif

condition ~ (cond, and less) or (cond; and equal) or
(condg and unordered)
SetFPConditionCode (cc, condition)

598 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

C.cond.fmt ! C.cond.fmt

(continued)

Note: Floating-point computational instructions, including compare, that
receive an operand value of Signaling NaN (SNan) raisetheInvalid
Operation condition. Comparisons that raise the Invalid Operation
condition for Quiet NaNs in addition to SNaNs permit a simpler
programming model if NaNs areerrors. Using these compares, pro-
grams do not need explicit code to check for QNaNs causing the
unordered relation. Instead, they take an exception and allow the
exception handling system to deal with the error when it occurs
For example, consider a comparison in which we want to know i
two numbers are equal, but for which unordered would be an er-

ror.
conparisons using explicit tests for QNaN
c.eq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
c.un.d $f 2, $f 4 # it is not equal,
but mi ght be unordered
bcit ERROR # unordered goes off to an error handl er
not - equal - case code here
equal - case code here
L2:
H e
conparison using conparisons that signal Q\aN
c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here
not - equal - case code here

#equal - case code here
L2:

VR5432 Microprocessor User’s Manual 599

Chapter 18

C.cond.fmt b C.cond.fmt

(continued)

Exceptions:
Coprocessor Unusable exception
Reserved Instruction exception
Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception

600 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

CEIL.L.fmt fearefem CE|L.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CEIL.L
010001 00000 001010
6 5 5 5 5 6

Format:
CEIL.L.fmtfd, fs (MIPS 111 format)
Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format and the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

Theresult of the conversionisrounded toward the + oo direction, regardless of the
current rounding mode.

Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN, and if the rounded result is outside the
range of —2°2 to 2°2 — 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception isnot enabl ed, the exception does not occur,
and 2%°— 1 is returned.

This operation is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User or Supervisor mode, a Reserved
Instruction exception occurs.

VR5432 Microprocessor User’s Manual 601

Chapter 18

CEIL.L.fmt o CEIL.L.fmt

Ceiling to Long

Fixed-Point Format
(continued)

Operation:

32,64T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

Exceptions:
Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

602 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

CEILW.fmt Gingwsnge CEIL.W.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CEIL.W
010001 00000 001110
6 5 5 5 5 6

Format:
CEIL.W.fmt fd, fs (MIPS I format)
Description:

The contents of floating-point register fs are arithmetically converted into a 32-bit
fixed-point format, and theresult is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

Theresult of the conversionisrounded toward the + oo direction, regardless of the
current rounding mode.

Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN, and if the rounded result is outside the
range of 231 — 1 to 231, the Invalid Operation exception occurs. If the Invalid
Operation exception is not enabled, the exception does not occur, and 231 —1is
returned.

VR5432 Microprocessor User’s Manual 603

Chapter 18

Floating-Point
CEIL-W-fmt Ce|||ngt0 S|ng|e CEIL-W-fmt
Fixed-Point Format
(continued)

Operation:

32,64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

604 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

C FCl Move Control Word from FPU C FC 1

(Coprocessor 1)

31 26 25 21 20 16 15 11 10 0
COP1 CF rt fs 0
010001 00010 000000000O0O
6 5 5 5 11
Format:
CFClrt,fs (MIPS | format)
Description:
The contents of floating-point control register fs are loaded into general-purpose
register rt.

Thisinstruction is only defined when fs equals O or 31.

The contents of general-purpose register rt are undefined while the instruction
immediately following this Load instruction is being executed.

Operation:

32 T: temp «~ FCR[fs]
T+1: GPRJrt] — temp

64 T. temp — FCRJfs]
T+1: GPRI[r] « (temps;)%? || temp

Exceptions:
Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual 605

Chapter 18

CTC 1 Move Control Word to FPU CTC 1

(Coprocessor 1)

31 26 25 21 20 16 15 11 10 0
COP1 CT rt fs 0
010001 00110 00000000000
6 5 5 5 11
Format:
CTCirt,fs (MIPS | format)
Description:

The contents of general-purpose register rt are stored in floating-point control
register fs. Thisinstruction is defined only if fsisO or 31.

If the cause bit of the floating-point Control/Status register (FCR31) and the
corresponding enable bit are set by writing data to FCR31, the Floating-Point
exception occurs. Write the data to the register before the exception occurs.

The contents of floating-point control register fs are undefined while the
instruction immediately following thisinstruction is executed.

Operation:

32 T: temp — GPRJrt]
T+1: FCR[fs] ~ temp
COCI1] ~ FCR[31],3
64 T: temp « GPRIrt]3;_ o
T+1: FCR[fs] «~ temp
COCI1] ~ FCR[31],3

606 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

CTCl Move Control Word to FPU CTCl

(Coprocessor 1)

(continued)

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Division by Zero exception

Inexact Operation exception
Overflow exception

Underflow exception

VR5432 Microprocessor User’s Manual 607

Chapter 18

CVT.D.

fmt ot o e CVT.D.fmt

Floating-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt 0 fs fd CVT.D
00000 100001

6

5 5 5 5 6

Format:

CVT.D.Sfd, fs (MIPS| format, fmt = S)
CVT.D.Wfd,fs (MIPS| format, fmt = W)
CVT.D.Lfd,fs (MIPS 111 format, fmt = L)

Description:

The contents of floating-point register fs are arithmetically converted to a double-
precision floating-point format; the result is stored in floating-point register fd.
The source operand is processed in the floating-point format fmt.

Thisinstructionisvalid only for conversion from the single-precision floating-
point format and the 32-bit or 64-bit fixed-point formats.

In the single-precision floating-point format or 32-bit fixed-point format, this
conversion operation is executed correctly without losing any accuracy.

If the FR bit of the Status register is 0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

32,64T: StoreFPR (fd, D, ConvertFmt (ValueFPR (fs, fmt), fmt, D))

608

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

CVT.D.fmt o o ol CVT.D.fmt

Floating-Point Format
(continued)

Exceptions:
Coprocessor Unusable exception
Floating-Point exception
Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception

VR5432 Microprocessor User’s Manual 609

Chapter 18

CVT.L.fmt Comvertto Long CVT.L.fmt

Fixed-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt 0 fs fd CVT.L
00000 100101

6

5 5 5 5 6

Format:

CVT.L.fmtfd, fs (MIPS 111 format)

Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format; the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

Thisinstructionisvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN, and if the rounded result is outside the
range of —2°2 to 252 — 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur,
and 252 - 1 isreturned.

This operation is defined in 64-bit mode and 32-hit Kernel mode. If this
instruction is executed during 32-bit User or Supervisor mode, a Reserved
Instruction exception occurs.

610

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

CVT.L.fmt Comvertto Long CVT.L.fmt

Fixed-Point Format
(continued)

Operation:

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Note: Same operation in 32-bit Kernel mode.

Exceptions:
Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

VR5432 Microprocessor User’s Manual 611

Chapter 18

CVT.S.fmt ot e CVT.S.fmt

Floating-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt 0 fs fd CVT.S
00000 100000

6

5 5 5 5 6

Format:

CVT.SDfd,fs (MIPS| format, fmt = D)
CVT.SW fd, fs (MIPSI format, fmt = W)
CVT.SL fd, fs (MIPS 111 format, fmt = L)

Description:

The contents of floating-point register fsare arithmetically converted into asingle-
precision floating-point format; the result is stored in floating-point register fd.
The source operand is processed in the floating-point format fmt. The result of the
conversion is rounded according to the current rounding mode.

Thisinstructionisvalid only for conversion from the double-precision floating-
point format, and 32-bit or 64-bit fixed-point format.

If the FR bit of the Status register is 0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

32,64T: StoreFPR (fd, S, ConvertFmt (ValueFPR (fs, fmt), fmt, S))

612

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Floating-Poin
CVT.S.fmt CVT.S.fmt
Floating-Point Format

(continued)

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

Underflow exception

VR5432 Microprocessor User’s Manual 613

Chapter 18

CVT.W.fmt N omort o CVT.W.fmt

Fixed-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt 0 fs fd CVT.W
00000 100100

6

5 5 5 5 6

Format:

CVT.W.fmt fd, fs (MIPS | format)

Description:

The contents of floating-point register fs are arithmetically converted to a 32-bit
fixed-point format and the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified asa
register number because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN and if the rounded result is outside the
range of 231 — 1 to —231, the Invalid Operation exception occurs. If the Invalid

Operation exception is not enabled, the exception does not occur and 221_1is
returned.

614

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

CVT.W.fmt N omart 1o CVT.W.fmt

Fixed-Point Format
(continued)

Operation:

32,64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

VR5432 Microprocessor User’s Manual 615

Chapter 18

DIV.fmt

Floating-Point Divide

DIV.fmt

31 26 25 21 20 16 15 11 10 6 0
COP1 fmt ft fs fd DIV
010001 000011
6 5 5 5 5 6

Format:
DIV.fmt fd, fs, ft (MIPS | format)

Description:
The contents of floating-point register fs are divided by those of floating-point
register ft, and the result is stored in floating-point register rd. The operand is
processed in the floating-point format fmt. The operation is executed as if the
accuracy wereinfinite, and theresult isrounded according to the current rounding
mode.
Thisinstructionisvalid only for conversion from the single- or double-precision
floating-point format.
If the FR bit of the Status register is 0, only an even number can be specified asa
register number because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

32,64 T StoreFPR (fd, fmt, ValueFPR (fs, fmt)/ValueFPR (ft, fmt))

Exceptions:
Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:
Unimplemented Operation exception Invalid Operation exception
Division by Zero exception Inexact Operation exception
Overflow exception Underflow exception

616 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

DMFC]_ Doubleword Move from FPU DMFCl

(Coprocessor 1)

31 26 25 21 20 16 15 1110 0
COP1 DMF rt fs 0
010001 00001 000 00000000
6 5 5 5 11
Format:
DMFC1rt, fs (MIPS 11 format)
Description:

The contents of FPU general-purpose register fs are stored in CPU general-
purpose register rt.

The contents of general-purpose register rt are undefined while the instruction
immediately following this instruction is being executed.

The FR bit of the Status register indicates whether all 32 registers of the FPU can
be specified. If the FR bit is0 and the least-significant bit of fsis 1, thisinstruction
is undefined.

The operation is undefined if an odd number is specified when the FR bit of the
Status register is 0. If the FR bit is 1, both odd-numbered and even-numbered
registers are valid.

This operation is defined in 64-bit mode or 32-bit Kernel mode.

VR5432 Microprocessor User’s Manual 617

Chapter 18

DMFC]_ Doubleword Move from FPU DMFCl

(Coprocessor 1)
(continued)

Operation:

64 T: if SRyg=1then
data — FGR [fs]
else

if fsg = 0 then
data < FGR [fs + 1] || FGR [fs]
else
data — undefined®
endif
T+1: GPR]rt] — data

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception

Floating-Point exception

Reserved Instruction exception
Floating-Point Exceptions:

Unimplemented Operation exception

618 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Doubleword Move to FPU
DMTC]— (Coprocessor 1) DMTC]—

31 26 25 21 20 16 15 1110 0
COP1 DMT rt fs 0
010001 | 00101 00000000000
6 5 5 5 11
Format:
DMTC1rt, fs (MIPS 11 format)
Description:

The contents of CPU general -purpose register rt are stored in FPU general-
purpose register fs.

The contents of fs are undefined while the instruction immediately following this
instruction is being executed.

The FR bit of the Status register indicates whether all the 32 registers of the FPU
can be specified. If the FR bit is 0 and the least-significant bit of fsis 1, this
instruction is undefined.

The operation is undefined if an odd number is specified when the FR bit of the
Status register is 0. If the FR bitis 1, both odd-numbered and even-numbered
registersare valid.

This operation is defined in 64-bit mode or 32-bit Kernel mode.

VR5432 Microprocessor User’s Manual 619

Chapter 18

Doubleword Move to FPU
DMTC]— (Coprocessor 1) DMTC]—

(continued)

Operation:

64 T: data —~ GPRJrt]

T+1: if SR26 =1 then
FGR [fs] — data
else

if fsg = 0 then
FGR [fs+1] «~ datags 3p
FGR [fs] ~ dataz; g
else
undefined_result
endif

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception

Floating-Point exception

Reserved Instruction exception
Floating-Point Exceptions:

Unimplemented Operation exception

620 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

FLOOR.L.fmt oy ~ FLOOR.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd FLOOR.L
010001 00000 001011
6 5 5 5 5 6
Format:
FLOOR.L.fmt fd, fs (MIPS 111 format)
Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format and the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the— oo direction, regardless of the
current rounding mode.

Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is0, only an even number can be specified asa
register number because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN and if the rounded result is outside the
range of —2°2 to 2°2 — 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur
and 252 — 1 is returned.

This operation is defined in the 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User/Supervisor mode, a Reserved
Instruction exception occurs.

VR5432 Microprocessor User’s Manual 621

Chapter 18

FLOORLfmt Floating-Paint FLOORLfmt

Floor to Long
Fixed-Point Format
(continued)

Operation:

64 T:. StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

Note: Same operation in 32-bit Kernel mode.

Exceptions:
Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

622 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

FLOOR.W.fmt 2" FLOOR.W.fmt

Floor to Single
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd FLOOR.W
010001 00000 001111
6 5 5 5 5 6
Format:
FLOOR.W.fmt fd, fs (MIPS 11 format)
Description:

The contents of floating-point register fs are arithmetically converted into a 32-hit
fixed-point format; the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion isrounded toward the— oo direction, regardless of the
current rounding mode.

Thisinstructionisvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN and if the rounded result is outside the
range of 231 — 1 to —23, the Invalid Operation exception occurs. If the Invalid

Operation exception is not enabled, the exception does not occur and 231 -1 is
returned.

VR5432 Microprocessor User’s Manual 623

Chapter 18

FLOOR.W.fmt 22" FLOOR.W.fmt

Floor to Single

Fixed-Point Format
(continued)

Operation:

32,64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

624 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Load Doubleword to FPU

L DC]. (Coprocessor 1) L DC].

31 26 25 21 20 16 15 0
LDC1 base ft offset
110101
6 5 5 16
Format:
LDC1 ft, offset (base) (MIPS 11 format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form avirtual address.

If the FR bit of the Status register is 0, the contents of the doubleword at the
memory location specified by the virtual address are stored in floating-point
registersft and ft + 1. At thistime, the high-order 32 bits of the doubleword are
stored in an odd-numbered register specified by ft + 1 and the low-order 32 bits
arestoredin an even-numbered register specified by ft. The operation isundefined
if the least-significant bit in the ft field is not O.

If the FRbit is 1, the contents of the doubleword at the memory location specified
by the virtual address are stored in floating-point register ft.

If any of the low-order three bits of the addressis not zero, an Address Error
exception occurs.

VR5432 Microprocessor User’s Manual 625

Chapter 18

Load Doubleword to FPU
L DC]— (Coprocessor 1) L DC]—

(continued)

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
data — LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 =1 then
FGR [ft] — data
elseif ftg = 0 then
FGR [ft+1] ~ datagz_ 32
FGR [ft] - dataglmo
else
undefined_result
endif

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ Address Translation (vAddr, DATA)
data « LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 =1 then
FGR [ft] — data
elseif ftg = 0 then
FGR [ft+1] ~ datagz_ 32
FGR [ft] — dataglmo
else
undefined_result
endif

Exceptions:

Coprocessor Unusable Exception
TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception

626 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

L DXCl Load Doubleword Indexed to FPU L DXCl

(Coprocessor 1)

31 26 25 2120 16 15 1110 65 0
COP1X base index 0 fd LDXC1
010011 00000 000001
6 5 5 5 5 6
Format:
LDXC1 fd, index (base) (MIPS 1V format)
Description:

The contents of the 64-bit doubleword at the memory location specified by the
aligned effective address are fetched and placed in floating-point regi st éd. The
contents of general-purpose registers index and base are added to form the
effective address.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddressgs ¢ # basegs g0, the result is undefined.

An Address Error exception occursif EffectiveAddress, o # 0 (not doubleword
aligned), and the result of the instruction is undefined.

VR5432 Microprocessor User’s Manual 627

Chapter 18

L DXCl Load Doubleword Indexed to FP L DXCl

(Coprocessor 1)
(continued)

Operation:

vAddr — GPR[base] + GPR[index]
if vAddr, o # 03 then SignalException(AddressError) endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
mem — LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
if FP32RegistersMode then
FPR[fd] ~ data

else
if fdg = 0 then
FPRI[fd, 1 || 0] < data
else
FPR[fd, 1 || O] « undefined®
FPR[fd, 1 || 1] < undefined®
endif
endif
Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception
Address Error exception

TLB Refill exception

TLB Invalid exception

628 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Load Word to FPU
LWCl (Coprocessor 1) LWCl

31 26 25 21 20 16 15 0
LWC1 base ft offset
110001
6 5 5 16
Format:
LWC1 ft, offset (base) (MIPS| format)
Description:

The 16-bit offset is sigh extended and added to the contents of general-purpose
register base to form avirtual address. The contents of the word at the memory
location specified by the virtual address are loaded to floating-point register ft.

If the FR bit of the Statusregister is 0 and if the least-significant bit in theft field
is 0, the contents of the word are stored in the low-order 32 bits of floating-point
register ft. If theleast-significant bit in the ft field is 1, the contents of the word are
stored in the high-order 32 bits of floating-point register ft — 1.

If the FRbitis1, al the 64-bit floating-point registers can be accessed; therefore,
the contents of the word are stored in floating-point register ft. The value of the
high-order 32 bitsis undefined.

If either of the low-order two bits of the address is not zero, an Address Error
exception occurs.

VR5432 Microprocessor User’s Manual 629

Chapter 18

LWCl Load Word to FPU LWCl

(Coprocessor 1)
(continued)

Operation:

32 T: VAddr — ((offset;5)0 || offset;s_o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vVAddr, DATA)
data —~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
if SR26 =1 then
FGR [ft] — undefined®? || data
else
FGR [ft] — data
endif

64 T: vAddr — ((offset;5)*8 | offset;s) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
data —~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
if SRZG =1 then
FGR [ft] — undefined®? || data
else
FGR [ft] ~ data
endif

Exceptions:

Coprocessor Unusable exception
TLB Miss exception

TLB Invalid exception

Bus Error exception

Address Error exception

630 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

LWXCl Load Word Indexed to FPU LWXCl

(Coprocessor 1)

31 26 25 2120 16 15 1110 65 0
COP1X base index 0 fd LWXC1
010011 00000 000000
6 5 5 5 5 6

Format:

LWXCL1 fd, index (base) (MIPS 1V format)

Description:

The contents of the 32-bit word at the memory location specified by the aligned
effective address are fetched and placed in the low word of floating-point
register fd. The contents of general-purpose registersindex and base are added to
form the effective address.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddressgs ¢ # basegs g0, the result is undefined.

An Address Error exception occursif EffectiveAddress; # 0 (not word aligned),
and the result of theinstruction is undefined.

VR5432 Microprocessor User’s Manual 631

Chapter 18

LWXCl Load Word Indexed to FPU LWXCl

(Coprocessor 1)
(continued)

Operation:

vAddr — GPR[base] + GPR[index]
if vAddry o # 0? then SignalException(AddressError) endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddrpgize-1 3 || (PAddr,_ o xor (ReverseEndian || 02))
/* mem is aligned 64-bits from memory. Pick out correct bytes. */
mem ~ LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
bytesel — vAddr, o xor (BigEndianCPU || 0?)
if FP32RegistersMode then

FPR[fd] — undefined®? || data

else
if fdg = O then
FPR[fd4 1]l O] — FPR[fd4 1 || Ole3.32 || data
else
FPRIfds 1 || O] — data || FPR[fds 1 || Ol31.0
endif
endif
Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception
Address Error exception

TLB Refill exception

TLB Invalid exception

632 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

MADD.fmt

Floating-Point

MADD.fmt

MADD.fmt fd, fr, fs, ft

Description:

(MIPS IV format)

Multiply-Add
31 26 25 2120 16 15 1110 65 32 0
COP1X fr ft fs fd MADD fmt
010011 100
6 5 5 5 5 3 3
Format:

The value in floating-point register fsis multiplied by the value in floating-point
register ft to produce aproduct. The value in floating-point register fr isadded to
the product. The resulting sum is calculated to infinite precision, rounded
according to the current rounding mode in the FCR31 register, and placed into
floating-point register fd. The operands and result are valuesin format fmt.

Cause bits are ORed into the Flag bitsif no exception is taken.

Thefieldsfr, fs, ft, and fd must specify floating-point registers valid for operands

of type fmt; if they are not valid, the result is undefined.

The operands must be valuesin format fmt; if they are not, the result is undefined
and the value of the operand floating-point registers becomes undefined.

Operation:

vfr — ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vt — ValueFPR(ft, fmt)
StoreFPR(fd, fmt, vfr +qn¢ (VIS Xt VIT))

VR5432 Microprocessor User’s Manual

633

Chapter 18

MADD.fmt I MADD.fmt

Multiply-Add
(continued)

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception

Underflow exception

Inexact Operation exception

634 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

MFC1

Move Word from FPU

(Coprocessor 1)

MFC1

Coprocessor Unusable exception

31 26 25 21 20 16 15 11 10 0
COP1 MF rt fs 0
010001 | 000O0O 00000000000
6 5 5 5 11

Format:
MFC1rt, fs (MIPS | format)

Description:
The contents of floating-point general-purpose register fs are stored in general-
purpose register rt of the CPU register rt.
The contents of general-purpose register rt are undefined while the instruction
immediately following this instruction is being executed.
If the FR bit of the Statusregister is 0 and if the least-significant bit in theft field
is 0, the low-order 32 bits of floating-point register ft are stored in CPU general-
purpose register rt. If the least-significant bit in the ft areais 1, the high-order 32
bits of floating-point register ft — 1 are stored in general-purpose register rt.
If the FRbitis 1, all 64-bit floating-point registers can be accessed; therefore, the
high-order 32 bits of floating-point register ft are stored in CPU general-purpose
register rt.

Operation:

32 T: data — FGR [fs]31._ o
T+1: GPR]rt] ~ data

64 T: data — FGR [fs]31._ o
T+l: GPR[rt] « (datag;)®? || data

Exceptions:

VR5432 Microprocessor User’s Manual

635

Chapter 18

MOmet Floating-Point Move MOmet

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd MOV
010001 00000 000110
6 5 5 5 5 6

Format:
MOV.fmt fd, fs (MIPS | format)

Description:
The contents of floating-point register fs are stored in floating-point register fd.
The operand is processed in the floating-point format ft.
Thisinstruction is not executed arithmetically, and no |EEE-754 exception is
generated.
Thisinstruction isvalid only in the single- and double-precision floating-point
formats.
If the FR bit of the Status register is0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

32,64 T StoreFPR (fd, fmt, ValueFPR (fs, fmt))

Exceptions:
Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:
Unimplemented Operation exception

636 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

M OVF Move Conditional on FPU False M OVF

31 26 25 2120 1817 16 15 1110 65 0
SPECIAL rs cc 0] tf rd 0 MOVCI
000000 0|0 00000 | 000001

6 5 3 11 5 5 6
Format:
MOVFrd, rs, cc (MIPS IV format)
Description:

If the floating-point condition code specified by cc is zero, then the contents of
general-purpose register rs are placed into general -purpose register rd.

Operation:

if FPConditionCode(cc) = 0 then
GPR[rd] « GPR]rs]
endif

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual 637

Chapter 18

MOVF.fMt condtionaon rru rase MOVF.fmt

31 26 25 2120 1817 16 15 1110 65 0
COP1 fmt cc 0] tf fs fd MOVCF
010001 0|0 010001
6 5 3 11 5 5 6
Format:
MOVF.fmt fd, fs, cc (MIPS IV format)
Description:

If the floating-point condition code specified by cc is zero, then the valuein
floating-point register fsis placed into floating-point register fd. The source and
destination are valuesin format fmt.

If the condition codeis not zero, then floating-point register fsis not copied and
floating-point register fd retainsits previous value in format fmt. If fd did not
contain avalue either in format fmt or previously unused data from aload or
move-to operation that could be interpreted in format fmt, then the value of fd
becomes undefined. Thefieldsfsand fd must specify floating-point registersvalid
for operands of type fit; if they are not vaid, the result is undefined.

The moveis nonarithmetic; it causes no | EEE-754 exceptions.

Operation:

if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable exception
Reserved Instruction exception
Floating-Point Exceptions:
Unimplemented Operation exception

638 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

MOVN.FMt oo v MOVN.fmt

31 26 25 2120 16 15 1110 65 0
COP1 fmt rt fs fd MOVN
010001 010011
6 5 5 5 5 6
Format:
MOVN.fmt fd, fs, rt (MIPS IV format)
Description:

If the value in general-purpose register rt is not equal to zero, then the valuein
floating-point register fsis placed in floating-point register fd. The source and
destination are valuesin format fmt.

If general-purpose register rt contains zero, then floating-point register fsis not
copied and floating-point register fd contains its previous value in format fmt. If
fd did not contain a value either in format fmt or previously unused data from a
load or move-to operation that could be interpreted in format fmt, then the value
of fd becomes undefined. Thefieldsfsand fd must specify floating-point registers
valid for operands of type fmt; if they are not valid, the result is undefined.

The moveis nonarithmetic; it causes no | EEE-754 exceptions.

Operation:

if GPR][rt] # 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable exception
Reserved Instruction exception
Floating-Point Exceptions:
Unimplemented Operation exception

VR5432 Microprocessor User’s Manual 639

Chapter 18

M OVT Move Conditional on FPU True M OVT

31 26 25 2120 1817 16 15 1110 65 0
SPECIAL rs cc 0] tf rd 0 MOVT
000000 0|1 00000 | 000001

6 5 3 11 5 5 6
Format:
MOVT rd, rs, cc (MIPS IV format)
Description:

If the floating-point condition code specified by cc is one, then the contents of
general-purpose register rs are placed into general -purpose register rd.

Operation:

if FPConditionCode(cc) = 1 then
GPR[rd] « GPR]rs]
endif

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

640 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

M OVT . f m t COI:(;) i?it(i)r;ga-lpoor:nlilil’\ﬂ)o'\lireue M OVT f m t

31 26 25 2120 1817 16 15 1110 65 0
COP1 fmt cc 0] tf fs fd MOVT
010001 0|1 010001
6 5 3 11 5 5 6
Format:
MOVT.fmt fd, fs, cc (MIPS IV format)
Description:

If the floating-point condition code specified by cc isone, then the valuein
floating-point register fsis placed into floating-point register fd. The source and
destination are valuesin format fmt.

If the condition codeis not one, then floating-point register fsis not copied and
floating-point register fd retainsits previous value in format fmt. If fd did not
contain avalue either in format fmt or previously unused data from aload or
move-to operation that could be interpreted in format fmt, then the value of fd
becomes undefined. Thefieldsfsand fd must specify floating-point registersvalid
for operands of type fit; if they are not vaid, the result is undefined.

The moveis nonarithmetic; it causes no | EEE-754 exceptions.

Operation:

if FPConditionCode(cc) = 1 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable exception
Reserved Instruction exception
Floating-Point Exceptions:
Unimplemented Operation exception

VR5432 Microprocessor User’s Manual 641

Chapter 18

MOVZ.fmt Conditional on zore MOVZ.fmt

31 26 25 2120 16 15 1110 65 0
COP1 fmt rt fs fd MOVZ
010001 010010
6 5 5 5 5 6
Format:
MOV Z.fmt fd, fs, rt (MIPS IV format)
Description:

If the value in general-purpose register rt is equal to zero, then the value in
floating-point register fsis placed in floating-point register fd. The source and
destination are valuesin format fmt.

If general-purpose register rt does not contain zero, then floating-point register fs
is not copied and floating-point register fd contains its previous value in format
fmt. If fd did not contain a value either in format fmt or previously unused data
from aload or move-to operation that could be interpreted in format fmt, then the
value of fd becomes undefined. The fields fs and fd must specify floating-point
registers valid for operands of type fmt; if they are not valid, theresult is
undefined.

The moveis nonarithmetic; it causes no | EEE-754 exceptions.

Operation:

if GPR[rt] = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:
Coprocessor Unusable exception
Reserved Instruction exception
Floating-Point Exceptions:
Unimplemented Operation exception

642 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

MSUB.fmt Floaing Point MSUB.fmt

Multiply-Subtract

31 26 25 2120 16 15 1110 65 32 0
COP1X fr ft fs fd MSUB fmt
010011 101
6 5 5 5 5 3 3
Format:
MSUB.fmt fd, fr, fs, ft (MIPS 1V format)
Description:

The value in floating-point register fsis multiplied by the value in floating-point
register ft to produce aproduct. The valuein floating-point register fr is subtracted
from the product. The subtraction result iscalcul ated to infinite precision, rounded
according to the current rounding mode in the FCR31 register, and placed into
floating-point register fd. The operands and result are valuesin format fmt.

Cause bits are ORed into the Flag bitsif no exception is taken.

Thefieldsfr, fs, ft, and fd must specify floating-point registers valid for operands
of type fmt; if they are not valid, the result is undefined.

The operands must be valuesin format fmt; if they are not, the result is undefined
and the value of the operand floating-point registers becomes undefined.

Operation:

vfr — ValueFPR(fr, fmt)
vfs « ValueFPR(fs, fmt)
vt — ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (Vfs Xyt VIt) —fm¢ VIT)

VR5432 Microprocessor User’s Manual 643

Chapter 18

MSUB.fmt el MSUB.fmt

Multiply-Subtract
(continued)

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception

Underflow exception

Inexact Operation exception

644 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Move to FPU

MTCl (Coprocessor 1) MTCl
31 26 25 21 20 16 15 11 10 0

COP1 MT rt fs 0

010001 00100 0o000000O0OO
6 5 5 5 11
Format:
MTC1,fs (MIPS | format)
Description:

The contents of CPU general-purpose register rt are stored in the floating-point
general-purpose register fs.

The contents of floating-point register fs are undefined while the instruction
immediately following this instruction is being executed.

If the FR bit of the Status register is 0, only an even number can be specified asa
register number because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation isundefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the FR bitis 1, all of the 32 floating-point general-purpose registers can be
accessed, but only the low-order 32 bits are affected by this instruction.

Operation:

32,64 T: data — GPR [rt]231_0
T+1: if SR26: 1 then
FGR [fs] — undefined®? || data
else
FGR [fs] — data
endif

Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual 645

Chapter 18

MULfmt Floating-Point Multiply MULfmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd MUL
010001 000010
6 5 5 5 5 6

Format:
MUL.fmt fd, fs, ft (MIPS | format)

Description:
The contents of floating-point register fs are multiplied by those of floating-point
register ft, and the result is stored in floating-point register fd. The operand is
processed in the floating-point format fmt.
Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.
If the FR bit of the Status register is0, only an even number can be specified asa
register number because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

32,64T. StoreFPR (fd, fmt, ValueFPR (fs, fmt) * ValueFPR (ft, fmt))

Exceptions:
Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:
Unimplemented Operation exception
Invalid Operation exception
Inexact Operation exception
Overflow exception
Underflow exception

646

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

NEGfmt Floating-Point Negate NEGfmt

31

26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt 0 fs fd NEG
00000 000111

6

5 5 5 5 6

Format:

NEG.fmt fd, fs (MIPS | format)

Description:

The sign of the contents of floating-point register fsisinverted and theresult is
stored in floating-point register fd. The operand is processed in the floating-point
format fmt.

The sign isinverted arithmetically. Therefore, theinstruction isinvalid if the
operand is NaN.

Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

32,64T: StoreFPR (fd, fmt, Negate (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception

VR5432 Microprocessor User’s Manual 647

Chapter 18

NMADD.fmt Flosting Point NMADD.fmt

Negative
Multiply-Add
31 26 25 2120 16 15 1110 65 32 0
COP1X fr ft fs fd NMADD| fmt
010011 110
6 5 5 5 5 3 3

Format:
NMADD.fmt fd, fr, fs, ft (MIPS 1V format)

Description:

The value in floating-point register fsis multiplied by the value in floating-point
register ft to produce a product. The value in floating-point register fr is added to
the product. The resulting sum is calculated to infinite precision, rounded
according to the current rounding mode in the FCR31 register, negated by
changing the sign bit, and placed into floating-point register fd. The operands and
result are valuesin format fmt.

Cause hits are ORed into the Flag bitsif no exception is taken.

Thefieldsfr, fs, ft, and fd must specify floating-point registers valid for operands
of type fmt; if they are not valid, the result is undefined.

The operands must be valuesin format fmt; if they are not, the result is undefined
and the value of the operand floating-point registers becomes undefined.

Operation:

vfr — ValueFPR(fr, fmt)
vfs — ValueFPR(fs, fmt)
vft — ValueFPR(ft, fmt)
StoreFPR(fd, fmt, =(Vfr +¢m (VS Xt VL))

648 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

NMADD.fmt Flosting Point NMADD.fmt

Negative
Multiply-Add

(continued)

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception

Underflow exception

Inexact Operation exception

VR5432 Microprocessor User’s Manual 649

Chapter 18

NMSUB.fmt Flosting Point NMSUB.fmt

Negative
Multiply-Subtract

31 26 25 2120 16 15 1110 65 32 0
COP1X fr ft fs fd NMSUB| fmt
010011 111
6 5 5 5 5 3 3
Format:
NMSUB.fmt fd, fr, fs, ft (MIPS 1V format)
Description:

The value in floating-point register fsis multiplied by the value in floating-point
register ft to produce aproduct. The valuein floating-point register fr is subtracted
from the product. The subtraction result iscalcul ated to infinite precision, rounded
according to the current rounding mode in the FCR3L1 register, negated by
changing the sign bit, and placed into floating-point register fd. The operands and
result are values in format fmt.

Cause bits are ORed into the Flag bitsif no exception is taken.

Thefieldsfr, fs, ft, and fd must specify floating-point registers valid for operands
of type fmt; if they are not valid, the result is undefined.

The operands must be valuesin format fmt; if they are not, the result is undefined
and the value of the operand floating-point registers becomes undefined.

Operation:

vfr — ValueFPR(fr, fmt)
vfs — ValueFPR(fs, fmt)
vt — ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —((vfs Xt VIt) —pme VIT))

650 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

NMSUB.fmt Flosting Point NMSUB.fmt

Negative
Multiply-Subtract

(continued)

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception

Underflow exception

Inexact Operation exception

VR5432 Microprocessor User’s Manual 651

Chapter 18

PREFX

Prefetch Indexed PREFX

31

26 25 2120 16 15 1110 65 0

base index hint 0 PREFX
00000 001111

5 5 5 5 6

Format:

PREFX hint, index (base) (MIPS 1V format)

Description:

PREFX adds the contents of general-purpose register index to the contents of
general-purpose register base to form an effective byte address. It presentsadvice
that data at the effective address may be used in the near future. The hint field
supplies information about the way the data is expected to be used.

Unlike the VR5000, in which the PREFX instruction isexecuted asan NOP, in the
VR5432 data may be prefetched into the data cache as aresult of executing this
instruction.

PREFX is an advisory instruction that may change the performance of the
program. For all hint values, it neither changes architecturally visible state nor
aters the meaning of the program. The supported hint values are shown in Table
18-8.

652

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

PREFX

Prefetch Indexed
(continued) PREFX

Table 18-8 Hint Field Values Used in PREFX Instruction

Value Name Data Use and Desired Prefetch Action
0 load Datais expected to be loaded (not modified).
Fetch dataasif for aload.
1 Sore Datais expected to be stored or modified.
Fetch dataasif for a store.
2-3 Reserved
Dataisexpected to beloaded (not modified) but not reused
extensively; it “streams’ through the cache.
4 load_streamed Fetch dataasif for aload and placeit in the cache so that
it does not displace data prefetched as “retained.”
Datais expected to be stored or modified but not reused
5 store streamed extensively; it “streams’ through the cache.
- Fetch data asif for a store and place it in the cache so that
it does not displace data prefetched as “retained.”
Datais expected to be loaded (not modified) and reused
6 load retained extensively; it should be“retained” in the cache.
- Fetch dataasif for aload and placeit in the cache so that
it is not displaced by data prefetched as“ streamed.”
Datais expected to be stored or modified and reused
7 Sore retained extensively; it should be “retained” in the cache.
—= Fetch dataasif for a store and place it in the cache so that
it is not displaced by data prefetched as “ streamed.”
8-24 Reserved
25 writeback_invalidate
26-31 Reserved

VR5432 Microprocessor User’s Manual

653

Chapter 18

PREFX e PREFX

If MIPS IV instructions are supported and enabled and Coprocessor 1 is enabled
(allowing access to CP1X), PREFX does not cause any addressing-related
exceptions. If it does raise a nonaddressing-related exception condition, the
exception condition isignored. If an addressing-related exception condition is
raised and ignored, no datais prefetched. In such a case, even if no datais
prefetched, some action that is not architecturally visible—such as write-back of
adirty cache line—can take place.

PREFX never generates a memory operation for a location with an uncached
memory access type. However, it can result in amemory operation.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddressgs ¢ # basegs g0, the result of the instruction is undefined.

Prefetch cannot prefetch data from a mapped location unless the trandation for
that location is present inthe TLB. Locationsin memory pages that have not been
accessed recently may not have translationsin the TLB, so prefetch may not be
effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to
prefetch using an address pointer value before the validity of apointer is
determined.

Operation:

vAddr —~ GPR[base] + GPR[index]
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Reserved Instruction exception
Coprocessor Unusable exception

654 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

RECIP.fmt Reciprocal RECIP.fmt

31 26 25 21 20 16 15 1110 65 0
COP1 fmt 0 fs fd RECIP
010001 (ONONONON0] 010101
6 5 5 5 5 6
Format:
RECIP.fmt fd, fs (MIPS 1V format)
Description:

Thereciprocd of thevaluein floating-point register fsisplaced into floating-point
register fd. The operand and result are values in format fit.

The numeric accuracy of this operation meets the full accuracy specified by the
|EEE-754 floating-point standard for this operation.

Thefieldsfsand fd must specify floating-point registersvalid for operands of type
fmt; if they are not valid, the result is undefined.

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception

Underflow exception

Inexact Operation exception
Division by Zero exception

VR5432 Microprocessor User’s Manual 655

Chapter 18

ROUND.L.fmt [ooeeret ROUND.L.fmt

Round to Long
Fixed-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt 0 fs fd ROUND.L
00000 001000

6

5 5 5 5 6

Format:

ROUND.L.fmt fd, fs (MIPS 111 format)

Description:

The contents of floating-point register fs are converted into the 64-bit fixed-point
format and the result is stored in floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion isrounded to the closest value or even number,
regardless of the current rounding mode.

Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN and if the rounded result is outside the
range of —2°2 to 2°2 — 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur
and 252 — 1 is returned.

This operation is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User or Supervisor mode, a Reserved
Instruction exception occurs.

656

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

ROUND.L.fmt Jexrerr ROUND.L.fmt

Round to Long
Fixed-Point Format
(continued)

Operation:

64 T:. StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

Note: Same operation in 32-bit Kernel mode.

Exceptions:
Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

VR5432 Microprocessor User’s Manual 657

Chapter 18

ROUND.W.fmt Foaingroint ROUND.W.fmt

Round to Single
Fixed-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt 0 fs fd ROUND.W
00000 001100

6

5 5 5 5 6

Format:

ROUND.W.fmt fd, fs (MIPS 11 format)

Description:

The contents of floating-point register fs are converted into the 32-bit fixed-point
format and the result is stored in floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion is rounded to the closest value or even number,
regardless of the current rounding mode.

Thisinstructionisvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is0, only an even number can be specified asa
register number because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN and if the rounded result is outside the
range of 231 — 1 to —23, the Invalid Operation exception occurs. If the Invalid

Operation exception is not enabled, the exception does not occur and 23— 1 is
returned.

658

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

ROUND.W.fmt Foatingroint - ROUND.W.fmt

Round to Single
Fixed-Point Format
(continued)

Operation:

32,64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

VR5432 Microprocessor User’s Manual 659

Chapter 18

RSQRT.fmt Savare oot RSQRT.fmt

31 26 25 2120 16 15 1110 65 0
COP1 fmt 0 fs fd RSQRT
010001 00000 010110
6 5 5 5 5 6

Format:
RSQRT.fmt fd, fs (MIPS IV format)

Description:
The reciprocal of the positive square root of the value in floating-point register fs
is placed into floating-point register fd. The operand and result are valuesin
format fmt.
The numeric accuracy of this operation meets the full accuracy specified by the
|EEE-754 floating-point standard for this operation.
Thefieldsfsand fd must specify floating-point registersvalid for operands of type
fmt; if they are not valid, the result is undefined.

Operation:

StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:
Unimplemented Operation exception
Invalid Operation exception
Overflow exception
Underflow exception
Inexact Operation exception
Division by Zero exception

660 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Store Doubleword from FPU
SDCl (Coprocessor 1) SDC]—

31 26 25 21 20 16 15 0
SDC1 base ft offset
111101
6 5 5 16
Format:
SDC1 ft, offset (base) (MIPS I1 format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register baseto form avirtual address.

The contents of floating-point registers ft and ft + 1 are stored in the memory
position specified by the virtual address asadoubleword if the FR bit of the Status
register is 0. At thistime, the contents of the odd-numbered register specified by
ft + 1 correspond to the high-order 32 bits of the doubleword and the contents of
the even-numbered register specified by ft correspond to the low-order 32 bits.

If the least-significant bit in the ft field is not O, thisinstruction is not defined.

If the FRbitis 1, the contents of floating-point register ft are stored in the memory
location specified by the virtual address as a doubleword.

If any of the low-order three hits of the addressis not zero, an Address Error
exception occurs.

VR5432 Microprocessor User’s Manual 661

Chapter 18

SDC1

Store Doubleword from FPU

(Coprocessor 1) SDCl

(continued)

Operation:

32

64

T:

vAddr ~ ((offset15)16 || offsetis. o) + GPR [base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
if SRZG =1

data -« FGR [ﬂ]63...0
elseif fty = 0 then

data « FGR [ft+1]3; o || FGR [ftls1 o
else

data « undefine
endif
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

VAddr — ((offset;s5)*® || offset;s o) + GPR [base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
if SR26 =1

data — FGR [ﬂ]63...0
elseif ftg = 0 then

data -« FGR [ft+1]31m0 ” FGR [ft]31m0
else

data ~ undefine
endif
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

d64

d64

Exceptions:

Coprocessor Unusable exception
TLB Miss exception

TLB Invalid exception

TLB Modification exception
Bus Error exception

Address Error exception

662

VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

SDXCl Store Doubleword Indexed from FPU SDXCl

(Coprocessor 1)

31 26 25 2120 16 15 1110 65 0
COP1X base index fs 0 SDXC1
010011 00000 000001
6 5 5 5 5 6

Format:
SDXC1 fs, index (base) (MIPS 1V format)
Description:

The 64-bit doubleword in floating-point register fsis stored in memory at the
location specified by the aligned effective address. The contents of general-
purpose registers index and base are added to form the effective address.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddressgs ¢ # basegs g, the result is undefined.

An Address Error exception occursif EffectiveAddress, 4 # 0 (not doubleword-
aligned). If they are not, the result of the instruction is undefined.

Operation:

vAddr - GPR[base] + GPRJ[index]
if vAddr, o # 0% then SignalException(AddressError) endif
(pAddr, CCA) — AddressTranslation(vAddr, DATA, STORE)
if FP32RegistersMode then
data — FPR[fs]
else
if fsg = 0 then
data — FPR[fs4 1 || O]
else
data — undefined®
endif
endif
StoreMemory(CCA, DOUBLEWORD, data, pAddr, vAddr, DATA)

VR5432 Microprocessor User’s Manual 663

Chapter 18

SDXCl Store Doubleword Indexed from FPU SDXCl

(Coprocessor 1)
(continued)

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception
Address Error exception

TLB Refill exception

TLB Modified exception

TLB Invalid exception

664 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

SORT.fmt oating Poin SORT.fmt

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt 0 fs fd SQRT
00000 000100

6

5 5 5 5 6

Format:

SQRT.fmt fd, fs (MIPS I format)

Description:

The positive arithmetic square root of the contents of floating-point register fsis
calculated and the result is stored in floating-point register fd. The operand is
processed in the floating-point format fmt. The result isrounded asif calculated to
infinite precision and then rounded according to the current rounding mode. If the
value of the source operand is—0, theresult will be—0. Theresult is placed in the
floating-point register specified by fd.

Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

32,64T: StoreFPR (fd, fmt, SquareRoot (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Inexact Operation exception

VR5432 Microprocessor User’s Manual 665

Chapter 18

SUB.fmt

Floating-Point Subtract

SUB.fmt

31 26 25 21 20 16 15 11 10 6
COP1 fmt ft fs fd SUB
010001 000001
6 5 5 5 5 6

Format:
SUB.fmt fd, fs, ft (MIPS | format)

Description:
The contents of floating-point register ft are subtracted from those of floating-
point register fs, and the result is stored in floating-point register fd. Theresult is
rounded asif calculated to infinite precision and then rounded according to the
current rounding mode.
Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.
If the FR bit of the Status register is 0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

32,64T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) — ValueFPR (ft, fmt))

Exceptions:
Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:
Unimplemented Operation exception
Invalid Operation exception
Inexact Operation exception
Overflow exception
Underflow exception

666 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Store Word from FPU
SWC]— (Coprocessor 1) SWC]—

31 26 25 21 20 16 15 0
SwcC1 base ft offset
111001
6 5 5 16
Format:
SWCL ft, offset (base) (MIPS | format)
Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form avirtual address. The contents of the floating-point general-
purpose register ft are stored in the memory location at the specified address.

If the FR bit of the Status register is 0 and the least-significant bit in theft field is
0, the contents of the low-order 32 bits of floating-point register ft are stored in
memory. If theleast-significant bit intheft fieldis 1, the contents of thehigh-order
32 hits of floating-point register ft — 1 are stored.

If the FR bit is 1, all of the 64-bit floating-point registers can be accessed. The
contents of thelow-order 32 bits of theregister in theft field are stored in memory.

If either of the low-order two bits of the addressis not zero, an Address Error
exception occurs.

VR5432 Microprocessor User’s Manual 667

Chapter 18

Store Word from FPU
SWC]— (Coprocessor 1) SWC]—

(continued)

Operation:

32 T: VAddr « ((offset;5)'® || offset;s)+ GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
data — FGR [ftl31._o
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*® || offset;s) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
data -« FGR [ft]31m0
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable exception
TLB Miss exception

TLB Invalid exception

TLB Modified exception

Bus Error exception

Address Error exception

668 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

SWXC 1 Store Word Indexed from FPU SWXC 1

(Coprocessor 1)

31 26 25 2120 16 15 1110 65 0
COP1X base index fs 0 SWXC1
010011 00000 001000
6 5 5 5 5 6

Format:
SWXCL fs, index (base) (MIPS IV format)
Description:

The low 32-bit word from floating-point regist efsis stored in memory at the
location specified by the aligned effective address. The contents of general-
purpose registers index and base are added to form the effective address.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddressgs ¢ # basegs g, the result is undefined.

An Address Error exception occursif EffectiveAddress; # 0 (not word aligned).
If they are not, the result of the instruction is undefined.

VR5432 Microprocessor User’s Manual 669

Chapter 18

SWXCl Store Word Indexed from FPU SWXCl

(Coprocessor 1)
(continued)

Operation:

vAddr — GPR[base] + GPR[index]
if vAddry o # 0? then SignalException(AddressError) endif
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, STORE)
pAddr — pAddrpgize-1 3 || (PAddr,_ o xor (ReverseEndian || 02))
bytesel — vAddr, o xor (BigEndianCPU || 0%)
[* the bytes of the word are moved into the correct byte lanes */
if FP32RegistersMode then

data —~ FPRI[fs]3; o

else
if fsg = 0 then
data — FPR[fs4 1 || Ol31..0
else
data — FPRIfs4_ 1 || Oles..32
endif
endif

StoreMemory (CCA, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception
Address Error exception

TLB Refill exception

TLB Modified exception

TLB Invalid exception

670 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

TRUNC.L.fmt proree - TRUNC.L.fmt

Truncate to Long
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd TRUNC.L
010001 00000 001001
6 5 5 5 5 6
Format:
TRUNC.L.fmt fd, fs (MIPS 111 format)
Description:

The contents of floating-point register fs are converted into the 64-bit fixed-point
format and the result is stored in floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion isrounded toward 0, regardless of the current
rounding mode.

Thisinstruction isvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is0, only an even number can be specified asa
register number, because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN and if the rounded result is outside the
range of —2°2 to 2°2 — 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur
and 252 — 1 is returned.

This operation is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User or Supervisor mode, a Reserved
Instruction exception occurs.

VR5432 Microprocessor User’s Manual 671

Chapter 18

TRUNC.L.fmt _22n™ — TRUNC.L.fmt

Truncate to Long
Fixed-Point Format
(continued)

Operation:

64 T:. StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))

Note: Same operation in 32-bit Kernel mode.

Exceptions:
Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

672 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

TRUNC.W.fmt et TRUNC.W.fmt

Truncate to
Single Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd TRUNC.W
010001 00000 001101
6 5 5 5 5 6
Format:
TRUNC.W.fmt fd, fs (MIPS 11 format)
Description:

The contents of floating-point register fs are arithmetically converted into a 32-hit
fixed-point single format, and the result is stored in floating-point register fd. The
source operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward O, regardless of the current
rounding mode.

Thisinstructionisvalid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified asa
register number because adjacent even-numbered and odd-numbered registersare
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand isinfinite or NaN and if the rounded result is outside the
range of 231 — 1 to —231, the Invalid Operation exception occurs. If the Invalid
Operation exception is not enabled, the exception does not occur and 231 — 1 is
returned.

VR5432 Microprocessor User’s Manual 673

Chapter 18

TRUNC.W.fmt Foaingpoint TRUNC.W.fmt

Truncate to
Single Fixed-Point Format
(continued)

Operation:

32,64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))

Exceptions:
Coprocessor Unusable exception
Floating-Point exception
Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

18.4 FPU Instruction Opcode Bit Encoding

Figure 18-3 lists the bit encoding for FPU instructions.

674 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

Opcode
28...26

31...29 0 1 2 3 4 5 6 7
0
1
2 COP1
3
4
5
6 LWC1 LDC1
7 SWC1 SDC1

sub
23..21

25 24 O 1 2 3 4 5 6 7
0 MF DMFh CF g MT DMTh CT g
1 BC g g g g g g g
2 S D g g W Lh g g
3 g g g g g g g g

18...16 br

20..19 O 1 2 3 4 5 6 7
0 BCF BCT BCFL BCTL * * * *
1 * * * * * * * *
2 * * * * * * * *
3 * * * * * * * *

Figure 18-3 Bit Encoding for FPU Instructions (1 of 2)

VR5432 Microprocessor User’s Manual 675

Chapter 18

2.0 function
5..3 0 1 2 3 4 5 6 7
0 ADD SUB MUL DIV SQRT ABS MOV NEG
1 ROUND.LIN | TRUNC.LN CEIL.LN FLOOR.LI | ROUND.W | TRUNC.W CEILW FLOOR.W/RECIP
2 Y Y Y Y Y Y RSQRT Y
3 Y Y Y Y Y Y Y Y
4 CVT.S | CVT.D Y Y CVT.W | CVT.Ln Yy Y
5 Y Y Y Y Y Y Y Y
6 C.F C.UN CEQ | CUEQ | C.OLT | C.ULT | C.OLE | C.ULE
7 C.SF |C.NGLE| CSEQ | C.NGL | C.LT | C.NGE | C.LE | C.NGT
Figure 18-4 Bit Encoding for FPU Instructions (2 of 2)
Key:
* When an opcode marked with an asterisk is executed, the
Reserved Instruction exception occurs. These codes are reserved
for future expansion.
% Opcodes marked with a gamma cause an Unimplemente
Operation exception in al current implementations and ar
reserved for future expansion
n Opcodes marked with an eta are only defined when use of the
MIPS I11 instruction set is enabled. If the opcode is executed when
use of the instruction set is disabled (i.e., in 32-bit User or
Supervisor mode), the Unimplemented Operation exception
occurs.
676 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

19

This chapter provides a detailed description of the multimediainstructions. (For
an general overview of VR5432 instructions, see Chapter 16.)

19.1 Multimedia Extensions

TheVR5432 implementsinstructions and architectural extensionsto support high-
performance multimedia applications. These instructions interpret the 64-bit
floating-point registers as packed vectors of eight unsigned 8-bit integers, called
the octal byte or OB format. Considerable efficiency can be gained by operating
in parallel on data, such asimage data, initsoriginal format rather than promoting
it to larger integer formats. All of these instructions have atwo-cycle latency and
aone-cycle repeat rate.

VR5432 Microprocessor User’s Manual 677

Chapter 19

Three types of vector operations are supported:

» Vector-Vector. Each element of source vector vs is operated against
the corresponding elements of source vector vt to produce destination
vector vd, as shown in Figure 19-1.

» Vector-Scalar. Each element of source vector vsis operated against a
selected element of source vector vt to produce destination vecto vd,
as shown in Figure 19-2

e Vector-Immediate: Each element of source vector vs is operated
against an immediate value to produce destination vecto vd, as
shown in Figure 19-3.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

vi[7] vi[6] vt[5] vi[4] vi[3] vt[2] vi[1] vt[0]

vd[7] ‘vd[6] vd[5] vd[4] | vd3] | vd[2] vd[l] | vd[o]

Figure 19-1 Vector-Vector Operation

63 56 55 48 47 40 39 32 31 24 23 16 15 87 0
vi[7] ‘ vit[6] vt[5] ‘ vi[4] ‘ vi[3] ‘ vt[2] ‘ vi[1] ‘ vt[0]

vd[4] ‘vd[3] ‘ vd[2] ‘vd[l] ‘vd[O]

vd[7] ‘ vd[6] ‘ vd[s]

Figure 19-2 Vector-Scalar Operation

678

VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
vs[7] ‘ vs[6] vs[5]

imm

63Y Y56 55 Y Y4847 Y Y40 39y VY32 31Y Y24 23\? Y615 Y VY8 7 0
vd[7] ‘ vd[6] vd[5] vd[4] vd[3] vd[2] vd[1] vd[0]

Figure 19-3 Vector-Immediate Operation

The type of vector operation is selected by afield in the instruction. The four-bit
sel field selects the treatment of the vt operand field, as described in Table 19-1.
When avector-immediate operation is selected, the value of the immediateis
taken from the vt operand field.

Table 19-1 sel Field Encoding

Bit Encoding Description

0000 Vector-scalar operation; vt[Q] is the source operand.
0001 Vector-scalar operation; vt[1] isthe source operand.
0010 Vector-scalar operation; vt[2] is the source operand.
0011 Vector-scalar operation; vt[3] isthe source operand.
0100 Vector-scalar operation; vt[4] isthe source operand.
0101 Vector-scalar operation; vt[5] is the source operand.
0110 Vector-scalar operation; vt[6] is the source operand.
0111 Vector-scalar operation; vt[7] isthe source operand.
1011 Vector-vector operation

1111 V ector-immediate operation

Vector arithmetic operations (except for multiply-accumulate and shift) are
saturating; i.e., results that overflow or underflow are clamped to the largest or
smallest representable values (255 and 0, respectively). No exceptions occur asa
result of overflow or underflow.

Vector operations can a so be performed using the 192-bit V ector Accumulator as
the destination. This register isinterpreted as eight 24-bit accumulators, whichis
sometimes referred to as the OB format because it is only operated upon by data
in the octal byte format. As with many DSP architectures, having an accumulator

VR5432 Microprocessor User’s Manual 679

Chapter 19

wider than the operand data, shown in Figure 19-4, allows a series of operations
to be performed without concern about overflow or accumulation of round-off
error.

Multiplier

23 /

Adder

23 0
Vector Accumulator [i]

Figure 19-4 24-Bit Accumulator

680 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

19.2 Multimedia I nstruction For mat

A basic set of instructions to perform arithmetic and logical operations between
registersis provided. In addition, instructions exist for handling unaligned data,
permutations, comparisons, and conditional selection. For data movement, the

standard FPU instruction set is used. The R-type format used by the multimedia
instructions is shown in Figure 19-5. Some instructions do not require all fields,
in which case they are sometimes used to provide additional function selection

bits. The ALNI instruction has a unique interpretation of bits 21 through 25, not
described by thisfigure.

R-type (Register)

31 26 25 22 21 20 16 15 11 10
MEDIA sel 0 vt Vs vd function
6 4 0 5 5 5 6
MEDIA: 6-bit opcode
sel: 4-bit vector operation specifier or immediate value

VS
vt
vd:

function:

5-bit source 1 register
5-bit source 2 register
5-bit destination register
6-bit function field

Figure 19-5 Multimedia Instruction Format

VR5432 Microprocessor User’s Manual

681

Chapter 19

19.3 Multimedia I nstructions
Table 19-2 lists the multimedia instructions sorted by function field.
Table 19-2 Multimedia Instructions and Operations
((:5(?8)6 M nemonic Operation
1 C.EQ.OB Vector Compare Equal
2 PICKF.OB Vector Pick False
3 PICKT.OB Vector Pick True
4 C.LT.OB Vector Compare Less Than
5 C.LE.OB Vector Compare Less Than or Equal
6 MIN.OB Vector Minimum
7 MAX.OB Vector Maximum
10 SUB.OB Vector Subtract
11 ADD.OB Vector ADD
12 AND.OB Vector AND
13 XOR.0B Vector XOR
14 OR.OB Vector OR
15 NOR.OB Vector NOR
16 SLL.OB Vector Shift Left Logical
18 SRL.OB Vector Shift Right Logical
24 ALNI.OB Vector Align
31,sel =4 |SHFL.PACH.OB |Vector Element Shuffle
31,sel =5 |SHFL.PACL.OB |Vector Element Shuffle
31,sel =6 |SHFL.MIXH.OB |Vector Element Shuffle
31,sel =7 |SHFL.MIXL.OB |Vector Element Shuffle
32 RzU.OB Vector Scale, Round, and Clamp Accumulator
48 MUL.OB Vector Multiply
50,vd=0 |MULS.OB Vector Multiply and Subtract Accumulator
50,vd=16 |[MULSL.OB Vector Multiply, Subtract, and Load Accumulator
51,vd=0 [MULA.OB Vector Multiply-Accumulate
51,vd=16 |[MULL.OB Vector Multiply and Load Accumulator
62,sel =0 |WACL.OB Vector Write Accumulator Low
62,se =8 |WACH.OB Vector Write Accumulator High
682 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

Table 19-2 Multimedia Instructions and Operations (continued)

%5?3;3 Mnemonic Operation
63,5l =0 |RACL.OB Vector Read Accumulator Low
63,sel =4 |RACM.OB Vector Read Accumulator Middle
63,s¢l =8 |RACH.OB Vector Read Accumulator High

VR5432 Microprocessor User’s Manual

683

Chapter 19

ADDOB Vector Add

ADD.OB

31 26 25 22 2120 16 15 1110 65
MEDIA sel 0 vt VS vd ADD
010010 0 001011
6 4 1 5 5 5 6
Format:

ADD.OB vd, vs, vt

Description:

The valuesin vector vt are added to the values in vector vs. Saturated arithmetic

is performed: overflows and underflows clamp to the largest or smallest

representable value before writing to vector vd. The sel field sel ectsthe val ues of

W{[] used for each i.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand

vectors become undefined. The result of thisinstruction is undefined if the

processor is executing in 16 FP register mode.

684 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

Vector Add
ADDOB (continued)

Operation:

ADD.OB

ts « FPR[vs]

tt — select(sel, vt)

FPR[vd] « AddOB(tsg3. 56, tts3. 56)
|| AddOB(tsss_4g, ttss. 48)
|| AddOB(ts47..40, tt47..40)
|| AddOB(ts3g_ 32, tt3g. 32)
|| AddOB(ts31. 24, tt31. 24)
|| AddOB(tsz3_ 16, tt23..16)
|| AddOB(ts15_g, tt15. g)
|| AddOB(ts; o, tt; o)

function AddOB(ts, tt)

t— (0] ts)+ (0l tt)
if tg = 1 then
AddOB - 18
else
AddOB - t;
endif
end AddOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual

685

Chapter 19

ALNIOB Vector Align,

Constant Alignment

ALNI.OB

31 26 252423 2120 16 15 11 10 65 0
MEDIA 0 | Imm vt S vd ALNI
010010 00 011000
6 2 3 5 5 5 6
Format:

ALNI.OB vd, vs, vt, imm

Description:

The align amount is computed by masking the immediate, then using that value to
control afunnel shift of vector vs concatenated with vector vt. No immediate or

scalar mode is available.

No data-dependent exceptions are possible. The operands must be valuesin OB

format. If they are not, the results are undefined and the values of the operand
vectors become undefined. This operation does not interpret the format of the

registers specified. The result of this instruction is undefined if the processor is

executing in 16 FP register mode.

Operation:

S « imm2”0||03
if BigEndianCPU then

else
FPR[vd] « (FPR[vs] || FPR[Vi])g3+s..
endif

FPR[vd] « (FPR[vs] || FPR[Vt])127-s.64-s

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

686 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

AND.OB Vector AND AND.OB
31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd AND
010010 0 001100
6 4 1 5 5 5 6
Format:

AND.OB vd, vs, vt

Description:

Each element of vector vsis combined with the corresponding element of vector
vtin abitwise logical AND operation. The sel field selects the values of wvi[] used

for eachi.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

687

Chapter 19

AND.OB Vector AND

(continued)

Operation:

AND.OB

ts « FPR|vs]
tt — select(sel, vt)
FPR[vd] « AndOB(tsg3 56, tts3. 56)
|l AndOB(tsss_ 48, ttss.48)
|| AndOB(ts47. .40, tt47..40)
|l AndOB(tszg. 32, tt3g.32)
|| AndOB(tszy. 24, tt31.24)
|l AndOB(tsz3. 16, tt23.16)
|l AndOB(ts;5 g, tt15. g)
|| AndOB(ts; o, tt7 o)
function AndOB(ts, tt)
AndOB - (0 || ts) and (O || tt)
end AndOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

688

VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

C.

EQ.OB

Vector Compare (Equal)

C.EQ.OB

31 26 25 22 21 20 16 15 11 10 65 0
MEDIA sel 0 vt VS 0 C.EQ
010010 0 00000 000001
6 4 1 5 5 5 6
Format:
C.EQ.OB vs, vt
Description:

The valuesin vector vt are compared to the valuesin vector vs and the result is
written to the condition codes. All 8 CC bits are written with comparison results.
The comparison madeis equal (EQ). Theinverse comparison (NE) is not
necessary; the instructions that use condition codes (BC1F, BC1T, MOVF,
MOVT, PICKF, PICKT) alow both CC=0and CC = 1 tests. The sel field selects
the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

689

Chapter 19

C.EQOB '™wommeEw cEQ.OB

Operation:

ts « FPR[vs]

tt — select(sel, vt)
SetFPConditionCode(7, (tSg3. 56 = ttg3.56))
SetFPConditionCode(6, (tSs5_4g = tts5_45))
SetFPConditionCode(5, (tS47._40 = tt47.40))
SetFPConditionCode(4, (ts3g. 32 = ttzg_32))
SetFPConditionCode(3, (tS31. 04 = tt31.24))
SetFPConditionCode(2, (tso3 16 = ttr3._16))
SetFPConditionCode(1, (ts15. g = tt15 g))
SetFPConditionCode(0, (ts7 g = tt7_ o))

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

690 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

C.LE.OB e C.LE.OB

(Less Than or Equal)

31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS 0 C.LE
010010 0 (ONONONON0] 000101
6 4 1 5 5 5 6
Format:
C.LE.OB vs, vt
Description:

The valuesin vector vt are compared to the valuesin vector vs and the result is
written to the condition codes. All 8 CC bits are written with comparison results.
The comparison madeislessthan or equal (LE). Theinverse comparison (GT) is
not necessary; the instructions that use condition codes (BC1F, BC1T, MOVF,
MOVT, PICKF, PICKT) alow both CC=0and CC = 1 tests. The sel field selects
the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 691

Chapter 19

C.LE.OB (ector Compare C.LE.OB

(continued)

Operation:

ts « FPR[vs]

tt — select(sel, vt)
SetFPConditionCode(7, (tSg3. 56 < tt3 56))
SetFPConditionCode(6, (tSs5_45 < ttss. 45))
SetFPConditionCode(5, (tS47. 40 < tt47.40))
SetFPConditionCode(4, (ts3g. 32 < ttzg 32))
SetFPConditionCode(3, (tS31. 24 < tt31. 24))
SetFPConditionCode(2, (ts53. 16 < ttr3.16))
SetFPConditionCode(1, (ts15 g < tt15 g))
SetFPConditionCode(0, (ts7 g < tt7_g))

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

692 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

C.

LT.OB

Vector Compare

(Less Than)

C.LT.OB

31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS 0 C.LT
010010 0 (ONONONON0] 000100
6 4 1 5 5 5 6
Format:
C.LT.OB vs, vt
Description:

The valuesin vector vt are compared to the valuesin vector vs and the result is
written to the condition codes. All 8 CC bits are written with comparison results.

The comparison madeislessthan(LT). Theinverse comparison (GE) is not

necessary; the instructions that use condition codes (BC1F, BC1T, MOVF,
MOVT, PICKF, PICKT) alow both CC=0and CC = 1 tests. The sel field selects
the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

693

Chapter 19

Vector Compare
C- LTOB (Less Than)

(continued)

Operation:

C.LT.OB

ts « FPR[vs]

tt — select(sel, vt)
SetFPConditionCode(7, (tSg3. 56 < tts3.56))
SetFPConditionCode(6, (iS55 45 < tiss. 48))
SetFPConditionCode(5, (tS47. 40 < tt47..40))
SetFPConditionCode(4, (ts39 32 < tt3g 32))
SetFPConditionCode(3, (153124 < tt31.24))
SetFPConditionCode(2, (tSy3 16 < tto3 16))
SetFPConditionCode(1, (ts15. g < tt15.38))
SetFPConditionCode(0, (ts7_g < tt7 o))

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

694

VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

MAXOB Vector Maximum MAXOB

31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd MAX
010010 0 000111
6 4 1 5 5 5 6
Format:

MAX.OB vd, vs, vt

Description:

The valuesin vector vt are compared to the valuesin vector vs and the larger is
written to each element of vector vd. The sl field selects the values of wi[] used
for eachi.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 695

Chapter 19

MAXOB Vector Maximum MAXOB

(continued)

Operation:

ts « FPR[vs]

tt —~ select(sel, vt)

FPR[vd] « MaxOB(tsg3._ 56, ttg3. 56)
|| MaxOB(tsss_ 48, ttss.48)
|| MaxOB(ts47. 40, tt47..40)
|| MaxOB(tszg. 32, tt3g.32)
|| MaxOB(ts31. 24, tt31.24)
|| MaxOB(tsz3_ 16, tt23.16)
|| MaxOB(tsy5._ g, tt15..8)
|| MaxOB(ts; g, tt7 o)

function MaxOB(ts, tt)
if (O] ts) > (0| tt) then

MaxOB « ts
else

MaxOB - tt
endif

end MaxOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

696 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

MINOB Vector Minimum MINOB

31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd MIN
010010 0 000110
6 4 1 5 5 5 6
Format:

MIN.OB vd, vs, vt

Description:

The values in vector vt are compared to the valuesin vector vs and the smaller is
written to each element of vector vd. The sl field selects the values of wi[] used
for eachi.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 697

Chapter 19

MINOB Vector Minimum MINOB

(continued)

Operation:

ts « FPR[vs]
tt — select(sel, vt)
FPR[Vd] — MinOB(t363..56, tt63..56)

|| MinOB(tsss_ 4, ttss. 48)
|| MinOB(tS47. 40, tta7..40)
|l MinOB(tsgg. 32, tt3g..32)
[| MinOB(ts31. 24, tt31. 24)
I MinOB(ts23. 16, tt23..16)
|| MinOB(ts15_g, tty5. g)
|| MinOB(ts7_g, tt7 o)
function MinOB(ts, tt)
if (0 || ts) < (0 || tt) then
MinOB - ts
else
MinOB - tt
endif
end MinOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

698 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

MUL.OB MUL.OB

31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd MUL
010010 0 110000
6 4 1 5 5 5 6
Format:

MUL.OB vd, vs, vt

Description:

Thevaluesinvector vt are multiplied by the valuesin vector vsand the product is
written into vector vd. Saturated arithmetic is performed: overflows and
underflows clamp to the largest or smallest representable value before writing to
vector vd. The sel field selects the values of vi[] used for eachii.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 699

Chapter 19

MUL.OB

Operation:

Vector Multiply
(continued)

MUL.OB

ts « FPR[vs]

tt — select(sel, vt)

FPR[vd] — MulOB(tse3_se. tts3..56)
|| MulOB(tsss_ 48, ttss. 4g)
|| MulOB(tS47. 40, tta7.40)
|l MUlOB(tsgg. 32, tt39..32)
[| MUlOB(ts31. 24, tta1. 24)
|l MulOB(ts23. 16, tt23..16)
|| MUIOB(ts15._g, tt15.8)
|| MulOB(ts7 g, tt7 o)

function MulOB(ts, tt)

t « (08| ts) x (08 || tt)
if tj5 g % 08 then
MulOB « 18
else
MulOB « t7 g
endif
end MulOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

700

VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

MULA.OB rec! MULA.OB

Multiply-Accumulate

31 26 25 22 2120 16 15 11 10 65 0
MEDIA sel 0 vt S A MULA
010010 0 00000 110011
6 4 1 5 5 5 6

Format:

MULA.OB vs, vt

Description:

Thevaluesinvector vt are multiplied by the valuesin vector vsand the product is
added to the Accumulator. Wrapped arithmetic is performed: overflows and
underflows wrap around the Accumulator’ s representabl e range before being
written into the Accumulator. The Accumulator isin the OB format. The sel field
selects the values of vi[] used for each i.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the val ues of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 701

Chapter 19

MULAOB Multiply\//-icggtrjmulate MULAOB

(continued)

Operation:

ts « FPR[vs]

tt — select(sel, vt)

ACC ~ AccMUulOB(ACC191 168 tS63. 56 ts3.56)
|| AccMUlOB(ACC167..144, tSs5. 48, 55, 48)
|| AccMUIOB(ACC143..120, tS47..40, t47..40)
|| AccMUIOB(ACC119_ 96, tS39.3 » tt39.32)
|| AccMUIOB(ACCgs_ 72, tS31. 24, tt31..24)
|| AccMUIOB(ACC7;. 48, tS23..16 tt23.16)
|| AccMUIOB(ACC47. 24, tS15_8. tt15..8)
|| AccMUlOB(ACCy3 g, tS7. o, tt7.)

function AccMulOB(a, ts, tt)

AccMUlOB « a + (0% || ts) x (018 || tt)
end AccMulOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

702 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

MULL.OB

Vector Multiply and
Load Accumulator

MULL.OB

MULL.OB vs, vt

Description:

31 26 25 22 2120 16 15 11 10 65 0
MEDIA sel 0 vt S L MULL
010010 0 10000 110011
6 4 1 5 5 5 6

Format:

Thevaluesinvector vt are multiplied by the valuesin vector vsand the product is
stored in the Accumulator. Wrapped arithmetic is performed, such that overflows
and underflows wrap around the Accumulator’ s representabl e range before being
written into the Accumulator. The Accumulator result isin the OB format. The sel
field selects the values of vi[] used for each i.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the val ues of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

703

Chapter 19

MULL.OB Lond Acsumutator MULL.OB

(continued)

Operation:

ts « FPR[vs]

tt — select(sel, vt)

ACC « AccMulOB(0%, tsgs._ 56, ttes. 56)
|| AccMUlOB(0%4, tsss_4g, ttss_4g)
|| AccMUIOB(0%*, ts47. 40, tta7. 40)
[| AccMUIOB(0%, tszg. 32, ttag. 32)
[| AccMUIOB(0%, ts31. 24, a1 24)
|| AccMUIOB(0%4, ts,3. 16, tt23. 16)
Il AccMUIOB(0?, ts15. g, th15. 6)
|| AccMUlOB(0%4, ts7 o, tt7 o)

function AccMulOB(a, ts, tt)
AccMUlOB « a + (0% || ts) x (08 || tt)

end AccMulOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

704

VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

MULS.OB

Vector Multiply and

Subtract Accumulator

MULS.OB

MULS.OB vs, vt

Description:

31 26 25 22 2120 16 15 11 10 65 0
MEDIA sel 0 vt S S MULS
010010 0 00000 110010
6 4 1 5 5 5 6

Format:

Thevaluesinvector vt are multiplied by the valuesin vector vsand the product is
subtracted from the Accumulator. Wrapped arithmetic is performed: overflows

and underflows wrap around the Accumulator’ s representabl e range before being
written into the Accumulator. The Accumulator isin the OB format. The sel field

selects the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

705

Chapter 19

MULS.OB Subiract Accumulator MULS.OB

(continued)

Operation:

ts « FPR[vs]

tt — select(sel, vt)

ACC ~ SubMUIOB(ACCjg; . 168. tS63..56: tt63..5)
|| SubMUlOB(ACC167..144, tSs5..48, tt55. 48)
|| SubMUlOB(ACC143..120, tS47..40, t47..40)
|| SubMUIOB(ACC119. 96, tS39..32, tt39.32)
|| SubMUlOB(ACCgs_ 72, tS31. 24, t31..24)
|| SUbMUIOB(ACC7; 48, tS23..16 tt23.16)
|| SubMUIOB(ACC47. 24. tS15_8, tt15..8)
|| SUbMUIOB(ACCy3 g, tS7 0, tt7)

function SubMulOB(a, ts, tt)

SubMulOB « a - (08 || ts) x (0% || tt)
end SubMulOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

706 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

MULSL.OB yocior MultPy MULSL.OB

Subtract and Load

31 26 25 22 2120 16 15 11 10 65 0
MEDIA sel 0 vt S L MULSL
010010 0 10000 110010
6 4 1 5 5 5 6

Format:

MULSL.OB vs, vt

Description:

The values in vector vt are multiplied by the valuesin vector vs and negated. The
vector result is stored to the Accumulator. The Accumulator result isin the OB
format. The sel field selects the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 707

Chapter 19

MULSL.OB Subtrant and Lont MULSL.OB

(continued)

Operation:

ts « FPR[vs]

tt — select(sel, vt)

ACC — SubMulOB(0%, tsgs. 56, ttes. 56)
|| SubMUIOB(0%4, tsgg 48, ttss 48)
|| SubMUlOB(0%%, tS47 40, tt47 40)
|| SUbMUIOB(0%*, ts3g 3, ttag 32)
|| SUbMUIOB(0?, ts31. 24, tta1. 24)
|| SUbMUIOB(0%*, tsy3 16, tto3 16)
|| SubMUlOB(0%4, tsy5 g, tt15 g)
|| SubMUlOB(0%4, ts7 o, tt7 o)

function SubMulOB(a, ts, tt)
SubMulOB « a - (018 || ts) x (0%° || tt)

end SubMulOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

708 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

NOR.OB Vector NOR NOR.OB
31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd NOR
010010 0 001111
6 4 1 5 5 5 6
Format:

NOR.OB vd, vs, vt

Description:

Each element of vector vsis combined with the corresponding element of vector
vt in abitwise logical NOR operation. The sel field selects the values of wi[] used

for eachi.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

709

Chapter 19

NOR.OB o NOR.OB

(continued)

Operation:

ts « FPR[vs]
tt — select(sel, vt)
FPR[vd] — NorOB(tse3_s6, tt63..56)
|| NorOB(tsss, 4, ttss. 43)
|| NorOB(ts47 40 tta7 40)
|l NorOB(tszg. 32, tt3g..32)
|| NorOB(tsay. 24, tt31. 24)
|l NorOB(tsz3. 16 tt23..16)
|| NorOB(ts15_g, tty5. g)
|| NorOB(ts7_g, tt7. o)
function NorOB(ts, tt)
NorOB « (0 || ts) nor (0 || tt)
end NorOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

710 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

OR.OB Vector OR OR.OB
31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd OR
010010 0 001110
6 4 1 5 5 5 6
Format:

OR.OB vd, vs, vt

Description:

Each element of vector vsis combined with the corresponding element of vector
vt in abitwise logical OR operation. The sdl field selects the values of wt[] used

for eachi.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

711

Chapter 19

OR.OB e OR.OB

(continued)

Operation:

ts « FPR[vs]
tt —~ select(sel, vt)
FPR[vd] « OrOB(tsg3. 56, tts3.56)
|| OrOB(tsss. 4 | tts5..48)
|| OrOB(ts47..4 , tt47..40)
|| OrOB(ts3g.3 , tt39..32)
|| OrOB(ts3y..2 ., tt31..24)
|| OrOB(ts23..1 ., tt23..16)
|| OrOB(ts15_g. ths.g)
|| OrOB(ts; g, tt7 o)
function OrOB(ts, tt)
OrOB ~ (0| ts) or (O || tt)
end OrOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

712 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

PICKF.OB veorrsrase P|CKF.OB

31 26 25 22 2120 16 15 11 10 65 0
MEDIA sel 0 vt S vd PICKF
010010 0 000010
6 4 1 5 5 5 6

Format:

PICKF.OB vd, vs, vt

Description:

The vector vd is written with either the corresponding element of vector vsor the
corresponding element of vector vt, depending on the state of the CC bits. All 8
CC hitsare used. The sel field selects the values of vi[] used for eachii.

Both PICKF and PICKT are necessary since the operands are not symmetrical;
every element of vector vsisused, whereasthe sel field selectsvalues of wt[] used
for eachi.

No data-dependent exceptions are possible. The operands must be avaluein OB
format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 713

Chapter 19

PICKF.OB ~ Yeorsrse P|CKF.OB

(continued)

Operation:

ts « FPR[vs]

tt — select(sel, vt)

FPR[vd] « PickOB(FPConditionCode(7) = 0, tSg3 56, tte3.56)
|| PickOB(FPConditionCode(6) = 0, tSg5_4g, ttss5. 48)
|| PickOB(FPConditionCode(5) = 0, tS47. 40, tt47.40)
|| PickOB(FPConditionCode(4) = 0, tS3g._ 32, ttag 32)
|| PickOB(FPConditionCode(3) = 0, tS31 24, tt31.24)
|| PickOB(FPConditionCode(2) = 0, tso3 16, tt23. 16)
|| PickOB(FPConditionCode(1) = 0, ts15_g, tt15 g)
|| PickOB(FPConditionCode(0) = 0, ts7_q, tt7 q)

function PickOB(c, ts, tt)
if ¢ then

PickOB - ts
else
PickOB - tt
endif

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

714 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

PICKT.OB PICKT.OB

31 26 25 22 2120 16 15 11 10 65 0
MEDIA sel 0 vt S vd PICKT
010010 0 000011
6 4 1 5 5 5 6

Format:

PICKT.OB vd, vs, vt

Description:

The vector vd is written with either the corresponding element of vector vsor the
corresponding element of vector vt, depending on the state of the CC bits. All 8
CC hitsare used. The sel field selects the values of vi[] used for eachii.

Both PICKF and PICKT are necessary since the operands are not symmetrical;
every element of vector vsisused, whereasthe sel field selectsvalues of wt[] used
for eachi.

No data-dependent exceptions are possible. The operands must be avaluein OB
format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 715

Chapter 19

PICKT.OB ~ ‘“eorsme P|CKT.OB

(continued)

Operation:

ts « FPR]vs]

tt — select(sel, vt)

FPR[vd] «~ PickOB(FPConditionCode(7) = 1, tSg3._56, tts3.56)
|| PickOB(FPConditionCode(6) = 1, tSgs_4g, ttss. 43)
|| PickOB(FPConditionCode(5) = 1, tS47_40, tta7.40)
|| PickOB(FPConditionCode(4) = 1, ts3g._ 32, ttag 32)
|| PickOB(FPConditionCode(3) = 1, tS3q_ 24, tt31. 24)
|| PickOB(FPConditionCode(2) = 1, tso3 16, ttr3. 16)
|| PickOB(FPConditionCode(1) = 1, ts15_g, tt15 g)
|| PickOB(FPConditionCode(0) = 1, ts7_q, tt7 o)

function PickOB(c, ts, tt)
if ¢ then

PickOB « ts
else
PickOB - tt
endif

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

716 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

RACH.OB vector Reac RACH.OB

Accumulator High

31 26 25 22 21 20 16 15 11 10 65 0
MEDIA H 0 0 0 vd RACH
010010 1000 |0] 000O0O 00000 111111
6 4 1 5 5 5 6

Format:
RACH.OB vd
Description:

Read the most-significant third of the bits of the Accumulator elements. No
clamping of the values extracted is performed; the bits are simply copied into
elements of vd[].

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

No data-dependent exceptions are possible. The result of thisinstruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

FPR[vd] — ACC191. 184
[l ACC167..160
[| ACC143.136

[l ACC119. 112
[| ACCgs_ gg

[| ACC71. 64
[| ACCy47.40
[| ACCo3. 16

Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual 717

Chapter 19

RACL.OB veotor Read RACL.OB

Accumulator Low

31 26 25 22 2120 16 15 1110 65 0
MEDIA L 0 0 0 vd RACL
010010 0000 (O] 000O0O 00000 111111
6 4 1 5 5 5 6

Format:
RACL.OB vd
Description:

Read the least-significant third of the bits of the Accumulator elements. No
clamping of the values extracted is performed; the bits are simply copied into
elements of vd[].

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

No data-dependent exceptions are possible. The result of thisinstruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

FPR[vd] — ACC175 168

[| ACCy51..144

[l ACC127.120
[l ACC103..06

|| ACC79.72
|| ACCss. 48
|| ACCay. 24
[ACC7. o

Exceptions:

Coprocessor Unusable exception

718 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

RACM.OB vector Read RACM.OB

Accumulator Middle

31 26 25 22 21 20 16 15 11 10 65 0
MEDIA M 0 0 0 vd RACM
010010 0100 (Ol 000O0O 00000 111111
6 4 1 5 5 5 6

Format:
RACM.OB vd
Description:

Read the middlethird of the bits of the Accumulator elements. No clamping of the
values extracted is performed; the bits are smply copied into elements of vd[].

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

No data-dependent exceptions are possible. The result of thisinstruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

FPR[vd] — ACCyg3. 176

|| ACC159..152

|| ACC135.128
|| ACC111.104

Il ACCg7.g0
|l ACCs3..56
Il ACC3g.32
I ACCy5. g

Exceptions:

Coprocessor Unusable exception

VR5432 Microprocessor User’s Manual 719

Chapter 19

RZU.OB

Vector Scale, Round,

and Clamp Accumulator

RZU.OB

31

26 25 22 2120

16 15 1110

65

MEDIA sel 0
0

vt

0
00000

vd

RzZU
100000

6 4 1

5

Format:
RZU.OB vd, vt

Description:

The valuesin the Accumulator are logically shifted right by the values in vector
vt, rounded to the nearest value with exactly halfway results rounded toward zero,
and clamped to an unsigned subset of the range of vd[]. The Accumulator isinthe
OB format. The sel field selectsthe values of vi[] used for eachi. The shift amount
must be an immediate and the value must be 0, 8, or 16. The clamping rangeis

0..255.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

720

VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

Vector Scale, Round,
and Clamp Accumulator
(continued)

RZU.OB

Operation:

RZU.OB

tt — select(sel, vt)

FPR[vd] — RZUOB(ACCio1 168, ttes. 56)
|l RZUOB(ACC147..144. tts5. 48)
|l RZUOB(ACC143..120. tta7..40)
|l RZUOB(ACC119. 96 tt39..32)
|| RZUOB(ACCgs_72, tt31..24)
|| RZUOB(ACC71. 48, tt23..16)
|| RZUOB(ACCy47. 24, tt15. 8)
|l RZUOB(ACC33_ 0. tt7.0)

function RZUOB(a, s)
if 0 || s > 23 then

RZUOB -~ 08
else
t— 0% ags s
if 0| t< 0| 18 then
RZUOB - t; o
else
RZUOB - 18
endif
endif
end RZUOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual

721

Chapter 19

SHFL.op.OB SHFL.op.OB

Shuffle
31 26 25 22 2120 16 15 11 10 65 0
MEDIA sel 0 vt S vd SHFL
010010 0 011111
6 4 1 5 5 5 6
Format:

SHFL.op.OB vd, vs, vt

Description:

Elements of vectorsvs and vt are merged into anew vector. Not al combinations
of values are available; the operations of thevariants of thisinstruction aretailored
to the data movement patterns of specific calculations. The shuffles available are
givenin Table 19-3.

The sel field selects the values of Wi[] used for eachi. The sel field must specify a
vector, not an immediate or ascalar. The remaining bits in the field are not used
for avt[] select, but rather are used to encode the shuffle operation.

Table 19-3 Operation Encoding for Shuffles

sel Operation | vd[7] | vd[6] | vd[5] | vd[4] | vd[3] | vd[2] | vd[1] | vd[Q]
0100 PACH vy[7] | vg5] | v93] | vo1] | vt[7] | vt[5] | wvi[3] | vi[1]
0101 PACL vy6] | vg4] | v92] | vy0] | vt[6] | vt[4] | vi[2] | vt[O]
0110 MIXH vs[7] | wvt[7] | vd[6] | vt[6] | ve[5] | vt[5] | vd[4] | vi[4]
0111 MIXL ve[3] | vi[3] | vd2] | vt[2] | v91] | vi[1] | vg0] | vt[O]

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

722

VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

Vector
Shuffle
(continued)

SHFL.0op.OB

Operation:

SHFL.op.OB

PACH.OB
ts « FPR[vs]
tt — select(sel, vt)
FPR[vd] « tse3.56 || tS47..40

|| ts31..24 |l tS15.8
|| tte3. 56 || tta7.4

|| tt31. 24 || tt15. 8
PACL.OB

ts « FPR[vs]
tt — select(sel, vt)
FPR[vd] « tsss_4g || tS39..32

|| ts23.16 Il tS7..0
|| tts5. 48 || ttag. 3

|| tt23.16 |l tt7. 0
MIXH.OB

ts « FPR[vs]

tt — select(sel, vt)

FPRIvd] « tsg3_s6 || tts3..56
Il tsss..48 || ttss. 48
Il ts47..40 Il tt47..40
| ts3g..32 || ttzg..32

VR5432 Microprocessor User’s Manual

723

Chapter 19

SHFL.0op.OB veer SHF| .0p.OB

(continued)

Operation (continued):

MIXL.OB
ts « FPR[vs]
tt — select(sel, vt)
FPR[vd] « ts31.24 [tt31. 24
Il ts23..16 I tt23..16

[l ts15.8 || tt15. 8
[lts7.0lltt7.0

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

724 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

SLL.OB

Vector Shift Left Logical

SLL.OB

31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd SLL
010010 0 010000
6 4 1 5 5 5 6
Format:

SLL.OB vd, vs, vt

Description:

Each element of vector vsis shifted left by an amount specified by an immediate
or an element of vector vt, and zeros are shifted into the low-order bits. Theresults
are written into vector vd. All but the lower 3 bits of the shift amount are masked
to O, so thelargest possible shift is 7 places. The sel field selects the values of vi[]

used for each i, which must be ascalar or an immediate.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the val ues of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

725

Chapter 19

SLLOB Vector Shift Left Logical SLLOB

(continued)

Operation:

ts « FPR[vs]

tt — select(sel, vt)

FPR[vd] « SLLOB(tSg3. 56, ttg3.56)
|| SLLOB(tsss. 48, tts5..48)
|| SLLOB(ts47..40, tt47..40)
|| SLLOB(ts39..32, tt39..32)
|| SLLOB(ts31. .24, tt31..24)
|| SLLOB(ts23. 16 tt23..16)
|| SLLOB(ts15_8. tt15.8)
|| SLLOB(ts7 g, tt7 o)

function SLLOB(ts, tt)

S « 1ty o
SLLOB « ts7. o]l 0°
end SLLOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

726 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

SRL.OB

Vector Shift Right Logical

SRL.OB

31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd SRL
010010 0 010010
6 4 1 5 5 5 6
Format:

SRL.OB vd, vs, vt

Description:

Each element of vector vsisshifted right by an amount specified by an immediate
or an element of vector vt, and zeros are shifted into the low-order bits. Theresults
arewritten into vector vd. All but the lower 3 bits of the shift amount are masked
to O, so thelargest possible shift is 7 places. The sel field selects the values of vi[]

used for each i, which must be ascalar or an immediate.

No data-dependent exceptions are possible. The operands must be valuesin the

OB format. If they are not, the results are undefined and the val ues of the operand
vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual

727

Chapter 19

SRL OB Vector Shift Right Logical SRL . OB

(continued)

Operation:

ts « FPR[vs]

tt — select(sel, vt)

FPR[vd] « SRLOB(tsg3. 56, tts3. 56)
|| SRLOB(tsss. 48, ttss. 48)
|| SRLOB(ts47..40 tta7..40)
|| SRLOB(ts39. .32, tt3g.32)
|| SRLOB(ts31. 24, tt31. 24)
|| SRLOB(ts23. .16 tt23..16)
|| SRLOB(ts;5. 8. tt15.8)
|| SRLOB(ts7 g, tt7)

function SRLOB(ts, tt)

S « ttr o
SRLOB ~ 0°||ts7
end SRLOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

728 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

SUBOB Vector Subtract SUBOB

31 26 25 22 2120 16 15 1110 65 0
MEDIA sel 0 vt VS vd SUB
010010 0 001010
6 4 1 5 5 5 6
Format:

SUB.OB vd, vs, vt

Description:

The difference of the valuesin vector vt and vector vsis written into vector vd.
Saturated arithmetic is performed: overflows and underflows clamp to the largest
or smallest representabl e val ue before writing to vector vd. The sel field selects
the values of wt[] used for eachi.

No data-dependent exceptions are possible. The operands must be valuesin the
specified format. If they are not, the results are undefined and the values of the
operand vectors become undefined. The result of thisinstruction is undefined if
the processor is executing in 16 FP register mode.

VR5432 Microprocessor User’s Manual 729

Chapter 19

SUBOB Vector Subtract SUBOB

(continued)

Operation:

ts « FPR[vs]

tt — select(fmtsel, vt)

FPR[vd] « SubOB(tsg3. 56, tts3. 56)
|| SubOB(tsss_ 48, ttss. 48)
|| SubOB(ts47. 40, tta7..40)
|| SubOB(ts3g. 32, tt39..32)
|| SubOB(ts3;. 24, tt31..24)
|| SubOB(tsz3. 16, tt23..16)
|| SubOB(ts1s_g, tt15 g)
|| SubOB(ts; g, tt7)

function SubOB(ts, tt)

t— (0flts)- (0] tt)
if tg = 1 then
SubOB « 08
else
SUbOB - t7 o
endif
end SubOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

730 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

WACH.OB yector WS WACH.OB

Accumulator High

31 26 25 22 2120 16 15 1110 65 0
MEDIA H 0 0 VS 0 WACH
010010 1000 |0] 000O0O 00000 111110
6 4 1 5 5 5 6

Format:
WACH.OB vs
Description:

This instruction writes the most-significant third of the bits of the Accumulator
elements. Theleast-significant two-thirds of the bits of the Accumulator elements
are unaffected.

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

Thisinstruction is the only instruction that writes a portion of the Accumulator.
WACL writes all bitsin the accumulator, so it must precede WACH when
restoring the Accumulator.

No data-dependent exceptions are possible. The result of thisinstruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

ACC « FPR[vs]g3.56 || ACC1g3.168

|| FPRIvs]ss5.48 [| AC 159..144
|l FPRIVS]47..40 [| AC 135.120
|| FPRvS]39..32 [| AC 11196
|| FPRvS]31..24 [| AC g7.72

|| FPRIvs]23.16 [| AC 63..48

|| FPRIvs]15.8 || AC 39,24

|l FPRIvs]7.0 || ACC15.0

VR5432 Microprocessor User’s Manual 731

Chapter 19

WACH.OB s WACH.OB

Accumulator High
(continued)

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

732 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

WACL.OB veotor Wi WACL.OB

Accumulator Low

31 26 25 22 2120 16 15 11 10 65 0
MEDIA L 0 vt S 0 WACL
010010 0000 |O 00000 111110
6 4 1 5 5 5 6

Format:

WACL.OB vs, vt

Description:

This instruction writes the least-significant two-thirds of the bits of the
Accumulator elements. The upper one-third of the bits of the Accumulator
elements are written by the sign bits of the corresponding elements of vector vg[]
and replicated by 8, depending on the format.

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

No data-dependent exceptions are possible. The result of thisinstruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

ACC « 08 || FPRIvs]s3_s6 || FPRIVt]s3. 56
|| 0° || FPR[vs]ss_4s || FPR[Vilss. 4
1| 0 || FPR[vS]47.40 || FPR[Vt47. 40
1| 0 || FPR[vs]39 32 | FPRVt]39. 3
1| 0% || FPR[vS]31 24 || FPR[Vt]31. 24
1| 0° || FPR[vs]23_16 | FPR[Vtl23. 16
|| 08 || FPRIvs];s g || FPRVt];5 g
|| 0% || FPRIvsly ¢ || FPRIVt]7 o

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

VR5432 Microprocessor User’s Manual 733

Chapter 19

XOR.OB

Vector XOR

XOR.OB

31

26 25

22 2120

16 15

1110

65

MEDIA sel

0
0

vt

Vs

vd

XOR
001101

6 4

1

Format:

XOR.OB vd, vs, vt

Description:

Each element of vector vsis combined with the corresponding element of vector
vt in abitwise logical XOR operation. The sel field selects the values of wi[] used

for eachi.

No data-dependent exceptions are possible. The operands must be valuesin the
OB format. If they are not, the results are undefined and the values of the operand

vectors become undefined. The result of thisinstruction is undefined if the
processor is executing in 16 FP register mode.

734

VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

XOR.OB st XOR.OB

(continued)

Operation:

ts « FPR[vs]
tt — select(sel, vt)
FPR[vd] — XorOB(tse3_s6. tt63..56)
|| XorOB(tsss_4s, ttss 48)
|| XorOB(ts47. 40, tta7..40)
|| XorOB(tsg. 32, tt3g.32)
|| XorOB(ts1. 24, tt31.24)
|| XorOB(tsz3_.16. tt23..16)
|| XorOB(ts1s.. , tt15_g)
[| XorOB(ts7_ g, tt7.0)
function XorOB(ts, tt)
XorOB — (0| ts) xor (0 ||)
end XorOB

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

194 Multimedia I nstruction Opcode Bit Encoding

Figure 19-6 lists the bit encoding for multimediainstructions.

VR5432 Microprocessor User’s Manual 735

Chapter 19

Function (for Opcode = COP2)
bits 2...0
5.3 0 1 2 3 4 5 6 7
0 C.EQ PICKF | PICKT CLT C.LE MIN MAX
1 SUB ADD AND XOR OR NOR
2 SLL SRL
3 ALNI SHFL
4 RzU
5
6 MUL MULS{,L}| MUL{A,L}
7 WAC{H,L}|RAC{H,L}

Figure 19-6 Bit Encoding for Multimedia Instructions

736 VR5432 Microprocessor User’s Manual

Debug and Test Features

20

This chapter describes the VR5432 processor’ s debug and test functions, which
areintended for the exclusive use of debug software and hardware tools. These
functionsdo notinvolvethe WatchL o and WatchHi registers; instead, they replace
and greatly improve on the debug functions implemented by the WatchLo and
WatchHi registers.

The debug and other JTAG-accessible registers described here are not
architecturally visible parts of the processor. Programs running in Normal mode
(User, Supervisor, or Kernel mode) cannot access the debug resources directly.
However, aspecial Normal modeinstruction, DBREAK, isprovided for accessing
Debug mode, and adebug tool attached to the JTAG port can access Debug mode
directly.

VR5432 Microprocessor User’s Manual 737

Chapter 20

20.1 Overview

The processor implements both internally and externally accessible debug
resources. The externally accessible resources are accessed viathe JTAG
interface, which complies with IEEE Standards 1149.1 and 1149.1aand
implements N-Wire and N-Trace debug enhancements.

The processor’ s Debug mode is entered when a debug break occurs. The debug
functions can be controlled internally or externally, asfollows:

e Internal Access. A processor-resident debugger program, invoked via
the Debug Exception vector, uses debug instructions to access the
processor’s debug registers. The DBREAK instruction is provided fo
this purpose; when executed, it causes the processor to enter Debug
mode.

» External Access. An external debug tool, attached to the JTAG test
access port (TAP), can access the processor’s internal debug module,
which includes JTAG-accessible registers that support JTAG, N-Wire,
and N-Trace test interfaces.

Figure 20-1 shows the processor resources accessible to debug programs and
external debug tools using the internal- and external -access methods.

VR5432 Processor

! Debug .
; Module .
: Normal Mode External
X Resources Debug ITAG- DTegcl:Ig
. Registers Accessible
. Registers

T .| .

Internal-Access Resources

External-Access Resources

Figure 20-1 Accessto Processor Resourcesin Debug Mode

738 VR5432 Microprocessor User’s Manual

Debug and Test Features

The debug registers—DRO through DR15—can be accessed by the debug
instructions—DBREAK, MTDR, MFDR, and DRET—in either the internal- or
external-access Debug mode. These registers and instructions give software or
hardwarethe ability to break the processor, modify its state or set breakpoints, and
resume running, or to bresak the processor, single-step, and resume running.

The N-Wire and N-Trace interfaces, available in external-access Debug mode,
support comprehensive hardware and software breakpoints and trace functions.
They use amonitor mechanism that gives debug tools access to al system
resources, including the processor’s user and debug registers, program counter,
register file, caches, externa memory, and I/O. For example, an external-access
debug tool can download data viathe JTAG port into external memory, return to
normal operation mode, and monitor the result of execution using this data. The
N-Wire functions provide run-time control and access to the processor’ sinternal
state. The N-Trace functions support instruction-execution tracing viatrace
packets on the trace signals. Both functions share a set of JTAG-accessible
registers. In the VR5432 implementation, “N” equals 4, asrepresented by the four
TrcData [3:0] signals.

Because an external -access debug tool can access both the debug registers and the
JTAG-accessible registers, the external-access Debug mode provides more
control of the processor than does internal-access Debug mode.

20.2 Definition of Terms

Debug Break. An event that causes the processor to asynchronously leave
Normal mode (User, Supervisor, or Kernel mode) execution and enter Debug
mode. The terms “break” and “debug break” are used interchangeably. Section
20.3 defines all possible debug break events.

Debug Exception Vector. Address OXFFFF FFFF BFCO 1000. The DBREAK
instruction is designed for accessing this vector.

Debug Instructions. DBREAK, MTDR, MFDR, and DRET, as described in
Section 20.4.1.

Debug Mode. The processor enters Debug mode as the result of adebug break. If
the debug module isin reset at the debug break, the processor begins executing

internal -access resident debugger instructions, starting at the Debug Exception

vector address. If the debug moduleisnot in reset at the debug break, the processor
begins executing external-access instructions from the JTAG-accessible N-Wire
Monitor Instruction (MON_INST) register. Although Debug mode can be entered
and controlled viainternal or external access, external access supports maximum
control of the processor. See aso Normal Mode, Debug Module, and Section 20.3.

VR5432 Microprocessor User’s Manual 739

Chapter 20

Debug Mode Registers. The internally accessible debug registers and the JTAG-
accessible registers.

Debug Module. A moduleinsidethe processor that supportsexternal accessto the
debug featuresviathe JTAG port. The debug module containsthe JTAG, N-Wire,
and N-Trace interfaces. See Figure 20-1.

Debug Module Reset. The processor state in which external access to the
processor’ sdebug moduleisdisabled. Thisreset isunrelated to the processor reset
(Reset*). The debug module is enabled and disabled with the DINIT bit in the
JTAG-accessible N-Wire Debug Module System (DM _SY STEM) register. Inthe
internal -access method, the debug moduleisdisabled (in reset), and the processor
can enter Debug mode by executing the DBREAK instruction. In the external-
access method, the debug module is enabled (not in reset). Compare to Debug
Reset.

Debug Registers. The registers accessible with the debug instructions. These
registersinclude DRO through DR15 (DRCNTL, DEPC, DDATAO, DDATAL,
IBC, DBC, IBA, IBAM, DBA, DBAM, DBD, and DBDM). All of the debug
registers are accessible directly in the internal-access Debug mode, and they are
accessible either directly or indirectly in the external -access Debug mode. The
debug registers are described in Section 20.4.2. These registers overlap (share
registers or copy register bits) with the JTAG-accessible registers described in
Section 20.5.2.

Debug Reset. A reset to the processor from the debug module, accomplished by
externally setting the RESET bit in the N-Wire Debug Module Control
(DM_CONTROL) register. The effect of a debug reset on the processor isthe
same as asserting Reset* . Compare to Debug Module Reset.

External Access. Debug access to processor resources and operations by an
external debug tool through the JTAG port and the on-chip debug module, which
supports JTAG, N-Wire, and N-Trace debug functions (see Figure 20-1). In the
external -access method, a debug tool can access all of the debug registersand all
of the JTAG-accessible registers. External access thus provides more control of
processor resources than does internal access.

Hardwar e Breakpoint. An instruction address, data address, or data-data
breakpoint specified in the debug registers or the JTAG-accessible registers. The
hardware breakpoint registersare shared between the debug and JTAG-accessible
register sets.

740

VR5432 Microprocessor User’s Manual

Debug and Test Features

Internal Access. Debug access to processor resources and operations via a
resident debugger program invoked at the processor’ s Debug Exception vector
address (the DBREAK instruction is provided for this purpose). The resident
debugger program can use the debug instructions M TDR and MFDR to accessthe
processor state, set breakpoints, and single-step.

JTAG-Accessible Registers. The registers accessible in external -access Debug
mode. They include the three required JTAG registers (Instruction, Bypass, and
Boundary Scan), plus registers to support the N-Wire and N-Trace debug
functions (DM_SY STEM, DM_CONTROL, MON_INST, MON_DATA,
TRCSY S, and most of the internal-access debug registers). These registe rsare
described in Section 20.5.2.

Monitor. A JTAG-accessible mechanism for accessing al system resources,
including the processor’s Normal mode and Debug mode registers, cache,
external memory, and I/O.

Normal Mode. User, Supervisor, or Kernel mode. The processor isalso in
Normal mode when it isin Reset or is being reset by the debug module. See also
Debug Mode.

Resident Debugger. An optional program that can be accessed internally viathe
Debug Exception vector (the DBREAK instruction is designed for this purpose).
This program provides system accessto most (but not al) of the processor’ s debug
features when there is no attached debug tool or the debug tool isin Reset.

Trigger. The BKTglO* output signal.

Trigger Event. Anevent that causes assertion of the BkTgl O* output signal. Such
events can include:

* An enabled hardware breakpoint
* An enabled debug break

VR5432 Microprocessor User’s Manual 741

Chapter 20

20.3 Debug Mode

The processor enters Debug mode as a result of one of the following possible
debug break events:

» Internal-access debug break events
- Execution of the DBREAK instructio
- Setting th STEP bit in the DRCNTL debug register (DRO)

- Reaching an instruction-address, data-address, or data-data
breakpoint specified in the debug registers

« External-access debug break events
- Assertion o the BkTglO* signal, when it is configured for inpu

- Setting of th BREAK bit in the JTAG-accessible N-Wire Debug
Module Control (DM_CONTROL) register

- Setting th STEP bit in either the DRCNTL register or th
DM_CONTROL register

- Reaching an instruction-address, data-address, or data-data
breakpoint specified in the debug registers

Debug mode is entered regardless of the state of the debug module.

» |If the debug modul isin Reset (DINIT bit set to 1 in the N-Wire
DM_SYSTEM register), the processor begins executing internal-
access resident debugger instructions starting at the Debug Exception
vector address. In this case, the DRCNTL register controls Debug
mode operations.

e |If the debug modul is not in Reset (DINIT bit cleared to O in the N-
Wire DM_SY STEM register), the processor begins executing
external-access instructions from the N-Wire Monitor Instruction
(MON_INST) register, if execution is enabled. In this case, the TAG
port controls Debug mode operations.

When Debug mode is entered, all incomplete instructions are flushed from the
pipeline, all outstanding external bus transactions are compl eted, execution
transitions to Debug mode at an instruction boundary, the program counter (PC)
is saved in the DEPC debug register, and execution is redirected to the 64-bit
Debug Exception vector (location OxFFFF FFFF BFCO 1000). There may be a
delay entering Debug mode to allow the pipeline flush and to alow all outstanding
external transactions to complete; if so, the processor stalls during thistime.

742 VR5432 Microprocessor User’s Manual

Debug and Test Features

The processor will not enter Debug mode at a branch delay slot instruction
boundary. Instead it stops at the branch instruction or the target of the branch. If a
software or hardware breakpoint occurs for the branch delay slot instruction, the
breakpoint occurs at the corresponding Branch instruction. If a single-step break
is executed on a Branch instruction, both the branch and itsdelay dot are
executed.

Instructions that redirect the PC (e.g., branches) are not allowed to be executed in
the MON_INST register when the debug moduleisin reset. Any attempt to do so
results in undefined behavior. Instructions that redirect the PC are allowed if the
debug module is not in reset.

Whilein Debug mode, the processor behavesasif itisin Kernel mode (CPO Status
EXL = 1), although entering Debug mode does not set the EXL bit. All interrupts
aredisabled, including NMI*, and any debug break events areignored. If aLoad
or Store instruction causes an exception in Debug mode, the exception is
processed asif the processor isin Kernel mode. The DM_EXCEPT bit in the
relevant Debug Control register (DRCNTL for internal access, or
DM_CONTROL for external access) indicates whether an exception occurred. If
any instruction other than Load or Store causes an exception, the results and
processor state are undefined.

The processor returns to Normal mode from Debug mode by executing aDRET
instruction. The processor vectors the PC to the address in the Debug Exception
PC (DEPC) register.

20.4 Internal Access

In the processor’ sinternal-access Debug mode, a resident debugger program can
use the debug instructions to access all of the debug registers. These instructions
and registers are (with afew exceptions) also available to external-access Debug
mode, as described in Section 20.5.

VR5432 Microprocessor User’s Manual 743

Chapter 20

204.1

204.1.1

Debug Instructions

The DBREAK, DRET, MTDR and MFDR instructions are unique to the
processor’ sdebug features. Except for DBREAK, theseinstructionsare accessible
only when the processor isin Debug mode; executing them in Normal mode
causes a Reserved I nstruction trap.

DBREAK: Debug Break

31 26 25 6 5 0

SPECIAL2
011100

0 DBREAK
0000 0000 0000 0000 0000 111111

20 6

20.4.1.2

The DBREAK instruction forces entry into Debug mode by causing atrap to the
Debug Exception vector address (OxFFFF FFFF BFCO 1000). Thisinstruction
may only be executed in Normal (User, Supervisor, or Kernel) mode. Execution
in Debug mode resultsin undefined behavior.

DRET: Debug Return

31 26 25 6 5 0

SPECIALZ2
011100

0
0000 0O0OOO 0000 0OOOO 0OOOO 111110

20 6

The DRET instruction returns from Debug mode to the mode in effect (User,
Supervisor, or Kernel mode) when the last debug break occurred. Control is
passed to the instruction pointed to by the Debug Exception PC (DEPC) register.
Unlike most jumps and branches, the execution of which also executes the next
instruction (the one in the delay dlot), DRET does not execute a delay slot
instruction. The DRET instruction must not be placed in a branch delay sot.

744

VR5432 Microprocessor User’s Manual

Debug and Test Features

20.4.1.3 MTDR: Move to Debug Register
31 26 25 21 20 16 15 1110 65 0
SPECIAL2 MTDR rt dr 0 Debug Move
011100 | 00100 00000 111101
6 5 5 5 5 6

This instruction moves the contents of general register rt into debug register dr.

20.4.1.4 MFDR: Move from Debug Register
31 26 25 21 20 16 15 1110 65 0
SPECIAL2 MFDR rt dr 0 Debug Move
011100 | 00000 00000 111101
6 5 5 5 5 6

Thisinstruction moves the contents of debug register dr into general register rt.

20.4.2 Debug Registers

Table 20-1 liststhe debug registers. The DME bit in the CPO Statusregister isonly
accessible in Normal mode via Normal mode instructions. All of the debug
registers except the DME bit are accessible in both the internal-access and
external -access Debug modes viathe MFDR and MTDR instructions. Unless
otherwise specified, the contents of the debug registers are undefined after a
processor cold reset.

VR5432 Microprocessor User’s Manual 745

Chapter 20

Table 20-1 Debug Registers

. . Register .
Register Register Name Register | -\ it Reg|ster-S_etl
M nemonic Number : M ember ship
(Bits)
DME DME bit in the CPO Status register — 1 Internal
DRCNTL | Debug Register Control register DRO 32 Internal
DEPC Debug Exception PC register DR1 64 Internal
DDATAO Det_)ug Data Monitor 0 and Monitor Data DR2 64 Internal and
register external
DDATAL1 |Debug DataMonitor 1 register DR3 64 Internal
IBC Ins@rucﬂon Breakpoint Control/Status DR4 0 Internal and
register external
DBC Data Breakpoint Control/Status register DR5 32 Internal and
external
— Reserved DR6 —
— Reserved DR7 —
IBA Instruction Breakpoint Address register DR8 642 Internal and
external
IBAM InsFructlon Breakpoint Address Mask DRY 642 Internal and
register external
— Reserved DR10 —
— Reserved DR11 —
DBA Data Breakpoint Address register DR12 64 Internal and
external
DBAM |DataBreskpoint Address Mask register ~ |DR13 |64 Internal and
external
DBD Data Breakpoint Data register DR14 |64 Internal and
external
DBDM | DataBreakpoint Data Mask register DR15 |64 Internal and
external
Notes:

1. All debug registers except DME are accessible in both the internal-access and external-access Debug
modes viathe MFDR and MTDR instructions. However, the registers marked “internal and external” are
actually shared by the internal-access and external-access register sets.

2. Only 40 bits of the virtual address, plus the region bits (63:62), are compared. The unused address bits
must be sign extended to bit 61 for all address spaces, except xkphys. For xkphys address space, bits
61:59 must also indicate the correct cacheability attribute, because these bits are compared.

746 VR5432 Microprocessor User’s Manual

Debug and Test Features

20.4.2.1 Debug Mode Enable (DME) bit in the CPO Status register

Bit 24 isthe Debug Mode Enable (DME) bit in the Diagnostic Satus (DS) field of
the CPO Exception Processing Status register (see Section 6.2.5 on page 97). It
indicates to the processor that there is a resident debugger program at the Debug
Exception vector. The bit is only accessiblein Normal mode via Normal mode
instructions, and it is only meaningful when the debug moduleisin reset.

« DME = 0: A debug break event does not cause the processor to enter
Debug mode. The DBREAK instruction causes a Reserved
Instruction exception instead of a debug break

e DME = 1: A debug break event causes the processor to enter Debug
mode.

20.4.2.2 DRCNTL: Debug Register Control register (DRO)

The DRCNTL register is accessible only to internal-access resident debugger
programs. It duplicates a subset of bits from two external -access registers that
constitute part of the N-Wire interface—the Debug Module System
(DM_SY STEM) register and the Debug Module Control (DM_CONTROL)
register, described in Section 20.5.2.5 and Section 20.5.2.6.

Although the DRCNTL bits duplicate some of the DM_SY STEM and
DM_CONTROL bits, the DRCNTL bits are a separate set of bits; they are not
shared by theDM_SY STEM and DM_CONTROL registers. Either the DRCNTL
register is active or the two external-access registers are active; use of these
registersis mutually exclusive. DRCNTL is used when the debug moduleisin
reset (i.e., for internal access). Thetwo external-accessregisters are used when the
debug moduleisnot in reset. The DINIT bit in the DM_SY STEM register
determines whether the debug moduleisin reset.

Figure 20-2 shows the register format. Table 20-2 describes the register fields.

31 0

See table below for field descriptions I

Figure 20-2 Debug Register Control (DRCNTL) Register Format

VR5432 Microprocessor User’s Manual 747

Chapter 20

Table 20-2 Debug Register Control Register (DRCNTL) Fields

Bits Field Description

1.0 Reserved —

Mask User Reset in Debug mode
1 - Ignores Reset* input whilein Debug mode

2 MRST 0 — Accepts Reset* input while in Debug mode
Defaulted to 1 at the debug module initialization.
Mask User NM1*
1 - Ignores NMI*
3 MNMI 0 - AcceptsNMI*
Defaulted to 0 at the debug module initialization.
Mask User Interrupts
1 - Ignores user interrupt input
4 MINT 0 - Accepts user interrupt input
Defaulted to O at the debug module initialization. MINT effects
interrupts viathe Int signals or via an external write. Software
interrupts are not masked.
Single-Step Break
Single-step allows the user to execute one Normal mode instruction.
Single-step occurs after a DRET instruction. The processor returns to
5 STEP Normal mode, executes a single instruction, and breaks back into

Debug mode.
1 - Enables single-step break (single-step mode)
0 - Disables single-step break

Defaulted to O at the debug module initialization.

Break Cause
This consists of multiple bits. One bit is assigned for each break cause
and a corresponding bit is set when the break occurred. Multiple bits
are set if the break occurred by multiple break causes. The bit
assignments are defined as follows:
Bit 6 — External break
13:6 BRK_CAUSE Bit 7 - Single-step
Bit 8 - Software breakpoint
Bit 9 - Reserved
Bit 10 — Reserved
Bit 11 - Instruction-address breakpoint
Bit 12 . Data access (address or data) breakpoint
Bit 13 - Reserved

748 VR5432 Microprocessor User’s Manual

Debug and Test Features

Table 20-2 Debug Register Control Register (DRCNTL) Fields (continued)

Bits Field Description
Debug Mode
14 DBM Indicates Debug mode or Normal mode (read only).
1 - Norma mode (User, Supervisor, or Kernel mode)
0 — Debug mode
Processor Status
000 - Reset (highest)
001 - Reserved
010 - Reserved
17:15 |CPU_STAT 011 - Reserved
100 - Reserved
101 - Reserved
110 - Reserved
111 - Normal (lowest)
20:18 Reserved —
Debug Mode Exception
Indicates that an exception occurred while in Debug mode (read/
write).
Read 1 — Instruction executed in Debug mode caused exception
21 DM_EXCEPT Read 0 — No exception in Debug mode since flag was cleared
Write 1 —» No operation
Write 0 — Clear exception flag
If any instruction other than Load or Store causes an exception, the
results and processor state are undefined.
BkTglO* direction
Indicates the direction of the BkTglO* signal.
22 BKIODIR 1 - Input
0 - Output
Defaulted to 1 at the debug module initialization.
BkTglO* Break Enable
1 - Enable driving of BKTglO* trigger output at a debug break
23 BKIOEN event, or to break the processor at a BkTglO* break input
0 - Disable
Defaulted to O at the debug module initialization.
BKTglO* Trigger Enable (read/write)
1 - Enable detected internal trigger eventsto the BkTgl O* signal
24 BKIOTEN when it is configured in the output direction
0 - Disable
Defaulted to 0 at the debug module initialization.
31:25 Reserved —

VR5432 Microprocessor User’s Manual

749

Chapter 20

20.4.2.3

20.4.2.4

DEPC: Debug Exception PC (DR1)

When entering Debug mode, the DEPC register containsthe virtual address of the
instruction where the debug break occurred. This isthe address at which Normal
mode instruction processing may resume after exiting Debug mode. Figure 20-3
shows the register format.

63 0

DEPC I

Figure 20-3 Debug Exception PC (DEPC) Register Format

DDATAQOQ: Debug Data Monitor 0 and Monitor Data (DR2)

The DDATADO register and the JTAG-accessible Monitor Data (MON_DATA)
register (see Section 20.5.2.8) are the same register. The register is used for
external accesswhen the debug moduleisactive, and thereforeis scannable. It can
also be used as a scratch register in Debug mode. The user isresponsible for
ensuring that the types of usefor the register do not overlap. Figure 20-4 shows
the register format.

63 0

DDATAO I

Figure 20-4 Debug Data Monitor O (DDATAQ) Register Format

750

VR5432 Microprocessor User’s Manual

Debug and Test Features

20.4.2.5 DDATAL: Debug Data Monitor 1 (DR3)

The DDATA1 register can be used as a stack pointer or scratch register. Figure
20-5 shows the register format.

63 0

DDATA1 I

Figure 20-5 Debug Data Monitor 1 (DDATAL) Register Format

20.4.2.6 Instruction Address Breakpoint

Instruction address hardware breakpoints are supported by three registers: IBC,
IBA, and IBAM. These three registers are used in both internal-access and
external-access Debug mode.

To determine an instruction address match, the program counter iscompared with
the Breakpoint instruction address before TLB trandation. If the breakpoint
condition is met and the break is enabled in the IBC register, the processor enters
Debug mode. The instruction that caused the breakpoint is not executed.

The VR5432 implementation of instruction address breakpoints has the following
limitations:
e Only doubleword addresses can be compared (IBAM[2:0] must be
111,) for instruction address breakpoints.

e Triggers (BKTglO* trigger output) are not supported for instructio
address breakpoints

e Only 40-bit virtual addresses are supported for instruction address
breakpoints.

The following registers are used to set an instruction address breakpoint.

VR5432 Microprocessor User’s Manual 751

Chapter 20

IBC: Instruction Breakpoint Control/Statusregister (DR4)

The IBC register is the control and status register for the instruction-address
breakpoint. Figure 20-6 shows the register format. Table 20-3 describes the

register fields.

31

0

See table below for field descriptions I

Figure 20-6 Instruction Breakpoint Control/Status (IBC) Register Format

Table 20-3 Instruction Breakpoint Control/Satus (IBC) Register Fields

Bits Name Description
Breakpoint Status
0 BS 1 - Breakpoint match occurred.
0 - Breakpoint match did not occur.
Cleared to 0 on cold reset.
Break Enable. Causes a debug break when a breakpoint match
occurs.
1 BE 1 - Enabled.
0 - Disabled.
Cleared to 0 on cold reset.
2 Reserved —
Invert address match condition
3 INV 1 - Address matches when conditions don’t match.
0 - Address matches when conditions match.
ASID compare mask
4 ASIDM 1 - Address match is not qualified with ASID matching.
0 - Address match is qualified with ASID matching the
current processor ASID.
12:5 ASID Address Space |D to compare.
31:13 Reserved —
752 VR5432 Microprocessor User’s Manual

Debug and Test Features

IBA: Instruction Breakpoint Addressregister (DR8)

The IBA register contains the address of the instruction breakpoint. When the
instruction stored at the specified addressis being executed, the condition is met.
Figure 20-7 shows the register format.

Even though a 64-bit IBA register is specified, only 40 bits of the virtual address,
plus the region bits (63:62) are compared. The unused address bits must be sign
extended to bit 61 for all address spaces except xkphys. For xkphys address space,
bits 61:59 must also indicate the correct cacheability attribute, because these bits
arecompared. Please refer to the memory mapping and address space discussions
in Chapter 4.

63 62 61 40 39 0

region see text 40-bit virtual address

Figure 20-7 Instruction Breakpoint Address (IBA) Register Format

IBAM: Instruction Breakpoint Address Mask register (DR9)

The IBAM register contains the mask for IBA. If abit of thisregister is 1, the
corresponding bit of IBA isnot compared. Figure 20-8 shows the register format.

Aswiththe IBA register, even though a64-bit IBAM register is specified, only 40
bits of the virtual address, plus the region bits (63:62), are compared. The unused
address bits must be sign extended to bit 61 for all address spaces except for
xkphys. For xkphys address space, bits 61:59 must also indicate the correct
cacheability attribute, because these bits are compared.

63 62 61 40 39 0

region see text 40-bit virtual address mask

Figure 20-8 Instruction Breakpoint Address Mask (IBAM) Register Format

VR5432 Microprocessor User’s Manual 753

Chapter 20

20.4.2.7

Data Access Breakpoint

Data access hardware breakpoints (break on address, break on data, or break on
both) are supported by five registers: DBC, DBA, DBAM, DBD, and DBDM.
These five registers are used in both internal-access and external-access Debug
mode.

To determine a data instruction address match, the program counter is compared
with the breakpoint instruction address before TLB trandation. If the breakpoint
condition is met and the break is enabled, the processor enters Debug mode. If
only a data address condition is specified, the instruction that caused the
breakpoint isnot executed. If adataaccess condition (load or store) isspecifiedin
the DBC register, the break occurs sometime after the instruction that caused the
breakpoint. If the breakpoint condition is met and the trigger is enabled in the
DBC register, the processor asserts atrigger on BKTglO* output.

The VR5432 implementation of data access breakpoints has the following
limitations and features:

» For data access store breakpoints, only doubleword addresses can be
compared (IBAM[2:0] must be 111,).

» For data access load breakpoints, data access sizes other than 64 bits
are supported.

e Only 40-bit virtual addresses are supported for data access
breakpoints.

The processor supports data access sizes other than 64 bits. For |oads, the DBDM
register must mask all bits that are not part of the data access size, or the DBD
register must specify the proper sign-extended 64-bit value. For stores, only data
access for doublewords is supported.

The following registers are used to set a data access breakpoint.

754

VR5432 Microprocessor User’s Manual

Debug and Test Features

DBC: Data Breakpoint Control/Statusregister (DR5)

The DBC register provides control and status for the data address and data access
breakpoints. Figure 20-9 shows the register format. Table 20-4 describes the
register fields.

31 0

See table below for field descriptions I

Figure 20-9 Data Breakpoint Control/Satus (DBC) Register Format

Table 20-4 Data Breakpoint Control/Satus (DBC) Register Fields

Bits

Name Description

Breakpoint Status

1 - Breakpoint match occurred

0 - Breakpoint match did not occur
Cleared to 0 on cold reset.

BS

Break Enable at Address Match

Causes adebug break when the address match condition is met.
1 - Enabled
0 - Disabled

BEA

Trigger Enable at Address Match

Outputs atrigger on BKTglO* when the address match
TEA condition is met.

1 - Enabled

0 - Disabled

Invert Address-Match Condition
AINV 1 - Address matches when conditions don’'t match
0 — Address matches when conditions match

ASID Compare Mask
1 - Address match is not qualified with ASID matching
0 - Address match is qualified with ASID matching the
current processor ASID

ASIDM

12:5

ASID Address Space D to compare

15:13

Reserved —

VR5432 Microprocessor User’s Manual 755

Chapter 20

Table 20-4 Data Breakpoint Control/Status (DBC) Register Fields (continued)

Bits

Name

Description

16

TS

Trigger Status
1 - Trigger occurred
0 - Trigger has not occurred

17

BED

Break Enable at Data Match
Causes a debug break when the data condition is met.

1 - Enabled

0 - Disabled
BEA and BED arein effect if either BERD or BEWR are set.
Inthis case, if both BEA and BED are set, abreak occurs only
when both conditions are met. If both are cleared, a break
occurs regardless of the compare results.

18

TED

Trigger Enable at Data Match
Outputs atrigger on BKTglO* when the data match condition
is met.

1 - Enabled

0 - Disabled
TEA and TED arein effect if either TERD or TEWR isset. In
thiscase, if both TEA and TED are set, atrigger isoutput when
both conditions are met. If both are cleared, atrigger is output
regardless of the compare results.

19

DINV

Invert Data Match Condition
1 - A data match occurs when conditions don’'t match
0 - A datamatch occurs when conditions match

20

BERD

Break Enable for Read Access (i.e., Loads)
1 - Break enabled for loads
0 - No break enabled for loads
Cleared to 0 on cold reset.

21

BEWR

Break Enable for Write Access (i.e., Stores)

1 - Break enabled for stores

0 - No break enabled for stores
Cleared to 0 on cold reset. If neither BERD nor BEWR are set,
no dataaccess debug break occurs. Thesearethe primary break
enable bits.

756

VR5432 Microprocessor User’s Manual

Debug and Test Features

Table 20-4 Data Breakpoint Control/Status (DBC) Register Fields (continued)

Bits

Name

Description

22

TER

Trigger Enable for Read Access (i.e., Loads)
1 - Trigger enabled for loads
0 - Notrigger enabled for loads
Cleared to 0 on cold reset.

23

TEWR

Trigger Enable for Write Access (i.e., Stores)

1 - Trigger enabled for stores

0 - Notrigger enabled for stores
Cleared to 0 on cold reset. If neither TERD nor TEWR is set,
no data access trigger occurs. These are the primary trigger-
enable bits.

31:24

Reserved

DBA: Data Breakpoint Addressregister (DR12)

The DBA register contains the address of the data breakpoint. When the
instruction stored in the specified address is being executed, the condition is met.
Figure 20-10 shows the register format.

Even though a 64-bit DBA register is specified, only 40 bits of the virtual address,
plus the region bits (63:62) are compared. The unused address bits must be sign-
extended to bit 61 for all address spaces except for xkphys. For xkphys address
space, bits 61:59 must also indicate the correct cacheability attribute, because
these bits are compared. Please refer to the memory mapping and address space
discussions in Chapter 4.

63 62 61

40 39 0

region

see text 40-bit virtual address

Figure 20-10 Data Breakpoint Address (DBA) Register Format

VR5432 Microprocessor User’s Manual

757

Chapter 20

DBAM: Data Breakpoint Address Mask register (DR13)

The DBAM register containsthe bit mask for DBA. If abit of thisregister is1, the
corresponding bit of DBA is not compared. Figure 20-11 shows the register
format.

Aswith the DBA register, even though a64-bit DBAM register is specified, only
40 bits of the virtual address, plus the region bits (63:62), are compared. The
unused address bits must be sign extended to bit 61 for all address spaces except
for xkphys. For xkphys address space, bits 61:59 must also indicate the correct
cacheability attribute, because these bits are compared.

63 62 61 40 39 0

region see text 40-bit virtual address mask

Figure 20-11 Data Breakpoint Address Mask (DBAM) Register Format

DBD: Data Breakpoint Data register (DR14)

The DBD register containsthe data of the data breakpoint. The break conditionis
met when this dataiis read or written. Figure 20-12 shows the register format.

63 0

DBD

Figure 20-12 Data Breakpoint Data (DBD) Register Format

758 VR5432 Microprocessor User’s Manual

Debug and Test Features

DBDM: Data Breakpoint Data Mask register (DR15)

The DBDM register containsthe bit mask for DBD. If abit of thisregister is1, the
corresponding bit of DBD isnot compared. For partial word or partial doubleword
operations, the unused bits must be masked. Figure 20-13 shows the register
format.

63 0

DBDM I

Figure 20-13 Data Breakpoint Data Mask (DBDM) Register Format

20.5 External Access

In the processor’ s external -access Debug mode, an external debug tool controls
processor operations through the JTAG test access port (TAP). The JTAG port
supports not only JTAG testing but also N-Wire and N-Trace testing. In external
access, the debug tool can access all Debug mode registers, including the debug
registers (Section 20.4.2) available to an internal -access resident debugger
program and the JTAG, N-Wire, and N-Trace registers described below. This
access to debug resources gives external-access Debug mode more control of the
processor than does internal -access Debug mode.

VR5432 Microprocessor User’s Manual 759

Chapter 20

20.5.1 JTAG Port Signals

20511 Signal summary

Table 20-5

JTAG Test Access Port Sgnal

Name Definition

Direction

Description

JTAG Test Clock

JTCK :
Input

Input

The processor accepts a serial clock on the
JTCK input. At therising edge of JTCK, both
JTDI and JTM S are sampled. The maximum
frequency of JTCK is 33 MHz, and it runs
asynchronously to the processor clock,
SysClock. The ratio of SysClock to JTCK
must be at least 4:1 for proper N-Wire and N-
Trace synchronization.

JTAG Test Mode

JTMS Select

Input

The JTAG command signal. It is decoded by
the TAP controller to control test operations.
The signal has an internal pull-up so that its
level is High when the debug tool is not
connected.

JIDI JTAG Test Dataln

I nput

Datais serially scanned in through this signal.
The signal has an internal pull-up so that its
level is High when the debug tool is not
connected.

JTDO JTAG Test Data Out

Output

Dataisserially scanned out through this signal
on the falling edge of JTCK. Per the IEEE-
1149.1 standard, the JTDO output is tristated
unless datais actively being scanned.

TrcData (3:0) |N-Trace Data Port

Output

Thisbusisused for output of all trace packets
generated as aresult of processor execution.
Trace packets can consist of one or more clock
cycles of data on this bus.

TrcEnd N-Trace End

Output

Assertion of this signal indicates the end of a
trace packet on the TrcData (3:0) bus.

760

VR5432 Microprocessor User’s Manual

Debug and Test Features

Table 20-5 JTAG Test Access Port Signals (continued)

Name

Definition

Direction

Description

TrcClk

N-Trace Clock

Output

This clock is generated for the benefit of test
equipment that requires a clock reference for
trace information. It runs at the same
frequency as SysClock.

RMode*,
BKTgIO*

N-Wire Reset Mode,
or

N-Wire Break or
Trigger 1/0O

Input/
output

This pin supports two N-Wire signals. debug
reset (RMode*), and debug break or trigger
(BkTglO*). During assertion of ColdReset*,
the pin carriesthe RMode* input signal. In al
other statesthe pin carriesthe BKTglO* debug
break input or debug trigger output signal,
depending on its setup in various debug
registers (Section 20.4.2) and JTAG-
accessible registers (Section 20.5.2). The pin
operates at SysClock frequency and must be
driven synchronously with SysClock. The pin
has an internal pull-up so that itslevel isHigh
when the debug tool is not connected.

See Section 20.5.1.2 and Section 20.5.1.3 for
details.

Tristate

Tristate Outputs

Input

Thissignal floats al processor outputs to
allow isolation for board-level tests.

20.5.1.2

Reset mode (RMode*) signal

When ColdReset* is deasserted, the RMode* input is sampled to set the value of
the RESET bitinthe Debug Module Control (DM_CONTROL) register, whichis
the N-Wire debug reset variable. The RMode* value initializes the RESET bit as

follows:

* Low. Enables debug reset (when RMode* is sampled low, the RESET
bit is set to 1). The debug module asserts debug reset to th
processor. The effect on the processor of asserting RMode* isthe
same as asserting Reset*.

» High. Disables debug reset. The debug module does not assert debu
reset to the processor.

VR5432 Microprocessor User’s Manual

761

Chapter 20

20.5.1.3 Break or Trigger I/0 (BkTglO*) signal

After ColdReset* is deasserted, BKTglO* acts as a debug break input or a debug
trigger output. The direction of the BKTglO* signal defaultsto input at debug
module initialization, but its direction can thereafter be configured in the JTAG-
accessible DM_SY STEM register (see Section 20.5.2.5).

If the signal is configured for output, it can be enabled to act as atrigger to an
external debug tool, or it indicates whether the processor is currently in Debug
mode:

 Low (1 cycle pulse) The debug module has detected one or more
processor internal trigger events

e« Low (> 1 cycle). The processor is in Debug mode

e High. The processor is operating in Normal mode (User, Supervisor,
or Kernel mode).

Since the processor is a superscalar core running at a higher frequency than the
system interface, trigger events can occur much faster than BkTglO* can report
them. Trigger events can be reported at the maximum rate of one every two
SysClock cycles (1 cycle pulse). All trigger events that have occurred since the
last BKTglO* trigger output are reported in onetrigger. If the processor enters
Debug mode, any trigger events that have not been reported will not be reported.

If thesignal isconfigured for input, it acts as adebug break from an external debug
tool that can force the processor from Normal mode (User, Supervisor, or Kernel
mode) to Debug mode:

» Low. Break request, forces processor into Debug mode
e High. Maintain current processor mod

The debug break request needs to be asserted for only one cycle. The processor
enters Debug mode as soon asit is conveniently possible. If the processor is
aready in Debug mode, or if there isaready an outstanding debug break request,
a subsequent debug break request has no effect.

762 VR5432 Microprocessor User’s Manual

Debug and Test Features

20.5.1.4 Board connector for debug tool

System designers are encouraged to incorporate into their board design a 26-pin
high-density connector that provides 13 signals and 13 grounds. This assures
maximum performance and eliminates noise problems. The target connector isa
0.05"-pitch 26-pin header connector, Samtec part number FTSH-113-01-L-D
(through-hole) or FTSH-113-01-L-DV (surface mount), or equivalent. The 26
pins are allocated to 12 signals (and one spare) and 13 grounds. The connector
spacing is a convenient 0.05” x 0.05” and provides easy cabling to external
equipment.

Alternatively, thereisa 10-pin connector option. This smaller connector contains
only the basic JTAG boundary scan TAP signals and excludes the real-time trace-
related signals.

Figure 20-14 shows the two connectors. Table 20-6 and Table 20-7 list their
pinouts.

VR5432 Microprocessor User’s Manual 763

Chapter 20

(}:()_’{Sin.
A AL
X X
X X .
= %I0.0S in
X X
X X
IZ IZ 0.05in.
X X ha
N X 1| paba |2
X X X X
X X X XH .
0.05in.
X X X E—I
5| X X | 26 9 | XI X |10
26-Pin Connector 10-Pin Connector
(Top View) (Top View)

Figure 20-14 JTAG Connector Types

764 VR5432 Microprocessor User’s Manual

Debug and Test Features

Table 20-6 26-Pin JTAG Connector Signals

Pin Signal 1/0 Target Termination
1 Reserved — —
3 JIDI Input 1-KOhm pull-up resistor
5 JTDO Output 33-ohm series resistor
7 JTMS Input 1-KOhm pull-up resistor
9 JTCK Input 1-KOhm pull-up resistor
11 Tristate Input 1-KOhm pull-down resistor
13 EIEAT%OIIeO*’{ Input/Output 1-KOhm pull-up resistor
15 TrcDataO Output 33-ohm seriesresistor
17 TrcData 1 Output 33-ohm seriesresistor
19 TrcData 2 Output 33-ohm seriesresistor
21 TrcData 3 Output 33-0ohm seriesresistor
23 TrcEnd Output 33-0ohm seriesresistor
25 TrcClk Output 33-ohm seriesresistor

Table 20-7 10-Pin JTAG Connector Sgn al

Pin Signal /0 Target Termination
1 Reserved — —
3 JIDI Input 1-KOhm pull-up resistor
5 JIDO Output 33-ohm series resistor
7 JTMS Input 1-KOhm pull-up resistor
9 JTCK Input 1-KOhm pull-up resistor

In addition to the above debug port connector, system designers may also want to
include a208-pin PQFPtest socket. The socket or connector should havethe exact
pinout, shape, and layout of the actual 208-pin PQFP processor chip and should
be placed as close as possible to the processor chip. This extrasocket or connector
enables connection to alogic analyzer preprocessor between the target board and
the processor without having to remove the processor from the board. The
preprocessor can then support full visibility to all external processor signals, as
well as real-time trace and inverse assembly.

VR5432 Microprocessor User’s Manual

765

Chapter 20

20.5.2 JTAG-Accessible Registers

Table 20-8 lists the registers accessible by a debug tool through the JTAG port.
These registers support JTAG, N-Wire, and N-Trace functions.

Table 20-8 JTAG-Accessible Regist er

. . Width
M nemonic Register Name (Bits)
— JTAG Instruction register 5
— JTAG Bypass register 1
— JTAG Boundary Scan register 109
— Processor Type register 25
DM_SYSTEM N-Wire Debug Module System register 7
DM_CONTROL N-Wire Debug Module Control register 22
MON_INST N-Wire Monitor Instruction register 64
N-Wire Monitor Data register
MON_DATA Thisisthe same as Debug register DR2 64
(DDATAQ). See Section 20.4.2.4.
TRCSYS N-Trace System register 11
IBC
IBA : .
IBAM N-Wire and N-Trace Hardware Breakpoint
DBC registers
DBA These are the same as Debug Registers DR4— | Various
DR15. See Section 20.4.2.6 and Section
DBAM 20.4.2.7
DBD 4.2.7.
DBDM

766 VR5432 Microprocessor User’s Manual

Debug and Test Features

20.5.2.1 JTAG Instruction register
The JTAG Instruction register holdsthe opcodesfor JTAG, N-Wire, and N-Trace
operations. Instructionsare entered into thetest logic during aninstruction register
scan sequence in the TAP controller. Figure 20-15 shows the register format.
Table 20-9 describes the JTAG, N-Wire, and N-Trace instructions.
4 0
Instruction I
5
Figure 20-15 JTAG Instruction Register Format
Table 20-9 JTAG Instructions
Instruction Opcode Data Register Function
EXTEST 00000 | JTAG Boundary Scan register ;ﬁs circuitry extemal to the
Allows a snapshot of the
normal operation of the chip to
be taken and examined. Also
SAMPLE/ . alowsdatato bepreloadedinto
PRELOAD 00001 JTAG Boundary Scan register the parallél outputs of the
Boundary Scanregister prior to
another instruction such as
EXTEST.
DM SYSTEM | 00010 N-Wl re Debug Mode System Accesses the Debug Module
- register System register
DM CONTROL | 00011 N-W| re Debug Mode Control Acc&sesth_e Debug Module
- register Control register
PROCTYPE |00100 |Processor Type register Accessesthe Processor Type
register
NTRACE SYS |00101 |N-Trace System register Accesses the Trace System
register
MON INST 01000 N-Wl re Monitor Instruction Acc&ssgsthe Monltor
- register Instruction register
MON_DATA |01001 |N-Wire Monitor Data register rAe;? e the Monitor Data

VR5432 Microprocessor User’s Manual 767

Chapter 20

Table 20-9 JTAG Instructions (continued)

Instruction Opcode Data Register Function
CACHE_TEST |01100 Cache Test register Enables Cache Test mode
HIGHZ 01110 JTAG Bypass register Tristates all outputs of the chip

Connects JTDI to JTDO
BYPASS 11111 | JTAG Bypass register through the 1-bit Bypass
register
20.5.2.2 JTAG Bypassregister

The JTAG Bypassregister is 1 bit wide. When the TAP controller isin the Shift-
DR (Bypass) state, the data on the JTDI signal is shifted into the Bypass register,
and the data on Bypass register output shiftsto the JTDO output signal .

Figure 20-16 shows the register format.

0

J

Figure 20-16 JTAG Bypass Register Format

The Bypassregister islike a short-circuit. It allows bypassing of board-level
devices in the boundary scan chain that do not require a specific test. Use of the
register speeds up access to Boundary Scan registersin those ICsthat remain
activein the board-level test data path.

768

VR5432 Microprocessor User’s Manual

Debug and Test Features

20.5.2.3 JTAG Boundary Scan register

The JTAG Boundary Scan register is a single bus comprising a 74-bit Shift
register, each bit of which is connected to a processor signal. The Boundary Scan
register retains statesfor all of the processor’ sinput and output signals, except for
some clock and phase-locked loop signals. The external signals can be configured
to drive any arbitrary pattern, depending on the data scanned into the Boundary
Scan register whilein the JTAG Shift-DR state. Data driven into the signals from
other devices can be examined while in the Capture-DR state.

Figure 20-17 showsthe register format. Table 20-10 describes the register bitsin
their scan order.

73 0

SysADCO See table below for field descriptions iSysADEnN
74

Figure 20-17 JTAG Boundary Scan Register Format

The least-significant bit, jSysADERN, isthe JTAG output enable hit for all
processor outputs. Output is enabled when this bit is set to 1. The remaining 73
bits correspond to the processor’s 73 signal pads, as shown in Table 20-10. The
scan starts by shifting the least-significant bit out of the Boundary Scan register,
so thefirst scan-out bit isthe jSysADEn signal.

Table 20-10 JTAG Boundary Scan Register Order

No. Signal No. | Signal | No. Signal No. Signal
1 |jSysADEn [20 |NMI* 39 | SysCmd7 58 | RdRdy*
2 | Tristate 21 |SysAD8 |40 |SysCmd6 59 | SysAD30
3 |ColdReset* |22 |SysAD9 |41 |SysCmd5 60 |VaidOut*
4 |BigEndian |23 |SysADI10 |42 |SysCmd4 61 |SysAD31
5 |DivModed |24 |SysAD11 |43 |SysCmd3 62 |PReg*

6 DivModel |25 |SysAD12 |44 |SysCmd2 63 |SysADO
7 |ByPassPLL (26 |SysAD13 |45 |Validin* 64 |SysAD1
8 TrcEnd 27 |SysAD14 (46 |OptionR43k* |65 |SysAD2
9 |TrcData3 |28 |SysAD15 |47 |Reset* 66 |SysAD3
10 |TrcData2 |29 |SysAD16 |48 |SysCmdl 67 |SysAD4

VR5432 Microprocessor User’s Manual 769

Chapter 20

Table 20-10 JTAG Boundary Scan Register Order (continued)

No. Signal No. | Signal No. Signal No. Signal
11 | TrcClk 30 |SysAD17 (49 |SysCmdO 68 |SysAD5
12 |TrcDatal |31 |SysAD18 |50 |ExtRgst* 69 |SysAD6
13 |TrcDataD |32 |SysAD19 |51 |SysAd25 70 |SysAD7
14 |BKTglO* |33 |SysAD20 |52 |Release* 71 |SysADC3
15 |Int4 34 |SysAD21 |53 |SysAD26 72 | SysADC2
16 |Int3 35 |SysAD22 |54 |SysAD27 73 |SysADC1
17 |Int2 36 |SysAD23 |55 |SysAD28 74 | SysADCO
18 |Intl 37 |SysAD24 |56 |SysAD29
19 (IntO 38 |SysCmd8 |57 |WrRdy*
20.5.2.4 Processor Type register
This register contains the CPU type and the debug module version. Figure 20-18
shows the register format. Table 20-11 describes the register fields.
24 16 15 0
DMV PID
9 16
Figure 20-18 Processor Type Register Format
Table 20-11 Processor Type Register Format Register Fields
Bits Field Description
15:0 DMV Debug module version. Set to 10H.
24:16 PID Processor I1D. Set to 5400H.
770 VR5432 Microprocessor User’s Manual

Debug and Test Features

20.5.25

N-Wire Debug Module System register (DM_SY STEM)

The DM_SY STEM register contains the basic configuration fields for debug
moduleinitialization, N-Wire RMode*/BkTglO* signal functions, and N-Trace
functions. Figure 20-19 shows the register format. Table 20-12 describesthe
register fields. Certain fields of this register are copied into the DRCNTL debug
register, described in Section 20.4.2.

6 0

See table below for field descriptions I

7

Figure 20-19 N-Wire Debug Module System (DM_SYSTEM) Register Format

Table 20-12 N-Wire Debug Module System (DM_SYSTEM) Register Fields

Bits

Name

Description

DINIT

Initialize the Debug Module (read/write)

1 - Resets (initializes) the debug module

0 - Releasesreset of debug module (enable debug module€)
Defaulted to 1 at processor ColdReset* or JTAG in reset. When
DINIT = 1, al the N-Wire register bits are at their reset value. The
N-Wire function cannot be loaded unless DINIT is enabled
(DINIT =0).

BKTGIO

RMode* /BKTglO* Signal Implementation (read only)
1 - Implemented
0 - Not implemented

BKTGIODIR

BkTglO* Direction (read/write)
1 - Input
0 - Output
Defaulted to 1 at the debug module initialization.

BKIOBEN

BkTglO* Break Enable (read/write)
1 - Enable driving of trigger output on BKTgIO* at a
processor break, or to break the processor at a BKTglO* input
0 - Disable

Defaulted to 0 at the debug module initialization.

VR5432 Microprocessor User’s Manual 771

Chapter 20

Table 20-12 N-Wire Debug Module System (DM_SYSTEM) Register Fields (continued)

Bits Name Description
BKTglO* Trigger Enable (read/write)
1 - Enable detected internal trigger events to the BKTglO*
4 BKIOTEN signal when it is configured in the output direction
0 - Disable
Defaulted to 0 at the debug module initialization.
N-Trace Implementation (read only)
5 NTRACE 1 - Implemented
0 - Not implemented
N-Trace Port Enable (read/write)
1 - Enable
6 NTRACEN 0 - Disable
Defaulted to O at the debug module initialization.
20.5.2.6 N-Wire Debug Module Control register (DM_CONTROL)
The DM_CONTROL register contains enabling and status fields for debug reset,
processor breaking, interrupt and exception handling, single-stepping, and
execution of N-Wire Monitor instructions. Figure 20-20 shows the register
format. Table 20-13 describestheregister fields. Certain fields of thisregister are
copied into the DRCNTL debug register, as described in Section 20.4.2.
21 0
See table below for field descriptions I
22
Figure 20-20 N-Wire Debug Module Control (DM_CONTROL)
Register Format
772 VR5432 Microprocessor User’s Manual

Debug and Test Features

Table 20-13 N-Wire Debug Module Control (DM_CONTROL) Register Fields

Bits Name Description
Debug Reset (read/write)
1 - Requests debug reset
0 - Releases debug reset
0 RESET Defaulted according to the level of the RMode* input at
processor ColdReset*. When RMode* isactivelow, thisregister
bit is active high.
Break Request (read/write)
Write 1 -» Requests break
Write 0 — No operation
1 BREAK Read 1 - Command not completed (still requesting break)
Read 0 - Break iscompleted
Thishbit is cleared when the break is completed.
Defaulted to O at the debug module initialization.
Mask Reset* (read/write)
1 - Ignores (masks) Reset* input while in Debug mode
2 MRST 0 — Accepts Reset* input while in Debug mode
Defaulted to 1 at the debug moduleinitiaization. ColdReset* is
not masked by this bit.
Mask NMI* (read/write)
3 MNMI 1 - Suppress the occurrence of NMI*
0 - Do not suppress the occurrence of NMI*
Defaulted to O at the debug module initialization.
Mask Interrupts (read/write)
1 - Ignores user interrupt input
4 MINT 0 - Accepts user interrupt input
Thismask affectsinterruptsviathelnt* signalsor viaan external
write. Software interrupts are not masked. Defaulted to O at the
debug moduleinitialization.
Single-Step (read/write)
Thishit allowsthe user to execute one Normal mode instruction
followed by a break. Single-step occurs after a DRET
instruction. The processor returns to Normal mode, executes a
5 STEP singleinstruction, and breaks back into Debug mode. Enabling a
single-step break while the processor isin Normal mode results
in undefined behavior.
1 -, Enable single-step break (single-step mode)
0 - Disable single-step break
Defaulted to 0 at the debug modul e initialization.

VR5432 Microprocessor User’s Manual 773

Chapter 20

Table 20-13 N-Wire Debug Module Control (DM_CONTROL) Register Fields (continued)

Bits

Name

Description

13:6

BRKCAUSE

Break Cause (read only)
Thisfield consists of multiple bits. One bit is assigned for each
break cause and the corresponding bit is set when the break
occurred. Multiple bits are set if the break occurred by multiple
break causes. Break Causeis cleared by DRET or by processor
reset.
The bit assignments are defined as follows:

Bit 6 - External break

Bit 7 - Single-step

Bit 8 - Software breakpoint

Bit9 - Reserved

Bit 10 - Reserved

Bit 11 - Instruction address breakpoint

Bit 12 - Data access (address or data) breakpoint

Bit 13 - Reserved

14

DBM

Debug or Normal Mode (read only)
1 - Debug modeisactive
0 - Norma mode is active

17:15

CPUSTAT

CPU Status (read only)
The processor statusis encoded as follows:
000 - Reset (highest)
001 - Reserved
010 - Reserved
011 - Reserved
100 - Reserved
101 - Reserved
110 - Reserved
111 - Norma mode (lowest)

18

ACTFLG_CLK

Active Flag for Processor Clock (read/write)
Thisbit indicates clock activity. The debug tool can use this bit
to detect whether aclock is supplied into the processor from the
target system board.

Write 1 — No operation

Write O - Clear active flag

Read 1 — Clock is active

Read 0 — Clock has not been active since flag was cleared
Thisflag is set when there's any activity on the clock. Thisflag
is cleared when the debug tool writes 0 into this bit.

774

VR5432 Microprocessor User’s Manual

Debug and Test Features

Table 20-13 N-Wire Debug Module Control (DM_CONTROL) Register Fields (continued)

Bits

Name

Description

19

ACTFLG_BUS

Active Flag for Bus (read/write)
This bit indicates bus activity.

Write1 - No operation

Write 0 - Clear active flag

Read 1 — Buscycleisactive

Read 0 - Buscycle has not occurred since flag was cleared
Thisflag is set when thereisany activity on the bus. It iscleared
when the debug tool writes 0 into this bit.

20

MON_INSTEXEC

Monitor Instruction Execution (read/write)
Setting this bit causes the processor to fetch and execute the
instruction in the MON_INST register.
Write 1 - Fetches and executes MON_INST instruction
Write 0 — No operation
Read 1 — A monitor instruction is executing
Read 0 — No monitor instruction is executing

21

DM_EXCEPT

Debug Mode Exception (read/write)
Read 1 - Instruction executed in Debug mode has caused
an exception
Read 0 - No exception in Debug mode since flag was
cleared
Write 1 — No operation
Write 0 — Clear exception flag
If any instruction other than aL oad or Store causes an exception,
the results and processor state are undefined.

VR5432 Microprocessor User’s Manual 775

Chapter 20

20.5.2.7

N-Wire Monitor Instruction register (MON_INST)

All JTAG accessesto system resources, such asthe processor’ s Normal mode and
Debug mode registers, cache, external memory, and /O are accessed viaa
monitor mechanism. The MON_INST and MON_DATA registers are used to
insert instructions and data, respectively, into the processor.

When the debug moduleis active (DINIT bit cleared to 0 in the DM_SY STEM
register) and a debug break occurs, processor instructions can be loaded and
executed. The MON_INST instruction causes a processor instruction to be
scanned into the write-only MON_INST register through the JTAG port. The
MON_INSTEXEC bitinthe DM_CONTROL register can then be set to cause the
processor to execute the instruction.

When executing Monitor instructions, the processor PC does not give meaning to
theinstruction. Therefore, all processor instructions and events that redirect the
PC are not defined and produce unpredictable behavior. The DRET instructionis
the only instruction that can be used for redirecting the PC.

Figure 20-21 shows the register format. A monitor instruction can only be
executed while the processor isin Debug mode and the debug moduleis not reset.
If the MON_INSTEXEC hit iswritten to while in Normal mode, the results are
undefined. Attempts to modify the MON_INST or MON_DATA registers while
executing a Monitor instruction will result in undefined behavior.

An example of loading processor instructions and data with the Monitor
instruction is given in Section 20.5.3.

63 0

MON_INST I

Figure 20-21 N-Wire Monitor Instruction (MON_INST) Register Format

776

VR5432 Microprocessor User’s Manual

Debug and Test Features

20.5.2.8 N-Wire Monitor Dataregister (MON_DATA)

The MON_DATA register isidentica to the DDATAO debug register (DR2),
described in Section 20.4.2.4. The MON_DATA instruction and register are used
in conjunction with the MON_INST instruction and register to insert data and
instructions into the processor. The MON_DATA instruction causes datato be
scanned into the MON_DATA (DR2) register through the JTAG port. The
MON_INST instruction is then used to scan the MFDR instruction into the
MON_INST register. The MON_INSTEXEC bit in the DM_CONTROL register
can then be set to cause the instruction currently loaded in the MON_INST
register (i.e., the MFDR instruction) to move this data into a general-purpose
register.

Figure 20-22 shows the register format. An example of loading processor
instructions and data with the Monitor instruction is given in Section 20.5.3.

63 0

MON_DATA I

Figure 20-22 N-Wire Monitor Data (MON_DATA) Register Format

VR5432 Microprocessor User’s Manual 77

Chapter 20

20.5.2.9 N-Trace System register (TRCSY'S)

The TRCSY Sregister is used to control N-Trace reset and to give read-only
information that indicates the processor’ s N-Trace implementation parameters.
Figure 20-23 shows the register format. Table 20-14 describes the register fields.

10 8 7 6 5 4 3 2 0

NDATAPIN |reserved| reserved| RESET| CE MODE

3 1 1 1 2 3

Figure 20-23 N-Trace System (TRCSYS) Register Format

Table 20-14 N-Trace System (TRCSYS) Register Fields

Bits Name Description
Trace Mode (read only)
Theread valueis 2H. Bits 2:1 are 01, indicating Target PC
2.0 MODE (TPC) packet tracing in the N-Trace Level 1 mode (TPC

packets at exceptions and indirect jumps). Bit 0is0, indicating
anon-real-time trace.

Trace Clock (TrcClk) Divisor (read only)
4:3 CLKDIV These hits are set by the DivMode (1:0) pins. The trace port
runs at the system interface clock frequency.

Reset N-Trace (read/write)
1 - N-Traceisin reset. The NOP packet is output to the
TrcData (3:0) port. The bit is initializedtolat
ColdReset*.
0 - N-Traceis active. Trace information is output to the
TrcData (3:0) port.
If N-Traceisreset, no trace packets are generated (NOP
packets are on the internal N-Trace port). When reset is
released, the value of the current PC is output and trace
information proceeds.

5 RESET

7.6 Reserved Theread value is OH.

N-Trace Data Pins (read only)
10:8 NDATAPIN Theread valueis 4H, indicating 4 pinsin the TrcData (3:0)
port.

778 VR5432 Microprocessor User’s Manual

Debug and Test Features

20.5.2.10 N-Wire and N-Trace Hardware Breakpoint registers

Debug registers DR4-DR15 serve as the hardware breakpoint registers for both
internal -access and external-access Debug mode. The registers are described in
Section 20.4.2.

20.5.3 N-Wire Monitor Data Download Example

The following example describes the steps for downloading data into external
memory using the N-Wire Monitor instruction and data resources. To do this, use
the following sequence:

Break into Debug mode with the debug module enabled (DINIT bit cleared).
Scan the download data into the MON_DATA register viaJTAG.

Scan the MFDR instruction into the MON_INST register via JTAG.

Set the MON_INSTEXEC bitintheDM_CONTROL register viaJTAG. This
causes the processor to execute the instruction in the MON_INST register,
thus moving the data from the MON_DATA debug register (same as debug
register DR2) into a general-purpose register in preparation for a store
operation.

Check for completion by checking the MON_INSTEXEC bit viaJTAG.
Scan a Store instruction into the MON_INST register via JTAG.

Set the MON_INSTEXEC hit viaJTAG. This causes the processor to execute
the Store instruction in the MON_INST register, thus storing the data from
the general -purpose register into memory.

Check for completion by checking the MON_INSTEXEC bit viaJTAG.
. Repeat steps 2—-8 for each doubleword of datato be stored in memory.
10. Scan aDRET instruction into the MON_INST register via JTAG.
11. Setthe MON_INSTEXEC bit via JTAG to execute the DRET.

12. Check for completion by checkingthe MON_INSTEXEC bit viaJTAG. When
the DRET is complete, the processor has returned to Normal mode.

EaE SN

VR5432 Microprocessor User’s Manual 779

Chapter 20

2054

N-Trace Packets

The processor can trace its internal instruction execution by using the N-Trace
protocol. It usesthe TrcData (3:0), TrcEnd, and TrcClk signals on the JTAG port
(Section 20.5.1) to send N-Trace packets to an external debug tool. The processor
supports the N-Trace packets shown in Table 20-15. All packets maintain a 4-bit
code definition and output information that is a multiple of four bits.

Table 20-15 N-Trace Packet Types

Mnemonic Code Description

EXP 0,1,1,0,<exp_id> Exception

LSEQ 0111 Long Sequential Execution

NOP 0,0,0,0 No Operation

NSEQ 1,0,0,0,<seq #> Non-Sequential Operation

TPC 0,1,0,0,<program_counter> | Target PC

The processor generates useful trace packets only in Normal mode (User,
Supervisor, or Kernel mode). It does not generate trace packets (other than NOP)
in Debug mode; instead, NOP packets are continuously output on the N-Trace
interface. When the processor isat theinstruction boundary before entering Debug
mode, all packetsthat have been generated are output. The processor also finishes
al pending system interface operations before entering Debug mode. When the
processor leaves Debug mode, it generates a Target PC (TPC) trace packet to
indicate the instruction address where the normal execution resumes.

The processor supportsonly one N-Trace mode (N-TraceLevel 1 mode, with TPC
packets at exceptions and indirect jumps). The mode is non-real time, which
impliesthat the CPU pipeline stallsif thetrace buffer fills. N-Trace is either on or
off and does not have additional control options.

780

VR5432 Microprocessor User’s Manual

Debug and Test Features

20.5.4.1 Exception (EXP)
* Mnemonic EXP <exp_id>
e« Code 0,1,1,0,<exp_id>

The EXP packet is output when an exception occurs within the processor. The
<exp_id> field contains the Exception vector address taken. Bit 3 is equal to the
BEV hit of the Status register. Bits 2:0 are an ID indicating the exception type.

ID Exception
000 NMI
001 Debug Break
010 Reserved
011 Reserved
100 TLB Refill
101 XTLB Réfill
110 Cache Error
111 Others
20.5.4.2 Long Sequential Execution (LSEQ)

e Mnemonic LSEQ
e Code 0,111

The LSEQ packet indicates that 256 instructions have been executed sequentialy.
Thisisthe limit of the sequential instruction counter.

20.5.4.3 No Operation (NOP)
e Mnemonic NOP
e Code 0,0,0,0

The NOP packet is output if there are no other packetswhiletraceisenabled. Itis
also output if trace is disabled.

VR5432 Microprocessor User’s Manual 781

Chapter 20

20.5.4.4 Non-Sequential Operation (NSEQ)
e Mnemonic NSEQ <seq #>
 Code 1,0,0,0, <seq #>
The NSEQ packet indicates the current val ue of the 8-bit Traceinstruction counter
(IC). It is output when a branch, jJump, or exception occurs. The <seq #> field is
the count of instructions since the last NSEQ or L SEQ occurred; the count starts
a 0.
20.5.4.5 Target PC (TPC)
e Mnemonic TPC <program_counter>
e Code 0,1,0,0,<program_counter>
The TPC packet contains a 40-bit value representing the virtual address of:
* Thetarget address of a Jump Register instruction after an NSEQ
packet
* The new PC after an ERET instructi
e The starting trace location when trace reset is released
* Thenew PC when the processor leaves Debug mode whil N-Traceis
enabled
20.5.4.6 N-Trace instruction summary
Table 20-16 summarizes the Trace instructions and the trace behavior that they
create. The instructions are grouped according to the classifications that are
defined as part of the N-Trace architecture. The instruction counter (IC) isa
pointer that indicatesthe count of instructions after an NSEQ or TPC packet. This
count startsat 0. The I C reported by a trace action isthe | C of the instruction that
caused the action.
782 VR5432 Microprocessor User’s Manual

Debug and Test Features

Table 20-16 N-Trace Instruction Summary

Instruction Set Instruction or Group TraceAction®
. J, JAL e =0
CPU Instruction Set (Action occursin the delay slot) NSEQ<IC>1C=0;
JR, JALR

CPU Instruction Set

(Action occursin the delay slot)

NSEQ <IC>; IC=0; TPC;

CPU Instruction Set

PC-Relative Conditional Branches
(Action occurs in the delay slot for
Branch Taken case)

If (Branch Taken)
NSEQ<IC>; IC=0;

Else (Not Taken)
IC<-IC+1; If (IC=256)
LSEQ; IC=0;

CPU Instruction Set

Exceptionsand SYSCALL, BREAK
instructions

NSEQ<IC>; EXP<cause>; IC=
0;

CPU Instruction Set

Conditional Traps

If (Trap Taken)

NSEQ<IC>; EXP<cause>; IC=
0;

Else (Not Taken)

IC<-IC+; If (IC=256) LSEQ;
IC=0;

CPU Instruction Set

All other instructions

IC<-IC+1; If (IC=256)
LSEQ; IC=0;

CPO Instruction Set

ERET

NSEQ <IC>; IC=0; TPC;

CPO Instruction Set

All other instructions

IC<-IC+1;
If (IC = 256) LSEQ; IC=0;

Conditional Branches

If (Branch Taken)
NSEQ<IC>; IC=0;

FPU Instruction Set (Action occursin the delay slot for | Else (Not Taken)
Branch Taken case) IC<-IC+1; If (IC=256)
LSEQ; IC=0;
. . . IC<-IC+1; If (IC=256)
FPU Instruction Set All other instructions LSEQ; IC=0;
Debug Instructions Debug Break or Break instruction NSEQ <IC>; IC=0;
Debug Instructions DRET IC=0; TPC;
Debug Instructions All other instructions No action

Note:

1. IC =instruction counter, apointer indicating the number of instructions after an NSEQ or TPC packet.

VR5432 Microprocessor User’s Manual

783

Chapter 20

Table 20-17 shows an example of aBreak instruction with an exception handler

instruction indicated as the target.

Table 20-17 Trace Example #1

IC Instruction Trace Packet(s)
Break NSEQ<N>; EXP<cause>
Target
Target + 1

For taken branches and Jump instructions, the PC is not redirected until the delay
dot is executed. The NSEQ and I C reported is for the delay slot of the Branch
instruction. Table 20-18 shows an example of a Branch instruction with a Target

instruction target:
Table 20-18 Trace Example #2
IC Instruction Trace Packet(s)
N Branch
N Delay Slot NSEQ<N>
0 Target
1 Target + 1

Table 20-19 shows an example of a Jump Register instruction with a Target
instruction and target address.

Table 20-19 Trace Example #3

IC Instruction Trace Packet(s)
N Jump Register
N Delay Slot NSEQ<N>; TPC<TargetAddress>
0 Target
1 Target + 1

784

VR5432 Microprocessor User’s Manual

Debug and Test Features

For Branch instructions not taken, the delay slot is always part of the instruction
flow. The NSEQ and IC reported include delay slots of all Branch instructions.
delay slot isincluded even for branch-likely cases where the architecture does not
include it. For branch-likely cases, the delay slot is treated as an NOP.

VR5432 Microprocessor User’s Manual 785

Chapter 20

786 VR5432 Microprocessor User’s Manual

Subblock Data Retrieval Order

A

Data block elements (bytes, halfwords, words, or doublewords) can be retrieved
from storage in either sequential or subblock order. This appendix describesthese
retrieval methods, with an emphasis on subblock retrieval order.
Note: The VR5432 processor requires external memory systemsto
retrieve datain subblock order.

Sequential retrieval fetches data block elements in serial, or sequential, order.
Figure A-1 showsan example of sequential retrieval, in whichword Oistakenfirst
and word 3 istaken last.

| wo [wi|wz|ws|

)

Word 0 Word 3
retrieved first retrieved fourth
Word 1 Word 2
retrieved second retrieved third

Figure A-1 Retrieving a Data Block in Sequential Order

VR5432 Microprocessor User’s Manual 787

Appendix A

Subblock retrieval alows the system to define the retrieval order. Figure A-2
shows retrieval of afour-word block; the critical word at the target addressis
retrieved first (W2), followed by the remaining words. (The smallest data element
of ablock transfer is a doubleword.)

Retrieval Order 2 3 0 1
‘ WO | W1 | W2 | W3 ‘
WO W3
retrieved third retrieved second
W1 W2

retrieved fourth retrieved first

Figure A-2 Subblock Order Data Retrieval

The subblock ordering logic generates an address for each word asit is retrieved
by executing a bitwise exclusive-OR (XOR) of the starting block address with the
output of abinary counter that increments with each word, starting at word zero
(00,). Using this scheme, Table A-1 through Table A-3 list subblock word
retrieval for afour-word block, based on three different starting-block addresses:
10,, 11,, and 01,. The subblock order is generated by an XOR of the subblock
address (10,, 11,, and 01,) with the binary count of the word (00, through 11,).

Table A-1 Subblock Sequence: Address 10,

Cycle StarAttljr(;? ESLOCK Binary Count Revt\ici);\(/j ed
10 00 10
2 10 01 11
3 10 10 00
4 10 11 01

788 VR5432 Microprocessor User’s Manual

Subblock Data Retrieval Order

Table A-2 Subblock Sequence: Address 11,

Cycle StarAt(';:j? isOCk Binary Count Revt\i?;\(/j ed
11 00 11
2 11 01 10
3 11 10 01
4 11 11 00
Table A-3 Subblock Segquence: Address 01,
Cycle Sta:ar;g: SSLOCk Binary Count Re\{cvrci)(;(/j od
01 00 01
2 01 01 00
3 01 10 11
4 01 11 10

VR5432 Microprocessor User’s Manual 789

Appendix A

790 VR5432 Microprocessor User’s Manual

Comparing the VR4300, VR5000, and VR5432

Processors

Table B-1 compares the Vr4300, VR5000, and VrR5432 processor features.

TableB-1 VrR4300, VR5000, and VrR5432 Feature Compariso

Feature VR4300 VR5000 VR5432
. Cached (write-back)
. Cached (write-back) | C20ned (write-back) 1 o (write-through)
Cache Algorithms Cached (write-through)
Uncached Uncached Uncached
Accelerated uncached
¢ rcw_t Design Dynamic Static Static
Technique
Coprocessor 0 Hazards | Yes Yes No
Data Cache 8KB 32KB 32KB
Array Size
Data Cache : - -
Associativity Direct mapped 2-way set associative | 2-way set associative
Data Cache No No Yes
Line Locking (Lock bit/cache line)
Data Cache
Line Size 16 bytes 32 bytes 32 bytes
Data Cache
Parity Support No Yes No

VR5432 Microprocessor User’s Manual

791

Appendix B

Table B-1 VR4300, VR5000, and VrR5432 Feature Comparison (continued)

Feature VR4300 VR5000 VR5432
JTAG Boundary Scan
Hardware Debug N-Wire debug support
Features JTAG Boundary Scan | No Hardware breakpoints
Instruction jamming
Instructl_on Cache 16 KB 32 KB 32 KB
Array Size
Instruction Cache : - -
Associativity Direct-mapped 2-way set associative | 2-way set associative
Instruction Cache No No Yes
Line Locking (Lock bit/cache ling)
Instruction Cache
Line Size 32 bytes 32 bytes 32 bytes
Instruction Cache
Parity Support No Yes No
Instruction Fetch No NoO 4096 entries
Branch Prediction 2-bit saturating counter
MIPS IV + Rotate
Instruction Set +DSP
Architecture MIPSTHI MIPSIV (Integer MAC, etc.)
+ Media
Nonblocking
Load/Store Blockin Blockin hits under misses
Architecture 9 9 Up to 4 outstanding D-
cache misses
Performance Counters Two 32-bit counters
(Software/Code No No Selectable any 2 of 16
Tuning) different events
P_hyscal Address 32 bits 36 bits 36 bitsinternal; 32 bits
Size external
Power-On Dedicated pins Scan-inboot ROM | Dedicated pins
Configuration Modes b P
Secondary Cache No Yes No
Support
792 VR5432 Microprocessor User’s Manual

Comparing the VrR4300, VR5000, and VR5432

Processors
Table B-1 VRrR4300, VR5000, and Vr5432 Feature Comparison (continued)
Feature VR4300 VR5000 VR5432
Symmetrical 2-way
- (2 Integer
Limited 2-way . :
Superscalar Scalar (Single Issue) | (1 Integer + 2 Floating Point

(Execution Units)

+ 1 Floating Point)

+ 1 Load/Store

TLB

+1MAC
+ 1 Media)
System Interface |y g 5 3 2,3,4,5,6,7,8 2,25,3 4
Clock Divisors
System Interface
Parity Support No Yes No
. R5000 +
R4000-like R4000 +) .
stem Interface . . lit Transactions, or
gotocol (Removed Unused Additiona Write §p4000-like (in VRA300
Encodings) Modes :
Emulation mode)
. 64 bits + parity 32 bits + parity
oysem Interface. | 92 bie adaresddAA | arcress/deta address/data
P multiplexed multiplexed
: 4 entries
TLB 2 entries .
Data Micro-TLB No (4 KB fixed pagesize) | KB-16 MB variable
page sizes)
TLB 2 entries 2 entries 4 entries
Instruction Micro- (4 KB fixed page size) | (4 KB fixed page size) (4KB-16 MB variable

page sizes)

TLB
Joint (2nd Level)

32 double entries
(4KB-16 MBvariable
page sizes)

48 double entries
(4 KB-16 MB variable
page sizes)

48 double entries
(4 KB—16 MB variable
page sizes)

Virtual Address
Size (largest segment)

40 bits

40 bits

40 bits

VR5432 Microprocessor User’s Manual

793

Appendix B

794

VR5432 Microprocessor User’s Manual

PLL Analog Power Filtering

For noisy module environments, a phase-locked loop (PLL) filter circuit, as

C

shown in Figure C-1, is recommended. In addition, the configuration shown in
Figure C-2 isrequired for PLL Cap input.

10 pH

Vee —5ow

10 pF J‘ 0.1 uF J‘
|

1
T

100 pF

Figure C-1 PLL Filter Circuit

VccP

VssP

il
T

Cc2

=

C1

HE

PLLCap

VssP

Figure C-2 PLLCap Circuit

R1 = 1 KOhm, C1 = 400 pF, and C2 = 40 pF. All values shown are nominal.
Minimum and maximum values are TBD. All components should be placed as
closely as possible to the indicated pins.

VR5432 Microprocessor User’s Manual

795

Appendix C

796 VR5432 Microprocessor User’s Manual

| nstruction Hazards

This chapter identifies R5432 instruction hazards that occur with certain
instruction and event combinations (such as pipeline delays, cache misses,
interrupts, and exceptions). These hazards can cause unpredictable system
behavior and malfunctions.

Most hazards result from instructions modifying and reading state in different
pipeline stages. Such hazardsare defined between instruction pairs, not onasingle
instruction inisolation. Other hazards are associated with instruction restartability
in the presence of exceptions.

VR5432 Microprocessor User’s Manual 797

Appendix D

For the following code hazards, the behavior is undefined and unpredictable.

Any instruction that would modify the PageMask, EntryHi, EntryL o0,
EntryLol, or Random CPO registers should not be followed by
TLBWR instruction. There should be at least two integer instruction
between the register modification and the TLBWR instruction

Any instruction that would modify the PageMask, EntryHi, EntryL o0,
EntryLol, or Index CPO registers should not be followed by

TLBWI instruction. There should be at least two integer instructions
between the register modification and the TLBW!I instruction.

Any instruction that would modify the Index CPO register or the
contents of the JTLB should not be followed by a TLBR instruction.
There should be at least two integer instructions between the register
modification and the TLBR instruction

Any instruction that would modify the PageMask or EntryHi CPO

registers or the contents of the JTLB should not be followed by a

TLBP instruction. There should be at least two integer instructions
between the register modification and the TLBP instruction.

Any instruction that would modify the EPC, ErrorEPC, or Status CPO
registers should not be followed by an ERET instruction. There
should be at least two integer instructions between the register
modification and the ERET instruction.

A Branch or Jump instruction is not alowed in the delay slot o
another Branch/Jump instruction. This sequence is illegal in th
MIPS architecture.

The two instructions preceding aDIV, DIVU, DDIV, DDIVU, MULT,
MULTU, DMULT, or DMULTU instruction should not read the HI o
LO registers. There should be at least two integer instruction
between the register read and the register modification

798

VR5432 Microprocessor User’s Manual

| ndex

Numerics
32-hit
addressing ... 101
dataformat ... 10
instructions ... 321
operands, in 64-bit mode ... 327
single-precision FP format ... 159
32-bit mode
address space ... 17
addresstrandation ... 81
FPU operations ... 150
TLB entry format ... 64
64-bit
addressing ... 101
bus, address and data ... 22
dataformat ... 10
double-precision FPformat ... 159

A

address cycles... 206
Address Error exception ... 123
address space identifier (ASID) ... 46
address spaces
64-bit trandation of ... 50
address space identifier (ASID) ... 46
physicd ... 47
virtual ... 46
virtual-to-physical translation of ... 47
addresses ... 45
addressing
and data formats ... 10
big-endian ... 10
Kernel mode ... 56
little-endian ... 10
Supervisor mode ... 53
User mode ... 51
virtual address trandation ... 81
See also address spaces
array, page table entry (PTE) ... 94
ASID. See address space identifier

B

floating-point registers ... 153 Bad Virtual Addressregister (BadVAddr) ... 95
operations ... 327 big-endian, byte addressing ... 10, 166
virtual-to-physical address translation ... 50 binary fixed-point format ... 161
64-bit mode bit definition of
32-bit operands, handling of ... 327 ERL ...51, 53,56, 101
address space ... 17 EXL ... 51, 53, 56, 101, 104, 113
addresstrangation ... 81 IE.. 101
FPU operations ... 150 KSU ... 51,53, 56
TLB entry format ... 64 KX ... 56,101
SX ... 53,101
UX ... 51,101
branch delay ... 34
VR5432 Microprocessor User’s Manual 799

Index

Branch instructions, CPU ... 9
Branch instructions, FPU ... 167
Break or Trigger I/0 (BKTglO*) Signal ... 762
Breakpoint exception ... 131
Bus Error exception ... 128
byte addressing
big-endian ... 10, 166
little-endian ... 10, 166

C

Cache Error (CacheErr) register ... 110
Cache Error exception ... 127
Cache Error exception process ... 114
Causeregister ... 102
central processing unit (CPU)
data formats and addressing ... 10
exception processing ... 91
See al so exception processing, CPU
instruction formats ... 8
instruction set
overview ... 8
instructions. See instructions, CPU
interrupts ... 143
See also interrupts, CPU
memory management
See al'so memory management
operating modes ... 17
registers
See also registers, CPU
System Control Coprocessor (CPO) ... 63
transfers between FPU and CPU ... 165
cksegO ... 62
cksegl ... 62
ckseg3 ... 62

cksseg ... 62
Clock interface ... 313

signals... 24
cold reset ... 307
Compare instructions, FPU ... 167
Compareregister ... 96
compatibility
DECVAX .. 10
iAPX x86 ... 10
IBM 370 ... 10
MC68000 ... 10
computational instructions, CPU ... 9
64-bit operations ... 327
formats ... 326
computational instructions, FPU
floating-point ... 167
Config register ... 77
Context register ... 94
Control/Status register, FPU ... 153, 155
conversion instructions, FPU ... 166
coprocessor instructions ... 9
Coprocessor Unusable exception ... 133
Count register ... 95
CPO0. See System Control Coprocessor

csseg ... 56

D

Data Access Breakpoint ... 754
Data Breakpoint Address Mask register ... 758
Data Breakpoint Address register ... 757
Data Breakpoint Control/Status register ... 755
Data Breakpoint Data Mask register ... 759
Data Breakpoint Dataregister ... 758
data cycles ... 206
data formats

and addressing ... 10

byte ordering ... 10
data identifiers ... 243

800

VR5432 Microprocessor User’s Manual

Index

datarate ... 237

DBA ... 757

DBAM ... 758

DBC ... 755

DBD ... 758

DBDM ... 759

DBREAK ... 744

DDATAO... 750

DDATAL... 751

Debug
Board Connector ... 763
Break or Trigger I/O (BKTgIO*) signd ... 762
Data Access Breakpoint ... 754
Data Breskpoint Address Mask register ... 758
Data Breskpoint Address register ... 757
Data Breakpoint Control/Status register ... 755
Data Breakpoint Data Mask register ... 759
Data Breskpoint Data register ... 758
Debug Break ... 739

Debug Data Monitor 0 and Monitor Data
register ... 750

Debug Data Monitor 1 register ... 751
Debug Exception PC register ... 750
Debug exception vector ... 739

Debug instructions ... 739, 744

Debug mode ... 739, 742

Debug Mode Enable (DME) Bit ... 747
Debug module ... 738, 740

Debug Module Control register ... 772
Debug module reset ... 740

Debug Module System register ... 771
Debug Register Control register ... 747
Debug registers ... 738, 740, 745
Debug Reset ... 740

Debug mode registers ... 740

External Access... 738, 740, 759
Features ... 737

Hardware Breakpoint ... 740
Hardware Breakpoint registers ... 779

Instruction Breakpoint AddressMask register ...
753

Instruction Breakpoint Addressregister ... 753

Instruction Breakpoint Control/Status register
.. 152

Instruction-Address Breakpoint ... 751
Internal Access ... 738, 741, 743
JTAG Boundary Scan register ... 769
JTAG Bypass register ... 768

JTAG Instruction register ... 767
JTAG Port signals ... 760
JTAG-Accessibleregisters ... 738, 741, 766
Monitor ... 741

Monitor Dataregister ... 777

Monitor example ... 779

Monitor Instruction register ... 776
N-Trace instruction summary ... 782
N-Trace packets ... 780

N-Trace System register ... 778
N-Wire and N-Trace functions ... 759
Processor Type register ... 770

Reset Mode (RMode*) signd ... 761
Trigger ... 741

Trigger Event ... 741

DEC VAX, compatibility with ... 10
Divideregisters, CPU ... 6
Division by Zero exception ... 181

DM_CONTROL ... 772
DM_SYSTEM ... 771

DRO ... 747
DR1...750

DR12...
DR13...
DR14 ...
DR15...

757
758
758
759

VR5432 Microprocessor User’s Manual

801

Index

DR2 ... 750
DR3.. 751
DR4 ... 752
DR5... 755
DR8 ... 753
DR9 ... 753
DRET ... 744

E

EntryHi register ... 64, 75
EntryLo register ... 72
EntryLoO register ... 64, 72
EntryLol register ... 64, 72
ERL bit ... 51, 53, 56, 101
Error Exception Program Counter (ErrorEPC)
register ... 112
exception processing, CPU
exception handler flowcharts ... 136
exception types
Address Error ... 123
Breakpoint ... 131
Bus Error ... 128
Cache Error ... 127
Cache Error exception process ... 114
Coprocessor Unusable ... 133
Floating-Point ... 134
general exception process ... 114
Integer Overflow ... 129
Interrupt ... 135

Nonmaskable Interrupt (NMI) exception
process ... 114

overview ... 113

Reserved Instruction ... 132

Reset ... 119

Reset exception process ... 113

Soft Reset ... 121

Soft Reset exception process ... 114
System Call ... 130

TLB ... 124
Trap ... 129
exception vector location
Reset ... 115
exception processing, FPU
exception types
Division by Zero ... 181
Inexact Operation ... 179
Invalid Operation ... 180
Overflow ... 181
overview ... 174
Underflow ... 181
Unimplemented Exception ... 183
flags... 176
saving and restoring state ... 184
trap handlers ... 184
Exception Program Counter (EPC) register ... 104
EXL bit ... 51, 53, 56, 101, 104, 113
EXP... 781
External Access... 738, 740, 759

F

features
Floating-Point Unit (FPU) ... 150
Floating-Point exception ... 134

Floating-Point General-Purpose registers (FGRS) ...
151

Floating-Point registers (FPRS) ... 153
Floating-Point Unit (FPU)
designated as CP1 ... 16, 149
exception types ... 174
See also exception processing, FPU,
exception types
features ... 16, 150
formats
binary fixed-point ... 161
floating-point ... 159

802

VR5432 Microprocessor User’s Manual

Index

instruction execution cycletime ... 169
instruction pipeline ... 169
See also pipeline, FPU

instruction set, overview ... 162

overview ... 149

programming mode! ... 150

transfers between FPU and CPU ... 165

transfers between FPU and memory ... 165
FPU. See Floating-Point Unit

G
general exception
handler ... 137
process ... 114
servicing guidelines ... 138

H

hardware

interlocks ... 166

interrupts ... 143
Hardware Breakpoint ... 740
Hardware Breakpoint registers ... 779

iAPX x86, compatibility with ... 10
IBA ... 753
IBAM ... 753
IBC ... 752
IBM 370, compatibility with ... 10
IE bit ... 101
Implementation/Revision register, FPU ... 153-154
Index register ... 70
Initialization interface

cold reset ... 307, 309

power-on reset ... 308

reset signal description ... 307, 311
warm reset ... 307, 310
Instruction Breakpoint Address Mask register ... 753
Instruction Breakpoint Address register ... 753
instruction formats, CPU
typesof ... 8
instruction set architecture (ISA)
overview ... 8
instruction set, CPU
overview ... 8
See also instructions, CPU
instruction set, FPU ... 162
Instruction-Address Breakpoint ... 751
instructions, CPU
branch ... 9
computational ... 9
64-bit operations ... 327
formats ... 326
COprocessor ... 9
jump ... 9
load
defining accesstypes ... 323
overview ... 9
store
defining accesstypes ... 323
overview ... 9
System Control Coprocessor (CPO) ... 9
trandation lookaside buffer (TLB) ... 83
instructions, FPU
branch ... 167
compare ... 167
computational ... 167
conversion ... 166
load ... 165
move... 165
store ... 165
Integer Overflow exception ... 129

VR5432 Microprocessor User’s Manual

803

Index

interlocks, hardware ... 166
Internal Access... 738, 741, 743
Interrupt exception ... 135
Interrupt interface, signals ... 27
Interrupt register ... 143-146
interrupts, CPU
accessing ... 143
hardware ... 143
Nonmaskable Interrupt (NMI) ... 143
Invalid Operation exception ... 180

J

Joint Test Action Group (JTAG) interface
signals... 26

JTAG Boundary Scan register ... 769

JTAG Bypassregister ... 768

JTAG Instruction register ... 767

JTAG port signals ... 760

JTAG test access port ... 759

JTAG-Accessible registers ... 738, 741, 766

Jump instructions, CPU ... 9

xkseg ... 62
xksseg ... 61
xkuseg ... 61
ksegO ... 60
ksegl ... 60
kseg3 ... 60
ksseg ... 60
KSU hit ... 51, 53, 56
kuseg ... 59
KX hit ... 56, 101
L
latency

external response ... 243

FPU operation ... 169

release ... 243
little-endian, byte addressing ... 10, 166
load delay ... 166
Load instructions, CPU

defining access types ... 323

overview ... 9
Load instructions, FPU ... 165
Load Linked Address (LLAddr) register ... 80

) LSEQ ... 781
Kernel mode
and exception processing ... 92
cksegO ... 62 M
cksegl ... 62 master state ... 209
ckseg3 ... 62 MC68000, compatibility with ... 10
cksseg ... 62 memory management
kseg0 ... 60 address spaces ... 45
ksegl ... 60 addressing ... 17
kseg3 ... 60 memory management unit (MMU) ... 41
ksseg ... 60 register numbers ... 69
kuseg ... 59 registers. See registers, CPU, memory
operations ... 56 management
xkphys ... 61 System Control Coprocessor (CP0) ... 63
804 VR5432 Microprocessor User’s Manual

Index

MFDR ... 745

MON_DATA ... 750, 777
MON_INST ... 776

Monitor ... 741, 779

Move instructions, FPU ... 165
MTDR ... 745

Multiply registers, CPU ... 6

N

NMI ... 122, 143

Nonmaskabl e Interrupt (NMI) exception
handling ... 142
process ... 114

NOP ... 781

Normal Mode ... 741

NSEQ ... 782

N-Trace ... 759

N-Trace Instruction summary ... 782

N-Trace packets ... 780

N-Trace System register ... 778

null request ... 231

N-Wire ... 759

@)

operating modes ... 17

Kernel mode ... 56

User mode ... 51
OptionR43K* signdl ... 19, 28, 253
Overflow exception ... 181

P

page table entry (PTE) array ... 94
PageMask register ... 64, 72
Parity Error (PErr) register ... 109
PClock ... 313

physical address space ... 47

pipeline
branch delay ... 34
cycletime... 169

overview ... 169
pipelined writes ... 219
power-on reset ... 308
Processor Revision Identifier (PRId) register ... 76

R

Random register ... 71
registers, CPU
exception processing

Bad Virtual Address (BadVAddr) ... 95
Cache Error (CacheErr) ... 110
Cause ... 102
Compare ... 96
Config ... 77
Context ... 94
Count ... 95

Error Exception Program Counter
(ErrorEPC) ... 112

Exception Program Counter (EPC) ... 104
Load Linked Address (LLAddr) ... 80
Parity Error (PErr) ... 109
Processor Revision Identifier (PRId) ... 76
register numbers... 93
Status ... 97
TagHi ... 80
TagLo ... 80
XContext ... 105
Interrupt ... 143-146
memory management
EntryHi ... 64, 75
EntryLo ... 72
EntryLoO0 ... 64, 72
EntryLol ... 64, 72
Index ... 70

VR5432 Microprocessor User’s Manual

805

Index

PageMask ... 64, 72
Random ... 71
Wired ... 71, 74
overview ... 6
System Control Coprocessor (CPO) ... 63
registers, FPU
Control/Status ... 153, 155
Floating-Point (FPRS) ... 153

Floating-Point General-Purpose (FGRS) ...

Implementation/Revision ... 153-154
requests ... 198
requests. See System interface
Reserved Instruction exception ... 132
Reset exception

handling ... 142

overview ... 119

process... 113
Reset mode (RMode*) signal ... 761
resets

cold ... 307, 309

power-on ... 308

warm ... 307, 310
resident debugger ... 741

S

sequentia ordering ... 250

shutdown ... 100

signals
Clock interface ... 24
descriptions ... 19
Interrupt interface ... 27
JTAG interface... 26
request cycle control signals ... 208, 268
Systeminterface ... 21

dave state ... 209

Soft Reset exception

handling ... 142
overview ... 121
process ... 114
sseqg ... 55
Status register
access states ... 101
format ... 97
operating modes ... 101
Storeinstructions, CPU
defining access types ... 323
overview ... 9
Store instructions, FPU ... 165
subblock ordering ... 250
Supervisor mode
csseg ... 56
sseqg ... 55
suseg ... 55
Xsseg ... 55
Xsuseg ... 55
suseg ... 55
SX hit ... 53, 101
SysClock ... 313
System Call exception ... 130
System Control Coprocessor (CP0)
instructions ... 9
register numbers ... 63
registers

151

used in exception processing ...

System interface
addressing conventions ... 250
buses ... 188
commands
overview ... 243
read requests ... 245
syntax ... 244
writerequests ... 246
data identifiers

93

806

VR5432 Microprocessor User’s Manual

Index

overview ... 243
data identifiers, syntax ... 244, 248
datarate ... 237
data rate control
data transfer patterns... 237, 297, 298
independent transmissions on SysAD bus
.. 242
external request protocols
arbitration request ... 228, 283
null request ... 231, 287
overview ... 227, 281
read request ... 229, 286

write request ... 232, 290, 291, 293, 294,
296, 297, 298, 299, 300, 302,
304, 306

externa requests
null request ... 231, 287
overview ... 257
read request ... 199
read response request ... 200, 259
write request ... 200, 259
handling requests
load miss... 201-202, 261
store hit ... 203, 262
store miss ... 202-203, 262
uncached loads or stores ... 203, 263
independent transmission ... 242
issue cycles ... 206, 266
latency ... 243
master state ... 209, 269
null request ... 231
pipelined writes ... 219
processor internal address map ... 251
processor request protocols
cluster flow contral ... 216, 218, 276, 277
read request ... 212, 272
write request ... 214, 274
processor requests
overview ... 194-195, 255-256

read request ... 196, 256

writerequest ... 197, 257
request ... 211

control signals ... 208, 268

rules... 194, 255
sequential ordering ... 250
signals... 21
dave state ... 209, 269
subblock ordering ... 250
writereissue ... 219

T
TagHi register ... 80

TaglLo register ... 80

Test Features ... 737

TLB Invalid exception ... 125

TLB Modified exception ... 126

TLB Refill exception ... 124

TLB/XTLB Miss exception handler ... 139

TLB/XTLB Refill exception servicing guidelines....
140

TPC ... 782

translation lookaside buffer (TLB)
and memory management ... 41
entry formats ... 64
exceptions ... 124
instructions... 83
misses ... 83, 94, 136
page attributes ... 61
shutdown ... 100

trandation, virtual to physical
64-bit ... 50

Trap exception ... 129

TRCSYS... 778

Trigger ... 741

Trigger event ... 741

VR5432 Microprocessor User’s Manual

807

Index

U

Underflow exception ... 181
Unimplemented exception ... 183
useg ... 51, 52
User mode

operations ... 51

useg ... 52

xuseg ... 52
UX bit ... 51, 101

\Y,

virtual address space ... 46
virtual memory
hits and misses ... 42
mapping ... 17
virtual address translation ... 81
Vr4300 compatibility mode ... xvi, 19, 28, 253, 265

W

warm reset ... 307, 310
Wired register ... 71, 74
write reissue ... 219

X

XContext register ... 105
xkphys ... 61

xkseg ... 62

xksseg ... 61

xkuseg ... 61

xsseg ... 55

Xsuseg ... 55

xuseg ... 51, 52

808

VR5432 Microprocessor User’s Manual

NEC

Some of the information contained in this document may vary from country to country. Before using any NEC

product in your application, please contact a representative from the NEC office in your country to obtain a list of

authorized representatives and distributors who can verify the following:

Device availability
Ordering information

Product release schedule

0O 0D oo

Availability of related technical literature

host computers, power plugs, AC supply voltages, and so forth)

O Network requirements

Development environment specifications (for example, specifications for third-party tools and components,

In addition, trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara

Tel: 800-366-9782

Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics ltaliana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, the Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte.
Ltd.

United Square, Singapore 1130
Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Sao Paulo-SP,Brasil
Tel: 011-889-1680
Fax: 011-889-1689

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from use of a device described herein or any other liability
arising from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been
making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot
be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an
NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as
redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three
quality grades: “Standard,” “Special,” and “Specific.” The Specific quality grade applies only to devices
developed based on a customer-designated “quality assurance program” for a specific application. The
recommended applications of a device depend on its quality grade, as indicated below. Customers may check
the quality grade of each device before using it in a particular application. Standard: Computers, office
equipment, communications equipment, test and measurement equipment, audio and visual equipment, home
electronic appliances, machine tools, personal electronic equipment and industrial robots. Special:
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-
crime systems, safety equipment (not specifically designed for life support). Specific: Aircraft, aerospace
equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment
for life support, etc. The quality grade of NEC devices is “Standard” unless otherwise specified in NEC’s data
sheets or data books. If customers intend to use NEC devices for applications other than those specified for
Standard quality grade, they should contact an NEC sales representative in advance.

In North America: No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change
without notice. All devices sold by NECEL are covered by the provisions appearing in NECEL Terms and
Conditions of Sales only, including the limitation of liability, warranty, and patent provisions. NECEL makes no
warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the
freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that
may appear in this document. NECEL makes no commitments to update or to keep current information
contained in this document. The devices listed in this document are not suitable for use in applications such as,
but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control
systems and life support systems. “Standard” quality grade devices are recommended for computers, office
equipment, communication equipment, test and measurement equipment, machine tools, industrial robots,
audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic
control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the
responsible NECEL salesperson to determine the reliability requirements for any such application and any cost
adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in
any application where failure could result in injury or death. If customers wish to use NECEL devices in
applications not intended by NECEL, customers must contact the responsible NECEL salespeople to determine
NECEL's willingness to support a given application.

©2000 NEC Electronics Inc./Printed in U.S.A. U15397EU5VOUMJ1

	COVER
	Preface
	Chapter 16 Instruction Set Overview
	16.1 Instruction Set Architecture
	16.2 Instruction Formats
	16.3 Load and Store Instructions
	16.3.1 Delayed Load Instructions
	16.3.2 Defining Access Types

	16.4 Computational Instructions
	16.4.1 64-Bit Operations

	16.5 Jump and Branch Instructions
	16.5.1 Jump Instructions
	16.5.2 Branch Instructions

	16.6 Special Instructions
	16.7 Coprocessor Instructions
	16.7.1 Coprocessor Load and Store
	16.7.2 Coprocessor Operations

	16.8 Implementation-Specific Instructions
	16.8.1 Overview
	16.8.2 Implementation-Specific Instruction Descriptions

	16.9 Integer Rotate Instructions
	16.10 Integer Multiply-Accumulate Instructions
	16.11 Multimedia Extensions
	16.12 Debugging Instructions
	16.12.1 Instruction Notation Conventions

	Chapter 17 CPU Instruction Set
	17.1 Introduction
	17.2 Functional Instruction Groups
	17.2.1 Load and Store Instructions
	17.2.2 Computational Instructions
	17.2.3 Jump and Branch Instructions
	17.2.4 Miscellaneous Instructions

	17.3 System Control Coprocessor (CP0) Instructions
	17.4 CPU Instructions
	17.5 CPU Instruction Opcode Bit Encoding

	Chapter 18 Floating-Point Unit Instruction Set
	18.1 Instruction Formats
	18.1.1 Floating-Point Loads, Stores, and Transfers
	18.1.2 Floating-Point Operations

	18.2 Floating-Point Computational Instructions
	18.3 FPU Instructions
	18.4 FPU Instruction Opcode Bit Encoding

	Chapter 19 Multimedia Instruction Set
	19.1 Multimedia Extensions
	19.2 Multimedia Instruction Format
	19.3 Multimedia Instructions
	19.4 Multimedia Instruction Opcode Bit Encoding

	Chapter 20 Debug and Test Features
	20.1 Overview
	20.2 Definition of Terms
	20.3 Debug Mode
	20.4 Internal Access
	20.4.1 Debug Instructions
	20.4.2 Debug Registers

	20.5 External Access
	20.5.1 JTAG Port Signals
	20.5.2 JTAG-Accessible Registers
	20.5.3 N-Wire Monitor Data Download Example
	20.5.4 N-Trace Packets

	Appendix A Subblock Data Retrieval Order
	Appendix B Comparing the Vr4300, Vr5000, and Vr5432 Processors
	Appendix C PLL Analog Power Filtering
	Appendix D Instruction Hazards
	Index

