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57 ABSTRACT 

APC-bus is added to a VESA local bus (VL-bus) computer 
system using a VL-bus/PCI-bus bridge. The VL-bus/PCI 
bus bridge claims a VL-bus cycle by asserting LDEV# to the 
VL-bus/system-bus bridge. If no other VL-bus device 
claims the cycle as well, then the VL-bus/PCI-bus bridge 
translates the cycle onto the PCI-bus and awaits a response 
from a PCI device. If no PCI device claims a cycle by the 
PCI-bus device claiming deadline, then the VL-bus/PCI-bus 
bridge asserts BOFF# to the host and suppresses its assertion 
of LDEV# when the host repeats the cycle on the VL-bus. 
The VL-bus/system-bus bridge therefore can translate the 
repetition of the cycle onto the system bus. When asserting 
BOFF# to the host, the VL-bus/PCI-bus bridge also asserts 
the VL-bus device ready signal LRDY# after assertion of 
BOFF# and releases LRDY# before releasing BOFF#. The 
VL-bus controller does not receive BOFF# necessarily, but 
responds to LRDY# by asserting RDYRTN# onto the 
VL-bus, thereby signifying to all other VL-bus devices that 
the VL-bus cycle has ended and permitting them to restart 
their state machines in anticipation of a new VL-bus cycle. 
The host ignores RDYRTN# while, and only while. BOFF# 
is asserted. 

33 Claims, 15 Drawing Sheets 
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WL-BUS/PCI-BUS BRIDGE 

"This application is a continuation of Ser. No. 08/332, 
858, filed Nov. 1, 1994, now abandoned." 

BACKGROUND 

1. Field of the Invention 
The invention relates to IBM PC AT-compatible computer 

architectures, and more particularly, to enhancements 
thereof for communicating with I/O peripheral devices. 

2. Description of Related Art 
The IBM PC/ATS) computer architecture has become an 

industry standard architecture for personal computers and is 
typically built around a host CPU such as an 80386, 80486 
or Pentium(s) microprocessor manufactured by Intel 
Corporation, or similar microprocessors manufactured by 
others. The host CPU is coupled to a hostbus, capable of 
performing memory accesses and data transfers at high rates 
of speed (i.e. on the order of 25-100 MHz with today's 
technology). The host bus includes 32 or, in the case of 
computers built around the Pentium, 64 data lines, a plural 
ity of address lines, and various control lines. The typical 
IBM PC AT-compatible platform also includes DRAM main 
memory, and in many cases a timer, a real-time clock and 
a cache memory. 
The typical IBM PC AT-compatible computer also 

includes an I/O bus, also know as a system bus or AT-bus, 
which is separate and distinct from the hostbus. The system 
bus usually conforms to one of two industry-established 
standards known as ISA (Industry Standard Architecture) 
and EISA (Extended ISA). The system bus is coupled to the 
host bus via a host-bus/system-bus bridge, and includes, 
depending on the system bus standard adhered to, 16 or 32 
data lines, a plurality of address lines, as well as control 
lines. The I/O address space is logically distinct from the 
memory address space and if the CPU desires to access an 
I/O address, it does so by executing a special I/O instruction. 
Such an I/O instruction generates memory access signals on 
the hostbus, but also activates an M/IOff signal on the host 
bus to indicate that this is an access to the I/O address space. 
The host-bus/system-bus bridge recognizes the I/O signals 
thereby generated by the CPU, performs the desired opera 
tion over the system bus, and if appropriate. returns results 
to the CPU over the host bus. 

In practice, some I/O addresses may reside physically on 
the host bus and some memory addresses may reside physi 
cally on the system bus. More specifically, the devices which 
respond to accesses to certain I/O space addresses may be 
connected to the control lines (and usually the address and 
data lines as well) of the hostbus, while the devices which 
respond to accesses to certain memory space addresses may 
be connected to the control lines (and usually the address 
and data lines as well) of the system bus. The host-bus/ 
system-bus bridge is responsible for recognizing that a 
memory or I/O address access must be emulated by an 
access to the other bus, and is responsible for doing such 
emulation. For example, a ROM (or EPROM) BIOS may 
reside physically on the system bus, but actually form part 
of the local memory address space. During system boot, 
when the CPU sends out a non-I/O address which is physi 
cally within the ROM BIOS, the host-bus/system-bus bridge 
recognizes such, enables a buffer (considered herein as being 
part of the host-bus/system-bus bridge) which couples the 
address onto the system bus, and activates the chip select for 
the ROM. The bridge then assembles a data word of the size 
expected by the host CPU, from the data returned by the 
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2 
ROM, and couples the word onto the hostbus for receipt by 
the CPU. In many systems, at some point during the ROM 
based boot-up procedure, the ROM BIOS is copied into 
equivalent locations in the DRAM main memory, which 
does reside on the hostbus, and thereafter accessed directly. 

In the standard architecture, the logical main memory 
address space is divided into a low memory range 
(Oh-9FFFFh), a reserved memory range (A0000h-FFFFFh) 
and an extended memory range (100000h to the top of 
memory). In a typical system the system ROM BIOS is 
located logically at memory space addresses 
F0000h-FFFFFh, and resides physically on the system bus. 
Addresses C0000h-EFFFFh contain ROM BIOS portions 
for specific add-on cards and reside physically on their 
respective cards on the system bus. Addresses 
A0000h-BFFFFh contain the video buffer, which is a part of 
a video controller residing on the system bus. Duplicate 
memory space is typically provided in DRAM on the host 
bus for addresses C0000h-FFFFFh, and the user of the 
system can select during a setup procedure, which portions 
of the ROM BIOS are to be "shadowed" by being copied 
into the duplicate DRAM space during boot-up. 

In addition to the above elements, a keyboard controller 
typically also resides on the system bus, as does the timer 
and real-time clock. A typical DBM PC AT-compatible sys 
tem may also include a DMA controller which permits 
peripheral devices on the system bus to read or write directly 
to or from main memory, as well as an interrupt controller 
for transmitting interrupts from various add-on cards to the 
CPU. The add-on cards are cards which may be plugged into 
slot connectors coupled to the system bus to increase the 
capabilities of the system. Add-on cards are also sometimes 
referred to as expansion cards or accessory cards. 

General information on the various forms of IBM PC 
AT-compatible computers can be found in IBM. "Technical 
Reference, Personal Computer AT" (1985), in Sanchez, 
"IBM Microcomputers: A Programmer's Handbook" 
(McGraw-Hill: 1990). in MicroDesign Resources, "PC Chip 
Sets" (1992), and in Solari, "AT Bus Design" (San Diego: 
Annabooks, 1990). See also the various data books and data 
sheets published by Intel Corporation concerning the struc 
ture and use of the iAPX-86 family of microprocessors, 
including Intel Corp., "Pentiumn"M Processor". Preliminary 
Data Sheet (1993); Intel Corp., "Pentiumn M Processor 
User's Manual" (1994); "i486 Microprocessor Hardware 
Reference Manual", published by Intel Corporation, copy 
right date 1990, "386 SX Microprocessor", data sheet, 
published by Intel Corporation (1990), and "386 DX 
Microprocessor", data sheet, published by Intel Corporation 
(1990). All the above references are incorporated herein by 
reference. 

The various signals on the host bus include the input/ 
output signals of whichever microprocessor the system is 
built around. Such signals are therefore well known in the 
industry and can be determined by reference to the above 
incorporated publications. The various signals on the system 
bus also are well known in the industry, The Solari book 
incorporated above describes the lines in detail. For present 
purposes, only the following signals are important: 
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SA(19:0) 

LA(23:17) 

BALE 

SBHE 

SD(15:0) 
MEMR#, 
SMEMR 

MEMW 
SMEMW 

IOR 

IOW 

MEMCS16 

IOCS6. 

SROY 

OCHRDY 

MASTER# 
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TABLE 

ISA BUS SIGNALS 

ISA BUS SIGNAL DESCRIPTION 

20 address lines. Sufficient to 
address 1 MB of memory. Only SA(15:0) 
are used to address the 64kWO 
address space, and only SA(9:0) are 
used to address the basic lik ATIO 
address space. 
Additional address lines for 
addressing a 16 MB memory address space 
on the system bus. The LA lines are 
valid earlier in an I/O bus cycle, but 
must be latched if needed later in the 
cycle. The SA lines are not valid as 
early as the LA lines, but remain 
valid longer. 
Bus address latch enable line. In a 
CPU initiated system bus cycle, this 
line indicates when the SA address, 
AEN and SBHEF lines are valid. In 
other system bus cycles, the platform 
circuitry drives BALE high for the 
entire cycle. 
System byte high enable. When SBHE# 
is active and SAO) is low, then a 16 
bit access will be performed. 
When active, informs IO resources on 
system bus to ignore the address and 
I/O command signals. Used primarily 
in DMA cycles where only the I/O 
resource which has requested and 
received a DMA acknowledgment signal 
(DACKF) knows to ignore AEN and 
respond to the system bus signal 
lines. Some systems include slot 
specific AEN signal lines. 
16 data lines. 
Read request lines to a memory 
resource on the system bus. SMEMR# is 
the same as MEMR# except that SMEMR# 
becomes active only when the read 
address is below 1 MB (i.e., LA(23:20) 
= 0). Also called MRDC# and SMRDC#, 
respectively. 
Write request lines to a memory 
resource on the system bus. SMEMWif 
becomes active only when the write 
address is below 1 MB. Also called 
MWTC# and SMWTC#, respectively. 
Read request line to an I/O resource 
on the system bus. Also called IORCi. 
Write request line to an I/O resource 
on the system bus. Also called IOWC#. 
Memory chip select 16. Asserted by an 
addressed memory resource on the 
system bus if the resource can support 
a 16-bit Iemory access cycle. 
O chip select 16. Asserted by an 

addressed I/O resource on the system 
bus if the resource can support a 16 
bit IFO access cycle. 
Synchronous Ready line. Also 
sometimes called OWSA, NOWS or 
ENDXFR. Activated by an addressed 
I/O resource to indicate that it can 
support a shorter-than-normal access 
cycle. 
VO channel ready line. If this 
signal is deactivated by an addressed 
I/O resource, the cycle will not end 
until it is reactivated. A deactivated 
IOCHRDY supersedes an activated SRDYi. 
Also sometimes called CHRDY. 
After requesting and receiving a DMA 
acknowledged (DACKF) signal, a system 
bus add-on card can assert MASTER to 
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TABLE I-continued 

SABUS SIGNALS 

SABUS 
SIGNAL NAME SABUS SIGNAL DESCRIPTION 

become the system bus master. 
REFRESH Activated by refresh controller to 

indicate a refresh cycle. 
IRQ(15, 14, Interrupt request lines to the 
12:9, 7:3) interrupt controller for CPU. 
DRQ(7:5, DMA Request lines from I/O resource on 
3:0) system bus to platform DMA controller. 
DACK(7:5, DMA. Acknowledge lines. 
3:0) 
TC DMA terminal count signal. Indicates 

that all data has been transferred. 
Also called TiC. 

BCLK System bus clock signal. 6-8.33 MHz 
square wave. 

OSC 14.318 MHz square wave. 

Note that some of the signals described in this specifica 
tion are asserted high, whereas others are asserted low. As 
used herein. signals which are asserted low are given a "#" 
or 'B' suffix in their names, whereas those asserted high (or 
for which an assertion polarity has no meaning) lack a "#" or 
'B' suffix. Also, two signal names mentioned herein that are 
identical except that one includes the "#" or 'B' suffix while 
the other omits it, are intended to represent logical compli 
ments of the same signal. It will be understood that one can 
be generated by inverting the other, or both can be generated 
by separate logic in response to common predecessor sig 
mals. 

Recently, efforts have been made to reduce the size and 
improve the manufacturability of PC AT-compatible com 
puters. Specifically, efforts have been made to minimize the 
number of integrated circuit chips required to build such a 
computer. Several manufacturers have developed "PC AT 
chipsets" (also known as "core logic chipsets" or "I/O bus 
interface circuitry"), which integrate a large amount of the 
host-bus/system-bus bridge circuitry and other circuitry onto 
only a few chips. An example of such a chipset is the 386WB 
PC/AT chipset manufactured by OPTi Inc., Santa Clara, 
Calif. These chipsets implement the host-bus/system bus 
bridge, the timer, real-time clock (RTC), DMA controller, as 
well as some additional functionality, 

In the original IBM PC AT computers manufactured by 
IBM Corp... the system bus operated with a data rate of 8 
MHz (BCLK-8 MHz). This was an appropriate data rate at 
that time since it was approximately equivalent to the 
highest data rates which the CPUs of that era could operate 
with on the host bus. Numerous third party vendors have 
since developed peripheral devices and controller cards 
which are intended to be plugged into an AT (ISA) slot on 
the system bus, and which rely upon the 8 MHz maximum 
data rate. The AT standard also requires a wait state (i.e. 125 
nS) for 16-bit data transfers, and four wait states (500 nS) for 
8-bit data transfers. A Zero wait state data transfer is also 
available, but only if the peripheral device signals, by 
activating the SRDY# control line on the system bus, that it 
can handle such fast data transfers. 

In the years since the IBM PC AT was originally 
introduced, technology has improved dramatically to the 
point where host buses on high-end PC AT-compatible 
computers can operate on the order of 100 MHz. Despite 
these advances. however, such computers are still manufac 
tured with a system bus operating at around 8 MHz because 
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of the need to maintain compatibility with previously 
designed peripheral devices. These devices were designed in 
reliance upon the 8 MHz data rate and AT wait state 
protocol, and many such devices are not capable of operat 
ing faster. Even modern designs for AT bus peripherals often 
rely on the 8 MHz maximum data rate, even though very 
little additional effort or cost would be involved to design 
them to operate faster. 

In addition to the large disparity between data transfer 
rates on the system bus as compared to the host bus in 
modern PC AT-compatible computers, the host-bus/system 
bus bridge circuitry needs to delay its handling of requests 
and responses from one bus to the other merely because the 
clocks are not synchronized. The circuitry therefore must 
hold a request or response until the appropriate clock edge 
on the destination bus appears. This can add on the order of 
30-200 nS to each system bus cycle. Accordingly, it can be 
seen that any access to a peripheral device on the system bus 
imposes a substantial penalty on the performance of PC 
AT-compatible computers. This penalty will only become 
worse as the disparity between the hostbus and system bus 
data rates continues to increase. 
The penalty applies for most types of peripheral devices, 

but in the past it has been most noticeable for video display 
controllers. Video display controllers have a command port 
which responds to accesses in the I/O address space, as well 
as a video memory port which responds to accesses in the 
memory address space. Manufacturers have traditionally 
placed both ports on the system bus, however, thereby 
imposing the speed limitations of the system bus on the 
video memory port as well as the command port. U.S. patent 
application Ser, No. 07/851.444, filed Mar. 16, 1992, now 
U.S. Pat. No. 5,309.568. (Attorney Docket No. 
OPTI3030WSW), owned by the assignee of the present 
application and incorporated herein by reference in its 
entirety, describes certain attempts to permit accesses to the 
video memory port to take place over the hostbus instead of 
the system bus. In addition, some graphics chip vendors 
have tried incorporating features into their chips for con 
nection directly to a host bus. For example, see S3, Inc., 
"86C911 GUI Accelerator". Databook (April 1992), incor 
porated herein by reference. 

However, these solutions all suffer from the problem that 
they are non-standard. That is, if a vendor of I/O interface 
chipsets provides for a host bus capability, there is no 
assurance that it will interface directly with products made 
by more than one peripheral device controller vendor. A 
layer of buffers and glue logic therefore may be required to 
enable such peripheral device controllers to take advantage 
of the host bus feature, and the glue logic may be different 
for each different peripheral controller. On the other hand, if 
a maker of peripheral device controllers, such as a maker of 
a VGA (Video Graphics Adapter) controller, provides for a 
host bus capability in the peripheral controller, there is no 
guarantee that it will interface correctly with the host-bus/ 
system-bus bridge chipsets made by more than one chipset 
manufacturer. Again, different buffers and glue logic may be 
required for each vendor of chipsets. 

In two different efforts for ameliorating the above 
problem, instead of creating a private standard, two different 
organizations have defined different bus protocols and 
attempted to promulgate them as standards for the entire 
personal computer industry. One such standard, referred to 
herein as the VESA (Video Electronics Standards 
Association) or VL-Bus standard, is defined in VESA, 
"VESA VL-Bus Local Bus Standard". Revision 1.0 (1992), 
incorporated herein by reference. Significant aspects of the 
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6 
VL-Bus specifications are described in Appendix A hereto. 
Further revisions of the VESA standard are in preparation. 
one recent version being VESA, "VESA VL-Bus Proposal. 
Version 2.0 p. Revision 0.8 p (May 17, 1993), also incor 
porated herein by reference. The other such standard. 
referred to herein as the PCI standard is defined in Intel 
Corp., "Peripheral Component Interconnect (PCI), revision 
1.0 Specification" (Jun. 22, 1992) and in PCISpecial Interest 
Group, "PCI Local Bus Specification", Revision 2.0 (Apr. 
30, 1993), both incorporated herein by reference. Significant 
aspects of the PCI 2.0 Bus specifications are described in 
Appendix B hereto. Each standard has advantages and 
disadvantages over the other, and depending on the 
application, one standard or the other may be more benefi 
cial to have in a system. 

For example, one advantage of the VL-bus is that it is 
relatively simple to include in a personal computer system. 
especially those built around an Intel 486 microprocessor. 
This is because the VL-bus signal lines are similar to signal 
lines of the 486 CPU, except for a few additional signal lines 
included on the VL-bus. Thus the only additional expense 
required to add a VL-bus to a pre-existing 486-based com 
puter design, is a very small VL-bus controller to handle the 
additional signal lines. Such a controller has already been 
included in chipsets. An example of such a chipset includes 
the OPTi 82C802G and either the 82C601 or 82C602, all 
incorporated herein by reference. The 82C802G is described 
in OPTi Inc.. "OPTi PC/AT Single Chip 82C802G Data 
Book". Version 1.2a (Dec. 1, 1993), and significant aspects 
are also set forth in Appendix C hereto. The 82C601 and 
82C602 are described in OPTi Inc., 'PC/AT Data Buffer 
Chips. Preliminary, 82C601/82C602 Data Book". Version 
1.0e (Oct. 13, 1993), and significant aspects are also set forth 
in Appendix D hereto. Both data books are incorporated 
herein by reference in their entirety. 

While a minimum VL-bus system requires no additional 
circuitry, the insertion of a simple host-bus/VL-bus bridge 
provides buffering for additional VL-bus devices. For 
Pentium(s)-based systems, the host bus of which has a 
64-bit wide data path, the bridge could also include circuitry 
to break up a 64-bit host-bus originated access. into two 
32-bit VL-bus accesses. Such circuitry is still relatively 
simple. (Extension to the 32-bit VL-bus standard have been 
proposed in order to accommodate 64-bit access in a single 
VL-bus cycle, but in general, as the data path of host CPUs 
continues to expand, it can be expected that at least some 
future system designs will continue to employ a bridge 
which breaks up a wider-data-path hostbus access into two. 
four, or some other number of narrower-data-path cycles on 
the VL-bus.) 
Aprimary advantage of the PCI-bus, on the other hand, is 

its processor independence. The PCI-bus was intended to 
provide very high-speed accesses using a standard bus 
protocol, and to interface those accesses with any host 
processor bus using an appropriate host-bus/PCI-bus bridge. 
The host-bus/PCI-bus bridge is significantly more expensive 
than the circuitry required to implement a VL-bus, but the 
independence it provides from ever-faster and ever-more 
varied host processor buses provides a stable target for 
designers of peripheral products. A peripheral device 
designed for the PCI-bus would not need to be redesigned 
for each new version of an Intel microprocessor, or indeed, 
for each new microprocessor that might in the future power 
a personal computer system. 
To date, neither the WL-bus standard nor the PCI-bus 

standard has achieved dominance in the marketplace for 
personal computer systems or in the marketplace for periph 
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eral devices. Thus peripheral device manufacturers design 
ing cards intended to bypass the slow system bus, still 
usually must design one version of the card for the PCI-bus 
and one version for the VL-bus. Similarly, computer system 
integrators and chipset manufacturers often find themselves 
having to double their product offerings since each market 
segment for VL-bus systems can have an equivalent but 
separate market segment for PCI-bus systems. 

It is possible to overcome these problems by designing a 
computer system which incorporates both VL-bus expan 
sion slots and PCI-bus expansion slots, in addition to the 
standard ISA- or EISA-bus expansion slots. The mother 
board circuitry to implement this would be expected to 
include programmable registers which would indicate 
whether a particular valid cycle definition on the hostbus is 
to be handled by a device on the host bus (such as main 
memory), a device on the VL-bus (which may be the same 
as the hostbus in 486 systems), by a device on the PCI-bus, 
or by a device on the system bus. Such motherboard 
circuitry would be expensive, however, and may require an 
entirely new chipset design. 

In Acer Laboratories. Inc., "M1435 PCI-VL Bus Bridge, 
Preliminary Datasheet" (Sep. 20, 1993), incorporated by 
reference herein, there is described a VL-bus/PCI-bus bridge 
chip which, together with the Acer M1429kG/M1429 VESA 
chip, permits both a VL-bus and a PCI-bus to be included in 
a single system. According to the datasheet, when the 
M1435 chip detects a valid VL-bus cycle, it first determines 
whether the cycle is intended for system memory or for 
another VL-bus device. The chip is believed to perform a 
positive decode of the address to determine whether the 
cycle is intended for system memory, and it observes the 
LDEV signal to determine whether the cycle has been 
claimed by another VL-bus device. If neither is the case, 
then the M1435 translates the cycle to the PCI-bus. If no PCI 
agent claims the translated PCI cycle, then the M1435 
asserts an ISA REQJ signal to the M1429 chip, thereby 
informing the M1429 to start an ISA cycle. See also Acer 
Laboratories. Inc., “M1429G/M 1431/M1435 Data Sheet' 
(October 1993), incorporated herein by reference. 
The Acer technique for accommodating both the WL-bus 

and PCI-bus in a single system is limited in that it operates 
only with a host-bus/system-bus interface chipset which 
observes and understands the ISA REQ signal asserted by 
the M1435 bridge. Other inter-chip signals may also be 
required between the M1435 and M1429. Since most inter 
face chipsets do not understand these signals, such chipsets 
would have to be modified by the chipset manufacturer 
before they could be used with the M1435 bridge. It would 
be desirable, therefore, to provide a VL-bus/PCI-bus bridge 
which does not require modification of any existing VL-bus/ 
system-bus chipset. Such a bridge could be used in conjunc 
tion with the chipset of any manufacturer which supports the 
VL-bus. 

SUMMARY OF THE INVENTION 

The invention takes advantage of a feature of Intel 486 
and Pentium microprocessors, known as the back-off fea 
ture. These microprocessors sense a BOFF# signal, which is 
not considered part of the VL-bus. When the microprocessor 
detects assertion of BOFF#, while a host bus cycle is in 
progress, it aborts the cycle and restarts it after it detects 
BOFF# negated. According to the invention, roughly 
described, a VL-bus/PCI-bus bridge claims a VL-bus cycle 
by asserting LDEV# to the VL-bus/system-bus bridge. If no 
other VL-bus device claims the cycle as well, and the cycle 
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8 
is not to system memory, then the VL-bus/PCI-bus bridge 
translates the cycle onto the PCI-bus and awaits a response 
from a PCI device. If no PCI device claims a cycle by the 
PCI-bus device claiming deadline, then the bridge asserts 
BOFF# to the host. The bridge then awaits the host's 
repetition of the cycle which was subject to the BOFF#, and 
suppresses its assertion of LDEV# so that the VL-bus/ 
system-bus bridge can translate the cycle onto the system 
bus. 

In another aspect of the invention, a VL-bus device can 
take advantage of the back-off feature of the 486 and 
Pentium CPU's by asserting the VL-bus device ready signal 
LRDY# after assertion of BOFF#, and negating LRDY# 
before or at the same time as negating BOFF#. The VL-bus 
controller does not receive BOFF# necessarily, but responds 
LRDY# by asserting RDYRTN# onto the VL-bus, thereby 
signifying to all other VL-bus devices that the VL-bus cycle 
has ended and permitting them to restart their state machines 
in anticipation of a new VL-bus cycle. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention will be described with respect to particular 
embodiments thereof, and reference will be made to the 
drawings, in which: 

FIGS. 1 and 2 are block diagrams of a computer system 
incorporating the invention; 

FIGS. 3, 4 and 5 are timing diagrams of signals in the 
computer system of FIG. 2; 

FIGS. 6-10 are schematic diagrams of circuitry in the 
VL-bus/PCI-bus bridge of FIG. 2; 

FIGS. B1-B5 are timing diagrams for certain signals on 
the PCI-bus of FIG. 2, 

DETALED DESCRIPTION 

FIG. 1 is a block diagram illustrating pertinent features of 
a computer system incorporating the invention. The system 
includes a VL-bus host 102, which may, for example, be an 
Intel 80386 or 80486 microprocessor, or it may include an 
Intel Pentium microprocessor in combination with a con 
ventional host-bus/VL-bus bridge. The VL-bus host 102 is 
connected to a VL-bus 104. comprising VL-bus control lines 
106, VL-bus data lines 108, and VL-bus address lines 110. 
The system can also include a math coprocessor 112 con 
nected to the WL-bus 104; if the VL-bus host includes a 
bridge, then the math coprocessor 112 can instead be 
coupled to the host bus (not shown). The system of FIG. 1 
also includes a core logic chipset comprising an 82O802G 
chip 118 and an 82C602 chip 120, both manufactured by 
OPTi Inc., Santa Clara, Calif., as well as two sets of buffers 
114 and 116. The chipset (referred to collectively herein as 
122) is coupled to the VL-bus 104 and provides control and 
address signals to main memory DRAM 124, cache SRAM 
126, as well as other components in the system. The cache 
SRAM 126 also receives address signals from the VL-bus 
address lines 110 via buffer 128, and both the cache SRAM 
126 and the main memory DRAM 124 are coupled 
bi-directionally to the VL-bus data lines 108. The system 
also includes an ISA bus 130, which includes address lines 
132, a 16-bit SD data bus 134, and an 8-bitXD data bus 136. 
The XD data bus 136, together with accompanying control 
and address signals (collectively the X-bus), are considered 
herein to form part of the ISA bus 130. 
The core logic chipset 122 is responsible for many 

functions in the system, including recognizing VL-bus 
cycles intended for devices which reside on the ISA bus, and 
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translating such cycles onto the ISA bus 130. Address 
signals are transferred between the VL-bus address leads 
110 and the ISA-bus address leads 132 via buffers 116 and 
the 82C602 data buffer 120, and data is transmitted between 
the VL-bus data lines 108 and the ISA-bus data lines 134 
and 136 via the buffers 114 and the 82C602 data buffer 120. 
ABIOS ROM and flash EPROM 138 reside on the ISA bus 
130, as does a keyboard controller 140 and other ISA-bus 
peripherals 142. Residing on the VL-bus 104 is a VL-bus 
device 144, as well as a VL-bus/PCI-bus bridge 146 (also 
referred to herein as a PCI bridge 146) described in more 
detail below. The PCI-bus bridge is also described in OPTi, 
Inc., "82C822 PCIB VESA Local Bus to PCI Bridge 
Interface." Data Sheet (April, 1994), incorporated herein in 
its entirety, and is described in Appendix E hereto. The 
VL-bus/PCI-bus bridge 146 is also connected to a PCI-bus 
148, comprising control lines 150 and a multiplexed AD 
address/data bus 152. A PCI-bus device 154 resides on the 
PCI-bus 148. Although VL-bus 144 is shown residing exclu 
sively on the VL-bus 104, it will be understood that in 
accordance with the VL-bus specification incorporated 
above, such device may also be connected to the ISA bus 
130. The signals on the VL-bus 104 and the PCI-bus 148 
conform to those set forth above and in the appendices with 
respect to the respective standards. 

FIG. 2 is a block diagram showing some of the compo 
nents of the system of FIG. 1, and providing additional detail 
regarding the control signals. Only signals pertinent to an 
understanding of the invention are illustrated, and it will be 
understood that other signals exist as well. Referring to FIG. 
2, it can be seen that the VL-bus host 102 has its CPU 
address (CA) lines connected to the VL-bus VA lines 202 
and its CD data lines connected to the VL-bus data lines 204. 
It also has its ADS#, R/W#. M/IO# and D/C# outputs 
connected to the corresponding VL-bus signal lines 206, 
207,208 and 210. The CLK output of the VL-bus host 102 
drives the VL-bus LCLKlines 212, and the VL-bus host 102 
BLAST# and BRDY# inputs are connected to receive the 
signals on the corresponding lines 214 and 216 of the 
VL-bus. As in conventional VL-bus system 
implementations, the VL-bus host 102 is not connected to 
the VL-bus LRDY# signal line 218, but rather has its RDY# 
input connected the VL-bus RDYRTN# signal line 220. 
Additionally, although the BOFF# input of the VL-bus host 
102 is not used in many conventional VL-bus 
implementations, in the system of FIGS. 1 and 2, it is 
connected to a corresponding BOFFB output of the WL-bus/ 
PCI-bus bridge 146 for reasons hereinafter described. The 
BOFFB output of the VL-bus/PCI bridge 146 is also coupled 
to a WBACKF input of VL-bus device 144. In Pentium 
systems, the coupling of BOFFB to WBACK takes place 
via an AND gate 223, the other input of which is connected 
to the HTTM# output of the Pentium host. 
The VL-bus address lines 202 are also connected to the 

core logic chipset 122, as are the VL-bus data lines 204, the 
D/C# line 206, the WR line 207, the M/TOil line 208, and 
the ADS# line 210. The core logic chipset 122 also has its 
BRDY# and BLAST# lines connected to the respective lines 
216 and 214 of the VL-bus 104, has its LRDYIFF input 
connected to the LRDY line 218 of VL-bus 104, and has its 
RDY line connected to the WL-bus RDYRTNF line 220. It 
also has its HCLK input connected to receive the signal on 
LCLK line 212. The LDEV# input of core logic chipset 122 
is connected as hereinafter described. 
As previously mentioned, the WL-bus/PCI-bus bridge 146 

has a BOFFB output which is connected to the BOFFF input 
of the VL-bus host 102. If the host 102 separates the VL-bus 
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10 
104 from the host bus (not shown) connected to the host 
CPU, and if such bridge does not translate the BOFF# signal 
between the two buses, then BOFFB is connected directly to 
the BOFF# input of the host CPU itself. The VL-bus/PCI 
bus bridge 146 also includes an LADSIB signal line con 
nected to the ADS# signal line of the VL-bus 104, an MIOB 
signal line connected to the M/IOf signal line of VL-bus 
104, a DCIB signal line connected to the DfC# signal line of 
VL-bus 104, VD signal lines connected to the data lines of 
VL-bus 104, WA signal lines connected to the address lines 
202 of VL-bus 104, and a clock input connected to the 
LCLK line 212 of VL-bus 104. The VL-bus/PCI-bus bridge 
146 also includes a BLASTIB signal line connected to the 
VL-bus BLASTi line, a BRDYIB signal line connected to 
the BRDY# signal line, an RDYIB input connected to the 
VL-bus RDYRTN# line 220, and an LRDYOB output 
connected the VL-bus LRDY# signal line 218. 

In a conventional VL-bus system implementation, the 
WL-bus signal lines LDEV<X># are typically ANDed 
together before being provided to the VL-bus/ISA-bus core 
logic chipset 122 LDEV# input. In the present embodiment, 
however, the combined signal (called LDEVIf is intercepted 
by the VL-bus/PCI-bus bridge 146 before being provided 
(by the name LDEVO#) to the LDEV# input of the VL-bus/ 
ISA-bus core logic chipset 122. Accordingly, in FIG. 2, the 
VL-bus signal lines LDEVO#. LDEV1# and LDEV2# are 
connected to respective inputs of a 3-input AND gate 222, 
the output of which forms the LDEVEF signal. This signal is 
provided to an LDEVTB input of the VL-bus/PCI-bus bridge 
146, which produces an LDEVOB output on a signal line 
LDEVO#. The LDEVO# is connected to the LDEV# input 
of VL-bus/ISA-bus core logic chipset 122. 
On the PC-bus side of VL-bus/PCI-bus bridge 146, the 

bridge is connected to the 32-bit multiplexed addressldata 
bus 152. The bridge 146 also has a FRAMEB signal line 
connected to the FRAMEF control signal line of the PCI-bus 
148, an IRDYB signal line connected to the IRDY# signal 
line of the PCI-bus 148, a TRDYB signal line connected to 
the TRDY# signal line of PCI-bus 148, and a DEVSELIB 
signal line connected to the DEVSEL signal line of the 
PC-bus 148. 

FIG. 2 also illustrates an ISA-bus device 142 connected to 
the ISA-bus 30 which is connected to the VL-bus/SA-bus 
core logic chipset 122, a PCI-bus device 154 which is 
connected to all of the signal lines of PCI-bus 148, and a 
VL-bus device 144 which is connected to appropriate signal 
lines of the VL-bus 104. Pertinent to the present description, 
the WL-bus device 144 is able to listen to the VL-bus cycle 
definition signals (VA, BEF, R/W#,D/C#, and M/IO#). If it 
recognizes a valid cycle to which it can respond, the VL-bus 
device 144 can assert LDEV onto the WL-bus LEDV0 
signal line, and can terminate its VL-bus cycle by asserting 
LRDY# on the VL-bus LRDY# signal line 218. The PCI-bus 
device 154 and the VL-bus device 144 can constitute any 
desired expansion devices, but typically they will include a 
video display driver, possibly SCSI adapters, disk 
controllers, LAN adapters, and so on. 
The operation of the system of FIGS. 1 and 2 will be 

described with respect to certain timing diagrams beginning 
with FIG. 3. FIG. 3 simplified is a timing diagram illustrat 
ing the timing of signals on the VL-bus 104 for a VL-bus 
read cycle initiated by the VL-bus host 102 and claimed by 
a conventional VL-line target device. Possible variations, 
and the timing of various signals not shown in FIG. 3, can 
be gleaned from the above-incorporated VL-bus specifica 
tions. The timing is the same for a VL-bus master-initiated 
cycle, except that it is preceded by a bus arbitration proce 
dure. 
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Referring to FIG. 3. the LCLK signal is indicated at line 
302. Six LCLKcycles are shown, labeled T1, T21,....T25. 
Cycle T1 corresponds to the T1 cycle of an Intel 80486 
microprocessor, and cycles T21 ...T25 correspond to five 
consecutive T2 cycles of such a microprocessor (see the 
Intel databooks incorporated above). 

In LCLK cycle T1, as indicated on line 304, the host 102 
places the cycle definition signals (ADR31:2), M/IO#. 
W/R#, D/C# and BE3:0#) on the appropriate signal lines 
of the VL-bus 104. It then strobes the ADS# signal to assert 
the validity of the cycle definition signals and to start the 
VL-bus cycle as shown in line 306. If a VL-bus target 
device, such as 144 in FIG. 2, recognizes the cycle definition 
and desires to claim the VL-bus cycle, it must do so within 
20 nanoseconds after sampling ADSf low at the rising edge 
which begins T21. To claim the cycle, VL-bus target device 
144 asserts its LDEV# output onto the VL-bus LDEV<x># 
signal to which it is connected. This causes AND gate 222 
(FIG. 2) to assert LDEVFlf low, which signal is passed 
through the VL-bus/PCI-bus bridge 146 to the LDEVO# 
signal line and onto the LDEV# input of VL-bus/ISA-bus 
core logic chipset 122. The core logic chipset 122 samples 
LDEV# on the first rising edge of LCLK following the 20 
nanosecond period to determine whether any VL-bus device 
has claimed the cycle. Such rising edge is referred to herein 
as the VL-bus device bus-claiming deadline, and is relative 
to the LCLKrising edge at which ADS# is sampled asserted. 
For systems with LCLKs33.3 MHz, the VL-bus device 
claiming deadline is typically the first rising edge of LCLK 
following the rising edge on which ADS# is sampled 
asserted, and for systems in which LCLKs40 MHz, the 
VL-bus device claiming deadline is typically the second 
rising edge of LCLK following the rising edge in which 
ADSA is sampled asserted. 

Accordingly, referring again to FIG. 3, the VL-bus device 
144, through the AND gate 222, asserts LDEVEF within T21 
for 33.3 MHz systems (arrow 308), or within T21 or T22 for 
40 MHz systems and above (arrow 310), as indicated online 
312. In either case, VL-bus/PCI-bus bridge 146 asserts 
LDEVO# to the VL-bus/ISA-bus core logic chipset 122 
immediately thereafter as indicated on line 314 (arrows 316 
and 318, respectively). (Note that the VL-bus/PCI-bus 
bridge 146 is at the same time decoding the address and 
cycle definition signals as described elsewhere herein, and 
may assert LDEVOff as a result of the decode as well. The 
bridge 146 therefore may actually assert LDEVO# before 
receipt of LDEVI# as indicated by arrow 315.) 
The VL-bus host 102 unasserts (negates) ADSA 306 after 

being sampled asserted, i.e. within LCLK cycle T21. The 
VL-bus device 144 therefore detects ADSlf negated at the 
rising edge which begins T22, and within T22, begins 
driving its read data onto the VD lines 204 of VL-bus 104 
as indicated on line 320. 
The cycle definition signals remain active until 

RDYRTN# is sampled asserted on a rising edge of LCLK, 
i.e. in LCLK cycle T24 or T25 as indicated by arrows 330 
and 331. 

After the end of the second T2 state (i.e., in LCLK cycle 
T23), the VL-bus device 144 begins asserting LRDY# as 
indicated in line 322 for one LCLK cycle. This signal is 
detected at the LRDYFlf input of the VL-bus/ISA-bus core 
logic chipset 122, which responds by asserting RDYRTN# 
on the VL-bus 104 (line 324 and arrow 326 in FIG. 3). For 
40 MHz systems and faster, the core logic chipset 122 may 
wait until the first rising edge of LCLK following detection 
of LRDY# asserted to assert RDYRTN# (arrow 328). 
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12 
thereby resynchronizing the ready signals with LCLK. For 
33 MHz systems, LRDYI# can be connected directly to 
RDYRTNff. The VL-bus host detects RDYRTNff asserted on 
its RDY# input, and terminates the VL-bus cycle. 
The rising edge of LRDY# in T24 causes the core logic 

chipset 122 to unassert RDYRTN# either immediately there 
after (arrow 334), or for faster systems, in response to the 
first LCLK rising edge following detection of LRDY# 
unasserted (arrow 336). The VL-bus device 144 drives the 
VL-bus LRDY# signal line to a high logic level for one-half 
LCLK cycle following deassertion of LRDY#. and then 
floats LRDYff, 
The VL-bus device 144 continues to drive data onto the 

VD lines 204 until the first LCLK rising edge at which it 
detects RDYRTN# asserted (arrow 338 or 340). It also cause 
AND gate 222 to de-assert LDEVIf at the same time (arrows 
342, 344), and the VL-bus/PCI-bus bridge 146 de-asserts 
LDEVO# to the core logic chipset 122 at the same time 
(arrows 346, 348). 
Thus it can be seen that the WL-bus/PCI-bus bridge 146 

does not interfere with VL-bus read accesses to VL-bus 
target devices such as 144. The same is true with VL-bus 
write accesses to VL-bus target devices, and to VL-bus read 
and write accesses regardless of whether the originator is the 
VL-bus host 102, the VL-bus/ISA-bus core logic chipset 122 
(e.g. acting for an ISA-bus master), or a VL-bus master 
device. Note that in the timing diagram of FIG. 3, if no 
VL-bus device had asserted its corresponding LDEV<x># 
signal by the VL-bus device claiming deadline, then the 
chipset 122 translates the cycle onto the ISA-bus 130 and 
returns any read data onto the VD lines 204 of the VL-bus 
104. 

FIG. 4 is a timing diagram illustrating the operation of the 
system of FIGS. 1 and 2 when the target device of a VL-bus 
access resides on the PCI-bus 148. The timing diagram of 
FIG.4, like that of FIG. 3. has been simplified for clarity of 
description. In addition, a system with LCLK s33.3 MHz is 
assumed, and it is assumed that the PCI-bus clock is the 
same as the VL-bus clock. LCLK, but is treated asynchro 
nously. 

Referring to FIG. 4, as with FIG. 3, an LCLK signal is 
indicated on line 402. One T1 cycle is shown, followed by 
nine T2 cycles labeled T21....T29. The VL-bus host 102 
drives a cycle definition onto the VL-bus 104 prior to T1 as 
indicated on line 404, and asserts ADSfas indicated on line 
406. It is assumed that no VL-bus device claims the cycle. 
so LDEVIf remains high throughout the VL-bus cycle as 
indicated on line 408. Nevertheless, the VL-bus/PCI-bus 
bridge 146 asserts LDEVO# to VL-bus/ISA-bus core logic 
chipset 122 in response to detection of ADS# asserted at the 
beginning of the first T2 cycle. The core logic chipset 122 
thus considers the VL-bus cycle as having been claimed by 
a VL-bus device, and withholds any translation of the cycle 
onto the ISA-bus 130. The VL-bus/PCI-bus bridge 146 also 
drives the address from VA lines 202 onto the AD lines 152 
of PCI-bus 148 (line 412 in FIG. 4), and drives an appro 
priate command onto the CBEff lines of PCI-bus 148 (line 
414 in FIG. 4). After a delay for synchronizing to the 
PCI-bus clock signal, in T23, VL-bus/PCI-bus bridge 146 
asserts FRAMEff on the PCI-bus 148 (line 416 in FIG. 4). It 
also asserts the PCI-bus IRDY# signal in T24 (line 418). It 
is assumed that only one data phase will occur on the 
PCI-bus in response to the present example VL-bus cycle, so 
the bridge 146 de-asserts FRAME# in T24. 

Prior to the PCI-bus device claiming deadline, the target 
PCI-bus device 154 (FIG. 2) claims the PCI-bus cycle by 
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asserting DEVSEL#. The PCI-bus device 154 is assumed to 
be a fast device, so as indicated on line 420 (FIG. 4), it 
asserts DEVSEL# during T24 in response to detection of 
FRAMElf asserted at the rising edge which begins T24. The 
bridge 146 releases the address and command from the 
PCI-bus AD and C/BEff signal lines, respectively, in 
response to the assertion of DEVSEL#, and asserts BEff onto 
the C/BE# signal lines. In T2.5, the PCI-bus device 154 
drives the read data onto the PCI-bus AD lines 152 and 
asserts TRDY# for one clock cycle as indicated on line 422. 
The bridge 146 latches the data from AD lines 152 onto the 
VL-bus VD data lines 204 as indicated by line 430 and arrow 
424 (although initially invalid data may be driven from AD 
to VD as early as T22). At the beginning of T26, the 
VL-bus/PCI-bus bridge 146 samples TRDY# asserted, and 
in response thereto. releases C/BEff and de-asserts IRDY# 
(arrows 426 and 428, respectively). The PCI-bus device 154 
also releases the AD lines 152 and negates DEVSEL# in 
T26. 

After another synchronization delay, in T28, the VL-bus/ 
PCI-bus bridge 146 asserts LRDY# as indicated online 432 
for one LCLKcycle. The VL-bus/ISA-bus core logic chipset 
122 responds by asserting RDYRTN on the VL-bus 104 
(line 434 and arrow 436 in FIG. 4); it de-asserts RDYRTN# 
in response to the de-assertion of LRDY# (arrow 438). The 
VL-bus/PCI-bus bridge 146 samples RDYRTN# asserted at 
the beginning of T29, and in response thereto, negates 
LDEVO# to the core logic chipset 122 (arrow 440). 

Accordingly, it can be seen that the WL-bus/PCI-bus 
bridge translates VL-bus cycles onto the PCI-bus 148 for 
response by PCI-bus devices. This is accomplished without 
the need for any special signals between the VL-bus/PCI 
bus bridge 146 and either the VL-bus host 102 or the 
VL-bus/ISA-bus core logic chipset 122. It will be under 
stood that the same is true of VL-bus data write cycles, and 
VL-bus cycles originated by VL-bus device masters and by 
the core logic chipset 122 for an ISA-bus master. Essentially 
the VL-bus/PCI-bus bridge appears to each of the VL-bus 
devices as a VL-bus target and appears to each PCI-bus 
device as the host-bus/PCI-bus bridge. It will also be under 
stood that numerous types of PCI-bus transactions are 
defined in the PCI-bus specification incorporated above, and 
while only one such transaction type is illustrated in FIG. 4, 
different situations may result in different PCI-bus transac 
tion types as appropriate or desirable. 

FIG. 5 is a timing diagram illustrating the operation of the 
system of FIGS. 1 and 2 for a VL-bus read access to a device 
which resides on the ISA-bus 130 (or to an address to which 
no device responds). As with FIGS. 3 and 4, the timing 
diagram of FIG. S is simplified for clarity of illustration. 
Possible variations, and the timing of various signals not 
shown in FIG. 5, can be gleaned from the above 
incorporated references. As with FIGS. 3 and 4, the timing 
shown in FIG. 5 is the same for a VL-bus master-initiated 
cycle, except that it is preceded by a bus arbitration proce 
dure. 

Referring to FIG. 5, the LCLK signal is illustrated as line 
502. Certain signals, such as the VL-bus signals VD and 
LDEVI#, and PCI-bus signals AD, C/BE, TRDY#, are 
omitted from FIG.5 for clarity. Signal line 504 illustrates the 
cycle definition signals on the VL-bus 104, and line 506 
illustrates the ADS# signal. The VL-bus host 102 drives the 
cycle definition lines and asserts ADS# during the T1 cycle 
in order to define a valid VL-bus cycle. At the beginning of 
T21, the VL-bus/PCI-bus bridge 146 samples ADS# 
asserted, and asserts LDEVO# in response thereto (line 508 
and arrow 540). It is assumed that no other VL-bus device 
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14 
intends to claim the VL-bus cycle, so LDEVI# (not shown 
in FIG. 5) remains high for the entire process of FIG.S. 
As with the VL-bus cycle illustrated in FIG. 4. after a 

synchronization delay, the VL-bus/PCI-bus bridge 146 
asserts FRAMEF during T23 on the PCI-bus 148 as shown 
at line 510 in FIG. 5. Again, since only one PCI-bus data 
phase is assumed to be desired, the bridge 146 negates 
FRAMEF during T24. The bridge 146 also asserts IRDY# 
on the PCI-bus 148 during T24 as indicated at line 512 in 
F.G. S. 

According to the PCI-bus specification, a PCI-bus con 
troller can be programmed to expect a PCI-bus device 
claiming signal asserted prior to a PCI-bus claiming dead 
line which is programmable to be 1, 2 or 3 PC-clock rising 
edges after the rising edge at which FRAME# is sampled 
asserted. This is true of the bridge 146, and it is assumed that 
the bridge 146 has been programmed for the medium 
PCI-bus device claiming deadline of two PCI-bus clock 
cycles. Such programming was accomplished during system 
boot-up, in which the boot-up code surveyed the PCI-bus 
devices included in the system and determined that none 
required longer than two PCI-bus clock cycles to claim a 
PCI-bus cycle; this information was written into the register 
address offset 52h(1:0) of the PCI-bus bridge 146. 
Accordingly, since no PCI-bus device claims the cycle by 
asserting DEVSELF by the LCLK rising edge which begins 
T26, (line 514 in FIG. 5), the VL-bus/PCI-bus bridge 146 
issues a "master abort". This negates RDY# (arrow 516). 
At this point, since the VL-bus/PCI-bus bridge 146 has 

asserted LDEVO# to the VL-bus/ISA-bus core logic chipset 
122, the chipset 122 will not know that it needs to try finding 
the destination device on the ISA-bus 130. One solution 
would be to provide additional signals between the VL-bus/ 
PCI-bus bridge 146 and the core logic chipset 122 in order 
to so inform the chipset 122, but this would require a 
modification of standard VL-bus/ISA-bus core logic 
chipsets such as 122. Accordingly, in the system of FIGS. 1 
and 2, the VL-bus/PCI-bus bridge 146, in response to its 
failure to detect DEVSELF asserted at the LCLKrising edge 
which begins T26, asserts BOFF# in T27 to the VL-bus host 
102 (line 518 and arrow 520 in FIG. 5). As indicated on line 
S22 and arrow 524, after assertion of BOFF, the VL-busf 
PCI-bus bridge 146 asserts LRDY# in LCLK cycle T28 to 
cause the termination of the VL-bus cycle. LRDY# is 
delayed by one LCLK cycle (programmable to 0, 1 or 2 
LCLK cycles) after BOFF# for reasons which will become 
apparent. As indicated by arrow 528, the VL-bus controller 
in 122 asserts RDYRTNF in response to detection of 
LRDY# asserted, and negates RDYRTN# in T29 in response 
to the negation of LRDY# in T29 (arrow 530). After the 
PCI-bus bridge 146 detects RDYRTN# asserted at the 
beginning of LCLK period T29, it negates LDEV# in LCLK 
period T29 as indicted by arrow 534. It also negates BOFF# 
in LCLK period T210 as indicated by arrow 532. The delay 
from RDYRTN# to negation of BOFF#, like the delay from 
BOFF# to LRDY#, is programmable in PCI-bus bridge 146 
in order to be assured that the host CPU has itself received 
the BOFF# signal despite any time delays in a host-bus/VL 
bus bridge in VL-bus host 102. 
At the first LCLKrising edge in which BOFFF is sampled 

negated, the WL-bus host 102 repeats the WL-bus cycle 
which was aborted by the PCI-bus bridge 146. It does this 
by starting a new T1 cycle in which it once again drives the 
cycle definition signals on the VL-bus 104 as indicated on 
line 504 in FIG.S. and asserts ADSi as indicated online 506 
in FIG. 5 (arrows 536 and 538, respectively). The VL-bus 
host 102 negates ADS# in the following LCLK cycle and 



5,790,831 
15 

withdraws the cycle definition signals in due course. Unlike 
the initial assertion of the VL-bus cycle, however, the 
VL-bus/PCI-bus bridge 146 does not assert LDEVO# in 
response to the repetition of the cycle, nor does it assert any 
signals on the PCI-bus 148. Instead, the VL-bus/ISA-bus 
core logic chipset 122 performs its usual duties of translating 
the cycle to the ISA-bus 130 and returning any read data 
back to the VL-bus WD lines 204. If no ISA-bus device 
responds to the access, then as in a conventional system, the 
data which the chipset 122 returns to the VL-bus VD lines 
204 will be undefined. The chipset 122 then assert 
RDYRTN# for one LCLK cycle to end the VL-bus cycle. 
The timing relationship between the PCI-bus bridge's 

assertion of LRDY# and BOFF# (lines 522 and 518 in FIG. 
5) solves a problem which could otherwise preclude the use 
of LDEVOff and BOFFF to add PC-bus 148 to a conven 
tional system without modifying the core logic chipset 122. 
In particular, if the PCI-bus bridge 146 were to assert 
BOFF# without asserting LRDY#, then the VL-bus control 
ler in VL-bus/PCI-bus core logic chipset 122 would not 
know one VL-bus cycle has ended and a new VL-bus cycle 
will soon begin, since the chipset 122 does not necessarily 
receive BOFFlf. Other VL-bus devices would have the same 
problem, since they too do not necessarily receive BOFF#. 
VL-bus devices need only observe the RDYRTN# line (and 
BRDY# with BLAST#) to determine that a VL-bus cycle 
has ended, and RDYRTN will not occur unless LRDYif is 
asserted first. On the other hand, the PCI-bus bridge 146 
cannot assert LRDY# without asserting BOFF#, since 
LRDY# causes the VL-bus controller in core logic chipset 
122 to assert RDYRTNf, which is connected to the VL-bus 
host 102 RDY# input. Thus the VL-bus host 102 would 
consider the VL-bus cycle terminated successfully, and 
would have no reason to repeat it. Thus the PCI-bus bridge 
146 needs to assert both BOFFF and LRDY#. 

If the bridge 146 were to assert LRDY# before asserting 
BOFF#, then once again, the VL-bus controller in chipset 
122 would assert RDYRTN and the VL-bus host 102 would 
receive RDY# possibly before it receives BOFF#. In this 
case the VL-bus host 102 would consider the original 
VL-bus cycle terminated successfully, begin a subsequent 
(non-repeat) VL-bus cycle, and apply the back-off to the 
subsequent cycle instead of the original cycle. On the other 
hand, if the PCI-bus bridge 146 asserts LRDY# too late, 
such that the core logic chipset 122 does not assert 
RDYRTN# until after BOFF# has been negated at the input 
of the host, then the VL-bus host 102 might repeat the 
back-offed VL-bus cycle before the VL-bus devices, includ 
ing that in the VL-bus/ISA-bus core logic chipset 122, can 
reset their VL-bus state machines and prepare to detect it. 

According to an aspect of, the invention, therefore, the 
PCI-bus bridge 146 does not assert LRDY# until after it has 
asserted BOFF#. The 80486 and Pentium-compatible pro 
cessors ignore their RDY# input while BOFF# is being 
asserted. Advantageously, the PCI-bus bridge 146 delays 
assertion of LRDY# by a number of LCLK cycles in order 
to ensure that the microprocessor itself has had an oppor 
tunity to sample BOFF# asserted before (or no later than the 
LCLKrising edge that) it detects an active RDY# from the 
RDYRTN# line. This delay, which is programmable in the 
PCI-bus bridge 146, accommodates any timing delays which 
might occur between the BOFFB output of PCI-bus bridge 
146 and the BOFF# input of the microprocessor itself. 
Additionally, the PCI-bus bridge 146 does not negate 
BOFF# until after it detects RDYRTNA asserted. As previ 
ously mentioned, advantageously the PCI-bus bridge 146 
can be programmed to delay negation of BOFF# by one or 
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two additional LCLK cycles in order to ensure that BOFF# 
is still asserted at the host microprocessor BOFF# input 
when the microprocessor's RDY# input is asserted. 
The timing diagram of FIG. 5 also describes a VL-bus 

master-initiated access to an ISA-bus device. VL-bus 
devices are not required to receive BOFF#, but they do 
receive a WBACK# signal. In a conventional system, 
WBACK# is typically connected to the HITM# output of a 
Pentium-based WL-bus host. The Pentium contains an 
on-chip write-back cache memory, and it asserts HTTM# 
whenever it has an internal cache miss and a write-back to 
system memory is required. When a bus master detects 
HTM# asserted (e.g. via a WBACK# input), the bus master 
is required to immediately abort its cycle and float all 
address data and control signals that it drives as master. 
When the device later samples WBACK# inactive, the 
device may restart the bus cycle with a new ADS#. 

Conveniently, this required operation of a VL-bus master 
in response to WBACK# is the same as the operation of the 
VL-bus host in response to BOFF#, Thus VL-bus masters 
can be accommodated in a system incorporating the 
invention, by coupling the BOFFB output of the PCI-bus 
bridge 146 to the WBACK# inputs of each such device. In 
systems having a write-back cache, the BOFFB signal can 
be ANDed with HTM# such that either HTM# or BOFFB 
will force the VL-bus master to perform a backoff function. 
As previously mentioned, some VL-bus implementations 

are built around a host microprocessor whose data path is 
twice as wide as the VD lines 204 on VL-bus 104. Such is 
the case for systems built around the Intel Pentium 
microprocessor, for example. In order to accommodate these 
arrangements, a conventional WL-bus system includes a 
host-bus/VL-bus bridge (not shown) within the VL-bus host 
102 of FIG. 2. Such a bridge will assert two accesses on the 
VL-bus in response to each access on the hostbus if the data 
path on the hostbus is twice as wide as that on the VL-bus 
104. Described more generally, since it is also possible that 
a future system could be built around a microprocessor 
whose data path is four times as wide as the VD lines 204, 
or more, such bridge will assert a "plurality" of accesses on 
the VL-bus 104 in response to each access on the host bus 
(not shown). 

In order to accommodate a situation where the host-bus 
data path is twice as wide as the VL-bus data path, the 
WL-bus/PCI-bus bridge 146 uses its BE4# input pin to 
determine whether two VL-bus "sub-cycles" are being 
issued for each host-bus cycle. In systems whose CPUs have 
only a 32-bit wide data bus, such as 486 systems, the BEAf 
input pin is strapped high. In Pentium systems, the BE4 
input of the bridge 146 is connected to the BE4# address 
lead of VL-bus 104. If BEAF is high in a particular cycle, 
then only one sub-cycle will occur. If BE4# is low in the 
particular cycle, then two sub-cycles will occur. In the latter 
case the VL-bus/PCI-bus bridge 146 will assert LDEVO# 
and subsequently LRDY# for both of the sub-cycles, but will 
assert BOFF# only for the last such sub-cycle. On repetition. 
the VL-bus/PCI-bus bridge 146 blocks assertion of 
LDEVO# for both sub-cycles of the host bus cycle repeti 
tion. In this manner, the host-bus/VL-bus bridge (not shown) 
also need not be modified in any way to accommodate the 
addition of a VL-bus/PCI-bus bridge such as 146. 

In the computer system illustrated in FIGS. 1 and 2, any 
ISA-bus device, PCI-bus device or VL-bus device, in addi 
tion to the VL-bus host 102, can be a master for any 
particular access. The target for such accesses can be main 
memory (not shown in FIG. 2), or any ISA-bus device, 
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PCI-bus device, or VL-bus device. The WL-bus/PC-bus 
bridge therefore accommodates a wide variety of different 
kinds of accesses, only some of which have been described 
in detail with respect to FIGS. 3, 4 and 5. Such descriptions 
are sufficient for an understanding of the invention, but for 
completeness, an overview of the remainder of the cycle 
permutations is included in Appendix E. 

FIGS. 6 through 10 are schematic diagrams of pertinent 
portions of the VL-bus/PCI-bus bridge 146 which control 
various signals used for implementing the invention. While 
the descriptions above and in the appendices are sufficient to 
enable implementation of the invention, descriptions at the 
schematic level for some aspects are provided for those 
interested in more details about an example implementation. 

FIG. 6 is a schematic diagram for circuitry which gener 
ates the LDEVOB output of the PCI-bus bridge 146. It 
comprises a 3-input NOR gate 602 which generates such a 
signal, the three inputs of which receive a QN output of a 
D-flip-flop 604, a DRDEVLO signal, and an LDEVI signal. 
The LDEVI signal is the inverse of the LDEVIB input of 
PCI-bus bridge 146. The DRDEVLO signal is generated by 
a 5-input NOR gate 606, the five inputs of which receive 
signals labeled: SAMPLEB, H2PENB, BLOCK, ISADEV 
and HMEMCYC. The SAMPLEB signal is generated by 
gates 608 in response to WS, T21B and T22B signals 
according to the formula: 

WS is a programmable signal which is asserted high to 
indicate that the LCLK signal is operating at a high enough 
frequency such that the local device claiming deadline is to 
be delayed by one wait state. T21B is a signal generated by 
means not shown in the PCI-bus bridge 146, which is 
asserted low at the beginning of T21 (see FIG. 3, for 
example) and returns high at the beginning of T22. The 
T22B signal is asserted low by means not shown in the 
PCI-bus bridge 146 at the beginning of T22, and returns high 
at the beginning of T23. 
The H2PENB signalis generated by logic 610 in response 

to the following signals from the VL-bus 104 (FIG.2): WR, 
MIO, and DC. The formula to produce H2PENB is: 

H2PENB-WRMODCO.C. 

The BLOCK signal is generated by circuitry described 
below with respect to FIG. 10, and the ISADEV signal is 
generated by circuitry (not shown) which, based on a 
positive decode of the cycle definition signals on VL-bus 
104 asserts ISADEV when the intended recipient of the bus 
cycle is known to reside on the ISA-bus 130 (FIG. 2). The 
HMEMCYC signal is generated by NOR gate 612, the two 
inputs of which receive an HMEMB signal and an 
ENLDEVO signal, respectively. The HMEMB signal cor 
responds to the LMEMF input of the PCI-bus bridge 146 
(see Appendix E) or, depending on a register bit selection, a 
positive decode of the VL-bus cycle definition signals. If the 
PCI-bus bridge 146 is programmed to perform such a 
positive decode, then circuitry (not shown) in PCI-bus 
bridge 146 asserts HMEMB low when the destination of the 
cycle is known to be host memory on the host memory bus 
or VL-bus 104. ENLDEVO is a register bit which is 
programmable to enable (when asserted high) or disable 
(when low) the use of HMEMB in the determination of 
whether to assert LDEVOB. 
The flip-flop 604 has a clock input connected to receive 

CLK, which is the LCLK signal on VL-bus 104. The 
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flip-flop 604 also has a D input connected to receive the 
output of logic 614, which generates the D input according 
to the formula: 

D-DRDEVLO-HORST)-RDYB. 

In this formula, Q is the Q output of flip-flop 604, RST is a 
chip-wide reset signal, and DRDEVLO is a signal generated 
by NOR gate 606 discussed above. RDYB is generated by 
logic circuitry 616 according to the inverse of the formula: 

RDY-BRDY-BLAST+RDYBOFFRDY--Other, 

where BRDY and BLASTI are the VL-bus BRDY and 
BLAST# signals, respectively; RDYI is connected to the 
VL-bus RDYRTN# signal line; and "Other" represents other 
ready signals not important for an understanding of the 
present invention. BOFFRDY is given by the formula: 

BOFFRDY-(FBOLRDY+BOFFP)-BOFFEN, 

where FBOLRDY and BOFFP are both generated by cir 
cuitry described below with respect to FIGS. 9 and 7. 
respectively, and BOFFEN is a register bit which enables the 
entire back-off process when set. 

In operation, the circuitry of FIG. 6 asserts LDEVOB low 
in response to a logic high value on any of the three inputs 
of NOR gate 602. Thus due to the LDEVI input, it can be 
seen that whenever any VL-bus device asserts one of the 
LDEV<xc-F signal lines in FIG. 2, the LDEVI# signal 
provided to the PCI-bus bridge 146 will pass therethrough to 
the LDEV# input of the VL-bus/ISA-bus core logic chipset 
122. The other circuitry in FIG. 6 also will activate LDE 
VOB in most cases, so LDEVOB will remain asserted until 
the VL-bus device unasserts LDEV<x># or until the flip 
flop 604 QN output goes low, whichever occurs later. 
The remainder of the circuitry of FIG. 6 operates by 

asserting DRDEVLO before the VL-bus device claiming 
deadline, to thereby assert LDEVOB, and by maintaining 
LDEVOB asserted with the flip-flop 604 until an appropriate 
ready signal has been received by the PCI-bus bridge 146. 
More specifically, NOR gate 606 will assert DRDEVLO 
only when all five of its inputs are low. The SAMPLEB 
signal is a temporal qualifier on the assertion of DRDEVLO. 
since SAMPLEB is asserted low only during T22 (for 
systems with LCLK operating at frequencies greater than or 
equal to 40 MHz) or during T21 and T22 (for systems 
operating at LCLK frequencies less than or equal to 33 
MHz). The inverse of SAMPLEB is given by: 

SAMPLE-WS-T21)+T22 

Thus if NOR gate 606 asserts DRDEVLO at all, it unasserts 
DRDEVLO at the beginning of T23. 
The H2PENB input of NOR gate 606 is asserted low 

unless the cycle definition signals on VL-bus 104 indicate 
that the present cycle is an interrupt acknowledge cycle. a 
halt/special cycle, or a reserved cycle, all as defined at page 
7 of the above-incorporated “i486 MICROPROCESSOR" 
Databook. These are VL-bus cycles which are known in 
advance not to be destined for any device residing on the 
PCI-bus bridge 148. 
The BLOCK signal input of NOR gate 606 will block 

assertion of DRDEVLO only if the current VL-bus cycle 
definition is a repeat of a prior VL-bus cycle for which the 
PCI-bus bridge 146 asserted BOFF# to the VL-bus host 102. 
In Pentium-based systems, BLOCK remains asserted for the 
repetition of both sub-cycles in a repeat of a BOFF#'d host 
cycle. The BLOCK signal therefore prevents the PCI-bus 
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bridge 146 from claiming the repetition of a VL-bus cycle 
which the PCI-bus bridge 146 has already attempted on the 
PCI-bus 148. The circuitry which generates BLOCK is 
described below with respect to FIG. 10. 
The ISADEV signal of NOR gate 606 is asserted high on 

a positive decode indicating that the target of the current 
VL-bus cycle is already known to reside on the ISA-bus 130. 
The ISADEV signal thus prevents the PCI-bus bridge 146 
from claiming the cycle and trying it on the PCI-bus first. 
Note that another embodiment of the invention need not 
prevent this attempt, but rather can rely on the BOFF# 
procedures described herein for the cycle eventually to reach 
the SA-bus 130. 
The HMEMCYC signal is asserted high on a positive 

decode of the VL-bus cycle, performed either inside or 
outside the PCI-bus bridge chip 146, to indicate that the 
access is to host memory. The positive decode, if performed 
internally to the PCI-bus bridge 146, is performed 
identically, with a parallel set of configuration registers, to 
that in the VL-bus/ISA-bus core logic chipset 122. The 
PCI-bus bridge 146 further includes a register bit 
ENLDEVO which can be used to permit NOR gate 606 to 
assert DRDEVLO even if the positive decode indicates that 
the VL-bus cycle destination is in fact host memory; an 
attempt by the PCI-bus bridge 146 to claim such a cycle by 
asserting LDEVO# would not have any effect in most 
systems because most VL-bus/ISA-bus core logic chipsets 
ignore their LDEV# inputs when their own internal decode 
indicates that the VL-bus cycle is to host memory. 
Thus it can be seen that the circuitry of FIG. 6 will assert 

LDEVOB in either the T21 or T22 states of the VL-bus host 
102, whichever is appropriate, unless the current VL-bus 
cycle is a repeat of a prior VL-bus cycle which was subject 
to BOFF#, and unless it is known in advance that the target 
of the VL-bus cycle is not on the PCI-bus 148. The latter 
condition, which may be omitted in whole or in part in a 
different embodiment, occurs in the present embodiment 
when it is known in advance that the cycle is a special kind 
of cycle defined only for targets which do not reside on the 
PCI-bus, if at all (H2PENB), when the target is known in 
advance to reside on the ISA-bus 130 (ISADEV), and when 
the VL-bus cycle is known in advance to be destined for host 
memory. 
When DRDEVLO is asserted, its inverse is written into 

D-flip-flop 604 on the next LCLK rising edge in order to 
maintain a logic 1 input of NOR gate 602 from the QN 
output of flip-flop 604. The logic 614 repeatedly rewrites 
this value into flip-flop 604 until either a system-wide reset 
occurs, or RDYB is asserted low by circuitry 616. Circuitry 
616 asserts RDYB low upon receipt of RDYRTN# asserted 
by the VL-bus controller 122. It asserts RDYB low also 
when it detects both BRDYlf and BLAST asserted on 
VL-bus 104. Thus the circuitry of FIG. 6 maintains LDE 
WOB asserted until the rising edge of LCLK which follows 
completion of the VL-bus cycle which the circuitry claimed 
by asserting LDEVOB. Note that as described in more detail 
below, if the PCI-bus bridge 146 did translate the cycle onto 
the PCI-bus bridge 148, then the RDYRTN# signal will be 
asserted by the VL-bus controller 122 only after having 
detected LRDY# asserted by the PCI-bus bridge 146. If the 
circuitry of FIG. 6 had asserted LDEVOB only because 
another VL-bus device had caused the assertion of LDEVI, 
then the cycle will have been terminated only in response to 
ready signals from the VL-bus device which had claimed the 
cycle. 
The logic circuitry 616 asserts RDYB also in response to 

a pulse on FBOLRDY or BOFFP, but only if the PCI-bus 
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bridge 146 has been programmed to defeat the back-off 
feature (BOFFEN=0). FBOLRDY and BOFFP each carry a 
high-going pulse for one LCLK cycle in response to a 
master-abort on the PCI-bus 148, although the FBOLRDY 
pulse occurs only if the current VL-bus cycle is the first 
sub-cycle of a Pentium cycle, and the BOFFP pulse occurs 
only if the current VL-bus cycle is anything other than the 
first sub-cycle of a Pentium cycle. These pulses occur only 
after the PCI-bus bridge 146 has translated a cycle onto the 
PCI-bus 148, and failed to detect a PCI-bus device claiming 
signal prior to the PCI-bus device claiming deadline. 
Accordingly, if the back-off feature of PCI-bus bridge 146 
has been disabled, the logic circuitry 616 causes the release 
of LDEVO# if the PCI-bus bridge 146 attempted, but failed, 
to find a target device on the PCI-bus 148. In this case, with 
BOFFEN=0, it is then up to external circuitry (not shown) 
to handle the VL-bus cycle. 

FIG. 7 is a schematic diagram of circuitry in the PCI-bus 
bridge 146 which generates the BOFFP signal used in the 
circuitry of FIG. 6. FIG. 7 also shows circuitry which 
generates an LBOLRDY signal, and this will be described 
subsequently. Referring to FIG. 7, the BOFFP signal is the 
output of a NOR gate 702, one input of which is connected 
to the Q output of a D-flip-flop 704, the D input of which is 
connected to the Q output of a flip-flop 706 via an inverter 
708. The second input of NOR gate 702 is connected to the 
Q output of flip-flop 706. Both flip-flops 704 and 706 are 
clocked by the CLK signal which is connected to the VL-bus 
LCLK line. 
The D input to flip-flop 706 connected to the output of a 

4-input NAND gate 710, the inputs of which are connected 
to signals labeled RSTB, TNH, LASTDW and SMSABORT. 
The RSTB signal is the system-wide reset signal as previ 
ously described. TNH indicates the state of the state machine 
in PCI-bus bridge 146 which controls PCI-bus cycles. While 
the details of this state machine are unimportant for an 
understanding of the present invention. it will be useful to 
understand that the state machine is in state TNH (TNH=1) 
while the PCI-bus bridge is controlling a PCI-bus cycle, and 
is in a TH state (TH=1) while a VL-bus cycle is in process 
but the PCI-bus bridge 146 will not translate it onto the 
PCI-bus. The LASTDW signal is generated by circuitry 
described below with respect to FIG. 8, and basically is 
asserted during all VL-bus cycles in non-Pentium-based 
systems, and only during the last data word sub-cycle in 
Pentium-based systems. Thus LASTDW indicates that the 
present VL-bus cycle is the last (or only) sub-cycle of a 
32-bit or 64-bit access. The SMSABORT signalis generated 
by circuitry described below with respect to FIG. 9. Essen 
tially it is a PCI-bus master-abort signal, synchronized to the 
VL-bus LCLK if necessary. 
The flip-flop 704 and 706, together with the inverter 708 

and NOR gate 702, produce a high-going pulse on the 
BOFFP in response to a high-to-low transition on the output 
of NAND gate 710. The output of NAND gate 710 will go 
low only when all of its inputs are high. Thus it can be seen 
that the circuitry in FIG. 7 will generate a high-going 
BOFFP pulse, for one LCLK cycle, in response to a master 
abort which occurs while the PCI-bus bridge 146 is trans 
lating the last VL-bus cycle of a 32-bit or 64-bit access, onto 
the PCI-bus 148. As previously mentioned, the circuitry 
does not generate a pulse on BOFFP if the system is 
Pentium-based, and the currentVL-bus cycle is only the first 
sub-cycle of a Pentium access. (Note that while reset signals 
are incorporated throughout the schematic diagrams set forth 
herein, they are asserted only in unusual situations not 
relative to an understanding of the present invention. Thus, 
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while their effect can be determined from the schematics, it 
is unnecessary to describe such effects as well. Hereinafter. 
reset signals will always be assumed to be unasserted.) 
The LASTDW signalis generated by circuitry 802 in FIG. 

8 according to the formula: 

LHA2 is the 2 address bit on the VL-bus 104, and therefore 
indicates whether the current VL-bus cycle is to an even- or 
odd-numbered data word address. In non-Pentium-based 
systems. VL-bus cycles can be addressed to any 32-bit data 
word. But in Pentium-based systems, a 64-bit access always 
appears on a 32-bit VL-bus as an access to an even 
numbered data word followed by an access to an odd 
numbered data word. Thus for Pentium-based systems only, 
LHA2 indicates which sub-cycle is currently taking place on 
the VL-bus in response to a 64-bit access. 
LBEA is an input pin which, when asserted, indicates that 

the system is a Pentium-based system. Thus the circuitry 802 
asserts LASTDW whenever the system is not a Pentium 
based system (LBEA=1), and if it is a Pentium-based system, 
asserts LASTDW only during the second sub-cycle of a 
64-bit access. 
The SMSABORT signal used in the circuitry of FIG. 6 is 

generated by circuitry 902 in FIG. 9. Circuitry 902 includes 
an inverting multiplexer 904, the output of which produces 
SMSABORT. The multiplexer 904 has a '0' input, a '1' input 
and a select input S, the last of which is connected to receive 
an ASYNC signal from a register bit. The '0' input of 
multiplexer 904 is connected to the output of a NAND gate 
906, the three inputs of which are connected to receive TNH, 
MSABORT and an ATSPACE signal. The TNH signal has 
been described previously, and the MSABORT signal is 
generated by the PCI-bus bridge 146 in response to the 
failure of any PCI-bus device to claim a cycle on the 
PCI-bus 148 prior to the PCI-bus device claiming deadline. 
The ATSPACE signal is produced by circuitry 908 according 
to the formula: 

ATSPACE-LMIO-LT64K)+(LMIO-ATMEM), 
where LMO is a latched version of the VL-bus M/Off 
signal. ATSPACE is asserted for VL-bus I/O cycles to an 
address within the 64 k I/O memory space, and for VL-bus 
memory cycles to an address within the 16-megabyte 
memory address space which can be supported on a standard 
ISA bus. (In an EISA implementation, the 16-megabyte 
limitation would be omitted since the EISA-bus supports a 
full 4GB of memory address space.) Thus ATSPACE is high 
for accesses which could possibly be directed to devices 
residing on the ISA-bus 130; more intuitively, if ATSPACE 
is low, then the current VL-bus cycle cannot be directed to 
a device on the ISA-bus 130, 
The output of NAND gate 906, in addition to being 

connected to the "0"input of multiplexer 904, is also con 
nected to one input of a 2-input NAND gate 910, the other 
input of which is connected to the output of a 3-input NAND 
gate 912. The output of NAND gate 910 is cross-coupled to 
one of the inputs of NAND gate 912. The other two inputs 
of NAND gate 912 are connected to receive RSTB and a 
ready signal RDYB previously described with respect to 
FIG. 6. The output of NAND gate 912 is connected to the D 
input of a flip-flop 914 which is also clocked by LCLK. The 
output of flip-flop 914 is connected to the '1' input of 
multiplexer 904. 
The circuitry 902 operates in either a synchronous mode 

or an asynchronous mode, depending on the programming 
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of register bit ASYNC, Basically, if the clock signal on the 
VL-bus and the PCI-bus are the same, then ASYNC=0 and 
multiplexer 904 selects the output of NAND gate 906 
directly for driving the SMSABORT signal. If the two 
clocks are asynchronous. either because they operate at 
different speeds or because clock skew considerations sug 
gest that re-synchronization be performed, the VL-bus host 
102 will have programmed ASYNC=1. In this situation, 
multiplexer 904 selects the LCLK-synchronized output of 
flip-flop 914 to drive SMSABORT. Essentially cross 
coupled NAND gates 910 and 912 latch the signal output of 
NAND gate 906, and flipflop 914 synchronizes the result 
with the VL-bus LCLK signal. The latch is cleared when 
circuitry 616 (FIG. 6) asserts RDYB. indicating either 
completion of the WL-bus cycle or, if the back-off feature of 
PCI-bus bridge 146 is disabled, an appropriate time to clear 
SMSABORT. 
Thus circuitry 902 asserts SMSABORT whenever the 

output of NAND gate 906 goes low. This occurs only when 
all three inputs of NAND gate 906 are high, thereby requir 
ing (1) that a master abort have occurred on the PCI-bus 148 
(MSABORT=1); (2) that the VL-bus cycle not be to a 
memory or I/O address which clearly cannot reside on the 
ISA- bus 130 (ATSPACE=1); and (3) that the PCI-bus 
bridge 146 presently be translating a cycle onto the PCI-bus 
148 (TNH=1) (i.e. SMSABORT will not be asserted if the 
bridge 146 is not acting as the PCI-bus master). 
The FBOLRDY signal, the inverse of which is used in 

FIG. 6, is generated by circuitry 916 in FIG. 9. Circuitry 916 
includes a pulse generator comprising D flip-flops 918 and 
920 separated by inverter 922, and 4-input NOR gate 924. 
The QN outputs of flip-flops 918 and 920 are connected to 
respective inputs of NOR gate 924. the other two inputs of 
which are connected to receive LASTDW (previously 
described) and the inverse of TNH (previously described). It 
can be seen that if LASTDW=0 and TNH=1, then circuitry 
916 will produce a high-going pulse for one LCLKperiod on 
FBOLRDY, in response to a high-to-low transition of 
SMSABORT. The high-going pulse on FBOLRDY will be 
prevented if TNH=0, indicating that any PCI-bus cycle 
which resulted in a master-abort was not generated by 
PCI-bus bridge 146. The high-going pulse on FBOLRDY 
will be prevented also if LASTDW=1, which occurs for all 
VL-bus cycles except for the first sub-cycle of a 64-bit 
Pentium access. Thus considering the circumstances under 
which circuitry 902 generates SMSABORT, circuitry 916 
will produce a high-going pulse on FBOLRDY only in 
response to a master-abort on the PCI-bus 148. occurring 
during a PCI-bus cycle originated by PCI-bus bridge 146 
(TNH=1) in response a VL-bus cycle which constitutes the 
first subcycle of a Pentium-based 64-bit access. 

Circuitry 804 of FIG. 8 generates the BOFFB signal for 
driving the BOFF# input of VL-bus host 102. Referring to 
FIG. 8, BOFFB is produced by a 2-input NAND gate 806. 
one input of which is connected to receive the register 
programmable BOFFEN signal previously described. The 
other input of NAND gate 806 is connected to the Q output 
of a D-flip-flop 808 clocked by LCLK. The D input of 
flip-flop 808 is driven by circuitry 810 according to the 
formula: 

D-(TNHCPURDYLASTDw.SMSABORT+(QRSTCPURDY). 
All signals in this formula have been previously described 
except Q and CPURDY. Q is the output of flip-flop 808, and 
CPURDY is the output of circuitry 812 (FIG. 8), comprising 
sequential D-flip-flops 814 and 816 and 4:1 multiplexer 818. 
The input to the circuitry 812 is the RDYI signal, which is 
connected to receive RDYRTNff from the WL-bus controller 
in 122. 
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The two select inputs of multiplexer 818 are connected to 
receive two register bits LRDYDL0 and LRDYDL1. In a 
system with no bridge between the host CPU and the VL-bus 
104, the LRDYDL0 and LRDYDL1 signals (collectively, 
the LRDYDL signals) would be programmed such that 
multiplexer 818 passes RDYRTN# directly through to 
CPURDY. In systems which include a host-bus/VL-bus 
bridge, the LRDYDL signals can be programmed to have 
multiplexer 818 pass to CPURDY either the Q output of 
flip-flop 814 or the Q output offlip-flop 816. These represent 
versions of RDYRTN# delayed by one and two LCLK 
cycles, respectively. Thus by proper programming of the 
LRDYDL register bits, the circuitry 812 asserts CPURDY 
only after it is certain that the RDYRTN# signal on VL-bus 
104 has reached and been detected by the host CPU itself on 
its RDY# input. 

In the operation of circuitry 804, referring to the above 
formula for the D input offlip-flop 808, the NAND gate 806 
will never assert BOFFB unless the back-off feature of 
PCI-bus bridge 146 is enabled (BOFFEN=1). If it is enabled, 
then the circuitry will assert BOFFB when the first term of 
the above formula is true. It will hold BOFFB asserted until 
both terms of the above-formula are false-usually the 
second term will be true for the longest period of time. The 
first term will be true in response to a master-abort on the 
PCI-bus 148 (SMSABORT=1) which was controlled by the 
PCI-bus bridge (TNH=1) in response to either the only 
sub-cycle of a 32-bit access or the last sub-cycle of a 
Pentium 64-bit access (LASTDW=1). CPURDY must also 
be negated, but this is always the case at the time of 
SMSABORT. The circuitry 804 will hold D asserted due to 
the second term of the above formula, until CPURDY is 
asserted to indicate that RDYRTN# has already reached the 
host CPU. 
As previously described and as described in more detail 

with reference to schematics below, the assertion a by 
PCI-bus bridge 146 of LRDY# to terminate the VL-bus 
cycle in the view VL-bus devices, must reach the host CPU 
neither before nor after BOFFlf in order to ensure that the 
CPU will ignore it. The VL-bus controller 122 generates the 
signal (RDYRTN#) which drives the RDY# input of the 
CPU for one LCLK cycle, in response the PCI-bus bridge's 
assertion of LRDY#. Thus by maintaining BOFFB asserted 
until 0, 1 or 2 LCLK cycles (as appropriate) after the 
PCI-bus bridge 146 detects RDYRTN# asserted, circuitry 
804 ensures that the BOFF# input of the host CPU will still 
be active when the host CPU receives an active RDY. 
The LRDYOB signal output of the PCI-bus bridge 146, 

which drives the LRDY# line of VL-bus 104, is generated by 
circuitry 926 in FIG. 9, according to the inverse formula: 

The circuitry 926 will assert LRDYOB in response to any 
one of several readies. In particular, it will assert LRDYOB 
when a PCI-bus-bridge-originated PCI-bus cycle terminates 
normally (H2PLRDYB=0), as well as when any of several 
other readies are received (collectively called "Others"). If 
the back-off feature is enabled (BOFFEN=1), then circuitry 
926 asserts LRDYOB also in response to a pulse on either 
FBOLRDY or LBOLRDY. FBOLRDY, as previously 
explained, carries a pulse in response to SMSABORT only 
if the current VL-bus cycle, which the PCI-bus bridge 146 
attempted on the PCI-bus 148 prior to master-abort, was the 
first sub-cycle of a Pentium 64-bit access. Like BOFFP, 
described above, LBOLRDY carries a pulse in response to 
SMSABORT only if the current VL-bus cycle, which the 
PCI-bus bridge 146 attempted on the PCI-bus 148 prior to 
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24 
master-abort, was the only sub-cycle of a non-Pentium 
32-bit access or the last sub-cycle of a Pentium 64-bit 
access. LBOLRDY is generated from BOFFP by circuitry 
712 in FIG. 7, which merely delays the BOFFP pulse by 0. 
1 or 2 LCLK cycles depending the programming of the 
LRDYDL bits. By delaying LBOLRDY in this manner, the 
PCI-bus bridge 146 ensures that for VL-bus cycles in which 
BOFF# is asserted to the host CPU, the RDYRTN# signal 
will not reach the CPU's RDY# input any earlier than 
BOFF#. 
As can be seen, for non-Pentium systems, PCI-bus bridge 

146 will generate both BOFF# and LRDY# when its attempt 
to find a target device on the PCI-bus 148 fails. In a 
Pentium-based system, the PCI-bus bridge 146 will assert 
LRDY# in both such sub-cycles, but will assert BOFF# only 
in the last sub-cycle of the Pentium 64-bit access. 

FIG. 10 illustrates circuitry which produces the BLOCK 
signal used in FIG. 6 to block DRDEVLO when the VL-bus 
host 102 repeats a cycle which has been subject to BOFF#. 
As shown in FIG. 10, BLOCK is produced by 2-input 
NAND gate 1002, one input of which is connected to receive 
a BLOCK2B signal, and the other of which is connected to 
the output of an OR gate 1004. One input of OR gate 1004 
is connected to the output of logic 1006, which asserts its 
output low according to the formula: 

S1006-(T21+T22)-SAMECYC. 

SAMECYC is a signal generated by circuitry (not shown) in 
the PCI-bus bridge 146 which indicates that the current 
VL-bus cycle definition signals match those previously 
latched for the VL-bus which is subject to the BOFF#. For 
Pentium-based systems, SAMECYC is asserted on both 
sub-cycles of a Pentium 64-bit access. 
The other input of OR gate 1004 is connected to the QN 

output of a D-flip-flop 1008, the D input of which is 
connected the output of circuitry 1010 which drives D 
according to the formula: 

D-BOFF+(QRSTUNBLOCK). 

UNBLOCK is the QN output of a D flip-flop 1012, the D 
input of which is connected to the output of a 3-input NOR 
gate 1014. The three inputs of NOR gate 1014 are connected 
to receive RSTBTH and SAMECYC. 
The BLOCK2B signal is the Q output of a D flip-flop 

1016, the D input of which is connected to the output of 
logic 1018 implementing the inverse of the formula: 

D-CTH-LBE4-LHA2BOFFEN-SAMECYC) BLOCK2H(TH+ 
LHA2). BLOCK2RST. 

In operation, NAND gate 1002, in combination with OR 
gate 1004, asserts BLOCK whenever BLOCK2B goes low 
and whenever both the output of circuitry 1006 and the QN 
output of flip-flop 1008 are low. Essentially, the QN output 
of flip-flop 1008 goes low when BOFFB is asserted, and 
remains low until flip-flop 1012 asserts UNBLOCK Flip 
flop 1012 asserts UNBLOCK when the cycle repetition 
appears. Circuitry 1006 temporally qualifies BLOCK by 
allowing the QN output of flip-flop 1008 to pass through OR 
gate 1004 only during T21 and T22 of the cycle repetition. 

Since flip-flop 1008 is cleared when the cycle repetition 
appears, its QN output is no longer low during the second 
sub-cycle of a Pentium-based 64-bit access. In this situation, 
BLOCK2B is low. Referring to the above formula for the D 
input of flip-flop 1016, it can be seen from the first term that 
a logic 0 will be written into the flip-flop on the first 
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sub-cycle (LHA2=0) of the cycle repetition (SAMECYC-1) 
of a Pentium-based (LBEA=1) host memory cycle (TH=1) in 
a system where the back-off feature of PCI-bus bridge 146 
is enabled (BOFFEN=1). Thereafter, since BLOCK2=1, the 
second term of the formula will control the writing of a logic 
1 into the flip-flop 1016. Specifically, the circuitry 1018 will 
maintain BLOCK2B=0 until the end of the second (LHA2= 
1) host memory (TH=1)VL-bus cycle of the Pentium 64-bit 
acCSS 

Thus the circuitry of FIG. 10 will correctly block assertion 
by the PCI-bus bridge 146 of LDEVO# for the only sub 
cycle of the repetition of a BOFF#'d non-Pentium 
originated access, and for both sub-cycles of a repetition of 
a BOFF'd Pentium 64-bit access. 
As used herein, a given signal or event is "responsive" to 

a predecessor signal or event if the predecessor signal or 
event influenced the given signal or event. If there is an 
intervening processing element or time period, the given 
event or signal can still be "responsive" to the predecessor 
signal or event. If the intervening processing element com 
bines more than one signal or event, the signal output of the 
processing element is considered "responsive" to each of the 
signal or event inputs. If the given signal or event is the same 
as the predecessor signal or event, this is merely a degen 
erate case in which the given signal or event is still consid 
ered to be "responsive" to the predecessor signal or event. 
The foregoing description of preferred embodiments of 

the present invention has been provided for the purposes of 
illustration and description. It is not intended to be exhaus 
tive or to limit the invention to the precise forms disclosed. 
Obviously, many modifications and variations will be appar 
ent to practitioners skilled in this art. For example, adapta 
tions will be apparent for using the invention with an EISA 
bus instead of an ISA bus. The embodiments described 
herein were chosen and described in order to best explain the 
principles of the invention and its practical application, 
thereby enabling others skilled in the art to understand the 
invention for various embodiments and with various modi 
fications as are suited to the particular use contemplated. It 
is intended that the scope of the invention be defined by the 
following claims and their equivalents. 

APPENDEXA VL-BUS SIGNALS 

The following signals are defined in the VL-bus standard 
1.0. 

WL-BUS 
SGNAL NAME WI-BUS SIGNAL DESCRIPTION 

RESET; 
LCLK 

System reset. 
WL-bus clock signal. This is 1x clock that 
follows the same phase as a 486-type CPU clock 
signal. It is driven by the WL-bus controller 
to all WL-bus masters and targets. In the 
case of CPUs that use a clock running at 2x, 
the 2 clock must be divided down to a 1x 
clock to drive this signal line. The rising 
edge of the clock signifies the change of CPU 
states. 
Ready return. This signal establishes a 
handshake to enable WL-bus devices to know 
when a WL-bus cycle has ended. If there is no 
bridge between the WL-bus and the host CPU, 
then RDYRTNF will typically be tied directly 
to the CPU or cache controller RDY# input 
line. RDYRTNii is always driven by the WL-bus 
controller. For LCLK speeds up to 33 MHz, the 
WL-bus controller will typically assert 
RDYRTNH in the same LCLK cycle as LRDY# is 
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WL-BUS 
SGNAL NAME WIL-BUSSGNADESCRIPTION 

asserted. At higher LCLK speeds, RDYRTN may 
trail LRDY# by one LCLK cycle to enable the 
WL-bus controller to perform signal 
resynchronization. The RDYRTN if signal allows 
all WL-bus devices to monitor one signal that 
strobes the end of all types of WL-bus cycles. 
However, while some WL-bus controllers assert 
RDYRTN# also in response to BRDY# with BLASTA, 
this is not a requirement and WL-bus devices 
should also maonitor BRDY and BAST to 
reliably detect the end of all WL-bus cycles. 
Identifier pins which identify to all WL-bus 
devices the type and speed of the WL-bus host. 
As used herein, the WL-bus host is the device 
that owns the WL-bus when no other WL-bus 
master is requesting the WL-bus. If no bridge 
exists between the host CPU and the WL-bus, 
then the WL-bus host is simply the CPU itself. 
If a bridge exists, and/or a cache controller, 
then the WL-bus host is considered herein to 
include such a bridge and cache controller in 
addition to the CPU itself. 
WL-bus address signals. The address bus 
furnishes the physical memory or IPO port 
address to the WL-bus target. In CPU 
originated transfers, ADR31:2 is driven by 
the CPU (or CPU bridge). During system bus 
master or DMA cycles, the WL-bus controller 
drives the system bus address signals onto 
ADR31:2). During WL-bus master cycles, the 
WL-bus master drives ADR31:2. In a CPU 
originated transfer or a WL-bus master 
originated transfer, if no WL-bus target 
claims the transfer by a WL-bus device 
claiming deadline, then the WL-bus controller 
drives the address onto the system bus. 
WL-bus data signals. This is a bi-directional 
data path between WL-bus devices and the 
WL-bus host. During read transfers, the 
active WL-bus target drives data onto 
DAT31:O). If the read is initiated from a 
system bus master or motherboard DMA, the 
WL-bus controller drives the data from 
DAT31:0 onto the system bus. During write 
transfers, the WL-bus host, DMA slave or 
WL-bus master drives data onto DAI31:O. 
Byte enables. These signals indicate which 
byte lanes (i.e. which bytes) of DATI31:O) are 
involved with the current WL-bus transfer. 
They are driven similarly to ADR31:2). Many 
WL-bus controllers at least internally encode 
BE3:Off into two low-order address bits. For 
convenience, therefore, the full WL-bus 
address is sometimes referred to herein as 
ADR31:0 or WA31:0. 
Memory or I/O status. Indicates whether the 
address on ADR31:O) is to be interpreted as 
being in the memory address space (when low) 
or in the I/O address space (when high). 
Driven by whichever device drives ADR31:0). 
Write or read status. Indicates whether the 
current access on the WT-bus is a write access 
or a read access. Driven by whichever device 
is driving ADR31:01. 
Data or code status. Indicates whether the 
current VL-bus cycle is transferring data or 
code. Driven by whichever device is driving 
ADR31:0). 
Burst last. Indicates that the next time 
BRDYi is asserted, a WL-bus burst cycle will 
be complete. BLAST is connected to the 
WL-bus host BLASTF signal line. During a 
WL-bus master transfer, the WL-bus master 
drives BLASTi. A VL-bus master that does not 
support burst of transfers drives BLASTi low 
whenever it controls the WL-bus. 
Address data strobe. The WL-bus cycle start 
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WL-BUS 
SIGNAL NAME WIL-BUS SIGNALDESCRIPTION 

signal. Driven by whichever VL-bus device 
drives ADR31:O. ADS# is strobed by such 
device for one LCLK cycle after the address 
bus and status lines (collectively the WL-bus 
cycle definition signal lines) are valid, to 
indicate the start of a WL-bus cycle. As used 
herei, a WL-bus device defines a “valid 
WL-bus access or cycle by asserting at least 
WA31:2), BEff3:O, M/IO#, W/R#, D/C# and ADS# 
on the WL-bus. 
Local external address data strobe. Cache 
coherency signal. 
Local bus grant. Used in conjunction with 
LREQCxDF to establish a WL-bus arbitration 
protocol. There is one pair of LREQi and 
LGNT signals per slot. 
Local cache enable. Cache coherency signal. 
Local device. This is a VL-bus device 
claiming signal. Each WL-bus slot or device 
has its own LDEV# signal and asserts its LDEW# 
signal if it recognizes and wants to claim a 
current WL-bus cycle. The WL-bus controller 
samples LDEV<x># on the rising edge of LCLK 
one cycle after ADSi (for LCLKS 33 MHz), or 
two LCLK cycles after ADS# (for LCLK > 33 MHz). 
Whichever such rising edge of LCLK is 
appropriate determines a VL-bus device 
claiming deadline for the cycle. If the 
WL-bussystem-bus bridge detects LDEV<x># 
asserted, then it does not start a system-bus 
cycle even if its internal map indicates that 
the current WL-bus access is to a device which 
resides on the system bus. The VL-bus 
controller may optionally start a WL-bus 
transfer even before sampling LDEV<># 
asserted, if the controller knows that the 
cycle is owned by WL-bus target. For cache 
hit and system DRAM cycles, the WL-bus 
controller ignores LDEV<x>#. 
Local ready. LRDY# begins the handshake that 
terminates a current active WL-bus cycle. A 
single LRDY# line is shared among all WL-bus 
devices. The active WL-bus device asserts 
LRDY# only during the cycle that it has 
claimed as its own. It asserts LRDYit low for 
one LCLK period to terminate an active WL-bus 
cycle, and then drives it high for one LCLK 
period before being released. The originator 
of the cycle must wait until RDYRTN# is 
asserted low before it terminates the active 
WL-bus cycle. 
Local bus size 16. Asserted by 16-bit WL-bus 
target to force the originator of a cycle to 
run multiple 16-bit transfers instead of 32 
bit transfers. 
Burst ready, Terminates the current active 
burst of cycle. It is asserted low for one 
LCLK period at the end of each burst of 
transfer. If LRDY is asserted at the same 
time as BRDYi, BRDY# is ignored and the 
remainder of the current burst cycle falls 
back to non-burst cycles. Like LRDYi, the 
BRDYi signal line is shared among all the 
WL-bus devices. The active WL-bus target 
therefore drives the RDY# only during a burst 
transfer that it has claimed as its own. 
BRDY must not be driven while ADS is 
asserted, and also should not be driven during 
the first T2 because the system cache 
controller may be driving it. 
Local request. Used in conjunction with 
LGNT<x># to gain control of the WL-bus device. 
Interrupt request line 9. IRQ9 is a high 
asserted, level-triggered interrupt that is 
electrically connected to IRQ9 on the system 
bus. 
Write-back. In WL-Bus Specification Version 

LRDY 

LBS16 

BRDY 

WBACK 

10 

15 

20 

25 

30 

35 

45 

50 

55 

65 

28 
-continued 

WL-BUS 
SIGNAL NAME WL-BUS SIGNALDESCRIPTION 

20, WBACK is an output of the WL-Bus 
controller usually used to maintain cache 
coherency in systems that have a cache 
structure that requires this function. An 
example of this is a system with a CPU (such 
as a Pentium) containing a write back cache. 
The VL-Bus controller may assert WBACK# at any 
time after an ADS is issued and before or 
coincident with the first READY (either 
RDYRTN# or BRDY#) of that access. When an 
active VL-Master samples WBACK# asserted, it 
must immediately abort the bus cycle and float 
all address, data and control signals that it 
drives as master. When WBACK# is sampled 
inactive, the WL-Master restarts the bus cycle 
with a new ADSi. If a ready was returned at 
the same time as WBACK# was sampled active, 
the ready (as well as the data on a read) 
should be ignored. WBACK# may be generated on 
either a read or a write and is synchronous to 
LCLK. 

APPENDIX B PCI-BUS 2.0 

The PCILocal Bus is a high performance, 32-bit or 64-bit 
bus with multiplexed address and data lines. It is intended 
for use as an interconnect mechanism between highly inte 
grated peripheral controller components, peripheral add-in 
boards, and processor/memory systems. 

Configuration registers are specified for PCI components 
and add-in cards. A system with embedded auto configura 
tion software can automatically configure PCI add-in cards 
at power on. 

Typical PCILocal Bus implementations will support up to 
three add-in board connectors, although expansion capabil 
ity is not required. The PCI add-in board connector is a 
Micro Channels (MC)-style connector. The same PCI 
expansion board can be used in ISA-, EISA-, and MC-based 
systems. 

Relevant PCI-bus signals are defined below. The second 
column indicates a signal type as is defined in as follows: 

Signal Type Definitions 

in input-only signal, as viewed from a PCI-bus 
expansion device. 
standard output, as viewed from 
PCI-bus expansion device. 

ts bidirectional signal, 
sts active low 3-state signal owned and driven by only 

one agent at a time. That agent drives the pin low 
and must drive it high for at least one clock 
before letting it float. A new agent cannot start 
driving the signal any sooner than one clock after 
the previous owner lets it float. A pullup is 
provided by a central resource. 
open drain output viewed from expansion device. 

System Pins 

out 

old 

CLK in Clock provides timing for all transactions 
on PCI and is an input to every PCI device. 
All other PCI signals, except RST, IRQA#, 
IRQB#. IRQC#, and IRQD#, are sampled on the 
rising edge of CLK. and all other timing 
parameters are defined with respect to this 
edge. PCI operates up to 33 MHz, and in 
general, the minimum frequency is DC (0 Hz). 

RST in Reset is used to bring PCI-specific 
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registers, sequencers, and signals to a 
consistent state. Anytime RSTA is asserted, 
all PCI output signals must be driven to 
their benign state. RST may be asynchronous 
to CLK when asserted or deasserted. Although 
asynchronous, deassertion is guaranteed to 
be a clean, bounce-free edge. Except for 
configuration accesses, only devices that 
are required to boot the system will respond 
after reset. 

Address and Data Pins 

Address and Data are multiplexed on the same 
PCI pins. A bus transaction consists of an 
address phase followed by one or more data 
phases. The DAC uses two address phases to 
transfer a 64-bit address. PCI supports 
both read and write bursts. The address 
phase is the clock cycle in which FRAME is 
asserted. During the address phase 
AD(31:00 contain a physical address (32 
bits). For I/O, this is a byte address; for 
configuration and memory it is a DWORD 
address. During data phases ADO7:00) 
contain the least significant byte (sb) and 
AD31:24 contain the most significant byte 
(msb). Write data is stable and valid when 
RDY is asserted and read data is stable 
and valid when TRDYi is asserted. Data is 
transferred during those clocks where both 
RDY and TROY are asserted. 
Bus Command and Byte Enables are multiplexed 
on the same PCI pins. During the address 
phase of a transaction, CBE3:0i define 
the bus command. During the data phase 
CBE3:O# are used as Byte Enables. The 
Byte Enables are valid for the entire data 
phase and determine which byte lanes carry 
meaningful data. CBEO applies to byte O 
(sb) and CBE3A applies to byte 3 (msb). 
Parity is even parity across AD31:00 and 
CBE3:08. Parity generation is required 
by all PCI agents. PAR is stable and valid 
one clock after the address phase. For data 
phases PAR is stable and valid one clock 
after either RDY is asserted on a write 
transaction or TROY is asserted on a read 
transaction. Once PAR is valid, it remains 
valid until one clock after the completion 
of the current data phase. (PAR has the same 
timing as AD(31:0O) but delayed by one 
clock.) The master drives PAR for address 
and write data phases; the target drives PAR 
for read data phases. 

Interface Control Pins 

Cycle Frane is driven by the current master 
to indicate the beginning and duration of an 
access. FRAME is asserted to indicate a bus 
transaction is beginning. While FRAMEF is 
asserted, data transfers continue. When 
FRAME is deasserted, the transaction is in 
the final data phase. 
Initiator Ready indicates the initiating 
agent's (bus master's) ability to complete 
the current data phase of the transaction. 
IRDYi is used in conjunction with TRDYi. A 
data phase is completed on any clock both 
IRDY# and TRDY# are sampled asserted. During 
a write, RDYi indicates that valid data is 
present on AD31:00. During a read, it 
indicates the master is prepared to accept 
data. Wait cycles are inserted until both 
DRDYi and TRDY# are asserted together. 
Target Ready indicates the target agent's 
(selected device's) ability to complete the 
current data phase of the transaction. TRDY# 
is used in conjunction with IRDY#. A data 
phase is completed on any clock both TRDYi 
and IRDY# are sampled asserted. During a 
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read, TRDY indicates that valid data is 
present on AD31:00. During a write, it 
indicates the target is prepared to accept 
data Wait cycles are inserted until both 
RDY# and TRDYi are asserted together. 

Stop indicates the current target is 
requesting the master to stop the current 
transaction. 
Lock indicates an atomic operation that may 
require multiple transactions to complete. 
Initialization Device Select is used as a 
chip select during configuration read and 
write transactions. 
Device Select, when actively driven, 
indicates the driving device has decoded its 
address as the target of the current access. 
As an input, DEVSELi indicates whether any 
device on the bus has been selected. 

Arbitration Pins (Bus Masters Only) 

STOP sts 

LOCK sts 

DSEL in 

DEWSEL sits 

Request indicates to the arbiter that this 
agent desires use of the bus. This is a 
point to point signal. Every master has its 
own REQ#. 
Grant indicates to the agent that access to 
the bus has been granted. This is a point to 
point signal. Every master has its own GNT. 

Error Reporting Pins 

REQ# ts 

GNT tis 

PERR sts Parity Error is only for the reporting of 
data parity errors during all PCI 
transactions except a Special Cycle. 
System Error is for reporting address parity 
errors, data parity errors on the Special 
cycle command, or any other system error 
where the result will be catastrophic. 

SERR: ofd 

Interrupt Pins (Optional) 
Interrupts on PCI are optional and defined as "level 

sensitive". asserted low (negative true), using open drain 
output drivers. The assertion and deassertion of INTx# is 
asynchronous to CLK. PCI defines one interrupt line for a 
single function device and up to four interrupt lines for a 
multi-function device or connector. For a single function 
device, only INTA# may be used while the other three 
interrupt lines have no meaning. 

NEA old Interrupt A is used to request an interrupt. 
NTB old Interrupt B. is used to request an interrupt 

and only has meaning on a multi-function 
device. 

NICE old interrupt C is used to request an interrupt 
and only has meaning on a multi-function 
device. 

NT ofd interrupt D is used to request an interrupt 
and only has meaning on a multi-function 
device. 

Any function on a multi-function device can be connected 
to any of the INTx# lines. The file Interrupt Pin register 
defines which INTx# line the function uses to request an 
interrupt. If a device implements a single INTx# line. it is 
called INTAKE if it implements two lines, then they are 
called INTAff and INTBf, and so forth. For a multi-function 
device, all functions may use the same INTx# line or each 
may have its own (up to a maximum of four functions) or 
any combination thereof. A single function can never gen 
erate an interrupt request on more than one INTx# line. 
The system vendor is free to combine the various INTxf 

signals from PCI connector(s) in any way to connect them 
to the interrupt controller. They may be wire-ORed or 
electronically switched under program control. or any 
combination-thereof. This means the device driver may not 
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make any assumptions about interrupt sharing. All PCI 
device drivers must be able to share an interrupt (chaining) 
with any other logical device, including devices in the same 
multi-function package. 
Cache Support Pins (Optional) 
A cacheable PCI memory should implement both cache 

support pins as inputs, to allow it to work with either 
write-through or write-back caches. If cacheable memory is 
located on PCI, a bridge connecting a write-back cache to 
PCI must implement both pins as outputs; a bridge connect 
ing a write-through cache may only implement one pin. 

SBOf in/out Snoop Backoff indicates a hit to a modified 
line when asserted. 
Snoop Done indicates the status of the snoop 
for the current access. 

SDONE in/out 

64-Bit Bus Extension Pins (Optional) 
The 64-bit extension pins are collectively optional. That 

is, if the 64 bit extension is used, all the pins in this section 
are required. 

AD63:32 tis Address and Data are multiplexed on the same 
pins and provide 32 additional bits. During 
an address phase (when using the DAC command 
and when REQ64# is asserted), the upper 
32-bits of a 64 bit address are transferred; 
otherwise, these bits are reserved but are 
stable and indeterminate. During a data 
phase, an additional 32-bits of data are 
transferred when REQ64# and ACK64# are both 
asserted. 
Bus Command and Byte Enables are multiplexed 
On the same pins. During an address phase 
(when using the DAC command and when 
REQ64# is asserted), the actual bus command 
is transferred on CfBE7:4, otherwise, 
these bits are reserved and indeterminate. 
During a data phase, CBE7:4# are byte 
enables indicating which byte lanes carry 
meaningful data when REQ64# and ACK64# are 
both asserted. CBE4# applies to byte 4 
and C/BE7# applies to byte 7. 
Request 64-bit Transfer, when actively 
driven by the current bus master, indicates 
it desires to transfer data using 64 bits, 
REQ64 has the same timing as FRAME. 
REQ64# has meaning at the end of reset. 
Acknowledge 64-bit Transfer, when actively 
driven by the device that has positively 
decoded its address as the target of the 
current access, indicates the target is 
willing to transfer data using 64 bits. 
ACK64# has the same timing as DEVSELif. 
Parity Upper DWORD is the even parity bit 
that protects AD63:32 and C/BE7:4ff. 
PAR64 is valid one clock after the initial 
address phase when REQ64# is asserted and the 
DAC command is indicated on CfBE3:0. 
PAR64 is valid the clock after the second 
address phase of a DAC command. The master 
drives PAR64 for address and write data 
phases; the target drives PAR64 for read 
data phases. 

REQ64# sts 

sts 

ts 

Bus Commands 
Bus Commands indicate to the target the type of trans 

action the master is requesting. Bus Commands are encoded 
on the C/BE3:04 lines during the address phase, and 
include the following: 
The Special Cycle command provides a simple message 

broadcast mechanism on PCI. It is designed to be used as an 
alternative to physical signals when sideband communica 
tion is necessary, 
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The I/O Read command is used to read data from an agent 

mapped in I/O address space. AD31:00) provide a byte 
address. All 32 bits must be decoded. The Byte Enables 
indicate the size of the transfer and must be consistent with 
the byte address. 
The I/O Write command is used to write data to an agent 

mapped in I/O address space. All 32 bits must be decoded 
The Byte Enables indicate the size of the transfer and must 
be consistent with the byte address. 
The Memory Read command is used to read data from an 

agent mapped in the memory address space. The target is 
free to do an anticipatory read for this command only if it 
can guarantee that such a read will have no side effects. 
Furthermore, the target must ensure the coherency (which 
includes ordering) of any data retained in temporary buffers 
after this PCI transaction is completed. Such buffers must be 
invalidated before any synchronization events (e.g. updating 
an I/O status register or memory flag) are passed through this 
access path. 
The Memory Write command is used to write data to an 

agent mapped in the memory address space. When the target 
returns "ready", it has assumed responsibility for the coher 
ency (which includes ordering) of the subject data. This can 
be done either by implementing this command in a fully 
synchronous manner, or by insuring any software transpar 
ent posting buffer will be flushed before synchronization 
events (e.g., updating an I/O status register or memory flag) 
are passed through this access path. This implies that the 
master is free to create a synchronization event immediately 
after using this command. 
The Configuration Read command is used to read the 

configuration space of each agent. An agent is selected when 
its DSEL signal is asserted and AD1:0) are 00. During the 
address phase of a configuration cycle, AD7:2) address one 
of the 64 DWORD registers (where byte enables address the 
byte(s) within each DWORD) configuration space of each 
device and AD31:11 are logical don't cares. AD 10:08 
indicate which device of a multi-function agent is being 
addressed. 
The Configuration write command is used to transfer data 

to the configuration space of each agent. An agent is selected 
when its DSEL signal is asserted and AD 1:0) are 00. 
During the address phase of a configuration cycle, the 
AD 7:2) lines address the 64 DWORD (where byte enables 
address the byte(s) within each DWORD) configuration 
space of each device and AD31:11 are logical don't cares. 
AD 10::08 indicate which device of a multi-function agent 
is being addressed. 
The Memory Read Multiple command is semantically 

identical to the Memory Read command except that it 
additionally indicates that the master may intend to fetch 
more than one cache line before disconnecting. The memory 
controller should continue pipelining memory requests as 
long as FRAMEff is asserted. This command is intended to 
be used with bulk sequential data transfers where the 
memory system (and the requesting master) might gain 
some performance advantage by sequentially reading ahead 
an additional cache line when a software transparent buffer 
is available for temporary storage. 
The Dual Address Cycle (DAC) command is used to 

transfer a 64-bit address to devices that support 64-bit 
addressing. Targets that support only 32-bit addresses must 
treat this command as reserved and not respond to the 
current transaction in any way. 
The Memory Read Line command is semantically iden 

tical to the Memory Read command except that it addition 
ally indicates that the master intends to complete more than 
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two 32-bit PCI data phases. This command is intended to be 
used with bulk sequential data transfers where the memory 
system (and the requesting master) might gain some perfor 
mance advantage by reading up to a cache line boundary in 
response to the request rather than a single memory cycle. 
As with the Memory Read command, pre-fetched buffers 
must be invalidated before any synchronization events are 
passed through this access path. 
The Memory Write and Invalidate command is semanti 

cally identical to the Memory Write command except that it 
additionally guarantees a minimum transfer of one complete 
cache line; i.e. the master intends to write all bytes within the 
addressed cache line in a single PCI transaction. The master 
may allow the transaction to cross a cache line boundary 
only if it intends to transfer the entire next line also. This 
command requires implementation of a configuration regis 
ter in the master indicating the cache line size. It allows a 
memory performance optimization by invalidating a "dirty" 
line in a write-back cache without requiring the actual 
write-back cycle, thus shortening access time. 
PCI Protocol Fundamentals 
The basic bus transfer mechanism on PCI is a burst. A 

burst is composed of an address phase and one or more data 
phases. PCI supports bursts in both memory and I/O address 
spaces. The host bridge (that resides between the host 
processor and PCI) may merge (or assemble) memory write 
accesses into a single transaction when no side effects exist. 
A device indicates no side effects (allow prefetching of read 
data and merging of write data in any order) by setting the 
prefetch bit in the base address register. A bridge may 
distinguish where merging is allowed and where it is not, by 
an address range which could be provided by configuration 
software during initialization. Merging of data into that 
buffer must stop (and the buffer flushed) when a subsequent 
write occurs that is not prefetchable or a read (to any range). 
Write transactions following either of these two events may 
be merged with subsequent writes, but not to previously 
merged data, if in the prefetchable range. 

Since I/O accesses from the processor cannot be 
combined, they will normally only have a single data phase, 
However, it will not be precluded. There is no implied 
addressing on I/O bursts. When I/O bursts are done, the 
target and master must understand the implied addressing. 
PCI devices that do not deal with multiple I/O data phases 
must disconnect the access after the first data phase. To 
ensure that I/O devices will operate correctly, bridges may 
never merge or combine sequential I/O accesses into a single 
PCI access or burst. All I/O accesses must appear on PCI 
exactly as the host generated them. (If a target of an I/O 
access is selected by its address but the byte enables indicate 
a transfer larger than the device supports, the target termi 
nates with target-abort.) 

All signals are sampled on the rising edge of the clock. 
except RST#, INTA#, INTBF, INTC#, and INTD#. Each 
signal has a setup and hold aperture with respect to the rising 
clockedge, in which transitions are not allowed. Outside this 
aperture, signal values or transitions have no significance. 
This aperture occurs only on "qualified" clock edges for 
AD(31:0). AD63:32), PAR2, PAR64, and IDSEL signals 
and on every clock edge for LOCK#, IRDY#, TRDY#, 
FRAMEF DEVSEL#, STOPE, REQA, GNT#, REQ64#, 
ACK64#, SBO#. SDONE, SERRif (on falling edge only), 
and PERR#. CBE3:04, CBE7:4# (as bus commands) 
are qualified on the clock edge that FRAMEA is first 
asserted. C/BE3:0#, CBE7:4# (as byte enables) are 
qualified on each rising clockedge following the completion 
of an address phase or data phase. RST#, IRQA#, IRQB#, 
IRQC#, and IRQD# are not qualified or synchronous. 

1. 

15 

25 

35 

45 

50 

55 

65 

34 
Basic Transfer Control 
The fundamentals of all PCI data transfers are controlled 

with three signals. Refer to FIG. A1. 

FRAME is driven by the master to indicate the beginning 
and end of a transaction. 

RDY. is driven by the naster, allowing it to force wait 
cycles. 

TRDY is driven by the target, allowing it to force wait 
cycles. 

The interface is OLE When both FRAMES and RDYi 
are deasserted. The first clock edge on which FRAMEff is 
asserted is the address phase, and the address and bus 
command code are transferred on that clock edge. The next 
clockedge begins the first of one or more data phases, during 
which data is transferred between master and target on each 
clock edge for which both IRDY# and TRDY# are asserted. 
Wait cycles may be inserted in a data phase by either the 
master or the target with IRDY# and TRDY# signals respec 
tively. 
The source of the data is required to assert its xRDY# 

signal unconditionally when data is valid (IRDYif on a write 
transaction, TRDYif on a read transaction). The receiving 
agent may assert its xRDY# as it chooses. 
Once a master has asserted IRDY# it cannot change 

IRDY# or FRAMESF until the current data phase completes 
regardless of the state of TRDY#. Once a target has asserted 
TRDY# or STOP# it cannot change DEVSEL, TRDY# or 
STOP# until the current data phase completes. Neither the 
master nor the target can change its mind once it has 
committed to the data transfer. 
At such time as the master intends to complete only one 

more data transfer (which could be immediately after the 
address phase), FRAMElf is deasserted and IRDY# is 
asserted indicating the master is ready. After the target 
indicates the final data transfer (TRDYf is asserted), the 
interface returns to the IDLE state with both FRAMEff and 
RDYF deasserted. 
Addressing 
PCI defines three physical address spaces. The memory 

and I/O address spaces are customary. The configuration 
address space has been defined to support PCI hardware 
configuration. 

Each agent is responsible for its own address decode. PCI 
supports two styles of address decoding: positive and sub 
tractive. Positive decoding is faster since each device is 
looking for accesses in the address range(s) that it has been 
assigned. Subtractive decoding can be implemented by only 
one device on the bus, since it accepts all accesses not 
positively decoded by some other agent. This decode mecha 
nism is slower since it must give an other bus agents a "first 
right of refusal” on the access. However, it is very useful for 
an agent like a standard expansion bus that must respond to 
address phase or data phase, RSTF. IRQA#, IRQBill, IRQC#, 
and IRQDF are not qualified or synchronous. 
The information contained in the two low order address 

bits (AD 1:0) varies by address space. In the I/O address 
space, all 32 AD lines are used to provide a full byte address. 
This allows an agent requiring byte level address resolution 
to complete address decode and claim the cycle without 
waiting an extra cycle for the byte enables (thus delaying all 
subtractive decode cycles by an extra clock). AD 1:0 are 
used for the generation of DEVSEL# only and indicate the 
least significant valid byte involved in the transfer. For 
example, if BEO# were asserted then AD 1:0 would be 
"00"; if only BE3# were asserted, then AD 1:0 would be 



5,790,831 
35 

"11". Once a target has claimed an I/O access (using 
AD1:0)), it then determines if it can complete the entire 
access as indicated in the byte enables. If all the selected 
bytes are not in the selected target's address range, the entire 
access cannot be completed. In this case, the target does not 
transfer any data but terminates with a target-abort. 
Bus Driving and Turnaround 
A turnaround cycle is required on all signals that may be 

driven by more than one agent. This is indicated on the 
timing diagrams as two arrows pointing at each others' tail. 
This turnaround cycle occurs at different times for different 
signals. For instance, IRDY#, TRDY#, DEVSEL#, STOP#, 
and ACK64# use the address phase as their turnaround 
cycle. FRAME, REQ64#, C/BE3:04, C/BE7:4). 
AD31:00, and AD 63:32 use the IDLE cycle between 
transactions as their turnaround cycle. An IDLE cycle is 
when both FRAMEff and IRDY# are deasserted (e.g., clock 
9 in FIG. B1). 
Read Transaction 

FIG. B1 illustrates a read transaction and starts with an 
address phase which occurs when FRAMEff is asserted for 
the first time and occurs on clock 2. During the address 
phase ADI31:00 contain a valid address and C/BE3:0# 
contain a valid bus command. 
The first clock of the first data phase is clock 3. During the 

data phase C/BE# indicate which byte lanes are involved in 
the current data phase. A data phase may consist of a data 
transfer and wait cycles. The CBEff output buffers must 
remain enabled (for both read and writes) from the first clock 
of the data phase through the end of the transaction. This 
ensures C/BE# are not left floating for long intervals. 
The first data phase on a read transaction requires a 

turnaround-cycle (enforced by the target via TRDY#), in this 
case the address is valid on clock2 and then the master stops 
driving AD. The earliest the target can provide valid data is 
clock 4. The target must drive the AD lines following the 
turnaround cycle when DEVSELi is asserted. Once enabled, 
the output buffers must stay enabled through the end of the 
transaction. (This ensures AD are not left floating for long 
intervals.) 
A data phase completes when data is transferred, which 

occurs when both IRDYif and TRDY# are asserted on the 
same clock edge. (TRDY# cannot be driven until DEVSELif 
is asserted.). When either is deasserted a wait cycle is 
inserted and no data is transferred. As noted in the diagram, 
data is successfully transferred on clocks 4, 6, and 8, and 
wait cycles are inserted on clocks 3, 5, and 7. 
The master knows at clock 7 that the next data phase is the 

last. However, because the master is not ready to complete 
the last transfer (IRDYif is deasserted on clock 7), FRAMEff 
stays asserted. Only when IRDY# is asserted can FRAMEff 
be deasserted, which occurs on clock 8. 
Write Transaction 

FIG. B2 illustrates a write transaction. The transaction 
starts when FRAME is asserted for the first time which 
occurs on clock 2. A write transaction is similar to a read 
transaction except no turnaround cycle is required following 
the address phase because the master provides both address 
and data. Data phases work the same for both read and write 
transactions, 
Transaction Termination 

Termination of a PCI transaction may be initiated by 
either the master or the target. While neither can actually 
stop the transaction unilaterally, the master remains in 
ultimate control, bringing all transactions to an orderly and 
systematic conclusion regardless of what caused the termi 
nation. All transactions are concluded when FRAMEff and 
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IRDY# are both deasserted, indicating an IDLE cycle (e.g., 
clock 9 in FIG. B2). 
Master Initiated Termination 
The mechanism used in master initiated termination is 

when FRAME is deasserted and IRDY is asserted. This 
signals the target that the final data phase is in progress. The 
final data transfer occurs when both IRDY# and TRDYlfare 
asserted. The transaction reaches completion when both 
FRAMEff and IRDY# are deasserted (DLE bus condition). 
A modified version of master-initiated termination 

mechanism allows the master to terminate the transaction 
when no target responds. This abnormal termination is 
referred to as master-abort. Although it may cause a fatal 
error for the application originally requesting the 
transaction, the transaction completes gracefully, thus pre 
serving normal PCI operation for other agents. 
Two examples of normal completion are shown in FIG. 

B3. The final data transfer is indicated when FRAMEff is 
deasserted and when both IRDYf and TRDY are asserted 
which occurs at clock3. The bus reaches an IDLE condition 
when IRDYi is deasserted which occurs on clock 4. 
Because the transaction has completed. TRDYf is deas 
serted on clock 4 also. Note that TRDY# is not required to 
be asserted on clock 3, but could have delayed the final data 
transfer (and transaction termination) until it is ready by 
delaying the final assertion of TRDY#. If the target does 
that, the master is required to keep IRDY# asserted until the 
final data transfer occurs. 

Both sides of FIG. B3 could have been caused by a 
timeout termination. On the left side. FRAME is deasserted 
on clock 3 because the timer expires, GNT# is deasserted 
and the master is ready (IRDY# asserted) for the final 
transfer. Because GNT was deasserted when the timer 
expired continued use of the bus is not allowed except when 
using the Memory Write and Invalidate command, which 
must be stopped at the cache line boundary. Termination 
then proceeds as normal. If TRDY# is deasserted on clock 
2, that data phase continues until TRDY# is asserted. 
FRAME and IRDYf must remain asserted until the data 
phase completes. 
The right-hand example shows a timer expiring on clock 

1. Because the master is not ready to transfer data (IRDY# 
is deasserted on clock 2) FRAMEF is required to stay 
asserted. FRAMEff is deasserted on clock 3 because the 
master is ready (IRDY# is asserted) to complete the trans 
action on clock 3. The master must be driving valid data 
(write) or be capable of receiving data (read) whenever 
IRDY# is asserted. This delay in termination should not be 
extended more than 2 or 3 cycles. Also note that the 
transaction need not be terminated after timer expiration 
unless GNTif is deasserted. 

Master-abort termination, as shown in FIG. B4, is an 
abnormal case (except for configuration or Special Cycle 
commands) of master initiated termination. A master deter 
mines that there will be no response to a transaction if 
DEVSEL remains deasserted on clock 6. The master must 
assume that the target of the access is incapable of dealing 
with the requested transaction or that the address was bad. 
Once the master has detected the missing DEVSEL# (clock 
6 in this example). FRAMElf is deasserted on clock 7 and 
RDYif on clock 8. The earliest a master can terminate a 

transaction with master-abort is five clocks after FRAME 
was first sampled asserted, which occurs when the master 
attempts a single data transfer. However, the master may 
take longer to deassert FRAMEF and terminate the access, 
The master must support the FRAMEl-IRDY# relationship 
on all transactions which includes master-abort. FRAMEff 
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cannot be deasserted before IRDY is asserted and IRDYif 
must remain asserted for at least one clock after FRAMEff 
is deasserted, even when the transaction is terminated with 
master-abort. 

Alteratively, IRDY# could be deasserted on clock 7, if 
FRAMEff was deasserted as in the case of a transaction with 
a single data phase. The master will normally not retry this 
access. Note that if DEVSEL had been asserted on clocks 
3. 4, 5, or 6 of this example, it would indicate the request had 
been acknowledged by an agent, and master-abort termina 
tion would not be permissible. 
The host bus bridge, in PC compatible systems, must 

return all's on a read transaction and discard data on a write 
transaction when terminated with master-abort. The bridge 
is required to set the master-abort detected bit in the status 
register. Other master devices may report this condition as 
an error by signaling SERRA when the master cannot report 
the error through its device driver. 

In summary, the following general rules govern FRAME 
and IRDY# in all PCI transactions. 

1. FRAMElf and its corresponding IRDY# define the 
busy/TDLE state of the bus; when either is asserted, the bus 
is busy; when both are deasserted. the bus is DLE. 

2. Once FRAMEF has been deasserted, it cannot be 
reasserted during the same transaction. 

3. FRAMEff cannot be deasserted unless RDYi is 
asserted. (IRDY# must always be asserted on the first clock 
edge that FRAME is deasserted.) 

4. Once a master has asserted IRDY#, it cannot change 
IRDY# or FRAMEA until the current data phase completes. 

Target Initiated Termination 
The mechanism used in target initiated termination is the 

STOP signal. The target asserts STOP to request that the 
master terminate the transaction. A modified version of this 
mechanism allows the target to terminate a transaction in 
which a fatal error has occurred, or to which the target will 
never be able to respond. This abnormal termination is 
referred to as target-abort. 

In summary, the following general rules govern 
FRAME, RDY#, TRDY#, and STOP# in all PCI transac 
tions. 
Whenever STOP is asserted, FRAMEf must be deas 

serted as soon as possible pursuant to the rules for the 
deassertion of FRAMEff (i.e., IRDY# must be asserted). The 
deassertion of FRAMEff should occur as soon after STOP 
is asserted as possible, preferably within two or three cycles. 
The target must not assume any timing relationship between 
STOP' assertion and FRAMEF deassertion, but must Keep 
STOP asserted until FRAME is deasserted. When the 
master samples STOP# asserted, it must deassert FRAMEff 
on the first cycle thereafter in which IRDY# is asserted. This 
assertion of IRDY# (and therefore FRAMEff deassertion) 
may occur as a consequence of the normal IRDY# behavior 
of the master (had the Current transaction not been target 
terminated), and be delayed Zero or more cycles depending 
on when the master is prepared to complete a data transfer. 
Alteratively, the master may assert IRDY# immediately 
(even without being prepared to complete a data transfer) if 
TRDY# is deasserted, thus indicating there will be no further 
data transfer. 
Once asserted, STOP must remain asserted until 

FRAMEff is deasserted, whereupon. STOP must be deas 
serted. 

During the final data phase of a transaction (FRAMEff 
deasserted and IRDY# asserted), any clock edge on which 
either STOP# or TRDY# is asserted becomes the last cycle 
of the transaction, and IRDY# is deasserted on the following 
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clock edge. (This creates an IDLE cycle and defines the end 
of the transaction.) 
The master mustretry an access that was target terminated 

(except target-abort) with the address of the next untrans 
ferred data if it intends to complete the access. If the deice 
was prefetching, it may elect not to retry the access. 

Once a target has asserted TRDY# or STOP. it cannot 
change DEVSELF, TRDY# or STOP until the current data 
phase completes. 
Device Selection 
DEVSEL# is driven by the target of the current transac 

tion as shown in FIG. B5. DEVSEL# may be driven one, two 
or three clocks following the address phase. Each PCI-bus 
device supports a Device Status register which indicates, 
among other things, the slowest time (fast, medium or slow) 
in which it will assert DEVSEL# for any bus command 
except Configuration Read and Configuration Write. 
DEVSELF must be asserted with or prior to the edge at 
which the target enables its TRDY#, STOP, or data (read). 
In other words, a target must assert DEVSELF (claim the 
transaction) before it is allowed to issue any other target 
response. In all cases except one, once a target asserts 
DEVSEL it must not deassert DEVSEL until FRAME is 
deasserted (IRDY# is asserted) and the last data phase has 
completed. With normal master termination, DEVSEL# 
deassertion must be coincident with the deassertion of 
TRDY#. The exception is the target-abort. 

If no agent asserts DEVSELF within three clocks of 
FRAME, the agent doing subtractive decode may claim 
and assert DEVSEL#. If the system does not have a sub 
tractive decode agent, the master never sees DEVSEL# 
asserted and terminates the transaction per the master-abort 
mechanism. 
A target must do a full decode before driving/asserting 

DEVSEL#, or any other target response signal. It is illegal to 
drive DEVSEL# prior to a complete decode and then let the 
decode combinationally resolve on the bus. (This could 
cause contention.) A target must qualify the AD lines with 
FRAMEff before DEVSELF can be asserted on commands 
other than configuration. A target must qualify IDSEL with 
FRAMEff and AD 1:0) before DEVSELF can be asserted 
on a Configuration command. 

It's expected that most (perhaps all) target devices will be 
able to complete a decode and assert DEVSEL# within one 
or two clocks of FRAMEff being asserted (fast and medium 
in the figure). Accordingly, the subtractive decode agent may 
provide an optional device dependent configuration register 
that can be programmed to pull in by one or two clocks the 
edge at-which it samples DEVSEL, allowing faster access 
to the expansion bus. Use of such an option is limited by the 
slowest positive decode agent on the bus. The edge at which 
it samples DEVSEL is referred to herein as the PCI-bus 
device claiming deadline. 
Once DEVSELF has been asserted, it cannot be deas 

serted until the last data phase has completed, except to 
signal target-abort. 

If the first access maps into the target's address range, it 
asserts DEVSELF to claim the access. But if the master 
attempts to continue the burst access across the resource 
boundary, the target is required to signal disconnect. 
When a target claims an I/O access, and the byte enables 

indicate one or more bytes of the access are outside the 
target's address range, it must signal target-abort. To deal 
with this type of I/O access problem, a subtractive decode 
device (expansion bus bridge) may do one of the following: 
(1) do positive decode (by including a byte map) on 
addresses for which different devices share common 
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DWORDs, additionally using byte enables to detect this 
problem and signal target-abort; or (2) pass the full access to 
the expansion bus, where the portion of the access that 
cannot be serviced will quietly drop on the floor. (This 
occurs only when first addressed target resides on the 
expansion bus and the other is on PCI.) 

APPEND)DX COPTG) 82C802 
82C802GOVERVIEW 
The OPTIS) 82C802G provides a highly integrated solu 

tion for fully compatible, high performance PC/AT plat 
forms. This chipset will support 486SX/DX/DX2 and P24T 
microprocessors in the most cost effective and power effi 
cient designs available today. For power users, this chipset 
offers optimum performance for systems running up to 50 
MHz. 
Based fundamentally on the proven 82O801 and 82C802 

design architectures. the 82C802G adds additional memory 
configurations and power management for the Processor and 
other motherboard components. As an upgrade from the 
OPTi 82C802, the 82C802G adds extensive power manage 
ment control. 
The 82C802G supports the latest in Writeback Processor 

designs from Intel, AMD and Cyrix, as well as supporting 
the AT bus and VESA local bus for compatibility and 
performance. It also includes an integrated 206 IPC 
controller, all in a single 208-pin PFP package for low cost. 

FUNCTIONAL DESCRIPTION 
System Clock Generation 
The 82C802G has a single high frequency clock input, 

CLK. CLK is a master single phase clock which is used to 
drive all host CPU synchronous signals and all of the 
82C802G's internal state machines. This clocking scheme 
provides operation to support platforms at system speeds up 
to 50 MHz. 
The 82C802G generates the AT bus clock (ATCLK) from 

an internal division of CLK. The ATCLK frequency is 
programmable and can be set to any of four synchronous 
mode clock division options by programming Register 25h 
1:0). In addition to the CLK source, there is an asynchro 
nous mode available by clearing Register 27h bit 1, which 
generates ATCLK by dividing the ATBUS OSC oscillator by 
2 (OSC/2). This asynchronous mode is important when 
entering GREEN mode, where the CPU clock rate can 
change and thereby generate unsuitable ATCLK frequencies 
if left in synchronous mode. This allows the system designer 
to tailor the AT bus clock frequency to support a wide range 
of system designs and performance platforms, as well as to 
function reliably during power savings mode. 

CPU Burst-Mode Control 

The 82C802G chipset fully supports 486 burst cycles. The 
82C802G cache and DRAM controllers insure that data is 
burst into the CPU whenever the 486 requests a burst line 
fill. The secondary cache provides data on read-hits and the 
DRAM supplies the data during cache read-misses. 
For the cache read-hit cycle, BRDY# (Burst Ready) is 

asserted during the first T2 state when a 2-1-1-1 (zero wait 
state) cache burst cycle is chosen, otherwise it is asserted 
during the second T2 state when one wait state is required. 
If a read-miss occurs, the DRAM controller will burst new 
data into both the cache memory and CPU simultaneously, 
BRDY#will be asserted for each double-word during these 
cache read-miss update cycles. For a zero wait state cache 
burst read cycle, 2-11-1, BRDY# will be asserted during the 
first T2 and remain active until BLST# (Burst Last) from the 
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CPU is detected. For a 3-2-2-2 cache burst read cycle, 
BRDY# will be toggled active on an every-other-clock basis 
to accommodate the more relaxed data access timing 
required above 33 MHz operation. BRDY# is never active 
during DMA or MASTER cycles. 
The 8208020 contains separate burst counters to support 

DRAM and external cache burst cycles. The Read/Write 
DRAM burst counter performs the cache read-miss line fill 
(DRAM to external cache/CPU) and the cache burst counter 
supports the 486 burst line fill (external cache to the 486 
CPU). The access order of the burst counter exactly matches 
the double-word address sequencing expected by the 486 
CPU. The DRAM burst counter is used for cache read-miss 
cycles and dirty line fill write operations. 
L1 Writeback Timing Description 

Level 1 Write Back Support: 
The L1 cache can contain modified data that is not 

contained in the L2 cache or DRAM. The CPU will not 
allow external devices to access its internal cache. The 
82C802G will execute an inquire cycle to the L1 cache for 
all master accesses to the system memory area. Master 
devices, whether local or on the ISA bus must snoop the L1 
cache during every access to system memory. If valid 
information is in the L1 cache and this information has been 
modified without being updated to the system memory, the 
HITM# signal will be generated. A write back cycle must be 
generated whenever a modified line was hit. 
VESA Local Master Cycles 
The L1 Cache Inquire Cycle begins with the CPU relin 

quishing the bus with the assertion of HLDA on sampling 
HLDA, the local bus card will generate ADS#. EADS# will 
be generated by the 82O802G for one clock following the 
ADS generation. If the CPU does not respond with asser 
tion of HITM#, the 82C802G will complete the cycle from 
the L2 cache or the system memory. If HITM# is asserted, 
the 82C802G will expect a castout cycle from the L1 cache. 
HTM# is connected to the WBACK# signal on the VL bus 
which will abort the VLcycle and allow the CPU to perform 
its castout cycle. The 82C802G will release hold to the CPU 
and generate a RDY to terminate the local bus cycle. Next, 
the CPU will write back its L1 contents to cache/system 
memory. 
Master/DMA Write Cycle 
HOLD will then be generated to the CPU in response to 

an ISA master or DMA cycle. The CPU will relinquish the 
bus with the assertion of HLDA. The 82C802G will issue 
AHOLD to the CPU to tristate the CPU's address bus. At 
this time, the DMA or master device drives the address onto 
the CPU bus. IOCHROY will be released. EADS is 
generated by the 82C802G. HTTM# will be generated if the 
address is a modified line in the cache. The CPU will then 
perform its castout cycle always starting at the address OXO 
of the 16 byte line. After the castout cycle, the CPU will 
deassert HTMF and issue HLDA. The ISA master or DMA 
device can then finish its cycle. 
Cache Subsystem 
The integrated cache controller, which uses a direct 

mapped, bank-interleaved scheme dramatically boosts the 
overall performance of the local memory subsystem by 
caching writes as well as reads (write-back mode). Cache 
memory can be configured as one or two banks, and sizes of 
64K, 128K, 256K, and 512K are supported. Provisions for 
two programmable non-cacheable regions are provided. The 
cache controller operates in non-pipeline mode, with a fixed 
16-byte line size (optimized to match a 486 burst line fill) in 
order to simplify the motherboard design without increasing 
cost or degrading system performance. For 486 systems, the 
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secondary cache operates independently and in addition to 
the CPU's internal cache. 
Local DRAM Control Subsystem 
The 82C802G supports up to 8 banks of page-mode local 

DRAM memory for configurations of up to 64Mb. 256 Kb, 
1 Mb. 4 Mb or 16 Mb page-mode DRAM devices may be 
used. The DRAM configuration is programmable through 
configuration register 24h, DRAM performance features are 
programmable through configuration register 25h. 
ATBus State Machine 
The AT Bus state machine gains control when the 

82C802G's decoding logic detects a non-local memory 
cycle. It monitors status signals M16#IO16#, CHRDY and 
NOWS# and performs the necessary synchronization of 
control and status signals between the AT Bus and the 
microprocessor. The 82C802G supports 8 and 16 bit 
memory and I/O devices located on the AT bus, 
An AT bus cycle is initiated by asserting ALE in ATTS I 

state. On the trailing edge of ALE, M 16# is sampled for a 
memory cycle to determine the bus size. It then enters 
ATTC state and provides the command signal. For an I/O 
cycle, IO16# is sampled after the trailing edge of ALE until 
the end of the command. 

Typically, the wait state for an AT/16 bit transaction is 5/1 
respectively. The command cycle is extended when CHRDY 
is detected inactive, or the cycle is terminated when Zero 
wait state request signal (NOWSF) from the AT bus is active. 
Upon expiration of the wait states, the AT State Machine 
terminates itself and passes internal READY to the CPU 
State Machine for outputting synchronous RDY# to the 
CPU. Index register 20h/bit 2 allows for the addition of an 
AT cycle wait state; bit 3 of this same register allows for the 
generation of a single ALE instead of multiple ALEs during 
bus conversion cycles. The AT bus state machine also routes 
data and address when an AT bus master or DMA controller 
accesses memory. 
Bus Arbitration Logic 
The 82C802G provides arbitration between the CPU, 

DMA controller, AT Bus masters, and the refresh logic. 
During DMA. AT bus master, and conventional refresh 
cycles, the 82C802G asserts HOLD to the CPU. The CPU 
will respond to an active HOLD signal by generating HLDA 
(after completing its current bus cycle) and placing most of 
its output and I/O pins in a high impedance state. After the 
CPU relinquishes the bus, the 82C802G responds by issuing 
RFSHF (refresh cycle) or generating the appropriate DRQ 
(AT bus master or DMA cycle), depending on the requesting 
device. During hidden refresh, HOLD remains negated and 
the CPU continues it's current program execution as long as 
it services internal requests or achieves cache hits (refer to 
the refresh section for additional information). The AT bus 
controller in the 82C802G arbitrates between DMA/Master 
and refresh requests, deciding which will own the bus once 
the CPU relinquishes control with the HLDA signal. The 
arbitration between refresh and DMA/Master is based on, 
FIFO (first in-first out) priority. However, a refresh request 
(RFSHF) will be internally latched and serviced immedi 
ately after the DMA or master finishes its term if queued 
after. DRQ's must remain active to be serviced if a refresh 
request come first. The "MASTER" signal from the AT bus 
indicates an active AT bus master cycle. 
Local Bus Interface 
The 82C802G allows peripheral devices to share the 

“local bus” with the CPU. The performance of these devices 
(which may include the video subsystem, hard disk adapters, 
LAN and other PC/AT controllers) will dramatically 
increase when allowed to operate in this high-speed envi 
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ronment. These devices are responsible for their own 
address and bus cycle decode and must be able to operate 
compatibly at the elevated frequencies required for opera 
tion on the local CPU bus. 
The LDEV# input signal to the 82C802G indicates that a 

local device is intercepting the current cycle. If this signal is 
sampled at the end of the first T2 clock cycle (end of the 
second T2 at 50 Mhz), then the 82C802G will allow the 
responding local device to assume responsibility for the 
current local cycle. When the device has completed its 
operation, it must terminate the cycle by asserting RDY# or 
BRDY to the CPU. RDY and BRDY are bi-directional 
pins on the 82C802G and may be driven by a local bus 
peripheral or the chipset to terminate their respective cycles. 
Data Bus Conversion/Data Path Control Logic 
The 82C802G performs data bus conversion when the 

CPU accesses 16 or 8 bit devices through 16 or 32 bit 
instructions. It also handles DMA and AT master cycles that 
transfer data between local DRAM or cache memory and 
locations on the AT bus. The 82C802G provides all of the 
signals to control external bi-directional data buffers. 
Special Cycles 
The 486 microprocessor provides special bus cycles to 

indicate that certain instructions have been executed, or 
certain conditions have occurred internally. Special cycles 
such as SHUTDOWN and HALT cycles are covered by 
dedicated handling logic in the 82C802G. This logic 
decodes the CPU bus status signals M/TO#, D/C# and W/R# 
and executes the appropriate action. 

TABLE C1 

82C802G SGNAL DESCRIPTIONS 

Name Type Description 

VL-bus Interface Signals 
BLST 486 Burst Last cycle indication 
BROY B Burst Ready output to the WL-bus host 
BE3:0; B WL-bus Byte Enables 3-0. The byte enables 

identify the bytes involved in a data 
transfer. Input during host cycles and 
output during non-host cycles. 

A24:25, I Host Address Lines 24, 25 and 26. The CA26 
CA26 pin allows the local DRAM memory 

configuration to be expanded to 128 Mb. 
A17:23) B Host Address Lines (23:17). Inputs during 

host, Refresh and MASTER cycles; they 
become output pins during DMA cycles. 

A8:16 B Host Address Lines (16:8). Input pins 
during non-DMA cycles; and CA16:9 become 
output pins which convey DMA address lines 
A16-A9 by latching XD7:0 during 16-bit 
DMA cycles; and CA15:8 convey DMA address 
lines A15:8 by latching XD7:0 during 8 
bit DMA cycles. 

A2:7 B Host Address Lines (7:2). These lines 
become outputs during DMA cycles. 

DO:15), B. Host Data Bus. 
D24:31 
OCTAG Host DataCode Cycle Status or TAG7. As 

DC, this pin is used to indicate data 
transfer operations when high, or control 
operations (code fetch, halt, etc.) when 
low. As TAG7, this pin is used to expand 
the cacheable address range of the DRAM. 
When sampled high during reset this pin is 
DC. When sampled low during reset this 
pin is TAG 7. TAG7 functionality may be 
ignored by setting index register 20h bit 
4. 
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TABLE C1-continued 

82C802G SIGNAL DESCRIPTIONS 

Type Description 

MP2 

DC 
O TAGT 

DRAM Controller Upper Address Decode. 
Host Memory or I/O Cycle Status. It 
indicates a memory cycle if high, and I/O 
cycle if low. It becomes an output pin 
during MASTER and DMA cycles for LOCAL 
device accesses, 
Host Write or Read Cycles Status. It 
indicates a write cycle if high and read 
cycle if low. It becomes an output pin 
during MASTER and DMA cycles for LOCAL 
device accesses. 
Emulation of Gate A20 OR'ed with internal 
fast GATEA20 output to 486 CPU. This 
signal must remain high during the POWER UP 
CPU reset period. In 486DLC mode, this is 
the GA20 signal indirectly buffered to the 
AT bus line LA20. 
Indication of WL-Bus device Cycle. This 
signal is sampled at the end of the 1st T2, 
or at the end of the 2nd T2 at 50 Mhz. 
Local Recuest 0. 
Ready. Ready output for host to terminate 
the current cycle. This pin becomes an 
input pin during local device cycles. In 
low speed systems (s.33.3 MHz), this pin is 
connected to LRDY#, RDYRTN#, and to the 
CPU's Ready input pin. In high speed 
systems (240 MHz), this pin is the RDYRTN# 
output and is connected to the CPU's Ready 
input pin. The WL-bus LRDY# signal is 
connected to a separate LRDYI# input pin of 
the 802G. 
486 address snooping strobe. This signal 
is asserted for two T states during DMA or 
MASTER cycles. 
Address Strobe. Status input from host. 
This active low signal indicates the host 
is starting a new cycle. It becomes an 
output pin during MASTER or DMA cycles to 
the Local bus. 

AT Bus Interface 

Function 

ISA 16-bit Memory Capability. 16-bit AT 
Memory Slave Cycle Status; Schmitt trigger 
input pin normally, and driven kow during 
master cycle. 
ISA 16-bit IO Slave Cycle Status. Schmitt 
trigger input pin. 
AT Bus Address Latch Enable to represent 
that the AT cycle has started 
AT Bus High Byte Enable. Input pin during 
MASTER cycles. 
Peripheral Data Bus Lines 15:0). 
ATO Read Command. This pin is an input 
during MASTER cycles and an output for host 
and DMA cycles. 
ATIO Write Command. This pin is an input 
during MASTER cycles and an output for host 
and DMA cycles. 
ATMemory Read Command. This pin is an 
input during MASTER cycles and an output 
for host and DMA cycles. 
AT Memory Write Command. This pin is an 
input during MASTER cycles and an output 
for host and DMA cycles. 
BIOS ROM Output Enable. During memory 
cycles, this signal is used for System BIOS 
ROM accesses and can be either 8-bit or 16 
bit. This signal will be asserted from the 
end of the first T2 to the end of the last 
T2. 
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TABLE C1-continued 

820802G SIGNAL DESCRIPTIONS 

Type Description 

SAO 

SA1 

OWSAILRDY 

HOLD 

NPERR 

IGERR3 

BEA3 

BEA20A3 

DRTY 

FLUSH 

BEOE 
BOOE3 
ECAWE 

OCAWE 

TAGO:6 
TAGW 

I 
O 

O 

Keyboard Controller Chip Select. When IO 
to port 60h or port 64h is detected, this 
signal is decoded for the keyboard A9:0). 
Channel Ready Input from AT-BUS. This pin 
a Schmitt trigger input. 
Memory Space Below One Megabyte Indicator. 
This signal is active during refresh 
cycles. 
System. Address Line O. This pin is an 
input during MASTER cycle; an output pin 
during host, DMA or refresh cycles. 
System Address Line 1. This pin is an 
input during MASTER cycle; an output pin 
during host, DMA or refresh cycles. 
Zero Wait State Input from AI-BUS. This 
pin is a Schmitt trigger input pin. Note 
that the system BIOS ROM is accessed as a 
one wait state AT cycle. This pin is 
either OWS# or LRDYI for the 82C802G, 
determined by strap option MPO. MPO is 
sampled during reset to determine its 
function: 

MP2 

O LRDY 
1. OWS 

Bus Arbitration Interface 

Function 

AT Refresh Cycle Indication. It is an 
input pin during MASTER or DMA cycle. Note 
that 82C802G will not HOLD the CPU during 
AT refresh cycles. The 82C802G puts the 
CPU on “waiting" if an AT refresh cycle is 
underway. 
HOLD Acknowledge from host. 
HOLD Request to host. Hidden refresh will 
not hold the CPU. 

Numeric Processor Interface Signals 

Numeric Processor Error Indication. Used 
to generate IGERRif for the 486 CPU. 
Ignore Numeric Processor Error. This is a 
normally high signal 
Cache Interface Signals 

Cacheable or Non-Cacheable Status for the 
486's internal cache. This signal is kow 
normally, and is brought high at the end of 
T1. The 82C802G asserts KEN# again if it 
is a cacheable cycle. 
Cache Address Line A3. This pin is 
connected to the A3 line to the cache in 
the single bank mode or even bank A3 in the 
double bank mode. 
Cache Line A2/A3. This pin is the A2 line 
to the cache in single bank mode or odd 
bank A3 in the double bank mode. 
Dirty Bit of TAGRAM to indicate its line 
has been written into. 
This pin is FLUSHA on the 82C802G. This is 
an output to the host from the chipset and 
allows the chipset to flush the L1 cache 
before the SMM occurs and also once the 
system comes out of the SMLGREEN mode. 
External Cache Output Enable. 
External Cache Output Enable. 
External Cache Write Enable for the even 
Cache bank. 
External Cache Write Enable for the odd 
Cache bank. 
TAG RAM Output Lines. 
TAG RAM Write Enable. It is used to update 
the TAGRAM. 
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TABLE C1-continued 

82C802G SIGNAL DESCRIPTIONS 

Type Description 

g 

DRAM Interface Signals 

DRAM Column Address Strobes 0-3. 
DRAM Parity Bits 0–3. In addition, MP1 only 
is used to enable the internal VESA Bus 
arbitration circuitry. This pin must be 
pulled down with a 1k resistor if the 
internal WESA Bus arbitration is to be 
used. MP1 is sampled on the rising edge of 
RST4. 
DRAM Row Address Strobes 0-3. 
DRAM Row. Address Strobe 4 or Local Request 
1. The 82C802G uses this pin as LREQ1} or 
RAS4#. This pin is sampled during reset to 
determine its function. Please refer to 
the table in the RAS5# (pin 193) 
description for pin strapping options. 
DRAM Row Address Strobe 5 or Local Grant 1. 
The 82C802G uses this pin for either LGNT1# 
or RAS5#. This pin is sampled during reset 
to determine its function: 

MP1. Pin 192 Pin 193 

RAS4 RASS 
DRAM Row Address Strobe 6. The 82C802G 
uses this pin for RAS6i. 
DRAM Row Address Strobe 7 or DRAM 
Row/Column Address Line 11. The 82C802G 
uses this pin for RAS7#MA11. When used as 
MA11, the 82C802G will support 16Mxi DRAM 
parts. 
DRAM Rowlcolumn Addressines 0-10. 
DRAM Write Enable Signal. 

"206 Signals 

DMA request lines. 

Encoded DMA Acknowledgment Lines. 
Interrupt Request 
Interrupt Request 1, Schmitt trigger input 
Interrupt Request 3 & 4, Schmitt trigger 
input. When ATCLK is low, this pin is 
IRQ4. When ATCLK is high, this pin is 
IRQ3. 
Interrupt Request 6, Schmitt trigger input. 
Interrupt Request 5 & 7, Schmitt trigger 
input. When ATCLK is low, this pin is 
IRQ7. When ATCLK is high, this pin is 
IRQ5. 
Interrupt Request 8, Schmitt trigger input. 
Interrupt Request 9, Schmitt trigger input. 
Interrupt Request 10 & 11, Schmitt trigger 
input. When ATCLK is low, this pin is 
IRQ11. When ATCLK is high, this pin is 
IRQ10. 
Interrupt Request 14, Schmitt trigger 
input. 
Interrupt Request 12 & 15, Schmitt trigger 
input. When ATCLK is low, this pin is 
IRQ15. When ATCLK is high, this pin is 
IRQ12. 
Terminal Count. 

Buffer Control Signals 

SD(7:0 to XD(7:0) Direction Control. 
Normally high, this pin is driven low when 
the devices located on XD7:0 are read. 
XDR is active for all ROM read cycles and 
FO accesses to Ports 60h, 64h, 7Oh and 
71h. 
Byte 2 Data Latch Enable. This signal 
becomes high during the host AT byte 2 read 
cycle and during DMA or master cycles. 
Byte 2 Data Buffer Output Enable. This 
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TABLE C1-continued 

82C802G SGNAL DESCRIPTIONS 

Name Type Description 

HLBOE.2f O 

CPURST O 
PWRGD 

CHCK O 

LGNTOf O 

AHOLD O 

DC: 

SPKD O 

signal becomes active during host DRAM 
cycles for parity checking and generation, 
during host AT byte 2 write cycle in 486 
mode and during DMA or MASTER byte 2 read 
DRAM or LOCAL device cycles. 
Byte 2 Data Latch Output Enable. This 
signal becomes active during host AT byte 2 
read cycle and during DMA or MASTER byte 2 
write to local DRAM or LOCAL device. 

Reset signals 

CPU Reset for the microprocessor. 
Power good status or reset switch on 
indication. 

Clock Signals 
14.3 Mhz Oscillator input. 
ATCLK to AT bus. This is a free running 
clock output, programmable to be CLKI/3, 
CLK-4, CLKI/5, CLKI/6 or OSC/2. 
CLK 1x input. Single phase clock input for 
the 82C8O2C internal state machine. 

Misc. Signals 

Channel Check Input from AT bus to indicate 
there is a parity error generated by the AT 
memory card. (NMI interrupt request). 
Local Bus Grant 0. This signal is the WESA 
Bus Local Grant signal. 
Non-Maskable Interrupt to host; caused by 
system parity error or AT bus channel 
check. 
Host Address Hold. This pin is an active 
high output from the 82C802G used to force 
the host to float address lines A31:2 on 
the next clock cycle. 
L1 WriteBack Hit or D/C#. This pin is an 
active low input from an Ll writeback 
capable host (such as the P24T) used to 
indicate that the current cache inquiry 
address has been found in the internal 
cache and that dirty data exists in that 
cache line. This pin is either HTTM# or 
HITM# and D/C# on the 82C802G. This pin 
can be in either configuration by the 
sampling of MP2 during reset. When 
strapped low, it is HTTM# during inquiry 
cycles and D/C# for all other cycles. In 
this configuration, the DfC# and HTM# 
signals from the host must be ANDed into 
this pin. The strapping option also 
affects pin 108. 

MP2 Function 

l HTM 
O HTM and DfC 

Speaker Data Output. Generated by OUT2 and 
port 61h bit 1. 

82C802G Register Description 

TABLE C2 

Bit Function 

Control Register 1 - Index: 2Oh 

Revision of 820802G and is read-only. 
5 Secondary Cache Burst wait state control. 

1 = secondary cache read hit cycle is X-2-2-2. 
O = secondary cache read hit cycle is X-1-1-1. 
(See register 21h?bit 0 for lead-off cycle) 

4 TAG7 sampling during cache cycles. This bit will only 
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TABLE C2-continued 

Function 

be active when the "802G samples MP2 low during reset. 
O = enable TAG7, 1 = disable TAG7 
Single ALE Enable. 82C802G will activate single ALE 
instead of multiple ALEs during bus conversion cycle 
if this bit is enabled. 
Extra AT Cycle Wait State Enable. 
Insert one extra wait state in standard AT bus cycle. 
Emulation Keyboard Reset Control. Turn on this bit 
requires a "Halt' instruction to be executed before 
the 82C802G generates CPURST. This bit also affects 
soft resets via writes to ports 63h and 92h. 
Fast Reset Enable. Alternative fast CPU reset, 
requires a "Halt" instruction to be executed before 
82C802G generate CPURST. 

Control Register 2 - Index: 21h. 

Master Mode Byte Swap Enable 
Reserved 
Parity Check 
Cache Enable 
Cache Size 

32- Cache Size 

00 64 KB 
01. 128KB 
0 256 KB 

1 512 KB 
Cache Write Wait State Control 
Cache Read Lead-off Cycle' Wait State Control 

1 = 2-X-X-X cycle 
Shadow RAM Control Register I-Index: 22h 

ROMOOOF0000-000FFFh) Enable 
1 = Read from ROM, write to DRAM. ROMCS# is 
generated during read access only, 
O = Read from write-protected DRAM. Ihis segment is 
now cached in secondary cache. 
Reserved 
Reserved 
Shadow RAM at DOOOOh-DFFFFh Area. Write Protect Enable. 
Shadow RAM at EOOOOh-EFFFFh Area. Write Protect Enable. 
Hidden Refresh Enable 
(HOLD will not be issued to the host during refresh 
cycles) 
Fast Gate A20 
1 = Enable A20 
O = A20MF is always active 
Slow Refresh Enable (4 times slower than the normal 
refresh) 
(This feature requires installation of slow refresh 
DRAMs) 

Shadow RAM Control Register II - Index: 23h 

Enable Shadow RAM at ECOOOh-EFFFh area 
Enable Shadow RAM at E3000h-EBFFFh area 
Enable Shadow RAM at EAOOOh-E7FFFh area 
Enable Shadow RAM at EOOOOh-E3FFFh area 
Enable Shadow RAM at DCOOOh-DFFFFh area 
Enable Shadow RAM at D8000h-DBFFFh area 
Enable Shadow RAM at D4000h-D7FFFh area 
Enable Shadow RAM at DOOOOh-D3FFFh area 

DRAM Control Register I - Index: 24h 

SMI Handler Upkoad Enable. 
O = Normal Mode, 1 = Remaps Memory 3xxxxh to Bxxxxh. 

6:4). DRAM configuration. 
3 Reserved 
2:O DRAM configuration. 

7 

DRAM Control Register II - Index; 25h 

MDIRALMEMR (pin 62 functionality) 
O = MDIR#, 1 = LMEMF (MP3 sampled low during reset) 

6:5). DRAM Read Cycle Wait State Control 
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TABLE C2-continued 

Bit Function 

bité bits DRAM Burst Add Write Wait State Default 

O O 3-2-2-2 33 MHz 
or less 

O 1. 4-3-3-3 page miss=l add'l ws 
O 4-3-3-3 page miss=0 add'l ws 

l 1 5-4-4-4 50 MHz 
or less 

4 DRAM Write Cycle Wait State Control 
0 = zero wait states, = one wait state. 

3:2) Reserved 
1:0 ATCLK selection 

9. ATCLK selection 

O O ATCLK-CLKI/6(Default) 
O 1 ATCLKCLKI/5 

O ATCLK-CK14 
1. ATCLKCLKV3 

5 

Shadow RAM Controi Register II - Index: 26h 

Enable ROMCS# for Write Cycles 
1 = Enable, generates ROMCS# for write cycles to 
support flash ROMs. 
O = Disable 
Shadow RAM copy enable for address area C0000h-EFFFFh 
O = Read/write on AT bus 
= Read from AT bus and write into shadow RAM 

Shadow write protect at address area C0000h-CFFFFh 
O = Write protect disable 
1 = Write protect enable 
Reserved 
Enable shadow RAM at CCOOOh-CFFFFh area 
Enable shadow RAM at C8000h-CBFFFh area 
Enable shadow RAM at C4000h-C7FFF area 
Enable shadow RAM at C0000Oh-C3FFF area 

Control Register 3 - Index; 27h 

Enable NCAff pin to low state (always non-cacheable) 
Enable Fast ATCycie. 
Back to Back I/O Delay Control 
O = 3 BLK back to back I/O delay 
1 = no back to back I/O delay 
reserved 
Turbo Bit. 1 = Normal Mode (fast), O = Slow Mode. 
L1 Write Back, 1 = Disabled, O = L1 Write Back Enabled 
AT Clock Change. 
1 = Synchronous (see register index 25h1:0), 0 = 
asynchronous (OSCI2). 
reserved 
ROM Chip Select (ROMCSF) Control Register - Index: 2Dh 

PS2 Mouse Support 
O = PS2 mode, = AT mode 
Unused 
Enable ROMCS# at E3000h to EFFFFh Segment 
Enable ROMCS# at E0000h to E7FFFh Segment 
Enable ROMCS# at D8000h to DFFFFh Segment 
Enable ROMCS# at D0000h to D7FFFh Segment 
Enable ROMCS# at C8000h to CFFFFh Segment 
Enable ROMCS# at C0000h to C7FFFh Segment 

Cacheable Address Range - Index Register 2Eh 

FOOOOh to FFFFFh cacheable in L1 
1 = enable, O = disable 
E0000h to EFFFFh cacheable in L1 
= enable, O = disable 

D0000h to OFFFFh cacheable in L1 
1 = enable, O = disable 
COOOOh to CFFFFh cacheable in L1 
1 = enable, O = disable 
EC000h to EFFFFh cacheable in L2 
1 = enable, O = disable 
E800Oh to EBFFFh cacheable in L2 
= enable, O = disable 

E4000h to ETFFFh cacheable in L2 
1 = enable, O = disable 
E0000h to E3FFFh cacheable in L2 
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TABLE C2-continued 

Bit Function 

- enable, O = disable 
Cachcable Address Range 2 - Index Register 2Fh 

OCOOOh to DFFFFh cacheable in L2 
1 = enable, O = disable 

6 8000 to DBFFF cacheable in L2 
1 = enable, O = disable 

5 D4000h to DFFF cacheable in L2 
= enable, O = disable 

4. DOOOOh to D3FFFh cacheable in L2 
1 = enable, O = disable 

3 CCOOO to CBFFF cacheable in L2 
= enable, O = disable 

2 C800Oh to CBFFF cacheable in L2 
1 = enable, O = disable 
C4000 to C7FFFh cacheable in L1 
1 = enable, O is disable 

O COOOOh to C3FFFh cacheable in L2 
= enable, O = disable 

O Port 6Oh 

The 82C802G emulates the Port 60h and 64h registers of 
the keyboard controller, allowing the gent A20 signal. The 
sequence here is BIOS transparent, and there is no need for 
the modification of thee sequence involves writing data Dlh 
to port 64h, then writing data 02h to port 60h. 

TABLE C3 

I/O Port 61h (Port B) 

ReadWrite Bit Function 

Timer 2 Gate. 
Speaker Output Enable. 
Parity Check Enable. 
I/O channel Check Enable. 
Refresh Detect. 
Timer OUT2 Detect. 
IO Channel Check. 
System Parity Check. 

O Po t 64h 

82C802G I/O port 64h emulates the register inside the 
keyboard controller by generating a fast reset pulse. Writing 
data F1 to port 64h asserts the reset pulse. The pulse is 
generated immediately after the I/O write if bit 1 of Index 
register 20h is set. 

Port O. 

Bit ReadWrite Function Polarity 

7 RW NMEnable O 

Mode Register - Index EFh 

This is a read/write register which is used to store con 
figuration information. 

Bit Description 

7-0 601 or 602 mode register 
This register selects the mode which the system board is 
configured in. When set to '601 mode, the system will expect 
an external power management port is used. 
CCh = 601 mode 
COh = 602 mode 

O 
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APPENDIX ID OPT 82C602 

82O601/82C602 OVERVIEW 
Introduction 
The OPTiG 82C601 and 82C602 buffer chips are 100-pin 

devices designed to replace a number of discrete buffer 
components normally found on PC/AT motherboards. Pin 
compatible with each other, the 82C602 is an upgrade from 
the 82C601 with additional functionality. These chips 
replaces approximately 9 TTL components on a typical 
motherboard design, offering significant cost savings and a 
substantially simplified PCB layout. 
The 82C601/82C602 are closely coupled with OPTi's 

82CS01/802/802G, 82C499 and 82C495SLC/XLC chipsets 
to allow higher integration and lower cost. 
The 82C602 is a pin-compatible upgrade to the 82C601 

that adds RealTime Clock (RTC) and Power Management 
functionality. 
82C601/82C602 Functional Description 
SDO-7 to XDO-7 Data Bus Control 
The 82C8OX, 82C495SLC/XLC, and 82C499 families 

drive the SD bus directly. The 82C601 provides a bidirec 
tional buffer which controls the direction of the XD to SD 
bus. The XD bus is designed for devices which are not 
intended to drive the SD bus. These items include the RTC, 
Keyboard Controller and BIOS ROM. The direction of the 
internal buffer is controlled by the system logic chipset 
signal XDIR. 
CD (23:16) to SD(7:0) and/or CD(31:24) to SD(15:8) Data 
Bus Buffering 
On OPTi 82C80X and 82C499 chipsets, the third data 

byte is sourced from the CPU, and so is not output by the 
chipset. In order to align the byte properly for the 16 bit ISA 
bus, control signals are generated by the chipset. The control 
for this alignment is done by HLBOE1#, HLBOE2# and 
HLBTH#. On the 82C495SLC/XLC chipsets, the third and 
fourth byte is sourced from the CPU and not output by the 
chipset. This is controlled by the HLHDEN#, HDLENF and 
HDDR of the 82C495SLC/XLC. 
CA(15:2) to SAC15:2) Address Buffering 
The 82C601 buffers all of the local bus address lines to the 

ISAbus. These address lines normally drive the ISAbus, and 
are inputs from the host during ISA master operations. 
During refresh, these buffers are disabled, allowing the 
refresh address to be broadcast to the ISA bus. 
Refresh Counter and Refresh Address Logic 
The 82C601 has its own built-in refresh counter. This 

refresh counter will broadcast the refresh address to the ISA 
bus during refresh cycles. 
AEN Decode Signal 
AEN is decoded by REF, MASTER# and HLDA#. This 

signal is normally low and is driven high during DMA 
CCSSS 

AT Command Buffer Signals MEMR# an MEMW# signals 
are buffered to the ISA bus. 
Real Time Clock Control 
Addresses 70h and 71h are decoded by the 82C601. These 

decoded addresses translate to RTCCSF and RTCAS 
strobes. This decode is needed for 82C802 designs. On 
82C801 designs, the decode is done by the chipset. 
Keyboard Clock Buffer 
The clock signal from the keyboard controller to the 

keyboard can be buffered through the 82C601. This clock is 
tri-stated through the buffer chip and sent out to the key 
board. 
Reset Circuit 
SYSRST# from the 82C801 is buffered through the 

82C601. RSTDRV to the ISA bus and LRESET to the 
VESA local bus are generated. 
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82C602 Functional Description 
The 82C602 has all of the functionality of the 82C601 

buffer chip, adding an embedded RTC and GREEN power 
port. 
Internal 
RTC The internal RTC of the 82C602 is functionally 

compatible with the DS 1285/MC146818B. Additional fea 
tures to the RTC are 242 bytes of general nonvolatile storage 
and an internal power sense monitor. 
GREEN Power Port 
The GREEN port on the 82C602, when coupled with the 

82C802G, provides a means of controlling devices via 
output pins on the device. During the power saving mode, 
this port can be written to by the system software or can latch 
data from the 82C802G's port. 

TABLE D1 

82C602 Signal Definitions 

Direc 
tion 
Rela 
tive to 

Name 82C602 Description 

MASTER I Master cycle indication. This signal is 
used to control the CASA buffer 
direction. 
HLIDA from output of '80x, '499 or 
'495SLC/XLC. 
Refresh cycle indication. This signal 
is used to: 
1) enable refresh address from internal 
address counter, 
2) Tri-state CAVSA buffer. 
Address Enable. When High, the DMA 
controller has control of the address 
lines, data lines, MEMR# and MEMWif, IORif 
and IOWif. This signal is connected to 
AEN of AT bus. 
AT bus address lines 15:2). 
Host address lines 15:2. 
Connected to AT Bus address lines 
SA1:0. 
AT bus data lines (7:0). 
XD bus data lines 7:O. XD7, XD6 and 
XD4 lines are internally pulled-up and 
are sampled at reset time for the 
following strap options: 
XD7 XD6 Strap Option 

1. 1 '801/802 
O '495XLCSLC 

1. 1 '802G 
O O Reserved 

XD4 Strap Option 
1. Enable RTC 
O Disable RTC 

SD to from XD direction control. 
Host data lines 23:16) 
Output enable for CD23:16) to SD7:O 
This signal is the HD-Bus Low-Byte 
Enable control from the chipset to the 
82C60x. This signal is called HLBOE1f. 
on the 82C499 and '802x chipsets and is 
called HDLENE on the 82C495SLCXLC. 
Output enable for SD7:0 to CDI23:16) 
Latch from the chipset to the 82O60x. 
Latch control for SD7:0 to CD23:16) 

8OXHILDA I 

RFSH: 

SA15:2) 
CA15:2) 
CA1:0 : 
SD7:0 
XD17:0 

DR 
CD23:16) 
HLBOE, 
HDLEN: 

HLBOE2. 

HLBLH1) I 
HDDR for 82C80x and 82C499. On the 

82C495SLC/XLC, this signal is HD-Bus 
direction control for SD15:0 to 
CD31:16). 

ORi. B ATIO Read Command. This signal is an 
input only for 82C499 and 82C80x 
chipsets and bi-directional for 
495SLC/XLC. Normally an input, IOR# is 
an output only during ISA Master cycles. 
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TABLE D1-continued 

82C602 Signal Definitions 

Direc 
tion 
Rela 
tive to 

Name 82C602. Description 

This signal is tied to IOR# of the 
chipset. 
AT I/O Write Command. This signal is an 
input only for 82C499 and 82C80x and bi 
directional for the 82O495SLCXLC. 
Normally an input, IOWi is an output 
only during ISA Master cycles. This 
signal is tied to IOW of the chipset. 
Memory Read Command. This signal is an 
input for the 82C499 and 82C80x and bi 
directional for the 82C495SLCXLC. 
Normally an input, MEMW# is an output 
only during ISA master cycles. This 
signal is tied to MEMWif of the chipset. 
Memory Write Command. This signal is an 
input for the 82C499 and 82C80x and bi 
directional for the 82C495SLCXLC. 
Normally an input, MEMW# is an output 
only during ISA master cycles. This 
signal is tied to MEMWil of the chipset. 
AT Memory Read Low 1 Meg Command. This 
signal will follow MEMR# during refresh 
cycle. 
AT Memory Write Low 1 Meg Command. 
Low 1 Meg Memory Chip Select. This 
signal is also the Keyboard Chip Select. 
ATIO Read Command. This signal is an 
input only for 82C499 and 82C80x 
chipsets and bi-directional for 
495SLCXLC. Normally an input, IOR# is 
an output only during ISA Master cycles. 
This signal is tied to IOR# of the 
chipset. 
ATI/O Write Command. This signal is an 
input only for 82C499 and 82C80x and bi 
directional for the 82C495SLC/XLC. 
Normally an input, IOWif is an output 
only during ISA Master cycles. This 
signal is tied to IOW# of the chipset. 
Memory Read command. This signal is an 
input for the 82C499 and 82C80x and bi 
directional for the 82C495SLCLC. 
Normally an input, MEMR# is an output 
only during ISA master cycles except 
during refresh. This signal is tied to 
MEMR# of the chipset. 
Memory Write Command. This signal is an 
input for the 82C499 and 82C80x and bi 
directional for the 82C495SLC/XLC. 
Normally an input, MEMW# is an output 
only during ISA master cycles. This 
signal is tied to MEMWA of the chipset. 
ATMemory Read Low 1 Meg Command. This 
signal will follow MEMR# during refresh 
cycle. 
ATMemory Write Low 1 Meg Command. 
Low 1 Meg Memory Chip Select. This 
signal is also the Keyboard Chip Select. 
Power Port, bit 1. 
This port is set up through index 
registers F8h and F9h. This signal is 
derived through the I/O Read and Write 
commands. 
An output from the Green power control 
output. This pin can be accessed by 
either PPEN# strobe signal or by Index 
Register FAh depending on the 
configuration. 
Clock to and from the Keyboard. 
Green power port enable, which latches 
the '802G 'AUTO GREEN' port. 

OW B 

MEMR# B 

MEMW B 

SMEMR B 

SMEMW B 
LMCS 
KBCSi 
IOR B 

OW B 

MEMR B 

MEMW B 

SMEMR: B 

SMEMW 
LMCSKB 
CS 
PP1 
GPCS 

PP2: O 

KBCLK B 
PPEN: I 
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TABLE D1-continued 

82C602 Signal Definitions 

Direc 
tion 
Rela 
tive to 

Name 82C602. Description 

ERQ8 O Generated from the internal RC. 
PPOs O Output from the Green power control 

output. This pin can be accessed by 
either PPENFE strobe signal or by Index 
Register FAh depending on the 
configuration. 

MO I Host memory IO status. 
CPUCLK An input from the processor 1X clock 

signal. 

APPENDIX E OPTCE) 82C822 
2.0 Overview 

OPTi(E)'s 82C822 VESA local bus to PCI Bridge (PCIB) 
chip is a high integration 208-pin PQFP device designed to 
work with VESA VL bus compatible core logic chipsets. 
The 82C822 PCIB provides interface to the high perfor 
mance PCIbus and is fully compliant to the PCI Version 2.0 
specification. The 82C822 requires no glue logic to imple 
ment the PCI bus interface and hence it allows designers to 
have a highly integrated motherboard with both VESA local 
bus and PCI local bus support. The PCIB chip offers 
premium performance and flexibility for VESA VL-based 
desktop systems running up to 50 MHz. The 82C822 PCIB 
can be used with OPTi's 82C802G core logic and 82C602 
buffer chipsets to build a low cost and power efficient 
486-based desktop solution. It also works with OPTi 
82C546/547 chipset to build a high performance PCIVL 
solution based on the Intel P54C (Pentium) processor. 
The 82C822 PCB provides all of the control address and 

data paths to access the PCI bus from the VESA Local bus 
(VL bus). The 82C822 provides a complete solution includ 
ing data buffering, latching, steering, arbitration, DMA and 
master functions between the 32-bit WL bus and the 32-bit 
PCI bus. 

The PCB works seamlessly with the motherboard chipset 
bus arbiter to handle all requests of the host CPU and PCI 
bus masters, DMA masters, I/O relocation and refresh. 
Extensive register and timer support are designed into the 
82C822 to implement the PCI specification. 
The 82C822 is a true VESA to PCI bridge. It has the 

highest priority on CPU accesses after cache and system 
memory. It generates LDEV# automatically and then com 
pares the addresses with its internal registers to determine 
whether the current cycle is a PCI cycle. When a cycle is 
identified as PCI cycle, the 82C822 will take over the cycle 
and then return RDYi to the CPU. If not, the 82C822 will 
give up the cycle to the local device or, in the case of an ISA 
slave, generate a BOFF# cycle to the CPU. This action will 
abort the cycle and allow the CPU to rerun the cycle. 
The 82C822 includes registers to determine shadow 

memory space, hole locations and sizes to allow the 82C822 
to determine which memory space should be local and 
which is located on the ISAbus. Upon access to memory, the 
82C822 can determine whether or not the cycle is a PCI 
access by comparing the cycle with its internal registers. 
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TABLE E1 

Signal 
Signal Name Type 

3.1.1 VESA Local Bus Interface Signals 

Signal Description 

RESET; I 
LCLK 
AIDS O 

Active Low Reset Input 
WESALocal Bus Clock 
Address Data Strobe: Normally an input, 
this signal is only driven during PCI 
bus master cycles. ADS is tristated 
when WBACKY is sampled active. This 
signal needs to be reasserted after 
WBACKF is sampled active. 
Memory or I/O Status: Normally an input, 
this signal is an output during PCI bus 
master cycles. This signal is tristated 
when WBACK# is sampled active. 
Write or Read Status: Normally an input, 
this signal is an output during PCI bus 
master cycles. This signal is tristated 
when WBACK is sampled active. 
Data or Code Status: Normally an input, 
this signal is an output during PC bus 
master cycles. This signal is tristated 
when WBACK# is sampled active. 
Byte Enables bits 3 through 0: Normally 
inputs, these signals are outputs during 
PCI bus master cycles. They are 
tristated when WBACK is sampled active. 
Burst Last: Normally an input, this 
signal is an output during PCI bus 
master cycles. This signal is tristated 
when WBACK is sampled active. 
Data Lines bits 31 through 0: Normally 
inputs, these pins are outputs during 
CPUWESA/DMASA master reads from PC 
bus slaves (this includes reading the 
configuration registers of the 82C822) 
or during PCI bus master write cycles. 
These pins are tristated when WBACK is 
sampled active. 
Address Lines bits 31 through 2: 
Normally inputs, these signals are 
outputs during PCI bus master cycles. 
They are tristated when WBACKF is 
sampled active. 
Local Device Output: This signal is 
usually connected to the LDEV# input pin 
of the OPTi WL chipset. When used as an 
output, LDEVOE is normally asserted in 
the next clock after ADSA, except during 
a restarted cycle due to BOFF# being 
asserted in the previous cycle. 
During DMA/ISA bus master cycles, the 
assertion of DEVO# is dependent on 
LMEM, LDEVE, the enable bit of the 
DMASA bus master to PC slave access, 
and general purpose decoding blocks 
specified in the configuration register. 
The assertion of LOEWOB for DMASA bus 
master cycles is as follows: 
LMEM LDEW LIDEVO 

O 
O O 

1 0 (if enable bit = 
1 or 0 and the 
access address is 
falling into the 
region specified 
in the general 
purpose decoding 
blocks) 
1 (if enable bit = 
O and the access 
address is not 
falling into the 
region specified 
in the general 
purpose decoding 

O 

O 

O 

O BE3:Off 

BLAST O 

O DAT31:O 

ADR31:2) O 

LDEWO O 
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TABLE El-continued TABLE E1-continued 

Signal Signal 
Signal Name Type Signal Description 5 Signal Name Type Signal Description 

blocks) inputs during PCI bus master cycles. 
As an input, it is latched at the PAR I/O Parity: This signal is an input either 
trailing edge of the reset time and used during PCI bus master cycles for address 
to determine the sampling point of LMEMF and write data phases or during PCI bus 
and LDEVI#. If sampled high during slave cycles for read data phases; 
reset, the end of the first T2 is used 10 otherwise it is an output. 
as the sampling point; otherwise, the FRAME O Cycle Frame: This pin is driven by PCI 
end of the second I2 is used as the bus masters to indicate the beginning 
sampling point. and duration of an access. Normally an 

LRDY: O Local Ready: This signal is asserted input, FRAMEA is driven during CPUVESA/ 
when: DMAVSA tinaster accesses to PCI bus 
1) ACPUAVESA/DMA/ISA master accesses a 15 slaves. 
PCI bus slave. PDY. O Initiator Ready: This signal is asserted 
2) A CPUAVESA/PCI bus master accesses an by PCI bus masters to indicate the 
ISA slave (LRDY# is returned to ability to complete the current data 
terminate the back-off cycle. phase of the transaction. Normally an 
3) A PCI bus master accesses a PCI bus input, this pin is driven during 
slave (in this case, LRDY# is 2O CPUWESAWOMATSA master accesses to PCI 
asserted to terminate the cycle on bus slaves. 
the hostbus). TRDY# O Target Ready: This pin is asserted by 

BRDY O Burst Ready: Normally an input, this the target to indicate the ability to 
signal is asserted when a CPU? WESA complete the current data phase of the 
master accesses a PCI bus slave and the transaction. Normally an input, this 
cycle is burst-able. pin is driven during PCI bus master 

ROYRTN Ready Return: This signal is used by the 25 accesses to local memory, WESA/ISA 
8C822 as a handshake to acknowledge the slaves, and the configuration register 
completion of the current cycle. inside the 82C822. 

WBACK I Write-back: When WBACK# is active, the STOP IO Stop: This signal is used by the target 
82C822 floats all the address, data, and to request the master to stop the 
control signals which are driven onto current transaction. Normally an input, 
the host bus during a PCI bus master 30 this signal is driven during PCI bus 
cycle. The 82C822 needs to resume the master accesses to local memory and 
back-off cycle when WBACK becomes WESAISA slaves. 
inactive again. LOCK I Lock: This signal is used to indicate an 

LREQ# O Local Bus Request: This signal, in atomic operation that may require 
conjunction with LGNT, is used to gain multiple transactions to complete. 
control of the host bus. LREQ# goes 35 Since the 82C822 will never assert this 
active when any one of the PCI bus signal, it is always an input. 
masters asserts the REQnff to request the DEVSELE I/O Device Select: This pin is an output 
hostbus. when the 82C822 decodes its address as 

LGNT I Local Bus Grant: This signal, in the target of the current access via 
conjunction with LREQ, is used to gain either positive or negative decoding, 
control of the host bus. Upon receiving 40 otherwise it is an input. 
LGNT), the 82C822 grants the bus request INTD.(4:14, I PCI Interrupt Lines D-A for Slots 4-1: 
by asserting GNTn# to one of the PCI bus INTC4:14, These signals are used to generate 
masters. The active PCI bus master can NTB4:12, synchronous interrupt requests to the 
be preempted by removing this signal. DNTA4:1 CPU via the programmable interrupt 

3.1.2 PCI Interface Signals controllers. 
PERR: f0. Parity Error: This pin is used to report 

CLK I Clock: This signal is used to provide 45 data parity errors during all PCI 
timing for all transactions on the PCI transactions except during a special 
bus. The clock source for this input Cycle. Normally an input, PERR# is 
can be the same input as LCLK for the driven when data parity errors occur 
synchronized mode, or the feedback of either during a PCI bus master write 
PCCLK or the external oscillator. cycle or during a CPUFVESA/DMA/ISA 

PCCLKN I PCI Clock Input: This clock input is 50 master read from a PC slave. 
used to generate the PCICLK3:1) SERR: OD System Error. This signal is used to 
signals. report address parity errors, or data 

PCICLK3:1 O PCI Clock 3:1: In the asynchronous parity errors on the Special Cycle 
mode, these signals are used as the command, or any other system error where 
clock inputs to the PCI slots and should the result will be catastrophic. This 
be fed back to the CLK input (pin 80). 55 pin is an open drain. 

AD31:0 O Multiplexed Address and Data Lines, bit 6 REQ4:11# I Request Lines, bits 4 through 1: These 
31 through O: These pins are the signals are used by PCI bus masters to 
multiplexed PCI address and data lines. request use of the PCI bus. 
During the address phase, these pins are GNT4:1# O Grant Lines, bits 4 through 1: these 
inputs for PCI bus master cycles; signals are used to indicate to a PCI 
otherwise they are outputs. During the 60 bus master that the access to the bus 
data phase, these pins are inputs during has been granted. 
PCI bus master write cycles or during 3.1.3 Miscellaneous Interface Signals 
CPUAWESATDMA/ISA reads from a PCI bus 
slave; otherwise they are outputs. LDEW I Local Device input. This input is an 

CBE3:0 WO Bus Command and Byte Enables, bits 3 ANDed signal of all LDEW# signals from 
through O: These pins are the WESA bus slaves; it is used to indicate 
multiplexed PCI command and byte enable 65 to the 82C822 whether the current access 
lines. Normally outputs, these pins are is to VESA slave. 



Signal Name 

BOFF: 

MASTER 

RFSH 

LMEM 

IRQ 15:14), 
IRQ129); 
IRQ5 

ROMCS 

NWMCS. 

Signal 
Type 

O 

OD 
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TABLE E1-continued 

Signal Description 

Non-Maskable Interrupt: This output is 
asserted in response to an active PERR# 
or SERRE if the enable bit of the NMI 
generation for an active PERRA or SERR 
is set. NMI will not be asserted if bit 
7 of Port 70 is set to . If the NMN 
input pin is connected to the NMI of the 
other chipset, then this output will go 
active in response to an active NMIN 
also. 
Non-maskable Interrupt input: This input 
is the non-maskable interrupt input 
signal generated from the other chipset. 
The 82C822 will combine this input with 
its internal NMI signal and generate a 
new NM to the CPU. In the case where 
this pin is not used, an external pull 
down resistor is recommended. 
Back-Off. This output is asserted when 
the assumed destination of the access 
for the current cycle turns out to be 
wrong and the cycle needs to be 
restarted in order to access the right 
target; it is asserted during a CPU or 
WESA bus master cycle to abort the cycle 
if the current access is to an ISA 
slave. LDEWOS is asserted as well. 
SAAT Clock: The 8MHz. SAAT cock. 
ISA Master Cycle: This input is used to 
indicate to the 82C822 that the current 
cycle is an ISA bus master cycle. 
ISA Address Enable: This input is used 
to indicate to the 82C822 that the 
current cycle is either a DMA or refresh 
cycle. 
ISA Refresh: An input signal used to 
indicate to the 82C822 that the current 
cycle is a refresh cycle. 
CPU Byte Enable 4: This signal is used 
only with Pentium chipsets. 
Local Memory: When the enable bit at the 
top of the local memory decoding is 
disabled, this input is used to indicate 
to the 82C822 if the current access is 
to local memory. When the enable bit at 
the top of the local memory decoding is 
enabled, then internal decoding result 
for LMEMH is used and this input pin is 
ignored. 
PC Interrupt Reouest Lines, bits 15, 
14, 12 through 9, and 5: These outputs 
are connected to the PC-compatible 
programmable interrupt controllers (PIC) 
to generate asynchronous interrupts to 
the CPU in response to NTD4:1. The 
routing of each PCI interrupt line to 
the PC-compatible interrupts is 
controlled by four bits specified in the 
configuration register. 
PCI ROM BIOS Chip Select: Used to select 
the BIOS ROM used to configure the 
chipset. 
Non-volatile Memory Chip Select: This 
output signal is used to select the non 
volatile memory in which the system 
information is stored; the memory 
address space for the non-volatile 
memory is always a 16KB chuck and 
between C8OOOh and DFFFF. It is used 
to select any ROM located in the memory 
address space from E0000h to EFFFFh. 
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4.0 Functional Description 
The following sub-sections will explain the various cycle 

operations the 82C822 PCB performs to determine which 
memory space should be local and which is located on the 
ISA bus. 
4.1 CPU Cycles 
Cache/DRAM Accesses 
The CPU begins the cycle. The 82C822 asserts LDEVO# 

on the next clock in response to LADS# (VESA local bus 
ADSH). In the OPTi Pentium chipsets. LADS# will not be 
generated for a local memory cycle and therefore, LDEVO# 
will not be generated by the 82C822. In the OPTi 486 
chipsets, the CPU will generate LADS# (LADS# and CPU 
ADS# are the same in the 486 implementation) . The 
82C822 will generate LDEVO#, but this will be ignored by 
the OPTi 486 chipsets during a local memory cycle. In this 
case, the 82C822 will deassert LDEVOff after the last 
BRDY#. The 82C822 is also programmable to mask 
LDEVOff during a local memory cycle. 
WESA Slave Accesses 
The CPU begins the cycle. The 82C822 asserts LDEVO# 

on the next clockin response to ADS#. The VESA slave will 
generate LDEV# to the 82C822 at the end of the first T2 or 
second T2 (depending on the VL speed). At this point, the 
82C822 will keep asserting LDEVO# until the VESA slave 
returns LRDY/LBRDY. 
PCI Slave Accesses 
The CPU begins the cycle. The 82C822 asserts LDEVO# 

on the next clock. It then determines that the cycle is a PCI 
slave cycle and starts the PCI cycle after synchronization. 
Data is latched into the 82C822 for read cycles. The 82O822 
completes the cycle, returns LRDY#, and deasserts 
LDEVO. 
ISA Slave Accesses 
The CPU begins the cycle. The 82C822 asserts LDEVO# 

on the next clock. It then determines that the cycle is not a 
local memory or VESA slave cycle and starts the PCI cycle 
after synchronization. The 82C822 receives master-abort 
termination and asserts BOFFF after synchronization. It then 
asserts LRDYif either at the same time or one or two clock 
cycles thereafter, programmably. The CPU restarts the 
aborted cycle. The 82C822 ignores the restarted cycle by 
keeping LDEVO# inactive. The OPTi VL chipset returns 
RDY# to the CPU at the end of the AT cycle. 
4.2 VESA Master Cycles 
Cache/DRAM Accesses 
The VL bus master begins the cycle. The 82C822 asserts 

LDEVO# on the next clock. The OPTi VL chipset deter 
mines that the cycle is a local memory cycle and ignores 
LDEVO#. (The 82C822 is programmable to maskLDEVOff 
as well on local memory cycles). The OPTiVL chipset will 
then return BRDYif after the data is transferred. The 82C822 
also determines that the cycle is a local memory cycle and 
takes no action other than to deassertLDEVOff after the last 
BRDY. 
VESA Slave Accesses 
The VL bus master begins the cycle. The 82C822 asserts 

LDEVO# on the next clock. It then samples LDEVIFF and, 
determining that the cycle is a VESA cycle, takes no further 
action. The VESA slave will then return LRDY/LBRDYif 
after the data is transferred. RDYRTNF will be generated by 
the OPTiVL chipset. The 82C822 deasserts LDEVO# after 
the last BRDY/RDYRTN. 
PCI Slave Accesses 
The VL bus master begins the cycle. The 82C822 asserts 

LDEVOFF on the next clock. It then determines that the cycle 
is a PCI slave cycle and starts the PCI cycle after synchro 
nization. Data is latched into the 82C822 for read cycles. 
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The 82C822 returns LRDY# to the OPTi VL chipset and 
deasserts LDEVOff. 
ISA Slave Accesses 
The VL bus master begins the cycle. The 82C822 asserts 

LDEVO# on the next clock. It then determines that the cycle 
is not a local memory or VESA slave cycle and starts the PCI 
cycle after synchronization. The 82C822 receives a master 
abort termination and asserts BOFF# after synchronization. 
It then asserts LRDY either at the same time or one or two 
clock cycles thereafter, programmably. The CPU restarts the 
aborted cycle. The 82C822 ignores the restarted cycle by 
keeping LDEVOff inactive. The OPTi VL chipset returns 
RDY# to the CPU at the end of the AT cycle. 
4.3 PCI Master Cycles 
Cache/DRAM Accesses 
The PCI master begins the cycle by asserting PCI REQ# 

to the 82C822. The 82O822 asserts LREQ# to the OPTi VL 
chipset after arbitration of the bus requests from the PCI bus 
masters. The 82C822 receives LGNT from the OPTi VL 
chipset and generates the appropriate VL bus signals accord 
ing to the PCI command, address, and status lines. The OPTi 
VL chipset determines that the cycle is a local memory 
cycle. The 82C822 also determines that the cycle is a local 
memory cycle and asserts DEVSEL# to claim the cycle. 
Data is latched into the 82C822 for read cycles. The OPTi 
VL chipset returns RDY# to the 82C822. The 82C822 
returns TRDY# to the PCI bus master after synchronization. 
The 82C822 deasserts DEVSELS after the last transfer. 
VESA Slave Accesses 
The PCI master begins the cycle by asserting PCI REQ# 

to the 82C822. The 82C822 asserts LREQ# to the OPTi VL 
chipset after arbitration of the bus requests from the PCI bus 
masters. The 82C822 receives LGNT from the OPTi VL 
chipset and generates the appropriate VL bus signals accord 
ing to the PCI command, address, and status lines. It then 
determines that the cycle is a VESA slave cycle and asserts 
DEVSELi to claim the cycle. Data is latched into the 
82C822 for read cycles. The OPTiVL chipset returns RDY# 
to the 82C822. The 82C822 returns TRDYif to the PCI bus 
master after synchronization. The 82C822 deasserts 
DEVSELF after the last transfer. 
PCI Slave Accesses 
The PCI master begins the cycle by asserting PCI REQ# 

to the 82C822. The 82C822 asserts LREQ# to the OPTi VL 
chipset after arbitration of the bus requests from the PCI bus 
masters. The 82C822 receives LGNT from the OPTi VL 
chipset and generates the appropriate VL bus signals accord 
ing to the PCI command, address, and status lines. It then 
determines that the cycle is a PCI slave cycle and waits for 
DEVSEL from the PCI slave. The 82C822 takes no action. 
SA Slave Accesses 
The PCI master begins the cycle by asserting PCIREQ# 

to the 82C822. The 82C822 assets LREQ# to the OPTi VL 
chipset after arbitration of the bus requests from the PCIbus 
masters. The 820822 receives LGNT from the OPTi VL 
chipset and generates the appropriate VL bus signals accord 
ing to the PCI command, address, and status lines. It then 
determines that the cycle is a not a local memory or VESA 
slave cycle and, detecting no DEVSEL# from the PCI slave. 
realizes the cycle is an ISA slave cycle. The OPTiVL chipset 
returns LRDY# to the 82C822 at the end of the AT cycle. 
The data is latched into the 82C822 for the read cycle when 
it returns RDY# to the OPTiVL chipset. The 82C822 returns 
TRDY# to the PCI master after synchronization. The 
82C822 deasserts DEVSELF after the data is transferred. 
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4.4 DMA/ISA Master Cycles 
Cache/DRAM Accesses 
The OPTi WL chipset determines that the DMA/VISA 

master cycle is accessing local memory by detecting 
LMEM# asserted and LDEVIf unasserted at the sample 
point when the command is asserted. The OPTiVL chipset 
asserts MEMCS16# if this is an ISA master cycle. LADS# 
will not be generated by the OPTiVL chipset. No action is 
taken by the 82c822. 
VESA Slave Accesses 
The OPTi VL. chipset determines that the DMA/ISA 

master cycle is a not a local memory cycle once the 
command is asserted. The OPTiVL chipset will generate the 
VESA local bus command lines. In response to LADS#, the 
82C822 will assert LDEVOff. The 82C822 will receive 
LDEVIf by the next or subsequent clock. The OPTi chipset 
pulls IOCHRDY low to stall the command. The OPTi VL 
chipset samples LDEVO# active. If the cycle is a read cycle, 
the OPTiVL chipset will start driving the SD bus. LRDY# 
is asserted by the VESA slave. The OPTiVL chipset releases 
IOCHRDY and asserts RDYif at the end of the command 
after synchronization. The 82C822 takes no action other 
than to deassert LDEVOff as soon as LDEVE goes inactive. 
The OPTiVL chipset deasserts MEMCS16# when LDEVO# 
goes inactive. 
PCI Slave Accesses 
The OPTi VL chipset determines that the DMA/ISA 

master cycle is a not a local memory cycle once the 
command is asserted. The OPTiVL chipset will generate the 
VESA local bus command lines. In response to LADS#, the 
82C822 will assert LDEVO#. The OPTi VL chipset pulls 
IOCHRDY low to stall the command. The OPTiVL chipset 
samples LDEVO# active and pulls MEMCS16# low if the 
command is not an I/O cycle. The 82C822 starts the PCI 
cycle after synchronization, only if the ISA/DMA-to-PCI bit 
is set. Data is latched into the 82C822 for read cycles when 
both TRDY and IRDYif are active. The 82C822 asserts 
LRDY# after synchronization. The OPTi WL chipset 
releases IOCHRDY and asserts RDYif at the end of the 
command after synchronization. The 82C822 deasserts 
LDEVO# at the end of the bus cycle. The OPTi chipset 
deasserts MEMCS16# when LDEVO# goes inactive. In the 
case of a master abort, the 82C822 still asserts LRDYif to 
release IOCHRDY and drive FFFFFFFFh onto the VL-bus 
data lines for a read cycle. 
ISA Slave Accesses 
The DMA/ISA master can access an ISA slave only if the 

ISA/DMA-to-PCI bit is low. Otherwise the 82C822 will 
claim this cycle. The OPTi VL chipset determines that the 
DMA/ISA master cycle is a not a local memory cycle once 
the command is asserted. The OPTiVL chipset will generate 
the VESA local bus command lines. In response to LADS#, 
the 82C822 does not assert LDEVO#. The OPTiVL chipset 
pulls IOCHRDY low to stall the command. The OPTi VL 
chipset samples LDEVOff inactive and keeps SD lines 
tri-stated for a read cycle. It also negates IOCHRDY. The 
chipset asserts RDY# at the end of command after synchro 
nization. No action is taken by the 82C822. 
4.5 Guidelines to Program the 82C822 

The following briefly describes how to access the 82C822 
and the PCI devices on the slots. The 82C822 uses the PCI 
Configuration Mechanism #1 to access the configuration 
spaces. Two double-word I/O locations are used in this 
mechanism. The first double-word location (CF8h) refer 
ences a read/write register that is named CONFIG 
ADDRESS. The second double-word address (CFCh) ref 
erences a register name CONFIG DATA. The general 
mechanism for accessing the configuration space is to write 
a value into CONFIG. ADDRESS that specifies the PCI 
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bus, the device on that bus, and the configuration register in 
that device being accessed. A read or write to CONFIG 
DATA will then cause the 82C822 to translate that 
CONFIG. ADDRESS value to the requested configuration 
cycle on the PCI bus. 
4.6 Asynchronous and Synchronous Modes of Operation 
The 82C822 supports both synchronous and asynchro 

nous modes of operation. In the synchronous mode, the PCI 
bus interfaces runs at the same speed as the VL bus. In the 
asynchronous mode, the PCI bus can run at a different speed 
than the VL bus. This facilitates the VTL bus to run at 50 MHz 
with the PCI running at 33 MHz. The synchronous mode of 
operation is recommended when the WL bus is operating 
below 33 MHz. The asynchronous mode of operation is 
recommended when the VL bus is running at 50 MHz or to 
implement PCI interface in the riser card. 
5.0 Configuration Registers 
5.1 PCI Configuration Register Space 

Note: In the address offsets given below, the most sig 
nificant bit (MSB) corresponds to the upper address offset. 
Registers not pertinent to an understanding of the invention 
are omitted. 

TABLE E2 

Bit(s) Type Default Function 

Address Offset 04h-05h: Command Register 

0000 00 Reserved Bits 
Enable Fast Back-to-Back: Must always = 0 
otherwise the 82O822 will never generate fast 
back-to-back transactions to different PCI bus 
slaves 
SERR Eable: 
O = Disable 
1 = Enable 
Wait Cycle Control: Must always = 0 always. 
No programmable wait states are supported by 
the 82C822. 
Enable Parity Error Response: 
O = Disable 
1 = Enable 
Reserved Bit 
Enable Memory Write and Invalidate Cycle 
Generation: Must always = 0. No memory 
write and invalidate cycles will be generated by 
the 82C822. 
Enable Special Cycles: Must always = 0. The 
82C822 does not respond to the PCI special 
cycle. 
Enable Bus Master Operations: Must 
always = 1. The allows the 82C822 to perform 
bus master operations all the time. 
Enable Memory Access: Must always = 1. The 
82C822 allows a PCI bus master access to main 
memory all the time. 
Enable I/O Access: Must always = 1. The 
82C822 allows a PCI bus master access to the 
PCI to all the time. 

Address Offset 06h-07h: Status Register 

5:10 RO 
9 RO O 

RO O 7 

RAW 

RO 
RO 8 

3. RO O 

2 RO 

1 RO l 

O RO 1. 

15 RW O Detected Parity Error: 
0 = No parity 
1 = Parity error occurred 
SERR Status: 
O = No system error 
1 = System error occurred 
Master-Abort Status: 
O = Mo master abort 
1 = Master abort occurred 
Received Target-Abort Status 
O = No target abort 
1 = Target abort occurred 
Signaled Target-Abort Status: 
0 = No target abort 

14 RO O 

RW O 

RO O 
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TABLE E2-continued 

Bit(s) Type Default Function 

1 = Target abort generated 
10:9 RO O1 DEVSELi Timing Status: These bits must 

always = 01. Medium timing is selected. The 
82C822 asserts the DEVSEL based on 

8 RW O Data Parity Detected: 
O = No data parity detected 
1 = Data parity has detected 

7 RW Fast Back-to-Back Capable: 
1 = Capable 
0 = Not Capable 
Note: Can be set to 0 only when bit 2 of 
register at offset 52h is set to 0; for debugging 
purposes only. 

6:0 RO 0000 000 Reserved Bits 
Address Offset 40h-41h 

15 RW O 82C822 PCI Bridge Enable: 
O = Disable 1 = Enable 

14 RW O CPU Type Select: 
O = L1 Write-through CPU 
= L1 Write-back CPU 

13:2 RO OO Reserved Bits 
1:10 RW 1X The delay of LRDY# after the assertion of 

BOFF: 
11 10 Delay 
0 0 No Delay 
0 1 1 LCLK Delay 
1 x 2 LCLK Delay 

9 RAW O Disable LDEVO# Assertion during local 
Memory Cycle: 
O - Enable 1 = Disable 

8 RAW O Disable BOFFi Assertion: 
O = No retry error 1 = Retry error 

occurred 
7 RW O Enable NMIN Input: 

O = Disable 1 - Enable 
6 RW O Enable Back-to-Back CFC read/write without 

CF8 write: 
O = Disable 1 = Enable 

5:3 RO 000 Reserved Bits 
2 RO O NMI Output Enable (via Port 70h) Status; 

O = NMI Output Disable 
1 = NMI Output Enable 

1. RO 0 Master Retry Status: 
O = No retry error 
1 = Retry error has occurred 

O RO 1. LMEMALDEVI: Sampling Point Select: 
1 - End of the first T2 
O = End of the second T2 

Address Offset 42h43h 

15:4 RW 20h A31:2O) for the Top of local Memory 
Decoding 

3 RJW 00h Enable Tbp of local Memory Decoding: 
O = Disable 1 = Enable 
Note: If bit 3 is enabled, then the LMEME 
input pin is ignored; otherwise an external 
LMEM is used to decide if the access for the 
current cycle is to local memory 
Bits Top of Bits Top of 
15:4 Memory 15:4 Memory 
000 MB O3F 64MB 
OOth 2MB : : 
002h 3MB OTFh 128MB 
003h 4MB : : 
: : OFFh 256MB 
OOFh 16MB : : 
: 10Oh Reserved 
OFh 32MB : 

: FFFh Reserved 
2:O RO OOO Reserved Bits 
Address Offset 44h 

7:6 RyW O Master Retry Timer: 
7 6 Operation 
O O. Retries unmasked after 8 PCCLKs 
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TABLE E2-continued 

Bit(s). Type Default Function 

5:4 RO 00 
3 R/W O 

2 RO O 
l R/W O 

O RAW O 

Address Offset 45h. 

7 R/W O 

6 RVW O 

5 RW O 

4. RW O 

3 RW O 

2 R/W O 

1. RJW D 

O RW O 

Address Offset 46th 

7 RW O 

6 RW O 

5 RW O 

4 R/W O 

3 R/W O 

2 R/W O 

RW O 

O R/W O 

Address Offset 47h 

7 RW O 

6 RW O 

O 1 Retries unmasked after 16 PCICLKs 
1 0 Retries unsasked after 32 PCICLKs 
1 1 Retries unmasked after 64 PCICLKs 
Reserved Bits 
LMEME/LDEV# sampling point select for PCI 
master cycle: 
O = 1 PCI clock after FRAME 
1 - 2 PCI clocks after FRAME 
Reserved Bit 
Enable Read Shadowed RAM for 
FOOOOh-FFFFFh Block: 
O = Disable 
1 - Enable 
Enable Write Shadowed RAM for 
FOOOO-FFFFFh Block: 
O = Disable 
1 = Enable 

Enable Read Shadowed RAM for 
EC000h-EFFFFh Block: 
O = Disable 1 = Enable 
Enable Read Shadowed RAM for 
E8000-EBFFFh Block: 
O = Disable 1 = Enable 
Enable Read Shadowed RAM for 
EAOOOh E7FFFh Block: 
O = Disable 1 = Enable 
Enable Read Shadowed RAM for 
E0000h-E3FFFh Block: 
0 = Disable = Enable 
Enable Write Shadowed RAM for 
ECOOOh EFFFFh Block: 
O - Disable 1 = Enable 
Enable Write Shadowed RAM for 
E800Oh-EBFFFh Block: 
O = Disable = Enable 
Enable Write Shadowed RAM for 
EA00Oh E7FFFh Block: 
O = Disable 1 = Enable 
Enable Write Shadowed RAM for 
E0000h-E3FFFh Block 
O = Disable 1 = Enable 

Enable Read Shadowed RAM for 
DCOOOh DFFFFh Block: 
O = Disable 1 = Enable 
Enable Read Shadowed RAM for 
D8000h DBFFFh Block: 
O = Disable 1 - Enable 
Enable Read Shadowed RAM for 
D4000-DTFFFh Block: 
Os: Disable 1 c Enable 
Enable Read Shadowed RAM for 
DOOOOh-D3FFF. Block: 
O = Disable 1 = Enable 
Enable Write Shadowed RAM for 
DCOOOh-DFFFFh Block: 
O = Disable 1 = Enable 
Enable Write Shadowed RAM for 
D8000h DBFFFh Block: 
O = Disable 1 = Enable 
Enable Write Shadowed RAM for 
D4OOOh-D7FFFh Block: 
O = Disable 1 = Enable 
Enable Write Shadowed RAM for 
D000Oh-D3FFFh Block: 
O = Disable = Enable 

Enable Read Shadowed RAM for 
CCOOOh-CFFFFh Block: 
O = Disable = Enable 
Enable Read Shadowed RAM for 
C80Oh-CBFFFh Block: 
O = Disable = Enable 
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TABLE E2-continued 

Bit(s) Type Default Function 

5 RW O 

4. RW O 

3 RW O 

2 R/W O 

l RVW O 

O RVW O 

Enable Read Shadowed RAM for 
C4000h-C7FFFh Block: 
O = Disable 1 = Enable 
Enable Read Shadowed RAM for 
COOOOh-C3FFFh Block: 
O = Disable 1 - Enable 
Enable Write Shadowed RAM for 
CCOOOh-CFFFFh Block: 
O = Disable 1 = Enable 
Enable Write Shadowed RAM for 
C8000-CBFFFh Block. 
O = Disable 1 = Enable 
Enable Write Shadowed RAM for 
C4OOOh-CTFFFh Block: 
O = Disable 1 = Enable 
Enable Write Shadowed RAM for 
COOOOh-C3FFF. Block: 
O = Disable 1 = Enable 

Note: Address offsets 48h-51h are meant for setting the local memory 
holes 0-3. 
Address Offset 48h 

7 R/W O 

6:4 RWW 000 
3 R/W O 

2:0 RW 000 
Address Offset 49h 

7 R/W O 

6:4 RW OO 
3 RW O 

2:0 RW O 

Address Offset 4Ah-4Bh 
15:0 RW OOOOh 

Address Offset 4Ch. 4Dh 
15:0 RW OOOOh 

Address Offset 4Eh-4Fh 
15:0 R/W OOOOh 

Address Offset 50b-51h. 
15:0 R/W DOOOh 

Address Offset 52h 

7 R/W O 

6 R/W O 

5 R/W O 

4. RJW O 

3 RW O 

2 RW 1. 

Enable Memory Hole 3: 
O = Disable = Enable 
Block Size for Memory Hole 3 
Enable Memory Hole 2: 
O = Disable = Enable 
Block Size for Memory Hole 2 

Enable Memory Hole 1: 
O = Disable 1 = Enable 
Block Size for Memory Hole 1 
Enable Memory Hole 0: 
O = Disable = Eable 
Block Size for Memory Hole 0: Block Size 
Definition 

Size 
64KB 
128KB 
256KB 
512KB 

2MB 

A31:16) for Starting Address of Memory 
Hole 2 

A31:16) for Starting Address of Memory 
Hole 2 

A31:16) for Starting Address of Memory 
Hole 1 

A31:16) for Starting Address of Memory 
Hole O 

DMASA Bus Master to PCI Bus Slave 
Access Enable: 
O = Disable 1 = Enable 
Enable Write Buffers from Host Bus to PCI 
Bus: 
O = Disable 1 = Enable 
Enable Write Buffers from PCI Bus to Host 
Bus: 
O = Disable 1 = Enable 
Disable NMI Generation Globally: 
O = Disable = Enable 
Enable SERRA Generation for Target Abort: 
O = Disable 1 = Enable 
Fast Back-to-Back Capable: 
1 = Enable O = Disable 
Note: The change on this bit will reflect on bit 
7 of the register in address offset 06h. 
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TABLE E2-continued 

Bit(s) Type Default Function 

1O RIW 10 Subtractive Decoding Sample Point: 5 
1 O Operation 
O O Fast sample point 
0 1 Typical sample point 
1 O Slow sample point 

Address Offset 53h. 

7 

6 

5 

4. 

3 

2 

1. 

O 

O 

O 

Address Offset 54th-5Th 

31:8 RAW OOOOOOh 

OOOOOO 

Address Offset 58h-5Bh 

O 
PCI Bus Clock Synchronous to System Clock 
Enable: 
1 = Asynchronous O = Synchronous 

Clock Clock 
Host-to-PCBs FIFO Wat State: 
O = No Wait 1 = One Wait 15 
Conversion of PERR to SERRI Enable: 
O = Disable 1 = Enable 
Enable Address Parity Checking: 
1 - Enable O = Disable 
Enable Conversion of PCI Shared Interrupts to 
ISA Edge Triggered Interrupts: 
O = Disable 1 s Enable 
Expansion Bus Selection: 
O = SA bus 1st ESA 
PCI Bus Burst Cycle Enable: 
O = Disable 1 = Enable 
HostBus to PC Bus Post Write Enable: 
O = Disable = Enable 25 

A31:8 for Starting Address of General 
Purpose decode Block 3 for PCI Address space 
A7:2) for Starting Address of General Purpose 
decode Block 3 for PC Address Space 30 
Enable Block 3 Decoding Function: 
O = Disable 1st Enable 
Memory or I/O Space indicator for Block 3: 
O = Memory Space = IO Space 
Note: If bit 0 = 0, then A3:2 are ignored on 
decoding. 35 

A31:8 for Ending Address of General 
Purpose decode Block 3 for PCI Address Space 
A7:2 for Ending Address of General Purpose 
decode Block 3 for PCI Address Space 
Reserved Bits 

31:8 RW OOOOOO 

7:2 RW OOOOOO 

10 RO OO 
Address Offset 5Ch-5Fh 

3:8 RW OOOOOOh 

7:2 RW OOOOOO 

1 RW O 

O RW O 

Address Offset 60th-63h. 

31:8. RW OOOOOOh 

7:2 RW OOOOOO 

1:O RO 00 
Address Offset 64-67h 

318 RW OOOOOOh 

7:2 R/W OOOOOO 

1. RW O 

O RW O 

A31:8) for Starting Address of General 
Purpose decode Block 2 for PCI Address Space 
A7:2) for Starting Address of General Purpose 
decode Block 2 for PCI Address Space 45 
Enable Block 2 Decoding Function: 
O = Disable is Enable 
Memory or I/O Space Indicator for Block 2: 
O = Memory Space 1 = IPO Space 
Note: If bit 0 = 0, then A3:2 are ignored on 
decoding. SO 

A31:8 for Ending Address of General 
Purpose decode Block 2 for PCI Address Space 
A7:2) for Ending Address of General Purpose 
decode Block 2 for PCI Address Space 55 
Reserved Bits 

A31:8) for Starting Address of General 
Purpose decode Block 1 for PCI Address Space 
A7:2 for Starting Address of General Purpose 60 
decode Block 1 for PCI Address Space 
Enable Block 1 Decoding Function: 
O = Disable 1st Enable 
Memory or I/O Space Indicator for Block 1: 
O = Memory Space 1 = I/O Space 
Note: If bit O = 0, then A3:2 are ignored on 65 
decoding. 
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TABLE E2-continued 

Bit(s). Type Default Function 

Address Offset 68-6bh 

31:8 R/W 0OOOOOh A31:8 for Ending Address of General 
Purpose decode Block 1 for PCI Address Space 

7:2 R/W 0000 OO AT:2 for Ending Address of General Purpose 
decode Block 1 for PCI Address Space 

O RO OO Reserved Bits 
Address Offset 6Ch-6Fh 

31:8 RJW OOOOOOh A31:8 for Starting Address of General 
Purpose decode Block 0 for PCI Address Space 

7:2 RW 0000 00 A7:2) for Starting Address of General Purpose 
decode Block 0 for PCI Address Space 

1. RFW O Enable Block 0 Decoding Function: 
O = Disable 1 = Enable 

O RW O Memory or I/O Space Indicator for Block 0: 
O = Memory Space 1 = /O Space 
Note: If bit 0 = 0, then A3:2 are ignored on 
decoding. 

Address Offset Oh-73h 

31:8 RAW 000000h A31:8) for Ending Address of General 
Purpose decode Block 0 for PCI Address Space 

7:2 R/W 0000 OO AT:2 for Ending Address of General Purpose 
decode Block 0 for PCI Address Space 

:O RO OO Reserved Bits 
Address Offset 74h 

7 RW O PCI Bus Master to Host Memory Burst cycle 
Enable: 
0 cisable = Enable 

6 RW O Enable IO Port 3F7h Write at ISA Bus: 
O - Disable 1 = Enable 

5 RW O Enable O Port 3F7h Read at SA Bus: 
O = Disable 1 = Enable 

4. RW O Eable O Port 37th Write at SA Bus: 
O = Disable 1 - Enable 

3 RFW O Enable O Port 37h Read at SA Bus: 
O = Disable 1 - Enable 

2O RO OOO Reserved Bits 
Address Offset 75h. 

7 RW O Enable E600Oh-EFFFFh Memory Block for 
ROMCS: 
Ose Disable = Enable 

6 RTW O Enable E0000h-E7FFFh Memory Block for 
ROMCS: 
O = Disable 1 = Enable 

5 RW O Enable DCOOOh-DFFFFh Memory Block for 
NWMCS: 
O = Disable Enable 

4. RW O Enable D8000h-DBFFFh Memory Block for 
NWMCS: 
O = Disable 1 = Eable 

3 RW O Enable D4000h-D7FFFh Memory Block for 
NWMCS: 
O = Disable = Enable 

2 RW O Enable DOOOOh-D3FFFh Memory Block for 
NWMCS: 
O = Disable = Eable 

RW O Enable CCOOOh-CFFFFh Memory Block for 
NWMCS: 
O = Disable 1 = Enable 

O RW O Enable C800Oh-CBFFFh Memory Block for 
NWMCS: 
O = Disable 1 = Eable 

Address Offset 76th 

7 RW O Enable Serial Port 1 at ISA Bus (Address 
Decoded 3F6h-3FFh): 
O = Disable 1 = Enable 

6 RW O Enable Seriat Port 2 at ISA Bus (Address 
Decoded 2F8h-2FFh): 
O = Disable 1 = Enable 

5 RFW O Enable Parallel Port at ISA Bus (Address 
Decoded 3BCh-3BFh): 
O = Disable 1 = Enable 
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TABLE E2-continued 

Bit(s) Type Default Function 

4 

2 

O 

Address Offset 77h 

7 RFW O 

6 R/W O 

5 RW O 

4:3 RWW 00 
2 RAW O 

RIW O 

O RW O 

Address Offset 78h 

7 RW O 

6 RW O 

5 RAW O 

4 RAW 00 

3 RW OO 

2 RW O 

1 RW O 

O RW O 

Address Offset 79h 

7 

O Enable Parallel Port 2 at ISA Bus (Address 
Decoded 378h-37Fh): 
O = Disable 1 = Enable 
Enable Parallel Port 3 at ISA Bus (Address 
Decoded 278h-27Fh): 
O = Disable 1 = Enable 
Enable Primary Floppy Disk at ISA Bus 
(Address decoded 3FOh-3F5h): 
O = Disable 1 = Enable 
Enable Secondary Floppy Disk at ISA Bus 
(Address Decoded 370h-375h): 
O = Disable 1 = Enable 
Enable WGA Palette Snooping at ISA Bus 
(Address Decoded 3C6h-3C9h Write Cycle): 
O = Disable 1 = Enable 

Enable Primary IDE at ISA Eus (Address 
Decoded IFOh-F7h, 3F6h): 
O = Disable 1 = Enable 
Enable Secondary DE at ISA Bus (Address 
Decoded 17Oh-177h, 376h): 
O = Disable 1 = Enable 
Enable WGA at ISA Bus (Address Decoded 3 
COh-3CFh, 3B4h-3B5h, 3BAh, 3D4h-3D5h 
and 3DAh): 
O = Disable 
Reserved Bits 
Enable System Board Controllers and I/O 
Address Range for EISA System (Address 
Decoded 0400h-04FFh, 0800h-08FFh, 
excluding OCOOh-0CFFh due to the 
overlap with CF8h and CFCh in PCI 
configuration read/write): 
O as Disable 1 as Enable 
Enable System Board I/O Address Range for 
ISA/ESA System (Address Decoded 
000h-OFFh): 
O = Disable 1 = Enable 
Enable F0000h to FFFFFh Memory Block at 
ISA Bus: 
O = Disable 

1 = Enable 

1 = Enable 

Enable EC600h-EFFFFh Memory Block at 
SA Bus: 
O = Disable 1 = Enable 
Enable E8000h-EBFFFh Memory Block at 
SABus: 
O = Disable 1 - Enable 
Enable E4000h-E7FFFh Memory Block at 
ISA Bus: 
O = Disable 1 =O Enable 
Enable E0000h-E3FFFh Memory Block at 
SA Bus: 
O = Disable 1 = Enable 
Enable DCOOOh-DFFFFh Memory Block at 
ISA Bus: 
O = Disable 1 = Enable 
Enable D8000h-DBFFFh Memory Block at 
ISA Bus: 
O = Disable 1 = Enable 
Enable D4000h-D7FFFh Memory Block at 
ISA Bus: 
O = Disable 1 s Enable 
Enable D0000h-D3FFFh Memory Block at 
SA Bus: 
O = Disable 1 = Enable 

Enable CCOOOh-CFFFFh Memory Block at 
ISA Bus: 
O = Disable 1 = Enable 
Enable C800Oh-CBFFFh Memory Block at 
ISA Bus: 
O = Disable 1 = Enable 
Enable C4000h-C7FFFh Memory Block at 
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TABLE E2-continued 

Bit(s) Type Default Function 

SA Bus: 
O = Disable 1 = Enable 

4. RW 00 Enable C0000h-C3FFFh Memory Block at 
SA Bus: 
O = Disable 1 = Enable 

3 RW 00 Enable A000Oh-AFFFFh Memory Block at 
ISA Bus: 
O = Disable 1 = Enable 

2 R/W O Enable B0000h-BFFFFh Memory Block at 
ISA Bus: 
O = Disable 1 = Enable 

1:0 RO OO Reserved Bits 
Note: Offsets 7Ah-87h are for positive decode blocks of ISA bus memory 
and I/O. 
Address Offset 7Ah 

7 RAW O 

6:4 RAW 00 
3 RW O 

2:O R/W O 

Address Offset 7Bh-7Ch 
15:0 RW 00h 

Address Offset TDh-7Eh 
15:0 RW 00h 

Address Offset 7Fh 
7:2 RO 000000 
1. RW O 

O R/W O 

Address Offset 80h-8th 
15:0 RW 0000h 
Address Offset 82h-83h 
15:8 RO 0000 

0000 
7:O RW 0000 

0000 
Address Offset 84h-85h. 
15:0 R/W 0000h 
Address Offset 86th-87h 

5:8 RO 0000 
0000 

7:0 RFW 0000 
0000 

Enable Memory Space 1 at ISA Bus: 
O = Disable 1 = Enable 
Block Size for Memory Space 1 
Enable Memory Space 2 at ISA Bus: 
O = Disable 1 = Enable 
Block Size for Memory Space 2: Block Size 
Definition 

Size 
64KB 
128KB 
526KB 
512KB 

2MB 

2 
O 
O 
O 
O 
1. 
1. 
1 
1. 8MB 

A31:8) for Starting Address of Memory 
Space 1 

A31:8) for Starting Address of Memory 
Space 2 

Reserved Bits 
Enable I/D Space 1 at ISA Bus: 
O = Disable 1 = Enable 
Enable I/O Space 2 at ISA Bus: 
O = Disable 1 = Enable 

A15:0) for Comparison of IO Space 1 

Reserved Bits 

A7:0) for Masking of I/O Space 1 

A15:0) for Comparison of I/O Space 2 

Reserved Bits 

A7:0) for Masking of I/O Space 2 

Note: Offsets 88h-8Fh are for PCI interrupt to ISA interrupt mapping. 
Address Offset 88h-8Bh 

31:28 RAW 0000 

27:24 R/W 0000 

23:20 RAW 0000 

19:16 RIW 0000 

15:12 RW 0000 

Selects which IRQ signal is to be generated 
when PCI Interrupt Request A2 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request B2 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request C2 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request D2 has been 
triggered. 
Selects which RQ signal is to be generated 
when PCI Interrupt Request A1 has been 
triggered. 
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TABLE E2-continued 

Bit(s) Type Default Function 

11:8 RW 0000 Selects which IRQ signal is to be generated 
when PCI Interrupt Request B1 has been 
triggered. 

74 RW 0000 Selects which IRQ signal is to be generated 
when PCI Interrupt Request C1 has been 
triggered. 

3:O RW OOOO Selects which IRQ signal is to be generated 
when PCI Enterrupt Request Di has been 
triggered. 

Address Offset 8Ch-8Fh 

3:28 RAW 0000 Selects which IRQ signal is to be generated 
when PCI Interrupt Request A4 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request B4 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request C4 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request D4 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request A3 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Enterrupt Request B3 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request C3 has been 
triggered. 
Selects which IRQ signal is to be generated 
when PCI Interrupt Request D3 has been 
triggered. 
Routing Definition: 
Routing Definition 
OOOO Disabled 
OOO IRQ5: flow through mode 
O010 IRQ9: flow through mode 
OO1 RQ10; flow through mode 
OOO IRQ11: flow through mode 
OO1 IRQ12; flow through mode 
010 IRQ14: flow through mode 
O1 IRQ15: flow through mode 
1000 Disabled 
1001 RQ5: level 
100 IRQ9: level 
O RQO: level 
1OO IRQ11: level 
10 RQ12: level 
1110 RQ14: level 
1111 RQ15: level 

27:24 RAW OOOO 

23:20 

9:16 

15:2 

11:8 

7:4 

3:0 

Port Address 7Oh 

Enable NM: 
= Disable 

OOOOOOO Reserved Bits 

7 WO 1 
O = Enable 

6:O RO 

We claim: 
1. A method for bridging a first bus (VL-bus) cycle to a 

second bus (PCI-bus), in a system including a first bus 
(VL-bus) having first bus cycle definition lines (e.g. R/WF, 
M/IOff, D/C#, VA, BEff) and a first bus device claiming 
signal line (LDEVOff), 

said system further including said second bus (PCI-bus) 
and a third bus (system bus), said second bus having 
cycle definition lines (e.g. CBE, FRAMEF) and a 
second bus device claiming line (DEVSELif), 

for use with a first bus (VL-bus) host (102) defining said 
first bus cycle by asserting first bus cycle definition 
signals on said first bus cycle definition lines (e.g. 
R/W#, M/IO#, D/C#, VA, BEff), said first bus host 
further having a back-off input line (BOFFF) and 
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70 
repeating said first bus cycle after detecting assertion of 
a back-off signal on said back-off input line, 

for use further with a first-bus/third-bus (VL-bus/system 
bus) bridge coupled to receive said first bus cycle 
definition signals, said first-bus/third-bus bridge defin 
ing a cycle on said third bus in response to certain 
combinations of said first bus cycle definition signals 
only if no first bus device claiming signal (LDEVOff) 
is asserted before a predetermined first bus device 
claiming deadline following detection by said first-bus/ 
third-bus bridge of an asserted first bus cycle start 
signal (ADSH) (e.g. R/W#, M/IO#, D/CH, VA, BEF), 

said method comprising the steps of: 
asserting said first bus device claiming signal 
(LDEVO#) prior to said first bus device claiming 
deadline, in response to a first assertion of said first 
bus cycle start signal (ADSH), at the time of which 
the signals on said first bus cycle definition lines (e.g. 
R/W#, M/IO#, D/C#, VA, BEF), being a first valid 
first bus cycle definition, are within a predetermined 
set of first bus cycle definitions; 

defining a cycle on said second bus (PCI-bus) in 
response to said first assertion of said first bus cycle 
start signal (ADSf) by asserting second bus cycle 
definition signals on said second bus cycle definition 
lines (e.g. CBE, FRAME#); and 

asserting said back-off signal (BOFFF) if no second bus 
device claiming signal (DEVSELF) is asserted 
before a predetermined second bus device claiming 
deadline following said assertion of second bus cycle 
definition signals on said second bus cycle definition 
lines. 

2. A method according to claim 1, wherein said first bus 
is a VL-bus, said second bus is a PCI-bus and said third bus 
is an IBM PC/AT-compatible system bus. 

3. A method according to claim 2, wherein said system 
bus comprises in combination an X-bus and a bus selected 
from the group consisting of an ISA-bus and an EISA-bus. 

4. A method according to claim 2, wherein said first bus 
cycle definition lines include R/W#, M/IO#, D/CH, VA and 
BE# signal lines, and wherein said second bus cycle defi 
nition lines include CfBE and FRAME. 

5. A method according to claim 1, wherein said first bus 
host comprises at least one element selected from the group 
consisting of a CPU, a cache memory controller and a bridge 
bridging said first bus (VL-bus) with a fourth bus (host-bus) 
different from said first, second and third buses. 

6. A method according to claim 1, for use with at least one 
first bus device each coupled to receive said first bus cycle 
definition lines (e.g. R/W#, M/IO#, D/C#, VA. BEF) and 
having a respective first bus device claiming output 
(LDEV<x>#), 

further comprising the step of asserting said first bus 
device claiming signal (LDEVO) in response to asser 
tion of one of said first bus device claiming outputs 
(LDEV(x)/f). 

7. A method according to claim 1, wherein said predeter 
mined set of first bus cycle definitions excludes all first bus 
cycles which match a programmable indication of first bus 
cycles intended for devices on said first bus (VL-bus), 

further comprising, prior to said step of asserting said first 
bus device claiming signal (LDEVO), the step of 
comparing said first valid first bus cycle definition 
signals with said programmable indication of first bus 
cycles intended for devices on said first bus. 

8. A method according to claim 1, wherein said predeter 
mined set of first bus cycle definitions excludes all first bus 
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cycles which match a programmable indication of first bus 
cycles intended for devices on said third bus (system bus). 

further comprising, prior to said step of asserting said first 
bus device claiming signal (LDEVOff), the step of 
comparing said first bus cycle definition signals with 
said programmable indication of first bus cycles 
intended for devices on said third bus, 

9. A method according to claim 1, wherein said predeter 
mined set of first bus cycle definitions excludes all first bus 
cycles which match a predefined indication of first bus 
cycles not intended for devices on said second bus (PCI 
bus), 

further comprising, prior to said step of asserting said first 
bus device claiming signal (LDEVO), the step of 
comparing said first valid first bus cycle definition 
signals with said indication of first bus cycles not 
intended for devices on said second bus. 

10. A method according to claim 1, wherein said first bus 
host comprises a first-bus/fourth-bus bridge bridging said 
first bus with a fourth bus (hostbus) different from said first, 
second and third buses, said first-bus/fourth-bus bridge 
defining a plurality of said first bus (VL-bus) cycles in 
response to each fourth bus (host-bus) cycle detected by said 
first-bus/fourth-bus bridge on said fourth bus, 

further comprising the step of asserting said first bus 
device claiming signal (LDEVO#) prior to said first bus 
device claiming deadline, in response to each assertion 
of said first-bus cycle start signal prior to said first 
assertion of said cycle start signal, and at the time of 
which the signals on said first bus (VL-bus) cycle 
definition lines (e.g. R/Wil, M/IO#, D/C#, VA, BEF), 
are within a predetermined set of first bus cycle defi 
nitions, 

11. A method according to claim 1, further comprising the 
steps of: 

after assertion of said back-off signal in said step of 
asserting said back-off signal, in response to a second 
assertion of said first bus cycle start signal (ADS#), 
determining whether a second valid first bus cycle 
definition then asserted on said first bus (VL-bus) cycle 
definition lines is a repetition of said first valid first bus 
cycle definition; 

asserting said first bus device claiming signal (LDEVOff) 
prior to said first bus device claiming deadline, in 
response to said second assertion of said first bus cycle 
start signal, only if said second valid first bus cycle 
definition is not a repetition of said first valid first bus 
cycle definition; and 

defining a cycle on said second bus (PCI-bus) in response 
to said second assertion of first bus cycle start signal by 
asserting second bus cycle definition signals on said 
second bus cycle definition lines (e.g. C/BE#, 
FRAMEA), only if said second valid first bus cycle 
definition is not a repetition of said first valid first bus 
cycle definition and only if said second valid first bus 
cycle definition is within said predetermined set of first 
bus cycle definitions. 

12. A method according to claim 11, wherein said first bus 
host comprises a first-bus/fourth-bus bridge bridging said 
first bus with a fourth bus (hostbus) different from said first, 
second and third buses, said first-bus/fourth-bus bridge 
defining a plurality of said first bus (VL-bus) cycles in 
response to each fourth bus (host-bus) cycle detected by said 
first-bus/fourth-bus bridge on said fourth bus, 

wherein said step of asserting said first bus device claim 
ing signal (LDEVOf) in response to said second asser 
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tion of said first bus cycle start signal, asserts said first 
bus device claiming signal (LDEVOff) in response to 
said second assertion of said first bus cycle start signal 
only if said second valid first bus cycle definition is not 
one of the plurality of first bus (VL-bus) cycles defined 
by said first-bus/fourth-bus bridge which includes said 
repetition of said first valid first bus cycle definition. 

13. A method according to claim 1, wherein said first bus 
(VL-bus) host (102) after asserting a first bus cycle start 
signal, withholds further assertions of said first bus cycle 
start signal until after detection by said first bus host (102) 
of a first bus (VL-bus) ready return signal (e.g. RDYRTN#). 

said first-bus/third-bus (VL-bus/system-bus) bridge 
asserting said ready return signal (e.g. RDYRTNF) in 
response to detection by said first-bus/third-bus (VL 
bus/system-bus) bridge of a first bus (VL-bus) device 
ready signal (e.g. LRDY#). 

further comprising the step of asserting said first bus 
device ready signal (e.g. LRDY#) if no second bus 
device claiming signal (DEVSELF) is asserted before 
said predetermined second bus device claiming dead 
line following said assertion of second bus cycle defi 
nition signals on said second bus cycle definition lines. 

14. A method according to claim 13, wherein said back-off 
signal (BOFF) is asserted in said step of asserting said 
back-off signal, before said first bus device ready signal (e.g. 
LRDY#) is asserted in said step of asserting said first bus 
device ready signal, further comprising the steps of: 

unasserting said first bus device ready signal (LRDY#); 
and subsequently 

unasserting said back-off signal (BOFF#). 
15. A method according to claim 14, further comprising 

the step of unasserting said first bus device claiming signal 
(LDEVOff) after detection of said first bus ready return 
signal (e.g. RDYRTNF) asserted. 

16. A method for responding to a first bus (VL-bus) cycle, 
for use with a first bus (VL-bus) host (102) defining said 

first bus cycle by asserting first bus cycle definition 
signals on first bus cycle definition lines (e.g. R/Wi. 
M/IO#, D/C#, VA, BEF) and asserting a first bus cycle 
start signal (ADS#), said first bus host withholding any 
further assertion of said first bus cycle start signal until 
detecting a first bus (VL-bus) ready signal (RDYRTN#) 
subsequent to said assertion of first bus cycle start 
signal, or a first bus back-off (BOFF#) signal, which 
ever occurs earlier, said first bus host repeating said first 
bus cycle after detecting said back-off signal (BOFF#), 

for use further with a first bus controller which asserts said 
first bus ready signal (RDYRTNF) in response to 
detecting assertion of a local device ready signal 
(LRDY#), 

comprising, after assertion by said first bus host of a given 
first bus cycle start signal and no later than any asser 
tion of said first bus start signal subsequent to said 
given first bus cycle start signal, the steps of: 
asserting said back-off signal (BOFFF) in response to a 

first clock pulse; 
asserting said local device ready signal (LRDYF) in 

response to a second clock pulse after said first clock 
pulse; 

negating said local device ready signal (LRDYf) in 
response to a third clock pulse after said second 
clock pulse; and 

negating said back-off signal (BOFFF) in response to a 
fourth clock pulse after said third clock pulse. 

17. A method according to claim 16, further comprising 
the step of detecting said first bus ready signal (RDYRTNF) 
no later than said step of negating said back-off signal 
(BOFF#). 
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18. A method according to claim 16, for use further with 
a first-bus/third-bus (VL-bus/system-bus) bridge coupled to 
receive said first bus cycle definition signals, said first-bus/ 
third-bus bridge defining a cycle on said third bus in 
response to certain combinations of said first bus cycle 
definition signals only if said first-bus/third-bus bridge fails 
to detect a first bus device claiming signal (LDEVOff) before 
a predetermined first bus device claiming deadline following 
detection by said first-bus/third-bus bridge of an asserted 
first bus cycle start signal(ADSf), further comprising the 
steps of: 

asserting said first bus device claiming signal (LDEVOff) 
before said first bus device claiming deadline in 
response to detecting said given first bus cycle start 
signal, and before said step of asserting said back-off 
signal (BOFFA); and 

negating said first bus device claiming signal (LDEVOff) 
no earlier than said step of negating said local device 
ready signal (LRDY#). 

19. A method for bridging a first bus (VL-bus) cycle to a 
second bus (PCI-bus), in a system including a first bus 
(VL-bus) having first bus cycle definition lines (e.g. R/W#, 
M/IO#, D/C#, VA, BEF), 

said system further including said second bus (PCI-bus), 
said second bus having second bus cycle definition 
lines (e.g. C/BEF, FRAMEA), 

for use with a first bus (VL-bus) master (102) defining 
said first bus cycle by asserting first bus cycle definition 
signals on said first bus cycle definition lines (e.g. 
R/Wii, M/IO#, D/C#, VA, BEF), said first bus master 
further having a back-off input line (BOFFF) which 
causes said first bus master to repeat said first bus cycle 
after detecting assertion of a back-off signal on said 
back-off input line, 

said method comprising the steps of: 
defining a cycle on said second bus (PCI-bus) in 

response to a first assertion of said first bus cycle 
start signal (ADSA) by asserting second bus cycle 
definition signals on said second bus cycle definition 
lines (e.g. C/BEff, FRAME); and 

asserting said back-off signal (BOFFF) in response to a 
predefined event occurring on said second bus (PCI 
bus) in response to said assertion of second bus cycle 
definition signals on said second bus cycle definition 
lines. 

20. A method according to claim 19, wherein said pre 
defined event is defined at least in part by expiration of a 
predefined time period that begins in response to said 
assertion of second bus cycle definition signals on said 
second bus cycle definition lines. 

21. A method according to claim 20, wherein said pre 
defined event is defined further by non-detection of a 
predefined signal before expiration of said predefined time 
period. 

22. A method according to claim 19, wherein said pre 
defined event occurs on said second bus without any inter 
vening event occurring on said second bus in response to 
said assertion of second bus cycle definition signals on said 
second bus cycle definition lines. 

23. A method according to claim. 19, wherein said second 
bus further has a second bus device claiming signal line 
(DEVSELF), 
and wherein said predefined event is defined at least in 

part by non-assertion of a second bus device claiming 
signal on said second bus device claiming signal line 
(DEVSELF) before a predetermined second bus device 
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claiming deadline following said assertion of second 
bus cycle definition signals on said second bus cycle 
definition lines. 

24. A method according to claim 23, wherein said first bus 
further has a first bus device claiming signal line 
(LDEVOff), and wherein at the time of said first assertion of 
said first bus cycle start signal (ADSf) the signals on said 
first bus cycle definition lines (e.g. R/W#, M/IO#, D/C#, VA. 
BEF) are within a predetermined set of first bus cycle 
definitions, 

for use further with a third bus (system bus) and a 
first-bus/third-bus (VL-bus/system-bus) bridge coupled 
to receive said first bus cycle definition signals, said 
first-bus/third-bus bridge defining a cycle on said third 
bus in response to certain combinations of said first bus 
cycle definition signals only if no first bus device 
claiming signal (LDEVO) is asserted before a prede 
termined first bus device claiming deadline following 
detection by said first-bus/third-bus bridge of an 
asserted first bus cycle start signal (ADS) (e.g. R/Wil, 
M/IO#, D/C#, VA, BEF), 

further comprising the step of asserting said first bus 
device claiming signal (LDEVO#) prior to said first bus 
device claiming deadline, in response to said first 
assertion of said first bus cycle start signal (ADSf). 

25. A method according to claim 19, wherein the signals 
on said first bus cycle definition lines at the time of said first 
assertion of said first bus cycle start signal (ADS#) define a 
first valid first bus cycle, further comprising the steps of: 

after assertion of said back-off signal in said step of 
asserting said back-off signal, in response to a second 
assertion of said first bus cycle start signal (ADSf), 
determining whether a second valid first bus cycle 
defined by signals then asserted on said first bus 
(VL-bus) cycle definition lines is a repetition of said 
first valid first bus cycle; and 

defining a cycle on said second bus (PCI-bus) in response 
to said second assertion of first bus cycle start signal by 
asserting second bus cycle definition signals on said 
second bus cycle definition lines (e.g. CIBEff, 
FRAME), only if said second valid first bus cycle is 
not a repetition of said first valid first bus cycle. 

26. A method according to claim 19, for use further with 
a third bus (ISA bus) having third bus cycle definition lines. 
further comprising a step of defining a cycle on said third 
bus (ISA-bus) in dependence upon said first bus cycle, after 
said step of defining a cycle on said second bus (PCI-bus). 

27. A method according to claim 26, wherein said step of 
defining a cycle on said third bus (ISA-bus) occurs after said 
step of asserting said back-off signal (BOFFF). 

28. Apparatus for bridging a first bus (VL-bus) cycle to a 
second bus (PCI-bus), in a system including a first bus 
(VL-bus) having first bus cycle definition lines (e.g. R/W#, 
M/IO#, D/C#, VA, BEF), 

said system further including said second bus (PCI-bus), 
said second bus having second bus cycle definition 
lines (e.g. CBE, FRAMEA), 

for use with a first bus (VL-bus) master (102) defining 
said first bus cycle by asserting first bus cycle definition 
signals on said first bus cycle definition lines (e.g. 
R/W#, M/IO#, D/C#, VA, BEF), said first bus master 
further having a back-off input line (BOFF#) and 
repeating said first bus cycle after detecting assertion of 
a back-off signal on said back-off input line, compris 
ing: 
second bus interface logic which defines a cycle on said 

second bus (PCI-bus) in response to a first assertion 
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of said first bus cycle start signal (ADS) by assert 
ing second bus cycle definition signals on said sec 
ond bus cycle definition lines (e.g. C/BEff. 
FRAMEff); and 

first bus interface logic which asserts said back-off 
signal (BOFFF) in response to a predefined event 
occurring on said second bus (PCI-bus) in response 
to said assertion of second bus cycle definition 
signals on said second bus cycle definition lines. 

29. Apparatus according to claim 28, wherein said second 
bus further has a second bus device claiming signal line 
(DEVSELF), 

and wherein said predefined event is defined at least in 
part by non-assertion of a second bus device claiming 
signal on said second bus device claiming signal line 
(DEVSELF) before a predetermined second bus device 
claiming deadline following said assertion of second 
bus cycle definition signals on said second bus cycle 
definition lines. 

30. Apparatus according to claim 29, wherein said first 
bus further has a first bus device claiming signal line 
(LDEVOff), and wherein at the time of said first assertion of 
said first bus cycle start signal (ADSf) the signals on said 
first bus cycle definition lines (e.g. R/W#. M/IO#, D/C#, VA, 
BE#) are within a predetermined set of first bus cycle 
definitions, 

for use further with a third bus (system bus) and a 
first-bus/third-bus (VL-bus/system-bus) bridge coupled 
to receive said first bus cycle definition signals, said 
first-bus/third-bus bridge defining a cycle on said third 
bus in response to certain combinations of said first bus 
cycle definition signals only if no first bus device 
claiming signal (LDEVOf) is asserted before a prede 
termined first bus device claiming deadline following 
detection by said first-bus/third-bus bridge of an 
asserted first bus cycle start signal (ADSF) (e.g. R/W#, 
M/IO#, D/C#, VA, BEF), 
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further comprising circuitry which asserts said first bus 

device claiming signal (LDEVOff) prior to said first bus 
device claiming deadline, in response to said first 
assertion of said first bus cycle start signal (ADS). 

31. Apparatus according to claim 28, wherein the signals 
on said first bus cycle definition lines at the time of said first 
assertion of said first bus cycle start signal (ADS#) define a 
first valid first bus cycle, 

further comprising a repetition detector which, after asser 
tion of said back-off signal by said first bus interface 
logic in response to said predefined event, in response 
to a second assertion of said first bus cycle start signal 
(ADSf), determines whether a second valid first bus 
cycle defined by signals then asserted on said first bus 
(VL-bus) cycle definition lines is a repetition of said 
first valid first bus cycle, 

and wherein said second bus interface logic further 
defines a cycle on said second bus (PCI-bus) in 
response to said second assertion of first bus cycle start 
signal by asserting second bus cycle definition signals 
on said second bus cycle definition lines (e.g. C/BEF, 
FRAMEA), only if said repetition detector determines 
that said second valid first bus cycle is not a repetition 
of said first valid first bus cycle. 

32. Apparatus according to claim 28, for use further with 
a third bus (ISAbus) having third bus cycle definition lines, 
further comprising third bus interface logic which defines a 
cycle on said third bus (ISA-bus) in dependence upon said 
first bus cycle, after said second bus interface logic defines 
a cycle on said second bus (PC-bus). 

33. Apparatus according to claim 32, wherein said third 
bus interface logic defines said cycle on said third bus 
(ISA-bus) after said first bus interface logic asserts said 
back-off signal (BOFF#). 
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