
United States Patent (19)
Lin et al.

54 VL-BUS/PCI-BUS BRIDGE

75) Inventors: Fong Lu (David) Lin. San Jose;
Cherng-Yeuan (Henry) Tsay,
Pleasanton; David H. Doan, San Jose,
all of Calif.

73) Assignee: Opti Inc., Milpitas, Calif.

(21) Appl. No.:715,901
22 Filed: Sep. 18, 1996

Related U.S. Application Data

63 Continuation of Ser. No. 332,858, Nov. 1, 1994, abandoned.
(51) Int. Cl. G06F 13/14; G06F 13/42
52 U.S. Cl. 395/500; 364/240; 364/240.8;

364/240.5: 364/DIG. 1
58) Field of Search 395/500, 309,

395/3 11

56) References Cited

U.S. PATENT DOCUMENTS

5,218,690 6/1993 Boioi et al. 395/500
5,309,568 5/1994 Ghosh et al. 395/325
5,335,326 8/1994 Nguyen et al. . . 395/250
5,379,384 1/1995 Solomon 395/325
5,446,869 8/1995 Padgett et al. 395/500
5,448,704 9/1995 Spaniol et al. 395/310
5,455,915 10/1995 Coke 395/325

OTHER PUBLICATIONS

Acer Laboratories, Inc., "M1429G/M 1431/M1435".
Datasheet (Oct. 1993).
Acer Laboratories, Inc., “M1435 PCI-VL Bus Bridge",
Preliminary Data Sheet (Sep. 20, 1993), pp. 1-7, 13-14.
Acer Laboratories. Inc., "Pentium Solution of ALI". ALI
Pentium Seminar (1994).

PCI CONTROL

VL-BUS/PCI-BUS
-102 BRIDGE

SYSC

Keyboard 140
Controller

OPTi
82C802G

Controller for
CPU/cache/DRAM and
WESA, Air Bus & IPC
Power Manogenent Unit

US005790831A

11 Patent Number: 5,790,831
45) Date of Patent: Aug. 4, 1998

Slater, Michael, et al., "Local Buses Poised to Enter PC
Mainstream - Intel's PCI and VESA's VL-Bus Vie for
Vendors' Attention". Microprocessor Report (Jul. 2, 1992),
pp. 7-13.
Intel Corporation, "i486TM Microprocessor". Databook
(Nov. 1989).
Intel Corporation, "82434LX/82434NX PCI, Cache and
Memory Controller (PCMC)". Advance Information (Mar.
1994), pp. 1-30, 70-104.

Primary Examiner-Kevin J. Teska
Assistant Examiner-Ayni Mohamed
Attorney Agent, or Firm-Fliesler, Dubb, Meyer & Lovejoy
57 ABSTRACT

APC-bus is added to a VESA local bus (VL-bus) computer
system using a VL-bus/PCI-bus bridge. The VL-bus/PCI
bus bridge claims a VL-bus cycle by asserting LDEV# to the
VL-bus/system-bus bridge. If no other VL-bus device
claims the cycle as well, then the VL-bus/PCI-bus bridge
translates the cycle onto the PCI-bus and awaits a response
from a PCI device. If no PCI device claims a cycle by the
PCI-bus device claiming deadline, then the VL-bus/PCI-bus
bridge asserts BOFF# to the host and suppresses its assertion
of LDEV# when the host repeats the cycle on the VL-bus.
The VL-bus/system-bus bridge therefore can translate the
repetition of the cycle onto the system bus. When asserting
BOFF# to the host, the VL-bus/PCI-bus bridge also asserts
the VL-bus device ready signal LRDY# after assertion of
BOFF# and releases LRDY# before releasing BOFF#. The
VL-bus controller does not receive BOFF# necessarily, but
responds to LRDY# by asserting RDYRTN# onto the
VL-bus, thereby signifying to all other VL-bus devices that
the VL-bus cycle has ended and permitting them to restart
their state machines in anticipation of a new VL-bus cycle.
The host ignores RDYRTN# while, and only while. BOFF#
is asserted.

33 Claims, 15 Drawing Sheets

PCI-BUS
Device

control CD30 2.
El- 210

so 2 39;EE Zaa zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz2ZZ f08
A tie CA23:17) a LA23:17) t fi 2227 ZZZzZaza

3 #1 so %zzzzz OPT 2:2:
B2C602
RC st

stol Doc Buffer 2
attazzazzazata

20

d
f38- Z

ISA BUS
Peripherals

s
-130

-32

42

5,790,831 U.S. Patent

U.S. Patent Aug. 4, 1998 Sheet 2 of 15 5,790,831

BUS
BLAS WL-BUS/ISA-BUS

- R'RDYRTN CORE LOGIC
214 FEH CHIPSETs

WL-BUS HOST HE ; BUS
(CPU AND/OR HE B I/F |-WR

CACHE IEEE AND/OR C-SEDY
CPU-VL BUS THC BRIDGE)

ROY
BRDY.
BLAST

BOFFB FRAMEB
H|| - LADSLB RDYB M/IOf ROYi TRDYB D/C# E BLASTIB DEVSELB
||LPRES ASR CA1 - WRE 32 HECB

f52
LDEVI;

pc-Bus 2
T.

LDEWOB
WL BUS/PCI-BUS
BRIDGE

BOFF:
ADS

CD
II - BCS f46

ITT our

|| | | | | | HITM CLK Y V

DEVICE
154

S-2
WL-BUS
DEVICE

WBACK
HEV S. - DS

CLK LDEWIB

- WA - - - VE
LD

FIG. 2 | RS
144 PCI BUS

5,790,831 Sheet 4 of 15 Aug. 4, 1998 U.S. Patent

| szae? gzi | Iz? | 9ZI | GZ1 | VZ1 | 221 | ZZ1 | 121? ? ? ~20°

5,790,831 Sheet 7 of 15 Aug. 4, 1998 U.S. Patent

Z ºf)I, H.

d4 408

XTO

U.S. Patent

TNH
MSABORT

LMIO
LT64KB

ATMEMB
MIOB

RSTB
ROYB
CLK

ASYNC

CLK

LASTDW
TNHB

LBOLROY
BOFFEN

H2PLRDYB

90- D

Aug. 4, 1998

ATSPACE

Sheet 9 of 15

D- D Q
912

CK QN

918 92.2 920

OTHER ACTIVE LOW READIES

FIG. 9

5,790,831

904

MUX, SMSABO
S

FBOLROY

D RDYOB

5,790,831 Sheet 10 of 15 Aug. 4, 1998 U.S. Patent

XOOT8
300|

0)\OEWWS NEHH08 8, WHT| #38T

5,790,831

NOI10VSNVNI Snº

Sheet 11 of 15

DATA TRANSFER

WAIT

..........DATA TRANSFER...

N
DATA TRANSFER

}|S., #38|@?)—
ŒŒ){@- - - - - - - - - -– Oy

Aug. 4, 1998 U.S. Patent

5,790,831 Sheet 12 of 15 Aug. 4, 1998 U.S. Patent

28 º f)I, H. NOI10\/SNW}} | S08
BSWHd BSWHd

BSWHd
WIWO WIWO SSH}{00\} •+---------

- - - - - - - -|-<- - - - - - - - - - -|-#TBSAHO

U.S. Patent Aug. 4, 1998 Sheet 13 of 15 5,790,831

U.S. Patent Aug. 4, 1998 Sheet 14 of 15 5,790,831

--a --S Fist viri- ------ 5-NO RESPONSE--
DEVSEL# or V FAST VED \sion SUB ACKNOWLEDGE:

FIG. B4

U.S. Patent Aug. 4, 1998 Sheet 15 of 15 5,790,831

--> -----------it-vais-NO RESPONSE Y DEVSEL \FAST \MD \sic \SUB.A.N.NEG

FIG. B5

5,790,831
1

WL-BUS/PCI-BUS BRIDGE

"This application is a continuation of Ser. No. 08/332,
858, filed Nov. 1, 1994, now abandoned."

BACKGROUND

1. Field of the Invention
The invention relates to IBM PC AT-compatible computer

architectures, and more particularly, to enhancements
thereof for communicating with I/O peripheral devices.

2. Description of Related Art
The IBM PC/ATS) computer architecture has become an

industry standard architecture for personal computers and is
typically built around a host CPU such as an 80386, 80486
or Pentium(s) microprocessor manufactured by Intel
Corporation, or similar microprocessors manufactured by
others. The host CPU is coupled to a hostbus, capable of
performing memory accesses and data transfers at high rates
of speed (i.e. on the order of 25-100 MHz with today's
technology). The host bus includes 32 or, in the case of
computers built around the Pentium, 64 data lines, a plural
ity of address lines, and various control lines. The typical
IBM PC AT-compatible platform also includes DRAM main
memory, and in many cases a timer, a real-time clock and
a cache memory.
The typical IBM PC AT-compatible computer also

includes an I/O bus, also know as a system bus or AT-bus,
which is separate and distinct from the hostbus. The system
bus usually conforms to one of two industry-established
standards known as ISA (Industry Standard Architecture)
and EISA (Extended ISA). The system bus is coupled to the
host bus via a host-bus/system-bus bridge, and includes,
depending on the system bus standard adhered to, 16 or 32
data lines, a plurality of address lines, as well as control
lines. The I/O address space is logically distinct from the
memory address space and if the CPU desires to access an
I/O address, it does so by executing a special I/O instruction.
Such an I/O instruction generates memory access signals on
the hostbus, but also activates an M/IOff signal on the host
bus to indicate that this is an access to the I/O address space.
The host-bus/system-bus bridge recognizes the I/O signals
thereby generated by the CPU, performs the desired opera
tion over the system bus, and if appropriate. returns results
to the CPU over the host bus.

In practice, some I/O addresses may reside physically on
the host bus and some memory addresses may reside physi
cally on the system bus. More specifically, the devices which
respond to accesses to certain I/O space addresses may be
connected to the control lines (and usually the address and
data lines as well) of the hostbus, while the devices which
respond to accesses to certain memory space addresses may
be connected to the control lines (and usually the address
and data lines as well) of the system bus. The host-bus/
system-bus bridge is responsible for recognizing that a
memory or I/O address access must be emulated by an
access to the other bus, and is responsible for doing such
emulation. For example, a ROM (or EPROM) BIOS may
reside physically on the system bus, but actually form part
of the local memory address space. During system boot,
when the CPU sends out a non-I/O address which is physi
cally within the ROM BIOS, the host-bus/system-bus bridge
recognizes such, enables a buffer (considered herein as being
part of the host-bus/system-bus bridge) which couples the
address onto the system bus, and activates the chip select for
the ROM. The bridge then assembles a data word of the size
expected by the host CPU, from the data returned by the

10

5

25

30

35

45

50

55

65

2
ROM, and couples the word onto the hostbus for receipt by
the CPU. In many systems, at some point during the ROM
based boot-up procedure, the ROM BIOS is copied into
equivalent locations in the DRAM main memory, which
does reside on the hostbus, and thereafter accessed directly.

In the standard architecture, the logical main memory
address space is divided into a low memory range
(Oh-9FFFFh), a reserved memory range (A0000h-FFFFFh)
and an extended memory range (100000h to the top of
memory). In a typical system the system ROM BIOS is
located logically at memory space addresses
F0000h-FFFFFh, and resides physically on the system bus.
Addresses C0000h-EFFFFh contain ROM BIOS portions
for specific add-on cards and reside physically on their
respective cards on the system bus. Addresses
A0000h-BFFFFh contain the video buffer, which is a part of
a video controller residing on the system bus. Duplicate
memory space is typically provided in DRAM on the host
bus for addresses C0000h-FFFFFh, and the user of the
system can select during a setup procedure, which portions
of the ROM BIOS are to be "shadowed" by being copied
into the duplicate DRAM space during boot-up.

In addition to the above elements, a keyboard controller
typically also resides on the system bus, as does the timer
and real-time clock. A typical DBM PC AT-compatible sys
tem may also include a DMA controller which permits
peripheral devices on the system bus to read or write directly
to or from main memory, as well as an interrupt controller
for transmitting interrupts from various add-on cards to the
CPU. The add-on cards are cards which may be plugged into
slot connectors coupled to the system bus to increase the
capabilities of the system. Add-on cards are also sometimes
referred to as expansion cards or accessory cards.

General information on the various forms of IBM PC
AT-compatible computers can be found in IBM. "Technical
Reference, Personal Computer AT" (1985), in Sanchez,
"IBM Microcomputers: A Programmer's Handbook"
(McGraw-Hill: 1990). in MicroDesign Resources, "PC Chip
Sets" (1992), and in Solari, "AT Bus Design" (San Diego:
Annabooks, 1990). See also the various data books and data
sheets published by Intel Corporation concerning the struc
ture and use of the iAPX-86 family of microprocessors,
including Intel Corp., "Pentiumn"M Processor". Preliminary
Data Sheet (1993); Intel Corp., "Pentiumn M Processor
User's Manual" (1994); "i486 Microprocessor Hardware
Reference Manual", published by Intel Corporation, copy
right date 1990, "386 SX Microprocessor", data sheet,
published by Intel Corporation (1990), and "386 DX
Microprocessor", data sheet, published by Intel Corporation
(1990). All the above references are incorporated herein by
reference.

The various signals on the host bus include the input/
output signals of whichever microprocessor the system is
built around. Such signals are therefore well known in the
industry and can be determined by reference to the above
incorporated publications. The various signals on the system
bus also are well known in the industry, The Solari book
incorporated above describes the lines in detail. For present
purposes, only the following signals are important:

SABUS
SIGNAL NAME

SA(19:0)

LA(23:17)

BALE

SBHE

SD(15:0)
MEMR#,
SMEMR

MEMW
SMEMW

IOR

IOW

MEMCS16

IOCS6.

SROY

OCHRDY

MASTER#

5,790,831
3

TABLE

ISA BUS SIGNALS

ISA BUS SIGNAL DESCRIPTION

20 address lines. Sufficient to
address 1 MB of memory. Only SA(15:0)
are used to address the 64kWO
address space, and only SA(9:0) are
used to address the basic lik ATIO
address space.
Additional address lines for
addressing a 16 MB memory address space
on the system bus. The LA lines are
valid earlier in an I/O bus cycle, but
must be latched if needed later in the
cycle. The SA lines are not valid as
early as the LA lines, but remain
valid longer.
Bus address latch enable line. In a
CPU initiated system bus cycle, this
line indicates when the SA address,
AEN and SBHEF lines are valid. In
other system bus cycles, the platform
circuitry drives BALE high for the
entire cycle.
System byte high enable. When SBHE#
is active and SAO) is low, then a 16
bit access will be performed.
When active, informs IO resources on
system bus to ignore the address and
I/O command signals. Used primarily
in DMA cycles where only the I/O
resource which has requested and
received a DMA acknowledgment signal
(DACKF) knows to ignore AEN and
respond to the system bus signal
lines. Some systems include slot
specific AEN signal lines.
16 data lines.
Read request lines to a memory
resource on the system bus. SMEMR# is
the same as MEMR# except that SMEMR#
becomes active only when the read
address is below 1 MB (i.e., LA(23:20)
= 0). Also called MRDC# and SMRDC#,
respectively.
Write request lines to a memory
resource on the system bus. SMEMWif
becomes active only when the write
address is below 1 MB. Also called
MWTC# and SMWTC#, respectively.
Read request line to an I/O resource
on the system bus. Also called IORCi.
Write request line to an I/O resource
on the system bus. Also called IOWC#.
Memory chip select 16. Asserted by an
addressed memory resource on the
system bus if the resource can support
a 16-bit Iemory access cycle.
O chip select 16. Asserted by an

addressed I/O resource on the system
bus if the resource can support a 16
bit IFO access cycle.
Synchronous Ready line. Also
sometimes called OWSA, NOWS or
ENDXFR. Activated by an addressed
I/O resource to indicate that it can
support a shorter-than-normal access
cycle.
VO channel ready line. If this
signal is deactivated by an addressed
I/O resource, the cycle will not end
until it is reactivated. A deactivated
IOCHRDY supersedes an activated SRDYi.
Also sometimes called CHRDY.
After requesting and receiving a DMA
acknowledged (DACKF) signal, a system
bus add-on card can assert MASTER to

10

15

20

25

30

35

45

50

55

65

4

TABLE I-continued

SABUS SIGNALS

SABUS
SIGNAL NAME SABUS SIGNAL DESCRIPTION

become the system bus master.
REFRESH Activated by refresh controller to

indicate a refresh cycle.
IRQ(15, 14, Interrupt request lines to the
12:9, 7:3) interrupt controller for CPU.
DRQ(7:5, DMA Request lines from I/O resource on
3:0) system bus to platform DMA controller.
DACK(7:5, DMA. Acknowledge lines.
3:0)
TC DMA terminal count signal. Indicates

that all data has been transferred.
Also called TiC.

BCLK System bus clock signal. 6-8.33 MHz
square wave.

OSC 14.318 MHz square wave.

Note that some of the signals described in this specifica
tion are asserted high, whereas others are asserted low. As
used herein. signals which are asserted low are given a "#"
or 'B' suffix in their names, whereas those asserted high (or
for which an assertion polarity has no meaning) lack a "#" or
'B' suffix. Also, two signal names mentioned herein that are
identical except that one includes the "#" or 'B' suffix while
the other omits it, are intended to represent logical compli
ments of the same signal. It will be understood that one can
be generated by inverting the other, or both can be generated
by separate logic in response to common predecessor sig
mals.

Recently, efforts have been made to reduce the size and
improve the manufacturability of PC AT-compatible com
puters. Specifically, efforts have been made to minimize the
number of integrated circuit chips required to build such a
computer. Several manufacturers have developed "PC AT
chipsets" (also known as "core logic chipsets" or "I/O bus
interface circuitry"), which integrate a large amount of the
host-bus/system-bus bridge circuitry and other circuitry onto
only a few chips. An example of such a chipset is the 386WB
PC/AT chipset manufactured by OPTi Inc., Santa Clara,
Calif. These chipsets implement the host-bus/system bus
bridge, the timer, real-time clock (RTC), DMA controller, as
well as some additional functionality,

In the original IBM PC AT computers manufactured by
IBM Corp... the system bus operated with a data rate of 8
MHz (BCLK-8 MHz). This was an appropriate data rate at
that time since it was approximately equivalent to the
highest data rates which the CPUs of that era could operate
with on the host bus. Numerous third party vendors have
since developed peripheral devices and controller cards
which are intended to be plugged into an AT (ISA) slot on
the system bus, and which rely upon the 8 MHz maximum
data rate. The AT standard also requires a wait state (i.e. 125
nS) for 16-bit data transfers, and four wait states (500 nS) for
8-bit data transfers. A Zero wait state data transfer is also
available, but only if the peripheral device signals, by
activating the SRDY# control line on the system bus, that it
can handle such fast data transfers.

In the years since the IBM PC AT was originally
introduced, technology has improved dramatically to the
point where host buses on high-end PC AT-compatible
computers can operate on the order of 100 MHz. Despite
these advances. however, such computers are still manufac
tured with a system bus operating at around 8 MHz because

5,790,831
5

of the need to maintain compatibility with previously
designed peripheral devices. These devices were designed in
reliance upon the 8 MHz data rate and AT wait state
protocol, and many such devices are not capable of operat
ing faster. Even modern designs for AT bus peripherals often
rely on the 8 MHz maximum data rate, even though very
little additional effort or cost would be involved to design
them to operate faster.

In addition to the large disparity between data transfer
rates on the system bus as compared to the host bus in
modern PC AT-compatible computers, the host-bus/system
bus bridge circuitry needs to delay its handling of requests
and responses from one bus to the other merely because the
clocks are not synchronized. The circuitry therefore must
hold a request or response until the appropriate clock edge
on the destination bus appears. This can add on the order of
30-200 nS to each system bus cycle. Accordingly, it can be
seen that any access to a peripheral device on the system bus
imposes a substantial penalty on the performance of PC
AT-compatible computers. This penalty will only become
worse as the disparity between the hostbus and system bus
data rates continues to increase.
The penalty applies for most types of peripheral devices,

but in the past it has been most noticeable for video display
controllers. Video display controllers have a command port
which responds to accesses in the I/O address space, as well
as a video memory port which responds to accesses in the
memory address space. Manufacturers have traditionally
placed both ports on the system bus, however, thereby
imposing the speed limitations of the system bus on the
video memory port as well as the command port. U.S. patent
application Ser, No. 07/851.444, filed Mar. 16, 1992, now
U.S. Pat. No. 5,309.568. (Attorney Docket No.
OPTI3030WSW), owned by the assignee of the present
application and incorporated herein by reference in its
entirety, describes certain attempts to permit accesses to the
video memory port to take place over the hostbus instead of
the system bus. In addition, some graphics chip vendors
have tried incorporating features into their chips for con
nection directly to a host bus. For example, see S3, Inc.,
"86C911 GUI Accelerator". Databook (April 1992), incor
porated herein by reference.

However, these solutions all suffer from the problem that
they are non-standard. That is, if a vendor of I/O interface
chipsets provides for a host bus capability, there is no
assurance that it will interface directly with products made
by more than one peripheral device controller vendor. A
layer of buffers and glue logic therefore may be required to
enable such peripheral device controllers to take advantage
of the host bus feature, and the glue logic may be different
for each different peripheral controller. On the other hand, if
a maker of peripheral device controllers, such as a maker of
a VGA (Video Graphics Adapter) controller, provides for a
host bus capability in the peripheral controller, there is no
guarantee that it will interface correctly with the host-bus/
system-bus bridge chipsets made by more than one chipset
manufacturer. Again, different buffers and glue logic may be
required for each vendor of chipsets.

In two different efforts for ameliorating the above
problem, instead of creating a private standard, two different
organizations have defined different bus protocols and
attempted to promulgate them as standards for the entire
personal computer industry. One such standard, referred to
herein as the VESA (Video Electronics Standards
Association) or VL-Bus standard, is defined in VESA,
"VESA VL-Bus Local Bus Standard". Revision 1.0 (1992),
incorporated herein by reference. Significant aspects of the

10

5

20

25

30

35

45

50

55

65

6
VL-Bus specifications are described in Appendix A hereto.
Further revisions of the VESA standard are in preparation.
one recent version being VESA, "VESA VL-Bus Proposal.
Version 2.0 p. Revision 0.8 p (May 17, 1993), also incor
porated herein by reference. The other such standard.
referred to herein as the PCI standard is defined in Intel
Corp., "Peripheral Component Interconnect (PCI), revision
1.0 Specification" (Jun. 22, 1992) and in PCISpecial Interest
Group, "PCI Local Bus Specification", Revision 2.0 (Apr.
30, 1993), both incorporated herein by reference. Significant
aspects of the PCI 2.0 Bus specifications are described in
Appendix B hereto. Each standard has advantages and
disadvantages over the other, and depending on the
application, one standard or the other may be more benefi
cial to have in a system.

For example, one advantage of the VL-bus is that it is
relatively simple to include in a personal computer system.
especially those built around an Intel 486 microprocessor.
This is because the VL-bus signal lines are similar to signal
lines of the 486 CPU, except for a few additional signal lines
included on the VL-bus. Thus the only additional expense
required to add a VL-bus to a pre-existing 486-based com
puter design, is a very small VL-bus controller to handle the
additional signal lines. Such a controller has already been
included in chipsets. An example of such a chipset includes
the OPTi 82C802G and either the 82C601 or 82C602, all
incorporated herein by reference. The 82C802G is described
in OPTi Inc.. "OPTi PC/AT Single Chip 82C802G Data
Book". Version 1.2a (Dec. 1, 1993), and significant aspects
are also set forth in Appendix C hereto. The 82C601 and
82C602 are described in OPTi Inc., 'PC/AT Data Buffer
Chips. Preliminary, 82C601/82C602 Data Book". Version
1.0e (Oct. 13, 1993), and significant aspects are also set forth
in Appendix D hereto. Both data books are incorporated
herein by reference in their entirety.

While a minimum VL-bus system requires no additional
circuitry, the insertion of a simple host-bus/VL-bus bridge
provides buffering for additional VL-bus devices. For
Pentium(s)-based systems, the host bus of which has a
64-bit wide data path, the bridge could also include circuitry
to break up a 64-bit host-bus originated access. into two
32-bit VL-bus accesses. Such circuitry is still relatively
simple. (Extension to the 32-bit VL-bus standard have been
proposed in order to accommodate 64-bit access in a single
VL-bus cycle, but in general, as the data path of host CPUs
continues to expand, it can be expected that at least some
future system designs will continue to employ a bridge
which breaks up a wider-data-path hostbus access into two.
four, or some other number of narrower-data-path cycles on
the VL-bus.)
Aprimary advantage of the PCI-bus, on the other hand, is

its processor independence. The PCI-bus was intended to
provide very high-speed accesses using a standard bus
protocol, and to interface those accesses with any host
processor bus using an appropriate host-bus/PCI-bus bridge.
The host-bus/PCI-bus bridge is significantly more expensive
than the circuitry required to implement a VL-bus, but the
independence it provides from ever-faster and ever-more
varied host processor buses provides a stable target for
designers of peripheral products. A peripheral device
designed for the PCI-bus would not need to be redesigned
for each new version of an Intel microprocessor, or indeed,
for each new microprocessor that might in the future power
a personal computer system.
To date, neither the WL-bus standard nor the PCI-bus

standard has achieved dominance in the marketplace for
personal computer systems or in the marketplace for periph

5,790,831
7

eral devices. Thus peripheral device manufacturers design
ing cards intended to bypass the slow system bus, still
usually must design one version of the card for the PCI-bus
and one version for the VL-bus. Similarly, computer system
integrators and chipset manufacturers often find themselves
having to double their product offerings since each market
segment for VL-bus systems can have an equivalent but
separate market segment for PCI-bus systems.

It is possible to overcome these problems by designing a
computer system which incorporates both VL-bus expan
sion slots and PCI-bus expansion slots, in addition to the
standard ISA- or EISA-bus expansion slots. The mother
board circuitry to implement this would be expected to
include programmable registers which would indicate
whether a particular valid cycle definition on the hostbus is
to be handled by a device on the host bus (such as main
memory), a device on the VL-bus (which may be the same
as the hostbus in 486 systems), by a device on the PCI-bus,
or by a device on the system bus. Such motherboard
circuitry would be expensive, however, and may require an
entirely new chipset design.

In Acer Laboratories. Inc., "M1435 PCI-VL Bus Bridge,
Preliminary Datasheet" (Sep. 20, 1993), incorporated by
reference herein, there is described a VL-bus/PCI-bus bridge
chip which, together with the Acer M1429kG/M1429 VESA
chip, permits both a VL-bus and a PCI-bus to be included in
a single system. According to the datasheet, when the
M1435 chip detects a valid VL-bus cycle, it first determines
whether the cycle is intended for system memory or for
another VL-bus device. The chip is believed to perform a
positive decode of the address to determine whether the
cycle is intended for system memory, and it observes the
LDEV signal to determine whether the cycle has been
claimed by another VL-bus device. If neither is the case,
then the M1435 translates the cycle to the PCI-bus. If no PCI
agent claims the translated PCI cycle, then the M1435
asserts an ISA REQJ signal to the M1429 chip, thereby
informing the M1429 to start an ISA cycle. See also Acer
Laboratories. Inc., “M1429G/M 1431/M1435 Data Sheet'
(October 1993), incorporated herein by reference.
The Acer technique for accommodating both the WL-bus

and PCI-bus in a single system is limited in that it operates
only with a host-bus/system-bus interface chipset which
observes and understands the ISA REQ signal asserted by
the M1435 bridge. Other inter-chip signals may also be
required between the M1435 and M1429. Since most inter
face chipsets do not understand these signals, such chipsets
would have to be modified by the chipset manufacturer
before they could be used with the M1435 bridge. It would
be desirable, therefore, to provide a VL-bus/PCI-bus bridge
which does not require modification of any existing VL-bus/
system-bus chipset. Such a bridge could be used in conjunc
tion with the chipset of any manufacturer which supports the
VL-bus.

SUMMARY OF THE INVENTION

The invention takes advantage of a feature of Intel 486
and Pentium microprocessors, known as the back-off fea
ture. These microprocessors sense a BOFF# signal, which is
not considered part of the VL-bus. When the microprocessor
detects assertion of BOFF#, while a host bus cycle is in
progress, it aborts the cycle and restarts it after it detects
BOFF# negated. According to the invention, roughly
described, a VL-bus/PCI-bus bridge claims a VL-bus cycle
by asserting LDEV# to the VL-bus/system-bus bridge. If no
other VL-bus device claims the cycle as well, and the cycle

O

15

25

30

35

45

50

55

65

8
is not to system memory, then the VL-bus/PCI-bus bridge
translates the cycle onto the PCI-bus and awaits a response
from a PCI device. If no PCI device claims a cycle by the
PCI-bus device claiming deadline, then the bridge asserts
BOFF# to the host. The bridge then awaits the host's
repetition of the cycle which was subject to the BOFF#, and
suppresses its assertion of LDEV# so that the VL-bus/
system-bus bridge can translate the cycle onto the system
bus.

In another aspect of the invention, a VL-bus device can
take advantage of the back-off feature of the 486 and
Pentium CPU's by asserting the VL-bus device ready signal
LRDY# after assertion of BOFF#, and negating LRDY#
before or at the same time as negating BOFF#. The VL-bus
controller does not receive BOFF# necessarily, but responds
LRDY# by asserting RDYRTN# onto the VL-bus, thereby
signifying to all other VL-bus devices that the VL-bus cycle
has ended and permitting them to restart their state machines
in anticipation of a new VL-bus cycle.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to particular
embodiments thereof, and reference will be made to the
drawings, in which:

FIGS. 1 and 2 are block diagrams of a computer system
incorporating the invention;

FIGS. 3, 4 and 5 are timing diagrams of signals in the
computer system of FIG. 2;

FIGS. 6-10 are schematic diagrams of circuitry in the
VL-bus/PCI-bus bridge of FIG. 2;

FIGS. B1-B5 are timing diagrams for certain signals on
the PCI-bus of FIG. 2,

DETALED DESCRIPTION

FIG. 1 is a block diagram illustrating pertinent features of
a computer system incorporating the invention. The system
includes a VL-bus host 102, which may, for example, be an
Intel 80386 or 80486 microprocessor, or it may include an
Intel Pentium microprocessor in combination with a con
ventional host-bus/VL-bus bridge. The VL-bus host 102 is
connected to a VL-bus 104. comprising VL-bus control lines
106, VL-bus data lines 108, and VL-bus address lines 110.
The system can also include a math coprocessor 112 con
nected to the WL-bus 104; if the VL-bus host includes a
bridge, then the math coprocessor 112 can instead be
coupled to the host bus (not shown). The system of FIG. 1
also includes a core logic chipset comprising an 82O802G
chip 118 and an 82C602 chip 120, both manufactured by
OPTi Inc., Santa Clara, Calif., as well as two sets of buffers
114 and 116. The chipset (referred to collectively herein as
122) is coupled to the VL-bus 104 and provides control and
address signals to main memory DRAM 124, cache SRAM
126, as well as other components in the system. The cache
SRAM 126 also receives address signals from the VL-bus
address lines 110 via buffer 128, and both the cache SRAM
126 and the main memory DRAM 124 are coupled
bi-directionally to the VL-bus data lines 108. The system
also includes an ISA bus 130, which includes address lines
132, a 16-bit SD data bus 134, and an 8-bitXD data bus 136.
The XD data bus 136, together with accompanying control
and address signals (collectively the X-bus), are considered
herein to form part of the ISA bus 130.
The core logic chipset 122 is responsible for many

functions in the system, including recognizing VL-bus
cycles intended for devices which reside on the ISA bus, and

5,790,831
9

translating such cycles onto the ISA bus 130. Address
signals are transferred between the VL-bus address leads
110 and the ISA-bus address leads 132 via buffers 116 and
the 82C602 data buffer 120, and data is transmitted between
the VL-bus data lines 108 and the ISA-bus data lines 134
and 136 via the buffers 114 and the 82C602 data buffer 120.
ABIOS ROM and flash EPROM 138 reside on the ISA bus
130, as does a keyboard controller 140 and other ISA-bus
peripherals 142. Residing on the VL-bus 104 is a VL-bus
device 144, as well as a VL-bus/PCI-bus bridge 146 (also
referred to herein as a PCI bridge 146) described in more
detail below. The PCI-bus bridge is also described in OPTi,
Inc., "82C822 PCIB VESA Local Bus to PCI Bridge
Interface." Data Sheet (April, 1994), incorporated herein in
its entirety, and is described in Appendix E hereto. The
VL-bus/PCI-bus bridge 146 is also connected to a PCI-bus
148, comprising control lines 150 and a multiplexed AD
address/data bus 152. A PCI-bus device 154 resides on the
PCI-bus 148. Although VL-bus 144 is shown residing exclu
sively on the VL-bus 104, it will be understood that in
accordance with the VL-bus specification incorporated
above, such device may also be connected to the ISA bus
130. The signals on the VL-bus 104 and the PCI-bus 148
conform to those set forth above and in the appendices with
respect to the respective standards.

FIG. 2 is a block diagram showing some of the compo
nents of the system of FIG. 1, and providing additional detail
regarding the control signals. Only signals pertinent to an
understanding of the invention are illustrated, and it will be
understood that other signals exist as well. Referring to FIG.
2, it can be seen that the VL-bus host 102 has its CPU
address (CA) lines connected to the VL-bus VA lines 202
and its CD data lines connected to the VL-bus data lines 204.
It also has its ADS#, R/W#. M/IO# and D/C# outputs
connected to the corresponding VL-bus signal lines 206,
207,208 and 210. The CLK output of the VL-bus host 102
drives the VL-bus LCLKlines 212, and the VL-bus host 102
BLAST# and BRDY# inputs are connected to receive the
signals on the corresponding lines 214 and 216 of the
VL-bus. As in conventional VL-bus system
implementations, the VL-bus host 102 is not connected to
the VL-bus LRDY# signal line 218, but rather has its RDY#
input connected the VL-bus RDYRTN# signal line 220.
Additionally, although the BOFF# input of the VL-bus host
102 is not used in many conventional VL-bus
implementations, in the system of FIGS. 1 and 2, it is
connected to a corresponding BOFFB output of the WL-bus/
PCI-bus bridge 146 for reasons hereinafter described. The
BOFFB output of the VL-bus/PCI bridge 146 is also coupled
to a WBACKF input of VL-bus device 144. In Pentium
systems, the coupling of BOFFB to WBACK takes place
via an AND gate 223, the other input of which is connected
to the HTTM# output of the Pentium host.
The VL-bus address lines 202 are also connected to the

core logic chipset 122, as are the VL-bus data lines 204, the
D/C# line 206, the WR line 207, the M/TOil line 208, and
the ADS# line 210. The core logic chipset 122 also has its
BRDY# and BLAST# lines connected to the respective lines
216 and 214 of the VL-bus 104, has its LRDYIFF input
connected to the LRDY line 218 of VL-bus 104, and has its
RDY line connected to the WL-bus RDYRTNF line 220. It
also has its HCLK input connected to receive the signal on
LCLK line 212. The LDEV# input of core logic chipset 122
is connected as hereinafter described.
As previously mentioned, the WL-bus/PCI-bus bridge 146

has a BOFFB output which is connected to the BOFFF input
of the VL-bus host 102. If the host 102 separates the VL-bus

O

5

25

30

35

45

55

65

10
104 from the host bus (not shown) connected to the host
CPU, and if such bridge does not translate the BOFF# signal
between the two buses, then BOFFB is connected directly to
the BOFF# input of the host CPU itself. The VL-bus/PCI
bus bridge 146 also includes an LADSIB signal line con
nected to the ADS# signal line of the VL-bus 104, an MIOB
signal line connected to the M/IOf signal line of VL-bus
104, a DCIB signal line connected to the DfC# signal line of
VL-bus 104, VD signal lines connected to the data lines of
VL-bus 104, WA signal lines connected to the address lines
202 of VL-bus 104, and a clock input connected to the
LCLK line 212 of VL-bus 104. The VL-bus/PCI-bus bridge
146 also includes a BLASTIB signal line connected to the
VL-bus BLASTi line, a BRDYIB signal line connected to
the BRDY# signal line, an RDYIB input connected to the
VL-bus RDYRTN# line 220, and an LRDYOB output
connected the VL-bus LRDY# signal line 218.

In a conventional VL-bus system implementation, the
WL-bus signal lines LDEV<X># are typically ANDed
together before being provided to the VL-bus/ISA-bus core
logic chipset 122 LDEV# input. In the present embodiment,
however, the combined signal (called LDEVIf is intercepted
by the VL-bus/PCI-bus bridge 146 before being provided
(by the name LDEVO#) to the LDEV# input of the VL-bus/
ISA-bus core logic chipset 122. Accordingly, in FIG. 2, the
VL-bus signal lines LDEVO#. LDEV1# and LDEV2# are
connected to respective inputs of a 3-input AND gate 222,
the output of which forms the LDEVEF signal. This signal is
provided to an LDEVTB input of the VL-bus/PCI-bus bridge
146, which produces an LDEVOB output on a signal line
LDEVO#. The LDEVO# is connected to the LDEV# input
of VL-bus/ISA-bus core logic chipset 122.
On the PC-bus side of VL-bus/PCI-bus bridge 146, the

bridge is connected to the 32-bit multiplexed addressldata
bus 152. The bridge 146 also has a FRAMEB signal line
connected to the FRAMEF control signal line of the PCI-bus
148, an IRDYB signal line connected to the IRDY# signal
line of the PCI-bus 148, a TRDYB signal line connected to
the TRDY# signal line of PCI-bus 148, and a DEVSELIB
signal line connected to the DEVSEL signal line of the
PC-bus 148.

FIG. 2 also illustrates an ISA-bus device 142 connected to
the ISA-bus 30 which is connected to the VL-bus/SA-bus
core logic chipset 122, a PCI-bus device 154 which is
connected to all of the signal lines of PCI-bus 148, and a
VL-bus device 144 which is connected to appropriate signal
lines of the VL-bus 104. Pertinent to the present description,
the WL-bus device 144 is able to listen to the VL-bus cycle
definition signals (VA, BEF, R/W#,D/C#, and M/IO#). If it
recognizes a valid cycle to which it can respond, the VL-bus
device 144 can assert LDEV onto the WL-bus LEDV0
signal line, and can terminate its VL-bus cycle by asserting
LRDY# on the VL-bus LRDY# signal line 218. The PCI-bus
device 154 and the VL-bus device 144 can constitute any
desired expansion devices, but typically they will include a
video display driver, possibly SCSI adapters, disk
controllers, LAN adapters, and so on.
The operation of the system of FIGS. 1 and 2 will be

described with respect to certain timing diagrams beginning
with FIG. 3. FIG. 3 simplified is a timing diagram illustrat
ing the timing of signals on the VL-bus 104 for a VL-bus
read cycle initiated by the VL-bus host 102 and claimed by
a conventional VL-line target device. Possible variations,
and the timing of various signals not shown in FIG. 3, can
be gleaned from the above-incorporated VL-bus specifica
tions. The timing is the same for a VL-bus master-initiated
cycle, except that it is preceded by a bus arbitration proce
dure.

5,790,831
11

Referring to FIG. 3. the LCLK signal is indicated at line
302. Six LCLKcycles are shown, labeled T1, T21,....T25.
Cycle T1 corresponds to the T1 cycle of an Intel 80486
microprocessor, and cycles T21 ...T25 correspond to five
consecutive T2 cycles of such a microprocessor (see the
Intel databooks incorporated above).

In LCLK cycle T1, as indicated on line 304, the host 102
places the cycle definition signals (ADR31:2), M/IO#.
W/R#, D/C# and BE3:0#) on the appropriate signal lines
of the VL-bus 104. It then strobes the ADS# signal to assert
the validity of the cycle definition signals and to start the
VL-bus cycle as shown in line 306. If a VL-bus target
device, such as 144 in FIG. 2, recognizes the cycle definition
and desires to claim the VL-bus cycle, it must do so within
20 nanoseconds after sampling ADSf low at the rising edge
which begins T21. To claim the cycle, VL-bus target device
144 asserts its LDEV# output onto the VL-bus LDEV<x>#
signal to which it is connected. This causes AND gate 222
(FIG. 2) to assert LDEVFlf low, which signal is passed
through the VL-bus/PCI-bus bridge 146 to the LDEVO#
signal line and onto the LDEV# input of VL-bus/ISA-bus
core logic chipset 122. The core logic chipset 122 samples
LDEV# on the first rising edge of LCLK following the 20
nanosecond period to determine whether any VL-bus device
has claimed the cycle. Such rising edge is referred to herein
as the VL-bus device bus-claiming deadline, and is relative
to the LCLKrising edge at which ADS# is sampled asserted.
For systems with LCLKs33.3 MHz, the VL-bus device
claiming deadline is typically the first rising edge of LCLK
following the rising edge on which ADS# is sampled
asserted, and for systems in which LCLKs40 MHz, the
VL-bus device claiming deadline is typically the second
rising edge of LCLK following the rising edge in which
ADSA is sampled asserted.

Accordingly, referring again to FIG. 3, the VL-bus device
144, through the AND gate 222, asserts LDEVEF within T21
for 33.3 MHz systems (arrow 308), or within T21 or T22 for
40 MHz systems and above (arrow 310), as indicated online
312. In either case, VL-bus/PCI-bus bridge 146 asserts
LDEVO# to the VL-bus/ISA-bus core logic chipset 122
immediately thereafter as indicated on line 314 (arrows 316
and 318, respectively). (Note that the VL-bus/PCI-bus
bridge 146 is at the same time decoding the address and
cycle definition signals as described elsewhere herein, and
may assert LDEVOff as a result of the decode as well. The
bridge 146 therefore may actually assert LDEVO# before
receipt of LDEVI# as indicated by arrow 315.)
The VL-bus host 102 unasserts (negates) ADSA 306 after

being sampled asserted, i.e. within LCLK cycle T21. The
VL-bus device 144 therefore detects ADSlf negated at the
rising edge which begins T22, and within T22, begins
driving its read data onto the VD lines 204 of VL-bus 104
as indicated on line 320.
The cycle definition signals remain active until

RDYRTN# is sampled asserted on a rising edge of LCLK,
i.e. in LCLK cycle T24 or T25 as indicated by arrows 330
and 331.

After the end of the second T2 state (i.e., in LCLK cycle
T23), the VL-bus device 144 begins asserting LRDY# as
indicated in line 322 for one LCLK cycle. This signal is
detected at the LRDYFlf input of the VL-bus/ISA-bus core
logic chipset 122, which responds by asserting RDYRTN#
on the VL-bus 104 (line 324 and arrow 326 in FIG. 3). For
40 MHz systems and faster, the core logic chipset 122 may
wait until the first rising edge of LCLK following detection
of LRDY# asserted to assert RDYRTN# (arrow 328).

10

15

20

25

30

35

45

50

55

65

12
thereby resynchronizing the ready signals with LCLK. For
33 MHz systems, LRDYI# can be connected directly to
RDYRTNff. The VL-bus host detects RDYRTNff asserted on
its RDY# input, and terminates the VL-bus cycle.
The rising edge of LRDY# in T24 causes the core logic

chipset 122 to unassert RDYRTN# either immediately there
after (arrow 334), or for faster systems, in response to the
first LCLK rising edge following detection of LRDY#
unasserted (arrow 336). The VL-bus device 144 drives the
VL-bus LRDY# signal line to a high logic level for one-half
LCLK cycle following deassertion of LRDY#. and then
floats LRDYff,
The VL-bus device 144 continues to drive data onto the

VD lines 204 until the first LCLK rising edge at which it
detects RDYRTN# asserted (arrow 338 or 340). It also cause
AND gate 222 to de-assert LDEVIf at the same time (arrows
342, 344), and the VL-bus/PCI-bus bridge 146 de-asserts
LDEVO# to the core logic chipset 122 at the same time
(arrows 346, 348).
Thus it can be seen that the WL-bus/PCI-bus bridge 146

does not interfere with VL-bus read accesses to VL-bus
target devices such as 144. The same is true with VL-bus
write accesses to VL-bus target devices, and to VL-bus read
and write accesses regardless of whether the originator is the
VL-bus host 102, the VL-bus/ISA-bus core logic chipset 122
(e.g. acting for an ISA-bus master), or a VL-bus master
device. Note that in the timing diagram of FIG. 3, if no
VL-bus device had asserted its corresponding LDEV<x>#
signal by the VL-bus device claiming deadline, then the
chipset 122 translates the cycle onto the ISA-bus 130 and
returns any read data onto the VD lines 204 of the VL-bus
104.

FIG. 4 is a timing diagram illustrating the operation of the
system of FIGS. 1 and 2 when the target device of a VL-bus
access resides on the PCI-bus 148. The timing diagram of
FIG.4, like that of FIG. 3. has been simplified for clarity of
description. In addition, a system with LCLK s33.3 MHz is
assumed, and it is assumed that the PCI-bus clock is the
same as the VL-bus clock. LCLK, but is treated asynchro
nously.

Referring to FIG. 4, as with FIG. 3, an LCLK signal is
indicated on line 402. One T1 cycle is shown, followed by
nine T2 cycles labeled T21....T29. The VL-bus host 102
drives a cycle definition onto the VL-bus 104 prior to T1 as
indicated on line 404, and asserts ADSfas indicated on line
406. It is assumed that no VL-bus device claims the cycle.
so LDEVIf remains high throughout the VL-bus cycle as
indicated on line 408. Nevertheless, the VL-bus/PCI-bus
bridge 146 asserts LDEVO# to VL-bus/ISA-bus core logic
chipset 122 in response to detection of ADS# asserted at the
beginning of the first T2 cycle. The core logic chipset 122
thus considers the VL-bus cycle as having been claimed by
a VL-bus device, and withholds any translation of the cycle
onto the ISA-bus 130. The VL-bus/PCI-bus bridge 146 also
drives the address from VA lines 202 onto the AD lines 152
of PCI-bus 148 (line 412 in FIG. 4), and drives an appro
priate command onto the CBEff lines of PCI-bus 148 (line
414 in FIG. 4). After a delay for synchronizing to the
PCI-bus clock signal, in T23, VL-bus/PCI-bus bridge 146
asserts FRAMEff on the PCI-bus 148 (line 416 in FIG. 4). It
also asserts the PCI-bus IRDY# signal in T24 (line 418). It
is assumed that only one data phase will occur on the
PCI-bus in response to the present example VL-bus cycle, so
the bridge 146 de-asserts FRAME# in T24.

Prior to the PCI-bus device claiming deadline, the target
PCI-bus device 154 (FIG. 2) claims the PCI-bus cycle by

5,790,831
13

asserting DEVSEL#. The PCI-bus device 154 is assumed to
be a fast device, so as indicated on line 420 (FIG. 4), it
asserts DEVSEL# during T24 in response to detection of
FRAMElf asserted at the rising edge which begins T24. The
bridge 146 releases the address and command from the
PCI-bus AD and C/BEff signal lines, respectively, in
response to the assertion of DEVSEL#, and asserts BEff onto
the C/BE# signal lines. In T2.5, the PCI-bus device 154
drives the read data onto the PCI-bus AD lines 152 and
asserts TRDY# for one clock cycle as indicated on line 422.
The bridge 146 latches the data from AD lines 152 onto the
VL-bus VD data lines 204 as indicated by line 430 and arrow
424 (although initially invalid data may be driven from AD
to VD as early as T22). At the beginning of T26, the
VL-bus/PCI-bus bridge 146 samples TRDY# asserted, and
in response thereto. releases C/BEff and de-asserts IRDY#
(arrows 426 and 428, respectively). The PCI-bus device 154
also releases the AD lines 152 and negates DEVSEL# in
T26.

After another synchronization delay, in T28, the VL-bus/
PCI-bus bridge 146 asserts LRDY# as indicated online 432
for one LCLKcycle. The VL-bus/ISA-bus core logic chipset
122 responds by asserting RDYRTN on the VL-bus 104
(line 434 and arrow 436 in FIG. 4); it de-asserts RDYRTN#
in response to the de-assertion of LRDY# (arrow 438). The
VL-bus/PCI-bus bridge 146 samples RDYRTN# asserted at
the beginning of T29, and in response thereto, negates
LDEVO# to the core logic chipset 122 (arrow 440).

Accordingly, it can be seen that the WL-bus/PCI-bus
bridge translates VL-bus cycles onto the PCI-bus 148 for
response by PCI-bus devices. This is accomplished without
the need for any special signals between the VL-bus/PCI
bus bridge 146 and either the VL-bus host 102 or the
VL-bus/ISA-bus core logic chipset 122. It will be under
stood that the same is true of VL-bus data write cycles, and
VL-bus cycles originated by VL-bus device masters and by
the core logic chipset 122 for an ISA-bus master. Essentially
the VL-bus/PCI-bus bridge appears to each of the VL-bus
devices as a VL-bus target and appears to each PCI-bus
device as the host-bus/PCI-bus bridge. It will also be under
stood that numerous types of PCI-bus transactions are
defined in the PCI-bus specification incorporated above, and
while only one such transaction type is illustrated in FIG. 4,
different situations may result in different PCI-bus transac
tion types as appropriate or desirable.

FIG. 5 is a timing diagram illustrating the operation of the
system of FIGS. 1 and 2 for a VL-bus read access to a device
which resides on the ISA-bus 130 (or to an address to which
no device responds). As with FIGS. 3 and 4, the timing
diagram of FIG. S is simplified for clarity of illustration.
Possible variations, and the timing of various signals not
shown in FIG. 5, can be gleaned from the above
incorporated references. As with FIGS. 3 and 4, the timing
shown in FIG. 5 is the same for a VL-bus master-initiated
cycle, except that it is preceded by a bus arbitration proce
dure.

Referring to FIG. 5, the LCLK signal is illustrated as line
502. Certain signals, such as the VL-bus signals VD and
LDEVI#, and PCI-bus signals AD, C/BE, TRDY#, are
omitted from FIG.5 for clarity. Signal line 504 illustrates the
cycle definition signals on the VL-bus 104, and line 506
illustrates the ADS# signal. The VL-bus host 102 drives the
cycle definition lines and asserts ADS# during the T1 cycle
in order to define a valid VL-bus cycle. At the beginning of
T21, the VL-bus/PCI-bus bridge 146 samples ADS#
asserted, and asserts LDEVO# in response thereto (line 508
and arrow 540). It is assumed that no other VL-bus device

O

15

2

25

30

35

45

50

55

65

14
intends to claim the VL-bus cycle, so LDEVI# (not shown
in FIG. 5) remains high for the entire process of FIG.S.
As with the VL-bus cycle illustrated in FIG. 4. after a

synchronization delay, the VL-bus/PCI-bus bridge 146
asserts FRAMEF during T23 on the PCI-bus 148 as shown
at line 510 in FIG. 5. Again, since only one PCI-bus data
phase is assumed to be desired, the bridge 146 negates
FRAMEF during T24. The bridge 146 also asserts IRDY#
on the PCI-bus 148 during T24 as indicated at line 512 in
F.G. S.

According to the PCI-bus specification, a PCI-bus con
troller can be programmed to expect a PCI-bus device
claiming signal asserted prior to a PCI-bus claiming dead
line which is programmable to be 1, 2 or 3 PC-clock rising
edges after the rising edge at which FRAME# is sampled
asserted. This is true of the bridge 146, and it is assumed that
the bridge 146 has been programmed for the medium
PCI-bus device claiming deadline of two PCI-bus clock
cycles. Such programming was accomplished during system
boot-up, in which the boot-up code surveyed the PCI-bus
devices included in the system and determined that none
required longer than two PCI-bus clock cycles to claim a
PCI-bus cycle; this information was written into the register
address offset 52h(1:0) of the PCI-bus bridge 146.
Accordingly, since no PCI-bus device claims the cycle by
asserting DEVSELF by the LCLK rising edge which begins
T26, (line 514 in FIG. 5), the VL-bus/PCI-bus bridge 146
issues a "master abort". This negates RDY# (arrow 516).
At this point, since the VL-bus/PCI-bus bridge 146 has

asserted LDEVO# to the VL-bus/ISA-bus core logic chipset
122, the chipset 122 will not know that it needs to try finding
the destination device on the ISA-bus 130. One solution
would be to provide additional signals between the VL-bus/
PCI-bus bridge 146 and the core logic chipset 122 in order
to so inform the chipset 122, but this would require a
modification of standard VL-bus/ISA-bus core logic
chipsets such as 122. Accordingly, in the system of FIGS. 1
and 2, the VL-bus/PCI-bus bridge 146, in response to its
failure to detect DEVSELF asserted at the LCLKrising edge
which begins T26, asserts BOFF# in T27 to the VL-bus host
102 (line 518 and arrow 520 in FIG. 5). As indicated on line
S22 and arrow 524, after assertion of BOFF, the VL-busf
PCI-bus bridge 146 asserts LRDY# in LCLK cycle T28 to
cause the termination of the VL-bus cycle. LRDY# is
delayed by one LCLK cycle (programmable to 0, 1 or 2
LCLK cycles) after BOFF# for reasons which will become
apparent. As indicated by arrow 528, the VL-bus controller
in 122 asserts RDYRTNF in response to detection of
LRDY# asserted, and negates RDYRTN# in T29 in response
to the negation of LRDY# in T29 (arrow 530). After the
PCI-bus bridge 146 detects RDYRTN# asserted at the
beginning of LCLK period T29, it negates LDEV# in LCLK
period T29 as indicted by arrow 534. It also negates BOFF#
in LCLK period T210 as indicated by arrow 532. The delay
from RDYRTN# to negation of BOFF#, like the delay from
BOFF# to LRDY#, is programmable in PCI-bus bridge 146
in order to be assured that the host CPU has itself received
the BOFF# signal despite any time delays in a host-bus/VL
bus bridge in VL-bus host 102.
At the first LCLKrising edge in which BOFFF is sampled

negated, the WL-bus host 102 repeats the WL-bus cycle
which was aborted by the PCI-bus bridge 146. It does this
by starting a new T1 cycle in which it once again drives the
cycle definition signals on the VL-bus 104 as indicated on
line 504 in FIG.S. and asserts ADSi as indicated online 506
in FIG. 5 (arrows 536 and 538, respectively). The VL-bus
host 102 negates ADS# in the following LCLK cycle and

5,790,831
15

withdraws the cycle definition signals in due course. Unlike
the initial assertion of the VL-bus cycle, however, the
VL-bus/PCI-bus bridge 146 does not assert LDEVO# in
response to the repetition of the cycle, nor does it assert any
signals on the PCI-bus 148. Instead, the VL-bus/ISA-bus
core logic chipset 122 performs its usual duties of translating
the cycle to the ISA-bus 130 and returning any read data
back to the VL-bus WD lines 204. If no ISA-bus device
responds to the access, then as in a conventional system, the
data which the chipset 122 returns to the VL-bus VD lines
204 will be undefined. The chipset 122 then assert
RDYRTN# for one LCLK cycle to end the VL-bus cycle.
The timing relationship between the PCI-bus bridge's

assertion of LRDY# and BOFF# (lines 522 and 518 in FIG.
5) solves a problem which could otherwise preclude the use
of LDEVOff and BOFFF to add PC-bus 148 to a conven
tional system without modifying the core logic chipset 122.
In particular, if the PCI-bus bridge 146 were to assert
BOFF# without asserting LRDY#, then the VL-bus control
ler in VL-bus/PCI-bus core logic chipset 122 would not
know one VL-bus cycle has ended and a new VL-bus cycle
will soon begin, since the chipset 122 does not necessarily
receive BOFFlf. Other VL-bus devices would have the same
problem, since they too do not necessarily receive BOFF#.
VL-bus devices need only observe the RDYRTN# line (and
BRDY# with BLAST#) to determine that a VL-bus cycle
has ended, and RDYRTN will not occur unless LRDYif is
asserted first. On the other hand, the PCI-bus bridge 146
cannot assert LRDY# without asserting BOFF#, since
LRDY# causes the VL-bus controller in core logic chipset
122 to assert RDYRTNf, which is connected to the VL-bus
host 102 RDY# input. Thus the VL-bus host 102 would
consider the VL-bus cycle terminated successfully, and
would have no reason to repeat it. Thus the PCI-bus bridge
146 needs to assert both BOFFF and LRDY#.

If the bridge 146 were to assert LRDY# before asserting
BOFF#, then once again, the VL-bus controller in chipset
122 would assert RDYRTN and the VL-bus host 102 would
receive RDY# possibly before it receives BOFF#. In this
case the VL-bus host 102 would consider the original
VL-bus cycle terminated successfully, begin a subsequent
(non-repeat) VL-bus cycle, and apply the back-off to the
subsequent cycle instead of the original cycle. On the other
hand, if the PCI-bus bridge 146 asserts LRDY# too late,
such that the core logic chipset 122 does not assert
RDYRTN# until after BOFF# has been negated at the input
of the host, then the VL-bus host 102 might repeat the
back-offed VL-bus cycle before the VL-bus devices, includ
ing that in the VL-bus/ISA-bus core logic chipset 122, can
reset their VL-bus state machines and prepare to detect it.

According to an aspect of, the invention, therefore, the
PCI-bus bridge 146 does not assert LRDY# until after it has
asserted BOFF#. The 80486 and Pentium-compatible pro
cessors ignore their RDY# input while BOFF# is being
asserted. Advantageously, the PCI-bus bridge 146 delays
assertion of LRDY# by a number of LCLK cycles in order
to ensure that the microprocessor itself has had an oppor
tunity to sample BOFF# asserted before (or no later than the
LCLKrising edge that) it detects an active RDY# from the
RDYRTN# line. This delay, which is programmable in the
PCI-bus bridge 146, accommodates any timing delays which
might occur between the BOFFB output of PCI-bus bridge
146 and the BOFF# input of the microprocessor itself.
Additionally, the PCI-bus bridge 146 does not negate
BOFF# until after it detects RDYRTNA asserted. As previ
ously mentioned, advantageously the PCI-bus bridge 146
can be programmed to delay negation of BOFF# by one or

5

10

15

20

25

30

35

45

50

55

65

16
two additional LCLK cycles in order to ensure that BOFF#
is still asserted at the host microprocessor BOFF# input
when the microprocessor's RDY# input is asserted.
The timing diagram of FIG. 5 also describes a VL-bus

master-initiated access to an ISA-bus device. VL-bus
devices are not required to receive BOFF#, but they do
receive a WBACK# signal. In a conventional system,
WBACK# is typically connected to the HITM# output of a
Pentium-based WL-bus host. The Pentium contains an
on-chip write-back cache memory, and it asserts HTTM#
whenever it has an internal cache miss and a write-back to
system memory is required. When a bus master detects
HTM# asserted (e.g. via a WBACK# input), the bus master
is required to immediately abort its cycle and float all
address data and control signals that it drives as master.
When the device later samples WBACK# inactive, the
device may restart the bus cycle with a new ADS#.

Conveniently, this required operation of a VL-bus master
in response to WBACK# is the same as the operation of the
VL-bus host in response to BOFF#, Thus VL-bus masters
can be accommodated in a system incorporating the
invention, by coupling the BOFFB output of the PCI-bus
bridge 146 to the WBACK# inputs of each such device. In
systems having a write-back cache, the BOFFB signal can
be ANDed with HTM# such that either HTM# or BOFFB
will force the VL-bus master to perform a backoff function.
As previously mentioned, some VL-bus implementations

are built around a host microprocessor whose data path is
twice as wide as the VD lines 204 on VL-bus 104. Such is
the case for systems built around the Intel Pentium
microprocessor, for example. In order to accommodate these
arrangements, a conventional WL-bus system includes a
host-bus/VL-bus bridge (not shown) within the VL-bus host
102 of FIG. 2. Such a bridge will assert two accesses on the
VL-bus in response to each access on the hostbus if the data
path on the hostbus is twice as wide as that on the VL-bus
104. Described more generally, since it is also possible that
a future system could be built around a microprocessor
whose data path is four times as wide as the VD lines 204,
or more, such bridge will assert a "plurality" of accesses on
the VL-bus 104 in response to each access on the host bus
(not shown).

In order to accommodate a situation where the host-bus
data path is twice as wide as the VL-bus data path, the
WL-bus/PCI-bus bridge 146 uses its BE4# input pin to
determine whether two VL-bus "sub-cycles" are being
issued for each host-bus cycle. In systems whose CPUs have
only a 32-bit wide data bus, such as 486 systems, the BEAf
input pin is strapped high. In Pentium systems, the BE4
input of the bridge 146 is connected to the BE4# address
lead of VL-bus 104. If BEAF is high in a particular cycle,
then only one sub-cycle will occur. If BE4# is low in the
particular cycle, then two sub-cycles will occur. In the latter
case the VL-bus/PCI-bus bridge 146 will assert LDEVO#
and subsequently LRDY# for both of the sub-cycles, but will
assert BOFF# only for the last such sub-cycle. On repetition.
the VL-bus/PCI-bus bridge 146 blocks assertion of
LDEVO# for both sub-cycles of the host bus cycle repeti
tion. In this manner, the host-bus/VL-bus bridge (not shown)
also need not be modified in any way to accommodate the
addition of a VL-bus/PCI-bus bridge such as 146.

In the computer system illustrated in FIGS. 1 and 2, any
ISA-bus device, PCI-bus device or VL-bus device, in addi
tion to the VL-bus host 102, can be a master for any
particular access. The target for such accesses can be main
memory (not shown in FIG. 2), or any ISA-bus device,

5,790,831
17

PCI-bus device, or VL-bus device. The WL-bus/PC-bus
bridge therefore accommodates a wide variety of different
kinds of accesses, only some of which have been described
in detail with respect to FIGS. 3, 4 and 5. Such descriptions
are sufficient for an understanding of the invention, but for
completeness, an overview of the remainder of the cycle
permutations is included in Appendix E.

FIGS. 6 through 10 are schematic diagrams of pertinent
portions of the VL-bus/PCI-bus bridge 146 which control
various signals used for implementing the invention. While
the descriptions above and in the appendices are sufficient to
enable implementation of the invention, descriptions at the
schematic level for some aspects are provided for those
interested in more details about an example implementation.

FIG. 6 is a schematic diagram for circuitry which gener
ates the LDEVOB output of the PCI-bus bridge 146. It
comprises a 3-input NOR gate 602 which generates such a
signal, the three inputs of which receive a QN output of a
D-flip-flop 604, a DRDEVLO signal, and an LDEVI signal.
The LDEVI signal is the inverse of the LDEVIB input of
PCI-bus bridge 146. The DRDEVLO signal is generated by
a 5-input NOR gate 606, the five inputs of which receive
signals labeled: SAMPLEB, H2PENB, BLOCK, ISADEV
and HMEMCYC. The SAMPLEB signal is generated by
gates 608 in response to WS, T21B and T22B signals
according to the formula:

WS is a programmable signal which is asserted high to
indicate that the LCLK signal is operating at a high enough
frequency such that the local device claiming deadline is to
be delayed by one wait state. T21B is a signal generated by
means not shown in the PCI-bus bridge 146, which is
asserted low at the beginning of T21 (see FIG. 3, for
example) and returns high at the beginning of T22. The
T22B signal is asserted low by means not shown in the
PCI-bus bridge 146 at the beginning of T22, and returns high
at the beginning of T23.
The H2PENB signalis generated by logic 610 in response

to the following signals from the VL-bus 104 (FIG.2): WR,
MIO, and DC. The formula to produce H2PENB is:

H2PENB-WRMODCO.C.

The BLOCK signal is generated by circuitry described
below with respect to FIG. 10, and the ISADEV signal is
generated by circuitry (not shown) which, based on a
positive decode of the cycle definition signals on VL-bus
104 asserts ISADEV when the intended recipient of the bus
cycle is known to reside on the ISA-bus 130 (FIG. 2). The
HMEMCYC signal is generated by NOR gate 612, the two
inputs of which receive an HMEMB signal and an
ENLDEVO signal, respectively. The HMEMB signal cor
responds to the LMEMF input of the PCI-bus bridge 146
(see Appendix E) or, depending on a register bit selection, a
positive decode of the VL-bus cycle definition signals. If the
PCI-bus bridge 146 is programmed to perform such a
positive decode, then circuitry (not shown) in PCI-bus
bridge 146 asserts HMEMB low when the destination of the
cycle is known to be host memory on the host memory bus
or VL-bus 104. ENLDEVO is a register bit which is
programmable to enable (when asserted high) or disable
(when low) the use of HMEMB in the determination of
whether to assert LDEVOB.
The flip-flop 604 has a clock input connected to receive

CLK, which is the LCLK signal on VL-bus 104. The

10

15

25

35

45

55

65

18
flip-flop 604 also has a D input connected to receive the
output of logic 614, which generates the D input according
to the formula:

D-DRDEVLO-HORST)-RDYB.

In this formula, Q is the Q output of flip-flop 604, RST is a
chip-wide reset signal, and DRDEVLO is a signal generated
by NOR gate 606 discussed above. RDYB is generated by
logic circuitry 616 according to the inverse of the formula:

RDY-BRDY-BLAST+RDYBOFFRDY--Other,

where BRDY and BLASTI are the VL-bus BRDY and
BLAST# signals, respectively; RDYI is connected to the
VL-bus RDYRTN# signal line; and "Other" represents other
ready signals not important for an understanding of the
present invention. BOFFRDY is given by the formula:

BOFFRDY-(FBOLRDY+BOFFP)-BOFFEN,

where FBOLRDY and BOFFP are both generated by cir
cuitry described below with respect to FIGS. 9 and 7.
respectively, and BOFFEN is a register bit which enables the
entire back-off process when set.

In operation, the circuitry of FIG. 6 asserts LDEVOB low
in response to a logic high value on any of the three inputs
of NOR gate 602. Thus due to the LDEVI input, it can be
seen that whenever any VL-bus device asserts one of the
LDEV<xc-F signal lines in FIG. 2, the LDEVI# signal
provided to the PCI-bus bridge 146 will pass therethrough to
the LDEV# input of the VL-bus/ISA-bus core logic chipset
122. The other circuitry in FIG. 6 also will activate LDE
VOB in most cases, so LDEVOB will remain asserted until
the VL-bus device unasserts LDEV<x># or until the flip
flop 604 QN output goes low, whichever occurs later.
The remainder of the circuitry of FIG. 6 operates by

asserting DRDEVLO before the VL-bus device claiming
deadline, to thereby assert LDEVOB, and by maintaining
LDEVOB asserted with the flip-flop 604 until an appropriate
ready signal has been received by the PCI-bus bridge 146.
More specifically, NOR gate 606 will assert DRDEVLO
only when all five of its inputs are low. The SAMPLEB
signal is a temporal qualifier on the assertion of DRDEVLO.
since SAMPLEB is asserted low only during T22 (for
systems with LCLK operating at frequencies greater than or
equal to 40 MHz) or during T21 and T22 (for systems
operating at LCLK frequencies less than or equal to 33
MHz). The inverse of SAMPLEB is given by:

SAMPLE-WS-T21)+T22

Thus if NOR gate 606 asserts DRDEVLO at all, it unasserts
DRDEVLO at the beginning of T23.
The H2PENB input of NOR gate 606 is asserted low

unless the cycle definition signals on VL-bus 104 indicate
that the present cycle is an interrupt acknowledge cycle. a
halt/special cycle, or a reserved cycle, all as defined at page
7 of the above-incorporated “i486 MICROPROCESSOR"
Databook. These are VL-bus cycles which are known in
advance not to be destined for any device residing on the
PCI-bus bridge 148.
The BLOCK signal input of NOR gate 606 will block

assertion of DRDEVLO only if the current VL-bus cycle
definition is a repeat of a prior VL-bus cycle for which the
PCI-bus bridge 146 asserted BOFF# to the VL-bus host 102.
In Pentium-based systems, BLOCK remains asserted for the
repetition of both sub-cycles in a repeat of a BOFF#'d host
cycle. The BLOCK signal therefore prevents the PCI-bus

5,790,831
19

bridge 146 from claiming the repetition of a VL-bus cycle
which the PCI-bus bridge 146 has already attempted on the
PCI-bus 148. The circuitry which generates BLOCK is
described below with respect to FIG. 10.
The ISADEV signal of NOR gate 606 is asserted high on

a positive decode indicating that the target of the current
VL-bus cycle is already known to reside on the ISA-bus 130.
The ISADEV signal thus prevents the PCI-bus bridge 146
from claiming the cycle and trying it on the PCI-bus first.
Note that another embodiment of the invention need not
prevent this attempt, but rather can rely on the BOFF#
procedures described herein for the cycle eventually to reach
the SA-bus 130.
The HMEMCYC signal is asserted high on a positive

decode of the VL-bus cycle, performed either inside or
outside the PCI-bus bridge chip 146, to indicate that the
access is to host memory. The positive decode, if performed
internally to the PCI-bus bridge 146, is performed
identically, with a parallel set of configuration registers, to
that in the VL-bus/ISA-bus core logic chipset 122. The
PCI-bus bridge 146 further includes a register bit
ENLDEVO which can be used to permit NOR gate 606 to
assert DRDEVLO even if the positive decode indicates that
the VL-bus cycle destination is in fact host memory; an
attempt by the PCI-bus bridge 146 to claim such a cycle by
asserting LDEVO# would not have any effect in most
systems because most VL-bus/ISA-bus core logic chipsets
ignore their LDEV# inputs when their own internal decode
indicates that the VL-bus cycle is to host memory.
Thus it can be seen that the circuitry of FIG. 6 will assert

LDEVOB in either the T21 or T22 states of the VL-bus host
102, whichever is appropriate, unless the current VL-bus
cycle is a repeat of a prior VL-bus cycle which was subject
to BOFF#, and unless it is known in advance that the target
of the VL-bus cycle is not on the PCI-bus 148. The latter
condition, which may be omitted in whole or in part in a
different embodiment, occurs in the present embodiment
when it is known in advance that the cycle is a special kind
of cycle defined only for targets which do not reside on the
PCI-bus, if at all (H2PENB), when the target is known in
advance to reside on the ISA-bus 130 (ISADEV), and when
the VL-bus cycle is known in advance to be destined for host
memory.
When DRDEVLO is asserted, its inverse is written into

D-flip-flop 604 on the next LCLK rising edge in order to
maintain a logic 1 input of NOR gate 602 from the QN
output of flip-flop 604. The logic 614 repeatedly rewrites
this value into flip-flop 604 until either a system-wide reset
occurs, or RDYB is asserted low by circuitry 616. Circuitry
616 asserts RDYB low upon receipt of RDYRTN# asserted
by the VL-bus controller 122. It asserts RDYB low also
when it detects both BRDYlf and BLAST asserted on
VL-bus 104. Thus the circuitry of FIG. 6 maintains LDE
WOB asserted until the rising edge of LCLK which follows
completion of the VL-bus cycle which the circuitry claimed
by asserting LDEVOB. Note that as described in more detail
below, if the PCI-bus bridge 146 did translate the cycle onto
the PCI-bus bridge 148, then the RDYRTN# signal will be
asserted by the VL-bus controller 122 only after having
detected LRDY# asserted by the PCI-bus bridge 146. If the
circuitry of FIG. 6 had asserted LDEVOB only because
another VL-bus device had caused the assertion of LDEVI,
then the cycle will have been terminated only in response to
ready signals from the VL-bus device which had claimed the
cycle.
The logic circuitry 616 asserts RDYB also in response to

a pulse on FBOLRDY or BOFFP, but only if the PCI-bus

5

O

15

25

30

35

45

SO

55

65

20
bridge 146 has been programmed to defeat the back-off
feature (BOFFEN=0). FBOLRDY and BOFFP each carry a
high-going pulse for one LCLK cycle in response to a
master-abort on the PCI-bus 148, although the FBOLRDY
pulse occurs only if the current VL-bus cycle is the first
sub-cycle of a Pentium cycle, and the BOFFP pulse occurs
only if the current VL-bus cycle is anything other than the
first sub-cycle of a Pentium cycle. These pulses occur only
after the PCI-bus bridge 146 has translated a cycle onto the
PCI-bus 148, and failed to detect a PCI-bus device claiming
signal prior to the PCI-bus device claiming deadline.
Accordingly, if the back-off feature of PCI-bus bridge 146
has been disabled, the logic circuitry 616 causes the release
of LDEVO# if the PCI-bus bridge 146 attempted, but failed,
to find a target device on the PCI-bus 148. In this case, with
BOFFEN=0, it is then up to external circuitry (not shown)
to handle the VL-bus cycle.

FIG. 7 is a schematic diagram of circuitry in the PCI-bus
bridge 146 which generates the BOFFP signal used in the
circuitry of FIG. 6. FIG. 7 also shows circuitry which
generates an LBOLRDY signal, and this will be described
subsequently. Referring to FIG. 7, the BOFFP signal is the
output of a NOR gate 702, one input of which is connected
to the Q output of a D-flip-flop 704, the D input of which is
connected to the Q output of a flip-flop 706 via an inverter
708. The second input of NOR gate 702 is connected to the
Q output of flip-flop 706. Both flip-flops 704 and 706 are
clocked by the CLK signal which is connected to the VL-bus
LCLK line.
The D input to flip-flop 706 connected to the output of a

4-input NAND gate 710, the inputs of which are connected
to signals labeled RSTB, TNH, LASTDW and SMSABORT.
The RSTB signal is the system-wide reset signal as previ
ously described. TNH indicates the state of the state machine
in PCI-bus bridge 146 which controls PCI-bus cycles. While
the details of this state machine are unimportant for an
understanding of the present invention. it will be useful to
understand that the state machine is in state TNH (TNH=1)
while the PCI-bus bridge is controlling a PCI-bus cycle, and
is in a TH state (TH=1) while a VL-bus cycle is in process
but the PCI-bus bridge 146 will not translate it onto the
PCI-bus. The LASTDW signal is generated by circuitry
described below with respect to FIG. 8, and basically is
asserted during all VL-bus cycles in non-Pentium-based
systems, and only during the last data word sub-cycle in
Pentium-based systems. Thus LASTDW indicates that the
present VL-bus cycle is the last (or only) sub-cycle of a
32-bit or 64-bit access. The SMSABORT signalis generated
by circuitry described below with respect to FIG. 9. Essen
tially it is a PCI-bus master-abort signal, synchronized to the
VL-bus LCLK if necessary.
The flip-flop 704 and 706, together with the inverter 708

and NOR gate 702, produce a high-going pulse on the
BOFFP in response to a high-to-low transition on the output
of NAND gate 710. The output of NAND gate 710 will go
low only when all of its inputs are high. Thus it can be seen
that the circuitry in FIG. 7 will generate a high-going
BOFFP pulse, for one LCLK cycle, in response to a master
abort which occurs while the PCI-bus bridge 146 is trans
lating the last VL-bus cycle of a 32-bit or 64-bit access, onto
the PCI-bus 148. As previously mentioned, the circuitry
does not generate a pulse on BOFFP if the system is
Pentium-based, and the currentVL-bus cycle is only the first
sub-cycle of a Pentium access. (Note that while reset signals
are incorporated throughout the schematic diagrams set forth
herein, they are asserted only in unusual situations not
relative to an understanding of the present invention. Thus,

5,790,831
21

while their effect can be determined from the schematics, it
is unnecessary to describe such effects as well. Hereinafter.
reset signals will always be assumed to be unasserted.)
The LASTDW signalis generated by circuitry 802 in FIG.

8 according to the formula:

LHA2 is the 2 address bit on the VL-bus 104, and therefore
indicates whether the current VL-bus cycle is to an even- or
odd-numbered data word address. In non-Pentium-based
systems. VL-bus cycles can be addressed to any 32-bit data
word. But in Pentium-based systems, a 64-bit access always
appears on a 32-bit VL-bus as an access to an even
numbered data word followed by an access to an odd
numbered data word. Thus for Pentium-based systems only,
LHA2 indicates which sub-cycle is currently taking place on
the VL-bus in response to a 64-bit access.
LBEA is an input pin which, when asserted, indicates that

the system is a Pentium-based system. Thus the circuitry 802
asserts LASTDW whenever the system is not a Pentium
based system (LBEA=1), and if it is a Pentium-based system,
asserts LASTDW only during the second sub-cycle of a
64-bit access.
The SMSABORT signal used in the circuitry of FIG. 6 is

generated by circuitry 902 in FIG. 9. Circuitry 902 includes
an inverting multiplexer 904, the output of which produces
SMSABORT. The multiplexer 904 has a '0' input, a '1' input
and a select input S, the last of which is connected to receive
an ASYNC signal from a register bit. The '0' input of
multiplexer 904 is connected to the output of a NAND gate
906, the three inputs of which are connected to receive TNH,
MSABORT and an ATSPACE signal. The TNH signal has
been described previously, and the MSABORT signal is
generated by the PCI-bus bridge 146 in response to the
failure of any PCI-bus device to claim a cycle on the
PCI-bus 148 prior to the PCI-bus device claiming deadline.
The ATSPACE signal is produced by circuitry 908 according
to the formula:

ATSPACE-LMIO-LT64K)+(LMIO-ATMEM),
where LMO is a latched version of the VL-bus M/Off
signal. ATSPACE is asserted for VL-bus I/O cycles to an
address within the 64 k I/O memory space, and for VL-bus
memory cycles to an address within the 16-megabyte
memory address space which can be supported on a standard
ISA bus. (In an EISA implementation, the 16-megabyte
limitation would be omitted since the EISA-bus supports a
full 4GB of memory address space.) Thus ATSPACE is high
for accesses which could possibly be directed to devices
residing on the ISA-bus 130; more intuitively, if ATSPACE
is low, then the current VL-bus cycle cannot be directed to
a device on the ISA-bus 130,
The output of NAND gate 906, in addition to being

connected to the "0"input of multiplexer 904, is also con
nected to one input of a 2-input NAND gate 910, the other
input of which is connected to the output of a 3-input NAND
gate 912. The output of NAND gate 910 is cross-coupled to
one of the inputs of NAND gate 912. The other two inputs
of NAND gate 912 are connected to receive RSTB and a
ready signal RDYB previously described with respect to
FIG. 6. The output of NAND gate 912 is connected to the D
input of a flip-flop 914 which is also clocked by LCLK. The
output of flip-flop 914 is connected to the '1' input of
multiplexer 904.
The circuitry 902 operates in either a synchronous mode

or an asynchronous mode, depending on the programming

10

15

20

25

30

35

45

50

55

65

22
of register bit ASYNC, Basically, if the clock signal on the
VL-bus and the PCI-bus are the same, then ASYNC=0 and
multiplexer 904 selects the output of NAND gate 906
directly for driving the SMSABORT signal. If the two
clocks are asynchronous. either because they operate at
different speeds or because clock skew considerations sug
gest that re-synchronization be performed, the VL-bus host
102 will have programmed ASYNC=1. In this situation,
multiplexer 904 selects the LCLK-synchronized output of
flip-flop 914 to drive SMSABORT. Essentially cross
coupled NAND gates 910 and 912 latch the signal output of
NAND gate 906, and flipflop 914 synchronizes the result
with the VL-bus LCLK signal. The latch is cleared when
circuitry 616 (FIG. 6) asserts RDYB. indicating either
completion of the WL-bus cycle or, if the back-off feature of
PCI-bus bridge 146 is disabled, an appropriate time to clear
SMSABORT.
Thus circuitry 902 asserts SMSABORT whenever the

output of NAND gate 906 goes low. This occurs only when
all three inputs of NAND gate 906 are high, thereby requir
ing (1) that a master abort have occurred on the PCI-bus 148
(MSABORT=1); (2) that the VL-bus cycle not be to a
memory or I/O address which clearly cannot reside on the
ISA- bus 130 (ATSPACE=1); and (3) that the PCI-bus
bridge 146 presently be translating a cycle onto the PCI-bus
148 (TNH=1) (i.e. SMSABORT will not be asserted if the
bridge 146 is not acting as the PCI-bus master).
The FBOLRDY signal, the inverse of which is used in

FIG. 6, is generated by circuitry 916 in FIG. 9. Circuitry 916
includes a pulse generator comprising D flip-flops 918 and
920 separated by inverter 922, and 4-input NOR gate 924.
The QN outputs of flip-flops 918 and 920 are connected to
respective inputs of NOR gate 924. the other two inputs of
which are connected to receive LASTDW (previously
described) and the inverse of TNH (previously described). It
can be seen that if LASTDW=0 and TNH=1, then circuitry
916 will produce a high-going pulse for one LCLKperiod on
FBOLRDY, in response to a high-to-low transition of
SMSABORT. The high-going pulse on FBOLRDY will be
prevented if TNH=0, indicating that any PCI-bus cycle
which resulted in a master-abort was not generated by
PCI-bus bridge 146. The high-going pulse on FBOLRDY
will be prevented also if LASTDW=1, which occurs for all
VL-bus cycles except for the first sub-cycle of a 64-bit
Pentium access. Thus considering the circumstances under
which circuitry 902 generates SMSABORT, circuitry 916
will produce a high-going pulse on FBOLRDY only in
response to a master-abort on the PCI-bus 148. occurring
during a PCI-bus cycle originated by PCI-bus bridge 146
(TNH=1) in response a VL-bus cycle which constitutes the
first subcycle of a Pentium-based 64-bit access.

Circuitry 804 of FIG. 8 generates the BOFFB signal for
driving the BOFF# input of VL-bus host 102. Referring to
FIG. 8, BOFFB is produced by a 2-input NAND gate 806.
one input of which is connected to receive the register
programmable BOFFEN signal previously described. The
other input of NAND gate 806 is connected to the Q output
of a D-flip-flop 808 clocked by LCLK. The D input of
flip-flop 808 is driven by circuitry 810 according to the
formula:

D-(TNHCPURDYLASTDw.SMSABORT+(QRSTCPURDY).
All signals in this formula have been previously described
except Q and CPURDY. Q is the output of flip-flop 808, and
CPURDY is the output of circuitry 812 (FIG. 8), comprising
sequential D-flip-flops 814 and 816 and 4:1 multiplexer 818.
The input to the circuitry 812 is the RDYI signal, which is
connected to receive RDYRTNff from the WL-bus controller
in 122.

5,790,831
23

The two select inputs of multiplexer 818 are connected to
receive two register bits LRDYDL0 and LRDYDL1. In a
system with no bridge between the host CPU and the VL-bus
104, the LRDYDL0 and LRDYDL1 signals (collectively,
the LRDYDL signals) would be programmed such that
multiplexer 818 passes RDYRTN# directly through to
CPURDY. In systems which include a host-bus/VL-bus
bridge, the LRDYDL signals can be programmed to have
multiplexer 818 pass to CPURDY either the Q output of
flip-flop 814 or the Q output offlip-flop 816. These represent
versions of RDYRTN# delayed by one and two LCLK
cycles, respectively. Thus by proper programming of the
LRDYDL register bits, the circuitry 812 asserts CPURDY
only after it is certain that the RDYRTN# signal on VL-bus
104 has reached and been detected by the host CPU itself on
its RDY# input.

In the operation of circuitry 804, referring to the above
formula for the D input offlip-flop 808, the NAND gate 806
will never assert BOFFB unless the back-off feature of
PCI-bus bridge 146 is enabled (BOFFEN=1). If it is enabled,
then the circuitry will assert BOFFB when the first term of
the above formula is true. It will hold BOFFB asserted until
both terms of the above-formula are false-usually the
second term will be true for the longest period of time. The
first term will be true in response to a master-abort on the
PCI-bus 148 (SMSABORT=1) which was controlled by the
PCI-bus bridge (TNH=1) in response to either the only
sub-cycle of a 32-bit access or the last sub-cycle of a
Pentium 64-bit access (LASTDW=1). CPURDY must also
be negated, but this is always the case at the time of
SMSABORT. The circuitry 804 will hold D asserted due to
the second term of the above formula, until CPURDY is
asserted to indicate that RDYRTN# has already reached the
host CPU.
As previously described and as described in more detail

with reference to schematics below, the assertion a by
PCI-bus bridge 146 of LRDY# to terminate the VL-bus
cycle in the view VL-bus devices, must reach the host CPU
neither before nor after BOFFlf in order to ensure that the
CPU will ignore it. The VL-bus controller 122 generates the
signal (RDYRTN#) which drives the RDY# input of the
CPU for one LCLK cycle, in response the PCI-bus bridge's
assertion of LRDY#. Thus by maintaining BOFFB asserted
until 0, 1 or 2 LCLK cycles (as appropriate) after the
PCI-bus bridge 146 detects RDYRTN# asserted, circuitry
804 ensures that the BOFF# input of the host CPU will still
be active when the host CPU receives an active RDY.
The LRDYOB signal output of the PCI-bus bridge 146,

which drives the LRDY# line of VL-bus 104, is generated by
circuitry 926 in FIG. 9, according to the inverse formula:

The circuitry 926 will assert LRDYOB in response to any
one of several readies. In particular, it will assert LRDYOB
when a PCI-bus-bridge-originated PCI-bus cycle terminates
normally (H2PLRDYB=0), as well as when any of several
other readies are received (collectively called "Others"). If
the back-off feature is enabled (BOFFEN=1), then circuitry
926 asserts LRDYOB also in response to a pulse on either
FBOLRDY or LBOLRDY. FBOLRDY, as previously
explained, carries a pulse in response to SMSABORT only
if the current VL-bus cycle, which the PCI-bus bridge 146
attempted on the PCI-bus 148 prior to master-abort, was the
first sub-cycle of a Pentium 64-bit access. Like BOFFP,
described above, LBOLRDY carries a pulse in response to
SMSABORT only if the current VL-bus cycle, which the
PCI-bus bridge 146 attempted on the PCI-bus 148 prior to

10

15

20

25

35

45

50

55

65

24
master-abort, was the only sub-cycle of a non-Pentium
32-bit access or the last sub-cycle of a Pentium 64-bit
access. LBOLRDY is generated from BOFFP by circuitry
712 in FIG. 7, which merely delays the BOFFP pulse by 0.
1 or 2 LCLK cycles depending the programming of the
LRDYDL bits. By delaying LBOLRDY in this manner, the
PCI-bus bridge 146 ensures that for VL-bus cycles in which
BOFF# is asserted to the host CPU, the RDYRTN# signal
will not reach the CPU's RDY# input any earlier than
BOFF#.
As can be seen, for non-Pentium systems, PCI-bus bridge

146 will generate both BOFF# and LRDY# when its attempt
to find a target device on the PCI-bus 148 fails. In a
Pentium-based system, the PCI-bus bridge 146 will assert
LRDY# in both such sub-cycles, but will assert BOFF# only
in the last sub-cycle of the Pentium 64-bit access.

FIG. 10 illustrates circuitry which produces the BLOCK
signal used in FIG. 6 to block DRDEVLO when the VL-bus
host 102 repeats a cycle which has been subject to BOFF#.
As shown in FIG. 10, BLOCK is produced by 2-input
NAND gate 1002, one input of which is connected to receive
a BLOCK2B signal, and the other of which is connected to
the output of an OR gate 1004. One input of OR gate 1004
is connected to the output of logic 1006, which asserts its
output low according to the formula:

S1006-(T21+T22)-SAMECYC.

SAMECYC is a signal generated by circuitry (not shown) in
the PCI-bus bridge 146 which indicates that the current
VL-bus cycle definition signals match those previously
latched for the VL-bus which is subject to the BOFF#. For
Pentium-based systems, SAMECYC is asserted on both
sub-cycles of a Pentium 64-bit access.
The other input of OR gate 1004 is connected to the QN

output of a D-flip-flop 1008, the D input of which is
connected the output of circuitry 1010 which drives D
according to the formula:

D-BOFF+(QRSTUNBLOCK).

UNBLOCK is the QN output of a D flip-flop 1012, the D
input of which is connected to the output of a 3-input NOR
gate 1014. The three inputs of NOR gate 1014 are connected
to receive RSTBTH and SAMECYC.
The BLOCK2B signal is the Q output of a D flip-flop

1016, the D input of which is connected to the output of
logic 1018 implementing the inverse of the formula:

D-CTH-LBE4-LHA2BOFFEN-SAMECYC) BLOCK2H(TH+
LHA2). BLOCK2RST.

In operation, NAND gate 1002, in combination with OR
gate 1004, asserts BLOCK whenever BLOCK2B goes low
and whenever both the output of circuitry 1006 and the QN
output of flip-flop 1008 are low. Essentially, the QN output
of flip-flop 1008 goes low when BOFFB is asserted, and
remains low until flip-flop 1012 asserts UNBLOCK Flip
flop 1012 asserts UNBLOCK when the cycle repetition
appears. Circuitry 1006 temporally qualifies BLOCK by
allowing the QN output of flip-flop 1008 to pass through OR
gate 1004 only during T21 and T22 of the cycle repetition.

Since flip-flop 1008 is cleared when the cycle repetition
appears, its QN output is no longer low during the second
sub-cycle of a Pentium-based 64-bit access. In this situation,
BLOCK2B is low. Referring to the above formula for the D
input of flip-flop 1016, it can be seen from the first term that
a logic 0 will be written into the flip-flop on the first

5,790,831
25

sub-cycle (LHA2=0) of the cycle repetition (SAMECYC-1)
of a Pentium-based (LBEA=1) host memory cycle (TH=1) in
a system where the back-off feature of PCI-bus bridge 146
is enabled (BOFFEN=1). Thereafter, since BLOCK2=1, the
second term of the formula will control the writing of a logic
1 into the flip-flop 1016. Specifically, the circuitry 1018 will
maintain BLOCK2B=0 until the end of the second (LHA2=
1) host memory (TH=1)VL-bus cycle of the Pentium 64-bit
acCSS

Thus the circuitry of FIG. 10 will correctly block assertion
by the PCI-bus bridge 146 of LDEVO# for the only sub
cycle of the repetition of a BOFF#'d non-Pentium
originated access, and for both sub-cycles of a repetition of
a BOFF'd Pentium 64-bit access.
As used herein, a given signal or event is "responsive" to

a predecessor signal or event if the predecessor signal or
event influenced the given signal or event. If there is an
intervening processing element or time period, the given
event or signal can still be "responsive" to the predecessor
signal or event. If the intervening processing element com
bines more than one signal or event, the signal output of the
processing element is considered "responsive" to each of the
signal or event inputs. If the given signal or event is the same
as the predecessor signal or event, this is merely a degen
erate case in which the given signal or event is still consid
ered to be "responsive" to the predecessor signal or event.
The foregoing description of preferred embodiments of

the present invention has been provided for the purposes of
illustration and description. It is not intended to be exhaus
tive or to limit the invention to the precise forms disclosed.
Obviously, many modifications and variations will be appar
ent to practitioners skilled in this art. For example, adapta
tions will be apparent for using the invention with an EISA
bus instead of an ISA bus. The embodiments described
herein were chosen and described in order to best explain the
principles of the invention and its practical application,
thereby enabling others skilled in the art to understand the
invention for various embodiments and with various modi
fications as are suited to the particular use contemplated. It
is intended that the scope of the invention be defined by the
following claims and their equivalents.

APPENDEXA VL-BUS SIGNALS

The following signals are defined in the VL-bus standard
1.0.

WL-BUS
SGNAL NAME WI-BUS SIGNAL DESCRIPTION

RESET;
LCLK

System reset.
WL-bus clock signal. This is 1x clock that
follows the same phase as a 486-type CPU clock
signal. It is driven by the WL-bus controller
to all WL-bus masters and targets. In the
case of CPUs that use a clock running at 2x,
the 2 clock must be divided down to a 1x
clock to drive this signal line. The rising
edge of the clock signifies the change of CPU
states.
Ready return. This signal establishes a
handshake to enable WL-bus devices to know
when a WL-bus cycle has ended. If there is no
bridge between the WL-bus and the host CPU,
then RDYRTNF will typically be tied directly
to the CPU or cache controller RDY# input
line. RDYRTNii is always driven by the WL-bus
controller. For LCLK speeds up to 33 MHz, the
WL-bus controller will typically assert
RDYRTNH in the same LCLK cycle as LRDY# is

RDYRTN

O

15

25

30

35

45

55

65

26
-continued

WL-BUS
SGNAL NAME WIL-BUSSGNADESCRIPTION

asserted. At higher LCLK speeds, RDYRTN may
trail LRDY# by one LCLK cycle to enable the
WL-bus controller to perform signal
resynchronization. The RDYRTN if signal allows
all WL-bus devices to monitor one signal that
strobes the end of all types of WL-bus cycles.
However, while some WL-bus controllers assert
RDYRTN# also in response to BRDY# with BLASTA,
this is not a requirement and WL-bus devices
should also maonitor BRDY and BAST to
reliably detect the end of all WL-bus cycles.
Identifier pins which identify to all WL-bus
devices the type and speed of the WL-bus host.
As used herein, the WL-bus host is the device
that owns the WL-bus when no other WL-bus
master is requesting the WL-bus. If no bridge
exists between the host CPU and the WL-bus,
then the WL-bus host is simply the CPU itself.
If a bridge exists, and/or a cache controller,
then the WL-bus host is considered herein to
include such a bridge and cache controller in
addition to the CPU itself.
WL-bus address signals. The address bus
furnishes the physical memory or IPO port
address to the WL-bus target. In CPU
originated transfers, ADR31:2 is driven by
the CPU (or CPU bridge). During system bus
master or DMA cycles, the WL-bus controller
drives the system bus address signals onto
ADR31:2). During WL-bus master cycles, the
WL-bus master drives ADR31:2. In a CPU
originated transfer or a WL-bus master
originated transfer, if no WL-bus target
claims the transfer by a WL-bus device
claiming deadline, then the WL-bus controller
drives the address onto the system bus.
WL-bus data signals. This is a bi-directional
data path between WL-bus devices and the
WL-bus host. During read transfers, the
active WL-bus target drives data onto
DAT31:O). If the read is initiated from a
system bus master or motherboard DMA, the
WL-bus controller drives the data from
DAT31:0 onto the system bus. During write
transfers, the WL-bus host, DMA slave or
WL-bus master drives data onto DAI31:O.
Byte enables. These signals indicate which
byte lanes (i.e. which bytes) of DATI31:O) are
involved with the current WL-bus transfer.
They are driven similarly to ADR31:2). Many
WL-bus controllers at least internally encode
BE3:Off into two low-order address bits. For
convenience, therefore, the full WL-bus
address is sometimes referred to herein as
ADR31:0 or WA31:0.
Memory or I/O status. Indicates whether the
address on ADR31:O) is to be interpreted as
being in the memory address space (when low)
or in the I/O address space (when high).
Driven by whichever device drives ADR31:0).
Write or read status. Indicates whether the
current access on the WT-bus is a write access
or a read access. Driven by whichever device
is driving ADR31:01.
Data or code status. Indicates whether the
current VL-bus cycle is transferring data or
code. Driven by whichever device is driving
ADR31:0).
Burst last. Indicates that the next time
BRDYi is asserted, a WL-bus burst cycle will
be complete. BLAST is connected to the
WL-bus host BLASTF signal line. During a
WL-bus master transfer, the WL-bus master
drives BLASTi. A VL-bus master that does not
support burst of transfers drives BLASTi low
whenever it controls the WL-bus.
Address data strobe. The WL-bus cycle start

WA(31:2).)

DAT31:0
(Also called
VDI31:O.)

BE3:0

MO

WR:

DiC,

BLAS

ADS

5,790,831
27

-continued

WL-BUS
SIGNAL NAME WIL-BUS SIGNALDESCRIPTION

signal. Driven by whichever VL-bus device
drives ADR31:O. ADS# is strobed by such
device for one LCLK cycle after the address
bus and status lines (collectively the WL-bus
cycle definition signal lines) are valid, to
indicate the start of a WL-bus cycle. As used
herei, a WL-bus device defines a “valid
WL-bus access or cycle by asserting at least
WA31:2), BEff3:O, M/IO#, W/R#, D/C# and ADS#
on the WL-bus.
Local external address data strobe. Cache
coherency signal.
Local bus grant. Used in conjunction with
LREQCxDF to establish a WL-bus arbitration
protocol. There is one pair of LREQi and
LGNT signals per slot.
Local cache enable. Cache coherency signal.
Local device. This is a VL-bus device
claiming signal. Each WL-bus slot or device
has its own LDEV# signal and asserts its LDEW#
signal if it recognizes and wants to claim a
current WL-bus cycle. The WL-bus controller
samples LDEV<x># on the rising edge of LCLK
one cycle after ADSi (for LCLKS 33 MHz), or
two LCLK cycles after ADS# (for LCLK > 33 MHz).
Whichever such rising edge of LCLK is
appropriate determines a VL-bus device
claiming deadline for the cycle. If the
WL-bussystem-bus bridge detects LDEV<x>#
asserted, then it does not start a system-bus
cycle even if its internal map indicates that
the current WL-bus access is to a device which
resides on the system bus. The VL-bus
controller may optionally start a WL-bus
transfer even before sampling LDEV<>#
asserted, if the controller knows that the
cycle is owned by WL-bus target. For cache
hit and system DRAM cycles, the WL-bus
controller ignores LDEV<x>#.
Local ready. LRDY# begins the handshake that
terminates a current active WL-bus cycle. A
single LRDY# line is shared among all WL-bus
devices. The active WL-bus device asserts
LRDY# only during the cycle that it has
claimed as its own. It asserts LRDYit low for
one LCLK period to terminate an active WL-bus
cycle, and then drives it high for one LCLK
period before being released. The originator
of the cycle must wait until RDYRTN# is
asserted low before it terminates the active
WL-bus cycle.
Local bus size 16. Asserted by 16-bit WL-bus
target to force the originator of a cycle to
run multiple 16-bit transfers instead of 32
bit transfers.
Burst ready, Terminates the current active
burst of cycle. It is asserted low for one
LCLK period at the end of each burst of
transfer. If LRDY is asserted at the same
time as BRDYi, BRDY# is ignored and the
remainder of the current burst cycle falls
back to non-burst cycles. Like LRDYi, the
BRDYi signal line is shared among all the
WL-bus devices. The active WL-bus target
therefore drives the RDY# only during a burst
transfer that it has claimed as its own.
BRDY must not be driven while ADS is
asserted, and also should not be driven during
the first T2 because the system cache
controller may be driving it.
Local request. Used in conjunction with
LGNT<x># to gain control of the WL-bus device.
Interrupt request line 9. IRQ9 is a high
asserted, level-triggered interrupt that is
electrically connected to IRQ9 on the system
bus.
Write-back. In WL-Bus Specification Version

LRDY

LBS16

BRDY

WBACK

10

15

20

25

30

35

45

50

55

65

28
-continued

WL-BUS
SIGNAL NAME WL-BUS SIGNALDESCRIPTION

20, WBACK is an output of the WL-Bus
controller usually used to maintain cache
coherency in systems that have a cache
structure that requires this function. An
example of this is a system with a CPU (such
as a Pentium) containing a write back cache.
The VL-Bus controller may assert WBACK# at any
time after an ADS is issued and before or
coincident with the first READY (either
RDYRTN# or BRDY#) of that access. When an
active VL-Master samples WBACK# asserted, it
must immediately abort the bus cycle and float
all address, data and control signals that it
drives as master. When WBACK# is sampled
inactive, the WL-Master restarts the bus cycle
with a new ADSi. If a ready was returned at
the same time as WBACK# was sampled active,
the ready (as well as the data on a read)
should be ignored. WBACK# may be generated on
either a read or a write and is synchronous to
LCLK.

APPENDIX B PCI-BUS 2.0

The PCILocal Bus is a high performance, 32-bit or 64-bit
bus with multiplexed address and data lines. It is intended
for use as an interconnect mechanism between highly inte
grated peripheral controller components, peripheral add-in
boards, and processor/memory systems.

Configuration registers are specified for PCI components
and add-in cards. A system with embedded auto configura
tion software can automatically configure PCI add-in cards
at power on.

Typical PCILocal Bus implementations will support up to
three add-in board connectors, although expansion capabil
ity is not required. The PCI add-in board connector is a
Micro Channels (MC)-style connector. The same PCI
expansion board can be used in ISA-, EISA-, and MC-based
systems.

Relevant PCI-bus signals are defined below. The second
column indicates a signal type as is defined in as follows:

Signal Type Definitions

in input-only signal, as viewed from a PCI-bus
expansion device.
standard output, as viewed from
PCI-bus expansion device.

ts bidirectional signal,
sts active low 3-state signal owned and driven by only

one agent at a time. That agent drives the pin low
and must drive it high for at least one clock
before letting it float. A new agent cannot start
driving the signal any sooner than one clock after
the previous owner lets it float. A pullup is
provided by a central resource.
open drain output viewed from expansion device.

System Pins

out

old

CLK in Clock provides timing for all transactions
on PCI and is an input to every PCI device.
All other PCI signals, except RST, IRQA#,
IRQB#. IRQC#, and IRQD#, are sampled on the
rising edge of CLK. and all other timing
parameters are defined with respect to this
edge. PCI operates up to 33 MHz, and in
general, the minimum frequency is DC (0 Hz).

RST in Reset is used to bring PCI-specific

AD31:00 ts

C/BE3:0# tis

PAR ts

FRAME sits

ROY sts

TRDY sts

5,790,831
29

-continued

registers, sequencers, and signals to a
consistent state. Anytime RSTA is asserted,
all PCI output signals must be driven to
their benign state. RST may be asynchronous
to CLK when asserted or deasserted. Although
asynchronous, deassertion is guaranteed to
be a clean, bounce-free edge. Except for
configuration accesses, only devices that
are required to boot the system will respond
after reset.

Address and Data Pins

Address and Data are multiplexed on the same
PCI pins. A bus transaction consists of an
address phase followed by one or more data
phases. The DAC uses two address phases to
transfer a 64-bit address. PCI supports
both read and write bursts. The address
phase is the clock cycle in which FRAME is
asserted. During the address phase
AD(31:00 contain a physical address (32
bits). For I/O, this is a byte address; for
configuration and memory it is a DWORD
address. During data phases ADO7:00)
contain the least significant byte (sb) and
AD31:24 contain the most significant byte
(msb). Write data is stable and valid when
RDY is asserted and read data is stable
and valid when TRDYi is asserted. Data is
transferred during those clocks where both
RDY and TROY are asserted.
Bus Command and Byte Enables are multiplexed
on the same PCI pins. During the address
phase of a transaction, CBE3:0i define
the bus command. During the data phase
CBE3:O# are used as Byte Enables. The
Byte Enables are valid for the entire data
phase and determine which byte lanes carry
meaningful data. CBEO applies to byte O
(sb) and CBE3A applies to byte 3 (msb).
Parity is even parity across AD31:00 and
CBE3:08. Parity generation is required
by all PCI agents. PAR is stable and valid
one clock after the address phase. For data
phases PAR is stable and valid one clock
after either RDY is asserted on a write
transaction or TROY is asserted on a read
transaction. Once PAR is valid, it remains
valid until one clock after the completion
of the current data phase. (PAR has the same
timing as AD(31:0O) but delayed by one
clock.) The master drives PAR for address
and write data phases; the target drives PAR
for read data phases.

Interface Control Pins

Cycle Frane is driven by the current master
to indicate the beginning and duration of an
access. FRAME is asserted to indicate a bus
transaction is beginning. While FRAMEF is
asserted, data transfers continue. When
FRAME is deasserted, the transaction is in
the final data phase.
Initiator Ready indicates the initiating
agent's (bus master's) ability to complete
the current data phase of the transaction.
IRDYi is used in conjunction with TRDYi. A
data phase is completed on any clock both
IRDY# and TRDY# are sampled asserted. During
a write, RDYi indicates that valid data is
present on AD31:00. During a read, it
indicates the master is prepared to accept
data. Wait cycles are inserted until both
DRDYi and TRDY# are asserted together.
Target Ready indicates the target agent's
(selected device's) ability to complete the
current data phase of the transaction. TRDY#
is used in conjunction with IRDY#. A data
phase is completed on any clock both TRDYi
and IRDY# are sampled asserted. During a

10

15

25

30

35

45

SO

55

65

30
-continued

read, TRDY indicates that valid data is
present on AD31:00. During a write, it
indicates the target is prepared to accept
data Wait cycles are inserted until both
RDY# and TRDYi are asserted together.

Stop indicates the current target is
requesting the master to stop the current
transaction.
Lock indicates an atomic operation that may
require multiple transactions to complete.
Initialization Device Select is used as a
chip select during configuration read and
write transactions.
Device Select, when actively driven,
indicates the driving device has decoded its
address as the target of the current access.
As an input, DEVSELi indicates whether any
device on the bus has been selected.

Arbitration Pins (Bus Masters Only)

STOP sts

LOCK sts

DSEL in

DEWSEL sits

Request indicates to the arbiter that this
agent desires use of the bus. This is a
point to point signal. Every master has its
own REQ#.
Grant indicates to the agent that access to
the bus has been granted. This is a point to
point signal. Every master has its own GNT.

Error Reporting Pins

REQ# ts

GNT tis

PERR sts Parity Error is only for the reporting of
data parity errors during all PCI
transactions except a Special Cycle.
System Error is for reporting address parity
errors, data parity errors on the Special
cycle command, or any other system error
where the result will be catastrophic.

SERR: ofd

Interrupt Pins (Optional)
Interrupts on PCI are optional and defined as "level

sensitive". asserted low (negative true), using open drain
output drivers. The assertion and deassertion of INTx# is
asynchronous to CLK. PCI defines one interrupt line for a
single function device and up to four interrupt lines for a
multi-function device or connector. For a single function
device, only INTA# may be used while the other three
interrupt lines have no meaning.

NEA old Interrupt A is used to request an interrupt.
NTB old Interrupt B. is used to request an interrupt

and only has meaning on a multi-function
device.

NICE old interrupt C is used to request an interrupt
and only has meaning on a multi-function
device.

NT ofd interrupt D is used to request an interrupt
and only has meaning on a multi-function
device.

Any function on a multi-function device can be connected
to any of the INTx# lines. The file Interrupt Pin register
defines which INTx# line the function uses to request an
interrupt. If a device implements a single INTx# line. it is
called INTAKE if it implements two lines, then they are
called INTAff and INTBf, and so forth. For a multi-function
device, all functions may use the same INTx# line or each
may have its own (up to a maximum of four functions) or
any combination thereof. A single function can never gen
erate an interrupt request on more than one INTx# line.
The system vendor is free to combine the various INTxf

signals from PCI connector(s) in any way to connect them
to the interrupt controller. They may be wire-ORed or
electronically switched under program control. or any
combination-thereof. This means the device driver may not

5,790,831
31

make any assumptions about interrupt sharing. All PCI
device drivers must be able to share an interrupt (chaining)
with any other logical device, including devices in the same
multi-function package.
Cache Support Pins (Optional)
A cacheable PCI memory should implement both cache

support pins as inputs, to allow it to work with either
write-through or write-back caches. If cacheable memory is
located on PCI, a bridge connecting a write-back cache to
PCI must implement both pins as outputs; a bridge connect
ing a write-through cache may only implement one pin.

SBOf in/out Snoop Backoff indicates a hit to a modified
line when asserted.
Snoop Done indicates the status of the snoop
for the current access.

SDONE in/out

64-Bit Bus Extension Pins (Optional)
The 64-bit extension pins are collectively optional. That

is, if the 64 bit extension is used, all the pins in this section
are required.

AD63:32 tis Address and Data are multiplexed on the same
pins and provide 32 additional bits. During
an address phase (when using the DAC command
and when REQ64# is asserted), the upper
32-bits of a 64 bit address are transferred;
otherwise, these bits are reserved but are
stable and indeterminate. During a data
phase, an additional 32-bits of data are
transferred when REQ64# and ACK64# are both
asserted.
Bus Command and Byte Enables are multiplexed
On the same pins. During an address phase
(when using the DAC command and when
REQ64# is asserted), the actual bus command
is transferred on CfBE7:4, otherwise,
these bits are reserved and indeterminate.
During a data phase, CBE7:4# are byte
enables indicating which byte lanes carry
meaningful data when REQ64# and ACK64# are
both asserted. CBE4# applies to byte 4
and C/BE7# applies to byte 7.
Request 64-bit Transfer, when actively
driven by the current bus master, indicates
it desires to transfer data using 64 bits,
REQ64 has the same timing as FRAME.
REQ64# has meaning at the end of reset.
Acknowledge 64-bit Transfer, when actively
driven by the device that has positively
decoded its address as the target of the
current access, indicates the target is
willing to transfer data using 64 bits.
ACK64# has the same timing as DEVSELif.
Parity Upper DWORD is the even parity bit
that protects AD63:32 and C/BE7:4ff.
PAR64 is valid one clock after the initial
address phase when REQ64# is asserted and the
DAC command is indicated on CfBE3:0.
PAR64 is valid the clock after the second
address phase of a DAC command. The master
drives PAR64 for address and write data
phases; the target drives PAR64 for read
data phases.

REQ64# sts

sts

ts

Bus Commands
Bus Commands indicate to the target the type of trans

action the master is requesting. Bus Commands are encoded
on the C/BE3:04 lines during the address phase, and
include the following:
The Special Cycle command provides a simple message

broadcast mechanism on PCI. It is designed to be used as an
alternative to physical signals when sideband communica
tion is necessary,

O

15

20

25

30

35

45

55

60

65

32
The I/O Read command is used to read data from an agent

mapped in I/O address space. AD31:00) provide a byte
address. All 32 bits must be decoded. The Byte Enables
indicate the size of the transfer and must be consistent with
the byte address.
The I/O Write command is used to write data to an agent

mapped in I/O address space. All 32 bits must be decoded
The Byte Enables indicate the size of the transfer and must
be consistent with the byte address.
The Memory Read command is used to read data from an

agent mapped in the memory address space. The target is
free to do an anticipatory read for this command only if it
can guarantee that such a read will have no side effects.
Furthermore, the target must ensure the coherency (which
includes ordering) of any data retained in temporary buffers
after this PCI transaction is completed. Such buffers must be
invalidated before any synchronization events (e.g. updating
an I/O status register or memory flag) are passed through this
access path.
The Memory Write command is used to write data to an

agent mapped in the memory address space. When the target
returns "ready", it has assumed responsibility for the coher
ency (which includes ordering) of the subject data. This can
be done either by implementing this command in a fully
synchronous manner, or by insuring any software transpar
ent posting buffer will be flushed before synchronization
events (e.g., updating an I/O status register or memory flag)
are passed through this access path. This implies that the
master is free to create a synchronization event immediately
after using this command.
The Configuration Read command is used to read the

configuration space of each agent. An agent is selected when
its DSEL signal is asserted and AD1:0) are 00. During the
address phase of a configuration cycle, AD7:2) address one
of the 64 DWORD registers (where byte enables address the
byte(s) within each DWORD) configuration space of each
device and AD31:11 are logical don't cares. AD 10:08
indicate which device of a multi-function agent is being
addressed.
The Configuration write command is used to transfer data

to the configuration space of each agent. An agent is selected
when its DSEL signal is asserted and AD 1:0) are 00.
During the address phase of a configuration cycle, the
AD 7:2) lines address the 64 DWORD (where byte enables
address the byte(s) within each DWORD) configuration
space of each device and AD31:11 are logical don't cares.
AD 10::08 indicate which device of a multi-function agent
is being addressed.
The Memory Read Multiple command is semantically

identical to the Memory Read command except that it
additionally indicates that the master may intend to fetch
more than one cache line before disconnecting. The memory
controller should continue pipelining memory requests as
long as FRAMEff is asserted. This command is intended to
be used with bulk sequential data transfers where the
memory system (and the requesting master) might gain
some performance advantage by sequentially reading ahead
an additional cache line when a software transparent buffer
is available for temporary storage.
The Dual Address Cycle (DAC) command is used to

transfer a 64-bit address to devices that support 64-bit
addressing. Targets that support only 32-bit addresses must
treat this command as reserved and not respond to the
current transaction in any way.
The Memory Read Line command is semantically iden

tical to the Memory Read command except that it addition
ally indicates that the master intends to complete more than

5,790,831
33

two 32-bit PCI data phases. This command is intended to be
used with bulk sequential data transfers where the memory
system (and the requesting master) might gain some perfor
mance advantage by reading up to a cache line boundary in
response to the request rather than a single memory cycle.
As with the Memory Read command, pre-fetched buffers
must be invalidated before any synchronization events are
passed through this access path.
The Memory Write and Invalidate command is semanti

cally identical to the Memory Write command except that it
additionally guarantees a minimum transfer of one complete
cache line; i.e. the master intends to write all bytes within the
addressed cache line in a single PCI transaction. The master
may allow the transaction to cross a cache line boundary
only if it intends to transfer the entire next line also. This
command requires implementation of a configuration regis
ter in the master indicating the cache line size. It allows a
memory performance optimization by invalidating a "dirty"
line in a write-back cache without requiring the actual
write-back cycle, thus shortening access time.
PCI Protocol Fundamentals
The basic bus transfer mechanism on PCI is a burst. A

burst is composed of an address phase and one or more data
phases. PCI supports bursts in both memory and I/O address
spaces. The host bridge (that resides between the host
processor and PCI) may merge (or assemble) memory write
accesses into a single transaction when no side effects exist.
A device indicates no side effects (allow prefetching of read
data and merging of write data in any order) by setting the
prefetch bit in the base address register. A bridge may
distinguish where merging is allowed and where it is not, by
an address range which could be provided by configuration
software during initialization. Merging of data into that
buffer must stop (and the buffer flushed) when a subsequent
write occurs that is not prefetchable or a read (to any range).
Write transactions following either of these two events may
be merged with subsequent writes, but not to previously
merged data, if in the prefetchable range.

Since I/O accesses from the processor cannot be
combined, they will normally only have a single data phase,
However, it will not be precluded. There is no implied
addressing on I/O bursts. When I/O bursts are done, the
target and master must understand the implied addressing.
PCI devices that do not deal with multiple I/O data phases
must disconnect the access after the first data phase. To
ensure that I/O devices will operate correctly, bridges may
never merge or combine sequential I/O accesses into a single
PCI access or burst. All I/O accesses must appear on PCI
exactly as the host generated them. (If a target of an I/O
access is selected by its address but the byte enables indicate
a transfer larger than the device supports, the target termi
nates with target-abort.)

All signals are sampled on the rising edge of the clock.
except RST#, INTA#, INTBF, INTC#, and INTD#. Each
signal has a setup and hold aperture with respect to the rising
clockedge, in which transitions are not allowed. Outside this
aperture, signal values or transitions have no significance.
This aperture occurs only on "qualified" clock edges for
AD(31:0). AD63:32), PAR2, PAR64, and IDSEL signals
and on every clock edge for LOCK#, IRDY#, TRDY#,
FRAMEF DEVSEL#, STOPE, REQA, GNT#, REQ64#,
ACK64#, SBO#. SDONE, SERRif (on falling edge only),
and PERR#. CBE3:04, CBE7:4# (as bus commands)
are qualified on the clock edge that FRAMEA is first
asserted. C/BE3:0#, CBE7:4# (as byte enables) are
qualified on each rising clockedge following the completion
of an address phase or data phase. RST#, IRQA#, IRQB#,
IRQC#, and IRQD# are not qualified or synchronous.

1.

15

25

35

45

50

55

65

34
Basic Transfer Control
The fundamentals of all PCI data transfers are controlled

with three signals. Refer to FIG. A1.

FRAME is driven by the master to indicate the beginning
and end of a transaction.

RDY. is driven by the naster, allowing it to force wait
cycles.

TRDY is driven by the target, allowing it to force wait
cycles.

The interface is OLE When both FRAMES and RDYi
are deasserted. The first clock edge on which FRAMEff is
asserted is the address phase, and the address and bus
command code are transferred on that clock edge. The next
clockedge begins the first of one or more data phases, during
which data is transferred between master and target on each
clock edge for which both IRDY# and TRDY# are asserted.
Wait cycles may be inserted in a data phase by either the
master or the target with IRDY# and TRDY# signals respec
tively.
The source of the data is required to assert its xRDY#

signal unconditionally when data is valid (IRDYif on a write
transaction, TRDYif on a read transaction). The receiving
agent may assert its xRDY# as it chooses.
Once a master has asserted IRDY# it cannot change

IRDY# or FRAMESF until the current data phase completes
regardless of the state of TRDY#. Once a target has asserted
TRDY# or STOP# it cannot change DEVSEL, TRDY# or
STOP# until the current data phase completes. Neither the
master nor the target can change its mind once it has
committed to the data transfer.
At such time as the master intends to complete only one

more data transfer (which could be immediately after the
address phase), FRAMElf is deasserted and IRDY# is
asserted indicating the master is ready. After the target
indicates the final data transfer (TRDYf is asserted), the
interface returns to the IDLE state with both FRAMEff and
RDYF deasserted.
Addressing
PCI defines three physical address spaces. The memory

and I/O address spaces are customary. The configuration
address space has been defined to support PCI hardware
configuration.

Each agent is responsible for its own address decode. PCI
supports two styles of address decoding: positive and sub
tractive. Positive decoding is faster since each device is
looking for accesses in the address range(s) that it has been
assigned. Subtractive decoding can be implemented by only
one device on the bus, since it accepts all accesses not
positively decoded by some other agent. This decode mecha
nism is slower since it must give an other bus agents a "first
right of refusal” on the access. However, it is very useful for
an agent like a standard expansion bus that must respond to
address phase or data phase, RSTF. IRQA#, IRQBill, IRQC#,
and IRQDF are not qualified or synchronous.
The information contained in the two low order address

bits (AD 1:0) varies by address space. In the I/O address
space, all 32 AD lines are used to provide a full byte address.
This allows an agent requiring byte level address resolution
to complete address decode and claim the cycle without
waiting an extra cycle for the byte enables (thus delaying all
subtractive decode cycles by an extra clock). AD 1:0 are
used for the generation of DEVSEL# only and indicate the
least significant valid byte involved in the transfer. For
example, if BEO# were asserted then AD 1:0 would be
"00"; if only BE3# were asserted, then AD 1:0 would be

5,790,831
35

"11". Once a target has claimed an I/O access (using
AD1:0)), it then determines if it can complete the entire
access as indicated in the byte enables. If all the selected
bytes are not in the selected target's address range, the entire
access cannot be completed. In this case, the target does not
transfer any data but terminates with a target-abort.
Bus Driving and Turnaround
A turnaround cycle is required on all signals that may be

driven by more than one agent. This is indicated on the
timing diagrams as two arrows pointing at each others' tail.
This turnaround cycle occurs at different times for different
signals. For instance, IRDY#, TRDY#, DEVSEL#, STOP#,
and ACK64# use the address phase as their turnaround
cycle. FRAME, REQ64#, C/BE3:04, C/BE7:4).
AD31:00, and AD 63:32 use the IDLE cycle between
transactions as their turnaround cycle. An IDLE cycle is
when both FRAMEff and IRDY# are deasserted (e.g., clock
9 in FIG. B1).
Read Transaction

FIG. B1 illustrates a read transaction and starts with an
address phase which occurs when FRAMEff is asserted for
the first time and occurs on clock 2. During the address
phase ADI31:00 contain a valid address and C/BE3:0#
contain a valid bus command.
The first clock of the first data phase is clock 3. During the

data phase C/BE# indicate which byte lanes are involved in
the current data phase. A data phase may consist of a data
transfer and wait cycles. The CBEff output buffers must
remain enabled (for both read and writes) from the first clock
of the data phase through the end of the transaction. This
ensures C/BE# are not left floating for long intervals.
The first data phase on a read transaction requires a

turnaround-cycle (enforced by the target via TRDY#), in this
case the address is valid on clock2 and then the master stops
driving AD. The earliest the target can provide valid data is
clock 4. The target must drive the AD lines following the
turnaround cycle when DEVSELi is asserted. Once enabled,
the output buffers must stay enabled through the end of the
transaction. (This ensures AD are not left floating for long
intervals.)
A data phase completes when data is transferred, which

occurs when both IRDYif and TRDY# are asserted on the
same clock edge. (TRDY# cannot be driven until DEVSELif
is asserted.). When either is deasserted a wait cycle is
inserted and no data is transferred. As noted in the diagram,
data is successfully transferred on clocks 4, 6, and 8, and
wait cycles are inserted on clocks 3, 5, and 7.
The master knows at clock 7 that the next data phase is the

last. However, because the master is not ready to complete
the last transfer (IRDYif is deasserted on clock 7), FRAMEff
stays asserted. Only when IRDY# is asserted can FRAMEff
be deasserted, which occurs on clock 8.
Write Transaction

FIG. B2 illustrates a write transaction. The transaction
starts when FRAME is asserted for the first time which
occurs on clock 2. A write transaction is similar to a read
transaction except no turnaround cycle is required following
the address phase because the master provides both address
and data. Data phases work the same for both read and write
transactions,
Transaction Termination

Termination of a PCI transaction may be initiated by
either the master or the target. While neither can actually
stop the transaction unilaterally, the master remains in
ultimate control, bringing all transactions to an orderly and
systematic conclusion regardless of what caused the termi
nation. All transactions are concluded when FRAMEff and

10

15

25

30

35

45

50

55

65

36
IRDY# are both deasserted, indicating an IDLE cycle (e.g.,
clock 9 in FIG. B2).
Master Initiated Termination
The mechanism used in master initiated termination is

when FRAME is deasserted and IRDY is asserted. This
signals the target that the final data phase is in progress. The
final data transfer occurs when both IRDY# and TRDYlfare
asserted. The transaction reaches completion when both
FRAMEff and IRDY# are deasserted (DLE bus condition).
A modified version of master-initiated termination

mechanism allows the master to terminate the transaction
when no target responds. This abnormal termination is
referred to as master-abort. Although it may cause a fatal
error for the application originally requesting the
transaction, the transaction completes gracefully, thus pre
serving normal PCI operation for other agents.
Two examples of normal completion are shown in FIG.

B3. The final data transfer is indicated when FRAMEff is
deasserted and when both IRDYf and TRDY are asserted
which occurs at clock3. The bus reaches an IDLE condition
when IRDYi is deasserted which occurs on clock 4.
Because the transaction has completed. TRDYf is deas
serted on clock 4 also. Note that TRDY# is not required to
be asserted on clock 3, but could have delayed the final data
transfer (and transaction termination) until it is ready by
delaying the final assertion of TRDY#. If the target does
that, the master is required to keep IRDY# asserted until the
final data transfer occurs.

Both sides of FIG. B3 could have been caused by a
timeout termination. On the left side. FRAME is deasserted
on clock 3 because the timer expires, GNT# is deasserted
and the master is ready (IRDY# asserted) for the final
transfer. Because GNT was deasserted when the timer
expired continued use of the bus is not allowed except when
using the Memory Write and Invalidate command, which
must be stopped at the cache line boundary. Termination
then proceeds as normal. If TRDY# is deasserted on clock
2, that data phase continues until TRDY# is asserted.
FRAME and IRDYf must remain asserted until the data
phase completes.
The right-hand example shows a timer expiring on clock

1. Because the master is not ready to transfer data (IRDY#
is deasserted on clock 2) FRAMEF is required to stay
asserted. FRAMEff is deasserted on clock 3 because the
master is ready (IRDY# is asserted) to complete the trans
action on clock 3. The master must be driving valid data
(write) or be capable of receiving data (read) whenever
IRDY# is asserted. This delay in termination should not be
extended more than 2 or 3 cycles. Also note that the
transaction need not be terminated after timer expiration
unless GNTif is deasserted.

Master-abort termination, as shown in FIG. B4, is an
abnormal case (except for configuration or Special Cycle
commands) of master initiated termination. A master deter
mines that there will be no response to a transaction if
DEVSEL remains deasserted on clock 6. The master must
assume that the target of the access is incapable of dealing
with the requested transaction or that the address was bad.
Once the master has detected the missing DEVSEL# (clock
6 in this example). FRAMElf is deasserted on clock 7 and
RDYif on clock 8. The earliest a master can terminate a

transaction with master-abort is five clocks after FRAME
was first sampled asserted, which occurs when the master
attempts a single data transfer. However, the master may
take longer to deassert FRAMEF and terminate the access,
The master must support the FRAMEl-IRDY# relationship
on all transactions which includes master-abort. FRAMEff

5,790,831
37

cannot be deasserted before IRDY is asserted and IRDYif
must remain asserted for at least one clock after FRAMEff
is deasserted, even when the transaction is terminated with
master-abort.

Alteratively, IRDY# could be deasserted on clock 7, if
FRAMEff was deasserted as in the case of a transaction with
a single data phase. The master will normally not retry this
access. Note that if DEVSEL had been asserted on clocks
3. 4, 5, or 6 of this example, it would indicate the request had
been acknowledged by an agent, and master-abort termina
tion would not be permissible.
The host bus bridge, in PC compatible systems, must

return all's on a read transaction and discard data on a write
transaction when terminated with master-abort. The bridge
is required to set the master-abort detected bit in the status
register. Other master devices may report this condition as
an error by signaling SERRA when the master cannot report
the error through its device driver.

In summary, the following general rules govern FRAME
and IRDY# in all PCI transactions.

1. FRAMElf and its corresponding IRDY# define the
busy/TDLE state of the bus; when either is asserted, the bus
is busy; when both are deasserted. the bus is DLE.

2. Once FRAMEF has been deasserted, it cannot be
reasserted during the same transaction.

3. FRAMEff cannot be deasserted unless RDYi is
asserted. (IRDY# must always be asserted on the first clock
edge that FRAME is deasserted.)

4. Once a master has asserted IRDY#, it cannot change
IRDY# or FRAMEA until the current data phase completes.

Target Initiated Termination
The mechanism used in target initiated termination is the

STOP signal. The target asserts STOP to request that the
master terminate the transaction. A modified version of this
mechanism allows the target to terminate a transaction in
which a fatal error has occurred, or to which the target will
never be able to respond. This abnormal termination is
referred to as target-abort.

In summary, the following general rules govern
FRAME, RDY#, TRDY#, and STOP# in all PCI transac
tions.
Whenever STOP is asserted, FRAMEf must be deas

serted as soon as possible pursuant to the rules for the
deassertion of FRAMEff (i.e., IRDY# must be asserted). The
deassertion of FRAMEff should occur as soon after STOP
is asserted as possible, preferably within two or three cycles.
The target must not assume any timing relationship between
STOP' assertion and FRAMEF deassertion, but must Keep
STOP asserted until FRAME is deasserted. When the
master samples STOP# asserted, it must deassert FRAMEff
on the first cycle thereafter in which IRDY# is asserted. This
assertion of IRDY# (and therefore FRAMEff deassertion)
may occur as a consequence of the normal IRDY# behavior
of the master (had the Current transaction not been target
terminated), and be delayed Zero or more cycles depending
on when the master is prepared to complete a data transfer.
Alteratively, the master may assert IRDY# immediately
(even without being prepared to complete a data transfer) if
TRDY# is deasserted, thus indicating there will be no further
data transfer.
Once asserted, STOP must remain asserted until

FRAMEff is deasserted, whereupon. STOP must be deas
serted.

During the final data phase of a transaction (FRAMEff
deasserted and IRDY# asserted), any clock edge on which
either STOP# or TRDY# is asserted becomes the last cycle
of the transaction, and IRDY# is deasserted on the following

10

15

25

35

45

SO

55

65

38
clock edge. (This creates an IDLE cycle and defines the end
of the transaction.)
The master mustretry an access that was target terminated

(except target-abort) with the address of the next untrans
ferred data if it intends to complete the access. If the deice
was prefetching, it may elect not to retry the access.

Once a target has asserted TRDY# or STOP. it cannot
change DEVSELF, TRDY# or STOP until the current data
phase completes.
Device Selection
DEVSEL# is driven by the target of the current transac

tion as shown in FIG. B5. DEVSEL# may be driven one, two
or three clocks following the address phase. Each PCI-bus
device supports a Device Status register which indicates,
among other things, the slowest time (fast, medium or slow)
in which it will assert DEVSEL# for any bus command
except Configuration Read and Configuration Write.
DEVSELF must be asserted with or prior to the edge at
which the target enables its TRDY#, STOP, or data (read).
In other words, a target must assert DEVSELF (claim the
transaction) before it is allowed to issue any other target
response. In all cases except one, once a target asserts
DEVSEL it must not deassert DEVSEL until FRAME is
deasserted (IRDY# is asserted) and the last data phase has
completed. With normal master termination, DEVSEL#
deassertion must be coincident with the deassertion of
TRDY#. The exception is the target-abort.

If no agent asserts DEVSELF within three clocks of
FRAME, the agent doing subtractive decode may claim
and assert DEVSEL#. If the system does not have a sub
tractive decode agent, the master never sees DEVSEL#
asserted and terminates the transaction per the master-abort
mechanism.
A target must do a full decode before driving/asserting

DEVSEL#, or any other target response signal. It is illegal to
drive DEVSEL# prior to a complete decode and then let the
decode combinationally resolve on the bus. (This could
cause contention.) A target must qualify the AD lines with
FRAMEff before DEVSELF can be asserted on commands
other than configuration. A target must qualify IDSEL with
FRAMEff and AD 1:0) before DEVSELF can be asserted
on a Configuration command.

It's expected that most (perhaps all) target devices will be
able to complete a decode and assert DEVSEL# within one
or two clocks of FRAMEff being asserted (fast and medium
in the figure). Accordingly, the subtractive decode agent may
provide an optional device dependent configuration register
that can be programmed to pull in by one or two clocks the
edge at-which it samples DEVSEL, allowing faster access
to the expansion bus. Use of such an option is limited by the
slowest positive decode agent on the bus. The edge at which
it samples DEVSEL is referred to herein as the PCI-bus
device claiming deadline.
Once DEVSELF has been asserted, it cannot be deas

serted until the last data phase has completed, except to
signal target-abort.

If the first access maps into the target's address range, it
asserts DEVSELF to claim the access. But if the master
attempts to continue the burst access across the resource
boundary, the target is required to signal disconnect.
When a target claims an I/O access, and the byte enables

indicate one or more bytes of the access are outside the
target's address range, it must signal target-abort. To deal
with this type of I/O access problem, a subtractive decode
device (expansion bus bridge) may do one of the following:
(1) do positive decode (by including a byte map) on
addresses for which different devices share common

5,790,831
39

DWORDs, additionally using byte enables to detect this
problem and signal target-abort; or (2) pass the full access to
the expansion bus, where the portion of the access that
cannot be serviced will quietly drop on the floor. (This
occurs only when first addressed target resides on the
expansion bus and the other is on PCI.)

APPEND)DX COPTG) 82C802
82C802GOVERVIEW
The OPTIS) 82C802G provides a highly integrated solu

tion for fully compatible, high performance PC/AT plat
forms. This chipset will support 486SX/DX/DX2 and P24T
microprocessors in the most cost effective and power effi
cient designs available today. For power users, this chipset
offers optimum performance for systems running up to 50
MHz.
Based fundamentally on the proven 82O801 and 82C802

design architectures. the 82C802G adds additional memory
configurations and power management for the Processor and
other motherboard components. As an upgrade from the
OPTi 82C802, the 82C802G adds extensive power manage
ment control.
The 82C802G supports the latest in Writeback Processor

designs from Intel, AMD and Cyrix, as well as supporting
the AT bus and VESA local bus for compatibility and
performance. It also includes an integrated 206 IPC
controller, all in a single 208-pin PFP package for low cost.

FUNCTIONAL DESCRIPTION
System Clock Generation
The 82C802G has a single high frequency clock input,

CLK. CLK is a master single phase clock which is used to
drive all host CPU synchronous signals and all of the
82C802G's internal state machines. This clocking scheme
provides operation to support platforms at system speeds up
to 50 MHz.
The 82C802G generates the AT bus clock (ATCLK) from

an internal division of CLK. The ATCLK frequency is
programmable and can be set to any of four synchronous
mode clock division options by programming Register 25h
1:0). In addition to the CLK source, there is an asynchro
nous mode available by clearing Register 27h bit 1, which
generates ATCLK by dividing the ATBUS OSC oscillator by
2 (OSC/2). This asynchronous mode is important when
entering GREEN mode, where the CPU clock rate can
change and thereby generate unsuitable ATCLK frequencies
if left in synchronous mode. This allows the system designer
to tailor the AT bus clock frequency to support a wide range
of system designs and performance platforms, as well as to
function reliably during power savings mode.

CPU Burst-Mode Control

The 82C802G chipset fully supports 486 burst cycles. The
82C802G cache and DRAM controllers insure that data is
burst into the CPU whenever the 486 requests a burst line
fill. The secondary cache provides data on read-hits and the
DRAM supplies the data during cache read-misses.
For the cache read-hit cycle, BRDY# (Burst Ready) is

asserted during the first T2 state when a 2-1-1-1 (zero wait
state) cache burst cycle is chosen, otherwise it is asserted
during the second T2 state when one wait state is required.
If a read-miss occurs, the DRAM controller will burst new
data into both the cache memory and CPU simultaneously,
BRDY#will be asserted for each double-word during these
cache read-miss update cycles. For a zero wait state cache
burst read cycle, 2-11-1, BRDY# will be asserted during the
first T2 and remain active until BLST# (Burst Last) from the

5

10

15

25

35

45

50

55

65

40
CPU is detected. For a 3-2-2-2 cache burst read cycle,
BRDY# will be toggled active on an every-other-clock basis
to accommodate the more relaxed data access timing
required above 33 MHz operation. BRDY# is never active
during DMA or MASTER cycles.
The 8208020 contains separate burst counters to support

DRAM and external cache burst cycles. The Read/Write
DRAM burst counter performs the cache read-miss line fill
(DRAM to external cache/CPU) and the cache burst counter
supports the 486 burst line fill (external cache to the 486
CPU). The access order of the burst counter exactly matches
the double-word address sequencing expected by the 486
CPU. The DRAM burst counter is used for cache read-miss
cycles and dirty line fill write operations.
L1 Writeback Timing Description

Level 1 Write Back Support:
The L1 cache can contain modified data that is not

contained in the L2 cache or DRAM. The CPU will not
allow external devices to access its internal cache. The
82C802G will execute an inquire cycle to the L1 cache for
all master accesses to the system memory area. Master
devices, whether local or on the ISA bus must snoop the L1
cache during every access to system memory. If valid
information is in the L1 cache and this information has been
modified without being updated to the system memory, the
HITM# signal will be generated. A write back cycle must be
generated whenever a modified line was hit.
VESA Local Master Cycles
The L1 Cache Inquire Cycle begins with the CPU relin

quishing the bus with the assertion of HLDA on sampling
HLDA, the local bus card will generate ADS#. EADS# will
be generated by the 82O802G for one clock following the
ADS generation. If the CPU does not respond with asser
tion of HITM#, the 82C802G will complete the cycle from
the L2 cache or the system memory. If HITM# is asserted,
the 82C802G will expect a castout cycle from the L1 cache.
HTM# is connected to the WBACK# signal on the VL bus
which will abort the VLcycle and allow the CPU to perform
its castout cycle. The 82C802G will release hold to the CPU
and generate a RDY to terminate the local bus cycle. Next,
the CPU will write back its L1 contents to cache/system
memory.
Master/DMA Write Cycle
HOLD will then be generated to the CPU in response to

an ISA master or DMA cycle. The CPU will relinquish the
bus with the assertion of HLDA. The 82C802G will issue
AHOLD to the CPU to tristate the CPU's address bus. At
this time, the DMA or master device drives the address onto
the CPU bus. IOCHROY will be released. EADS is
generated by the 82C802G. HTTM# will be generated if the
address is a modified line in the cache. The CPU will then
perform its castout cycle always starting at the address OXO
of the 16 byte line. After the castout cycle, the CPU will
deassert HTMF and issue HLDA. The ISA master or DMA
device can then finish its cycle.
Cache Subsystem
The integrated cache controller, which uses a direct

mapped, bank-interleaved scheme dramatically boosts the
overall performance of the local memory subsystem by
caching writes as well as reads (write-back mode). Cache
memory can be configured as one or two banks, and sizes of
64K, 128K, 256K, and 512K are supported. Provisions for
two programmable non-cacheable regions are provided. The
cache controller operates in non-pipeline mode, with a fixed
16-byte line size (optimized to match a 486 burst line fill) in
order to simplify the motherboard design without increasing
cost or degrading system performance. For 486 systems, the

5,790,831
41

secondary cache operates independently and in addition to
the CPU's internal cache.
Local DRAM Control Subsystem
The 82C802G supports up to 8 banks of page-mode local

DRAM memory for configurations of up to 64Mb. 256 Kb,
1 Mb. 4 Mb or 16 Mb page-mode DRAM devices may be
used. The DRAM configuration is programmable through
configuration register 24h, DRAM performance features are
programmable through configuration register 25h.
ATBus State Machine
The AT Bus state machine gains control when the

82C802G's decoding logic detects a non-local memory
cycle. It monitors status signals M16#IO16#, CHRDY and
NOWS# and performs the necessary synchronization of
control and status signals between the AT Bus and the
microprocessor. The 82C802G supports 8 and 16 bit
memory and I/O devices located on the AT bus,
An AT bus cycle is initiated by asserting ALE in ATTS I

state. On the trailing edge of ALE, M 16# is sampled for a
memory cycle to determine the bus size. It then enters
ATTC state and provides the command signal. For an I/O
cycle, IO16# is sampled after the trailing edge of ALE until
the end of the command.

Typically, the wait state for an AT/16 bit transaction is 5/1
respectively. The command cycle is extended when CHRDY
is detected inactive, or the cycle is terminated when Zero
wait state request signal (NOWSF) from the AT bus is active.
Upon expiration of the wait states, the AT State Machine
terminates itself and passes internal READY to the CPU
State Machine for outputting synchronous RDY# to the
CPU. Index register 20h/bit 2 allows for the addition of an
AT cycle wait state; bit 3 of this same register allows for the
generation of a single ALE instead of multiple ALEs during
bus conversion cycles. The AT bus state machine also routes
data and address when an AT bus master or DMA controller
accesses memory.
Bus Arbitration Logic
The 82C802G provides arbitration between the CPU,

DMA controller, AT Bus masters, and the refresh logic.
During DMA. AT bus master, and conventional refresh
cycles, the 82C802G asserts HOLD to the CPU. The CPU
will respond to an active HOLD signal by generating HLDA
(after completing its current bus cycle) and placing most of
its output and I/O pins in a high impedance state. After the
CPU relinquishes the bus, the 82C802G responds by issuing
RFSHF (refresh cycle) or generating the appropriate DRQ
(AT bus master or DMA cycle), depending on the requesting
device. During hidden refresh, HOLD remains negated and
the CPU continues it's current program execution as long as
it services internal requests or achieves cache hits (refer to
the refresh section for additional information). The AT bus
controller in the 82C802G arbitrates between DMA/Master
and refresh requests, deciding which will own the bus once
the CPU relinquishes control with the HLDA signal. The
arbitration between refresh and DMA/Master is based on,
FIFO (first in-first out) priority. However, a refresh request
(RFSHF) will be internally latched and serviced immedi
ately after the DMA or master finishes its term if queued
after. DRQ's must remain active to be serviced if a refresh
request come first. The "MASTER" signal from the AT bus
indicates an active AT bus master cycle.
Local Bus Interface
The 82C802G allows peripheral devices to share the

“local bus” with the CPU. The performance of these devices
(which may include the video subsystem, hard disk adapters,
LAN and other PC/AT controllers) will dramatically
increase when allowed to operate in this high-speed envi

15

25

30

35

45

50

55

65

42
ronment. These devices are responsible for their own
address and bus cycle decode and must be able to operate
compatibly at the elevated frequencies required for opera
tion on the local CPU bus.
The LDEV# input signal to the 82C802G indicates that a

local device is intercepting the current cycle. If this signal is
sampled at the end of the first T2 clock cycle (end of the
second T2 at 50 Mhz), then the 82C802G will allow the
responding local device to assume responsibility for the
current local cycle. When the device has completed its
operation, it must terminate the cycle by asserting RDY# or
BRDY to the CPU. RDY and BRDY are bi-directional
pins on the 82C802G and may be driven by a local bus
peripheral or the chipset to terminate their respective cycles.
Data Bus Conversion/Data Path Control Logic
The 82C802G performs data bus conversion when the

CPU accesses 16 or 8 bit devices through 16 or 32 bit
instructions. It also handles DMA and AT master cycles that
transfer data between local DRAM or cache memory and
locations on the AT bus. The 82C802G provides all of the
signals to control external bi-directional data buffers.
Special Cycles
The 486 microprocessor provides special bus cycles to

indicate that certain instructions have been executed, or
certain conditions have occurred internally. Special cycles
such as SHUTDOWN and HALT cycles are covered by
dedicated handling logic in the 82C802G. This logic
decodes the CPU bus status signals M/TO#, D/C# and W/R#
and executes the appropriate action.

TABLE C1

82C802G SGNAL DESCRIPTIONS

Name Type Description

VL-bus Interface Signals
BLST 486 Burst Last cycle indication
BROY B Burst Ready output to the WL-bus host
BE3:0; B WL-bus Byte Enables 3-0. The byte enables

identify the bytes involved in a data
transfer. Input during host cycles and
output during non-host cycles.

A24:25, I Host Address Lines 24, 25 and 26. The CA26
CA26 pin allows the local DRAM memory

configuration to be expanded to 128 Mb.
A17:23) B Host Address Lines (23:17). Inputs during

host, Refresh and MASTER cycles; they
become output pins during DMA cycles.

A8:16 B Host Address Lines (16:8). Input pins
during non-DMA cycles; and CA16:9 become
output pins which convey DMA address lines
A16-A9 by latching XD7:0 during 16-bit
DMA cycles; and CA15:8 convey DMA address
lines A15:8 by latching XD7:0 during 8
bit DMA cycles.

A2:7 B Host Address Lines (7:2). These lines
become outputs during DMA cycles.

DO:15), B. Host Data Bus.
D24:31
OCTAG Host DataCode Cycle Status or TAG7. As

DC, this pin is used to indicate data
transfer operations when high, or control
operations (code fetch, halt, etc.) when
low. As TAG7, this pin is used to expand
the cacheable address range of the DRAM.
When sampled high during reset this pin is
DC. When sampled low during reset this
pin is TAG 7. TAG7 functionality may be
ignored by setting index register 20h bit
4.

WR

A2OM:

OCS16

ALE

SBHE

XDO:15

OWR:

MRD

MWR

ROMCS)
KBDCS3

B

5,790,831
43

TABLE C1-continued

82C802G SIGNAL DESCRIPTIONS

Type Description

MP2

DC
O TAGT

DRAM Controller Upper Address Decode.
Host Memory or I/O Cycle Status. It
indicates a memory cycle if high, and I/O
cycle if low. It becomes an output pin
during MASTER and DMA cycles for LOCAL
device accesses,
Host Write or Read Cycles Status. It
indicates a write cycle if high and read
cycle if low. It becomes an output pin
during MASTER and DMA cycles for LOCAL
device accesses.
Emulation of Gate A20 OR'ed with internal
fast GATEA20 output to 486 CPU. This
signal must remain high during the POWER UP
CPU reset period. In 486DLC mode, this is
the GA20 signal indirectly buffered to the
AT bus line LA20.
Indication of WL-Bus device Cycle. This
signal is sampled at the end of the 1st T2,
or at the end of the 2nd T2 at 50 Mhz.
Local Recuest 0.
Ready. Ready output for host to terminate
the current cycle. This pin becomes an
input pin during local device cycles. In
low speed systems (s.33.3 MHz), this pin is
connected to LRDY#, RDYRTN#, and to the
CPU's Ready input pin. In high speed
systems (240 MHz), this pin is the RDYRTN#
output and is connected to the CPU's Ready
input pin. The WL-bus LRDY# signal is
connected to a separate LRDYI# input pin of
the 802G.
486 address snooping strobe. This signal
is asserted for two T states during DMA or
MASTER cycles.
Address Strobe. Status input from host.
This active low signal indicates the host
is starting a new cycle. It becomes an
output pin during MASTER or DMA cycles to
the Local bus.

AT Bus Interface

Function

ISA 16-bit Memory Capability. 16-bit AT
Memory Slave Cycle Status; Schmitt trigger
input pin normally, and driven kow during
master cycle.
ISA 16-bit IO Slave Cycle Status. Schmitt
trigger input pin.
AT Bus Address Latch Enable to represent
that the AT cycle has started
AT Bus High Byte Enable. Input pin during
MASTER cycles.
Peripheral Data Bus Lines 15:0).
ATO Read Command. This pin is an input
during MASTER cycles and an output for host
and DMA cycles.
ATIO Write Command. This pin is an input
during MASTER cycles and an output for host
and DMA cycles.
ATMemory Read Command. This pin is an
input during MASTER cycles and an output
for host and DMA cycles.
AT Memory Write Command. This pin is an
input during MASTER cycles and an output
for host and DMA cycles.
BIOS ROM Output Enable. During memory
cycles, this signal is used for System BIOS
ROM accesses and can be either 8-bit or 16
bit. This signal will be asserted from the
end of the first T2 to the end of the last
T2.

10

15

20

25

30

35

45

50

55

65

44

TABLE C1-continued

820802G SIGNAL DESCRIPTIONS

Type Description

SAO

SA1

OWSAILRDY

HOLD

NPERR

IGERR3

BEA3

BEA20A3

DRTY

FLUSH

BEOE
BOOE3
ECAWE

OCAWE

TAGO:6
TAGW

I
O

O

Keyboard Controller Chip Select. When IO
to port 60h or port 64h is detected, this
signal is decoded for the keyboard A9:0).
Channel Ready Input from AT-BUS. This pin
a Schmitt trigger input.
Memory Space Below One Megabyte Indicator.
This signal is active during refresh
cycles.
System. Address Line O. This pin is an
input during MASTER cycle; an output pin
during host, DMA or refresh cycles.
System Address Line 1. This pin is an
input during MASTER cycle; an output pin
during host, DMA or refresh cycles.
Zero Wait State Input from AI-BUS. This
pin is a Schmitt trigger input pin. Note
that the system BIOS ROM is accessed as a
one wait state AT cycle. This pin is
either OWS# or LRDYI for the 82C802G,
determined by strap option MPO. MPO is
sampled during reset to determine its
function:

MP2

O LRDY
1. OWS

Bus Arbitration Interface

Function

AT Refresh Cycle Indication. It is an
input pin during MASTER or DMA cycle. Note
that 82C802G will not HOLD the CPU during
AT refresh cycles. The 82C802G puts the
CPU on “waiting" if an AT refresh cycle is
underway.
HOLD Acknowledge from host.
HOLD Request to host. Hidden refresh will
not hold the CPU.

Numeric Processor Interface Signals

Numeric Processor Error Indication. Used
to generate IGERRif for the 486 CPU.
Ignore Numeric Processor Error. This is a
normally high signal
Cache Interface Signals

Cacheable or Non-Cacheable Status for the
486's internal cache. This signal is kow
normally, and is brought high at the end of
T1. The 82C802G asserts KEN# again if it
is a cacheable cycle.
Cache Address Line A3. This pin is
connected to the A3 line to the cache in
the single bank mode or even bank A3 in the
double bank mode.
Cache Line A2/A3. This pin is the A2 line
to the cache in single bank mode or odd
bank A3 in the double bank mode.
Dirty Bit of TAGRAM to indicate its line
has been written into.
This pin is FLUSHA on the 82C802G. This is
an output to the host from the chipset and
allows the chipset to flush the L1 cache
before the SMM occurs and also once the
system comes out of the SMLGREEN mode.
External Cache Output Enable.
External Cache Output Enable.
External Cache Write Enable for the even
Cache bank.
External Cache Write Enable for the odd
Cache bank.
TAG RAM Output Lines.
TAG RAM Write Enable. It is used to update
the TAGRAM.

CASIO:3#
MPO:3)

RAS6

RAS7MA

MAO:10
DWE

DRQO:3)
DRQ5:7)
DACKO:2)
INTER
IRQ1
IRQ43

IRQ8
IRQ9
IRQ1110

IRQ1512

HLBLTH

HLBOE

5,790,831
45

TABLE C1-continued

82C802G SIGNAL DESCRIPTIONS

Type Description

g

DRAM Interface Signals

DRAM Column Address Strobes 0-3.
DRAM Parity Bits 0–3. In addition, MP1 only
is used to enable the internal VESA Bus
arbitration circuitry. This pin must be
pulled down with a 1k resistor if the
internal WESA Bus arbitration is to be
used. MP1 is sampled on the rising edge of
RST4.
DRAM Row Address Strobes 0-3.
DRAM Row. Address Strobe 4 or Local Request
1. The 82C802G uses this pin as LREQ1} or
RAS4#. This pin is sampled during reset to
determine its function. Please refer to
the table in the RAS5# (pin 193)
description for pin strapping options.
DRAM Row Address Strobe 5 or Local Grant 1.
The 82C802G uses this pin for either LGNT1#
or RAS5#. This pin is sampled during reset
to determine its function:

MP1. Pin 192 Pin 193

RAS4 RASS
DRAM Row Address Strobe 6. The 82C802G
uses this pin for RAS6i.
DRAM Row Address Strobe 7 or DRAM
Row/Column Address Line 11. The 82C802G
uses this pin for RAS7#MA11. When used as
MA11, the 82C802G will support 16Mxi DRAM
parts.
DRAM Rowlcolumn Addressines 0-10.
DRAM Write Enable Signal.

"206 Signals

DMA request lines.

Encoded DMA Acknowledgment Lines.
Interrupt Request
Interrupt Request 1, Schmitt trigger input
Interrupt Request 3 & 4, Schmitt trigger
input. When ATCLK is low, this pin is
IRQ4. When ATCLK is high, this pin is
IRQ3.
Interrupt Request 6, Schmitt trigger input.
Interrupt Request 5 & 7, Schmitt trigger
input. When ATCLK is low, this pin is
IRQ7. When ATCLK is high, this pin is
IRQ5.
Interrupt Request 8, Schmitt trigger input.
Interrupt Request 9, Schmitt trigger input.
Interrupt Request 10 & 11, Schmitt trigger
input. When ATCLK is low, this pin is
IRQ11. When ATCLK is high, this pin is
IRQ10.
Interrupt Request 14, Schmitt trigger
input.
Interrupt Request 12 & 15, Schmitt trigger
input. When ATCLK is low, this pin is
IRQ15. When ATCLK is high, this pin is
IRQ12.
Terminal Count.

Buffer Control Signals

SD(7:0 to XD(7:0) Direction Control.
Normally high, this pin is driven low when
the devices located on XD7:0 are read.
XDR is active for all ROM read cycles and
FO accesses to Ports 60h, 64h, 7Oh and
71h.
Byte 2 Data Latch Enable. This signal
becomes high during the host AT byte 2 read
cycle and during DMA or master cycles.
Byte 2 Data Buffer Output Enable. This

1C)

15

25

35

45

55

65

46

TABLE C1-continued

82C802G SGNAL DESCRIPTIONS

Name Type Description

HLBOE.2f O

CPURST O
PWRGD

CHCK O

LGNTOf O

AHOLD O

DC:

SPKD O

signal becomes active during host DRAM
cycles for parity checking and generation,
during host AT byte 2 write cycle in 486
mode and during DMA or MASTER byte 2 read
DRAM or LOCAL device cycles.
Byte 2 Data Latch Output Enable. This
signal becomes active during host AT byte 2
read cycle and during DMA or MASTER byte 2
write to local DRAM or LOCAL device.

Reset signals

CPU Reset for the microprocessor.
Power good status or reset switch on
indication.

Clock Signals
14.3 Mhz Oscillator input.
ATCLK to AT bus. This is a free running
clock output, programmable to be CLKI/3,
CLK-4, CLKI/5, CLKI/6 or OSC/2.
CLK 1x input. Single phase clock input for
the 82C8O2C internal state machine.

Misc. Signals

Channel Check Input from AT bus to indicate
there is a parity error generated by the AT
memory card. (NMI interrupt request).
Local Bus Grant 0. This signal is the WESA
Bus Local Grant signal.
Non-Maskable Interrupt to host; caused by
system parity error or AT bus channel
check.
Host Address Hold. This pin is an active
high output from the 82C802G used to force
the host to float address lines A31:2 on
the next clock cycle.
L1 WriteBack Hit or D/C#. This pin is an
active low input from an Ll writeback
capable host (such as the P24T) used to
indicate that the current cache inquiry
address has been found in the internal
cache and that dirty data exists in that
cache line. This pin is either HTTM# or
HITM# and D/C# on the 82C802G. This pin
can be in either configuration by the
sampling of MP2 during reset. When
strapped low, it is HTTM# during inquiry
cycles and D/C# for all other cycles. In
this configuration, the DfC# and HTM#
signals from the host must be ANDed into
this pin. The strapping option also
affects pin 108.

MP2 Function

l HTM
O HTM and DfC

Speaker Data Output. Generated by OUT2 and
port 61h bit 1.

82C802G Register Description

TABLE C2

Bit Function

Control Register 1 - Index: 2Oh

Revision of 820802G and is read-only.
5 Secondary Cache Burst wait state control.

1 = secondary cache read hit cycle is X-2-2-2.
O = secondary cache read hit cycle is X-1-1-1.
(See register 21h?bit 0 for lead-off cycle)

4 TAG7 sampling during cache cycles. This bit will only

Bit

7

47

TABLE C2-continued

Function

be active when the "802G samples MP2 low during reset.
O = enable TAG7, 1 = disable TAG7
Single ALE Enable. 82C802G will activate single ALE
instead of multiple ALEs during bus conversion cycle
if this bit is enabled.
Extra AT Cycle Wait State Enable.
Insert one extra wait state in standard AT bus cycle.
Emulation Keyboard Reset Control. Turn on this bit
requires a "Halt' instruction to be executed before
the 82C802G generates CPURST. This bit also affects
soft resets via writes to ports 63h and 92h.
Fast Reset Enable. Alternative fast CPU reset,
requires a "Halt" instruction to be executed before
82C802G generate CPURST.

Control Register 2 - Index: 21h.

Master Mode Byte Swap Enable
Reserved
Parity Check
Cache Enable
Cache Size

32- Cache Size

00 64 KB
01. 128KB
0 256 KB

1 512 KB
Cache Write Wait State Control
Cache Read Lead-off Cycle' Wait State Control

1 = 2-X-X-X cycle
Shadow RAM Control Register I-Index: 22h

ROMOOOF0000-000FFFh) Enable
1 = Read from ROM, write to DRAM. ROMCS# is
generated during read access only,
O = Read from write-protected DRAM. Ihis segment is
now cached in secondary cache.
Reserved
Reserved
Shadow RAM at DOOOOh-DFFFFh Area. Write Protect Enable.
Shadow RAM at EOOOOh-EFFFFh Area. Write Protect Enable.
Hidden Refresh Enable
(HOLD will not be issued to the host during refresh
cycles)
Fast Gate A20
1 = Enable A20
O = A20MF is always active
Slow Refresh Enable (4 times slower than the normal
refresh)
(This feature requires installation of slow refresh
DRAMs)

Shadow RAM Control Register II - Index: 23h

Enable Shadow RAM at ECOOOh-EFFFh area
Enable Shadow RAM at E3000h-EBFFFh area
Enable Shadow RAM at EAOOOh-E7FFFh area
Enable Shadow RAM at EOOOOh-E3FFFh area
Enable Shadow RAM at DCOOOh-DFFFFh area
Enable Shadow RAM at D8000h-DBFFFh area
Enable Shadow RAM at D4000h-D7FFFh area
Enable Shadow RAM at DOOOOh-D3FFFh area

DRAM Control Register I - Index: 24h

SMI Handler Upkoad Enable.
O = Normal Mode, 1 = Remaps Memory 3xxxxh to Bxxxxh.

6:4). DRAM configuration.
3 Reserved
2:O DRAM configuration.

7

DRAM Control Register II - Index; 25h

MDIRALMEMR (pin 62 functionality)
O = MDIR#, 1 = LMEMF (MP3 sampled low during reset)

6:5). DRAM Read Cycle Wait State Control

5,790,831

10

15

20

25

30

35

45

50

55

65

48

TABLE C2-continued

Bit Function

bité bits DRAM Burst Add Write Wait State Default

O O 3-2-2-2 33 MHz
or less

O 1. 4-3-3-3 page miss=l add'l ws
O 4-3-3-3 page miss=0 add'l ws

l 1 5-4-4-4 50 MHz
or less

4 DRAM Write Cycle Wait State Control
0 = zero wait states, = one wait state.

3:2) Reserved
1:0 ATCLK selection

9. ATCLK selection

O O ATCLK-CLKI/6(Default)
O 1 ATCLKCLKI/5

O ATCLK-CK14
1. ATCLKCLKV3

5

Shadow RAM Controi Register II - Index: 26h

Enable ROMCS# for Write Cycles
1 = Enable, generates ROMCS# for write cycles to
support flash ROMs.
O = Disable
Shadow RAM copy enable for address area C0000h-EFFFFh
O = Read/write on AT bus
= Read from AT bus and write into shadow RAM

Shadow write protect at address area C0000h-CFFFFh
O = Write protect disable
1 = Write protect enable
Reserved
Enable shadow RAM at CCOOOh-CFFFFh area
Enable shadow RAM at C8000h-CBFFFh area
Enable shadow RAM at C4000h-C7FFF area
Enable shadow RAM at C0000Oh-C3FFF area

Control Register 3 - Index; 27h

Enable NCAff pin to low state (always non-cacheable)
Enable Fast ATCycie.
Back to Back I/O Delay Control
O = 3 BLK back to back I/O delay
1 = no back to back I/O delay
reserved
Turbo Bit. 1 = Normal Mode (fast), O = Slow Mode.
L1 Write Back, 1 = Disabled, O = L1 Write Back Enabled
AT Clock Change.
1 = Synchronous (see register index 25h1:0), 0 =
asynchronous (OSCI2).
reserved
ROM Chip Select (ROMCSF) Control Register - Index: 2Dh

PS2 Mouse Support
O = PS2 mode, = AT mode
Unused
Enable ROMCS# at E3000h to EFFFFh Segment
Enable ROMCS# at E0000h to E7FFFh Segment
Enable ROMCS# at D8000h to DFFFFh Segment
Enable ROMCS# at D0000h to D7FFFh Segment
Enable ROMCS# at C8000h to CFFFFh Segment
Enable ROMCS# at C0000h to C7FFFh Segment

Cacheable Address Range - Index Register 2Eh

FOOOOh to FFFFFh cacheable in L1
1 = enable, O = disable
E0000h to EFFFFh cacheable in L1
= enable, O = disable

D0000h to OFFFFh cacheable in L1
1 = enable, O = disable
COOOOh to CFFFFh cacheable in L1
1 = enable, O = disable
EC000h to EFFFFh cacheable in L2
1 = enable, O = disable
E800Oh to EBFFFh cacheable in L2
= enable, O = disable

E4000h to ETFFFh cacheable in L2
1 = enable, O = disable
E0000h to E3FFFh cacheable in L2

5,790,831
49

TABLE C2-continued

Bit Function

- enable, O = disable
Cachcable Address Range 2 - Index Register 2Fh

OCOOOh to DFFFFh cacheable in L2
1 = enable, O = disable

6 8000 to DBFFF cacheable in L2
1 = enable, O = disable

5 D4000h to DFFF cacheable in L2
= enable, O = disable

4. DOOOOh to D3FFFh cacheable in L2
1 = enable, O = disable

3 CCOOO to CBFFF cacheable in L2
= enable, O = disable

2 C800Oh to CBFFF cacheable in L2
1 = enable, O = disable
C4000 to C7FFFh cacheable in L1
1 = enable, O is disable

O COOOOh to C3FFFh cacheable in L2
= enable, O = disable

O Port 6Oh

The 82C802G emulates the Port 60h and 64h registers of
the keyboard controller, allowing the gent A20 signal. The
sequence here is BIOS transparent, and there is no need for
the modification of thee sequence involves writing data Dlh
to port 64h, then writing data 02h to port 60h.

TABLE C3

I/O Port 61h (Port B)

ReadWrite Bit Function

Timer 2 Gate.
Speaker Output Enable.
Parity Check Enable.
I/O channel Check Enable.
Refresh Detect.
Timer OUT2 Detect.
IO Channel Check.
System Parity Check.

O Po t 64h

82C802G I/O port 64h emulates the register inside the
keyboard controller by generating a fast reset pulse. Writing
data F1 to port 64h asserts the reset pulse. The pulse is
generated immediately after the I/O write if bit 1 of Index
register 20h is set.

Port O.

Bit ReadWrite Function Polarity

7 RW NMEnable O

Mode Register - Index EFh

This is a read/write register which is used to store con
figuration information.

Bit Description

7-0 601 or 602 mode register
This register selects the mode which the system board is
configured in. When set to '601 mode, the system will expect
an external power management port is used.
CCh = 601 mode
COh = 602 mode

O

5

25

35

45

50

55

65

SO
APPENDIX ID OPT 82C602

82O601/82C602 OVERVIEW
Introduction
The OPTiG 82C601 and 82C602 buffer chips are 100-pin

devices designed to replace a number of discrete buffer
components normally found on PC/AT motherboards. Pin
compatible with each other, the 82C602 is an upgrade from
the 82C601 with additional functionality. These chips
replaces approximately 9 TTL components on a typical
motherboard design, offering significant cost savings and a
substantially simplified PCB layout.
The 82C601/82C602 are closely coupled with OPTi's

82CS01/802/802G, 82C499 and 82C495SLC/XLC chipsets
to allow higher integration and lower cost.
The 82C602 is a pin-compatible upgrade to the 82C601

that adds RealTime Clock (RTC) and Power Management
functionality.
82C601/82C602 Functional Description
SDO-7 to XDO-7 Data Bus Control
The 82C8OX, 82C495SLC/XLC, and 82C499 families

drive the SD bus directly. The 82C601 provides a bidirec
tional buffer which controls the direction of the XD to SD
bus. The XD bus is designed for devices which are not
intended to drive the SD bus. These items include the RTC,
Keyboard Controller and BIOS ROM. The direction of the
internal buffer is controlled by the system logic chipset
signal XDIR.
CD (23:16) to SD(7:0) and/or CD(31:24) to SD(15:8) Data
Bus Buffering
On OPTi 82C80X and 82C499 chipsets, the third data

byte is sourced from the CPU, and so is not output by the
chipset. In order to align the byte properly for the 16 bit ISA
bus, control signals are generated by the chipset. The control
for this alignment is done by HLBOE1#, HLBOE2# and
HLBTH#. On the 82C495SLC/XLC chipsets, the third and
fourth byte is sourced from the CPU and not output by the
chipset. This is controlled by the HLHDEN#, HDLENF and
HDDR of the 82C495SLC/XLC.
CA(15:2) to SAC15:2) Address Buffering
The 82C601 buffers all of the local bus address lines to the

ISAbus. These address lines normally drive the ISAbus, and
are inputs from the host during ISA master operations.
During refresh, these buffers are disabled, allowing the
refresh address to be broadcast to the ISA bus.
Refresh Counter and Refresh Address Logic
The 82C601 has its own built-in refresh counter. This

refresh counter will broadcast the refresh address to the ISA
bus during refresh cycles.
AEN Decode Signal
AEN is decoded by REF, MASTER# and HLDA#. This

signal is normally low and is driven high during DMA
CCSSS

AT Command Buffer Signals MEMR# an MEMW# signals
are buffered to the ISA bus.
Real Time Clock Control
Addresses 70h and 71h are decoded by the 82C601. These

decoded addresses translate to RTCCSF and RTCAS
strobes. This decode is needed for 82C802 designs. On
82C801 designs, the decode is done by the chipset.
Keyboard Clock Buffer
The clock signal from the keyboard controller to the

keyboard can be buffered through the 82C601. This clock is
tri-stated through the buffer chip and sent out to the key
board.
Reset Circuit
SYSRST# from the 82C801 is buffered through the

82C601. RSTDRV to the ISA bus and LRESET to the
VESA local bus are generated.

5,790,831
51

82C602 Functional Description
The 82C602 has all of the functionality of the 82C601

buffer chip, adding an embedded RTC and GREEN power
port.
Internal
RTC The internal RTC of the 82C602 is functionally

compatible with the DS 1285/MC146818B. Additional fea
tures to the RTC are 242 bytes of general nonvolatile storage
and an internal power sense monitor.
GREEN Power Port
The GREEN port on the 82C602, when coupled with the

82C802G, provides a means of controlling devices via
output pins on the device. During the power saving mode,
this port can be written to by the system software or can latch
data from the 82C802G's port.

TABLE D1

82C602 Signal Definitions

Direc
tion
Rela
tive to

Name 82C602 Description

MASTER I Master cycle indication. This signal is
used to control the CASA buffer
direction.
HLIDA from output of '80x, '499 or
'495SLC/XLC.
Refresh cycle indication. This signal
is used to:
1) enable refresh address from internal
address counter,
2) Tri-state CAVSA buffer.
Address Enable. When High, the DMA
controller has control of the address
lines, data lines, MEMR# and MEMWif, IORif
and IOWif. This signal is connected to
AEN of AT bus.
AT bus address lines 15:2).
Host address lines 15:2.
Connected to AT Bus address lines
SA1:0.
AT bus data lines (7:0).
XD bus data lines 7:O. XD7, XD6 and
XD4 lines are internally pulled-up and
are sampled at reset time for the
following strap options:
XD7 XD6 Strap Option

1. 1 '801/802
O '495XLCSLC

1. 1 '802G
O O Reserved

XD4 Strap Option
1. Enable RTC
O Disable RTC

SD to from XD direction control.
Host data lines 23:16)
Output enable for CD23:16) to SD7:O
This signal is the HD-Bus Low-Byte
Enable control from the chipset to the
82C60x. This signal is called HLBOE1f.
on the 82C499 and '802x chipsets and is
called HDLENE on the 82C495SLCXLC.
Output enable for SD7:0 to CDI23:16)
Latch from the chipset to the 82O60x.
Latch control for SD7:0 to CD23:16)

8OXHILDA I

RFSH:

SA15:2)
CA15:2)
CA1:0 :
SD7:0
XD17:0

DR
CD23:16)
HLBOE,
HDLEN:

HLBOE2.

HLBLH1) I
HDDR for 82C80x and 82C499. On the

82C495SLC/XLC, this signal is HD-Bus
direction control for SD15:0 to
CD31:16).

ORi. B ATIO Read Command. This signal is an
input only for 82C499 and 82C80x
chipsets and bi-directional for
495SLC/XLC. Normally an input, IOR# is
an output only during ISA Master cycles.

10

15

25

30

35

45

50

55

65

52

TABLE D1-continued

82C602 Signal Definitions

Direc
tion
Rela
tive to

Name 82C602. Description

This signal is tied to IOR# of the
chipset.
AT I/O Write Command. This signal is an
input only for 82C499 and 82C80x and bi
directional for the 82O495SLCXLC.
Normally an input, IOWi is an output
only during ISA Master cycles. This
signal is tied to IOW of the chipset.
Memory Read Command. This signal is an
input for the 82C499 and 82C80x and bi
directional for the 82C495SLCXLC.
Normally an input, MEMW# is an output
only during ISA master cycles. This
signal is tied to MEMWif of the chipset.
Memory Write Command. This signal is an
input for the 82C499 and 82C80x and bi
directional for the 82C495SLCXLC.
Normally an input, MEMW# is an output
only during ISA master cycles. This
signal is tied to MEMWil of the chipset.
AT Memory Read Low 1 Meg Command. This
signal will follow MEMR# during refresh
cycle.
AT Memory Write Low 1 Meg Command.
Low 1 Meg Memory Chip Select. This
signal is also the Keyboard Chip Select.
ATIO Read Command. This signal is an
input only for 82C499 and 82C80x
chipsets and bi-directional for
495SLCXLC. Normally an input, IOR# is
an output only during ISA Master cycles.
This signal is tied to IOR# of the
chipset.
ATI/O Write Command. This signal is an
input only for 82C499 and 82C80x and bi
directional for the 82C495SLC/XLC.
Normally an input, IOWif is an output
only during ISA Master cycles. This
signal is tied to IOW# of the chipset.
Memory Read command. This signal is an
input for the 82C499 and 82C80x and bi
directional for the 82C495SLCLC.
Normally an input, MEMR# is an output
only during ISA master cycles except
during refresh. This signal is tied to
MEMR# of the chipset.
Memory Write Command. This signal is an
input for the 82C499 and 82C80x and bi
directional for the 82C495SLC/XLC.
Normally an input, MEMW# is an output
only during ISA master cycles. This
signal is tied to MEMWA of the chipset.
ATMemory Read Low 1 Meg Command. This
signal will follow MEMR# during refresh
cycle.
ATMemory Write Low 1 Meg Command.
Low 1 Meg Memory Chip Select. This
signal is also the Keyboard Chip Select.
Power Port, bit 1.
This port is set up through index
registers F8h and F9h. This signal is
derived through the I/O Read and Write
commands.
An output from the Green power control
output. This pin can be accessed by
either PPEN# strobe signal or by Index
Register FAh depending on the
configuration.
Clock to and from the Keyboard.
Green power port enable, which latches
the '802G 'AUTO GREEN' port.

OW B

MEMR# B

MEMW B

SMEMR B

SMEMW B
LMCS
KBCSi
IOR B

OW B

MEMR B

MEMW B

SMEMR: B

SMEMW
LMCSKB
CS
PP1
GPCS

PP2: O

KBCLK B
PPEN: I

5,790,831
S3

TABLE D1-continued

82C602 Signal Definitions

Direc
tion
Rela
tive to

Name 82C602. Description

ERQ8 O Generated from the internal RC.
PPOs O Output from the Green power control

output. This pin can be accessed by
either PPENFE strobe signal or by Index
Register FAh depending on the
configuration.

MO I Host memory IO status.
CPUCLK An input from the processor 1X clock

signal.

APPENDIX E OPTCE) 82C822
2.0 Overview

OPTi(E)'s 82C822 VESA local bus to PCI Bridge (PCIB)
chip is a high integration 208-pin PQFP device designed to
work with VESA VL bus compatible core logic chipsets.
The 82C822 PCIB provides interface to the high perfor
mance PCIbus and is fully compliant to the PCI Version 2.0
specification. The 82C822 requires no glue logic to imple
ment the PCI bus interface and hence it allows designers to
have a highly integrated motherboard with both VESA local
bus and PCI local bus support. The PCIB chip offers
premium performance and flexibility for VESA VL-based
desktop systems running up to 50 MHz. The 82C822 PCIB
can be used with OPTi's 82C802G core logic and 82C602
buffer chipsets to build a low cost and power efficient
486-based desktop solution. It also works with OPTi
82C546/547 chipset to build a high performance PCIVL
solution based on the Intel P54C (Pentium) processor.
The 82C822 PCB provides all of the control address and

data paths to access the PCI bus from the VESA Local bus
(VL bus). The 82C822 provides a complete solution includ
ing data buffering, latching, steering, arbitration, DMA and
master functions between the 32-bit WL bus and the 32-bit
PCI bus.

The PCB works seamlessly with the motherboard chipset
bus arbiter to handle all requests of the host CPU and PCI
bus masters, DMA masters, I/O relocation and refresh.
Extensive register and timer support are designed into the
82C822 to implement the PCI specification.
The 82C822 is a true VESA to PCI bridge. It has the

highest priority on CPU accesses after cache and system
memory. It generates LDEV# automatically and then com
pares the addresses with its internal registers to determine
whether the current cycle is a PCI cycle. When a cycle is
identified as PCI cycle, the 82C822 will take over the cycle
and then return RDYi to the CPU. If not, the 82C822 will
give up the cycle to the local device or, in the case of an ISA
slave, generate a BOFF# cycle to the CPU. This action will
abort the cycle and allow the CPU to rerun the cycle.
The 82C822 includes registers to determine shadow

memory space, hole locations and sizes to allow the 82C822
to determine which memory space should be local and
which is located on the ISAbus. Upon access to memory, the
82C822 can determine whether or not the cycle is a PCI
access by comparing the cycle with its internal registers.

15

20

25

35

45

55

65

54

TABLE E1

Signal
Signal Name Type

3.1.1 VESA Local Bus Interface Signals

Signal Description

RESET; I
LCLK
AIDS O

Active Low Reset Input
WESALocal Bus Clock
Address Data Strobe: Normally an input,
this signal is only driven during PCI
bus master cycles. ADS is tristated
when WBACKY is sampled active. This
signal needs to be reasserted after
WBACKF is sampled active.
Memory or I/O Status: Normally an input,
this signal is an output during PCI bus
master cycles. This signal is tristated
when WBACK# is sampled active.
Write or Read Status: Normally an input,
this signal is an output during PCI bus
master cycles. This signal is tristated
when WBACK is sampled active.
Data or Code Status: Normally an input,
this signal is an output during PC bus
master cycles. This signal is tristated
when WBACK# is sampled active.
Byte Enables bits 3 through 0: Normally
inputs, these signals are outputs during
PCI bus master cycles. They are
tristated when WBACK is sampled active.
Burst Last: Normally an input, this
signal is an output during PCI bus
master cycles. This signal is tristated
when WBACK is sampled active.
Data Lines bits 31 through 0: Normally
inputs, these pins are outputs during
CPUWESA/DMASA master reads from PC
bus slaves (this includes reading the
configuration registers of the 82C822)
or during PCI bus master write cycles.
These pins are tristated when WBACK is
sampled active.
Address Lines bits 31 through 2:
Normally inputs, these signals are
outputs during PCI bus master cycles.
They are tristated when WBACKF is
sampled active.
Local Device Output: This signal is
usually connected to the LDEV# input pin
of the OPTi WL chipset. When used as an
output, LDEVOE is normally asserted in
the next clock after ADSA, except during
a restarted cycle due to BOFF# being
asserted in the previous cycle.
During DMA/ISA bus master cycles, the
assertion of DEVO# is dependent on
LMEM, LDEVE, the enable bit of the
DMASA bus master to PC slave access,
and general purpose decoding blocks
specified in the configuration register.
The assertion of LOEWOB for DMASA bus
master cycles is as follows:
LMEM LDEW LIDEVO

O
O O

1 0 (if enable bit =
1 or 0 and the
access address is
falling into the
region specified
in the general
purpose decoding
blocks)
1 (if enable bit =
O and the access
address is not
falling into the
region specified
in the general
purpose decoding

O

O

O

O BE3:Off

BLAST O

O DAT31:O

ADR31:2) O

LDEWO O

5,790,831
55 56

TABLE El-continued TABLE E1-continued

Signal Signal
Signal Name Type Signal Description 5 Signal Name Type Signal Description

blocks) inputs during PCI bus master cycles.
As an input, it is latched at the PAR I/O Parity: This signal is an input either
trailing edge of the reset time and used during PCI bus master cycles for address
to determine the sampling point of LMEMF and write data phases or during PCI bus
and LDEVI#. If sampled high during slave cycles for read data phases;
reset, the end of the first T2 is used 10 otherwise it is an output.
as the sampling point; otherwise, the FRAME O Cycle Frame: This pin is driven by PCI
end of the second I2 is used as the bus masters to indicate the beginning
sampling point. and duration of an access. Normally an

LRDY: O Local Ready: This signal is asserted input, FRAMEA is driven during CPUVESA/
when: DMAVSA tinaster accesses to PCI bus
1) ACPUAVESA/DMA/ISA master accesses a 15 slaves.
PCI bus slave. PDY. O Initiator Ready: This signal is asserted
2) A CPUAVESA/PCI bus master accesses an by PCI bus masters to indicate the
ISA slave (LRDY# is returned to ability to complete the current data
terminate the back-off cycle. phase of the transaction. Normally an
3) A PCI bus master accesses a PCI bus input, this pin is driven during
slave (in this case, LRDY# is 2O CPUWESAWOMATSA master accesses to PCI
asserted to terminate the cycle on bus slaves.
the hostbus). TRDY# O Target Ready: This pin is asserted by

BRDY O Burst Ready: Normally an input, this the target to indicate the ability to
signal is asserted when a CPU? WESA complete the current data phase of the
master accesses a PCI bus slave and the transaction. Normally an input, this
cycle is burst-able. pin is driven during PCI bus master

ROYRTN Ready Return: This signal is used by the 25 accesses to local memory, WESA/ISA
8C822 as a handshake to acknowledge the slaves, and the configuration register
completion of the current cycle. inside the 82C822.

WBACK I Write-back: When WBACK# is active, the STOP IO Stop: This signal is used by the target
82C822 floats all the address, data, and to request the master to stop the
control signals which are driven onto current transaction. Normally an input,
the host bus during a PCI bus master 30 this signal is driven during PCI bus
cycle. The 82C822 needs to resume the master accesses to local memory and
back-off cycle when WBACK becomes WESAISA slaves.
inactive again. LOCK I Lock: This signal is used to indicate an

LREQ# O Local Bus Request: This signal, in atomic operation that may require
conjunction with LGNT, is used to gain multiple transactions to complete.
control of the host bus. LREQ# goes 35 Since the 82C822 will never assert this
active when any one of the PCI bus signal, it is always an input.
masters asserts the REQnff to request the DEVSELE I/O Device Select: This pin is an output
hostbus. when the 82C822 decodes its address as

LGNT I Local Bus Grant: This signal, in the target of the current access via
conjunction with LREQ, is used to gain either positive or negative decoding,
control of the host bus. Upon receiving 40 otherwise it is an input.
LGNT), the 82C822 grants the bus request INTD.(4:14, I PCI Interrupt Lines D-A for Slots 4-1:
by asserting GNTn# to one of the PCI bus INTC4:14, These signals are used to generate
masters. The active PCI bus master can NTB4:12, synchronous interrupt requests to the
be preempted by removing this signal. DNTA4:1 CPU via the programmable interrupt

3.1.2 PCI Interface Signals controllers.
PERR: f0. Parity Error: This pin is used to report

CLK I Clock: This signal is used to provide 45 data parity errors during all PCI
timing for all transactions on the PCI transactions except during a special
bus. The clock source for this input Cycle. Normally an input, PERR# is
can be the same input as LCLK for the driven when data parity errors occur
synchronized mode, or the feedback of either during a PCI bus master write
PCCLK or the external oscillator. cycle or during a CPUFVESA/DMA/ISA

PCCLKN I PCI Clock Input: This clock input is 50 master read from a PC slave.
used to generate the PCICLK3:1) SERR: OD System Error. This signal is used to
signals. report address parity errors, or data

PCICLK3:1 O PCI Clock 3:1: In the asynchronous parity errors on the Special Cycle
mode, these signals are used as the command, or any other system error where
clock inputs to the PCI slots and should the result will be catastrophic. This
be fed back to the CLK input (pin 80). 55 pin is an open drain.

AD31:0 O Multiplexed Address and Data Lines, bit 6 REQ4:11# I Request Lines, bits 4 through 1: These
31 through O: These pins are the signals are used by PCI bus masters to
multiplexed PCI address and data lines. request use of the PCI bus.
During the address phase, these pins are GNT4:1# O Grant Lines, bits 4 through 1: these
inputs for PCI bus master cycles; signals are used to indicate to a PCI
otherwise they are outputs. During the 60 bus master that the access to the bus
data phase, these pins are inputs during has been granted.
PCI bus master write cycles or during 3.1.3 Miscellaneous Interface Signals
CPUAWESATDMA/ISA reads from a PCI bus
slave; otherwise they are outputs. LDEW I Local Device input. This input is an

CBE3:0 WO Bus Command and Byte Enables, bits 3 ANDed signal of all LDEW# signals from
through O: These pins are the WESA bus slaves; it is used to indicate
multiplexed PCI command and byte enable 65 to the 82C822 whether the current access
lines. Normally outputs, these pins are is to VESA slave.

Signal Name

BOFF:

MASTER

RFSH

LMEM

IRQ 15:14),
IRQ129);
IRQ5

ROMCS

NWMCS.

Signal
Type

O

OD

5,790,831
57

TABLE E1-continued

Signal Description

Non-Maskable Interrupt: This output is
asserted in response to an active PERR#
or SERRE if the enable bit of the NMI
generation for an active PERRA or SERR
is set. NMI will not be asserted if bit
7 of Port 70 is set to . If the NMN
input pin is connected to the NMI of the
other chipset, then this output will go
active in response to an active NMIN
also.
Non-maskable Interrupt input: This input
is the non-maskable interrupt input
signal generated from the other chipset.
The 82C822 will combine this input with
its internal NMI signal and generate a
new NM to the CPU. In the case where
this pin is not used, an external pull
down resistor is recommended.
Back-Off. This output is asserted when
the assumed destination of the access
for the current cycle turns out to be
wrong and the cycle needs to be
restarted in order to access the right
target; it is asserted during a CPU or
WESA bus master cycle to abort the cycle
if the current access is to an ISA
slave. LDEWOS is asserted as well.
SAAT Clock: The 8MHz. SAAT cock.
ISA Master Cycle: This input is used to
indicate to the 82C822 that the current
cycle is an ISA bus master cycle.
ISA Address Enable: This input is used
to indicate to the 82C822 that the
current cycle is either a DMA or refresh
cycle.
ISA Refresh: An input signal used to
indicate to the 82C822 that the current
cycle is a refresh cycle.
CPU Byte Enable 4: This signal is used
only with Pentium chipsets.
Local Memory: When the enable bit at the
top of the local memory decoding is
disabled, this input is used to indicate
to the 82C822 if the current access is
to local memory. When the enable bit at
the top of the local memory decoding is
enabled, then internal decoding result
for LMEMH is used and this input pin is
ignored.
PC Interrupt Reouest Lines, bits 15,
14, 12 through 9, and 5: These outputs
are connected to the PC-compatible
programmable interrupt controllers (PIC)
to generate asynchronous interrupts to
the CPU in response to NTD4:1. The
routing of each PCI interrupt line to
the PC-compatible interrupts is
controlled by four bits specified in the
configuration register.
PCI ROM BIOS Chip Select: Used to select
the BIOS ROM used to configure the
chipset.
Non-volatile Memory Chip Select: This
output signal is used to select the non
volatile memory in which the system
information is stored; the memory
address space for the non-volatile
memory is always a 16KB chuck and
between C8OOOh and DFFFF. It is used
to select any ROM located in the memory
address space from E0000h to EFFFFh.

O

15

25

30

35

45

55

65

58
4.0 Functional Description
The following sub-sections will explain the various cycle

operations the 82C822 PCB performs to determine which
memory space should be local and which is located on the
ISA bus.
4.1 CPU Cycles
Cache/DRAM Accesses
The CPU begins the cycle. The 82C822 asserts LDEVO#

on the next clock in response to LADS# (VESA local bus
ADSH). In the OPTi Pentium chipsets. LADS# will not be
generated for a local memory cycle and therefore, LDEVO#
will not be generated by the 82C822. In the OPTi 486
chipsets, the CPU will generate LADS# (LADS# and CPU
ADS# are the same in the 486 implementation) . The
82C822 will generate LDEVO#, but this will be ignored by
the OPTi 486 chipsets during a local memory cycle. In this
case, the 82C822 will deassert LDEVOff after the last
BRDY#. The 82C822 is also programmable to mask
LDEVOff during a local memory cycle.
WESA Slave Accesses
The CPU begins the cycle. The 82C822 asserts LDEVO#

on the next clockin response to ADS#. The VESA slave will
generate LDEV# to the 82C822 at the end of the first T2 or
second T2 (depending on the VL speed). At this point, the
82C822 will keep asserting LDEVO# until the VESA slave
returns LRDY/LBRDY.
PCI Slave Accesses
The CPU begins the cycle. The 82C822 asserts LDEVO#

on the next clock. It then determines that the cycle is a PCI
slave cycle and starts the PCI cycle after synchronization.
Data is latched into the 82C822 for read cycles. The 82O822
completes the cycle, returns LRDY#, and deasserts
LDEVO.
ISA Slave Accesses
The CPU begins the cycle. The 82C822 asserts LDEVO#

on the next clock. It then determines that the cycle is not a
local memory or VESA slave cycle and starts the PCI cycle
after synchronization. The 82C822 receives master-abort
termination and asserts BOFFF after synchronization. It then
asserts LRDYif either at the same time or one or two clock
cycles thereafter, programmably. The CPU restarts the
aborted cycle. The 82C822 ignores the restarted cycle by
keeping LDEVO# inactive. The OPTi VL chipset returns
RDY# to the CPU at the end of the AT cycle.
4.2 VESA Master Cycles
Cache/DRAM Accesses
The VL bus master begins the cycle. The 82C822 asserts

LDEVO# on the next clock. The OPTi VL chipset deter
mines that the cycle is a local memory cycle and ignores
LDEVO#. (The 82C822 is programmable to maskLDEVOff
as well on local memory cycles). The OPTiVL chipset will
then return BRDYif after the data is transferred. The 82C822
also determines that the cycle is a local memory cycle and
takes no action other than to deassertLDEVOff after the last
BRDY.
VESA Slave Accesses
The VL bus master begins the cycle. The 82C822 asserts

LDEVO# on the next clock. It then samples LDEVIFF and,
determining that the cycle is a VESA cycle, takes no further
action. The VESA slave will then return LRDY/LBRDYif
after the data is transferred. RDYRTNF will be generated by
the OPTiVL chipset. The 82C822 deasserts LDEVO# after
the last BRDY/RDYRTN.
PCI Slave Accesses
The VL bus master begins the cycle. The 82C822 asserts

LDEVOFF on the next clock. It then determines that the cycle
is a PCI slave cycle and starts the PCI cycle after synchro
nization. Data is latched into the 82C822 for read cycles.

5,790,831
59

The 82C822 returns LRDY# to the OPTi VL chipset and
deasserts LDEVOff.
ISA Slave Accesses
The VL bus master begins the cycle. The 82C822 asserts

LDEVO# on the next clock. It then determines that the cycle
is not a local memory or VESA slave cycle and starts the PCI
cycle after synchronization. The 82C822 receives a master
abort termination and asserts BOFF# after synchronization.
It then asserts LRDY either at the same time or one or two
clock cycles thereafter, programmably. The CPU restarts the
aborted cycle. The 82C822 ignores the restarted cycle by
keeping LDEVOff inactive. The OPTi VL chipset returns
RDY# to the CPU at the end of the AT cycle.
4.3 PCI Master Cycles
Cache/DRAM Accesses
The PCI master begins the cycle by asserting PCI REQ#

to the 82C822. The 82O822 asserts LREQ# to the OPTi VL
chipset after arbitration of the bus requests from the PCI bus
masters. The 82C822 receives LGNT from the OPTi VL
chipset and generates the appropriate VL bus signals accord
ing to the PCI command, address, and status lines. The OPTi
VL chipset determines that the cycle is a local memory
cycle. The 82C822 also determines that the cycle is a local
memory cycle and asserts DEVSEL# to claim the cycle.
Data is latched into the 82C822 for read cycles. The OPTi
VL chipset returns RDY# to the 82C822. The 82C822
returns TRDY# to the PCI bus master after synchronization.
The 82C822 deasserts DEVSELS after the last transfer.
VESA Slave Accesses
The PCI master begins the cycle by asserting PCI REQ#

to the 82C822. The 82C822 asserts LREQ# to the OPTi VL
chipset after arbitration of the bus requests from the PCI bus
masters. The 82C822 receives LGNT from the OPTi VL
chipset and generates the appropriate VL bus signals accord
ing to the PCI command, address, and status lines. It then
determines that the cycle is a VESA slave cycle and asserts
DEVSELi to claim the cycle. Data is latched into the
82C822 for read cycles. The OPTiVL chipset returns RDY#
to the 82C822. The 82C822 returns TRDYif to the PCI bus
master after synchronization. The 82C822 deasserts
DEVSELF after the last transfer.
PCI Slave Accesses
The PCI master begins the cycle by asserting PCI REQ#

to the 82C822. The 82C822 asserts LREQ# to the OPTi VL
chipset after arbitration of the bus requests from the PCI bus
masters. The 82C822 receives LGNT from the OPTi VL
chipset and generates the appropriate VL bus signals accord
ing to the PCI command, address, and status lines. It then
determines that the cycle is a PCI slave cycle and waits for
DEVSEL from the PCI slave. The 82C822 takes no action.
SA Slave Accesses
The PCI master begins the cycle by asserting PCIREQ#

to the 82C822. The 82C822 assets LREQ# to the OPTi VL
chipset after arbitration of the bus requests from the PCIbus
masters. The 820822 receives LGNT from the OPTi VL
chipset and generates the appropriate VL bus signals accord
ing to the PCI command, address, and status lines. It then
determines that the cycle is a not a local memory or VESA
slave cycle and, detecting no DEVSEL# from the PCI slave.
realizes the cycle is an ISA slave cycle. The OPTiVL chipset
returns LRDY# to the 82C822 at the end of the AT cycle.
The data is latched into the 82C822 for the read cycle when
it returns RDY# to the OPTiVL chipset. The 82C822 returns
TRDY# to the PCI master after synchronization. The
82C822 deasserts DEVSELF after the data is transferred.

O

15

20

25

30

35

45

55

60

60
4.4 DMA/ISA Master Cycles
Cache/DRAM Accesses
The OPTi WL chipset determines that the DMA/VISA

master cycle is accessing local memory by detecting
LMEM# asserted and LDEVIf unasserted at the sample
point when the command is asserted. The OPTiVL chipset
asserts MEMCS16# if this is an ISA master cycle. LADS#
will not be generated by the OPTiVL chipset. No action is
taken by the 82c822.
VESA Slave Accesses
The OPTi VL. chipset determines that the DMA/ISA

master cycle is a not a local memory cycle once the
command is asserted. The OPTiVL chipset will generate the
VESA local bus command lines. In response to LADS#, the
82C822 will assert LDEVOff. The 82C822 will receive
LDEVIf by the next or subsequent clock. The OPTi chipset
pulls IOCHRDY low to stall the command. The OPTi VL
chipset samples LDEVO# active. If the cycle is a read cycle,
the OPTiVL chipset will start driving the SD bus. LRDY#
is asserted by the VESA slave. The OPTiVL chipset releases
IOCHRDY and asserts RDYif at the end of the command
after synchronization. The 82C822 takes no action other
than to deassert LDEVOff as soon as LDEVE goes inactive.
The OPTiVL chipset deasserts MEMCS16# when LDEVO#
goes inactive.
PCI Slave Accesses
The OPTi VL chipset determines that the DMA/ISA

master cycle is a not a local memory cycle once the
command is asserted. The OPTiVL chipset will generate the
VESA local bus command lines. In response to LADS#, the
82C822 will assert LDEVO#. The OPTi VL chipset pulls
IOCHRDY low to stall the command. The OPTiVL chipset
samples LDEVO# active and pulls MEMCS16# low if the
command is not an I/O cycle. The 82C822 starts the PCI
cycle after synchronization, only if the ISA/DMA-to-PCI bit
is set. Data is latched into the 82C822 for read cycles when
both TRDY and IRDYif are active. The 82C822 asserts
LRDY# after synchronization. The OPTi WL chipset
releases IOCHRDY and asserts RDYif at the end of the
command after synchronization. The 82C822 deasserts
LDEVO# at the end of the bus cycle. The OPTi chipset
deasserts MEMCS16# when LDEVO# goes inactive. In the
case of a master abort, the 82C822 still asserts LRDYif to
release IOCHRDY and drive FFFFFFFFh onto the VL-bus
data lines for a read cycle.
ISA Slave Accesses
The DMA/ISA master can access an ISA slave only if the

ISA/DMA-to-PCI bit is low. Otherwise the 82C822 will
claim this cycle. The OPTi VL chipset determines that the
DMA/ISA master cycle is a not a local memory cycle once
the command is asserted. The OPTiVL chipset will generate
the VESA local bus command lines. In response to LADS#,
the 82C822 does not assert LDEVO#. The OPTiVL chipset
pulls IOCHRDY low to stall the command. The OPTi VL
chipset samples LDEVOff inactive and keeps SD lines
tri-stated for a read cycle. It also negates IOCHRDY. The
chipset asserts RDY# at the end of command after synchro
nization. No action is taken by the 82C822.
4.5 Guidelines to Program the 82C822

The following briefly describes how to access the 82C822
and the PCI devices on the slots. The 82C822 uses the PCI
Configuration Mechanism #1 to access the configuration
spaces. Two double-word I/O locations are used in this
mechanism. The first double-word location (CF8h) refer
ences a read/write register that is named CONFIG
ADDRESS. The second double-word address (CFCh) ref
erences a register name CONFIG DATA. The general
mechanism for accessing the configuration space is to write
a value into CONFIG. ADDRESS that specifies the PCI

5,790,831
61

bus, the device on that bus, and the configuration register in
that device being accessed. A read or write to CONFIG
DATA will then cause the 82C822 to translate that
CONFIG. ADDRESS value to the requested configuration
cycle on the PCI bus.
4.6 Asynchronous and Synchronous Modes of Operation
The 82C822 supports both synchronous and asynchro

nous modes of operation. In the synchronous mode, the PCI
bus interfaces runs at the same speed as the VL bus. In the
asynchronous mode, the PCI bus can run at a different speed
than the VL bus. This facilitates the VTL bus to run at 50 MHz
with the PCI running at 33 MHz. The synchronous mode of
operation is recommended when the WL bus is operating
below 33 MHz. The asynchronous mode of operation is
recommended when the VL bus is running at 50 MHz or to
implement PCI interface in the riser card.
5.0 Configuration Registers
5.1 PCI Configuration Register Space

Note: In the address offsets given below, the most sig
nificant bit (MSB) corresponds to the upper address offset.
Registers not pertinent to an understanding of the invention
are omitted.

TABLE E2

Bit(s) Type Default Function

Address Offset 04h-05h: Command Register

0000 00 Reserved Bits
Enable Fast Back-to-Back: Must always = 0
otherwise the 82O822 will never generate fast
back-to-back transactions to different PCI bus
slaves
SERR Eable:
O = Disable
1 = Enable
Wait Cycle Control: Must always = 0 always.
No programmable wait states are supported by
the 82C822.
Enable Parity Error Response:
O = Disable
1 = Enable
Reserved Bit
Enable Memory Write and Invalidate Cycle
Generation: Must always = 0. No memory
write and invalidate cycles will be generated by
the 82C822.
Enable Special Cycles: Must always = 0. The
82C822 does not respond to the PCI special
cycle.
Enable Bus Master Operations: Must
always = 1. The allows the 82C822 to perform
bus master operations all the time.
Enable Memory Access: Must always = 1. The
82C822 allows a PCI bus master access to main
memory all the time.
Enable I/O Access: Must always = 1. The
82C822 allows a PCI bus master access to the
PCI to all the time.

Address Offset 06h-07h: Status Register

5:10 RO
9 RO O

RO O 7

RAW

RO
RO 8

3. RO O

2 RO

1 RO l

O RO 1.

15 RW O Detected Parity Error:
0 = No parity
1 = Parity error occurred
SERR Status:
O = No system error
1 = System error occurred
Master-Abort Status:
O = Mo master abort
1 = Master abort occurred
Received Target-Abort Status
O = No target abort
1 = Target abort occurred
Signaled Target-Abort Status:
0 = No target abort

14 RO O

RW O

RO O

O

15

25

30

35

45

50

55

65

62

TABLE E2-continued

Bit(s) Type Default Function

1 = Target abort generated
10:9 RO O1 DEVSELi Timing Status: These bits must

always = 01. Medium timing is selected. The
82C822 asserts the DEVSEL based on

8 RW O Data Parity Detected:
O = No data parity detected
1 = Data parity has detected

7 RW Fast Back-to-Back Capable:
1 = Capable
0 = Not Capable
Note: Can be set to 0 only when bit 2 of
register at offset 52h is set to 0; for debugging
purposes only.

6:0 RO 0000 000 Reserved Bits
Address Offset 40h-41h

15 RW O 82C822 PCI Bridge Enable:
O = Disable 1 = Enable

14 RW O CPU Type Select:
O = L1 Write-through CPU
= L1 Write-back CPU

13:2 RO OO Reserved Bits
1:10 RW 1X The delay of LRDY# after the assertion of

BOFF:
11 10 Delay
0 0 No Delay
0 1 1 LCLK Delay
1 x 2 LCLK Delay

9 RAW O Disable LDEVO# Assertion during local
Memory Cycle:
O - Enable 1 = Disable

8 RAW O Disable BOFFi Assertion:
O = No retry error 1 = Retry error

occurred
7 RW O Enable NMIN Input:

O = Disable 1 - Enable
6 RW O Enable Back-to-Back CFC read/write without

CF8 write:
O = Disable 1 = Enable

5:3 RO 000 Reserved Bits
2 RO O NMI Output Enable (via Port 70h) Status;

O = NMI Output Disable
1 = NMI Output Enable

1. RO 0 Master Retry Status:
O = No retry error
1 = Retry error has occurred

O RO 1. LMEMALDEVI: Sampling Point Select:
1 - End of the first T2
O = End of the second T2

Address Offset 42h43h

15:4 RW 20h A31:2O) for the Top of local Memory
Decoding

3 RJW 00h Enable Tbp of local Memory Decoding:
O = Disable 1 = Enable
Note: If bit 3 is enabled, then the LMEME
input pin is ignored; otherwise an external
LMEM is used to decide if the access for the
current cycle is to local memory
Bits Top of Bits Top of
15:4 Memory 15:4 Memory
000 MB O3F 64MB
OOth 2MB : :
002h 3MB OTFh 128MB
003h 4MB : :
: : OFFh 256MB
OOFh 16MB : :
: 10Oh Reserved
OFh 32MB :

: FFFh Reserved
2:O RO OOO Reserved Bits
Address Offset 44h

7:6 RyW O Master Retry Timer:
7 6 Operation
O O. Retries unmasked after 8 PCCLKs

5,790,831
63

TABLE E2-continued

Bit(s). Type Default Function

5:4 RO 00
3 R/W O

2 RO O
l R/W O

O RAW O

Address Offset 45h.

7 R/W O

6 RVW O

5 RW O

4. RW O

3 RW O

2 R/W O

1. RJW D

O RW O

Address Offset 46th

7 RW O

6 RW O

5 RW O

4 R/W O

3 R/W O

2 R/W O

RW O

O R/W O

Address Offset 47h

7 RW O

6 RW O

O 1 Retries unmasked after 16 PCICLKs
1 0 Retries unsasked after 32 PCICLKs
1 1 Retries unmasked after 64 PCICLKs
Reserved Bits
LMEME/LDEV# sampling point select for PCI
master cycle:
O = 1 PCI clock after FRAME
1 - 2 PCI clocks after FRAME
Reserved Bit
Enable Read Shadowed RAM for
FOOOOh-FFFFFh Block:
O = Disable
1 - Enable
Enable Write Shadowed RAM for
FOOOO-FFFFFh Block:
O = Disable
1 = Enable

Enable Read Shadowed RAM for
EC000h-EFFFFh Block:
O = Disable 1 = Enable
Enable Read Shadowed RAM for
E8000-EBFFFh Block:
O = Disable 1 = Enable
Enable Read Shadowed RAM for
EAOOOh E7FFFh Block:
O = Disable 1 = Enable
Enable Read Shadowed RAM for
E0000h-E3FFFh Block:
0 = Disable = Enable
Enable Write Shadowed RAM for
ECOOOh EFFFFh Block:
O - Disable 1 = Enable
Enable Write Shadowed RAM for
E800Oh-EBFFFh Block:
O = Disable = Enable
Enable Write Shadowed RAM for
EA00Oh E7FFFh Block:
O = Disable 1 = Enable
Enable Write Shadowed RAM for
E0000h-E3FFFh Block
O = Disable 1 = Enable

Enable Read Shadowed RAM for
DCOOOh DFFFFh Block:
O = Disable 1 = Enable
Enable Read Shadowed RAM for
D8000h DBFFFh Block:
O = Disable 1 - Enable
Enable Read Shadowed RAM for
D4000-DTFFFh Block:
Os: Disable 1 c Enable
Enable Read Shadowed RAM for
DOOOOh-D3FFF. Block:
O = Disable 1 = Enable
Enable Write Shadowed RAM for
DCOOOh-DFFFFh Block:
O = Disable 1 = Enable
Enable Write Shadowed RAM for
D8000h DBFFFh Block:
O = Disable 1 = Enable
Enable Write Shadowed RAM for
D4OOOh-D7FFFh Block:
O = Disable 1 = Enable
Enable Write Shadowed RAM for
D000Oh-D3FFFh Block:
O = Disable = Enable

Enable Read Shadowed RAM for
CCOOOh-CFFFFh Block:
O = Disable = Enable
Enable Read Shadowed RAM for
C80Oh-CBFFFh Block:
O = Disable = Enable

10

15

20

25

30

35

45

50

55

65

64

TABLE E2-continued

Bit(s) Type Default Function

5 RW O

4. RW O

3 RW O

2 R/W O

l RVW O

O RVW O

Enable Read Shadowed RAM for
C4000h-C7FFFh Block:
O = Disable 1 = Enable
Enable Read Shadowed RAM for
COOOOh-C3FFFh Block:
O = Disable 1 - Enable
Enable Write Shadowed RAM for
CCOOOh-CFFFFh Block:
O = Disable 1 = Enable
Enable Write Shadowed RAM for
C8000-CBFFFh Block.
O = Disable 1 = Enable
Enable Write Shadowed RAM for
C4OOOh-CTFFFh Block:
O = Disable 1 = Enable
Enable Write Shadowed RAM for
COOOOh-C3FFF. Block:
O = Disable 1 = Enable

Note: Address offsets 48h-51h are meant for setting the local memory
holes 0-3.
Address Offset 48h

7 R/W O

6:4 RWW 000
3 R/W O

2:0 RW 000
Address Offset 49h

7 R/W O

6:4 RW OO
3 RW O

2:0 RW O

Address Offset 4Ah-4Bh
15:0 RW OOOOh

Address Offset 4Ch. 4Dh
15:0 RW OOOOh

Address Offset 4Eh-4Fh
15:0 R/W OOOOh

Address Offset 50b-51h.
15:0 R/W DOOOh

Address Offset 52h

7 R/W O

6 R/W O

5 R/W O

4. RJW O

3 RW O

2 RW 1.

Enable Memory Hole 3:
O = Disable = Enable
Block Size for Memory Hole 3
Enable Memory Hole 2:
O = Disable = Enable
Block Size for Memory Hole 2

Enable Memory Hole 1:
O = Disable 1 = Enable
Block Size for Memory Hole 1
Enable Memory Hole 0:
O = Disable = Eable
Block Size for Memory Hole 0: Block Size
Definition

Size
64KB
128KB
256KB
512KB

2MB

A31:16) for Starting Address of Memory
Hole 2

A31:16) for Starting Address of Memory
Hole 2

A31:16) for Starting Address of Memory
Hole 1

A31:16) for Starting Address of Memory
Hole O

DMASA Bus Master to PCI Bus Slave
Access Enable:
O = Disable 1 = Enable
Enable Write Buffers from Host Bus to PCI
Bus:
O = Disable 1 = Enable
Enable Write Buffers from PCI Bus to Host
Bus:
O = Disable 1 = Enable
Disable NMI Generation Globally:
O = Disable = Enable
Enable SERRA Generation for Target Abort:
O = Disable 1 = Enable
Fast Back-to-Back Capable:
1 = Enable O = Disable
Note: The change on this bit will reflect on bit
7 of the register in address offset 06h.

5,790,831
65

TABLE E2-continued

Bit(s) Type Default Function

1O RIW 10 Subtractive Decoding Sample Point: 5
1 O Operation
O O Fast sample point
0 1 Typical sample point
1 O Slow sample point

Address Offset 53h.

7

6

5

4.

3

2

1.

O

O

O

Address Offset 54th-5Th

31:8 RAW OOOOOOh

OOOOOO

Address Offset 58h-5Bh

O
PCI Bus Clock Synchronous to System Clock
Enable:
1 = Asynchronous O = Synchronous

Clock Clock
Host-to-PCBs FIFO Wat State:
O = No Wait 1 = One Wait 15
Conversion of PERR to SERRI Enable:
O = Disable 1 = Enable
Enable Address Parity Checking:
1 - Enable O = Disable
Enable Conversion of PCI Shared Interrupts to
ISA Edge Triggered Interrupts:
O = Disable 1 s Enable
Expansion Bus Selection:
O = SA bus 1st ESA
PCI Bus Burst Cycle Enable:
O = Disable 1 = Enable
HostBus to PC Bus Post Write Enable:
O = Disable = Enable 25

A31:8 for Starting Address of General
Purpose decode Block 3 for PCI Address space
A7:2) for Starting Address of General Purpose
decode Block 3 for PC Address Space 30
Enable Block 3 Decoding Function:
O = Disable 1st Enable
Memory or I/O Space indicator for Block 3:
O = Memory Space = IO Space
Note: If bit 0 = 0, then A3:2 are ignored on
decoding. 35

A31:8 for Ending Address of General
Purpose decode Block 3 for PCI Address Space
A7:2 for Ending Address of General Purpose
decode Block 3 for PCI Address Space
Reserved Bits

31:8 RW OOOOOO

7:2 RW OOOOOO

10 RO OO
Address Offset 5Ch-5Fh

3:8 RW OOOOOOh

7:2 RW OOOOOO

1 RW O

O RW O

Address Offset 60th-63h.

31:8. RW OOOOOOh

7:2 RW OOOOOO

1:O RO 00
Address Offset 64-67h

318 RW OOOOOOh

7:2 R/W OOOOOO

1. RW O

O RW O

A31:8) for Starting Address of General
Purpose decode Block 2 for PCI Address Space
A7:2) for Starting Address of General Purpose
decode Block 2 for PCI Address Space 45
Enable Block 2 Decoding Function:
O = Disable is Enable
Memory or I/O Space Indicator for Block 2:
O = Memory Space 1 = IPO Space
Note: If bit 0 = 0, then A3:2 are ignored on
decoding. SO

A31:8 for Ending Address of General
Purpose decode Block 2 for PCI Address Space
A7:2) for Ending Address of General Purpose
decode Block 2 for PCI Address Space 55
Reserved Bits

A31:8) for Starting Address of General
Purpose decode Block 1 for PCI Address Space
A7:2 for Starting Address of General Purpose 60
decode Block 1 for PCI Address Space
Enable Block 1 Decoding Function:
O = Disable 1st Enable
Memory or I/O Space Indicator for Block 1:
O = Memory Space 1 = I/O Space
Note: If bit O = 0, then A3:2 are ignored on 65
decoding.

66

TABLE E2-continued

Bit(s). Type Default Function

Address Offset 68-6bh

31:8 R/W 0OOOOOh A31:8 for Ending Address of General
Purpose decode Block 1 for PCI Address Space

7:2 R/W 0000 OO AT:2 for Ending Address of General Purpose
decode Block 1 for PCI Address Space

O RO OO Reserved Bits
Address Offset 6Ch-6Fh

31:8 RJW OOOOOOh A31:8 for Starting Address of General
Purpose decode Block 0 for PCI Address Space

7:2 RW 0000 00 A7:2) for Starting Address of General Purpose
decode Block 0 for PCI Address Space

1. RFW O Enable Block 0 Decoding Function:
O = Disable 1 = Enable

O RW O Memory or I/O Space Indicator for Block 0:
O = Memory Space 1 = /O Space
Note: If bit 0 = 0, then A3:2 are ignored on
decoding.

Address Offset Oh-73h

31:8 RAW 000000h A31:8) for Ending Address of General
Purpose decode Block 0 for PCI Address Space

7:2 R/W 0000 OO AT:2 for Ending Address of General Purpose
decode Block 0 for PCI Address Space

:O RO OO Reserved Bits
Address Offset 74h

7 RW O PCI Bus Master to Host Memory Burst cycle
Enable:
0 cisable = Enable

6 RW O Enable IO Port 3F7h Write at ISA Bus:
O - Disable 1 = Enable

5 RW O Enable O Port 3F7h Read at SA Bus:
O = Disable 1 = Enable

4. RW O Eable O Port 37th Write at SA Bus:
O = Disable 1 - Enable

3 RFW O Enable O Port 37h Read at SA Bus:
O = Disable 1 - Enable

2O RO OOO Reserved Bits
Address Offset 75h.

7 RW O Enable E600Oh-EFFFFh Memory Block for
ROMCS:
Ose Disable = Enable

6 RTW O Enable E0000h-E7FFFh Memory Block for
ROMCS:
O = Disable 1 = Enable

5 RW O Enable DCOOOh-DFFFFh Memory Block for
NWMCS:
O = Disable Enable

4. RW O Enable D8000h-DBFFFh Memory Block for
NWMCS:
O = Disable 1 = Eable

3 RW O Enable D4000h-D7FFFh Memory Block for
NWMCS:
O = Disable = Enable

2 RW O Enable DOOOOh-D3FFFh Memory Block for
NWMCS:
O = Disable = Eable

RW O Enable CCOOOh-CFFFFh Memory Block for
NWMCS:
O = Disable 1 = Enable

O RW O Enable C800Oh-CBFFFh Memory Block for
NWMCS:
O = Disable 1 = Eable

Address Offset 76th

7 RW O Enable Serial Port 1 at ISA Bus (Address
Decoded 3F6h-3FFh):
O = Disable 1 = Enable

6 RW O Enable Seriat Port 2 at ISA Bus (Address
Decoded 2F8h-2FFh):
O = Disable 1 = Enable

5 RFW O Enable Parallel Port at ISA Bus (Address
Decoded 3BCh-3BFh):
O = Disable 1 = Enable

5,790,831
67

TABLE E2-continued

Bit(s) Type Default Function

4

2

O

Address Offset 77h

7 RFW O

6 R/W O

5 RW O

4:3 RWW 00
2 RAW O

RIW O

O RW O

Address Offset 78h

7 RW O

6 RW O

5 RAW O

4 RAW 00

3 RW OO

2 RW O

1 RW O

O RW O

Address Offset 79h

7

O Enable Parallel Port 2 at ISA Bus (Address
Decoded 378h-37Fh):
O = Disable 1 = Enable
Enable Parallel Port 3 at ISA Bus (Address
Decoded 278h-27Fh):
O = Disable 1 = Enable
Enable Primary Floppy Disk at ISA Bus
(Address decoded 3FOh-3F5h):
O = Disable 1 = Enable
Enable Secondary Floppy Disk at ISA Bus
(Address Decoded 370h-375h):
O = Disable 1 = Enable
Enable WGA Palette Snooping at ISA Bus
(Address Decoded 3C6h-3C9h Write Cycle):
O = Disable 1 = Enable

Enable Primary IDE at ISA Eus (Address
Decoded IFOh-F7h, 3F6h):
O = Disable 1 = Enable
Enable Secondary DE at ISA Bus (Address
Decoded 17Oh-177h, 376h):
O = Disable 1 = Enable
Enable WGA at ISA Bus (Address Decoded 3
COh-3CFh, 3B4h-3B5h, 3BAh, 3D4h-3D5h
and 3DAh):
O = Disable
Reserved Bits
Enable System Board Controllers and I/O
Address Range for EISA System (Address
Decoded 0400h-04FFh, 0800h-08FFh,
excluding OCOOh-0CFFh due to the
overlap with CF8h and CFCh in PCI
configuration read/write):
O as Disable 1 as Enable
Enable System Board I/O Address Range for
ISA/ESA System (Address Decoded
000h-OFFh):
O = Disable 1 = Enable
Enable F0000h to FFFFFh Memory Block at
ISA Bus:
O = Disable

1 = Enable

1 = Enable

Enable EC600h-EFFFFh Memory Block at
SA Bus:
O = Disable 1 = Enable
Enable E8000h-EBFFFh Memory Block at
SABus:
O = Disable 1 - Enable
Enable E4000h-E7FFFh Memory Block at
ISA Bus:
O = Disable 1 =O Enable
Enable E0000h-E3FFFh Memory Block at
SA Bus:
O = Disable 1 = Enable
Enable DCOOOh-DFFFFh Memory Block at
ISA Bus:
O = Disable 1 = Enable
Enable D8000h-DBFFFh Memory Block at
ISA Bus:
O = Disable 1 = Enable
Enable D4000h-D7FFFh Memory Block at
ISA Bus:
O = Disable 1 s Enable
Enable D0000h-D3FFFh Memory Block at
SA Bus:
O = Disable 1 = Enable

Enable CCOOOh-CFFFFh Memory Block at
ISA Bus:
O = Disable 1 = Enable
Enable C800Oh-CBFFFh Memory Block at
ISA Bus:
O = Disable 1 = Enable
Enable C4000h-C7FFFh Memory Block at

1O

15

20

25

30

35

45

50

55

65

68

TABLE E2-continued

Bit(s) Type Default Function

SA Bus:
O = Disable 1 = Enable

4. RW 00 Enable C0000h-C3FFFh Memory Block at
SA Bus:
O = Disable 1 = Enable

3 RW 00 Enable A000Oh-AFFFFh Memory Block at
ISA Bus:
O = Disable 1 = Enable

2 R/W O Enable B0000h-BFFFFh Memory Block at
ISA Bus:
O = Disable 1 = Enable

1:0 RO OO Reserved Bits
Note: Offsets 7Ah-87h are for positive decode blocks of ISA bus memory
and I/O.
Address Offset 7Ah

7 RAW O

6:4 RAW 00
3 RW O

2:O R/W O

Address Offset 7Bh-7Ch
15:0 RW 00h

Address Offset TDh-7Eh
15:0 RW 00h

Address Offset 7Fh
7:2 RO 000000
1. RW O

O R/W O

Address Offset 80h-8th
15:0 RW 0000h
Address Offset 82h-83h
15:8 RO 0000

0000
7:O RW 0000

0000
Address Offset 84h-85h.
15:0 R/W 0000h
Address Offset 86th-87h

5:8 RO 0000
0000

7:0 RFW 0000
0000

Enable Memory Space 1 at ISA Bus:
O = Disable 1 = Enable
Block Size for Memory Space 1
Enable Memory Space 2 at ISA Bus:
O = Disable 1 = Enable
Block Size for Memory Space 2: Block Size
Definition

Size
64KB
128KB
526KB
512KB

2MB

2
O
O
O
O
1.
1.
1
1. 8MB

A31:8) for Starting Address of Memory
Space 1

A31:8) for Starting Address of Memory
Space 2

Reserved Bits
Enable I/D Space 1 at ISA Bus:
O = Disable 1 = Enable
Enable I/O Space 2 at ISA Bus:
O = Disable 1 = Enable

A15:0) for Comparison of IO Space 1

Reserved Bits

A7:0) for Masking of I/O Space 1

A15:0) for Comparison of I/O Space 2

Reserved Bits

A7:0) for Masking of I/O Space 2

Note: Offsets 88h-8Fh are for PCI interrupt to ISA interrupt mapping.
Address Offset 88h-8Bh

31:28 RAW 0000

27:24 R/W 0000

23:20 RAW 0000

19:16 RIW 0000

15:12 RW 0000

Selects which IRQ signal is to be generated
when PCI Interrupt Request A2 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request B2 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request C2 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request D2 has been
triggered.
Selects which RQ signal is to be generated
when PCI Interrupt Request A1 has been
triggered.

5,790,831
69

TABLE E2-continued

Bit(s) Type Default Function

11:8 RW 0000 Selects which IRQ signal is to be generated
when PCI Interrupt Request B1 has been
triggered.

74 RW 0000 Selects which IRQ signal is to be generated
when PCI Interrupt Request C1 has been
triggered.

3:O RW OOOO Selects which IRQ signal is to be generated
when PCI Enterrupt Request Di has been
triggered.

Address Offset 8Ch-8Fh

3:28 RAW 0000 Selects which IRQ signal is to be generated
when PCI Interrupt Request A4 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request B4 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request C4 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request D4 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request A3 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Enterrupt Request B3 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request C3 has been
triggered.
Selects which IRQ signal is to be generated
when PCI Interrupt Request D3 has been
triggered.
Routing Definition:
Routing Definition
OOOO Disabled
OOO IRQ5: flow through mode
O010 IRQ9: flow through mode
OO1 RQ10; flow through mode
OOO IRQ11: flow through mode
OO1 IRQ12; flow through mode
010 IRQ14: flow through mode
O1 IRQ15: flow through mode
1000 Disabled
1001 RQ5: level
100 IRQ9: level
O RQO: level
1OO IRQ11: level
10 RQ12: level
1110 RQ14: level
1111 RQ15: level

27:24 RAW OOOO

23:20

9:16

15:2

11:8

7:4

3:0

Port Address 7Oh

Enable NM:
= Disable

OOOOOOO Reserved Bits

7 WO 1
O = Enable

6:O RO

We claim:
1. A method for bridging a first bus (VL-bus) cycle to a

second bus (PCI-bus), in a system including a first bus
(VL-bus) having first bus cycle definition lines (e.g. R/WF,
M/IOff, D/C#, VA, BEff) and a first bus device claiming
signal line (LDEVOff),

said system further including said second bus (PCI-bus)
and a third bus (system bus), said second bus having
cycle definition lines (e.g. CBE, FRAMEF) and a
second bus device claiming line (DEVSELif),

for use with a first bus (VL-bus) host (102) defining said
first bus cycle by asserting first bus cycle definition
signals on said first bus cycle definition lines (e.g.
R/W#, M/IO#, D/C#, VA, BEff), said first bus host
further having a back-off input line (BOFFF) and

O

15

25

30

35

45

SO

55

60

65

70
repeating said first bus cycle after detecting assertion of
a back-off signal on said back-off input line,

for use further with a first-bus/third-bus (VL-bus/system
bus) bridge coupled to receive said first bus cycle
definition signals, said first-bus/third-bus bridge defin
ing a cycle on said third bus in response to certain
combinations of said first bus cycle definition signals
only if no first bus device claiming signal (LDEVOff)
is asserted before a predetermined first bus device
claiming deadline following detection by said first-bus/
third-bus bridge of an asserted first bus cycle start
signal (ADSH) (e.g. R/W#, M/IO#, D/CH, VA, BEF),

said method comprising the steps of:
asserting said first bus device claiming signal
(LDEVO#) prior to said first bus device claiming
deadline, in response to a first assertion of said first
bus cycle start signal (ADSH), at the time of which
the signals on said first bus cycle definition lines (e.g.
R/W#, M/IO#, D/C#, VA, BEF), being a first valid
first bus cycle definition, are within a predetermined
set of first bus cycle definitions;

defining a cycle on said second bus (PCI-bus) in
response to said first assertion of said first bus cycle
start signal (ADSf) by asserting second bus cycle
definition signals on said second bus cycle definition
lines (e.g. CBE, FRAME#); and

asserting said back-off signal (BOFFF) if no second bus
device claiming signal (DEVSELF) is asserted
before a predetermined second bus device claiming
deadline following said assertion of second bus cycle
definition signals on said second bus cycle definition
lines.

2. A method according to claim 1, wherein said first bus
is a VL-bus, said second bus is a PCI-bus and said third bus
is an IBM PC/AT-compatible system bus.

3. A method according to claim 2, wherein said system
bus comprises in combination an X-bus and a bus selected
from the group consisting of an ISA-bus and an EISA-bus.

4. A method according to claim 2, wherein said first bus
cycle definition lines include R/W#, M/IO#, D/CH, VA and
BE# signal lines, and wherein said second bus cycle defi
nition lines include CfBE and FRAME.

5. A method according to claim 1, wherein said first bus
host comprises at least one element selected from the group
consisting of a CPU, a cache memory controller and a bridge
bridging said first bus (VL-bus) with a fourth bus (host-bus)
different from said first, second and third buses.

6. A method according to claim 1, for use with at least one
first bus device each coupled to receive said first bus cycle
definition lines (e.g. R/W#, M/IO#, D/C#, VA. BEF) and
having a respective first bus device claiming output
(LDEV<x>#),

further comprising the step of asserting said first bus
device claiming signal (LDEVO) in response to asser
tion of one of said first bus device claiming outputs
(LDEV(x)/f).

7. A method according to claim 1, wherein said predeter
mined set of first bus cycle definitions excludes all first bus
cycles which match a programmable indication of first bus
cycles intended for devices on said first bus (VL-bus),

further comprising, prior to said step of asserting said first
bus device claiming signal (LDEVO), the step of
comparing said first valid first bus cycle definition
signals with said programmable indication of first bus
cycles intended for devices on said first bus.

8. A method according to claim 1, wherein said predeter
mined set of first bus cycle definitions excludes all first bus

5,790,831
71

cycles which match a programmable indication of first bus
cycles intended for devices on said third bus (system bus).

further comprising, prior to said step of asserting said first
bus device claiming signal (LDEVOff), the step of
comparing said first bus cycle definition signals with
said programmable indication of first bus cycles
intended for devices on said third bus,

9. A method according to claim 1, wherein said predeter
mined set of first bus cycle definitions excludes all first bus
cycles which match a predefined indication of first bus
cycles not intended for devices on said second bus (PCI
bus),

further comprising, prior to said step of asserting said first
bus device claiming signal (LDEVO), the step of
comparing said first valid first bus cycle definition
signals with said indication of first bus cycles not
intended for devices on said second bus.

10. A method according to claim 1, wherein said first bus
host comprises a first-bus/fourth-bus bridge bridging said
first bus with a fourth bus (hostbus) different from said first,
second and third buses, said first-bus/fourth-bus bridge
defining a plurality of said first bus (VL-bus) cycles in
response to each fourth bus (host-bus) cycle detected by said
first-bus/fourth-bus bridge on said fourth bus,

further comprising the step of asserting said first bus
device claiming signal (LDEVO#) prior to said first bus
device claiming deadline, in response to each assertion
of said first-bus cycle start signal prior to said first
assertion of said cycle start signal, and at the time of
which the signals on said first bus (VL-bus) cycle
definition lines (e.g. R/Wil, M/IO#, D/C#, VA, BEF),
are within a predetermined set of first bus cycle defi
nitions,

11. A method according to claim 1, further comprising the
steps of:

after assertion of said back-off signal in said step of
asserting said back-off signal, in response to a second
assertion of said first bus cycle start signal (ADS#),
determining whether a second valid first bus cycle
definition then asserted on said first bus (VL-bus) cycle
definition lines is a repetition of said first valid first bus
cycle definition;

asserting said first bus device claiming signal (LDEVOff)
prior to said first bus device claiming deadline, in
response to said second assertion of said first bus cycle
start signal, only if said second valid first bus cycle
definition is not a repetition of said first valid first bus
cycle definition; and

defining a cycle on said second bus (PCI-bus) in response
to said second assertion of first bus cycle start signal by
asserting second bus cycle definition signals on said
second bus cycle definition lines (e.g. C/BE#,
FRAMEA), only if said second valid first bus cycle
definition is not a repetition of said first valid first bus
cycle definition and only if said second valid first bus
cycle definition is within said predetermined set of first
bus cycle definitions.

12. A method according to claim 11, wherein said first bus
host comprises a first-bus/fourth-bus bridge bridging said
first bus with a fourth bus (hostbus) different from said first,
second and third buses, said first-bus/fourth-bus bridge
defining a plurality of said first bus (VL-bus) cycles in
response to each fourth bus (host-bus) cycle detected by said
first-bus/fourth-bus bridge on said fourth bus,

wherein said step of asserting said first bus device claim
ing signal (LDEVOf) in response to said second asser

5

15

25

30

35

45

50

55

65

72
tion of said first bus cycle start signal, asserts said first
bus device claiming signal (LDEVOff) in response to
said second assertion of said first bus cycle start signal
only if said second valid first bus cycle definition is not
one of the plurality of first bus (VL-bus) cycles defined
by said first-bus/fourth-bus bridge which includes said
repetition of said first valid first bus cycle definition.

13. A method according to claim 1, wherein said first bus
(VL-bus) host (102) after asserting a first bus cycle start
signal, withholds further assertions of said first bus cycle
start signal until after detection by said first bus host (102)
of a first bus (VL-bus) ready return signal (e.g. RDYRTN#).

said first-bus/third-bus (VL-bus/system-bus) bridge
asserting said ready return signal (e.g. RDYRTNF) in
response to detection by said first-bus/third-bus (VL
bus/system-bus) bridge of a first bus (VL-bus) device
ready signal (e.g. LRDY#).

further comprising the step of asserting said first bus
device ready signal (e.g. LRDY#) if no second bus
device claiming signal (DEVSELF) is asserted before
said predetermined second bus device claiming dead
line following said assertion of second bus cycle defi
nition signals on said second bus cycle definition lines.

14. A method according to claim 13, wherein said back-off
signal (BOFF) is asserted in said step of asserting said
back-off signal, before said first bus device ready signal (e.g.
LRDY#) is asserted in said step of asserting said first bus
device ready signal, further comprising the steps of:

unasserting said first bus device ready signal (LRDY#);
and subsequently

unasserting said back-off signal (BOFF#).
15. A method according to claim 14, further comprising

the step of unasserting said first bus device claiming signal
(LDEVOff) after detection of said first bus ready return
signal (e.g. RDYRTNF) asserted.

16. A method for responding to a first bus (VL-bus) cycle,
for use with a first bus (VL-bus) host (102) defining said

first bus cycle by asserting first bus cycle definition
signals on first bus cycle definition lines (e.g. R/Wi.
M/IO#, D/C#, VA, BEF) and asserting a first bus cycle
start signal (ADS#), said first bus host withholding any
further assertion of said first bus cycle start signal until
detecting a first bus (VL-bus) ready signal (RDYRTN#)
subsequent to said assertion of first bus cycle start
signal, or a first bus back-off (BOFF#) signal, which
ever occurs earlier, said first bus host repeating said first
bus cycle after detecting said back-off signal (BOFF#),

for use further with a first bus controller which asserts said
first bus ready signal (RDYRTNF) in response to
detecting assertion of a local device ready signal
(LRDY#),

comprising, after assertion by said first bus host of a given
first bus cycle start signal and no later than any asser
tion of said first bus start signal subsequent to said
given first bus cycle start signal, the steps of:
asserting said back-off signal (BOFFF) in response to a

first clock pulse;
asserting said local device ready signal (LRDYF) in

response to a second clock pulse after said first clock
pulse;

negating said local device ready signal (LRDYf) in
response to a third clock pulse after said second
clock pulse; and

negating said back-off signal (BOFFF) in response to a
fourth clock pulse after said third clock pulse.

17. A method according to claim 16, further comprising
the step of detecting said first bus ready signal (RDYRTNF)
no later than said step of negating said back-off signal
(BOFF#).

5,790,831
73

18. A method according to claim 16, for use further with
a first-bus/third-bus (VL-bus/system-bus) bridge coupled to
receive said first bus cycle definition signals, said first-bus/
third-bus bridge defining a cycle on said third bus in
response to certain combinations of said first bus cycle
definition signals only if said first-bus/third-bus bridge fails
to detect a first bus device claiming signal (LDEVOff) before
a predetermined first bus device claiming deadline following
detection by said first-bus/third-bus bridge of an asserted
first bus cycle start signal(ADSf), further comprising the
steps of:

asserting said first bus device claiming signal (LDEVOff)
before said first bus device claiming deadline in
response to detecting said given first bus cycle start
signal, and before said step of asserting said back-off
signal (BOFFA); and

negating said first bus device claiming signal (LDEVOff)
no earlier than said step of negating said local device
ready signal (LRDY#).

19. A method for bridging a first bus (VL-bus) cycle to a
second bus (PCI-bus), in a system including a first bus
(VL-bus) having first bus cycle definition lines (e.g. R/W#,
M/IO#, D/C#, VA, BEF),

said system further including said second bus (PCI-bus),
said second bus having second bus cycle definition
lines (e.g. C/BEF, FRAMEA),

for use with a first bus (VL-bus) master (102) defining
said first bus cycle by asserting first bus cycle definition
signals on said first bus cycle definition lines (e.g.
R/Wii, M/IO#, D/C#, VA, BEF), said first bus master
further having a back-off input line (BOFFF) which
causes said first bus master to repeat said first bus cycle
after detecting assertion of a back-off signal on said
back-off input line,

said method comprising the steps of:
defining a cycle on said second bus (PCI-bus) in

response to a first assertion of said first bus cycle
start signal (ADSA) by asserting second bus cycle
definition signals on said second bus cycle definition
lines (e.g. C/BEff, FRAME); and

asserting said back-off signal (BOFFF) in response to a
predefined event occurring on said second bus (PCI
bus) in response to said assertion of second bus cycle
definition signals on said second bus cycle definition
lines.

20. A method according to claim 19, wherein said pre
defined event is defined at least in part by expiration of a
predefined time period that begins in response to said
assertion of second bus cycle definition signals on said
second bus cycle definition lines.

21. A method according to claim 20, wherein said pre
defined event is defined further by non-detection of a
predefined signal before expiration of said predefined time
period.

22. A method according to claim 19, wherein said pre
defined event occurs on said second bus without any inter
vening event occurring on said second bus in response to
said assertion of second bus cycle definition signals on said
second bus cycle definition lines.

23. A method according to claim. 19, wherein said second
bus further has a second bus device claiming signal line
(DEVSELF),
and wherein said predefined event is defined at least in

part by non-assertion of a second bus device claiming
signal on said second bus device claiming signal line
(DEVSELF) before a predetermined second bus device

5

O

15

25

35

50

55

65

74
claiming deadline following said assertion of second
bus cycle definition signals on said second bus cycle
definition lines.

24. A method according to claim 23, wherein said first bus
further has a first bus device claiming signal line
(LDEVOff), and wherein at the time of said first assertion of
said first bus cycle start signal (ADSf) the signals on said
first bus cycle definition lines (e.g. R/W#, M/IO#, D/C#, VA.
BEF) are within a predetermined set of first bus cycle
definitions,

for use further with a third bus (system bus) and a
first-bus/third-bus (VL-bus/system-bus) bridge coupled
to receive said first bus cycle definition signals, said
first-bus/third-bus bridge defining a cycle on said third
bus in response to certain combinations of said first bus
cycle definition signals only if no first bus device
claiming signal (LDEVO) is asserted before a prede
termined first bus device claiming deadline following
detection by said first-bus/third-bus bridge of an
asserted first bus cycle start signal (ADS) (e.g. R/Wil,
M/IO#, D/C#, VA, BEF),

further comprising the step of asserting said first bus
device claiming signal (LDEVO#) prior to said first bus
device claiming deadline, in response to said first
assertion of said first bus cycle start signal (ADSf).

25. A method according to claim 19, wherein the signals
on said first bus cycle definition lines at the time of said first
assertion of said first bus cycle start signal (ADS#) define a
first valid first bus cycle, further comprising the steps of:

after assertion of said back-off signal in said step of
asserting said back-off signal, in response to a second
assertion of said first bus cycle start signal (ADSf),
determining whether a second valid first bus cycle
defined by signals then asserted on said first bus
(VL-bus) cycle definition lines is a repetition of said
first valid first bus cycle; and

defining a cycle on said second bus (PCI-bus) in response
to said second assertion of first bus cycle start signal by
asserting second bus cycle definition signals on said
second bus cycle definition lines (e.g. CIBEff,
FRAME), only if said second valid first bus cycle is
not a repetition of said first valid first bus cycle.

26. A method according to claim 19, for use further with
a third bus (ISA bus) having third bus cycle definition lines.
further comprising a step of defining a cycle on said third
bus (ISA-bus) in dependence upon said first bus cycle, after
said step of defining a cycle on said second bus (PCI-bus).

27. A method according to claim 26, wherein said step of
defining a cycle on said third bus (ISA-bus) occurs after said
step of asserting said back-off signal (BOFFF).

28. Apparatus for bridging a first bus (VL-bus) cycle to a
second bus (PCI-bus), in a system including a first bus
(VL-bus) having first bus cycle definition lines (e.g. R/W#,
M/IO#, D/C#, VA, BEF),

said system further including said second bus (PCI-bus),
said second bus having second bus cycle definition
lines (e.g. CBE, FRAMEA),

for use with a first bus (VL-bus) master (102) defining
said first bus cycle by asserting first bus cycle definition
signals on said first bus cycle definition lines (e.g.
R/W#, M/IO#, D/C#, VA, BEF), said first bus master
further having a back-off input line (BOFF#) and
repeating said first bus cycle after detecting assertion of
a back-off signal on said back-off input line, compris
ing:
second bus interface logic which defines a cycle on said

second bus (PCI-bus) in response to a first assertion

5,790,831
75

of said first bus cycle start signal (ADS) by assert
ing second bus cycle definition signals on said sec
ond bus cycle definition lines (e.g. C/BEff.
FRAMEff); and

first bus interface logic which asserts said back-off
signal (BOFFF) in response to a predefined event
occurring on said second bus (PCI-bus) in response
to said assertion of second bus cycle definition
signals on said second bus cycle definition lines.

29. Apparatus according to claim 28, wherein said second
bus further has a second bus device claiming signal line
(DEVSELF),

and wherein said predefined event is defined at least in
part by non-assertion of a second bus device claiming
signal on said second bus device claiming signal line
(DEVSELF) before a predetermined second bus device
claiming deadline following said assertion of second
bus cycle definition signals on said second bus cycle
definition lines.

30. Apparatus according to claim 29, wherein said first
bus further has a first bus device claiming signal line
(LDEVOff), and wherein at the time of said first assertion of
said first bus cycle start signal (ADSf) the signals on said
first bus cycle definition lines (e.g. R/W#. M/IO#, D/C#, VA,
BE#) are within a predetermined set of first bus cycle
definitions,

for use further with a third bus (system bus) and a
first-bus/third-bus (VL-bus/system-bus) bridge coupled
to receive said first bus cycle definition signals, said
first-bus/third-bus bridge defining a cycle on said third
bus in response to certain combinations of said first bus
cycle definition signals only if no first bus device
claiming signal (LDEVOf) is asserted before a prede
termined first bus device claiming deadline following
detection by said first-bus/third-bus bridge of an
asserted first bus cycle start signal (ADSF) (e.g. R/W#,
M/IO#, D/C#, VA, BEF),

5

O

15

20

25

30

35

76
further comprising circuitry which asserts said first bus

device claiming signal (LDEVOff) prior to said first bus
device claiming deadline, in response to said first
assertion of said first bus cycle start signal (ADS).

31. Apparatus according to claim 28, wherein the signals
on said first bus cycle definition lines at the time of said first
assertion of said first bus cycle start signal (ADS#) define a
first valid first bus cycle,

further comprising a repetition detector which, after asser
tion of said back-off signal by said first bus interface
logic in response to said predefined event, in response
to a second assertion of said first bus cycle start signal
(ADSf), determines whether a second valid first bus
cycle defined by signals then asserted on said first bus
(VL-bus) cycle definition lines is a repetition of said
first valid first bus cycle,

and wherein said second bus interface logic further
defines a cycle on said second bus (PCI-bus) in
response to said second assertion of first bus cycle start
signal by asserting second bus cycle definition signals
on said second bus cycle definition lines (e.g. C/BEF,
FRAMEA), only if said repetition detector determines
that said second valid first bus cycle is not a repetition
of said first valid first bus cycle.

32. Apparatus according to claim 28, for use further with
a third bus (ISAbus) having third bus cycle definition lines,
further comprising third bus interface logic which defines a
cycle on said third bus (ISA-bus) in dependence upon said
first bus cycle, after said second bus interface logic defines
a cycle on said second bus (PC-bus).

33. Apparatus according to claim 32, wherein said third
bus interface logic defines said cycle on said third bus
(ISA-bus) after said first bus interface logic asserts said
back-off signal (BOFF#).

k . . k sk

