
User Manual

ADDITIONAL
110 PORTS

non

~~\\'\\~~
~_'U,\.~\..'\.'\..

User Manual for the RCA CMOS

CDP6805-Series Microcomputers
and Microprocessors

Roll Solid I Somerville, NJ • Brussels • Paris • London
State Hamburg • Sao Paulo • Hong Kong

Information furnished by RCA is believed to be accurate and
reliable. However, no responsibility is assumed by RCA for its use;
nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication
or otherwise under any patent or patent rights of RCA.

Trademark(s)® Registered
Marca(s) Registrada(s)

Copyright 1985 by RCA Corporation
(All rights reserved under Pan-American Copyright Convention)

Printed in USA 7 /85

Foreword
The RCA CDP6805-Series Microcomputers

(MCUs) and Microprocessors (MPUs) consist of the
CDP6805E2 and CDP6805E3 MPUs and the
CDP6805F2, CDP6805G2, CDP68HC05C4 and
CDP68HC05D2 MCUs. This User Manual provides
the system designer with a detailed guide to the CDP
6805-Series, describing the architecture and providing
a set of simple, easy-to-use programming instructions.
Examples are given to illustrate the operation and
usage of each instruction. The CDP6805E2/ E3 MPU s
contain an 8-bit Arithmetic Logic Unit (ALU),
accumulator, program counter, index register, stack
pointer, condition code register, instruction decoder
and timing and control logic. These MPUs are identi­
cal except that the directly accessible address space
has been increased from 8K bytes on the E2 to 64K
bytes on the E3.

The microcomputer versions CDP6805F2/G2 and
CDP68HC05C4/ D2 contain an on-chip oscillator,
CPU, RAM, ROM, 1/0 and timer. The on-chip
RAM permits these devices to operate without exter­
nal memory. The addressing modes and register-like
memory operations use this RAM to the fullest extent
possible.

The CDP6805-Series features parallel 1/0 capabil­
ity with each pin programmable as an input or out­
put. The external interrupt input, and the capability
for multiple nesting of subroutines and interrupts, are
features usually found only on much more powerful
architectures. These features permit the CDP6805-
Series MCUs to be used in applications usually consid­
ered too complex for microcomputers. The external
interrupt and counter/ timer interrupt are vectored to
different service routine addresses, which greatly sim­
plifies interrupt programming. It also speeds execu­
tion of interrupt routines by eliminating software
interrupt polling.

The CDP6805-Series devices have an on-chip count­
er/timer which greatly simplifies software develop­
ment. The CDP6805E2/E3/F2/G2 have 8-bit count­
er/timers while the CDP68HC05C4/D2 have 16-bit
counter/timers. The counter/timer can be used for
timekeeping, measuring and generating pulses, and
counting external events. The timer can also be set to
"wake up" the MPU from the power-saving WAIT
mode.

The lowest address spaces are reserved for memory­
mapped 1/0 registers. The programmer may take full
advantage of the versatile addressing modes and the
register-like RAM operations of the family. User
ROM sizes range from zero to greater than 4K bytes
for the MPU. A self-check ROM is available on the
CDP6805F2/G2 and on the CDP68HC05C4/D2.
The ROM area used in the self-check operation is not
included in the published ROM sizes. The user can
get the entire ROM space for his program. A small
portion of ROM is located in page zero (the direct
page) to facilitate more efficient access to look-up
tables using all available addressing modes. This ROM
can be used for program storage as well.

The CDP6805 family includes types with either
64, 96, 112 or 176 bytes of on-chip RAM located in
page zero. Package-size options permit as many as
four full 8-bit bidirectional I/ 0 ports. Each pin is
defined under software control as an input or output
by loading a data-direction register.

The CDP68HC05C4/D2 each have a built-in Serial
Peripheral Interface (SPI) which is used to allow
expansion while conserving 1/0 lines. In addition, the
CDP68HC05C4 has a full UART-type internal Serial
Communications Interface (SCI).

4 --------User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Table of Contents
Page

Foreword 3
Introduction . 7

General 7
Architecture . 8
Addressing Modes . 8
Specific Features . 8
Hardware 9
Comparison of CDP6805 Family Members ... 10

Software Description . 12
Register Set . 12
Accumulator (A) 13
Index Register (X) . 13
Program Counter (PC) 14
Stack Pointer (SP) : 14
Condition Code Register (CC) 15

Addressing Modes . 17
Inherent Addressing Mode 17
Immediate Addressing Mode 19
Extended Addressing Mode 19
Direct Addressing Mode 20
Indexed Addressing Mode 21
Relative Addressing Mode 24
Bit Manipulation Addressing Mode 24

Instruction Set Overview . 28
Register/ Memory Instructions 28
Read/ Modify/ Write Instructions 28
Control Instructions . 29
Bit Manipulation Instructions 29
Branch Instructions . 29

Software Applications . 30
Serial I/ 0 Software for RS-232 30
Keypad Scan Routine . 33
Stock Handling . 34
Block Move 35
DAA (Decimal Adjust Accumulator) 35
Multiply . 36
Divide 39

Page
Hardware Features 42

Temporary Storage (RAM) 43
Permanent Storage (ROM) 43
Oscillator . 43
Resets 43
Interrupts . 44
Stop 47
Wait 48
I/ 0 Ports . 48
Timer Description . 49
Counter Register . 51
Output Compare Register 51
Input Capture Register . 53
Timer Control Register (TCR) 53
Timer Status Register (TSR) 54
Serial Communications Interface (SCI) 55
Serial Peripheral Interface (SPI) 64
CDP6805E2/ E3 Microprocessor (MPU)

External Bus Description 73
Self-Check 74
Instruction Set Detailed Definition 76

Nomenclature 76
Appendix A - CDP6805 CMOS Family

Compatability with M C6800 95
Appendix B - Instruction Set Alphabetical

Listing 97
Appendix C - Instruction Set Functional

Listing 99
Appendix D - Instruction Set Numerical

Listing . 103
Appendix E - Instruction Set Cycle-by-Cycle

Operation Summary . 108
Appendix F - Instruction Set OPCODE Map .. 114
Appendix G - Address Maps for the CDP6805

CMOS Family . 116
Appendix H - ASCII Hexadecimal Code

Conversion Chart . 122

6 --------User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Introduction
General

The continuing technological evolution in micro­
processors and microcomputers has resulted in larger,
more complex, and more powerful devices which
contain characteristics of both mini and mainframe
computers. The technological evolution of the
MC6800 to the M6809 Family and the 16-bit
MC68000 is a clear example of devices which evolved
upward from the mini and mainframe computer
architecture. The experience gained during this up­
ward evolution has greatly enhanced the expertise
needed to design more powerful low- and mid-range
devices. By using the architectural characteristics of
the mini and mainframe computers, the micropro­
cessor/ microcomputer hardware and software be­
comes regular and versatile, yet simple.

The demanding requirements of the mid-range con­
trol-oriented tnicroprocessor market (low cost) can
be met with the CDP6805 CMOS Family of micro­
computers (MCU) and microprocessors (MPtJ). The
CDP6805 Family is the first to provide the software
and hardware capabilities of more advanced comput­
ers to the controller market. Previously, designers
and manufacturers were required to choose between
"no processor at all" or a processor that functioned
more like a calculator than a computer.

Control-oriented microprocessors have evolved
from two different bases: calculator-based and
computer-based. The calculator-based design was at
first considered as a natural building block for con~
trollers because, most often, a controller was required
to be a complete self-contained unit. However,
calculator-based control-oriented microprocessors
use a split memory architecture containing separate
data paths between the CPU and peripherals (mem­
ory or 1/0 or registers). In addition, calculator­
based I/ 0, display, and keypad were separated from
program and data storage memory. Because of this,
separate address maps were required which forced
the inclusion of many special-purpose instructions
and resulted in an irregular architecture. As a result,
these calculator-based devices required that hardware
and software designers remember and consider many
special cases in order to perform any task. Thus, the

software and hardware became very random, irregu­
lar, and difficult to update.

The computer-based design led to another group
of processors, like the MC6800, which contain many
features of large computers. These devices contain a
single data bus which allows access to a single
address map, eliminating the need for split-memory
architecture. In this one-address map design, all 1/0,
program, and data may be accessed with the same
instruction; therefore, there are fewer instructions to
remember. The actual number of unique instructions
is increased by a variety of addressing modes which
define how an instruction accesses any data required
for the operation. For example, depending upon
which addressing mode is used, the accumulator may
be loaded (LOA instruction) with data in six differ­
ent ways. This effectively provides the programmer
with more tools to work with but fewer things to
remember. Thus, becallse of regularity of the archi­
tecture, the hardware is regular and can be imple­
mented more efficiently.

All members of the CDP6805 CMOS Family of
MCUs and MPUs are designed around a common
core which consists of CPU, timer, oscillator, control
section (for interrupts and reset), varying amounts of
bidirectional 1/0 lines, and possibly ROM. In addi­
tion to this common core, additional items can be
added such as additional memory and additional
I/ 0 lines. As of the printing of this manual, this ver­
satile common-core design has already provided six
different CDP6805 CMOS Family devices. The six
different family members allow the user to choose
the device best suited for his/ her particular applica­
tion. The increased number of devices could preclude
paying for a supplied feature that is not needed or
paying extra to externally add a needed feature that
is not included. ·

Information describing 1/0 options and general
operation of the CDP6805 CMOS Family members
is included in this chapter. Detailed information
concerning device operation is included in the foliow­
ing chapters as well as appendices. Data sheets on
the individual processors are another source of
information. Chapters discussing hardware and soft­
ware applications are also included to illustrate some

8 User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

of the family features and provide a useful tool for
the user.

The CDP6805 CMOS Family architecture and
instruction set are very similar to that of Motorola's
MC6800. Any programmer who has worked with the
MC6800 can attain equivalent proficiency with the
CDP6805 CMOS Family in a relatively short time.
In some respects the CDP6805 CMOS Family is
more powerful than the M C6800 (depending upon
the application) as a result of architecture optimiza­
tion. Appendix A summarizes the architectural and
instruction set differences between the CDP6805
CMOS and M6800 Families.

Architecture
The CDP6805 CMOS Family architecture has

been optimized for controller applications rather
than general purpose data processing operations.
Several features contribute to this optimization:

Instruction Set
The instruction set used with the CDP6805 CMOS

Family is specifically designed for byte-efficient
program storage. Byte efficiency permits a maximum
amount of program function to be implemented
within a finite amount of on-chip ROM. Improved
ROM efficiency allows the CDP6805 CMOS Family
to be used in applications where other processors
might not perform the task in the available ROM
space.

More features may be included in applications
where ROM space is more than adequate. In some
cases the user might wish to include programs for
more than one application. In such cases the appro­
priate program could be selected by the power-up
initialization program. The ability to nest subrou­
tines, the addition of true bit test and bit manipula­
tion instructions, the multi-function instructions, and
the versatile addressing modes all contribute to byte
efficiency.

Superficial comparisons of the number 9f bytes
per instruction for the CDP6805 CMOS Family,
when compared to other machines in this class, can
be very misleading. A single CDP6805 Family in­
struction occupying 2 or 3 bytes accomplishes as
much real programming work as several single byte
instructions, or a subroutine, would accomplish in
many other processors.

The bit test and bit manipulation instructions
permit the program to:

branch on bit set
branch on bit clear
set bit
clear bit.
These instructions operate on any individual bit in

the first 256 address spaces (page zero). As such, the
bit manipulations access 1/0 pins, RAM bits, and
ROM bits.

In the CDP6805 CMOS Family, a page consists of
256 consecutive memory locations. Page zero in­
cludes the lowest-numbered 256 memory addresses
($00 through $FF), page one the next 256 memory
addresses ($100 through $1 FF), etc. An efficient use
of pages zero and one would be for storage of tables
because these two pages are easily accessed by the
indexed addressing mode.

Addressing Modes

One of the chief measures of the effectiveness of a
computer architecture is its ability to access data.
The CDP6805 CMOS Family has several memory
addressing modes. They include immediate, direct,
and extended, plus three distinct indexed modes. The
programmer is thus given the opportunity to optim­
ize the code to the task. The indexed addressing
modes permit conversion tables, jump tables, and
data tables to be located anywhere in the address
space. The use of tables is an important tool in
controller-type applications.

Efficient addressing methods are coupled with in­
structions which manipulate memory without dis­
turbing the program registers. Thus, RAM may be
used for the same functions that other processors use
general purpose registers (increment, decrement,
clear, complement, test, etc.). The CDP6805 CMOS
Family members have a very versatile, efficient, and
easy-to-use I/ 0 structure. All microcomputer I/ 0
function registers are memory mapped into the first
processor addresses. Advantage is thus taken of the
efficient addressing modes, the many memory refer­
ence instructions, and the use of RAM (or I/ 0 regis­
ters) as general purpose registers. As an example,
there are 64 unique instructions which permit the
programmer to modify an I/O port. The program­
mer's problem is not so much how to accomplish a
given I/ 0 task, but rather to choose the most effec­
tive method from the many methods available. In
addition, as with other 6800 Family I/ 0 devices,
most CDP6805 CMOS Family I/ 0 pins are individ­
ually programmed as inputs or outputs under soft­
ware control.

Specific Features
The unique properties of CMOS technology (Com­

plementary MOS with both P- and N-channel de­
vices) are increasingly attractive to the needs of ad­
vanced microcomputer technology. Some applica­
tions are simply not feasible with PMOS, NMOS, or
HMOS microcomputers.

Features and operating characteristics of the RCA
CDP6805 Family of microcomputers and microproc­
essors which make them ideal choices include:
• Maximum power consumption of CMOS parts

ranges from 1 / 15 to I/ 200 of that of equivalent
HMOS parts.

Introduction

• The low power consumption of CMOS is impor­
tant in several casses of applications, including:
1) Portable equipment - hand-held and other

portable units operating from self-contained
batteries.

2) Battery back-up - CMOS is appropriate in
AC-powered applications when some or all sys­
tem functions must continue during power out­
ages. A small, rechargeable battery keeps a
CMOS MCU operable.

3) Storage batteries - Automotive and telephone
equipment operate from large batteries. Auto­
mobile battery drain must be low when the
engine is not running. Telephones must operate
independently of AC power.

4) Heat dissipation - Packaging constraints some­
times preclude dissipating electronics-generated
heat, or the heat is costly to dissipate. In addi­
tion, dissipation of heat directly affects device
reliability.

5) Power costs - The cost of electricity to power
the equipment becomes a significant factor in
calculating the total life-cycle cost of equipment
which operates continually.

• Operation over a wide range of supply voltages.
CMOS is used where the supply voltage fluctuates,
such as in battery-powered equipment; or if line

OSC1

9

power is available, a low-cost, loosely regulated
supply may be used.

• Fully static CMOS circuitry, no minimum clock
frequency. CMOS microcomputers may be oper­
ated at any clock frequency less than the guaran­
teed maximum. This feature may be used to con­
serve power, because power consumption increases
with higher clock frequencies. The CDP6805 Fam­
ily features STOP and WAIT instructions to place
the CPU in low power consumption modes. Static
operation may also be advantageous during prod­
uct development.

Hardware
Every CDP6805 CMOS Family microcomputer or

microprocessor contains hardware common to all
versions, plus a combination of options unique to a
particular version. There are also several differences
among family members of which potential users
should be aware.

Hardware Common To All Devices

Figure I details the hardware functional blocks
common to all CDP6805 CMOS Family devices.

The central processor unit (CPU) contains the 8-
bit arithmetic-logic unit (ALU), accumulator, pro-

OSC2

1
[Timer System} 1 Oscillator j- RESET

1/0
Lines 0-7 -------

~

~

--
--

1/0 Data
Dir Port Reg

8

8

~
5

n

3

8

Accumulator
A

Index
Register

x
Condition

Code
Register

cc
Stack

Pointer

SP

Program
Counter

High PCH

Program
Counter

Low
PCL

_...

r_T_I
ROM
--

t"self Check1
L RO~_J

INT

t
(10)

CPU
Control

CPU

ALU

I
I

RAM J

Figure 1 - CDP6805 CMOS Family
Basic Microcomputer Block Diagram

--
Data 1/0 --Dir Port ,.........., Reg ... ~

--

NOTE
Consult data sheet for actual amo
usable ROM, availability of NUM i
and size of PCH and SP registers.

92CM-38349

110
Lines
0-7

uni of
nput

10-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

gram counter, index register, stack pointer, condi­
tion code register, instruction decoder, and timing
and control logic. These elements resemble the
M6800 Family of microprocessors which reflect the
CDP6805 CMOS Family heritage.

The CDP6805 CMOS Family has on-chip RAM,
permitting the microcomputer versions to operate
without external memory. The addressing modes and
register-like memory operations use this RAM to the
fullest extent possible.

All microcomputers in the family {CDP6805F2,
CDP6805G2, CDP68HC05C4, and CDP68HC05D2)
have on-chip user ROM and self-check programs.

Every member of the family has an on-chip oscil­
lator. The oscillator on the microcomputers is mask­
selectable as either crystal input ot RC network.

Parallel I/O capability, with pins programmable
as input or output, is built into every unit.

The external interrupt input, and the capability for
multiple nesting of subroutines and interrupts, are
features usually found on much more powerful
architectures. They permit a CDP6805 CMOS Fam­
ily MCU to be used in projects usually considered
too complex for microcomputers.

A feature which greatly simplifies software devel­
opment and extends the capability of a microcomput­
er is an on-chip timer/ counter. This counter and its
prescaler can be programmed for innumerable func­
tions. It can generate an interrupt at software-selected
intervals. The timer/ counter can also be used for
timekeeping, measuring and generating pulses. The
timer can be set to "wake-up" the processor from the
power-saving WAIT mode, and those parts with an
external timer input can be used to count external
events.

The external interrupt and timer/ counter interrupt
are vectored to different service routine addresses.
This greatly simplifies interrupt programming. It also
speeds execution of interrupt routines by eliminat­
ing software interrupt polling, for determining the
source of the interrupt.

The first processor addresses are reserved for
memory-mapped I/ 0 registers. The programmer of
the CDP6805 CMOS Family may take full advan­
tage of the versatile addressing modes and the
register-like RAM operations of the Family.

Comparison of CDP6805
Family Members

This manual covers the six members of the
CDP6805 CMOS Family: CDP6805E2, CDP6805E3,
CDP6805F2, CDP6805G2, CDP68HC05C4, and
CDP68HC0502. The features of each are as follows:

• The CDP6805E2 and CDP6805E3 are 40-pin
microprocessors. They feature, on-chip, 112 bytes
of RAM, an oscillator, bidirectional I/ 0 lines,
and an 8-bit timer with software-programmable 7-
bit prescaler. The CDP6805E2 and CDP6805E3
are identical except that the directly accessible
address space has been increased from 8K on the
E2 to 64K on the E3. To maintain the 40-pin
package of the E2, the three additional required
address lines were taken from the three most sig­
nificant bits of Port A. Consequently the
CD P6805 E2 has 16 bidirectional I/ 0 lines and the
CDP6805E3 has 13 bidirectional 1/0 lines. Both
parts have a multiplexed address and data bus.

• The CDP6805F2, CDP6805G2, CDP68HC05C4,
and CDP68HC0502 are microcomputers.

• The CDP6805F2 is a 28-pin microcomputer fea­
turing, on-chip, 64 bytes of RAM, 1089 bytes of
ROM, an oscillator, 16 bidirectional 1/0 lines, 4
unidirectional input lines, and an 8-bit timer with
software-programmable 7-bit prescaler.

• The CDP6805G2 is a 40-pin microcomputer feat­
uring, on-chip, 112 bytes of RAM, 2106 bytes of
ROM, an oscillator, 32 bidirectional I/O lines,
and an 8-bit timer with software-programmable 7-
bit prescaler.

• The CDP68HC05C4 and CbP68HC05D2 are 40-
pin microcomputers. In addition to the on-chip
RAM, ROM, oscillator, and bidirectional 1/0
lines found on the other members of the family,
the CDP68HC05C4 and CDP68HC05D2 contain
a serial peripheral interface and a 16-bit program­
mable timer. In addition, the CDP68HC05C4 fea­
tures a serial communications interface (SCI), and
the CDP68HC05D2 features software-program­
mable open drain PORT A outputs, PORT B
interrupt, wire "OR" mode for the SPI, software­
programmable external oscillator timer input, and
an on-chip timer oscillator.

Refer to Table I for a list of the members of the
CDP6805 CMOS Family and their respective
features.

Introduction 11

Table I - Comparison Chart for CDP6805 Family Members

FEATURES CDP6805E2 CDP6805E3 CDP6805F2 CDP6805G2 CDP68HCOSC4 CDP68HC0502

Technology CMOS CMOS CMOS CMOS CMOS CMOS

Number of Pins 40 40 28 40 40 40

On-Chip RAM (bytes) 112 112 64 112 176 96

External Address Space BK 64K - - - -

On-Chip User ROM (bytes) 0 0 1089 2106 4160 2176 ..
Bidirectional 1/0 Lines 16 13 16 32 24 24

Unidirectional 1/0 Lines 0 0 4 inputs 0 1 input 1 input

Timer Size 8 8 8 8 16 16

Serial Peripheral Interface no no no no yes yes

Serial Communications Interface no no no no yes no

Interrupts External, External, External, External External, External,
Timer, SWI Timer, SWI Timer, SWI Timer, SWI Timer, Timer,

SCI, SPI, SWI SPI, Port B SWI

Self Check Mode no no yes yes yes yes

On-Chip Oscillator Crystal Crystal RC or Crystal RC or Crystal RC or Crystal RC or Crystal

On-Chip Timer Oscillator no no no no no yes

Typical Full-Speed
Operating Power at 5V 35mW 35mW 10mW 15mW 25mW 25mW

Typical WAIT Mode Power
at 5V 5mW 5mW 3mW 4mW 7.5mW 7.5mW

Typical STOP Mode Power
at 5V 25µW 25µW 25µW 25µW 5µW 5µW

Software Description

Introduction

During the early l 970's, microprocessors (MPU)
and microcomputers (MCU) helped ease the short­
age of hardware designers by providing the hardware
with more intelligence. However, because the power
of any MPU or MCU is the result of the software
programs, a shortage of software engineers was
created. Thus, as MPUs and MCUs reduced hard­
ware costs, software development costs rose. As a
result, the system designer of today must carefully
weigh the software and support costs of his/ her sys­
tem. Processors such as those of the CDP6805
CMOS Family, which are designed to include the
programming features inherited from minicomputers,
require less effort from the programmer and make
system design much more efficient. The importance
of "user-friendly" software in mini and mainframe
computers is a widely accepted fact. Easy-to-use
software is the key to writing and maintaining effi­
cient programs.

The CDP6805 CMOS Family architectl)re is based
upon the Von Neumann model which places all data,
program, and I/ 0 spaces into a single address map.
Thus, because only a single address map must be
supported, very few special-purpose instructions are
necessary in the CDP6805 CMOS Family instruction
set. The overall result is a small, very regular, and
easy-to-remember instruction set.

A regular instruction set is symmetrical in that, for
most instructions, there is a complement instruction.
Some of these instructions (plus complements) are
listed below.

LOA -STA
INC - DEC
BEQ - BNE

ADD -SUB
AND -ORA

Load and Store
Increment and Decrement
Branch if Equal and Branch if
Not Equal
Add and Subtract
Logic AND and Logic OR

BCLR - BSET
ROR - ROL
JSR - RTS

Bit Clear and Bit Set
Rotate Right and Rotate Left
Jump-To-Subroutine and Return­
From-Subroutine

The symmetry provided by the CDP6805 CMOS
Family instruction set means that the programmer
need only remember 30 to 40 separate instructions to
know the entire instruction set. The CDP6805 CMOS
family has at least 61 instructions in its instruction
set. The CDP68HC05C4 and CDP68HC05D2 micro­
computers have an additional instruction to
MULTIPLY.

The instruction set is expanded by the use of a
variety of versatile addressing modes. The addressing
modes, which are part of the minicomputer heritage
of the CDP6805 CMOS Family, expand the instruc­
tion set by allowing the programmer to specify how
the data for a particular instruction is to be fetched.
As illustrated in the Opcode Map of Appendix A,
the 61/62 separate instructions, enhanced by the
seven addressing modes, expand into 209 / 210 op­
codes; however, the programmer need only remember
68 / 69 items (61/62 instructions plus seven address­
ing modes) instead of 209 / 210.

Register Set

Each CDP6805 CMOS Family member contains
five registers as shown in Figure 2. The accumulator
(A) and index register (X) are used as working pro­
gram registers. The condition code register (CC) is
used to indicate the current status of the processor
program. The program counter (PC) contains the
memory address of the next instruction that the pro­
cessor is to execute. The stack pointer (SP) register
contains the address of the next free stack location.
For more information concerning each register, see
the section below describing that register.

Software Description------------------------------- 13

2K

SK

2K

SK

64K

7 0

_I ___ A ___ _.I A Accummulalor

7 0
X I X Index Register and

...__ _____ __. Additional Accumulator

12

0000001

10 0

12 I PC

Memory Map
Lengths Vary
Among
Family Members
(See Nole) I

PC Program

....---~------------!· Counter 15 I PC

I ...__ ____________ ___.

Carry/Borrow

.__ ___ zero

...__ _____ Negative

...__ ______ Interrupt Mask

-------- Half Carry

NOTE: The stack pointer and program counter size is determined by the memory size
that the family member device can access; e.g., an BK memory map requires a
13-bil stack pointer and program counter.

92CM-38318

Figure 2 - CDP6805 CMOS Family Register Architecture

Accumulator (A) Index Register (X)
The A register is a general purpose 8-bit register

that is used by the program for arithmetic calcula­
tions and data manipulations. The full set of read/
modify/ write instructions operates on the A register.
The accumulator is used in the register/ memory
instructions for data manipulation and arithmetic
calculation. Refer to the Instruction Set Summary
discussion later in this section for information about
the read/ modify/ write and register/ memory instruc­
tion. An example using the accumulator to add the
contents of two memory locations is shown below.

The index register is used in the indexed modes of
addressing or used as an auxiliary accumulator. It is
an 8-bit register and can be loaded either directly or
from memory, have its contents stored in memory,
or its contents compared to memory.

In indexed instructions, the X register provides an
8-bit value that is added to an instruction-provided
value, to create an effective address. The indexed
addressing mode is further described in the Address­
ing Modes paragraph of this section.

The X register is also used in the CDP6805 CMOS
Family for limited calculations and data manipula­
tion. The full set of read/ modify/ write instructions
operates on the X register as well as the accumula­
tor. Instruction sequences which do not use the X
register for indexed addressing may use X as a tem­
porary storage cell, or accumulator.

B6 50 LOA $50

BB 87 ADD $87

B7 3C STA $3C

Load accumulator with
contents of memory
location $50
Add the contents of
memory location $87 to
the accumulator
Store the accumulator
contents in memory
location $3C

The following example shows a typical use of the
index register in one of the indexed addressing
modes. The example performs a block move that is
BCNT in length.

14 _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

LOX
LOA

#BCNT
SOURCE,X

Load Length into Index Register
REPEAT Load Data from Memory at Source+Contents X into Accumulator

STA DESTIN,X Store Data from Accumulator into Memory at Destination+Contents of X

DECX Set Up to Point to Another Cell, Also Control Count

BNE REPEAT Repeat if More to Transfer

The X register is also useful in counting events
because it can be incremented or decremented. The
INCX or DECX instructions can be used to control
the count. By either decrementing or incrementing
the X register, starting at a known value, and then
comparing the X register contents to the contents of

AE
5A
26

FF

FD

DBNCE
AGAIN

Program Counter (PC)

LOX
DECX
BNE

The PC contains the memory address of the next
instruction that is to be fetched and executed.
Normally, the PC points to the next sequential
instruction; however, the PC may be altered by
interrupts or certain instructions. During a valid
interrupt, the PC is loaded with the appropriate
interrupt vector. The jump and branch instructions
modify the PC so that the next instruction to be
executed is not necessarily the next instruction in
physical memory. The actual size of the PC depends
upon the size of the address space of the individual
family members and currently ranges from 11 to 16
bits.

Stack Pointer (SP)
The stack array (stack) is an area of memory in

RAM used for the temporary storage of important
information. It is a sequence of registers (memory
locations) used in a last-in-first-out (LIFO) fashion.
A stack pointer is used to specify where the last-in
entry is located or where the next-in entry will go.
Because the stack must be written to, as well as read,
it must be located in RAM.

Interrupts and subroutines make use of the stack
to temporarily save important data. The SP is used
to automatically store the return address (two bytes
of the PC) on subroutine calls and to automatically
store all registers (five bytes; A, X, PC and CC) dur­
ing interrupts. The saved registers may be interleaved
on the stack (nested), thus allowing for: (I) nesting
of subroutines and interrupts, (2) subroutines to be
interrupted, and (3) interrupts to call subroutines.
The nesting of subroutines and interrupts can only
occur to some maximum amount, which is described
below.

Because the CDP6805 is a family of devices, the

a memory location (or a specific number), a loop can
be ended or a branch taken after a certain number of
events.

The following routine uses the index register as a
counter for a keypad debounce routine.

#CNT CNT = 255 in this example

AGAIN

actual size of the stack pointer may vary with
memory size of the particular family member (see
appropriate data sheets). But from the programmer's
perspective, the stack pointers all appear similar on
the different members. Both the hardware RESET
pin and the reset stack pointer (RSP) instruction
reset the stack pointer to its maximum value ($7F
on the CDP6805E2/E3/F2/G2, $FF on the
CDP68HC05C4/D2). The stack pointer on the
CDP6805 CMOS Family always points to the next
free location on the stack. Each "push" decrements
the SP while each "pull" increments it ("push" and
"pull" are not available as user instructions in the
CDP6805 CMOS Family).

Nested subroutine calls and interrupts must not
underflow the SP. The usable stack length will vary
between devices. In the CDP6805 CMOS Family, the
usable stack length is 2n (where n = number of bits in
the stack pointer). When the allowable stack length
is exceeded, the SP will wrap around to the top of
stack. This condition of stack underflow should be
avoided because the previously stacked data will be
lost. For a CDP6805 CMOS Family device, with a
6-bit stack pointer, the calculation is: 26 or 64 bytes
maximum.

In the CDP6805 CMOS Family, the stack builds
in the direction of decreasing address. The SP always
points to the next empty location on the stack. The
SP is decremented each time a data type is pushed
onto the stack and it is incremented each time a data
type is pulled from the stack. The SP is only changed
during certain operations, and, except for the RSP
instruction, it is not under direct software control.
During external or power-on reset, or during a reset
pointer (RSP) instruction, the SP is set to its upper
limit ($7F for the CDP6805E2/E3/F2/G2 and $FF
for the CDP68HC05C4/D2).

The order in which bytes are stored onto and
retrieved from the stack is shown in Figure 3. Notice

Software Description-------------------------------- 15

that the PC has a number of fixed and variable bits.
The number of variable bits depends upon the size of
the memory available in a particular family member
(see Figure 2 for this relationship).

~
0
E.,
:Ii ;:
c ~ ·-..,,
! c(
u
.5
j l

Unstack

NOTES:

7

111J 1 l Condition Code Register

Accumulator

Index Register

010101 PCH

PCL

0 Stack

I
N
T
E
R
R
u
p
T

92CS- 38372

1. Since, in all family devices, the stack pointer decrements during
pushes, the PCL is stacked first, followed by the PCH, etc.
Pulling from the stack is in the reverse order.

2. In the CDP6805 CMOS Family, PC fixed bits are always clear.
The CDP6805E3 has no fixed bits in the program counter.

Figure 3 - Stacking Order

Condition Code Register (CC)
The CDP6805 CMOS Family uses five condition

code flag bits, labeled H, I, N, Z, and C, which reside
in the 8-bit CC register. The three MSBs of the CC
register are all ones which fill the register to eight
bits.

The function of the condition codes is to retain
information concerning the results of the last exe­
cuted data reference instruction. The effect of an
instruction on each condition code is shown, together
with the instruction, in Appendix B. Any bit or
combination of bits, except the I bit, is testable
using the conditional branch instructions. See the
Addressing Modes section for more information.

CARRY (C). The C bit is set if a carry or borrow
out of the 8-bit ALU occurred during the last arith­
metic operation. It is also set during shift, rotate, and
bit test instructions.

The C bit is mainly set in one of six ways:
1. It is set during an add instruction if the result of

the addition produces a carry out of the 8-bit
ALU (arithmetic logic unit).

2. For subtraction and comparison instructions, it is
set when the absolute value of the subtrahend is
larger than the absolute value of the minuend.
This generally implies a borrow.

3. It is changed during shift and rotate instructions.
For these instructions the bit shifted out of the
accumulator becomes the C bit.

4. It is set when a SEC instruction is executed.
5. It is set when a COM instruction is executed.
6. It is set if a bit test and branch bit is set.

Two instructions, add with carry (ADC) and sub­
tract with carry (SBC), use the carry bit as part of
the instruction. This simplifies the addition or sub­
traction of numbers that are longer than eight bits.

The carry bit may be tested with various conditional
branch instructions.

ZERO (Z). The Z bit is set if the result of the last
arithmetic, logical, or data operation is zero. The bit
is set only if all eight bits of the result are zero; oth­
erwise, it is cleared.

The Z bit can be used to cause a branch with the
BHI, BLS, BNE, or BEQ instructions. When the
BHI instruction is used, both the C bit and Z bit are
used for the branch.

The Z bit can be used to initiate a branch after the
A or X contents equal the contents of a memory
location. For example, the accumulator can be com­
pared to the contents of a memory location and
when the eight resultant bits are all zeros (Z bit set),
a branch would result with the BEQ instruction.
Conversely, if the same comparison were made and a
BNE instruction were used, a branch would result
after each compare unless the eight resultant bits
were all zeros (Z bit set).

NEGATIVE (N). The N bit is set when bit seven
of the result of the last data manipulation, arith­
metic, or logical operation is set. This indicates that
the result of the operation is negative. The N bit is
cleared by the CLR and LSR instructions. In all
other instructions affecting the N bit, its condition is
determined by bit 7 of the result.

The N bit can be used to cause a branch, if it is
set, by using the BMI instruction. Likewise, the N bit
can be used for a branch, if it cleared, by using the
BPL instruction. In one case it is tested for a nega­
tive result and in the other it is tested for a positive
result.

The N bit can be used to initiate a branch after a
comparison of two numbers. For example, the con­
tents of the X register could be compared to the con­
tents of memory location M and a branch taken
based on the value of N. In using the CPX instruc­
tion, the N bit remains clear and no branch is taken,
as long as the X register contents are greater than or
equal to the contents of M; however, if the X register
contents become less than the contents of M, the N
bit is set to one and a branch is initiated (using the
BMI instruction).

HALF CARRY (H). The H bit is set when a carry
occurs between bits 3 and 4 during an ADD or ADC
instruction. The half-carry flag may be used in BCD
addition subroutines because each binary-coded-deci­
mal digit is contained either in the 0-3 (least signifi­
cant) or 4-7 bits. Thus, when the sum of the two least
significant BCDs results in a carry out of bit position
3 into bit position 4, the H bit· is set. The section on
Software Applications describes a routine which uses
the H bit to emulate the MC6800 DAA (decimal
adjust) instruction.

INTERRUPT MASK (I). When the I bit is set,
the external and timer interrupts are masked (dis­
abled). Clearing the I bit allows interrupts to be
enabled. If an interrupt occurs while the I bit is set,

16-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

the interrupt is latched internally and held until the I
bit is cleared. The interrupt vector is then serviced
normally.

Except for when an external interrupt (INT or
IR<J) is applied, the I bit is controlled by the pro­
gram instructions. Some program instructions change
the I bit explicitly, whereas others cause it to change
implicitly. For example, CLI clears the I bit and SEI
sets the I bit; however, SWI automatically sets the I

bit as part of the interrupt instruction. The STOP
and WAIT instructions in CDP6805 CMOS Family
parts also automatically set the I bit as part of
instruction. See lnterrupts in the Hardware Features
section for more information.

NOTE: The SWI instruction and RESET are the
only non-maskable interrupts in the
CDP6805 CMOS Family.

17

Addressing Modes
The power of any computer lies in its ability to

access memory. The addressing modes of the proces­
sor provide that capability. The CDP6805 CMOS
Family has a powerful set of addressing modes.

The addressing modes define the manner in which
an instruction is to obtain the data required for its
execution. An instruction, because of different
addressing modes, may access its operand in one of
up-to-five different addressing modes. Consequently,
the addressing modes expand the basic 61 CDP6805
CMOS Family instructions into 209 separate opera­
tions. Some addressing modes require that the 8-bit
opcode be accompanied by one or two additional
bytes. These bytes either contain the data for the
operations, the address for the data, or both.

ln the addressing mode descriptions which follow,
the term "effective address" (EA) is used. The EA is
the address in memory from which the argument for
an instruction is fetched or stored. ln two-operand
instructions, such as add to accumulator (ADD), one
of the effective operands (the accumulator) is inher­
ent and not considered an addressing mode per se.

Descriptions and examples of the various modes
of addressing the CDP6805 CMOS Family are pro­
vided in the paragraphs which follow. Several pro­
gram assembly examples are shown for each mode,
and one of the examples is described in detail (ORG,
EQU, and FCB are assembler directives and not part
of the instruction set). Parentheses are used in these
descriptions/ examples of the various addressing
modes to indicate "the contents of' the location or
register referred to; e.g., (PC) indicates the contents
of the location pointed to by the PC. The colon
symbol (:) indicates a concatenation of bytes. In the
following examples, the program counter (PC) is
initially assumed to be pointing to the location of the
first opcode byte. The first PC + I is the first
incremental result and shows that the PC is pointing
to the location immediately following the first opcode
byte.

The information provided in the program assem­
bly examples uses several symbols to identify the var­
ious types of numbers that occur in a program.
These symbols include:
I. A blank or no symbol indicates a decimal number.

2. A $ preceding a number indicates it is a hexa­
decimal number; e.g., $24 is 24 in hexadecimal or
the equivalent of 36 in decimal.

3. A # indicates an immediate operand. Therefore
the number is found in the location immediately
following the opcode.
There are seven different addressing modes used in

the CDP6805 CMOS Family, namely: inherent,
immediate, direct, extended, indexed, relative, and
bit manipulation. The indexed and bit manipulation
addressing modes contain additional subdivisions to
increase their flexibility; i.e., three subdivisions for
the indexed mode and two for bit manipulation.
Each of these programming modes is discussed in the
paragraphs which follow. The cycle-by-cycle descrip­
tion of each instruction in all possible addressing
modes is included in Appendix E. This allows the
processor bus activity and instruction operation rela­
tionship to be studied.

Inherent Addressing Mode
In this addressing mode there is no EA (effective

address). Inherent address instructions are used when
all information required for the instruction is already
within the CPU, and no external operands, from
memory or the program, are needed. Since all the
information necessary to carry out the instruction is
contained in the opcode, and no external operands
are needed, inherent instructions only require one
byte. These one-byte instructions are shown in
Appendix C as part of control and read/ modify/
write instruction tables.

The following is an example of a subroutine that
clears the accumulator and index registers plus the
C-bit and then returns. Figure 4 shows an example
of the steps required to perform the TAX instruction
in the subroutine.

0589 4F CLEAR CLRA Clear Accumulator
05BA 97 TAX Transfer Accumulator

Contents to Index
Register

0588 98 CLC Clear the Carry Bit
05BC 81 RTS Return from

Subroutine

18-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Before Completion

A

TAX05BAEa

~BBB

00

.-, PC

L ._I __ os_BA----1

x

Previous Value

A ft er Completion

A

00

TAX 05BA 97 New PC

05BB 98 - 05BB

x
00

Steps to
Perform TAX

PC= $05BA
New PC= PC+ 1 = $05BB

Instruction Complete

IXl=IAI
New PC=$~BB

Figure 4 - Inherent Addressing Mode Example

05BC

05BD

SUB #$05 05BE

05BF

05CO

05C 1

05BC

05BD

05BE

05BF

05CO

05C1

-
86

48

AO

05

Al

OA

86

4B

AO

05

Al

OA

Before Completion

......

-
A ft er Completion

......

-

A

20

PC

05BE

A

18

New PC

05CO

Steps to Determine
Effective Address

PC= $05BE
PC= PC+ 1 =$05BF
EA= PC
New PC= PC+ 1

= $05CO

Instruction Complete

A= IEAI = $20-$05= $1 B
New PC= $05CO

Figure 5 - Immediate Addressing Mode Example

Addressing Modes

Immediate Addressing Mode
The EA of an immediate mode instruction is the

location following the opcode. This mode is used to
hold a value or constant which is known at the time
the program is written, and which is not changed
during program execution. These are two-byte in­
structions, one for the opcode and one for the
immediate data byte. Immediate addressing may be
used by any register/ memory instructions as shown
in Appendix C.

PC+ 1 - PC
EA= PC
PC+ 1 - PC

The following is an example which subtracts 5
from the contents of the accumulator and compares
the results to the number IO. Figure 5 shows an
example of the steps required to perform the SUB
instruction.

05BC 86 48 LDA $48 Load Accumulator from
RAM location 48

05BE AO 05 SUB #5 Subtract 5 from
Accumulator

05CO A1 OA CMP #10 Compare Accumulator to
decimal 10

Before Completion

LOX Count 0409 CE

040A 08

0408 00

040C CD

I

Count FCB $40 osoo 1 40

After Completion

LOX Count 0409 CE

040A 08

19

Extended Addressing Mode

The EA of an extended mode instruction is con­
tained in the two bytes following the opcode. Ex­
tended addressing references any location in the
CDP6805 CMOS Family memory space, 1/0, RAM,
and ROM. The extended addressing mode allows an
instruction to access all of memory. Extended
addressing mode instructions are three bytes long, a
one-byte opcode plus a two-byte address. All reg­
ister/ memory instructions, as shown in Appendix C.
can use extended addressing.

PC+ 1 - PC
EA = (PC):(PC + 1)
PC+ 2 - PC

The following example loads the contents of a
memory location (labeled COUNT) into the index
register and then jumps to a subroutine to provide a
delay. Figure 6 shows an example of the steps re­
quired to determine the EA of the location contain­
ing the data to be loaded into the index register.

PC Steps to Determine
Effective Address

PC= $0409
PC = PC + 1 = $040A
EA = (PC): (PC + 1) = $0800
New PC = PC + 2 = $040C

Instruction Complete

X =(EA)= $40
New PC = $040C

0408 00 New PC

0409 CE
040C CD

0800
1200
0800
1200

040C CD

I I
I I
I : x

Count FCB $40 0800 ~

92CS -38319

Figure 6 - Extended Addressing Mode Example

COUNT
DELAY

EQU
EQU
LDX
JSR

$800
$1200
COUNT
DELAY

Load Index Register with Contents of Location $800
J_ump to Subroutine Located at $1200

20-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Direct Addressing Mode
The direct addressing mode is similar to the ex­

tended addressing mode except only one byte is used
to form the EA. Direct addressing allows an instruc­
tion to access any location in page zero (locations
$00-$FF) with a two-byte instruction; therefore, the
upper address bits are set to $00. Direct addressing
may be used with any read/ modify/ write, or regis-

ter /memory and bit manipulation instruction.

The following example adds two 16-bit numbers.
The result is then placed in the location of the first
number; however, if the result exceeds 16 bits the C
bit will be set. Figure 7 illustrates the steps required
to determine the EA of the most significant byte of
the first number, the contents of which is loaded into
the accumulator.

Before Completion

NUM 1 FC8 $20

LOA NUM 1

NU Ml FCB $20

LOA NUMl

NUM1
NUM2

0527 B6 11

0529 BB 13

052B B7 11
0520 B6 10

052F B9 12

0531 B7 10

0520 86 - I
052E 10

0521' 89

EA [

After Completion

oornl 20 J ~1

0520 86

052E 10

052F 89 --

A

Previous
Value

PC

0520

0010

A

20

Ne" PC

052F

I

J

I.

S leps to Oetermrne
Effectrve Address

PC= $0520
PC= PC+ 1 = S052E
EA= tPCI = $10+ SOOOO

= $0010
New PC= PC+ 1

= S052F

instruct1on Complete
A= IEAI = $20
New PC= S052F

Figure 7 - Direct Addressing Mode Example

ORG $10
RMB 2
RMB 2
LOA NUM1+1 Load Accumulator with Contents of Location $0011

(least significant byte of addend 1)
ADD NUM2+2 Add Contents of Location $0013 to Accumulator

(least significant byte of addend 2)
STA NUM1+1 Save Result in Location $0011
LOA NUM1 Load Accumulator with Contents of Location $0010

(most significant byte of addend 1)
ADC NUM2 Add Contents of Location $0012 (most significant

byte of addend 2), and C Bit to Accumulator
STA NUM1 Save Result in Location $0010

Addressing Modes

Indexed Addressing Mode
In the indexed addressing mode, the EA is varia­

ble and depends upon two factors: (I) the current
contents of the index (X) register and (2) the offset
contained in the byte(s) following the opcode. Three
types of indexed addressing exist in the CDP6805
CMOS Family: no offset, 8-bit offset, and 16-bit
offset. A good assembler should use the indexed
addressing mode which requires the least offset.
Either the no-offset or 8-bit offset indexed address­
ing mode may be used with any read/modify/write or
register/ memory instruction. The 16-bit offset in­
dexed addressing is used only with register/ memory
instructions.

Indexed - No Offset. In this mode the contents of
the X register are the EA; therefore, it is a one-byte

21

instruction. This mode is used to create an EA which
is pointing to data in the lowest 256 bytes of the
address space, including: I/ 0, RAM, and part of
ROM. It may be used to move a pointer through a
table, point to a frequently referenced location (e.g.,
an 1/ 0 location), or hold the address of a piece of
data that is calculated by a program. Indexed, no­
offset instructions use only one byte: the opcode.

EA = X + ,$0000
PC+ 1 - PC

In the following example, locations $45 to $50 are
to be initialized with blanks (ASCII $20). Figure 8
illustrates the steps necessary to determine the EA of
a memory location pointed to by the index register.
The contents of the accumulator are stored into this
memory location.

Before Completion

STA

LDA

OSFO AE 45
05F2 A6 20
05F4 F7

05F5 SC
05F6 A3 51
05F8 26 FC

-

0045 Previous Value

• • • . ------0050 Previous Value

.x ~"a-I 05F5 5C

After Completion

-[20].
0050 Previous Value

.x 05F4 F7

05F5 5C -I

- _....,..

A

20

x
45

PC

05F4

EA

0045

A

20

x
45

New PC

05F5

Steps to Determine
Effective Address

PC= $05F4
EA= X+ $0000

= $0045 .
New PC= PC+ 1

= $05F5

Instruction Complete

X= EA= $45
New PC= $05F5

Figure 8 - Indexed Addressing Mode, No Offset Example

LOX #$45 Initialize Index Register with $45
LOA #$20 Load Accumulator with $20

REPEAT STA ,X Store Accumulator Contents in Location
Pointed to by Index Register

INCX Next Location
CPX #$51 Finished
BNE REPEAT Repeat if More

22-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Indexed - 8-Bit Offset. To determine the EA in this
addressing mode, the contents of the X register are
added to the contents of the byte following the
opcode. This addressing mode is useful in selecting
the kth element of an n element table. To use this
mode the table must begin in the lowest 256 memory
locations, and may extend through the first 511
memory locations (I FE is the last location at which
the instruction may begin) of the CDP6805 CMOS
Family. All indexed 8-bit offset addressing can be
used for ROM, RAM, or 1/0. This is a two-byte
instruction with the offset contained in the byte
following the opcode. Efficient use of ROM en-

courages the inclusion of as many tables as possible
in page zero and page one.

PC+ 1 - PC
EA = (PC) + X + $0000
PC+ 1 - PC

The following subroutine searches a list, which
contains 256 separate items, for the first occurrence
of a value contained in the accumulator. The search
starts at $80 and continues through $180 unless the
accumulator contents match one of the list items.
Figure 9 shows the steps required to determine the
EA of the next item to be compared.

Before Completion

075A 5F
0758 E1
075D 27
075F 5C
0760 26
0672 81

LIST FCB $00 ~Ea
A

Previous Value Steps to Determine
Effective Address

x
PC= $0758

00
I o O

LIST FC8 $FF

I I
I I
I I
I I

011so 1-1---FF----1

PC= PC+ 1 = $075C
EA= IPC) + X+ $0000

= $80+ $00+ $()()()()
= $0080

CMP LIST, X 0758 El

075C 80

0750 27

LIST FCB $00 00
1
80 r 00

I I
I I
I I

I I

I I ' 01~0 I LIST FCB $FF FF

CMP LIST,X 0758 El

075C 80

0750 27

-

PC - 0758

Adder

EA $0080

After Completion

A

Previous Value

x
00

New PC

-1 ~--o7_5_o _ __,

___..J

New PC= PC+ 1 = $0750

Instruction Complete
EA= $0080
IEA) = $00
New PC= $0750

Figure 9 - Indexed Addressing Mode, 8-bit Offset Example

LIST EQU $80
ORG $075A

FIND CLRX Clear Index Register
80 REPEAT CMP LIST,X Compare Accumulator to Contents of Location $80 + X
03 BEQ RETURN Return if Match Found

INCX Else Next Item
F9 BNE REPEAT If 256 Items Checked then Done Else Repeat

RETURN RTS

Addressing Modes

for the offset value.

PC+ 1 - PC
EA = (PC):(PC + 1) + X
PC+ 2- PC

23

Indexed - 16-Bit Offset. The EA for this two-byte
offset addressing mode is calculated by adding the
concatenated contents of the next two bytes follow­
ing the opcode to the contents of the X register. This
addressing mode is used in a manner similar to the
indexed with 8-bit offset, except that because the
offset is 16 bits, the tables being referenced can be
anywhere in the CDP6805 CMOS Family address
space. For more details refer to the Indexing Com­
patibility paragraph below. This addressing mode is
a three-byte instruction: one for the opcode and two

In the following example, a block of data is moved
from a source table to a destination table. The index
register contains the block length. Figure IO illus­
trates the steps required to determine the EA from
which to store the memory address contents into the
accumulator.

0690
0692

0695

0698
0699

Before Completion

SOURCE FCB $BF 0200 BF A

FCB $86

FCB $DB

FCB $CF

FCB $98

LDA SOURCE,X

0201 86 Previous Value

0202 DB x
0203 CF 04

0204 98

I
I I

:::~· :: '::-1
0694 00 __ _
0695 E7

PC

0692

Adder

EA 0204

After Completion

Steps to Determine
Effective Address

PC= $0692
PC= PC+ 1 = $0693
EA= IPCl:IPC+ 1l +IX)

= $0200+ $04
= $0204

New PC=PC+2
= $0695

SOURCE FCB $BF 0200 BF

FCB $86 0201 86 A

FCB SDB 0202 DB 98

FCB SCF 0203 CF Instruction Complete

FCB $98 0204 98 A= IEAI = $98
I New PC= $0695 I
I I x

LDA SOURCE,X

-~
04

0693 02

0694 00 New PC

0695 E7 ~I 0695

Figure 10- Indexed Addressing Mode, 16-Bit Offset Example.

SOURCE EQU $200
DESTIN EQU $40

AE 04 LOX #$04
06 0200 BLKMOV LOA SOURCE,X Load the Accumulator with Contents of

Location SOURCE + X
E7 40 STA DESTIN,X Store the Contents of the Accumulator in

Location DESTIN+ X
SA DECX Next Location
2A 0692 BPL BLKMOV Repeat if More to Transfer

User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Indexing Compatibility. Because the index register in
the CDP6805 CMOS Family is only eight bits long,
and the offset values are zero, eight, or 16 bits, the
MC6800 user may thus find that the X register on the
CDP6805 CMOS Family is best utilized "backwards"
from the MC6800. That is, the offset will contain the
address of the table and the index register contains
the displacement into the table.

Relative Addressing Modes

Relative addressing is used only for branch instruc­
tions and specifies a location relative to the current
value of the PC. The EA is formed by adding the
contents of the byte following the opcode to the
value of the PC. Because the PC will always point to
the next statement in line while the addition is being
performed, a zero relative offset byte results in no
branch. The resultant EA is used if, and only if, a
relative branch is taken. Notice that by the time the
byte following the opcode is added to the contents of
the PC, it is already pointing to the next instruction
while the addition is being performed. Branch in­
structions always contain two bytes of machine code:
one for the opcode and one for the relative offset
byte. Because it is desirable to branch in either direc­
tion, the offset byte is sign-extended with a range of
-128 to + 127 bytes. The effective range however,
must be computed with respect to the address of the
next instruction in line. Relative branch instructions
consist of two bytes; therefore, the effective range of

a branch instruction from the beginning of the branch
instruction is defined as (where R is defined as the
address of the branch instruction):

(PC+2) -128 <= R <= (PC+2) + 127
or
PC-126 <= R <= PC + 129 (for conditional branch
only)

A jump (JMP) or jump-to-subroutine (JSR) should
be used if the branch range is exceeded.

PC+ 1 - PC
(PC) - TEMP
PC+ 1 - PC
EA = PC+ TEMP iff branch is taken

In the following example, the routine uses the
index register as a counter for executing the sub­
routine WORK 50 times. The conditional branch,
BNE, tests the Z bit which is set if the result of the
DECX instruction clears the index register. The line
of code shown in Figure I 1 contains an instruction
to branch to REPEAT, if the condition code register
Z bit has not been set by the previous program step
(DECX). Notice in Figure 11 that the Z bit controls
which number is added to the PC contents. If the
branch is taken, the relative offset byte ($FA) is
added; however, if the branch is not taken, nothing
is added which leaves the EA at PC + 2. Notice in
this case the relative offset byte $FA indicates a
backward branch because the most significant bit is
a I.

Assembly Examples:

04A1 AE
04A3 CD
04A6 5A
04A7 26

50
04CO REPEAT

FA 04A3

Bit Manipulation
Bit manipulation consists of two different address­

ing modes: bit set/ clear and bit test and branch. The
bit set/ clear mode allows individual memory and
I/ 0 bits to be set or cleared under program control.
The bit test and branch mode allows any bit in
memory to be tested and a branch to be executed as
a result. Each of these addressing modes is described
below.

Bit Set/ Clear Addressing Mode. Direct byte ad­
dressing and bit addressing are combined in instruc­
tions which set and clear individual memory and I/ 0
bits. In the bit set and bit clear instructions, the
memory address location (containing the bit to be
modified) is specified as direct address in the loca­
tion following the opcode. As in direct addressing,
the first 256 memory locations can be addressed. The

LDX
JSR
DECX
BNE

#50
WORK

REPEAT (See Example Description)

actual bit to be modified, within the byte, is specified
within the low nibble of the opcode. The bit set and
clear instructions are two-byte instructions: one for
the opcode (including the bit number) and the other
to address the byte which contains the bit of interest.

PC+ 1 - PC
EA = (PC) + 1 + $0000
PC+ 1 - PC

The following example compares the true bit
manipulation of the CDP6805 CMOS Family to the
conventional method of bit manipulation. This
example uses the bit manipulation instruction to
turn off an LED using bit 2 of port B and three con­
ventional instructions to turn the LED on. The
example polls the timer control register interrupt
request bit (TCR, bit 7) to determine when the LED
should turn on.

Addressing Modes

BNE REPEAT 04A7 26

BNE REPEAT

BNE REPEAT

EOU $4A3

REPEAT

04A8

04A9

FA

04A7 26

04A8 FA

04A9

04A7 26

04A8 FA

04A9

I
I
I
I

04A3[CD J

Before Completion

cc
z

t-

EA

After Completion
(No Branch Taken)

cc
Z=l

PC

04A9

$FA
OR

l $()()

04A9

New PC

After Completion
(Branch Taken)

cc
Z=O

PC

04A9

$FA
OR

' ' ' '

....,
04A3

New PC

$04A9

04A9

EA

$04A9

04A3

EA

Steps to Determine
Effective Address

PC= $04A7
PC = PC + 1 = $04A8
TEMP= (PC) = $FA
PC = PC + 1 = $04A9

Stop here if there
is no Branch; i.e., Z = 1
EA= PC+ TEMP

=$04A9 +$FA
=$04A3

New PC = EA iff Branch is taken

Instruction Complete

New PC= EA= $04A9

Instruction Complete
EA= $04A3
New PC= EA= $04A3

Figure 11 - Relative Addressing Mode Example

25

26-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

058F
0591

90594

15
OF

14

0001
0009

01
09

01

FC

PORTB
TIMER

Assembly Example:

EQU
EQU

$01
$09

Define Port B Address
Define TCR Address

BIT MANIPULATION INSTRUCTIONS

REPT
BCLR
BRCLR

BSET

2,PORTB
7,TIMER,REPT

2,PORTB

CONVENTIONAL INSTRUCTIONS

REPT

LOA
AND
STA
LOA
BIT
BNE
LOA
ORA
STA

PORTB
#$FB
PORTB
TIMER
#$80
REPT
PORTB
#$04
PORTB

Turn Off LED
Check Timer Status, Repeat
if Not Timed Out
Turn On LED if Timer Times Out

Get Port B Data
Mask Out Proper Bit
Save Updated Data
Loop Until TCR is Set

Turn On LED

Figure 12 shows an example of the bit set/ clear
addressing mode. In this example, the assembly
example above contains an instruction to clear bit 2

PORTB. (POR TB in this case is equal to the con­
tents of memory location $001, which is the result of
adding the byte following the opcode to $0000.)

PORTS EOU $001

PORTS

BCLR 2,PORTS 058F

0590

0591

EOU $001 0001

BCLR 2,PORTS 058F

0590

0591

15

01

OF

FB

15

01

OF

Before Completion

PC - I 058F I
1

l 0001]
EA

After Completion

Clear Bit 2

EA

0001

PC

-I 0591

Figure 12 - Bit Set/Clear Addressing Example

Steps to Determine
Effective Address

PC= $058F
PC= PC+ 1 = $0590
EA= IPCI + $0000

= $01 +0000
= $0001

New PC= PC+ 1
= $0591

Instruction Complete

EA= $0001
New PC= $0591
BIT2 PORTS=O

Addressing Modes

Bit Test and Branch Addressing Mode. This mode
is a combination of direct, relative, and bit set/ clear
addressing. The data byte to be tested is located via a
direct address in the location following the opcode.
The actual bit to be tested, within the byte, is speci­
fied within the low order nibble of the opcode. The
relative address for branching is in the byte following
the direct address (second byte following the opcode).
Thus, the bit test and branch instructions are three­
byte instructions (opcode byte, direct byte, and rela­
tive byte). A bit test and branch has a relative
addressing range of PC-125 <= R <= PC+l30 from the
beginning of the instruction.

The bit manipulation routine shown m the pre-

Before Completion

TIMER EOU $009 0009 10

27

vious paragraph uses a bit test and branch instruc­
tion to poll the timer; i.e., REPT BRCLR 7,
TIMER, REPT. This instruction causes timer bit 7
to be tested until it is cleared, at which time it falls
through to turn on an LED. Figure 13 illustrates this
loop by showing both the branch and no branch
status. Notice that if timer bit 7 is clear (timer not
timed out), a backward branch is taken as long as the
C bit is cleared ($FD is added to $0594 and its sign
bit is negative). When the timer times out, timer bit 7
is set (C bit is also set) and the program falls through
to $0594. Notice in the same routine example, that
conventional bit test and branch instructions require
three separate instructions to perform the same
function.

EAl

0009

Steps to Determine
Effective Address

PC= $0591

.--+----~'PC

PC+ 1 =$0592= PC
EA 1 = I PCI = $0009
PC= PC+ 1 = $0593
Temp= IPCI =$FD 0591

BRCLR 7,TIMER,REPT 0591 OF cc --------1
0592 09 C=O

0593 FD

0594 14
Adder

0591 EA2

After Completion
(No Branch, Bit 7 Not Clear)

0009 90

0591 OF cc
0592 09 C=1

0593 FD New PC

0594 14 'I(0594

After Completion
(Branch Bit 7 Clear)

TIMER EOU $009 0009

New PC

BRCLR 7, TIMER, REPT 0591 OF --·- 0591

0592 09

0593 FD

0594 14

v- -

New PC= PC+ 1 = $0594
lff Branch is taken, a
new EA is derived as follows:
EA2= PC+ TEMP=

$0594 + $FD= $0591
New PC= EA2 = $0591

Instruction Complete

C=1
EA1 = $0009
New PC= $0594

I nstruct1on Complete

C=O
New PC= EA2 = $0591

Figure 13 - Bit Test and Branch Addressing Mode Example

Instruction Set Overview
Introduction

It is convenient to view the CDP6805 CMOS
Family as having five different instruction types
rather than one set of instructions. These include:
register/ memory, read/ modify/ write, branch, con­
trol, and bit manipulation. A detailed definition of
the instruction set used with the CDP6805 CMOS
Family is included in this document. Appendix B
contains an alphabetical listing of the instruction set;
Appendix C provides a tabular functional listing of
the instruction set; Appendix D contains a numerical
listing which shows the mnemonic, addressing mode,
cycles, and byte of the instruction set; Appendix E
provides a cycle-by-cycle summary of the instruction
set; and Appendix F contains an instruction set
opcode map.

Register/Memory Instructions
Most of these instructions contain two operands.

One operand is inherently defined as either the
accumulator or the index register; whereas, the other
operand is fetched from memory via one of the
addressing modes. The addressing modes which are
applicable to the register/ memory instructions are
given below.

Immediate
Direct
Extended
Indexed - No Offset
Indexed - 8-Bit (One Byte) Offset
Indexed - 16-Bit (Two Byte) Offset

Immediate addressing is not provided with store
and jump instructions (STA, STX, JMP, and JSR).
An alphabetical listing of the register/ memory in­
structions is provided below.

ADC Add Memory and Carry to Accumulator
ADD Add Memory to Accumulator
AND AND Memory with Accumulator
BIT Bit Test Memory With Accumulator

(Logical Compare)
CMP Compare Accumulator with Memory

(Arithmetic Compare)

CPX Compare Index Register with Memory
(Arithmetic Compare)

EOR Exclusive OR Memory with Accumulator
JMP Jump
JSR Jump to Subroutine
LDA Load Accumulator from Memory
LDX Load Index Register from Memory
ORA OR Memory with Accumulator
SBC Subtract Memory and Borrow from

Accumulator
STA Store Accumulator in Memory
STX Store Index Register in Memory
SUB Subtract Memory from Accumulator

Read/Modify /Write Instructions
These instructions read a memory location or reg­

ister, modify or test the contents, and then write the
modified value back into the memory or the register.
The available addressing modes for these instruc­
tions are given below. Notice that all read/ modi­
fy/ write instruction memory accesses are limited to
the first 511 locations.

Direct
Inherent
Indexed - No Offset
Indexed - 1 Byte Offset

The read/ modify/ write instructions are listed
below.

ASL
ASR
CLR
COM
DEC
INC
LSL
LSR
NEG
ROL
ROR
TST

Arithmetic Shift Left (Same as LSL)
Arithmetic Shift Right
Clear
Complement
Decrement
Increment
Logical Shift Left (Same as ASL)
Logical Shift Right
Negate (Two's Complement)
Rotate Left thru Carry
Rotate Right thru Carry
Test for Negative or Zero

The multiply instruction MUL, available on the
CDP68HC05C4 and CDP68HC05D2 microcom­
puters, is also in the read/ modify/ write class.

Instruction Set Overview

Control Instructions
Instructions in this group have inherent address­

ing, thus, only contain one byte. These instructions
manipulate condition code bits, control stack and
interrupt operations, transfer data between the ac­
cumulator and index register, and do nothing (NOP).
The control instructions are listed below.

CLC Clear Carry Bit
CLI Clear Interrupt Mask Bit
NOP No Operation
RSP Reset Stack Pointer
RTI Return from Interrupt
RTS Return from Subroutine
SEC Set Carry Bit
SEI Set Interrupt Mask Bit
SWI Software Interrupt
TAX Transfer Accumulator to Index Register
TXA Transfer Index Register to Accumulator

Bit Manipulation Instructions
There are two basic types of bit manipulation

instructions. One group either sets or clears any sin­
gle bit in a memory byte. This instruction group uses
the bit set/ clear addressing mode which is similar to
direct addressing. The bit number (0-7) is part of the
opcode. The other group tests the state of any single
bit in a memory location and branches if the bit is
set or clear. These instructions have "test and branch"
addressing. The bit manipulation instructions are
shown below (the term iff is an abbreviation for
"if-and-only-if').

BCLR n
BRCLR n
BRSET n
BSETn

Clear Bit n in Memory
Branch iff Bit n in Memory is Clear
Branch iff Bit n in Memory is Set
Set Bit n in Memory (n = 0 ... 7)

29

Branch Instructions
In this set of instructions the program branches to

a different routine when a particular condition is
met. When the specified condition is not met, execu­
tion continues with the next instruction. Most of the
branch instructions test the state of one or more of
the condition code bits. Relative is the only legal
addressing mode applicable to the branch instruc­
tions. A list of the branch instructions is provided
below.

BCC
BCS
BEQ
BHCC
BHCS
BHI
BHS

BIH
BIL
BLO

BLS
BMC
BMI
BMS
BNE
BPL
BRA
BRN
BSR

Branch iff Carry is Clear (Same as BHS)
Branch iff Carry is Set (Same as BLO)
Branch iff Equal to Zero
Branch iff Half Carry is Clear
Branch iff Half Carry is Set
Branch iff Higher than Zero
Branch iff Higher or Same as Zero
(Same as BCC)
Branch iff Interrupt Line is High
Branch iff Interrupt Line is Low
Branch iff Lower than Zero
(Same as BCS)
Branch iff Lower or Same as Zero
Branch iff Interrupt Mask is Clear
Branch iff Minus
Branch iff Interrupt Mask is Set
Branch iff Not Equal to Zero
Branch iff Plus
Branch Always
Branch Never
Branch to Subroutine

Notice that the BIH and BIL instructions permit
an external interrupt pin (INT or IRQ) to be easily
tested.

Software Applications
Introduction

The term "software" is generally used to define
computer programs and, in its broadest sense, it
refers to an entire set of programs, procedures, and
all related documentation associated with a system.
In this manual, software refers to programs or
routines. The writing of software is best learned by
the experience of writing your own programs; how­
ever, a few good examples can certainly speed the
learning experience. The examples provided in this
chapter illustrate various CDP6805 CMOS Family
software features and include some commonly used
routines.

5V

lOK lOK

PCO y PCl

CDP6805

Family
Member

PC2

*For devices which have port C as input-only, use PB7

--
3

Serial 1/0 Software For RS-232
The example discussed here uses two I/ 0 port

lines for the serial input and output lines. Figure 14
contains a schematic diagram of an RS-232 interface
for serial I/ 0. Included as part of Figure 14 is the
baud rate selection table showing baud rates of 300,
1200, 4800 and 9600. The example subroutine is
illustrated in Figure 15. In this example, PC2 is used
as the input line and PC3 is used as the output line.
Software loops are used to generate the desired baud
rates; therefore, the crystal frequency (fosc) is critical
(3.579545 MHz). The lines commented by "CMOS
DITTO" or "CMOS EQUALIZATION" are necessary
to "make-up" for the generally fewer cycles-per­
instruction of the CDP6805 CMOS Family members
when compared with the M6805 HMOS devices.

08-25
Connector

5

5V 6

8

2 20

+ 12 v

3

--
-12 v

Baud Rate Select

PCO PCT
0 0
0 1
1 0
1

10 =Switch Closed I

To
Terminal

Baud
Rate

300
1200
4800
9600

Figure 14 - RS-232 Interface for Serial 110 via 110 Port Lines Schematic Diagram

Software Applications

07C3 00 02
07C3 00 02
07C3 00 03

07C3 BF 15
07C5 A6 08
07C7 B7 17
07C9 04 02 FD

07CC B6 02
07CE A4 03
0 7 DO 9 7
0701 DE 08 4B
0704 A6 04
0706 90
0707 4A
0708 26 FC
070A 50
070B 14 02
0700 14 02
07DF 5A
07EO 26 F2

07E2 04 02 E4
07E5 70
07E6 70
07E7 70

07E8 AD 46
07EA 05 02 00
07ED 70
07EE 90
07EF 90
07FO 90
07Fl 90
07F2 90
07F3 90
07F4 36 16
07F6 3A 17
07F8 26 EE

07FA AD 34
07FC B6 16
07FE BE 15

*
*

S E R I A L I I o R 0 U T I N E S

* THESE SUBROUTINES ARE MODIFICATIONS OF THE ORIGINAL NMOS
* VERSION. D~FFERENCES ARE DUE TO THE VARIATION IN CYCLE
* TIME OF CMOS INSTRUCTIONS VS. NMOS.

* * SINCE THE INT AND TIMER INTERRUPT VECTORS ARE USED IN THE
* BICYCLE ODOMETER, THE I-BIT SHOULD ALWAYS BE SET WHEN
* RUNNING THE MONITOR. HENCE, THE CODE THAT FIDDLES WITH
* THE I-BIT HAS BEEN ELIMINATED.

*
* * DEFINITION OF SERIAL 1/0 LINES

* * NOTE: CHANGING 0 IN' OR 0 0UT' WILL NECESSITATE CHANGING THE
* WAY 0 PUT' IS SETUP DURING RESET.

*
PUT
IN
OUT
*

EQU
EQU
EQU

PORTC
2
3

SERIAL 1/0 PORT
SERIAL INPUT LINE#
SERIAL OUTPUT LINE#

* GETC --- GET A CHARACTER FROM THE TERMINAL
* * A GETS THE CHARACTER TYPED, X IS UNCHANGED.
*
GETC

GETC4
*

STX
LOA
STA
BRSET

XTEMP
II 8
COUNT

SAVE X
NUMBER OF BITS TO READ

IN,PUT,GETC4 WAIT FOR HILO TRANSITION

* DELAY 1/2 BIT TIME
*

GETC3
GETC2

*

LDA
AND
TAX
LDX
LDA
NOP
DECA
BNE
TSTX
BSET
BSET
DECX
BNE

PUT
11%11 GET CURRENT BAUD RATE

DELAYS,X GET LOOP CONSTANT
#4

GETC2
LOOP PADDING

IN,PUT DITTO
IN,PUT CMOS DITTO

GETC3 MAJOR LOOP TEST

* NOW WE SHOULD BE IN THE MIDDLE OF THE START BIT

*
BRSET IN,PUT,GETC4 FALSE START BIT TEST
TST , ,X MORE TIMING DELAYS
TST ,X
TST ,X

* * MAIN LOOP FOR GETC
*
GETC7

GETC6

*

*

BSR
BRCLR
TST
NOP
NOP
NOP
NOP
NOP
NOP
ROR
DEC
BNE

BSR
LOA
LOX

DELAY (6) COMMON DELAY ROUTINE
IN,PUT,GETC6 (5) TEST INPUT AND SET C-BIT
,X (4) TIMING EQUALIZER

(2) CMOS EQUALIZATION
(2) CMOS EQUALIZATION
(2) CMOS EQUALIZATION
(2) CMOS EQUALIZATION
(2) "CMOS EQUALIZATION

CHAR
COUNT
GETC7

DELAY
CHAR
XTEMP

(2) CMOS EQUALIZATIO~
(5) ADD THIS BIT TO THE BYTE
(5)
(3) STILL MORE BITS TO GET(SEE?)

WAIT OUT THE 9TH BIT
GET ASSEMBLED BYTE
RESTORE X

Figure 15 - Serial 110 Software Subroutine Example

31

User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

0800 81 RTS AND RETURN

*
* PUTC --- PRINT A ON THE TERMINAL

*
* X AND A UNCHANGED

*
0801 B7 16 PUTC STA CHAR
0803 B7 14 STA A TEMP SAVE IT IN BOTH PLACES
OBOS BF IS STX XTEMP DON'T FORGET ABOUT X
0807 A6 09 LDA 119 GOING TO PUT OUT
0809 B7 17 STA COUNT 9 BITS THIS TIME
080B SF CLRX FOR VERY OBSCURE REASONS
080C 98 CLC THIS IS THE START BIT
080D 20 02 BRA PUTC2 JUMP IN THE MIDDLE OF THINGS

*
* MAIN LOOP FOR PUTC

*
080F 36 16 PUT CS ROR CHAR (s) GET NEXT BIT FROM MEMORY
0811 24 04 PUTC2 BCC PUTC3 (3) NOW SET OR CLEAR PORT BIT
0813 16 02 BSET OUT,PUT
081S 20 04 BRA PUTC4
0817 17 02 PUTC3 BCLR OUT,PUT (s)
0819 20 00 BRA PUTC4 (3) EQUALIZE TIMING AGAIN
081B DD 08 30 PUTC4 JSR DELAY,X (7) MUST BE 2-BYTE INDEXED JSR

* THIS IS WHY X MUST BE ZERO
OBIE 43 COMA (3) CMOS EQUALIZATION
081F 43 COMA (3) CMOS EQUALIZATION
0 820 43 COMA (3) CMOS EQUALIZATION
0821 3A 17 DEC COUNT (s)
0823 26 EA BNE PUT CS (3) STILL MORE BITS

*
082S 14 02 BSET IN,PUT 7 CYCLE DELAY
0827 16 02 BSET OUT,PUT SEND STOP BIT

*
0829 AD OS BSR DELAY DELAY FOR THE STOP BIT
082B BE lS LDX XTEMP RESTORE X AND
082D B6 14 LDA ATEMP OF COURSE A
082F 81 RTS

*
* DELAY --- PRECISE DELAY FOR GETC/PUTC

*
0830 B6 02 DELAY LDA PUT FIRST, FIND OUT
0832 A4 03 AND 11% 11 WHAT THE BAUD RATE IS
0834 97 TAX
083S DE 08 4B LDX DELAYS,X LOOP CONSTANT FROM TABLE
0838 A6 F8 LDA II $F8 FUNNY ADJUSTMENT FOR SUBROUTINE OVERHEAD
083A AB 09 DEL3 ADD 11$09
083C DEL2
083C 9D NOP CMOS EQUALIZATION
083D 4A DECA
083E 26 FC BNE DEL'2
0840 SD TSTX LOOP PADDING
0841 14 02 BSET IN,PUT DITTO
0843 14 02 BSET IN,PUT CMOS DITTO
084S SA DECX
0846 26 F2 BllE DEL3 MAIN LOOP
0848 9D NOP CMOS EQUALIZATION
0849 9D NOP CMOS EQUALIZATION
084A 81 RTS WITH X STILL EQUAL TO ZERO

* .. DELAYS FOR BAUD RATE CALCULATION ..
* THIS TABLE MUST NOT BE PUT ON PAGE ZERO SINCE

* THE ACCESSING MUST TAKE 6 CYCLES.

*
084B 20 DELAYS FCB 32 300 BAUD
084C 08 FCB 8 1200 BAUD
084D 02 FCB 2 4800 BAUD
084E 01 FCB 1 9600 BAUD

Figure 15 - Serial 1/0 Software Subroutine Example (Continued)

Software Applications

Keypad Scan Routine
A common task for control-oriented microproc­

essors is to scan a 4 x 4 keypad, such as the one
illustrated in the example of Figure 16. The example

PA4 PA5

33

shown uses port A lines 4-7 as scanning outputs and
port A lines 0-3 as sensing inputs. It is often desira­
ble to place CDP6805 CMOS Family members in a
low-power mode; therefore, the STOP instruction is
incorporated in the routine shown in Figure 17.

PA6 PA7

Voo

Open

Collector

Figure 16 - 4 x 4 Keypad and Closure Detection
Circuit Schematic Diagram

The example shown in Figure 17 uses an interrupt
driven routine and supports either the STOP or a
normal wait for interrupt (see below). If one of the
keypad switches is depressed while in the STOP
mode, the IRQ line goes low. (This is the result of
the port A scanning lines being low in the STOP
mode.) When IRQ goes low the KEYSCN vector is
selected and calls the KEYSCN interrupt service rou­
tine. The interrupt service routine first causes IRQ to
go high and then scans each column (PA4-PA7)
individually to determine which keypad switch was
depressed. Once the closed keypad switch is detected,
the information is stored and a debounce subroutine
is called to verify the closure. Debounce consists of
checking for a keypad switch closure after a 1536 bus
cycle delay to assure that the interrupt was not the
result of noise. If after the debounce subroutine is
completed no keypad switch is detected as being

closed, the closure is considered invalid and the proc­
essor again enters the STOP mode. If a keypad
switch closure still exists after the debounce is com­
pleted, the routine waits for the switch to be released
before forcing all scanning lines low for detection of
the next closure. (A Schmitt trigger input on the
IRQ line further reduces the effects of noise.) Once
the key closure is verified, a decode routine is used to
determine which keypad switch was closed. The value
which represents the position of the closed keypad
switch is passed, via the accumulator, to a routine
which decodes the position either into a number or a
pointer for other routines. All routines which require
that the keypad be scanned can enter the routine
either by using the STOP mode or by enabling the
external interrupt with a CLI instruction. The CLI
instruction then requires a BRA instruction to wait
for a keypad switch closure to geperate an interrupt.

34 ______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

PAGE 001 KEYSCN .SA:O

00001
00002
00003
00004
oooos
00006
00007A 0100
00008

0000
0004
0180

00009A 0100 3F 00
00010A 0102 A6 FO
00011A 0104 B7 04
00012A 0106 SE
00013A 0107 20 FD
00014
0001SA 0109 A6 EF
00016A OlOB B7 00
00017A 0100 2E OS
00018A OlOF 38 00
00019A 0111 2S FA
00020A 0113 80
00021
00022A 0114 B6 00
00023A 0116 AD OC
00024A 0118 2F F9
0002SA 011A 2E FE
00026A 011C AD 06
00027A 011E 2E FA
00028A 0120 3F 00
00029A 0122 20 SC
00030
00031A 0124 AE FF
00032A 0126 SA
00033A 0127 26 FD
00034A 0129 Bl
0003S
00036A 012A 80
00037A 012B 80
00038A 012C 80
00039
00040A 07F6
00041
00042A 07F6
00043A 07F8
00044A 07FA
0004SA 07FC
00046A 07FE
00047
00048

012A
012B
0109
012C
0100

* A PORTA
A DORA
A DECODE

*
* A RESET

A
A

STOP
0106

*

OPT

EQU
EQU
EQU

ORG

CLR
LDA
STA
STOP
BRA

A KEYSCN LDA
A STA

0114 REPEAT BIL
A LSL

01 OD BCS
RETURN RT!
* A GOTIT LDA

0124 BSR
0113 BIH
011A RELEAS BIL
0124 BSR
011A BIL

A CLR
0180 BRA

* A DBOUNC LDX

0126

A
A
A
A
A

AGAIN DECX
BNE
RTS

* TWIRQ
TIRQ
SW!
*
*

*

RT!
RT!
RT!

ORG

FDB
FDB
FDB
FDB
FDB

END
TOTAL ERRORS 00000--00000

CMOS

0
4
$180

$100

PORTA
#$FO
DORA

STOP

11$EF
PORTA
GOT IT
PORTA
REPEAT

PORTA
DBOUNC
RETURN
RELEAS
DBOUNC
RE LEAS
PORTA
DECODE

11$FF

AGAIN

$7F6

TWIRQ
TIRQ
KEYSCN
SW!
RESET

PREPARE SCANNING LINES
PA4-PA7 AS OUTPUTS
WHICH OUTPUT LOWS
ENTER LOW PWR MODE - WAIT FOR INT

CHECK lST COLUMN WITH A LOW
AND OTHERS HIGH
IF IRQ LINE LOW, COLUMN FOUND
ELSE TRY NEXT COLUMN
REPEAT IF MORE COLUMNS, ELSE
WAIT FOR VALID CLOSURE

SAVE KEY IN ACCA
WAIT 1 .SK BUS CYCLES (2K FOR HMOS)
IF IRQ LINE HIGH, INVALID CLOSURE
WAIT FOR KEY RELEASE
PAUSE
IF IRQ LINE LOW, KEY NOT RELEASED
PREPARE SCAN LINES FOR STOP MODE
GO TO USER KEY DECODE ROUTINE

LOOPS 1S36 TIMES FOR CMOS
OR 2040 FOR HMOS

TIMER WAIT VECTOR
TIMER INTERNAL VECTOR
EXTERNAL INTERRUPT VECTOR
SOFTWARE INTERRUPT VECTOR
RESET VECTOR

Figure 17. KEYSCN Routine Example

The CDP68HC05D2 features software program­
mable open drain outputs on PORT A and a PORT
B interrupt which are helpful in the design of a key­
board interface.

Stack Handling
By proper use of the stack, the versatility of a

program can be increased. This can be done by
allowing registers or values to be stored temporarily
in RAM and then later retrieved. Variables which
are stored in the stack are always positioned relative
to the top of the stack. Stacks operate in a last-in­
first-out (LIFO) fashion; that is, the last byte stored
is the first byte that can be retrieved. Because of this
LIFO characteristic, the stack is useful for passing
subroutine variables as well as other valuable pro­
gramming tools.

PORT
A

PORT

B n3
KEY~~::::=======~~
INTERRUPT 92CS-37512RI

Figure 18 -Alternative Keyboard Interface
Utilizing CDP68HC05D2

Software Applications

The CDP6805 CMOS Family stack is reserved for
subroutine return addresses and for saving register
contents during interrupts. This is sufficient for most
control-oriented applications; however, the routine
shown in Figure 19 can provide the CD P6805 E2
MPU with additional stack capability for temporary
variable storage. In this routine, a temporary loca­
tion called POINTR serves to hold the relative
address of the next free stack location. When the
routine is entered, the contents of POINTR are
transferred to the index register. The two-byte in­
dexed addressing mode is used to allow the stack to
be located in any part of RAM. Because the index
register is used to provide a relative address, the
stack wraps around if more than 256 locations are
pushed onto the stack. The stacking routine shown
in Figure 19 uses two fixed temporary locations: one
(called POINTR) is used to save the stack pointer
and the other (called TEMPX) is used as a tempo­
rary storage for the index register. However, if the
index register can be dedicated to the stack, both
temporary locations can be deleted. In this example,
two subroutines, PUSH and PULL are used to
manipulate data. Subroutine PUSH is used by first
loading the accumulator with the data to be saved
and then performing a subroutine call to PUSH.
Subroutine PULL is used by calling the subroutine
PULL after which the data retrieved is contained in
the accumulator.

Note

If a single-chip M CU is used instead of the
CDP6805E2, the stack must be located in RAM and
a routine must check that the boundaries are not
exceeded.

SOURCE EQU $FO
DESTIN EQU $40

AE 20 LOX #$20

35

ORG $10
TEMP RMB 1
POINTR RMB 1
STACK EQU $3FF

ORG $1000
PUSH STX TEMPX Save Index Reg

Contents
LOX POINTR Get Pointer
STA STACK,X Save Byte at

Stack and Pointer
DEC POINTR Adjust Pointer
LOX TEMPX Retrieve Index

Reg Contents
RTS

PULL STX TEMPX
INC POINTR
LOX POINTR
LOA STACK,X
LOX TEMPX
RTS

Figure 19 - Stack Emulation Routine

Block Move
This example makes a copy of a block of data in

another portion of memory. The indexed addressing
modes of the CDP6805 CMOS Family make a block
move relatively simple.

The routine is shown in Figure 20. In this exam­
ple, the location of the first table entry is used as the
offset for the indexed instruction. The index register
is used to step through the table; therefore, the table
may be up to 256 bytes long. This example uses a
table length of 64 bytes ($40).

Load Index Register wfrable Length
E6 FO REPEAT LOA SOURCE,X Get Table Entry
E7 40 STA DESTIN,X Store Entry Table
SA DECX Next Entry
26 F8 BNE REPEAT REPEAT If More

Figure 20 - Block Move Routine Example

DAA (Decimal Adjust Accumulator)
Although the CDP6805 CMOS Family is prima­

rily a controller, it is occasionally required to perform
arithmetic operations on BCD numbers. Because the

ADD instruction operates on binary data, the result
of the ADD instruction must be adjusted in these
cases. A DAA subroutine example is shown in Fig­
ure 21. The DAA subroutine should be called imme­
diately after the binary ADD instruction.

35 _______ _

PAGE 001 DAA

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029A 0080
00030
00031A 0080 25 04
00032A 0082 Al 99
00033A 0084 23 08
00034A 0086 40
00035A 0087 AO 60
00036A 0089 40
00037
00038A 008A AD 02
00039A 008C 99
00040A 008D 81
00041
00042A 008E 28 03
00043A 0090 AB 06
00044A 0092 81
00045A 0093 AB 06
00046A 0095 29 02
00047A 0097 AO 06
00048A 0099 81
00049

User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

.SA: 1

*
* DAA --- DECIMAL ADJUST ACCUMULATOR
*
*
*
*
* THE SUBROUTINE SHOULD BE CALLED IMMEDIATELY AFTER
* AN 'ADC' OR 'ADD' INSTRUCTION WHEN PERFORMING BCD
* ARITHMETIC.
*
* EXAMPLE:
* LOA ARGl
* ADD ARG2
* BSR DAA
*
* AT ENTRY:
*
*
*

A
cc

RESULT OF PREVIOUS ADD OR ADC
RESULT OF PREVIOUS ADD OR ADC

* AT EXIT:
*
*
*
*
*
*
*
*

*

A
cc

CORRECTED BCD NUMBERS
CARRY BIT SET OR CLEARED FOR
MULTI-PRECISION ARITHMETIC.

NO WORK AREA IS NEEDED; AND, THE INDEX REGIS'rER IS
UNAFFECTED. TWO OR FOUR STACK LOCATIONS MAY BE USED
FOR SUBROUTINE RETURN ADDRESSES.

ORG $80

0086 DAA BCS DAAHAI
#$99
DAALOW

IF CARRY THEN ADJUST HIGH DIGIT
DOUBLE OVERFLOW? (>99?) A CMP

008E BLS
DAAHAI NEGA

A SUB
NEGA

#$60

NO, CHECK LOW DIGIT
AVOID CLOBBERING H-BI'r BY
A + $60 = - (- A - $60)

* THE ABOVE ADJUST MEANS WE MUST RETURN WITH CARRY SET
008E BSR

SEC
RTS

DAALOW

* CHECK LOW DIGIT FOR
0093 DAALOW BHCC DAANOO

A ADD #6
RTS

A DAANOO ADD
0099 BHCS

A SUB
DAARTS RTS

END

#6
DAARTS
#6

CHECK LOW DIGIT
SET CARRY BIT
RETURN WITH CARRY SET
OVERFLOW
NO OVERFLOW DETECTED
ADJUST FOR KNOWN OVERFLOW
RETURN WITH CARRY CLEAR
LOW DIGIT A-F?
BRANCH ADJUSTED IF
CORRECT ASSUMPTION
RETURN WITH CARRY CLEAR

Figure 21 - DAA Subroutine Example

Multiply
than 30 bytes. Examples of both cases are illustrated
in Figures 22 and 23. Note that the CDP68HC05C4
and CDP68HC05D2 have a multiply instruction.

Multiply subroutines for either 16-bit x 16-bit or
8-bit x 8-bit multiplications can be written using less

Software Applications 37

PAGE 001 DPMUL05 .SA:O

00001 * 00002 ·k

00003 * LOAD MULTIPLIER INTO (QH,QL)
00004 '~ LOAD MULTIPLICAND INTO (PH,PL)
00005 -.~ (PH,PL) * (QH,QL) ---> (TEMPA,TEMPR,QH,QL)
00006 * 00007 ·'· RESULTS ARE:
00008 ~ TE:-!PA MOST SIGNirlCANT BYTE
00009 * TE'.'IPR SECOND SIGNirICANT BYTE
00010 * QH THIRD SIGNlrICANT BYTE
00011 '~ QL LEAST SIGNirICANT BYTE
00012 * 00013A 0064 ORr. $64
00014 *
00015A 0064 0001 A PH RMB
00016A 0065 0001 A PL RMB
00017A 0066 0001 A TEMP A RMB
00018A 0067 0001 A TEMPR RMB
00019A 0068 0001 A QH RMB
00020A 0069 0001 A QL RMB
00021 ,~

00022A 0080 ORG $80
00023A 0080 AE 10 A STRT LOX 1116
00024A 0082 3F 66 A CLR n:MPA
00025A 0084 3F 67 A CI.R TEMPB
00026A 0086 36 68 A ROR Qll
00027A 0088 36 69 A ROR QL
00028A 008A 24 oc 0098 NXT BCC IWTAT
00029A 008C 86 67 A LDA n:MPB
00030A 008E BB 65 A ADD PL
00031A 0090 B7 67 A STA TEMPB
00032A 0092 B6 66 A LOA TEMP A
00033A 009L, B9 64 A ADC PH
00034A 0096 B7 66 A STA TEMP,\
00035A 0098 36 66 A ROT AT ROR n:'1PA
00036A 009A 36 67 A ROR n::1PB
00037A 009C 36 68 A ROR QH
00038A 009E 36 69 A ROR QL
00039A OOAO SA DECX
00040A OOAl 26 E7 008A BNE NXT
00041A OOA3 81 RTS
00042 .c

00043 F.ND

Figure 22 - 16-bit x 16-bit Multiplication Subroutine Example

38 _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

00SD

00SF

0061

0062

00SD
0002

0002

0001

0062
0001

012C
012C JF SD
012E JF SE
0130 B7 61
0132 A6 09
0134 87 62

0136
0136 B6 61

0138
0138 JA 62
013A 27 13
013C 38 SE
013E 39 SD
0140 S8
0141 24 FS

0143 B7 61
014S BB SE
0147 24 02
0149 JC SD
014B B7 SE
0140 20 E7

014F
014F BE SD
01Sl B6 SE
01S3 81

*
*
*
*
*
*
*
*
*
*

MULTIPLY

8 BIT BY 8 BIT UNSIGN~D MULTIPLY
OPERANDS IN A AND X ON ENTRY
16 BIT RESULT IN X :A ON EXIT; X HAS MSB.

AVERAGE EXECUTION = 323 CYCLES
WORST CASE = 42S CYCLES

*

* * MULTIPLY / DIVIDE VARIABLES
*

*
* DIVISOR, MTOTAL
* * DIVISOR FOR 16 BIT / 16 BIT DIVIDE ROUTINE
* ALSO USED AS A TEMP IN MULTIPLY
*

A MTOTAL EQU
A DIVSR RMB

*
2

* * DIVIDEND
*
* DIVIDEND FOR 16 BIT / 16 BIT DIVIDE ROUTINE
*

A DIVDND RMB 2

* * TEMPORARY BYTE
*

A TEMP RMB 1
*
* SAVEX, MCOUNT
* * TEMPORARY STORAGE FOR X REGISTER IN DIVIDE
* ALSO USED FOR COUNTER IN MULTIPLY

*
A MCOUNT EQU
A SAVEX RMB

*
A MULST EQU
A CLR
A CLR
A STA
A LOA
A STA

*

*
1

*
MTOTAL INITIALIZE RESULT TEMP
MTOTAL+l
TEMP SAVE ONE ARGUMENT
#9
MCOUNT BYTE LENGTH = 8

* THE ALGORITHM IS A PLAIN SHIFT AND ADD
*

A BIGLOP
A
A SMLOOP
A

014F
A
A

0138
*

EQU
LOA
EQU
DEC
BEQ
LSL
ROL
LSLX
BCC

*
TEMP

*
MCOUNT
DONE
MTOTAL+l
MTOTAL

SMLOOP

* C=l; ADD A TO TOTAL

A
A

014B
A
A

0136

*
STA
ADD
BCC
INC

NOCARY STA
BRA

* * HERE TO EXIT
*

A DONE
A

TEMP
MTOTAL+l
NOCARY
MTOTAL
MTOTAL+l
BIGLOP

*
MTOTAL

'

GET BACK ARGUMENT

WHILE COUNT IS NOT ZERO

SHIFT TOTAL LEFT BY 1

GET NEXT BIT FROM X
NO ADD IF C=0

A

EQU
LOX
LOA MTOTAL+l RETURN RESULT IN A:X
RTS

Figure 23 - 8-bit x 8-bit Multiplication Subroutine Example

Software Applications 39

Divide
Two examples of subroutines which can be used

for performing division of two numbers are illus-

trated in Figures 24 and 25. One subroutine performs
a 16-bit ...;- 16-bit with an 8-bit result and the other
performs a 16-bit ...;- 16-bit with a 16-bit result.

005D

005F

0061

0062

005D
000 2

0002

0001

0062
0001

'*
* D I V I D E R 0 U T I N E

*

'*
*
*
*

16 BIT / 16 BIT --> 8 BIT RESULT

* ON ENTRY:
* DIVSR CONTAINS THE DIVISOR
* DIVDND CONTAINS THE DIVIDEND
* '* ON EXIT:
'* A CONTAINS THE ROUNDED QUOTIENT
'* DIVSR AND DIVDND ARE DESTROYED
'* TEMP IS DESTROYED
*

DIVIDE

'*
'*
'*

IF DIVISION BY ZERO, 255 IS RETURNED.

*
*
*
*
'*

AVERAGE EXECUTION SPEED = 644 CYCLES
WORST CASJ!: SPEED = 1376 CYCLES

*

* * MULTIPLY / DIVIDE VARIABLES
*

* * DIVISOR, MTOTAL
*
*
*
*

DIVISOR FOR 16 BIT / 16 BIT DIVIDE ROUTINE
ALSO USED AS A TEMP IN MULTIPLY

A MTOTAL EQU
A DIVSR RMB

*
2

A

A

A
A

*
* DIVIDEND
*
*
'*

DIVIDEND FOR 16 BIT / 16 BIT DIVIDE ROUTINE

DIVDND RMB 2
* * TEMPORARY BYTE
'*
TEMP RMB 1
* '* SAVEX, MCOUNT
'*
'* TEMPORARY STORAGE FOR X REGISTER IN DIVIDE
'* ALSO USED FOR COUNTER IN MULTIPLY
'*
MCOUNT EQU *
SAVEX RMB 1
'*

Figure 24 - 16-bit ...;- 16-bit With 8-bit Result Subroutine Example

4Q _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

*
00F6 A NOZERO EQU *

00F6 4D TSTA SHIFT DIVISOR LEFT UNTIL SIGN BIT =l
00F7 2B 06 00FF DIV01 BMI OUTD
00F9 JC 61 A LOOP2 INC TEMP
00FB S8 LSLX
00FC 49 ROLA INCR SHIFT COUNT
00FD 2A FA 00F9 BPL LOOP2
00FF B7 SD A OUTD STA DIV SR RESTORE DIVISOR
0101 BF SE A STX DIVSR+l
0103 SF CLRX CLEAR PLACE FOR QUO TENT

* MAIN LOOP
0104 B6 60 A LOOP LDA DIVDND+l DIVIDEND-DIVISOR --> DIVIDEND
0106 B0 SE A SUB DIVSR+l
0108 B7 60 A STA DIVDND+l
010A B6 SF A LDA DIVDND
010C B2 SD A SBC DIVSR
010E 24 09 0119 BCC ZOT BRANCH IF CARRY SET (BEFORE SAVE OF DIVDND)
0110 B6 60 A LDA DIVDND+l ADD IT BACK
0112 BB SE A ADD DIVSR+l NOTE, MSB WAS NEVER STORED SO WE ONLY
0114 B7 60 A STA DIVDND+l HAVE TO ADD TO THE LS BYTE
0116 S8 LSLX SHIFT IN ZERO
0117 20 04 011D BRA OVER
0119 B7 SF A ZOT STA DIVDND SAVE MS BYTE OF NEW DIVIDEND
OllB 99 SEC
011C S9 ROLX SHIFT 1 BIT INTO QUOTIENT
011D 49 OVER ROLA CARRY INTO QUOTIENT
011E 34 SD A LSR DIV SR SHIFT DIVISOR RIGHT BY 1
0120 36 SE A ROR DIVSR+l
0122 3A 61 A DEC TEMP DONE
0124 26 DE 0104 BNE LOOP BRANCH IF NOT
0126 44 LSRA GET CORRECT QUOTIENT
0127 S6 RORX c = ROUND BIT
0128 9F TXA
0129 A9 00 A ADC #0 AND ROUND

012B A DIVOUT EQU *
012B 81 RTS EXIT

Figure 24 - 16-bit--;- 16-bit With 8-bit Result Subroutine Example (Continued)

Software Applications 41

DIV05 .SA:O

00001 * 00002 * 00003 * 16 BIT UNSIGNED DIVIDE (16 BIT RESULT)
00004 * 16 BIT DIVIDEND IN DUSOR & DVSOR+l
00005 * 16 BIT DIVISOR IN DVDND & DVDND+1
00006 * 16 BIT RESULT IN RESLT & RESLT+l
00007 * 00008A 0064 ORG $64
00009 * 00010A 0064 0001 A COUNT RMB 1
00011A 0065 0002 A DVSOR RMB 2
00012A 0067 0002 A DVDND RMB 2
OOC'13A 0069 0002 A RES LT RMB 2
00014A 006B 0001 A TEMP A RMB 1
00015A 006C 0001 A TEMPX RMB 1
00016 * 00017A 0080 ORG $80
00018A 0080 A6 01 A STRT LDA 111
00019A 0082 30 65 A TST DVSOR
00020A 0084 2B OB 0091 BMI DIV153
00021A 0086 4C DIVl 51 INCA
00022A 0087 38 66 A ASL DVSOR+l
00023A 0089 39 65 A ROL DVSOR
00024A 008B 2B 04 0091 BMI DIV153
00025A 0080 Al 11 A CMP 111 7
00026A 008F 26 FS 0086 BNE DIV151
00027A 0091 B7 64 A DIV153 STA COUNT
00028A 0093 B6 67 A LDA DVDND
00029A 0095 BE 68 A LDX DVDND+l
00030A 0097 3F 67 A CLR DVDND
00031A 0099 3F 68 A CLR DVDND+l
00032A 009B BF 6C A DIV163 STX TEMPX
00033A 0090 B7 6B A STA TEMP A
00034A 009F 9F TXA
00035A OOAO BO 66 A SUB DVSOR+l
00036A OOA2 B7 6C A STA TEMPX
00037A OOA4 B6 6B A LDA TEMP A
00038A OOA6 B2 65 A SBC DVSOR
00039A OOA8 B7 6B A STA TEMP A
00040A OOAA BE 6C A LDX TEMPX
00041A OOAC 24 OE OOBC BCC DIV165
00042A OOAE 9F TXA
00043A OOAF BB 66 A ADD DVSOR+ 1
0004L+A DOB 1 B7 6C A STA TEMPX
00045A OOB3 B6 6B A LDA TEMP A
00046A OOB5 B9 65 A ADC DVSOR
00047A OOB7 B7 6B A STA TEMPA
00048A 0089 98 CLC
00049A OOBA 20 01 OOBD BRA DIV167
00050A OOBC 99 DIV165 SEC
00051A OOBD 39 68 A DIV167 ROL DVDND<t-1
00052A OOBF 39 67 A ROL DVDND
00053A OOC1 34 65 A LSR DVSOR
00054A OOC3 36 66 A ROR DVSOR+l
00055A DOCS 3A 64 A DEC COUNT
00056A OOC7 26 D2 0098 BNE DIV163
00057A OOC9 B6 67 A LDA DVDND
00058A OOCB B7 69 A STA RES LT

DIV05 .SA:O

00059A 'JOCD B6 68 A LDA DVDND+l
00060A OOCF B7 6A A STA RESLT+l
00061A 00D1 81 RTS
00062 *
00063 END

Figure 25 - 16-bit-;- 16-bit With 16-bit Result Subroutine Example

Hardware Features
Introduction

Each member of the CDP6805 CMOS Family
(except for the CDP6805E2 and CDP6805E3) con­
tains. on-chip. nearly all of the support hardware
necessary for a complete processor system. The block
diagram of Figure 26 shows a central processing unit
(CPU) which is identical for all members of the fam­
ily. including the CDP6805E2 and CDP6805E3.
There is one main difference in various family
members and that is the size of the stack pointer and
program counter registers. Because the size of these
two registers is determined by the amount of device
memory, they vary from 11 bits to 16 bits. Each fam-

ily member contains an on-chip oscillator which
provides the processor timing, plus reset, and inter­
rupt logic. Peripheral I/ 0 such as a timer, some
bidirectional 1/0 lines, RAM, and ROM (except for
the CDP6805E2 and CDP6805E3) are included on­
chip in all family members. The peripherals and
memory are located in similar locations throughout
the family; therefore, once the user is familiar with
any family device, (s)he is familiar with all. In addi­
tion, new devices can be incorporated in the family
by adding to and/ or subtracting from the peripheral
blocks associated with the CPU. These peripheral
blocks could include additional I/ 0 lines, more
RAM or an external bus.

External
Address/Data I\.

Bus I'

'
Additional
Timer(s) /

/

Serial
Peripheral
Interface

Additional RAM

Serial
Communications

Interface

' " "
___,

/
/

/

" ' --"'
RAM

//

/

I

l
Timer

CPU

1/0 Ports

T

Additional
1/0 Ports

/
/

/
/

/

~
osc

I Control

",
' '

92CS-38317

Additional
Interrupts

ROM with
Sell-Check

Figure 26 - CDP6805 CMOS Family Block Diagram

The CDP6805 CMOS Family of MCU / MPU
devices are implemented using a single address map,
memory mapped I/ 0, and Von Neumann architec­
ture. Peripheral I/ 0 devices, like the timer, are
accessed by the CPU via the peripheral control
and/ or data registers which are located in the address
map. Data is transferred to the peripheral I/ 0 de-

vices with the same instructions that are used to
access memory. The key to using the CDP6805
CMOS Family 1/0 features is in learning how the
peripheral registers effect the device operation.
Because a second address map is not used, there is
no need for the system designer to learn a second set
of specialized I/ 0 instructions.

Hardware Features

Temporary Storage (RAM)
Random access memory (RAM) is used as tem­

porary storage by the CPU. The RAM is temporary
in that it is volatile and its contents are lost if power
is removed. However, because RAM can be read
from or written to, it is best used for storing vari­
ables. All on-chip RAM is contained in the first
memory locations and the top of RAM is presently
used by the processor as a program control stack.
The stack is used to store return addresses for sub­
routine calls and the machine state for interrupts.
The stack pointer register is used to keep track of
(point to) the next free stack address location. The
stack operates in a LIFO (last-in-first-out) mode so
that operations may be nested. The actual stack size
varies between the different family members; how­
ever, in all cases, exceeding the stack limit should be
avoided. If the stack limit is exceeded, the stack
pointer wraps around to the top of the stack and
more than likely stack data is lost. Each interrupt
requires five bytes of stack space and each subrou­
tine requires two bytes. If, at worst case, a program
requires five levels of subroutine nesting and one

OSC1 OSC2

T T

OSC1

External
Source

43

level of interrupt, then 15 bytes of stack space should
be reserved. Any unreserved stack RAM may be
used for other purposes.

Permanent Storage (ROM)
CMOS Family devices, except the CDP6805E2

and CDP6805E3, contain some permanent, non­
volatile mask-programmed read-only memory
(ROM). Non-volatile memory is generally used to
store the user programs as well as tables and
constants.

Oscillator
The on-chip oscillator contained on every

CDP6805 CMOS Family device essentially generates
the timing used by the device. The oscillator can be
used in a number of different modes as shown in
Figure 27. Each mode has its advantages and the
basic trade-off is between economy and accuracy. An
external CM OS oscillator is recommended when a
crystal outside the specified range of the part is to be
used.

OSC2 OSC1

NC
== 10%

Accurate

OSC2

Figure 27 - CDP6805 CMOS Family Oscillator Modes

The CDP6805E2 and CDP6805E3 provide for only
two types of oscillator inputs - crystal circuit or
external clock. The CDP6805 CMOS Family MCU's
(CDP6805F2/ G2 and CDP68HC05C4/ 02) use a
manufacturing mask option to select either the crystal
or resistor circuit. A second manufacturing mask
option provides either a divide-by-two or divide-by­
four circuit to produce the internal system clock. An
external clock may be used with either the RC or
crystal oscillator mask option.

Resets
The CDP6805 CMOS Family processor can be

reset in two ways: either by initial power-up or by
the external reset input pin (RESET) (refer to Figure
27). Any of the reset methods allow an orderly start­
up. Additionally, the RESET input can be used to
exit the STOP and WAIT modes of program execu­
tion.

The external RESET input allows the processor to
recover from otherwise catastrophic errors. When
using the external reset mode, the RESET pin must
stay low for some minimum time as shown in Fig. 28.
External reset (RESET) is implemented with a
Schmitt trigger input for improved noise immunity.

The power-on reset occurs when a positive transi­
tion is detected on V DD· The power-on reset is used
strictly for power turn-on conditions and should not
be used to detect any drops in the power supply
storage. There is no provision for a power-down
reset. The power-on circuitry provides for a delay
from the time of first oscillator operation. If the
external RESET pin is low at the end of the time
out, the processor remains in the reset condition
until the RESET pin goes high.

Any reset causes the following to occur:
I. All interrupt requests are cleared to "O".
2. All interrupt enables in the peripheral control reg­

isters are cleared to disable interrupts.

44 _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

3. The condition code register interrupt mask bit (I)
is set to a "l" (disabled).

4. All data direction registers are cleared to "O"
(input).

5. The stack pointer is reset to the top of stack.

**1920
tcyc

toxov-+-~~o--~~

6. The address bus is forced to the reset vector. (The
reset vector contains the address of the reset
routine.)

7. The STOP and WAIT latches are reset.
8. The external interrupt latch is reset.

'J2(5-38316

"The RESET pulse width is a minimum of one tov, for all members of the CDP6805 CMOS Family except the
CDP68HC05C4 and CDP68HC05D2 which require the RESET pin to stay low for a minimum of one and one
half tcyc·

.. The delay from the time that the oscillator becomes active is 4064 tov, in the CDP68HC05C4 and
CDP68HC05D2, when programmed for a crystal oscillator. When programmed for an RC oscillator the delay
is 2 tov, for the CDP68HC05D2.

***Internal timing signal not available externally.

Figure 28 - Power-on Reset and RESET

Interrupts
Systems often require that normal processing be

interrupted so that some other event may be serviced.
The CMOS Family program execution may be inter­
rupted in the following ways:
I. Externally via the IRQ pin. External interrupts

are maskable.
2. Internally with the on-chip timer. The timer

interrupt is maskable.
3. Internally with the serial communications interface

on the CDP68HC05C4. The serial communica­
tions interface interrupts are maskable.

4. Internally with the serial peripheral interface pro­
vided on the CDP68HC05C4 and CDP68HC05D2.
The SPI system interrupts are maskable.

5. Internally wfrh the Port B interrupt on the
CDP68HC05D2. The Port B interrupt is mask­
able.

6. Internally by executing the software interrupt
instruction (SWI). The SWI is non-maskable.

Interrupts such as timer, SPI, and SCI have sev­
eral flags which will cause the interrupt. Generally
interrupt flags are located in associated control regis­
ters. The interrupt flags and enable bits are never
contained in the same register (except for the Port B
interrupt). If the enable bit is a logic zero, it blocks
the interrupt from occurring but does not inhibit the
flag from being set. The general sequence for clear­
ing interrupt is a software sequence of first accessing
the status register while the interrupt flag is set, fol­
lowed by a read or write of an associated register.
Reset clears all enable bits to preclude interrupts
during the reset procedure.

When an external timer, SCI, SPI, or Port B
interrupt occurs, the interrupt is not immediately
serviced until the current instruction being executed
is completed. Until the completion of the current
instruction, the interrupt is considered pending. After
the current instruction execution is completed, un­
masked interrupts may be serviced. When an un­
masked interrupt is recognized, the current state of

Hardware Features

the machine is pushed onto the stack, the interrupt
mask bit in the condition code register is set to
prevent further interrupts, the program counter is
loaded with the address of the interrupt service
routine, and the interrupt service routine is executed.
If both an external and an internal hardware inter­
rupt are pending, the external interrupt is serviced
first; however, the internal hardware interrupt request

45

remains pending unless it is cleared during the
external interrupt service routine. The software inter­
rupt is executed in much the same manner as any
other instruction. The external interrupt pin (IRQ)
may be tested with the BIL or BIH conditional
branch instructions. These instructions may be used
to allow the external interrupt pin to be used as an
additional input pin regardless of the state of the
interrupt mask in the condition code register.

111 lnterNpt Functional Diagram

Level Sensitive 41

Mask Option

Voo

D

Interrupt Pin' -*-*---------uC

a

R

I Bit ICCRI

Power-On Reset

External
Interrupt
Request

~--External Reset

(') Not available on the CDP6805E2/E3
(..) Schmitt trigger on the CDP6805E2/E3

(bl lntel'Npt Mode Diagram

IRO =u=tlLIH LJ

12> iiffi IMPU>

IR01
•
•
•

iiffin

~ llLIL---..~

... , ... ____ tUH--• ... 1141

Figure 29 - External interrupt.

External Interrupt
Being Serviced

Edge-Sensitive Trigger Condition
The minimum pulse width (t1uH) is one tcvc· The
period t1L1L should not be less than the number of
tc vc cycles it takes to execute the interrupt serv­
ice routine plus 20 tcyc cycles (21 tcyc for
CDP68HC05C4 and CDP68HC05D2).

Level-Sensitive Trigger Condition
If after servicing an interrupt the IRQ remains low,
then the next interrupt is recognized .

46-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

External Interrupts

All external interrupts are maskable. If the inter­
rupt mask bit (I) of the condition code register is set,
all interrupts are disabled. Clearing the I bit enables
the external interrupts. If the interrupt mask bit of
the condition code register is cleared and the exter­
nal interrupt pin IRQ is "low" or a negative edge has
set the internal interrupt flip-flop, then the external
interrupt occurs. When the interrupt is recognized,
the current state of the machine is pushed onto the
stack, the interrupt mask bit in the condition code
register is set to prevent further interrupts until this
one is serviced, the program counter is loaded with
the appropriate vector location contents and the
interrupt routine is executed. Either a level- and
edge-sensitive or edge-sensitive only input is avail­
able as a mask option on the CDP6805F2/ G2 and
CDP68HC05C4/ 02. Figure 29 shows both a func­
tional diagram and timing for the interrupt line. The
timing diagram shows two different treatments of the
interrupt line (IRQ) to the processor. The first
method shows single pulses on the interrupt line
spaced far enough apart to be serviced. The min­
imum time between pulses is a function of the length
of the interrupt service routine. Once a pulse occurs,
the next pulse should not occur until the MPU soft­
ware has exited the service routine (an R TI occurs).
This time (tILn) is obtained by adding 20 instruction
cycles (tcyc) (21 cycles for the CDP68HC05C4 and
CDP68HC05D2) to the total number of cycles it
takes to complete the service routine including the
R TI instruction; refer to Figure 29. The second con­
figuration shows many interrupt lines "wire ORed"
to form the interrupts at the processor. Thus, if after
servicing one interrupt the interrupt line remains
low, then the next interrupt is recognized.

Timer Interrupt CDP6805E2/E3/F2/G2

Each time the timer on the CDP6805E2/E3/F2/G2
decrements to zero (transitions from $01 to $00), the
timer interrupt request bit (TCR 7) is set. The proces­
sor is interrupted only if the timer mask bit (TCR6)
and interrupt mask bit (I bit) are both cleared. When
the interrupt is recognized, the current state of the
machine is pushed onto the stack and the interrupt
mask bit (I) in the condition code register is set. This
mask prevents further interrupts until the present
one is serviced. The processor now vectors to the
timer service routine by loading the program counter
with the contents of the timer interrupt vector. Notice
that if the timer is being used to exit the WAIT
mode, the timer WAIT vector is used instead of the
normal timer interrupt vector. Software must be
used to clear the timer interrupt request bit (TCR 7).
At the end of the timer interrupt service routine, the
software normally executes an RTI instruction which
restores the machine state and starts executing the
interrupted program.

Timer Interrupts CDP68HC05C4/D2

There are three different timer interrupt flags that
will cause a timer interrupt whenever they are set
and enabled. These three interrupt flags are found in
the three most significant bits of the timer status reg­
ister (TSR). All three timer interrupts will vector to
the same service routine location. The three timer
interrupt conditions are timer overflow, output com­
pare, and input capture. All interrupt flags have cor­
responding enable bits (ICIE, OCIE, TOIE) found in
the timer control register (TCR). Reset clears all
enable bits, thus preventing an interrupt from occur­
ring during the reset time period. The actual proces­
sor interrupt is generated only if the interrupt mask
bit (I) in the condition code register is also cleared.
When the interrupt is recognized, the current state of
the machine is pushed onto the stack and the inter­
rupt mask bit in the condition code register is set.
This masks further interrupts until the present one is
serviced. The general sequence for clearing an inter­
rupt is a software sequence of accessing the status
register while the flag is set, followed by a read or
write of an associated register. Further information
can be found in the Timer description.

Serial Communications Interface (SCI) Interrupts
CDP68HC05C4

An interrupt in the serial communications inter­
face (SCI) of the CDP68HC05C4 occurs when one
of the interrupt flag bits in the serial communica­
tions status register is set, provided the I bit in the
condition code register is clear and the enable bit in
the serial communications control register is enabled.
When the interrupt is recognized, the current state of
the machine is pushed onto the stack, the I bit in the
condition code register is set to prevent further
interrupts until the present one is serviced, and the
program counter vectors to the serial interrupt ser­
vice routine. Software in the serial interrupt service
routine must determine the priority and cause of the
SCI interrupt by examining the interrupt flags and
status bits located in the serial communications reg­
ister. The general sequence for clearing an interrupt
is a software sequence of accessing the serial com­
munications status register while the flag is set fol­
lowed by a read or write of an associated register.
Refer to the section on the Serial Communications
Interface for a description of the SCI system and its
interrupts.

Serial Peripheral Interface (SPI) System Interrupts
CDP68HCOSC4/D2

An interrupt in the serial peripheral interface (SPI)
of the CDP68HC05C4 and CDP68HC05D2 occurs
when one of the interrupt flag bits in the serial pe­
ripheral status register is set, provided the interrupt
mask bit (I) of the condition code register is clear
and the enable bit in the serial peripheral control reg-

Hardware Features

ister is enabled. When the interrupt is recognized, the
current state of the machine is pushed onto the
stack, the interrupt mask bit in the condition code
register is set to mask further interrupts until the
present one is serviced, and the program counter vec­
tors to the SPI interrupt service routine. Software in
the serial peripheral interface service routine must
determine the priority and cause of the SPI interrupt
by examining the interrupt flag bits located in the
SPI status register. The general sequence for clearing
an interrupt is a software sequence of accessing the
status register while the flag is set, followed by a read
or write of an associated register. Refer to the sec­
tion on the Serial Peripheral Interface for a descrip­
tion of the SPI system and its interrupts.

Port B Interrupt CDP68HC05D2

A Port B interrupt on the CDP68HC05D2 will
occur when any one of the eight port lines (PBO-PB7)
is pulled to a low level, provided the interrupt mask
bit of the condition code register is clear and the
enable bit in the miscellaneous control register is
enabled. Before enabling Port B interrupts, PBO
through PB7 should be programmed as inputs, i.e.,
their corresponding DOR bits must be zero. Pro­
gramming any of these lines as outputs inhibits them
from generating an interrupt.

The purpose of this interrupt is to provide easy use
of the PBO-PB7 lines as keyboard sense inputs. For
systems where the keyboard response is not interrupt
driven, this interrupt can be disabled. Port B inter­
rupts will also cause an exit from the stop mode.

Software Interrupt CDP6805 Family

The software interrupt is executed the same as any
other instruction and as such will take precedence
over hardware interrupts only if the I bit is set
(interrupts masked). The SWI is executed regardless
of the state of the interrupt mask in the condition
code register; however, when the I bit is clear (inter­
rupts enabled) and an external or internal hardware
interrupt is pending, the SWI instruction (or any
other instruction) is not fetched until after the hard­
ware interrupts have been serviced. Recall however
that the hardware interrupts wait for the current
instruction to complete, including the software inter­
rupt instruction, before they are serviced. The execu­
tion of the SWI instruction is similar to hardware
interrupts in that the I bit is set, CPU registers are
stacked, etc. The SWI uses its own unique vector
location.

Stop
The STOP instruction places the CDP6805 in its

lowest power consumption mode. In the STOP func­
tion, the internal oscillator is turned off causing all
internal processing and the timer to be halted; refer
to Figure 30. In the CDP6805E2/E3/F2/G2 the

47

timer control register (TCR) bits 6 and 7 are altered
to remove any pending timer interrupt requests and
to disable any further timing interrupts. External
interrupts are enabled in the condition code register
(I = 0). All other registers, memory, and 1/0 lines
remain unaltered. The processor can be brought out
of the STOP mode by an external IRQ, RESET, a
Port B interrupt, or a timer interrupt if the timer
oscillator (as opposed to the internal oscillator) is
being used.

No

(") Occurs on the CDP6805E2/E3/F2/G2

Stop

Stop Oscillator
And All Clocks
TCR Bil 7-0 •

Bit6-1"
Clear I Mask

Yes

Turn on Oscillator
Walt for Time

Delay to Stabilize

Fetch External
Interrupt or

Reset Vector

92C M- 38350

Figure 30 - STOP Function Flowchart

48-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Wait
The WAIT instruction places the CDP6805 in a

low-power consumption mode. The WAIT mode
consumes somewhat more power than the STOP
mode. In the WAIT mode, the internal clock remains
active, and all CPU processing is stopped; however,
the programmable timer, serial peripheral interface,
and serial communications interface systems remain
active. Refer to Figure 31. During the WAIT mode,
the I bit in the condition code register is cleared to
enable interrupts. All other registers, memory, and
1/0 lines remain in their last state. An interrupt or
reset brings the processor out of the WAIT mode.
The timer may be enabled by software prior to enter-

Wait

Oscillator Active
Clear I bit

Timer, SCI, and SPI
Clock Active

Processor Clocks Stopped

Restart
Processor Clock

(1) Fetch Reset Vector or
(2) Service Interrupt

Yes

Yes

Yes

a. Stack Yes
b. Set I Bit
c. Vector to Interrupt

Routine

Yes

No

92CM-38348

Figure 31 - WAIT Function Flowchart

ing the WAIT mode to allow a periodic exit from the
WAIT mode. If an external and a timer interrupt
occur at the same time, the external interrupt is ser­
viced first; then, if the timer interrupt request is not
cleared in the external interrupt routine, the normal
timer interrupt (not the timer WAIT interrupt) is
serviced since the MCU is no longer in the WAIT
mode.

1/0 Ports
At least 13 individually programmable, bidirec­

tional I/ 0 lines are included on each member of the
CDP6805 CMOS Family; however, more than this
exists on most family members. Each line is individ­
ually programmable as either an input or an output
via its corresponding data direction register (DDR)
bit as shown in Figure 32. A pin is configured as an
output if its corresponding DD R bit is set to a logic
"l ". A pin is configured as an input if its correspond­
ing DDR bit is cleared to a logic "O". At reset, all
DDR's are cleared, which configures all port pins as
inputs. The data direction registers are able to be
written to or read by the processor and may be used
with RMW instructions. Data is written into the
port output data latch regardless of the state of the
DDR; therefore, initial output data should be writ­
ten to the output data latch before programming the
DDR. After a port line has been configured as an
output, the data on that line reflects the correspond­
ing bit of the output data latch. When programmed
as an input, the input data bit(s) are not latched.
An MPU read of the port bits programmed as out­
puts reflects the last value written to that location.
An MPU read of the port bits programmed as inputs
reflects the current status of the corresponding input
pins. Table II provides a description of the effects of
port data register operation.

The CDP68HC05C4/D2 includes a number of
input-only lines. These lines have no DDR and have
read-only data registers.

PORTS A, Band C on the CDP68HC05C4 may
be programmed as inputs or outputs. Port D on the
CDP68HC05C4 is a 7-bit fixed input port (PDO­
PD5, PD7) that continually monitors the external
pins whenever the SPI or SCI systems are disabled.
During power-on reset or external reset all seven bits
become valid input ports because all special function
output drivers are disabled. For example, with the
serial communications interface (SCI) system en­
abled (RE = TE = 1), PDO and PD 1 inputs will read
zero. With the serial peripheral interface (SPI) sys­
tem disabled (SPE = 0), PD2 through PD5 will read
the state of the pin at the time of the read operation.
No data register is associated with the port when it is
used as an input.

PORTS A, Band Con the CDP68HC05D2 may
be programmed as inputs or outputs. PORT A can
be programmed to be open-drain outputs when bit 0
in the Miscellaneous Control/ Status Register is set

Hardware Features

and their DOR bits are set. PORT B features an
interrupt which occurs when any one of the eight
port lines is pulled low provided the registers are
properly enabled.

PORT D contains four individually programmable
bidirectional lines and three input lines. The direc­
tion of the four bidirectional lines is determined by
the state of the data direction register (DOR). Each
of these four lines has an associated DDR bit. The

To
And
From
CPU

Data D1rect1on
Register

Bit

Latched
Output

Data Bit

49

validity of a port bit is determined by whether the
SPI system and external timer oscillator are en­
abled or disabled. If the SPI is enabled and bit 5 of
the SPI control register is true, PORT D bits 2-5
become open-drain outputs. An exception is PD6,
the timer output compare pin (TCMP), which is
always an output. Upon power-on-reset or external
reset all bits, except PDO (output pin for the timer
oscillator) and PD6, contain input port data because
all other special function output drivers are disabled.

92CS-38026

Figure 32 - Typical Port 110 Circuitry

TABLE II. Port Data Register Accesses

'R/W DOR Bit Results

0 0 The 1/0 pin is in input mode. Data is written into the output
data latch.

0 1 Data is written into the output data latch and output to the
1/0 pin.

1 0 The state of the 1/0 pin is read.

1 1 The 1/0 pin is in an output mode. The output data latch is
read.

R/W is an internal line.

Timer Description
All CDP6805 CMOS Family devices contain a

timer on chip.

Timer CDP6805E2/E3/F2/G2

The timer on the CDP6805E2/ E3/ F2/ 02 contains
an 8-bit software programmable counter with a 7-bit
software selectable prescaler. Figure 33 contains a
block diagram of the timer. The counter may be
preset under program control and decrements to­
wards zero. When the counter decrements to zero,
the timer interrupt request bit (i.e., bit 7 of the timer
control register [TCR]) is set. Then, if the timer inter-

rupt is not masked (i.e., bit 6 of the TCR and the I
bit in the condition code register are both cleared),
the processor receives an interrupt. After completion
of the current instruction, the processor proceeds to
store the appropriate registers on the stack and then
fetches the timer vector address in order to begin
servicing.

The counter continues to count after it reaches
zero, allowing the software to determine the number
of internal or external input clocks since the timer
interrupt request bit was set. The counter may be
read at any time by the processor without disturbing
the count. The contents of the counter become sta­
ble, prior to the read portion of a cycle, and do not
change during the read. The timer interrupt request
bit remains set until cleared by the software. If a clear
occurs before the timer interrupt is serviced, the
interrupt is lost. TCR7 may also be used as a scanned
status bit in a non-interrupt mode of operation
(TCR6=1).

The prescaler is a 7-bit divider which is used to
extend the maximum length of the timer. Bit 0, bit I
and bit 2 of the TCR are programmed to choose the
appropriate prescaler output within the range of -7- I
to -7- 128 which is used as the counter input. The

so _______ _
User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

processor cannot write into or read from the pres­
caler; however, its contents are cleared to all "Os" by
the write operation into TCR when bit 3 of the writ­
ten data equals one. This allows for truncation-free
counting.

The timer input can be configured for three differ­
ent operating modes plus a disable mode depending
on the value written to the TCR4 and TCR5 control
bits. Refer to the Timer Control Register section.

Timer Input Mode 1

If TCR5 and TCR4 are both programmed to a
"O", the input to the timer is from an internal clock
and the TIMER input pin is disabled. The internal
clock mode can be used for periodic interrupt gener­
ation, as well as a reference in frequency and event
measurement. The internal clock is the instruction
cycle clock. During a WAIT instruction, the internal
clock to the timer continues to run at its normal rate.

Timer Input Mode 2

With TCR5=0 and TCR4=1, the internal clock
and the TIMER input pin are ANDed to form the
timer input signal. This mode can be used to mea­
sure external pulse widths. The external timer input
pulse simply turns on the internal clock for the dura­
tion of the pulse. The resolution of the count in this
mode is ± one internal clock and, therefore, accu­
racy improves with longer input pulse widths.

Timer Input Mode 3

If TCR5= 1 and TCR4=0, all inputs to the timer are
disabled.

Timer Input Mode 4

If TCR5= I and TCR4= I, the internal clock input
to the timer is disabled and the TIMER input pin
becomes the input to the timer. In this mode, the timer
can be used to count external events as well as external
frequencies for generating periodic interrupts. The
counter is clocked on the falling edge of the external
signal.

Figure 33 shows a block diagram of the timer sub­
system. Power-on reset and the STOP instruction in­
validate the contents of the counter.

Timer Control Register (TCR)

The eight bits in the TCR are used to control var­
ious functions such as configuring the operation
mode, setting the division ratio of the prescaler, and
generating the timer interrupt request signal. A de­
scription of each TCR bit function is provided below.
All bits in this register except bit 3 are read/write
bits.

7 6 5 4 3 2 1 0

ITcR? I TC Rs I TC Rs I TCR4 I TCR3 I TCR2ITCR1 I TCRO I

TCR7 - Timer interrupt request bit: bit used to
indicate the timer interrupt when it is logic "l ''.
1 - Set whenever the counter decrements to zero or

under program control.
0 - Cleared on external =R~E~s=E=T=, power-on reset,

STOP instruction, or program control.

TCR6 - Timer interrupt mask bit: when this bit is a
logic "l '', it inhibits the timer interrupt to the
processor.
1 - Set on external RESET, power-on reset, STOP

instruction, or program control.
0 - Cleared under program control.

TCRS - External or internal bit: selects the input
clock source to be either the external timer pin or the
internal clock. (Unaffected by RESET.)
1 - Select external clock source.
0 - Select internal clock source.

TCR4 - External enable bit control bit: used to
enable the external TIMER pin. (Unaffected by
RESET.)
1 - Enable external TIMER pin.
0 - Disable external TIMER pin.

TCR5 TCR4
0 0
0

0

Internal Clock to Timer
AND of Internal Clock and
TIMER Pin to Timer
Inputs to Timer Disabled
TIMER Pin to Timer

Refer to Figure 33 for Logic Representation.

TCR3 - Timer Prescaler Reset bit: writing a "l" to
this bit resets the prescaler to zero. A read of this
location always indicates "O". (Unaffected by
RESET.)

TCR2, TCRl, TCRO - Prescaler select bits: decoded
to select one of eight outputs on the prescaler. (Unaf­
fected by RESET.)

Prescaler

TCR2 TCR1 TCRO Result
0 0 0 +1
0 0 1 +2
0 1 0 +4
0 1 1 +8
1 0 0 +16
1 0 1 +32
1 1 0 +64
1 1 1 +128

Hardware Features 51

External
Input

Software Selectable
Input and Prescaler Options

Disabled
--~~~~~~(No

Clock)

Internal
Clock

• Timer· 8-B1t Read/Write Counter
7-Bit Software Selectable Prescaler
Input Pin
Timer Interrupt

Prescaler
7 Bits

Clear

Counter
8 Bits

Write

Interrupt
Control

Read Interrupt

Software Functions 92CS-38010

Figure 33 - Programmable Timer/Counter Block Diagram.

Programmable Timer CDP68HCOSC4/D2

A 16-bit programmable timer, preceded by a fixed
prescaler, is available on the CDP68HC05C4 and
CDP68HC05D2. It can be used for many purposes
including measuring the pulse width of an input sig­
nal while simultaneously generating an output signal.
Pulse widths for both input and output signals can
vary from several microseconds to many seconds.
The timer is also capable of generating periodic
interrupts, indicating passage of an arbitrary number
of MCU cycles or counts from an external oscillator.
A block diagram of the timer is shown in Figure 34.

Because the timer has a 16-bit architecture, each
specific functional segment is represented by two reg­
isters. These registers contain the high and low byte
of that functional segment. Generally, accessing the
low byte of a specific timer function allows full con­
trol of that function; however, an access of the high
byte inhibits that specific timer function until the low
byte is also accessed.

Note

The I bit in the condition code register should be
set while manipulating both the high and low byte
register of a specific timer function to ensure that an
interrupt does not occur. A problem could arise if an
interrupt occurred in the interval of time between the
access of the high and low byte.

A description of the timer registers follows:

Counter Register
The key element in the programmable timer is a

16-bit free-running counter, or counter register, pre­
ceded by a prescaler which divides the internal proc­
essor clock by four. The prescaler gives the timer a
resolution of 2.0 microseconds if the internal proces­
sor clock is 2.0 MHz. The counter is clocked to
increasing values during the low portion .of the inter-

nal processor clock. Software can read the counter at
any time without affecting its value.

The double byte free-running counter can be read
from either of two locations. One double byte is
called the counter register, and the other double byte
is called the counter alternate register. A read
sequence containing only a read of the least signifi­
cant byte of the free-running counter, from either
double byte, will receive the count value at the time
of the read. If a read of the free-running counter or
counter alternate register first addresses the most
significant byte, it causes the least significant byte to
be transferred to a buffer. This buffer value remains
fixed after the first most significant byte read even if
the user reads the most significant byte several times.
This buffer is accessed when reading the free-running
counter or counter alternate register's least signifi­
cant byte, after a read of the most significant byte,
and thus completes a read sequence of the total
counter value. Notice that in reading either the free­
running counter or counter alternate register, if the
most significant byte is read, the least significant
byte must also be read in order to complete the
sequence.

The free-running counter is set to some constant
during reset and is always a read-only register. Dur­
ing a power-on reset, the counter is also configured
to the constant and begins running after the oscilla­
tor startup delay. Because the free-running counter is
16 bits preceded by a fixed divide-by-four prescaler,
the value in the free-running counter repeats every
262,144 MCU internal processor clock cycles. When
the counter rolls over from $FFFF to $0000, the
timer overflow flag {TOF) bit is set. An interrupt can
also be enabled when counter rollover occurs by set­
ting its interrupt enable bit (TOIE).

Output Compare Register
The output compare register is a 16-bit read/ write

52-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

2_ COP68HC05C4/02 Internal Bus

~ ~ rvvv
HDl---i Internal

Processor
Clock

l o'c'F"'Q 8-Bit J
Buffer

f """" Cleek
Connect

(ECC)

T

External
c·4

Oscillator High Low
High Low

Byte High Low
Enable (EOE) Byte

Byte Byte Byte Byte

Output 16-Bit Free Input
Compare L-., Running Capture
Register Counter Register

Counter
Alternate ~ • Register

' Output Overflow] [Edge
Compare Detect Detect

Circuit Circuit Circuit .--

J
CLK a 1-----i

' i -- D
Timer [

ICF J OCF TOF J Output Status
Reg. Level CLR

Reg.

l
RESET

Timer l ICIE OCIE TOIE 1 IEDG l OLVLJ
Control

Reg.

~

l Interrupt
Circuit

+ Timer
Interrupt

l
J ~

Output Ed
Level lnp

ge
ut

(TCMP (TCAP
Pin 35) Pin 37)

92CM-38347

Figure 34 - Programmable Timer Block Diagram

'Timer clock source option available on the CDP68HC05D2.

register which is made up of two 8-bit registers. The
output compare register can be used for several pur­
poses such as controlling an output waveform or
indicating when a period of time has elapsed. The
output compare register is unique in that all bits are
readable and writable and are not altered by the
timer hardware. Reset does not affect the contents of
this register. If the compare function is not utilized,
the two bytes of the output compare register can be
used as storage locations.

The contents of the output compare register are
compared with the contents of the free-running
counter once during every four internal processor
clocks. If a match is found, the corresponding output
compare flag (OCF) is set and the corresponding
output level (OLVL) bit is clocked (by the output
compare circuit pulse) to an output level register.
The values in the output compare register and the
output level bit should be changed after each suc­
cessful comparison in order to control an output

Hardware Features

waveform or establish a new elapsed timeout. An
interrupt can also accompany a successful output
compare provided that the corresponding interrupt
enable bit, OCIE, is set.

After a processor write cycle to the output com­
pare register containing the most significant byte, the
output compare function is inhibited until the least
significant byte is also written. The user must write
both locations if the most significant byte is written
first. A write made only to the least significant byte
will not inhibit the compare function. The free-run­
ning counter is updated every four internal processor
clock cycles due to the internal prescaler. The min­
imum time required to update the output compare
register is a function of the software program rather
than the internal hardware.

A processor write may be made to either byte of
the output compare register without affecting the other
byte. The output level (OLVL) bit is clocked to the
output level register regardless of whether the output
compare flag (OCF) is set or clear.

Because neither the output compare flag (OCF bit)
nor the output compare register is affected by reset,
care must be exercised when initializing the output
compare function with software. The following pro­
cedure is recommended:
I. Write the high byte of the output compare regis­

ter to inhibit further compares until the low byte
is written.

2. Read the timer status register to arm the OCF if
it is already set.

3. Write the output compare register low byte to
enable the output compare function with the flag
clear.

The advantage of this procedure is to prevent the
OCF bit from being set between the time it is read
and the write to the output compare register. A
software example is shown below.

B7 16 STA OCMPHI
B6 13 LOA TSTAT
BF 17 STX OCMPLD

Inhibit Output Compare
Arm OCF Bit if Set
Ready for Next Compare

Input Capture Register
The two 8-bit registers which make up the 16-bit

input capture register are read-only and are used to
latch the value of the free-running counter after a
defined transition is sensed by the corresponding
input capture edge detector. The level transition
which triggers the counter transfer is defined by the
corresponding input edge bit (IEDG). Reset does not
affect the contents of the input capture register.

The result obtained by an input capture will be
one more than the value of the free-running counter
on the rising edge of the internal processor clock
preceding the external transition. This delay is re­
quired for internal synchronization. Resolution is
affected by the prescaler allowing the timer to only

53

increment every four internal processor clock cycles.
The free-running counter contents are transferred

to the input capture register on each proper signal
transition regardless of whether the input capture
flag (ICF) is set or clear. The input capture register
always contains the free-running counter value which
corresponds to the most recent input capture.

After a read of the most significant byte of the
input capture register, counter transfer is inhibited
until the least significant byte of the input capture
register is also read. This characteristic forces the
minimum pulse period attainable to be determined by
the time used in the capture software routine and its
interaction with the main program. A polling routine
using instructions such as BRSET, BRA, LOA, STA,
INCX, CMBX, and BEG might take 34 machine
cycles to complete. The free-running counter incre­
ments every four internal processor clock cycles due
to the prescaler.

A read of the least significant byte of the input
capture register does not inhibit the free-running
counter transfer. Again, minimum pulse periods are
ones which allow software to read the least significant
byte and perform needed operations. There is no
conflict between the read of the input capture register
and the free-running counter transfer since they
occur on opposite edges of the internal processor
clock.

Timer Control Register (TCR)
The timer control register (TCR) is an 8-bit

read/ write register which contains control bits. The
timer control register on the CDP68HC05C4 con­
tains five control bits; the timer control register on
the CDP68HC05D2 contains an additional two con­
trol bits. Three of the five bits in common between
the CDP68HC05C4 and CDP68HC05D2 control
interrupts associated with each of the three flag bits
found in the timer status register (discussed below).
The other two bits control: I) which edge (negative
or positive) is significant to the input capture edge
detector and 2) the next value to be clocked to the
output level register in response to a successful out­
put compare. The two extra bits found in the
CDP68HC05D2 control: I) the source of the timer
clock and 2) whether the external timer oscillator is
enabled. The timer control register and the free-run­
ning counter are the only sections of the timer
affected by rest. The TCMP pin is forced low during
external reset and stays low until a valid compare
changes it to a high. The timer control register is
illustrated below followed by a definition of each bit.

7 6 5 4* 3* 2 1 0

i 1c1E I oc1E I TOIE I EOE I Ecc I I 1EDG I OLVL I
'Available only on the CDP68HC05D2.

54 _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Bit 7 ICIE Input Capture Interrupt Enable
If set, a timer interrupt is enabled
whenever the ICF status flag is set; if
clear, the interrupt is inhibited. ICIE
is cleared by reset.

Bit 6 OCIE Output Compare Interrupt Enable
If set, a timer interrupt is enabled
whenever the OCF status flag is set;
if clear, the interrupt is inhibited.
OCIE is cleared by reset.

Bit 5 TOIE Timer Overflow Interrupt Enable
If set, a timer interrupt is enabled
whenever the timer status flag, TOF,
is set; if clear, the interrupt is inhib­
ited. TOIE is cleared by reset.

Bit 4 EOE External Oscillator Enable
(CDP68HCOSD2 only)
If set, the external timer oscillator is
enabled. If cleared, the inverter be­
tween pins 29 and 30 is disabled and
cannot be used in a crystal or RC
oscillator. EOE is cleared by reset.

Bit 3 ECC External Clock Connect
(CDP68HC0502 only)
If set, the internal clock input to the
timer is disabled and the external
timer oscillator is connected to the
input to the timer. The ECC bit is
cleared by reset.

Bit 1 IEDG Input Edge
Controls which level transition on pin
37 will trigger a free-running counter
transfer to the input capture register.
Reset does not affect the IEDG bit.
0 = negative edge; 1 = positive edge.

Bit 0 OLVL Output Level
This is the next value to be clocked
to the output level register by a suc­
cessful output compare and appears
at pin 35. This bit and the output
level register are cleared by reset.
0 = low output; 1 = high output.

Timer Status Register (TSR)
A timer status register (TSR) is an 8-bit register in

which the three most significant bits contain read­
only status information. These three bits indicate the
following:
1. A proper transition has taken place at pin 37 with

an accompanying transfer of the free-running
counter contents to the input capture register,

2. A match has been found between the free-running
counter and the output compare register, and

3. A free-running counter transition from $FFFF to
$0000 has been sensed (timer overflow).

The timer status register is illustrated below fol­
lowed by a definition of each bit.

7 6 5 4 3 2 1 0
I 1cF I ocF I TOF I o I o I o 0 0

Bit 7 ICF The input capture flag (ICF) is set
when a proper edge has been sensed
by the input capture edge detector. It
is cleared by a processor access of
the timer status register (with ICF
set) followed by accessing the low
byte of the input capture register.
Reset does not affect the input com­
pare flag.

Bit 6 OCF The output compare flag (OCF) is
set when the output compare regis­
ter contents match the contents of
the free-running counter. The OCF is
cleared by accessing the timer status
register (with OCF set) and then
accessing the low byte of the output
compare register. Reset does not
affect the output compare flag.

Bit 5 TOF The timer overflow flag (TOF) bit is
set by a transition of the free-running
counter from $FFFF to $0000. It is
cleared by accessing the timer status
register (with TOF set) followed by
an access of the free-running coun­
ter's least significant byte. Reset does
not affect the TOF bit.

Accessing the timer status register satisfies the first
condition required to clear any status bits which
happen to be set during the access. The only remain­
ing step is to provide an access of the register which
is associated with the status bit. Typically, this pre­
sents no problem for the input capture and output
compare functions.

A problem can occur, however, when using the
time overflow function and reading the free-running
counter at random times to measure an elapsed time.
Without incorporating the proper precautions into
software, the timer overflow flag could unintention­
ally be cleared if: 1) the timer status register is read
or written when TOF is set, and 2) the least signifi­
cant byte of the free-running counter is read but not
for the purpose of servicing the flag. The counter
alternate register contains the same value as the free­
running counter; therefore, this alternate register can
be read at any time without affecting the timer over­
flow flag in the timer status register.

During STOP and WAIT instructions, the pro­
grammable timer functions as follows: during the
wait mode, the timer continues to, operate normally

Hardware Features

and may generate an interrupt to trigger the CPU
out of the wait state; during the stop mode, the timer
holds at its current state, retaining all data, and
resumes operation from this point when an external
interrupt is received, unless the CDP68HC05D2 is
set up to use the timer oscillator, in which case, the
timer continues to count.

The on-chip oscillator circuit is functionally equiv­
alent to a Schmitt NANO gate with a tri-statable
output. Reset forces the oscillator into its high imped­
ance state with a weak pull-up device on both its
input and output. When the oscillator is enabled for
the first time, its output is driven and the weak pull­
up devices are turned off. If the oscillator is subse­
quently disabled, its output will be pulled high but
cannot be put in a high impedance state again unless
the microcomputer is reset. However, when enabled,
the oscillator has no hysteresis. The feedback circuit
which causes hysteresis is only switched in when the
clock input to the timer is connected to the external
oscillator.

The EOE (External Oscillator Enable) and ECC
(External Clock Connect) bits in the Timer Control
Register control the external timer oscillator.
1. Crystal Oscillator Operation -

a. First set the EOE bit to start the crystal oscil­
lating.

b. When oscillation has stabilized, the ECC bit
can be set to begin clocking the timer with the
external timer oscillator.

2. RC Oscillator Operation -
When it is desired to clock the timer from the
timer oscillator, set both the EOE and the ECC
bits at the same time. (If EOE is set before ECC,
the oscillator will be biased at its midpoint in a
high current state causing power to be dissipated.)

3. No external timer oscillator being used -
If the EOE bit is never set, the oscillator will
remain in its high impedance state allowing its
piris to be used as PDO and PD 1 input lines. In
this case, these pins function as normal inputs
and should not be left floating.

4. Timer oscillator used for event counting -
Set both the EOE and ECC bits and drive the
timer oscillator input pin with the event signal
which is to be counted. (Note that if EOE remains
reset and only ECC is set, the event signal can be
connected to the timer oscillator output pin, and
the input pin can be used as a Port D input line.)

External Oscillator Input on the CDP68HC05D2

The CDP68HC05D2 features an on-chip oscillator
for the timer. The timer may run using the internal
oscillator or the timer oscillator. External clock con­
nect, bit 3, in the timer control register controls the
source of the timer clock. If the ECC bit is set the
internal clock input to the timer is disabled and the
timer oscillator is connected to the input to the
timer. Because this mode of operation permits the

55

timer to continue running when the processor is in
the STOP mode, timer interrupts, if enabled, will
still occur and can be used to exit from the STOP
mode. Figure 35 shows the timer oscillator controls.
The frequency of the external oscillator must be less
than half the CPU oscillator frequency.

Figure 35 - External Timer Oscillator Controls

Serial Communications Interface
(SCI)

Featured on the CDP68HC05C4
Introduction

A full-duplex asynchronous serial communications
interface (SCI) is provided on the CDP68HC05C4
with a standard NRZ format and a variety of baud
rates. The SCI transmitter and receiver are function­
ally independent, but use the same data format and
bit rate. The serial data format is standard mark/
space (NRZ) which provides one start bit, eight or
nine data bits, and one stop bit. "Baud" and "bit
rate" are used synonymously in the following descrip­
tion.

SCI Two-Wire System Features
• Standard NRZ (mark/space) format.
• Advanced error detection method includes noise

detection for noise duration of up to 1 / 16 bit time.
• Full-duplex operation (simultaneous transmit and

receive).
• Software programmable for one of 32 different baud

rates.
• Software transmitter and receiver enable bits.
• Separate selectable word length (eight or nine bit

words).
• SCI may be interrupt driven.
• Four separate enable bits available for interrupt

control.

55 _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

SCI Receiver Features
• Receiver wake-up function (idle or address bit).
• Idle line detect.
• Framing error detect.
• Noise detect.
• Overrun detect.
• Receiver data register full flag.

SCI Transmitter Features
• Transmit data register empty flag.
• Transmit complete flag.
• Break send.

Any SCI two-wire system requires receive data in
(ROI) and transmit data out (TDO).

Data Format

Receive data in (ROI) or transmit data out (TOO)

0 2 3

Idle line s

is the serial data which is presented between the
internal data bus and the output pin (TOO), and
between the input pin (ROI) and the internal data
bus. Data format is as shown for the NRZ in Figure
36 and must meet the following criteria:
I. A high level indicates a logic one and a low level

indicates a logic zero.
2. The idle line is in a high (logic one) state prior to

transmission/ reception of a message.
3. A start bit (logic zero) is transmitted/received

indicating the start of a message.
4. The data is transmitted and received least­

significant-bit first.
5. A stop bit (high in the tenth or eleventh bit posi­

tion) indicates the byte is complete.
6. A break is defined as the transmission or recep­

tion of a low (logic zero) for some multiple of the
data format.

4 5 6

Control bit "M"
Selects 8 or 9 bit data

7 8 0

* c
s s

a *Stop bit is always high. 0
p

a

Figure 36 - Data Format

Wake-Up Feature

In a typical multiprocessor configuration, the soft­
ware protocol will usually identify the addressee(s) at
the beginning of the message. In order to permit
uninterested MPUs to ignore the remainder of the
message, a wake-up feature is included whereby all
further SCI receiver flag (and interrupt) processing
can be inhibited until its data line returns to the idle
state. An SCI receiver is re-enabled by an idle string
of at least ten (or eleven) consecutive ones. Software
for the transmitter must provide for the required idle
string between consecutive messages and prevent it
from occurring within messages.

The user is allowed a second method of providing
the wake-up feature in lieu of the idle string dis­
cussed above. This method allows the user to insert a
logic one in the most significant bit of the transmit
data word which needs to be received by all "sleep­
ing" processors.

Receive Data In

Receive data in is the serial data which is pre­
sented from the input pin via the serial communica-

tions interface (SCI) to the internal data bus. While
waiting for a start bit, the receiver samples the input
at a rate which is I 6 times higher than the set baud
rate. This 16 times higher-than-baud rate is referred
to as the RT rate in Figures 37 and 38, and as the
receiver clock in Figure 42. When the input (idle)
line is detected low, it is tested for three more sample
times (referred to as the start edge verification sam­
ples in Figure 37). If at least two of these three veri­
fication samples detect a logic low, a valid start bit is
assumed to have been detected (by a logic low fol­
lowing the three start qualifiers) as shown in Figure
37; however, if in two or more of the verification
samples a logic high is detected, the line is assumed
to be idle. A noise flag is set if one of the three veri­
fication samples detects a logic high; thus a valid
start bit could be assumed and a noise flag still set.
The receiver clock generator is controlled by the
baud rate register (see Figures 41 and 42); however,
the serial communications interface is synchronized
by the start bit (independent of the transmitter).

Once a valid start bit is detected, the start bit, each
data bit, and the stop bit are sampled three times at
RT intervals of 8RT, 9RT, and IORT (IRT is the
position where the bit is expected to start) as shown

Hardware Features

in Figure 38. The value of the bit is determined by
voting logic which takes the value of the majority of
samples (two or three out of three). A noise flag is
set when all three samples on a valid start bit or a

57

data bit or the stop bit do not agree. As discussed
above, a noise flag is also set when the start bit
verifications samples do not agree.

Idle s Start

ROI 1 0 2 3 4 5 6

0 0 0 0

Start Start Edge
Qualifiers Verification

Samples

Idle Start Noise

ROI 2 n
0 0 0

Idle Noise Start

ROI 3 LJ
0 0 0 0 0

RT Clock Edges (for all three examples!

Figure 37 - Examples of Start Bit Sampling Technique

Previous Bit Present Brt Samples Next 81t

ROI

16
R
T

1
R
T

v v v

8
R
T

9
R
T

10
R
T

16 1
R R
T T

Figure 38 - Sampling Techniques Used on All Bits

Start Bit Detection Following a Framing Error

If there has been a framing error without detection
of a break (I 0 zeros for 8-bit format or 11 zeros for
9-bit format), the circuit continues to operate as if
there actually were a stop bit and the start edge will
be placed artificially. The last bit received in the data
shift register is inverted to a logic one, and the three
logic one start qualifiers (shown in Figure 37) are

~Data--t-- Expected Stop ---..j

forced into the sample shift register during the inter­
val when detection of a start bit is anticipated (see
Figure 39); therefore the start bit will be accepted no
sooner than it is anticipated.

If the receiver detects that break (RDRF=I, FE= I,
receiver data register=$00) produced the framing
error, the start bit will not be artificially induced and
the receiver must actually receive a logic one bit
before start. See Figure 40.

Artificial Edge

Receive
Data In

--11
Start Bit I

t~t
~

Data
Samples

{a) Case 1, Receive Line Low During Artificial Edge

Figure 39 - SCI Artificial Start Following a Framing Error

User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

.-Data •I• Expected Stop----.j
/Start Edge u .. -----, Start Bit I Receive I

Data In __
ttt ~Data---.
~

Data
Samples

(b) Case 2, Receive Line High During Expected Start Edge

Figure 39 - SCI Artificial Start Following a Framing Error

.-Expected Stoj

Receive ...--Break
Data In

ttt
T

Data Samples

ttt
T

Detected as Valid
Start Edge

'
I Start Bit r_ __ _

tttt t t t
'--' '--'

Start Start Edge
Qualifiers Verification

Samples

Figure 40 - SCI Start Bit Following a Break

Transmit Data Out (TOO)

Transmit data out is the serial data which is pre­
sented from the internal data bus via the serial com­
munications interface (SCI) to the output pin. Data
format is as discussed above and shown in Figure 36.
The transmitter generates a bit time by using a
derivative of the RT clock, thus producing a trans­
mission rate equal to 1/16 that of the receiver sample
clock.

Registers

There are five different registers used in the serial
communications interface (SCI) and the internal
configuration of these registers is discussed in the fol­
lowing paragraphs. A block diagram of the SCI sys­
tem is shown in Figure 41.

Serial Communications Data Register (SCDAT)

7 6 5 4 3 2 0

Serial Communications Data Register

The serial communications data register (SCDAT)
performs two functions in the serial communications
interface; i.e., it acts as the receive data register when
it is read and as the transmit data register when it is
written. Figure 41 shows this register as two separate
registers, namely: the receive data register (RDR)
and the transmit data register (TOR). As shown in
Figure 41 the TOR (transmit data register) provides

the parallel interface from the internal data bus to
the transmit shift register, and the receive data regis­
ter (RDR) provides the interface from the receive
shift register to the internal data bus.

When SCDAT is read, it becomes the receive data
register and contains the last byte of data received.
The receive data register, represented above, is a
read-only register containing the last byte of data
received from the shift register for the internal data
bus. The RDRF bit (receive data register full bit in
the serial communications status register) is set to
indicate that a byte has been transferred from the
input serial shift register to the serial communica­
tions data register. The transfer is synchronized with
the receiver bit rate clock (from the receive control)
as shown in Figure 41. All data is received, least­
significant-bit first.

When SCDAT is written, it becomes the transmit
data register and contains the next byte of data to be
transmitted. The transmit data register, also repre­
sented above, is a write-only register containing the
next byte of data to be applied to the transmit shift
register from the internal data bus. As long as the
transmitter is enabled, data stored in the serial com­
munications data register is transferred to the trans­
mit shift register (after the current byte in the shift
register has been transmitted). The transfer from the
SCDAT to the transmit shift register is synchronized
with the bit rate clock (from the transmit control) as
shown in Figure 41. All data is transmitted least­
significant-bit first.

Hardware Features

TOO
(P01, Pin 301

FE

$00

SCI Interrupt

7

Flag
Control

Rate Generator

SCSR
$10

Internal Bus

2

Baud
Rate

$OF
SCCR2

TIE

TCIE

RIE

ILIE

TE

RE

SBK

RWU

Wake
Up

Unit

Internal
Processor

Clock

-----~---------------~ Register

$OE ·Ra TB M WAKE SCCR1

(NSoetee) RecReivetData $l l
eg1s er

Receive Data
Shift Register

59

ROI
IPDO, Pin 291

NOTE: The Serial Communications Data Register ISCDATI is controlled by the internal R/W signal. It is the transmit data register when
written and receive data register when read.

Figure 41 - Serial Communications Interface Block Diagram

60-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Serial Communications Control Register 1
(SCCR1)

7 6 5 4 3 2 0

I RB I TB M lwAKEI
The serial communications control register

(SCCRl) provides the control bits which: 1) deter­
mine the word length (either 8 or 9 bits), and 2)
select the method used for the wake-up feature. Bits
6 and 7 provide a location for storing the ninth bit
for longer bytes.

Bit 7 RB

Bit 6 TB

If the M bit is a one, then this bit
provides a storage location for the
ninth bit in the receive data byte.
Reset does not affect this bit.

If the M bit is a one, then this bit
provides a storage location for the
ninth bit in the transmit data byte.
Reset does not affect this bit.

Bit 4 M The option of the word length is
selected by the configuration of this
bit and is shown below. Reset does
not affect this bit.

O = 1 start bit, 8 data bits, 1 stop bit
1 = 1 start bit, 9 data bits, 1 stop bit

Bit 3 WAKE This bit allows the user to select the
method for receiver "wake up". If
the WAKE bit is a logic zero, an idle
line condition will "wake up" the
receiver. If the WAKE bit is set to a
logic one, the system acknowledges
an address bit (most significant bit).
The address bit is dependent on
both the WAKE bit and the M bit
level (table shown below).

Wake M
0 x

1 0

1 1

Additionally, the receiver does not
use the wake-up feature unless the
RWU control bit in serial communi­
cations control register 2 is set as
discussed below. Reset does not
affect this bit.

Method of Receiver "Wake-Up"
Detection of an idle line allows the
next data byte received to cause the
receive data register to fill and pro-
duce an RDRF flag.

Detection of a received one in the
eighth data bit allows an RDRF flag
and associated error flags.

Detection of a received one in the
ninth data bit allows an RDRF flag
and associated error flags.

Serial Communications Control Register 2 (SCCR2)

7 6 5 4 3 2 1 0

I TIE I TCIE I RIE I 1uE I TE I RE I Rwu I SBK I
The serial communications control register 2

(SCCR2) provides the control bits which individu­
ally enable/ disable the transmitter or receiver, enable
the system interrupts, and provide the wake-up en­
able bit and a "send break code" bit. Each of these
bits is described below. The individual flags are dis­
cussed in the description of the serial communications
status register.

Bit 7 TIE When the transmit interrupt enable
(TIE) bit is set, the SCI interrupt
occurs provided the transmit data
register empty (TORE) bit is set (Fig­
ure 41). When TIE is clear, the TORE
interrupt is disabled. Reset clears the
TIE bit.

Bit 6 TCIE When the transmission complete in­
terrupt enable (TCIE) bit is set, the
SCI interrupt occurs provided the
transmit complete (TC) bit is set (see
Figure 41). When TCIE is clear, the
TC interrupt is disabled. Reset clears
the TCIE bit.

Bit 5 RIE When the receive interrupt enable
(RIE) is set, the SCI interrupt occurs
provided the overrun (OR) error bit
or receive data register full (RDRF)
bit is set (see Figure 41). When RIE is
clear, the OR and RDRF interrupts
are disabled. Reset clears the RIE bit.

Bit 4 ILIE When the idle line interrupt enable
(ILIE) bit is set, the SCI interrupt
occurs provided IDLE is set (see Fig­
ure 41). When ILIE is clear, the IDLE
interrupt is disabled. Reset clears the
ILIE bit.

Bit 3 TE When the transmit enable (TE) bit is
set, the transmit shift register output
is applied to the TOO line. Depend­
ing on the state of control bit M in
serial communications control regis­
ter 1, a preamble of 10 (M=O) or 11
(M=1) consecutive ones is transmit­
ted when software sets the TE bit
from a cleared state. If a transmission
is in progress, and TE is written to a
zero, then the transmitter will wait
until after the present byte had been
transmitted before placing the TOO
pin in the idle high-impedance state.
If the TE bit has been written to a
zero and then set to one before the

Hardware Features

current byte is transmitted, the trans­
mitter will wait until that byte is trans­
mitted and will then initiate transmis­
sion of a new preamble. After the
preamble is transmitted, and provided
the TORE bit is set (no new data to
transmit), the line remains idle (driven
high while TE=1); otherwise, normal
transmission occurs. This function
allows the user to "neatly" terminate
a transmission sequence. After load­
ing the last byte in the serial com­
munications data register and receiv­
ing the interrupt from transmit data
register empty (TORE), indicating the
data has been transferred into the
shift register, the user should clear
TE. The last byte will then be trans­
mitted and the line will go idle (high
impedance). Reset clears the TE bit.

Bit 2 RE When the receive enable (RE) bit is
set, the receiver is enabled. When RE
is clear, the receiver is disabled and
all of the status bits associated with
the receiver (ROAF, IDLE, OR, NF,
and FE) are inhibited. Reset clears
the RE bit.

Bit 1 RWU When the receiver wake-up (RWU)
bit is set, it enables the "wake up"
function. The type of "wake up" mode
for the receiver is determined by the
WAKE bit discussed above in the
SCCR1. When the RWU bit is set, no
status flags will be set. Flags which
were set previously will not be cleared
when RWU is set. If the WAKE bit is
cleared, RWU is cleared after receiv­
ing 10 (M=O) or 11 (M=1) consecu­
tive ones. Under these conditions,
RWU cannot be set if the line is idle.
If the WAKE bit is set, RWU is cleared
after receiving an address bit. The
receive data register full (ROAF) flag
will then be set and the address byte
will be stored in the receiver data reg­
ister. Reset clears the RWU bit.

Bit 0 SBK When the send break (SBK) is set,
the transmitter sends zeros in some
number equal to a multiple of the
data format bits. If the SKB bit is
toggled set and clear, the transmitter
sends 10 (M=O) or 1 (M=1) zeros
and then reverts to idle or sending
data. The actual number of zeros sent
when SBK is toggled depends on the
data format set by the M bit in the
serial communications control regis-

61

ter 1; therefore, the break code will
be synchronous with respect to the
data stream. At the completion of the
break code, the transmitter sends at
least one high bit to guarantee recog­
nition of a valid start bit. Reset clears
the SBK bit.

Serial Communications Status Register (SCSR)

7 6 5 4 3 2 1 0

ITDRE I TC I RDRFI IDLE I OR I NF I FE I -
The serial communications status register (SCSR)

provides inputs to the interrupt logic circuits for gen­
eration of the SCI system interrupt. In addition, a
noise flag bit and a framing error bit are also con­
tained in the SCSR.

Bit 7 TORE The transmit data register empty
(TORE) bit is set to indicate that the
contents of the serial communica­
tions data register have been trans­
ferred to the transmit serial shift reg­
ister. If the TORE bit is clear, it
indicates that the transfer has not
yet occurred and a write to the serial
communications data register will
overwrite the previous value. The
TORE bit is cleared by accessing
the serial communications status
register (with TORE set), followed
by writing to the serial communica­
tions data register. Data can not be
transmitted unless the serial com­
munications status register is ac­
cessed before writing to the serial
communications data register to
clear the TORE flag bit. Reset sets
the TORE bit.

Bit 6 TC The transmit complete (TC) bit is
set at the end of a data frame, pre­
amble, or break condition if:

1. Transmit enable (TE) = 1, trans­
mit data register empty (TORE) =
1, and no pending data, pre­
amble, or break is to be trans­
mitted; or

2. Transmit enable (TE) = 0, and
the data, preamble, or break (in
the transmit shift register) has
been transmitted.

The TC bit is a status flag which
indicates that one of the above
conditions has occurred. The TC bit
is cleared by accessing the serial
communications status register (with

62-------- User Manual for the CDP6805-Serles CMOS Microcomputers/Microprocessors

TC set), followed by writing to the
serial communications data register.
It does not inhibit the transmitter
function in any way. Reset sets the
TC bit.

Bit 5 RDRF When the receive data register full
(RDRF) bit is set, it indicates that
the receiver serial shift register is
transferred to the serial communica­
tions data register. If multiple errors
are detected in any one received
word, the noise flag (NF), framing
error (FE), and RDRF bits will be
affected as appropriate during the
same clock cycle. The RDRF bit is
cleared when the serial communica­
tions status register is accessed
(with RDRF set) followed by a read
of the serial communications data
register. Reset clears the RDRF bit.

Bit 4 IDLE When the idle line detect bit is set, it
indicates that a receiver idle line is
detected (receipt of a minimum
number of ones to constitute the
number of bits in the byte format).
The minimum number of ones
needed will be 10 (M=O) or 11 (M=1).
This allows a receiver that is not in
the wake-up mode to detect the end
of a message, detect the preamble
of a new message, or to resyn­
chronize with the transmitter. The
IDLE bit is cleared by accessing the
serial communications status regis­
ter (with IDLE set) followed by a
read of the serial communications
data register. The IDLE bit will not
be set again until after the receive
data register full (RDRF) bit has
been set; i.e., a new idle line occurs.
The IDLE bit is not set by an idle
line when the receiver "wakes up"
from the wake-up mode. Reset
clears the IDLE bit.

Bit 3 OR When the overrun (OR) error bit is
set, it indicates that the next byte is
ready to be transferred from the
receive shift register to the serial
communications data register when
it is already full (RDRF bit is set).
Data transfer is then inhibited until
the RDRF bit is cleared. Data in the
serial communications data register
is valid in this case, but additional
data received during an overrun con­
dition (including the byte causing
the overrun) will be lost. The OR bit

Bit 2 NF

Bit 1 FE

is cleared when the serial commun­
ications status register is accessed
(with OR set), followed by a read of
the serial communications data reg­
ister. Reset clears the OR bit.

The noise flag (NF) bit is set if there
is noise on a "valid" start bit or if
there is noise on any of the data bits
or if there is noise on the stop bit. It
is not set by noise on the idle line
nor by invalid (false) start bits. If
there is noise, the NF bit is not set
until the receive data register full
(RDRF) flag is set. Each data bit is
sampled three times as described
above in RECEIVE DATA IN and
shown in Figure 38. The NF bit
represents the status of the byte in
the serial communications data reg­
ister. For the byte being received
(shifted in) there will also be a
"working" noise flag, the value of
which will be transferred to the NF
bit when the serial data is loaded
into the serial communications data
register. The NF bit does not gener­
ate an interrupt because the RDRF
bit gets set with NF and can be used
to generate the interrupt. The NF bit
is cleared when the serial commun­
ications status register is accessed
(with NF set), followed by a read of
the serial communications data reg­
ister. Reset clears the NF bit.

The framing error (FE) bit is set
when the byte boundaries in the bit
stream are not synchronized with
the receiver bit counter (generated
by a "lost" stop bit). The byte is
transferred to the serial communica­
tions data register and the receive
data register full (RDRF) bit is set.
The FE bit does not generate an
interrupt because the RDRF bit is
set at the same time as FE and can
be used to generate the interrupt.
Notice that if the byte received
causes a framing error and it will
also cause an overrun if transferred
to the serial communications data
register, then the overrun bit will be
set, but not the framing error bit,
and the byte will not be transferred
to the serial communications data
register. The FE bit is cleared when
the serial communications status
register is accessed (with FE set)

Hardware Features

followed by a read of the serial
communications data register. Reset
clears the FE bit.

Baud Rate Register

7 6 5 4 3 2 1 0

I - I - I SCP1 I SCPO I I SCR2 I SCR1 I SCRO I
The baud rate register provides the means for

selecting different baud rates which may be used as
the rate control for the transmitter and receiver. The
SCPO-SCP I bits function as prescaler for the SCRO­
SCR2 bits. Together these five bits provide multiple
baud rate combinations for a given crystal frequency.

Bit 5 SCP1 These two bits in the baud rate reg-
ister are used as a prescaler to in-

Bit 4 SCPO crease the range of standard baud
SCPO rates controlled by the SCRO­
SCR2 bits. A table of the prescaler
internal processor clock division
versus bit levels is provided below.
Reset clears SCP1-SCPO bits (divide­
by-one).

Internal Processor
SCP1 SCPO Clock Divide By

0 0 1
0 1 3
1 0 4
1 1 13

Bit 2 SCR2 These three bits in the baud rate
register are used to select the baud

Bit 1 SCR1 rates of both the transmitter and
receiver. A table of baud rates

Bit O SCRO versus bit levels is shown below.
Reset does not affect the SCR2-
SCRO bits.

Oscillator
Frequency

SCPO-SCP1
Prescaler
Control

+N

63

Prescaler
Output

SCR2 SCR1 SCRO Divide By

0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

The diagram of Figure 42 and Tables III and IV
illustrate the divided chain used to obtain the baud
rate clock (transmit clock). Notice that there is a
fixed rate divide-by-16 between the receive clock
(RT) and the transmit clock (Tx). The actual divider
chain is controlled by the combined SC PO-SCP 1 and
SCRO-SCR2 bits in the baud rate register as illus­
trated. All divided frequencies shown in the first
table represent the final transmit clock (the actual
baud rate) resulting from the internal processor clock
division shown in the "divide-by" column only (pre­
scaler division only). The second table illustrates
how the prescaler output can be further divided by
action of the SCI select bits (SCRO-SCR2). For
example, assume that a 9600 Hz baud rate is required
with a 2.4576 MHz external crystal. In this case the
prescaler bits (SCPO-SCP I) could be configured as a
divide-by-one or a divide-by-four. If a divide-by-four
prescaler is used, then the SCRO-SCR2 bits must be
configured as a divide-by-two. This results in a
divide-by-128 of the internal processor clock to pro­
duce a 9600 Hz baud rate clock. Using the same
crystal, the 9600 baud rate can be obtained with a
prescaler divide-by-one and the SCRO-SCR2 bits
configured for a divide-by-eight.

NOTE: The crystal frequency is internally divided­
by-two to generate the internal processor clock.

SCRO-SCR2
SCI Select

Rate Control
+M

SCI
Transmit

Clock !Txl

SCI
Receive

Clock IRTl

Figure 42 - Rate Generator Division

64-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Table Ill - Prescaler Highest Baud Rate Frequency Output

SCP Bit Clock* Crystal Frequency MHz

1 0 Divided By 4.194304 4.0 2.4576 2.0 1.8432

0 0 1 131.072 kHz 125.000 kHz 76.80 kHz 62.50 kHz 57.60 kHz
0 1 3 43.691 kHz 41.666kHz 25.60 kHz 20.833 kHz 19.20 kHz
1 0 4 32.768 kHz 31.250 kHz 19.20 kHz 15.625 kHz 14.40 kHz
1 1 13 10.082 kHz 9600 Hz 5.907 kHz 4800 Hz 4430 Hz

*The clock in the "Clock Divided By" column is the internal processor clock.

NOTE: The divided frequencies shown in Table Ill represent baud rates which are the highest transmit baud rate (Tx) that can be obtained by a
specific crystal frequency and only using the prescaler division. Lower baud rates may be obtained by providing a further division using
the SCI rate select bits as shown below for some representative prescaler outputs.

Table IV - Transmit Baud Rate Output for a Given Prescaler Output

SCR Bits Divide Representative Highest Prescaler Baud Rate Output

2 1 0 By 131.072 kHz 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz

0 0 0 1 131.072 kHz 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz
0 0 1 2 65.536 kHz 16.384 kHz 38.40 kHz 9600 Hz 4800 Hz
0 1 0 4 32.768 kHz 8.192 kHz 19.20 kHz 4800 Hz 2400 Hz
0 1 1 8 16.384 kHz 4.096 kHz 9600 Hz 2400 Hz 1200 Hz
1 0 0 16 8.192 kHz 2.048 kHz 4800 Hz 1200 Hz 600 Hz
1 0 1 32 4.096 kHz 1.024 kHz 2400 Hz 600 Hz 300 Hz
1 1 0 64 2.048 kHz 512 Hz 1200 Hz 300 Hz 150 Hz
1 1 1 128 1.024 kHz 256 Hz 600 Hz 150 Hz 75 Hz

NOTE: Table IV illustrates how the SCI select bits can be used to provide lower transmitter baud rates by further dividing the prescaler output
frequency. The five examples are only representative samples. In all cases, the baud rates shown are transmit baud rates (transmit
clock) and the receiver clock is 16 times higher in frequency than the actual baud rate.

Serial Peripheral Interface (SPI)
The CDP68HC05C4 and CDP68HC05D2 micro­

computers feature a serial peripheral interface (SPI)
for communication with peripherals and MCUs. The
SPI is a four-wire synchronous communication sys­
tem with separate lines for input data, output data,
clock, and slave select. A master MCU initiates the
exchange of data bytes with a slave MCU, a periph­
eral device such as a RAM or real-time clock, or
another master (which is in the slave mode during
communication). In the SPI format, the clock is not
included in the data stream and must be furnished as
a separate signal. The master MCU produces the
clocking signal to synchronize data transfer. Any
device on the bus may be either a master or a slave,
but at any one time, only one device is designated as
the bus master. The serial bus is an efficient way to
transfer data because few pins are needed.

SPI Features
• Full duplex, three-wire synchronous transfers

• Master or slave operation
• 1.05 MHz (maximum) master bit frequency
• 2.1 MHz (maximum) slave bit frequency
• Four programmable master bit rates
• Programmable clock polarity and phase
c End of transmission interrupt flag
• Write collision flag protection
• Master-Master mode fault protection capability

Figure 43 illustrates two different system config­
urations. Figure 43a represents a system of five dif­
ferent MCUs in which there are one master and four
slaves (0, 1, 2, 3). Figure 43b represents a system of
five MCUs in which three can be master or slave and
two are slave only. The SPI system transfers data
synchronously over two data I/ 0 lines, master­
in/ slave-out (MISO) and master-out/ slave-in
(MOSI), with a serial clock line (SCK) for synchron­
ization. A slave-select (SS) line is included to prevent
bus contention. Notice that all SS pins are connected
to a port pin of a master/ slave device. In this case
any of the devices can be a slave.

Hardware Features 65

MISO · CDP6805 CMOS Slave 0
MOSI

SCK M!SO SCK
SS 1--Voo MOSI S'S

CDP6805 CMOS
Master

p 0
0 1
R 2
T 3 1---

l -l_e 1 MOSI SS 1 MOSI SS MOSI SS

MISO SCK MISO SCK MISO SCK

'CDP6805 CMOS Slave 3 CDP6805 CMOS Slave 2 CDP6805 CMOS Slave 1

a. Single Master, Four Slaves

CDP6805 CMOS 1
MOSI Master/Slave
MISO

l SCK MISO SC~ r
SS Voo MOSI SS 5 0 1 2 3

CDP6805 CMOS 0 1
Master/Slave { Sync

~ ,------, Line
5

p 0
0 1
R 2
T 3
4~

J~
_Ll _l _l j JI I I]J
3 2 1 oJ l MOSI SS 3 2 1 01 1 MOSI SS 3 2 1 0 5Jl MOSI SS

MISO SCK MISO SCK MISO SCK

CDP6805 CMOS 4 CDP6805 CMOS 3 CDP6805 CMOS 2
Slave Only For O Slave For 0-1-2 Master/Slave

b. Three Master/Slave, Two Slaves

Figure 43 - Master-Slave System Configuration

Figure 44 shows a very simple connection diagram
of a master device with a slave device. All pins of the
same mnemonic are connected together on master
and slave. Notice that the master SS pin is tied to a
logic high and the slave SS' pin is a logic low. Only
the master can generate the clocking signal for data
transfer to and from the slave. Each time the master
loads its shift register, eight clock pulses are gener­
ated to shift this data out. As the data is shifted out

of the master's shift register, it is shifted into the
slave's shift register. At the same time, the data that
was previously in the slave's shift register is shifted
into the master's shift register. The result of this
transfer is that the data in the master and slave shift
registers are exchanged. In this way, a master con­
trols data flow to and from the other devices in the
system.

66-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

I Slave

I I

8-Bit Shift Register
I MISO MISOI

I
MOSI MOSl 1

I
I
I

SPI lscK SCKI
Clock Generator ~-+--------l------t----------....-------~

I I
1 SS SSI

+5V ov

Figure 44 - Serial-Peripheral-Interface Master/Slave Interconnection

Serial Peripheral Interface Signal Description

The four basic signals (MOSI, MISO, SCK, and,
SS) discussed above are described in detail in the fol­
lowing paragraphs. Each signal function is described
for both the master and slave modes_

Master Out Slave In (MOSI)

The MOSI pin is configured as a data output in a
master (mode) device and as a data input in a slave
(mode) device. In this manner data is transferred
serially from a master to a slave on this line; most
significant bit first, least significant bit last. As shown

SCK

ICPOL=O. CPHA=OI

SCK

ICPOL=O. CPHA= 11

SCK

ICPOL= 1, CPHA=OI

SCK

ICPOL= 1, CPHA= 11

MISO/ @.!J MOSI

MSB 6 5 4

in Figure 45, four possible timing relationships may
be chosen by using control bits CPOL and CPHA.
The master device always allows data to be applied
on the MOSI line a half-cycle before the clock edge
(SCK) in order for the slave device to latch the data.

NOTE

Both the slave device(s) and a master device must
be programmed to similar timing modes for proper
data transfer.

When the master device transmits data to a second
(slave) device via the MOSI line, the slave device

~
3 2 LSB

internal strobe for data capture (all modes)

Figure 45 - Data Clock Timing Diagram

Hardware Features

responds by sending data to the master device via the
MISO line. This implies full duplex transmission
with both data out and data in synchronized with the
same clock signal (one which is provided by the mas­
ter device). Thus, the byte transmitted is replaced by
the byte received and eliminates the need for separate
transmit-empty and receive-full status bits. A single
status bit (SPIF) is used to signify that the 1/0 oper­
ation is complete.

Configuration of the MOSI pin is a function of
the MSTR bit in the serial peripheral control register
(SPCR). When a device is operating as a master, and
the DOR bit is set in the case of the CDP68HC05D2,
the MOSI pin is an output because the program in
firmware sets the MSTR bit to a logic one.

Master In Slave Out (MISO)

The MISO pin is configured as an input in a mas­
ter (mode) device and as an output in a slave (mode)
device. In this manner, data is transferred serially
from slave to a master on this line; most significant
bit first, least significant bit last. The MISO pin of a
slave device is placed in the high-impedance state if it
is not selected by the master; i.e., its SS pin is a logic
one. The timing diagram of Figure 45 shows the rela­
tionship between data and clock (SCK). As shown in
Figure 45, four possible timing relationships may be
chosen by using control bits CPOL and CPHA. The
master device always allows data to be applied on
the MOSI line a half-cycle before the clock edge
(SCK) in order for the slave device to latch the data.

NOTE
The slave device(s) and a master device must be

programmed to similar timing modes for proper data
transfer.

When the master device transmits data to a slave
device via the MOSI line, the slave device responds
by sending data to the master device via the MISO
line. This implies full duplex transmission with both
data out and data in synchronized with the same
clock signal (one which is provided by the master
device). Moreover, the same shift register is used for
data out and data in. Thus, the byte transmitted is
replaced by the byte received and eliminates the need
for separate transmit-empty and receive-full status
bits. A single status bit (SPIF) in the serial periph­
eral status register (SPSR) is used to signify that the
I/ 0 operation is complete.

In the master device, the MSTR control bit in the
serial peripheral control register (SPCR) is set to a
logic one (by the program) to allow the master
device to receive data on its MISO pin. In the slave
device, its MISO pin is enabled by the logic level of
the SS pin; i.e., if SS = I then the MISO pin is
placed in the high-impedance state, whereas, if SS =
0 the MISO pin is an output for the slave device
(only if the DOR bit is set in the case of the
CDP68HC05D2).

67

Slave Select (SS)

The slave select (SS) pin is a fixed input (PD5, pin
34), which receives an active low signal that is gener­
ated by the master device to enable slave device(s) to
accept data. To ensure that data will be accepted by
a slave device, the SS signal line must be a logic low
prior to occurrence of SCK (system clock) and must
remain low until after the last (eighth) SCK cycle.
Figure 45 illustrates the relationship between SCK
and the data for two different level combinations of
CPHA, when SS is pulled low. These are: I) with
CPHA = I or 0, the first bit of data (MSB) is applied
to the MISO line for transfer, and 2) when CPHA =
0 the slave device is prevented from writing to its
data register. Refer to the WCOL status flag in the
serial peripheral status register description for further
information on the effects that the SS input and
CPHA control bit have on the I/ 0 data register. The
WCOL flag warns the slave if it has had a conflict
between a transmission and a write of the data regis­
ter. A high level SS signal forces the MISO (master
in slave out) line to the high-impedance state. Also,
SCK and the MOSI (master out slave in) line are
ignored by a slave device when its SS signal is high.

When a device is a master, it constantly monitors
its SS signal input for a logic low. The master device
will become a slave device any time its SS signal
input is detected low. This ensures that there is only
one master controlling the SS line for a particular
system. When the SS line is detected low, it clears
the MSTR control bit (serial peripheral control reg­
ister). Also, control bit SPE in the serial peripheral
control register is cleared which causes the serial
peripheral interface (SPI) to be disabled (Port D SPI
pins become inputs). The MODF flag bit in the
serial peripheral status register is also set to indicate
to the master device that another device is attempt­
ing to become a master. Two devices attempting to
be outputs are normally the result of a software
error; however, a system could be configured which
would contain a default master which would auto­
matically "take over" and restart the system.

Serial Clock - SCK

The serial clock is used to synchronize the move­
ment of data both in and out of the device through
its MOSI and MISO pins. The master and slave
devices are capable of exchanging a data byte of
information during a sequence of eight clock pulses.
Because the SCK is generated by the master device,
the SCK line becomes an input on all slave devices
and synchronizes slave data transfer. The type of
clock and its relationship to data are controlled by
the CPOL and CPHA bits in the serial peripheral
control register discussed below. Refer to Figure 45
for timing.

The master device generates the SCK through a
circuit driven by the internal processor clock. Two

68------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

bits (SPRO and SPRl) in the serial peripheral con­
trol register of the master device select the clock rate.
The master device uses the SCK to latch incoming
slave device data on the MISO line and shifts out
data to the slave device on the MOSI line. Both mas­
ter and slave devices must be operated in the same
timing mode as controlled by the CPOL and CPHA
bit in the serial peripheral control register. In the
slave device, SPRO, SPRl have no effect on the
operation of the serial peripheral interface. Timing is
shown in Figure 45.

Serial Peripheral Interface Functional Description

A block diagram of the serial peripheral interface
(SPI) is shown in Figure 46. A master device, once it
has selected the other device(s) in the system, initiates
the SCK signal by writing a byte to its SPDR. SCK
is based on the internal processor clock and is used
internally to control the state controller as well as
the 8-bit shift register. As a master device, data is
parallel-loaded into the 8-bit shift register (SPDR)
from the internal bus, and shifted out serially through
the MOSI pin to the slave device(s). While the shift
is taking place, the master monitors the SPIF bit of
the status register to determine when the data transfer
is finished (SPIF= 1). The data in the shift register
of the slave device is simultaneously shifted out
through the MISO pin, back to the master (full
duplex operation). After the 8-bit shift register is
loaded, its data is parallel-transferred to the read
buffer and then made available to the internal data
bus during a CPU read cycle. When the master
requests data from the slave, the slave writes the
data, which will be shifted out by the master, into its
SPDR. Because the master generates the SCK sig­
nal, it must do a dummy write to its SPDR to shift
the data out of the slave.

In a slave configuration, the slave start logic
receives a logic low (from a master device) at the SS
pin and a system clock input (from the same master
device) at the SCK pin. Thus, the slave is synchro­
nized with the master. Data from the master is
received serially at the slave MOSI pin and loads the
8-bit shift register. After the 8-bit shift register is
loaded, its data is parallel-transferred to the read
buffer and then is made available to the internal data
bus during a CPU read cycle. During a write cycle,
data is parallel-loaded into the 8-bit shift register
from the internal data bus and then shifted out
serially to the MISO pin for application to the mas­
ter device.

Serial Peripheral Interface Registers

There are three registers in the serial peripheral
interface which provide control, status, and data
storage functions. These registers are the serial
peripheral control register (SPCR), serial peripheral
status register (SPSR), and the serial peripheral data
1/0 register (SPDR).

Serial Peripheral Control Register (SPCR)

7 6 5* 4 3 2 1 0

I SPIE I SPE I DWOM I MSTR,CPOLICPHAI SPR1 I SPRO I
*Bit 5 is a feature of the CDP68HC05D2

The serial peripheral control register bits are
defined as follows:

Bit 7 SPIE When the serial peripheral interrupt
enable (SPIE) bit is high, it allows
the occurrence of a processor inter­
rupt, and forces the proper vector
to be loaded into the program
counter if the serial peripheral sta­
tus register flag bit (SPIF and/or
MODF) is set to a logic one. It does
not inhibit the setting of a status
bit. The SPI E bit is cleared by reset.

Bit 6 SPE When the serial peripheral output
enable (SPE) control bit is set, all
output drive is applied to the exter­
nal pins and the system is enabled.
When the SPE bit is set, it enables
the SPI system by connecting it to
the external pins thus allowing it to
interface with the external SPI bus.
The pins that are defined as output
depend on the mode (master or
slave) of the device. Because the
SPE bit is cleared by reset, the SPI
system is not connected to the
external pins upon reset.

Bit 5 DWOM Port D wire-OR mode is available
on the CDP68HC05D2. This bit
controls the output buffers for Port
D bits 2 through 5. If DWOM = 1,
the four Port D output buffers be­
have as open-drain outputs. If
DWOM = 0, the four Port D output
buffers operate as normal CMOS
outputs.

Bit 4 MSTR The master bit determines whether
the device is a master or a slave. A
logic zero denotes a slave device
and a logic one denotes a master
device. If the master mode is sel­
ected, the function of the SCK pin
changes from an input to an output
and the functions of the MISO and
MOSI pins are reversed. This allows
the user to wire device pins MISO
to MISO, and MOSI to MOSI, and
SCK to SCK without incident. The
MSTR bit is cleared by reset; there­
fore, the device is always placed in
the slave mode during reset.

34

SS

(See Note!

See Note

Internal
Processor

Clock

331 SCK 32 MOSI 31 MISO

Rate
Generator

2

Master
Start
Logic

Slave
Start
Logic

Control

SPCA I Bits
$0A I

Read

t
I , 8

Read Buffer (Load!

soc ~ 8 SPDR ' .. (E~= 1~x)
8-Bit Shift

Register

T + Write

~

SPSR
$OB

State
Controller

Flags

!Full)

' 8

3

7

NOTE: The SS, SCK, MOSI, and MISO are external pins which provide the following functions:
a. MOSI- Provides serial output to slave unit(s) when device is configured as a master. Receives serial input from master unit

when device is configured as a slave unit.
b. MISO- Receives serial input from slave unit(s) when device is configured as a master. Provides serial output to master when

device is configured as a slave unit.
c. SCK - Provides system clock when device is configured as a master unit. Receives system clock when device is configured as

a slave unit.
d. SS - Provides a !ogic low to select a slave device for a transfer with a master device.

Figure 46 - Serial Peripheral Interface Block Diagram

Internal
Data
Bus

:::c
I»
a.
!
;

;:
c:

ii

O>
<O

10 ______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Bit 3 CPOL The clock polarity bit controls the
normal or steady state value of the
clock when data is not being trans­
ferred. The CPOL bit affects both
the master and slave modes. It must
be used in conjunction with the
clock phase control bit (CPHA) to
produce the wanted clock-data rela­
tionship between a master and ·a
slave device. When the CPOL bit is
a logic zero, it produces a steady
state low value at the SCK pin of
the master device. If the CPOL bit
is a logic one, a high value is pro­
duced at the SCK pin of the master
device when data is not being trans­
ferred. The CPOL bit is not affected
by reset. Refer to Figure 45.

Bit 2 CPHA The clock phase bit controls the
relationship between the data on
the MISO and MOSI pins and the
clock produced or received at the
SCK pin. This control has effect in
both the master and slave modes.
It must be used in conjunction with
the clock polarity control bit
(CPOL) to produce the wanted
clock-data relation. The CPHA bit
in general selects the clock edge
which captures data and allows it
to change states. It has its greatest
impact on the first bit transmitted
(MSB) in that it does or does not
allow a clock transition before the
first data capture edge. The CPHA
bit is not affected by reset. Refer to
Figure 45.

Bit 1 SPR1 These two serial peripheral rate
Bit O SPRO bits select one of four baud rates to

be used as SCK if the device is a
master; however, they have no af­
fect in the slave mode. The slave
device is capable of shifting data in
and out at a maximum rate which
is equal to the CPU clock. A rate
table is given below for the genera­
tion of the SCK from the master.
The SPR 1 and SPRO bits are not
affected by reset.

SPR1 SPRO ----
0 0
0 1
1 0
1 1

Internal Processor
Clock Divide by

2
4

16
32

Serial Peripheral Status Register (SPSR)

7 6 5 4 3 2 1 0

The status flags which generate a serial peripheral
interface (SPI) interrupt may be blocked by the
SPIE control bit in the serial peripheral control reg­
ister. The WCOL bit does not cause an interrupt.
The serial peripheral status register bits are defined
as follows:

Bit 7 SPIF The serial peripheral data transfer
flag bit signals the user that a data
transfer between the device and an
external device has been completed.
With the completion of the data
transfer, SPIF is set, and if SPIE is
set, a serial peripheral interrupt (SPI)
is generated. During the clock cycle
that SPIF is being set, a copy of the
received data byte in the shift regis­
ter is moved to a buffer. When the
data register is read, it is the buffer
that is read. During an overrun
condition, when the master device
has sent several bytes of data and
the slave device has not responded
to the first SPIF, only the first byte
sent is contained in the receiver
buffer and all other bytes are lost.

The transfer of data is initiated by
the master device writing to its serial
peripheral data register.

Clearing the SPIF bit is accom­
plished by a software sequence of
accessing the serial peripheral sta­
tus register while SPIF is set, fol­
lowed by a write to or a read of the
serial peripheral data register. While
SPI F is set, all writes to the serial
peripheral data register are inhibited
until the serial peripheral status reg­
ister is read. This occurs in the mas­
ter device. In the slave device, SPIF
can be cleared (using a similar
sequence) during a second trans­
mission; however, it must be cleared
before the second SPIF in order to
prevent an overrun condition. The
SPIF bit is cleared by reset.

Bit 6 WCOL The function of the write collision
status (WCOL) bit is to signal the
user that an attempt was made to
write to the serial peripheral data
register while a data transfer was
taking place with an external device~

Hardware Features

The transfer continues uninter­
rupted; therefore, a write will be
unsuccessful. A "read collision" will
never occur since the received data
byte is placed in a buffer in which
access is always synchronous with
the MCU operation. If a "write colli­
sion" occurs, WCOL is set but no
SPI interrupt is generated. The
WCOL bit is a status flag only.

Clearing the WCOL bit is accom­
plished by a software sequence of
accessing the serial peripheral sta­
tus register while WCOL is set, fol­
lowed by 1) a read of the serial
peripheral data register prior to the
SPIF bit being set, or 2) a read or
write of the serial peripheral data
register after the SPIF bit is set. A
write to the serial peripheral data
register (SPDR) prior to the SPIF bit
being set will result in generation
of another WCOL status flag. Both
the SPIF and WCOL bits will be
cleared in the same sequence. If a
second transfer has started while
trying to clear (the previously set)
SPIF and WCOL bits with a clearing
sequence containing a write to the
serial peripheral data register, only
the SPIF bit will be cleared.

A collision of a write to the serial
peripheral data register while an
external data transfer is taking place
can occur in both the master mode
and the slave mode, although with
proper programming the master de­
vice should have sufficient informa­
tion to preclude this collision.

Collision in the master device is
defined as a write of the serial
peripheral data register while the
internal rate clock (SCK) is in the
process of transfer. The signal on
the SS pin is always high on the
master device.

A collision in a slave device is de­
fined in two separate modes. One
problem arises in a slave device
when the CPHA control bit is a logic
zero. When CPHA is a logic zero,
data is latched with the occurrence
of the first clock transition. The
slave device does not have any way
of knowing when that transition will
occur; therefore, the slave device

71

collision occurs when it attempts to
write to the serial peripheral data
register after its SS pin has been
pulled low. The SS pin of the slave
device freezes the data in its serial
peripheral data register and does
not allow it to be altered if the CPHA
bit is a logic zero. The master device
must raise the SS pin of the slave
device high between each byte it
transfers to the slave device.
The second collision mode is de­
fined for the state of the CPHA con­
trol bit being a logic one. With the
CPHA bit set, the slave device will
be receiving a clock (SCK) edge
prior to the latch of the first data
transfer. This first clock edge will
freeze the data in the slave device
1/0 register and allow the MSB onto
the external MISO pin of the slave
device. The SS pin low state en­
ables the slave device but the drive
onto the MISO pin does not take
place until the first data transfer
clock edge. The WCOL bit will only
be set if the 1/0 register is accessed
while a transfer is taking place. By
definition of the second collision
mode, a master device might hold a
slave device SS pin low during a
transfer of several bytes of data
without a problem.

A special case of WCOL occurs in
the slave device. This happens when
the master device starts a transfer
sequence (an edge of SCK for
CPHA=1; or an active SS transition
for CPHA=O) at the same time the
slave device CPU is writing to its
serial peripheral interface data reg­
ister. In this case it is assumed that
the data byte written (in the slave
device serial peripheral interface) is
lost and the contents of the slave
device read buffer become the byte
that is transferred. Because the mas­
ter device receives back the last byte
transmitted, the master device can
detect that a fatal WCOL occurred.

Because the slave device is operat­
ing asynchronously with the master
device, the WCOL bit may be used
as an indicator of a collision occur­
rence. This helps alleviate the user
from a strict real-time programming
effort. The WCOL bit is cleared by
reset.

72-------- User Manual for the CDP680S .. Series CMOS Microcomputers/Microprocessors

Bit 4 MODF The function of the mode fault flag
(MODF) is defined for the master
mode device. If the device is a slave
device, the MODF bit will be pre­
vented from toggling from a logic
zero to a logic one; however, this
does not prevent the device from
being in the slave mode with the
MODF bit set. The MODF bit is
normally a logic zero and is set only
when the master device has its SS
pin pulled low. Toggling the MODF
bit to a logic one affects the internal
serial peripheral interface (SPI) sys­
tem in the following ways:

1. MODF is set and SPI interrupt is
generated if SPIE=1.

2. The SPE bit is forced to a logic
zero. This blocks all output drive
from the device, disables the SPI
system.

3. The MSTR bit is forced to a logic
zero, thus forcing the device into
the slave mode.

4. Resets DDR bits for MISO, MOSI,
CLR.

Clearing the MODF is accomplished
by a software sequence of accessing
the serial peripheral status register
while MODF is set followed by a
write to the serial peripheral control
register. Control bits SPE and MSTR
may be restored to their original set
state during this clearing sequence
or after the MODF bit has been
cleared. Hardware does not allow.
the user to set the SPE and MSTR ·
bit while MODF is a logic one unless'
it is during the proper clearing se­
quence. The MODF flag bit indicates
that there might have been a multi­
master conflict for system control
and allows a proper exit from sys­
tem operation to a reset or default
system state. The MODF bit is
cleared by reset.

Serial Peripheral Data 1/0 Register (SPDR)

7 6 5 4 3 2 0

Serial Peripheral Data 1/0 Register

The serial peripheral data I/ 0 register is used to
transmit and receive data on the serial bus. Only a
write to this register will initiate transmission/recep­
tion of another byte and this will only occur in the
master device. A slave device writing to its data 1/0
register will not initiate a transmission. At the com-

pletion of transmitting a byte of data, the SPIF sta­
tus bit is set in both the master and slave devices. A
write or read of the serial peripheral data I/ 0 regis­
ter, after accessing the serial peripheral status regis­
ter with SPIF set, will clear SPIF.

During the clock cycle that the SPIF bit is being
set, a copy of the received data byte in the shift regis­
ter is being moved to a buffer. When the user reads
the serial peripheral data 1/0 register, the buffer is
actually being read. During an overrun condition,
when the master device has sent several bytes of data
and the slave device has not internally responded to
clear the first SPIF, only the first byte is contained
in the receive buffer of the slave device; all others are
lost. The user may read the buffer at any time. The
first SPIF must be cleared by the time a second
transfer of data from the shift register to the read
buffer is initiated or an overrun condition will exist.

A write to the serial peripheral data 1/0 register is
not buffered and places data directly into the shift
register for transmission.

The ability to access the serial peripheral data 1/0
register is limited when a transmission is taking
place. It is important to read the discussion defining
the WCOL and SPIF status bits to understand the
limits on using the serial peripheral data I/ 0 register.

Serial Peripheral Interface (SPI)
System Considerations

There are two types of SPI systems: single master
system and multi-master systems. Figure 43 illus­
trates both of these systems and a discussion of each
is provided below.

Figure 43a illustrates how a typical single master
system may be configured, using a CDP6805 CMOS
Family device as the master and four CDP6805
CMOS Family devices as slaves. As shown, the
MOSI, MISO, and SCK pins are all wired to equiv­
aJent pins on each of the five devices. The master
device generates the SCK clock, the slave devices all
receive it. Because the CDP6805 CMOS master
device is the bus master, it internally controls the
function of its MOSI and MISO lines, thus writing
data to the slave devices on the MOSI and reading
data from the slave devices on the MISO lines. The
master device selects the individual slave devices by
using four pins of a parallel port to control the four
SS pins of the slave devices. A slave device is selected
when the master device pulls its SS pirt iow. The SS
pins are pulled high during reset because the master
device ports will be forced to be inputs at that time,
thus disabling the slave devices. Notice that the slave
devices do not have to be enabled in a mutually
exclusive fashion except to prevent bus contention
on the MISO line. For example, three slave devices
enabled for a transfer are permissible if only one has
the capability of being read by the master. An exam­
ple of this is a write to several display drivers to clear
a display with a single 1/0 operation. To ensure that

Hardware Features

proper data transmission is occurring between the
master device and a slave device, the master device
may have the slave device respond with a previously
received data byte (this data byte could be inverted
or at least be a byte that is different from the last one
sent by the master device). The master device will
always receive the previous byte back from the slave
device if all MISO and MOS! lines are connected
and the slave has not written to its data I/ 0 register.
Other transmission security methods might be de­
fined using ports for handshake lines or data bytes
with command fields.

A multi-master system may also be configured by
the user. A system of this type is shown in Figure
43b. An exchange of master control could be imple­
mented using a handshake method through the I/ 0
ports or by an exchange of code messages through
the serial peripheral interface system. The major
device control that plays a part in this system is the
MSTR bit in the serial peripheral control register
and the MODF bit in the serial peripheral status
register.

CDP6805E2/E3 Microprocessor
(MPU) External Bus Description

The CDP6805E2/E3 CMOS MPU does not con­
tain on-chip non-volatile memory; however, by using
the external multiplexed address-then-data bus, addi­
tional memory and peripherals may be added. In
order to conserve pins, the CDP6805E2/ E3 multi­
plexes the data bus with the eight lower address bits.
The lower address bits appear on the bus first and
are valid prior to the falling edge of address strobe
(AS). Data is then transferred during data strobe
(DS) high. The CDP6805E2/E3 latches read data
(R/ W is high) on the falling edge of DS.

The CDP6805E2/ E3 bus timing is generated from

73

the waveform at the OSC 1 input. Figure 47 shows
the relationship of the CDP6805E2/ E3 bus timing to
the OSC 1 input. Because the CDP6805E2/ E3 is a
completely static device, it may be operated at any
frequency below its maximum (1 MHz bus) rate.
Because generating the timing specifications for all
of the possible frequencies is impossible, Figure 47
can be used to estimate the effects on bus timing for
the oscillator frequency (fa"). For instance, decreasing
fa.,, increases the multiplexed address hold time since
the multiplexed bus does not switch until a half
OSC I cycle after AS goes low. On the other hand,
the required read data hold time is not a function of
fosc·

OSCI

AS

OS

R/W

B0-67
MPU READ. MUX. ADDR. ------

MUX. ADDR MPU WRITE DATA

*READ DATA "LATCHED" ON DS FALL

92CM- 38322

Figure 47 - OSC1 to Bus Transitions

Self-Check
Introduction

One of the advanced architectural features of the
CDP6805 CMOS Family of microcomputers is the
ability to test itself, using on-chip firmware. These
programs are commonly referred to as self-check
routines and subroutines, which are used for quick
go/ no-go functional tests of the individual micro­
computer (MCU). The self-check routines function­
ally exercise the ports, RAM, ROM, timer, and
interrupts, and where applicable, the SPI and SCI.

The CDP6805E2 and CDP6805E3 microproces­
sors do not contain on-chip ROM, and consequently
do not include self-check routines.

The additional components and terminal connec­
tions necessary to support the self-check of each
MCU are shown in their respective data sheets. The
self-check routines are initiated by application of
power to the test set-up, or by actuation of the reset
switch. These self-check subroutines are initiated and
automatically sequenced through their predeter­
mined programs with individual results as noted in
the data sheets.

Several of the self-check subroutines can be ini­
tiated by the user program. These user-callable sub­
routines are RAM, ROM, and timer (provided the
timer is clocked by the internal clock) tests. One
extremely valuable feature of the self-check is that it
can be incorporated into the acceptance test of all
CDP6805 CMOS Family devices (except CDP6805E2
and CDP6805E3) to provide go/no-go indications
for the particular device.

The user-callable tests shown for the devices listed
in Table V can be part of the normal power-up
sequence, or included in the regular preventive main­
tenance schedule as well as the repair/ service sched­
ule for the user system. These self-check subroutines
can be called by the user and merged into the overall
system program without additional components or
terminal connections. Table V contains a list of
microcomputers which have this self-check firmware.
Also, the address to enter each user-callable self­
check subroutine is listed with appropriate comments.
Each self-check subroutine ends with the RTS in­
struction, and must be called by the BSR/ JSR
instruction from the user's main program.

Table V - Subroutine Entry Addresses

MCU RAM Test ROM Test Timer Test*

CDP6805F2 $0788 $07A4 $07BE
CDP6805G2 $1F87 $1FA1 $1FBB
CDP68HC05C4 - $1F93 $1FOE
CDP68HC0502 - $1F93 $1FOE

(*) The timer clock source must be the internal
clock.

Self-Check Description

RAM Self-Check
The RAM self-check routine performs a walking­

bit diagnostic pattern, and when completed, the Z bit
is cleared if any error was detected. If no error was
detected, the Z bit is set. The RAM self-check rou­
tine overwrites the accumulator, index register, and
RAM.

ROM Self-Check
The ROM self-check performs an exclusive OR

(odd parity) checksum and returns with the Z bit
clear if any error was detected. If no error was
detected, the Z bit is set. Refer to the individual data
sheets for RAM or registers which are modified.

Timer Self-Check
The timer self-check routine keeps track of the

number of times the clock counts in some number of
cycles. Because the timer has a prescaler, not every
count is tested. The routine also detects a non­
running timer condition. If an error is found, the Z
bit is cleared; otherwise the Z bit is set indicating no
error. The accumulator, the index register, and some
RAM may be overwritten.

In order to work correctly as a user subroutine,
the internal clock must be the clocking source, and
interrupts must be disabled. At the end of the test,
the clock may be running and interrupt mask cleared
so the user may have to protect the program from
interrupt. Refer to the individual part's data sheet
for more information.

Self-Check------------------------------- 75

Flowchart Example

An example of the timer test for the CDP6805G2
is shown flowcharted in Figure 48. The pass/fail

result can be utilized by the user program for system
go/no-go considerations. Notice that previous values
in the accumulator and index registers are lost.

Clear Z Bit
!Test Failed)

Set Z Bit
(Test Passed)

RTS

N

y

TIMTST

Load TCR with $6F

Load X and Timer
(TOR) with $FF

Change TCR to $5F

Decrement
Index Register

Load A with $11

Decrement A

Clear $000A
Then NOP

Branch Always

6

3

5

2

102

7

3

Disable Timer Input and
Set Prescaler to + 128

Enable Timer Input for
Countdown to $00

Compare TOR Data to
Index Register Data

(Do They Track).
Uses six Cycles.

Uses Three Cycles

Is The Timer Self-Check
Complete (All 128 x 256).

Uses Five Cycles.

Uses Two Cycles

Provides
102-Cycle Delay Loop

Provides
7-Cycle Delay Loop

Total of 128 Cycles
Here Should Insure

TDR=X.

Figure 48 - CDP6805G2 MPU Timer Test (TIMTST) Flowchart

Instruction Set
Detailed Definition

Introduction
In the pages that follow this section, the various

accumulator and memory operations, together with
the respective mnemonic, provide a heading for
each of the executable instructions. The pages are
arranged in alphabetical order of the mnemonic. A
brief description of the operation is provided along
with other applicable pertinent information, includ­
ing: condition code status, Boolean formula, source
forms, usable addressing modes, number of execu­
tion cycles, number of bytes required, and the opcode
for each usable addressing mode. The next section
contains a listing of the various nomenclature (ab­
breviations and signs) used in the operations.

Nomenclature
The following nomenclature is used in the execut­

able instructions which follow this paragraph.

(a) Operators:
() indirection, i.e., (SP) means the value

pointed to by SP
is loaded with (read: "gets")
Boolean AND

v Boolean (inclusive) OR
+ Boolean EXCLUSIVE OR

Boolean NOT
negation (two's complement)

(b) Registers in the MPU:
ACCA Accumulator (shown as A in Boolean

formula for condition codes and source
forms)

CC Condition Code Register
X Index Register
PC Program Counter
PCH Program Counter High Byte
PCL Program Counter Low Byte
SP Stack Pointer

(c) Memory and Addressing:
M Contents of any memory location (one

byte)
Rel Relative address (i.e., the two's comple­

ment number stored in the second byte
of machine code in a branch instruction)

(d) Bits in the Condition Code Register:
C Carry/ Borrow, Bit 0
Z Zero Indicator, Bit I
N Negative Indicator, Bit 2
I Interrupt Mask, Bit 3
H Half Carry Indicator, Bit 4

(e) Status of Individual Bits BEFORE Execution of
an Instruction:
An Bit n of ACCA (n = 7, 6, 5, 4, 3, 2, 1, 0)
Xn Bit n of X (n = 7, 6, 5, 4, 3, 2, 1, 0)
Mn Bit n of M (n = 7, 6, 5, 4, 3, 2, 1, 0). In

read/ modify/ write instructions, Mn is
used to represent bit n of M, A or X.

(f) Status of Individual Bits AFTER Execution of
an Instruction:
Rn Bit n of the result (n = 7, 6, 5, 4, 3, 2, I, 0)

(g) Source Forms:
P Operands with IMMediate, DIRect,

EXTended and INDexed (0, I, 2 byte
offset) addressing modes

Q Operands with DIRect, INDexed (0 and
1 byte offset) addressing modes

dd Relative operands
DR Operands with DIRect addressing mode

only

(h) iff Abbreviation for if and only if

Instruction Set Detailed Definition -------------------------- 77

ADC (Add with Carry)

Operation:
ACCA - ACCA + M + C

Description:
Add the contents of the Carry/ Borrow bit to the sum
of the contents of the Accumulator and Memory,
and place the result in the Accumulator.

Condition Codes:
H: Set if there is a carry from bit 3; cleared other­

wise.
I: Not affected.
N: Set if the most significant bit of the result is set;

cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if there is a carry from the most significant

bit of the result; cleared otherwise.

Boolean Formula(e) for Condition Codes:
H = A3°M3vM3°R3vR3·A3
N = R7
Z = R7·R6·R5·R4.R3·R2.Rl·RO
C = A7.M7vM7·R7vR7.A7

Source Form(s):
ADCP

Addressing Mode Cycles

Immediate 2
Direct 3
Extended 4
Indexed 0 Offset 3
Indexed I-Byte 4
Indexed 2-Byte 5

ADD (Add)

Operation:
ACCA - ACCA + M

Description:

Bytes

2
2
3
I
2
3

Opcode

A9
B9
C9
F9
E9
D9

Add the contents of the Accumulator and the
contents of Memory and place the result in the
Accumulator.

Condition Codes:
H: Set if there is a carry from bit 3; cleared other- ·

wise.
I: Not affected.
N: Set if the most significant bit of the result is set;

cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.

ADD (Add) (Cont'd)
C: Set if there is a carry from the most significant

bit of the result; cleared otherwise.

Boolean Formula(e) for Condition Codes:
H = A3· M3vM3· R3vR3·A3
N = R7
Z = R7.R6·R5.R4.R3.R2.Rl·RO
C = A7°M7vM7.R7vR7.A7

Source Form(s):
ADDP

Addressing Mode Cycles

Immediate 2
Direct 3
Extended 4
Indexed 0 Offset 3
Indexed I-Byte 4
Indexed 2-Byte 5

AND (Logical AND)

Operation:
ACCA - ACCA • M

Description:

Bytes

2
2
3
1
2
3

Opcode

AB
BB
CB
FB
EB
DB

Perform logical AND between the contents of the
Accumulator and the contents of Memory and place
the result in the Accumulator. Each bit of the
Accumulator after the operation will be the logical
AND result of the corresponding bits of Memory
and of the Accumulator before the operation.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the result is set;

cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7°R6°R5°R4°R3·R2°Rl 0 RO

Source Form(s):
ANDP

Addressing Mode Cycles Bytes Opcode

Immediate 2 2 A4
Direct 3 2 B4
Extended 4 3 C4
Indexed 0 Offset 3 I F4
Indexed 1-Byte 4 2 E4
Indexed 2-Byte 5 3 D4

78 _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

ASL (Arithmetic Shift Left)
Operation: -----------

~-4~b7~l __.____.___,__...___.____._l b~0'--0
Description:

Shift all bits of the Accumulator, Index Register, or
Memory one place to the left. Bit 0 is loaded with a
zero. The Carry/ Borrow bit is loaded from the
most significant bit of the Accumulator, Index
Register, or Memory.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is set;

cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if, before the operation, the most significant

bit of ACCA, X or M, were set; cleared other­
wise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7°R6°R5°R4°R3°R2°Rl 0 RO
C = b7 {before operation)

Comments:
Same opcode as LSL

Source Form(s):
ASL Q, ASLA, ASLX

Addressing Mode Cycles

Accumulator 3
Index Register 3
Direct 5
Indexed 0 Offset 5
Indexed I-Byte 6

Bytes

I
1
2
I
2

Opcode

48
58
38
78
68

AS R (Arithmetic Shift Right)
Operation: --------

Description:
Shift all bits of the Accumulator, Index Register, or
Memory one place to the right. Bit 7 is held constant.
Bit 0 is loaded into the Carry/ Borrow bit.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is set;

cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.

I AS R (Arithmetic Shift Right) (Cont'd) I
C: Set if, before the operation, the least significant

bit of ACCA, X or M were set; cleared other­
wise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7°R6°R5°R4°R3°R2°Rl 0 RO
C = bO (before operation)

Source Form(s):
ASR Q, ASRA, ASRX

Addressing Mode Cycles

Accumulator 3
Index Register 3
Direct 5
Indexed 0 Offset 5
Indexed I-Byte 6

Bytes Opcode

I 47
57

2 37
I 77
2 67

BCC (Branch if Carry Clear)
Operation:

PC - PC + 0002 + Rel iff C = 0

Description:
Test the state of the Carry/ Borrow bit and cause a
branch if and only if C is clear. See BRA instruc­
tion for further details of the execution of the
branch.

Condition Codes:
Not affected.

Comments:
Same opcode as BHS

Source Form(s):
BCCdd

Addressing Mode

Relative

Cycles

3

Bytes Opcode

2 24

BCLRn (Clear Bit in Memory)
Operation:

Mn-0

Description:
Clear bit n (n = 0-7) in memory location M. All
other bits in M are unaffected.

Condition Codes:
Not affected.

Source Form(s):
BCLR n, DR

Addressing Mode Cycles Bytes Opcode

Direct 5 2 11 + 2n

Instruction Set Detailed Definition -------------------------- 79

BCS (Branch if Carry Set)

Operation:
PC - PC + 0002 + Rel iff C = l

Description:
Test the state of the Carry/ Borrow bit and cause a
branch if and only if C is set. See BRA instruction
for further details of the execution of the branch.

Condition Codes:
Not affected.

Comments:
Same opcode as BLO

Source Form(s):
BCS dd

Addressing Mode

Relative

Cycles

3

Bytes Opcode

2 25

BE Q (Branch if Equal)

Operation:
PC - PC + 0002 + Rel iff Z = I

Description:
Test the state of the Zero Indicator bit and cause a
branch if and only if Z is set. Following a compare
or subtract instruction BEQ will cause a branch if
the arguments were equal. See BRA instruction
for further details of the execution of the branch.

Condition Codes:
Not affected.

Source Form(s):
BEQ dd

Addressing Mode Cycles

3

Bytes Opcode

Relative

BHCC (Branch if Half
Carry Clear)

Operation:
PC - PC + 0002 + Rel iff H = 0

Description:

2 27

Test the state of the Half Carry Indicator bit and
cause a branch if and only if H is clear. See BRA
instruction for further details of the execution of
the branch.

Condition Codes:
Not affected.

BHCC (Branch if Half
Carry Clear) (Cont'd)

Source Form(s):
BHCC dd

Addressing Mode

Relative

Cycles

3

Bytes Opcode

2 28

BHCS (Branch if Half
Carry Set)

Operation:
PC - PC + 0002 + Rel iff H = I

Description:
Test the state of the Half Carry Indicator bit and
cause a branch if and only if H is set. See BRA
instruction for further details of the execution of
the branch.

Condition Codes:
Not affected.

Source Form(s):
BHCS dd

Addressing Mode

Relative

Cycles

3

Bytes Opcode

2 29

B HI (Branch if Higher)

Operation:
PC - PC + 0002 + Rel iff (C v Z) = 0
i.e., if ACCA > M (unsigned binary numbers)

Description:
Cause a branch if and only if both Carry/ Borrow
and Zero Indicator are zero. If the B HI instruction
is executed immediately after execution of either
of the CMP or SUB instructions, the branch will
occur if and only if the unsigned binary number
represented by the minuend (i.e., Accumulator) is
greater than the unsigned binary number repre­
sented by the subtrahend (i.e., Memory). See BRA
instruction for further details of the execution of
the branch.

Condition Codes:
Not affected.

Source Form(s):
BHI dd

Addressing Mode

Relative

Cycles

3

Bytes Opcode

2 22

so _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

BHS (Branch if Higher or Same)

Operation:
PC - PC + 0002 + Rel iff C = 0

Description:
Following an unsigned compare or subtract, BHS
will cause a branch if and only if the register being
compared is higher than or the same as the loca­
tion in memory. See BRA instruction for further
details of the execution of the branch.

Condition Codes:
Not affected.

Comments:
Same opcode as BCC

Source Form(s):
BHS dd

Addressing Mode

Relative
Cycles Bytes Opcode

3 2 24

BI H (Branch if Interrupt
Line is High)

Operation:
PC - PC + 0002 + Rel iff INT = I

Description:
Test the state of the external interrupt pin and
branch if and only if it is high. See BRA instruc­
tion for further details of the execution of the
branch.

Condition Codes:
Not affected.

Comments:
In systems not using interrupts, this instruction
and BIL can be used to create an extra I/ 0 input
bit. This instruction does NOT test the state of the
interrupt mask bit nor does it indicate whether an
interrupt is pending. All it does is indicate whether
the INT line is high.

Source Form(s):
BIH dd

Addressing Mode Cycles Bytes Opcode
Relative 3 2 2F

BIL (Branch if Interrupt
Line is Low)

Operation:
PC - PC + 0002 + Rel iff INT = 0

Description:
Test the state of the external interrupt pin and
branch if and only if it is low. See BRA instruction
for further details of the execution of the branch.

Condition Codes:
Not affected.

Comments:
In systems not using interrupts, this instruction
and BIH can be used to create an extra I/O input
bit. This instruction does NOT test the state of the
interrupt mask bit nor does it indicate whether an
interrupt is pending. All it does is indicate whether
the INT line is low.

Source Form(s):
BIL dd

Addressing Mode Cycles Bytes Opcode

Relative 3 2 2E

BIT (Bit Test Memory
with Accumulator)

Operation:
ACCA. M

Description:
Perform the logical AND comparison of the con­
tents of the Accumulator and the contents of
Memory and modify the condition codes accord­
ingly. The contents of the Accumulator and Mem­
ory are unchanged.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the result of

the AND is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7-R6-R5-R4-R3-R2-Rl.RO

Source Form(s):
BIT P

Addressing Mode Cycles Bytes Opcode

Immediate 2 2 A5
Direct 3 2 B5
Extended 4 3 C5
Indexed 0 Offset 3 I F5
Indexed I-Byte 4 2 E5
Indexed 2-Byte 5 3 D5

Instruction Set Detailed Definition -------------------------- 81

BL 0 (Branch if Lower)

Operation:
PC - PC + 0002 + Rel iff C = I

Description:
Following a c·ompare, BLO will branch if and only
if the register being compared is lower than the
memory location. See BRA instruction for further
details of the execution of the branch.

Condition Codes:
Not affected.

Comments:
Same opcode as BCS

Source Form(s):
BLOdd

Addressing Mode

Relative

Cycles

3

Bytes Opcode

2 25

BLS (Branch if Lower or Same)

Operation:
PC - PC+ 0002 + Rel iff (C v Z) = I
i.e., if ACCA::; M (unsigned binary numbers)

Description:
Cause a branch if Carry/ Borrow is set OR Zero
Indicator is set. If the BLS instruction is executed
immediately after execution of either of the instruc­
tions CMP or SUB, the branch will occur if and
only if the unsigned binary number represented by
the minuend (i.e., Accumulator) is less than or
equal to the unsigned binary number represented
by the subtrahend (i.e., Memory). See BRA in­
struction for further details of the execution of the
branch.

Condition Codes:
Not affected.

Source Form(s):
BLS dd

Addressing Mode

Relative
Cycles Bytes Opcode

3 2 23

BMC (Branch if Interrupt
Mask is Clear)

Operation:
PC - PC + 0002 + Rel iff I = 0

Description:
Test the state of the Interrupt Mask bit and cause
a branch if and only if I is clear. See BRA instruc­
tion for further details of the execution of the
branch.

Condition Codes:
Not affected.

Comments:
This instruction does NOT branch on the condition
of the external interrupt line. The test is performed
only on the interrupt mask bit.

Source Form(s):
BMCdd

Addressing Mode

Relative

Cycles Bytes Opcode

3 2 2C

BM I (Branch if Minus)

Operation:
PC - PC + 0002 + Rel iff N = l

Description:
Test the state of the Negative Indicator bit and
cause a branch if and only if N is set. See BRA
instruction for further details of the execution of
the branch.

Condition Codes:
Not affected.

Source Form(s):
BMI dd

Addressing Mode

Relative

Cycles Bytes Opcode

3 2 2B

82-------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

BMS {Branch if Interrupt
Mask Bit is Set)

Operation:
PC - PC + 0002 + Rel iff I = 1

Description:
Test the state of the Interrupt Mask bit and cause
a branch if and only if I is set. See BRA instruction
for further details of the execution of the branch.

Condition Codes:
Not affected.

Comments:
This instruction does NOT branch on the condition
of the external interrupt line. The test is performed
only on the interrupt mask bit.

Source Form(s):
BMSdd

Addressing Mode

Relative

Cycles Bytes Opcode

3 2 20

B NE {Branch if Not Equal)

Operation:
PC - PC + 0002 + Rel iff Z = 0

Description:
Test the state of the Zero Indicator bit and cause a
branch if and only if Z is clear. Following a
compare or subtract instruction BNE will cause a
branch if the arguments were different. See BRA
instruction for further details of the execution of
the branch.

Condition Codes:
Not affected.

Source Form(s):
BNEdd

Addressing Mode

Relative

Cycles Bytes Opcode

3 2 26

B PL {Branch if Plus)

Operation:
PC - PC + 0002 + Rel iff N = 0

Description:
Test the state of the Negative Indicator bit and
cause a branch if and only if N is clear. See BRA
instruction for further details of the execution of
the branch.

Condition Codes:
Not affected.

Source Form(s):
BPLdd

Addressing Mode

Relative

Cycles

3

Bytes Opcode

2 2A

BRA {Branch Always)

Operation:
PC - PC + 0002 + Rel

Description:
Unconditional branch to the address given by the
foregoing formula, in which Rel is the relative
address stored as a two's complement number in
the second byte of machine code corresponding to
the branch instruction.

NOTE: The source program specifies the destina­
tion of any branch instruction by its absolute
address, either as a numerical value or as a symbol
or expression which can be evaluated by the
assembler. The assembler obtains the relative
address Rel from the absolute address and the
current value of the program counter.

Condition Codes:
Not affected.

Source Form(s):
BRAdd

Addressing Mode

Relative

Cycles Bytes Opcode

3 2 20

Instruction Set Detailed Definition -------------------------- 83

BRCLR n (Branch if Bit n
is Clear)

Operation:
PC - PC + 0003 + Rel iff bit n of M is zero

Description:
Test bit n (n = 0-7) of memory location M and
branch if and only if the bit is clear.

Condition Codes:
H, I, N, Z: Not affected.
C: Set if Mn= I; cleared otherwise.

Boolean Formula(e) for Condition Codes:
C =Mn

Comments:
The Carry/ Borrow bit is set to the state of the bit
tested. Used with an appropriate rotate instruction,
this instruction is an easy way to do serial to
parallel conversions.

Source Form(s):
BRCLR n, DR, dd

BRSET n (Branch if Bit n
is Set)

Operation:
PC - PC + 0003 + Rel iff bit n of M is not zero

Description:
Test bit n (n = 0-7) of memory location M and
branch if and only if the bit is set.

Condition Codes:
H, I, N, Z: Not affected.
C: Set if Mn = I; cleared otherwise.

Boolean Formula(e) for Condition Codes:
C =Mn

Comments:
The Carry/ Borrow bit is set to the state of the bit
tested. Used with an appropriate rotate instruction,
this instruction is an easy way to do serial to
parallel conversions.

Source Form(s):
BRSET n, DR, dd

Addressing Mode

Relative

Cycles Bytes Opcode Addressing Mode Cycles Bytes Opcode

5 3 O l + 2n Relative L----------------------1 5 3 2n

BR N (Branch Never)

Description:
Never branches. Branch never is a 2 byte, 3 cycle
NOP.

Condition Codes:
Not affected.

Comments:
BRN is included here to demonstrate the nature of
branches on the CDP6805 CMOS Family. Each
branch is matched with an inverse that varies only
in the least significant bit of the opcode. BRN is
the inverse of BRA. This instruction may have
some use during program debugging.

Source Form(s):
BRNdd

Addressing Mode

Relative
Cycles Bytes Opcode

3 2 21

BSET n (Set Bit in Memory)

Operation:
Mn-1

Description:
Set bit n (n = 0-7) in memory location M. All
other bits in Mare unaffected.

Condition Codes:
Not affected.

Source Form(s):
BSETn, DR

Addressing Mode Cycles Bytes Opcode

Direct 5 2 IO+ 2n

84---------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

BSR (Branch to Subroutine)

Operation:
PC- PC+ 0002
(SP) - PCL; SP - SP - 0001
(SP) - PCH; SP - SP - 0001
PC-PC+ Rel

Description:
The program counter is incremented by two. The
least (low) significant byte of the program counter
contents is pushed onto the stack. The stack poin­
ter is then decremented by one. The most (high)
significant byte of the program counter contents is
then pushed onto the stack. Unused bits in the
program counter high byte are stored as ones on
the stack. The stack pointer is again decremented
by one. A branch then occurs to the location spec­
ified by the relative offset. See the BRA instruc­
tion for details of the branch execution.

Condition Codes:
Not affected.

Source Form(s):
BSRdd

Addressing Mode Cycles Bytes Opcode

Relative 6 2 AD

CLC (Clear Carry Bit)

Operation:
c bit - 0

Description:
Clear the Carry/ Borrow bit in the processor condi­
tion code register.

Condition Codes:
H, I, N, Z: Not affected.
C: Cleared.

Boolean Formula(e) for Condition Codes:
C=O

Source Form(s):
CLC

Addressing Mode

Inherent

Cycles Bytes Opcode

2 1 98

CLI (Clear Interrupt Mask Bit)

Operation:
I bit - 0

Description:
Clear the Interrupt Mask bit in the processor
condition code register. This enables the micro­
processor to service interrupts. Interrupts that were
pending while the I bit was set will now begin to
have effect.

Condition Codes:
H, N, Z, C: Not affected.
I: Cleared.

Boolean Formula(e) for Condition Codes:
I= 0

Source Form(s):
cu

Addressing Mode

Inherent

CLR (Clear)

Operation:
X - 00 or,
ACCA-00 or,
M-00

Description:

Cycles Bytes Opcode

2 1 9A

The contents of the Accumulator, Index Register,
or Memory are replaced with zeroes.

Condition Codes:
H, I, C: Not affected.
N: Cleared.
Z: Set.

Boolean Formula(e) for Condition Codes:
N=O
Z=I

Source Form(s):
CLR Q, CLRA, CLRX

Addressing Mode

Accumulator
Index Register
Direct
Indexed 0 Offset
Indexed I-Byte

Cycles Bytes

3 1
3 1
5 2
5 I
6 2

Opcode

4F
5F
3F
7F
6F

Instruction Set Detailed Definition -------------------------- 85

CMP (Compare Accumulator
with Memory)

Operation:
ACCA- M

Description:
Compare the contents of the Accumulator and the
contents of Memory and set the condition codes,
which may then be used for controlling the condi­
tional branches. Both operands are unaffected.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result of

the subtraction is set; cleared otherwise.
Z: Set if all bits of the result of the subtraction

are cleared; cleared otherwise.
C: Set if the absolute value of the contents of

memory is larger than the absolute value of the
accumulator; cleared otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7°R6°R5°R4°R3°R2°Rl 0 RO
C = A7·M7vM7·R7vR7·A7

Source Form(s):
CMPP

Addressing Mode Cycles

Immediate 2
Direct 3
Extended 4
Indexed 0 Offset 3
Indexed I-Byte 4
Indexed 2-Byte 5

COM (Complement)

Operation:
X - - X = $FF - X or,

Bytes

2
2
3
I
2
3

ACCA - - ACCA = $FF - ACCA or,
M-- M =$FF- M

Description:

Opcode

Al
Bl
Cl
Fl
El
DI

Replace the contents of the Accumulator, Index
Register, or Memory with the one's complement.
Each bit of the operand is replaced with the com­
plement of that bit.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.

COM (Complement) (Cont'd)
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7°R6°R5°R4°R3°R2.Ri.RO
C=J

Source Form(s):
COM Q, COMA, COMX

Addressing Mode Cycles

Accumulator 3
Index Register 3
Direct 5
Indexed 0 Offset 5
Indexed I-Byte 6

Bytes

I
I
2
I
2

Opcode

43
53
33
73
63

CPX (Compare Index Register
with Memory)

Operation:
X-M

Description:
Compare the contents of Index Register to the
contents of Memory and set the condition codes,
which may then be used for controlling the condi­
tional branches. Both operands are unaffected.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result of

the subtraction is set; cleared otherwise.
Z: Set if all bits of the result of the subtraction

are cleared; cleared otherwise.
C: Set if the absolute value of the contents of

memory is larger th.an the absolute value of the
index register; cleared otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7°R6°R5°R4·ITT·R'2·Rl·RO
C = X7°M7vM7°R7vR7°X7

Source Form(s):
CPX P

Addressing Mode Cycles

Immediate 2
Direct 3
Extended 4
Indexed 0 Offset 3
Indexed I-Byte 4
Indexed 2-Byte 5

Bytes

2
2
3
I
2
3

Opcode

A3
B3
C3
F3
E3
03

86-------- User Manual for the CDP6805-Series'CMOS Microcomputers/Microprocessors

DEC {Decrement)

Operation:
X-X-Olor,
ACCA - ACCA - 01 or,
M - M -01

Description:
Subtract one from the contents of the Accumu­
lator, Index Register, or Memory. The Negative
Indicator and Zero Indicator bits are set or reset
according to the result of this operation. The
Carry/ Borrow bit is not affected by this operation.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.

Boolean Formula(e) for Condition Codes:
N = R7
Z = R7·R6·RS·R4.R3.R2·Rl 0 RO

Source Form(s):
DEC Q, DECA, DECX (DEX is recognized by
the Assembler as DECX)

Addressing Mode Cycles Bytes Opcode

Accumulator 3 I 4A
Index Register 3 SA
Direct s 2 3A
Indexed 0 Offset s 7A
Indexed I-Byte 6 2 6A

EQR {Exclusive OR Memory
with Accumulator)

Operation:
ACCA - ACCA + M

Description:
Perform the logical EXCLUSIVE OR between the
contents of the Accumulator and the contents of
Memory, and place the result in the Accumulator.
Each bit of the Accumulator after the operation
will be the logical EXCLUSIVE OR of the corre­
sponding bit of Memory and the Accumulator
before the operation.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.

EQR {Exclusive OR Memory
with Accumulator) {Cont'd)

Z: Set if all bits of the result are cleared; cleared
otherwise.

Boolean Formula(e) for Condition Codes:
N = R7
Z = R7.R6°RS 0 R4·R3·R2·Rl 0 RO

Source Form(s):
EOR P

Addressing Mode

Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

INC {Increment)

Operation:
x-x+o1 or,
ACCA - ACCA + 0 I or,
M- M +OJ

Description:

Cycles

2
3
4
3
4
s

Bytes

2
2
3
I
2
3

Opcode

A8
B8
C8
F8
E8
D8

Add one to the contents of the Accumulator,
Index Register or Memory. The Negative Indicator
and Zero Indicator bits are set or reset according
to the result of this operation. The Carry/ Borrow
bit is not affected by this operation.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7·R6·RS 0 R4·R3·R2·Rl·RO

Source Form(s):
INC Q, INCA, INCX (INX is recognized by the
Assembler as INCX)

Addressing Mode Cycles Bytes Opcode
Accumulator 3 I 4C
Index Register 3 1 SC
Direct s 2 3C
Indexed 0 Offset s 7C
Indexed I-Byte 6 2 6C

Instruction Set Detailed Definition -------------------------- 87

JMP (Jump)

Operation:
PC - effective address

Description:
A jump occurs to the instruction stored at the
effective address. The effective address is obtained
according to the rules for EXTended, DIRect or
INDexed addressing.

Condition Codes:
Not affected.

Source Form(s):
JMP P

Addressing Mode Cycles Bytes

Direct 2 2
Extended 3 3
Indexed 0 Offset 2 I
Indexed I-Byte 3 2
Indexed 2-Byte 4 3

I JSR (Jump to Subroutine)

Operation:
PC- PC+ N
(SP) - PCL; SP - SP - 0001
(SP) - PCH; SP - SP - 0001
PC - effective address

Description:

Opcode

BC
cc
FC
EC
DC

The program counter is incremented by N (N = I,
2, or 3 depending on the addressing mode), and is
then pushed onto the stack (least significant byte
first). Unused bits in the program counter high
byte are stored as ones on the stack. The stack
pointer points to the next empty location on the
stack. A jump occurs to the instruction stored at
the effective address. The effective address is
obtained according to the rules for EXTended,
DIRect, or INDexed addressing.

Condition Codes:
Not affected.

Source Form(s):
JSR P

Addressing Mode Cycles Bytes Opcode

Direct 5 2 BD
Extended 6 3 CD
Indexed 0 Offset 5 FD
Indexed I-Byte 6 2 ED
Indexed 2-Byte 7 3 DD

LOA (Load Accumulator from
Memory)

Operation:
ACCA- M

Description:
Load the contents of Memory into the Accumu­
lator. The condition codes are set according to the
data.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the accumu­

lator is set; cleared otherwise.
Z: Set if all bits of the accumulator are cleared;

cleared otherwise.

Boolean Formula(e) for Condition Codes:
N = R7
Z = R7°R5°R4°R3°R2°RT0 RO

Source Form(s):
LOA P

Addressing Mode

Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles

2
3
4
3
4
5

Bytes

2
2
3

2
3

Opcode

A6
86
C6
F6
E6
06

as _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

LOX {Load Index Register
from Memory)

Operation:
X-M

Description:
Load the contents of Memory into the Index
Register. The condition codes are set according to
the data.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the index

register is set; cleared otherwise.
Z: Set if all bits of the index register are cleared;

cleared otherwise.

Boolean Formula(e) for Condition Codes:
N = R7
Z = R7°R6°R5°R4°R3°R2°Rl·RO

Source Form(s):
LOX P

Addressing Mode Cycles Bytes Opcode

Immediate 2 2 AE
Direct 3 2 BE
Extended 4 3 CE
Indexed 0 Offset 3 I FE
indexed I -Byte 4 2 EE
Indexed 2-Byte 5 3 DE

LS L {Logical Shift Left)
Operation: -----------

@J-i b71 lbol-o

Description:
Shift all bits of the Accumulator, Index Register,
or Memory one place to the left. Bit 0 is loaded
with a zero. The Carry/ Borrow bit is loaded from
the most significant bit of the Accumulator, Index
Register, or Memory.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if, before the operation, the most significant

bit of ACCA, X or M is set; cleared otherwise.

LSL {Logical Shift Left) {Cont'd)
Boolean Formula(e) for Condition Codes:

N= R7
Z = R7°R6°R5-R4°R3°R2°Rl 0 RO
C = b7 (before operation)

Comments:
Same as ASL

Source Form(s):
LSL Q, LSLA, LSLX

Addressing Mode Cycles

Accumulator 3
Index Register 3
Direct 5
Indexed 0 Offset 5
Indexed I-Byte 6

Bytes

I

2
I
2

LSR {Logical Shift Right)
Operation:-----------

Opcode

48
58
38
78
68

-...._, b 7_._I __.___.___.___.___.___._I b__,o ~@]
Description:

Shift all bits of the Accumulator, Index Register,
or Memory one place to the right. Bit 7 is loaded
with a zero. Bit 0 is loaded into the Carry/ Borrow
bit.

Condition Codes:
H, l: Not affected.
N: Cleared.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if, before the operation, the least significant

bit of ACCA, X or M is set; cleared otherwise.

Boolean Formula(e) for Condition Codes:
N= RO
Z = R7°R6°R5°R4°R3°R2°Rl0 RO
C = bO (before operation)

Source Form(s):
LSR Q, LSRA, LSRX

Addressing Mode Cycles

Accumulator 3
Index Register 3
Direct 5
Indexed 0 Offset 5
Indexed I-Byte 6

Bytes

I

2

2

Opcode

44
54
34
74
64

Instruction Set Detailed Definition ------------------------- 89

MU L (Multiply)
Operation:

XA- X*A

Description:
Multiply the eight bits in the Index Register by the
eight bits in the Accumulator to obtain a 16-bit
unsigned number. The most significant bits of the
product are stored in the Index Register, while the
least significant bits are stored in the Accumulator.

Condition Codes:
I, N, Z: Not affected.
H, C: Cleared.

Comments:
This instruction is available only on the
CDP68HC05C4 and CDP68HC05D2 Micro­
computers.

Source Form(s):
MUL

Addressing Mode

Inherent

Cycles

11

Bytes Opcode

NEG (Negate)

Operation:
X- -X or,
ACCA - -ACCA or,
M--M

Description:

I 42

Replace the contents of the Accumulator, Index
Register, or Memory with its two's complement.
Note that the data $80 and 00 are left unchanged
by two's complement.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if there would be a borrow in the implied

subtraction from zero; the C bit will be set in
all cases except when the contents of ACCA,
X or M before the NEG are 00.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7°R6°R5°R4°R3°R2°RT 0 RO
C = R7vR6vR5vR4vR3vR2vRlvRO

Source Form(s):
NEG Q, NEGA, NEGX

NEG (Negate) (Cont'd)
Addressing Mode Cycles Bytes Opcode

Accumulator 3 I 40
Index Register 3 50
Direct 5 2 30
Indexed 0 Offset 5 I 70
Indexed I-Byte 6 2 60

NOP (No Operation)
Description:

This is a single-byte instruction which causes only
the program counter to be incremented. No other
registers are changed.

Condition Codes:
Not affected.

Source Form(s):
NOP

Addressing Mode

Inherent

Cycles

2

Bytes Opcode

I 9D

0 RA (Inclusive OR)
Operation:

ACCA - ACCA v M

Description:
Perform logical 0 R between the contents of the
Accumulator and the contents of Memory and
place the result in the Accumulator. Each bit of
the Accumulator after the operation will be the
logical (inclusive) OR result of the corresponding
bits of Memory and the Accumulator before the
operation.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7°R6°R5°R4°R3°R2°Rt 0 RO

Source Form(s):
ORA P

Addressing Mode Cycles Bytes Opcode

Immediate 2 2 AA
Direct 3 2 BA
Extended 4 3 CA
Indexed 0 Offset 3 I FA
Indexed I-Byte 4 2 EA
Indexed 2-Byte 5 3 DA

User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

R 0 L (Rotate Left thru Carry)
Operation: -----------

b7

Description:
Shift all bits of the Accumulator, Index Register,
or Memory one place to the left. Bit 0 is loaded
from the Carry/ Borrow bit. The Carry/ Borrow bit
is loaded from the most significant bit of the
Accumulator, Index Register, or Memory.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if, before the operation, the most significant

bit of ACCA, X or M is set; cleared otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7·R6°ITT 0 R4.R3°R2°Rl 0 RO
C = b7 (before operation)

Source Form(s):
ROL Q, ROLA, ROLX

Addressing Mode Cycles

Accumulator 3
Index Register 3
Direct 5
Indexed 0 Offset 5
Indexed I-Byte 6

Bytes

1
1
2
I
2

Opcode

49
59
39
79
69

R 0 R (Rotate Right Thru Carry)
Operation: -----------•

§-lb1l Ibo~
Description:

Shift all bits of the Accumulator, Index Register,
or Memory one place to the right. Bit 7 is loaded
from the Carry/ Borrow bit. Bit 0 is loaded into the
Carry/ Borrow bit.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if, before the operation, the least significant

bit of ACCA, X or M is set; cleared otherwise.

R QR (Rotate Right Thru Carry) (Confd)
Boolean Formula(e) for Condition Codes:

N= R7
Z = R7°R6°R5·R4°R3°R2°Rl·RO
C = bO (before operation)

Source Form(s):
ROR Q, RORA, RORX

Addressing Mode Cycles

Accumulator 3
Index Register 3
Direct 5
Indexed 0 Offset 5
Indexed I-Byte 6

Bytes

I
I
2
I
2

RS P (Reset Stack Pointer)
Operation:

SP- $7F

Description:

Opcode

46
56
36
76
66

Reset the stack pointer to the top of the stack.

Condition Codes:
Not affected.

Source Form(s):
RSP

Addressing Mode Cycles Bytes Opcode

Inherent 2 I 9C

RTI (Return from Interrupt)
Operation:

SP - SP+ 0001; CC - (SP)
SP - SP+ 0001; ACCA - (SP)
SP - SP+ 0001; X - (SP)
SP - SP+ 0001; PCH - (SP)
SP - SP+ 0001; PCL - (SP)

Description:
The condition codes, accumulator, index register,
and the program counter are restored according to
the state previously saved on the stack. Note that
the interrupt mask bit (I bit) will be reset if and
only if the corresponding bit stored on the stack is
zero.

Condition Codes:
Set or cleared according to the first byte pulled
from the stack.

Source Form(s):
RTI

Addressing Mode Cycles Bytes Opcode

Inherent 9 I 80

Instruction Set Detailed Definition -------------------------- 91

RTS (Return from Subroutine)
Operation:

SP - SP+ 0001; PCH - (SP)
SP - SP+ 0001; PCL - (SP)

Description:
The stack pointer is incremented by one. The
contents of the byte of memory, pointed to by the
stack pointer, are loaded into the high byte of the
program counter. The stack pointer is again incre­
mented by one. The byte pointed to by the stack
pointer is loaded into the low byte of the program
counter.

Condition Codes:
Not affected.

Source Form(s):
RTS

Addressing Mode

Inherent
Cycles Bytes Opcode

6 I 81

SBC (Subtract with Carry)
Operation:

ACCA - ACCA - M - C

Description:
Subtract the contents of Memory and the Carry/
Borrow bit from the contents of the Accumulator,
and place the result in the Accumulator.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if the absolute value of the contents of

memory plus the previous carry is larger than
the absolute value of the accumulator; cleared
otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7-R6·R5-R4-R3·R2-RLRO
C = A7-M7vM7-R7vR7-A7

Source Form(s):
SBC P

Addressing Mode Cycles

Immediate 2
Direct 3
Extended 4
Indexed 0 Offset 3
Indexed I-Byte 4
Indexed 2-Byte 5

Bytes

2
2
3
I
2
3

Opcode

A2
B2
C2
F2
E2
02

SEC (Set Carry Bit)

Operation:
C bit- I

Description:
Set the carry bit in the processor condition code
register.

Condition Codes:
H, I, N, Z: Not affected.
C: Set.

Boolean Formula(e) for Condition Codes:
C=I

Source Form(s):
SEC

Addressing Mode

Inherent

Cycles Bytes Opcode

2 I 99

SE I (Set Interrupt Mask Bit)

Operation:
I bit - I

Description:
Set the interrupt mask bit in the processor condi­
tion code register. The microprocessor is inhibited
from servicing interrupts, and will continue with
execution of the instructions of the program until
the interrupt mask bit is cleared.

Condition Codes:
H, N, Z, C: Not affected.
I: Set.

Boolean Formula(e) for Condition Codes:
I= I

Source Form(s):
SEI

Addressing Mode

Inherent

Cycles

2

Bytes Opcode

I 9B

92------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

STA {Store Accumulator
in Memory)

Operation:
M-ACCA

Description:
Store the contents of the Accumulator in Memory.
The contents of the Accumulator remain the same.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the accumu­

lator is set; cleared otherwise.
Z: Set if all bits of the accumulator are clear;

cleared otherwise.

Boolean Formula(e) for Condition Codes:
N= A7
Z = A7°A6°A5°A4°A3°A2·Al 0 AO

Source Form(s):
STAP

Addressing Mode Cycles Bytes

Direct 4 2
Extended 5 3
Indexed 0 Offset 4 1
Indexed I-Byte 5 2
Indexed 2-Byte 6 3

STOP {Enable IRQ, Stop
Oscillator)

Description:

Opcode

B7
C7
F7
E7
07

Reduce power consumption by eliminating all
dynamic power dissipation, resulting in: (1) ex­
ternal interrupt request enabling, (2) inhibiting of
oscillator, and, in the CDP6805E2/ E3/ F2/ G2,
(3) timer prescaler to clear, (4) disabling of timer
interrupts, and (5) timer interrupt flag bit to clear.
When RESET or TRQ input goes low: (1) oscillator
is enabled, (2) a delay of some number of instruc­
tion cycles allows oscillator to stabilize, (3) the
interrupt request vector is fetched, and (4) service
routine is executed.

External interrupts are enabled following the RTI
command.

Condition Codes:
H, N, Z, C: Not affected.
I: Cleared.

Source Form(s):
STOP

Addressing Mode

Inherent

Cycles Bytes Opcode

2 1 8E

STX {Store Index Register
in Memory)

Operation:
M-X

Description:
Store the contents of the Index Register in Mem­
ory. The contents of the Index Register remain the
same.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the index

register is set; cleared otherwise.
Z: Set if all bits of the index register are clear;

cleared otherwise.

Boolean Formula(e) for Condition Codes:
N= X7
z = X7-X6-xs.X4."XJ-~.x1.xo

Source Form(s):
STXP

Addressing Mode Cycles Bytes Opcode

Direct 4 2 BF
Extended 5 3 CF
Indexed 0 Offset 4 1 FF
Indexed I-Byte 5 2 EF
Indexed 2-Byte 6 3 OF

lnsttt,1ction Set Detailed Definition ------------------------- 93

SUB (Subtract)

Operation:
ACCA - ACCA - M

Description:
Subtract the contents of Memory from the contents
of the Accumulator and place the result in the
Accumulator.

Condition Codes:
H, I: Not affected.
N: Set if the most significant bit of the result is

set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared

otherwise.
C: Set if the absolute value of the contents of

memory are larger than the absolute value of
the accumulator; cleared otherwise.

Boolean Formula(e) for Condition Codes:
N= R7
Z = R7·R6·R5·R4·R3·R2.Rl.RO
C = A7·M7vR7·R7vR7·A7

Source Form(s):
SUB P

Addressing Mode Cycles

Immediate 2
Direct 3
Extended 4
Indexed 0 Offset 3
Indexed I-Byte 4
Indexed 2-Byte 5

Bytes

2
2
3
I
2
3

SWI (Software Interrupt)

Operation:
PC- PC+ 0001
(SP) - PCL; SP - SP - 0001
(SP) - PCH; SP - SP - 0001
(SP) - X; SP - SP - 0001
(SP) - ACCA; SP - SP - 0001
(SP) - CC; SP - SP - 0001
I bit - I
PCH- n -0003
PCL- n - 0002

Opcode

AO
BO
co
FO
EO
DO

SWI (Software Interrupt)
Description:

The program counter is incremented by one. The
program counter, index register and accumulator
are pushed onto the stack. The condition code
register bits are then pushed onto the stack with
bits H, I, N, Z, and C going into bit positions 4
through 0 with the top three bits (7, 6 and 5)
containing ones. The stack pointer is decremented
by one after each byte is stored on the stack.

The interrupt mask bit is then set. The program
counter is then loaded with the address stored in
the software interrupt vector located at memory
locations n - 0002 and n - 0003, where n is the
address corresponding to a high state on all lines
of the address bus:

Condition Codes:
H, N, Z, C: Not affected.
I: Set.

Boolean Formula(e) for Condition Codes:
I = I

Caut:on:
This instruction is used by Motorola in some of its
software products and may be unavailable for
general use.

Source Form(s):
SWI

Addressing Mode Cycles Bytes Opcode

Inherent 10 I 83

TAX (Transfer Accumulator to
Index Register)

Operation:
X-ACCA

Description:
Load the Index Register with the contents of the
Accumulator. The contents of the Accumulator
are unchanged.

Condition Codes:
Not affected.

Source Form(s):
TAX

Addressing Mode Cycles Bytes Opcode

Inherent 2 I 97

User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

TST (Test for Negative or Zero)

Operation:
X - 00 or,
ACCA-00 or,
M-0

Description:
Set the Negative Indicator and Zero Indicator
condition code bits according to the contents of
the Accumulator, Index Register, or Memory.

Condition Codes:
H, I, C: Not affected.
N: Set if the most significant bit of the contents of

ACCA, X, or M is set; cleared otherwise.
Z: Set if all bits of ACCA, X, or M are clear;

cleared otherwise.

Boolean Formula(e) for Condition Codes:
N= M7
Z = M7°M6°MS 0 M4°M3°M2°Ml·MO

Source Form(s):
TST Q, TST A, TSTX

Addressing Mode Cycles Bytes Opcode

Accumulator 3 I 40
Index Register 3 I 50
Direct 4 2 30
Indexed 0 Offset 4 70
Indexed I-Byte 5 2 60

TXA (Transfer Index Register
to Accumulator)

Operation:
ACCA-X

Description:
Load the Accumulator with the contents of the
Index Register. The contents of the Index Register
are unchanged.

Condition Codes:
Not affected.

Source Form(s):
TXA

Addressing Mode

Inherent

Cycles Bytes Opcode

2 I 9F

WAIT (Enable Interrupt,
Stop Processor)

Description:
Reduce power consumption by eliminating dy­
namic power dissipation in all circuits except the
timer, serial peripheral interface, and serial com­
munications interface. Enable external interrupts
and stop clocking of processor circuits.

Timer interrupts may be enabled or disabled by
programmer prior to execution of WAIT.

When RESET or IRQ inputs go low, or timer
counter reaches zero with counter interrupt en­
abled: (I) processor clocks are enabled, and (2)
interrupt request, reset, and timer interrupt vectors
are fetched.

Interrupts are enabled following the RTI com­
mand.

Condition Codes:
H, N, Z, C: Not affected.
I: Cleared.

Source Form(s):
WAIT

Addressing Mode

Inherent

Cycles Bytes Opcode

2 I 8F

95

Appendix A
CDP6805 CMOS Family

Compatibility with MC6800

Introduction
Strictly speaking, the CDP6805 CMOS Family is

neither source-nor-object code compatible with the
MC6800; but it is very similar to all 6800 Family
processors. An experienced MC6800 programmer
should have little difficulty adapting to the CDP6805
CMOS Family instruction set. The following para­
graphs enumerate the differences between the MC6800
and the CDP6805 CMOS families.

Removed B-Register

In order to free valuable opcode space, the B-regis­
ter is removed in the CDP6805 CMOS Family.
Therefore, none of the register/ memory or read/
modify/ write instructions have a B-register form.
Several other instructions are also not available in
the CDP6805 CMOS Family, including:

SBA, CBA, TAB, TBA, ABA, PSHB, and PULB

Removed V-Flag

The Y-flag bit and the logic to set it are removed in
the CDP6805 CMOS Family. This was done because
usage of the small controller does not generally
require signed arithmetic operations. However, un­
signed arithmetic operations are still available. With­
out the Y-flag bit, the following MC6800 instruc­
tions are not available in the CDP6805 CMOS
Family:

SEY, CLY, BYC, BYS, BGE, BLT, BGT, and BLE

In the CDP6805 CMOS Family, unsigned inequal­
ities are still available using BHS (BCC) and BLO
(BCS).

Reduced Stack Control

Instructions relating to the manipulation of the SP
are greatly reduced in the CDP6805 CMOS Family.

On reset, or upon execution of the RSP instruction,
the SP is initialized to $7F for the CDP6805E2/E3/
F2/G2 and $FF for the CDP68HC05C4/D2. Other
instructions that were deleted include:

LOS, STS, INS, DES, PSHA, PULA,
TXS, TSX, AND WAI

Do not confuse the WAIT instruction used with
the CDP6805 CMOS Family with the WAI instruc­
tion used by the MC6800.

Removed DAA

The DAA has been deleted in the CDP6805 CMOS
Family members·. The H-bit, however, is retained
and two additional branches are added to branch if
the H-bit is set or cleared (BHCS, BHCC). These
branches can be used to write software subroutines
accomplishing DAA. (Remember, ROM is much cheap­
er than the DAA.)

Changed Register Lengths

The X-register is reduced to eight bits, the SP to
eight bits or less, and the PC to 16 bits or less in the
CDP6805 CMOS Family. The change in the X-regis­
ter size from 16 to eight bits required changes in the
addressing modes; these are described in the Address­
ing Modes paragraph of the section on Software
Description. Also, because the X-and A-registers are
equivalent in size, two new instructions are added to
transfer X to A and A to X (TXA, TAX).

Bit Manipulation

Bit-manipulation instructions have been added to
the CDP6805 CMOS Family because they are ex­
tremely useful for low-end applications. Two classes
of bit-manipulation instructions have been added: bit
set/ clear and test-and-branch on bit set/ clear.

95 _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

(a) Bit Set/Clear

These instructions allow any bit in page zero,
including bits in the I/ 0 ports (but not always the
data direction registers), to be set or cleared with one
2-byte instruction. Page zero includes the first 256
addressable memory locations from $00 through $FF.

(b) Test-and-Branch on Bit Set/Clear

These instructions test any bit in page zero (includ­
ing I/O, RAM, and ROM) and will cause a branc]:i.,
if the bit is set or cleared. In addition, the C-bit of
the condition code register contains the state of the
bit tested.

New Branches

Several new branches are added to facilitate low­
end type programs in the CDP6805 CMOS Family.
The BHCS and BHCC are useful in BCD additions.
A branch, if the interupt mask bit is set or cleared
(BMS/BMC), is also added. This eliminates the need
for TAP and TPA because each bit in the condition
code register can be tested by a branch. Two more
branches are added that branch on the logic condi­
tion of the interrupt line (high or low): BIH/BIL.
These allow the interrupt line to be used as an addi­
tional input in systems not using interrupts.

New Addressing Modes

The addressing modes of th.e MC6800 were optim­
ized for the CDP6805 CMOS Family. For more
details see the Addressing Modes paragraph in the
section on Software Description of this manual.

Read/Modify/Write the X Register

By utilizing the column in the opcode map vacated
by the B-register for read/ modify/ write, and because
the X-register is now eight bits, all of these opera­
tions are available to the X-register. For example:

ROLX, INCX, CLRX, NEGX, etc.

This eliminated the traditional INX, DEX. How­
ever, mnemonics INX and DEX are still recognized
by the assembler for compatibility.

Convenience Mnemonics

These are not new CDP6805 CMOS Family
instructions, but only represent improvements to the
M6805 HMOS/Ml46805 "CMOS assembler that
allow existing instructions to be recognized by more
than one mnemonic.

(a) LSL (Logical Shift Left)

Because logical and arithmetic left shifts are iden­
tical, LSL is equivalent to ASL.

(b) BHS (Branch Higher or Same)

After a compare or subtract, the carry is cleared if
the register argument was higher or equal to the
memory argument; hence, the BHS is equivalent to
BCC.

(c) BLO (Branch if Lower)

After a compare or subtract, the carry is set if the
register argument was lower than the memory
argument; hence, the BLO is equivalent to BCS.

Appendix B
Instruction Set

Alphabetical Listing

97

Table VI provides an alphabetical listing of the mnemonic instruction set, together with addressing modes
used and the effects on the condition code register.

TABLE VI

Addressing Modes Condition Codes

Indexed Indexed Indexed Bit Bit
Mnemonic Inherent Immediate Direct Extended Relative (No Offset) (8 Bits) (16 Bits) Seti Test & H I N z c

Clear Branch
ADC x x x x x x A • A A A
ADD x x x x x x A • A A A
AND x x x x x x • • A A •
ASL x x x x • • A A A
ASR x x x x • • A A A

BCC x • • • • •
BCLR x • • • • •
BCS x • • • • •
BEQ x • • • • •

BHCC x • • • • •
BHCS x • • • • •
BHI x • • • • •
BHS x • • • • •
BIH x • • • • •
BIL x • • • • •
BIT x x x x x x • • A A •
BLO x • • • • •
BLS x • • • • •
BMC x • • • • •
BMI x • • • • •
BMS x • • • • •
BNE x • • • • •
BPL x • • • • •
BRA x • • • • •
BRN x • • • • •

BRCLR x • • • • A
BRSET x • • • • A
BSET x • • • • •
BSR x • • • • •
CLC x • • • • 0
CLI x • 0 • • •
CLR x x x x • • 0 1 •
CMP x x x x x x • • A A A
COM x x x x • • A A 1
CPX x x x x x x • • A A A

99 _______ _ User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Mnemonic Inherent Immediate Direct

DEC x x
EOR x x
INC x x
JMP x
JSR x
LDA x x
LDX x x
LSL x x
LSR x x

MLJL• x
NEG x x
NOP x
ORA x x
ROL x x
ROR x x
RSP x
RTI x
RTS x
SBC x x
SEC x
SEI x
STA x

STOP x
STX x
SUB x x
SWI x
TAX x
TST x x
TXA x

WAIT x

Condition Code Symbols

H Half Carry (From Bit 3)
Interrupt Mask

N Negative (Sign Bit)
Z Zero
C Carry/Borrow

TABLE VI (Cont'd)
Addressing Modes

Indexed Indexed
Extended Relative

(No Offset) (8 Bits)

x

x
x
x
x

x

x

x

x
x

x x
x x
x x
x x
x x
x x
x x
x x
x x

x x

x x
x x
x x

x x

x x

x x
x x

x x

A Test and Set if True; Cleared Otherwise
• Not Affected
? Load CC Register From Stack
O Cleared

Set

Indexed
(16 Bits)

x

x
x
x
x

x

x

x

x
x

*Note that the MUL instruction is available only on the CDP68HC05C4 and CDP68HC05D2 Microcomputers.

Condition Codes

Bit Bit
Set/ Test & H I N z c
Clear Branch

• • A A •
• • A A •
• • A A •
• • • • •
• • • • •
• • A A •
• • A A •
• • A A A

• • 0 A A

0 • • • 0

• • A A A

• • • • •
• • A A •
• • A A A

• • A A A

• • • • •
? ? ? ? ?

• • • • •
• • A A A

• • • • 1

• 1 • • •
• • A A •
• 1 • • •
• • A A •
• • A A A

• 1 • • •
• • • • •
• • A A •
• • • • •
• 1 • • •

Appendix C
Instruction Set

Functional Listing

99

This instruction set contains a list of functions which are categorized as to the type of instruction. It provides
five different categories of instructions and provides the following information for each function: (1) correspond­
ing mnemonic, (2) addressing mode, (3) opcode, (4) number of bytes, and (5) number of cycles.

Table VII - Branch Instructions

Relative Addressing Mode

Function Mnemonic
Op # #

Code Bytes Cycles

Branch Always BRA 20 2 3

Branch Never BAN 21 2 3

Branch IFF Higher BHI 22 2 3

Branch IFF Lower or Same BLS 23 2 3

Branch IFF Carry Clear BCC 24 2 3

!Branch IFF Higher or Same) IBHSI 24 2 3

Branch I FF Carry Set BCS 25 2 3

!Branch IFF Lower) IBLOI 25 2 3

Branch IFF Not Equal BNE 26 2 3

Branch IFF Equal BEO 27 2 3

Branch IFF Half Carry Clear BHCC 28 2 3

Branch IFF Halt Carry Set BHCS 29 2 3

Branch IFF Plus BPL 2A 2 3

Branch IFF Minus BMI 2B 2 3

Branch IFF Interrupt Mask Bit is Clear BMC 2C 2 3

Branch IFF Interrupt Mask Bit 1s Set BMS 20 2 3

Branch IFF Interrupt Line is Low BIL 2E 2 3

Branch IFF Interrupt Line 1s High BIH 2F 2 3

Branch to Subroutine BSA AD 2 6

100 User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Table VIII - Bit Manipulation Instructions

Addressing Modes

Bit Set/ Clear Bit Test and Branch

Function Mnemonic Op # # Op # #
Code Bytes Cycles Code Bytes Cycles

Branch IFF Bit n is Set BRSET n !n=O .. 71 - - - 2•n 3 5

Branch IFF Bit n is Clear BRCLR n {n=O .71 - - - 01+2•n 3 5

Set Bit n BSET n {n=O .. 71 10+2•n 2 5 - - -
Clear Bit n BCLR n {n=O .71 11 +2•n 2 5 - - -

Table IX - Control Instructions

Inherent

Op # #
Code Bytes Cycles

Function Mnemonic

Transfer A to X TAX 97 1 2

Transfer X to A TXA 9F 1 ii
Set Carry Bit SEC 99 1 2

Clear Carry Bit CLC 98 1 2

Set Interrupt Mask Bit SEI 98 1 2

Clear Interrupt Mask Bit CLI 9A 1 2

Software Interrupt SWI 83 1 10

Return from Subroutine ATS 81 1 6

Return from Interrupt RTI 80 1 9
~~-t-~~~~-t-~~~f--~~-+-~~--<

Reset Stack Pointer ASP 9C 1 2

No-Operation NOP 9D 1 2
rS_t_o_p~~~~~~~-+~--S~TOp--+--8-E~-+~-1~-+-~-2~~

Wait WAIT BF 1 2

Table X - Read/Modify/Write Instructions

Addressing Modes

Inherent (Al Inherent (XI Direct
Indexed

(No Offsetl

I Function I Mnemonic I C~e I B;es I Cy:les I ~~~e I B;es I Cy:les I C~e I B;es I Cy:les I C~~e I B;es I Cy~les
I Increment I INC I 4C j 1 f 3 I 5C I 1 I 3 I 3C I 2 I 5 I 7C I 1 I 5

Decrement DEC 4A -rl-- 1 3 5A . 1 3 3A 2 5 7A 1 5

Indexed
(8-Bit Offset)

Op I I I I
Code Bytes Cycles

6C I 2 I 6
6A 2 6

Clear I CLR I 4F 1 3 I 5F I 1 I 3 I 3F I 2 5 I 7F I 1 5 I 6F I 2 I 6

Complement I COM I 43 I 1 I 3 153-r-ll-3 - I 33 I 2 I 5 I 73 I 1 I 5 I 63 I 2 I 6

Negate
12·s Complementl I NEG I 40 I 1 3 I 50 i 1 3 I 30 I 2 5 I 70 I 1 I 5 I 60 I 2 I 6

Rotate Left Thru Carry AOL 49 1 t-3 I 59 I 1 ~ I 39 I 2 5 I 79 I 1 I 5 69 I 2 I 6 I
Rotate Right Thru ROA 46 1 3 56 1 J 3 36 2 5 76 1 5 66 2 6

Carry

Logical Shift Left LSL 48 ++ 3 1 58 , 3 38 2 1 5 78 1 5 68 ' 2 6

Logical Shift Right LSR 44 1 --+- 3 54 1 3 34 2 5 74 1 5 64 2 6
Arithmetic Shift Right ASA - 47 1 ~ 3--+-57·--i ---,- t-- 3 37 2 5 77 1 5 67 2 6

Test for Negative TS T 4D I 1 T 3 50 I 1 -- 3 30 2 I 4 70 1 4 60 2 5
~ro

Multiply I MUL I 42 I 1 I 11

)>
'ti

i
~
a. ;;c·
0

...
0 ...

Table XI - Register/Memory Instructions

Addressing Modes

. . Indexed Indexed Indexed
r---------~ Immediate Direct,- Extended (No Offset) 18-Bit Offset) (1!>-Bit Offset) J

Op I I Op # # Op # # Op I I Op I l I Op l I I I
Function I Mnem. Code Bytes Cycles Code Bytes Cycles Code Bytes Cycles Code Bytes Cycles Code Bytes Cycles Code Bytes Cycles

Load A from Memory r LOA A6 2 2 B6 2 3 C6 3 4 F6 1 3 E6 2 T 4 06 1 3 I 5

Load X from Memory j LOX I AE I 2 I 2 I BE 1-2- 3 CE _3_ 4 FE 1 3 EE 2 4 DE 3 5
Store A in Memory STA B7 2 4 C7 3 5 F7 1 4 E7 2 5 07 3 6

Store X 1n Memory STX BF 2 4 CF 3 5 FF 1 4 EF 2 5 Of 3 6

Add Memory to A ADD AB 2 2 BB 2 3 CB j 3 4 FB 1 3 EB 2 4 DB 3 5
Add Memory and

Carry to A ADC A9 2 2 B9 2 3 C9 3 4 F9 1 3 E9 2 4 09 3 5

Subtract Memory SUB AO 2 2 BO -~2 3 CO 1 3 4 FO 1 3 EO 2 4 DO 3 5

Subtract Memory from SBC A2 2 2 El2 _2_ 3____, ~c2 3 4 F2 1 3 E2 2 4 02 3 5
1 A with Borrow -----j

AND Memory to A AND A4 2 2 B4 2 1 3 C4 3 4 F4 1 3 E4 2 4 04 3 5

OR Memory with A ORA AA 2 2 BA 2 3 CA 3 4 FA 1 3 EA 2 4 DA 3 5
--+---

Exclusive OR Memory EOR AB 2 2 BB 2 3 CB 3 4 FB 1 3 EB 2 4 DB 3 5
with A I

Arithmetic Compare A CMP A 1 2 L. B 1 2 ·;-1 c 1
with Memory

Arithmetic Compare X
with Memo~ CPX A3 2 2 B3 2 3 C3

3 4

3 4

Fl 1 I 3 El 2 4 01 3 5

F3 1 I 3 E3 2 4 03 3 5

Bi~Tt~~g~~~~~~;~tr~)j BIT I A5 I 2 I 2 I B5 I 2 I 3 I C5 I 3 4 I F5 I 1 I 3 I E5 I 2 I 4 I 05 I 3 I 5 I
Jump Uncond1t1onal JMP

Jump to Subroutine JSR

BC 2 FC 1 I 2 EC 3 3 2 cc 3 3 2 DC 4

FD 1 I 5 BO 2 5 6 ED 2 6 DD 3 7 CD 3

...
0
I\)

c
en
ID ..,
s::
Ill
:I
c
e?. -0 .., -:::r
ID

n
c
"ti
0)
CIO
0
(II
I en

ID
:::!.
ID
en
n
s::
0 en
s::
c:r
0
n
0
3

'O c -ID

~
s:: c;· ..,
0
'O ..,
0
n
ID
en
en
0
iil

Appendix D
Instruction Set

Numerical Listing

103

This appendix provides a numerical listing of the operation codes used with the CDP6805 CMOS Family. In
addition, the corresponding mnemonic, mode, number of MCU / M PU cycles required to complete the instruc­
tion, and the number of bytes contained in the instruction are also included. Symbols and abbreviations used in
the appendix are listed below.

Abbreviations for Address Modes
INH Inherent
A Accumulator
X Index Register
IMM Immediate
DIR Direct
REL Relative
BSC Bit Set/Clear
BTB Bit Test and Branch
IX Indexed (No Offset)
IX1 Indexed, 1-Byte (8-Bit) Offset
IX2 Indexed, 2-Byte (16-Bit) Offset
EXT Extended

104 User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Instruction Set Numerical Listing

OPCODE MNEMONIC MODE #CYCLES #BYTES
00 BRSETO BTB 5 3
01 BRCLRO BTB 5 3
02 BRSET1 BTB 5 3
03 BRCLR1 BTB 5 3
04 BRSET2 BTB 5 3
05 BRCLR2 BTB 5 3
06 BRSET3 BTB 5 3
07 BRCLR3 BTB 5 3
08 BRSET4 BTB 5 3
09 BRCLR4 BTB 5 3
OA BRSET5 BTB 5 3
OB BRCLR5 BTB 5 3
oc BRSET6 BTB 5 3
OD BRCLR6 BTB 5 3
OE BRSET7 BTB 5 3
OF BRCLR7 BTB 5 3
10 BSETO BSC 5 2
11 BCLRO BSC 5 2
12 BSET1 BSC 5 2
13 BCLR1 BSC 5 2
14 BSET2 BSC 5 2
15 BCLR2 BSC 5 2
16 BSET3 BSC 5 2
17 BCLR3 BSC 5 2
18 BSET4 BSC 5 2
19 BCLR4 BSC 5 2
1A BSET5 BSC 5 2
1B BCLR5 BSC 5 2
1C BSET6 BSC 5 2
1D BCLR6 BSC 5 2
1E BSET7 BSC 5 2
1F BCLR7 BSC 5 2
20 BRA REL 3 2
21 BRN REL 3 2
22 BHI REL 3 2
23 BLS REL 3 2
24 BCC REL 3 2
25 BCS REL 3 2
26 BNE REL 3 2
27 BEQ REL 3 2
28 BHCC REL 3 2
29 BHCS REL 3 2
2A BPL REL 3 2
2B BMI REL 3 2
2C BMC REL 3 2
2D BMS REL 3 2
2E BIL REL 3 2
2F BIH REL 3 2
30 NEG DIR 5 2
33 COM DIR 5 2
34 LSR DIR 5 2
36 ROA DIR 5 2
37 ASA DIR 5 2

Appendix D 105

INSTRUCTION SET NUMERICAL LISTING (CONTINUED)

OP CODE MNEMONIC MODE #CYCLES #BYTES

38 LSL DIR 5 2
39 ROL DIR 5 2
3A DEC DIR 5 2
3C INC DIR 5 2
3D TST DIR 4 2
3F CLR DIR 5 2
40 NEGA INH 3 1
42 MUL* INH 11
43 COMA INH 3
44 LSRA INH 3
46 RORA INH 3
47 ASRA INH 3
48 LSLA INH 3
49 ROLA INH 3
4A DECA INH 3
4C INCA INH 3
4D TSTA INH 3
4F CLRA INH 3
50 NEGX INH 3
53 COMX INH 3 1
54 LSRX INH 3 1
56 RORX INH 3 1
57 ASRX INH 3 1
58 LSLX INH 3 1
59 ROLX INH 3 1
5A DECX INH 3 1
5C INCX INH 3 1
5D TSTX INH 3 1
5F CLRX INH 3 1
60 NEG IX1 6 2
63 COM IX1 6 2
64 LSR IX1 6 2
66 ROR IX1 6 2
67 ASR IX1 6 2
68 LSL IX1 6 2
69 ROL IX1 6 2
6A DEC IX1 6 2
6C INC IX1 6 2
6D TST IX1 5 2
6F CLR IX1 6 2
70 NEG IX 5 1
73 COM IX 5 1
74 LSR IX 5 1
76 ROR IX 5 1
77 ASR IX 5 1
78 LSL IX 5 1
79 ROL IX 5 1
7A DEC IX 5 1
7C INC IX 5 1
7D TST IX 4 1
7F CLR IX 5 1
80 RTI INH 9 1
81 RTS INH 6 1
83 SWI INH 10 1

106 User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

INSTRUCTION SET NUMERICAL LISTING (CONTINUED)

OP CODE MNEMONIC MODE #CYCLES #BYTES

BE STOP INH 2 ,
BF WAIT INH 2 1
97 TAX INH 2 1
98 CLC INH 2 1
99 SEC INH 2 1
9A CLI INH 2 1
9B SEI INH 2 1
9C RSF INH 2 1
90 NOP INH 2 1
9F TXA INH 2 1
AO SUB IMM 2 2
A1 CMP IMM 2 2
A2 SBC IMM 2 2
A3 CPX IMM 2 2
A4 AND IMM 2 2
A5 BIT IMM 2 2
A6 LOA IMM 2 2
AB EOR IMM 2 2
A9 ADC IMM 2 2
AA ORA IMM 2 2
AB ADD IMM 2 2
AD BSA IMM 6 2
AE LOX IMM 2 2
BO SUB DIR 3 2
B1 CMP DIR 3 2
B2 SBC DIR 3 2
B3 CPX DIR 3 2
B4 AND DIR 3 2
85 BIT DIR 3 2
86 LOA DIR 3 2
B7 STA DIR 4 2
BB EOR DIR 3 2
B9 ADC DIR 3 2
BA ORA DIR 3 2
BB ADD DIR 3 2
BC JMP DIR 3 2
BD JSR DIR 5 2
BE LOX DIR 3 2
BF STX DIR 4 2
co SUB EXT 4 3
C1 CMP EXT 4 3
C2 SBC EXT 4 3
C3 CPX EXT 4 3
C4 AND EXT 4 3
C5 BIT EXT 4 3
C6 LOA EXT 4 3
C7 STA EXT 5 3
ca EOR EXT 4 3
C9 ADC EXT 4 3
CA ORA EXT 4 3
CB ADD EXT 4 3
cc JMP EXT 4 3
CD JSR EXT 6 3
CE LDX EXT 4 3
CF STX EXT 5 3

Appendix D 107

INSTRUCTION SET NUMERICAL LISTING (CONTINUED)

OP CODE MNEMONIC MODE #CYCLES #BYTES

DO SUB IX2 5 3
D1 CMP IX2 5 3
D2 SBC IX2 5 3
D3 CPX IX2 5 3
D4 AND IX2 5 3
D5 BIT IX2 5 3
D6 LDA IX2 5 3
D7 STA IX2 6 3
D8 EOR IX2 5 3
D9 ADC IX2 5 3
DA ORA IX2 5 3
DB ADD IX2 5 3
DC JMP IX2 5 3
DD JSR IX2 7 3
DE LDX IX2 5 3
DF STX IX2 6 3
EO SUB IX1 4 2
E1 CMP IX1 4 2
E2 SBC IX1 4 2
E3 CPX IX1 4 2
E4 AND IX1 4 2
E5 BIT IX1 4 2
E6 LDA IX1 4 2
E7 STA IX1 5 2
EB EOR IX1 4 2
E9 ADC IX1 4 2
EA ORA IX1 4 2
EB ADD IX1 4 2
EC JMP IX1 4 2
ED JSR IX1 6 2
EE LDX IX1 4 2
EF STX IX1 5 2
FO SUB IX 3 1
F1 CMP IX 3 1
F2 SBC IX 3 1
F3 CPX IX 3 1
F4 AND IX 3 1
F5 BIT IX 3 1
F6 LDA IX 3 1
F7 STA IX 4 1
F8 EOR IX 3 1
F9 ADC IX 3 1
FA ORA IX 3 1
FB ADD IX 3 1
FC JMP IX 3 1
FD JSR IX 5 1
FE LDX IX 3 1
FF STX IX 4 1

*Note that the MUL (42) instruction is available only on
the CDP68HC05C4 and CDP68HC05D2 Micro-
computers.

108

Appendix E
Instruction Set Cycle-By-Cycle

Operation Summary

Table XII provides a detailed description of the cycle-by-cycle operation for each instruction in the CDP6805
CMOS Family. The table contains information which includes the total number of cycles required to execute
the instruction, plus a step-by-step breakdown of each cycle. Except for the CDP6805E2 Microprocessor Unit
(MPU), all of the CDP6805 CMOS Family members are Microcomputer Units (MCUs). This means that only
the CDP6805E2 has an external address bus, R/W pin, and data bus. In all others, these are internal to the
MCU and are not connected to any external pin(s).

The information contained in this table is useful in comparing actual with expected results, while debugging
both software and hardware, during control program execution. The information is categorized in groups
according to the addressing mode and number of cycles per instructions.

Appendix E 109

Table XII - CDP6805 CMOS Family Summary of Cycle-by-Cycle Operation

Instructions Cycles Cycle# Address Bus* R/W Data Bus*

INHERENT

ASL ASR CLR COM 1 Opcode Address 1 Opcode
DEC INC LSL LSR 3 2 Opcode Address + 1 1 Opcode Next Instruction
NEG ROL ROR TST 3 Opcode Address + 1 1 Opcode Next Instruction

CLC CLI NOP RSP 2 1 Opcode Address 1 Opcode
SEC SEI TAX TXA 2 Opcode Address + 1 1 Opcode Next Instruction

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

RTS 6 3 Stack Pointer 1 Return Address (HI Byte)***
4 Stack Pointer + 1 1 Return Address (LO Byte)***
5 Stack Pointer + 2 1 Irrelevant Data
6 New Opcode Address 1 New Opcode

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction
3 Stack Pointer 0 Return Address (LO Byte)
4 Stack Pointer - 1 0 Return Address (HI Byte)
5 Stack Pointer - 2 0 Contents of Index Register

SWI 10 6 Stack Pointer - 3 0 Contents of Accumulator
7 Stack Pointer - 4 0 Contents of CC Register
8 Vector Address $1 FFC* * 1 Address of Interrupt Routine

(HI Byte)
9 Vector Address $1 FFD* * 1 Address of Interrupt Routine

!LO Byte)
10 Interrupt Routine Starting 1 Interrupt Routine First Opcode

Address

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction
3 Stack Pointer 1 Irrelevant Data
4 Stack Pointer + 1 1 Contents of CC Register***

RTI 9 5 Stack Pointer + 2 1 Contents of Accumulator***
6 Stack Pointer + 3 1 Contents of Index Register***
7 Stack Pointer + 4 1 Return Address (HI Byte)***
8 Stack Pointer + 5 1 Return Address (LO Byte)***
9 New Opcode Address 1 New Opcode

IMMEDIATE

ADC ADD AND BIT
CMP CPX EOR LDA 2 1 Opcode Address 1 Opcode
LDX ORA SBC SUB 2 Opcode Address + 1 1 Operand Data

BIT SET/CLEAR

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand

BSET n 5 3 Address of Operand 1 Operand Data
BCLR n 4 Address of Operand 1 Operand Data

5 Address of Operand 0 Manipulated Data

BIT TEST AND BRANCH

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand

BRSET n 5 3 Address of Operand 1 Operand Data
BRCLR n 4 Opcode Address + 2 1 Branch Offset

5 Opcode Address + 2 1 Branch Offset

110 User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Table XII - CDP6805 CMOS Family Summary of Cycle-by-Cycle Operation (Continued)

Instructions Cycles Cycle# Address Bus* R/W Data Bus

RELATIVE

BCC !BHS) BCS (BLOl 1 Opcode Address 1 Opcode
BEQ BHCC BHCS BHI 3 2 Opcode Address + 1 1 Branch Offset

BIH BIL BLS BMC BMI 3 Opcode Address + 1 1 Branch Offset
BMS BNE BPL BRA BAN

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Branch Offset
3 Opcode Address + 1 1 Branch Offset

BSR 6 4 Subroutine Starting Address 1 1st Subroutine Opcode
5 Stack Pointer 0 Return Address (LO Byte)
6 Stack Pointer - 1 0 Return Address (Hi Byte)

DIRECT
1--·

JMP 2 1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Jump Address

ADC ADD AND BIT 1 Opcode Address 1 Opcode
CMP CPX EOR LOA 3 2 Opcode Address + 1 1 Address of Operand
LOX ORA SBC SUB 3 Address of Operand 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand

TST 4 3 Address of Operand 1 Operand Data
4 Opcode Address + 2 1 Opcode Next Instruction

1 Opcode Address 1 Opcode
STA 4 2 Opcode Address + 1 1 Address of Operand
STX 3 Opcode Address + 1 1 Address of Operand

4 Address of Operand 0 Operand Data

ASL ASR CLR 1 Opcode Address 1 Opcode
COM DEC INC 2 Opcode Address + 1 1 Address of Operand
LSL LSR NEG 5 3 Address of Operand 1 Current Operand Data
ROL ROR 4 Address of Operand 1 Current Operand Data

5 Address of Operand 0 New Operand Data

1 Opcode Address 1 Opcod
2 Opcode Address + 1 1 Subroutine Address (LO Byte)

JSR 5 3 Subroutine Starting Address 1 1st Subroutine Opcode
4 Stack Pointer 0 Return Address (LO Byte)
5 Stack Pointer - 1 0 Return Address (HI Byte)

EXTENDED

1 Opcode Address 1 Opcode
JMP 3 2 Opcode Address + 1 1 Jump Address (HI Byte)

3 Opcode Address + 2 1 Jump Address (LO Byte)**
ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 2 Opcode Address + 1 1 Address of Operand (HI Byte)
EOR LOA LOX 4 3 Opcode Address + 2 1 Address of Operand (LO Byte)
ORA SBC SUB 4 Address of Operand 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand (HI Byte)

STA 5 3 Opcode Address + 2 1 Address of Operand (LO Byte)
STX 4 Opcode Address + 2 1 Address of Operand (LO Byte)

5 Address of Operand 0 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Addr of Subroutine (HI Byte)
3 Opcode Address + 2 1 Addr of Subroutine (LO Byte)

JSR 6 4 Subroutine Starting Address 1 1st Subroutine Opcode
5 Stack Pointer 0 Return Address (LO Byte)
6 Stack Pointer - 1 0 Return Address (HI Byte)**

Appendix E 111

Table XII - CDP6805 CMOS Family Summary of Cycle-by-Cycle Operation (Continued)

Instructions Cycles Cycle# Address Bus* R/W Data Bus

INDEXED, NO-OFFSET

JMP 2 1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

ADC ADD AND BIT 1 Opcode Address 1 Opcode
CMP CPX EOR LOA 3 2 Opcode Address + 1 1 Opcode Next Instruction
LOX ORA SBC SUB 3 Index Register 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

TST 4 3 Index Register 1 Operand Data
4 Opcode Address + 1 1 Opcode Next Instruction

1 Opcode Address 1 Opcode
STA 2 Opcode Address + 1 1 Opcode Next Instruction
STX 4 3 Opcode Address + 1 1 Opcode Next Instruction

4 Index Register 0 Operand Data

ASL ASR CLR 1 Opcode Address 1 Opcode
COM DEC INC 2 Opcode Address + 1 1 Opcode Next Instruction
LSL LSR NEG 5 3 Index Register 1 Current Operand Data
ROL ROR 4 Index Register 1 Current Operand Data

5 Index Register 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

JSR 5 3 Index Register 1 1st Subroutine Opcode
4 Stack Pointer 0 Return Address (LO Byte)
5 Stack Pointer - 1 0 Return Address (HI Byte)

INDEXED, 8-BIT OFFSET

1 Opcode Address 1 Opcode
JMP 3 2 Opcode Address + 1 1 Offset

3 Opcode Address + 1 1 Offset

ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 4 2 Opcode Address + 1 1 Offset
EOR LOA LOX 3 Opcode Address + 1 1 Offset
ORA SBC SUB 4 Index Register + Offset 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset

STA 5 3 Opcode Address + 1 1 Offset
STX 4 Opcode Address + 1 1 Offset

5 Index Register + Offset 0 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset

TST 5 3 Opcode Address + 1 1 Offset
4 Index Register + Offset 1 Operand Data
5 Opcode Address + 2 1 Opcode Next Instruction

ASL ASA CLR 1 Opcode Address 1 Opcode
COM DEC INC 2 Opcode Address + 1 1 Offset
LSL LSR NEG 6 3 Opcode Address + 1 1 Offset
ROL ROA 4 Index Register + Offset 1 Current Operand Data

5 Index Register + Offset 1 Current Operand Data
6 Index Register + Offset 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset

JSR 6 3 Opcode Address + 1 1 Offset
4 Index Register + Offset 1 1st Subroutine Opcode
5 Stack Pointer 0 Return Address (LO Byte)
6 Stack Pointer - 1 0 Return Address (HI Byte)**

112 User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Table XII - CDP6805 CMOS Family Summary of Cycle-by-Cycle Operation (Continued)

Instructions Cycles Cycle# Address Bus* R/W Data Bus
INDEXED, 16-BIT OFFSET

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset IHI Byte)

JMP 4 3 Opcode Address + 2 1 Offset I LO Byte I
4 Opcode Address + 2 1 Offset I LO Byte I

ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 2 Opcode Address + 1 1 Offset IHI Byte)
EOR LOA LOX 5 3 Opcode Address + 2 1 Offset I LO Byte I
ORA SBC SUB 4 Opcode Address + 2 1 Offset I LO Byte)

5 Index Register + Offset 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset IHI Byte)

STA 6 3 Opcode Address + 2 1 Offset (LO Byte)
STX 4 Opcode Address + 2 1 Offset ILO Byte)

5 Opcode Address + 2 1 Offset I LO Byte)
6 Index Register + Offset 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset (HI Byte I
3 Opcode Address + 2 1 Offset I LO Byte)

JSR 7 4 Opcode Address + 2 1 Offset I LO Byte I
5 Index Register + Offset 1 1st Subroutine Opcode
6 Stack Pointer 0 Return Address (LO Byte)
7 Stack Pointer - 1 0 Return Address IHI Byte)**

Appendix E 113

Table XII - CDP6805 CMOS Family Summary of Cycle-by-Cycle Operation (Concluded)

RESET AND INTERRUPT

Instructions Cycles Cycle# Address Bus* Reset R/W Data Bus*

$1FFE** 0 1 Irrelevant Data
$1 FFE* * 0 '1 Irrelevant Data

1 $1 FFE* * 1 1 Irrelevant Data
Hardware Reset 5 2 $1 FFE* * 1 1 Irrelevant Data

3 $1 FFE* * 1 1 Vector (HI Byte)
4 $1FFF** 1 1 Vector (LO Byte)
5 Reset Vector 1 1 Opcode

1 $1FFE 1 1 Irrelevant Data

• • • • •
• • • • •
• • • • •

Power on Reset 1922 1919 $1FFE* * 1 1 Irrelevant Data
1920 $1FFE* * 1 1 Vector IHI Byte)
1921 $1FFF** 1 1 Vector ILO Byte)
1922 Reset Vector 1 1 Opcode

HARDWARE INTERRUPTS

Instructions Cycles Cycle# Address Bus* IRQ R/W Data Bus*

Last Cycle of Previous 0 x x
Instruction

1 Next Opcode Address 0 1 Irrelevant Data
2 Next Opcode Address x 1 Irrelevant Data
3 Stack Pointer x 0 Return Addr. ILO Byte)

iAO Interrupt 10 4 Stack Pointer - 1 x 0 Return Addr. IHI Byte)
!Vector HI: $1 FFA, * * 5 Stack Pointer - 2 x 0 Contents Index Reg
Vector LO: $1 FFB * *) 6 Stack Pointer - 3 x 0 Contents Accumulator
Timer Interrupt (Vector HI: 7 Stack Pointer - 4 x 0 Contents CC Register
$1 FF9* *, Vector LO: 8 $1FFA* * x 1 Vector (HI Byte)
$1FF8**) 9 $1FFB** x 1 Vector ILO Byte)

10 IRQ Vector x 1 Interrupt Routine First

*Except for the CDP6805E2 MPU, the address bus, R/W, and data bus are internal to the device.

**All values given are for devices with 13-bit program counters (e.g., CDP6805E2 and CDP6805G2). For devices with 11-bit
program counters (CDP6805F2), the HI byte is "07" instead of "1F".

X indicates don't care.

***On the CDP6805E2 the data bus is external and, since the stack is on-chip, data on the external bus is ignored during the RTI
and RTS instructions.

114

Appendix F
Instruction Set
Opcode Map

The opcode map contains a summary of opcodes used with the CDP6805 CMOS Family. The map is out­
lined by two sets (0-F) of hexadecimal numbers: one horizontal and one vertical. The horizontal set represents
the MSD and the vertical set represents the LSD. For example, a 25 opcode represents a BCS (located at the 2
and 5 coordinates) used in the relative mode. There are five different opcodes for COM, each in a different
addressing mode (direct; accumulator; indexed; indexed, one-byte offset; and indexed, two-byte offset). A
legend is provided, as part of the map, to show the information contained in each coordinate square. The
legend represents the coordinates for opcode FO (SUB). Included in the legend is the opcode binary equivalent,
the number of execution cycles required for the CDP6805 CMOS Family, the required number of bytes, the
address mode, and the mnemonic.

Bit Manipulation Branch

BTB BSC REL
Hi 0 1 2

Low 0000 0001 0010
5 5 3

0 BR SETO BSETO BRA
0000 3 BTB 2 BSC 2 REL

5 5 3
1 BRCLRO BCLRO BAN

0001 3 BTB 2 BSC 2 REL

5 5 3
2 BRSET1 BSET1 BHI

0010 3 BTB 2 BSC 2 REL

5 5 3
3 BRCLR1 BCLR1 BLS

0011 3 BTB 2 BSC 2 REL

5 5 3
4 BRSET2 BSET2 BCC

0100 3 BTB 2 BSC 2 REL

5 5 3
5 BRCLR2 BCLR2 BCS

0101 3 BTB 2 BSC 2 REL

5 5 3
6 BRSET3 BSET3 BNE

0110 3 BTB 2 BSC 2 REL

5 5 3
7 BRCLR3 BCLR3 BEQ

0111 3 BTB 2 BSC 2 REL
5 5 3

8 BRSET4 BSET4 BHCC
1000 3 BTB 2 BSC 2 REL

5 5 3
9 BRCLR4 BCLR4 BHCS

1001 3 BTB 2 BSC 2 REL
5 5 3

A BRSET5 BSET5 BPL
1010 3 BTB 2 BSC 2 REL

5 5 3
B BRCLR5 BCLR5 BMI

1011 3 BTB 2 BSC 2 REL

5 5 3
c BRSET6 BSET6 BMC

1100 3 BTB 2 BSC 2 REL
5 5 3

D BRCLR6 BCLR6 BMS
1101 3 BTB 2 BSC 2 REL

5 5 3
E BR SET? BSET7 BIL

1110 3 BTB 2 BSC 2 REL

5 5 3
F BRCLR7 BCLR7 BIH

1111 3 BTB 2 BSC 2 REL

Abbreviations for Address Modes

INH
IMM
DIR
EXT
REL
BSC
BTB

Inherent
Immediate
Direct
Extended
Relative
Bit Set/Clear
Bit Test and Branch

IX
IX1
IX2

A
x

2

2

2

2

2

2

2

2

2

2

2

TABLE XIII - Instruction Set Opcode Map

Read/Modify/Write

DIR INH(A) INH(X) IX1

3 4 5 6
0011 0100 0101 0110

5 3 3 6
NEG NEGA NEGX NEG

DIR 1 INH 1 INH 2 IX1

11
MUL•

1 INH

5 3 3 6
COM COMA COMX COM

DIR 1 INH 1 INH 2 IX1
5 3 3 6

LSR LSRA LSRX LSR
DIR 1 INH 1 INH 2 IX1

5 3 3 6
ROA RORA RORX ROA

DIR 1 INH 1 INH 2 IX1

5 3 3 6
ASR ASRA ASRX ASR

DIR 1 INH 1 INH 2 IX1
5 3 3 6

LSL LSLA LSLX LSL
DIR 1 INH 1 INH 2 IX1

5 3 3 6
AOL ROLA ROLX ROL

DIR 1 INH 1 INH 2 IX1

5 3 3 6
DEC DECA DECX DEC

DIR 1 INH 1 INH 2 IX1

5 3 3 6
INC INCA INCX INC

DIR 1 INH 1 INH 2 IX1
4 3 3 5

TST TSTA TSTX TST
DIR 1 INH 1 INH 2 IX1

5 3 3 6
CLR CLRA CLRX CLR

DIR 1 INH 1 INH 2 IX1

Indexed (No Offset)
Indexed, 1-Byte (8-Bit) Offset
Indexed, 2-Byte (16-Bit) Offset
Available only on CDP68HC05C4

and CDP68HC05D2
Accumulator
Index Register

IX

7
0111

NEG
1

COM
1

LSR
1

ROA
1

ASR
1

LSL
1

ROL
1

DEC
1

INC
1

TST
1

CLR
1

Control Register/Memory

INH INH IMM DIR EXT IX2

8 9 A B c D
1000 1001 1010 1011 1100 1101

5 9 2 3 4
RTI SUB SUB SUB SUB

IX 1 INH 2 IMM 2 DIR 3 EXT 3

6 2 3 4
ATS CMP CMP CMP CMP

1 INH 2 IMM 2 DIR 3 EXT 3

2 3 4
SBC SBC SBC SBC

2 IMM 2 DIR 3 EXT 3

5 10 2 3 4
SWI CPX CPX CPX CPX

IX 1 INH 2 IMM 2 DIR 3 EXT 3

5 2 3 4
AND AND AND AND

IX 2 IMM 2 DIR 3 EXT 3

2 3 4
BIT BIT BIT BIT

2 IMM 2 DIR 3 EXT 3

5 2 3 4
LOA LOA LOA LOA

IX 2 IMM 2 DIR 3 EXT 3

5 2 4 5
TAX STA STA STA

IX 1 INH 2 DIR 3 EXT 3

5 2 2 3 4
CLC EOR EOR EOR EOR

IX 1 INH 2 IMM 2 DIR 3 EXT 3

5 2 2 3 4
SEC ADC ADC ADC ADC

IX 1 INH 2 IMM 2 DIR 3 EXT 3

5 2 2 3 4
CLI ORA ORA ORA ORA

IX 1 INH 2 IMM 2 DIR 3 EXT 3

2 2 3 4
SEI ADD ADD ADD ADD

1 INH 2 IMM 2 DIR 3 EXT 3

5 2 2 3
RSP JMP JMP JMP

IX 1 INH 2 DIR 3 EXT 3

4 2 6 5 6
NOP BSR JSR JSR JSR

IX 1 INH 2 REL 2 DIR 3 EXT 3

2 2 3 4
STOP LOX LOX LOX LOX

1 INH 2 IMM 2 DIR 3 EXT 3

5 2 2 4 5
WAIT TXA STX STX STX

IX 1 INH 1 INH 2 DIR 3 EXT 3

LEGEND

Mne~~~~~ ~ .- bl ~
»

of Cycles -------'

IX1

E
1110

5
SUB

IX2 2
5

CMP
IX2 2

5
SBC

IX2 2
5

CPX
IX2 2

5
AND

IX2 2
5

BIT
IX2 2

5
LOA

IX2 2
6

STA
IX2 2

5
EOR

IX2 2
5

ADC
IX2 2

5
ORA

IX2 2

5
ADD

IX2 2

4
JMP

IX2 2
7

JSR
IX2 2

5
LOX

IX2 2
6

STX
IX2 2

IX
F ~ 1111 Low

4 3
SUB 0

IX1 1 IX ODDO

4 3
CMP 1

IX1 1 IX 0001

4 3
SBC 2

IX1 1 IX 0010

4 3
CPX 3

IX1 1 IX 0011

4 3
AND 4

IX1 1 IX 0100

4 3
BIT 5

IX1 1 IX 0101

4 3
LOA 6

IX1 1 IX 0110

5 4
STA 7

IX1 1 IX 0111

4 3
EOR 8

IX1 1 IX 1000

4 3
ADC 9

IX1 1 IX 1001

4 3
ORA A

IX1 1 IX 1010

4 3
ADD B

IX1 1 IX 1011

3 2
JMP c

IX1 1 IX 1100

6 5
JSR D

IX1 1 IX 1101

4 3
LOX E

IX1 1 IX 1110

5 4
STX F

IX1 1 IX 1111

Opcode in Hexadecimal

Opcode in Binary

Address Mode

>
'tJ

'i
::::J c. ;c· ,,

....
(II

116

Access
Via

Page 0
Direct

Addressing

Interrupt
Vectors

0

127
128

Appendix G
Address Maps for the

CDP6805 CMOS Family

CDP6805E2 Address Map

1/0 Ports
Timer
RAM

$0000

$007F

$0080

\

0

1

2

3

Port A Data Register

Port B Data Register

External Memory Space

External Memory Space

255~
256

$00FF

$0100

4 Port A Data Direction Register

5 Port B Data Direction Register

External
Memory
Space

18064 Bytes!

~---------

6

7

8

9

10

15
16

63
64~

Timer Interrupt From Wait State Only $1 FF6 -$1 FF?
1---------

~-
1--

T1mer Interrupt $1 FF

External Interrupt $1 FF --------
SWI $1 FF

~---

I
8 $1 FF9

I
A$1FFB

I
C-$1FFD

I

External Memory Space

External Memory Space

Timer Data Register

Timer Control Register

External Memory
Space

RAM
I 112 Bytes)

/
/

/
/

/
/

/
/

/ Stack 164 Bytes Max) /
/

/ RESET $1 FF
8191"-------------....i

E-$1 FFF
127 v j

7

$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$0008

$0009

$000A

$000F

$0010

$003F
$0040

$007F

92CS-38027

Appendix G

Access
Via

Page 0
Direct

Addressing

Interrupt
Vectors

CDP6805E3 Address Map

0

127
128

255
256

......

1/0 Ports
Timer
RAM

External
Memory
Space

(65408 Bytes)

- - -·

1-----------·
Timer Interrupt From Wait State Only
1--------

...... -
I- -

Timer Interrupt

External Interrupt -------
SWI

t------------

$0000

$007F

$0080

\
$00FF

$0100

$FFF6·$FFF7
I

$FFF8-$FFF9

0

2

3

4

5

6

7

B

9

IC

15
16

63
64

I
$FFFA-$FFFB

I
$FFFC-$FFFD

I

RESET $FFFE-$FFFF 55535._ ________________________ ~ 127

I-

/
~

0 0 oJPort A Data Register

Port B Data Register

External Memory Space

External Memory Space

1 1 11 Port A DOR

Port B Data Direction Register

External Memory Space

External Memory Space

Timer Data Register

Timer Control Register

External Memory
Space

RAM
1112 Bytes!

$

$0000

0001

$0002

$0003

$0004

$0005

$ 0006

$0007

$0008

$0009

SOOOA

SOOOF

$0010

/7

$003F
$0040

/ ,,
/

/
/

/
/

// Stack 164 Bytes Maxl

/

j_ $007F

92CS-38359

117

118

Access
Via

Page 0
Direct

Addressing

User
Defined
Interrupt
Vectors

0

127
128

255
256

1206
1207

1279
1280

1919
1920

2037

2038

2047

User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

CDP6805F2 Address Map

$()()()()
1/0 Ports

0 Port A Data Register

Timer Port B Data Register

RAM
$007F 2 1 1 1 1 I Port C

$0080 3 Unused*
I

4 $DOFF
Port A Data Direction Register

$0100 5 Port B Data Direction Register
1079 Bytes
User ROM 6 Unused*

Unused*

8 Timer Data Register

9 Timer Control Register

$04B6 10

73 Bytes
Self-Check ROM

$04B7

$04FF

54 Bytes
Unused*

$0500 63
64

640 Bytes
Unused*

RAM
164 Bytesl

$077F

118 Bytes
Self-Check ROM

!--------- --- ~

$0780 95
96

$07F5

t- /7
/

/

Timer Interrupt From Walt State Only
t---------------1

Timer Interrupt
1------

External Interrupt
t----- -

$07F6 $07F7

$07F8 $07F9

$07FA $07rn
I

/
/

/

/
/

./ ./ Stack 132 Bytes Max)
SWI

t----
RESET

$07FC $07FD

$07FE $07FF

./

j_ ./
IL_

127

$()()()()

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$0008

$0009

$000A

$003F
$0040

$005F
$0060

$007F

*Reads of unused locations undefined 92CS-38003

Appendix G

CDP6805G2 Address Map

Access
Via

PageO
Direct

Addressing

User
Defined
Interrupt
Vectors

0

127

128

255

256

2223
2224

2303

2304

8063
8064

8181
B182

8191

110 Ports
Timer
RAM

2096 Bytes
User ROM

BO Bytes

Self-Check ROM

5760 Bytes

Unused"

118 Bytes

Self-Check ROM
~------------

Timer Interrupt From Wait State Only to----------.;...
Timer Interrupt

t----
EKternal Interrupt

1----
SWI

I----
RESET

*Reads of unused locat1ons undefined.

$0000

$007F

$0080
I

$00FF

$0100

\
$00AF

$Cl380

$00FF
$0900

$1F7F

$1FBO

0

1

2

3

4

5

6

7

8

9

10

15

16

63
64

$1FF5

$1FF6-$1FF7
I

$1FF8-$1FF9
I

$1FFA-$1FFB
I

$1FFC-$1FFD .
$1FFE-$1FFF

127

t--

~

,,,,.
/

i...,..

Port A Data

Port B Data

Port C Data

Port D Data

Port A Data Direction

Port B Data Direction

Port C Data Direction

Port D Data Direction

Timer Data

Timer Control

6 Bytes

Unused*

RAM

1112 Bytes!

,,7 .,,.
,,,,,.

""' ""' ,,,,,. ,,,,.
""'

/
/Stack 164 Bytes Maxi

j

119

$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$00Cl3

$0009

$000A

$000F
$0010

$003F
$0040

$007F

120

$0000

$001F
$0020

$004F
$0050

$00BF
$00CO

$00FF
$0100

$10FF
$1100

$1EFF
$1FOO

$1FDF
$1FEO

$1FEF
$1FFO

$1FFF

1/0
32 Bytes

User
ROM

48 Bytes

RAM
176 Bytes

I- - ----l Stack
64 Bytes

User
ROM

4096 Bytes

Unused
3584 Bytes

Self Check

1------

Self-Check
Vectors

User
Vectors
16 Bytes

0000

0031
0032
I
\

\
0079
0080

\

0191
0192

0255
0256

4351
4352

7935
7936

8175
8176

8191

User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

\
\

CDP68HC05C4 Address Map

\

\
\
\
\

\
\

\

'

256 Bytes

Ports
7 Bytes

Unused
3 Bytes

Serial Peripheral
Interface
3 Bytes

Serial
Communications

Interface
5 Bytes

Timer
10 Bytes

Unused
4 Bytes

0000

0031
\

\
\
\
\
\

\
\
\

\
\

\

\
\
\

Port A Data Register

Port B Data Register

Port C Data Register

Port D Fixed Input Register

Port A Data Direction Register

Port B Data Direction Register

Port C Data Direction Register

Unused

Unused

Unused

Serial Peripheral Control Register

Serial Peripheral Status Register

Serial Peripheral Data 1/0 Register

Senal Communications Baud Rate Register

Serial Communications Control Register 1

Senal Communications Control Register 2

Serial Communications Status Register

Serial Communications Data Register

Timer Control Register

Timer Status Register

Input Capture High Register

Input Capture Low Register

Output Compare !1igh Register

Output Compare Low Register

Counter High Register

Counter Low Register

Alternate Counter High Register

Alternate Counter Low Register

Unused

Unused

Unused

Unused

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$OB

$0C

$OD

$OE

$OF

$10

$11

$12

$13

$14

$15

$16

$17

$18

$19

$1A

$1B

$1C

$10

$1E

$1F

Appendix G

$()()()()

$001F
$0020

002F
OOAC

SOOFF
$0100

$08FF
$0900

$1EFF
$1FOO

$1FDF
$1FEO

$1FEF
$1FFO

$1FFF

1/0
32 Bytes

User
ROM

128 Bytes

RAM
96 Bytes

---1 S<~• 64 Bytes

User
ROM

2048 Bytes

Unused
3584 Bytes

Self Check

1--- - - - -

Self-Check
Vectors

User
Vectors
16 Bytes

()()()()

0031
0032

\

I
0159
0160

\

0191
0192

0255
0256

\

2303
2304

7935
7936

8
8

8

175
176

191

\
\
\

CDP68HC05D2 Address Map

\
\
\
\

\
\
\
\

256 Bytes

Ports
8 Bytes

Unused
2 Bytes

Serial Peripheral
Interface
3 Bytes

Unused
5 Bytes

Timer
lC Bytes

Unused 2 Bytes

Misc Control/
Stat Register

Unused

1 Byte

0000

0031

\
\

\
\

\
\

\
\

\
~

Port A Data Register

Port B Data Register

Port C Data Register

Port D Data Register

Port A Data Direction Register

Port B Data Direction Register

Port C Data Direction Register

Port D Data Direction Register

Unused

Unused

Serial Peripheral Control Register

Serial Peripheral Status Register

Serial Peripheral Data 1/0 Register

Unused

Unused

Unused

Unused

Unused

Timer Control Register

Timer Status Register

Input Capture High Register

Input Capture Low Register

Output Compare High Register

Output Compare Low Register

Counter High Register

Counter Low Register

Alternate Counter High Register

Alternate Counter Low Register

Unused

Unused

Misc. Counter/Status Register

Unused

92CS-38118

121

$00

$01

$02

$03

$04

$05

$06

$07

$00

$09

SOA

SOB

soc
SOD

SOE

SOF

$10

$11

$12

$13

$14

$15

$16

$17

$18

$19

SlA

SlB

SlC

SlD

SlE

SlF

122

Appendix H
ASCII Hexadecimal Code

Conversion Chart
This appendix shows the equivalent alphanumeric characters for the equivalent ASCII hexadecimal code.

ASCII Character Set

MOST SIGNIFICANT CHARACTER

HEX 0 1 2 3 4 5 6 7

0 NUL OLE SP 0 @ p p

1 SOH DC1 1 A Q a q

2 STX DC2 2 B R b

3 ETX DC3 # 3 c s c S

4 EOT DC4 $ 4 D T d
a: w 5 ENQ NAK % 5 E u e u I-
(J
ct 6 ACK SYN & 6 F v v a:
ct :z:

7 BEL ETB 7 G w (J g w
I-z 8 BS CAN 8 H x h x ct
(J

ii; 9 HT EM 9 y y
z
CJ

A LF SUB J z u; z
I-

"' B VT ESC + K k ct w
...I c FF FS < L \

D CR GS M m

E so RS > N
A

n

F SI us I ? 0 0 DEL

NOTES:
(1) Parlly bit In most significant hex digit not Included.
(2) Characters In columns O and 1 (as well as SP and DEL) are non-printing.
(3) Model 33 Teletypewrlter prints codes hi columns 6 and 7

as If they were column 4 and 5 codes.

92CS-34738R1

Index 123

Index
Page

A
Accumulator 7, 9, 12, 22, 28
Addition . 12
Addressing Modes 7, 8, 12, 17, 27
Address Map . 7
ALU 9
Architecture 7, 8, 13
Arithmetic-Logic Unit (ALU) 9
A Register . 13
ASCH Hexadecimal Code Conversion Chart .. 122

B
Baud Rate Register . 63
Bidirectional Lines . 48
Bit .. 8
Bit Manipulation Addressing Mode 17, 24
Bit Manipulation Instructions 8, 20, 24, 26, 28
Bit Set/Clear Addressing Mode 12, 24, 26
Bit Test . 8, 24, 27
Block Move . 35
Branch Addressing Mode . 27
Branch Instruction 8, 12, 14, 24, 28
Byte 8, 17, 21
Byte Efficiency . 8

c
Calculator-Based Microprocessor 7
Carry Bit (C) . 15
CDP6805 Compatibility with MC6800 7, 8
Central Processor Unit (CPU) 7, 9
CMOS Technology 7, 8, 9
Computer-Based Microprocessor 7
Condition-Code Register (CC) IO, 12, 15
Control Instruction . 17, 28
Control Logic . 10
Conversion Tables . 8
Counter Register . 51
CPU 7, 9
Crystal Oscillator . 43

D
DAA (Decimal Adjust Accumulator) 35
Data Bus 7
Data Clock Timing . 42, 66
Data Format . 56
Data Tables . 8
Direct Addressing Mode 8, 17, 20
Divide Routine 39, 40, 41

E
Effective Address (EA) 13, 17
Extended Addressing Mode 8, 17, 19
External Bus Description . 73
External Clock Connect (ECC) 43, 55
External Interrupt . IO, 45, 46
External Oscillator Enable (EOE) 55
External Oscillator Input 55

Page
F
Features 8

H
Half-Carry Bit (H) 15
Hardware Features 7, 9, 42
Hexadecimal Number . 17

I
Immediate Addressing Mode 8, 17, 18, 19, 28
Indexed Addressing Mode 8, 13, 17, 21
Indexed-No Offset-Addressing Mode 21
Indexed-8-Bit Offset-Addressing Mode 22
Indexed-16-Bit Offset-Addressing Mode 23
Index Register (X) IO, 12, 13, 28
Indexing Compatibility . 24
Inherent Addressing Mode 17, 18
Initialization . 17
Input Capture Register . 53
Input/Output (1/0) 7, 8, 21, 22, 42, 48
Instruction Decoder . I 0
Instructions - Bit Manipulation .. 8, 20, 26, 28, 29

- Branch 24, 28, 29
- Control 17, 28, 29
- Read/ Modify/Write .. 13, 17, 20, 28
- Register/ Memory .. 13, 19, 20, 21, 28

Instruction Set - Alphanumeric List 28, 97
- Cycle-by-Cycle I08
- Detailed Definition 76
- Funtional Listing 28, 99
- Numerical Listing 28, I03
- Operation Summary 13
- OPCODE Map 114
- Overview 8, 12, 28

Interrupts . 10, 44
Interrupt Enable . 44
Interrupt Mask Bit (I) . 15
Interrupt Programming IO, 14, 44
1/0 Lines 7, 8, 21, 22, 42, 48
I/ 0 Options . 7

J
Jump Tables 8, 24
Jump Subroutine 12, 14

K
Keyboard Interface 33, 34
Keypad Scan Routine 33, 34

L
LIFO (Last In/ First Out) 14, 34
Load Accumulator (LOA) 7, 12
Logic AND/OR 12

M
Mask Option . 43
Master In/ Slave Out (MISO) 67
Master Out/ Slave In (MOSI) 66

124 -------- User Manual for the CDP6805-Series CMOS Microcomputers/Microprocessors

Page
M
MCU 7, 12
Memory Address . 8, 42, 76
Memory Reference Instruction 28
Microcomputer (MCU) 7, IO, 12
Microprocessor (MPU) 7, IO, 12
MPU 7, 12
Multiple Nesting . IO
Multiple Routine 12, 28, 36, 38
Multiply 36, 37, 38

N
Negative Bit (N) . 15
Nesting . 14
Noise Immunity . 43

0
Operators . 76
OPCODE . 12, 17
Oscillator, Crystal . IO, 43
Oscillator, RC . IO, 43, 55
Output Compare Register 51, 53
p
Page 8
Parallel I/ 0 Interface . IO
Peripherals 7, 42
Permanent Storage (ROM) 21, 43
Pointer 21
Port B Interrupt 47
Port Data Register Accesses 49
Power-Down Reset 43
Power-On-Reset 43, 44
Prescaler 49, 50
Program Counter (PC) IO, 12, 14, 42
Programmable Timer IO, 51, 52

R
RAM (Random Access Memory) ... 10, 14, 21, 42, 43
RC Oscillator . 10, 43, 55
Read/Modify/Write Instructions 13, 17, 20, 28
Receive Data In 56
Register 7, 12, 14, 58, 76
Register/Memory Instructions 13, 19, 20, 28
Register Set . 12
Relative Addressing Mode 17, 24, 25
Reset . 14, 43
ROM (Read Only Memory) 7, 8, 10, 21, 42, 43
Rotate . 12

s
SCI IO, 44, 46, 55, 60
Self Check . 10, 74
Serial Clock (SCK) . 67
Serial Communications Control Register

(SCCR) 59, 61

Page
Serial Communications Data Register

(SCDAT) 58
Serial Communications Interface

(SCI) IO, 44, 46, 55, 60
Serial Communications Status Register

(SCSR) 61, 62, 70
Serial 1/0 Software 30
Serial I/ 0 Routine . 31, 32
Serial Peripheral Data I/ 0 Register (SPDR) . . . 72
Serial Peripheral Interface

(SPI) IO, 44, 46, 64, 68, 72
Serial Peripheral Control Register (SPCR) .. 59, 68
Slave Select (SS) . 67
Software Applications . 30
Software Description 7, 12
Software Interrupt . 47
Specific Features of CMOS 8
SPI IO, 44, 46, 64, 68, 69, 72
Stack Array . 14
Stack Handling . 34
Stack Pointer (SP) IO, 12, 14, 42
Start Bit Detection . 57
Stop Instructions 9, 47
Storage-Permanent (ROM) .. 7, 8, IO, 21, 22, 42, 43
Storage-Temporary (RAM) .. IO, 14, 21, 22, 42, 43
Subroutines 8, 10, 14, 22
Subtract . 12

T
Temporary Storage (RAM) . . IO, 14, 21, 22, 42, 43
Timer Control Register (TCR) 50, 53, 54, 55
Timer/Counter 10, 51
Timer Description . 49
Timer Input Modes . 44, 50
Timer Interrupt . 46
Timer, Programmable 42
Timer Status Register (TSR) 54
Timer Test (TIMTST) . 73, 74
Timing 10, 42
Timing, Data Clock . 42, 66
Timing Diagram . 66
Transmit Data Out (TDO) 56, 58

u
"User Friendly" Software . 12

w
Wake-Up Feature 10, 56, 59
Wait Instructions 9, 10, 48

x
X-Register (X) 13, 14, 22

z
Zero-Bit (Z) 15, 24

RCll

User Manua1

SERIAL
t'~JIJ!tlHICAnONS
/#!EllFACE

ADDITION Al
110 PORlS

