COSMAC TINY BASIC

CDP185020 Evaluation Kit COSMAC TINY BASIC

- Preface

TINY BASIC provides the most fundamental of those functions normally .
attributed to the high-level programming laﬁguage called BASIC. It is speeifically
designed for a microcomputer with minimal»memory. The TINY BASIC interpreter
proéram requires only 2K bytes of storage. Thus, an Evaluation Kit with 4K of

RAM can accomodate modest (about 100 statements in length) TINY BASIC programs.

TINY BASIC is perhaps fhe best language for the beginning microcomputer
programmer. It‘is eesily learned, and elementary application programs may be
developed quickiy. For the more experienced programmer, TINY forms the kernel
of a system whose facilitiee may be extended indefinitely by‘the addition of
machine-language eubroutines (limited only by the amount bf memory which is
available). l ' |

TINY packs a significant amount of processing capability within 2K bytes.
For example, it includes its own line editor, and it provides a rich assortment
of error messages to the user. However, clearly one cannot expect certain
features which are normally available only in 8K systems. For example, TINY
does not do floating-point arithmetic. (Its numeric capability is limited to
integers in the range -32768 to +32767.) It cannot directly handle arrays or
alphanumeric strings. (On the other hand, each of these (and other) advanced
facilities may be added via a machine-~language extension). 1In addition, one
must recognize that economies in'memory space used were achieved. at the expense

of processing speed.

Generelly, then, TINY BASIC may be considered as a good "budget" high-level
language for a user with a comparable microcomputer setup. Although TINY is
quite slow and is of limited capability, it can act as the nucleus of a system

whose sophistication may be indefinitely extended.

10-1.

CDP18S020 Evaluation Kit COSMAC TINY BASIC

COSMAC TINY BASIC

INTRODUCTION

We assume that you are already familiar with section III of the
Evaluation Kit Manual ‘ which explains the functions available
from the resident utility program UT4. UT4 permanently resides in
memory locations 8000-81FF. After it is given control (via the RESET,
RUN U, CR or LF sequence), it types its promét character, an asterisk,
indicating that it is awaiting your input. Each of your input lines
(términated with a CR) is interpreted and executed by UT4. After dis-
posing of your input command, UT4 indicates that it is ready for new .

input by typing another * prompt.

One important function of UT4 is to permit you to load an arbitrary
sequence of hexadecimal digits (a machine language program) into an
arbitrary area in memory and then to invoke this program (transfer
control to it; run it) via the appropriate $P command. When your
program completes its computation, it may relinquish-control back to
UT4 by executing a C08039 instruction (a long branch to the location
labeled START on p.3-16), provided all registers used by UT4 have the
values they had when UT4 exitedl Under these conditions, a. user program-

halt (or exit) would be signified by a new * UT4 prompt.

COSMAC 2K TINY BASIC is a program which must be loaded into the
loweét 2K bytes of memory (locations 0000-O7FF). A hexadecimal listing
of the program and loading instructions for it appear in Appendix A.
After TINY BASIC is made resident, control is tfansferred to it using
the proper $P UT4 command (see Appendix A). Once it receives control,
TINY BASIC delivers its prompt character} a colon, and awaits your input.
Each time after it has properly disposed of an input line (terminated

with a carriage return - CR), TINY BASIC again types its : prompt.

t 1In particular, P should be 5.

10-2

CDPLBSOZO Evaluation Kit ' COSMAC TINY BASIC

If an input line does not begin with a number, TINY BASIC immediately
interprets it ahd executes it. (The line is called a statement.) If the
line begins with a number (normally followed by a statement), then TiNY BASIC
merely stores it, in the proper position, in an area of memory where the
user program (a seqﬁence of statements ordered by statement nﬁmber)‘is
assmbled. If the statement; number is the same as one already existing in
this aréa, then the new statement replaces the old one. Thus, you load a
TINY BASIC program by entering a sequence of statements (one pei line), each
preceded by a unique statement number. 'The program must have at least one

END statement in it.

~After your program has been loaded, you can run it by typing a RUN
.command (equivalent to the $P command to UT4). TINY BASIC will then interpret
and execute your program's stawments, in order, following the rules discussed
in subsequent sections. . When an END statement is encountered during execution,
control will be passed back to TINY BASIC's "enter" mode, and another : prompt

will be issued..

Note that TINY BASIC assembles statements which begin with numbers
into the pfogram area in memory without any further analysis. Errors are
detected only when execution is attempted. If an entered line consists only
of a line number, it is considered a deletion. The previously inserted
statement with the same line number is erased. Note also that 0 is not

a valid liné number. Blanks within a line have no significance to TINY.

All spaces, until the first non-numeric character, are totally ignored.
After that, however, blanks are preserved in the memory copy of the

statement (i.e., each blank character occupies one byte).

NUMBERS

A number is any sequence of décimal ‘digits optionally preceded by
a sign. If no sign is present, the number is assumed positive. Since
TINY BASIC stores all numbers internally as 16-bit signed integers,
positive values may run from O to 32767 (2'5-1) ana negative values may
run from -1 to -32768 (-2'%). '

10-3

CDP18S020 Evaluation Kit ‘ ‘ COSMAC TINY BASIC

VARIABLES

A variable is any single capital letter (A-Z). Each possible variable is
assigned a unique two-byte location in memory. The value of the variable is

the contents of that location -- i.e., a number in the range -32768 to +32767.
EXPRESSIONS

An expression is a combination of one or more numbers or variables, joined
by oEerators and possibly grouped by parenthesis pairs. The permissible

operators are:

'+ addition

- . subtraction

* multiplication
/ division

Whenever TINY BASIC encounters an expression within a statement (during its
execution) it evaluates the expression -- combining the numbers and the values
of the variables, using the indicated operations. The exact disposition of the
final computed value depends on the type of statement. This is discussed further

later.

Ipternal sub-expressions within parentheses are evaluated first. Usually
parentheses make clear the order in which operations are to be perfqrmed. However,
if there is ambiguity because parentheses are absent, TINY gives precedence to
multiplication and division over addition and subtraction. Thus, in évaluating

B-14*C
the multiplication is performed first. In cases involving two operators of equal
precedence, evaluation would proceed from left to right. An expression may be

optionally preceded by a sign.

10-4

CDP18S020 Evaluation Kit COSMAC TINY BASIC

Notevthat during the evaluation of an expression, all intermediate values,
and the final value, are truncated -- using the lowest 16 bits of the results.
" That is, expreséions are evaluated modulo 2!®. TINY_BASIC makes no.éttempt to
discover arithmetic overflow conditions, except that an attempt to divide by

zero results in an error stop.

The following are some examples of valid expressions:
(Noté that a single variable or number is also an expression.)
A
123
1+2-3
B-14*C
(A+B) / (C+D)
=128/ (=32768+(1*1))
(€((Q))))

The following are some examples of expressions which have the same value:

-4096
15*4096
32768/8
30720+30720
because any number in the range 32768 to 65535 (Zlé to 2'%-1) has a sign bit of

l(making it negative), so that it is actually treated by TINY BASIC as if 65536
(21%) were subtracted from it.

THE RND FUNCTION

TINY BASIC includes the ability to generéte a positive pseudo-random number
in a specified range. Whenever it encounters the form '
RND (expression 1, expression 2)
during execution of a statement, TINY generates a random number in the range from
the value of expression 1 to the value of expression 2, inclusive. The resulting
number may be used as would any other number. In particular, the above form may

~itself be used within another expression. If the arguments are invalid, an error

stop may result.
10-5

CDP18S020 Evaluation Kit COSMAC TINY BASIC

TEE RND FUNCTION (cont'd)

RND (1,100)
are valid RND functions (assuming O<A<B).

STATEMENT TYPES

‘A statement normally begins with a keyword, such as PRINT or GOTO,
indicating the type of statement. The interpretation of the remainder of
the statement depends on this keyword. 1In some cases, a short form of the

key word is also acceptable -- for eXample, PR instead of PRINT.

REM STATEMENT

Following the keyword REM (for remark or comment) any éequence of
characters may appear. This statement is ignored by TINY BASIC. ft is
_used to permit you to iptersperse arbitrary comments or remarks within

your program.

END STATEMENT

END must be the last statement executed in a program. It is used to
halt execution and return to TINY BASIC's "enter" mode. There may be as many

END statements in a program as needed.

LET STATEMENT

This statement has the form
' LET variable = expression

Alternatively, the keyword LET may be omitted entirely. Execution of this
statement assigns the value of the expression to the variable. The following
are valid LET statements: |

LET A = B+C

I=1I+l

J =0

10-6
LET Q = RND (5,33)

CDhP18S020 Evaluation Kit 4 COSMAC TINY BASIC

IF STATEMENT

This statement has the form
IF expressionl 'relation expression2 THEN statement
The keyword THEN may be omitted entirely. Execution of this statement
evaluates the two expreséions and compares them according to the relation
specified. If the condition specified is>TRUE, then the associated state-
ment is executed. Otherwise, the associated statement is skipped. The

permissible relational operators are as follows:

= equal
 less than
> greater than
<= less than or equal (not greater).
>=.» greater than or equal (not less)

<> or >< not equal (greater than or less’than)

The associated statement may be any other valid TINY BASIC statement including,
in particular, another IF statement. The following are some valid IF statements:
IF I>25 THEN END | ‘
IF A>B 1IF B>C I=I+1

(The last statement increments I only if B is between C and A.)

TRANSFERS OF CONTROL

TINY BASIC normally executes statements in a program in statement number
order. The following statements may be used to alter this flow:

(a) GOTO expression

The subsequent statement executed is the one whose line number equals the
value of>the expression. Note that this permits'you to compute the line
. number of the next statement on the basis of program parameters‘during execution.
The following are some valid GOTO statements:
GOTO 100
GO TO 200 + I*10

10-7

CDP18S020 Evaluation Kit - COSMAC TINY BASIC

(b) GOSUB expression

This statement executes exactly as does the GOTO statement, except
that in addition TINY records (remembers) the statement number of the following
statement (the one which would have been executed next, had the branch not

taken place).
(c) RETURN

This statement (which also has the short form RET) executes by transferring

control back to the statement whose number was last recorded as the result of the

execution of a GOSUB. This last-recorded statement number is also forgotten.

SUBROUTINE NESTING

A subroutine is a sub-program which is normally evoked in two or more
placeé within a main program. Rather than duplicate the statements of the
sub-program in several places, it appears only once. It is written so that it
exits with a RETURN statement. It is evoked at any point in a program by a

GOSUB statement which transfers control to it.

Whenever one subroutine calls another subroutine ftermed subroutine "nesting"),'
an additional "return-statement-number" is recorded. These are stored in order,
so that every RETURN jumps back to the statement following the GOSUB which
called it. Subroutines may be nested to any depth, limited only by the

amount of user program memory remaining.

PRINT STATEMENT

This statement has the form
PRINT printlist
where:printlist is a succession of one or more items to be printed separated
by either commas or semicolons. The acceptable short form for PRINT is PR.

Each print item may be either an expression or a character string enclosed in

quotes. In the first case the value of the expression is typed. 1In the

second case the character string is printed verbatim. No spaces are generated
' ’ ‘ 10-8

CDP18S020 Evaluation Kit COSMAC TINY BASIC

between the printouts of items separated by semicolons in the PRINT statement.
On the other hand, the printout of an item, preceded by a comma in the PRINT
statement, begins at the next "tab setting". Tabs are automatically set every
eight character spaces. Thus,

PRINT 1,2,3 prints as

1 2 3
while PRINT 1;2;3 prints as

123
Commas and semicolons, character strings and expressions may be mixed in one

PRINT statement in any manner.

Normally, the execution of a PRINT statement terminates with the generation
of a carriage return and line feed to begin a new line. However, if the PRINT
statement ends with a comma or semicolon, then the CR-LF sequence is suppressed,
permitting subsequent PRINT statements to output on the same line or permitting

an input message (see INPUT, next) to appear on the same line as previous output.

The following are valid PRINT statement examples:
PRINT "A=";A, "B+C=";B+C
PR (generates a blank line)
PRI (prints the value of variable I)
PRINT 1,",",Q*P;",",R/42;

INPUT STATEMENT

This statement has the form
INPUT inputlist

where inputlist is a succession of one or more variables separated by commas.
The acceptable short form for INPUT is IN. Normally, execution of this
statement begins with the typing of a question mark prompt indicating that
TINY is expectidg the user to type in data. The user should respond by typing.
in a iine of one or more expressions separated by commas and terminated with a
carriage return. Each input expression is evaluated and assigned to its

associated variable in the INPUT statement.

10-9

CDP18s020 Evaluation Kit © COSMAC TINY BASIC

If the number of requested variables in the inputlist is not satisfied
by the number of expressions in the user's input line, a new ? prompt will be issued
asking for more input information. If the number of expressions in the user's
input line is greater than the number of requested variables, then those input
expressions not requested are saved internally and used to satisfy subsequent
INPUT requests. Thus, before a ? prompt is issued during execution of an '
INPUT instruction, TINY first checks to see if any saved expressions exist.
If so, then these are used first - to satisfy some or all of the variables_
requesting values. Only when no saved dat# exists is the ? prompt issued.‘ The

user is'cautiOned to use the latter property of the INPUT statement with care.

Example: Suppose statement INPUT x,Y,g is executed, and the user responds
by typing A,C,B. The results are the same as if X=A, Y=C and Z=B had been '
executed. Note that commas are required in the user's input line only to avoid
ambiguity. If he had entered ACB, the same results would have occurred. On
the other hand, an input line of +1 -3 +6 0 in response to INPUT A,B,C,D will‘

result in A being given the value 58 and a new ? prompt issued for values for
B,C and D.

SYSTEM CONTROL STATEMENTS

The statements listed below are normally not included as part of a program.

That is, they are normally entered without line numbers:

(a) NEW A
. Execution of this statement clears the program area in memory. It is used
before entering a new program.

(b) RUN |
Begin program execution at the first (lowest) line number. Note: If RUN
is followed by a comma followed by a sequence of one or more expressions
(separated with commas), then the expression list is treated as an initial
input line -- which will be scanned first whenever INPUT statements are
executed. (See discussion of INPUT statement.)

(e) LIST '

LIST expression

LIST expression, expression - . , - 10-10

CDP18S020 Evaluation Kit COSMAC TINY BASIC

SYSTEM CONTROL STATEMENTS (cont'd)

(c)

(cont'd)
The LIST statement causes part or all of' a stored user program'to be
printed. If n§ parameters are given, the whole program is listed. A
single expression pafameter is evgluated to a line nﬁmber. If the line

exists, it is printed. 1If bdth.parameters are given, all lines with
numbers in the range specified are printed.

10-11

»

CDP18S020 Evaluation Kit

CQSMAC TINY BASIC

SUMMARY OF COSMAC TINY BASIC REPERTOIRE

The following should serve as your short form guide to the facilities offered

by TINY BASIC. Characters enclosed in brackets [] are optional and may be omitted.

FORM OF STATEMENT
REM any comment

END

[LET] variable = expression
IF expr rel expr [THEN] statement
GOTO expression
GOSUBvexpression

RET[URN]

PR[INT] printlist

IN[PUT] inputlist

NEW

RUN|[, expression sequence]
LIST[expression][,expression]

where:

" number = -32768 to +32767; variable

BRIEF EXPLANATION OF EXECUTION

Ignored.
Halt execution and return to "enter" mode.

Assign the value of the expression to the vari-
' able -
If the relation between the values of the
expressions is TRUE, execute the statement.
Otherwise, skip it.

Jump to the statement whose number is the
expression's value.

-SaVe the statement number of the next statement

in sequence. Then execute a GOTO.

Jump to the last saved statement number
(see GOSUB) and "unsave" this number.

Type the items in the printlist. Type values
of expressions. Type quoted strings verbatim.
Horizontal TAB on comma. _
Read and evaluate expressions from the keyboard
and assign them in order to the variables
specified in the inputlist. ‘

Clear the program area.
Start execution at first statement. (Save
the expression sequence to satisfy

subsequent INPUT's.)

Print entire program, or one selected line,
or a range of lines.

single capital letter.

expression = one or more numbers or variables (possibly grouped by parentheses)
joined by operators +,-,*%, or /.

relations are =,>,<,<=,>=,<>, or >< .

printlist = one or more expressions or quoted strings separated by commas or semicolons.

inputlist = one or more variables separated by commas.

‘expression sequence = one or more expressions separated by commas.

NOTE: The RND (exprl,expr2) function éenerates a positive random number in the range
between the values of the expressions. This function may be used anywhere in

place of a number.

1N-12

*

CDP185020 . ‘ COSMAC TINY BASIC

IMMEDIATE EXECUTION VS. PROGRAM MODE

One important use of the immediate execution mode (entering a statement

without a line number) is to permit line-at-a-time testing. LET, IF and PRINT
can be demonstrated this way. Due to the way TINY BASIC buffers its input lines,
the INPUT statement cannot be directly executed for more than one variable at
a time, and if the following statement is typed in without a line number,

INPUT A,B,C
the value of B 'will be copied to A, and only one value (for C) will be requested
from the console/terminal. Similarly, the statement, '

INPUT X,1,Y,2,Z,3 ,
will execute directly (loading X,Y, and Z with the values 1,2,3), requesting no input,
but with a line number,in a program, this statement williproduce an error stop after

requesting one value.

Clearly there is no point to executing REM or END in the immediate mode.
Furthermore, GOSUB and RETURN are normally meant for the program mode. On the
other hand, an immediate GOTO has the same effect as if RUN were typed, but execution

may begin at other than the program's first statement.

Similarly, the stored program should not contain a NEW statement (self destruct!),
and a stored RUN statement will be equivalent to a GOTO to the first statement.
On the other hand, a LIST statement may be included as part of a program and used

for printing large text strings, such as instructions to the operator.

10-13

CDP18S020 Evaluation Kit COSMAC TINY BASIC

PROGRAMMING EXAMPLES

The following two simple programs are designed to give you examples of

' TINY BASIC in action. The first uses most of the statements in TINY's repertoire.
‘The second demonstrates particularly the use of subroutines. REMarks are omitted
from the listings to keep them short. Instead, each program is accompanied by

a detailed explanation'of its functipning. (It should be emphasized that
omission‘of comments is generally bad documentation practice, but it suits our
‘preSent objectives.) Each program can be entered in a few minutes. It is

recommended that you run both of them to gain experience with the system.

I. Arithmetic Drill Program

This program generates a random sequence of arithmetic problems. After -the
program prints the problem, you respond with your solution. The program tells
you whether your answer was correct or not (providing the right answer in the

latter case) and then proceeds to generate a new problem, and so on.

IStepping through the program listed below: first,three random numbers are
generated. The value of F (1 to 4) will be-uséd to decide whether this will be
an add, subtract, multiply or divide problem. The range of poséible values for
the arguments A and B was chosen to prevent the possiblity of overflow under two
conditions: firét, 181*181 is still less than 32767. Second, division by zero
is prevented. Because TINY BASIC discards division remainders, the fourth state-
ment is included to keep the division problems interesting. It says: If this
is a division problem where the quotient would ordinarily‘come out as zero (true -
for many of the A,B combinations that might be generated), arbitrarily increase -the
size of the dividend (to a maximum of 18100 in this case) to make the problem
non-trivial. Statement 50 begins the presentation of the problem to the user by
printing an encouraging message followed by the value of the fifst argﬁment.
Notice that the final semicolon keeps the printer on the same line without advancing

the carriage further.

Statement 60 does a four-way branch based on the value of F (the arithmetic
function selected). Thus, control passes next to one of the following statement
numbers: '70, 100, 130 or 160. Each of these statements begins a short sequence

which prints the sign for the arithmetic operation and then computes the proper
10-14

2

CDP18S020 Evaluation Kit : COSMAC TINY BASIC

I. Arithmetic Drill Program (cont'd)
function, placing the result in C. (Notice the final semicolons again,
in the PRINT statements.) No matter which path is taken, control passes next to

statement 180, which prints the second argument value followed by an = sign.

The presentation of the problem to the user is now complete, and the INPUT
statement at 190 delivers a ? prompt on the same print line and reads the

user's answer into.-D. Statement 200 congratulates the user on a correct answer,
while 210 points out that his answer was incorrect and provides him with the
proper résult. The commas at the end éf both PRINT statements here again inhibit
a new line from starting, but they space over to the next tab setting, where a new

problem is posed as a result of the loop (at 220) back to the top.

10 A=CHD 1131

20 E=FNDvls 1310

30 F=RNLC1s30

40 IF F=4 IF R-B<1l A=Rel0nN
S0 FPRINT “TRY THIS OME: “$A3
60 60 TO 40+Fe30

70 PRINT "+"3

80 C=HR+E

S0 GO TO 120

100 PRINT "="%

110 C=R-E
120 50 TO
130 FRINT
140 C=FeE
150 o0 TO 130
160 PRINT"~
170 C=R~-E
180 PRINT Es"="%

190 IMFUT D

€00 IF D=C FPRIMT "FRIGHT!".

210 IF D<>C PRINT “WROMS. COFRRECT AMIWER IS “3C»
220 60 TO 10

z -
¢ O

Y]

Notice that an END statement is not present here -- contrary to earlier advice.
The nature of this program is such that TINY will never go past the last statement.
The program as written loops endlessly, and only under these conditions is the

omission of an END permissible.

Running this program should give you some practice in learning how TINY divides.
10-15

CDP18S020 Evaluation Kit COSMAC TINY BASIC

II. Geometric Print Pattern Program

This program is dgsigned to print three identical, trapezoidal patterns
across the page, each filled with repeated imprints of thé same numeric digit.
The user can specify which digit is to fill each trapezoid and, for all three,
the number of characters across its top, the slope of its sides (positive or
negative) and its height. He can also specify the spacing between the patterns
"~ on the page.

Since the printer prints line-by-line, the,érogram prints the pattern in
a scanning mode. Every line consists of a sequence of three identical segments,
and each segment contains D spéces followed by E identical digits folldwed by
D spaces again. The values of D and E vary from line to line. For each new line,
D is decremented by a value I (positive or negative) and E is incremented

by 2*I (to keep the pattern symmetrical).

To analyze the program listed below, let us begin by identifying its
-subroutines. Reading from the bottom up, the subroutine from 250 to 280 prints
the digit N, M times across (notice the semicolon). Similarly, the subroutine
from 210 to 240 prints a sequence of M spaces. Finally, the subroutine from
140 to 200 prints D spacés'followed by E digitsv(all N) followed again by D spaces.

Notice that this subroutine calls the other two.

The main part of the program runs from 10 to 130. First,.the.program
initializes a counter J for the number of lines which have been printed. Then
it reads (from the user) initial values for A to E, I and L (the total number of
lines to be printed). ‘A,B and C should be single digits. D,E and L must be > O.
Each of the three sequences 30-40, 50-60, and 70-80 prints one segment of a line
using the digit specified by the user. 85 starts a new line. 90 and 100 advance
D and E as explained earlier, and 110-120 decide whether or not a sufficient nuﬁber

of lines have yet been printed. If not, a new line is started.

10-16

CDP18S020 Evaluation Kit ' COSMAC TINY BASIC

GEOMETRIC PRINT PATTERN PROGRAM

10 J=0 _

20 INPUT AsEsCesDsEsIsL
30 N=R :

40 GOZUE 140

50 M=E

€0 GOZUE 140

70 N=C

80 GOIUE 14n

85 PRINT

90 D=D-I

100 E=E+2el

110 J=J+1 ’

120 IF J<:L &0 TO 30
130 END :

140 M=D

150 GOZUE 210

160 M=E

170 GOZUE 25
180 M=D

190 GO0ZUE 210

200 RETURHM

210 FRIMNT " "3

220 M=pm-1

230 IF M:0 =070 210
240 RETURH

S0 FRIMT M3

260 M=M-1

70 IF M:0 =070 250
S0 RETURN

For this program to run properly the values of D and E should not become
too small. Nor should they be so large as to requ ire excessive line length.
The inital values should obey the following relations: 3(E+2D) < maximum line

width; If I<0, E>2|I|(L-1); If I>0, D>I(L-1).

10-17

CDP18S020 Evaluation Kit COSMAC TINY BASIC

THE USR FUNCTION

TINY BASIC includes an important fe&ture to permit you to extend its
facilities via machine langﬁage subroutines. To use this feature, you must
be familiar with many of the intricate details associated with machine language
programming. Not 6n1y must you know the instruction set for the CPU (See MPM-201,
User Manual for the CDP1802 Microprocessor), but you must also be aware of
which CPU aﬁd memory registers are reserved for TINY, which are freely available
for your use and which can act as an interface between your machine-language
program and your TINY BASIC program. We assume here that you are familiar with
the manual cited above and that you have some introductory machine language

programming experience.
The form of the USR construct within a TINY BASIC statement is as follows:
USR (expression [,expression][,expression])

where the brackets indicate that either or both of the latter two expressions may
be omitted. On encountering this form, TINY evaluates the first expression and

- transfers control to that address. (Remember that a desired hex address must be
converted into its equivalent decimal expression value, and that addresses in the
upper half of memory have negative equivalent decimal values.) If a second ex-
pression is included, it is evaluated and the resulting value is passed to the
called pfogram as the contents of CPU register 8. 1If a thiid expressionbis
included, its value is p&ssed in register A (with D also holding RA.0). The

subroutine receives control with P=3 and X=2.

Your called program must return with a SEP 5 (D5) instruction. When it
returns, its 16-bit function value is the final contents of RA.1l and D (lower 8

" bits in D) just before the SEP 5 was executed. This is why USR is called a

function. Whenever it is called, it returns a result - a number. Thus, the
USR form can appear anywhere in a TINY BASIC statement where a number can
normally appear. (Recall our previous discussion of the RND function. Exactly

the same idea applies here.)

- 10-18

CDP18S020 Evaluation Kit : COSMAC TINY BASIC

Thus, in addition to performing some machine-language function (for
example, moving a block of data), your USR program will always return a value
or result in RA.1 and D. 1In many cases, this is desi;able -- for example, when
your Subroutiné is given two arguments X and Y (in R8 and RA) and returns a
number.which is, say, the larger of the two. In other cases, however,‘your‘
USR program will not need to return a value. In that case the value returned
muét be ignored in the TINY BASIC program which called it. There are several

ways to do this. For example, if

+0*USR(..vvens)

were included in an expression, then the USR function would be executed but the

returned value would be ignored.

For your convenience, TINY itself includes four built-in subroutines which

you may want to make use of via the USR mechanism. They are as follows:
(1) USR(20,N)

Returns the decimal value of the byte at memory location N (decimal), where N
is the value of the second expression. (Note that this machine language routine

‘begins at location 14 hex.)

(2) USR(24,N,M)

Stores the value of the third expression, M (mod 256) into the byte at location N
(decimal), the value of the second expression. Also returns the value M as the

function's "value".

Examples: PRINT USR(20,3072) prints the decimal contents of memory location 0CO00
A=USR(24,3072,254) loads memory location 0COOQ with FE and also loads

the"returned value", 254, into A.
(3) USR({6)

Reads one ASCII character-from the keyboard and returns its decimal equivalent

(including parity bit if any).

10-19

CDP18S020 Evaluation Kit COSMAC TINY BASIC

(4) USR(9,0,C)

Prints the ASCII character whose code ié the right half of the (hex) value

~ of expression C. (Note: The second expression, in this case 0, is ignored.

The character to be typed must start out in a D register. Hence, the above format.
Thé third expression is passed in RA with its lower half also in'D.) This

routine happens to return a "value" 251 in all cases -- which would nofmally be ignored,

as explained earlier.
Examples: PRINT USR(6) will read a character and print its decimal equivalent.
On the printer you would see, for example, A65
for a zero parity bit (where A was typed by you).
A=A+0*USR(9,0,66) will print the character B and ignore the

returned result (251).

Register Usage and An Example USR Routine:

When you write your own USR routine, you must be careful not to modify
the contents of those registers which are used by TINY BASIC. These include
CPU registers and memory registers. Appendix B lists how the CPU registers are

used by TINY. Machine language subroutines have the free use of

RO,R1,R8,RA,RD and RF.

In addition, R2 is pointing at a free byte on the control stack.

Clearly, the memory areas used by TINY should also not be modified, except
with care. TINY uses most of the first page of the available RAM (beginning
at 0800) for its own storage. A table of the ailocation of this space is given
in Appendix C. You probably will not want to bother with any paft of 'this area
except for that which includes the A to Z variable cells. These are located
at 0882 to 08B5. Note also that, by reducing the address value stored in 0822,

you can make space for your added program and data areas in upper memory.

10-20

-

CDP18S020 Evaluation Kit COSMAC TINY BASIC

Appendix D lists some key locations at the beginning of the TINY BASIC
program itself. (Notice‘locations 6, 9, 14 and 18 which correspond to the entry
points for the built-in subroutines discussed earlier.) TINY BASIC was written
as a pure procedure (capable of execution out of ROM) -- not modified in any way
as it runs. This area should not be altered except, conceivably, for modifications
to the special character codes beginning at location F. This is discussed further

later in this manual.

Consider now an example of a USR added routine. Assume we wish to add a logical
AND operation to TINY's repertoire. The machine language routine given below will
-do the job, givén that the two arguments are passed in R8 and RA, and that the

computed result must be passed back in RA.1l and D.

98 = GHI R8 ‘Given two 16-bit arguments, this routine computes the 16-bit

52 STR R2 AND of these and returns that result. Note the use of the

S9A° GHI RA spare byte pointed to by R2 ahd the assumption that X=2 on entry.
F2 .AND , Notice also the SEP5 exit. This routine can bé stored in

BA PHI RA any available memory area.

88 GLO R8 '

52 STR R2

8A GLO RA

F2 AND

D5 SEP R5
Assuming the above program is stored at location 0C00, then if L=3072, the

statement T=USR(L,R,S) will assign to T the 16-bit AND of the values of variables
R and S.

10-21

CDP18S020 Evaluation Kit . ' COSMAC TINY BASIC

ERROR MESSAGES AND PROGRAM DEBUGGING

Error Messages:

Whenever TINY BASIC detects an error in a statement, it generates an
error message consisting of an exclamation point followed by a decimal error
nﬁmber. A listing of error numbers and their corresponding meanings'is given
in Appendix E. If the error is detected during program execution, the error
code is followed by the word AT followed by the offending statement's number.

Almost all of the errors detected by TINY are syntax errors. TINY was
in the process of interpreting a statement and found it unacceptable for some .
reason. Only two of the errors in the error list are detected duiing execution of
a statement (i.e., after its syntax has been accepted). These are errors 141 and

243.
Any other error number not listed in the table signifies a memory "full"
cdndition -- probably due to too many nested GOSUB's or an‘excessively complex

expression.

Program Debugging:

Most program execution errors are due to either incorrect flow or improper
modification of variable values. To find an error of the first kind, you must
- determine whether your program is sequencing properly -- whether certain sections
of code are indeed executed when expected.‘ Often, the insertion of dummy PRINT
statements within suspected code sections will reveal whéther the flow within the

program is proper.

The second type of error is most easily detected by inserting dummy program
stops at key point. This procedure is also useful for diagnosing incorrect flow.
A dummy stop'is an inserted END, or some other inserted staﬁement which is intent-
ionally erroneous to cause an error stdp. Once the stop occurs, you may examine
the values of key variables (using the immediate execution mode - e.g., PRINT A,B,C)
to see if they indeed have the expected behavior. 1In some cases, variable values

may be corrected, in the immediate mode, while the program is still stopped. 1In

this case, and in the case where the program behavior is proper so far, you will
want to resume the program at the point where it last stopped. An immediate or
direct GOTO, using the statement number after the stop, will permit the program
to proceed as if it had not been interrupted. ' 10-22

CDP18S020 Evaluation Kit COSMAC TINY BASIC

APPENDIX A

LOADING AND STARTING TINY BASIC

The hexa@ecimal listing given below is the TINY BASIC object program
(listed in UT4 semicolon format). 1Initially, you will have to load this file
into memory by hand fiom the keyboard and then verify that if is a faithful
copy.- While this process is time consﬁming, it needs to be done only once.
~ After memory is loaded, the contents of the first 2K bytes should be prbperly
recorded on your peripheral file storage medium. Section III of your Evaluation
Kit Manual _ contains instructions for recording a file from memory
(using UT4's ?M command) onto a Teletype's paper tape or a TI terminal's magnetic
tape cassette. If your terminal is different from either of these, you must develop
equivalent procedures to those described in the manual. Once you have correctly
recorded a copy of TINY BASIC on paper tape or tape cassette, it should be easily
reloadable by preceding the tape read with a !M from the keyboard. This is

discussed in the Evaluation Kit Manual.
Once TINY BASIC has been loaded, it may be started at one of two locations:

$P1l is the normal "cold" start. TINY BASIC initializes itself (sizes memory;
copies a control block from 000F-001B to 0813-08l1F; and marks the user program

space empty) and then delivers the : prompt.

$P3 is the "warm" start, which skips the initialization procedure and
preserves the state of RAM. It is used as a restart, when there is already
a useful program resident iﬁ RAM or when cértain control parameters have been
modified so that they are different from those which were first initialized. If,

after a "warm" start, you wish to enter a new program, tjpe‘the NEW command.

10-23

CDP18S020 Evaluation Kit ‘COSMAC TINY BASIC

0000 0130 BOCO OOED CO06 6FCO 0676 CO06 665F3
0010 1882 8020 3022 3020 S8DS 0681 0SCS 00083
0020 4838 97BA 48DS C006 S51D3 BFE2 8673 9673}
0030 83R6 93B6 46B3 46A3 9F30 29D3 BFE2 96B3;
0040 86A3 1242 B602 RESF 303B D343 ADFS 0SED;
00S0 4DED 304R 0198 01A0 021F 01DD 01F0 01D4}
0060 0481 0249 DOED 044E 0104 05A2 01D3 01D3;
0070 04AR 01D3 01D3 02CS 02DS 0303 0279 0318;
0080 0S3C 01D3 0429 036C 0D3CE 03A7 0398 039B; 2 K
0090 D40E 0460 046D 0S81 0N1B6 0267 0348 034E; TINY
ODARD 01D3 01D3 01C9 01CS 024E 0244 0241 01D3;
OOB0 FRE3 A3FS8 D0B3 D3BA FS1C AR4A B24A R24A: BASIC
0OCO BDFS 0OORD ODBF E212 FORF FBFF S2F3 EDCE;
DODD 9FF3 FCFF SFS2 3BC6 220A BDFS 23AD 82733
ONED 9273 2ASA OAT3 SDFB 123A E3F6 CAFF ODOFS:

QOF0 FEA3 Fe00 B3D3 B4BS BYFS ZAA4 FS3C ASFSS Cold start $Pl
0100 4BAY 331A Dy20 BB4D ABSY SEIE SBIFY 163ERi
0110 F4BF DV24 9F72 SBRVYC 0073 DyY22 B24D A2DFS Warm start $P3

0120 2682 7392 V3D4 02CC DY1E B94D ASEZ 49FFS
0130 3033 4BFD DV32 85FE FCBO AGFR 2Dz 22733
0140 9373 3IFTE6 4652 46R6 FOBE DSFF 103B BARGS
0150 FRIF 325C 5289 F473 9370 0038 F3F3 BeFes
01e0 FeFe FeFR FEFC S4A& 2042 FCOS FAROT Bo49s
0170 AB33 FTR39 FT399 7204 0237 DF1IE B6F4 AR9ES
0180 2D74 BS30 2DFD 0O7S2 D7V1A ADEZ F4A6 9DBES
0130 0DS2 065D 0256 202D S6FF 20RE 967F 00338
CMIR0 9BCe 02FF B985 RS20 ZD1R OBFF 2032 RASFFS
O1B0 10CV FDOS OBDS D401 CS4D RD®AR SDID SASDS
01Cco 30C® D40l CSD4 01C% BRADT 1R2D FCO1 SDADS
0100 2h4D ARDS D401 AAFE 0032 2D30 AOD4 D1AAS
D1E0 FF41 2BRO FFIR 33A0 1B3F FED4 0259 202Di
D1FD D401 ARZE AROSY BAAA D402 S44B FAOF AASYS
o200 BAFS ORARF EDID 2RAF4 ARSA 2074 BRZF SF3AS
0210 0S9A SDID 8AY2 D401 ARCE 0IFB CO0l 2D9ES
020 BA2B AARDY 01RAA 1BSE 49F3 3223 FBRO 221CS
0230 9ABE SARE CO01 RODT 2482 FS2D 9275 337FS
0240 D549 2059 49EA 4930 SSD4 0525 2055 D4013
0230 C5D4 0254 8AD4 0259 SASE D719 Frad

0zZe0 01FD SDAD 025D DSD4 01C9 AD4D EAR4D 30
0zZ70 FB2F 3266 FBE22 D402 F44E FEOD ZRTO &

080N 183 D402 CCFE 21D4 02F4 DV1E &9 A
D290 2DF7 BAD4 0315 9232 ASFS BDAS 93B3 D4
NZR0 CSDV 28FA 4DAA D403 1SFS 0704 0003 D023
OZBD DSDV 1A9Y SDDF 2nB2 4DAZ Co01 2820 41543
02Co 20AZ D402 F24S Foan IECE 20FE DV19 Fa30d
200 F3IRY FIVI C8DV 1BFE 3366 DV1S AAFZ 0DD4S
OZEQ. 0003 DF1A SAFE 22EF SRV CVFS FF30 DFV3S
O2F0 FE8R FFR0 BFDY 1E2D FC21 FC20 ZE&s SD9FS
0300 Coon 09D7 1BFR OFFD 02AAR SA3Z 97FS 20D4s
0310 02F4 2R30 ORD4 0254 DF1A ADDY 0413 3IBE2SSS
0320 FazDh D40z F457 FIBEA FESOR D402 551D D403s
0220 E38RA F&F9 2073 104D EDF1 2DED 3RAZE 12023
0240 C201l CeED4 02F4 303E DV2E 289E FERBOS 2ASES
0350 2B52 FOFF 8033 SEDF 2E2E 739 SDDS DFEES
0360 BROD ASSR v3I9B 5098 BESS AEDS D401 CSIRAS
0270 FB2O 733A 73D4 01C9 AFD4 01CS 128A FPARS
0320 1298 FBBO 7752 3ZB92 2AF1 328F 3FFe 225F3
N £33 8FFe CVPC4 19DS D404 OED4 01CS ED1DS
I