
COS'}tAC TINY BASIC 



• 'CDP18S020 Evaluation Kit COSMAC TINY BASIC 

Preface 

TINY BASIC provides the most fundamental of those functions normally 

attributed to the high-level programming language called BASIC. It is specifically 

designed for a microcomputer with minimal memory. The TINY BASIC interpreter 

program requires only 2K bytes.of storage. Thus, an Evaluation Kit with 4K of 

RAM can accomodate modest (about 100 statements in length) TINY BASIC programs. 

'l'INY BASIC is perhaps the best language for the beginning microcomputer 

programmer. It is easily learned, and elementary application programs may be 

developed quickly. For the more experienced programmer, TINY forms the kernel 

of a system whose fa.cilities may be extended indefinitely by the addition of 

machine-language subroutines (limited only by the amount of memory which is 

available). 

TINY packs a significant amount of processing capability within 2K bytes. 

For example, it includes its own line editor, and it provides a rich assortment 

of error messages to the user. However, clearly one cannot expect certain 

features which are normally available only in 8K systems~ For example, TINY 

does not do floating-point arithmetic. (Its numeric capability is limited to 

integers in the range -32768 to +32767.) It cannot directly handle arrays or 

alphanumeric strings. (On the other hand, each of these (and other) advanced 

facilities may be added via a machine-language extension}. In addition, one 

must recognize that economies in memory space used were achieved at the expense 

of processing speed. 

Generally, then, TINY BASIC may be considered as a good "budget" high-level 

language for a user with a comparable microcomputer setup. Although TINY is 

quite slow and is of limited capability, it can act .as the nucleus of a system 

whose sophistication may be indefinitely extended. 

10-1 



'. CDP18S020 Evaluation Kit COSMAC TINY BASIC 

COS MAC TINY BASIC 

INTRODUCTION 

We assume that you are already familiar with section III of the 

Evaluation Kit Manual which explains the functions available 

from the resident utility program UT4. UT4 permanently resides in 

memory locations 8000-8lFF. After it is given control (via the RESET, 

RUN U, CR or LF sequence), it types its prompt character, an asterisk, 

indicating that it is awaiting your input. Each of your input lines 

(terminated with a CR) is interpreted and executed by UT4. After dis­

posing of your input command, UT4 indicates that it is ready for new. 

input by typing another * prompt. 

One important function of UT4 is to permit you to load an arbitrary 

sequence of hexadecimaL digits (a machine language program) into an 

arbitrarY area in memory and then to invoke this program (transfer 

control to it; run it) via the appropriate $P command. Wheri your 

program completec its computation, it may relinquish control back to 

UT4 by executing a COB039 instruction (a long branch to the location 

labeled START on p.3-l6), provided all registers used by UT4 have the 

values they had when UT4 exitedf Under these conditions, a· user program 

halt (or exit} would be signified by a new * UT4 prompt. 

COSMAC 2K TINY BASIC is a program which must be loaded into the 

lowest 2K bytes of memory (locations 0000-07FF). A hexadecimal listing 

of the program and loading instructions for it appear in Appendix A. 

After TINY BASIC is made resident, control is transferred to it using 

the proper $PUT4 command (see Appendix A). Once it receives control, 

TINY BASIC delivers its prompt character, a colon, and awaits your input. 

Each time after it has properly dispo!3ed of an input line (terminated 

with a carriage return - CR), TINY BASIC again types its: prompt. 

t In particular, P should be 5. 

10-2 



• 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

If an input line does not begin with a number, TINY BASIC immediately 

interprets it and executes it. (The line is called a statement.) If the 

line begins with a number (normally followed by a statement), then TINY BASIC 

merely stores it, in the proper position, in an area of memory where the 

user program (a sequence of statements ordered by statement nUmber) is 

~~led. If the statement number is the same as one already existing in 

this area, then the new statement replaces the old one. Thus, you load a 

TINY BASIC program by entering a sequence of statements (one per line), each 

preceded by a unique statement number. The program mus~ have at least one 

END statement in it. 

After your program has been loaded, you can run it by typing a RUN 

.command (equivalent to the $P command to UT4). TINY BASIC will then interpret 

and execute your program's statlnents, in order, following the rules discussed 

in subsequent sections. When an END statement is encountered during execution, 

control will be passed back to TINY BASIC's "enter" mode, and another : prompt 

will be issued. 

Note that TINY BASIC assembles statements which begin with numbers 

into the program area in memory without any further analysis. Errors are 

detected only when execution is attempted. If an entered line consists only 

of a line number, it is considered a deletion. The·previously inserted 

statement with the same line number is·erased. Note also that 0 is not 

a valid line number. Blanks within a line have no significance to TINY. 

All spaces, until the first non-numeric character, are totally ign6red. 

After that, however, blanks are preserved in the memory copy of the 

statement (i.e., each blank character occupies one byte). 

NUMBERS 

A number is any sequence of decimal .digits optionally preceded by 

a sign. If no sign is present, the· number is assumed positive. Since 

TINY BASIC stores all numbers internally as 16-bit signed integers, 

positive values may run from 0 to 32767 (2 15 _1) and negative values may 

run from -:-1 to -32768 (_2 15 ). 

10-3 



.. 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

VARIABLES· 

A variable is any single capital letter (A~Z). Each possible variable is 

assigned a unique two-byte location in memory. The value of the variable is 

the contents of that location -- Le., a number in the range -32768 ~o +32767. 

EXPRESSIONS 

An e3Pression is a combination bf one or more numbers or variables, joined 

by operators and possibly grouped by parenthesis pairs. The permiss±ble 

operators are: 

+ addition 

- - subtraction 

* multiplication 

/ division 

Whenever TINY BASIC encounters an expression within a statement (during its 

execution) it evaluates the expression -- combining the numbers and the values 

of the variables, using the indicated operations. The exact disposition of the 

final computed value depends on the type of statement. This is discussed further 

later. 

Internal sub-expressions within parentheses are evaluated first. Usually 

parentheses make clear the order in which operations are to be performed. However, 

if there is ambiguity because parentheses are absent, TINY gives precedence to 

multiplication and division over addition and subtraction. Thus, in evaluating 

B-l4*C 

the multiplication is performed first. In cases involving two operators of equal 

precedence, evaluation would proceed from left to right. An expression may be 

optionally preceded by a sign. 

10.-4 



• 
CDP18S020 ~valuation Kit COSMAC TINY BASIC 

Note that during the evaluation of an expression, all intermediate values, 

and the final value, are truncated -- using the lowest 16 bits of the results. 

That is, expressions are evaluated modulo 216. TINY BASIC makes no attempt to 

discover arithmetic overflow conditions, except that an attempt to divide by 

zero results in an error stop. 

The follo~ing are some examples of valid expressions: 

(Note that a single variable or number is also an expression.) 

A 

123 

1+2-3 

B-14*C 

(A+B)/(C+O) 

-~28/(-32768+(I*I» 

«( (Q»» 

The following are some examples of expressions which have the same value: 

-4096 

15*4096 

32768/8 

30720+30720 

because any number in the range 32768 to 65535 (2 15 to 216_1) has a sign bit of 

l(making it negative), so that it is actually treated by TINY BASIC as if 65536 

(2 16 ) were subtracted from it. 

THE RND FUNCTION 

TINY BASIC includes the ability to generate a positive pseudo-random number 

in a specified range. Whenever it encounters the form 

RHO (expression 1, expression 2) 

during execution of a statement, TINY generates a random number in the range from 

the value of expression 1 to the value of expression 2, inclusive. The resulting 

number may be used as would any other number. In particular, the above form may 

itself be used within another expression. 

stop may result. 

If the arguments are invalid, an error 

10-5 



CDP18S020 Evaluation Kit 

THE RND FUNCTION (cont'd) 

RND (1,100) 

RND (A,B) 

are valid RND functions (assuming O<A<B). 

STATEMENT TYPES 

COSMAC TINY BASIC 

A statement normally begins with a keyword, such as PRINT or GOTO, 

indicating the type of statement. The interpretation of the remainder of 

the statement depends on this keyword. In some cases, a short form of the 

key word is also acceptable -- for example, PR instead of PRINT. 

lmM STATEMENT 

Following the keyword REM (for remark or comment) any sequence of 

characters may appear. This statement is ignored by TINY BASIC. It is 

used to· .perIt\it you to intersperse arbitrary comments or remarks within 

your program. 

END STATEMENT 

END must be the last statement executed in a program. It is used to 

halt execution and return to TINY BASIC's "enter" mode. There may be as many 

END statements ir.a program as needed. 

LET STATEMENT 

This statement has the form 

LET variable = expression 

Alternatively, the keyWord LET may be omitted entirely. Execution of this 

statement assigns the value of the expression to the variable. The following 

are valid LET statements: 

LET A - B+C 

I - I+l 

J - 0 
LET Q - RND (5,33) 



• 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

IF STATEMENT 

This statement has the form 

IF expressionl relation expression2 THEN statement 

The keyword THEN may be omitted entirely. Exe~ution of this statement 

evaluates the two expressions and compares them according to the relation 

specified. If the condition specified is TRUE, then the associated state­

ment is executed. Otherwise, the associated statement is skipped. The 

permiss.1ble relational operators are as follows: 

- equal 
< 

> 

<= 

>= 

<> or >< 

less than 

greater than 

less than or equal (not greater), 

greater than or equal (not less) 

not equal (greater than or less 'than) 

The associated statement may be any other valid TINY BASIC statement including, 

in particular, another IF statement. The following, are some valid IF statements: 

IF 1>25 THEN END 

IF A>B IF B>C 1=1+1 

(The last statement increments I only if B is between C and A.) 

TRANSFERS OF CONTROL 

TINY BASIC normally executes statements in a program in statement number 

order. The following statements may be used to alter this flow: 

(a) GOTO expression' 

The subsequent statement executed is the one whose line number equals the 

value of the exp~ession. Note that this permits you to compute' the line 

number of the next statement on the basis of program parameters during execution. 

The following are some valid GOTO statements: 

GO'l'O 100 

GO TO 200 + 1*10 

10-7 



• 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

(b) GOSUB expression 

This st.atement executes exactly as does the GOTO statement, except· 

that in addition TINY records (remembers) the statement number of the following 

statement (the one which would have been executed next, had the branch not 

taken place) . 

(c) RETURN 

This statement (which also has the short form RET) executes by transferring 

control back to the statement whose number was last recorded as the result of the 

execution of a GOSUB. This last-recorded statement number is also forgotten. 

SUBROUTINE NESTING 

A subroutine is a sub-program which is normally evoked in two or more 

places within a main program. Rather than duplicate the statements of the 

sub-program in several places, it appears only once. It is written so that it 

exits with a RETURN statement. It is evoked at any point in a program by a 

GOSUB statement which transfers control to it. 

Whenever one subroutine calls another subroutine (termed subroutine "nesting"), 

an additional "return-statement-number" is recorded. These are stored in order, 

so that every RETURN jumps back to the statement following the GOSUB which 

called it. Subroutines may be nested to any depth, limited only by the 

amount of user program memory remaining. 

PRINT STATEMENT 

This statement has the form 

PRINT printlist 

where printlist is a succession of one or more items to be printed separated 

by either commas or semicolons. The acceptable short form for PRINT is PRo 

Each print item may be either an expression or a character string enclosed in 

quotes. In the first case the value of the expression is typed. In the 

second case the character string is printed verbatim. No spaces are generated 
10-8 



• 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

between the printouts of items separated by semicolons in the PRINT statement. 

On the other hand, the printout of an item, preceded by a comma in the PRINT 

statement, begins at the next "tab setting". Tabs are automatically set every 

eight character spaces. Thus, 

PRINT 1,2,3 prints as 

1 2 

while PRINT 1:2:3 prints as 

123 

3 

Commas and, semicolons, character' strings and expressions may be mixed in one 

PRINT statement in any manner. 

Normally, the execution of a PRINT statement terminates with the generation 

of a carr~ge return and line feed to begin a new line. However, if the PRINT 

statement ends with a comma or semicolon, then the CR-LF sequence is suppressed, 

permitting subsequent PRINT statements to output on the same line or permitting 

an input message (see INPUT, next) to appear on the same line as previous output. 

The following are valid PRINT statement examples: 

PRINT "A=" :A, "B+C=" ;B+C 

PR (generates a blank line) 

PiU (prints the value of variable I) 

PRINT 1,",",Q*P;",",R/42: 

IN:PUT STATEMENT 

This statement has the form 

INPUT inputlist 

where inputlist is a succession of one or more variables separated by commas. 

The acceptable short form for INPUT is IN. Nonnally, execution of this 

statement begins with the typing of a question mark prompt indicating that 

TINY is expecting the user to type in data. The user should respond by typing 

in a line of one or more expressions separated by commas and terminated with a 

carriage return. Each input expression is evaluated and assigned to its 

associated variable in the INPUT statement. 

10-9 



• 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

If the number of requested variables in the inputlist is not satisfied 

by the number of expressions in the user's input line, a new? prompt will be issued 

asking for more input information. If the number of expressions in the user's 

input line is greater than the number of requested variables, then those input 

expressions not requested are saved internally and used to satisfy Subsequent 

INPUT requests. Thus, before a ? prompt is issued during execution of an 

INPUT instruction, TINY first checks to see if any saved expressions exist. 

If so, then these are used first - to satisfy some or all of the variables 

requesting values. Only when no saved data exists is the ? prompt issued. The 

user is cautioned to use the latter property of the INPUT statement with care. 

EXample: Suppose statement INPUT X,Y,Z is executed, and the user responds 

by typing A,C,B. The results are the same as if X-A, Y-C and Z-B had been 

executed. Note that commas are required in the user's input line only to avoid 

ambiguity. If he had entered ACB, the same results would have occurred. On 

the other hand, an input line of +1 -3 +6 0 in response to INPUT A,B,C,D will 

result in A being given the value 58 and a new ? prompt issued for values for 

B,C and D. 

SYSTEM CONTROL STATEMENTS 

The statements listed below are normally not included as part of a program. 

That is, they are normally entered without line numbers: 

(a) NEW 

. Execution of this statement clears the program area in memory. It is used 

before entering a new program. 

(b) RUN 

Begin program execution at the first (lowest) line number. Note: If RUN 

is followed by a comma followed by a sequence of one or more expressions 

(separated with commas), then the expression list is treated as an initial 

input line -- which will be scanned first whenever INPUT statements are 

executed. (See discussion of INPUT statement.) 

(c) LIST 

LIST expression 

LIST expression, expression 10-10 



• 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

SysTtM CONTROL STATEMENTS (cont'd) 

(c) (cont'd) 

The LIST statement causes part or all of a stored user program to be 

printed. If no parameters are given, the whole program is listed. A 

single expression parameter is evaluated to a line number. If the line 

exists, it is printed. If both .parameters are given, all lines wi.th 

numbers in the range specified are printed. 

10-11 



CDP18S020 Evaluation Kit COSMAC TINY BASIC 

SUMMARY OF COSMAC TINY BASIC REPERTOIRE 

The following should serve as your short form quide to the facilities offered 

by TINY BASIC. Characters enclosed in brackets [ ] are optional and may be omitted. 

FORM OF STATEMENT BRIE!' EXPLANATION OF EXECUTION 

REM any comment 

END 

ILET] variable = expression 

IF expr reI expr [THEN] statement 

GOTO expression 

GOSUB expression 

RET [URN] 

PR[INT] printlist 

IN[PUT] inputlist 

NEW 

RUNI,expression sequence] 

LISTlexpressionJI,expression] 

where: 

Iqnored. 

Halt execution and return to "enter" mode. 

Assiqn the value of the expression to the vari­
abh 

If the relation between the values of the 
expressions is TRUE, execute the statement. 
Otherwise, skip it. 

Jump to the statement whose number is the 
expression's value. 

Save the statement number of the next statement 
in sequence. Then execute a GOTO. 

Jump to the last saved statement number 
(see GOSUB) and "unsave" this number. 

Type the items in the printlist. Type values 
of expressions. Type quoted strings verbatim. 
Horizontal TAB on comma. 

Read and evaluate expressions from the keyboard 
and assign them in order to the variables 
specified in the inputlist. 

Clear the program area. 

Start execution at first statement. (Save 
the expression sequence to satisfy 
subsequent INPUT's.) 

Print entire program, or one selected line, 
or a range of lines. 

number = -32768 to +32767; variable = single capital letter. 

expression = one or more numbers or variables (possibly grouped by parentheses) 
joined by operators +,-,*, or I. 

relations are =,>,<,<-,>-,<>, or >< 

printlist = one or more expressions or quoted strings separated by commas or semicolons. 

inputlist = one or more variables separated by commas. 

expression sequence = one or more expressions separated by commas. 

NOTE: The RND(exprl,expr2) function generates a positive random number in the range 
between the values of the expressions. This function may be used anywhere in 
olace of a number.. 1 n_1 ? 



CDP18S020 COSMAC TINY BASIC 

IMMEDIATE EXECUTION VS. PROGRAM MODE 

One important use of the immediate execution mode (entering a statement 

without a line number) is to permit line-at-a-time testing. LET, IF and PRINT 

can be demonstrated this way. Due to the way TINY BASIC buffers its input lines, 

the INPUT statement cannot be directly executed for more than one variable at 

a time, and if the following statement is typed in without a line number, 

INPUT A,B,C 

the value of B will be copied to A, and only one value (for C) will be requested 

from the console/terminal. Similarly, the statement, 

INPUT X,1,Y,2,Z,3 

will execute directly (loading X,Y, and Z with the values 1,2,3), requesting no input, 

but with a line number,in a program, this statement will produce an error stop after 

requesting one value. 

Clearly there is no point to executing REM or END in the immediate mode. 

Furthermore, GOSUB and RETURN are normally meant for the program mode. On the 

other hand, an immediate GOTO has the same effect as if RUN were typed, but execution 

may begin at other than the program's first statement. 

Similarly, the stored program should not contain a NEW statement (self destruct!), 

and a stored RUN statement will be equivalent to a GOTO to the first statement. 

On the other hand, a LIST statement may be included as part of a program and used 

for printing large text strings, such as instructions to the operator. 

10-13 



CDP18S020 Evaluation ~it COSMAC TINY BASIC 

PBOGRAMMING EXAMPLES 

The following two simple programs are designed to give you examples of 

TINY BASIC in action. The first uses most of the statements in TINY's repertoire. 

The second demonstrates particularly the use of subroutines. REMarks are omitted 

from the listings to keep them short. Instead, each program is accompanied by 

a detailed explanation of its functioning. (It should be emphasized that 

omission of comments is generally bad documentation practice, but it suits our 

present objectives.) Each program can be entered in a few minutes. It is 

recommended that you run both of them to gain experience with the system. 

I. Arithmetic Drill Pro~ram 

This program generates a random sequence of arithmetic problems. After ·the 

program prints the problem, you respond with your solution. The program tells 

you whether your answer was. correct or not (providing the right answer in the 

latter case) and then proceeds to generate a new problem, and so on. 

Stepping through the program listed below: first, three random numbers are 

generated. The value of F (1 to 4) will be used to decide whether this will be 

an add, subtract, multiply or divide problem. The range of possible values for 

the arguments A and B was chosen to prevent the possiblity of overflow under two 

conditions: First, 181*181 is still less than 32767. Second, division by zero 

is prevented. Because TINY BASIC discards division remainders, the fourth state­

ment is included to keep the division problems interesting. It says: If this 

is a division problem where the quotient would ordinari'ly come out as zero (true 

for many of the A,B combinations that might be generated), arbitrarily increase the 

size of the dividend (to a maximum of 18100 in this case) to make the problem 

non-trivial. Statement 50 begins the presentation of the problem to the user by 

printing an encouraging message followed by the value of the first argument. 

Notice that the final semicolon keeps the printer on the same line without advancing 

the carriage further. 

Statement 60 does a four-way branch based on the value of F (the arithmetic 

function selected). Th~s, control passes next to one of the following statement 

numbers: 70, 100, 130 or 160. Each of these statements begins a short sequence 

which prints the sign for the arithmetic operation and then computes the proper 
10-14 



CDP18S020 Evaluation Kit COSMAC TINY BASIC 

I. Arithmetic Drill Proqram (cont'd) 

function, placing the result in C. (Notice the final semicolons again, 

in the PRINT statements.) No matter which path iataken, control paBses next to 

statement 180, whicih prints the second argument value· followed by an - sign. 

The presentation of the problem to the user ia now complete, and the INPUT 

statement at 190 delivers a·1 prompt on the same print line and reads t~e 

user's answer intoD. Statement 200 congratulates the user on a correct answer, 

while 210 points out that his answer was incorrect and provides him with the 

proper result. The commas at the end of both PRINT statements here again inhibit 

a new line from starting, but they space over to the next tab setting, where a new 

problem is posed as a result of the loop (at 220) back to the top. 

1 0 A=~'t"fD 0:: 1 ~ 181) 
20 E:::;F.:tlrt 0:: 1 ~ 1:31) 
30 F=F.:ND 0:: 1 ~ 4) 
40 IF F=4 IF A/B<1 A=A.100 
SO F'RItH "TF.:Y THIS; Ot-iE: "; A; 
6Q GO TO 40+F.30 . 
70 p~~Ir"iT "+"; 
80 C=A+E: 
90 GO TO 1:30 
100 pF.:Hn "-"; 
110 C=A-E: 
120 GO TO 180 
130 PRHn ..... ; 
140 C=A+E: 
150 GO TO 180 
160 F'F.: an" ..... "; 

. 170 C=A.····E: 
180 F'PHn E:; "="; 
190 HiPUT II 
200 IF D=C PPItH "PIGHT!"~ 
210 IF D<>C PPINT "WRONG. COPPECT ANSWEP IS ";C, 
220 GO TO 10 

Notice that an END statement is not present here -- contrary to earlier advice. 

The nature of this program 1.s such that TINY will never go past the last statement. 

The program as written loops endlessly, and only· under these conditions is the 

omission of an END permissible. 

Running this program should give you some practice in learning how TINY divides. 
10-15 



• 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

II. GeOmetric Print Pattern Program 

This program is designed to print three identical, trape.zoidal patterns 

across the page, each filled with repeated imprints of the same numeric digit. 

The user can specify which digit is to fill each trapezoid and, for all three, 

the number of characters across its top, the slope of its sides (pqsitive or 

negative) and its height. He can also specify the spacing between the patterns 

on the page. 

Since the. pr.inter prints line-by-line, the program prints the pattern in 

a scanning mode. Every line consists of a sequence of three identical segments, 

and each segment contains 0 spaces followed by E identical digits followed by 

D spaces again. The values of 0 and E vary from line to line. For each new line, 

D is decremented by a value I (positive or negative) and E is incremented 

by 2*I (to keep the pattern symmetrical). 

To analyze the program listed below, let us begin by identifying its 

subroutines. Reading from the bottom up, the subroutine from 250 to 280 prints 

the digit N, Mtimes across (notice the semicolon). Similarly, the subroutine 

from 210 to 240 prints a sequence of M spaces. FiJ1ally'; the subroutine from 

140 to 200 prints 0 spac.es followed by E digits (all N) followed again by 0 spaces. 

Notice that this subroutine calls the other two. 

The main part of the program runs from 10 to 130. First, the program 

initializes a counter J for the number of lines which have been printed. Then 

it reads (from the user) initial values for A to E, I and L (the total number of 

lines to be printed). A,B and C should be single digits. O,E and L must be > O. 

Each of the three sequences 30-40, 50-60, and 70-80 prints one segment of a line 

using the digit specified by the user. 85 starts a new line. 90 and 100 advance 

o and E as explained earlier, and 110-120 decide whether or nota sufficient number 

of lines have yet been printed. If not, a new line is started. 

10-16 



• 
CDP18S020 Evaluation Kit 

GEOMETRIC PRINT PATTERN PROGRAM 

10 J=O 
20 INPUT A~E~C~D,E,I,L 
30 ti=A 
40 GOS:UE: 140 
50 ti=E: 
60 GO::I...J}:: 140 
70N=C 
80 GO:SlIE: 14 I) 
85 PRItH 
90 II=II-I 
100 E=E+2+I 
110 J=.J+1 
120 IF J<>L GO TO 30 
130 EtW 
140 ,.1=[1 
150 GO:::UE: 210 
160 M=E 
170 GO:::UE: 250 
180 M=It 
190 GOS:UE: 210 
200 PETUF."t-i 
21 0 ' F'P un " "; 
220 t'l=t'l-1 
230 IF M)O GoTo 210 
240 RETUPN 
250 PRItH n; 
260 t'1=t'1-1 
270 IF M>O GoTo 250 
280 f;:ETURt'i 

COSUAC TINY BASIC 

For this program to run properly the values of D and E should not become 

too small. Nor should they be so large as to require excessive line length. 

The inital values should obey the following relations: 3 (E+2D) < maximum line 

width; If 1<0, E>2III (L-l); If 1>0, D>1(L-l). 

10-17 



• 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

THE USR FUNCTION 

TINY BASIC includes an important feature to permit you to extend its 

facilities via machine language subroutines. To use this feature, you must 

be familiar with many of the intricate details associated with machine language 

pr9gramming. Not only must you know the instruction set for the CPU (See MPM-20l, 

User Manual for the COPlB02 Microprocessor), but you must also be aware of 

which CPU and memory registers are reserved for TINY, which are freely available 

for your use and which can act as an interface between your machine-language 

program and your TINY BASIC program. We assume here that you are familiar with 

the manual cited above and that you have some introductory machine language 

programming experience. 

The form of the USR construct within a TINY BASIC statement is as follows: 

USR (expression I,expression] I,expression ]) 

where the brackets indicate that either or both of the latter two expressions may 

be omitted. On encountering this form, TINY evaluates the first expression and 

transfers control to that address. (Remember that a desired hex address must be 

converted into its equivalent decimal expression value, and that addresses in the 

upper half of memory have negative equivalent decimal values.) If a second ex­

pression is included, it is evaluated and the resulting value is passed to the 

called program as the contents of CPU register B. If a third expression is 

included, its value is passed in register A (with 0 also holding RA.O). The 

subroutine receives control with P=3 and X=2. 

Your called program must return with a SEP 5 (05) instruction. When it 

returns, its 16-bit function value is the final contents of RA.I and 0 (lower B 

bits in D) just before the SEP 5 was executed. This is why USR is called a 

function. Whenever it is called, it returns a result - a number. Thus, the 

USR form can appear anywhere in a TINY BASIC statement where a number can 

normally appear. (Recall our previous discussion of the RND function. Exactly 

the same idea applies here.) 

10-18 



• 
CDP18S020 Evaluation Kit COSHAC TINY BASIC 

Thus, in addition to performing some machine-language function (for 

example, moving a block of data), your USR program will always return a value 

or result in RA.l and D. In many cases, ,this is desirable -- for example, when 

your subroutine is, given two arqumentsX and Y (in R8 and RA) and returns a 

,number which is, say, the larger of the two. In other cases, however, your 

USR program will not need to return a value. In that case the value returned 

must be ignored in the TINY BASIC program which called it. There are several 

ways to do this. For example, if 

+O*USR( ••••••• ) 

were included in an expression, then the USR function would be executed but the 

returned value would be ignored. 

For your convenience, TINY itself includes four built-in sUbroutines which 

you may want to make use of via the USR mechanism. They are as follows:, 

(1) USR(20,N) 

Returns the decimal value of the byte at memory location N' (decimal), where N 

is the value of the second expression. (Note that this machine language routine 

'begins at location 14 hex.) 

(2) USR(24,N,M) 

Stores the value of the third expression, M (mod 256) into the byte at location N 

(decimal), the value of the second expression. Also returns the value M as the 

function's "value". 

Examples: PRINT USR(20,3072) prints the decimal contents of memory location OCOO 

A=USR(24,3072,254) loads memory location ceoo with FE and also loads 

the"returned value", 254, into A. 

(3) USR(6) 

Reads one ASCII character· from the keyboard and returns its decimal equivalent 

(including parity bit if any). 

10-19 



• 
CDP18S020 Evaluation Kit cbSMAC TINY BASIC 

(4) USR(9,0,C) 

Prints the AsCII character whose code is the right half of the (hex) value 

of expression C. (Note: The second expression, in this case 0, is ignored. 

The character to be typed must start out in a D register. Hence, the above format. 

The third expression is passed in RA with its lower half also in D.) This 

routine happens to return a "value" 2S1 in all cases -- which would normally be ignored, 

as explained earlier. 

Examples: PRINT USR(6) will read a character and print its decimal equivalent. 

On the printer you would see, for example, A6S 

for a zero parity bit (where A was typed by you) . 

A=A+0*USR(9,0,66) will print the character B and ignore the 

returned result (251). 

Register Usage and An Example USR Routine: 

When you write your own USR routine, you must be careful not to modify 

the contents of those registers which are used by TINY BASIC. These include 

CPU registers and memory registers. Appendix B lists how the CPU registers are 

used by TINY. Machine language subroutines have the free use of 

RO,Rl,R8,RA,RD and RF. 

In addition, R2 is pointing at a free byte on the control stack. 

Clearly, the memory areas used by TINY should also not be modified, except 

with care. TINY uses most of the first page of the available RAM (beginning 

at 0800) for its own storage. A table of the allocation of this space is given 

in Appendix c. You probably will not want to bother with any part of <this area 

except for that which includes the A to z variable cells. These are located 

at 0882 to 08BS. Note also that, by reducing the address value stored in 0822, 

you can make space for your added program and data areas in upper memory. 

10-20 



.. 
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

Appendix D lists some key locations at the beqinninq of the TINY BASIC 

proqramitself. (Notice locations 6, 9, 14 and 18 which correspond to the entry 

points for the built-in subroutines discussed earlier.) TINY BASIC was Written 

as a pure procedure (capable of execution out of ROM) -- not modified in any way 

as it runs. This area should not be altered except, conceivably, for modifications 

to the special character codes beqinninq at location F. This is discussed further 

later in this manual. 

Consider now an example of a USR added routine. Assume we wish to add a logical 

AND operation to TINY's repertoire. The machine language routine given below will 

. do the job, given that the two arguments are passed in R8 and RA, and that the 

computed result must be passed back in RA.l and D. 

98 GHI R8 Given two l6-bit arguments, this routine computes the l6-bit 

S2 STR R2 AND of these and returns that result. Note the use of the 

9A GHI RA spare byte ~inted to by R2 and the assumption that X=2 on entry. 

F2 AND Notice also the SEPS exit. This routine can be stored in 

BA PHI RA any available memory area. 

88 GLO R8 

S2 STR R2 

SA GLO RA 

F2 AND 

D5 SEP R5 

Assuming the above program is stored at location OCOO, then if L=3072, the 

statement T=USR(L,R,E) will assign to T the l6-bit AND of the values of variables 

R and S. 

10-21 



CDP18S020 Evaluation Kit COSMAC TINY BASIC 

ERROR MESSAGES AND PROGBAMDEBUGGING 

Error Messages: 

Whenever TINY BASIC detects an error in a statement, it generates an 

error message consisting of an exclamation point followed by a decimal error 

number. A listing of error numbers and their corresponding meanings is given 

in Appendix E. If the error is detected during program execution, the error 

Code is followed by the word AT followed by the offending statement's number. 

Almost all of the errors detected by TINY are syntax errors. TINY was 

in the process of interpreting a statement and foUnd it unacceptable for some 

reason. Only two of the errors in the error list are detected during execution of 

a statement (Le., after its syntax has been accepted). These are errors 141 and 

243 •. 

Any other error number not listed in the tabl.e siCJllifies a memory "full" 

condition ~- probably due to too many·nested GOSUB's or an excessively complex 

expression. 

Program Debugging: 

Most program execution errors are due to either incorrect flow or improper 

modification of variable values. To find an error of the first kin~, you must 

determine whether your program is sequencing properly -- whether certain sections 

of code are indeed executed when expected. Often, the insertion of dummy PRINT 

statements within suspected code sections will reveal whether the flow within the 

program is proper. 

The second type of error is most easily detected by inserting dummy program 

stops at key point. This procedure is also useful for diaCJllosing incorrect flow. 

A dummy stop is an inserted END, or some other inserted statement which is intent­

ionally erroneous to cause an error stop. Once the stop occurs, you may examine 

the values of key variables (using the immediate execution mode - e.g., PRINT A,B,C) 

to see if they indeed have the expected behavior. In some cases, variable values 

may be corrected, in the immediate mode, while the program is still stopped. In 

this case, and in the case where the program behavior is proper so far, you will 

want to resume the program at the point where it last stopped. An immediate or 

direct GOTO, using the statemertt number after the stop, will permit the program 

to proceed as if it had not been interrupted. 10-22 



CDP18S020 Evaluation Kit COSMAC TINY BASIC 

APPENDIX A 

LOADING AND STARTING TINY BASIC 

The hexadecimal listing given below is the TINY BASIC object program 

(listed in UT4 semicolon format). Initially, you will have to load this file 

into memory by hand from the keyboard and then verify that it is a faithful 

copy. While this process is time consuming, it needs to be done only once. 

After memory is loaded, the contents of the first 2Kbytes should be properly 

recorded on your peripheral file storage medium. Section III of your Evaluation 

Kit Manual contains instructions for recording a file from memory 

(using UT4's ?M command) onto a Teletype's paper tape or a TI terminal's magnetic 

tape cassette. If your terminal is different from either of these, you must develop 

equivalent procedures to those. described in the manual. Once you have correctly 

recorded a copy of TINY BASIC on paper tape or tape cassette, it should be easily 

reloadabie by preceding the tape read with a !Mfrom the keyboard. This is 

discussed in the Evaluation Kit Manual. 

Once TINY BASIC has been loaded, it may be started at one of two locations: 

$Pl is the normal "cold" start. TINY BASIC initializes itself (sizes memory; 

copies a control block from OOOF-OOIB to OSI3-0SlF; and marks the user program 

space empty) and then delivers the : prompt,. 

$P3 is the "warm" start, which skips the initialization procedure and 

preserves the state of RAM. It is used as a ~start, when there is already 

a useful program resident in RAM or when certain control parameters have been 

modified so that they are different from those which were first initialized. If; 

after a "warm" start, you wish to enter a new program, type the NEW command. 

'10-23 



~ 

CDP18S020 Evaluation Kit COSMAC TINY BASIC 

0000 0130 BOCO OOED C006 6FCO 0676 C006 665F; 
0010 1882 8020 3022 3020 58D5 0681 08C8 0008; 
0020 4838 97BA 48D5 C006 51D3 BFE2 8673 9673; 
0030 83A6 93B6 46B3 46A3 9F30 29D3 BFE2 96B3; 
0040 86A3 1242 B602 A69F 303B D343 ADF8 08BD; 
0050 4DED 304A 0198 01AO 021F 01DD 01FO 01D4; 
0060 0481 0249 OOED 044E 0104 05A2 01D3 01D3; 
0070 04AA 01D3 01D3 02CS 02D5 0303 0279 0318; 
0080 053C 01D3 0429 036C 03CB 03A7 0398 039B; 2 K 
0090 040E 046,) 046D 0581 01B6 0267 0:348 034B; 

TINY OOAO 01D3 01D3 01C9 01C5 024E 0244 0241 01D3; 
OOBO F8B3 A3F8 OOB3 D3BA F81C AA4A· B24A A24A; BASIC 
OOCO BDF8 OOAD ODBF E212 FOAF FBFF 52F3 EDC6; 
OODO 9FF:3 FCFF 8F52 3BC6 220A BDF8 23AD 8273; 
OOEO 9273 2A2A OA73 8DFE 123A E3F6 C8FF OOF8; 
OOFO F2A.3 F800 B3n3 B4B5 B7F8 2AA4 F83C ASF8; Cold start $P1 
0100 4BA7 3:31A D720 BB4D AB97 SB1B 5BII7 168B; 

$P3 0110 F4BF D724 9F73 9B7C 0073 D722 B24D A2Dn Warm start 
0120 2682 7:392 73D4 02CC D71E B94D A9E2 49FF; 
0130 30:3:3 4BFD D733 85FE fCBO A6F8 2D22 2273; 
0140 9:37:3 97B6 4652 46A6 FOB6 D5FF 103B 6AA6; 
0150 FA1F 325C 5289 F473 997C 00:;:8 737~: 86F6; 
0160 F6F6 F6FA FEFC 54A6 :;:042 FC08 FA07 B649; 
0170 Fi633 7A89 7399 73D4 0237 D71E 86F4 A'~96; 

0180 2D74 B930 2DFD 07S2 D71A ADE2 F4A6 9DB6; 
0190 OD52 065D 0256 302D 86FF 20A6 967F 00:38; 
01AO 96C2 027F B986 A930 2D1B OBFF 2032 A9FF; 
OlBO 10C7 FD09 OBD5 D401 C54D AII'~A 5D1D 8A5D; 
01CO 30C9 D401 C5D4 01C9 BAD7 lA2D FCOl 5DAD; 
01DO 2D4D AAD5 D401 AAFB 011:32 2D:30 AOD4 (llAA; 
OlEO FF41 3BFrO FF1A :33AO lB9F FED4 0259 302D; 
01FO D401 AA:;:B A097 BAAA D402 544B FAOF AA97; 
0200 BAF8 OAAF EDlIl 8AF4 AA9A 2D74 BA2F 8F3A; 
0210 059A 5D1D 8A73 D401 AAC3 01FB COOl 2D9B; 
0220 BA8B AAD4 01AA lB52 49F:3 .-,,-..-,.-:. .jC,c. __ , FB80 :321 C; 
0230 9ABB ~AAB COOl AOD7 2482 F52D 9275 337F; 
0240 D549 :3059 49BA 4930 55D4 0525 :3'055 D401 ; 
0250 C5D4 0254 8AD4 0259 '~A52 D719 F7:3:::: 7FF8; 
0260 01F5 5DAD 025D D5D4 01C9 AD4D BA4D :3055; 
0270 FB2F :3266 FB22 D402 F44B FBOD 3A70 2';'D7; 
0280 l8B8 D402 CCF8 21D4 02F4 D71E :31~F7 AA99; 
0290 2D77 BAD4 0:315 9::::;:2 A9F8 BDA9 93B';" D402; 
02AO C5D7 28BA 4DAA D403 15F8 07D4 0009 D402; 
02BO D5D7 lA97 5DD7 26B2 4IIA2 COOl 2::;:20 4154; 
02CO 20A3 D402 F249 FC80 ::::BC2 :30F2 D71';" F880; 
02DO 73'37 7373 C8D7 lBFE :~::36E, D715 AAF8 ODD4; 
02EO 0009 D71A 8AFE 32EF 2A97 C7F8 FF30 DF7:3; 
02FO F88A FF80 BFD7 1B2D FC81 FC80 :3B66 5D';"F; 
0300 COOO 09D7 1BFA 07FD OBAA 8A:32 97FB 20D4; 
0310 02F4 2A:30 OAD4 0254 D71A ADD4 0413 :3E:25; 
0320 F82D D402 F497 73BA FBOA D402 551D 1141):3 ; 
0:;::30 E:38A F6r9 :3073 -lD4D EDF1 2D2D 3A2E 1202; 
0340 C201 C2D4 02F4 30:3E D72E :389B FBOB :3A5E; 
0:350 8B52 FOFF 80:33 5ED7 2E8B 739B 5DD5 D72E; 
0360 B80D A88B 739B 5D98 BB88 ABD5 D401 C59A; 
0::::70 FB80 ?38A 73D4 01C9 AFD4 01e5 128A F7AA; 
0:3:30 129A FB80 7752 3B92 8AFl 328F 8FFE, 3E:8F; 
0390 F6:38 8FF6 C7C4 19D5 D404 OED4 01C5 .ED1D; 
1):3 A 0 8AF4 739A 745D D5D4 01C5 F810 AF4D B80D; 
03BO A80D FE5D 2DOD 7E5D D404 223B CSED lD88; 
03CO F473 9874 5D2F 8F1D 3ABl D5D4 01C5 9A52; 
03DO BAFl C202 7FOD F373 D404 132D 2DD4 041:3; 
03EO lD9? C897 73AA BAF8 l1AF ED8A F752 2D9A; 10-24 
03FO 773E: F6BA 02AA lD1D l.DFO 7E73 F07E 7:38A; 



~ 

CDP18S020 Evaluation Kit COSMAC TINY BASIC 

0400 7ED4·0424 2F8F CA03 EA12 02FE 3B21 D71H; 
0410 AV30 lsEIfi"OFE 3B21 lI197 F773 9777 5DFFI 
0420 00D5 8AFE AA9A 7EBA D5D7 18C2 02Bl 4BFBI 
0430 OD3A 2ED4 0598 324B D400 OC33 46D7 lCB9; 
0440 4DA9 D717 5DII5 D71E B94I1 A9CO 027F D7201 
0450 BB4D ABD4 0598 3241:: II71C 8973 995D 3042; 
0460 D404 FE32 38D7 288A 739A 5D30 4BD4 048B; 
0470 42BA 02AA D726 827:;: 9273 II405 013A 6531); 
0480 88D4 ")48B 42B9 02A9 COOl 2DD7 2212 1282; 
0490 FC02 F:32D 3A9C 927C 00F3 324B 12D5 D716; 
04AO ~:E:97 FED7 1A97 765D :~:OB2 F::::~:O ABII4 0254; 
04BO 9tlBB D400 06FA 7F:32 B'-'C"'-' C-_Ie. FB7F 32B2 FB75; 
04CO :329E . FB19 32A1 D7t:3 02F3 32I17 2D02 F3:3A; 
04DO DD2B 8BFF :3033 B2Ft: 30AB FSOD 3:::02 5BD7; . 
04EO 198B F73B ECF8 07D4 02F4 OB3S 4BFB OD3A; 
04FO B2D4 02D5 D71S 8B5I1 FS::;:O ABCO 01C5 II401 ; 
0500 C5:3A 529A' F1C2 027F D720 BE:4D FtBD4 059S; 
0510 C6SD D5ED SAF5 529Ft 2D75 E2Fl 3:;:12 4BFB; 
0520 OD3Ft lE30 ODD4 052S D401 C54D B84D Ft84D; 
0530 BEAD Ft68D 52D7 1902 5DFtD 8FtD5 D72C SB73; 
0540 ';.g5D II404 FED7 2ASB 7:;:';' E: 7:3D4 04FE 2B2B; 
i)550 D72Ft SBF7 2D9B 773~: 7B4B BFt4E: FtFt3Ft 629A; 
0560 327B D403 15F8 2DFB ODD4 02F4 D400 (11::33; 
0570 7B4B FBOD :~:AE,7 D402 D530 50D7 2C1::E: 4DAB; 
05S0 D5D7 2tSE:2 7::::92 5DD7 1:::2D CED7 2SAFt 4D12; 
0590 12E2 7~:8A 73CO 012D D727 4B5D 1D4B 73F1 ; 
05AO IDD5 D403 5ED4 04FE FCFF 97FtF :~::3BFt ';'BBD; 
05BO SBFtD 2F2F 2F4D FBOD :~:FtB4 2B2B D403 5ED7; 
05CO 280B FBOD 735D 32I1';' 9A5D lD8Ft 5D9B BFt8B; 
05DO FtFtlF IFIF 4AFB OD:3Ft II:~:D7 2EBFt 4DAFt n724; 
05EO 8AF7 FtFt2I1 9A77 BAlD SFF4 BFSF FFt80 CEF8; 
05FO F'F2n 74E2 73B8 9F73 5282 F59S 5292 75C3; 
06.00 027E SF32 3052 FE3B lEn7 2EBF 4DFtF E2F7; 
0610 FtS9F 7COO B848 5F1F lA9Ft 3A15 3030 9FFtF; 
OE,20 ';'8BF D724 B84D A82Ft EF08 2873 lFt9Ft :;:Ft29; 
0630 D724 1242 7302 5DD7 2EBFt 4DFtFt D728 AFFl ; 
0640 324E 8F5Ft lA4D 5FtlFt 4B5Ft FBOn :3Ft47 C002; 
0650 B573 5297 BA2D 43D5 5n2D 88FFt OFF9 605D; 
0660 FFt08 CEC4 12DD FCOO ::::76E FFOO 3F6C D5D7; 
0670 118D 73CO 8140 D712 327E DC17 2D5D C08U 
0680 Ft424 3Ft91 2710 E159 C32Ft 562(: 8Ft47 4F54; 
0690 CF30 DOlO llEB 6C8C 474F 5355 C230 DOlO; 
(l6AO 11EO 1416 8B4C 45D4Ft080 BD30 DOEO 131D; 
06BO 8C50 D283 494E D4El ·6285 BA38 5338 5583; 
06CO Ft221 6:3:30 D020 83AC 2262 84BB E167 4A83; 
06DO DE24 93EO 231D 9149 C630 D031 lF30 D084; 
06EO 5448 45CE lClD 380B 9B49 CE83 5055 D4AO; 
06FO 10E7 24:3F 2091 27El 5981 AC30 n013 1182; 
0700 AC4D·E01D 8A52 45D4 8355 52CE E015 lD85; 
0710 454E C4EO 2D97 5255 CE10 1138 OA84 4E45; 
0720 D72B 9F4C 4953 D4E7 OAOO 010A 7FFF 6530; 
0730 D030 CBEO 2400 0000 0000 OOOA 80lF 2493; 
0740 231D 8452 45CD lDAO 80Bn 382A 82AC 620B; 
0750 2F85 AD30 E617 6481 FtB30 E685 AB30 E618; 
0760 5A93 AD30 E619 5430 F585 AA30 F51A 5A8S; 
0770 AF30 F51B 542F 8852 4E44 A831 1539 448E; 
0780 5553 52A8 30DO 30CB 30CB 311C 2E2F A212; 
0790 2FCl 2F80 A865 30DO OB80 AC30 D080 A92F; 
07AO 84BD 0902 2F83 3CBE 7485 3CBD 0903 2F84;· 
07BO BC09 012F 853E BD09 062F 853E BCO.9 052F; 
07CO 80BE 0904 2F19 170A 0001 1809 8009 8012; 
07DO OA09 291A OAIA 8518 0813 0980 1203 0102; 
07EO 316A 3175 lB1A 1931 7518 2FOB 0105 0104; 
07FO OBOl 0701 062F OB09 060A 0000 lC17 2FOO 
• 10-25 



CDP18S020 Evaluation Kit COSMAC TINY BASIC 

APPENDIX B 

REGISTER ALLOCATIONS 

Registers RO and Rl are not used by TINY BASIC in any way. In addition, 

the program makes no reference to Q or EFl,2,3 or 4. All character I/O is 

funnelled through a vector near the beginning of the program. The user may 

request the performance of INP or OUT instructions as part of the BASIC p~ogram, 

but these are up to the user's discretion. 

The other registers used by TINY are as follows: 

2 Control stack pointer. 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

Inner interpreter Program Counter. 

call 'linkage pc. 

Return linkage PC. 

Top of control stack; =address of caller. Also holds branch address. 

Byte Fetch pc. 

Temporary work register. Receives second argument in USR call. 

OUter interpreter Program Counter. -address of next IL opcode. 

l6-bit accumulator and work register. Contains third argument 

of USR calls, and part of response from USR calls. 

BASIC Pointer. Points to next token. 

Timing subroutine in Terminal I/O. 

Workspace memory pointer. =Expression Stack Pointer in USR calls. 

Subroutine linkage temporary and Terminal timing constant. 

Temporary work register. 

Machine langu~ge subroutines called via the USR function have the free use· of 

RO,Rl,R8,RA,RD,RF. 

10-26 



CDP18S020 Evaluation Kit COSMAC TINY BASIC 

0812 

0813 

0814 

0815 

0816 

OS17 

0818 

0819 

08lA 

08lB 

08lC-081D 

08lE-OalF 

0820-0821 

0822-0823 

0824-0925 

0826-0827 

0828-0a~9 

082A-082D 

082E-082F 

0830-087F 

0880-08al 

0882-08B5 

APPENDIX C 

USE OF FIRST PAGE OF USER RAM BY TINY BASIC 

UT3/UT4 output delay flag 

Copy of BACKSPACE code 

Copy of CANCEL code 

Copy of Pad code 

Copy of Tape Mode Enable 

Copy of Spare stack Space 

Execution mode flag 

End of input line 

Expression Stack pointer 

Output Control 

Saved address for NX 

Copy of IL base address 

Lowest address of user program space 

Highest address of user program space 

End of user program + stack reserve 

Top of GOSUB stack 

Current Line number in BASIC 

Temporary 

Input line pointer 

Input line buffer and expression computation stack 

Random Number Generator seed 

BASIC variables A-Z 

Note: Each variable occupies two bytes beginning at a displacement in the 

page which is twice its ASCII code. 

Pisplacement 

0082 
0084 

. 
00B4 

Variable 

A 
B 

Z 

10-27 



CDP18S020 Evaluation Kit 

APPENDIX 0 

ALLOCATIONS IN LOW RAM 

0001 Cold Start 

0003 Warm Start 

0006-0008 LBR to character input 

0009-000B LBR to character output 

OOOC-OOOE LBR to Break test 

OOOF Backspace code 

0010 Line Cancel code 

0011 Pad character 

COSMAC TINY BASIC 

0012 Tape Mode enable flag (hex 80=enabled) 

0013 Space stack size 

0014 Byte fetch subroutine 

0016 Double byte fetch entry vector 

0018 Byte store Subroutine 

OO~-OOlB Address of IL 

OOlC-OOlO User space start for scan 

OOlE Page for memory wrap test 

OOlF 

0120 

0123 

0126 

0129 

0800 

Page for workspace 

Entry vector for Hex input 

Entry vector for Hex print 

Entry vector for I/O 

Entry vector for AND 

Beginning of user RAM space 

10-28 



CDP18S020 Evaluation Kit COSMAC TINY BASIC 

APPENDIX E 

DROR MESSAGE SUMMARY 

o Break durin.g execution 

8 Memory overflow, line not inserted 

9 Line number 0 not allowed 

·11 RON with no proqram in memory 

33 Improper syntax in GOTO 

35 No line to GO TO 

40 LET is missing a variable name 

42 LET is missing an -

45 Improper syntax in LET 

47 LET is not followed by END 

65 Missing close quote in PRINT string 

83 Circumflex in PRINT is not at end of statement 

85 PRINT not followed by END 

101 IF not fol~owed by ~ 

111 INPUT syntax bad - expects variable name 

130 INPUT syntax bad - expects comma 

131· INPUT not followed by END 

140 . RETURN syntax bad 

141 RETURN bas no matching GOSUB 

142 GOSUB not followed by END 

147 END syntax bad 

179 LIST syntax error - expects comma 

189 Can't LIST line nUlllber 0 

193 LIST not ~o11owed by END 

198 REM not followed by END 

199 Missing statement type keyword 

201 Misspelled statement type keyword 

243 Divide ,by zero 

276 Syntax error in Expression - expects value 

281 RND expects two arguments 

286 Missing right parenthesis 

321 IF expects relation operator 

356 Invalid arguments in RND 

All other error numbers siqnify memory overflow (too many nested GOSUBS) 
or. an excessively" complex expression. 10-29 



-
CDP18S020 Evaluation Kit COSMAC TINY BASIC 

APPENDIX F 

SPECIAL KEYBOARD CON'l'ROL CHARACTERS 

You may erase (backspace over) an incorrectly-entered character by hitting, 

the "erase previous character" key. Its hex code is stored in location OOOF, 

aDd it is presently an ASCII Left-arrow or Underline (Shift 0, hex SF). Each 

occurrence of erases the last stored input character. Thus, 

POINT RINT 

corrects the erroneous second character. Similarly, you may erase the entire input 

line and start over by hitting the "cancel line" character. Its hex code is 

stored in location 0010, and it is presently an ASCII CANCEL (Control Xi hex IS). 

You may change either of these edit control characters by changing its stored code -

to any value except DC3, LFi NULL or DELETE (hex 'codes 13, OA, 00 and 1F, 

respectively). These special characters are trapped by TINY before its line edit 

code is entered. 

The BREAK key may be used for two purposes: to interrupt a long LISTing or 

to interrupt the execution of a program (for example, one caught in an endless 

loop). While executing the LIST command, ,TINY checks BREAK at the beginning of 

every typed line. While executing a stored program, TINY checks BREAK between 

statements. 

Each of your input lines from the keyboard is terminated with a carriage return 

(CR). Whenever TINY generates a new line (for example, when it echoes your CR), 

it generates CR PAD PAD LF PAD, where the pad character depends on the 2' bit 

of location 0011 (hex). If 0, it is the NULL character (hex OO). If 1, it is 

the RUBOUT/DELETE character (hex FF). The rest of the byte in location ,0011 

defines the count of the number of pads to be sent between each. CR and LF. It is 

presently set to 2. 

SUMMARY OF KEY CHARACTERS 

CR Terminates every entry line. 

Backspace. 

CAN Cancel line. 

BREAK Interrupt long printout or execution. 10-30 



-
CDP18S020Evaluation Kit COSMAC TINY BASIC 

Appendix G 

Tape Control Characters 

Whenever TINY qenerates the ? prompt character (durinq execution of 

an INPUT statement), it follows this by qeneratinq the XON (ASCII DCl) control 

character. If the. input comes from tape, the user may elect to use this 

special control character to activate the tape reader. 

Similarly, TINY qenerates the XOFF (ASCII DC3; hex 13; Control S) control 

character whenever an error stop or NEW or.END occurs - under the assumption 

that the user may. want to deactivate the reader with this character. 

. These. control characters may be iqnored if the user has found an 

alternative method for tape I/O. 

10-31 


