
RCA
MICROPROCESSOR

COSMAC
Microtutor Manual

MPM-109 Suggested Price $2.00

COSMAC

MICROTUTOR

Manual

RCAISolid State DivisionlSomervi\le, NJ 08876

Copyright 1976 by RCA Corporation
(All rights reserved under Pan-American Copyright Convention)

MPM-I09

Information furnished by RCA is believed to be accurate and
reliable. However, no responsibility is assumed by RCA for
its use, nor for any infringements of patents or other rights of
third parties which may result from its use. No license is
granted by implication or otherwise under any patent or
patent rights of RCA.

Trademark (s) Registered ®
Marca(s) Registrada(s)

ii

FOREWORD

Computers can be large, complicated, expensive, and hard to under­
stand. The CDP18S0ll HICROTUTOR is a computer that is small, simple,
inexpensive, and easy to understand. It comprises 256 words of memory,
input switches, a two-digit output display, and the RCA CDPl80l COSMAC
microprocessor.

Contrary to popular belief, computers are quite simple in concept
and fun to play with. They can also be useful but He'll try not to
dwell on this aspect in deference to more sensitive readers. A word of
caution, if MICROTUTOR makes computers seem simple to you, don't tell
anyone. You can earn more money perpetuating the computer complexity
myth.

Readers who insist on knowing every last little detail about
COSMAC should refer to the USER MANUAL FOR THE COSMAC ~fICROPROCESSOR
(MPM-IOl). Readers who want to be protected from actual computer
hardware by software aids with names like assembler, interpreter,
simulator, and compiler should save upt their money for a more expensive
system.

SECTION

1.

II.

III.

IV.

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4
APPENDIX 5

TABLE OF CONTENTS

GENERAL .•..•..•..•.........•....•............••.•...

A. Turning It On ••......••...•.• ····•·······•·••••··
B. Bits, Bytes, and Hex Digits •.•...•.....•....•.•..
C. Down Memory Lane •.....•......•..... · .. ··••··••·••
D. Getting It In (Program Loading) •.....••••••• , •.•.
E. So You Made A Mistake •
F. Pushing the Start Button .•.•.•.•......•••.•.••••.

PROGRAMS FOR FOOLING AROUND •.•.•...........••...•...•

PAGE

1

1
1
3
4
5
5

7

A. MICROTUTOR Has Your Number....................... 7
B. MICROTUTOR - The Mindreader •........... , ..•.....• 7
C. See MICROTUTOR Count. • . • . . • 8
D. MICROTUTOR - The Magician. .•........•...•.. .•..•• 8
E. Hex Re flex. • . . • • • . • • • • . • • 9
F. Double Hex....................................... 10
G. MICROTUTOR Hustles you........................... 11
H. MICROTUTOR I S Sec re t Numbe r •..•...... , ••••• , . . • • • • 11

COSMAC SIMPLIFIED? •.•.........•........•••....•••••• 12

A. MICROTUTOR Structure............................. 12
B. Some Instructions and a Program....••.•..• 15
C. Counter/Timer Program •....... '"•..•• ,.... 18
D. Counter/Timer Applications •........... "'" ..•...• 21
E. ALU Operations................................... 23
F. Some More Instructions....•...•..•.• 27

EXTENDED US E •.•....•............•........•....•••.•••

A.
B.
C.
D.
E.
F.

Table Driven Sequencer •••.•........••....•••.••••
Output Circuits ••..•.•.•..........•...•..••••.•••
Input Circuits •.•...•..•..•...•.•.........•••.•.•
Another Type of Program •....•...•....•...••••.•••
Additional COSMAC Features ••........•.......••.••
MICROTUTOR Applications •• , ...•................••.

MICROTUTOR Operation & I/O Summary •.•...•••••• , ..
COSMAC Ins truc t ion Summary ••..•......•••.•.•.•••.
External Option Socket (E)•.....•.•..•
MICROTUTOR Logic Diagrams •...................•..•
Programs .•....••...•......•....•....•.•...••.•. , •

28

28
29
30
32
33
34

36
37
38
39
43

- 1 -

1. GENERAL

A. Turning it ON

Figure 1 shows what MICROTUTOR looks like in case you don't have
one. If you do have one, plug the memory card into the first socket (M).
plug the COSMAC microprocessor into the middle socket (P). The component
(bumpy) side of these cards should face the rear. Don't apply power until
the M and P cards are in unless you enjoy replacing integrated circuits.
Likewise, never remove a card unless the power is off.

Plug the power pack cord into the back of MICROTUTOR to turn it
on. pull the cord plug out to turn it off. If the red display lights
don't come on when you plug in the power you are the proud owner of what
is technically known as a lemon.

B. Bits, Bytes, and Hex Digits

Before a stored program computer can run, it must have a program
stored in its memory. Before storing a program in the MICROTUTOR memory,
some basic definitions should be stored in your memory. Familiarity with
binary notation (bits) is assumed. If this is a rash assumption, please
correct the obvious gap in your otherwise outstanding educational back­
ground before proceeding.

A byte is a group of 8 bits. The COSMAC microprocessor (along
with many others) uses 8-bit bytes (or words). These 8 bits are labeled
0-7 corresponding to the eight MICROTUTOR byte input switches as shown
below:

I
SWITCH

BIT NO.

X

7

X

6

X

5

X

4

X

3

X

2

X

1

x
o

A byte can be divided into two 4-bit digits (Dl and DO). The
high order digit (Dl) comprises bits 7-6-5-4, while DO comprises bits
3-2-1-0. Each 4-bit digit can be represented by a single HEX symbol as
follows:

- 2 -

Fig. 1-MICROTUTOR Layout.

- 3 -

BINARY HEX DECIMAL EQUIVALENT

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

The byte "01011011" can now be described as "SB" in HEX notation. Press
the MICROTUTOR CL (Clear) switch and flip the LD (Load) switch up. Set
"01011011" into the input switches (setting input switches up for "1"
and down for "0"). Press IN and the byte will be displayed in hex form
as "SB". Change the input switches and press IN (with LD up) to convert
other binary numbers to HEX.

HEX is a base 16 numbering system which was developed by an
obscure group of bald headed, 16 toed programmers. It is only through
the development of notational jargon such as bit, byte, and HEX that we
can maintain our superiority over the average citizen. HEX notation
will be used throughout this manual unless noted otherwise.

C. Down Memory Lane

Whoever said that memory is fundamental to a stored program
computer has been long forgotten. Just in case he (or she) was right,
MICROTUTOR is provided with a memory. The MICROTUTOR memory can store
up to 256 bytes in locations numbered consecutively from 00 to FF. The
number of a stored byte location is called its memory address. The
notation M(4A) is used to specify the memory byte located at address 4A.
For example, four bytes might be stored in the first four memory locations
as follows:

- 4 -

ADDRESS (M) BYTE

00 E2
01 27
02 51
03 F6

M(02) would then represent the memory byte, addressed by 02, which is 51.
The ability not to confuse memory addresses with the bytes stored at those
addresses separates programmers from normal people.

When a byte is stored in memory at a specified location or address
it replaces the byte previously stored at that location. When a byte is
fetched or read from memory, a copy of it remains stored. (This is analogous
to recording or playing back magnetic tape.)

D. Getting It In (Program Loading)

Computer instructions are individual binary codes or bytes stored
in memory. Each byte specifies an individual computer operation such as to
store an input byte, add two bytes, display an output byte, etc. A se­
quence of such instructions is called a program. The computer obtains
each instruction, as required, from memory and performs the specified
operation.

The following is a short COSMAC MICROTUTOR program code that can
be stored in memory:

ADDRESS (M) INSTRUCTION BYTE (CODE)

00 00
01 F8
02 00
03 A3
04 53
05 E3
06 60
07 23
08 3F
09 08
OA FC
OB 01
Oc 30
OD 04

Flip LD (Load) up. This tells MICROTUTOR that you want to load a program.
Push CL (Clear) and loading of the following sequence will start at memory
address 00.

- 5 -

You are now ready to load your first program. Do not become
nervous or excited as this will lead to mistaekes. Set the illPut .switches
to 00 (Binary 00000000) and push IN. 00 is displayed and stored act address
00. MICROTUTOR also advances its load memory pointer to 01 so that ,your
next input byte will be stored at memory address 01. This ability to
anticipate your next move led to the early belief that computers were
giant brains. (This belief was later shattered by the discovery of the
first program bug.)

Proceeding, set the input switches to the next instruction byte,
FS (Binary 11111000), and push IN to store it at memory address 01. Con­
tinue loading the rest of the program bytes into memory until the last
instruction (04) has been stored.

E. So You Made A Mistake

You can check memory with LD up. Push CL to return to memory
address 00. Now push ST and the byte stored at address 00 will be dis­
played. Push ST again and the next byte (FS) will be· shown. Continue
pushing ST to check that all bytes in the program are properly stored.

Checking the program in memory is generally skipped by those of
us who don't make errors. Some programmers actually prefer the challenge
and added fun of trying to run an improperly loaded program. If you are
only,interested in getting a program to run, include the checking step.

If one of your memory bytes is wrong you can loudly blame it on
the computer or quietly change it to the right value. To change a byte,
leave LD up and push CL. Repeatedly push ST until the byte just before
the one you want to change is displayed. Set the input switches to the
byte code you want to substitute for the wrong one and push IN. The
new byte will replace the wrong one in memory and be displayed. Pressing
ST will resume memory stepping for correction of a subsequent error in
the byte sequence.

F. Pushing the Start Button

With the above program properly stored in memory you are ready
to run. LD should be down. Always push CL to start the program at the
beginning. (Starting programs at the end only works for backward pro­
grammers.) After pushing CL push ST (Start). The program is now running.

Unfortunately nothing spectacular happens when this program is
running so you III just have to take our word for it. If you are a
doubting Thomas type, you can verify that the program is running by
pushing IN. Each time you press IN the program adds 1 to the display.
This hex counter program only required 14 bytes. You really couldn't
expect anything too exciting, could you?

To stop the program, press CL. Now nothing happens when you press
IN, does it? To restart the program, press ST. This program remains stored
in memory until you disconnect power or load a new program.

.., 6 ~

Want to become a NIM game hustler? Find a friend to play with.
(If you don't have a friend, you are well on your way toward becoming a
professional programmer.) Start the computer (00 displayed). You and the
other p1ay~r take turns. On each turn add 1, 2, or 3 to the displayed hex
number (press IN 1,2, or 3 times). The first player to reach 10 (decimal
16) wins. If you graciously let the other player have the first turn you
can always win (unless he cheats). We'll leave the how as an exercise for
the reader.

Later on a program which plays this game against you (and always
wins) will be described. In the meantime, this program can be used to
illustrate a major advantage of computers. This advantage lies in the
ease with which operation can be changed. For example, changing the 01
byte at M(OB) to 02 will increment the display by 02 each time IN is
pushed. Substituting an FF instruction for the Fe at M(OA) will decrement
the display each time IN is pushed.

The next section provides some more programs to load and play with
before getting down to the nitty-gritty details of hardware and programming.

- 7 -

II. PROGRAMS FOR FOOLING AROUND

A. MICROTUTOR Has Your Number

You don't even need a program to play with MICROTUTOR. Flip all
eight input switches down. Flip LD up and push CL. Push IN and 00 will
show. Now ask someone to think of a number between 1 and 7 without telling
you what it is. Ask the following:

1. Is the number odd? (Flip switch 0 up if yes.)
2. Is the number 2, 3, 6 or 7? (Flip switch 1 up if yes.)
3. Is the number 4 or higher? (Flip switch 2 up if yes.)

Now push IN and MICROTUTOR will show you the number. This trick is generally
greeted with resounding apathy so we will proceed immediately to another one.

B. MICROTUTOR-The Mindreader

Load the following program code into the MICROTUTOR memory as
explained in Section I. (Power should always be on for proper operation
of any computer.)

ADDRESS (M) INSTRUCTION BYTE (CODE)

00 00
01 E3
02 90
03 A3
04 53
05 60
06 23
07 3F
08 07
09 68
OA F8
OB OA
OC F7
OD 53
OE 30
OF 05

Make sure LD is down, press CL, then press ST. Write down any digit between
1 and 9. Using ordinary decimal arithmetic (with a pocket calculator if
necessary), multiply the digit by 10, add the original digit and multiply
the sum by 9. Don't let MICROTUTOR see what you're doing.

Set the binary code for the least significant digit of your final
result into switches 3-2-1-0. (Switches 7-6-5-4 should be down.) Press IN
and MICROTUTOR will read your mind and show you which digit you originally
chose.

- 8 -

This might not be the most amazing thing you've ever seen but it
only took a l6-byte program to do it.

C. See MICROTUTOR Count

Load the following program code and you can watch MICROTUTOR run
while you rest up from the excitement of the previous two tricks:

M CODE M I CODE
;

00 00 OB i
01

01 F8 OC I 3A
I

02 00 00
I OA I

03 A3
04 I E3
05 68
06 60
07 23
08 F8

OE j FO
OF I 32
10 I 05
11 I FF
12

! 01
I 13 53

09 40 14
! 30 ..

OA FF 15
j

06

Set the input switches to FF and this program will automatically count
down from FF to 00 and repeat indefinitely. Turn the screwdriver clock
adjustment (in front of the M socket) fully counterclockwise for the
slowest counting speed. This is the proper setting for all programs in
this section.

The detailed operation of this program will be described in
Section III together with possible applications. Set the input switches
to 01 and the display will alternate between 0 and 1. This blinker
action can be used to prevent tripping over MICROTUTOR in the dark. It
also demonstrates how easily a thirty cent flip-flop circuit can be re­
placed by a six-thousand transistor computer. The thirty cent circuit,
however, couldn't do the following mystifying number manipulation.

D. MICROTUTOR - The Magician

If you were among the small minority of readers who didn't get
excited about the first two tricks in this section, this one is guaranteed
to bore you. Load the following 32-byte program:

M I CODE M CODE M CODE

00 i 00 OB FO 16 F5
01

i
90

! 02 A3
03 ! 53
04 ! E3

OC 32
OD 12
OE 84
OF F4

17 32
18 06
19 33
lA 13

05 ! A4
06 I 60

10 30
11 05

1B F8
lC 09

07 i 23
08

,
3F

12 84
13 53

lD F7
IE 30

09 i 08 t
OA , 68 ,

I

14 F8
15 09

IF 03

- 9 -

Leave LD down and you are ready to be amazed, dumbfounded, and astounded
by mighty MICROTUTOR. Write down any four digit decimal number with no
two digits the same. Don't let MICROTUTOR see what you do. Now write down
any other four digit number using the same digits.

Subtract the smaller number from the larger. Circle any non­
zero digit in the anS\Jer. This is your secret digit.

Press CL and then press ST. Set the binary code for any non­
zero, uncircled answer digit into switches 3-2-1-0 (7-6-5-4 should be
down). Press IN to show this digit. Enter the other uncircled digits
of the answer in a similar manner (in any order). Do not enter zero
answer digits.

MICROTUTOR will now be able to tell you the value of your
secret, circled digit. Do you find that hard to believe? Set 0
into all s,,,itches, press IN, and MICROTUTOR reveals your secret
digit for all the world to see. Is there no end to the miracles of
modern science? Push CL, then ST to repeat the trick with a new
starting number.

The above works best if you subtract the two numbers correctly,
load the program properly, and avoid lying to MICROTUTOR. If you obey
these rules then this trick will work if you write any number containing
any number of digits. Scramble the digits to form a second number and
subtract the smaller from the larger. Those readers who understand how
this trick works should have written this manual instead of just sitting
there reading it.

E. Hex Reflex

This program is dedicated to those readers with some degree of
manual dexterity. (We can't all be smart.) First, demonstrate how fast
you can load the following program. You will be in the upper 10% if you
load it properly as well as fast.

M CODE M CODE M CODE M CODE

00 00 OF 25 1E 32 2D 88
01 E3 10 3F 1F 2D 2E FF
02 F8 11 OF 20 27 2F 05
03 FF
04 A8

12 88
13 A7

21 87
22 3A

30 A8
31 84

05 90 14 85 23 1B 32 FC
06 A3 15 FA 24 26 33 10
07 A4 16 OF 25 86 34 A4
08 F8 17 53 26 3A 35 FB
09 03 18 A5 27 OB 36 FO
OA A6 19 60 28 84 37 32
OB 84 lA 23 29 53 38 28
OC 53 lB 68 2A 60 39 30
OD 60 lC 85 2B 30 3A OB
OE 23 lD F3 2C 2B

- 10 -

Leave LD down and push CL. Push ST and 00 will show. Push IN and you
will have several seconds to set the four input switches, 3-2-1-0, to
the hex digit showing on the right. (The left digit will always be 0
so that switches 7-6-5-4 should be left down.)

Failing to match the four lower switches to the hex digit
shown after you press IN (during the allotted time) counts as a miss.
Your score is shown in the left digit. After the matching time period
expires, push IN to see the next digit you must match. The match time
allotted decreases as your score gets higher.

The game is over when your score in the left digit reaches "F",
or you've missed three matches. Getting a score of "F" qualifies you as
an expert in the field of binary to single hex digit conversion. Unfor­
tunately, the job opportunities in this rather specialized field are
severely limited at the present time. You would be well advised to
continue reading this manual in order to broaden your skills.

F. Double Hex

After practicing with hex reflex you can challenge someone to
a game of double hex. If you have unfortunately chosen an opponent
who's been practicing hex reflex, you should avoid betting money on
the outcome of double hex. Load the following program:

M CODE M I CODE M CODE M 1 CODE

00 I 00
01 I E3
02 I F8
03 I 80
04 A3
05 90
06 A4
07 84
08 53
09 60
OA r 3F
OB ! OA
OC I F8
OD j 02

OE I BA
OF I 2A
10 I 9A
11

I
3A

12 OF
13 I 8B
14 I F9
15 ! FO
16 i 53
17 I 60
18 I FA
19

I
OF

1A 53
1B 23

1C 68
1D 43
1E FA
IF OF
20 F3
21 23
22 3A
23 29
24 23
25 2B
26 14
27 30
28 07
29 43

2A , F6
2B I F6
2C

I
F6

2D F6
2E I F3
2F I 2B
30 I 3A
31 I 1B
32 I 84
33 I FC i

34 i 10
35 I A4 !
36 30
37

i
07

Leave LD down, p~sh CL, then ST. "00" should show. The left digit is the
left hand player s score, while the right digit will represent the right
player's score. The first player to get a score of "9" wins.

- 11 -

Shortly after IN is pushed, FX will be shown, where "X"
represents a random 4-bit hex digit. The player on the left tries to
set switches 7-6-5-4 to the binary code for the "X" digit before the
right player can set switches 3-2-1-0 to match it. The first player
to match the hex digit gets one point and the two score digits are
shown again. Either player then pushes IN to see the next hex digit
to be matched.

Let us hope that these games give you a real incentive to under­
stand the details of COSMAC so you can write your ~ programs. You can
then enter your programs in the next big MICROTUTOR program contest, win
a lot of money, and retire. The next MICROTUTOR program contest is
scheduled for 1997 so you have enough time to write a real winner.

G. MICROTUTOR Hustles You

In Section I a simple NIM type counting game was described.
Appendix 5-F shows a program that can always win this game. Load and
run the program. 10 (decimal 16) will be shown. You take the first
turn, subtract 1, 2, or 3 from the number shown by setting switches 1
and 0 to the binary equivalent of 1, 2, or 3 and pressing IN. MICRO­
TUTOR will then subtract 1, 2, or 3 and it is your turn again. First
player (you or MICROTUTOR) to reach 00 wins.

After playing, you should be able to determine the rule MICRO­
TUTOR uses to win. Feel free to change the starting number or cheat.
Nobody likes a smart computer! On the other hand, you could~e~
MICROTUTOR and let it earn you some free liquid refreshment at your
friendly neighborhood soda fountain. This application alone could
justify your purchase of MICROTUTOR.

H. MICROTUTOR's Secret Number

In this program MICROTUTOR thinks of a number and you must guess
what it is. In fairness, MICROTUTOR humbly acknowledges the inherent
inferiority of human beings and provides clues. The program is shown
in Appendix 5-G. When you are tired of it, pull MICROTUTOR's plug to
demonstrate your poor sportsmanship.

A number of other programs will be described in the next
several sections. These programs will be used to illustrate COSMAC
instructions and programming techniques. The reader is urged to try his
(or her) hand at writing some short programs by the end of Section III.
Readers who are reluctant to try programming may be afraid of making
mistakes. You should remember that computers will not object to your
mistakes. They don't really care about you. Computers only care about
getting turned on and ruling the world. They welcome your mistakes.
Dontt be afraid to make them happy.

- 12 -

III. COSMAC SIMPLIFIED?

A. MICROTUTOR Structure

There is no known method for describing a computer block dia­
g~am in an interesting way. The following MICROTUTOR hardware description
has been used successfully to cure insomnia. The reader should attempt to
stay awake long enough to absorb the notation described. This notation is
fundamental to an understanding of COSMAC instructions and programming.
A certain amount of tedious detail builds character.

The block diagram of MICROTUTOR, including the COSMAC micropro­
cessor, is shown in Fig. 2. The data bus consists of eight lines, which
run throughout MICROTUTOR, and provide the main information channel be­
tween its parts. The two-digit hex display provides output. Input com­
prises the eight input-byte switches and the IN button.

A simplified block diagram of the COSMAC microprocessor (on
card (P» is also indicated in Fig. 2. D is a special-purpose, one-byte
register which has the function of temporarily holding a byte which is
being moved through the processor or used for binary arithmetic or logical
operations. The ALU (Arithmetic Logical Unit) operates on two bytes, one
in D and the other directly from a memory location, and places the result
back in D. COSMAC has four flags (EFl, EF2, EF3, and EF4) which can be
used to control its operation. In MICROTUTOR, EF4 has been connected to
the IN button.

16 ~ sw.
256 REG
BYTE R(O)
RAM TO

R(F)

Fig. 2~MICROTUTOR Block Diagram.

- 13 -

COSMAC contains 16 general-purpose registers, called R(O) through
R(F). Each of these registers can hold one byte.* As shown in the table
on page 3 for the hex-code, only four binary bits are necessary to specify
any Qne of the general-purpose registers. Three four-bit (1/2 byte)
registers, N, P, and X, are each used to select (or address) one of the
general-purpose registers.

The most important function a general-purpose register can have
is to be the program counter. The prografl counter always contains the
memory location (or address) of the next instruction byte in a COSMAC
program. The P register specifies which R-register will be used by
COSMAC as the program counter. This register is identified by the no­
tation R(P). When the CL (Clear) button is pressed, P is automatically
set to zero. All programs start with R(O) as the program counter and
at location 01 in metp.ory. Later, P can be set to any value from 0 to
F, i~ order to make other registers become the program counter.

Another function for a general-purpose register is to provide
address information for data bytes in memory. Although any register may
address data, the register R(X) , specified by the digit in X, has special
significance for several COSMAC instructions. In the program, X can be
set or changed to any value, from 0 to F. If we want to address memory
at location 4A with R3 -- 4A would be placed in R(3) and subsequently R3
can be used to address M(4A). The notation M(R(3» indicates the memory
location specified or addressed by the byte in R(3). This notation will
be used to describe the operation of COSMAC instructions.

It is desirable to be able to change or modify the value of
anyone of the general-purpose registers, or to change the value of P
or X. The N register can specify a register as a destination for a
data byte. Also, it can be used to transfer a digit to P or X. This
digit can also have the value 0 to F.

The final part of MICROTUTOR is the 256-byte memory (on card
(M». Addresses are supplied via the address bus from the selected
general-purpose register. Bytes from and to memory are transferred via
the data bus.

fk
Actually, this is an outright lie. Each register holds 2-bytes or
~6-bits. Since this is only important with larger memories and more
sophisticated programs we will act as though each register holds only
one byte in this manual. Unfootnoted falsehoods found in this manual
should be interpreted as unintentional.

..; 14 -

Let1s write a short program to illustrate how MICROTUTOR works.
We will store the value of the input switches at memory address 80. The
byte stored at memory location 80 will then be copied into the HEX dis­
play lights. MICROTUTOR will do this program in several thousandths of
a second. It will take us considerably longer to explain it. The pro­
gram is shown below:

M ! CODE COMMENTS

00 ! 00 This program does not use this location.
01 I E3 Put 3 into the 4-bit X register.
02 1 F8 The F8 instruction causes the 80 byte to be
03 i 80 placed in the 8-bit D register. \

04 ; A3 The 80 byte, now in D, is copied
i into general register iF3.

05 i 68 Store the switch b~te in memory.
06 60 Copy the memory byte into the lights.
07 30 Do the instruction at memory
08 02 location 02 next.

This program illustrates the basic principles 0 f stored program computers.
If you aren1t interested in the basic principles of stored program com­
puters, you have something in common with 99.35% of the world1s population.

When CL is pushed the 4-bit P register is set to 0 and general
purpose register #0 is also set to 00. This makes register #0
a program counter. In other words, it will always contain the address
of the next instruction to be used. When ST is pushed, register #0
has 1 added to it, so it contains 01. The byte at memory location 01
is then fetched. This byte is found to be E3. The E3 instruction byte
puts 3 into the 4-bit X register. (E4 would have put 4 into X, etc.)
The program counter (register #0) has 1 added to it automatically so
it now contains 02.

The byte at memory location 02 is fetched next. This byte
is found to be F8. An F8 instruction always causes the byte following
it to be copied into the 8-bit D register. Since the next byte is 80,
D will now be equal to 80. The program counter has 2 added to it so
it now contains 04.

The byte at memory location 04 is fetched next. This byte is
A3. An A3 instruction causes the byte in the D register to be copied
into general purpose register #3. (A6 would copy D into register #6,
etc.) We will use the byte in register #3 as a memory address. The
program CQunter has I added to it so it now contains 05.

The byte at memory location 05 is fetched next. It is 68. The
68 instruction code causes the input switch byte value to be stored in a
memory location. The address of this location is provided by the byte in
general purpose register R(X). The previous E3 instruction set X to 3 so
that the input byte is stored at memory address 80 contained in register #3.
The program counter has 1 added to it so it now contains 06.

- 15 -

The byte at M(06) is fetched and found to be 60. A 60 instruc­
tion causes a memory byte to be copied into the HEX display light register.
The address of this byte is provided by the value of the byte contained in
general register R(X). Since X still equals 3, the output byte will be ob­
tained from memory address 80 (register #3 still contains 80). The pro­
gram counter has 1 added to it so it now contains 07.

The byte at M(07) is fetched and found to be 30. A 30 instruc­
tion copies the next memory byte into the program counter. The program
counter will then contain 02. The next instruction byte will be fetched
from M(02). This program will therefore repeat (or loop) indefinitely.
(It can be stopped by pushing CL.)

Load and run the program. Change
byte is immediately shown. What byte would
switch byte at a different memory location?
to prevent the program from repeating?

the switches and the new
you change to store the
What byte could you change

Let's examine what is meant by a program bug. Program bugs
were first discovered in 1857 by Charles Babbage. One of the wooden
shafts of his analytical engine had been weakened by termites so that
2 + 2 was providing an answer of 5. These bugs were eventually elimi­
nated by an anteater named Sam who was persuaded to take up residence
in the rear of the analytical engine cabinet. Unfortunately Sam had
a drinking problem and would fall into the gears causing a variety of
calculation errors. This type of problem explains why computers didn't
really catch on until almost 100 years later.

Returning to MICROTUTOR, we could introduce a bug by changing
the 80 at M(03) to 07. This would cause the input byte to be stored at
M(07). M(07) already contained a program byte however. This means that
the 30 instruction would be destroyed when the switch byte is stored in
memory, and that the program would not run properly. A major part of
programming involves finding and eliminating program bugs.

Subsequent programming examples will illustrate the use of
most of the available COSMAC instructions. Those readers who feel that
the above example was too complicated have obviously never seen any
other computer manual. Those readers who feel that the above example
was too simple should write their own sample program. The majority of
readers, who feel that the above example was just right are to be compli­
mented on their high level of intelligence.

B. Some Instructions and a Program

The following 10 types of instruction bytes will be used in
a simple counting program:

- 16 -

2N Decrement byte in R(N) R(N) - 1
AN C.onv D byte into R(N) D -R(N)
SN Store D Qyte at M(R(N)) D -M(R(N))
EN Set X N N-X
60 Copy M(R(X) into display, M(R(X)) - disPlaB:

increment R(X) ~on +1, [Reset EF4" ~'(
F8 Put next pro~ram byte into D M(R(Pl) - D· R(P) +1
FC Add next ~rogram byte to D M{R(PJJ +D -D· Rep) +1
FF Subtract next program byte

from D D - M-.LR(P)) - D
30 Branch - - - -
3F Branch if "IN" not pressed - - - -

~'(

Specific to MICROTUTOR

The first column is the instruction byte code and the last is a shorthand
description of the operation performed.

A simple program that counts how many times the IN switch is
pressed will illustrate how these instructions are used. The following
flow chart shows the sequence of program steps required. The description
of this program includes a self-scoring programming aptitude test.

START

Step 1

Step 2

Step 3

Step 4

- 17 -

Actual programming is greatly simplified once the flow chart
is prepared. One or more instructions are written for each flow chart
block or step as follows:

STEP OPERATION M CODE

- - Output byte storage location 00 00
00 -+- D 01 F8 1 - - - - 02 00
D -- R(3) 03 A3
D - M(R(3J} 04 53
3 -- X 05 E3 2
M!R(X)) -- Disnlav R(X) + 1 06 60
Rl)) - 1 07 23
Go to Sten 3 if IIrn 11 not pressed 08 3F 3

09 08 - - - -
D + 01 D OA FC
- - - - DB 01 4

J;io to Sten 2 DC 30
- - - - OD 04

Remember that program execution always begins with the instruction byte
at M(Ol). The F8 instruction in Step 1 causes the next program byte
(00 in this case) to be placed into the D register. The A3 instruction
then causes the 00 in D to be copied into R(3). (R(3) will be used by
Step 2.) At this point in the program, the D register still contains
00 (not changed by the A3 instruction), which can be used directly for
another purpose by Step S2.

In Step 2, the 53 instruction causes the byte content of the D
register to be stored in the memory location addressed by R(3). The
first time through,the memory location 00 will contain the data byte 00.
60 is the MICROTUTOR output instruction. It copies a memory byte into
the hex output display register, where it can be seen. The address of
the output byte is specified by the byte in R(X). The EN instruction lets
you set X to any register number before executing a 60 instruction. In
this program an E3 sets X = 3, which selects R(3) to address memory. The
60 instruction then places M(R(3» into the output display. (Note that
00 was placed in R(3) during Step 1 so that the byte at M(OO) is dis­
played.) The 60 instruction also causes R(3) to be incremented by 1 so
that it will address memory location 01 next. Since this program re­
quires R(3) to always address M(OO) , a 23 instruction following the 60 in­
struction decrements (decreases) R(3) by 1 so that it again addresses
M(OO).

- 18 -

Step 3 uses a conditional branch instruction (3F) to determine
whether or not the IN switch has been pressed. Pressing the IN switch
sets an External Flag flip-flop called EF4. The 3F instruction causes
the instruction addressed by the next byte to be executed if EF4 is ~
set, otherwise the program skips the next byte and continues on (in this
case at location OA). In this case, it is desired that the 3F instruc­
tion repeatedly execute until the IN switch is pressed (this is called
a program LOOP). This is accomplished by making the byte following 3F
(which could be any value from 00 to FF) be the location of the 3F in­
struction itself, namely 08. When the IN switch is pressed the next
instruction in the program sequence is executed (FC at M(OA»). It is
important to note that in the MICROTUTOR, EF4 will be reset when the
next 60 instruction is performed.

Pressing the IN switch advances the program to Step 4 where the
FC instruction adds 01 to the byte in D. The 30 instruction is an uncon­
ditional branch that causes the instruction addressed by the next byte to
be executed (in this case M(04». This causes Step 2 to be repeated which
displays the 01, still in D, from the FC instruction in M(OA) and resets
EF4. At Step 3 the program again waits for the IN switch to be pressed
before proceeding to Step 4 again.

Astute readers, who remained awake during the above discussion,
will probably be excitedly shouting that this is the program they loaded
and ran in Sec'tion 1. These readers will be right and should give them­
selves a programming aptitude score of OA (decimal 10). The others will
still be asleep and upon waking, should give themselves a programming
aptitude score of 2F.

C. Counter/Timer Program

This program demonstrates how variable delays can be provided
and how the MICROTUTOR input instruction is used. The discussion of this
program will provide an opportunity for losers of the previous program­
ming aptitude test to improve their scores. The following new instruc­
tions will be used in this program:

FO Copy M(R(X» byte into D M(R(X» .;... D

68 Store switch byte at M(R(X» Bits 0-7 ~M(R(X»
[Reset EF4J*

32 Branch if D = 00 - - - -
3A Branch if D ~ 00 - - - -

* Specific to MICROTUTOR

- 19 -

The flow chart for the counter/timer program is shown below.
The input switches (0-7) are set to an 8-bit binary number. The pro­
g~~m automatically counts, starting with the switch input number, down
to 00. When 00 is reached, the program repeats.

Step 1

Step 2

Step
3

Step
4

YES

We will let the byte at M(OO) represent the variable J. Translating
the above flow chart steps into sequences of instruction bytes yields
the following program. Don't forget that programs are loaded into
memory starting at address 00 but that the program begins execution
with the instruction byte at M(Ol):

- 20 -

STEP ADDRESS BYTE

- - Variable J storage location 00 00

1 00 ... D 01 F8

- - - - 02 00

D-+- R(3) 03 A3

3 X 04 E3

2 Input svdtch byte M(R(X» 05 68

M(R(X» Display; R(X) + 1 06 60
3

R(3) - 1 07 23

40 D 08 F8

- - - - 09 40

D - 01 D OA FF
4

- - - - OB 01

Go to M(OA) if D .f: 00 OC 3A

- - - - OD OA

M(R(X)) -- D OE FO

5 Go to Sten 2 if D = 00 OF 32

- - - - 10 05

D - 01 ... D 11 FF

- - - - 12 01

6 D M(R(3)) 13 53

Go to .Sten 3 14 30

- - - - 15 06

Step 1 sets R(3) = 00 and X = 3 for later use. In Step 2 the 68 instruction
is the MICROTUTOR byte input i~struction. It stores the states of the 8 input
switches in memory and resets EF4. The memory address is specified by the
byte in R(X). Since X was set to 3 and R(3) was set to 00, Step 2 causes the
input byte to be stored at M(OO). .

Step 3 displays the byte, which is at M(OO), and decrements R(3) .back
to 00 after the 60 instruction,which incremented R(3). Note that in this
case the reset of EF4 by the 60 instruction is redundant since the 68 in­
struction has already done this operation.

- 21 -

Step 4 is a LOOP used to provide a programmed delay. First,
D is set to 40. Next D has 01 subtracted from it. If D doesn't equal
00 after the subtraction, the FF (subtract) instruction is repeated.
The LOOP comprises the FF-01-3A-OA sequence (2 instruction bytes and
2 data bytes). The time to execute one instruction is 16 clock cycles.
The delay provided by this LOOP can be calculated by simply multiplying
the number of times the LOOP is repeated by the time to execute the two
instruction bytes included in the LOOP. This delay can, therefore, be
modified by changing the data byte at M(09) or by changing the clock
frequency. MICROTUTOR provides a screwdriver clock frequency adjust­
ment for a 10 to 1 variation. Adding an optional capacitor (as shown
in Figure 1) will reduce the clock frequency. (.005 ~lf will decrease
the clock by a factor of 10.)

After the programmed delay, Step 5 puts J into D. The 32
instruction will return the execution to Step 2 if J = 00. Otherwise,
Step 6 is performed next which subtracts 01 from J and execution re­
turns to Step 3. Once again we have clearly demonstrated that even
the simplest computer can be programmed to perform a trivial task.
Those readers who had no trouble understanding the above should sub­
tract 05 (decimalS) from their programming aptitude score.

D. Counter/Timer Applications

Those readers with quick minds, nimble fingers, and high pro­
gramning aptitude scores may now be asking themselves what the counter/
timer program can be used for. These readers should subtract 10 from
their score and continue reading.

With the counter set to run at a high speed, various games are
possible. Press CL then ST to begin. Pressing CL will now stop the pro­
gram with a hex number displayed. Pressing ST will resume cycling.
Trying to stop with two matching digits forms the basis for a slot machine
type of game. Setting the input switches to 09 will provide a pseudo
random number between 0 and 9 each time MICROTUTOR is stopped. This number
could be used to specify the number of moves in a board game.

Changing the 05 at M(lO) to OF will cause the 32 instruction in
Step 5 to loop on itself, when the display reaches 00. In this mode MICRO­
TUTOR can be used as a timer. Set the clock and the delay byte at M(09) to
provide the desired counting interval. Set the eight input switches to a
desired starting count and initiate program execution. A 00 display indi­
cates that the desired elapsed time has expired.

Pressing the MICROTUTOR IN switch activates a COSMAC flag line
(EF4) which can be tested by the 3F or 37 instructions. Three other flag
lines (EF1, EF2, and EF3) are available via the External Option Socket (E)
described in Appendix 3. These flag lines are tested by other conditional
branch instructions (Refer to Appendix 2 for a summary of COSMAG instructions).
You can easily add the following circuit* to HICROTUTOR.

* The new-comer to digital circuits is referred to "The Design of Digital
Systems" by John B. Peatman (McGraw-Hill, 1972). The old-comer to digital
circuits will quickly grasp the subtle implications of this circuit and
immediately try to find a new-comer to explain them to.

- 22 -

,--EXTERNAL OPTION SOCKET (E)

+ 5 VDC 21~--------,

Fig. 3-lnput Flag Circuit.

5 VOLT PULSES
FROM EXTERNAL
PHOTQDETECTOR
SWITCH, ETC.

Note: A signal name, such as CLEAR indicates
a signal which is true when low (ground).
A signal name such as UNCLEAR obviously
does not belong on this diagram.

The program on page 17 can now be used as an external event
counte~ if the 3F instruction at M(Oa) is replaced by 3C. External
events are represented as pulses from a photo detector, etc.

The counter/timer program has many applications relating to
control of, or response to, external events. Adding an external flag
input circuit, as shown in Fig. 3, and modifying the program to branch
on the corresponding flag, makes it possible for an external event to
start the timer program. Similarly, the display could be made to incre­
ment and a second external event used to stop the program. For another
example, suppose you want to activate a relay or bell when the preset
d~lay has elapsed. The circuit shown below could be added for this pur­
pose via the External Option Socket (E). This output circuit assumes
that memory locations 80 through FF are not used by the program, (If
you don't want to activate a relay or bell you are obViously a programmer
and not an engineer.)

MA7 L

- 23 -

r--EXTERNAL OPTION SOCKET (E)

+5VDC

RELAY
COIL

Fig. 4-0utput Relay Circuit.

TL RELAY
DRIVER

Note: Lack of an overline on signal name, MWR,
indicates that it is true when high (5V
in MICROTUTOR).

The output circuit of Figure 4 is activated by any instruction that tries
to write a byte into any memory location between 80 and FF. If the pro­
gram is modified so that a byte is stored at M(80) when the display reaches
00, the above external relay will be activated until CL is pres~ed. This
relay could be used to control a flying saucer warning light or solenoid
actuated garbage can lid. It cannot be used to control unruly housepets
or children.

E. ALU Operations

Prior to the advent of modern computers ALU was used by base­
ball fans when referring to American League Umpires. NOW, of course, we
can look back on those days and laugh since everyone realizes that ALU
means Arithmetic Logic Unit.

COSMAC arithmetic and logic instruction bytes all have F as the
most significant digit. Detailed examples of their operation are provided
in the USER MANUAL FOR THE COSMAC MICROPROCESSOR (MPM-IOI). The complete
set of these instructions is listed below:

""24 -

* F1 M(R(X))vD D

* F2 M(R(X)) • D D

* F3 M(ROO) $ D ,D

* F4 M(R(X)) + D ~ D· C -- DF

* FS M(R(X)) - D D· C -- DF

F6 Shift D rig:ht· LSB -- DF

* F7 D - M(R(X)) -- D C -- DF

F9 M(R(P))VD D· R(P) + 1

FA M(R(P)) • D D· R(P) + 1

FB M(R(P)) $ D -- D. R(P) + 1

FC M(R(P)) +D-D· C - DF· R(P) + 1

FD M(R(P)) - D -- D· C DF· R(P) + 1

FF D - M(R(P)) D· C -- DF· R(P) + 1

Fl, F2, F3, F4, F5, and F7 perform either an arithmetic or logical opera­
tion on two I-byte operands and store the I-byte result in the D register.
Initially, one operand comes from the Dregister, and the other operand from
memory at the location specified by the byte in R(X). X can be set to
select'any register number "N" by an EN instruction preceding the arith­
metic/logical instruction. The value of X will remain the same until a
subsequent EN instruction is executed in a program.

The "ALU DEMONSTRATION" program (Appendix 5-A) can be used to
illustrate the instructions marked (*). As written, it illustrates the
binary add instruction (F4). Load and start this pr~gram., Enter 03 fol­
lowed by 05, and 08 will be disp layed. . Enter any other two bytes to see
the sum.

An internal flip-flop called DF (D Flag) has be.en provided in
the ALU. DF ~s set to "1" when an add instruction causes a carry from the
most significant bit position. For example F3 + C2 would yield a sum of
B5 in D with DF = 1. 03 + 05 yields a sum of 08 in D with DF = 0 since
no high order carry was generated. Branch instructions 33 or 3B (Appendix
2) can be used to determine whether or not a high order carry occurred
during a previous add instruction. Suppose you wanted to add two 2-byte
operands (AB + XY); first add Band Y bytes; then test DF. If DF = 1,
do A + X + 1. If DF = 0, do A + X. This procedure can be followed to
add operands containing any number of bytes. Only the add, subtract and
shift instructions (F4, FS, F6, F7, FC, FD and FF) affect DF.

- 25 -

Changing the byte at M(OC) of the "ALU DEMONSTRATION" program to F7
illustrates a binary subtract instruction. Enter 08 followed by OS, and 03
should be displayed. DF = 1 following a subtract instruction if the minuend
is greater or equal to the subtrahend. If DF - 0 following subtract, then the
minuend was less than the subtrahend and the difference in D is in a complemen­
ted form. For example, subtracting 01 from 00 would yield FF in D and DF = O.
(See the USER HANUAL FOR THE COSMAe MICROPROCESSOR (MPH-10l) for a detailed
description of the subtract operation).

The F5 instruction is the same as F7, but with the subtrahend byte in­
itially in D and the minuend byte in memory.

Changing the byte at M(OC) of the "ALU DEMONSTRATION" program to Fl
illustrates the logical "OR" instruction. Fl causes the bits of the two
operand bytes to be combined according to the logical "OR" truth table below:

D M FINAL
BIT BIT D BIT

0 0 0

0 1 1

1 0 1

1 1 1

Note that bit 0 of the D byte is combined with bit 0 of the memory byte,
bit 1 of D with bit 1 of the memory byte, etc. Entering FO (11110000) fol­
lowed by CA (11001010) will, therefore, result in FA (11111010). The "OR"
instruction is useful for setting selected bits of a byte to "1".

Changing the byte at M(OC) of the "ALU DEMONSTRATION" program to F2
illustrates the logical I'AND" instruction. F2 combines the individual bits
of two operands according to the I'AND" truth table below:

D M FINAL
BIT BIT D BIT

0 0 0

0 1 0

1 0 0

1 1 1

For example, FO • CA = co. The "AND" instruction is useful for determining
whether or not a specific bit within a byte is equal to 1. "AND" can also be
used to reset individual bits of a byte to O.

- 26

Changing the byte at M(OC) of the "ALU DEMONSTRATION" program to F3
illustrates the "EXCLUSIVE OR" instruction. F3 combines the individual bits
of two operands according to the following truth table:

D M FINAL
BIT BIT D BIT

0 0 0

0 1 1

1 0 1

1 1 0

"EXCLUSIVE OR" can be used to complement a byte. Enter FF(llllllll) followed
by the byte you wish to complement, say 22 (00100010). The result will be
DD (11011101). Note that the value of each bit of the original byte (22) has
been inverted or complemented. "EXCLUSIVE OR" can also be used to determine
if the value of a variable is equal to a known constant. Say the variable is
23 and the constant is 23. 23 61 23 = 00. The result will only be 00 if the
two bytes being compared are identical.

Instructions F9,FA, FB, FC, FD, and FF perform the same operations as
F1, F2, F3, F4, F5, and F7. The only difference is that the memory byte used
is in the memory location following the program instruction itself, instead
of the M(R(X» byte. The FC and FF instructions were used in the earlier
sample programs and are independent of the value of X. They do not require
a reserved register having a data memory address. Note that none of the logical
instructions change the value of DF.

The remaining ALU instruction is F6, which shifts the bits, of a byte
in D, right one bit position. 0 is always placed in the final bit 7 position
and the original value of bit 0 (before shifting) is placed in DF. Shifting
a byte and testing DF with a suitable branch instruction permits the value
of individual bits to be determined. Can you write a simple program which
permits you to enter a byte and repeatedly shift it? A program that performs
a byte ring shift can also be written for practice. The final value of bit 7
should be the initial value of bit O. Ring shifting a byte 8 times should
restore it to its initial value.

The "SIMPLE BLINKER" program (Appendix 5-B) illustrates the use of an
"EXCLUSIVE OR" instruction at M(12) to complement a byte.

The "SIMPLE COMBINATION LOCK" program (Appendix S-C) illustrates the use
of an ''EXCLUSIVE OR" instruction at M(12) to compare two bytes for equality.
Can you write a program that requires the proper entry of a 2 or 3 byte
sequence to open the lock?

The ''MULTIPLY'' program (Appendix S-D) uses repeated additions to mUltiply
two bytes. Can you modify this program to provide a two byte product? Can
you devise a faster method of multiplying? If you answer no to both these
questions, add 13 to your programming aptitude score by using the ALU demon­
stration program. If you answered yes to both questions, write a division
program and use it to divideyo~r programming aptitude score by 03.

- 27 -

F. Some More Instructions

Appendix 2 lists all of the COSMAC instructions, some of which
have not yet been discussed. 1N is similar to 2N but causes the byte in
R(N) to be incremented instead of decremented.

8N causes a register byte to be copied into D. This is the
opposite of the AN instruction which copies the D byte into R(N).

4N copies a memory byte (addressed by R(N» into D, and R(N)
is also incremented by 1.

9N, BN, 38, 00, DN, 70, 71, and 78 instructions will not be
used in the sample programs provided in this manual. They will be
briefly discussed later, and the USER MANUAL FOR THE COSl1AC MICROPROCESSOR

(MPM-IOI) describes them all in detail.

The 6N instruction is used for input or output. If the value
of N = a to 7 the memory byte, addressed by R(X) , is copied onto the bus
where it can be used by an external output device. (In MICROTUTOR the
byte is copied into a two digit display register.) R(X) is also incre­
mented by 1. If the value of N = 8 to F a byte placed on the bus by an
input device is stored at M(R(X». (In MICROTUTOR the input byte is
supplied by eight toggle switches.) R(X) is not incremented during this
input operation. Typical external byte input/output circuits will be
described in the next section.

Do not proceed to the next section until you have computed
your final programming aptitude score. This final score is computed
using the following equation:

FINAL SCORE CURRENT SCORE FF

If your final score exceeds +A3 you have clearly cheated and are ready
for the material contained in the next section. If you used MICROTUTOR
to compute your final score, paste a gold star on your nose before pro­
ceeding to the next section.

- 28 -

IV. EXTENDED USE

A. Table Driven Sequencer

One of the most useful techniques in programming involves the
use of tables. Another involves the use of chairs. This latter tech­
nique has been shown to reduce programmer fatigue by 37%.

The "TABLE DRIVEN SEQUENCER" program (Appendix 5-E) provides
an example of the use of tables. It also forms the basis of many practical
MICROTUTOR applications. This type of program lets MICROTUTOR become a use­
ful controller, sequencer, or pulse generator with up to eight output lines.
External circuits permit the number of output lines to be even further in­
creased.

Two 4-byte tables are stored in memory. The first table (Ql-Q4
bytes) occupies M(17)-M(lA). Each byte (Q) represents eight bit values.
With external circuits described in the next section, each byte could be
used to specify a combination of states for up to eight output lines or
relays. The second table (Tl-T4) holds four bytes, each of which is
used as a time delay value.

Two registers, R(A) and R(B) are used to point to table entries
in memory. Step 1 of the program sets. these registers to point to the
first byte of each table. Step 2 reads an output state byte (Q) from the
first table and places it in the output display (it could just as well be
placed in an 8-bit external output register).

Step 3 takes a time delay value (T) from the second table and
puts it in D. Step 4 decrements the value in D until it reaches 00,
thereby causing a program delay proportional to the time value byte (T).
After this delay, the next output state byte (Q) is pulled from the table
and placed in the display (or external output register). A new time
value (T) is then obtained to specify the delay until the output state
will be changed again. Step 5 causes the four byte output state sequence
to repeat indefinitely, just like a scratched phonograph record.

With suitable output circuits this type of program can be used
for sequencing Christmas tree lights or turning up to eight external de­
vices off and on in any desired sequence. Programs of this type can also
be developed which modify external output circuit states as a function of
both internal tables and external input conditions.

Commercial, programmable controllers sell for hundreds of dollars.
MICROTUTOR can be programmed to simulate these devices as well as to perform
other useful functions. We are only mentioning this for those readers who
have to rationalize the purchase of their toys to suspicious spouses, bosses,
or other supervisory personnel.

- 29 -

B. Output Circuits

The following illustrates the manner in which an 8-bit output
register (or latch) can be added to MICROTUTOR via the external option plug
(E) :

f - - EXTERNAL OPTION SOCKET' E)

IUS 0 4 3 QO

iUST 7 CD 4042 9 QI
BUS 2 QUAD Q2
B'US'3 LATCH Q3

N3 NOTE· SUPPLY
SCO VOLTAGE PINS

ffi +5VOC NOT SHOWN

6
BUS 4 4 3 Q4

BUS 5 7 QUAD 9 Q5

ii'li'Si 13 LATCH 12 Q6
iii:i'i7 14 15 Q7

Fig. 5-0utput Latch.

Execution of a 60, 61, 62, 63, 64, 65, 66, or 67 instruction
will set M(R(X)) into this output register, as :w;~ll,as i:q~p, ,~peij~x
<lisplay. Several different output registers coutd:"1ii:!"'a:dded~:'; lrithis
gal?ie,::t,h~;f:Q\,l,r 'i~ns:t,LJ'l).Ft~:,~n'''~:'jBit,~::(N,3:, ,:N,2"NL" Nq>;:fio:u:l~ l>~;'fused to
s;~!§Gl;t: q11o~ :pf"e;ig~t I?q~s i:1;l~~f';9H~l:'I;l;t ,r:e~:(t~'~F~::.X o(d~~t;.,£p;~t t;9~s }~') '! }.1},E}.
USER MANUAL FOR THE COSMAC MICROPROCESSOR (MPM":l(Jl) provides' amoi"e

: I

detailed description of input/output operation. ' '.'

Figure 6 shows how a relay for a given bit could be driven
by the output register. A single relay could be used to let MICROTUTOR
provide a teletype output code or a telephone dialing code. Multiple
relays would permit simultaneous control of up to eight motor driven
rocking chairs.

. REL,'~Y~RAO.!9SHAtK*275"'Q04
;':'OR EQUIV. !is v oC)
Q~ ... ·· .• ·.,·.·.· .. ····.····' .. ·.·.·.'.·.+ 5VDC : .. ' A_.~_ ~~ ~ , r------,

CD4Q5.0 74Q~,:. r~ '. tCONTROLLEOl

. t.····· '.""' .. ': DEVICE I •...... .' ..,
, 1 ______ -'

Fig. 6-0utput Relay Circuit.

C. Input Circuits

Figure 3 (Section III-D) illustrated a simple binary bit input
circuit which made use of a COSMAC external flag line. An eight-bit byte
input circuit is shown below.

- 31 -

CD4049 BUFFER CKTS .

BuS4
BUS 5
Bi:iS6
BUS 7

sco
N3
No

IN H S W x)e------'

(INHIBITS MI ROTUTOR SWITCH
INPUTS DURI~G 69 INSTRUCTION)

TPA I }--------\

EFr 3~---------~

•
B-BIT PARALLEL
INPUT FROM EXT­
ERNAL INPUT DE­
VICE:

(1=+5V)
O=GND

I NPUT BYTE - M(R(X)),O-EFI

(EF 1,2,3,4 CAN ALSO PROVIDE
4 INDEPENDENT INPUTS WITH­
OUT ABOVE BUS GATES)

< INPUT BYTE STROBE

.J"L.:.:O·· + 5 V

Fig. 7-Byte Input Circuit.

Notes:

1. EFl is set to "1" on trailing edge of external input byte
strobe. Program should sample EFl to determine when ex­
ternal input byte is ready to be stored in memory.

2. The clear signal on E-lO can be used to initially reset
the EFl latch if the program can't cope with an indeter­
minate initial state.

- 32 -

Eight parallel input bits are stored at M(R(X» by a 69, 6B,
6D, or 6F instruction. (NT and N2 external option plug signals could
be used to limit this output operation to one value of N.) The INH SW
signal is required to inhibit the normal MICROTUTOR switch input which
occurs when 68, 69, 6A, 6B, 6C, 6D, 6E, or 6F instructions are executed
without an external inhibiting signal. (Re: MICROTUTOR logic in Ap­
pel1dix 4.)

The eight input bits could be obtained from a photodetector­
based or paper tape reader, a UART, remote switches, etc. The EF1 input
flip-flop is provided to notify the program that an input byte is ready
to be stored. The program would be written so that it examines the state
of EFl before attempting to store an input byte. Storage of the input
byte by executing a 69, 6B, 6D,or 6F instruction automatically resets
the EFl flip-flop to O.

The input/output circuits illustrated in this manual are
intended only as examples. A variety of input/output devices can be
attached via the external option plug (E). All COSMAC output or input
signals are available for external use via this plug (See Appendix 3).

For those readers owning a scope, the external option socket (E)
provides an opportunity to use it. All sorts of interesting pulses can be
seen on option socket pins while MICROTUTOR programs are running. Leaving
your scope attached to one of the more interesting pulses will add a scien­
tific aura to your next MICROTUTOR demonstration.

D. Another Type of Program

So far we have seen examples of several types of programs;
arithmetic, control, timing" and games. Another class of computer
program involves those used for self test and diagnosis of hardware
failures. The "MEMORY ADDRESS TEST" (Appendix 5-H) illustrates a pro­
gram of this type. A unique number is stored at each memory location
from M(23) to M(FF). Each location is subsequently examined to see if
it ~ontains the same byte that was stored. If a failure in the memory
addressing circuits occurs, an error is indicated. By letting the
operator see the bad byte plus its address, the bad memory IC is readily
located. More complex programs can be written to test all bits of large
memories and input/output circuits.

Really ambitious programmers have written many programs to aid
in writing and debugging programs. Since the author of this manual cannot
be classified as ambitious, no examples of the latter type of program are
included.

- 33 -

E. Additional COSMAC Features

A number of COSMAC features are not demonstrated by the examples
in this manual. These additional features are, however, available in MICRO­
TUTOR. They will only be briefly mentioned here. A complete discussion of
these features is provided in the USER MANUAL FOR THE COSMAC MICROPROCESSOR
(MPM-lOl) •

Throughout this manual, R(O) has been used as the program counter.
When CL is pressed R(O) becomes the program counter and has the value 01,
which makes M(Ol) be the first instruction byte to be executed. A DN in­
struction can subsequently be used to change the program counter to any
other register R(l)-R(F) at any time. This COSMAC feature is very useful
in a number of situations, particularly in programs requiring subroutines.

The 16 general purpose COSMAC registers have been used by all the
programs ~n this manual as one-byte registers. In actuality each register
is 16 bits wide (containing two bytes). We have only utilized the least
significant byte of each register. The 9N instruction permits the most
significant (upper) byte of a register to be copied into D. BN copies D
into the upper byte of a register. The IN and 2N instructions increment or
decrement all 16 bits of a register. This is useful for incrementing or
decrementing 16 bit memory addresses or providing 16 bit counting delays.

Since MICROTUTOR initially incorporates only a 256--byte memory,
only the one-byte memory addresses are necessary. Larger memories (up to
65,536 bytes) can be added to MICROTUTOR which can utilize full l6-bit
addresses. As stated earlier, ~ of the sample MICROTUTOR programs will
run properly in a system including more than 256 bytes of memory. However,
for example, the "ALU Demonstration" (Appendix 5A) requires only the
addition of byte BA at location 04 as part of Step 1. All address references
then need to be increased by 01.

One of the most useful COSMAC features is the built-in direct memory
access (DMA) channel. This is not described in this manual, although used
in MICROTUTOR for program loading. It provides an easy way to load MICRO­
TUTOR from an external ROM (Read-Only-Memory), a paper tape reader or other
input device with a minimum of external logic. The USER MANUAL FOR THE
COSMAC MICROPROCESSOR (MPM-lOl) illustrates the use of the DMA channel while
the MICROTUTOR external option socket (E) makes the required signals
available.

Another useful COSMAC feature is the INTERRUPT input line which
is provided at the external option socket (E). The program interrupt feature
enables an external device to stop normal microprocessor program execution
in order for the microprocessor to execute special service programs for that
device •. At the completion of such a service task, the microprocessor is
returned to executing its normal program. The use of INTERRUPT is also
described in the USER MANUAL FOR THE COSMAC MICROPROCESSOR (MPM-lOl) and
will not be further elaborated here. Instructions 70, 71, and 78 are used
in conjunction with program interrupts.

pOS/ilibl,~.

- 34 -

~lGROTUTOR Applications
• . i i

The following lists some inexpensive appl,ications that are

1. Manually operated t photoelectric t paper tape strip
reader for program storage and loading.

2. Input line sampling circuits.

3. Program controlled output relaYs.

4. Multidigit hex/numeric displays.

5. Scope output display (re: G. Steinbaugh,
"The Scopewriter" POPULAR ELECTRONlCS,
August 1974, p 33).

6, Read Only Memory (ROM) for fixed program
applications.

7. 16-position hex keyboard for faster manual entry.

8. Output tone/percussive sound generating circuits.

9. Analog to digital input circuits.

10. pigital to analog output c::trcuits.

The following lists some general areas of potential MICROTVTOR

1. Introductory, hands on, microprocessor courses in Hi~h
Schools, Colleges, and Companies.

2. Low cost CDP1801 breadboarding system.

3. Programmable tester for electromechanical devi~es,
integrated circuits, memories, etc.

- 35 -

4. Programrrmb1e sequencer for advertising displays or
holiday lighting.

5. Programmable, multiple pulse generator for lab work or
experiments. With appropriate D-A output circuits,
complex waveforms can be generated.

6. A variety of utility applications are possible such as
random number generation, event counting or timing,
metronome, etc.

7. MICROTUTOR can be used in a variety of testing situations.
Programs to test programming aptitude, logical deduction,
reflexes, etc. are possible.

8. Programmable controller for a variety of experimental
set-ups.

9. A variety of games, puzzles, and audio visual toys are
possible using MICROTUTOR.

10. Home hobby use including music/rhythm generators,
telephone dialer, etc.

This manual, in conjunction with the USER MANUAL FOR THE COSMAC
M+CROPROCESSOR (MPM-lOl), provides the information required to experiment with
a wi4e variety of COSMAC applications. MICROTUTOR provides a minimum cost
e~p~rimental/educationa1 hardware system. Larger, more powerful COSMAC
jy~~~~s are also available called the RCA COSMAC Development Systems.
E~tensive programming aids (software support) are available for use with
these systems.

- 36 -

APPENDIX 1

SUMMARY OF MICROTUTOR OPERATIONS & 1(0

tOARING MEMORY

1. Press CL, set tD up.
2. Set byte switches 0-7 (Up :;: ~, DO~ln:;: 0).
3. Press IN, to store switch byte in memory.
4. Repeat 2&3 for each new byt~. Bytes are

loaded sequentially and disp1ayec;1.

STEPPING MEMORY

1. Press CL, set tD up.
~. Pressing ST will sequentially display

~ontents of me~oty beginning with M(OO).
Loading can be resumed at memory address
following currently displayed byte.

STARTING PROGRAM

1-
2.

i

Press CL, set tD down •-
Pressing ST initiat~s execution at M(Ol).

MICROTUTOR I/O INSTRUCTIONS

1. Pressing IN sets EF4 :;: 1 (with tD down), *
2. 60 =: M(R(X) --.. display; R(X) + 1; [0 -- EF4 J
3. 68 =: switches 0-7 byte-M(R(X»; [0 ---EF4]*

* Specific to MICROTUTOR

t

- 37 -

APPENDIX 2

COSMAC INSTRUCTION SUMMARY

Regilter Operation.

rCode f Assembler Mnemonic

I Name
, rOPeration

'T 'N

1 N INC INCREMENT RINI+l

2 N DEC OECREMENT RINI-l

8 N GLO GET LO RINI,IrO

9 N GHI GET HI RINll+0

A N PLO PUT LO D+RINIO

B N PHI PUT HI D+RINll

N=O,1,2, ,9,A,B, ,E,F IHexadeclmal Notatlonl

Memory Reference
r-r-
I N

4 N LOA I LOAD ADV 1M (R (NII'D:R (NI +1

5 N STR ISTORE ID+M(RINII

ALU Operations
r-r-

I N

F a LDX LOAD BY X M(RIXII'D

F 1 OR OR M(RIXII,D+D

F 2 AND AND M(RIXII'D+O

F 3 XOR EXCLOR MIRIXII(tJ D+O

F 4 AOD ADD M (RIX II+D+D:C+OF

F 5 SO SUBTRACT 0 M (R IXII--D+O:C+OF

F 6 SHR SHIFT SHIFT 0 RIGHT;
RIGHT LSB'OF,lrMSB

F 7 SM SUBTRACT M D--M(R (XII'O:C'DF

F 8 LOI LOAD IMM M (R IPII+D,R (PI+ 1

F 9 ORI OR IMM M (R (PII ,D+O:R (PI+l

F A ANI AND IMM M(R ,PII' O·p: R IPI+l

F B XRI EXCLOR MIRIPII(j) 0+0:
IMM RIPI+l

F C ADI ADD IMM MIRIPII+D+D:
C+OF:RIPI+l

F 0 SDI SUBT D IMM MIRIPII-D+D:
C+DF:R(PI+l

F F SMI SUBT M IMM O-MIRIP))+O:
C+OF:RIPI+l

"These are the only operations that modify
OF. OF is set or reset by an ALU carry
during add or subtract. Subtraction is by
2'scomplement: A-B=A+B+1.

I
I

Branching
~ ~

I N

3 a BR UNCOND BR MIR(PII'RIPIO

3 2 BZ BR IF [l 00 MIRIPII·RIPIO
IF D-OOIAIPI+l

3 3 BOF BR IF [IF 1 MIRIPII'RIPIO
IF DF c l/RIPI+1

3 4 B1 BR IF EFl 1 MIRIPII'RIPIO
IF EF1-1/RIPI+1

3 5 82 BRIFEF2 1 MIRIPII·RIPIO
IF E F2 1 IR IPI+ 1

3 6 B3 BRIFEF3 1 MIRIPII'RIPIO
IF EF3-1/RIPI+1

3 7 B4 BRIFEF4 1 'v1IRIPII·RIPIO
IF E F4 l/RIPI + 1

3 8 SKP SKIP R(PI+]

3 A BNZ BR IF IJ' 00 MIRIPII'RIPIO
IF IlrOO/RIPI+1

3 B BNF BR IF DFO MIRIPII+RIPIO
I IF DF-OIRIPI+1

3 C BNl SR IF EF10 MIRIPII'RIPIO
IF EFl-0IRIPI+1

3 D BN2 RRIFEF20 MIRIPII'RIPI.O
IF EO-O/R(P)+l

3 E BN:l BRIFEF30 MIRIP))'RIPIO
IF EF3 Q/RIPI'1

3 F BN4 SR IF EF4 0 MIRIPII·RIPIO
IF EF4 0 RIPI+ 1

Control
r-r-

I N

a a 10L IDLE WAIT FOR
INTERRUPTI
DMA IN!
OMA·OUT

o N SEP SET P N'P

E N SEX SET X N+X

7 a RET RETURN MIRIXII~X. P;
R (XI+l :l+IE

7 1 DIS DISABLE MIRIXII~X. P;
RIXI+1:IrIE

7 8 SAV SAVE r+MIRlxll

Input-Output Byte Transfer

~ 6NI I/O, See Note

t

EF4 set to "1" by MICROTUTOR IN switch when LD switch is dqwn, and is
reset to "0" by the 60 and 68 instructions.

NOTE: I/O instructions can be defined by external logic via
external option socket (E). Basic MICROTUTOR I/O in­
structions are listed in Appendix 1.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

A

B
C
D
E
F
H
J
K
L
M
N
p

R
S
T
U
V
W
X
y
Z

- 38 -

APPENDIX 3

EXTERNAL OPTION SOCKET (E)

TPA Early timingp_ulse for M address clockin~. etc.
TPB Late timinR~ulse for output byte clock, etc.
EFI External flag lines(hold low for Ifl If) can be
EF2 tested by program. MICROTUTOR IN switch sets
EF3 EF4 = 1. Any 6N instruction resets EF4.
EF4
DMA-OUT Initiates an M - bus machine cycle when 10,,1
INTERRUPT Initiates program interrupt when 10,,1
DMA-IN Initiates a bus. -M mac~1ine cycle ".hen low
CLEAR Sets R(O) = 0000 P = a and COSMAC IDLE sta te
SCO Two bit COSMAC state code
SCI

No connection
No connection .

N3 Contents of 4-bit N register(L Ifl If) can be used = N2 in conjunction with state code to select/control
Nl
NO

external devices.

MWR~" Positive going memory ,,'rite 2ulse
M READ Low only during memory read cycles
VDD +5 VDC (available current = DC input rna minus 300 ma)
GND

INH M~" Hold high to disable 256-byte RAM card when other
memor....:y: (read ontYl is in use.

LOAD Low holds COSMAC in LOAD state
MAO
MAl
MA2 Multi-plexed memory address lines
MA3
MA4
MA5
MA6
MA7
BUS a
BUS 1
BUS 2
BUS 3 8-bit, 2 -way da ta bus
BUS 4
BUS 5
BUS 6
BUS 7
CLOCK Master clock (8 cycles = 1 machine cycle)
INH SW ~~ Hold high to disable MICROTUTOR byte input switches
VDD Same as 21
GND Same as 22

Note: Overlines on signal names have been omitted for clarity.
All signals are true when low, except those marked *, which
are true when high.

- 39 -

APPENDIX 4-A

GND

COPI80lCR CDPI80lCU

5

MICROTUTOR CPU Card (P)

- 40 -

APPENDIX 4-B

~M]~ M~~------------~
[pN.] BUS. I N
tpp] BiJS2 Pl-----------,

~R]BUS3 R~----------~
[PS] BUS 4 S)00>----...-..,...,

[PTJ BUS 5 T~-----,
[PU) BuSs u ~----,.
IPv) BUS 7 V =T~~
/'pC) MAO C J9t~I---l9r:l
LP D] MAT ~---40! 7 A
[P E] MAT t--------4O! 1 0 2606
[PF] Mii:'S"' f----411 6 4X256

[PH]·M'A4 H f----4II11 RAM

[pJ] MA5" J r---l5 (40MA)
[P K JMA 6 K· t-..----4O! 12
[PlJ MA7 L r----I13

+ 5 V DC f---.---4II14
GND r----I B

1----13

" READ/WRITE CD4001

+5

CHIP ENABLE 10 C r--~

TPA [PI J
"* COA5 [PB]

* TPB [P2]
MAO [PC]

* EF4 [P6]

"* OMA OUf[P7]

'* DMA IN [PS]

'* 10 CLEAR [PIO]

"* 11 ScO [pll]
*1 SCI [PI2]

* CLOCK [PW]
I
I
I
I
L_,

I
I
i
I
I
I
I

** W MWI{PI9]

I

X . M RE;AD [P20]

A INH M [EA]

MICROTUTOR 256-Byte RAM Card (M) Logic

* NO CONNECTION - SHOWN ONLY FOR COMPLETENESS

"* * [PI9] DEFINES PIN 19 OF SOCKET (P). ETC

- 41 -

APPENDIX 4-C
S

r------------------------------------.-----419 GND
+5

SW4 ,..-...v'

o--~ SW3
r--------O""_~--------L

II I"

SW5 ,..-...v'
.....------o..~ C>-t-.... S W 2

~ 1 DATA
. SWITCHES

SW6 r-o'"

SW7 ~

..__-----<:t..... o--t-.... SW I
~

O--.......... SWO I
r-----<~",o--<~--l.

911113 I 91" 13 I + 5 V

to ~I---~ C~ ~ GND
4016"5 4016 ~~
IN PUT~ I NPUT~~ ___ *-=--=-:-:---44.

BUS f2' BUS J:gf-< R7 T ?? K
GATES~ GATES 13~ . ~

"0"

I SW-M

811Ci4 2 U8UJlrl~01~4J12u-------~ 5 BUS 0

I 14 BUS I

L.----------~13 BUS 2

'-----------------to(12 BUS 3

'----------------------,----c 10 BUS 4

'-------------------------~9 BUS5
'----------------------------~8 BUS6

'------------------------------..-(7 BUS 7

t o------t 6 EF4

"

IN
SWITCH
/ GND

LOAD
SWITCH I '---.-(5 DMA IN(P9]

I

.!,..I_O-<r"-e(4 LOA D +5
Tc CT START "CLEAR" '-

RS-22K R6-22K J~~_~~ SWITCH -L-
1 J '-0 o---~----------__t16 CLEAR

r~IN~C~ ____________ ~~--__ ----C18 SNC

NO 1 SNO
~N~C~ ____________ ~~~--+-----------~2 INC

NO 3 INO
R I R2 R4 R3
22 22 22 22
KKK K

MICRO TUTOR Input Byte Switch Logic

SW P.C. BOARD
CONNECTIONS

- 42 -

APPENDIX 4-0

~PM~ pUS 0:>:
PN 8US 1>·~-401
PPBUS 2 >'>--401
PR BUS 3 >'>--"1.:....!L-............ ---,.:.-=-i

HEX OUTPUT DISPL.AY
LEAST SIG. DIGIT

[PS] BUS 4> HEX OUTPUT DISPLAY
rpT~ BUS 5>·~-"'" MOST SIG. DIGIT
[PUBUS 6>'~-~ L--f-"4UJ~~~
[PV BUS7>>--~~~~J

g---+-~~W
M-DISPLAY

+5V

(S.,.,8] LOAD >::>----:::et
---~------« m [P2]

W---<X < MREAO [P20]
I

(~xJ 1NH SW >'::>'--~-rllr+..J\IIN"--, 3

[sit] sw ---McM--~« C r....1-3------.---:;,a

SCi [P12]
~~----~~~~<

~~ <
CD4001

(SI6,PIO]C -L-E-A-R >.-----.

EF4 <:
[S6,PS]

8-1~ VDC
INPUT JACK
(300mA MIN.)

6 .SCO[PII]

....... ---« TPA[PI]

<SNO[SI7]

<SNC[SI8]

+5VDC
+ 10

A,B,C,D,E-7= GND

A ,B, C ,0, E -14 = + 5 V

L.....!::.:::.-_-1--_--' 't~

MICRO TUTOR Display and Control Logic

- 43 -

APPENDIX 5-A

ALU (Arithmetic Logic Unit) Demonstration Program (18 Bytes)

This program permits the ADD, SUBTRACT, AND, OR, and EXCLUSIVE OR
operations to be demonstrated. Enter two I-byte OPERANDS and the result
of the preselected ALU operation will be displayed. The instruction byte
at M(OC) can be st to Fl, F2, F3, F4, F5, or F7 to demonstrate the corres­
ponding ALU operations.

M CODE M
START i- ,

sl I I/O 00 00 84 QA ~

I

YES

YE8

BYTE'" M(R(A»
M(R(A») + D ... DISPLAY

Sl

S2

83

APPENDIX 5-6

8imp1e Blinker Program (21 Bytes)

I
I

81

81

'-----..,..------_ ..
83

82

84 ,-----11----......

A. Change FF @ M(OB) to vary rate.
B. Change OF @ M(OS) to vary display.

01 F8
02 00

r--£3 AA
04 3F
05 04
0·6 EA
07 68
08 FO
09 3F

M CODE

00 00
01 F8
02 00
03 A3
C4 F8
05 OF
06 53
07 E3
08 60
09 23

OB 68
OC I F4 I 85
aD 5A
(;I,E 60
OF 2A
10 30
11 0'1.

M CODE

83 OA F8
OB FF
Oc FF
OD 01
OE 3A
OF Oc

84 10 F8
11 FF
12 F3
13 30
14 06

I
i

- 44 -

APPENDIX 5-C

S,iw>le Combination Lock Program (31 Bytes)

CC in display to start. Set 8-bit switch code and press IN. Right code
opens lock (OO=in display). 3 wrong tries gives alarm (EE in display).
Could be used with external relays for actual lock/alarm control. Change
byte at M(ll) to change combination.

START M

• 00
01
02

Sl 00 -+ R(3), 03 -+ R (A)
cc -+ DISPLAY

81

01
04 S2 ~

IF IN:
SWITCH 0-7 -+ M(R(3» 05

06
07
08
09
OA
OB
Oc

S3
t YES

M(R(3» = crnE ?
I

I

+ NO
84

fR(A) - 1 = 00 ? I
NO

+
YES

OD
OE

85 DISPLAY EE (ALARM) J 82

OF
86 DI8PLAY 00 (OPEN) r-

APPENDIX 5-0

Two-Byte Multiply Program (33 Bytes)

CODE

00
F8
00
A3
F8
03
AA
F8
CC
E3
53
60
23
3F
00
68

S3
CODE

s4

S5

S6

M crnE

10 F8
11 C3
12 F3
13 32
14 1B
15 2A
16 8A
17 3A
18 00
19 F8
1A EE
lB 53
1C 60
1D 30
IE 1D

Enter two bytes. After pressing IN for second byte the product
of the two bytes is displayed. This program is limited to a one byte
product.

START

(INITIALIZE I S6 -1 R(B) + M(R(C» -+ M(R(C» I
L

i-

S1 ~
t

SW --+ R(A)r-S2 IF IN: S7 I R(A) - 1 I --+ DISPLAY l
t

IF IN: SW --+ R(B) I S8 I DISPLAY M(R(C» I I

83

• £4 00 --+ M(R(C» I
•

R(A) =00 ? I YES
I

85

INO

APPENDIX 5-D:
ftC? "

M(C)
Sl

S2

S3

M

00
01
02
03
04
05
OS
07
08
09
OA
DB
OC
00
OE
OF
10

(Continued)

CODE I
00
F8
00
AC
EC
3F
05
68
FO
AA
60
2C
3F
OC
68
FO
AB

- 45 -

H I CODE

s4 11 F8
12 00
13 5C

S5 1 14 I 8A
15 32 I

16 lD
S6 17 8B

18 F4
19 5C

S7 1A 2A
lB 30
lc 14

S8 1D 60
lE 2C
lF 30
20 05

APPENDIX 5-E

Table-Driven Sequencer Program (23 Bytes + Tables)

Generates repeated output byte sequence via a table. Can be used
with external latches or relays as multiple waveform generator or multiple
line controller. Simplified version of sample program in COSMAC micro­
processor manual.

START ...
J Q1 ~ SP, Tl ~ TP, 4 ~ Nci

+ S2 I M(SP) ~ DISPLAY, SP + 1 l __
I

S3
t

I M(TP) ~ D, TP + 1 I
S4 + l' NO I I D-1 = 00 ? I

YES
~

S5 I NC-1 = 00 ?
I NO
I

YES

R(A) = state table pointer (QP)
R(B) = time table pointer (TP)
R(3) = counter (NC)

Sl
i

M CODE

00 00
Sl 01 F8

02 17
03 M
0+ F8
05 1B
06 AB
07 F8
08 04
09 A3

S2 OA EA
DB 60

S3 Oc 4B
s4 en FF

DE en
OF 3A
10 OiD

I
S5

Q1
Q2
Q3
Q4
T1
T2
T3
T4

M

11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E

CODE

23
83
3A
OA
30
01
11
22
33
44
80
FF
80
FF

!

- 46 -

APPENDIX 5-E: (Continued)

Notes: A. Change Ql-Q4 to vary output state sequence.
B. Change Tl-T4 to vary intervals between state changes
C. To expand tables

M(02) = Ql address
M(05) Tl address
M(08) number of bytes in Q/T table. Both must

be same length

D. Add C2 (.005 ~F) for slower clock if desired

APPENDIX 5-F

NIM Computer Playing Program (38 Bytes)

Each game is initiated by pressing clear and then start, then 10
(I?ecimal 16) will be displayed. You take turns with MICROTUTOR in this game.
You go first. Enter 01, 02, or 03 which will be subtracted from display.
Whoever can reach 00 first, wins. (When MICROTUTOR wins, FF is displayed).
You must get exactly 00 to win. No cheating checks are included. Change
byte at M(06) for different starting number. Add C2 (.005 [iF) for longer
qelay between your move and computers.

START M CODE M CODE

81 r N -+ R(3)i 3 -+ X

S2 l 10'" D (DECIMAL 16)

00 00
1 01 F8

02 26
03 A3
04 E3

2 05 F8

s

+ S3 8

8 7 13 F8
14 FF
15 FF
16 01
17 3A
18 15

06 10
3 07 53

08 60
09 3F I
OA 09
DB 68

D ... M (R(3» ... DISPLAY I
I Rp~

I
t s4

INPUT "'M(R(3»
... D, N ... R(3)

t 85

8

S4

19 FO
lA 23
IB F4
Ie FF
ID 04
IE 3B

88

Dc FO
OD 23
DE F5

l M(R(3» - D ... M(R(3»
... DISPLAY, I ... R(3)

... 86 S5

IF 22
20 3A
21 07

89

STOP IF D = 00 OF 53 810 22 F8
10 60
11 32
12 11

(PLAYER WIN~)

DEr!y'
S7

L I c.
S8 M(R(3» ... D, N ... R(3)

S6
23 FF
24 30
25 07

D + M(R(3» D
D-4. DF - O? YE8

! NO 89 NO D - oo?
t YES S10

FF ... D - COMPUTER WIN8 I

!
I

- 47 -

APPENDIX 5-G

Guess My Number Program (48 Bytes)

MICROTUTOR thinks of a 1-byte number. You try to guess it in seven
turns. Display = 11 to start. Enter guess. If display = 10, your guess
was high. If 01, your guess was low. If 00, you got it. After seven
tries, FF indicates you lost. Change M(08) byte to vary number of guesses
permitted.

8 TART M CODE M

81 R(A) ~ R(B), 00 ~ R (3) 81
00 00
01 8A

85 17
18

3 ~ X, 08 ~ R(4) 02 AB 19
03 F8 lA

82 04 00 86 1B
05 A3 1C

83
~ M(R(3»

06 E3
07 F8

1D
1E

87

08 08 IF
84

RCB) ?
82

09 A4
OA F8

20
21 88

85 OB 11
OC 53

22
23 89

86 OD 60 24
DE 23 25

83 OF lA 810 26
87 10 3F 27

00 11 OF 28
12 68 29

88 84 13 8B 811 2A
14 F5 2B

89 15 33 2C
16 1B 2D

810
NO

811

CODE

F8
01
30
23
3A
21
53
60
::;0
IF
F8
10
53
60
23
24
84
3A
OF
F8
FF
30
ID

- 48 -

APPENDIX S·H

Memor¥ Address Test Program (35 BXtes)

Stores a unique byte at each memory location then reads and checks for
proper storage. Use only for 256 byte RAM. Non-changing display is error
byte. Press in to see error address. The program can be tested with a
good RAM by changing 23 @ M(OA) to 22. This will yield an immediate error
at M(22) with the error byte - 21.

SI

S2

S3

S4

S5

NO

STAH.T

START ADDR. ~ R(3)

DISPLAY M(R(3»
M(R(3» = R(3) ?

R(3) + 1 = 00 ?

~--------------~~S

IN ?

~S

R (3) ... DISPLAY

+ 1

S6

87

88

M

00
81 01

02
03

s2 04-
05
U6 NO S3
07
08

S4 09
OA

NO OB
ERR. S5 OC

.OD
OE
OF
10
11

CODE M CODE

00 S6 12 13
F8 13 83
23 14 32
A3 15 09
53 16 30
13 17 ~ 83 S7 18 3F
3A 19 18
04 S8 lA E4
F8 IB F8
23 lC 00
A3 ID A4
E3 IE 83
60 IF 54
23 20 60
F3 21 30
3A 22 21
18

