Use of Basic 1 Compiler/interpreter

CDP18S834 v4 with the
RCA MicroDisk Development System
M$2000

MPM-334 Suggested Price $2.00

Use of Basic 1 Compiler/interpreter

CDP1 8S834 V4 with the
RCA MicroDisk Development System
MR2000_

“e Solid | somervilie, NJ « Brussels o e Paris e London
State [Hamburg « Sao Paulo ¢ Hong Kong

Foreword

"The Basic 1 Compiler/Interpreter CDP18S834V4 is
like the CDP18S834 described in MPM-234 issued 4-80,
but is supplied on a microdisk and is designed to run
on the RCA MS2000 MicroDisk Development System which
contains the RCA CDP18S845 MicroDisk Operating System
(MicroDOS)

Implementation of BASIC1 for MicroDOS requires a
change in the starting point of memory address user
space from 1200 to 1600, and changes in the utility
commands. These changes are shown on subsequent
pages.

In this Manual, the BASIC1 language is described
and detailed operation information for the compiler
and interpreter is given. It is recommended that the
user carefully read the User Manual for the CDP1802
Microprocessor, MPM-201 for a detailed description of
its instruction set and architecture, the MPM-201C
Supplement for the Instruction Set for the RCA CMOS
Microprocessors CDP1804A, CDP1805A, and CDP1806A, and
the User Manual for the RCA MS2000 MicroDisk
Development System, MPM-241,

Contents
Foreword............cooiiinieneernnonennnnns 3 WFLN...... Ch ettt eeen 12
1. Introduction ...ttt e S RFELN . iiiiiiiiiiiiiiniiinnnennns 13
3. Rlements of Basic } Compllcr/lumpum 6 DOUT .. i iiiiivinnnninnnnennnennnns A3

Programsand Statements 6 DIN . i it it iieiiine e 13
Numbersccovvivineneinanennns 6 CLOSEciiiiiiiiiiiiiiinnne, 13
Variablescoviviiiiniinnnnniennns 7 WEOF ... iiiiiiiiiiiiiiiiiiieneenns 13
Expressionscooiiiiiinniinnns 7 TIN ittt ittt iie e 13
Functionsccoiiivieninnnnnns 8 TOUT L iiiiiiiiiiiiiiiiieiennnnns 13
MOD ...t e 8 NOUT ... iiiiiiiinnae 13
AND ... it it e e 8 System Control Statements 13
0) | 8 NEW .. iiiiiiiiiiiiiinneerennas 13
XOR ..ttt 8 RUN ittt iiiiieienens 14
MAX e 8 50 13 14
MIN . .. ittt ieiieiee s 8 RDOS ... ittt iiiiiiiiineaens 14
SON....iviiiiiiiiitiitteiiiii it 8 4. ProgramminginBasiclcoo000nnne 15
N - N T 8 Immediate Execution and Program Modes . . .13
5§ 2, 8 Multiple Commands Per Line.............. 16
RND .. . ittt iiiiiintinrnnnenennnns 8 DiskOperationsoovvvinevrens 16
INP .. v 8 Special Keyboard Control Characters17
L0] How the Compiler Uses the ! Statement 17
J.Statement Typescovvvviiinnnnnnss 10 Loops and Subroutines18
Comments and Declarations............... 10 Programming Examples 18
REM ..ttt iiieeinnenoennneanans 10 Arithmetic Drill Program18
Cereeerresseees veeends10 Geometric Print Pattern Program19
Assignment Ceeereieriannans 10 Built-in Subroutines for the USR Function...20
LBT . iiiiiiiiiiiiriinininrennnnnens 10 Error Messages and Programming
Comtroloovviiiii et et 10 Debugging...........oovvvvvivnnnnns .20
(€70 2 1 o 2 10 S. Running Basic | Compller/Interpreter 22
GOSuUB..... Cireereies Cerereaeiiiaes 11 Loading and Starting the Interpreter22
RETURN ...t 1 Loading and Running the Compiler......... 22
END......iiiii i 1
Conditional Statement 11 Appendix A—Formal Definition of Basic |
1 S 11 Compiler/Interpreter...............covuuiis AU
Input/Output Statements 11 Appendix B—Summary of Basic | Repertoire25
INPUT ...vovvniiiiieiineeeeeeannn, 1 Appendix C—Summary of Error Messages 28
PRINT . oo e 12 Appendix D—Scratchpad Memory Allocations in
OUTPUT oo, 12 thelnterpreter..........oo000vss R - 4

Disk-Related Statements 12 Appendix E—ASCII-Hex Table............ Y |

1. Introduction

Basic 1 provides the most fundamental of those
functions normally attributed to the high-level
language called Basic. It is an excellent language for
the beginning computer programmer. It is easily
learned, and elementary application programs may
be developed quickly. For the more experienced pro-
grammer, Basic | forms the core of a system whose
facilities may be extended indefinitely by the addition
of machine language subroutines limited only by the
system memory.

The Basic | Compiler/Interpreter gives the user the
option of (1) developing and running programs In
Basic | directly, or (2) converting these programs to
executable object code capable of running at a
greater speed.

e

The interpreter allows the user to write programs
in Basic 1 with line numbers for later execution or
without line numbers for immediate execution. The
disk-related statements incorporated in the inter-
preter allow the programmer to save programs on &
floppy disk for later recall.

« The compiler enables the programmer to take any
stored program written in Basic 1 and translate it
into assembly language, giving the user the
flexibility of specifying vhere in memory the
program, variables, and stack are to reside. The
output of the compiler can be assembled by the
MicroDOS macroassembler (ASM8) to produce the
directly executable object code. Programs compiled

. and assembled run at speeds much greater than those

run directly through the interpreter.

2. Elements of Basic 1 Compiler/interpreter

In this chapter, the format of Basic ! is outlined
and the individual functions are described.

Programs and Statements

144
A program in Basic is an ordered list\of numbered
lines. Each line can hold a maximum of (’Q)characters

and may contain one or more Basic statements. Lines
may be entered in any order and line numbers may be
skipped. Basic 1 arranges the lines in numerical se-
quence regardless of the order of entry. Line
numbers can run from | to 32767.

Fig. 1 contains two examples of the same program.
In Fig. 1(a), the program contains one Basic 1 state-
ment per line and the lines are numbered consecutive-
ly starting at 1. In Fig. 1(b), the program contains
multiple Basic 1 statements per line and the lines are
numbered in increments of 10 starting at 10. The type
of line numbering in Fig. 1(b) permits the addition of
new or corrected statements into the program
without renumbering all the lines.

Blanks written on a line have no significance to
Basic 1. All spaces before the first non-numeric
character are totally ignored. After that, however,
blanks are preserved in the memory copy of the state-

1 LETA=S

2 LETB=10
JLETC=A*B+3
4 PRINTC

6 END

(a)

10 LETA=BLETB=10
20 LETC=A’B+3.PRINTC
30 END

®)
Fig. 1—Sample Basic 1 programs.

ment (i.e., each blank character occupies one byte).
Judicious use of blanks within lines can often im-
prove the readability of a Basic program. For infor-
mation regarding the use of multiple statments in a
line, refer to Chapter 4, Programming in Basic 1.

Numbers

Basic 1 accepts numbers that are either decimal or
hexadecimal. A decimal number is a sequence of
decimal digits (0-9) optionally preceded by a sign (+
or ~). If no sign Is present the number is assumed to
be positive. All numbers are stored as 16-bit signed
im?ers. Positive values may range from 0 to 32767
(215 - 1) and negative numbers may range from -1
to -32768 (215). It should be noted that - 32768
cannot be input directly. However, an expression can
be evaluated (o give the value —32768.

A hexadecimal number is any sequence of hex-
adecimal digits (0-9, A-F) preceded by a pound sign
(#). Hexadecimal numbers can range from #0000 to
#FFFF. Fig. 2 gives some examples of valid and in-
valid number constants.

0

1

-1

- 32787
#ABCD

(a) Valid

58 (integers only)

250000 (number out of range)

7,200 (commas do not appear in a number)

BBSS (hex constants must be preceded by
a ¥ as #BBSS)

(b) Invalid
Fig.2—Valid and Invalid number constants.

2. Klements of Basic 1 Compilerfinterpreter

Variables

A variable is designated by any single capital letter
(A-Z). Each possible variable is assigned a unique
two-byte location in memory. The value of the

variable Is the contents of that location (i.c., a
number in the range - 32768 to 32767).

Expressions

An expression is a combination of one or more
numbers, variables, or functions joined by operators
and possibly grouped by pairs of parentheses. The
permissible arithmetric operators are:

+ Addition

= Subtraction

¢ Mubtiplication
/ Division

Expressions also allow the indirection operator *'@"’
to mean the byte from the following memory ad-
dress. The indirection operator may be followed by
any valid expression including one encompassing
another indirection operator. Fig. 3 gives some ex-

D 481
B8-62

#2ABC
X+ Y)V(A +B)

amples of valid expressions. Fig. 4 gives some ex-
amples of expressions using the indirection operator.

Whenever Basic 1 encounters an expression within
a statement during its execution, it evaluates the ex-
pression, combining the numbers and the values of
the variables and functions using the indicated
operators. Internal sub-expressions within paren-
theses are evaluated first. Usually, parentheses make
clear the order in which operations are to be perform-
ed. However, if there is an ambiguity because paren-
theses are absent, Basic 1 gives precedence to multi-
plication and division over addition and subtraction.
Arithmetic operators also take precedence over the
indirection operator. In cases involving two
operators of equal precedence, evaluation would pro-
ceed from left to right. An expression may be op-
tionally preceded by a sign. In the example expres-
sions given in Fig. §, the operators are numbered to
indicate the order in which they are performed.

When the result of a division is not an integer,
Basic 1 will truncate the resuit. Examples of this divi-
sion and truncation are given in Fig. 6.

During the evaluation of an expresssion, all in-
termediate values and the final values are truncated
to the lowest 16 bits of the results. That is, expres-
sions are evaluated modulo 216 with the most signifi-
cant bit being the sign bit. No attempt is made to
discover arithmetic overflow conditions except that

A+1-C (cn

= (- 46/(- 32767 + (I*1))

Fig. 3—Valid expreseions.

©125 = The contents of memory location 007D (125 = hex 007D)

@#7D = An equivalent expression

Q@ @5 =The contents of memory location whose address s in location 0008
@5+ 1 =The contents of memory location 0006

(@5)+1 =0ne more than the contents of location 0005

14+ @5 =An equivalent expression

Fig. 4—Expressions using the indirection operator “@".

A+B*C
2 1

A+B°6/4+
3 124

A+B-C+D
1 2 3

(A+B+C)Y5
1 2 3

(A +B)°4)-6°D)
1 243

A*B/C*D/E°F
12345

Fig. 8—Expression evaluation. The numbers indicate the order In which the operations
are performed.

DIVISION RESULT
&3 2

(- 0-9) .2
(7= H

a3 2

(- oy3
&(-3) Z:

&7 0

Fig. 6—Expressions vsing the division operstor.

an attempt to divide by zero results in an error stop.
Any expression which evaluates into the range of
32768 10 65535 (213 10 216.1) has a sign bit of 1 (mak-
ing it negative). Thus, it is actually treated by Basic |
as if 65536 (216) were subtracted from it. As a conse-

quence, the following are expressions which have the
same value:

- 4096
15°4096
2°16384/8
30720 + 30720

Functions

Function references may appear in expressions in
the same way as a variable or number constant. They
may also appear by themselves anywhere an expres-
sion is permitted. Following is a listing of the Basic |

‘fl:.cﬁom and a description of what each function

MOD Function

Form—MOD (Expression 1,Expression 2)

The MOD function divides the value of expression
1 by the value of expression 2 and returns the re-
mainder. It is exactly equivalent t0 the expression

{5

in the high or low byte, insufficient code is

produced to form an OR, XOR, or AND with the #00 byte
of the argument. The user can correct the probles by

editing the output from the compiler with the

insertion of additionsl code to perform the mnissing
OR-ing function. In the following example the code

that the user should add is underlined.
OR (Y,f1500) should generate
SEP L;DC A.O(VY)
GHI ZZ;PLO AC
GHI AC;ORI A.O0(O1SH);PHI AC;

GLO AC;ORI A.0(OOH);PLO AC
SEP 8;DC A.(VY)
AND Function
Form—AND (Expression 1,Expression 2)
The AND function returns the bit-for-bit logical
AND of the two arguments.

OR Function .
Form—OR (Expression 1,Expression 2)

The OR function returns the bit-for-bit logical OR

of the two aronments,

lem
. o)
" the €° !

When the OR, XOR, or AND function is used, {f the
second argument is a two-byte hex constant with #00

Use of Basic 1 Complier/interpreter COP188834V4

XOR Function

Form—XOR (Expression 1,Expression 2)

The XOR function returns the bit-for-bit logical
XOR of the two arguments.

MAX Function

Form—MAX (Expression List)

The MAX function returns the greatest value in the
expression list. The expression list Is a list of expres-
sions separated by commas,

MIN Function

Form—MIN (Expression List)

The MIN function returns the smallest value in the
expression list.

SGN Function

Form—SGON (Expression)

The SON function returns a -1, 0, or + | depen-
ding on whether the argument is negative, zero, or
positive, respectively.

ABS Function

Form—ABS (Expression)

The ABS function returns the absolute value of its
argument.

HEX Function

Form—HEX (Number, Width)

The HEX function is valid only in a PRINT state-
ment. It prints the value of the number in hex-
adecimal. Both the number and the width can be any
valid expression. If the width evaluates to a number
between 1 and 3, it specifies how many digits (from
the least significant part of the number) will be
printed. Otherwise, or if the width parameter is omit-
ted, four digits will be printed.

RND Function

Form—RND (Expression 1,Expression 2)

The RND function returns a positive random
number in the range from the value of expression 1 10
the value of expression 2, inclusive. The value of ex-
pression 2 must be greater than the value of expres-
sion 1. If the arguments are invalid, an error stop
mAay occur.

INP Function

Form—Line Number INP (Port)

The INP function is used to input data from a
specific port. It generates a hardware in instruction
with the N lines set according to the parameter
{Port). It is essential that the Port expression evaluate
to a number in the range of 1 to 7. The INP function
executes by returning the value of the data on the

specified input port as a number in the range 0 to
25S.

USR Function

Form—USR (Expression 1,Expression 2,Expres-
sion 3)

The USR function is an important feature of Basic
1 that allows the user to extend the features of the

2. Elements of Basic 1 Complier/interpreter

langusge by means of machine language routines. To
use this feature, the programmer must be familiar
with machine language programming, the instruction
set for the CPU (See MPM-201, User Manual for the
CDP1802 COSMAC Microprocessor), MPM-201C,
Instruction 8S8et for the RCA OMOS Microprocessors
CDP1804A, CDP1B0OSA, CDP1806A, and the CPU registers
that are available and can interface between the
machine language program and the Basic 1 progrem.
Because implementation of Basic 1 for MicroDOS
requires a change in the starting point of memory
address user space from 1200 to 1600, the programmer
should also be aware of the areas in memory that can
be used.

When the USR function is encountered in a pro-
gram, Basic 1 evaluates the first expression and
transfers control to that address. The second and
third expressions are optional. If a second expression
is included, it is evaluated and the resulting value is
passed to the called program as the contents of CPU
register 8. If a third expression is included, its value is
passed in register A (with D also holding RA.0). The
subroutine receives control with P=3 and X = 2.

The called program must return with a SEP § (DS)
instrugtion. When it returns, its 16-bit function value
is the final contents of RA.1 and D (lower 8 bits in D)
just before the SEP 5 was executed.

Machine language subroutines have the free use of
RO, RI, RS, RA, and RF. In addition, R2 is
pointing at a free byte in the control stack.

Basic 1 has a built-in call and return subroutff,
that preserves the accumulator (D) and destroys the g
low part of register RE, This subroutine differs W@
from the Standard Call and Return Technique (SCRT)
described in the User Manual for the CDP1802 COSMAC
Microprocessor, MPM-201.

The user program area is locsted directly abdove
the interpreter, starts at #1600, and runs up. The
stack starte at the top of memory (#7FFF in a
32-ki1lobyte system) and runs down. See Pig. 7(a).
The machine language subroutine can be positioned
somevhere between the user program ares and the
stack, or the position of the user program area can
be changed, thereby saving X number of bytes for the
machine language subroutines. To change the position
of the user program area, the constant #1600 stored
at location #011C should be changed to some other
value (#1800, for example). See Fig. 7(b).

Procedure: After the interpreter is loaded,
presa RESET and RUN U on the front panel of the
development system. When the asterisk "*” prompt is
returned, type in the command 'IOIIC(EEQQ (CR)", and
then execute a cold start, " P100". For more
information on cold-starting the interpreter refer to
Chapter 5, The block of memory

Running Basic 1.
between #1600 and #1800 will now be skipped by the

interpreter.

The compiler permits the user to place the
variables, program, and the stack anywhere in
memory. The user must keep in mind, however, that
bytes at locations #0000, #0001, #0002, and #0003 are
always occupied. With this flexibility any amount of
space that might be needed for machine language
subroutines can be saved.

180¢

HEXADECIMAL

ADDRESS
IFFF
STACK 1 STACK 1
1 6000 -
-——t fo000 e
4000
. oo |——]
| SR 2000
veER " t SAvEo
noonn‘ o | fAneA
1600 fo0
1oce 00
AsIC | BASIC |
ﬁmvnm NTERPRLTER
—_——— e e
(o) ®sc0 (o
NCY- New ¥

Fig. T—Interpreter memory usage In 32-kilobyte system. (a) Unmodified. (b) Modified to save
#0200 bytes for machine languesge subroutines.

10

3. Statement Types

A statement normally begins with a key word, such
as PRINT or GOTO, indicating the type of state-
ment. The interpretation of the rest of the statement
depends on the key word. In some cases a shortened
form of the key word is also acceptable. An example
is PR instead of PRINT. In this chapter, the various

types of statements and the associated key words will
be described.

Comﬁ\onto and Declarations

REM Statement

Form—Line Number REM Text

The REM statement Is used to insert remarks or
comments into a program. During program execu-
tion, it is ignored by Basic 1.

Example—100 REM THIS IS A REMARK

! Statement

Form—Line Number ! Assembly Language

The ! statement is used to pass assembly language
through the compiler. The interpreter treats the !
statement the same as the REM statement.

Example—100 !, T‘THIS WILL BE PASSED
THROUGH THE COMPILER’
The use of the ! statement will be explained in detail
in Chapter 4, Programming in Basic 1.

Assignment

LET Statement
Form—Line Number LET Variable = Expression
The LET statement is used to assign a value to a
variable. The value may be any general expression.
The key word LET is optional.

Examples—100 LET A=$
150B=10

The LET statement can be combined with the in-
direction operator *‘@"’ to store a byte anywhere in
memory.

Form—Line Number LET@ Address = Datum

Both the address and the datum may be any valid
expression.

Expression—100 LET@ #3000 = #2A
Control

GOTO Statement

Form—Line Number GOTO Expression

The GOTO stutement transfers control in the pro-
gram to the line number specified by the expression.
If the expression contains one or more variables It is
considercd a computed transfer of control.

Examples—100 GOTO 150

150 GOTO 1°2 + 200

The interpreter {s able to execute a program with
computed transfers of control. For the compiler to
work with such a program, however, it needs a table
of target lines following the END statement of the
form:

LINE NUMBER, TARGET LINE 1, o
TARGET LINE §, -1

LINE NUMBER, TARGET LINE 6, TARGET
LINE?,0
where the — 1 and the 0 at the end of the lines refer to
table incomplete and table complete, respectively.
Lines containing the table of target line numbers
must have a line number of 32001 or greater.

Example—.

150 GOTO X*10 + 200 (where X can
range from 0
to$)

300 GOTO Y*S + 500 (where Y can

3. Statement Types

range from 0
to 3)

5000 END
32001,200,210,220,230, - |
32002,240,250,500,308, ~ |
32003,510,515,0

GOSUB Statement
Form—Line Number GOSUB Expression
The GOSUB statement {s used to call an internal
subroutine. It is executed exactly the same as a
GOTO statement with one exception. The number of
the line immediately following the GOSUB statement
is recorded by Basic 1.
Examples—100 GOSUB 1010
100 GOSUB 1°10+ 500
The GOSUB statement can be combined with the
indirection operator “@'’ to jump to a machine
language routine.
Form—Line Number GOSUB@ Expression 1,Ex-
pression 2,Expression 3
Expression 1 specifies the address of the machine
language subroutine. Expressions 2 and 3 are op-
tional. If expression 2 is included, it is evaluated and
the resulting value passed to the called program as
the contents of CPU register 8. If a third expression
is included, its value is passed in register A (with D
also holding RA.0). The subroutine receives control
with P= 3 and X =2, and must return with a SEP $
(DS) instruction. (See USR Function in Chapter 2,
Flements of Basic 1 Compller/Interpreter.)
Fxamples—100 GOSUB@ #3000
100 GOSUBR®@ 1300,A*B
100 COSUB @ #4100,0,#56

RETURN Statement

Form—Line Number RETURN

The RETURN statement {s used to mark the end of
an internal subroutine. It executes by transferring
control back to the statement whose line number was
recorded as the result of the execution of a GOSUB
statement. The acceptable short form of the key
word RETURN is RET.

Examples—100 RETURN

100 RET

Internal subroutines are explained in Chapter 4,

Programming in Basic 1.

END Statement

Form—Line Number END

The interpreter uses the END statement to ter-
minate execution of a program and return to the
enter mode. It must be the last statement executed in
a program and there may be as many END
statements in a program as needed. The interpreter
accepts as a synonym for END the key word STOP.

Examples—100 END
100 STOP
The compiler uses the END statement to terminate
compilation. In the compiler, the END statement
must be the last line of the program. This statement
must be the one and only END statement in the pro-

gram. The key word STOP is not recognized by the
compiler.

Conditional Statement

IF Statement

Form—Line Number IF Expression 1 Relation
Expression 2 THEN Statement

The IF statement is used to compare two expres-
sions according to the specified relation. If the condi-
tion specified is true, then the associated statement is
executed. Otherwise, the program is advanced to the

next line number. The permissible relational
operators are:

- equal

< less than

> greater than

<= less than or equal (not greater)

>m greater than or equal (not less)

<> or > < not equal (greater than or less
than)

The associated statement may be any other valid
Basic | statement including another IF statement.
The key word THEN may be omitted.

Exsmples—100 IP [>25 THEN END

100 IF 1<$ PR "“"UNDER"
100IFA>BIFB>Clel+]
(Increments only If B is between
Cand A)

The IF statement also allows the key word GOTO
to be replaced by THEN, thus making the two
statements below equivalent.

Examples—100 IF B=$ GOTO 200

100 IF B=3$ THEN 200
It should be noted that the key word THEN is essen-
tial here and cannot be omitted.

Input/Output Statements

INPUT Statement

Form—Line Number INPUT Inputlist

The INPUT statement is used to input data from
the terminal or disk. The Inputlist is a succession of
one or more variables separated by commas. The ex-
ecution of this statement begins with the typing of a
question mark prompt indicating that Basic 1 is ex-

12

pecting the user to type in data. The user should res-
pond by typing a line of one or more expressions
separated by commas and terminated with a carriage
return. Each input expression is evaluated and
assigned to its input variable in the INPUT state-
ment.

If the number of requested variables in the In-
putlist is not satisfied by the number of expressions in
the user’s input line, a new ? prompt will be issued
asking for more information. If the number of ex-
pressions in the user’s line is greater than the number
of requested variables, then those input expressions
not requested are saved internally.

The key word INPUT can be shortened to IN. This
short form has & slight functional difference. The IN-
PUT statement will unconditionally read another
line, ignoring any remaining data in the current line.
The IN statement, however, will check to see if any
saved expressions exist. If so, then these saved ex-
pressions are used first to satisfy some or all of the
variables requesting values. Only when no saved data
exists is the ? prompt issued.

Examples—100 INPUT A,B,C
100 IN A,B,C

The key words INPUT and IN can be followed by
a prompt string. The string is a group of characters
enclosed in quotes that will be typed in front of the
first 7 prompt when the statement is executed. If the
prompt string is followed by a comma, a new line of
input is required. If there is no comma, the existing
line of data is used until exhausted. The prompt
string over rides key word spelling.

Examples—100 INPUT ‘‘READ", A,B,C
100 IN “‘GIVE IT TO ME" A,B,C

PRINT Statement

Form—Line Number PRINT Printlist

The PRINT statement is used to print data or
messages to the console printer or disk. The Printlist
is a succession of one or more items 0 be printed
separated by cither commas or semicolons. Each
print item may be either an expression or a character
string enclosed in quotes. In the first case, the value
of the expression is typed. In the second case, the
character string is printed verbatim. No spaces are
generated between the printout of items separated by
semicolons in the PRINT statement. On the other
hand, the printout of an item preceded by a comma
in the PRINT statement begins at the next tab set-
ting. Tabs are automatically set every eight
characters. Commas and semicolons, character
strings, and expressions may be mixed in one PRINT
statement in any manner. The acceptable short form
for PRINT is PR.

Use of Basic 1 Complier/interpreter COP188834VYy

Examples—100 PRINT 1,2;3,“HELP"’ prints as:

1 23 HELP
100 PR 5;6;7,8,9 prints as:
567 8 9

Normally, the execution of a PRINT statement ter-
minates with the generation of a carriage return and
line feed to begin the new line. If the PRINT state-
ment ends with a comma or semicolon, however,
then the carriage return-line feed sequence is sup-
pressed, permitting subsequent PRINT statements to
output on the same line or permitting an input

message to appear on the same line as the previous
output.

The interpreter will accept the leading quote of a
character in place of the key words PRINT and PR,

Examples—100 ““HELLO"
prints as: HELLO
100 ‘‘HELLO",5;6,7
prints as: HELLO 56 7

The compiler will not accept this last form as a
valid statement.

OUTPUT Statement

Form—Line Number OUTPUT Port,Data

The OUTPUT statement is used to generate a
hardware out instruction with the N lines set accor-
ding to the first parameter (Port), and the output
data supplied in the second parameter (Data). Either
parameter may be any valid expression, but it is
essential that the Port expression evaluate to a
number in the range | to 7 or no output may occur.
Only the least significant 8 bits of the Data expres-
sion are output. The accepted short form of the key
word OUTPUT is OUT.

Examples—100 OUTPUT §,6
100 OUT 7,1

Disk-Related Statements

WFLN Statement

Form—Line Number WFLN

The WFLN statement is used to initialize an output
file (write file).

Example—100 WFLN

This statement executes by first closing the last
output file (if one existed) and setting the internal
flags for terminal input and console printer output.
Then, it prompts the user with a WRITE? for a
FILENAME. The user must respond by typing in a
FILENAME in the form:

(NAME).(EXTENSION):(DRIVE)

3. Statement Types

2%

The NAME consists of from one to six alpha-
numeric characters. The EXTENSION consists of
from one to three alpha-numeric characters. The first
character of each must be an alphabetic character.
The DRIVE must be a number, either 0 or 1. Both
the EXTENSION and the DRIVE are optional. If the
DRIVE is not specified, a default value of 0 is used.

The following are examples of valid FILENAMES:
TRIALI.BSC:!

TRIALI:I
TRIAL (DRIVE default value is zero)
TS5529.A17 (DRIVE default value is zero)

If an invalid FILENAME is typed in, an error
message will be printed and the user will be prompted
with a 7 for another FILENAME. Once a valid
FILENAME has been received, a file is opened; that
is, space is allocated on the disk under that
FILENAME.

RFLN Statement

Form—Line Number RFLN
The RFLN statment is used to initialize a read file
(input file).

Example—100 RFLN

The RFLN statement executes the same way as the
WFLN statement but with a couple of minor
changes. First, an input file is involved rather than an
output file. Second, instead of a WRITE? prompt
being issued, a READ? prompt is issued.

DOUT Statement

Form—Line Number DOUT Filename

The DOUT statement is used to set up a disk out-
put file. This statement executes by closing the last
output file (if one existed), processing the Filename
found in the statement, opening an output file under
the new Filename, and setting internal flags for disk
output. The Filename is of the same form as describ-
ed under the WFLN statement. If an invalid
Filename is discovered, the interpreter will return to
the enter mode and the compiler will return control
to CDOS.

The DOUT statement can be used without the
Filename. When so used, only the internal flags for
disk output are set. -

Examples—100 DOUT STOREL.TR1:!

100 DOUT

DIN Statement

Form—Line Number DIN Filename

The DIN statement is used to set up a disk input
file. This statement executes the same way as the
DOUT statement but with some minor changes.
First, input files are involved instead of output files.
Also, when Internal flags are set, the setting will be
for disk input.

Examples—100 DIN TRBLE:1

100 DIN

CLOSE Statement
Form—Line Number CLOSE
The CLOSE statement is used to close a disk out-

put file and set the internal flags for console printer
output.

Example—100 CLOSE

WEOF Statement

Form—Line Number WEOF

The WEOF statement is used to put an end-of-flle
character (DC3) in a file. The execution of this com-
mand also sets the internal flags for console printer
output. It is used for separating lines of data in a disk
file.

Example—100 WEOF

TIN Statement

Form—Line Number TIN

The TIN statement restores the terminal as the
primary input device. Because this statement does
not alter the disk control block, further use of the
DIN statement without a parameter will resume
where the previous reference left off. Any error stop
or the execution of a NEW or END statement will
force an implicit TIN.

Example—100 TIN

TOUT Statement

Form—Line Number TOUT

The TOUT statement restores the console printer
as the primary output device. Because this statement
does not alter the disk control block, further use of
the DOUT statement without a parameter will
resume where the previous reference left off. Any er-
ror stop or the execution of a NEW or END state-
ment will force an implicit TOUT.

Example—100 TOUT

NOUT Statement
Form—Line Number NOUT
The NOUT statement disables the output. It is
cancelled by a TOUT or DOUT statement.
Example—100 NOUT

System Control Statements

System control statements are recognized only by
the interpreter. They are not normally included os

part of a program. They are normally entered
without a line number.

NEW Statement

Form—NEW

The NEW statement is used before a new program
is entered. Execution of this statement clears the pro-
gram area in memory. Alternate acceptable forms of
the key word NEW are CLEAR and SCR.

14

Examples—NEW
CLEAR
SCR

RUN Statement

Form—RUN Expression Sequence

The RUN statement is used to start execution of a
program. It begins execution at the first Jlowest) line
number. If the key word RUN is followed by a com-
ma followed by a sequence of one or more expres-
sions separated by commas, then the expression se-
quence is treated as an initial input line. This line will
be scanned first when IN statements are executed.

Examples—RUN 1,2,3

RUN

LIST Statement

Form—LIST Expression 1,Expression 2

The LIST statement is used to print out all or part
of a stored user program. Both parameters are op-

Use of Basic 1 Complier/interpreter COP188834Y 4

tional. If no parameters are given, the whole pro-
gram is listed. A single expression parameter is
evaluated to a line number. If the line exists, it Is
printed. 1f both parameters are given, all lines with
line numbers in the range specified are printed.
Examples—LIST
(Prints entire user program)
LIST 100
(Prints line 100 if it exists)
LIST 1,1000
(Prints all lines between 1 and 1000
inclusive)

RDOS Statement

Form—RDOS

The RDOS statement is used to restore control to
the Disk Operating System.

Example—RDOS

16y

A. Programming in Basic 1

This chapter introduces the user to progran‘ming
in Basic 1. Ground rules for the interpreter and the
compiler are discussed as well as some programming
techniques. Two programming examples are given

and error messages and programming debugging are
covered.

immediate Execution and
Program Modes

After the user loads the interpreter, a colon pro-
mpt ‘*:*' is returned indicating that the interpreter is
in the enter mode and is ready to accept a line. After
each input line is handled, the interpreter returns to
the enter mode. If the user inputs a line without a line
number followed by a carriage return (CR), the inter-
preter goes into the immediate execution mode. In
this mode, the line typed is executed immediately. If
the user inputs a line preceded by a line number and
followed by a (CR), that line would be taken from
the input buffer and stored in the user program area.
Typing the RUN command would then put the inter-
preter into the program mode and the lines stored in
the user area would be executed.

One important use of the immediate execution
mode is to permit line-at-a-time testing. LET, IF, and
PRINT can be demonstrated this way.

The INPUT and IN statements can also be directly
executed but, because of the way Basic 1 buffers its
input lines, the INPUT or IN statement cannot be
directly executed for more than one variable at a
time. Thus, if the following statement is typed
without a line number

INPUT A,B,C

only the value of A will be asked for. The values of B

and C will remain as they were. If the statement
INABC

is typed without a line number, the value of B will be
copied to A and only the value for C will be re-
quested. Simllarly, the statement

IN A,$,B,10,C,18

will execute directly (loading A, B, and C with the
values S, 10, and 15, respectively) and request no in-
put. But, with a line number in a program, this state-
ment will produce an error stop after requesting one
value.

Clearly, there is no point to executing REM or
END in the immediate mode. Furthermore, GOSUB
and RETURN are normally meant for the progtam
mode. On the other hand, an immediate GOTO has
the same effect as if RUN were typed, but execution
may begin at other than the program's first state-
ment.

The program mode is entered (o execute a program
stored in the user area. As noted before, lines pre-
ceded by a line number are stored in the user area. No
errors, therefore will be detected in a stored pregram
until an attempt is made at execution.

System control statements are not normally includ-
ed in a stored program. NEW (as well as CLEAR and
SCR) obviously should be avoided because execution
of any of these commands would result in a self-
destruct. A stored RUN, however, will be the
equivalent to a GOTO to the first statement. Also, a
LIST statement may be included as part of a program
and used for printing out large text strings, such as
instructions to the operator.

It should be noted that the interpreter will accept
system control statements in the body of a stored
program but the compiler will not. Consequently, no
system control statements can be present in a pro-
gram intended to be compiled.

16

Multiple Commands Per Line
An important feature of Basic 1 is the ability to
string statements together on a line. This feature is

accomplished simply by separating the statements
with a colon *‘:"’. An example is

100 PRINT "'START':LET A= 1:GOTO 300

Statements which effect a transfer of control cannot
be followed by any other statement on the same line,
but otherwise any combination of valid Basic |
statements is acceptable. This capability is particular-
Iy useful when the result of some conditions requires
two or more actions. For example,

150 IF X< O PRINT “"HELP!":LET X =0:
GOTO 101
151 REM X> =0 HERE

The use of multiple commands per line also allows

remarks 10 be placed on the line to which they apply.
For example,

200 LET X=0:LET Y= O:LET Z= - |:
REM INITIALIZE

Disk Operations

The micradisk system can be used by Basic | to
save and recall programs and data. To accomplish
this disk input and output, various strings of
statements must be implemented.

The interpreter Is the primary tool for the develop-
ment of a Basic | Program. At the end of a program-
ming session, the programmer might want (o save the
work for future reference. This interpreter allows the
following string of Basic 1 statements, executed in
the immediate mode, to permit the saving of a pro-

gram: /,exp 2
« -DOUT Flename:L usr,«}& £, :PR “END"":CLOSE

don not put an t an END statement on the progran]

user sust explicitly ineert an END stgtewdnt in the

progras e invoking DOUT to the prograa on

diek, .

-’ It nhoul/(gmﬁ(dd that {f a Basic 1
progran is wodified use of. the MicroDOS Resident
Bditor or 1f she progran is writtes gut without the
keyword in the command line, when rogrem is
read 4hto the interpreter, the error message
\c{miospelled gtatemant typm keyword) will be recei

The DOUT statement sets the disk as the primary
output device and initializes the appropriste disk
pointers by use of the associated parameter (file
name). The LIST statement lists the program be-
tween the line numbers specified (the range of line
numbers must be included). The PR statement prints
the key word END after the listing. This kéy word,
BND, will be used when the program is again read in. -
Finally, the CLOSE statement puts a DC3 on the file,
fills out the last sector, outputs it to the disk, and sets
the console printer as the primary output device. An
example:

DOUT HELP.BSC:):LIST 1,1000:PR 'END'': CLOSE

Use of Basic 1 Complier/interpreter COP188834V 4

A program can be read back into the interpreter
with the following statement executed immediately:

RN
DI

REAP ? Filtname
on

In the irnmediate execution mode this statement will
(1) set the disk as the primary input device, (3) in-
itinlize the appropriate disk pointers using the
associated parameter (flle name), (3) read lines from
the disk to the input buffer, and (4) transfer lines
preceded by a line number to the user area, executing
lines not preceded by a line number. Thus, when the
keyword END placed at the end of the flle is read in,
implicit TOUT and TIN statements are executed, set-
ting the terminal and the console printer as the
primary input and output devices. Example:

BRI RFLN
XEADI~ | Rean 7 weep, B6C/
T HER s o14/

The output of the data to the disk is a relatively
simple matter. First, the user must initialize the out-
put file by means of one of the following statements:

100 DOUT Filename
100 WFLN

If a DOUT statement is used, the disk already has
been set up as the primary output device. If the
WFLN statement has becn used, a DOUT statement
with no parameter has to be used to set the disk as the
primary output device. Once a file has been initializ-
ed and the disk set as the primary output devics, &
PRINT, PR, or LIST statement will output 10 the
disk. When all the data is output, the output file must
be terminated with the CLOSE statement, as dis-
cussed earlier. Some examples foliow:

100.... 100....
110.... 110....
120.... 120....
130 DOUT FILE:1 130 WFLN
140 PR '8,9,10" 140 DOUT
150 CLOSE 150 PR “8,9,10"
160 END 160 CLOSE:END
100....
110 DOUT FILEY
120 PR §;
130 WEOF:DOUT:PR 9;
140 WEBOF:DOUT PR 10
150 CLOSE
160 END

Inputting data from the disk is similar to output.
ting data. The first step is to initialize the input file by
use of one of the following statements:

100 DIN Filename
100 RFLN

/9

7he //ﬂc/’
sesealsr @ mm/’ Yow /iae

. ¥ry sepresenty

consolr /,',/ /,7 .

& conlinwe,

LP represenls

*
»*
Séresn

Sc rep

4. Programming in Baslc 1

17$

If a DIN statement was used, the disk has been set as
the primary input device. If the RFLN statement was
used, a DIN statement with no parameter must be us-
ed to set the disk as the primary input device. Once
the file has been initialized and the disk set as the
primary input device, any INPUT or IN statement
will input from the disk. Examples follow:

100.... 100....

110 DIN FILEI:1 110 RFLN:DIN
120.... 120....

130.... 130....

140.... 140....

150 END 150 END

There are some rules regarding the format of data

strings placed on a disk. These rules are:

1. All expressions in the input file must be

separated by commas and the last expression must be
followed by a carriage return.

2. Multiple lines with a carriage return and a DC3

separating them are allowed. (See WEOF statement.)

1t should be noted that both the IN and the INPUT
statements prompt the user with a queation mark,
This prompting will continue with disk input. To
avoid the appearance of the question mark prompt
on the console printer when a disk input is attempted,
a dummy output flle can be set up and the question
mark prompt could be output as if it were data.
Basic 1 uses MicroDOS generalized 1/0.
can direct output to any device such as the screen,

line printer, or disk. An example {s:
DOUT #LP

Special Keyboard
Control Characters

The Basic 1 interpreter allows certain key
characters for deleting a character, cancelling a line,
interrupting execution, and terminating a line.

An incorrectly entered character may be erased
(backspaced over) by use of the ‘‘erase previous
character’’ key. <=

" The hex code for thies key is stored in location
CONTROL H can also be used to

0013 and 1s a RUBOUT,

The user

OA, 00, and FF, respectively). These special
characters are assigned by Basic 1 before its line code
is entered.

The break key has a dual purpose in the inter-
preter. It can be used to interrupt a long listing or to
interrupt the execution of a program (for example,
one caught in an endless loop). While executing the
list command, Basic 1 checks break at the beginning
of every line. While executing a stored program,
Basic 1 checks break between statements.

Each input line from the keyboard is terminated
with a carriage return (CR).

A summary of the keyboard control characters is
given in Fig. 8.

How the Compller Uses the
| Statement

The Basic | compiler takes a source program writ-
ten in Basic 1 and translates it into CDP1802
assembly language. Each line number is assigned a
label, the label being the line number preceded by the
letter L. When the compiler sees the | statement in a
program, it passes whatever follows the exclamation
point to the output file as assembly language. No
label is assigned to the line number associated with a
! statement.

A common use of the ! statement is 0 pass
assembly language subroutines to the output file. A
REM statement is commonly placed in front of the !
statement to provide a label for the user to call. Thus,
if the user executes a GOSUB X, where X is the line
number of the REM statement, the assembly
language subroutine is executed, because REM
statements are ignored during execution.

The | statement is very important in that it allows

delete a charscter from the screen and the input line the user to insert an assembly language subroutine

buffer, rlfn'kl'n

Each occurrence of ‘a erases the last
stored input character. In the evenf that a line has
been butchered so badly that it is beyond repair, the
entire line can be erased by use of the *‘cancel line"’
character. The hex code for this character is stored in

location 0014 and is an ASCII cancel (¢CeNTROL C ;

hex63). The user may change either of these edit control

characters by changing its stored code to any value
except DC3, LF, NULL, or DELETE (hex code 13,

Ry8o/T anywhere in a program without having to be concern-

ed with the absolute address of the subroutine as in
the USR function and the GOSUB@ statement.

CR Terminates every entry line

—or - Backspace over or erase previous character
CAN Cancel line

BREAK interrupt long listing or program execution

18.

Registers RO, R1, R8, RA, RD, and RF are available
to any assembly language subroutine. All other
registers, excluding R2 (stack pointer), R3 (program
counter), R4 (subroutine call), RS (subroutine
return), and R6 (return address storage), can be used
if the previous values of these registers are saved at
the beginning and restored at the end of the assembly
language subroutine. The register values can be saved
on the stack (R2 is the stack pointer). Assembly
language subroutines receive control with P =3 and
X =2 and must return,with a SEP $ instruction.

Loops and Subroutines

A loop is placed in a program to execute a number
of statements over and over again until some condi-
tion is satisfied. An example follows:

100 REM COUNT DOWN
110 A=S

120 IF A<] GOTO 160
130 PR “TIME MINUS" A
140 A=A-1]

150 GOTO 120

160 PR *‘BLAST OFF"

170 END

Statements 120, 130, 140, and 150 are contained
within the loop. Here the count down continues until
the value of the variable A reaches zero.

A subroutine is a subprogram that is normally
evoked two or more places within a main program.
Rather than having the statements of the subprogram
duplicated in several places, it appears only once. It is
written so that it exists with a return statement. It is
evoked at any point in a program by a GOSUB state-
ment which transfers control to it.

Whenever one subroutine calls another subroutine
(termed subroutine nesting), an additional
*“*RETURN statement number’’ is recorded. These
numbers are stored in order, so that every RETURN
jumps back to the statement following the GOSUB
which called it. Subroutines may be nested to any
depth, limited only by the amount of user program
memory remaining. It should be noted that GOSUB

statements must be the last statement appearing on a
line.

Programming Examples

The following programs are designed to give ex-
amples of Basic 1 in action. Remarks are omitted
from the listings to keep them short. Instead, each
program is accompanied by a detailed explanation of
its functioning. It should be emphasized, however,

Use of Basic 1 Complier/interpreter COP188834

that the omission of comments is generally poor
documentation practice, but it sults the objectives of
these examples. Each program can be entered in a
few minutes. It is recommended that the user run
them to gain experience with the system.

Arithmetic Drill Program

The arithmetic drill program generates a random
sequence of arithmetic problems. After the program
prints the problem, the user responds with a solution.
The program tells the user whether the answer is cor-
rect or not (providing the correct answer in the latter
case) and then proceeds to generate a new problem,
and so on.

A listing of the program is given in Fig. 9. First,
three random numbers are generated. The value of F
(1 to 4) will be used to decide whether this problem
will be an add, subtract, multiply, or divide problem.
The range of possible values for the arguments A and
B was chosen to prevent the possibility of overflow
under two conditions. First, 181°181 is still less than
32767. Second, division by zero is prevented. Because
Basic 1 discards division remainders, the fourth state-
ment is included to keep the division problems in-
teresting. It says: if this problem is a division pro-
blem in which the quotient would ordinarily come
out as zero (true for many of the A, B, combinations
that might be generated), arbitrarily increase the size
of the dividend (to a maximum of 18100 in this case)
to make the problem non-trivial. Statement 50 begins
the presentation of the problem to the user by prin-
ting an encouraging message followed by the valus of
the first variable A. Notice that the final semicolon
keeps the printer on the same line without advancing
the carriage further.

Statement 60 does a four-way branch based on the
value of F, the arithmetic function selected. Thus,
control passes next to one of the following statement
numbers: 70, 100, 130, or 160. Each of these
statements begins a short sequence that prints the
sign for the arithmetic operation and then computes
the proper function, placing the result in C. Notice
the final semicolons again in the print statements. No
matter which path is taken, control passes next to
statement 180, which prints the value of the second
variable followed by an = sign. The presentation of
the problem to the user is now complete, and the in-
put statement at 190 delivers a 7 prompt on the same
print line and reads the user’s answer into D. State-
ment 200 congratulates the user on a correct answer;
statement 210 points out that his answer was incor-
rect and provides the correct answer. The commas at
the end of both PRINT statements here again inhibit
a new line from starting, but they space over to the
next tab setting where a new problem is posed as a
result of the loop at (220) back to the top.

1t should be noticed in the program listing that an
END statement Is not present, contrary (o earlier ad-
vice. The nature of the program is such that Basic |

4. Programming in Basic 1

A = RND(1,181)
B = RND(1,181)
F = RND(1,4)

GOTO 40+ F*30
PRINT 4+ ";
C=A+8B
GOTO 180
100 PRINT " ="";
110 C=A-B
120 GOTO 180
130 PRINT **;
140 C=A‘B

160 GOTO 180
160 PRINT “I";

8838338833

170 C=AB
180 PRINT B;" = ";
190 INPUT D

200 IF D=C PRINT "RIGHT!",

IFFad4|F NB<1 A=A®100
PRINT “TRY THIS ONE: ";A;

210 IF D< >C PRINT “WRONG. CORRECT ANSWER IS ";C,

220 GOTO 10

Fig. 9—Listing of arithmetic drill program.

will never go past the last statement. The program as
written loops endlessly, and only under these condi-
tions is the omission of an END permissible.
However, if the program is to be compiled, an END
statement must be placed at the end of the file to ter-
minate compilation.

The running of this program should give the user
some practice in learning how Basic 1 divides.

Geometric Print Pattern Program

This geometric print pattern program is designed
to print three identical, trapezoidal patterns across
the page, each filled with repeated imprints of the
same number digit. The user can specify which digit
is to fill each trapezoid and, for all three, the number
of characters across its top, the slope of its sides
(positive or negative), and its height. The user can
also specify the spacing between the patterns on the
page. .

Because the printer prints line by line, the program
prints the pattern in a scanning mode. Every line con-
sists of a sequence of the three identical segments,
and each segment contains D spaces followed by E
Identica) digits followed by D spaces again. The
values of D and E vary from line to line. For each
new line, D is decremented by a value I (positive or
negative) and E is incremented by 2°1 (to keep the
pattern symmetrical).

To analyze the program listed in Fig. 10, it is
helpful to begin by identifying its subroutines.
Reading from the bottom up, the subroutine from
250 10 280 prints the digit N across M times (notice
the semicolon). Similarly, the subroutine from 210 to
240 prints a sequence of M spaces. Finally, the

-
o

38R8IBLELY

230
240
250
260
270

. 280

J=0

INPUT AB,C,D,E,I,L
N=A

GOSUB 140

N=8B

GOSUB 140

N=C

GOSsuB 140
PRINT

D=D-1
E=E+2°I

JeJ+1

IFJ<>L QOTO X0
END

M=D

GOSUB 210

M=E

GQ0SuB 250

M=D

GOSuUB 210
RETURN

PRINT" "
M=M-1

it M>0GOTO 210
RETURN

PRINT N;
M=a=M-1

IF M>0 GOTO 250
RETURN

Fig. 10—Listing of geometric print pattern
program.

10

P20

Use of Basic 1 Complier/interpreter COP188834 Y+

subroutine from 140 to 200 prints D spaces followed
by E digits, all N, followed again by D spaces. Notice
that this subroutine calls the other two.

The main part of the program runs from 10 to 130.
First, the program initializes a counter J for the
number of lines which have been printed. Then, it
reads (from the user) initial values for AtoE,land L
(the total number of lines to be printed). A, B,and C
should be single digits, D, E, and L must be greater
than 0. Each of these three sequence, 3040, 50-60,
and 70-80, prints one segment of a line using the digit
specified by the user. A new line is started at 8S5.
Statements 90 and 100 advance D and E as explained
earlier, and 110-120 decide whether or not a suffi-
cient number of lines has yet been printed. If not, a
new line is started.

For this program to run properly, the values of D
and E should not become to small. Nor should they
be 50 large as to require excessive line length. The in-
itial values should conform to the following rela-
tions:

3(E + 2D) <maximum line width;
if 1<0, E>2|I|(L-1);
if >0, D>I(L-1).

Bullt-in Subroutines for the
USR Function

For convenience, the Basic 1 interpreter includes
——our built-in subroutines that can be used by means
of the USR function. They are as follows:

(1) USR (#0114,N) 48; LDA RS
It ome —L\jte peck DS; RET

returns the decimal value of the byte at memory loca-
tion N, where N is the value of the second expression.

(2) USR (#0118,N M) $8; STR R8
1S & twe -b ch, toe DS; RET
stores the value of the third expression, M(MOD
256), into the byte at location N, the value of the se-
cond expression. It also returns the value M as the
function’s value. Two examples follow:

PR USR(#0114,3072)

prints the decimal contents of memory location
#0C00 (3072 = #0C00)

A = USR(#0118,#0C00,254)

loads memory location #0C00 with FE and also loads
the returned value, 254, into A. (FE = 254)

(3) USR (#0106)

reads one ASCII character from the keyboard and

returns its decimal equivalent (including parity bit, if
any) + 256.

(4) USR (#0109, 0, C)
prints the ASCII character whose code is the right

half of the hexadecimal value of expression C. Note
that the second expression, in this case 0, is ignored.

The character to be typed must start out in the D

register; hence, the above format. The third expres-
sion is passed in RA with its lower half in the register
D. This routine happens to return a value 251 in all

cases, which would normally be ignored. Two ex-

amples follow:

PR USR(#0106)

will read a character and print its decimal equivalent.
On the printer there would be, for example, A321 for
a zero parity bit (where A was typed by the user).

A=A +0*USR(#0109,0,66)

will print the character B and ignore the returned
result (251).

(5) USR (#0144 ,N,M) is & two-byte POKE. An example of

ite use 1o
LeUSR (00146,06000.9)

(6) USR (#0116,N) is a two-byte PEEK, An example of
its use is
L=USR (#0116,#C002)

Error Messages and
Program Debugging

Whenever the Basic 1 interpreter detects an error in
a statement, it generates an error message consisting
of an exclamation point followed by a decimal error
number. A listing of the error numbers and their cor-
responding meanings is given in Appendix C. If the
error is detected during program execution, the error
code is followed by the word ‘AT’’ followed by the
number of the offending statement.

Almost all of the errors detected by Basic | are syn-
tax errors. Basic 1 was in the process of interpreting o
statement and found it unacceptable for some
reason. Only two of the errors in the error list are
detected during execution of a siatement, i.c., after
its syntax has been accepted, errors 141 and 243. Any
other etror number not listed in the table signifies a
memory *‘full’’ condition, probably due to 100 many
nested GOSUBS or an excessively complex expres-
sion.

Most program execution errors are due to either in-
correct flow or improper modification of variable
values. To find an error of the first kind, the user
must determine whether the program is sequencing
properly, i.e., whether certain sections of code are in-
deed executed when expected. Often, the insertion of
dummy PRINT statements within suspected code

4. Programming in Basic 1

21?

sections will reveal whether the flow within the pro-
gram is proper.

The second type of error is most easily detected by
the insertion of dummy program stops at key points.
This procedure is also useful for diagnosing incorrect
flow. A dummy stop is an inserted END, or some
other inserted statement which is intentionally er-
roneous, to cause an error stop. Once the stop oc-
curs, the values of key variables may be examined

(using the immediate execution mode—e.g., PRINT
A.B,C) to see if they indeed have the expected
behavior. In some cases, variable values may be cor-
rected, n the immediate mode, while the program is
still stopped. In this case and in the case where the
program behavior is correct so far, the user will want
to resume the program at the point where it last stop-
ped. An immediate or direct GOTO, using the state-
ment number after the stop, will permit the program
to proceed as if it had not been interrupted.

5. Running Basic 1 Compiler/interpreter

The first step to be taken before anything can be
done with Basic | interpreter, compiler, or any other
program for that matter, is 1o power up the develop-
ment system and run the utility program supplied
with it. The Basic | interpreter and compiler also re-
quire the running of > It is assumed In this
chapter that the user is already familiar with these
procedures.

Loading and Starting
the interpreter

The Basic 1 interpreter is supplied on a floppy
disk. To load the interpreter, the user should place
the wicre disk in one of the disk drives and type

BASICLINT:X

where X is the drive the floppy disk has been placed
in. This command will load and start the interpreter.
The interpreter will respond with a colon **:’’ prompt
when it is ready (0 accept commands.

--, The interpreter can be restarted at any time by

ms2000 ‘entering the ©®S utility and typing in one of the

following commands:

“ 100" This command is for the normal
*‘cold start”’. Basic 1 initializes itself
and then delivers the colon prompt.
“ P103" This command is for the ‘“‘warm
start’’, which skips the initialization
procedure and preserves the state of
memory. It also returns the colon
prompt. The warm start is used
when there is already a program in
memory or when certain control
parameters have been modified 30
that they are different from those
which were flrst initialized. If, after
& warm start, the user wishes to

enter a new program he should type
the command NEW,

Loading and Running
the Complier

The Basic | compiler is also supplied on a floppy
disk. To load the Basic 1 compiler, the user should
place the floppy disk in one of the drives and type

BASIC1.CMP:X

where X is the drive the disk has been placed in. This
command will load and start the compiler. Execution

will begin with the compiler prompting the user for
the following:

LIBRARY?
READ?
WRITE?
ORIGIN?
VARS?
STACK?

The user responds to these prompts by typing a file
name in the same form as discussed carlier for the
library, read, and write files. The ORIGIN, VARS,
and STACK prompts require the user (0 type the
location in memory the program is to start, the loca-
tion of the variables, and the location of the top of
the stack. An example is given in Fig. 11 of the com-
piler prompts and a sample response.

If a carriage return is hit when the library file name
is prompted, a default file name of BASIC1.LIB:O s
assumed. Any invalid file names will cause the prin-
ting of an error message followed by another
prompt. The library file contains subroutines used by
the compiler. Afier compiling the user program, the
compller cally in the desired subroutines from the
library and places them in the write flle. If the user

6. Running Basic 1 Compller/interpreter

types a 46 (a key number) after the VARS prompt,
the variables will be located in the same place as they
were in the interpreter, as will TTYCC and the input
line buffer (see Appendix D). The stack starts at high
memory and works down. A minimum of 50 bytes
should be saved for the stack; more should be saved
for large programs. To correct errors, the user should
type CONTROL~-C for a new prompt.

Pollowing is a further explanation with regard to the
value given for a VARS? prompt issued by the
compiler. When the user responds to the VARS? prompt
with the value 46, storage is allocated for all
variables that Basic 1 allows. The advantage of this
scheme is that the user can return to the interpreter
for debugging purposes and variables will be located
where both interpreter and compiler have commonly
allocated them. If a value other than 46 is given in
response to VARS?, data is allocated for variables
four bytes at a time for pairs of variasbles. For
example, if only variable Y is used, the user will
see in the output from the compiler:

VY DC OOOOH

VZ DC 000OH

LIBRARY? BASIC1.LIB:1
READ? TEST1.SRC:1
WRITE? TEST1.CMP:1
ORIGIN? 258 or #100
VARS? 48 or #2E
STACK? #2FFF

Fig. 11—Complier prompts and sample
response.

24

Appendix A—

Formal Definition of Basic 1 Compller/interpreter

< PROGRAM>

< STORED PROGRAM >

<LINE>
<8TMT8>

<MORE 8TMT8>
<STATEMENT >

< LAST STMT>

<GOLIST>

< PRINTLIST >
<MOREPRINT >
<PRINTITEM>
< SEPARATOR>
<INPUTLIST >
<INPUTITEM>
< CONDITIONAL >
<EXPRLIST>
<COMMA >
<ARG12>
<EXPR>

<TERM>
<SIGN>
<FACTOR>

<HEXSTRNG>
<ARGS>
<RELOP

<ASSEMBLY LANGUAGE >

<FILENAME >
<NAME>
<LETTER>
<STRING>
<CHAR>
<NUMBER>

< FSUFFIX>

< SUFFIX>
<SUFDEL>
<SNAME >
<UNIT>
<NSTRNG>
<COLON>
<HEXNUMBER>
<VAR>
<COMMENTS>

+m <STMTS8> <CR> /| <STORED PROGRAM>

m<LINE> /| <LINE> <STORED PROGRAM>

m <NSTRNG> < STMTS> <CR>

tm <LAST STMT> /| <MORE STMT8> < COLON> < LAST 8TMT> /

<STATEMENT>

= <STATEMENT> /| <STATEMENT> < COLON> < MORE 8TMT8 >
:mLET@ <EXPR> = <EXPR> /| LET<VAR> = <EXPR> / <VAR> = <EXPR>/

PRINT < PRINTLIST> / PR<PRINTLIST> / *** “<STRING>" /
***" < STRING> "< MOREPRINT >/

INPUT <INPUTLIST > / INPUT< INPUTITEM> / IN<INPUTLIST> /
IN<INPUT ITEM>

OUTPUT<EXPR> < COMMA> <EXPR> /

OUT<EXPR> <COMMA> <EXPR>/

et IST<EXPR> / ***LIST<EXPR> <cCOMMA> <EXPR>/

WEOF / TIN/ TOUT / NOUT / DIN / DOUT

CLOSE / WFLN / RFLN / DOUT< FILENAME> / DIN<FILENAME> /< >

1t =GOTO@ < GOLIST> / GOTO< EXPR>/

GOSUB@ <GOLIST> / GOSUB< EXPR>/

IF < CONDITIONAL> THEN < NUMBER> / IF<CONDITIONAL> <STMTS>/
IF <CONDITIONAL> THEN <STMTS>

*** LIST/RETURN / RET/ END/ *** STOP/ ***<RDOS> /

*** NEW/ *** CLEAR/ *** SCR/ *** RUN<EXPRLIST>/ ***<RUN> /
REM< COMMENTS> / **** |<ASSEMBLY LANGUAGE> /

*** |<COMMENTS>/< >

m <EXPR> /<EXPR> <COMMA> <EXPR> /

<EXPR> < COMMA> < EXPR> < COMMA> <EXPR>

= <PRINTITEM> < MOREPRINT> / < >

= <SEPARATOR> <PRINTLIST>

»="“<STRING>" | <EXPR> | HEX(<ARG12>)

us,/;

s <VAR> | <VAR> <COMMA> < INPUTLIST>
»m"<STRING> "< INPUTLIST> / “<8TRING> "< COMMA> < INPUTLIBT>
= <EXPR> <RELOP> < EXPR>

1+ = <COMMA> <EXPR> | <COMMA> <EXPR> < EXPRLIST>
.,

= <EXPR> <COMMA> <EXPR> / <EXPR>

2= <SIGN> <TERM> / <SIGN> <TERM> + <EXPR> /

<SIGN> <TERM> - <EXPR>

== <FACTOR> / <FACTOR> *<TERM> / <FACTOR> + <TERM>
wm=-] 4+ /<>

1= RND(< ARG12>)/ AND{< ARG12>)/ OR(< ARG12>)/ XOR(< ARG12>/)

MAX(< ARGS>)/ MIN(< ARGS>)/ SGN(<EXPR>)/ ABS(< EXPR> Y
MOD(< EXPR> <COMMA> <EXPR>)/ USR(< GOLIST>)/ INP (< EXPR> Y
<VAR> | <NSTRNG> / (<EXPR>)/ @ <EXPR> / #<HEXSTRNG>

= <HEXNUMBER> /| < HEXNUMBER> < HEXSTRNG>

= <EXPR> /| <EXPR> < COMMA> < ARGS>

wm< /> /s> /ac/sl/<>/<n/>n]><

.= 1802 ASSEMBLY LANGUAGE

= <NAME> /| < NAME> < FSUFFIX>

= <LETTER> / <LETTER> <STRING>

"=AI/B/C/..I1Z

== <CHAR> /| <CHAR> <STRING>

== <LETTER> / < NUMBER>

w=m0/1/121..19

= <SUFFIX> / <UNIT> | <BUFFIX> <UNIT>

= <SUFDEL> < SNAME>

e,

t=<LETTER> / <LETTER> <CHAR> / <LETTER> <CHAR> <CHAR>
= <COLON> <NUMBER>

1= <NUMBER> /| <NUMBER> < NSTRNG>

e

v=0/112/..19/AIBI..IF

= <LETTER> *** —|INTERPRETER ONLY
::= DOCUMENTATION COMMENTS *¢** —COMPILER ONLY

Appendix B—

Summary of Basic 1 Repertolre

The following is a short-form guide to the facilities offered by Basic 1. Characters enclosed in brackets **[]** are
optional and may be omitted. Commands marked with a single asterisk *“®’* are not accepted by the compiler.
Commands marked with a double asterisk *‘**'’ have meanings that are slightly different to the interpreter and

to the compiler.
Statements

FORM OF STATEMENT
REM Any Comment

** | Assembly Language

[LET] Variable = Expression
LET@ Address = Datum
GOTO Expression

QOSUB Expression

GOSUB®@ Exp1[,Exp2)[,Exp3}

RET[URN]

°* END

IF Expr Rel Expr [fHEN] stmt

IN[PUT] inputiist

PR[INT] Printlist

OUT[PUT] Port,Datum
TIN
TOUT

BRIEF EXPLANATION OF EXECUTION
Ignored.

Interpreter—ignored.
Complier—Pass assembly language to output file.

Assign the value of the Expression to the variable
Stores a byte anywhere in memory.

Jump to the statement whose number is the expressions
value.

Save the statement number of the next statement. Then
execute a GOTO.

Jump to the machine language subroutine at address
specified by Expression1.

(Passes parameters specified by Expressions 2 and 3 If
present.)

Jump to the iast saved statement number (see GOSUB) and
“‘unsave'’’ this number.

Interpreter—halt execution and return to enter mode.
Forces a TIN and a TOUT to be executed.
Complier—halit compliation.

if the relation between the values of the expressions ls
true, execute the statement. Otherwise, skip It.

Read and evaiuate expressions from the keyboard and

assign them in order to the variables specified in the In-
put liet.

Type the items in the printiist. Type values of expressions.
Type quoted strings verbatim. Horizontal tab on comma.

Output the 8-bit data value to the specified port.
Restores terminal as the primary input device.

Restores console printer as the primary output device.

Use of Basic 1 Complier/interpreter COP188834

NOUT
DIN [Filename]

DOUT [Filename)

WEOF

WFLN

RFLN

-CLOSE
* NEW or * CLEAR or * SCR

* RUN [,Expression Sequence]
* LIST [Expr}{,Expr)

* RDOS

,FUNCTION

MOD (Exp1,Exp2)

AND (Exp1,Exp2)

OR (Exp1,Exp2)

XOR (Exp1,Exp2)

MAX (Expression Sequence)
MIN (Expression Sequence)
SGN (Expression)

ABS (Expression)

Disables output.

Setes internal flags for disk input.

Closes previous Input file and opens new file number
specitied filename (if present).

Sets internal flags for disk outout.

Closes previous output file and opens new file under
specified filename (It present).

Writes an end-of-flie character (DC3) on the output disk
file last referenced. Then executes a TOUT.

Reads filename from terminal, cioses previous output tile,
end opens new flie under specified filename. Then ex-
ocutes a TOUT and a TIN.

Reads filename from the terminal, closes previous Input
tile, and opens new file under specified filename. Then ex-
ecutes a TOUT and a TIN.

Closes previous output file. Executes a TOUT.

Clears the program area.

Start execution at first statement. (Save the expression
sequence to satisty subssquent IN commands.)

Prints entire program or one selected line or a range of
lines.

Returns control to MieroDOS.

1

PERFORMANCE

Divides Exp1 by Exp2 and returns remainder.

Returna the bit-for-bit logical AND of the two expressions.
Returns the bit-for-bit iogical OR of the two expressions.
Returns the bit-for-bit logical XOR of the two expressions
Returns the greatest value in the expression liet.

Returns the smallest value in the expression list.

Returns A -1, 0, or + 1 depending on whether the expres-
sion is negative, zero or positive, respectively.

Returns the absolute value of the expression.

Appendix B—8ummary of Besic 1 Repertoire

27

HEX (Number, Width) Used only in PR{INT] statements. Prints value of the

number In hexadecimal. Both the number and the width
can be any valid expression.
RND (Exp1,ExP2) Returns a positive random number in the range between
the values of the expressions.

INP(Port) Inputs an 8-bit value from the specified port.

USR (Exp1(,Exp2](,Exp3)) Used for machine language subroutine call, passing
parameters Exp2, Exp3. Returns value from certain
registers.

WHERE:

Number = -32768 TO 32767
Variable = Single Capital Letter

Expression = One or more numbers, variables or functions (possibly grouped by parentheses)
joined by arithmetic operators +, —, *,/ or the indirection operator@.

Relations are =, >, <, <=, >=,<>,><,=>,0l =<
Printlist = One or moro.oxproulono or quoted strings separated by commas.
inputlist = One or more variables separated by commas.

Expression Sequence = One or more expressions separated by commas.

Fllename = Character string In the form: (NAMEX.EXTENSION){:DRIVE)
The firet character of the name and extension must be an aliphabetic character.

© N O OO a2 W M O

R B8R a3 &2 = o

29
318
1001

Note: in some cases muitiple errors may have a masking effect resulting in either no error being flag-

Appendix C—
Summary of Error Messages

Break during execution

RETURN has no matching GOSUB

No END statement

Misspelied statement type keyword
8yntax error

Syntax error

GOTO or GOSUB error—no line to go to
Missing right parentheses

Syntax error

Missing statement type keyword or number outside range - 32768 to 32767
Divide by zero

Syntax error—missing variable name
Syntax error—missing =

IF expects relational operator

Line number too large (greater than 32787)
Missing close quote in PRINT string

Line number 0 not aliowed

Run with no program in memory

Can't LIST iine number 0

invalid arguments in RND

ged or an erroneous error number being printed.

Scratchpad Memory Locations in the Interpreter

PAGE
TIO
8s
CAN

TAPE
SPARE
XEQ
LEND
AEPTR
TTYCC
NXA
AlL
BASIC
STACK
MEND
TOPS
LINO
WORK
8P
LINE
AESTK
VARS

= #0000
= #0012
= #0013
= #0014

Appendix D—

..Beginning of work space
.TTY timing flag
..Location of nubout code

..Location of cancel code

..Locatlon of tape mode enable

..Spare stack space

..Execution mode flag

.Input line end

..Expression stack pointer

..Print column counter and flag

..Saved PC for (subroutine NXT)
..Address of intermediate level language
..Address of user code

..Address of memory top

..Address of program end

..GOSUB stack top

..Basic program current line #

..4 bytes of scratch

..Saved pointer

..Input line buffer

..End of alternate expression stack and line buffer

..Beginning of varlables

Use of Basic 1 Complier/interpreter COP188834

0100
0103
0106
0109
010C
O010F
0110
0111
0112
0113
0114
0118
011C
usog

Low Memory Map in the interpreter

..Cold-start entry point

.Warm-gtart entry point

..Long branch to character input

..Long branch to character output

-Long branch to break test

. Rubeut oode

..Line cancel code

..Pad character

..Tape mode enable flag

..Spare stack size

..Subroutine to read one byte from RAM to RA
..8ubroutine to store RA into RAM at address in R8

Jser address constant

..Beginning of user program

Appendix E—
ASCIll—Hex Table

MOST SIGNIFICANT HEX DIGIT

0 1 2 3 4 S
0 NUL DLE Sp 0 (] P
1 SOH 0C1] 1 A Q
2 STX DC? " 2 B R
3 ETX DC3 ' 3 c S

- 4 EOT DCU 3 M) T

d S ENQ NAK .Y 5 E]

(o)

x 6 ACK SYN tE 6 F v

¥

— 7 BEL ETB G | G W

P 4

g 8 BS CAN C 8 H X

bt 9 HT EM) 9 1 Y

4

Q . .

- A LF sus : J b4

Z, B VT ESC + K [

4 FF Fs , < L\
D CR GS - = M)
L S0 RS . > N +
I Sl us / ? 0 .

NOTES:

(1) Parity bit in most significant hex digit not included.

(2) Characters in columns 0 and 1 (as well as SP and DEL)
are non-printing.

(3) Mode! 33 Teletypewriter prints codes in columns 6 and
7 as if they were column 4 and 5 codes.

