PRODUCT DESCRIPTION

PRELIMINARY

PARALLEL PROCESSING SYSTEM
(PPS-8) |
MICROCOMPUTER

INTRODUCTION AND DESCRIPTION
PARALLEL PROCESSING SYSTEM (PPS-8)

’l Rockwell International

NOTICE

Information provided in this Product Description is for reference
purposes only, and is subject to change without notice.

For specific detail information on these devices or for information on
any of our other advanced microelectronic devices, please contact
the nearest Rockwell International Microelectronic Device Division

office.

(©ROCKWELL INTERNATIONAL CORPORATION 1974
All Rights Reserved _ Document No. 20164 N40
Printed in U.S.A. ‘ Rev. 2, OCT 1974

Section 1 — INTRODUCTION. ce et et i e

TABLE OF CONTENTS

Section 2 — DESCRIPTION . vt vt vvvnvonvnnnonnsss

GENETAL & v v v v v et et e ettt

System Characteristics0

Section 3 —

Throughput......................

Instruction Repertoire ... +vcvvv v

Instruction Memory (ROM) et e e
- Read/Write'Memory (RAM) v . . v v’ i v

INPUL/OULPUL &+ o4 v v v ea d o w e e v aes o
Physical/Electrical . oo oo v v v v ve v v

.......... * e s e 0 0
....... ¢ s e 0 e e 0 0 e
. L A R R R ..
* . “ e e s 0 e s ¢ o s 0
s 0 e . Y e o 0 0 0 0 0

Support Equipment Cese e s e e . N .
Functional Description . .. ¢ v vvveve v ennnn. e .
Central Processor Unit (CPU) v . . v v vt vt v v o oo o . e e
Read Only Memory Device (ROM) e e oo
Random Access Memory Dev1ce (RAM) N
Clock Generator v ev v ea’iono v tnveomnaainnnens e e
General Purpose Input/Output GPL/O) vttt ieeie .
Parallel Data Controller (PDC) .+ v v v v v v vt e ot o v o v o annoeoes
Direct Memory Access Controller (DMAC). vven .
Special Purpose Input/Output Devices et en e e
PRINCIPLES OF OPERATION .. vt vt et v oo nenn e e o N
Basic System Operation. « v v v v v v v v v v o st oo vt oosoononson

System Timingo evevveenennnse

Logic Levels. . . v v e v v u
Multiplex System Data Transfer
Instruction Repertoire
Notes for Instruction Descriptions
DataStackttt ittt vttt
Program Addressingeveeeevnoeons

-Branching......ocivee iy
* Subroutine Linkage .« v v v o v v v v s 0o
Operand Addressing « v v v o v v v v e v oo v v sus

ROM Operands
Data PoOIS v v v vttt vt ve e eneeeneenn
Command Pool .. .u v e i veveenennse
Literal Pool v ..o v vt vt et vt e e .
Subroutine Entry Pool..

Interrupts. o v v o vt st ottt it se et st on o

RAM Operands .. ce e eeonneennnnn

Pool Utilization « v v v v e v v e v e v vt ee s

Interrupt Processingoe e evoe

INPUL/OULPUL v v v v vt vt v v te s e e eeoens

’l‘ Rockwell International - -

¢« o0 e e e 0 e .. .
........... DR Y
" e . .. DR
............... .
“ e s e s e e e s s e s e .

L I R B R I)
DR . . CECEr Y
. . v e e s e v e oo
D A) ¢ o
...... oo s e o ¢ s e .
L o o e « o o e

P A) CECEE Y
R N R .. .
DY .. . PR

S
1

i
B W WO NN DN

i
© 0 3

I
[el
B RN OCO IO WWwH R KR R

.

ROCKWELL INTE RNATIONAL

(U.S.A. — WEST COAST)

P. O. Box 3669
3310 Miraloma Avenue
Anaheim, California 92803

Phone:

TWX:

(714) 632-3698

(910) 591-1179, Telex:

Microelectronic Device Division

(U.S.A. — EAST COAST) - {(EUROPE)
D—6374 Steinbach/Taunus
9 Kim Avenue - Industriestrasse 8
Smithtown, New York 11787 Germany
Phone: (616) 979-0183 Phone: (06171) 7755 Phone:
Via TWX TELEX: 410758 TELEX:

(FAR EAST)

Ichiban-Cho Central Building
22-1, Ichiban-Cho
Chiyoda-Ku, Tokyo, 102 Japan

265 8808/8809
J22198

~N

c/o ROCKWELL INTERNATIONAL OVERSEAS CORPORATION

Section 1. INTRODUCTION

The Rockwell 8-bit Parallel Processing System (PPS-8) is an advanced design,
modular, microcomputer system which uses a unique 4-phase clock timing system for
logic functions and control. Proven P—channel MOS technology is used to implement
the PPS-8 system byte (8-bit) oriented architecture. Rockwell MOS technology and
the unique design of the PPS-8 offers superior performance for less cost over a wide
range of applications. Some of these applications include point-of-sale equipment,
data entry terminals, and peripheral/process control. The wide range of applications
and performance is achieved by high system throughput, efficient character-oriented
instructions, flexible input/output capabilities, and system modularity/expandability.

The standard PPS-8 system is shown in Figure 1-1. The standard PPS-8 system con-
sists of a Central Processor Unit (CPU) device, Random Access Memory(s) (RAM)
device, Read Only Memory(s) (ROM) device, Multiphase Clock Generator, Direct
Memory Access Controller (DMAC) device, Parallel Data Controller (PDC) device and
Serial Data Controller (SDC) device.

The basic system can be supplemented with special purpose and custom input/output
devices as required for specific applications. For example, a 1200 baud Telecom-
munications Data Interface device, a printer controller device, a bus-interface device,
and a keyboard/display controller device are available.

cLockK
GENERATOR [P A(TTL)

PARALLEL

TTL I/O CHANNELS ADDITIONAL
16 DATA, 4 CONTROL SERIAL DATA PDC'S, SDC'S
LINES PER DEVICE 11O CHANNEL AND TOI'S
ADDRESS = VDD
BUS ACKO ACK} ACKO ACKI ACKO ACKi| SPECIAL
> PDC > sbc p=—=—=-- 1 PURPOSE
INTERRUPT DEVICES
14
cPu ACKNOW. 3 4 3 T +
\\
INT2 A4 A 4)
‘ v U
INTERRUPT
Yy REQUEST |
Y DMA | REQ/ACK 1
DMRA |
s . DMACHO |
AN DIRECT 1
MEMORY DMA CH 1 I
ACCESS |
CONTROLLER |
omMae) bl Y e —J
il DMA CH 7
INSTRUCTION/DATA
e v ¥ BUs(8) v N
3] /'Y ‘
\ 4)
ADDRESS BUS (14)
A 4 A A
SPECIAL
ROMs RAMs GPI/O PURPOSE
2048 X 8 256 X 8 DEVICES
PROGRAM/CONSTANT READ/WRITE TTL DISCRETE GPKD,
STORAGE STORAGE 12 INPUTS/DEVICE AND PRINTER
12 OUTPUTS/DEVICE CONTROLLER, ETC.

Figure 1-1. PPS-8 Microcomputer System

1-1

Section 2. DESCRIPTION

GENERAL

The various MOS devices used to make up the PPS-8 are all packaged in identical
standard 42-lead plastic packages with the exception of the Clock Generator which is
in a TO 100 package. ' The overall dimensions of the body of the plastic package,
exclusive of the leads, are 0.640 inches in-width, 1.060 inches in length, and

0. 15 inches in thickness. This standardization in packaging provides optlmum flexi-
bility when designing and packaging a specific PPS-8 System

A funcuonal descnptlon of each of the below listed devices is provided in this section.

PPS-8 BASIC DEVICES .‘ Part Number
Central Processor Unit (CPU) ‘ 10806
Read Only Memory (ROM) 0 Ab2--
Clock Generator 10706
General Purpose Input/Output (GPI/O) 10696
Parallel Data Controller (PDC) ‘ 10453
‘Direct Memory Access Controller (DMAC) 10817
Random Access Memory (RAM) ‘ 10809
SPECIAL PURPOSE DEVICES Part Number
Printer Controller Circuit 10789
Telecommunication Data Interface (TDI) 10371
General Purpose Keyboard and Display (GPKD) 10788
Bus Interface (B/I) 10733

Serial Data Controller (SDC) - S 10930

SYSTEM CHARACTERISTICS |

The following paragraphs provide a summarization of the cha raetemsucs and -
capabilities of the basic PPS-8 system. :

THROUGHPUT

e Instruction Access — 2 us

e Operand Access — 2 us

e Complete Instruction Cycle — 4 ps

e Decimal Addition — 12 ps/digit
e Decimal Subtraction — 12 ps/digit
e Block Data Moving — - 12 ps/byte

e Table Search — 12 ps/byte

e Digit (4-bit) String Shifting — 8 us/digit

INSTRUCTION REPERTOIRE

Over 90 Instructions

Digit (4-bit) and Byte (8-bit) Manipulation
Decimal and Binary Arithmetic

Bit Setting/Resetting/Testing

Single Byte Subroutine Call

Data Stacking

Common Data ""Pools"

INSTRUCTION MEMORY (ROM)

2048 x 8 RCM devices

Local Page Addressing to 128 Bytes

Direct Addressing to 16,384 Bytes

Bank Select Addressing to 32K Without External Circuitry
Indirect, Auto-increment Addressing

READ/WRITE MEMORY (RAM)

® 256 x 8 RAM devices

e Direct Addressing to 16, 384 Bytes

e Bank Select Addressing to 32K Without External Circuitry

o 3 RAM Addressing Registers

e Auto-Increment and Auto-Decrement Addressing
INPUT/OUTPUT

e Priority Interrupt System

- Power-Fail Detect
- Real Time Clock

- I/O Device Service

° Direct Memory Access
- Up to 8 Prioritized Channels
- 250K Bytes/sec

e Program Controlled 1I/0
- Byte (8-bit) or Digit (4-bit)
- 75K Bytes/sec

e General Purpose TTL-Compatible Interface
- Static Discretes
- Bi-directional 8 or 16 Bit Parallel Bus(es)
—- Buffered Serial (standard communications format)
- Full "Handshaking"
- PPS-4 I/O Compatibility

e Special Purpose I/O Devices
- Telecommunications Data Interface (TDI)
- General Purpose Keyboard and Display (GPKD)
- Printer Controller
- Bus Interface (B/I)
- Serial Data Controller (SDC)
PHYSICAL/ELECTRICAL
e Single -17 volt Power Supply
e Low Power 4-Phase Dynamic Logic
e 42-Pin Plastic Packages

SUPPORT EQUIPMENT

Assembler on Tymshare, GE Informatlon Services, and Rockwell
TSO Operating System

Interactive Simulator on Tymshare, GE Informatmn Serv1ces, and
Rockwell TSO Operating System

Batch Assembler (Fortran)

Batch Simulator (Fortran)

Rockwell PPS-8 Assemulator (Assembler and Emulator)
Pre-Packaged Evaluation Boards

Processor I (CPU, RAM{2), GPIO(2), Clock)
Processor II (CPU, RAM(2), PDC(2) DMAC, Clock)
RAM (RAM (8))

PROM

GPIO

TTL

ROM

2-3

FUNCTIONAL DESCRIPTION

CENTRAL PROCESSOR UNIT (CPU)
The PPS-8 Central Processor Unit, Part No. 10806, shown in Figures 2-1 and 2-2
is'a complete 8-bit parallel processor implemented on a single MOS chip. The CPU
uses four-phase dynamic logic for operation, and all power requirements are met from
a single 17-volt power supply.
The CPU contains:

(a) Logic necessary to receive and decode the instructions

(b) 8-bit parallel adder-accumulator for arithmetic and logical operations

(c¢) 14-bit P-Register for sequencing through the ROM program

(dy 16-bit L-Register for subroutine linkage, RAM operand addressing, and
ROM indirect addressing

(e) Three 8-bit registers, (X, Y and Z) for RAM operand addressing
(f) 5-bit stack pointer S for addressing a dedicated RAM area

(g) Logic for processing a priority interrupt structure

(h) Direct memory access (DMA) mode

(i) Multiplexed receivers and drivers for interfacing with the 14-bit multi-
plexed address bus and the 8-bit bi-directional data/instruction bus.

The CPU, through time multiplexing, utilizes an 8-bit bi-directional bus to transfer
instructions from ROM to CPU (and I/0) during #4, and to transfer data between the
CPU, RAMs and I/O devices during §2,

Instruction Decode

The decode portion of the chip contains logic to decode the instructions, sense
interrupt or DMA requests, and provide signals to control data transfer, arithmetic,
logical, and indexing operations., Instructions are either one, two, or three bytes in
length and require from one to three cycles for execution.

Accumulator Register and Arithmetic Logic Unit (ALU)

The adder is an 8-bit parallel binary adder with an internally connected carry flip-
flop (C) for implementing extended precision arithmetic operations, In addition, the
adder has built-in capability to facilitate packed BCD (decimal) arithmetic and
manipulation of hexadecimal data. Circular shifting of the accumulator contents

right and left with carry linkage is also provided. The adder, with the 8-bit Accumu-
lator Register (A), and associated logic circuits forms the Arithmetic and Logical
Unit (ALU) section of the CPU.

WRITE/IO SELECT (W/10) &

POWER ON (PO) —»|

_ SYNCHRONIZED
POWER ON (SPO)

READ INHIBIT (RIH) <+

DMA REQUEST/

ACKNOWLEDGE 4|

{DMRA}

Figure 2-1.

POWER
VSS vDD A

b4

CLOCK

I

PS8
cPu

| €—— INTERRUPT 0 (POWER FAIL)
{INTO).

" INTERRUPT 1 (REAL TIME
CLOCK) (INT1)

[€——— INTERRUPT 2 (1/0 SERVICE)
(INT2)

[—1/0 INTERRUPT ACKNOWLEDGE
(ACKO)

(14) H«u

ADDRESS BUS

INSTRUCTION/DATA

{A/81 THRU A/B14) BUS {I/D THRU I/D8)

PPS-8 CPU Interface

T 5%0 vss vDD A B
62 4’2___%—) AB ‘
P le 1 DECODE
X e isP0)
o N
H IER!
(] v [e T e] $1 62 93 94
,14E_"c}““ R rn
s y y
[y [@]
\ .
55 o %31 4 L3 DISTRIBUTION BUS (M}
A/B 14 y
x| v 1
r14 :
o ° ze [x@] |
s = . |
el] Sp—
E r l
- o [E8] 1 ,
INTO » - I
y TION d
INTH > MICRO-NSTRUCT! _
INT2 > Y
‘MPX RECEIVERS MPX DRIVERS
ACKO «¢ J T [l [J
_OMRA @ <

A
who

v
RIH

v
/D1 THRU DS |

Figure 2-2. Central Processor Unit Block Diagram

In addition to its arithmetic functions, the A-Register is the primary working
register in the CPU and is the central data interchange point for most data transfer

operations.

P-Register (14-bits)

The P-Register contains the address of the instruction currently being executed, and
automatically increments (least significant 7-bits) to fetch the next byte from _
instruction memory (ROM). It may be altered during the execution of Branch, Return

or Skip instructions.

2-5

L-Register (16 Bits)

fl‘he L-Register is used to save the return address after a subroutine call or an
interrupt. It is also used as an address register for indirect ROM operands. It can

algo be used as an alternate RAM address register or as a general purpose program-
ming register,

Z-Register (8-bits)

This register holds the 7 most significant bits of the 14-bit RAM operand address or
may be used as a general purpose programming register. '

X-Register (8-bits)

The X-Register holds the 7 least significant bits of the 14-bit RAM operand address,
The most significant bit (8th bit) is used as an upper RAM address control bit, If
the upper address control bit is: ,

Logic 1 - the Z-Register contents are output for the most significant
7 bits of the RAM address.

Logic 0 ~ logic zero is output for the most significant 7 bits of the
RAM address.

This register may be loaded, stored, auto-incremented, or auto-decremented
under program control.

Y-Register (8-bits)

The Y-Register is used as an alternate lower RAM address register and as a "loop
counter' or it may be used as a general purpose programming register.

S-Register (5-bit)

The 5-bit up~-down counter register S is used as an address pointer to a 32 byte
"stack' in RAM. This stack pointer is automatically incremented each time a byte
is ""pushed" into the stack and decremented each time a byte is "popped' from the
stack,

W-Register (8-bit)

The W-register serves primarily as an internal buffer register. Additionally, it is
used in conjunction with the LAL and PSHL instructions.

Power-On Reset (PO)

The Power-on input signal is used to initialize the CPU to a known starting address
and state during a power-on sequence, The Power-on (PO) Signal is generated
external to the CPU, The CPU receives this signal, initializes the internal logic
states, and at the same time, generates a Synchronized Power-on Output (SPO)
Signal which is used to initialize other circuits of the PPS-8.

2-6

READ ONLY MEMORY DEVICE (ROM)

The Read Only Memory (ROM), Part No. A52--, shown in Figure 2-3, is a 16, 384 bit
ROM organized in a 2048 x 8-bit configuration. It is designed for compatibility with
the PPS-8 system, operating from a single 17-volt power supply and the A and B
system clocks. The access time is 1.8 ps. It is infended to be used to store 8-bit
instructions and constant program data within a PPS-8 system.

The 8-bit CPU, with its 14-bit parallel address outputs, can directly address up to
16, 384 bytes. The ROM provides an additional address select input (AS5) that can be
used in systems requiring more than 16, 384 bytes of ROM storage. With this line,
alternate banks of 16K ROM can be selected to provide up to 32K bytes.

The unique time-sharing design of the PPS address and data bus is such that informa-
tion on the I/D bus is treated as 8 bits of microinstruction during clock phase 4 and
RAM or I/0 data during clock phase 2. The ROM is designed to accept addresses during
phase 2 and supply instructions or data to the data bus during phase 4.

VDD VSS VSS VSS VSS . VDR
ial {1'21'22'42' |37|
pr—
55 Al AB
5o _ I DECODE
2 B|n »
——
AB1| 9
| | -
AB2| 8 > 35| o1
AB3 | 7 > »34]|1D2 g
A/B4 | 28 8 <
”l 2 » 31]1/D3 E
— 8 2 —
A/B5 | 19 @ ROM Sl » 30| ims S
56 —4 3 P! 2048 X 8 ’55 L 5
A/ 2 w 25 p{36| 105 5
— g | — 2
aB7)| 18 >
e 33| me
aBs | 2 z
|] 32| D7
B9 |15 '
Al > »{ 20| 1108
AB 10 | 27
A/B 11 | a1
aB12 {As2 | 2
— CHIP
AB13 {AS3 | 4 SELECT
A 14 {asals
AS5 | 39 __._4

* THIS INPUT IS A SEPARATE VDD SOURCE FOR THE OUT-
PUT DRIVERS,

Figure 2-3. Read Only Memory (ROM)
Block Diagram

2-1

RANDOM ACCESS MEMORY DEVICE (RAM)

The Random Access Memory (RAM), Part No. 10809, shown in Figure 2-4, is a 2048
bit RAM organized in 256 x 8-bit configuration. It is designed for compatibility with
the PPS-8 system, operating from a single 17-volt power supply and the A and B sys-
tem clocks. It is a dynamic memory with automatic refresh logic and a 1.8 us access
time. It is intended to be used as the read/write data storage device for the PPS-8
system.

The CPU, with its 14-bit parallel address outputs can directly address up to 16, 384

8-bit bytes of data. The RAM, with its eight parallel address lines and six- ch1p select
inputs, provides for direct selectlon of up to 64 RAM devices. The one additional chip
select input on the RAM chip can be used for memory expansion greater than 16, 384
word locations. For large systems, the AS7 chip select input can be addressed by an
output from an I/O circuit. For systems with RAM memory capacity of 16, 384 words
or smaller, the AS7 chip select input must be terminated at VSS.

SYSTEM CLOCK

—=

A B Vss Vop
T
A, B CLOCK R READ INHIBIT (RIH)
DECODE e [
C |lg—
Bl WRITE (W/10)
r Vv 1
A/B8 > v 4._
R
AIB7‘ \. | A
el 188 | e
B5
ooress {——1—»{ 58 > 26
A A/B4 Quw X /D8
~——t—»] <0 A o
A/B3 > R D7
A/B2 > . ¥ | instRucTION
> v . DATA
A/B1 E . BUS
~ R °
S e {/D 17 >
(ArB14 I j
A/B13
_.__’ .
, CHIP SELECT
ADDREss] A/B12] DECODE
SELECT A/B11 o
—P
A/B10 >
 A/89 ;

AS AS AS AS AS AS AS
1 2 3 4 5 67
ADDRESS STRAPS

Figure 2-4. Random Access Memory Block Diagram

2-8

CLOCK GENERATOR

The Clock Generator circuit, Part No, 10706, shown in Figure 2-5, generates the

"A" and ""B" clock waveforms required by circuits in the PPS. The Clock Generator
has an internal oscillator which is stabilized by connecting a quartz crystal to the
appropriate inputs.. The crystal is a 3.579545 MHz color TV crystal which is low in
cost and readily available. The clock A output is a square wave and considered '
the primary clock. Output B is a pulse output occurring during each phase of

clock A and has unique timing features required by the circuits within the PPS system,
Clock A is also provided through an output which drives to ground such that TTL levels
can be easily achieved for synchronizing equipment external to the PPS.

The input straps provide a countdown of the oscillator frequency equal to the number
associated with the strap: i.e., S10 divides by 10, S12 input results in a countdown
by 12, and S14 by 14. Thus, with a crystal frequency of approximately 3.58 MHz and
input S14 terminated to Vpp, the clock A output frequency is 256 kHz, (3.58 MHz *
14 = 256 kHz).

A
CLOCK

~«—————— 1 CLOCK CYCLE ——-——-—I

\

|
|
|

w

XTL1 XTL2 con
CRYSTAL SPECIFICATIONS (3.57954 MHz)
MAX SERIES RESISTANCE 150 OHMS
XTAL EXCITATION LEVEL 10— 1 Mw
: SHUNT CAPACITY 7PEMAX
| . : LOAD CAPACITY 16 Pf +0.5 Pf
3| . 2 ,
' _ A CLOCK
- osc : , PR 119 rri)
—-DO——.— cCounT | | CLKA
‘ DOWN —
CONTROL DR 1 (A CLOCK)
, CLKB
DR 4 | (8 cLOCK)

Ls]lLs] 9| s8]z

VvDD VSS S10 S12 S14

FREQUENCY
SELECT
STRAPS

Figure 2-5. Clock Generator Block Diagram

2-9

DATA CHANNEL A

DATA CHANNEL B

DA DA DA DADADA DA DA CACA DB DB DB DB DB DB DB DB CB CB
8 7 65 4 3 2 1 2 1 8 7 6 5 4 3 2 1 2 1
A A A A A A M A A 4 4 A A AAAAALAY
YYYVYYVYYVYYY Yy vy ® YyYYYyVvYy
| DRIVER/RECEIVER 11 DRIVER/RECEIVER]

T L L A A

. e
A 4 A 4

[DATA BUFFER B l

STATUS

| DATA BUFFER A I

y

GATING CONTROL

_‘J A B
DECODER

Yy L

i
t
[]
i
|

L

iy

SELECT
LOGIC

< AS 1
02 62 |4 INSTRUCTION DECODE [+ P
v INTERRUPT LOGIC ADDRESS < As 2
CONTROL LOGIC COMPARATOR as3
| wexorve/mcve]

A A A A A AAAK A A A d AS4
ADDRESS

y Y f STRAPS

F YYYYVYYY
LITTTTTTT

ACKO | INT2 omMA

L

1/D 1/D /D 4/D YD /D 1D /D wno
123 45 6 7 8 ACKI SPO
INSTRUCTION/DATA BUS
Figure 2-7. Parallel Data Controller Block Diagram
1 CLOCK-CYCLE
DELAY
1 CLOCK-CYCLE —>
DELAY (MINIMUM) rmm— —
-«
A, VO1THRUWDS ¢2 02 DAY THRUDAB . | gpaTa
#/D1 THRU /D8 $2 DAl THRU DA8 } 8DATA INPUTS bl g OouUTPUTS
PoC .
INT2 (2] @24 _car 2 GENERAL INT2 o4 roc QM_CA“—-—— 2 GENERAL
< 24 __CAZ PURPOSE] o4 cA2 PURPOSE
INTERRUPTS — INTERRUPTS
s ——
-« ey merem—
2 cLoCK-CcYCLE
OELAY P Se—
— 4 .
\ 2 CLOCKCYCLE
¢ plefole e[21w DELAY
I I T |
A | ‘ |
CA1OR CA2 —I—_\—_LI_ ! . .
1 1 Figure 2-9. Static Output
b] I !
! l Hl
SAMPLE TIME P o
b % 1 CLOCK-CYCLE DELAY (MINIMUM)
2 cLOCK.CYC —
r DELAY e] L)
’_’r —7/ 1 CLOCK-CYCLE DELAY
INT2 \
—_—>

e ——

cru acko®

CPU EXECUTES
DEVICE ADRESS
REQUEST

]

T1 MINIMUM WIDTH = 1 CLOCK CYCLE

T2 MINIMUM WIDTH = 2,6 CLOCK CYCLES

T2 MAXIMUM WIDTH IS PROGRAM DEPENDENT

* THE TIME THAT ACKO OCCURS IS PROGRAM DEPENDENT

Figure 2-8, Static Input

e VR

e

| 492 DAS THRU DAS

¢2 DA1 THRU DA4, }
'¢Q CAl

1/01 THRU Y08 2

——
2 CLOCK-CYCLE
DELAY

Figure 2-10.

4 DATA INPUTS
4 DATA OUTPUTS
2 GENERAL

PURPOSE
INTERRUPTS

Static I/0

Clocked Output (Figure 2-12)

The data lines are driven continuously from the data buffer. The CPU can load the
data buffer at any time. A positive pulse is generated on CAl each time the data
buffer is loaded by the CPU or (Channel A only) via DMA. Control line CA2 is
selectable as a CPU interrupt. Interrupt timing for CA2 is identical to that for
Static Input (Figure 2-8). ' .

Clocked I/0 (Figure 2-13)

Data lines DA5 through DAS8 are copied into the high order four bits of the data

buffer on a TTL false-to-true transition of CA2 (same as for Clocked Input, Fig-

ure 2-11). Data lines DA1 through DA4 are driven continuously from the low order
four bits of the data buffer. A positive pulse is generated on CA1l each time the data
buffer is loaded by the CPU (same as for Clocked Output, Figure 2-12), The CPU can
load or read the data buffer at any time. When the data buffer is loaded, only the low
order four bits are modified. Control line CA2 is selectable as a CPU interrupt;
interrupt timing for CA2 is identical to that shown for Clocked Input (Figure 2-11),

Handshake Input (Figure 2-14)

Control lines CA1l and CA2 are both initially at a TTL false level. The data lines are
then copied into the data buffer on a TTL false-to-true transition of CA2. Control
line CA1l is set to a TTL true level immediately after loading the input data into the
data buffer. The CPU may read the data buffer at any time after CA2 has made the
false-to-true transition. CAl is set to a TTL false level when the data buffer is read
by the CPU (or stored in RAM via DMA), provided that CA2 has returned to TTL false
level. Control line CA2 is selectable as a CPU interrupt and/or (Channel A only) a
DMA request. Interrupt timing for CA2 is shown in Figure 2-14,

Handshake Output (Figure 2-15)

The data lines are driven continuously from the data buffer. Control lines CA1 and
CA2 are both initially at a TTL false level. Control line CA1l is then set to a TTL
true level when the data buffer is loaded by the CPU or (Channel A only) via DMA.
CAl is set false on a TTL false to-true transition of CA2. The data buffer may be
reloaded any time after CA2 has returned false. Control line CA2 is selectable as a
CPU interrupt and/or (Channel A only) a DMA request. Interrupt timing for CA2 is
shown in Figure 2-15.

Direct Memory Access

Four of the modes (Clocked Input, Clocked Output, Handshake Input and Handshake
Output) allow optional DMA operation on Channel A. , .

When the DMA option is selected for the Clocked Input mode or the Handshake Input
mode, each DMA request is initiated 1.5 clock cycles after detection of the false-to-
true transition of CA2 (see Figures 2-11 and 2-14).

When the DMA option is selected for the Clocked Output mode, the initial request is
initiated immediately after Function Register A is loaded with the control data select-
ing the mode and option. The second and subsequent requests are initiated during ¢2
preceding the TTL true period of CAl (see Figure 2-12). These requests will continue
to be generated with each output until the PDC is automatically informed of an end-of-
block condition by the Direct Memory Access Controller.

2-13

1 CLOCK-CYCLE
DELAY (MINIMUM)

———

_ ¥D1 THRU /D8 02 $2 DA1 THRU DA
< <

FEG ca1
INT2 4
LR L . cm
[S—
-
2 CLOCK-CYCLE
DELAY

)
)

8 DATA
INPUTS

1 GENERAL
PURPOSE INTERRUPT

1 DATASTROBE - -
MAY ALSO BE

USED AS DATA -
BUFFER - FULL
INTERRUPT AND/OR
DMA REQUEST

CA2 SAMPLE TIME

LOAD DATA BUFFER

S~
NT2 | -
| T I
L 2
| !
I
cPU ACKO* lf,_,_-_{,__—_

CPU EXECUTES DEVICE

ADDRESS REQUEST 1.8

CLOCK
CYCLE
DELAY

|
I
|
!

B

DMA REQUEST

: Y

T1 MINIMUM WiDTH = 1 CLOCK CYCLE

T2 MINIMUM WIDTH = 2.5 CLOCK CYCLES

T2 MAXIMUM WIDTH 1S PROGRAM DEPENDENT

* THE TIME THAT ACKO OCCURS 1S PROGRAM DEPENDENT

Figure 2-11.

1 CLOCK-CYCLE

DELAY
—_—
,—.A—-—\
VD1 THRU I/D8 §2 ¢2 DAl THRU DAS 8 DATA
— > OUTPUTS
Poc s CA1
INT2 ga o} DA
< Pa caz2
€4—— } 1GENERAL
: PURPOSE
T — INTERRUPT
-
2 CLOCK.CYCLE
DELAY

[i -
1|z[afs]r]2]s]a]r]2]s]s
T T

DMA ACKNOWLEDGE RECEIVED

OR

OUT COMMAND (LOAD BUFFER REGISTER A}
ON INSTRUCTION/DATA BUS

nnne
1

%

@PDC CAPTURES QOUTPUT DATA FROM
INSTRUCTION/DATA BUS

DATA

LINES \\ \ \\ /DATA LINES SET

cA1 J_—l__
DMA Ii_
REQUEST -

Figure 2-12,

Clocked Output

1/D1 THRU I/D8 $2
—Pp|

Clocked Input

1 CLOCK-CYCLE DELAY {MINIMUM)
4+—
1CLOCK-CYCLE DELAY
—
,—_

ff\z _DA5 THRU DAS

¢2 DA1 THRU DA4 '
F—>

)
)
T
)

PDC ¢4 CA
INT2 Pa
62 cA
‘q__.—
D
«—
2 CLOCK—CYCLE
DELAY

4 DATA
INPUTS

4 DATA

OUTPUTS

1 OUTPUT

DATA STROBE

1 INPUT DATA
STROBE - MAY ALSO
BE USED AS DATA -
BUFFER - FULL

INTERRUPT

Figure 2-13. Clocked I/O

1 2|:l4i1 |2lg|ai1 lz@

CA2

CA2 SAMPLE TIME

DATA CAPTURE TIME

1 CLOCK-CYCLE
DELAY (MINIMUM)

PRSEIIS S-S

<1/01 THRU 1/D8 ¢2

N

ge

INT2

LOAD DATA BUFFER

B

! i
ca1
1 | e Ty]
! L VYN P S—
1 | DATA BUFFER |
! 1
1 i [i‘l—ﬁl I i‘
INT2] T - T, |
1 [| |
i | . |
! |
CPU ACKO * | H F—_——'
| | - |
! V2.
EXECUTES DEVICE |] 4 d
ADDRESS REQUEST
{ L
cLock -—I
CYCLE |

DMA REQUEST

‘l DELAY

f \

T1 MINIMUM WIDTH = 1 CLOCK CYCLE

T2 1S PROGRAM DEPENDENT (MINIMUM TIME REQUIRES
EXECUTION OF READ STATUS, LOGICAL AND, SKIP, AND
READ BUFFER REGISTER: 6 CLOCK CYCLES)

T3 MINIMUM WIDTH = 2.6 CLOCK CYCLES

T3 MAXIMUM WIDTH IS PROGRAM DEPENDENT

* YHE TIME THAT ACKO OCCURS 1$ PROGRAM DEPENDENT

Figure 2-14. Handshake Input

2 DA1 THRU DAS }

@——— 2CLOCK-CYCLE
DELAY

1CLOCK-CYCLE
DELAY
/D1 THRU 1/08 $2 $2DAt1 THRU DAB 8 DATA
> ’ OUTPUTS
POC |da cat 1 DATA
INT2 da > STROBE
Pa caz
l¢—————— | 10ATA
v— . ACKNOWLEDGE - -
< MAY ALSO BE USED
AS DATA - BUFFER - EMPTY
2 CLOCK-CYCLE INTERRUPT AND/OR
DELAY DMA REQUEST
| : |
(f)?n‘n 1]2]3}4!1 lz!s‘n gglz a 1‘2!3[«11 |z|314 |lz|3 a 1]2I§%I‘z|-zla 1]2'314 |zl3]4 1 2|
i L
| 1 L
! (] | | |

|
L] MA ACKNOWLEDGE RECEIVE!
/ gR CKNO! (o]
OUT COMMAND (LOAD BUFFER REGISTER A}
ON INSTRUCTION/DATA BUS

"W pOC CABTURES OUTPUT DATA
FROM INSTRUCTION/DATA BUS

3CLOCK CYCLES

I
|
|
|
|
!
!
|
|
!
|
|
|
|

—_—

8 DATA
INPUTS

1 DATA
ACKNOWLEDGE

1 DATA STROBE -

MAY ALSO BE USED

AS DATA - BUFFER - FULL
INTERRUPT AND/OR

DMA REQUEST

|
|

DATA 277
LINES 27 7 /A Lo [e
e | Y
i . L .
fy - "
can o i 2 cLOCK A
| ™ cvcLes > !
—
_J ’
(4
caz { | ‘
cA2 o~ ‘ 1
SaMPLE .22 N B BEHKt-—----
B & % % a
(——
INT2 { — - {
CPU ACKO

!

CPU EXECUTES DEVICE ADDRESS REQUEST

DMA

|
|

:,——(
Y

|
-

e 25cLock cycLEs -»:-/_—__
— (L i)
{ f—

REQUEST

S y—

Handshake Output
2-15

Figure 2-15.

When the DMA option is selected for the Handshake Output mode, the initial request is
initiated immediately after Function Register A is loaded with the control data select-
ing the mode and option. The second and subsequent DMA requests are initiated follow-
ing completion of the Handshake Output cycle, i.e., during the third ¢2 following the
TTL true-to-false transition of CA2 (see Figure 2-15).

Function Registers

The functions (modes) of each channel are programmable and are controlled by the
associated function register. Each register is loaded with a control word under CPU
program control. Figure 2-16 shows the fields in each of the function registers. As
indicated in Figure 2-16, each channel provides eight basic I/O modes; different modes
can be programmed and operated simultaneously on the two channels. Figures 2-17
and 2-18 shows the bit meanings for Function Register A and Function Register B,
respectively. Channels A and B have similar modes; however, only Channel A can
initiate direct memory access requests.

FUNCTION REGISTER A FUNCTION REGISTER B
8 72 6 5 4 3 2 1 87654

1111 lXI l

L11 |
| — N "] [
L CH, A'MODé L CH. B MODE
NOT USED NOT USED

CH. A INTERRUPT CONTROL CH. B INTERRUPT CONTROL
CH. A DMA CONTROL NOT USED
BIT FUNCTION REGISTER A FUNCTION REGISTER B
1-3 ESTABLISHES 1 OF 8 BASIC ESTABLISHES 1 OF 8 BASIC
170 MODES 1/0 MODES
4 NOT USED NOT USED
5 CA1 INTERRUPT CONTROL CB1 INTERRUPT CONTROL
6 CA2 INTERRUPT CONTROL CB2 INTERRUPT CONTROL
7 DMA END-OF-BLOCK
INTERRUPT CONTROL NOT USED
8 DMA ENABLE NOT USED

Figure 2-16. Function Register Fields
2-16

CLOCKED INPUT ' . . . :) .
8 7 6 5 4 3 2 1

I | { i I x | I I I - STATIC INPUT . . ‘

STATIC OUTPUT

STATIC INPUT/OUTPUT

MODE 8 7 6 5 &4 3 2 1

o : ' b T T

NOT USED .

1= INTERRUP'I; ON FALSE-TO-TRUE TRANSITION OF CA1 -~ -

. . . NOT . : MODE
1= INTERRUPT ON FALSE-TO-TRUE TRANSITION OF USED 000STATIC INPUT
CA2 (DATA BUFFER FULL) '
00 1STATIC (/O
100STATIC OUTPUT
_— 1= INTERRUPT ON DMA END-OF-BLOCK (BIT 8

NOT USED
MUST =14 - 4 1= INTERRUPT ON FALSE-TO.-TRUE TRANSITION OF CA1

1= INTERRUPT ON FALSE-TO-TRUE TRANSITION OF CA2

1= INITIATE DMA REQUEST ON FALSE-TO-*RUE
TRANSITION OF CA2 . e . .

CLOCKED OUTPUT ' : R : . HANDSHAKE INPUT
.- ’ 8 7 6 5 a4 3 2 1
7 6 5 2 1

EEROOEER | , ERRDOEEE

— A

MODE
MODE o10 '
111 y NOT USED
NOT USED
1= INTERRUPT ON FALSE-TO-TRUE TRANSITION OF CA2 1= INTERRUPT ON FALSE-TO-TRUE TRANSITION

OF CA2 ([DATA BUFFER A FULL)

1= INTERRUPT ON DMA END-OF-BLOCK (BIT 8
MUST =1 ALSO) 1 =INTERRUPT ON DMA END-OF-8LOCK (BIT 8
MUST = 1 ALSO)

1= ;T:;?,TEO%':?TTZSUEST ON BUFFER 1= INITIATE DMA REQUEST ON FALSE -TO-TRUE
[. . TRANSITION OF CA2

HANDSHAKE OUTPUT

CLOCKED INPUT/QUTPUT

8 7 6 S 4 3 2 1
Ll T T]

MODE

110 MODE
NOT USED 101
1=INTERRUPT ON BUFFER EMPTY CONDITION NOT USED

NOT USED 1=INTERRUPT ON FALSE-TO-TRUE TRANSITION

1= INTERRUPT ON DMA END-OF-BL.OCK {BIT 8 MUST = 1 ALSO) OF CA2 (INPUT DATA READY)

1= INITIATE DMA REQUEST ON BUFFER EMPTY CONDITION

NOT USED

NOTE: THE BIT CONFIGURATIONS SHOWN ARE AS THEY
APPEAR IN THE CPU ACCUMULATOR PRIOR TO
TRANSFER TO THE PDC.

Figure 2-17. Function Register A Bit Interpretation

STATIC INPUT

STATIC OUTPUT
STATIC INPUT/OUTPUT
CLOCKED INPUT

8 ? 6 & 4 3 2 1

i T I T 1]

——— || Nt

NOT MODE
UsED 00 0STATIC INPUT

00 1STATIC INPUT/OUTPUT
011 CLOCKED INPUT

100 STATIC OUTPUT

NOT USED

t————— 1= INTERRUPT ON FALSE-TO-TRUE
TRANSITION OF CB1

1 =INTERRUPT ON FALSE-TO-TRUE
TRANSITION OF CB2

HANDSHAKE INPUT
CLOCKED INPUT/OUTPUT
CLOCKED OUTPUT

8 7 6 5 4 3 2 1

Ll [={<] T

—

NOT NOT MODE
USED UsSED 010 HANDSHAKE INPUT
101 CLOCKED INPUT/OUTPUT
111 CLOCKED OUTPUT

1=INTERRUPT ON FALSE-TO-TRUE
TRANSITION OF CB2

HANDSHAKE OUTPUT
8 7 6 & 4 3 2

lﬂ

MODE
110
NOT USED

USED

1=INTERRUPT ON BUFFER EMPTY CONDITION

Figure 2-18. Function Register B Bit Interpretation

STATUS REGISTER

8 7 6 5 4 3 2 1

HEEEEEEE

——

NOT USED
END-OF-BLOCK CONDITION ON CHANNEL A

1= DATA OVERFLOW ON CHANNEL B WHEN IN .
HANDSHAKE INPUT MODE, CLOCKED INPUT MODE,
OR CLOCKED 1/O MODE

1= DATA BUFFER.B FULL WHEN IN HANDSHAKE
INPUT MODE OR ANY CLOCKED INPUT MODE

1= DATA BUFFER B EMPTY WHEN IN HANDSHAKE
OUTPUT MODE

1=DATA OVERFLOW ON CHANNEL A WHEN IN
HANDSHAKE INPUT MODE OR ANY CLOCKED
INPUT MODE

1=DATA BUFFER A FULL WHEN IN HANDSHAKE
INPUT MODE OR ANY CLOCKED INPUT MOQDE

1= DATA BUFFER A EMPTY WHEN IN HANDSHAKE
OUTPUT MODE

Figure 2-19. PDC Status Register Format
2-18

Status Register

The contents of the Status Register can be copied into the CPU accumulator under
program control. Figure 2-19 shows the format of the information contained in the
Status Register. L

Interrupt Status Word

NOTE: Refer to Section 3 for a descr1pt1on of the 1nterrupt system.

When the PPS-8 CPU executes a Read Interrupt Status command, the PDC will transmit
an interrupt status word to the CPU accumulator provided that the following two con-
ditions are both met. ~

1) The PDC is requesting interrupt service (INT2 true).
2) The PDC has received the ACKI aekﬁowledge pulse from the CPU.

Note that in a PPS-8 system containing multiple PDC devices, the above conditions will
be true for only one device at any given time.

Figure 2-20 shows the format and information: contained in the interrupt status word.
The exact meaning of this information depends upon the current PDC mode (see
Table 2-1).

PDC Instruction Set

The PDC responds to eight commands from: the PPS 8 CPU. Four of these are of the
output (OUT) type and are described below. .

1) LFRA — Load Function Register A

This command loads Function Register A with the contents of the CPU accu-
mulator and resets bits 4, .7 and 8 of the status register.

2) LFRB — Load Function Register B

This command loads Function Register B with the contents of the CPU accu-
mulator and resets bits 5 and 6 of the status register.

3) LBRA — Load Buffer Register A

This command loads Buffer Reglster A with the contents of the CPU accu-
mulator and resets bit 8 of the status register.

4) LBRB - Load Buffer Register B

This command loads Buffer Reg1ster B with the contents of the CPU accu-
mulator and resets bit 6 of the status reglster

The remaining four commands are of the input (IN) type and are described below.
5) RBRA — Read Buffer Register A

The contents of Buffer Register A are placed in the CPU accumulator and
bit 8 of the status register is reset.

2-19

6)

7

8)

NOTE: THE BIT CONFIGURATIONS SHOWN ARE AS THEY
APPEAR IN THE CPU ACCUMULATOR PRIOR TO
TRANSFER TO THE

_W—’ PDC.
I—- PDC ADDRESS
t = INTERRUPT REQUEST INITIATED BY FALSE-TQO-TRUE TRANSITION

OF CB1 OR 8Y COMPLETION OF HANDSHAKE OUTPUT CYCLE ON
CHANNEL 8

1=

INTERRUPT REQUEST INITIATED BY FALSE-TO-TRUE TRANSITION
F CB2

* = INTERRUPT AEQUEST INLTIATED BY FALSE-TO-TRUE TRANSITION
OF CA1 OR BY COMPLETION OF HANDSHAKE OUTPUT CYCLE ON
CHANNEL A

OF CA2 OR BY DMA END-OF-BLOCK CONDITION

Figure 2-20,

= INTERRUPT REQUEST INITIATED BY FALSE-TO-TRUE TAANSITION

Interrupt Status Word

MODE

INTERPRETATION

CH, A INTERRUPT STATUS

CH. B INTERRUPT STATUS

Bit8=1

Bit7=1

Bit6=1

Bits5=1

Static Input
Static Output
Static 1/0

CA2 Interrupt

CA1 Interrupt

CB2 Interrupt

CB1 Interrupt

Clocked Input CA2 Interrupt CA1 Interrupt | CB2 Interrupt | CB1 Interrupt

Without DMA (Data Buffer (Data Buffer
Full) Full)

Clocked Input End-of-Block CA1 Interrupt

with DMA Interrupt

Clocked Output CAZ2 Interrupt CB2 Interrupt

Without DMA

Clocked Output End-of-Block

With DMA Interrupt

Clocked 1/0 CA2 Interrupt CB2 Interrupt
(Input Data ¢Input Data
Ready) Ready)

Handshake Input CA2 Interrupt CB2 Interrupt

Without DMA (Data Buffer (Data Buffer
Full) Full)

Handshake Input End-of-Block :

With DMA Interrupt

Handshake Output Channel A Channel B

Without PMA Handshake Handshake
Cycle Com~- Cycle Com-
plete plete
Interrupt Interrupt

Handshake Output
With DMA

End-of-Block
Interrupt

NOTE: Bit bit polarities shown are as thw appear in the CPU accumulator after
" transfer from the PDC.

Interrupt Status Word Interpretation

Table 2-1.

RBRB — Read Buffer Register B

RSR — Read Status Register

RIS — Read Interrupt Status

2-20

- The contents of Buffer Register B are placed in the CPU accumulator and
bit 6 of the status register is reset.

The contents of the Status Register are placed in the CPU accumulator and
bits 5 and 7 of the status register are reset.

If the appropriate conditions are met (see text: Interrupt Status Word), the
contents of the Interrupt Status Word are placed in the CPU accumulator.
(This command is unique in that it always contains a device address of 0.)

DIRECT MEMORY ACCESS CONTROLLER (DMAC)

The Direct Memory Access Controller (DMAC), Part No. 10817, allows PPS-8 1/O
devices to access RAM on a cycle-steal basis without disturbing CPU program
execution. The DMAC (Figure 2-21) provides control of the Address Bus (A/B1 through
A/B14) and two memory control signals (RIH and W/IO) during direct memory access
(DMA) operations. Control for eight separate DMA channels is provided by a single
DMAC.

Eight DMA request/acknowledge lines (DMAO through DMAT7) provide bidirectional
communication between the 1/0O devices and the DMAC. Bidirectional communication
over a single line is accomplished through the use of time multiplexing and pulse
coding techniques. Each DMA line (channel) has a fixed position in a priority structure
used to resolve simultaneous requests. The channels are numbered in order of prior-
ity, with DMAO having the highest priority. An additional DMA request/acknowledge
line (DMRA) prov1des bldlrectmnal communication between the DMAC and the CPU.

Eight 14-bit addres_s reglsters and eight 8-bit record length registers are included in
the DMAC; one address register and one record length register are associated with
each of the eight DMA channels. Each register can be loaded under CPU program
control., Two additional control bits are provided for each of the DMA lines. One of
these control bits specifies whether the RAM is to read or to write when a DMA
request occurs on the associated DMA line. The other control bit is used to select

a special cycle mode the purpose of this mode is descr1bed under Record Cycle
Mode.

A holding reglster, ‘associated with the record length registers, allows the CPU to
sample the contents of any record length register. When any record length register

is loaded by the CPU, the previous contents of that register are transferred to the
holding register. The contents of the holdmg reg1ster may be read under CPU program
control. <

Figure 2-22 shows a typical DMAC application. For simplicity, only a single I/O
device, a Parallel Data Controller (PDC), is shown connected to the DMAC. When
the PDC requires DMA service, it transmits a pulsed DMA request over DMAO. The
DMAC forwards the DMA request to the CPU over DMRA. The CPU acknowledges
the DMA request at the completion of the current instruction, provided that the
instruction is a non-I/0 type. If the CPU is executing an I/O instruction, it will.con-
tinue program execution until it has completed a non-I/O instruction, at which time
it will acknowledge the DMA request, The CPU then enters a ''wait" mode, during
which it floats its Address Bus drwers, Data Bus drlvers, RIH and W/IO. This wait
mode is retained until completion of the DMA operations.

When the DMAC receives the CPU acknowledge signal, the followmg operatlons
occur: ‘ . ,

1) The DMAC drives an acknowledge signal over the h{ighe'st priority line "
currently requesting service.

2) The DMAC drives the Address Bus with the contents of the appropriate
address register.

2-21

DMAO
DMA1
DMA2
OMA3
DMA4
DMAS
DMA6
DMA7

ADDRESS BUS

r N\
O N = O
B b 5 522835823949 cx
SPO 5225553252555
[s] f12f13{1a[1s[16[17]11{10] o [s]7 [6 [5 [4]
1 X2 33%2%3% %1 W
N
g | DRIVERS]
A 4 ok
27 > > s{ s} Evoo
mooe | P - TP - T T T
& _ |__UPPER — _ LOWER _ -| L _BRECORD__ _ |
ADDRESS
seler hiyis T Aceisvens [- aecieress || heowrens] 7] s ool
& [cNTRL] | BXe T [T@xe T T) [[Texe T]
CONTROL ex2 V) ____ L _ _
.
E‘ > ., 7' j y } y } 7Y
25 ¢ 7 %
24 le—b 64 84 st
al 38 ! T_L L
%: f gg st »| counTER H COUNTER] LCOUNTER 1
| <<] Tuw A L +
O EE
21] L)
_210 ACKNOWLEDGE
19 & °
e END OF BLOCK 8//
CONTROL w| LENGTH DATA
7| HOLD REGISTER
INSTRUCTION
DECODE
y 18 Mk w [Es3fA
y A 4 2 SYSTEM
f__T DRIVERS/ o 5) oo
£ > RECEIVERS <0 ‘_EB
i
A y A
(] lﬂl | EJ] [38]30]a0 [a1 [aa[1 T2]3]
RiH w/10 AS ® N © L ¢ N N -
£88¢88¢g¢sg8
22
INSTRUCTION/DATA BUS
Figure 2-21, Direct Memory Access Controller
Block Diagram
3) The DMAC drives RIH and W/IO false or true, depending upon whether the
addressed RAM is to read or write.
4) The I/O device either drives data onto or captures data from the I/D Bus.

After each byte is transferred, the DMAC increments the appropriate address

register and record length register.

following events occurs.

1)
2)
3)
)

5)

The I/0 device ceases to request DMA service.

The record length register makes a transition from 255 to zero.

The DMA operations continue until one of the

The lower address register makes a transition from all ones to zeros.

CPU interrupt 0 is triggered.

The DMAC receives a request on a higher priority channel than that
currently being serviced.

2-22

<
DMA1 DMRA
«— A, - >
O R
PDC : 4——Pp
DMAC cPU
170 .
DEVICES s
DMA7 'A/B1 THRU A/814 *
«— 20l «—
A
#| %] %
T]
b~ -
« 2
<]
a
~
; [2
©
T
=
-
<] A 4 A 4
RAM ADDRESS BUS
< \ 4
N INSTRUCTION/DATA BUS I v)

* CPU FLOATS THESE {
LINES DURING
DMA OPERATIONS

Figure 2-22, Typical DMA Application

The effects of each of the above five events are described in the following five
paragraphs,

When the I/0 device ceases to request DMA service, the DMAC, in turn, drops its
request to the CPU (provided that no other DMA requests are present) and the CPU
resumes program execution. If additional DMA requests are present, the DMAC main-
tains its request to the CPU and automatically switches to the highest priority channel
requesting service.

When the record length register makes the transition from 255 to zero, the requesting
I/0 device is informed of the end-of-block condition (via a pulse-coded signal trans-
mitted over the DMA line) and the DMAC drops its request to the CPU, allowing
resumption of CPU program execution. If the I/O device continues to request DMA
service after being informed of the end-of-block condition, the DMAC delays for
three clock cycles and then again requests DMA service from the CPU., Thus, when
the record length register makes the transition from 255 to zero, the CPU is allowed
to execute instructions for a minimum of three clock cycles before the DMA request is
again honored. (The CPU will not honor the DMA request at the completion of the
current instruction if that instruction is an I/O command; i.e., the CPU will continue
to execute instructions until it has executed a non-I/0O command, at which time it will
honor the request.)

2-23

When the lower address register makes a transition from all ones to all zeros, a
carry is propagated through the lower address register and into the upper address
register. That is, when the lower address register goes from all ones to all zeros,
the upper address register is incremented by one. Each time this operation occurs,
the DMAC drops the acknowledge signal to the I/O device and the request signal to
the CPU. One clock cycle later (assuming that the I/0O device is still requesting DMA
service), the DMAC again requests DMA service from the CPU.

When CPU interrupt 0 (INTO) is triggered, the DMAC is allowed to complete the byte
transfer currently in progress; thereafter, the CPU ignores the state of DMRA and

_ resumes program execution. When power is restored, SPO clears all DMA acknowl-
edge signals and no further DMA operations occur until another DMA request is
received.

When the DMAC receives a DMA request on a higher priority DMA channel than that

currently being serviced, it completes the byte transfer currently in progress and then
- drops the acknowledge signal on the original (lower priority) channel. The DMAC then
" automatically switches to the higher priority channel and continues the DMA operation.

Record Cycle Mode

A control bit associated with each of the address registers is used to command a
special Record Cycle Mode. - This mode is available for any of the first.seven chan-
nels. The control bit is loaded from the CPU: when the control bit is set (1), normal
operation (as previously described) occurs; when the control bit is reset (0), the
Record Cycle Mode is commanded. When an I/O device requests DMA service and

the channel associated with the 1I/O device is in the Record Cycle Mode, the bytes are
transferred as in normal operation until the lower address register (8 bits) makes the
transition from 255 to zero. At this time, the contents of the Channel 7 record length
register, address register, and control register (2 bits) are automatically transferred
to the corresponding registers of the channel operating in the Record Cycle Mode.
That is, the address register, record length register, and control register of the
channel operating in the Record Cycle Mode are reset to the values stored in the
corresponding Channel 7 registers. DMA operation then continues as previously
described. Typical use of the Record Cycle Mode involves loading the Channel 8
registers with the same data that is initially loaded into the registers of the channel
that is to operate in the Record Cycle Mode; thus, as long as the DMA request is pres-
ent, the record (beginning at the address specified by the initial contents of the
address register and ending at the next address boundry, modulo 256) will be repeat-
edly transferred between RAM and the I/O device. It should be noted that use of
Channel 7 for DMA service is precluded when any channel is in the Record Cycle Mode.

DMA Instruction Set

The DMAC responds to four commands from the PPS-8 CPU. Three commands are
of the OUT type and one is of the IN type. These commands are described in

Table 2-2. (The basic IN/OUT command format is discussed in Section 3.) As
indicated in Section 3, the second byte of the two-byte IN/OUT command contains a
3-bit command field and a 4-bit address field. The command code is interpreted and
executed by the addressed 1/0 device. Normally, the address of an I/O device is

2-24

Table 2-2, DMAC Instructions

INSTRUCTION

NAME

MNEMONIC

DESCRIPTION

Load
Address Register,
Lower

LARL

Transfers contents of CPU accumulator to

lower DMAC address register N (where N is the
number coded in the lower 3 bits of the instruc-
tion address field) '

Load
Address Register,
Upper

LARU

Transfers contents of CPU accumulator (bits 1
through 6) to corresponding bits of the upper
DMAC address register N (where N is the
number coded in the lower 3 bits of the instruc-

- tion address field). Bit 7 of CPU accumulator

is transferred to Channel N mode control bit
(1 = Normal Mode; 0 = Record Cycle Mode).
Bit 8 of CPU accumulator is transferred to
Read/Write control bit (0.= Read; 1 = Write).

Load Record
Length Register

LRLR

Transfers contents of CPU accumulator to

‘record length register N (where N is the number

coded in the lower 3 bits of the instruction
address field). Previous contents of record
length register N are transferred to holding
register. ‘

Read Holding
Register

RHR

Transfers contents of the record length holding
register to CPU accumulator.

unique and, therefore, there is no possibility of an I/O device interpreting and
executing an I/O command intended for some other I/O device. However, the DMAC
has a single address strap; only the most significant bit of the 4-bit address field is
used to address the DMAC (the lower three bits of the device address field in this
case refer to the DMA channel number). Thus, if the address strap (AS) is connected
to VSS (logic level zero), the DMAC will respond to any address in the range of zero
to seven. Conversely, if AS is connected to VDD (logic level one), the DMAC will
respond to any address in the range of 8 to 15. Therefore, care should be taken to
ensure that any I/0 device whose address falls within the selected DMAC address
range does not share any common command codes with the DMAC. (At the time of
this writing, the only I/O device that shares common command codes with the DMAC
is the TDI. The TDI should not be assigned an address that falls within the selected
DMAC address range.)

2

25

Timing

Figure 2-23 shows the DMA timing. As shown, there is a one-half clock cycle delay
from the time that the DMAC receives a request from an I/0 device until the time

that the DMAC requests service from the CPU. The CPU response time is variable,
depending upon the instruction being executed at the time that it receives the DMA
request. The best-case condition exists when the current instruction is a non-1/0

type whose execution will be completed during the clock cycle following that in which
the request is received; in this case, there is a one-half clock cycle delay from the
time that the CPU receives the request until the time that it sends an acknowledge
pulse to the DMAC. The worst-case condition exists when the CPU is executing an I/O
command (or a series of I/O commands). The CPU will continue program execution
until it has executed a non-1/O command before it will acknowledge the DMA request.
Completion of the I/O command may take one, or two clock cycles; completion of the
following command may take one, two or three clock cycles. Thus, if the CPU is
executing an 1/O command at the time that it receives the DMA request, the maximum
delay before it acknowledges the request will be four and one-half clock cycles (assum-
ing that the command following the I/O command is a non-1/0 type).

1/0 DEVICE . DELAY T IS PROGRAM
SETS DMA (N) Q DEPENDENT - BEST CASE
N SHOWN - REFER TO
TEXT: TIMING |
I ||
DMAC SETS | l |
DMRA |] | |
| .
] | I "i
CPU SETS e r
DMRA LJd LJd
T
Cor]
DMAC SETS \‘ [I
DMA (N) k
DATA | l
TRANSFERRED ; o1
BETWEEN ¥/O
DEVICE AND \‘
RAM AN

Figure 2-23. DMA Timing

There is a one-half clock cycle delay from the time that the DMAC receives the
acknowledge pulse from the CPU until the time that the DMAC, in turn, transmits an
acknowledge pulse on the highest priority DMA channel requesting service. Thus,

the total delay from the time that an I/0 device requests DMA service until it receives
an acknowledge pulse is from one and one-half to five and one-half clock cycles (assum-
ing that no higher priority devices are requesting DMA service and that the CPU is not
executing a series of I/O commands).

2-26

SPECIAL PURPOSE INPUT/OUTPUT DEVICES

The high degree of flexibility found in the PPS-8 allows the use of a wide variety of
special purpose input/output devices. Up to 16 of these special devices, in various
combinations, may be directly connected to the PPS-8 at the same time, and through
appropriate addressing the various devices can be utlhzed by the PPS-8 to control
many different functions concurrently.

Each of the special purpose input/output devices is discussed in the following para-
graphs. If additional detail information is required on any of these devices, refer to
the applicable data sheet for the specific device.

Printer Controller Circuit

The Printer Controller Circuit device, Part No. 10789, is used for control of the
SEIKO 101, 102, and 104 printers.- The printer controller interfaces directly to the
PPS system without additional components. Printer control is accomplished in a
stand-alone manner. That is, after the print data has been loaded from the PPS
system, the printer controller circuit controls the printer without additional attention
from the PPS system. Features of the printer controller circuit are:

e Up to 21 columns of print data.

e Up to 8 discrete outputs if less than 21 columns of print
data are required.

e Red/black color control.

e Automatic generation of from one-to-eight paper feeds.

e Busy signal generation for informing the PPS system as to
when a new print line may be initiated.

e One discrete input.

e Address strap to allow two prmter controller circuits in the
same system.

e Motor on/off control,

® Motor "up-to-speed'' detection.

Telecommunications Data’lnterface ’(>.T_DI) Circuit

The Telecommunications Data Interface (TDI) circuit, Part No. 10371, together with
external filters, gain circuitry, and an approved telephone network access arrangement,
can provide either full-duplex or half-duplex, asynchronous data transmission,
Transmission can be made over nonconditioned, voice-grade telephone lines. This
device can be operated as a bit-serial universal modem or as an integral part of the
Rockwell Parallel Processing System (PPS). Features of this device are listed below:

e Full-duplex operation
e Zero to 1200 bps transmission rate.

° Frequency modulation with controllable choice of two sets of
modulation frequencies:

- CCITT (mark = 1300 Hz; space = 2100 Hz)
- Bell 202 (mark = 1200 Hz; space = 2200 Hz)

2-27

e TTL-compatible interface
e Controllable choice of two basic operating modes:

- Serial Mode: Operates as universal modem with no internal data
formatting, buffering, etc.

- PPS Mode: Operates as part of PPS and as such has the following
additional features

~-- Data buffering

-~ Automatic formatting: Unformatted, serial 8-bit words;
character-formatted 8-bit words; variable-length words

-- Interrupt-controlled transfers

-- Controllable choice of even/odd parity

-- Strap-selectable choice of 15 possible addresses (1 to 15)

Bus Interface (B/I) Circuit

The Bus Interface (B/I) Circuit, Part No. 10738, is a multipurpose circuit designed to
serve as an interface between the PPS address and data bus dynamic MOS level
signals and static commercially available MOS or TTL peripheral memory devices.
The B/I circuit can also be used to interface with core memories in those systems
which must have a non-volatile memory. The B/I circuit is multipurpose in that it
can be appropriately strapped at four input pins to act as an interface for 12 bits of
the 14-bit address bus as well as the 8-bit instruction/data bus.

The B/I circuit provides the following features which involve timing, impedance, and
logic level interfacing:

° Identical circuits for both instruction/data bus and address bus
interface.

e Direct interface — no external components needed.
o MOS~compatible interface.
e TTL-compatible interface.

® Static outputs.

General Purpose Keyboard and Display (GPKD)

The General Purpose Keyboard and Display (GPKD) device, Part No. 10788, provides
interfacing between the PPS-8 and a wide variety of keyboard and display devices.

The GPKD connects directly with the PPS data bus and is initialized by the Synchronized
Power-On (SPO) signal from the PPS-8 CPU.

The GPKD can strobe keyboards with up to 64 single-pole, single-throw momentary
switches on an 8 x 8 matrix. A Nine-level, 8-bit key buffer allows up to nine key
inputs to be stored until the PPS processes them. Inputs can be entered at an
operating speed of 7.68 microseconds per character. ‘

2-28

Up to 16 characters of display data can be controlled. The GPKD uses two hexadecimal
outputs for data display, (eight outputs). A typical application of the data display is

to use 4 bits, (one hexadecimal character) for numeric display, 2 bits for display of
decimal point and comma, and the remaining 2 bits for display of up to 32 status
indicators.

The following features are found in the GPKD:

KEYBOARD
e Nine-Key Buffering e Handle up to 64 keys on 8 x 8 matrix
° Two-Key Rollover , ° Chip Address Strap Encoded
e 17.68 msec Key Debounce Delay o Initialized at Power On (SPO)
DISPLAY
e Display up to 16 characters e Two Sets of Hexadecimal Code
e 32 Digits of Display Possible Outputs for Display

TTL Compatible Interface
e Five Percent (5%) Duty Cycle

e Two 16-Digit Display Buffers

Serial Data Controller (SDC)

The Serial Data Controller (SDC), Part No. 10930, is a digital receiver-transmitter
that interfaces the PPS-8 (or PPS-4) Instruction/Data Bus (eight parallel lines) to a
serial communications channel. The SDC is capable of full-duplex or half-duplex
operation at synchronous rates up to 250K-bits per second and asynchronous rates up
to 18K-Baud. Input/output signals are directly compatible with TTL, MOS and CMOS.
Significant features. of the SDC are hsted below o

e Full-Duplex or Half-Duplex Operation

e Synchronous or Asynchronous Operation

e TFully Programmable = All Control Stored in Internal Control Reglsters

e Interrupt Request on Receiver Buffer Full, Transmltter Buffer Empty, DMA
End-of-Block, and Character Compare

e DMA Request on Receiver Buffer Full or Transmitter Buffer Empty

e Automatic Error Detection (Parity, Receiver Overrun, Framing and

Carrier Detect Dropout)
o Receive and Transmit Simultaneously at Different Rates if Desired
® Programmable Transmission Codes:
-~ Character Length of 5, 6, 7, or 8 Bits .
- Even Parity, Odd Parity or No Parity
--= One or Two Stop Bits (1 7/16 Stop Bits when 5-Bit Character. and
. X16 Clock Asynchronous Operatlon are Selected) :

Double Buffered Data Input and Output
Transmitter Clock Output (Output Clock at Transmitted Bit Rate)
- Three Discrete Inputs and Two Discrete Outputs
Automatic Status Generation
Programmable Character Search Mode Facilifates Party Line Operation
Strap-Selectable 4-Bit or 8-Bit Operation for Compatibility with PPS-4 and
PPS-8

2-29

Section 3. PRINCIPLES OF OPERATION

BASIC SYSTEM OPERATION

During each program counter bit time, the CPU will address the instruction memory,
(ROM), read and decode the instruction, execute the instruction, increment (or load)
the program counter in preparation for the next instruction. This bit time or a
single cycle instruction execution time is 4 ps at a 250 KHz frequency. The pro-
prietary instruction architecture and multiphase clocking scheme of the 8-bit CPU
result in unusually high data handling rates for a relatively slow external clocking
system.

SYSTEM TIMING

The PPS circuits are controlled from a crystal controlled clock generator which
provides two synchronized and phased clock signals. These signals, designated A
and B, are received by the CPU and they are logically divided into four phases, such
that the internal signals are being manipulated at four times the frequency of the
external A clock. For example, assume A clock is 250 KHz, logic signal flow within
the CPU would occur at' 1 MHz. The basic clock timing is shown in Figure 3-1.

The PPS parallel bus transfer lines are synchronized by the A and B clock signals
such that data transfer occurs only during @2 and 04 time as depicted by Figure 3-1.

LOGIC LEVELS

A negative logic notation is used in the PPS-8 system. That is, a logic one (1) is
defined as the most negative voltage, while a logic zero (0) is defined as the most
positive voltage.

MULTIPLEX SYSTEM DATA TRANSFER

In addition to.the power and clock signals, there are 24 multiplexed lines inter-
connecting the CPU with ROM, RAM, and I/O devices. These lines are functionally
grouped as follows:

14 Parallel Address Lines (A/B 1 through 14)
8 Parallel Bidirectional Data Lines (I/D 1 through 8)
1 Write Command/I/O Enable Line (W/I O)
1 Read Inhibit (RIH)

The fourteen address lines originate fromthe CPU and are time multiplexed within
the CPU to provide direct addressing capability for up to 16, 384 8-bit bytes of ROM
and 16, 384 bytes of RAM.

As are the address lines, the eight data bus lines are time shared lines between
the CPU, ROM, RAM and I/Os.

|-——' 1CLOCK CYCLE - _____>%
TN) e N

CLOCK

B — — —_— —_—
|-— @4 21 02 @3 24 01—
ADDRESS BUS RAM ROM RAM

{15 LINES) ADDRESS ADDRESS . ADDRESS

RAM DATA ROM

ROM [
DATA BUS READ o INSTRUCTION [/
(8 LINES) o roToN 1 orwriTe OR /0 :
. : 1/D (7:0 . INSTRUCTION
READ INHIBIT READ READ
{1 LINE) INHIBIT INHIBIT
1= READ
. 110

WRITE CMD 1/0 ZV,SE',TE ENABLE

170 ENABLE ENABLE 1= WRITE 0= SELECT

{1 LINE} 1=SELECT I/0 0= WRITE RAM

Figure 3-1. Parallel Processing System Bus Timing

During #2, a logical one (1) on the write enable line is interpreted by the RAMS as a
write enable command and the data on the bus will be written into RAM using the
precedmg #4 address. During the preceding 1, the RAM would be commanded not to
read via the Read Inhibit Command (logical 1). The RAM is a non-destructive read-
out device and is always programmed to read unless 1nstructed not to by the '""read
inhibit" command.

The same line providing the write command to RAM during @2 time serves as an I/O
Enable signal during @4 time when communication is desired to (or from) an I/0
device addressed on the data bus. If the I/O enable is on (logical 1) at ¢4, the '""Read
Inhibit" line will be used to disable the RAM during the @2 transmlttal of 1nformat10n
between the CPU and the addressed I/O device.

INSTRUCTION REPERTOIRE

The PPS-8 has an extensive instruction repertoire for performing a variety of
arithmetic, logical, and data manipulation functions in a manner which is efficient,
both in instruction memory required and speed of execution. Most instruction types
require only a single 8-bit byte, but 2 and 3 byte formats are also included to provide
extended addressing/functional capability.

The instructions are listed in Table 3-1. In the table, reference is made to notes.
The applicable notes are listed following the table.

The symbology used in the instruction descriptions in Table 3-1 is defined below.

Symbol Symbolic Notation Item or Function

A Accumulator Register A(1:8)

X RAM Address Register and Index, X(1:8)

Y RAM Address Register Y(1:8)

Z RAM Address Register Z(1:8)

L Link Register L(1:16)

P Program Counter Register P(1:14)

S Stack Pointer Register

w The W Register

C - Carry Flip-Flop

IC Intermediate state of Carry Flip-Flop

Q Intermediate Carry Flip-Flop

I Instruction I(1:8)

11 First byte of multiple byte instruction 11(1:8)
12 Second byte of multiple byte instruction I2(1:8)
13 Third byte of multiple byte instruction 13(1:8)
M RAM memory contents

R(n) Bit n of Register R

R(n:m) Bit n through m of R, inclusively

W/10 Write and I/O Enable Control Line

RIH Read Inhibit Control Line

Byte Eight-bit Data Field

Digit Four-bit Data Field

Page Block of 128 bytes

) Replaces (or «—)

+—> Exchange

R 1's complement of state R.

A Logical Product (AND)

v Logical Sum (Inclusive OR)

-V.

Logical (Exclusive OR)
Algebraic Subtract

+ Algebraic Add

> Greater than

< Less than

= Equal to

1/D(8:1) Instruction/Data Bus (lines 1 through 8)

(L) ROM memory contents addressed by L

SP, Byte from upper address portion of Subroutine Entry Pool
SP1 Byte from lower address portion of Subroutine Entry Pool

3-3

Tabte 3-1.

List of Instructions

‘ DESCRIPTION
MNEMONIC NAME | BYTES | CYCLES VERBAL SYMBOLIC NOTES
L Load A 1‘ 1 | The current RAM operand is placed | A «—M 1
lin the accumulatqr
LN Load A, Increment 1 1 Same as L. Additionally, the X A<M 1,28
Address register is incremented X < X+1, skip if X=0
LD Load A, Decrément 1 1 Same as L. Additionally, the X A<M 12,8
Address register is decremented X 4 X-1,
A skip if X=127
LNXL Load A, Increment 1 1 Same as LN. Additionally, the A<M 1,2,8
Address, Exchange L contents of the L register and the | X €= X+1, skip if X=0
Z & X registers are exchanged Z, Xe»plL
LDXL Load A, Decrement 1 1 Same as LD. Additionally, the Ae-M 1,2,8
Address, Exchange L contents of the L register and the X<4+X1,
Z & X registers are exchanged skip if X=127
Z,Xe»L
LNCX Load A, Increment 1 1 Same as LNXL. Additionally, the | A<M 1,2,8,
& Compare Address, next instruction is skipped if X € X+1 19
Exchange L X=Y Skip if X=0 or X=Y
ZXepl
LDCX Load A, Decrement & 1 1 Same as LDXL. Additionally, A<M 1,2,8,
Compare Address, the next instruction is skipped if X4X-1 19
Exchange L X=Y Skip if X=127 or X=Y
ZXe4»L
LNXY Load A, Increment ' 1 1 Same as LN. Additionally, the A<M 1.2,8
Address, Exchange Y - | contents of the X & Y registers X €=X+1, skip if X=0
are exchanged XY
S Store A 1 1 The contents of the accumulator M A 1
are stored in the current RAM
operand address
SN Store A, Increment 1 1 Same as S. Additionally, the X Me-A 1,28
Address register is incremented X4 X+1,skip if X=0
SD Store A, Decrement 1 1 Same as S. Additionally, the X . |MeA 12,8
Address register is decremented X4X-1,
skip if X=127
SNXL Store A, Increment 1 1 Same as SN. Additionally, the Me A 1,28
Address, Exchange L contents of the L register and the | X €= X+1, skip if X=0
Z & X registers are exchanged ZXepL
SDXL Store A, Decrement 1 1 Same as SD. Additionally, the Me- A 1,2,8
Address, Exchange L contents of the L register and the | X€—X-1,
Z & X registers are exchanged skip if X=127
ZXe»l

Table 3-1. List of Instructions {Continued)

DESCRIPTION
MNEMONIC NAME BYTES | CYCLES VERBAL SYMBOLIC NOTES
SNCX Store A, Increment 1 1 Same as SNXL. Additionally, the | Mea—A 12,8,
& Compare Address, next instruction is skipped if X€4—X+1 19
Exchange L X=Y Skip if X=0 or X=Y
ZXe4pl ‘
SDCX Store A, Decrement 1 1 Same as SDXL. Additionally, the | Me—A, X€—X-1 1.2,8,
& Compare Address, next instruction is skipped if Skip if X=127 or X=Y | 19
Exchange L X=Y ZX4»L
SNXY Store A, Increment 1 1 Same as SN. Additionally, the Me—A 1,2,8
Address, Exchange Y contents of the X and Y registers X<4—X+1, skip if X=0
are exchanged Xe4»Y
X Exchange 2 2 These instructions are identical A€e»-M 1,6
to the corresponding store
instructions except that the
accumulator and the current RAM
operand are exchanged
XN Exchange, Increment 2 2 A Ae» 1,2,6,8
Address X<€—X+1, skip if X=0
XD Exchange, Decrement 2 2 A€l 1,2,6,8
Address Xe—=X-1,
skip if X=127
XNXL Exchange, Increment 2 2 Ae» 1,2,6,8
Address, Exchange L X4—X+1, skip if X=0
ZXe»l
XDXL Exchange, Decrement | 2 2 AepM 1,2,6,8
Address, Exchange L X4—X-1,
skip if X=127
ZXxe»L
XNCX Exchange, Increment & 2 2 A€M 1,2,6,8,
Compare Address, X€—X+1 19
Exchange L Skip if X=0 or X=Y
v Z Xe>L
XDCX Exchange, Decrement 2 2 These instructions are identical AepM 1,2,6,8,
& Compare Address, . | to the corresponding store Xe4—X-1 19

Exchange L

.| instructions except that the

accumulator and the current RAM
operand are exchanged

Skip if X=127 or X=Y
Z X<4»L

3-5

Table 3-1. List of Instructions (Continued)

DESCRIPTION
MNEMONIC NAME BYTES | CYCLES VERBAL SYMBOLIC NOTES
XNXY Exchange, |ncrement 2 2 These instructions are identical Aol 1,2,6,8
| Address, Excahnge Y to the corresponding store X<«—X+1, skip if X=0
instructions except that the XY
accumulator and the current
RAM eperand are exchanged
LX Load X 1,2 2 The current RAM operand XM 4
is placed in the X register
LY Load Y 1,2 2 The current RAM operand Y+M 4
is placed in the Y register
LZ Load Z 1,2 2 The current RAM operand Z<M 4
is placed in the Z register
LAl Load A Immediate 1-3 3 The specified literal operand A3 34
is placed in the accumulator
LXI Load X Immediate 1-3 3 The specified literal operand X413 3.4
i is placed in the X register
LYl Load Y Immediate 1-3 3 The specified literal operand Y<I|3 34
is placed in the Y register
LZI Load Z Immediate 1-3 3 | The specified literal operand Z 413 34
is placed in the Z register
LAL Load A through Link 1,2 3 The ROM operand addressed by the | Wa— A, 4,514
L register is placed in the A< (L)
accumulator L &« L+1
LXL Load X through Link 1,2 3 The ROM operand addressed by Xa—{L) 4,5
‘ the L register is placed in the X L €L+1
register
LYL Load Y through Link 1,2 3 The ROM operand addressed by Ya—(1) 45
‘ » the L register is placed in the Y LeL+1
‘ ; register
LZL Load Z through Link 1.2 3 The ROM operand addressed by Z<—(L) 4,5
: the L register is placed in the Z Le—L+1
register
LXA Load X from A 1 1 The contents of the accumulator ~ | X<—A 16
i o are placed in the X register)
LYA Load Y from A 1 1 The contents of the accumulator Y<—A 16
are placed in the Y register
LZA Load Z from A 1 1 - | Thecontents of the accumulator | Z<4—A 16

are placed in the Z register

3-6

Table 3-1. List of Instructions (Continued)

DESCRIPTION

MNEMONIC NAME BYTES |CYCLES VERBAL SYMBOLIC NOTES
LLA Load L from A 1 1 The contents of the accumulator L(16:9)e A 16
are placed in the upper 8 bits of
the L register
XY Exchange Y 1 1 The contents of the X and Y XY
register are exchanged
XL Exchange L 1 1 The contents of the L register and | L€»Z,X
the Z & X registers are exchanged
XAX Exchange A and X 1 1 The contents of the X register and | Ae®»X
the accumulator are exchanged
XAY Exchange Aand Y 1 1 The contents of the Y register and | AepY
the accumulator are exchanged
XAZ Exchange A and Z 1 1 The contents of the Z register and | A<4»Z
the accumulator are exchanged
XAL Exchange A and L 1 1 The contents of the upper half Ae»L(16:9)
of the L register and the accumu-
lator are exchanged
INCX Increment X 1 1 The X register is incremented X4 X+1 2
' by one Skip if X=0
DECX Decrement X 1 1 The X register is decremented by X4 X-1 2
one Skip if X=127
INXY Increment X, 1. 1 The X register is incremented and | X< X+1, skip if X=0| 2
Exchange Y the contents of the Xand Y XY
registers are exchanged
DEXY Decrement X, 1 1 The X register is decremented and | X< X-1, 2
Exchange Y the contents of the X and Y skip if X=127
registers are exchanged XY
INCY Increment Y 2 2 The Y register is incremented by Y4 Y+1 278
one Skip if Y=0
DECY Decrement Y 2 2 The Y register is decremented by Y4 Y-1 2,18
one Skip if Y=127
PSHA Push A 1,2 2 The contents of the accumulator | A—(S) 4,13
o are pushed into the stack S« S+1
PSHX Push X 1,2 | -2 |The contents of the X register | X—>(S) 4,13
pushed into the stack S <S5+
PSHY Push Y 1,2 2 The contents of the Y register Y (S) 4,13
are pushed into the stack S<€-S+1
PSHZ 'Push Z. 1,2 2 The contents of the Z registerare | Z—(S) 4,13
pushed into the stack S4-S+1

3-7

Table 3-1. List of Instructions (Continued)

DESCRIPTION

MNEMONIC NAME BYTES | CYCLES VERBAL SYMBOLIC NOTES
PSHL Push L 1 3 The contents of the L register "L -»(S+1,S) 13,14
are pushed into the stack and AW—>L
replaced by the contents of the S 4 S§+2
A and W registers
POPA Pop A 1,2 2 The uppermost byte is popped S<S-1 4,13
from the stack and placed in the A< (S)
accumulator Skip if S=31
POPX Pop X 1,2 2 The uppermost byte is popped S«§-1 4,13
: 4 | from the stack and placed in the X< (S)
X register Skip if S=31
POPY Pop Y 1,2 2 | The uppermost byte is popped S« S-1 413
from the stack and placed in the Y« (S)
Y register Skip if =31
POPZ Pop Z 1,2 2 The uppermost byte is popped S« S-1 4,13
from the stack and placed in the 74 (S)
Z register Skip if =31
POPL Pop L 1 3 “The uppermost 2 bytes are popped | S« S-2 13
from the stack and placed in the L4 (S+1,85)
L register
A Add 1 1 The sum of the accumulator and C A< AtM 10,1
: the current RAM operand are 0« IC
placed in the accumulator
AC Add with Carry 1 1 . [Same as A except the carry flip- C,A< A+M+C 10,1
: flop, C, is used as a carry-in 0«IC .
ASK' Add, Skip on Carry 1 1 Same as A. Additionally, the next | C,A €-A+M 10,1
: instruction is skipped if a carry- Q«IC
out-is generated Skip if C=1
ACSK Add with Carry, Skip 1 1 Same as AC. Additionally, the C,A< A+tM+C 10,1
on Carry next instruction is skipped if a Skip if C=1
carryout is generated
AISK Add Immédiate, Skip | 13 3 The sum of the accumulator A< A+I3 34,10
. on Carry : and the specified literal operand QeIC
’ is placed in the accumulator Skip if carry-out
INCA Increment A 1 1 The accumulator is incremented A4 A+l 10
. by one Q< IC
3] Decimal Correct (1) 1 -1 . | The hexadecimal value 66 is added | A< A+661g 10,16
to the accumulator Q«IC
Dcec Decimal Correct (2) 1 1 The accumulator is modified based | C,Q 10,16
on the states of the C&Q flip-flops | 00 A<«A+(9A)1
0,1 A< A+(AD)g
1,0 A<« A+(FA)g
1,1 Nochange

3-8

Table 3-1. List of Instructions (Continued)

DESCRIPTION
MNEMONIC NAME BYTES | CYCLES VERBAL SYMBOLIC NOTES
AN Logical AND 1 1 The logical product of the accumu- |[A€-AAM 1
lator and the current RAM
operand is placed in the accumulator
ANI Logical AND 1-3 3 The logical product of the accumu- [A€-AAI3 34
Immediate lator and the specified literal
operand is placed in the
| accumulator
OR Logical OR 1 1 The logical sum of the accumulator (A€ AvM 1
and the current RAM operand is
placed in the accumulator
EOR Logical Exclusive OR 1 1 The logical exclusive or (addition |A<€ AVM 1
without carry) of the accumulator
and the current RAM operand is
placed in the accumulator
coM Complement 1 1 The one's compiement of the A< A 16
{accumulator is placed in the
accumulator
SC Set Carry 1 1 The carry flip-flop, C, is set (1) Ce1 10
RC Reset Carry 1 1 The cérry flip-flop, C,isreset (0) |C4 0 10
RAR Rotate A Right 1 1 The accumulator and C flip-flop A(8:1) —>| } | 16
*|are circular shifted one bit to the
right , o
RAL Rotate A Left 1 1 The accumulator and C flip-flop o A(8:1) 4—[;I 16
are circular shifted one bit to the
left
MDR Move Digit Right 1 1 The accumulator is shifted right 4 [A(8:5)— A(4:1) 16,18
bits and the least significant 4 M{4:1)—» A(8:5)
bits of the current RAM operand
are placed in the vacated
accumulator positions
mDL Move Digit Left 1 1 The accumulator is shifted left4 |A(8:5) < A(4:1) 16,18
bits and the most significant 4 bits {A(4:1)< M(8:5)
of the current RAM operand are
placed in the vacated accumulator
positions
SB Set Bit (n) 1,2 2 | The specified bit of the current M< Mv 2(n-1) 4
RAM operand is set (1)
RB Reset Bit (n) 1,2 2 The specified bit of the current Me MA2(0-1) 4
RAM operand is reset (0)
B Branch 1,2 1,2 The specified address is placed P(7:1)4=11(7:1) 12,16
in the P-register 1f11(8)=1,
P(14:8)w12(7:1)

Table 3-1. List of Instructions (Continued)

the most significant bit of the
accumulator is zero

DESCRIPTION
- MNEMONIC NAME BYTES | CYCLES| - B VERBAL SYMBOLIC NOTES
- BDI Branch, Disable 2 -2 Same as B. Additionally, the P(7:1) «11(7:1) 12,16
Interrupts | interrupts are disabled P(14:8) € 12(7:1)
) Disable Interrupts
'BL Branch and Link 1,2 3 | The specifi'ed address is placed L (S+1,5) 15,16
' ' in the P-register. The previous S«-S+2
contents of the P-register P—»L(15:9,7:1)
(incremented) are saved in the L C—»L(16)
register together with the state of | I 11(6)=1
-1 the C flip-flop. The previous P(14:8) € SP(7:1)
contents of the L register are P(7:1) <« SP1(7:1)
pushed into the stack 1111(6)=0
P(12:8) < 11(5:1)
P(7:1) € 12(7:1)
P(13)«12(8)
P(14)e0
RT Return 1 3 The P-register and C flip-flop are P« L(15:9,7:1) 1
loaded from the L-register. The C < L(16)
uppermost 2 bytes are popped from]| S €-§-2
the stack and placed in the L- L« (S+18)
register
RSK Return & Skip 1 3 Same as RT except that the next P« L{15:9,7:1) 1"
instruction (i.e., the instruction C<L(16)
at the “return” location) is S«-S-2, L« (S+1,5)
skipped Skip next instruction
RTI Return, Enable 1 3 Same as RT. Additionally, the P« L(15:9,7:1)
Interrupts interrupts are enabled C < L(16)
S €-§.2,L € {S+1,5)
Enable interrupts
NOP No Operation 1 1 No function is performed. The
: branch condition tag is used
SKC Skip if Carry 1 1 The next instruction is skipped Skip if C=1 8
if the carry flip-flop, C, is set
SKNC Skip if No Carry 1 1 The next instruction is skipped Skip if C=0 8
) if the carry flip-flop, C, is reset
SKZ Skip if Zero 1 1 The next instruction is skipped if | Skip if A=0 8.
the accumulator equals zero
SKNZ Skip if Non-Zero 1 1 The next instruction is skipped if | Skip if A#0 8
the accumulator does not equal
zero
SKP Skip if Positive 1 1 The next instruction is skipped if | Skip if A(8)=0 8

3-10

Table 3-1. List of Instructions (Continued)

DESCRIPTION

MNEMONIC NAME BYTES | CYCLES VERBAL SYMBOLIC NOTES

SKN Skip if Negative 1 1 The next instruetion is skipped if | Skip if A(8)=1 8
the most significant bit of the
accumulator is one

SKE Skip if Equal 1 1 ' The next instruction is skipped if | Skip if A=M 8
the accumulator and the current
RAM operand are equal

BBT Branch if Bit {n) 23 2,3 | Aprogram branch is executed if | 1f M A 2(n-1)=1, 9,12,16

True) ‘ the specified bit of the current then P(7:1) € 12(7:1)
RAM gperand is true (1) & if 12(8)=1,
P(14:8)1- 13(7:1)
BBF Branch if Bit (n) 2,3 2,3 A program branch is executed 1 Ma 2(n-1)=p, 9,12,16
False if the specified bit of the current | then P(7:1) € 12(7:1)
RAM operand is false (0) & if12(8)=1,
P{14:8) <« 13(7:1)
BC Branch if Carry 2,3 2,3 A program branch is executed if 1f C=1, 9,12,16,
‘ the carry flip-flop, C, is set (1) then P(7:1) «-12(7:1)| 8
& if12(8)=1,
P(14:8) «-13(7:1)

BNC Branch if No Carry 2.3 2,3 A program branch is executed I1f C=0, 9,12,16,
if the carry flip-flop, C, is reset then P(7:1) €~ 12(7:1)| 8
(0) &if12(8)=1,

P(14:8) 4 13(7:1)

BZ Branch if Zero 2,3 2,3 A program branch is executed if If A=0, 9,12,16,

the accumulator equals zero _then P(7:1) € 12(7:1)} 8
& if 12(8)=1,
P(14:8) «13(7:1)

BNZ Branch if Non-Zero 2,3 2,3 A program branch is executed if If A#0, 9,12,16,
the accumulator does not equal then P(7:1) «-12(7:1) 8
zero &if12(8)=1,

P(14:8) < 13(7:1)

BP Branch if Positive 2,3 23 A program branch is executed if | 1f A(8)=0, 9,12,16,
the most significant bit of the then P(7:1) 4 12(7:1)| 8
accumulator is zero & if 12(8)=1,

P(14:8) - 13{7:1)

BN Branch if Negative 2,3 2.3 A program branch is executed if If A(8)=1, 9,12,16,
the most significant bit of the then P(7:1) «12(7:1)| 8
accumulator is one & if12(8)=1,

) P(14:8) < 13(7:1)

BNE Branch if Not Equal 23 2,3 A program branch is executed if If A#M, 9,12,16,
the accumulator is not equal to then P(7:1) 4~ 12(7:1)| 8
the current RAM operand & if (2(8)=1,

P(14:8) «13(7:1)

3-11

Table 3-1. List of Instructions (Continued)

‘ DESCRIPTION
MNEMONIC NAME. BYTES | CYCLES VERBAL SYMBOLIC NOTES
104 Digit 1/0 (C,‘D) 2 2 Command C is transmitted to 1/0 | 12 1/D(8:1) 16,17
R , device D. Bits 8-5 of the accumu- | A(8:5) 1/D(8:5) |. -

lator are transmitted to the device | A{4:1)«—1/D(4:1)
and bits 1-4 are received from the
device

IN Inbut {C, D) 2. 2 Command C is transmitted to 1/0 | 12 -»1/D(8:1) 16‘,17
device D. The accumulator is A «1/D(8:1) ‘
loaded with a data byte trans-
mitted by the device. 1fD is
omitted, a zero (all-call) device
address is transmitted

ouT Output (C, D) 2 2 Same as IN except the accumu- 12—»1/D{8:1) 16,17
lator contents are transmitted to A-»1/D(8:1)
the device .

RIS Read Intérrupt 2 2 The accumulator is {oaded with 12— 1/D(8:1) 16,17

Status the interrupt status word from | A<— 1/D(8:1)

the highest priority 1/0 device
currently requesting service.

3-12

NOTES FOR INSTRUCTION DESCRIPTIONS LISTED IN TABLE 3-1

1) The address (14-bits) for RAM operands is specified by the Z and X registers.
- The lower 7 bits of X specify the byte address (least significant 7 bits). If
bit 8 of the X register is a one, the high order 7 bits of RAM address (the page
address) are specified by the least significant 7 bits of the Z register. Other-
wise, the page address is set to zero.

2) All instructions which increment or decrement the X or Y registers will auto-
matically skip the next sequential instruction in the event of an overflow,
X/Y(7:1) = 0, or underflow, X/Y(7:1) = 127, respectively.

3) Immediate or ""literal" operands are stored in ROM (instruction memory) as
the third byte of the instruction. However, a single literal can be shared by
multiple instructions by placing it in the Literal Pool. See discussion of
Data Pools.

4) These instructions can utilize the Command Pool to ''share' the second
instruction byte. See discussion of Data Pools.

5) All instructions which load registers using the ROM address in the L-register
also automatically increment the L register by 1.

6) The instructions which exchange a RAM operand with the accumulator are all
two byte instructions. The second byte is actually the corresponding one byte
"store" instruction. The first byte essentially ''conditions" the store operation
for an exchange. For this reason, the second byte of these instructions can
be executed individually (by branching to it) if advantageous to the programmer.

7) The instructions, INCY and DECY are each made up of two individual instructions
(XY and INXY or DEXY).

8) When a "skip" is executed, the next sequential instruction is ignored (not just
the next byte). One cycle is required for each byte which is skipped. The
only deviation from this rule occurs when the skip is followed by one of the
composite instructions: "memory exchange'" (Note 6), conditional branches
(Note 9) or increment/decrement Y (Note 7). In these cases only one byte
is skipped. ' ‘ ' , ;

9) Conditional branch instructions require two or three bytes. The first byte is
actually the corresponding "'skip' instruction and the second (and third;.if:
required) byte is a branch instruction. If this type instruction were preceded
by another conditional SKIP instruction, only the first byte of the conditional
branch would be skipped. . :

10) The DC and DC’C instructions are provided to facilitate decimal arithmetic
mechanizations in which two decimal digits are packed in one 8-bit byte.

The C flip-flop is used to save the ""carry-out'" from the 8-bit adder to

facilitate software mechanizations for extended precision arithmetic. In
addition, an intermediate state of the carry propagation logic; i.e., the carry

3-13

from the fourth bit position, is saved in the Q flip-flop for use by the DCC
instruction. Instruction sequences for decimal addition and subtraction are

illustrated below. :
Addition Subtraction
LZI PAGE Load Addresses LZI PAGE
LXI OoP1 of Operands LXI OoP1
LYI OP2 peran LYl OP2
RC . Initialize Carry/Borrow SC
LOOP LNXY Add/Subtract two {(LOOP LNXY
DC . . . COM
AC digits with carry/ AC
oo o
SNXY previo : SNXY
B LOOP B LOOP

11) If the next instruction to be executed or skipped following a RT or RSK
instruction is a branch, B or BDI, the branch tag (bit 7) must be set in the RT
or RSK instruction. This is accomplished by coding RT$ or RSKS$.

12) Branch instructions are provided in two formats. The one byte format modifies
only the low order 7 bits of the P register, allowing a branch within the current
128 byte page. The two byte format modifies the entire 14 bits of the P register
and allows a branch anywhere in memory (16K). The two formats are distin-
guished by bit 8 of the first byte (0-long format, 1=short format), If bit 8 of the
second byte of the two byte format is zero (the BDI instruction), the interrupts
are disabled. Note that the PPS-8 Assembler selects the optimum format
automatically for all branch-type instruction. See discussion of Program
Addressing.

13) See discussion of Data Stack.

14) The LAL and PSHL instructions provide a unique capability to reduce overhead
in subroutines which require two full addresses* as part of their calling sequence.
An efficient software mechanization for this type of subroutine is to use the Z,
X registers for one address and the L register for the other, leaving the Y
register for a block size parameter, for instance. The following example
illustrates the use of the LAL and PSHL instructions in such a subroutine.

BL SUBR

Calling DW* N Block size '
Sequence DWA* SOURCE Two byte source address ;
- [DWAX DEST - Two byte destination address

*DW and DWA are assembler pseudo-op codes. DW is a one-byte data word.
DWA is a two-byte data word address, assembled with the least-significant
seven bits in the first byte and the most-significant-seven bits in the second byte.

3-14

15)

16)

17)

18)

19)

SUBR LYL Block size—Y

LXL Source address— Z,X
LZL
LAL Destination address—-A, W
LAL
PSHL A,W—1,, Return address — stack
P@PL Return address —-L
RT Exit from subroutine

Branch and Link instructions (subroutine calls) are provided in two formats. The
one byte format uses shared addresses from the Subroutine Entry Pool (see
discussion of Data Pools) and allows a branch anywhere in memory (16K). The
two byte format does not use the Subroutine Entry Pool. It allows a branch
within the lower half (8K) of memory. Note that the PPS-8 Assembler selects
the optimum format automatically for all branch-type instructions. See discus=
sion of Program Addressing.

These instructions may not be followed immediately by a Branch (B) instruction.
However, the PPS-8 Assembler will automatically insert a one byte ""NOP'" with
a branch tag in this case,

All input/output instructions require two bytes. The second byte is gated to the
I/O devices with the W/IO signal. See discussion of Input/Output.

The MDR and MDL instructions can be used to efficiently shift a string of BCD
(decimal) digits as would be required for normalizing a number in packed
decimal format, for instance. An example is shown below.

LEFT LXI BOTTOM TOP | &————"W
LZI BOTTOM +—
LAI NEWDATA :
]
LOOP MDR - . g
B LOOP BOTTOM | 4————
Timing: 4 cycles/2 digits
8 ws/digit

Comparison of X and Y registers are for least-significant seven bits only.

3-15

DATA STACK

The first 32 bytes of RAM (addresses 0-31) are organized as a pushdown stack to
facilitate processing of external interrupts and subroutine '"nesting.'" The stack
operates on a last-in, first-out (LIFO) basis and instructions are provided to '"push"
(store) the contents of any register into the stack or "pop" (load) registers from the
stack. In addition, return addresses are automatically saved in the stack when normal
or interrupt subroutines are entered, and restored from the stack when subroutines
are exited., *

The 5-bit S register is used as a stack pointer. It is incremented after each byte is
pushed into the stack and decremented before each byte is popped from the stack.
The pointer thus specifies the last byte popped from (or the next byte to be pushed
into) the stack. If the stack pointer is popped to a value of 31 with a POPX, POPY,
POPZ or POPA instructions, the next instruction will be skipped. This feature is
provided so that the value of the stack pointer can be determined under program
control for use in a power failure recovery routine.

*
The current 'level" of subroutine linkage is saved in the L (Link) register and the .
previous L register contents are pushed into the stack.

3-16

PROGRAM ADDRESSING

Programs for the PPS-8 system are stored in 16K bit (2048 byte) ROM devices. *

Up to 16K bytes of ROM are directly addressable but the memory is functionally
organized into 128-word instruction pages. The address of the current instruction
byte is determined by the P-register (program counter), the least significant 7 bits

of which are incremented automatically with each cycle. The instruction sequence can
be modified under program control by the execution of branch type instructions.

BRANCHING

Two formats are provided with the unconditional Branch (B) instruction; the first
requires only one instruction byte and specifies ar''local' branch to an address within
the current 128-byte instruction page. The second format requires two bytes and
allows a direct branch to any of 16,384 ROM locations.

The ability to branch to a relatively large (128 byte) segment with a single 8-bit
instruction is made possible by a unique design technique. Each instruction designates
through the use of bit 7, whether the next instruction is to be interpreted as a Branch
instruction. Likewise, one bit (bit 8) of the first byte of the Branch instruction
designates whether a one or two byte Branch is required.

Previous Instruction

Byte
0 T TT— 0
8 7 6 5 4 3 2 1 8§ 7 6 5 4 3 2 1
- BRANCH BYTE 1
1| Byte Address (0-127) 0 | Byte Address (0-127)
\87654321 ‘\87654321
1=One~-Byte Branch Address 0=Two-Byte Branch Address
BRANCH BYTE 2
|Page Address (0-127)]
8 7 6 5 4 3 2 1
1=Branch (B) ,
0=Branch, Disable
Interrupts (BDI)
LOCAL BRANCH FULL ADDRESS BRANCH

*
It is also possible to store programs in RAM devices in some cases.

3-17

The necessity to insert the Bit 7 ""branch tag' into instructions preceding a Branch

is masked, i.e., made invisible to the programmer, by the PPS-8 Assembler. The
Assembler will insert these tags automatically so the PPS-8 Programmer need not be
aware of their existence. Additionally, the Assembler will automatically select and
generate the proper type of Branch required by determining whether the destmatmn
address 1s within the current instruction page.

Note that the CPU logic automatically protects this ""branch tag' status from
inadvertent modification from a program interrupt.

Conditional branches are provided in both the '"skip-on-condition' and '""branch~on-
condition'' formats. When the skip condition is satisfied, the PPS-8 CPU automatically
skips the next full instruction (rather than simply the next instruction byte) regardless
of whether it requires one, two, or three bytes. The branch-on-condition instructions
are constructed as a skip-on-condition instruction (one byte) followed by an uncondi-
tional branch instruction (one or two bytes). As before, the Assembler will automa-
tically choose the proper format for the branch instruction.

SUBROUTINE LINKAGE

PPS-8 instructions are provided to efficiently enter and exit subroutines and tc pass
arguments from the main program (ROM) to the subroutines. When a subroutine is
called via a Branch and Link (BL) instruction, the return address, i.e., the incre-
mented P-register, is automatically saved in the Link (L) register and previous con-
tents of the L-register are pushed into the stack, thus, automatically accommodating
up to 16 levels of nested subroutines. The Return (RT) instruction restores the P-
register from the L-register and pops the previous L-register value from the stack.
Fixed parameters to be passed to a subroutine are stored immediately following the
BL instruction. The parameters can then be readily accessed by the subroutine using
the ""load thru link' instructions. A typical subroutine and calling sequence is
illustrated below.

BL SUBR

gauing ! DW PARM 1 Parameter 1
equepce { DW PARM 2 Parameter 2
N NEXT —— (next instruction)
"SUBR LXL PARM 1—X
LAL PARM 2—A, Addr. of NEXT—L
Subroutine - - .
R’i‘ Return to NEXT

3-18

One and two byte formats are provided for the Branch and Link (BL) instruction.

These formats are shown below.

T — — ——————— - —

8 7 6 5 4 3 271

8 7 6 5 4 3 2 1

INDIRECT ADDRESS
(0-16K)

L1[1]0PiafP1aP1o[Po[Ps]
8 7 6 5 4 3 2 1

[P13] Byte Address |
8§ 7 6 5 4 3 2 1

DIRECT ADDRESS
(0-8K)

The one-byte format uses shared addresses from the Subroutine Entry Pool which
is described in a later section. Note again, that the PPS-8 Assembler will autoina-
tically select the required, i.e., the most efficient format for each BL instruction

coded in a program.

3-19

OPERAND ADDRESSING

The PPS-8 features a unique design with respect to addressing of program data
(operands). This design takes advantage of the organizational characteristic of pro-
gram data to achieve high processor throughput together with efficient ROM
utilization, ' o

A high percentage of the data manipulated by a microcomputer program is (or could)
be) organized as sequential lists, tables, strings, etc. (the sequence of characters
from an I/0O device, the digits of a decimal number, the data file for a display,

etc.). Since processing data lists or blocks of data implies repetitive program
"loops, " the efficiency (or lack of efficiency) of this processing in terms of execution
speed is multiplied relative to other, less. repetitive portions of the program. There-
fore, the PPS-8 architecture optimizes this type of processing in terms of execution
speed. Non-repetitive portions of a PPS-8 program which require proportionately
less of the total processor throughput can be optimized for ROM utilization (with some
penalty in execution speed) by taking advantage of the one-byte subroutine call (BL)
and the data pools.

RAM OPERANDS

All dynamically variable data for PPS-8 programs are stored in 2048 bit (256 byte)
RAM devices. Up to 16K bytes of RAM are directly addressable.

The byte address (lower 7 address bits) of RAM operands is specified by the
X-register. The page address (upper 7 address bits) of RAM operands is specified
by the Z-register or is set equal to page zero depending on bit 8 of the byte address
register (1=Z-register, 0O=page 0).

Though a single register pair (Z, X) is used for all RAM operand addresses, the
PPS-8 instruction repertoire provides considerable power and efficiency for operand
addressing. Using the ability to exchange the Y-register and the L-register with the
Z, X registers, two full (14 bit) addresses and one byte (7 bit) address are directly
available-selected in conjunction with normal data transfer (load/store) operations.
A single, one-byte instruction can perform all of the following functions in one cycle:
1) ‘Transfer an 8-bit operand from the accumulator to the RAM or vice versa.

2) Increment or decrement the operand address.

3) Test for a page boundary and skip if one is encountered.

4) Test for completion of a program loop (byte addresses equal) and skip if
completed.

5) Select another byte address to be used for a subsequent RAM operand, i.e.,
exchange X with Y or Z,X and L.

This organization is particularly efficient when dealing with blocks of data; i.e.,
program loops. This efficiency is demonstrated in the following examples:

3-20

EXAMPLFE 1: Move o Block of Data

a) One data block must be in page 0, aligned on page boundary

LZI SOURCE
LXI SOURCE
LYI DEST
roor élzl\l})((;, 3 cycles/byte
B LOOP (up to 128 bytes)

b) Data blocks can be anywhere in memory

LZI DEST
LXI DEST
XL
LZI SOURCE
L.XI SOURCE
LYI END
LOOP LNXI, Q
SNCX 3 eycles/byte
B LOOP f

EXAMPLE 2: Clear or Initialize a Block of Data

a) Bloek must be in page 0, aligned on page boundary

L.XI BLOCK
LAI 0 (or initialization constant)
L.OOP SN !
B LOOP } 2 cycles/byte

b) Dbata block can be anywhere in memory

AT BLOCK
X1 BLOCK
LYI COUNT
[L.AI 0 (or initialization constant)
LOOP SNXY .
bEXY 3 cycles/byte
B LooP f

EXAMPLE 3: Decimal Addition
a) Augend in page 0 (aligned); Addend anywhere

LZI ADDEND
EXT AMDDEND
LYI AUGEND
RE

LOOP LNXY
nc
AC
Dee
SNXY
B LOOP

6 cycles/2 digits

by Augend and Addend anvwhere, not aligned on page boundary

LLZT AUGEND
£XI AUGEND
XL
L71 ADDEND
£X1 ADDEND
LYI SND
RC
LOOP LNXI,
DC
;‘)gc 6 cycles/2 digits
SNCX
B r.oor

3-21

ROM OPERANDS

The PPS-8 provides the capability to store constant data in ROM devices together with
the PPS-8 instructions. This type of data is important for two reasons:

1)

2)

ROM storage is significantly less expensive than RAM storage, and

All data which is to be permanently retained (preserved during power-off)
must be stored in ROM devices.

Therefore, considerable flexibility is provided for storing and accessing program
data (operands) from ROM. In particular, the PPS-8 is designed to accommodate
three types of ROM operands:

1)

2)

3)

Immediate (literal) Operands. This type of operand is stored either in-line with
the instruction sequence or in the Literal Pool. These operands are accessed
by "immediate" type instructions (LAI, LXI, AISK, ANI, etc.).

Subroutine Parameters. This type of ROM operand is stored in-line with the
instruction sequence immediately following a subroutine call (BL instruction)
and represents data to be '"passed'" to a subroutine. These operands are
accessed by "load thru link" type instructions (LAL, LXL, LYL, etc.). See
Program Addressing, Subroutine Linkage.

Constant Tables. This type of operand need not be stored in-line with the
instruction sequence and can be placed wherever convenient for the programmer.
Tables of constants, such'as character codes or data look-up tables, can be
stored in this manner and accessed with the "load thru link" type instructions
(LAL, LXL, LYL, etc.). Note that a table of branch addresses can be con-
structed in ROM and accessed using the subroutine return instruction (RT). The
following example illustrates this capability.

Problem: One of N possible control characters has been received from some
input device. Select the appropriate processing routine corresponding to the
particular character.

Sample Program: Two tables are stored in ROM, aligned with respect to page
boundaries. - . ;

CHAR |Character Code #1
Character Code #2 CHARLOC | ROM Address #1
Character Code #3 o ROM Address #2
Character Code #N L : S
ROM Address #N

3-22

First, the character is '"looked up' in the character code table, CHAR, which
would contain all functionally legitimate characters. Assume the character to be
processed is initially stored in location TEMP in RAM page 0.

LZI
LXI
XL

LXI

LOOP LAL
BNE

CHAR
CHAR

TEMP

LOOP

Load address of character table
into L.

Address of character — X

Get character from CHAR } 5 cycles/
Compare characters character

The index of the character (its position in CHAR) is now in the L-register.* This
value is used as an index to select the address of the processing routine from
CHARLOC. The Return, RT, instruction is then used to branch to the routine.

LAT
LLA

LXL

LZI
XL
RT

CHARLOC, U .

PROCESS

Page address of CHARLOC into L

Address from CHARLOC —X

Page address—7Z
Routine Address—L
Branch to processing routine

*
The value in L is actually the character's index plus one. Therefore, the CHARLOC
table is displaced by one relative to the CHAR table.

3-23

DATA POOLS

The PPS-8 has a unique feature designed to minimize instruction storage for
multi-byte instructions. This feature allows certain data to be "shared'" by multiple
instructions through access to common data pools stored in a dedicated portion of
ROM. Three separate pools are provided: the Command Pool, the Literal Pool, and
the Subroutine Entry Pool. Figure 3-2 shows the location of these pools in ROM.

COMMAND POOL

The Command Pool occupies the first 64 bytes of page 0 (dec1ma1 locations 0- -63).
The first four bytes of this pool are dedicated to power-on initialization; the remammg
60 bytes are ava11ab1e for assignment by the PPS-8 Programmer.

Most two and three-byte instruction types can utiliZe the Command Pool for sto rage
of the second instruction byte. The format of these instructions is pictured below.

Inst. (i), Bytel Inst. (i), Byte 1 Command Pool
N [1 0]0 00 0 X X| N [1 0] PoolAddress | 4| .
8 7 6 5 4 32 1 8765 4 3.2 1
N+1[__ Inst. G), Byte2 | L [nst. (i), Byte 2
N+2 [Instruction (i +1) | N+l Instruction (i + 1) :
63
NOT USING POOL USING COMMAND POOL

The two-byte instructions of this type are 1LX, LY, LZ, LXL, LYL, LZL, LAL,
PSHX, PSHY, PSHZ, PSHA, POPX, POPY, POPZ, POPA, SB, and RB. All of
these instruction types could be included in the pool by using 31 bytes (the '"bit"
designator in the SB and RB instructions is part of the second instruction byte so
these instructions require 16 Command Pool bytes to cover all possibilities). In
this case, these instructions would require only one byte/instruction no matter how
many of them were used in a given program.

The three-byte instructions of this type are LAI, LXI, LYI, LZI, AISK, and ANI,
The third byte of these instructions is an immediate (literal) operand which can be
stored either in the Literal Pool or in-line with the Instruction sequence. Bits 1-6
of the second instruction byte specify where the literal operand is stored. There-
fore, using six bytes of the Command Pool, the six instruction types can be included
assuming an in-line literal operand. This would effectively reduce these to two-byte
instructions. However, if both the Command Pool and Literal Pool are to be used
for the same three-byte instruction (reducing it to one unique byte), a separate
Command Pool byte must be used for each instruction/literal operand combination.
The following section discusses this further.

3-24

LOCATION (HEX)

 COMMAND POOL

> LITERAL POOL

[0
; POWER-ON INITIALIZATION
3
4
[]
L]
.
3F)
40)
. OPERANDS
. FOR LXI
o 4E
w
Q 4F -UNUSED
a
50 OPERANDS
: FOR LYI
: LYI
5E
5F -UNUSED
60
. OPERANDS
: FOR LZI, AISK
6E
6F -UNUSED
70
. OPERANDS
: FOR LAI, ANI
‘ 7E)
—————— 7F .UNUSED
80 INTERRUPT A
81 SUBROUTINE
82 ADDRESSES SUBROUTINE
§3 % ADDRESSES
: (BITS 1-7)
.
L]
- oF)
o AO R
& INTERRUPT
A1l SUBROUTINE
A2 ADDRESSES SUBROUTINE
. ADDRESSES
A3 (BITS 8-14)
.
[]
L]
~ BF)

SUBROUTINE
? ENTRY POOL

Figure 3-2. Data Pools

3-25

LITERAIL POOL

The Literal Pool occupies 64 words of ROM page 0, decimal locations 64-127.
However, due to addressing restrictions, four of these locatlons (79, 95, 111, and
127) cannot be used by the PPS-8 Programmer. :

Six instruction types, LAI, LXI, LYI, LZI, AISK, and ANI, can use the Literal Pool
for storage of the third instruction byte; i.e., the immediate (literal) operand. The
Literal Pool is subdivided into four 15-byte segments. Each segment corresponds to

a particular instruction type(s). See Figure 3-2. Note that these instruction types

can also use the Command Pool for storage of the second instruction byte. The format
of these instructions is shown in Figure 3-3.

Inst. (i), Byte 1 Inst. (i), Byte 1 Literal Pool
N [1 0f0o 0 0 0 X X] N [1 0Jo 0 0 0 X X|e64

8 7 6 5.4 3 2 1 8 7 6 5 4 3 2 1

Inst. (i), Byte 2 Inst. (i), Byte 2
N+1{ I3 B[] Ip 0 0 0 0] N+1[T1[B] I [Pool Address]

8 7 6 5 4 3 2 1 — :

Inst. (i),Byte 3

I——‘y Literal Operand

Inst. (i), Byte 3

N+2| Literal Operand
N+2 [Instruction (i +1)]
N+3| Instruction (i + 1)] - 127
NOT USING POOLS USING LITERAL POOL
Inst. (i), Byte 1 Command Pool - : - Literal Pool
N | 1 0[] Pool Address | 4 64
8765 4 V?’ 2 1 Inst. (i), Byte 2

|—> I} | B Is | Pool Address

8 7 6 5 4 3 2 1
N+1| Instruction G +1) | : ~~ Inst. (i), Byte 3

I | Literal Operand

B = Branch Tag 63 127

11,12 = Instruction Code

USING BOTH COMMAND AND LITERAL POOLS

Figure 3-3. Command and Literal Pool Access

3-26

SUBROUTINE ENTRY POOL

The Subroutine Entry Pool occupies the first 64 bytes of page 1, decimal locations
128-191. As shown in Figure 3-2, this pool is divided into two parts. The first
32 bytes specify the lower seven bits of 32 subroutine entry addresses; the second
32 bytes specify the corresponding upper seven address bits.

This pool provides for storage of up to 32 subroutine entry addresses, the first three
of which are reserved for the three interrupt processing subroutines. This pool is
accessed by the one byte format of the Branch and Link (BL) instruction and effectively
provides full-address (16K) subroutine calls with a single 8-bit instruction. The
format of this instruction is shown below.

BL Instruction Subroutine Entry Pool
|1 1 1] Pool Address | 128
8 7T 6 5 4 3 2 1
- Subroutine Address (1-7)
159
160
—> Subroutine Address (8-14)
191

POOI: UTILIZATION

The PPS-8 Assembler provides extensive capability fo enable the programmer to
make effective use of the data pool feature of the PPS-8.

Assignment of data to the pools is done by the programmer using the POOL pseudo-
operation. A "standard' pool assignment is available if desired. The Assembler
provides statistics on the frequency of usage of the instructions which can access the
pools so that the programmer may make the most efficient assignments. -

Access to the data in the pools is completely automatic. During the assembly process,
the PPS-8 Assembler searches the shared data pools for each instruction for which
pool access is possible. If the appropriate data is available in the pool, the Assembler
automatically uses the shared data format for the particular instruction.

Thus, effective usé can be made of this powerful feature with little additional effort
on the part of the programmer.

3-27

INTERRUPTS

- The PPS-8 system provides a multi-level priority interrupt structure. The CPU has
three interrupt input signals (INTO, INT1, INT2) which have a fixed priority relation-.
ship with respect to resolving simultaneous requests. Interrupt 0 has highest

priority and Interrupt 2 has lowest priority. Interrupts 0 and 1 are designed for
dedicated special purpose functions, nominally power failure detection and a real-
time clock. Interrupt 2 is designed to operate as a single request input for a multi-
source, priority system constructed "externally' in the input/output devices.

Interrupt 0. This is the highest priority interrupt and would normally be dedicated to
a function requiring rapid response, such as power failure detection. This level
cannot be disabled under program control and will be honored at the completion of the
current instruction. * The program interrupt is triggered by a false-to-true
transition of the INTO input signal. ' o

Interrupt 1. This interrupt has priority over Interrupt 2 if they occur simultaneously,
and is honored at the completion of the current instruction provided that:

1) Interrupt 0 is not pending, and 2) the interrupts are enabled. * This interrupt is
triggered by a false-to-true transition of the INT1 input signal. This interrupt is
intended as a real-time clock.

Interrupt 2. This is the primary PPS-8 interrupt and is used for servicing all I/0
device interrupt requests. It is honored at the completion of the current instruction
provided that 1) Interrupt 0 or 1 is not pending and 2) the interrupts are enabled. *
The interrupt is triggered by a true state on the INT2 input signal. An acknowledge
signal (ACKO) is provided and is designed to allow a multi-level priority interrupt
structure to be constructed external to the CPU. Logic for this interrupt structure

is included in the I/O devices that require access to the CPU interrupt, e. g., the PDC
and SDC. The system inter-connection for the interrupt structure is shown in Fig-
ure 1-1 and is described below.

1) Each device; interrupt source, to be included in the interf'upt structure has
an Interrupt Request (INT2) output signal. The INT2 output signals from all
the devices are ""OR-tyed" to form the INT2 input to the CPU.

2) In addition, each device has an Acknowledge Input (ACKI) and an Acknowledge
Output (ACKO). These signals are interconnected to form a priority ''chain, "
The ACKO signal from one device is connected to the ACKI signal of the next
lower priority device. The ACKI signal of the highest priority device is
connected to the Interrupt Acknowledge (ACKO) output of the CPU.

3) When a device wants interrupt service, it sets its INT2 output true. Any
number of devices can simultaneously request interrupt service.

*Interrupts are not honored under the following conditions: 1) just prior to a
branch (B) instruction, 2) immediately following a skip-type instruction or add
instruction, and 3) (INT1 and INT2 only) during a direct memory access (DMA)
operation.

3-28

5)

6)

When an interrupt request is honored, the CPU transmits a 1-cycle pulse on the

ACKO output. This pulse is propagated, 1-cycle device, down the priority
chain until it reaches the first device; i.e., the highest priority device,
currently requesting service. - This device does not propagate the acknowledge
signal any further, thus breaking the priority chain,

After a time delay sufficient to allow the acknowledge to be propagated completely
through the priority chain, the CPU program executes a Read Interrupt Status

(RIS) command (a specific command code in the '"all-call' format).. The request-

ing device which has received the acknowledge pulse transmits its device
address (1-15) and interrupt status information over the I/D bus to the CPU.
This address is decoded under CPU software control and used to identify the
proper interrupt processing routine.

Receipt of the Device Address Request is also used by the I/0 device to reset
its INT2 output (however, the INT2 input to the CPU may still be true due to
other requests.)

INTERRUPT PROCESSING

Processing a PPS-8 interrupt involves the foilowing steps:

1)

2)

3)

4)

5)

6)

The CPU "honors'" the interrupt request by disabling the interrupt system and
executing a Branch and Link (BL) instruction. The BL instruction is ""created"
by the CPU logic and requires no additional data other than the interrupt
request signal. The operand; i.e., subroutine entry address, for the BL, -
instruction is taken from one of the first three locations in the Subroutine Entry
Pool depending on which interrupt is being processed.

If Interrupt 2 is being honored, the Interrupt Acknowledge (ACKO) pulse
is automatically transmitted.

The interrupt processing subroutine would normally first save the contents of
any CPU registers necessary in processing the interrupt by pushing them into
the data stack. Note that the acknowledge pulse for Interrupt 2 would be

propagated down the priority chain while the CPU is performing this function.

If Interrupt 2 is being processed, the interrupt processing subroutine would
execute a Read Interrupt Status (RIS) 1nstruct10n to determlne which I/0O device
caused the mterrupt :

At the completlon of the 1nterrupt processing routine, the CPU reg1sters would
be restored by popping their original contents from the stack.

Execution of the interrupted program can be resumed by executing an RTI
instruction which also re-enables the interrupt system.

3-29

INPUT/OUTPUT

The PPS-8 system is designed to interface with the external environment via both
general purpose and special purpose input/output devices. The 1/O devices commu-
nicate with the CPU or RAM over the system data bus, I/D1 through 8.

Two basic types of input/output commands are available in the PPS-8 CPU. The
I/0 instructions are all two byte, two cycle instructions. The second instruction
byte is interpreted by the I/O devices. Presence of this byte on the I/D bus is
indicated by the W/IO signal set by the CPU. The specific function of a particular
I/0 command is dependent on the type of I/O device being addressed. The two I/O
command types are described below.

DIGIT INPUT/OUTPUT (I04)

[0 1 0o o 1 1 1 1] Bytel
8 7 6 5 4 3 2 1

Device Address Command Byte 2
8 7 6 5 4 3 2 1

This command is provided for compatibility between the PPS-8 system and the

PPS-4 input/output devices. One of 16 1I/O devices can be addressed and up to 16
unique commands can be selected. A bidirectional transfer of four bit digits is per-
formed. Bits 5-8 of the PPS-8 accumulator are driven over the I/D bus to the 1I/0
device and bits 1-4 of the accumulator are loaded with data driven from the I/0 device.

BYTE INPUT/OUTPUT (IN, OUT)

[o 1 0o o 1 1 1 o] Byte1
8 7 6 5 4 3 2 1

L Device Address II/OI Command ﬁi Byte 2
8 7 6 5 4 3 2 1

This is the primary 1I/O command in the PPS-8 system. It provides for addressing
one of 16 devices, specifying one of eight command options, and transferring one byte
of data between the accumulator and the I/0O device. Bit 4 of the second instruction
byte determines whether the CPU is to transmit or receive the data.

A device address of 0 is used as an "all-call' command to which all PPS-8 I/O

devices react. (One of the command options in this format is the Read Interrupt
Status command mentioned previously in the discussion of interrupt processing.)

3-30

	001
	002
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30

