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RIse: Fundamentals and Future 

by Roger D. Ross, President and CEO of Ross Technology, Inc. 

RISC is the future of computing. Over the next 5 years, a totally new computing standard will emerge based upon RIse 
(Reduced Instruction Set Computer) architectures. RISC will completely redefine the computer industry's existing price/ 
performance curve, which is based on Complex Instruction Set Computers (CISC), and will be the industrial computing 
standard that leads us into the 21st century. 

Analyzing RISC's potential is much more than simply discussing how many MIPS and MFLOPS will be offered over the 
next two decades. The technical future of reduced instruction set computers is but one facet of a much bigger drama 
that is unfolding. First one must understand the technical fundamentals and benefits of RISC as they relate to the more 
general trends of the entire computer industry, trends that tend to complement RISC. This introduction briefly explains 
the technical fundamentals of RISC architecture and reviews the broader trends of the computer industry. It will show 
that RISC architecture has been designed to exploit the computer industry trends and reveal why the future of RISe 
architecture is fundamentally the future of the entire computer industry. 

Rise Described (and else exposed) 

Today, a tremendous amount of misinformation exists surrounding the fundamentals of RISC architecture. Obviously, 
the promoters of this misinformation are those who stand to lose the most from its impact: the established manufacturers 
of proprietary CISC architectures. These manufacturers tell their prospective customers that they can use RISC design 
techniques on their clse architectures to get close to RISC's single clock cycle execution feature while maintaining com­
patibility with their existing binary application software hase. There are two subtle but totally misleading concepts in the 
previous statement. The phrase "RISC design techniques" is blatantly misused, and the phrase "RISe's single clock cycle 
execution feature" is misleading as well because it falls far short of RiSe's true goal. Both of these concepts will be ex­
plained and corrected in the ensuing paragraphs. 

RISC is quite simply not a set of design techniques. RISC is a new instruction set architecture technique that is distinct 
and completely different from CISC. It is not backwardly adaptable to CISC, which is now defined by, and indeed captive 
to, its "prior art" forms. Instruction sets are, after all, the fundamental form of computer architecture. RiSe evolved 
as a solution to the problem of how to derive more power; that is, how to derive more instruction set power out of a com­
puter and its associated compilers. The goal ofRISC is not simply to reduce the system's instruction set, it is to intelligent­
ly select a set of streamlined instructions that yield maximal data-processing performance within the context of compiled 
programming techniques. RISC is a way to significantly enhance a system's performance while keeping costs on or below 
par with CISC. These new instruction set techniques are described below. CISC instruction sets were selected over 20 
years ago, and cannot now be changed if CISCs are to maintain compatibility with their existing binary application software 
base. Consequently, the fallacy of CISC using "so called" RISC technology at the instruction set level is readily apparent. 
In fact, these instruction set techniques are the real and only difference between RISC and CISC. 

RIse has three major instruction set features that distinguish it from CISC. RISC's instruction set attributes include 
a load/store model of execution, a non-destructive triadic register file that provides a distinct and highly efficient data 
preservation model, and, lastly, normalized fixed-length instructions. Conversely, CISC uses a memory/register model 
of execution, an accumulator/registerfile that engenders a destructive data environment, and variable-length, contextual­
field instructions. 

RISC's load/store model of execution means that the only instI1lctions that can access main memory are load and store 
instructions. All other CPU instructions operate on internal registers. By using this model it is possible to decouple 
loading and storing traffic from data processing operations such as arithmetic or logical instructions, and thereby raise 
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the operational concurrency of the entire CPU. It also makes it possible to schedule code to fill stall slots that naturally 
occur due to the latency between the time when a load instruction is issued and the time, typically 2 to 3 clocks later, when 
the data is returned from memory and is actually ready for use. 

However, the true uniqueness in RISC's load/store instruction set philosophy is the recognition that the register file is 
in actuality a computer's highest-level data cache. This register file data cache differs from other, lower-level data caches 
in that its use is deterministic and not stochastic. Load instructions are simply a way to fill this cache, and store instructions 
are merely a way to write back updated data to the lower memory hierarchy. With this in mind, one can argue that load/ 
store operations are not even instructions at all, they are just mechanisms available to software that allow it to administer 
the register data cache. Consequently, the optimization and direction of this register file data cache can be determined 
solely by the compiler or assembly language programmer. All of the leading RISC architectures (SPARC, MIPS, Motoro­
la 88K, and Intel 860) have a larger register file than any of the pre-existing commercial CISC architectures. In addition, 
SPARC has even further evolved beyond the large register file concept by providing a register file extension that is com­
prised of overlapped register windows. SPARC 's overlapped register windows are primarily used to pass parameters dur­
ing subroutine accesses, thereby further cutting down on load and store traffic and more completcly acknowledging the 
fact that the modem computer's register file has now fully evolved into a deterministic cache subsystem. There is now 
no way for CISC architectures to directly apply large flat register files to their instruction sets. They could have done 
so at one time, but now' their binary instruction sets are frozen and it is too late. The decision is irrevocable. 

RISC's non-destructive, three-register (triadic) architecture model means that information in the CPU is preserved (i.e., 
maintained in the register data cache) during ongoing data processing. For example, a RISC add instruction would be 
verbalized as "register A is equal to the result of register B plus register c." All information that was contained in registers 
Band C is preserved (it is interesting to note that this more natural model is also the one that we use to teach algebra 
to our children). Data preservation within the register file (i.e., data cache) is a fundamental and obvious requirement 
to minimize load/store traffic. In contrast the CISC machine's fundamental model is simply stated as "add the contents 
of register A and register B and place the result in register A." Obviously, the original contents of register A are de­
stroyed, and consequently the name "destructive." 

It is also necessary to allow an optimizing compiler to effectively reschedule code to fill pipeline stalls that frequently 
occur in computational engines. In a computer one can reschedule code so long as it is determined that no data dependen­
cies occur and the original semantic content of the program is maintained. Therefore, a non-destructive register model 
taken together with a load/store architecture provides a dramatic boost in instruction set architectural performance due 
to its ability to minimize load/store traffic as well as decouple operations and thereby allow optimizing compilers to effi­
ciently fill stall slots. 

Alternatively, CISC machines have a memory/register instruction set architecture. This means that in a CISC architec­
ture one can do an add instruction with an addressing mode that appears to obtain an operand directly from main memory 
and add it into a register. In reality, this add instruction is forced to do an operand load before it can complete the instruc­
tion. However, this load is coupled to the add operation and so the unavoidable stall slot between the load and the add 
cannot be filled with useful work. Typically 40% to 50% of all instructions dynamically executed in a CISC machine's 
existing software base utilize and therefore mandate this hidden load of operands. 

elSe machines evolved from the accumulator model of execution. In this model the programmer "accumulates" results 
in a register, thereby destroying the data already existing in that register. The problem with a destructive register model 
is that it keeps the compiler from performing efficient algorithmic code rescheduling operations that could lead to higher 
throughput. Data and condition codes in CISe machines is location sensitive because it is constantly being destroyed 
by new instructions. In addition, this model simultaneously increases a machine's load/store activity when registers must 
either be saved or restored from main memory by the compiler in its struggle to preserve critical data. Again historically 
speaking, elSe could have adapted a large triadic register model, but once again it did not, and now it is too late. elSe 
is a captive of its installed binary software base and established instruction sets. 

All true RISe machines utilize fixed-length instructions. Fixed-length instruction sets make possible normalized instruc­
tion encoding (i.e., minimize the use of contextual fields) with greatly simplified addressing modes. In addition, operand 
accesses only occur between registers (i.e., cached data). By making each instruction 32 bits long, instruction decode is 
much easier and can occur much faster than in CISe architectures. RISe epus exploit fine-grain parallelism by decoding 
all parts of the instruction in parallel. In elSe machines, instruction decode occurs sequentially as the instructions are 
of variable length and contextual in nature. Hence final instruction deCOde cannot usually occur until all parts of the in' 
struction are fully analyzed. In elSe machines, depending on the addressing mode and particular instruction used, this 
can take from 2 to 11 clocks. In RISe machines with 32-bit, fixed-length instructions, this always takes exactly 1 clock. 

There are three major effects of RISe's streamlined, or reduced, instruction set architecture techniques. First, due to 
its instruction set normality, RISe machines have no need for microcode. That is, all instructions can be hardwired in 
a very efficient manner. 
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Second, RISC's streamlined instruction set allows for single clock cycle execution. But this is just the tip of the iceburg 
in that the true goal of RISC is the concurrent execution of many instructions at once. It is in this "superscalar" execution 
form that RISC's full potential ultimately lies. Although by using of millions of extra transistors CISC could eventually 
come close to one instruction per clock, superscalability is effectively beyond CISC's practical scope. 

Third, because of the concurrency made possible by the instruction set as described previously, RISCs can more aggres· 
sively and efficiently exploit the design technique of pipelining. These distinctions explain why RISC can provide a 2 to 
5 times performance advantage over CISC given equal technologies of implementation. 

Key Historical Trends of the Computer Industry 

This section will not attempt to distill the entire history of the computer industry in just a few pages. Rather, it is intended 
to take a step back and look at some of the more important trends in the industry. 

There have been three defacto architectural computing standards in the history of the computer industry: the IBM 
360/370, the DEC VAX, and systems based on the InteI8Ox86. Most professionals in our industry do not remember that 
the IBM 360/370 mainframe architecture, originally released in 1%4, was in fact the first system to be cloned! This clon­
ing, by companies such as Amdahl and NAS, was a direct realization that the application software was the standard to 
which the hardware had to comply. This cloning also led to the IBM 370 and PCMs (plug-compatible mainframes) that 
have held between 50% to 70% of the entire computer industry market for nearly 20 years. 

The DEC VAX, a minicomputer or mid-range system, was in reality a way to bring a better level of price/performance 
to the end user than that offered by mainframes. In the final analysis, price and performance are the drummers to which 
the entire computer industry marches. By offering a significant advantage in price/performance (i.e., two times the per­
formance or more) over the IBM and PCM mainframes, DEC was able to establish a beachhead in the systems industry 
that enabled it to become second to only IBM in size. 

Computers based upon the 8Ox86 microprocessor architecture from Intel also offered significantly enhanced price/perfor· 
mance over the mainframe and minicomputer systems that were in existence at the time. As is well known, IBM adopted 
the 8088 in its original personal computer. This product was brought to market several years after the first personal com­
puters emerged from companies such as Apple. However, distinguishing it from the other market entrants was the fact 
that the IBM PC was clonable. Cloning again led to the marketshare dominance of this particular computer architecture. 
Today it is estimated by leading market researchers that approximately 85% of the installed worldwide personal computer 
base is comprised of IBM and IBM-compatible personal computers. As a result of its use in the IBM personal computer 
architecture, Intel's 8Ox86 family today exceeds the sales of all other 16- and 32-bit general-purpose microprocessors com­
bined. 

The historical trend toward enhanced system price/performance is to obtain greater performance for absolutely lower 
costs. In 1990, systems that sell for under $10,000 dominate the entire computer industry, amounting to over 95% of all 
units shipped and 40% of the total sales dollars of the computer systems industry. In the next ten years this trend should 
accelerate with systems priced under $7,500 amounting to over 99% of all units shipped and 75% of the total sales dollars 
of the entire computer systems industry. 

With the dramatic increase in the use of low-cost, typically desktop computers, there has been a parallel increase in the 
use of computer networks. Distributed data processing, also known as networked computing, in which desktop systems 
are tied to server computers, is now much more common than massive mainframes with several hundred terminals. Inter­
estingly, yesterday'S minicomputers and mainframes have become today's servers. However, even these ECL server sys­
tems are increasingly giving way to CMOS microprocessor-based systems. These new servers also use industry standard 
microprocessors, as opposed to designing their own high-cost proprietary CPUs, as a way to offer enhanced price/perfor­
mance. 

Enhanced price/performance has another facet to it: enhanced productivity for the user. Also known as user friendliness, 
these are quite simply the use of graphics instead of text, and the use of windows and user interfaces rather than simple 
command lines. These features have made computers much more accessible. However, this user friendliness has not 
been easy to achieve. First of all, the software behind the user friendliness is large and complex. To run windows and 
graphics interfaces requires much higher CPU performance than has, until recently, been available in the microprocessor 
market. Writing software of this complexity has necessitated the use of high-level languages, of which the overwhelming 
language of choice has been C. Of course each line of C, as with any other high-level language, is comprised of multiple 
lines of assembly code, so it requires more CPU horsepower to run effectively. 

The Future of RISC 

The first generation of RISC machines have been what is termed single-instruction launch microarchitectures. Through 
pipelining it has been possible to significantly overlap the various stages of an instruction's lifecycle, and hence the current 
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generation of RISC implementations have asymptotically approached a performance rate of 1 clock per instruction (1 
CPI). This overlap is required to provide continued execution opportunities instead of suffering through the delays which 
would otherwise arise due to multiple clock cycle instructions and memory accesses. This does not always work perfectly, 
however, and consequently the first generation of RISC implementations have an aggregate throughput that is on the 
order of 1.25 to 1.5 CPr. 

The next step.in microarchitecture for RISC machines will be the ability to execute two or more instructions simultaneous· 
ly. This feature is sometimes referred to as "superscalability." RISC implementations will be able to fetch, decode, ex­
ecute, and finish two or more instructions at the same time. Multiple-instruction launching requires the ability to internal­
ly schedule the instructions while simultaneously checking for data dependencies and the availability of computing 
resources before the instructions are launched. For instance, the ability to launch four integer instructions in the same 
clock cycle should yield an instruction execution theoretical peak CPI rate of 0.25. The bus bandwidth required to feed 
both instructions and data into the machine and a high-performance cache architecture and cache refill capability to keep 
these high-speed channels fully utilized will be very important in multi-launch implementations. 

RISC microarchitecture will follow the path of increasing the number of simultaneous execution units and will inevitably 
evolve into a dataflow type of architecture whereby multiple data operands flow through the machine being used byavail­
able execution units. Research on dataflow architectures is currently in advanced stages at leading universities. However, 
whereas CISC instruction sets have been obsoleted by RISC in the search for higher architectural performance, this will 
not happen to RISe. RISC instruction sets can and will be preserved in the evolution to dataflow architectures. It will 
be possible to obtain dramatic performance enhancements in RISC, first through multi-launching, then through dataflow, 
without making any changes to the fundamental instruction set. These performance improvements will occur under the 
surface of the instruction set, and will enable a complete continuum of the application software investment. This continu­
um could last for at least 25 to 30 years, and it will be a truly remarkable period of software base stability. 

The performance capability and growth path ofRISC architectures have not gone unnoticed. At this point, RISC architec­
tures have clearly hit the mainstream of computing. As of this writing, every major manufacturer of computer systems 
in the world has somehow endorsed RISC architectures. This list includes IBM, DEC, ICL, Sun, Unisys, NCR, Toshiba, 
AT&T, Olivetti, and many more. These manufacturers have moved to RISC not because it is a fad, but because they 
realize that RISC offers fundamentally better price/performance than does CISCo Coincidentally, every major manufac­
turer of semiconductors has also aligned itself with a RISC architecture in some form or fashion. 

RISC architectures are already used in desktop systems from companies such as Sun and HP, in servers from companies 
such as Solbourne, and in mainframes from companies like ICL. RISC architectures have already proven that they pro­
vide from 2 to 5 times the performance of CISC architectures given equal implementation technology (i.e., cost). 

Owing to their streamlined, efficient instruction set, RISC architectures result in a fundamentally shorter design cycle 
for RISC chips as compared to CISCo It is also due to this simplicity that we have seen RISC architectures already fan 
out into custom CMOS, ECL, gate arrays, and GaAs. The significance of these events is that it is now possible to have 
a binary software-compatible range of RISC-based computers from the desktop to the mainframe. This has never been 
achieved in the industry, and this capability is obviously very synergistic with the trend toward networked computing. 

Neither of the previous defacto computing standards (IBM 370 and the Intel 8Ox86) had the benefit of being able to use 
the application software base available from its competitive predecessors. RISC, however, is able to make use of the 
existing computing standard software base. That is, by using advanced binary emulation techniques, the entire $15 billion 
MS-DOS applications software market is now accessible to RISC architectures. So we have the scenario where RISC 
is able to run its native software several times faster than CISC can run software, and at the same time it can run existing 
eISC software nearly as fast as the CISC machines can! 

The RISC Contenders 

There are currently four RISC architectures that are the mainstream contenders in the RISC marketshare race. These 
architectures are the SPARC architecture from SPARC International, the MIPS RxOOO from MIPS Inc., the MC8S0aa 
from Motorola, and the i860 from Intel. 

Marketshare for the competing RISC architectures arises from several key factors. These factors are the alliances with 
key systems manufacturers, the availability of low-cost (under $10,000) desktop systems, a large base of shrinkwrap appli­
cation software, a wide range of system price options (from under $10,000 to over $1,000,000), competitive semiconductor 
implementations of the CPUs, multiple sources of the CPUs, and state-of-the-art technology. 

At this point in time only SPARC is openly owned and controlled, has independent multiple sources for its chip sets, and 
has multiple microarchitecture implementations available that all execute the same binary software. Motorola's 
MC88000 is sole-sourced for commercial applications and second-sourced strictly for military applications by Thomp­
son-CSF. However, Motorola owns and controls the MC88000 microarchitecture. MIPS' architecture is also second-
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sourced, but the microarchitecture is solely controlled by MIPS Inc. And Intel's i860 is completely proprietary. Unless 
MIPS, the MC88000, and the i860 become openly owned and independently second-sourced, it is very unlikely that they 
will continue to be contenders in the RISC race against SPARe. Hewlett-Packard now realizes the significance of open 
ownership and its relationship to market success. As a result, they also are now attempting to move their architecture 
away from a proprietary basis and into the open market. 

To date, low-cost systems priced under $10,000 are available that use the SPARC, MIPS and MC88000 architectures. The 
differentiating factor between these systems is the software base. SPARC's software base is much larger than that for 
all other RISC architectures combined, and is usable in shrinkwrap form on multiple platforms based on multiple vendor's 
SPARC chips. This capability was proven by Solboume Computer in Longmont, Colorado when they created the world's 
first SPARC-compatible system, thereby making SPARC the only RISC architecture with proven system-level donability. 
Motorola is attempting to create a similar capability for the MC88000 through a committee-generated document called 
the MC88000 BCS (Binary Compatibility Standard). MIPS has no such plans in the works, and has actually seen its base 
fragment between its own systems, Stardent, DEC, and those of Silicon Graphics. As stated previously, shrinkwrap soft­
ware led the Intel 8Ox86 architecture to an overwhelming marketshare lead. Likewise, shrinkwrap software will also be 
the biggest differentia tor in the RISC marketplace and it favors SPARC both from its present large base and also from 
its growth rate as well. 

Summary 

The general trends of the computer industry are very complementary to the capabilities of RISC architectures. The com­
puter industry market always thirsts for higher pedormance at lower prices, and is structuring itself to allow this to hap­
pen. RISC, a set of instruction set architecture techniques, offers significant pedormance advantages over CISC, and 
requires less transistors to do so. Because of its transistor count frugality, RISC has scaled quickly into very high pedorm­
ance technologies such as ECL and GaAs, and hence is ideally suited to fitting in at all price/pedormance points existing 
within the entire computer industry. Most importantly, RISC is affordable on the desktop and is able to efficiently run 
the huge PC software base that already exists there. In addition, RISC's pedormance growth path is assured, and is formi­
dable when compared to that for CISe. For all of these reasons, RISC architectures will come to dominate 32-/64-bit 
computing over the ensuing years. 

xxi 



Foreward 

xxii 



1 

Introduction 

1.1 SPARe Overview 

SPARC, an acronym for Scalable Processor ARChitecture, is an open RISC architecture with multiple semiconductor 
implementations from a number of vendors. SPARC is an architecturally driven standard, with binary compatibility of 
software between processor versions ensured by enforcing compliance to the architecture standard. The open architec­
ture approach offered by SPARC allows all its participants to make creative contributions in developing their versions 
of SPARC processor. This results in a vastly greater number of technical contributions than would be possible for a closed 
architecture held and defmed by only one group. This architectural freedom has allowed the SPARC architecture to 
expand into CMOS gate arrays, full-custom CMOS, bipolar ECL, and GaAs faster than any other RISC architecture. 
This same freedom allows SPARC vendors to make microarchitectural enhancements to their SPARC implementations 
while maintaining absolute binary compatibility. The final result of this open architecture approach is that it provides 
the customer with a wider range of price/performance and technology options that cannot be matched by less innovative 
and restricted licensing policies. In addition, the various SPARC vendors also participate in standard second-sourcing 
agreements. 

The inclusion of the word "scalable" in the acronym for SPARC emphasizes its importance in the philosophy of the archi­
tecture. "Enforced compatibility" has been embraced to ensure migration of the architecture as semiconductor technolo­
gy improves. Scalability allows SPARC to be re-implementedwithout complication as semiconductor process technology 
evolves. This allows SPARC to continually be offered in higher clock speeds and technologies than other RISC architec­
tures, providing rapid performance improvements as process technology continues to be refined. Other RISC processors 
have complicated their microarchitectures with features that create an unnecessary burden for the hardware designer. 
These features provide only a minimal performance improvement, but greatly complicate hardware design and cost. The 
CY7C601 microprocessor does not require multiple-phase clocks, demultiplexing of the processor's address or data buses 
or many of the other problems that affect hardware complexity and cost. This provides CY7C601 SPARC-based designs 
with the advantages of excellent performance, low design costs, a high degree of manufacturability, and increased reliabil­
ity due to its simplicity of design. 

The CY7C600 chip set is a 32-bit custom CMOS implementation of the SPARC architecture. Designed by Ross Technolo­
gy, Inc., a Cypress Semiconductor subsidiary, the chip set is implemented in Cypress's state of the art O.8-Jl.m CMOS tech­
nology. The chip set is in production and is available in clock speeds of 25, 33, and 40 MHz. The CY7C600 family includes 
the CY7C601 Integer Unit (IV), the CY7C602 Floating-Point Unit (FPU), the CY7C604 Cache controller and MMU 
(CMU), the CY7C605 Cache controller and MMU for MultiProcessing (CMU-MP), and the CY7C157 Cache RAM 
(CRAM). The CY7C601, CY7C602, CY7C604 or CY7C605, and two CY7Cl57s comprise a five-chip CPU, providing 
up to 29 MIPS of sustained integer performance and over 6 MFLOPS of double-precision floating-point performance 
at 40 MHz. This CPU includes a SPARC Reference MMU and a 64-kbyte cache, and directly interfaces to a 64-bit physical 
bus capable of a bandwidth approaching 320 Mbytes per second at 40 MHz. The five-chip CY7C600 CPU requires no 
glue logic, and provides maximum computing performance with minimal design effort. 

1.1.1 Partitioning 

The CY7C600 family has been designed to offer a complete solution for high-performance computer and controller appli­
cations. The CY7C601 IU and the CY7C602 FPU together comprise the full SPARC instruction set architecture. The 
CY7C602 replaces two chips that previously made up the FPU, the CY7C608 floating-point controller and the CY7C609 
floating-point processor (Thxas Instruments' SN74ACT8847). Additional family members include the CY7C604 CMU 
for uniprocessor applications, the CY7C605 CMU-MP, and the CY7C157 CRAM. 

The CY7C611 is a specialized derivative ofthe CY7C601 integer unit that has been optimized for embedded control appli­
cations. It is in production in a cost-effective, 160-pin PQFP package, and is available at a speed of 25 MHz. 
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Figure 1-1 and Figure 1-2 illustrate how CY7C600 family devices connect to each other in both uniprocessor and multipro­
cessor applications. The CY7C601's second coprocessor interface is not shown in these diagrams. The function of this 
second coprocessor (CP) is defined by the system designer, but its interface to the CY7C601 is identical to that of the 
CY7C602 FPV coprocessor. 

Figure 1-3 illustrates an embedded control system utilizing the CY7C601 or CY7C611 with an optional CY7C602 FPU 
and user-designed memory system. 

1.1.2 The CY7C601 Integer Unit 

The CY7C601 is the primary processing engine in the SPARC architecture, executing all instructions except for specific 
floating-point and coprocessor operations. The CY7C602 FPU does its floating-point calculations concurrently with the 
CY7C601 IV. The architecture also allows for concurrent operation through the use of an optional second coprocessor. 

Significant features of the CY7C601 include: 

• Full binary compatibility with entire SPARC application software base 

• Architectural efficiency that sustains 1.25 to 1.5 clocks per instruction 

• Large windowed register file 

• Tightly coupled floating-point interface 

• User/supervisor modes for multitasking 

• Semaphore instructions and alternate address spaces for mUltiprocessing 

• Thgged arithmetic instructions to support artificial intelligence software 

1.1.2.1 Traps and Exceptions 

The CY7C601 supports a full set of traps and exceptions. A table-based set of trap vectors supports 128 hardware and 
128 software trap types, both synchronous (error conditions and instructions) and asynchronous (interrupts and reset). 
The CY7C601 supports a very fast interrupt time of 4 to 7 clocks, depending upon the contents of the instruction pipeline. 
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1.1.2.2 Multitasking 

Multitasking is supported with user and supervisor modes. Certain privileged instructions can only be executed while 
the CY7C601 is in supervisor mode, ensuring that user programs cannot accidentally alter the state of the machine. Su­
pervisor mode is only accessible by using a hardware interrupt or by executing a trap instruction. 

1.1.2.3 Multiprocessing 

The CY7C601 supports multiprocessing with two instructions for implementing semaphores in memory. Atomic Load/ 
Store Unsigned Byte loads a byte from memory, then sets the memory location to all ones. The SWAP instruction ex­
changes the contents of a register and a memory location. Both of these instructions are "atomic," meaning uninterrupt­
able. 

1.1.3 CY7C611 Integer Unit for Embedded Control 

The CY7C611 Integer Unit is a subset of the CY7C601 Integer Unit intended for use in embedded control systems. It 
is architecturally identical to the CY7C601, and all details concerning the CY7C601 described in Sections 2.1 through 
2.8 of Chapter 2 apply to the CY7C611. The CY7C611 is available in a 160-pin plastic QFP and is in production at 25 
MHz. The CY7C611 differs from the CY7C601 in that several of the signals available on the CY7C601 that are not re­
quired for embedded control systems have been deleted. In addition, the CY7C611 does not have a user-defined copro­
cessor interface. The CY7C611 does have a floating-point interface, which can also be used to interface to a user-defined 
coprocessor. Please refer to Section 2.9 for detailed information on the CY7C611. 

1.1.4 CY7C602 Floating.Point Unit 

The CY7C602 FPU provides high-performance, IEEE STD-754-1985-compatible single- and double-precision 
floating-point calculations for CY7C600 systems, and is designed to operate concurrently with the CY7C601. All address 
and control signals for memory accesses by the CY7C602 are supplied by the CY7C601. Floating-point instructions are 
addressed by the CY7C601, and are simultaneously latched from the data bus by both the CY7C601 and CY7C602. Floa­
ting-point instructions are concurrently decoded by the CY7C601 and the CY7C602, but do not begin execution in the 
CY7C602 until after the instruction is enabled by a signal from the CY7C601. Pending and currently executing FP instruc­
tions are placed in an on-chip queue while the CY7C601 continues to execute non-floating-point instructions. 

The CY7C602 has a 32 x 32-bit data register file for floating-point operations. The contents of these registers are trans­
ferred to and from external memory under control of the CY7C601 using floating-point load/store instructions. Address­
es and control signals for data accesses during a floating-point load or store are supplied by the CY7C601, while the 
CY7C602 supplies or receives data. Although the CY7C602 operates concurrently with the CY7C601, a program contain­
ing floating-point computations generates results as if the instructions were being executed sequentially. 

1.1.5 CY7C157 Cache Data RAM 

The CY7C157 is a 16K x 16-bit high-performance CMOS static RAM designed specifically as a cache memory for 
CY7C600 systems. It incorporates registered address and write-enable inputs, latched data inputs and outputs, and a 
self-timed write mechanism -features that have greatly simplified the design of cache memories for the CY7C600 family. 

1.1.6 CY7C604/CY7C605 Cache Controller and Memory Management Units 

The CY7C604 and CY7C605 are combined cache controller and memory management units designed specifically to sup­
port the CY7C601. The CY7C604 and CY7C605 provide control for a 64-kbyte direct-mapped virtual cache and provide 
a SPARC reference standard MMU for virtual to physical address translation. The CY7C604 and CY7C605 directly inter­
face with the CY7C600 family, requiring no glue logic for a 64-kbyte cache system. The CY7C604 and CY7C605 use two 
CY7C157 Cache RAMs to implement a 64-kbyte cache system using only three chips. Cache tag memory is provided 
as an on-chip feature of the CY7C604/CY7C605, thereby reducing hardware complexity for a CY7C604- or 
CY7C605-based system. 

The CY7C604 is optimized for uniprocessor systems, providing cache locking and cache expandability to 256 kilobytes 
using additional CY7C604s. The cache locking feature of the CY7C604 allows deterministic response from the cache 
system, an important feature for real-time systems. The SPARC reference MMU, supported on both the CY7C604 and 
the CY7C605, provides translation of a 4-Gbyte virtual address space to a 64-Gbyte physical address space. Both the 
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CY7C604 and the CY7C605 provide a 64-entry fully associative lLB (1hmslation Lookaside Buffer), used in translating 
virtual addresses to physical addresses. 1LB entries may be locked, excluding critical1LB entries from replacement and 
thereby preventing unnecessary table walks. Thble walking (required to obtain additional virtual to physical address trans­
lations not stored in the lLB) for the CY7C604 and CY7C605 is implemented in hardware, providing a substantial time 
savings over software table walk routines. 

The SPARC MMU section of the CY7C604/CY7C605 is designed for the efficient support of multitasking operating sys­
tems. CY7C604/CY7C605lLB and cache tag entries allow a maximum of 4096 different context tags to identify tasks 
within an operating system. The SPARC MMU implemented in the CY7C604/CY7C605 provides extensive memory 
access level protection (user/supervisor and read/write/execute), including an execute-only memory access level. The 
ability to mark memory accesses as execute-only provides a security feature that can be used to protect proprietary fea­
tures of a software system from unauthorized scrutiny. The CY7C604 and CY7C605 MMU also support multilevel ad­
dress mapping, allowing software to select a region of 4 kbytes, 256 kbytes, 16 Mbytes, or 4 Gbytes to be addressed by 
a single lLB entry. This feature allows efficient utilization of 1LB entries, which in tum reduces the number of table 
walks caused by system software. 

The CY7C605 is an extension of the CY7C604 designed for use in multiprocessor systems. The CY7C605 provides a dual 
cache tag memory, which allows the CY7C605 to perform bus snooping while it simultaneously supports cache accesses 
by the CY7C601. The CY7C605 implements a cache coherency protocol based on the IEEE Futurebus, which has been 
recognized as a superior protocol for maintaining consistency of shared data in a multiprocessing system. The CY7C605 
supports direct data intervention, which is the capability of a CY7C605-based cache to directly supply modified data to 
another requesting cache without first requiring main memory to be updated. This feature provides a significant perform­
ance advantage over cache systems that must update main memory in order to supply modified data to another cache. 
In addition to direct data intervention, the CY7C605 also supports memory reflection. Memory reflection allows a 
memory system to automatically update itself during a direct data intervention operation. This feature allows a mUltipro­
cessing system to update both a requesting cache and main memory in a single bus operation. 

Both the CY7C604 and the CY7C605 are specifically designed to support secondary cache systems. The use of common 
secondary caching provides the advantage of increased cache performance for each processing node of a multiprocessor 
system without the expense of large caches for each node. This approach also provides a direct upgrade path to the next 
generation of high-integration SPARC processors. The CY7C605 is designed to be pin compatible with the CY7C604. 
This feature allows a system to be upgraded from uniprocessor to multiprocessor by modifying the operating system and 
replacing the CY7C604 with the CY7C605. 

The CY7C604 and CY7C605 support the SPARC Mbus standard bus interface. The Mbus is a peer level, high-speed, 
64-bit, multiplexed address and data bus which supports a full peer-level protocol (i.e., multiple bus masters). The 
CY7C604/605 Mbus supports data transfers in transaction sizes of 1, 2, 4, 8, or 32 bytes. These data transfers are per­
formed in either burst or non-burst mode, depending upon size. Data transactions larger than eight bytes (one double­
word) are transferred in burst mode, which consists of an address phase followed by four data phases. Non-burst transac­
tions consist of an address phase followed by one data phase, and are used for data transactions of eight or less bytes. 
Bus mastership is granted and controlled by an external bus aIbiter. The bus arbiter sets bus priorities, and grants access 
to a bus master. 

Mbus is divided into two levels of implementation: levelland level 2. Levell, implemented on the CY7C604, is the 
uniprocessor version of Mbus. Levell is a subset of level 2, which is the multiprocessor version of Mbus. The CY7C605 
supports level 2 Mbus. Level 2 Mbus includes the IEEE Futurebus (MOSEl) cache coherency protocol, which has been 
recognized in the industry as a superior method of supporting multiprocessing systems. Level 2 Mbus defines five cache 
states for describing cache line status. Transactions on the Mbus are monitored or "snooped" by the CY7C605 and other 
bus agents on the level 2 Mbus to maintain ownership and modified status for each cache line. 1tansactions on the level 
2 Mbus are made with respect to the cache line ownership and modified status to ensure consistency for shared data 
images. 

The level 2 Mbus supports direct data intervention, which allows a cache system with the up-to-date version of a cache 
line to directly supply the data to another cache system without having to first update main memory. Direct data interven­
tion provides a significant performance improvement over systems that do not support this feature. In addition, the 
CY7C605 provides support for memory systems with reflective memory controllers. A memory system with reflective 
memory control can recognize a cache-to-cache data transaction and automatically update itself without delaying the sys­
tem. Another system concept supported by the CY7C605 is secondary caching. Secondary caching provides a perform­
ance advantage over systems directly using main memory, and provides an economic advantage over systems using large 
caches for each processing node. 
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1.2 Register Windows 

The CY7C601 contains a large, 32-bit-wide, triple-port register fIle that is divided into multiple windows which are con­
trolled by internal hardware. Each window contains 24 working registers and has access to 8 global registers. Combined 
with the CY7C601's register-to-register architecture, this file operates effectively as a compiler-directed, copy-back data 
cache, considerably reducing data bus traffic. Load instructions enter data into this cache, and store instructions "copy 
back" information when it needs to be replaced into main memory. 

The register file is managed as a circular stack, with the first and last windows overlapping each other. Each window 
overlaps the previous window and succeeding window by 8 registers, making the window mechanism ideal for passing pa­
rameters in procedure calls. Results left in the overlapping registers by a calling routine automatically become available 
operands for the called routine as the window moVes, and vice versa. This parameter passing technique eliminates the 
need for the loads and stores to memory required by machines using a stack during procedure calls. 

1.3 Instruction Set 
SPARC defmes 55 basic integer instructions, 14 basic floating-point instructions, and two coprocessor-operate instruction 
formats. CY7C600 instructions fall into five basic categories: load/store, arithmetic/logical/shift, control transfer, read/ 
write control register, and floating-point-operate/coprocessor-operate. 

1.3.1 Load and Store Instructions 

Load and store instructions are the only way to access memory or external registers. Addresses are calculated using the 
contents of two registers or one register and a constant. The destination may be either an integer unit, floating-point 
unit, or coprocessor register, which either supplies or receives the data. In order to greatly speed up memory accesses, 
halfword, word, and doubleword data must be aligned on their corresponding boundaries. If they are not, a trap is gener­
ated when an access is attempted. 

1.3.1.1 Address Space Identifier 

Whenever an address is sent to the address bus, the processor also generates 8 bits of address space identifier (ASI). 
The ASI pins identify to the external system which of the 256 possible address spaces is to be accessed. For most CY7C601 
operations, one of four standard ASI values are asserted. These four ASI values indicate whether the processor is in user 
or supervisor mode, and whether the access is an instruction or data reference. 

The address space identifier is intended for use by the system operating software. Consequently, the instructions that 
specify a particular ASI value (load/store alternate) are privileged and can only be executed in the supervisor mode. Many 
of the ASI bit patterns are assigned for accessing various features of the CY7C604/CY7C605. A large block of address 
spaces are. reserved for the designer to implement as desired. 

1.3.2 ArithmeticlLogicallShift Instructions 

These instructions compute a result using two source operands and place the result in a destination register. In addition 
to standard arithmetic operations, the CY7C601 includes tagged arithmetic operations. 'lagged arithmetic instructions 
assume that the least-significant two bits of the operands are tags, and set a condition code bit if they are not zero. 'lagged 
instructions are used with artificial intelligence languages such as USP to indicate the data type of the operands. The 
use of tagged arithmetic instructions allows languages such as USP and Prolog to run significantly faster than on RISC 
machines without this type of instruction. 

1.3.3 Control 'Ihlnsfer Instructions 

Control transfer instructions include jumps, calls, branches, and traps. nansfer of control to the new address is usually 
delayed until after execution of the next instruction immediately following the jump, call or branch, etc., so that the trans­
fer doesn't create a hole or bubble in the instruction pipeline. It is the compiler's or the assembly language programmer's 
job to attempt to place a useful instruction in this delay slot. 

1.3.4 ReadlWrite Control Register Instroctions 

These include instructions to read and write the contents of various CY7C601 control registers. The source (read) or 
destination (write) is implied by the instruction name. 
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1.3.5 Floating.Point.Operate and Coprocessor· Operate Instructions 

This category includes floating-point calculations, floating-point register operations, and instructions involving computa­
tions or other operations in the second coprocessor. 

Floating-point-operate instructions execute concurrently with CY7C601 instructions and possibly with other 
floating-point instructions. Concurrent execution is also possible with the coprocessor-operate instructions if they are 
so implemented. 

Coprocessor-operate instructions are defined by the coprocessor itself. In the CY7C601, they are specified by the CPop 
instruction. The SPARC architecture will accommodate 1024 coprocessor-operate instructions. 

Floating-point and coprocessor loads and stores are not operate instructions; they belong to the "load and store" category 
discussed in Section 1.4.1. 
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Chapter 2 
CYP~SS.~~~~~~~~~~~ 
SEMICONDUcrOR CY7C601/CY7C611 

Integer Unit 

This section describes the workings of the CY7C601 Integer processing Unit (IU), the main computing engine in the 
SPARC architecture. Descriptions and explanations given for the CY7C601 also apply to the CY7C611 integer unit, ex· 
cept for those differences noted in Section 2.9. 

The CY7C600·family IUs are based on the SPARC 32-bit RISC architecture, which defines a processor capable of execu­
tion at a rate approaching one instruction per clock cycle. The CY7C6011611 supports a tightly-coupled Floating-Point 
coprocessor Unit (FPU) and a second, system-specific coprocessor, all three of which may operate concurrently. The 
CY7C6011611 executes all instructions except floating-point-operate and coprocessor-operate instructions. 

A block diagram of the CY7C6011611 is shown in Figure 2-1. The processor is organized around the ALU and the shift 
unit. These are both two-operand units, accepting 32-bit information from either source lor source 2 of the register file, 
the program counters, or the instruction decoder. ALU or shift unit results may be passed to the register file, address 
bus, program counters, control registers, or back to themselves. 

One of the characteristics of the SPARC load/store architecture is that neither the ALU nor the shift unit directly pass 
results to the instruction/data bus. Memory data moves in and out of the register file through alignment units to and from 
the instruction/data bus. Instructions are taken directly from the bus and fed to a four-stage instruction pipeline. 

Destination 

Address Instructlonj Data 

Figure 2-1. Integer Unit Block Diagram 
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Figure 2-2. SPARe Register Model 

The SPARC architecture uses a "windowed" register file model in which the file is divided up into groups of registers 
called windows. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently supports 
All programming languages such as Prolog, LISP and Small talk. 

A unique pair of coprocessor interfaces and a common connection to the system data and virtual address buses form the 
physical interface between the IU, the FPU, and a coprocessor. The coprocessor interfaces provide the synchronization 
and error handling that enable all three processors to operate concurrently. A common interface to the virtual address 
bus and data bus permits the IU to provide all addresses for floating-point and coprocessor load and store instructions. 

2.1 Description Of Parts 

The standard version of the integer unit, the CY7C601, contains a 136 x 32 register file divided into eight overlapping 
windows. It is supplied in 207-pin PGAand 208-pin QFP packages, which allows 32-bit address and data buses, an eight-bit 
ASI bus, a number of control lines, and floating-point-coprocessor and second coprocessor interfaces. 

The CY7C611 embedded control IU is internally the same as the CY7C601, but it is externally optimized for board-space­
sensitive controller applications. By eliminating some external pins, the CY7C611 fits into a 160-pin PQFP package. In 
the smaller package, the address bus is modified to 24 bits, the ASI bus to 3 bits, and the second coprocessor interface 
and five control lines are omitted. See Section 2.9 for further information. 

2.2 Programming Model 

This section descnbes the CY7C601l611's register model, register window mechanism, processor states, supervisor/user 
modes, control/status registers, and data types. The concepts and properties explained here are central to an understand­
ing of the CY7C601I611's operation. 

The register set shown in Figure 2-2 is a snapshot of the registers the CY7C601I611 sees at any given moment. The work­
ing registers constitute the current window on the register file. Registers within the shaded area are accessible only in 
the supervisor mode. 

Working registers are used for normal operations and are called r registers in the CY7C601l611, jregisters in the FPU, 
and c registers in the coprocessor. The various control/staWs registers keep track of and/or control the state of each pro­
cessor. See Section 3.3.1 for an explanation of the FPU's register set. 

2.2.1 Register Windows 

The 136 r registers of the CY7C6011611 are 32-bits wide and are divided into a set of 128 window registers and a set of 
eight global registers. The 128 window registers are grouped into eight sets of 24 r registers called windows. 
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Table 2-1. Register Addressing 

Register numbers Name 

r[24] to r[31] ins 

r[16] to r[23] locals 

r[8] to r[15] outs 

r[O] to r[7] globals 

The SPARC architecture supports a maximum of 32 windows. The currently active window (the window visible to the 
programmer) is identified by the Current Window Pointer (CWP), a 5-bit field in the Processor State Register (PSR) (see 
Section 2.2.4.2). 

At any given time, a program can address 32 active registers: 24 window registers and the eight globals. By software conven­
tion, the window registers are divided into 8 ins, 8 locals, and 8 outs. Registers are addressed as shown in Table 2-1. 

The current window pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the cur­
rent window pointer by one offsets r register addressing by 16. Since 24 r registers can be addressed by a single CWP value, 
incrementing or decrementing the CWP results in an eight register overlap between windows. This overlap of window 
registers is used to pass parameters from one window to the next. 

2.2.1.1 Windowing 

The register file is implemented as a circular stack, with the highest numbered window joined to the lowest. In the 
CY7C601, window 7 adjoins window 0 (see Figure 2-3). 

SAVE 

Figure 2-3. Circular Stack of Overlapping Windows 
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Previous Window + 1 

r31 Save 

INS 

r23 
.. Restore 

LOCALS 
r16 

r15 
OUTS 

rB 

Next Window (CWP - 1) 

INS 

LOCALS 

OUTS 

Figure 2-4. Overlapping Windows 

Note that each window shares its ins and outs with adjacent windows (refer to Figure 2-4). Outs from a previous window 
(CWP + 1) are the ins of the current window, and the outs of the current window are the ins ofthe next window (CWP - 1). 
While only adjacent windows share ins and outs, globals are shared by all windows. A window's locals, on the other hand, 
are not shared at all, belonging only to that window. 

After power-on reset, the state of the current window pointer and the WIM register (see Section 2.2.4.3) are undefined. 
The power-on reset trap routine must initialize the CWP and WIM register for correct operation. 

2.2.1.1.1 Parameter Passing 

Register window overlap provides an efficient means of passing parameters during procedure calls and returns. One 
method of implementing a procedure call that takes advantage of the overlap is to have the calling procedure move the 
parameters to be passed into its outs registers, then execute a CALL instruction. A SAVE instruction then decrements 
the CWP to activate the next window. The calling procedure's outs become the called procedure's ins, making the passed 
parameters directly accessible. 

When a called procedure is ready to return results to the procedure that called it, those results are moved into its ins 
registers and it then executes a return, usually with a JMPL instruction. A RESTORE instruction increments the CWP 
to activate the previous window. The called procedure's ins are still the calling procedure's outs; thus the results are avail­
able to the calling procedure. Note that the terms ins and outs are defined relative to calling, not returning. 

If the calling procedure must pass more parameters than can be accommodated by the outs and globals, the additional 
parameters must be passed on the memory stack. One method of handling the stack pointer is to dedicate an out register 
in the current window to hold the stack pointer (see Figure 2-5). After a call, this pointer (which is now in an ins register) 
can be used as the frame pointer for the called procedure. The SAVE instruction, in addition to decrementing the CWp, 
also performs an ADD using registers from the current window and placing the result in a register in the next window. 
This feature can be used to set a new stack pointer for the called procedure from the old pointer in the calling procedure. 
RESTORE also performs an ADD, using registers in the current window and placing the result in the previous window. 

2-4 



CY7C601lCY7C611 Integer Unit 

r31 (i7) retum address 

r30 (FP) frame pointer 

r29 (is) incoming param reg S 

in r28 (i4) incoming param reg 4 

r27 (i3) incoming param reg 3 

r26 (i2) incoming param reg 2 

r2S (i1) incoming param reg 1 

r24 (io) incoming param reg 0 

r23 17) local 7 

r22 (16) local 6 

r21 (IS) local S 

local r20 (14) local 4 

r19 (13) local 3 

r18 (12) local 2 

r17 (11) local 1 

r16 (10) local 0 

r1S (07) temp 

r14 (SP) stack pointer 

r13 (oS) outgoing param reg S 

out r12 (04) outgoing param reg 4 

r11 (03) outgoing param reg 3 

r10 (02) outgoing param reg 2 

r9 (01) outgoing param reg 1 

r8 00) outgoing param reg 0 

r7 (g7) global 7 

r6 (g6) global 6 

rS (gS) globalS 

global r4 (g4) global 4 

r3 (g3) global 3 

r2 (g2) global 2 

r1 (g1) global 1 

to 1 (gO) 0 

131 floating-point value 

floating : : 
point 

10 floating-point value 

Figure 2-5. Registers as Seen by a Procedure 

2.2.1.1.2 Window Overflow and Underflow 

No matter how many windows a register file has, it is possible that at some point the program will try to use more than 
are available. Since the register file is a circular stack, something must be done to prevent overwriting the oldest window 
as the stack wraps around. 

The CY7C601I611 handles this by allowing bits in the Window Invalid Mask (WIM) register to be set, which are used 
to mark windows that will trigger an underflow or overflow trap (see Section 2.2.4.3). If a SAVE instruction points the 
CWP to a marked window, a window overflow trap is generated. This means that in the CY7C601, only seven of the eight 
windows are available for calls, because the last window must be saved for the trap handler. However, since a typical over­
flow trap handler would transparently save one or more of the oldest windows to memory, the program sees an apparently 
infinite number of windows. 

The CY7C601I611 automatically decrements the CWP upon encountering a trap. This happens without generating 
another window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked 
by the WIM register, the system is assured of at least one window for use by the trap handler. 
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A RESTORE instruction will cause a window underflow trap if it attempts to restore to a window invalidated by the WIM 
register. Execution of a REThrnfrom Trap (RETf) instruction under the same circumstances will also generate an under­
flow trap. SAVE, RESTORE, and RETf always check the WIM register before completing their actions. 

As an example, in Figure 2-3, if the procedure using the window labeled wO executes a CALL and SAVE sequence, a 
window overflow trap will occur (assuming WIM bit 7 is set). The overflow trap handler may safely use only the locals 
of w7, because w7's ins are wO's outs and w7's outs are w6's ins. 

Active window = 0 

Previous window = 1 

Next window = 7 

nap window = 7 

CWP = 0 

CWP+l = 1 

CWP-l = 7 

WIM = l0000000(base 2) 

The overflow trap handler is responsible for saving one or more of the least recently used windows to the memory stack. 
Simulations of register file management methods show that saving and restoring one window at a time is the simplest 
and most effective algorithm for handling overflow and underflow. The stack pointer to the window-save area must be 
aligned to a word boundary in valid memory and, for efficiency, should be doubleword aligned. This is because it is faster 
to load and store doublewords than to load and store words. 

A linear sequence of doubleword loads and stores is also used to speed up context switches. In a context switch, only 
the windows containing valid data are saved, and on average this is about half the number of CY7C6011611 windows, minus 
one for the reserved trap window. 

2.2.1.1.3 Alternate Register Window Usage 

Although the windowing layout is particularly well suited to procedure calls and returns, hardware does not force their 
use for that purpose alone. Except for the eight-register overlap and the partial fixing of the function of several registers 
by the instruction set (see Section 2.2.1.2), register windows can be viewed and manipulated as needed to fit the application 
at hand. 

For example, the register set can be treated as a flat register file. Access to any particular register in any window is obtained 
by writing its window value into the current window pointer located in the processor state register. Moreover, windows 
naturally segment registers into blocks that could be dedicated to specific purposes and accessed through the CWP. Regis­
ter saving and parameter passing could be done with a standard push/pop stack in memory, although this would substan­
tially increase bus traffic. 

For real-time and embedded controller systems, where fast context switching may be more important than procedure 
calling, the register file can easily be divided into banks of registers separated by trap handling windows set up by the WIM 
register (see Section 2.2.4.3). Switching from one register bank to another is accomplished by writing to the CWP field 
of the processor state register. Figure 2-6 shows the CY7C6011611 registerfile divided into four banks, each with its own 
trap handler window of eight local registers. Globals are accessible by all processes. 

2.2.1.2 Special Registers 

In general, the window registers seen at any given time can be used in any manner desired, while keeping in mind that 
windows overlap at both ends. However, the instruction set does fix the use of r[O) and partially fixes the use of r[15). 

Global register r[O) always returns the value 0 when read, making the most frequently used constant easily available at 
all times. In addition, when addressed as a destination operand, r[O) discards the value written to it. 

The CALL instruction writes its own address into register r[15) (out register 7) of the calling procedure's window. If a 
SAVE instruction then activates a new window, r[15) of the old window becomes r[31) (in register 7) of the new window 
and serves as the return address to the calling procedure. However, if the register is needed for some other purpose, the 
return address can be saved to a stack or simply overwritten. 
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WIM Register 

RESERVED 

Trap registers for bank 3 
(Window 6) 

UNUSED 

RESERVED 

Trap registers for bank 2 
(Window 4) 

UNUSED 

76543210 

The WIM register is used to separate 
the r registers into register banks. Register 

banks are switched by writing into the CWP 
field of the processor state register (PSR). 

The CY7C601J611 automatically enters the next 
window (CWP - 1) upon encountering a trap, 
regardless of the state of the WIM register. This 
feature is used to reserve windows for a trap han­
dIer. 

RESERVED 

The upper eight registers of the trap window are 
reserved for parameter passing from the register 

~ bank, if desired. 

Trap registers for bank 1 
(Window 2) 

UNUSED 

RESERVED 

Trap registers for bank 0 
(Window 0) 

UNUSED 

The lower eight registers of the trap window are 
unused, since they are shared with the next regis­
ter bank These can be used to pass parameters 
to the next register bank, if desired. 

Figure 2-6. Register Banks for Fast Context Switching 
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Tho other registers are also used by hardware to save information during a trap. Registers r[17] and r[18] (locals 1 and 
2) of the trap window (not the trapping procedure's window) are used to save the contents of the program counters (pC 
and nPC) at the time the trap is taken. Because the trap window locals are all a trap handler is allowed to use (unless 
it saves to the system stack), this limits the trap handler's usable registers to six. 

2.2.2 Processor States 

The CY7C601I611 is always in one of three possible states: execute mode, reset mode, or error mode. Execute mode is 
the normal operating mode. 

The processor enters error mode (at which point it halts and asserts ERROR) if a synchronous trap is generated while 
traps are disabled (see Section 2.7). The CY7C601I611 remains in error mode until the RESET signal is asserted, where­
upon it enters reset mode. The external system is responsible for asserting RESET whenever the error mode signal, ER­
RoR' is detected. 

Reset mode is entered whenever the RESET signal is asserted (see Section 2.4). The processor remains in that mode 
until RESET is deasserted. Upon deassertion, the processor enters execute mode, where the first instruction address 
to be executed is address 0 in the supervisor instruction address space (see Sections 2.2.3 and 2.3.2.6). 

The CY7C601I611 fetches instructions in the execute mode. If the instruction belongs to the floating-point unit or second 
coprocessor, execution is directed to the appropriate coprocessor. Otherwise, the instruction is executed by the integer 
unit. 

2.2.3 Supervisor/User Modes 

In support of multitasking, the CY7C601I611 employs a supervisor/user model of operation. The processor is in supervisor 
mode when the S bit in the Processor State Register (PSR) is set, and in user mode when S is reset (see Section 2.2.4.2). 
The state of this bit determines which address space is accessed with the ASI bits (see Section 2.3.2.6) and whether or 
not privileged instructions may be used. Privileged instructions restrict control register access to supervisor software, pre­
venting user programs from accidentally altering the state of the machine. 

In non-multitasking Situations, such as embedded systems, user (application) code would probably run in supervisor mode 
to gain access to the PSR's CWP field and other control registers. The only way a program running in user mode may 
enter supervisor mode is to encounter a software or hardware trap. A return to user mode is accomplished by executing 
a Return from nap (RET!) instruction, which restores the state of the S bit to what it was before the trap was taken. 
A commonly used trap return is the JMPL, RETI delayed control transfer couple (refer to Section 2.3.3.4.4). This re­
stores both the PC and nPC (see Section 2.2.4.1) and the previous state of the S bit. 

2.2.4 Control/Status Registers 

CY7C601I611 control/status registers are all 32 bits wide. The two program counters can only be read to and written to 
indirectly using such instructions as a CALL,JMPL, software trap (ncc), and Return from Trap (RETI). The Processor 
State Register (PSR), Window Invalid Mask (WIM), nap Base Register (TBR), and multiply-step register (Y), are all 
read/write registers. Read/write instructions that access the PSR, WIM, and TBR are privileged and thus may only be 
used in supervisor mode. 

Tho of these registers, the PSR and TBR, have both read-only status fields and programmable read/write mode fields. 
In Figure 2-7 and Figure 2-9, the read-only status fields appear in lower case italic (for example, impl) while the writable 
mode fields appear in UPPER CASE (for example, PIL). 

2.2.4.1 Program Counters (PC and nPC) 

The Program Counter (PC) contains the address of the instruction currently being executed by the CY7C601l611, and 
the next Program Counter (nPe) holds the address (pC + 4) of the next instruction to be executed (assuming there is 
no control transfer and a trap does not occur). The nPC is necessary to implement delayed control transfers, wherein 
the instruction that immediately follows a control transfer may be executed before control is transferred to the target 
address (see Section 2.3.3.4). Having both the PC and nPC available to the trap handler allows a trap handler to choose 
between retrying the instruction causing the trap (after the trap condition has been eliminated) or resuming program 
execution after the trap causing instruction. 
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2.2.4.2 Processor State Register (PSR) 

IU IU 
Imp'lementation Version 

Number Number 
(imp/) (ver) 

4 4 

31 2827 

23 22 21 20 

Figure 2-7. Processor State Register 

Current 
Window 
Pointer 
(CWP) 

5 

o 

This is the CY7C601I611's key status and control register, containing fields that report the status of processor operations 
or control processor operations. Instructions that modify its fields include SAVE, RESTORE, Ticc, RETI, and any in­
struction that modifies the condition code field (icc). Any hardware or software action that generates a trap will modify 
the S, PS, and ET fields. The PSR may be read or written directly using the privileged instructions RDPSR and WRPSR. 
The PSR is made up of the following fields: 

impl-Implementation 

Bits 28 through 31 contain the processor's implementation number. The implementation number for the CY7C601 
and CY7C611 is 0001. WRPSR does not modify this field .. 

ver-Version 

Bits 24 through 27 contain the CY7C601l611's version number. WRPSR does not modify this field. The current ver­
sion number for the CY7C601 is 0001, and the current version number for the CY7C611 is 001l. 

icc-Integer Condition Codes 

Bits 20 through 23 hold the integer unit's condition codes. These bits are modified by arithmetic and logical instructions 
whose names end with the letters cc (for example, ANDcc), and can be overwritten by the WRPSR instruction. The 
Bicc and Ticc instructions base their control transfer on these bits, which are defined as follows: 

N-Negative 
Bit 23 indicates whether the ALU result was negative for the last icc-modifying instruction. 

o = not negative 
1 = negative 

Z-Zero 
Bit 22 indicates whether the ALU result was zero for the last icc-modifying instruction. 

o = result was nonzero 
1 = result was zero 

V-Overflow 
Bit 21 indicates whether an arithmetic overflow occurred during the last icc-modifying instruction. The over­
flow bit is also set if a tagged operation (fADDcc, TSUBcc, etc.) is performed on non-tagged operands (refer 
to Section 2.3.3.2.3). Logical instructions that modify the icc field always set the overflow bit to O. 

o = arithmetic overflow did not occur 
1 = arithmetic overflow did occur 

C-Carry 
Bit 20 indicates whether an arithmetic carry out of result bit 31 occurred from the last icc-modifying addition 
or if a borrow into bit 31 resulted from the last icc-modifying subtraction. Logical instructions that modify the 
icc field always set the carry bit to O. 

o = a carry/borrow did not occur 
1 = a carry/borrow did occur 
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Reserved 

Bits 14 through 19 are reserved. A WRPSR should write only Os to this field. 
EC-Coprocessor Enabled 

This bit determines whether the optional second coprocessor is enabled or disabled. 

o = disabled 
1 = enabled 

If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor load/store instruction 
will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state until it is re-enabled or reset. 
Even when disabled, the coprocessor can continue to execute instructions if it contains a queue. Note that the 
CY7C611 does not support a coprocessor interface, and on the CY7C611 the EC bit is permanently set to zero. 

EF-Floating-Point Unit Enabled 

Bit 12 determines whether the FPU is enabled or disabled. 

o = disabled 
1 = enabled 

If the FPU is either disabled or enabled but not present, an FPop, FBfcc, or floating-point load/store instruction will 
cause a floating-point-disabled trap. When disabled, the FPU retains that state until it is re-enabled or reset. Even 
when disabled, it can continue to execute any instructions in its queue. 

PIL-Processor Interrupt Level 

Bits 8 through 11 identify the processor's external interrupt priority level. The processor will only accept external inter­
rupts whose interrupt level is greater than the value in PIL. Bit 11 of the PIL is the MSB and bit 8 is the LSB. 

S -Supervisor 

Bit 7 determines whether the processor is in supervisor or user mode. Because WRPSR is privileged and only available 
in the supervisor mode, supervisor mode can only be entered by a software or hardware trap. 

0= user mode 

1 = supervisor mode 

PS-Previous Supervisor 

Bit 6 holds the value that was in the S bit at the time the most recent trap was taken. 
ET - Enable Traps 

Bit 5 determines whether traps are enabled. If traps are disabled, all asynchronous traps are ignored. If a synchronous 
or floating-point/coprocessor trap occurs while traps are disabled, the CY7C6011611 halts and enters the error mode 
(see Section 2.7 ). 

o = traps disabled 

1 = traps enabled 

CWP-Current Window Pointer 

Bits 0 through 4 contain a pointer to the currently active register file window. CWP is decremented by traps and the 
SAVE instruction, and is incremented by RESTORE and RETT instructions. 

The Floating-Point Enabled (EF) bit can be used by the programmer to control FPU use when running multiple processes. 
By disabling the EF bit while running a process that doesn't require the FPU, software would not have to save and restore 
the FPU's registers across context switc4es. If the FPU is not present, as signaled by the input pin, FP, the EF bit can 
be used to provoke floating-point instruction set emulation by generating a floating-point-disabled trap if execution of 
a floating-point instruction is attempted. This technique may be used with the coprocessor as well. 

If it is necessary for the software to manually disable traps, care must be taken when changing the ET bit from enabled 
(ET= 1) to disabled (ET=O), since the RDPSR, WRPSR instruction sequence is interruptible. One way to handle that 
is to write all interrupt trap handlers so that before they return program control to the supervisor software that was inter­
rupted, they restore the PSR to the value it had before the interrupt was taken. This will guarantee a correct result when 
the interrupted RDPSR, WRPSR sequence continues. The only PSR bit that cannot be restored is the PS bit, which is 
overwritten when the trap is taken. 

An alternative to the RDPSR-WRPSR sequence is to generate a "trap instruction" trap with a Ticc instruction. A taken 
trap automatically sets ET to 0, disabling further traps. 
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Window 0 
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Figure 2-8. Window Invalid Mask 

Trap Base Address (TBA) Trap Type (tt) 

20 8 

31 12 4 3 2 1 0 

Figure 2-9. Trap Base Register 

2.2.4.3 Window Invalid Mask Register (WIM) 

This register designates which window(s) will cause generation of an underflow or overflow trap when pointed to by the 
CWP as the result of a SAVE, RESTORE, or RETT instruction. 

Each bit in the WIM register (see Figure 2-8) corre,sponds to a window; if a bit is set to 1, the window corresponding to 
that bit is marked as invalid. If a SAVE, RESTORE, or RETT instruction would cause the CWP to point to a window 
whose WIM bit equals 1, a window overflow (SAVE) or window underflow (RESTORE, RETT) trap is generated. The 
trap handler uses the local registers of the invalidated window. 

A WIM bit is usually set by the operating system software to identify the boundary between the oldest and newest window. 
The overflow or underflow trap prevents previous windows from being overwritten or restores previous windows from 
memory. WIM can also be used to mark off register banks for fast context switching (see Section 2.2.1.1.3). 

WIM is read by the RDWIM instruction, and written by the WRWIM instruction. Bits corresponding to unimplemented 
windows read as zeros and are unaffected by writes. 

NOTE: The WIM register is NOT cleared during reset. It must be initialized by software. 

2.2.4.4 Trap Base Register (TBR) 

When a trap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR contains 
two fields that together constitute a pointer into the trap table, which in tum contains the trap handler address (see 
Figure 2-9). RDTBR can read the entire register; however, the WRTBR instruction can write only to the Trap Base Ad­
dress field. Only hardware can write to the Trap Type field, and bits 0 through 3 are zeros and are unaffected by a write. 
The Trap 1Jpe field can be directly manipulated using the Tiee instruction. For more information on trap operation, 
see Section 2.7. 

TBA-Trap Base Address 

Bits 12 through 31 contain the most-significant 20 bits of the trap table address. This field applies to all trap types except 
reset, which forces address O. The TBA is software controlled. 

tt-Trap 1Jpe 

Bits 4 through 11 comprise the nap Type field, an eight-bit value that provides an offset into the trap table based on the 
type of trap being taken (see Section 2.7.5.3). This field retains its value until the next trap is taken. 

2.2.4.5 Y Register 

The Y register is used by the multiply step instruction (MULSee) to create 64-bit products. This register is read and written 
using the non-privileged RDY and WRY instructions. 
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Table 2-2. Floating·Point Formats 

Single-hecision Floating-Point Format 

s == sign (1) 
e = biased exponent (8) 
f = fraction (23) 

normalized number (0 < e < 255): (-If' * 2e- 127 * 1.f 

subnormal (e = 0): f~O (-1f' * 2 - 126 * OJ 
zero (e = 0): f~ 0 (-I)S * 0 

signaling NaN: f~ 0 s = u; e = 255 (max); f = .Ouuu-uu 
(at least one bit must be nonzero) 

quiet NaN: f~ 0 s=u; e=255 (max); f=.luuu-uu 
infinity: s = 0 or 1, depending upon sign; 

e = 255 (max); f = .00-00 (all zeros) 

Double-Precision Floating-Point Format 

s = sign (1) 
e = biased exponent (11) 
f = fraction (52) 

normalized number (0 < e < 2047): (-1)S * 2e-l023 * 1.f 

subnormal (e = 0): f~ 0 (_I)S * 2 - 1022 * OJ 
zero (e=O): f~ 0 (-I)S * 0 

signaling NaN: f~ 0 s=u; e=2047 (max); f= .Ouuu-uu 
(at least one bit must be nonzero) 

quiet NaN: f~ 0 s=u; e=2047 (max); f= .1uuu-uu 
infinity: s = 0 or 1, depending upon sign; 

e = 2047 (max); f = .00-00 (all zeros) 

2.2.5 Data 1YPes 

The CY7C601/611 supports ten data types (eleven with extended-precision floating-point, see Section 2.2.5.3). Integer 
types include byte, unsigned byte, halfword, unsigned halfword, word, unsigned word, doubleword, and tagged data. 
ANSI/IEEE 754-1985 floating-point types include single- and double-precision. A byte is 8 bits wide, halfwords are 16 
bits, words and single-precision floating-point are 32 bits, doublewords and double-precision floating-point are 64 bits. 
Table 2-2 shows the formats for single-precision and double-precision floating-point numbers. 



CY7C601lCY7C611 Integer Unit 

BYTE 

UNSIGNED 
BYTE 

HALFWORD 

UNSIGNED 
HALFWORD 

SIGNED 
WORD 

UNSIGNED 
WORD 

TAGGED 
DATA 

DOUBLE 
WORD 

31 

I 
31 

31 

31 

lsi 
31 

I 
31 

I 
31 

31 

SSS .................. sss lsi BYTE I 
8 7 6 0 

000 ................... 000 BYTE I 
8 7 0 

SSS .......... sss lsi HALFWORD I 
16 15 14 0 

000 ........... 000 I HALFWORD I 
1615 0 

WORD I 
0 

WORD I 
0 

WORD I TAG I 
2 1 0 

WORD 0 MOST SIGNIFICANT WORD) 

WORD 1 LEAST SIGNIFICANT WORD 

~~E~7~ioN FP lsi EXPONENT I FRACTION 
31 30 23 22 o 

r(N) 

EXPONENT HIGH-ORDER BITS OF FRACTION f(N) 

LOW-ORDER BITS OF FRACTION f(N + 1) DOUBLE-
PRECISION FP 31 30 20 19 o 

Figure 2-10. Processor Data lYPes 

2.2.5.1 Data Organization In Registers 

The organization of the ten data types when loaded into registers is shown in Figure 2-10. 

When moving memory data to or from the registers, byte operands are always loaded to or extracted from the lower eight 
bits of a register. On a load, bits 8 through 31 are sign-extended for a byte or zero-extended for an unsigned byte. Half­
words are always loaded to or extracted from the lower 16 bits of a register. Bits 16 through 31 are sign-extended for a 
halfword or zero-extended for an unsigned halfword during a load. All 32 bits of a signed or unsigned word are loaded 
from or stored to memory. Stores of byte and halfword data are not sign-extended. lllgged data is handled as an unsigned 
word. Doubleword operands load to and store from two contiguous registers, r[ n] and r[ n + 1], with r[ n] containing the 
most significant word. Figure 2-11 illustrates the relationship between the way data is stored in memory and the way it 
is loaded into registers. 

For single-precision, floating-point operands, bit 31 contains the sign bit, bits 23 through 30 contain the eight bits of expo· 
nent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require a register pair, with the up­
per-order register (r[n]) containing the sign bit, ll-bit exponent, and the high-order bits of the fraction. The lower-order 
register (r[n + 1]) contains the low-order bits of the fraction. Total fraction size is 52 bits. 

When loading doublewords or double-precision operands from memory to the working registers (either r or f), the destina­
tion register must be at an even address or the hardware will force such an address. For example, an attempted load double 
to register r[9] would be forced to r[8], so that the most significant word would be loaded in r[8] and the least significant 
word in r[9]. A load double to r[O] would result in the loss of the most significant word. 
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Address N N+ 1 N+2 N+3 
Memory location =----::"""=""..""..""..""":-::------:=----~ 

Destination Register ... 3_1 _____ Z_er_o_es_o_r_S-'i9:;..n_E_xt_e_n_s_io_n ___ -="""_ ..... __ 

Byte Load Example (From Address N + 1) 

N+2 N+3 

Data Bus 

Source Register 

Byte Store Example (To Address N + 2) 

Figure 2-11 ... Byte Operand Load and Store 

63 Doubleword 0 

31 Word 0 31 Word 0 

15 Hallword 0 15 Hallword 0 15 Hallword 
0 15 Hallword 0 

7 Byte 
017 

Byte 0 7 Byte 017 Byte 0 7 Byte 017 Byte 0 7 Byte 
17 

Byte 0 
N N+1 N+2 N+3 N+4 N+5 N+6 N+7 

Figure 2-12. Data Organization in Memory 

2.2.5.2 Data Organization In Memory 

Organization and addressing of data in memory follows the "Big-Endian" convention wherein lower addresses contain 
the higher-order bytes (see Figure 2-12). For a stored word, address N corresponds to the most significant byte ofthe word, 
and address N + 3 corresponds to the least significant byte. The address of a halfword, word, or doubleword is also the 
address of its most significant byte. A halfword datum must be located on a halfword boundary (address bit < 0 > = 0), 
which is evenly divisible by 2. Sin1ilarly, a word must be located on a word boundary (address bits < 1:0> = 0) evenly 
divisible by 4, and a doubleword must be located on a doubleword boundary (address bits < 2:0 > = 0) evenly divisible 
by 8. Attempting to access misaligned data will generate a memory_address_not_aligned trap. 

2.2.5.3 Extended Precision 

The SPARC architecture supports another data type, an ANSI/IEEE 754-1985 extended-precision floating-point type 
with a width of 128 bits (see Table 2-3). For the present, however, the CY7C602 FPU does not in1plement extended-preci­
sion Floating-Point-operate (FPop) instructions, so they must be emulated in software. An extended-precision format 
FPop will generate a floating-point-exception trap if execution is attempted. 

When loaded to the working registers, extended-precision operands require a register quadruple (see Figure 2-13). The 
upper-order register (r[NJ) contains the sign bit, a IS-bit exponent, and a 16-bit reserved field. The next register (r[N + 1]) 
contains the one-bit integer part and 31 high-order bits of the fraction. The next register (r[N + 2]) holds the 32 low-order 
bits of the fraction. Thtal fraction size is 63 bits. The fourth extended-precision register (r[N + 3]) is reserved. As with 
double-precision operands, when loading an extended-precision operand, the destination register must be at an even ad­
dress or the hardware .will force an even address. 

The memory address of an extended-precision datum is also the address of its most significant byte (see Figure 2-14). An 
extended-precision datum must be located on an extended-precision boundary (address bits < 3:0 > = 0), which is evenly 
divisible by 16. 
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Table 2-3. Extended·Precision Floating.Point Format 

s = sign (1) 
e = biased exponent (15) 
j = integer part (1) 
f-msh f-lsb = f = fraction (63) 

normalized number (0 < e < 32767; j = 1): (-1) s • 2 e-16383 * j.f 
subnormal number ( e = 0; j = 0) (f ~ 0): (-1) s • 2 -16383 • j.f 
zero(s=O;e=O) (f~O)G~O): (-I)s'O 

signaling NaN: f~ 0 s = u; e = 32767 (max); j = u; 
f = .0 uuu uu (at least one bit 

must be nonzero) 
quiet NaN: f~ 0 s = u; e = 32767 (max); j = u; 

f = .1 uuu uu 
infinity: s = 0 or 1, depending upon sign; 

e = 32767 (max); j = u; 
f = .000 00 '(all zeroes) 

EXTENDED PRECISION FP rlN] SI EXPONENT I RESERVED 

128 

B3 

Word 
31 

AddressN 

2.3 Instruction Set 

rlN + 1] 

rlN + 2] 

rlN + 3] 

JI 

3130 

HIGH-ORDER BITS OF FRACTION 

LOW-ORDER BITS OF FRACTION 

RESERVED 

1615 

Figure 2-13. Extended· Precision Data Organization in Registers 

Extended - Precision Data 

Doubleword Doubleword 
o 83 

0131 
Word Word 

0131 31 

N+4 N+8 N+12 

Figure 2-14. Extended·Precision Data Organization in Memory 

Word 

o 

This section describes the CY7C601I611 instruction set as defined by the SPARC architecture. Included are subsections 
on instruction formats, addressing, instruction types, and an op code summary. Chapter 6, SPARC Instruction Set, con­
tains a description of the assembly language syntax and a complete set of instruction definitions. 

2.3.1 Instruction Formats 

There are only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruction, format 
2 for the SETHI and Branch instructions, and format 3 for the remaining integer and floating-point/coprocessor instruc­
tions. Figure 2-15 shows each format with its fields, bit positions, and the instructions that use that format. All instructions 
are one word long and aligned on word boundaries in memory. For most instructions, operands are located in source regis­
ters (represented by rs1 and rs2). The remaining instructions use one source register plus a displacement or immediate 
operand contained within the instruction itself. 
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CALL 

FORMAT 1 IO~g?el 
~31~~3~O--------------------------------------------------------~0 

30-Btt Displacement (disp30) 

SETHI 

22-Bit Immediate (imm22) 

o 

FORMAT 2 BRANCH 

22-Bit Displacement (disp22) 

o 

OTHER INTEGER INSTRUCTIONS 

opcode 
(op) Destination (rd) °rccode op3) Source 1 (rsl) 0 Alternate Space (asi) J Source 2 (rs2) 

opcode 
(op) Destination (rd) 0F<code 

op3) Source 1 (rsl) 1 13-Bit Immediate (simm13) 

31 30 25 19 14 13 5 o 
FORMAT 3 

a 

asi 
cond 

disp22 

disp30 

imm22 
op 

op2 

op3 

ope 

oPt 

rd 

rsl 

rs2 

simm13 

FLOATING POINT/COPROCESSOR OPERATIONS 

Source 1 (rsl) Source 2 (rs2) 

o 

Figure 2-15. Instruction Format Summary 

The a (annul) bit is used in branch instructions to control the execution of the delay instruction that immedi­
ately follows a control transfer instruction (see Section 2.3.3.4.3). 
The address space identifier is an eight-bit field used in load/store alternate instructions. See Section 2.3.2.6. 
This field identifies the condition code used for a branch instruction. 

This field contains the 22-bit displacement value used for PC-relative addressing for a taken branch. It is sign 
extended to full-word size when used. 
This field contains the 3D-bit displacement used for the PC-relative addressing of a CALL instruction. 
The i (immediate) bit determines whether the second ALU operand (for non-FPop instructions) will be r[ rs2] 
(i = 0), or a sign-extended simm13 (i = 1). 
This field contains the 22-bit constant used by the SETHI instruction. 
The op field selects the instruction format as shown in Table 2-4. 

The op2 field (Table 2-5) contains the instruction opcode for format 2 instructions (op = 0). 
The 6-bit op3 field contains the instruction opcode for a format 3 instruction (op = 2 or 3). 
The 9-bit ope identifies a coprocessor-operate (CPop) instruction. The relationship between the ope field and 
CPop instructions is described in Section 2.3.3.6. 
The 9-bit op[identifies a floating-paint-operate (FPop) instruction. The relationship between the op[field and 
FPop instructions is described in Section 2.3.3.6. 
The r register (or r register pair) or [register (or [register pair) specified in the rd field serves as the source 
during store instructions. For all other instructions, the identified register (register pair) serves as the destina­
tion. Note that r[D] as a source supplies the value 0, and as a destination causes the result to be discarded. Note 
that rd must be a r register for integer instructions and must be a [register for floating-point instructions. 
The 5-bit rsl field identifies the register containing the first source operand. The source is a r register for 
integer instructions, a [register for floating-point instructions, or a c register for coprocessor instructions. 
The 5-bit rs2 field identifies the register containing the second source operand. The source is a r registerfor 
integer instructions, a [register for floating-point instructions, or a c register for coprocessor instructions. 
This field holds the 13-bit immediate value used as the second ALU operand when i = 1. It is sign-extended to 
full-word size when used. 
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Table 2-4. op field Coding 

opValue Instruction 

00 Bicc, FBfcc,CBccc, SEmI 

01 Call 

10 or 11 Other 

Table 2-5. op2. Field Coding 

op2. Value Instruction 

000 UNIMPlemented 

010 Bicc 

100 SE1Hl 
110 FBfcc 
111 CBccc 

Unused (reserved) bit patterns which are used in the op, op2, op3, or i (wrong bit used) fields of instructions will cause 
an illegal_instruction trap. Fields that are not used for a particular instruction are ignored and so will not cause a trap, 
regardless of the bit pattern placed in that field. Unused or reserved bit patterns used in the oPt or ope fields of a floating­
point or coprocessor instruction cause an fp exception or a cp exception. 

2..3.2. Addressing 

Because it uses a load/store architecture, the CY7C601I611 needs only four address modes. Memory address generation 
is done only for load and store instructions and is byte oriented. Program counter-relative addressing is generated only 
for calls and branches and is word-boundary oriented because it is addressing instructions. Register-indirect addressing 
applies to jumps, returns, and traps and is also word-boundary oriented. Address generation is illustrated in Figure 2-16. 

2.3.2.1 7Ivo Register 

Two-register addressing uses the rsJand rs2 fields (instruction format 3) to specify two source registers whose 32-bit con­
tents are added together to create a memory address. This is a load/store (or register-indirect) addressing mode. 

2.3.2.2 Register Plus 13-Bit Immediate 

This addressing mode is used where an immediate value is required as one of the sources. The address is generated by 
adding the 32-bit source register specified by rsl (format 3) to a 13-bit, sign-extended immediate value contained in the 
instruction. This is a load/store (or register-indirect) addressing mode. 

2.3.2.3 13-Bit Immediate 

Immediate addressing is a special case of register-plus-immediate addressing. In this case, the rsl-specified register is r[O] 
(whose value is 0), which means the address is generated using only the 13-bit immediate value. Use of this special case 
allows absolute addressing of the upper and lower 4 kbytes of a memory (or instruction) space with the 13-bit immediate 
value. Immediate addressing is the simplest method of addressing because no registers need be set up beforehand. 
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Memory Address 
(Program Counter) 

Memory Address 
(Program Counter) 

31 13 0 

[:::~S~ig~n~E~xt!e~n!Sio~n;::::;[1 :::~1~3~-B~i~t I~m~m~ed~ia~te::l-I----"'" Memory Address 
- - (Program Counter) 

LOAD/STORE(JMPL, RETT) 

Program Counter + 4 

Program Counter 

3D-Bit Displacement 

CALL 

Program Counter + 4 

24 
Program Counter 

Sign Extension 22-Bit Displacement 

BRANCH 

Figure 2-16. Address Generation 

Address generation for the CALL instruction is program counter-relative, that is, the target address is based on the pro­
gram counter. Because the CY7C601/611 is a delayed-control-transfer machine (see Section 2.3.3.4 ), before the address 
is calculated, the PC is replaced by the nPC, so the calculation is actually done with PC + 4 (see Figure 2-16). 

An address is generated by adding this PC + 4 value to the 3D-bit word displacement contained in the CALL instruction. 
The displacement is formed by appending two zeros to the 3D-bit value from the instruction. This allows control transfers 
to any word-boundary location in the virtual memory instruction space. The result of the address generation becomes 
the newnPC. 

2.3.2.5 Branch 

Branch instructions also use PC-relative addressing, but in this case, the value added to PC + 4 is a sign-extended 22-bit 
word displacement. Again, the displacement is formed by appending two zeros to the 22-bit value contained in the branch 
instruction and then sign extending out to 32 bits. This allows a branching range of 8 Mbytes on word boundaries. The 
generated address becomes the new nPC. 
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Table 2-6. ASI Assignments 

CY7C601 CY7C611 
Address Space Identifier (ASI) Address Space Identifier (ASI) Address Space 

00001000 (08 H) 000 (0 H) Vser Instruction 

00001010 (OA H) 010 (2H) Vser Data 

00001001 (09 H) 001 (1 H) Supervisor Instruction 

00001011 (OB H) 011 (3 H) Supervisor Data 

2.3.2.6 ASI 

In addition to the 32 bits of address output by the processor, an additional eight bits of Address Space Identifier (ASI) 
is also sent to system memory during a memory access. These ASI bits control access to 256 32-bit address spaces, which 
mayor may not overlap depending upon the designer'S implementation. The SPARC architecture defines four ASI values 
for user instructions, user data, supervisor instructions, and supervisor data (see Table 2-6). These four ASI values all 
map to the same 32-bit address space, and are used to implement access-level protection. ASI values are commonly used 
to identify user/supervisor accesses, to identify special protected memory accesses such as boot PROM, and to access 
resources such as CY7C604/CY7C605 control registers, TLB entries, cache tag entries, etc .. 

The ASI value is supplied by the CY7C6011611 for each instruction fetch and each data access encountered. The CY7C600 
family assigns a number of these ASI values to the CY7C604/ CY7C605 and a number are reserved for future assignment. 
Nevertheless, nearly 80 are left unassigned for use by the system. Refer to Table 4-15 for ASI assignments reserved for 
the CY7C604/CY7C605. 

2.3.3 Instruction 'IYpes 

CY7C601I611 instructions fall into six functional categories: load/store, arithmetic/logical/shift, control transfer, read/ 
write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete information on each 
instruction, see Chapter 6. 

2.3.3.1 Load/Store 

Load and store instructions (see Table 2-7) move bytes, halfwords, words, and doublewords between the byte-addressable 
main memory and a register in either the IV, FPV, or CPo They are the only instructions that access data memory. For 
floating-point and coprocessor loads and stores, the CY7C6011611 generates the memory address and the FPV or CP 
receives or supplies the data. 

The CY7C601/611 implements a hardware-interlocked delay when an instruction immediately following a load tries to 
read the register being loaded. The data will be supplied, but only after a one-cycle delay. 

Load and store instructions use two-register, register-plus-immediate, and immediate addressing modes. In addition to 
the 32-bit address, the CY7C601/611 also generates an eight-bit address space identifier. 

2.3.3.1.1 AS! 

The Address Space Identifier (ASI) is used by the external system to ascertain which of the 256 available address spaces 
to access for the load or store being executed. Access to these alternate spaces can be gained directly by using the "load 
from alternate space" and "store to alternate space" instructions. These instructions use two-register addressing and the 
asi field in instruction format 3. The address space specified in the asi field overrides the automatic ASI assignment made 
by the processor, giving access to such resources as system control registers that are invisible to the user. Because the 
ASI is intended for use by the system operating software, the alternate space instructions are privileged and can only be 
executed in supervisor mode. 
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Thble 2-7. Load/Store Instructions 

Name Operation Cycles 

LDSB (LDSBA*) Load Signed Byte (from Alternate Space) 2 

LDSH (LDSHA*) Load Signed Halfword (from Alternate Space) 2 

LDUB (LDUBA*) Load Unsigned Byte (from Alternate Space) 2 

LDUH (LDUHA*) Load Unsigned Halfword (from Alternate Space) 2 

LD (LDN) Load Word (from Alternate Space) 2 

LDD (LDDA*) Load Doubleword (from Alternate Space) 3 

LDF Load Floating-Point 2 

LDDF Load Double Floating-Point 3 

LDFSR Load Floating-Point Status 2 

LDC Load Coprocessor 2 

LDDC Load Double Coprocessor 3 

LDCSR Load Coprocessor Status Register 2 

STB (STBN) Store Byte (into Alternate Space) 3 
STH (STHA*) Store Halfword (into Alternate Space) 3 
ST (STA*) Store Word (into Alternate Space) 3 
STD (STDA*) Store Doubleword (into Alternate Space) 4 

STF Store Floating-Point 3 
STDF Store Double Floating-Point 4 

STFSR Store Floating-Point Status Register 3 
STDFQ* Store Double Floating-Point Queue 4 

STC Store Coprocessor 3 

STDC Store Double Coprocessor 4 

STCSR Store Coprocessor State Register 3 
STDCQ* Store Double Coprocessor Queue 4 

LDSTUB (LDSTUBA*) Atomic Load-Store Unsigned Byte (in Alternate Space) 4 

SWAP (SWAPA*) Swap r Register with Memory (in Alternate Space) 4 
* denotes supervIsor lDstruchon 

2.3.3.i.2 Multiprocessing instructions 

In addition to alternate address spaces, the CY7C601I611 provides two uninterruptible instructions, SWAP and LDSTUB 
(atomic load and store unsigned byte), to support tightly coupled multiprocessing. 

The SWAP instruction exchanges the contents of an r register with a word from a memory location without allowing 
asynchronous traps or other memory accesses during the exchange. 

The LDSTUB instruction reads a byte from memory into an r register and then overwrites the memory byte to all ones. 
As with SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its execution. LDSTUB is used 
to construct semaphores. 

Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location are guaran­
teed that the competing instructions will execute in serial order. 

2.3.3.2 Arithmetic/Logical/Shift 

This class of instructions performs a computation on two source operands and writes the result into a destination register 
(r[rd]). One of the source operands is always a register, r[rs1], and the other depends on the. state of the instruction's 
"i" (immediate) bit. If i = 0, the second operand is register r[ rs2]. If i = 1, the operand is the 13-bit, sign-extended constant 
in the instruction's simmi3 field. SETHI is a special case because it is a single-operand instruction. 
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Table 2-8. Arithmetic/Logical/Shift Instructions 

Name Operation Cycles 

ADD (ADDcc) Add (and modify icc) 1 

ADDX (ADDXcc) Add with Carry (and modify icc) 1 

TADDcc (TADDccTV) Tagged Add and modiify icc (and Trap on oVerflow) 1 

SUB (SUBcc) Subtract (and modify icc) 1 

SUBX (SUBXcc) Subtract with Carry (and modify icc) 1 

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on OVerflow) 1 

MULScc Multiply Step and modify icc 1 

AND (ANDcc) And (and modify icc) 1 

ANDN (ANDNcc) And Not (and modify icc) 1 

OR (ORcc) Inclusive Or (and modify icc) 1 

ORN (ORNcc) Inclusive Or Not (and modify icc) 1 

XOR (XORcc) Exclusive Or (and modify icc) 1 

XNOR (XNORcc) Exclusive Nor (and modify icc) 1 

SLL Shift Left Logical 1 

SRL Shift Right Logical 1 

SRA Shift Right Arithmetic 1 

SETHI Set High 22 Bits of r Register 1 

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes and one 
that doesn't (see Table 2-8). 

Shift instructions shift left or right by a distance specified in either a register or an immediate value in the instruction. 

The multiply step instruction, MULScc, is used to generate the signed or unsigned 64-bit product of two 32-bit integers. 
For more information on MULScc, refer to its definition in Chapter 6. 

2.3.3.2.1 Register r[O] 

Because register r[O] reads as a 0 and discards any result written to it as a destination, it can be used with some instructions 
to create syntactically familiar pseudoinstructions. For example, an integer COMPARE instruction is created using the 
SUBcc (subtract and set condition codes) with r[O] as its destination. A TEST instruction uses SUBcc with r[O] as both 
the destination and one of the sources. A register-to-register MOVE is accomplished using an ADD or OR instruction 
with r[O] as one of the source registers. A negation is done with SUB and r[O] as one source. If the assembler being used 
supports psuedoinstructions, it translates the psuedoinstruction into the equivalent instruction in the native assembly 
language. Refer to your assembly language manual for details. 

2.3.3.2.2 SETHI 

SETHI is a special instruction that can be combined with another arithmetic instruction (such as an OR immediate) to 
construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the destination register and 
clears the lower 10 bits. The arithmetic immediate instruction which follows is used to load the lower 10 bits. Note that 
the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI value. SETHI can also be combined with a load 
or store instruction to construct a 32-bit memory address. 
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Figure 2-17. Tagged Data Example 
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I 01 01 
2 1 0 

I xl x I 
2 1 0 

At least one bit 
must be nOD-zero. 

The tagged arithmetic instructions are useful for languages that employ tags, such as USP, SmalltaIk, or Prolog. For effi­
cient support of such languages, the SPARC architecture defines tagged data as a data type. Thgged data are assumed 
to be 30 bits wide with the tag bits (the least two significant bits) set to zero (see Figure 2-17). A tagged add (TADDce) 
or subtract (TSUBce) will set the overflow bit if either ofthe operands has a nonzero tag or if a normal overflow occurs. 

Thgged add or subtract instructions are normally followed by a conditional branch. If the overflow bit is set during a tagged 
add or subtract operation, control is commonly transferred to a routine that checks the operand types. In order to expedite 
this software construct, the SPARC architecture provides two trap on overflow instructions: TADDceTV and TSUBccT\T, 
which automatically trap if the overflow bit is set during their execution. 

2.3.3.3 Control Transfer 

Control transfer instructions are those that change the values of the PC and nPC. These include conditional branches 
(Bicc, FBfcc, CBccc), a call (CAlL), a jump (JMPL), conditional traps (Tice), and a return from trap (RETf). Also in­
cluded are the SAVE and RESTORE instructions, which don't transfer control but are used to save or restore windows 
during a call to a new procedure or a return to a calling procedure (see Table 2-9). 

In the CY7C60l, control transfer is usually delayed so that the instruction immediately following the control-transfer 
instruction (called the delay instruction) can be executed before control transfers to the target address. The delay instruc­
tion is always fetched. However, the annul or a bit in conditional branch instructions can cause the instruction to be an­
nulled (i.e., prevent execution) if the branch is not taken (or always annulled in the case of BA, FBA, and CBA). If a 
branch is taken, the delay instruction is always executed (except for BA, FBA, and CBA, see Section 2.3.3.4.3). Table 2-10 
shows the characteristics of each control transfer type. 

Program Counter Relative 
PC-relative addressing computes the target address by adding a displacement to the program counter. See Section 
2.3.2. 

Register-Indirect 
Register-indirect addressing computes the target address as either r[rsl] + r[rs2] if i = 0, or r[rsl] + simm13 if i = 
1. See Section 2.3.2. 

Delayed 
A control-transfer instruction is delayed if it transfers control to the target address after a one-instruction delay. See 
Section 2.3.3.4. 

Annul Bit 
In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 2.3.3.4.3. 

2.3.3.3.1 Branching and the Condition Codes 

The condition code bits in the icc, fcc, and ccc fields, are located (respectively) in the PSR (Processor State Register), 
FSR (Floating-point State Register), and CSR (Coprocessor State Register). The integer condition code bits are modified 
by arithmetic and logical instructions whose names end with the letters cc, or they may be written directly with WRPSR. 
The floating-point condition codes are modified by the floating-point compare instructions, FCMP and FCMPE, or di­
rectly with the STFSR instruction. Modification of the coprocessor condition codes is done directly with STCSR or by 
operations defrned by the particular coprocessor implementation. 

Except for BA (Branch Always) and BN (Branch Never), a Bicc instruction evaluates the integer condition codes as speci­
fied in the cond field. If the tested condition evaluates as true, the branch is taken, causing a PC-relative delayed transfer 
to the address [(PC + 4) + sign extnd(disp22)]. If the evaluation result is false, the branch is not taken. For BA and BN, 
there is no evaluation; the result is simply forced to true for BA and false for BN. 
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Table 2-9. Control Transfer Instructions 

Name Operation Cycles 

SAVE SAVE caller's window 1 

RESTORE RESTORE caller's window 1 

Bicc Branch on integer condition codes 1· 

FBfcc Branch on floating-point condition codes 1· 

CBccc Branch on coprocessor condition codes 1· 

CALL Call 1· 

JMPL JuMP andUnk 2· 

RETT REThrn from Trap 2· 

Ticc nap on integer condition codes 1 (4 if taken) 

• assumes delay slot is filled with a useful instruction 

Table 2-10. Control Transfer Instruction Characteristics 

Instructions Addressing Mode Delayed Annul Bit 

Conditional Branch Program Counter Relative yes yes 

Call Program Counter Relative yes yes 

Jump Register Indirect yes no 

Return Register Indirect yes no 

Trap Register Indirect no no 

If the branch is not taken, then the annul bit is checked. If the "a" bit is set, the delay instruction is annulled. If "a" is 
not set, the delay instruction is executed. If the branch is taken, the annul bit is ignored and the delay instruction is ex­
ecuted. For more information on delayed control transfer and the annul bit, see Section 2.3.3.4. 

BN, of course, never branches, and therefore executes like a NOP (but is not recommended as a NOP instruction). How­
ever, as far as the annul bit is concerned, BN acts like a normal branch instruction, annulling the delay instruction if a 
= 1 and executing it if a = O. 

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and CBA, the 
effect of the annul bit is changed. See Section 2.3.3.4.3 for details. 

As illustrated in Table 2-11, Bice and Tice instructions test for the same conditions and use the same cond field codes 
during their evaluations. 

An FBfce instruction operates in the same way as a Bice, except it tests the FCC < 1:0> signals output by the CY7C602 
floating-point unit (see Table 2-12). The FCC < 1:0> signals are floating-point condition codes which are set by executing 
a floating-point compare instruction. A CBccc instruction behaves in the same manner as a FBfce, except it tests the 
CCC< 1:0> signals supplied by the coprocessor (see Table 2-13). Both FBN and CBN behave in the same way as BN. 

2.3.3.3.2 Trap Instructions 

The "Trap on integer condition codes" (fice) instruction evaluates the condition codes specified by its cond (condition) 
field. If the result is true, a trap is immediately taken (no delay instruction). If the condition codes evaluate to false, Tice 
executes as a NOP. 

Once the TIce is taken, it identifies which software trap type caused it by writing its trap number + 128 (the offset for 
trap instructions) into the tt field of the 1tap Base Register (fBR), as illustrated in Figure 2-18. The trap number is the 
least significant seven bits of either "r[ rsl] + r[rsZ]" if the i field is zero, or "r[ rs1] + sign extnd(simm13)" if the i field 
is one. The processor then disables traps (ET = 0), saves the state of S into PS, decrements the CWp, saves PC and nPC 
into the locals r[l7] and r[18] (respectively) ofthe new window, enters supervisor mode (S = 1), and writes the trap base 
register to the PC and TBR + 4 to nPC. 
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Table 2-11. Bice and Ticc Condition Codes 

Condo Test Condo Test 

0000 Never 1000 Always 
0001 Equal to 1001 Not equal to 
0010 Less than or equal 1010 Greater than 
0011 Less than 1011 Greater than or equal to 
0100 Less than or equal to, unsigned 1100 Greater than, unsigned 
0101 Carry set (less than, unsigned) 1101 Carry clear (greater than or equal to, unsigned) 
0110 Negative 1110 Positive 
0111 Overflow set 1111 Overflow clear 

Table 2-12. FBfee Condition Codes 

Condo Test Condo Test 

0000 Never 1000 Always 
0001 Not equal to 1001 Equal to 
0010 Less than or greater than 1010 Unordered or equal to 
0011 Unordered or less than 1011 Greater than or equal to 
0100 Less than 1100 Unordered or greater than or equal to 
0101 Unordered or greater than 1101 Less than or equal to 
0110 Greater than 1110 Unordered or less than or equal to 
0111 Unordered 1111 Ordered 

Table 2-13. CBece Condition Codes 

Opcode Condo CCC[l :0] Test Opcode Condo CCC[l :0] Test 

CBN 0000 Never CBA 1000 Always 
CBl23 0001 10r20r3 CBO 1001 0 
CB12 0010 lor 2 CB03 1010 a or 3 
CB13 0011 lor 3 CB02 1011 o or2 
CB1 0100 1 CB023 1100 00r20r3 
CB23 0101 20r 3 CB01 1101 Oar 1 
CB2 0110 2 CB013 1110 00r1or3 
CB3 0111 3 CB012 1111 Oar 10r2 

Trap Base Register 

1 Trap Base Address (TBA) 1 Trap Type (tt) 100001 
31 12 11 

128 

1 
4 3 

)-,-<7:.;,;:0,,->-.-, .. tt field of Trap Base Register 

i bit of lice instruction = 1 
128 I 
~==-_ tt field of Trap Base Register 

i bit of lice instruction = 0 

Figure 2-18. Tiee 'frap Address Generation 
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Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time checks, such as 
out-of-range array indices, integer overflow, etc. 

Return from a trap is accomplished using the delayed control transfer couple, JMPL, RETT. RETI first increments the 
CWPbyone, calculates the return address (using register-indirect addressing), and then checks for a number of trap con­
ditions before it allows a return. An illegaUnstrnction trap is generated if traps are enabled (ET= 1) when RETI is ex­
ecuted. If ET = 0, RETI checks for other trap conditions and will generate a reset trap and enter error mode for the 
following conditions: S=D, the new CWP would cause a window underflow, or the return address is not word aligned. 
If none of these conditions exist, RETI enables traps (ET = 1), restores the previous supervisor state to the S bit, and 
writes the target address into the nPC. 

2.3.3.3.3 Calls and Returns 

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target address using 
a PC-relative displacement of 3D-bits. The JuMP and Link (JMPL) instruction uses register-indirect addressing (the sum 
of two registers or the sum of a register and a 13-bit signed immediate value) to compute its target address. Either instruc­
tion allows control transfer to any arbitrary instruction address. 

Control transfer to a procedure that requires its own register window is done with either a CALL or JMPL instruction 
and a SAVE instruction. A procedure that does not need a new window, a so-called "leaf" routine, is invoked with only 
the CALL or JMPL. 

The CALL instruction stores its return address (the current PC) into outs register r[15]. When the new window is acti­
vated, this becomes ins register r[31] (see Figure 2-4). The JMPL instruction stores its return address (the contents of 
PC, which is the Link) into the r register specified in the destination field, rd. 

The primary purpose ofthe SAVE instruction is to "save" the caller's window by decrementing the Current Window Point­
er (CWP) by one, thereby activating the next window and makIDg the current window into the previous window. SAVE 
also performs a normal ADD, using source registers from the caller's window, but writing the result into a destination 
register in the new window. This can be used to set a new stack pointer from the previous one (see Section 2.2.1.1.1). 

Return from a procedure requiring its own window is done with a RESTORE and a JMPL instruction. A leaf procedure 
returns by executing a JMPL only. The target address for the return is normally that of the instruction following the 
CALI.;s or JMPI.;s delay instruction; that is, the return address + 8. The RESTORE instruction restores the caller's win­
dow by incrementing the CWP by one, causing the previous window to become the current window. As with SAVE, RE­
STORE performs an ADD using source registers from the called (new) window and writing the result into the calling 
(previous) window. 

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to check for window over­
flow or underflow. They may also be used to atomically change the CWP while establishing a new memory stack pointer 
in an r register. 

2.3.3.4 Delayed Control Transfer 

Traditional architectures usually execute the target instruction of a control transfer immediately after the control transfer 
instruction. However, in a pipelined RISC architecture, this type of transfer would require flushing the instruction that 
follows the control transfer instruction. To avoid creating a hole or bubble in the pipeline, the CY7C6D1I611 delays execu­
tion of the target instruction until the instruction following the control transfer instruction is executed. The instruction 
in this de1ay slot is called the delay instruction. 

Table 2-14. Delayed Control Transfer Instruction Example 

PC nPC Instruction 

8 12 Non-control transfer 
12 16 Control transfer (target = 40) 
16 40 Non-control transfer (delay instruction) 

(TranSfers control to 40) 

40 44 ... 
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Table 2-15. Effect of Annul Bit Reset (a == 0) 

PC nPC Instruction Action 

8 12 Non-control transfer Executed 
12 16 Bicc (a = 0) 40 Not Thken 
16 20 Delay slot instruction Executed 
20 24 ... Executed 

Table 2-16. Effect of Annul Bit Set (a == 1) 

PC nPC Instruction Action 

8 12 Non-control transfer Executed 
12 16 Bicc (a= 1) 40 Not Taken 
16 20 Delay slot inst. (annulled) Not Executed 
20 24 ... Executed 

2.3.3.4.1 PC and nPC 

The Program Counter (PC) contains the address of the instruction currently being executed by the CY7C601I611, and 
the next Program Counter (nPC) holds the address (pC + 4) of the next instruction to be executed (assuming a control 
transfer or a trap does not occur). 

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC by four or 
write a computed control transfer target address intonPC. At this point, the PC points to the instruction that is about 
to begin execution and the nPC points to the instruction that will be executed after that, i.e. the second instruction after 
the currently executing instruction. It is the existence of the nPC that allows the execution of the delay instruction before 
transfer of control to the target instruction. 

2.3.3.4.2 Delay Instruction 

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is called the delay 
instruction. Normally, this is the next sequential instruction in the code stream. However, if the instruction that preceded 
the delayed control transfer was itself a delayed control transfer, the target of the preceding control transfer becomes 
the delay instruction (that's where the nPC will point). For more on delayed control transfer couples, see Section 2.3.3.4.4. 

Table 2-14 shows the order of execution for a simple (not back-to-back) delayed control transfer. The order of execution 
is 8, 12, 16, 40. If the delayed-control-transfer instruction were not taken, the order would be 8, 12, 16, 20. 

2.3.3.4.3 Annul Bit 

The a (annul) bit is only available on conditional branch instructions (Bicc, FBfcc, and CBccc), where it changes the behav­
ior of the delay instruction. If a is set on a conditional branch instruction (except BA, FBA, and CBA) and the branch 
is not taken, the delay instruction is annulled (not executed). An annulled instruction has no effect on the state of the 
CY7C601I611 nor can a trap occur during an annulled instruction. If the branch is taken, the a bit is ignored and the delay 
instruction is executed. Table 2-15 and Table 2-16 show the effect of the annul bit when it is reset or set. 

The "branch always" instructions (BA, FBA, and CBA) are a special case. If the a bit is set in these instructions, the delay 
instruction is annulled, even though the branch is taken. Effectively, this gives a "traditional" non-delayed branch. When 
a = 0 in a ''branch always" instruction, it behaves the same as any other conditional branch; the delay instruction is ex­
ecuted. Figure 2-19 displays the effect the a bit has on any branch for either the set or reset state. Table 2-17 summarizes 
the effect the annul bit has on the execution of delay instructions. 
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Table 2-17. ElTect of Annul Bit on Delay Instruction 

a bit 'fYpe of branch Delay instruction executed? 

a = 1 Always No 

Conditional, taken Yes 

Conditional, not taken No 

a = 0 Always Yes 

Conditional, taken Yes 

Conditional, not taken Yes 

ANNUL = 0 ANNUL = 1 

Code Code 

Branch Untaken 
~~A_~_a~YS __________ ~ ______ ~Co~ndmon~ 

Co:1:naJ '-------'r-------' Taken 
Condition~ L-____ .....:,. ______ ...J 

~ 

Figure 2-19. Delayed Control Transfer 

2.3.3.4.4 Delayed Control Transfer Couples 

The occurrence of two back-to-back, delayed control transfer instructions is called a delayed control transfer couple, 
which the processor handles differently from a simple control transfer. An instruction sequence containing a delayed 
control transfer couple is shown in Table 2-18, and the order of execution for the six different cases of back-to-back, 
delayed control transfer instructions is shown in Table 2-19. 

The delay slot instruction for a delayed control transfer instruction is the instruction fetched after the delayed control 
transfer instruction. For most cases, this instruction is located immediately in the code listing ·after the delayed control 
transfer instruction. However, in the case of a delayed control transfer couple, the target instruction of the first delayed 
control transfer instruction is the delay slot instruction for the second delayed control transfer instruction, since that tar· 
get instruction is the next instruction to be fetched. The delay slot instruction for the second delayed control transfer 
instruction is the next instruction loaded into the instruction pipeline after the second delayed control transfer instruc­
tion. 

In the following tables, "delayed control transfer instruction" is abbreviated to "Den". A "Non-Den" may be either 
a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where the annul bit is not indi­
cated, it may be either 0 or 1. 

Case 1 of Table 2-19 includes the "JMPL, RETI" couple, which is the normal method of returuing from a trap handler. 
The JMPL, RETI couple ensures correct values of PC and nPC are restored upon exiting the trap routine, even in the 
case of a trap caused by a delay slot instruction (see Section 2.3.3.4.2). The case of a trap caused by a delay slot instruction 
is one where the nPC will not be PC + 4, thus requiring both PC and nPC to be restored. The JMPL, RETI couple 
allows the choice of re-executing the trapped instruction or executing the instruction following the trap occurrence. Refer 
to the RETI entry in Chapter 6 for further information. 
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Table 2-18. Delayed Control Transfer Couple Instruction Sequence 

Address Instruction Thrget 

8: Non DCTI 
12: DCTI 40 
16: DCTI 60 
20: NonDCTI 
24: ... 
... . .. 
40: Non DCTI 
44: '" ... ... 
60: NonDCTI 
64: ... 
.. , ... 

Table 2-19. Execution of Delayed Control Transfer Couples 

Case DCTI at Location 12 DCTI at Locatiou 16 Order of Execution 

1 DCTI Unconditional DCTITaken 12.16.40.60.64 •... 
2 DCTI Unconditional B*cc(a = 0) Untaken 12.16.40.44 .... 
3 DCTI Unconditional B*cc(a = 1) Untaken 12.16.44.48 .... (40 annulled) 
4 DCTI Unconditional B*A(a= 1) 12.16.60.64 .... (40 annulled) 
5 B*A(a= 1) any CTI 12.40.44 .... (16 annulled) 
6 B*cc DCTI Not Supported 

Definitions: 
B*A-----------BA.FBA. or CBA 
B*cc------------Bicc.FBicc. or CBicc (except B* A) 
DCTI Uncond.---CAlL,JMPL.RETT, or B*A(a=O) 
DCTI Taken-----CAlL,JMPL,RETT,B*cc taken. or B*A(a=O) 

Cases 1-5 described in Table 2-19 are illustrated in Figure 2-20. In case 1. the first DCTI is fetched at address 12 and 
the target address is calculated while the delay slot instruction is fetched. The delay slot instruction for the first DCTI 
(located at address 16) is another DCTI. which also has a delay slot. The target address of the first DCTI has been calcu­
lated by the time the first delay slot instruction has been fetched. and the target instruction is fetched at address 40. The 
target instruction is the instruction located in the instruction pipeline after the second DCTI. and therefore it is the delay 
slot instruction for the second DCTI. The target instruction for the second DCTI (address 60) is fetched after the delay 
slot instruction for the second DCTI (which is also the target address for the first DCTI) has been fetched. 

Case 2 differs from case 1 in that the second DCTI is conditional. and is not taken. In case 2, the instruction at address 
40 (target for DCTI #1) is the delay slot instruction for the second DCTI. Since the second DCTI does not cause a branch, 
the instruction fetch continues to address 44. 

Case 3 is an interesting case in which the target instruction of the first DCTI is annulled by the second DCTI. This causes 
the instruction at address 40 to be annulled. Since the second DCTI is an untaken conditional branch, instruction fetch 
continues after the annulled target instruction (address 44). 

Case 4 illustrates a DCTI followed by a branch always instruction with the annul bit set. This causes the target instruction 
of the first DCTI (address 40) to be annulled, and program control is transferred to the target of the second DCTI at 
address 60. 

Case 5 illustrates the case where the second DCTI is annulled by the annul bit of the first DCTI. The second DCTI, 
since it is annulled, has no effect on instruction fetch. This case is identical to the case of any other annulled delay slot 
instruction. 

When the first instruction of a delayed control transfer couple is a conditional branch, control transfer is undefined (case 
6). If such a couple is executed, the location where execution continues is within the same address space but is otherwise 
undefined. Execution of this sequence does not change any other aspect of the processor state. 
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Figure 2-20. Delayed Control 'fransfer Couples 

Table 2-20. ReadlWrite Control Register Instructions 

Name Operation Cycles 

RDY Read Y Register 1 

RDPSR* Read Processor State Register 1 

RDWIM* Read Window Invalid Mask 1 

RDTBR* Read Trap Base Register 1 

WRY Write YRegister 1 

WRPSR* Write Processor State Register 1 

WRWIM* Write Window Invalid Mask 1 

WRTBR* Write Trap Base Register 1 

* denotes supervisor instruction 
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Thble 2-21, Floating-Point-Operate and Coprocessor-Operate Instructions 

Name Operation Cycles 

FPop Floating-Point Operations 1 to launch 

CPop Coprocessor Operations 1 to launch 

Thble 2-22_ Miscellaneaous Instructions 

Name Operation Cycles 

UNIMP Unimplemented Instruction 1 

!FLUSH Instruction Cache Flush 1 

2.3.3.5 Read/Write Control Registers 

This class of instruction reads or writes the contents of the various control registers (see Table 2-20). The source (read) 
or destination (write) is implied by the instruction name. Read/write instructions are provided for the PSR, WIM, TBR, 
FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are privileged and are available in supervisor 
modeoniy. 

2.3.3.6 Floating-PoW-Operate and Coprocessor-Operate 

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are register-to-reg­
ister instructions that compute some result as a function of one or two source operands (see Table 2-21). The result is 
always placed in a destination register (i.e., source operands are not overwritten). The source and destination registers 
are fregisters from the CY7C602's register file. See Section 3.3.1 for more information. If no CY7C602 is present, or 
if the EF bit of the PSR is not set, executing a floating-point instruction will generate a fp disabled trap. 

Coprocessor-operate instructions (CPops) are executed by the attached coprocessor. Coprocessor instructions use the 
c registers located in the coprocessor's register file as source and destination registers. If there is no attached coprocessor, 
attempted execution of a coprocessor instruction generates a cp disabled trap. 

Floating-point and coprocessor load/store instructions are not operate instructions; they fall under the CY7C601I611's 
load/store instruction category (see Section 2.3.3.1). 

Except for op and op3, which specify the particular floating-point-operate or coprocessor-operate instruction to be ex­
ecuted, the instruction fields of an FPop or CPop are interpreted by the CY7C602 or coprocessor. Floating-point-operate 
instructions execute concurrently with CY7C601I611 instructions. CPops can also execute concurrently with both 
CY7C601 and FPop instructions if they are designed to do so. 

Because the CY7C6011611 and CY7C602 can execute instructions concurrently, when a floating-point exception occurs, 
the PC does contain the address of an FPop instruction, but not the one that caused the exception. However, the front 
entry of the floating-point queue contains the offending instruction and its address. 

If the coprocessor executes instructions concurrently with the CY7C601, the architecture will support a coprocessor 
queue that functions in the same fashion as the floating-point queue. 

2.3.3.7 MisceUaneous 

Instructions in this category handle special circumstances within the integer unit (see Table 2-22). Execution of the 
UNIMP instruction causes an illegal instruction trap, so its execution is normally avoided except as part of a checking 
routine. Details of one pOSSIble use for UNIMP are given in its definition in Chapter 6. 

The IFLUSH instruction is used to flush a word from an internal (to the CY7C601I611) instruction cache. Current integer 
unit implementations (CY7C601I611) do not incorporate an internal instruction cache, so IFLUSH would normallyex­
ecute as a NOP. However, if there is an external instruction cache, IFLUSH causes an illegal instruction trap if the Iff 
signal is LOW (see Section 2.4). 
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2.3.4 Op Codes 

This section contains tables that give a complete list of the instruction opcodes, both by functional groups and in ascending 
numeric order. 

2.3.4.1 Load/Store Instructions 

Table 2-23. Load/Store Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

W 1 1 rd 000000 rs1 i =0 asi I rs2 

i = 1 simm13 

WA 1 1 rd 010000 rs1 i =0 asi I rs2 

LDC 1 1 rd 110000 rs1 i =0 ignored I rs2 

i =1 simm13 

LDCSR 1 1 rd 110001 rs1 i =0 ignored I rs2 

i = 1 simm13 

WD 1 1 rd 000011 rs1 i =0 asi I rs2 

i = 1 simm13 

LDDA 1 1 rd 010011 rs1 i =0 asi I rs2 

WDC 1 1 rd 110011 rs1 i =0 ignored I rs2 

i =1 simm13 

LDDF 1 1 rd 100011 rs1 i =0 ignored J rs2 

i =1 simm13 

LDF 1 1 rd 100000 rs1 i =0 ignored I rsZ 

i = 1 simm13 

WFSR 1 1 rd 100001 rs1 i =0 ignored I rsZ 

i =1 simm13 

WSB 1 1 rd 001001 rs1 i =0 asi I rs2 

i =1 simm13 

LDSBA 1 1 rd 011001 rs1 i =0 asi I rs2 

LDSH 1 1 rd 001010 rs1 i =0 asi I rs2 

i =1 simm13 

WSHA 1 1 rd 011010 rs1 i =0 asi I rs2 

LDSTUB 1 1 rd 001101 rs1 i =0 asi I rs2 

i =1 simm13 

LDSTUBA 1 1 rd 011101 rs1 i =0 asi I rs2 

LDUB 1 1 rd 000001 rs1 i =0 asi I rsZ 

i =1 simm13 

LDUBA 1 1 rd 010001 rs1 i =0 asi I rsZ 

WUH 1 1 rd 000010 rs1 i =0 asi I rs2 

i =1 simm13 

LDUHA 1 1 rd 010010 rs1 i =0 asi I rsZ 

2-31 



CY7C601lCY7C611 Integer Unit 

Table 2-23. Load/Store Instruction Opcodes (continued) 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

ST 1 1 rd 000100 rsl i =0 asi I rs2 

i =1 simm13 

STA 1 1 rd 010100 rs1 i =0 asi I rs2 

~\rB 1 1 rd 000101 rs1 i =0 asi I rs2 
.J 

i =1 simm13 

STBA 1 1 rd 010101 rs1 i =0 asi I rs2 

STC 1 1 rd 110100 rs1 i =0 ignored I rs2 

i =1 simm13 

STCSR 1 1 rd 110101 rs1 i =0 ignored I rs2 

i =1 simm13 

STD 1 1 rd 000111 rs1 i =0 asi I rs2 

i = 1 simm13 

STDA 1 1 rd 010111 rsl i =0 asi I rs2 

SIDC 1 1 rd 110111 rs1 i =0 ignored I rs2 

i =1 simm13 

STDCQ 1 1 rd 110110 rsl i =0 ignored I rs2 

i =1 simm13 

STDF 1 1 rd 100111 rsl i =0 ignored I rs2 

i =1 simm13 

SIDFQ 1 1 rd 100110 rs1 i =0 ignored I rs2 

i =1 simm13 

STF 1 1 rd 100100 rsl i =0 ignored I rs2 

i =1 simm13 

STFSR 1 1 rd 100101 rs1 i =0 ignored I rs2 

i =1 simm13 

STH 1 1 rd 000110 rs1 i =0 asi I rs2 

i =1 simm13 

STHA 1 1 rd 010110 rs1 i =0 asi I rs2 

SWAP 1 1 rd 001111 rs1 i =0 asi I rs2 

i = 1 simm13 

SWAPA 1 1 rd 011111 rs1 i =0 asi I rs2 
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2.3.4.2 Arithmetic/Logical/Shift Instructions 

Table 2-24. Arithmetic/Logical/Shlft Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 2S 24 19 18 14 13 12 5 4 0 

ADD 1 0 rd 000000 rs1 i =0 ignored I rs2 

i =1 sirnrn13 

ADDcc 1 0 rd 010000 rs1 i =0 igoored I rs2 

i =1 sirnrn13 

ADDX 1 0 rd 001000 rs1 i =0 igoored I rs2 

i =1 sirnrn13 

ADDXcc 1 0 rd 011000 rs1 i =0 igoored I rs2 

i =1 sirnrn13 

AND 1 0 rd 000001 rs1 i =0 ignored I rs2 

i =1 sirnrn13 

ANDcc 1 0 rd 010001 rs1 i =0 igoored I rs2 

i =1 sirnrn13 

ANDN 1 0 rd 000101 rs1 i =0 igoored I rs2 

i =1 sirnrn13 

ANDNcc 1 0 rd 010101 rs1 i =0 ignored L rs2 

i =1 sirnrn13 

MUlScc 1 0 rd 100100 rs1 i =0 igoored I rs2 

i =1 sirnrn13 

OR 1 0 rd 000010 rs1 i =0 igoored I rs2 

i =1 sirnrn13 
ORcc 1 0 rd 010010 rs1 i =0 ignored I rs2 

i =1 sirnrn13 

ORN 1 0 rd 000110 rs1 i =0 igoored I rs2 

i =1 sirnrn13 

ORNcc 1 0 rd 010110 rs1 i =0 ignored I rs2 

i =1 sirnrn13 

SlL 1 0 rd 100101 rs1 i =0 ignored I rs2 

i =1 shent 

SRA 1 0 rd 100111 rs1 i =0 ignored I rs2 

i =1 shent 
SRL 1 Ii rd 100110 rs1 i =0 ignored L rs2 

i =1 shent 
SUB 1 0 rd 000100 rs1 i =0 ignored I rs2 

i =1 sirnrn13 

SUBcc 1 0 rd 010100 rs1 i =0 ignored I rs2 

i =1 sirnrn13 

SUBX 1 0 rd 001100 rs1 i =0 ignored I rs2 

i =1 sirnrn13 

SUBXcc 1 0 rd 011100 rs1 i =0 ignored I rs2 

i =1 sirnrn13 
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Table 2-24. ArithmeticlLogical/Shift Instruction Opcodes (continued) 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

TADDcc 1 0 rd 100000 rsl i -0 ignored I rs2 

i =1 sirnm13 

TADDccTV 1 0 rd 100010 rs1 i =0 ignored I rs2 

i =1 sirnm13 

TSUBcc 1 0 rd 100001 rs1 i =0 ignored I rs2 

i =1 simm13 

TSUBccTV 1 0 rd 100011 rs1 i =0 ignored I rs2 

i =1 simrn13 

XNOR 1 0 rd 000111 rsl i =0 ignored I rs2 

i =1 simrn13 

XNORcc 1 0 rd 010111 rsl i =0 ignored I rs2 

i =1 sirnrn13 

XOR 1 0 rd 000011 rsl i -0 ignored I rs2 

i =1 simrn13 

XORcc 1 0 rd 010011 rs1 i =0 ignored I rs2 

i =1 sirnrn13 

3130 29 25 2422 21 0 

SETHI 0 0 rd 100J imm22 
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2.3.4.3 Control Transfer Instructions 

Table 2-25. Control 1ransfer Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 2S 24 19 18 14 13 12 5 4 0 

JMPL 1 0 rd 111000 rs1 i =0 ignored I rs2 

i-I simm13 

RESTORE 1 0 rd 111101 rs1 i =0 ignored J rs2 

i =1 simm13 

RETI 1 0 ignored 111001 rs1 i =0 ignored 1 rs2 

i =1 simm13 

SAVE 1 0 rd 111100 rs1 i =0 ignored I rs2 

i = 1 simm13 

3130 29 28 25 2422 21 0 

Bicc 0 0 a cond 010 disp22 

CBccc 0 0 a cond 111 disp22 

FBfcc 0 0 a cond 110 disp22 

3130 29 2825 24 19 18 14 13 12 5 4 0 

Ticc 1 0 1* cond 111010 rs1 i =0 ignored J rs2 

i = 1 simm13 

CALL 0 1 disp30 

... I = ignored. 

Table 2-26. Bicc and Ticc Condition Codes 

Condo Test 

0000 Never 
0001 Equal to 
0010 Less than or equal to 
0011 Less than 
0100 Less than or equal 10, unsigned 
0101 Carry set (Jess than, unsigned) 
0110 Negative 
0111 Overflow set 
1000 Always 
1001 Not equal to 
1010 Greater than 
1011 Greater than or equal to 
1100 Greater than, unsigned 
1101 Carry clear (greater than or equal, unsigned) 
1110 Positive 
1111 Overflow clear 
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Table 2-27. FBfee Condition Codes 

Condo Test 

0000 Never 
0001 Not equal 
0010 Less than or greater than 
0011 Unordered or less than 
0100 Less than 
0101 Unordered or greater than 
0110 Greater than 
0111 Unordered 
1000 Always 
1001 Equal 
1010 Unordered or equal 
1011 Greater than or equal 
1100 Unordered or greater than or equal 
1101 Less than or equal 
1110 Unordered or less than or equal 
1111 Ordered 

Table 2-28. CBeee Condition Codes 

Opcode Condo CCC[1:01 Test 

CBN 0000 Never 
CB123 0001 10r20r3 
CB12 0010 lor2 
CB13 0011 lor3 
CB1 0100 1 
CB23 0101 2or3 
CB2 0110 2 
CB3 0111 3 
CBA 1000 Always 
CBO 1001 0 
CB03 1010 o or 3 
CB02 1011 00r2 
CB023 1100 00r20r3 
CB01 1101 o or 1 
CB013 1110 00r10r3 
CB012 1111 Oor 1 or2 

2.3.4.4 Read/Write Control Register Instructions 

Table 2-29. ReadIWrite Control Register Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 0 

RDPSR 1 0 rd 101001 ignored 1* ignored 

RDTBR 1 0 rd 101011 ignored 1* ignored 

RDWIM 1 0 rd 101010 ignored 1* ignored 

RDY 1 0 rd 101000 ignored 1* ignored 

3130 29 25 24 19 18 14 13 12 5 4 0 

WRPSR 1 0 ignored 110001 rs1 i =0 ignored I rs2 

i =1 simm13 

WRTBR 1 0 ignored 110011 rsl i =0 ignored I rs2 

i = 1 simm13 

WRWIM 1 0 ignored 110010 rs1 i =0 ignored I rs2 

i =1 simm13 

WRY 1 0 ignored 110000 rs1 i =0 ignored I rs2 

i =1 simm13 

• I = ignored. 
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2.3.4.5 Floating-l'rJintICoprocessor Instructions 

Table 2-30. Floating.Point ICoprocessor Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 5 4 0 
CPOPI 1 0 rd 110110 rsl OPC rs2 

CPOP2 1 0 rd 110111 rsl OPC rs2 
FABSs 1 0 rd 110100 ignored 000001001 rs2 
FADDs 1 0 rd 110100 rsl o 0 1 0 0 0 0 0 1 rs2 
FADDd 1 0 rd 110100 rsl o 0 1 0 0 0 0 1 0 rs2 
FADDx 1 0 rd 110100 rsl o 0 1 0 0 0 0 1 1 rs2 
FCMPs 1 0 ignored 110101 rsl o 0 1 0 1 0 001 rs2 
FCMPd 1 0 ignored 110101 rsl o 0 1 0 100 1 0 rs2 
FCMPx 1 0 ignored 110101 rsl o 0 1 0 100 1 1 rs2 
FCMPEs 1 0 ignored 110101 rsl o 0 1 0 1 0 101 rs2 
FCMPEd 1 0 ignored 110101 rsl o 0 1 0 1 0 1 1 0 rs2 
FCMPEx 1 0 ignored 110101 rsl o 0 1 0 1 0 1 1 1 rs2 
FDNs 1 0 rd 110100 rsl o 0 100 1 101 rs2 
FDNd 1 0 rd 110100 rsl o 0 100 1 1 1 0 rs2 
FDNx 1 0 rd 110100 rsl o 0 100 1 1 1 1 rs2 
FMOVs 1 0 rd 110100 ignored o 0 0 0 0 0 0 0 1 rs2 
FMULs 1 0 rd 110100 rsl o 0 100 100 1 rs2 
FMULd 1 0 rd 110100 rsl o 0 100 1 0 1 0 rs2 
FMULx 1 0 rd 110100 rsl o 0 100 1 0 1 1 rs2 
FNEGs 1 0 rd 110100 ignored o 0 0 0 0 0 101 rs2 

FSQRTs 1 0 rd 110100 ignored 00010 100 1 rs2 

FSQRTd 1 0 rd 110100 ignored 000101010 rs2 
FSQRTx 1 0 rd 110100 ignored 000101011 rs2 
FSUBs 1 0 rd 110100 rsl o 0 1 0 0 0 101 rs2 
FSUBd 1 0 rd 110100 rsl o 0 100 0 1 1 0 rs2 
FSUBx 1 0 rd 110100 rsl o 0 1 0 0 0 111 rs2 
FdTOi 1 0 rd 110100 ignored o 1 1 0 100 1 0 rs2 

FdTOs 1 0 rd 110100 ignored o 1 1 0 0 0 1 1 0 rs2 
FdTOx 1 0 rd 110100 ignored o 1 100 1 1 1 0 rs2 
FiTOd 1 0 rd 110100 ignored o 1 100 100 0 rs2 
FiTOs 1 0 rd 110100 ignored o 1 1 0 0 0 100 rs2 
FiTOx 1 0 rd 110100 ignored o 1 100 1 100 rs2 
FsTOd 1 0 rd 110100 ignored o 1 100 100 1 rs2 
FsTOi 1 0 rd 110100 ignored o 110 100 0 1 rs2 

FsTOx 1 0 rd 110100 ignored o 1 100 1 101 rs2 
FxTOi 1 0 rd 110100 ignored o 1 1 0 100 1 1 rs2 

FxTOs 1 0 rd 110100 ignored o 1 1 0 0 0 1 1 1 rs2 
FxTOd 1 0 rd 110100 ignored o 1 100 1 0 1 1 rs2 
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2.3.4.6 Miscellaneous Instructions 

Table 2-31. Miscellaneous Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

IFLUSH 1 0 ignored 111011 I rs1 Ii =0 I ignored I rs2 

Ii =1 I simm13 

UNlMP 0 0 ignored 0001 const22 

2.3.4.7 Opcodes In Ascending Numeric Order 

Table 2-32. Instruction Opcode Numeric Listing 

Opcodes with Format 

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0 

UNlMP 0 0 ignored 000 consl22 

Bicc 0 0 a I cond 010 disp22 

SETHI 0 0 rd 100 imm22 

FBfcc 0 0 a I cond 110 disp22 

CBccc 0 0 a I cond 111 disp22 

CALL 0 1 disp30 

ADD 1 0 rd 000000 rs1 i =0 ignored I rs2 

i =1 simm13 

AND 1 0 rd 000001 rs1 i =0 ignored I rs2 

i =1 simm13 

OR 1 0 rd 000010 rs1 i =0 ignored I rs2 

i =1 simm13 

XOR 1 0 rd 000011 rs1 i =0 ignored J rs2 

i =1 simm13 

SUB 1 0 rd 000100 rs1 i =0 ignored I rs2 

i =1 simm13 

ANDN 1 0 rd 000101 rs1 i =0 ignored I rs2 

i =1 simm13 

ORN 1 0 rd 000110 rs1 i =0 ignored I rs2 

i =1 simm13 

XNOR 1 0 rd 000111 rs1 i =0 ignored I rs2 

i =1 simm13 

ADDX 1 0 rd 001000 rs1 i =0 ignored I rs2 

i =1 simm13 

SUBX 1 0 rd 001100 rs1 i -0 ignored I rs2 

i =1 simm13 

ADDcc 1 0 rd 010000 rs1 i =0 ignored I rs2 

i =1 simm13 

ANDcc 1 0 rd 010001 rs1 i =0 ignored I rs2 

i =1 simm13 

ORcc 1 0 rd 010010 rs1 i =0 ignored I rs2 

i =1 simm13 
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Table 2-32. Instruction Opcode Numeric Listing (continued) 

Opcodes with Format 

Mnemonic 3130 29 25 24 22 2119 18 14 13 12 5 4 0 

XORcc 1 0 rd 010011 rs1 i =0 ignored I rs2 

i =1 simm13 

SUBcc 1 0 rd 010100 rsl i =0 ignored I rs2 

i =1 simm13 

ANDNcc 1 0 rd 010101 rs1 i =0 ignored I rs2 

i =1 simm13 

ORNcc 1 0 rd 010110 rs1 i =0 ignored I rs2 

i = 1 simm13 

XNORcc 1 0 rd 010111 rs1 i =0 ignored I rs2 

i = 1 simm13 

ADDXcc 1 0 rd 011000 rs1 i =0 ignored I rs2 

i =1 simm13 

SUBXcc 1 0 rd 011100 rs1 i =0 ignored I rs2 

i = 1 simm13 

TADDcc 1 0 rd 100000 rs1 i =0 ignored I rs2 

i =1 simm13 

TSUBcc 1 0 rd 100001 rs1 i =0 ignored I rs2 

i = 1 simm13 

TADDccTV 1 0 rd 100010 rs1 i =0 ignored I rs2 

i = 1 simm13 

TSUBccTV 1 0 rd 100011 rs1 i =0 ignored I rs2 

i = 1 simm13 

MULScc 1 0 rd 100100 rs1 i =0 ignored I rs2 

i =1 simm13 

SlL 1 0 rd 100101 rs1 i =0 ignored I rs2 

i = 1 shent 

SRL 1 0 rd 100110 rs1 i =0 ignored I rs2 

i = 1 shent 

SRA 1 0 rd 100111 rs1 i =0 ignored I rs2 

i =1 shent 

RDY 1 0 rd 101000 ignored 1* ignored 

RDPSR 1 0 rd 101001 ignored 1* ignored 

RDWIM 1 0 rd 101010 ignored 1* ignored 

RDTBR 1 0 rd 101011 ignored 1* ignored 

WRY 1 0 ignored 110000 rs1 i =0 ignored I rs2 

i =1 simm13 

WRPSR 1 0 ignored 110001 rs1 i =0 ignored I rs2 

i = 1 simm13 

WRWIM 1 0 ignored 110010 rs1 i =0 ignored I rs2 

i =1 simm13 

WRTBR 1 0 ignored 110011 rs1 i =0 ignored I rs2 

i =1 simm13 
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Table 2-32. Instruction Opcode Numeric Listing (continued) 

Opcodes with Format 

Mnemonic 3130 29 25 2422 2119 18 14 13 12 S 4 0 
FPOP1 1 0 rd 110100 rsl OPF rs2 
FMOVs 1 0 rd 110100 ignored o 0 0 0 0 0 0 0 1 rs2 
FNEGs 1 0 rd 110100 ignored 000 000 101 rs2 
FABSs 1 0 rd 110100 ignored 00000 100 1 rs2 
FSQR'IS 1 0 rd 110100 ignored 00010 100 1 rs2 

FSQRTd 1 0 rd 110100 ignored 000101010 rs2 
FSQRTx 1 0 rd 110100 ignored 000101011 rs2 
FADDs 1 0 rd 110100 rs1 o 0 1 0 0 0 0 0 1 rs2 
FADDd 1 0 rd 110100 rsl o 0 100 0 0 1 0 rs2 
FADDx 1 0 rd 110100 rsl o 0 100 0 0 1 1 rs2 

FSUBs 1 0 rd 110100 rsl o 0 1 000 101 rs2 
FSUBd 1 0 rd 110100 rs1 o 0 1 0 0 0 1 1 0 rs2 

FSUBx 1 0 rd 110100 rsl o 0 1 000 1 1 1 rs2 
FMULs 1 0 rd 110100 rs1 o 0 100 100 1 rs2 
FMULd 1 0 rd 110100 rsl o 0 100 1 0 1 0 rs2 
FMULx 1 0 rd 110100 rs1 o 0 100 101 1 rs2 
FDIVs 1 0 rd 110100 rs1 o 0 100 1 101 rs2 

FDIVd 1 0 rd 110100 rs1 o 0 100 1 110 rs2 
FDIVx 1 0 rd 110100 rs1 o 0 100 1 1 1 1 rs2 
FiTOs 1 0 rd 110100 ignored o 1 1 0 0 0 100 rs2 
FdTOs 1 0 rd 110100 ignored o 1 1 0 0 0 1 1 0 rs2 
FilTOs 1 0 rd 110100 ignored o 1 1 0 0 0 1 1 1 rs2 
FiTOd 1 0 rd 110100 ignored o 1 100 1 000 rs2 

FsTOd 1 0 rd 110100 ignored o 1 100 100 1 rs2 
FilTOd 1 0 rd 110100 ignored o 1 100 101 1 rs2 

FiTOx 1 0 rd 110100 ignored o 1 100 1 100 rs2 
FsTOx 1 0 rd 110100 ignored o 1 100 1 101 rs2 
FdTOx 1 0 rd 110100 ignored o 1 100 1 1 1 0 rs2 

FsTOi 1 0 rd 110100 ignored o 1 1 0 1 000 1 rs2 
FdTOi 1 0 rd 110100 ignored o 1 1 0 100 1 0 rs2 
FilTOi 1 0 rd 110100 ignored o 1 1 0 100 1 1 rs2 

FPOP2 1 0 rd 110101 rsl OPF rs2 

FCMPs 1 0 ignored 110101 rsl o 0 1 0 1 000 1 rs2 

FCMPd 1 0 ignored 110101 rsl o 0 1 0 100 1 0 rs2 

FCMPx 1 0 ignored 110101 rsl o 0 1 0 100 1 1 rs2 

FCMPEs 1 0 ignored 110101 rsl o 0 1 0 1 0 101 rs2 

FCMPEd 1 0 ignored 110101 rs1 o 0 1 0 1 0 1 1 0 rs2 

FCMPEx 1 0 ignored 110101 rs1 o 0 1 0 1 0 1 1 1 rs2 

CPOPl 1 0 rd 110110 rs1 OPe rs2 

CPOP2 1 0 rd 110111 rs1 OPe rs2 

JMPL 1 0 rd 111000 rs1 i =0 I ignored rs2 

i =11 simm13 
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Table 2-32. Instruction Opcode Numeric Listing (continued) 

Opcodes with Format 

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0 
RETT 1 0 ignored 111001 rs1 i -0 ignored rs2 

i =1 simm13 

Ticc 1 0 10' cond 
111010 rs1 i =0 ignored rs2 

i -1 simm13 

IFLUSH 1 0 ignored 111011 rs1 i -0 ignored rs2 

i -1 simm13 

SAVE 1 0 rd 111100 rs1 i -0 ignored rs2 

i -1 simm13 

RESTORE 1 0 rd 111101 rs1 i =0 ignored rs2 

i =1 simm13 

LD 1 1 rd 000000 rs1 i =0 asi rs2 

i -1 simm13 

LDUB 1 1 rd 000001 rs1 i -0 asi rs2 

i =1 simm13 

LDUH 1 1 rd 000010 rs1 i =0 asi rs2 

i =1 simm13 

LDD 1 1 rd 000011 rsl i -0 asi rs2 

i -1 simm13 

ST 1 1 rd 000100 rs1 i -0 asi rs2 

i =1 simm13 

STB 1 1 rd 000101 rs1 i =0 asi rs2 

i =1 simm13 

STH 1 1 rd 000110 rs1 i -0 asi rs2 

i -1 simm13 

STD 1 1 rd 000111 rs1 i =0 asi rs2 

i = 1 simm13 

LDSB 1 1 rd 001001 rs1 i =0 asi rs2 

i =1 simm13 

LDSH 1 1 rd 001010 rs1 i =0 asi rs2 

i = 1 simm13 

LDSTUB 1 1 rd 001101 rs1 i -0 asi rs2 

i -1 simm13 

SWAP 1 1 rd 001111 rs1 i -0 asi rs2 

i =1 simm13 

LDA 1 1 rd 010000 rs1 i =0 asi rs2 

LDUBA 1 1 rd 010001 rs1 i =0 asi rs2 

LDUHA 1 1 rd 010010 rs1 i -0 asi rs2 

LDDA 1 1 rd 010011 rs1 i -0 asi rs2 

STA 1 1 rd 010100 rs1 i -0 asi rs2 

STBA 1 1 rd 010101 rs1 i =0 asi rs2 

STHA 1 1 rd 010110 rs1 i =0 asi rs2 

STDA 1 1 rd 010111 rs1 i =0 asi rs2 
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Table 2-32. Instruction Opcode Numeric Listing (continued) 

Opcodes with Format 

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0 
LDSBA 1 1 rd 011001 rs1 i =0 asi rs2 
LDSHA 1 1 rd 011010 rs1 i =0 asi rs2 
LDSTUBA 1 1 rd 011101 rs1 i =0 asi rs2 
SWAPA 1 1 rd 011111 rs1 i =0 asi rs2 
LDF 1 1 rd 100000 rs1 i =0 ignored rs2 

i =1 simm13 
LDFSR 1 1 rd 100001 rs1 i =0 ignored rs2 

i =1 simm13 
LDDF 1 1 rd 100011 rs1 i =0 ignored rs2 

i =1 simm13 
STF 1 1 rd 100100 rs1 i =0 ignored rs2 

i =1 simm13 
STFSR 1 1 rd 100101 rs1 i =0 ignored rs2 

i-I simm13 
STOFQ 1 1 rd 100110 rs1 i =0 ignored rs2 

i =1 simm13 
STOF 1 1 rd 100111 rs1 i =0 ignored rs2 

i =1 simm13 
LDC 1 1 rd 110000 rs1 i =0 ignored rs2 

i =1 simm13 
LDCSR 1 1 rd 110001 rs1 i =0 ignored rs2 

i =1 simm13 

LDDC 1 1 rd 110011 rs1 i =0 ignored rs2 

i =1 simm13 
STC 1 1 rd 110100 rs1 i =0 ignored rs2 

i =1 simm13 
STCSR 1 1 rd 110101 rs1 i =0 ignored rs2 

i =1 simm13 
STDCQ 1 1 rd 110110 rs1 i =0 ignored rs2 

i =1 simm13 
STOC 1 1 rd 110111 rs1 i =0 ignored rs2 

i =1 simm13 

2-42 



CY7C601lCY7C611 Integer Unit 

2.4 Signal Description 

This section provides a description of the CY7C60l's (and CY7C611's) external signals. Functionally, the IV's external 
signals can be divided into four categories: memory subsystem interlace, floating-point/coprocessor interlace, interrupt 
and control signals, and power and clock signals. 
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Figure 2-21. CY7C60l/CY7C611 External Signals 

Signals that are active LOW are marked with an overscore; all others are active HIGH. Figure 2-21 summarizes the sig­
nals described in this section. Table 2-33 provides a summary of the external signals for the CY7C601. The external signal 
summary for the CY7C611 is listed in Table 2-40 in Section 2.9. 

Note: In the descriptions below, and in this manual in general, when a signal is asserted it is active, and when it is deas· 
serted it is inactive. When a signal is HIGH, it is a logical 1; when it is LOW, it is a logical O. This is true regardless of 
whether it is asserted or deasserted. 

2-43 



CY7C601lCY7C611 Integer Unit 

Table 2-33. CY7C601 External Signal Summary 

Memory Subsystem Interface Signals: 

Pin Name Description SignallYpe Active 
A<31:0> Address Bus Three-State Output 

AOE Address Output Enable Input WW 

ASI<7:0> Address Space Identifier Three-State Output 

COE Control Output Enable Input WW 

BHOW Bus Hold Input WW 

D< 31:0> Data Bus Three-State BiDir. 

DOE Data Output Enable Input WW 

DXFER Data 'fransfer Three-State Output HIGH 

1FT Instruction Cache Flush nap Input WW 

INULL Integer Unit Nullify Cycle Three-State Output HIGH 

WSW Atomic Load-Store Three-State Output HIGH 

WCK Bus Lock Three-State Output HIGH 

MAO Memory Address Output Input HIGH 

MDS Memory Data Strobe Input LOW 

MEXC Memory Exception Input WW 

MHOWA Memory Bus Hold A Input WW 

MHOWB Memory Bus Hold B Input WW 

RD Read Access Three-State Output HIGH 

SIZE< 1:0> Bus 1tansaction Size Three-State Output 

WE Write Enable Three-State Output WW 

WRT Advanced Write Three-State Output HIGH 

Floating.Point I Coprocessor Interface Signals: 

Pin Name Description SignallYpe Active 
CCC<I:O> Coprocessor Condition Codes Input 

CCCV Coprocessor Condition Codes Valid Input HIGH 

CEXC Coprocessor Exception Input WW 

CHOW Coprocessor Hold Input WW 

CINSI Coprocessor Instruction in Buffer 1 Three-State Output HIGH 

CINS2 Coprocessor Instruction in Buffer 2 Three-State Output HIGH 

CP Coprocessor Unit Present Input WW 

CXACK Coprocessor Exception Acknowledge Three-State Output HIGH 

FCC<I:O> Floating-Point Condition Codes Input 

FCCV Floating-Point Condition Codes Valid Input HIGH 

FEXC Floating-Point Exception Input WW 

FHOW Floating-Point Hold Input WW 

FINSI Floating-Point Instruction in Buffer I Three-State Output HIGH 

FINS2 Floating-Point Instruction in Buffer 2 Three-State Output HIGH 

FLUSH Floating-Point/Coprocessor Instruction Flush Three-State Output HIGH 

FP Floating-Point Unit Present Input WW 

FXACK Floating-Point Exception Acknowledge Three-State Output HIGH 

INST Instruction Fetch Three-State Output HIGH 
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Table 2-33. CY7C601 External Signal Summary (continued) 

Interrupt and Control Signals: 

Pin Name Description Signal'JYpe Active 
IRL< 3:0> Interrupt Request Level Input 

INTACK Interrupt Acknowledge Three-Slate Output HIGH 

RESET Reset Input WW 
ERROR Error Slate Three-State Output WW 
FPSYN Floating-Point Synonym Mode Input HIGH 

TOE 'Thst Mode Output Enable Input WW 

Power and Clock Signals: 

Pin Name Description Signal1)pe 
CLK Clock Input 

VCCI Main internal vee Input 

VCCO Output driver VCC Input 

vcer Input circuit VCC Input 

VSSI Main internal VSS Input 

VSSO Output driver VSS Input 

VSST Input circuit VSS Input 

The following sections describe the external signals for the CY7C601 and CY7C611. Signals that are modified for the 
CY7C611 are listed in brackets, such as fA <23:0 > j. Signals not available on the CY7C611 are denoted as [Not available 
on CY7C611j. 

2.4.1 Memory Subsystem Interface Signals 

Memory interface signals consist of the address lines (40 bits), bidirectional data lines (32 bits), transaction size lines (2 
bits), and various control signals. 

2.4.1.1 A<3I:0> -Address Bus (output) [A <23:0>] 

The 32-bit address bus carries instruction or data addresses during a fetch or load/store operation. Addresses are sent 
out unlatched and must be latched external to the CY7C601I611. Assertion of the MAO signal during a cache miss (which 
is signaled by pulling one of the MHOLD lines low) will force the Integer Unit to place the previous (missed) address 
on the address bus. The address bus is three-stated when the AOE or TOE signal is deasserted (HIGH). 

2.4.1.2 AOE-Address Output Enable (input) [Not available on CY7C611] 

Assertion of this signal enables the output drivers for the address bus, A < 31:0 >, and the ASI bus, ASI < 7:0 >, and is 
the normal condition. Deassertion of AOE three-states the output drivers and should only be done when the bus is 
granted to another bus master (i.e., when either BHOLD or MHOLDAIB is asserted). 

2.4.1.3 ASI< 7:0> -Address Space Identifier (output) [ASI<2:0>] 

These 8 bits constitute the Address Space Identifier (ASI), which identifies the memory address space to which the instruc­
tion or data access is being directed. The ASI bits are sent out unlatched-simultaneously with the memory address-and 
must be latched externally. Assertion of the MAO signal during a cache miss (which is signaled by pulling one of the 
MHOLD lines low) will force the integer unit to place the previous address space identifier on the ASI < 7:0 > pins. The 
ASI pins are three-stated when the AOE or TOE signal is deasserted (HIGH). Encoding of the ASI bits is shown in 
Table 2-34. Additional ASI assignments for the SPARC architecture are listed in Table 4 -15. 
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Table 2-34. ASI Assignments 

CY7C601 CY7C611 
Address Space Identifier (ASI) Address Space Identifier (ASI) Address Space 

00001000 (08 H) 000 (0 H) User Instruction 

00001010 (OA H) 010 (2H) User Data 

00001001 (09 H) 001 (1 H) Supervisor Instruction 

00001011 (OB H) 011 (3 H) Supervisor Data 

2.4.1.4 BHOW-Bus Hold (input) 

BHOLD is asserted when an external bus master wants control of the data bus. Assertion of this signal will freeze the 
processor pipeline, so after deassertion of BHOLD, external logic must guarantee that the data at all inputs to the 
CY7C601/611 is the same as it was before BHOLD was asserted. This signal is tested on the falling edge (midpoint) of 
a cycle and must be valid and stable at the processor for the duration of the specified set-up time prior to the falling edge 
of CLK. All HOLD signals are latched in the CY7C601I611 (transparent latch with clock high) before they are used. 
Because MDS and MEXC signals are not recognized while this input is active, BHOLD should only be used for bus access 
requests by an external device. BHOLD should not be asserted when LOCK is asserted. 

2.4.1.5 COE-Control Output Enable (input) [Not available on CY7C611] 

Assertion of this signal enables the output drivers for SIZE < 1:0>, RD, WE, WRT, LOCK, LDSTO, and DXFER out­
puts, and is the normal condition. Deassertion of COE three-states these output drivers and should only be done when 
the bus is granted to another bus master (i.e., when either BHOLD or MHOLDAIB is asserted). 

2.4.1.6 D<31:0> -Data Bus (bidirectional) 

These pins form a 32-bit bidirectional data bus that serves as the interface between the integer unit and memory. The 
data bus is only driven by the CY7C601I611 during the execution of integer store instructions and the store cycle of atom­
ic-load-store instructions. Similarly, the CY7C602 FPU drives the data bus only during the execution of floating-point 
store instructions. 

Store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during 
the second data cycle of a store single access, the second and third data cycle of a store double access, and the third data 
cycle of an atomic-load-store access. 

Alignment for load and store instructions is performed by the processor. Doublewords are aligned on 8-byte boundaries, 
words on 4-byte boundaries, and halfwords on 2-byte boundaries. If a doubleword, word, or halfword load or store instruc­
tion generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and operands 
are always expected to reside in a 32-bit wide memory. D < 31 > corresponds to the most significant bit of the most signifi­
cant byte of a 32-bit word going to or from memory. 

2.4.1.7 DOE-Data Output Enable (input) [Not available on CY7C611] 

Assertion of this signal enables the output drivers for the data bus, D < 31:0 >, and is the normal condition. Deassertion 
of DOE three-states the data bus output drivers and should only be done when the bus is granted to another bus master 
(i.e., when either BHOLD or MHOLDAIB is asserted). 

2.4.1.8 DXFER-Data Transfer (output) [Not available on CY7C611] 

DXFER is used to differentiate between the addresses being sent out for instruction fetches and the addresses of data 
fetches. DXFER is asserted by the processor during the address cycles of all bus data transfer cycles, including both cycles 
of store single and all three cycles of store double and atomic load-store. DXFER is sent out unlatched and must be 
latched externally before it is used. 

2.4.1.9 1FT -Instruction Cache Flush Trap (input) [Not available on CY7C611J 

The state of this pin determines whether or not execution of the IFLUSH instruction generates a trap. If IFT=O, then 
execution of IFLUSH causes an illegal instruction trap. If 1FT = 1, then IFLUSH executes like a NOP with no side effects. 
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2.4.1.10 /NULL-Integer Unit Nullify Cycle (output) 

The processor asserts INUll to indicate that the current memory access is being nullified. It is asserted in the same cycle 
in which the address being nullified is active (though no longer on the address bus, the address is held in the external 
address latches). INULL is used to prevent a cache miss (in systems with cache memory) and to disable memory exception 
generation for the current memory access. This means that MDS and MEXC should not be asserted for a memory access 
in which INULL = 1. !NULL is a latched output and should not be latched externally. If a floating-point unit or coproces­
sor is present in the system, INULL should be ORed with the FNULL and CNULL signals to generate a final NULL 
signal. 

INULL is asserted under the following conditions: 

1. During the second data cycle of any store instruction (including Atomic Load-Store) to nullify the second occurrence 
of the store address. 

2. On all traps, to nUllify the third instruction fetch after the trapped instruction. For reset, it nullifies the error-produc­
ing address. 

3. On a load in which the hardware interlock is activated. 

4. JMPL and RETI instructions. 

2.4.1.11 LDSTO-Atomic Wad-Store (output) 

This signal is used to identify an atomic load-store to the system and is asserted by the integer unit during all the data 
cycles (the load cycle and both store cycles) of atomic load-store instructions. LDSTO is sent out unlatched and must 
be latched externally before it is used. 

2.4.1.12 WCK-Bus liJck (output) 

LOCK is asserted by the processor when it needs to retain control of the bus (address and data) for multiple cycle transac­
tions (Load Double, Store Single and Double, Atomic Load-Store). The bus will not be granted to another bus master 
as long as LOCK is asserted. Note that BHOLD should not be asserted in the processor clock cycle which follows a cycle 
in which LOCK is asserted. LOCK is sent out unlatched and must be latched externally before it is used. 

2.4.1.13 MAO-Memory Address Output (input) 

This signal is asserted during an MHOLD condition to force the previous (missed) memory access parameters back on 
their various buses and control lines. The miss parameters are those that were valid on the rising edge of the clock, one 
cycle before the cycle in which MHOLD was asserted. A logic HIGH value at this pin during a cache miss causes the 
integer unit to put A<31:0>, ASI<7:0>, SIZE < 1:0>, RD, WE, WRT, LDSTO, LOCK, and DXFER values corre­
sponding to the missed memory address on the bus. 

Normally, MAO is kept at a LOW level, thereby selecting the access parameters for the current memo~ddress. MAO 
should not be used for a cache miss during a store cycle, because it would select the wrong value for WE. 

MAO must be driven LOW while RESET is LOW. 

2.4.1.14 MDS-Memory Data Strobe (input) 

MDS is asserted by the memory system to enable the clock to the integer unit's instruction register (during an instruction 
fetch) or to the load result register (during a data fetch) while the pipeline is frozen with an MHOLDAIB. In a system 
with cache, MDS is used to signal the processor when the missed data (cache miss) is ready on the data bus. In a system 
with slow memories, MDS tells the processor when the read data is available on the bus. During a cache line replacement, 
MDS may be asserted anywhere within the MHOLD ~ and deasserted before MHOLD is released. For example, if 
a cache miss occurs on word 2 of a 4-word cache line, MDS should only be driven active while word 2 is being replaced 
in the cache. 

MDS is also used to strobe in the MEXC memory exception signal. MDS may only be asserted when the pipeline is frozen 
with MHOLDAIB. The CY7C601I611 samples MDS with an on-chip transparent latch before it is used. 

2.4.1.15 MEXC-Memory Exception (input) 

Assertion of this signal by the memory system initiates an instruction access exception or data access exception trap and 
indicates to the CY7C601I611 that the memory system was unable to supply a valid instruction or data. If MEXC is as-
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serted during an instruction fetch cycle, it generates an instruction access exception trap. If asserted during a data cycle, 
it generates a data access exception trap. 

MEXC is used as a qualifier for the MDS signal, and must be asserted when both MHOLDAIB and MDS are already 
asserted. If MDS is applied without MEXC, the CY7C601I611 accepts the contents of the data bus as valid. If MEXC 
accompanies MDS, an exception is generated and the data bus content is ignored. 

MEXC is latched in the processor on the rising edge of CLK and is used in the following cycle. MEXC must be deasserted 
in the same clock cycle in which MHOLDAIB is deasserted. 

2.4.1.16 MHOLD(AIB)-Memory Holds (inputs) 

MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for systems with 
cache memory) or when accessing a slow memory. The processor pipeline is frozen while MHOLDA is asserted and the 
CY7C6011611 outputs revert to and maintain the value they had at the rising edge of the clock in the cycle in which 
MHOLDA was asserted. This signal is tested on the falling edge (midpoint) of a cycle and must be valid and stable at 
the processor for the duration of the specified set-up time prior to the falling edge of CLK. 

MHOLDB behaves in the same fashion as MHOLDA, and either can be used to stop the processor during a cache miss 
or memory exception. The pipeline is actually frozen by a "final" hold signal that is the logical OR of all hold signals 
(MHOLDA, MHOLDB, and BHOLD). All HOLD signals are latched in the CY7C6011611 (transparent latch with clock 
high) before they are used. 

Note that MHOLD must be driven HIGH while RESET is LOW. 

2.4.1.17 RD-Read Access (output) 

RD is sent out during the address portion of an access to specify whether the current memory access is a read (RD = 1) 
or a write (RD = 0) operation. RD is set to "0" only during the address cycles of store instructions. For atomic load-store 
instructions, RD is "1" during the load address cycle and "0" during the two store address cycles. It is sent out unlatched 
by the Integer Unit and must be latched externally before it is used. 

RD is used in conjunction with SIZE < 1:0>, ASI < 7:0 >, and LDSTO to determine the type and to check the read/write 
access rights of bus transactions. It may also be used to tum off the output drivers of data RAMs during a store operation. 

2.4.1.18 SlZE<1:0> -Bus Transaction Size (outputs) 

The coding on these pins specifies the size of the data being transferred during an instruction or data fetch. The value 
of the size bits during a given cycle relates only to the memory address which appears on pins A < 31:0 > simultaneously 
with the size outputs. It does not apply to data which may be on the data bus during that same cycle. 

Size bits are sent out unlatched and must be latched external to the CY7C601I611 before they are used. SIZE < 1:0 > 
remains valid during the data address cycles ofloads, stores, load doubles, store doubles, and atomic load-stores. Encoding 
of the size bits is shown in Table 2-35. For example, during an instruction fetch, SIZE < 1:0> is set to "10", because all 
instructions are 32 bits long. For doubleword instructions, SIZE < 1:0 > is "11" for all data address cycles. 

Table 2-35. SIZE Bit Encoding 

SIZE<l> SIZE<O> Data 1ransfer 1YPe 

0 0 Byte 

0 1 Halfword 

1 0 Word 

1 1 Word (Load/Store Double) 

2.4.1.19 WE-Write Enable (output) 

WE is asserted by the integer unit during the cycle in which the store data is on the data bus. For a store single instruction, 
this is during the second store address cycle; the second and third store address cycles of store double instructions, and 
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the third load-store address cycle of atomic load-store instructions. It is sent out unlatched and must be latched externally 
before it is used. Th avoid writing to memory during memory exceptions, WE must be externally qualified by the 
MHOLDAIB signals. 

2.4.1.20 WRT-Advanced Write (output) 

WKr is an early write signal, asserted by the processor during the first store address cycle of integer single or double store 
instructions, the first store address cycle of floating-point single or double store instructions, and the second load-store 
address cycle of atomic load-store instructions. WKr is sent out unlatched and must be latched externally before it is used. 

2.4.2 F1oating.Point/Coprocessor Interface Signals 

The IU incorporates a dedicated group of pins that act as direct-connect interfaces between the integer unit and both 
the floating-point unit and the coprocessor. Using these connections, no external circuits are required to interface the 
IU to the FPU and coprocessor. The interfaces consist of the following signals: 

2.4.2.1 CCC < 1:0 > -Coprocessor Condition Codes (input) [Not available on CY7C611] 

These lines represent the current condition code bits from the Coprocessor State Register (CSR), qualified by the CCCV 
signal. When CCCV = 1, these bits are valid. During the execution of a CBccc instruction, the processor uses CCC < 1:0 > 
to determine whether or not to take the branch. These bits are latched by the processor before they are used. 

2.4.2.2 CCCV-Coprocessor Condition Codes Hzlid (input) {Not available on CY7C611] 

This signal is a specialized hold used to synchronize coprocessOr compare instructions with coprocessor branch instruc­
tions. It is asserted (the normal condition) whenever the CCC < 1:0> bits are valid. A coprocessor would deassert CCCV 
(CCCV = 0) as soon as a coprocessor compare instruction enters the coprocessor queue, unless an exception is detected 
(see Section 2.8). Deasserting CCCV freezes the integer unit pipeline, preventing any further compares from entering 
the pipeline. CCCV is reasserted when the compare is completed and the coprocessor condition codes are valid, thus 
ensuring that the condition codes match the proper compare instruction. CCCV is latched in the CY7C601 before it is 
used. 

2.4.2.3 CEXC-Coprocessor Exception (input) [Not available on CY7C611] 

CEXC is used to signal the integer unit that a coprocessor exception has occurred. CEXC must remain asserted until 
the CY7C601 takes the trap and acknowledges the FPU exception via the CXACK signal. Although coprocessor excep­
tions can occur at any time, they are taken by the CY7C601 only during the execution of a subsequent CPop, a CBfcc 
instruction, or a coprocessor load or store instruction. A coprocessor implementation should deassert CHOLD if it de­
tects an exception while CHOLD is asserted. In such a case, CEXC should be asserted one cycle before CHOLD is deas­
serted. CEXC is latched in the CY7C601 before it is used. 

2.4.2.4 CHOW-Coprocessor Hold (input) {Not available on CY7C611] 

This signal is asserted by the coprocessor if a situation arises in which it cannot continue execution. The coprocessor checks 
all dependencies in the decode stage of the instruction and asserts CHOLD (if necessary) in the next cycle. If the integer 
unit receives a CHOLD, it freezes the instruction pipeline in the same cycle. Once the conditions causing the CHOLD 
are resolved, the coprocessor deasserts CHOLD, releasing the instruction pipeline. CHOLD is latched in the CY7C601 
before it is used. 

The conditions under which the coprocessor asserts CHOLD are implementation dependent. 

2.4.2.5 CINSI-Coprocessor Instruction in Buffer 1 (output) [Not available on CY7C611] 

CINSI is asserted by the integer unit during the decode stage of the coprocessor instruction that is in the Dl buffer of 
the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the Dl instruction, and to latch 
it into its execute-stage register. CINSland CINS2 are never asserted in the same cycle. 
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2.4.2.6 CINS2-Coprocessor Instruction in Buffer 2 (output) (Not available on CY7C611) 

CINS2 is asserted by the Integer Unit during the decode stage of the coprocessor instruction that is in the D2 buffer of 
the coprocessor chip. The Coprocessor uses this signal to begin decoding and execution of the D2 instruction, and to latch 
it into its execute-stage register. CINSI and CINS2 are never asserted in the same cycle. 

2.4.2.7 CP-Coprocessor Unit Present (input) [Not available on CY7C611] 

When pulled low, CP indicates that a coprocessor is available to the system. It is normally pulled up to VDD through 
a resistor, and then grounded by connection to the coprocessor. The integer unit will generate a cp disabled trap if CP = 1 
during the execution of an CPop, CBfcc, or coprocessor load or store instruction. 

2.4.2.8 CXACK-Coprocessor Exception Acknowledge (output) [Not available on CY7C611] 

CXACK is asserted by the integer unit to inform the coprocessor that a trap has been taken for the currently asserted 
CEXC signal. Receipt of the asserted CXACK causes the coprocessor to deassert CEXC, which in tum causes the to 
deassert CXACK. CXACK is a latched output and should not be latched externally. 

2.4.2.9 FCC < 1:0 > -Rooting-Point Condition Codes (input) 

These lines represent the current condition code bits from the FPU's Floating-point State Register (FSR), qualified by 
the FCCV signal. When FCCV = 1, these bits are valid. During the execution of an FBfcc instruction, the processor uses 
FCC < 1:0> to determine whether or not to take the branch. These bits are latched by the processor before they are used. 

2.4.2.10 FCCV-Roating-Point Condition Codes Valid (input) 

This signal is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions. 
It is asserted (the normal condition) whenever the FCC < 1:0> bits are valid. The CY7C602 deasserts FCCV (FCCV = 0) 
as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected (see Sec­
tion 3.2.1.2.1). Deasserting FCCV freezes the integer unit pipeline, preventing any further compares from entering the 
pipeline. FCCVis reasserted when the compare is completed and the floating-point condition codes are valid, thus ensur­
ing that the condition codes match the proper compare instruction. FCCV is latched in the CY7C6011611 before it is used. 

2.4.2.11 FEXC-Roating-Point Exception (input) 

FEXC is used to signal the integer unit that a floating-point exception has occurred. FEXC must remain asserted until 
the CY7C60I/611 takes the trap and acknowledges the FPU exception via the FXACK signal. Although floating-point 
exceptions can occur at any time, they are taken by the CY7C601I611 only during the execution of a subsequent FPop, 
an FBfcc instruction, or a floating-point load or store instruction. The CY7C602 deasserts PHOW if it detects an excep­
tion while FHOLD is asserted. In such a case, FEXC is asserted one cycle before FHOLD is deasserted. FEXC is latched 
in the CY7C601I611 before it is used. 

2.4.2.12 FHOLD-Roating-Point Hold (input) 

This signal is asserted by the CY7C602 if a situation arises in which the FPU cannot continue execution. The FPU checks 
all dependencies in the decode stage of the instruction and asserts FHOW (if necessary) in the next cycle. If the integer 
unit receives an FHOW, it freezes the instruction pipeline in the same cycle. Once the conditions causing the FHOLD 
are resolved, the FPU deasserts FHOW, releasing the instruction pipeline. FHOLD is latched in the CY7C601I611 be· 
fore it is used. 

An FHOLD is asserted if (1) the FPU encounters an S1FSR instruction with one or more FPops pending in the queue, 
(2) if either a resource or operand dependency exists between the FPop being decoded and any FPops already being ex­
ecuted, or (3) if the floating-point queue is full. 

2.4.2.13 FINS1-Rooting-Point Instruction In Buffer 1 (output) 

FINSI is asserted by the integer unit during the decode stage of the floating-point instruction that is in the DI buffer 
of the floating-point unit (see Section 3.2 ). The FPU uses this signal to begin decoding and execution of the D 1 instruc-
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tion, and to latch it into its execute-stage register. FlNSI and FlNS2 are never asserted in the same cycle and both are 
ignored if (1) FLUSH is asserted, (2) any HOW is asserted, or (3) if FCCV or CCCV is deasserted. 

2.4.2.14 FINS2-l'Joating-Point Instruction In Buffer 2 (output) 

FlNS2 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D2 buffer 
of the floating-point Unit (see Section 3.1). The FPU uses this signal to begin decoding and execution of the D2instruction, 
and to latch it into its execute-stage register. FINSI and FlNS2 are never asserted in the same cycle and both are ignored 
if (1) FLUSH is asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted. 

2.4.2.15 FWSH-l'Joating-PointICoprocessor Instruction Flush (output) 

This signal is asserted by the integer unit whenever it takes a trap. FLUSH is used by the FPU (or coprocessor) to flush 
the instructions in its instruction buffers. These instructions, as well as the instructions annulled in the CY7C601I611's 
pipeline, are restarted after the trap handler is finished. If the trap was not caused by a floating-point (or coprocessor) 
exception, instructions already in the floating-point (or coprocessor) queue may continue their execution. If the trap was 
caused by a floating-point (or coprocessor) exception, the fp (or cp) queue must be emptied before the FPU (coprocessor) 
can resume execution. 

2.4.2.16 FP-Flooting-point Unit Present (input) 

When pulled low, FP indicates that a floating-point unit is available to the system. It is normally pulled up to VDD through 
a resistor, and then grounded by connection to the FPU. The integer unit will generate an fp disabled trap if FP = 1 during 
the execution of an FPop, FBfcc, or floating-point load or store instruction. 

2.4.2.17 FXACK-Floating-Point &x:eption Acknowledge (output) 

FXACK is asserted by the integer unit to inform the floating-point unit that a trap has been taken for the currently as­
serted FEXC signal. Receipt of the asserted FXACK causes the FPU to deassert FEXC, which in turn causes the 
CY7C6011611 to deassert FXACK. FXACK is a latched output and should not be latched externally. 

2.4.2.18 INST-Instruction Fetch (output) 

The INST signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the floating-point 
unit or coprocessor to latch the instruction currently on the data bus into an FPU or coprocessor instruction buffer. 
SPARC-compatible floating-point units and coprocessors have two instruction buffers (D1 and D2) to save the last two 
fetched instructions (see Section 3.2). When INST is asserted, a new instruction enters buffer D1 and the instruction that 
was in D1 moves to buffer D2. INST is a latched output and should not be latched externally. 

2.4.3 Interrupt and Control Signals 

The following signals are used by the integer unit to control and to receive input from external events. 

2.4.3.1 ERROR-Error Sfllte (output) 

This signal is asserted when the integer unit enters the error mode state. This happens if a synchronous trap occurs while 
traps are disabled (the PSR's ETbit =0). Before it enters the error mode state, the CY7C6011611 saves the PC and nPC 
and sets the trap type (tt) for the trap causing the error mode into the TBR. It then asserts the ERROR signal and halts. 
The only way to restart a processor which is in the error mode state is to trigger a reset by asserting the RESET signal. 

2.4.3.2 FPSYN-Floating-point Synonym Mode (input) 

This is a mode pin which will be used to allow execution of additional instructions in future designs. For the CY7C601I611, 
it should be kept grounded. 

2.4.3.3 INTACK-Interrupt Acknowledge (output) 

INTACK is a latched output that is asserted by the integer unit when an external interrupt is taken, not when it is sampled 
and latched. 
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2.4.3.4 IRL < 3:0> -Interrupt Request Level (input) 

The state of these pins dermes the External Interrupt Level (IRL). IRL < 3:0 > = 0000 indicates that no external inter­
ruptsare pending and is the normal state ofthe IRL pins. IRL< 3:0 > = 1111 signifies a nonmaskable interrupt. All other 
interrupt levels are maskable by the Processor Interrupt Level (PIL) field of the Processor State Register (PSR). The 
integer unit uses two on-chip synchronizing latches to sample these signals, and a given level must remain valid for two 
consecutive cycles to be recognized. External interrupts should be latched and prioritized by external logic before they 
are passed to the CY7C601/611. Logic must also keep an interrupt valid until it is taken and acknowledged. External 
interrupts can be acknowledged by system software or by the CY7C601/611's INThrrupt ACKnowledge (INTACK) signal. 

2.4.3.5 1iESi!.T -Integer Unit Reset (input) 

Assertion of this pin will reset the integer unit. RESET must be asserted for a minimum of eight processor clock cycles. 
After RESET is deasserted, the integer unit starts fetching from address O. RESET is latched by the CY7C601I611 before 
it is used. 

2.4.3.6 TOE-7I!st Mode Output Enable (input) 

When deasserted, this signal will three-state all integer unit output drivers. Thus, in normal operation, this pin should 
always be asserted (tied to ground). Deassertion of TOE isolates the CY7C601I611 from the system for debugging pur­
poses. 

2.4.4 Power and Clock Signals 

The signals listed below provide clocking and power to the integer unit. 

2.4.4.1 CLK-Dock (input) 

CLK is a 5O%-duty-cycle clock used for clocking the integer unit's pipeline registers. The rising edge of CLK defines the 
beginning of each pipeline stage and a processor cycle is equal to a full clock cycle. 

2.4.4.2 JlCCO, VCCI, JlCCT -PrJwer (inputs) 

These pins provide + SV power to various sections of the processor. Power is supplied on three different buses to provide 
clean, stable power to each section: output drivers, main internal circuitry, and the input circuits. VCCO pins supply the 
output driver bus; VCCI pins supply main internal circuitry bus; and VCCT pins supply the input circuit bus. See Section 
7.1 for pin identification. 

2.4.4.3 JSSO, JSSI, JSST -Ground (inputs) 

These pins provide ground return for the power signals. Ground is supplied on three different buses to match the power 
signals to each section: VSSO pins for the output driver buS; VSSI pins for the main internal circuitry bus; and VSST 
pins for the input circuit bus. See Section 7.1 for pin identification. 

2.5 Pipeline and Instruction Execution Timing 
One of the major contributing factors to the CY7C601I611's very high performance is an instruction execution rate ap­
proaching one instruction per clock cycle. Th achieve that rate of execution, the CY7C601/611 employs a four-stage in­
struction pipeline that permits parallel execution of multiple instructions. 
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Figure 2-22. Processor Instruction Pipeline 
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Figure 2-23. Pipeline with All Single. Cycle Instructions 

2.5.1 Stages 

Instruction execution is broken into four stages corresponding to the stages of the pipeline: 

1. Fetch-The processor outputs the instruction address to fetch the instruction. 

2. Decode-The instruction is placed in the instruction register and decoded. The processor reads the operands from 
the register file and computes the next instruction address. 

3. Execute-The processor executes the instruction and saves the results in temporary registers. Pending traps are priori-
tized and internal traps taken during this stage. 

4. Write-If no trap is taken, the processor writes the result to the destination register. 

All four stages operate in parallel, working on up to four different instructions at a time. A basic "single-cycle" instruction 
enters the pipeline and completes in four cycles. By the time it reaches the write stage, three more instructions have 
entered and are moving through the pipeline behind it. So, after the first four cycles, a single-cycle instruction exits the 
pipeline and a single-cycle instruction enters the pipeline on every cycle (see Figure 2-23). 

Of course, a "single-cycle" instruction actually takes four cycles to complete, but they are called single cycle because with 
this type of instruction the processor can complete one instruction per cycle after the initial four-cycle delay. 

2.5.1.1 Internal Opcodes 

Instructions that require extra cycles automatically insert internal opcodes (lOPs) into the decode stage as they move into 
the execute stage. These internal opcodes are unique to the instruction that generates them. They move all the way 
through the pipeline, performing functions specific to the instruction that created them. For example, in Figure 2-24, 
the data load in cycle four can be thought of as the fetch for the lOP that starts in cycle three; together they make a com­
plete four-cycle instruction that balances out the pipeline. JMPL and RETf also generate an lOp, but have no external 
data cycle. 

Multicycle instructions may generate up to three lOPs to complete execution. Table 2-36 lists the instructions that require 
lOPs and the number generated. 

Because instructions continue to be fetched even though lOPs occupy the decode stage, a two-stage prefetch buffer is 
used to hold instructions until they can move into the decode stage (see Figure 2-22). This enables the processor to fully 
utilize the data bus bandwidth and still keep the pipeline full. Only two buffers are required because a maximum of two 
cycles are available for instruction fetching for any multicycle instruction. 
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Table 2-36. Internally Generated Opcodes 

Instruction Number of Iuternal Opcodes 

Single Loads 1 

Double Loads 2 
Single Stores 2 
Double Stores 3 

Atomic Load-Store 3 

Jump 1 
Return from Trap 1 

2.5.2 Multicycle Instructions 

Multicycle instructions are those that take more than four cycles (one bus cycle plus the three pipeline cycles) to complete. 
A double-cycle instruction takes five cycles (two bus cycles), a triple-cycle instruction takes six cycles (three bus cycles), 
and so on. 

In most cases, the extra cycles required by muJticycle instructions result from data bus usage (e.g., a data load or store 
to memory) that prevents the processor from fetching the next instruction during those cycles. In Figure 2-24, the fetch 
of instruction Inst 3 is delayed by one cycle for the data load, and inFigure 2-25, the store sequence delays the Inst 3 fetch 
by two cycles. 

DXFER 

INST 

Figure 2-24. Pipeline with One Double·Cycle Instruction (Load) 
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RD 

DXFER 

LOCK 

WRT 

INULL 

INST 

Figure 2-25. Pipeline with One Triple·Cycle Instruction (Store) 
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INULL 

INST 

Figure 2-26. Pipeline with Hardware Interlock (Load) 

2.5.2.1 Register Interlocks 

The pipeline holds several instructions at any given time, so it is possible that an instruction may try to use the contents 
of a particular register which is in the process of being updated by a previous instruction. Special bypass paths in the pipe· 
line of the CY7C6011611 make the correct data available to subsequent instructions for all internal register to register 
operations, but cannot solve the problem of loads to the registers from external memory. For this case, interlock hardware 
prevents an instruction following a load instruction from reading the register being loaded until the load is complete (see 
Figure 2-26). This also applies to a a CALL instruction with a delay slot instruction using r[15] and a JMPL with a delay 
slot instruction using the same register specified as the r[ rd] of the JMPL. Th maximize performance, compilers and 
assembly language programmers should avoid loads followed immediately by instructions using the loaded register's con­
tents. 

2.5.2.2 Branching 

The CY7C601I611's delayed-control-transfer mechanism allows branches (taken or untaken) to occur without creating 
a bubble in the pipeline (see Figure 2-27). Special parallel hardware enables the processor to evaluate the condition codes 
and calculate the effective branch address during the decode stage rather than the execute stage, so that only one delay 
instruction is required between the branch and the target instruction (or the next instruction, if the branch is not taken). 
See Section 2.3.3.3.1 for a discussion on branching. 

If the compiler or programmer cannot place an appropriate instruction in the delay instruction slot, the delay instruction 
can be annulled by setting the branch instruction's a bit. The result is shown in Figure 2-28. 
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Figure 2-27. Pipeline During Branch Instruction 

Figure 2-28. Branch with Annulled Delay Instruction 
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Figure 2-29. Pipeline Frozen During Bus Arbitration 

2.5.3 Pipeline Freezes 

Whenever the processor receives an externally generated hold input, such as MHOLDAIB or BHOLD, the instruction 
pipeline is frozen. How long it is frozen depends on the type of hold and the external hardware generating the hold. 
Figure 2-29 shows the pipeline frozen by a BHOLD as the result of bus arbitration initiated by another bus master in the 
system. 

2.5.4 Traps 

Figure 2-30 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after 
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle follow­
ing detection. 

2.6 Bus Operation and Timing 

This section covers standard and non-standard bus operations. Standard operations include instruction fetch, load inte­
ger, load double integer, load floating-point, load double floating-point, store integer, store double integer, store float­
ing-point, store double floating-point, atomic load-store unsigned byte, and floating-point operations (FPops). Non-stan­
dard operations include bus arbitration, cache misses, exceptions, and the reset and error conditions. Coprocessor loads, 
coprocessor stores, and coprocessor operations are identical in timing to their floating-point counterpart, and are not 
repeated as a separate case in this section. 
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Figure 2-30. Pipeline Operation for Thken Trap (Internal) 

Each of the following sections descnbes a type of bus transaction along with appropriate timing diagrams. The timing 
diagrams show multiple instructions being fetched for the pipeline. Instruction addresses are sent out in the cycle before 
the instruction fetch. Instruction fetch cycles begin with the instruction address latched by the memory at the beginning 
of the fetch cycle and end with the instruction supplied by the memory. Instruction decode begins with the latching of 
the instruction at rising clock edge of the cycle after the fetch cycle. If the instruction is multicycle, or execution requires 
an interlock, lOPs are inserted into the pipeline at the decode stage and propagate through the pipeline like a fetched 
instruction. 

The cross-hatched areas shown in the traces are periods in which the signal is not guaranteed to be asserted or deasserted; 
in other words, undefined. 

In general, signals are valid at the beginning of a cycle, i.e., on the rising edge of the clock. In support of the 
CY7C601I611's high-speed operation, many signals are sent out unlatched. Refer to Section 2.4 for further details on 
CY7C601I611 signals. 

The processor automatically aligns byte (and halfword) transfers as previously shown in Figure 2-11. Figure 2-31 shows 
the relationship between the data transferred during byte, halfword, and word operations and the pins of the data bus. 
For byte and halfword data transfers, the CY7C601I611 repeats the byte or half word on each eight-bit or 16-bit section 
of the bus. In other words, the undefined portions of the bus illustrated in Figure 2-31 are actually a repeat of the data 
driven onto the bus. However, this feature is not specified in the SPARC Architecture Reference, and may not be sup­
ported on other SPARC processors. 
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ClK 

A<31:0> 

SIZE<1:0> 

0<31:24> 

0<23:16> 

0<15:8> 

0<7:0> 

Byte Data Alignment 

ClK~ 

A<31:0> ~ 

SIZE<1:0>~ 

0<31:16> (HWROO~ •• §m!il,.)QQ9 

0<15:0> ~i~~g;~HWR01XXX) 

Half Word Data Alignment 

x = word boundary address 

Word Data Alignment 

Note: This illustration depicts data alignment and 
Is not Intended 10 Illustrate a timing case. 

Figure 2-31. Data Bus Contents During Data Transfers 
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2 3 4 5 

elK 

A<31:0> 

0<31:0> 

Figure 2-32. Instruction Fetch 

2 3 4 5 6 

elK 

A<31:0> 

0<31:0> 

OX FER I \ 
INST \ I 

Figure 2-33. Load Single Integer Timing 

2.6.1 Instruction Fetch 

The instruction fetch cycle is that cycle in which both the instruction address and the data (the instruction itself) are active 
on their respective buses (see Figure 2-32). The instruction address on A < 31:0 > is actually sent out in the previous cycle, 
but is held into the fetch cycle. It should be latched externally. The instruction is returned on the data bus at the very 
end of the fetch cycle and is held into the decode cycle. It is latched into the on-chip instruction register at the beginning 
of the decode cycle. 

2.6.2 Load 

Figure 2-33 shows the timing for a load single integer instruction. Because the bus is used for a data fetch in the fifth cycle, 
this is a double-cycle instruction. Note that DXFER is active in the cycle in which the load data address is sent out, while 
INST is inactive in the cycle in which the load data is on the data bus. 

2.6.3 Load with Interlock 

In a load with interlock situation, the instruction following the load tries to use the contents of the load's destination 
register before the load data is available. This requires the insertion of an lOP into the decode stage of the pipeline (see 
Section 2.5.1.1) in the fourth cycle, which must be matched by a null bus cycle in the fetch stage to balance the pipeline 
(see Figure 2-34). 
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2 3 4 5 6 

ClK 

A(31:0) 

0(31:0) 

OXFER I \ 
INUll I \ 
INST \ I 

Figure 2-34. Load Single with Interlock Timing 

2 3 4 5 6 

ClK 

A(31:0) 

0(31:0) 

OXFER / \ 
lOCK / \ 
INST \ / 

Figure 2-35. Load Double Integer Timing 

2.6.4 Load Double 

The timing for a load double integer is shown in Figure 2-35. The timing is essentially the same as a load single except 
for the additional data fetch in the fifth cycI.e. That makes load double a triple-cycle instruction. The most-significant word 
is fetched in cycle four and the least-significant word in cycle five. Note that the size bits are set to 11 during the address 
portion of both loads and that the bus is locked to allow the completion of both loads without interruption. 

Load single and load double floating-point instructions look identical to their integer counterparts except that the 
FINSllFINS2 signal is active for floating-point operations. 
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2.6.5 Store 

Store transactions involve more bus activity than loads, as shown in the store single integer timing in Figure 2-36. Store 
single is a triple-cycle instruction because it includes an extra tag check cycle in which to check an external cache for the 
store address. This extra cycle also gives the processor and the memory system time to three-state the data bus and turn 
it around for the store. The store address is sent out again in the fifth cycle to complete the data transfer. Note that the 
store data is generated by the processor off the falling edge of CLK and is therefore only available at the very end of the 
first data cycle (see Section 7.1). 

Note also that INULL is active during the second application of the store address. If there is a cache miss on the tag check 
cycle, INULL prevents an additional miss the second time the address is sent out in the store cycle. Because it is a triple­
cycle instruction, LOCK is asserted to retain control of the buses. 

ClK 

A<31:0> 

D<31:0> 

RD 

DXFER 

lOCK 

WRT 

INUll 

INST 

2 3 

~----~~----~~I 
~----~----~~I 
~----~----~~I 

4 

\ 

\ 
\ 

5 6 

ST Data 

I 

I 
\ 

I \~+-
\~----__ ------II 

Figure 2-36. Store Single Integer Timing 
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2.6.6 Store Double 

The timing for a store double integer is 'shown in Figure 2-37. The timing is essentially the same as store single except 
for the additional store cycle in the sixth cycle, making it a four-cycle instruction. The most-significant word is stored in 
cycle five and the least-significant word in cycle six. Note that the size bits are set to 11 during the address portion of all 
three data cycles and that the bus is locked to allow the completion of both stores without interruption. INULL is not 
active for the address of the least-significant store because there cannot be a miss on this cycle if there wasn't one on 
the tag check cycle, unless the cache line is less than two words. 

Store single and store double floating-point instructions look identical to their integer counterparts except that the 
F1NSlIFINS2 signal is active for floating-point operations. 

2 3 4 5 6 

ClK 

A<31:0> 

: : ~ . 
0<31:0> ~ (ST01 m"':SSTTD:022~)--+--

! 1 ~ i 
RO I \ I 
WE \ I 

OXFER I \'--_!--_ 

lOCK I \\---+ ____ -

WRT ~----~----~~I \~--~----+-----~-
INUll ~ ____ -+ ____ -+ ____ ~ ____ ~-JI 

INST 
\'-_____________ .......,r 

Figure 2-37. Store Double Integer Timing 
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2.6.7 Atomic Load·Store 

Atomic transactions consist of two or more steps which are indivisible; once the sequence begins in the instruction pipe­
line, it cannot be interrupted. Because atomic operations are four-cycle instructions, the CY7C6011611 asserts LOCK 
for as long as necessary to make sure that no interruption occurs on the bus. Figure 2-38 applies to the atomic operations 
load-store unsigned byte (LDSTUB, LDSTUBA) and word swap (SWAP, SW APA). Note that, as with any store, INULL 
is active on the second occurrence of the store address. 

2 3 4 5 6 

ClK 

A<31:0> 

D<31:0> Store Data 

RD \ / 
WE \ / 
lDSTO / \ 
DXFER / \ 
lOCK / \ 
WRT / \ 
INUll / \ 
INST \ / 

Figure 2-38. Atomic Load·Store Timing 
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2.6.8 Floating·Point Operations 

The timing for floating-point operations and integer operations is the same except for the addition of the FINSl and 
FINS2 signals in floating-point operations. In this example, Instruction 1 is a floating-point operation (see Figure 2-39). 
FINS1I2 tell the floating-point unit to move an instruction out of its decode buffer and begin execution. The FPU also 
makes use of the INST signal to latch instructions into its decode buffers. 

2 3 4 

elK 

A<31:0> 

ASI<7:0> 

D<31:0> 

SIZE<1:0> 

FINSlIFINS2 I \ 
Figure 2-39. Floating.Point Operation Timing 
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2.6.9 Bus Arbitration 

The CY7C6011611 does not have on-chip bus arbitration circuitry because it is designed to operate as a bus slave. There­
fore, external circuitry must arbitrate between external bus requests and the CY7C601I611. When the CY7C6011611 
needs to retain the buses it asserts the LOCK signal. The arbitration circuitry should assert BHOLD when it needs to 
keep the CY7C601I611 off the buses. When BHOLD is asserted, the processor's instruction pipeline is frozen until it 
is deasserted. The arbitration circuitry should also deassert the DOE, AOE, and CaE signals to three-state the 
CY7C601's address bus, data bus and control signal output drivers so they may be driven by an external source (see 
Figure 2-40). 
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A<31:0> 

ASI<7:0> 

D<31:0> 

SIZE< 1:0> 

RD 

LDSTO 

DXFER 

LOCK 

WRT 

2 3 4 5 6 

. r 
~~-1-r-----:--------~~ 
==~~~==>--t----------------------------~~ 
~ A2 } 

~ ASIA2 } 

~!r;~~~~------~------------~~ ~ Ins! 1 ) 

~~-1-r----------------~~ GJ<mX 10 ) 

~~---~------~---~ 
~------~~~ ~~.. ~----

--+ ________ --+~~~~----~-----------~~i~----
--+-----~~~ ~~. ~----
-+--------+~~~~~--------------~-----~~ .• ~----
--+----------+~~~ ~~.~. ~----

, II 

--+ ___ +--..... 1 

--+ ______ --+----JI ,\----+---
--+ ______ --+-....JI ,\---+---

Figure 2-40. Bus Arbitration Timing 
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2.6.10 Load with Cache Miss 

Figure 2-41 gives the timing for a load with cache miss. Cache logic must stop the processor by asserting MHOLDA or 
MHOLDB in the next cycle. However, the processor stops with the address of the next instruction on the address bus 
rather than the instruction that caused the miss. In order to retrieve the proper load data, the memory system needs the 
missed address on the bus. To do this the memory system must send an MAO signal, forcing the processor to output the 
previous address (the address that was on the bus in the cycle before MHOLD was asserted). The MHOLD signal must 
be maintained while the missed data is strobed into the processor with the MDS signal (it must be strobed externally be­
cause the internal processor clock is frozen by the MHOLD). 

2 3 4 5 6 7 

elK 

A<31:0> 

ASI<7:0> 

SIZE<1:0> 

DXFER _!--___ +---J! ,I.....--+ __ --'--...J! ,'--+---

MDS 

MAO_!--___ +-________ 4-___ ~! ,'---+--
INST '\..--+---11 

Figure 2-41. Load with Cache Miss Timing 
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2.6.11 Store with Cache Miss 

The timing for a store with cache miss is similar to the load with cache miss situation, except that MAO and MDS are 
not required (see Figure 2-42). Because the processor outputs the store address twice, it already has the proper address 
on the bus when it's stopped by MHOLD. MDS is not required because nothing needs to be strobed into the processor. 

INULL is asserted for the second occurrence of the store address so that it doesn't trigger the miss circuitry during the 
time the cache is processing the miss on the first occurrence of that address. 

2 3 4 5 

ClK 

A<31:0> STA 

ASI<7:0> ASlsT 

D<31:0> 
-------------S-T·D-a-m-----------

SIZE<1:0> STSize 

RD \ 
WE \ 

DXFER I 
lOCK I \ 
WRT / \ 

INUll I 
MHOlD \ 

INST \ 

Figure 2-42. Store with Cache Miss Timing (1 of 2) 
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MHOLD ---_-----+-II 

INST ~------~----~~I 
Figure 2-42. Store with Cache Miss Timing (2 of 2) 
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2.6.12 Memory Exceptions 

Load with memory exception timing is shown in Figure 2-43. As with a cache miss, memory logic must stop the processor 
by asserting MHOLDAor MHOLDB in the next cycle. The MHOLD signal must be maintained while the memory excep­
tion (MEXC) signal is strobed into the processor with the MDS signal (it must be strobed in externally because the internal 
processor clock is frozen by the MHOLD). MEXC must be deasserted in the same clock cycle in which MHOLD is deas­
serted. Note that INULL is asserted in the cycle 8 instruction fetch to annul that fetch. This is the same action shown 
in cycle 2 of Figure 2-30 for an internal trap. Store with memory exception has the same timing (see Figure 2-44) except 
INULL is asserted from the second store address through to the annulled cycle 8 instruction fetch. 

2 3 4 5 

elK 

A<31:0> A3 

ASI<7:0> 

0<31:0> 

SIZE<1:0> 10 

OX FER ___ ---'-----II \~~----~-----

\'---'----
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FLUSH 

Figure 2-43. Load with Memory Exception Timing (1 of 2) 
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Figure 2-43. Load with Memory Exception Timing (2 of 2) 
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Figure 2-44. Store with Memory Exception Timing (page 1 of 2) 
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Figure 2-44. Store with Memory Exception TIming (page 2 of 2) 
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FLUSH 

Figure 2-45. Floating·Point Exception Handshake Timing 
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INTACK ~------+----~----~----~~I 
Figure 2-46. Asynchronous Interrupt Timing 

2.6.13 Floating. Point Exceptions 

The floating-point unit asserts FEXC to notify the CY7C601I611 that a floating-point exception has occurred and that 
it should take a trap on the next floating-point instruction that it encounters in the instruction stream (see Figure 2-45). 
The CY7C601/611 asserts FXACK to signal the FPU that the trap is being taken, and FLUSH to clean out the FPU's 
decode buffers. From this point on, the FPU will execute only floating-point store queue instructions until its queue is 
emptied by the trap handler. 

FEXC is deasserted by the FPU after FXACK is asserted. FXACK is deasserted by the CY7C6011611 after FEXC is 
deasserted. 

2.6.14 Interrupts 

The asynchronous IRL < 3:0 > inputs are sampled on the rising edge of every clock. If the interrupt value represented 
by those inputs is greater than the masking value in the processor, and no higher priority trap supersedes it, the 
CY7C601I611 will take the interrupt. The IRL input level should be held stable until the processor asserts INTACK. 
Figure 2-46 shows the timing for the best case response time where the IRL input value is asserted one clock and a set-up 
time before the execute stage of a single-cycle instruction. Refer to Section 2.7.3 for more information on interrupts. 
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Figure 2-47. Power·On Reset Timing 

2.6.15 Reset Condition 

Figure 2-47 shows the timing for a power-on reset. RESET must be asserted for at least eight cycles so that the processor 
can synchronize the reset input and initialize its internal state. For RESET to be synchronized, the CLK signal must be 
active. 

During the initialization, the processor disables traps (ET = 0), sets the supervisor mode (S = 1), and sets the program 
counter to location zero (PC = 0, nPC = 4). 

2.6.16 Error Condition 

Error mode is one of the three states in which the CY7C601I611 can exist. To get into the error mode, a synchronous 
trap must occur while traps are disabled (the processor state register'S ET bit is set to zero). This essentially means that 
a trap which cannot be ignored occurs while another trap is being serviced. In order for that synchronous trap to be serv­
iced, the processor goes through the normal operations of a trall (see Section 2.7), including setting the tt bits to identify 
the trap type. It then enters error mode, halts, and asserts the ERROR signal (see Figure 2-48). 

The only way to leave error mode is to receive an external RESET signal, which forces the processor into reset mode. 
All information placed in the CY7C601l611's registers from the last execute mode (the trap operation) remains un­
changed and the processor resumes operation at address zero. The reset trap handler can examine the trap type of the 
synchronous trap and deal with it accordingly. 
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Figure 2-48. Error/Reset Timing 

" MAO and MHOLD must be driven to a deasserted state when RESET is asserted. 
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Table 2-37. Externally Generated Synchronous Exception Traps 

Trap Initiating Signal Condition 

Data Access Exception MEXC Memory error during data access 

Instruction Access Exception MEXC Memory error during instruction access 

Floating-Point Exception FEXC Floating-point unit error 

Coprocessor Exception CEXC Coprocessor unit error 

2.7 Exception Model 

The CY7C6011611 supports three types of traps: synchronous, floating-point/coprocessor, and asynchronous (also called 
interrupts). Synchronous traps are caused by hardware responding to a particular instruction or by the nap on integer 
condition code (ncc) instructions; they occur during the instruction that caused them. 

Floating-point/coprocessor traps caused by a Floating-Point-operate (FPop) or CoProcessor-operate (CPop) instruction 
occur before that instruction is complete. However, because floating-point (and coprocessor) exceptions are pended until 
the next floating-point (coprocessor) instruction is executed, othernon-floating-point (coprocessor) instructions may have 
executed before the trap is taken. See Section 3.3.3.1. 

Asynchronous traps occur when an external event interrupts the processor. They are not related to any particular instruc­
tion and occur between the execution of instructions. See Section 2.7.3. 

2.7.1 Reset 

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is triggered by asserting 
the RESET input signal. But from that point on, its behavior is entirely different from that of an asynchronous interrupt 
(see Section 2.7.3). 

As soon as the CY7C601I611 recognizes the RESET signal, it enters reset mode and stays there until the RESET line 
is deasserted. The processor then enters execute mode and then the execute trap procedure. Here, it deviates from the 
normal action of a trap (Section 2.7.5) by modifying the enable traps bit (ET= 0), and the supervisor bit (S = 1). It then 
sets the PC to 0 (rather than changing the contents of the TBR), the nPC to 4, and transfers control to location O. All 
other P SR fields, and all other registers retain their values from the last execute mode. 

Note: Upon power-up reset the state of all registers other than the PSR are undefined. 

If the processor got to reset mode from error mode, then the normal actions of a trap have already been performed, includ­
ing setting the tt field to reflect the cause of the error mode. Because this field is not changed by the reset trap, a 
post-mortem can be conducted on what caused the error mode. The processor enters error mode whenever a synchronous 
trap occurs while traps are disabled. 

2.7.2 Synchronous Traps 

Synchronous traps are caused by the actions of an instruction, with the trap stimulus occurring either internally to the 
CY7C6011611 or from an external signal which was provoked by the instruction. These traps are taken immediately and 
the instruction that caused the trap is aborted before it changes any state in the processor. 

The external signals that can cause a synchronous trap are listed in Table 2-37. 

2.7.2.1 External Signals 

Synchronous traps generated by the input signal MEXC (Memory Exception) occur during the execute phase of an in­
struction or occur immediately for data accesses. Traps generated by the FEXC and CEXC signals belong to the special 
floating-point/coprocessor category, and may not occur immediately. See Section 3.3.3.1. 

2. 7.2.1.1 instruction access exception 

An instruction access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) during 
an instruction fetch. 
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2.7.2.1.2 data access exception 

A data access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) during the 
data cycle of any instruction that moves data to or from memory. 

2.7.2.2 Internal/Software 

Synchronous traps generated by internal hardware are associated with an instruction. The trap condition is detected dur­
ing the execute stage of the instruction and the trap is taken immediately, before the instruction can complete. 

2.7.2.2.1 illegal instruction 

An illegal instruction trap occurs: 

• when the UNIMP instruction is encountered, 

• when an unimplemented instruction is encountered (excluding FPops and CPops), 

• in any of the situations below where the continued execution of an instruction would result in an illegal processor state: 

1. Writing a value to the PSR's CWP field that is greater than the number of implemented windows (with a WRPSR) 

2. Executing an Alternate Space instruction with its i bit set to 1 

3. Executing a RETf instruction with traps enabled (ET= 1) 

4. Executing an IFLUSH instruction with 1FT = 0 

Unimplemented floating-point and unimplemented coprocessor instructions do not generate an illegal instruction trap. 
They generate fp exception and cp exception traps, respectively. 

2. Z 2. 2.2 privileged instruction 

This trap occurs when a privileged instruction is encountered while the PSR's supervisor bit is reset (S = 0). 

2.7.2.2.3 Jp disabled 

A fp disabled trap is generated when an FP.QQ, FBfcc, or floating-point load/store instruction is encountered while the 
PSR's EF bit = 0, or if no FPU is present (FP input signal = 1). 

2.7.2.2.4 cp disabled 

Acp disabled trap is generated when a CPop, CBccc, or coprocessor load/store instruction is encountered while the PSR's 
EC bit =0, or if no coprocessor is present (CP input signal = 1). 

2.7.2.2.5 window overflow 

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point to a window marked 
invalid in the WIM register. 

2.7.2.2.6 window underflow 

This trap occurs when the continued execution of a RESTORE instruction would cause the CWP to point to a window 
marked invalid in the WIM register. The window underflow trap type can also be set in the PSR during a RETf instruc­
tion, but the trap taken is a reset. See Section 2.7.1 on' reset traps and Chapter 6 for the instruction definition for RETT. 

2.7.2.2.7 memory address not aligned 

Memory address not aligned trap occurs when a load or store instruction generates a memory address that is not properly 
aligned for the data type or if a JMPL instruction generates a PC value that is not word aligned (low-order two bits non­
zero). 
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Figure 2-49. Best·Case Interrupt Response Timing 

2. 7.2.2.8 tag overflow 

This trap occurs if execution of a TADDccTV or TSUBccTV instruction causes the overflow bit of the integer condition 
codes to be set. See the instruction definitions of TADDccTV and TSUBccTV and Section 2.3.3.2.3 for details. 

2.7.2.2.9 trap instruction 

This trap occurs when a Ticc instruction is executed and the trap conditions are met. There are 128 programmable trap 
types available within the trap instruction trap (see Chapter 6, Ticc instruction). 

2.7.3 Interrupts (Asynchronous Traps) 

Asynchronous traps occur in response to the Interrupt Request Level (IRL < 3:0 > ) inputs. This type of trap is not asso­
ciated with an instruction and is said to happen between instructions. This is because, unlike synchronous traps, an inter­
rupt allows the instruction in whose execute stage it is prioritized to complete execution (see Figure 2-49). Any instruction 
that has entered the pipeline behind the instruction which was allowed to complete is annulled, but can be restarted again 
after returning from the trap. 

2. 7. 3.1 Priority 

The level, or priority, of the interrupt is determined by the value on the IRL < 3:0 > pins. For the interrupt to be taken, 
the IRL value must be greater than the value in the Processor Interrupt Level (PIL) field of the Processor State Register 
(PSR). A value of 0 indicates that no interrupt is requested. A value of 15 represents a non-maskable interrupt. All other 
IRL values between 0 and 15 represent interrupt requests which can be masked by the PIL field. The priority and trap 
type (tt) for each level is shown in Table 2-38 in Section 2.7.5.3. 
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Figure 2-50. Worst· Case Interrupt Response Timing 

2.7.3.2 R£sponse Time 

The CY7C601/611 samples the IRL inputs at the rising edge of every clock. In order to properly synchronize these asynch­
ronous inputs, they are put through two synchronizing levels ofD-type flip-flops. The outputs of the two levels must agree 
before the interrupt can be processed. If the outputs disagree, the interrupt request is ignored. This logic serves to filter 
transients on the IRL lines, but it means that the lines must be active for two consecutive clock edges to be accepted as 
valid. 

Once the IRL input has been accepted, it is prioritized and the appropriate trap is taken during the next execute stage 
of the instruction pipeline. Best case interrupt response occurs when the interrupt is applied one clock plus one setup 
time before the execute phase of any instruction in the pipeline (see Figure 2-49). In this case, the first instruction of the 
interrupt service routine is fetched during the fourth clock following the application of an IRL value greater than the 
PIL field of the processor status register (PSR). This also holds for an IRL value of OF H, which acts as a non-maskable 
interrupt. 

The worst case interrupt response occurs when the detection of the IRL input just misses the cutoff point for the execute 
stage of a four-cycle instruction, such as a store double or atomic load-store (see Figure 2-50). In this case, the interrupt 
input must wait an additional three cycles for the next pipeline execute phase. In addition, if the IRL input just misses 
the sampling clock edge, an additional clock delay occurs. As a result, the first instruction of the service routine is fetched 
in the eighth clock following the application of IRL. 

The best and worst case interrupt timing described above assumes that the processor is not stopped via the application 
of an external hold signal, and that the IRL input is not superceded by the occurrence of a synchronous (internal) trap. 

2.7.3.3 Interrupt Ack1UlWledge 

As shown in Figure 2-49, and more clearly in Figure 2-50, the INThrrupt ACKnowledge (lNTACK) output signal is as­
serted when the interrupt is taken, not when it is first detected and latched. Because ofthis delay, if the IRL < 3:0 > inputs 
are changed to reflect another interrupt condition before the corresponding INTACK for the latched condition is re­
ceived, there could be some question as to which interrupt the INTACK is responding to. Therefore, external hardware 
should ensure that the IRL < 3:0 > inputs are held stable until an INTACK is received. 

2.7.4 Floating.Point/Coprocessor 1hips 

Floating-point/coprocessor exception traps are considered a separate class of traps because they are ~chronous 
and asynchronous. They are asynchronous because they are triggered by an external signal (FEXC or CEXC), and are 
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taken sometime after the floating-point or coprocessor instruction that caused the exception. This can happen because 
the CY7C601I611 and the FPU (coprocessor) operate concurrently. However, they are also synchronous, because they 
are tied to an instruction -the next floating-point or coprocessor instruction encountered in the instruction stream after 
the signal is received. 

When the FPU (coprocessor) recognizes an exception condition, it enters an "exception pending mode" state. It remains 
in this state until the CY7C601I611 signals that it has taken an fp exception (cp exception) trap by sending back an FXACK 
(CXACK) signal. The FPU (coprocessor) then enters the "exception mode" state, remaining there until the floating-point 
(coprocessor) queue has been emptied by execution of one or more SIDFQ (SIDCQ) instructions. 

Although the PC will always point to a floating-point or coprocessor instruction after an exception trap is taken, it doesn't 
point to the instruction that caused the exception. However, the instruction that did cause the exception is always the 
front entry in the queue at the time the trap is taken, and the entry includes both the instruction and its address. The 
remaining entries in the queue point to FPops (CPops) that have been started but have not yet completed. Once the queue 
has been emptied, these can be re-executed or emulated. 

2.7.4.1 Floating-Point Exception 

This trap occurs when the FPU is in exception pending mode and an FPop, FBfcc, or floating-point load/store instruction 
is encountered. The type of exception is encoded in the tt field of the Floating-point State Register (FSR). See Section 
3.3.1. 

2.7.4.2 Coprocessor Exception 

This trap occurs when the Coprocessor is in exception pending mode and a CPop, CBccc, or coprocessor load/store in­
struction is encountered. The type of exception should be encoded in the tt field of the Coprocessor State Register (CSR). 
The nature of the exception is implementation dependent. 

2.7.5 1htp Operation 

Once a trap is taken, the following operations take place: 

• Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error mode). 

• The S bit of the PSR is copied into the PS bit; the S bit is then set to 1. 

o The CWP is decremented by one (modulo the number of windows) to activate a trap window. 

• The PC and nPC are saved into r[17] and r[18], respectively, of the trap window. 

• The tt field of the TBR is set to the appropriate value. 

o If the trap is not a reset, the PC is written with the contents of the TBR and the nPC is written with TBR + 4. If the 
trap is a reset, the PC is set to address zero and the nPC to address four. 

Unlike many other processors, the SPARC architecture does not automatically save the PSR into memory during a trap. 
Instead, it saves the volatile S bit into the PSR itself and the remaining fields are either altered in a reversible manner 
(ET and CWP), or should not be altered in the trap handler until the PSR has been saved to memory. 

2.7.5.1 Recognition 

In most cases, traps are "recognized" in the pipeline's execute stage. For a synchronous trap, the trap criteria are examined 
during the execute stage of an instruction, and the trap is taken immediately, before the write stage of that instruction 
takes place. This includes the fp disabled and cp disabled trap type. The special cases occur with those traps generated 
by external signals. A memory exception on an instruction fetch is detected at the beginning of the execute stage of instruc­
tion execution. Memory exceptions occurring on data accesses are detected on the rising clock edge of the data cycle. 

Because asynchronous traps happen ''between'' instructions, their timing is slightly different. As long as the ET bit is set 
to one, the CY7C601I611 checks for interrupts. The interrupt is sampled on a rising clock edge and latched on the next 
rising clock edge. The processor compares the IRL < 3:0 > input value against the PIL field of the PSR, and if IRL is 
greater than PIL, or IRL is 15 (unmaskable), then it is prioritized at the end of the next execute stage of the pipeline. 
A trap keyed to the ffiL level occurs after the write stage completes. 
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Floating-point/coprocessor exception traps are not recognized when the FEXC or CEXC signal is first sampled .. The pro­
cessor waits until it encounters a floating-point or coprocessor instruction in the instruction stream and then handles it 
as if it were an internal synchronous trap. 

2.7.5.2 Trap Addressing 

The Trap Base Register (fBR) is made up of two fields, the Trap Base Address (fBA) and the trap type (tt). The TBA 
contains the most-significant 20 address bits of the trap table, which is in external memory. The trap type field, which 
was written by the trap, not only uniquely identifies the trap, it also serves as an offset into the trap table when the TBR 
is written to the PC. The TBR address is the first address of the trap handler. However, because the trap addresses are 
only separated by four words (the least-significant four bits ofTBR are zero), the program must jump from the trap table 
to the actual address of the particular trap handler. 

Of the 256 trap types allowed by the 8-bit tt field, half are dedicated to hardware traps (0-127), and half are dedicated 
to programmer-initiated traps (lice). For a Tice instruction, the processor must calculate the tt valuefrom the fields given 
in the instruction, while the hardware traps can be set from a table such as the one below. See the Tice instruction defini­
tion for details. 

The tt field remains valid until another trap occurs. 

2.7.5.3 Trap 'JYpes and Priority 

Each type of trap is assigned a priority (see Table 2-38). When multiple traps oceur, the highest priority trap is taken, and 
lower priority traps are ignored. In this situation, a lower priority trap must either persist or be repeated in order to be 
recognized and taken. 

Table 2-38. Thap 'JYpe and Priority Assignments 

Thap Synchronous or 
Thap Priority 1YPe (tt) Asynchronous 

Reset 1 - Async. 

Instruction Access 2 1 Sync. 

Illegal Instruction 3 2 Sync. 

Privleged Instruction 4 3 Sync. 

Floating-Point Disabled 5 4 Sync. 

Coprocessor Disabled 6 36 Sync. 

Window Overflow 7 5 Sync. 

Window Underflow 8 6 Sync. 

Memory Address not Aligned 9 7 Sync. 

Floating-Point Exception 10 8 Sync. 

Coprocessor Exception 11 40 Sync. 

Data Access Exception 12 9 Sync. 

Thg Overflow 13 10 Sync. 

nap Instructions (rice) 14 128 - 255 Sync. 
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Table 2-38. Trap 1YPe and Priority Assignments (continued) 

Trap type Synchronous or 
Trap Priority (tt) Asynchronous 

Interrupt Level 15 15 31 Async. 

Interrupt Level 14 16 30 Async. 

Interrupt Level 13 17 29 Async. 

Interrupt Level 12 18 28 Async. 

Interrupt Level 11 19 27 Async. 

Interrupt Level 10 20 26 Async. 

Interrupt Level 9 21 25 Async. 

Interrupt Level 8 22 24 Async. 

Interrupt Level 7 23 23 Async. 

Interrupt Level 6 24 22 Async. 

Interrupt Level 5 25 21 Async. 

Interrupt Level 4 26 20 Async. 

Interrupt Level 3 27 19 Async. 

Interrupt Level 2 28 18 Async. 

Interrupt Levell 29 17 Async. 

2.7.5.4 Return From Trap 

On returning from a trap with the RETT instruction, the following operations take place: 

• The CWP is incremented by one (modulo, the number of windows) to re-activate the previous window. 

• The return address is calculated 

• 1hIp conditions are checked. If traps have already been enabled (ET= 1), an illegal instruction trap is taken. If traps 
are still disabled but S =0, or the new CWP points to an invalid window, or the return address is not properly aligned, 
then an error mode/reset trap is taken. 

• If no traps are taken, "then traps are re-enabled (ET = 1). 

• The PC is written with the contents of the nPC, and the nPC is written with the return address. 

• The PS bit is copied back into the S bit. 

The last two instructions of a trap handler should be a JMPL followed by a RETI. This instruction couple causes a 
non-delayed control transfer back to the trapped instruction or to the instruction following the trapped instruction, which­
ever is desired. See the RETT instruction definition for details. 

2.8 Coprocessor Interface 

In the SPARC architecture, the integer unit is the basic processing engine, but provision is made for two coprocessor 
extensions. The extensions are in the form of instruction set extensions and a pair of identical signal interfaces. In the 
CY7C601, one of these instruction and signal interface extensions is dedicated to floating-point operations and the other 
is designated for a second coprocessor, either user defmed or some future device offered by Cypress. Although signals 
and instructions have been named to reflect the assumption of how these two extensions will be used, either instruction 
set extension/signal interface may be used in any way desired. 

The floating-point unit and its interface are descnbed in Chapter 3. This section deals only with the second coprocessor 
interface. 
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In order for the CY7C601 to support a user-dermed coprocessor, the coprocessor should contain certain elements defined 
by the SPARC architecture. These include an internal register set, a status register, a coprocessor queue, and a set of 
compatible interface pins. These elements are identical to the floating-point interface, and it is recommended that a user 
desiring to use the coprocessor interface thoroughly study the floating-point interface in Chapter 3 as an example of a 
coprocessor interface application. 

2.8.1 Protocol 

The coprocessor extensions to the architecture are designed to allow the coprocessor to operate concurrently with the 
integer unit and the floating-point unit. Th keep operations synchronized, address and data buses are shared. The initial 
CY7C601 instruction decode determines which unit should execute the instruction. The CY7C601 executes its own in­
structions, but signals the coprocessor to continue the decode and execution if it recognizes a coprocessor instruction. 
For coprocessor loads and stores, the CY7C601 supplies the memory address and the coprocessor receives or supplies 
the data. The coprocessor must deal with resource or data dependencies, signaling the problem to the CY7C601 by freez­
ing the instruction pipeline with the CHOLD signal. 

The signal interface between the CY7C601 and the coprocessor consists of shared address, data, clock, reset, and control 
signals, plus a special set of signals that provide synchronization and minimal status information between the coprocessor 
and the CY7C601. 

2.8.1.1 Coprocessor Interface Signals 

The SPARC architecture defines two sets of signals intended for interfacing with two coprocessors. The CY7C601 assigns 
one set of coprocessor signals for specific use by the floating-POint unit, and the other set of coprocessor signals for a 
user-defined coprocessor. All floating-point interface signal names begin with an F, and all coprocessor interface signal 
names begin with a C. Both sets of interface signals share the INST signal, which identifies a CY7C601 instruction fetch. 
The two groups of signals are symmetric, have identical timing requirements, and are listed in Table 2-33. 

Instruction fetch is signaled by the CY7C601 using the INST signal. The coprocessor uses INST as an input to enable 
latching of an instruction on the data bus. The coprocessor latches all instructions fetched by the CY7C601, regardless 
of instruction type. The coprocessor is expected to use a two-stage instruction/address buffer as described in Section 3.2 
on the floating-point/integer unit interface. The CY7C601 asserts CINSI or CINS2 at the beginning of the decode stage 
of instruction execution of a coprocessor instruction. The CINSI or CINS2 signals are used to start the execution of a 
coprocessor instruction and select which of the two most recently fetched instructions stored in the two-stage instruction 
buffer is to be executed by the coprocessor. 

The CY7C601 requires the CP signal to be driven low in orderforthe integer unit to recognize the presence of a coproces­
sor. Attempting to execute coprocessor instructions with CP high will cause the CY7C601 to execute a cp disabled trap. 

Hardware interlocking for coprocessor instruction execution is provided with the CHOLD signal. This signal is asserted 
by the coprocessor to freeze the CY7C601. This signal is asserted in cases where the CY7C601 must be halted to prevent 
it from causing a condition from which the coprocessor cannot recover. An example of this would be fetching multiple 
coprocessor instructions that would otherwise overrun the coprocessor queue. The coprocessor would be expected to 
assert CHOLD until it could handle additional instructions. 

Coprocessor interrupts are asserted with the CEXC signal. This signal is asserted by the coprocessor upon the detection 
of an exception case. The CY7C601 will continue normal execution until the execution stage of the next coprocessor 
instruction. At that time, the CY7C601 will acknowledge the interrupt with CXACK, and begin coprocessor trap execu­
tion. 

Coprocessor branch on condition code (CBcc) instructions are executed by the CY7C601 integer unit based on the value 
of the CCC < 1:0> signals supplied by the coprocessor. These signals are typically set by the execution of a coprocessor 
compare instruction (defined by the designer). The CCCV signal supplied by the coprocessor indicates whether the state 
of the CCC < 1:0> signals is valid. CCCV is normally asserted, but is deasserted when a coprocessor compare instruction 
is executed and remains deasserted until that instruction is completed. The deassertion of this signal causes the CY7C601 
to halt execution. This interlock prevents the CY7C601 from branching on invalid condition codes. The SPARC architec­
ture requires at least one non-coprocessor instruction between a coprocessor compare and a coprocessor branch on condi­
tion code (CBcc) instruction. 
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Figure 2-51. Coprocessor Register Model 

2.8.2 Register Model 

The coprocessor register model specified by the SPARC architecture is shown in Figure 2-51. The coprocessor has its own 
32 x 32-bit working register file from which all operands for CPop instructions originate and to which all results return. 
The contents of these registers are transferred to and from memory under control of the CY7C601, using coprocessor 
loadlstore instructions. 

The Coprocessor State Register (CSR) contains the current status ofthe coprocessor. The exact nature of the exception 
bits and trap types are implementation dependent. The CSR is read and written indirectly through memory using the 
LDCSR and STCSR instructions. 

The coprocessor queue is necessary to properly handle traps with concurrently operating units. The first-in, first-out 
queue records all pending coprocessor instructions and their addresses at the time of a coprocessor exception. The front 
entry of the queue contains the unfinished instruction that caused the exception. The rest of the queue contains unfin­
ished CPops which would be restarted or emulated after the trap handler returns control to the main program. 

The address and instruction decode buffers hold instructions and their addresses until the CY7C601 determines if they 
belong to the coprocessor. If one of the held instructions belongs to the coprocessor, the CY7C601 sends the appropriate 
CINS signal to move the instruction into the coprocessor execute stage. The address and a copy of the instruction also 
move into the queue at this point and remain there until the instruction completes. 

When a trap is taken, the CY7C601 asserts the FLUSH signal, causing the coprocessor to dump any instructions in the 
decode buffers. FLUSH does not affect instructions which are already in the queue. 

2.8.3 Exceptions 

Exactly what conditions will generate a cp exception trap are implementation dependent. However, most implementa­
tions would probably include Unfinished CPop as a condition that would cause an exception. 

An Unfinished CPop trap is generated when the coprocessor cannot complete execution because the data has exceeded 
the capabilities of the coprocessor and/or has generated an inappropriate result. 
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2.9 CY7C611 Integer Unit for Embedded Control 

The CY7C611 is a SPARC Integer Unit designed for embedded control applications. It is a functional equivalent of the 
CY7C601 with a reduced pin out for lower cost applications. The CY7C611 retains all internal features of the CY7C601, 
and maintains complete binary code compatibility with all other SPARC processors. The CY7C611 differs from the 
CY7C601 in that the address bus has been reduced to 24 bits, the ASI signals have been reduced to three bits, and several 
control signals not required for lower cost systems have been eliminated. The CY7C611 supports the floating-point inter­
face, but does not include the coprocessor interface. The CY7C611 is packaged in a low-cost 160-pin plastic quad flat 
package (PQFP) and is available in speeds of 25 MHz. 

CY7C601 signals not available on the CY7C611 are listed in Table 2-39 below. The signal summary for the CY7C611 
is listed in Table 2-40. All CY7C611 signals are identical to their CY7C601 counterparts, and the information regarding 
the CY7C601 in this chapter is also valid for the CY7C611. 

Note that the EC (enable coprocessor) bit of the PSR register for the CY7C611 is permanently forced to zero. 

A user-defined coprocessor can be connected to the CY7C611 instead of a floating-point unit, if desired. All floating­
point interface signals are identical in function to their coprocessor counterparts. In order to use the floating-point inter­
face to support a user-defined coprocessor, the floating-point instructions must be used to exercise the coprocessor. This 
will require software remapping of coprocessor instructions. The CY7C601 and CY7C611 do not decode the nine-bit 
opf field of a floating-point operate instruction. This can be used to map coprocessor instructions to valid and invalid 
FPop instructions (as specified by the op3 and opf fields of the op code) without causing an invalid FP instruction trap, 
since the invalid FP instruction must recognized by the floating-point unit. 

Table 2-39. Signal Differences Between CY7C601 and CY7C611 

CY7C601 Signals Not Available on CY7C611 

A<31:24> Address bits 31 through 24 

AOE Address Output Enable 

ASI<7:3> ASI bits 7 through 3 

CCC<1:0> Coprocessor Condition Codes < 1:0 > 

CCCV Coprocessor Condition Codes Valid 

CEXC Coprocessor~tion 

CHOll Coprocessor Hold 

CINS1 Coprocessor Instruction Stage 1 

CINS2 Coprocessor Instruction Stage :i 
COE Control Output Enable 

CP Coprocessor Present 

CXACK Coprocessor Exception Acknowledge 

DOE Data Output Enable 

DXFER Data Transfer 

1FT Instruction Cache Flush 1htp 
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Table 2-40. CY7C611 Signal Summary 

CY7C611 Signal Summary 

Signal Name Signal Description Input/Output Active 

A<23:0> Address Bus Three-StateOutput 

ASI<2:0> Address Space Identifier Three-State Output 

BHOLD Bus Hold Input Low 

CLK Clock Input 

D<31:0> Data Three-State Bidir. 

ERROR IU Error Mode Three-State Output Low 

FCC < 1:0> Floating-Point Condition Codes Input 

FCCV Floating-Point Condition Codes Valid Input High 

FEXC Floating-Point Exception Input Low 

FHOLD Floating-Point Hold Input Low 

FINS 1 Floating-Point Instruction Stage 1 Three-State Output High 

FINS2 Floating-Point Instruction Stage 2 Three-State Output High 

FLUSH Flush FP Instruction Three-State Output High 

FP Floating-Point Present Input Low 

FPSYN FP Synonym Mode Input High 

FXACK FP Exception Acknowledge Three-State Output High 

IRL<3:0> Interrupt Level < 3:0 > Input 

INST Instruction Fetch Cycle Three-State Output High 

INULL Instruction Cycle Nullify Three-State Output High 

INTACK Interrupt Acknowledge Three-State Output High 

LDSTO Atomic Load-Store Operation Three-State Output High 

LOCK Multicycle Bus Lock Three-State Output High 

MAO Memory Address Output Select Input High 

MDS Memory Data Strobe Input Low 

MEXC Memory Exception Input Low 

MHOLDA Memory Hold A Input Low 

MHOLDB Memory Hold B Input Low 

RD Read Three-State Output High 

RESET Reset Input Low 

SIZE < 1:0> Bus Transaction Size Three-State Output 

TOE Test Output Enable Input Low 

WRT Advanced Write Three-State Output High 

WE Write Three-State Output Low 
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Chapter 3 

CY7C602 Floating-Point Unit 

The CY7C602 Floating-Point Vnit (PPV) is a high-performance, single-chip implementation of the SPARC reference 
floating-point unit. The CY7C602 FPV is designed to provide execution of single and double-precision floating-point 
instructions concurrently with execution of integer instructions by the CY7C601 Integer Vnit (IV). The CY7C602 is com­
pliant to the ANSIIIEEE-754 floating-point standard. 

The CY7C602 provides a 64-bit internal datapath, a 64-bit ALV, and a 64-bit multiply/divide/square-root unit for efficient 
execution of double-precision floating-point instructions. For efficient data management, the CY7C602 provides thirty­
two 32-bit floating-point registers. These 32-bit registers can be concatenated for use as 64-bit registers for double-preci­
sion operations. The internal 64-bit architecture of the CY7C602 allows high speed execution of both single- and double­
precision operations. The CY7C602 is capable of a peak performance of 6.15 MFLOPS (double-precision) at a clock speed 
of 40 MHz. 

The SPARC floating-point/integer unit interface supports concurrent execution of integer and floating-point instructions. 
The tightly coupled floating-point/integer unit interface requires the integer unit to provide all addressing and control 
signals for memory access. All instructions are fetched by the integer unit, and these instructions are simultaneously 
latched and decoded by both the CY7C601 and CY7C602. Execution of a floating-point instruction is enabled by 
CY7C601, which signals the CY7C602 to begin execution of the floating-point instruction when that instruction reaches 
the execute stage of the CY7C601 instruction pipeline. In the case of a floating-point load or store instruction, the 
CY7C601 executes the FP load or store in conjunction with the CY7C602 by asserting address and control signals for 
memory access while the CY7C602 loads or stores the data. All other floating-point instructions execute independently 
of the integer unit and in parallel with integer instruction execution. 

The floating-point/integer unit interface provides hardware interlocking to ensure synchronization between the 
CY7C601 and CY7C602. Hardware interlocking ensures software compatibility among SPARC systems with different 
levels of floating-point performance. 

3.1 CY7C602 Functional Description 

Figure 3-1 illustrates the functional block diagram for the CY7C602. The fetch unit captures instructions and their ad­
dresses from the D(31:0) and A(31:0) buses. The decode unit contains logic to decode the floating-point instruction op­
codes. The execution unit handles all instruction execution. The execution unit includes a floating-point queue (FP 
queue), which contains stored floating-point operate (PPop) instructions (see Section 3.3.2) under execution and their 
addresses. The execution unit controls the load unit, the store unit, and the datapath unit. 

The load unit holds data that is fetched from memory via the data bus before it is written into the register file. The register 
file contains the 32 f registers. The exceptions/floating-point status register (PSR) unit keeps the status of completing 
FPops, as well as the operating mode of the CY7C602. The store unit holds data that is supplied to the data bus during 
a store operation. The dependency checking unit checks for conditions where the FPV must freeze the CY7C601 integer 
unit pipeline so that an incoming instruction does not overflow the floating-point queue (descnbed below). The datapath 
unit contains arithmetic logic used by FPops to operate on the data in the register file and is comprised of a 64-bit ALV 
and a 64-bit multiply/divide/square-rootlcompare unit. Figure 3-2 gives a more detailed block diagram of the CY7C602. 

The CY7C602 provides three types of registers: [registers, FSR, and the FP queue. The [registers are the thirty-two 
floating-point operand registers, each 32-bits in size. Adjacent even-odd [register pairs (for instance, fregO and freg1) can 
be concatenated to support double-precision operands. The FSR is a 32-bit status and control register. It keeps track of 
rounding modes, floating-point trap types, queue status, condition codes, and various IEEE exception information. The 
floating-point queue contains the floating-point instructions currently under execution, along with their corresponding 
addresses. The floating-point queue provides an efficient method of handling floating-point exceptions. When an FPop 
instruction causes a floating-point exception, the queue contains the offending instruction/address pair along with any 
other instructions that have started execution. The CY7C601 integer unit acknowledges the floating-point exception, 
enters a floating-point trap routine, empties the queue, and corrects the exception case. After the exception case is cor-
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rected, unfmished floating-point instructions found in the floating-point queue are either executed or emulated in the 
trap handler before returning to nonnal execution. 

The CY7C602 depends upon the CY7C601 to assert all addresses and control signals for memory access. Floating-point 
loads and stores are executed in conjunction with the CY7C601, which provides addresses and control signals while the 
CY7C602 supplies or stores the data. Instruction fetch for integer and floating-point instructions is provided by the 
CY7C601. When the CY7C601 integer unit asserts an address for an instruction fetch, it asserts the INST signal one 
clock later. The CY7C602 floating-point unit uses INST to determine when a valid instruction is present on the D(31:0) 
bus. The instruction, which appears on the data bus on the next clock cycle, is latched and paired with its corresponding 
address (refer to Figure 3-3). In any given cycle, the two previous instruction/address pairs are stored by the CY7C602, 
regardless of whether the instruction is an integer or floating-point instruction. Either of these two instruction/address 
pairs may be selected for execution by the CY7C601 upon asserting the FINSI or FINS2 signal. The CY7C60lICY7C602 
interface uses this two stage address! instruction buffer to accommodate delays in the instruction pipeline of the CY7C60l 
integer unit. The FINSI or FINS2 signals select between the output of the two stages of the address/instruction buffer, 
enabling a floating-point instruction to begin execution by the CY7C602. 

Upon decoding a floating-point instruction, the CY7C601 will assert the FINSI or the FINS2 signal to enable the 
CY7C602 to begin execution. The FINSl or FINS2 signal is asserted during the decode stage of the floating-point instruc­
tion, and is recognized by the CY7C602 at the beginning of the execute stage of the floating-point instruction. This ensur­
es synchronization of the decode and execute stages of a floating-point instruction between instruction pipelines of the 
CY7C601 and the CY7C602. 
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3.2 Floating-Point/Integer Unit Interface 

The CY7C602 is designed to directly interface with the CY7C601 without external glue logic. Figure 3-4 illustrates the 
signals required to interconnect the CY7C601 and CY7C602. The control signals illustrated in Figure 3-4 are used to 
interface with the remainder of the CPU system components. TheFNULL, RESET, BHOLD, MHOLDAor MHOLDB, 
MOS, and DOE signals are used by the CY7C604 or CY7C60S for cache interface and virtual bus arbitration. The signal 
descriptions for the CY7C602 signals are described in Section 3.4. 

to FPqueue to FPqueue 

Figure 3-3. CY7C602 Address/Instruction Pipe 
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Figure 3-4. CY7C601 - CY7C602 Hardware Interface 
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3.2.1 CY7C602 Instruction Fetch and Execution 

The CY7C602 uses a four-stage instruction pipeline consisting of fetch, decode, execute, and write stages (F, D, E, and 
W). The instruction pipelines for the CY7C6011611 and the CY7C602 are concurrent and synchronized; a floating-point 
instruction will be in the same stage in both processors. Multiple cycle instructions such as floating-point operate instruc­
tions (FPops) leave the pipeline after the W stage and enter the FP queue until completion. 

Addresses for both integer unit and floating-point unit instructions are supplied by the CY7C601. The CY7C602 FPU 
latches all instructions and the corresponding addresses from the D(3l:0) and A(3l:0) buses. The CY7C602 uses the INST 
signal, supplied by the CY7C60l, to identify an instruction fetch by the integer unit. 

Decode of the latched instruction occurs on the next clock cycle, with both the IU and the FPU decoding the instruction 
simultaneously. During the decode stage of the floating-point instruction, the FPU checks for operand and resource de­
pendencies. When the CY7C60l integer unit decodes a FPop, it asserts the FINSl or FINS2 signal. This occurs before 
the end of the decode stage, and is used by the CY7C602 to initiate the execution of a floating-point instruction. If the 
CY7C602 has detected an operand or resource dependency during the decode stage, the FPU will assert FHOLD as the 
instruction begins the execution stage. This freezes the integer unit's pipeline until the FPU can resolve the dependency. 

If no resource or operand dependencies exist, the decoded floating-point instruction begins execution. Instructions enter­
ing execution are stored in the FP queue, where they are held until execution is completed. Note that if the FP queue 
is full during an instruction's decode stage, the CY7C602 asserts FHOLD as the instruction enters the execution stage 
in order to halt the CY7C601. FHOLD is released when space becomes available in the FP queue. 

The following tables describe the execution phases of CY7C602 instructions. Additional cycles beyond the F, D, E, and 
W stages are denoted as Wh (Write hold). Wh stages are equivalent to the additional cycles held by lOPs in the 
CY7C601I6l1. 

Table 3-1. Load instruction execution 

Cycle Action 

D stage Decode instruction, check operand depen-
dencies 

E stage FHOLD if necessary 

W stage Capture data from D(31:0) bus (IDF, 
LDFSR), capture MSW from D(31:0) bus 
(LDDF). 

Whl stage Write data into register FSR (LDF, LDFSR), 
capture LSW from D(31:0) bus (IDDF) 

Wh2stage Write data into register (IDDF) 

Table 3-2. Store instruction execution 

Cycle Action 

D stage Decode instruction, check operand 
dependencies 

E stage FHOLD if necessary, read data from FSR 
register or FP queue 

W stage Drive data onto D(31:0) bus (STF, STFSR), 
(mid-cycle) drive MSW or FP queue address onto 

D(31:0) bus (STDF, STDFQ) 

Whl stage Stop driving D(31:0) bus (STF, STFSR), 
(mid-cycle) drive LSW or FP queue opcode onto D(31:0) 

bus (STDF, STDFQ) 

Wh2 stage Stop driving D(31:0) bus 
(mid-cycle) 
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Table 3-3. FPop execution 

Cycle Action 

D stage Decode FPop, check resource and operand 
dependencies 

E stage FHOLD if necessary, read operand(s) from 
register file 

Wstage Read any additional operands from register 
file; start computing results 

FPQueue Compute, FPop in queue 

· · · · · · 
FPQueue Check exception status 

FPQueue Update FSR, write results or signal FP ex-
ception trap if necessary 

3.2.1.1 Instruction Fetch 

As the CY7C601 fetches an instruction, the CY7C602 captures it at the same time from the D(31:0) bus. The address 
corresponding to this instruction is captured from the A(31:0) in the previous cycle. The INST signal is used to detennine 
when a valid instruction is present on the D(31:0) bus, and when a valid address has been fetched from the A(31:0) bus 
in the previous cycle. Figure 3-5 illustrates an example of an instruction fetch with a cache hit. The transactions on the 
address and data buses show two instruction fetches followed by a data fetch. 

elK 
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01 =x X Insl1 X Insl2 x== 
!t 

02 =:x X X Ins! 1 x== 
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A1 X A2 X OataA X A3 x::= 

~1 :: ~i :: 

OA1 :::x X A1 X A2 ~ 

=S< 
]) ;j 

X X A1 ~ 0A2 , 

Figure 3-5. Instruction Fetch (Cache Hit) 
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Figure 3-6. Instruction Fetch (Cache Miss on A2) 

In the case of an instruction cache miss, a memory hold signal (MHOLDA, MHOLDB, or BHOLD) is driven low by the 
cache system starting in the cycle following the instruction fetch. The instruction which was captured from the D(3l:0) 
bus is invalid and is replaced when t~tem returns a valid instruction on the D(3l:0) bus. The hold signal lasts for 
several cycles during which time the MDS signal is asserted by the cache system, notifying the CY7C602 that the valid 
instruction is available on the D(3l:0) bus. MDS is also used when there is a cache miss on data (via load instructions) 
so the instruction is reloaded only if INST was asserted in the previous non-hold cycle. The same sequence oftransactions 
in Figure 3-5 are used in Figure 3-6, except that the second instruction fetch (Inst 2) experiences a cache miss. 

3.2.1.2 Instruction Execution 

The FINSl and FINS2 signals notify the CY7C602 when to launch a floating-point instruction. When FINSlIFINS2 is 
received, the floating-point instruction is in the D stage of the CY7C601 integer unit pipeline. The example in Figure 3-7 
shows a situation where both FINSl and FINS2 are used. A load instruction is immediately followed by two FPops. The 
FPops are fetched while the load instruction is executing. Because the load takes more than one cycle to execute, the 
starting of the FPops are deferred, and thus two instructions are held in the instruction buffers of the CY7C602. When 
the CY7C60l reaches the D stage of the first FPop (Inst 2), it issues FINS2 to start the FPop. When the D stage of the 
second FPop (Inst 3) is reached, FINSl is issued to start the second FPop. 

FINSl and FINS2 are never asserted in the same cycle. Both FINSl and FINS2 are ignored in the following conditions: 

1. FLUSH is asserted. 

2. MHOLDA, MHOLDB, BHOLD,CHOLD, or FHOLD is asserted. 

3. FCCV or CCCV is deasserted. 
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Figure 3-7. Floating.Point Instruction Dispatching 

Figure 3-8. Floating·Point Compare (FCMP) Execution 
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3.2.1.2.1 Floating-Point Compare Execution 

Floating-point compare instructions cause the instruction pipeline to be frozen by the use of FCCV, starting from the 
E stage of the instruction following the compare instruction until the FCC condition codes become valid. FCCV is deas­
serted, causing the CY7C601/611 to halt execution until FCCV is asserted. Figure 3-8 illustrates the timing of FCCV 
relative to the FCMP instruction and the FCC condition codes. 

FCCV is deasserted in the W stage of the FCMP instruction. The instruction that immediately follows the FCMP is held 
in its E stage until FCCV is reasserted. FCC(l:O) is valid one cycle before FCCV is reasserted. For unimplemented 
compare instructions, the CY7C602 freezes the instruction pipeline and causes an unimplemented FPop trap, which the 
CY7C601 takes immediately. 

3.2.1.2.2 FPop Queuing 

When a FPop has passed the first cycle of the W stage and FLUSH has not been asserted, the FPop enters the FP queue. 
Note that the W stage of an FPop may be extended to more than one cycle if a hold condition exists. As an FPop completes 
execution successfully and results are written to the register file, it is removed from the FP queue. The front entry of 
the FP queue contains the instruction/address pair of the oldest FPop which is still being executed by the CY7C602. 

3.2.2 Instruction Pipeline Flush 

When a trap or interrupt occurs in the integer unit, normal program execution is halted and control is transferred to the 
trap handler. The instruction in the E stage of the pipeline and any instructions fetched after it are aborted and must 
be restarted after the trap handler is done (or emulated in the trap handler). Instructions that have not yet been trans­
ferred to the FP queue are aborted by the CY7C602 when the trap occurs. The CY7C601 asserts the FLUSH signal in 
the W stage of the instruction to be aborted (refer to Figure 3-9). FPops which were issued before this instruction continue 
execution (and are in the queue) while instructions issued after it are aborted. 

The following figures illustrate how each type of floating-point instruction is affected by the FLUSH signal. Figure 3-10 
illustrates the effect of the FLUSH signal during a load floating-point instruction (LDF). A FLUSH signal asserted any­
time on or before the last Wh stage of a load instruction causes the load to abort, leaving the contents of the floating-point 
register file unchanged. 

Figure 3-11 illustrates the effect of FLUSH on a store floating-point instruction (S1F). A FLUSH signal asserted on or 
before the last Wh stage of a store instruction causes the store to abort and the CY7C602 to stop driving the D(31:0) bus 
by the middle of the next clock cycle. 

Figure 3-12 illustrates the effect of FLUSH on a FPop instruction. A FLUSH signal asserted anytime on or before the 
W stage of a FPop instruction causes the FPop to abort, leaving the contents of the register file and the FSR unchanged 
by that instruction. FPops that have passed the W stage but are still executing (stored in the FP queue) are not affected. 

Figure 3-13 illustrates the effect of FLUSH on a floating-point compare. FLUSH asserted in the W stage of a FCMP 
instruction causes the FCMP to abort, leaving the FSR unchanged by that instruction. FCCV is reasserted in the next 
clock cycle. 

Decode 

Write 

elK 

FLUSH __ ~ ______ ~ ______ ~ ______ ~ ________ ~--J 

Figure 3-9. F1oating.Point Instruction Pipeline During A Trap 
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Figure 3-10. Effect of FLUSH on LDF Instruction 
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Figure 3-11. Effect of FLUSH on STF Instruction 
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Figure 3-12. Effect of FLUSH on FPop Instruction 
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Figure 3-13. Effect of FLUSH on FCMP Instruction 

3.2.2.1 Hold Signals 

If MHOLDA, MHOLDB, BHOLD, CHOLD, or FHOLD is active, or FCCV or CCCV is inactive, the instruction pipe­
lines of the CY7C601 and CY7C602 are frozen. FHOLD and FCCV are generated by the CY7C602, CHOLD and CCCV 
are generated by the coprocessor, and the others are generated by the system. 

In the CY7C602, "freezing" or "holding" the instruction pipeline means that instructions that are still being tracked by 
the CY7C601 are not allowed to continue executing. The instructions are allowed to continue execution when all of the 
hold signals are inactive and all of the condition code valid signals are active. Holds affect all load/store instructions, 
and only FPops which are in the F, D, and E stages of the instruction pipeline. Hold signals do not affect the execution 
of FPops in the FP queue. 

3.2.2.2 Interlocking with FHOLD 

In some situations it is necessary to stop the CY7C601 pipeline, either because a FP load/store instruction must be sus­
pended due to an operand dependency, or because the CY7C602 cannot accept any more instructions due to a resource 
dependency. FHOLD is used to freeze the instruction pipeline in these cases. Table 3-4 describes mandatory conditions 
under which FHOLD is asserted. 

Operand dependencies listed in Table 3-4 apply to all FPops that are defined in the architecture. For example, suppose 
an unimplemented FPop is in the FP queue, waiting to cause an exception. If a store instruction is issued to the CY7C602 
to store the contents of the unimplemented FPop's destination register, the store instruction must cause a FHOLD so 
that the wrong data is not stored. The unimplemented FPop eventually causes a trap that is taken by the CY7C601 in 
the E stage of the store instruction. 

The following simplification could be applied when handling all unimplemented FPops: when an unimplemented FPop 
has been issued to the CY7C602but has not yet caused a trap, assert FHOLD on the next floating-point instruction issued 
until FEXC is asserted. There is no loss in performance because any FPops entering the FP queue after the unimplem­
ented FPop would be re-executed after the unimplemented FPop has been taken care of in the trap handler. 
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Table 3-4. FHOLD Resource/Operand Dependency Cases 

Resource Dependencies: 

If the CY7C602 will not have FP queue entries available to accommodate additional FPops, the CY7C602 asserts FHOLD to stop 
the CY7C60l from issuing any more instructions to the CY7C602. 

Operand Dependencies: 

LDF, Load data from Load instructions must not overwrite the source or destination registers of any FPop that has 
LDDF memory to f register not completed execution. In other words, the rd field of the load instruction must not refer to 

the same fregister as any valid rsl, rs2 or rd field of an outstanding FPop. The source registers 
ofFPops (rsl, rs2)may not be altered because an FP exception trap would require that the source 
registers be unaltered for the trap handler. 

STF, Store data from f reg- If a store instruction accesses anfregister that is the destination register of an FPop that has 
STDF ister to memory not yet finished execution, the store instruction waits until all outstanding FPops with that regis-

ter as a destination are complete. 

LDFSR, Load/store data be- If any instructions are currently executing in the CY7C602 when a LDFSR/STFSR instruction 
STFSR tween memory and is issued by the CY7C60l, the CY7C602 holds until all instructions have completed execution 

floating-point status and are no longer in the FP queue. 
register 

If the CY7C602 goes into exception mode, FHOLD is deasserted. If there is a floating-point sequence error (see Section 
3.3.3), FHOLD is asserted for one cycle. This is the only case where FHOLD is asserted in the exception mode. 

If a floating-point trap condition occurs while FHOLD is asserted, FHOLD is deasserted at least one cycle after FEXC 
is asserted. Similarly, if FCCV is deasserted, it is reasserted at least one cycle after FEXC is asserted. For the FHOLD 
case, the CY7C601 takes the FP trap on the FP instruction that triggered the FHOLD. 

3.2.2.3 FNULL Signal 

FNULL is used to signal a pipeline delay of the CY7C601 by the CY7C602. FNULL replaces FCCV and FHOLD for 
informing the system that the pipeline is being held. FNULL is asserted when either FHOLD is asserted or FCCV is 
deasserted. This signal is used as an input by the CY7C604/605 to monitor pipeline freezes initiated by the CY7C602. 

3.3 CY7C602 Programming Model 

3.3.1 CY7C602 Registers 

The CY7C602 has three types of user accessible registers: the [registers, the FP queue, and the Floating-point Status 
Register (FSR). The [registers are the CY7C602 data registers. The FSR is the CY7C602 status and operating mode 
register. The FP queue contains the CY7C602 instructions that have started execution and are awaiting completion. 
The following section describes these registers in detail. 

3.3.1.1 f Registers 

The CY7C602 provides 32 registers for floating-point operations, referred to as [registers. These registers are 32 bits 
in length, which can be concatenated to support 64-bit double words. Extended precision instructions are not supported 
in the CY7C602, but the extended precision data format and its position in the SPARC FPU is defined for the SPARC 
architecture. Figure 3-14 illustrates the data organization for the [registers. 

Integer and single precision data requires a single 32-bit[register. Double precision data requires 64 bits of storage and 
occupies an even-odd pair of adjacent [registers. Extended precision data requires 128 bits of storage and occupies a 
group of four consecutive [registers, always starting with register ro, f4, fS, £12, £16, f20, f24, or f28. 

The CY7C602 forces register addressing to match the data type specified by the floating-point instruction. This ensures 
data alignment in the [register file for double and extended precision data. Figure 3-15 illustrates how the CY7C602 
uses the five register address bits in a floating-point instruction for the different types of data. Single data word transfers 
(integer, single-precision floating-point) can be stored in any register. Consequently, all five bits of the. register address 
specified in the floating-point instruction are valid. Double precision data must reside in an even-odd pair of adjacent 
registers. By ignoring the LSB of the register address for a FPop requiring a register pair, the CY7C602 ensures data 
alignment. In a similar manner, the two LSBs of the register address are ignored in a SPARC FPU that supports extended 
precision data. 
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Figure 3-15. f Register Addressing 

The CY7C602 maintains a floating-point queue of instructions that have started execution, but have yet to complete ex­
ecution. The FP queue is used to accommodate the multiple clock nature of floating-point instructions and to support 
the handling of FP exceptions. 

When the CY7C602 encounters an exception case, it asserts FEXC and enters pending exception mode. The CY7C602 
remains in pending exception mode until the CY7C601I611 encounters another floating-point instruction, at which time 
the CY7C601/611 asserts the FXACK signal to force the CY7C602 into exception mode. When the CY7C602 enters 
the exception mode, floating-point execution halts until the FP queue is emptied. This allows the CY7C601 to store the 
floating-point instructions under execution when the exception case occurred. Emptying the FP queue frees the 
CY7C602 for use by the trap handler without losing the pre-exception state of the CY7C602. 

The FP queue contains the 32-bit address and 32-bit FPop instruction of up to two instructions under execution. F1oating­
point load and store instructions and FPbranch instructions are not queued. The front entry of the FP queue is accessible 
by executing the store double floating-point queue (STDFQ) instruction. The FP queue acts as a FIFO stack, pushing 
later entries to the top of the stack as the top entry is removed (or executed). A load FP queue instruction does not exist, 
as the FP queue must be loaded by launching instructions. 
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Figure 3-16. Floating. Point Status Register 

3.3.1.3 Roating-Point Status Register (FSR) 

The following paragraphs describe the bit fields of the floating-point status register (FSR). Refer to Table 3-5 (following 
page) for bit assignments for the FSR fields. 

RD FSR(31:30). Rounding Direction: These two bits define the rounding direction used by the CY7C602 during an FP 
arithmetic operation. 

RP FSR(29:28). Rounding Precision: These two bits define the rounding precision to which extended-precision results 
are rounded. This bit is included in accordance with the ANSIIIEEE SID-754-1985. The CY7C602 does not currently 
support rounding of extended-precision results and this bit does not affect CY7C602 operation. 

TEM FSR(27:23). nap Enable Mask: These five bits enable traps caused by FPops. These bits are ANDed (1 = enable, 
0= disable) with the bits of the CEXC (current exception field) to determine whether to force a floating-point exception 
to the CY7C601. All trap enable fields correspond to the similarly named bit in the CEXC field (see below). The TEM 
field only affects which bits in the CEXC field will cause the FEXC signal to be asserted. 

NS FSR(22). Non-Standard floating point: This bit enables non-standard floating-point operations in the CY7C602. 
When enabled, the CY7C602 inserts zeros for denormalized floating-point numbers before using them in a floating-point 
operation. The CY7C602 also writes back zero if a denormalized number results from an operation. This is not consistent 
with the IEEE-754-1985 specification, and is therefore, non-standard. 

version FSR(19:17). The version number is used to identify the SPARC floating-point processor type. This field is set 
to 011 (3H) for the CY7C602, and is read-only. 

FTT FSR(16:14). Floating-point Trap 1»pe: This field identifies the floating point trap type of the current FP exception. 
This field can be read and written, and must be cleared by software. 

QNE FSR(l3). Queue Not Empty: This bit signals whether the FP queue is empty. (0= empty, 1 = not empty) 

FCC FSR(11:10). Floating-point Condition Codes: These two bits report the FP condition codes (see Table 3-5). 

AEXC FSR(9:5). Accumulated EXCeptions: This field reports the accumulated FP exceptions that are masked by the 
TEM field. All masked exception cases are ORed with the contents ofthe AEXC and accumulated as status. All accumu­
lated fields have the same definition as the corresponding field for CEXC (see below). This field can be read and written, 
and must be cleared by software (see Table 3-5 ). 

CEXC FSR(4:0). Current EXCeptions: This field reports the current FP exceptions. This field is automatically cleared 
upon the execution ofthe next floating-point instruction. CEXC status is not lost upon assertion of a floating-point excep­
tion, because instructions following a valid exception are not executed by the CY7C602. The five CEXC bits are: 

nyc = 1 

otc = 1 

utc = 1 

dzc = 1 

indicates invalid operation exception. This is defined as an operation using an improper operand 
value. An example of this is 0/0. 

indicates overflow exception. The rounded result would be larger in magnitude than the largest 
normalized number in the specified format. 

indicates underflow exception. The rounded result is inexact, and would be smaller in magnitude 
than the smallest normalized number in the indicated format. 

indicates division-by-zero: X/O, where X is subnormal or normalized. Note that % does not set the 
dzc bit. 

nxc = 1 indicates inexact exception. The rounded result differs from the infinitely precise correct result. 

R FSR21, 20, and 12. Reserved - always set to O. 
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Table 3-5. Floating· Point Status Register Summary 

Loadable 
Field Values FSR bits Description byLDFSR 

RD 0- Round to nearest (tie--even) 31:30 Rounding Direction yes 

1- Round to 0 

2 - Round to +00 

3 - Round to - 00 

RP o - Extended precision 29:28 Extended Rounding Precision yes 

1 - Single precision 

2 - Double precision 

3 - Reserved 

TEM o - Disable trap 27:23 Trap Enable Mask yes 
1 - Enable trap 

NVM 27 invalid operation trap mask 

OFM 26 overflow trap mask 

UFM 25 underflow trap mask 

DZM 24 divide by zero trap mask 

NXM 23 inexact trap mask 

NS 22 Non-standard Floating-point: yes 
0- Disable o ; IEEE mode; multiplier and ALU generate denor-

malized operand exceptions and produce unrounded nor-
malized values on underflow exceptions. 

1- Enable 1 ; FAST mode; multiplier and ALU flush denormalized 
operands to zero and round underflow results to zero. 

version 0-7 19:17 FPU version number no 
FIT 0- None 16:14 Floating-point trap type no 

1 - IEEE Exception 

2 - Unfinished FPop 

3 - Unimplemented FPop 

4 - Sequence Error 

5 - 7 Reserved 

QNE o - queue empty 13 Queue Not Empty no 

FCC 0-- 11:10 Floating-point Condition Codes yes 

1- < 
2- > 
3 - Unordered 

AEXC 9:5 Accrued Exception Bits yes 

NYA 9 accrued invalid exception 

OFA 8 accrued overflow exception 

UFA 7 accrued underflow exception 

DXA 6 accrued divide by zero exception 

NXA 5 accrued inexact exception 

CEXC 4:0 Current Exct;ption Bits yes 

NYC 4 current invalid exception 

OFC 3 current overflow exception 

UFC 2 ·current underflow exception 

DZC 1 current divide by zero exception 

NXC 0 current inexact exception 

r Always set to 0 21,20,12 reserved bits no 
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3.3.2 CY7C602 Floating·Point Instructions 

SPARC floating-point instructions are separated into three groups: floating-point load/store, floating-point branch 
(FBfcc), and floating-point operate instructions (FPops). Floating-point load/store instructions are used to transfer data 
to and from the data registers «registers). FP load/store instructions also allow the CY7C601/611 integer unit to read 
and write the floating-point status register (FSR) and to read the front entry of the floating-point queue. Floating-point 
load and store instructions are executed by both the CY7C601I611 and the CY7C602; the CY7C601I611 supplying all 
address and control signals for memory access and the CY7C602 loading or storing the data. 

Floating-point branch (FBfcc) instructions (and coprocessor branch instructions (CBccc» are executed by the 
CY7C601I611, since the CY7C601I611 is responsible for generating address and control signals for memory access. Con­
ditional FBfcc branches are based upon the FCC(l:O) signals supplied by the CY7C602. FCC(1:0) is set by executing a 
FCMP instruction, which belongs to the FPop group of instructions. Floating-point branch instructions will cause the 
CY7C601I611 to recognize a pending floating-point exception in the same manner as other floating-point instructions 
(see Section 3.3.3). 

FPops include all other floating-point instructions executed by the CY7C602. Floating-point operate instructions (FPops) 
include basic numeric operations (add, subtract, multiply, and divide), conversions between data types, register to register 
moves, and floating-point number comparison. FPops operate only on data in the floating-point registers. 

The SPARC architecture supports four data types: 32-bit signed integer, single-precision FP, double-precision FP, and 
extended-precision FP. Extended precision instructions are defined in the SPARC architecture, but are not supported 
in the CY7C602. The CY7C602 supports execution of extended precision floating-point instructions by asserting an unim­
plemented instruction trap. This allows the CY7C601 to trap to a software emulation of extended precision floating­
point. 

Seven load/store instructions are executed by the CY7C602. The following describes the CY7C602 load/store instruc­
tions: 

LDF and LDDF transfer data from memory to fregisters 32 and 64 bits at a time, respectively. 
STF and SIDF transfer data from the fregisters to memory in data widths of 32 and 64 bits. 
LSFSR and STFSR allow the FSR to be read and written to. 
SIDFQ is a privileged instruction which allows the FP queue to be read. 

All FPops operate only on data located in the fregisters. The FPops are divided into four groups: basic arithmetic opera­
tions, compares, format conversions, and register-to-register moves. Move operations do not cause exceptions. The con­
verts, moves and the square root instruction use only a single source operand. FP compare instructions modify only the 
FCC(l:O) signals. FPops are dispatched in one cycle in the CY7C601, and require multiple cycles to execute in the 
CY7C602. 

Floating-point performance can be improved in the CY7C602 by scheduling FPop instructions such that the floating-point 
ALU and the floating-point rnultiply/divide/compare/square-root units are concurrently operating. With the exception 
of data dependencies, the ALU and multiply/divide/compare/square-root units are independent and can execute separate 
instructions without requiring the other unit to complete execution. Therefore, an FPop using the ALU followed by a 
FPop using the multiply/divide/compare/square-root unit does not require the previous instruction to finish before start­
ing (assuming there are no data dependencies). 

Table 3-6 and Table 3-7 illustrate the CY7C602 instructions and their execution cycle count. For further information 
on the SPARC floating-point instructions, please refer to Chapter 6, SPARC Instruction Set. 

Table 3-6. Floating.Point Load and Store Instruction Cycle Count 

Mnemonic Operation Cycles 

WF load floating-point 2 

WDF load double floating-point 3 

WFSR load FSR 2 

STF store floating-point 3 

STDF store floating-point double 4 

STFSR store FSR 3 

STDFQ store double FP queue 4 
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Table 3-7. Floating.Point Operate (FPops) Instruction Cycle Count 

Mnemonic Operation Cycles 

FABSs absolute value 4 

FADDs add single 5 

FADDd add double 5 

FCMPs compare single 4 

FCMPd compare double 4 

FCMPEs compare single and exception if 4 
unordered 

FCMPEd compare double and exception 4 
if unordered 

FDIVs divide single 23 

FDIVd divide double 37 

FMOVs move 4 

FMULs mUltiply single 5 

FMULct multiply double 7 

FNEGs negate 4 

FSQRTs square root single 34 

FSQRTd square root double 63 

FSUBs subtract single 5 

FSUBd subtract double 5 

FdTOi convert double to integer 5 

FdTOs convert double to single 5 

FiTOs convert integer to single 9 

FiTOd convert integer to double 5 

FsTOi convert single to integer 5 

FsTOd convert single to double 5 

3.3.3 CY7C602 Internal Operation 

The CY7C602 operates in one of three modes: execution mode, pending exception mode, and exception mode (see 
Figure 3-17). After reset, the CY7C602 enters execution mode, which is the normal mode of operation. When the 
CY7C602 encounters a floating-point exception condition, the CY7C602 asserts FEXC and enters the pending exception 
mode. All FPop instructions under execution at this point are suspended. The CY7C601 asserts FXACK and enters the 
floating-point trap when the next floating point instruction is encountered. Upon receiving FXACK, the CY7C602 FPU 
enters exception mode. The CY7C602 returns to execution mode as soon as the trap handler empties the FP queue using 
STore Double Floating-point Queue instructions (STDFQ). 

3.3.3.1 Exception Handling 

Upon encountering an exception condition, the CY7C602 asserts FEXC to notify the CY7C601I611 that a floating-point 
exception has occurred and enters the pending exception mode. The CY7C601I611 enters the trap handler on the next 
floating-point instruction it encounters in the instruction stream, asserting FXACK to signal to the CY7C602 that the 
trap is being taken. At this point, the CY7C602 enters exception mode (see Figure 3-17). 
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Figure 3-17. FPU Operation Modes 

Upon receiving FXACK from the CY7C601, the mode of the CY7C602 changes from pending exception to exception 
mode. All FPops in the CY7C602 stop executing during pending exception and exception modes. While in exception 
mode, the CY7C602 will execute only store floating-point instructions until the FP queue is emptied. All floating-point 
store instructions are allowed while in this operating mode. Any load or FPop issued to the CY7C602 while in this mode 
causes a sequence error and returns the CY7C602 to exception pending mode. Once the queue is emptied by successive 
STDFQ instructions, the CY7C602 returns to execution mode. 

Due to the latency of floating-point instruction execution, an exception caused by a FPop occasionally may not occur until 
one or more FP instructions have been fetched and executed (or entered into the FP queue for execution). This is a case 
where FEXC is not asserted before the next floating-point instruction is fetched and executed. In this case, FEXC is 
asserted as soon as the exception case is recognized, and the CY7C601/611 acknowledges the FP exception during the 
execute stage of the next floating-point instruction fetched after FEXC is asserted. 

Figure 3-18 illustrates the handshake of signals between the CY7C601 and the CY7C602 during a floating-point excep­
tion. The qne (queue not empty) bit of the FSR is shown in Figure 3-18 to illustrate the dependency of clearing the FP 
queue to return to execution mode. 

CLK 

qne 
(of FSR) 

FXACK 

FLUSH 

Floating-point exception occurs; 
IDe = 0 

Pending exception mode of 
CY7C602 

CY7C601 executes FP instruction. takes FP 
trap; FXACK = 1. FLUSH = 1 
Exception mode of CY7C602 

Figure 3-18. Floating.Point Exception Handshake 
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3.3.4 CY7C602 IEEE·754 Compliance 

The CY7C602 meets the requirements of the IEEE Std. 754-1985 for floating-point arithmetic. Accuracy of the results 
of its operations are within :!: 'h LSB, as specified by the IEEE standard. The following sections describe the IEEE format 
as implemented on the CY7C602. 

3.3.4.1 IEEE Definitions 

The following terms are used extensively in descnbing the IEEE-754 floating-point data formats. This section is directly 
quoted from the IEEE Standard for Binary Floating-Point Arithmetic. 

biased exponent The sum ofthe exponent and a constant (bias) chosen to make the biased exponent's range 
nonnegative. (Note in the remainder of this section, the term "exponent" refers to a biased 
exponent.) 

binary floating-point number A bit string characterized by three components: a sign, a signed exponent and a significand. 
Its numerical value, if any, is the signed product of its significand and two raised to the power 
of its exponent. 

Denormalized Denormalized numbers are those numbers whose magnitude is smaller than the smallest 
magnitude representable in the format. They have a zero exponent and a denormalized 
non-zero fraction. Denormalized fraction means that the hidden bit is zero. 

denormalized number 

fraction 

NaN 

Normalized 

significand 

true exponent 

Zero 

The CY7C602 cannot directly operate on denormalized operands. The CY7C602 asserts an 
unfmished FPop exception when an operation results in a denormalized number. 

(DNRM) A non-zero floating-point number whose exponent has a reserved value, usually 
the format's minimum, and whose explicit or implicit leading significand bit is zero. (Denor­
malized numbers are also referred to as subnormal in this text.) 

The field of the significand that lies to the right of its implied binary point. 

Not a number, a symbolic entry encoded in floating-point format. They are used to signal 
invalid operatinns and as a way of passing status information through a series of calculations. 
NaNs arise in one oftwo ways: they can be generated by the CY7C602 upon an invalid opera­
tion or they may be supplied by the user as an input operand. NaN is further subdivided 
into two categories: quiet and signaling. Signaling NaNs signal the invalid operation excep­
tion whenever they appear as operands. Quiet NaNs propagate through almost every arith­
metic operation without signaling exceptions. 

Most calculations are performed on normalized numbers. For single-precision, they have 
a biased exponent range of 1 to 255, which results in a true exponent range of -126 to + 127. 
The normalized number type implies a normalized significand (hidden bit is 1). 

The component of a binary floating-point number that consists of an explicit or implicit lead 
ing bit to the left of its implied binary point and a fraction field to the right. 

The component of a binary floating-point number that normally signifies the integer power 
to which 2 is raised in determining the value of the represented number. 

The IEEE zero has all fields except the sign field equal to zero. The sign bit determines 
the sign of zero (i.e., the IEEE format defmes a + 0 and a -0). 

3.3.4.2 IEEE Floating-point /JaIQ RJrmats 

The CY7C602 directly supports single- and double-precision floating-point data formats. Extended-precision formats 
are defined as part of the SPARC architecture, but are not directly executed by the CY7C602. Extended-precision instruc­
tions encountered by the CY7C602 cause an unimplemented instruction trap to be asserted by the CY7C602. This allows 
software to emulate extended-precision instructions through the use of a trap handler. Single-, double-, and 
extended-precision formats are described in this section. 
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MSB LSB 

I (S~ exponent (e) fraction (f) 

31 30 23 22 o 
Figure 3-19. Single.Predsion F1oating.Point Format 

MSB LSB 

I (5) I exponent (e) fraction (f) I 
63 62 5251 3231 0 

~I ~------------------------------~II~------------------------------------il 
31 word 0 0 31 word 1 0 

Figure 3-20. Double·Predsion F1oating.Point Format 

Single-Precision Floating-Point 
Single-precision floating-point data are 32-bits wide and consist of three fields: a single sign bit (s), an eight-bit biased 
exponent (e), and a 23-bit fraction (f). Figure 3-19 illustrates the single-precision floating-point format. 

The IEEE standard defmes single-precision floating-point numbers according to the following conventions: 

( + 0, -0) If e = 0 and f = 0, then the value V = (-1)" • (0) Note that two representations of zero 
exist, one positive and one negative 

DNRM (denormalized) 

Normaliz~ 

(+00, -00) 

NaN (not a number) 

If e = 0 and f # 0, then the value V = DNRM 

If 0 < e < 225, then value V = (-1)" • (2e- 127) • (1.f) Note that 1.f is the significand. The 
one to the left of the binary point is the so-called "hidden bit." This bit is not stored as part 
of the floating-point word; it is implied. For a number to be normalized, it must have this 
one to the left of the binary point. 

If e = 255 and f = 0, then value V = (-1)" (00) 

If e = 255 and f # 0, then value V = NaN. 

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first 
bit of the fraction is 0 (at least one bit must be non-zero). 

Double-Precision Floating-Point 
Double-precision floating-point data are 64-bits wide and consist of three fields: a single sign bit (s), an eleven-bit biased 
exponent (e), and a 52-bit fraction (f). Figure 3-20 illustrates the double-precision floating-point format. 

The IEEE standard defines double-precision floating-point numbers according to the following conventions: 

(+0, -0) If e = 0 and f = 0, then value V = (-1)"· (0) 

DNRM 

Normalized 

(+00, -00) 

NaN 

If e = 0 and f # 0, then value V = DNRM 

If 0 < e < 2047, then value V = (-1)" * (2e-1023) * (1.f) 

If e = 2047 and f = 0, then value V = (-1)" • (00) 

If e = 2047 and f # 0, then value V = NaN. 

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first 
bit of the fraction is 0 (at least one bit must be non-zero). 
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Extended-Precision Floating-Point 

Extended-precision floating-point data are 128 bits wide and consist of six fields: a single sign bit (s), a IS-bit biased expo­
nent (e), 16 reserved bits, a single hidden bitG), a 63-bit fraction, and 32 additional reserved bits. The extended-precision 
floating-point differs from the other precision types in that the "hidden bit" is no longer hidden. The value of the hidden 
bit is explicitly defined as j, which defines the number as normalized or denormalized. 

The IEEE standard defmes extended-precision floating-point numbers according to the following conventions: 

(+0, -0) If e = 0 and f = 0, then value V = (-1)"· (0) 

DNRM 

Normalized 

(+00,-00) 

NaN 

If e = 0 and f "'" 0, then value V = DNRM 

If 0 < e < 32767, then value V = (-1)" • (2e-16383) • (1.f) 

If e = 32767 and f = 0, then value V = (-1)" • (00) 

If e = 32767 and f "'" 0, then value V = NaN 

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first 
bit of the fraction is 0 (at least one bit must be non-zero). 

MSB 

I (Sl exponent (e)1 reservecf ( j )1 fraction ( f ) I 
reserved 

127126 112111 96 9594 6463 3231 

I II II II 
word 0 word 1 word 2 word 3 

Figure 3-21. Extended·Precision Floating·Point Format 

EXTENDED PRECISION FP r[n] SI EXPONENT I RESERVED 

128 

63 

131 
Word 

Addressn 

r[n + 1] 

r[n + 2] 

r[n + 3] 

JI 

3130 

HIGH - ORDER BITS OF FRACTION 

LOW - ORDER BITS OF FRACTION 

RESERVED 

1615 

Figure 3-22. Extended-Precision Data Organization in Registers 

Extended -Precision Data 

Double Word Double Word .. 
J., Word Word J., 31 

n+4 n+8 n+12 

Figure 3-23. Extended-Precision Data Organization in Memory 
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3.3.5 CY7C602 Exception Cases 

The following section describes the CY7C602 exception cases, including exceptions specified by the IEEE-754 standard. 

Unfinished FPop. This exception case can occur when operations on normalized floating-point numbers either encounter 
a denormalized operand or produce a denormalized result. This exception case is asserted upon executing any FPop en­
countering a NaN as one of the operands. The CY7C602 also asserts this trap when a floating-point to integer conversion 
overflow occurs. 

Unimplemented FPop. This exception is asserted by the CY7C602 upon encountering a defined SPARC FPop instruction 
that is not supported by the CY7C602. This includes all operations using extended-precision format operands. The trap 
handler is expected to emulate the unimplemented instruction. 

Sequence Error. This exception is asserted by the CY7C602 when a floating-point instruction (other than FP store) is 
attempted after the CY7C602 has entered either pending exception or exception mode. The CY7C602 suspends all in­
struction execution with the exception of FP stores until the FP exception has been acknowledged and the FP queue has 
been cleared. 

IEEE Exceptions. This class of exceptions is defined as part of the IEEE-754 Standard. The five exceptions defined as 
IEEE Exceptions are reported in the CEXC and AEXC fields of the FSR. These exceptions are: invalid, overflow, under­
flow, division-by-zero, and inexact. The only exceptions that can coincide are inexact with overflow and inexact with un­
derflow. The following paragraphs discuss these exception cases. 

Invalid Operation. The invalid operation exception is signaled if an operand is invalid for the operation to be 
performed. The result, when the exception occurs without a trap, shall be a quiet NaN provided the destination 
has a floating-point format. The invalid operations are: 

1. Any operation on a signaling NaN 

2. Addition or subtraction: Magnitude subtraction of infinities such as ( + 00) + (-00) 

3. Multiplication: 0 x 00 

4. Division: 010 or 00/00 

5. Square root if the operand is less than zero 

6. Conversion of a binary floating-point number to an integer or decimal format when overflow, infinity, or NaN 
precludes a faithful representation in that format and this cannot otherwise be signaled 

7. Floating-point compare operations: when one or more of the operands are NaN 

Division-by-zero. If the divisor is zero and the dividend is a finite nonzero number, then the division by zero 
exception shall be signaled. The result, when no trap occurs, shall be a correctly signed 00. 

Overflow. The overflow exception shall be signaled whenever the destination format's largest finite number is 
exceeded in magnitude by what would have been the rounded floating-point result were the exponent range un­
bounded. The result, when no trap occurs, shall be determined by the rounding mode and the sign of the interme­
diate result as follows: 

1. Round to nearest carries all overflows to 00 with the sign of the intermediate result. 

2. Round toward 0 carries all overflows to the format's largest finite number with the sign of the intermediate 
result. 

3. Round toward -00 carries positive overflows to the format's largest positive finite number, and carries nega­
tive overflows to -00. 

4. Round toward + 00 carries negative overflows to the format's most negative finite number, and carries posi­
tive overflows to + 00. 

Underflow. The CY7C602 does not assert an underflow exception. Underflow cases are covered in the unfin­
ished FPop trap, which is asserted in any case where a denormalized number is used as an operand. The unfin­
ished FPop trap handler must resolve the underflow condition and update this bit to reflect correct accumulated 
exception status (AEXC field of FSR). 

Inexact. The inexact exception is generated whenever there is a loss of accuracy (or significance) in the result. 
The CY7C602 computes results to higher precision than the number of fraction bits in the format. If any of the 
fraction bits to the right of the LSB was one prior to rounding, the inexact exception is signaled. 
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3.4 CY7C602 Signal Descriptions 

The following sections describe the external signals of the CY7C602. Active low signals are marked with an overbar, active 
high signals are not. 

3.4.1 Integer Unit Interface Signals 

FP active-low output Floating-point Present: This signal indicates to the CY7C601 that a FPU is present in the system. 
In the absence of a FPU, this signal is pulled up to VCG2Y a resistor. This is a static signal; it always asserts a low output. 
The CY7C601 generates a floating-point disable trap if FP is not asserted during the execution of a floating-point instruc­
tion. 

FCC(I:0) output Floating-point Condition Codes: The FCC(I:0) bits indicate the current condition code of the FPU, 
and are valid only if FCCV is asserted. FBfcc instructions use the value of these bits during the execute cycle if they are 
valid. If the FCC(I:0) bits are not valid, then FCCV is released, which halts the CY7C601 until the FCC bits become 
valid. 

Table 3-8. FCC(I:O) Condition Codes 

FCC1 FCCO Condition 

0 0 equal 
0 1 Op1 < Op2 
1 0 Op1 > Op2 
1 1 Unordered 

FCCV output Floating-point Condition Codes Valid; The CY7C602 asserts the FCCV signal when the FCC(I;O) repre­
sent a valid condition. The FCCV signal is deasserted when a pending floating-point compare instruction exists in the 
floating-point queue. FCCV is reasserted when the compare instruction is completed and FCC bits are valid. 

FHOLD output Floating-point HOLD: The FHOLD signal is asserted by the CY7C602 if it cannot continue execution 
due to a reso~perand dependency. The CY7C602 checks for all dependencies in the decode stage, and if neces­
sary, asserts FHOLD in the next cycle. The FHOLD signal is used by the CY7C601 to freeze its pipeline in the same 
cycle. The CY7C602 must eventually de-assert FHOLD to release the CY7C601 pipeline. 

FEXC output Floating-point EXCeption: The FEXC is asserted if a floating-point exception has occurred. It remains 
asserted until the CY7C601 acknowledges that it has taken a trap by asserting FXACK. Floating-point exceptions are 
taken only during the execution of a floating-point instruction. The CY7C602 releases FEXC when it receives FXACK. 

FXACK input Floating-point eXception ACKnowledge: The FXACK signal is asserted by the CY7C601 to acknowledge 
to the CY7C602 that the current FP trap is taken. 

INST input INSTruction fetch: The INST signal is asserted by the CY7C601 whenever a new instruction is being fetched. 
It is used by the CY7C602 to latch the instruction on the D(31:0) bus into the FPU instruction buffer. The CY7C602 
has two instruction buffers (01 and D2) to save the last two fetched instructions (see Figure 3-3). When INSTis asserted, 
the new instruction enters the Dl buffer and the old instruction is pushed into the D2 buffer. 

FINSI input Floating-point INStruction in buffer 1: The FlNSl signal is asserted by the CY7C601 during the decode 
stage of a FPU instruction if the instruction is stored in the Dl buffer of the CY7C602. The CY7C602 uses this signal 
to launch the instruction in the Dl buffer into its execute stage instruction register. 

FINS2 input Floating-point INStruction in buffer 2: The FlNS2 signal is asserted by the CY7C601 during the decode 
stage of a FPU instruction if the instruction is stored in the D2 buffer of the CY7C602. The CY7C602 uses this signal 
to launch the instruction in the D2 buffer into its execute stage instruction register. 

FLUSH input Floating-point instruction fLUSH: The FLUSH signal is asserted by the CY7C601 to signal to the 
CY7C602 to flush the instructions in its instruction registers. This may happen when a trap is taken by the CY7C601. 
The CY7C601 will restart the flushed instructions after returning from the trap. FLUSH has no effect on instructions 
in the floating-point queue. In addition to freezing the FPU pipeline, the CY7C602 uses FLUSH to shut off the D bus 
drivers during store operations. Th ensure correct operation of the CY7C602, FLUSH must not change state more than 
once during a clock cycle. 
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3.4.2 Coprocessor Interface Signals 

CHOLD input Coprocessor HOLD: The CHOLD signal is asserted by the coprocessor if it cannot continue execution. 
The coprocessor must check all dependencies in the decode stage of the instruction and assert the CHOLD signal, if 
necessaty, in thCc;cycle. The coprocessor must eventually deassert this signal to unfreeze the CY7C601 and CY7C602 
pipelines. The H LD signal is latched with a transparent latch in the CY7C602 before it is used. 

CCCV input Coprocessor Condition Codes Valid: The coprocessor asserts the CCCV signal when the CCC(I:0) repre­
sent a valid condition. The CCCV signal is deasserted when a pending coprocessor compare instruction exists in the co­
processor queue. CCCV is reasserted when the compare instruction is completed and the CCC(I:0) bits are valid. The 
CY7C602 will enter a wait state if CCCV is deasserted. The CCCV signal is latched with a transparent latch in the 
CY7C602 before it is used. 

3.4.3 System/Memory Interface Signals 

A(31:O) input Address bus (31:0): The address bus for the CY7C602 is an input-only bus. The CY7C601 supplies all 
addresses for instruction and data fetches for the CY7C602. The CY7C602 captures addresses of floating-point instruc­
tions from the A(31:0) bus into the DDA register. When INST is asserted by the CY7C601, the contents of the DDA 
is transferred to the DAI register. 

D(31:O) inputloutput Data bus (31:0): The D(31:0) bus is driven by the FPU only during the execution of floating-point 
store instructions. The store data is sent out unlatched and must be latched externally before it is used. Once latched, 
store data is valid during the second data cycle of a store single access and on the second and third data cycle of a store 
double access. The data alignment for load and store instructions is done inside the FPU. A double word is aligned on 
an eight-byte boundary. A single word is aligned on a four-byte boundary. 

DOE input Data Output Enable: The DOE signal is connected directly to the data output drivers and must be asserted 
during normal operation. Deassertion of this signal three-states all output drivers on the data bus. This signal should 
be deasserted only when the bus is granted to another bus master, i.e, when either BHOLD, CHOLD, MHOLDA, or 
MHOLDB is asserted. 

MHOLDA, MHOLDB input Memory HOLD: Asserting MHOLDAor MHOLDB freezes the CY7C602 pipeline. Either 
MHOLDA or MHOLDB is used to freeze the FPU (and the IV) pipelines during a cache miss (for systems with cache) 
or when slow memory is accessed. 

BHOLD input Bus HOLD: This signal is asserted by the system's 1/0 controller when an external bus master requests 
the data bus. Assertion of this signal will freeze the FPU pipeline. External logic should guarantee that after deassertion 
of BHOLD, the state of all inputs to the chip is the same as before BHOLD was asserted. 

MDS input Memory Data Strobe: The MDS signal is used to load data into the FPU when the internal FPU pipeline 
is frozen by assertion of MHOLDA, MHOLDB, or BHOLD. 

FNULL output Fpu NULLify cycle: This signal signals to the memory system when the CY7C602 is holding the instruc­
tion pipeline of the system. This hold would occur when PHOLD is asserted or FCCV is deasserted. This signal is used 
by the memory system in the same fashion as the integer unit's INULL signal. The system needs this signal because the 
IV's INULL does not take into account holds requested by the FPU. 

RESET input RESET. Asserting the RESET signal resets the pipeline and sets the writable fields of the floating-point 
status register (FSR) to zero. The RESET signal must reIilain asserted for a minimum of eight cycles. 

CLK input CLocK: The CLK signal is used for clocking the FPU's pipeline registers. It is high during the first half 
of the processor cycle and low during the second half. The rising edge of CLK defines the beginning of each pipeline 
stage in the FPU. 
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Chapter 4 
~~S~~~~~~~~~~~ 
SEMICONDUCTOR CY7C604 / CY7C605 

Cache Controller and 
Memory Management Units 

The CY7C604 (CMU) and CY7C60S (CMU-MP) are combined memory management unit (MMU) and cache controllers 
with on-chip cache tag memory. The CY7C604 and CY7C60S are designed as an integral part of the CY7C600 family 
to provide a high-performance solution for cache and virtual memory support. The CY7C604 is designed for uniprocessor 
systems, providing control for a 64-kbyte virtual cache. The CY7C604/60S cache is extendible to 256 kbytes through the 
addition of cache RAMs and CY7C604/60Ss. Expansion of the CY7C604/60S cache increases the number of1LB (frans­
lation Lookaside Buffer) entries available to the system for MMU address translation, as well as increasing the number 
of cache tag entries available to the cache. Another feature of the CY7C604 is cache locking, which provides deterministic 
response time for real-time systems controlling time-critical processes. The CY7C604, as well as the CY7C60S, provides 
the SPARC reference MMU and supports the SPARC Mbus standard for interfacing to physical memory. 

The CY7C60S, a derivative of the CY7C604, is designed to support the requirements of multiprocessing systems. The 
CY7C60S provides two separate cache tag memories, as compared to the single cache tag memory used on the CY7C604. 
The second cache tag memory is physically addressed and allows concurrent bus snooping without stalling the CY7C601. 
lbis allows the CY7C60S to maintain cache coherency with other cache systems without degrading CPU performance. 
The CY7C60S supports the Mbus level 2 cache coherency protocol, which is modeled after the acclaimed IEEE Future­
bus. The CY7C60S is pin compatible with the CY7C604, which allows a CY7C604-based CPU to be used in a multiproces­
sor system by substituting the CY7C604 with the CY7C60S and enhancing the system software. 

The MMU portion of the CY7C604 and CY7C60S provides translation from a 32-bit virtual address range (4 gigabytes) 
to a 36-bit physical address (64 gigabytes). as provided in the SPARC reference MMU specification. Virtual address trans­
lation is further extended with the use of a context register, which is used to identify up to 4096 contexts or tasks. The 
cache tag entries and 1LB entries contain context numbers to identify tasks or processes. This minimizes unnecessary 
cache tag and 1LB entry replacement during task switching. 

The MMU features a 64-entry translation lookaside buffer. The 1LB acts as a cache for address mapping entries used 
by the MMU to map a virtual address to a physical address. These mapping entries, referred to as page table entries or 
PTEs, allow one of four levels of address mapping. A PTE can be defined as the address mapping for a single 4-kbyte 
page, a 256-kbyte region, a 16-Mbyte region, or a 4-Gbyte region. The 1LB entries are lockable, allowing important 1LB 
entries to be excluded from replacement. 

The MMU performs its address translation task by comparing a virtual address supplied by the CY7C601 (Integer Unit) 
to the address tags in the 1LB entries. If the virtual address and the value of the context register match a 1LB entry, 
a 1LB "hit" occurs. When this occurs, the physical address stored in the 1LB is used to translate the virtual address 
to a physical address. The access type (read/write of data or instruction) and privilege level (user/supervisor) are checked 
during translation. If a 1LB hit occurs but access-level protection is violated, the MMU signals an exception and the 
operation ends. 

If the virtual address or context does not match any valid 1LB entry, a 1LB "miss" occurs. This causes a table walk to 
be performed by the MMU. The table walk is a search performed by the MMU through the address translation tables 
stored in main memory. The MMU searches through several levels of tables for the PTE corresponding to the virtual 
address. Upon rmding the PTE, the MMU translates the address and selects a 1LB entry for replacement, where it then 
stores the PTE. 

the 64-kbyte virtual cache is organized into 2048 lines of 32 bytes each. The term "virtual cache" refers to the direct 
addressing of the cache by the integer unit (CY7C601) with the virtual address bus. Virtual address bits VA(IS:5) select 
the cache line, and virtual address bits VA(4:2) select the 32-bit word of the cache line, as illustrated in Figure 4-1. The 
CY7C604/60S provides access control for the cache by checking the context and virtual address against the cache tags. 
If the virtual address, access-level, and context match the cache tag for the cache line addressed, a cache hit occurs and 
the access is enabled. If the virtual address or context do not match the cache tag for the cache line, a cache miss occurs 
and the cache controller accesses main memory for the required data. 
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Figure 4-1. Virtual 64·kbyte Cache 

The CY7C604/605 cache controller supports two modes of caching: write-through with no write allocate and copy-back 
with write allocate. Write-through mode is a simpler style of cache management that causes write accesses to the cache 
to be written through to main memory upon each write access. The advantage of this method is that the cache always 
remains coherent with main memory. Its disadvantage is that each write to the cache is echoed to main memory, which 
increases traffic on the system bus. Another disadvantage to write-through is that the processor is delayed by the time 
required to arbitrate the system bus and write the data to main memory. However, in the case of the CY7C604/605, this 
disadvantage is significantly offset by the inclusion of write buffers. The write buffers can store up to four doubleword 
accesses, allowing the CY7C601 to continue execution while data is written to main memory. 

Copy-back cache mode causes write accesses to be written to the cache only. This causes the cache line to become modi­
fied. Modified cache lines are automatically written back to main memory only when the cache line is no longer needed. 
Copy-back mode is a more complex mode of cache management, but provides substantial system performance improve­
ments over write-through due to decreased traffic on the system bus. 

A 32-byte write buffer and a 32-byte read buffer are provided in the CY7C604/605 to fully buffer the transfer of a cache 
line. This feature allows the CY7C604/605 to simultaneously read a cache line from main memory as it is flushing a modi­
fied cache line from the cache. This feature is also used in write-through cache mode for write accesses to main memory. 
The write buffer avoids stalling the CY7C601 on writes to main memory by storing the write data until the physical bus 
becomes available. The write buffer writes the data to memory as a background task. 

The CY7C604 and CY7C605 support the SPARC Mbus reference standard interface. The Mbus is a peer-level, 
high-speed, 64-bit, multiplexed address and data bus that supports a full peer-level protocol (Le., multiple bus masters). 
The CY7C604/605 Mbus supports data transfers in transaction sizes of 1, 2, 4, 8, or 32 bytes. These data transfers are 
performed in either burst or non-burst mode, depending upon size. Data transactions larger than eigbt bytes (one double­
word) are transferred in burst mode, which consists of an address phase followed by four data phases. Non-burst transac­
tions consist of an address phase followed by one data phase, and are used for data transactions of eight or less bytes. 
Bus mastership is granted and controlled by an external bus arbiter. The bus arbiter sets bus priorities, and grants access 
to a bus master. Additional information on the Mbus can be found in the Physical Bus section. 

Mbus is divided into two levels of implementation: levelland level 2. Levell, implemented on the CY7C604, is the 
uniprocessor version of Mbus. Levell is a subset of level 2, which is the multiprocessor version of Mbus. The CY7C605 
supports level 2 Mbus. Level 2 Mbus includes the IEEE Futurebus cache coherency protocol, which has been recognized 
in the industry as a superior method of supporting multiprocessing systems. Level 2 Mbus defines five cache states for 
describing cache line status. Transactions on the Mbus are monitored or "snooped" by the CY7C605 and other bus agents 
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on the level 2 Mbus to maintain ownership status for each cache line. Transactions on the level 2 Mbus are made with 
respect to the cache line ownership status to ensure consistency for shared data images. 

The level 2 Mbus supports direct data intervention, which allows a cache system with the up-to-date version of a cache 
line to directly supply the data to another cache system without having to first update main memory. Direct data interven­
tion provides a significant performance improvement over systems which do not support this feature. In addition, the 
CY7C605 provides support for memory systems with reflective memory controllers. A memory system with reflective 
memory control can recognize a cache-to-cache data transaction and automatically update itself without delaying the sys­
tem. Another system concept supported by the CY7C605 is secondary caching. Secondary caching provides a perform­
ance advantage over systems directly using main memory, and provides an economic advantage over systems using large 
caches for each processing node. 

4.1 Memory Management Unit 

This section describes the SPARC reference MMU implemented on the CY7C604 and CY7C605. This function is identi­
cal for both the CY7C604 and CY7C605, and all details of Sections 4.1 and 4.2 apply to both. 

The MMU provides virtual to physical address translation with the use of an on-chip translation lookaside buffer. The 
TLB is in reality a full Address Translation Cache for address translation entries stored from tables in main memory. 
These entries, referred to as page table entries or PTEs, contain the mapping information used by the MMU to translate 
the virtual addresses. Addresses presented to the MMU for translation are compared against the set of PTEs stored in 
the TLB. All entries in the TLB are simultaneously accessed through the use of advanced Content Addressable Memory 
(CAM) technology. If a match for the virtual address and context is found in a valid TLB entry and the access protection 
is not violated, a TLB hit occurs and the address is translated. A virtual address and context that matches a valid TLB 
entry but violates the memory access protections will cause the CY7C604/605 to generate a memory exception to the 
CY7C601. If the TLB entries do not match the address and context, or the TLB entry is invalid, then a TLB miss occurs. 
The MMU responds to the TLB miss by initiating a table walk to find the correct PTE stored in main memory for the 
virtual address. 

The MMU uses a tree-structured table walk algorithm to find page table entries not found in the TLB. The table walk 
is a search through a series of four tables in main memory for the PTE corresponding to a virtual address. These tables 
are: the context table, the level 1 table, the level 2 table, and the level 3 table. The table walk uses the context table pointer 
register as a base register and the context number as a offset to point to an entry in the context table. At any address, 
the MMU finds either a PTE, which terminates its search, or a Page Thble Pointer (PTP). A PTP is a pointer used in 
conjunction with a field in the virtual address to select an entry in the next level of tables. The table walk continues search­
ing through levels of tables as long as PTPs are found pointing to the next table. The table walk terminates when a PTE 
is found, or an exception is generated if a PTE is not found after accessing the level 3 table. An exception is also generated 
if the table walk finds an invalid or reserved entry in the page tables. Upon finding the PTE, the CY7C604/605 stores 
it in an available TLB entry and translates the corresponding virtual address. The table walk processing is implemented 
in the CY7C604/605 hardware. It is self-initiated, and is transparent to the user. 

Virtual Section 
(CAM,J:rray) 

Physical Section 
(RAt:.trray) 

Figure 4-2. Translation Lookaside Buffer (TLB) 
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4.1.1 1hmslation Lookaside Buffer (TLB) 

The CY7C604/605 uses a 64-entryfully associative 'ILB for address translation. The 1LB consists of two sections: a virtual 
section and a physical section, as shown in Figure 4-2. The virtual section is compared against the virtual address and 
the contents of the context register. A content addressable memory (CAM) is used as the virtual section of the 'ILB. 
The CAM provides simultaneous comparison of all 64 'ILB entries with the current virtual address and context. The 
physical section of the 'ILB is a RAM array, and its entries are addressed by a valid compare output from a CAM entry. 
If a CAM entry matches the virtual address and context, the corresponding·RAM entry in the 'ILB provides the physical 
address for use by the CY7C604/605. 

The virtual section of a 1LB entry consists of 20 bits of virtual address (VA(31:12» and a 12-bit context number 
(CXN(11:0». The physical section of a 'ILB entry consists of a 24-bit physical page number (PPN(35:12», a cacheable 
bit (C), a modified bit (M), a three-bit field for page access-level protection (ACC(2:0», a two-bit short translation field 
(ST(I:0», and one valid bit (V). 

As described by the SPARC reference MMU specification, bits 31 through 12 of the virtual address are translated to an 
expanded physical address using bits 35 through 12. The translation of these bits depends upon the ST field of the 'ILB 
entry (or PTE) and the MMU operation mode (refer to page 4-13). Bits 11 through 0 of the virtual address are not trans­
lated, and are defined as the page offset for the 4-kbyte memory page. 

A'ILB entry (PTE) can be defined to map a virtual address into one of four sizes of addressing regions using the ST field. 
The four sizes of addressing regions are: 4-kbyte, 256-kbyte, 16-Mbyte, or 4-Gbyte. Table 4-1 illustrates the values as­
signed to the ST(I:0) field. 

The value of the short translation bits affects both the addresses generated using the 'ILB entry and the virtual addresses 
allowed to match with the 1LB entry. The virtual address supplied by the integer unit is divided into four fields: index 
1, index 2, index 3, and page offset, as illustrated in Figure 4-3. For ST = (1,1) (4-Gbyte addressing range), only the context 
register is used to match a 1LB entry. Setting ST = (1,1) essentially causes the CAM array to ignore the index 1, 2~ and 
3 fields of the virtual address. Consequently, the address generated using the 'ILB entry only supplies the upper four 
bits of the 36-bit physical address. Index 1, 2, and 3 fields, along with the page offset, are passed along to the physical 
address unchanged. 

The three remaining values of the ST field "tum on" comparison of the three index fields. The index fields that are re­
quired to match a 1LB entry also become the fields that are replaced by the 1LB entry during virtual to physical transla­
tion. Setting ST = (1,0), (16-Mbyte addressing region), requires the 1LB to match the context and index 1 fields of the 
virtual address to the 'ILB entry. The 'ILB entry with ST = (1,0) will supply the upper four address bits and replace 
the index 1 field of the virtual address with a physical address field. The index 2, 3, and page offset fields are passed along 
to the physical address from the virtual address. Setting ST = (0,1) and (0,0) adds index 2 and index 3 fields to the compari­
son, respectively. Setting ST = (0,0) causes the'ILB to require matching of the context, index 1, 2, and 3, and will replace 
all but the page offset when translating the virtual address. 
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Figure 4-3. Address Comparison 
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Table 4-1. Short Thanslation Bits-ST(1:O) 

STl STO Address Mapping 

0 0 4-kbyte (page size) 

0 1 256-kbyte 

1 0 16-Mbyte 

1 1 4-Gbyte 

Physical addresses are generated using the contents of the PPN field of the Tl.B entry. The portion of the PPN field 
used to map the virtual address to a physical address is dependent upon the ST(I:0) bit field, as described above. If a 
4·kbyte linear addressing range is specified by the ST(I:0) bits, then the entire 24 bit field is used as the upper 24 bits of 
the physical address. When a 256-kbyte linear addressing range is specified, the upper 18 bits of the PPN(3S:18) field 
are used in the physical address. The remaining bits of the physical address are supplied from the virtual address. The 
upper 12 bits of the PPN(3S:24) field are used for a 16-Mbyte addressing region. If a 4-Gbyte region is selected, only the 
upper four bits of the PPN(3S:32) field are used in the address translation. The page offset field of the virtual address 
is always used as the lower twelve bits of the physical address. 

The cacheable bit (C) indicates whether the memory addressed by the Tl.B entry is cacheable or not. If the MMU is 
enabled, the value ofthe C bit is output on the MC pin (MAO( 43» ofthe Mbus during the address phase of a transaction. 
The Mbus is descnbed in the Physical Bus section. 

The modified bit (M) in the 1LB is set when the CY7C601 modifies the memory page. This bit may be checked by an 
operating system to detennine the modified status of a memory area. 

The access-level protection (ACC) bits are descnbed in Table 4-2. The ACC bits define the access-level protection for 
the addressing region controlled by the 1LB entry. Access-level protection is checked during a Tl.B access. If a 1LB 
hit occurs but access-level protection is violated, the MMU generates a synchronous fault and the operation tenninates 
(see Section 4.9, Synchronous Faults). 

The valid bit (V) reports the valid status of the Tl.B entry. These bits are cleared upon power on reset (POR) to invalidate 
the 1LB entries. These bits are also cleared for a Tl.B entry flush. 

Programmer's Note: When loading the 1LB entries under software control (i.e., Tl.B entries loaded by the integer unit 
with ASI = 6), care must be taken to ensure that multiple Tl.B entries cannot map to the same virtual address. This 
may inadvertently occur when combining 1LB entries that map different sizes of addressing regions. For example, a 
4-kbyte region described by a Tl.B entry could be included in a 1LB entry for a 16-Mbyte region. Violation of this restric­
tion will result in an invalid output from the 1LB. Note that this case cannot happen when the 1LB entries are automati­
cally loaded by the CY7C604/60S during a table walk, as the 1LB is checked for a "hit" first. 

Table 4-2. Access·Level Protection Bits-ACC(2:0) 

ACC User Access Supervisor Access 

0 Read Only Read Only 

1 Read / Write Read / Write 

2 Read / Execute Read / Execute 

3 Read / Write / Execute Read / Write / Execute 

4 Execute Only Execute Only 

5 Read Only Read /Write 

6 No Access Read / Execute 

7 No Access Read / Write / Execute 
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4.1.1.1 TLB Look-up 

A virtual address to be translated by the CY7C604/605 is compared against each entry in the 1LB as shown in Figure 4-3. 
If a 1LB hit (match) occurs and access-level requirements are satisfied, then the 1LB outputs the physical address and 
the cacheable bit. This physical address is output by the CY7C604/605 onto the Mbus (see Section 4.12, Physical Bus) 
if the cache has been disabled or if the page is non-cacheable. If the cache controller is enabled and a cache miss occurs, 
the physical address of the cache miss is used to access the new cache line in main memory for cache line replacement. 

The short translation bits specify a linear address mapping range of 4-kbytes, 256-kbytes, 16-Mbytes, or 4-Gbytes for each 
TLB entry. The short translation bits also determine the index fields of the virtual address that are matched with the 
1LB entry to determine a TLB hit. For a TLB entry with a linear address range of 4 kbytes, index fields 1, 2, and 3 of 
the virtual address and the context register are compared against the TLB entry. A 1LB entry with a 256-kbyte linear 
addressing range requires a match of the context and of the index 1 and index 2 fields. A 16-Mbyte linear addressing range 
requires a match of the index 1 field and the context. The 4-Gbyte linear address mapping requires only a context match 
to produce a 1LB hit. 

If the modified bit is not set in a 1LB entry, write or load-store accesses that match the 1LB entry and meet all access-level 
requirements will cause a table walk. (see Thble Walk, Section 4.1.2.) If the modified (M) bit is not set for a write access, 
then the table walk sets the modified bit in the page table pointer entry for the memory region. This information is used 
by an operating system to ensure that modified regions of memory are stored in alternate memory media (typically a disk 
drive) before they are overwritten during memory page swap operations. 

If there is a matched entry, but the access-level requirements are not satisfied, then a synchronous address fault exception 
is asserted. Context number matching is not required if the access-level field (ACC) is either 6 or 7 and the memory access is 
a supervisor mode access (AS1 = 9.B H). This produces a means of mapping the kernel of an operating system into the 
same virtual address locations of every context. 

The 1LB ignores access-level checking during MMU probe operations, copy-hack flush cycles, and alias detection cycles. 

4.1.1.2 TLB Entry Replacement and UJcking 

The CY7C604/605 supports a random replacement algorithm to replace a TLB entry during 1LB miss processing. The 
random replacement is implemented by using a counter to point to one of the 641LB entries. A 6-bit replacement count­
er (RC) is incremented by one during each clock cycle to point to one of the TLB entries as shown in Figure 4-4. Upon 
encountering a 1LB miss, the CY7C604/605 uses the counter value to address a 1LB entry to be replaced. The hardware 
automatically replaces an entry pointed to by the replacement counter (RC) during 1LB miss processing. 

Locking of1LB entries is supported with a 6-bit initial replacement counter (IRC). The number of locked entries is speci­
fied by setting the value of the IRC. The value of the IRC is used as a counter preset for the replacement counter. Once 
the replacement counter (RC) reaches the maximum value, it wraps to the initial replacement counter (IRC) value. Upon 
power-on reset (POR), both the IRC and RC are initialized to zero. 

Locked 1LB entries can be changed (read/write) only through the alternate space load/store instructions with ASI = 
6 (see Diagnostics Support, page 4-43.) These locked entries will not participate in the random replacement algorithm 
during 1LB miss processing. The IRC should be initialized to the number of lockable entries by writing to the 1LB re­
placement control register (fRCR). 

Programming Note: When changing the IRC, the RC should also be written with the same value. This ensures that the 
RC is always pointing to the replacement area of the 1LB. 

4.1.1.3 TLB Entries (TLBBs) 

Both the virtual and physical sections of each 1LB entry can be accessed (read/write) through single load or store instruc­
tions. Software has the option to write and to lock high-usage or high-priority 1LB entries to optimize system response 
time (Refer to MMU 1LB Entries, page 4-43, for more details.) 
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4.1.2 Table Walk 

The CY7C604/605 supports tree-structured, 4-level table walk processing (including the context table level) as shown 
in Figure 4-5. All of the virtual to physical address mapping tables are located in physical memory. These tables are ac­
cessed in the case of a TLB miss or of a write or load-store operation with a cleared M (modified) bit in the 1LB entry. 

Upon starting a table walk, the CY7C604/605 walks through a series of tables to find a page table entry (PfE). The page 
table entry contains the physical page number, the access-level permission, cacheable, modified, and referenced bits for 
the address generating the table walk. (Refer to page 4-10 for information on PTEs.) A table walk caused by a TLB miss 
causes the CY7C604/605 to update an available TLB entry with the new PTE. A table walk forced by a write or load-store 
operation on an unmodified memory region causes the CY7C604/605 to set the modified bit in the page table entry and 
in the TLB entry. 

The table walk begins with an access to the context table. The CY7C604/605 uses the context table pointer register 
(CfPR) as a base register to point to the beginning of the context table. The context register (CXR) is used as an index 
register to point to the table entry. The upper twenty-two bits of the CfPR are concatenated with the twelve bits of the 
CXR to provide a 36-bit address. The lowest two bits of all addresses pointing to a page table entry or pointer are always 
forced to zero. 

If a page table entry (PfE) is found at the context table level, the table walk terminates. The PTE is stored in the TLB 
and, if necessary, the modified bits and/or the reference bits are updated. If a page table entry is not found, then a Page 
Thble Pointer (PTP) must be located at the address pointed to in the context table. (See page 4-9 for more information 
on PTPs and PTEs.) The page table pointer is used as the base address for the next table. 

If a PTE is not found, the table walk continues by accessing the level 1 table using the PTP as a base address and the index 
1 field from the virtual address as an index pointer. It is possible to find a PTE instead of a page table pointer at any level 
during the table walk. The index 1 field (virtual address (31:24» is used to select an entry in the level 1 table. If a page 
table entry is not found at this location, a page table pointer stored at this entry is used as the base address for the level 
2 table. The index 2 field (virtual address (23:18» is used to select an entry in the level 2 table. The entry in the level 
2 table, if not a page table entry, is used as the base address for the level 3 table. The index 3 field (virtual address (17:12» 
is used to select an entry in the level 3 table, which must be a page table entry. 

If a page table entry is not found after the level 3 table access, a synchronous fault exception is asserted. A synchronous 
fault exception is also generated if an invalid entry is found at any level of the table walk. The table walk terminates 
immediately when an exception is generated. 

The level at which the table walk terminates is related to the size of addressing region associated with the entry. A table 
walk that finds its page table entry in the context table corresponds to an addressing region of 4-Gbyte. Each level deeper 
into the table walk corresponds to a smaller size of address mapping. A PTE for a 16-Mhyte addressing region will be 
found in a level 1 table. A 256-kbyte PTE will be found in a level 2 table. Only an addressing region of 4 kbytes will require 
a table walk of four levels to find the correct page table entry). 

An example of a table walk for a 256-kbyte linear address space is shown in Figure 4-6. The value of the short translation 
bits are related to the level at which the table walk terminates. The short translation bits decrease from (1,1) for a table 
walk with a context table PTE to (0,0) for a table walk with a level 3 table PTE. (Refer to Table 4-1.) 

Each table walk access is performed as a non-burst transaction on the Mhus (Physical bus). The Mhus busy (MBB) signal 
is asserted from the beginning of the table walk to the end of the table walk process. This locks the Mhus and prevents 
another bus master from gaining the bus until the table walk is complete. The MWCK bit in the address phase of the 
Mhus transaction will be set (refer to Section 4.12.5), indicating a locked transaction. During these transactions, the C 
bit in the SCR register is output on the MC signal of the Mhus. There will be write transactions during the table walk 
only if the reference bit (R) and/or the modified bit (M) has to be set in the page tables. 

If there is an invalid page table entry (ET = 0) at any level, an invalid address error exception occurs and the table walk 
terminates immediately. If an external bus error occurs, a reserved entry (ET = 3) is detected, or a PTP entry is detected 
in level 3, a translation error exception occurs, and the table walk terminates immediately. If an access-level protection 
occurs, the table walk is terminated and a protection/privilege violation exception is asserted. 

The reference bit (R) and the modified bit (M) are. set according to the access type. In order to record the exceptions 
in the synchronous fault status registers properly, the table walk hardware must indicate the fault type and the level at 
which the fault occurred (Refer to Section 4.9 for more details). For access-level checking during the table walk, 
load-store cycles are treated as write cycles. The table walk state diagram is shown in Figure 4-10. 

During MMU probe operations, copy-back flush cycles, and alias detection cycles, the table walk controller ignores access­
level checking. 

4-8 



CY7C604/CY7C605 CMU 

VIRTUAL I INDEX 1 I ADDRESS INDEX 2 I OFFSET I 
31 2423 L:7 l 0 

---------.------ ------------- ---------------
Context Ptr. Context Table 
Register Level 1 

Context Reg. - Root Pointer 
• Page Table 

Level 2 
Page Table .-- PTP 

L., PTE 

Physical Memory 
---------------------------------------------, 

PHYSICAL I Physical Page Number I Page Offset I ADDRESS 

35 1817 o 

Figure 4-6. Three·Level Table Walk (256·kbyte Addressing) 

4.1.3 Page Table Pointer (PTP) 

A Page Thble Pointer (PTP), as shown in Figure 4-7, may be found in the context, levell, or level 2 tables. The PTP 
is used in conjunction with an index field of the virtual address to point to the next level of table in a table walk. The 
PTP found at the context level is called the root pointer. Bits 31 through 6 ofthe root pointer are output on bits 35 through 
10 of the Mbus (MAD(35:10» and are concatenated with the eight bits of the index 1 field of the virtual address to access 
the entIy in the first level page table. (Refer to Figure 4-6.) The lowest two bits of the address are equal to zero, as ad­
dressing is aligned on word boundaries. 

Similarly, bits 31 through 4 ofthe PTP in level 1 or level 2 tables are output on bits 35 through 8 of the Mbus (MAD(35:8». 
The index 2 or index 3 fields are concatenated with the PTP to yield the address of the next table entry. The ET field 
(see Table 4-3) describes the entry type: invalid, page table pointer, or page table entry. 

In order to reduce the penalty for a TLB miss, the root pointer from the context level table and two PTPs from the level 
2 table are cached in the PTP cache. The PTPs from the most recent data and instruction misses using a four-level table 
walk are cached for later use. The TLB checks the PTP cache upon a TLB miss, and uses the cached PTP to access the 
level 3 table if an entry matches the access. The PTP cache is discussed in more detail in Section 4.1.5. 

31 

PTP 

PTP = Page llIble ·Pointer 
RSV = Reserved 

43 21 0 

ET = Entry type 

Figure 4-7. Page Table Pointer 
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Table 4-3. Page Table Entry 1YPe 
ET Entry 'JYpe 

0 Invalid 

1 Page Table Pointer 

2 Page Table Entry 

3 Reserved 

4.1.4 Page Table Entry (PTE) 

The Page Thble Entry (PTE) is shown in Figure 4-8 and may be found in the context, levell, level 2 or level 3 tables. 
The page table entry contains the address mapping information used by the MMU to translate a range of virtual addresses 
to physical addresses. 

The level of the table in which the PTE is found is related to the addressing range associated with the PTE. A PTE found 
in the context table will map a 4-Gbyte addressing region. A level 1 PTE will map a 16-Mbyte addressing region. A level 
2 PTE corresponds to a mapping region of 256 kbytes. A level 3 PTE maps a 4-kbyte addressing region. 

The addressing region mapped to the PTE determines how many bits in the PPN field of the PTE are used to form the 
physical address. PTE(31:28) from a context level table PTE are output on bits 35 through 32 of the physical address bus 
(MAD(35:32» to offer 4-Gbytes of linear address mapping. Similarly, PTE(31:20) from a level 1 table PTE are asserted 
on bits 35 through 24, and provides 16 Mbytes of linear addressing. PTE(31:14) from a level 2 table PTE are asserted 
on bits 35 through 18, and PTE(31:8) from a level 3 table PTE are asserted on bits 35 through 12 to offer 256K and 4 kbytes 
of linear address mapping, respectively. The remainder of the PPN field not used for address translation is reserved. 
The remaining physical address bits not specified by the PPN field are supplied from the virtual address. 

The ACC bits describe the access-level and privilege protection assigned to the PTE. These bits are described in 
Table 4-2. The referenced (R) bit is set in the PTE when the CY7C604/605 has read the value of the PTE in a table walk. 
The CY7C604/605 automatically sets this bit upon access of the PTE. The modified (M) bitis set upon a write orload-store 
access of a previously unmodified memory region. This information is commonly used by an operating system to flag 
regions of memory that must be written to mass storage before being replaced by another memory page. 

The cacheable (C) bit indicates whether or not the memory region addressed by the PTE is allowed to be cached. This 
bit may be used to prevent shared memory pages from being cached, thereby avoiding potential aliasing problems. It also 
may be used to prevent caching of memory mapped input/output devices. 

The ET field, illustrated in Table 4-3, is used by the CY7C604/605 to determine the type of table entry during a table 
walk. The ET field is set to 2 to indicate a PTE, and is set to 1 to indicate a PTP. If the CY7C604/605 encounters a table 
entry with ET = 0 during a table walk, the CY7C604/605 generates an invalid address error. The CY7C604/605 generates 
a translation error if ET = 3 (reserved) is encountered in a table entry during a table walk. 

24 

PPN 

31 
PPN = Physical Page Number 
C = Cacheable bit 
M = Modified bit 

1 1 1 3 2 

8 7 6 54 2 1 0 
R = Referenced bit 
ACe = Access protection bits 
Ef = Entry type 

Figure 4-8. Page Table Entry Format 
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PTP Cache -------------------, DTAG , ITAG , : Index Tag Register , 
Instruction PTP Reg. 

r-In-stru-c\i-·o-n-Acc-ess--PT-p--',r"'v-'H 

r---------,r--,' 
Data PTP Reg. Data Access PTP f V ,: 

, 
RP Register r----R-oot-Po-inter----,'r"'v-" : 

,--------------- -----------------_ .. 
Figure 4-9. Page Table Pointer Cache 

4.1.5 Page Table Pointer Cache (pTPC) 

In order to reduce the penalty for a lLB miss, the CY7C604/60S supports a three-PTP entry page table pointer cache. 
The Page Thble Pointer Cache (PTPC) caches the most recently used PTPs, as shown in Figure 4-9. The three entries 
are: the Root Pointer Register (RPR), the Instruction access level 2 PTP (IPTP), and the Data access level 2 PTP (DPTP). 
The IPTP and DPTP registers are referenced by a fourth register, the Index Thg Register (ITR). These entries are cached 
during table walk processing for a 1LB miss. 

The root pointer for a context is cached in the RPR. The RPR remains valid until the ConteXt Register (CXR) or the 
Context Thble Pointer Register (CfPR) value is changed. The instruction access PTP register contains the latest level 
2 PTP for an instruction access. This PTP is cached from the last lLB miss requiring a four-level table walk for an instruc­
tion access. The Data Access PTP Register contains the latest level 2 PTP for a data access. This PTP is also cached 
from the last four-level table walk for a data access. The IPTP and DPTP registers are invalidated when another table 
walk that accesses level 3 of the page tables is forced for an instruction or data access or a 1LB flush. They also are invali­
dated when either the context register or context pointer register is changed. Refer to page 4-38 for more information 
on these registers. 

Figure 4-9 illustrates the PTPC. The index tag register (ITR) is used to reference the IPTP and DPTP registers. The 
ITAG and DTAG fields of the index tag register are used by the CY7C604/60S to compare against an address generating 
a lLB miss. Once a level 2 page table pointer is cached for an instruction or a data access, the same PTP is used if the 
index 1 and index 2 fields ofthe virtual address match the index 1 and index 2 tag fields of the ITAG or DTAG. The IPTP 
and DPTP registers are updated only if a 1LB miss occurs that does not match the ITAG or DTAG and also generates 
a table walk that accesses level 3 of the page tables. 

Once a root pointer is cached for a particular context, the same root pointer can be used as long as the context is not 
changed. If the table walk finds a context level or levell or level 2 entry PTE (i.e., is not a four-level table walk), then 
no caching of level 2 pointers is performed. 

Whenever the context is changed, the entire PTPC (all three entries) is invalidated. Upon power-on reset, all the PTPC 
entries are invalidated. When the ContexT Pointer Register (CfPR) is written, the page table pointer cache is invalidated 
by clearing the V bits in the IPTP, DPfP, and RPR registers. Any lLB flush invalidates the IPTP and DPTP registers 
of the PTP Cache. 

The IPTP and DPTP registers are not updated during table walks caused by address alias detection and copy-back flush 
cycles. 
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Load TLB 

Figure 4-10. Table Walk Algorithm 
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4.2 MMU Operation Modes 

This section describes the different modes of operation of the CY7C604/605, the conditions under which they occur, and 
what information is reflected on the pins. The operation mode for the MMU (and cache controller) is controlled by the 
system control register (SCR). Please refer to Sections 4.4.1 and 4.4.2 for further information on the SCR. 

The following symbols are used throughout the chart: 
MC(MAIJ(43» Mbus Cacheable indicator signal 

(Refer to Pin Definitions, Section 4.10) 
UN 
RES 

Unassigned AS! 
ReselVed AS! and AS! 

MBU:MAD(45» Mbus Boot!Local indicator signal 
(Refer to Pin Definitions, Section 4.10) PA 

VA 

defined but not implemented (see Table 4-15) 
Physical Address 

ASI Address Space Identifier code 
for current access from CY7C601 

SeR[C] Cacheable bit of SCR 
X Not Defined or Don't Care 

BM, ME,CE 
PTE[C] 

Virtual Address 
Bits in System Control Register (SCR) 
Cacheable bit of page table pointer 

Table 4-4. MMU Operation Modes 

MMU Operation Modes 

Mode Conditions Results 

ASI BM ME CE Physical Addressing Caching MC 

Local 1 X X X PA<35:32> =0 PA<31:0> = Not 0 
VA<31:0> Cached 

UN, RES UN, RES X X X Ignore Ignore Ignore N/A 

By-pass 20-2F X X X PA<35:32> = PA<31:0> = Not 0 
ASI<3:0> VA<31:0> Cached 

Pass-Through 8,9,A,B 0 0 X PA<35:32> = 0 PA<31:0> = Not SCR 
VA<31:0> Cached [C] 

Boot 8,9 1 X X PA< 35:28 > = PA<27:0> = Not SCR 
(Instr. access) FF VA< 27:0 > Cached [C] 

Boot A,B 1 0 X PA<35:32> = 0 PA<31:0> = Not SCR 
(Data access) VA<31:0> Cached [C] 

Translation 1 A,B X 1 0 PA<35:12> = PA< 11:0> = Not PTE 
(Data Access PTE<31:8>* VA<11:0>* Cached [C] 
and Cache 
Disabled) 

Translation Z A,B X 1 1 PA<35:12> = PA< 11:0> = Cached if PTE 
(Data Access PTE<31:8>* VA<11:0>* PTE[C] [C] 
and Cache =1 
Enabled) 

Translation 3 8,9 0 1 0 PA<35:12> = PA< 11:0> = Not PTE 
(Instruction PTE<31:8>* VA<11:0>* Cached [C] 
Access and 
Cache 
Disabled) 

Translation ~ 8,9 0 1 1 PA<35:12> = PA<11:0> = Cached if PTE 
(Instruction PTE<31:8>* VA<11:0>* PTE[C] [C] 
Access and =1 
Cache 
Enabled) 

MBL 

1 

N/A 

0 

0 

1 

1 

0 

0 

0 

0 

.. Concatenation field sizes vary dependmg upon the short translatIon (ST) bits to provIde 4G, 16M, 256K. 4 kbytes of hnear address mappmg. 
Refer to Section 4.1.1 for further details. 
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The MMU provides three types of operating modes: boot modes, direct-access modes, and translation modes. Tho boot 
modes are defmed for the MMU, one for data accesses, and one for instruction accesses. The boot modes force the upper 
eight bits of the physical address to FF H for instruction accesses. The upper four bits are forced to zero for data accesses. 
These two modes also assert the Mbus Boot modelLocal indicator (MBL) signal. This signal can be used in the system 
to enable a memory region used only for system boot and configuration. This allows the system a secure method ofaccess­
ing bootstrap ROM and shadow RAM separate from the main memory space. 

The direct access modes allow the integer unit to access the main memory without address translation by the MMU. 
These modes include: local, by-pass, and pass-through. Local mode enables the MBL signal and forces the upper four 
bits of the physical address to zero. The lower 32 bits of the physical address are supplied directly from the virtual address 
bus. This mode allows the integer unit to access the boot mode memory (if supported in the system) without changing 
the state of the System Control Register (SCR). Local mode is enabled by using a load or store alternate instruction with 
AS!" = 1 H. .. 

Bypass mode allows complete access to the main memory space. MBL is not enabled, and the lower four bits ·of the ASI 
are used as the upper bits of the physical address. The remaining 32 bits are supplied directly from the virtual address 
bus. The state of the SCR does not have to be modified. This mode is mapped into the ASI space as ASI =.20 - 2F H. 

Pass-through mode descnbes the CY7C604/60S operation with the MMU disabled. The upper four address bits of tlte 
physical address are forced to zero. The MBL signal is not asserted. This mode does not require non standard ASI assign­
ments (i.e., ASI = 8,9,A,B H), but the boot mode (BM) and MMU enable (ME) bits of .the SCR must be cleared. 

The translation modes are considered to be the normal operating modes o( the MMU. This group includes four modes 
of translation operations: 1tanslation 1-4. ltanslation 1 and 2 are the non-cached. and cached data access modes. 1tansla­
tion 3 and 4 are the non-cached and cached instruction access modes. The cached and non-cached modes are identical 
in results for both data and instruction accesses, with the exception that the data access modes ignore the Boot Mode 
(BM) bit of the SCR. This feature allows the system to enable the MMU for data accesses, yet still acceSS instructions 
from the boot memory space without changing the BM bit . 

• The SPARe architecture reference supports the concept of Address Space Identir", .. (ASI), which provide an extension of the standard addressing 
space. These bits are used to enable special addressing modes, or to provide a=so to registe .. and other features of the CY7C604. Refer to section on 
ASI and Register Mapping for more information. 

4.2.1 MMU Flush and Probe Operations 

4.2.1.1 Rush OperaJions 

The flush operation allows software invalidation of selected entries in the TLB. TLB entries are flushed by executing 
a Store Alternate ASI instruction using ASI = 3 H and supplying a virtual address in the format shown in Figure 4-11. 
The context number is given by the context register (CXR). All TLB entries that match the virtual address, context, and 
TLB flush type will be flushed (invalidated) simultaneously. The flush type is specified in bits 11-8 of the virtual address 
for the flush operation. 

The CY7C604/60S supports five different types ofTLB flushing operations. These types are: page, segment, region, con­
text, and entire flush. The five types of flushing are listed in Table 4-5, and define the address comparison required to 
match a TLB entry for flushing. The Short 1tanslation (ST) bits in the TLB entries are ignored for TLB matching. All 
TLB entries matching the compare criterion of the flush type are invalidated, including those locked by the IRC. 

Virtual Address Format: 

I INDEX1 I INDEX2 I INDEX3 TYPE RSV 

31 2423 18 17 1211 8 7 0 

Figure 4-11. MMU Flush Address Format 
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Table 4-5. TLB Entry Flushing 

1YJIe Flush Compare Criterion 

0 Page Context (or ACC = 6, 7), 
Index 1, Index 2, and Index 3 

1 Segment Context (or ACC = 6, 7), 
Index 1, and Index 2 

2 Region Context (or ACC = 6, 7), 
and Index 1 

3 Context Context (user pages with 
ACC = Ot05) 

4 Entire None 

5 to F Reserved 

4.2.1.2 Probe Operation 

The probe operation allows testing the 1LB and page tables for a PTE entry corresponding to a virtual address. The opera­
tion is initiated by executing a load alternate ASI instruction with ASI = 3 H, the appropriate virtual address, and the 
context number. The context is specified by the context register. Upon starting a probe operation, the 1LB is probed 
first. If there is a 1LB hit, it returns the 32-bit physical section of the matched entry. The returned entry fields are for­
matted such that it is identical to a PTE (see Section 4.1.4 on page 4-10, for PTE format information). If a matching entry 
could not be found in the 1LB, a table walk is started and an appropriate 32-bit value (PTE) is returned and loaded into 
theTLB. 

A probe operation causes the Reference bit (R) to be set in the PTE by means of a table walk. When a probe operation 
hits the 1LB, the R bit is always returned as set. 

The context register and access-level protection checking are ignored for 1LB matching and during the probe operation 
table walk. The table walk hardware checks for invalid address error and translation error exceptions and records appro­
priate fields in the SFSR register as in the normal table walk process. If a bus error occurs or an invalid or reserved entry 
is detected during the table walk, a 32-bit zero value is returned as status. If a zero value is returned, the UC, TO, BE, 
L, and FT fields of the SFSR are updated accordingly, but the operation does not cause an exception to the CY7C601. 

4.3 CY7C604 I CY7C605 Cache Controllers 

The differences between the CY7C604 and CY7C605 become evident in the features of their respective cache controllers. 
The CY7C604 cache controller is designed for a uniprocessor system, and provides cache locking for real-time system 
support. The CY7C605 cache controller is enhanced to accommodate the requirements of a multiprocessing system. 
The CY7C605 provides bus snooping and a Futurebus style of cache coherency protocol. The CY7C605 is designed to 
provide high visibility into its cache operations from the perspective of the shared physical bus in order to simplify support 
by a secondary cache system. The following sections discuss the CY7C604 and CY7C605 cache controllers. Sections 
specific to the CY7C604 or CY7C605 are marked with that part number only. Sections applying to both the CY7C604 
and the CY7C605 are marked "CY7C604/605." 

4.3.1 CY7C604/60S Cache Modes 

The CY7C604/605 virtual cache can be programmed for either write-through with no write allocate or copy-back with 
write allocate. The two cache modes differ in how they treat cache write accesses. Write-through cache mode causes 
write hits to the cache to be written to both cache and main memory. Write-through write cache misses only update main 
memory and invalidate the cache tag, but do not modify the cache. 

A write access in copy-back mode only modifies the cache. The writing of the modified cache line to main memory is 
deferred until the cache line is no longer required. Copy-back cache mode has the advantage of reducing traffic on the 
system bus. Bus traffic is reduced since all updates to memory are deferred and are performed subsequently only as abso­
lutely required. In addition, all such data transfers are made utilizing the more efficient burst mode. The following de­
scribes the two cache modes in detail. 
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4.3.1.1 CY7C604160S Write-Through Mode with No Write Allocate 

For write-through cache mode, write access cache hits cause both the cache and main memory to be updated simulta­
neously. A write access cache miss causes only main memory to be updated (no write allocate). The selected cache line 
is invalidated for a write access cache miss. Write-through caching mode normally requires a processor to delay during 
a write miss while the data is written to main memory. The CY7C604/605 provides write buffers to prevent this delay in 
most cases. The write buffers store the write access and write the data to main memory as a background task. (Refer to 
page 4-31 for further information on the write buffers.) 

During read access cache hits, the cached data is read out and supplied to the CY7C601. In the case of a read access cache 
miss, a cache line is fetched from main memory to load into the cache and the required data is supplied to the CY7C601. 

4.3.1.2 CY7C604160S Copy-Back Mode with Write Allocate 

When the cache is configured for copy-back mode, only the cache is updated on write access cache hits (i.e., main memory 
is not updated). The modified bit of the cache tag for the cache line is set on a copy-back write access (write hit or after 
a write miss is corrected). During write access cache misses, if the selected cache line is clean (not modified), a cache line 
is fetched from main memory to load into the cache and only the cache is updated. If the selected cache line is modified, 
the selected cache line is flushed out to update main memory. The CY7C604/605 simultaneously fetches the new cache 
line from main memory and stores it into the read buffer as it flushes the modified cache line from the cache and stores 
it into its write buffer. After the modified cache line has been flushed, the CY7C604/605 writes the modified cache line 
out of its write buffer into main memory while the new cache line is stored into the cache memory from the read buffer. 

During read access cache hits, the cached data is read out and supplied to the CY7C601. During read access cache misses, 
if the selected cache line is clean (not modified), a cache line is fetched from main memory to load into the cache. If the 
selected cache line is modified, the selected cache line is flushed out to the CY7C604/605 write buffer, and a new cache 
line is fetched from main memory and stored into the read buffer. The new cache line is then stored in the cache from 
the read buffer, while the modified cache line stored in the write buffer is written out to main memory. 

4.3.2 CY7C604 Cache Controller 

The cache controller provides cache memory access control for a 64-kbyte direct mapped virtual cache. The cache control­
ler is designed to use two CY7C157 Cache RAMs for the cache memory. These cache RAMs are 16-kbyte x 16 SRAMs 
with on-chip address and data latches and timing control. The CY7C601 cache can be expanded to a maximum of 256 
kbytes by adding additional groups of one CY7C604 and two CY7C157s. Using multiple CY7C604s to expand the cache 
is referred to as a multichip configuration for the CY7C604, and is described in the Section 4.5, Multichip Configuration. 

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C604 has 2048 cache tag entries on-chip, one tag 
entry for each cache line. Addressing for the virtual cache is provided directly from the virtual address bus. The virtual 
address field VA(15:5) selects one of the 2048 lines of the cache. This address field also selects one of the corresponding 
cache tag entries in the CY7C604. A cache hit occurs when the upper sixteen bits of the virtual address and the context 
register match with the virtual address and context stored in the selected cache tag entry. The lowest five bits of the virtual 
address bus (VA(4:0» select one or more of the 32 bytes in the cache line. Cache data replacement is always performed 
by replacing cache lines. 

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the cache controller. 
The CY7C604 controls cache read access by holding the CY7C601 with MHOLD if a cache hit is not detected by the cache 
controller. The cache controller then reads the new cache line from main memory, and supplies the correct data to the 
CY7C601. After the correct data llflatched into the CY7C601 by strobing the MDS signal, the CY7C601 is released and 
execution proceeds normally. " 

Writes to the cache are controlled by the CY7C604, which decodes the lowest two bits of the virtual address, the SIZE(I:0) 
signal, and checks for a cache hit to enable the correct cache byte write enable signals. If a cache write hit occurs, the 
CY7C604 decodes the correct CBWE signals for the write access, and outputs these to the CY7C157 Cache RAM write 
enables. If the cache mode is set to write-through (see Cache Modes, Section 4.3.1), the write data is also written to main 
memory. If a write cache miss occurs for write-through cache mode, the data is written to main memory and the cache 
is not updated. If the write cache miss occurs during copy-back cache mode (see Figure 4-14) and the selected cache line 
is not modified, the missed cache line is fetched from main memory. If a write cache miss occurs during copy-back mode 
and the selected cache line is modified, the CY7C604 simultaneously flushes the modified cache line into the write buffers 
while it fetches the new cache line from main memory. After the cache line has been replaced, the write access is enabled 
by the CY7C604. The modified cache line is written to main memory from the write buffers as a background task. 
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}-----.. Cache Hit 

Figure 4-12. CYC7604 Cache Tag Comparison 

4.3.2.1 CY7C604 Cache Tag 

The CY7C604 features 2048 direct-mapped cache tag entries, as shown in Figure 4-12. The on-chip cache tag and the 
1LB are accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address (VA(31:16», a 12-bit context 
number (CXN(11:0», one valid bit (V) and one modified bit (M). The valid bit (V) is set or cleared to indicate the validity 
of the cache tag entry. The modified bit (M) of a cache tag entry is set during copy-back mode after a write access to the 
cache line. This indicates that the cache line has been modified. The modified bit has no meaning for write-through cache 
mode. The cache line select field (VA(lS:S» is used to select a cache line entry and its corresponding cache tag entry. 
The address field VA(31:16) and context register are compared against the virtual address and the context fields of the 
selected cache tag entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache miss is 
generated. To complete an access successfully, both the cache tag and the 1LB must be hit with appropriate access-level 
permission. Upon Power-On Reset (PaR), all cache tag entries are invalidated (all V bits are cleared). 

A Supervisor bit (S) is included in the cache tag entry. For cache tag entries which are accessible by the supervisor only 
(access-level field 6 or 7), the S bit is set. During a cache tag look up, if the access is supervisor mode and the the S bit 
is set, the context number comparison is ignored and the context match is forced. This operation is similar to a 1LB look 
up with access-level field set to either 6 or 7. 

4.3.2.2 CY7C604 Address Aliasing 

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be detected to maintain 
data consistency in a virtual cache system. The SPARC reference system software convention permits the use of aliases 
in address spaces that are modulo with respect to the system's underlying cache size. In order to allow the efficient caching 
of physical memory pages where such aliases may occur, the CY7C604 supports automatic address aliasing protection. 

The CY7C604 tests for address aliasing during copy-back read or copy-back write cache misses or during write-through 
read misses. The MMU must be enabled to allow the CY7C604 to test and correct address aliases. 

To detect address aliasing, the virtual address of the selected cache tag entry is translated through the MMU. The trans­
lated physical address is compared with the physical address of the missed cache access. If the physical address of the 
selected cache tag entry and the physical address of the cache miss match, then address aliasing is detected. 
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Figure 4-14. CY7C604 Copy· Back with Write Allocate 

4-18 

Read Miss with Alias 
Update cache 

lag only 

Read Miss 
with Alias 
updalecache 

tag only 



CY7C604/CY7C605 CMU 

The SPARC system software convention ensures that the aliasing maps to the same cache line address for a particular 
CY7C604. Coupled with this convention, the cache controller hardware automatically prevents any existence of address 
aliases in the virtual caches. 

Aliasing is checked during a cache miss. If detected, an alias is corrected by updating the selected cache tag entry with 
the new virtual address. The CY7C604 then halts the cache miss processing and provides an access to the cache, as with 
a cache hit. If no alias is detected, the cache miss processing proceeds normally. The state diagrams for write-through 
and copy-back cache modes with alias detection and correction are illustrated in Figure 4-13 and Figure 4-14. 

In copy-back mode, address aliasing is checked during a read- or a write-access cache miss. For an alias detected during 
a read-access cache miss, the selected cache tag entry is updated with the virtual address that caused the cache miss. The 
cache miss processing is halted, and the CY7C601 is supplied with data from the cache. 

If an address alias is detected during a write access cache miss, the selected cache tag entry is updated with the new virtual 
address that caused the cache miss. The modified bit is set if it was not set previously. The cache miss processing is halted, 
and the cache write access is enabled. 

In write-through mode, address aliasing is checked only on read-access cache misses. If an address alias is detected on 
a read-access cache miss, the old cache tag entry is replaced with the new virtual address. The cache miss is halted, and 
the cache supplies the data requested. 

In write-through cache mode, address aliasing is not checked during write-access cache misses. In order to avoid potential 
address aliasing, the selected cache line is invalidated. Address aliasing is not Checked in this case in order to avoid unnec­
essary performance degradation. 

To detect address aliasing, the selected cache line address is translated through the TI...B. Protection checking is ignored 
during this translation. The translation may occasionally cause a TI...B miss. If this happens in a write-through read miss 
case, the alias checking and the TI...B miss are ignored. In a copy-back read miss or a write miss when the selected cache 
line is clean, alias checking and TI...B miss processing are ignored. To provide data consistency, the table walk is performed 
in order to detect address aliasing in a copy-back read miss or a write miss when the selected cache line is modified. 

4.3.2.3 CY7C604 Cache Lock 

The CY7C604 supports a cache lock mechanism that allows the system to lock all entries in the cache. This feature is 
provided to allow deterministic response times for real-time systems. The cache lock function affects only cache miss 
operations, since it locks out cache line replacement of valid entries. Since alias detection is not enabled, shared memory 
pages must be declared as non-cacheable when the cache is locked. The following description summarizes each case in 
detail: 

a. Write-through read miss and selected entry is invalid: A new cache line is fetched from main memory to load into the 
cache and the requested data is supplied to CY7C601 as in normal operation mode. 

b. Write-through read miss and selected entry is valid: The requested data is obtained from main memory as a non-burst 
transaction on the Mbus and supplied to the CY7C601, but is not loaded into the cache. 

c. Write-through write miss: The selected cache line is invalidated in order to prevent data inconsistency due to potential 
address aliasing. 

d. Copy-back read miss and selected entry is invalid: A new cache line is fetched from main memory to load into the cache 
and the requested data is supplied to CY7C601 as in a normal operation. 

e. Copy-back read miss, selected entry is valid: The requested data is obtained from main memory as a non-burst transaction 
on the Mbus and supplied to the CY7C601, but is not loaded into the cache. 

f. Copy-back write miss and selected entry is invalid: A new cache line is fetched from main memory to load into the cache 
and the CY7C601 data is stored in the cache as in a normal operation. 

g. Copy-back write miss and selected entry is valid: The CY7C601 data is stored in the main memory as a non-burst transac­
tion on the Mbus, but the cache is not updated. 
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Figure 4-15. CY7C605 Processor Virtual Cache Tag (pVTAG) Comparison 

4.3.3 CY7C605 Cache Controller 

2048 
entrIes 

The cache controller provides cache memory access controlfor a 64-kbyte direct-mapped virtual cache. The cache control­
ler performs this task by comparing memory accesses against the address and status entries in a cache tag memoty. The 
CY7C60S provides two separate cache tag memories for access comparison. Cache memory accesses from the processor 
are compared against the Processor VIrtual cache TAG (pVfAG) memory. Bus snooping operations are compared against 
the Mbus Physical cache TAG (MPfAG) memory. The use of two cache tag memories allows the cache controller to ser­
vice processor cache accesses concurrently with bus snooping cache tag accesses. This feature of the CY7C60S provides 
significant performance improvements over cache systems sharing a single cache tag memory between the processor 
cache access and the bus snooping operations. Single cache tag systems typically must stall the processor when a bus 
snooping operation is required, causing serious performance degradation. 

The cache controller is designed to use two CY7ClS7 cache RAMs for the cache memory. These cache RAMs are 
16-kbyte x 16 SRAMs with on-chip address and data latches and timing control. TWo CY7C1S7s and one CY7C60S com­
prise an entire 64-kbyte cache system with physical bus interface and read and write buffers. 

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C60S has 2048 cache tag entries in both the PVfAG 
and MPTAG, one entry in each cache tag memory per cache line. Addressing for the virtual cache is provided directly from 
the virtual address bus. The virtual address field (V A(lS:S» selects one of the 2048 lines of the cache (refer toRgure 4-15). 
This address field also selects the cache tag entry in the PVfAG dedicated to the selected cache line. A cache hit occurs 
when the upper sixteen bits of the virtual address and the context register match with the virtual address and context 
stored in the selected cache tag entry in PVfAG. The lowest five bits of the virtual address bus (VA(4:0» select one or 
more of the 32 bytes in the cache line. Cache data replacement is always performed by replacing cache lines. 

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the cache controller. 
The CY7C60S controls cache read access by holding the CY7C601 with MHOLD if a cache hit is not detected by the cache 
controller. The cache controller then reads the new cache line from main memory, and supplies the correct data to the 
CY7C601. After the correct data is latched into the CY7C601 by strobing the MDS signal, the CY7C601 is released and 
execution proceeds normally. 
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Writes to the cache are controlled by the CY7C605, which decodes the lowest two bits ofthe virtual address, the SIZE(1:0) 
signal, and checks for a cache hit to enable the correct cache byte write enable signals. If a cache write hit occurs, the 
CY7C605 decodes the correct CBWE signals for the write access, and outputs these to the CY7C157 cache RAM write 
enables. Ifthe cache mode is set to write-through (see Section 4.3.1, Cache Modes), the write data is also written to main 
memory. If a write cache miss occurs for write-through cache mode, the data is written to main memory and the cache is 
not updated. If the write cache miss occurs during copy-back cache mode, the cache line is fetched from main memory. If 
the cache line stored in the cache when the write cache miss occurred has been modified, the old cache line is written to 
main memory before the cache line is replaced by the new data. After the cache line has been replaced, the write access is 
enabled by the CY7C605. 

4.3.3.1 CY7C60S Cache Tag 

The CY7C605 features two separate cache tag arrays: the processor virtual cache tag memory (PVfAG) and the Mbus 
physical cache tag memory (MPTAG). Cache controllers using only one cache tag array must delay the processor when bus 
snooping requires access to the cache tags. The inclusion of two independent cache tag memories allows the CY7C60S to 
support processor accesses to cache while simultaneously performing bus snooping on the Mbus. 

4.3.3.1.1 CY7C60S Processor Virtual Cache Tag (PVTAG) 

The PVfAG consists of 2048 direct-mapped cache tag entries, as shown in Figure 4-16. The PVfAG and the TLB are 
accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address (V A(31: 16», a 12-bit context number 
(CXN(11:0», one valid bit (V), and one shared bit (SH). The valid bit (V) is set or cleared to indicate the validity of the 
cache tag entry. The shared bit (SH) of a cache tag entry is set when bus snooping indicates that the cache line is shared. 
The cache line select field (V A(15:5» is used to select a cache line entry and its corresponding cache tag entry. The address 
field VA(31:16) and context register are compared against the virtual address and the context fields ofthe selected cache 
tag entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache miss is generated_ Th. 
complete an access successfully, both the cache tag and the TLB must be hit with appropriate access-level permission. On 
Power-On Reset (PaR), all cache tag entries are invalidated (all V bits are cleared). 

A supervisor bit (S) is included in the cache tag entry. For cache tag entries which are accessible by the supervisor only 
(access-level field 6 or 7), the S bit is set. During a cache tag look up, if the access is supervisor mode and the the S bit is set, 
the context number comparison is ignored and the context match is forced. This operation is similar to a TLB look up with 
access-level field set to either 6 or 7. 

4.3.3.1.2 CY7C605 Mbus Cache Tag (MPTAG) 

The MPTAG consists of 2048 direct-mapped, physical address cache tag entries (refer to Figure 4-16). Each entry in the 
cache consists of 24 bits of physical address (PA < 35:12 », a valid bit (V), a shared bit (SH), and a modified bit (M). 

The 2048 MPTAG entries are virtual address indexed. The index field for MPTAG, as supplied by the Mbus, is formed by 
concatenating the superset virtual address bits (15:12) (MAD( 49:46» with physical address bits (11:5) (MAD(11:5» (refer 
to Figure 4-17). The format of the Mbus address bus cycle is described in Section 4.12.S in Section 4.12.5. 
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Figure 4-17. CY7C60S Mbus Physical Cache Tag (MPTAG) Comparison 

During a MPTAG compare operation, the physical address field (35:12) of the access is compared against the physical 
address field of the MPTAG entry selected by the virtual address index. If a match occurs and the valid bit is set. a cache hit 
is generated. If a match is not found. or the valid bit is not set, a cache miss is generated. On Power-On Reset (POR). all the 
MPTAG cache entries are invalidated r.:v bits are cleared). 

4.3.3.2 CY7C60S Multiprocessing Supporl 

The CY7C605 is specifically designed to support mUltiprocessing systems. The CY7C605 accomplishes this by providing 
features necessary to maintain cache coherency with a second-level memory system (typically main memory or a secondary 
cache) and other caching systems on the shared bus. 

The CY7C605 supports two modes of caching: write-through and copy-back. Operation in write-through caching mode 
causes main memory to be modified with each write access to the cache. This avoids the issue of lack of coherency between 
the individual cache systems and main memory. but greatly increases memory bus traffic. The effect of this increased bus 
traffic is a degrading of the performance of a multiprocessor system as the processing nodes compete for memory bus 
bandwidth. This problem is greatly reduced when copy-back caching mode is used. 

Operation in copy-back mode causes all changes to a cache line to be held until the line is flushed from the cache. This 
minimizes bus traffic to only those transactions necessary to maintain the cache. However. by allowing the cache line to be 
modified without updating main memory. a problem arises when other processing nodes require an up-to-date copy of that 
memory location. The problem of modified cache lines is solved by the enforcement of a cache coherency protocol. 

The CY7C605 implements a cache coherency protocol specified by the SPARC reference standard Mhus level-2 interface. 
This protocol is modeled after that used by the IEEE Futurebus. In this protocol, each cache line is described by one offive 
states: invalid (I), exclusive clean (EC). exclusive modified (EM), shared clean (sq. and shared modified (SM). The fol­
lowing descnbes these five cache states: 

Invalid (I): Cache line is not valid. 

Exx:lusive Clean (EC): Only this cache module has a valid copy of this cache line. other than the next level of memory (main 
memory or secondary cache). No other cache module on the same level of memory has a valid copy of this cache line. 

Exx:lusive Modified (EM): Only this cache module has a valid copy of this cache line. This cache module is the OWNER of 
the cache line, and has the responsibility to update the next level of memory (main memory or secondary cache) and also to 
supply data if any other cache references this memory location. 
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Shared Clean (SC): The same cache line may exist in more than one cache module. The next level of memory mayor may 
not contain a valid copy of this cache line, depending upon whether this cache line has been modified in any other cache. 

Shared Modified (SM): The same cache line may exist in more than one cache module, but this cache module is the OWN­
ER of the cache line. The next level of memory does not have a valid copy of this cache line, and this cache module has the 
responsibility to update the next level of memory and to supply any other cache that may reference this same memory 
location. 

These five states are described by three state bits (valid (V), shared (SH), and modified(M» in each MPTAG cache tag 
entry (refer to Figure 4-16). The PVTAG cache tag entries are described by two state bits: valid (V), and shared (SH). The 
PVTAG cache tag entries corresponding to the same cache lines can be in one of three states: invalid, exclusive valid, and 
shared valid. 

Under write-through cache mode, only the valid and invalid states apply to either the MPTAG or PVTAG cache tag en­
tries. The shared and modified bits in the MPTAG are ignored by the CY7C605 when in write-through mode. 

4.3.3.3 CY7C605 Cache State Transitions 

The following sections describe the five cache line states (invalid, exclusive clean, exclusive modified, shared clean, and 
shared modified) and the transitions these states undergo due to transactions on the Mbus. Each numbered transition in a 
section corresponds to a numbered transition on the state diagram for that section. Note that state transitions are depen­
dent upon both the cache transaction and the state of the Mbus signals: memory shared (MSH), and memory inhibit 
(MIH). 

All processor transactions described in this section affect the processor serviced by the CY7C605. All coherent transac­
tions affect all bus agents on the Mbus with a copy of the shared cache line. For further information on Mbus transactions, 
please refer to Section 4.12. 

4.3.3.3.1 Copy-Back Invalid 

Processor Read Miss: CY7C605 issues a coherent read transaction on the Mbus. The CY7C605 will read the cache line 
from the second-level memory and then load it into the cache RAM. Then the data is supplied to the processor in the cycle 
following the last cache line entry. 

1. If MSH = HIGH, then invalid changes to exclusive valid in PVTAG and invalid changes to exclusive clean in 
MPTAG. 

2. If MSH = LOW, then invalid changes to shared valid in PVTAG and invalid changes to shared clean in MPTAG. 

Processor Write Miss: CY7C605 issues a coherent read and invalidate transaction on the Mbus. The CY7C605 reads the 
cache line from the second-level memory and loads it into the cache RAM. Then the processor data is written into the 
cache RAM in the cycle following the last cache line entry. 

3. Invalid changes to exclusive valid in PVTAG and invalid changes to exclusive modified in MPTAG. 

Figure 4-18. Copy· Back Invalid 
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Figure 4-19. Copy·Back Exclusive Clean 

4.3.3.3.2 Copy-Back Exclusive Clean 

Processor Read Hit: The CY7C60S will supply data to the CY7C601 immediately. 

1. PVfAG entry is exclusive valid; exclusive clean in MPTAG: NO STATE CHANGE. 

Processor Read Miss: The CY7C60S will issue a coherent read transaction on the Mhus. The CY7C60S will read the cache 
line from the second-level memory and then load it into the cache RAM. Then the data is supplied to the CY7C601 in the 
cycle following the last cache line entry. 

2. If MSH = HIGH, then exclusive valid in PVfAG; exclusive clean in MPTAG. 

3. If MSH = LOW, then shared valid in PVfAG; exclusive clean changes to shared clean in MPTAG. 

Processor Write Hit: The CY7C60S will update the cache immediately with the CY7C601 data. 

4. PVfAG entry is exclusive valid; exclusive clean changes to exclusive modified in MPTAG. 

Processor Write Miss: The CY7C60S will issue a coherent read and invalidate transaction on the Mhus. The CY7C60S will 
read the cache line from the second-level memory and then load it into the cache RAM. Then the processor data is written 
into the cache RAM in the cycle following the last cache line entry. 

S. PVfAG entry is exclusive valid; exclusive clean changes to exclusive modified in MPTAG. 

Software Flush (Store alternate instruction with ASI = 10H to 14H; see Section 4.3.7): The CY7C60S will invalidate both the 
PVfAG and MPTAG cache tag entries. 

6. Exclusive valid is changed to invalid in PVfAG; exclusive clean is changed to invalid in MPTAG. 

Coherent Read: During the A + 2 cycle of the Mhus coherent read transaction, the CY7C60S will assert MSH and change 
the state of the cache line from exclusive clean to shared clean. 

7. Assert MSH; exclusive clean is changed to shared clean in MPTAG and shared valid in PVfAG. 

Coherent Read and Invalidate: Both the PVfAG and the MPTAG cache tag entries in the CY7C60S are invalidated. 

8. Exclusive valid is changed to invalid in PVfAG; exclusive clean is changed to invalid in MPTAG. 

Coherent Invalidate: Both the PVfAG and the MPTAG entries in the CY7C60S are invalidated. 

9. Exclusive valid is changed to invalid in PVfAG; exclusive clean is changed to invalid in MPTAG. 

Coherent Write and Invalidate: The CY7C60S invalidates both the PVfAG and MPTAG cache tag entries. 

10. Exclusive valid is changed to invalid in PVfAG and exclusive clean is changed to invalid in MPTAG. 
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8 
Figure 4-20. Copy·Back Shared Cleau 

4.3.3.3.3 Copy-Back Shared Clean 

Processor Read Hit: The CY7C60S will supply data immediately to the CY7C601. 

1. PVfAG entry is shared valid; shared clean in MPTAG: NO STATE CHANGE. 

Processor Read Miss: The CY7C60S will issue a coherent read transaction on the Mbus. The CY7C60S will read the cache 
line from the second-level memory and load it into the cache RAM. Then the data is supplied to the CY7C601 in the cycle 
following the last cache line entry. 

2. If MSH = HIGH, then exclusive valid in PVfAG and shared clean is changed to exclusive clean in MPTAG. 

3. If MSH = LOW, then shared valid in PVfAG and shared clean in MPTAG. 

Processor Write Hit: The CY7C60S issues a coherent invalidate transaction on the Mbus. The CY7C60S will update the 
cache immediately with the processor data. 

4. PVfAG entry is exclusive valid; shared clean is changed to exclusive modified in MPTAG. 

Processor Write Miss: The CY7C60S will issue a coherent read and invalidate transaction on the Mbus. The CY7C60S will 
read the cache line from the second-level memory and then load the data into the cache RAM. The processor data is 
written into the cache RAM in the cycle following the last cache line entry. 

S. PVfAG entry is changed to exclusive valid; shared clean is changed to exclusive modified in the MPTAG. 

Software Rush: The CY7C60S will invalidate both the PVfAG and MPTAG cache tag entries. 

6. Shared valid is changed to invalid in PVfAG; shared clean is changed to invalid in MPTAG. 

Coherent Read: During the A + 2 cycle of the Mbus coherent read transaction, the CY7C60S will assert the MSH. 

7. Assert MSH; shared clean in MPTAG and shared valid in PVfAG. 

Coherent Read and Invalidate: Both the PVfAG and the MPTAG cache tag entries will be invalidated. 

8. Shared valid is changed to invalid in PVfAG; shared clean is changed to invalid in MPTAG. 

Coherent Invalidate: Both the PVfAG and MPTAG cache tag entries are invalidated. 

9. Shared valid is changed to invalid in PVfAG; shared clean is changed to invalid in MPTAG. 

Coherent Write and Invalidate: Both the PVfAG and MPTAG cache tag entries are invalidated. 

10. Shared valid is changed to invalid in PVfAG; shared clean is changed to invalid in MPTAG. 
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Figure 4-21. Copy-Back Exclusive Modified 

4.3.3.3.4 Copy-Back Exclusive Modified 

Processor Read Hit: The CY7C605 will supply data to the processor immediately. 

1. PVfAG entry is exclusive valid; exclusive modified in MPTAG: NO STATE CHANGE. 

Processor Read Miss: The CY7C605 will initiate a coherent read transaction followed by a write block transaction of the 
previously modified cache line. The CY7C605 will read the cache line from the second-level memory and load the data 
into the cache RAM. Then the data will be supplied to the processor in the cycle following the last cache line entry into the 
cache RAM. The modified cache line has to be written to update the second-level memory. The Mbus Busy (MBB) signal 
is asserted from the beginning of the coherent read transaction to the end of the write transaction on the Mbus. 

2. IT MSH = HIGH, then the PVTAG entry is exclusive valid, and the MPTAG entry is changed from exclusive 
modified to exclusive clean. 

3. ITMSH = LOW, then the PVTAG entry is changed to shared valid, and the MPTAG entry is changed from exclusive 
modified to shared clean. 

Processor Write Hit: The CY7C605 will update the cache immediately with the processor data. 

4. PVfAG entry is exclusive valid; exclusive modified remains as exclusive modified in MPTAG. 

Processor Write Miss: The CY7C605 will initiate a coherent read and invalidate transaction followed by a write block trans­
action of the previously modified cache line. The CY7C605 will read the cache line from the second-level memory and 
load it into the cache RAM. The processor data is written into the cache RAM in the cycle following the last cache line 
entry into the cache RAM. The modified cache line must be written into the second-level memory in order to update the 
memory. The MBB signal is asserted from the beginning of the coherent read and invalidate transaction to the end of the 
write transaction on the Mbus. 

5. PVfAG entry remains exclusive valid; the MPTAG entry remains exclusive modified. 

Software Flush' The CY7C605 initiates a coherent write and invalidate transaction on the Mbus. The CY7C605 will write 
the modified cache line to update the second-level memory and then it invalidates both the PVTAG and MPTAG cache 
tag entries. 

6. Exclusive valid is changed to invalid in PVTAG; exclusive modified is changed to invalid in MPTAG. 

Coherent Read: During the A + 2 cycle of the coherent read transaction on the Mbus, the CY7C605 asserts both the MSH 
and MIH signals. This CY7C605 is the OWNER of the cache line, and is responsible to supply the data for the coherent 
read transaction on the Mbus. 
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7. If the memory reflection (MR) bit of the system control register (SCR) is set, the CY7C60S changes the state of 
the MPTAG cache tag entry from exclusive modified to shared clean, and the PVfAG entry from exclusive valid 
to shared valid. 

8. If the memory reflection (MR) bit of the SCR is cleared, the CY7C60S changes the state of the MPTAG entry from 
exclusive modified to shared modified. The PVfAG entry is changed to shared valid. 

Coherent Read and Invalidate: During the A + 2 cycle of a coherent read and invalidate transaction on the Mbus, the 
CY7C60S asserts both the MSH and MIH signals. This CY7C60S is the OWNER of the cache line, and is responsible to 
supply the data for the coherent read transaction on the Mbus. Both the PVfAG and MPTAG cache tag entries are invali­
dated. 

9. Exclusive valid is changed to invalid in the PVfAG entry; exclusive modified is changed to invalid in the MPTAG 
entry. 

Coherent Invalidate: Both the PVfAG and MPTAG cache tag entries in the CY7C60S are invalidated. 

10. Exclusive valid is changed to invalid in the PVfAG entry; exclusive modified is changed to invalid in the MPTAG 
entry. 

Coherent Write and Invalidate: Both the PVfAG and the MPTAG cache tag entries are invalidated. 

11. Exclusive valid is changed to invalid in the PVfAG entry; exclusive modified is changed to invalid in the MPTAG 
entry. 

4.3.3.3.5 Copy-Back Shared Modified 

Processor Read Hit: The CY7C60S will supply data immediately to the CY7C601. 

1. PVfAG entry is shared valid; shared modified in MPTAG: NO STATE CHANGE. 

Processor Read Miss: The CY7C60S will initiate a coherent read transaction followed by a write block transaction of the 
previously modified cache line. The CY7C60S will read the cache line from the second-level memory and load the data 
into the cache RAM. Then the data will be supplied to the processor in the cycle following the last cache line entry into the 
cache RAM. The modified cache line has to be written to update the second-level memory. The MBB signal is asserted 
from the beginning of the coherent read transaction to the end of the write transaction on the Mbus. 

2. IfMSH = HIGH, the PVfAG entry changes to exclusive valid. The MPTAG entry is changed from shared modified 
to exclusive clean. 

3. If MSH = LOW, then the PVfAG entry changes to shared valid, and the MPTAG entry is changed from shared 
modified to shared clean. 

Processor Write Hit: The CY7C60S initiates a coherent invalidate transaction on the Mbus. The CY7C60S will update the 
cache immediately with the processor data. 

4. The PVfAG entry changes to exclusive valid; the entry in the MPTAG is changed from shared modified to exclusive 
modified. 

Processor Write Miss: The CY7C60S will initiate a coherent read and invalidate transaction followed by a write block trans­
action of the previously modified cache line. The CY7C60S will read the cache line from the second-level memory and 
load it into the cache RAM. The processor data is written into the cache RAM in the cycle following the last cache line 
entry into the cache RAM. The modified cache line must be written into the second-level memory in order to update the 
memory. The MBB signal is asserted from the beginning of the coherent read and invalidate transaction to the end of the 
write transaction on the Mbus. 

S. PVfAG entry is exclusive valid; the MPTAG entry is changed from shared modified to exclusive modified. 

Software Flush: The CY7C60S initiates a coherent write and invalidate transaction on the Mbus. The CY7C60S will write 
the modified cache line to update the second-level memory and then it invalidates both the PVfAG and MPTAG cache 
tag en tries. 

6. Shared valid is changed to invalid in PVfAG; shared modified is changed to invalid in MPTAG. 

Coherent Read: During the A + 2 cycle of the coherent read transaction on the Mbus, the CY7C60S asserts both the MSH 
and MIH signals. This CY7C60S is the OWNER of the cache line, and is responsible for supplying the data for the c0-

herent read transaction on the Mbus. 
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Figure 4-22. Copy· Back Shared Modified 

7. If the memory reflection (MR) bit of the system control register (SCR) is set, the CY7C605 changes the state of 
the MPTAG from shared modified to shared clean, and the PVfAG entry is shared valid. 

8. If the MR bit of the SCR is not set, then the PVfAG remains shared valid and the MPTAG remains shared 
modified. 

Coherent Read and Invalidate: During the A + 2 cycle of a coherent read and invalidate transaction on the Mbus, the 
CY7C605 asserts both the MSH and MIH signals. This CY7C6Q5 is the OWNER of the cache line, and is responsible for 
supplying the data for the coherent read transaction on the Mbus. Both the MAG and MPTAG cache tag entries are 
invalidated. 

9. Shared valid is changed to invalid in the PVfAG entry; shared modified is changed to invalid in the MPTAG entry. 

Coherent Invalidate: Both the PVfAG and MPTAG cache tag entries in the CY7C605 are invalidated. 

10. Shared valid is changed to invalid in the PVfAG entry; shared modified is changed to invalid in the MPTAG entIy. 

Coherent Write and Invalidate: Both the PVfAG and the MPTAG cache tag entries are invalidated. 

11. Shared valid is changed to invalid in the PVfAG entry; shared modified is changed to invalid in the MPTAG entry. 

4.3.3.3.6 Write-Through Invalid 

Processor Read Miss: The CY7C605 issues a block read transaction on the Mbus. The CY7C605 will read the cache line 
from the second-level memory and load the data into the cache RAM. The data will be supplied to the processor in the 
cycle following the last cache line entry written to the cache RAM. 

1. The PVfAG and MPTAG entries are changed from invalid to valid. 

Processor Write Miss: The CY7C605 will issue a write-buffered coherent write and invalidate transaction on the Mbus. 

2. The PVfAG and MPTAG entries remain invalid. 

Figure 4-23. Write· Through Invalid 
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Figure 4--24. Write· Through Valid 

4.3.3.3.7 Write· Through Valid 

Processor Read Hit: The CY7C605 will supply data to the CY7C601 immediately. 

1. The PYI'AG and MPTAG entries remain valid: NO STATE CHANGE. 

Processor Read Miss: The CY7C605 issues a coherent read transaction on the Mbus. The CY7C605 will read the cache line 
from the second·level memory and load the data into the cache RAM. The data will be supplied to the processor in the 
cycle following the last cache line entry written to the cache RAM. 

2. The PYI'AG and MPTAG entries remain valid. 

Processor Write Hit: The CY7C605 issues a write·buffered coherent write and invalidation transaction on the Mbus. The 
CY7C605 will write data into the cache. 

3. The PYI'AG and MPTAG entries remain valid. 

Processor Write Miss: The CY7C605 issues a write·buffered coherent write and invalidate transaction on the Mbus. The 
CY7C605 will not write to the cache and invalidates the cache line in order to avoid potential data inconsistency due to 
aliasing. 

4. The PYI'AG and MPTAG entries change from valid to invalid. 

Software Flush: The CY7C605 invalidates both the PYI'AG and MPTAG cache tag entries. 

5. The PYI'AG and MPTAG entries change from valid to invalid. 

Coherent Read: During the A + 2 cycle of the Mbus coherent read transaction, the CY7C605 asserts MSH. 

6. Assert MSH; the PYI'AG and MPTAG entries remain valid. 

Coherent Read and Invalidate: The CY7C605 invalidates both the PYI'AG and MPTAG cache tag entries. 

7. The PYI'AG and MPTAG entries change from valid to invalid. 

Coherent Write and Invalidate: The CY7C605 invalidates both the PYI'AG and MPTAG cache tag entries. 

8. The PYI'AG and MPTAG entries change from valid to invalid. 

Coherent Invalidate: The CY7C605 invalidates both the PYI'AG and MPTAG cache tag entries. 

9. The PYI'AG and MPTAG entries change from valid to invalid. 

4.3.3.3.8 Bus Snooping 

The CY7C605 bus snooper watches Mbus transactions and snoops into the MPTAG array for certain transactions, as listed 
in Table 4-6. 

4.3.3.4 CY7C605 Address Aliasing 

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be detected to maintain 
data consistency in a virtual cache system. The SPARC reference system software convention permits the use of aliases in 
address spaces that are modulo with respect to the system's underlying cache size. In order to allow the efficient caching of 
physical memory pages where such aliases may occur, the CY7C605 supports automatic address aliasing protection. 
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Table 4-6. Mbus Snooping Transactions 

Cache Mode Transaction 1YJIe Snoop 
Copy-Back Coherent Read & Invalidate yes 

Coherent Write & Invalidate yes 
Coherent Read yes 
Coherent Invalidate yes 
Read no 
Write no 

Write-Through Coherent Read & Invalidate yes· 
Coherent Write & Invalidate yes 
Coherent Read yes· 
Coherent Invalidate yes 
Read no 
Write no 

'These transactions are not generated by the CY7C605, but the CY7C605 will snoop these transactions if generated by another bus master 

The SPARC system software convention ensures that the aliased entry maps to the same cache line address for each 
CY7C605 in the multiprocessor system. Coupled with this convention, the cache controller hardware automatically pre­
vents any existence of address aliases in the virtual caches. 
The CY7C605 tests for address aliasing during all cache misses except write-through mode write misses. Address aliasing 
cannot occur unless the MMU is enabled (ME bit of SCR). To detect address aliasing in the CY7C605, the physical ad­
dress of the missed cache access is compared with the selected MPTAG entry. 

If the physical address of the selected MPTAG entry and the physical address of the cache miss match, then address alias­
ing is detected. If detected, an alias is corrected by updating the selected cachc tag entry with the new virtual address. The 
CY7C605 then halts the cache miss processing and provides an access to the cache, as with a cache hit. If no alias is de­
tected, the cache miss processing proceeds normally. 

For an alias detected during a read-access cache miss, the selected cache tag entry is updated with the virtual address that 
caused the cache miss. The cache miss processing is halted, and the CY7C601 is supplied with data from the cache. 

If an address alias is detected during a copy-back mode write-access cache miss, the selected cache tag entry is updated 
with the new virtual address causing the cache miss. The modified bit is set if it was not set previously. The cache miss 
processing is halted, and the cache write access is enabled. 

In write-through write-access cache misses, address aliasing is not checked. However, in order to avoid potential address 
aliasing, the selected cache line is invalidated. Address aliasing is not checked in write-through cache mode in order to 
avoid unnecessary performance degradation. 

4.3.4 CY7C604/CY7C605 Cache Control Signals 

The CY7C604/605 controls the virtual cache through control signals supplied to the CY7C601 and to the cache RAMs. 
The signals used by the cache controller to control the CY7C601 consist of MHOLD, MDS, and IOE. MHOLD is used 
to stall the CY7C601 until the CY7C604/605 can service the CY7C601 memory access request, such as during cache miss 
processing or during table walks. MDS is used by the CY7C604/605 to strobe data into the CY7C601 when MHOLD is 
asserted. This causes the CY7C601 to latch data on the data bus despite being stalle~the assertion ofMHOLD. IOE 
is used as the enable signal for the AOE and DOE inputs of the CY7C601. When JOE is deasserted, the address and 
data bus output drivers of the CY7C601 are disabled. This feature is used to force the CY7C601 off of the virtual address 
and data buses. 

The signals used ~ol the cache RAM consist of the cache byte write enable (CBWE) and cache read output enable 
(CROE) signals. CROE is asserted low to enable the output of the cache RAMs during a cache read. CBWE(3:0) is as­
serted low to enable writing to the cache RAMs. The multiple CBWE signals allow the cache controller to enable byte, 
halfword, or word writes to the cache RAM. Single byte or halfword reads are handled by the CY7C601, which reads an 
entire 32-bit word and internally discards unwanted bytes. 

During a cache read miss, the CY7C604/605 halts the CY7C601 by asserting MHOLD. The CY7C604/605 also deasserts 
JOE, which is used to disable the CY7C601 data bus and address bus output drivers. The cache controller fetches the 
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new cache line from main memory, asserting CBWE(3:0) and the cache line addresses to write the data into the cache. 
Then the CY7C604/605 places the missed read data word on the data bus and toggles the MDS (Memory Data Strobe) 
signal. T..288!.ing MDS forces the integer unit to latch the data on the data bus. The cache read miss terminates by reassert­
ing the 10E signal and then releasing the MHOLD signal. 10E is typically reasserted one or more clocks before the 
MHOLD signal is deasserted, thus allowing the CY7C601 to output the next address onto the virtual address bus. This 
provides the address set-up time for the next memory access after MHOLD is released. Read misses are handled in the 
same manner for both copy-back and write-through modes of caching. 

Cache write misses for write-through mode generally do not affect the operation of the CY7C601 due to the presence 
of write buffers in the CY7C604/605 (refer to the following section on the write buffer). In the case of a write miss, the 
write data is written to the write buffer instead of the cache memory and the cache tag for the cache line is invalidated. 
The write buffer writes the data to memory as a background task. The CY7C601 is stalled for a write-through write miss 
only if the write buffer is full. This occurs when the CY7C601 overruns the four doubleword buffers in the write buffer. 
In this case, MHOLD is asserted until space is made by the write buffer as it writes its contents into main memory. 

On a write miss, if the cache mode is copy-back and the cache line is clean, the cache line ~laced in a similar manner 
as in the cache read miss descnbed above. MHOLD is asserted to stall the CY7C601 and 10E is deasserted to force the 
CY7C601 offthe data and address buses. A new cache line is read from main memory, and the cache is updated by writing 
the data into the cache. This is accomplished by supplying the cache addresses, cache line data from main memory, and 
asserting the CBWE signals to write the data. The write cache miss terminates by reasserting 10E, which causes the 
missed write data and address to reappear on their respective buses. The CY7C604/605 then strobes CBWE(3:0) accord­
ing to the address and SIZE(l:O) signals to write the data into the cache. The copy-back write miss procedure terminates 
by deasserting MHOLD, which allows the processor to return to execution. 

If the cache line is modified, the modified cache line is read out of the cache and stored into the write buffer during the 
same time the new cache line is fetched from main me!!!Q!Y and stored in the read buffer (refer to the following sections 
on write and read buffers). MHOLD is asserted and 10E deasserted to force the CY7C601 into a halted and inactive 
state. The cache controller asserts CROE and the cache addresses to flush the modified cache line into the write buffer. 
The cache controller then writes the new cache line into the cache from the read buffer while simultaneously writing 
the modified cache line into main memory from the write buffer. This is accomplished by supplying the cache addresses 
for the cache line data, and asserting the CBWEQ:ID. signals to write the data into the cache. The copy-back write miss 
for a modified cache line terminates by releasing 10E to allow the missed write data and address to reassert on the data 
and address buses. The CY7C604/605 asserts the CBWE(3:0) signals to write the data into the cache. The MHOLD signal 
is then deasserted to allow the CY7C601 to return to processing. See Section 4.11 for virtual bus timing diagrams. 

4.3.5 CY7C604/60S Write Buffer 

The CY7C604/605 supports four write buffers on chip, as shown in Figure 4-25. In write-through mode, each buffer can 
store two 32-bit words, which efficiently supports store double operations. A physical address tag is associated with each 
of the four buffers in write-through mode. Upon a write access, the write buffers are loaded with the data to be written 
to main memory. This allows the CY7C601 to continue operation without stalling due to memory access delays on the 
physical bus. 

In copy-back mode, the same buffers are configured to store a 32-byte cache line with a single physical address as shown 
in Figure 4-26. This allows for faster cache line flushes during modified cache line replacement. The modified cache line 
is flushed into the write buffer as the new cache line is simultaneously fetched from main memo!YJ!! either case, the 
contents of the buffers are transferred to main memory as a background task. On Power-On Reset (paR), all ofthe write 
buffers are invalidated. 

Non-cacheable writes use the four write buffers in the same manner as write-through cache transaction, even if copy-back 
mode is enabled. However, a copy-back cache line and non-cacheable data cannot simultaneously occupy the write buffer. 

The CY7C604/605 requests Mbus ownership as soon as one of the write buffers is valid. For each write buffer transfer, 
the CY7C604/605 re-arbitrates the Mbus again. A modified cache-line flush is considered as one transaction. When the 
bus is still granted to the CY7C604/605 (i.e., bus parking), the CY7C604/605 can transfer the data immediately without 
any bus re-arbitration (so there are no dead clocks between transactions). Once all of the write buffers are full, further 
writes from the CY7C601 are held until a buffer is empty. If there is a read access cache miss, the CY7C601 is held until 
all of the write buffers are written back into main memory in order to maintain data consistency. After the write buffers 
are cleared, the CY7C604/605 resumes the task of fetching the cache line for the cache read miss. 
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Figure 4-26. Write ButTer (Copy· Back Mode) 
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Figure 4-27. Read ButTer (Copy· Back Mode) 

4.3.6 CY7C604/605 Read ButTer 

The CY7C604/605 provides a read buffer of 32 bytes (one cache line) in order to support simultaneous writing of a modi­
fied cache line to main memory and reading of a new cache line from main memory into the cache under copy-back mode. 
The read buffer is shown in Figure 4-27. The read buffers are invalidated on power·on reset. 

4.3.7 CY7C604/605 Cache Flushing Operations 

The CY7C604/605 supports five different levels of cache flushing operations, as illustrated in Table 4-7. The cache flush­
ing operations are dependent upon the cache mode and state. Flushing under copy-back cache mode for a modified cache 
line means flushing the cache line into main memory and invalidating the cache tag entry. If the cache line is clean (copy­
back mode), or is in write-through cache mode, flushing only invalidates the cache tag entry. 

Unlike a TLB flush operation, all cache flushing operations flush only one cache line at a time. Each cache line can be 
flushed on the basis of a page, segment, region, context, or user mode, as illustrated in Table 4-7. The levels of address 
matching for a cache line flush vary from a fu1l4-kbyte page level match of address and context, to a match of user mode 
only. 

The cache line selected for operation is indexed as in normal cache access operations (VA(15:5». If the cache flush opera­
tion does not cause a match of the cache tag entry, no action occurs. The five types of cache flush operations are: page 
flush, segment flush, region flush, context flush, and user flush. These different levels of cache flush are mapped with 
the ASI bits. The store alternate space instructions for the CY7C601 must be used to assert the ASI value that corresponds 
with the level of cache flush operation desired. The combination of the ASI and a store operation using the virtual address 
specify the cache flush operation and the cache line to be matched for flushing. During flush operations, the context 
register provides the context number to be compared. 

Table 4-7. Cache Flush Operations 

Cache Flush ASI Compares: 

PAGE lOH Context (or Supervisor S = 1,), Index 1, Index 2, and Index 3 
(bits 17 and 16) 

SEGMENT llH Context (or Supervisor S = 1), Index 1, and Index 2 

REGION 12H Context, (or Supervisor S = 1), and Index 1 

CONTEXT 13H Context and User (S = 0) 

USER 14H User (S = 0) 
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Table 4-8. CacheablefNon·Cacheable accesses 

Access Condition 

Not cached ASI = 20-2F H (By-pass) or ASI = 1 (Local) 

ASI = UN, RES (unassigned/reserved) 

BM = 1 and ME = xandCE = xandASI = 8,9H 

BM = x and not (ME = 1 and CE = 1 and PTE[C] = 1) 

LDSTO cycles in write-through mode 

Table walk cycles 

Cache lock miss accesses which have valid entries, but no alias 

Cached BM = 0 and ME = 1 and CE = 1 and ASI = 8,9,A,B Hand PTE[C] = 1 

BM = 1 and ME = 1 and CE = 1 and ASI = A,B Hand PTE[C] = 1 

4.3.8 CV7C604f60S CacheablefNon·Cacheable Memory Accesses 

Pages that are declared as non-cacheable (C = 0 in the page table entry (PTE» are not cached in the cache RAM and, 
as such, there are no associated cache tag entries in the CY7C604/605. For data consistency and implementation reasons, 
the CY7C604/605 assumes the following cycles are also non-cacheable: 

a. LDSTO cycles in write-through mode (CY7C604 only) 
b. table walk accesses 
c. cache-missed accesses during cache-lock mode (CY7C604 only) 
d. boot mode accesses (except user/supervisor data accesses when the MMU is enabled and the cache is enabled) 
e. pass-through mode accesses 
f. by-pass mode accesses 
g. accesses while the cache is disabled 
h. local-mode accesses 
i. when MMU is disabled (ME bit of SCR = 0) 

Table 4-8 shows the CY7C604/605 operation conditions for cacheable and non-cacheable accesses. Refer to the section 
on MMU operation modes for additional information. 

4.3.9 CY7C604/60S Mbus Cacheable (MC) Bit 

One of the CY7C604/605 output signals is a Mbus cacheable bit, which is embedded in the Mbus address phase as 
MAD(43) (Refer to Section 4.12, Physical Bus for more information on Mbus.) The Mbus cacheable bit indicates the 
cacheable status of a memory access by the CY7C604/605. This information is consistent with the cache visibility philoso­
phy of the CY7C604/605 and is made available for use by a secondary cache tag array. 

When the MMU is enabled, the MC bit is set by the state of the C bit in the corresponding PTE entry. When the MMU 
function of the CY7C604/605 is disabled, the C bit of the SCR register sets the value of the MC bit. The C bit of the SCR 
register is loaded by the CY7C601, and it defines the cacheable status of memory accesses when the MMU is disabled. 
Table 4-9 illustrates the state of the MC bit for various CY7C604/605 operation conditions. 

Table 4-9. State Table for MC (Memory Cacheable) Bit 

MC Condition 

0 ASI = 2O-2F H or ASI = 1 H 

not applicable ASI = UN; RES 

SCR[C] Not one of the above and ME = 0 or 
Not one of the above and (BM = 1 and ASI = 8,9 H) or 
Not one ofthe above and table walk 

PTE[C] Not one of the above 
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4.3.10 CV7C604/605 LDSTO (Atomic: Load·Store Instruction) c:y~es 

In order to maintain data c:onsistency under write-through cache mode, LDSTO (atomic load-store) cyc:les are treated 
as non-cacheable transactions (CY7C604 only). All LDSTO accesses are forced into main memory in this case. The C 
bit in the 1LB entry is output on the Mbus as the MC (MAD( 43» bit. If a cache hit occurs on a LDSTO cyc:le with the 
cache in write-through mode, the cache line is invalidated. If the MMU is disabled, the C bit in the SCR is output on 
the MC signal of the Mbus. 

In c:opy-back mode, LDSTO cycles are treated as normal memory accesses and are cached acc:ording to the C bit of the 
PTE associated with the access. 

LDSTO operations on the physical bus (Mbus) are repeated if interrupted by a relinquish and retry before the load opera­
tion of the LDSTO has been c:ompleted. However, if the relinquish and retry occurs after the load operation has c:om­
pleted, only the store operation of the LDSTO is repeated. 

4.3.11 CY7C604/6OS Cache Byte WrIte Enables 

The CY7C604/60S supports four separate byte write enables (CfiWE(3:0» to c:ontrol write accesses to the cache RAM 
(CY7ClS7). These signals are generated using the lower two bits of the virtual address (VA(1:0» and size (SIZE(l:O» 
information during write accesses, 

The dec:oding of the SIZE(1:0) and VA(1:0) bits is shown in Table 4-10. The CBWETI signal c:ontrols the most signifICant 
byte (MSB), which is located at a word-aligned address N. CBWE3 c:ontrols the least-significant byte, located at address 
N + 3. All of the byte write enables are asserted for a cache line load into the cache RAM during a cache miss. 

AddreSil N 1 Address N + 1 1 Address N + 21 Address N + 3 1 
31 24 23 16 15 8 7 0 

Figure 4-28. Cii'W'E Byte Assignments 

Table 4-10. Byte Write Enables 

Size(1:0) A(1:0) CBWE3 aiWEl CBWEi CBWEli 
00 00 1 1 1 0 

00 01 1 1 0 1 

00 10 1 0 1 1 

00 11 0 1 1 1 
01 00 1 1 0 0 

01· 01' I I I I 

01 10 0 0 1 1 

01· U· 1 1 1 1 

10 00 0 0 0 0 
10· 01" I 1 1 1 

10" 10* 1 1 1 1 
10· 11· 1 1 1 1 

U 00 0 0 0 0 

U· 01' I 1 1 1 

11· 10· 1 1 1 1 

11· 11· 1 1 1 1 

·Denotes an illegal combination of S~1:0) ami A(1:0). 
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4.4 CY7C604 I CY7C605 Registers 

This section describes the control and data registers for the CY7C604/605. All registers for the CY7C604 and CY7C605 
are identical with the exception of the system control register (SCR). Sections or diagrams specific to the CY7C604 or 
CY7C605 are named with that part name only, whereas sections or diagrams common to both will be named using 
CY7C604/605. 

All values in all control registers are read/write (with the exception ofthe Implementation and Version fields of the SCR). 
Control registers are accessible by use of the alternate space load or store instructions with ASI = 4. Please refer to 
Section 4.8, ASI and Register Mapping, for more information on register addressing. 

Programmer's Note: 1b ensure software compatibility with future versions of the CY7C604/605, reserved fields in a register 
should be written as zeros and masked out when read. 

4.4.1 CY7C604 System Control Register (SCR) 

The system control register, as shown in Figure 4-29, defines the operation modes for the cache controller and MMU. 
Refer to Section 4.2, MMU Operational Modes, for additional information on the operation modes of the MMU. The 
following describes the functions of the bit fields in the SCR. 

IMPL, VER The Implementation number (SCR(31:28» and the Version number (SCR(27:24» fields are hardwired; they 
are read only fields and writes to those fields are ignored. The assignments for the CY7C604 these fields are: 

Implementation number field: 0001 
Version number field: 0000 

MCA(1:0) Multichip address field (SCR(23:22» provides the address field in multichip configuration. Refer to the Section 
on Multichip Configuration for more information. 

MCM(I:O) Multichip mask field (SCR(21:20» provides a masking facility to mask certain muItichip address (MCA) bits 
in order to provide a facility to build systems with a different number of CY7C604s (from 1 to 4). 

MY Multichip configuration valid bit (SCR(19» indicates that the MCA and MCM fields are valid (see Multichip Configu­
ration, Section 4.5). 

BM Boot-mode bit (SCR(14» indicates the system is in boot mode. This bit is set to 1 to indicate boot mode. This bit 
is automatically set upon power-on reset. 

C Cacheable bit (SCR(13» indicates whether the access is cacheable or not when the MMU is disabled (this bit is indepen­
dent of the CE bit, see CacheablelNon-Cacheable Memory Accesses, Section 4.3.8 for more details.) This bit is set to 
1 if accesses on the physical bus (with the MMU disabled) are to be considered cacheable. 

CM Cache-mode bit (SCR(10» indicates whether the cache is operating under write-through no write allocate policy or 
copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting this bit to 0 will enable 
write-through cache mode. 

CL Cache-lock bit (SCR(9» indicates whether the entire cache is locked or not (see Section 4.3.2.3 on Cache Lock, page 
4-19). This bit is set to 1 to lock the cache. 

CE Cache-enable bit (SCR(8» indicates whether the virtual cache is enabled or not. This bit is set to 1 to enable the cache 
controller. 

IMPL = Specific Implementation of the MMU 

VER = Version of Specific Implementation (typically mask revision) 

MCA (0:1) = Multichip Address 

MCM (0:1) = Multichip Mask 

MY = Multichip Valid 

BM = Boot Mode 

C = Cacheable (when MMU disabled) 

CM = Cache Mode 

CL = Cache Lock 

CE = Cache Enable 
NF = No Fault 

ME = MMU Enable 

RSV = Reserved 

Figure 4-29. CY7C604 System Control Register (SCR) 
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NF No-fault bit (SCR(I» prevents supervisor data accesses from signaling data faults to the CY7C601. When the NF 
bit is set, exception-generating logic (in both the 1LB and the table walk) does not indicate supervisor data faults to the 
CY7C601 (via MEXC), but status and address information is recorded in the SFSR and SFAR registers as in normal data 
access operations. When the NF bit is not set, the CY7C604 reports the supervisor data exceptions. 

ME MMU-enable bit (SCR(O» indicates whether the MMU is enabled or not. This bit is set to 1 to enable the MMU. 

Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the CY7C604 into the following 
state: cache disabled (CE = 0), cache unlocked (CL = 0), write-through mode (eM = 0), non-cacheable (C = 0), 
boot-mode enabled (BM = 1), multichip disabled (MY = 0), no fault disabled (NF = 0), and MMU disabled (ME = 
0). 

4.4.2 CY7C605 System Control Register (SCR) 

The System Control Register, as shown in Figure 4-30, def"mes the operation modes for the cache controller and MMU. 
Refer to page 4-13 for additional information on the operation modes of the MMU. The following describes the functions 
of the bit fields in the SCR. . 

IMPL, VER The Implementation number (SCR(31:28» and the Version number (SCR(27:24» fields are hardwired; they 
are read only fields and writes to those fields are ignored. The assignments for the CY7C605 are: 

Implementation number field: 0001 
Version number field: 1111 

MCA(l:O) Multichip address field (SCR(23:22» provides the address field in multichip configuration. Refer to Section 4.5 
on Multichip Configuration for more information. . 

MCM(l:O) Multichip mask field (SCR(21:20» provides a masking facility to mask certain multichip address (MCA) bits in 
order to provide a facility to build systems with a different number of CY7C605s (from 1 to 4). . . 

MV Multichip configuration valid bit (SCR(19» indicates that the MCA and MCM fields are valid (see Multichip Configu­
ration, Section 4.5). 

MID(3:0) Module identification number (SCR(18:15» identifies the processor module during transactions on the Mbus 
(refer to Section 4.12). This four bit module identification number is embedded in the Mbus address phase of all Mbus 
transactions initiated by the CY7C605. 

8M Boot-mode bit (SCR(14» indicates the system is in boot mOde. This bit is setto 1 to indicate boot mode. This bit is 
automatically set upon power-on reset. 

C CacheQble bit (SCR(13» indicates whether the access is cacheable or not when the MMU is disabled (this bit is indepen­
dent of the CE bit, see CacheablelNon-cacheable Memory Accesses, Section 4.3.8, for more details.) This bit is set to 1 if 
accesses on the physical bus (with the MMU disabled) are to be considered cacheable. 

MR Memory Reflection (SCR(ll» MR = 1 indicates that the main memory system on the Mbus supports memory reUec­
tion. MR affects the status of the MPTAG cache tag bits as descnbed in the cache state transitions section starting on page 
4-23. 

CM Cache-mode bit (SCR(lO» indicates whether the cache is operating under write-through no write allocate policy or 
copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting this bit to 0 will enable 
write-through cache mode. 

RSV 

7 

IMPL = Specific Implementation of the MMU C = Cacheahle (when MMU disabled) 
VER = Version of Specific Implementation (typically mask revision) MR = Memoty Reflection 
MCA (1:0) = Multicbip Address CM = Cache Mode 
MCM (1:0) = Multichip Mask CE = Cache Enable 
MY = Multichip \-\tlid NF = No Fault 
MID(3:0) = Module Identifier (3:0) ME = MMU Enable 
BM = Boot Mode RSV = Reserved 

Figure 4-30. CY7C605 System Control Register (SCR) 

4-36 



CY7C604/CY7C60S CMU 

CE Cache-enable bit (SCR(8» indicates whether the virtual cache is enabled or not. This bit is set to 1 to enable the cache 
controller. 

NF No-fault bit (SCR(1» prevents supervisor data accesses from signaling data faults to the CY7C6010 When the NFbit is 
set, exception-generating logic (in both the 1LB and the table walk) does not indicate supervisor data faults to the 
CY7C601 (via MEXC), but status and address information is recorded in the SFSR and SFAR registers as in normal data 
access operations. When the NF bit is not set, the CY7C605 reports the supervisor data exceptions. 

ME MMU-enable bit (SCR(O» indicates whether the MMU is enabled or not. This bit is set to 1 to enable the MMU. 

Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the CY7C605 into the following 
state: cache disabled (CE = 0), write-through mode (CM = 0), non-cacheable (C = 0), boot-mode enabled (BM = 1), 
memory reflection disabled (MR = 0), no fault disabled (NF = 0), and MMU disabled (ME = 0). 

4.4.3 CY7C604/605 Context Table Pointer Register (CTPR) 

The context table pointer points to the context table in physical memory. The table is indexed by the contents of the 
context register. The context table pointer appears on bits 35 through 14 of the Mhus (MAD(35:14» during the first fetch 
of 1LB miss processing. Once the root pointer is cached in the PTPC (page Thble Pointer Cache), no fetching of the 
root pointer is required until the context is changed (see Figure 4-31). 

31 

CTP 

CTP = Context Thble Pointer 
RSV = Reserved 

RSV 

10 9 o 

Figure 4-31. CY7C604/605 Context Table Pointer Register 

4.4.4 CY7C604/605 Context Register (CXR) 

The context register defines a virtual address space associated with the current process. The CXR is a twelve-bit register, 
which supports 4096 contexts. This register is used to define the current context for the CY7C604/605. Nearly all 
CY7C604/605 operations are dependent upon matching the value of this register to a cache tag entry or 1LB entry. 

31 

RSV 

CXN = Context Number 
RSV = Reserved 

CXN 

12 11 

Figure 4-32. CY7C604/605 Context Register 

4.4.5 CY7C604/605 Reset Register (RR) 

o 

The RR register contains information regarding whether Watch Dog Reset (WDR), Software Internal Reset (SIR) or 
Software External Reset (SER) occurred. This is a read/write register, and setting the software internal reset bit (SIR) 
or the software external reset (SER) causes the corresponding reset. Refer to CY7C604/605 Reset, Section 4.7, for more 
details on reset processing. Upon power-on reset, the WDR, SIR, and SER bits in the RR will be cleared. Reading the 
RR will also clear these bits. 

RSII 

31 3 2 o 
RSV = Reserved SIR = Software Internal Reset 
WDR = Watch Dog Reset SER = Software External Reset 

Figure 4-33. CY7C604/605 Reset Register 
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4.4.6 CY7C604/605 Root Pointer Register (RPR) 

The RPR is the context level table page table pointer (PTP) and is cached in the Page Thble Pointer Cache. Refer to 
Section 4.1.5 on page 4-11 for information on the page table pointer cache. 

On power-on reset, the V bit is cleared. When the current context is changed by writing to the Context Pointer Register 
(CXR), the V bit of the RPR is cleared. The V bit is also cleared when the CTPR register is written. 

31 

RP 

RP = Root Pointer 

RSV = Reserved 

V = Valid 

6 5 

RSV 

1 0 

Figure 4-34. CY7C604/605 Root Pointer Register 

4.4.7 CY7C604/605 Instruction access PTP (IPTP) 

The IPTP is the instruction access level 2 table page table pointer (PTP) and is part of the Page Thble Pointer Cache. 
On power-on reset, the V bit is cleared. 

31 

IPTP 

IPTP = Instruction Access PTP 

RSV = Reserved 

V = Valid 

RSV I v I 
4 3 1 0 

Figure 4-35. CY7C604/605 Instruction Access PTP Register 

4.4.8 CY7C604/605 Data access PTP (DPTP) 

The DPTP is the data access level 2 table page table pointer (PTP) and is a register in the Page Thble Pointer Cache. 
On power-on reset, the V bit is cleared. 

31 

DPTP 

DPTP = Data Access PTP 

RSV = Reserved 

V = Valid 

4 3 1 0 

Figure 4-36. CY7C604/605 Data Access PTP Register 

4.4.9 CY7C604/605 Index Tag Register (ITR) 

The ITR contains the tag (index! and index2) fields of the IPTP and DPTP entries. Refer to Section 4.1.5 on page 4-11 
for information on the PTP cache. 

31 

ITAG RSV DTAG RSV 

18 17 16 15 2 0 

RSV = Reserved 
ITAG = Instruction Access PTP Thg 
DTAG = Data Access PTP Thg 

Figure 4-37. CY7C604/605 Index Tag Register 
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4.4.10 CY7C604/60S TLB Replacement Control Register (TRCR) 

The TRCR contains the Replacement Counter (RC) and Initial Replacement Counter (IRC) fields as shown in 
Figure 4-38. These fields are used in order to support random replacement and to support locking capabilities of the 1LB. 
Refer to Section 4.1.1.2 on page 4-6for information on 1LB entry locking. Upon power-on reset, both the RC and IRC 
fields are initialized to zero. 

RSV RC I RSV I IRC 

31 14 13 8 7 6 5 0 

RSV = Reserved 

RC = Replacement Counter 

IRC = Initial Replacement Counter 

Figure 4-38. CY7C604/60S TLB Replacement Control Register 

4.4.11 CY7C604/60S Synchronous Fault Status Register (SFSR) 

The synchronous fault status register, illustrated in Figure 4-39, contains fault-associated information for synchronous 
faults. Synchronous faults are faults that occur during an integer unit access of memory. Synchronous faults include 
almost all possible faults for the CY7C604/605. This type of fault is synchronous to the operations of the CY7C601. For 
the CY7C604/605, this fault type covers all cases except those caused by delayed writes of data stored in the write buffers. 
These faults are asynchronous to the operation of the CY7C601, and are named asynchronous faults. 

An example of a synchronous fault is a privilege violation fault caused by attempting an unauthorized memory access. 
These faults are discussed in detail in Section 4.9. Upon encountering a synchronous fault, the CY7C604/605 asserts the 
MEXC signal, along with MHOLD and MDS. Synchronous faults are the only exception type that assert the MEXC 
signal. 

In the CY7C604, the copy-back translation error (CBT) bit indicates that a translation error occurred during a table walk 
for the flush of a modified cache line of a copy-back mode cache miss. The SFAR contains the address of the missed 
cache access, not the modified cache line address that caused the translation error. When this type of error occurs, the 
cache tag remains valid, and the cache line remains modified. Note that this bit is not used in the CY7C605, and is re­
served. The physical address for a cache line is always available in the CY7C605, therefore making the CBT bit unneces­
sary in a CY7C605 based system. 

The uncorrectable error (VE), timeout error (TO), and bus error bits (BE) report error status as encoded in the MERR, 
MRTY, and MRDY signals. (Refer to the Section 4.12 on Mhus for further information.) The level bits (L) describe 
the level in a table walk process at which the fault occurred (if applicable). These bits are described in Table 4-17 on page 
4-49. 
The access type bits (AT(2:0» describes the access type that caused the fault. This field specifies user/supervisor access 
and whether the access is load or store of data or instruction. The AT bits are described in Table 4-18 in the section on 
synchronous faults. The fault type bits (FT) describe the fault type, and are illustrated in Table 4-19 on page 4-49. The 
fault address valid bit is set when the address in the synchronous fault address register (SFAR) is a valid fault address. 
The over-write bit (OW) is set in the case of a double fault where the fault status stored in the SFSR does not correspond 
with the fault first trapped on by the CY7C601. This is discussed in detail in the section on synchronous faults, page 4--47. 

Upon power-on reset, the UC, TO, BE, Ff, FAY, and OW bits in the SFSR will be cleared. Reading the synchronous 
fault status register clears all fault status bits. 

RSV 19~1uclTOI BEl L I AT I FT IFAV lowl 
31 14 13 12 11 109 87 54 2 o 
RSV = Reserved L = Level 
UC = Uncorrectable Error AT = Access 1Ype 
TO = Time Out Error FT = Fault 1Ype 
BE = Bus Error FV = Fault Address Valid 
·CBT = Copy-back nan,lation Error OW = Over Write 

("CY7C604 only; reserved in CY7C605) 

Figure 4-39. CY7C604/60S Synchronous Fault Status Register 
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4.4.12 CY7C604/605 Synchronous Fault Address Register (SFAR) 

The synchronous fault address register contains the faulted virtual address. 

SFA 

31 
SFA = Synchronous Fault Address 

a 

Figure 4-40. CY7C604/605 Synchronous Fault Address Register 

4.4.13 CY7C604/605 Asynchronous Fault Status Register (AFSR) 

Asynchronous faults are those faults caused by a delayed memory access initiated by the CY7C604/605. This type of error 
can only be caused by a delayed write to main memory initiated by the write buffer. Asynchronous faults cause the CMER 
signal to be asserted, which can be used as an interrupt to the CY7C601. 

The DC, TO, and BE bits are identical to those in the SFSR. They are set by the information encoded into the MERR, 
MRTY, and MRDY signals of the Mhus (see Section 4.12.4). The asynchronous fault address bits provide the upper four 
bits of the physical address not captured in the Asynchronous Fault Address Register (AFAR), which is a thirty-two bit 
register. 

The Asynchronous Fault Occurred (AFO) bit is set when an asynchronous fault is encountered. Once the asynchronous 
fault occurred bit is set, no further asynchronous faults are recorded until the AFO bit is cleared, which is accomplished 
by reading the asynchronous fault address register (see Figure 4-41). The DC, TO, BE, and AFO bits in the AFSR will 
be cleared upon power-on reset. Reading the AFSR will also clear these bits. 

RSV I uc I TO I BE I RSV I AFA(35:32) I RSV rF9 
31 13 12 11 109 87 4 3 a 
RSV = Reserved BE = Bus Error 

UC = Uncorrectable Error AFA = Asynchronous Fault Address 

TO = Time Out Error AFO = Asynchronous Fault Occurred 

Figure 4-41. CY7C604/605 Asynchronous Fault Status Register 

4.4.14 CY7C604/605 Asynchronous Fault Address Register (AFAR) 

The AFAR contains bits 31 through 0 of the physical address for asynchronous faults (bus errors). Asynchronous faults 
can occur during delayed write accesses or during background cache line flush operations in copy-back mode (see 
Figure 4-42). The address in the AFAR is concatenated with the four AFA bits in the AFSR to define the entire 36-bit 
physical address. 

AFA 

31 a 
AFA = Asynchronous Fault Address 

Figure 4-42. CY7C604/605 Asynchronous Fault Address Register 
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4.5 CY7C604 I CY7C605 Multichip Configuration 

The CY7C604/605 is designed to allow expansion of the 64-kbyte cache by adding additional CY7C604/605s, each control­
ling two CY7C157 cache RAMs. A system using an expanded cache is required to configure the CY7C604/605s for multi­
chip operation. Multichip operation is defined by the MultiChip Address field (MCA(1:0», MultiChip Mask field 
(MCM(1:0», and the Multichip Valid bit (MY) of the System Control Register (SCR). The two-bit MCAand MCM fields 
control the addresses to which the CY7C604/605 is allowed to respond. The multichip valid bit enables the multichip 
mode for the CY7C604/605, and is to be set when the MCA and MCM fields are configured for the system. 

System initialization under multichip operation mode is handled by designating one of the CY7C604/605s to respond to 
all addresses from the CY7C601 until the CY7C604/605s have been initialized. This CY7C604/605 is referred to as the 
boot mode CY7C604/605. The other CY7C604/605s remain inactive until multichip operation has been set. 

The boot mode CY7C604/605 is responsible for accesses to memory during system initialization. The boot mode 
CY7C604/605 responds to all memory accesses until multichip operation is enabled by setting the multichip fields of the 
SCR. The other CY7C604/605s remain inactive for all memory accesses until their SCR has been enabled for multichip 
mode. The non-boot mode CY7C604/605s three-states MDS and MEXC. 

SYS RESET r r 

; ~ 
~ 

CY7C604/605 

4 
CMU1 

(BootCMU) 

va.." mt: im' r-
i'1lii 

MEXC 

GE~~~~foR r .. MOO CY7C157 
A 

~. A 
(2X) ::: iDE - 0 

MHOlD 1- I""~. 0 

CY7C601 
.. 

SNUiI CROE DE :: 
CONTROL Clii'IE(3:0) WE 

VA(31:0) 

- RESET VD(31:0 
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-~ 
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~. 
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Figure 4-43. 1\vo·CMU Multichip Configuration 
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Two CMU System: 

CMU1 ,.--------------, 
L_~~_':..!..O.i..~~~=.!~J 

System Control Register 

CMU2 r--------------, 
I MCA = 11;MCM = 10 I 
L------s~mcontro(Re9isttr 

Four CMU System: 

CMU1 ,.--------------, 
L~~~':..~.i..~~~=~~J 

System Control Register 

CMU2 .-------------, 
I MCA = 01; MCM = 00 I L _____________ .....I 

system Control Register 

CMU3 .-------------, 
L~~_':..~.i..~~~=~~J 

System Control Register 

CMU4 ,.--------------, 
L_~~_':..!].i..~~~=~~J 

System Control Register 

CY7C604/CY7C605 CMU 

Virtual Addressing: 

VA(31:20) VA(15:0) 

~ X x\xxxo(x X X X, 

/\ 
VAH VA16 

X X X (xxx1) X X X X 

Virtual Addressing: 

VA(31:20) VA(15:0) 

~ X x\xxoo(x X X X, 

/\ 
VA17 VA16 

XXX (xx01) XXXX 

XXX (xx10) X X X X 

X X X (xx11 ) XX X X 

Figure 4-44. Examples of Multichip Addressing 

The boot mode CY7C604/60S is selected by forcing LOW the CSEL signal as the power-on reset (POR) signal is deas­
serted. The remaining CY7C604/60Ss are connected such that the CSEL signals are forced HIGH when the POR signal 
is deasserted. Each CY7C604/60S latches the state of its CSEL signal upon rising clock edge after POR is deasserted, 
and remains in either boot mode or becomes inactive until the muItichip fields of its SCR have been set. (See CSEL power­
on reset timing diagrams in Sections 7.4.7 and 7.S.7.) A single CY7C604/60S system should tie the CSEL signal to ground 
to ensure correct operation upon reset. 

While muItichip operation is not enabled, CY7C604/60S registers are addressed by using a combination of CSEL, the 
register address, and ASI = 4. The CSEL signal of each CY7C604/60S is tied to one of the upper virtual address signals, 
thereby mapping the CY7C604/60S registers to different virtual addresses. These virtual addresses mapped using the 
CSEL signals are ignored by the CY7C604/60S after the muItichip fields of the SCR are initialized. The non-boot mode 
CY7C604/60Ss will ignore all register accesses except to SCR until the multichip mode is enabled for the CY7C604/605. 

All boot-mode CY7C604/60S registers can be accessed without enabling the muItichip operation mode. Register access 
is accomplished by using a load or store alternate instruction with ASI = 4. Section 4.8 on ASI and Register M~ 
describes the address mapping for the CY7C604/605. Note that after the muItichip fields of the SCR have been set, CSEL 
is ignored for register addressing. All register accesses are mapped according to the MCM and MCA fields after the MV 
bit has been set. 

The multichip fields ofthe SCR for the non-boot mode CY7C604/60Ss should be configured and enabled before the SCR 
for the boot mode CY7C604/605 is enabled. This prevents problems with the boot mode CY7C604/605 interfering during 
the configuration of the non-boot mode CY7C604/60Ss. 

Figure 4-43 illustrates a 128-kbyte cache using two CY7C604/60Ss in a multichip configuration. Note that VA24 of the 
virtual address is connected to the CSEL input of CMUI and is pulled to ground with a resistor. This signal is used to 
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access the CMUl registers before multichip operation has been enabled. Using a pull-down resistor also accomplishes 
the task of forcing the CSEL signal for CMUl to low, which is latched on the rising clock edge after POR is deasserted 
to enable the CY7C604/60S as the boot mode CMU. VA23 is connected to the CSEL input for CMU2. This signal is 
pulled up with a resistor to ensure that it is forced HIGH when the system reset signal is released. The virtual address 
bus (VA(3l:0» is three-stated by using the system reset signal to drive TOE HIGH, thereby forcing the CY7C60l off the 
address bus. 

The SNULL input signal causes the CY7C604/605 to ignore an address on the virtual address bus. This input is used 
in multichip operation to keep a CY7C604/60S from responding to addresses output on the virtual address bus by other 
CY7C604/60Ss. The MHOlD output signal from a CY7C604/60S is used as the SNULL input for the remaining 
CY7C604/60Ss. FIgure 4-43 illustrates the MHOLD to SNULL connections for a two-CY7C604/60S system. 

The multichip address bits (MCA(l:O» of the System Control Register (SCR) select the state of the VA(l7:l6) bits that 
must be matched for muitichip addressing. The multichip mask bits (MCM(l:O» select which of the VA(l7:l6) bits can 
be ignored. The combination of the two fields define the address mapping for the CY7C604/60S. The multichip valid 
bit (MY) must be set when writing to the MCA and MCM fields in order to enable multichip mode. FIgure 4-44 illustrates 
two examples of how these fields are used to define the address mapping for multiple CY7C604/60S systems. 

4.6 CY7C604/605 Diagnostic Support 

4.6.1 CY7C604/60S MMU TLB Entries 

TLB entries can be accessed with a load or store alternate instruction with the TLB entry address and ASI = 6H. This 
feature is supported for diagnostic purposes and to provide CY7C60l access to locked TLB entries. The virtual and physi­
cal sections of each entry in the TLB can be accessed by the CY7C601 as a single-word read or write. The address mapping 
for the TLB entries is shown in Table 4-11. The format of CAM word and RAM word entries in the TLB is shown in 
FIgure 4-45. 

31 

Table 4-11. TLB Entry Address Mapping 

Address 

OH 

4H 

8H 

CH 

lOH 

14H 

· · · 
lFOH 

lF4H 

lFSH 

lFCH 

200-FFFFFFFS H 

TLB Entry CAM Word Format 

VA (31:12) CXN (11:0) 

VA = Virtual Address 

CXN = Context Number 

12 11 o 

TLB Entry Register 

Entry 0 RAM Word 

Entry 0 CAM Word 

Entry 1 RAM Word 

Entry 1 CAM Word 

Entry 2 RAM Word 

Entry 2 CAM Word 

· · · 
Entry 62 RAM Word 

Entry 62 CAM Word 

Entry 63 RAM Word 

Entry 63 CAM Word 

Reserved 

TLB Entry RAM Word Format 

PPN (35:12) I C I M I ACC I 51 I V I 
31 87653210 

PPN = Physical Page Number ACC = Access protection bits 

C = Cacheable b~ 

M = Modified b~ 

51 = Short Translation Type 
V = Valid 

Figure 4-45. TLB Entry Format 

4-43 



CY7C604/CY7C605 CMU 

Table 4-12. Cache Tag Entry Address Mapping 

Address Cacbe Tag Entry 

OOOxH 0 

002xH 1 

004xH 2 

006xH 3 

· · · · · · 
FFExH 2047 

(x - don t care) 

4.6.2 CY7C604/60S Cache Tag Entries 

CY7C604 tag entries are accessed using a load or store alternate instruction with the cache tag entry address and ASI 
= OE H. The CY7C605 PVfAG is accessed using a load or store alternate instruction specifing the entry address and 
ASI = OE H. CY7C605 MPTAG entries are accessed in a similar manner using ASI = 30 H. Each tag entry can be read 
as a load single or can be written as a store single from the CY7C601. The address mapping for the cache tag entries 
is shown in Table 4-12. The format ofa CY7C604 tag entry is shown in Figure 4-46. The CY7C605 PVfAGand MPTAG 
entry formats are illustrated in Figure 4-47. 

4.6.3 CY7C604/60S Cache Data Entries 

Cache data entries can be accessed from the cache RAM by using a load or store alternate instruction asserting the virtual 
address and ASI = OF H. The CY7C604/605 cache controller causes a forced hit from the cache tag during these accesses. 
All data widths are supported for a read or write to the cache ram. 

31 

PVTAG Entry 

I TAG 

TAG 

16 15 

TAG = Virtual Address Thg 

CXN = Context Number 

V = Valid bit 

4 3 2 1 0 

M = Modified bit 

S = Supervisor 

R = Reserved 

Figure 4-46. CY7C604 Cache Tag Entry Format 

MPTAG Entry 

TAG 

31 16 15 4 3 2 1 0 31 

TAG = Virtual Address Thg 
CXN = Context Number 
V = Valid bit 

SH = Shared 
S = Supervisor 
R = Reserved 

TAG = Physical Address Thg 
V = Valid 
SH = Shared 

Figure 4-47. CY7C60S Cache Tag Entry Format 
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4.7 CY7C604/605 Reset 

4.7.1 Power·On Reset (POR) 

Upon power·on reset, the entire system is forced into a defined state. The 1LB and the cache tag(s) in the CY7C604/605 
are invalidated, all valid bits.in control registers are cleared, and certain bits in the ASFR and SFSR are cleared as de­
scnbed in the previous sections. The CY7C604/605 asserts IRST to the integer unit for as long as POR is asserted. MRST 
is not asserted. POR must be asserted for a minimum of 8 clocks. The bits in the reset register (RR) are cleared. Upon 
power-on reset, the UC, TO, BE, IT, FAV; and OW bits in the SFSR will be cleared. The SCR fields in the CY7C604/605 
will have the following state after a power-on reset: 

Table 4-13. CY7C604/60S Power· On Reset States 

IMPL Unchanged 

VER Unchanged 

MCA(1:0) Unchanged 

MCM(1:0) Unchanged 

MV 0 

BM 1 

C 0 

CM 0 

CL 0 

CE 0 

NF 0 

ME 0 

MR 0 

4.7.2 Watch.Dog Reset (WDR) 

When the CY7C601 encounters a trap while traps are disabled, the CY7C601 enters into an error state, asserts the 
ERROR signal, and then halts. The only way to restart the CY7C601 in the error state is to assert its RESET signal. 
The CY7C604/605 does this by perfonning a watch-dog reset, which asserts the IRST signal for 1024 clock cycles. MRST 
is not asserted. The TLB and the cache tag(s) in the CY7C604/605 are not invalidated. The WDR (RR[2]) bit in the RR 
register is set. All SCR fields except boot mode (BM) are unchanged. BM is set to 1 after a watch-dog reset. 

4.7.3 Software Internal Reset (SIR) 

The operating system can reset the CY7C601 by setting the SIR bit in the reset register. The CY7C604/605 asserts IRST 
for 1024 clock cycles to reset the CY7C601. The TLB and the cache tag are not invalidated. All SCR fields except BM 
are unchanged, and BM is set to 1 after a software internal reset. The contents of the reset register are unchanged and 
the SIR bit will remain set. Refer to page 4-83 for timing diagrams for the SIR and SER resets. 

4.7.4 Software External Reset (SER) 

The operating system can reset the system separately from the CY7C601 by writing 1 into the SER bit of the RR register. 
Only the writing of a 1 into the SER bit will cause MRST to be asserted. The CY7C604/605 asserts MRST for 1024 Mbus 
clock cycles to reset the system. The TLB and the cache tag are not invalidated. The SCR register remains unchanged. 
The CY7C604/605 will wait for its write buffers to empty before asserting MRST on a software external reset. The con­
tents of the reset register are unchanged and the SER bit will remain set. 

MRST will not be asserted on a software external reset until the write buffers have been flushed. Writing both the SIR 
and SER bits in the reset register will cause the assertion of both IRST and MRST. A reset routine can poll the reset 
register to detennine the source of any reset. 

4-45 



CY7C604/CY7C60S CMU 

4.7.5 CY7C604/605 Reset in Multichip Configuration 

In a multichip configuration, the CY7C604/605 that is responsible for handling boot mode can also assume the responsi· 
bility to handle the Reset operations described above. The IRST to the CY7C601 and the MRST to the external system 
are connected only to this responsible CY7C604/605. The reset signals from the other CY7C604/605s are not connected. 
The ERROR pin of the CY7C601 should be connected to all CY7C604/605s thereby putting all CY7C604/605s in the 
same state during watch dog reset. Only the IRST of the boot-handling CY7C604/605 is connected to the RESET input 
of the CY7C601. 

When performing a software internal reset in a multichip configuration, the reset register SIR bit should be set in all 
the non-boot-handling CY7C604/605s before SIR is set in the boot-handling CY7C604/605. This places all CY7C604/605s 
contained in the system in the same mode before the CY7C601 is reset. A softw/l.re external reset in a multichipconfigura­
tion can be performed by writing the SER bit in the boot-handling CY7C604/605 only. It is not necessary to alter the 
non-boot-handling CY7C604/605s. 

4.8 CY7C604/60S ASI and Register Mapping 

The CY7C604/605 uses the address space identifier bus (ASI < 5:0 > ) to provide access by the CY7C601 to internal regis­
ters and resources, such as the cache tag and the TLB. The CY7C604/605 also uses the ASIbus to map restricted memory 
access functions, such as local and pass-through memory addressing modes. Register access to the CY7C604/605 requires 
using a load or store alternate instruction with ASI = 04 H in addition to the register address, given in Table 4-14. 
Table 4-15 illustrates the ASI mapping for the CY7C604/605. 

Table 4-14. CY7C604/605 Register Address Mapping 

VA (15:0) CY7C604/605 Registers 

OH System Control Register (SCR) 

looH Context Table Pointer Register (CTPR) 

200H Context Register (CXR) 

300H Synchronous Fault Status Register (SFSR) 

400H Synchronous Fault Address Register (SFAR) 

SooH Asynchronous Fault Status Register (AFSR) 

600H Asynchronous Fault Address Register (AFAR) 

700H Reset Register (RR) 

800 - FOO H Reserved 

1000H Root Pointer Register (RPR) 

llooH Instruction Access PTP (IPTP) 

1200H Data Access PTP (DPTP) 

1300H Index Tag Register (ITR) 

1400H TLB Replacement Control Register (TRCR) 

1500 - FFOO H Reserved 
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Table 4-15. Standard ASI Assignments 

ASI Function 

OH Reserved 

IH Mbus extended address space' 

2H Unassigned 

3H MMU flush/probe" 

4H MMU registers" 

5H MMU diagnostics instruction only TLB 

6H MMU diagnostics instruction/data TLB" 

7H MMU diagnostics I/O TLB 

SH User instruction" 

9H Supervisor instruction' 

AH User data" 

BH Supervisor data" 

CH Cache tag for instruction cache 

DH Cache data for instruction cache 

EH Cache tag combined(instldata) cache" (pVTAG)" 

FH Cache data for combined cache" 

10H Flush combined cache line (page)" 

llH Flush combined cache line (segment)' 

"Indicates functions supported by the CY7C604 and CY7C60S 

""Indicates function is specific to the CY7C60S 

4.9 Synchronous Faults 

ASI Function 

12H Flush combined cache line (region)" 

13H Flush combined cache line (context)" 

14H Flush combined cache line (user)" 

15 H Reserved 

16H Reserved 

17H Block copy 

ISH Flush data cache line (page) 

19H Flush data cache line (segment) 

lAH Flush data cache line (region) 

lBH Flush data cache line (context) 

lCH Flush data cache line (user) 

lDH Reserved 

lEH Reserved 

IFH Block zero 

2O-2F H MMU passthrough physical address" 

30H MPTAG cache tag entries "" 

31-7F H Unassigned 

SO-FFH Reserved 

Synchronous faults are grouped into three classes: instruction access faults, data access faults, and translation table access 
faults. The translation table access faults are further divided into translation instruction access faults and translation data 
access faults. The SPARC architecture causes the timing and priority of these fault classes to be handled differently. 
Due to delays caused by the instruction pipeline, the CY7C601 can possibly encounter a second fault before the CY7C601 
enters a trap to correct the first. Depending upon the class of fault encountered, the status and address of a fault may 
be allowed to overwrite information for a previous fault that has not yet generated a trap. This potential condition re­
quires a trap handler that can correct the various combinations of fault conditions. This section describes these potential 
fault conditions. 

The case of a pair of faults occurring presents a problem in reporting the correct fault status. This problem is solved by 
use of an overwrite (OW) bit in the SFSR and by prioritizing which types of faults may overwrite a previous fault. The 
OW bit signals the trap handler that the status and address stored in the fault registers are not valid for the trap that 
the CY7C601 has entered. The SFSR logic sets the OW bit according to a state sequence based on the fault handling 
of the CY7C601 and the type of faults encountered. 

Since the CY7C601 delays entering a trap handler for an instruction fault, a trap caused by another fault will overwrite 
the trap information for the initial instruction fault. If the second fault causes a trap in the CY7C601 before the initial 
instruction fault trap is entered, the OW bit is not set. This is because the information in the fault registers will be correct 
for the first trap reading the registers. However, if the initial instruction trap is entered before the second fault trap is 
entered, the OW bit will be set. This is because the first trap reading the fault status registers will have the fault data 
for the second trap. The OW bit is set only if the trap that will be executed first by the CY7C601 does not match the 
status information stored in the SFSR. The setting of the OW bit is entirely based upon the types of faults and their order 
of occurrence. Table 4-16 illustrates the possible fault cases and their effect on OW. 
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Table 4-16. OW Bit States 

Update 
First Fault Second Fault SFSR OW 

single fault yes 0 

instruction instruction yes 1 

instruction data yes 0 

instruction translate instr. yes 1 

instruction translate data yes 0 

data instruction no 0 

data data yes 1-

data translate yes 1 

translate instruction, data no 0 

translate translate no 0 

'NOT POSSIBLE with CY7C601 (and related processors) 

The CY7C601 delays a trap caused by an instruction access fault until that instruction reaches the execute stage. Howev­
er, since data accesses are not pipelined, the CY7C601 jumps to a trap immediately upon encountering a data access fault. 

Faults are allowed to overwrite another fault status dependent upon priority. An instruction fault is allowed to overwrite 
only another instruction fault. It is not allowed to overwrite either a data fault or a translation fault. Data faults may 
overwrite an instruction fault, but not a translation fault. Data faults cannot overwrite another data fault, since the 
CY7C601 traps immediately upon encountering a data fault. Translation faults may overwrite any type of fault, but cannot 
be overwritten. 1hmslation faults may not overwrite another translation fault. 

All double fault cases are recoverable by re-executing the instruction or access that caused the fault whose status has 
been overwritten. If an instruction access fault occurs and the OW bit is set, the system software must determine the 
cause by probing the MMU and/or memory. 

Upon encountering a synchronous fault, the SFSR records the bus error status (bus error, timeout, and uncorrectable 
error) when a bus error occurs during memory accesses. The level field (L), as shown in Table 4-17, is set to the page 
table level of the entry that caused the fault, if the fault is associated with a table walk. The access type (AT) field, illus­
trated in Table 4-18, defines the type of access that caused the fault. The fault type field FT (see Table 4-19) defines 
the type of the current fault. 

A translation table access fault (FT = 4) occurs if an MMU page table access causes an external system error. This also 
occurs if a reserved entry type (ET = 3 in the PTE) is found in any level of the table walk. A translation table access 
fault (FT = 4) also can occur if a PTP (page table pointer) is found in level 3, instead of a PTE. If the page table entry 
is invalid (ET = 0 in the PTE), the fault type is an invalid address error (FT = 1). Table 4-20 illustrates the fault type 
(FT) assigned for valid 1LB entries or PTE entries (ET = 2) that cause a fault condition. These fault conditions are always 
either a protection error (read/write of data or instruction) or a privilege violation (user/supervisor access) error. 

The copy-back translation fault bit (CBT) is set if there is an error occurring during a table walk for a modified cache 
line replacement or during a modified cache line flush operation. The fault address valid bit (FAV) is set to one if the 
content of the synchronous fault address register is valid. The SFAR may not be valid for instruction faults. The SFAR 
is always valid for data faults and translation errors. 

If multiple fault types apply to the same fault occurrence, the highest priority fault is recorded. The highest fault priority 
is a translation fault (priority 2), as shown in Table 4-21. Priority 1 is reserved for an internal fault. 

Upon power-on reset, the UC, TO, BE, Ff, FAY, and OW bits in the SFSR will be cleared. Reading the synchronous 
fault status register clears all fault status bits. 
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Table 4-17. Fault Register Level Field 

L Level 

0 Entry in Context Field 

1 Entry in Levell Table 

2 Entry in Level 2 Table 

3 Entry in Level 3 Table 

Table 4-18. Fault Register Access 'JYpe Field 

AT Access 1YPe 
0 Load from User Data Space 

1 Load from Supervisor Data Space 

2 Load/Execute from User Instruction Space 

3 Load/Execute from Supervisor Instruction Space 

4 Store to User Data Space 

5 Store to Supervisor Data Space 

6 Store to User Instruction Space 

7 Store to Supervisor Instruction Space 

Table 4-19. Fault Register Fault 'iYpe Field 

FT Fault 1YPe 
0 None 

1 Invalid Address Error 

2 Protection Error 

3 Privilege Violation Error 

4 Translation Error 

5 Bus Access Error 

6 Not Generated 

7 Reserved 
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Table 4-20. Fault 1ype (l?T) for PTE(ET) = 2 

AT ACC 

0 1 2 3 4 5 6 7 

0 0 0 0 0 2 0 3 3 

1 0 0 0 0 2 0 0 0 

2 2 2 0 0 0 2 3 3 

3 2 2 0 0 0 2 0 0 

4 2 0 2 0 2 2 3 3 

5 2 0 2 0 2 0 2 0 

6 2 2 2 0 2 2 3 3 

7 2 2 2 0 2 2 2 0 

Table 4-21. Fault Register Error Priorities 

Priority Error 

1 Internal Error 

2 Translation Error 

3 Invalid Address Error 

4 Privilege Violation Error 

5 Protection Error 

6 Bus Access Error 

4.9.1 Synchronous Fault Cases 

The following seventeen cases describe the combinations of fault cases that can occur: 

Case 1: Instructionfault with no fUrther faults. The CY7C601 trap is delayed until the CY7C601 tries to execute the instruc­
tion. 

The trap is taken immediately if the instruction access is actually a data access that is interpreted by the CY7C604/605 
as an instruction access due to asserting ASI = 8 or 9 with a load alternate instruction. In this case, the trap handlers 
cannot probe main memory using the PC of the instruction. If the instruction is a load alternate iostruction, the trap 
handler has to calculate the effective address to probe. The SFAR has the valid address if the OW bit is not set. 

Case 1: Single-Instruction Fault 

OW 0 

FAY 1 SFAR has valid address 

FT 1 Invalid error occurred 
(ET = 0 during table walk) 

2 Protection error occurred (either 1LB or table walk) 

3 Privilege violation error occurred (either TLB or table walk) 

5 Bus access error occurred (external bus error: UC or TO or BE is set). 

AT 2,3 Load/Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which fault occurred during table walk (only valid with Ff = 1) 
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Case 2: Double instruction fault. Instruction fault (1) followed by another instruction fault (2); CY7C601 traps on instruc­
tion fault (1). 

If the instruction fault (2) is due to a load access with ASI 8,9 (load alternate), it overwrites the fault associated informa­
tion of fault (1). In this case the SFAR has a valid address for the data access of the load alternate instruction. 

The fault address of fault (1) can be obtained from the PC in the CY7C601 for the trap handler with the exception of 
the following case. 

A possible case is that of a data access interpreted by the CY7C604/60S as an instruction access because of the use of 
a load or store alternate instruction with ASI = 8, 9. Before the CY7C601 takes the trap on the data access fault (which 
is recorded as an instruction fault in the CY7C604/605), another instruction fault may occur. The second instruction will 
overwrite the data access fault information, because it is recorded as an instruction fault in the CY7C604/60S. In this 
case, the trap handler can not just probe on the PC of the instruction. If the instruction is a load alternate instruction, 
the trap handler has to calculate the effective address to probe and the SFAR will not contain the fault address of the 
data access fault. 

Case 2: Double·Instruction Fault 

OW 1 

FAV 1 SFAR has valid address for fault (2) 

Ff Fault type of fault (2) 
1,2,3,S 

AT 2,3 Access type of fault (2) 

L 0,1,2,3 Level at which fault (2) occurred during table walk (only valid with Ff = 1) 

Case 3: Single data fault. CY7C601 trap (taken immediately) 

Case 3: Single Data Fault 

OW ° FAY 1 SFAR has valid address 

Ff 1 Invalid error occurred (ET = ° during table walk) 

2 Protection error occurred (either TLB or table walk) 

3 Privilege violation error occurred (either TLB or table walk) 

S Bus error occurred (external bus error, UC or TO or BE is set) 

AT 0,1,4,5,6,7 

L 0,1,2,3 Level at which fault occurred during table walk (only valid with Ff = 1) 

Case 4: Instruction fault followed by data fault. CY7C601 traps on the data fault 

The history of the instruction fault is lost, but the same fault can be obtained again, once the return from the trap handler 
of the data fault is completed. 

Case 4: Instruction Fault then Data Fault 

OW ° 
FAY 1 SFAR has valid address for data fault 

Ff 1,2,3,5 Fault type of data fault 

AT 0,1,4,S,6,7 

L 0,1,2,3 Level at which data fault occurred during table walk (only valid with Ff = 1) 
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Case 5: Data fault followed by instruction fault. The instruction fault cannot overwrite the data fault. The instruction fault 
will occur again, once the return from the data fault trap handler is completed. CY7C601 will trap on data fault. 

Case 5: Data Fault then Instruction Fault 

OW ° FAY 1 SFAR has valid address for data fault 

Ff 1,2,3,5 Fault type of data fault 

AT 0,1,4,5,6,7 

L 0,1,2,3 Level at which data fault occurred during table walk (only valid with Ff = 1) 

Case 6: Data fault followed by data fault. (NOT POSSIBLE with CY7C601.) 

Case 7: Translation fault (instruction access); no further faults. The CY7C601 trap is delayed until the CY7C601 tries to 
execute the instruction or is taken immediately if the access is data due to a load alternate instruction. 

Case 7: Translation Fault on Instruction Access 

OW ° FAY 1 SFAR has valid address for translation fault. 

Ff 4 Translation error occurred (bus error or ET = 3 or PTP in level 3 during table 
walk) 

AT 2,3 Load/Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 8: Translation fault (data access). The CY7C601 trap is taken immediately. 

Case 8: Translation Fault on Data Access 

OW ° FAY 1 SFAR has valid address for translation fault 

Ff 4 Translation error occurred (bus error or ET = 3 or PTP in level 3 during table 
walk) 

AT 0,1,4,5,6,7 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 9: Instruction fault followed by translation fault (instruction.) The CY7C601 traps on the instruction fault. 
The fault address of the instruction fault can be obtained from the PC in the CY7C601 for the trap handler with the 
exception of the following case. 

A data access fault can be recorded as an instruction fault if a load alternate instruction with ASI = 8, 9 causes a fault. 
Before the CY7C601 takes the trap on the data access fault (which is recorded as an instruction fault in the CY7C604/605), 
a translation fault may occur due to an instruction access. This will overwrite the data access fault information. 

Case 9: Instruction Fault then Translation Fault (I) 

OW 1 

FAY 1 SFAR has valid address for translation fault 

Ff 4 

AT 2,3 Load/Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 
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Case 10: Translation fault (instruction access) followed by instruction fault. The CY7C601 traps on the translation fault. The 
instruction fault cannot overwrite the translation fault. 

Case 10: Translation Fault (I) then Instruction Fault 

OW 0 

FAV 1 SFAR has valid address for translation fault 

Ff 4 

AT 2,3 Load/Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 11: Translation faultI (instruction access) followed by translation fault2 (instruction). The CY7C601 traps on transla­
tion faultl. 

Case 11: Translation Fault (I) then Translation Fault (I) 

OW 0 

FAV 1 SFAR has valid address for first translation fault 

Ff 4 

AT 2,3 Load/Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which first translation fault occurred during table walk 

The second translation fault cannot overwrite the first translation fault. 

Case 12: Translation faultl (instruction access) followed by translation fault2 (data access). The CY7C601 traps on transla­
tion fault2. The translation fault2 cannot overwrite translation faultl. 

Case 12: Translation Fault (I) then Translation Fault (D) 

OW 0 

FAV 1 SFAR has valid address for translation faultl 

Ff 4 

AT 2,3 Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation faultl occurred during table walk 

Case 13: Translation fault (instruction access) followed by data fault. The CY7C601 traps on the data fault. The data fault 
cannot overwrite the translation fault. 

Case 13: Translation Fault (I) then Data Fault 

OW 0 

FAV 1 SFAR has valid address for translation fault 

Ff 4 

AT 2,3 Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 
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Case 14: Data fault followed by translation fault (InStruction access). The CY7C601 traps on the data fault. 

Before the CY7C601 takes the trap on the data access fault, a translation fault may occur due to an instruction access. 
This will overwrite the data access fault information. 

Case 14: Data Fault then Thanslation Fault (I) 

OW 1 

FAY 1 SFAR has valid address for translation fault 

Fr 4 

AT 2,3 Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 15: Instruction fault followed by translation fault (data). The CY7C601 will trap on the data fault. 

Case 15: Instruction Fault then Thanslation Fault (D) 

OW ° FAY 1 SFAR has valid address for translation fault 

Fr 4 

AT 0,1,4,5,6,7 

L 0,12,3 Level at which translation fault occurred during table walk 

Case 16: Translation fault (data) followed by instruction fault. The CY7C601 will trap on the data fault. 

Case 16: Translation Fault (D) then Instruction Fault 

OW ° FAY 1 SFAR has valid address for translation fault 

Fr 4 

AT 0,1,4,5,6,7 

L 0,12,3 Level at which translation fault occurred during table walk 

Case 17: Translation fault (data) followed by translation fault (instruction). The CY7C601 will trap on the data fault. 

Case 17: Thanslation Fault (D) then Thanslation Fault (I) 

OW ° FAY 1 SFAR has valid address for data translation fault 

Fr 4 

AT 0,1,4,5,6,7 

L 0,12,3 Level at which translation fault occurred during table walk 
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4.10 CY7C604/605 Pin Definitions 

The functional pinouts for the CY7C604 and CY7C605 are shown in Figure 4-48. Note that all three-state output signals 
are driven to their inactive state before they are released to three-state. All signals described are common to both the 
CY7C604 and CY7C605 unless otherwise stated. 

Virtual Bus Signals 

Signal Name 

A(31:16) 

A(15:2) 

A(1:0) 

ASI(5:0) 

Misc. Signals 

Virtual Bus Signals 
1: ............... ~ 

CY7C604 CY7C605 

-R-

Cache RAM Signals 

L-~"""--. ~ 

I/O 

110 

Figure 4-48. CY7C604 and CY7C605 I/O Signals 

CY7C604/605 Virtual Bus Signals 

Description 

Virtual Address bus. A(31:16) are input signals during normal read/write accesses 
and are latched into the CY7C604/605 on the rising edge of clock. 

Virtual Address bus. Three-state input/output signals. A(15:2) are input signals dur­
ing normal read/write accesses and are latched into the CY7C604/605 on the rising 
edge of the clock. They are output signals during cache line loads into the CACHE 
RAM and modified cache-line reads from the CACHE RAM. 

Virtual Address bus. A(1:0) are input signals during normal read/write accesses and 
are latched on the rising edge of clock. 

Address Space Identifiers. The ASI bits are used to: 
1. Identify various types of accesses (user/supervisor, instruction/data) 
2. Access CY7C604/605 registers 
3. Initiate MMU FlushlProbe operation 
4. Identify CACHE Flush operations 
5. Recognize diagnostic operations 
6. Recognize pass physical address space 
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Signal Name I/O 

D(31:0) 110 

FNULL 

INULL 

o 

o 

LDSTO 

o 

o 

o 

RD 

SIZE(l:O) 

CY7C604/CY7C605 CMU 

Description 

Virtual Data bus. Three-state input/output signals. D(31:0) are input signals during 
CY7C601 normal write accesses, modified cache-line reads from the CACHE RAM, 
CY7C604/605 register writes or CY7C604/605 diagnostic accesses. They are output 
signals during cache line loads into CACHE RAM, CY7C604/605 register reads, 
non-cacheable loads, or CY7C604/605 diagnostic accesses. 

Error (active LOW) signal from the CY7C601. When this signal is asserted, it indi­
cates the CY7C601 has halted due to entering the error state. The CY7C604/605 
reads this signal and illitiates a watchdog reset. (Refer to Section 4.7.2 for more 
details.) 

Floating-point unit NULLification cycle (active HIGH). When FNULL is active, 
the current access is ignored. 

Integer unit NULLification cycle (active HIGH). When INULL is active, the cur­
rent access is ignored. 

Integer unit Output Enable (active LOW). This signal is continually driven HIGH 
or LOW. This signal is connected to the AOE and DOE inputs of the CY7C601. 
When deasserted (HIGH), the 10E will place the address (A(31:0», address space 
identifiers (ASI(7:0», and data (D(31:0» drivers of the CY7C601 in a three-state 
condition. 

Integer unit Reset (active LOW) is asserted to reset the integer unit. (Refer to Sec­
tion 4.7.2 for more details.) This signal is continually driven HIGH or LOW. 

Load-Store Atomic operation indicator (active HIGH). Asserted by the CY7C601 
during atomic load store cycles and is sampled by the CY7C604/605 on the rising 
edge of the clock. 

Memory Data Strobe (active LOW) is asserted for one clock to strobe data into the 
CY7C601 during a cache miss. MHOLD must be low when MDS is asserted. It is 
driven off of the faIling edge of the clock. This is a three-state output. 

Memory Exception (active LOW) is asserted fo~ clock whenever a privilege or 
protection violation is detected. MHOLD and MDS must be low when MEXC is 
asserted. This is a three-state output. 

Memory Hold (active LOW) is asserted by the CY7C604/605 whenever it requires 
additional time to complete the current access such as during cache miss etc. It is 
driven off of the faIling edge of the clock. 

Read cycle indicator (active HIGH). Asserted by the CY7C601 during read cycles 
and is sampled by the CY7C604/605 on the risin~of the clock. This signal is 
also used to generate cache read output enable (CROE) 

SIZE of access indicator. Specifies the data width of the CY7C601 access and is 
sampled by the CY7C604/605 at the rising edge of the clock. 

System NULLification cycle (active LOW). When SNULL is active, the current ac­
cess is ignored. 

Write Enable to indicate write cycle (active LOW). Asserted by the CY7C601 dur­
ing write cycles and is sampled by the CY7C604/605 on the rising edge of the clock. 
This signal is also used to generate cache byte-write enables (CBWE(3:0». 
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Signal Name 

CMER 

MAD(63:0) 

I/O 

o 

110 

0(604) 
110(605) 

110 

CY7C604/CY7C605 CMU 

Mbus Signals 

Description 

CMU Error (active LOW). This signal is asserted if any bus error has occurred 
during writes to main memory. A system can use this signal to cause an interrupt. 
This signal has the same timing specifications as the Mbus control signals and is as­
serted for one clock. This signal is constantly driven. 

Mbus Address and Data (three-state bus). During the address phase of a transac­
tion, MAD(35:0) contains the physical address PA(35:0). The remaining signals 
MAD(63:36) contain the transaction-associated information, as shown below: 

MAD(39:36) 
OH 
IH 

2H* 
3 H* 
4H* 
5H* 

6-FH 

Transactiog 'JY.pe 
Mbus write 
Mbus read 
Coherent invalidate 
Coherent read 
Coherent write and invalidate 
Coherent read and invalidate 
Reserved 

*CY7C605 ONLY 

MAp(42:40) Tragsactiog Size 
o Byte (8 bits) 
1 Halfword (16 bits) 
2 Word (32 bits) 
3 Doubleword (64 bits) 
4 16 Bytes" 
5 32 Bytes 
6 64 Bytes" 
7 128 Bytes" 

"Not supported by CY7C604/605. 

MAD(43) (MC) Mbus Cacheable (active HIGH). Indicates the current Mbus trans­
action is cacheable. 

MAD(44) (MLOCK) Mbus LOCK (active HIGH). Indicates the currrent Mbus 
transaction is a locked transaction. 

MAD(45) (MBL) Mbus Boot mode/Local indicator. MBL is high during the address 
phase of boot mode transactions. The instruction fetch and data accesses to the 
Mbus while the MMU is disabled in boot mode are considered BOOT MODE 
transactions. The data transactions on the Mbus required for Load/Store Alternate 
instructions with ASI = 01 are considered LOCAL transactions. 

MAD(63:46) Reserved during the address phase (driven HIGH). 

During the data phase of the transaction the MAD(63:0) lines contain the 64 bits of 
data being transferred. 

Mbus Address Strobe (active LOW). Asserted by the bus master during the first 
cycle of every bus transaction to indicate the address phase of that transaction. This 
is a three-state output. 

Mbus Bus Busy (active LOW). Asserted by the current Mbus master during an en­
tire transaction and, if required, during both the read and write transactions of indi­
visible accesses. The potential bus master devices sample MBB in order to obtain 
bus mastership as soon as the current master releases the bus. This is a three-state 
output. 
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Signal Name 

MBG 

MIH 
(605 ONLY) 

MSH 
(605 ONLY) 

I/O 

a 

110 

1(604) 
110 (605) 

a 

110 

CY7C604/CY7C605 CMU 

Description 

Mbus Bus Grant (active LOW). Asserted by external arbiter when the Mbus is 
granted to a master. This signal is continually driven. 

Mbus Bus Request (active LOW). Asserted by potential Mbus master devices to 
acquire bus mastership. This signal is continually driven. 

Mbus Error (active LOW). Asserted or deasserted by an Mbus slave during every 
data phase of a transaction. This signal is three-stated when released. 

Memory InHibit (active LOW). Asserted by the CY7C605 for Mbus transactions 
where the cache owns the data that has been requested on the Mbus. This signal is 
monitored during bus snooping by the CY7C605. Refer to section 4.12 for further 
details. 

Mbus Ready (active LOW). Asserted or deasserted by an Mbus slave during every 
data phase of a transaction. This signal is to be three-stated when released. 

Mbus Reset (active LOW). Asserted for 1024 clock cycles by only one source on the 
Mbus to initialize all devices on the Mbus. This signal is continually driven. 

Mbus Retry (active LOW). Asserted or deasserted by an Mbus slave during every 
data phase of a transaction. This signal is three-stated when released. 

H 
H 
H 
H 
L 
L 
L 
L 

H 
H 
L 
L 
H 
H 
L 
L 

H 
L 
H 
L 
H 
L 
H 
L 

" See Section 4.12 on Mbus. 

Action 
Nothing 
Relinquish and Retry" 
Data Strobe 
Reserved 
Bus Error 
TimeOut 
Uncorrectable Error 
Retry" 

Memory SHared (active LOW). Asserted by the CY7C605 after detecting a data 
request on the Mbus for which the CY7C605 has a copy. This signal is monitored by 
the CY7C605 during bus snooping. Refer to Section 4.12 for further information. 

Power-On Reset (active LOW). The paR initializes all on-chip logic to a known 
state, invalidates all the liB entries, and all cache tag entries. It must be asserted 
for a minimum of 8 clocks. It also causes the CY7C604/605 to assert IRST to reset 
the CY7C601. 
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Signal Name 

CBWE(3:0) 

Signal Name 

CLK 

CSEL 
(604 only) 

CSTA 
(604 only) 

I/O 

o 

o 

I/O 

o 

CY7C604/CY7C605 CMU 

Cache RAM Signals 

Description 

Cache Byte Write Enables (active LOW). During normal write operations, certain 
byte enable signals are asserted depending upon the size and A(l:O) inputs. During 
a cache line load all four byte enable signals are asserted. These signals can also be 
driven by using a store alternate instruction with ASI = OF H. This feature is sup­
ported for diagnostic purposes. This output is continually driven (not three-stated). 
CBWEO controls the most significant byte (MSB) and CBWE3 controls the least 
significant byte (LSB). Refer to page 4-34 for further information on this signal. 

Cache RAM Output Enable (active LOW). Asserted during normal read operations 
with ASI = 8, 9, A, B, and during modified cache line read operations. This signal 
is also asserted during cache data read operations with ASI = OF H for diagnostic 
purposes. This signal is continually driven. 

Miscellaneous Signals 

Description 

System Clock. This is the same clock used by the 7C601 integer unit. 

Chip Select (active low). In multi-CMU systems, CSEL on each CY7C604 is con­
nected to different address lines (anyone from A(31:16» to initialize the Multichip 
Configuration. In single-CMU systems, CSEL should be connected to ground in 
order to permanently enable the CY7C604. In multi-CMU systems, CSEL should 
be connected to ground or VCC through a resistor during power-on reset. This is 
required in order to enable only one boot mode CMU. (Refer to Multichip Configu­
ration, Section 4.5, for more details.) 

Cache Status. This pin provides the status of cache. In write-through, the CSTA 
indicates whether the write transaction on the Mbus is associated with a cache hit or 
not. For read transaction on the Mbus in either write-through or copy-back mode, 
the CSTA indicates whether the CY7C604 is replacing a valid cache line entry or 
not. 

This signal has the same timing specifications as the Mbus signals such as MC and 
has meaning only in the address phase of Mbus transactions. This signal is continu­
ally driven HIGH or LOW. 

Cache Mode CSTA Condition 

Write-through 1 read and valid cache line replacement 

0 read and invalid cache line replacement 

1 write and cache hit 

0 write and cache miss 

Copy-back 1 read and valid cache line replacement 

0 read and invalid cache line replacement 

undef. write 

Test/Output Enable (active LOW). When HIGH, this signal is used to three-state 
all output drivers of the CY7C604/605. TOE SHOULD BE TIED LOW DURING 
NORMAL OPERATION. It is used to isolate the CY7C604/605 from the rest of 
the system for debugging purposes. 
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CY7C604/CY7C60S C~'IU 

4.11 Virtual Bus Operation 

The following timing diagrams illustrate CY7C604/605 virtual bus operations: 
Page 

Write-Through Read Cache Hit ................................... ; ................................... ~ 
Write-Through Read Cache Miss ....................................................................... ~1 
Write-Through Read Cache Miss (Alias Detected) ....................................................... 4-64 
Write-Through Write Cache Hit ....................................................................... 4~5 
Write-Through Write Cache Miss ...................................................................... 4-66 
Copy-Back, Read Cache Miss (Modified Cache Line) .................................................... ~7 
Copy-Back Read Cache Miss, Modified or Non-Modified (Alias Detected) .................................. 4-n 
Copy-Back Write Cache Miss, Modified or Non-Modified (Alias Detected) ................................. 4-73 
Copy-Back Write Cache Hit ........................................................................... 4-74 
Write-Through Load Double Cache Hit ................................................................ 4-74 
Write-Through Store Double Cache Hit ................................................................ 4-75 
Thble Walk (with Modified Bit Update) ................................................................ 4-76 
Read Access with Protection/Privilege Violation ......................................................... 4-80 
CY7C604/605 Diagnostic Cache Thg Write Access ....................................................... 4-80 
CY7C604/605 Register Read .......................................................................... 4-81 
CY7C604/605 Register Write ......................................................................... 4-81 
Power-On Reset ..................................................................................... 4-82 
Software External Reset ............................................................................. 4-83 
Software Internal Reset .............................................................................. 4-83 

Write.Through (Copy· Back) Read Cache Hit liming Diagram 

elK 

A(31:0) 

0(31:0) 

RO I \$JJl \$JJl 
WE I \$JJl \$JJl 

CROE \ if\ 
'M'FimD I 

MOS I 

iOE \ 
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CY7C604/CY7C605 CMU 

Write.Through (Copy· Back, Clean Cache line) Read Cache Miss Timing Diagram (page 1 of 3)* 

2 3 4 5 6 

elK 

A(31:0) ~ __________ ~ _______ A_1~ ________ ~ __ ___ 

, ~----~! ----------~----~C§ 
. (missed data) i 

0(31:0) 

RO / 

I 

CROE rn 
CBWE(3:0) I 

MHOlO I ,~------~------~------~------~---- III 
~ I 

iCE \ 

lM3R I ,\-_----;-__ --,..Jf 

MBG* I ,~---~-----------------+---
MBB I ,~---~-------+----

MAO(63:0) --~------r-------t-------r-\(~A~D~DR~~ 
I '\.-_.;....If 
I 

*1\vo clocks can be deleted from the cache miss timing if MBG is already granted. 
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CY7C604/CY7C60S CMU 

Write-Through (Copy-Back) Read Cache Miss Timing Diagram (page 2 of 3) 

5 6 789 10 11 

CLK 

A(31:0) _~ __ A1_--.-...JX A2 X A3 X A4 X A5 ~ 

0(31:0) --+----«\.._0-1-..JX 02 X D3 X D4 X 05 

RO 
, 

WE 
, 

CROE 
, 

CBWE(3:0) 

MHOLO \~-+ ________ ~ ______ ~ ______ -+ ________ ~ ______ ~ __ ___ 

MOS , 

iOEl 

MBR , 

MBG \~ __ ~ ______ ~ ______ ~ ________ ~ ______ ~ ______ ~ ____ __ 

MOO \~ __ ~ ______ ~ ______ ~ ______ ~-...J/ 

MAO(63:0) 

MAS' 
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CY7C604/CY7C605 CMU 

Write.Through (Copy· Back) Read Cache Miss Timing Diagram (page 3 of 3) 

11 12 13 14 15 16 

CLK 

A(31:0) ~r---A7-~Xr--A-8---""'\Xr--A---

D(31:0) X 06 ~_--JX,-.....-0_7_-,X,-.....-0_8_-,mxxxx,--_0(;...;.A)-J'IXIXIXiXXX 

RD I '<J:llITYlttJ 
WE I 

CROE I \ I 
CBWE(3:0) AA 

MHOLD \ 

/.}, /.}, I 
I EI 

MDS I \ I 
IOE I \ 

MBR I 

MBG \ 

MBB I 

MAD (63:0) 

MAS I 

MRDY I 
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CY7C604/CY7C605 CMU 

Write-Through Read Cache Miss (Alias Detected) Timing Diagram 

elK 

A(31:0) 

0(31:0) 

RO 

WE 

CROE 

MHOIJ) 

~ 

IOE 

MAO(63:0) 

JMS 

MBR 

MBG 

MBB 

MERR 

MROY 

MRTY 

I 

I 

I 

I 

\ 

(O(A) } r-----~-------.~,--------~--~C§§) 

VJ1l , 
VJ1l 

i\ I 

1\ 

I 

,. 

VJ1l 

''---..;,..oJ I 

,~--~----~----~ 
( AOOR >--E 

I ~--------------~------~\ I 

I \ II 
I ,~--~----~----~-
I ',,---~------+-
I 

I 

I 

Note: Although aliasing i. detected, the Mhus access is not aborted ( the CY7C604/60S ignores the access). The Mhus transaction tenninates nonnally. 
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CY7C604/CY7C605 CMU 

Write.Through Write Cache Hit Timing Diagram 

ClK 

A(31:0) 

0(31:0) 

RD \ ~ /XXXI V»:/ V»:/ V»:/ 
WE I \XXX\ /XXXI YlJjJ YlJjJ YlJjJ 

CBWE(3:0) \ I 
CROE I 

MHOlD I 

MDS I 

IOE \ 

MBG* \ 

MBB I \ n 
MAD (63:0) ( ADDR X DATA H 

MAS I \ I 
MERR I 

MRDY I \ n 
MRTY I 

• This timing diagram is an example of bus parking (i.e., MBG granted by default to the CY7C604/60S). 
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CY7C604/CY7C605 CMU 

Write-Through Write Cache Miss Timing Diagram 

ClK 

A(31:0) 

D(31:0) 

RD \ /lll:\ /XXXI V::£U V::£U V::£U 
WE I \XXX\ /XXXI V£tlJ V£tlJ V£tlJ 

CBWE(3:0) I 

CROE I 

MHOlD I 

MDS I 

\~--------~------~------~--------~-----
MBG \ 

MBB I I \ ______ -'--_----4-_...Jf 

MAD(63:0) -!-----'-----.;.(, ( ADDR X DATA }-

MAS I ,'--_----4-...J/ 

MERR I 

MRDY I \'--_~-Jr 

MRTY I 
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CY7C604/CY7C605 CMU 

Copy-Back Cache Read Cache Miss, Modified Cache Line (page 1 of 5)* 

ClK 

A(31:0) 

D(31:0) 

RD 

CBWE(3:0) 

CROE 

MHOlD 

MDS 

IOE 

MBR 

MBG· 

MBB 

MAD(63:0) 

MAS 

MRDY 

2 3 4 5 6 

X 
X 

~~----~A-1------~~Xr---A2--~ 

--------~ ---D-'-~-1)~~ 

A3 x= 
D'(A2) x= 

I 

I 

rn \~---~------~------~----
I \~--~----~----~----~---
I 

.......... ------_....11 \ 

I \~------------------~I 
I \~--~----~----~----
I \~---~------------
_ ...... _____ .0..-____ ...... ________ -( (read) ADDR ~ 

I 

I 

* Tho clock cycles can be deleted from this timing diagram if the MBG signal is already asserted. 
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CY7C604/CY7C605 CMU 

Copy. Back Cache Read Cache Miss, Modified Cache Line (page 2 of 5) 

ClK 

A(31:0) 

0(31:0) 

RO 

WE 

CBWE(3:0) 

CROE 

MHOlO 

MOS 

IOE 

MBR 

MBG* 

MBB 

MAD (63:0) 

S 7 8 9 10 11 

=x A4 X A5 X AS X A7 X AS x= 
X 0'(A3) X 0'(A4) X O'(AS) X O'(AS) X 0'(A7) ~ 

I 

I 

I 

\ 

\ 

I 

I 

I 

\ 

\ ~----~------~----4-~1 
XXXXZXXXr---A-O';"O-R---

I ~ 
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CY7C604/CY7C605 CMU 

Copy· Back Cache Read Cache Miss, Modified Cache Line (page 3 of 5 ) 

elK 

A(31:0) 

0(31:0) 

RO 

WE 

CBWE(3:0) 

CROE 

MHOlD 

MDS 

IDE 

MBR 

MBG· 

MBB 

MAO(63:0) 

MAS 

MRDY 

11 12 13 14 15 16 

=x A1 X A2 X A3 X A4 E 
O'(A7) X 0' (AS) XID D(A1) X D(A2) X D(A3) X D(A4) 

/ 

I 

'--'-______ -JI 
\ 

\ 

I 

I 

I 

\ 

I \~--~----~.----~.--­
____ --------~A-D-D-R~(-Ca-C-h-e-lin-e-f-lu-S~~------~----~~ 
I \\...--..;......j/ 
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CY7C604/CY7C605 CMU 

Copy. Back Cache Read Cache Miss, Modified Cache Line (page 4 of S) 

16 17 18 19 20 21 

eLK 

A(31:0) ::£)( AS X A6 X A7 X AS X A xxx: 
0(31:0) < 0(A4) X O(AS) X O(A6) X O(A7) X O(AS) ~) 

RO I 

M I 

CBWE(3:0) 

CROE I 

MHOLO \ 

MDS I \ / 

K5E I 
' .... -!----

MBR 
I 

\~--------~------~--------~------~~------~-----
\ / 

MAO(63:0) ~ 0'5,6 XXX 0'7,8 >® 
I 
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CY7C604/CY7C605 CMU 

Copy-Back Cache Read Cache Miss, Modified Cache Line (page S of S) 

21 22 23 

elK 

A(31:0) _:...:.A---1~~" 

0(31:0) OQQ<XX X DIAl xttlttttX 0(9) 

RO I 

I 

C9WE(3:0) I 

m, :.1", '-_--"-...If 
'-. -i--_----! __ ---i,.JiI 

''-+--_...JI 

,~~------~--------~------~---
,~~------~------~------~--

,~~------~~------~------~---
I 

MAO(63:0) 

I 

I 
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CY7C604/CY7C605 CMU 

Copy-Back Read Cache Miss, Modified or Non-Modified (Alias Detected) liming Diagram 

ClK 

A(31:0) 

0(31:0) @ ®-,. 

RO I VltlJ VltlJ VltlJ VltlJ VltlJ \mI 
WE I VltlJ VltlJ VltlJ VltlJ VltlJ \mI 

CBWE(3:0) I 

CROE -n '--_-i--'I 
MHOlO I \~--~----~--~I 

MDS I 

MEXC I 

IOE ~-----i-...JI \ \~--~----~----~---
MAO(63:0) AOOR 

MAS I \_---+--11 
M£RR I 

MROY 

MRTY I 

MBG \ 

Note: Even though aliasing is detected, the Mhus is not aborted (the CY7C604/60S ignores the access). The Mhos transaction terminates normally. 
1llning assumes Mhus is parked (already granted). 
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CY7C604/CY7C60S CMU 

Copy-Back Write Cache Miss, Modified or Non-Modified (Alias Detected) Timing Diagram 

CLK 

A(31:0) 

0(31:0) (O(A) } @ 

RO \ I'll:t\ /XXXI \XXX\ !'ttY '\ttY 
WE I \XXX\ /XXXI \XXX\ /XXXI '\ttY 

CBWE(3:0) \ 1 
aIDE I 

MHOLD I ',,-_-+-__ .;..JI 

MOS I 

MEXC I 

IOE "--!-__ ~_I \ ,~--~----~----~ 
MAO(63:0) AOOR 

MAS I \ :1 
MERR I 

MROY 

MRTY I 

MBG \ 

Note: Even though aliasing is detected, the Mhos is not aborted (the Mhus controller ignores the access). TIming assumes Mhus is parked (already 
granted). 
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Copy. Back Write Cache Hit TIming Diagram 

CLK 

Write· Through Load Double Cache Hit TIming Diagram 

CLK 

A(31:0) 

0(31:0) 

RO I ':ttIl ':ttIl ':ttIl 
WE I ':ttIl ':ttIl ':ttIl 

CROE ~~ ____ ~ ____ ~~/ 
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CY7C604/CY7C605 CMU 

Write-Through Store Double Cacbe Hit Timing Diagram 

ClK 

A(31:0) 

D(31:0) ~ 
RD \ IXXX\ ttl/0. ttl/0. ttl/0. ttl/0. 
WE I \XXX\ IXXX\ /XXXI 'W 'W 

lDSTO \ 

CBWE(3:0) \ / 
CROE I .. 

MHOLD I 

MDS I 

MEXC I 

IOE \ 

MAD (63:0) < ADDR X DATA >-
MAS I \ / 

MERR I 

MRDY I \ / 
MRTY I 

Note: The Mbus cycle is not initiated until both 32-bit transfers of the double store are received. 
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CY7C604/CY7C605 CMU 

Table Walk Timing Diagram" (with Modified Bit Update) (page 1 of 4) 

2 3 4 5 6 

ClK 

A(31:0) 

D(31:0) @D 

CROE I \ 1 
RD I \ttlJ \ttlJ \ttlJ \ttlJ \ttlJ '\ZZXI 
WE I \ttlJ \ttlJ \ttlJ \ttlJ \ttlJ '\ZZXI 

CBWE(3:0) I 

MHOlD I \~--~----~----~~--
IOE \ 

MAD (63:0) --------------------------;.....c( CONTEXT TABLE '--
• ADDRESS ~ 

MAS I \ I 
MERR I 

MRDY I \ 
MRlY I 

MBR I \'--_-'---__ ;.....-11 

MBG I \'----'---------
MBB I \---'----

• This table walk illustrates a cache read hit with TLB miss. This table walk updates the TLB and performs access protection checking. 
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Table Walk Timing Diagram (with Modified Bit Update) (page 2 of 4) 

ClK 

A(31:0) 

D(31:0) 

CROE 

RD 

WE 

CBWE(3:0) 

MAD(63:0) 

MAS 

MERR 

MRDY 

MR'fY 

MBR 

MBG 

MBB 

6 7 8 9 10 11 

/ 

I v;&/ v;&/ v;&/ v;&/ v;&/ VXfv 
I v;&/ v;&/ v;&/ v;&/ v;&/ \XXXt 
/ 

\~--------~------~--------~------~---------------

\~~----------------~----------------~--------~-----
CONTEXTTBL 

ADDR. 

-D 
/ 

/ 

/ 

I 

\ 

\ 

UJ 

LEVEL 1 TABLE 
ADDRESS 

\~_-;-....JI 
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Table Walk Timing Diagram (with Modified Bit Update) (page 3 of 4) 

ClK 

A(31:0) 

0(31:0) 

CAOE 

AD 

WE 

CBWE(3:0) 

MAD (63:0) 

MAS 

MEAA 

MAOY 

MATY 

MBA 

11 12 13 14 15 16 

I 

I \mf \mf \mf \mf \mf \XX'!J 
I \mf \mf \mf \mf \mf \XXX.j 

I 

\~~------~--------~------~--------~------~------

\~----------------~----------------~---------------

1"\ 
I 

I 

I 

I 

LEVEL 2 TABLE 
ADDRESS 

I 

LEVEL 3 TABLE 
ADDRESS 

\ _______ -'f 

\~------------------~------~------~--------~----

\~~--------------~--------------~-------------
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~~ CY7C604/CY7C60S CMU =oiiiiiiiiF CYPRESS 
~ , SF.MICC:tIDI.K: 

Table Walk Timing Diagram (with Modified Bit Update) (page 4 of 4) 

16 17 18 19 20 21 

ClK 

A(31:0) 

0(31:0) 

CROE I 

RO I v;t;j/ v;t;j/ v;t;j/ v;t;j/ v;t;j/ \XXX; 

WE I v;t;j/ v;t;j/ v;t;j/ v;t;j/ v;t;j/ \XXX; 

CBWE(3:0) I 

MHOlO \ ~----~----------~--~----~~;--
lEI 

IOE \ 

MAO(63:0) """----"'-----H( lEVEL 3 TABLE \ ~'--__ -'-__ _ @ ~ • ADDRESS ~ 

MAS I \ / 
MERR I 

MROY -.I 
MRTY I 

MBR I 

MBG \ 

MBB ~----~----~----~--~----~~;--\ 
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CY7C604/CY7C605 CMU 

Read Access with Protection or Privilege Violation Timing Diagram 

ClK 

A(31:0) 

0(31:0) (§J) 

RO I \XXX\ tltl0. 
WE I '\ti1J '\ti1J 

CBWE(3:0) I 

CROE I 

MHOlO \ I 
MOS I \ / 

MEXC I \ II 
IOE \ 

CY7C604/605 Diagnostic Cache Tag Write Access Timing Diagram 

ClK 

A(31:0) 

0(31:0) ® 
WE I \XXX~ LXXXI '\ti1J '\ti1J 

MHOlO I \ I 
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CY7C604/CY7C605 CMU 

CY7C604/60S Register Read Timing Diagram 

ClK 

A(31:0) 

0(31:0) 

RO I v;tU v:tlI 
MHOlO I \ '---_.....0.-__ ---.11 

MOS I \ 

CY7C604/60S Register Write Timing Diagram 

ClK lEI 
A(31:0) 

0(31:0) --+---------~~~---------

LXXXI 
I 
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CY7C604/CY7C60S CMU 

Power-On Reset Timing Diagram 

CLK 

A(31:0) 

(continued) 

CLK 

A(31:0) 

0(31:0) 

POR 

iRS'f 

MHOLO 

MOS 

MAO (63:0) 

MAS 

MROY 

MBR 

MBG 

MBB 

9 10 11 12 

~)~/ __ OO~H ____ ~~ '\ t--- 8 eLOerS MIN. --;::!:-t-I----4-----l----.. )5r-i 
: \! U'r-----;-----'/ 

12 13 14 15 16 17 

~~-----~----M~H----~---~-~ 

clxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxxxxx~ 
I 

I 
;~ 

'T\ ~~----~----~----~----~;--­
/ \~~--~----~----~;--­
--+-------~------+-------~---~------
/ 

/ 
:: 
:: 

'T\ ~--------'/ 
I \ ...... _________ ---;.--J/ 

I 
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CY7C604/CY7C605 CMU 

Software External Reset Timing Diagram 

ClK 

A(31:0) 
~--'-----'----!--II-'----!-I f---'--""'I) 

0(31:0) 
~ 1024 ~. LOCKS r .. ---

--+--------+~~~-+----------'--+----+---+.----+.-----

I 

I 

Notes: 

1. Address A will be 00000700 Hand ASI will be 04 H. 

2. Data A will be 00000001 H. 

\ , 5 5-~---9-1): 5 sfl 
~55 i5~ 

X Y 

3. MRSTwill not be asserted until the write buffers are empty. !f empty, MRSTwill be asserted at pointX. !fnot empty, MRSTwill be asserted at point Y 
(the rising clock following the final data phase of emptying the write buffer.) In either case, MRST will be asserted for 1024 clock cycles. 

Software Internal Reset Timing Diagram 

ClK 

A(31:0) OH ~ 

0(31:0) --~--------~~~r---- r-" 
I '--5s-! 

Notes: 

1. Address A will be 00000700 Hand ASI will be 4 H. 

2. Data A will be 00000002 H. 

3. IRST causes CY7C6011611 to place address 0 on address bus while asserted. CY7C6011611 continues with reset address sequence after IRST is 
deasserted. 
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4.12 Physical Bus (Mbus) Operation 

The SPARC Mbus is a high-speed interface designed to connect SPARC processor modules to physical memory modules 
and I/O modules. The Mbus is a integrated circuit interface, and is not intended to operate as a general expansion bus 
across a system backplane. It is intended to operate as an interface between modules and interface circuitry located on a 
single printed circuit board. Modules consist of one or more integrated circuits that contain the Mbus interface. A 
CY7C600 CPU based upon the CY7C604/605 is an example of such a module. 

Mbus is divided into two levels of implementation: level I and level 2. Levell (implemented on the CY7C604) includes 
the basic Mbus signals and transactions needed to support a uniprocessor system. Level 2 introduces additional signals 
and transactions needed to design a symmetric, cache-coherent, shared-memory multiprocessor system. Level 2 Mbus is 
supported by the CY7C605. 

The SPARC Mbus Interface Specification (available from ROSS) provides further information on the Mbus from a system 
perspective. This section describes the Mbus as it pertains to signals specific to the operation of the CY7C604 and 
CY7C605. Additional Mbus signals not required for the operation of the CY7C604/605 are not explicitly described in this 
section. 

4.12.1 Mbus Principles 

• Fully synchronous bus 

• Multiplexed 64-bit address/data bus 

• 64 gigabytes of physical memory address space 

• All signals are changed and sampled on the rising edge of clock 

• Bus arbiter is a separate bus unit 

• Peer level (multi-master) bus protocol 

• Overlapped arbitration with bus "parking" 

• Multiprocessor support signals and transactions (level 2) 

• Write-invalidate type of cache-consistency protocol (level 2) 

4.12.2 Mhus Level 1 Overview 

Levell Mbus supports two transactions: Read and Write. These transactions simply read or write a specified SIZE of bytes 
from a specified physical address. These transactions are supported using a subset of the Mbus signals, namely a 64-bit 
multiplexed address/data bus (MAD(63:0), an address strobe signal (MAS), and an encoded acknowledge on three signals 
(MRDY, MRTY, and MERR). Additional level I signals support arbitration for modules (MBR, MBG, and MBB), as 
well as the Mbus reset output (MRST on CY7C604, RSTOUT in the SPARC Mbus specification), and cache memory 
error (CMER on CY7C604, AERR in the SPARC Mbus specification). These signals are supported by the CY7C604 as 
part of its physical bus interface. Additional level I signals defined for Mbus but not used by the CY7C604 are interrupts 
(IRL(3:0», module identification (ID(3:0», and reset input (RSTIN)(which corresponds to POR on the CY7C604/605). 
These signals are to be used by the processor, and are not specific to the CY7C604. The Mbus reference clock (CLK) 
completes the signal requirements for a level I system. 

Mbus assumes that there are central functional elements to perform reset, arbitration, interrupt distribution, timeout, 
and Mbus clock generation. Refer to the SP ARC Mbus Interface Specification for a detailed description of Mbus as defined 
for system implementation. 

4.12.3 Mhus Level 2 Overview 

The level 2 Mbus includes all level I transactions and signals and adds four transactions and two signals to support cache 
coherency. This is to facilitate the design of symmetric, shared memory, multiprocessor systems. In levell, details of the 
cache operations inside modules are not visible to the Mbus transactions. This changes with level 2, where many aspects of 
the cache operation are assumed as part of the new Mbus transactions. To participate in cache-consistent sharing using 
level 2 transactions, a cache must have a copy-back with write-allocate policy and have a block size of 32 bytes. Cache lines 
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are assumed to be described as being in one of five states: invalid, exclusive clean, exclusive modified, shared clean, and shared 
modified. 

The additional transactions present in level 2 systems are coherent read, coherent invalidate, coherent read and invali­
date, and coherent write and invalidate. The two additional signals are Mbus Shared (MSH) and Mbus Inhibit (MIH). All 
coherent transactions have SIZE = 32 bytes. The cache coherency protocol is a "write invalidate" protocol, where the 
writing cache broadcasts a coherent invalidate if the cache line is not exclusive. This indicates to all caches that they should 
invalidate the cache line since it contains "stale data" after the write completes. All caches "snoop" coherent read transac­
tions and assert MSH if the address of the transaction is present in their cache. By observing the MSH signal, other caches 
can update the state of the cache lines they hold. If a cache is the "owner," it asserts the signal MIH to tell memory not to 
send data. The cache then supplies the data to the requesting cache (referred to as direct data intervention). Coherent 
read and invalidate and coherent write and invalidate are simply the combination of a coherent invalidate and either a 
coherent read or a write. Their purpose is to reduce the quantity of Mbus transactions needed and thus conserve band­
width. For more information, see Section 4.3.3.2. 

Symbol Description 

MAD(63:0) Mbus Address/Data 

MAS Mbus Address Strobe 

MERR Mbus Error 

MRDY Mbus Ready 

MRTY Mbus Retry 

MBR Mbus Bus Request 

MBG Mbus Bus Grant 

MBB Mbus Bus Busy 

MSH* Mbus Shared 

MIH* Memory Inhibit 

1'8: Three-state BS: Bi-state 00: Open Drain 

'Level 2 (CY7C605) ONLY 

4.12.4 Mbus Signal Summary 

Table 4-22. Mbus Signal Summary 

Output Input Line 1Ype Signal1Ype 

Master/Slave Master/Slave bused TS 

Master Slave bused TS 

Slave Master bused TS 

Slave Master bused TS 

Slave Master bused TS 

Master Arbiter dedicated BS 

Arbiter Master dedicated BS 

Master Arbiter/Master bused TS 

Bus Watcher Master bused OD 

Bus Watcher Master/Memory bused TS 

Table 4-22 summarizes the signals that comprise the Mbus interface. Bus agents (master, slave, arbiter, etc.) are listed in 
the output or input column of Table 4-22 to denote whether the signal is an input or output for that bus agent. The "line 
type" column of Table 4-22 lists signals as bused or dedicated. Bused signals are those driven or received by multiple bus 
agents, whereas dedicated signals are driven by one agent and received by only one other. For more details, refer to the 
CY7C604/605 Pin Definitions, Section 4.10, on page 4-55. 

The Mbus is a 64-bit multiplexed address/data bus with three separate bus agents: master, slave, and arbiter. The bus 
arbiter is essentially a "traffic cop" for the Mbus. It is external to all bus masters or slaves, and is responsible for granting 
bus ownership to one of the various bus masters. The algorithm by which the arbiter assigns priority to the various bus 
masters is left to the system designer. 

A bus master requests bus ownership by asserting its dedicated MBR signal. The arbiter grants bus ownership by asserting 
the dedicated MBG signal for that bus master. If the MBB (Mbus Bus Busy) signal is not asserted, the bus master asserts 
MBB and starts the bus transaction. If the MBB signal is asserted, the bus master must wait until is has been released. The 
bus master does not own the bus until it has asserted MBB, and MBB cannot be asserted until it has been released by the 
previous bus master. This protocol allows the Mbus to support overlapped bus arbitration. Note that MBG should stay 
asserted until MBB has been released by the current bus master. 

After MBB has been released by the current bus master, MBG may be deasserted at any time in response to other bus 
requests. If no further requests are made, the MBG should stay asserted. This is referred to as bus parking, and it allows 
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Figure 4-49. Mbus Burst Transaction Example 

subsequent requests from the same bus master to be serviced without the delay of arbitrating the Mbus. IT MBG for a 
particular bus master has already been asserted (i.e., the bus has been parked on that bus master), the bus master may 
assert MBB and claim the Mbus without first asserting MBR. 

The Mbus bus cycle consists of an address cycle followed by one or more data cycle(s). Transaction sizes supported by 
Mbus are: 1, 2, 4, 8, 16,32, 64, and 128 bytes. A data transaction requiring more than one data cycle is referred to as a burst 
transaction. 

Since the 64-bit Mbus can transfer eight bytes in a single data cycle, transactions greater than eight bytes are performed as 
burst transactions. 1tansactions less than or equal to eight bytes are performed as non-burst transactions. Non-burst 
transactions consist of a single address phase and a single data phase. Figure 4-49 illustrates an example of a burst transac­
tion. The CY7C604/605 supports 1, 2, 4, 8, and 32-byte transactions on the Mbus. The 32-byte cache line size is the only 
burst transaction supported by the CY7C604/605. 

An Mbus cycle begins after the bus master has acquired the Mbus and asserted MBB. The bus master supplies the address 
and strobes the Mbus Address Strobe (MAS) for one clock period. The bus slave (usually the memory system) acknowl­
edges the data transfer by strobing the MRDY , MERR, and MRTY signals. MRDY is strobed for each successful data 
cycle. Unsuccessful data cycles are acknowledged with other combinations of the MRDY, MERR, and MRTY signals. 
Table 4-23 describes the decoding of the MRDY, MERR, and MRTY signals. 

All Mbus transactions can be terminated by an error, which is reported by the state of the MRDY, MERR, and MRTY 
signals. These signals can be asserted during any data phase. All Mbus transactions can be suspended immediately by a 
retry or by a relinquish and retry, also signaled by the MRDY, MERR, and MRTY signals. IT retry is signaled by the bus slave, 
the suspended transaction then restarts from the beginning with a new address phase. IT relinquish and retry is signaled by 
the bus slave, the bus master must deassert MBB and re-arbitrate for Mbus ownership. 

A special case occurs for the CY7C604/605 if a relinquish and retry is returned for an atomic load/store transaction. IT the 
relinquish and retry occurs for the read section of the load/store transaction, the transaction is halted and MBB is deas­
serted. The entire transaction is repeated after re-arbitration (the normal case). If the read section has completed and the 
write section encounters a relinquish and retry, the transaction is halted and MBB is deasserted. However, in this case the 
transaction will retry with the write section and will not repeat the read section of the load/store transaction. 

Table 4-23. Bus Status Encoding 

MERR MRDY MRTY Action 

H H H Nothing 

H H L Relinquish and Retry 

H L H Data Strobe 

H L L Reserved 

L H H Bus Error 

L H L Time Out 

L L H Uncorrectable Error 

L L L Retry 
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Mbus Address Cycle: MAD(63:0) 

IIGWAiftMlJt;lMffWI I I Physical Address I 
/ 63:60 59:50 49:46 4S 44 43 42:40 39:36 3S 0 

SHADED areas are RESERVED 1'" for IBVIII 1 and are FORCED 
HIGH by the CY7C604 MC Memory 

'LBVIII 2 (CY7C605) only 
"Not used by CY7C6041605 

Cacheable 
MLOCK 
Locked 
Transaction 

MBl Boot mode/Local 

Virtual Address" 

Reserved 

Module Idenlifler" 

:bJIII o . . . . . . . . . . . . . . . . . . . . .. Mbus write 
1 ....................... Mbus read 
2 . . . . . . . . . . . . .. Coherentlnvalidate' 
3 . . . . . . . . . . . . . . . . . . Coherent Read' 
4 ...... Coherent Write and Invalidate' 
S . . . . .. Coherent Read and Invalidate' 

"Level 2 (CY7C605) only 

SID 
0 ............................ Byte 
1 ., ., .................... Hallword 
2 .................... Word (32 bits) 
3 . . . . . . . . . . . . . . . . . . . .. Doubleword 
4 ...................... "16-bytes 
S ........................ 32-bytes 
6 ...................... "54-bytes 
7 . . . . . . . . . . . . . . . . . . . .. "128-bytes 

Figure 4-50. Mhus Address Cycle 

The data transfer rate on the Mhus is controlled by the Mhus slave. All Mhus masters must be capable of accepting a burst 
transfer of the requested size at the maximum transfer rate supported by the bus. Bus slaves that cannot support the 
maximum transfer rate of the Mhus must insert wait states by delaying the MRDY, MERR, and MRTY signals until the 
data cycle is completed. After the Mhus transaction has finished, the bus master terminates the bus cycle by deasserting 
MBB. 

Level 2 requires two additional signals over level 1 in order to support cache coherency operations. MSH (memory 
shared) and Mill (memory inhibit) are asserted during Mhus coherent transactions to descnbe the shared and ownership 
status of a cache line whose address has been asserted on the Mhus. MSH is asserted by a CY7C60S in response to a bus 
snooping operation that discovers a Mhus transaction concerning a cache line which the CY7C60S has a copy. MIH is 
asserted by the CY7C60S in response to a coherent transaction on a cache line which the CY7C60S owns (i.e., has the most 
up-to-date copy). The MIH signal is used to inhibit the output of the memory system, and is asserted to indicate that the 
CY7C60S will respond to the memory request by supplying the data directly to the requesting cache. 

4.12.5 Mhus Address Cycle 

The address cycle of an Mhus transaction consists of a 36-bit physical address and 28 bits of control and transaction infor­
mation. Figure 4-50 illustrates the Mhus address cycle. The address fields of the Mhus address cycle are described below: 

Module Identifier MAD(63:60}. This field is defined by the module ID number field of the SCR. It is used by an Mhus 
agent issuing a relinquish and retry acknowledgement to identify the master to which to re-grant the bus. 

Reserved MAD(59:50). This field is reserved for future expansion. The CY7C604/605 drives this field HIGH. 

Virtual Address MAD(49:46}. This field provides virtual address bits 19 through 16 for the virtually indexed cache. 

Mbus Boot mode/Local MAD(45.) This ~it indicates that the CY7C604/60S is in boot mode, or that the memory transac­
tion has been made under local mode (ASI = 01 H). 

Mhus Lock MAD(44}. This bit indicates that the Mhus transaction is a "locked" transaction. This bit is useful to a slave 
with interfaces to both the Mhus and another interface external to the Mhus. It can be used by such a slave to lock the 
resource to the Mhus master. The locked state of the slave is released when the MBB signal for the transaction is deas­
serted. 

Memory Cacheable MAD(43}. This bit indicates the state of the cacheable bit for the memory address asserted. 
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63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 o 
Figure 4-51. Mbus Data Ordering 

Size MAD(42:40). This field describes the size of the Mbus transaction. Refer to Figure 4-50 for the assignments for this 
field. 

1Ype MAD(39:36). This field describes the transaction type. Refer to Figure 4-50 for the assignments for this field. 

Physical Address MAD(35:0). This field is the 36-bit physical address for the transaction. 

4.12.6 Mbus Data Cycle 

Mbus transactions consist of an address cycle followed by one or more data cycles. A single data cycle transaction is re­
ferred to as a non-burst transaction. Note that all non-cacheable transactions made by the CY7C604/605 are transferred 
as non-burst transactions. During non-burst read or write transactions, data appears in the byte locations of the Mbus as 
determined by the size (MAD(42:40» and address bits MAD(2:0) (see Figure 4-51). The data on any unused Mbus lines is 
undefined. 

Burst transactions are used by the CY7C604/605 for cache line transfers. Burst transactions made by the CY7C604/60S 
will always be on cache line boundaries (i.e., MAD < 4:0 > = 0 for the address cycle of a burst transaction). All burst 
transactions made by the CY7C604/605 are 32 bytes (one cache line) in length. 

Note: The CY7C604/605 is designed to ensure one "implicit clock" after a Mbus read transaction before it will assert an 
address for the next Mbus transaction. This allows time for slow memory data buffers to release the Mbus. 

4.12.7 Mbus Transactions 

Tho transactions are defined for level! Mbus: read and write. Level 2 defines four additional transactions: coherent read, 
coherent invalidate, coherent read and invalidate, and coherent write and invalidate. The following section descnbes 
these transaction types. 

4.12.7.1 Read (CY7C6041605) 

A read operation can be performed on any size of data transfer which is specified by the SIZE bits in the address cycle. 
Read transactions involving less than eight bytes will have undefined data on the unused bytes. The minimum Mbus read 
transaction takes two cycles (the minimum is three cycles if different masters are performing back-to-back reads). Note 
that the protocol requires a master to be able to receive data at the maximum rate of the Mbus for the entire transaction. 
Figure 4-52 illustrates a read transaction. 

elK 

MAO(63:0) 

Figure 4-52. Mbus Read Transaction 
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ClK 

MAD(63:0) 

Figure 4-53. Mhus Write Transaction 

4.12.7.2 mite (CY7C604160S) 

A write operation can be performed on any size of data transfer specified by the SIZE bits in the Mbus address cycle. Write 
transactions involving less than eight bytes will have undefmed data on the unused bytes. The bus master performing the 
write immediately drives the data in the period after the address phase of the transaction. The master releases the data 
immediately after receipt of each MRDY from the slave. Note that the protocol means that a master must be able to 
supply data at the maximum rate of the Mbus for the entire transaction. The minimum Mbus write operation takes two 
cycles (the minimum is three cycles if different masters are performing back-to-back writes). 

4.12.7.3 Coherent Read (CY7C60S only) 

A coherent read operation is a block read transaction that maintains cache consistency. The participants in the transaction 
are the requesting cache, the other caches performing bus snooping, and memory (or a second-level cache). There are 
three possible read scenarios for a multiprocessing system with snooping caches: 

1. For a snooping cache that does not have a copy of the requested block, the cache simply ignores this transaction. 

2. For a snooping cache that has a copy of the requested block but does not own it, the cache must assert MSH for 
one cycle during the cycle A + 2. It will mark its copy as shared (if not already marked as such). 

3. For a snooping cache which owns the requested block, the cache must assert both MSH and MIH signals for one 
cycle during the A + 2 cycle. The cache supplies the requested data no sooner than cycle A + 6 (four cycles after 
it issued MIH). If the cache's own copy of the block was labeled exclusive, it will be changed to shared. Otherwise, 
no status change will take place for the cache's own copy. 

Upon receiving the data block, the requesting master shall label the block exclusive if no one asserts MSH during the A + 2 
cycle or later. The requesting master shall label the block as shared if the MSH signal is asserted during the A + 2 cycle or 
later. 

ClK 

MAD(63:0) 

Figure 4-54. Mbus Coherent Read Transaction· MIH not asserted 
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Figure 4-55. Mhus Coherent Read Transaction-MIH asserted 

4.12.7.4 Coherent Invalidate (CY7C605 only) 

An invalidate operation can only be performed on a cache-line basis. All invalidate operations are snooped. In an invali­
date operation that hits in a cache, the cache line copy is invalidated immediately regardless of its state. Memory (or a 
second-level cache) is responsible for the acknowledgment of a coherent invalidate transaction on the A + 2 cycle or later. 
All acknowledgment types are possible. Memory will only issue normal acknowledgments to coherent invalidate transac­
tions, but a second-level cache may issue the full range of acknowledgments. Memory (or second-level cache) designers 
should note that a coherent invalidate transaction has SIZE = 32 bytes during the address phase, but MRDY is only 
strobed once as acknowledgment. For a cache system that cannot guarantee to complete the invalidation before the A + 2 
cycle, the memory controller for that system should delay the acknowledgment as required. 

The coherent invalidate transaction is issued when a write is being performed on a shared cache line. Before the write can 
be performed, all other caches in the system must invalidate their copies (write-invalidate cache consistency protocol). 
Snooping caches need not assert MSH during the A + 2 cycle. The MAD(63:0) bus is undefined during the data cycles. 
Figure 4-56 shows the basic coherent invalidate operation. 

4.12.7.5 Coherent REad and Invalidate (CY7C605 only) 

The coherent read and invalidate transaction combines a coherent read transaction with a coherent invalidate transaction. 
This transaction is included to reduce the number of Mbus coherent invalidate transactions. Caches performing coherent 
reads that intend to immediately modify the data can issue this transaction. 

Each coherent read and invalidate transaction is snooped by all system caches. If the address hits in a cache but the cache 
does not own the block, then the cache invalidates its copy of this block. If the address hits in a cache and the cache owns 
the block, then it asserts MIH and supplies the data. When the data has been successfully supplied, the cache then invali­
dates its copy of the block. Figure 4-57 and Figure 4-58 show the coherent read and invalidate operation. Note that it is 
identical to the coherent read operation, except that the snooping caches invalidate their copy of the cache line upon a 
cache hit. All of the comments concerning MSH and MIH for the coherent read transaction apply to the coherent read 
and invalidate transaction. 
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Figure 4-56. Mhus Coherent Invalidate Transaction 
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Figure 4-57. Mhus Coherent Read and Invalidate Transaction-MIH not asserted 
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Figure 4-58. Mhus Coherent Read and Invalidate Transaction-MIH asserted 

4.12.7.6 Coherent Write and Invalidate (CY7C605 only) 

The coherent write and invalidate transaction combines a coherent write transaction with a coherent invalidate transac­
tion. This transaction is included to reduce the number of Mbus coherent invalidate transactions. 

Each coherent write and invalidate transaction is snooped by all system caches. If the address hits in a cache, then that 
cache invalidates its copy of the cache line. Figure 4-59 illustrates the basic coherent write and invalidate operation. Note 
that this transaction is identical to the write operation, except that the snooping caches invalidate their block upon a cache 
hit. The SIZE for this transaction is always 32 bytes. Due to the nature of the cache coherency protocol, neither MIH or 
MSH need to be asserted. 
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Figure 4-59. Mbus Coherent Write and Invalidate 1hInsaction 

4.12.8 Mbus 'fransaction Timing 
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Mbus Bus Mastership lhmsfer 
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Note on arbitration: MBR2 can appear anywhere and does not have to be granted immediately as shown above. 
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Mbus Single. Cycle Write 'IhUIsaction 
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Mbus Burst·Cycle Read Transaction 
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• This timing diagram illustrates a case of bus parking (i.e., Mbus granted to CY7C604/605 by default.) 
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Mbus Burst.Cycle Read Transaction (Slow memory) 
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Mhus Burst·Cycle Write Thansadion (Slow memory) 
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Mhus Locked Transadion 
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• This timing diagram illustrates a case of bus parking (i.e., Mhus granted to CY7C604/605 by default.) 
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• Add one "dead clock" to this timing diagram in the case of a read access. 
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Mbus Coherent Read-Shared Data (CY7C60S only) (page 1 o(2) 
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This timing diagram illustrates a coherent read in which the requested data exists in one or more caches in the system, but is not owned 
by any cache. These caches must assert MSH on cycle A + 2 as shown. 
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Mbus Coherent Read-Sbared Data (CY7C60S only) (page 20U) 
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Mbus Coherent Read-Owned Data; Long Latency Memory (CY7C60S only) (page 1 orl) 

2 3 4 5 6 

elK -~ IL IL IL IL !L 

I ADDR 
, , I MAD(63:0) 

This timing diagram illustrates a coherent read in which the requested data exists in one or more caches in the system, and is owned 
!?r!..cache. All caches with a copy of the requested data (including the owner) must assert MSH. Only the owning cache will assert 
MIH on cycle A + 2 and supply the data. 
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CY7C604/CY7C605 CMU 

Mbus Coherent Read-Owned Data; Long Latency Memory (CY7C605 only) (page 1 or 1) 

6 7 8 9 10 11 12 

eLK _ r--L-r--L--
~ 

MAO(63:0) I DO 

i 
! 
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CY7C604/CY7C605 CMU 

Mbus Coherent Read-Owned Data; Fast Memory (CY7C605 only) (page 1 of 2) 

2 3 4 5 6 

elK 

MAS 

MAD(63:0) 

MRDY 

MRTY 

MERR 

MBB 

MBR1 

MBR2 

MBG1 

MBG2 

MSH 

MIH 

This timing diagram illustrates a coherent read in which the requested data "xists in one or more caches in the system, and is owned 
by a cache. All caches with a copy of the requested data (including the owner) will assert MSH. Only the owning cache asserts MIH 
on cycle A + 2 and supplies the data In this case, memory has already started to respond and thus must get off the bus immediately 
to allow the cache that owns the data to drive the bus. 
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CY7C604/CY7C605 CMU 

Mhus Coherent Read-Owned Data; Fast Memory (CY7C605 only) (page 2of2) 

6 7 8 9 10 11 12 

elK 

~ 
MAS 

, ! 
l l .. ( ~ X MAO(63:0) DO 01 

~ ......... ::: ::;. 

I \ I 1\ MAOY ~ 

I I 
MATY I 

! 

I 

MEAA 

I MBB 

! 
MBA1 

I 
I 

MBR2 

I 
MBG1 

I ! 
MBG2 I 

--r---~-----+----~----~----~r--

MSH 

MIH 
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CY7C604/CY7C60S CMU 

Mbus Coherent Write and Invalidate (CY7C605 only) (page 1 of 2) 

2 3 4 5 6 

eLK -!L-IL IL IL IL !L 

MAD(63:0) ADDR X DO 

! 

This timing diagram illustrates a coherent write and invalidate operation in which one or more other caches have a copy of the cache 
line. The other caches invalidate their copy of the cache line. 
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CY7C604/CY7C605 CMU 

Mhus Coherent Write and Invalidate (CY7C605 only) (page 2 of 2) 

elK 

MAO (63:0) 

6 7 8 9 10 11 12 

~ ~ 
1 00 Ix Dl~X D2;X D3 '> I 

I \ 1/\ 1/\ I /\ I Ir--+-I-
I I i I I I I I I /'---+i---
i 1 ,! 1 
1 l I ~ I 

!! ! i 
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I I 1 
I ! I 

l I 

I ' 
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Mhus Coherent Invalidate (CY7C60S only) 

2 

eLK 

MAD(63:0) 

3 

CY7C604/CY7C605 CMU 

4 5 6 

This timing diagram illustrates a coherent invalidate operation. Memory (or second-level cache) asserts MRDY during A + 2 (or later). 
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CY7C604/CY7C605 CMU 

Mbus Coherent Read and Invalidate; Shared Data (CY7C60S only) (page 1 of 2) 
123 4 5 6 

eLK -IL IL IL IL IL ~ 
\ 

MAD(63:0) ADDR 

\ 

This timing diagram illustrates a coherent read and invalidate in which the requested data may exist in one or more caches in the system. 
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CY7C604/CY7C60S CMU 

Mbus Coherent Read and Invalidate: Shared Data (CY7C60S only) (page 2 of 2) 

6 7 8 9 10 11 

elK -~ ~ r---L r---L r---L ~ 

, 
DO 01 02 03 " " 

, MAO(63:0) 

\ r-

lEI 
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CY7C604/CY7C605 CMU 

Mbus Coherent Read and Invalidate; Owned Data (CY7C605 only) (page 1 or 2) 

2 3 4 5 6 

elK _ILILIL ILILIL 

I ADDR '\ 
'\ I MAD(63:0) 

This timing diagram illustrates a coherent read in which the requested data exists in one or more caches in the system and is owned 
by a cache. Only the owning cache asserts Mlli on cycle A + 2 and supplies the data. 
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CY7C604/CY7C605 CMU 

Mhus Coherent Read and Invalidate: Owned Data (CY7C60S only) (page 2 of 2) 

6 7 8 9 10 11 

elK 0-IL IL IL IL ~ 

I I 
r 01 02 03 04 '\ 
'\ MAO(63:0) 

I 
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CY7C604/CY7C605 CMU 
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Chapter 5 
CYP~S~~~~~~~~~~~ 
SEMICONDUCTOR Cache Data RAM 

The CY7C157 is a high-performance CMOS static RAM organized as 16K x 16 bits. It is intended specifically for use 
as a high-speed cache memory for the CY7C600 family of SPARC devices. The CY7C157's 2O-ns access time allows opera­
tion at processor clock speeds of up to 40 MHz. 

The CY7C157 includes registered inputs as well as data-in and data-out latches. Because it was designed specifically for 
7C600 family devices, the CY7C157 CRAM requires no glue logic to interface with the CY7C601, CY7C611, CY7C602, 
CY7C604, or CY7C605. All relevant pins on each device connect directly to one another. The combination of direct 
connection and on-chip latches and registers yields system designs requiring less board space at a lower cost and with 
increased reliability. In addition, the CY7C157's self-timed byte-write mechanism relieves the system of any write timing 
chores. 

5.1 Description Of Part 

The CY7C157 is organized as two arrays of 16-kbyte static memory. In order to minimize external timing and interface 
logic, the CY7C157 contains self-timed byte write logic, registered inputs, data-in and data-out latches, and output hold 
delay logic to control the data-out latches. 

Reading the device is accomplished by deasserting WE HIGH and OE LOW. On the rising edge of CLOCK, addresses 
A(13:0) are loaded into the input registers. A memory access occurs, and data is held until the next rising edge of CLOCK 
in order to meet the hold time requirements of the CY7C601I611. 

Th write to the CY7C157, OE must be taken HIGH. If the fallfug edge of CLOCK samples either or both WEo or WEj 
Law, a self-timed byte-write mechanism is triggered. Data is written from the data-in latch into the memory array at 
the corresponding address. 

Note that the OE signal must be HIGH for a proper write, as the WEo and WEj signals do not three-state the outputs. 
A die coat insures alpha immunity. 

1/07 -I/0. 1/0,5 -I/0. 

Figure 5-1. CY7C157 Block Diagram 
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Cache Data RAM 

5.2 Operation 

Reading the device is accomplished by taking the appropriate WE HIGH and OE Law. On the rising edge of CLOCK, 
addresses Ao through A13 are loaded into the input registers. A memory access occurs, and data is held after a read cycle 
beyond the next rising edge of CLOCK to meet the hold time requirement of the microprocessor. 

To write the device, OE must be taken HIGH. If the falling edge of CLOCK samples one or both of WEe or WE, Law, 
a self-timed byte-write mechanism is triggered. Data is written from the data-in latch into the memory array at the corre­
sponding address. 

OE must be taken HIGH for a proper write because the write enables do not three-state the outputs. 

5.3 Bus Timing 

Timing parameters for the CY7C157 are given in Section 7.6, beginning on page 7-49. 

5.4 Signal Descriptions 

5.4.1 A(13:0)-Address Inputs 

Addresses on inputs A < 13:0 > are loaded into the address registers on the rising edge of CLOCK. 

5.4.2 1/0(15:0)-Data Inputs/Outputs 

The 16 bidirectional data I/O pins are input signals during write accesses and output signals during read accesses. Data 
direction is controlled by the output enable pin, OE. 

5.4.3 WE(I:0)-Write Enables 

The write enables initiate the self-timed write mechanism when they are sampled LOW on the faIling edge of CLOCK. 
WEe controls byte writing on data lines 110(7:0) and WE, controls data lines 110(15:8). 

5.4.4 OE-Output Enable 

The output enable pin controls the output drivers of the bidirectional data lines. Th begin a read access, OE is taken LOW 
to enable the output drivers. Th begin a write access, OE is taken HIGH to three-state the output drivers. 

5.4.5 CLOCK-Clock input 

CLOCK is the system clock input and is the same signal used by the microprocessor. 
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Chapter 6 
CYP~S~~~~~~~~~~E5 
SEMICONDUcrOR SPARe Instruction Set 

6.1 Assembly Language Syntax 

The notations given in this section are taken from Sun's SPARe Assembler and are used to describe the suggested assem­
bly language syntax for the instruction definitions given in Section 6.2. 

Understanding the use of type fonts is crucial to understanding the assembly language syntax in the instruction definitions. 
Items in typewri ter font are literals, to be entered exactly as they appear. Items in italic font are metasymbols that 
are to be replaced by numeric or symbolic values when actual assembly language code is written. For example, asi would 
be replaced by a number in the range of 0 to 255 (the value of the bits in the binary instruction), or by a symbol that has 
been bound to such a number. 

Subscripts on metasymbols further identify the placement of the operand in the generated binary instruction. For exam­
ple, regrs2 is a reg (i.e., register name) whose binary value will end up in the rs2 field of the resulting instruction. 

6.1.1 Register Names 

reg 
A reg is an integer unit register. It can have a value of: 

%0 through %31 all integer registers 
%gO through %g7 global registers-same as %0 through %7 
%00 through %07 out registers-same as %8 through %15 
%10 through %17 local registers-same as %16 through %23 
%iO through %i7 in registers-same as %24 through %31 

Subscripts further identify the placement of the operand in the binary instruction as one of the following: 

regrs! -rs1 field 
re&S2 -rs2 field 
re&d -rd field 

freg 

Afreg is a floating-point register. It can have a value from %fO through %f31. Subscripts further identify the 
placement of the operand in the binary instruction as one of the following: 

fre&sl -rsl field 
fre&s2 -rs2 field 
frelJrd -rd field 

creg 
A creg is a coprocessor register. It can have a value from %cO through %c31. Subscripts further identify the 
placement of the operand in the binary instruction as one of the following: 

creg,..l -rsl field 
creg,..2 -rs2 field 
cre&d -rd field 
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SPARe Instruction Set 

6.1.2 Special Symbol Names 

Certain special symbols need t6 be written exactly as they appear in the syntax table. These appear in typewri ter 
font. and are preceded by a percent sign (%). The percent sign is part of the symbol name; it must appear as part of 
the literal value. 

The symbol names are: 
%psr Processor State Register 
%wim Window Invalid Mask register 
%tbr Trap Base Register 
%y Y register 
%fsr Floating·point State Register 
%csr Coprocessor State Register 
%fq Floating-point Queue 
%cq Coprocessor Queue 
%hi Unary operator that extracts high 22 bits of its operand 
%10 Unary operator that extracts low 10 bits of its operand 

6.1.3 Values 

Some instructions use operands comprising values as follows: 

simm13-A signed immediate constant that fits in 13 bits 
const22-A constant that fits in 22 bits 
asi-An alternate address space identifier (0 to 255) 

6.1.4 Label 

A label is a sequence of characters comprised of alphabetic letters (a-z, A-Z (upper and lower case distinct», underscore 
( _), dollar sign ($), period (.), and decimal digits (0-9), but which does not begin with a decimal digit. 

Some instructions offer a choice of operands. These are grouped as follows: 

regaddr: 

reg ,.1 
reg,.1 + reg,.2 

address: 
reg ,.1 
reg,.1 + reg,.2 
reg,.1 + simm13 
reg,.1 - simmJ3 
simm13 
simmJ3 + reg,.1 

rec....OT_imm: 
regn2 
simm13 
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SPARe Instruction Set 

6.1.5 Instruction Mnemonics 

Figure 6-1 illustrates the mnemonics used to describe the SPARC instruction set. Note that some combinations possible 
in Figure 6-1 do not correspond to valid instructions (such as store signed or floating-point convert extended to extended). 
Refer to the instruction summary on page 6-6 for a list of valid SPARC instructions. 

Data Transfer 

[
Signed 1 
unsign1 

[ single ] 
Double 

[
Byte ] Hallward 

::leWOrd 

[
Floating-point ] 
Coprocessor 

rnormal ] 
LAltemate 

[
register j 
Status Registe 
Queue 

atomic SWAP word atomic Load-Store Unsigned Byte 

Integer Operations 

[ AND 

J[~~~alJ[ normal] OR 
XOR setCC 

[ ADD ] [normal ~ [ normal] 
SUB eXtended setCC 

] [ y 

1 [ ReaD PSR 
WRite WIM 

TBR 

Floating-Point Operations 

~ [ 
Control Transfer 

Integer 
Single 
Double 
eXtended 

MOVe 
NEGate 
ABSolute 

] [
Integer ] 

TO Single 
Double 
eXtended 

Branch ~ntegerCC J Floating-point CC normal 
Coprocessor CC Anull delay 

Instruction 

Shift [ ~;ht ] [~~ffiiC] 

Tagged [ ADD] set CC [ normal 1 
SUB Trap overnowJ 

Fp 

MUltiply Step set CC 
SETHI 
SAVE 
RESTORE 

ADD 
SUBtract 
MULtiply 
DiVide 
SQuare RooT 
CoMPare 
CoM Pare and Exception 

JuMP and Unk 
RETum from Trap 

CALL 
Trap on Integer CC 

[
Single l 
Double 
eXtended 

Figure 6-1. SPARe Instruction Mnemonic Summary 
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SPARe Instruction Set 

6.2 Definitions 

This section provides a detailed definition for each CY7C601 instruction. Each defmition includes: the instruction opera­
tion; suggested assembly language syntax; a description of the salient features, restrictions and trap conditions; a list of 
synchronous or floating-point\coprocessor traps which can occur as a consequence of executing the instruction; and the 
instruction format and op codes. Instructions are defined in alphabetical order with the instruction mnemonic shown in 
large bold type at the top of the page for easy reference. The instruction set summary that precedes the definitions, 
(Table 6-2), groups the instructions by type. 

Table 6-1 identifies the abbreviations and symbols used in the instruction definitions. An example of how some of the 
description notations are used is given below in Figure 6-2. Register names, labels and other aspects of the syntax used 
in these instructions are described in the previous section. 

LDD 

Operation: 

Assembler 
Syntax: 

Description: 

Symbol 

a 
AND, OR XOR, etc. 
asi 
c 
ccc 
CONCAT 
cond 
CQ.ADDR 
CQ.INSTR 
c[rd) 

CSR 
CWP 
disp22 
disp30 
dz 
EC 
EF 

Lo data into destination register rd 
Brackets indicate data located at address specified by contents 

~ 
Contents of source register 1 

Load Doubleword 
Contents of source register 2 

/ / Sign-extended immediate 13-bit field of instruction 

r[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13»] 

r[rd + 1]- [(r[rsl] + (r[rsZ] or sign extnd(simm13») + 4] 

______ An example of this instruction would be: 

LDl 

ldd [address], regrd ldd [%gl + 4], %6 
which would add the contents of global register gl to 

The LDD instruction moves a dou 
r[rd+ 1]. The effective memory ad! 

signed immediate value (4) to determine the load address. 

The resulting address is used to fetch and load double­
word data into the destination registers 6 and 7. 

Figure 6-2. Instruction Description 

Table 6-1. Instruction Description Notations 

Description 

Instruction field that controls instruction annulling during control transfers 
AND, OR, XOR, etc operators 
Instruction field that identifies the load/store alternate address space 
The icc carry bit 
The coprocessor condition code field of the CSR 
Concatenate 
Instruction field that selects the condition code test for branches 
The address portion of the Coprocessor Queue 
The instruction portion of the Coprocessor Queue 
Depending on context, the coprocessor register (or its contents) specified by the instruction field, e.g., rd, 
rsl, rs2 
Coprocessor State Register 
PSR's Current Window Pointer field 
Instruction field that contains the 22-bit sign-extended displacement for branches 
Instruction field that contains the 30-bit word displacement for calls 
Floating-point exception:division by zero 
PSR's Enable Coprocessor bit 
PSR's Enable FPU bit 
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SPARe Instruction Set 

Table 6-1. Instruction Description Notations (continued) 

Symbol Description 
ET PSR's Enable Traps bit 

fcc The floating-point condition code field of the FSR 
FQ.ADDR The address portion of the Floating-point queue 
FQ.INSTR The instruction portion of the Floating-point queue 

f[rd]s The suffix (s, d, x) after the operand indicates the precision of the operand 
f[rsl] Depending on context, the floating-point register (or its contents) specified by the instruction field, e.g. , rd, 

rsl, rs2 
FSR Floating-point State Register 

i Instruction field that selects rs2 or sign extnd(simm 13) as the second operand 
icc The integer condition code field of the PSR 
imm22 Instruction field that contains the 22-bit constant used by SETHI 

n The icc negative bit 

not Logical complement operator 
nPC next Program Counter 

nv Floating-point exception:invalid 
nx Floating-point exception:inexact result 
of Floating-point exception:overflow 

ope Instruction field that specifies the count for Coprocessor-operate instructions 
operand2 Either r[rs2] or sign extnd(simmI3) 
PC Program Counter 

pS PSR's previous Supervisor bit 
PSR Processor State Register 
r[15] A directly addressed register (could be floating-point or coprocessor) 
rd Instruction field that specifies the destination register (except for store) 
r[rd] Depending on context, the integer register (or its contents) specified by the instruction field, e.g. , rd, rsl, rs2 
r[rd] < 31 > < > are used to specify bit fields of a particular register or I/O signal 
[r[rsl] + r[rs2]] The contents of the address specified by r[rsl] + r[rs2] 
rsl Instruction field that specifies the source 1 register 
rs2 Instruction field that specifies the source 2 register 
S PSR's Supervisor bit 

shcnt Instruction field that specifies the count for shift instructions 

sign extn(simm 13) Instruction field that contains the 13-bit, sign-extended immediate value 
Symbol Description 
TBR Trap Base Register 

It TBR's trap type field 
uf Floating-point exception:underflow 
v The icc overflow bit 
WIM Window Invalid Mask register 
y Y Register 
z The icc zero bit 

- Subtract 

x Multiply 

/ Divide 

<- Replaced by 
7FFFFFFH Hexadecimal number representation 

+ Add 
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SPARe Instruction Set 

1able 6-2. Instruction Set Summary 

Name ~lion ~Ies 
IDSB(lDSBA·) Load Signed ~ ffrom Alternate space~ 2 
IDSH(IDSHA .) Load Signed Ifword from Alternate Space 2 
IDUB(illUBA .) Load Unsigned Byte (from Alternate Space) 2 
IDUH(IDUHA .) Load Unsigned Halfword (from Alternate Space) 2 
ID(IDA·) Load Word (from Alternate Space) 2 
IDD(IDDA .) Load Doubleword (from Alternate Spacei 3 
IDF Load Floating Point 2 

~ IDDF Load Double Floating Point 3 
" IDFSR Load F1oati~1t Point State R~ster 2 ." ... 

IDC Load Coprocessor 2 .5 
oS 

IDDC Load Double Coprocessor 3 
IDCSR Load Co~rocessor Stat';_~er 2 

j STB(STBN) Store Byte (into Alternate Space) 3 

'" STH(STHA·) Store Halfword (ioto Alternate Space) 3 
11 ~~~A·) Store Word ~t0to Alternate Spa,; ~ 3 .. Store Doubleword into Alternate Space 4 

3 STF Store Floating Point 3 
STDF Store Double Floatio~ Point 4 
STFSR Store Floating Point tate Re~ster 3 
STDFO· Store Double F1oatinltPoint ueue 4 
STC Store Coprocessor 3 
STDC Store Double Coprocessor 4 
STCSR Store Coprocessor State Register 3 
STDCO· Store Double jllleue 
IDSTUB(illSTUBA .) Atomic LoadlStore Unsigned Byte jin Alternate Space) 4 
SWA.P(SWAPA ")- S~r Register with Melli()[}' in Alternate ~ce) 4 

~gg~gg:kcc\ Add Jand modin&. i~ 1 
Add with C!!ID' and modi icc -l 

TADDcc(TADDcc1V) 'llIgged Add and modify icc ~and lhp on <Werflow)_ 1 

SU~(?Bcc) c) Subtract ~~nd m4~g !~~ 1 
!iii SUB SUBXcc Subtract with Cany and modI ICC 1 ... TSUBcc(TSUBccTV) 'llIl!l!"d Subtract and modify icc (and 1bp on <Werfl"!'i 1 ~ 
B MULScc MultiplySt~ and modify icc 1 

! AND(ANOcc) And ~and modig iccl 1 
ANDN(ANDNcc) And Not and modi icc 1 11 OR(ORcc) Inclusive Or (and modify icc) 1 .,. 

~ ORN(ORNcc) Inclusive Or Not (and mod~ icc) 1 e 
iI ~~~O~cc) Exclusive Or Jand mod· icc) 1 
~ Exclusive Nor andmo@iie& 1 

SIL Shift Left Logical 1 
SRL Shift Right Logical 1 
SRA Shift Right Arithmetic 1 
SIDJU Set HJJdt 22 Bits of r ~ 
SAVE Save caller's window 1 
RESTORE Restore caller's window 1 
Bicc Branch on Integer Condition Codes 1·· 

U 
FBicc E~~~t ~~_~~!g~~~~~~~es 1·· 
CBccc 1·· 
CALL COli 1·· 
JM umpana OK 2·· 
KOl l<fturnm:m !rap zo· 
Ticc nap on Integer u>nwllon LOaes 1 4 if'lllken 
RDY Read Y Register 1 

~i 
RDPSR· Read Processor State Register 1 
RDWIM· Read Wmdow Invalid Mask 1 
RDTBR· Read 1bp Base Register -.l 
WRY Write Y Register 1 "iI WRPSR· Write Processor State Register 1 &1= WRWIM· Write Wmdow Invalid Mask 1 8 WlUBR· Write 1bo Base Reoister _1 
UNIMP UmmPlemented Instruction 
IFWSH Instruction Cache Flush 1 

t~~ FPop Floati~ Point Uni'-!Jil<'rations 1 to Launch 
L1'OP _LOProcessor l1pCf8llons 1 to Launch . .. assummg delay slot is filled with useful inStruction 
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ADD 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

SPARe Instruction Set 

Add ADD 

r[rd]- r[rs1] + (r[rs2] or sign extnd(simm13» 

The ADD instruction adds the contents of the register named in the rsl field ,r[rs1], to either the con­
tents of r[ rs2] if the instruction's i bit equals zero, or to the 13-bit, sign-extended immediate operand 
contained in the instruction if i equals one. The result is placed in the register specified in the rd field. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000000 1 r51 li=ol ignored 1 r52 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000000 1 r51 li= 11 5imm13 I 
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ADDcc Add and modify icc ADDcc 

Operation: 

Assembler 
Syntax: 

Description: 

r[rd]- r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13» 

n-r[rd]<31> 
z- if r[rd] =0 then 1, else 0 

v- (r[rs1]<31 > AND operand2<31 > AND not r[rd] <31 » 

OR (not r[rsl] <31 > AND not operand2<31 > AND r[rd]<31 » 

c- (r[rsl]<31> AND operand2<31» 

OR (not r[rd]<31 > AND (r[rsl]<31> ORoperand2<31») 

ADDcc adds the contents of r[ rsl] to either the contents of r[rs2] if the instruction's i bit equals zero, or 
to a 13-bit, sign-extended immediate operand if i equals one. The result is placed in the register specified 
in the rd field. In addition, ADDcc modifies all the integer condition codes in the manner described 
above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010000 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 010000 1 rs1 li=11 simm13 1 
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ADDX 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Add with Carry ADDX 

r[rd]- r[rsl] + (r[rs2] or sign extnd(simm13» + c 

ADDX adds the contents of r[ rsl] to either the contents of r[ rs2] if the instruction's i bit equals zero, or 
to a 13-bit, sign-extended immediate operand ifi equals one. It then adds the PSR's canybit (c) to that 
result. The final result is placed in the register specified in the rd field. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1001000 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 001000 1 rs1 li=11 simm13 I 
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ADDXcc Add with Carry and modify icc ADDXcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd]- r[rs1] + operandZ + c, where operandZ = (r[rsZ] or sign extnd(simm13» 

n- r[rd]<31 > 
z- if r[rd] =0 then 1, else 0 

v- (r[rs1]<31 > AND operandZ<31 > AND not r[rd]<31» 

OR (not r[rs1]<31 > AND not operandZ< 31 > AND r[rd] < 31 » 
c- (r[rs1]<31 > AND operandZ<31» 

OR (not r[rd] <31 > AND (r[rs1]<31 > OR operandZ<31 ») 

ADDXcc adds the contents of r[ rs1] to either the contents of r[ rsZ] if the instruction's i bit equals zero, or 
to a 13-bit, sign-extended immediate operand if i equals one. It then adds the PSR's carry bit (c) to that 
result. The final result is placed in the register specified in the rd field. ADDXcc also modifies all the 
integer condition codes in the manner described above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1011000 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 011000 1 rs1 li=11 simm13 I 
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AND 

Operation: 

Assembler 
Syntax: 

Description: 

lraps: 

Format: 

SPARe Instruction Set 

And AND 

r[rd]- r[rs1] AND (r[rs2] or sign extnd(simm13» 

This instruction does a bitwise logical AND of the contents of register r[ rs1] with either the contents of 
r[ rs2] (if ifbit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if ifbit 
field i = 1). The result is stored in register r[ rd]. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000001 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000001 1 rs1 li=11 simm13 1 
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SPARe Instruction Set 

ANDcc And and modity icc ANDcc 

Operation: 

Assembler 
Syntax: 

Description: 

'Iraps: 

Format: 

r[rd]- r[rs1] AND (r[rs2] or sign extnd(simm13» 

n- r[rd]<31> 

z- if r[rd] =0 then 1, else 0 

v-O 
c-O 

This instruction does a bitwise logical AND of the contents of register r[ rs1] with either the contents of 
r[ rs2] (if ifbitfield i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if ifbit 
field i = 1). The result is stored in register r[ rd]. ANDcc also modifies all the integer condition codes in 
the manner described above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010001 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 010001 1 rs1 li=11 simm13 I 
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ANDN 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

And Not ANDN 

r[rd]- r[rsl] AND (r[rs2] or sign extnd(simm13» 

ANDN does a bitwise logical AND ofthe contents of register r[ rsl] with the logical compliment (not) of 
either r[rs2] (if if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction 
(if if bit field i = 1). The result is stored in register r[rd]. 

none 

31 3029 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000101 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000101 1 rs1 li=11 simm13 1 
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SPARe Instruction Set 

ANDNcc And Not and modify icc ANDNcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd]- r[rsl] AND (r[rs2] or sign extnd(simm13» 

n-r[rd]<31> 

z- if r[rd] =0 then I, else 0 

v-O 
c-O 

ANDNcc does a bitwise logical AND of the contents of register r[ rs1] with the logical compliment (not) 
of either r[ rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction 
(if bit field i= 1). The result is stored in registerr[rd]. ANDNcc also modifies all the integer condition 
codes in the manner described above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1 010101 1 rs1 li=ol Ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 010101 1 rs1 li=11 simm13 1 
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Bicc 

Operation: 

Assembler 
Syntax: 

Description: 

Integer Conditional Branch 

PC-nPC 

If condition true then nPC- PC + (sign extnd(disp22) x 4) 

else nPC - nPC + 4 

ba{,a} 
bn{,a} 
bne{,a} 
be{,a} 
bg{,a} 
ble{,a} 
bge{,a} 
bl{,a} 
bgu{,a} 
bleu{,a} 
bcc{,a} 
bcs{,a} 
bpos{,a} 
bneg{,a} 
bvc{,a} 
bvs{,a} 

label 
label 
label 
label 
label 
label 

label 
label 
label 
label 
label 
label 
label 
label 
label 
label 

synonym: bnz 
synonym: bz 

synonym: bgeu 
synonym: blu 

SPARC Instruction Set 

Bicc 

Note: The instruction's annul bit field, a, is set by appending" ,a" after the branch name. If it is not ap­
pended, the a field is automatically reset. ",a" is shown in braces because it is optional. 

The Bicc instructions (except for BA and BN) evaluate specific integer condition code combinations 
(from the PSR's icc field) based on the branch type as specified by the value in the instruction's cond field. 
If the specified combination of condition codes evaluates as true, the branch is taken, causing a delayed, 
PC-relative control transfer to the address (pC + 4) + (sign extnd(disp22) x 4). If the condition codes 
evaluate as false, the branch is not taken. Refer to Section 2.3.3.3 for additional information on control 
transfer instructions. 

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction immediately follow­
ing the branch instruction (the delay instruction) is not executed (i.e., it is annulled). If the annul field is 
zero, the delay instruction is executed. If the branch is taken, the annul field is ignored, and the delay 
instruction is executed. See Section 2.3.3.4 regarding delay-branch instructions. 

Branch Never (BN) executes like a NOp, except it obeys the annul field with respect to its delay instruc­
tion. 

Branch Always (BA), because it always branches regardless of the condition codes, would normally ig­
nore the annul field. Instead, it follows the same annul field rules: if a = 1, the delay instruction is an­
nulled; if a = 0, the delay instruction is executed. 

The delay instruction following a Bicc (other than BA) should not be a delayed-control-transfer instruc­
tion. The results of following a Bicc with another delayed control transfer instruction are implementa­
tion-dependent and therefore unpredictable. 

Traps: none 
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SPARe Instruction Set 

Mnemonic Condo Operation icc Test 

BN 0000 Branch Never No test 

BE 0001 Branch on Equal z 

BLE 0010 Branch on Less or Equal zOR (nXOR v) 

BL 0011 Branch on Less nXORv 

BLEU 0100 Branch on Less or Equal, Unsigned cORz 

BCS 0101 Branch on Carry Set c 
(Less than, Unsigned) 

BNEG 0110 Branch on Negative n 

BVS 0111 Branch on oVerflow Set v 

BA 1000 Branch Always No test 

BNE 1001 Branch on Not Equal notz 

BG 1010 Branch on Greater not(z OR (n XOR v» 

BGE 1011 Branch on Greater or Equal not(n XOR v) 

BGU 1100 Branch on Greater, Unsigned not(c OR z) 

BCC 1101 Branch on Carry Clear not c 
(Greater than or Equal, Unsigned) 

BPOS 1110 Branch on Positive not n 

BVC 1111 Branch on oVerflow Clear not v 

Format: 
31 30 29 28 25 24 22 21 o 

I 0 0 I a I condo I 0 1 0 I disp22 
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CALL 

Operation: 

Assembler 
Syntax: 

Description: 

r[15]-PC 

PC4..-nPC 

nPC-PC + (disp30x4) 

call label 

Call 

SPARC Instruction Set 

CALL 

The CALL instruction causes a delayed, unconditional, PC-relative control transfer to the address (PC 
+ 4) + (disp30 x 4). The CALL instruction does not have an annul bit, therefore the delay slot instruc­
tion following the CALL instruction is always executed (See Section 2.3.3.4). CALL first writes its re­
turn address (PC) into the outs register, r[15], and then adds 4 to the PC. The 32-bit displacement which 
is added to the new PC is formed by appending two low-order zeros to the 30-bit word displacement 
contained in the instruction. Consequently, the target address can be anywhere in the CY7C601'5 user 
or supervisor address space. 

If the instruction following a CALL uses register r[15] as a source operand, hardware interlocks add a 
one cycle delay. 

Programming note: a register-indirect CALL can be constructed using a JMPL instruction with rd set to 
15. 

Traps: none 

Format: 
o 

disp30 
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CBccc 

Operation: 

Assembler 
Syntax: 

Description: 

Coprocessor Conditional Branch 

PC-nPC 

If condition true then nPC - PC + (sign extnd(disp22) x 4) 

else nPC- nPC + 4 

cba{,a} label 
cbn{,a} label 
cb3{,a} label 
cb2{,a} label 
cb23{,a} label 
cbl{,a} label 
cb13{,a} label 
cb12{,a} label 
cb123{,a} label 
cbO{,a} label 
cb03{,a} label 
cb02{,a} label 
cb023{,a} label 
cb01{,a} label 
cb013{,a} label 
cb012{,a} label 

SPARe Instruction Set 

CBccc 

Note: The instruction's annul bit field, a, is set by appending ",a" after the branch name. If it is not 
appended, the a field is automatically reset. ",a" is shown in braces because it is optional. 

The CBccc instructions (except for CBA and CBN) evaluate specific coprocessor condition code combi­
nations (from the CCC < 1:0> inputs) based on the branch type as specified by the value in the instruc­
tion's cond field. If the specified combination of condition codes evaluates as true, the branch is taken, 
causing a delayed, PC-relative controltransfer to the address (pC + 4) + (sign extnd(disp22)x 4). If the 
condition codes evaluate as false, the branch is not taken. See Section 2.3.3.3 regarding control transfer 
instructions. 

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction immediately follow­
ing the branch instruction (the delay instruction) is not executed (Le., it is annulled). If the annul field is 
zero, the delay instruction is executed. If the branch is taken, the annul field is ignored, and the delay 
instruction is executed. See Section 2.3.3.4 regarding delayed branching. 

Branch Never (CBN) executes like a NOp, except it obeys the annul field with respect to its delay instruc­
tion. 

Branch Always (CBA), because it always branches regardless of the condition codes, would normally 
ignore the annul field. Instead, it follows the same annul field rules: if a = 1, the delay instruction is 
annulled; if a = 0, the delay instruction is executed. 

Th prevent misapplication of the condition codes, a non-coprocessor instruction must immediately pre­
cede a CBccc instruction. 

A CBccc instruction generates a cp_ disabled trap (and does not branch or annUl) if the PSR's EC bit is 
reset or if no coprocessor is present. 
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Tcaps: 

Format: 

cp_disabled 
cp _exception 

Mnemonic 

CBN 

CB123 

CB12 

CB13 

CB1 

CB23 

CB2 

CB3 

CBA 

CBO 

CB03 

CB02 

CB023 

CB01 

CB013 

CB012 

31 30 29 28 25 24 22 21 

I 0 0 I a I condo I 1 1 1 I 

SPARe Instruction Set 

condo CCC < 1:0 > test 

0000 Never 

0001 lor2or3 

0010 lor 2 

0011 lor 3 

0100 1 

0101 2or3 

0110 2 

0111 3 

1000 Always 

1001 0 

1010 o or3 

1011 o or2 

1100 Oor2or3 

1101 o or 1 

1110 Oor1or3 

1111 Oor1or2 

o 

disp22 
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CPop 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Coprocessor Operate CPop 

Dependent on Coprocessor implementation 

Unspecified 

CPop land CPop2 are the instruction formats for coprocessor operate instructions. The op3 field for 
CPopl is 110110; for CPop2 it's 110111. The coprocessor operations themselves are encoded in the ope 
field and are dependent on the coprocessor implementation. Note that this does not include load/store 
coprocessor instructions, which fall into the integer unit's load/store instruction category. 

All CPop instructions take all operands from, and return all results to, the coprocessor's registers. The 
data types supported, how the operands are aligned, and whether a CPop generates a cp _exception trap 
are Coprocessor dependent. 

A CPop instruction causes a cp _disabled trap if the PSR's EC bit is reset or if no coprocessor is present. 

cp_disabled 
cp _exception 

31 3029 25 24 19 18 14 13 5 4 0 

11 01 rd 1110110 1 rs1 I ope 1 rs2 I 
31 30 29 25 24 19 18 14 13 5 4 0 

11 01 rd 1 110111 1 rs1 1 ope 1 rs2 1 
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FABSs 

Operation: 

Assembler 
Syntax: 

Description: 

1raps: 

Format: 

Absolute Value Single 

(CY7C602 Instruction Only) 

fIrd)s- fIrs2)s AND 7FFFFFFF H 

fabss fregrs2' fregrd 

SPARC Instruction Set 

FABSs 

The FABSs instruction clears the sign bit of the word infIrs2] and places the result in f[rd). It does not 
round. 

Since rs2 can be either an even or odd register, FABSs can also operate on the high-order words of 
double and extended operands, which accomplishes sign bit clear for these data types. 

fp_disabled 
fp _exception' 

3130 29 

rd 

25 24 19 18 14 13 

11 1 0 1 0 0 1 ignored 1 0 0 0 0 0 1 0 0 1 

5 4 o 
rs2 

• NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FADDd Add Double 

(CY7C602 Instruction Only) 

Operntion: f[rd]d- f[rs1]d + f[rs2]d 

Assembler 
Syntax: faddd fregrs]' fregrs2' fregrd 

SPARC Instruction Set 

FADDd 

Description: The FADDd instruction adds the contents of f[ rs1] CONCKr f[ rs1 + I] to the contents of f[ rs2] CON­
CKr f[rs2+ I] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd] and 
f[rd + I]. 

Traps: fp_disabled 
fp_exception (of, uf, nY, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

rs1 I 001000010 I rs2 
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SPARC Instruction Set 

FADDs Add Single 

(CY7C602 Instruction Only) 

FADDs 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

fI rd]s - f[ rs1]s + f[ rs2]s 

The FADDs instruction adds the contents of f[ rs1] to the contents of fI rs2] as specified by the ANSI/ 
IEEE 754-1985 standard and places the results in f[rd]. 

fp_disabled 
fp_exception (of, uf, nv, nx) 

25 24 19 18 14 13 5 4 o 

r51 I 001000001 r52 
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FADDx Add Extended 

(CY7C602 Instruction Only) 

Operation: f[rd]x- f[rs1]x + f[rs2]x 

Assembler 
Syntax: faddx /regrs], /regrs2, /regrd 

SPARC Instruction Set 

FADDx 

Description: The PADDx instruction adds the contents of f[ rs1] CONCAT f[ rs1 + 1] CONCAT f[ rs1 + 2] to the con­
tents off[ rs2] CONCAT f[rs2 + 1] CONCAT f[ rs2 + 2] as specified by the ANSI/IEEE 754-1985 standard 
and places the results in f[rd], f[rd + 1], and f[rd + 2]. 

Traps: fp_disabled 
fp _exception (of, uf, nY, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rs1 I 001000011 rs2 
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FBfcc 

Operation: 

Assembler 
Syntax: 

Description: 

Floating-Point Conditional Branch 

PC-nPC 

If condition true then nPC - PC + (sign extnd(disp22) x 4) 

else nPC - nPC + 4 

fba{,a} label 
fbn{,a} label 

fbuLa} label 
fbg{,a} label 
fbug{,a} label 
fbi {,a} label 
fbul{,a} label 

fblgLa} label 
fbne{,a} label synonym: fbnz 
fbe{,a} label synonym: fbz 
fbue{,a} label 

fbgeLa} label 

fbugeLa} label 
fble{,a} label 
fbule{,a} label 
fbo{,a} label 

SPARC Instruction Set 

FBfcc 

Note: The instruction's annul bit field, a, is set by appending ",a" after the branch name. If it is not ap­
pended, the a field is automatically reset. ",a" is shown in braces because it is optional. 

The FBfcc instructions (except for FBAand FBN) evaluate specific floating-point condition code combi­
nations (from the FCC < 1:0 > inputs) based on the branch type, as specified by the value in the instruc­
tion's cond field. If the specified combination of condition codes evaluates as true, the branch is taken, 
causing a delayed, PC-relative control transfer to the address (PC + 4) + (sign extnd(disp22) x 4). If the 
condition codes evaluate as false, the branch is not taken. See Section 2.3.3.3 for additional information 
on control transfer instructions. 

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction immediately follow­
ing the branch instruction (the delay instruction) is not executed (i.e., it is annulled). If the annul field is 
zero, the delay instruction is executed. If the branch is taken, the annul field is ignored, and the delay 
instruction is executed. See Section 2.3.3.4 regarding delayed branch instructions. 

Branch Never (FBN) executes like a NOp, except it obeys the annul field with respect to its delay instruc­
tion. 

Branch Always (FBA), because it always branches regardless of the condition codes, would normally 
ignore the annul field. Instead, it follows the same annul field rules: if a = 1, the delay instruction is 
annulled; if a = 0, the delay instruction is executed. 

To prevent misapplication of the condition codes, a non-floating-point instruction must immediately 
precede an FBfcc instruction. 

An FBfcc instruction generates an fp _disabled trap (and does not branch or annul) if the PSR's EF bit is 
reset or if no Floating-Point Unit is present. 
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Traps: 

Format: 

fp_disabled 
fp _exception * 

Mnemonic 

FBN 

FBNE 

FBLG 

FBUL 

FBL 

FBUG 

FBG 

FBU 

FBA 

FBE 

FBUE 

FBGE 

FBUGE 

FBLE 

FBULE 

FBO 

Condo Operation 

0000 Branch Never 

0001 Branch on Not Equal 

0010 Branch on Less or Greater 

0011 Branch on Unordered or Less 

0100 Branch on Less 

0101 Branch on Unordered or Greater 

0110 Branch on Greater 

0111 Branch on Unordered 

1000 Branch Always 

1001 Branch on Equal 

1010 Branch on Unordered or Equal 

1011 Branch on Greater or Equal 

1100 Branch on Unordered or Greater or Equal 

1101 Branch on Less or Equal 

1110 Branch on Unordered or Less or Equal 

1111 Branch on Ordered 

31 30 29 28 25 24 22 21 

I 0 0 I a I condo I 1 1 0 I disp22 

SPARe Instruction Set 

fcc Test 

no test 

UorLorG 

LorG 

UorL 

L 

UorG 

G 

U 

no test 

E 

UorE 

GorE 

UorGorE 

LorE 

U orLorE 

LorGorE 

o 

... NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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SPARC Instruction Set 

FCMPd Compare Double FCMPd 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

(CY7C602 Instruction Only) 

fcc- fIrsl)d COMPARE f[rs2)d 

fcmpd [regrsl, [regrs2 

FCMPd subtracts the contents of f[rs2) CONCAT f[rs2+ 1) from the contents of fIrsl) CONCAT 
fI rsl + 1) following the ANSI/IEEE 754-1985 standard. The result is evaluated, the FSR's fcc bits are set 
accordingly, and then the result is discarded. The codes are set as follows: 

fcc relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ? fs2 (unordered) 

In this table, fsl stands for the contents of fIrsl), f[rsl + 1) and fs2 represents the contents of f[rs2), 
fIrs2+ 1). 

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point 
instruction must be executed between an FCMP and a subsequent FBfcc instruction. 

FCMPd causes an invalid exception (nv) if either operand is a signaling NaN. 

fp _disabled 
fp_exception (nv) 

31 30 29 25 24 19 18 

11 0 1 ignored 1 1 1 0 1 0 1 1 rs1 

6-27 

14 13 5 4 

1 001010010 

o 

rs2 



SPARC Instruction Set 

FCMPEd Compare Double and Exception if Unordered 

(CY7C602 Instruction Only) 

FCMPEd 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

fcc- f[rsl]d COMPARE f[rs2]d 

fcmped fregrsl, fregrsl 

FCMPEd subtracts the contents of f[rs2] CONCAT f[rs2+ 1] from the contents of f[rsl] CONCPJ:' 
f[ rsl + 1] following the ANSIIIEEE 754-1985 standard. The result is evaluated, the FSR's fcc bits are set 
accordingly, and then the result is discarded. The codes are set as follows: 

fcc Relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ? fs2 (unordered) 

In this table, fsl stands for the contents of f[ rsl], f[ rsl + 1] and· fs2 represents the contents of f[ rs2], 
f[rs2+ 1]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point 
instruction must be executed between an FCMP and a subsequent FBfcc instruction. 

FCMPEd causes an invalid exception (nv) if either operand is a signaling or quiet NaN. 

fp_disabled 
fp_exception (nv) 
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SPARC Instruction Set 

FCMPEs Compare Single and Exception if Unordered FCMPEs 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

(CY7C602 Instruction Only) 

fcc- qrsl]s COMPARE qrs2]s 

fcmpes [regrsl' [regrs2 

FCMPEs subtracts the contents of q rs2] from the contents of q rsl] following the ANSI/IEEE 754-1985 
standard. The result is evaluated, the FSR'sfcc bits are set accordingly, and then the result is discarded. 
The codes are set as follows: 

fcc Relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ? fs2 (unordered) 

In this table, fsl stands for the contents off[rsl] and fs2 represents the contents off[rs2]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point 
instruction must be executed between an FCMP and a subsequent FBfcc instruction. 

FCMPEs causes an invalid exception (nv) if either operand is a signaling or quiet NaN. 

fp _disabled 
fp_exception (nv) 

3130 29 25 24 19 18 

11 0 1 ignored 11 1 0 1 0 1 1 rs1 
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SPARC Instruction Set 

FCMPEx Compare Extended and Exception if Unordered 

(CY7C602 Instruction Only) 

FCMPEx 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

fcc- f[rsl]x COMPARE f[rs2]x 

FCMPExsubtracts the contents off[rs2] CONCATf[rs2+ 1] CONCAT f[rs2 + 2] from the contents of 
f[rsl] CONCAT f[ rsl + 1] CONCATf[ rsl + 2] following the ANSIIIEEE 754-1985 standard. The result 
is evaluated, the FSR's!cc bits are set accordingly, and then the result is discarded. The codes are set as 
follows: 

fcc Relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ? fs2 (unordered) 

In this table, fsl stands for the contents off[rsl], f[rsl + 1], f[rsl + 2] and fs2 represents the contents of 
f[rs2], f[rs2+ 1], f[rs2+ 2]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point 
instruction must be executed between an FCMP and a subsequent FBfcc instruction. 

FCMPEx causes an invalid exception (nv) if either operand is a signaling or quiet NaN. 

fp _disabled 
fp_exception (nv) 

31 30 29 25 24 19 18 

1101 ignored 1110101 1 rs1 
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SPARC Instruction Set 

FCMPs Compare Single 

(CY7C602 Instruction Only) 

FCMPs 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

fcc- f[rsl]s COMPARE f[rs2]s 

fcmps fregrsl, fregrs2 

FCMPs subtracts the contents of f[ rs2] from the contents of f[ rsl] following the ANSI/IEEE 754-1985 
standard. The result is evaluated, the FSR's fcc bits are set accordingly, and then the result is discarded. 
The codes are set as follows: 

fcc Relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ? fs2 (unordered) 

In this table, fsl stands for the contents of f[rs1] and fs2 represents the contents of f[rs2]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point 
instruction must be executed between an FCMP and a subsequent FBfcc instruction. 

FCMPs causes an invalid exception (nv) if either operand is a signaling NaN. 

fp_disabled 
fp_exception (nv) 

31 30 29 25 24 19 18 

11 0 1 ignored 11 1 0 1 0 1 1 rs1 
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SPARC Instruction Set 

FCMPx Compare Extended 

(CY7C602 Instruction Only) 

FCMPx 

Operation: 

Assembler 
Syntax: 

Description: 

'Ii-aps: 

Format: 

fcc- f[rsI)x COMPARE f[rs2)x 

fcmpx jjegrs]. fregrs2 

FCMPx subtracts the contents of f[ rs2] CONCAT f[ rs2 + 1) CONCAT f[ rs2 + 2] from the contents of 
f[ rsI) CONCAT f[ rsl + 1] CONCAT f[ rsl + 2] following the ANSI/IEEE 754-1985 standard. The result 
is evaluated, the FSR's fcc bits are set accordingly, and then the result is discarded. The codes are set as 
follows: 

fcc Relation 

0 fsI = fs2 

1 fsI < fs2 

2 fsI > fs2 

3 fsI ? fs2 (unordered) 

In this table, fsI stands for the contents off[ rsI], f[ rsl + 1], f[ rsl + 2] and fs2 represents the contents of 
f[ rs2], f[ rs2 + 1], f[ rs2 + 2]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent FEfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point 
instruction must be executed between an FCMP and a subsequent FEfcc instruction. 

FCMPx causes an invalid exception (nv) if either operand is a signaling NaN. 

fp_disabled 
fp_exception (nv) 
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SPARC Instruction Set 

FDIVd Divide Double FDIVd 
(CY7C602 Instruction Only) 

Operation: f[ rd]d - fI rsl]d I f[ rs2]d 

Assembler 
Syntax: fdivd [regrs1' [regrs2' [regrd 

Description: The FDIVd instruction divides the contents off[rsl] CONCAT f[rsl + 1] by the contents of f[ rs2] CON­
CAT fIrs2+ 1] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd] and 
fIrd+l]. 

Traps: fp _disabled 
fp_exception (of, uf, dz, nv, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

r51 I 001001110 I r52 
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FDIVs Divide Single 

(CY7C602 Instruction Only) 

Operation: f[rd]s-- f[rsl]s / f[rs2]s 

Assembler 
Syntax: fdivs [regrsb [regrs2, fregrd 

SPARC Instruction Set 

FDlVs 

Description: The FDIVs instruction divides the contents of f[ rsl] by the contents of f[ rs2] as specified by the. ANSI! 
IEEE 754-1985 standard and places the results in f[ rd]. 

Traps: fp_disabled 
fp_exception (of, uf, dz, nv, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

11101001 rs1 1 001001101 rs2 
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FDIVx 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Divide Extended FDIVx 
(CY7C602 Instruction Only) 

f[rd]x- f[rsl]x I f[rs2]x 

fdivx [regrsl' [regrs2' [regrd 

The FDIVx instruction divides the contents off[rsl] CONCATf[rsl + 1] CONCATf[rsl + 2] by the con­
tents off[ rs2] CONCAT f[ rs2 + 1] CONCAT f[ rs2 + 2] as specified by the ANSI/IEEE 754-1985 standard 
and places the results in f[rd], f[rd+ 1], and f[rd+2]. 

fp _disabled 
fp_exception (of, uf, dz, nY, nx) 

25 24 19 18 14 13 5 4 

r51 I 001001111 r52 
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FdTOi 

Operation: f[rd]i- f[rs2]d 

Assembler 
Syntax: fdtoi freKnl. freKrd 

Convert Double to Integer 

(CY7C602 Instruction Only) 

SPARC Instruction Set 

FdTOi 

Description: FdTOi converts the floating-point double contents of f[ rs2] CONCAT f[ rs2 + 1] to a 32-bit, signed inte­
ger by rounding toward zero as specified by the ANSllIEEE 754-1985 standard. The result is placed in 
f[rd]. The rounding direction field (RD) of the FSR is ignored. 

Thaps: fp_disabled 
fp_exception (nv, nx) 

Format: 
13 

011010010 
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FdTOs 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

f[rd)s- f[rsZ)d 

fdtos fregrs2' fregrd 

Convert Double to Single 

(CY7C602 Instruction Only) 

SPARC Instruction Set 

FdTOs 

FdTOs converts the floating-point double contents of f[rsZ) CONCAT f[rsZ+ 1) to a single-precision, 
floating-point format as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd]. 
Rounding is performed according to the rounding direction field (RD) of the FSR. 

fp_disabled 
fp_exception (of, uf, nv, nx) 

3130 29 25 24 19 18 14 13 5 4 

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 0 1 1 0 r52 
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SPARC Instruction Set 

FdTOx Convert Double to Extended FdTOx 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

(CY7C602 Instruction Only) 

f[rd]x- f[rs2]d 

fdtox fregrs2, fregrd 

FdTOx converts the floating-point double contents of f[ rs2] CONCAT f[ rs2 + 1] to an extended-preci­
sion, floating-point format as specified by the ANSIIIEEE 754-1985 standard. The result is placed in 
f[rd], f[rd+ 1], and f[rd+2]. Rounding is performed according to the rounding direction (RD) and 
rounding precision (RP) fields of the FSR. 

fp_disabled 
fp_exception (nv) 

3130 29 25 24 19 18 14 13 

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 1 1 10 
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FiTOd 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Convert Integer to Double FiTOd 
(CY7C602 Instruction Only) 

f[rd]d- f[rs2]i 

fitod /regrs], /regrd 

FiTOd converts the 32-bit, signed integer contents of f[ rs2] to a floating-point, double-precision format 
as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd] and f[rd+ 1]. 

fp_disabled 
fp _exception' 

3130 29 

rd 

25 24 19 18 14 13 

11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 1 0 0 0 

5 4 o 

rs2 

.. NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FiTOs 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

f[rd]s- f[rs2]i 

Convert Integer to Single 

(CY7C602 Instruction Only) 

SPARC Instruction .set 

FiTOs 

FiTOs converts the 32-bit, signed integer contents off[ rs2] to a floating-point, single-precision format as 
specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd]. Rounding is performed 
according to the rounding direction field, RD. 

fp _disabled 
fp_exception (ox) 

31 30 29 25 24 19 18 14 13 

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 0 1 0 0 
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FiTOx 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Convert Integer to Extended FiTOx 
(CY7C602 Instruction Only) 

f[rd]x- f[rs2]i 

FiTOx converts the 32-bit, signed integer contents off[rs2] to an extended-precision, floating-point for­
mat as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd], f(rd+ 1], and 
f[rd+2]. 

fp _disabled 
fp _exception· 

3130 29 

rd 

25 24 19 18 14 13 

11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 1 1 0 0 

5 4 o 

rs2 

... NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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SPARe Instruction Set 

FMOVs Move FMOVs 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

(CY7C602 Instruction Only) 

f[rd)s- f[rs2)s 

fmovs freg,,2. fregrd 

The FMOVs instruction moves the word content of register f[rs2) to the register f[rd). Multiple 
FMOVs's are required to transfer multiple-precision numbers between {registers. 

fp_disabled 
fp _exception' 

3130 29 

rd 

25 24 19 18 14 13 

1110100 1 ignored 1 000000001 

5 4 o 

rs2 

• NOTE: An attempt to execute lIIl)' FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FMULd Multiply Double 

(CY7C602 Instruction Only) 

Operation: f[rd]d- f[rsl]d x f[rs2]d 

Assembler 
Syntax: fmuld freg,.}. freg,.2. fregrd 

SPARC Instruction Set 

FMULd 

Description: The FMULd instruction multiplies the contents of f[ rsl] CONCAT f[ rs1 + 1] by the contents off[ rs2] 
CONCAT f[ rs2 + 1] as specified by the ANSIIIEEE 754-1985 standard and places the results in f[ rd] and 
f[rd+ 1]. 

Traps: fp_disabled 
fp_exception (of, uf, nv, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rs1 I 001001010 I rs2 
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FMULs Multiply Single 

(CY7C602 Instruction Only) 

Operation: f[ rd]s - f[ rsl]s x ([ rs2]s 

Assembler 
Syntax: fmuls [reg,.). [regrs2. fregrd 

SPARC Instruction Set 

FMULs 

Description: The FMULs instruction multiplies the contents of f[ rsl] by the contents of f[ rs2] as specified by the 
ANSllIEEE 754-1985 standard and places the results in f[rd]. 

'Ihlps: fp _disabled 
fp_exception (of, uf, nY, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

11101001 rs1 I 001001001 rs2 
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FMULx Multiply Extended 

(CY7C602 Instruction Only) 

Operation: f[rd]x- f[rs1]x x f[rs2]x 

Assembler 
Syntax: fmulx fregrsl, fregrs2' fregrd 

SPARC Instruction Set 

FMULx 

Description: The FMULx instruction multiplies the contents of f[ rs1] CONCAT f[ rs1 + 1] CONCAT f[ rs1 + 2] by the 
contents off[rs2] CONCATf[rs2+ 1] CONCATf[rs2+ 2] as specified by the ANSIIIEEE 754-1985 stan­
dard and places the results in f[ rd]. f[ rd + 1]. and f[ rd + 2]. 

Traps: fp_disabled 
fp_exception (of, uf, nv. ox) 

Format: 
25 24 19 18 14 13 

11101001 rs1 1 001001011 

5 4 o 
rs2 
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SPARC Instruction Set 

FNEGs Negate FNEGs 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

(CY7C602 Instruction Only) 

f[rd]s- f[rs2]s XOR 80000000 H 

fnegs [regrs2' [regrd 

The FNEGs instruction complements the sign bit of the word in f[ rs2] and places the result in f[ rd]. It 
does not round. 

Since this FPop can address both even and oddfregisters, FNEGs can also operate on the high-order 
words of double and extended operands, which accomplishes sign bit negation for these data types. 

fp_disabled 
fp _exception' 

rd 

25 24 19 18 14 13 

11 1 0 1 0 0 1 ignored 1 0 0 0 0 0 0 1 0 1 

5 4 o 

rs2 

... NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FSQRTd 

Operation: f[rd]d- SQRTf[rs2]d 

Assembler 
Syntax: fsqrtd [regrs2. [regrd 

Square Root Double 

(CY7C602 Instruction Only) 

SPARC Instruction Set 

FSQRTd 

Description: FSQRTd generates the square root of the floating-point double contents off[ rs2] CONCATf[ rs2 + 1] as 
specified by the ANSllIEEE 754-1985 standard. The result is placed in f[rd] and f[rd + 1]. Rounding is 
performed according to the rounding direction field (RD) of the FSR. 

Traps: fp_disabled 
fp_exception (nv. nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rd 11 1 0 1 0 0 1 ignored 1 0 0 0 1 0 1 0 1 0 rs2 
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SPARC Instruction Set 

FSQRTs Square Root Single 

(CY7C602 Instruction Only) 

FSQRTs 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

f[ rd)s - SQRT f[ rs2)s 

fsqrts [regrs2. [regrd 

FSQRIS generates the square root of the floating-point single contents of f[ rs2) as specified by the 
ANSI/IEEE 754-1985 standard. The result is placed in f[rd). Rounding is performed according to the 
rounding direction field (RD) of the FSR. 

fp _disabled 
fp_exception (nv, nx) 

3130 29 25 24 19 18 14 13 

rd 1110100 1 ignored 1 000101001 
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FSQRTx 

Operation: f[rd]x- SQRT f[rs2]x 

Assembler 
Syntax: fsqrtx fregrs2. fregrd 

Square Root Extended 

(CY7C602 Instruction Only) 

SPARC Instruction Set 

FSQRTx 

Description: FSQRI'x generates the square root of the floating-point extended contents of f[ rs2] CONCATf[ rs2 + I] 
CONCAT f[rs2+ 2] as specified by the ANSllIEEE 754-1985 standard. The result is placed in f[rd], 
f[ rd + 1], and f[ rd + 2]. Rounding is performed according to the rounding direction (RD) and rounding 
precision (RP) fields of the FSR. 

Traps: fp_disabled 
fp_exception (nv, nx) 

Format: 
13 

000101011 
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FsTOd 

Operation: f[rd]d- f[rs2]s 

Assembler 
Syntax: fstod [reg,.2. [regrd 

Convert Single to Double 

(CY7C602lnstruction Oilly) 

SPARC Instruc.tion Set 

FsTOd 

Description: FsTOd converts the floating-point single contents off[rsZ] to a double-precision. floating-point format 
as specified by the ANSIIIEEE 754-1985 standard. The result is placed in f[ rd] and f[ rd + 1]. Rounding is 
performed according to the rounding direction field (RD) of the FSR. 

"Iraps: fp_disabled 
fp_exception (nv) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 1 011001001 rs2 

6-50 



FsTOi 

Operation: qrdji_ f[rs2js 

Assembler 
Syntax: fstoi fregrs2. fregrd 

Convert Single to Integer 

(CY7C602 Instruction Only) 

SPARC Instruction Set 

FsTOi 

Description: FsTOi converts the floating-point single contents of qrs2] to a 32-bit, signed integer by rounding toward 
zero as specified by the ANSIIIEEE 754-1985 standard. The result is placed in q rdj. The rounding field 
(RD) of the FSR is ignored. 

Traps: fp _disabled 
fp_exception (nv, nx) 

Format: 
25 24 19 18 14 13 

rd 1110100 1 ignored 1 011010001 
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SPARC Instruction Set 

FsTOx Convert Single to Extended FsTOx 
(CY7C602 Instruction Only) 

Operation: f[rd]x- f[rs2]s 

Assembler 
Syntax: fstox fregrs2. fregrd 

Description: FsTOx converts the floating·point single contents of f[ rsZ] to an eXtended·precision. floating.point for· 
mat as specified by the ANSI/IEEE 754·1985 standard. The result is placed in f[ed]. f[rd+l]. and 
f[ rd + 2]. Rounding is performed according to the rounding direction (RD) and rounding precision (RP) 
fields of the FSR. 

Traps: fp_disabled 
fp_exception (nv) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 1 011001101 rs2 
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SPARe Instruction Set 

FSUBd Subtract Double FSUBd 
(CY7C602 Instruction Only) 

Operation: f[rd]d- f[rs1]d - f[rs2]d 

Assembler 
Syntax: fsubd fregrsJ. fregrs2. [regrd 

Desc:ription: The FSUBd instruction subtracts the contents of f[ rs2] CONCAT f[ rs2 + 1] from the contents of f[ rsl] 
CONCAT f[ rs1 + 1] as specified by the ANSIIIEEE 754-1985 standard and places the results in f[ rd] and 
f[rd+1]. 

Traps: fp _disabled 
fp_exception (of, uf, nx, nv) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rs1 I 001000110 I rs2 
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FSUBs Subtract Single 

(CY7C602 Instruction Only) 

Operation: f[rd]s- f[rs1]s - f[rs2]s 

Assembler 
Syntax: fsubs fregrsl, fregrs2, fregrd 

SPARC Instruction Set 

FSUBs 

Description: The FSUBs instruction subtracts the contents of f[ rs2] from the contents of f[ rs1] as specified by the 
ANSllIEEE 754·1985 standard and places the results in f[rd]. 

1i"aps: fp_disabled 
fp_exception (of, uf, nx, nv) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rs1 I 001000101 rs2 
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SPARC Instruction Set 

FSUBx Subtract Extended FSUBx 
(CY7C602 Instruction Only) 

Operation: f[rd]x- f[rsl]x - f[rs2]x 

Assembler 
Syntax: fsubx [reg,.l. [reg,.2. jregrd 

Description: The FSUBx instruction subtracts the contents of f[ rs2] CONCATf[ rs2 + 1] CONCATf[ rs2 + 2] from the 
contents of f[ rs1] CONCAT f[rsl + 1] CONCpa'f[ rsl + 2] as specified by the ANSIIIEEE 754-1985 stan­
dard and places the results in f[ rd], f[ rd + 1], and f[ rd + 2]. 

Traps: fp_disabled 
fp_exception (of, uf, nv, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

rs1 I 001000111 rs2 
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SPARC Instruction Set 

FxTOd Convert Extended to Double FxTOd 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

(CY7C602 Instruction Only) 

qrd]d- qrs2]x 

FxTOd converts the floating-point extended contents of q rs2] CONCAT q rs2 + 1] CONCAT q rs2 + 2] 
to a double-precision, floating-point format as specified by the ANSI/IEEE 754-1985 standard. The re­
sult is placed in q rd] and q rd + 1]. Rounding is performed according to the rounding direction (RD) field 
of the FSR. 

fp_disabled 
fp_exception (of, uf, nv, nx) 

3130 29 25 24 19 18 14 13 

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 1 0 1 1 
5 4 o 

rs2 

6-56 



FxTOi 

Operation: qrd]i- qrs2]x 

Assembler 
Syntax: fxtoi fregrs2' fregrd 

Convert Extended to Integer 

(CY7C602 Instruction Only) 

SPARC Instruction Set 

FxTOi 

Description: FxTOi converts the floating-point extended contents of q rs2] CON CAT f[ rs2 + 1] CONCATf[ rs2 + 2] to 
a 32-bit, signed integer by rounding toward zero as specified by the ANSI/IEEE 754-1985 standard. The 
result is placed in qrd]. The rounding field (RD) of the FSR is ignored. 

Traps: fp_disabled 
fp_exception (nv, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 1 011010011 r52 
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FxTOs 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Convert Extended to Single FxTOs 
(CY7C602 Instruction Only) 

f[rd]s- f[rs2]x 

FxTOs converts the floating-point extended contents of f[ rs2] CONCAT f[rs2 + 1] CONCAT f[rs2 + 2] 
to a single-precision, floating-point format as specified by the ANSI/IEEE 754-1985 standard. The result 
is placed in f[ rd]. Rounding is performed .according to the rounding direction (RD) field of the FSR. 

fp _disabled 
fp_exception (of, uf, nv, nx) 

25 24 19 18 14 13 5 4 o 

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 0 1 1 1 rs2 
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SPARC Instruction Set 

IFLUSH Instruction Cache Flush IFLUSH 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

FLUSH- [r[rsl] + (r[rs2] or sign extnd(simmI3))] 

iflush address 

The IFLUSH instruction causes a word to be flushed from an instruction cache which may be internal to 
the processor. The word to be flushed is at the address specified by the contents of r[ rsl] plus either the 
contents of r[ rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand 
contained in the instruction if i equals one. 

Since there is no internal instruction cache in the current CY7C600 family, the result of executing an 
IFLUSH instruction is dependent on the state of the input signal, Instruction Cache Flush Trap (IFf). If 
1FT = 1, IFLUSH executes as a NOp, with no side effects. If 1FT = 0, execution of IFLUSH causes an 
illegal_instruction trap. 

illegal_instruction 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 Ignored 1111011 1 rs1 11=01 Ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 111011 1 rs1 11=11 slmm13 I 
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JMPL 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

r[rd]-PC 

PC-nPC 

Jump and Link 

nPC- r[rsl] + (r[rs2] or sign extnd(simm13» 

jmpl address, regrd 

SPARe Instruction Set 

JMPL 

JMPL first provides linkage by saving its return address into the register specified in the rd field. It then 
causes a register-indirect, delayed control transfer to an address specified by the sum of the contents of 
r[rsl] and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended 
immediate operand contained in the instruction if i equals one. 

If either of the low-order two bits of the jump address is nonzero, a memory_address _not_aligned trap is 
generated. 

Programming note: A register-indirect CALL can be constructed using a JMPL instruction with rd set to 
15. JMPL can also be used to return from a CAIL. In this case, rd is set to 0 and the return (jump) 
address would be equal to r[31] + 8. 

memory_address_not_aligned 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1111000 1 rs1 !i=O! ignored ! rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 111000 1 rs1 li=1! simm13 1 
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LD 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Load Word LD 

r[rd]- [r[rs1] + (r[rs2] or sign extnd(simm13»] 

Id [address], regrd 

The LD instruction moves a word from memory into the destination register, r[ rd]. The effective 
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. 

If LD takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware 
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

memory _address _not_aligned 
data_access _exception 

31 30 29 25 24 19 18 

11 1 I rd 1000000 1 

31 30 29 25 24 19 18 

11 1 1 rd 1 000000 1 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 1 

14 13 12 0 

rs1 li= 11 simm13 1 
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LDA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Load Word from Alternate space 

(Privileged Instruction) 

address space - asi 

r[rd]- [r[rsl] + r[rs2)] 

Ida [regaddr] asi, regrd 

SPARe Instruction Set 

LDA 

The LDA instruction moves a word from memory into the destination register, r[rd], The effective 
memory address is a combination of the address space value given in the asi field and the address derived 
by summing the contents of r[rsl] and r[rs2]. 

If LDA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem. 

illegal_instruction (if i = 1) 
privileged_instruction (if S = 0) 
memory_address _ not _aligned 
data_access _exception 

25 24 19 18 

1010000 I rs1 
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LDC 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Load Coprocessor register LDC 

c[rd]- [r[rs1] + (r[rs2] or sign extnd(simm13»] 

ld [address], cregrd 

The LDC instruction moves a word from memory into a coprocessor register, c[ rdJ. The effective 
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. If 
LDC takes a trap, the state of the coprocessor depends on the particular implementation. 

If the instruction following a coprocessor load uses the load's c[ rd] register as a source operand, hard­
ware interlocks add one or more delay cycles to the following instruction depending upon the memory 
subsystem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

cp_disabled 
cp _exception 
memory _address_not_aligned 
data_access _exception 

31 30 29 25 24 19 18 

h d rd 

25 24 19 18 

14 13 

rs1 !i=O! 

14 13 

rs1 !i=1! 
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SPARC Instruction Set 

LDCSR Load Coprocessor State Register LDCSR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

CSR- [r[rsl] + (r[rs2] or sign extnd(simm13»] 

ld [address], %csr 

The LDCSR instruction moves a word from memory into the Coprocessor State Register. The effective 
memory address is derived by summing the contents of r[rsl] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be generated. If 
LDCSR takes a trap, the state of the coprocessor depends on the particular implementation. 

If the instruction following a LDCSR uses the CSR as a source operand, hardware interlocks add one or 
more delay cycles to the following instruction depending upon implementation of the coprocessor. 

Programming note: If Tsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

cp_disabled 
cp _exception 
memory _address_not_aligned 
data_access _exception 

31 30 29 25 24 

11 1 1 rd 1110001 

31 30 29 25 24 

11 1 1 rd ! 110001 

19 18 

! 

19 18 

! 

14 13 12 5 4 0 

rs1 !i=O! ignored ! rs2 ! 

14 13 12 0 

rs1 !i=11 simm13 I 
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LDD 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Load Doubleword LDD 

r[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13»] 

r[rd+ 1]- [(r[rsl] + (r[rs2] or sign extnd(simm13») + 4] 

Idd [address], regrd 

The LDD instruction moves a doubleword from memory into a destination register pair, r[rd] and 
r[rd + 1]. The effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant memory word is always moved into the 
even-numbered destination register and the least significant memory word is always moved into the next 
odd-numbered register (see discussion in Section 2.2.5.1). 

If a data_access_exception trap takes place during the effective address memory access, the destination 
registers remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem. For an LDD, this applies to both destination registers. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

memory _address_ not_aligned 
data_access_exception 

31 30 29 25 24 

11 1 1 rd 1000011 

31 3029 25 24 

11 11 rd 1 000011 

19 18 

1 

19 18 

1 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 1 

14 13 12 0 

rs1 li=11 simm13 I 
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LDDA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Load Doubleword from Alternate space 

address space - asi 

r[rd]- [r[rs1] + r[rs2]] 

(Privileged Instruction) 

r[rd +1]- [r[rs1] + r[rs2] + 4] 

Idda [regaddr] asi, regrd 

SPARe Instruction Set 

LDDA 

The LDDA instruction moves a doubleword from memory into the destination registers, r[rd] and 
r[rd + 1], The effective memory address is a combination of the address space value given in the asi field 
and the address derived by summing the contents of r[ rs1] and r[ rs2]. The most significant memory word 
is always moved into the even-numbered destination register and the least significant memory word is 
always moved into the next odd-numbered register (see discussion in Section 2.2.5.1). 

If a trap takes place during the effective address memory access, the destination registers remain un­
changed. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem. For an LDDA, this applies to both destination registers. 

illegal_instruction (if i = 1) 
privileged jnstruction (if S = 0) 
memory_address_not_aligned 
data_access _exception 

31 30 29 25 24 19 18 

rd 10100111 

5 4 o 

rs1 asi rs2 
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LDDC 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Load Doubleword Coprocessor LDDC 

c[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13»] 

c[rd + 1]- [(r[rsl] + (r[rs2] or sign extnd(simm13») + 4] 

ldd [address], cregrd 

The LDDC instruction moves a doubleword from memory into the coprocessor registers, c[rd] and 
c[ rd + 1]. The effective memory address is derived by summing the contents of r[ rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant memory word is always moved into the 
even-numbered destination register and the least significant memory word is always moved into the next 
odd-numbered register (see discussion in Section 2.2.5.1). 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. If 
LDDC takes a trap, the state of the coprocessor depends on the particular implementation. 

If the instruction following a coprocessor load uses the load's c[ rd] register as a source operand, hard­
ware interlocks add one or more delay cycles to the following instruction depending upon the memory 
subsystem and coprocessor implementation. For an LDDC, this applies to both destination registers. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

cp_disabled 
cp _exception 
memory _address_not_aligned 
data _access_exception 

31 3029 25 24 

11 1 1 rd 1110011 

31 3029 25 24 

11 1 1 rd 1 110011 

19 18 

I 
19 18 

1 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 1 

14 13 12 0 

rs1 li=11 simm13 1 
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LDDF 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Load Doubleword Floating-Point LDDF 

f[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13»] 

f[rd + 1]- [(r[rsl] + (r[rs2] or sign extnd(simmI3») + 4] 

Idd [address],fregrd 

The lDDF instruction moves a doubleword from memory into the floating-point registers, f[rd] and 
f[ rd + I]. The effective memory address is derived by summing the contents of r[ rsl] and either the con­
tents of r[ rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant memory word is always moved into the 
even-numbered destination register and the least significant memory word is always moved into the next 
odd-numbered register (see discussion in Section 2.2.5.1). 

If the PSR's EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If a trap takes place during the effective address memory aecess, the destination registers remain 
unchanged. 

If the instruction following a floating-point load uses the load's f[ rd] register as a source operand, hard­
ware interlocks add one or more delay cycles to the following instruction depending upon the memory 
subsystem. For an lDDF, this applies to both destination registers. 

Programming note: If rsl is set to 0 and i is set to I, any location in the lowest or highest 4 kbytes of an 
address space can be aecessed without setting up a register. 

fp_disabled 
fp _exception· 
memory _address_ not_aligned 
data_aecess_exception 

31 30 29 25 24 

11 1 1 rd 1100011 

31 30 29 25 24 

11 d rd 1 100011 

19 18 14 13 12 5 4 o 

1 rs1 li=ol ignored rs2 

19 18 14 13 12 o 

1 rs1 li=ll simm13 

• NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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LDF 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Load Floating-Point register LDF 

f[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13))] 

ld [address], fregrd 

The LDF instruction moves a word from memory into a floating-point register, f[rd]. The effective 
memory address is derived by summing the contents of r[rsl] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. 

If the PSR's EF bit is set to zero or if no Floating-Point Unit is present, an fp _disabled trap will be gener­
ated. If LDF takes a trap, the contents of the destination register remain unchanged. 

If the instruction following a floating-point load uses the load's f[ rd] register as a source operand, hard­
ware interlocks add one or more delay cycles to the following instruction depending upon the memory 
subsystem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

fp_disabled 
fp _exception' 
memory _address _not_aligned 
data_access_exception 

25 24 19 18 

1100000 1 

31 30 29 25 24 19 18 

1100000 1 

14 13 

rs1 li=ol 

14 13 

rs1 li=11 

12 5 4 0 

ignored 1 rs2 1 

12 0 

simm13 1 

• NOTE: An attempt to execute.aJlll FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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SPARe Instruction Set 

LDFSR Load Floating-Point State Register LDFSR 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

FSR - [r[rs1] + (r[rs2] or sign extnd(simm13»] 

Id [address], %fsr 

The lDFSR instruction moves a word from memory into the floating-point state register. The effective 
memory address is derived by summing the contents of r[ rs1] and either the contents of r[ rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. This instruction will wait for all pending FPops to complete execution before it loads the 
memory word into the FSR. 

IT the PSR's EF bit is set to zero or if no floating-point unit is present, an fp _disabled trap will be gener­
ated. IT lDFSR takes a trap, the contents of the FSR remain unchanged. 

IT the instruction following a lDFSR uses the FSR as a source operand, bardware interlocks add one or 
more cycle delay to the following instruction depending upon the memory subsystem. 

Programming note: IT rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

fp _disabled 
fp_ exception· 
memory _address_ not_aligned 
data_access_ exception 

31 3029 25 24 

11 d rd 1100001 
31 3029 25 24 

11 1 1 rd 1 100001 

19 18 

1 
19 18 

1 

14 13 12 5 4 0 

rs1 11=01 Ignored 1 rs2 1 
14 13 12 0 

rs1 11=11 slmm13 1 

• NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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LDSB 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Load Signed Byte LDSB 

r[rd]- sign extnd[r[rs1] + (r[rs2] or sign extnd(simm13))] 

Idsb [address], regrd 

The LDSB instruction moves a signed byte from memory into the destination register, r[rd]. The effec­
tive memory address is derived by summing the contents of r[ rs1] and either the contents of r[ rs2] if the 
instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruc­
tion if i equals one. The fetched byte is right-justified and sign-extended in r[rd]. 

If LDSB takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem. 

Programming note: If rsl is set to 0 and j is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

data_access _exception 

31 3029 25 24 19 18 14 13 12 5 4 0 

h 1 1 rd 1001001 1 rs1 li=ol ignored 1 rs2 1 

31 3029 25 24 19 18 14 13 12 0 

11 1 1 rd 1 001001 1 rs1 li=11 simm13 1 
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SPARe Instruction Set 

LDSBA Load Signed Byte from Alternate space 

(privileged Instruction) 

LDSBA 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

address space - asi 
r[rd]- sign extnd[r[rsI] + r[rs2]] 

ldsba [regaddr] asi, regrd 

The LDSBAinstruction moves a signed byte from memory into the destination register, r[rd]. The effec­
tive memory address is a combination of the address space value given in the asi field and the address 
derived by summing the contents of r[ rsI] and r[ rs2]. The fetched byte is right-justified and sign-ex­
tended in r[rd]. 

If LDSBA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

illegal_instruction (if i = 1) 
privileged_instruction (if S = 0) 
data_access_exception 

25 24 19 18 

rd I 011001 I rs1 
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LDSH 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Load Signed HalfWord LDSH 

r[rd]- sign extnd[r[rs1] + (r[rs2] or sign extnd(simrn13»] 

Idsh [address], regrd 

The LDSH instruction moves a signed halfword from memory into the destination register, r[ rd]. The 
effective memory address is derived by summing the contents of r[ rs1] and either the contents of r[ rs2] if 
the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the in­
struction if i equals one. The fetched half word is right-justified and sign-extended in r[ rd]. 

If LDSH takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

memory _address _not _aligned 
data_access_exception 

31 30 29 25 24 19 18 

! 001010 ! 

25 24 19 18 

! 001010 I 

14 

rs1 

14 

rs1 
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13 12 5 4 0 

!i=O! ignored ! rs2 ! 

13 12 0 

!i=1! simm13 I D 



SPARe Instruction Set 

LDSHA Load Signed Halfword from Alternate space 

(Privileged Instruction) 

LDSHA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

address space - asi 

r[rd]- sign extnd[r[rsl] + r[rs2]] 

ldsha [regaddr] asi, regrd 

The LDSHA instruction moves a signed halfword from memory into the destination register, r[ rd]. The 
effective memory address is a combination of the address space value given in the asi field and the ad­
dress derived by summing the contents of r[rsl] and r[ rs2]. The fetched halfword is right-justified and 
sign-extended in r[ rd]. 

If LDSHA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

illegal_instruction (if i = 1) 
privileged_instruction (if S=O) 
memory _address_ not_aligned 
data_access _exception 

25 24 19 18 

10110101 rs1 
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SPARe Instruction Set 

LDSTUB Atomic Load/Store Unsigned Byte LDSTUB 

Operation: 

Assembler 
Syntax: 

Description: 

1hIps: 

Format: 

r[rd]- zero extnd[r[rsl] + (r[rs2] or sign extnd(simmI3»] 

[r[rsl] + (r[rs2] or sign extnd(simmI3»]- FFFFFFFF H 

Idstub [address], regrd 

The LDSTIJB instruction moves an unsigned byte from memory into the destination register, r[ rd], and 
rewrites the same byte in memory to all ones, while preventing asynchronous trap interruptions. In a 
multiprocessor system, two or more processors executing atomic load/store instructions which address 
the same byte simultaneously are guaranteed to execute them serially, in some order. 

The effective memory address is derived by summing the contents of r[rsl] and either the contents of 
r[ rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in 
the instruction if i equals one. The fetched byte is right-justified and zero-extended in r[ rd]. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

If LDSTUB takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

data_access_ exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

h 11 rd 1001101 1 rs1 li=ol ignored 1 rs2 1 

31 3029 25 24 19 18 14 13 12 0 

11 1 1 rd 1 001101 1 rs1 11=11 simm13 1 
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SPARe Instruction Set 

LDSTUBA Atomic Load/Store Unsigned Byte LDSTUBA 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

in Alternate space 

(Privileged Instruction) 

address space - asi 

r[rd]- zero extnd[r[rsl] + r[rs2J] 

[r[rsl] + r[rs2]]- FFFFFFFF H 

Idstuba [regaddr] asi, regrd 

The LDSTUBA instruction moves an unsigned byte from memory into the destination register, r[rd], 
and rewrites the same byte in memory to all ones, while preventing asynchronous trap interruptions. In a 
multiprocessor system, two or more processors executing atomic load/store instructions which address 
the same byte simultaneously are guaranteed to execute them in some serial order. 

The effective memory address is a combination of the address space value given in the asi field and the 
address derived by summing the contents of r[rsl] and r[rs2]. The fetched byte is right-justified and 
zero-extended in r[ rd]. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

If LDSTUBA takes a trap, the contents of the memory address remain unchanged. 

illegal_instruction (if i = 1) 
privileged_instruction (if S = 0) 
data_access_exception 

25 24 19 18 

1011101 rs1 
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li=ol asi rs2 
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LDUB 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Load Unsigned Byte LDUB 

r[rd]- zero extnd[r[rsl] + (r[rs2] or sign extnd(simm13»] 

ldub [address], regrd 

The LDUB instruction moves an unsigned byte from memory into the destination register, r[rd]. The 
effective memory address is derived by summing the contents of r[ rsl] and either the contents of r[ rs2] if 
the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the in­
struction if i equals one. The fetched byte is right-justified and zero-extended in rlrd]. 

If LDUB takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

data_access _exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 11 rd 1000001 1 rs1 li=ol ignored 1 rs2 ] 
31 3029 25 24 19 18 14 13 12 0 

11 1 1 rd 1 000001 1 rs1 li=11 simm13 I 
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SPARe Instruction Set 

LDUBA Load Unsigned Byte from Alternate space 

(Privileged Instruction) 

LDUBA 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

address space - asi 
r[rd]- zero extnd[r[rs1] + r[rs211 

lduba [regaddr] asi, regrd 

The LDUBA instruction moves an unsigned byte from memory into the destination register, r[ rd]. The 
effective memory address is a combination of the address space value given in the asi field and the ad­
dress derived by summing the contents of r[rs1] and r[rs2]. The fetched byte is right-justified and 
zero-extended in r[ rd]. 

If LDUBA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

illegal_instruction (if i = 1) 
privileged_instruction (if S = 0) 
data_access _exception 

3130 29 25 24 19 18 

rd 10100011 rs1 
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LDUH 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Load Unsigned Halfword LDUH 

r[rd]- zero extnd[r[rs1] + (r[rs2] or sign extnd(simm13»] 

Iduh [address], regrd 

The LDUH instruction moves an unsigned halfword from memory into the destination register, r[rd]. 
The effective memory address is derived by summing the contents of r[ rs1] and either the contents of 
r[ rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in 
the instruction if i equals one. The fetched halfword is right-justified and zero-extended in r[ rd]. 

If LDUH takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

memory _address_not_aligned 
data_access _exception 

25 24 19 18 

1000010 1 

31 30 29 25 24 19 18 

14 13 

rs1 li=ol 

14 13 

12 5 4 0 

ignored 1 rs2 1 

12 0 

11 11 rd 10000101 rs1 li=11 simm13 1 
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SPARe Instruction Set 

LDUHA Load Unsigned HaltWord from Alternate space 

(Privileged Instruction) 

LDUHA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

address space - asi 
r[rd]- zero extnd[r[rsl] + r[rs2]] 

lduha [regaddr] asi, regrd 

The IDUHA instruction moves an unsigned haIfword from memory into the destination register, r[ rd]. 
The effective memory address is a combination of the address space value given in the asi field and the 
address derived by summing the contents of r[rsl] and r[rs2]. The fetched halfword is right-justified and 
zero-extended in r[rd]. 

If IDUHA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, hardware 
interlocks add one or more delay cycles depending upon the memory subsystem. 

iUegaC instruction (if i = 1) 
privileged_instruction (if S = 0) 
memory_address_not_aligned 
data_access_exception 

25 24 19 18 

10100101 rs1 
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SPARe Instruction Set 

MULScc Multiply Step and modify icc MULScc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

opi = (n XOR v) CONCATr[rsl]<31:1> 
if ('i < 0 > = 0) op2 = 0, else op2 = r[ rs2] or sign extnd(simm13) 
r[rd]- opi + op2 
Y-r[rsl]<O> CONCATY<31:1> 
n- r[rd]<31> 
z- if [r[rd]]=0 then 1, else 0 
v- «opl < 31 > AND op2< 31 > AND not r[rd] < 31 » 

OR (not opl<31 > AND not op2<31 > AND r[rd] <31 ») 
c- «opl<31> AND op2<31» 

OR (not r[rd] AND (opi < 31 > OR op2< 31 ») 

The multiply step instruction can be used to generate the 64-bit product of two signed or unsigned words. 
MULScc works as follows: 

1. The "incoming partial product" in r[ rsl] is shifted right by one bit and the high-order bit is replaced by 
the sign of the previous partial product (n XOR v). This is operandI. 

2. If the least significant bit of the multiplier in the Y register equals zero, then operand2 is set to zero. 
If the LSB of the Y register equal one, then operand2 becomes the multiplicand, which is either the 
contents of r[ rs2] if the instruction i field is zero, or sign extnd(simm13) if the i field is one. Operand2 
is then added to operandI and stored in r[ rd] (the outgoing partial product). 

3. The multiplier in the Y register is then shifted right by one bit and its high-order bit is replaced by the 
least significant bit of the incoming partial product in r[rsl]. 

4. The PSR's integer condition codes are updated according to the addition performed in step 2. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100100 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 100100 1 rs1 li=ll simm13 1 
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OR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Inclusive-Or OR 

r[rd]- r[rsl] OR (r[rs2] or sign extnd(simmI3» 

This instruction does a bitwise logical OR of the contents of register r[ rsl] with either the contents of 
r[ rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit 
field i=I). The result is stored in register r[rd]. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000010 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000010 1 rs1 li=11 simm13 1 
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ORcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Inclusive-Or and modify icc 

r[rd]- r[rsl] OR (r[rs2] or sign extnd(simm13» 

n-r[rd]<31> 
z- if [r[rd]]=0 then 1, else 0 

v-O 

c-O 

SPARe Instruction Set 

ORcc 

This instruction does a bitwise logical OR of the contents of register r[ rsl] with either the contents of 
r[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value contained in the instruction (if bit 
field i = 1). The result is stored in registerr[ rd]. ORcc also modifies all the integer condition codes in the 
manner described above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010010 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 010010 1 rs1 li= 11 simm13 I 
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ORN 

Operation: 

Assembler 
Syntax: 

Description: 

1raps: 

Format: 

SPARe Instruction Set 

Inclusive-Or Not ORN 

r[rd]- r[rsl] OR not(operandZ), where operandZ = (r[rsZ] or sign extnd(simmI3» 

This instruction does a bitwise logical OR of the contents of register r[ rsl] with the one's complement of 
either the contents of r[ rsZ] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in 
the instruction (if bit field i= 1). The result is stored in register r[rd]. 

none 

31 30 29 25 24 19 18 5 4 o 

1000110 1 rs1 Ignored rs2 

12 o 

simm13 
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SPARe Instruction Set 

ORNcc Inclusive-Or Not and modity icc ORNcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd]- r[rs1] OR not(operand2), where operand2 = (r[rs2] or sign extnd(simm13» 

n- r[rd]<31 > 
z- if [r[rdJl=O then 1, else 0 

v-O 

c-O 

This instruction does a bitwise logical OR of the contents of register r[ rs1] with the one's complement of 
either the contents of r[ rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in 
the instruction (ifbit field i = 1). The result is stored in registerr[ rd]. ORNcc also modifies all the integer 
condition codes in the manner described above. 

none 

31 30 29 25 24 19 18 5 4 o 

11 01 rd 10101101 rs1 rs2 

31 30 29 25 24 19 18 o 

11 01 rd 1 010110 1 rs1 simm13 
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SPARe Instruction Set 

RDPSR Read Processor State Register 

(Privileged Instruction) 

RDPSR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rdj-PSR 

rd %psr, regrd 

RDPSR copies the contents of the PSR into the register specified by the rd field. 

privileged-instruction (if S =0) 

3130 29 25 24 19 18 o 

rd 1101001 1 ignored 
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SPARe Instruction Set 

RDTBR Read Trap Base Register 

(privileged Instruction) 

RDTBR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd]-TBR 

rd %tbr, regrd 

RDTBR copies the contents of the TBR into the register specified by the rd field. 

privileged_instruction (if S = 0) 

3130 29 25 24 19 18 

rd 1101011 1 ignored 
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SPARe Instruction Set 

RDWIM Read Window Invalid Mask register 

(Privileged Instruction) 

RDWIM 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rdl-WIM 

rd %wim, regrd 

RDWIM copies the contents of the WIM register into the register specified by the rd field. 

privileged_instruction (if S=O) 

25 24 19 18 

1101010 1 

o 
ignored 
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RDY 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Read Y register RDY 

r[rd]- Y 

rd %y, regrd 

RDY copies the contents of the Y register into the register specified by the rd field. 

none 

25 24 19 18 o 

ignored 
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SPARe Instruction Set 

RESTORE Restore caller's window RESTORE 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

ncwp- CWP + 1 

result- r[rsl] + (r[rs2] or sign extnd(simm13» 

CWP-ncwp 

r[ rd]- result 

RESTORE does not affect condition codes 

RESTORE adds one to the Current Window Pointer (modulo the number of implemented windows) 
and compares this value against the Window Invalid Mask register. If the new window number corre­
sponds to an invalidated window (WIM AND 2"CWP = I), a window_underflow trap is generated. If the 
new window number is not invalid (i.e., its corresponding WIM bit is reset), then the contents of r[ rsl] is 
added to either the contents of r[rs2] (field bit i = I) or to the 13-bit, sign-extended immediate value 
contained in the instruction (field bit i = 0). Because the CWP has not been updated yet, r[ rsl] and r[rs2] 
are read from the currently addressed window (the called window). 

The new CWP value is written into the PSR, causing the previous window (the caller's window) to be­
come the active window. The result of the addition is now written into the r[ rd] register of the restored 
window. 

Note that arithmetic operations involving the CWP are always done modulo the number of implemented 
windows (8 for the CY7C601). 

window_underflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1111101 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 111101 
1 rs1 li= 11 simm13 1 
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RETT 

Operation: 

Assembler 
Syntax: 

Description: 

ncwp- cWP + 1 

ET-l 

PC-nPC 

Return from Trap 

(Privileged Instruction) 

nPC- r[rsl] + (r[rs2] or sign extnd(simm13» 

CWP-ncwp 

S-pS 

rett address 

SPARe Instruction Set 

RETT 

RETT adds one to the Current Window Pointer (modulo the number of implemented windows) and 
compares this value against the Window Invalid Mask register. If the new window number corresponds 
to an invalidated window (WIM AND 2ncwp = 1), a window_underflow trap is generated. If the new 
window number is not invalid (i.e., its corresponding WIM bit is reset), then RETT causes a delayed 
control transfer to the address derived by adding the contents of r[ rsl] to either the contents of r[ rs2] 
(field bit i = 1) or to the 13-bit, sign-extended immediate value contained in the instruction (field bit i = 

0). 

Before the control transfer takes place, the new CWP value is written into the PSR, causing the previous 
window (the one in which the trap was taken) to become the active window. In addition, the PSR's ETbit 
is set to one (traps enabled) and the previous Supervisor bit (PS) is restored to the S field. 

Although in theory RETT is a delayed control transfer instruction, in practice, RETT must always be 
immediately preceded by a JMPL instruction, creating a delayed control transfer couple (see Section 
2.3.3.4.4). This has the effect of annulling the delay instruction. 

If traps were already enabled before encountering the RETT instruction, an illegal_instruction trap is 
generated. If traps are not enabled (ET=O) when the RETTis encountered, but (1) the processor is not 
in supervisor mode (S = 0), or (2) the window underflow condition described above occurs, or (3) if either 
of the two low-order bits of the target address are nonzero, then a reset trap occurs. If a reset trap does 
occur, the tt field of the TBR encodes the trap condition: privileged _instruction, window_underflow, or 
memory_address _not_aligned. 

Programming note: To re-execute the trapping instruction when returning from a trap handler, use the 
following sequence: 

jmpl 

rett 

%17, %0 

%18 

! old PC 

! old nPC 

Note that the CY7C601!611 saves the PC in r[17] (local 1) and the nPC in r[18] (local2) of the trap window upon entering a trap. 

To return to the instruction after the trapping instruction (e.g., when the trapping instruction is emu­
lated), use the sequence: 

jmpl %18, %0 ! old nPC 

rett %18 + 4 ! old nPC + 4 
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RETT 

Thaps: 

Format: 

Return from Trap 

(Privileged Instruction) 

ilIegaUnstruction 
reset (privileged_instruction) 
reset (memory _address_not_aligned) 
reset (window_underflow) 

31 30 29 25 24 19 18 

h 01 ignored 1111001 1 

31 30 29 25 24 19 18 

11 01 ignored 1 111001 1 

14 13 12 

rs1 li=ol 

14 13 12 

rs1 li=11 
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SPARe Instruction Set 

RETT 

5 4 0 

ignored 1 rs2 1 

0 

simm13 1 



SAVE 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Save caller's window 

ncwp-CWP-1 

result- r[rs1] + (r[rs2] or sign extnd(simm13)) 

CWP-ncwp 

r[rd]- result 

SAVE does not affect condition codes 

SPARe Instruction Set 

SAVE 

SAVE subtracts one from the Current Window Pointer (modulo the number of implemented windows) 
and compares this value against the Window lnvalid Mask register. If the new window number corre­
sponds to an invalidated window (WIM AND 2ncwp = 1), a window_overflow trap is generated. If the 
new window number is not invalid (i.e., its corresponding WIM bit is reset), then the contents of r[ rs1] is 
added to either the contents of r[rs2] (field bit i = 1) or to the 13-bit, sign-extended immediate value 
contained in the instruction (field bit i = 0). Because the CWP has not been updated yet, r[ rs1] and r[ rs2] 
are read from the currently addressed window (the calling window). 

The new CWP value is written into the PSR, causing the active window to become the previous window, 
and the called window to become the active window. The result of the addition is now written into the 
r[rd] register of the new window. 

Note that arithmetic operations involving the CWP are always done modulo the number of implemented 
windows (8 for the CY7C601). 

window_overflow 

31 3029 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1111100 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 111100 1 rs1 li=11 simm13 1 
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SPARe Instruction Set 

SETHI Set High 22 bits of r register SETHI 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd] < 31:10 > - imm22 

r[rd] < 9:0> - 0 

sethi const22, regrd 

sethi %hi value, regrd 

SE1HI zeros the ten least significant bits of the contents of r[rd] and replaces its high-order 22 bits with 
imm22. The condition codes are not affected. 

Programmingnote: SE1HI 0, %0 is the preferred instruction to use as a NOp, because it will not increase 
execution time if it follows a load instruction. 

none 

3130 29 25 24 22 21 o 

10 0 I rd I 100 I imm22 
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SLL 

Operation: 

Assembler 
Syntax: 

Description: 

SPARe Instruction Set 

Shift Left Logical SLL 

r[rd]- r[rsl] SLL by (r[rs2] or shcnt) 

SLL shifts the contents of r[ rsl] left by the number of bits specified by the shift count, filling the vacated 
positions with zeros. The shifted results are written into r[rd]. No shift occurs if the shift count is zero. 

If the i bit field equals zero, the shift count for SLL is the least significant five bits of the contents of 
r[rs2]. If the i bit field equals one, the shift count for SLL is the 13-bit, sign extended immediate value, 
simm13. In the instruction format and the operation description above, the least significant five bits of 
simm13 is called shcnt. 

This instruction does not modify the condition codes. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 a 

11 01 rd 1100101 1 rs1 li=ol ignored 1 rs2 I 
31 30 29 25 24 19 18 14 13 12 5 4 a 

11 01 rd I 100101 I rs1 li=11 ignored I shcnt I 
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SRA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Shift Right Arithmetic SRA 

r[ rd)- r[ rsl) SRA by (r[ rs2) or shcnt) 

sra regrsl' relL or _imm, regrd 

SRA shifts the contents of r[ rsl) right by the number of bits specified by the shift count, filling the vacated 
positions with the MSB of r[rsl). The shifted results are written into r[rd). No shift occurs if the shift 
count is zero. 

If the i bit field equals zero, the shift count for SRA is the least significant five bits of the contents of 
r[ rs2). If the i bit field equals one, the shift count for SRA is the 13-bit, sign extended immediate value, 
simm13. In the instruction format and the operation description above, the least significant five bits of 
simm13 is called shcnt. 

This instruction does not modify the condition codes. 

Programming note: A "Shift Left Arithmetic by 1 (and calculate overflow)" can be implemented with an 
ADDcc instruction. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 a 

11 01 rd 1100111 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 5 4 a 

11 01 rd 1 100111 1 rs1 li= 11 ignored 1 shcnt 1 
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SRL 

Operation: 

Assembler 
Syntax: 

Description: 

SPARe Instruction Set 

Shift Right Logical SRL 

r[rd]- r[rsl] SRL by (r[rs2] or shcnt) 

SRL shifts the contents of r[ rsl] right by the number of bits specified by the shift count, filling the vacated 
positions with zeros. The shifted results are written into r[ rd]. No shift occurs if the shift count is zero. 

If the i bit field equals zero, the shift count for SRL is the least significant five bits of the contents of 
r[ rs2]. If the i bit field equals one, the shift count for SRL is the 13-bit, sign extended immediate value, 
simm13. In the instruction format and the operation description above, the least significant five bits of 
simm13 is called shcnt. 

This instruction does not modify the condition codes. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100110 1 r51 li=ol ignored 1 r52 I 
31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1 100110 1 r51 li=ll ignored 1 5hent 1 
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ST 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Store Word ST 

[r[rs1] + (r[rs2] or sign extnd(simm13»]- r[rd] 

st regrd, [address] 

The ST instruction moves a word from the destination register, r[ rd], into memory. The effective 
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. 

If ST takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to a and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

memory _ address_not _aligned 
data_access _exception 

31 30 29 25 24 19 18 

1000100 1 

25 24 19 18 

1000100 1 

14 13 

rs1 li=ol 

14 13 

rs1 li= 11 
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12 5 4 a 

ignored 1 rs2 1 
12 a 

simm13 1 



STA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Store Word into Alternate space STA 
(Privileged Instruction) 

address space - asi 

[r[ rsl] + r[rs2]]- r[rd] 

sta regrd, [regaddr] asi 

The STA instruction moves a word from the destination register, r[ rd], into memory. The effective 
memory address is a combination of the address space value given in the asi field and the address derived 
by summing the contents of r[rsl] and r[rs2]. 

If STA takes a trap, the contents of the memory address remain unchanged. 

illegal_instruction (if i = 1) 
privileged_instruction (if S = 0) 
memory_address_not_aligned 
data_access_exception 

25 24 19 18 

1010100 I rs1 
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li=ol asi 

o 
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8TB 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Store Byte 

[r[rs1] + (r[rs2] or sign extnd(simm13»]- r[rd] 

stb regrd, [address] 

synonyms: stub, stsb 

SPARe Instruction Set 

8TB 

The STB instruction moves the least significant byte from the destination register, r[rd], into memory. 
The effective memory address is derived by summing the contents of r[rs1] and either the contents of 
r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in 
the instruction if i equals one. 

If STB takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

data_access_exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 1 1 rd 1000101 1 rs1 li=ol ignored 1 rs2 1 
31 3029 25 24 19 18 14 13 12 0 

11 1 1 rd 1 000101 1 rs1 li=11 simm13 1 

6-100 



STBA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Store Byte into Alternate space 

address space - asi 

[r[rsl) + r[rs2))- r[rd) 

stba regrd, [regaddr) asi 

synonyms: stuba, stsba 

(Privileged Instruction) 

SPARe Instruction Set 

STBA 

The STBA instruction moves the least significant byte from the destination register, r[ rd), into memory. 
The effective memory address is a combination of the address space value given in the asi field and the 
address derived by summing the contents of r[rsl) and r[rs2). 

If STBA takes a trap, the contents of the memory address remain unchanged. 

illegal_instruction (if i= 1) 
privileged_instruction (if S=O) 
data_access _exception 

25 24 19 18 

rd ! 010101 ! rs1 
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STC 

Operation: 

Assembler 
Syntax: 

Description: 

1htps: 

Format: 

SPARC Instruction Set 

Store Coprocessor register STC 

[r[rsl] + (r[rs2] or sign extnd(simm13))]- c[rd] 

st cregrd, [address] 

The STC instruction moves a word from a coprocessor register, c[rd], into memory. The effective 
memory address is derived by summing the contents ofr[rsl] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. 

If the PSR's Be bit is set to zero or if no coprocessoris present, a cp_disabled trap will be generated. If 
STC takes a trap, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

cp_disabled 
cp_exception 
memory _address_ not_aligned 
data_access_exception 

25 24 19 18 

25 24 19 18 

rs1 

rs1 
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14 13 

li=ol 

14 13 

1,=11 

12 5 4 0 

ignored 1 rs2 1 

12 0 

simm13 1 



SPARC Instruction Set 

STCSR Store Coprocessor State Register STCSR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

[r[rsl] + (r[rs2] or sign extnd(simmI3»]- CSR 

st %csr, [address] 

The STCSR instruction moves the contents of the Coprocessor State Register into memory. The effec­
tive memory address is derived by summing the contents of r[ rsl] and either the contents of r[ rs2] if the 
instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruc­
tion if i equals one. 

1f the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. 1f 
STCSR takes a trap, the contents of the memory address remain unchanged. 

Programming note: 1f rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

cp_disabled 
cp_exception 
memory_address _not_aligned 
data_access _exception 

31 30 29 25 24 

11 1 1 rd 1110101 

31 3029 25 24 

11 1 1 rd 1 110101 

19 18 

1 
19 18 

1 

14 13 12 5 4 0 

rs1 11=01 ignored 1 rs2 1 
14 13 12 0 

rs1 11=11 simm13 1 
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STD 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

SPARe Instruction Set 

Store Doubleword STD 

[r[rs1] + (r[rsZ] or sign extnd(simm13»]- r[rd] 

[r[rs1] + (r[rsZ] or sign extnd(simm13» + 4]- r[rd + 1] 

std regrd, [address] 

The SID instruction moves a doubleword from the destination register pair, r[ rd] and r[ rd + 1], into 
memory. The effective memory address is derived by summing the contents of r[ rs1] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant word in the even-numbered destination 
register is written into memory at the effective address and the least significant memory word in the next 
odd-numbered register is written into memory at the effective address + 4. 

If a data_access_ exception trap takes place during the effective address memory access, memory remains 
unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

memory_address_not_aligned 
data_access_ exception 

31 30 29 25 24 

11 1 1 rd 1000111 

31 3029 25 24 

11 d rd 1 0001 11 

19 18 

1 

19 18 

1 

14 13 12 5 4 0 

rs1 11=01 ignored 1 rs2 I 
14 13 12 0 

rs1 11=11 slmm13 I 

6-104 



~~~ 
---"~ , SEMICONDUCI'OR 

SPARe Instruction Set 

STDA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Store Doubleword into Alternate space 

(Privileged Instruction) 

address space - asi 

[r[rs1] + (r[rs2] or sign extnd(simm13»]- r[rd] 

[r[rs1] + (r[rs2] or sign extnd(simm13» + 4]- r[rd + 1] 

stda regrd, [regaddr] asi 

STDA 

The SIDA instruction moves a doubleword from the destination register pair, r[rd] and r[ rd + 1], into 
memory. The effective memory address is a combination of the address space value given in the asi field 
and the address derived by summing the contents of r[ rs1] and r[ rs2]. The most significant word in the 
even-numbered destination register is written into memory at the effective address and the least signifi­
cant memory word in the next odd-numbered register is written into memory at the effective address + 
4. 

If a data_access _exception trap takes place during the effective address memory access, memory remains 
unchanged. 

illegal_instruction (if i = 1) 
privileged _instruction (if S = 0) 
memory _address_not _aligned 
data_access _exception 

25 24 19 18 

rd rs1 
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STDC 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Store Doubleword Coprocessor STDC 

[r[rsl] + (r[rs2] or sign extnd(simm13»]- c[rd] 

[r[rsl] + (r[rs2] or sign extnd(simm13» + 4]- c[rd + 1] 

std cregrd, [address] 

The SIDC instruction moves a doubleword from the coprocessor register pair, c[ rd] and c[ rd + 1], into 
memory. The effective memory address is derived by summing the contents of r[ rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant word in the even-numbered destination 
register is written into memory at the effective address and the least significant memory word in the next 
odd-numbered register is written into memory at the effective address + 4. 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. If a 
data_access_exception trap takes place during the effective address memory access, memory remains 
unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

cp_disabled 
cp _exception 
memory _ address_ not_aligned 
data_access _exception 

31 30 29 25 24 

Q rd 1110111 

31 30 29 25 24 

11 1 1 rd 1 110111 

19 18 

1 

19 18 

1 

14 13 12 5 4 o 

rs1 li=ol ignored rs2 

14 13 12 o 

rs1 li= 11 simm13 
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SPARe Instruction Set 

STDCQ Store Doubleword Coprocessor Queue 

(Privileged Instruction) 

STDCQ 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

[r[rs1] + (r[rs2] or sign extnd(simm13))]- CQ.ADDR 

[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4]-CQ.lNS1R 

std %cq, [address] 

The STDCQ instruction moves the front entry of the Coprocessor Queue into memory. The effective 
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. The address portion of the queue entry is written into memory at the effective address 
and the instruction portion of the entry is written into memory at the effective address + 4. 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. If a 
data_access_exception trap takes place during the effective address memory access, memory remains 
unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

cp_disabled 
cp _exception 
privileged_instruction (if S = 0) 
memory _address_not_aligned 
data_access _exception 

31 30 29 25 24 19 18 

11 1 1 rd 1110110 1 

31 30 29 25 24 19 18 

11 1 1 rd 1 110110 1 

14 13 12 5 4 0 

r51 li=ol ignored 1 r52 1 

14 13 12 0 

r51 li=11 5imm13 I 
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STDF 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Store Doubleword Floating-Point STDF 

[r[rsl] + (r[rs2] or sign extnd(simm13»]- f[rd] 

[r[rsl] + (r[rs2] or sign extnd(simm13» + 4]- fIrd + 1] 

std jregrd, [address] 

The STDP instruction moves a doubleword from the floating-point register pair, f[rd] and f[rd + 1], into 
memory. The effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant word in the even-numbered destination 
register is written into memory at the effective address and the least significant memory word in the next 
odd-numbered register is written into memory at the effective address + 4. 

If the PSR's EPbit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If a trap takes place, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

fp _disabled 
fp _exception' 
memory_address _ not_aligned 
data_access _exception 

31 30 29 25 24 

11 1 1 rd 1100111 

31 30 29 25 24 

11 1 1 rd 1 100111 

19 18 

1 

19 18 

1 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 1 

14 13 12 0 

rs1 li= 11 simm13 1 

... NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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SPARe Instruction Set 

STDFQ Store Doubleword Floating-Point Queue 

(Privileged Instruction) 

STDFQ 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

[r[rsl] + (r[rs2] or sign extnd(simm13))]- FQ.ADDR 

[r[rsl] + (r[rs2] or sign extnd(simm13)) + 4]- FQ.INSTR 

std %fq, [address] 

The STDFQ instruction moves the front entry of the floating-point queue into memory. The effective 
memory address is derived by summing the contents of r[ rsl] and either the contents of r[ rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. The address portion of the queue entry is written into memory at the effective address 
and the instruction portion ofthe entry is written into memory at the effective address + 4. If the FPU is 
in exception mode, the queue is then advanced to the next entry, or it becomes empty (as indicated by the 
qne bit in the FSR). 

If the PSR's EFbit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If a trap takes place, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

fp_disabled 
fp _exception • 
privUeged _instruction (if S = 0) 
memory _ address_ not_aligned 
data_access _exception 

31 30 29 25 24 19 18 

11 1 1 rd 1100110 1 
31 30 29 25 24 19 18 

11 d rd 1 100110 1 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 1 
14 13 12 0 

rs1 li= 11 simm13 1 

* NOTE: An attempt to execute.any. FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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STF 

Operation: 

Assembler 
Syntax: 

Description: 

lhtps: 

Format: 

SPARe Instruction Set 

Store Floating-Point register STF 

[r[rs1] + (r[rs2] or sign extnd(simm13»]- f[rd] 

st fregrd, [address] 

The S1F instruction moves a word from a floating-point register, f[ rd], into memory. The effective 
memory address is derived by summing the contents of r[ rs1] and either the contents of r[ rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. 

If the PSR's EFbit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If S1F takes a trap, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

fp_disabled 
fp _exception' 
memory _address_not_aligned 
data_access _exception 

25 24 19 18 

1100100 1 

25 24 19 18 

1100100 1 

14 13 

rs1 li=ol 

14 13 

rs1 li=11 

12 5 4 0 

ignored 1 rs2 1 

12 0 

simm13 I 

• NOTE: An attempt to execute JIII¥ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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SPARe Instruction Set 

STFSR Store Floating-Point State Register STFSR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

[r[rsl) + (r[rs2) or sign extnd(simm13»)- FSR 

st %fsr, [address) 

The STFSR instruction moves the contents of the Floating-Point State Register into memory. The ef­
fective memory address is derived by summing the contents of r[rsl) and either the contents of r[ rs2) if 
the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the in­
struction if i equals one. This instruction will wait for all pending FPops to complete execution before it 
writes the FSR into memory. 

If the PSR's EFbit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If STFSR takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

fp_disabled 
fp _exception' 
memory_address_not_aligned 
data_access _exception 

31 30 29 25 24 

11 1 1 rd 1100101 

31 30 29 25 24 

11 1 1 rd 1 100101 

19 18 

1 rs1 

19 18 

1 rs1 

14 13 12 5 4 a 

li=ol ignored 1 rs2 1 
14 13 12 a 

li=11 simm13 1 

'" NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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STH 

Operation: 

Assembler 
Syntax: 

Description: 

'Iraps: 

Format: 

SPARe Instruction Set 

Store HaItword STH 

[r[rsl] + (r[rs2] or sign extnd(simm13»]- r[rd] 

sth regrd, [address] synonyms: stuh, stsh 

The STH instruction moves the least significant halfword from the destination register, r[ rd], into 
memory. The effective memory address is derived by summing the contents of r[ rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. 

If STH takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to I, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

memory _ address_ not_aligned 
data_access _exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000110 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000110 1 rs1 li=ll simm13 1 
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STHA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Store HalfWord into Alternate space 

(Privileged Instruction) 

address space - asi 

[r[rs1] + (r[rs2] or sign extnd(simm13»]- r[rd] 

stha regrd, [address] 

synonyms: stuha, stsha 

SPARe Instruction Set 

STHA 

The STHA instruction moves the least significant halfword from the destination register, r[ rd], into 
memory. The effective memory address is a combination of the address space value given in the asi field 
and the address derived by summing the contents of r[rs1] and r[rs2]. 

If STHA takes a trap, the contents of the memory address remain unchanged. 

illegal_instruction (if i= 1) 
privileged_instruction (if S = 0) 
memory_address_not_aligned 
data_access _exception 

25 24 19 18 

rs1 
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SUB 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

SPARe Instruction Set 

Subtract SUB 

r[rd]- r[rsl] . (r[rs2] or sign extnd(simm13)) 

The SUB instruction subtracts either the contents of the register named in the rs2 field, r[ rs2], if the 
instruction's i bit equals zero, or the 13·bit, sign·extended immediate operand contained in the instruc· 
tion if i equals one, from register r[rsl]. The result is placed in the register specified in the rd field. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000100 I rs1 li=ol ignored 1 rs2 ! 

31 30 29 25 24 19 18 14 13 12 0 

h 01 rd 1 000100 I rs1 li=1! simm13 ! 
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SPARe Instruction Set 

SUBcc Subtract and modify icc SUBcc 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

r[rd)- r[rs1) - operand2, where operand2 = (r[rs2] or sign extnd(sirnm13» 

n- r[rd) < 31 > 
z - if r[rd) = 0 then 1, else 0 

v- (r[rs1)< 31 > AND not operand2<31 > AND not r[rd)<31 » 
OR (not r[rs1] < 31 > AND operand2<31 > AND r[rd]<31 » 

c- (not r[rs1) < 31 > AND operand2<31 » 
OR (r[rd) <31 > AND (not r[rsl] < 31 > OR operand2<31 ») 

subcc regrsJ, re/Lor_imm, regrd 

The SUBcc instruction subtracts either the contents of register r[ rs2) (if the instruction's i bit equals 
zero) or the 13-bit, sign-extended immediate operand contained in the instruction (if i equals one) from 
register r[ rsl]. The result is placed in register r[ rdJ. In addition, SUBccmodifies all the integer condition 
codes in the manner described above. 

Programming note: A SUBcc instruction with rd = 0 can be used for signed and unsigned integer com-
parison. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010100 1 r51 li=ol ignored 1 r52 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 010100 1 r51 li=ll 5imm13 1 
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SUBX 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

SPARC Instruction Set 

Subtract with Carry SUBX 

r[rd)- r[rs1) - (r[rs2) or sign extnd(simm13» - c 

SUBX subtracts either the contents of register r[ rs2) (if the instruction's i bit equals zero) or the 13-bit, 
sign-extended immediate operand contained in the instruction (if i equals one) from register r[ rsl]. It 
then subtracts the PSR's carry bit (c) from that result. The final result is placed in the register specified in 
the rd field. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1001100 1 r51 li=ol ignored 1 r52 I 
31 3029 25 24 19 18 14 13 12 0 

11 01 rd 1 001100 I r51 li=11 5imm13 I 
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SPARC Instruction Set 

SUBXcc Subtract with Carry and modify icc SUBXcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd]- r[rsl] - operand2 - c, where operand2 = (r[rs2] or sign extnd(simm13» 

n-r[rd]<31> 

z- if r[rd] =0 then I, else 0 

v- (r[rsl]<31 > AND not operand2<31> AND not r[rd] < 31> ) 

OR (not r[rsl] <31 > AND operand2<31> AND r[rd]<31» 

c- (not r[rsl] < 31 > AND operand2<31» 

OR (r[rd]<31 > AND (not r[rsl] <31 > OR operand2<31 ») 

SUBXcc subtracts either the contents of register r[ rs2] (if the instruction's i bit equals zero) or the 13-bit, 
sign-extended immediate operand contained in the instruction (if i equals one) from register r[ rsl]. It 
then subtracts the PSR's carry bit (c) from that result. The final result is placed in the register specified in 
the rd field. In addition, SUBXcc modifies all the integer condition codes in the manner described 
above. 

none 

31 3029 25 24 19 18 14 13 12 5 4 0 

h 01 rd 10111001 rs1 11=01 Ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 011100 1 rs1 11=11 slmm13 1 
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SWAP 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Swap rregister with memory 

word- [r[rs1) + (r[rs2) or sign extnd(simm13») 

temp- r[rd) 

r[rd)-word 

r[rsI) + (r[rs2) or sign extnd(simm13»- temp 

swap [source), regrd 

SPARe Instruction Set 

SWAP 

SWAP atomically exchanges the contents of r[rd) with the contents of a memory location, i.e., without 
allowing asynchronous trap interruptions. In a multiprocessor system, two or more prQcessors executing 
SWAP instructions simultaneously are guaranteed to execute them serially, in some order. 

The effective memory address is derived by summing the contents ofr[ rs1) and either the contents of 
r[ rs2) if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in 
the instruction if i equals one. 

If SWAP takes a trap, the contents of the memory address and the destination register remain un­
changed. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

memory _ address_ not_aligned 
data_access _exception 

31 30 29 25 24 

11 1 1 rd 1001111 

31 30 29 25 24 

11 1 I rd I 001111 

19 18 

1 

19 18 

I 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 I 
14 13 12 0 

rs1 li=ll simm13 I 
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SPARe Instruction Set 

SWAPA Swap r register with memory in Alternate space SWAPA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

address space - asi 

word- [r[rsl] + r[rs2]] 

temp-r[rd] 

r[rd]-word 

[r[rsl] + r[rs211- temp 

swapa [regsource] asi, relJrd 

(Privileged Instruction) 

SW APA atomically exchanges the contents of r[ rd] with the contents of a memory location, i.e., without 
allowing asynchronous trap interruptions. In a multiprocessor system, two or more processors executing 
SWAPA instructions simultaneously are guaranteed to execute them serially, in some order. 

The effective memory address is a combination of the address space value given in the asi field and the 
address derived by summing the contents of r[rsl] and r[rs2]. 

If SW APA takes a trap, the contents of the memory address and the destination register remain un­
changed. 

illegal_instruction (if i= 1) 
privileged_instruction (if S = 0) 
memory_address_not_aligned 
data_access _exception 

3130 29 25 24 19 18 

rd 10111111 rsl 
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SPARe Instruction Set 

TADDcc Tagged Add and modify icc TADDcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rdl- r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13)) 

n-r[rd]<31> 
z- if r[rd]=0 then 1, else 0 

v- (r[rs1] < 31 > AND operand2< 31 > AND not r[rd] < 31 » 

OR (not r[rs1] <31 > AND not operand2<31 > AND r[rd]<31» 

OR (r[rs1]< 1:0> #- 0 OR operand2< 1:0> #- 0) 

c- (r[rs1]<31> AND operand2<31 > 

OR (not r[rd] < 31 > AND (r[rsl] < 31 > OR operand2< 31 ») 

TADDcc adds the contents of r[ rs1] to either the contents of r[rs2] if the instruction's i bit equals zero, or 
to a 13-bit, sign-extended immediate operand if i equals one. The result is placed in the register specified 
in the rd field. In addition to the normal arithmetic overflow, an overflow condition also exists if bit 1 or 
bit 0 of either operand is not zero. TADDcc modifies all the integer condition codes in the manner de­
scnbed above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100000 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 100000 1 rs1 li=11 slmm13 I 
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SPARe Instruction Set 

TADDccTV Tagged Add (modifY icc) Trap on Overflow TADDccTV 

Operation: 

Assembler 
Syntax: 

Description: 

'IJoaps: 

Format: 

result- r[rs1] + operand2, where operand 2 = (r[rs2] or sign extnd(simm13» 

tv- (r[rs1] <31 > AND operand2<31 > AND not r[rd]<31 » 
OR (not r[rs1] < 31 > AND not operand2< 31 > AND r[rd] < 31 » 
OR (r[ rs1] < 1:0> "" 0 OR operand2 < 1:0> "" 0) 

if tv = 1, then tag overflow trap; else 

n- r[rd]<31 > 

z - if r[ rd] = 0 then 1, else 0 

v-tv 

c- (r[rs1] < 31 > AND operand2< 31 > 

OR (not r[rd] <31 > AND (r[rs1]< 31 > OR operand2<31 ») 

r[rd]- result 

TADDcc1V adds the contents of r[ rs1] to either the contents of r[ rs2] if the instruction's ibit equals zero, 
or to a 13-bit, sign-extended immediate operand if j equals one. In addition to the normal arithmetic 
overflow, an overflow condition also exists if bit 1 or bit 0 of either operand is not zero. 

IfTADDcc1V detects an overflow condition, a taILoverfiow trap is generated and the destination regis­
ter and condition codes remain unchanged. If no overflow is detected, TADDcc1V places the result in 
the register specified in the rd field and modifies all the integer condition codes in the manner described 
above (the overflow bit is, of course, set to zero). 

taIL overflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100010 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 100010 
1 rs1 li=11 simm13 I 
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Ticc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Trap on integer condition codes 

If condition true, then trap_instruction; 

tt-128 + [r[rs1] + (r[rs2] or sign extnd(simm13»] <6:0> 

elsePC-nPC 

nPC-nPC + 4 

ta{,a} label 
tn{,a} label 
tne{,a} label 
te{,a} label 
tg{,a} label 

tle{,a} label 
tge{,a} label 
tI{,a} label 
tgu{,a} label 
tleu{,a} label 
tcc{,a} label 
tcs{,a} label 
tpos{,a} label 
tneg{,a} label 
tvc{,a} label 
tvs{,a} label 

synonym: tnz 
synonym: tz 

synonym: tgeu 
synonym: tlu 

SPARe Instruction Set 

Ticc 

A Ticc instruction evaluates specific integer condition code combinations (from the PSR's icc field) 
based on the trap type as specified by the value in the instruction's cond field. If the specified combina­
tion of condition codes evaluates as true, and there are no higher-priority traps pending, then a trap_in­
struction trap is generated. If the condition codes evaluate as false, the trap is not generated. 

If a trap_instruction trap is generated, the It field of the Trap Base Register (TBR) is written with 128 
plus the least significant seven bits of r[rs1] plus either r[rs2] (bit field i =0) or the 13-bit sign-extended 
immediate value contained in the instruction (bit field i = 1). See Section 2.7 for the complete definition 
of a trap. 

trap _instruction 
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Ticc 

Format: 

SPARe Instruction Set 

'frap on integer condition codes Ticc 

Mnemonic Condo Operation icc Test 

TN 0000 'Itap Never No test 

TE 0001 'Itap on Equal z 

TLE 0010 'Itap on Less or Equal zOR(nXOR v) 

TL ·0011 'Itap on Less nXORv 

TLEU 0100 'Itap on Less or Equal, Unsigned cORz 

TCS 0101 'Itap on Carry Set (Less then, Unsigned) c 

TNEG 0110 'Itap on Negative n 

TVS 0111 nap on oVerflow Set v 

TA 1000 'Itap Always No test 

TNE 1001 'Itap on Not Equal not z 

TG 1010 nap on Greater not(z OR (n XOR v» 

TGE 1011 'Itap on Greater or Equal not(n XOR v) 

TGU 1100 nap on Greater, Unsigned not(c OR z) 

TCC 1101 'Itap on Carry Clear (Greater than or note 
Equal, Unsigned) 

TPOS 1110 nap on Positive not n 

TVC 1111 'Itap on oVerflow Clear not v 

31 30 29 28 2524 19 18 14 13 12 5 4 0 

h 0 Ilgn.1 cond·11 1 1 0 1 0 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 28 2524 19 18 

11 0 1 ign·1 cond·11 1 1 0 1 0 1 rs1 

Ign. = ignored 
condo = condition 
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SPARe Instruction Set 

TSUBcc Tagged Subtract and modity icc TSUBcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[reI]- r[rsl] - operand2, where operand2 = (r[rsZ] or sign extnd(simm13» 

n- r[rd]<31> 

z - if r[ rd] = 0 then 1, else 0 
v- (r[rsl] < 31 > AND not operand2<31 > AND not r[reI] < 31 » OR (not r[rsl]<31 > 

AND operand2<31> AND r[reI] <31 > ) OR (r[rsl] < 1:0> ¥= 0 OR operand2< 1:0> ¥= 0) 

c- (not r[rsl] < 31> AND operand2< 31 > 

OR (r[ rei] < 31 > AND (not r[ rsl] < 31 > OR operand2 < 31 > » 

TSUBcc subtracts either the contents of registerr[rs2] (if the instruction's i bit equals zero) or the 13-bit, 
sign-extended immediate operand contained in the instruction (if i equals one) from register r[ rsl]. The 
result is placed in the register specified in the rd field. In addition to the normal arithmetic overflow, an 
overflow condition also exists if bit 1 or bit 0 of either operand is not zero. TSUBcc modifies all the 
integer condition codes in the manner described above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100001 1 rs1 11=01 ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 100001 1 rs1 11=11 slmm13 1 
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SPARe Instruction Set 

TSUBccTV Tagged Subtract (modify icc) TSUBccTV 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Trap on Overflow 

result- r[rsl) - operand2, where operand2 = (r[rs2) or sign extnd(simm13» 

tv- (r[rsl) <31 > AND not operand2< 31 > AND not r[rd) < 31 » OR (not r[rsl) < 31 > 
AND operand2< 31 > AND r[rd) < 31 » 

OR (r[rsl)< 1:0 > "'" 0 OR operand2< 1:0> "'" 0) 
if tv = 1, then tag overflow trap; else 

n-r[rd)<31> 

z - if r[rd) =0 then 1, else 0 

v-tv 
c- (not(r[rsl) < 31 » AND operand2< 31 > OR 

(r[rd)< 31 > AND (not(r[rsl) < 31 » OR operand2< 31 ») 
r[ rd)- result 

TSUBcc1V subtracts either the contents of register r[ rs2) (if the instruction's i bit equals zero) or the 
13-bit, sign-extended immediate operand contained in the instruction (if i equals one) from register 
r[rsl). In addition to the normal arithmetic overflow, an overflow condition also exists if bit lor bit 0 of 
either operand is not zero. 

If TSUBcc1V detects an overflow condition, a tag_overflow trap is generated and the destination regis­
ter and condition codes remain unchanged. If no overflow is detected, TSUBcc1V places the result in 
the register specified in the rd field and modifies all the integer condition codes in the manner described 
above (the overflow bit is, of course, set to zero). 

tag_overflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100011 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I 100011 I rs1 li=11 simm13 I 
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SPARe Instruction Set 

UNIMP Unimplemented instruction UNIMP 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

illegal instruction trap 

unimp const22 

Executing the UNIMP instruction causes an immediate illegal_instruction trap. The value in the 
const22 field is ignored. . 

Programming note: UNIMP can be used as part of the protocol for calling a function that is expected to 
return an aggregate value, such as a C-Ianguage structure. 

1. An UNIMP instruction is placed after (not in) the delay slot after the CALL instruction in the calling 
function. 

2. If the called function is expecting to return a structure, it will find the size of the structure that the 
caller expects to be returned as the const22 operand of the UNIMP instruction. The called function 
can check the opcode to make sure it is indeed UNIMP. 

3. If the function is not going to return a structure, upon returning, it attempts to execute UNIMP rath­
er than skipping over it as it should. This causes the program to terminate. The behavior adds some 
run-time checking to an interface that cannot be checked properly at compile time. 

illegal_instruction 

31 30 29 25 24 22 21 o 

100 1 ignored 1 000 1 const22 
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SPARe Instruction Set 

WRPSR Write Processor State Register 

(Privileged Instruction) 

WRPSR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

PSR - r[rs1] XOR (r[rs2] or sign extnd(simm13» 

wr regrs1, refLor_imm, %psr 

WRPSR ooes a bitwise logical XOR of the contents of register r[ rs1] with either the contents of r[rs2] (if 
bit field i = 0) or the 13-bit sign-extended immediate value contained in the instruction (if bit field i = 1). 
The result is written into the writable subfields of the PSR. However, if the result's CWP field would 
point to an unimplemented window, an illegal_instruction trap is generated and the PSR remains un· 
changed. 

WRPSR is a delayed-write instruction: 

1. If any of the three instructions following a WRPSR uses any PSR field that WRPSR modified, the 
value of that field is unpredictable. Note that any instruction which references a non-global register 
makes use of the CWp, so following WRPSR with three NOPs would be the safest course. 

2. If a WRPSR instruction is updating the PSR's Processor InterrupfLevel (PIL) to a new value and is 
simultaneously setting Enable Traps (ET) to one, this could result in an interrupt trap at a level equal 
to the old PIL value. 

3. If any of the three instructions after a WRPSR instruction reads the modified PSR, the value read is 
unpredictable. 

4. If any of the three instructions after a WRPSR is trapped, a subsequent RDPSR in the trap handler 
will get the register's new value. 

Programming note: Two WRPSR instructions should be used when enabling traps and changing the PIL 
value. The first WRPSR should specify ET = 0 with the new PIL value, and the second should specify 
ET= 1 with the new PIL value. 

illegal_instruction 
privileged_instruction (if S = 0) 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored 1110001 1 rs1 li=ol ignored 
1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 
110001 

1 rs1 li=11 simm13 1 
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SPARe Instruction Set 

WRTBR Write Trap Base Register 

(Privileged Instruction) 

WRTBR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Fotmat: 

TBR - r[rs1] XOR (r[rs2] or sign extnd(simm13» 

WRTBR does a bitwise logical XOR of the contents of register r[ rs1] with either the contents of r[ [s2] (if 
bit field i = 0) or the 13-bit sign-extended immediate value contained in the instruction (if bit field i = 1). 
The result is written into the nap Base Address field of the TBR. 

WRTBR is a delayed-write instruction: 

1. If any of the three instructions following a WRTBR causes a trap, the TBA used may be either the old 
or the new value. 

2. If any of the three instructions after a WRTBR is trapped, a subsequent RDTBR in the trap handler 
will get the register's new TBA value. 

privileged_instruction (if S =0) 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored 1110011 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 110011 1 rs1 li=ll simm13 1 
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WRWIM Write Window Invalid Mask register WRWIM 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

(Privileged Instruction) 

WIM - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

WRWIM does a bitwise logical XOR of the contents of register r[ rsl] with either the contents of r[ rs2] (if 
bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit field i = 1). 
The result is written into the writable bits of the WIM register. 

WRWIM is a delayed-write instruction: 

1. If any of the three instructions following a WRWIM is a SAVE, RESTORE, or RETT, the occurrence 
of window_overflow and window_underflow is unpredictable. 

2. If any of the three instructions after a WRWIM instruction reads the modified WIM, the value read is 
unpredictable. 

3. If any of the three instructions after a WRWIM is trapped, a subsequent RDWIM in the trap handler 
will get the register's new value. 

privileged_instruction (if S = 0) 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored 1110010 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 110010 1 rs1 li=11 simm13 1 
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WRY 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Write Y register WRY 

Y - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

WRY does a bitwise logical XOR of the contents of register r[ rsl] with either the contents of r[ rs2] (if bit 
field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit field i = 1). 
The result is written into the Y register. 

WRY is a delayed-write instruction: 

1. If any of the three instructions following a WRY is a MULScc or a RDY, the value oj Y used is unpre­
dictable. 

2. If any of the three instructions after a WRY instruction reads the modified Y register, the value read 
is unpredictable. 

3. If any of the three instructions after a WRY is trapped, a subsequentRDY in the trap handler will get 
the register's new value. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

h 01 ignored 1110000 I rsl li=ol Ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

h 01 ignored 1110000 I rsl li=ll simm13 I 
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XNOR Exclusive-Nor XNOR 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

r[rd] - r[rs1] XOR not(r[rs2] or sign extnd(simm13» 

This iostruction does a bitwise logical XOR of the contents of register r[rs1] with the one's complement 
of either the contents of r[ rs2] (if bit field i = 0) or the 13-bit sign-extended immediate value contained in 
the iostruction (if bit field i = 1). The result is stored io register r[ rd]. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000111 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000111 1 rs1 li=11 simm13 1 
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XNORcc Exclusive-Nor and modify icc 

Operation: 

Assembler 

r[rd] - r[rsl] XOR not(r[rs2] or sign extnd(simm13» 

n - r[rd]<31> 
z - if r[rd] =0 then 1, else 0 

v- 0 
c- 0 

Syntax: xnorcc reg,.], re/LOT_imm, regrrl 

SPARe Instruction Set 

XNORcc 

Description: 1bis instruction does a bitwise logical XOR of the contents of register r[ rsl] with the one's complement 
of either the contents of r[ rs2] (ifbit field i = 0) or the 13-bit, sign-extended immediate value contained in 
the instruction (if bit field i= 1). The result is stored in register qed]. XNORcc also modifies all the 
integer condition codes in the manner described above. 

1i'aps: none 

Fonnat: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010111 1 rs1 11=01 Ignored 
1 

rs2 
1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 010111 1 rs1 11=11 slmm13 1 
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XOR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Exclusive-Or XOR 

r[rd] - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

This instruction does a bitwise logical XOR of the contents of register r[ rsl] with either the contents of 
r[ rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit 
field i = 1). The result is stored in register r[ rd]. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000011 1 rs1 li=ol ignored 1 rs2 I 
31 3029 25 24 19 18 14 13 12 0 

11 01 rd 1 000011 1 rs1 li=11 simm13 I 
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XORcc Exclusive-Or and modify icc XORcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd] - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

n - r[rd]<31> 
z - if r[rd] =0 then I, else 0 

v- 0 

c- 0 

This instruction does a bitwise logical XOR of the contents of register r[ rsl] with either the contents of 
r[ rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit 
field i= I). The result is stored in register r[rd]. XORccalso modifies all the integer condition codes in 
the manner described above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010011 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

h 01 rd 1010011 1 rs1 li=11 simm13 1 
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Chapter 7 

CYP~S~~~============~~ SEMICONDUCTOR CY7C600 Electrical and 
Mechanical Characteristics 

7.1 CY7C601 Electrical and Mechanical Characteristics 

7.1.1 CY7C601 Maximum Ratings 
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65 ° C to + 150 ° C 
Ambient Temperature with Power Applied ............................................................ _55° C to + 125° C 
Supply Voltage to Ground Potential [I] • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• -0.5 V to + 7.0 V 
DC Voltage Applied to Outputs in High Z State ......................................................... -0.5 V to + 7.0 V 
DC Input Voltage .................................................................................... -3.0 V to + 7.0 V 
Output Low Sink Current. ...................................................................................... 30 rnA 

7.1.2 CY7C601 Operating Range 

Range Ambient Temperature [2] Vce 

Commercial O· Ct070·C SV ± 10% 

Military -55· C to + 125· C SV ± 10% 

7.1.3 CY7C601 DC Characteristics Over the Operating Range 

Parameters Description Test Conditions Min. Max. Units 

VOH Output HIGH Voltage Vee = Min., IoH - -20 rnA 24 V 

VOL Output LOW Voltage Vee = Min., IOL = 8.0 rnA 0.5 V 

Vrn Input HIGH Voltage 21 Vee V 

VIL Input LOW Voltage -3.0 0.8 V 

Irn Input HIGH Current Vee = Max., VIN = Vee 10 J.lA 

IlL Input LOW Current Vee = Max., VIN = Vss -10 J.lA 
loz Output Leakage Current Vee = Max., Vss < VOUT < Vee -40 40 J.lA 

Isc Output Short Circuit Current Vee = Max., VOUT = OV -30 -180 rnA 

IccQ Quiescent Supply Current Vss=::;; VIN=::;;VIL 150 rnA 
or Vrn=::;;VIN<Vee 

Icc Supply Current Vee = Max., f = 40 MHz 675 rnA 

(All outputs loaded to 80 pF) Vee = Max., f = 33 MHz 600 rnA 

Vee = Max., f = 25 MHz 600 rnA 

leeF Supply Current Vee - Max., f - 40 MHz 400 rnA 

(outputs floating) Vee = Max., f = 33 MHz 350 rnA 

Vee = Max., f = 25 MHz 350 rnA 

7.1A CY7C601 Capacitance [3] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vee = 5.0Y, T. = 25°C, f - 1 MHz 10 pF 

CoUT Output Capacitance Vee - 5.0V, T. - 25°C, f - 1 MHz 12 pF 

CIO I/O Bus Capacitance Vee = 5.0Y, T. = 25°C, f = 1 MHz 15 pF 
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CY7C600 Electrical and Mechanical Characteristics 

7.1.5 CY7C601 AC Characteristics [4J 

Reference CY7C601-2S CY7C601-33 CY7C601-40 

Parameter Description Edge Min Max. Min. Max. Min Max. Units 

1 lev Clock Cycle 40 1000 30 1000 25 1000 ns 
2 leHL Clock High and Low 18 990 13 990 11 990 ns 
3 leRF Clock Rise and Fall 1 1 1 V/ns 

4 tAD Address/Control Output DelaysJ CLK+ 33 24 20 ns 
5 tAU Address/Control Output Valid[sJ CLK+ 7 7 7 ns 

6 tooo 0(31:0) Output Delay CLK- 20 15 13 ns 

7 tOOH 0(31:0) Output Valid CLK- 4 4 4 ns 

8 tOlS 0(31:0) Input Set-Up CLK+ 3 2 2 ns 

9 tolU 0(31:0) Input Hold CLK+ 5 5 4 ns 

10 tMAD MAO Asserted to Address/Control Output Delay MAO + 19 14 12 ns 

11 tMAH MAO Deasserted to AddreSs/Control Output MAO- 2 2 2 ns 
Valid 

12 tMES CEXC, FEXC, MEXC Input Set-Up CLK+ 15 11 10 ns 

13 tMEH CEXC, FEXC, MEXC Input Hold CLK+ 2 1 1 ns 

14 tHS I XlfOlD Input Set_Up[6J CLK- 7 4 3 ns 

15 tHH XHOlD Input Hold CLK- 6 5 4.5 ns 

16 tHoo XHOlD to Address/Control Output Delay XHOlD- 22 15 12 ns 

17 tHOH XHOlD to Address/Control Output Valid XHOlD+ 0 0 0 ns 

18 toE AOE, COE, DOE to Output Enable Delay XOE- 15 11 9 ns 

19 too AOE, COE, DOE to Output Disable Delay XOE+ 15 11 9 ns 

20 troE TOE Asserted to Output Enable Delay TOE- 21 19 17 ns 

21 troD TOE Deasserted to Output Disable Delay TOE+ 21 19 17 ns 

22 tsso INST, FXACK, CXACK, INTACK, ERROR CLK+ 20 15 13 ns 
Output Delay 

23 tSSH INST, FXACK, CXACK, INTACK, ERROR CLK+ 3 3 3 ns 
Output Valid 

24 tRS RESET Input Set-Up CLK+ 15 10 8 ns 

25 tRH RESET Input Hold CLK+ 3 3 2 ns 

26 tFD FINS(I:0), CINS(I:0) Output Delay CLK+ 27 18 15 ns 

27 tFH FINS(I:0), CINS(I:0) Output Valid CLK+ 3.5 3.5 3.5 ns 

28 tPlS FCC(1:0), CCC(1:0) Input Set-Up CLK+ 10 8 5 ns 

29 tFIU FCC(1:0), CCC(I:0) Input Hold CLK+ 4 3 2 ns 
30 toxo DXFER Output Delay CLK+ 28 23 19 ns 
31 tDXH DXFER Ouput Valid CLK+ 2 2 2 ns 

32 tHOXO XHOlD Asserted to DXFER Output Delay6J XHOlD- 20 15 12 ns 

33 tHOXH XHOlD Deasserted to DXFER Output Valid XHOlD+ 0 0 0 ns 

34 tNUO INUll Output Delay CLK+ 20 13 11 ns 

35 tNUH INUll Output Valid CLK+ 3 3 3 ns 

36 tMOS MDS Input Set-Up CLK- 5 4 3 ns 
37 tMOH MDS Input Hold CLK- 6 5 4.5 ns 

38 tFLS FLUSH Output Delay CLK+ 15 13 11 ns 

39 tFLU FLUSH Output Valid CLK+ 3 3 3 ns 

40 tccvs FCCY, CCCV Input Set-Up CLK- 7 4 3 ns 

41 tccva FCCV, CCCV Input Hold CLK- 6 5 4.5 ns 

7-2 



CY7C600 Electrical and Mechanical Characteristics 

7.1.6 CY7C601 AC Test Loads and Waveforms 

470 !l 
5V 3V ----:--:- 11---"') 

OUTPUT 

I 50PF 
319!l <3ns <3ns 

Waveform 

Test Load 

7.1.7 CY7C601 AC Waveforms 

Clock and Reset Timing 

ClK 

8 ClK Cycles Minimum 

Reset need be synchronized with ClK only if the processor must be in step with other devices in the system. 

Notes: 

1. All power and ground pins must be connected before power is applied. 
2. Ambient temperature is defined as the 'instant on' case temperature. 
3. Tested initially and after any design or process changes that may affect these parameters. 
4. Test conditions assume signal transition times of 3 os or less, a timing reference level of 1.5V. input levels of 0 to 3.0V, and output loading of 50 pF. 
5. Address/Control signals include: A(31:0), ASI(7:0), SIZE(1:0), RD, WRf, WE, WCK, and LDSTO. 
6. XHOLD includes BHOLD, MHOLDA, MHOLDB, FHOW, and CHOLD. 
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Load Timing 

elK 

A(31:0) 

ASI(7:0) 

SIZE(1:0) 

RO 

0(31:0) 

OXFER 

INST 
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Store Timing 

elK 

A(31:0) 

ASI(7:0) 

SIZE(1:0) 

WRT 

0(31:0) 

~~ j@v-

~------~------~----~I------~t=--®-~ 

OXFER 

INST 

INUll 
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lnad with Cache Miss 

elK 

A(31:0) 

ASI(7:0) 

SIZE(1 :0) ,----''"'''' """--'--'~, ""/H'''-'--" 

D(31:0) 

MAO 

DXFER 
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Memory Exception Timing 

ClK 

A(31:0) 'L __ ,-"_IV'V~'-'" 
r-~----~r~----~-----~ 

ASI(7:0) 

INUll __________ -+ ____ ~--------_{ ~---+------------=j~.---J~~-=~'= 

Bus Arbitration Timing 

ClK 

A(31:0). 
ASI(7:0). 

SIZE(1:0) 

WE 
RD 

lOCK. 
LDSTO 
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Floating-Point Timing 

ClK 

D(31:0 

INST 

FINS1/2 ~•. 2 ~ -1::' •. ",. @ r-,--~-----;,_~ _J ~ I 1 ~'---"-. _,...-,--+-
~ i ~ 

Fg;)--~----~------~------~------------~~XXXXXXXXXX~ __ ~_ 

:l~:=:====i-r_-3....1)-( ---'--j@-'--~+~-~-';ooo:13==:===:i-!~-+'· _re ...... 41 ':-. _/r-_-_ -+~-
FExc:; / -+---+--.--+-' 

FAACK_~ ______ +t:= __ 2~:I 
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7.1.8 CY7C601 PGA Package Dimensions 

0@@@@0@@@0@@@@@@ 
@@@@@00@@@0@@@@@@ 
@@@@@@@@@@@@@@@@@ 
@0@@@@0@@@@@@@@@@ 
@0@@ @@@@ 

0.Q18 ± 0.002 

t 1.760 
± 0.015 

@0@@ @@@@ 0.100 ± 0.005 

1.600 
±0.Q15 

1 
@0@@ @@@@ 
@0@0 BOTTOM @@@@ 
@0@@ @@0@ 
@@@@ VIEW @@0@ 
@@@@ @@@@ 
@0@@ @@@@ 
@0@@ @@@@ 
@@@@@@@@@@@@@@@@@ 
@@@@@@@@@0000@0@0 
@@@@@@0@@@@@@@@@@ 
@@@@@@@@@@@@@0@@@ 

0.085 t ~ 0.085 I---- 1.600 ± 0.015 ---I. 
1.760 ± 0.015 

7.1.9 CY7C601 PGA Pin Assignments 

ABC 0 E F G H J K L M N P R T U 

@@@(!)@@(!)@@@@(g)(!>@@@ 
2 @@@@(!)@0000@@@@@0@ 
3 @@@@@@0@@@@@@@@(!)@ 
4 @@@@0@0(!)0@0@@@@00 
5 0000 0@00 
6 @@@@ @@0@ 
7 @@@@ @@0@ 
8 @@@0 @@@@ 
9 @@@@ BOTTOM VIEW @@00 
1C @ @ @ @ @ @ 0 @ 
11 @@@@ 0@0@ 
12 0000 0000 
1 @@@0 @@@@ 

14 @@000000000000000 
10 @@0 0 0@0 0@@@0 0@0@0 
1e @00000000@@000@@@ 
17 @000e00e00@0000e0 
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7.1.9 CY7C601 PGA Pin Assignments (continued) 

Pin Pin Pin 
Pin Name Number Pin Name Number Pin Name Number 

AO K2 ASIO F3 VSSO B16 H4 T16 
Al Kl ASH F2 B17 12 TI7 
A2 L3 ASI2 G3 C3 K14 Ul6 
A3 Ll ASI3 G2 C4 N14 Ul7 
A4 12 ASI4 Gl 06 P4 
AS M2 ASIS H2 014 P6 
A6 N2 ASI6 HI Fl P11 
A7 Ml ASI7 11 F4 P14 
AS M3 SIZEO E2 F14 RS 
A9 PI SIZEI 02 F17 R14 
AlO P2 
All Nl MEXC OB VCCO AIS U A12 N3 MHOIDA CB A16 M14 A13 R3 MHOLDB BB A17 N4 A14 R2 BHOID A7 01 PB AIS R4 AOE P3 012 P12 A16 T4 COE C2 017 P16 A17 TS 
AlB R6 OOE N17 El P17 

A19 T6 MOS B7 G4 R16 

A20 US MAO E3 K4 R17 

A2l U6 1FT C14 KIS 

A22 U7 RO A4 A23 T7 VSSI A3 13 U2 
A24 UB WE B4 A14 Ll4 UlO 
A2S TB IDSTO CS B2 M4 
A26 U9 INULL BS B3 PS 
A27 RB LOCK 04 B9 P7 
A2B T9 OXFER 03 Cl Rl 
A29 R9 WRT E4 C16 R11 
A30 TIO 013 TI 
A3l U11 FP C7 EIS TIS 

FCCO All H14 Ul 
00 RIO FCCI B11 
01 T11 FCCV CIO VCCI A2 R12 02 Ul2 FHOID AB Bl T2 D3 T12 
04 un FEXC AS D7 T3 
05 T13 CP B6 E14 U3 
06 T14 ceco A12 E16 U4 
07 R13 ceCl B13 GI4 
OB Ul4 CCCV BlO H3 
09 UlS CHOLD C9 115 

PlO 010 R15 CEXC A6 R7 011 PIS 
012 NIS INST C6 
013 MIS FLUSH B14 VSST 09 J4 114 
014 M16 F1NSI E17 P9 
015 N16 FINS2 016 
016 LlS FXACK 011 VCCT 05 P13 
017 M17 CINSI 015 O1B Ll6 CINS2 C17 019 Ll7 
020 K16 CXACK C13 
021 K17 IRLO AlO 
022 116 IRLl Cll 
023 117 IR12 010 024 H17 IRL3 B12 025 HIS 
026 G17 INTACK A13 
027 H16 RESET A9 
028 G16 ERROR BIS 
029 F16 TOE CIS 
030 FIS FPSYN Cl2 
031 GIS CLK K3 
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7.1.10 CY7C601 QFP Package Dimensions 

~ I'. 1.102 ± 0.008 sq. 

Pin 208 r_~DBDDDDDDDDDt~ 
Pin 1 

208-pin EIAJ standard QFP 
All dimensions in inches 

0.008 
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7.1.11 CY7C601 QFP Pin Assignments 

Pin # FUnction Pin I Function Pin I Function Pin' Function 
1 VCCO 53 VSSO 105 VCCO 157 VSSO 
2 VCCO 54 VSSO 106 VCCO 158 VSSO 
3 VCC! 55 VSSO 107 VCCI 159 VSSO 
4 LOCK 56 VCCO 108 VCC! 160 VSSI 
5 COE 57 VSSI 109 DlO 161 VCCO 
6 WRT 58 A15 110 Dll 162 IFf 
7 DXFER 59 A16 111 VCCO 163 FLUSH 
8 MAO 60 A17 112 Dl2 164 ERROR 
9 SIZEI 61 VSSO 113 Dl3 165 INTACK 

10 SIZEO 62 A18 114 VSSO 166 CXACK 
11 VSSO 63 A19 115 Dl4 167 FXACK 

12 ASIO 64 VCCI 116 Dl5 168 CCCI 
13 ASH 65 A20 117 VSSI 169 CCCO 
14 VCCO 66 A21 118 DOE 170 FPSYN 
15 ASI2 67 VSSI 119 Dl6 171 FCCI 
16 VSSI 68 A22 120 Dl7 172 VSSI 
17 ASI3 69 A23 121 VSSO 173 FCCO 
18 VSSO 70 VCCO 122 Dl8 174 IRL3 
19 ASI4 71 A24 123 Dl9 175 IRL2 
20 VCCI 72 A25 124 VCCO 176 IRLl 
21 ASI5 73 VCCO 125 020 177 IRLO 
22 VSSO 74 A26 126 021 178 CCCV 
23 ASI6 75 A27 127 VCC! 179 VCCI 
24 ASI7 76 VSSO 128 022 180 FCCV 
25 VSST 77 A28 129 023 181 VSST 
26 CLK 78 A29 130 VSST 182 RESET 
27 VSSI 79 VSSI 131 VSSI 183 VSSI 
28 VSSI 80 VSSI 132 VSSI 184 VSSI 
29 AO 81 VSST 133 024 185 CHOW 
30 Al 82 A30 134 025 186 FHOLD 
31 VCCI 83 A31 135 VSSO 187 BHOLD 
32 A2 84 VCCI 136 026 188 MHOLOB 
33 A3 85 DO 137 027 189 MHOLOA 
34 VCCO 86 01 138 VCCO 190 MDS 
35 A4 87 VCCO 139 028 191 FP 
36 A5 88 02 140 029 192 CEXC 
37 VSSO 89 D3 141 VSSI 193 MEXC 
38 A6 90 VSSO 142 030 194 FEXC 
39 A7 91 VSSI 143 031 195 VSSI 
40 VCCO 92 04 144 VCCI 196 INST 
41 A8 93 05 145 VCCI 197 VCCI 
42 A9 94 VCCI 146 VSSO 198 RD 
43 VSSI 95 06 147 FINS 1 199 VSSO 

44 AI0 96 D7 148 FINS2 200 WSTO 
45 All 97 VCCO 149 VSSI 201 CP 
46 AOE 98 08 150 CINSI 202 WE 
47 A12 99 09 151 CINS2 203 INULL 
48 A13 100 VCCT 152 TOE 204 VCCT 
49 A14 101 VSSI 153 VSSI 205 VSSI 
50 VCCI 102 VSSO 154 VCCI 206 VSSO 

51 VCCI 103 VSSO 155 VCCI 207 VSSO 
52 VCCI 104 VSSO 156 VeCI 208 VSSO 
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7.1.12 CY7C601 Military Specifications-Group A Subgroup Testing 

7.1.12.1 CY7C601 DC Characteristics 

Parameter Subgroups Parameter Subgroups 

VoH 1,2,3 IOH 1,2,3 

VOL 1,2,3 IoL 1,2,3 

VIH 1,2,3 Ioz 1,2,3 

VIL 1,2,3 Isc 1,2,3 

IIH 1,2,3 ICCQ 1,2,3 

IlL 1,2,3 Icc 1,2,3 

7.1.12.2 CY7C601 AC Characteristics 

Parameter Subgroups Parameter Subgroups 

1 Icy 7,8,9,10,11 22 tSSD 7,8,9,10,11 

2 ICHL 7,8,9,10,11 23 tssH 7,8,9,10,11 

4 lAO 7,8,9,10,11 24 tRS 7,8,9,10,11 

5 IAH 7,8,9,10,11 26 tpo 7,8,9,10,11 

6 tooo 7,8,9,10,11 27 tFH 7,8,9,10,11 

7 lOOH 7,8,9,10,11 28 t FIS 7,8,9,10,11 

8 t DIS 7,8,9,10,11 29 tFIH 7,8,9,10,11 

9 tOIH 7,8,9,10,11 30 tmm 7,8,9,10,11 

10 tMAO 7,8,9,10,11 31 tOXH 7,8,9,10,11 

11 tMAH 7,8,9,10,11 32 tHOXO 7,8,9,10,11 

12 tMES 7,8,9,10,11 33 tHDXH 7,8,9,10,11 

13 tMEH 7,8,9,10,11 34 INUO 7,8,9,10,11 

14 IHS 7,8,9,10,11 35 tNUH 7,8,9,10,11 

15 IHH 7,8,9,10,11 36 tMDS 7,8,9,10,11 

16 tHOD 7,8,9,10,11 37 t MOH 7,8,9,10,11 

17 tHOH 7,8,9,10,11 38 t FLS 7,8,9,10,11 

18 tOE 7,8,9,10,11 39 tFLH 7,8,9,10,11 

19 too 7,8,9,10,11 40 tccvs 7,8,9,10,11 

20 hOE 7,8,9,10,11 41 tccvH 7,8,9,10,11 

21 tTOD 7,8,9,10,11 
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7.2 CY7C611 Electrical and Mechanical Characteristics 

7.2.1 CY7C611 Maximum Ratings 

Storage Temperature ............................................................................... _65° C to + 150° C 
Ambient Temperature with Power Applied ............................................................ _55° C to + 125° C 
Supply Voltage to Ground Potential [1) .................................................................. -0.5 V to + 7.0 V 
DC Voltage Applied to Outputs in High Z State ......................................................... -0.5 V to + 7.0 V 
DC Input Voltage .................................................................................... -3.0 V to + 7.0 V 
Output Low Sink Current ....................................................................................... 30 rnA 

7:1.:1. CY7C611 Operating Range 

Range Ambient Temperature [2) Vcc 

Commercial 0° Ct070°C 5V ± 10% 

Military -55° C to + 125° C 5V ± 10% 

7.2.3 CY7C611 DC Characteristics Over the Operating Range 

Parameters Description Test Conditions Min. Max. Units 

VOH Output HIGH Voltage Vee = Min., IOH = -2.0 mA 2.4 V 

VOL Output LOW Voltage Vee = Min., IOL = 8.0 mA 0.5 V 

VIH Input HIGH Voltage 2.1 Vee V 

VIL Input LOW Voltage -3.0 0.8 V 

IIH Input HIGH Current Vee - Max., VIN - Vee 10 J.lA 

IlL Input LOW Current Vee = Max., VIN = Vss -10 J.lA 

Ioz Output Leakage Current Vee = Max., Vss :s;; VOVT :s;; Vee -40 40 J.lA 

Isc Output Short Circuit Current Vee = Max., VOVT = OV -30 -180 rnA 

IeeQ Quiescent Supply Current VSS<VIN<VIL 150 rnA 
or V,H:S;;V-;;:;<Vce 

lee Supply Current (All outputs Vee = Max., f=25MHz 600 rnA 
loaded to 80 pF) 

IeeF Supply Current (outputs floating) Vee = Max., f = 25 MHz 350 rnA 

7:1..4 CY7C611 Capacitance (3] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vee = S.OY, T. = 25°C, f = 1 MHz 10 pF 

CoOT Output Capacitance Vee = S.OY, T. = 25°C, f = 1 MHz 12 pF 

ClQ I/O Bus Capacitance Vee = S.OY, T. = 25°C, f = 1 MHz 15 pF 
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7.2.5 CY7C611 AC Characteristics [4] 

Reference CY7C611-25 

Parameter Description Edge Min. Max. Units 

1 Icy Clock Cycle 40 1000 ns 

2 IcHL Clock High and Low 18 990 ns 

3 IcRF Clock Rise and Fall 1 V/ns 

4 tAO Address/Control Output Delay[5] CLK+ 33 ns 

5 tAH Address/Control Output Valid CLK+ 7 ns 

6 tooo D(31:0) Output Delay CLK- 20 ns 

7 tooH D(31:0) Output Valid CLK- 4 ns 

8 tOIS D(31:0) Input Set-Up CLK+ 3 ns 

9 tOIH D(31:0) Input Hold CLK+ 5 ns 

10 tMAo MAO Asserted to Address/Control Output Delay MAO + 19 ns 

11 tMAH MAO Deasserted to Address/Control Output Valid MAO- 2 ns 

12 tMES FEXC, MEXC Input Set-Up CLK+ 15 ns 

13 tMEH FEXC, MEXC Input Hold CLK+ 2 ns 

14 tHS XHOLD Input Set-Up[b] CLK- 7 ns 

15 tHH XHOLD Input Hold CLK- 6 ns 

16 tHaD XHOLD to Address/Control Output Delay XHOLD- 22 ns 

17 tHoH XHOLD to Address/Control Output Valid XHOLD+ 0 ns 

20 hOE TOE Asserted to Output Enable Delay TOE- 21 ns 

21 hOD TOE Deasserted to Output Disable Delay TOE+ 21 ns 

22 tsso INST, FXACK, INTACK, ERROR Output Delay CLK+ 20 ns 

23 tssH INST, FXACK, INTACK, ERROR Output Valid CLK+ 3 ns 

24 tRS RESET Input Set-Up CLK+ 15 ns 

25 tRH RESET Input Hold CLK+ 3 ns 

26 tFD FINS(1:0) Output Delay CLK+ 27 ns 

27 tFH FINS(1:0) Output Valid CLK+ 3.5 ns 

28 tFfs FCC(1:0) Input Set-Up CLK+ 10 ns 

29 tFfH FCC(1:0) Input Hold CLK+ 4 ns 

34 tNUO INULL Output Delay CLK+ 20 ns 

35 tNUH INULL Output Valid CLK+ 3 ns 

36 tMDS MDS Input Set-Up CLK- 5 ns 

37 tMDH MDS Input Hold CLK- 6 ns 

38 tFLS FLUSH Output Delay CLK+ 15 ns 

39 tFLH FLUSH Output Valid CLK+ 3 ns 

40 keys FCCV Input Set-Up CLK- 7 ns 

41 IcCVH FCCV Input Hold CLK- 6 ns 

Notes: 
1. All JXlWer and ground pins must be connected before power is applied. 
2. Ambient temperature is defined as the 'instant on' case temperature. 

3. Tested initially and after any design or process changes that may affect these parameters. 
4. Test conditions assume signal transition times of 3 os or less, a timing reference level of 1.5V, input levels of 0 to 3.0V, and output loading of 50 pF. 
5. Address/Control signals include: A(23:0), ASI(2:0), SIZE(1:0), RD, WRT, WE, WCK, and LDSTO. 
6_ XHOLD includes BHOLD, MHOLDA, MHOLDB, and FHOLD. 
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7.2.6 CY7C611 AC Test Loads and Waveforms 

4700 
5V 

OUTPUT o---~----t 

I 50PF 
3190 

CY7C600 Electrical and Mechanical Characteristics 

3V----="'"'" 

< 3ns < 3ns 

Test Load Waveform 

7.2.7 CY7C611 AC Waveforms 

Clock and Reset Timing 

elK 

8 elK Cycles Minimum 

Reset needs to be synchronized with eLK only if the processor must be in step with other devices in the system. 

Load Timing 

elK 

A(23:0) 

ASI(2:0) 

SIZE(1:0) 

RO 

0(31:0) 

INST 

7-16 



Store Timing 

elK 

A(23:0) 

ASI(2:0) 

SIZE(1:0) 

WRT 

0(31:0) 

INST 

INUll 

CY7C600 Electrical and Mechanical Characteristics 

j@r 
~--~~--~~I-@~ 
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Load with Cache Miss 

elK 

A(23:0) 

ASI(2:0) 

D(31:0) 

MAO __ ~ ______ -+ ________ ~--J 
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Memory Exception Timing 

CLK 

A(23:0) 

ASI(2:0) 

SIZE(1:0) 

INULL __ ~ ______ -+ ____ ~ ________ -4 ~ __ -+ ____ ~ ______ -+ __ -J 

Bus Arbitration Timing 

CLK 

A(23:0). 
ASI(2:0). 

SIZE(1:0) 

WE 
RD 

LOCK. 
LDSTO 

A1 

TOE _;..-____ --------J) i 

I 
HI-Z l 

A1 
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Floating-Point Timing 

CLK 

A(23:0) 

0(31:0) 

INST 

FAACK __ ~ ______ +--J 
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7.2.8 CY7C611 PQFP Package Dimensions 

HID·pln EIAJ standard QFP 
All dimensions in Inches 

~sq. 

0.998 sq. 

CY7C600 Electrical and Mechanical Characteristics 

~ 
1.266 sq. 

WlOO 
0.018 

Hill-Pin Quad Flat Package 
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7.2.9 CY7C611 PQFP Pin Assignments 

Function Pin, Function Pin' Function Pin, Function Pin' 

VCCO 1 VSSO 41 VCCO 81 VSSO 121 

VCCI 2 VSSO 42 Vc;:a 82 VSSO 122 

LOCK 3 VCCO 43 DIO 83 VSSI 123 

WRT 4 VSSI 44 D11 84 VCCO 124 

MAO 5 A15 45 DI2 85 FLUSH 125 

SIZEI 6 A16 46 D13 86 ERROR 126 

SIZEO 7 A17 47 VSSO 87 IN'D\CK 127 

VSSO 8 VSSO 48 DI4 88 FXACK 128 

ASIO 9 AlB 49 DIS 89 FPSYN 129 

ASH 10 A19 50 VSSI 90 FCCI 130 

VCCO 11 VCCI 51 DI6 91 VSSI 131 

ASI2 12 A20 52 D17 92 FCCO 132 

VSSI 13 A21 53 VSSO 93 IRLJ 133 

VSSO 14 VSSI 54 DI8 94 IRL2 134 

VCCl 15 A22 55 DI9 95 IRLl 135 

VSSO 16 A23 56 VCCO 96 IRUl 136 

VSST 17 VCCO 57 D20 97 VCCl 137 

CLK 18 VCCO 58 D21 98 FCCV 138 

VSSI 19 VSSO 59 VCCI 99 VSST 139 

AO 20 VSSI 60 D22 100 RESET 140 

Al 21 VSST 61 D23 101 VSSI 141 

VCCI 22 VCCl 62 VSST 102 FHOID 142 

A2 23 DO 63 VSSI 103 BHOID 143 

A3 24 DI 64 D24 104 MHOWB 144 

VCCO 25 VCCO 65 D25 105 MHOWA 145 

A4 26 D2 66 VSSO 106 MDS 146 

AS 27 D3 67 D26 107 FP 147 

VSSO 28 VSSO 68 D27 108 MEXC 148 

A6 29 VSSI 69 VCCO 109 FEXC 149 

A7 30 D4 70 D28 110 VSSI 150 

VCCO 31 D5 71 D29 111 INST 151 

A8 32 VCCl 72 VSSI 112 VCCI 152 

A9 33 D6 73 D30 113 RD 153 

VSSI 34 D7 74 031 114 VSSO 154 

AI0 35 VCCO 75 VCCI 115 IDSTO 155 

All 36 D8 76 VSSO 116 WE 156 

A12 37 D9 77 FINS 1 117 INUlL 157 

A13 38 vcer 78 FlNS2 118 veer 158 

A14 39 VSSI 79 TOE 119 VSSI 159 

VCCI 40 VSSO 80 VCCl 120 VSSO 160 
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7.3 CY7C602 Electrical and Mechanical Characteristics 

7.3.1 CY7C601 Maximum Ratings 

Storage Temperature ............................................................................... -65 0 C to + lS0° C 
Ambient Temperature with Power Applied. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -55 0 C to + 125 0 C 
Supply Voltage to Ground Potential [I] • • . • • • • . • • • • . • • • . • • • • • . • • • • • • • . • • . • . • • . • . . . • . • . • • . • . . • . • • • • • . • • • • •• -O.SV to + 7.0V 
DC Voltage Applied to Outputs in High Z State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5V to + 7.0V 
DC Input Voltage. . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. -3.0V to + 7.0V 
Output Low Sink CUrrent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4.0 rnA 

7.3.2 CY7C601 Operating Range 

Range Ambient Temperature[2] Vee 

Commercial 5V .±.10% 

7.3.3 CY7C601 DC Characteristics Over the Operating Range 

Parameters Description Test Conditions Min. Max. Units 

VOH Output HIGH Voltage Vee - Min., IoH = -20 rnA 24 V 

VOL Output LOW Voltage Vee = Min., IoL = 8.0 rnA 0.5 V 

Vrn Input HIGH Voltage 2.1 V 

VIL Input LOW Voltage -3.0 0.8 V 

Irn Input HIGH CUrrent Vee = Max., VIN = Vee -10 10 IlA 
IlL Input LOW CUrrent Vee = Max., VIN = Vss -10 10 IlA 
Ioz Output Leakage CUrrent Vee = Max., V ss.$. VOUT.$. Vee -10 10 ).LA 

IccQ Quiescent Supply CUrrent Vss.$. VIN .$. VIL or 150 rnA 
VIH .$. VIN .$. Vee 

Ice Supply CUrrent, Commercial Vee - Max., f - 40 MHz 450 rnA 

Vee = Max., f = 33 MHz 400 

Vee = Max., f = 25 MHz 350 

7.3.4 CY7C601 Capacitance [3] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vee = S.OY, TA = 25°C,f = 1MHz 15 pF 

CoUT Output Capacitance Vee = S.OY, TA = 25°C,f = 1 MHz 20 pF 

CIQ 110 Bus Capacitance Vcc = S.OY, TA = 25° C,f = 1 MHz 15 pF 

COOE DOE Input Capacitance Vee = S.OY, TA = 25° C,f= 1 MHz 30 pF 

CeLl< CLK Input Capacitance Vee = S.OY, TA = 25° C,f = 1 MHz 25 pF 

Notes: 

1. A1[ power and ground pins must be connected to the other pins of same type before any power is applied to the part. 
2. Ambient temperature is the 'instant on' case temperature. 
3. Thsted initially and after any design or process changes that may affect these parameters. 
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7.3.5 CY7C602 AC Characteristics 

Reference CY7C602-25 CY7C602-33 CY7C602-40 

Parameter Description Edge Min. Max. Min. Max. Min. Max. Unit 

1 Clock Cycle 40 30 25 ns 

2 Clock High and Low 18 13 11 ns 

3 A(31:2) Set-Up CLK+ 3 3 2 ns 

4 A(31:2) Hold CLK+ 6 6 6 ns 

5 D(31:0) Input Set-Up CLK+ 3 2 2 ns 

6 D(31:0) Input Hold CLK+ 5 5 4 ns 

7 D(31:0) Output Delay CLK- 20 15 13 ns 

8 D(31:0) Data Valid CLK- 4 <I 4 ns 

9 D(31:0) Output Thm-Off FLUSH 31 22 18 ns 

10 D(31:0) Output Valid FLUSH 0 0 0 ns 

11 D(31:0) Output Thm-Off DOE+ 15 11 9 ns 

12 D(31:0) Output Thm-On DOE- 15 11 9 ns 

13 D(31:0) Output Valid DOE- 0 0 0 ns 

14 FINS1!2 Set-Up CLK+ 9 9 7 ns 

15 FINSI/2 Hold CLK+ 2.5 25 2.5 ns 

16 INSTSetup CLK+ 16 12 9 ns 

17 INSTHold CLK+ 2 2 2 ns 

18 FXACK Set-Up CLK+ 16 12 9 ns 

19 FXACKHold CLK+ 2 2 2 ns 

20 FLUSH Set-Up CLK+ 21 14 11 ns 

21 FLUSH Hold CLK+ 2 2 2 ns 

22 RESET Set-Up CLK+ 15 10 8 ns 

23 RESET Hold CLK+ 3 3 2 ns 

24 MHOLD Set-Up CLK- 7 4 3 ns 

25 MHOLDHold CLK- 6 5 4.5 ns 

26 MDSSet-Up CLK- 5 4 3 ns 

27 MDSHold CLK- 6 5 4.5 ns 

28 FHOLDDelay CLK- 29 23 19 ns 

29 FHOLDValid CLK- 6 6 5.5 ns 

30 FHOLDDelay FINS1!2 16 15 12 ns 

31 FHOLDDelay FLUSH 28 20 16 ns 

32 FHOLDDelay MHOLD- 36 27 22 ns 

33 FCCVDelay CLK- 29 23 19 ns 

34 FCCVValid CLK- 8 6 5.5 ns 

35 FCCVDelay FLUSH 28 20 16 ns 

36 FCCVDelay MHOLD- 36 27 22 ns 

37 FCC(I:0) Delay CLK+ 26 19 17 ns 

38 FCC(I:0) Valid CLK+ 5 4 3 ns 

39 FEXCDelay CLK+ 26 19 17 ns 

40 FEXCValid CLK+ 5 4 3 ns 

41 FNULLDelay CLK+ 20 13 11 ns 

42 FNULLValid CLK+ 3 3 3 ns 
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7.3.6 CY7C602 AC Test Loads and Waveforms 

5.0V 

4700 

....---+---0 Output 
Pin 

Test Load 

7.3.7 CY7C602 AC Waveforms 

Three-Stole TIming 

CY7C600 Electrical and Mechanical Characteristics 

3V~ 

OV ---:j j. 
< 3ns 
~ 
<3ns 

Waveform 

3.SV --...,..---------.,. 

DOE 2.0V --11'-----------~ 

0.4 V 

0(31:0) 

Asynchronous Store 7iming 

elK 

0(31:0) 

Data available. but / 
0(31 :0) not enabled 
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FJleet of FWSH on Store Timing 

eLK 

FWSH 

0(31:0) 

General Timing Parameters 

Input set-up and hold 
With respect to CLK + 
t,,: 4, 6, 14, 16, 18, 20, 22 
t,,: 5, 7, 15, 17, 19, 21, 23 

Input set-up and hold 
With respect to CLK-

t,,:24,26 
t,,:25,27 

Output delay With respect to 
FINS112 and FWSH Inputs 
to: 30, 31, 35 

Output valid and output 
delay with respect to CLK + 
Icto: 37,39,41 
1,.,:38,40,42 

~6~ respect to input 
to: 32, 36 

Output valid and delay 
times With respect to CLK-

t.!o: 9, 29, 34 
t,.,: 8, 28, 33 

CY7C600 Electrical and Mechanical Characteristics 
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7.3.8 CYC7602 Pin Assignments 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ~ 022 A22 02. A2. A25 026 A2fj />Z1 A2. A29 A3(J A3' 03' GND A 

B 02' vee vee A23 023 vee 025 vee 027 02. 029 030 vee vee vee B 

c 020 A2' GND GNO vee GND Ne vee GNO GNO GNO GND GNO vee FCCV c 
D 0'. vee GND GND GND FCC1 D 

E A'. A'9 A20 eeev Feeo FXACK E 

F A'6 017 0'. RESET GNO FEXC F 

G 0'6 A17 GNO CY7C602 elK GNO FNULL G 
144-PIN PGA 

H AD A' DO GND CHOLD FHOLD H 
TOP VIEW 

J 0' DOE Ne (cavity down) vee ~HOLDA BHOLD J 

K 02 vee GND vee MDS pROLBB K 

L A2 03 GNO FLUSH vee vee L 

M A3 vee 05 GND FINS1 INST M 

N D. vee GND GNO GND 08 GND 010 Ne GND 0" GND GND vee FINS2 N 

p A. vee GND AS vee AS vee A11 0'2 vee vee vee 015 vee vee p 

R A5 vee DB A7 07 A9 D9 A'O 011 A'2 A'3 0'3 A" A'5 FP R 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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7.3.9 CY7C602 Package Diagrams 

1.575 sq. 
.±.0.o16 

1.400 sq. 
.±. 0.012 

1 

@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@ @@@ 
@@@ @@@ 
@@@ @@@ 
@@@ BOTTOM @@@ 
@@@ VIEW @@@ 
@@@ @@@ 
@@@ @@@ 
@@@ @@@ 
@@@ @@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@o 

0.100 I I 
typo -j r-

ail dimensions in inches 
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7.4 CY7C604 Electrical and Mechanical Characteristics 

7.4.1 CY7C604 Maximum Ratings 

Storage Temperature. . .. . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . .. . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . .. -650 C to + 1500 C 
Ambient Temperature with Power Applied ............................................................ -550 C to + 1250 C 
Supply Voltage to Ground Potential[') . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... -O.5V to + 7.0V 
DC Voltage Applied to Outputs in High Z State. . . . . . .. . . . . . . . . .. .. . . .. .. .. . . . . . . . . . . . . . . . . . . .. . . . . . . .. .. -O.5V to + 7.0V 
DC Input Voltage. . . .. .. . . . . . . . . . . .. . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . .. -3.0V to + 7.0V 
Output Low Sink Current. ...................................................................................... 30 rnA 

7.4.2 CY7C604 Operating Range 

Range Ambient Temperature Vee 

Commercial 0° C to 70° C 5V .±.10% 

Military'2) _55° C to + 125° C 5V .±.1O% 

7.4.3 CY7C604 DC Characteristics Over the Operating Range [11 

Parameters Description Test Conditions Min. Max. Units 

Vou Output mGH Voltage Vee = Min., loa = -20 rnA 24 V 

VOL Output LOW Voltage Vcr:. = Min., IQL = 8.0 rnA 0.5 V 

VIR Input HIGH Voltage 21 Vcr:. V 

VIL Input LOW Voltage -3.0 0.8 V 

IIH Input HIGH Current Vcr:. = Max., V IN = Vcr:. -10 10 fJA 
IlL Input LOW Current Vcr:. = Max., V IN = Vss -10 10 fJA 
Isc Output Short Circuit Current )41 Vee = Max., VOUT = OV -30 -180 rnA 

Ioz Output Leakage Current Vcr:. = Max., Vss~ VOUT~ Vcr:. -40 40 fJA 
lcccJ Quiescent Supply Current Vss~ VIN~ VIL or 400 rnA 

VIH~ VIN~ Vcr:. 

Icc Supply Current, Commercial Vcr:. = Max., f = 40 MH2 650 rnA 
Vcr:. = Max., f = 33 MHz 600 
Vcr:. = Max., f = 25 MHz 600 

Supply Current, Military Vcr:. = Max., f = 25 MHz 650 rnA 

7.4.4 CY7C604 Capacitance [S) 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vcr:. = 5.0 V, TA = 25° C, f = IMHz 10 pF 

CoUT Output Capacitance Vcr:. = 5.0 V, TA = 25° C, f = 1 MHz 12 pF 

CIQ I/O IIus Capacitance Vcr:. = 5.0 V, TA = 25° C, f = 1 MHz 15 pF 

Notes: 
1. All power and ground pins must be connected to the other pins of .. me type before any power is applied to the part. 
2. See last page of this document for Group A subgroup testing information. 
3. Ambient temperature is the 'instant on' case temperature. 
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. 
5. 'Thsted initially and after any design or process changes that may affect these parameters. 
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7.4.5 CY7C604 AC Characteristics Over the Operating Range [6,7) 

Reference CY7C604-25 CY7C604-33 CY7C604-40 
Parameter Description Edge Min. Max. Min. Max. Min. Max. Units 

1 Clock Cycle 40 1000 30 1000 25 1000 ns 

2 Clock High and Low 18 990 13 990 10 990 ns 

3 A(31:0) Output Delay[lO) CLK+ 33 24 20 ns 

4 A(31:0) Output Hold[101 CLK+ 7 7 7 ns 

5 Address/Control [121 Input Set.Up CLK+ 3 3 2 ns 

6 Address/Control (12) Input Hold CLK+ 6 6 6 os 
7 D(31:0) Output Delay [10,11) CLK-/+ 23(31) 18(24) 15(19) ns 

8 D(31:0) Output Hold [10,11) CLK-/+ 3(6) 3(6) 3(6) ns 

9 D(31:0) Input Set.Up (11) CLK+/- 3(7) 2(6) 2(6) os 
10 D(31:0) Input Hold (11) CLK+/- 5(3) 5(3) 5(3) ns 

11 MDS, MHOLD Output Delay CLK- 29 23 19 ns 

12 MDS, MHOLD Output Hold CLK- 7 7 7 ns 

13 CBWE Output Delay CLK- 33 25 20 ns 

14 CBWE Output Hold CLK- 7 7 7 ns 

15 CROE Output Delay CLK+ 15 13 10 os 
16 CROE Output Hold CLK+ 2 2 2 ns 

17 INULUFNULL Input Set·Up CLK+ 16 14 11 ns 

18 INUWFNULL Input Hold CLK+ 2 2 2 ns 

19 MEXC Output Delay CLK+ 21 16 12 ns 

20 MEXC Output Hold CLK+ 3 3 3 ns 

21 lOE Output Delay CLK+ 18 15 12 ns 

22 lOE Output Hold CLK+ 2 2 2 ns 

23 ERROR Input Set·Up CLK+ 5 4 4 ns 

24 ERROR Input Hold CLK+ 2 2 2 ns 

25 IRST Output Delay CLK+ 21 17 14 os 

26 IRST Output Hold CLK+ 4 4 4 ns 

27 POR Input Set·Up CLK+ 15 10 8 ns 

28 POR Input Hold CLK+ 3 3 3 ns 

29 SNULL Input Set·Up CLK- 7 4 3 ns 

30 SNULL Input Hold CLK- 6 5 4,5 ns 

31 MAD(63:0) Output Delay (9) CLK+ 26 20 18 ns 

32 MAD(63:0) Output Hold [9] CLK+ 4 4 4 ns 

33 MAD(63:0) Input Set·Up CLK+ 5 4 3 ns 

34 MAD(63:0) Input Hold CLK+ 2 2 2 ns 

35 Mbus Control Output Delay [8,9,10] CLK+ 24 18 16 ns 

36 Mhus Control Output Hold [8,9,10] CLK+ 4 4 4 ns 

37 Mhus Control Input Set.Up [8] CLK+ 5 4 3 ns 

38 Mbus Control Input Hold [8] CLK+ 2 2 2 ns 

39 CSEL Setup upon POR Deassertion* CLK+ 8 7 6 ns 

40 CSEL Hold upon POR Deassertion* CLK+ 6 6 6 ns 

41 TOE Assertion to Output Disable TOE + 21 19 17 ns 

42 TOE Assertion to Output Enable TOE- 21 19 17 ns 

* Refer to Power-On Reset timing diagram 
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7.4.6 CY7C604 AC Test Loads and Waveforms 

R1 470 n 
5V 

OUTPUT O------~------_t 

R2 319 n 

• See notes 6, 9. and 10 

Test Load 

7.4.7 CY7C604 AC Waveforms 

Mbus Timing Diagram (Single Read Transaction) 

eLK 

MAD(63:0) 

MAS I 

MAS timing is representative of all Mbus output signals from the CY7C604. 

MRDY timing is representative of all Mbus input signals to tbe CY7C604. 

Notes: 

3V 

OV 

Waveform 

6. 'Jest conditions assume signal transition times of 3 ns or less. a timing reference level of loSY, input levels of 0 to 3.0Y, and output loading of 50 pF 
capacitance. 

7. See the last page of this specification for Group A subgroup testing information. 
8. Mbus Control signals include: MM, MERR. MKl'Y. MRDY, MBR, MOO, MBB. MRST, and CMER. 
9. MAD(63:0), MAS. MBB. MBR, and MRST timing specifications are tested using an output loading of 100 pF. 
10. CMER. CSTA, A(IS:2). and D(31:0) timing specifications are tested using an output loading of 80 pF. 
11. First number applies to transactions with the CY7C1S7 CRAM. Second number applies to transactions with the CY7C60lo 
12. Address/Control signals include: A(31:0). ASI(S:O). SIZE(I:0). RD. WE. and IDSTO. 
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aaek and Null Signal Timing Diagram 

CLK 

ADDR 

INULL, 
FNULL 

CY7C600 Electrical and Mechanical Characteristics 

----115-"'-1 --
These nullification signal. nulliJY address A. Address A is the current address of the address cycle. 

Store Timing Diagram 

CLK 

SIZE,ADDR, 
ASllnputs 

DATA from 
CY7C601 

Load Timing Diagram 

CLK 

SIZE,ADDR, 
ASllnputs 

DATA to 
CY7C601 

RD 
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Store with Miss Timin, 

ClK 

SIZE,ADDR, 
ASllnputs 

DATA from 
CY7C601 

Wad with Miss Timin, 

CLK 

SIZE,ADDR, 
ASllnputs 

DATA to 
CY7C601 

RD 

MHOlD 

IOE 

MDS 

MEXC 

CY7C600 Electrical and Mechanical Characteristics 

55 
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Write to CY7C157 CRAM 

elK 

ADDR 

DATA Out 

Readfrom CY7C157 CRAM 

elK 

ADDR Out 

DATA In 

Power-On Reset Timing Diagram 

elK 

\\-..;----1055 
* BOOT CY7C604!605 only 
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Watchdog Reset Timing Diagram 

eLK 

Software External Reset Timing Diagram· 

eLK 

'Refer to page 4-83. 

Software Internal Reset Timing Diagram· 

eLK 

"Refer to page 4-83. 
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7.4.8 CY7C604 Pin Configuration 

Pin Name Pin # Pin Name 

AO C3 A19 

Al B3 A20 

A2 A2 A21 

A3 B4 A22 

A4 C4 A23 

AS A3 A24 

A6 B5 A25 

A7 C5 A26 

A8 B6 A27 

A9 A4 A28 

A10 AS A29 

All A6 A30 

A12 B7 A31 

A13 C7 DO 

A14 B8 01 

A15 A7 02 

A16 B9 03 

A17 C8 04 

A18 A8 05 

ABCDEFGHJKLMNPRTUVW 

1 ~~~~~~~~~~~0000000 
2 0@@@000@@0000000@00 
3 06)00000@@00000006)00 
4 0@00000@@0000000@00 
5 06)000 006)00 
6 06)00 06)00 
7 06)00 06)00 
8 0@00 0@00 
9 0@00 06)00 

10 06)00 BOTTOM VIEW 06)00 
11 06)00 06)00 
12 06)00 06)00 
13 06)00 0000 
14 0000 0~00 
15 06)000 00000 
16 0000000000000000000 
17 06)000006)6)0000000000 
18 0~000006)00000000000 
19 000000006)0000000000 

24J·Pin Grid Array Package 

Pin # Pin Name Pin # Pin Name Pin # Pin Name 

A9 D6 C16 025 Jl8 ASI2 

B10 D7 A17 026 H17 ASI3 

C10 08 B17 027 G19 ASI4 

A10 09 C17 028 K18 ASI5 

Bll 010 B18 029 H19 mE 
Cll 011 A19 030 119 MHOlD 

B12 012 C18 031 K17 MOS 

All 013 B19 POR C2 MEXC 

A12 014 018 ERROR B2 CSTA 

A13 015 C19 SIZEO 13 lDSTO 

B13 016 EI8 SIZE1 K1 IRST 

C13 017 019 RO K3 CLK 

B14 018 F18 WE H2 MRST 

A14 019 F17 INUIL E2 MERR 

B1S 020 G18 FNUIL G3 MROY 

A15 021 E19 SNUII G1 MKI'Y 

CIS 022 H18 CSEL G2 MBG 

A16 023 G17 ASIO 01 MBB 

B16 024 F19 ASIl E1 
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Pin # Pin Name Pin # 

C1 MBR T3 

F3 MAS R1 

02 TOE PI 

F1 CBWEO N1 

J2 CBWE1 K2 

F2 CBWE2 M3 

HI CBWE3 L2 

11 CMER M2 

N3 CROE M1 

L1 MADO U3 

03 MAD1 T2 

L3 MA02 U4 

P3 MA03 U2 

N2 MA04 W3 

T1 MADS V2 

P2 MA06 US 

U1 MAD7 W4 

R2 MADS V3 

MA09 W5 
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Pin Name Pin' Pin Name Pin' Pin Name Pin' Pin Name Pin Numbers 

MADl0 U6 MAD28 V11 MAD47 U18 VDDO H3 04 R4 011 T11 T13 

MAD11 V4 MAD29 W12 MAD48 W19 014 Ul4 T15 E16 G16 J16 

MAD12 W6 MAD30 V12 MAD49 T18 N16 R16 L17 

MAD13 U7 MAD3l W13 MAD50 U19 Vsso R3 E4 F4 K4 M4 T4 

MAD14 V5 MAD32 V13 MAD5l T19 05 R5 T5 C6 T6 C9 

MAD15 W7 MAD33 Ul3 MAD52 R19 09 U9 010 Tl0 C12 Ul2 

MAD16 V6 MAD34 W14 MAD53 R18 013 C14 T14 E15 R15 016 

MAD17 U8 MAD35 V14 MAD54 P19 H16 K16 M16 T16 017 P17 

MAD18 V7 MA036 W15 MAD55 P18 T17 

MAD19 W8 MAD37 Ul5 MAD56 N19 VDm 04 J4 L4 N4 06 08 

MAD20 W9 MA038 V15 MAD57 N18 T7 T9 L16 P16 E17 J17 

MAD2l V8 MAD39 W16 MAD58 M17 R17 

MAD22 V9 MAD40 V16 MAD59 M19 VSSI B1 W2 E3 H4 P4 E5 

MAD23 UlO MAD4l Ul6 MAD60 L19 D7 T8 012 T12 015 F16 

MA024 Wl0 MAD42 V17 MAD6l M18 N17 A18 V19 

MA025 W11 MAD43 W17 MAD62 K19 

MA026 Vl0 MAD44 W18 MA063 L18 

MA027 U11 MAD45 V18 

MAD46 U17 
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7.4.9 CY7C604 Package Diagrams 

IT 
1.990 
1.950 

1.780 
T.82o 

@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@ @@@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@ BOTTOM @@@@ 
@@@@ @@@@ 
@@@@ VIEW @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@@ @@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 

@@@@@@@@@@@@@@@@@@ 

0.085 ~5 _ .. 1----- 1.780 ______ ~.I 
T.82o 

1------- 1.990 ______ --1 
1.950 
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7.S CY7C60S Electrical and Mechanical Characteristics 

7.5.1 CY7C60S Maximum Ratings 

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. _65 0 C to + 1500 C 
Ambient Temperature with Power Applied ............................................................ -55 0 C to + 1250 C 
Supply Voltage to Ground Potential [II • • • • • • • • • • • • • • • . • • • . • . • . • . • • • • . • . . • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • •• -O.5V to + 7.0V 
DC Voltage Applied to Outputs in High Z State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -O.5V to + 7.0V 
DC Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -3.0V to + 7.0V 
Output Low Sink Current. ...................................................................................... 30 rnA 

7.5.2 CY7C60S Operating Range 

Range Ambient Temperature Vee 

Commercial 0° Cto 70° C 5V ± 10% 

Military[21 -55° C to + 125° C 5V ± 10% 

7.5.3 CY7C60S DC Characteristics Over the Operating Range [31 

Parameters Description Test Conditions Min. 

VOH Output HIGH Voltage Vee = Min., IoH = -2.0 rnA 24 

VOL Output LOW Voltage Vee = Min., IoL = 8.0 rnA 

VlH Input HIGH Voltage 2.1 

VIL Input LOW Voltage -3.0 

IlH Input HIGH Current Vee = Max., V IN = Vee -10 

IlL Input LOW Current Vee = Max., V IN = Vss -10 

lsc Output Short Circuit Current [41 Vee = Max., VOUT = OV -30 

loz Output Leakage Current Vee = Max., Vss~ VOUT~ Vee -40 

IcCQ Quiescent Supply Current Vss~ VIN~ VIL or 
VlH~ VIN~ Vcc 

Icc Supply Current, Commercial Vee = Max., f = 40 MHz 
Vee = Max., f = 33 MHz 
Vee = Max., f = 25 MHz 

Supply Current, Military Vee = Max., f = 25 MHz 

7.5.4 CY7C60S Capacitance [51 

Parameters Description Test Conditions 

CIN Input Capacitance Vee = 5.0 V, TA = 25° C, f = 1MHz 

CoUT Output Capacitance Vee = 5.0 V; TA = 25° C, f = 1MHz 

CIa I/O Bus Capacitance Vee = 5.0 V, TA = 25°C,f = 1MHz 

Notes: 

1. All power and ground pins must be conneeted to the other pins of same type before any power is applied to the part. 
2. See last page of this document for Group A subgroup testing information 
3. Ambient temperature is the 'instant on' case temperature. 
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. 
S. 1ested initially and after any design or process changes that may affecl these parameters. 
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Max. Units 

V 

0.5 V 

Vee V 

0.8 V 

10 IIA 
10 IIA 

-180 rnA 

40 IIA 
400 rnA 

650 rnA 
600 
600 

650 rnA 

Max. Units 

10 pF 

12 pF 

15 pF 
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7.5.5 CY7C60S AC Characteristics Over the Operating Range [6,7) 

Reference CY7C60S-25 CY7C60S-33 CY7C60S-40 
Parameter Description Edge Min. Max. Min. Max. Min. Max. Unit 

1 Clock Cycle 40 1000 30 1000 25 1000 ns 

2 Clock High and Low 18 990 13 990 10 990 ns 

3 A(31:0) Output DelayllO) CLK+ 33 24 20 ns 
4 A(31:0) Output Hold[lO) CLK+ 7 7 7 ns 

5 Address/Control Input Set-UplI2) CLK+ 3 3 2 ns 

6 Address/Control Input Hold[12) CLK+ 6 6 6 ns 
7 D(31:0) Output Delay [10,11) CLK-/+ 23(31) 18(24) 15(19) ns 
8 D(31:0) Output Hold [10,11) CLK-/+ 3(6) 3(6) 3(6) ns 
9 D(31:0) Input Set-Up [11) CLK+/- 3(7) 2(6) 2(6) ns 
10 D(31:0) Input Hold [II) CLK+/- 5(3) 5(3) 5(3) ns 
11 MDS, MHOLD Output Delay CLK- 29 23 19 ns 
12 MDS, MHOLD Output Hold CLK- 7 7 7 ns 
13 CBWE Output Delay CLK- 33 25 20 ns 
14 CBWB Output Hold CLK- 7 7 7 ns 
15 CROE Output Delay CU<+ 15 13 10 ns 

16 CROE Output Hold CLK+ 2 2 2 ns 
17 INUIUFNULL Input Set-Up CLK+ 16 14 11 ns 
18 INUIUFNULL Input Hold CLK+ 2 2 2 ns 
19 MEXC Output Delay CLK+ 21 16 12 ns 

20 MEXC Output Hold CLK+ 3 3 3 ns 

21 IOE Output Delay CLK+ 18 15 12 ns 
22 IOE Output Hold CLK+ 2 2 2 ns 

23 ERROR Input Set-Up CLK+ 5 4 4 ns 
24 ERROR Input Hold CLK+ 2 2 2 ns 
25 IRST Output Delay CLK+ 21 17 14 ns 
26 IRST Output Hold CLK+ 4 4 4 ns 

27 POR Input Set-Up CLK+ 15 10 8 ns 

28 POR Input Hold CLK+ 3 3 3 ns 
29 SNUlL Input Set-Up CLK- 7 4 3 ns 

30 SNUlL Input Hold CLK- 6 5 4,5 ns 

31 MAD(63:0) Output Delay [9) CLK+ 26 20 18 ns 
32 MAD(63:0) Output Hold (9) CLK+ 4 4 4 ns 
33 MAD(63:0) Input Set-Up CLK+ 5 4 3 ns 
34 MAD(63:0) Input Hold CLK+ 2 2 2 ns 
35 Mbus Control Output Delay [8,9,IOJ CLK+ 24 18 16 ns 
36 Mbus Control Output Hold [8,9,IOJ CLK+ 4 4 4 ns 

37 Mbus Control Input Set-Up 18) CLK+ 5 4 3 ns 

38 Mbus Control Input Hold (8J CLK+ 2 2 2 ns 
39 CSEL Setup upon POR Deassertion* CLK+ 8 7 6 ns 
40 CSEL Hold upon POR Deassertion* CLK+ 6 6 6 ns 
41 TOE Assertion to Output Disable TOE + 21 19 17 ns 
42 TOE Assertion to Output Enable TOE- 21 19 17 ns 

*Refer to Power-On Reset timing diagram 
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7.5.6 CY7C60S AC Test Loads and Waveforms 

R1 470 n 
5V 3V 

OUTPUT 0------.-------. OV 

I 
C· R2 319 n 

Waveform 
• Sec DOtes 6, 9, aDd 10 above 

Test Load 

7.5.7 CY7C605 AC Waveforms 

Mbus Timing Diagram (Single RMd Transaction) 

ClK 

MAO(63:0) 

MAS I 

-i@f ,:.:--------;---~ 0r_,.: -i----
MROY I: \: _. 

"MAS timing is representative of all Mhus output signals from the CY7C60S 

MROY timing is representative of all Mbos input signals to the CY7C60S 

Notes: 

6. 'Thst conditions assume signal transition times of 3 ns or less. a timing reference level of 1.SV, input levels of 0 to 3.0V, and output loading of SO pF 
capacitance. 

7. See the last page of this specification for Group A subgroup testing information. 

S. Mbos Control signals include: "MAS. MERR. MRIY. MROY. MBR. MBG. MBB. MRST. MIH. mHo and CMER. 
9. MAD(63:0)."MAS. MBB. MBR. MiH. MSH. and MRST timing specifications are tested using an output loading of 100 pF. 

10. CMER. CSTA. A(lS:2). and 0(31:0) timing specifications are tested using an output loading of SO pF. 

11. First number applies to transactions with the CY7C1S7 CRAM. Second number applies to transactions with the CY7C601. 
12. Address/Control signals include: A(31:0). ASI(S:O). SIZE(1:0). RO. WE. and IDS'IO. 
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Qock and Null Signal Timing Diagram 

ClK 

ADDR 

INUll, 
FNUll 

CY7C600 Electrical and Mechanical Characteristics 

______ i15-_1 

--

These nullification signals nullify address A. Address A is the current address of the address cycle. 

Store Timing Diagram 

ClK 

SIZE,ADDR, 
ASllnputs 

DATA from 
CY7C601 

Load Timing Diagram 

ClK 

SIZE, ADDR, 
ASllnputs 

DATA to 
CY7C601 

RD 
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Store with Miss Timing 

ClK 

SIZE,ADDR, 
ASllnputs 

DATA from 
CY7C601 

Load with Miss Timing 

ClK 

SIZE,ADDR, 
ASllnputs 

DATA to 
CY7C601 

RD 

IOE 

CY7C600 Electrical and Mechanical Characteristics 

~------~--~5.~--~1 
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Write to CY7C157 CRAM 

ClK 

ADDR 

DATA OUT 

Readfrom CY7C157 CRAM 

ClK 

ADDROUT 

DATA IN 

Power-On Reset Timing Diagram 

ClK 

CSEl* \\...-..0--\55 
• B<XlT CY7C604/605 Only 

7-44 



CY7C600 Electrical and Mechanical Characteristics 

Watchdog Reset Timing Diagram 

elK 

Software External Reset Timing Diagram" 

elK 

'Refer to page 4-83. 

Software Internal Reset Timing Diagram" 

elK 

'Refer to page 4-83. 
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7.5.8 CY7C605 Pin Configuration 

Pin Name Pin # Pin Name 

AO C3 AI9 

Al B3 A20 

A2 A2 A21 

A3 B4 A22 

A4 C4 A23 

AS A3 A24 

A6 BS A2S 

A7 CS A26 

A8 B6 A27 

A9 A4 A28 

AIO AS A29 

All A6 A30 

Al2 B7 A31 

A13 C7 DO 

Al4 B8 D1 

AIS A7 D2 

Al6 B9 D3 

Al7 C8 D4 

Al8 A8 DS 

ABCDEFGHJKLMNPRTUVW 

1 $$$$$00$0000000000 
2 0$000000@0000000@00 
3 0$000000$0000000000 
4 0@000000$0000000000 
5 0$000 00000 
6 0000 0000 
7 0$00 0000 
8 0000 0000 
9 0@00 0000 

10 0000 BOlTOM VIEW 0000 
11 0000 0000 
12 0000 0000 
13 0000 0000 
14 0000 0000 
15 00000 00000 
16 0000000000000000000 
17 0000000$0G>G>G>G>0000G>0 
18 0000000$00000000000 
19 0000000000000000000 

243·Pin Grid Array Package 

Pin # Pin Name Pin # Pin Name Pin # Pin Name 

A9 D6 CI6 D2S 118 ASI2 

BIO D7 AI7 D26 HI7 ASI3 

CIO D8 BI7 D27 GI9 ASI4 

AIO D9 CI7 D28 KI8 ASIS 

Bll D10 BI8 D29 HI9 IOE 

Cll D11 AI9 030 119 MHOW 

BI2 D12 CI8 D31 KI7 MDS 

All D13 BI9 paR C2 MEXC 

AI2 D14 DI8 ERROR B2 N.C." 

A13 D1S CI9 SIZEO 13 wsro 

B13 D16 EI8 SIZEI KI IRST 

C13 Dl7 D19 RD K3 CLK 

Bl4 D18 Fl8 WE H2 MRST 

AI4 D19 FI7 INUlL E2 MERR 

BIS D20 G18 FNUlL G3 MRDY 

AIS D21 El9 SNUlL G1 MRTY 

CIS D22 Hl8 CSEL G2 MOO 
Al6 D23 G17 ASIO D1 MBB 

Bl6 D24 Fl9 ASIl EI 

•• N.C. is a no connect (CSTA on CY7C604) 
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Pin # Pin Name Pin # 

CI MBR T3 

F3 MAS RI 

D2 roE PI 

FI CBWEO NI 

J2 CBWEI K2 

F2 CBWE2 M3 

HI CBWE3 L2 

11 CMER M2 

N3 CROE MI 

L1 MADO U3 

D3 MAD1 T2 

L3 MAD2 U4 

P3 MAD3 U2 

N2 MAD4 W3 

TI MADS V2 

P2 MAD6 US 

UI MAD7 W4 

R2 MAD8 V3 

MAD9 WS 
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Pin Name Pin' Pin Name Pin' Pin Name Pin' Pin Name Pin Numbers 

MADI0 U6 MAD28 Vll MAD41 U18 VOIlO H3 D4 R4 011 Tll T13 

MADll V4 MAD29 W12 MAD48 W19 014 Ul4 Tl5 E16 016 116 

MAD12 W6 MAD30 V12 MAD49 Tl8 N16 R16 L11 

MAD13 U1 MAD31 W13 MAD50 U19 Vsso R3 E4 F4 K4 M4 T4 

MAD14 V5 MAD32 V13 MAD51 Tl9 D5 R5 T5 C6 T6 C9 

MAD15 W1 MAD33 Ul3 MAD52 R19 D9 U9 010 TlO C12 U12 

MAD16 V6 MAD34 W14 MAD53 R18 D13 C14 T14 E15 R15 016 

MADl1 U8 MAD35 V14 MAD54 P19 H16 K16 M16 T16 011 P17 

MA018 V1 MAD36 W15 MAD55 P18 Tl1 

MAD19 W8 MAD31 Ul5 MAD56 N19 Vom G4 J4 lA N4 D6 D8 

MAD20 W9 MAD38 V15 MAD57 N18 T1 T9 L16 P16 E17 117 

MAD21 V8 MAD39 W16 MAD58 M17 R11 

MAD22 V9 MAD40 V16 MAD59 M19 VSS1 Bl W2 E3 H4 P4 E5 

MAD23 UlO MAD41 Ul6 MAD60 L19 D1 T8 012 Tl2 015 F16 

MAD24 WIO MAD42 V17 MAD61 M18 Nl1 A18 V19 

MAD25 Wll MAD43 Wl1 MAD62 K19 

MAD26 VI0 MAD44 W18 MAD63 L18 

MAD21 Ull MAD45 V18 MJH WI 

MAD46 Ul1 MSH VI 
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7.5.9 CY7C605 CPGA Package Diagram 

_t_ 

-t.085_ 14--1. -1.800'±'O.020sq.-~ I 
1-------1.970.±.O.020sq.~ 

t LO.100 
1- .±. 0.020 

- O.160typ. 
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7.6 CY7C157 Electrical and Mechanical Characteristics 

7.6.1 CY7C157 Maximum Rating 

(Above which the useful life may be impaired. For user guidelines, not tested.) 
Storage Temperature ............................................................................... - 65°C to + 150°C 
Ambient Temperature with Power Applied ............................................... " ., ...... , .... -55°C to + 125°C 
Supply Voltage to Ground Potential ...................................................................... -0.5V to + 7.0V 
DC Voltage Applied to Outputs in High Z State ........................................................... -0.5V to + 7.0V 
DC Input Voltage ..................................................................................... -3.0V to + 7.0V 
Output Current into Outputs (Low) .............................................................................. 50 rnA 
Static Discharge Voltage (per MIL-STD-883, Method 3015)..................................................... >2001V 
Latch-Up Current .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. > 200 rnA 

7.6.2 CY7C157 Operating Range 

Range Ambient Temperature Vee 
Commercial O°C to + 70°C 5V ± 10% 

Military!'! -55°Cto + 125°C 5V ± 10% 

7.6.3 CY7C157 DC Characteristics Over the Operating Range!2] 

7C157-20 7C157-24 7C157-33 

Parameters Description Test Conditions Min. Max. Min. Max. Min. Max. Units 

VOH Output HIGH Voltage Vee = Min., IOH = -4.0 rnA 2.4 24 2.4 V 

VOL Output LOW Current Vee = Min.,IoL = 8.0 rnA 0.5 0.5 0.5 V 

VIH Input HIGH Voltage 2.1 Vee 2.1 Vee 2.1 Vee V 

VIL Input LOW Voltage -3.0 0.8 -3.0 0.8 -3.0 0.8 V 

IJ){ Input Load Current GND < VI < Vee -10 +10 -10 +10 -10 + 10 IlA 

Ioz Output Leakage Current GND < Vo < Vee, -SO +50 
Output Disabled 

-SO +50 -SO +50 IlA 

los Output Short Circuit Current!3] Vee = Max., VOUT = GND -350 -350 -350 rnA 

lee Vee Operating Supply Current Vee = Max, I Commercial 300 250 250 rnA 

lOUT = 0 rnA I Military 300 300 

7.6.4 CY7C157 Capacitance!4] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance TA = 25°C, f = 1 MHz, 5 pF 

COUT Output Capacitance Vee = 5.0V 8 pF 

Notes: 
1. TA is the "instant on" case temperature. 
2. See the last page of this specification for Group A subgroup testing information. 
3. Not more than 1 output should be shorted at a time. Duration of the short circuit should not exceed 30 seconds. 
4. 'Iested initially and after any design or process changes that may affect these parameters. 
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7.6.5 CY7C157 AC Test Loads and Wavefonns 

R1 = 470 ohms A1 = 470 ohms 

5V ..... ---_ ...... 

OUTPUT ..... --..... --+ 
50pF 

INCLUDING 
JIGAND "=' 
SCOPE 

(a) 

5V ..... ---_ ...... 

OUTPUTo---..... --+ 
R2 = 319 ohms 

5pF 

INCLUDING 
JIG AND "=' 
SCOPE 

(b) 

Equivalent to: THEvENIN EQUIVALENT 
'67.0. OUTPUT 00 _____ ........ __ ..... 0 1.73V 

R2 = 319 ohms 

7.6.6 CY7C157 AC Characteristics Over the Operating Rangel2, S] 

ALL INPUT PULSES 

3JN~% 90% 
~ ~ ,. 

..s.3ns .... .s.3ns 

CY7C157·2016] CY7C157-2416] CY7C157-33 

Parameters Description Min. Max. Min. Max. Min. Max. Units 

READ CYCLE(7,8] 

teHCH Clock Cycle Time 25 30 40 ns 

teH Clock HIGH Time 11 13 18 ns 

teL Clock LOW Time 11 13 18 ns 

IcHQV Clock HIGH to Output Valid 20 24 33 ns 

teHQX Output Data Hold 5 5 5 ns 

tWHCH WEx HIGH to Next Clock HIGH 2 2 3 ns 

luLQv OE LOW to Output Valid 0 8 0 10 0 15 ns 

tGHQZ OE HIGH to Output Three-state 0 8 0 10 0 15 ns 

luHCH OE HIGH to Next Clock HIGH 7 7 7 ns 

tAVCH Address Set-Up 2 2 3 ns 

teHAX Address Hold 6 6 6 ns 

WRITE CYCLE!9] 

teHcH Clock Cycle Time!lO] 25 30 40 ns 

tCH Clock HIGH Time 11 13 18 ns 

tCL Clock LOW Time 11 13 18 ns 

luHQZ OE HIGH to Output Three-state 0 8 0 10 0 15 ns 

luHCH OE HIGH to Next Clock HIGH 7 7 7 ns 

tovCL Data in Set-Up to Clock 6 6 7 ns 

tCLDx Data in Hold from Clock 2 2 2 ns 

tWLCL WEx LOW to Clock LOW!ll, 12] 2 2 3 ns 

teLWH Clock LOW to WEx HIGHIll,12] 6 6 7 ns 

tAveH Address Set-Up 2 2 3 ns 

teHAX Address Hold 6 6 6 ns 

Notes: 
5. Test conditions assume signal transition times of 5 os or less, timing referenece levels of l.S\'; input pulse levels of 0 to 3.0V; and output loading 

of the specified IOLlloH and 50-pF load capacitance. 
6. Surface mount package ooly. 
7. WE is HIGH for read cycle. 
8. DE is selected (LOW). 
9. DE must be HIGH for data-in to propagate to latch. 
10. tGHQZ is tested with CL = 5 pF as in part (b) of AC Test Loads. 1taosition is measured ± Soo mV from steady state voltage. 
11. Self-Timed Write is triggered on falling edge of registered WEo or WE, signals. 
12. X = 0 or 1 for low byte and high byte, respectively. 
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7.6.7 CY7C157 AC Waveforms 

&adCycle 

CLOCK 

ADDRESS 

DATA OUT ~~~~~~~t-----<~ 

Write Cycle 

ADDRESS ---", 
DATA OUT 

DATA IN 
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7.6.8 CY7C157 'Iruth Table 

Inputs 

OE WE" <+CWCK) WE. <+CWCK) Outputs 

X X X HighZ 

H H H HighZ 

L H H 1/00 - 1/0.5 

H L H 1/00 -I/O, 

H H L 1/0.- 1/0.5 

H L L 1/00 -1/0.5 

7.6.9 CY7C157 Pin Timing Cross Reference 

Timing 
Pin Name Reference Description 

Clock C Clock Inputs 

Ao -A13 A Address Inputs 

1/00 - I/0.5 (Input) D Data Inputs 

1/00 - 1/0.5 (Output) Q Data Outputs 

WEo, WE .. WEx W Write Enable 

OE G Output Enable 

7.6.10 CY7C157 Pin Assignments 
LCC and PLCC 

7 6 5 4 3 2 l~ 52 51 50 47 48 47 

"" Vsso 

I/O, 10 

I/O, 11 

I/O, 12 
I/O, 13 

v= 14 

Ito. 

Ito, 16 

Ito, 17 

Ito, 1. 

V"'" 19 

V"'" 

TOP VIEW 

21 22 23 24 25 26 27 28 29 30 31 32 33 
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7.6.11 CY7C157 Package Diagrams 

All dimensions are in inches: JIIlIX. 
.min. /Pin1 

II --------l-L lI.ll!I5 
-,- 0.055 

11l"TT"T'l"TT"T'l: ~ I 
~ 0.7~ ~ 

!WID 
o .761 

• 
~ 

il 

!WID 
0.761 

TOP 

52-Lead Plastic Leadless Chip Carrier J69 

-, 
~ 
~ 

-.-- 0.008 R 
52 places 

52-Pin Square Leadless Chip Carrier 1.69 
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Chapter 8 
crP~SS~~~==========~~ 
SEMICONDUcrOR CY7C600 Ordering Information 

8.1 CY7C601 Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

40 CY7C601-40GC G208 Commercial 

CY7C601-40FC CQFP-208 

33 CY7C601-33GC G208 Commercial 

CY7C601-33FC CQFP-208 

25 CY7C601-25GC G208 Commercial 

CY7C601-25FC CQFP-208 

25 CY7C601-25GMB G208 Military 

CY7C601-25FMB CQFP-208 

8.2 CY7C611 Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

25 CY7C611-25KC PQFP-208 Commercial 

8.3 CY7C602 Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

40 CY7C602-40GC G144 Commercial 

33 CY7C602-33GC G144 Commercial 

25 CY7C602-25GC Gl44 Commercail 

Contact your local Cypress sales office for up-to-date ordering and availability information. 
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8.4CY7C604 Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

40 CY7C604-40GC G243 Commercial 

33 CY7C604-33GC G243 Commercial 

25 CY7C604-25GC G243 Commercial 

8.5 CY7C60S Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

40 CY7C605-40GC G243 Commercial 

33 CY7C605-33GC G243 Commercial 

25 CY7C605-25GC G243 Commercial 

8.6 CY7ClS7 Ordering Information 

Speed (ns) Ordering Code Package 1YPe Operating Range 

20 CY7C157-20LC L69 Commercial 

CY7C157-2OJC J69 

24 CY7C157-24LC L69 Commercial 

CY7C157-24JC J69 

33 CY7C157-33LC L69 Commercial 

CY7C157-33JC J69 
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CYP~SS~~~~~~~~~~~~ 
SEMICONDUCTOR CY7C600 Uni-Module 

A.I Uni-Module Board Hardware Description 

A.1.1 Introduction 

The SPARC Uni-Module Board is a single-board computer utilizing the complete SPARC chip set (Integer Unit, Floating 
Point Unit, Cache Memory Management Unit, and Cache RAMs) operating at maximum speed. It contains a 64-kbyte, 
direct-mapped, virtual cache (1 CMU and 2 CRAMs). The PC board size is 3.3" x 7.25" and it has an Mbus interface via 
a Ioo-pin connector. The Uni-Module is described in this section as an example of a CY7C6oo processor node and to 
demonstrate how to interconnect the CY7C600 chip set. 

A.l.2 Features 

1. CY7C60I SPARC Integer Unit 

2. CY7C602 Floating-Point Unit 

3. CY7C604 Cache Controller and Memory Management Unit 

4. 64 kbytes of direct-mapped cache using two CY7CI57 CRAMs (0 Wait States on Virtual bus) 

5. Operates over a frequency range of 10 to 40 MHz at ambient temperature and nominal + 5V 

6. The board requires approximately 2A @ + 5V via the Mbus connector 

A.l.3 Basic Mbus Operation and Timing 

The Mbus is a fully synchronous (same clock as IU and CMU), multiplexed (address and data), 64-bit bus. A cycle is started 
when MAS (Mbus Address Strobe) is asserted via the CMU and is completed successfully upon the assertion of MRDY 
alone, or unsuccessfully with the assertion of various combinations of MERR (Mbus ERRor), MRDY (Mbus ReaDY) 
or MRTY (Mbus ReTrY) from the Mbus. 

The Mbus allows multiple masters via an external arbiter. An Mbus master can request the Mbus by asserting its MBR 
(Mbus Bus Request) line to the arbiter and the arbiter can grant the bus by asserting the MBG (Mbus Bus Grant) line 
to the requester. Each potential bus master monitors the MBB (Mbus Bus Busy) line and, after receiving its bus grant 
and observing that MBB has been deasserted, will synchronously assert MBB on the next clock and keep it asserted until 
its access is finished. 

A Power-On Reset signal is generated to the CMU from the Mbus. Reset is asserted on the Mbus via the MRST (Mbus 
ReSeT) line from the CMU. 

Level sensitive interrupts (15 max.) are generated to the CY7C60I IU via the IRL(3:0) lines from the Mbus. A value of 
OOOOb means that there is no interrupt, whereas a value of IllIb means an NMI is being asserted. 

Basic Mbus timing is as follows: 

1. The CY7C604, running at 40 MHz, makes address, data and status signals available 18 ns after the clock rising edge 
(RE) which gives 7-ns set-up time before the following clock RE to latch them. It also holds these signals until 4 ns 
after the next clock RE. For control signals the respective timings are 16 ns after the clock RE (gives 9-ns set-up time) 
and holds the signals for 4 ns after the clock RE. 

2. The CMU requires that data, control, and status signals be valid no later than 3 ns before the clock RE and that it 
be held for 2 ns after the clock RE. 
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CY7C600 Uni-Module 

A1.3.1 Board Detailed Description 

The first figure is a block diagram of the SPARC Uni-Module Board. For a more complete understanding, consult the 
Uni-Module Board schematic diagrams that follow. The logic can be broken down as in the following sections. 

A.1.3.1.I Computing Cluster (IU, CMU, CRAMs and FPU) 

The socketed computing cluster consists of the CY7C601 Integer Unit in a 207-pin PGA package, the CY7C602 Floating­
Point Unit in a 143-pin PGA package, the CY7C604 Cache Controller and Memory Management Unit in a 243-pin PGA 
package, and two CY7C157 Cache RAMs in 52-pin PLCC packages. These chips are connected together in a tightly 
coupled configuration to provide integer, floating-point, and memory management capabilities as well as 64 kbytes of 
direct-mapped, virtual, cache. The board/Mbus does not make use of any coprocessor signals nor the BHOLD or MAO 
signals. 

A.l.3.1.2 Board Decouplingand Signal Termination 

There are various pull-up and pull-down resistors on the Uni-Module board in order to improve operation, testability, 
and to allow the removal of the FPU. Multiple O.l-J.lF ceramic decoupling capacitors are placed around each chip to pro­
vide power for instantaneous, high-frequency current requirements. Multiple 22-J.lF tantalum decoupling capacitors are 
placed near the Mbus connector and at the board edges to help provide a stable, low-frequency, low-impedance power 
source. 

MDS and MEXC lines have pull-up resistors on them since these are three-state lines driven by the CMU. The CLK 
line from the Mbus connector is parallel terminated at its end (FPU) by a Thevinin equivalent of 75 ohms, since this is 
the design impedance of the board. 

There is a pull-down resistor on the TOE pin ofthe IU (DOE pin ofthe FPU, OE pin of the CRAMs) so that the outputs 
are always enabled except when three-stated by the CMU via the IOE (CROE) signal. There is a similar pull-down resistor 
on the TOE pin of the CMU so that during board test these IC's can be three-stated. The FNULL line from the FPU 
has a pull-down resistor on it so that if an FPU is not present, the IU and CMU will still operate correctly. The 1FT pin 
of the IU has a pull-down resistor on it so that the execution of an IFLUSH instruction will cause an illegaUnstruction 
trap. There are pull-up resistors on all of the coprocessor lines (MHOLDB, BHOLD, SNULL), the floating point lines 
from the FPU to the IU, and on the CMER, MERR and MRTY lines of the CMU. 

The CMU is always selected because its chip select pin is tied to GND. The MAO pin of the IU is similarly grounded 
to prevent falsely switching the internal source address mux of the IU. 
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CYP~SS~~~~~~~~~~~ 
SEMICONDUCTOR Glossary 

Address Translation Cache (ATC): The ATC is a cache of address translation entries used by an MMU to translate virtual 
addresses to physical addresses. The CY7C604/605 uses an ATC for address translation, but the more familiar 
term translation lookaside buffer (ILB) is used throughout the text. 

Aliasing: Mapping two or more virtual addresses to the same physical address. SPARC software conventions permit the 
use of aliases in address spaces that are modulo with respect to the system's underlying cache size. 

Annul bit: This bit is used in the SPARC architecture to allow the designer or compiler to decide whether or not the 
delay slot instruction of a delay control transfer instruction will be executed if the conditional branch is taken. 
See Section 2.3.3.4 for further information. 

Cache controller: Provides cache memory access control for a 64-kbyte direct-mapped virtual cache. 

Cache lock: A mechanism that allows the system to lock all entries in the cache, supported by the CY7C604. This feature 
allows deterministic response tiroes for real-tiroe systems. 

Content addressable memory (CAM): A memory that is accessed by supplying the value to be compared to the memory 
contents. When accessed, the CAM returns the location of the memory where the value is stored, or returns a 
no-match signal if the memory does not contain the value. In the case of the CY7C604/605 MMU, the value re­
turned by the CAM array is used to address a value in the 1LB RAM array, which in tum provides the physical 
translation value to be used by the MMU. 

Copy-back mode: A style of cache management in which write accesses are written to the cache only, not to main memory. 

Current window: The block of 24 r registers pointed to by the current window pointer. 

Current window pointer (CWP): Selects the current register window. 

Delay instruction: The instruction immediately following a control transfer instruction. This instruction is always 
fetched, and is either executed or annulled before the control transfer takes place. 

Double·precision floating point: A data type consisting of 64 bits. 

Doubleword: A data type consisting of two 32-bit words used as a single 64-bit operand. A doubleword is always aligned 
with the most significant word at an even word boundary (bits 2-0 equal to zero). The subsequent least significant 
word is on an odd word boundary (bit 2 equal to one, bits 1-0 equal to zero). 

Extended·precision floating point: A data type consisting of 128 bits. 

fregister: One of the FPU's 32 working registers. 

Floating-point unit (FPU): The coprocessor that performs floating-point calculations. 

Floating-point operate (FPop) instruction: Instructions that perform floating-point calculations. This category does not 
include loads and stores between the memory and the FPU. 
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F1oating.point.queue (FQ): A three~deep storage area for FPop instructions and their addresses while they are being 
executed in the FPU. Floating-point exception traps occur sometime after the floating-point instruction is issued, 
asynchronously to the IU and its pipeline. The queue supplies instruction/address pair information to the IU for 
the FPop that caused the exception. 

Frame pointer: The pointer to the beginning of a memoty stack. The frame pointer is often specific to a window, and 
is set from the stack pointer of the previous window. 

Global registers: A block of eight registers within the register file that are always avaiIable to the IU regardless of the 
value of the CWP. 

Halfword: A data type consisting of 16 bits. 

Integer unit (IU): The main computing engine. It fetches all instructions and executes all but the FPop and CPop instruc· 
tions. 

Mhus: The interface between a SPARC processing module and the memoty subsystem. 

Load/Store: The class of instructions that are either load or store instructions. 

Load· Store: The class of instroctions that are atomic (indivisible or locked) load 1HEN store. These instructions are 
typically used for the manipulation of multiprocessor semaphores or any other process where interruption during 
the process of loading a variable and storing a new value for that variable could be disastrous. The SPARC load­
store instructions are: SWAP, SWAPA, LDSTUB, and LDSIUBA 

Next program counter (nPC): Contains the address of the next instruction to be executed, assuming no trap occurs. 

Processor state register (PSR): The IU's status register. 

Program counter: Contains the address of the current instruction being executed by the IU. 

r register: A global register or a register in the current window of the register file. 

Register window: A group of 24 working registers from the set of window r registers (128 window registers or eight win­
dows are available on the CY7C601I611). Register windows overlap by eight registers, causing three types of win­
dow registers: ins, OUlli, and locals. Ins are the window registers that were the outs for the previous window. Locals 
are specific to the register window, and are not shared. See Section 2.2 for further information. 

rd, rst, and rsl: Instruction format fields which specify the register operands of an instruction. rd is the destination 
register and rsl and rs2 are the source registers. 

RISC: An acronym that stands for Reduced Instruction Set Computer. 

rlrd], r[rsl], and r[rsl]: The actual r registers specified by rd, rsl, and rs2. 

Page table entry (PTE): An address mapping for a single 4-kbyte page, a 256-kbyte region, a 16-Mbyte region, or a 4-Gbyte 
region. . 

Page table pointer (PTP): The address pointer used to identify the beginning of a page table in memoty. 

Page table pointer cache (PTPC): The cache of page table pointers stored by the CY7C604/60S in order to minimize the 
levels of table walks required for a 1LB miss. See Section 4.1 for further details. 

SPARC: An acronym that stands for Scalable Processor ARChitecture. 
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Stack pointer: The pointer to the next address in memory that registers are temporarily stored, typically in response 
to a procedure call or trap routine. 

Table walk: The process of accessing levels of tables in memory to find a page table entry for a particular virtual address. 
Each level of the table either has a pointer to the next level of table, or has the page table entry. Upon finding 
a page table entry, the table walk is terminated by the MMU. 

lranslation lookaside butTer (TLB): Acts as a cache for address mapping entries used by the MMU to map a virtual ad­
dress to a physical address. 

Virtual cache: Refers to the direct addressing of the cache by the integer unit using the virtual address bus. 

Word: A data type consisting of 32 bits. 

Write· through mode: A style of cache management that causes write accesses to the cache to be written through to main 
memory upon each write access. 
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SEMICONDUcrOR 

A 
ADD, 6-7 

ADDcc, 6-8 

ADDX,6-9 

ADDXce, 6-10 

AFAR (asynch. fault addr. reg.), 4-40 

AFSR (asynch. fault status reg.), 4-40 

AND, 6-11 

ANDcc, 6-12 

ANDN,6-13 

ANDNce, 6-14 

annul bit, 2-22, 2-26, 2-56 

ASI 
CY7C601I611,2-19 
CY7C604/605 asi mapping, 4-46 to 4-47 
CY7C604/605 signal, 4-55 
CY7C611 ASI, 2-87 
signal description, 2-45 
Use of in instructions, 2-19 

assembly language, 6-1 to 6-3 

B 
BFI()lJ), 2-46, 2-58, 2-67,3-11, 3-24 

Bice, 2-22, 2-26, 2-56, 6-15 

big endian, 2-14 

c 
cache controller, 4-15 to 4-34 

cache flushing, 4-32 
cacheable/non-cacheable, 4-33 
control signals, 4-30 to 4-31 
CY7C604, 4-16 to 4-19 

aliasing, 4-17 to 4-19 
cache locking, 4-19 
cache tag, 4-17 

1-1 

cache controller (continued) 
CY7C605, 4-20 to 4-30 

aliasing, 4-29 to 4-30 
bus snooping, 4-29 . 
cache state transitions, 4-23 to 4-29 
cache tag, 4-21 to 4-22 . 

MPTAG,4-21 
PVfAG,4-21 

multiprocessing support, 4-22 to 4-23 
LDST() cycles, 4-34 
MC (Mbus cacheable bit), 4-33 
modes, 4-15 
read buffer, 4-32 
write buffer, 4-31 

CALL, 2-8, 2-15, 2-18, 2-22, 2-25, 2-56,6-17 

CBccc, 2-22, 2-26, 2-56, 6-18 

CEXC, 2-49, 2-78 

CFI()LD, 2-49, 2-84, 3-11,3-24 

context switching, 2-6 

control registers, 2-8 

coprocessor interface, 2-84 

CPop, 2-30, 2-66, 6-20 

CTPR (context table pointer reg.), 4-37 

current window pointer. See CWP 

CWP, 2-3 to 2-4, 2-5, 2-10, 2-11, 2-23 

CXR (context register), 4-37 

CY7C601I611 registers, 2-2 to 2-15 
control/status registers, 2-8 to 2-12 
PC and nPc, 2-8 
PSR, 2-9 to 2-10 
r registers, 2-2 to 2-8 
TBR,2-11 
WIM,2-11 
Y register, 2-11 

CY7C602 registers, 3-12 to 3-15 
f registers, 3-12 
FP queue, 3-13 
FSR, 3-14 to 3-15 

CY7C604/605 diagnostics 
cache data entries, 4-44 
cache tag entries, 4-44 
1LB entries, 4-43 
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CY7C604/605 Multichip, 4-41 to 4-43 

CY7C604/605 registers, 4-35 to 4-40 
'604 system control register, 4-35 to 4-36 
'605 system control register, 4-36 
asynchronous fault address (AFAR), 4-40 
asynchronous fault status (AFSR), 4--40 
context register (CXR), 4-37 
context table pointer (CfPR), 4-37 
data access PTP (DPTP),4-38 
index tag register (ITR), 4-38 
instruction access PTP (IPTP), 4-38 
reset register (RR), 4-37 
root pointer register (RPR), 4-38 
synchronous fault address (SFAR), 4-40 
synchronous fault status (SFSR), 4-39 
1LB replacement control (fRCR), 4-39 

CY7C604/605 reset, 4-45 to 4-46 
Power-on reset, 4-45 
Software External reset, 4--45 
Software Internal reset, 4-45 
Watch-dog reset, 4-45 

CY7C604/605 synchronous faults, 4-47 to 4-54 

D 
delayed control transfer, 2-25, 2-56 

delayed control transfer couples, 2-27 to 2-29 

DPTP (data PTP), 4-38 

E 
ERROR 

signal, 2-8, 2-51, 4-56 
state, 2-8 
timing, 2-76 to 2-77 

F 
fregisters, 3--12 

FABSs, 6--21 

FADDd, 6--22 

FADDs, 6--23 

FADDx, 6--24 

FlBfcc,2-22,2-26,2-56,6--25 

FCMp, 2-22, 3-9 

FCMPd, 6--27 

FCMPE,2-22 

1-2 

FCMPEd, 6--28 

FCMPEs, 6--29 

FCMPEx, 6--30 

FCMPs,6--31 

FCMPx, 6--32 

FOIVd, 6--33 

FOIVs, 6--34 

FOIVx, 6--35 

FdTOi, 6--36 

FdTOs, 6--37 

FdTOx, 6--38 

FEXC, 2-50, 2-75, 2-78, 3--23 

FtfOlJD,2-5O,3-11,3--23 

FlNS1I2, 3-7, 3-23 

FiTOd, 6--39 

FiTOs, 6--40 

FiTOx, 6--41 

floating-point 
double-precision, 2-12, 3-20 
exceptions, 3-17, 3-22 
extended-precision, 2-14, 3-21 
interface, 3--4 
operate instr., 3-16 
queue,3-9,3-13 
single-precision, 2-12, 3-20 
status register (FSR), 3-14 

FLUSH, 2-51, 3-9, 3-23 

FMOVs, 6--42 

FMULd, 6--43 

FMULs, 6--44 

FMULx, 6--45 

FNEGs, 6--46 

FNULL, 3-12, 3-24, 4-56 

FP Queue, 3-13 

FPop, 2-30, 2-66 

FPops, 3--16 

frame pointer, 2--4, 0-2 

FSQRfd, 6--47 

FSQIm, 6--48 

FSQRrx, 6--49 

FSR (FP status register), 3-14 to 3-15 

FsTOd, 6--50 

FsTOi, 6--51 

Index 



FsTOx, 6-52 

FSUBd,6-53 

FSUBs, 6-54 

FSUBx,6-55 

FXACK, 2-51, 2-75, 3-23 

FxTOd,6-56 

FxTOi, 6-57 

FxTOs,6-58 

H 
hardware interlocks, 2-56 

I 
IFLUSH, 2-30, 6-59 

INST, 3-23 

instruction 
arithmetic/logical/shift, 2-20 
control kansfer, 2-22 
delay, 2-26, 2-56 
delayed control transfer, 2-25, 2-56 
fetch, 2-61 
floating-point, 3-16 
formats, 2-15 
FP inst. fetCh, 3-6 
load, 2-61, 2-62 
load/store, 2-19 
load-store, 2-20 
mnemonics, 6-3 
multiprocessing, 2-20 
op codes, 2-31 to 2-45 
pipeline, 2-52 to 2-53, 3-5 
store, 2-63, 2-64 
summary table, 6-6 
types, 2-19 to 2-30 

integer condition codes (icc), 2-9 

INULL, 2-47, 4-56 

lOp, 2-53 

IPTP (instruction PTP reg.), 4-38 

ITR (index tag reg.), 4-38 

J 
JMPL, 2-4, 2-8, 2-22, 2-53, 2-56, 6-60 

JMPL, RET[, 2-8, 2-23, 2-27, 6-91 

1-3 

L 
LD,6-61 

LDA, 6-62 

LDC,6-63 

LDCSR,6-64 

LDD,6-65 

LDDA, 6-66 

LDDC,6-67 

LDDF,6-68 

LDF,6-69 

LDFSR,6-70 

LDSB,6-71 

LDSBA, 6-72 

LDSH,6-73 

LDSHA, 6-74 

LDSTO 
'604/'605 operation, 4-34 
CY7C604/605 signal, 4-56 
signal, 2-47 
timing, 2-65 

LDSTO instructions, 2-20 

LDSTUB, 2-20, 6-75 

LDSTUBA, 6-76 

LDUB,6-77 

LDUBA, 6-78 

LDUH,6-79 

LDUHA,6-80 

load-store. See instruction, load-store; LDSTO 

M 
Mbus, 4-84 to 4-112 

address cycle, 4-87 to 4-88 
burst transactions, 4-86 
data cycle(s), 4-88 
Levell, 4-84 
Level 2, 4-84 to 4-85 
MAD bus, 4-57 
MAS signal, 4-57 
MBB signal, 4-57 
MBG signal, 4-58 
MBR signal, 4-58 
MERR signal, 4-58 
MIH signal, 4-58 
MRDY signal, 4-58 

Index 



Mbus, (continued) 
MRST signal, 4-58 
MKfY signal, 4-58 
MSH signal, 4-58 
non-burst transactions, 4-86 
relinquish and retry, 4-86 
retry,4-86 
signal summary, 4-85 to 4-87 
transactions, 4-88 to 4-92 

coherent invalidate, 4-90 
coherent read, 4-89 to 4-90 
coherent read and invalidate, 4-90 to 4-91 
coherent write and invalidate, 4-9Uo 4~112 
read, 4-88 to 4-89 
write, 4-89 

M[)S,2-47,3-24,4-56 

memory stack, 2-4 

MEXC, 2-47, 2-71, 2-78, 4-56 

MHOLl), 2-48, 2-58, 2-68 to 2-74, 3-11, 3-24, 4-56 

MMU, 4-3 to 4-12 
flush, 4-14 to 4-15 
operation modes, 4-13 to 4-15 
probe, 4-15 

MULScc, 2-11, 6-81 

o 
OR,6-82 

ORcc, 6-83 

ORN,6-84 

ORNcc, 6-85 

p 

page table entry. See PTE 

page table pointer. See PI'P 

page table pointer cache. See PI'PC 

PC and nPC, 2-8, 2-26 

POR,4-58 

processor interrupt level (PIL), 2-10 

processor state register. See PSR 

processor states, 2-8 

PSR, 2-9 to 2-10 

PTE, 4-3, 4-4, 4-10 to 4-11 

PTP, 4-9 to 4-10 
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PI'PC,4-11 

R 
T registers, 2-2 to 2-8 

ins, 2-3 to 2-4, 2-25 to 2-26 
locals, 2-3 to 2-4, 2-25 to 2-26 
outs, 2-3 to 2-4, 2-25 to 2-26 
r(Oj,2-21 
special T registers, 2-6 to 2-8 

R[)PSR, 2-10, 2-30, 6-86 

RDTBR, 2-11, 2-30, 6-87 

RDWIM, 2-11, 2-30, 6-88 

R[)Y, 2-30, 6-89 

register windows, 2-3 to 2-6 

RESET 
See also CY7C604/605 reset 
signal,2-8, 2-52, 3-24 
state, 2-8, 2-78 
timing, 2-76 

Index 

RESTORE, 2-4, 2-6, 2-10, 2-11, 2-22, 2-25, 6-90 

RETI, 2-6, 2-8, 2-10, 2-11, 2-22, 2-53,2-84,6-91 

RPR (root pointer reg.), 4-38 

RR (reset register), 4-37 

s 
SJ\\nE,2-4,2-5,2-6,2-11,2-22,2-25,6-93 
SCR ('604 system control reg.), 4-35 to 4-36 

SCR ('60S system control register), 4-36 to 4-37 

SE11iI,2-15,2-21,6-94 

SPM (synch. fault addr. reg.), 4-40 

SPSR (synch. fault status reg.), 4-39 

SLL, 6-95 

SNULL,4-56 

SRI\, 6-96 

SRI.., 6-97 

ST, 6-98 

STJ\, 6-99 

stack pointer, 2-4, 0-3 

STB,6-100 

STBJ\, 6-101 

STC,6-102 

STCSR,6-103 



SID,6-104 

SIDA, 6-105 

SIDC, 6-106 

SIDCQ, 6-107 

SIDF,6-108 

SIDFQ,6-109 

S1F,6-110 

S1FSR, 2-22, 6-111 

STH,6-112 

STHA, 6-113 

SUB,6-114 

SUBcc, 6-115 

SUBX, 6-116 

SUBXcc, 6-117 

supervisor 
bit, 2-10 
mode, 2-8 

SWAP, 2-20, 6-118 

SWAPA, 6-119 

T 
table walk, 4-8 to 4-9 

TADDcc, 2-22, 6-120 

TADDccTY, 2-22, 6-121 

tagged arithmetic, 2-22 

tagged data, 2-13, 2-22 

TBR, 2-8, 2-11, 2-23, 2-83 

Ticc, 2-11, 2-22, 2-23, 6-122 

1LB,4-4 
entries, 4--6, 4-43 
locking, 4-6 
look-up, 4-6 
table walk, 4-8 to 4-9 

translation lookaside buffer. See 1LB 

trap, 2-78 to 2-84 
addressing, 2-83 
a~chronous, 2-78 
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trap (continued) 
floating-point, 3-17, 3-22 
FP/Cp, 2-81 to 2-82 
IEEE exceptions, 3-22 
interrupts, 2-75, 2-80 to 2-81 
operation, 2-82 
pipeline timing, 2-58 
reset, 2-78 
~chronous,2-78 
types, 2-78 to 2-80, 2-83 

trap base register. See TBR 

TRCR (TLB replacement control reg.), 4-39 

TSUBcc, 2-22, 6-124 

TSUBccTY, 2-22, 6-125 

u 
UNIMp, 2-30, 6-126 

user mode, 2-8 

w 
WIM, 2-5, 2--6, 2-8, 2-11, 2-25 

window overflow and underflow, 2-5, 2-11 
See also WlM 

windows. See register windows 

WRPSR, 2-10,2-22, 2-30, 6-127 

VVlrfBR,2-11,2-30,6-128 

WRWIM, 2-11, 2-30, 6-129 

WR1f,2-30, 6-130 

x 
XNOR,6-131 

XNORcc, 6-132 

XOR,6-133 

XORcc, 6-134 

y 
1f register, 2-11 

Index 
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