
Ross Technology Subsidiary

\

SPARC RISC USER'S GUIDE

ROSS Technology, Inc.
A Cypress Semiconductor Company

ROSS Technology, Inc. • 7748 Hwy. 290 West • Austin • TX 78736 • 512-448-8968
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600

Second Edition - February 1990

SPARC is a trademark of Sun Microsystems.

ROSS Technology, Inc. is a subsidiary of Cypress Semiconductor Corporation.

© ROSS Technology, Inc., 1990. The infonnation contained herein is subject to change without notice. ROSS Thchnoiogy, Inc. assumes no responsibility
for the use of any circuitry other than circuitry embodied in a ROSS Thchnology, Inc. product. Nor does it conveyor imply any license under patent or
other rights. "ROSS Technology does not authorize its products for use as critical components in life support systems where a malfunction or failure of the
product may reasonably be expected to result in significant injury to the user. lbe inclusion of ROSS Technology products in life support systems applica­
tions implies that the manufacturer assumes all risk of such U&e and in so doing indemnifies ROSS Thchnology against all damages."

Table of Contents

Foreward .. xvii

Chapter 1: Introduction

1.1 SPARe Overview 1-1
1.1.1 Partitioning .. 1-1
1.1.2 The CY7C601 Integer Unit .. 1-2
1.1.3 CY7C611 Integer Unit for Embedded Control 1-4
1.1.4 CY7C602 Floating-Point Unit .. 1-4
1.1.5 CY7C157 Cache Data RAM ... 1-4
1.1.6 CY7C604/CY7C605 Cache Controller and MMU 1-4

1.2 Register Windows . .. 1-6

1.3 Instruction Set . .. 1-6
1.3.1 Load and Store Instructions ... 1-6
1.3.2 Arithmetic/Logical/Shift Instructions 1-6
1.3.3 Control Transfer Instructions .. 1-6
1.3.4 ReadlWrite Control Register Instructions 1-6
1.3.5 Floating-Point-Operate and Coprocessor-Operate Instructions 1-7

Chapter 2: CY7C60l/CY7C611 Integer Unit

2.1 Description Of Parts .. 2-2

2.2 Programming Model .. 2-2
2.2.1 Register Windows .. 2-2
2.2.2 Processor States .. 2-8
2.2.3 Supervisor/User Modes ... 2-8
2.2.4 Control/Status Registers .. 2-8
2.2.5 Data Types ... 2-12

2.3 Instruction Set .. 2-15
2.3.1 Instruction Formats .. 2-15
2.3.2 Addressing ... 2-17
2.3.3 Instruction Types .. 2-19
2.3.4 Op Codes .. 2-31

2.4 Signal Description . .. 2-43
2.4.1 Memory Subsystem Interface Signals 2-45
2.4.2 Floating-Point/Coprocessor Interface Signals 2-49
2.4.3 Interrupt and Control Signals 2-51
2.4.4 Power and Clock Signals ... 2-52

iii

2.5 Pipeline and Instruction Execution Timing 2-52
2.5.1 Stages .. 2-53
2.5.2 Multicyc1e Instructions ... 2-54
2.5.3 Pipeline Freezes ... 2-58
2.5.4 naps .. 2-58

2.6 Bus Operation and Timing 2-58
2.6.1 Instruction Fetch .. 2-61
2.6.2 Load ... 2-61
2.6.3 Load with Interlock .. 2-61
2.6.4 Load Double ... 2-62
2.6.5 Store .. 2-63
2.6.6 Store Double ... 2-64
2.6.7 Atomic Load-Store .. 2-65
2.6.8 Floating-Point Operations .. 2-66
2.6.9 Bus Arbitration ... 2-67
2.6.10 Load with Cache Miss ... 2-68
2.6.11 Store with Cache Miss ... 2-69
2.6.12 Memory Exceptions ... 2-71
2.6.13 Floating-Point Exceptions .. 2-75
2.6.14 Interrupts .. 2-75
2.6.15 Reset Condition ... 2-76
2.6.16 Error Condition ... 2-76

2.7 Exception Model .. 2-78
2.7.1 Reset .. 2-78
2.7.2 Synchronous "!taps ... 2-78
2.7.3 Interrupts .. 2-80
2.7.4 Floating-Point/Coprocessor Traps 2-81
2.7.5 nap Operation .. 2-82

2.8 Coprocessor Interface 2-84
2.8.1 Protocol .. 2-85
2.8.2 Register Model ... 2-86
2.8.3 Exceptions .. 2-86

2.9 CY7C611 Integer Unit for Embedded Control 2-87

Chapter 3: CY7C602 Floating-Point Unit

3.1 CY7C602 Functional Description 3-1

3.2 Floating-PointlInteger Unit Interface 3-4
3.2.1 CY7C602 Instruction Fetch and Execution 3-5
3.2.2 Instruction Pipeline Flush ... 3-9

3.3 CY7C602 Programming Model 3-12
3.3.1 CY7C602 Registers .. 3-12

iv

3.3.2 CY7C602 Floating-Point Instructions 3-16
3.3.3 CY7C602 Internal Operation 3-17
3.3.4 CY7C602 IEEE-754 Compliance 3-19
3.3.S CY7C602 Exception Cases ... 3-22

3.4 CY7C602 Signal Descriptions 3-23
3.4.1 Integer Unit Interface Signals 3-23
3.4.2 Coprocessor Interface Signals 3-24
3.4.3 SystemlMemory Interface Signals 3-24

Chapter 4: CY7C604/CY7C605 Cache Controller and MMU

4.1 Memory Management Unit 4-3
4.1.1 Thmslation Lookaside Buffer (ILB) 4-4
4.1.2 Thble Walk J ••• 4-8
4.1.3 Page Thble Pointer (PTP)•........... 4-9
4.1.4 Page Thble Entry (PrE) .. 4-10
4.1.S Page Thble Pointer Cache (PTPC) 4-11

4.2 MMU Operation Modes 4-13
4.2.1 MMU Flush and Probe Operations 4-14

4.3 CY7C604! CY7C605 Cache Controllers 4-15
4.3.1 CY7C604/60S Cache Modes .. 4-1S
4.3.2 CY7C604 Cache Controller .. 4-16
4.3.3 CY7C60S Cache Controller .. 4-20
4.3.4 CY7C604/CY7C60S Cache Control Signals 4-30
4.3.S CY7C604/60S Write Buffer ... 4-31
4.3.6 CY7C604/60S Read Buffer ... 4-32
4.3.7 CY7C604/60S Cache Flushing Operations 4-32
4.3.8 CY7C604/60S Cacheable/Non-Cacheable Memory Accesses " 4-33
4.3.9 CY7C604/60S Mbus Cacheable (MC) Bit 4-33
4.3.10 CY7C604/60S LDSTO (Atomic Load-Store Instruction) cycles 4-34
4.3.11 CY7C604/60S Cache Byte Write Enables 4-34

4.4 CY7C604! CY7C605 Registers 4-35
4.4.1 CY7C604 System Control Register (SCR) 4-3S
4.4.2 CY7C60S System Control Register (SCR) 4-36
4.4.3 CY7C604/60S Context Thble Pointer Register (CTPR) 4-37
4.4.4 CY7C604/605 Context Register (CXR) 4-37
4.4.S CY7C604/60S Reset Register (RR) 4-37
4.4.6 CY7C604/60S Root Pointer Register (RPR) 4-38
4.4.7 CY7C604/60S Instruction access PTP (IPTP) 4-38
4.4.8 CY7C604/60S Data access PTP (DPTP) 4-38
4.4.9 CY7C604/60S Index Thg Register (ITR) 4-38
4.4.10 CY7C604/60S1LB Replacement Control Register (IRCR) 4-39
4.4.11 CY7C604/60S Synchronous Fault Status Register (SFSR) 4-39
4.4.12 CY7C604/60S Synchronous Fault Address Register (SFAR) 4-40

v

4.4.13 CY7C604/605 Asynchronous Fault Status Register (AFSR) 4-40
4.4.14 CY7C604/605 Asynchronous Fault Address Register (AFAR) 4-40

4.5 CY7C604 I CY7C605 Multichip Configuration 4-41

4.6 CY7C604/605 Diagnostic Support ~
4.6.1 CY7C604/605 MMU 1LB Entries 4-43
4.6.2 CY7C604/605 Cache 'Thg Entries 4-44
4.6.3 CY7C604/605 Cache Data Entries 4-44

4.7 CY7C604/605 Reset•..•.•........................ 4-45
4.7.1 Power-On Reset (POR) .. 4-45
4.7.2 Watch-Dog Reset (WDR) .. 4-45
4.7.3 Software Internal Reset (SIR) 4-45
4.7.4 Software External Reset (SER) 4-45
4.7.5 CY7C604/605 Reset in Multichip Configuration 4-46

4.8 CY7C604/605 ASI and Register Mapping 4-46

4.9 Synchronous Faults•...•......................... 4-47
4.9.1 Synchronous Fault Cases ... 4-50

4.10 CY7C604/605 Pin Definitions 4-55

4.11 Virtual Bus Operation•..... 4-60

4.12 Physical Bus (Mbus) Operation 4-84
4.12.1 Mbus Principles ... 4-84
4.12.2 Mbus Levell Overview .. 4-84
4.12.3 Mbus Level 2 Overview .. 4-84
4.12.4 Mbus Signal SummaI)' , 4-85
4.12.5 Mbus Address Cycle ... 4-87
4.12.6 Mbus Data Cycle .. 4-88
4.12.7 Mbus 'fransactions ... , 4-88
4.12.8 Mbus 1tansaction Tuning ... 4-92

Chapter 5: CY7C157 Cache RAM

5.1 Description of Part ... 5-1

5.2 Operation ... 5-2

5.3 Bus Timing•...•..•.........................•. 5";'2

5.4 Signal Descriptions ... 5-2

Chapter 6: SPARC Instruction Set

6.1 Assembly Language Syntax•.••...•. 6-1
6.1.1 Register Names .. 6-1

vi

6.1.2 Special Symbol Names .. 6-2
6.1.3 Values .. 6-2
6.1.4 Label ... 6-2
6.1.5 Instruction Mnemonics .. 6-3

6.2 Definitions .. 6-4
ADD Add .. 6-7
ADDcc
ADDX
ADDXcc
AND
ANDcc
ANDN
ANDNcc
Bicc
CALL
CBccc
CPop
FABSs
FADDd
FADDs
FADDx
FBfcc
FCMPd
FCMPEd
FCMPEs
FCMPEx
FCMPs
FCMPx
FDIVd
FDIVs
FDIVx
FdTOi
FdTOs
FdTOx
FiTOd
FiTOs
FiTOx
FMOVs
FMULd
FMULs
FMULx
FNEGs
FSQRTd
FSQRTh
FSQRTx
FsTOd
FsTOi
FsTOx
FSUBd
FSUBs

Add and modify icc .. 6-8
Add with Carry .. 6-9
Add with Carry and modify icc 6-10
And .. 6-11
And and modify icc ... 6-12
And Not .. 6-13
And Not and modify icc ... 6-14
Integer Conditional Branch 6-15
Call ... 6-17
Coprocessor Conditional Branch 6-18
Coprocessor Operate ... 6-20
Absolute Value Single .. 6-21
Add Double ... 6-22
Add Single .. 6-23
Add Extended ... 6-24
Floating-Point Conditional Branch 6-25
Compare Double ... 6-27
Compare Double and Exception if Unordered 6-28
Compare Single and Exception if Unordered 6-29
Compare Extended and Exception if Unordered 6-30
Compare Single .. 6-31
Compare Extended ... 6-32
Divide Double ... 6-33
Divide Single .. 6-34
Divide Extended ... 6-35
Convert Double to Integer 6-36
Convert Double to Single 6-37
Convert Double to Extended 6-38
Convert Integer to Double 6-39
Convert Integer to Single 6-40
Convert Integer to Extended 6-41
Move ... 6-42
Multiply Double .. 6-43
Multiply Single ... 6-44
Multiply Extended .. 6-45
Negate .. 6-46
Square Root Double .. 6-47
Square Root Single ... 6-48
Square Root Extended .. 6-49
Convert Single to Double 6-50
Convert Single to Integer 6-51
Convert Single to Extended 6-52
Subtract Double .. 6-53
Subtract Single ... 6-54

vii

FSUBx
FxTOd
FxTOi
FxTOs
IFLUSH
JMPL
LO

Subtract Extended .. 6-55
Convert Extended to Double 6-56
Convert Extended to Integer 6-57
Convert Extended to Single 6-58
Instruction Cache Flush ... 6-59
Jump and Link ... 6-60
Load Word .. 6-61

LOA Load Word from Alternate space 6-62
LDC Load Coprocessor register 6-63
LDCSR Load Coprocessor State Register 6-64
LDD Load Doubleword .. 6-65
LDDA Load Doubleword from Alternate space 6-66
LDDC Load Doubleword Coprocessor 6-67
LOOF Load Ooubleword Floating-Point 6-68
LDF Load Floating-Point register 6-69
LDFSR Load Floating-Point State Register 6-70
LDSB Load Signed Byte .. 6-71
LDSBA Load Signed Byte from Alternate space 6-72
LDSH Load Signed Halfword .. 6-73
LOSHA Load Signed Halfword from Alternate space 6-74
LDSTUB Atomic Load/Store Unsigned Byte 6-75
LDSTUBA Atomic Load/Store Unsigned Byte 6-76
LDUB Load Unsigned Byte .. 6-77
LDUBA Load Unsigned Byte from Alternate space 6-78
LOUH Load Unsigned Halfword .. 6-79
LDUHA Load Unsigned Halfword from Alternate space 6-80
MULScc Multiply Step and modify icc 6-81
OR Inclusive-Or ... 6-82
ORcc Inclusive-Or and modify icc 6-83
ORN Inclusive-Or Not ... 6-84
ORNcc Inclusive-Or Not and modify icc 6-85
RDPSR Read Processor State Register 6-86
RDTBR Read Trap Base Register .. 6-87
RDWIM Read Window Invalid Mask register 6-88
RDY Read Y register .. 6-89
RESTORE Restore caller's window ... 6-90
RETT Return from Trap .. 6-91
SAVE Save caller's window .. 6-93
SETHI Set High 22 bits ofr register 6-94
SLL Shift Left Logical .. 6-95
SRA Shift Right Arithmetic .. 6-96
SRL Shift Right Logical ... 6-97
ST Store Word .. 6-98
STA
STB
STBA
STC
STCSR
SID
SIDA
SIDC

Store Word into Alternate space 6-99
Store Byte .. 6-100
Store Byte into Alternate space 6-101
Store Coprocessor register 6-102
Store Coprocessor State Register 6-103
Store Doubleword ... 6-104
Store Doubleword into Alternate space 6-105
Store Doubleword Coprocessor 6-106

viii

S'IDCQ Store Doubleword Coprocessor Queue 6-107
S'IDF Store Doubleword Floating-Point 6-108
S1DFQ Store Doubleword Floating-Point Queue 6-109
STF Store Floating-Point register 6-110
STFSR Store Floating-Point State Register 6-111
STH Store Halfword ... 6-112
SmA Store Halfword into Alternate space 6-113
SUB Subtract .. 6-114
SUBcc Subtract and modify icc .. 6-115
SUBX Subtract with Carry .. 6-116
SUBXcc Subtract with Carry and modify icc 6-117
SWAP Swap r register with memory 6-118
SWAP A Swap r register with memory in Alternate space 6-119
TADDcc Thgged Add and modify icc 6-120
TADDccTVThgged Add and ltap on Overflow 6-121
Ticc ltap on integer condition codes 6-122
TSUBcc Thgged Subtract and modify icc 6-124
TSUBccTV Thgged Subtract and ltap on Overflow 6-125
UNIMP Unimplemented instruction 6-126
WRPSR Write Processor State Register 6-127
WRrBR Write nap Base Register 6-128
WRWlM Write Window Invalid Mask register 6-129
WRY Write Y register ... 6-130
XNOR Exclusive-Nor ... 6-131
XNORcc Exclusive-Nor and modify icc 6-132
XOR Exclusive-Or .. 6-133
XORcc Exclusive-Or and modify icc 6-134

Chapter 7: CY7C600 Electrical and Mechanical Characteristics

7.1 CY7C601 Electrical and Mechanical Characteristics 7-1
7.1.1 CY7C601 Maximum Ratings ... 7-1
7.1.2 CY7C601 Operating Range .. 7-1
7.1.3 CY7C601 DC Characteristics .. 7-1
7.1.4 CY7C601 Capacitance .. 7-1
7.1.5 CY7C601 AC Characteristics .. 7-2
7.1.6 CY7C601 AC Loads and Waveforms 7-3
7.1.7 CY7C601 AC Waveforms•............................. 7-3
7.1.8 CY7C601 PGA Package Dimensions 7-9
7.1.9 CY7C601 PGA Pin Assignments 7-9
7.1.10 CY7C601 QFP Package Dimensions 7-11
7.1.11 CY7C601 QFP Pin Assignments 7-12
7.1.12 CY7C601 Military Specifications 7-13

7.2 CY7C611 Electrical and Mechanical Characteristics 7-14
7.2.1 CY7C611 Maximum Ratings .. 7-14
7.2.2 CY7C611 Operating Range ... 7-14
7.2.3 CY7C611 DC Characteristics 7-14
7.2.4 CY7C611 Capacitance ... 7-14

ix

7.2.5 CY7C611 AC Characteristics 7-15
7.2.6 CY7C611 AC Loads and Waveforms 7-16
7.2.7 CY7C611 AC Waveforms ... 7-16
7.2.8 CY7C611 PQFP Package Dimensions 7-21
7.2.9 CY7C611 PQFP Pin Assignments 7-22

7.3 CY7C602 Electrical and Mechanical Characteristics• 7-23
7.3.1 CY7C602 Maximum Ratings .. 7-23
7.3.2 CY7C602 Operating Range ... 7-23
7.3.3 CY7C602 DC Characteristics 7-23
7.3.4 CY7C602 Capacitance ... 7-23
7.3.5 CY7C602 AC Characteristics 7-24
7.3.6 CY7C602 AC lest Loads and Waveforms 7-25
7.3.7 CY7C602 AC Waveforms ... 7-25
7.3.8 CYC7602 Pin Assignments ... 7-27
7.3.9 CY7C602 Package Diagrams .. 7-28

7.4 CY7C604 Electrical and Mechanical Characteristics•.. 7-29
7.4.1 CY7C604 Maximum Ratings .. 7-29
7.4.2 CY7C604 Operating Range ... 7-29
7.4.3 CY7C604 DC Characteristics 7-29
7.4.4 CY7C604 Capacitance ... 7-29
7.4.5 CY7C604 AC Characteristics 7-30
7.4.6 CY7C604 AC lest Loads and Waveforms 7-31
7.4.7 CY7C604 AC Waveforms ... 7-31
7.4.8 CY7C604 Pin Configuration 7-36
7.4.9 CY7C604 Package Diagrams .. 7-38

7.5 CY7C605 Electrical and Mechanical Characteristics 7-39
7.5.1 CY7C605 Maximum Ratings .. 7-39
7.5.2 CY7C605 Operating Range ... 7-39
7.5.3 CY7C605 DC Characteristics 7-39
7.5.4 CY7C605 Capacitance ... 7-39
7.5.5 CY7C605 AC Characteristics 7-40
7.5.6 CY7C605 AC lest Loads and Waveforms 7-41
7.5.7 CY7C605 AC Waveforms ... 7-41
7.5.8 CY7C605 Pin Configuration .. 7-46
7.5.9 CY7C605 CPGA Package Diagram 7-48

7.6 CY7C157 Electrical and Mechanical Characteristics 7-49
7.6.1 CY7C157 Maximum Rating ... 7-49
7.6.2 CY7C157 Operating Range ... 7-49
7.6.3 CY7C157 DC Characteristics ...•................................... 7-49
7.6.4 CY7C157 Capacitance ... 7-49
7.6.5 CY7Cl57 AC lest Loads and Waveforms 7-SO
7.6.6 CY7C157 AC Characteristics 7-SO
7.6.7 CY7Cl57 AC Waveforms ... 7-51
7.6.8 CY7C157 Thlth Thble .. 7-52
7.6.9 CY7C157 Pin Tuning Cross Reference 7-52
7.6.10 CY7C157 Pin Assignments ... 7-52
7.6.11 CY7C157 Package Diagrams .. 7-53

x

Chapter 8: CY7C600 Ordering Information
8.1 CY7C601 Ordering Information 8-1
8.2 CY7C611 Ordering Information 8-1
8.3 CY7C602 Ordering Information. .. 8-2
8.4 CY7C604 Ordering Information. .. 8-2
8.5 CY7C60S Ordering Information. .. 8-2
8.6 CY7C1S7 Ordering Information 8-2

Appendix: CY7C600 Uni-Module

A.I Uni-Module Board Hardware Description A-I
A.1.1 Introduction .. A-1
A.1.2 Features .. A-1
A. 1.3 Basic Mbus Operation and Timing A-1

Glossary ... G-l

Index .. 1-1

xi

List of Figures

Chapter 1: Introduction

Figure I-I.
Figure 1-2.
Figure 1-3.

Architectural Partitioning-Uniprocessor System 1-2
Architectural Partitioning-Multiprocessors 1-3
Embedded Control Configuration 1-3

Chapter 2: CY7C601/CY7C611 Integer Unit

Figure 2-I.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-1I.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 2-19.
Figure 2-20.
Figure 2-2I.
Figure 2-22.
Figure 2-23.
Figure 2-24.
Figure 2-25.
Figure 2-26.
Figure 2-27.
Figure 2-28.
Figure 2-29.
Figure 2-30.
Figure 2-3I.
Figure 2-32.
Figure 2-33.
Figure 2-34.
Figure 2-35.
Figure 2-36.
Figure 2-37.
Figure 2-38.
Figure 2-39.
Figure 2-40.

Integer Unit Block Diagram 2-1
SPARC Register Model ... 2-2
Circular Stack of Overlapping Windows 2-3
Overlapping Windows .. 2-4
Registers as Seen by a Procedure 2-5
Register Banks for Fast Context Switching 2-7
Processor State Register .. 2-9
Window Invalid Mask ... 2-11
Trap Base Register .. 2-11
Processor Data Types .. 2-13
Byte Operand Load and Store 2-14
Data Organization in Memory 2-14
Extended-Precision Data Organization in Registers 2-15
Extended-Precision Data Organization in Memory 2-15
Instruction Format Summary 2-16
Address Generation ... 2-18
Thgged Data Example ... 2-22
Ticc ltap Address Generation 2-24
Delayed Control Transfer 2-27
Delayed Control ltansfer Couples 2-29
CY7C601ICY7C611 External Signals 2-43
Processor Instruction Pipeline 2-52
Pipeline with All Single-Cycle Instructions 2-53
Pipeline with One Double-Cycle Instruction (Load) 2-54
Pipeline with One Triple-Cycle Instruction (Store) 2-55
Pipeline with Hardware Interlock (Load) 2-56
Pipeline During Branch Instruction 2-57
Branch with Annulled Delay Instruction 2-57
Pipeline Frozen During Bus Arbitration 2-58
Pipeline Operation for Thken ltap (Internal) 2-59
Data Bus Contents During Data Transfers 2-60
Instruction Fetch ... 2-61
Load Single Integer Timing 2-61
Load Single with Interlock Timing 2-62
Load Double Integer Timing 2-62
Store Single Integer Timing 2-63
Store Double Integer Timing 2-64
Atomic Load-Store Timing 2-65
Floating-Point Operation Timing 2-66
Bus Arbitration Timing .. 2-67

xii

Figure 2-41. Load with Cache Miss Tuning 2-68
Figure 2-42. Store with Cache Miss Timing 2-69
Figure 2-43. Load with Memory Exception Timing 2-71
Figure 2-44. Store with Memory Exception Timing 2-73
Figure 2-45. Floating-Point Exception Handshake Timing 2-75
Figure 2-46. Asynchronous Interrupt Timing 2-75
Figure 2-47. Power-On Reset Timing 2-76
Figure 2-48. ErrorlReset Tuning ... 2-77
Figure 2-49. Best-Case Interrupt Response Timing 2-80
Figure 2-50. Worst-Case Interrupt Response Tuning 2-81
Figure 2-51. Coprocessor Register Model 2-86

Chapter 3: CY7C602 Floating-Point Unit

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.

CY7C602 Functional Block Diagram 3-2
CY7C602 Block Diagram 3-3
CY7C602 Address/Instruction Pipe 3-4
CY7C601 - CY7C602 Hardware Interface 3-4
Instruction Fetch (Cache Hit) 3-6
Instruction Fetch (Cache Miss) 3-7
Floating-Point Instruction Dispatching 3-8
Floating-Point Compare (FCMP) Execution 3-8
Floating-Point Instruction Pipeline During A Trap 3-9
Effect of FLUSH on LDF Instruction 3-10
Effect of FLUSH on STF Instruction 3-10
Effect of FLUSH on FPop Instruction 3-10
Effect of FLUSH on FCMP Instruction 3-11
f Register Organization .. 3-13
f Register Addressing .. 3-13
Floating-Point Status Register 3-14
FPU Operation Modes .. 3-18
Floating-Point Exception Handshake 3-18
Single-Precision Floating-Point Format 3-20
Double-Precision Floating-Point Format 3-20
Extended-Precision Floating-Point Format 3-21
Extended-Precision Data Organization in Registers 3-21
Extended-Precision Data Organization in Memory 3-21

Chapter 4: CY7C604! CY7C605 Cache Controller and MMU

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.

Virtual 64-kbyte Cache ... 4-2
1tanslation Lookaside Buffer (ILB) 4-3
Address Comparison ... 4-4
TLB Replacement and Locking 4-7
Four-Level Thble Walk (4-kbyte Addressing) 4-7
Three-Level 'Thble Walk (256-kbyte Addressing) 4-9
Page 'Thble Pointer ... 4-9
Page 'Thble Entry Format 4-10
Page 'Thble Pointer Cache 4-11
Thble Walk Algorithm ... 4-12
MMU Flush Address Format 4-14
CYC7604 Cache'Thg Comparison 4-17

xiii

Figure 4-13. CY7C604 Write-Through with No Write Allocate 4-18
Figure 4-14. CY7C604 Copy-Back with Write Allocate 4-18
Figure 4-15. CY7C605 Processor Virtual Cache Thg (PVfAG) Comparison 4-20
Figure 4-16. CY7C605 Cache Thg Entries 4-21
Figure 4-17. CY7C605 Mbus Physical Cache Thg (MPTAG) Comparison 4-22
Figure 4-18. Copy-back Invalid ... 4-23
Figure 4-19. Copy-back Exclusive Clean 4-24
Figure 4-20. Copy-back Shared Clean 4-25
Figure 4-21. Copy-back Exclusive Modified 4-26
Figure 4-22. Copy-back Shared Modified 4-28
Figure 4-23. Write-Through Invalid ... 4-28
Figure 4-24. Write-Through Valid .. 4-29
Figure 4-25. Write Buffers (Write-Through Mode) 4-32
Figure 4-26. Write Buffer (Copy-Back Mode) 4-32
Figure 4-27. Read Buffer (Copy-Back Mode) 4-32
Figure 4-28. CBWE Byte Assignments 4-34
Figure 4-29. CY7C604 System Control Register (SCR) 4-35
Figure 4-30. CY7C605 System Control Register (SCR) 4-36
Figure 4-31. CY7C604/605 Context Thble Pointer Register 4-37
Figure 4-32. CY7C604/605 Context Register 4-37
Figure 4-33. CY7C604/605 Reset Register 4-37
Figure 4-34. CY7C604/605 Root Pointer Register 4-38
Figure 4-35. CY7C604/605 Instruction Access PTP Register 4-38
Figure 4-36. CY7C604/605 Data Access PTP Register 4-38
Figure 4-37. CY7C604/605 Index Thg Register 4-38
Figure 4-38. CY7C604/605 TLB Replacement Control Register 4-39
Figure 4-39. CY7C604/605 Synchronous Fault Status Register 4-39
Figure 4-40. CY7C604/605 Synchronous Fault Address Register 4-40
Figure 4-41. CY7C604/605 Asynchronous Fault Status Register 4-40
Figure 4-42. CY7C604/605 Asynchronous Fault Address Register 4-40
Figure 4-43. Two-CMU Multichip Configuration 4-41
Figure 4-44. Examples of Multichip Addressing 4-42
Figure 4-45. TLB Entry Format " .. 4-43
Figure 4-46. CY7C604 Cache Tag Entry Format 4-44
Figure 4-47. CY7C605 Cache Thg Entry Format 4-44
Figure 4-48. CY7C604 and CY7C605 110 Signals 4-55
Figure 4-49. Mbus Burst Transaction Example 4-86
Figure 4-50. Mbus Address Cycle .. 4-87
Figure 4-51. Mbus Data Ordering .. 4-88
Figure 4-52. Mbus Read Transaction .. 4-88
Figure 4-53. Mbus Write Transaction 4-89
Figure 4-54. Mbus Coherent Read Transaction 4-89
Figure 4-55. Mbus Coherent Read 1tansaction - MIH asserted 4-90
Figure 4-56. Mbus Coherent Invalidate Transaction 4-90
Figure 4-57. Mbus Coherent Read and Invalidate Transaction 4-91
Figure 4-58. Mbus Coherent Read and Invalidate Transaction - MIH asserted ... 4-91
Figure 4-59. Mbus Coherent Write and Invalidate Transaction 4-92

Chapter 5: CY7C157 Cache RAM
Figure 5-1. CY7C157 Block Diagram 5-1

Chapter 6: SPARC Instruction Set
Figure 6-1.
Figure 6-2.

SPARC Instruction Mnemonic Summary 6-3
Instruction Description ... 6-4

xiv

List o/Tables

Chapter 2: CY7C6011CY7C611 Integer Unit
Thble 2-l.
Thble 2-2.
Thble 2-3.
Thble 2-4.
Thble 2-5.
Thble 2-6.
Thble 2-7.
Thble 2-8.
Thble 2-9.
Thble 2-10.
Thble 2-11.
Thble 2-12.
Thble 2-13.
Thble 2-14.
Thble 2-15.
Thble 2-16.
Thble 2-17.
Thble 2-18.
Thble 2-19.
Thble 2-20.
Thble 2-21.
Thble 2-22.
Thble 2-23.
Thble 2-24.
Thble 2-25.
Thble 2-26.
Thble 2-27.
Thble 2-28.
Thble 2-29.
Thble 2-30.
Thble 2-3l.
Thble 2-32.
Thble 2-33.
Thble 2-34.
Thble 2-35.
Thble 2-36.
Thble 2-37.
Thble 2-38.
Thble 2-39.
Thble 2-40.

Register Addressing .. 2-3
Floating-Point Formats .. 2-12
Extended-Precision Floating-Point Format 2-15
op Field Coding .. 2-17
op2 Field Coding ... 2-17
ASI Assignments ... 2-19
Load/Store Instructions .. 2-20
Arithmetic/Logical/Shift Instructions 2-21
Control Transfer Instructions 2-23
Control Transfer Instruction Characteristics 2-23
Bice and Tice Condition Codes 2-24
FBfce Condition Codes .. 2-24
CBccc Condition Codes 2-24
Delayed Control1tansfer Instruction Example 2-25
Effect of Annul Bit Reset (a =0) 2-26
Effect of Annul Bit Set (a= 1) 2-26
Effect of Annul Bit on Delay Instruction 2-27
Delayed Control1tansfer Couple Instruction Sequence 2-28
Execution of Delayed Control nansfer Couples 2-28
ReadlWrite Control Register Instructions 2-29
Floating-Point-Operate and Coprocessor-Operate Instructions 2-30
Miscellaneaous Instructions ... 2-30
Load/Store Instruction Opcodes 2-31
Arithmetic/Logical/Shift Instruction Opcodes 2-33
Control1tansfer Instruction Opcodes 2-35
Bice and Tice Condition Codes 2-35
FBfce Condition Codes .. 2-36
CBccc Condition Codes 2-36
ReadlWrite Control Register Instruction Opcodes 2-36
Floating-Point /Coprocessor Instruction Opcodes 2-37
Miscellaneous Instruction Opcodes 2-38
Instruction Opcode Numeric Listing 2-38
CY7C601 External Signal SummaI)' 2-44
ASI Assignments ... 2-46
SIZE Bit Encoding .. 2-48
Internally Generated Opcodes 2-54
Externally Generated Synchronous Exception Traps 2-78
nap Type and Priority Assignments 2-83
Signal Differences Between CY7C601 and CY7C611 2-87
CY7C611 Signal SummaI)' 2-88

Chapter 3: CY7C602 Floating-Point Unit
Thble 3-l.
Thble 3-2.
Thble 3-3.

Load Instruction Execution 3-5
Store Instruction Execution 3-5
FPop Execution .. 3-6

xv

Thble 3-4.
Thble 3-5.
Thble 3-6.
Thble 3-7.
Thble 3-8.

FHOLD Resource/Operand Dependency Cases 3-12
Floating-Point Status Register Summary 3-15
Floating-Point Load and Store Instruction Cycle Count 3-16
Floating-Point Operate (FPops) Instruction Cycle Count 3-17
FCC(I:0) Condition Codes 3-23

Chapter 4: CY7C604 / CY7C605 Cache ControUer and MMU

Thble 4-1.
Thble 4-2.
Thble 4-3.
Thble 4-4.
Thble 4-5.
Thble4~.

Thble 4-7.
Thble 4-8.
Thble 4-9.
Thble 4-10.
Thble 4-11.
Thble 4-12.
Thble 4-13.
Thble 4-14.
Table 4-15.
Thble 4-16.
Thble 4-17.
Thble 4-18.
Thble 4-19.
Thble 4-20.
Thble 4-21.
Thble 4-22.
Thble 4-23.

Short 1tanslation Bits - ST(I:0) 4-5
Access-Level Protection Bits-ACC(2:0)•....... 4-5
Page Thble Entry 'JYpe ... 4-10
MMU Operation Modes 4-13
TLB Entry Flushing ... 4-15
Mbus Snooping Transactions 4-30
Cache Flush Operations 4-32
Cacheable/Non-Cacheable Accesses 4-33
State Thble for MC (Memory Cacheable) Bit 4-33
Byte Write Enables ... 4-34
TLB Entry Address Mapping 4-43
Cache Thg Entry Address Mapping 4-44
CY7C604/605 Power-On Reset States 4-45
CY7C604/605 Register Address Mapping 4-46
Standard ASI Assignments 4-47
OW Bit States .. 4-48
Fault Register Level Field 4-49
Fault Register Access Type Field 4-49
Fault Register Fault Type Field 4-49
Fault 'JYpe (Ff) for PTE[ET] = 2 4-50
Fault Register Error Priorities 4-50
Mbus Signal Summary ... 4-85
Bus Status Encoding .. 4-86

Chapter 6: SPARC Instruction Set

Thble 6-1.
Thble 6-2.

Instruction Description Notations 6-4
Instruction Set Summary .. 6~

xvi

Foreward

RIse: Fundamentals and Future

by Roger D. Ross, President and CEO of Ross Technology, Inc.

RISC is the future of computing. Over the next 5 years, a totally new computing standard will emerge based upon RIse
(Reduced Instruction Set Computer) architectures. RISC will completely redefine the computer industry's existing price/
performance curve, which is based on Complex Instruction Set Computers (CISC), and will be the industrial computing
standard that leads us into the 21st century.

Analyzing RISC's potential is much more than simply discussing how many MIPS and MFLOPS will be offered over the
next two decades. The technical future of reduced instruction set computers is but one facet of a much bigger drama
that is unfolding. First one must understand the technical fundamentals and benefits of RISC as they relate to the more
general trends of the entire computer industry, trends that tend to complement RISC. This introduction briefly explains
the technical fundamentals of RISC architecture and reviews the broader trends of the computer industry. It will show
that RISC architecture has been designed to exploit the computer industry trends and reveal why the future of RISe
architecture is fundamentally the future of the entire computer industry.

Rise Described (and else exposed)

Today, a tremendous amount of misinformation exists surrounding the fundamentals of RISC architecture. Obviously,
the promoters of this misinformation are those who stand to lose the most from its impact: the established manufacturers
of proprietary CISC architectures. These manufacturers tell their prospective customers that they can use RISC design
techniques on their clse architectures to get close to RISC's single clock cycle execution feature while maintaining com­
patibility with their existing binary application software hase. There are two subtle but totally misleading concepts in the
previous statement. The phrase "RISC design techniques" is blatantly misused, and the phrase "RISe's single clock cycle
execution feature" is misleading as well because it falls far short of RiSe's true goal. Both of these concepts will be ex­
plained and corrected in the ensuing paragraphs.

RISC is quite simply not a set of design techniques. RISC is a new instruction set architecture technique that is distinct
and completely different from CISC. It is not backwardly adaptable to CISC, which is now defined by, and indeed captive
to, its "prior art" forms. Instruction sets are, after all, the fundamental form of computer architecture. RiSe evolved
as a solution to the problem of how to derive more power; that is, how to derive more instruction set power out of a com­
puter and its associated compilers. The goal ofRISC is not simply to reduce the system's instruction set, it is to intelligent­
ly select a set of streamlined instructions that yield maximal data-processing performance within the context of compiled
programming techniques. RISC is a way to significantly enhance a system's performance while keeping costs on or below
par with CISC. These new instruction set techniques are described below. CISC instruction sets were selected over 20
years ago, and cannot now be changed if CISCs are to maintain compatibility with their existing binary application software
base. Consequently, the fallacy of CISC using "so called" RISC technology at the instruction set level is readily apparent.
In fact, these instruction set techniques are the real and only difference between RISC and CISC.

RIse has three major instruction set features that distinguish it from CISC. RISC's instruction set attributes include
a load/store model of execution, a non-destructive triadic register file that provides a distinct and highly efficient data
preservation model, and, lastly, normalized fixed-length instructions. Conversely, CISC uses a memory/register model
of execution, an accumulator/registerfile that engenders a destructive data environment, and variable-length, contextual­
field instructions.

RISC's load/store model of execution means that the only instI1lctions that can access main memory are load and store
instructions. All other CPU instructions operate on internal registers. By using this model it is possible to decouple
loading and storing traffic from data processing operations such as arithmetic or logical instructions, and thereby raise

xvii

Foreward

the operational concurrency of the entire CPU. It also makes it possible to schedule code to fill stall slots that naturally
occur due to the latency between the time when a load instruction is issued and the time, typically 2 to 3 clocks later, when
the data is returned from memory and is actually ready for use.

However, the true uniqueness in RISC's load/store instruction set philosophy is the recognition that the register file is
in actuality a computer's highest-level data cache. This register file data cache differs from other, lower-level data caches
in that its use is deterministic and not stochastic. Load instructions are simply a way to fill this cache, and store instructions
are merely a way to write back updated data to the lower memory hierarchy. With this in mind, one can argue that load/
store operations are not even instructions at all, they are just mechanisms available to software that allow it to administer
the register data cache. Consequently, the optimization and direction of this register file data cache can be determined
solely by the compiler or assembly language programmer. All of the leading RISC architectures (SPARC, MIPS, Motoro­
la 88K, and Intel 860) have a larger register file than any of the pre-existing commercial CISC architectures. In addition,
SPARC has even further evolved beyond the large register file concept by providing a register file extension that is com­
prised of overlapped register windows. SPARC 's overlapped register windows are primarily used to pass parameters dur­
ing subroutine accesses, thereby further cutting down on load and store traffic and more completcly acknowledging the
fact that the modem computer's register file has now fully evolved into a deterministic cache subsystem. There is now
no way for CISC architectures to directly apply large flat register files to their instruction sets. They could have done
so at one time, but now' their binary instruction sets are frozen and it is too late. The decision is irrevocable.

RISC's non-destructive, three-register (triadic) architecture model means that information in the CPU is preserved (i.e.,
maintained in the register data cache) during ongoing data processing. For example, a RISC add instruction would be
verbalized as "register A is equal to the result of register B plus register c." All information that was contained in registers
Band C is preserved (it is interesting to note that this more natural model is also the one that we use to teach algebra
to our children). Data preservation within the register file (i.e., data cache) is a fundamental and obvious requirement
to minimize load/store traffic. In contrast the CISC machine's fundamental model is simply stated as "add the contents
of register A and register B and place the result in register A." Obviously, the original contents of register A are de­
stroyed, and consequently the name "destructive."

It is also necessary to allow an optimizing compiler to effectively reschedule code to fill pipeline stalls that frequently
occur in computational engines. In a computer one can reschedule code so long as it is determined that no data dependen­
cies occur and the original semantic content of the program is maintained. Therefore, a non-destructive register model
taken together with a load/store architecture provides a dramatic boost in instruction set architectural performance due
to its ability to minimize load/store traffic as well as decouple operations and thereby allow optimizing compilers to effi­
ciently fill stall slots.

Alternatively, CISC machines have a memory/register instruction set architecture. This means that in a CISC architec­
ture one can do an add instruction with an addressing mode that appears to obtain an operand directly from main memory
and add it into a register. In reality, this add instruction is forced to do an operand load before it can complete the instruc­
tion. However, this load is coupled to the add operation and so the unavoidable stall slot between the load and the add
cannot be filled with useful work. Typically 40% to 50% of all instructions dynamically executed in a CISC machine's
existing software base utilize and therefore mandate this hidden load of operands.

elSe machines evolved from the accumulator model of execution. In this model the programmer "accumulates" results
in a register, thereby destroying the data already existing in that register. The problem with a destructive register model
is that it keeps the compiler from performing efficient algorithmic code rescheduling operations that could lead to higher
throughput. Data and condition codes in CISe machines is location sensitive because it is constantly being destroyed
by new instructions. In addition, this model simultaneously increases a machine's load/store activity when registers must
either be saved or restored from main memory by the compiler in its struggle to preserve critical data. Again historically
speaking, elSe could have adapted a large triadic register model, but once again it did not, and now it is too late. elSe
is a captive of its installed binary software base and established instruction sets.

All true RISe machines utilize fixed-length instructions. Fixed-length instruction sets make possible normalized instruc­
tion encoding (i.e., minimize the use of contextual fields) with greatly simplified addressing modes. In addition, operand
accesses only occur between registers (i.e., cached data). By making each instruction 32 bits long, instruction decode is
much easier and can occur much faster than in CISe architectures. RISe epus exploit fine-grain parallelism by decoding
all parts of the instruction in parallel. In elSe machines, instruction decode occurs sequentially as the instructions are
of variable length and contextual in nature. Hence final instruction deCOde cannot usually occur until all parts of the in'
struction are fully analyzed. In elSe machines, depending on the addressing mode and particular instruction used, this
can take from 2 to 11 clocks. In RISe machines with 32-bit, fixed-length instructions, this always takes exactly 1 clock.

There are three major effects of RISe's streamlined, or reduced, instruction set architecture techniques. First, due to
its instruction set normality, RISe machines have no need for microcode. That is, all instructions can be hardwired in
a very efficient manner.

xviii

Foreward

Second, RISC's streamlined instruction set allows for single clock cycle execution. But this is just the tip of the iceburg
in that the true goal of RISC is the concurrent execution of many instructions at once. It is in this "superscalar" execution
form that RISC's full potential ultimately lies. Although by using of millions of extra transistors CISC could eventually
come close to one instruction per clock, superscalability is effectively beyond CISC's practical scope.

Third, because of the concurrency made possible by the instruction set as described previously, RISCs can more aggres·
sively and efficiently exploit the design technique of pipelining. These distinctions explain why RISC can provide a 2 to
5 times performance advantage over CISC given equal technologies of implementation.

Key Historical Trends of the Computer Industry

This section will not attempt to distill the entire history of the computer industry in just a few pages. Rather, it is intended
to take a step back and look at some of the more important trends in the industry.

There have been three defacto architectural computing standards in the history of the computer industry: the IBM
360/370, the DEC VAX, and systems based on the InteI8Ox86. Most professionals in our industry do not remember that
the IBM 360/370 mainframe architecture, originally released in 1%4, was in fact the first system to be cloned! This clon­
ing, by companies such as Amdahl and NAS, was a direct realization that the application software was the standard to
which the hardware had to comply. This cloning also led to the IBM 370 and PCMs (plug-compatible mainframes) that
have held between 50% to 70% of the entire computer industry market for nearly 20 years.

The DEC VAX, a minicomputer or mid-range system, was in reality a way to bring a better level of price/performance
to the end user than that offered by mainframes. In the final analysis, price and performance are the drummers to which
the entire computer industry marches. By offering a significant advantage in price/performance (i.e., two times the per­
formance or more) over the IBM and PCM mainframes, DEC was able to establish a beachhead in the systems industry
that enabled it to become second to only IBM in size.

Computers based upon the 8Ox86 microprocessor architecture from Intel also offered significantly enhanced price/perfor·
mance over the mainframe and minicomputer systems that were in existence at the time. As is well known, IBM adopted
the 8088 in its original personal computer. This product was brought to market several years after the first personal com­
puters emerged from companies such as Apple. However, distinguishing it from the other market entrants was the fact
that the IBM PC was clonable. Cloning again led to the marketshare dominance of this particular computer architecture.
Today it is estimated by leading market researchers that approximately 85% of the installed worldwide personal computer
base is comprised of IBM and IBM-compatible personal computers. As a result of its use in the IBM personal computer
architecture, Intel's 8Ox86 family today exceeds the sales of all other 16- and 32-bit general-purpose microprocessors com­
bined.

The historical trend toward enhanced system price/performance is to obtain greater performance for absolutely lower
costs. In 1990, systems that sell for under $10,000 dominate the entire computer industry, amounting to over 95% of all
units shipped and 40% of the total sales dollars of the computer systems industry. In the next ten years this trend should
accelerate with systems priced under $7,500 amounting to over 99% of all units shipped and 75% of the total sales dollars
of the entire computer systems industry.

With the dramatic increase in the use of low-cost, typically desktop computers, there has been a parallel increase in the
use of computer networks. Distributed data processing, also known as networked computing, in which desktop systems
are tied to server computers, is now much more common than massive mainframes with several hundred terminals. Inter­
estingly, yesterday'S minicomputers and mainframes have become today's servers. However, even these ECL server sys­
tems are increasingly giving way to CMOS microprocessor-based systems. These new servers also use industry standard
microprocessors, as opposed to designing their own high-cost proprietary CPUs, as a way to offer enhanced price/perfor­
mance.

Enhanced price/performance has another facet to it: enhanced productivity for the user. Also known as user friendliness,
these are quite simply the use of graphics instead of text, and the use of windows and user interfaces rather than simple
command lines. These features have made computers much more accessible. However, this user friendliness has not
been easy to achieve. First of all, the software behind the user friendliness is large and complex. To run windows and
graphics interfaces requires much higher CPU performance than has, until recently, been available in the microprocessor
market. Writing software of this complexity has necessitated the use of high-level languages, of which the overwhelming
language of choice has been C. Of course each line of C, as with any other high-level language, is comprised of multiple
lines of assembly code, so it requires more CPU horsepower to run effectively.

The Future of RISC

The first generation of RISC machines have been what is termed single-instruction launch microarchitectures. Through
pipelining it has been possible to significantly overlap the various stages of an instruction's lifecycle, and hence the current

xix

Foreward

generation of RISC implementations have asymptotically approached a performance rate of 1 clock per instruction (1
CPI). This overlap is required to provide continued execution opportunities instead of suffering through the delays which
would otherwise arise due to multiple clock cycle instructions and memory accesses. This does not always work perfectly,
however, and consequently the first generation of RISC implementations have an aggregate throughput that is on the
order of 1.25 to 1.5 CPr.

The next step.in microarchitecture for RISC machines will be the ability to execute two or more instructions simultaneous·
ly. This feature is sometimes referred to as "superscalability." RISC implementations will be able to fetch, decode, ex­
ecute, and finish two or more instructions at the same time. Multiple-instruction launching requires the ability to internal­
ly schedule the instructions while simultaneously checking for data dependencies and the availability of computing
resources before the instructions are launched. For instance, the ability to launch four integer instructions in the same
clock cycle should yield an instruction execution theoretical peak CPI rate of 0.25. The bus bandwidth required to feed
both instructions and data into the machine and a high-performance cache architecture and cache refill capability to keep
these high-speed channels fully utilized will be very important in multi-launch implementations.

RISC microarchitecture will follow the path of increasing the number of simultaneous execution units and will inevitably
evolve into a dataflow type of architecture whereby multiple data operands flow through the machine being used byavail­
able execution units. Research on dataflow architectures is currently in advanced stages at leading universities. However,
whereas CISC instruction sets have been obsoleted by RISC in the search for higher architectural performance, this will
not happen to RISe. RISC instruction sets can and will be preserved in the evolution to dataflow architectures. It will
be possible to obtain dramatic performance enhancements in RISC, first through multi-launching, then through dataflow,
without making any changes to the fundamental instruction set. These performance improvements will occur under the
surface of the instruction set, and will enable a complete continuum of the application software investment. This continu­
um could last for at least 25 to 30 years, and it will be a truly remarkable period of software base stability.

The performance capability and growth path ofRISC architectures have not gone unnoticed. At this point, RISC architec­
tures have clearly hit the mainstream of computing. As of this writing, every major manufacturer of computer systems
in the world has somehow endorsed RISC architectures. This list includes IBM, DEC, ICL, Sun, Unisys, NCR, Toshiba,
AT&T, Olivetti, and many more. These manufacturers have moved to RISC not because it is a fad, but because they
realize that RISC offers fundamentally better price/performance than does CISCo Coincidentally, every major manufac­
turer of semiconductors has also aligned itself with a RISC architecture in some form or fashion.

RISC architectures are already used in desktop systems from companies such as Sun and HP, in servers from companies
such as Solbourne, and in mainframes from companies like ICL. RISC architectures have already proven that they pro­
vide from 2 to 5 times the performance of CISC architectures given equal implementation technology (i.e., cost).

Owing to their streamlined, efficient instruction set, RISC architectures result in a fundamentally shorter design cycle
for RISC chips as compared to CISCo It is also due to this simplicity that we have seen RISC architectures already fan
out into custom CMOS, ECL, gate arrays, and GaAs. The significance of these events is that it is now possible to have
a binary software-compatible range of RISC-based computers from the desktop to the mainframe. This has never been
achieved in the industry, and this capability is obviously very synergistic with the trend toward networked computing.

Neither of the previous defacto computing standards (IBM 370 and the Intel 8Ox86) had the benefit of being able to use
the application software base available from its competitive predecessors. RISC, however, is able to make use of the
existing computing standard software base. That is, by using advanced binary emulation techniques, the entire $15 billion
MS-DOS applications software market is now accessible to RISC architectures. So we have the scenario where RISC
is able to run its native software several times faster than CISC can run software, and at the same time it can run existing
eISC software nearly as fast as the CISC machines can!

The RISC Contenders

There are currently four RISC architectures that are the mainstream contenders in the RISC marketshare race. These
architectures are the SPARC architecture from SPARC International, the MIPS RxOOO from MIPS Inc., the MC8S0aa
from Motorola, and the i860 from Intel.

Marketshare for the competing RISC architectures arises from several key factors. These factors are the alliances with
key systems manufacturers, the availability of low-cost (under $10,000) desktop systems, a large base of shrinkwrap appli­
cation software, a wide range of system price options (from under $10,000 to over $1,000,000), competitive semiconductor
implementations of the CPUs, multiple sources of the CPUs, and state-of-the-art technology.

At this point in time only SPARC is openly owned and controlled, has independent multiple sources for its chip sets, and
has multiple microarchitecture implementations available that all execute the same binary software. Motorola's
MC88000 is sole-sourced for commercial applications and second-sourced strictly for military applications by Thomp­
son-CSF. However, Motorola owns and controls the MC88000 microarchitecture. MIPS' architecture is also second-

Foreward

sourced, but the microarchitecture is solely controlled by MIPS Inc. And Intel's i860 is completely proprietary. Unless
MIPS, the MC88000, and the i860 become openly owned and independently second-sourced, it is very unlikely that they
will continue to be contenders in the RISC race against SPARe. Hewlett-Packard now realizes the significance of open
ownership and its relationship to market success. As a result, they also are now attempting to move their architecture
away from a proprietary basis and into the open market.

To date, low-cost systems priced under $10,000 are available that use the SPARC, MIPS and MC88000 architectures. The
differentiating factor between these systems is the software base. SPARC's software base is much larger than that for
all other RISC architectures combined, and is usable in shrinkwrap form on multiple platforms based on multiple vendor's
SPARC chips. This capability was proven by Solboume Computer in Longmont, Colorado when they created the world's
first SPARC-compatible system, thereby making SPARC the only RISC architecture with proven system-level donability.
Motorola is attempting to create a similar capability for the MC88000 through a committee-generated document called
the MC88000 BCS (Binary Compatibility Standard). MIPS has no such plans in the works, and has actually seen its base
fragment between its own systems, Stardent, DEC, and those of Silicon Graphics. As stated previously, shrinkwrap soft­
ware led the Intel 8Ox86 architecture to an overwhelming marketshare lead. Likewise, shrinkwrap software will also be
the biggest differentia tor in the RISC marketplace and it favors SPARC both from its present large base and also from
its growth rate as well.

Summary

The general trends of the computer industry are very complementary to the capabilities of RISC architectures. The com­
puter industry market always thirsts for higher pedormance at lower prices, and is structuring itself to allow this to hap­
pen. RISC, a set of instruction set architecture techniques, offers significant pedormance advantages over CISC, and
requires less transistors to do so. Because of its transistor count frugality, RISC has scaled quickly into very high pedorm­
ance technologies such as ECL and GaAs, and hence is ideally suited to fitting in at all price/pedormance points existing
within the entire computer industry. Most importantly, RISC is affordable on the desktop and is able to efficiently run
the huge PC software base that already exists there. In addition, RISC's pedormance growth path is assured, and is formi­
dable when compared to that for CISe. For all of these reasons, RISC architectures will come to dominate 32-/64-bit
computing over the ensuing years.

xxi

Foreward

xxii

1

Introduction

1.1 SPARe Overview

SPARC, an acronym for Scalable Processor ARChitecture, is an open RISC architecture with multiple semiconductor
implementations from a number of vendors. SPARC is an architecturally driven standard, with binary compatibility of
software between processor versions ensured by enforcing compliance to the architecture standard. The open architec­
ture approach offered by SPARC allows all its participants to make creative contributions in developing their versions
of SPARC processor. This results in a vastly greater number of technical contributions than would be possible for a closed
architecture held and defmed by only one group. This architectural freedom has allowed the SPARC architecture to
expand into CMOS gate arrays, full-custom CMOS, bipolar ECL, and GaAs faster than any other RISC architecture.
This same freedom allows SPARC vendors to make microarchitectural enhancements to their SPARC implementations
while maintaining absolute binary compatibility. The final result of this open architecture approach is that it provides
the customer with a wider range of price/performance and technology options that cannot be matched by less innovative
and restricted licensing policies. In addition, the various SPARC vendors also participate in standard second-sourcing
agreements.

The inclusion of the word "scalable" in the acronym for SPARC emphasizes its importance in the philosophy of the archi­
tecture. "Enforced compatibility" has been embraced to ensure migration of the architecture as semiconductor technolo­
gy improves. Scalability allows SPARC to be re-implementedwithout complication as semiconductor process technology
evolves. This allows SPARC to continually be offered in higher clock speeds and technologies than other RISC architec­
tures, providing rapid performance improvements as process technology continues to be refined. Other RISC processors
have complicated their microarchitectures with features that create an unnecessary burden for the hardware designer.
These features provide only a minimal performance improvement, but greatly complicate hardware design and cost. The
CY7C601 microprocessor does not require multiple-phase clocks, demultiplexing of the processor's address or data buses
or many of the other problems that affect hardware complexity and cost. This provides CY7C601 SPARC-based designs
with the advantages of excellent performance, low design costs, a high degree of manufacturability, and increased reliabil­
ity due to its simplicity of design.

The CY7C600 chip set is a 32-bit custom CMOS implementation of the SPARC architecture. Designed by Ross Technolo­
gy, Inc., a Cypress Semiconductor subsidiary, the chip set is implemented in Cypress's state of the art O.8-Jl.m CMOS tech­
nology. The chip set is in production and is available in clock speeds of 25, 33, and 40 MHz. The CY7C600 family includes
the CY7C601 Integer Unit (IV), the CY7C602 Floating-Point Unit (FPU), the CY7C604 Cache controller and MMU
(CMU), the CY7C605 Cache controller and MMU for MultiProcessing (CMU-MP), and the CY7C157 Cache RAM
(CRAM). The CY7C601, CY7C602, CY7C604 or CY7C605, and two CY7Cl57s comprise a five-chip CPU, providing
up to 29 MIPS of sustained integer performance and over 6 MFLOPS of double-precision floating-point performance
at 40 MHz. This CPU includes a SPARC Reference MMU and a 64-kbyte cache, and directly interfaces to a 64-bit physical
bus capable of a bandwidth approaching 320 Mbytes per second at 40 MHz. The five-chip CY7C600 CPU requires no
glue logic, and provides maximum computing performance with minimal design effort.

1.1.1 Partitioning

The CY7C600 family has been designed to offer a complete solution for high-performance computer and controller appli­
cations. The CY7C601 IU and the CY7C602 FPU together comprise the full SPARC instruction set architecture. The
CY7C602 replaces two chips that previously made up the FPU, the CY7C608 floating-point controller and the CY7C609
floating-point processor (Thxas Instruments' SN74ACT8847). Additional family members include the CY7C604 CMU
for uniprocessor applications, the CY7C605 CMU-MP, and the CY7C157 CRAM.

The CY7C611 is a specialized derivative ofthe CY7C601 integer unit that has been optimized for embedded control appli­
cations. It is in production in a cost-effective, 160-pin PQFP package, and is available at a speed of 25 MHz.

1-1

..

I

I

CY7C601
Integer

Unit

CY7C604
Cache

Controller
and MMU

FP Interface Signals

Virtual Address Bus VA(31 :0)

Oa1a Bus 0(31 :0)

CY7C602
Floating­

Point
Unn

Mbus (64-bn multiplexed data/address bus)

I

Figure 1-1. Architectural Partitioning-Uniprocessor System

Introduction

I

Figure 1-1 and Figure 1-2 illustrate how CY7C600 family devices connect to each other in both uniprocessor and multipro­
cessor applications. The CY7C601's second coprocessor interface is not shown in these diagrams. The function of this
second coprocessor (CP) is defined by the system designer, but its interface to the CY7C601 is identical to that of the
CY7C602 FPV coprocessor.

Figure 1-3 illustrates an embedded control system utilizing the CY7C601 or CY7C611 with an optional CY7C602 FPU
and user-designed memory system.

1.1.2 The CY7C601 Integer Unit

The CY7C601 is the primary processing engine in the SPARC architecture, executing all instructions except for specific
floating-point and coprocessor operations. The CY7C602 FPU does its floating-point calculations concurrently with the
CY7C601 IV. The architecture also allows for concurrent operation through the use of an optional second coprocessor.

Significant features of the CY7C601 include:

• Full binary compatibility with entire SPARC application software base

• Architectural efficiency that sustains 1.25 to 1.5 clocks per instruction

• Large windowed register file

• Tightly coupled floating-point interface

• User/supervisor modes for multitasking

• Semaphore instructions and alternate address spaces for mUltiprocessing

• Thgged arithmetic instructions to support artificial intelligence software

1.1.2.1 Traps and Exceptions

The CY7C601 supports a full set of traps and exceptions. A table-based set of trap vectors supports 128 hardware and
128 software trap types, both synchronous (error conditions and instructions) and asynchronous (interrupts and reset).
The CY7C601 supports a very fast interrupt time of 4 to 7 clocks, depending upon the contents of the instruction pipeline.

1-2

Mbus
Arbiter

I

I

I

System
110,
etc.

System Backplane Bus

Main Memory
or

Second-Level
Cache

Figure 1-2. Architectural Partitioning-Multiprocessors

CY7C601 CY7C602
or Floating-Point

CY7C611 FP Interface Signals UnH
Integer

UnH
(optional

! f
Address Bus I

Data Bus 0(31:0) J

1
Memory

Subsystem
and I/O

t
System Bus

Figure 1-3. Embedded Control Configuration

1-3

Introduction

..

I

Introduction

1.1.2.2 Multitasking

Multitasking is supported with user and supervisor modes. Certain privileged instructions can only be executed while
the CY7C601 is in supervisor mode, ensuring that user programs cannot accidentally alter the state of the machine. Su­
pervisor mode is only accessible by using a hardware interrupt or by executing a trap instruction.

1.1.2.3 Multiprocessing

The CY7C601 supports multiprocessing with two instructions for implementing semaphores in memory. Atomic Load/
Store Unsigned Byte loads a byte from memory, then sets the memory location to all ones. The SWAP instruction ex­
changes the contents of a register and a memory location. Both of these instructions are "atomic," meaning uninterrupt­
able.

1.1.3 CY7C611 Integer Unit for Embedded Control

The CY7C611 Integer Unit is a subset of the CY7C601 Integer Unit intended for use in embedded control systems. It
is architecturally identical to the CY7C601, and all details concerning the CY7C601 described in Sections 2.1 through
2.8 of Chapter 2 apply to the CY7C611. The CY7C611 is available in a 160-pin plastic QFP and is in production at 25
MHz. The CY7C611 differs from the CY7C601 in that several of the signals available on the CY7C601 that are not re­
quired for embedded control systems have been deleted. In addition, the CY7C611 does not have a user-defined copro­
cessor interface. The CY7C611 does have a floating-point interface, which can also be used to interface to a user-defined
coprocessor. Please refer to Section 2.9 for detailed information on the CY7C611.

1.1.4 CY7C602 Floating.Point Unit

The CY7C602 FPU provides high-performance, IEEE STD-754-1985-compatible single- and double-precision
floating-point calculations for CY7C600 systems, and is designed to operate concurrently with the CY7C601. All address
and control signals for memory accesses by the CY7C602 are supplied by the CY7C601. Floating-point instructions are
addressed by the CY7C601, and are simultaneously latched from the data bus by both the CY7C601 and CY7C602. Floa­
ting-point instructions are concurrently decoded by the CY7C601 and the CY7C602, but do not begin execution in the
CY7C602 until after the instruction is enabled by a signal from the CY7C601. Pending and currently executing FP instruc­
tions are placed in an on-chip queue while the CY7C601 continues to execute non-floating-point instructions.

The CY7C602 has a 32 x 32-bit data register file for floating-point operations. The contents of these registers are trans­
ferred to and from external memory under control of the CY7C601 using floating-point load/store instructions. Address­
es and control signals for data accesses during a floating-point load or store are supplied by the CY7C601, while the
CY7C602 supplies or receives data. Although the CY7C602 operates concurrently with the CY7C601, a program contain­
ing floating-point computations generates results as if the instructions were being executed sequentially.

1.1.5 CY7C157 Cache Data RAM

The CY7C157 is a 16K x 16-bit high-performance CMOS static RAM designed specifically as a cache memory for
CY7C600 systems. It incorporates registered address and write-enable inputs, latched data inputs and outputs, and a
self-timed write mechanism -features that have greatly simplified the design of cache memories for the CY7C600 family.

1.1.6 CY7C604/CY7C605 Cache Controller and Memory Management Units

The CY7C604 and CY7C605 are combined cache controller and memory management units designed specifically to sup­
port the CY7C601. The CY7C604 and CY7C605 provide control for a 64-kbyte direct-mapped virtual cache and provide
a SPARC reference standard MMU for virtual to physical address translation. The CY7C604 and CY7C605 directly inter­
face with the CY7C600 family, requiring no glue logic for a 64-kbyte cache system. The CY7C604 and CY7C605 use two
CY7C157 Cache RAMs to implement a 64-kbyte cache system using only three chips. Cache tag memory is provided
as an on-chip feature of the CY7C604/CY7C605, thereby reducing hardware complexity for a CY7C604- or
CY7C605-based system.

The CY7C604 is optimized for uniprocessor systems, providing cache locking and cache expandability to 256 kilobytes
using additional CY7C604s. The cache locking feature of the CY7C604 allows deterministic response from the cache
system, an important feature for real-time systems. The SPARC reference MMU, supported on both the CY7C604 and
the CY7C605, provides translation of a 4-Gbyte virtual address space to a 64-Gbyte physical address space. Both the

1-4

Introduction

CY7C604 and the CY7C605 provide a 64-entry fully associative lLB (1hmslation Lookaside Buffer), used in translating
virtual addresses to physical addresses. 1LB entries may be locked, excluding critical1LB entries from replacement and
thereby preventing unnecessary table walks. Thble walking (required to obtain additional virtual to physical address trans­
lations not stored in the lLB) for the CY7C604 and CY7C605 is implemented in hardware, providing a substantial time
savings over software table walk routines.

The SPARC MMU section of the CY7C604/CY7C605 is designed for the efficient support of multitasking operating sys­
tems. CY7C604/CY7C605lLB and cache tag entries allow a maximum of 4096 different context tags to identify tasks
within an operating system. The SPARC MMU implemented in the CY7C604/CY7C605 provides extensive memory
access level protection (user/supervisor and read/write/execute), including an execute-only memory access level. The
ability to mark memory accesses as execute-only provides a security feature that can be used to protect proprietary fea­
tures of a software system from unauthorized scrutiny. The CY7C604 and CY7C605 MMU also support multilevel ad­
dress mapping, allowing software to select a region of 4 kbytes, 256 kbytes, 16 Mbytes, or 4 Gbytes to be addressed by
a single lLB entry. This feature allows efficient utilization of 1LB entries, which in tum reduces the number of table
walks caused by system software.

The CY7C605 is an extension of the CY7C604 designed for use in multiprocessor systems. The CY7C605 provides a dual
cache tag memory, which allows the CY7C605 to perform bus snooping while it simultaneously supports cache accesses
by the CY7C601. The CY7C605 implements a cache coherency protocol based on the IEEE Futurebus, which has been
recognized as a superior protocol for maintaining consistency of shared data in a multiprocessing system. The CY7C605
supports direct data intervention, which is the capability of a CY7C605-based cache to directly supply modified data to
another requesting cache without first requiring main memory to be updated. This feature provides a significant perform­
ance advantage over cache systems that must update main memory in order to supply modified data to another cache.
In addition to direct data intervention, the CY7C605 also supports memory reflection. Memory reflection allows a
memory system to automatically update itself during a direct data intervention operation. This feature allows a mUltipro­
cessing system to update both a requesting cache and main memory in a single bus operation.

Both the CY7C604 and the CY7C605 are specifically designed to support secondary cache systems. The use of common
secondary caching provides the advantage of increased cache performance for each processing node of a multiprocessor
system without the expense of large caches for each node. This approach also provides a direct upgrade path to the next
generation of high-integration SPARC processors. The CY7C605 is designed to be pin compatible with the CY7C604.
This feature allows a system to be upgraded from uniprocessor to multiprocessor by modifying the operating system and
replacing the CY7C604 with the CY7C605.

The CY7C604 and CY7C605 support the SPARC Mbus standard bus interface. The Mbus is a peer level, high-speed,
64-bit, multiplexed address and data bus which supports a full peer-level protocol (i.e., multiple bus masters). The
CY7C604/605 Mbus supports data transfers in transaction sizes of 1, 2, 4, 8, or 32 bytes. These data transfers are per­
formed in either burst or non-burst mode, depending upon size. Data transactions larger than eight bytes (one double­
word) are transferred in burst mode, which consists of an address phase followed by four data phases. Non-burst transac­
tions consist of an address phase followed by one data phase, and are used for data transactions of eight or less bytes.
Bus mastership is granted and controlled by an external bus aIbiter. The bus arbiter sets bus priorities, and grants access
to a bus master.

Mbus is divided into two levels of implementation: levelland level 2. Levell, implemented on the CY7C604, is the
uniprocessor version of Mbus. Levell is a subset of level 2, which is the multiprocessor version of Mbus. The CY7C605
supports level 2 Mbus. Level 2 Mbus includes the IEEE Futurebus (MOSEl) cache coherency protocol, which has been
recognized in the industry as a superior method of supporting multiprocessing systems. Level 2 Mbus defines five cache
states for describing cache line status. Transactions on the Mbus are monitored or "snooped" by the CY7C605 and other
bus agents on the level 2 Mbus to maintain ownership and modified status for each cache line. 1tansactions on the level
2 Mbus are made with respect to the cache line ownership and modified status to ensure consistency for shared data
images.

The level 2 Mbus supports direct data intervention, which allows a cache system with the up-to-date version of a cache
line to directly supply the data to another cache system without having to first update main memory. Direct data interven­
tion provides a significant performance improvement over systems that do not support this feature. In addition, the
CY7C605 provides support for memory systems with reflective memory controllers. A memory system with reflective
memory control can recognize a cache-to-cache data transaction and automatically update itself without delaying the sys­
tem. Another system concept supported by the CY7C605 is secondary caching. Secondary caching provides a perform­
ance advantage over systems directly using main memory, and provides an economic advantage over systems using large
caches for each processing node.

1-5

..

Introduction

1.2 Register Windows

The CY7C601 contains a large, 32-bit-wide, triple-port register fIle that is divided into multiple windows which are con­
trolled by internal hardware. Each window contains 24 working registers and has access to 8 global registers. Combined
with the CY7C601's register-to-register architecture, this file operates effectively as a compiler-directed, copy-back data
cache, considerably reducing data bus traffic. Load instructions enter data into this cache, and store instructions "copy
back" information when it needs to be replaced into main memory.

The register file is managed as a circular stack, with the first and last windows overlapping each other. Each window
overlaps the previous window and succeeding window by 8 registers, making the window mechanism ideal for passing pa­
rameters in procedure calls. Results left in the overlapping registers by a calling routine automatically become available
operands for the called routine as the window moVes, and vice versa. This parameter passing technique eliminates the
need for the loads and stores to memory required by machines using a stack during procedure calls.

1.3 Instruction Set
SPARC defmes 55 basic integer instructions, 14 basic floating-point instructions, and two coprocessor-operate instruction
formats. CY7C600 instructions fall into five basic categories: load/store, arithmetic/logical/shift, control transfer, read/
write control register, and floating-point-operate/coprocessor-operate.

1.3.1 Load and Store Instructions

Load and store instructions are the only way to access memory or external registers. Addresses are calculated using the
contents of two registers or one register and a constant. The destination may be either an integer unit, floating-point
unit, or coprocessor register, which either supplies or receives the data. In order to greatly speed up memory accesses,
halfword, word, and doubleword data must be aligned on their corresponding boundaries. If they are not, a trap is gener­
ated when an access is attempted.

1.3.1.1 Address Space Identifier

Whenever an address is sent to the address bus, the processor also generates 8 bits of address space identifier (ASI).
The ASI pins identify to the external system which of the 256 possible address spaces is to be accessed. For most CY7C601
operations, one of four standard ASI values are asserted. These four ASI values indicate whether the processor is in user
or supervisor mode, and whether the access is an instruction or data reference.

The address space identifier is intended for use by the system operating software. Consequently, the instructions that
specify a particular ASI value (load/store alternate) are privileged and can only be executed in the supervisor mode. Many
of the ASI bit patterns are assigned for accessing various features of the CY7C604/CY7C605. A large block of address
spaces are. reserved for the designer to implement as desired.

1.3.2 ArithmeticlLogicallShift Instructions

These instructions compute a result using two source operands and place the result in a destination register. In addition
to standard arithmetic operations, the CY7C601 includes tagged arithmetic operations. 'lagged arithmetic instructions
assume that the least-significant two bits of the operands are tags, and set a condition code bit if they are not zero. 'lagged
instructions are used with artificial intelligence languages such as USP to indicate the data type of the operands. The
use of tagged arithmetic instructions allows languages such as USP and Prolog to run significantly faster than on RISC
machines without this type of instruction.

1.3.3 Control 'Ihlnsfer Instructions

Control transfer instructions include jumps, calls, branches, and traps. nansfer of control to the new address is usually
delayed until after execution of the next instruction immediately following the jump, call or branch, etc., so that the trans­
fer doesn't create a hole or bubble in the instruction pipeline. It is the compiler's or the assembly language programmer's
job to attempt to place a useful instruction in this delay slot.

1.3.4 ReadlWrite Control Register Instroctions

These include instructions to read and write the contents of various CY7C601 control registers. The source (read) or
destination (write) is implied by the instruction name.

1-6

Introduction

1.3.5 Floating.Point.Operate and Coprocessor· Operate Instructions

This category includes floating-point calculations, floating-point register operations, and instructions involving computa­
tions or other operations in the second coprocessor.

Floating-point-operate instructions execute concurrently with CY7C601 instructions and possibly with other
floating-point instructions. Concurrent execution is also possible with the coprocessor-operate instructions if they are
so implemented.

Coprocessor-operate instructions are defined by the coprocessor itself. In the CY7C601, they are specified by the CPop
instruction. The SPARC architecture will accommodate 1024 coprocessor-operate instructions.

Floating-point and coprocessor loads and stores are not operate instructions; they belong to the "load and store" category
discussed in Section 1.4.1.

1-7

D

Introduction

1-8

Chapter 2
CYP~SS.~~~~~~~~~~~
SEMICONDUcrOR CY7C601/CY7C611

Integer Unit

This section describes the workings of the CY7C601 Integer processing Unit (IU), the main computing engine in the
SPARC architecture. Descriptions and explanations given for the CY7C601 also apply to the CY7C611 integer unit, ex·
cept for those differences noted in Section 2.9.

The CY7C600·family IUs are based on the SPARC 32-bit RISC architecture, which defines a processor capable of execu­
tion at a rate approaching one instruction per clock cycle. The CY7C6011611 supports a tightly-coupled Floating-Point
coprocessor Unit (FPU) and a second, system-specific coprocessor, all three of which may operate concurrently. The
CY7C6011611 executes all instructions except floating-point-operate and coprocessor-operate instructions.

A block diagram of the CY7C6011611 is shown in Figure 2-1. The processor is organized around the ALU and the shift
unit. These are both two-operand units, accepting 32-bit information from either source lor source 2 of the register file,
the program counters, or the instruction decoder. ALU or shift unit results may be passed to the register file, address
bus, program counters, control registers, or back to themselves.

One of the characteristics of the SPARC load/store architecture is that neither the ALU nor the shift unit directly pass
results to the instruction/data bus. Memory data moves in and out of the register file through alignment units to and from
the instruction/data bus. Instructions are taken directly from the bus and fed to a four-stage instruction pipeline.

Destination

Address Instructlonj Data

Figure 2-1. Integer Unit Block Diagram

2-1

WORKING
REGISTERS

Current window
within set of

136 r Registers

I U Registers

MULTIPLY STEP (Y)

OUTS (8)

INS(8)

LOCALS(8)

GLOBALS(8)

CY7C601lCY7C611 Integer Unit

FPU Registers (optional)

I FLOATING POINT STATUS (FSR) I

FLOATING-POINT REGISTERS
(32)

Coprocessor Registers (optional)

I COPROCESSOR STATUS (CSR) I

COPROCESSOR REGISTERS
(32)

Figure 2-2. SPARe Register Model

The SPARC architecture uses a "windowed" register file model in which the file is divided up into groups of registers
called windows. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently supports
All programming languages such as Prolog, LISP and Small talk.

A unique pair of coprocessor interfaces and a common connection to the system data and virtual address buses form the
physical interface between the IU, the FPU, and a coprocessor. The coprocessor interfaces provide the synchronization
and error handling that enable all three processors to operate concurrently. A common interface to the virtual address
bus and data bus permits the IU to provide all addresses for floating-point and coprocessor load and store instructions.

2.1 Description Of Parts

The standard version of the integer unit, the CY7C601, contains a 136 x 32 register file divided into eight overlapping
windows. It is supplied in 207-pin PGAand 208-pin QFP packages, which allows 32-bit address and data buses, an eight-bit
ASI bus, a number of control lines, and floating-point-coprocessor and second coprocessor interfaces.

The CY7C611 embedded control IU is internally the same as the CY7C601, but it is externally optimized for board-space­
sensitive controller applications. By eliminating some external pins, the CY7C611 fits into a 160-pin PQFP package. In
the smaller package, the address bus is modified to 24 bits, the ASI bus to 3 bits, and the second coprocessor interface
and five control lines are omitted. See Section 2.9 for further information.

2.2 Programming Model

This section descnbes the CY7C601l611's register model, register window mechanism, processor states, supervisor/user
modes, control/status registers, and data types. The concepts and properties explained here are central to an understand­
ing of the CY7C601I611's operation.

The register set shown in Figure 2-2 is a snapshot of the registers the CY7C601I611 sees at any given moment. The work­
ing registers constitute the current window on the register file. Registers within the shaded area are accessible only in
the supervisor mode.

Working registers are used for normal operations and are called r registers in the CY7C601l611, jregisters in the FPU,
and c registers in the coprocessor. The various control/staWs registers keep track of and/or control the state of each pro­
cessor. See Section 3.3.1 for an explanation of the FPU's register set.

2.2.1 Register Windows

The 136 r registers of the CY7C6011611 are 32-bits wide and are divided into a set of 128 window registers and a set of
eight global registers. The 128 window registers are grouped into eight sets of 24 r registers called windows.

2-2

CY7C601lCY7C611 Integer Unit

Table 2-1. Register Addressing

Register numbers Name

r[24] to r[31] ins

r[16] to r[23] locals

r[8] to r[15] outs

r[O] to r[7] globals

The SPARC architecture supports a maximum of 32 windows. The currently active window (the window visible to the
programmer) is identified by the Current Window Pointer (CWP), a 5-bit field in the Processor State Register (PSR) (see
Section 2.2.4.2).

At any given time, a program can address 32 active registers: 24 window registers and the eight globals. By software conven­
tion, the window registers are divided into 8 ins, 8 locals, and 8 outs. Registers are addressed as shown in Table 2-1.

The current window pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the cur­
rent window pointer by one offsets r register addressing by 16. Since 24 r registers can be addressed by a single CWP value,
incrementing or decrementing the CWP results in an eight register overlap between windows. This overlap of window
registers is used to pass parameters from one window to the next.

2.2.1.1 Windowing

The register file is implemented as a circular stack, with the highest numbered window joined to the lowest. In the
CY7C601, window 7 adjoins window 0 (see Figure 2-3).

SAVE

Figure 2-3. Circular Stack of Overlapping Windows

2-3

CY7C601lCY7C611 Integer Unit

Previous Window + 1

r31 Save

INS

r23
.. Restore

LOCALS
r16

r15
OUTS

rB

Next Window (CWP - 1)

INS

LOCALS

OUTS

Figure 2-4. Overlapping Windows

Note that each window shares its ins and outs with adjacent windows (refer to Figure 2-4). Outs from a previous window
(CWP + 1) are the ins of the current window, and the outs of the current window are the ins ofthe next window (CWP - 1).
While only adjacent windows share ins and outs, globals are shared by all windows. A window's locals, on the other hand,
are not shared at all, belonging only to that window.

After power-on reset, the state of the current window pointer and the WIM register (see Section 2.2.4.3) are undefined.
The power-on reset trap routine must initialize the CWP and WIM register for correct operation.

2.2.1.1.1 Parameter Passing

Register window overlap provides an efficient means of passing parameters during procedure calls and returns. One
method of implementing a procedure call that takes advantage of the overlap is to have the calling procedure move the
parameters to be passed into its outs registers, then execute a CALL instruction. A SAVE instruction then decrements
the CWP to activate the next window. The calling procedure's outs become the called procedure's ins, making the passed
parameters directly accessible.

When a called procedure is ready to return results to the procedure that called it, those results are moved into its ins
registers and it then executes a return, usually with a JMPL instruction. A RESTORE instruction increments the CWP
to activate the previous window. The called procedure's ins are still the calling procedure's outs; thus the results are avail­
able to the calling procedure. Note that the terms ins and outs are defined relative to calling, not returning.

If the calling procedure must pass more parameters than can be accommodated by the outs and globals, the additional
parameters must be passed on the memory stack. One method of handling the stack pointer is to dedicate an out register
in the current window to hold the stack pointer (see Figure 2-5). After a call, this pointer (which is now in an ins register)
can be used as the frame pointer for the called procedure. The SAVE instruction, in addition to decrementing the CWp,
also performs an ADD using registers from the current window and placing the result in a register in the next window.
This feature can be used to set a new stack pointer for the called procedure from the old pointer in the calling procedure.
RESTORE also performs an ADD, using registers in the current window and placing the result in the previous window.

2-4

CY7C601lCY7C611 Integer Unit

r31 (i7) retum address

r30 (FP) frame pointer

r29 (is) incoming param reg S

in r28 (i4) incoming param reg 4

r27 (i3) incoming param reg 3

r26 (i2) incoming param reg 2

r2S (i1) incoming param reg 1

r24 (io) incoming param reg 0

r23 17) local 7

r22 (16) local 6

r21 (IS) local S

local r20 (14) local 4

r19 (13) local 3

r18 (12) local 2

r17 (11) local 1

r16 (10) local 0

r1S (07) temp

r14 (SP) stack pointer

r13 (oS) outgoing param reg S

out r12 (04) outgoing param reg 4

r11 (03) outgoing param reg 3

r10 (02) outgoing param reg 2

r9 (01) outgoing param reg 1

r8 00) outgoing param reg 0

r7 (g7) global 7

r6 (g6) global 6

rS (gS) globalS

global r4 (g4) global 4

r3 (g3) global 3

r2 (g2) global 2

r1 (g1) global 1

to 1 (gO) 0

131 floating-point value

floating : :
point

10 floating-point value

Figure 2-5. Registers as Seen by a Procedure

2.2.1.1.2 Window Overflow and Underflow

No matter how many windows a register file has, it is possible that at some point the program will try to use more than
are available. Since the register file is a circular stack, something must be done to prevent overwriting the oldest window
as the stack wraps around.

The CY7C601I611 handles this by allowing bits in the Window Invalid Mask (WIM) register to be set, which are used
to mark windows that will trigger an underflow or overflow trap (see Section 2.2.4.3). If a SAVE instruction points the
CWP to a marked window, a window overflow trap is generated. This means that in the CY7C601, only seven of the eight
windows are available for calls, because the last window must be saved for the trap handler. However, since a typical over­
flow trap handler would transparently save one or more of the oldest windows to memory, the program sees an apparently
infinite number of windows.

The CY7C601I611 automatically decrements the CWP upon encountering a trap. This happens without generating
another window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked
by the WIM register, the system is assured of at least one window for use by the trap handler.

2-5

IfJ

CY7C601lCY7C611 Integer Unit

A RESTORE instruction will cause a window underflow trap if it attempts to restore to a window invalidated by the WIM
register. Execution of a REThrnfrom Trap (RETf) instruction under the same circumstances will also generate an under­
flow trap. SAVE, RESTORE, and RETf always check the WIM register before completing their actions.

As an example, in Figure 2-3, if the procedure using the window labeled wO executes a CALL and SAVE sequence, a
window overflow trap will occur (assuming WIM bit 7 is set). The overflow trap handler may safely use only the locals
of w7, because w7's ins are wO's outs and w7's outs are w6's ins.

Active window = 0

Previous window = 1

Next window = 7

nap window = 7

CWP = 0

CWP+l = 1

CWP-l = 7

WIM = l0000000(base 2)

The overflow trap handler is responsible for saving one or more of the least recently used windows to the memory stack.
Simulations of register file management methods show that saving and restoring one window at a time is the simplest
and most effective algorithm for handling overflow and underflow. The stack pointer to the window-save area must be
aligned to a word boundary in valid memory and, for efficiency, should be doubleword aligned. This is because it is faster
to load and store doublewords than to load and store words.

A linear sequence of doubleword loads and stores is also used to speed up context switches. In a context switch, only
the windows containing valid data are saved, and on average this is about half the number of CY7C6011611 windows, minus
one for the reserved trap window.

2.2.1.1.3 Alternate Register Window Usage

Although the windowing layout is particularly well suited to procedure calls and returns, hardware does not force their
use for that purpose alone. Except for the eight-register overlap and the partial fixing of the function of several registers
by the instruction set (see Section 2.2.1.2), register windows can be viewed and manipulated as needed to fit the application
at hand.

For example, the register set can be treated as a flat register file. Access to any particular register in any window is obtained
by writing its window value into the current window pointer located in the processor state register. Moreover, windows
naturally segment registers into blocks that could be dedicated to specific purposes and accessed through the CWP. Regis­
ter saving and parameter passing could be done with a standard push/pop stack in memory, although this would substan­
tially increase bus traffic.

For real-time and embedded controller systems, where fast context switching may be more important than procedure
calling, the register file can easily be divided into banks of registers separated by trap handling windows set up by the WIM
register (see Section 2.2.4.3). Switching from one register bank to another is accomplished by writing to the CWP field
of the processor state register. Figure 2-6 shows the CY7C6011611 registerfile divided into four banks, each with its own
trap handler window of eight local registers. Globals are accessible by all processes.

2.2.1.2 Special Registers

In general, the window registers seen at any given time can be used in any manner desired, while keeping in mind that
windows overlap at both ends. However, the instruction set does fix the use of r[O) and partially fixes the use of r[15).

Global register r[O) always returns the value 0 when read, making the most frequently used constant easily available at
all times. In addition, when addressed as a destination operand, r[O) discards the value written to it.

The CALL instruction writes its own address into register r[15) (out register 7) of the calling procedure's window. If a
SAVE instruction then activates a new window, r[15) of the old window becomes r[31) (in register 7) of the new window
and serves as the return address to the calling procedure. However, if the register is needed for some other purpose, the
return address can be saved to a stack or simply overwritten.

2-6

Register Bank 3
(Window 7)

Register Bank 2
(Window 5)

Register Bank 1
(Window 3)

Register Bank 0
(Window 1)

1'--/
r31

r24
r23

r16 I"", r15 r31

ir-
rS

~;: I-
i;

:+0-
r16

I" r31 r15 t r24 rS
123

r16 -t r15 r31

rB r24
r23 1011

:+0-
r31 ~~~ (..
r24 rS I..JI
r23

r16
r15 r31 I·" .+-
rS

,24,. "
123

+-
r31 ;~: I-

t-
r24 rS '.
r23

r16

I-~ r15 131

rS ~
r23

,.
+-

ria ..
r15

+-
~ .
~

CY7C601lCY7C611 Integer Unit

WIM Register

RESERVED

Trap registers for bank 3
(Window 6)

UNUSED

RESERVED

Trap registers for bank 2
(Window 4)

UNUSED

76543210

The WIM register is used to separate
the r registers into register banks. Register

banks are switched by writing into the CWP
field of the processor state register (PSR).

The CY7C601J611 automatically enters the next
window (CWP - 1) upon encountering a trap,
regardless of the state of the WIM register. This
feature is used to reserve windows for a trap han­
dIer.

RESERVED

The upper eight registers of the trap window are
reserved for parameter passing from the register

~ bank, if desired.

Trap registers for bank 1
(Window 2)

UNUSED

RESERVED

Trap registers for bank 0
(Window 0)

UNUSED

The lower eight registers of the trap window are
unused, since they are shared with the next regis­
ter bank These can be used to pass parameters
to the next register bank, if desired.

Figure 2-6. Register Banks for Fast Context Switching

2-7

CY7C601lCY7C611 Integer Unit

Tho other registers are also used by hardware to save information during a trap. Registers r[17] and r[18] (locals 1 and
2) of the trap window (not the trapping procedure's window) are used to save the contents of the program counters (pC
and nPC) at the time the trap is taken. Because the trap window locals are all a trap handler is allowed to use (unless
it saves to the system stack), this limits the trap handler's usable registers to six.

2.2.2 Processor States

The CY7C601I611 is always in one of three possible states: execute mode, reset mode, or error mode. Execute mode is
the normal operating mode.

The processor enters error mode (at which point it halts and asserts ERROR) if a synchronous trap is generated while
traps are disabled (see Section 2.7). The CY7C601I611 remains in error mode until the RESET signal is asserted, where­
upon it enters reset mode. The external system is responsible for asserting RESET whenever the error mode signal, ER­
RoR' is detected.

Reset mode is entered whenever the RESET signal is asserted (see Section 2.4). The processor remains in that mode
until RESET is deasserted. Upon deassertion, the processor enters execute mode, where the first instruction address
to be executed is address 0 in the supervisor instruction address space (see Sections 2.2.3 and 2.3.2.6).

The CY7C601I611 fetches instructions in the execute mode. If the instruction belongs to the floating-point unit or second
coprocessor, execution is directed to the appropriate coprocessor. Otherwise, the instruction is executed by the integer
unit.

2.2.3 Supervisor/User Modes

In support of multitasking, the CY7C601I611 employs a supervisor/user model of operation. The processor is in supervisor
mode when the S bit in the Processor State Register (PSR) is set, and in user mode when S is reset (see Section 2.2.4.2).
The state of this bit determines which address space is accessed with the ASI bits (see Section 2.3.2.6) and whether or
not privileged instructions may be used. Privileged instructions restrict control register access to supervisor software, pre­
venting user programs from accidentally altering the state of the machine.

In non-multitasking Situations, such as embedded systems, user (application) code would probably run in supervisor mode
to gain access to the PSR's CWP field and other control registers. The only way a program running in user mode may
enter supervisor mode is to encounter a software or hardware trap. A return to user mode is accomplished by executing
a Return from nap (RET!) instruction, which restores the state of the S bit to what it was before the trap was taken.
A commonly used trap return is the JMPL, RETI delayed control transfer couple (refer to Section 2.3.3.4.4). This re­
stores both the PC and nPC (see Section 2.2.4.1) and the previous state of the S bit.

2.2.4 Control/Status Registers

CY7C601I611 control/status registers are all 32 bits wide. The two program counters can only be read to and written to
indirectly using such instructions as a CALL,JMPL, software trap (ncc), and Return from Trap (RETI). The Processor
State Register (PSR), Window Invalid Mask (WIM), nap Base Register (TBR), and multiply-step register (Y), are all
read/write registers. Read/write instructions that access the PSR, WIM, and TBR are privileged and thus may only be
used in supervisor mode.

Tho of these registers, the PSR and TBR, have both read-only status fields and programmable read/write mode fields.
In Figure 2-7 and Figure 2-9, the read-only status fields appear in lower case italic (for example, impl) while the writable
mode fields appear in UPPER CASE (for example, PIL).

2.2.4.1 Program Counters (PC and nPC)

The Program Counter (PC) contains the address of the instruction currently being executed by the CY7C601l611, and
the next Program Counter (nPe) holds the address (pC + 4) of the next instruction to be executed (assuming there is
no control transfer and a trap does not occur). The nPC is necessary to implement delayed control transfers, wherein
the instruction that immediately follows a control transfer may be executed before control is transferred to the target
address (see Section 2.3.3.4). Having both the PC and nPC available to the trap handler allows a trap handler to choose
between retrying the instruction causing the trap (after the trap condition has been eliminated) or resuming program
execution after the trap causing instruction.

2-8

CY7C601lCY7C611 Integer Unit

2.2.4.2 Processor State Register (PSR)

IU IU
Imp'lementation Version

Number Number
(imp/) (ver)

4 4

31 2827

23 22 21 20

Figure 2-7. Processor State Register

Current
Window
Pointer
(CWP)

5

o

This is the CY7C601I611's key status and control register, containing fields that report the status of processor operations
or control processor operations. Instructions that modify its fields include SAVE, RESTORE, Ticc, RETI, and any in­
struction that modifies the condition code field (icc). Any hardware or software action that generates a trap will modify
the S, PS, and ET fields. The PSR may be read or written directly using the privileged instructions RDPSR and WRPSR.
The PSR is made up of the following fields:

impl-Implementation

Bits 28 through 31 contain the processor's implementation number. The implementation number for the CY7C601
and CY7C611 is 0001. WRPSR does not modify this field ..

ver-Version

Bits 24 through 27 contain the CY7C601l611's version number. WRPSR does not modify this field. The current ver­
sion number for the CY7C601 is 0001, and the current version number for the CY7C611 is 001l.

icc-Integer Condition Codes

Bits 20 through 23 hold the integer unit's condition codes. These bits are modified by arithmetic and logical instructions
whose names end with the letters cc (for example, ANDcc), and can be overwritten by the WRPSR instruction. The
Bicc and Ticc instructions base their control transfer on these bits, which are defined as follows:

N-Negative
Bit 23 indicates whether the ALU result was negative for the last icc-modifying instruction.

o = not negative
1 = negative

Z-Zero
Bit 22 indicates whether the ALU result was zero for the last icc-modifying instruction.

o = result was nonzero
1 = result was zero

V-Overflow
Bit 21 indicates whether an arithmetic overflow occurred during the last icc-modifying instruction. The over­
flow bit is also set if a tagged operation (fADDcc, TSUBcc, etc.) is performed on non-tagged operands (refer
to Section 2.3.3.2.3). Logical instructions that modify the icc field always set the overflow bit to O.

o = arithmetic overflow did not occur
1 = arithmetic overflow did occur

C-Carry
Bit 20 indicates whether an arithmetic carry out of result bit 31 occurred from the last icc-modifying addition
or if a borrow into bit 31 resulted from the last icc-modifying subtraction. Logical instructions that modify the
icc field always set the carry bit to O.

o = a carry/borrow did not occur
1 = a carry/borrow did occur

2-9

CY7C601lCY7C611 Integer Unit

Reserved

Bits 14 through 19 are reserved. A WRPSR should write only Os to this field.
EC-Coprocessor Enabled

This bit determines whether the optional second coprocessor is enabled or disabled.

o = disabled
1 = enabled

If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor load/store instruction
will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state until it is re-enabled or reset.
Even when disabled, the coprocessor can continue to execute instructions if it contains a queue. Note that the
CY7C611 does not support a coprocessor interface, and on the CY7C611 the EC bit is permanently set to zero.

EF-Floating-Point Unit Enabled

Bit 12 determines whether the FPU is enabled or disabled.

o = disabled
1 = enabled

If the FPU is either disabled or enabled but not present, an FPop, FBfcc, or floating-point load/store instruction will
cause a floating-point-disabled trap. When disabled, the FPU retains that state until it is re-enabled or reset. Even
when disabled, it can continue to execute any instructions in its queue.

PIL-Processor Interrupt Level

Bits 8 through 11 identify the processor's external interrupt priority level. The processor will only accept external inter­
rupts whose interrupt level is greater than the value in PIL. Bit 11 of the PIL is the MSB and bit 8 is the LSB.

S -Supervisor

Bit 7 determines whether the processor is in supervisor or user mode. Because WRPSR is privileged and only available
in the supervisor mode, supervisor mode can only be entered by a software or hardware trap.

0= user mode

1 = supervisor mode

PS-Previous Supervisor

Bit 6 holds the value that was in the S bit at the time the most recent trap was taken.
ET - Enable Traps

Bit 5 determines whether traps are enabled. If traps are disabled, all asynchronous traps are ignored. If a synchronous
or floating-point/coprocessor trap occurs while traps are disabled, the CY7C6011611 halts and enters the error mode
(see Section 2.7).

o = traps disabled

1 = traps enabled

CWP-Current Window Pointer

Bits 0 through 4 contain a pointer to the currently active register file window. CWP is decremented by traps and the
SAVE instruction, and is incremented by RESTORE and RETT instructions.

The Floating-Point Enabled (EF) bit can be used by the programmer to control FPU use when running multiple processes.
By disabling the EF bit while running a process that doesn't require the FPU, software would not have to save and restore
the FPU's registers across context switc4es. If the FPU is not present, as signaled by the input pin, FP, the EF bit can
be used to provoke floating-point instruction set emulation by generating a floating-point-disabled trap if execution of
a floating-point instruction is attempted. This technique may be used with the coprocessor as well.

If it is necessary for the software to manually disable traps, care must be taken when changing the ET bit from enabled
(ET= 1) to disabled (ET=O), since the RDPSR, WRPSR instruction sequence is interruptible. One way to handle that
is to write all interrupt trap handlers so that before they return program control to the supervisor software that was inter­
rupted, they restore the PSR to the value it had before the interrupt was taken. This will guarantee a correct result when
the interrupted RDPSR, WRPSR sequence continues. The only PSR bit that cannot be restored is the PS bit, which is
overwritten when the trap is taken.

An alternative to the RDPSR-WRPSR sequence is to generate a "trap instruction" trap with a Ticc instruction. A taken
trap automatically sets ET to 0, disabling further traps.

2-10

Future Expansion for Additional Windows

31

CY7C601lCY7C611 Integer Unit

Window 0
Window 1

Window 2
Window 3

etc.

76543210

Figure 2-8. Window Invalid Mask

Trap Base Address (TBA) Trap Type (tt)

20 8

31 12 4 3 2 1 0

Figure 2-9. Trap Base Register

2.2.4.3 Window Invalid Mask Register (WIM)

This register designates which window(s) will cause generation of an underflow or overflow trap when pointed to by the
CWP as the result of a SAVE, RESTORE, or RETT instruction.

Each bit in the WIM register (see Figure 2-8) corre,sponds to a window; if a bit is set to 1, the window corresponding to
that bit is marked as invalid. If a SAVE, RESTORE, or RETT instruction would cause the CWP to point to a window
whose WIM bit equals 1, a window overflow (SAVE) or window underflow (RESTORE, RETT) trap is generated. The
trap handler uses the local registers of the invalidated window.

A WIM bit is usually set by the operating system software to identify the boundary between the oldest and newest window.
The overflow or underflow trap prevents previous windows from being overwritten or restores previous windows from
memory. WIM can also be used to mark off register banks for fast context switching (see Section 2.2.1.1.3).

WIM is read by the RDWIM instruction, and written by the WRWIM instruction. Bits corresponding to unimplemented
windows read as zeros and are unaffected by writes.

NOTE: The WIM register is NOT cleared during reset. It must be initialized by software.

2.2.4.4 Trap Base Register (TBR)

When a trap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR contains
two fields that together constitute a pointer into the trap table, which in tum contains the trap handler address (see
Figure 2-9). RDTBR can read the entire register; however, the WRTBR instruction can write only to the Trap Base Ad­
dress field. Only hardware can write to the Trap Type field, and bits 0 through 3 are zeros and are unaffected by a write.
The Trap 1Jpe field can be directly manipulated using the Tiee instruction. For more information on trap operation,
see Section 2.7.

TBA-Trap Base Address

Bits 12 through 31 contain the most-significant 20 bits of the trap table address. This field applies to all trap types except
reset, which forces address O. The TBA is software controlled.

tt-Trap 1Jpe

Bits 4 through 11 comprise the nap Type field, an eight-bit value that provides an offset into the trap table based on the
type of trap being taken (see Section 2.7.5.3). This field retains its value until the next trap is taken.

2.2.4.5 Y Register

The Y register is used by the multiply step instruction (MULSee) to create 64-bit products. This register is read and written
using the non-privileged RDY and WRY instructions.

2-11

CY7C601lCY7C611 Integer Unit

Table 2-2. Floating·Point Formats

Single-hecision Floating-Point Format

s == sign (1)
e = biased exponent (8)
f = fraction (23)

normalized number (0 < e < 255): (-If' * 2e- 127 * 1.f

subnormal (e = 0): f~O (-1f' * 2 - 126 * OJ
zero (e = 0): f~ 0 (-I)S * 0

signaling NaN: f~ 0 s = u; e = 255 (max); f = .Ouuu-uu
(at least one bit must be nonzero)

quiet NaN: f~ 0 s=u; e=255 (max); f=.luuu-uu
infinity: s = 0 or 1, depending upon sign;

e = 255 (max); f = .00-00 (all zeros)

Double-Precision Floating-Point Format

s = sign (1)
e = biased exponent (11)
f = fraction (52)

normalized number (0 < e < 2047): (-1)S * 2e-l023 * 1.f

subnormal (e = 0): f~ 0 (_I)S * 2 - 1022 * OJ
zero (e=O): f~ 0 (-I)S * 0

signaling NaN: f~ 0 s=u; e=2047 (max); f= .Ouuu-uu
(at least one bit must be nonzero)

quiet NaN: f~ 0 s=u; e=2047 (max); f= .1uuu-uu
infinity: s = 0 or 1, depending upon sign;

e = 2047 (max); f = .00-00 (all zeros)

2.2.5 Data 1YPes

The CY7C601/611 supports ten data types (eleven with extended-precision floating-point, see Section 2.2.5.3). Integer
types include byte, unsigned byte, halfword, unsigned halfword, word, unsigned word, doubleword, and tagged data.
ANSI/IEEE 754-1985 floating-point types include single- and double-precision. A byte is 8 bits wide, halfwords are 16
bits, words and single-precision floating-point are 32 bits, doublewords and double-precision floating-point are 64 bits.
Table 2-2 shows the formats for single-precision and double-precision floating-point numbers.

CY7C601lCY7C611 Integer Unit

BYTE

UNSIGNED
BYTE

HALFWORD

UNSIGNED
HALFWORD

SIGNED
WORD

UNSIGNED
WORD

TAGGED
DATA

DOUBLE
WORD

31

I
31

31

31

lsi
31

I
31

I
31

31

SSS sss lsi BYTE I
8 7 6 0

000 000 BYTE I
8 7 0

SSS sss lsi HALFWORD I
16 15 14 0

000 000 I HALFWORD I
1615 0

WORD I
0

WORD I
0

WORD I TAG I
2 1 0

WORD 0 MOST SIGNIFICANT WORD)

WORD 1 LEAST SIGNIFICANT WORD

~~E~7~ioN FP lsi EXPONENT I FRACTION
31 30 23 22 o

r(N)

EXPONENT HIGH-ORDER BITS OF FRACTION f(N)

LOW-ORDER BITS OF FRACTION f(N + 1) DOUBLE-
PRECISION FP 31 30 20 19 o

Figure 2-10. Processor Data lYPes

2.2.5.1 Data Organization In Registers

The organization of the ten data types when loaded into registers is shown in Figure 2-10.

When moving memory data to or from the registers, byte operands are always loaded to or extracted from the lower eight
bits of a register. On a load, bits 8 through 31 are sign-extended for a byte or zero-extended for an unsigned byte. Half­
words are always loaded to or extracted from the lower 16 bits of a register. Bits 16 through 31 are sign-extended for a
halfword or zero-extended for an unsigned halfword during a load. All 32 bits of a signed or unsigned word are loaded
from or stored to memory. Stores of byte and halfword data are not sign-extended. lllgged data is handled as an unsigned
word. Doubleword operands load to and store from two contiguous registers, r[n] and r[n + 1], with r[n] containing the
most significant word. Figure 2-11 illustrates the relationship between the way data is stored in memory and the way it
is loaded into registers.

For single-precision, floating-point operands, bit 31 contains the sign bit, bits 23 through 30 contain the eight bits of expo·
nent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require a register pair, with the up­
per-order register (r[n]) containing the sign bit, ll-bit exponent, and the high-order bits of the fraction. The lower-order
register (r[n + 1]) contains the low-order bits of the fraction. Total fraction size is 52 bits.

When loading doublewords or double-precision operands from memory to the working registers (either r or f), the destina­
tion register must be at an even address or the hardware will force such an address. For example, an attempted load double
to register r[9] would be forced to r[8], so that the most significant word would be loaded in r[8] and the least significant
word in r[9]. A load double to r[O] would result in the loss of the most significant word.

2-13

CY7C601lCY7C611 Integer Unit

Address N N+ 1 N+2 N+3
Memory location =----::"""=""..""..""..""":-::------:=----~

Destination Register ... 3_1 _____ Z_er_o_es_o_r_S-'i9:;..n_E_xt_e_n_s_io_n ___ -="""_ __

Byte Load Example (From Address N + 1)

N+2 N+3

Data Bus

Source Register

Byte Store Example (To Address N + 2)

Figure 2-11 ... Byte Operand Load and Store

63 Doubleword 0

31 Word 0 31 Word 0

15 Hallword 0 15 Hallword 0 15 Hallword
0 15 Hallword 0

7 Byte
017

Byte 0 7 Byte 017 Byte 0 7 Byte 017 Byte 0 7 Byte
17

Byte 0
N N+1 N+2 N+3 N+4 N+5 N+6 N+7

Figure 2-12. Data Organization in Memory

2.2.5.2 Data Organization In Memory

Organization and addressing of data in memory follows the "Big-Endian" convention wherein lower addresses contain
the higher-order bytes (see Figure 2-12). For a stored word, address N corresponds to the most significant byte ofthe word,
and address N + 3 corresponds to the least significant byte. The address of a halfword, word, or doubleword is also the
address of its most significant byte. A halfword datum must be located on a halfword boundary (address bit < 0 > = 0),
which is evenly divisible by 2. Sin1ilarly, a word must be located on a word boundary (address bits < 1:0> = 0) evenly
divisible by 4, and a doubleword must be located on a doubleword boundary (address bits < 2:0 > = 0) evenly divisible
by 8. Attempting to access misaligned data will generate a memory_address_not_aligned trap.

2.2.5.3 Extended Precision

The SPARC architecture supports another data type, an ANSI/IEEE 754-1985 extended-precision floating-point type
with a width of 128 bits (see Table 2-3). For the present, however, the CY7C602 FPU does not in1plement extended-preci­
sion Floating-Point-operate (FPop) instructions, so they must be emulated in software. An extended-precision format
FPop will generate a floating-point-exception trap if execution is attempted.

When loaded to the working registers, extended-precision operands require a register quadruple (see Figure 2-13). The
upper-order register (r[NJ) contains the sign bit, a IS-bit exponent, and a 16-bit reserved field. The next register (r[N + 1])
contains the one-bit integer part and 31 high-order bits of the fraction. The next register (r[N + 2]) holds the 32 low-order
bits of the fraction. Thtal fraction size is 63 bits. The fourth extended-precision register (r[N + 3]) is reserved. As with
double-precision operands, when loading an extended-precision operand, the destination register must be at an even ad­
dress or the hardware .will force an even address.

The memory address of an extended-precision datum is also the address of its most significant byte (see Figure 2-14). An
extended-precision datum must be located on an extended-precision boundary (address bits < 3:0 > = 0), which is evenly
divisible by 16.

2-14

CY7C601lCY7C611 Integer Unit

Table 2-3. Extended·Precision Floating.Point Format

s = sign (1)
e = biased exponent (15)
j = integer part (1)
f-msh f-lsb = f = fraction (63)

normalized number (0 < e < 32767; j = 1): (-1) s • 2 e-16383 * j.f
subnormal number (e = 0; j = 0) (f ~ 0): (-1) s • 2 -16383 • j.f
zero(s=O;e=O) (f~O)G~O): (-I)s'O

signaling NaN: f~ 0 s = u; e = 32767 (max); j = u;
f = .0 uuu uu (at least one bit

must be nonzero)
quiet NaN: f~ 0 s = u; e = 32767 (max); j = u;

f = .1 uuu uu
infinity: s = 0 or 1, depending upon sign;

e = 32767 (max); j = u;
f = .000 00 '(all zeroes)

EXTENDED PRECISION FP rlN] SI EXPONENT I RESERVED

128

B3

Word
31

AddressN

2.3 Instruction Set

rlN + 1]

rlN + 2]

rlN + 3]

JI

3130

HIGH-ORDER BITS OF FRACTION

LOW-ORDER BITS OF FRACTION

RESERVED

1615

Figure 2-13. Extended· Precision Data Organization in Registers

Extended - Precision Data

Doubleword Doubleword
o 83

0131
Word Word

0131 31

N+4 N+8 N+12

Figure 2-14. Extended·Precision Data Organization in Memory

Word

o

This section describes the CY7C601I611 instruction set as defined by the SPARC architecture. Included are subsections
on instruction formats, addressing, instruction types, and an op code summary. Chapter 6, SPARC Instruction Set, con­
tains a description of the assembly language syntax and a complete set of instruction definitions.

2.3.1 Instruction Formats

There are only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruction, format
2 for the SETHI and Branch instructions, and format 3 for the remaining integer and floating-point/coprocessor instruc­
tions. Figure 2-15 shows each format with its fields, bit positions, and the instructions that use that format. All instructions
are one word long and aligned on word boundaries in memory. For most instructions, operands are located in source regis­
ters (represented by rs1 and rs2). The remaining instructions use one source register plus a displacement or immediate
operand contained within the instruction itself.

2-15

CY7C601! CY7C611 Integer Unit

CALL

FORMAT 1 IO~g?el
~31~~3~O--~0

30-Btt Displacement (disp30)

SETHI

22-Bit Immediate (imm22)

o

FORMAT 2 BRANCH

22-Bit Displacement (disp22)

o

OTHER INTEGER INSTRUCTIONS

opcode
(op) Destination (rd) °rccode op3) Source 1 (rsl) 0 Alternate Space (asi) J Source 2 (rs2)

opcode
(op) Destination (rd) 0F<code

op3) Source 1 (rsl) 1 13-Bit Immediate (simm13)

31 30 25 19 14 13 5 o
FORMAT 3

a

asi
cond

disp22

disp30

imm22
op

op2

op3

ope

oPt

rd

rsl

rs2

simm13

FLOATING POINT/COPROCESSOR OPERATIONS

Source 1 (rsl) Source 2 (rs2)

o

Figure 2-15. Instruction Format Summary

The a (annul) bit is used in branch instructions to control the execution of the delay instruction that immedi­
ately follows a control transfer instruction (see Section 2.3.3.4.3).
The address space identifier is an eight-bit field used in load/store alternate instructions. See Section 2.3.2.6.
This field identifies the condition code used for a branch instruction.

This field contains the 22-bit displacement value used for PC-relative addressing for a taken branch. It is sign
extended to full-word size when used.
This field contains the 3D-bit displacement used for the PC-relative addressing of a CALL instruction.
The i (immediate) bit determines whether the second ALU operand (for non-FPop instructions) will be r[rs2]
(i = 0), or a sign-extended simm13 (i = 1).
This field contains the 22-bit constant used by the SETHI instruction.
The op field selects the instruction format as shown in Table 2-4.

The op2 field (Table 2-5) contains the instruction opcode for format 2 instructions (op = 0).
The 6-bit op3 field contains the instruction opcode for a format 3 instruction (op = 2 or 3).
The 9-bit ope identifies a coprocessor-operate (CPop) instruction. The relationship between the ope field and
CPop instructions is described in Section 2.3.3.6.
The 9-bit op[identifies a floating-paint-operate (FPop) instruction. The relationship between the op[field and
FPop instructions is described in Section 2.3.3.6.
The r register (or r register pair) or [register (or [register pair) specified in the rd field serves as the source
during store instructions. For all other instructions, the identified register (register pair) serves as the destina­
tion. Note that r[D] as a source supplies the value 0, and as a destination causes the result to be discarded. Note
that rd must be a r register for integer instructions and must be a [register for floating-point instructions.
The 5-bit rsl field identifies the register containing the first source operand. The source is a r register for
integer instructions, a [register for floating-point instructions, or a c register for coprocessor instructions.
The 5-bit rs2 field identifies the register containing the second source operand. The source is a r registerfor
integer instructions, a [register for floating-point instructions, or a c register for coprocessor instructions.
This field holds the 13-bit immediate value used as the second ALU operand when i = 1. It is sign-extended to
full-word size when used.

2-16

CY7C601lCY7C611 Integer Unit

Table 2-4. op field Coding

opValue Instruction

00 Bicc, FBfcc,CBccc, SEmI

01 Call

10 or 11 Other

Table 2-5. op2. Field Coding

op2. Value Instruction

000 UNIMPlemented

010 Bicc

100 SE1Hl
110 FBfcc
111 CBccc

Unused (reserved) bit patterns which are used in the op, op2, op3, or i (wrong bit used) fields of instructions will cause
an illegal_instruction trap. Fields that are not used for a particular instruction are ignored and so will not cause a trap,
regardless of the bit pattern placed in that field. Unused or reserved bit patterns used in the oPt or ope fields of a floating­
point or coprocessor instruction cause an fp exception or a cp exception.

2..3.2. Addressing

Because it uses a load/store architecture, the CY7C601I611 needs only four address modes. Memory address generation
is done only for load and store instructions and is byte oriented. Program counter-relative addressing is generated only
for calls and branches and is word-boundary oriented because it is addressing instructions. Register-indirect addressing
applies to jumps, returns, and traps and is also word-boundary oriented. Address generation is illustrated in Figure 2-16.

2.3.2.1 7Ivo Register

Two-register addressing uses the rsJand rs2 fields (instruction format 3) to specify two source registers whose 32-bit con­
tents are added together to create a memory address. This is a load/store (or register-indirect) addressing mode.

2.3.2.2 Register Plus 13-Bit Immediate

This addressing mode is used where an immediate value is required as one of the sources. The address is generated by
adding the 32-bit source register specified by rsl (format 3) to a 13-bit, sign-extended immediate value contained in the
instruction. This is a load/store (or register-indirect) addressing mode.

2.3.2.3 13-Bit Immediate

Immediate addressing is a special case of register-plus-immediate addressing. In this case, the rsl-specified register is r[O]
(whose value is 0), which means the address is generated using only the 13-bit immediate value. Use of this special case
allows absolute addressing of the upper and lower 4 kbytes of a memory (or instruction) space with the 13-bit immediate
value. Immediate addressing is the simplest method of addressing because no registers need be set up beforehand.

2-17

2.3.2.4 CALL

Register Source 1

Register Source 2

Register Source 1

13

Sign Extension 13-Bit Immediate

CY7C601lCY7C611 Integer Unit

Memory Address
(Program Counter)

Memory Address
(Program Counter)

31 13 0

[:::~S~ig~n~E~xt!e~n!Sio~n;::::;[1 :::~1~3~-B~i~t I~m~m~ed~ia~te::l-I----"'" Memory Address
- - (Program Counter)

LOAD/STORE(JMPL, RETT)

Program Counter + 4

Program Counter

3D-Bit Displacement

CALL

Program Counter + 4

24
Program Counter

Sign Extension 22-Bit Displacement

BRANCH

Figure 2-16. Address Generation

Address generation for the CALL instruction is program counter-relative, that is, the target address is based on the pro­
gram counter. Because the CY7C601/611 is a delayed-control-transfer machine (see Section 2.3.3.4), before the address
is calculated, the PC is replaced by the nPC, so the calculation is actually done with PC + 4 (see Figure 2-16).

An address is generated by adding this PC + 4 value to the 3D-bit word displacement contained in the CALL instruction.
The displacement is formed by appending two zeros to the 3D-bit value from the instruction. This allows control transfers
to any word-boundary location in the virtual memory instruction space. The result of the address generation becomes
the newnPC.

2.3.2.5 Branch

Branch instructions also use PC-relative addressing, but in this case, the value added to PC + 4 is a sign-extended 22-bit
word displacement. Again, the displacement is formed by appending two zeros to the 22-bit value contained in the branch
instruction and then sign extending out to 32 bits. This allows a branching range of 8 Mbytes on word boundaries. The
generated address becomes the new nPC.

2-18

CY7C601lCY7C611 Integer Unit

Table 2-6. ASI Assignments

CY7C601 CY7C611
Address Space Identifier (ASI) Address Space Identifier (ASI) Address Space

00001000 (08 H) 000 (0 H) Vser Instruction

00001010 (OA H) 010 (2H) Vser Data

00001001 (09 H) 001 (1 H) Supervisor Instruction

00001011 (OB H) 011 (3 H) Supervisor Data

2.3.2.6 ASI

In addition to the 32 bits of address output by the processor, an additional eight bits of Address Space Identifier (ASI)
is also sent to system memory during a memory access. These ASI bits control access to 256 32-bit address spaces, which
mayor may not overlap depending upon the designer'S implementation. The SPARC architecture defines four ASI values
for user instructions, user data, supervisor instructions, and supervisor data (see Table 2-6). These four ASI values all
map to the same 32-bit address space, and are used to implement access-level protection. ASI values are commonly used
to identify user/supervisor accesses, to identify special protected memory accesses such as boot PROM, and to access
resources such as CY7C604/CY7C605 control registers, TLB entries, cache tag entries, etc ..

The ASI value is supplied by the CY7C6011611 for each instruction fetch and each data access encountered. The CY7C600
family assigns a number of these ASI values to the CY7C604/ CY7C605 and a number are reserved for future assignment.
Nevertheless, nearly 80 are left unassigned for use by the system. Refer to Table 4-15 for ASI assignments reserved for
the CY7C604/CY7C605.

2.3.3 Instruction 'IYpes

CY7C601I611 instructions fall into six functional categories: load/store, arithmetic/logical/shift, control transfer, read/
write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete information on each
instruction, see Chapter 6.

2.3.3.1 Load/Store

Load and store instructions (see Table 2-7) move bytes, halfwords, words, and doublewords between the byte-addressable
main memory and a register in either the IV, FPV, or CPo They are the only instructions that access data memory. For
floating-point and coprocessor loads and stores, the CY7C6011611 generates the memory address and the FPV or CP
receives or supplies the data.

The CY7C601/611 implements a hardware-interlocked delay when an instruction immediately following a load tries to
read the register being loaded. The data will be supplied, but only after a one-cycle delay.

Load and store instructions use two-register, register-plus-immediate, and immediate addressing modes. In addition to
the 32-bit address, the CY7C601/611 also generates an eight-bit address space identifier.

2.3.3.1.1 AS!

The Address Space Identifier (ASI) is used by the external system to ascertain which of the 256 available address spaces
to access for the load or store being executed. Access to these alternate spaces can be gained directly by using the "load
from alternate space" and "store to alternate space" instructions. These instructions use two-register addressing and the
asi field in instruction format 3. The address space specified in the asi field overrides the automatic ASI assignment made
by the processor, giving access to such resources as system control registers that are invisible to the user. Because the
ASI is intended for use by the system operating software, the alternate space instructions are privileged and can only be
executed in supervisor mode.

2-19

CY7C601lCY7C611 Integer Unit

Thble 2-7. Load/Store Instructions

Name Operation Cycles

LDSB (LDSBA*) Load Signed Byte (from Alternate Space) 2

LDSH (LDSHA*) Load Signed Halfword (from Alternate Space) 2

LDUB (LDUBA*) Load Unsigned Byte (from Alternate Space) 2

LDUH (LDUHA*) Load Unsigned Halfword (from Alternate Space) 2

LD (LDN) Load Word (from Alternate Space) 2

LDD (LDDA*) Load Doubleword (from Alternate Space) 3

LDF Load Floating-Point 2

LDDF Load Double Floating-Point 3

LDFSR Load Floating-Point Status 2

LDC Load Coprocessor 2

LDDC Load Double Coprocessor 3

LDCSR Load Coprocessor Status Register 2

STB (STBN) Store Byte (into Alternate Space) 3
STH (STHA*) Store Halfword (into Alternate Space) 3
ST (STA*) Store Word (into Alternate Space) 3
STD (STDA*) Store Doubleword (into Alternate Space) 4

STF Store Floating-Point 3
STDF Store Double Floating-Point 4

STFSR Store Floating-Point Status Register 3
STDFQ* Store Double Floating-Point Queue 4

STC Store Coprocessor 3

STDC Store Double Coprocessor 4

STCSR Store Coprocessor State Register 3
STDCQ* Store Double Coprocessor Queue 4

LDSTUB (LDSTUBA*) Atomic Load-Store Unsigned Byte (in Alternate Space) 4

SWAP (SWAPA*) Swap r Register with Memory (in Alternate Space) 4
* denotes supervIsor lDstruchon

2.3.3.i.2 Multiprocessing instructions

In addition to alternate address spaces, the CY7C601I611 provides two uninterruptible instructions, SWAP and LDSTUB
(atomic load and store unsigned byte), to support tightly coupled multiprocessing.

The SWAP instruction exchanges the contents of an r register with a word from a memory location without allowing
asynchronous traps or other memory accesses during the exchange.

The LDSTUB instruction reads a byte from memory into an r register and then overwrites the memory byte to all ones.
As with SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its execution. LDSTUB is used
to construct semaphores.

Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location are guaran­
teed that the competing instructions will execute in serial order.

2.3.3.2 Arithmetic/Logical/Shift

This class of instructions performs a computation on two source operands and writes the result into a destination register
(r[rd]). One of the source operands is always a register, r[rs1], and the other depends on the. state of the instruction's
"i" (immediate) bit. If i = 0, the second operand is register r[rs2]. If i = 1, the operand is the 13-bit, sign-extended constant
in the instruction's simmi3 field. SETHI is a special case because it is a single-operand instruction.

2-20

CY7C601lCY7C611 Integer Unit

Table 2-8. Arithmetic/Logical/Shift Instructions

Name Operation Cycles

ADD (ADDcc) Add (and modify icc) 1

ADDX (ADDXcc) Add with Carry (and modify icc) 1

TADDcc (TADDccTV) Tagged Add and modiify icc (and Trap on oVerflow) 1

SUB (SUBcc) Subtract (and modify icc) 1

SUBX (SUBXcc) Subtract with Carry (and modify icc) 1

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on OVerflow) 1

MULScc Multiply Step and modify icc 1

AND (ANDcc) And (and modify icc) 1

ANDN (ANDNcc) And Not (and modify icc) 1

OR (ORcc) Inclusive Or (and modify icc) 1

ORN (ORNcc) Inclusive Or Not (and modify icc) 1

XOR (XORcc) Exclusive Or (and modify icc) 1

XNOR (XNORcc) Exclusive Nor (and modify icc) 1

SLL Shift Left Logical 1

SRL Shift Right Logical 1

SRA Shift Right Arithmetic 1

SETHI Set High 22 Bits of r Register 1

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes and one
that doesn't (see Table 2-8).

Shift instructions shift left or right by a distance specified in either a register or an immediate value in the instruction.

The multiply step instruction, MULScc, is used to generate the signed or unsigned 64-bit product of two 32-bit integers.
For more information on MULScc, refer to its definition in Chapter 6.

2.3.3.2.1 Register r[O]

Because register r[O] reads as a 0 and discards any result written to it as a destination, it can be used with some instructions
to create syntactically familiar pseudoinstructions. For example, an integer COMPARE instruction is created using the
SUBcc (subtract and set condition codes) with r[O] as its destination. A TEST instruction uses SUBcc with r[O] as both
the destination and one of the sources. A register-to-register MOVE is accomplished using an ADD or OR instruction
with r[O] as one of the source registers. A negation is done with SUB and r[O] as one source. If the assembler being used
supports psuedoinstructions, it translates the psuedoinstruction into the equivalent instruction in the native assembly
language. Refer to your assembly language manual for details.

2.3.3.2.2 SETHI

SETHI is a special instruction that can be combined with another arithmetic instruction (such as an OR immediate) to
construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the destination register and
clears the lower 10 bits. The arithmetic immediate instruction which follows is used to load the lower 10 bits. Note that
the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI value. SETHI can also be combined with a load
or store instruction to construct a 32-bit memory address.

2-21

TAGGED
DATA

OTHER

2.3.3.2.3 Tagged Arithmetic

WORD
31

WORD
31

Figure 2-17. Tagged Data Example

CY7C601lCY7C611 Integer Unit

I 01 01
2 1 0

I xl x I
2 1 0

At least one bit
must be nOD-zero.

The tagged arithmetic instructions are useful for languages that employ tags, such as USP, SmalltaIk, or Prolog. For effi­
cient support of such languages, the SPARC architecture defines tagged data as a data type. Thgged data are assumed
to be 30 bits wide with the tag bits (the least two significant bits) set to zero (see Figure 2-17). A tagged add (TADDce)
or subtract (TSUBce) will set the overflow bit if either ofthe operands has a nonzero tag or if a normal overflow occurs.

Thgged add or subtract instructions are normally followed by a conditional branch. If the overflow bit is set during a tagged
add or subtract operation, control is commonly transferred to a routine that checks the operand types. In order to expedite
this software construct, the SPARC architecture provides two trap on overflow instructions: TADDceTV and TSUBccT\T,
which automatically trap if the overflow bit is set during their execution.

2.3.3.3 Control Transfer

Control transfer instructions are those that change the values of the PC and nPC. These include conditional branches
(Bicc, FBfcc, CBccc), a call (CAlL), a jump (JMPL), conditional traps (Tice), and a return from trap (RETf). Also in­
cluded are the SAVE and RESTORE instructions, which don't transfer control but are used to save or restore windows
during a call to a new procedure or a return to a calling procedure (see Table 2-9).

In the CY7C60l, control transfer is usually delayed so that the instruction immediately following the control-transfer
instruction (called the delay instruction) can be executed before control transfers to the target address. The delay instruc­
tion is always fetched. However, the annul or a bit in conditional branch instructions can cause the instruction to be an­
nulled (i.e., prevent execution) if the branch is not taken (or always annulled in the case of BA, FBA, and CBA). If a
branch is taken, the delay instruction is always executed (except for BA, FBA, and CBA, see Section 2.3.3.4.3). Table 2-10
shows the characteristics of each control transfer type.

Program Counter Relative
PC-relative addressing computes the target address by adding a displacement to the program counter. See Section
2.3.2.

Register-Indirect
Register-indirect addressing computes the target address as either r[rsl] + r[rs2] if i = 0, or r[rsl] + simm13 if i =
1. See Section 2.3.2.

Delayed
A control-transfer instruction is delayed if it transfers control to the target address after a one-instruction delay. See
Section 2.3.3.4.

Annul Bit
In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 2.3.3.4.3.

2.3.3.3.1 Branching and the Condition Codes

The condition code bits in the icc, fcc, and ccc fields, are located (respectively) in the PSR (Processor State Register),
FSR (Floating-point State Register), and CSR (Coprocessor State Register). The integer condition code bits are modified
by arithmetic and logical instructions whose names end with the letters cc, or they may be written directly with WRPSR.
The floating-point condition codes are modified by the floating-point compare instructions, FCMP and FCMPE, or di­
rectly with the STFSR instruction. Modification of the coprocessor condition codes is done directly with STCSR or by
operations defrned by the particular coprocessor implementation.

Except for BA (Branch Always) and BN (Branch Never), a Bicc instruction evaluates the integer condition codes as speci­
fied in the cond field. If the tested condition evaluates as true, the branch is taken, causing a PC-relative delayed transfer
to the address [(PC + 4) + sign extnd(disp22)]. If the evaluation result is false, the branch is not taken. For BA and BN,
there is no evaluation; the result is simply forced to true for BA and false for BN.

2-22

CY7C601lCY7C611 Integer Unit

Table 2-9. Control Transfer Instructions

Name Operation Cycles

SAVE SAVE caller's window 1

RESTORE RESTORE caller's window 1

Bicc Branch on integer condition codes 1·

FBfcc Branch on floating-point condition codes 1·

CBccc Branch on coprocessor condition codes 1·

CALL Call 1·

JMPL JuMP andUnk 2·

RETT REThrn from Trap 2·

Ticc nap on integer condition codes 1 (4 if taken)

• assumes delay slot is filled with a useful instruction

Table 2-10. Control Transfer Instruction Characteristics

Instructions Addressing Mode Delayed Annul Bit

Conditional Branch Program Counter Relative yes yes

Call Program Counter Relative yes yes

Jump Register Indirect yes no

Return Register Indirect yes no

Trap Register Indirect no no

If the branch is not taken, then the annul bit is checked. If the "a" bit is set, the delay instruction is annulled. If "a" is
not set, the delay instruction is executed. If the branch is taken, the annul bit is ignored and the delay instruction is ex­
ecuted. For more information on delayed control transfer and the annul bit, see Section 2.3.3.4.

BN, of course, never branches, and therefore executes like a NOP (but is not recommended as a NOP instruction). How­
ever, as far as the annul bit is concerned, BN acts like a normal branch instruction, annulling the delay instruction if a
= 1 and executing it if a = O.

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and CBA, the
effect of the annul bit is changed. See Section 2.3.3.4.3 for details.

As illustrated in Table 2-11, Bice and Tice instructions test for the same conditions and use the same cond field codes
during their evaluations.

An FBfce instruction operates in the same way as a Bice, except it tests the FCC < 1:0> signals output by the CY7C602
floating-point unit (see Table 2-12). The FCC < 1:0> signals are floating-point condition codes which are set by executing
a floating-point compare instruction. A CBccc instruction behaves in the same manner as a FBfce, except it tests the
CCC< 1:0> signals supplied by the coprocessor (see Table 2-13). Both FBN and CBN behave in the same way as BN.

2.3.3.3.2 Trap Instructions

The "Trap on integer condition codes" (fice) instruction evaluates the condition codes specified by its cond (condition)
field. If the result is true, a trap is immediately taken (no delay instruction). If the condition codes evaluate to false, Tice
executes as a NOP.

Once the TIce is taken, it identifies which software trap type caused it by writing its trap number + 128 (the offset for
trap instructions) into the tt field of the 1tap Base Register (fBR), as illustrated in Figure 2-18. The trap number is the
least significant seven bits of either "r[rsl] + r[rsZ]" if the i field is zero, or "r[rs1] + sign extnd(simm13)" if the i field
is one. The processor then disables traps (ET = 0), saves the state of S into PS, decrements the CWp, saves PC and nPC
into the locals r[l7] and r[18] (respectively) ofthe new window, enters supervisor mode (S = 1), and writes the trap base
register to the PC and TBR + 4 to nPC.

2-23

CY7C601lCY7C611 Integer Unit

Table 2-11. Bice and Ticc Condition Codes

Condo Test Condo Test

0000 Never 1000 Always
0001 Equal to 1001 Not equal to
0010 Less than or equal 1010 Greater than
0011 Less than 1011 Greater than or equal to
0100 Less than or equal to, unsigned 1100 Greater than, unsigned
0101 Carry set (less than, unsigned) 1101 Carry clear (greater than or equal to, unsigned)
0110 Negative 1110 Positive
0111 Overflow set 1111 Overflow clear

Table 2-12. FBfee Condition Codes

Condo Test Condo Test

0000 Never 1000 Always
0001 Not equal to 1001 Equal to
0010 Less than or greater than 1010 Unordered or equal to
0011 Unordered or less than 1011 Greater than or equal to
0100 Less than 1100 Unordered or greater than or equal to
0101 Unordered or greater than 1101 Less than or equal to
0110 Greater than 1110 Unordered or less than or equal to
0111 Unordered 1111 Ordered

Table 2-13. CBece Condition Codes

Opcode Condo CCC[l :0] Test Opcode Condo CCC[l :0] Test

CBN 0000 Never CBA 1000 Always
CBl23 0001 10r20r3 CBO 1001 0
CB12 0010 lor 2 CB03 1010 a or 3
CB13 0011 lor 3 CB02 1011 o or2
CB1 0100 1 CB023 1100 00r20r3
CB23 0101 20r 3 CB01 1101 Oar 1
CB2 0110 2 CB013 1110 00r1or3
CB3 0111 3 CB012 1111 Oar 10r2

Trap Base Register

1 Trap Base Address (TBA) 1 Trap Type (tt) 100001
31 12 11

128

1
4 3

)-,-<7:.;,;:0,,->-.-, .. tt field of Trap Base Register

i bit of lice instruction = 1
128 I
~==-_ tt field of Trap Base Register

i bit of lice instruction = 0

Figure 2-18. Tiee 'frap Address Generation

2-24

CY7C601/CY7C611 Integer Unit

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time checks, such as
out-of-range array indices, integer overflow, etc.

Return from a trap is accomplished using the delayed control transfer couple, JMPL, RETT. RETI first increments the
CWPbyone, calculates the return address (using register-indirect addressing), and then checks for a number of trap con­
ditions before it allows a return. An illegaUnstrnction trap is generated if traps are enabled (ET= 1) when RETI is ex­
ecuted. If ET = 0, RETI checks for other trap conditions and will generate a reset trap and enter error mode for the
following conditions: S=D, the new CWP would cause a window underflow, or the return address is not word aligned.
If none of these conditions exist, RETI enables traps (ET = 1), restores the previous supervisor state to the S bit, and
writes the target address into the nPC.

2.3.3.3.3 Calls and Returns

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target address using
a PC-relative displacement of 3D-bits. The JuMP and Link (JMPL) instruction uses register-indirect addressing (the sum
of two registers or the sum of a register and a 13-bit signed immediate value) to compute its target address. Either instruc­
tion allows control transfer to any arbitrary instruction address.

Control transfer to a procedure that requires its own register window is done with either a CALL or JMPL instruction
and a SAVE instruction. A procedure that does not need a new window, a so-called "leaf" routine, is invoked with only
the CALL or JMPL.

The CALL instruction stores its return address (the current PC) into outs register r[15]. When the new window is acti­
vated, this becomes ins register r[31] (see Figure 2-4). The JMPL instruction stores its return address (the contents of
PC, which is the Link) into the r register specified in the destination field, rd.

The primary purpose ofthe SAVE instruction is to "save" the caller's window by decrementing the Current Window Point­
er (CWP) by one, thereby activating the next window and makIDg the current window into the previous window. SAVE
also performs a normal ADD, using source registers from the caller's window, but writing the result into a destination
register in the new window. This can be used to set a new stack pointer from the previous one (see Section 2.2.1.1.1).

Return from a procedure requiring its own window is done with a RESTORE and a JMPL instruction. A leaf procedure
returns by executing a JMPL only. The target address for the return is normally that of the instruction following the
CALI.;s or JMPI.;s delay instruction; that is, the return address + 8. The RESTORE instruction restores the caller's win­
dow by incrementing the CWP by one, causing the previous window to become the current window. As with SAVE, RE­
STORE performs an ADD using source registers from the called (new) window and writing the result into the calling
(previous) window.

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to check for window over­
flow or underflow. They may also be used to atomically change the CWP while establishing a new memory stack pointer
in an r register.

2.3.3.4 Delayed Control Transfer

Traditional architectures usually execute the target instruction of a control transfer immediately after the control transfer
instruction. However, in a pipelined RISC architecture, this type of transfer would require flushing the instruction that
follows the control transfer instruction. To avoid creating a hole or bubble in the pipeline, the CY7C6D1I611 delays execu­
tion of the target instruction until the instruction following the control transfer instruction is executed. The instruction
in this de1ay slot is called the delay instruction.

Table 2-14. Delayed Control Transfer Instruction Example

PC nPC Instruction

8 12 Non-control transfer
12 16 Control transfer (target = 40)
16 40 Non-control transfer (delay instruction)

(TranSfers control to 40)

40 44 ...

2-25

CY7C601lCY7C611 Integer Unit

Table 2-15. Effect of Annul Bit Reset (a == 0)

PC nPC Instruction Action

8 12 Non-control transfer Executed
12 16 Bicc (a = 0) 40 Not Thken
16 20 Delay slot instruction Executed
20 24 ... Executed

Table 2-16. Effect of Annul Bit Set (a == 1)

PC nPC Instruction Action

8 12 Non-control transfer Executed
12 16 Bicc (a= 1) 40 Not Taken
16 20 Delay slot inst. (annulled) Not Executed
20 24 ... Executed

2.3.3.4.1 PC and nPC

The Program Counter (PC) contains the address of the instruction currently being executed by the CY7C601I611, and
the next Program Counter (nPC) holds the address (pC + 4) of the next instruction to be executed (assuming a control
transfer or a trap does not occur).

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC by four or
write a computed control transfer target address intonPC. At this point, the PC points to the instruction that is about
to begin execution and the nPC points to the instruction that will be executed after that, i.e. the second instruction after
the currently executing instruction. It is the existence of the nPC that allows the execution of the delay instruction before
transfer of control to the target instruction.

2.3.3.4.2 Delay Instruction

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is called the delay
instruction. Normally, this is the next sequential instruction in the code stream. However, if the instruction that preceded
the delayed control transfer was itself a delayed control transfer, the target of the preceding control transfer becomes
the delay instruction (that's where the nPC will point). For more on delayed control transfer couples, see Section 2.3.3.4.4.

Table 2-14 shows the order of execution for a simple (not back-to-back) delayed control transfer. The order of execution
is 8, 12, 16, 40. If the delayed-control-transfer instruction were not taken, the order would be 8, 12, 16, 20.

2.3.3.4.3 Annul Bit

The a (annul) bit is only available on conditional branch instructions (Bicc, FBfcc, and CBccc), where it changes the behav­
ior of the delay instruction. If a is set on a conditional branch instruction (except BA, FBA, and CBA) and the branch
is not taken, the delay instruction is annulled (not executed). An annulled instruction has no effect on the state of the
CY7C601I611 nor can a trap occur during an annulled instruction. If the branch is taken, the a bit is ignored and the delay
instruction is executed. Table 2-15 and Table 2-16 show the effect of the annul bit when it is reset or set.

The "branch always" instructions (BA, FBA, and CBA) are a special case. If the a bit is set in these instructions, the delay
instruction is annulled, even though the branch is taken. Effectively, this gives a "traditional" non-delayed branch. When
a = 0 in a ''branch always" instruction, it behaves the same as any other conditional branch; the delay instruction is ex­
ecuted. Figure 2-19 displays the effect the a bit has on any branch for either the set or reset state. Table 2-17 summarizes
the effect the annul bit has on the execution of delay instructions.

2-26

CY7C601lCY7C611 Integer Unit

Table 2-17. ElTect of Annul Bit on Delay Instruction

a bit 'fYpe of branch Delay instruction executed?

a = 1 Always No

Conditional, taken Yes

Conditional, not taken No

a = 0 Always Yes

Conditional, taken Yes

Conditional, not taken Yes

ANNUL = 0 ANNUL = 1

Code Code

Branch Untaken
~~A_~_a~YS __________ ~ ______ ~Co~ndmon~

Co:1:naJ '-------'r-------' Taken
Condition~ L-____:,. ______ ...J

~

Figure 2-19. Delayed Control Transfer

2.3.3.4.4 Delayed Control Transfer Couples

The occurrence of two back-to-back, delayed control transfer instructions is called a delayed control transfer couple,
which the processor handles differently from a simple control transfer. An instruction sequence containing a delayed
control transfer couple is shown in Table 2-18, and the order of execution for the six different cases of back-to-back,
delayed control transfer instructions is shown in Table 2-19.

The delay slot instruction for a delayed control transfer instruction is the instruction fetched after the delayed control
transfer instruction. For most cases, this instruction is located immediately in the code listing ·after the delayed control
transfer instruction. However, in the case of a delayed control transfer couple, the target instruction of the first delayed
control transfer instruction is the delay slot instruction for the second delayed control transfer instruction, since that tar·
get instruction is the next instruction to be fetched. The delay slot instruction for the second delayed control transfer
instruction is the next instruction loaded into the instruction pipeline after the second delayed control transfer instruc­
tion.

In the following tables, "delayed control transfer instruction" is abbreviated to "Den". A "Non-Den" may be either
a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where the annul bit is not indi­
cated, it may be either 0 or 1.

Case 1 of Table 2-19 includes the "JMPL, RETI" couple, which is the normal method of returuing from a trap handler.
The JMPL, RETI couple ensures correct values of PC and nPC are restored upon exiting the trap routine, even in the
case of a trap caused by a delay slot instruction (see Section 2.3.3.4.2). The case of a trap caused by a delay slot instruction
is one where the nPC will not be PC + 4, thus requiring both PC and nPC to be restored. The JMPL, RETI couple
allows the choice of re-executing the trapped instruction or executing the instruction following the trap occurrence. Refer
to the RETI entry in Chapter 6 for further information.

2-27

CY7C601lCY7C611 Integer Unit

Table 2-18. Delayed Control Transfer Couple Instruction Sequence

Address Instruction Thrget

8: Non DCTI
12: DCTI 40
16: DCTI 60
20: NonDCTI
24: ...
... . ..
40: Non DCTI
44: '"
60: NonDCTI
64: ...
.. , ...

Table 2-19. Execution of Delayed Control Transfer Couples

Case DCTI at Location 12 DCTI at Locatiou 16 Order of Execution

1 DCTI Unconditional DCTITaken 12.16.40.60.64 •...
2 DCTI Unconditional B*cc(a = 0) Untaken 12.16.40.44
3 DCTI Unconditional B*cc(a = 1) Untaken 12.16.44.48 (40 annulled)
4 DCTI Unconditional B*A(a= 1) 12.16.60.64 (40 annulled)
5 B*A(a= 1) any CTI 12.40.44 (16 annulled)
6 B*cc DCTI Not Supported

Definitions:
B*A-----------BA.FBA. or CBA
B*cc------------Bicc.FBicc. or CBicc (except B* A)
DCTI Uncond.---CAlL,JMPL.RETT, or B*A(a=O)
DCTI Taken-----CAlL,JMPL,RETT,B*cc taken. or B*A(a=O)

Cases 1-5 described in Table 2-19 are illustrated in Figure 2-20. In case 1. the first DCTI is fetched at address 12 and
the target address is calculated while the delay slot instruction is fetched. The delay slot instruction for the first DCTI
(located at address 16) is another DCTI. which also has a delay slot. The target address of the first DCTI has been calcu­
lated by the time the first delay slot instruction has been fetched. and the target instruction is fetched at address 40. The
target instruction is the instruction located in the instruction pipeline after the second DCTI. and therefore it is the delay
slot instruction for the second DCTI. The target instruction for the second DCTI (address 60) is fetched after the delay
slot instruction for the second DCTI (which is also the target address for the first DCTI) has been fetched.

Case 2 differs from case 1 in that the second DCTI is conditional. and is not taken. In case 2, the instruction at address
40 (target for DCTI #1) is the delay slot instruction for the second DCTI. Since the second DCTI does not cause a branch,
the instruction fetch continues to address 44.

Case 3 is an interesting case in which the target instruction of the first DCTI is annulled by the second DCTI. This causes
the instruction at address 40 to be annulled. Since the second DCTI is an untaken conditional branch, instruction fetch
continues after the annulled target instruction (address 44).

Case 4 illustrates a DCTI followed by a branch always instruction with the annul bit set. This causes the target instruction
of the first DCTI (address 40) to be annulled, and program control is transferred to the target of the second DCTI at
address 60.

Case 5 illustrates the case where the second DCTI is annulled by the annul bit of the first DCTI. The second DCTI,
since it is annulled, has no effect on instruction fetch. This case is identical to the case of any other annulled delay slot
instruction.

When the first instruction of a delayed control transfer couple is a conditional branch, control transfer is undefined (case
6). If such a couple is executed, the location where execution continues is within the same address space but is otherwise
undefined. Execution of this sequence does not change any other aspect of the processor state.

2-28

lnst
Address

12H

16H

40H

60H

64H

Case 1 lns1.
Address

12H

16H

40H

44H

Next Inst.

Ins1. Case 4 Address

12H

16H

40H

60H

64H Next Inst.

Case 2

Inst.
Address

12H

16H

40H

44H

CY7C601lCY7C611 Integer Unit

Inst
Address

12H

16H

40H

44H

Case 5

Case 3

Figure 2-20. Delayed Control 'fransfer Couples

Table 2-20. ReadlWrite Control Register Instructions

Name Operation Cycles

RDY Read Y Register 1

RDPSR* Read Processor State Register 1

RDWIM* Read Window Invalid Mask 1

RDTBR* Read Trap Base Register 1

WRY Write YRegister 1

WRPSR* Write Processor State Register 1

WRWIM* Write Window Invalid Mask 1

WRTBR* Write Trap Base Register 1

* denotes supervisor instruction

2-29

CY7C601lCY7C611 Integer Unit

Thble 2-21, Floating-Point-Operate and Coprocessor-Operate Instructions

Name Operation Cycles

FPop Floating-Point Operations 1 to launch

CPop Coprocessor Operations 1 to launch

Thble 2-22_ Miscellaneaous Instructions

Name Operation Cycles

UNIMP Unimplemented Instruction 1

!FLUSH Instruction Cache Flush 1

2.3.3.5 Read/Write Control Registers

This class of instruction reads or writes the contents of the various control registers (see Table 2-20). The source (read)
or destination (write) is implied by the instruction name. Read/write instructions are provided for the PSR, WIM, TBR,
FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are privileged and are available in supervisor
modeoniy.

2.3.3.6 Floating-PoW-Operate and Coprocessor-Operate

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are register-to-reg­
ister instructions that compute some result as a function of one or two source operands (see Table 2-21). The result is
always placed in a destination register (i.e., source operands are not overwritten). The source and destination registers
are fregisters from the CY7C602's register file. See Section 3.3.1 for more information. If no CY7C602 is present, or
if the EF bit of the PSR is not set, executing a floating-point instruction will generate a fp disabled trap.

Coprocessor-operate instructions (CPops) are executed by the attached coprocessor. Coprocessor instructions use the
c registers located in the coprocessor's register file as source and destination registers. If there is no attached coprocessor,
attempted execution of a coprocessor instruction generates a cp disabled trap.

Floating-point and coprocessor load/store instructions are not operate instructions; they fall under the CY7C601I611's
load/store instruction category (see Section 2.3.3.1).

Except for op and op3, which specify the particular floating-point-operate or coprocessor-operate instruction to be ex­
ecuted, the instruction fields of an FPop or CPop are interpreted by the CY7C602 or coprocessor. Floating-point-operate
instructions execute concurrently with CY7C601I611 instructions. CPops can also execute concurrently with both
CY7C601 and FPop instructions if they are designed to do so.

Because the CY7C6011611 and CY7C602 can execute instructions concurrently, when a floating-point exception occurs,
the PC does contain the address of an FPop instruction, but not the one that caused the exception. However, the front
entry of the floating-point queue contains the offending instruction and its address.

If the coprocessor executes instructions concurrently with the CY7C601, the architecture will support a coprocessor
queue that functions in the same fashion as the floating-point queue.

2.3.3.7 MisceUaneous

Instructions in this category handle special circumstances within the integer unit (see Table 2-22). Execution of the
UNIMP instruction causes an illegal instruction trap, so its execution is normally avoided except as part of a checking
routine. Details of one pOSSIble use for UNIMP are given in its definition in Chapter 6.

The IFLUSH instruction is used to flush a word from an internal (to the CY7C601I611) instruction cache. Current integer
unit implementations (CY7C601I611) do not incorporate an internal instruction cache, so IFLUSH would normallyex­
ecute as a NOP. However, if there is an external instruction cache, IFLUSH causes an illegal instruction trap if the Iff
signal is LOW (see Section 2.4).

2-30

CY7C601/CY7C611 Integer Unit

2.3.4 Op Codes

This section contains tables that give a complete list of the instruction opcodes, both by functional groups and in ascending
numeric order.

2.3.4.1 Load/Store Instructions

Table 2-23. Load/Store Instruction Opcodes

Opcodes with Format

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0

W 1 1 rd 000000 rs1 i =0 asi I rs2

i = 1 simm13

WA 1 1 rd 010000 rs1 i =0 asi I rs2

LDC 1 1 rd 110000 rs1 i =0 ignored I rs2

i =1 simm13

LDCSR 1 1 rd 110001 rs1 i =0 ignored I rs2

i = 1 simm13

WD 1 1 rd 000011 rs1 i =0 asi I rs2

i = 1 simm13

LDDA 1 1 rd 010011 rs1 i =0 asi I rs2

WDC 1 1 rd 110011 rs1 i =0 ignored I rs2

i =1 simm13

LDDF 1 1 rd 100011 rs1 i =0 ignored J rs2

i =1 simm13

LDF 1 1 rd 100000 rs1 i =0 ignored I rsZ

i = 1 simm13

WFSR 1 1 rd 100001 rs1 i =0 ignored I rsZ

i =1 simm13

WSB 1 1 rd 001001 rs1 i =0 asi I rs2

i =1 simm13

LDSBA 1 1 rd 011001 rs1 i =0 asi I rs2

LDSH 1 1 rd 001010 rs1 i =0 asi I rs2

i =1 simm13

WSHA 1 1 rd 011010 rs1 i =0 asi I rs2

LDSTUB 1 1 rd 001101 rs1 i =0 asi I rs2

i =1 simm13

LDSTUBA 1 1 rd 011101 rs1 i =0 asi I rs2

LDUB 1 1 rd 000001 rs1 i =0 asi I rsZ

i =1 simm13

LDUBA 1 1 rd 010001 rs1 i =0 asi I rsZ

WUH 1 1 rd 000010 rs1 i =0 asi I rs2

i =1 simm13

LDUHA 1 1 rd 010010 rs1 i =0 asi I rsZ

2-31

CY7C601lCY7C611 Integer Unit

Table 2-23. Load/Store Instruction Opcodes (continued)

Opcodes with Format

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0

ST 1 1 rd 000100 rsl i =0 asi I rs2

i =1 simm13

STA 1 1 rd 010100 rs1 i =0 asi I rs2

~\rB 1 1 rd 000101 rs1 i =0 asi I rs2
.J

i =1 simm13

STBA 1 1 rd 010101 rs1 i =0 asi I rs2

STC 1 1 rd 110100 rs1 i =0 ignored I rs2

i =1 simm13

STCSR 1 1 rd 110101 rs1 i =0 ignored I rs2

i =1 simm13

STD 1 1 rd 000111 rs1 i =0 asi I rs2

i = 1 simm13

STDA 1 1 rd 010111 rsl i =0 asi I rs2

SIDC 1 1 rd 110111 rs1 i =0 ignored I rs2

i =1 simm13

STDCQ 1 1 rd 110110 rsl i =0 ignored I rs2

i =1 simm13

STDF 1 1 rd 100111 rsl i =0 ignored I rs2

i =1 simm13

SIDFQ 1 1 rd 100110 rs1 i =0 ignored I rs2

i =1 simm13

STF 1 1 rd 100100 rsl i =0 ignored I rs2

i =1 simm13

STFSR 1 1 rd 100101 rs1 i =0 ignored I rs2

i =1 simm13

STH 1 1 rd 000110 rs1 i =0 asi I rs2

i =1 simm13

STHA 1 1 rd 010110 rs1 i =0 asi I rs2

SWAP 1 1 rd 001111 rs1 i =0 asi I rs2

i = 1 simm13

SWAPA 1 1 rd 011111 rs1 i =0 asi I rs2

2-32

CY7C601/CY7C611 Integer Unit

2.3.4.2 Arithmetic/Logical/Shift Instructions

Table 2-24. Arithmetic/Logical/Shlft Instruction Opcodes

Opcodes with Format

Mnemonic 3130 29 2S 24 19 18 14 13 12 5 4 0

ADD 1 0 rd 000000 rs1 i =0 ignored I rs2

i =1 sirnrn13

ADDcc 1 0 rd 010000 rs1 i =0 igoored I rs2

i =1 sirnrn13

ADDX 1 0 rd 001000 rs1 i =0 igoored I rs2

i =1 sirnrn13

ADDXcc 1 0 rd 011000 rs1 i =0 igoored I rs2

i =1 sirnrn13

AND 1 0 rd 000001 rs1 i =0 ignored I rs2

i =1 sirnrn13

ANDcc 1 0 rd 010001 rs1 i =0 igoored I rs2

i =1 sirnrn13

ANDN 1 0 rd 000101 rs1 i =0 igoored I rs2

i =1 sirnrn13

ANDNcc 1 0 rd 010101 rs1 i =0 ignored L rs2

i =1 sirnrn13

MUlScc 1 0 rd 100100 rs1 i =0 igoored I rs2

i =1 sirnrn13

OR 1 0 rd 000010 rs1 i =0 igoored I rs2

i =1 sirnrn13
ORcc 1 0 rd 010010 rs1 i =0 ignored I rs2

i =1 sirnrn13

ORN 1 0 rd 000110 rs1 i =0 igoored I rs2

i =1 sirnrn13

ORNcc 1 0 rd 010110 rs1 i =0 ignored I rs2

i =1 sirnrn13

SlL 1 0 rd 100101 rs1 i =0 ignored I rs2

i =1 shent

SRA 1 0 rd 100111 rs1 i =0 ignored I rs2

i =1 shent
SRL 1 Ii rd 100110 rs1 i =0 ignored L rs2

i =1 shent
SUB 1 0 rd 000100 rs1 i =0 ignored I rs2

i =1 sirnrn13

SUBcc 1 0 rd 010100 rs1 i =0 ignored I rs2

i =1 sirnrn13

SUBX 1 0 rd 001100 rs1 i =0 ignored I rs2

i =1 sirnrn13

SUBXcc 1 0 rd 011100 rs1 i =0 ignored I rs2

i =1 sirnrn13

2-33

CY7C601lCY7C611 Integer Unit

Table 2-24. ArithmeticlLogical/Shift Instruction Opcodes (continued)

Opcodes with Format

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0

TADDcc 1 0 rd 100000 rsl i -0 ignored I rs2

i =1 sirnm13

TADDccTV 1 0 rd 100010 rs1 i =0 ignored I rs2

i =1 sirnm13

TSUBcc 1 0 rd 100001 rs1 i =0 ignored I rs2

i =1 simm13

TSUBccTV 1 0 rd 100011 rs1 i =0 ignored I rs2

i =1 simrn13

XNOR 1 0 rd 000111 rsl i =0 ignored I rs2

i =1 simrn13

XNORcc 1 0 rd 010111 rsl i =0 ignored I rs2

i =1 sirnrn13

XOR 1 0 rd 000011 rsl i -0 ignored I rs2

i =1 simrn13

XORcc 1 0 rd 010011 rs1 i =0 ignored I rs2

i =1 sirnrn13

3130 29 25 2422 21 0

SETHI 0 0 rd 100J imm22

2-34

CY7C601lCY7C611 Integer Unit

2.3.4.3 Control Transfer Instructions

Table 2-25. Control 1ransfer Instruction Opcodes

Opcodes with Format

Mnemonic 3130 29 2S 24 19 18 14 13 12 5 4 0

JMPL 1 0 rd 111000 rs1 i =0 ignored I rs2

i-I simm13

RESTORE 1 0 rd 111101 rs1 i =0 ignored J rs2

i =1 simm13

RETI 1 0 ignored 111001 rs1 i =0 ignored 1 rs2

i =1 simm13

SAVE 1 0 rd 111100 rs1 i =0 ignored I rs2

i = 1 simm13

3130 29 28 25 2422 21 0

Bicc 0 0 a cond 010 disp22

CBccc 0 0 a cond 111 disp22

FBfcc 0 0 a cond 110 disp22

3130 29 2825 24 19 18 14 13 12 5 4 0

Ticc 1 0 1* cond 111010 rs1 i =0 ignored J rs2

i = 1 simm13

CALL 0 1 disp30

... I = ignored.

Table 2-26. Bicc and Ticc Condition Codes

Condo Test

0000 Never
0001 Equal to
0010 Less than or equal to
0011 Less than
0100 Less than or equal 10, unsigned
0101 Carry set (Jess than, unsigned)
0110 Negative
0111 Overflow set
1000 Always
1001 Not equal to
1010 Greater than
1011 Greater than or equal to
1100 Greater than, unsigned
1101 Carry clear (greater than or equal, unsigned)
1110 Positive
1111 Overflow clear

2-35

CY7C601/CY7C611 Integer Unit

Table 2-27. FBfee Condition Codes

Condo Test

0000 Never
0001 Not equal
0010 Less than or greater than
0011 Unordered or less than
0100 Less than
0101 Unordered or greater than
0110 Greater than
0111 Unordered
1000 Always
1001 Equal
1010 Unordered or equal
1011 Greater than or equal
1100 Unordered or greater than or equal
1101 Less than or equal
1110 Unordered or less than or equal
1111 Ordered

Table 2-28. CBeee Condition Codes

Opcode Condo CCC[1:01 Test

CBN 0000 Never
CB123 0001 10r20r3
CB12 0010 lor2
CB13 0011 lor3
CB1 0100 1
CB23 0101 2or3
CB2 0110 2
CB3 0111 3
CBA 1000 Always
CBO 1001 0
CB03 1010 o or 3
CB02 1011 00r2
CB023 1100 00r20r3
CB01 1101 o or 1
CB013 1110 00r10r3
CB012 1111 Oor 1 or2

2.3.4.4 Read/Write Control Register Instructions

Table 2-29. ReadIWrite Control Register Instruction Opcodes

Opcodes with Format

Mnemonic 3130 29 25 24 19 18 14 13 12 0

RDPSR 1 0 rd 101001 ignored 1* ignored

RDTBR 1 0 rd 101011 ignored 1* ignored

RDWIM 1 0 rd 101010 ignored 1* ignored

RDY 1 0 rd 101000 ignored 1* ignored

3130 29 25 24 19 18 14 13 12 5 4 0

WRPSR 1 0 ignored 110001 rs1 i =0 ignored I rs2

i =1 simm13

WRTBR 1 0 ignored 110011 rsl i =0 ignored I rs2

i = 1 simm13

WRWIM 1 0 ignored 110010 rs1 i =0 ignored I rs2

i =1 simm13

WRY 1 0 ignored 110000 rs1 i =0 ignored I rs2

i =1 simm13

• I = ignored.

2-36

CY7C601lCY7C611 Integer Unit

2.3.4.5 Floating-l'rJintICoprocessor Instructions

Table 2-30. Floating.Point ICoprocessor Instruction Opcodes

Opcodes with Format

Mnemonic 3130 29 25 24 19 18 14 13 5 4 0
CPOPI 1 0 rd 110110 rsl OPC rs2

CPOP2 1 0 rd 110111 rsl OPC rs2
FABSs 1 0 rd 110100 ignored 000001001 rs2
FADDs 1 0 rd 110100 rsl o 0 1 0 0 0 0 0 1 rs2
FADDd 1 0 rd 110100 rsl o 0 1 0 0 0 0 1 0 rs2
FADDx 1 0 rd 110100 rsl o 0 1 0 0 0 0 1 1 rs2
FCMPs 1 0 ignored 110101 rsl o 0 1 0 1 0 001 rs2
FCMPd 1 0 ignored 110101 rsl o 0 1 0 100 1 0 rs2
FCMPx 1 0 ignored 110101 rsl o 0 1 0 100 1 1 rs2
FCMPEs 1 0 ignored 110101 rsl o 0 1 0 1 0 101 rs2
FCMPEd 1 0 ignored 110101 rsl o 0 1 0 1 0 1 1 0 rs2
FCMPEx 1 0 ignored 110101 rsl o 0 1 0 1 0 1 1 1 rs2
FDNs 1 0 rd 110100 rsl o 0 100 1 101 rs2
FDNd 1 0 rd 110100 rsl o 0 100 1 1 1 0 rs2
FDNx 1 0 rd 110100 rsl o 0 100 1 1 1 1 rs2
FMOVs 1 0 rd 110100 ignored o 0 0 0 0 0 0 0 1 rs2
FMULs 1 0 rd 110100 rsl o 0 100 100 1 rs2
FMULd 1 0 rd 110100 rsl o 0 100 1 0 1 0 rs2
FMULx 1 0 rd 110100 rsl o 0 100 1 0 1 1 rs2
FNEGs 1 0 rd 110100 ignored o 0 0 0 0 0 101 rs2

FSQRTs 1 0 rd 110100 ignored 00010 100 1 rs2

FSQRTd 1 0 rd 110100 ignored 000101010 rs2
FSQRTx 1 0 rd 110100 ignored 000101011 rs2
FSUBs 1 0 rd 110100 rsl o 0 1 0 0 0 101 rs2
FSUBd 1 0 rd 110100 rsl o 0 100 0 1 1 0 rs2
FSUBx 1 0 rd 110100 rsl o 0 1 0 0 0 111 rs2
FdTOi 1 0 rd 110100 ignored o 1 1 0 100 1 0 rs2

FdTOs 1 0 rd 110100 ignored o 1 1 0 0 0 1 1 0 rs2
FdTOx 1 0 rd 110100 ignored o 1 100 1 1 1 0 rs2
FiTOd 1 0 rd 110100 ignored o 1 100 100 0 rs2
FiTOs 1 0 rd 110100 ignored o 1 1 0 0 0 100 rs2
FiTOx 1 0 rd 110100 ignored o 1 100 1 100 rs2
FsTOd 1 0 rd 110100 ignored o 1 100 100 1 rs2
FsTOi 1 0 rd 110100 ignored o 110 100 0 1 rs2

FsTOx 1 0 rd 110100 ignored o 1 100 1 101 rs2
FxTOi 1 0 rd 110100 ignored o 1 1 0 100 1 1 rs2

FxTOs 1 0 rd 110100 ignored o 1 1 0 0 0 1 1 1 rs2
FxTOd 1 0 rd 110100 ignored o 1 100 1 0 1 1 rs2

2-37

CY7C601/CY7C611 Integer Unit

2.3.4.6 Miscellaneous Instructions

Table 2-31. Miscellaneous Instruction Opcodes

Opcodes with Format

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0

IFLUSH 1 0 ignored 111011 I rs1 Ii =0 I ignored I rs2

Ii =1 I simm13

UNlMP 0 0 ignored 0001 const22

2.3.4.7 Opcodes In Ascending Numeric Order

Table 2-32. Instruction Opcode Numeric Listing

Opcodes with Format

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0

UNlMP 0 0 ignored 000 consl22

Bicc 0 0 a I cond 010 disp22

SETHI 0 0 rd 100 imm22

FBfcc 0 0 a I cond 110 disp22

CBccc 0 0 a I cond 111 disp22

CALL 0 1 disp30

ADD 1 0 rd 000000 rs1 i =0 ignored I rs2

i =1 simm13

AND 1 0 rd 000001 rs1 i =0 ignored I rs2

i =1 simm13

OR 1 0 rd 000010 rs1 i =0 ignored I rs2

i =1 simm13

XOR 1 0 rd 000011 rs1 i =0 ignored J rs2

i =1 simm13

SUB 1 0 rd 000100 rs1 i =0 ignored I rs2

i =1 simm13

ANDN 1 0 rd 000101 rs1 i =0 ignored I rs2

i =1 simm13

ORN 1 0 rd 000110 rs1 i =0 ignored I rs2

i =1 simm13

XNOR 1 0 rd 000111 rs1 i =0 ignored I rs2

i =1 simm13

ADDX 1 0 rd 001000 rs1 i =0 ignored I rs2

i =1 simm13

SUBX 1 0 rd 001100 rs1 i -0 ignored I rs2

i =1 simm13

ADDcc 1 0 rd 010000 rs1 i =0 ignored I rs2

i =1 simm13

ANDcc 1 0 rd 010001 rs1 i =0 ignored I rs2

i =1 simm13

ORcc 1 0 rd 010010 rs1 i =0 ignored I rs2

i =1 simm13

2-38

CY7C601lCY7C611 Integer Unit

Table 2-32. Instruction Opcode Numeric Listing (continued)

Opcodes with Format

Mnemonic 3130 29 25 24 22 2119 18 14 13 12 5 4 0

XORcc 1 0 rd 010011 rs1 i =0 ignored I rs2

i =1 simm13

SUBcc 1 0 rd 010100 rsl i =0 ignored I rs2

i =1 simm13

ANDNcc 1 0 rd 010101 rs1 i =0 ignored I rs2

i =1 simm13

ORNcc 1 0 rd 010110 rs1 i =0 ignored I rs2

i = 1 simm13

XNORcc 1 0 rd 010111 rs1 i =0 ignored I rs2

i = 1 simm13

ADDXcc 1 0 rd 011000 rs1 i =0 ignored I rs2

i =1 simm13

SUBXcc 1 0 rd 011100 rs1 i =0 ignored I rs2

i = 1 simm13

TADDcc 1 0 rd 100000 rs1 i =0 ignored I rs2

i =1 simm13

TSUBcc 1 0 rd 100001 rs1 i =0 ignored I rs2

i = 1 simm13

TADDccTV 1 0 rd 100010 rs1 i =0 ignored I rs2

i = 1 simm13

TSUBccTV 1 0 rd 100011 rs1 i =0 ignored I rs2

i = 1 simm13

MULScc 1 0 rd 100100 rs1 i =0 ignored I rs2

i =1 simm13

SlL 1 0 rd 100101 rs1 i =0 ignored I rs2

i = 1 shent

SRL 1 0 rd 100110 rs1 i =0 ignored I rs2

i = 1 shent

SRA 1 0 rd 100111 rs1 i =0 ignored I rs2

i =1 shent

RDY 1 0 rd 101000 ignored 1* ignored

RDPSR 1 0 rd 101001 ignored 1* ignored

RDWIM 1 0 rd 101010 ignored 1* ignored

RDTBR 1 0 rd 101011 ignored 1* ignored

WRY 1 0 ignored 110000 rs1 i =0 ignored I rs2

i =1 simm13

WRPSR 1 0 ignored 110001 rs1 i =0 ignored I rs2

i = 1 simm13

WRWIM 1 0 ignored 110010 rs1 i =0 ignored I rs2

i =1 simm13

WRTBR 1 0 ignored 110011 rs1 i =0 ignored I rs2

i =1 simm13

2-39

CY7C601lCY7C611 Integer Unit

Table 2-32. Instruction Opcode Numeric Listing (continued)

Opcodes with Format

Mnemonic 3130 29 25 2422 2119 18 14 13 12 S 4 0
FPOP1 1 0 rd 110100 rsl OPF rs2
FMOVs 1 0 rd 110100 ignored o 0 0 0 0 0 0 0 1 rs2
FNEGs 1 0 rd 110100 ignored 000 000 101 rs2
FABSs 1 0 rd 110100 ignored 00000 100 1 rs2
FSQR'IS 1 0 rd 110100 ignored 00010 100 1 rs2

FSQRTd 1 0 rd 110100 ignored 000101010 rs2
FSQRTx 1 0 rd 110100 ignored 000101011 rs2
FADDs 1 0 rd 110100 rs1 o 0 1 0 0 0 0 0 1 rs2
FADDd 1 0 rd 110100 rsl o 0 100 0 0 1 0 rs2
FADDx 1 0 rd 110100 rsl o 0 100 0 0 1 1 rs2

FSUBs 1 0 rd 110100 rsl o 0 1 000 101 rs2
FSUBd 1 0 rd 110100 rs1 o 0 1 0 0 0 1 1 0 rs2

FSUBx 1 0 rd 110100 rsl o 0 1 000 1 1 1 rs2
FMULs 1 0 rd 110100 rs1 o 0 100 100 1 rs2
FMULd 1 0 rd 110100 rsl o 0 100 1 0 1 0 rs2
FMULx 1 0 rd 110100 rs1 o 0 100 101 1 rs2
FDIVs 1 0 rd 110100 rs1 o 0 100 1 101 rs2

FDIVd 1 0 rd 110100 rs1 o 0 100 1 110 rs2
FDIVx 1 0 rd 110100 rs1 o 0 100 1 1 1 1 rs2
FiTOs 1 0 rd 110100 ignored o 1 1 0 0 0 100 rs2
FdTOs 1 0 rd 110100 ignored o 1 1 0 0 0 1 1 0 rs2
FilTOs 1 0 rd 110100 ignored o 1 1 0 0 0 1 1 1 rs2
FiTOd 1 0 rd 110100 ignored o 1 100 1 000 rs2

FsTOd 1 0 rd 110100 ignored o 1 100 100 1 rs2
FilTOd 1 0 rd 110100 ignored o 1 100 101 1 rs2

FiTOx 1 0 rd 110100 ignored o 1 100 1 100 rs2
FsTOx 1 0 rd 110100 ignored o 1 100 1 101 rs2
FdTOx 1 0 rd 110100 ignored o 1 100 1 1 1 0 rs2

FsTOi 1 0 rd 110100 ignored o 1 1 0 1 000 1 rs2
FdTOi 1 0 rd 110100 ignored o 1 1 0 100 1 0 rs2
FilTOi 1 0 rd 110100 ignored o 1 1 0 100 1 1 rs2

FPOP2 1 0 rd 110101 rsl OPF rs2

FCMPs 1 0 ignored 110101 rsl o 0 1 0 1 000 1 rs2

FCMPd 1 0 ignored 110101 rsl o 0 1 0 100 1 0 rs2

FCMPx 1 0 ignored 110101 rsl o 0 1 0 100 1 1 rs2

FCMPEs 1 0 ignored 110101 rsl o 0 1 0 1 0 101 rs2

FCMPEd 1 0 ignored 110101 rs1 o 0 1 0 1 0 1 1 0 rs2

FCMPEx 1 0 ignored 110101 rs1 o 0 1 0 1 0 1 1 1 rs2

CPOPl 1 0 rd 110110 rs1 OPe rs2

CPOP2 1 0 rd 110111 rs1 OPe rs2

JMPL 1 0 rd 111000 rs1 i =0 I ignored rs2

i =11 simm13

2-40

CY7C601lCY7C611 Integer Unit

Table 2-32. Instruction Opcode Numeric Listing (continued)

Opcodes with Format

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0
RETT 1 0 ignored 111001 rs1 i -0 ignored rs2

i =1 simm13

Ticc 1 0 10' cond
111010 rs1 i =0 ignored rs2

i -1 simm13

IFLUSH 1 0 ignored 111011 rs1 i -0 ignored rs2

i -1 simm13

SAVE 1 0 rd 111100 rs1 i -0 ignored rs2

i -1 simm13

RESTORE 1 0 rd 111101 rs1 i =0 ignored rs2

i =1 simm13

LD 1 1 rd 000000 rs1 i =0 asi rs2

i -1 simm13

LDUB 1 1 rd 000001 rs1 i -0 asi rs2

i =1 simm13

LDUH 1 1 rd 000010 rs1 i =0 asi rs2

i =1 simm13

LDD 1 1 rd 000011 rsl i -0 asi rs2

i -1 simm13

ST 1 1 rd 000100 rs1 i -0 asi rs2

i =1 simm13

STB 1 1 rd 000101 rs1 i =0 asi rs2

i =1 simm13

STH 1 1 rd 000110 rs1 i -0 asi rs2

i -1 simm13

STD 1 1 rd 000111 rs1 i =0 asi rs2

i = 1 simm13

LDSB 1 1 rd 001001 rs1 i =0 asi rs2

i =1 simm13

LDSH 1 1 rd 001010 rs1 i =0 asi rs2

i = 1 simm13

LDSTUB 1 1 rd 001101 rs1 i -0 asi rs2

i -1 simm13

SWAP 1 1 rd 001111 rs1 i -0 asi rs2

i =1 simm13

LDA 1 1 rd 010000 rs1 i =0 asi rs2

LDUBA 1 1 rd 010001 rs1 i =0 asi rs2

LDUHA 1 1 rd 010010 rs1 i -0 asi rs2

LDDA 1 1 rd 010011 rs1 i -0 asi rs2

STA 1 1 rd 010100 rs1 i -0 asi rs2

STBA 1 1 rd 010101 rs1 i =0 asi rs2

STHA 1 1 rd 010110 rs1 i =0 asi rs2

STDA 1 1 rd 010111 rs1 i =0 asi rs2

2-41

CY7C601lCY7C611 Integer Unit

Table 2-32. Instruction Opcode Numeric Listing (continued)

Opcodes with Format

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0
LDSBA 1 1 rd 011001 rs1 i =0 asi rs2
LDSHA 1 1 rd 011010 rs1 i =0 asi rs2
LDSTUBA 1 1 rd 011101 rs1 i =0 asi rs2
SWAPA 1 1 rd 011111 rs1 i =0 asi rs2
LDF 1 1 rd 100000 rs1 i =0 ignored rs2

i =1 simm13
LDFSR 1 1 rd 100001 rs1 i =0 ignored rs2

i =1 simm13
LDDF 1 1 rd 100011 rs1 i =0 ignored rs2

i =1 simm13
STF 1 1 rd 100100 rs1 i =0 ignored rs2

i =1 simm13
STFSR 1 1 rd 100101 rs1 i =0 ignored rs2

i-I simm13
STOFQ 1 1 rd 100110 rs1 i =0 ignored rs2

i =1 simm13
STOF 1 1 rd 100111 rs1 i =0 ignored rs2

i =1 simm13
LDC 1 1 rd 110000 rs1 i =0 ignored rs2

i =1 simm13
LDCSR 1 1 rd 110001 rs1 i =0 ignored rs2

i =1 simm13

LDDC 1 1 rd 110011 rs1 i =0 ignored rs2

i =1 simm13
STC 1 1 rd 110100 rs1 i =0 ignored rs2

i =1 simm13
STCSR 1 1 rd 110101 rs1 i =0 ignored rs2

i =1 simm13
STDCQ 1 1 rd 110110 rs1 i =0 ignored rs2

i =1 simm13
STOC 1 1 rd 110111 rs1 i =0 ignored rs2

i =1 simm13

2-42

CY7C601lCY7C611 Integer Unit

2.4 Signal Description

This section provides a description of the CY7C60l's (and CY7C611's) external signals. Functionally, the IV's external
signals can be divided into four categories: memory subsystem interlace, floating-point/coprocessor interlace, interrupt
and control signals, and power and clock signals.

",,·n' FP
ASI(7:0) FHOLD

S[ZEil,O FEXC

MAO
FXACK

FCq1:0)

D 31:0 FCCV A(2N) FP

MDS
FlNS1

FlNS2
MHOLDA

FPSYN
MHOLDB

AS!(2,O)
FHOLD

SIZE(1:0
FEXC

.0
FXACK

BHOLD
FCC(I,O)

TOE 0(31,0 FCCV

CaE CY7C601 MDS
FINS 1

FlNS2
CLK SPARC INST

IR 3:0 Integer FLUSH
INTACK Unit

MEXC

RESET

MHOLDA
CY7C611 FPSYN

MHOLDB

BHOLD SPARC FLUSH

TOE Integer
Unit INST

'nrK
ERROR MEXC -"NllLJ

RD RESET rmm
WE

WRT CP
ERROR

INTACK

DXFER CHOLD

LDSTO CEXC

INULL CXACK

RD
!RL(3,0

WE

WRT
<eLK

LOCK CCC(1:0)

DOE CCCY

AOE CINSl

IFf CINS2

Figure 2-21. CY7C60l/CY7C611 External Signals

Signals that are active LOW are marked with an overscore; all others are active HIGH. Figure 2-21 summarizes the sig­
nals described in this section. Table 2-33 provides a summary of the external signals for the CY7C601. The external signal
summary for the CY7C611 is listed in Table 2-40 in Section 2.9.

Note: In the descriptions below, and in this manual in general, when a signal is asserted it is active, and when it is deas·
serted it is inactive. When a signal is HIGH, it is a logical 1; when it is LOW, it is a logical O. This is true regardless of
whether it is asserted or deasserted.

2-43

CY7C601lCY7C611 Integer Unit

Table 2-33. CY7C601 External Signal Summary

Memory Subsystem Interface Signals:

Pin Name Description SignallYpe Active
A<31:0> Address Bus Three-State Output

AOE Address Output Enable Input WW

ASI<7:0> Address Space Identifier Three-State Output

COE Control Output Enable Input WW

BHOW Bus Hold Input WW

D< 31:0> Data Bus Three-State BiDir.

DOE Data Output Enable Input WW

DXFER Data 'fransfer Three-State Output HIGH

1FT Instruction Cache Flush nap Input WW

INULL Integer Unit Nullify Cycle Three-State Output HIGH

WSW Atomic Load-Store Three-State Output HIGH

WCK Bus Lock Three-State Output HIGH

MAO Memory Address Output Input HIGH

MDS Memory Data Strobe Input LOW

MEXC Memory Exception Input WW

MHOWA Memory Bus Hold A Input WW

MHOWB Memory Bus Hold B Input WW

RD Read Access Three-State Output HIGH

SIZE< 1:0> Bus 1tansaction Size Three-State Output

WE Write Enable Three-State Output WW

WRT Advanced Write Three-State Output HIGH

Floating.Point I Coprocessor Interface Signals:

Pin Name Description SignallYpe Active
CCC<I:O> Coprocessor Condition Codes Input

CCCV Coprocessor Condition Codes Valid Input HIGH

CEXC Coprocessor Exception Input WW

CHOW Coprocessor Hold Input WW

CINSI Coprocessor Instruction in Buffer 1 Three-State Output HIGH

CINS2 Coprocessor Instruction in Buffer 2 Three-State Output HIGH

CP Coprocessor Unit Present Input WW

CXACK Coprocessor Exception Acknowledge Three-State Output HIGH

FCC<I:O> Floating-Point Condition Codes Input

FCCV Floating-Point Condition Codes Valid Input HIGH

FEXC Floating-Point Exception Input WW

FHOW Floating-Point Hold Input WW

FINSI Floating-Point Instruction in Buffer I Three-State Output HIGH

FINS2 Floating-Point Instruction in Buffer 2 Three-State Output HIGH

FLUSH Floating-Point/Coprocessor Instruction Flush Three-State Output HIGH

FP Floating-Point Unit Present Input WW

FXACK Floating-Point Exception Acknowledge Three-State Output HIGH

INST Instruction Fetch Three-State Output HIGH

2-44

CY7C601lCY7C611 Integer Unit

Table 2-33. CY7C601 External Signal Summary (continued)

Interrupt and Control Signals:

Pin Name Description Signal'JYpe Active
IRL< 3:0> Interrupt Request Level Input

INTACK Interrupt Acknowledge Three-Slate Output HIGH

RESET Reset Input WW
ERROR Error Slate Three-State Output WW
FPSYN Floating-Point Synonym Mode Input HIGH

TOE 'Thst Mode Output Enable Input WW

Power and Clock Signals:

Pin Name Description Signal1)pe
CLK Clock Input

VCCI Main internal vee Input

VCCO Output driver VCC Input

vcer Input circuit VCC Input

VSSI Main internal VSS Input

VSSO Output driver VSS Input

VSST Input circuit VSS Input

The following sections describe the external signals for the CY7C601 and CY7C611. Signals that are modified for the
CY7C611 are listed in brackets, such as fA <23:0 > j. Signals not available on the CY7C611 are denoted as [Not available
on CY7C611j.

2.4.1 Memory Subsystem Interface Signals

Memory interface signals consist of the address lines (40 bits), bidirectional data lines (32 bits), transaction size lines (2
bits), and various control signals.

2.4.1.1 A<3I:0> -Address Bus (output) [A <23:0>]

The 32-bit address bus carries instruction or data addresses during a fetch or load/store operation. Addresses are sent
out unlatched and must be latched external to the CY7C601I611. Assertion of the MAO signal during a cache miss (which
is signaled by pulling one of the MHOLD lines low) will force the Integer Unit to place the previous (missed) address
on the address bus. The address bus is three-stated when the AOE or TOE signal is deasserted (HIGH).

2.4.1.2 AOE-Address Output Enable (input) [Not available on CY7C611]

Assertion of this signal enables the output drivers for the address bus, A < 31:0 >, and the ASI bus, ASI < 7:0 >, and is
the normal condition. Deassertion of AOE three-states the output drivers and should only be done when the bus is
granted to another bus master (i.e., when either BHOLD or MHOLDAIB is asserted).

2.4.1.3 ASI< 7:0> -Address Space Identifier (output) [ASI<2:0>]

These 8 bits constitute the Address Space Identifier (ASI), which identifies the memory address space to which the instruc­
tion or data access is being directed. The ASI bits are sent out unlatched-simultaneously with the memory address-and
must be latched externally. Assertion of the MAO signal during a cache miss (which is signaled by pulling one of the
MHOLD lines low) will force the integer unit to place the previous address space identifier on the ASI < 7:0 > pins. The
ASI pins are three-stated when the AOE or TOE signal is deasserted (HIGH). Encoding of the ASI bits is shown in
Table 2-34. Additional ASI assignments for the SPARC architecture are listed in Table 4 -15.

2-45

CY7C601lCY7C611 Integer Unit

Table 2-34. ASI Assignments

CY7C601 CY7C611
Address Space Identifier (ASI) Address Space Identifier (ASI) Address Space

00001000 (08 H) 000 (0 H) User Instruction

00001010 (OA H) 010 (2H) User Data

00001001 (09 H) 001 (1 H) Supervisor Instruction

00001011 (OB H) 011 (3 H) Supervisor Data

2.4.1.4 BHOW-Bus Hold (input)

BHOLD is asserted when an external bus master wants control of the data bus. Assertion of this signal will freeze the
processor pipeline, so after deassertion of BHOLD, external logic must guarantee that the data at all inputs to the
CY7C601/611 is the same as it was before BHOLD was asserted. This signal is tested on the falling edge (midpoint) of
a cycle and must be valid and stable at the processor for the duration of the specified set-up time prior to the falling edge
of CLK. All HOLD signals are latched in the CY7C601I611 (transparent latch with clock high) before they are used.
Because MDS and MEXC signals are not recognized while this input is active, BHOLD should only be used for bus access
requests by an external device. BHOLD should not be asserted when LOCK is asserted.

2.4.1.5 COE-Control Output Enable (input) [Not available on CY7C611]

Assertion of this signal enables the output drivers for SIZE < 1:0>, RD, WE, WRT, LOCK, LDSTO, and DXFER out­
puts, and is the normal condition. Deassertion of COE three-states these output drivers and should only be done when
the bus is granted to another bus master (i.e., when either BHOLD or MHOLDAIB is asserted).

2.4.1.6 D<31:0> -Data Bus (bidirectional)

These pins form a 32-bit bidirectional data bus that serves as the interface between the integer unit and memory. The
data bus is only driven by the CY7C601I611 during the execution of integer store instructions and the store cycle of atom­
ic-load-store instructions. Similarly, the CY7C602 FPU drives the data bus only during the execution of floating-point
store instructions.

Store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during
the second data cycle of a store single access, the second and third data cycle of a store double access, and the third data
cycle of an atomic-load-store access.

Alignment for load and store instructions is performed by the processor. Doublewords are aligned on 8-byte boundaries,
words on 4-byte boundaries, and halfwords on 2-byte boundaries. If a doubleword, word, or halfword load or store instruc­
tion generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and operands
are always expected to reside in a 32-bit wide memory. D < 31 > corresponds to the most significant bit of the most signifi­
cant byte of a 32-bit word going to or from memory.

2.4.1.7 DOE-Data Output Enable (input) [Not available on CY7C611]

Assertion of this signal enables the output drivers for the data bus, D < 31:0 >, and is the normal condition. Deassertion
of DOE three-states the data bus output drivers and should only be done when the bus is granted to another bus master
(i.e., when either BHOLD or MHOLDAIB is asserted).

2.4.1.8 DXFER-Data Transfer (output) [Not available on CY7C611]

DXFER is used to differentiate between the addresses being sent out for instruction fetches and the addresses of data
fetches. DXFER is asserted by the processor during the address cycles of all bus data transfer cycles, including both cycles
of store single and all three cycles of store double and atomic load-store. DXFER is sent out unlatched and must be
latched externally before it is used.

2.4.1.9 1FT -Instruction Cache Flush Trap (input) [Not available on CY7C611J

The state of this pin determines whether or not execution of the IFLUSH instruction generates a trap. If IFT=O, then
execution of IFLUSH causes an illegal instruction trap. If 1FT = 1, then IFLUSH executes like a NOP with no side effects.

2-46

CY7C601lCY7C611 Integer Unit

2.4.1.10 /NULL-Integer Unit Nullify Cycle (output)

The processor asserts INUll to indicate that the current memory access is being nullified. It is asserted in the same cycle
in which the address being nullified is active (though no longer on the address bus, the address is held in the external
address latches). INULL is used to prevent a cache miss (in systems with cache memory) and to disable memory exception
generation for the current memory access. This means that MDS and MEXC should not be asserted for a memory access
in which INULL = 1. !NULL is a latched output and should not be latched externally. If a floating-point unit or coproces­
sor is present in the system, INULL should be ORed with the FNULL and CNULL signals to generate a final NULL
signal.

INULL is asserted under the following conditions:

1. During the second data cycle of any store instruction (including Atomic Load-Store) to nullify the second occurrence
of the store address.

2. On all traps, to nUllify the third instruction fetch after the trapped instruction. For reset, it nullifies the error-produc­
ing address.

3. On a load in which the hardware interlock is activated.

4. JMPL and RETI instructions.

2.4.1.11 LDSTO-Atomic Wad-Store (output)

This signal is used to identify an atomic load-store to the system and is asserted by the integer unit during all the data
cycles (the load cycle and both store cycles) of atomic load-store instructions. LDSTO is sent out unlatched and must
be latched externally before it is used.

2.4.1.12 WCK-Bus liJck (output)

LOCK is asserted by the processor when it needs to retain control of the bus (address and data) for multiple cycle transac­
tions (Load Double, Store Single and Double, Atomic Load-Store). The bus will not be granted to another bus master
as long as LOCK is asserted. Note that BHOLD should not be asserted in the processor clock cycle which follows a cycle
in which LOCK is asserted. LOCK is sent out unlatched and must be latched externally before it is used.

2.4.1.13 MAO-Memory Address Output (input)

This signal is asserted during an MHOLD condition to force the previous (missed) memory access parameters back on
their various buses and control lines. The miss parameters are those that were valid on the rising edge of the clock, one
cycle before the cycle in which MHOLD was asserted. A logic HIGH value at this pin during a cache miss causes the
integer unit to put A<31:0>, ASI<7:0>, SIZE < 1:0>, RD, WE, WRT, LDSTO, LOCK, and DXFER values corre­
sponding to the missed memory address on the bus.

Normally, MAO is kept at a LOW level, thereby selecting the access parameters for the current memo~ddress. MAO
should not be used for a cache miss during a store cycle, because it would select the wrong value for WE.

MAO must be driven LOW while RESET is LOW.

2.4.1.14 MDS-Memory Data Strobe (input)

MDS is asserted by the memory system to enable the clock to the integer unit's instruction register (during an instruction
fetch) or to the load result register (during a data fetch) while the pipeline is frozen with an MHOLDAIB. In a system
with cache, MDS is used to signal the processor when the missed data (cache miss) is ready on the data bus. In a system
with slow memories, MDS tells the processor when the read data is available on the bus. During a cache line replacement,
MDS may be asserted anywhere within the MHOLD ~ and deasserted before MHOLD is released. For example, if
a cache miss occurs on word 2 of a 4-word cache line, MDS should only be driven active while word 2 is being replaced
in the cache.

MDS is also used to strobe in the MEXC memory exception signal. MDS may only be asserted when the pipeline is frozen
with MHOLDAIB. The CY7C601I611 samples MDS with an on-chip transparent latch before it is used.

2.4.1.15 MEXC-Memory Exception (input)

Assertion of this signal by the memory system initiates an instruction access exception or data access exception trap and
indicates to the CY7C601I611 that the memory system was unable to supply a valid instruction or data. If MEXC is as-

2-47

CY7C601lCY7C611 Integer Unit

serted during an instruction fetch cycle, it generates an instruction access exception trap. If asserted during a data cycle,
it generates a data access exception trap.

MEXC is used as a qualifier for the MDS signal, and must be asserted when both MHOLDAIB and MDS are already
asserted. If MDS is applied without MEXC, the CY7C601I611 accepts the contents of the data bus as valid. If MEXC
accompanies MDS, an exception is generated and the data bus content is ignored.

MEXC is latched in the processor on the rising edge of CLK and is used in the following cycle. MEXC must be deasserted
in the same clock cycle in which MHOLDAIB is deasserted.

2.4.1.16 MHOLD(AIB)-Memory Holds (inputs)

MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for systems with
cache memory) or when accessing a slow memory. The processor pipeline is frozen while MHOLDA is asserted and the
CY7C6011611 outputs revert to and maintain the value they had at the rising edge of the clock in the cycle in which
MHOLDA was asserted. This signal is tested on the falling edge (midpoint) of a cycle and must be valid and stable at
the processor for the duration of the specified set-up time prior to the falling edge of CLK.

MHOLDB behaves in the same fashion as MHOLDA, and either can be used to stop the processor during a cache miss
or memory exception. The pipeline is actually frozen by a "final" hold signal that is the logical OR of all hold signals
(MHOLDA, MHOLDB, and BHOLD). All HOLD signals are latched in the CY7C6011611 (transparent latch with clock
high) before they are used.

Note that MHOLD must be driven HIGH while RESET is LOW.

2.4.1.17 RD-Read Access (output)

RD is sent out during the address portion of an access to specify whether the current memory access is a read (RD = 1)
or a write (RD = 0) operation. RD is set to "0" only during the address cycles of store instructions. For atomic load-store
instructions, RD is "1" during the load address cycle and "0" during the two store address cycles. It is sent out unlatched
by the Integer Unit and must be latched externally before it is used.

RD is used in conjunction with SIZE < 1:0>, ASI < 7:0 >, and LDSTO to determine the type and to check the read/write
access rights of bus transactions. It may also be used to tum off the output drivers of data RAMs during a store operation.

2.4.1.18 SlZE<1:0> -Bus Transaction Size (outputs)

The coding on these pins specifies the size of the data being transferred during an instruction or data fetch. The value
of the size bits during a given cycle relates only to the memory address which appears on pins A < 31:0 > simultaneously
with the size outputs. It does not apply to data which may be on the data bus during that same cycle.

Size bits are sent out unlatched and must be latched external to the CY7C601I611 before they are used. SIZE < 1:0 >
remains valid during the data address cycles ofloads, stores, load doubles, store doubles, and atomic load-stores. Encoding
of the size bits is shown in Table 2-35. For example, during an instruction fetch, SIZE < 1:0> is set to "10", because all
instructions are 32 bits long. For doubleword instructions, SIZE < 1:0 > is "11" for all data address cycles.

Table 2-35. SIZE Bit Encoding

SIZE<l> SIZE<O> Data 1ransfer 1YPe

0 0 Byte

0 1 Halfword

1 0 Word

1 1 Word (Load/Store Double)

2.4.1.19 WE-Write Enable (output)

WE is asserted by the integer unit during the cycle in which the store data is on the data bus. For a store single instruction,
this is during the second store address cycle; the second and third store address cycles of store double instructions, and

2-48

CY7C60lICY7C611 Integer Unit

the third load-store address cycle of atomic load-store instructions. It is sent out unlatched and must be latched externally
before it is used. Th avoid writing to memory during memory exceptions, WE must be externally qualified by the
MHOLDAIB signals.

2.4.1.20 WRT-Advanced Write (output)

WKr is an early write signal, asserted by the processor during the first store address cycle of integer single or double store
instructions, the first store address cycle of floating-point single or double store instructions, and the second load-store
address cycle of atomic load-store instructions. WKr is sent out unlatched and must be latched externally before it is used.

2.4.2 F1oating.Point/Coprocessor Interface Signals

The IU incorporates a dedicated group of pins that act as direct-connect interfaces between the integer unit and both
the floating-point unit and the coprocessor. Using these connections, no external circuits are required to interface the
IU to the FPU and coprocessor. The interfaces consist of the following signals:

2.4.2.1 CCC < 1:0 > -Coprocessor Condition Codes (input) [Not available on CY7C611]

These lines represent the current condition code bits from the Coprocessor State Register (CSR), qualified by the CCCV
signal. When CCCV = 1, these bits are valid. During the execution of a CBccc instruction, the processor uses CCC < 1:0 >
to determine whether or not to take the branch. These bits are latched by the processor before they are used.

2.4.2.2 CCCV-Coprocessor Condition Codes Hzlid (input) {Not available on CY7C611]

This signal is a specialized hold used to synchronize coprocessOr compare instructions with coprocessor branch instruc­
tions. It is asserted (the normal condition) whenever the CCC < 1:0> bits are valid. A coprocessor would deassert CCCV
(CCCV = 0) as soon as a coprocessor compare instruction enters the coprocessor queue, unless an exception is detected
(see Section 2.8). Deasserting CCCV freezes the integer unit pipeline, preventing any further compares from entering
the pipeline. CCCV is reasserted when the compare is completed and the coprocessor condition codes are valid, thus
ensuring that the condition codes match the proper compare instruction. CCCV is latched in the CY7C601 before it is
used.

2.4.2.3 CEXC-Coprocessor Exception (input) [Not available on CY7C611]

CEXC is used to signal the integer unit that a coprocessor exception has occurred. CEXC must remain asserted until
the CY7C601 takes the trap and acknowledges the FPU exception via the CXACK signal. Although coprocessor excep­
tions can occur at any time, they are taken by the CY7C601 only during the execution of a subsequent CPop, a CBfcc
instruction, or a coprocessor load or store instruction. A coprocessor implementation should deassert CHOLD if it de­
tects an exception while CHOLD is asserted. In such a case, CEXC should be asserted one cycle before CHOLD is deas­
serted. CEXC is latched in the CY7C601 before it is used.

2.4.2.4 CHOW-Coprocessor Hold (input) {Not available on CY7C611]

This signal is asserted by the coprocessor if a situation arises in which it cannot continue execution. The coprocessor checks
all dependencies in the decode stage of the instruction and asserts CHOLD (if necessary) in the next cycle. If the integer
unit receives a CHOLD, it freezes the instruction pipeline in the same cycle. Once the conditions causing the CHOLD
are resolved, the coprocessor deasserts CHOLD, releasing the instruction pipeline. CHOLD is latched in the CY7C601
before it is used.

The conditions under which the coprocessor asserts CHOLD are implementation dependent.

2.4.2.5 CINSI-Coprocessor Instruction in Buffer 1 (output) [Not available on CY7C611]

CINSI is asserted by the integer unit during the decode stage of the coprocessor instruction that is in the Dl buffer of
the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the Dl instruction, and to latch
it into its execute-stage register. CINSland CINS2 are never asserted in the same cycle.

2-49

CY7C601lCY7C611 Integer Unit

2.4.2.6 CINS2-Coprocessor Instruction in Buffer 2 (output) (Not available on CY7C611)

CINS2 is asserted by the Integer Unit during the decode stage of the coprocessor instruction that is in the D2 buffer of
the coprocessor chip. The Coprocessor uses this signal to begin decoding and execution of the D2 instruction, and to latch
it into its execute-stage register. CINSI and CINS2 are never asserted in the same cycle.

2.4.2.7 CP-Coprocessor Unit Present (input) [Not available on CY7C611]

When pulled low, CP indicates that a coprocessor is available to the system. It is normally pulled up to VDD through
a resistor, and then grounded by connection to the coprocessor. The integer unit will generate a cp disabled trap if CP = 1
during the execution of an CPop, CBfcc, or coprocessor load or store instruction.

2.4.2.8 CXACK-Coprocessor Exception Acknowledge (output) [Not available on CY7C611]

CXACK is asserted by the integer unit to inform the coprocessor that a trap has been taken for the currently asserted
CEXC signal. Receipt of the asserted CXACK causes the coprocessor to deassert CEXC, which in tum causes the to
deassert CXACK. CXACK is a latched output and should not be latched externally.

2.4.2.9 FCC < 1:0 > -Rooting-Point Condition Codes (input)

These lines represent the current condition code bits from the FPU's Floating-point State Register (FSR), qualified by
the FCCV signal. When FCCV = 1, these bits are valid. During the execution of an FBfcc instruction, the processor uses
FCC < 1:0> to determine whether or not to take the branch. These bits are latched by the processor before they are used.

2.4.2.10 FCCV-Roating-Point Condition Codes Valid (input)

This signal is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions.
It is asserted (the normal condition) whenever the FCC < 1:0> bits are valid. The CY7C602 deasserts FCCV (FCCV = 0)
as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected (see Sec­
tion 3.2.1.2.1). Deasserting FCCV freezes the integer unit pipeline, preventing any further compares from entering the
pipeline. FCCVis reasserted when the compare is completed and the floating-point condition codes are valid, thus ensur­
ing that the condition codes match the proper compare instruction. FCCV is latched in the CY7C6011611 before it is used.

2.4.2.11 FEXC-Roating-Point Exception (input)

FEXC is used to signal the integer unit that a floating-point exception has occurred. FEXC must remain asserted until
the CY7C60I/611 takes the trap and acknowledges the FPU exception via the FXACK signal. Although floating-point
exceptions can occur at any time, they are taken by the CY7C601I611 only during the execution of a subsequent FPop,
an FBfcc instruction, or a floating-point load or store instruction. The CY7C602 deasserts PHOW if it detects an excep­
tion while FHOLD is asserted. In such a case, FEXC is asserted one cycle before FHOLD is deasserted. FEXC is latched
in the CY7C601I611 before it is used.

2.4.2.12 FHOLD-Roating-Point Hold (input)

This signal is asserted by the CY7C602 if a situation arises in which the FPU cannot continue execution. The FPU checks
all dependencies in the decode stage of the instruction and asserts FHOW (if necessary) in the next cycle. If the integer
unit receives an FHOW, it freezes the instruction pipeline in the same cycle. Once the conditions causing the FHOLD
are resolved, the FPU deasserts FHOW, releasing the instruction pipeline. FHOLD is latched in the CY7C601I611 be·
fore it is used.

An FHOLD is asserted if (1) the FPU encounters an S1FSR instruction with one or more FPops pending in the queue,
(2) if either a resource or operand dependency exists between the FPop being decoded and any FPops already being ex­
ecuted, or (3) if the floating-point queue is full.

2.4.2.13 FINS1-Rooting-Point Instruction In Buffer 1 (output)

FINSI is asserted by the integer unit during the decode stage of the floating-point instruction that is in the DI buffer
of the floating-point unit (see Section 3.2). The FPU uses this signal to begin decoding and execution of the D 1 instruc-

2-50

CY7C601lCY7C611 Integer Unit

tion, and to latch it into its execute-stage register. FlNSI and FlNS2 are never asserted in the same cycle and both are
ignored if (1) FLUSH is asserted, (2) any HOW is asserted, or (3) if FCCV or CCCV is deasserted.

2.4.2.14 FINS2-l'Joating-Point Instruction In Buffer 2 (output)

FlNS2 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D2 buffer
of the floating-point Unit (see Section 3.1). The FPU uses this signal to begin decoding and execution of the D2instruction,
and to latch it into its execute-stage register. FINSI and FlNS2 are never asserted in the same cycle and both are ignored
if (1) FLUSH is asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

2.4.2.15 FWSH-l'Joating-PointICoprocessor Instruction Flush (output)

This signal is asserted by the integer unit whenever it takes a trap. FLUSH is used by the FPU (or coprocessor) to flush
the instructions in its instruction buffers. These instructions, as well as the instructions annulled in the CY7C601I611's
pipeline, are restarted after the trap handler is finished. If the trap was not caused by a floating-point (or coprocessor)
exception, instructions already in the floating-point (or coprocessor) queue may continue their execution. If the trap was
caused by a floating-point (or coprocessor) exception, the fp (or cp) queue must be emptied before the FPU (coprocessor)
can resume execution.

2.4.2.16 FP-Flooting-point Unit Present (input)

When pulled low, FP indicates that a floating-point unit is available to the system. It is normally pulled up to VDD through
a resistor, and then grounded by connection to the FPU. The integer unit will generate an fp disabled trap if FP = 1 during
the execution of an FPop, FBfcc, or floating-point load or store instruction.

2.4.2.17 FXACK-Floating-Point &x:eption Acknowledge (output)

FXACK is asserted by the integer unit to inform the floating-point unit that a trap has been taken for the currently as­
serted FEXC signal. Receipt of the asserted FXACK causes the FPU to deassert FEXC, which in turn causes the
CY7C6011611 to deassert FXACK. FXACK is a latched output and should not be latched externally.

2.4.2.18 INST-Instruction Fetch (output)

The INST signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the floating-point
unit or coprocessor to latch the instruction currently on the data bus into an FPU or coprocessor instruction buffer.
SPARC-compatible floating-point units and coprocessors have two instruction buffers (D1 and D2) to save the last two
fetched instructions (see Section 3.2). When INST is asserted, a new instruction enters buffer D1 and the instruction that
was in D1 moves to buffer D2. INST is a latched output and should not be latched externally.

2.4.3 Interrupt and Control Signals

The following signals are used by the integer unit to control and to receive input from external events.

2.4.3.1 ERROR-Error Sfllte (output)

This signal is asserted when the integer unit enters the error mode state. This happens if a synchronous trap occurs while
traps are disabled (the PSR's ETbit =0). Before it enters the error mode state, the CY7C6011611 saves the PC and nPC
and sets the trap type (tt) for the trap causing the error mode into the TBR. It then asserts the ERROR signal and halts.
The only way to restart a processor which is in the error mode state is to trigger a reset by asserting the RESET signal.

2.4.3.2 FPSYN-Floating-point Synonym Mode (input)

This is a mode pin which will be used to allow execution of additional instructions in future designs. For the CY7C601I611,
it should be kept grounded.

2.4.3.3 INTACK-Interrupt Acknowledge (output)

INTACK is a latched output that is asserted by the integer unit when an external interrupt is taken, not when it is sampled
and latched.

2-51

CY7C601/CY7C611 Integer Unit

2.4.3.4 IRL < 3:0> -Interrupt Request Level (input)

The state of these pins dermes the External Interrupt Level (IRL). IRL < 3:0 > = 0000 indicates that no external inter­
ruptsare pending and is the normal state ofthe IRL pins. IRL< 3:0 > = 1111 signifies a nonmaskable interrupt. All other
interrupt levels are maskable by the Processor Interrupt Level (PIL) field of the Processor State Register (PSR). The
integer unit uses two on-chip synchronizing latches to sample these signals, and a given level must remain valid for two
consecutive cycles to be recognized. External interrupts should be latched and prioritized by external logic before they
are passed to the CY7C601/611. Logic must also keep an interrupt valid until it is taken and acknowledged. External
interrupts can be acknowledged by system software or by the CY7C601/611's INThrrupt ACKnowledge (INTACK) signal.

2.4.3.5 1iESi!.T -Integer Unit Reset (input)

Assertion of this pin will reset the integer unit. RESET must be asserted for a minimum of eight processor clock cycles.
After RESET is deasserted, the integer unit starts fetching from address O. RESET is latched by the CY7C601I611 before
it is used.

2.4.3.6 TOE-7I!st Mode Output Enable (input)

When deasserted, this signal will three-state all integer unit output drivers. Thus, in normal operation, this pin should
always be asserted (tied to ground). Deassertion of TOE isolates the CY7C601I611 from the system for debugging pur­
poses.

2.4.4 Power and Clock Signals

The signals listed below provide clocking and power to the integer unit.

2.4.4.1 CLK-Dock (input)

CLK is a 5O%-duty-cycle clock used for clocking the integer unit's pipeline registers. The rising edge of CLK defines the
beginning of each pipeline stage and a processor cycle is equal to a full clock cycle.

2.4.4.2 JlCCO, VCCI, JlCCT -PrJwer (inputs)

These pins provide + SV power to various sections of the processor. Power is supplied on three different buses to provide
clean, stable power to each section: output drivers, main internal circuitry, and the input circuits. VCCO pins supply the
output driver bus; VCCI pins supply main internal circuitry bus; and VCCT pins supply the input circuit bus. See Section
7.1 for pin identification.

2.4.4.3 JSSO, JSSI, JSST -Ground (inputs)

These pins provide ground return for the power signals. Ground is supplied on three different buses to match the power
signals to each section: VSSO pins for the output driver buS; VSSI pins for the main internal circuitry bus; and VSST
pins for the input circuit bus. See Section 7.1 for pin identification.

2.5 Pipeline and Instruction Execution Timing
One of the major contributing factors to the CY7C601I611's very high performance is an instruction execution rate ap­
proaching one instruction per clock cycle. Th achieve that rate of execution, the CY7C601/611 employs a four-stage in­
struction pipeline that permits parallel execution of multiple instructions.

Instruction
from Memory

B
u
f
f
e
r

ln1emally Generated Opcode (lOP)

Figure 2-22. Processor Instruction Pipeline

2-52

E
x
e
c
u
t
e

w

e

CY7C601lCY7C611 Integer Unit

Figure 2-23. Pipeline with All Single. Cycle Instructions

2.5.1 Stages

Instruction execution is broken into four stages corresponding to the stages of the pipeline:

1. Fetch-The processor outputs the instruction address to fetch the instruction.

2. Decode-The instruction is placed in the instruction register and decoded. The processor reads the operands from
the register file and computes the next instruction address.

3. Execute-The processor executes the instruction and saves the results in temporary registers. Pending traps are priori-
tized and internal traps taken during this stage.

4. Write-If no trap is taken, the processor writes the result to the destination register.

All four stages operate in parallel, working on up to four different instructions at a time. A basic "single-cycle" instruction
enters the pipeline and completes in four cycles. By the time it reaches the write stage, three more instructions have
entered and are moving through the pipeline behind it. So, after the first four cycles, a single-cycle instruction exits the
pipeline and a single-cycle instruction enters the pipeline on every cycle (see Figure 2-23).

Of course, a "single-cycle" instruction actually takes four cycles to complete, but they are called single cycle because with
this type of instruction the processor can complete one instruction per cycle after the initial four-cycle delay.

2.5.1.1 Internal Opcodes

Instructions that require extra cycles automatically insert internal opcodes (lOPs) into the decode stage as they move into
the execute stage. These internal opcodes are unique to the instruction that generates them. They move all the way
through the pipeline, performing functions specific to the instruction that created them. For example, in Figure 2-24,
the data load in cycle four can be thought of as the fetch for the lOP that starts in cycle three; together they make a com­
plete four-cycle instruction that balances out the pipeline. JMPL and RETf also generate an lOp, but have no external
data cycle.

Multicycle instructions may generate up to three lOPs to complete execution. Table 2-36 lists the instructions that require
lOPs and the number generated.

Because instructions continue to be fetched even though lOPs occupy the decode stage, a two-stage prefetch buffer is
used to hold instructions until they can move into the decode stage (see Figure 2-22). This enables the processor to fully
utilize the data bus bandwidth and still keep the pipeline full. Only two buffers are required because a maximum of two
cycles are available for instruction fetching for any multicycle instruction.

2-53

CY7C601lCY7C611 Integer Unit

Table 2-36. Internally Generated Opcodes

Instruction Number of Iuternal Opcodes

Single Loads 1

Double Loads 2
Single Stores 2
Double Stores 3

Atomic Load-Store 3

Jump 1
Return from Trap 1

2.5.2 Multicycle Instructions

Multicycle instructions are those that take more than four cycles (one bus cycle plus the three pipeline cycles) to complete.
A double-cycle instruction takes five cycles (two bus cycles), a triple-cycle instruction takes six cycles (three bus cycles),
and so on.

In most cases, the extra cycles required by muJticycle instructions result from data bus usage (e.g., a data load or store
to memory) that prevents the processor from fetching the next instruction during those cycles. In Figure 2-24, the fetch
of instruction Inst 3 is delayed by one cycle for the data load, and inFigure 2-25, the store sequence delays the Inst 3 fetch
by two cycles.

DXFER

INST

Figure 2-24. Pipeline with One Double·Cycle Instruction (Load)

2-54

CY7C601lCY7C611 Integer Unit

RD

DXFER

LOCK

WRT

INULL

INST

Figure 2-25. Pipeline with One Triple·Cycle Instruction (Store)

2-55

CY7C601lCY7C611 Integer Unit

INULL

INST

Figure 2-26. Pipeline with Hardware Interlock (Load)

2.5.2.1 Register Interlocks

The pipeline holds several instructions at any given time, so it is possible that an instruction may try to use the contents
of a particular register which is in the process of being updated by a previous instruction. Special bypass paths in the pipe·
line of the CY7C6011611 make the correct data available to subsequent instructions for all internal register to register
operations, but cannot solve the problem of loads to the registers from external memory. For this case, interlock hardware
prevents an instruction following a load instruction from reading the register being loaded until the load is complete (see
Figure 2-26). This also applies to a a CALL instruction with a delay slot instruction using r[15] and a JMPL with a delay
slot instruction using the same register specified as the r[rd] of the JMPL. Th maximize performance, compilers and
assembly language programmers should avoid loads followed immediately by instructions using the loaded register's con­
tents.

2.5.2.2 Branching

The CY7C601I611's delayed-control-transfer mechanism allows branches (taken or untaken) to occur without creating
a bubble in the pipeline (see Figure 2-27). Special parallel hardware enables the processor to evaluate the condition codes
and calculate the effective branch address during the decode stage rather than the execute stage, so that only one delay
instruction is required between the branch and the target instruction (or the next instruction, if the branch is not taken).
See Section 2.3.3.3.1 for a discussion on branching.

If the compiler or programmer cannot place an appropriate instruction in the delay instruction slot, the delay instruction
can be annulled by setting the branch instruction's a bit. The result is shown in Figure 2-28.

2-56

CY7C601lCY7C611 Integer Unit

Figure 2-27. Pipeline During Branch Instruction

Figure 2-28. Branch with Annulled Delay Instruction

2-57

CY7C601lCY7C611 Integer Unit

Figure 2-29. Pipeline Frozen During Bus Arbitration

2.5.3 Pipeline Freezes

Whenever the processor receives an externally generated hold input, such as MHOLDAIB or BHOLD, the instruction
pipeline is frozen. How long it is frozen depends on the type of hold and the external hardware generating the hold.
Figure 2-29 shows the pipeline frozen by a BHOLD as the result of bus arbitration initiated by another bus master in the
system.

2.5.4 Traps

Figure 2-30 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle follow­
ing detection.

2.6 Bus Operation and Timing

This section covers standard and non-standard bus operations. Standard operations include instruction fetch, load inte­
ger, load double integer, load floating-point, load double floating-point, store integer, store double integer, store float­
ing-point, store double floating-point, atomic load-store unsigned byte, and floating-point operations (FPops). Non-stan­
dard operations include bus arbitration, cache misses, exceptions, and the reset and error conditions. Coprocessor loads,
coprocessor stores, and coprocessor operations are identical in timing to their floating-point counterpart, and are not
repeated as a separate case in this section.

2-58

CY7C60lICY7C611 Integer Unit

Figure 2-30. Pipeline Operation for Thken Trap (Internal)

Each of the following sections descnbes a type of bus transaction along with appropriate timing diagrams. The timing
diagrams show multiple instructions being fetched for the pipeline. Instruction addresses are sent out in the cycle before
the instruction fetch. Instruction fetch cycles begin with the instruction address latched by the memory at the beginning
of the fetch cycle and end with the instruction supplied by the memory. Instruction decode begins with the latching of
the instruction at rising clock edge of the cycle after the fetch cycle. If the instruction is multicycle, or execution requires
an interlock, lOPs are inserted into the pipeline at the decode stage and propagate through the pipeline like a fetched
instruction.

The cross-hatched areas shown in the traces are periods in which the signal is not guaranteed to be asserted or deasserted;
in other words, undefined.

In general, signals are valid at the beginning of a cycle, i.e., on the rising edge of the clock. In support of the
CY7C601I611's high-speed operation, many signals are sent out unlatched. Refer to Section 2.4 for further details on
CY7C601I611 signals.

The processor automatically aligns byte (and halfword) transfers as previously shown in Figure 2-11. Figure 2-31 shows
the relationship between the data transferred during byte, halfword, and word operations and the pins of the data bus.
For byte and halfword data transfers, the CY7C601I611 repeats the byte or half word on each eight-bit or 16-bit section
of the bus. In other words, the undefined portions of the bus illustrated in Figure 2-31 are actually a repeat of the data
driven onto the bus. However, this feature is not specified in the SPARC Architecture Reference, and may not be sup­
ported on other SPARC processors.

2-59

CY7C601/CY7C611 Integer Unit

ClK

A<31:0>

SIZE<1:0>

0<31:24>

0<23:16>

0<15:8>

0<7:0>

Byte Data Alignment

ClK~

A<31:0> ~

SIZE<1:0>~

0<31:16> (HWROO~ •• §m!il,.)QQ9

0<15:0> ~i~~g;~HWR01XXX)

Half Word Data Alignment

x = word boundary address

Word Data Alignment

Note: This illustration depicts data alignment and
Is not Intended 10 Illustrate a timing case.

Figure 2-31. Data Bus Contents During Data Transfers

2-60

CY7C601lCY7C611 Integer Unit

2 3 4 5

elK

A<31:0>

0<31:0>

Figure 2-32. Instruction Fetch

2 3 4 5 6

elK

A<31:0>

0<31:0>

OX FER I \
INST \ I

Figure 2-33. Load Single Integer Timing

2.6.1 Instruction Fetch

The instruction fetch cycle is that cycle in which both the instruction address and the data (the instruction itself) are active
on their respective buses (see Figure 2-32). The instruction address on A < 31:0 > is actually sent out in the previous cycle,
but is held into the fetch cycle. It should be latched externally. The instruction is returned on the data bus at the very
end of the fetch cycle and is held into the decode cycle. It is latched into the on-chip instruction register at the beginning
of the decode cycle.

2.6.2 Load

Figure 2-33 shows the timing for a load single integer instruction. Because the bus is used for a data fetch in the fifth cycle,
this is a double-cycle instruction. Note that DXFER is active in the cycle in which the load data address is sent out, while
INST is inactive in the cycle in which the load data is on the data bus.

2.6.3 Load with Interlock

In a load with interlock situation, the instruction following the load tries to use the contents of the load's destination
register before the load data is available. This requires the insertion of an lOP into the decode stage of the pipeline (see
Section 2.5.1.1) in the fourth cycle, which must be matched by a null bus cycle in the fetch stage to balance the pipeline
(see Figure 2-34).

2-61

CY7C60l/CY7C611 Integer Unit

2 3 4 5 6

ClK

A(31:0)

0(31:0)

OXFER I \
INUll I \
INST \ I

Figure 2-34. Load Single with Interlock Timing

2 3 4 5 6

ClK

A(31:0)

0(31:0)

OXFER / \
lOCK / \
INST \ /

Figure 2-35. Load Double Integer Timing

2.6.4 Load Double

The timing for a load double integer is shown in Figure 2-35. The timing is essentially the same as a load single except
for the additional data fetch in the fifth cycI.e. That makes load double a triple-cycle instruction. The most-significant word
is fetched in cycle four and the least-significant word in cycle five. Note that the size bits are set to 11 during the address
portion of both loads and that the bus is locked to allow the completion of both loads without interruption.

Load single and load double floating-point instructions look identical to their integer counterparts except that the
FINSllFINS2 signal is active for floating-point operations.

2-62

CY7C60l/CY7C611 Integer Unit

2.6.5 Store

Store transactions involve more bus activity than loads, as shown in the store single integer timing in Figure 2-36. Store
single is a triple-cycle instruction because it includes an extra tag check cycle in which to check an external cache for the
store address. This extra cycle also gives the processor and the memory system time to three-state the data bus and turn
it around for the store. The store address is sent out again in the fifth cycle to complete the data transfer. Note that the
store data is generated by the processor off the falling edge of CLK and is therefore only available at the very end of the
first data cycle (see Section 7.1).

Note also that INULL is active during the second application of the store address. If there is a cache miss on the tag check
cycle, INULL prevents an additional miss the second time the address is sent out in the store cycle. Because it is a triple­
cycle instruction, LOCK is asserted to retain control of the buses.

ClK

A<31:0>

D<31:0>

RD

DXFER

lOCK

WRT

INUll

INST

2 3

~----~~----~~I
~----~----~~I
~----~----~~I

4

\

\
\

5 6

ST Data

I

I
\

I \~+-
\~----__ ------II

Figure 2-36. Store Single Integer Timing

2-63

CY7C601lCY7C611 Integer Unit

2.6.6 Store Double

The timing for a store double integer is 'shown in Figure 2-37. The timing is essentially the same as store single except
for the additional store cycle in the sixth cycle, making it a four-cycle instruction. The most-significant word is stored in
cycle five and the least-significant word in cycle six. Note that the size bits are set to 11 during the address portion of all
three data cycles and that the bus is locked to allow the completion of both stores without interruption. INULL is not
active for the address of the least-significant store because there cannot be a miss on this cycle if there wasn't one on
the tag check cycle, unless the cache line is less than two words.

Store single and store double floating-point instructions look identical to their integer counterparts except that the
F1NSlIFINS2 signal is active for floating-point operations.

2 3 4 5 6

ClK

A<31:0>

: : ~ .
0<31:0> ~ (ST01 m"':SSTTD:022~)--+--

! 1 ~ i
RO I \ I
WE \ I

OXFER I \'--_!--_

lOCK I \\---+ ____ -

WRT ~----~----~~I \~--~----+-----~-
INUll ~ ____ -+ ____ -+ ____ ~ ____ ~-JI

INST
\'-_____________,r

Figure 2-37. Store Double Integer Timing

2-64

CY7C601lCY7C611 Integer Unit

2.6.7 Atomic Load·Store

Atomic transactions consist of two or more steps which are indivisible; once the sequence begins in the instruction pipe­
line, it cannot be interrupted. Because atomic operations are four-cycle instructions, the CY7C6011611 asserts LOCK
for as long as necessary to make sure that no interruption occurs on the bus. Figure 2-38 applies to the atomic operations
load-store unsigned byte (LDSTUB, LDSTUBA) and word swap (SWAP, SW APA). Note that, as with any store, INULL
is active on the second occurrence of the store address.

2 3 4 5 6

ClK

A<31:0>

D<31:0> Store Data

RD \ /
WE \ /
lDSTO / \
DXFER / \
lOCK / \
WRT / \
INUll / \
INST \ /

Figure 2-38. Atomic Load·Store Timing

2-65

IfJ

CY7C601lCY7C611 Integer Unit

2.6.8 Floating·Point Operations

The timing for floating-point operations and integer operations is the same except for the addition of the FINSl and
FINS2 signals in floating-point operations. In this example, Instruction 1 is a floating-point operation (see Figure 2-39).
FINS1I2 tell the floating-point unit to move an instruction out of its decode buffer and begin execution. The FPU also
makes use of the INST signal to latch instructions into its decode buffers.

2 3 4

elK

A<31:0>

ASI<7:0>

D<31:0>

SIZE<1:0>

FINSlIFINS2 I \
Figure 2-39. Floating.Point Operation Timing

2-66

CY7C601/CY7C611 Integer Unit

2.6.9 Bus Arbitration

The CY7C6011611 does not have on-chip bus arbitration circuitry because it is designed to operate as a bus slave. There­
fore, external circuitry must arbitrate between external bus requests and the CY7C601I611. When the CY7C6011611
needs to retain the buses it asserts the LOCK signal. The arbitration circuitry should assert BHOLD when it needs to
keep the CY7C601I611 off the buses. When BHOLD is asserted, the processor's instruction pipeline is frozen until it
is deasserted. The arbitration circuitry should also deassert the DOE, AOE, and CaE signals to three-state the
CY7C601's address bus, data bus and control signal output drivers so they may be driven by an external source (see
Figure 2-40).

CLK

A<31:0>

ASI<7:0>

D<31:0>

SIZE< 1:0>

RD

LDSTO

DXFER

LOCK

WRT

2 3 4 5 6

. r
~~-1-r-----:--------~~
==~~~==>--t----------------------------~~
~ A2 }

~ ASIA2 }

~!r;~~~~------~------------~~ ~ Ins! 1)

~~-1-r----------------~~ GJ<mX 10)

~~---~------~---~
~------~~~ ~~.. ~----

--+ ________ --+~~~~----~-----------~~i~----
--+-----~~~ ~~. ~----
-+--------+~~~~~--------------~-----~~ .• ~----
--+----------+~~~ ~~.~. ~----

, II

--+ ___ +--..... 1

--+ ______ --+----JI ,\----+---
--+ ______ --+-....JI ,\---+---

Figure 2-40. Bus Arbitration Timing

2-67

CY7C601lCY7C611 Integer Unit

2.6.10 Load with Cache Miss

Figure 2-41 gives the timing for a load with cache miss. Cache logic must stop the processor by asserting MHOLDA or
MHOLDB in the next cycle. However, the processor stops with the address of the next instruction on the address bus
rather than the instruction that caused the miss. In order to retrieve the proper load data, the memory system needs the
missed address on the bus. To do this the memory system must send an MAO signal, forcing the processor to output the
previous address (the address that was on the bus in the cycle before MHOLD was asserted). The MHOLD signal must
be maintained while the missed data is strobed into the processor with the MDS signal (it must be strobed externally be­
cause the internal processor clock is frozen by the MHOLD).

2 3 4 5 6 7

elK

A<31:0>

ASI<7:0>

SIZE<1:0>

DXFER _!--___ +---J! ,I.....--+ __ --'--...J! ,'--+---

MDS

MAO_!--___ +-________ 4-___ ~! ,'---+--
INST '\..--+---11

Figure 2-41. Load with Cache Miss Timing

2-68

CY7C601/CY7C611 Integer Unit

2.6.11 Store with Cache Miss

The timing for a store with cache miss is similar to the load with cache miss situation, except that MAO and MDS are
not required (see Figure 2-42). Because the processor outputs the store address twice, it already has the proper address
on the bus when it's stopped by MHOLD. MDS is not required because nothing needs to be strobed into the processor.

INULL is asserted for the second occurrence of the store address so that it doesn't trigger the miss circuitry during the
time the cache is processing the miss on the first occurrence of that address.

2 3 4 5

ClK

A<31:0> STA

ASI<7:0> ASlsT

D<31:0>
-------------S-T·D-a-m-----------

SIZE<1:0> STSize

RD \
WE \

DXFER I
lOCK I \
WRT / \

INUll I
MHOlD \

INST \

Figure 2-42. Store with Cache Miss Timing (1 of 2)

2-69

CY7C60l/CY7C611 Integer Unit

6 7 8 9 10

ClK

A<31:0> STA

ASI<7:0> ASIST

0<31:0> ST Data

SIZE<1:0> STSiz9

RO --+ ___ oi--....J/

WE --+ ____J/

OXFER \~-~--~--~--~-
lOCK

WRT

INULL \~-~--~----~-
MHOLD ---_-----+-II

INST ~------~----~~I
Figure 2-42. Store with Cache Miss Timing (2 of 2)

2-70

CY7C601lCY7C611 Integer Unit

2.6.12 Memory Exceptions

Load with memory exception timing is shown in Figure 2-43. As with a cache miss, memory logic must stop the processor
by asserting MHOLDAor MHOLDB in the next cycle. The MHOLD signal must be maintained while the memory excep­
tion (MEXC) signal is strobed into the processor with the MDS signal (it must be strobed in externally because the internal
processor clock is frozen by the MHOLD). MEXC must be deasserted in the same clock cycle in which MHOLD is deas­
serted. Note that INULL is asserted in the cycle 8 instruction fetch to annul that fetch. This is the same action shown
in cycle 2 of Figure 2-30 for an internal trap. Store with memory exception has the same timing (see Figure 2-44) except
INULL is asserted from the second store address through to the annulled cycle 8 instruction fetch.

2 3 4 5

elK

A<31:0> A3

ASI<7:0>

0<31:0>

SIZE<1:0> 10

OX FER ___ ---'-----II \~~----~-----

\'---'----
INULl

INST

FLUSH

Figure 2-43. Load with Memory Exception Timing (1 of 2)

2-71

CY7C601lCY7C611 Integer Unit

6 7 8 9

elK

A<31:0> _ ... A,...3 _____ .,.....J,0I.~"

ASI < 7:0 > _A..:,S,:IA;:.3 ____ -.....J'\C~~,

0<31:0>

SIZE< 1:0> 10

OXFER

----'-__ ~I
INUll ~------~----~I \I-.---i--

MOS ~\-__;,....JI

INST

FLUSH ~------------~I
Figure 2-43. Load with Memory Exception Timing (2 of 2)

2-72

CY7C601lCY7C611 Integer Unit

2 3 4 5

ClK

A<31:0> STA

ASI<7:0> ASlsT

0<31:0>
--~--------S-T-D-a-m----------

SIZE<1:0> ST Size

RO \

\
OXFER /

lOCK / \
WRT / \

INUll /
\

INST \~~--------------
Figure 2-44. Store with Memory Exception Timing (page 1 of 2)

2-73

~
~~

, SEMICaIDOC'I'CR
CY7C601lCY7C611 Integer Unit

6 7 8 9

ClK

A<31:0> STA

ASI<7:0> ASIST

0<31:0> --~------~----~) ~ ST Data

SIZE < 1:0> STSize

RD ---!" ___ +---J!

WE

DXFER \~~---+------~
lOCK

WRT

INUll \I..-.i.. __ --i-_

MHOlO I
MDS -n I

MEXC ~ I
INST ~----~----~----~/i

Figure 2-44. Store with Memory Exception TIming (page 2 of 2)

2-74

CY7C601/CY7C611 Integer Unit

ClK

FXACK

FLUSH

Figure 2-45. Floating·Point Exception Handshake Timing

2 3 4 5 6

ClK

A<31:0>

0<31:0>

IRl<3:0> __ ~O_H ______ J)(~~ __________ ~ ____ I_n_te_rr_U_~_As~s_ert_ed ________ ~ __________ ~~

INTACK ~------+----~----~----~~I
Figure 2-46. Asynchronous Interrupt Timing

2.6.13 Floating. Point Exceptions

The floating-point unit asserts FEXC to notify the CY7C601I611 that a floating-point exception has occurred and that
it should take a trap on the next floating-point instruction that it encounters in the instruction stream (see Figure 2-45).
The CY7C601/611 asserts FXACK to signal the FPU that the trap is being taken, and FLUSH to clean out the FPU's
decode buffers. From this point on, the FPU will execute only floating-point store queue instructions until its queue is
emptied by the trap handler.

FEXC is deasserted by the FPU after FXACK is asserted. FXACK is deasserted by the CY7C6011611 after FEXC is
deasserted.

2.6.14 Interrupts

The asynchronous IRL < 3:0 > inputs are sampled on the rising edge of every clock. If the interrupt value represented
by those inputs is greater than the masking value in the processor, and no higher priority trap supersedes it, the
CY7C601I611 will take the interrupt. The IRL input level should be held stable until the processor asserts INTACK.
Figure 2-46 shows the timing for the best case response time where the IRL input value is asserted one clock and a set-up
time before the execute stage of a single-cycle instruction. Refer to Section 2.7.3 for more information on interrupts.

2-75

elK

A<31:0>

ASI<7:0>

0<31:0>

SIZE<1:0>

INUll

MAO

CY7C601lCY7C611 Integer Unit

CJOOOO<=O O O=O H ~~-=-~ d-iP)---"'---..... O O OO H-'--'ttll:l:EJ

CJOOOO<09H ?? 09H ~

CJOOOO<~~.~~~ __ ~~
CJ<mX 10_----.-t. ?? 10 ~

?? \'-------:--

, , 1((, I, '

:: j:::::::::: ~:::::::::: :1$::::::: i:::::::::: :1::::::::::: i::

Figure 2-47. Power·On Reset Timing

2.6.15 Reset Condition

Figure 2-47 shows the timing for a power-on reset. RESET must be asserted for at least eight cycles so that the processor
can synchronize the reset input and initialize its internal state. For RESET to be synchronized, the CLK signal must be
active.

During the initialization, the processor disables traps (ET = 0), sets the supervisor mode (S = 1), and sets the program
counter to location zero (PC = 0, nPC = 4).

2.6.16 Error Condition

Error mode is one of the three states in which the CY7C601I611 can exist. To get into the error mode, a synchronous
trap must occur while traps are disabled (the processor state register'S ET bit is set to zero). This essentially means that
a trap which cannot be ignored occurs while another trap is being serviced. In order for that synchronous trap to be serv­
iced, the processor goes through the normal operations of a trall (see Section 2.7), including setting the tt bits to identify
the trap type. It then enters error mode, halts, and asserts the ERROR signal (see Figure 2-48).

The only way to leave error mode is to receive an external RESET signal, which forces the processor into reset mode.
All information placed in the CY7C601l611's registers from the last execute mode (the trap operation) remains un­
changed and the processor resumes operation at address zero. The reset trap handler can examine the trap type of the
synchronous trap and deal with it accordingly.

2-76

CY7C601/CY7C611 Integer Unit

2 3

ClK

A<31:0> XXZZX ~~E~R_R __________ ~ OOOOH

ASI<7:0> XXZZX ~~E~R_R_AS __ I ______ ~ 09H

0<31:0> XXZZX ~..........---~
SIZE<1:0> XXZZX ~~xx __________ ~ 10

INUll

~
"RESET must be asserted for a minimum of 8 clocks

(continued) 9 10 11 12

ClK

A<31:0> OOOOH

ASI<7:0> 09H

0<31:0>

SIZE<1:0> 10

lNUll \~-+--------------

RESET*

Figure 2-48. Error/Reset Timing

" MAO and MHOLD must be driven to a deasserted state when RESET is asserted.

2-77

CY7C601lCY7C611 Integer Unit

Table 2-37. Externally Generated Synchronous Exception Traps

Trap Initiating Signal Condition

Data Access Exception MEXC Memory error during data access

Instruction Access Exception MEXC Memory error during instruction access

Floating-Point Exception FEXC Floating-point unit error

Coprocessor Exception CEXC Coprocessor unit error

2.7 Exception Model

The CY7C6011611 supports three types of traps: synchronous, floating-point/coprocessor, and asynchronous (also called
interrupts). Synchronous traps are caused by hardware responding to a particular instruction or by the nap on integer
condition code (ncc) instructions; they occur during the instruction that caused them.

Floating-point/coprocessor traps caused by a Floating-Point-operate (FPop) or CoProcessor-operate (CPop) instruction
occur before that instruction is complete. However, because floating-point (and coprocessor) exceptions are pended until
the next floating-point (coprocessor) instruction is executed, othernon-floating-point (coprocessor) instructions may have
executed before the trap is taken. See Section 3.3.3.1.

Asynchronous traps occur when an external event interrupts the processor. They are not related to any particular instruc­
tion and occur between the execution of instructions. See Section 2.7.3.

2.7.1 Reset

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is triggered by asserting
the RESET input signal. But from that point on, its behavior is entirely different from that of an asynchronous interrupt
(see Section 2.7.3).

As soon as the CY7C601I611 recognizes the RESET signal, it enters reset mode and stays there until the RESET line
is deasserted. The processor then enters execute mode and then the execute trap procedure. Here, it deviates from the
normal action of a trap (Section 2.7.5) by modifying the enable traps bit (ET= 0), and the supervisor bit (S = 1). It then
sets the PC to 0 (rather than changing the contents of the TBR), the nPC to 4, and transfers control to location O. All
other P SR fields, and all other registers retain their values from the last execute mode.

Note: Upon power-up reset the state of all registers other than the PSR are undefined.

If the processor got to reset mode from error mode, then the normal actions of a trap have already been performed, includ­
ing setting the tt field to reflect the cause of the error mode. Because this field is not changed by the reset trap, a
post-mortem can be conducted on what caused the error mode. The processor enters error mode whenever a synchronous
trap occurs while traps are disabled.

2.7.2 Synchronous Traps

Synchronous traps are caused by the actions of an instruction, with the trap stimulus occurring either internally to the
CY7C6011611 or from an external signal which was provoked by the instruction. These traps are taken immediately and
the instruction that caused the trap is aborted before it changes any state in the processor.

The external signals that can cause a synchronous trap are listed in Table 2-37.

2.7.2.1 External Signals

Synchronous traps generated by the input signal MEXC (Memory Exception) occur during the execute phase of an in­
struction or occur immediately for data accesses. Traps generated by the FEXC and CEXC signals belong to the special
floating-point/coprocessor category, and may not occur immediately. See Section 3.3.3.1.

2. 7.2.1.1 instruction access exception

An instruction access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) during
an instruction fetch.

2-78

CY7C601lCY7C611 Integer Unit

2.7.2.1.2 data access exception

A data access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) during the
data cycle of any instruction that moves data to or from memory.

2.7.2.2 Internal/Software

Synchronous traps generated by internal hardware are associated with an instruction. The trap condition is detected dur­
ing the execute stage of the instruction and the trap is taken immediately, before the instruction can complete.

2.7.2.2.1 illegal instruction

An illegal instruction trap occurs:

• when the UNIMP instruction is encountered,

• when an unimplemented instruction is encountered (excluding FPops and CPops),

• in any of the situations below where the continued execution of an instruction would result in an illegal processor state:

1. Writing a value to the PSR's CWP field that is greater than the number of implemented windows (with a WRPSR)

2. Executing an Alternate Space instruction with its i bit set to 1

3. Executing a RETf instruction with traps enabled (ET= 1)

4. Executing an IFLUSH instruction with 1FT = 0

Unimplemented floating-point and unimplemented coprocessor instructions do not generate an illegal instruction trap.
They generate fp exception and cp exception traps, respectively.

2. Z 2. 2.2 privileged instruction

This trap occurs when a privileged instruction is encountered while the PSR's supervisor bit is reset (S = 0).

2.7.2.2.3 Jp disabled

A fp disabled trap is generated when an FP.QQ, FBfcc, or floating-point load/store instruction is encountered while the
PSR's EF bit = 0, or if no FPU is present (FP input signal = 1).

2.7.2.2.4 cp disabled

Acp disabled trap is generated when a CPop, CBccc, or coprocessor load/store instruction is encountered while the PSR's
EC bit =0, or if no coprocessor is present (CP input signal = 1).

2.7.2.2.5 window overflow

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point to a window marked
invalid in the WIM register.

2.7.2.2.6 window underflow

This trap occurs when the continued execution of a RESTORE instruction would cause the CWP to point to a window
marked invalid in the WIM register. The window underflow trap type can also be set in the PSR during a RETf instruc­
tion, but the trap taken is a reset. See Section 2.7.1 on' reset traps and Chapter 6 for the instruction definition for RETT.

2.7.2.2.7 memory address not aligned

Memory address not aligned trap occurs when a load or store instruction generates a memory address that is not properly
aligned for the data type or if a JMPL instruction generates a PC value that is not word aligned (low-order two bits non­
zero).

2-79

CY7C601/CY7C611 Integer Unit

Fetch

Decode

Execute

Write

L~.,_L IRL<3:0>

Taken

Latched

INTACK

Figure 2-49. Best·Case Interrupt Response Timing

2. 7.2.2.8 tag overflow

This trap occurs if execution of a TADDccTV or TSUBccTV instruction causes the overflow bit of the integer condition
codes to be set. See the instruction definitions of TADDccTV and TSUBccTV and Section 2.3.3.2.3 for details.

2.7.2.2.9 trap instruction

This trap occurs when a Ticc instruction is executed and the trap conditions are met. There are 128 programmable trap
types available within the trap instruction trap (see Chapter 6, Ticc instruction).

2.7.3 Interrupts (Asynchronous Traps)

Asynchronous traps occur in response to the Interrupt Request Level (IRL < 3:0 >) inputs. This type of trap is not asso­
ciated with an instruction and is said to happen between instructions. This is because, unlike synchronous traps, an inter­
rupt allows the instruction in whose execute stage it is prioritized to complete execution (see Figure 2-49). Any instruction
that has entered the pipeline behind the instruction which was allowed to complete is annulled, but can be restarted again
after returning from the trap.

2. 7. 3.1 Priority

The level, or priority, of the interrupt is determined by the value on the IRL < 3:0 > pins. For the interrupt to be taken,
the IRL value must be greater than the value in the Processor Interrupt Level (PIL) field of the Processor State Register
(PSR). A value of 0 indicates that no interrupt is requested. A value of 15 represents a non-maskable interrupt. All other
IRL values between 0 and 15 represent interrupt requests which can be masked by the PIL field. The priority and trap
type (tt) for each level is shown in Table 2-38 in Section 2.7.5.3.

2-80

CY7C601lCY7C611 Integer Unit

Prioritized
latched

INTACK

sampled n
----------------------~ ~-------

Figure 2-50. Worst· Case Interrupt Response Timing

2.7.3.2 R£sponse Time

The CY7C601/611 samples the IRL inputs at the rising edge of every clock. In order to properly synchronize these asynch­
ronous inputs, they are put through two synchronizing levels ofD-type flip-flops. The outputs of the two levels must agree
before the interrupt can be processed. If the outputs disagree, the interrupt request is ignored. This logic serves to filter
transients on the IRL lines, but it means that the lines must be active for two consecutive clock edges to be accepted as
valid.

Once the IRL input has been accepted, it is prioritized and the appropriate trap is taken during the next execute stage
of the instruction pipeline. Best case interrupt response occurs when the interrupt is applied one clock plus one setup
time before the execute phase of any instruction in the pipeline (see Figure 2-49). In this case, the first instruction of the
interrupt service routine is fetched during the fourth clock following the application of an IRL value greater than the
PIL field of the processor status register (PSR). This also holds for an IRL value of OF H, which acts as a non-maskable
interrupt.

The worst case interrupt response occurs when the detection of the IRL input just misses the cutoff point for the execute
stage of a four-cycle instruction, such as a store double or atomic load-store (see Figure 2-50). In this case, the interrupt
input must wait an additional three cycles for the next pipeline execute phase. In addition, if the IRL input just misses
the sampling clock edge, an additional clock delay occurs. As a result, the first instruction of the service routine is fetched
in the eighth clock following the application of IRL.

The best and worst case interrupt timing described above assumes that the processor is not stopped via the application
of an external hold signal, and that the IRL input is not superceded by the occurrence of a synchronous (internal) trap.

2.7.3.3 Interrupt Ack1UlWledge

As shown in Figure 2-49, and more clearly in Figure 2-50, the INThrrupt ACKnowledge (lNTACK) output signal is as­
serted when the interrupt is taken, not when it is first detected and latched. Because ofthis delay, if the IRL < 3:0 > inputs
are changed to reflect another interrupt condition before the corresponding INTACK for the latched condition is re­
ceived, there could be some question as to which interrupt the INTACK is responding to. Therefore, external hardware
should ensure that the IRL < 3:0 > inputs are held stable until an INTACK is received.

2.7.4 Floating.Point/Coprocessor 1hips

Floating-point/coprocessor exception traps are considered a separate class of traps because they are ~chronous
and asynchronous. They are asynchronous because they are triggered by an external signal (FEXC or CEXC), and are

2-81

CY7C601lCY7C611 Integer Unit

taken sometime after the floating-point or coprocessor instruction that caused the exception. This can happen because
the CY7C601I611 and the FPU (coprocessor) operate concurrently. However, they are also synchronous, because they
are tied to an instruction -the next floating-point or coprocessor instruction encountered in the instruction stream after
the signal is received.

When the FPU (coprocessor) recognizes an exception condition, it enters an "exception pending mode" state. It remains
in this state until the CY7C601I611 signals that it has taken an fp exception (cp exception) trap by sending back an FXACK
(CXACK) signal. The FPU (coprocessor) then enters the "exception mode" state, remaining there until the floating-point
(coprocessor) queue has been emptied by execution of one or more SIDFQ (SIDCQ) instructions.

Although the PC will always point to a floating-point or coprocessor instruction after an exception trap is taken, it doesn't
point to the instruction that caused the exception. However, the instruction that did cause the exception is always the
front entry in the queue at the time the trap is taken, and the entry includes both the instruction and its address. The
remaining entries in the queue point to FPops (CPops) that have been started but have not yet completed. Once the queue
has been emptied, these can be re-executed or emulated.

2.7.4.1 Floating-Point Exception

This trap occurs when the FPU is in exception pending mode and an FPop, FBfcc, or floating-point load/store instruction
is encountered. The type of exception is encoded in the tt field of the Floating-point State Register (FSR). See Section
3.3.1.

2.7.4.2 Coprocessor Exception

This trap occurs when the Coprocessor is in exception pending mode and a CPop, CBccc, or coprocessor load/store in­
struction is encountered. The type of exception should be encoded in the tt field of the Coprocessor State Register (CSR).
The nature of the exception is implementation dependent.

2.7.5 1htp Operation

Once a trap is taken, the following operations take place:

• Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error mode).

• The S bit of the PSR is copied into the PS bit; the S bit is then set to 1.

o The CWP is decremented by one (modulo the number of windows) to activate a trap window.

• The PC and nPC are saved into r[17] and r[18], respectively, of the trap window.

• The tt field of the TBR is set to the appropriate value.

o If the trap is not a reset, the PC is written with the contents of the TBR and the nPC is written with TBR + 4. If the
trap is a reset, the PC is set to address zero and the nPC to address four.

Unlike many other processors, the SPARC architecture does not automatically save the PSR into memory during a trap.
Instead, it saves the volatile S bit into the PSR itself and the remaining fields are either altered in a reversible manner
(ET and CWP), or should not be altered in the trap handler until the PSR has been saved to memory.

2.7.5.1 Recognition

In most cases, traps are "recognized" in the pipeline's execute stage. For a synchronous trap, the trap criteria are examined
during the execute stage of an instruction, and the trap is taken immediately, before the write stage of that instruction
takes place. This includes the fp disabled and cp disabled trap type. The special cases occur with those traps generated
by external signals. A memory exception on an instruction fetch is detected at the beginning of the execute stage of instruc­
tion execution. Memory exceptions occurring on data accesses are detected on the rising clock edge of the data cycle.

Because asynchronous traps happen ''between'' instructions, their timing is slightly different. As long as the ET bit is set
to one, the CY7C601I611 checks for interrupts. The interrupt is sampled on a rising clock edge and latched on the next
rising clock edge. The processor compares the IRL < 3:0 > input value against the PIL field of the PSR, and if IRL is
greater than PIL, or IRL is 15 (unmaskable), then it is prioritized at the end of the next execute stage of the pipeline.
A trap keyed to the ffiL level occurs after the write stage completes.

2-82

CY7C601lCY7C611 Integer Unit

Floating-point/coprocessor exception traps are not recognized when the FEXC or CEXC signal is first sampled .. The pro­
cessor waits until it encounters a floating-point or coprocessor instruction in the instruction stream and then handles it
as if it were an internal synchronous trap.

2.7.5.2 Trap Addressing

The Trap Base Register (fBR) is made up of two fields, the Trap Base Address (fBA) and the trap type (tt). The TBA
contains the most-significant 20 address bits of the trap table, which is in external memory. The trap type field, which
was written by the trap, not only uniquely identifies the trap, it also serves as an offset into the trap table when the TBR
is written to the PC. The TBR address is the first address of the trap handler. However, because the trap addresses are
only separated by four words (the least-significant four bits ofTBR are zero), the program must jump from the trap table
to the actual address of the particular trap handler.

Of the 256 trap types allowed by the 8-bit tt field, half are dedicated to hardware traps (0-127), and half are dedicated
to programmer-initiated traps (lice). For a Tice instruction, the processor must calculate the tt valuefrom the fields given
in the instruction, while the hardware traps can be set from a table such as the one below. See the Tice instruction defini­
tion for details.

The tt field remains valid until another trap occurs.

2.7.5.3 Trap 'JYpes and Priority

Each type of trap is assigned a priority (see Table 2-38). When multiple traps oceur, the highest priority trap is taken, and
lower priority traps are ignored. In this situation, a lower priority trap must either persist or be repeated in order to be
recognized and taken.

Table 2-38. Thap 'JYpe and Priority Assignments

Thap Synchronous or
Thap Priority 1YPe (tt) Asynchronous

Reset 1 - Async.

Instruction Access 2 1 Sync.

Illegal Instruction 3 2 Sync.

Privleged Instruction 4 3 Sync.

Floating-Point Disabled 5 4 Sync.

Coprocessor Disabled 6 36 Sync.

Window Overflow 7 5 Sync.

Window Underflow 8 6 Sync.

Memory Address not Aligned 9 7 Sync.

Floating-Point Exception 10 8 Sync.

Coprocessor Exception 11 40 Sync.

Data Access Exception 12 9 Sync.

Thg Overflow 13 10 Sync.

nap Instructions (rice) 14 128 - 255 Sync.

2-83

CY7C601lCY7C611 Integer Unit

Table 2-38. Trap 1YPe and Priority Assignments (continued)

Trap type Synchronous or
Trap Priority (tt) Asynchronous

Interrupt Level 15 15 31 Async.

Interrupt Level 14 16 30 Async.

Interrupt Level 13 17 29 Async.

Interrupt Level 12 18 28 Async.

Interrupt Level 11 19 27 Async.

Interrupt Level 10 20 26 Async.

Interrupt Level 9 21 25 Async.

Interrupt Level 8 22 24 Async.

Interrupt Level 7 23 23 Async.

Interrupt Level 6 24 22 Async.

Interrupt Level 5 25 21 Async.

Interrupt Level 4 26 20 Async.

Interrupt Level 3 27 19 Async.

Interrupt Level 2 28 18 Async.

Interrupt Levell 29 17 Async.

2.7.5.4 Return From Trap

On returning from a trap with the RETT instruction, the following operations take place:

• The CWP is incremented by one (modulo, the number of windows) to re-activate the previous window.

• The return address is calculated

• 1hIp conditions are checked. If traps have already been enabled (ET= 1), an illegal instruction trap is taken. If traps
are still disabled but S =0, or the new CWP points to an invalid window, or the return address is not properly aligned,
then an error mode/reset trap is taken.

• If no traps are taken, "then traps are re-enabled (ET = 1).

• The PC is written with the contents of the nPC, and the nPC is written with the return address.

• The PS bit is copied back into the S bit.

The last two instructions of a trap handler should be a JMPL followed by a RETI. This instruction couple causes a
non-delayed control transfer back to the trapped instruction or to the instruction following the trapped instruction, which­
ever is desired. See the RETT instruction definition for details.

2.8 Coprocessor Interface

In the SPARC architecture, the integer unit is the basic processing engine, but provision is made for two coprocessor
extensions. The extensions are in the form of instruction set extensions and a pair of identical signal interfaces. In the
CY7C601, one of these instruction and signal interface extensions is dedicated to floating-point operations and the other
is designated for a second coprocessor, either user defmed or some future device offered by Cypress. Although signals
and instructions have been named to reflect the assumption of how these two extensions will be used, either instruction
set extension/signal interface may be used in any way desired.

The floating-point unit and its interface are descnbed in Chapter 3. This section deals only with the second coprocessor
interface.

2-84

CY7C601lCY7C611 Integer Unit

In order for the CY7C601 to support a user-dermed coprocessor, the coprocessor should contain certain elements defined
by the SPARC architecture. These include an internal register set, a status register, a coprocessor queue, and a set of
compatible interface pins. These elements are identical to the floating-point interface, and it is recommended that a user
desiring to use the coprocessor interface thoroughly study the floating-point interface in Chapter 3 as an example of a
coprocessor interface application.

2.8.1 Protocol

The coprocessor extensions to the architecture are designed to allow the coprocessor to operate concurrently with the
integer unit and the floating-point unit. Th keep operations synchronized, address and data buses are shared. The initial
CY7C601 instruction decode determines which unit should execute the instruction. The CY7C601 executes its own in­
structions, but signals the coprocessor to continue the decode and execution if it recognizes a coprocessor instruction.
For coprocessor loads and stores, the CY7C601 supplies the memory address and the coprocessor receives or supplies
the data. The coprocessor must deal with resource or data dependencies, signaling the problem to the CY7C601 by freez­
ing the instruction pipeline with the CHOLD signal.

The signal interface between the CY7C601 and the coprocessor consists of shared address, data, clock, reset, and control
signals, plus a special set of signals that provide synchronization and minimal status information between the coprocessor
and the CY7C601.

2.8.1.1 Coprocessor Interface Signals

The SPARC architecture defines two sets of signals intended for interfacing with two coprocessors. The CY7C601 assigns
one set of coprocessor signals for specific use by the floating-POint unit, and the other set of coprocessor signals for a
user-defined coprocessor. All floating-point interface signal names begin with an F, and all coprocessor interface signal
names begin with a C. Both sets of interface signals share the INST signal, which identifies a CY7C601 instruction fetch.
The two groups of signals are symmetric, have identical timing requirements, and are listed in Table 2-33.

Instruction fetch is signaled by the CY7C601 using the INST signal. The coprocessor uses INST as an input to enable
latching of an instruction on the data bus. The coprocessor latches all instructions fetched by the CY7C601, regardless
of instruction type. The coprocessor is expected to use a two-stage instruction/address buffer as described in Section 3.2
on the floating-point/integer unit interface. The CY7C601 asserts CINSI or CINS2 at the beginning of the decode stage
of instruction execution of a coprocessor instruction. The CINSI or CINS2 signals are used to start the execution of a
coprocessor instruction and select which of the two most recently fetched instructions stored in the two-stage instruction
buffer is to be executed by the coprocessor.

The CY7C601 requires the CP signal to be driven low in orderforthe integer unit to recognize the presence of a coproces­
sor. Attempting to execute coprocessor instructions with CP high will cause the CY7C601 to execute a cp disabled trap.

Hardware interlocking for coprocessor instruction execution is provided with the CHOLD signal. This signal is asserted
by the coprocessor to freeze the CY7C601. This signal is asserted in cases where the CY7C601 must be halted to prevent
it from causing a condition from which the coprocessor cannot recover. An example of this would be fetching multiple
coprocessor instructions that would otherwise overrun the coprocessor queue. The coprocessor would be expected to
assert CHOLD until it could handle additional instructions.

Coprocessor interrupts are asserted with the CEXC signal. This signal is asserted by the coprocessor upon the detection
of an exception case. The CY7C601 will continue normal execution until the execution stage of the next coprocessor
instruction. At that time, the CY7C601 will acknowledge the interrupt with CXACK, and begin coprocessor trap execu­
tion.

Coprocessor branch on condition code (CBcc) instructions are executed by the CY7C601 integer unit based on the value
of the CCC < 1:0> signals supplied by the coprocessor. These signals are typically set by the execution of a coprocessor
compare instruction (defined by the designer). The CCCV signal supplied by the coprocessor indicates whether the state
of the CCC < 1:0> signals is valid. CCCV is normally asserted, but is deasserted when a coprocessor compare instruction
is executed and remains deasserted until that instruction is completed. The deassertion of this signal causes the CY7C601
to halt execution. This interlock prevents the CY7C601 from branching on invalid condition codes. The SPARC architec­
ture requires at least one non-coprocessor instruction between a coprocessor compare and a coprocessor branch on condi­
tion code (CBcc) instruction.

2-85

CY7C601/CY7C611 Integer Unit

32-Word by 32-Bit Register File

32-Bit Status Register

Address Decode Register 1 Instruction Decode Register 1

Address Decode Register 2 Instruction Decode Register 2

Address Queue Register N Instruction Queue Register N

__ !,~~~s~ ~u,!l~e.R.?~i~e~ ~ __ _ Instruction Queue Register 1

Address Queue Register 0 Instruction Queue Register 0

Figure 2-51. Coprocessor Register Model

2.8.2 Register Model

The coprocessor register model specified by the SPARC architecture is shown in Figure 2-51. The coprocessor has its own
32 x 32-bit working register file from which all operands for CPop instructions originate and to which all results return.
The contents of these registers are transferred to and from memory under control of the CY7C601, using coprocessor
loadlstore instructions.

The Coprocessor State Register (CSR) contains the current status ofthe coprocessor. The exact nature of the exception
bits and trap types are implementation dependent. The CSR is read and written indirectly through memory using the
LDCSR and STCSR instructions.

The coprocessor queue is necessary to properly handle traps with concurrently operating units. The first-in, first-out
queue records all pending coprocessor instructions and their addresses at the time of a coprocessor exception. The front
entry of the queue contains the unfinished instruction that caused the exception. The rest of the queue contains unfin­
ished CPops which would be restarted or emulated after the trap handler returns control to the main program.

The address and instruction decode buffers hold instructions and their addresses until the CY7C601 determines if they
belong to the coprocessor. If one of the held instructions belongs to the coprocessor, the CY7C601 sends the appropriate
CINS signal to move the instruction into the coprocessor execute stage. The address and a copy of the instruction also
move into the queue at this point and remain there until the instruction completes.

When a trap is taken, the CY7C601 asserts the FLUSH signal, causing the coprocessor to dump any instructions in the
decode buffers. FLUSH does not affect instructions which are already in the queue.

2.8.3 Exceptions

Exactly what conditions will generate a cp exception trap are implementation dependent. However, most implementa­
tions would probably include Unfinished CPop as a condition that would cause an exception.

An Unfinished CPop trap is generated when the coprocessor cannot complete execution because the data has exceeded
the capabilities of the coprocessor and/or has generated an inappropriate result.

2-86

CY7C601lCY7C611 Integer Unit

2.9 CY7C611 Integer Unit for Embedded Control

The CY7C611 is a SPARC Integer Unit designed for embedded control applications. It is a functional equivalent of the
CY7C601 with a reduced pin out for lower cost applications. The CY7C611 retains all internal features of the CY7C601,
and maintains complete binary code compatibility with all other SPARC processors. The CY7C611 differs from the
CY7C601 in that the address bus has been reduced to 24 bits, the ASI signals have been reduced to three bits, and several
control signals not required for lower cost systems have been eliminated. The CY7C611 supports the floating-point inter­
face, but does not include the coprocessor interface. The CY7C611 is packaged in a low-cost 160-pin plastic quad flat
package (PQFP) and is available in speeds of 25 MHz.

CY7C601 signals not available on the CY7C611 are listed in Table 2-39 below. The signal summary for the CY7C611
is listed in Table 2-40. All CY7C611 signals are identical to their CY7C601 counterparts, and the information regarding
the CY7C601 in this chapter is also valid for the CY7C611.

Note that the EC (enable coprocessor) bit of the PSR register for the CY7C611 is permanently forced to zero.

A user-defined coprocessor can be connected to the CY7C611 instead of a floating-point unit, if desired. All floating­
point interface signals are identical in function to their coprocessor counterparts. In order to use the floating-point inter­
face to support a user-defined coprocessor, the floating-point instructions must be used to exercise the coprocessor. This
will require software remapping of coprocessor instructions. The CY7C601 and CY7C611 do not decode the nine-bit
opf field of a floating-point operate instruction. This can be used to map coprocessor instructions to valid and invalid
FPop instructions (as specified by the op3 and opf fields of the op code) without causing an invalid FP instruction trap,
since the invalid FP instruction must recognized by the floating-point unit.

Table 2-39. Signal Differences Between CY7C601 and CY7C611

CY7C601 Signals Not Available on CY7C611

A<31:24> Address bits 31 through 24

AOE Address Output Enable

ASI<7:3> ASI bits 7 through 3

CCC<1:0> Coprocessor Condition Codes < 1:0 >

CCCV Coprocessor Condition Codes Valid

CEXC Coprocessor~tion

CHOll Coprocessor Hold

CINS1 Coprocessor Instruction Stage 1

CINS2 Coprocessor Instruction Stage :i
COE Control Output Enable

CP Coprocessor Present

CXACK Coprocessor Exception Acknowledge

DOE Data Output Enable

DXFER Data Transfer

1FT Instruction Cache Flush 1htp

2-87

CY7C601/CY7C611 Integer Unit

Table 2-40. CY7C611 Signal Summary

CY7C611 Signal Summary

Signal Name Signal Description Input/Output Active

A<23:0> Address Bus Three-StateOutput

ASI<2:0> Address Space Identifier Three-State Output

BHOLD Bus Hold Input Low

CLK Clock Input

D<31:0> Data Three-State Bidir.

ERROR IU Error Mode Three-State Output Low

FCC < 1:0> Floating-Point Condition Codes Input

FCCV Floating-Point Condition Codes Valid Input High

FEXC Floating-Point Exception Input Low

FHOLD Floating-Point Hold Input Low

FINS 1 Floating-Point Instruction Stage 1 Three-State Output High

FINS2 Floating-Point Instruction Stage 2 Three-State Output High

FLUSH Flush FP Instruction Three-State Output High

FP Floating-Point Present Input Low

FPSYN FP Synonym Mode Input High

FXACK FP Exception Acknowledge Three-State Output High

IRL<3:0> Interrupt Level < 3:0 > Input

INST Instruction Fetch Cycle Three-State Output High

INULL Instruction Cycle Nullify Three-State Output High

INTACK Interrupt Acknowledge Three-State Output High

LDSTO Atomic Load-Store Operation Three-State Output High

LOCK Multicycle Bus Lock Three-State Output High

MAO Memory Address Output Select Input High

MDS Memory Data Strobe Input Low

MEXC Memory Exception Input Low

MHOLDA Memory Hold A Input Low

MHOLDB Memory Hold B Input Low

RD Read Three-State Output High

RESET Reset Input Low

SIZE < 1:0> Bus Transaction Size Three-State Output

TOE Test Output Enable Input Low

WRT Advanced Write Three-State Output High

WE Write Three-State Output Low

2-88

CYPRESS
SEMICONDUCTOR

Chapter 3

CY7C602 Floating-Point Unit

The CY7C602 Floating-Point Vnit (PPV) is a high-performance, single-chip implementation of the SPARC reference
floating-point unit. The CY7C602 FPV is designed to provide execution of single and double-precision floating-point
instructions concurrently with execution of integer instructions by the CY7C601 Integer Vnit (IV). The CY7C602 is com­
pliant to the ANSIIIEEE-754 floating-point standard.

The CY7C602 provides a 64-bit internal datapath, a 64-bit ALV, and a 64-bit multiply/divide/square-root unit for efficient
execution of double-precision floating-point instructions. For efficient data management, the CY7C602 provides thirty­
two 32-bit floating-point registers. These 32-bit registers can be concatenated for use as 64-bit registers for double-preci­
sion operations. The internal 64-bit architecture of the CY7C602 allows high speed execution of both single- and double­
precision operations. The CY7C602 is capable of a peak performance of 6.15 MFLOPS (double-precision) at a clock speed
of 40 MHz.

The SPARC floating-point/integer unit interface supports concurrent execution of integer and floating-point instructions.
The tightly coupled floating-point/integer unit interface requires the integer unit to provide all addressing and control
signals for memory access. All instructions are fetched by the integer unit, and these instructions are simultaneously
latched and decoded by both the CY7C601 and CY7C602. Execution of a floating-point instruction is enabled by
CY7C601, which signals the CY7C602 to begin execution of the floating-point instruction when that instruction reaches
the execute stage of the CY7C601 instruction pipeline. In the case of a floating-point load or store instruction, the
CY7C601 executes the FP load or store in conjunction with the CY7C602 by asserting address and control signals for
memory access while the CY7C602 loads or stores the data. All other floating-point instructions execute independently
of the integer unit and in parallel with integer instruction execution.

The floating-point/integer unit interface provides hardware interlocking to ensure synchronization between the
CY7C601 and CY7C602. Hardware interlocking ensures software compatibility among SPARC systems with different
levels of floating-point performance.

3.1 CY7C602 Functional Description

Figure 3-1 illustrates the functional block diagram for the CY7C602. The fetch unit captures instructions and their ad­
dresses from the D(31:0) and A(31:0) buses. The decode unit contains logic to decode the floating-point instruction op­
codes. The execution unit handles all instruction execution. The execution unit includes a floating-point queue (FP
queue), which contains stored floating-point operate (PPop) instructions (see Section 3.3.2) under execution and their
addresses. The execution unit controls the load unit, the store unit, and the datapath unit.

The load unit holds data that is fetched from memory via the data bus before it is written into the register file. The register
file contains the 32 f registers. The exceptions/floating-point status register (PSR) unit keeps the status of completing
FPops, as well as the operating mode of the CY7C602. The store unit holds data that is supplied to the data bus during
a store operation. The dependency checking unit checks for conditions where the FPV must freeze the CY7C601 integer
unit pipeline so that an incoming instruction does not overflow the floating-point queue (descnbed below). The datapath
unit contains arithmetic logic used by FPops to operate on the data in the register file and is comprised of a 64-bit ALV
and a 64-bit multiply/divide/square-rootlcompare unit. Figure 3-2 gives a more detailed block diagram of the CY7C602.

The CY7C602 provides three types of registers: [registers, FSR, and the FP queue. The [registers are the thirty-two
floating-point operand registers, each 32-bits in size. Adjacent even-odd [register pairs (for instance, fregO and freg1) can
be concatenated to support double-precision operands. The FSR is a 32-bit status and control register. It keeps track of
rounding modes, floating-point trap types, queue status, condition codes, and various IEEE exception information. The
floating-point queue contains the floating-point instructions currently under execution, along with their corresponding
addresses. The floating-point queue provides an efficient method of handling floating-point exceptions. When an FPop
instruction causes a floating-point exception, the queue contains the offending instruction/address pair along with any
other instructions that have started execution. The CY7C601 integer unit acknowledges the floating-point exception,
enters a floating-point trap routine, empties the queue, and corrects the exception case. After the exception case is cor-

3-1

CY7C602 Floating-Point Unit

rected, unfmished floating-point instructions found in the floating-point queue are either executed or emulated in the
trap handler before returning to nonnal execution.

The CY7C602 depends upon the CY7C601 to assert all addresses and control signals for memory access. Floating-point
loads and stores are executed in conjunction with the CY7C601, which provides addresses and control signals while the
CY7C602 supplies or stores the data. Instruction fetch for integer and floating-point instructions is provided by the
CY7C601. When the CY7C601 integer unit asserts an address for an instruction fetch, it asserts the INST signal one
clock later. The CY7C602 floating-point unit uses INST to determine when a valid instruction is present on the D(31:0)
bus. The instruction, which appears on the data bus on the next clock cycle, is latched and paired with its corresponding
address (refer to Figure 3-3). In any given cycle, the two previous instruction/address pairs are stored by the CY7C602,
regardless of whether the instruction is an integer or floating-point instruction. Either of these two instruction/address
pairs may be selected for execution by the CY7C601 upon asserting the FINSI or FINS2 signal. The CY7C60lICY7C602
interface uses this two stage address! instruction buffer to accommodate delays in the instruction pipeline of the CY7C60l
integer unit. The FINSI or FINS2 signals select between the output of the two stages of the address/instruction buffer,
enabling a floating-point instruction to begin execution by the CY7C602.

Upon decoding a floating-point instruction, the CY7C601 will assert the FINSI or the FINS2 signal to enable the
CY7C602 to begin execution. The FINSl or FINS2 signal is asserted during the decode stage of the floating-point instruc­
tion, and is recognized by the CY7C602 at the beginning of the execute stage of the floating-point instruction. This ensur­
es synchronization of the decode and execute stages of a floating-point instruction between instruction pipelines of the
CY7C601 and the CY7C602.

ADDRESS BUS

1'iESEf FCCV

• ~ refers to the "MFfOl:DA.
WlOll5B. and t!'R"OIJ5 inputs

DATA BUS

Store Untt

DATA BUS

Figure 3-1. CY7C602 Functional Block Diagram

3-2

Register File
32 x 32 bils

Floating-Point
Datapalh Untt

Address
Pipe

32

instruction
Pipe

D (same as input D)

CY7C602 Floating-Point Unit

32 x 32-bit f regs
or 16 x 64-bit fregs

64

64

64

Figure 3-2. CY7C602 Block Diagram

3-3

CY7C602 Floating-Point Unit

3.2 Floating-Point/Integer Unit Interface

The CY7C602 is designed to directly interface with the CY7C601 without external glue logic. Figure 3-4 illustrates the
signals required to interconnect the CY7C601 and CY7C602. The control signals illustrated in Figure 3-4 are used to
interface with the remainder of the CPU system components. TheFNULL, RESET, BHOLD, MHOLDAor MHOLDB,
MOS, and DOE signals are used by the CY7C604 or CY7C60S for cache interface and virtual bus arbitration. The signal
descriptions for the CY7C602 signals are described in Section 3.4.

to FPqueue to FPqueue

Figure 3-3. CY7C602 Address/Instruction Pipe

IN""'

CY7C601 CY7C602

Integer j;jS
Floaling-

Unit POint
Unit

, , ,
~ ~ ~ ~

~ Ii 1~li I~ I~ " 0 ~ ~ 18
Ir

<... ADDRESS BUS ...
..... ...

DATA BUS

....
CONTROL SIGNALS ...

Figure 3-4. CY7C601 - CY7C602 Hardware Interface

3-4

CY7C602 Floating-Point Unit

3.2.1 CY7C602 Instruction Fetch and Execution

The CY7C602 uses a four-stage instruction pipeline consisting of fetch, decode, execute, and write stages (F, D, E, and
W). The instruction pipelines for the CY7C6011611 and the CY7C602 are concurrent and synchronized; a floating-point
instruction will be in the same stage in both processors. Multiple cycle instructions such as floating-point operate instruc­
tions (FPops) leave the pipeline after the W stage and enter the FP queue until completion.

Addresses for both integer unit and floating-point unit instructions are supplied by the CY7C601. The CY7C602 FPU
latches all instructions and the corresponding addresses from the D(3l:0) and A(3l:0) buses. The CY7C602 uses the INST
signal, supplied by the CY7C60l, to identify an instruction fetch by the integer unit.

Decode of the latched instruction occurs on the next clock cycle, with both the IU and the FPU decoding the instruction
simultaneously. During the decode stage of the floating-point instruction, the FPU checks for operand and resource de­
pendencies. When the CY7C60l integer unit decodes a FPop, it asserts the FINSl or FINS2 signal. This occurs before
the end of the decode stage, and is used by the CY7C602 to initiate the execution of a floating-point instruction. If the
CY7C602 has detected an operand or resource dependency during the decode stage, the FPU will assert FHOLD as the
instruction begins the execution stage. This freezes the integer unit's pipeline until the FPU can resolve the dependency.

If no resource or operand dependencies exist, the decoded floating-point instruction begins execution. Instructions enter­
ing execution are stored in the FP queue, where they are held until execution is completed. Note that if the FP queue
is full during an instruction's decode stage, the CY7C602 asserts FHOLD as the instruction enters the execution stage
in order to halt the CY7C601. FHOLD is released when space becomes available in the FP queue.

The following tables describe the execution phases of CY7C602 instructions. Additional cycles beyond the F, D, E, and
W stages are denoted as Wh (Write hold). Wh stages are equivalent to the additional cycles held by lOPs in the
CY7C601I6l1.

Table 3-1. Load instruction execution

Cycle Action

D stage Decode instruction, check operand depen-
dencies

E stage FHOLD if necessary

W stage Capture data from D(31:0) bus (IDF,
LDFSR), capture MSW from D(31:0) bus
(LDDF).

Whl stage Write data into register FSR (LDF, LDFSR),
capture LSW from D(31:0) bus (IDDF)

Wh2stage Write data into register (IDDF)

Table 3-2. Store instruction execution

Cycle Action

D stage Decode instruction, check operand
dependencies

E stage FHOLD if necessary, read data from FSR
register or FP queue

W stage Drive data onto D(31:0) bus (STF, STFSR),
(mid-cycle) drive MSW or FP queue address onto

D(31:0) bus (STDF, STDFQ)

Whl stage Stop driving D(31:0) bus (STF, STFSR),
(mid-cycle) drive LSW or FP queue opcode onto D(31:0)

bus (STDF, STDFQ)

Wh2 stage Stop driving D(31:0) bus
(mid-cycle)

3-5

CY7C602 Floating-Point Unit

Table 3-3. FPop execution

Cycle Action

D stage Decode FPop, check resource and operand
dependencies

E stage FHOLD if necessary, read operand(s) from
register file

Wstage Read any additional operands from register
file; start computing results

FPQueue Compute, FPop in queue

· · · · · ·
FPQueue Check exception status

FPQueue Update FSR, write results or signal FP ex-
ception trap if necessary

3.2.1.1 Instruction Fetch

As the CY7C601 fetches an instruction, the CY7C602 captures it at the same time from the D(31:0) bus. The address
corresponding to this instruction is captured from the A(31:0) in the previous cycle. The INST signal is used to detennine
when a valid instruction is present on the D(31:0) bus, and when a valid address has been fetched from the A(31:0) bus
in the previous cycle. Figure 3-5 illustrates an example of an instruction fetch with a cache hit. The transactions on the
address and data buses show two instruction fetches followed by a data fetch.

elK

INST \~----~/
0(31:0)

;:

01 =x X Insl1 X Insl2 x==
!t

02 =:x X X Ins! 1 x==
A(31:0)

OOA =S< i~
A1 X A2 X OataA X A3 x::=

~1 :: ~i ::

OA1 :::x X A1 X A2 ~

=S<
]) ;j

X X A1 ~ 0A2 ,

Figure 3-5. Instruction Fetch (Cache Hit)

3-6

CY7C602 Floating-Point Unit

elK

INST 'tl:ml \ r
/ \~ ________ -+ ____ -+J

\ /

D(31:0) XXXXXXX8xxxxXxxxxxxxxxx~
1 ~ ~ 1 ~ ~ !

D1 ==x X Inst 1 X xxxxxxxxxxxxxxx X Inst2

D2==:=J(.......... ~JX~ ____ ~JX~ __ ~ ________ ~ __ ~ln~st~1~~ ______ ~ __ _

A(31:0) ~xxxmxxxxxxxxxxx~
~ ~ ~

DDA ::x---A-1--..... ""'\X A2 'X Data A . X,.,xxxxxxxxxxxxxxxnnnr'l~··~7n'I:'7'!"7'I:'7MOt'7··I"7'\X~ Da_ta_A...,.....C

i >;
DA1:::x ~X~ A_1 rX~ ____ ______ ~ _____ A2 __ ~ ______ ~ __

Figure 3-6. Instruction Fetch (Cache Miss on A2)

In the case of an instruction cache miss, a memory hold signal (MHOLDA, MHOLDB, or BHOLD) is driven low by the
cache system starting in the cycle following the instruction fetch. The instruction which was captured from the D(3l:0)
bus is invalid and is replaced when t~tem returns a valid instruction on the D(3l:0) bus. The hold signal lasts for
several cycles during which time the MDS signal is asserted by the cache system, notifying the CY7C602 that the valid
instruction is available on the D(3l:0) bus. MDS is also used when there is a cache miss on data (via load instructions)
so the instruction is reloaded only if INST was asserted in the previous non-hold cycle. The same sequence oftransactions
in Figure 3-5 are used in Figure 3-6, except that the second instruction fetch (Inst 2) experiences a cache miss.

3.2.1.2 Instruction Execution

The FINSl and FINS2 signals notify the CY7C602 when to launch a floating-point instruction. When FINSlIFINS2 is
received, the floating-point instruction is in the D stage of the CY7C601 integer unit pipeline. The example in Figure 3-7
shows a situation where both FINSl and FINS2 are used. A load instruction is immediately followed by two FPops. The
FPops are fetched while the load instruction is executing. Because the load takes more than one cycle to execute, the
starting of the FPops are deferred, and thus two instructions are held in the instruction buffers of the CY7C602. When
the CY7C60l reaches the D stage of the first FPop (Inst 2), it issues FINS2 to start the FPop. When the D stage of the
second FPop (Inst 3) is reached, FINSl is issued to start the second FPop.

FINSl and FINS2 are never asserted in the same cycle. Both FINSl and FINS2 are ignored in the following conditions:

1. FLUSH is asserted.

2. MHOLDA, MHOLDB, BHOLD,CHOLD, or FHOLD is asserted.

3. FCCV or CCCV is deasserted.

3-7

CY7C602 Floating-Point Unit

Figure 3-7. Floating.Point Instruction Dispatching

Figure 3-8. Floating·Point Compare (FCMP) Execution

3-8

CY7C602 Floating-Point Unit

3.2.1.2.1 Floating-Point Compare Execution

Floating-point compare instructions cause the instruction pipeline to be frozen by the use of FCCV, starting from the
E stage of the instruction following the compare instruction until the FCC condition codes become valid. FCCV is deas­
serted, causing the CY7C601/611 to halt execution until FCCV is asserted. Figure 3-8 illustrates the timing of FCCV
relative to the FCMP instruction and the FCC condition codes.

FCCV is deasserted in the W stage of the FCMP instruction. The instruction that immediately follows the FCMP is held
in its E stage until FCCV is reasserted. FCC(l:O) is valid one cycle before FCCV is reasserted. For unimplemented
compare instructions, the CY7C602 freezes the instruction pipeline and causes an unimplemented FPop trap, which the
CY7C601 takes immediately.

3.2.1.2.2 FPop Queuing

When a FPop has passed the first cycle of the W stage and FLUSH has not been asserted, the FPop enters the FP queue.
Note that the W stage of an FPop may be extended to more than one cycle if a hold condition exists. As an FPop completes
execution successfully and results are written to the register file, it is removed from the FP queue. The front entry of
the FP queue contains the instruction/address pair of the oldest FPop which is still being executed by the CY7C602.

3.2.2 Instruction Pipeline Flush

When a trap or interrupt occurs in the integer unit, normal program execution is halted and control is transferred to the
trap handler. The instruction in the E stage of the pipeline and any instructions fetched after it are aborted and must
be restarted after the trap handler is done (or emulated in the trap handler). Instructions that have not yet been trans­
ferred to the FP queue are aborted by the CY7C602 when the trap occurs. The CY7C601 asserts the FLUSH signal in
the W stage of the instruction to be aborted (refer to Figure 3-9). FPops which were issued before this instruction continue
execution (and are in the queue) while instructions issued after it are aborted.

The following figures illustrate how each type of floating-point instruction is affected by the FLUSH signal. Figure 3-10
illustrates the effect of the FLUSH signal during a load floating-point instruction (LDF). A FLUSH signal asserted any­
time on or before the last Wh stage of a load instruction causes the load to abort, leaving the contents of the floating-point
register file unchanged.

Figure 3-11 illustrates the effect of FLUSH on a store floating-point instruction (S1F). A FLUSH signal asserted on or
before the last Wh stage of a store instruction causes the store to abort and the CY7C602 to stop driving the D(31:0) bus
by the middle of the next clock cycle.

Figure 3-12 illustrates the effect of FLUSH on a FPop instruction. A FLUSH signal asserted anytime on or before the
W stage of a FPop instruction causes the FPop to abort, leaving the contents of the register file and the FSR unchanged
by that instruction. FPops that have passed the W stage but are still executing (stored in the FP queue) are not affected.

Figure 3-13 illustrates the effect of FLUSH on a floating-point compare. FLUSH asserted in the W stage of a FCMP
instruction causes the FCMP to abort, leaving the FSR unchanged by that instruction. FCCV is reasserted in the next
clock cycle.

Decode

Write

elK

FLUSH __ ~ ______ ~ ______ ~ ______ ~ ________ ~--J

Figure 3-9. F1oating.Point Instruction Pipeline During A Trap

3-9

CY7C602 Floating-Point Unit

o E W Wh

elK

FINS1/2

0(31:0)

Figure 3-10. Effect of FLUSH on LDF Instruction

o E W Wh1 Wh2

ClK

FINS1/2

0(31:0)

Figure 3-11. Effect of FLUSH on STF Instruction

o E W

ClK

FINS1/2

0(31:0)

Figure 3-12. Effect of FLUSH on FPop Instruction

3-10

CY7C602 Floating-Point Unit

Figure 3-13. Effect of FLUSH on FCMP Instruction

3.2.2.1 Hold Signals

If MHOLDA, MHOLDB, BHOLD, CHOLD, or FHOLD is active, or FCCV or CCCV is inactive, the instruction pipe­
lines of the CY7C601 and CY7C602 are frozen. FHOLD and FCCV are generated by the CY7C602, CHOLD and CCCV
are generated by the coprocessor, and the others are generated by the system.

In the CY7C602, "freezing" or "holding" the instruction pipeline means that instructions that are still being tracked by
the CY7C601 are not allowed to continue executing. The instructions are allowed to continue execution when all of the
hold signals are inactive and all of the condition code valid signals are active. Holds affect all load/store instructions,
and only FPops which are in the F, D, and E stages of the instruction pipeline. Hold signals do not affect the execution
of FPops in the FP queue.

3.2.2.2 Interlocking with FHOLD

In some situations it is necessary to stop the CY7C601 pipeline, either because a FP load/store instruction must be sus­
pended due to an operand dependency, or because the CY7C602 cannot accept any more instructions due to a resource
dependency. FHOLD is used to freeze the instruction pipeline in these cases. Table 3-4 describes mandatory conditions
under which FHOLD is asserted.

Operand dependencies listed in Table 3-4 apply to all FPops that are defined in the architecture. For example, suppose
an unimplemented FPop is in the FP queue, waiting to cause an exception. If a store instruction is issued to the CY7C602
to store the contents of the unimplemented FPop's destination register, the store instruction must cause a FHOLD so
that the wrong data is not stored. The unimplemented FPop eventually causes a trap that is taken by the CY7C601 in
the E stage of the store instruction.

The following simplification could be applied when handling all unimplemented FPops: when an unimplemented FPop
has been issued to the CY7C602but has not yet caused a trap, assert FHOLD on the next floating-point instruction issued
until FEXC is asserted. There is no loss in performance because any FPops entering the FP queue after the unimplem­
ented FPop would be re-executed after the unimplemented FPop has been taken care of in the trap handler.

3-11

CY7C602 Floating-Point Unit

Table 3-4. FHOLD Resource/Operand Dependency Cases

Resource Dependencies:

If the CY7C602 will not have FP queue entries available to accommodate additional FPops, the CY7C602 asserts FHOLD to stop
the CY7C60l from issuing any more instructions to the CY7C602.

Operand Dependencies:

LDF, Load data from Load instructions must not overwrite the source or destination registers of any FPop that has
LDDF memory to f register not completed execution. In other words, the rd field of the load instruction must not refer to

the same fregister as any valid rsl, rs2 or rd field of an outstanding FPop. The source registers
ofFPops (rsl, rs2)may not be altered because an FP exception trap would require that the source
registers be unaltered for the trap handler.

STF, Store data from f reg- If a store instruction accesses anfregister that is the destination register of an FPop that has
STDF ister to memory not yet finished execution, the store instruction waits until all outstanding FPops with that regis-

ter as a destination are complete.

LDFSR, Load/store data be- If any instructions are currently executing in the CY7C602 when a LDFSR/STFSR instruction
STFSR tween memory and is issued by the CY7C60l, the CY7C602 holds until all instructions have completed execution

floating-point status and are no longer in the FP queue.
register

If the CY7C602 goes into exception mode, FHOLD is deasserted. If there is a floating-point sequence error (see Section
3.3.3), FHOLD is asserted for one cycle. This is the only case where FHOLD is asserted in the exception mode.

If a floating-point trap condition occurs while FHOLD is asserted, FHOLD is deasserted at least one cycle after FEXC
is asserted. Similarly, if FCCV is deasserted, it is reasserted at least one cycle after FEXC is asserted. For the FHOLD
case, the CY7C601 takes the FP trap on the FP instruction that triggered the FHOLD.

3.2.2.3 FNULL Signal

FNULL is used to signal a pipeline delay of the CY7C601 by the CY7C602. FNULL replaces FCCV and FHOLD for
informing the system that the pipeline is being held. FNULL is asserted when either FHOLD is asserted or FCCV is
deasserted. This signal is used as an input by the CY7C604/605 to monitor pipeline freezes initiated by the CY7C602.

3.3 CY7C602 Programming Model

3.3.1 CY7C602 Registers

The CY7C602 has three types of user accessible registers: the [registers, the FP queue, and the Floating-point Status
Register (FSR). The [registers are the CY7C602 data registers. The FSR is the CY7C602 status and operating mode
register. The FP queue contains the CY7C602 instructions that have started execution and are awaiting completion.
The following section describes these registers in detail.

3.3.1.1 f Registers

The CY7C602 provides 32 registers for floating-point operations, referred to as [registers. These registers are 32 bits
in length, which can be concatenated to support 64-bit double words. Extended precision instructions are not supported
in the CY7C602, but the extended precision data format and its position in the SPARC FPU is defined for the SPARC
architecture. Figure 3-14 illustrates the data organization for the [registers.

Integer and single precision data requires a single 32-bit[register. Double precision data requires 64 bits of storage and
occupies an even-odd pair of adjacent [registers. Extended precision data requires 128 bits of storage and occupies a
group of four consecutive [registers, always starting with register ro, f4, fS, £12, £16, f20, f24, or f28.

The CY7C602 forces register addressing to match the data type specified by the floating-point instruction. This ensures
data alignment in the [register file for double and extended precision data. Figure 3-15 illustrates how the CY7C602
uses the five register address bits in a floating-point instruction for the different types of data. Single data word transfers
(integer, single-precision floating-point) can be stored in any register. Consequently, all five bits of the. register address
specified in the floating-point instruction are valid. Double precision data must reside in an even-odd pair of adjacent
registers. By ignoring the LSB of the register address for a FPop requiring a register pair, the CY7C602 ensures data
alignment. In a similar manner, the two LSBs of the register address are ignored in a SPARC FPU that supports extended
precision data.

3-12

3.3.1.2 FP Queue

CY7C602 Floating-Point Unit

fO 11 12 13
1 Regis1ers 14 IS f6 f7

IS f9 110 111
112 113 114 115
I1R 11' I1R f1!

f20 121 f22 f23
124 125 f2R f27
12R I2!l f3IJ 131 ,

single precision or i
signed integer data ,1-_ __ _ __ ...1

double precision datalr:M:::SW:::-:---:-:LS~W~i~M:::SW:-::--~LSW~-:ii
,

extended precision data''''! M":':SW::":":"------""":"LS':::W~i

Figure 3-14.fRegister Organization

~rd,rs1' ~ orrs2f1e1d
of FP instruction

all five bits of
single precision I I regis1er address
and integer data _ _ are used

double precision data .. 1_ _ _I .. i!""~l LSB is ignored

extended
precision data _ _

2 LSB's are
ignored

Figure 3-15. f Register Addressing

The CY7C602 maintains a floating-point queue of instructions that have started execution, but have yet to complete ex­
ecution. The FP queue is used to accommodate the multiple clock nature of floating-point instructions and to support
the handling of FP exceptions.

When the CY7C602 encounters an exception case, it asserts FEXC and enters pending exception mode. The CY7C602
remains in pending exception mode until the CY7C601I611 encounters another floating-point instruction, at which time
the CY7C601/611 asserts the FXACK signal to force the CY7C602 into exception mode. When the CY7C602 enters
the exception mode, floating-point execution halts until the FP queue is emptied. This allows the CY7C601 to store the
floating-point instructions under execution when the exception case occurred. Emptying the FP queue frees the
CY7C602 for use by the trap handler without losing the pre-exception state of the CY7C602.

The FP queue contains the 32-bit address and 32-bit FPop instruction of up to two instructions under execution. F1oating­
point load and store instructions and FPbranch instructions are not queued. The front entry of the FP queue is accessible
by executing the store double floating-point queue (STDFQ) instruction. The FP queue acts as a FIFO stack, pushing
later entries to the top of the stack as the top entry is removed (or executed). A load FP queue instruction does not exist,
as the FP queue must be loaded by launching instructions.

3-13

CY7C602 Floating-Point Unit

RD RP TEM I NS I R I version I FTT I ONEI R I FCC AEXC CEXC I
5/4 0\ 31 30 29 28,/ 27 1716 14 13 12 11 169

,

CEXC
':: TEM

. ,/

I nvc I ole I ule dze I nxe I r nvml aim' utm' dzm I nxm I
AEXC .//

(nva' ala I ula' dza I nxa I

Figure 3-16. Floating. Point Status Register

3.3.1.3 Roating-Point Status Register (FSR)

The following paragraphs describe the bit fields of the floating-point status register (FSR). Refer to Table 3-5 (following
page) for bit assignments for the FSR fields.

RD FSR(31:30). Rounding Direction: These two bits define the rounding direction used by the CY7C602 during an FP
arithmetic operation.

RP FSR(29:28). Rounding Precision: These two bits define the rounding precision to which extended-precision results
are rounded. This bit is included in accordance with the ANSIIIEEE SID-754-1985. The CY7C602 does not currently
support rounding of extended-precision results and this bit does not affect CY7C602 operation.

TEM FSR(27:23). nap Enable Mask: These five bits enable traps caused by FPops. These bits are ANDed (1 = enable,
0= disable) with the bits of the CEXC (current exception field) to determine whether to force a floating-point exception
to the CY7C601. All trap enable fields correspond to the similarly named bit in the CEXC field (see below). The TEM
field only affects which bits in the CEXC field will cause the FEXC signal to be asserted.

NS FSR(22). Non-Standard floating point: This bit enables non-standard floating-point operations in the CY7C602.
When enabled, the CY7C602 inserts zeros for denormalized floating-point numbers before using them in a floating-point
operation. The CY7C602 also writes back zero if a denormalized number results from an operation. This is not consistent
with the IEEE-754-1985 specification, and is therefore, non-standard.

version FSR(19:17). The version number is used to identify the SPARC floating-point processor type. This field is set
to 011 (3H) for the CY7C602, and is read-only.

FTT FSR(16:14). Floating-point Trap 1»pe: This field identifies the floating point trap type of the current FP exception.
This field can be read and written, and must be cleared by software.

QNE FSR(l3). Queue Not Empty: This bit signals whether the FP queue is empty. (0= empty, 1 = not empty)

FCC FSR(11:10). Floating-point Condition Codes: These two bits report the FP condition codes (see Table 3-5).

AEXC FSR(9:5). Accumulated EXCeptions: This field reports the accumulated FP exceptions that are masked by the
TEM field. All masked exception cases are ORed with the contents ofthe AEXC and accumulated as status. All accumu­
lated fields have the same definition as the corresponding field for CEXC (see below). This field can be read and written,
and must be cleared by software (see Table 3-5).

CEXC FSR(4:0). Current EXCeptions: This field reports the current FP exceptions. This field is automatically cleared
upon the execution ofthe next floating-point instruction. CEXC status is not lost upon assertion of a floating-point excep­
tion, because instructions following a valid exception are not executed by the CY7C602. The five CEXC bits are:

nyc = 1

otc = 1

utc = 1

dzc = 1

indicates invalid operation exception. This is defined as an operation using an improper operand
value. An example of this is 0/0.

indicates overflow exception. The rounded result would be larger in magnitude than the largest
normalized number in the specified format.

indicates underflow exception. The rounded result is inexact, and would be smaller in magnitude
than the smallest normalized number in the indicated format.

indicates division-by-zero: X/O, where X is subnormal or normalized. Note that % does not set the
dzc bit.

nxc = 1 indicates inexact exception. The rounded result differs from the infinitely precise correct result.

R FSR21, 20, and 12. Reserved - always set to O.

3-14

CY7C602 Floating-Point Unit

Table 3-5. Floating· Point Status Register Summary

Loadable
Field Values FSR bits Description byLDFSR

RD 0- Round to nearest (tie--even) 31:30 Rounding Direction yes

1- Round to 0

2 - Round to +00

3 - Round to - 00

RP o - Extended precision 29:28 Extended Rounding Precision yes

1 - Single precision

2 - Double precision

3 - Reserved

TEM o - Disable trap 27:23 Trap Enable Mask yes
1 - Enable trap

NVM 27 invalid operation trap mask

OFM 26 overflow trap mask

UFM 25 underflow trap mask

DZM 24 divide by zero trap mask

NXM 23 inexact trap mask

NS 22 Non-standard Floating-point: yes
0- Disable o ; IEEE mode; multiplier and ALU generate denor-

malized operand exceptions and produce unrounded nor-
malized values on underflow exceptions.

1- Enable 1 ; FAST mode; multiplier and ALU flush denormalized
operands to zero and round underflow results to zero.

version 0-7 19:17 FPU version number no
FIT 0- None 16:14 Floating-point trap type no

1 - IEEE Exception

2 - Unfinished FPop

3 - Unimplemented FPop

4 - Sequence Error

5 - 7 Reserved

QNE o - queue empty 13 Queue Not Empty no

FCC 0-- 11:10 Floating-point Condition Codes yes

1- <
2- >
3 - Unordered

AEXC 9:5 Accrued Exception Bits yes

NYA 9 accrued invalid exception

OFA 8 accrued overflow exception

UFA 7 accrued underflow exception

DXA 6 accrued divide by zero exception

NXA 5 accrued inexact exception

CEXC 4:0 Current Exct;ption Bits yes

NYC 4 current invalid exception

OFC 3 current overflow exception

UFC 2 ·current underflow exception

DZC 1 current divide by zero exception

NXC 0 current inexact exception

r Always set to 0 21,20,12 reserved bits no

3-15

CY7C602 Floating-Point Unit

3.3.2 CY7C602 Floating·Point Instructions

SPARC floating-point instructions are separated into three groups: floating-point load/store, floating-point branch
(FBfcc), and floating-point operate instructions (FPops). Floating-point load/store instructions are used to transfer data
to and from the data registers «registers). FP load/store instructions also allow the CY7C601/611 integer unit to read
and write the floating-point status register (FSR) and to read the front entry of the floating-point queue. Floating-point
load and store instructions are executed by both the CY7C601I611 and the CY7C602; the CY7C601I611 supplying all
address and control signals for memory access and the CY7C602 loading or storing the data.

Floating-point branch (FBfcc) instructions (and coprocessor branch instructions (CBccc» are executed by the
CY7C601I611, since the CY7C601I611 is responsible for generating address and control signals for memory access. Con­
ditional FBfcc branches are based upon the FCC(l:O) signals supplied by the CY7C602. FCC(1:0) is set by executing a
FCMP instruction, which belongs to the FPop group of instructions. Floating-point branch instructions will cause the
CY7C601I611 to recognize a pending floating-point exception in the same manner as other floating-point instructions
(see Section 3.3.3).

FPops include all other floating-point instructions executed by the CY7C602. Floating-point operate instructions (FPops)
include basic numeric operations (add, subtract, multiply, and divide), conversions between data types, register to register
moves, and floating-point number comparison. FPops operate only on data in the floating-point registers.

The SPARC architecture supports four data types: 32-bit signed integer, single-precision FP, double-precision FP, and
extended-precision FP. Extended precision instructions are defined in the SPARC architecture, but are not supported
in the CY7C602. The CY7C602 supports execution of extended precision floating-point instructions by asserting an unim­
plemented instruction trap. This allows the CY7C601 to trap to a software emulation of extended precision floating­
point.

Seven load/store instructions are executed by the CY7C602. The following describes the CY7C602 load/store instruc­
tions:

LDF and LDDF transfer data from memory to fregisters 32 and 64 bits at a time, respectively.
STF and SIDF transfer data from the fregisters to memory in data widths of 32 and 64 bits.
LSFSR and STFSR allow the FSR to be read and written to.
SIDFQ is a privileged instruction which allows the FP queue to be read.

All FPops operate only on data located in the fregisters. The FPops are divided into four groups: basic arithmetic opera­
tions, compares, format conversions, and register-to-register moves. Move operations do not cause exceptions. The con­
verts, moves and the square root instruction use only a single source operand. FP compare instructions modify only the
FCC(l:O) signals. FPops are dispatched in one cycle in the CY7C601, and require multiple cycles to execute in the
CY7C602.

Floating-point performance can be improved in the CY7C602 by scheduling FPop instructions such that the floating-point
ALU and the floating-point rnultiply/divide/compare/square-root units are concurrently operating. With the exception
of data dependencies, the ALU and multiply/divide/compare/square-root units are independent and can execute separate
instructions without requiring the other unit to complete execution. Therefore, an FPop using the ALU followed by a
FPop using the multiply/divide/compare/square-root unit does not require the previous instruction to finish before start­
ing (assuming there are no data dependencies).

Table 3-6 and Table 3-7 illustrate the CY7C602 instructions and their execution cycle count. For further information
on the SPARC floating-point instructions, please refer to Chapter 6, SPARC Instruction Set.

Table 3-6. Floating.Point Load and Store Instruction Cycle Count

Mnemonic Operation Cycles

WF load floating-point 2

WDF load double floating-point 3

WFSR load FSR 2

STF store floating-point 3

STDF store floating-point double 4

STFSR store FSR 3

STDFQ store double FP queue 4

3-16

CY7C602 Floating.Point Unit

Table 3-7. Floating.Point Operate (FPops) Instruction Cycle Count

Mnemonic Operation Cycles

FABSs absolute value 4

FADDs add single 5

FADDd add double 5

FCMPs compare single 4

FCMPd compare double 4

FCMPEs compare single and exception if 4
unordered

FCMPEd compare double and exception 4
if unordered

FDIVs divide single 23

FDIVd divide double 37

FMOVs move 4

FMULs mUltiply single 5

FMULct multiply double 7

FNEGs negate 4

FSQRTs square root single 34

FSQRTd square root double 63

FSUBs subtract single 5

FSUBd subtract double 5

FdTOi convert double to integer 5

FdTOs convert double to single 5

FiTOs convert integer to single 9

FiTOd convert integer to double 5

FsTOi convert single to integer 5

FsTOd convert single to double 5

3.3.3 CY7C602 Internal Operation

The CY7C602 operates in one of three modes: execution mode, pending exception mode, and exception mode (see
Figure 3-17). After reset, the CY7C602 enters execution mode, which is the normal mode of operation. When the
CY7C602 encounters a floating-point exception condition, the CY7C602 asserts FEXC and enters the pending exception
mode. All FPop instructions under execution at this point are suspended. The CY7C601 asserts FXACK and enters the
floating-point trap when the next floating point instruction is encountered. Upon receiving FXACK, the CY7C602 FPU
enters exception mode. The CY7C602 returns to execution mode as soon as the trap handler empties the FP queue using
STore Double Floating-point Queue instructions (STDFQ).

3.3.3.1 Exception Handling

Upon encountering an exception condition, the CY7C602 asserts FEXC to notify the CY7C601I611 that a floating-point
exception has occurred and enters the pending exception mode. The CY7C601I611 enters the trap handler on the next
floating-point instruction it encounters in the instruction stream, asserting FXACK to signal to the CY7C602 that the
trap is being taken. At this point, the CY7C602 enters exception mode (see Figure 3-17).

3-17

ID

CY7C602 Floating-Point Unit

Figure 3-17. FPU Operation Modes

Upon receiving FXACK from the CY7C601, the mode of the CY7C602 changes from pending exception to exception
mode. All FPops in the CY7C602 stop executing during pending exception and exception modes. While in exception
mode, the CY7C602 will execute only store floating-point instructions until the FP queue is emptied. All floating-point
store instructions are allowed while in this operating mode. Any load or FPop issued to the CY7C602 while in this mode
causes a sequence error and returns the CY7C602 to exception pending mode. Once the queue is emptied by successive
STDFQ instructions, the CY7C602 returns to execution mode.

Due to the latency of floating-point instruction execution, an exception caused by a FPop occasionally may not occur until
one or more FP instructions have been fetched and executed (or entered into the FP queue for execution). This is a case
where FEXC is not asserted before the next floating-point instruction is fetched and executed. In this case, FEXC is
asserted as soon as the exception case is recognized, and the CY7C601/611 acknowledges the FP exception during the
execute stage of the next floating-point instruction fetched after FEXC is asserted.

Figure 3-18 illustrates the handshake of signals between the CY7C601 and the CY7C602 during a floating-point excep­
tion. The qne (queue not empty) bit of the FSR is shown in Figure 3-18 to illustrate the dependency of clearing the FP
queue to return to execution mode.

CLK

qne
(of FSR)

FXACK

FLUSH

Floating-point exception occurs;
IDe = 0

Pending exception mode of
CY7C602

CY7C601 executes FP instruction. takes FP
trap; FXACK = 1. FLUSH = 1
Exception mode of CY7C602

Figure 3-18. Floating.Point Exception Handshake

3-18

STD FQ instructions are executed
and queue is cleared; qne field of

FSR = 0; Return to execution
mode of CY7C602

CY7C602 Floating-Point Unit

3.3.4 CY7C602 IEEE·754 Compliance

The CY7C602 meets the requirements of the IEEE Std. 754-1985 for floating-point arithmetic. Accuracy of the results
of its operations are within :!: 'h LSB, as specified by the IEEE standard. The following sections describe the IEEE format
as implemented on the CY7C602.

3.3.4.1 IEEE Definitions

The following terms are used extensively in descnbing the IEEE-754 floating-point data formats. This section is directly
quoted from the IEEE Standard for Binary Floating-Point Arithmetic.

biased exponent The sum ofthe exponent and a constant (bias) chosen to make the biased exponent's range
nonnegative. (Note in the remainder of this section, the term "exponent" refers to a biased
exponent.)

binary floating-point number A bit string characterized by three components: a sign, a signed exponent and a significand.
Its numerical value, if any, is the signed product of its significand and two raised to the power
of its exponent.

Denormalized Denormalized numbers are those numbers whose magnitude is smaller than the smallest
magnitude representable in the format. They have a zero exponent and a denormalized
non-zero fraction. Denormalized fraction means that the hidden bit is zero.

denormalized number

fraction

NaN

Normalized

significand

true exponent

Zero

The CY7C602 cannot directly operate on denormalized operands. The CY7C602 asserts an
unfmished FPop exception when an operation results in a denormalized number.

(DNRM) A non-zero floating-point number whose exponent has a reserved value, usually
the format's minimum, and whose explicit or implicit leading significand bit is zero. (Denor­
malized numbers are also referred to as subnormal in this text.)

The field of the significand that lies to the right of its implied binary point.

Not a number, a symbolic entry encoded in floating-point format. They are used to signal
invalid operatinns and as a way of passing status information through a series of calculations.
NaNs arise in one oftwo ways: they can be generated by the CY7C602 upon an invalid opera­
tion or they may be supplied by the user as an input operand. NaN is further subdivided
into two categories: quiet and signaling. Signaling NaNs signal the invalid operation excep­
tion whenever they appear as operands. Quiet NaNs propagate through almost every arith­
metic operation without signaling exceptions.

Most calculations are performed on normalized numbers. For single-precision, they have
a biased exponent range of 1 to 255, which results in a true exponent range of -126 to + 127.
The normalized number type implies a normalized significand (hidden bit is 1).

The component of a binary floating-point number that consists of an explicit or implicit lead
ing bit to the left of its implied binary point and a fraction field to the right.

The component of a binary floating-point number that normally signifies the integer power
to which 2 is raised in determining the value of the represented number.

The IEEE zero has all fields except the sign field equal to zero. The sign bit determines
the sign of zero (i.e., the IEEE format defmes a + 0 and a -0).

3.3.4.2 IEEE Floating-point /JaIQ RJrmats

The CY7C602 directly supports single- and double-precision floating-point data formats. Extended-precision formats
are defined as part of the SPARC architecture, but are not directly executed by the CY7C602. Extended-precision instruc­
tions encountered by the CY7C602 cause an unimplemented instruction trap to be asserted by the CY7C602. This allows
software to emulate extended-precision instructions through the use of a trap handler. Single-, double-, and
extended-precision formats are described in this section.

3-19

CY7C602 Floating-Point Unit

MSB LSB

I (S~ exponent (e) fraction (f)

31 30 23 22 o
Figure 3-19. Single.Predsion F1oating.Point Format

MSB LSB

I (5) I exponent (e) fraction (f) I
63 62 5251 3231 0

~I ~------------------------------~II~------------------------------------il
31 word 0 0 31 word 1 0

Figure 3-20. Double·Predsion F1oating.Point Format

Single-Precision Floating-Point
Single-precision floating-point data are 32-bits wide and consist of three fields: a single sign bit (s), an eight-bit biased
exponent (e), and a 23-bit fraction (f). Figure 3-19 illustrates the single-precision floating-point format.

The IEEE standard defmes single-precision floating-point numbers according to the following conventions:

(+ 0, -0) If e = 0 and f = 0, then the value V = (-1)" • (0) Note that two representations of zero
exist, one positive and one negative

DNRM (denormalized)

Normaliz~

(+00, -00)

NaN (not a number)

If e = 0 and f # 0, then the value V = DNRM

If 0 < e < 225, then value V = (-1)" • (2e- 127) • (1.f) Note that 1.f is the significand. The
one to the left of the binary point is the so-called "hidden bit." This bit is not stored as part
of the floating-point word; it is implied. For a number to be normalized, it must have this
one to the left of the binary point.

If e = 255 and f = 0, then value V = (-1)" (00)

If e = 255 and f # 0, then value V = NaN.

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first
bit of the fraction is 0 (at least one bit must be non-zero).

Double-Precision Floating-Point
Double-precision floating-point data are 64-bits wide and consist of three fields: a single sign bit (s), an eleven-bit biased
exponent (e), and a 52-bit fraction (f). Figure 3-20 illustrates the double-precision floating-point format.

The IEEE standard defines double-precision floating-point numbers according to the following conventions:

(+0, -0) If e = 0 and f = 0, then value V = (-1)"· (0)

DNRM

Normalized

(+00, -00)

NaN

If e = 0 and f # 0, then value V = DNRM

If 0 < e < 2047, then value V = (-1)" * (2e-1023) * (1.f)

If e = 2047 and f = 0, then value V = (-1)" • (00)

If e = 2047 and f # 0, then value V = NaN.

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first
bit of the fraction is 0 (at least one bit must be non-zero).

3-20

CY7C602 Floating-Point Unit

Extended-Precision Floating-Point

Extended-precision floating-point data are 128 bits wide and consist of six fields: a single sign bit (s), a IS-bit biased expo­
nent (e), 16 reserved bits, a single hidden bitG), a 63-bit fraction, and 32 additional reserved bits. The extended-precision
floating-point differs from the other precision types in that the "hidden bit" is no longer hidden. The value of the hidden
bit is explicitly defined as j, which defines the number as normalized or denormalized.

The IEEE standard defmes extended-precision floating-point numbers according to the following conventions:

(+0, -0) If e = 0 and f = 0, then value V = (-1)"· (0)

DNRM

Normalized

(+00,-00)

NaN

If e = 0 and f "'" 0, then value V = DNRM

If 0 < e < 32767, then value V = (-1)" • (2e-16383) • (1.f)

If e = 32767 and f = 0, then value V = (-1)" • (00)

If e = 32767 and f "'" 0, then value V = NaN

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first
bit of the fraction is 0 (at least one bit must be non-zero).

MSB

I (Sl exponent (e)1 reservecf (j)1 fraction (f) I
reserved

127126 112111 96 9594 6463 3231

I II II II
word 0 word 1 word 2 word 3

Figure 3-21. Extended·Precision Floating·Point Format

EXTENDED PRECISION FP r[n] SI EXPONENT I RESERVED

128

63

131
Word

Addressn

r[n + 1]

r[n + 2]

r[n + 3]

JI

3130

HIGH - ORDER BITS OF FRACTION

LOW - ORDER BITS OF FRACTION

RESERVED

1615

Figure 3-22. Extended-Precision Data Organization in Registers

Extended -Precision Data

Double Word Double Word ..
J., Word Word J., 31

n+4 n+8 n+12

Figure 3-23. Extended-Precision Data Organization in Memory

3-21

Word

LSB

I
0

I

o

CY7C602 Floating-Point Unit

3.3.5 CY7C602 Exception Cases

The following section describes the CY7C602 exception cases, including exceptions specified by the IEEE-754 standard.

Unfinished FPop. This exception case can occur when operations on normalized floating-point numbers either encounter
a denormalized operand or produce a denormalized result. This exception case is asserted upon executing any FPop en­
countering a NaN as one of the operands. The CY7C602 also asserts this trap when a floating-point to integer conversion
overflow occurs.

Unimplemented FPop. This exception is asserted by the CY7C602 upon encountering a defined SPARC FPop instruction
that is not supported by the CY7C602. This includes all operations using extended-precision format operands. The trap
handler is expected to emulate the unimplemented instruction.

Sequence Error. This exception is asserted by the CY7C602 when a floating-point instruction (other than FP store) is
attempted after the CY7C602 has entered either pending exception or exception mode. The CY7C602 suspends all in­
struction execution with the exception of FP stores until the FP exception has been acknowledged and the FP queue has
been cleared.

IEEE Exceptions. This class of exceptions is defined as part of the IEEE-754 Standard. The five exceptions defined as
IEEE Exceptions are reported in the CEXC and AEXC fields of the FSR. These exceptions are: invalid, overflow, under­
flow, division-by-zero, and inexact. The only exceptions that can coincide are inexact with overflow and inexact with un­
derflow. The following paragraphs discuss these exception cases.

Invalid Operation. The invalid operation exception is signaled if an operand is invalid for the operation to be
performed. The result, when the exception occurs without a trap, shall be a quiet NaN provided the destination
has a floating-point format. The invalid operations are:

1. Any operation on a signaling NaN

2. Addition or subtraction: Magnitude subtraction of infinities such as (+ 00) + (-00)

3. Multiplication: 0 x 00

4. Division: 010 or 00/00

5. Square root if the operand is less than zero

6. Conversion of a binary floating-point number to an integer or decimal format when overflow, infinity, or NaN
precludes a faithful representation in that format and this cannot otherwise be signaled

7. Floating-point compare operations: when one or more of the operands are NaN

Division-by-zero. If the divisor is zero and the dividend is a finite nonzero number, then the division by zero
exception shall be signaled. The result, when no trap occurs, shall be a correctly signed 00.

Overflow. The overflow exception shall be signaled whenever the destination format's largest finite number is
exceeded in magnitude by what would have been the rounded floating-point result were the exponent range un­
bounded. The result, when no trap occurs, shall be determined by the rounding mode and the sign of the interme­
diate result as follows:

1. Round to nearest carries all overflows to 00 with the sign of the intermediate result.

2. Round toward 0 carries all overflows to the format's largest finite number with the sign of the intermediate
result.

3. Round toward -00 carries positive overflows to the format's largest positive finite number, and carries nega­
tive overflows to -00.

4. Round toward + 00 carries negative overflows to the format's most negative finite number, and carries posi­
tive overflows to + 00.

Underflow. The CY7C602 does not assert an underflow exception. Underflow cases are covered in the unfin­
ished FPop trap, which is asserted in any case where a denormalized number is used as an operand. The unfin­
ished FPop trap handler must resolve the underflow condition and update this bit to reflect correct accumulated
exception status (AEXC field of FSR).

Inexact. The inexact exception is generated whenever there is a loss of accuracy (or significance) in the result.
The CY7C602 computes results to higher precision than the number of fraction bits in the format. If any of the
fraction bits to the right of the LSB was one prior to rounding, the inexact exception is signaled.

3-22

CY7C602 Floating-Point Unit

3.4 CY7C602 Signal Descriptions

The following sections describe the external signals of the CY7C602. Active low signals are marked with an overbar, active
high signals are not.

3.4.1 Integer Unit Interface Signals

FP active-low output Floating-point Present: This signal indicates to the CY7C601 that a FPU is present in the system.
In the absence of a FPU, this signal is pulled up to VCG2Y a resistor. This is a static signal; it always asserts a low output.
The CY7C601 generates a floating-point disable trap if FP is not asserted during the execution of a floating-point instruc­
tion.

FCC(I:0) output Floating-point Condition Codes: The FCC(I:0) bits indicate the current condition code of the FPU,
and are valid only if FCCV is asserted. FBfcc instructions use the value of these bits during the execute cycle if they are
valid. If the FCC(I:0) bits are not valid, then FCCV is released, which halts the CY7C601 until the FCC bits become
valid.

Table 3-8. FCC(I:O) Condition Codes

FCC1 FCCO Condition

0 0 equal
0 1 Op1 < Op2
1 0 Op1 > Op2
1 1 Unordered

FCCV output Floating-point Condition Codes Valid; The CY7C602 asserts the FCCV signal when the FCC(I;O) repre­
sent a valid condition. The FCCV signal is deasserted when a pending floating-point compare instruction exists in the
floating-point queue. FCCV is reasserted when the compare instruction is completed and FCC bits are valid.

FHOLD output Floating-point HOLD: The FHOLD signal is asserted by the CY7C602 if it cannot continue execution
due to a reso~perand dependency. The CY7C602 checks for all dependencies in the decode stage, and if neces­
sary, asserts FHOLD in the next cycle. The FHOLD signal is used by the CY7C601 to freeze its pipeline in the same
cycle. The CY7C602 must eventually de-assert FHOLD to release the CY7C601 pipeline.

FEXC output Floating-point EXCeption: The FEXC is asserted if a floating-point exception has occurred. It remains
asserted until the CY7C601 acknowledges that it has taken a trap by asserting FXACK. Floating-point exceptions are
taken only during the execution of a floating-point instruction. The CY7C602 releases FEXC when it receives FXACK.

FXACK input Floating-point eXception ACKnowledge: The FXACK signal is asserted by the CY7C601 to acknowledge
to the CY7C602 that the current FP trap is taken.

INST input INSTruction fetch: The INST signal is asserted by the CY7C601 whenever a new instruction is being fetched.
It is used by the CY7C602 to latch the instruction on the D(31:0) bus into the FPU instruction buffer. The CY7C602
has two instruction buffers (01 and D2) to save the last two fetched instructions (see Figure 3-3). When INSTis asserted,
the new instruction enters the Dl buffer and the old instruction is pushed into the D2 buffer.

FINSI input Floating-point INStruction in buffer 1: The FlNSl signal is asserted by the CY7C601 during the decode
stage of a FPU instruction if the instruction is stored in the Dl buffer of the CY7C602. The CY7C602 uses this signal
to launch the instruction in the Dl buffer into its execute stage instruction register.

FINS2 input Floating-point INStruction in buffer 2: The FlNS2 signal is asserted by the CY7C601 during the decode
stage of a FPU instruction if the instruction is stored in the D2 buffer of the CY7C602. The CY7C602 uses this signal
to launch the instruction in the D2 buffer into its execute stage instruction register.

FLUSH input Floating-point instruction fLUSH: The FLUSH signal is asserted by the CY7C601 to signal to the
CY7C602 to flush the instructions in its instruction registers. This may happen when a trap is taken by the CY7C601.
The CY7C601 will restart the flushed instructions after returning from the trap. FLUSH has no effect on instructions
in the floating-point queue. In addition to freezing the FPU pipeline, the CY7C602 uses FLUSH to shut off the D bus
drivers during store operations. Th ensure correct operation of the CY7C602, FLUSH must not change state more than
once during a clock cycle.

3-23

CY7C602 Floating-Point Unit

3.4.2 Coprocessor Interface Signals

CHOLD input Coprocessor HOLD: The CHOLD signal is asserted by the coprocessor if it cannot continue execution.
The coprocessor must check all dependencies in the decode stage of the instruction and assert the CHOLD signal, if
necessaty, in thCc;cycle. The coprocessor must eventually deassert this signal to unfreeze the CY7C601 and CY7C602
pipelines. The H LD signal is latched with a transparent latch in the CY7C602 before it is used.

CCCV input Coprocessor Condition Codes Valid: The coprocessor asserts the CCCV signal when the CCC(I:0) repre­
sent a valid condition. The CCCV signal is deasserted when a pending coprocessor compare instruction exists in the co­
processor queue. CCCV is reasserted when the compare instruction is completed and the CCC(I:0) bits are valid. The
CY7C602 will enter a wait state if CCCV is deasserted. The CCCV signal is latched with a transparent latch in the
CY7C602 before it is used.

3.4.3 System/Memory Interface Signals

A(31:O) input Address bus (31:0): The address bus for the CY7C602 is an input-only bus. The CY7C601 supplies all
addresses for instruction and data fetches for the CY7C602. The CY7C602 captures addresses of floating-point instruc­
tions from the A(31:0) bus into the DDA register. When INST is asserted by the CY7C601, the contents of the DDA
is transferred to the DAI register.

D(31:O) inputloutput Data bus (31:0): The D(31:0) bus is driven by the FPU only during the execution of floating-point
store instructions. The store data is sent out unlatched and must be latched externally before it is used. Once latched,
store data is valid during the second data cycle of a store single access and on the second and third data cycle of a store
double access. The data alignment for load and store instructions is done inside the FPU. A double word is aligned on
an eight-byte boundary. A single word is aligned on a four-byte boundary.

DOE input Data Output Enable: The DOE signal is connected directly to the data output drivers and must be asserted
during normal operation. Deassertion of this signal three-states all output drivers on the data bus. This signal should
be deasserted only when the bus is granted to another bus master, i.e, when either BHOLD, CHOLD, MHOLDA, or
MHOLDB is asserted.

MHOLDA, MHOLDB input Memory HOLD: Asserting MHOLDAor MHOLDB freezes the CY7C602 pipeline. Either
MHOLDA or MHOLDB is used to freeze the FPU (and the IV) pipelines during a cache miss (for systems with cache)
or when slow memory is accessed.

BHOLD input Bus HOLD: This signal is asserted by the system's 1/0 controller when an external bus master requests
the data bus. Assertion of this signal will freeze the FPU pipeline. External logic should guarantee that after deassertion
of BHOLD, the state of all inputs to the chip is the same as before BHOLD was asserted.

MDS input Memory Data Strobe: The MDS signal is used to load data into the FPU when the internal FPU pipeline
is frozen by assertion of MHOLDA, MHOLDB, or BHOLD.

FNULL output Fpu NULLify cycle: This signal signals to the memory system when the CY7C602 is holding the instruc­
tion pipeline of the system. This hold would occur when PHOLD is asserted or FCCV is deasserted. This signal is used
by the memory system in the same fashion as the integer unit's INULL signal. The system needs this signal because the
IV's INULL does not take into account holds requested by the FPU.

RESET input RESET. Asserting the RESET signal resets the pipeline and sets the writable fields of the floating-point
status register (FSR) to zero. The RESET signal must reIilain asserted for a minimum of eight cycles.

CLK input CLocK: The CLK signal is used for clocking the FPU's pipeline registers. It is high during the first half
of the processor cycle and low during the second half. The rising edge of CLK defines the beginning of each pipeline
stage in the FPU.

3-24

Chapter 4
~~S~~~~~~~~~~~
SEMICONDUCTOR CY7C604 / CY7C605

Cache Controller and
Memory Management Units

The CY7C604 (CMU) and CY7C60S (CMU-MP) are combined memory management unit (MMU) and cache controllers
with on-chip cache tag memory. The CY7C604 and CY7C60S are designed as an integral part of the CY7C600 family
to provide a high-performance solution for cache and virtual memory support. The CY7C604 is designed for uniprocessor
systems, providing control for a 64-kbyte virtual cache. The CY7C604/60S cache is extendible to 256 kbytes through the
addition of cache RAMs and CY7C604/60Ss. Expansion of the CY7C604/60S cache increases the number of1LB (frans­
lation Lookaside Buffer) entries available to the system for MMU address translation, as well as increasing the number
of cache tag entries available to the cache. Another feature of the CY7C604 is cache locking, which provides deterministic
response time for real-time systems controlling time-critical processes. The CY7C604, as well as the CY7C60S, provides
the SPARC reference MMU and supports the SPARC Mbus standard for interfacing to physical memory.

The CY7C60S, a derivative of the CY7C604, is designed to support the requirements of multiprocessing systems. The
CY7C60S provides two separate cache tag memories, as compared to the single cache tag memory used on the CY7C604.
The second cache tag memory is physically addressed and allows concurrent bus snooping without stalling the CY7C601.
lbis allows the CY7C60S to maintain cache coherency with other cache systems without degrading CPU performance.
The CY7C60S supports the Mbus level 2 cache coherency protocol, which is modeled after the acclaimed IEEE Future­
bus. The CY7C60S is pin compatible with the CY7C604, which allows a CY7C604-based CPU to be used in a multiproces­
sor system by substituting the CY7C604 with the CY7C60S and enhancing the system software.

The MMU portion of the CY7C604 and CY7C60S provides translation from a 32-bit virtual address range (4 gigabytes)
to a 36-bit physical address (64 gigabytes). as provided in the SPARC reference MMU specification. Virtual address trans­
lation is further extended with the use of a context register, which is used to identify up to 4096 contexts or tasks. The
cache tag entries and 1LB entries contain context numbers to identify tasks or processes. This minimizes unnecessary
cache tag and 1LB entry replacement during task switching.

The MMU features a 64-entry translation lookaside buffer. The 1LB acts as a cache for address mapping entries used
by the MMU to map a virtual address to a physical address. These mapping entries, referred to as page table entries or
PTEs, allow one of four levels of address mapping. A PTE can be defined as the address mapping for a single 4-kbyte
page, a 256-kbyte region, a 16-Mbyte region, or a 4-Gbyte region. The 1LB entries are lockable, allowing important 1LB
entries to be excluded from replacement.

The MMU performs its address translation task by comparing a virtual address supplied by the CY7C601 (Integer Unit)
to the address tags in the 1LB entries. If the virtual address and the value of the context register match a 1LB entry,
a 1LB "hit" occurs. When this occurs, the physical address stored in the 1LB is used to translate the virtual address
to a physical address. The access type (read/write of data or instruction) and privilege level (user/supervisor) are checked
during translation. If a 1LB hit occurs but access-level protection is violated, the MMU signals an exception and the
operation ends.

If the virtual address or context does not match any valid 1LB entry, a 1LB "miss" occurs. This causes a table walk to
be performed by the MMU. The table walk is a search performed by the MMU through the address translation tables
stored in main memory. The MMU searches through several levels of tables for the PTE corresponding to the virtual
address. Upon rmding the PTE, the MMU translates the address and selects a 1LB entry for replacement, where it then
stores the PTE.

the 64-kbyte virtual cache is organized into 2048 lines of 32 bytes each. The term "virtual cache" refers to the direct
addressing of the cache by the integer unit (CY7C601) with the virtual address bus. Virtual address bits VA(IS:5) select
the cache line, and virtual address bits VA(4:2) select the 32-bit word of the cache line, as illustrated in Figure 4-1. The
CY7C604/60S provides access control for the cache by checking the context and virtual address against the cache tags.
If the virtual address, access-level, and context match the cache tag for the cache line addressed, a cache hit occurs and
the access is enabled. If the virtual address or context do not match the cache tag for the cache line, a cache miss occurs
and the cache controller accesses main memory for the required data.

4-1

CY7C604/CY7C605 CMU

I CY7C601 I
t Data Bus

'" :J VA<31:0>
VA<4:2> .1 III

! Cache Word Addr. _____ t_ _ _ ___________ ~
: 32 bytes (8 x 32-bit words) :

~ I / \ I

~
I I
I I

t:: VA<15:S>
I

'"
I

:> I I

Cache Une Addr. I I
I I
I I
I 2048 lines I
I I
I I
I

/ CY7C604 or CY7C605 "CEiWE<3:0> I

I

~ I I

I
I I
I I
I I
I I
I I
I 64-kbyte Cache Memory I
I I

~--------------------.
Mbus (physical bus)

Figure 4-1. Virtual 64·kbyte Cache

The CY7C604/605 cache controller supports two modes of caching: write-through with no write allocate and copy-back
with write allocate. Write-through mode is a simpler style of cache management that causes write accesses to the cache
to be written through to main memory upon each write access. The advantage of this method is that the cache always
remains coherent with main memory. Its disadvantage is that each write to the cache is echoed to main memory, which
increases traffic on the system bus. Another disadvantage to write-through is that the processor is delayed by the time
required to arbitrate the system bus and write the data to main memory. However, in the case of the CY7C604/605, this
disadvantage is significantly offset by the inclusion of write buffers. The write buffers can store up to four doubleword
accesses, allowing the CY7C601 to continue execution while data is written to main memory.

Copy-back cache mode causes write accesses to be written to the cache only. This causes the cache line to become modi­
fied. Modified cache lines are automatically written back to main memory only when the cache line is no longer needed.
Copy-back mode is a more complex mode of cache management, but provides substantial system performance improve­
ments over write-through due to decreased traffic on the system bus.

A 32-byte write buffer and a 32-byte read buffer are provided in the CY7C604/605 to fully buffer the transfer of a cache
line. This feature allows the CY7C604/605 to simultaneously read a cache line from main memory as it is flushing a modi­
fied cache line from the cache. This feature is also used in write-through cache mode for write accesses to main memory.
The write buffer avoids stalling the CY7C601 on writes to main memory by storing the write data until the physical bus
becomes available. The write buffer writes the data to memory as a background task.

The CY7C604 and CY7C605 support the SPARC Mbus reference standard interface. The Mbus is a peer-level,
high-speed, 64-bit, multiplexed address and data bus that supports a full peer-level protocol (Le., multiple bus masters).
The CY7C604/605 Mbus supports data transfers in transaction sizes of 1, 2, 4, 8, or 32 bytes. These data transfers are
performed in either burst or non-burst mode, depending upon size. Data transactions larger than eigbt bytes (one double­
word) are transferred in burst mode, which consists of an address phase followed by four data phases. Non-burst transac­
tions consist of an address phase followed by one data phase, and are used for data transactions of eight or less bytes.
Bus mastership is granted and controlled by an external bus arbiter. The bus arbiter sets bus priorities, and grants access
to a bus master. Additional information on the Mbus can be found in the Physical Bus section.

Mbus is divided into two levels of implementation: levelland level 2. Levell, implemented on the CY7C604, is the
uniprocessor version of Mbus. Levell is a subset of level 2, which is the multiprocessor version of Mbus. The CY7C605
supports level 2 Mbus. Level 2 Mbus includes the IEEE Futurebus cache coherency protocol, which has been recognized
in the industry as a superior method of supporting multiprocessing systems. Level 2 Mbus defines five cache states for
describing cache line status. Transactions on the Mbus are monitored or "snooped" by the CY7C605 and other bus agents

4-2

CY7C604/CY7C605 CMU

on the level 2 Mbus to maintain ownership status for each cache line. Transactions on the level 2 Mbus are made with
respect to the cache line ownership status to ensure consistency for shared data images.

The level 2 Mbus supports direct data intervention, which allows a cache system with the up-to-date version of a cache
line to directly supply the data to another cache system without having to first update main memory. Direct data interven­
tion provides a significant performance improvement over systems which do not support this feature. In addition, the
CY7C605 provides support for memory systems with reflective memory controllers. A memory system with reflective
memory control can recognize a cache-to-cache data transaction and automatically update itself without delaying the sys­
tem. Another system concept supported by the CY7C605 is secondary caching. Secondary caching provides a perform­
ance advantage over systems directly using main memory, and provides an economic advantage over systems using large
caches for each processing node.

4.1 Memory Management Unit

This section describes the SPARC reference MMU implemented on the CY7C604 and CY7C605. This function is identi­
cal for both the CY7C604 and CY7C605, and all details of Sections 4.1 and 4.2 apply to both.

The MMU provides virtual to physical address translation with the use of an on-chip translation lookaside buffer. The
TLB is in reality a full Address Translation Cache for address translation entries stored from tables in main memory.
These entries, referred to as page table entries or PTEs, contain the mapping information used by the MMU to translate
the virtual addresses. Addresses presented to the MMU for translation are compared against the set of PTEs stored in
the TLB. All entries in the TLB are simultaneously accessed through the use of advanced Content Addressable Memory
(CAM) technology. If a match for the virtual address and context is found in a valid TLB entry and the access protection
is not violated, a TLB hit occurs and the address is translated. A virtual address and context that matches a valid TLB
entry but violates the memory access protections will cause the CY7C604/605 to generate a memory exception to the
CY7C601. If the TLB entries do not match the address and context, or the TLB entry is invalid, then a TLB miss occurs.
The MMU responds to the TLB miss by initiating a table walk to find the correct PTE stored in main memory for the
virtual address.

The MMU uses a tree-structured table walk algorithm to find page table entries not found in the TLB. The table walk
is a search through a series of four tables in main memory for the PTE corresponding to a virtual address. These tables
are: the context table, the level 1 table, the level 2 table, and the level 3 table. The table walk uses the context table pointer
register as a base register and the context number as a offset to point to an entry in the context table. At any address,
the MMU finds either a PTE, which terminates its search, or a Page Thble Pointer (PTP). A PTP is a pointer used in
conjunction with a field in the virtual address to select an entry in the next level of tables. The table walk continues search­
ing through levels of tables as long as PTPs are found pointing to the next table. The table walk terminates when a PTE
is found, or an exception is generated if a PTE is not found after accessing the level 3 table. An exception is also generated
if the table walk finds an invalid or reserved entry in the page tables. Upon finding the PTE, the CY7C604/605 stores
it in an available TLB entry and translates the corresponding virtual address. The table walk processing is implemented
in the CY7C604/605 hardware. It is self-initiated, and is transparent to the user.

Virtual Section
(CAM,J:rray)

Physical Section
(RAt:.trray)

Figure 4-2. Translation Lookaside Buffer (TLB)

4-3

64 TLB entries

CY7C604/CY7C605 CMU

4.1.1 1hmslation Lookaside Buffer (TLB)

The CY7C604/605 uses a 64-entryfully associative 'ILB for address translation. The 1LB consists of two sections: a virtual
section and a physical section, as shown in Figure 4-2. The virtual section is compared against the virtual address and
the contents of the context register. A content addressable memory (CAM) is used as the virtual section of the 'ILB.
The CAM provides simultaneous comparison of all 64 'ILB entries with the current virtual address and context. The
physical section of the 'ILB is a RAM array, and its entries are addressed by a valid compare output from a CAM entry.
If a CAM entry matches the virtual address and context, the corresponding·RAM entry in the 'ILB provides the physical
address for use by the CY7C604/605.

The virtual section of a 1LB entry consists of 20 bits of virtual address (VA(31:12» and a 12-bit context number
(CXN(11:0». The physical section of a 'ILB entry consists of a 24-bit physical page number (PPN(35:12», a cacheable
bit (C), a modified bit (M), a three-bit field for page access-level protection (ACC(2:0», a two-bit short translation field
(ST(I:0», and one valid bit (V).

As described by the SPARC reference MMU specification, bits 31 through 12 of the virtual address are translated to an
expanded physical address using bits 35 through 12. The translation of these bits depends upon the ST field of the 'ILB
entry (or PTE) and the MMU operation mode (refer to page 4-13). Bits 11 through 0 of the virtual address are not trans­
lated, and are defined as the page offset for the 4-kbyte memory page.

A'ILB entry (PTE) can be defined to map a virtual address into one of four sizes of addressing regions using the ST field.
The four sizes of addressing regions are: 4-kbyte, 256-kbyte, 16-Mbyte, or 4-Gbyte. Table 4-1 illustrates the values as­
signed to the ST(I:0) field.

The value of the short translation bits affects both the addresses generated using the 'ILB entry and the virtual addresses
allowed to match with the 1LB entry. The virtual address supplied by the integer unit is divided into four fields: index
1, index 2, index 3, and page offset, as illustrated in Figure 4-3. For ST = (1,1) (4-Gbyte addressing range), only the context
register is used to match a 1LB entry. Setting ST = (1,1) essentially causes the CAM array to ignore the index 1, 2~ and
3 fields of the virtual address. Consequently, the address generated using the 'ILB entry only supplies the upper four
bits of the 36-bit physical address. Index 1, 2, and 3 fields, along with the page offset, are passed along to the physical
address unchanged.

The three remaining values of the ST field "tum on" comparison of the three index fields. The index fields that are re­
quired to match a 1LB entry also become the fields that are replaced by the 1LB entry during virtual to physical transla­
tion. Setting ST = (1,0), (16-Mbyte addressing region), requires the 1LB to match the context and index 1 fields of the
virtual address to the 'ILB entry. The 'ILB entry with ST = (1,0) will supply the upper four address bits and replace
the index 1 field of the virtual address with a physical address field. The index 2, 3, and page offset fields are passed along
to the physical address from the virtual address. Setting ST = (0,1) and (0,0) adds index 2 and index 3 fields to the compari­
son, respectively. Setting ST = (0,0) causes the'ILB to require matching of the context, index 1, 2, and 3, and will replace
all but the page offset when translating the virtual address.

Virtual
Address

TLB Entry

Hit/Miss
logic

ASI(5:0)

RD

LDSTO

I
31

Index 1 I
24 23

I VA (31:24)

~ ~
\.Compare/

~

I

Index 2 I Index 3 I Page Offset I
18 17 12 11 0

I
I Context Register (CXR) I

I VA (23:18) I VA (17:12) J CXN(11:0) 1ACC2:0t I ST(1:0) J V J
~ ~ ~ ~ ~ ~

\.Compare/ \.Compare/ \.Compare/ , -. ~
L

TLB Hit [
I

Access Violation

Figure 4-3. Address Comparison

4-4

CY7C604/CY7C605 CMU

Table 4-1. Short Thanslation Bits-ST(1:O)

STl STO Address Mapping

0 0 4-kbyte (page size)

0 1 256-kbyte

1 0 16-Mbyte

1 1 4-Gbyte

Physical addresses are generated using the contents of the PPN field of the Tl.B entry. The portion of the PPN field
used to map the virtual address to a physical address is dependent upon the ST(I:0) bit field, as described above. If a
4·kbyte linear addressing range is specified by the ST(I:0) bits, then the entire 24 bit field is used as the upper 24 bits of
the physical address. When a 256-kbyte linear addressing range is specified, the upper 18 bits of the PPN(3S:18) field
are used in the physical address. The remaining bits of the physical address are supplied from the virtual address. The
upper 12 bits of the PPN(3S:24) field are used for a 16-Mbyte addressing region. If a 4-Gbyte region is selected, only the
upper four bits of the PPN(3S:32) field are used in the address translation. The page offset field of the virtual address
is always used as the lower twelve bits of the physical address.

The cacheable bit (C) indicates whether the memory addressed by the Tl.B entry is cacheable or not. If the MMU is
enabled, the value ofthe C bit is output on the MC pin (MAO(43» ofthe Mbus during the address phase of a transaction.
The Mbus is descnbed in the Physical Bus section.

The modified bit (M) in the 1LB is set when the CY7C601 modifies the memory page. This bit may be checked by an
operating system to detennine the modified status of a memory area.

The access-level protection (ACC) bits are descnbed in Table 4-2. The ACC bits define the access-level protection for
the addressing region controlled by the 1LB entry. Access-level protection is checked during a Tl.B access. If a 1LB
hit occurs but access-level protection is violated, the MMU generates a synchronous fault and the operation tenninates
(see Section 4.9, Synchronous Faults).

The valid bit (V) reports the valid status of the Tl.B entry. These bits are cleared upon power on reset (POR) to invalidate
the 1LB entries. These bits are also cleared for a Tl.B entry flush.

Programmer's Note: When loading the 1LB entries under software control (i.e., Tl.B entries loaded by the integer unit
with ASI = 6), care must be taken to ensure that multiple Tl.B entries cannot map to the same virtual address. This
may inadvertently occur when combining 1LB entries that map different sizes of addressing regions. For example, a
4-kbyte region described by a Tl.B entry could be included in a 1LB entry for a 16-Mbyte region. Violation of this restric­
tion will result in an invalid output from the 1LB. Note that this case cannot happen when the 1LB entries are automati­
cally loaded by the CY7C604/60S during a table walk, as the 1LB is checked for a "hit" first.

Table 4-2. Access·Level Protection Bits-ACC(2:0)

ACC User Access Supervisor Access

0 Read Only Read Only

1 Read / Write Read / Write

2 Read / Execute Read / Execute

3 Read / Write / Execute Read / Write / Execute

4 Execute Only Execute Only

5 Read Only Read /Write

6 No Access Read / Execute

7 No Access Read / Write / Execute

4-5

EI

CY7C604/CY7C605 CMU

4.1.1.1 TLB Look-up

A virtual address to be translated by the CY7C604/605 is compared against each entry in the 1LB as shown in Figure 4-3.
If a 1LB hit (match) occurs and access-level requirements are satisfied, then the 1LB outputs the physical address and
the cacheable bit. This physical address is output by the CY7C604/605 onto the Mbus (see Section 4.12, Physical Bus)
if the cache has been disabled or if the page is non-cacheable. If the cache controller is enabled and a cache miss occurs,
the physical address of the cache miss is used to access the new cache line in main memory for cache line replacement.

The short translation bits specify a linear address mapping range of 4-kbytes, 256-kbytes, 16-Mbytes, or 4-Gbytes for each
TLB entry. The short translation bits also determine the index fields of the virtual address that are matched with the
1LB entry to determine a TLB hit. For a TLB entry with a linear address range of 4 kbytes, index fields 1, 2, and 3 of
the virtual address and the context register are compared against the TLB entry. A 1LB entry with a 256-kbyte linear
addressing range requires a match of the context and of the index 1 and index 2 fields. A 16-Mbyte linear addressing range
requires a match of the index 1 field and the context. The 4-Gbyte linear address mapping requires only a context match
to produce a 1LB hit.

If the modified bit is not set in a 1LB entry, write or load-store accesses that match the 1LB entry and meet all access-level
requirements will cause a table walk. (see Thble Walk, Section 4.1.2.) If the modified (M) bit is not set for a write access,
then the table walk sets the modified bit in the page table pointer entry for the memory region. This information is used
by an operating system to ensure that modified regions of memory are stored in alternate memory media (typically a disk
drive) before they are overwritten during memory page swap operations.

If there is a matched entry, but the access-level requirements are not satisfied, then a synchronous address fault exception
is asserted. Context number matching is not required if the access-level field (ACC) is either 6 or 7 and the memory access is
a supervisor mode access (AS1 = 9.B H). This produces a means of mapping the kernel of an operating system into the
same virtual address locations of every context.

The 1LB ignores access-level checking during MMU probe operations, copy-hack flush cycles, and alias detection cycles.

4.1.1.2 TLB Entry Replacement and UJcking

The CY7C604/605 supports a random replacement algorithm to replace a TLB entry during 1LB miss processing. The
random replacement is implemented by using a counter to point to one of the 641LB entries. A 6-bit replacement count­
er (RC) is incremented by one during each clock cycle to point to one of the TLB entries as shown in Figure 4-4. Upon
encountering a 1LB miss, the CY7C604/605 uses the counter value to address a 1LB entry to be replaced. The hardware
automatically replaces an entry pointed to by the replacement counter (RC) during 1LB miss processing.

Locking of1LB entries is supported with a 6-bit initial replacement counter (IRC). The number of locked entries is speci­
fied by setting the value of the IRC. The value of the IRC is used as a counter preset for the replacement counter. Once
the replacement counter (RC) reaches the maximum value, it wraps to the initial replacement counter (IRC) value. Upon
power-on reset (POR), both the IRC and RC are initialized to zero.

Locked 1LB entries can be changed (read/write) only through the alternate space load/store instructions with ASI =
6 (see Diagnostics Support, page 4-43.) These locked entries will not participate in the random replacement algorithm
during 1LB miss processing. The IRC should be initialized to the number of lockable entries by writing to the 1LB re­
placement control register (fRCR).

Programming Note: When changing the IRC, the RC should also be written with the same value. This ensures that the
RC is always pointing to the replacement area of the 1LB.

4.1.1.3 TLB Entries (TLBBs)

Both the virtual and physical sections of each 1LB entry can be accessed (read/write) through single load or store instruc­
tions. Software has the option to write and to lock high-usage or high-priority 1LB entries to optimize system response
time (Refer to MMU 1LB Entries, page 4-43, for more details.)

4-6

I Context Plr. I
Register

l Context Reg.

63 r-----------------4

o

CY7C604/CY7C605 CMU

Replacement
Counter (RC)

Initial
Replacement
Counter
(IRC)

Figure 4-4. TLB Replacement and Locking

VIRTUAL I INDEX 1 I INDEX 2 I INDEX 3 I OFFSET I
ADDRESS 31 12 11 I 0

--_ _ ... _--_ ... _- 2423 G17
-------- --------- ---_ _-----------_ .. _--.

0 0
0 Context Table 0

Level 1
0

0 0
0 ... • Page Table 0
0 oot I'Olnter 0

Level 2 0
0

Page Table
0

0 0 ... 0 PTP Level 3 0
0 0
0 Page Table 0
0 PTP 0
0 0
0 0
0

~ PTE c:-o
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 Physical Memory 0
0 0 ._ .. _---------_ .. _ .. _---_ .. __ .. _------------------------_ _ .. -

+ t
PHYSICAL I Physical Page Number I Byte Offset I
ADDRESS

35 12 11 o
Figure 4-5. Four·Level Table Walk (4.kbyte Addressing)

4-7

III

CY7C604/CY7C605 CMU

4.1.2 Table Walk

The CY7C604/605 supports tree-structured, 4-level table walk processing (including the context table level) as shown
in Figure 4-5. All of the virtual to physical address mapping tables are located in physical memory. These tables are ac­
cessed in the case of a TLB miss or of a write or load-store operation with a cleared M (modified) bit in the 1LB entry.

Upon starting a table walk, the CY7C604/605 walks through a series of tables to find a page table entry (PfE). The page
table entry contains the physical page number, the access-level permission, cacheable, modified, and referenced bits for
the address generating the table walk. (Refer to page 4-10 for information on PTEs.) A table walk caused by a TLB miss
causes the CY7C604/605 to update an available TLB entry with the new PTE. A table walk forced by a write or load-store
operation on an unmodified memory region causes the CY7C604/605 to set the modified bit in the page table entry and
in the TLB entry.

The table walk begins with an access to the context table. The CY7C604/605 uses the context table pointer register
(CfPR) as a base register to point to the beginning of the context table. The context register (CXR) is used as an index
register to point to the table entry. The upper twenty-two bits of the CfPR are concatenated with the twelve bits of the
CXR to provide a 36-bit address. The lowest two bits of all addresses pointing to a page table entry or pointer are always
forced to zero.

If a page table entry (PfE) is found at the context table level, the table walk terminates. The PTE is stored in the TLB
and, if necessary, the modified bits and/or the reference bits are updated. If a page table entry is not found, then a Page
Thble Pointer (PTP) must be located at the address pointed to in the context table. (See page 4-9 for more information
on PTPs and PTEs.) The page table pointer is used as the base address for the next table.

If a PTE is not found, the table walk continues by accessing the level 1 table using the PTP as a base address and the index
1 field from the virtual address as an index pointer. It is possible to find a PTE instead of a page table pointer at any level
during the table walk. The index 1 field (virtual address (31:24» is used to select an entry in the level 1 table. If a page
table entry is not found at this location, a page table pointer stored at this entry is used as the base address for the level
2 table. The index 2 field (virtual address (23:18» is used to select an entry in the level 2 table. The entry in the level
2 table, if not a page table entry, is used as the base address for the level 3 table. The index 3 field (virtual address (17:12»
is used to select an entry in the level 3 table, which must be a page table entry.

If a page table entry is not found after the level 3 table access, a synchronous fault exception is asserted. A synchronous
fault exception is also generated if an invalid entry is found at any level of the table walk. The table walk terminates
immediately when an exception is generated.

The level at which the table walk terminates is related to the size of addressing region associated with the entry. A table
walk that finds its page table entry in the context table corresponds to an addressing region of 4-Gbyte. Each level deeper
into the table walk corresponds to a smaller size of address mapping. A PTE for a 16-Mhyte addressing region will be
found in a level 1 table. A 256-kbyte PTE will be found in a level 2 table. Only an addressing region of 4 kbytes will require
a table walk of four levels to find the correct page table entry).

An example of a table walk for a 256-kbyte linear address space is shown in Figure 4-6. The value of the short translation
bits are related to the level at which the table walk terminates. The short translation bits decrease from (1,1) for a table
walk with a context table PTE to (0,0) for a table walk with a level 3 table PTE. (Refer to Table 4-1.)

Each table walk access is performed as a non-burst transaction on the Mhus (Physical bus). The Mhus busy (MBB) signal
is asserted from the beginning of the table walk to the end of the table walk process. This locks the Mhus and prevents
another bus master from gaining the bus until the table walk is complete. The MWCK bit in the address phase of the
Mhus transaction will be set (refer to Section 4.12.5), indicating a locked transaction. During these transactions, the C
bit in the SCR register is output on the MC signal of the Mhus. There will be write transactions during the table walk
only if the reference bit (R) and/or the modified bit (M) has to be set in the page tables.

If there is an invalid page table entry (ET = 0) at any level, an invalid address error exception occurs and the table walk
terminates immediately. If an external bus error occurs, a reserved entry (ET = 3) is detected, or a PTP entry is detected
in level 3, a translation error exception occurs, and the table walk terminates immediately. If an access-level protection
occurs, the table walk is terminated and a protection/privilege violation exception is asserted.

The reference bit (R) and the modified bit (M) are. set according to the access type. In order to record the exceptions
in the synchronous fault status registers properly, the table walk hardware must indicate the fault type and the level at
which the fault occurred (Refer to Section 4.9 for more details). For access-level checking during the table walk,
load-store cycles are treated as write cycles. The table walk state diagram is shown in Figure 4-10.

During MMU probe operations, copy-back flush cycles, and alias detection cycles, the table walk controller ignores access­
level checking.

4-8

CY7C604/CY7C605 CMU

VIRTUAL I INDEX 1 I ADDRESS INDEX 2 I OFFSET I
31 2423 L:7 l 0

---------.------ ------------- ---------------
Context Ptr. Context Table
Register Level 1

Context Reg. - Root Pointer
• Page Table

Level 2
Page Table .-- PTP

L., PTE

Physical Memory
---,

PHYSICAL I Physical Page Number I Page Offset I ADDRESS

35 1817 o

Figure 4-6. Three·Level Table Walk (256·kbyte Addressing)

4.1.3 Page Table Pointer (PTP)

A Page Thble Pointer (PTP), as shown in Figure 4-7, may be found in the context, levell, or level 2 tables. The PTP
is used in conjunction with an index field of the virtual address to point to the next level of table in a table walk. The
PTP found at the context level is called the root pointer. Bits 31 through 6 ofthe root pointer are output on bits 35 through
10 of the Mbus (MAD(35:10» and are concatenated with the eight bits of the index 1 field of the virtual address to access
the entIy in the first level page table. (Refer to Figure 4-6.) The lowest two bits of the address are equal to zero, as ad­
dressing is aligned on word boundaries.

Similarly, bits 31 through 4 ofthe PTP in level 1 or level 2 tables are output on bits 35 through 8 of the Mbus (MAD(35:8».
The index 2 or index 3 fields are concatenated with the PTP to yield the address of the next table entry. The ET field
(see Table 4-3) describes the entry type: invalid, page table pointer, or page table entry.

In order to reduce the penalty for a TLB miss, the root pointer from the context level table and two PTPs from the level
2 table are cached in the PTP cache. The PTPs from the most recent data and instruction misses using a four-level table
walk are cached for later use. The TLB checks the PTP cache upon a TLB miss, and uses the cached PTP to access the
level 3 table if an entry matches the access. The PTP cache is discussed in more detail in Section 4.1.5.

31

PTP

PTP = Page llIble ·Pointer
RSV = Reserved

43 21 0

ET = Entry type

Figure 4-7. Page Table Pointer

4--9

lEI

CY7C604/CY7C605 CMU

Table 4-3. Page Table Entry 1YPe
ET Entry 'JYpe

0 Invalid

1 Page Table Pointer

2 Page Table Entry

3 Reserved

4.1.4 Page Table Entry (PTE)

The Page Thble Entry (PTE) is shown in Figure 4-8 and may be found in the context, levell, level 2 or level 3 tables.
The page table entry contains the address mapping information used by the MMU to translate a range of virtual addresses
to physical addresses.

The level of the table in which the PTE is found is related to the addressing range associated with the PTE. A PTE found
in the context table will map a 4-Gbyte addressing region. A level 1 PTE will map a 16-Mbyte addressing region. A level
2 PTE corresponds to a mapping region of 256 kbytes. A level 3 PTE maps a 4-kbyte addressing region.

The addressing region mapped to the PTE determines how many bits in the PPN field of the PTE are used to form the
physical address. PTE(31:28) from a context level table PTE are output on bits 35 through 32 of the physical address bus
(MAD(35:32» to offer 4-Gbytes of linear address mapping. Similarly, PTE(31:20) from a level 1 table PTE are asserted
on bits 35 through 24, and provides 16 Mbytes of linear addressing. PTE(31:14) from a level 2 table PTE are asserted
on bits 35 through 18, and PTE(31:8) from a level 3 table PTE are asserted on bits 35 through 12 to offer 256K and 4 kbytes
of linear address mapping, respectively. The remainder of the PPN field not used for address translation is reserved.
The remaining physical address bits not specified by the PPN field are supplied from the virtual address.

The ACC bits describe the access-level and privilege protection assigned to the PTE. These bits are described in
Table 4-2. The referenced (R) bit is set in the PTE when the CY7C604/605 has read the value of the PTE in a table walk.
The CY7C604/605 automatically sets this bit upon access of the PTE. The modified (M) bitis set upon a write orload-store
access of a previously unmodified memory region. This information is commonly used by an operating system to flag
regions of memory that must be written to mass storage before being replaced by another memory page.

The cacheable (C) bit indicates whether or not the memory region addressed by the PTE is allowed to be cached. This
bit may be used to prevent shared memory pages from being cached, thereby avoiding potential aliasing problems. It also
may be used to prevent caching of memory mapped input/output devices.

The ET field, illustrated in Table 4-3, is used by the CY7C604/605 to determine the type of table entry during a table
walk. The ET field is set to 2 to indicate a PTE, and is set to 1 to indicate a PTP. If the CY7C604/605 encounters a table
entry with ET = 0 during a table walk, the CY7C604/605 generates an invalid address error. The CY7C604/605 generates
a translation error if ET = 3 (reserved) is encountered in a table entry during a table walk.

24

PPN

31
PPN = Physical Page Number
C = Cacheable bit
M = Modified bit

1 1 1 3 2

8 7 6 54 2 1 0
R = Referenced bit
ACe = Access protection bits
Ef = Entry type

Figure 4-8. Page Table Entry Format

4-10

CY7C604/CY7C605 CMU

PTP Cache -------------------, DTAG , ITAG , : Index Tag Register ,
Instruction PTP Reg.

r-In-stru-c\i-·o-n-Acc-ess--PT-p--',r"'v-'H

r---------,r--,'
Data PTP Reg. Data Access PTP f V ,:

,
RP Register r----R-oot-Po-inter----,'r"'v-" :

,--------------- -----------------_ ..
Figure 4-9. Page Table Pointer Cache

4.1.5 Page Table Pointer Cache (pTPC)

In order to reduce the penalty for a lLB miss, the CY7C604/60S supports a three-PTP entry page table pointer cache.
The Page Thble Pointer Cache (PTPC) caches the most recently used PTPs, as shown in Figure 4-9. The three entries
are: the Root Pointer Register (RPR), the Instruction access level 2 PTP (IPTP), and the Data access level 2 PTP (DPTP).
The IPTP and DPTP registers are referenced by a fourth register, the Index Thg Register (ITR). These entries are cached
during table walk processing for a 1LB miss.

The root pointer for a context is cached in the RPR. The RPR remains valid until the ConteXt Register (CXR) or the
Context Thble Pointer Register (CfPR) value is changed. The instruction access PTP register contains the latest level
2 PTP for an instruction access. This PTP is cached from the last lLB miss requiring a four-level table walk for an instruc­
tion access. The Data Access PTP Register contains the latest level 2 PTP for a data access. This PTP is also cached
from the last four-level table walk for a data access. The IPTP and DPTP registers are invalidated when another table
walk that accesses level 3 of the page tables is forced for an instruction or data access or a 1LB flush. They also are invali­
dated when either the context register or context pointer register is changed. Refer to page 4-38 for more information
on these registers.

Figure 4-9 illustrates the PTPC. The index tag register (ITR) is used to reference the IPTP and DPTP registers. The
ITAG and DTAG fields of the index tag register are used by the CY7C604/60S to compare against an address generating
a lLB miss. Once a level 2 page table pointer is cached for an instruction or a data access, the same PTP is used if the
index 1 and index 2 fields ofthe virtual address match the index 1 and index 2 tag fields of the ITAG or DTAG. The IPTP
and DPTP registers are updated only if a 1LB miss occurs that does not match the ITAG or DTAG and also generates
a table walk that accesses level 3 of the page tables.

Once a root pointer is cached for a particular context, the same root pointer can be used as long as the context is not
changed. If the table walk finds a context level or levell or level 2 entry PTE (i.e., is not a four-level table walk), then
no caching of level 2 pointers is performed.

Whenever the context is changed, the entire PTPC (all three entries) is invalidated. Upon power-on reset, all the PTPC
entries are invalidated. When the ContexT Pointer Register (CfPR) is written, the page table pointer cache is invalidated
by clearing the V bits in the IPTP, DPfP, and RPR registers. Any lLB flush invalidates the IPTP and DPTP registers
of the PTP Cache.

The IPTP and DPTP registers are not updated during table walks caused by address alias detection and copy-back flush
cycles.

4-11

CY7C604/CY7C60S CMU

Load TLB

Figure 4-10. Table Walk Algorithm

4-12

CY7C604/CY7C605 CMU

4.2 MMU Operation Modes

This section describes the different modes of operation of the CY7C604/605, the conditions under which they occur, and
what information is reflected on the pins. The operation mode for the MMU (and cache controller) is controlled by the
system control register (SCR). Please refer to Sections 4.4.1 and 4.4.2 for further information on the SCR.

The following symbols are used throughout the chart:
MC(MAIJ(43» Mbus Cacheable indicator signal

(Refer to Pin Definitions, Section 4.10)
UN
RES

Unassigned AS!
ReselVed AS! and AS!

MBU:MAD(45» Mbus Boot!Local indicator signal
(Refer to Pin Definitions, Section 4.10) PA

VA

defined but not implemented (see Table 4-15)
Physical Address

ASI Address Space Identifier code
for current access from CY7C601

SeR[C] Cacheable bit of SCR
X Not Defined or Don't Care

BM, ME,CE
PTE[C]

Virtual Address
Bits in System Control Register (SCR)
Cacheable bit of page table pointer

Table 4-4. MMU Operation Modes

MMU Operation Modes

Mode Conditions Results

ASI BM ME CE Physical Addressing Caching MC

Local 1 X X X PA<35:32> =0 PA<31:0> = Not 0
VA<31:0> Cached

UN, RES UN, RES X X X Ignore Ignore Ignore N/A

By-pass 20-2F X X X PA<35:32> = PA<31:0> = Not 0
ASI<3:0> VA<31:0> Cached

Pass-Through 8,9,A,B 0 0 X PA<35:32> = 0 PA<31:0> = Not SCR
VA<31:0> Cached [C]

Boot 8,9 1 X X PA< 35:28 > = PA<27:0> = Not SCR
(Instr. access) FF VA< 27:0 > Cached [C]

Boot A,B 1 0 X PA<35:32> = 0 PA<31:0> = Not SCR
(Data access) VA<31:0> Cached [C]

Translation 1 A,B X 1 0 PA<35:12> = PA< 11:0> = Not PTE
(Data Access PTE<31:8>* VA<11:0>* Cached [C]
and Cache
Disabled)

Translation Z A,B X 1 1 PA<35:12> = PA< 11:0> = Cached if PTE
(Data Access PTE<31:8>* VA<11:0>* PTE[C] [C]
and Cache =1
Enabled)

Translation 3 8,9 0 1 0 PA<35:12> = PA< 11:0> = Not PTE
(Instruction PTE<31:8>* VA<11:0>* Cached [C]
Access and
Cache
Disabled)

Translation ~ 8,9 0 1 1 PA<35:12> = PA<11:0> = Cached if PTE
(Instruction PTE<31:8>* VA<11:0>* PTE[C] [C]
Access and =1
Cache
Enabled)

MBL

1

N/A

0

0

1

1

0

0

0

0

.. Concatenation field sizes vary dependmg upon the short translatIon (ST) bits to provIde 4G, 16M, 256K. 4 kbytes of hnear address mappmg.
Refer to Section 4.1.1 for further details.

4-13

lEI

CY7C604/CY7C605 CMU

The MMU provides three types of operating modes: boot modes, direct-access modes, and translation modes. Tho boot
modes are defmed for the MMU, one for data accesses, and one for instruction accesses. The boot modes force the upper
eight bits of the physical address to FF H for instruction accesses. The upper four bits are forced to zero for data accesses.
These two modes also assert the Mbus Boot modelLocal indicator (MBL) signal. This signal can be used in the system
to enable a memory region used only for system boot and configuration. This allows the system a secure method ofaccess­
ing bootstrap ROM and shadow RAM separate from the main memory space.

The direct access modes allow the integer unit to access the main memory without address translation by the MMU.
These modes include: local, by-pass, and pass-through. Local mode enables the MBL signal and forces the upper four
bits of the physical address to zero. The lower 32 bits of the physical address are supplied directly from the virtual address
bus. This mode allows the integer unit to access the boot mode memory (if supported in the system) without changing
the state of the System Control Register (SCR). Local mode is enabled by using a load or store alternate instruction with
AS!" = 1 H. ..

Bypass mode allows complete access to the main memory space. MBL is not enabled, and the lower four bits ·of the ASI
are used as the upper bits of the physical address. The remaining 32 bits are supplied directly from the virtual address
bus. The state of the SCR does not have to be modified. This mode is mapped into the ASI space as ASI =.20 - 2F H.

Pass-through mode descnbes the CY7C604/60S operation with the MMU disabled. The upper four address bits of tlte
physical address are forced to zero. The MBL signal is not asserted. This mode does not require non standard ASI assign­
ments (i.e., ASI = 8,9,A,B H), but the boot mode (BM) and MMU enable (ME) bits of .the SCR must be cleared.

The translation modes are considered to be the normal operating modes o(the MMU. This group includes four modes
of translation operations: 1tanslation 1-4. ltanslation 1 and 2 are the non-cached. and cached data access modes. 1tansla­
tion 3 and 4 are the non-cached and cached instruction access modes. The cached and non-cached modes are identical
in results for both data and instruction accesses, with the exception that the data access modes ignore the Boot Mode
(BM) bit of the SCR. This feature allows the system to enable the MMU for data accesses, yet still acceSS instructions
from the boot memory space without changing the BM bit .

• The SPARe architecture reference supports the concept of Address Space Identir", .. (ASI), which provide an extension of the standard addressing
space. These bits are used to enable special addressing modes, or to provide a=so to registe .. and other features of the CY7C604. Refer to section on
ASI and Register Mapping for more information.

4.2.1 MMU Flush and Probe Operations

4.2.1.1 Rush OperaJions

The flush operation allows software invalidation of selected entries in the TLB. TLB entries are flushed by executing
a Store Alternate ASI instruction using ASI = 3 H and supplying a virtual address in the format shown in Figure 4-11.
The context number is given by the context register (CXR). All TLB entries that match the virtual address, context, and
TLB flush type will be flushed (invalidated) simultaneously. The flush type is specified in bits 11-8 of the virtual address
for the flush operation.

The CY7C604/60S supports five different types ofTLB flushing operations. These types are: page, segment, region, con­
text, and entire flush. The five types of flushing are listed in Table 4-5, and define the address comparison required to
match a TLB entry for flushing. The Short 1tanslation (ST) bits in the TLB entries are ignored for TLB matching. All
TLB entries matching the compare criterion of the flush type are invalidated, including those locked by the IRC.

Virtual Address Format:

I INDEX1 I INDEX2 I INDEX3 TYPE RSV

31 2423 18 17 1211 8 7 0

Figure 4-11. MMU Flush Address Format

4-14

CY7C604/CY7C605 CMU

Table 4-5. TLB Entry Flushing

1YJIe Flush Compare Criterion

0 Page Context (or ACC = 6, 7),
Index 1, Index 2, and Index 3

1 Segment Context (or ACC = 6, 7),
Index 1, and Index 2

2 Region Context (or ACC = 6, 7),
and Index 1

3 Context Context (user pages with
ACC = Ot05)

4 Entire None

5 to F Reserved

4.2.1.2 Probe Operation

The probe operation allows testing the 1LB and page tables for a PTE entry corresponding to a virtual address. The opera­
tion is initiated by executing a load alternate ASI instruction with ASI = 3 H, the appropriate virtual address, and the
context number. The context is specified by the context register. Upon starting a probe operation, the 1LB is probed
first. If there is a 1LB hit, it returns the 32-bit physical section of the matched entry. The returned entry fields are for­
matted such that it is identical to a PTE (see Section 4.1.4 on page 4-10, for PTE format information). If a matching entry
could not be found in the 1LB, a table walk is started and an appropriate 32-bit value (PTE) is returned and loaded into
theTLB.

A probe operation causes the Reference bit (R) to be set in the PTE by means of a table walk. When a probe operation
hits the 1LB, the R bit is always returned as set.

The context register and access-level protection checking are ignored for 1LB matching and during the probe operation
table walk. The table walk hardware checks for invalid address error and translation error exceptions and records appro­
priate fields in the SFSR register as in the normal table walk process. If a bus error occurs or an invalid or reserved entry
is detected during the table walk, a 32-bit zero value is returned as status. If a zero value is returned, the UC, TO, BE,
L, and FT fields of the SFSR are updated accordingly, but the operation does not cause an exception to the CY7C601.

4.3 CY7C604 I CY7C605 Cache Controllers

The differences between the CY7C604 and CY7C605 become evident in the features of their respective cache controllers.
The CY7C604 cache controller is designed for a uniprocessor system, and provides cache locking for real-time system
support. The CY7C605 cache controller is enhanced to accommodate the requirements of a multiprocessing system.
The CY7C605 provides bus snooping and a Futurebus style of cache coherency protocol. The CY7C605 is designed to
provide high visibility into its cache operations from the perspective of the shared physical bus in order to simplify support
by a secondary cache system. The following sections discuss the CY7C604 and CY7C605 cache controllers. Sections
specific to the CY7C604 or CY7C605 are marked with that part number only. Sections applying to both the CY7C604
and the CY7C605 are marked "CY7C604/605."

4.3.1 CY7C604/60S Cache Modes

The CY7C604/605 virtual cache can be programmed for either write-through with no write allocate or copy-back with
write allocate. The two cache modes differ in how they treat cache write accesses. Write-through cache mode causes
write hits to the cache to be written to both cache and main memory. Write-through write cache misses only update main
memory and invalidate the cache tag, but do not modify the cache.

A write access in copy-back mode only modifies the cache. The writing of the modified cache line to main memory is
deferred until the cache line is no longer required. Copy-back cache mode has the advantage of reducing traffic on the
system bus. Bus traffic is reduced since all updates to memory are deferred and are performed subsequently only as abso­
lutely required. In addition, all such data transfers are made utilizing the more efficient burst mode. The following de­
scribes the two cache modes in detail.

4-15

CY7C604/CY7C60S CMU

4.3.1.1 CY7C604160S Write-Through Mode with No Write Allocate

For write-through cache mode, write access cache hits cause both the cache and main memory to be updated simulta­
neously. A write access cache miss causes only main memory to be updated (no write allocate). The selected cache line
is invalidated for a write access cache miss. Write-through caching mode normally requires a processor to delay during
a write miss while the data is written to main memory. The CY7C604/605 provides write buffers to prevent this delay in
most cases. The write buffers store the write access and write the data to main memory as a background task. (Refer to
page 4-31 for further information on the write buffers.)

During read access cache hits, the cached data is read out and supplied to the CY7C601. In the case of a read access cache
miss, a cache line is fetched from main memory to load into the cache and the required data is supplied to the CY7C601.

4.3.1.2 CY7C604160S Copy-Back Mode with Write Allocate

When the cache is configured for copy-back mode, only the cache is updated on write access cache hits (i.e., main memory
is not updated). The modified bit of the cache tag for the cache line is set on a copy-back write access (write hit or after
a write miss is corrected). During write access cache misses, if the selected cache line is clean (not modified), a cache line
is fetched from main memory to load into the cache and only the cache is updated. If the selected cache line is modified,
the selected cache line is flushed out to update main memory. The CY7C604/605 simultaneously fetches the new cache
line from main memory and stores it into the read buffer as it flushes the modified cache line from the cache and stores
it into its write buffer. After the modified cache line has been flushed, the CY7C604/605 writes the modified cache line
out of its write buffer into main memory while the new cache line is stored into the cache memory from the read buffer.

During read access cache hits, the cached data is read out and supplied to the CY7C601. During read access cache misses,
if the selected cache line is clean (not modified), a cache line is fetched from main memory to load into the cache. If the
selected cache line is modified, the selected cache line is flushed out to the CY7C604/605 write buffer, and a new cache
line is fetched from main memory and stored into the read buffer. The new cache line is then stored in the cache from
the read buffer, while the modified cache line stored in the write buffer is written out to main memory.

4.3.2 CY7C604 Cache Controller

The cache controller provides cache memory access control for a 64-kbyte direct mapped virtual cache. The cache control­
ler is designed to use two CY7C157 Cache RAMs for the cache memory. These cache RAMs are 16-kbyte x 16 SRAMs
with on-chip address and data latches and timing control. The CY7C601 cache can be expanded to a maximum of 256
kbytes by adding additional groups of one CY7C604 and two CY7C157s. Using multiple CY7C604s to expand the cache
is referred to as a multichip configuration for the CY7C604, and is described in the Section 4.5, Multichip Configuration.

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C604 has 2048 cache tag entries on-chip, one tag
entry for each cache line. Addressing for the virtual cache is provided directly from the virtual address bus. The virtual
address field VA(15:5) selects one of the 2048 lines of the cache. This address field also selects one of the corresponding
cache tag entries in the CY7C604. A cache hit occurs when the upper sixteen bits of the virtual address and the context
register match with the virtual address and context stored in the selected cache tag entry. The lowest five bits of the virtual
address bus (VA(4:0» select one or more of the 32 bytes in the cache line. Cache data replacement is always performed
by replacing cache lines.

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the cache controller.
The CY7C604 controls cache read access by holding the CY7C601 with MHOLD if a cache hit is not detected by the cache
controller. The cache controller then reads the new cache line from main memory, and supplies the correct data to the
CY7C601. After the correct data llflatched into the CY7C601 by strobing the MDS signal, the CY7C601 is released and
execution proceeds normally. "

Writes to the cache are controlled by the CY7C604, which decodes the lowest two bits of the virtual address, the SIZE(I:0)
signal, and checks for a cache hit to enable the correct cache byte write enable signals. If a cache write hit occurs, the
CY7C604 decodes the correct CBWE signals for the write access, and outputs these to the CY7C157 Cache RAM write
enables. If the cache mode is set to write-through (see Cache Modes, Section 4.3.1), the write data is also written to main
memory. If a write cache miss occurs for write-through cache mode, the data is written to main memory and the cache
is not updated. If the write cache miss occurs during copy-back cache mode (see Figure 4-14) and the selected cache line
is not modified, the missed cache line is fetched from main memory. If a write cache miss occurs during copy-back mode
and the selected cache line is modified, the CY7C604 simultaneously flushes the modified cache line into the write buffers
while it fetches the new cache line from main memory. After the cache line has been replaced, the write access is enabled
by the CY7C604. The modified cache line is written to main memory from the write buffers as a background task.

4-16

CY7C604/CY7C605 CMU

}-----.. Cache Hit

Figure 4-12. CYC7604 Cache Tag Comparison

4.3.2.1 CY7C604 Cache Tag

The CY7C604 features 2048 direct-mapped cache tag entries, as shown in Figure 4-12. The on-chip cache tag and the
1LB are accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address (VA(31:16», a 12-bit context
number (CXN(11:0», one valid bit (V) and one modified bit (M). The valid bit (V) is set or cleared to indicate the validity
of the cache tag entry. The modified bit (M) of a cache tag entry is set during copy-back mode after a write access to the
cache line. This indicates that the cache line has been modified. The modified bit has no meaning for write-through cache
mode. The cache line select field (VA(lS:S» is used to select a cache line entry and its corresponding cache tag entry.
The address field VA(31:16) and context register are compared against the virtual address and the context fields of the
selected cache tag entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache miss is
generated. To complete an access successfully, both the cache tag and the 1LB must be hit with appropriate access-level
permission. Upon Power-On Reset (PaR), all cache tag entries are invalidated (all V bits are cleared).

A Supervisor bit (S) is included in the cache tag entry. For cache tag entries which are accessible by the supervisor only
(access-level field 6 or 7), the S bit is set. During a cache tag look up, if the access is supervisor mode and the the S bit
is set, the context number comparison is ignored and the context match is forced. This operation is similar to a 1LB look
up with access-level field set to either 6 or 7.

4.3.2.2 CY7C604 Address Aliasing

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be detected to maintain
data consistency in a virtual cache system. The SPARC reference system software convention permits the use of aliases
in address spaces that are modulo with respect to the system's underlying cache size. In order to allow the efficient caching
of physical memory pages where such aliases may occur, the CY7C604 supports automatic address aliasing protection.

The CY7C604 tests for address aliasing during copy-back read or copy-back write cache misses or during write-through
read misses. The MMU must be enabled to allow the CY7C604 to test and correct address aliases.

To detect address aliasing, the virtual address of the selected cache tag entry is translated through the MMU. The trans­
lated physical address is compared with the physical address of the missed cache access. If the physical address of the
selected cache tag entry and the physical address of the cache miss match, then address aliasing is detected.

4-17

III

Write Miss
Update memory only

update memory only
and Invalk:taIe cache line

Read Miss, Alias
update cache tag only

Read Miss
fetch cache line

from I!l8Il1OIY

CY7C604/CY7C605 CMU

Read Miss

Write Hit
update memory

and cache

Read Hit

Figure 4-13. CY7C604 Write·Through with No Write Allocate

Reset or Flush

Read Miss

Write Miss
flush modified cache line

fetch cache line
update cache only

update cache tag and
cache only

Read Miss
felch cache line

trommemory

Write Hit
update cache only

Figure 4-14. CY7C604 Copy· Back with Write Allocate

4-18

Read Miss with Alias
Update cache

lag only

Read Miss
with Alias
updalecache

tag only

CY7C604/CY7C605 CMU

The SPARC system software convention ensures that the aliasing maps to the same cache line address for a particular
CY7C604. Coupled with this convention, the cache controller hardware automatically prevents any existence of address
aliases in the virtual caches.

Aliasing is checked during a cache miss. If detected, an alias is corrected by updating the selected cache tag entry with
the new virtual address. The CY7C604 then halts the cache miss processing and provides an access to the cache, as with
a cache hit. If no alias is detected, the cache miss processing proceeds normally. The state diagrams for write-through
and copy-back cache modes with alias detection and correction are illustrated in Figure 4-13 and Figure 4-14.

In copy-back mode, address aliasing is checked during a read- or a write-access cache miss. For an alias detected during
a read-access cache miss, the selected cache tag entry is updated with the virtual address that caused the cache miss. The
cache miss processing is halted, and the CY7C601 is supplied with data from the cache.

If an address alias is detected during a write access cache miss, the selected cache tag entry is updated with the new virtual
address that caused the cache miss. The modified bit is set if it was not set previously. The cache miss processing is halted,
and the cache write access is enabled.

In write-through mode, address aliasing is checked only on read-access cache misses. If an address alias is detected on
a read-access cache miss, the old cache tag entry is replaced with the new virtual address. The cache miss is halted, and
the cache supplies the data requested.

In write-through cache mode, address aliasing is not checked during write-access cache misses. In order to avoid potential
address aliasing, the selected cache line is invalidated. Address aliasing is not Checked in this case in order to avoid unnec­
essary performance degradation.

To detect address aliasing, the selected cache line address is translated through the TI...B. Protection checking is ignored
during this translation. The translation may occasionally cause a TI...B miss. If this happens in a write-through read miss
case, the alias checking and the TI...B miss are ignored. In a copy-back read miss or a write miss when the selected cache
line is clean, alias checking and TI...B miss processing are ignored. To provide data consistency, the table walk is performed
in order to detect address aliasing in a copy-back read miss or a write miss when the selected cache line is modified.

4.3.2.3 CY7C604 Cache Lock

The CY7C604 supports a cache lock mechanism that allows the system to lock all entries in the cache. This feature is
provided to allow deterministic response times for real-time systems. The cache lock function affects only cache miss
operations, since it locks out cache line replacement of valid entries. Since alias detection is not enabled, shared memory
pages must be declared as non-cacheable when the cache is locked. The following description summarizes each case in
detail:

a. Write-through read miss and selected entry is invalid: A new cache line is fetched from main memory to load into the
cache and the requested data is supplied to CY7C601 as in normal operation mode.

b. Write-through read miss and selected entry is valid: The requested data is obtained from main memory as a non-burst
transaction on the Mbus and supplied to the CY7C601, but is not loaded into the cache.

c. Write-through write miss: The selected cache line is invalidated in order to prevent data inconsistency due to potential
address aliasing.

d. Copy-back read miss and selected entry is invalid: A new cache line is fetched from main memory to load into the cache
and the requested data is supplied to CY7C601 as in a normal operation.

e. Copy-back read miss, selected entry is valid: The requested data is obtained from main memory as a non-burst transaction
on the Mbus and supplied to the CY7C601, but is not loaded into the cache.

f. Copy-back write miss and selected entry is invalid: A new cache line is fetched from main memory to load into the cache
and the CY7C601 data is stored in the cache as in a normal operation.

g. Copy-back write miss and selected entry is valid: The CY7C601 data is stored in the main memory as a non-burst transac­
tion on the Mbus, but the cache is not updated.

4-19

CY7C604/CY7C60S CMU

Virtual Address

[:--=~~~==~=====L_}-----" Cache Hit

Figure 4-15. CY7C605 Processor Virtual Cache Tag (pVTAG) Comparison

4.3.3 CY7C605 Cache Controller

2048
entrIes

The cache controller provides cache memory access controlfor a 64-kbyte direct-mapped virtual cache. The cache control­
ler performs this task by comparing memory accesses against the address and status entries in a cache tag memoty. The
CY7C60S provides two separate cache tag memories for access comparison. Cache memory accesses from the processor
are compared against the Processor VIrtual cache TAG (pVfAG) memory. Bus snooping operations are compared against
the Mbus Physical cache TAG (MPfAG) memory. The use of two cache tag memories allows the cache controller to ser­
vice processor cache accesses concurrently with bus snooping cache tag accesses. This feature of the CY7C60S provides
significant performance improvements over cache systems sharing a single cache tag memory between the processor
cache access and the bus snooping operations. Single cache tag systems typically must stall the processor when a bus
snooping operation is required, causing serious performance degradation.

The cache controller is designed to use two CY7ClS7 cache RAMs for the cache memory. These cache RAMs are
16-kbyte x 16 SRAMs with on-chip address and data latches and timing control. TWo CY7C1S7s and one CY7C60S com­
prise an entire 64-kbyte cache system with physical bus interface and read and write buffers.

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C60S has 2048 cache tag entries in both the PVfAG
and MPTAG, one entry in each cache tag memory per cache line. Addressing for the virtual cache is provided directly from
the virtual address bus. The virtual address field (V A(lS:S» selects one of the 2048 lines of the cache (refer toRgure 4-15).
This address field also selects the cache tag entry in the PVfAG dedicated to the selected cache line. A cache hit occurs
when the upper sixteen bits of the virtual address and the context register match with the virtual address and context
stored in the selected cache tag entry in PVfAG. The lowest five bits of the virtual address bus (VA(4:0» select one or
more of the 32 bytes in the cache line. Cache data replacement is always performed by replacing cache lines.

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the cache controller.
The CY7C60S controls cache read access by holding the CY7C601 with MHOLD if a cache hit is not detected by the cache
controller. The cache controller then reads the new cache line from main memory, and supplies the correct data to the
CY7C601. After the correct data is latched into the CY7C601 by strobing the MDS signal, the CY7C601 is released and
execution proceeds normally.

4'-20

CY7C604/CY7C605 CMU

Writes to the cache are controlled by the CY7C605, which decodes the lowest two bits ofthe virtual address, the SIZE(1:0)
signal, and checks for a cache hit to enable the correct cache byte write enable signals. If a cache write hit occurs, the
CY7C605 decodes the correct CBWE signals for the write access, and outputs these to the CY7C157 cache RAM write
enables. Ifthe cache mode is set to write-through (see Section 4.3.1, Cache Modes), the write data is also written to main
memory. If a write cache miss occurs for write-through cache mode, the data is written to main memory and the cache is
not updated. If the write cache miss occurs during copy-back cache mode, the cache line is fetched from main memory. If
the cache line stored in the cache when the write cache miss occurred has been modified, the old cache line is written to
main memory before the cache line is replaced by the new data. After the cache line has been replaced, the write access is
enabled by the CY7C605.

4.3.3.1 CY7C60S Cache Tag

The CY7C605 features two separate cache tag arrays: the processor virtual cache tag memory (PVfAG) and the Mbus
physical cache tag memory (MPTAG). Cache controllers using only one cache tag array must delay the processor when bus
snooping requires access to the cache tags. The inclusion of two independent cache tag memories allows the CY7C60S to
support processor accesses to cache while simultaneously performing bus snooping on the Mbus.

4.3.3.1.1 CY7C60S Processor Virtual Cache Tag (PVTAG)

The PVfAG consists of 2048 direct-mapped cache tag entries, as shown in Figure 4-16. The PVfAG and the TLB are
accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address (V A(31: 16», a 12-bit context number
(CXN(11:0», one valid bit (V), and one shared bit (SH). The valid bit (V) is set or cleared to indicate the validity of the
cache tag entry. The shared bit (SH) of a cache tag entry is set when bus snooping indicates that the cache line is shared.
The cache line select field (V A(15:5» is used to select a cache line entry and its corresponding cache tag entry. The address
field VA(31:16) and context register are compared against the virtual address and the context fields ofthe selected cache
tag entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache miss is generated_ Th.
complete an access successfully, both the cache tag and the TLB must be hit with appropriate access-level permission. On
Power-On Reset (PaR), all cache tag entries are invalidated (all V bits are cleared).

A supervisor bit (S) is included in the cache tag entry. For cache tag entries which are accessible by the supervisor only
(access-level field 6 or 7), the S bit is set. During a cache tag look up, if the access is supervisor mode and the the S bit is set,
the context number comparison is ignored and the context match is forced. This operation is similar to a TLB look up with
access-level field set to either 6 or 7.

4.3.3.1.2 CY7C605 Mbus Cache Tag (MPTAG)

The MPTAG consists of 2048 direct-mapped, physical address cache tag entries (refer to Figure 4-16). Each entry in the
cache consists of 24 bits of physical address (PA < 35:12 », a valid bit (V), a shared bit (SH), and a modified bit (M).

The 2048 MPTAG entries are virtual address indexed. The index field for MPTAG, as supplied by the Mbus, is formed by
concatenating the superset virtual address bits (15:12) (MAD(49:46» with physical address bits (11:5) (MAD(11:5» (refer
to Figure 4-17). The format of the Mbus address bus cycle is described in Section 4.12.S in Section 4.12.5.

31

PVT AG Cache Tag Entry

TAG

16 15 4 3 2 1 a
TAG = Virtual Address Tag

CXN = Context Number

V = Valid bit

S = Supervisor

R = Reserved

SH = Shared

31

M PTAG Cache Tag Entry

TAG

TAG = Physical Address Tag

V = Valid
SH = Shared

8 7 6 5 4 a
M = Modified

R = Reserved

Figure 4--16. CY7C60S Cache Tag Entries

4-21

MAD Address Cycle

I
I

I
I
I

L __

CY7C604/CY7C605 CMU

J------. Cache Hit

2048
entries

Figure 4-17. CY7C60S Mbus Physical Cache Tag (MPTAG) Comparison

During a MPTAG compare operation, the physical address field (35:12) of the access is compared against the physical
address field of the MPTAG entry selected by the virtual address index. If a match occurs and the valid bit is set. a cache hit
is generated. If a match is not found. or the valid bit is not set, a cache miss is generated. On Power-On Reset (POR). all the
MPTAG cache entries are invalidated r.:v bits are cleared).

4.3.3.2 CY7C60S Multiprocessing Supporl

The CY7C605 is specifically designed to support mUltiprocessing systems. The CY7C605 accomplishes this by providing
features necessary to maintain cache coherency with a second-level memory system (typically main memory or a secondary
cache) and other caching systems on the shared bus.

The CY7C605 supports two modes of caching: write-through and copy-back. Operation in write-through caching mode
causes main memory to be modified with each write access to the cache. This avoids the issue of lack of coherency between
the individual cache systems and main memory. but greatly increases memory bus traffic. The effect of this increased bus
traffic is a degrading of the performance of a multiprocessor system as the processing nodes compete for memory bus
bandwidth. This problem is greatly reduced when copy-back caching mode is used.

Operation in copy-back mode causes all changes to a cache line to be held until the line is flushed from the cache. This
minimizes bus traffic to only those transactions necessary to maintain the cache. However. by allowing the cache line to be
modified without updating main memory. a problem arises when other processing nodes require an up-to-date copy of that
memory location. The problem of modified cache lines is solved by the enforcement of a cache coherency protocol.

The CY7C605 implements a cache coherency protocol specified by the SPARC reference standard Mhus level-2 interface.
This protocol is modeled after that used by the IEEE Futurebus. In this protocol, each cache line is described by one offive
states: invalid (I), exclusive clean (EC). exclusive modified (EM), shared clean (sq. and shared modified (SM). The fol­
lowing descnbes these five cache states:

Invalid (I): Cache line is not valid.

Exx:lusive Clean (EC): Only this cache module has a valid copy of this cache line. other than the next level of memory (main
memory or secondary cache). No other cache module on the same level of memory has a valid copy of this cache line.

Exx:lusive Modified (EM): Only this cache module has a valid copy of this cache line. This cache module is the OWNER of
the cache line, and has the responsibility to update the next level of memory (main memory or secondary cache) and also to
supply data if any other cache references this memory location.

4-22

CY7C604/CY7C605 CMU

Shared Clean (SC): The same cache line may exist in more than one cache module. The next level of memory mayor may
not contain a valid copy of this cache line, depending upon whether this cache line has been modified in any other cache.

Shared Modified (SM): The same cache line may exist in more than one cache module, but this cache module is the OWN­
ER of the cache line. The next level of memory does not have a valid copy of this cache line, and this cache module has the
responsibility to update the next level of memory and to supply any other cache that may reference this same memory
location.

These five states are described by three state bits (valid (V), shared (SH), and modified(M» in each MPTAG cache tag
entry (refer to Figure 4-16). The PVTAG cache tag entries are described by two state bits: valid (V), and shared (SH). The
PVTAG cache tag entries corresponding to the same cache lines can be in one of three states: invalid, exclusive valid, and
shared valid.

Under write-through cache mode, only the valid and invalid states apply to either the MPTAG or PVTAG cache tag en­
tries. The shared and modified bits in the MPTAG are ignored by the CY7C605 when in write-through mode.

4.3.3.3 CY7C605 Cache State Transitions

The following sections describe the five cache line states (invalid, exclusive clean, exclusive modified, shared clean, and
shared modified) and the transitions these states undergo due to transactions on the Mbus. Each numbered transition in a
section corresponds to a numbered transition on the state diagram for that section. Note that state transitions are depen­
dent upon both the cache transaction and the state of the Mbus signals: memory shared (MSH), and memory inhibit
(MIH).

All processor transactions described in this section affect the processor serviced by the CY7C605. All coherent transac­
tions affect all bus agents on the Mbus with a copy of the shared cache line. For further information on Mbus transactions,
please refer to Section 4.12.

4.3.3.3.1 Copy-Back Invalid

Processor Read Miss: CY7C605 issues a coherent read transaction on the Mbus. The CY7C605 will read the cache line
from the second-level memory and then load it into the cache RAM. Then the data is supplied to the processor in the cycle
following the last cache line entry.

1. If MSH = HIGH, then invalid changes to exclusive valid in PVTAG and invalid changes to exclusive clean in
MPTAG.

2. If MSH = LOW, then invalid changes to shared valid in PVTAG and invalid changes to shared clean in MPTAG.

Processor Write Miss: CY7C605 issues a coherent read and invalidate transaction on the Mbus. The CY7C605 reads the
cache line from the second-level memory and loads it into the cache RAM. Then the processor data is written into the
cache RAM in the cycle following the last cache line entry.

3. Invalid changes to exclusive valid in PVTAG and invalid changes to exclusive modified in MPTAG.

Figure 4-18. Copy· Back Invalid

4-23

CY7C604/CY7C605 CMU

Figure 4-19. Copy·Back Exclusive Clean

4.3.3.3.2 Copy-Back Exclusive Clean

Processor Read Hit: The CY7C60S will supply data to the CY7C601 immediately.

1. PVfAG entry is exclusive valid; exclusive clean in MPTAG: NO STATE CHANGE.

Processor Read Miss: The CY7C60S will issue a coherent read transaction on the Mhus. The CY7C60S will read the cache
line from the second-level memory and then load it into the cache RAM. Then the data is supplied to the CY7C601 in the
cycle following the last cache line entry.

2. If MSH = HIGH, then exclusive valid in PVfAG; exclusive clean in MPTAG.

3. If MSH = LOW, then shared valid in PVfAG; exclusive clean changes to shared clean in MPTAG.

Processor Write Hit: The CY7C60S will update the cache immediately with the CY7C601 data.

4. PVfAG entry is exclusive valid; exclusive clean changes to exclusive modified in MPTAG.

Processor Write Miss: The CY7C60S will issue a coherent read and invalidate transaction on the Mhus. The CY7C60S will
read the cache line from the second-level memory and then load it into the cache RAM. Then the processor data is written
into the cache RAM in the cycle following the last cache line entry.

S. PVfAG entry is exclusive valid; exclusive clean changes to exclusive modified in MPTAG.

Software Flush (Store alternate instruction with ASI = 10H to 14H; see Section 4.3.7): The CY7C60S will invalidate both the
PVfAG and MPTAG cache tag entries.

6. Exclusive valid is changed to invalid in PVfAG; exclusive clean is changed to invalid in MPTAG.

Coherent Read: During the A + 2 cycle of the Mhus coherent read transaction, the CY7C60S will assert MSH and change
the state of the cache line from exclusive clean to shared clean.

7. Assert MSH; exclusive clean is changed to shared clean in MPTAG and shared valid in PVfAG.

Coherent Read and Invalidate: Both the PVfAG and the MPTAG cache tag entries in the CY7C60S are invalidated.

8. Exclusive valid is changed to invalid in PVfAG; exclusive clean is changed to invalid in MPTAG.

Coherent Invalidate: Both the PVfAG and the MPTAG entries in the CY7C60S are invalidated.

9. Exclusive valid is changed to invalid in PVfAG; exclusive clean is changed to invalid in MPTAG.

Coherent Write and Invalidate: The CY7C60S invalidates both the PVfAG and MPTAG cache tag entries.

10. Exclusive valid is changed to invalid in PVfAG and exclusive clean is changed to invalid in MPTAG.

4-24

CY7C604/CY7C605 CMU

8
Figure 4-20. Copy·Back Shared Cleau

4.3.3.3.3 Copy-Back Shared Clean

Processor Read Hit: The CY7C60S will supply data immediately to the CY7C601.

1. PVfAG entry is shared valid; shared clean in MPTAG: NO STATE CHANGE.

Processor Read Miss: The CY7C60S will issue a coherent read transaction on the Mbus. The CY7C60S will read the cache
line from the second-level memory and load it into the cache RAM. Then the data is supplied to the CY7C601 in the cycle
following the last cache line entry.

2. If MSH = HIGH, then exclusive valid in PVfAG and shared clean is changed to exclusive clean in MPTAG.

3. If MSH = LOW, then shared valid in PVfAG and shared clean in MPTAG.

Processor Write Hit: The CY7C60S issues a coherent invalidate transaction on the Mbus. The CY7C60S will update the
cache immediately with the processor data.

4. PVfAG entry is exclusive valid; shared clean is changed to exclusive modified in MPTAG.

Processor Write Miss: The CY7C60S will issue a coherent read and invalidate transaction on the Mbus. The CY7C60S will
read the cache line from the second-level memory and then load the data into the cache RAM. The processor data is
written into the cache RAM in the cycle following the last cache line entry.

S. PVfAG entry is changed to exclusive valid; shared clean is changed to exclusive modified in the MPTAG.

Software Rush: The CY7C60S will invalidate both the PVfAG and MPTAG cache tag entries.

6. Shared valid is changed to invalid in PVfAG; shared clean is changed to invalid in MPTAG.

Coherent Read: During the A + 2 cycle of the Mbus coherent read transaction, the CY7C60S will assert the MSH.

7. Assert MSH; shared clean in MPTAG and shared valid in PVfAG.

Coherent Read and Invalidate: Both the PVfAG and the MPTAG cache tag entries will be invalidated.

8. Shared valid is changed to invalid in PVfAG; shared clean is changed to invalid in MPTAG.

Coherent Invalidate: Both the PVfAG and MPTAG cache tag entries are invalidated.

9. Shared valid is changed to invalid in PVfAG; shared clean is changed to invalid in MPTAG.

Coherent Write and Invalidate: Both the PVfAG and MPTAG cache tag entries are invalidated.

10. Shared valid is changed to invalid in PVfAG; shared clean is changed to invalid in MPTAG.

4-2S

lEI

CY7C604/CY7C605 CMU

Figure 4-21. Copy-Back Exclusive Modified

4.3.3.3.4 Copy-Back Exclusive Modified

Processor Read Hit: The CY7C605 will supply data to the processor immediately.

1. PVfAG entry is exclusive valid; exclusive modified in MPTAG: NO STATE CHANGE.

Processor Read Miss: The CY7C605 will initiate a coherent read transaction followed by a write block transaction of the
previously modified cache line. The CY7C605 will read the cache line from the second-level memory and load the data
into the cache RAM. Then the data will be supplied to the processor in the cycle following the last cache line entry into the
cache RAM. The modified cache line has to be written to update the second-level memory. The Mbus Busy (MBB) signal
is asserted from the beginning of the coherent read transaction to the end of the write transaction on the Mbus.

2. IT MSH = HIGH, then the PVTAG entry is exclusive valid, and the MPTAG entry is changed from exclusive
modified to exclusive clean.

3. ITMSH = LOW, then the PVTAG entry is changed to shared valid, and the MPTAG entry is changed from exclusive
modified to shared clean.

Processor Write Hit: The CY7C605 will update the cache immediately with the processor data.

4. PVfAG entry is exclusive valid; exclusive modified remains as exclusive modified in MPTAG.

Processor Write Miss: The CY7C605 will initiate a coherent read and invalidate transaction followed by a write block trans­
action of the previously modified cache line. The CY7C605 will read the cache line from the second-level memory and
load it into the cache RAM. The processor data is written into the cache RAM in the cycle following the last cache line
entry into the cache RAM. The modified cache line must be written into the second-level memory in order to update the
memory. The MBB signal is asserted from the beginning of the coherent read and invalidate transaction to the end of the
write transaction on the Mbus.

5. PVfAG entry remains exclusive valid; the MPTAG entry remains exclusive modified.

Software Flush' The CY7C605 initiates a coherent write and invalidate transaction on the Mbus. The CY7C605 will write
the modified cache line to update the second-level memory and then it invalidates both the PVTAG and MPTAG cache
tag entries.

6. Exclusive valid is changed to invalid in PVTAG; exclusive modified is changed to invalid in MPTAG.

Coherent Read: During the A + 2 cycle of the coherent read transaction on the Mbus, the CY7C605 asserts both the MSH
and MIH signals. This CY7C605 is the OWNER of the cache line, and is responsible to supply the data for the coherent
read transaction on the Mbus.

4-26

CY7C604/CY7C605 CMU

7. If the memory reflection (MR) bit of the system control register (SCR) is set, the CY7C60S changes the state of
the MPTAG cache tag entry from exclusive modified to shared clean, and the PVfAG entry from exclusive valid
to shared valid.

8. If the memory reflection (MR) bit of the SCR is cleared, the CY7C60S changes the state of the MPTAG entry from
exclusive modified to shared modified. The PVfAG entry is changed to shared valid.

Coherent Read and Invalidate: During the A + 2 cycle of a coherent read and invalidate transaction on the Mbus, the
CY7C60S asserts both the MSH and MIH signals. This CY7C60S is the OWNER of the cache line, and is responsible to
supply the data for the coherent read transaction on the Mbus. Both the PVfAG and MPTAG cache tag entries are invali­
dated.

9. Exclusive valid is changed to invalid in the PVfAG entry; exclusive modified is changed to invalid in the MPTAG
entry.

Coherent Invalidate: Both the PVfAG and MPTAG cache tag entries in the CY7C60S are invalidated.

10. Exclusive valid is changed to invalid in the PVfAG entry; exclusive modified is changed to invalid in the MPTAG
entry.

Coherent Write and Invalidate: Both the PVfAG and the MPTAG cache tag entries are invalidated.

11. Exclusive valid is changed to invalid in the PVfAG entry; exclusive modified is changed to invalid in the MPTAG
entry.

4.3.3.3.5 Copy-Back Shared Modified

Processor Read Hit: The CY7C60S will supply data immediately to the CY7C601.

1. PVfAG entry is shared valid; shared modified in MPTAG: NO STATE CHANGE.

Processor Read Miss: The CY7C60S will initiate a coherent read transaction followed by a write block transaction of the
previously modified cache line. The CY7C60S will read the cache line from the second-level memory and load the data
into the cache RAM. Then the data will be supplied to the processor in the cycle following the last cache line entry into the
cache RAM. The modified cache line has to be written to update the second-level memory. The MBB signal is asserted
from the beginning of the coherent read transaction to the end of the write transaction on the Mbus.

2. IfMSH = HIGH, the PVfAG entry changes to exclusive valid. The MPTAG entry is changed from shared modified
to exclusive clean.

3. If MSH = LOW, then the PVfAG entry changes to shared valid, and the MPTAG entry is changed from shared
modified to shared clean.

Processor Write Hit: The CY7C60S initiates a coherent invalidate transaction on the Mbus. The CY7C60S will update the
cache immediately with the processor data.

4. The PVfAG entry changes to exclusive valid; the entry in the MPTAG is changed from shared modified to exclusive
modified.

Processor Write Miss: The CY7C60S will initiate a coherent read and invalidate transaction followed by a write block trans­
action of the previously modified cache line. The CY7C60S will read the cache line from the second-level memory and
load it into the cache RAM. The processor data is written into the cache RAM in the cycle following the last cache line
entry into the cache RAM. The modified cache line must be written into the second-level memory in order to update the
memory. The MBB signal is asserted from the beginning of the coherent read and invalidate transaction to the end of the
write transaction on the Mbus.

S. PVfAG entry is exclusive valid; the MPTAG entry is changed from shared modified to exclusive modified.

Software Flush: The CY7C60S initiates a coherent write and invalidate transaction on the Mbus. The CY7C60S will write
the modified cache line to update the second-level memory and then it invalidates both the PVfAG and MPTAG cache
tag en tries.

6. Shared valid is changed to invalid in PVfAG; shared modified is changed to invalid in MPTAG.

Coherent Read: During the A + 2 cycle of the coherent read transaction on the Mbus, the CY7C60S asserts both the MSH
and MIH signals. This CY7C60S is the OWNER of the cache line, and is responsible for supplying the data for the c0-

herent read transaction on the Mbus.

4-27

lEI

CY7C604/CY7C605 CMU

P
6,9,
0,11

Figure 4-22. Copy· Back Shared Modified

7. If the memory reflection (MR) bit of the system control register (SCR) is set, the CY7C605 changes the state of
the MPTAG from shared modified to shared clean, and the PVfAG entry is shared valid.

8. If the MR bit of the SCR is not set, then the PVfAG remains shared valid and the MPTAG remains shared
modified.

Coherent Read and Invalidate: During the A + 2 cycle of a coherent read and invalidate transaction on the Mbus, the
CY7C605 asserts both the MSH and MIH signals. This CY7C6Q5 is the OWNER of the cache line, and is responsible for
supplying the data for the coherent read transaction on the Mbus. Both the MAG and MPTAG cache tag entries are
invalidated.

9. Shared valid is changed to invalid in the PVfAG entry; shared modified is changed to invalid in the MPTAG entry.

Coherent Invalidate: Both the PVfAG and MPTAG cache tag entries in the CY7C605 are invalidated.

10. Shared valid is changed to invalid in the PVfAG entry; shared modified is changed to invalid in the MPTAG entIy.

Coherent Write and Invalidate: Both the PVfAG and the MPTAG cache tag entries are invalidated.

11. Shared valid is changed to invalid in the PVfAG entry; shared modified is changed to invalid in the MPTAG entry.

4.3.3.3.6 Write-Through Invalid

Processor Read Miss: The CY7C605 issues a block read transaction on the Mbus. The CY7C605 will read the cache line
from the second-level memory and load the data into the cache RAM. The data will be supplied to the processor in the
cycle following the last cache line entry written to the cache RAM.

1. The PVfAG and MPTAG entries are changed from invalid to valid.

Processor Write Miss: The CY7C605 will issue a write-buffered coherent write and invalidate transaction on the Mbus.

2. The PVfAG and MPTAG entries remain invalid.

Figure 4-23. Write· Through Invalid

4-28

CY7C604/CY7C605 CMU

Figure 4--24. Write· Through Valid

4.3.3.3.7 Write· Through Valid

Processor Read Hit: The CY7C605 will supply data to the CY7C601 immediately.

1. The PYI'AG and MPTAG entries remain valid: NO STATE CHANGE.

Processor Read Miss: The CY7C605 issues a coherent read transaction on the Mbus. The CY7C605 will read the cache line
from the second·level memory and load the data into the cache RAM. The data will be supplied to the processor in the
cycle following the last cache line entry written to the cache RAM.

2. The PYI'AG and MPTAG entries remain valid.

Processor Write Hit: The CY7C605 issues a write·buffered coherent write and invalidation transaction on the Mbus. The
CY7C605 will write data into the cache.

3. The PYI'AG and MPTAG entries remain valid.

Processor Write Miss: The CY7C605 issues a write·buffered coherent write and invalidate transaction on the Mbus. The
CY7C605 will not write to the cache and invalidates the cache line in order to avoid potential data inconsistency due to
aliasing.

4. The PYI'AG and MPTAG entries change from valid to invalid.

Software Flush: The CY7C605 invalidates both the PYI'AG and MPTAG cache tag entries.

5. The PYI'AG and MPTAG entries change from valid to invalid.

Coherent Read: During the A + 2 cycle of the Mbus coherent read transaction, the CY7C605 asserts MSH.

6. Assert MSH; the PYI'AG and MPTAG entries remain valid.

Coherent Read and Invalidate: The CY7C605 invalidates both the PYI'AG and MPTAG cache tag entries.

7. The PYI'AG and MPTAG entries change from valid to invalid.

Coherent Write and Invalidate: The CY7C605 invalidates both the PYI'AG and MPTAG cache tag entries.

8. The PYI'AG and MPTAG entries change from valid to invalid.

Coherent Invalidate: The CY7C605 invalidates both the PYI'AG and MPTAG cache tag entries.

9. The PYI'AG and MPTAG entries change from valid to invalid.

4.3.3.3.8 Bus Snooping

The CY7C605 bus snooper watches Mbus transactions and snoops into the MPTAG array for certain transactions, as listed
in Table 4-6.

4.3.3.4 CY7C605 Address Aliasing

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be detected to maintain
data consistency in a virtual cache system. The SPARC reference system software convention permits the use of aliases in
address spaces that are modulo with respect to the system's underlying cache size. In order to allow the efficient caching of
physical memory pages where such aliases may occur, the CY7C605 supports automatic address aliasing protection.

4-29

III

CY7C604/CY7C605 CMU

Table 4-6. Mbus Snooping Transactions

Cache Mode Transaction 1YJIe Snoop
Copy-Back Coherent Read & Invalidate yes

Coherent Write & Invalidate yes
Coherent Read yes
Coherent Invalidate yes
Read no
Write no

Write-Through Coherent Read & Invalidate yes·
Coherent Write & Invalidate yes
Coherent Read yes·
Coherent Invalidate yes
Read no
Write no

'These transactions are not generated by the CY7C605, but the CY7C605 will snoop these transactions if generated by another bus master

The SPARC system software convention ensures that the aliased entry maps to the same cache line address for each
CY7C605 in the multiprocessor system. Coupled with this convention, the cache controller hardware automatically pre­
vents any existence of address aliases in the virtual caches.
The CY7C605 tests for address aliasing during all cache misses except write-through mode write misses. Address aliasing
cannot occur unless the MMU is enabled (ME bit of SCR). To detect address aliasing in the CY7C605, the physical ad­
dress of the missed cache access is compared with the selected MPTAG entry.

If the physical address of the selected MPTAG entry and the physical address of the cache miss match, then address alias­
ing is detected. If detected, an alias is corrected by updating the selected cachc tag entry with the new virtual address. The
CY7C605 then halts the cache miss processing and provides an access to the cache, as with a cache hit. If no alias is de­
tected, the cache miss processing proceeds normally.

For an alias detected during a read-access cache miss, the selected cache tag entry is updated with the virtual address that
caused the cache miss. The cache miss processing is halted, and the CY7C601 is supplied with data from the cache.

If an address alias is detected during a copy-back mode write-access cache miss, the selected cache tag entry is updated
with the new virtual address causing the cache miss. The modified bit is set if it was not set previously. The cache miss
processing is halted, and the cache write access is enabled.

In write-through write-access cache misses, address aliasing is not checked. However, in order to avoid potential address
aliasing, the selected cache line is invalidated. Address aliasing is not checked in write-through cache mode in order to
avoid unnecessary performance degradation.

4.3.4 CY7C604/CY7C605 Cache Control Signals

The CY7C604/605 controls the virtual cache through control signals supplied to the CY7C601 and to the cache RAMs.
The signals used by the cache controller to control the CY7C601 consist of MHOLD, MDS, and IOE. MHOLD is used
to stall the CY7C601 until the CY7C604/605 can service the CY7C601 memory access request, such as during cache miss
processing or during table walks. MDS is used by the CY7C604/605 to strobe data into the CY7C601 when MHOLD is
asserted. This causes the CY7C601 to latch data on the data bus despite being stalle~the assertion ofMHOLD. IOE
is used as the enable signal for the AOE and DOE inputs of the CY7C601. When JOE is deasserted, the address and
data bus output drivers of the CY7C601 are disabled. This feature is used to force the CY7C601 off of the virtual address
and data buses.

The signals used ~ol the cache RAM consist of the cache byte write enable (CBWE) and cache read output enable
(CROE) signals. CROE is asserted low to enable the output of the cache RAMs during a cache read. CBWE(3:0) is as­
serted low to enable writing to the cache RAMs. The multiple CBWE signals allow the cache controller to enable byte,
halfword, or word writes to the cache RAM. Single byte or halfword reads are handled by the CY7C601, which reads an
entire 32-bit word and internally discards unwanted bytes.

During a cache read miss, the CY7C604/605 halts the CY7C601 by asserting MHOLD. The CY7C604/605 also deasserts
JOE, which is used to disable the CY7C601 data bus and address bus output drivers. The cache controller fetches the

4-30

CY7C604/CY7C605 CMU

new cache line from main memory, asserting CBWE(3:0) and the cache line addresses to write the data into the cache.
Then the CY7C604/605 places the missed read data word on the data bus and toggles the MDS (Memory Data Strobe)
signal. T..288!.ing MDS forces the integer unit to latch the data on the data bus. The cache read miss terminates by reassert­
ing the 10E signal and then releasing the MHOLD signal. 10E is typically reasserted one or more clocks before the
MHOLD signal is deasserted, thus allowing the CY7C601 to output the next address onto the virtual address bus. This
provides the address set-up time for the next memory access after MHOLD is released. Read misses are handled in the
same manner for both copy-back and write-through modes of caching.

Cache write misses for write-through mode generally do not affect the operation of the CY7C601 due to the presence
of write buffers in the CY7C604/605 (refer to the following section on the write buffer). In the case of a write miss, the
write data is written to the write buffer instead of the cache memory and the cache tag for the cache line is invalidated.
The write buffer writes the data to memory as a background task. The CY7C601 is stalled for a write-through write miss
only if the write buffer is full. This occurs when the CY7C601 overruns the four doubleword buffers in the write buffer.
In this case, MHOLD is asserted until space is made by the write buffer as it writes its contents into main memory.

On a write miss, if the cache mode is copy-back and the cache line is clean, the cache line ~laced in a similar manner
as in the cache read miss descnbed above. MHOLD is asserted to stall the CY7C601 and 10E is deasserted to force the
CY7C601 offthe data and address buses. A new cache line is read from main memory, and the cache is updated by writing
the data into the cache. This is accomplished by supplying the cache addresses, cache line data from main memory, and
asserting the CBWE signals to write the data. The write cache miss terminates by reasserting 10E, which causes the
missed write data and address to reappear on their respective buses. The CY7C604/605 then strobes CBWE(3:0) accord­
ing to the address and SIZE(l:O) signals to write the data into the cache. The copy-back write miss procedure terminates
by deasserting MHOLD, which allows the processor to return to execution.

If the cache line is modified, the modified cache line is read out of the cache and stored into the write buffer during the
same time the new cache line is fetched from main me!!!Q!Y and stored in the read buffer (refer to the following sections
on write and read buffers). MHOLD is asserted and 10E deasserted to force the CY7C601 into a halted and inactive
state. The cache controller asserts CROE and the cache addresses to flush the modified cache line into the write buffer.
The cache controller then writes the new cache line into the cache from the read buffer while simultaneously writing
the modified cache line into main memory from the write buffer. This is accomplished by supplying the cache addresses
for the cache line data, and asserting the CBWEQ:ID. signals to write the data into the cache. The copy-back write miss
for a modified cache line terminates by releasing 10E to allow the missed write data and address to reassert on the data
and address buses. The CY7C604/605 asserts the CBWE(3:0) signals to write the data into the cache. The MHOLD signal
is then deasserted to allow the CY7C601 to return to processing. See Section 4.11 for virtual bus timing diagrams.

4.3.5 CY7C604/60S Write Buffer

The CY7C604/605 supports four write buffers on chip, as shown in Figure 4-25. In write-through mode, each buffer can
store two 32-bit words, which efficiently supports store double operations. A physical address tag is associated with each
of the four buffers in write-through mode. Upon a write access, the write buffers are loaded with the data to be written
to main memory. This allows the CY7C601 to continue operation without stalling due to memory access delays on the
physical bus.

In copy-back mode, the same buffers are configured to store a 32-byte cache line with a single physical address as shown
in Figure 4-26. This allows for faster cache line flushes during modified cache line replacement. The modified cache line
is flushed into the write buffer as the new cache line is simultaneously fetched from main memo!YJ!! either case, the
contents of the buffers are transferred to main memory as a background task. On Power-On Reset (paR), all ofthe write
buffers are invalidated.

Non-cacheable writes use the four write buffers in the same manner as write-through cache transaction, even if copy-back
mode is enabled. However, a copy-back cache line and non-cacheable data cannot simultaneously occupy the write buffer.

The CY7C604/605 requests Mbus ownership as soon as one of the write buffers is valid. For each write buffer transfer,
the CY7C604/605 re-arbitrates the Mbus again. A modified cache-line flush is considered as one transaction. When the
bus is still granted to the CY7C604/605 (i.e., bus parking), the CY7C604/605 can transfer the data immediately without
any bus re-arbitration (so there are no dead clocks between transactions). Once all of the write buffers are full, further
writes from the CY7C601 are held until a buffer is empty. If there is a read access cache miss, the CY7C601 is held until
all of the write buffers are written back into main memory in order to maintain data consistency. After the write buffers
are cleared, the CY7C604/605 resumes the task of fetching the cache line for the cache read miss.

4-31

35

PAO V Word a Word 1

PAl V Word a Word 1

PAZ V Word a Word 1

PA3 V Word a Word 1

a 31 031

Figure 4-25. Write ButTers
(Write·Through Mode or Non·Cacheable Write)

CY7C604/CY7C605 CMU

a

PA Iv! WO I Wl I W21 W3 I W41 W51 W61 Wli
35 a 31 031 031 a 31 031 031 a 31 031 a

Figure 4-26. Write ButTer (Copy· Back Mode)

ImIMIMI~IMIMI~IWlI
31 a 31 a 31 a 31 a 31 a 31 a 31 a 31 a

Figure 4-27. Read ButTer (Copy· Back Mode)

4.3.6 CY7C604/605 Read ButTer

The CY7C604/605 provides a read buffer of 32 bytes (one cache line) in order to support simultaneous writing of a modi­
fied cache line to main memory and reading of a new cache line from main memory into the cache under copy-back mode.
The read buffer is shown in Figure 4-27. The read buffers are invalidated on power·on reset.

4.3.7 CY7C604/605 Cache Flushing Operations

The CY7C604/605 supports five different levels of cache flushing operations, as illustrated in Table 4-7. The cache flush­
ing operations are dependent upon the cache mode and state. Flushing under copy-back cache mode for a modified cache
line means flushing the cache line into main memory and invalidating the cache tag entry. If the cache line is clean (copy­
back mode), or is in write-through cache mode, flushing only invalidates the cache tag entry.

Unlike a TLB flush operation, all cache flushing operations flush only one cache line at a time. Each cache line can be
flushed on the basis of a page, segment, region, context, or user mode, as illustrated in Table 4-7. The levels of address
matching for a cache line flush vary from a fu1l4-kbyte page level match of address and context, to a match of user mode
only.

The cache line selected for operation is indexed as in normal cache access operations (VA(15:5». If the cache flush opera­
tion does not cause a match of the cache tag entry, no action occurs. The five types of cache flush operations are: page
flush, segment flush, region flush, context flush, and user flush. These different levels of cache flush are mapped with
the ASI bits. The store alternate space instructions for the CY7C601 must be used to assert the ASI value that corresponds
with the level of cache flush operation desired. The combination of the ASI and a store operation using the virtual address
specify the cache flush operation and the cache line to be matched for flushing. During flush operations, the context
register provides the context number to be compared.

Table 4-7. Cache Flush Operations

Cache Flush ASI Compares:

PAGE lOH Context (or Supervisor S = 1,), Index 1, Index 2, and Index 3
(bits 17 and 16)

SEGMENT llH Context (or Supervisor S = 1), Index 1, and Index 2

REGION 12H Context, (or Supervisor S = 1), and Index 1

CONTEXT 13H Context and User (S = 0)

USER 14H User (S = 0)

4-32

CY7C604/CY7C605 CMU

Table 4-8. CacheablefNon·Cacheable accesses

Access Condition

Not cached ASI = 20-2F H (By-pass) or ASI = 1 (Local)

ASI = UN, RES (unassigned/reserved)

BM = 1 and ME = xandCE = xandASI = 8,9H

BM = x and not (ME = 1 and CE = 1 and PTE[C] = 1)

LDSTO cycles in write-through mode

Table walk cycles

Cache lock miss accesses which have valid entries, but no alias

Cached BM = 0 and ME = 1 and CE = 1 and ASI = 8,9,A,B Hand PTE[C] = 1

BM = 1 and ME = 1 and CE = 1 and ASI = A,B Hand PTE[C] = 1

4.3.8 CV7C604f60S CacheablefNon·Cacheable Memory Accesses

Pages that are declared as non-cacheable (C = 0 in the page table entry (PTE» are not cached in the cache RAM and,
as such, there are no associated cache tag entries in the CY7C604/605. For data consistency and implementation reasons,
the CY7C604/605 assumes the following cycles are also non-cacheable:

a. LDSTO cycles in write-through mode (CY7C604 only)
b. table walk accesses
c. cache-missed accesses during cache-lock mode (CY7C604 only)
d. boot mode accesses (except user/supervisor data accesses when the MMU is enabled and the cache is enabled)
e. pass-through mode accesses
f. by-pass mode accesses
g. accesses while the cache is disabled
h. local-mode accesses
i. when MMU is disabled (ME bit of SCR = 0)

Table 4-8 shows the CY7C604/605 operation conditions for cacheable and non-cacheable accesses. Refer to the section
on MMU operation modes for additional information.

4.3.9 CY7C604/60S Mbus Cacheable (MC) Bit

One of the CY7C604/605 output signals is a Mbus cacheable bit, which is embedded in the Mbus address phase as
MAD(43) (Refer to Section 4.12, Physical Bus for more information on Mbus.) The Mbus cacheable bit indicates the
cacheable status of a memory access by the CY7C604/605. This information is consistent with the cache visibility philoso­
phy of the CY7C604/605 and is made available for use by a secondary cache tag array.

When the MMU is enabled, the MC bit is set by the state of the C bit in the corresponding PTE entry. When the MMU
function of the CY7C604/605 is disabled, the C bit of the SCR register sets the value of the MC bit. The C bit of the SCR
register is loaded by the CY7C601, and it defines the cacheable status of memory accesses when the MMU is disabled.
Table 4-9 illustrates the state of the MC bit for various CY7C604/605 operation conditions.

Table 4-9. State Table for MC (Memory Cacheable) Bit

MC Condition

0 ASI = 2O-2F H or ASI = 1 H

not applicable ASI = UN; RES

SCR[C] Not one of the above and ME = 0 or
Not one of the above and (BM = 1 and ASI = 8,9 H) or
Not one ofthe above and table walk

PTE[C] Not one of the above

4-33

EI

CY7C604/CY7C605 CMU

4.3.10 CV7C604/605 LDSTO (Atomic: Load·Store Instruction) c:y~es

In order to maintain data c:onsistency under write-through cache mode, LDSTO (atomic load-store) cyc:les are treated
as non-cacheable transactions (CY7C604 only). All LDSTO accesses are forced into main memory in this case. The C
bit in the 1LB entry is output on the Mbus as the MC (MAD(43» bit. If a cache hit occurs on a LDSTO cyc:le with the
cache in write-through mode, the cache line is invalidated. If the MMU is disabled, the C bit in the SCR is output on
the MC signal of the Mbus.

In c:opy-back mode, LDSTO cycles are treated as normal memory accesses and are cached acc:ording to the C bit of the
PTE associated with the access.

LDSTO operations on the physical bus (Mbus) are repeated if interrupted by a relinquish and retry before the load opera­
tion of the LDSTO has been c:ompleted. However, if the relinquish and retry occurs after the load operation has c:om­
pleted, only the store operation of the LDSTO is repeated.

4.3.11 CY7C604/6OS Cache Byte WrIte Enables

The CY7C604/60S supports four separate byte write enables (CfiWE(3:0» to c:ontrol write accesses to the cache RAM
(CY7ClS7). These signals are generated using the lower two bits of the virtual address (VA(1:0» and size (SIZE(l:O»
information during write accesses,

The dec:oding of the SIZE(1:0) and VA(1:0) bits is shown in Table 4-10. The CBWETI signal c:ontrols the most signifICant
byte (MSB), which is located at a word-aligned address N. CBWE3 c:ontrols the least-significant byte, located at address
N + 3. All of the byte write enables are asserted for a cache line load into the cache RAM during a cache miss.

AddreSil N 1 Address N + 1 1 Address N + 21 Address N + 3 1
31 24 23 16 15 8 7 0

Figure 4-28. Cii'W'E Byte Assignments

Table 4-10. Byte Write Enables

Size(1:0) A(1:0) CBWE3 aiWEl CBWEi CBWEli
00 00 1 1 1 0

00 01 1 1 0 1

00 10 1 0 1 1

00 11 0 1 1 1
01 00 1 1 0 0

01· 01' I I I I

01 10 0 0 1 1

01· U· 1 1 1 1

10 00 0 0 0 0
10· 01" I 1 1 1

10" 10* 1 1 1 1
10· 11· 1 1 1 1

U 00 0 0 0 0

U· 01' I 1 1 1

11· 10· 1 1 1 1

11· 11· 1 1 1 1

·Denotes an illegal combination of S~1:0) ami A(1:0).

4-34

CY7C604/CY7C605 CMU

4.4 CY7C604 I CY7C605 Registers

This section describes the control and data registers for the CY7C604/605. All registers for the CY7C604 and CY7C605
are identical with the exception of the system control register (SCR). Sections or diagrams specific to the CY7C604 or
CY7C605 are named with that part name only, whereas sections or diagrams common to both will be named using
CY7C604/605.

All values in all control registers are read/write (with the exception ofthe Implementation and Version fields of the SCR).
Control registers are accessible by use of the alternate space load or store instructions with ASI = 4. Please refer to
Section 4.8, ASI and Register Mapping, for more information on register addressing.

Programmer's Note: 1b ensure software compatibility with future versions of the CY7C604/605, reserved fields in a register
should be written as zeros and masked out when read.

4.4.1 CY7C604 System Control Register (SCR)

The system control register, as shown in Figure 4-29, defines the operation modes for the cache controller and MMU.
Refer to Section 4.2, MMU Operational Modes, for additional information on the operation modes of the MMU. The
following describes the functions of the bit fields in the SCR.

IMPL, VER The Implementation number (SCR(31:28» and the Version number (SCR(27:24» fields are hardwired; they
are read only fields and writes to those fields are ignored. The assignments for the CY7C604 these fields are:

Implementation number field: 0001
Version number field: 0000

MCA(1:0) Multichip address field (SCR(23:22» provides the address field in multichip configuration. Refer to the Section
on Multichip Configuration for more information.

MCM(I:O) Multichip mask field (SCR(21:20» provides a masking facility to mask certain muItichip address (MCA) bits
in order to provide a facility to build systems with a different number of CY7C604s (from 1 to 4).

MY Multichip configuration valid bit (SCR(19» indicates that the MCA and MCM fields are valid (see Multichip Configu­
ration, Section 4.5).

BM Boot-mode bit (SCR(14» indicates the system is in boot mode. This bit is set to 1 to indicate boot mode. This bit
is automatically set upon power-on reset.

C Cacheable bit (SCR(13» indicates whether the access is cacheable or not when the MMU is disabled (this bit is indepen­
dent of the CE bit, see CacheablelNon-Cacheable Memory Accesses, Section 4.3.8 for more details.) This bit is set to
1 if accesses on the physical bus (with the MMU disabled) are to be considered cacheable.

CM Cache-mode bit (SCR(10» indicates whether the cache is operating under write-through no write allocate policy or
copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting this bit to 0 will enable
write-through cache mode.

CL Cache-lock bit (SCR(9» indicates whether the entire cache is locked or not (see Section 4.3.2.3 on Cache Lock, page
4-19). This bit is set to 1 to lock the cache.

CE Cache-enable bit (SCR(8» indicates whether the virtual cache is enabled or not. This bit is set to 1 to enable the cache
controller.

IMPL = Specific Implementation of the MMU

VER = Version of Specific Implementation (typically mask revision)

MCA (0:1) = Multichip Address

MCM (0:1) = Multichip Mask

MY = Multichip Valid

BM = Boot Mode

C = Cacheable (when MMU disabled)

CM = Cache Mode

CL = Cache Lock

CE = Cache Enable
NF = No Fault

ME = MMU Enable

RSV = Reserved

Figure 4-29. CY7C604 System Control Register (SCR)

4-35

RSV

7

lEI

CY7C604/CY7C605 CMU

NF No-fault bit (SCR(I» prevents supervisor data accesses from signaling data faults to the CY7C601. When the NF
bit is set, exception-generating logic (in both the 1LB and the table walk) does not indicate supervisor data faults to the
CY7C601 (via MEXC), but status and address information is recorded in the SFSR and SFAR registers as in normal data
access operations. When the NF bit is not set, the CY7C604 reports the supervisor data exceptions.

ME MMU-enable bit (SCR(O» indicates whether the MMU is enabled or not. This bit is set to 1 to enable the MMU.

Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the CY7C604 into the following
state: cache disabled (CE = 0), cache unlocked (CL = 0), write-through mode (eM = 0), non-cacheable (C = 0),
boot-mode enabled (BM = 1), multichip disabled (MY = 0), no fault disabled (NF = 0), and MMU disabled (ME =
0).

4.4.2 CY7C605 System Control Register (SCR)

The System Control Register, as shown in Figure 4-30, def"mes the operation modes for the cache controller and MMU.
Refer to page 4-13 for additional information on the operation modes of the MMU. The following describes the functions
of the bit fields in the SCR. .

IMPL, VER The Implementation number (SCR(31:28» and the Version number (SCR(27:24» fields are hardwired; they
are read only fields and writes to those fields are ignored. The assignments for the CY7C605 are:

Implementation number field: 0001
Version number field: 1111

MCA(l:O) Multichip address field (SCR(23:22» provides the address field in multichip configuration. Refer to Section 4.5
on Multichip Configuration for more information. .

MCM(l:O) Multichip mask field (SCR(21:20» provides a masking facility to mask certain multichip address (MCA) bits in
order to provide a facility to build systems with a different number of CY7C605s (from 1 to 4). . .

MV Multichip configuration valid bit (SCR(19» indicates that the MCA and MCM fields are valid (see Multichip Configu­
ration, Section 4.5).

MID(3:0) Module identification number (SCR(18:15» identifies the processor module during transactions on the Mbus
(refer to Section 4.12). This four bit module identification number is embedded in the Mbus address phase of all Mbus
transactions initiated by the CY7C605.

8M Boot-mode bit (SCR(14» indicates the system is in boot mOde. This bit is setto 1 to indicate boot mode. This bit is
automatically set upon power-on reset.

C CacheQble bit (SCR(13» indicates whether the access is cacheable or not when the MMU is disabled (this bit is indepen­
dent of the CE bit, see CacheablelNon-cacheable Memory Accesses, Section 4.3.8, for more details.) This bit is set to 1 if
accesses on the physical bus (with the MMU disabled) are to be considered cacheable.

MR Memory Reflection (SCR(ll» MR = 1 indicates that the main memory system on the Mbus supports memory reUec­
tion. MR affects the status of the MPTAG cache tag bits as descnbed in the cache state transitions section starting on page
4-23.

CM Cache-mode bit (SCR(lO» indicates whether the cache is operating under write-through no write allocate policy or
copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting this bit to 0 will enable
write-through cache mode.

RSV

7

IMPL = Specific Implementation of the MMU C = Cacheahle (when MMU disabled)
VER = Version of Specific Implementation (typically mask revision) MR = Memoty Reflection
MCA (1:0) = Multicbip Address CM = Cache Mode
MCM (1:0) = Multichip Mask CE = Cache Enable
MY = Multichip \-\tlid NF = No Fault
MID(3:0) = Module Identifier (3:0) ME = MMU Enable
BM = Boot Mode RSV = Reserved

Figure 4-30. CY7C605 System Control Register (SCR)

4-36

CY7C604/CY7C60S CMU

CE Cache-enable bit (SCR(8» indicates whether the virtual cache is enabled or not. This bit is set to 1 to enable the cache
controller.

NF No-fault bit (SCR(1» prevents supervisor data accesses from signaling data faults to the CY7C6010 When the NFbit is
set, exception-generating logic (in both the 1LB and the table walk) does not indicate supervisor data faults to the
CY7C601 (via MEXC), but status and address information is recorded in the SFSR and SFAR registers as in normal data
access operations. When the NF bit is not set, the CY7C605 reports the supervisor data exceptions.

ME MMU-enable bit (SCR(O» indicates whether the MMU is enabled or not. This bit is set to 1 to enable the MMU.

Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the CY7C605 into the following
state: cache disabled (CE = 0), write-through mode (CM = 0), non-cacheable (C = 0), boot-mode enabled (BM = 1),
memory reflection disabled (MR = 0), no fault disabled (NF = 0), and MMU disabled (ME = 0).

4.4.3 CY7C604/605 Context Table Pointer Register (CTPR)

The context table pointer points to the context table in physical memory. The table is indexed by the contents of the
context register. The context table pointer appears on bits 35 through 14 of the Mhus (MAD(35:14» during the first fetch
of 1LB miss processing. Once the root pointer is cached in the PTPC (page Thble Pointer Cache), no fetching of the
root pointer is required until the context is changed (see Figure 4-31).

31

CTP

CTP = Context Thble Pointer
RSV = Reserved

RSV

10 9 o

Figure 4-31. CY7C604/605 Context Table Pointer Register

4.4.4 CY7C604/605 Context Register (CXR)

The context register defines a virtual address space associated with the current process. The CXR is a twelve-bit register,
which supports 4096 contexts. This register is used to define the current context for the CY7C604/605. Nearly all
CY7C604/605 operations are dependent upon matching the value of this register to a cache tag entry or 1LB entry.

31

RSV

CXN = Context Number
RSV = Reserved

CXN

12 11

Figure 4-32. CY7C604/605 Context Register

4.4.5 CY7C604/605 Reset Register (RR)

o

The RR register contains information regarding whether Watch Dog Reset (WDR), Software Internal Reset (SIR) or
Software External Reset (SER) occurred. This is a read/write register, and setting the software internal reset bit (SIR)
or the software external reset (SER) causes the corresponding reset. Refer to CY7C604/605 Reset, Section 4.7, for more
details on reset processing. Upon power-on reset, the WDR, SIR, and SER bits in the RR will be cleared. Reading the
RR will also clear these bits.

RSII

31 3 2 o
RSV = Reserved SIR = Software Internal Reset
WDR = Watch Dog Reset SER = Software External Reset

Figure 4-33. CY7C604/605 Reset Register

4-37

EI

CY7C604/CY7C605 CMU

4.4.6 CY7C604/605 Root Pointer Register (RPR)

The RPR is the context level table page table pointer (PTP) and is cached in the Page Thble Pointer Cache. Refer to
Section 4.1.5 on page 4-11 for information on the page table pointer cache.

On power-on reset, the V bit is cleared. When the current context is changed by writing to the Context Pointer Register
(CXR), the V bit of the RPR is cleared. The V bit is also cleared when the CTPR register is written.

31

RP

RP = Root Pointer

RSV = Reserved

V = Valid

6 5

RSV

1 0

Figure 4-34. CY7C604/605 Root Pointer Register

4.4.7 CY7C604/605 Instruction access PTP (IPTP)

The IPTP is the instruction access level 2 table page table pointer (PTP) and is part of the Page Thble Pointer Cache.
On power-on reset, the V bit is cleared.

31

IPTP

IPTP = Instruction Access PTP

RSV = Reserved

V = Valid

RSV I v I
4 3 1 0

Figure 4-35. CY7C604/605 Instruction Access PTP Register

4.4.8 CY7C604/605 Data access PTP (DPTP)

The DPTP is the data access level 2 table page table pointer (PTP) and is a register in the Page Thble Pointer Cache.
On power-on reset, the V bit is cleared.

31

DPTP

DPTP = Data Access PTP

RSV = Reserved

V = Valid

4 3 1 0

Figure 4-36. CY7C604/605 Data Access PTP Register

4.4.9 CY7C604/605 Index Tag Register (ITR)

The ITR contains the tag (index! and index2) fields of the IPTP and DPTP entries. Refer to Section 4.1.5 on page 4-11
for information on the PTP cache.

31

ITAG RSV DTAG RSV

18 17 16 15 2 0

RSV = Reserved
ITAG = Instruction Access PTP Thg
DTAG = Data Access PTP Thg

Figure 4-37. CY7C604/605 Index Tag Register

4-38

CY7C604/CY7C605 CMU

4.4.10 CY7C604/60S TLB Replacement Control Register (TRCR)

The TRCR contains the Replacement Counter (RC) and Initial Replacement Counter (IRC) fields as shown in
Figure 4-38. These fields are used in order to support random replacement and to support locking capabilities of the 1LB.
Refer to Section 4.1.1.2 on page 4-6for information on 1LB entry locking. Upon power-on reset, both the RC and IRC
fields are initialized to zero.

RSV RC I RSV I IRC

31 14 13 8 7 6 5 0

RSV = Reserved

RC = Replacement Counter

IRC = Initial Replacement Counter

Figure 4-38. CY7C604/60S TLB Replacement Control Register

4.4.11 CY7C604/60S Synchronous Fault Status Register (SFSR)

The synchronous fault status register, illustrated in Figure 4-39, contains fault-associated information for synchronous
faults. Synchronous faults are faults that occur during an integer unit access of memory. Synchronous faults include
almost all possible faults for the CY7C604/605. This type of fault is synchronous to the operations of the CY7C601. For
the CY7C604/605, this fault type covers all cases except those caused by delayed writes of data stored in the write buffers.
These faults are asynchronous to the operation of the CY7C601, and are named asynchronous faults.

An example of a synchronous fault is a privilege violation fault caused by attempting an unauthorized memory access.
These faults are discussed in detail in Section 4.9. Upon encountering a synchronous fault, the CY7C604/605 asserts the
MEXC signal, along with MHOLD and MDS. Synchronous faults are the only exception type that assert the MEXC
signal.

In the CY7C604, the copy-back translation error (CBT) bit indicates that a translation error occurred during a table walk
for the flush of a modified cache line of a copy-back mode cache miss. The SFAR contains the address of the missed
cache access, not the modified cache line address that caused the translation error. When this type of error occurs, the
cache tag remains valid, and the cache line remains modified. Note that this bit is not used in the CY7C605, and is re­
served. The physical address for a cache line is always available in the CY7C605, therefore making the CBT bit unneces­
sary in a CY7C605 based system.

The uncorrectable error (VE), timeout error (TO), and bus error bits (BE) report error status as encoded in the MERR,
MRTY, and MRDY signals. (Refer to the Section 4.12 on Mhus for further information.) The level bits (L) describe
the level in a table walk process at which the fault occurred (if applicable). These bits are described in Table 4-17 on page
4-49.
The access type bits (AT(2:0» describes the access type that caused the fault. This field specifies user/supervisor access
and whether the access is load or store of data or instruction. The AT bits are described in Table 4-18 in the section on
synchronous faults. The fault type bits (FT) describe the fault type, and are illustrated in Table 4-19 on page 4-49. The
fault address valid bit is set when the address in the synchronous fault address register (SFAR) is a valid fault address.
The over-write bit (OW) is set in the case of a double fault where the fault status stored in the SFSR does not correspond
with the fault first trapped on by the CY7C601. This is discussed in detail in the section on synchronous faults, page 4--47.

Upon power-on reset, the UC, TO, BE, Ff, FAY, and OW bits in the SFSR will be cleared. Reading the synchronous
fault status register clears all fault status bits.

RSV 19~1uclTOI BEl L I AT I FT IFAV lowl
31 14 13 12 11 109 87 54 2 o
RSV = Reserved L = Level
UC = Uncorrectable Error AT = Access 1Ype
TO = Time Out Error FT = Fault 1Ype
BE = Bus Error FV = Fault Address Valid
·CBT = Copy-back nan,lation Error OW = Over Write

("CY7C604 only; reserved in CY7C605)

Figure 4-39. CY7C604/60S Synchronous Fault Status Register

4-39

CY7C604/CY7C605 CMU

4.4.12 CY7C604/605 Synchronous Fault Address Register (SFAR)

The synchronous fault address register contains the faulted virtual address.

SFA

31
SFA = Synchronous Fault Address

a

Figure 4-40. CY7C604/605 Synchronous Fault Address Register

4.4.13 CY7C604/605 Asynchronous Fault Status Register (AFSR)

Asynchronous faults are those faults caused by a delayed memory access initiated by the CY7C604/605. This type of error
can only be caused by a delayed write to main memory initiated by the write buffer. Asynchronous faults cause the CMER
signal to be asserted, which can be used as an interrupt to the CY7C601.

The DC, TO, and BE bits are identical to those in the SFSR. They are set by the information encoded into the MERR,
MRTY, and MRDY signals of the Mhus (see Section 4.12.4). The asynchronous fault address bits provide the upper four
bits of the physical address not captured in the Asynchronous Fault Address Register (AFAR), which is a thirty-two bit
register.

The Asynchronous Fault Occurred (AFO) bit is set when an asynchronous fault is encountered. Once the asynchronous
fault occurred bit is set, no further asynchronous faults are recorded until the AFO bit is cleared, which is accomplished
by reading the asynchronous fault address register (see Figure 4-41). The DC, TO, BE, and AFO bits in the AFSR will
be cleared upon power-on reset. Reading the AFSR will also clear these bits.

RSV I uc I TO I BE I RSV I AFA(35:32) I RSV rF9
31 13 12 11 109 87 4 3 a
RSV = Reserved BE = Bus Error

UC = Uncorrectable Error AFA = Asynchronous Fault Address

TO = Time Out Error AFO = Asynchronous Fault Occurred

Figure 4-41. CY7C604/605 Asynchronous Fault Status Register

4.4.14 CY7C604/605 Asynchronous Fault Address Register (AFAR)

The AFAR contains bits 31 through 0 of the physical address for asynchronous faults (bus errors). Asynchronous faults
can occur during delayed write accesses or during background cache line flush operations in copy-back mode (see
Figure 4-42). The address in the AFAR is concatenated with the four AFA bits in the AFSR to define the entire 36-bit
physical address.

AFA

31 a
AFA = Asynchronous Fault Address

Figure 4-42. CY7C604/605 Asynchronous Fault Address Register

4-40

CY7C604/CY7C605 CMU

4.5 CY7C604 I CY7C605 Multichip Configuration

The CY7C604/605 is designed to allow expansion of the 64-kbyte cache by adding additional CY7C604/605s, each control­
ling two CY7C157 cache RAMs. A system using an expanded cache is required to configure the CY7C604/605s for multi­
chip operation. Multichip operation is defined by the MultiChip Address field (MCA(1:0», MultiChip Mask field
(MCM(1:0», and the Multichip Valid bit (MY) of the System Control Register (SCR). The two-bit MCAand MCM fields
control the addresses to which the CY7C604/605 is allowed to respond. The multichip valid bit enables the multichip
mode for the CY7C604/605, and is to be set when the MCA and MCM fields are configured for the system.

System initialization under multichip operation mode is handled by designating one of the CY7C604/605s to respond to
all addresses from the CY7C601 until the CY7C604/605s have been initialized. This CY7C604/605 is referred to as the
boot mode CY7C604/605. The other CY7C604/605s remain inactive until multichip operation has been set.

The boot mode CY7C604/605 is responsible for accesses to memory during system initialization. The boot mode
CY7C604/605 responds to all memory accesses until multichip operation is enabled by setting the multichip fields of the
SCR. The other CY7C604/605s remain inactive for all memory accesses until their SCR has been enabled for multichip
mode. The non-boot mode CY7C604/605s three-states MDS and MEXC.

SYS RESET r r

; ~
~

CY7C604/605

4
CMU1

(BootCMU)

va.." mt: im' r-
i'1lii

MEXC

GE~~~~foR r .. MOO CY7C157
A

~. A
(2X) ::: iDE - 0

MHOlD 1- I""~. 0

CY7C601
..

SNUiI CROE DE ::
CONTROL Clii'IE(3:0) WE

VA(31:0)

- RESET VD(31:0

'---- MEXC r

rl MiSS CY7C604/605 CY7C157
AQi'; ~ CMU2

-~
(2X)

DOE "M'EXC A
p

'" 0 MiSS

r=; RD

~.
VA 2:3 CSE[CRQl; DE

MHOlDA ~ CSWE(3:0)
MHliiliii i'Oii WE

AS!

~ 'fOE SIZE ..
A : - 0

~ ...
SNULL MHOLD I--

~ - CONTROl

<l-

I -
Figure 4-43. 1\vo·CMU Multichip Configuration

4--41

Two CMU System:

CMU1 ,.--------------,
L_~~_':..!..O.i..~~~=.!~J

System Control Register

CMU2 r--------------,
I MCA = 11;MCM = 10 I
L------s~mcontro(Re9isttr

Four CMU System:

CMU1 ,.--------------,
L~~~':..~.i..~~~=~~J

System Control Register

CMU2 .-------------,
I MCA = 01; MCM = 00 I L _____________I

system Control Register

CMU3 .-------------,
L~~_':..~.i..~~~=~~J

System Control Register

CMU4 ,.--------------,
L_~~_':..!].i..~~~=~~J

System Control Register

CY7C604/CY7C605 CMU

Virtual Addressing:

VA(31:20) VA(15:0)

~ X x\xxxo(x X X X,

/\
VAH VA16

X X X (xxx1) X X X X

Virtual Addressing:

VA(31:20) VA(15:0)

~ X x\xxoo(x X X X,

/\
VA17 VA16

XXX (xx01) XXXX

XXX (xx10) X X X X

X X X (xx11) XX X X

Figure 4-44. Examples of Multichip Addressing

The boot mode CY7C604/60S is selected by forcing LOW the CSEL signal as the power-on reset (POR) signal is deas­
serted. The remaining CY7C604/60Ss are connected such that the CSEL signals are forced HIGH when the POR signal
is deasserted. Each CY7C604/60S latches the state of its CSEL signal upon rising clock edge after POR is deasserted,
and remains in either boot mode or becomes inactive until the muItichip fields of its SCR have been set. (See CSEL power­
on reset timing diagrams in Sections 7.4.7 and 7.S.7.) A single CY7C604/60S system should tie the CSEL signal to ground
to ensure correct operation upon reset.

While muItichip operation is not enabled, CY7C604/60S registers are addressed by using a combination of CSEL, the
register address, and ASI = 4. The CSEL signal of each CY7C604/60S is tied to one of the upper virtual address signals,
thereby mapping the CY7C604/60S registers to different virtual addresses. These virtual addresses mapped using the
CSEL signals are ignored by the CY7C604/60S after the muItichip fields of the SCR are initialized. The non-boot mode
CY7C604/60Ss will ignore all register accesses except to SCR until the multichip mode is enabled for the CY7C604/605.

All boot-mode CY7C604/60S registers can be accessed without enabling the muItichip operation mode. Register access
is accomplished by using a load or store alternate instruction with ASI = 4. Section 4.8 on ASI and Register M~
describes the address mapping for the CY7C604/605. Note that after the muItichip fields of the SCR have been set, CSEL
is ignored for register addressing. All register accesses are mapped according to the MCM and MCA fields after the MV
bit has been set.

The multichip fields ofthe SCR for the non-boot mode CY7C604/60Ss should be configured and enabled before the SCR
for the boot mode CY7C604/605 is enabled. This prevents problems with the boot mode CY7C604/605 interfering during
the configuration of the non-boot mode CY7C604/60Ss.

Figure 4-43 illustrates a 128-kbyte cache using two CY7C604/60Ss in a multichip configuration. Note that VA24 of the
virtual address is connected to the CSEL input of CMUI and is pulled to ground with a resistor. This signal is used to

4-42

CY7C604/CY7C605 CMU

access the CMUl registers before multichip operation has been enabled. Using a pull-down resistor also accomplishes
the task of forcing the CSEL signal for CMUl to low, which is latched on the rising clock edge after POR is deasserted
to enable the CY7C604/60S as the boot mode CMU. VA23 is connected to the CSEL input for CMU2. This signal is
pulled up with a resistor to ensure that it is forced HIGH when the system reset signal is released. The virtual address
bus (VA(3l:0» is three-stated by using the system reset signal to drive TOE HIGH, thereby forcing the CY7C60l off the
address bus.

The SNULL input signal causes the CY7C604/605 to ignore an address on the virtual address bus. This input is used
in multichip operation to keep a CY7C604/60S from responding to addresses output on the virtual address bus by other
CY7C604/60Ss. The MHOlD output signal from a CY7C604/60S is used as the SNULL input for the remaining
CY7C604/60Ss. FIgure 4-43 illustrates the MHOLD to SNULL connections for a two-CY7C604/60S system.

The multichip address bits (MCA(l:O» of the System Control Register (SCR) select the state of the VA(l7:l6) bits that
must be matched for muitichip addressing. The multichip mask bits (MCM(l:O» select which of the VA(l7:l6) bits can
be ignored. The combination of the two fields define the address mapping for the CY7C604/60S. The multichip valid
bit (MY) must be set when writing to the MCA and MCM fields in order to enable multichip mode. FIgure 4-44 illustrates
two examples of how these fields are used to define the address mapping for multiple CY7C604/60S systems.

4.6 CY7C604/605 Diagnostic Support

4.6.1 CY7C604/60S MMU TLB Entries

TLB entries can be accessed with a load or store alternate instruction with the TLB entry address and ASI = 6H. This
feature is supported for diagnostic purposes and to provide CY7C60l access to locked TLB entries. The virtual and physi­
cal sections of each entry in the TLB can be accessed by the CY7C601 as a single-word read or write. The address mapping
for the TLB entries is shown in Table 4-11. The format of CAM word and RAM word entries in the TLB is shown in
FIgure 4-45.

31

Table 4-11. TLB Entry Address Mapping

Address

OH

4H

8H

CH

lOH

14H

· · ·
lFOH

lF4H

lFSH

lFCH

200-FFFFFFFS H

TLB Entry CAM Word Format

VA (31:12) CXN (11:0)

VA = Virtual Address

CXN = Context Number

12 11 o

TLB Entry Register

Entry 0 RAM Word

Entry 0 CAM Word

Entry 1 RAM Word

Entry 1 CAM Word

Entry 2 RAM Word

Entry 2 CAM Word

· · ·
Entry 62 RAM Word

Entry 62 CAM Word

Entry 63 RAM Word

Entry 63 CAM Word

Reserved

TLB Entry RAM Word Format

PPN (35:12) I C I M I ACC I 51 I V I
31 87653210

PPN = Physical Page Number ACC = Access protection bits

C = Cacheable b~

M = Modified b~

51 = Short Translation Type
V = Valid

Figure 4-45. TLB Entry Format

4-43

CY7C604/CY7C605 CMU

Table 4-12. Cache Tag Entry Address Mapping

Address Cacbe Tag Entry

OOOxH 0

002xH 1

004xH 2

006xH 3

· · · · · ·
FFExH 2047

(x - don t care)

4.6.2 CY7C604/60S Cache Tag Entries

CY7C604 tag entries are accessed using a load or store alternate instruction with the cache tag entry address and ASI
= OE H. The CY7C605 PVfAG is accessed using a load or store alternate instruction specifing the entry address and
ASI = OE H. CY7C605 MPTAG entries are accessed in a similar manner using ASI = 30 H. Each tag entry can be read
as a load single or can be written as a store single from the CY7C601. The address mapping for the cache tag entries
is shown in Table 4-12. The format ofa CY7C604 tag entry is shown in Figure 4-46. The CY7C605 PVfAGand MPTAG
entry formats are illustrated in Figure 4-47.

4.6.3 CY7C604/60S Cache Data Entries

Cache data entries can be accessed from the cache RAM by using a load or store alternate instruction asserting the virtual
address and ASI = OF H. The CY7C604/605 cache controller causes a forced hit from the cache tag during these accesses.
All data widths are supported for a read or write to the cache ram.

31

PVTAG Entry

I TAG

TAG

16 15

TAG = Virtual Address Thg

CXN = Context Number

V = Valid bit

4 3 2 1 0

M = Modified bit

S = Supervisor

R = Reserved

Figure 4-46. CY7C604 Cache Tag Entry Format

MPTAG Entry

TAG

31 16 15 4 3 2 1 0 31

TAG = Virtual Address Thg
CXN = Context Number
V = Valid bit

SH = Shared
S = Supervisor
R = Reserved

TAG = Physical Address Thg
V = Valid
SH = Shared

Figure 4-47. CY7C60S Cache Tag Entry Format

4-44

8 7 6 5 4 0

M = Modified
R = Reserved

CY7C604/CY7C605 CMU

4.7 CY7C604/605 Reset

4.7.1 Power·On Reset (POR)

Upon power·on reset, the entire system is forced into a defined state. The 1LB and the cache tag(s) in the CY7C604/605
are invalidated, all valid bits.in control registers are cleared, and certain bits in the ASFR and SFSR are cleared as de­
scnbed in the previous sections. The CY7C604/605 asserts IRST to the integer unit for as long as POR is asserted. MRST
is not asserted. POR must be asserted for a minimum of 8 clocks. The bits in the reset register (RR) are cleared. Upon
power-on reset, the UC, TO, BE, IT, FAV; and OW bits in the SFSR will be cleared. The SCR fields in the CY7C604/605
will have the following state after a power-on reset:

Table 4-13. CY7C604/60S Power· On Reset States

IMPL Unchanged

VER Unchanged

MCA(1:0) Unchanged

MCM(1:0) Unchanged

MV 0

BM 1

C 0

CM 0

CL 0

CE 0

NF 0

ME 0

MR 0

4.7.2 Watch.Dog Reset (WDR)

When the CY7C601 encounters a trap while traps are disabled, the CY7C601 enters into an error state, asserts the
ERROR signal, and then halts. The only way to restart the CY7C601 in the error state is to assert its RESET signal.
The CY7C604/605 does this by perfonning a watch-dog reset, which asserts the IRST signal for 1024 clock cycles. MRST
is not asserted. The TLB and the cache tag(s) in the CY7C604/605 are not invalidated. The WDR (RR[2]) bit in the RR
register is set. All SCR fields except boot mode (BM) are unchanged. BM is set to 1 after a watch-dog reset.

4.7.3 Software Internal Reset (SIR)

The operating system can reset the CY7C601 by setting the SIR bit in the reset register. The CY7C604/605 asserts IRST
for 1024 clock cycles to reset the CY7C601. The TLB and the cache tag are not invalidated. All SCR fields except BM
are unchanged, and BM is set to 1 after a software internal reset. The contents of the reset register are unchanged and
the SIR bit will remain set. Refer to page 4-83 for timing diagrams for the SIR and SER resets.

4.7.4 Software External Reset (SER)

The operating system can reset the system separately from the CY7C601 by writing 1 into the SER bit of the RR register.
Only the writing of a 1 into the SER bit will cause MRST to be asserted. The CY7C604/605 asserts MRST for 1024 Mbus
clock cycles to reset the system. The TLB and the cache tag are not invalidated. The SCR register remains unchanged.
The CY7C604/605 will wait for its write buffers to empty before asserting MRST on a software external reset. The con­
tents of the reset register are unchanged and the SER bit will remain set.

MRST will not be asserted on a software external reset until the write buffers have been flushed. Writing both the SIR
and SER bits in the reset register will cause the assertion of both IRST and MRST. A reset routine can poll the reset
register to detennine the source of any reset.

4-45

CY7C604/CY7C60S CMU

4.7.5 CY7C604/605 Reset in Multichip Configuration

In a multichip configuration, the CY7C604/605 that is responsible for handling boot mode can also assume the responsi·
bility to handle the Reset operations described above. The IRST to the CY7C601 and the MRST to the external system
are connected only to this responsible CY7C604/605. The reset signals from the other CY7C604/605s are not connected.
The ERROR pin of the CY7C601 should be connected to all CY7C604/605s thereby putting all CY7C604/605s in the
same state during watch dog reset. Only the IRST of the boot-handling CY7C604/605 is connected to the RESET input
of the CY7C601.

When performing a software internal reset in a multichip configuration, the reset register SIR bit should be set in all
the non-boot-handling CY7C604/605s before SIR is set in the boot-handling CY7C604/605. This places all CY7C604/605s
contained in the system in the same mode before the CY7C601 is reset. A softw/l.re external reset in a multichipconfigura­
tion can be performed by writing the SER bit in the boot-handling CY7C604/605 only. It is not necessary to alter the
non-boot-handling CY7C604/605s.

4.8 CY7C604/60S ASI and Register Mapping

The CY7C604/605 uses the address space identifier bus (ASI < 5:0 >) to provide access by the CY7C601 to internal regis­
ters and resources, such as the cache tag and the TLB. The CY7C604/605 also uses the ASIbus to map restricted memory
access functions, such as local and pass-through memory addressing modes. Register access to the CY7C604/605 requires
using a load or store alternate instruction with ASI = 04 H in addition to the register address, given in Table 4-14.
Table 4-15 illustrates the ASI mapping for the CY7C604/605.

Table 4-14. CY7C604/605 Register Address Mapping

VA (15:0) CY7C604/605 Registers

OH System Control Register (SCR)

looH Context Table Pointer Register (CTPR)

200H Context Register (CXR)

300H Synchronous Fault Status Register (SFSR)

400H Synchronous Fault Address Register (SFAR)

SooH Asynchronous Fault Status Register (AFSR)

600H Asynchronous Fault Address Register (AFAR)

700H Reset Register (RR)

800 - FOO H Reserved

1000H Root Pointer Register (RPR)

llooH Instruction Access PTP (IPTP)

1200H Data Access PTP (DPTP)

1300H Index Tag Register (ITR)

1400H TLB Replacement Control Register (TRCR)

1500 - FFOO H Reserved

4-46

CY7C604/CY7C605 CMU

Table 4-15. Standard ASI Assignments

ASI Function

OH Reserved

IH Mbus extended address space'

2H Unassigned

3H MMU flush/probe"

4H MMU registers"

5H MMU diagnostics instruction only TLB

6H MMU diagnostics instruction/data TLB"

7H MMU diagnostics I/O TLB

SH User instruction"

9H Supervisor instruction'

AH User data"

BH Supervisor data"

CH Cache tag for instruction cache

DH Cache data for instruction cache

EH Cache tag combined(instldata) cache" (pVTAG)"

FH Cache data for combined cache"

10H Flush combined cache line (page)"

llH Flush combined cache line (segment)'

"Indicates functions supported by the CY7C604 and CY7C60S

""Indicates function is specific to the CY7C60S

4.9 Synchronous Faults

ASI Function

12H Flush combined cache line (region)"

13H Flush combined cache line (context)"

14H Flush combined cache line (user)"

15 H Reserved

16H Reserved

17H Block copy

ISH Flush data cache line (page)

19H Flush data cache line (segment)

lAH Flush data cache line (region)

lBH Flush data cache line (context)

lCH Flush data cache line (user)

lDH Reserved

lEH Reserved

IFH Block zero

2O-2F H MMU passthrough physical address"

30H MPTAG cache tag entries ""

31-7F H Unassigned

SO-FFH Reserved

Synchronous faults are grouped into three classes: instruction access faults, data access faults, and translation table access
faults. The translation table access faults are further divided into translation instruction access faults and translation data
access faults. The SPARC architecture causes the timing and priority of these fault classes to be handled differently.
Due to delays caused by the instruction pipeline, the CY7C601 can possibly encounter a second fault before the CY7C601
enters a trap to correct the first. Depending upon the class of fault encountered, the status and address of a fault may
be allowed to overwrite information for a previous fault that has not yet generated a trap. This potential condition re­
quires a trap handler that can correct the various combinations of fault conditions. This section describes these potential
fault conditions.

The case of a pair of faults occurring presents a problem in reporting the correct fault status. This problem is solved by
use of an overwrite (OW) bit in the SFSR and by prioritizing which types of faults may overwrite a previous fault. The
OW bit signals the trap handler that the status and address stored in the fault registers are not valid for the trap that
the CY7C601 has entered. The SFSR logic sets the OW bit according to a state sequence based on the fault handling
of the CY7C601 and the type of faults encountered.

Since the CY7C601 delays entering a trap handler for an instruction fault, a trap caused by another fault will overwrite
the trap information for the initial instruction fault. If the second fault causes a trap in the CY7C601 before the initial
instruction fault trap is entered, the OW bit is not set. This is because the information in the fault registers will be correct
for the first trap reading the registers. However, if the initial instruction trap is entered before the second fault trap is
entered, the OW bit will be set. This is because the first trap reading the fault status registers will have the fault data
for the second trap. The OW bit is set only if the trap that will be executed first by the CY7C601 does not match the
status information stored in the SFSR. The setting of the OW bit is entirely based upon the types of faults and their order
of occurrence. Table 4-16 illustrates the possible fault cases and their effect on OW.

4-47

III

CY7C604/CY7C605 CMU

Table 4-16. OW Bit States

Update
First Fault Second Fault SFSR OW

single fault yes 0

instruction instruction yes 1

instruction data yes 0

instruction translate instr. yes 1

instruction translate data yes 0

data instruction no 0

data data yes 1-

data translate yes 1

translate instruction, data no 0

translate translate no 0

'NOT POSSIBLE with CY7C601 (and related processors)

The CY7C601 delays a trap caused by an instruction access fault until that instruction reaches the execute stage. Howev­
er, since data accesses are not pipelined, the CY7C601 jumps to a trap immediately upon encountering a data access fault.

Faults are allowed to overwrite another fault status dependent upon priority. An instruction fault is allowed to overwrite
only another instruction fault. It is not allowed to overwrite either a data fault or a translation fault. Data faults may
overwrite an instruction fault, but not a translation fault. Data faults cannot overwrite another data fault, since the
CY7C601 traps immediately upon encountering a data fault. Translation faults may overwrite any type of fault, but cannot
be overwritten. 1hmslation faults may not overwrite another translation fault.

All double fault cases are recoverable by re-executing the instruction or access that caused the fault whose status has
been overwritten. If an instruction access fault occurs and the OW bit is set, the system software must determine the
cause by probing the MMU and/or memory.

Upon encountering a synchronous fault, the SFSR records the bus error status (bus error, timeout, and uncorrectable
error) when a bus error occurs during memory accesses. The level field (L), as shown in Table 4-17, is set to the page
table level of the entry that caused the fault, if the fault is associated with a table walk. The access type (AT) field, illus­
trated in Table 4-18, defines the type of access that caused the fault. The fault type field FT (see Table 4-19) defines
the type of the current fault.

A translation table access fault (FT = 4) occurs if an MMU page table access causes an external system error. This also
occurs if a reserved entry type (ET = 3 in the PTE) is found in any level of the table walk. A translation table access
fault (FT = 4) also can occur if a PTP (page table pointer) is found in level 3, instead of a PTE. If the page table entry
is invalid (ET = 0 in the PTE), the fault type is an invalid address error (FT = 1). Table 4-20 illustrates the fault type
(FT) assigned for valid 1LB entries or PTE entries (ET = 2) that cause a fault condition. These fault conditions are always
either a protection error (read/write of data or instruction) or a privilege violation (user/supervisor access) error.

The copy-back translation fault bit (CBT) is set if there is an error occurring during a table walk for a modified cache
line replacement or during a modified cache line flush operation. The fault address valid bit (FAV) is set to one if the
content of the synchronous fault address register is valid. The SFAR may not be valid for instruction faults. The SFAR
is always valid for data faults and translation errors.

If multiple fault types apply to the same fault occurrence, the highest priority fault is recorded. The highest fault priority
is a translation fault (priority 2), as shown in Table 4-21. Priority 1 is reserved for an internal fault.

Upon power-on reset, the UC, TO, BE, Ff, FAY, and OW bits in the SFSR will be cleared. Reading the synchronous
fault status register clears all fault status bits.

4-48

CY7C604/CY7C605 CMU

Table 4-17. Fault Register Level Field

L Level

0 Entry in Context Field

1 Entry in Levell Table

2 Entry in Level 2 Table

3 Entry in Level 3 Table

Table 4-18. Fault Register Access 'JYpe Field

AT Access 1YPe
0 Load from User Data Space

1 Load from Supervisor Data Space

2 Load/Execute from User Instruction Space

3 Load/Execute from Supervisor Instruction Space

4 Store to User Data Space

5 Store to Supervisor Data Space

6 Store to User Instruction Space

7 Store to Supervisor Instruction Space

Table 4-19. Fault Register Fault 'iYpe Field

FT Fault 1YPe
0 None

1 Invalid Address Error

2 Protection Error

3 Privilege Violation Error

4 Translation Error

5 Bus Access Error

6 Not Generated

7 Reserved

4-49

CY7C604/CY7C605 CMU

Table 4-20. Fault 1ype (l?T) for PTE(ET) = 2

AT ACC

0 1 2 3 4 5 6 7

0 0 0 0 0 2 0 3 3

1 0 0 0 0 2 0 0 0

2 2 2 0 0 0 2 3 3

3 2 2 0 0 0 2 0 0

4 2 0 2 0 2 2 3 3

5 2 0 2 0 2 0 2 0

6 2 2 2 0 2 2 3 3

7 2 2 2 0 2 2 2 0

Table 4-21. Fault Register Error Priorities

Priority Error

1 Internal Error

2 Translation Error

3 Invalid Address Error

4 Privilege Violation Error

5 Protection Error

6 Bus Access Error

4.9.1 Synchronous Fault Cases

The following seventeen cases describe the combinations of fault cases that can occur:

Case 1: Instructionfault with no fUrther faults. The CY7C601 trap is delayed until the CY7C601 tries to execute the instruc­
tion.

The trap is taken immediately if the instruction access is actually a data access that is interpreted by the CY7C604/605
as an instruction access due to asserting ASI = 8 or 9 with a load alternate instruction. In this case, the trap handlers
cannot probe main memory using the PC of the instruction. If the instruction is a load alternate iostruction, the trap
handler has to calculate the effective address to probe. The SFAR has the valid address if the OW bit is not set.

Case 1: Single-Instruction Fault

OW 0

FAY 1 SFAR has valid address

FT 1 Invalid error occurred
(ET = 0 during table walk)

2 Protection error occurred (either 1LB or table walk)

3 Privilege violation error occurred (either TLB or table walk)

5 Bus access error occurred (external bus error: UC or TO or BE is set).

AT 2,3 Load/Execute from User/Supervisor instruction space

L 0,1,2,3 Level at which fault occurred during table walk (only valid with Ff = 1)

4-50

CY7C604/CY7C605 CMU

Case 2: Double instruction fault. Instruction fault (1) followed by another instruction fault (2); CY7C601 traps on instruc­
tion fault (1).

If the instruction fault (2) is due to a load access with ASI 8,9 (load alternate), it overwrites the fault associated informa­
tion of fault (1). In this case the SFAR has a valid address for the data access of the load alternate instruction.

The fault address of fault (1) can be obtained from the PC in the CY7C601 for the trap handler with the exception of
the following case.

A possible case is that of a data access interpreted by the CY7C604/60S as an instruction access because of the use of
a load or store alternate instruction with ASI = 8, 9. Before the CY7C601 takes the trap on the data access fault (which
is recorded as an instruction fault in the CY7C604/605), another instruction fault may occur. The second instruction will
overwrite the data access fault information, because it is recorded as an instruction fault in the CY7C604/60S. In this
case, the trap handler can not just probe on the PC of the instruction. If the instruction is a load alternate instruction,
the trap handler has to calculate the effective address to probe and the SFAR will not contain the fault address of the
data access fault.

Case 2: Double·Instruction Fault

OW 1

FAV 1 SFAR has valid address for fault (2)

Ff Fault type of fault (2)
1,2,3,S

AT 2,3 Access type of fault (2)

L 0,1,2,3 Level at which fault (2) occurred during table walk (only valid with Ff = 1)

Case 3: Single data fault. CY7C601 trap (taken immediately)

Case 3: Single Data Fault

OW ° FAY 1 SFAR has valid address

Ff 1 Invalid error occurred (ET = ° during table walk)

2 Protection error occurred (either TLB or table walk)

3 Privilege violation error occurred (either TLB or table walk)

S Bus error occurred (external bus error, UC or TO or BE is set)

AT 0,1,4,5,6,7

L 0,1,2,3 Level at which fault occurred during table walk (only valid with Ff = 1)

Case 4: Instruction fault followed by data fault. CY7C601 traps on the data fault

The history of the instruction fault is lost, but the same fault can be obtained again, once the return from the trap handler
of the data fault is completed.

Case 4: Instruction Fault then Data Fault

OW °
FAY 1 SFAR has valid address for data fault

Ff 1,2,3,5 Fault type of data fault

AT 0,1,4,S,6,7

L 0,1,2,3 Level at which data fault occurred during table walk (only valid with Ff = 1)

4-S1

III

CY7C604/CY7C605 CMU

Case 5: Data fault followed by instruction fault. The instruction fault cannot overwrite the data fault. The instruction fault
will occur again, once the return from the data fault trap handler is completed. CY7C601 will trap on data fault.

Case 5: Data Fault then Instruction Fault

OW ° FAY 1 SFAR has valid address for data fault

Ff 1,2,3,5 Fault type of data fault

AT 0,1,4,5,6,7

L 0,1,2,3 Level at which data fault occurred during table walk (only valid with Ff = 1)

Case 6: Data fault followed by data fault. (NOT POSSIBLE with CY7C601.)

Case 7: Translation fault (instruction access); no further faults. The CY7C601 trap is delayed until the CY7C601 tries to
execute the instruction or is taken immediately if the access is data due to a load alternate instruction.

Case 7: Translation Fault on Instruction Access

OW ° FAY 1 SFAR has valid address for translation fault.

Ff 4 Translation error occurred (bus error or ET = 3 or PTP in level 3 during table
walk)

AT 2,3 Load/Execute from User/Supervisor instruction space

L 0,1,2,3 Level at which translation fault occurred during table walk

Case 8: Translation fault (data access). The CY7C601 trap is taken immediately.

Case 8: Translation Fault on Data Access

OW ° FAY 1 SFAR has valid address for translation fault

Ff 4 Translation error occurred (bus error or ET = 3 or PTP in level 3 during table
walk)

AT 0,1,4,5,6,7

L 0,1,2,3 Level at which translation fault occurred during table walk

Case 9: Instruction fault followed by translation fault (instruction.) The CY7C601 traps on the instruction fault.
The fault address of the instruction fault can be obtained from the PC in the CY7C601 for the trap handler with the
exception of the following case.

A data access fault can be recorded as an instruction fault if a load alternate instruction with ASI = 8, 9 causes a fault.
Before the CY7C601 takes the trap on the data access fault (which is recorded as an instruction fault in the CY7C604/605),
a translation fault may occur due to an instruction access. This will overwrite the data access fault information.

Case 9: Instruction Fault then Translation Fault (I)

OW 1

FAY 1 SFAR has valid address for translation fault

Ff 4

AT 2,3 Load/Execute from User/Supervisor instruction space

L 0,1,2,3 Level at which translation fault occurred during table walk

4-52

CY7C604/CY7C605 CMU

Case 10: Translation fault (instruction access) followed by instruction fault. The CY7C601 traps on the translation fault. The
instruction fault cannot overwrite the translation fault.

Case 10: Translation Fault (I) then Instruction Fault

OW 0

FAV 1 SFAR has valid address for translation fault

Ff 4

AT 2,3 Load/Execute from User/Supervisor instruction space

L 0,1,2,3 Level at which translation fault occurred during table walk

Case 11: Translation faultI (instruction access) followed by translation fault2 (instruction). The CY7C601 traps on transla­
tion faultl.

Case 11: Translation Fault (I) then Translation Fault (I)

OW 0

FAV 1 SFAR has valid address for first translation fault

Ff 4

AT 2,3 Load/Execute from User/Supervisor instruction space

L 0,1,2,3 Level at which first translation fault occurred during table walk

The second translation fault cannot overwrite the first translation fault.

Case 12: Translation faultl (instruction access) followed by translation fault2 (data access). The CY7C601 traps on transla­
tion fault2. The translation fault2 cannot overwrite translation faultl.

Case 12: Translation Fault (I) then Translation Fault (D)

OW 0

FAV 1 SFAR has valid address for translation faultl

Ff 4

AT 2,3 Execute from User/Supervisor instruction space

L 0,1,2,3 Level at which translation faultl occurred during table walk

Case 13: Translation fault (instruction access) followed by data fault. The CY7C601 traps on the data fault. The data fault
cannot overwrite the translation fault.

Case 13: Translation Fault (I) then Data Fault

OW 0

FAV 1 SFAR has valid address for translation fault

Ff 4

AT 2,3 Execute from User/Supervisor instruction space

L 0,1,2,3 Level at which translation fault occurred during table walk

4-53

EI

CY7C604/CY7C605 CMU

Case 14: Data fault followed by translation fault (InStruction access). The CY7C601 traps on the data fault.

Before the CY7C601 takes the trap on the data access fault, a translation fault may occur due to an instruction access.
This will overwrite the data access fault information.

Case 14: Data Fault then Thanslation Fault (I)

OW 1

FAY 1 SFAR has valid address for translation fault

Fr 4

AT 2,3 Execute from User/Supervisor instruction space

L 0,1,2,3 Level at which translation fault occurred during table walk

Case 15: Instruction fault followed by translation fault (data). The CY7C601 will trap on the data fault.

Case 15: Instruction Fault then Thanslation Fault (D)

OW ° FAY 1 SFAR has valid address for translation fault

Fr 4

AT 0,1,4,5,6,7

L 0,12,3 Level at which translation fault occurred during table walk

Case 16: Translation fault (data) followed by instruction fault. The CY7C601 will trap on the data fault.

Case 16: Translation Fault (D) then Instruction Fault

OW ° FAY 1 SFAR has valid address for translation fault

Fr 4

AT 0,1,4,5,6,7

L 0,12,3 Level at which translation fault occurred during table walk

Case 17: Translation fault (data) followed by translation fault (instruction). The CY7C601 will trap on the data fault.

Case 17: Thanslation Fault (D) then Thanslation Fault (I)

OW ° FAY 1 SFAR has valid address for data translation fault

Fr 4

AT 0,1,4,5,6,7

L 0,12,3 Level at which translation fault occurred during table walk

4-54

CY7C604/CY7C605 CMU

4.10 CY7C604/605 Pin Definitions

The functional pinouts for the CY7C604 and CY7C605 are shown in Figure 4-48. Note that all three-state output signals
are driven to their inactive state before they are released to three-state. All signals described are common to both the
CY7C604 and CY7C605 unless otherwise stated.

Virtual Bus Signals

Signal Name

A(31:16)

A(15:2)

A(1:0)

ASI(5:0)

Misc. Signals

Virtual Bus Signals
1: ~

CY7C604 CY7C605

-R-

Cache RAM Signals

L-~"""--. ~

I/O

110

Figure 4-48. CY7C604 and CY7C605 I/O Signals

CY7C604/605 Virtual Bus Signals

Description

Virtual Address bus. A(31:16) are input signals during normal read/write accesses
and are latched into the CY7C604/605 on the rising edge of clock.

Virtual Address bus. Three-state input/output signals. A(15:2) are input signals dur­
ing normal read/write accesses and are latched into the CY7C604/605 on the rising
edge of the clock. They are output signals during cache line loads into the CACHE
RAM and modified cache-line reads from the CACHE RAM.

Virtual Address bus. A(1:0) are input signals during normal read/write accesses and
are latched on the rising edge of clock.

Address Space Identifiers. The ASI bits are used to:
1. Identify various types of accesses (user/supervisor, instruction/data)
2. Access CY7C604/605 registers
3. Initiate MMU FlushlProbe operation
4. Identify CACHE Flush operations
5. Recognize diagnostic operations
6. Recognize pass physical address space

4-55

III

Signal Name I/O

D(31:0) 110

FNULL

INULL

o

o

LDSTO

o

o

o

RD

SIZE(l:O)

CY7C604/CY7C605 CMU

Description

Virtual Data bus. Three-state input/output signals. D(31:0) are input signals during
CY7C601 normal write accesses, modified cache-line reads from the CACHE RAM,
CY7C604/605 register writes or CY7C604/605 diagnostic accesses. They are output
signals during cache line loads into CACHE RAM, CY7C604/605 register reads,
non-cacheable loads, or CY7C604/605 diagnostic accesses.

Error (active LOW) signal from the CY7C601. When this signal is asserted, it indi­
cates the CY7C601 has halted due to entering the error state. The CY7C604/605
reads this signal and illitiates a watchdog reset. (Refer to Section 4.7.2 for more
details.)

Floating-point unit NULLification cycle (active HIGH). When FNULL is active,
the current access is ignored.

Integer unit NULLification cycle (active HIGH). When INULL is active, the cur­
rent access is ignored.

Integer unit Output Enable (active LOW). This signal is continually driven HIGH
or LOW. This signal is connected to the AOE and DOE inputs of the CY7C601.
When deasserted (HIGH), the 10E will place the address (A(31:0», address space
identifiers (ASI(7:0», and data (D(31:0» drivers of the CY7C601 in a three-state
condition.

Integer unit Reset (active LOW) is asserted to reset the integer unit. (Refer to Sec­
tion 4.7.2 for more details.) This signal is continually driven HIGH or LOW.

Load-Store Atomic operation indicator (active HIGH). Asserted by the CY7C601
during atomic load store cycles and is sampled by the CY7C604/605 on the rising
edge of the clock.

Memory Data Strobe (active LOW) is asserted for one clock to strobe data into the
CY7C601 during a cache miss. MHOLD must be low when MDS is asserted. It is
driven off of the faIling edge of the clock. This is a three-state output.

Memory Exception (active LOW) is asserted fo~ clock whenever a privilege or
protection violation is detected. MHOLD and MDS must be low when MEXC is
asserted. This is a three-state output.

Memory Hold (active LOW) is asserted by the CY7C604/605 whenever it requires
additional time to complete the current access such as during cache miss etc. It is
driven off of the faIling edge of the clock.

Read cycle indicator (active HIGH). Asserted by the CY7C601 during read cycles
and is sampled by the CY7C604/605 on the risin~of the clock. This signal is
also used to generate cache read output enable (CROE)

SIZE of access indicator. Specifies the data width of the CY7C601 access and is
sampled by the CY7C604/605 at the rising edge of the clock.

System NULLification cycle (active LOW). When SNULL is active, the current ac­
cess is ignored.

Write Enable to indicate write cycle (active LOW). Asserted by the CY7C601 dur­
ing write cycles and is sampled by the CY7C604/605 on the rising edge of the clock.
This signal is also used to generate cache byte-write enables (CBWE(3:0».

4-56

Signal Name

CMER

MAD(63:0)

I/O

o

110

0(604)
110(605)

110

CY7C604/CY7C605 CMU

Mbus Signals

Description

CMU Error (active LOW). This signal is asserted if any bus error has occurred
during writes to main memory. A system can use this signal to cause an interrupt.
This signal has the same timing specifications as the Mbus control signals and is as­
serted for one clock. This signal is constantly driven.

Mbus Address and Data (three-state bus). During the address phase of a transac­
tion, MAD(35:0) contains the physical address PA(35:0). The remaining signals
MAD(63:36) contain the transaction-associated information, as shown below:

MAD(39:36)
OH
IH

2H*
3 H*
4H*
5H*

6-FH

Transactiog 'JY.pe
Mbus write
Mbus read
Coherent invalidate
Coherent read
Coherent write and invalidate
Coherent read and invalidate
Reserved

*CY7C605 ONLY

MAp(42:40) Tragsactiog Size
o Byte (8 bits)
1 Halfword (16 bits)
2 Word (32 bits)
3 Doubleword (64 bits)
4 16 Bytes"
5 32 Bytes
6 64 Bytes"
7 128 Bytes"

"Not supported by CY7C604/605.

MAD(43) (MC) Mbus Cacheable (active HIGH). Indicates the current Mbus trans­
action is cacheable.

MAD(44) (MLOCK) Mbus LOCK (active HIGH). Indicates the currrent Mbus
transaction is a locked transaction.

MAD(45) (MBL) Mbus Boot mode/Local indicator. MBL is high during the address
phase of boot mode transactions. The instruction fetch and data accesses to the
Mbus while the MMU is disabled in boot mode are considered BOOT MODE
transactions. The data transactions on the Mbus required for Load/Store Alternate
instructions with ASI = 01 are considered LOCAL transactions.

MAD(63:46) Reserved during the address phase (driven HIGH).

During the data phase of the transaction the MAD(63:0) lines contain the 64 bits of
data being transferred.

Mbus Address Strobe (active LOW). Asserted by the bus master during the first
cycle of every bus transaction to indicate the address phase of that transaction. This
is a three-state output.

Mbus Bus Busy (active LOW). Asserted by the current Mbus master during an en­
tire transaction and, if required, during both the read and write transactions of indi­
visible accesses. The potential bus master devices sample MBB in order to obtain
bus mastership as soon as the current master releases the bus. This is a three-state
output.

4-57

Signal Name

MBG

MIH
(605 ONLY)

MSH
(605 ONLY)

I/O

a

110

1(604)
110 (605)

a

110

CY7C604/CY7C605 CMU

Description

Mbus Bus Grant (active LOW). Asserted by external arbiter when the Mbus is
granted to a master. This signal is continually driven.

Mbus Bus Request (active LOW). Asserted by potential Mbus master devices to
acquire bus mastership. This signal is continually driven.

Mbus Error (active LOW). Asserted or deasserted by an Mbus slave during every
data phase of a transaction. This signal is three-stated when released.

Memory InHibit (active LOW). Asserted by the CY7C605 for Mbus transactions
where the cache owns the data that has been requested on the Mbus. This signal is
monitored during bus snooping by the CY7C605. Refer to section 4.12 for further
details.

Mbus Ready (active LOW). Asserted or deasserted by an Mbus slave during every
data phase of a transaction. This signal is to be three-stated when released.

Mbus Reset (active LOW). Asserted for 1024 clock cycles by only one source on the
Mbus to initialize all devices on the Mbus. This signal is continually driven.

Mbus Retry (active LOW). Asserted or deasserted by an Mbus slave during every
data phase of a transaction. This signal is three-stated when released.

H
H
H
H
L
L
L
L

H
H
L
L
H
H
L
L

H
L
H
L
H
L
H
L

" See Section 4.12 on Mbus.

Action
Nothing
Relinquish and Retry"
Data Strobe
Reserved
Bus Error
TimeOut
Uncorrectable Error
Retry"

Memory SHared (active LOW). Asserted by the CY7C605 after detecting a data
request on the Mbus for which the CY7C605 has a copy. This signal is monitored by
the CY7C605 during bus snooping. Refer to Section 4.12 for further information.

Power-On Reset (active LOW). The paR initializes all on-chip logic to a known
state, invalidates all the liB entries, and all cache tag entries. It must be asserted
for a minimum of 8 clocks. It also causes the CY7C604/605 to assert IRST to reset
the CY7C601.

4-58

Signal Name

CBWE(3:0)

Signal Name

CLK

CSEL
(604 only)

CSTA
(604 only)

I/O

o

o

I/O

o

CY7C604/CY7C605 CMU

Cache RAM Signals

Description

Cache Byte Write Enables (active LOW). During normal write operations, certain
byte enable signals are asserted depending upon the size and A(l:O) inputs. During
a cache line load all four byte enable signals are asserted. These signals can also be
driven by using a store alternate instruction with ASI = OF H. This feature is sup­
ported for diagnostic purposes. This output is continually driven (not three-stated).
CBWEO controls the most significant byte (MSB) and CBWE3 controls the least
significant byte (LSB). Refer to page 4-34 for further information on this signal.

Cache RAM Output Enable (active LOW). Asserted during normal read operations
with ASI = 8, 9, A, B, and during modified cache line read operations. This signal
is also asserted during cache data read operations with ASI = OF H for diagnostic
purposes. This signal is continually driven.

Miscellaneous Signals

Description

System Clock. This is the same clock used by the 7C601 integer unit.

Chip Select (active low). In multi-CMU systems, CSEL on each CY7C604 is con­
nected to different address lines (anyone from A(31:16» to initialize the Multichip
Configuration. In single-CMU systems, CSEL should be connected to ground in
order to permanently enable the CY7C604. In multi-CMU systems, CSEL should
be connected to ground or VCC through a resistor during power-on reset. This is
required in order to enable only one boot mode CMU. (Refer to Multichip Configu­
ration, Section 4.5, for more details.)

Cache Status. This pin provides the status of cache. In write-through, the CSTA
indicates whether the write transaction on the Mbus is associated with a cache hit or
not. For read transaction on the Mbus in either write-through or copy-back mode,
the CSTA indicates whether the CY7C604 is replacing a valid cache line entry or
not.

This signal has the same timing specifications as the Mbus signals such as MC and
has meaning only in the address phase of Mbus transactions. This signal is continu­
ally driven HIGH or LOW.

Cache Mode CSTA Condition

Write-through 1 read and valid cache line replacement

0 read and invalid cache line replacement

1 write and cache hit

0 write and cache miss

Copy-back 1 read and valid cache line replacement

0 read and invalid cache line replacement

undef. write

Test/Output Enable (active LOW). When HIGH, this signal is used to three-state
all output drivers of the CY7C604/605. TOE SHOULD BE TIED LOW DURING
NORMAL OPERATION. It is used to isolate the CY7C604/605 from the rest of
the system for debugging purposes.

4-59

EI

CY7C604/CY7C60S C~'IU

4.11 Virtual Bus Operation

The following timing diagrams illustrate CY7C604/605 virtual bus operations:
Page

Write-Through Read Cache Hit ; ~
Write-Through Read Cache Miss ... ~1
Write-Through Read Cache Miss (Alias Detected) ... 4-64
Write-Through Write Cache Hit ... 4~5
Write-Through Write Cache Miss .. 4-66
Copy-Back, Read Cache Miss (Modified Cache Line) .. ~7
Copy-Back Read Cache Miss, Modified or Non-Modified (Alias Detected) 4-n
Copy-Back Write Cache Miss, Modified or Non-Modified (Alias Detected) 4-73
Copy-Back Write Cache Hit ... 4-74
Write-Through Load Double Cache Hit .. 4-74
Write-Through Store Double Cache Hit .. 4-75
Thble Walk (with Modified Bit Update) .. 4-76
Read Access with Protection/Privilege Violation ... 4-80
CY7C604/605 Diagnostic Cache Thg Write Access ... 4-80
CY7C604/605 Register Read .. 4-81
CY7C604/605 Register Write ... 4-81
Power-On Reset ... 4-82
Software External Reset ... 4-83
Software Internal Reset .. 4-83

Write.Through (Copy· Back) Read Cache Hit liming Diagram

elK

A(31:0)

0(31:0)

RO I \$JJl \$JJl
WE I \$JJl \$JJl

CROE \ if\
'M'FimD I

MOS I

iOE \

4-60

CY7C604/CY7C605 CMU

Write.Through (Copy· Back, Clean Cache line) Read Cache Miss Timing Diagram (page 1 of 3)*

2 3 4 5 6

elK

A(31:0) ~ __________ ~ _______ A_1~ ________ ~ __ ___

, ~----~! ----------~----~C§
. (missed data) i

0(31:0)

RO /

I

CROE rn
CBWE(3:0) I

MHOlO I ,~------~------~------~------~---- III
~ I

iCE \

lM3R I ,\-_----;-__ --,..Jf

MBG* I ,~---~-----------------+---
MBB I ,~---~-------+----

MAO(63:0) --~------r-------t-------r-\(~A~D~DR~~
I '\.-_.;....If
I

*1\vo clocks can be deleted from the cache miss timing if MBG is already granted.

4-61

CY7C604/CY7C60S CMU

Write-Through (Copy-Back) Read Cache Miss Timing Diagram (page 2 of 3)

5 6 789 10 11

CLK

A(31:0) _~ __ A1_--.-...JX A2 X A3 X A4 X A5 ~

0(31:0) --+----«\.._0-1-..JX 02 X D3 X D4 X 05

RO
,

WE
,

CROE
,

CBWE(3:0)

MHOLO \~-+ ________ ~ ______ ~ ______ -+ ________ ~ ______ ~ __ ___

MOS ,

iOEl

MBR ,

MBG \~ __ ~ ______ ~ ______ ~ ________ ~ ______ ~ ______ ~ ____ __

MOO \~ __ ~ ______ ~ ______ ~ ______ ~-...J/

MAO(63:0)

MAS'

4-62

CY7C604/CY7C605 CMU

Write.Through (Copy· Back) Read Cache Miss Timing Diagram (page 3 of 3)

11 12 13 14 15 16

CLK

A(31:0) ~r---A7-~Xr--A-8---""'\Xr--A---

D(31:0) X 06 ~_--JX,-.....-0_7_-,X,-.....-0_8_-,mxxxx,--_0(;...;.A)-J'IXIXIXiXXX

RD I '<J:llITYlttJ
WE I

CROE I \ I
CBWE(3:0) AA

MHOLD \

/.}, /.}, I
I EI

MDS I \ I
IOE I \

MBR I

MBG \

MBB I

MAD (63:0)

MAS I

MRDY I

4-63

CY7C604/CY7C605 CMU

Write-Through Read Cache Miss (Alias Detected) Timing Diagram

elK

A(31:0)

0(31:0)

RO

WE

CROE

MHOIJ)

~

IOE

MAO(63:0)

JMS

MBR

MBG

MBB

MERR

MROY

MRTY

I

I

I

I

\

(O(A) } r-----~-------.~,--------~--~C§§)

VJ1l ,
VJ1l

i\ I

1\

I

,.

VJ1l

''---..;,..oJ I

,~--~----~----~
(AOOR >--E

I ~--------------~------~\ I

I \ II
I ,~--~----~----~-
I ',,---~------+-
I

I

I

Note: Although aliasing i. detected, the Mhus access is not aborted (the CY7C604/60S ignores the access). The Mhus transaction tenninates nonnally.

4-64

CY7C604/CY7C605 CMU

Write.Through Write Cache Hit Timing Diagram

ClK

A(31:0)

0(31:0)

RD \ ~ /XXXI V»:/ V»:/ V»:/
WE I \XXX\ /XXXI YlJjJ YlJjJ YlJjJ

CBWE(3:0) \ I
CROE I

MHOlD I

MDS I

IOE \

MBG* \

MBB I \ n
MAD (63:0) (ADDR X DATA H

MAS I \ I
MERR I

MRDY I \ n
MRTY I

• This timing diagram is an example of bus parking (i.e., MBG granted by default to the CY7C604/60S).

4-65

CY7C604/CY7C605 CMU

Write-Through Write Cache Miss Timing Diagram

ClK

A(31:0)

D(31:0)

RD \ /lll:\ /XXXI V::£U V::£U V::£U
WE I \XXX\ /XXXI V£tlJ V£tlJ V£tlJ

CBWE(3:0) I

CROE I

MHOlD I

MDS I

\~--------~------~------~--------~-----
MBG \

MBB I I \ ______ -'--_----4-_...Jf

MAD(63:0) -!-----'-----.;.(, (ADDR X DATA }-

MAS I ,'--_----4-...J/

MERR I

MRDY I \'--_~-Jr

MRTY I

4-66

CY7C604/CY7C605 CMU

Copy-Back Cache Read Cache Miss, Modified Cache Line (page 1 of 5)*

ClK

A(31:0)

D(31:0)

RD

CBWE(3:0)

CROE

MHOlD

MDS

IOE

MBR

MBG·

MBB

MAD(63:0)

MAS

MRDY

2 3 4 5 6

X
X

~~----~A-1------~~Xr---A2--~

--------~ ---D-'-~-1)~~

A3 x=
D'(A2) x=

I

I

rn \~---~------~------~----
I \~--~----~----~----~---
I

.......... ------_....11 \

I \~------------------~I
I \~--~----~----~----
I \~---~------------
_ _____ .0..-____ ________ -((read) ADDR ~

I

I

* Tho clock cycles can be deleted from this timing diagram if the MBG signal is already asserted.

4-67

CY7C604/CY7C605 CMU

Copy. Back Cache Read Cache Miss, Modified Cache Line (page 2 of 5)

ClK

A(31:0)

0(31:0)

RO

WE

CBWE(3:0)

CROE

MHOlO

MOS

IOE

MBR

MBG*

MBB

MAD (63:0)

S 7 8 9 10 11

=x A4 X A5 X AS X A7 X AS x=
X 0'(A3) X 0'(A4) X O'(AS) X O'(AS) X 0'(A7) ~

I

I

I

\

\

I

I

I

\

\ ~----~------~----4-~1
XXXXZXXXr---A-O';"O-R---

I ~

4-68

CY7C604/CY7C605 CMU

Copy· Back Cache Read Cache Miss, Modified Cache Line (page 3 of 5)

elK

A(31:0)

0(31:0)

RO

WE

CBWE(3:0)

CROE

MHOlD

MDS

IDE

MBR

MBG·

MBB

MAO(63:0)

MAS

MRDY

11 12 13 14 15 16

=x A1 X A2 X A3 X A4 E
O'(A7) X 0' (AS) XID D(A1) X D(A2) X D(A3) X D(A4)

/

I

'--'-______ -JI
\

\

I

I

I

\

I \~--~----~.----~.--­
____ --------~A-D-D-R~(-Ca-C-h-e-lin-e-f-lu-S~~------~----~~
I \\...--..;......j/

4-69

III

CY7C604/CY7C605 CMU

Copy. Back Cache Read Cache Miss, Modified Cache Line (page 4 of S)

16 17 18 19 20 21

eLK

A(31:0) ::£)(AS X A6 X A7 X AS X A xxx:
0(31:0) < 0(A4) X O(AS) X O(A6) X O(A7) X O(AS) ~)

RO I

M I

CBWE(3:0)

CROE I

MHOLO \

MDS I \ /

K5E I
' -!----

MBR
I

\~--------~------~--------~------~~------~-----
\ /

MAO(63:0) ~ 0'5,6 XXX 0'7,8 >®
I

4-70

CY7C604/CY7C605 CMU

Copy-Back Cache Read Cache Miss, Modified Cache Line (page S of S)

21 22 23

elK

A(31:0) _:...:.A---1~~"

0(31:0) OQQ<XX X DIAl xttlttttX 0(9)

RO I

I

C9WE(3:0) I

m, :.1", '-_--"-...If
'-. -i--_----! __ ---i,.JiI

''-+--_...JI

,~~------~--------~------~---
,~~------~------~------~--

,~~------~~------~------~---
I

MAO(63:0)

I

I

4-71

CY7C604/CY7C605 CMU

Copy-Back Read Cache Miss, Modified or Non-Modified (Alias Detected) liming Diagram

ClK

A(31:0)

0(31:0) @ ®-,.

RO I VltlJ VltlJ VltlJ VltlJ VltlJ \mI
WE I VltlJ VltlJ VltlJ VltlJ VltlJ \mI

CBWE(3:0) I

CROE -n '--_-i--'I
MHOlO I \~--~----~--~I

MDS I

MEXC I

IOE ~-----i-...JI \ \~--~----~----~---
MAO(63:0) AOOR

MAS I _---+--11
M£RR I

MROY

MRTY I

MBG \

Note: Even though aliasing is detected, the Mhus is not aborted (the CY7C604/60S ignores the access). The Mhos transaction terminates normally.
1llning assumes Mhus is parked (already granted).

4-72

CY7C604/CY7C60S CMU

Copy-Back Write Cache Miss, Modified or Non-Modified (Alias Detected) Timing Diagram

CLK

A(31:0)

0(31:0) (O(A) } @

RO \ I'll:t\ /XXXI \XXX\ !'ttY '\ttY
WE I \XXX\ /XXXI \XXX\ /XXXI '\ttY

CBWE(3:0) \ 1
aIDE I

MHOLD I ',,-_-+-__ .;..JI

MOS I

MEXC I

IOE "--!-__ ~_I \ ,~--~----~----~
MAO(63:0) AOOR

MAS I \ :1
MERR I

MROY

MRTY I

MBG \

Note: Even though aliasing is detected, the Mhos is not aborted (the Mhus controller ignores the access). TIming assumes Mhus is parked (already
granted).

4-73

Copy. Back Write Cache Hit TIming Diagram

CLK

Write· Through Load Double Cache Hit TIming Diagram

CLK

A(31:0)

0(31:0)

RO I ':ttIl ':ttIl ':ttIl
WE I ':ttIl ':ttIl ':ttIl

CROE ~~ ____ ~ ____ ~~/

4-74

CY7C604/CY7C605 CMU

CY7C604/CY7C605 CMU

Write-Through Store Double Cacbe Hit Timing Diagram

ClK

A(31:0)

D(31:0) ~
RD \ IXXX\ ttl/0. ttl/0. ttl/0. ttl/0.
WE I \XXX\ IXXX\ /XXXI 'W 'W

lDSTO \

CBWE(3:0) \ /
CROE I ..

MHOLD I

MDS I

MEXC I

IOE \

MAD (63:0) < ADDR X DATA >-
MAS I \ /

MERR I

MRDY I \ /
MRTY I

Note: The Mbus cycle is not initiated until both 32-bit transfers of the double store are received.

4-75

CY7C604/CY7C605 CMU

Table Walk Timing Diagram" (with Modified Bit Update) (page 1 of 4)

2 3 4 5 6

ClK

A(31:0)

D(31:0) @D

CROE I \ 1
RD I \ttlJ \ttlJ \ttlJ \ttlJ \ttlJ '\ZZXI
WE I \ttlJ \ttlJ \ttlJ \ttlJ \ttlJ '\ZZXI

CBWE(3:0) I

MHOlD I \~--~----~----~~--
IOE \

MAD (63:0) --------------------------;.....c(CONTEXT TABLE '--
• ADDRESS ~

MAS I \ I
MERR I

MRDY I \
MRlY I

MBR I \'--_-'---__ ;.....-11

MBG I \'----'---------
MBB I \---'----

• This table walk illustrates a cache read hit with TLB miss. This table walk updates the TLB and performs access protection checking.

4-76

CY7C604/CY7C605 CMU

Table Walk Timing Diagram (with Modified Bit Update) (page 2 of 4)

ClK

A(31:0)

D(31:0)

CROE

RD

WE

CBWE(3:0)

MAD(63:0)

MAS

MERR

MRDY

MR'fY

MBR

MBG

MBB

6 7 8 9 10 11

/

I v;&/ v;&/ v;&/ v;&/ v;&/ VXfv
I v;&/ v;&/ v;&/ v;&/ v;&/ \XXXt
/

\~--------~------~--------~------~---------------

\~~----------------~----------------~--------~-----
CONTEXTTBL

ADDR.

-D
/

/

/

I

\

\

UJ

LEVEL 1 TABLE
ADDRESS

\~_-;-....JI

4-77

EI

CY7C604/CY7C60S CMU

Table Walk Timing Diagram (with Modified Bit Update) (page 3 of 4)

ClK

A(31:0)

0(31:0)

CAOE

AD

WE

CBWE(3:0)

MAD (63:0)

MAS

MEAA

MAOY

MATY

MBA

11 12 13 14 15 16

I

I \mf \mf \mf \mf \mf \XX'!J
I \mf \mf \mf \mf \mf \XXX.j

I

\~~------~--------~------~--------~------~------

\~----------------~----------------~---------------

1"\
I

I

I

I

LEVEL 2 TABLE
ADDRESS

I

LEVEL 3 TABLE
ADDRESS

\ _______ -'f

\~------------------~------~------~--------~----

\~~--------------~--------------~-------------

4-78

----.
~~ CY7C604/CY7C60S CMU =oiiiiiiiiF CYPRESS
~ , SF.MICC:tIDI.K:

Table Walk Timing Diagram (with Modified Bit Update) (page 4 of 4)

16 17 18 19 20 21

ClK

A(31:0)

0(31:0)

CROE I

RO I v;t;j/ v;t;j/ v;t;j/ v;t;j/ v;t;j/ \XXX;

WE I v;t;j/ v;t;j/ v;t;j/ v;t;j/ v;t;j/ \XXX;

CBWE(3:0) I

MHOlO \ ~----~----------~--~----~~;--
lEI

IOE \

MAO(63:0) """----"'-----H(lEVEL 3 TABLE \ ~'--__ -'-__ _ @ ~ • ADDRESS ~

MAS I \ /
MERR I

MROY -.I
MRTY I

MBR I

MBG \

MBB ~----~----~----~--~----~~;--\

4-79

CY7C604/CY7C605 CMU

Read Access with Protection or Privilege Violation Timing Diagram

ClK

A(31:0)

0(31:0) (§J)

RO I \XXX\ tltl0.
WE I '\ti1J '\ti1J

CBWE(3:0) I

CROE I

MHOlO \ I
MOS I \ /

MEXC I \ II
IOE \

CY7C604/605 Diagnostic Cache Tag Write Access Timing Diagram

ClK

A(31:0)

0(31:0) ®
WE I \XXX~ LXXXI '\ti1J '\ti1J

MHOlO I \ I

4-80

CY7C604/CY7C605 CMU

CY7C604/60S Register Read Timing Diagram

ClK

A(31:0)

0(31:0)

RO I v;tU v:tlI
MHOlO I \ '---_.....0.-__ ---.11

MOS I \

CY7C604/60S Register Write Timing Diagram

ClK lEI
A(31:0)

0(31:0) --+---------~~~---------

LXXXI
I

4-81

CY7C604/CY7C60S CMU

Power-On Reset Timing Diagram

CLK

A(31:0)

(continued)

CLK

A(31:0)

0(31:0)

POR

iRS'f

MHOLO

MOS

MAO (63:0)

MAS

MROY

MBR

MBG

MBB

9 10 11 12

~)~/ __ OO~H ____ ~~ '\ t--- 8 eLOerS MIN. --;::!:-t-I----4-----l----..)5r-i
: \! U'r-----;-----'/

12 13 14 15 16 17

~~-----~----M~H----~---~-~

clxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxzxxxxx~
I

I
;~

'T\ ~~----~----~----~----~;--­
/ \~~--~----~----~;--­
--+-------~------+-------~---~------
/

/
::
::

'T\ ~--------'/
I \ _________ ---;.--J/

I

4-82

CY7C604/CY7C605 CMU

Software External Reset Timing Diagram

ClK

A(31:0)
~--'-----'----!--II-'----!-I f---'--""'I)

0(31:0)
~ 1024 ~. LOCKS r .. ---

--+--------+~~~-+----------'--+----+---+.----+.-----

I

I

Notes:

1. Address A will be 00000700 Hand ASI will be 04 H.

2. Data A will be 00000001 H.

\ , 5 5-~---9-1): 5 sfl
~55 i5~

X Y

3. MRSTwill not be asserted until the write buffers are empty. !f empty, MRSTwill be asserted at pointX. !fnot empty, MRSTwill be asserted at point Y
(the rising clock following the final data phase of emptying the write buffer.) In either case, MRST will be asserted for 1024 clock cycles.

Software Internal Reset Timing Diagram

ClK

A(31:0) OH ~

0(31:0) --~--------~~~r---- r-"
I '--5s-!

Notes:

1. Address A will be 00000700 Hand ASI will be 4 H.

2. Data A will be 00000002 H.

3. IRST causes CY7C6011611 to place address 0 on address bus while asserted. CY7C6011611 continues with reset address sequence after IRST is
deasserted.

4-83

CY7C604/CY7C605 CMU

4.12 Physical Bus (Mbus) Operation

The SPARC Mbus is a high-speed interface designed to connect SPARC processor modules to physical memory modules
and I/O modules. The Mbus is a integrated circuit interface, and is not intended to operate as a general expansion bus
across a system backplane. It is intended to operate as an interface between modules and interface circuitry located on a
single printed circuit board. Modules consist of one or more integrated circuits that contain the Mbus interface. A
CY7C600 CPU based upon the CY7C604/605 is an example of such a module.

Mbus is divided into two levels of implementation: level I and level 2. Levell (implemented on the CY7C604) includes
the basic Mbus signals and transactions needed to support a uniprocessor system. Level 2 introduces additional signals
and transactions needed to design a symmetric, cache-coherent, shared-memory multiprocessor system. Level 2 Mbus is
supported by the CY7C605.

The SPARC Mbus Interface Specification (available from ROSS) provides further information on the Mbus from a system
perspective. This section describes the Mbus as it pertains to signals specific to the operation of the CY7C604 and
CY7C605. Additional Mbus signals not required for the operation of the CY7C604/605 are not explicitly described in this
section.

4.12.1 Mbus Principles

• Fully synchronous bus

• Multiplexed 64-bit address/data bus

• 64 gigabytes of physical memory address space

• All signals are changed and sampled on the rising edge of clock

• Bus arbiter is a separate bus unit

• Peer level (multi-master) bus protocol

• Overlapped arbitration with bus "parking"

• Multiprocessor support signals and transactions (level 2)

• Write-invalidate type of cache-consistency protocol (level 2)

4.12.2 Mhus Level 1 Overview

Levell Mbus supports two transactions: Read and Write. These transactions simply read or write a specified SIZE of bytes
from a specified physical address. These transactions are supported using a subset of the Mbus signals, namely a 64-bit
multiplexed address/data bus (MAD(63:0), an address strobe signal (MAS), and an encoded acknowledge on three signals
(MRDY, MRTY, and MERR). Additional level I signals support arbitration for modules (MBR, MBG, and MBB), as
well as the Mbus reset output (MRST on CY7C604, RSTOUT in the SPARC Mbus specification), and cache memory
error (CMER on CY7C604, AERR in the SPARC Mbus specification). These signals are supported by the CY7C604 as
part of its physical bus interface. Additional level I signals defined for Mbus but not used by the CY7C604 are interrupts
(IRL(3:0», module identification (ID(3:0», and reset input (RSTIN)(which corresponds to POR on the CY7C604/605).
These signals are to be used by the processor, and are not specific to the CY7C604. The Mbus reference clock (CLK)
completes the signal requirements for a level I system.

Mbus assumes that there are central functional elements to perform reset, arbitration, interrupt distribution, timeout,
and Mbus clock generation. Refer to the SP ARC Mbus Interface Specification for a detailed description of Mbus as defined
for system implementation.

4.12.3 Mhus Level 2 Overview

The level 2 Mbus includes all level I transactions and signals and adds four transactions and two signals to support cache
coherency. This is to facilitate the design of symmetric, shared memory, multiprocessor systems. In levell, details of the
cache operations inside modules are not visible to the Mbus transactions. This changes with level 2, where many aspects of
the cache operation are assumed as part of the new Mbus transactions. To participate in cache-consistent sharing using
level 2 transactions, a cache must have a copy-back with write-allocate policy and have a block size of 32 bytes. Cache lines

4-84

CY7C604/CY7C605 CMU

are assumed to be described as being in one of five states: invalid, exclusive clean, exclusive modified, shared clean, and shared
modified.

The additional transactions present in level 2 systems are coherent read, coherent invalidate, coherent read and invali­
date, and coherent write and invalidate. The two additional signals are Mbus Shared (MSH) and Mbus Inhibit (MIH). All
coherent transactions have SIZE = 32 bytes. The cache coherency protocol is a "write invalidate" protocol, where the
writing cache broadcasts a coherent invalidate if the cache line is not exclusive. This indicates to all caches that they should
invalidate the cache line since it contains "stale data" after the write completes. All caches "snoop" coherent read transac­
tions and assert MSH if the address of the transaction is present in their cache. By observing the MSH signal, other caches
can update the state of the cache lines they hold. If a cache is the "owner," it asserts the signal MIH to tell memory not to
send data. The cache then supplies the data to the requesting cache (referred to as direct data intervention). Coherent
read and invalidate and coherent write and invalidate are simply the combination of a coherent invalidate and either a
coherent read or a write. Their purpose is to reduce the quantity of Mbus transactions needed and thus conserve band­
width. For more information, see Section 4.3.3.2.

Symbol Description

MAD(63:0) Mbus Address/Data

MAS Mbus Address Strobe

MERR Mbus Error

MRDY Mbus Ready

MRTY Mbus Retry

MBR Mbus Bus Request

MBG Mbus Bus Grant

MBB Mbus Bus Busy

MSH* Mbus Shared

MIH* Memory Inhibit

1'8: Three-state BS: Bi-state 00: Open Drain

'Level 2 (CY7C605) ONLY

4.12.4 Mbus Signal Summary

Table 4-22. Mbus Signal Summary

Output Input Line 1Ype Signal1Ype

Master/Slave Master/Slave bused TS

Master Slave bused TS

Slave Master bused TS

Slave Master bused TS

Slave Master bused TS

Master Arbiter dedicated BS

Arbiter Master dedicated BS

Master Arbiter/Master bused TS

Bus Watcher Master bused OD

Bus Watcher Master/Memory bused TS

Table 4-22 summarizes the signals that comprise the Mbus interface. Bus agents (master, slave, arbiter, etc.) are listed in
the output or input column of Table 4-22 to denote whether the signal is an input or output for that bus agent. The "line
type" column of Table 4-22 lists signals as bused or dedicated. Bused signals are those driven or received by multiple bus
agents, whereas dedicated signals are driven by one agent and received by only one other. For more details, refer to the
CY7C604/605 Pin Definitions, Section 4.10, on page 4-55.

The Mbus is a 64-bit multiplexed address/data bus with three separate bus agents: master, slave, and arbiter. The bus
arbiter is essentially a "traffic cop" for the Mbus. It is external to all bus masters or slaves, and is responsible for granting
bus ownership to one of the various bus masters. The algorithm by which the arbiter assigns priority to the various bus
masters is left to the system designer.

A bus master requests bus ownership by asserting its dedicated MBR signal. The arbiter grants bus ownership by asserting
the dedicated MBG signal for that bus master. If the MBB (Mbus Bus Busy) signal is not asserted, the bus master asserts
MBB and starts the bus transaction. If the MBB signal is asserted, the bus master must wait until is has been released. The
bus master does not own the bus until it has asserted MBB, and MBB cannot be asserted until it has been released by the
previous bus master. This protocol allows the Mbus to support overlapped bus arbitration. Note that MBG should stay
asserted until MBB has been released by the current bus master.

After MBB has been released by the current bus master, MBG may be deasserted at any time in response to other bus
requests. If no further requests are made, the MBG should stay asserted. This is referred to as bus parking, and it allows

4-85

CY7C604/CY7C605 CMU

CLK

MAD(63:0)

Cycle j~ Ii ~~ A + n

I X I Data 1 I X I Data; I X I Data 3 I X I Data 4 I X

Figure 4-49. Mbus Burst Transaction Example

subsequent requests from the same bus master to be serviced without the delay of arbitrating the Mbus. IT MBG for a
particular bus master has already been asserted (i.e., the bus has been parked on that bus master), the bus master may
assert MBB and claim the Mbus without first asserting MBR.

The Mbus bus cycle consists of an address cycle followed by one or more data cycle(s). Transaction sizes supported by
Mbus are: 1, 2, 4, 8, 16,32, 64, and 128 bytes. A data transaction requiring more than one data cycle is referred to as a burst
transaction.

Since the 64-bit Mbus can transfer eight bytes in a single data cycle, transactions greater than eight bytes are performed as
burst transactions. 1tansactions less than or equal to eight bytes are performed as non-burst transactions. Non-burst
transactions consist of a single address phase and a single data phase. Figure 4-49 illustrates an example of a burst transac­
tion. The CY7C604/605 supports 1, 2, 4, 8, and 32-byte transactions on the Mbus. The 32-byte cache line size is the only
burst transaction supported by the CY7C604/605.

An Mbus cycle begins after the bus master has acquired the Mbus and asserted MBB. The bus master supplies the address
and strobes the Mbus Address Strobe (MAS) for one clock period. The bus slave (usually the memory system) acknowl­
edges the data transfer by strobing the MRDY , MERR, and MRTY signals. MRDY is strobed for each successful data
cycle. Unsuccessful data cycles are acknowledged with other combinations of the MRDY, MERR, and MRTY signals.
Table 4-23 describes the decoding of the MRDY, MERR, and MRTY signals.

All Mbus transactions can be terminated by an error, which is reported by the state of the MRDY, MERR, and MRTY
signals. These signals can be asserted during any data phase. All Mbus transactions can be suspended immediately by a
retry or by a relinquish and retry, also signaled by the MRDY, MERR, and MRTY signals. IT retry is signaled by the bus slave,
the suspended transaction then restarts from the beginning with a new address phase. IT relinquish and retry is signaled by
the bus slave, the bus master must deassert MBB and re-arbitrate for Mbus ownership.

A special case occurs for the CY7C604/605 if a relinquish and retry is returned for an atomic load/store transaction. IT the
relinquish and retry occurs for the read section of the load/store transaction, the transaction is halted and MBB is deas­
serted. The entire transaction is repeated after re-arbitration (the normal case). If the read section has completed and the
write section encounters a relinquish and retry, the transaction is halted and MBB is deasserted. However, in this case the
transaction will retry with the write section and will not repeat the read section of the load/store transaction.

Table 4-23. Bus Status Encoding

MERR MRDY MRTY Action

H H H Nothing

H H L Relinquish and Retry

H L H Data Strobe

H L L Reserved

L H H Bus Error

L H L Time Out

L L H Uncorrectable Error

L L L Retry

4-86

CY7C604/CY7C605 CMU

Mbus Address Cycle: MAD(63:0)

IIGWAiftMlJt;lMffWI I I Physical Address I
/ 63:60 59:50 49:46 4S 44 43 42:40 39:36 3S 0

SHADED areas are RESERVED 1'" for IBVIII 1 and are FORCED
HIGH by the CY7C604 MC Memory

'LBVIII 2 (CY7C605) only
"Not used by CY7C6041605

Cacheable
MLOCK
Locked
Transaction

MBl Boot mode/Local

Virtual Address"

Reserved

Module Idenlifler"

:bJIII o .. Mbus write
1 Mbus read
2 Coherentlnvalidate'
3 Coherent Read'
4 Coherent Write and Invalidate'
S Coherent Read and Invalidate'

"Level 2 (CY7C605) only

SID
0 Byte
1 ., ., Hallword
2 Word (32 bits)
3 .. Doubleword
4 "16-bytes
S 32-bytes
6 "54-bytes
7 .. "128-bytes

Figure 4-50. Mhus Address Cycle

The data transfer rate on the Mhus is controlled by the Mhus slave. All Mhus masters must be capable of accepting a burst
transfer of the requested size at the maximum transfer rate supported by the bus. Bus slaves that cannot support the
maximum transfer rate of the Mhus must insert wait states by delaying the MRDY, MERR, and MRTY signals until the
data cycle is completed. After the Mhus transaction has finished, the bus master terminates the bus cycle by deasserting
MBB.

Level 2 requires two additional signals over level 1 in order to support cache coherency operations. MSH (memory
shared) and Mill (memory inhibit) are asserted during Mhus coherent transactions to descnbe the shared and ownership
status of a cache line whose address has been asserted on the Mhus. MSH is asserted by a CY7C60S in response to a bus
snooping operation that discovers a Mhus transaction concerning a cache line which the CY7C60S has a copy. MIH is
asserted by the CY7C60S in response to a coherent transaction on a cache line which the CY7C60S owns (i.e., has the most
up-to-date copy). The MIH signal is used to inhibit the output of the memory system, and is asserted to indicate that the
CY7C60S will respond to the memory request by supplying the data directly to the requesting cache.

4.12.5 Mhus Address Cycle

The address cycle of an Mhus transaction consists of a 36-bit physical address and 28 bits of control and transaction infor­
mation. Figure 4-50 illustrates the Mhus address cycle. The address fields of the Mhus address cycle are described below:

Module Identifier MAD(63:60}. This field is defined by the module ID number field of the SCR. It is used by an Mhus
agent issuing a relinquish and retry acknowledgement to identify the master to which to re-grant the bus.

Reserved MAD(59:50). This field is reserved for future expansion. The CY7C604/605 drives this field HIGH.

Virtual Address MAD(49:46}. This field provides virtual address bits 19 through 16 for the virtually indexed cache.

Mbus Boot mode/Local MAD(45.) This ~it indicates that the CY7C604/60S is in boot mode, or that the memory transac­
tion has been made under local mode (ASI = 01 H).

Mhus Lock MAD(44}. This bit indicates that the Mhus transaction is a "locked" transaction. This bit is useful to a slave
with interfaces to both the Mhus and another interface external to the Mhus. It can be used by such a slave to lock the
resource to the Mhus master. The locked state of the slave is released when the MBB signal for the transaction is deas­
serted.

Memory Cacheable MAD(43}. This bit indicates the state of the cacheable bit for the memory address asserted.

4-87

EI

CY7C604/CY7C605 CMU

Word 0 Word 1

Halfword 0 I Halfword 1 Halfword 2 I Halfword 3

ByteO I Byte1 I Byle2 I Byte3 Byte4 I Byte5 I Byle6 I Byle7

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 o
Figure 4-51. Mbus Data Ordering

Size MAD(42:40). This field describes the size of the Mbus transaction. Refer to Figure 4-50 for the assignments for this
field.

1Ype MAD(39:36). This field describes the transaction type. Refer to Figure 4-50 for the assignments for this field.

Physical Address MAD(35:0). This field is the 36-bit physical address for the transaction.

4.12.6 Mbus Data Cycle

Mbus transactions consist of an address cycle followed by one or more data cycles. A single data cycle transaction is re­
ferred to as a non-burst transaction. Note that all non-cacheable transactions made by the CY7C604/605 are transferred
as non-burst transactions. During non-burst read or write transactions, data appears in the byte locations of the Mbus as
determined by the size (MAD(42:40» and address bits MAD(2:0) (see Figure 4-51). The data on any unused Mbus lines is
undefined.

Burst transactions are used by the CY7C604/605 for cache line transfers. Burst transactions made by the CY7C604/60S
will always be on cache line boundaries (i.e., MAD < 4:0 > = 0 for the address cycle of a burst transaction). All burst
transactions made by the CY7C604/605 are 32 bytes (one cache line) in length.

Note: The CY7C604/605 is designed to ensure one "implicit clock" after a Mbus read transaction before it will assert an
address for the next Mbus transaction. This allows time for slow memory data buffers to release the Mbus.

4.12.7 Mbus Transactions

Tho transactions are defined for level! Mbus: read and write. Level 2 defines four additional transactions: coherent read,
coherent invalidate, coherent read and invalidate, and coherent write and invalidate. The following section descnbes
these transaction types.

4.12.7.1 Read (CY7C6041605)

A read operation can be performed on any size of data transfer which is specified by the SIZE bits in the address cycle.
Read transactions involving less than eight bytes will have undefined data on the unused bytes. The minimum Mbus read
transaction takes two cycles (the minimum is three cycles if different masters are performing back-to-back reads). Note
that the protocol requires a master to be able to receive data at the maximum rate of the Mbus for the entire transaction.
Figure 4-52 illustrates a read transaction.

elK

MAO(63:0)

Figure 4-52. Mbus Read Transaction

4-88

CY7C604/CY7C605 CMU

ClK

MAD(63:0)

Figure 4-53. Mhus Write Transaction

4.12.7.2 mite (CY7C604160S)

A write operation can be performed on any size of data transfer specified by the SIZE bits in the Mbus address cycle. Write
transactions involving less than eight bytes will have undefmed data on the unused bytes. The bus master performing the
write immediately drives the data in the period after the address phase of the transaction. The master releases the data
immediately after receipt of each MRDY from the slave. Note that the protocol means that a master must be able to
supply data at the maximum rate of the Mbus for the entire transaction. The minimum Mbus write operation takes two
cycles (the minimum is three cycles if different masters are performing back-to-back writes).

4.12.7.3 Coherent Read (CY7C60S only)

A coherent read operation is a block read transaction that maintains cache consistency. The participants in the transaction
are the requesting cache, the other caches performing bus snooping, and memory (or a second-level cache). There are
three possible read scenarios for a multiprocessing system with snooping caches:

1. For a snooping cache that does not have a copy of the requested block, the cache simply ignores this transaction.

2. For a snooping cache that has a copy of the requested block but does not own it, the cache must assert MSH for
one cycle during the cycle A + 2. It will mark its copy as shared (if not already marked as such).

3. For a snooping cache which owns the requested block, the cache must assert both MSH and MIH signals for one
cycle during the A + 2 cycle. The cache supplies the requested data no sooner than cycle A + 6 (four cycles after
it issued MIH). If the cache's own copy of the block was labeled exclusive, it will be changed to shared. Otherwise,
no status change will take place for the cache's own copy.

Upon receiving the data block, the requesting master shall label the block exclusive if no one asserts MSH during the A + 2
cycle or later. The requesting master shall label the block as shared if the MSH signal is asserted during the A + 2 cycle or
later.

ClK

MAD(63:0)

Figure 4-54. Mbus Coherent Read Transaction· MIH not asserted

4-89

CY7C604/CY7C605 CMU

ClK

MAO(63:0)

Figure 4-55. Mhus Coherent Read Transaction-MIH asserted

4.12.7.4 Coherent Invalidate (CY7C605 only)

An invalidate operation can only be performed on a cache-line basis. All invalidate operations are snooped. In an invali­
date operation that hits in a cache, the cache line copy is invalidated immediately regardless of its state. Memory (or a
second-level cache) is responsible for the acknowledgment of a coherent invalidate transaction on the A + 2 cycle or later.
All acknowledgment types are possible. Memory will only issue normal acknowledgments to coherent invalidate transac­
tions, but a second-level cache may issue the full range of acknowledgments. Memory (or second-level cache) designers
should note that a coherent invalidate transaction has SIZE = 32 bytes during the address phase, but MRDY is only
strobed once as acknowledgment. For a cache system that cannot guarantee to complete the invalidation before the A + 2
cycle, the memory controller for that system should delay the acknowledgment as required.

The coherent invalidate transaction is issued when a write is being performed on a shared cache line. Before the write can
be performed, all other caches in the system must invalidate their copies (write-invalidate cache consistency protocol).
Snooping caches need not assert MSH during the A + 2 cycle. The MAD(63:0) bus is undefined during the data cycles.
Figure 4-56 shows the basic coherent invalidate operation.

4.12.7.5 Coherent REad and Invalidate (CY7C605 only)

The coherent read and invalidate transaction combines a coherent read transaction with a coherent invalidate transaction.
This transaction is included to reduce the number of Mbus coherent invalidate transactions. Caches performing coherent
reads that intend to immediately modify the data can issue this transaction.

Each coherent read and invalidate transaction is snooped by all system caches. If the address hits in a cache but the cache
does not own the block, then the cache invalidates its copy of this block. If the address hits in a cache and the cache owns
the block, then it asserts MIH and supplies the data. When the data has been successfully supplied, the cache then invali­
dates its copy of the block. Figure 4-57 and Figure 4-58 show the coherent read and invalidate operation. Note that it is
identical to the coherent read operation, except that the snooping caches invalidate their copy of the cache line upon a
cache hit. All of the comments concerning MSH and MIH for the coherent read transaction apply to the coherent read
and invalidate transaction.

ClK

MAO(63:0)

MAS

Cycle ! Cycle : Cycle ;
A iA+1;A+2:

Figure 4-56. Mhus Coherent Invalidate Transaction

4-90

CY7C604/CY7C605 CMU

ClK

Figure 4-57. Mhus Coherent Read and Invalidate Transaction-MIH not asserted

ClK

MAD(63:0)

; Cycle 1 Cycle i Cycle:
A . A + 11 A + 2, ,

. A + 6', I
~r ~~:t:[~1 Data 21~1 Data 31i ~:I Data 41 >ml

,

MIH

MSH

WJ
--~--~-hL-D~~--~~--+-~--+--+--+--+--~--

~

MRDY

MBB l
Figure 4-58. Mhus Coherent Read and Invalidate Transaction-MIH asserted

4.12.7.6 Coherent Write and Invalidate (CY7C605 only)

The coherent write and invalidate transaction combines a coherent write transaction with a coherent invalidate transac­
tion. This transaction is included to reduce the number of Mbus coherent invalidate transactions.

Each coherent write and invalidate transaction is snooped by all system caches. If the address hits in a cache, then that
cache invalidates its copy of the cache line. Figure 4-59 illustrates the basic coherent write and invalidate operation. Note
that this transaction is identical to the write operation, except that the snooping caches invalidate their block upon a cache
hit. The SIZE for this transaction is always 32 bytes. Due to the nature of the cache coherency protocol, neither MIH or
MSH need to be asserted.

4-91

III

CY7C604/CY7C605 CMU

elK

MAO(63:0)

Figure 4-59. Mbus Coherent Write and Invalidate 1hInsaction

4.12.8 Mbus 'fransaction Timing

Page

Mbus Bus Mastership 1hmsfer ... 4-93
Single-Cycle-Read Transaction .. 4-93
Single-Cycle-Write 1tansaction ... 4-94
Burst-Cycle-Read 1tansaction .. 4-94
Burst-Cycle-Read 1tansaction (Slow memory) ... 4-95
Burst-Cycle-Write 1tansaction , .. 4-95
Burst-Cycle-Write 1tansaction (Slow memory) ... 4-96
Mbus Locked 1tansaction ... 4-96
Mbus Relinquish and Retry ... 4-97
Mbus Retry ... 4-97
Mbus Error .. 4-98
Mbus Coherent Read-Shared Data· .. 4-99
Mbus Coherent Read-Owned Data; Long Latency Memory" .. 4-101
Mbus Coherent Read-Owned Data; Fast Memory" .. 4-103
Mbus Coherent Write and Invalidate" ... 4-105
Mbus Coherent Invalidate' .. 4-107
Mbus Coherent Read and Invalidate; Shared Data" ... 4-108
Mbus Coherent Read and Invalidate; Owned Data' ... 4-110
'Mhos level 2 (CY7C60S) transaction only.

4-92

CY7C604/CY7C605 CMU

Mbus Bus Mastership lhmsfer

ClK

I

,r~------~-------+------~--------~------~-----

~'___""",,"""--__ O-J/
---------" /

,~-~--~--~--~--
~'---"""""""----;.....J/ ,'___"""""""--_____ --'1

Note on arbitration: MBR2 can appear anywhere and does not have to be granted immediately as shown above.

Mhus Single· Cycle Read Thansaction

ClK

MAD (63:0) (ADDRESS H DATA)
MAS I \ I

MERR I

MR5Y I \ I
MRTY I

MBR rn I
MBG I \ ;-
MBB I \ /

4-93

CY7C604/CY7C605 CMU

Mbus Single. Cycle Write 'IhUIsaction

CLK

MAD (63:0) I ADDRESS DATA

~ I \ I
MERR I

MRDY I \ /
MRTY I

MBR ~ /
MBG I \ I
MBB I \ /

Mbus Burst·Cycle Read Transaction

CLK

MAD(63:0) --{ ADDRESS H DATA 0 H DAT~ 1 H DATA 2 H DATA3 }--

~ /
I~--------~------~--------~------~~------~-----

I~~------~--------~--------~-------+--------~------

I

\~~-------+--------~------~------~--------~----
-r\~ ____ ~ ____ ~ ________ ~ ____ ~ ________ ~;---

• This timing diagram illustrates a case of bus parking (i.e., Mbus granted to CY7C604/605 by default.)

4-94

CY7C604/CY7C605 CMU

Mbus Burst.Cycle Read Transaction (Slow memory)

ClK

MAO(63:0)

~

ClK

MAO(63:0)

~

2 3 4 5 6 7

r
~-4~/r--~----~----~----~----~:------~

: : : \ ... • , •.. f .'-.-.. -.. -------.\...LJI ,--..... - -i- ------- ~ ------- -)- ------- ~ - - - - - - - - ~ - - - - - - - -;--

8 9 10 11 12

-~--~~~----~--~~~----~------~----
,.

UJ
- ~ - - - - - - - -;:- - - - - - - - ~ - - - - - - - - :~- - - - - - - - ~ - - - - - - - -:~ - - - - - -

~----~----~----~/

Mbus Burst.Cycle Write Transaction

eLK

MAD (63:0) ADDRESS X DATA 0 X DATA 1 X DATA 2 X DATA 3 >---
MAS I

MERR I

MRDY \ f
MRTY I

MBR I

MBG* \

MBB -n f

4-95

EI

CY7C604/CY7C60S CMU

Mhus Burst·Cycle Write Thansadion (Slow memory)

elK

MAD(63:0)

MAS

MRDY

elK

MAD(63:0)

MAS

MRDY

MBG"

2 3 4 5 6 7

--+-<ADDRESSX~::::~D:A:TA:O::::~~~::~:::DA:T:A:1+=::~==~DA=T=A=2=
~. ~ I

§ ~

--1- ----------------1- ----\f!-----1- ----\f!-----1- ---
~~ __ -+ ____ ~ ____ ~ ______ ~ ____ ~i ____ ~l.---

7 8 9 10 11

: :1- -: -: \fj:::::~:::: 4!::: :1::::: -:: j::::::: -I::::
i ~-
i I

Mhus Locked Transadion

elK

MAD(63:0) ADDRESS DATA ADDRESS

I
,~~~==~----~----~====~--------

,-----+-J/
I

I

\~~------~--------~------~-------+--------~----
~'----~--~----~--~~--~;--

• This timing diagram illustrates a case of bus parking (i.e., Mhus granted to CY7C604/605 by default.)

4-96

CY7C604/CY7C605 CMU

Mhus Relinquish and Retry

CLK

MAS

MERR

MRDY

MRTY

MBR1

MBR2

MBG1

MBG2

MBB

Mhus Retry

ClK

I

\ f
\ /

I

I

\
I

~ / \ f

~~'"
~.~~d

i -----+- \ i [Sf i -1----- i

\~~pi~L-__ ~\~==~r-__ ---i----+----.\ pi
1~~----~----~--~5$~~----~----~---

1~~----~----~--~5$~~----~----~---

I fj~======:::::::===

~---+-----;--~55*:
• Add one "dead clock" to this timing diagram in the case of a read access.

4-97

EI

er?:~
"=-' SIlMICCNDlX::1'

CY7C604/CY7C605 CMU

Mbus Error

eLK

MAS

MERR \ /
MRDY I

MFi'i"'t' I

MBR1 I

MBR2 I

MBG1 \

MBG2 I

MBB l\ /

4-98

CY7C604/CY7C605 CMU

Mbus Coherent Read-Shared Data (CY7C60S only) (page 1 o(2)

2 3 4 5 6

eLK

\ I
MAD (63:0) (AD DR)

\~--~----~-----+----~-----

This timing diagram illustrates a coherent read in which the requested data exists in one or more caches in the system, but is not owned
by any cache. These caches must assert MSH on cycle A + 2 as shown.

4-99

CY7C604/CY7C605 CMU

Mbus Coherent Read-Sbared Data (CY7C60S only) (page 20U)

6 7 8 9 10 11

elK _IL IL IL IL IL ll-

I DO 01 02 03 " " I MAo(63:0)

r-

4-100

CY7C604/CY7C605 CMU

Mbus Coherent Read-Owned Data; Long Latency Memory (CY7C60S only) (page 1 orl)

2 3 4 5 6

elK -~ IL IL IL IL !L

I ADDR
, , I MAD(63:0)

This timing diagram illustrates a coherent read in which the requested data exists in one or more caches in the system, and is owned
!?r!..cache. All caches with a copy of the requested data (including the owner) must assert MSH. Only the owning cache will assert
MIH on cycle A + 2 and supply the data.

4-101

CY7C604/CY7C605 CMU

Mbus Coherent Read-Owned Data; Long Latency Memory (CY7C605 only) (page 1 or 1)

6 7 8 9 10 11 12

eLK _ r--L-r--L--
~

MAO(63:0) I DO

i
!

4-102

01 X 03
~--~

02

CY7C604/CY7C605 CMU

Mbus Coherent Read-Owned Data; Fast Memory (CY7C605 only) (page 1 of 2)

2 3 4 5 6

elK

MAS

MAD(63:0)

MRDY

MRTY

MERR

MBB

MBR1

MBR2

MBG1

MBG2

MSH

MIH

This timing diagram illustrates a coherent read in which the requested data "xists in one or more caches in the system, and is owned
by a cache. All caches with a copy of the requested data (including the owner) will assert MSH. Only the owning cache asserts MIH
on cycle A + 2 and supplies the data In this case, memory has already started to respond and thus must get off the bus immediately
to allow the cache that owns the data to drive the bus.

4-103

lEI

CY7C604/CY7C605 CMU

Mhus Coherent Read-Owned Data; Fast Memory (CY7C605 only) (page 2of2)

6 7 8 9 10 11 12

elK

~
MAS

, !
l l .. (~ X MAO(63:0) DO 01

~ ::: ::;.

I \ I 1\ MAOY ~

I I
MATY I

!

I

MEAA

I MBB

!
MBA1

I
I

MBR2

I
MBG1

I !
MBG2 I

--r---~-----+----~----~----~r--

MSH

MIH

4-104

CY7C604/CY7C60S CMU

Mbus Coherent Write and Invalidate (CY7C605 only) (page 1 of 2)

2 3 4 5 6

eLK -!L-IL IL IL IL !L

MAD(63:0) ADDR X DO

!

This timing diagram illustrates a coherent write and invalidate operation in which one or more other caches have a copy of the cache
line. The other caches invalidate their copy of the cache line.

4-105

III

CY7C604/CY7C605 CMU

Mhus Coherent Write and Invalidate (CY7C605 only) (page 2 of 2)

elK

MAO (63:0)

6 7 8 9 10 11 12

~ ~
1 00 Ix Dl~X D2;X D3 '> I

I \ 1/\ 1/\ I /\ I Ir--+-I-
I I i I I I I I I /'---+i---
i 1 ,! 1
1 l I ~ I

!! ! i
i! I I
I I 1
I ! I

l I

I '

4-106

Mhus Coherent Invalidate (CY7C60S only)

2

eLK

MAD(63:0)

3

CY7C604/CY7C605 CMU

4 5 6

This timing diagram illustrates a coherent invalidate operation. Memory (or second-level cache) asserts MRDY during A + 2 (or later).

4-107

III

CY7C604/CY7C605 CMU

Mbus Coherent Read and Invalidate; Shared Data (CY7C60S only) (page 1 of 2)
123 4 5 6

eLK -IL IL IL IL IL ~
\

MAD(63:0) ADDR

\

This timing diagram illustrates a coherent read and invalidate in which the requested data may exist in one or more caches in the system.

4-108

CY7C604/CY7C60S CMU

Mbus Coherent Read and Invalidate: Shared Data (CY7C60S only) (page 2 of 2)

6 7 8 9 10 11

elK -~ ~ r---L r---L r---L ~

,
DO 01 02 03 " "

, MAO(63:0)

\ r-

lEI

4-109

CY7C604/CY7C605 CMU

Mbus Coherent Read and Invalidate; Owned Data (CY7C605 only) (page 1 or 2)

2 3 4 5 6

elK _ILILIL ILILIL

I ADDR '\
'\ I MAD(63:0)

This timing diagram illustrates a coherent read in which the requested data exists in one or more caches in the system and is owned
by a cache. Only the owning cache asserts Mlli on cycle A + 2 and supplies the data.

4-110

CY7C604/CY7C605 CMU

Mhus Coherent Read and Invalidate: Owned Data (CY7C60S only) (page 2 of 2)

6 7 8 9 10 11

elK 0-IL IL IL IL ~

I I
r 01 02 03 04 '\
'\ MAO(63:0)

I

4-111

CY7C604/CY7C605 CMU

4-112

Chapter 5
CYP~S~~~~~~~~~~~
SEMICONDUCTOR Cache Data RAM

The CY7C157 is a high-performance CMOS static RAM organized as 16K x 16 bits. It is intended specifically for use
as a high-speed cache memory for the CY7C600 family of SPARC devices. The CY7C157's 2O-ns access time allows opera­
tion at processor clock speeds of up to 40 MHz.

The CY7C157 includes registered inputs as well as data-in and data-out latches. Because it was designed specifically for
7C600 family devices, the CY7C157 CRAM requires no glue logic to interface with the CY7C601, CY7C611, CY7C602,
CY7C604, or CY7C605. All relevant pins on each device connect directly to one another. The combination of direct
connection and on-chip latches and registers yields system designs requiring less board space at a lower cost and with
increased reliability. In addition, the CY7C157's self-timed byte-write mechanism relieves the system of any write timing
chores.

5.1 Description Of Part

The CY7C157 is organized as two arrays of 16-kbyte static memory. In order to minimize external timing and interface
logic, the CY7C157 contains self-timed byte write logic, registered inputs, data-in and data-out latches, and output hold
delay logic to control the data-out latches.

Reading the device is accomplished by deasserting WE HIGH and OE LOW. On the rising edge of CLOCK, addresses
A(13:0) are loaded into the input registers. A memory access occurs, and data is held until the next rising edge of CLOCK
in order to meet the hold time requirements of the CY7C601I611.

Th write to the CY7C157, OE must be taken HIGH. If the fallfug edge of CLOCK samples either or both WEo or WEj
Law, a self-timed byte-write mechanism is triggered. Data is written from the data-in latch into the memory array at
the corresponding address.

Note that the OE signal must be HIGH for a proper write, as the WEo and WEj signals do not three-state the outputs.
A die coat insures alpha immunity.

1/07 -I/0. 1/0,5 -I/0.

Figure 5-1. CY7C157 Block Diagram

5-1

Cache Data RAM

5.2 Operation

Reading the device is accomplished by taking the appropriate WE HIGH and OE Law. On the rising edge of CLOCK,
addresses Ao through A13 are loaded into the input registers. A memory access occurs, and data is held after a read cycle
beyond the next rising edge of CLOCK to meet the hold time requirement of the microprocessor.

To write the device, OE must be taken HIGH. If the falling edge of CLOCK samples one or both of WEe or WE, Law,
a self-timed byte-write mechanism is triggered. Data is written from the data-in latch into the memory array at the corre­
sponding address.

OE must be taken HIGH for a proper write because the write enables do not three-state the outputs.

5.3 Bus Timing

Timing parameters for the CY7C157 are given in Section 7.6, beginning on page 7-49.

5.4 Signal Descriptions

5.4.1 A(13:0)-Address Inputs

Addresses on inputs A < 13:0 > are loaded into the address registers on the rising edge of CLOCK.

5.4.2 1/0(15:0)-Data Inputs/Outputs

The 16 bidirectional data I/O pins are input signals during write accesses and output signals during read accesses. Data
direction is controlled by the output enable pin, OE.

5.4.3 WE(I:0)-Write Enables

The write enables initiate the self-timed write mechanism when they are sampled LOW on the faIling edge of CLOCK.
WEe controls byte writing on data lines 110(7:0) and WE, controls data lines 110(15:8).

5.4.4 OE-Output Enable

The output enable pin controls the output drivers of the bidirectional data lines. Th begin a read access, OE is taken LOW
to enable the output drivers. Th begin a write access, OE is taken HIGH to three-state the output drivers.

5.4.5 CLOCK-Clock input

CLOCK is the system clock input and is the same signal used by the microprocessor.

5-2

Chapter 6
CYP~S~~~~~~~~~~E5
SEMICONDUcrOR SPARe Instruction Set

6.1 Assembly Language Syntax

The notations given in this section are taken from Sun's SPARe Assembler and are used to describe the suggested assem­
bly language syntax for the instruction definitions given in Section 6.2.

Understanding the use of type fonts is crucial to understanding the assembly language syntax in the instruction definitions.
Items in typewri ter font are literals, to be entered exactly as they appear. Items in italic font are metasymbols that
are to be replaced by numeric or symbolic values when actual assembly language code is written. For example, asi would
be replaced by a number in the range of 0 to 255 (the value of the bits in the binary instruction), or by a symbol that has
been bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated binary instruction. For exam­
ple, regrs2 is a reg (i.e., register name) whose binary value will end up in the rs2 field of the resulting instruction.

6.1.1 Register Names

reg
A reg is an integer unit register. It can have a value of:

%0 through %31 all integer registers
%gO through %g7 global registers-same as %0 through %7
%00 through %07 out registers-same as %8 through %15
%10 through %17 local registers-same as %16 through %23
%iO through %i7 in registers-same as %24 through %31

Subscripts further identify the placement of the operand in the binary instruction as one of the following:

regrs! -rs1 field
re&S2 -rs2 field
re&d -rd field

freg

Afreg is a floating-point register. It can have a value from %fO through %f31. Subscripts further identify the
placement of the operand in the binary instruction as one of the following:

fre&sl -rsl field
fre&s2 -rs2 field
frelJrd -rd field

creg
A creg is a coprocessor register. It can have a value from %cO through %c31. Subscripts further identify the
placement of the operand in the binary instruction as one of the following:

creg,..l -rsl field
creg,..2 -rs2 field
cre&d -rd field

6-1

SPARe Instruction Set

6.1.2 Special Symbol Names

Certain special symbols need t6 be written exactly as they appear in the syntax table. These appear in typewri ter
font. and are preceded by a percent sign (%). The percent sign is part of the symbol name; it must appear as part of
the literal value.

The symbol names are:
%psr Processor State Register
%wim Window Invalid Mask register
%tbr Trap Base Register
%y Y register
%fsr Floating·point State Register
%csr Coprocessor State Register
%fq Floating-point Queue
%cq Coprocessor Queue
%hi Unary operator that extracts high 22 bits of its operand
%10 Unary operator that extracts low 10 bits of its operand

6.1.3 Values

Some instructions use operands comprising values as follows:

simm13-A signed immediate constant that fits in 13 bits
const22-A constant that fits in 22 bits
asi-An alternate address space identifier (0 to 255)

6.1.4 Label

A label is a sequence of characters comprised of alphabetic letters (a-z, A-Z (upper and lower case distinct», underscore
(_), dollar sign ($), period (.), and decimal digits (0-9), but which does not begin with a decimal digit.

Some instructions offer a choice of operands. These are grouped as follows:

regaddr:

reg ,.1
reg,.1 + reg,.2

address:
reg ,.1
reg,.1 + reg,.2
reg,.1 + simm13
reg,.1 - simmJ3
simm13
simmJ3 + reg,.1

rec....OT_imm:
regn2
simm13

6-2

SPARe Instruction Set

6.1.5 Instruction Mnemonics

Figure 6-1 illustrates the mnemonics used to describe the SPARC instruction set. Note that some combinations possible
in Figure 6-1 do not correspond to valid instructions (such as store signed or floating-point convert extended to extended).
Refer to the instruction summary on page 6-6 for a list of valid SPARC instructions.

Data Transfer

[
Signed 1
unsign1

[single]
Double

[
Byte] Hallward

::leWOrd

[
Floating-point]
Coprocessor

rnormal]
LAltemate

[
register j
Status Registe
Queue

atomic SWAP word atomic Load-Store Unsigned Byte

Integer Operations

[AND

J[~~~alJ[normal] OR
XOR setCC

[ADD] [normal ~ [normal]
SUB eXtended setCC

] [y

1 [ReaD PSR
WRite WIM

TBR

Floating-Point Operations

~ [
Control Transfer

Integer
Single
Double
eXtended

MOVe
NEGate
ABSolute

] [
Integer]

TO Single
Double
eXtended

Branch ~ntegerCC J Floating-point CC normal
Coprocessor CC Anull delay

Instruction

Shift [~;ht] [~~ffiiC]

Tagged [ADD] set CC [normal 1
SUB Trap overnowJ

Fp

MUltiply Step set CC
SETHI
SAVE
RESTORE

ADD
SUBtract
MULtiply
DiVide
SQuare RooT
CoMPare
CoM Pare and Exception

JuMP and Unk
RETum from Trap

CALL
Trap on Integer CC

[
Single l
Double
eXtended

Figure 6-1. SPARe Instruction Mnemonic Summary

6-3

SPARe Instruction Set

6.2 Definitions

This section provides a detailed definition for each CY7C601 instruction. Each defmition includes: the instruction opera­
tion; suggested assembly language syntax; a description of the salient features, restrictions and trap conditions; a list of
synchronous or floating-point\coprocessor traps which can occur as a consequence of executing the instruction; and the
instruction format and op codes. Instructions are defined in alphabetical order with the instruction mnemonic shown in
large bold type at the top of the page for easy reference. The instruction set summary that precedes the definitions,
(Table 6-2), groups the instructions by type.

Table 6-1 identifies the abbreviations and symbols used in the instruction definitions. An example of how some of the
description notations are used is given below in Figure 6-2. Register names, labels and other aspects of the syntax used
in these instructions are described in the previous section.

LDD

Operation:

Assembler
Syntax:

Description:

Symbol

a
AND, OR XOR, etc.
asi
c
ccc
CONCAT
cond
CQ.ADDR
CQ.INSTR
c[rd)

CSR
CWP
disp22
disp30
dz
EC
EF

Lo data into destination register rd
Brackets indicate data located at address specified by contents

~
Contents of source register 1

Load Doubleword
Contents of source register 2

/ / Sign-extended immediate 13-bit field of instruction

r[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13»]

r[rd + 1]- [(r[rsl] + (r[rsZ] or sign extnd(simm13») + 4]

______ An example of this instruction would be:

LDl

ldd [address], regrd ldd [%gl + 4], %6
which would add the contents of global register gl to

The LDD instruction moves a dou
r[rd+ 1]. The effective memory ad!

signed immediate value (4) to determine the load address.

The resulting address is used to fetch and load double­
word data into the destination registers 6 and 7.

Figure 6-2. Instruction Description

Table 6-1. Instruction Description Notations

Description

Instruction field that controls instruction annulling during control transfers
AND, OR, XOR, etc operators
Instruction field that identifies the load/store alternate address space
The icc carry bit
The coprocessor condition code field of the CSR
Concatenate
Instruction field that selects the condition code test for branches
The address portion of the Coprocessor Queue
The instruction portion of the Coprocessor Queue
Depending on context, the coprocessor register (or its contents) specified by the instruction field, e.g., rd,
rsl, rs2
Coprocessor State Register
PSR's Current Window Pointer field
Instruction field that contains the 22-bit sign-extended displacement for branches
Instruction field that contains the 30-bit word displacement for calls
Floating-point exception:division by zero
PSR's Enable Coprocessor bit
PSR's Enable FPU bit

6-4

SPARe Instruction Set

Table 6-1. Instruction Description Notations (continued)

Symbol Description
ET PSR's Enable Traps bit

fcc The floating-point condition code field of the FSR
FQ.ADDR The address portion of the Floating-point queue
FQ.INSTR The instruction portion of the Floating-point queue

f[rd]s The suffix (s, d, x) after the operand indicates the precision of the operand
f[rsl] Depending on context, the floating-point register (or its contents) specified by the instruction field, e.g. , rd,

rsl, rs2
FSR Floating-point State Register

i Instruction field that selects rs2 or sign extnd(simm 13) as the second operand
icc The integer condition code field of the PSR
imm22 Instruction field that contains the 22-bit constant used by SETHI

n The icc negative bit

not Logical complement operator
nPC next Program Counter

nv Floating-point exception:invalid
nx Floating-point exception:inexact result
of Floating-point exception:overflow

ope Instruction field that specifies the count for Coprocessor-operate instructions
operand2 Either r[rs2] or sign extnd(simmI3)
PC Program Counter

pS PSR's previous Supervisor bit
PSR Processor State Register
r[15] A directly addressed register (could be floating-point or coprocessor)
rd Instruction field that specifies the destination register (except for store)
r[rd] Depending on context, the integer register (or its contents) specified by the instruction field, e.g. , rd, rsl, rs2
r[rd] < 31 > < > are used to specify bit fields of a particular register or I/O signal
[r[rsl] + r[rs2]] The contents of the address specified by r[rsl] + r[rs2]
rsl Instruction field that specifies the source 1 register
rs2 Instruction field that specifies the source 2 register
S PSR's Supervisor bit

shcnt Instruction field that specifies the count for shift instructions

sign extn(simm 13) Instruction field that contains the 13-bit, sign-extended immediate value
Symbol Description
TBR Trap Base Register

It TBR's trap type field
uf Floating-point exception:underflow
v The icc overflow bit
WIM Window Invalid Mask register
y Y Register
z The icc zero bit

- Subtract

x Multiply

/ Divide

<- Replaced by
7FFFFFFH Hexadecimal number representation

+ Add

6-5

SPARe Instruction Set

1able 6-2. Instruction Set Summary

Name ~lion ~Ies
IDSB(lDSBA·) Load Signed ~ ffrom Alternate space~ 2
IDSH(IDSHA .) Load Signed Ifword from Alternate Space 2
IDUB(illUBA .) Load Unsigned Byte (from Alternate Space) 2
IDUH(IDUHA .) Load Unsigned Halfword (from Alternate Space) 2
ID(IDA·) Load Word (from Alternate Space) 2
IDD(IDDA .) Load Doubleword (from Alternate Spacei 3
IDF Load Floating Point 2

~ IDDF Load Double Floating Point 3
" IDFSR Load F1oati~1t Point State R~ster 2 ." ...

IDC Load Coprocessor 2 .5
oS

IDDC Load Double Coprocessor 3
IDCSR Load Co~rocessor Stat';_~er 2

j STB(STBN) Store Byte (into Alternate Space) 3

'" STH(STHA·) Store Halfword (ioto Alternate Space) 3
11 ~~~A·) Store Word ~t0to Alternate Spa,; ~ 3 .. Store Doubleword into Alternate Space 4

3 STF Store Floating Point 3
STDF Store Double Floatio~ Point 4
STFSR Store Floating Point tate Re~ster 3
STDFO· Store Double F1oatinltPoint ueue 4
STC Store Coprocessor 3
STDC Store Double Coprocessor 4
STCSR Store Coprocessor State Register 3
STDCO· Store Double jllleue
IDSTUB(illSTUBA .) Atomic LoadlStore Unsigned Byte jin Alternate Space) 4
SWA.P(SWAPA ")- S~r Register with Melli()[}' in Alternate ~ce) 4

~gg~gg:kcc\ Add Jand modin&. i~ 1
Add with C!!ID' and modi icc -l

TADDcc(TADDcc1V) 'llIgged Add and modify icc ~and lhp on <Werflow)_ 1

SU~(?Bcc) c) Subtract ~~nd m4~g !~~ 1
!iii SUB SUBXcc Subtract with Cany and modI ICC 1 ... TSUBcc(TSUBccTV) 'llIl!l!"d Subtract and modify icc (and 1bp on <Werfl"!'i 1 ~
B MULScc MultiplySt~ and modify icc 1

! AND(ANOcc) And ~and modig iccl 1
ANDN(ANDNcc) And Not and modi icc 1 11 OR(ORcc) Inclusive Or (and modify icc) 1 .,.

~ ORN(ORNcc) Inclusive Or Not (and mod~ icc) 1 e
iI ~~~O~cc) Exclusive Or Jand mod· icc) 1
~ Exclusive Nor andmo@iie& 1

SIL Shift Left Logical 1
SRL Shift Right Logical 1
SRA Shift Right Arithmetic 1
SIDJU Set HJJdt 22 Bits of r ~
SAVE Save caller's window 1
RESTORE Restore caller's window 1
Bicc Branch on Integer Condition Codes 1··

U
FBicc E~~~t ~~_~~!g~~~~~~~es 1··
CBccc 1··
CALL COli 1··
JM umpana OK 2··
KOl l<fturnm:m !rap zo·
Ticc nap on Integer u>nwllon LOaes 1 4 if'lllken
RDY Read Y Register 1

~i
RDPSR· Read Processor State Register 1
RDWIM· Read Wmdow Invalid Mask 1
RDTBR· Read 1bp Base Register -.l
WRY Write Y Register 1 "iI WRPSR· Write Processor State Register 1 &1= WRWIM· Write Wmdow Invalid Mask 1 8 WlUBR· Write 1bo Base Reoister _1
UNIMP UmmPlemented Instruction
IFWSH Instruction Cache Flush 1

t~~ FPop Floati~ Point Uni'-!Jil<'rations 1 to Launch
L1'OP _LOProcessor l1pCf8llons 1 to Launch . .. assummg delay slot is filled with useful inStruction

6-6

ADD

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

SPARe Instruction Set

Add ADD

r[rd]- r[rs1] + (r[rs2] or sign extnd(simm13»

The ADD instruction adds the contents of the register named in the rsl field ,r[rs1], to either the con­
tents of r[rs2] if the instruction's i bit equals zero, or to the 13-bit, sign-extended immediate operand
contained in the instruction if i equals one. The result is placed in the register specified in the rd field.

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1000000 1 r51 li=ol ignored 1 r52 1

31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 000000 1 r51 li= 11 5imm13 I

6-7

SPARe Instruction Set

ADDcc Add and modify icc ADDcc

Operation:

Assembler
Syntax:

Description:

r[rd]- r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13»

n-r[rd]<31>
z- if r[rd] =0 then 1, else 0

v- (r[rs1]<31 > AND operand2<31 > AND not r[rd] <31 »

OR (not r[rsl] <31 > AND not operand2<31 > AND r[rd]<31 »

c- (r[rsl]<31> AND operand2<31»

OR (not r[rd]<31 > AND (r[rsl]<31> ORoperand2<31»)

ADDcc adds the contents of r[rsl] to either the contents of r[rs2] if the instruction's i bit equals zero, or
to a 13-bit, sign-extended immediate operand if i equals one. The result is placed in the register specified
in the rd field. In addition, ADDcc modifies all the integer condition codes in the manner described
above.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1010000 1 rs1 li=ol ignored 1 rs2 1
31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 010000 1 rs1 li=11 simm13 1

6-8

ADDX

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARC Instruction Set

Add with Carry ADDX

r[rd]- r[rsl] + (r[rs2] or sign extnd(simm13» + c

ADDX adds the contents of r[rsl] to either the contents of r[rs2] if the instruction's i bit equals zero, or
to a 13-bit, sign-extended immediate operand ifi equals one. It then adds the PSR's canybit (c) to that
result. The final result is placed in the register specified in the rd field.

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1001000 1 rs1 li=ol ignored 1 rs2 1

31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 001000 1 rs1 li=11 simm13 I

6-9

SPARC Instruction Set

ADDXcc Add with Carry and modify icc ADDXcc

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

r[rd]- r[rs1] + operandZ + c, where operandZ = (r[rsZ] or sign extnd(simm13»

n- r[rd]<31 >
z- if r[rd] =0 then 1, else 0

v- (r[rs1]<31 > AND operandZ<31 > AND not r[rd]<31»

OR (not r[rs1]<31 > AND not operandZ< 31 > AND r[rd] < 31 »
c- (r[rs1]<31 > AND operandZ<31»

OR (not r[rd] <31 > AND (r[rs1]<31 > OR operandZ<31 »)

ADDXcc adds the contents of r[rs1] to either the contents of r[rsZ] if the instruction's i bit equals zero, or
to a 13-bit, sign-extended immediate operand if i equals one. It then adds the PSR's carry bit (c) to that
result. The final result is placed in the register specified in the rd field. ADDXcc also modifies all the
integer condition codes in the manner described above.

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1011000 1 rs1 li=ol ignored 1 rs2 1

31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 011000 1 rs1 li=11 simm13 I

6-10

AND

Operation:

Assembler
Syntax:

Description:

lraps:

Format:

SPARe Instruction Set

And AND

r[rd]- r[rs1] AND (r[rs2] or sign extnd(simm13»

This instruction does a bitwise logical AND of the contents of register r[rs1] with either the contents of
r[rs2] (if ifbit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if ifbit
field i = 1). The result is stored in register r[rd].

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1000001 1 rs1 li=ol ignored 1 rs2 1

31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 000001 1 rs1 li=11 simm13 1

6-11

SPARe Instruction Set

ANDcc And and modity icc ANDcc

Operation:

Assembler
Syntax:

Description:

'Iraps:

Format:

r[rd]- r[rs1] AND (r[rs2] or sign extnd(simm13»

n- r[rd]<31>

z- if r[rd] =0 then 1, else 0

v-O
c-O

This instruction does a bitwise logical AND of the contents of register r[rs1] with either the contents of
r[rs2] (if ifbitfield i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if ifbit
field i = 1). The result is stored in register r[rd]. ANDcc also modifies all the integer condition codes in
the manner described above.

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1010001 1 rs1 li=ol ignored 1 rs2 1

31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 010001 1 rs1 li=11 simm13 I

6-12

ANDN

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

And Not ANDN

r[rd]- r[rsl] AND (r[rs2] or sign extnd(simm13»

ANDN does a bitwise logical AND ofthe contents of register r[rsl] with the logical compliment (not) of
either r[rs2] (if if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction
(if if bit field i = 1). The result is stored in register r[rd].

none

31 3029 25 24 19 18 14 13 12 5 4 0

11 01 rd 1000101 1 rs1 li=ol ignored 1 rs2 1
31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 000101 1 rs1 li=11 simm13 1

6-13

SPARe Instruction Set

ANDNcc And Not and modify icc ANDNcc

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

r[rd]- r[rsl] AND (r[rs2] or sign extnd(simm13»

n-r[rd]<31>

z- if r[rd] =0 then I, else 0

v-O
c-O

ANDNcc does a bitwise logical AND of the contents of register r[rs1] with the logical compliment (not)
of either r[rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction
(if bit field i= 1). The result is stored in registerr[rd]. ANDNcc also modifies all the integer condition
codes in the manner described above.

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1 010101 1 rs1 li=ol Ignored 1 rs2 1
31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 010101 1 rs1 li=11 simm13 1

6-14

Bicc

Operation:

Assembler
Syntax:

Description:

Integer Conditional Branch

PC-nPC

If condition true then nPC- PC + (sign extnd(disp22) x 4)

else nPC - nPC + 4

ba{,a}
bn{,a}
bne{,a}
be{,a}
bg{,a}
ble{,a}
bge{,a}
bl{,a}
bgu{,a}
bleu{,a}
bcc{,a}
bcs{,a}
bpos{,a}
bneg{,a}
bvc{,a}
bvs{,a}

label
label
label
label
label
label

label
label
label
label
label
label
label
label
label
label

synonym: bnz
synonym: bz

synonym: bgeu
synonym: blu

SPARC Instruction Set

Bicc

Note: The instruction's annul bit field, a, is set by appending" ,a" after the branch name. If it is not ap­
pended, the a field is automatically reset. ",a" is shown in braces because it is optional.

The Bicc instructions (except for BA and BN) evaluate specific integer condition code combinations
(from the PSR's icc field) based on the branch type as specified by the value in the instruction's cond field.
If the specified combination of condition codes evaluates as true, the branch is taken, causing a delayed,
PC-relative control transfer to the address (pC + 4) + (sign extnd(disp22) x 4). If the condition codes
evaluate as false, the branch is not taken. Refer to Section 2.3.3.3 for additional information on control
transfer instructions.

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction immediately follow­
ing the branch instruction (the delay instruction) is not executed (i.e., it is annulled). If the annul field is
zero, the delay instruction is executed. If the branch is taken, the annul field is ignored, and the delay
instruction is executed. See Section 2.3.3.4 regarding delay-branch instructions.

Branch Never (BN) executes like a NOp, except it obeys the annul field with respect to its delay instruc­
tion.

Branch Always (BA), because it always branches regardless of the condition codes, would normally ig­
nore the annul field. Instead, it follows the same annul field rules: if a = 1, the delay instruction is an­
nulled; if a = 0, the delay instruction is executed.

The delay instruction following a Bicc (other than BA) should not be a delayed-control-transfer instruc­
tion. The results of following a Bicc with another delayed control transfer instruction are implementa­
tion-dependent and therefore unpredictable.

Traps: none

6-15

SPARe Instruction Set

Mnemonic Condo Operation icc Test

BN 0000 Branch Never No test

BE 0001 Branch on Equal z

BLE 0010 Branch on Less or Equal zOR (nXOR v)

BL 0011 Branch on Less nXORv

BLEU 0100 Branch on Less or Equal, Unsigned cORz

BCS 0101 Branch on Carry Set c
(Less than, Unsigned)

BNEG 0110 Branch on Negative n

BVS 0111 Branch on oVerflow Set v

BA 1000 Branch Always No test

BNE 1001 Branch on Not Equal notz

BG 1010 Branch on Greater not(z OR (n XOR v»

BGE 1011 Branch on Greater or Equal not(n XOR v)

BGU 1100 Branch on Greater, Unsigned not(c OR z)

BCC 1101 Branch on Carry Clear not c
(Greater than or Equal, Unsigned)

BPOS 1110 Branch on Positive not n

BVC 1111 Branch on oVerflow Clear not v

Format:
31 30 29 28 25 24 22 21 o

I 0 0 I a I condo I 0 1 0 I disp22

6-16

CALL

Operation:

Assembler
Syntax:

Description:

r[15]-PC

PC4..-nPC

nPC-PC + (disp30x4)

call label

Call

SPARC Instruction Set

CALL

The CALL instruction causes a delayed, unconditional, PC-relative control transfer to the address (PC
+ 4) + (disp30 x 4). The CALL instruction does not have an annul bit, therefore the delay slot instruc­
tion following the CALL instruction is always executed (See Section 2.3.3.4). CALL first writes its re­
turn address (PC) into the outs register, r[15], and then adds 4 to the PC. The 32-bit displacement which
is added to the new PC is formed by appending two low-order zeros to the 30-bit word displacement
contained in the instruction. Consequently, the target address can be anywhere in the CY7C601'5 user
or supervisor address space.

If the instruction following a CALL uses register r[15] as a source operand, hardware interlocks add a
one cycle delay.

Programming note: a register-indirect CALL can be constructed using a JMPL instruction with rd set to
15.

Traps: none

Format:
o

disp30

6-17

CBccc

Operation:

Assembler
Syntax:

Description:

Coprocessor Conditional Branch

PC-nPC

If condition true then nPC - PC + (sign extnd(disp22) x 4)

else nPC- nPC + 4

cba{,a} label
cbn{,a} label
cb3{,a} label
cb2{,a} label
cb23{,a} label
cbl{,a} label
cb13{,a} label
cb12{,a} label
cb123{,a} label
cbO{,a} label
cb03{,a} label
cb02{,a} label
cb023{,a} label
cb01{,a} label
cb013{,a} label
cb012{,a} label

SPARe Instruction Set

CBccc

Note: The instruction's annul bit field, a, is set by appending ",a" after the branch name. If it is not
appended, the a field is automatically reset. ",a" is shown in braces because it is optional.

The CBccc instructions (except for CBA and CBN) evaluate specific coprocessor condition code combi­
nations (from the CCC < 1:0> inputs) based on the branch type as specified by the value in the instruc­
tion's cond field. If the specified combination of condition codes evaluates as true, the branch is taken,
causing a delayed, PC-relative controltransfer to the address (pC + 4) + (sign extnd(disp22)x 4). If the
condition codes evaluate as false, the branch is not taken. See Section 2.3.3.3 regarding control transfer
instructions.

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction immediately follow­
ing the branch instruction (the delay instruction) is not executed (Le., it is annulled). If the annul field is
zero, the delay instruction is executed. If the branch is taken, the annul field is ignored, and the delay
instruction is executed. See Section 2.3.3.4 regarding delayed branching.

Branch Never (CBN) executes like a NOp, except it obeys the annul field with respect to its delay instruc­
tion.

Branch Always (CBA), because it always branches regardless of the condition codes, would normally
ignore the annul field. Instead, it follows the same annul field rules: if a = 1, the delay instruction is
annulled; if a = 0, the delay instruction is executed.

Th prevent misapplication of the condition codes, a non-coprocessor instruction must immediately pre­
cede a CBccc instruction.

A CBccc instruction generates a cp_ disabled trap (and does not branch or annUl) if the PSR's EC bit is
reset or if no coprocessor is present.

6-18

Tcaps:

Format:

cp_disabled
cp _exception

Mnemonic

CBN

CB123

CB12

CB13

CB1

CB23

CB2

CB3

CBA

CBO

CB03

CB02

CB023

CB01

CB013

CB012

31 30 29 28 25 24 22 21

I 0 0 I a I condo I 1 1 1 I

SPARe Instruction Set

condo CCC < 1:0 > test

0000 Never

0001 lor2or3

0010 lor 2

0011 lor 3

0100 1

0101 2or3

0110 2

0111 3

1000 Always

1001 0

1010 o or3

1011 o or2

1100 Oor2or3

1101 o or 1

1110 Oor1or3

1111 Oor1or2

o

disp22

6-19

CPop

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARC Instruction Set

Coprocessor Operate CPop

Dependent on Coprocessor implementation

Unspecified

CPop land CPop2 are the instruction formats for coprocessor operate instructions. The op3 field for
CPopl is 110110; for CPop2 it's 110111. The coprocessor operations themselves are encoded in the ope
field and are dependent on the coprocessor implementation. Note that this does not include load/store
coprocessor instructions, which fall into the integer unit's load/store instruction category.

All CPop instructions take all operands from, and return all results to, the coprocessor's registers. The
data types supported, how the operands are aligned, and whether a CPop generates a cp _exception trap
are Coprocessor dependent.

A CPop instruction causes a cp _disabled trap if the PSR's EC bit is reset or if no coprocessor is present.

cp_disabled
cp _exception

31 3029 25 24 19 18 14 13 5 4 0

11 01 rd 1110110 1 rs1 I ope 1 rs2 I
31 30 29 25 24 19 18 14 13 5 4 0

11 01 rd 1 110111 1 rs1 1 ope 1 rs2 1

6-20

FABSs

Operation:

Assembler
Syntax:

Description:

1raps:

Format:

Absolute Value Single

(CY7C602 Instruction Only)

fIrd)s- fIrs2)s AND 7FFFFFFF H

fabss fregrs2' fregrd

SPARC Instruction Set

FABSs

The FABSs instruction clears the sign bit of the word infIrs2] and places the result in f[rd). It does not
round.

Since rs2 can be either an even or odd register, FABSs can also operate on the high-order words of
double and extended operands, which accomplishes sign bit clear for these data types.

fp_disabled
fp _exception'

3130 29

rd

25 24 19 18 14 13

11 1 0 1 0 0 1 ignored 1 0 0 0 0 0 1 0 0 1

5 4 o
rs2

• NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-21

FADDd Add Double

(CY7C602 Instruction Only)

Operntion: f[rd]d- f[rs1]d + f[rs2]d

Assembler
Syntax: faddd fregrs]' fregrs2' fregrd

SPARC Instruction Set

FADDd

Description: The FADDd instruction adds the contents of f[rs1] CONCKr f[rs1 + I] to the contents of f[rs2] CON­
CKr f[rs2+ I] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd] and
f[rd + I].

Traps: fp_disabled
fp_exception (of, uf, nY, nx)

Format:
25 24 19 18 14 13 5 4 o

rs1 I 001000010 I rs2

6-22

SPARC Instruction Set

FADDs Add Single

(CY7C602 Instruction Only)

FADDs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

fI rd]s - f[rs1]s + f[rs2]s

The FADDs instruction adds the contents of f[rs1] to the contents of fI rs2] as specified by the ANSI/
IEEE 754-1985 standard and places the results in f[rd].

fp_disabled
fp_exception (of, uf, nv, nx)

25 24 19 18 14 13 5 4 o

r51 I 001000001 r52

6-23

FADDx Add Extended

(CY7C602 Instruction Only)

Operation: f[rd]x- f[rs1]x + f[rs2]x

Assembler
Syntax: faddx /regrs], /regrs2, /regrd

SPARC Instruction Set

FADDx

Description: The PADDx instruction adds the contents of f[rs1] CONCAT f[rs1 + 1] CONCAT f[rs1 + 2] to the con­
tents off[rs2] CONCAT f[rs2 + 1] CONCAT f[rs2 + 2] as specified by the ANSI/IEEE 754-1985 standard
and places the results in f[rd], f[rd + 1], and f[rd + 2].

Traps: fp_disabled
fp _exception (of, uf, nY, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 o

rs1 I 001000011 rs2

6-24

FBfcc

Operation:

Assembler
Syntax:

Description:

Floating-Point Conditional Branch

PC-nPC

If condition true then nPC - PC + (sign extnd(disp22) x 4)

else nPC - nPC + 4

fba{,a} label
fbn{,a} label

fbuLa} label
fbg{,a} label
fbug{,a} label
fbi {,a} label
fbul{,a} label

fblgLa} label
fbne{,a} label synonym: fbnz
fbe{,a} label synonym: fbz
fbue{,a} label

fbgeLa} label

fbugeLa} label
fble{,a} label
fbule{,a} label
fbo{,a} label

SPARC Instruction Set

FBfcc

Note: The instruction's annul bit field, a, is set by appending ",a" after the branch name. If it is not ap­
pended, the a field is automatically reset. ",a" is shown in braces because it is optional.

The FBfcc instructions (except for FBAand FBN) evaluate specific floating-point condition code combi­
nations (from the FCC < 1:0 > inputs) based on the branch type, as specified by the value in the instruc­
tion's cond field. If the specified combination of condition codes evaluates as true, the branch is taken,
causing a delayed, PC-relative control transfer to the address (PC + 4) + (sign extnd(disp22) x 4). If the
condition codes evaluate as false, the branch is not taken. See Section 2.3.3.3 for additional information
on control transfer instructions.

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction immediately follow­
ing the branch instruction (the delay instruction) is not executed (i.e., it is annulled). If the annul field is
zero, the delay instruction is executed. If the branch is taken, the annul field is ignored, and the delay
instruction is executed. See Section 2.3.3.4 regarding delayed branch instructions.

Branch Never (FBN) executes like a NOp, except it obeys the annul field with respect to its delay instruc­
tion.

Branch Always (FBA), because it always branches regardless of the condition codes, would normally
ignore the annul field. Instead, it follows the same annul field rules: if a = 1, the delay instruction is
annulled; if a = 0, the delay instruction is executed.

To prevent misapplication of the condition codes, a non-floating-point instruction must immediately
precede an FBfcc instruction.

An FBfcc instruction generates an fp _disabled trap (and does not branch or annul) if the PSR's EF bit is
reset or if no Floating-Point Unit is present.

6-25

Traps:

Format:

fp_disabled
fp _exception *

Mnemonic

FBN

FBNE

FBLG

FBUL

FBL

FBUG

FBG

FBU

FBA

FBE

FBUE

FBGE

FBUGE

FBLE

FBULE

FBO

Condo Operation

0000 Branch Never

0001 Branch on Not Equal

0010 Branch on Less or Greater

0011 Branch on Unordered or Less

0100 Branch on Less

0101 Branch on Unordered or Greater

0110 Branch on Greater

0111 Branch on Unordered

1000 Branch Always

1001 Branch on Equal

1010 Branch on Unordered or Equal

1011 Branch on Greater or Equal

1100 Branch on Unordered or Greater or Equal

1101 Branch on Less or Equal

1110 Branch on Unordered or Less or Equal

1111 Branch on Ordered

31 30 29 28 25 24 22 21

I 0 0 I a I condo I 1 1 0 I disp22

SPARe Instruction Set

fcc Test

no test

UorLorG

LorG

UorL

L

UorG

G

U

no test

E

UorE

GorE

UorGorE

LorE

U orLorE

LorGorE

o

... NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-26

SPARC Instruction Set

FCMPd Compare Double FCMPd

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(CY7C602 Instruction Only)

fcc- fIrsl)d COMPARE f[rs2)d

fcmpd [regrsl, [regrs2

FCMPd subtracts the contents of f[rs2) CONCAT f[rs2+ 1) from the contents of fIrsl) CONCAT
fI rsl + 1) following the ANSI/IEEE 754-1985 standard. The result is evaluated, the FSR's fcc bits are set
accordingly, and then the result is discarded. The codes are set as follows:

fcc relation

0 fsl = fs2

1 fsl < fs2

2 fsl > fs2

3 fsl ? fs2 (unordered)

In this table, fsl stands for the contents of fIrsl), f[rsl + 1) and fs2 represents the contents of f[rs2),
fIrs2+ 1).

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point
instruction must be executed between an FCMP and a subsequent FBfcc instruction.

FCMPd causes an invalid exception (nv) if either operand is a signaling NaN.

fp _disabled
fp_exception (nv)

31 30 29 25 24 19 18

11 0 1 ignored 1 1 1 0 1 0 1 1 rs1

6-27

14 13 5 4

1 001010010

o

rs2

SPARC Instruction Set

FCMPEd Compare Double and Exception if Unordered

(CY7C602 Instruction Only)

FCMPEd

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

fcc- f[rsl]d COMPARE f[rs2]d

fcmped fregrsl, fregrsl

FCMPEd subtracts the contents of f[rs2] CONCAT f[rs2+ 1] from the contents of f[rsl] CONCPJ:'
f[rsl + 1] following the ANSIIIEEE 754-1985 standard. The result is evaluated, the FSR's fcc bits are set
accordingly, and then the result is discarded. The codes are set as follows:

fcc Relation

0 fsl = fs2

1 fsl < fs2

2 fsl > fs2

3 fsl ? fs2 (unordered)

In this table, fsl stands for the contents of f[rsl], f[rsl + 1] and· fs2 represents the contents of f[rs2],
f[rs2+ 1].

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point
instruction must be executed between an FCMP and a subsequent FBfcc instruction.

FCMPEd causes an invalid exception (nv) if either operand is a signaling or quiet NaN.

fp_disabled
fp_exception (nv)

6-28

13

001010110

SPARC Instruction Set

FCMPEs Compare Single and Exception if Unordered FCMPEs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(CY7C602 Instruction Only)

fcc- qrsl]s COMPARE qrs2]s

fcmpes [regrsl' [regrs2

FCMPEs subtracts the contents of q rs2] from the contents of q rsl] following the ANSI/IEEE 754-1985
standard. The result is evaluated, the FSR'sfcc bits are set accordingly, and then the result is discarded.
The codes are set as follows:

fcc Relation

0 fsl = fs2

1 fsl < fs2

2 fsl > fs2

3 fsl ? fs2 (unordered)

In this table, fsl stands for the contents off[rsl] and fs2 represents the contents off[rs2].

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point
instruction must be executed between an FCMP and a subsequent FBfcc instruction.

FCMPEs causes an invalid exception (nv) if either operand is a signaling or quiet NaN.

fp _disabled
fp_exception (nv)

3130 29 25 24 19 18

11 0 1 ignored 11 1 0 1 0 1 1 rs1

6-29

14 13 5 4 o

1 001010101 rs2

SPARC Instruction Set

FCMPEx Compare Extended and Exception if Unordered

(CY7C602 Instruction Only)

FCMPEx

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

fcc- f[rsl]x COMPARE f[rs2]x

FCMPExsubtracts the contents off[rs2] CONCATf[rs2+ 1] CONCAT f[rs2 + 2] from the contents of
f[rsl] CONCAT f[rsl + 1] CONCATf[rsl + 2] following the ANSIIIEEE 754-1985 standard. The result
is evaluated, the FSR's!cc bits are set accordingly, and then the result is discarded. The codes are set as
follows:

fcc Relation

0 fsl = fs2

1 fsl < fs2

2 fsl > fs2

3 fsl ? fs2 (unordered)

In this table, fsl stands for the contents off[rsl], f[rsl + 1], f[rsl + 2] and fs2 represents the contents of
f[rs2], f[rs2+ 1], f[rs2+ 2].

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point
instruction must be executed between an FCMP and a subsequent FBfcc instruction.

FCMPEx causes an invalid exception (nv) if either operand is a signaling or quiet NaN.

fp _disabled
fp_exception (nv)

31 30 29 25 24 19 18

1101 ignored 1110101 1 rs1

6-30

14 13 5 4 o
1 001010111 rs2

SPARC Instruction Set

FCMPs Compare Single

(CY7C602 Instruction Only)

FCMPs

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

fcc- f[rsl]s COMPARE f[rs2]s

fcmps fregrsl, fregrs2

FCMPs subtracts the contents of f[rs2] from the contents of f[rsl] following the ANSI/IEEE 754-1985
standard. The result is evaluated, the FSR's fcc bits are set accordingly, and then the result is discarded.
The codes are set as follows:

fcc Relation

0 fsl = fs2

1 fsl < fs2

2 fsl > fs2

3 fsl ? fs2 (unordered)

In this table, fsl stands for the contents of f[rs1] and fs2 represents the contents of f[rs2].

Compare instructions are used to set up the floating-point condition codes for a subsequent FBfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point
instruction must be executed between an FCMP and a subsequent FBfcc instruction.

FCMPs causes an invalid exception (nv) if either operand is a signaling NaN.

fp_disabled
fp_exception (nv)

31 30 29 25 24 19 18

11 0 1 ignored 11 1 0 1 0 1 1 rs1

6-31

14 13 5 4

1 001010001

o

rs2

SPARC Instruction Set

FCMPx Compare Extended

(CY7C602 Instruction Only)

FCMPx

Operation:

Assembler
Syntax:

Description:

'Ii-aps:

Format:

fcc- f[rsI)x COMPARE f[rs2)x

fcmpx jjegrs]. fregrs2

FCMPx subtracts the contents of f[rs2] CONCAT f[rs2 + 1) CONCAT f[rs2 + 2] from the contents of
f[rsI) CONCAT f[rsl + 1] CONCAT f[rsl + 2] following the ANSI/IEEE 754-1985 standard. The result
is evaluated, the FSR's fcc bits are set accordingly, and then the result is discarded. The codes are set as
follows:

fcc Relation

0 fsI = fs2

1 fsI < fs2

2 fsI > fs2

3 fsI ? fs2 (unordered)

In this table, fsI stands for the contents off[rsI], f[rsl + 1], f[rsl + 2] and fs2 represents the contents of
f[rs2], f[rs2 + 1], f[rs2 + 2].

Compare instructions are used to set up the floating-point condition codes for a subsequent FEfcc in­
struction. However, to prevent misapplication of the condition codes, at least one non-floating-point
instruction must be executed between an FCMP and a subsequent FEfcc instruction.

FCMPx causes an invalid exception (nv) if either operand is a signaling NaN.

fp_disabled
fp_exception (nv)

6-32

13

001010011

SPARC Instruction Set

FDIVd Divide Double FDIVd
(CY7C602 Instruction Only)

Operation: f[rd]d - fI rsl]d I f[rs2]d

Assembler
Syntax: fdivd [regrs1' [regrs2' [regrd

Description: The FDIVd instruction divides the contents off[rsl] CONCAT f[rsl + 1] by the contents of f[rs2] CON­
CAT fIrs2+ 1] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd] and
fIrd+l].

Traps: fp _disabled
fp_exception (of, uf, dz, nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 o

r51 I 001001110 I r52

6-33

FDIVs Divide Single

(CY7C602 Instruction Only)

Operation: f[rd]s-- f[rsl]s / f[rs2]s

Assembler
Syntax: fdivs [regrsb [regrs2, fregrd

SPARC Instruction Set

FDlVs

Description: The FDIVs instruction divides the contents of f[rsl] by the contents of f[rs2] as specified by the. ANSI!
IEEE 754-1985 standard and places the results in f[rd].

Traps: fp_disabled
fp_exception (of, uf, dz, nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 o

11101001 rs1 1 001001101 rs2

6-34

FDIVx

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARC Instruction Set

Divide Extended FDIVx
(CY7C602 Instruction Only)

f[rd]x- f[rsl]x I f[rs2]x

fdivx [regrsl' [regrs2' [regrd

The FDIVx instruction divides the contents off[rsl] CONCATf[rsl + 1] CONCATf[rsl + 2] by the con­
tents off[rs2] CONCAT f[rs2 + 1] CONCAT f[rs2 + 2] as specified by the ANSI/IEEE 754-1985 standard
and places the results in f[rd], f[rd+ 1], and f[rd+2].

fp _disabled
fp_exception (of, uf, dz, nY, nx)

25 24 19 18 14 13 5 4

r51 I 001001111 r52

6-35

FdTOi

Operation: f[rd]i- f[rs2]d

Assembler
Syntax: fdtoi freKnl. freKrd

Convert Double to Integer

(CY7C602 Instruction Only)

SPARC Instruction Set

FdTOi

Description: FdTOi converts the floating-point double contents of f[rs2] CONCAT f[rs2 + 1] to a 32-bit, signed inte­
ger by rounding toward zero as specified by the ANSllIEEE 754-1985 standard. The result is placed in
f[rd]. The rounding direction field (RD) of the FSR is ignored.

Thaps: fp_disabled
fp_exception (nv, nx)

Format:
13

011010010

&-36

FdTOs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

f[rd)s- f[rsZ)d

fdtos fregrs2' fregrd

Convert Double to Single

(CY7C602 Instruction Only)

SPARC Instruction Set

FdTOs

FdTOs converts the floating-point double contents of f[rsZ) CONCAT f[rsZ+ 1) to a single-precision,
floating-point format as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd].
Rounding is performed according to the rounding direction field (RD) of the FSR.

fp_disabled
fp_exception (of, uf, nv, nx)

3130 29 25 24 19 18 14 13 5 4

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 0 1 1 0 r52

6-37

SPARC Instruction Set

FdTOx Convert Double to Extended FdTOx

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(CY7C602 Instruction Only)

f[rd]x- f[rs2]d

fdtox fregrs2, fregrd

FdTOx converts the floating-point double contents of f[rs2] CONCAT f[rs2 + 1] to an extended-preci­
sion, floating-point format as specified by the ANSIIIEEE 754-1985 standard. The result is placed in
f[rd], f[rd+ 1], and f[rd+2]. Rounding is performed according to the rounding direction (RD) and
rounding precision (RP) fields of the FSR.

fp_disabled
fp_exception (nv)

3130 29 25 24 19 18 14 13

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 1 1 10

6-38

5 4 o

rs2

FiTOd

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARC Instruction Set

Convert Integer to Double FiTOd
(CY7C602 Instruction Only)

f[rd]d- f[rs2]i

fitod /regrs], /regrd

FiTOd converts the 32-bit, signed integer contents of f[rs2] to a floating-point, double-precision format
as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd] and f[rd+ 1].

fp_disabled
fp _exception'

3130 29

rd

25 24 19 18 14 13

11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 1 0 0 0

5 4 o

rs2

.. NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-c39

FiTOs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

f[rd]s- f[rs2]i

Convert Integer to Single

(CY7C602 Instruction Only)

SPARC Instruction .set

FiTOs

FiTOs converts the 32-bit, signed integer contents off[rs2] to a floating-point, single-precision format as
specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd]. Rounding is performed
according to the rounding direction field, RD.

fp _disabled
fp_exception (ox)

31 30 29 25 24 19 18 14 13

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 0 1 0 0

6-40

5 4 o

rs2

FiTOx

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARC Instruction Set

Convert Integer to Extended FiTOx
(CY7C602 Instruction Only)

f[rd]x- f[rs2]i

FiTOx converts the 32-bit, signed integer contents off[rs2] to an extended-precision, floating-point for­
mat as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd], f(rd+ 1], and
f[rd+2].

fp _disabled
fp _exception·

3130 29

rd

25 24 19 18 14 13

11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 1 1 0 0

5 4 o

rs2

... NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-41

SPARe Instruction Set

FMOVs Move FMOVs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(CY7C602 Instruction Only)

f[rd)s- f[rs2)s

fmovs freg,,2. fregrd

The FMOVs instruction moves the word content of register f[rs2) to the register f[rd). Multiple
FMOVs's are required to transfer multiple-precision numbers between {registers.

fp_disabled
fp _exception'

3130 29

rd

25 24 19 18 14 13

1110100 1 ignored 1 000000001

5 4 o

rs2

• NOTE: An attempt to execute lIIl)' FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-42

FMULd Multiply Double

(CY7C602 Instruction Only)

Operation: f[rd]d- f[rsl]d x f[rs2]d

Assembler
Syntax: fmuld freg,.}. freg,.2. fregrd

SPARC Instruction Set

FMULd

Description: The FMULd instruction multiplies the contents of f[rsl] CONCAT f[rs1 + 1] by the contents off[rs2]
CONCAT f[rs2 + 1] as specified by the ANSIIIEEE 754-1985 standard and places the results in f[rd] and
f[rd+ 1].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
3130 29 25 24 19 18 14 13 5 4 o

rs1 I 001001010 I rs2

6-43

FMULs Multiply Single

(CY7C602 Instruction Only)

Operation: f[rd]s - f[rsl]s x ([rs2]s

Assembler
Syntax: fmuls [reg,.). [regrs2. fregrd

SPARC Instruction Set

FMULs

Description: The FMULs instruction multiplies the contents of f[rsl] by the contents of f[rs2] as specified by the
ANSllIEEE 754-1985 standard and places the results in f[rd].

'Ihlps: fp _disabled
fp_exception (of, uf, nY, nx)

Format:
25 24 19 18 14 13 5 4 o

11101001 rs1 I 001001001 rs2

6-44

FMULx Multiply Extended

(CY7C602 Instruction Only)

Operation: f[rd]x- f[rs1]x x f[rs2]x

Assembler
Syntax: fmulx fregrsl, fregrs2' fregrd

SPARC Instruction Set

FMULx

Description: The FMULx instruction multiplies the contents of f[rs1] CONCAT f[rs1 + 1] CONCAT f[rs1 + 2] by the
contents off[rs2] CONCATf[rs2+ 1] CONCATf[rs2+ 2] as specified by the ANSIIIEEE 754-1985 stan­
dard and places the results in f[rd]. f[rd + 1]. and f[rd + 2].

Traps: fp_disabled
fp_exception (of, uf, nv. ox)

Format:
25 24 19 18 14 13

11101001 rs1 1 001001011

5 4 o
rs2

6-45

SPARC Instruction Set

FNEGs Negate FNEGs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(CY7C602 Instruction Only)

f[rd]s- f[rs2]s XOR 80000000 H

fnegs [regrs2' [regrd

The FNEGs instruction complements the sign bit of the word in f[rs2] and places the result in f[rd]. It
does not round.

Since this FPop can address both even and oddfregisters, FNEGs can also operate on the high-order
words of double and extended operands, which accomplishes sign bit negation for these data types.

fp_disabled
fp _exception'

rd

25 24 19 18 14 13

11 1 0 1 0 0 1 ignored 1 0 0 0 0 0 0 1 0 1

5 4 o

rs2

... NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-46

FSQRTd

Operation: f[rd]d- SQRTf[rs2]d

Assembler
Syntax: fsqrtd [regrs2. [regrd

Square Root Double

(CY7C602 Instruction Only)

SPARC Instruction Set

FSQRTd

Description: FSQRTd generates the square root of the floating-point double contents off[rs2] CONCATf[rs2 + 1] as
specified by the ANSllIEEE 754-1985 standard. The result is placed in f[rd] and f[rd + 1]. Rounding is
performed according to the rounding direction field (RD) of the FSR.

Traps: fp_disabled
fp_exception (nv. nx)

Format:
3130 29 25 24 19 18 14 13 5 4 o

rd 11 1 0 1 0 0 1 ignored 1 0 0 0 1 0 1 0 1 0 rs2

6-47

SPARC Instruction Set

FSQRTs Square Root Single

(CY7C602 Instruction Only)

FSQRTs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

f[rd)s - SQRT f[rs2)s

fsqrts [regrs2. [regrd

FSQRIS generates the square root of the floating-point single contents of f[rs2) as specified by the
ANSI/IEEE 754-1985 standard. The result is placed in f[rd). Rounding is performed according to the
rounding direction field (RD) of the FSR.

fp _disabled
fp_exception (nv, nx)

3130 29 25 24 19 18 14 13

rd 1110100 1 ignored 1 000101001

6-48

5 4 o

rs2

FSQRTx

Operation: f[rd]x- SQRT f[rs2]x

Assembler
Syntax: fsqrtx fregrs2. fregrd

Square Root Extended

(CY7C602 Instruction Only)

SPARC Instruction Set

FSQRTx

Description: FSQRI'x generates the square root of the floating-point extended contents of f[rs2] CONCATf[rs2 + I]
CONCAT f[rs2+ 2] as specified by the ANSllIEEE 754-1985 standard. The result is placed in f[rd],
f[rd + 1], and f[rd + 2]. Rounding is performed according to the rounding direction (RD) and rounding
precision (RP) fields of the FSR.

Traps: fp_disabled
fp_exception (nv, nx)

Format:
13

000101011

6-49

FsTOd

Operation: f[rd]d- f[rs2]s

Assembler
Syntax: fstod [reg,.2. [regrd

Convert Single to Double

(CY7C602lnstruction Oilly)

SPARC Instruc.tion Set

FsTOd

Description: FsTOd converts the floating-point single contents off[rsZ] to a double-precision. floating-point format
as specified by the ANSIIIEEE 754-1985 standard. The result is placed in f[rd] and f[rd + 1]. Rounding is
performed according to the rounding direction field (RD) of the FSR.

"Iraps: fp_disabled
fp_exception (nv)

Format:
25 24 19 18 14 13 5 4 o

rd 1110100 1 ignored 1 011001001 rs2

6-50

FsTOi

Operation: qrdji_ f[rs2js

Assembler
Syntax: fstoi fregrs2. fregrd

Convert Single to Integer

(CY7C602 Instruction Only)

SPARC Instruction Set

FsTOi

Description: FsTOi converts the floating-point single contents of qrs2] to a 32-bit, signed integer by rounding toward
zero as specified by the ANSIIIEEE 754-1985 standard. The result is placed in q rdj. The rounding field
(RD) of the FSR is ignored.

Traps: fp _disabled
fp_exception (nv, nx)

Format:
25 24 19 18 14 13

rd 1110100 1 ignored 1 011010001

6-51

5 4 o

rs2

SPARC Instruction Set

FsTOx Convert Single to Extended FsTOx
(CY7C602 Instruction Only)

Operation: f[rd]x- f[rs2]s

Assembler
Syntax: fstox fregrs2. fregrd

Description: FsTOx converts the floating·point single contents of f[rsZ] to an eXtended·precision. floating.point for·
mat as specified by the ANSI/IEEE 754·1985 standard. The result is placed in f[ed]. f[rd+l]. and
f[rd + 2]. Rounding is performed according to the rounding direction (RD) and rounding precision (RP)
fields of the FSR.

Traps: fp_disabled
fp_exception (nv)

Format:
25 24 19 18 14 13 5 4 o

rd 1110100 1 ignored 1 011001101 rs2

6-52

SPARe Instruction Set

FSUBd Subtract Double FSUBd
(CY7C602 Instruction Only)

Operation: f[rd]d- f[rs1]d - f[rs2]d

Assembler
Syntax: fsubd fregrsJ. fregrs2. [regrd

Desc:ription: The FSUBd instruction subtracts the contents of f[rs2] CONCAT f[rs2 + 1] from the contents of f[rsl]
CONCAT f[rs1 + 1] as specified by the ANSIIIEEE 754-1985 standard and places the results in f[rd] and
f[rd+1].

Traps: fp _disabled
fp_exception (of, uf, nx, nv)

Format:
3130 29 25 24 19 18 14 13 5 4 o

rs1 I 001000110 I rs2

6-53

FSUBs Subtract Single

(CY7C602 Instruction Only)

Operation: f[rd]s- f[rs1]s - f[rs2]s

Assembler
Syntax: fsubs fregrsl, fregrs2, fregrd

SPARC Instruction Set

FSUBs

Description: The FSUBs instruction subtracts the contents of f[rs2] from the contents of f[rs1] as specified by the
ANSllIEEE 754·1985 standard and places the results in f[rd].

1i"aps: fp_disabled
fp_exception (of, uf, nx, nv)

Format:
3130 29 25 24 19 18 14 13 5 4 o

rs1 I 001000101 rs2

6-54

SPARC Instruction Set

FSUBx Subtract Extended FSUBx
(CY7C602 Instruction Only)

Operation: f[rd]x- f[rsl]x - f[rs2]x

Assembler
Syntax: fsubx [reg,.l. [reg,.2. jregrd

Description: The FSUBx instruction subtracts the contents of f[rs2] CONCATf[rs2 + 1] CONCATf[rs2 + 2] from the
contents of f[rs1] CONCAT f[rsl + 1] CONCpa'f[rsl + 2] as specified by the ANSIIIEEE 754-1985 stan­
dard and places the results in f[rd], f[rd + 1], and f[rd + 2].

Traps: fp_disabled
fp_exception (of, uf, nv, nx)

Format:
25 24 19 18 14 13 5 4 o

rs1 I 001000111 rs2

6-55

SPARC Instruction Set

FxTOd Convert Extended to Double FxTOd

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

(CY7C602 Instruction Only)

qrd]d- qrs2]x

FxTOd converts the floating-point extended contents of q rs2] CONCAT q rs2 + 1] CONCAT q rs2 + 2]
to a double-precision, floating-point format as specified by the ANSI/IEEE 754-1985 standard. The re­
sult is placed in q rd] and q rd + 1]. Rounding is performed according to the rounding direction (RD) field
of the FSR.

fp_disabled
fp_exception (of, uf, nv, nx)

3130 29 25 24 19 18 14 13

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 1 0 1 1
5 4 o

rs2

6-56

FxTOi

Operation: qrd]i- qrs2]x

Assembler
Syntax: fxtoi fregrs2' fregrd

Convert Extended to Integer

(CY7C602 Instruction Only)

SPARC Instruction Set

FxTOi

Description: FxTOi converts the floating-point extended contents of q rs2] CON CAT f[rs2 + 1] CONCATf[rs2 + 2] to
a 32-bit, signed integer by rounding toward zero as specified by the ANSI/IEEE 754-1985 standard. The
result is placed in qrd]. The rounding field (RD) of the FSR is ignored.

Traps: fp_disabled
fp_exception (nv, nx)

Format:
25 24 19 18 14 13 5 4 o

rd 1110100 1 ignored 1 011010011 r52

6-57

FxTOs

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARC Instruction Set

Convert Extended to Single FxTOs
(CY7C602 Instruction Only)

f[rd]s- f[rs2]x

FxTOs converts the floating-point extended contents of f[rs2] CONCAT f[rs2 + 1] CONCAT f[rs2 + 2]
to a single-precision, floating-point format as specified by the ANSI/IEEE 754-1985 standard. The result
is placed in f[rd]. Rounding is performed .according to the rounding direction (RD) field of the FSR.

fp _disabled
fp_exception (of, uf, nv, nx)

25 24 19 18 14 13 5 4 o

rd 11 1 0 1 0 0 1 ignored 1 0 1 1 0 0 0 1 1 1 rs2

6-58

SPARC Instruction Set

IFLUSH Instruction Cache Flush IFLUSH

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

FLUSH- [r[rsl] + (r[rs2] or sign extnd(simmI3))]

iflush address

The IFLUSH instruction causes a word to be flushed from an instruction cache which may be internal to
the processor. The word to be flushed is at the address specified by the contents of r[rsl] plus either the
contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand
contained in the instruction if i equals one.

Since there is no internal instruction cache in the current CY7C600 family, the result of executing an
IFLUSH instruction is dependent on the state of the input signal, Instruction Cache Flush Trap (IFf). If
1FT = 1, IFLUSH executes as a NOp, with no side effects. If 1FT = 0, execution of IFLUSH causes an
illegal_instruction trap.

illegal_instruction

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 Ignored 1111011 1 rs1 11=01 Ignored 1 rs2 1

31 30 29 25 24 19 18 14 13 12 0

11 01 ignored 1 111011 1 rs1 11=11 slmm13 I

6-59

JMPL

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

r[rd]-PC

PC-nPC

Jump and Link

nPC- r[rsl] + (r[rs2] or sign extnd(simm13»

jmpl address, regrd

SPARe Instruction Set

JMPL

JMPL first provides linkage by saving its return address into the register specified in the rd field. It then
causes a register-indirect, delayed control transfer to an address specified by the sum of the contents of
r[rsl] and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended
immediate operand contained in the instruction if i equals one.

If either of the low-order two bits of the jump address is nonzero, a memory_address _not_aligned trap is
generated.

Programming note: A register-indirect CALL can be constructed using a JMPL instruction with rd set to
15. JMPL can also be used to return from a CAIL. In this case, rd is set to 0 and the return (jump)
address would be equal to r[31] + 8.

memory_address_not_aligned

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1111000 1 rs1 !i=O! ignored ! rs2 1
31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 111000 1 rs1 li=1! simm13 1

6-60

LD

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Load Word LD

r[rd]- [r[rs1] + (r[rs2] or sign extnd(simm13»]

Id [address], regrd

The LD instruction moves a word from memory into the destination register, r[rd]. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction
if i equals one.

If LD takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

memory _address _not_aligned
data_access _exception

31 30 29 25 24 19 18

11 1 I rd 1000000 1

31 30 29 25 24 19 18

11 1 1 rd 1 000000 1

14 13 12 5 4 0

rs1 li=ol ignored 1 rs2 1

14 13 12 0

rs1 li= 11 simm13 1

6-61

LDA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Load Word from Alternate space

(Privileged Instruction)

address space - asi

r[rd]- [r[rsl] + r[rs2)]

Ida [regaddr] asi, regrd

SPARe Instruction Set

LDA

The LDA instruction moves a word from memory into the destination register, r[rd], The effective
memory address is a combination of the address space value given in the asi field and the address derived
by summing the contents of r[rsl] and r[rs2].

If LDA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem.

illegal_instruction (if i = 1)
privileged_instruction (if S = 0)
memory_address _ not _aligned
data_access _exception

25 24 19 18

1010000 I rs1

6-62

5 4 o

asi rs2

LDC

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARC Instruction Set

Load Coprocessor register LDC

c[rd]- [r[rs1] + (r[rs2] or sign extnd(simm13»]

ld [address], cregrd

The LDC instruction moves a word from memory into a coprocessor register, c[rdJ. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction
if i equals one.

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. If
LDC takes a trap, the state of the coprocessor depends on the particular implementation.

If the instruction following a coprocessor load uses the load's c[rd] register as a source operand, hard­
ware interlocks add one or more delay cycles to the following instruction depending upon the memory
subsystem.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

cp_disabled
cp _exception
memory _address_not_aligned
data_access _exception

31 30 29 25 24 19 18

h d rd

25 24 19 18

14 13

rs1 !i=O!

14 13

rs1 !i=1!

6-63

12 5 4 0

ignored ! rs2 !
12 0

simm13 !

1m

SPARC Instruction Set

LDCSR Load Coprocessor State Register LDCSR

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

CSR- [r[rsl] + (r[rs2] or sign extnd(simm13»]

ld [address], %csr

The LDCSR instruction moves a word from memory into the Coprocessor State Register. The effective
memory address is derived by summing the contents of r[rsl] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction
if i equals one.

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be generated. If
LDCSR takes a trap, the state of the coprocessor depends on the particular implementation.

If the instruction following a LDCSR uses the CSR as a source operand, hardware interlocks add one or
more delay cycles to the following instruction depending upon implementation of the coprocessor.

Programming note: If Tsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

cp_disabled
cp _exception
memory _address_not_aligned
data_access _exception

31 30 29 25 24

11 1 1 rd 1110001

31 30 29 25 24

11 1 1 rd ! 110001

19 18

!

19 18

!

14 13 12 5 4 0

rs1 !i=O! ignored ! rs2 !

14 13 12 0

rs1 !i=11 simm13 I

6--64

LDD

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Load Doubleword LDD

r[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13»]

r[rd+ 1]- [(r[rsl] + (r[rs2] or sign extnd(simm13») + 4]

Idd [address], regrd

The LDD instruction moves a doubleword from memory into a destination register pair, r[rd] and
r[rd + 1]. The effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant memory word is always moved into the
even-numbered destination register and the least significant memory word is always moved into the next
odd-numbered register (see discussion in Section 2.2.5.1).

If a data_access_exception trap takes place during the effective address memory access, the destination
registers remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem. For an LDD, this applies to both destination registers.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

memory _address_ not_aligned
data_access_exception

31 30 29 25 24

11 1 1 rd 1000011

31 3029 25 24

11 11 rd 1 000011

19 18

1

19 18

1

14 13 12 5 4 0

rs1 li=ol ignored 1 rs2 1

14 13 12 0

rs1 li=11 simm13 I

6-65

LDDA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Load Doubleword from Alternate space

address space - asi

r[rd]- [r[rs1] + r[rs2]]

(Privileged Instruction)

r[rd +1]- [r[rs1] + r[rs2] + 4]

Idda [regaddr] asi, regrd

SPARe Instruction Set

LDDA

The LDDA instruction moves a doubleword from memory into the destination registers, r[rd] and
r[rd + 1], The effective memory address is a combination of the address space value given in the asi field
and the address derived by summing the contents of r[rs1] and r[rs2]. The most significant memory word
is always moved into the even-numbered destination register and the least significant memory word is
always moved into the next odd-numbered register (see discussion in Section 2.2.5.1).

If a trap takes place during the effective address memory access, the destination registers remain un­
changed.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem. For an LDDA, this applies to both destination registers.

illegal_instruction (if i = 1)
privileged jnstruction (if S = 0)
memory_address_not_aligned
data_access _exception

31 30 29 25 24 19 18

rd 10100111

5 4 o

rs1 asi rs2

6-66

LDDC

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARC Instruction Set

Load Doubleword Coprocessor LDDC

c[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13»]

c[rd + 1]- [(r[rsl] + (r[rs2] or sign extnd(simm13») + 4]

ldd [address], cregrd

The LDDC instruction moves a doubleword from memory into the coprocessor registers, c[rd] and
c[rd + 1]. The effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant memory word is always moved into the
even-numbered destination register and the least significant memory word is always moved into the next
odd-numbered register (see discussion in Section 2.2.5.1).

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. If
LDDC takes a trap, the state of the coprocessor depends on the particular implementation.

If the instruction following a coprocessor load uses the load's c[rd] register as a source operand, hard­
ware interlocks add one or more delay cycles to the following instruction depending upon the memory
subsystem and coprocessor implementation. For an LDDC, this applies to both destination registers.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

cp_disabled
cp _exception
memory _address_not_aligned
data _access_exception

31 3029 25 24

11 1 1 rd 1110011

31 3029 25 24

11 1 1 rd 1 110011

19 18

I
19 18

1

14 13 12 5 4 0

rs1 li=ol ignored 1 rs2 1

14 13 12 0

rs1 li=11 simm13 1

6..fj7

LDDF

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Load Doubleword Floating-Point LDDF

f[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13»]

f[rd + 1]- [(r[rsl] + (r[rs2] or sign extnd(simmI3») + 4]

Idd [address],fregrd

The lDDF instruction moves a doubleword from memory into the floating-point registers, f[rd] and
f[rd + I]. The effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant memory word is always moved into the
even-numbered destination register and the least significant memory word is always moved into the next
odd-numbered register (see discussion in Section 2.2.5.1).

If the PSR's EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If a trap takes place during the effective address memory aecess, the destination registers remain
unchanged.

If the instruction following a floating-point load uses the load's f[rd] register as a source operand, hard­
ware interlocks add one or more delay cycles to the following instruction depending upon the memory
subsystem. For an lDDF, this applies to both destination registers.

Programming note: If rsl is set to 0 and i is set to I, any location in the lowest or highest 4 kbytes of an
address space can be aecessed without setting up a register.

fp_disabled
fp _exception·
memory _address_ not_aligned
data_aecess_exception

31 30 29 25 24

11 1 1 rd 1100011

31 30 29 25 24

11 d rd 1 100011

19 18 14 13 12 5 4 o

1 rs1 li=ol ignored rs2

19 18 14 13 12 o

1 rs1 li=ll simm13

• NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-68

LDF

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Load Floating-Point register LDF

f[rd]- [r[rsl] + (r[rs2] or sign extnd(simm13))]

ld [address], fregrd

The LDF instruction moves a word from memory into a floating-point register, f[rd]. The effective
memory address is derived by summing the contents of r[rsl] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction
if i equals one.

If the PSR's EF bit is set to zero or if no Floating-Point Unit is present, an fp _disabled trap will be gener­
ated. If LDF takes a trap, the contents of the destination register remain unchanged.

If the instruction following a floating-point load uses the load's f[rd] register as a source operand, hard­
ware interlocks add one or more delay cycles to the following instruction depending upon the memory
subsystem.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

fp_disabled
fp _exception'
memory _address _not_aligned
data_access_exception

25 24 19 18

1100000 1

31 30 29 25 24 19 18

1100000 1

14 13

rs1 li=ol

14 13

rs1 li=11

12 5 4 0

ignored 1 rs2 1

12 0

simm13 1

• NOTE: An attempt to execute.aJlll FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-69

1m

SPARe Instruction Set

LDFSR Load Floating-Point State Register LDFSR

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

FSR - [r[rs1] + (r[rs2] or sign extnd(simm13»]

Id [address], %fsr

The lDFSR instruction moves a word from memory into the floating-point state register. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction
if i equals one. This instruction will wait for all pending FPops to complete execution before it loads the
memory word into the FSR.

IT the PSR's EF bit is set to zero or if no floating-point unit is present, an fp _disabled trap will be gener­
ated. IT lDFSR takes a trap, the contents of the FSR remain unchanged.

IT the instruction following a lDFSR uses the FSR as a source operand, bardware interlocks add one or
more cycle delay to the following instruction depending upon the memory subsystem.

Programming note: IT rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

fp _disabled
fp_ exception·
memory _address_ not_aligned
data_access_ exception

31 3029 25 24

11 d rd 1100001
31 3029 25 24

11 1 1 rd 1 100001

19 18

1
19 18

1

14 13 12 5 4 0

rs1 11=01 Ignored 1 rs2 1
14 13 12 0

rs1 11=11 slmm13 1

• NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit.

6-70

LDSB

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Load Signed Byte LDSB

r[rd]- sign extnd[r[rs1] + (r[rs2] or sign extnd(simm13))]

Idsb [address], regrd

The LDSB instruction moves a signed byte from memory into the destination register, r[rd]. The effec­
tive memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the
instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruc­
tion if i equals one. The fetched byte is right-justified and sign-extended in r[rd].

If LDSB takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles to the following instruction depending upon the memory subsys­
tem.

Programming note: If rsl is set to 0 and j is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

data_access _exception

31 3029 25 24 19 18 14 13 12 5 4 0

h 1 1 rd 1001001 1 rs1 li=ol ignored 1 rs2 1

31 3029 25 24 19 18 14 13 12 0

11 1 1 rd 1 001001 1 rs1 li=11 simm13 1

6-71

SPARe Instruction Set

LDSBA Load Signed Byte from Alternate space

(privileged Instruction)

LDSBA

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

address space - asi
r[rd]- sign extnd[r[rsI] + r[rs2]]

ldsba [regaddr] asi, regrd

The LDSBAinstruction moves a signed byte from memory into the destination register, r[rd]. The effec­
tive memory address is a combination of the address space value given in the asi field and the address
derived by summing the contents of r[rsI] and r[rs2]. The fetched byte is right-justified and sign-ex­
tended in r[rd].

If LDSBA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

illegal_instruction (if i = 1)
privileged_instruction (if S = 0)
data_access_exception

25 24 19 18

rd I 011001 I rs1

6-72

5 4 o

asi rs2

LDSH

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Load Signed HalfWord LDSH

r[rd]- sign extnd[r[rs1] + (r[rs2] or sign extnd(simrn13»]

Idsh [address], regrd

The LDSH instruction moves a signed halfword from memory into the destination register, r[rd]. The
effective memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if
the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the in­
struction if i equals one. The fetched half word is right-justified and sign-extended in r[rd].

If LDSH takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

memory _address _not _aligned
data_access_exception

31 30 29 25 24 19 18

! 001010 !

25 24 19 18

! 001010 I

14

rs1

14

rs1

6-73

13 12 5 4 0

!i=O! ignored ! rs2 !

13 12 0

!i=1! simm13 I D

SPARe Instruction Set

LDSHA Load Signed Halfword from Alternate space

(Privileged Instruction)

LDSHA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

address space - asi

r[rd]- sign extnd[r[rsl] + r[rs2]]

ldsha [regaddr] asi, regrd

The LDSHA instruction moves a signed halfword from memory into the destination register, r[rd]. The
effective memory address is a combination of the address space value given in the asi field and the ad­
dress derived by summing the contents of r[rsl] and r[rs2]. The fetched halfword is right-justified and
sign-extended in r[rd].

If LDSHA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

illegal_instruction (if i = 1)
privileged_instruction (if S=O)
memory _address_ not_aligned
data_access _exception

25 24 19 18

10110101 rs1

6-74

5 4 o

asi rs2

SPARe Instruction Set

LDSTUB Atomic Load/Store Unsigned Byte LDSTUB

Operation:

Assembler
Syntax:

Description:

1hIps:

Format:

r[rd]- zero extnd[r[rsl] + (r[rs2] or sign extnd(simmI3»]

[r[rsl] + (r[rs2] or sign extnd(simmI3»]- FFFFFFFF H

Idstub [address], regrd

The LDSTIJB instruction moves an unsigned byte from memory into the destination register, r[rd], and
rewrites the same byte in memory to all ones, while preventing asynchronous trap interruptions. In a
multiprocessor system, two or more processors executing atomic load/store instructions which address
the same byte simultaneously are guaranteed to execute them serially, in some order.

The effective memory address is derived by summing the contents of r[rsl] and either the contents of
r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in
the instruction if i equals one. The fetched byte is right-justified and zero-extended in r[rd].

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

If LDSTUB takes a trap, the contents of the memory address remain unchanged.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

data_access_ exception

31 30 29 25 24 19 18 14 13 12 5 4 0

h 11 rd 1001101 1 rs1 li=ol ignored 1 rs2 1

31 3029 25 24 19 18 14 13 12 0

11 1 1 rd 1 001101 1 rs1 11=11 simm13 1

6-75

ID

SPARe Instruction Set

LDSTUBA Atomic Load/Store Unsigned Byte LDSTUBA

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

in Alternate space

(Privileged Instruction)

address space - asi

r[rd]- zero extnd[r[rsl] + r[rs2J]

[r[rsl] + r[rs2]]- FFFFFFFF H

Idstuba [regaddr] asi, regrd

The LDSTUBA instruction moves an unsigned byte from memory into the destination register, r[rd],
and rewrites the same byte in memory to all ones, while preventing asynchronous trap interruptions. In a
multiprocessor system, two or more processors executing atomic load/store instructions which address
the same byte simultaneously are guaranteed to execute them in some serial order.

The effective memory address is a combination of the address space value given in the asi field and the
address derived by summing the contents of r[rsl] and r[rs2]. The fetched byte is right-justified and
zero-extended in r[rd].

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

If LDSTUBA takes a trap, the contents of the memory address remain unchanged.

illegal_instruction (if i = 1)
privileged_instruction (if S = 0)
data_access_exception

25 24 19 18

1011101 rs1

6-76

14 13 12 5 4

li=ol asi rs2

o

LDUB

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Load Unsigned Byte LDUB

r[rd]- zero extnd[r[rsl] + (r[rs2] or sign extnd(simm13»]

ldub [address], regrd

The LDUB instruction moves an unsigned byte from memory into the destination register, r[rd]. The
effective memory address is derived by summing the contents of r[rsl] and either the contents of r[rs2] if
the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the in­
struction if i equals one. The fetched byte is right-justified and zero-extended in rlrd].

If LDUB takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

data_access _exception

31 30 29 25 24 19 18 14 13 12 5 4 0

11 11 rd 1000001 1 rs1 li=ol ignored 1 rs2]
31 3029 25 24 19 18 14 13 12 0

11 1 1 rd 1 000001 1 rs1 li=11 simm13 I

6--77

SPARe Instruction Set

LDUBA Load Unsigned Byte from Alternate space

(Privileged Instruction)

LDUBA

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

address space - asi
r[rd]- zero extnd[r[rs1] + r[rs211

lduba [regaddr] asi, regrd

The LDUBA instruction moves an unsigned byte from memory into the destination register, r[rd]. The
effective memory address is a combination of the address space value given in the asi field and the ad­
dress derived by summing the contents of r[rs1] and r[rs2]. The fetched byte is right-justified and
zero-extended in r[rd].

If LDUBA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

illegal_instruction (if i = 1)
privileged_instruction (if S = 0)
data_access _exception

3130 29 25 24 19 18

rd 10100011 rs1

6-78

14 13 12 5 4 o
asi rs2

LDUH

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Load Unsigned Halfword LDUH

r[rd]- zero extnd[r[rs1] + (r[rs2] or sign extnd(simm13»]

Iduh [address], regrd

The LDUH instruction moves an unsigned halfword from memory into the destination register, r[rd].
The effective memory address is derived by summing the contents of r[rs1] and either the contents of
r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in
the instruction if i equals one. The fetched halfword is right-justified and zero-extended in r[rd].

If LDUH takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be accessed without setting up a register.

memory _address_not_aligned
data_access _exception

25 24 19 18

1000010 1

31 30 29 25 24 19 18

14 13

rs1 li=ol

14 13

12 5 4 0

ignored 1 rs2 1

12 0

11 11 rd 10000101 rs1 li=11 simm13 1

6-79

mJ

SPARe Instruction Set

LDUHA Load Unsigned HaltWord from Alternate space

(Privileged Instruction)

LDUHA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

address space - asi
r[rd]- zero extnd[r[rsl] + r[rs2]]

lduha [regaddr] asi, regrd

The IDUHA instruction moves an unsigned haIfword from memory into the destination register, r[rd].
The effective memory address is a combination of the address space value given in the asi field and the
address derived by summing the contents of r[rsl] and r[rs2]. The fetched halfword is right-justified and
zero-extended in r[rd].

If IDUHA takes a trap, the contents of the destination register remain unchanged.

If the instruction following an integer load uses the load's r[rd] register as a source operand, hardware
interlocks add one or more delay cycles depending upon the memory subsystem.

iUegaC instruction (if i = 1)
privileged_instruction (if S = 0)
memory_address_not_aligned
data_access_exception

25 24 19 18

10100101 rs1

6-80

14 13 12 5 4 o
as; rs2

SPARe Instruction Set

MULScc Multiply Step and modify icc MULScc

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

opi = (n XOR v) CONCATr[rsl]<31:1>
if ('i < 0 > = 0) op2 = 0, else op2 = r[rs2] or sign extnd(simm13)
r[rd]- opi + op2
Y-r[rsl]<O> CONCATY<31:1>
n- r[rd]<31>
z- if [r[rd]]=0 then 1, else 0
v- «opl < 31 > AND op2< 31 > AND not r[rd] < 31 »

OR (not opl<31 > AND not op2<31 > AND r[rd] <31 »)
c- «opl<31> AND op2<31»

OR (not r[rd] AND (opi < 31 > OR op2< 31 »)

The multiply step instruction can be used to generate the 64-bit product of two signed or unsigned words.
MULScc works as follows:

1. The "incoming partial product" in r[rsl] is shifted right by one bit and the high-order bit is replaced by
the sign of the previous partial product (n XOR v). This is operandI.

2. If the least significant bit of the multiplier in the Y register equals zero, then operand2 is set to zero.
If the LSB of the Y register equal one, then operand2 becomes the multiplicand, which is either the
contents of r[rs2] if the instruction i field is zero, or sign extnd(simm13) if the i field is one. Operand2
is then added to operandI and stored in r[rd] (the outgoing partial product).

3. The multiplier in the Y register is then shifted right by one bit and its high-order bit is replaced by the
least significant bit of the incoming partial product in r[rsl].

4. The PSR's integer condition codes are updated according to the addition performed in step 2.

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1100100 1 rs1 li=ol ignored 1 rs2 1
31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 100100 1 rs1 li=ll simm13 1

6-81

OR

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Inclusive-Or OR

r[rd]- r[rsl] OR (r[rs2] or sign extnd(simmI3»

This instruction does a bitwise logical OR of the contents of register r[rsl] with either the contents of
r[rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit
field i=I). The result is stored in register r[rd].

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1000010 1 rs1 li=ol ignored 1 rs2 1
31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 000010 1 rs1 li=11 simm13 1

6-82

ORcc

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Inclusive-Or and modify icc

r[rd]- r[rsl] OR (r[rs2] or sign extnd(simm13»

n-r[rd]<31>
z- if [r[rd]]=0 then 1, else 0

v-O

c-O

SPARe Instruction Set

ORcc

This instruction does a bitwise logical OR of the contents of register r[rsl] with either the contents of
r[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value contained in the instruction (if bit
field i = 1). The result is stored in registerr[rd]. ORcc also modifies all the integer condition codes in the
manner described above.

none

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1010010 1 rs1 li=ol ignored 1 rs2 1
31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 010010 1 rs1 li= 11 simm13 I

6-83

ORN

Operation:

Assembler
Syntax:

Description:

1raps:

Format:

SPARe Instruction Set

Inclusive-Or Not ORN

r[rd]- r[rsl] OR not(operandZ), where operandZ = (r[rsZ] or sign extnd(simmI3»

This instruction does a bitwise logical OR of the contents of register r[rsl] with the one's complement of
either the contents of r[rsZ] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in
the instruction (if bit field i= 1). The result is stored in register r[rd].

none

31 30 29 25 24 19 18 5 4 o

1000110 1 rs1 Ignored rs2

12 o

simm13

&-84

SPARe Instruction Set

ORNcc Inclusive-Or Not and modity icc ORNcc

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

r[rd]- r[rs1] OR not(operand2), where operand2 = (r[rs2] or sign extnd(simm13»

n- r[rd]<31 >
z- if [r[rdJl=O then 1, else 0

v-O

c-O

This instruction does a bitwise logical OR of the contents of register r[rs1] with the one's complement of
either the contents of r[rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in
the instruction (ifbit field i = 1). The result is stored in registerr[rd]. ORNcc also modifies all the integer
condition codes in the manner described above.

none

31 30 29 25 24 19 18 5 4 o

11 01 rd 10101101 rs1 rs2

31 30 29 25 24 19 18 o

11 01 rd 1 010110 1 rs1 simm13

6-85

SPARe Instruction Set

RDPSR Read Processor State Register

(Privileged Instruction)

RDPSR

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

r[rdj-PSR

rd %psr, regrd

RDPSR copies the contents of the PSR into the register specified by the rd field.

privileged-instruction (if S =0)

3130 29 25 24 19 18 o

rd 1101001 1 ignored

6-86

SPARe Instruction Set

RDTBR Read Trap Base Register

(privileged Instruction)

RDTBR

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

r[rd]-TBR

rd %tbr, regrd

RDTBR copies the contents of the TBR into the register specified by the rd field.

privileged_instruction (if S = 0)

3130 29 25 24 19 18

rd 1101011 1 ignored

6-87

SPARe Instruction Set

RDWIM Read Window Invalid Mask register

(Privileged Instruction)

RDWIM

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

r[rdl-WIM

rd %wim, regrd

RDWIM copies the contents of the WIM register into the register specified by the rd field.

privileged_instruction (if S=O)

25 24 19 18

1101010 1

o
ignored

6-88

RDY

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Read Y register RDY

r[rd]- Y

rd %y, regrd

RDY copies the contents of the Y register into the register specified by the rd field.

none

25 24 19 18 o

ignored

6-89

SPARe Instruction Set

RESTORE Restore caller's window RESTORE

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

ncwp- CWP + 1

result- r[rsl] + (r[rs2] or sign extnd(simm13»

CWP-ncwp

r[rd]- result

RESTORE does not affect condition codes

RESTORE adds one to the Current Window Pointer (modulo the number of implemented windows)
and compares this value against the Window Invalid Mask register. If the new window number corre­
sponds to an invalidated window (WIM AND 2"CWP = I), a window_underflow trap is generated. If the
new window number is not invalid (i.e., its corresponding WIM bit is reset), then the contents of r[rsl] is
added to either the contents of r[rs2] (field bit i = I) or to the 13-bit, sign-extended immediate value
contained in the instruction (field bit i = 0). Because the CWP has not been updated yet, r[rsl] and r[rs2]
are read from the currently addressed window (the called window).

The new CWP value is written into the PSR, causing the previous window (the caller's window) to be­
come the active window. The result of the addition is now written into the r[rd] register of the restored
window.

Note that arithmetic operations involving the CWP are always done modulo the number of implemented
windows (8 for the CY7C601).

window_underflow

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1111101 1 rs1 li=ol ignored 1 rs2 1

31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 111101
1 rs1 li= 11 simm13 1

6-90

RETT

Operation:

Assembler
Syntax:

Description:

ncwp- cWP + 1

ET-l

PC-nPC

Return from Trap

(Privileged Instruction)

nPC- r[rsl] + (r[rs2] or sign extnd(simm13»

CWP-ncwp

S-pS

rett address

SPARe Instruction Set

RETT

RETT adds one to the Current Window Pointer (modulo the number of implemented windows) and
compares this value against the Window Invalid Mask register. If the new window number corresponds
to an invalidated window (WIM AND 2ncwp = 1), a window_underflow trap is generated. If the new
window number is not invalid (i.e., its corresponding WIM bit is reset), then RETT causes a delayed
control transfer to the address derived by adding the contents of r[rsl] to either the contents of r[rs2]
(field bit i = 1) or to the 13-bit, sign-extended immediate value contained in the instruction (field bit i =

0).

Before the control transfer takes place, the new CWP value is written into the PSR, causing the previous
window (the one in which the trap was taken) to become the active window. In addition, the PSR's ETbit
is set to one (traps enabled) and the previous Supervisor bit (PS) is restored to the S field.

Although in theory RETT is a delayed control transfer instruction, in practice, RETT must always be
immediately preceded by a JMPL instruction, creating a delayed control transfer couple (see Section
2.3.3.4.4). This has the effect of annulling the delay instruction.

If traps were already enabled before encountering the RETT instruction, an illegal_instruction trap is
generated. If traps are not enabled (ET=O) when the RETTis encountered, but (1) the processor is not
in supervisor mode (S = 0), or (2) the window underflow condition described above occurs, or (3) if either
of the two low-order bits of the target address are nonzero, then a reset trap occurs. If a reset trap does
occur, the tt field of the TBR encodes the trap condition: privileged _instruction, window_underflow, or
memory_address _not_aligned.

Programming note: To re-execute the trapping instruction when returning from a trap handler, use the
following sequence:

jmpl

rett

%17, %0

%18

! old PC

! old nPC

Note that the CY7C601!611 saves the PC in r[17] (local 1) and the nPC in r[18] (local2) of the trap window upon entering a trap.

To return to the instruction after the trapping instruction (e.g., when the trapping instruction is emu­
lated), use the sequence:

jmpl %18, %0 ! old nPC

rett %18 + 4 ! old nPC + 4

6-91

RETT

Thaps:

Format:

Return from Trap

(Privileged Instruction)

ilIegaUnstruction
reset (privileged_instruction)
reset (memory _address_not_aligned)
reset (window_underflow)

31 30 29 25 24 19 18

h 01 ignored 1111001 1

31 30 29 25 24 19 18

11 01 ignored 1 111001 1

14 13 12

rs1 li=ol

14 13 12

rs1 li=11

6-92

SPARe Instruction Set

RETT

5 4 0

ignored 1 rs2 1

0

simm13 1

SAVE

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Save caller's window

ncwp-CWP-1

result- r[rs1] + (r[rs2] or sign extnd(simm13))

CWP-ncwp

r[rd]- result

SAVE does not affect condition codes

SPARe Instruction Set

SAVE

SAVE subtracts one from the Current Window Pointer (modulo the number of implemented windows)
and compares this value against the Window lnvalid Mask register. If the new window number corre­
sponds to an invalidated window (WIM AND 2ncwp = 1), a window_overflow trap is generated. If the
new window number is not invalid (i.e., its corresponding WIM bit is reset), then the contents of r[rs1] is
added to either the contents of r[rs2] (field bit i = 1) or to the 13-bit, sign-extended immediate value
contained in the instruction (field bit i = 0). Because the CWP has not been updated yet, r[rs1] and r[rs2]
are read from the currently addressed window (the calling window).

The new CWP value is written into the PSR, causing the active window to become the previous window,
and the called window to become the active window. The result of the addition is now written into the
r[rd] register of the new window.

Note that arithmetic operations involving the CWP are always done modulo the number of implemented
windows (8 for the CY7C601).

window_overflow

31 3029 25 24 19 18 14 13 12 5 4 0

11 01 rd 1111100 1 rs1 li=ol ignored 1 rs2 1
31 30 29 25 24 19 18 14 13 12 0

11 01 rd 1 111100 1 rs1 li=11 simm13 1

6-93

IlJ

SPARe Instruction Set

SETHI Set High 22 bits of r register SETHI

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

r[rd] < 31:10 > - imm22

r[rd] < 9:0> - 0

sethi const22, regrd

sethi %hi value, regrd

SE1HI zeros the ten least significant bits of the contents of r[rd] and replaces its high-order 22 bits with
imm22. The condition codes are not affected.

Programmingnote: SE1HI 0, %0 is the preferred instruction to use as a NOp, because it will not increase
execution time if it follows a load instruction.

none

3130 29 25 24 22 21 o

10 0 I rd I 100 I imm22

6-94

SLL

Operation:

Assembler
Syntax:

Description:

SPARe Instruction Set

Shift Left Logical SLL

r[rd]- r[rsl] SLL by (r[rs2] or shcnt)

SLL shifts the contents of r[rsl] left by the number of bits specified by the shift count, filling the vacated
positions with zeros. The shifted results are written into r[rd]. No shift occurs if the shift count is zero.

If the i bit field equals zero, the shift count for SLL is the least significant five bits of the contents of
r[rs2]. If the i bit field equals one, the shift count for SLL is the 13-bit, sign extended immediate value,
simm13. In the instruction format and the operation description above, the least significant five bits of
simm13 is called shcnt.

This instruction does not modify the condition codes.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 a

11 01 rd 1100101 1 rs1 li=ol ignored 1 rs2 I
31 30 29 25 24 19 18 14 13 12 5 4 a

11 01 rd I 100101 I rs1 li=11 ignored I shcnt I

6-95

SRA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Shift Right Arithmetic SRA

r[rd)- r[rsl) SRA by (r[rs2) or shcnt)

sra regrsl' relL or _imm, regrd

SRA shifts the contents of r[rsl) right by the number of bits specified by the shift count, filling the vacated
positions with the MSB of r[rsl). The shifted results are written into r[rd). No shift occurs if the shift
count is zero.

If the i bit field equals zero, the shift count for SRA is the least significant five bits of the contents of
r[rs2). If the i bit field equals one, the shift count for SRA is the 13-bit, sign extended immediate value,
simm13. In the instruction format and the operation description above, the least significant five bits of
simm13 is called shcnt.

This instruction does not modify the condition codes.

Programming note: A "Shift Left Arithmetic by 1 (and calculate overflow)" can be implemented with an
ADDcc instruction.

none

31 30 29 25 24 19 18 14 13 12 5 4 a

11 01 rd 1100111 1 rs1 li=ol ignored 1 rs2 1
31 30 29 25 24 19 18 14 13 12 5 4 a

11 01 rd 1 100111 1 rs1 li= 11 ignored 1 shcnt 1

6-96

SRL

Operation:

Assembler
Syntax:

Description:

SPARe Instruction Set

Shift Right Logical SRL

r[rd]- r[rsl] SRL by (r[rs2] or shcnt)

SRL shifts the contents of r[rsl] right by the number of bits specified by the shift count, filling the vacated
positions with zeros. The shifted results are written into r[rd]. No shift occurs if the shift count is zero.

If the i bit field equals zero, the shift count for SRL is the least significant five bits of the contents of
r[rs2]. If the i bit field equals one, the shift count for SRL is the 13-bit, sign extended immediate value,
simm13. In the instruction format and the operation description above, the least significant five bits of
simm13 is called shcnt.

This instruction does not modify the condition codes.

Traps: none

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1100110 1 r51 li=ol ignored 1 r52 I
31 30 29 25 24 19 18 14 13 12 5 4 0

11 01 rd 1 100110 1 r51 li=ll ignored 1 5hent 1

6-97

ST

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Store Word ST

[r[rs1] + (r[rs2] or sign extnd(simm13»]- r[rd]

st regrd, [address]

The ST instruction moves a word from the destination register, r[rd], into memory. The effective
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction
if i equals one.

If ST takes a trap, the contents of the memory address remain unchanged.

Programming note: If rsl is set to a and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be written to without setting up a register.

memory _ address_not _aligned
data_access _exception

31 30 29 25 24 19 18

1000100 1

25 24 19 18

1000100 1

14 13

rs1 li=ol

14 13

rs1 li= 11

6-98

12 5 4 a

ignored 1 rs2 1
12 a

simm13 1

STA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

SPARe Instruction Set

Store Word into Alternate space STA
(Privileged Instruction)

address space - asi

[r[rsl] + r[rs2]]- r[rd]

sta regrd, [regaddr] asi

The STA instruction moves a word from the destination register, r[rd], into memory. The effective
memory address is a combination of the address space value given in the asi field and the address derived
by summing the contents of r[rsl] and r[rs2].

If STA takes a trap, the contents of the memory address remain unchanged.

illegal_instruction (if i = 1)
privileged_instruction (if S = 0)
memory_address_not_aligned
data_access_exception

25 24 19 18

1010100 I rs1

6-99

14 13 12 5 4

li=ol asi

o

rs2

8TB

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Store Byte

[r[rs1] + (r[rs2] or sign extnd(simm13»]- r[rd]

stb regrd, [address]

synonyms: stub, stsb

SPARe Instruction Set

8TB

The STB instruction moves the least significant byte from the destination register, r[rd], into memory.
The effective memory address is derived by summing the contents of r[rs1] and either the contents of
r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in
the instruction if i equals one.

If STB takes a trap, the contents of the memory address remain unchanged.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be written to without setting up a register.

data_access_exception

31 30 29 25 24 19 18 14 13 12 5 4 0

11 1 1 rd 1000101 1 rs1 li=ol ignored 1 rs2 1
31 3029 25 24 19 18 14 13 12 0

11 1 1 rd 1 000101 1 rs1 li=11 simm13 1

6-100

STBA

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

Store Byte into Alternate space

address space - asi

[r[rsl) + r[rs2))- r[rd)

stba regrd, [regaddr) asi

synonyms: stuba, stsba

(Privileged Instruction)

SPARe Instruction Set

STBA

The STBA instruction moves the least significant byte from the destination register, r[rd), into memory.
The effective memory address is a combination of the address space value given in the asi field and the
address derived by summing the contents of r[rsl) and r[rs2).

If STBA takes a trap, the contents of the memory address remain unchanged.

illegal_instruction (if i= 1)
privileged_instruction (if S=O)
data_access _exception

25 24 19 18

rd ! 010101 ! rs1

6-101

14 13 12 5 4

!i=O! asi rs2

STC

Operation:

Assembler
Syntax:

Description:

1htps:

Format:

SPARC Instruction Set

Store Coprocessor register STC

[r[rsl] + (r[rs2] or sign extnd(simm13))]- c[rd]

st cregrd, [address]

The STC instruction moves a word from a coprocessor register, c[rd], into memory. The effective
memory address is derived by summing the contents ofr[rsl] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction
if i equals one.

If the PSR's Be bit is set to zero or if no coprocessoris present, a cp_disabled trap will be generated. If
STC takes a trap, memory remains unchanged.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be written to without setting up a register.

cp_disabled
cp_exception
memory _address_ not_aligned
data_access_exception

25 24 19 18

25 24 19 18

rs1

rs1

6-102

14 13

li=ol

14 13

1,=11

12 5 4 0

ignored 1 rs2 1

12 0

simm13 1

SPARC Instruction Set

STCSR Store Coprocessor State Register STCSR

Operation:

Assembler
Syntax:

Description:

Traps:

Format:

[r[rsl] + (r[rs2] or sign extnd(simmI3»]- CSR

st %csr, [address]

The STCSR instruction moves the contents of the Coprocessor State Register into memory. The effec­
tive memory address is derived by summing the contents of r[rsl] and either the contents of r[rs2] if the
instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruc­
tion if i equals one.

1f the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. 1f
STCSR takes a trap, the contents of the memory address remain unchanged.

Programming note: 1f rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be written to without setting up a register.

cp_disabled
cp_exception
memory_address _not_aligned
data_access _exception

31 30 29 25 24

11 1 1 rd 1110101

31 3029 25 24

11 1 1 rd 1 110101

19 18

1
19 18

1

14 13 12 5 4 0

rs1 11=01 ignored 1 rs2 1
14 13 12 0

rs1 11=11 simm13 1

6--103

STD

Operation:

Assembler
Syntax:

Description:

'fraps:

Format:

SPARe Instruction Set

Store Doubleword STD

[r[rs1] + (r[rsZ] or sign extnd(simm13»]- r[rd]

[r[rs1] + (r[rsZ] or sign extnd(simm13» + 4]- r[rd + 1]

std regrd, [address]

The SID instruction moves a doubleword from the destination register pair, r[rd] and r[rd + 1], into
memory. The effective memory address is derived by summing the contents of r[rs1] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant word in the even-numbered destination
register is written into memory at the effective address and the least significant memory word in the next
odd-numbered register is written into memory at the effective address + 4.

If a data_access_ exception trap takes place during the effective address memory access, memory remains
unchanged.

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an
address space can be written to without setting up a register.

memory_address_not_aligned
data_access_ exception

31 30 29 25 24

11 1 1 rd 1000111

31 3029 25 24

11 d rd 1 0001 11

19 18

1

19 18

1

14 13 12 5 4 0

rs1 11=01 ignored 1 rs2 I
14 13 12 0

rs1 11=11 slmm13 I

6-104


~~~ 
---"~ , SEMICONDUCI'OR 

SPARe Instruction Set 

STDA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Store Doubleword into Alternate space 

(Privileged Instruction) 

address space - asi 

[r[rs1] + (r[rs2] or sign extnd(simm13»]- r[rd] 

[r[rs1] + (r[rs2] or sign extnd(simm13» + 4]- r[rd + 1] 

stda regrd, [regaddr] asi 

STDA 

The SIDA instruction moves a doubleword from the destination register pair, r[rd] and r[ rd + 1], into 
memory. The effective memory address is a combination of the address space value given in the asi field 
and the address derived by summing the contents of r[ rs1] and r[ rs2]. The most significant word in the 
even-numbered destination register is written into memory at the effective address and the least signifi­
cant memory word in the next odd-numbered register is written into memory at the effective address + 
4. 

If a data_access _exception trap takes place during the effective address memory access, memory remains 
unchanged. 

illegal_instruction (if i = 1) 
privileged _instruction (if S = 0) 
memory _address_not _aligned 
data_access _exception 

25 24 19 18 

rd rs1 

6-105 

14 13 12 5 4 o 

asi [s2 



STDC 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARC Instruction Set 

Store Doubleword Coprocessor STDC 

[r[rsl] + (r[rs2] or sign extnd(simm13»]- c[rd] 

[r[rsl] + (r[rs2] or sign extnd(simm13» + 4]- c[rd + 1] 

std cregrd, [address] 

The SIDC instruction moves a doubleword from the coprocessor register pair, c[ rd] and c[ rd + 1], into 
memory. The effective memory address is derived by summing the contents of r[ rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant word in the even-numbered destination 
register is written into memory at the effective address and the least significant memory word in the next 
odd-numbered register is written into memory at the effective address + 4. 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. If a 
data_access_exception trap takes place during the effective address memory access, memory remains 
unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

cp_disabled 
cp _exception 
memory _ address_ not_aligned 
data_access _exception 

31 30 29 25 24 

Q rd 1110111 

31 30 29 25 24 

11 1 1 rd 1 110111 

19 18 

1 

19 18 

1 

14 13 12 5 4 o 

rs1 li=ol ignored rs2 

14 13 12 o 

rs1 li= 11 simm13 

6-106 



SPARe Instruction Set 

STDCQ Store Doubleword Coprocessor Queue 

(Privileged Instruction) 

STDCQ 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

[r[rs1] + (r[rs2] or sign extnd(simm13))]- CQ.ADDR 

[r[rs1] + (r[rs2] or sign extnd(simm13)) + 4]-CQ.lNS1R 

std %cq, [address] 

The STDCQ instruction moves the front entry of the Coprocessor Queue into memory. The effective 
memory address is derived by summing the contents of r[rs1] and either the contents of r[rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. The address portion of the queue entry is written into memory at the effective address 
and the instruction portion of the entry is written into memory at the effective address + 4. 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp _disabled trap will be generated. If a 
data_access_exception trap takes place during the effective address memory access, memory remains 
unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

cp_disabled 
cp _exception 
privileged_instruction (if S = 0) 
memory _address_not_aligned 
data_access _exception 

31 30 29 25 24 19 18 

11 1 1 rd 1110110 1 

31 30 29 25 24 19 18 

11 1 1 rd 1 110110 1 

14 13 12 5 4 0 

r51 li=ol ignored 1 r52 1 

14 13 12 0 

r51 li=11 5imm13 I 

6-107 



STDF 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Store Doubleword Floating-Point STDF 

[r[rsl] + (r[rs2] or sign extnd(simm13»]- f[rd] 

[r[rsl] + (r[rs2] or sign extnd(simm13» + 4]- fIrd + 1] 

std jregrd, [address] 

The STDP instruction moves a doubleword from the floating-point register pair, f[rd] and f[rd + 1], into 
memory. The effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. The most significant word in the even-numbered destination 
register is written into memory at the effective address and the least significant memory word in the next 
odd-numbered register is written into memory at the effective address + 4. 

If the PSR's EPbit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If a trap takes place, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

fp _disabled 
fp _exception' 
memory_address _ not_aligned 
data_access _exception 

31 30 29 25 24 

11 1 1 rd 1100111 

31 30 29 25 24 

11 1 1 rd 1 100111 

19 18 

1 

19 18 

1 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 1 

14 13 12 0 

rs1 li= 11 simm13 1 

... NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 

6-108 



SPARe Instruction Set 

STDFQ Store Doubleword Floating-Point Queue 

(Privileged Instruction) 

STDFQ 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

[r[rsl] + (r[rs2] or sign extnd(simm13))]- FQ.ADDR 

[r[rsl] + (r[rs2] or sign extnd(simm13)) + 4]- FQ.INSTR 

std %fq, [address] 

The STDFQ instruction moves the front entry of the floating-point queue into memory. The effective 
memory address is derived by summing the contents of r[ rsl] and either the contents of r[ rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. The address portion of the queue entry is written into memory at the effective address 
and the instruction portion ofthe entry is written into memory at the effective address + 4. If the FPU is 
in exception mode, the queue is then advanced to the next entry, or it becomes empty (as indicated by the 
qne bit in the FSR). 

If the PSR's EFbit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If a trap takes place, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

fp_disabled 
fp _exception • 
privUeged _instruction (if S = 0) 
memory _ address_ not_aligned 
data_access _exception 

31 30 29 25 24 19 18 

11 1 1 rd 1100110 1 
31 30 29 25 24 19 18 

11 d rd 1 100110 1 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 1 
14 13 12 0 

rs1 li= 11 simm13 1 

* NOTE: An attempt to execute.any. FP instruction will cause a pending FP exception to be recognized by the integer unit. 

6-109 



STF 

Operation: 

Assembler 
Syntax: 

Description: 

lhtps: 

Format: 

SPARe Instruction Set 

Store Floating-Point register STF 

[r[rs1] + (r[rs2] or sign extnd(simm13»]- f[rd] 

st fregrd, [address] 

The S1F instruction moves a word from a floating-point register, f[ rd], into memory. The effective 
memory address is derived by summing the contents of r[ rs1] and either the contents of r[ rs2] if the in­
struction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the instruction 
if i equals one. 

If the PSR's EFbit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If S1F takes a trap, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

fp_disabled 
fp _exception' 
memory _address_not_aligned 
data_access _exception 

25 24 19 18 

1100100 1 

25 24 19 18 

1100100 1 

14 13 

rs1 li=ol 

14 13 

rs1 li=11 

12 5 4 0 

ignored 1 rs2 1 

12 0 

simm13 I 

• NOTE: An attempt to execute JIII¥ FP instruction will cause a pending FP exception to be recognized by the integer unit. 

6-110 



SPARe Instruction Set 

STFSR Store Floating-Point State Register STFSR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

[r[rsl) + (r[rs2) or sign extnd(simm13»)- FSR 

st %fsr, [address) 

The STFSR instruction moves the contents of the Floating-Point State Register into memory. The ef­
fective memory address is derived by summing the contents of r[rsl) and either the contents of r[ rs2) if 
the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in the in­
struction if i equals one. This instruction will wait for all pending FPops to complete execution before it 
writes the FSR into memory. 

If the PSR's EFbit is set to zero or if no floating-point unit is present, an fp_disabled trap will be gener­
ated. If STFSR takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

fp_disabled 
fp _exception' 
memory_address_not_aligned 
data_access _exception 

31 30 29 25 24 

11 1 1 rd 1100101 

31 30 29 25 24 

11 1 1 rd 1 100101 

19 18 

1 rs1 

19 18 

1 rs1 

14 13 12 5 4 a 

li=ol ignored 1 rs2 1 
14 13 12 a 

li=11 simm13 1 

'" NOTE: An attempt to execute ~ FP instruction will cause a pending FP exception to be recognized by the integer unit. 

6-111 



STH 

Operation: 

Assembler 
Syntax: 

Description: 

'Iraps: 

Format: 

SPARe Instruction Set 

Store HaItword STH 

[r[rsl] + (r[rs2] or sign extnd(simm13»]- r[rd] 

sth regrd, [address] synonyms: stuh, stsh 

The STH instruction moves the least significant halfword from the destination register, r[ rd], into 
memory. The effective memory address is derived by summing the contents of r[ rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand con­
tained in the instruction if i equals one. 

If STH takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to I, any location in the lowest or highest 4 kbytes of an 
address space can be written to without setting up a register. 

memory _ address_ not_aligned 
data_access _exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000110 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000110 1 rs1 li=ll simm13 1 

6-112 



STHA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Store HalfWord into Alternate space 

(Privileged Instruction) 

address space - asi 

[r[rs1] + (r[rs2] or sign extnd(simm13»]- r[rd] 

stha regrd, [address] 

synonyms: stuha, stsha 

SPARe Instruction Set 

STHA 

The STHA instruction moves the least significant halfword from the destination register, r[ rd], into 
memory. The effective memory address is a combination of the address space value given in the asi field 
and the address derived by summing the contents of r[rs1] and r[rs2]. 

If STHA takes a trap, the contents of the memory address remain unchanged. 

illegal_instruction (if i= 1) 
privileged_instruction (if S = 0) 
memory_address_not_aligned 
data_access _exception 

25 24 19 18 

rs1 

6-113 

14 13 12 5 4 

asi 

o 

rs2 



SUB 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

SPARe Instruction Set 

Subtract SUB 

r[rd]- r[rsl] . (r[rs2] or sign extnd(simm13)) 

The SUB instruction subtracts either the contents of the register named in the rs2 field, r[ rs2], if the 
instruction's i bit equals zero, or the 13·bit, sign·extended immediate operand contained in the instruc· 
tion if i equals one, from register r[rsl]. The result is placed in the register specified in the rd field. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000100 I rs1 li=ol ignored 1 rs2 ! 

31 30 29 25 24 19 18 14 13 12 0 

h 01 rd 1 000100 I rs1 li=1! simm13 ! 

6-114 



SPARe Instruction Set 

SUBcc Subtract and modify icc SUBcc 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

r[rd)- r[rs1) - operand2, where operand2 = (r[rs2] or sign extnd(sirnm13» 

n- r[rd) < 31 > 
z - if r[rd) = 0 then 1, else 0 

v- (r[rs1)< 31 > AND not operand2<31 > AND not r[rd)<31 » 
OR (not r[rs1] < 31 > AND operand2<31 > AND r[rd]<31 » 

c- (not r[rs1) < 31 > AND operand2<31 » 
OR (r[rd) <31 > AND (not r[rsl] < 31 > OR operand2<31 ») 

subcc regrsJ, re/Lor_imm, regrd 

The SUBcc instruction subtracts either the contents of register r[ rs2) (if the instruction's i bit equals 
zero) or the 13-bit, sign-extended immediate operand contained in the instruction (if i equals one) from 
register r[ rsl]. The result is placed in register r[ rdJ. In addition, SUBccmodifies all the integer condition 
codes in the manner described above. 

Programming note: A SUBcc instruction with rd = 0 can be used for signed and unsigned integer com-
parison. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010100 1 r51 li=ol ignored 1 r52 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 010100 1 r51 li=ll 5imm13 1 

6-115 

E 



SUBX 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

SPARC Instruction Set 

Subtract with Carry SUBX 

r[rd)- r[rs1) - (r[rs2) or sign extnd(simm13» - c 

SUBX subtracts either the contents of register r[ rs2) (if the instruction's i bit equals zero) or the 13-bit, 
sign-extended immediate operand contained in the instruction (if i equals one) from register r[ rsl]. It 
then subtracts the PSR's carry bit (c) from that result. The final result is placed in the register specified in 
the rd field. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1001100 1 r51 li=ol ignored 1 r52 I 
31 3029 25 24 19 18 14 13 12 0 

11 01 rd 1 001100 I r51 li=11 5imm13 I 

6-116 



SPARC Instruction Set 

SUBXcc Subtract with Carry and modify icc SUBXcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd]- r[rsl] - operand2 - c, where operand2 = (r[rs2] or sign extnd(simm13» 

n-r[rd]<31> 

z- if r[rd] =0 then I, else 0 

v- (r[rsl]<31 > AND not operand2<31> AND not r[rd] < 31> ) 

OR (not r[rsl] <31 > AND operand2<31> AND r[rd]<31» 

c- (not r[rsl] < 31 > AND operand2<31» 

OR (r[rd]<31 > AND (not r[rsl] <31 > OR operand2<31 ») 

SUBXcc subtracts either the contents of register r[ rs2] (if the instruction's i bit equals zero) or the 13-bit, 
sign-extended immediate operand contained in the instruction (if i equals one) from register r[ rsl]. It 
then subtracts the PSR's carry bit (c) from that result. The final result is placed in the register specified in 
the rd field. In addition, SUBXcc modifies all the integer condition codes in the manner described 
above. 

none 

31 3029 25 24 19 18 14 13 12 5 4 0 

h 01 rd 10111001 rs1 11=01 Ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 011100 1 rs1 11=11 slmm13 1 

6-117 

D 



SWAP 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Swap rregister with memory 

word- [r[rs1) + (r[rs2) or sign extnd(simm13») 

temp- r[rd) 

r[rd)-word 

r[rsI) + (r[rs2) or sign extnd(simm13»- temp 

swap [source), regrd 

SPARe Instruction Set 

SWAP 

SWAP atomically exchanges the contents of r[rd) with the contents of a memory location, i.e., without 
allowing asynchronous trap interruptions. In a multiprocessor system, two or more prQcessors executing 
SWAP instructions simultaneously are guaranteed to execute them serially, in some order. 

The effective memory address is derived by summing the contents ofr[ rs1) and either the contents of 
r[ rs2) if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand contained in 
the instruction if i equals one. 

If SWAP takes a trap, the contents of the memory address and the destination register remain un­
changed. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 kbytes of an 
address space can be accessed without setting up a register. 

memory _ address_ not_aligned 
data_access _exception 

31 30 29 25 24 

11 1 1 rd 1001111 

31 30 29 25 24 

11 1 I rd I 001111 

19 18 

1 

19 18 

I 

14 13 12 5 4 0 

rs1 li=ol ignored 1 rs2 I 
14 13 12 0 

rs1 li=ll simm13 I 

6-118 



SPARe Instruction Set 

SWAPA Swap r register with memory in Alternate space SWAPA 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

address space - asi 

word- [r[rsl] + r[rs2]] 

temp-r[rd] 

r[rd]-word 

[r[rsl] + r[rs211- temp 

swapa [regsource] asi, relJrd 

(Privileged Instruction) 

SW APA atomically exchanges the contents of r[ rd] with the contents of a memory location, i.e., without 
allowing asynchronous trap interruptions. In a multiprocessor system, two or more processors executing 
SWAPA instructions simultaneously are guaranteed to execute them serially, in some order. 

The effective memory address is a combination of the address space value given in the asi field and the 
address derived by summing the contents of r[rsl] and r[rs2]. 

If SW APA takes a trap, the contents of the memory address and the destination register remain un­
changed. 

illegal_instruction (if i= 1) 
privileged_instruction (if S = 0) 
memory_address_not_aligned 
data_access _exception 

3130 29 25 24 19 18 

rd 10111111 rsl 

6-119 

14 13 12 5 4 o 

asl rs2 



SPARe Instruction Set 

TADDcc Tagged Add and modify icc TADDcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rdl- r[rs1] + operand2, where operand2 = (r[rs2] or sign extnd(simm13)) 

n-r[rd]<31> 
z- if r[rd]=0 then 1, else 0 

v- (r[rs1] < 31 > AND operand2< 31 > AND not r[rd] < 31 » 

OR (not r[rs1] <31 > AND not operand2<31 > AND r[rd]<31» 

OR (r[rs1]< 1:0> #- 0 OR operand2< 1:0> #- 0) 

c- (r[rs1]<31> AND operand2<31 > 

OR (not r[rd] < 31 > AND (r[rsl] < 31 > OR operand2< 31 ») 

TADDcc adds the contents of r[ rs1] to either the contents of r[rs2] if the instruction's i bit equals zero, or 
to a 13-bit, sign-extended immediate operand if i equals one. The result is placed in the register specified 
in the rd field. In addition to the normal arithmetic overflow, an overflow condition also exists if bit 1 or 
bit 0 of either operand is not zero. TADDcc modifies all the integer condition codes in the manner de­
scnbed above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100000 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 100000 1 rs1 li=11 slmm13 I 

6-120 



SPARe Instruction Set 

TADDccTV Tagged Add (modifY icc) Trap on Overflow TADDccTV 

Operation: 

Assembler 
Syntax: 

Description: 

'IJoaps: 

Format: 

result- r[rs1] + operand2, where operand 2 = (r[rs2] or sign extnd(simm13» 

tv- (r[rs1] <31 > AND operand2<31 > AND not r[rd]<31 » 
OR (not r[rs1] < 31 > AND not operand2< 31 > AND r[rd] < 31 » 
OR (r[ rs1] < 1:0> "" 0 OR operand2 < 1:0> "" 0) 

if tv = 1, then tag overflow trap; else 

n- r[rd]<31 > 

z - if r[ rd] = 0 then 1, else 0 

v-tv 

c- (r[rs1] < 31 > AND operand2< 31 > 

OR (not r[rd] <31 > AND (r[rs1]< 31 > OR operand2<31 ») 

r[rd]- result 

TADDcc1V adds the contents of r[ rs1] to either the contents of r[ rs2] if the instruction's ibit equals zero, 
or to a 13-bit, sign-extended immediate operand if j equals one. In addition to the normal arithmetic 
overflow, an overflow condition also exists if bit 1 or bit 0 of either operand is not zero. 

IfTADDcc1V detects an overflow condition, a taILoverfiow trap is generated and the destination regis­
ter and condition codes remain unchanged. If no overflow is detected, TADDcc1V places the result in 
the register specified in the rd field and modifies all the integer condition codes in the manner described 
above (the overflow bit is, of course, set to zero). 

taIL overflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100010 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 100010 
1 rs1 li=11 simm13 I 

6-121 

D 



Ticc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Trap on integer condition codes 

If condition true, then trap_instruction; 

tt-128 + [r[rs1] + (r[rs2] or sign extnd(simm13»] <6:0> 

elsePC-nPC 

nPC-nPC + 4 

ta{,a} label 
tn{,a} label 
tne{,a} label 
te{,a} label 
tg{,a} label 

tle{,a} label 
tge{,a} label 
tI{,a} label 
tgu{,a} label 
tleu{,a} label 
tcc{,a} label 
tcs{,a} label 
tpos{,a} label 
tneg{,a} label 
tvc{,a} label 
tvs{,a} label 

synonym: tnz 
synonym: tz 

synonym: tgeu 
synonym: tlu 

SPARe Instruction Set 

Ticc 

A Ticc instruction evaluates specific integer condition code combinations (from the PSR's icc field) 
based on the trap type as specified by the value in the instruction's cond field. If the specified combina­
tion of condition codes evaluates as true, and there are no higher-priority traps pending, then a trap_in­
struction trap is generated. If the condition codes evaluate as false, the trap is not generated. 

If a trap_instruction trap is generated, the It field of the Trap Base Register (TBR) is written with 128 
plus the least significant seven bits of r[rs1] plus either r[rs2] (bit field i =0) or the 13-bit sign-extended 
immediate value contained in the instruction (bit field i = 1). See Section 2.7 for the complete definition 
of a trap. 

trap _instruction 

6-122 



Ticc 

Format: 

SPARe Instruction Set 

'frap on integer condition codes Ticc 

Mnemonic Condo Operation icc Test 

TN 0000 'Itap Never No test 

TE 0001 'Itap on Equal z 

TLE 0010 'Itap on Less or Equal zOR(nXOR v) 

TL ·0011 'Itap on Less nXORv 

TLEU 0100 'Itap on Less or Equal, Unsigned cORz 

TCS 0101 'Itap on Carry Set (Less then, Unsigned) c 

TNEG 0110 'Itap on Negative n 

TVS 0111 nap on oVerflow Set v 

TA 1000 'Itap Always No test 

TNE 1001 'Itap on Not Equal not z 

TG 1010 nap on Greater not(z OR (n XOR v» 

TGE 1011 'Itap on Greater or Equal not(n XOR v) 

TGU 1100 nap on Greater, Unsigned not(c OR z) 

TCC 1101 'Itap on Carry Clear (Greater than or note 
Equal, Unsigned) 

TPOS 1110 nap on Positive not n 

TVC 1111 'Itap on oVerflow Clear not v 

31 30 29 28 2524 19 18 14 13 12 5 4 0 

h 0 Ilgn.1 cond·11 1 1 0 1 0 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 28 2524 19 18 

11 0 1 ign·1 cond·11 1 1 0 1 0 1 rs1 

Ign. = ignored 
condo = condition 

6-123 

14 13 12 0 

11=11 simm13 1 

1m 



SPARe Instruction Set 

TSUBcc Tagged Subtract and modity icc TSUBcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[reI]- r[rsl] - operand2, where operand2 = (r[rsZ] or sign extnd(simm13» 

n- r[rd]<31> 

z - if r[ rd] = 0 then 1, else 0 
v- (r[rsl] < 31 > AND not operand2<31 > AND not r[reI] < 31 » OR (not r[rsl]<31 > 

AND operand2<31> AND r[reI] <31 > ) OR (r[rsl] < 1:0> ¥= 0 OR operand2< 1:0> ¥= 0) 

c- (not r[rsl] < 31> AND operand2< 31 > 

OR (r[ rei] < 31 > AND (not r[ rsl] < 31 > OR operand2 < 31 > » 

TSUBcc subtracts either the contents of registerr[rs2] (if the instruction's i bit equals zero) or the 13-bit, 
sign-extended immediate operand contained in the instruction (if i equals one) from register r[ rsl]. The 
result is placed in the register specified in the rd field. In addition to the normal arithmetic overflow, an 
overflow condition also exists if bit 1 or bit 0 of either operand is not zero. TSUBcc modifies all the 
integer condition codes in the manner described above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100001 1 rs1 11=01 ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 100001 1 rs1 11=11 slmm13 1 

6-124 



SPARe Instruction Set 

TSUBccTV Tagged Subtract (modify icc) TSUBccTV 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

Trap on Overflow 

result- r[rsl) - operand2, where operand2 = (r[rs2) or sign extnd(simm13» 

tv- (r[rsl) <31 > AND not operand2< 31 > AND not r[rd) < 31 » OR (not r[rsl) < 31 > 
AND operand2< 31 > AND r[rd) < 31 » 

OR (r[rsl)< 1:0 > "'" 0 OR operand2< 1:0> "'" 0) 
if tv = 1, then tag overflow trap; else 

n-r[rd)<31> 

z - if r[rd) =0 then 1, else 0 

v-tv 
c- (not(r[rsl) < 31 » AND operand2< 31 > OR 

(r[rd)< 31 > AND (not(r[rsl) < 31 » OR operand2< 31 ») 
r[ rd)- result 

TSUBcc1V subtracts either the contents of register r[ rs2) (if the instruction's i bit equals zero) or the 
13-bit, sign-extended immediate operand contained in the instruction (if i equals one) from register 
r[rsl). In addition to the normal arithmetic overflow, an overflow condition also exists if bit lor bit 0 of 
either operand is not zero. 

If TSUBcc1V detects an overflow condition, a tag_overflow trap is generated and the destination regis­
ter and condition codes remain unchanged. If no overflow is detected, TSUBcc1V places the result in 
the register specified in the rd field and modifies all the integer condition codes in the manner described 
above (the overflow bit is, of course, set to zero). 

tag_overflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1100011 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I 100011 I rs1 li=11 simm13 I 

6-125 



SPARe Instruction Set 

UNIMP Unimplemented instruction UNIMP 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

illegal instruction trap 

unimp const22 

Executing the UNIMP instruction causes an immediate illegal_instruction trap. The value in the 
const22 field is ignored. . 

Programming note: UNIMP can be used as part of the protocol for calling a function that is expected to 
return an aggregate value, such as a C-Ianguage structure. 

1. An UNIMP instruction is placed after (not in) the delay slot after the CALL instruction in the calling 
function. 

2. If the called function is expecting to return a structure, it will find the size of the structure that the 
caller expects to be returned as the const22 operand of the UNIMP instruction. The called function 
can check the opcode to make sure it is indeed UNIMP. 

3. If the function is not going to return a structure, upon returning, it attempts to execute UNIMP rath­
er than skipping over it as it should. This causes the program to terminate. The behavior adds some 
run-time checking to an interface that cannot be checked properly at compile time. 

illegal_instruction 

31 30 29 25 24 22 21 o 

100 1 ignored 1 000 1 const22 

6-126 



SPARe Instruction Set 

WRPSR Write Processor State Register 

(Privileged Instruction) 

WRPSR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

PSR - r[rs1] XOR (r[rs2] or sign extnd(simm13» 

wr regrs1, refLor_imm, %psr 

WRPSR ooes a bitwise logical XOR of the contents of register r[ rs1] with either the contents of r[rs2] (if 
bit field i = 0) or the 13-bit sign-extended immediate value contained in the instruction (if bit field i = 1). 
The result is written into the writable subfields of the PSR. However, if the result's CWP field would 
point to an unimplemented window, an illegal_instruction trap is generated and the PSR remains un· 
changed. 

WRPSR is a delayed-write instruction: 

1. If any of the three instructions following a WRPSR uses any PSR field that WRPSR modified, the 
value of that field is unpredictable. Note that any instruction which references a non-global register 
makes use of the CWp, so following WRPSR with three NOPs would be the safest course. 

2. If a WRPSR instruction is updating the PSR's Processor InterrupfLevel (PIL) to a new value and is 
simultaneously setting Enable Traps (ET) to one, this could result in an interrupt trap at a level equal 
to the old PIL value. 

3. If any of the three instructions after a WRPSR instruction reads the modified PSR, the value read is 
unpredictable. 

4. If any of the three instructions after a WRPSR is trapped, a subsequent RDPSR in the trap handler 
will get the register's new value. 

Programming note: Two WRPSR instructions should be used when enabling traps and changing the PIL 
value. The first WRPSR should specify ET = 0 with the new PIL value, and the second should specify 
ET= 1 with the new PIL value. 

illegal_instruction 
privileged_instruction (if S = 0) 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored 1110001 1 rs1 li=ol ignored 
1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 
110001 

1 rs1 li=11 simm13 1 

6-127 



SPARe Instruction Set 

WRTBR Write Trap Base Register 

(Privileged Instruction) 

WRTBR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Fotmat: 

TBR - r[rs1] XOR (r[rs2] or sign extnd(simm13» 

WRTBR does a bitwise logical XOR of the contents of register r[ rs1] with either the contents of r[ [s2] (if 
bit field i = 0) or the 13-bit sign-extended immediate value contained in the instruction (if bit field i = 1). 
The result is written into the nap Base Address field of the TBR. 

WRTBR is a delayed-write instruction: 

1. If any of the three instructions following a WRTBR causes a trap, the TBA used may be either the old 
or the new value. 

2. If any of the three instructions after a WRTBR is trapped, a subsequent RDTBR in the trap handler 
will get the register's new TBA value. 

privileged_instruction (if S =0) 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored 1110011 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 110011 1 rs1 li=ll simm13 1 

6-128 



SPARe Instruction Set 

WRWIM Write Window Invalid Mask register WRWIM 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

(Privileged Instruction) 

WIM - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

WRWIM does a bitwise logical XOR of the contents of register r[ rsl] with either the contents of r[ rs2] (if 
bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit field i = 1). 
The result is written into the writable bits of the WIM register. 

WRWIM is a delayed-write instruction: 

1. If any of the three instructions following a WRWIM is a SAVE, RESTORE, or RETT, the occurrence 
of window_overflow and window_underflow is unpredictable. 

2. If any of the three instructions after a WRWIM instruction reads the modified WIM, the value read is 
unpredictable. 

3. If any of the three instructions after a WRWIM is trapped, a subsequent RDWIM in the trap handler 
will get the register's new value. 

privileged_instruction (if S = 0) 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored 1110010 1 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 110010 1 rs1 li=11 simm13 1 

6-129 

1m 



WRY 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Write Y register WRY 

Y - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

WRY does a bitwise logical XOR of the contents of register r[ rsl] with either the contents of r[ rs2] (if bit 
field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit field i = 1). 
The result is written into the Y register. 

WRY is a delayed-write instruction: 

1. If any of the three instructions following a WRY is a MULScc or a RDY, the value oj Y used is unpre­
dictable. 

2. If any of the three instructions after a WRY instruction reads the modified Y register, the value read 
is unpredictable. 

3. If any of the three instructions after a WRY is trapped, a subsequentRDY in the trap handler will get 
the register's new value. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

h 01 ignored 1110000 I rsl li=ol Ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

h 01 ignored 1110000 I rsl li=ll simm13 I 

6-130 



SPARe Instruction Set 

XNOR Exclusive-Nor XNOR 

Operation: 

Assembler 
Syntax: 

Description: 

'fraps: 

Format: 

r[rd] - r[rs1] XOR not(r[rs2] or sign extnd(simm13» 

This iostruction does a bitwise logical XOR of the contents of register r[rs1] with the one's complement 
of either the contents of r[ rs2] (if bit field i = 0) or the 13-bit sign-extended immediate value contained in 
the iostruction (if bit field i = 1). The result is stored io register r[ rd]. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000111 1 rs1 li=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000111 1 rs1 li=11 simm13 1 

6-131 



XNORcc Exclusive-Nor and modify icc 

Operation: 

Assembler 

r[rd] - r[rsl] XOR not(r[rs2] or sign extnd(simm13» 

n - r[rd]<31> 
z - if r[rd] =0 then 1, else 0 

v- 0 
c- 0 

Syntax: xnorcc reg,.], re/LOT_imm, regrrl 

SPARe Instruction Set 

XNORcc 

Description: 1bis instruction does a bitwise logical XOR of the contents of register r[ rsl] with the one's complement 
of either the contents of r[ rs2] (ifbit field i = 0) or the 13-bit, sign-extended immediate value contained in 
the instruction (if bit field i= 1). The result is stored in register qed]. XNORcc also modifies all the 
integer condition codes in the manner described above. 

1i'aps: none 

Fonnat: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010111 1 rs1 11=01 Ignored 
1 

rs2 
1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 010111 1 rs1 11=11 slmm13 1 

6-132 



XOR 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

SPARe Instruction Set 

Exclusive-Or XOR 

r[rd] - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

This instruction does a bitwise logical XOR of the contents of register r[ rsl] with either the contents of 
r[ rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit 
field i = 1). The result is stored in register r[ rd]. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1000011 1 rs1 li=ol ignored 1 rs2 I 
31 3029 25 24 19 18 14 13 12 0 

11 01 rd 1 000011 1 rs1 li=11 simm13 I 

6-133 



SPARe Instruction Set 

XORcc Exclusive-Or and modify icc XORcc 

Operation: 

Assembler 
Syntax: 

Description: 

Traps: 

Format: 

r[rd] - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

n - r[rd]<31> 
z - if r[rd] =0 then I, else 0 

v- 0 

c- 0 

This instruction does a bitwise logical XOR of the contents of register r[ rsl] with either the contents of 
r[ rs2] (if bit field i = 0) or the 13-bit, sign-extended immediate value contained in the instruction (if bit 
field i= I). The result is stored in register r[rd]. XORccalso modifies all the integer condition codes in 
the manner described above. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010011 rs1 li=ol ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

h 01 rd 1010011 1 rs1 li=11 simm13 1 

6-134 



Chapter 7 

CYP~S~~~============~~ SEMICONDUCTOR CY7C600 Electrical and 
Mechanical Characteristics 

7.1 CY7C601 Electrical and Mechanical Characteristics 

7.1.1 CY7C601 Maximum Ratings 
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65 ° C to + 150 ° C 
Ambient Temperature with Power Applied ............................................................ _55° C to + 125° C 
Supply Voltage to Ground Potential [I] • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• -0.5 V to + 7.0 V 
DC Voltage Applied to Outputs in High Z State ......................................................... -0.5 V to + 7.0 V 
DC Input Voltage .................................................................................... -3.0 V to + 7.0 V 
Output Low Sink Current. ...................................................................................... 30 rnA 

7.1.2 CY7C601 Operating Range 

Range Ambient Temperature [2] Vce 

Commercial O· Ct070·C SV ± 10% 

Military -55· C to + 125· C SV ± 10% 

7.1.3 CY7C601 DC Characteristics Over the Operating Range 

Parameters Description Test Conditions Min. Max. Units 

VOH Output HIGH Voltage Vee = Min., IoH - -20 rnA 24 V 

VOL Output LOW Voltage Vee = Min., IOL = 8.0 rnA 0.5 V 

Vrn Input HIGH Voltage 21 Vee V 

VIL Input LOW Voltage -3.0 0.8 V 

Irn Input HIGH Current Vee = Max., VIN = Vee 10 J.lA 

IlL Input LOW Current Vee = Max., VIN = Vss -10 J.lA 
loz Output Leakage Current Vee = Max., Vss < VOUT < Vee -40 40 J.lA 

Isc Output Short Circuit Current Vee = Max., VOUT = OV -30 -180 rnA 

IccQ Quiescent Supply Current Vss=::;; VIN=::;;VIL 150 rnA 
or Vrn=::;;VIN<Vee 

Icc Supply Current Vee = Max., f = 40 MHz 675 rnA 

(All outputs loaded to 80 pF) Vee = Max., f = 33 MHz 600 rnA 

Vee = Max., f = 25 MHz 600 rnA 

leeF Supply Current Vee - Max., f - 40 MHz 400 rnA 

(outputs floating) Vee = Max., f = 33 MHz 350 rnA 

Vee = Max., f = 25 MHz 350 rnA 

7.1A CY7C601 Capacitance [3] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vee = 5.0Y, T. = 25°C, f - 1 MHz 10 pF 

CoUT Output Capacitance Vee - 5.0V, T. - 25°C, f - 1 MHz 12 pF 

CIO I/O Bus Capacitance Vee = 5.0Y, T. = 25°C, f = 1 MHz 15 pF 

7-1 



CY7C600 Electrical and Mechanical Characteristics 

7.1.5 CY7C601 AC Characteristics [4J 

Reference CY7C601-2S CY7C601-33 CY7C601-40 

Parameter Description Edge Min Max. Min. Max. Min Max. Units 

1 lev Clock Cycle 40 1000 30 1000 25 1000 ns 
2 leHL Clock High and Low 18 990 13 990 11 990 ns 
3 leRF Clock Rise and Fall 1 1 1 V/ns 

4 tAD Address/Control Output DelaysJ CLK+ 33 24 20 ns 
5 tAU Address/Control Output Valid[sJ CLK+ 7 7 7 ns 

6 tooo 0(31:0) Output Delay CLK- 20 15 13 ns 

7 tOOH 0(31:0) Output Valid CLK- 4 4 4 ns 

8 tOlS 0(31:0) Input Set-Up CLK+ 3 2 2 ns 

9 tolU 0(31:0) Input Hold CLK+ 5 5 4 ns 

10 tMAD MAO Asserted to Address/Control Output Delay MAO + 19 14 12 ns 

11 tMAH MAO Deasserted to AddreSs/Control Output MAO- 2 2 2 ns 
Valid 

12 tMES CEXC, FEXC, MEXC Input Set-Up CLK+ 15 11 10 ns 

13 tMEH CEXC, FEXC, MEXC Input Hold CLK+ 2 1 1 ns 

14 tHS I XlfOlD Input Set_Up[6J CLK- 7 4 3 ns 

15 tHH XHOlD Input Hold CLK- 6 5 4.5 ns 

16 tHoo XHOlD to Address/Control Output Delay XHOlD- 22 15 12 ns 

17 tHOH XHOlD to Address/Control Output Valid XHOlD+ 0 0 0 ns 

18 toE AOE, COE, DOE to Output Enable Delay XOE- 15 11 9 ns 

19 too AOE, COE, DOE to Output Disable Delay XOE+ 15 11 9 ns 

20 troE TOE Asserted to Output Enable Delay TOE- 21 19 17 ns 

21 troD TOE Deasserted to Output Disable Delay TOE+ 21 19 17 ns 

22 tsso INST, FXACK, CXACK, INTACK, ERROR CLK+ 20 15 13 ns 
Output Delay 

23 tSSH INST, FXACK, CXACK, INTACK, ERROR CLK+ 3 3 3 ns 
Output Valid 

24 tRS RESET Input Set-Up CLK+ 15 10 8 ns 

25 tRH RESET Input Hold CLK+ 3 3 2 ns 

26 tFD FINS(I:0), CINS(I:0) Output Delay CLK+ 27 18 15 ns 

27 tFH FINS(I:0), CINS(I:0) Output Valid CLK+ 3.5 3.5 3.5 ns 

28 tPlS FCC(1:0), CCC(1:0) Input Set-Up CLK+ 10 8 5 ns 

29 tFIU FCC(1:0), CCC(I:0) Input Hold CLK+ 4 3 2 ns 
30 toxo DXFER Output Delay CLK+ 28 23 19 ns 
31 tDXH DXFER Ouput Valid CLK+ 2 2 2 ns 

32 tHOXO XHOlD Asserted to DXFER Output Delay6J XHOlD- 20 15 12 ns 

33 tHOXH XHOlD Deasserted to DXFER Output Valid XHOlD+ 0 0 0 ns 

34 tNUO INUll Output Delay CLK+ 20 13 11 ns 

35 tNUH INUll Output Valid CLK+ 3 3 3 ns 

36 tMOS MDS Input Set-Up CLK- 5 4 3 ns 
37 tMOH MDS Input Hold CLK- 6 5 4.5 ns 

38 tFLS FLUSH Output Delay CLK+ 15 13 11 ns 

39 tFLU FLUSH Output Valid CLK+ 3 3 3 ns 

40 tccvs FCCY, CCCV Input Set-Up CLK- 7 4 3 ns 

41 tccva FCCV, CCCV Input Hold CLK- 6 5 4.5 ns 

7-2 



CY7C600 Electrical and Mechanical Characteristics 

7.1.6 CY7C601 AC Test Loads and Waveforms 

470 !l 
5V 3V ----:--:- 11---"') 

OUTPUT 

I 50PF 
319!l <3ns <3ns 

Waveform 

Test Load 

7.1.7 CY7C601 AC Waveforms 

Clock and Reset Timing 

ClK 

8 ClK Cycles Minimum 

Reset need be synchronized with ClK only if the processor must be in step with other devices in the system. 

Notes: 

1. All power and ground pins must be connected before power is applied. 
2. Ambient temperature is defined as the 'instant on' case temperature. 
3. Tested initially and after any design or process changes that may affect these parameters. 
4. Test conditions assume signal transition times of 3 os or less, a timing reference level of 1.5V. input levels of 0 to 3.0V, and output loading of 50 pF. 
5. Address/Control signals include: A(31:0), ASI(7:0), SIZE(1:0), RD, WRf, WE, WCK, and LDSTO. 
6. XHOLD includes BHOLD, MHOLDA, MHOLDB, FHOW, and CHOLD. 

7-3 



CY7C600 Electrical and Mechanical Characteristics 

Load Timing 

elK 

A(31:0) 

ASI(7:0) 

SIZE(1:0) 

RO 

0(31:0) 

OXFER 

INST 

7-4 



CY7C600 Electrical and Mechanical Characteristics 

Store Timing 

elK 

A(31:0) 

ASI(7:0) 

SIZE(1:0) 

WRT 

0(31:0) 

~~ j@v-

~------~------~----~I------~t=--®-~ 

OXFER 

INST 

INUll 

7-5 



CY7C600 Electrical and Mechanical Characteristics 

lnad with Cache Miss 

elK 

A(31:0) 

ASI(7:0) 

SIZE(1 :0) ,----''"'''' """--'--'~, ""/H'''-'--" 

D(31:0) 

MAO 

DXFER 

7-6 



CY7C600 Electrical and Mechanical Characteristics 

Memory Exception Timing 

ClK 

A(31:0) 'L __ ,-"_IV'V~'-'" 
r-~----~r~----~-----~ 

ASI(7:0) 

INUll __________ -+ ____ ~--------_{ ~---+------------=j~.---J~~-=~'= 

Bus Arbitration Timing 

ClK 

A(31:0). 
ASI(7:0). 

SIZE(1:0) 

WE 
RD 

lOCK. 
LDSTO 

7-7 



CY7C600 Electrical and Mechanical Characteristics 

Floating-Point Timing 

ClK 

D(31:0 

INST 

FINS1/2 ~•. 2 ~ -1::' •. ",. @ r-,--~-----;,_~ _J ~ I 1 ~'---"-. _,...-,--+-
~ i ~ 

Fg;)--~----~------~------~------------~~XXXXXXXXXX~ __ ~_ 

:l~:=:====i-r_-3....1)-( ---'--j@-'--~+~-~-';ooo:13==:===:i-!~-+'· _re ...... 41 ':-. _/r-_-_ -+~-
FExc:; / -+---+--.--+-' 

FAACK_~ ______ +t:= __ 2~:I 

7-8 



CY7C600 Electrical and Mechanical Characteristics 

7.1.8 CY7C601 PGA Package Dimensions 

0@@@@0@@@0@@@@@@ 
@@@@@00@@@0@@@@@@ 
@@@@@@@@@@@@@@@@@ 
@0@@@@0@@@@@@@@@@ 
@0@@ @@@@ 

0.Q18 ± 0.002 

t 1.760 
± 0.015 

@0@@ @@@@ 0.100 ± 0.005 

1.600 
±0.Q15 

1 
@0@@ @@@@ 
@0@0 BOTTOM @@@@ 
@0@@ @@0@ 
@@@@ VIEW @@0@ 
@@@@ @@@@ 
@0@@ @@@@ 
@0@@ @@@@ 
@@@@@@@@@@@@@@@@@ 
@@@@@@@@@0000@0@0 
@@@@@@0@@@@@@@@@@ 
@@@@@@@@@@@@@0@@@ 

0.085 t ~ 0.085 I---- 1.600 ± 0.015 ---I. 
1.760 ± 0.015 

7.1.9 CY7C601 PGA Pin Assignments 

ABC 0 E F G H J K L M N P R T U 

@@@(!)@@(!)@@@@(g)(!>@@@ 
2 @@@@(!)@0000@@@@@0@ 
3 @@@@@@0@@@@@@@@(!)@ 
4 @@@@0@0(!)0@0@@@@00 
5 0000 0@00 
6 @@@@ @@0@ 
7 @@@@ @@0@ 
8 @@@0 @@@@ 
9 @@@@ BOTTOM VIEW @@00 
1C @ @ @ @ @ @ 0 @ 
11 @@@@ 0@0@ 
12 0000 0000 
1 @@@0 @@@@ 

14 @@000000000000000 
10 @@0 0 0@0 0@@@0 0@0@0 
1e @00000000@@000@@@ 
17 @000e00e00@0000e0 

7-9 

L 
I 

t 0.105 ± 
0.025 

- 0.160 



CY7C600 Electrical and Mechanical Characteristics 

7.1.9 CY7C601 PGA Pin Assignments (continued) 

Pin Pin Pin 
Pin Name Number Pin Name Number Pin Name Number 

AO K2 ASIO F3 VSSO B16 H4 T16 
Al Kl ASH F2 B17 12 TI7 
A2 L3 ASI2 G3 C3 K14 Ul6 
A3 Ll ASI3 G2 C4 N14 Ul7 
A4 12 ASI4 Gl 06 P4 
AS M2 ASIS H2 014 P6 
A6 N2 ASI6 HI Fl P11 
A7 Ml ASI7 11 F4 P14 
AS M3 SIZEO E2 F14 RS 
A9 PI SIZEI 02 F17 R14 
AlO P2 
All Nl MEXC OB VCCO AIS U A12 N3 MHOIDA CB A16 M14 A13 R3 MHOLDB BB A17 N4 A14 R2 BHOID A7 01 PB AIS R4 AOE P3 012 P12 A16 T4 COE C2 017 P16 A17 TS 
AlB R6 OOE N17 El P17 

A19 T6 MOS B7 G4 R16 

A20 US MAO E3 K4 R17 

A2l U6 1FT C14 KIS 

A22 U7 RO A4 A23 T7 VSSI A3 13 U2 
A24 UB WE B4 A14 Ll4 UlO 
A2S TB IDSTO CS B2 M4 
A26 U9 INULL BS B3 PS 
A27 RB LOCK 04 B9 P7 
A2B T9 OXFER 03 Cl Rl 
A29 R9 WRT E4 C16 R11 
A30 TIO 013 TI 
A3l U11 FP C7 EIS TIS 

FCCO All H14 Ul 
00 RIO FCCI B11 
01 T11 FCCV CIO VCCI A2 R12 02 Ul2 FHOID AB Bl T2 D3 T12 
04 un FEXC AS D7 T3 
05 T13 CP B6 E14 U3 
06 T14 ceco A12 E16 U4 
07 R13 ceCl B13 GI4 
OB Ul4 CCCV BlO H3 
09 UlS CHOLD C9 115 

PlO 010 R15 CEXC A6 R7 011 PIS 
012 NIS INST C6 
013 MIS FLUSH B14 VSST 09 J4 114 
014 M16 F1NSI E17 P9 
015 N16 FINS2 016 
016 LlS FXACK 011 VCCT 05 P13 
017 M17 CINSI 015 O1B Ll6 CINS2 C17 019 Ll7 
020 K16 CXACK C13 
021 K17 IRLO AlO 
022 116 IRLl Cll 
023 117 IR12 010 024 H17 IRL3 B12 025 HIS 
026 G17 INTACK A13 
027 H16 RESET A9 
028 G16 ERROR BIS 
029 F16 TOE CIS 
030 FIS FPSYN Cl2 
031 GIS CLK K3 

7-10 



CY7C600 Electrical and Mechanical Characteristics 

7.1.10 CY7C601 QFP Package Dimensions 

~ I'. 1.102 ± 0.008 sq. 

Pin 208 r_~DBDDDDDDDDDt~ 
Pin 1 

208-pin EIAJ standard QFP 
All dimensions in inches 

0.008 

7-11 



CY7C600 Electrical and Mechanical Characteristics 

7.1.11 CY7C601 QFP Pin Assignments 

Pin # FUnction Pin I Function Pin I Function Pin' Function 
1 VCCO 53 VSSO 105 VCCO 157 VSSO 
2 VCCO 54 VSSO 106 VCCO 158 VSSO 
3 VCC! 55 VSSO 107 VCCI 159 VSSO 
4 LOCK 56 VCCO 108 VCC! 160 VSSI 
5 COE 57 VSSI 109 DlO 161 VCCO 
6 WRT 58 A15 110 Dll 162 IFf 
7 DXFER 59 A16 111 VCCO 163 FLUSH 
8 MAO 60 A17 112 Dl2 164 ERROR 
9 SIZEI 61 VSSO 113 Dl3 165 INTACK 

10 SIZEO 62 A18 114 VSSO 166 CXACK 
11 VSSO 63 A19 115 Dl4 167 FXACK 

12 ASIO 64 VCCI 116 Dl5 168 CCCI 
13 ASH 65 A20 117 VSSI 169 CCCO 
14 VCCO 66 A21 118 DOE 170 FPSYN 
15 ASI2 67 VSSI 119 Dl6 171 FCCI 
16 VSSI 68 A22 120 Dl7 172 VSSI 
17 ASI3 69 A23 121 VSSO 173 FCCO 
18 VSSO 70 VCCO 122 Dl8 174 IRL3 
19 ASI4 71 A24 123 Dl9 175 IRL2 
20 VCCI 72 A25 124 VCCO 176 IRLl 
21 ASI5 73 VCCO 125 020 177 IRLO 
22 VSSO 74 A26 126 021 178 CCCV 
23 ASI6 75 A27 127 VCC! 179 VCCI 
24 ASI7 76 VSSO 128 022 180 FCCV 
25 VSST 77 A28 129 023 181 VSST 
26 CLK 78 A29 130 VSST 182 RESET 
27 VSSI 79 VSSI 131 VSSI 183 VSSI 
28 VSSI 80 VSSI 132 VSSI 184 VSSI 
29 AO 81 VSST 133 024 185 CHOW 
30 Al 82 A30 134 025 186 FHOLD 
31 VCCI 83 A31 135 VSSO 187 BHOLD 
32 A2 84 VCCI 136 026 188 MHOLOB 
33 A3 85 DO 137 027 189 MHOLOA 
34 VCCO 86 01 138 VCCO 190 MDS 
35 A4 87 VCCO 139 028 191 FP 
36 A5 88 02 140 029 192 CEXC 
37 VSSO 89 D3 141 VSSI 193 MEXC 
38 A6 90 VSSO 142 030 194 FEXC 
39 A7 91 VSSI 143 031 195 VSSI 
40 VCCO 92 04 144 VCCI 196 INST 
41 A8 93 05 145 VCCI 197 VCCI 
42 A9 94 VCCI 146 VSSO 198 RD 
43 VSSI 95 06 147 FINS 1 199 VSSO 

44 AI0 96 D7 148 FINS2 200 WSTO 
45 All 97 VCCO 149 VSSI 201 CP 
46 AOE 98 08 150 CINSI 202 WE 
47 A12 99 09 151 CINS2 203 INULL 
48 A13 100 VCCT 152 TOE 204 VCCT 
49 A14 101 VSSI 153 VSSI 205 VSSI 
50 VCCI 102 VSSO 154 VCCI 206 VSSO 

51 VCCI 103 VSSO 155 VCCI 207 VSSO 
52 VCCI 104 VSSO 156 VeCI 208 VSSO 

7-12 



CY7C600 Electrical and Mechanical Characteristics 

7.1.12 CY7C601 Military Specifications-Group A Subgroup Testing 

7.1.12.1 CY7C601 DC Characteristics 

Parameter Subgroups Parameter Subgroups 

VoH 1,2,3 IOH 1,2,3 

VOL 1,2,3 IoL 1,2,3 

VIH 1,2,3 Ioz 1,2,3 

VIL 1,2,3 Isc 1,2,3 

IIH 1,2,3 ICCQ 1,2,3 

IlL 1,2,3 Icc 1,2,3 

7.1.12.2 CY7C601 AC Characteristics 

Parameter Subgroups Parameter Subgroups 

1 Icy 7,8,9,10,11 22 tSSD 7,8,9,10,11 

2 ICHL 7,8,9,10,11 23 tssH 7,8,9,10,11 

4 lAO 7,8,9,10,11 24 tRS 7,8,9,10,11 

5 IAH 7,8,9,10,11 26 tpo 7,8,9,10,11 

6 tooo 7,8,9,10,11 27 tFH 7,8,9,10,11 

7 lOOH 7,8,9,10,11 28 t FIS 7,8,9,10,11 

8 t DIS 7,8,9,10,11 29 tFIH 7,8,9,10,11 

9 tOIH 7,8,9,10,11 30 tmm 7,8,9,10,11 

10 tMAO 7,8,9,10,11 31 tOXH 7,8,9,10,11 

11 tMAH 7,8,9,10,11 32 tHOXO 7,8,9,10,11 

12 tMES 7,8,9,10,11 33 tHDXH 7,8,9,10,11 

13 tMEH 7,8,9,10,11 34 INUO 7,8,9,10,11 

14 IHS 7,8,9,10,11 35 tNUH 7,8,9,10,11 

15 IHH 7,8,9,10,11 36 tMDS 7,8,9,10,11 

16 tHOD 7,8,9,10,11 37 t MOH 7,8,9,10,11 

17 tHOH 7,8,9,10,11 38 t FLS 7,8,9,10,11 

18 tOE 7,8,9,10,11 39 tFLH 7,8,9,10,11 

19 too 7,8,9,10,11 40 tccvs 7,8,9,10,11 

20 hOE 7,8,9,10,11 41 tccvH 7,8,9,10,11 

21 tTOD 7,8,9,10,11 

7-13 



CY7C600 Electrical and Mechanical Characteristics 

7.2 CY7C611 Electrical and Mechanical Characteristics 

7.2.1 CY7C611 Maximum Ratings 

Storage Temperature ............................................................................... _65° C to + 150° C 
Ambient Temperature with Power Applied ............................................................ _55° C to + 125° C 
Supply Voltage to Ground Potential [1) .................................................................. -0.5 V to + 7.0 V 
DC Voltage Applied to Outputs in High Z State ......................................................... -0.5 V to + 7.0 V 
DC Input Voltage .................................................................................... -3.0 V to + 7.0 V 
Output Low Sink Current ....................................................................................... 30 rnA 

7:1.:1. CY7C611 Operating Range 

Range Ambient Temperature [2) Vcc 

Commercial 0° Ct070°C 5V ± 10% 

Military -55° C to + 125° C 5V ± 10% 

7.2.3 CY7C611 DC Characteristics Over the Operating Range 

Parameters Description Test Conditions Min. Max. Units 

VOH Output HIGH Voltage Vee = Min., IOH = -2.0 mA 2.4 V 

VOL Output LOW Voltage Vee = Min., IOL = 8.0 mA 0.5 V 

VIH Input HIGH Voltage 2.1 Vee V 

VIL Input LOW Voltage -3.0 0.8 V 

IIH Input HIGH Current Vee - Max., VIN - Vee 10 J.lA 

IlL Input LOW Current Vee = Max., VIN = Vss -10 J.lA 

Ioz Output Leakage Current Vee = Max., Vss :s;; VOVT :s;; Vee -40 40 J.lA 

Isc Output Short Circuit Current Vee = Max., VOVT = OV -30 -180 rnA 

IeeQ Quiescent Supply Current VSS<VIN<VIL 150 rnA 
or V,H:S;;V-;;:;<Vce 

lee Supply Current (All outputs Vee = Max., f=25MHz 600 rnA 
loaded to 80 pF) 

IeeF Supply Current (outputs floating) Vee = Max., f = 25 MHz 350 rnA 

7:1..4 CY7C611 Capacitance (3] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vee = S.OY, T. = 25°C, f = 1 MHz 10 pF 

CoOT Output Capacitance Vee = S.OY, T. = 25°C, f = 1 MHz 12 pF 

ClQ I/O Bus Capacitance Vee = S.OY, T. = 25°C, f = 1 MHz 15 pF 

7-14 



CY7C600 Electrical and Mechanical Characteristics 

7.2.5 CY7C611 AC Characteristics [4] 

Reference CY7C611-25 

Parameter Description Edge Min. Max. Units 

1 Icy Clock Cycle 40 1000 ns 

2 IcHL Clock High and Low 18 990 ns 

3 IcRF Clock Rise and Fall 1 V/ns 

4 tAO Address/Control Output Delay[5] CLK+ 33 ns 

5 tAH Address/Control Output Valid CLK+ 7 ns 

6 tooo D(31:0) Output Delay CLK- 20 ns 

7 tooH D(31:0) Output Valid CLK- 4 ns 

8 tOIS D(31:0) Input Set-Up CLK+ 3 ns 

9 tOIH D(31:0) Input Hold CLK+ 5 ns 

10 tMAo MAO Asserted to Address/Control Output Delay MAO + 19 ns 

11 tMAH MAO Deasserted to Address/Control Output Valid MAO- 2 ns 

12 tMES FEXC, MEXC Input Set-Up CLK+ 15 ns 

13 tMEH FEXC, MEXC Input Hold CLK+ 2 ns 

14 tHS XHOLD Input Set-Up[b] CLK- 7 ns 

15 tHH XHOLD Input Hold CLK- 6 ns 

16 tHaD XHOLD to Address/Control Output Delay XHOLD- 22 ns 

17 tHoH XHOLD to Address/Control Output Valid XHOLD+ 0 ns 

20 hOE TOE Asserted to Output Enable Delay TOE- 21 ns 

21 hOD TOE Deasserted to Output Disable Delay TOE+ 21 ns 

22 tsso INST, FXACK, INTACK, ERROR Output Delay CLK+ 20 ns 

23 tssH INST, FXACK, INTACK, ERROR Output Valid CLK+ 3 ns 

24 tRS RESET Input Set-Up CLK+ 15 ns 

25 tRH RESET Input Hold CLK+ 3 ns 

26 tFD FINS(1:0) Output Delay CLK+ 27 ns 

27 tFH FINS(1:0) Output Valid CLK+ 3.5 ns 

28 tFfs FCC(1:0) Input Set-Up CLK+ 10 ns 

29 tFfH FCC(1:0) Input Hold CLK+ 4 ns 

34 tNUO INULL Output Delay CLK+ 20 ns 

35 tNUH INULL Output Valid CLK+ 3 ns 

36 tMDS MDS Input Set-Up CLK- 5 ns 

37 tMDH MDS Input Hold CLK- 6 ns 

38 tFLS FLUSH Output Delay CLK+ 15 ns 

39 tFLH FLUSH Output Valid CLK+ 3 ns 

40 keys FCCV Input Set-Up CLK- 7 ns 

41 IcCVH FCCV Input Hold CLK- 6 ns 

Notes: 
1. All JXlWer and ground pins must be connected before power is applied. 
2. Ambient temperature is defined as the 'instant on' case temperature. 

3. Tested initially and after any design or process changes that may affect these parameters. 
4. Test conditions assume signal transition times of 3 os or less, a timing reference level of 1.5V, input levels of 0 to 3.0V, and output loading of 50 pF. 
5. Address/Control signals include: A(23:0), ASI(2:0), SIZE(1:0), RD, WRT, WE, WCK, and LDSTO. 
6_ XHOLD includes BHOLD, MHOLDA, MHOLDB, and FHOLD. 

7-15 



7.2.6 CY7C611 AC Test Loads and Waveforms 

4700 
5V 

OUTPUT o---~----t 

I 50PF 
3190 

CY7C600 Electrical and Mechanical Characteristics 

3V----="'"'" 

< 3ns < 3ns 

Test Load Waveform 

7.2.7 CY7C611 AC Waveforms 

Clock and Reset Timing 

elK 

8 elK Cycles Minimum 

Reset needs to be synchronized with eLK only if the processor must be in step with other devices in the system. 

Load Timing 

elK 

A(23:0) 

ASI(2:0) 

SIZE(1:0) 

RO 

0(31:0) 

INST 

7-16 



Store Timing 

elK 

A(23:0) 

ASI(2:0) 

SIZE(1:0) 

WRT 

0(31:0) 

INST 

INUll 

CY7C600 Electrical and Mechanical Characteristics 

j@r 
~--~~--~~I-@~ 

7-17 



CY7C600 Electrical and Mechanical Characteristics 

Load with Cache Miss 

elK 

A(23:0) 

ASI(2:0) 

D(31:0) 

MAO __ ~ ______ -+ ________ ~--J 

7-18 



CY7C600 Electrical and Mechanical Characteristics 

Memory Exception Timing 

CLK 

A(23:0) 

ASI(2:0) 

SIZE(1:0) 

INULL __ ~ ______ -+ ____ ~ ________ -4 ~ __ -+ ____ ~ ______ -+ __ -J 

Bus Arbitration Timing 

CLK 

A(23:0). 
ASI(2:0). 

SIZE(1:0) 

WE 
RD 

LOCK. 
LDSTO 

A1 

TOE _;..-____ --------J) i 

I 
HI-Z l 

A1 

7-19 



CY7C600 Electrical and Mechanical Characteristics 

Floating-Point Timing 

CLK 

A(23:0) 

0(31:0) 

INST 

FAACK __ ~ ______ +--J 

7-20 



7.2.8 CY7C611 PQFP Package Dimensions 

HID·pln EIAJ standard QFP 
All dimensions in Inches 

~sq. 

0.998 sq. 

CY7C600 Electrical and Mechanical Characteristics 

~ 
1.266 sq. 

WlOO 
0.018 

Hill-Pin Quad Flat Package 

7-21 



CY7C600 Electrical and Mechanical Characteristics 

7.2.9 CY7C611 PQFP Pin Assignments 

Function Pin, Function Pin' Function Pin, Function Pin' 

VCCO 1 VSSO 41 VCCO 81 VSSO 121 

VCCI 2 VSSO 42 Vc;:a 82 VSSO 122 

LOCK 3 VCCO 43 DIO 83 VSSI 123 

WRT 4 VSSI 44 D11 84 VCCO 124 

MAO 5 A15 45 DI2 85 FLUSH 125 

SIZEI 6 A16 46 D13 86 ERROR 126 

SIZEO 7 A17 47 VSSO 87 IN'D\CK 127 

VSSO 8 VSSO 48 DI4 88 FXACK 128 

ASIO 9 AlB 49 DIS 89 FPSYN 129 

ASH 10 A19 50 VSSI 90 FCCI 130 

VCCO 11 VCCI 51 DI6 91 VSSI 131 

ASI2 12 A20 52 D17 92 FCCO 132 

VSSI 13 A21 53 VSSO 93 IRLJ 133 

VSSO 14 VSSI 54 DI8 94 IRL2 134 

VCCl 15 A22 55 DI9 95 IRLl 135 

VSSO 16 A23 56 VCCO 96 IRUl 136 

VSST 17 VCCO 57 D20 97 VCCl 137 

CLK 18 VCCO 58 D21 98 FCCV 138 

VSSI 19 VSSO 59 VCCI 99 VSST 139 

AO 20 VSSI 60 D22 100 RESET 140 

Al 21 VSST 61 D23 101 VSSI 141 

VCCI 22 VCCl 62 VSST 102 FHOID 142 

A2 23 DO 63 VSSI 103 BHOID 143 

A3 24 DI 64 D24 104 MHOWB 144 

VCCO 25 VCCO 65 D25 105 MHOWA 145 

A4 26 D2 66 VSSO 106 MDS 146 

AS 27 D3 67 D26 107 FP 147 

VSSO 28 VSSO 68 D27 108 MEXC 148 

A6 29 VSSI 69 VCCO 109 FEXC 149 

A7 30 D4 70 D28 110 VSSI 150 

VCCO 31 D5 71 D29 111 INST 151 

A8 32 VCCl 72 VSSI 112 VCCI 152 

A9 33 D6 73 D30 113 RD 153 

VSSI 34 D7 74 031 114 VSSO 154 

AI0 35 VCCO 75 VCCI 115 IDSTO 155 

All 36 D8 76 VSSO 116 WE 156 

A12 37 D9 77 FINS 1 117 INUlL 157 

A13 38 vcer 78 FlNS2 118 veer 158 

A14 39 VSSI 79 TOE 119 VSSI 159 

VCCI 40 VSSO 80 VCCl 120 VSSO 160 

7-22 



CY7C600 Electrical and Mechanical Characteristics 

7.3 CY7C602 Electrical and Mechanical Characteristics 

7.3.1 CY7C601 Maximum Ratings 

Storage Temperature ............................................................................... -65 0 C to + lS0° C 
Ambient Temperature with Power Applied. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -55 0 C to + 125 0 C 
Supply Voltage to Ground Potential [I] • • . • • • • . • • • • . • • • . • • • • • . • • • • • • • . • • . • . • • . • . . . • . • . • • . • . . • . • • • • • . • • • • •• -O.SV to + 7.0V 
DC Voltage Applied to Outputs in High Z State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5V to + 7.0V 
DC Input Voltage. . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. -3.0V to + 7.0V 
Output Low Sink CUrrent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4.0 rnA 

7.3.2 CY7C601 Operating Range 

Range Ambient Temperature[2] Vee 

Commercial 5V .±.10% 

7.3.3 CY7C601 DC Characteristics Over the Operating Range 

Parameters Description Test Conditions Min. Max. Units 

VOH Output HIGH Voltage Vee - Min., IoH = -20 rnA 24 V 

VOL Output LOW Voltage Vee = Min., IoL = 8.0 rnA 0.5 V 

Vrn Input HIGH Voltage 2.1 V 

VIL Input LOW Voltage -3.0 0.8 V 

Irn Input HIGH CUrrent Vee = Max., VIN = Vee -10 10 IlA 
IlL Input LOW CUrrent Vee = Max., VIN = Vss -10 10 IlA 
Ioz Output Leakage CUrrent Vee = Max., V ss.$. VOUT.$. Vee -10 10 ).LA 

IccQ Quiescent Supply CUrrent Vss.$. VIN .$. VIL or 150 rnA 
VIH .$. VIN .$. Vee 

Ice Supply CUrrent, Commercial Vee - Max., f - 40 MHz 450 rnA 

Vee = Max., f = 33 MHz 400 

Vee = Max., f = 25 MHz 350 

7.3.4 CY7C601 Capacitance [3] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vee = S.OY, TA = 25°C,f = 1MHz 15 pF 

CoUT Output Capacitance Vee = S.OY, TA = 25°C,f = 1 MHz 20 pF 

CIQ 110 Bus Capacitance Vcc = S.OY, TA = 25° C,f = 1 MHz 15 pF 

COOE DOE Input Capacitance Vee = S.OY, TA = 25° C,f= 1 MHz 30 pF 

CeLl< CLK Input Capacitance Vee = S.OY, TA = 25° C,f = 1 MHz 25 pF 

Notes: 

1. A1[ power and ground pins must be connected to the other pins of same type before any power is applied to the part. 
2. Ambient temperature is the 'instant on' case temperature. 
3. Thsted initially and after any design or process changes that may affect these parameters. 

7-23 



CY7C600 Electrical and Mechanical Characteristics 

7.3.5 CY7C602 AC Characteristics 

Reference CY7C602-25 CY7C602-33 CY7C602-40 

Parameter Description Edge Min. Max. Min. Max. Min. Max. Unit 

1 Clock Cycle 40 30 25 ns 

2 Clock High and Low 18 13 11 ns 

3 A(31:2) Set-Up CLK+ 3 3 2 ns 

4 A(31:2) Hold CLK+ 6 6 6 ns 

5 D(31:0) Input Set-Up CLK+ 3 2 2 ns 

6 D(31:0) Input Hold CLK+ 5 5 4 ns 

7 D(31:0) Output Delay CLK- 20 15 13 ns 

8 D(31:0) Data Valid CLK- 4 <I 4 ns 

9 D(31:0) Output Thm-Off FLUSH 31 22 18 ns 

10 D(31:0) Output Valid FLUSH 0 0 0 ns 

11 D(31:0) Output Thm-Off DOE+ 15 11 9 ns 

12 D(31:0) Output Thm-On DOE- 15 11 9 ns 

13 D(31:0) Output Valid DOE- 0 0 0 ns 

14 FINS1!2 Set-Up CLK+ 9 9 7 ns 

15 FINSI/2 Hold CLK+ 2.5 25 2.5 ns 

16 INSTSetup CLK+ 16 12 9 ns 

17 INSTHold CLK+ 2 2 2 ns 

18 FXACK Set-Up CLK+ 16 12 9 ns 

19 FXACKHold CLK+ 2 2 2 ns 

20 FLUSH Set-Up CLK+ 21 14 11 ns 

21 FLUSH Hold CLK+ 2 2 2 ns 

22 RESET Set-Up CLK+ 15 10 8 ns 

23 RESET Hold CLK+ 3 3 2 ns 

24 MHOLD Set-Up CLK- 7 4 3 ns 

25 MHOLDHold CLK- 6 5 4.5 ns 

26 MDSSet-Up CLK- 5 4 3 ns 

27 MDSHold CLK- 6 5 4.5 ns 

28 FHOLDDelay CLK- 29 23 19 ns 

29 FHOLDValid CLK- 6 6 5.5 ns 

30 FHOLDDelay FINS1!2 16 15 12 ns 

31 FHOLDDelay FLUSH 28 20 16 ns 

32 FHOLDDelay MHOLD- 36 27 22 ns 

33 FCCVDelay CLK- 29 23 19 ns 

34 FCCVValid CLK- 8 6 5.5 ns 

35 FCCVDelay FLUSH 28 20 16 ns 

36 FCCVDelay MHOLD- 36 27 22 ns 

37 FCC(I:0) Delay CLK+ 26 19 17 ns 

38 FCC(I:0) Valid CLK+ 5 4 3 ns 

39 FEXCDelay CLK+ 26 19 17 ns 

40 FEXCValid CLK+ 5 4 3 ns 

41 FNULLDelay CLK+ 20 13 11 ns 

42 FNULLValid CLK+ 3 3 3 ns 

7-24 



7.3.6 CY7C602 AC Test Loads and Waveforms 

5.0V 

4700 

....---+---0 Output 
Pin 

Test Load 

7.3.7 CY7C602 AC Waveforms 

Three-Stole TIming 

CY7C600 Electrical and Mechanical Characteristics 

3V~ 

OV ---:j j. 
< 3ns 
~ 
<3ns 

Waveform 

3.SV --...,..---------.,. 

DOE 2.0V --11'-----------~ 

0.4 V 

0(31:0) 

Asynchronous Store 7iming 

elK 

0(31:0) 

Data available. but / 
0(31 :0) not enabled 

7-25 



FJleet of FWSH on Store Timing 

eLK 

FWSH 

0(31:0) 

General Timing Parameters 

Input set-up and hold 
With respect to CLK + 
t,,: 4, 6, 14, 16, 18, 20, 22 
t,,: 5, 7, 15, 17, 19, 21, 23 

Input set-up and hold 
With respect to CLK-

t,,:24,26 
t,,:25,27 

Output delay With respect to 
FINS112 and FWSH Inputs 
to: 30, 31, 35 

Output valid and output 
delay with respect to CLK + 
Icto: 37,39,41 
1,.,:38,40,42 

~6~ respect to input 
to: 32, 36 

Output valid and delay 
times With respect to CLK-

t.!o: 9, 29, 34 
t,.,: 8, 28, 33 

CY7C600 Electrical and Mechanical Characteristics 

7-2fJ 



CY7C600 Electrical and Mechanical Characteristics 

7.3.8 CYC7602 Pin Assignments 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ~ 022 A22 02. A2. A25 026 A2fj />Z1 A2. A29 A3(J A3' 03' GND A 

B 02' vee vee A23 023 vee 025 vee 027 02. 029 030 vee vee vee B 

c 020 A2' GND GNO vee GND Ne vee GNO GNO GNO GND GNO vee FCCV c 
D 0'. vee GND GND GND FCC1 D 

E A'. A'9 A20 eeev Feeo FXACK E 

F A'6 017 0'. RESET GNO FEXC F 

G 0'6 A17 GNO CY7C602 elK GNO FNULL G 
144-PIN PGA 

H AD A' DO GND CHOLD FHOLD H 
TOP VIEW 

J 0' DOE Ne (cavity down) vee ~HOLDA BHOLD J 

K 02 vee GND vee MDS pROLBB K 

L A2 03 GNO FLUSH vee vee L 

M A3 vee 05 GND FINS1 INST M 

N D. vee GND GNO GND 08 GND 010 Ne GND 0" GND GND vee FINS2 N 

p A. vee GND AS vee AS vee A11 0'2 vee vee vee 015 vee vee p 

R A5 vee DB A7 07 A9 D9 A'O 011 A'2 A'3 0'3 A" A'5 FP R 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

7-27 



CY7C600 Electrical and Mechanical Characteristics 

7.3.9 CY7C602 Package Diagrams 

1.575 sq. 
.±.0.o16 

1.400 sq. 
.±. 0.012 

1 

@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@ @@@ 
@@@ @@@ 
@@@ @@@ 
@@@ BOTTOM @@@ 
@@@ VIEW @@@ 
@@@ @@@ 
@@@ @@@ 
@@@ @@@ 
@@@ @@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@o 

0.100 I I 
typo -j r-

ail dimensions in inches 

7-28 

0.065dia. 
typo 

0.018 
.±.0.002L 

I 

Kovar 
standoff 

{~ 0.100. 
.±. 0.010. 

0.180typ.-



CY7C600 Electrical and Mechanical Characteristics 

7.4 CY7C604 Electrical and Mechanical Characteristics 

7.4.1 CY7C604 Maximum Ratings 

Storage Temperature. . .. . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . .. . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . .. -650 C to + 1500 C 
Ambient Temperature with Power Applied ............................................................ -550 C to + 1250 C 
Supply Voltage to Ground Potential[') . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... -O.5V to + 7.0V 
DC Voltage Applied to Outputs in High Z State. . . . . . .. . . . . . . . . .. .. . . .. .. .. . . . . . . . . . . . . . . . . . . .. . . . . . . .. .. -O.5V to + 7.0V 
DC Input Voltage. . . .. .. . . . . . . . . . . .. . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . .. -3.0V to + 7.0V 
Output Low Sink Current. ...................................................................................... 30 rnA 

7.4.2 CY7C604 Operating Range 

Range Ambient Temperature Vee 

Commercial 0° C to 70° C 5V .±.10% 

Military'2) _55° C to + 125° C 5V .±.1O% 

7.4.3 CY7C604 DC Characteristics Over the Operating Range [11 

Parameters Description Test Conditions Min. Max. Units 

Vou Output mGH Voltage Vee = Min., loa = -20 rnA 24 V 

VOL Output LOW Voltage Vcr:. = Min., IQL = 8.0 rnA 0.5 V 

VIR Input HIGH Voltage 21 Vcr:. V 

VIL Input LOW Voltage -3.0 0.8 V 

IIH Input HIGH Current Vcr:. = Max., V IN = Vcr:. -10 10 fJA 
IlL Input LOW Current Vcr:. = Max., V IN = Vss -10 10 fJA 
Isc Output Short Circuit Current )41 Vee = Max., VOUT = OV -30 -180 rnA 

Ioz Output Leakage Current Vcr:. = Max., Vss~ VOUT~ Vcr:. -40 40 fJA 
lcccJ Quiescent Supply Current Vss~ VIN~ VIL or 400 rnA 

VIH~ VIN~ Vcr:. 

Icc Supply Current, Commercial Vcr:. = Max., f = 40 MH2 650 rnA 
Vcr:. = Max., f = 33 MHz 600 
Vcr:. = Max., f = 25 MHz 600 

Supply Current, Military Vcr:. = Max., f = 25 MHz 650 rnA 

7.4.4 CY7C604 Capacitance [S) 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance Vcr:. = 5.0 V, TA = 25° C, f = IMHz 10 pF 

CoUT Output Capacitance Vcr:. = 5.0 V, TA = 25° C, f = 1 MHz 12 pF 

CIQ I/O IIus Capacitance Vcr:. = 5.0 V, TA = 25° C, f = 1 MHz 15 pF 

Notes: 
1. All power and ground pins must be connected to the other pins of .. me type before any power is applied to the part. 
2. See last page of this document for Group A subgroup testing information. 
3. Ambient temperature is the 'instant on' case temperature. 
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. 
5. 'Thsted initially and after any design or process changes that may affect these parameters. 

7-29 



CY7C600 Electrical and Mechanical Characteristics 

7.4.5 CY7C604 AC Characteristics Over the Operating Range [6,7) 

Reference CY7C604-25 CY7C604-33 CY7C604-40 
Parameter Description Edge Min. Max. Min. Max. Min. Max. Units 

1 Clock Cycle 40 1000 30 1000 25 1000 ns 

2 Clock High and Low 18 990 13 990 10 990 ns 

3 A(31:0) Output Delay[lO) CLK+ 33 24 20 ns 

4 A(31:0) Output Hold[101 CLK+ 7 7 7 ns 

5 Address/Control [121 Input Set.Up CLK+ 3 3 2 ns 

6 Address/Control (12) Input Hold CLK+ 6 6 6 os 
7 D(31:0) Output Delay [10,11) CLK-/+ 23(31) 18(24) 15(19) ns 

8 D(31:0) Output Hold [10,11) CLK-/+ 3(6) 3(6) 3(6) ns 

9 D(31:0) Input Set.Up (11) CLK+/- 3(7) 2(6) 2(6) os 
10 D(31:0) Input Hold (11) CLK+/- 5(3) 5(3) 5(3) ns 

11 MDS, MHOLD Output Delay CLK- 29 23 19 ns 

12 MDS, MHOLD Output Hold CLK- 7 7 7 ns 

13 CBWE Output Delay CLK- 33 25 20 ns 

14 CBWE Output Hold CLK- 7 7 7 ns 

15 CROE Output Delay CLK+ 15 13 10 os 
16 CROE Output Hold CLK+ 2 2 2 ns 

17 INULUFNULL Input Set·Up CLK+ 16 14 11 ns 

18 INUWFNULL Input Hold CLK+ 2 2 2 ns 

19 MEXC Output Delay CLK+ 21 16 12 ns 

20 MEXC Output Hold CLK+ 3 3 3 ns 

21 lOE Output Delay CLK+ 18 15 12 ns 

22 lOE Output Hold CLK+ 2 2 2 ns 

23 ERROR Input Set·Up CLK+ 5 4 4 ns 

24 ERROR Input Hold CLK+ 2 2 2 ns 

25 IRST Output Delay CLK+ 21 17 14 os 

26 IRST Output Hold CLK+ 4 4 4 ns 

27 POR Input Set·Up CLK+ 15 10 8 ns 

28 POR Input Hold CLK+ 3 3 3 ns 

29 SNULL Input Set·Up CLK- 7 4 3 ns 

30 SNULL Input Hold CLK- 6 5 4,5 ns 

31 MAD(63:0) Output Delay (9) CLK+ 26 20 18 ns 

32 MAD(63:0) Output Hold [9] CLK+ 4 4 4 ns 

33 MAD(63:0) Input Set·Up CLK+ 5 4 3 ns 

34 MAD(63:0) Input Hold CLK+ 2 2 2 ns 

35 Mbus Control Output Delay [8,9,10] CLK+ 24 18 16 ns 

36 Mhus Control Output Hold [8,9,10] CLK+ 4 4 4 ns 

37 Mhus Control Input Set.Up [8] CLK+ 5 4 3 ns 

38 Mbus Control Input Hold [8] CLK+ 2 2 2 ns 

39 CSEL Setup upon POR Deassertion* CLK+ 8 7 6 ns 

40 CSEL Hold upon POR Deassertion* CLK+ 6 6 6 ns 

41 TOE Assertion to Output Disable TOE + 21 19 17 ns 

42 TOE Assertion to Output Enable TOE- 21 19 17 ns 

* Refer to Power-On Reset timing diagram 

7-30 



CY7C600 Electrical and Mechanical Characteristics 

7.4.6 CY7C604 AC Test Loads and Waveforms 

R1 470 n 
5V 

OUTPUT O------~------_t 

R2 319 n 

• See notes 6, 9. and 10 

Test Load 

7.4.7 CY7C604 AC Waveforms 

Mbus Timing Diagram (Single Read Transaction) 

eLK 

MAD(63:0) 

MAS I 

MAS timing is representative of all Mbus output signals from the CY7C604. 

MRDY timing is representative of all Mbus input signals to tbe CY7C604. 

Notes: 

3V 

OV 

Waveform 

6. 'Jest conditions assume signal transition times of 3 ns or less. a timing reference level of loSY, input levels of 0 to 3.0Y, and output loading of 50 pF 
capacitance. 

7. See the last page of this specification for Group A subgroup testing information. 
8. Mbus Control signals include: MM, MERR. MKl'Y. MRDY, MBR, MOO, MBB. MRST, and CMER. 
9. MAD(63:0), MAS. MBB. MBR, and MRST timing specifications are tested using an output loading of 100 pF. 
10. CMER. CSTA, A(IS:2). and D(31:0) timing specifications are tested using an output loading of 80 pF. 
11. First number applies to transactions with the CY7C1S7 CRAM. Second number applies to transactions with the CY7C60lo 
12. Address/Control signals include: A(31:0). ASI(S:O). SIZE(I:0). RD. WE. and IDSTO. 

7-31 



aaek and Null Signal Timing Diagram 

CLK 

ADDR 

INULL, 
FNULL 

CY7C600 Electrical and Mechanical Characteristics 

----115-"'-1 --
These nullification signal. nulliJY address A. Address A is the current address of the address cycle. 

Store Timing Diagram 

CLK 

SIZE,ADDR, 
ASllnputs 

DATA from 
CY7C601 

Load Timing Diagram 

CLK 

SIZE,ADDR, 
ASllnputs 

DATA to 
CY7C601 

RD 

7-32 



Store with Miss Timin, 

ClK 

SIZE,ADDR, 
ASllnputs 

DATA from 
CY7C601 

Wad with Miss Timin, 

CLK 

SIZE,ADDR, 
ASllnputs 

DATA to 
CY7C601 

RD 

MHOlD 

IOE 

MDS 

MEXC 

CY7C600 Electrical and Mechanical Characteristics 

55 

7-33 



CY7C600 Electrical and Mechanical Characteristics 

Write to CY7C157 CRAM 

elK 

ADDR 

DATA Out 

Readfrom CY7C157 CRAM 

elK 

ADDR Out 

DATA In 

Power-On Reset Timing Diagram 

elK 

\\-..;----1055 
* BOOT CY7C604!605 only 

7-34 



CY7C600 Electrical and Mechanical Characteristics 

Watchdog Reset Timing Diagram 

eLK 

Software External Reset Timing Diagram· 

eLK 

'Refer to page 4-83. 

Software Internal Reset Timing Diagram· 

eLK 

"Refer to page 4-83. 

7-35 



CY7C600 Electrical and Mechanical Characteristics 

7.4.8 CY7C604 Pin Configuration 

Pin Name Pin # Pin Name 

AO C3 A19 

Al B3 A20 

A2 A2 A21 

A3 B4 A22 

A4 C4 A23 

AS A3 A24 

A6 B5 A25 

A7 C5 A26 

A8 B6 A27 

A9 A4 A28 

A10 AS A29 

All A6 A30 

A12 B7 A31 

A13 C7 DO 

A14 B8 01 

A15 A7 02 

A16 B9 03 

A17 C8 04 

A18 A8 05 

ABCDEFGHJKLMNPRTUVW 

1 ~~~~~~~~~~~0000000 
2 0@@@000@@0000000@00 
3 06)00000@@00000006)00 
4 0@00000@@0000000@00 
5 06)000 006)00 
6 06)00 06)00 
7 06)00 06)00 
8 0@00 0@00 
9 0@00 06)00 

10 06)00 BOTTOM VIEW 06)00 
11 06)00 06)00 
12 06)00 06)00 
13 06)00 0000 
14 0000 0~00 
15 06)000 00000 
16 0000000000000000000 
17 06)000006)6)0000000000 
18 0~000006)00000000000 
19 000000006)0000000000 

24J·Pin Grid Array Package 

Pin # Pin Name Pin # Pin Name Pin # Pin Name 

A9 D6 C16 025 Jl8 ASI2 

B10 D7 A17 026 H17 ASI3 

C10 08 B17 027 G19 ASI4 

A10 09 C17 028 K18 ASI5 

Bll 010 B18 029 H19 mE 
Cll 011 A19 030 119 MHOlD 

B12 012 C18 031 K17 MOS 

All 013 B19 POR C2 MEXC 

A12 014 018 ERROR B2 CSTA 

A13 015 C19 SIZEO 13 lDSTO 

B13 016 EI8 SIZE1 K1 IRST 

C13 017 019 RO K3 CLK 

B14 018 F18 WE H2 MRST 

A14 019 F17 INUIL E2 MERR 

B1S 020 G18 FNUIL G3 MROY 

A15 021 E19 SNUII G1 MKI'Y 

CIS 022 H18 CSEL G2 MBG 

A16 023 G17 ASIO 01 MBB 

B16 024 F19 ASIl E1 

7-36 

Pin # Pin Name Pin # 

C1 MBR T3 

F3 MAS R1 

02 TOE PI 

F1 CBWEO N1 

J2 CBWE1 K2 

F2 CBWE2 M3 

HI CBWE3 L2 

11 CMER M2 

N3 CROE M1 

L1 MADO U3 

03 MAD1 T2 

L3 MA02 U4 

P3 MA03 U2 

N2 MA04 W3 

T1 MADS V2 

P2 MA06 US 

U1 MAD7 W4 

R2 MADS V3 

MA09 W5 



CY7C600 Electrical and Mechanical Characteristics 

Pin Name Pin' Pin Name Pin' Pin Name Pin' Pin Name Pin Numbers 

MADl0 U6 MAD28 V11 MAD47 U18 VDDO H3 04 R4 011 T11 T13 

MAD11 V4 MAD29 W12 MAD48 W19 014 Ul4 T15 E16 G16 J16 

MAD12 W6 MAD30 V12 MAD49 T18 N16 R16 L17 

MAD13 U7 MAD3l W13 MAD50 U19 Vsso R3 E4 F4 K4 M4 T4 

MAD14 V5 MAD32 V13 MAD5l T19 05 R5 T5 C6 T6 C9 

MAD15 W7 MAD33 Ul3 MAD52 R19 09 U9 010 Tl0 C12 Ul2 

MAD16 V6 MAD34 W14 MAD53 R18 013 C14 T14 E15 R15 016 

MAD17 U8 MAD35 V14 MAD54 P19 H16 K16 M16 T16 017 P17 

MAD18 V7 MA036 W15 MAD55 P18 T17 

MAD19 W8 MAD37 Ul5 MAD56 N19 VDm 04 J4 L4 N4 06 08 

MAD20 W9 MA038 V15 MAD57 N18 T7 T9 L16 P16 E17 J17 

MAD2l V8 MAD39 W16 MAD58 M17 R17 

MAD22 V9 MAD40 V16 MAD59 M19 VSSI B1 W2 E3 H4 P4 E5 

MAD23 UlO MAD4l Ul6 MAD60 L19 D7 T8 012 T12 015 F16 

MA024 Wl0 MAD42 V17 MAD6l M18 N17 A18 V19 

MA025 W11 MAD43 W17 MAD62 K19 

MA026 Vl0 MAD44 W18 MA063 L18 

MA027 U11 MAD45 V18 

MAD46 U17 

7-37 



CY7C600 Electrical and Mechanical Characteristics 

7.4.9 CY7C604 Package Diagrams 

IT 
1.990 
1.950 

1.780 
T.82o 

@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@ @@@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@ BOTTOM @@@@ 
@@@@ @@@@ 
@@@@ VIEW @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@ @@@@ 
@@@@@ @@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 
@@@@@@@@@@@@@@@@@@@ 

@@@@@@@@@@@@@@@@@@ 

0.085 ~5 _ .. 1----- 1.780 ______ ~.I 
T.82o 

1------- 1.990 ______ --1 
1.950 

7-38 

0.Q18 L 
"I 

0.1OO-L 

-L~~'~~O 
..... 0.160 



CY7C600 Electrical and Mechanical Characteristics 

7.S CY7C60S Electrical and Mechanical Characteristics 

7.5.1 CY7C60S Maximum Ratings 

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. _65 0 C to + 1500 C 
Ambient Temperature with Power Applied ............................................................ -55 0 C to + 1250 C 
Supply Voltage to Ground Potential [II • • • • • • • • • • • • • • • . • • • . • . • . • . • • • • . • . . • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • •• -O.5V to + 7.0V 
DC Voltage Applied to Outputs in High Z State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -O.5V to + 7.0V 
DC Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -3.0V to + 7.0V 
Output Low Sink Current. ...................................................................................... 30 rnA 

7.5.2 CY7C60S Operating Range 

Range Ambient Temperature Vee 

Commercial 0° Cto 70° C 5V ± 10% 

Military[21 -55° C to + 125° C 5V ± 10% 

7.5.3 CY7C60S DC Characteristics Over the Operating Range [31 

Parameters Description Test Conditions Min. 

VOH Output HIGH Voltage Vee = Min., IoH = -2.0 rnA 24 

VOL Output LOW Voltage Vee = Min., IoL = 8.0 rnA 

VlH Input HIGH Voltage 2.1 

VIL Input LOW Voltage -3.0 

IlH Input HIGH Current Vee = Max., V IN = Vee -10 

IlL Input LOW Current Vee = Max., V IN = Vss -10 

lsc Output Short Circuit Current [41 Vee = Max., VOUT = OV -30 

loz Output Leakage Current Vee = Max., Vss~ VOUT~ Vee -40 

IcCQ Quiescent Supply Current Vss~ VIN~ VIL or 
VlH~ VIN~ Vcc 

Icc Supply Current, Commercial Vee = Max., f = 40 MHz 
Vee = Max., f = 33 MHz 
Vee = Max., f = 25 MHz 

Supply Current, Military Vee = Max., f = 25 MHz 

7.5.4 CY7C60S Capacitance [51 

Parameters Description Test Conditions 

CIN Input Capacitance Vee = 5.0 V, TA = 25° C, f = 1MHz 

CoUT Output Capacitance Vee = 5.0 V; TA = 25° C, f = 1MHz 

CIa I/O Bus Capacitance Vee = 5.0 V, TA = 25°C,f = 1MHz 

Notes: 

1. All power and ground pins must be conneeted to the other pins of same type before any power is applied to the part. 
2. See last page of this document for Group A subgroup testing information 
3. Ambient temperature is the 'instant on' case temperature. 
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. 
S. 1ested initially and after any design or process changes that may affecl these parameters. 

7-39 

Max. Units 

V 

0.5 V 

Vee V 

0.8 V 

10 IIA 
10 IIA 

-180 rnA 

40 IIA 
400 rnA 

650 rnA 
600 
600 

650 rnA 

Max. Units 

10 pF 

12 pF 

15 pF 



CY7C600 Electrical and Mechanical Characteristics 

7.5.5 CY7C60S AC Characteristics Over the Operating Range [6,7) 

Reference CY7C60S-25 CY7C60S-33 CY7C60S-40 
Parameter Description Edge Min. Max. Min. Max. Min. Max. Unit 

1 Clock Cycle 40 1000 30 1000 25 1000 ns 

2 Clock High and Low 18 990 13 990 10 990 ns 

3 A(31:0) Output DelayllO) CLK+ 33 24 20 ns 
4 A(31:0) Output Hold[lO) CLK+ 7 7 7 ns 

5 Address/Control Input Set-UplI2) CLK+ 3 3 2 ns 

6 Address/Control Input Hold[12) CLK+ 6 6 6 ns 
7 D(31:0) Output Delay [10,11) CLK-/+ 23(31) 18(24) 15(19) ns 
8 D(31:0) Output Hold [10,11) CLK-/+ 3(6) 3(6) 3(6) ns 
9 D(31:0) Input Set-Up [11) CLK+/- 3(7) 2(6) 2(6) ns 
10 D(31:0) Input Hold [II) CLK+/- 5(3) 5(3) 5(3) ns 
11 MDS, MHOLD Output Delay CLK- 29 23 19 ns 
12 MDS, MHOLD Output Hold CLK- 7 7 7 ns 
13 CBWE Output Delay CLK- 33 25 20 ns 
14 CBWB Output Hold CLK- 7 7 7 ns 
15 CROE Output Delay CU<+ 15 13 10 ns 

16 CROE Output Hold CLK+ 2 2 2 ns 
17 INUIUFNULL Input Set-Up CLK+ 16 14 11 ns 
18 INUIUFNULL Input Hold CLK+ 2 2 2 ns 
19 MEXC Output Delay CLK+ 21 16 12 ns 

20 MEXC Output Hold CLK+ 3 3 3 ns 

21 IOE Output Delay CLK+ 18 15 12 ns 
22 IOE Output Hold CLK+ 2 2 2 ns 

23 ERROR Input Set-Up CLK+ 5 4 4 ns 
24 ERROR Input Hold CLK+ 2 2 2 ns 
25 IRST Output Delay CLK+ 21 17 14 ns 
26 IRST Output Hold CLK+ 4 4 4 ns 

27 POR Input Set-Up CLK+ 15 10 8 ns 

28 POR Input Hold CLK+ 3 3 3 ns 
29 SNUlL Input Set-Up CLK- 7 4 3 ns 

30 SNUlL Input Hold CLK- 6 5 4,5 ns 

31 MAD(63:0) Output Delay [9) CLK+ 26 20 18 ns 
32 MAD(63:0) Output Hold (9) CLK+ 4 4 4 ns 
33 MAD(63:0) Input Set-Up CLK+ 5 4 3 ns 
34 MAD(63:0) Input Hold CLK+ 2 2 2 ns 
35 Mbus Control Output Delay [8,9,IOJ CLK+ 24 18 16 ns 
36 Mbus Control Output Hold [8,9,IOJ CLK+ 4 4 4 ns 

37 Mbus Control Input Set-Up 18) CLK+ 5 4 3 ns 

38 Mbus Control Input Hold (8J CLK+ 2 2 2 ns 
39 CSEL Setup upon POR Deassertion* CLK+ 8 7 6 ns 
40 CSEL Hold upon POR Deassertion* CLK+ 6 6 6 ns 
41 TOE Assertion to Output Disable TOE + 21 19 17 ns 
42 TOE Assertion to Output Enable TOE- 21 19 17 ns 

*Refer to Power-On Reset timing diagram 

7-40 



CY7C600 Electrical and Mechanical Characteristics 

7.5.6 CY7C60S AC Test Loads and Waveforms 

R1 470 n 
5V 3V 

OUTPUT 0------.-------. OV 

I 
C· R2 319 n 

Waveform 
• Sec DOtes 6, 9, aDd 10 above 

Test Load 

7.5.7 CY7C605 AC Waveforms 

Mbus Timing Diagram (Single RMd Transaction) 

ClK 

MAO(63:0) 

MAS I 

-i@f ,:.:--------;---~ 0r_,.: -i----
MROY I: \: _. 

"MAS timing is representative of all Mhus output signals from the CY7C60S 

MROY timing is representative of all Mbos input signals to the CY7C60S 

Notes: 

6. 'Thst conditions assume signal transition times of 3 ns or less. a timing reference level of 1.SV, input levels of 0 to 3.0V, and output loading of SO pF 
capacitance. 

7. See the last page of this specification for Group A subgroup testing information. 

S. Mbos Control signals include: "MAS. MERR. MRIY. MROY. MBR. MBG. MBB. MRST. MIH. mHo and CMER. 
9. MAD(63:0)."MAS. MBB. MBR. MiH. MSH. and MRST timing specifications are tested using an output loading of 100 pF. 

10. CMER. CSTA. A(lS:2). and 0(31:0) timing specifications are tested using an output loading of SO pF. 

11. First number applies to transactions with the CY7C1S7 CRAM. Second number applies to transactions with the CY7C601. 
12. Address/Control signals include: A(31:0). ASI(S:O). SIZE(1:0). RO. WE. and IDS'IO. 

7-41 



Qock and Null Signal Timing Diagram 

ClK 

ADDR 

INUll, 
FNUll 

CY7C600 Electrical and Mechanical Characteristics 

______ i15-_1 

--

These nullification signals nullify address A. Address A is the current address of the address cycle. 

Store Timing Diagram 

ClK 

SIZE,ADDR, 
ASllnputs 

DATA from 
CY7C601 

Load Timing Diagram 

ClK 

SIZE, ADDR, 
ASllnputs 

DATA to 
CY7C601 

RD 

7-42 



Store with Miss Timing 

ClK 

SIZE,ADDR, 
ASllnputs 

DATA from 
CY7C601 

Load with Miss Timing 

ClK 

SIZE,ADDR, 
ASllnputs 

DATA to 
CY7C601 

RD 

IOE 

CY7C600 Electrical and Mechanical Characteristics 

~------~--~5.~--~1 

7-43 



CY7C600 Electrical and Mechanical Characteristics 

Write to CY7C157 CRAM 

ClK 

ADDR 

DATA OUT 

Readfrom CY7C157 CRAM 

ClK 

ADDROUT 

DATA IN 

Power-On Reset Timing Diagram 

ClK 

CSEl* \\...-..0--\55 
• B<XlT CY7C604/605 Only 

7-44 



CY7C600 Electrical and Mechanical Characteristics 

Watchdog Reset Timing Diagram 

elK 

Software External Reset Timing Diagram" 

elK 

'Refer to page 4-83. 

Software Internal Reset Timing Diagram" 

elK 

'Refer to page 4-83. 

7-45 



CY7C600 Electrical and Mechanical Characteristics 

7.5.8 CY7C605 Pin Configuration 

Pin Name Pin # Pin Name 

AO C3 AI9 

Al B3 A20 

A2 A2 A21 

A3 B4 A22 

A4 C4 A23 

AS A3 A24 

A6 BS A2S 

A7 CS A26 

A8 B6 A27 

A9 A4 A28 

AIO AS A29 

All A6 A30 

Al2 B7 A31 

A13 C7 DO 

Al4 B8 D1 

AIS A7 D2 

Al6 B9 D3 

Al7 C8 D4 

Al8 A8 DS 

ABCDEFGHJKLMNPRTUVW 

1 $$$$$00$0000000000 
2 0$000000@0000000@00 
3 0$000000$0000000000 
4 0@000000$0000000000 
5 0$000 00000 
6 0000 0000 
7 0$00 0000 
8 0000 0000 
9 0@00 0000 

10 0000 BOlTOM VIEW 0000 
11 0000 0000 
12 0000 0000 
13 0000 0000 
14 0000 0000 
15 00000 00000 
16 0000000000000000000 
17 0000000$0G>G>G>G>0000G>0 
18 0000000$00000000000 
19 0000000000000000000 

243·Pin Grid Array Package 

Pin # Pin Name Pin # Pin Name Pin # Pin Name 

A9 D6 CI6 D2S 118 ASI2 

BIO D7 AI7 D26 HI7 ASI3 

CIO D8 BI7 D27 GI9 ASI4 

AIO D9 CI7 D28 KI8 ASIS 

Bll D10 BI8 D29 HI9 IOE 

Cll D11 AI9 030 119 MHOW 

BI2 D12 CI8 D31 KI7 MDS 

All D13 BI9 paR C2 MEXC 

AI2 D14 DI8 ERROR B2 N.C." 

A13 D1S CI9 SIZEO 13 wsro 

B13 D16 EI8 SIZEI KI IRST 

C13 Dl7 D19 RD K3 CLK 

Bl4 D18 Fl8 WE H2 MRST 

AI4 D19 FI7 INUlL E2 MERR 

BIS D20 G18 FNUlL G3 MRDY 

AIS D21 El9 SNUlL G1 MRTY 

CIS D22 Hl8 CSEL G2 MOO 
Al6 D23 G17 ASIO D1 MBB 

Bl6 D24 Fl9 ASIl EI 

•• N.C. is a no connect (CSTA on CY7C604) 

7-46 

Pin # Pin Name Pin # 

CI MBR T3 

F3 MAS RI 

D2 roE PI 

FI CBWEO NI 

J2 CBWEI K2 

F2 CBWE2 M3 

HI CBWE3 L2 

11 CMER M2 

N3 CROE MI 

L1 MADO U3 

D3 MAD1 T2 

L3 MAD2 U4 

P3 MAD3 U2 

N2 MAD4 W3 

TI MADS V2 

P2 MAD6 US 

UI MAD7 W4 

R2 MAD8 V3 

MAD9 WS 



CY7C600 Electrical and Mechanical Characteristics 

Pin Name Pin' Pin Name Pin' Pin Name Pin' Pin Name Pin Numbers 

MADI0 U6 MAD28 Vll MAD41 U18 VOIlO H3 D4 R4 011 Tll T13 

MADll V4 MAD29 W12 MAD48 W19 014 Ul4 Tl5 E16 016 116 

MAD12 W6 MAD30 V12 MAD49 Tl8 N16 R16 L11 

MAD13 U1 MAD31 W13 MAD50 U19 Vsso R3 E4 F4 K4 M4 T4 

MAD14 V5 MAD32 V13 MAD51 Tl9 D5 R5 T5 C6 T6 C9 

MAD15 W1 MAD33 Ul3 MAD52 R19 D9 U9 010 TlO C12 U12 

MAD16 V6 MAD34 W14 MAD53 R18 D13 C14 T14 E15 R15 016 

MADl1 U8 MAD35 V14 MAD54 P19 H16 K16 M16 T16 011 P17 

MA018 V1 MAD36 W15 MAD55 P18 Tl1 

MAD19 W8 MAD31 Ul5 MAD56 N19 Vom G4 J4 lA N4 D6 D8 

MAD20 W9 MAD38 V15 MAD57 N18 T1 T9 L16 P16 E17 117 

MAD21 V8 MAD39 W16 MAD58 M17 R11 

MAD22 V9 MAD40 V16 MAD59 M19 VSS1 Bl W2 E3 H4 P4 E5 

MAD23 UlO MAD41 Ul6 MAD60 L19 D1 T8 012 Tl2 015 F16 

MAD24 WIO MAD42 V17 MAD61 M18 Nl1 A18 V19 

MAD25 Wll MAD43 Wl1 MAD62 K19 

MAD26 VI0 MAD44 W18 MAD63 L18 

MAD21 Ull MAD45 V18 MJH WI 

MAD46 Ul1 MSH VI 

7-47 



CY7C600 Electrical and Mechanical Characteristics 

7.5.9 CY7C605 CPGA Package Diagram 

_t_ 

-t.085_ 14--1. -1.800'±'O.020sq.-~ I 
1-------1.970.±.O.020sq.~ 

t LO.100 
1- .±. 0.020 

- O.160typ. 

7-48 



CY7C600 Electrical and Mechanical Characteristics 

7.6 CY7C157 Electrical and Mechanical Characteristics 

7.6.1 CY7C157 Maximum Rating 

(Above which the useful life may be impaired. For user guidelines, not tested.) 
Storage Temperature ............................................................................... - 65°C to + 150°C 
Ambient Temperature with Power Applied ............................................... " ., ...... , .... -55°C to + 125°C 
Supply Voltage to Ground Potential ...................................................................... -0.5V to + 7.0V 
DC Voltage Applied to Outputs in High Z State ........................................................... -0.5V to + 7.0V 
DC Input Voltage ..................................................................................... -3.0V to + 7.0V 
Output Current into Outputs (Low) .............................................................................. 50 rnA 
Static Discharge Voltage (per MIL-STD-883, Method 3015)..................................................... >2001V 
Latch-Up Current .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. > 200 rnA 

7.6.2 CY7C157 Operating Range 

Range Ambient Temperature Vee 
Commercial O°C to + 70°C 5V ± 10% 

Military!'! -55°Cto + 125°C 5V ± 10% 

7.6.3 CY7C157 DC Characteristics Over the Operating Range!2] 

7C157-20 7C157-24 7C157-33 

Parameters Description Test Conditions Min. Max. Min. Max. Min. Max. Units 

VOH Output HIGH Voltage Vee = Min., IOH = -4.0 rnA 2.4 24 2.4 V 

VOL Output LOW Current Vee = Min.,IoL = 8.0 rnA 0.5 0.5 0.5 V 

VIH Input HIGH Voltage 2.1 Vee 2.1 Vee 2.1 Vee V 

VIL Input LOW Voltage -3.0 0.8 -3.0 0.8 -3.0 0.8 V 

IJ){ Input Load Current GND < VI < Vee -10 +10 -10 +10 -10 + 10 IlA 

Ioz Output Leakage Current GND < Vo < Vee, -SO +50 
Output Disabled 

-SO +50 -SO +50 IlA 

los Output Short Circuit Current!3] Vee = Max., VOUT = GND -350 -350 -350 rnA 

lee Vee Operating Supply Current Vee = Max, I Commercial 300 250 250 rnA 

lOUT = 0 rnA I Military 300 300 

7.6.4 CY7C157 Capacitance!4] 

Parameters Description Test Conditions Max. Units 

CIN Input Capacitance TA = 25°C, f = 1 MHz, 5 pF 

COUT Output Capacitance Vee = 5.0V 8 pF 

Notes: 
1. TA is the "instant on" case temperature. 
2. See the last page of this specification for Group A subgroup testing information. 
3. Not more than 1 output should be shorted at a time. Duration of the short circuit should not exceed 30 seconds. 
4. 'Iested initially and after any design or process changes that may affect these parameters. 

7-49 



CY7C600 Electrical and Mechanical Characteristics 

7.6.5 CY7C157 AC Test Loads and Wavefonns 

R1 = 470 ohms A1 = 470 ohms 

5V ..... ---_ ...... 

OUTPUT ..... --..... --+ 
50pF 

INCLUDING 
JIGAND "=' 
SCOPE 

(a) 

5V ..... ---_ ...... 

OUTPUTo---..... --+ 
R2 = 319 ohms 

5pF 

INCLUDING 
JIG AND "=' 
SCOPE 

(b) 

Equivalent to: THEvENIN EQUIVALENT 
'67.0. OUTPUT 00 _____ ........ __ ..... 0 1.73V 

R2 = 319 ohms 

7.6.6 CY7C157 AC Characteristics Over the Operating Rangel2, S] 

ALL INPUT PULSES 

3JN~% 90% 
~ ~ ,. 

..s.3ns .... .s.3ns 

CY7C157·2016] CY7C157-2416] CY7C157-33 

Parameters Description Min. Max. Min. Max. Min. Max. Units 

READ CYCLE(7,8] 

teHCH Clock Cycle Time 25 30 40 ns 

teH Clock HIGH Time 11 13 18 ns 

teL Clock LOW Time 11 13 18 ns 

IcHQV Clock HIGH to Output Valid 20 24 33 ns 

teHQX Output Data Hold 5 5 5 ns 

tWHCH WEx HIGH to Next Clock HIGH 2 2 3 ns 

luLQv OE LOW to Output Valid 0 8 0 10 0 15 ns 

tGHQZ OE HIGH to Output Three-state 0 8 0 10 0 15 ns 

luHCH OE HIGH to Next Clock HIGH 7 7 7 ns 

tAVCH Address Set-Up 2 2 3 ns 

teHAX Address Hold 6 6 6 ns 

WRITE CYCLE!9] 

teHcH Clock Cycle Time!lO] 25 30 40 ns 

tCH Clock HIGH Time 11 13 18 ns 

tCL Clock LOW Time 11 13 18 ns 

luHQZ OE HIGH to Output Three-state 0 8 0 10 0 15 ns 

luHCH OE HIGH to Next Clock HIGH 7 7 7 ns 

tovCL Data in Set-Up to Clock 6 6 7 ns 

tCLDx Data in Hold from Clock 2 2 2 ns 

tWLCL WEx LOW to Clock LOW!ll, 12] 2 2 3 ns 

teLWH Clock LOW to WEx HIGHIll,12] 6 6 7 ns 

tAveH Address Set-Up 2 2 3 ns 

teHAX Address Hold 6 6 6 ns 

Notes: 
5. Test conditions assume signal transition times of 5 os or less, timing referenece levels of l.S\'; input pulse levels of 0 to 3.0V; and output loading 

of the specified IOLlloH and 50-pF load capacitance. 
6. Surface mount package ooly. 
7. WE is HIGH for read cycle. 
8. DE is selected (LOW). 
9. DE must be HIGH for data-in to propagate to latch. 
10. tGHQZ is tested with CL = 5 pF as in part (b) of AC Test Loads. 1taosition is measured ± Soo mV from steady state voltage. 
11. Self-Timed Write is triggered on falling edge of registered WEo or WE, signals. 
12. X = 0 or 1 for low byte and high byte, respectively. 

7-50 



CY7C600 Electrical and Mechanical Characteristics 

7.6.7 CY7C157 AC Waveforms 

&adCycle 

CLOCK 

ADDRESS 

DATA OUT ~~~~~~~t-----<~ 

Write Cycle 

ADDRESS ---", 
DATA OUT 

DATA IN 

7-51 



CY7C600 Electrical and Mechanical Characteristics 

7.6.8 CY7C157 'Iruth Table 

Inputs 

OE WE" <+CWCK) WE. <+CWCK) Outputs 

X X X HighZ 

H H H HighZ 

L H H 1/00 - 1/0.5 

H L H 1/00 -I/O, 

H H L 1/0.- 1/0.5 

H L L 1/00 -1/0.5 

7.6.9 CY7C157 Pin Timing Cross Reference 

Timing 
Pin Name Reference Description 

Clock C Clock Inputs 

Ao -A13 A Address Inputs 

1/00 - I/0.5 (Input) D Data Inputs 

1/00 - 1/0.5 (Output) Q Data Outputs 

WEo, WE .. WEx W Write Enable 

OE G Output Enable 

7.6.10 CY7C157 Pin Assignments 
LCC and PLCC 

7 6 5 4 3 2 l~ 52 51 50 47 48 47 

"" Vsso 

I/O, 10 

I/O, 11 

I/O, 12 
I/O, 13 

v= 14 

Ito. 

Ito, 16 

Ito, 17 

Ito, 1. 

V"'" 19 

V"'" 

TOP VIEW 

21 22 23 24 25 26 27 28 29 30 31 32 33 

7-52 

46 A13 

V"" 
1/016 

I/O" 

I/O" 

I/O" 

V,'" 
1/011 

I/O" 



CY7C600 Electrical and Mechanical Characteristics 

7.6.11 CY7C157 Package Diagrams 

All dimensions are in inches: JIIlIX. 
.min. /Pin1 

II --------l-L lI.ll!I5 
-,- 0.055 

11l"TT"T'l"TT"T'l: ~ I 
~ 0.7~ ~ 

!WID 
o .761 

• 
~ 

il 

!WID 
0.761 

TOP 

52-Lead Plastic Leadless Chip Carrier J69 

-, 
~ 
~ 

-.-- 0.008 R 
52 places 

52-Pin Square Leadless Chip Carrier 1.69 

7-53 

1 
Q.ml 

-1. 0730 

"'T 

ll.!l23 --'--+-r.....,...,J~ 
0.033 

.. ll.llii 
0.200 

.. t~f*= I f* 0.086 



CY7C600 Electrical and Mechanical Characteristics 

7-54 



Chapter 8 
crP~SS~~~==========~~ 
SEMICONDUcrOR CY7C600 Ordering Information 

8.1 CY7C601 Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

40 CY7C601-40GC G208 Commercial 

CY7C601-40FC CQFP-208 

33 CY7C601-33GC G208 Commercial 

CY7C601-33FC CQFP-208 

25 CY7C601-25GC G208 Commercial 

CY7C601-25FC CQFP-208 

25 CY7C601-25GMB G208 Military 

CY7C601-25FMB CQFP-208 

8.2 CY7C611 Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

25 CY7C611-25KC PQFP-208 Commercial 

8.3 CY7C602 Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

40 CY7C602-40GC G144 Commercial 

33 CY7C602-33GC G144 Commercial 

25 CY7C602-25GC Gl44 Commercail 

Contact your local Cypress sales office for up-to-date ordering and availability information. 

8-1 



CY7C600 Ordering Information 

8.4CY7C604 Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

40 CY7C604-40GC G243 Commercial 

33 CY7C604-33GC G243 Commercial 

25 CY7C604-25GC G243 Commercial 

8.5 CY7C60S Ordering Information 

Clock Frequency 
(MHz) Ordering Code Package 'JYpe Operating Range 

40 CY7C605-40GC G243 Commercial 

33 CY7C605-33GC G243 Commercial 

25 CY7C605-25GC G243 Commercial 

8.6 CY7ClS7 Ordering Information 

Speed (ns) Ordering Code Package 1YPe Operating Range 

20 CY7C157-20LC L69 Commercial 

CY7C157-2OJC J69 

24 CY7C157-24LC L69 Commercial 

CY7C157-24JC J69 

33 CY7C157-33LC L69 Commercial 

CY7C157-33JC J69 

8-2 



Appendix 

CYP~SS~~~~~~~~~~~~ 
SEMICONDUCTOR CY7C600 Uni-Module 

A.I Uni-Module Board Hardware Description 

A.1.1 Introduction 

The SPARC Uni-Module Board is a single-board computer utilizing the complete SPARC chip set (Integer Unit, Floating 
Point Unit, Cache Memory Management Unit, and Cache RAMs) operating at maximum speed. It contains a 64-kbyte, 
direct-mapped, virtual cache (1 CMU and 2 CRAMs). The PC board size is 3.3" x 7.25" and it has an Mbus interface via 
a Ioo-pin connector. The Uni-Module is described in this section as an example of a CY7C6oo processor node and to 
demonstrate how to interconnect the CY7C600 chip set. 

A.l.2 Features 

1. CY7C60I SPARC Integer Unit 

2. CY7C602 Floating-Point Unit 

3. CY7C604 Cache Controller and Memory Management Unit 

4. 64 kbytes of direct-mapped cache using two CY7CI57 CRAMs (0 Wait States on Virtual bus) 

5. Operates over a frequency range of 10 to 40 MHz at ambient temperature and nominal + 5V 

6. The board requires approximately 2A @ + 5V via the Mbus connector 

A.l.3 Basic Mbus Operation and Timing 

The Mbus is a fully synchronous (same clock as IU and CMU), multiplexed (address and data), 64-bit bus. A cycle is started 
when MAS (Mbus Address Strobe) is asserted via the CMU and is completed successfully upon the assertion of MRDY 
alone, or unsuccessfully with the assertion of various combinations of MERR (Mbus ERRor), MRDY (Mbus ReaDY) 
or MRTY (Mbus ReTrY) from the Mbus. 

The Mbus allows multiple masters via an external arbiter. An Mbus master can request the Mbus by asserting its MBR 
(Mbus Bus Request) line to the arbiter and the arbiter can grant the bus by asserting the MBG (Mbus Bus Grant) line 
to the requester. Each potential bus master monitors the MBB (Mbus Bus Busy) line and, after receiving its bus grant 
and observing that MBB has been deasserted, will synchronously assert MBB on the next clock and keep it asserted until 
its access is finished. 

A Power-On Reset signal is generated to the CMU from the Mbus. Reset is asserted on the Mbus via the MRST (Mbus 
ReSeT) line from the CMU. 

Level sensitive interrupts (15 max.) are generated to the CY7C60I IU via the IRL(3:0) lines from the Mbus. A value of 
OOOOb means that there is no interrupt, whereas a value of IllIb means an NMI is being asserted. 

Basic Mbus timing is as follows: 

1. The CY7C604, running at 40 MHz, makes address, data and status signals available 18 ns after the clock rising edge 
(RE) which gives 7-ns set-up time before the following clock RE to latch them. It also holds these signals until 4 ns 
after the next clock RE. For control signals the respective timings are 16 ns after the clock RE (gives 9-ns set-up time) 
and holds the signals for 4 ns after the clock RE. 

2. The CMU requires that data, control, and status signals be valid no later than 3 ns before the clock RE and that it 
be held for 2 ns after the clock RE. 

A-I 



CY7C600 Uni-Module 

A1.3.1 Board Detailed Description 

The first figure is a block diagram of the SPARC Uni-Module Board. For a more complete understanding, consult the 
Uni-Module Board schematic diagrams that follow. The logic can be broken down as in the following sections. 

A.1.3.1.I Computing Cluster (IU, CMU, CRAMs and FPU) 

The socketed computing cluster consists of the CY7C601 Integer Unit in a 207-pin PGA package, the CY7C602 Floating­
Point Unit in a 143-pin PGA package, the CY7C604 Cache Controller and Memory Management Unit in a 243-pin PGA 
package, and two CY7C157 Cache RAMs in 52-pin PLCC packages. These chips are connected together in a tightly 
coupled configuration to provide integer, floating-point, and memory management capabilities as well as 64 kbytes of 
direct-mapped, virtual, cache. The board/Mbus does not make use of any coprocessor signals nor the BHOLD or MAO 
signals. 

A.l.3.1.2 Board Decouplingand Signal Termination 

There are various pull-up and pull-down resistors on the Uni-Module board in order to improve operation, testability, 
and to allow the removal of the FPU. Multiple O.l-J.lF ceramic decoupling capacitors are placed around each chip to pro­
vide power for instantaneous, high-frequency current requirements. Multiple 22-J.lF tantalum decoupling capacitors are 
placed near the Mbus connector and at the board edges to help provide a stable, low-frequency, low-impedance power 
source. 

MDS and MEXC lines have pull-up resistors on them since these are three-state lines driven by the CMU. The CLK 
line from the Mbus connector is parallel terminated at its end (FPU) by a Thevinin equivalent of 75 ohms, since this is 
the design impedance of the board. 

There is a pull-down resistor on the TOE pin ofthe IU (DOE pin ofthe FPU, OE pin of the CRAMs) so that the outputs 
are always enabled except when three-stated by the CMU via the IOE (CROE) signal. There is a similar pull-down resistor 
on the TOE pin of the CMU so that during board test these IC's can be three-stated. The FNULL line from the FPU 
has a pull-down resistor on it so that if an FPU is not present, the IU and CMU will still operate correctly. The 1FT pin 
of the IU has a pull-down resistor on it so that the execution of an IFLUSH instruction will cause an illegaUnstruction 
trap. There are pull-up resistors on all of the coprocessor lines (MHOLDB, BHOLD, SNULL), the floating point lines 
from the FPU to the IU, and on the CMER, MERR and MRTY lines of the CMU. 

The CMU is always selected because its chip select pin is tied to GND. The MAO pin of the IU is similarly grounded 
to prevent falsely switching the internal source address mux of the IU. 

A-2 



y c 
' c 

CY7C601 
IU 

LOCK f-

~ 
8HOLo/ WitT i-
f'HOl.08"" ItO 

~ 
CHOLO), 1041£/ 

cnc;, LOSTO 

~ 
CP/ INU\..1.. 

ceCellO) IERIitOR/ 

~~ - cccv ""OLOA;' g:=: 
"'5/ 

"EXe;' 

~ RESET ... 

AOE/.CO[/.DO£I' 

A51(7:0) 

A(31:0) 

- ... 0(31:0) 

- FI"SYN 51%£<1:0) 

~ 
~ 

TOE/ 

In" 
INTACIt i-

;::: ,.,.... IIt\.(3:0) ~. FCe(1:0) INS' 

~ 
.. COl FLUSH !-------. 
"MOLO/ !"XIICK r----r-: ,.cllte.... 1"1".(21 u r----

y c 

64K-SY-W 
CY7C157 CRA" :5 ~ CY7C1'5? CRAft 

.1 101[1.... 2 0 1011£1/ ., 

r--<: WEO/ ~ 1011£0/ 

OE/ p-- l< OE/ 

I/O(l'l;:O) A(13:0) f-r-- Il10(1:1:0) 1/0<1'5:0) 

'~ ~O)t J JOCI111.) 

/P 
e 

YCC~ 

1 ~ 
r-' 

11 J* D 
t ,. I" I" n pq ~ 

F£xC/ ~ b ~ A 
T 9 C S 

,.HOLD ... H K ~ H '-- FCCY 1 
, 

~ 
F<:C(1:0) 

, 
'P' 

..... L '--
CHOLO.l CY7C602 
cecy FPU 
BHOI.O/ 

"HOLDeI' 

;\ 

~J .: .... £u 1 0''''' 
CROE/ SHULL;' 

fOE' 
<:7 

flO "ADC.aIO) 

WlE.I MAS/ 

LO!lTO .... 1tII:/ 

I~L MRDV/ 

ERROR/ "RTY'" 

"10101..0/ 

""" .,," CY7CQ04 
lAST;' eMU ,.U 
ASt(OJ>:O) ... e." 
ACll:0) "'BIt;' 

OU1:0> .,.., 
51%1[(1:0) 

I1ft.T;' 

CKL' ... , 
T ._L 

c"', .... 

NOTESI MOS'" _n4 I"II::IIC/ ~II 

SYSTEM/TESt 
LO(oI<:: 

ADOI!:. 

- ..... ,. ...... 

M 
B 
U 
S 

I 
N 
T 
E 
R 
F 
A 
C 
E 

~I~~ 

r 

~ 
8 
[ 
~ 
§' 
:;" 



f­
H 
Z 
:J 

§ I 
w 
f­
Z 
H 

A-4 

CY7C600 Uni-Module 

"' ... " ...... " 
M .. M '" lOt '" N N N N 

:;e~e~~ ~ ~ ~ e 



CY7C600 Uni·Module 

.£.s:.£.£.£.l. ~ 
11'111''''1\1'1'''''''' 

f.d 

~ 

o. 
"" .. .. 

u. ,. .. 
~ u. 

.. ,. .. 
u. 

n 

." nm ,-
~~ 

11111 :r:,.: 
u. ~ ,-

~ 
;;;:U:::~==:::::::;:2~~~~~~!:!:::2t!:;Z:!:~~~C;g 
ooooooooooooooooaoCloo(l 

f-
i~ H 

u. Z ,. :::J 

f-
Z 
H 

0 
0.. 

I.:J 
Z 
H 

f-
([ 
0 
...I 
"-

'= H:; 

it ~dd~ t:~ 
~ 

, 
~~ 

f-t> ~ 

.. ,.. ..... 1'1'" 

~e~~ ~~ 

A-5 



CY7C600 Uni-Module 

; ; ; ;; 

fJ 
rJ 

,,~ 
,. 

I'~ 

!: 

_I: 
1111, 111111, 

" Iii 

" 
~:=: 

I'~ ; 

::J ! 1: 
u .. 

" 

~.". 

¥S_~ 

,-
- &; ... ~""'BlIi11'I. 

.\ 
11111111111111111111111 11111111 

IIUIIIJJ III 1111111 

'" l -." I ~i.l '" II: ... u 

111111 rm:rJlJ II III IrmrrD ~ .. 
I. 

iio:::::':: __ 

A-6 



i 

1'1 ........ 

~~~e~ 

A-7

,.." "'
""'''''''N'''' '" .£~..c.c,,:..c .c
~ ~~ ~~ ~

CY7C600 Uni·Module

CY7C600 Uni-M()dule

A-8

CYP~SS~~~~~~~~~~~
SEMICONDUCTOR Glossary

Address Translation Cache (ATC): The ATC is a cache of address translation entries used by an MMU to translate virtual
addresses to physical addresses. The CY7C604/605 uses an ATC for address translation, but the more familiar
term translation lookaside buffer (ILB) is used throughout the text.

Aliasing: Mapping two or more virtual addresses to the same physical address. SPARC software conventions permit the
use of aliases in address spaces that are modulo with respect to the system's underlying cache size.

Annul bit: This bit is used in the SPARC architecture to allow the designer or compiler to decide whether or not the
delay slot instruction of a delay control transfer instruction will be executed if the conditional branch is taken.
See Section 2.3.3.4 for further information.

Cache controller: Provides cache memory access control for a 64-kbyte direct-mapped virtual cache.

Cache lock: A mechanism that allows the system to lock all entries in the cache, supported by the CY7C604. This feature
allows deterministic response tiroes for real-tiroe systems.

Content addressable memory (CAM): A memory that is accessed by supplying the value to be compared to the memory
contents. When accessed, the CAM returns the location of the memory where the value is stored, or returns a
no-match signal if the memory does not contain the value. In the case of the CY7C604/605 MMU, the value re­
turned by the CAM array is used to address a value in the 1LB RAM array, which in tum provides the physical
translation value to be used by the MMU.

Copy-back mode: A style of cache management in which write accesses are written to the cache only, not to main memory.

Current window: The block of 24 r registers pointed to by the current window pointer.

Current window pointer (CWP): Selects the current register window.

Delay instruction: The instruction immediately following a control transfer instruction. This instruction is always
fetched, and is either executed or annulled before the control transfer takes place.

Double·precision floating point: A data type consisting of 64 bits.

Doubleword: A data type consisting of two 32-bit words used as a single 64-bit operand. A doubleword is always aligned
with the most significant word at an even word boundary (bits 2-0 equal to zero). The subsequent least significant
word is on an odd word boundary (bit 2 equal to one, bits 1-0 equal to zero).

Extended·precision floating point: A data type consisting of 128 bits.

fregister: One of the FPU's 32 working registers.

Floating-point unit (FPU): The coprocessor that performs floating-point calculations.

Floating-point operate (FPop) instruction: Instructions that perform floating-point calculations. This category does not
include loads and stores between the memory and the FPU.

G-l

Glossary

F1oating.point.queue (FQ): A three~deep storage area for FPop instructions and their addresses while they are being
executed in the FPU. Floating-point exception traps occur sometime after the floating-point instruction is issued,
asynchronously to the IU and its pipeline. The queue supplies instruction/address pair information to the IU for
the FPop that caused the exception.

Frame pointer: The pointer to the beginning of a memoty stack. The frame pointer is often specific to a window, and
is set from the stack pointer of the previous window.

Global registers: A block of eight registers within the register file that are always avaiIable to the IU regardless of the
value of the CWP.

Halfword: A data type consisting of 16 bits.

Integer unit (IU): The main computing engine. It fetches all instructions and executes all but the FPop and CPop instruc·
tions.

Mhus: The interface between a SPARC processing module and the memoty subsystem.

Load/Store: The class of instructions that are either load or store instructions.

Load· Store: The class of instroctions that are atomic (indivisible or locked) load 1HEN store. These instructions are
typically used for the manipulation of multiprocessor semaphores or any other process where interruption during
the process of loading a variable and storing a new value for that variable could be disastrous. The SPARC load­
store instructions are: SWAP, SWAPA, LDSTUB, and LDSIUBA

Next program counter (nPC): Contains the address of the next instruction to be executed, assuming no trap occurs.

Processor state register (PSR): The IU's status register.

Program counter: Contains the address of the current instruction being executed by the IU.

r register: A global register or a register in the current window of the register file.

Register window: A group of 24 working registers from the set of window r registers (128 window registers or eight win­
dows are available on the CY7C601I611). Register windows overlap by eight registers, causing three types of win­
dow registers: ins, OUlli, and locals. Ins are the window registers that were the outs for the previous window. Locals
are specific to the register window, and are not shared. See Section 2.2 for further information.

rd, rst, and rsl: Instruction format fields which specify the register operands of an instruction. rd is the destination
register and rsl and rs2 are the source registers.

RISC: An acronym that stands for Reduced Instruction Set Computer.

rlrd], r[rsl], and r[rsl]: The actual r registers specified by rd, rsl, and rs2.

Page table entry (PTE): An address mapping for a single 4-kbyte page, a 256-kbyte region, a 16-Mbyte region, or a 4-Gbyte
region. .

Page table pointer (PTP): The address pointer used to identify the beginning of a page table in memoty.

Page table pointer cache (PTPC): The cache of page table pointers stored by the CY7C604/60S in order to minimize the
levels of table walks required for a 1LB miss. See Section 4.1 for further details.

SPARC: An acronym that stands for Scalable Processor ARChitecture.

G-2

Glossary

Stack pointer: The pointer to the next address in memory that registers are temporarily stored, typically in response
to a procedure call or trap routine.

Table walk: The process of accessing levels of tables in memory to find a page table entry for a particular virtual address.
Each level of the table either has a pointer to the next level of table, or has the page table entry. Upon finding
a page table entry, the table walk is terminated by the MMU.

lranslation lookaside butTer (TLB): Acts as a cache for address mapping entries used by the MMU to map a virtual ad­
dress to a physical address.

Virtual cache: Refers to the direct addressing of the cache by the integer unit using the virtual address bus.

Word: A data type consisting of 32 bits.

Write· through mode: A style of cache management that causes write accesses to the cache to be written through to main
memory upon each write access.

0-3

Glossary

G-4

CYPRESSE~~EEEEEEE~
SEMICONDUcrOR

A
ADD, 6-7

ADDcc, 6-8

ADDX,6-9

ADDXce, 6-10

AFAR (asynch. fault addr. reg.), 4-40

AFSR (asynch. fault status reg.), 4-40

AND, 6-11

ANDcc, 6-12

ANDN,6-13

ANDNce, 6-14

annul bit, 2-22, 2-26, 2-56

ASI
CY7C601I611,2-19
CY7C604/605 asi mapping, 4-46 to 4-47
CY7C604/605 signal, 4-55
CY7C611 ASI, 2-87
signal description, 2-45
Use of in instructions, 2-19

assembly language, 6-1 to 6-3

B
BFI()lJ), 2-46, 2-58, 2-67,3-11, 3-24

Bice, 2-22, 2-26, 2-56, 6-15

big endian, 2-14

c
cache controller, 4-15 to 4-34

cache flushing, 4-32
cacheable/non-cacheable, 4-33
control signals, 4-30 to 4-31
CY7C604, 4-16 to 4-19

aliasing, 4-17 to 4-19
cache locking, 4-19
cache tag, 4-17

1-1

cache controller (continued)
CY7C605, 4-20 to 4-30

aliasing, 4-29 to 4-30
bus snooping, 4-29 .
cache state transitions, 4-23 to 4-29
cache tag, 4-21 to 4-22 .

MPTAG,4-21
PVfAG,4-21

multiprocessing support, 4-22 to 4-23
LDST() cycles, 4-34
MC (Mbus cacheable bit), 4-33
modes, 4-15
read buffer, 4-32
write buffer, 4-31

CALL, 2-8, 2-15, 2-18, 2-22, 2-25, 2-56,6-17

CBccc, 2-22, 2-26, 2-56, 6-18

CEXC, 2-49, 2-78

CFI()LD, 2-49, 2-84, 3-11,3-24

context switching, 2-6

control registers, 2-8

coprocessor interface, 2-84

CPop, 2-30, 2-66, 6-20

CTPR (context table pointer reg.), 4-37

current window pointer. See CWP

CWP, 2-3 to 2-4, 2-5, 2-10, 2-11, 2-23

CXR (context register), 4-37

CY7C601I611 registers, 2-2 to 2-15
control/status registers, 2-8 to 2-12
PC and nPc, 2-8
PSR, 2-9 to 2-10
r registers, 2-2 to 2-8
TBR,2-11
WIM,2-11
Y register, 2-11

CY7C602 registers, 3-12 to 3-15
f registers, 3-12
FP queue, 3-13
FSR, 3-14 to 3-15

CY7C604/605 diagnostics
cache data entries, 4-44
cache tag entries, 4-44
1LB entries, 4-43

Index

CY7C604/605 Multichip, 4-41 to 4-43

CY7C604/605 registers, 4-35 to 4-40
'604 system control register, 4-35 to 4-36
'605 system control register, 4-36
asynchronous fault address (AFAR), 4-40
asynchronous fault status (AFSR), 4--40
context register (CXR), 4-37
context table pointer (CfPR), 4-37
data access PTP (DPTP),4-38
index tag register (ITR), 4-38
instruction access PTP (IPTP), 4-38
reset register (RR), 4-37
root pointer register (RPR), 4-38
synchronous fault address (SFAR), 4-40
synchronous fault status (SFSR), 4-39
1LB replacement control (fRCR), 4-39

CY7C604/605 reset, 4-45 to 4-46
Power-on reset, 4-45
Software External reset, 4--45
Software Internal reset, 4-45
Watch-dog reset, 4-45

CY7C604/605 synchronous faults, 4-47 to 4-54

D
delayed control transfer, 2-25, 2-56

delayed control transfer couples, 2-27 to 2-29

DPTP (data PTP), 4-38

E
ERROR

signal, 2-8, 2-51, 4-56
state, 2-8
timing, 2-76 to 2-77

F
fregisters, 3--12

FABSs, 6--21

FADDd, 6--22

FADDs, 6--23

FADDx, 6--24

FlBfcc,2-22,2-26,2-56,6--25

FCMp, 2-22, 3-9

FCMPd, 6--27

FCMPE,2-22

1-2

FCMPEd, 6--28

FCMPEs, 6--29

FCMPEx, 6--30

FCMPs,6--31

FCMPx, 6--32

FOIVd, 6--33

FOIVs, 6--34

FOIVx, 6--35

FdTOi, 6--36

FdTOs, 6--37

FdTOx, 6--38

FEXC, 2-50, 2-75, 2-78, 3--23

FtfOlJD,2-5O,3-11,3--23

FlNS1I2, 3-7, 3-23

FiTOd, 6--39

FiTOs, 6--40

FiTOx, 6--41

floating-point
double-precision, 2-12, 3-20
exceptions, 3-17, 3-22
extended-precision, 2-14, 3-21
interface, 3--4
operate instr., 3-16
queue,3-9,3-13
single-precision, 2-12, 3-20
status register (FSR), 3-14

FLUSH, 2-51, 3-9, 3-23

FMOVs, 6--42

FMULd, 6--43

FMULs, 6--44

FMULx, 6--45

FNEGs, 6--46

FNULL, 3-12, 3-24, 4-56

FP Queue, 3-13

FPop, 2-30, 2-66

FPops, 3--16

frame pointer, 2--4, 0-2

FSQRfd, 6--47

FSQIm, 6--48

FSQRrx, 6--49

FSR (FP status register), 3-14 to 3-15

FsTOd, 6--50

FsTOi, 6--51

Index

FsTOx, 6-52

FSUBd,6-53

FSUBs, 6-54

FSUBx,6-55

FXACK, 2-51, 2-75, 3-23

FxTOd,6-56

FxTOi, 6-57

FxTOs,6-58

H
hardware interlocks, 2-56

I
IFLUSH, 2-30, 6-59

INST, 3-23

instruction
arithmetic/logical/shift, 2-20
control kansfer, 2-22
delay, 2-26, 2-56
delayed control transfer, 2-25, 2-56
fetch, 2-61
floating-point, 3-16
formats, 2-15
FP inst. fetCh, 3-6
load, 2-61, 2-62
load/store, 2-19
load-store, 2-20
mnemonics, 6-3
multiprocessing, 2-20
op codes, 2-31 to 2-45
pipeline, 2-52 to 2-53, 3-5
store, 2-63, 2-64
summary table, 6-6
types, 2-19 to 2-30

integer condition codes (icc), 2-9

INULL, 2-47, 4-56

lOp, 2-53

IPTP (instruction PTP reg.), 4-38

ITR (index tag reg.), 4-38

J
JMPL, 2-4, 2-8, 2-22, 2-53, 2-56, 6-60

JMPL, RET[, 2-8, 2-23, 2-27, 6-91

1-3

L
LD,6-61

LDA, 6-62

LDC,6-63

LDCSR,6-64

LDD,6-65

LDDA, 6-66

LDDC,6-67

LDDF,6-68

LDF,6-69

LDFSR,6-70

LDSB,6-71

LDSBA, 6-72

LDSH,6-73

LDSHA, 6-74

LDSTO
'604/'605 operation, 4-34
CY7C604/605 signal, 4-56
signal, 2-47
timing, 2-65

LDSTO instructions, 2-20

LDSTUB, 2-20, 6-75

LDSTUBA, 6-76

LDUB,6-77

LDUBA, 6-78

LDUH,6-79

LDUHA,6-80

load-store. See instruction, load-store; LDSTO

M
Mbus, 4-84 to 4-112

address cycle, 4-87 to 4-88
burst transactions, 4-86
data cycle(s), 4-88
Levell, 4-84
Level 2, 4-84 to 4-85
MAD bus, 4-57
MAS signal, 4-57
MBB signal, 4-57
MBG signal, 4-58
MBR signal, 4-58
MERR signal, 4-58
MIH signal, 4-58
MRDY signal, 4-58

Index

Mbus, (continued)
MRST signal, 4-58
MKfY signal, 4-58
MSH signal, 4-58
non-burst transactions, 4-86
relinquish and retry, 4-86
retry,4-86
signal summary, 4-85 to 4-87
transactions, 4-88 to 4-92

coherent invalidate, 4-90
coherent read, 4-89 to 4-90
coherent read and invalidate, 4-90 to 4-91
coherent write and invalidate, 4-9Uo 4~112
read, 4-88 to 4-89
write, 4-89

M[)S,2-47,3-24,4-56

memory stack, 2-4

MEXC, 2-47, 2-71, 2-78, 4-56

MHOLl), 2-48, 2-58, 2-68 to 2-74, 3-11, 3-24, 4-56

MMU, 4-3 to 4-12
flush, 4-14 to 4-15
operation modes, 4-13 to 4-15
probe, 4-15

MULScc, 2-11, 6-81

o
OR,6-82

ORcc, 6-83

ORN,6-84

ORNcc, 6-85

p

page table entry. See PTE

page table pointer. See PI'P

page table pointer cache. See PI'PC

PC and nPC, 2-8, 2-26

POR,4-58

processor interrupt level (PIL), 2-10

processor state register. See PSR

processor states, 2-8

PSR, 2-9 to 2-10

PTE, 4-3, 4-4, 4-10 to 4-11

PTP, 4-9 to 4-10

1-4

PI'PC,4-11

R
T registers, 2-2 to 2-8

ins, 2-3 to 2-4, 2-25 to 2-26
locals, 2-3 to 2-4, 2-25 to 2-26
outs, 2-3 to 2-4, 2-25 to 2-26
r(Oj,2-21
special T registers, 2-6 to 2-8

R[)PSR, 2-10, 2-30, 6-86

RDTBR, 2-11, 2-30, 6-87

RDWIM, 2-11, 2-30, 6-88

R[)Y, 2-30, 6-89

register windows, 2-3 to 2-6

RESET
See also CY7C604/605 reset
signal,2-8, 2-52, 3-24
state, 2-8, 2-78
timing, 2-76

Index

RESTORE, 2-4, 2-6, 2-10, 2-11, 2-22, 2-25, 6-90

RETI, 2-6, 2-8, 2-10, 2-11, 2-22, 2-53,2-84,6-91

RPR (root pointer reg.), 4-38

RR (reset register), 4-37

s
SJ\\nE,2-4,2-5,2-6,2-11,2-22,2-25,6-93
SCR ('604 system control reg.), 4-35 to 4-36

SCR ('60S system control register), 4-36 to 4-37

SE11iI,2-15,2-21,6-94

SPM (synch. fault addr. reg.), 4-40

SPSR (synch. fault status reg.), 4-39

SLL, 6-95

SNULL,4-56

SRI\, 6-96

SRI.., 6-97

ST, 6-98

STJ\, 6-99

stack pointer, 2-4, 0-3

STB,6-100

STBJ\, 6-101

STC,6-102

STCSR,6-103

SID,6-104

SIDA, 6-105

SIDC, 6-106

SIDCQ, 6-107

SIDF,6-108

SIDFQ,6-109

S1F,6-110

S1FSR, 2-22, 6-111

STH,6-112

STHA, 6-113

SUB,6-114

SUBcc, 6-115

SUBX, 6-116

SUBXcc, 6-117

supervisor
bit, 2-10
mode, 2-8

SWAP, 2-20, 6-118

SWAPA, 6-119

T
table walk, 4-8 to 4-9

TADDcc, 2-22, 6-120

TADDccTY, 2-22, 6-121

tagged arithmetic, 2-22

tagged data, 2-13, 2-22

TBR, 2-8, 2-11, 2-23, 2-83

Ticc, 2-11, 2-22, 2-23, 6-122

1LB,4-4
entries, 4--6, 4-43
locking, 4-6
look-up, 4-6
table walk, 4-8 to 4-9

translation lookaside buffer. See 1LB

trap, 2-78 to 2-84
addressing, 2-83
a~chronous, 2-78

1-5

trap (continued)
floating-point, 3-17, 3-22
FP/Cp, 2-81 to 2-82
IEEE exceptions, 3-22
interrupts, 2-75, 2-80 to 2-81
operation, 2-82
pipeline timing, 2-58
reset, 2-78
~chronous,2-78
types, 2-78 to 2-80, 2-83

trap base register. See TBR

TRCR (TLB replacement control reg.), 4-39

TSUBcc, 2-22, 6-124

TSUBccTY, 2-22, 6-125

u
UNIMp, 2-30, 6-126

user mode, 2-8

w
WIM, 2-5, 2--6, 2-8, 2-11, 2-25

window overflow and underflow, 2-5, 2-11
See also WlM

windows. See register windows

WRPSR, 2-10,2-22, 2-30, 6-127

VVlrfBR,2-11,2-30,6-128

WRWIM, 2-11, 2-30, 6-129

WR1f,2-30, 6-130

x
XNOR,6-131

XNORcc, 6-132

XOR,6-133

XORcc, 6-134

y
1f register, 2-11

Index

Index

1-6

Cypress Semiconductor
3901 North First Street

San Jose, CA 95134
(408) 943-2600

