

TFS4 v1.5.0
Porting Guide

2006.05.02 , Version 1.5.0

Note
TFS4 is independent of XSR. Here we assume that XSR or MMC (or HSMMC) host
device driver is already ported to your target system. This TFS4 porting guide covers only
TFS4 porting procedure, neither XSR nor MMC (or HSMMC) host device driver.

TFS4 v1.5.0 Porting Guide 2

Copyright notice
Copyrightⓒ 2003-2006 Memory Divisiton, Samsung Electronics Co., Ltd

All rights reserved.

Trademarks
TFS4 is a trademark of Memory Division, Samsung Electronics Co., Ltd in Korea and
other countries.

Restrictions on Use and Transfer
All software and documents of TFS4 are commercial software.
Therefore, you must install, use, redistribute, modify and purchase only in accordance with
the terms of the license agreement you entered into with Memory Division, Samsung
Electronics Co., Ltd.

All advertising materials mentioning features or use of this software must display the
following acknowledgement:
This product includes TFS4 written by Memory Division, Samsung Electronics Co., Ltd.

Contact Information
Flash Software Group
Memory Division,
Samsung Electronics Co., Ltd

Address: San #16, Banwol-Dong, Hwasung-City, Gyeonggi-Do, Korea, 135-120

TFS4 v1.5.0 Porting Guide 3

Preface
SEC-MEM-TFS4-POG00001

This document is a porting guide of TFS4 developed by Embedded Storage team, Memory
Division, Samsung Electronics. It describes TFS4 porting procedure to user’s target
platform and OS.

Purpose
This document helps engineers of Samsung Electronics or other companies, who use TFS4
as an embedded file system. You can understand the way TFS4 is ported in your target
system, and follow the porting procedure easily with this document.

Scope
This document covers an overview, system requirements, source directory structure, and
the detailed porting procedure of TFS4. It also describes TFS4 test case to find if TFS4 is
correctly running after porting.

Definitions and Acronyms
Definitions and Acronyms Description

BPB Bios Parameter Block

Block Erase unit of the NAND flash memory

BML Block Management Layer

Cluster Read/write unit of the filesystem

EOC End Of Cluster

FAL File system Abstraction Layer

FAT File Allocation Table

File System

General file system that provides total file system service

Filesystem

Specific filesystem such as FAT, EXT2, and NTFS

FTL (Flash Translation
Layer)

A software module which maps logical addresses to physical
addresses when accessing flash memory

Initial bad block Invalid blocks on arrival from the manufacturers

Interleaving Parallel data I/O from different devices

KFAT A new type of filesystem that is used for TFS4

LBA Logical Block Addressing

LLD Low Level Device Driver

MMC Multimedia Card

HSMMC High Speed Multimedia Card

TFS4 v1.5.0 Porting Guide 4

NAND flash controller Controller for the NAND flash memory

NAND flash device Device that contains NAND flash memory or NAND flash
controller.

NAND flash memory NAND-type flash memory

Page Read/write unit of the NAND flash memory

Sector Unit of the physical I/O

STL Sector Translation Layer

TFS Transactional File System

XSR eXtended Sector Remapper

MBCS Multi Byte Character Set, (SBCS + DBCS)

DBCS Double Byte Character Set

SBCS Single Byte Character Set

Related Documents
- Microsoft Extensible Firmware Initiative FAT32 File System Specification, Microsoft
Corporation, Version 1.03, December 6, 2000
- Long Filename Specification, Microsoft Corporation, Version 0.5, December 4, 1992
- SEC Memory Division, XSR v1.5.0 Part 1. Sector Translation Layer Programmer’s
Guide, Samsung Electronics, Co., LTD, DEC-09-2004
SEC Memory Division, XSR v1.5.0 Part 2. Block Management Layer Programmer’s
Guide, Samsung Electronics, Co., LTD, DEC-09-2004
- SEC Memory Division, XSR v1.5.0 Porting Guide, Samsung Electronics, Co., LTD,
DEC-09-2004

History
Version Date Comment Author Approve

0.1 2005.12.06 Pre-released version Embedded
Storage System

0.2 2004.04.02 Reviewed by OS Solution
Lab.

Sun Mee Kwak

1.0 2004.04.12 1.0 Release version Sun Mee Kwak Kyung il
Bang

1.2.0 2004-07-28 For TFS4 1.2 DongYoung Seo
1.2.0_patch001 2004-11-05 Modify memory usage for

TFS4 1.2_patch001
DongYoung Seo

1.3.0 2005-02-24 Re-write for TFS4 v1.3 DongYoung Seo
1.4.0 2005-03-28 Initial document for v1.4 DongYoung Seo
1.4.0a 2005-08-12 Modify for XSR v1.4.0 DongYoung Seo
v1.4.1_build001 2005-10-12 Add Fast Unlink and Fast

Seek description
DongYoung Seo

v1.5.0_build001 2005-11-09 Initial document for v1.5.0 DongYoung Seo
v1.5.0 2006-01-23 Review MoonSang Kwon

TFS4 v1.5.0 Porting Guide 5

Contents

1. TFS4 Introduction 10

1.1. TFS4 Overview 10
1.2. TFS4 System Architecture 11
1.3. TFS4 Features 13

2. System Requirements 14

2.1. Host 14
2.2. Target 14

3. Description of Source Files 17

3.1. TFS4 Directory Structure and Descriptions 17
3.2. XSR Directory Structure and Descriptions 20
3.3. Directory Structure and Descriptions of MMC (or HSMMC) Host Device Driver
 22

4. TFS4 Porting Procedure 23

4.1. TFS4 Library Build 24
4.1.1. TFS4 Configuration 24
4.1.2. TFS4 Library Build 34

4.2. TFS4 Porting to the Target OS 45
4.2.1. XSR Porting 47
4.2.2. MMC(or HSMMC) Host Device Driver Development 47
4.2.3. Bad Sector Manager 50
4.2.4. Common IOCTLs 51
4.2.5. TFS4 Porting 51

4.3. Build with Target OS 79
4.4. Download to Target Device 91

5. TFS4 Test Process 97

5.1. XSR Test 98
5.2. MMC (or HSMMC) test 98
5.3. TFS4 test 99

5.3.1. Initialize TFS4 105
5.3.2. Register a physical device 105
5.3.3. Perform fdisk 106
5.3.4. Format a volume 108
5.3.5. Mount a volume 109
5.3.6. Case test & Stress test 110

Appendix 113

I. About FAT 114
II. MMC (or HSMMC) Host Device Driver APIs 120

mmc_init_driver 121
mmc_is_ready 122
mmc_read 123
mmc_write 124
mmc_get_stat 125

III. Data Structures 126
IV. Library Functions 128
V. Header Files 129

TFS4 v1.5.0 Porting Guide 6

VI. Error Codes 130
VII. About TFS4 Integration Test Shell 131
VIII. Code Pages 134

Glossary 139

Index 140

TFS4 v1.5.0 Porting Guide 7

Figures

Figure 1-1. TFS4 System Architecture ...11
Figure 3-1. TFS4 Directory Structure...17
Figure 3-2. TFS4 Project Files at REINDEER_PLUS_ADS12..19
Figure 3-3. TFS4 Project Files at ADS1_2...19
Figure 3-4. XSR Directory Structure ..20
Figure 3-5 MMC Device Driver Source Directory...22
Figure 4-1. TFS4 Porting Procedure...23
Figure 4-2. tfs4_config_base.h ...25
Figure 4-3. tfs4_config_base.h ...25
Figure 4-4 tfs4_config_const.h ...28
Figure 4-5. tfs4_config.h ..32
Figure 4-6. Source files for TFS4 Library ..35
Figure 4-7. ADS v1.2 Initial Screen ...36
Figure 4-8. Debug Settings for ARM Assembler on ADS v1.2..41
Figure 4-9. Debug Settings for ARM C Compiler on ADS v1.2 ..41
Figure 4-10. Debug Settings for ARM C++ Compiler on ADS v1.242
Figure 4-11. Release Settings for ARM Assembler on ADS v1.2......................................42
Figure 4-12. Release Settings for ARM C Compiler on ADS v1.243
Figure 4-13. Release Settings for ARM C++ Compiler on ADS v1.2................................43
Figure 4-14. Set Access Paths...44
Figure 4-15. TFS4 Porting for Target OS...45
Figure 4-16. MMC(or HSMMC) Host Device Driver Path..47
Figure 4-17. The Source File List of Sample MMC(or HSMMC) Host Device Driver47
Figure 4-18 Deploying Bad Sector Manager ..50
Figure 4-19. Directory Path of tfs4_memory.c ...53
Figure 4-20. tfs4_memory.c ...54
Figure 4-21. Define a Memory Pool Name in tfs4_memory.h ...60
Figure 4-22. Define a tfs4_memory_alloc in tfs4_config_const.h......................................60
Figure 4-23. tfs4_semaphore.c..63
Figure 4-24. tfs4_errno.c ..69
Figure 4-25. tfs4_tty.c...70
Figure 4-26. tfs4_time.c..72
Figure 4-27. Data Format of Date and Time...73
Figure 4-28. tfs4_pdev_nand_xsr.h – common NAND and XSR configuration74
Figure 4-29 STL and BML configuration...75
Figure 4-30. MMC(or HSMMC) Host Device Driver File List..80
Figure 4-31. Reindeer_Plus_With_TFS4.mcp..81
Figure 4-32. Directory Path of TFS4-related Project Files ...82
Figure 4-33. Debug Settings for ARM Assembler on ADS v1.2..87
Figure 4-34. Debug Settings for ARM C Compiler on ADS v1.287
Figure 4-35. Debug Settings for ARM C++ Compiler on ADS v1.288
Figure 4-36. Release Settings for ARM Assembler on ADS v1.2......................................88
Figure 4-37. Release Settings for ARM C Compiler on ADS v1.289
Figure 4-38. Release Settings for ARM C++ Compiler on ADS v1.2................................89
Figure 4-39. Include Access Paths..90
Figure 4-40. Execute AXD Debugger of ADS v1.2 ...91
Figure 4-41. Initialize a target...92
Figure 4-42. Press Load Image Button ...93
Figure 4-43. Search the Image Being Loaded...94

TFS4 v1.5.0 Porting Guide 8

Figure 4-44. Load the Image...95
Figure 4-45. Find the Starting Point of the Image ..96
Figure 5-1. TFS4 Test Process..97
Figure 5-2. TFS4 Test Sequence...99
Figure 5-3. UART Options ...100
Figure 5-4. Execute a Terminal Program for Test ..101
Figure 5-5. Running TFS4..102
Figure 5-6. TFS4 Test Shell..103
Figure 5-7. Perform BML_format ..104
Figure 5-8. Perform tfs4_init ..105
Figure 5-9. Perform tfs4_fdisk..107
Figure 5-10. fdisk Commands ..107
Figure 5-11. See the Created Partition..108
Figure 5-12. Perform tfs4_format ...108
Figure 5-13. Perform tfs4_mount ...109
Figure 5-14. Perform a Case Test ...111
Figure 5-15. Perform a Stress Test ...112
Figure 5-16. Contents of Appendix ..113
Figure 5-17. The Organization of FAT filesystem on Volume...114
Figure 5-18. Boot Sector Structure ...115
Figure 5-19. BPB Structure ..116
Figure 5-20. Cluster chain on FAT...118
Figure 5-21. Cluster chain of the File.txt file..118
Figure 5-22. Short Directory Entry Structure ...119
Figure 5-23. Long Directory Entry Structure ...119
Figure 5-24. Directory Path of tfs4_integration_test.c ...131
Figure 5-25. Test Shell Screen..132

TFS4 v1.5.0 Porting Guide 9

Tables

Table 1. Host System Requirements...14
Table 2. Target System Requirements ..14
Table 3. Description of TFS4 Directory Structure..18
Table 4. Description of TFS4 Project Files ..19
Table 5. Description of XSR Directories..20
Table 6. MMC(or HSMMC) APIs..48
Table 7. Data Structure of MMC(or HSMMC) Host Device Driver48
Table 8. Data Structure Description of MMC(or HSMMC) Host Device Driver...............49
Table 9. Sample MMC(or HSMMC) Host Device Driver for ReindeerPlus......................49
Table 10 Bad Sector Manager APIs and Macro ...51
Table 11. TFS4 Source Files Being Ported to Target ...51
Table 12. Memory-related Implementation Guideline ...55
Table 13. Implemented Memory-related Sources on Nucleus..55
Table 14. Description of Sample Source Codes ...58
Table 15. Semaphore Implementation Guideline ...63
Table 16. type definition OS-Defined Variable ..64
Table 17. Typedef OS-Defined Argument..64
Table 18. Necessary Physical Device Interface for TFS4...77
Table 19. Implemented Functions for MMC(or HSMMC) Host Device Driver77
Table 20. Configurable File List of TFS4...79
Table 21. Configurable File List of XSR..79
Table 22. TFS4 Library & Sources...80
Table 24. Data Types of TFS4..126
Table 25. Error Codes List..130
Table 26. Stack and Heap size ..131
Table 27. Test Shell Command...132

TFS4 v1.5.0 Porting Guide 10

1. TFS4 Introduction
TFS4 (Transactional File System 4) is an embedded file system to use the NAND flash
memory in the most stable and effective way. This chapter introduces TFS4 briefly. The
TFS4 overview, software architecture, and features are explained in this chapter.

1.1. TFS4 Overview
TFS4 is an embedded flash file system to use NAND flash memory as storage on any
consumer electronic devices. It provides file system services to application and operating
system.

TFS4 overcomes the existing FAT weakness over the power off recovery, and is fast
recovered even if the power is suddenly lost. It is fully compatible with FAT file system
that has been used in most operating systems and so multimedia data stored in NAND
flash memory can be detected by any other systems.

TFS4 has basic functionality as traditional file system that organizes directories and files in
storage devices like hard disk drive or flash memory. Additionally, TFS4 has other
features for managing data on a specific storage device, NAND flash memory, MMC
(Multimedia Card) and HSMMC (High Speed Multimedia Card).

TFS4 is composed of several components. The following lists the TFS4 components.

 File system abstraction layer
 FAT filesystem
 Buffer Cache Manager
 Physical Block Device Driver

TFS4 can use NAND and MMC (or HSMMC) simultaneously and is compatible with FAT
filesystem. The existing FAT filesystem has weakness of power off recovery. But TFS4 is
well designed in consideration of it, and supports fast recovery when the power is suddenly
off. TFS4 guarantees the integrity of meta-data of FAT filesystem. For higher portability
and easier maintenance, TFS4 has the layered architecture.

TFS4 v1.5.0 Porting Guide 11

1.2. TFS4 System Architecture
As mentioned above, TFS4 has several components. TFS4 is deployed between
applications and hardware such as NAND flash memory or MMC (or HSMMC) host drive.
It works in conjunction with an existing operating system or in some embedded
applications as the operating system.

Figure 1 shows the system architecture of TFS4.

Applications

NAND flash MMC

Filesystem Abstraction Layer

KFAT Filesystem

Log/Recovery Manager

Physical Device Driver

Buffer Cache Manager

XSR MMC Host
Device Driver

Physical Device Driver Interface

TFS4

Figure 1-1. TFS4 System Architecture

There are three parts in the above figure. The first is an application at the top of the figure.
The second is TFS4 in the middle. The third is a physical device driver and hardware at the
bottom of the figure.

TFS4 v1.5.0 Porting Guide 12

TFS4 consists of four modules: File system abstraction layer, KFAT Filesystem, Buffer
Cache Manager, and Physical Device Driver Interface.

Application requests filesystem services to file system abstraction layer by using TFS4
APIs. File system abstraction layer receives the requests from application and forwards
them to the underlying KFAT filesystem. Then, KFAT filesystem handles the requests
with real filesystem operation.

Block device drivers abstract the underlying hardware storage. The storage may be NAND
flash and/or MMC (or HSMMC). To use those devices, some kinds of device drivers are
needed between the block device driver and storage. The device drivers are XSR and
MMC (or HSMMC) host device driver; XSR is a kind of FTL (Flash Transaction Layer)
commonly used to manage data on NAND flash.

The following describes the features of each TFS4 component.

 File system Abstraction Layer
File system Abstraction Layer (FAL) is the entry point to the TFS4 File system. It handles
all system calls related to the filesystem. It provides a common interface to several kinds
of filesystems. Applications may use system calls or other kind of IPC (inter process
communication) methods if the TFS4 system operates as a single task to communicate
with the file system abstraction layer

 KFAT Filesystem
KFAT provides the real filesystem operations. TFS4 supports FAT16/32 compatible
filesystem.

 Buffer Cache Manager
It is a block buffer cache manager for fast I/O with a block device. It’s laid on main
memory.

 Physical Device Driver Interface
Physical device driver interface provides TFS4 with an interface to use a physical device
driver; it can be a XSR or MMC (or HSMMC) host device driver. The physical device
driver interface should be changed to the physical device driver.

To use TFS4, your target system should use NAND flash as a storage device. MMC (or
HSMMC) also can be used, but it is optional.

TFS4 v1.5.0 Porting Guide 13

1.3. TFS4 Features
The following describes the main benefits and features of TFS4.

 It supports FAT16/32 filesystem that are commonly used in many systems.
 It supports a long file name. File name can be up to 255 characters and directory name

can be up to 243 characters (in Unicode).
 It performs fast power-off recovery.
 It guarantees meta-data integrity of filesystem; meta-data consists of FAT information

and directory information.
 It supports both internal and external storage devices.
 The internal storage device can have up to four partitions.
 It can make up to four partitions on the external storage device. And it recognize up to

twenty partitions of the external storage device.
 It supports multiple volumes. The default number of volumes is eight and it is

configurable up to twenty six.
 It runs stably when the external storage device is suddenly inserted or ejected.
 It supports only an absolute path. Current version does not support a relative path.
 New filesystem features can be added easily, because TFS4 is designed to have virtual

file system architecture.

TFS4 v1.5.0 Porting Guide 14

2. System Requirements
This chapter explains the host/target system environment for porting TFS4 to your target
system. Host is a development environment. You build the TFS4 image at the host.
Target can be any kind of consumer device using NAND flash memory and MMC (or
HSMMC). MMC (or HSMMC) device may not be used for your target, but NAND should
be used for TFS4.

2.1. Host
The following table shows the host system requirements for configuring and building
TFS4.

Table 1. Host System Requirements

Host Machine PC
Host OS Any OS is available.
IDE & Compiler Any ANSI C/C++ compiler is available.

- ADS v1.2 is used to show TFS4 porting in this document.
Source Disk Space About 5 MB

2.2. Target
TFS4 can be ported to any target, which uses NAND/OneNAND flash memory or MMC
(or HSMMC) as a storage. TFS4 has an OS dependent module, which should be ported by
the target system designer.

This section specifies the target environment to which TFS4 can be ported. The following
table shows the target system requirements.

Table 2. Target System Requirements

Target Any kind of target device is available.
- ReindeerPlus is used in this document as a sample target.

RTOS Any kind of RTOS is available.
- Nucleus is used in this document as a sample OS.

Memory -Heap: About 230KB. This value is changeable depending on
configuration and NAND size
-Stack: Maximum 5 KB

Binary Size About 250KB (Code + Data)

To show a porting example, we describe the porting details about the procedures that the
system designer should follow when he ports TFS4 to the ‘ReindeerPlus’ with Nucleus
RTOS. ReindeerPlus is a Samsung’s proprietary embedded system development platform
which is compatible with S3C2410 board.

TFS4 v1.5.0 Porting Guide 15

This is the hardware information of sample target, ReindeerPlus.

CPU ARM920T core
Memory SDRAM: 64M-byte (32M-byte x 2)
UART Three-channel UART (including IrDA)
MMC SD host (MMC) interface
Interrupt EINT interface for MMC In/Out
NAND It is variable to your target. For ReindeerPlus, A few types of

NAND can be used together. The NAND used for test is
KFG1G16Q2M (OneNAND.)

Nucleus RTOS is from Accelerated Technology. For fore information, refer the homepage
of Accelerated Technology (http://www.acceleratedtechnology.com).

Embedded system has the limited resources. Thus, when you port TFS4 to your target, you
have to figure out the TFS4 memory usage.

< TFS4 Static Memory Usage >
TFS4 uses memory that is allocated when TFS4 library is linked. The following lists the
TFS4 static memory usage.

Buffer cache = TFS4_CACHE_COUNT * TFS4_SECTOR_SIZE
Read ahead cache = TFS4_BCACHE_READ_AHEAD_COUNT*TFS4_SECTOR_SIZE
FAT cache = TFS4_FS_FAT_CACHE_SIZE * TFS4_SECTOR_SIZE
Path cache = TFS4_PATH_CACHE_COUNT * 756
File table = TFS4_FILE_MAX * 728
Directory table = TFS4_MAX_DIR_OPEN * 520
File open table = TFS4_FILE_OPEN_MAX * 28
Volume table = TFS4_VOLUME_COUNT * 2,320
Etc = 130,510 (for code page and global variables etc.)

Total static memory usage (Byte) = [Buffer cache] + [Read ahead cache] + [FAT cache] +
[Path Cache] + [File Table] + [Directory table] + [File open table] + [Volume Table] +
[Etc]

If you specify the configuration in the tfs4_config.h or tfs4_config_const.h file as follows,
total amount of TFS4 static memory usage is about 238Kbytes.

#define TFS4_CACHE_COUNT 128
#define TFS4_BCACHE_READ_AHEAD_COUNT 8
#define TFS4_SECTOR_SIZE 512
#define TFS4_FS_FAT_CACHE_SIZE 32
#define TFS4_PATH_CACHE_COUNT 16
#define TFS4_FILE_MAX 32
#define TFS4_MAX_DIR_OPEN 16
#define TFS4_FILE_OPEN_MAX 48
#define TFS4_VOLUME_COUNT 8

TFS4 v1.5.0 Porting Guide 16

TFS4 memory usage can be different according to your configuration.

< TFS4 Dynamic Memory usage>
TFS4 uses dynamic memory for tfs4_chkdsk() only.
You can get the amount of memory for tfs4_chkdsk() as following equation.

Total dynamic memory usage
 = [FAT bitmap size] + TFS4_PATH_COMPONENT_MAX *
(TFS4_PATH_NAME_MAX_LENGTH + 724+ 4 +712 + 512 + 1028)

FAT bitmap size = ([Total Cluster count] + 2) / 8 +1
Ex) 128MB NAND Flash, Format FAT16, cluster size 4
 [Total Cluster count] = 128 * 1024 *1024 / 512 / 4= 65536
 FAT bitmap size = (65536 + 2) /8 + 1 = 8193 byte

If you specify the configuration in the tfs4_config.h or tfs4_config_const.h file as follows,
total amount of TFS4 dynamic memory usage is about 80Kbytes.

#define TFS4_PATH_NAME_MAX_LENGTH 1024
#define TFS4_PATH_COMPONENT_MAX 16

< TFS4 stack usage>
For RTOS, local variables or parameters of a task can be shared by another task and they
can be changed. For that reason, each task needs its own task memory region, called a
critical section.

But managing the critical section needs a lot of resources. Thus, they should be stored in
the task’s own memory region that is a stack.

TFS4 uses 5 KB stack per a task except tfs4_chkdsk() API. Tfs4_chkdsk() API uses 10KB
stack per a task.

TFS4 v1.5.0 Porting Guide 17

3. Description of Source Files
This chapter describes source code tree of TFS4. You need to find where they are on the
host and know what source files should be configured before porting TFS4.

3.1. TFS4 Directory Structure and Descriptions
TFS4 is mostly released as source code. Now let’s assume that the TFS4 source package is
installed on “C:\TFS4” directory of your host PC.

The following figure shows the installed TFS4 source code tree on your host.

Figure 3-1. TFS4 Directory Structure

TFS4 v1.5.0 Porting Guide 18

The following table describes the TFS4 directories shown in the above picture.

Table 3. Description of TFS4 Directory Structure

Directory Contains

TFS4 Top directory of TFS4.

TFS4\PLATFORM\REINDEE
RPLUS

Target OS Source Directory
- It is needed when OS dependent module of TFS4
refers to a specific header of target OS. In case of
Nucleus, a nucleus.h file is necessary.

- It also includes a device driver for
a target. It includes XSR and
MMC(or HSMMC) Host Device
Driver.

For details about XSR, refer to XSR Porting Guide.

TFS4\TEST\INTEGRATION It has a shell source code for TFS4 testing.

TFS4\TFS4\API TFS4 API source code

TFS4\TFS4\BASE It includes base codes for TFS4. The common
functionalities are here.

TFS4\TFS4\BSM It includes Bad Sector Management code.

TFS4\TFS4\BASE\UNICODE It includes Unicode <-> MBCS conversion source
codes and tables

TFS4\TFS4\BUILD\

- It includes a project file to build TFS4 and OS in ADS
v1.2.
- There is a TFS4 Library Build Project file.
- It provides a sample project file to port TFS4 to
Nucleus.

TFS4\TFS4\FAL,
TFS4\TFS4\KFAT

TFS4 Filesystem Abstraction Layer and KFAT FAT
filesystem source code

TFS4\TFS4\OAL
It has OS adaptation source codes. Such as memory,
semaphore, terminal and time. You must make the OAL
routines for your target and include to the TFS4 library.

TFS4\TFS4\PIL It has physical device interface source codes for XSR
and MMC (or HSMMC)

TFS4 v1.5.0 Porting Guide 19

You can find the project files at “TFS4\TFS4\BUILD\REINDEER_PLUS_ADS12\” and
“TFS4\TFS4\BUILD\ADS1_2\” folders. Those project files are created on ADS v1.2. You
can use the project files to build TFS4 easily if your build tool is ADS v1.2.

Figure 3-2. TFS4 Project Files at REINDEER_PLUS_ADS12

Figure 3-3. TFS4 Project Files at ADS1_2

The following table describes the directories and project files shown in the above picture.

Table 4. Description of TFS4 Project Files

Directory or Project File Contains
Reindeer_Plus_MMC(or
HSMMC)_Host_Device_Driver_Lib.mc
p

It includes the source and header files of
MMC(or HSMMC) host device driver based
on ReindeerPlus.

Reindeer_Plus_Nucleus_Lib.mcp It includes the Nucleus OS sources that are
ported to ReindeerPlus.

TFS4_Lib.mcp It includes the source and header files that are
independent of tfs4_config.h.

You can build this project file for making
TFS4 library.

Reindeer_Plus_With_TFS4.mcp

It includes the libraries and sources of TFS4,
XSR, MMC(or HSMMC) host device driver,
and Nucleus OS.

TFS4 v1.5.0 Porting Guide 20

3.2. XSR Directory Structure and Descriptions
This document assumes that they are installed in the
“C:\TFS4\PLATFORM\REINDEERPLUS\DRIVER\XSR” directory on your host.

Figure 3-4. XSR Directory Structure

Currently, the above indicates the directory structure of the XSR version 1.5.0.
The following table describes the XSR directories shown in the above picture.

Table 5. Description of XSR Directories

Directory Contains

XSR XSR Library and API headers

XSR \LLD\ONLD
XSR \LLD\PNL
XSR\LLD\PNS

Low Level Device Driver

XSR \OAM\Nucleus Adaptation code for Nucleus

XSR \PAM\S2410OneS
XSR \PAM\S2410PNLS
XSR \PAM\S2410PNSS

Platform Adaptation Module

XSR \lib\ADS120\Retail, Debug Retail, Debug version XSR Library(ARM
Compiler, ADS v1.2)

TFS4 v1.5.0 Porting Guide 21

XSR \Inc Header files for XSR

TFS4 v1.5.0 Porting Guide 22

3.3. Directory Structure and Descriptions of
MMC (or HSMMC) Host Device Driver

If you want to support a removable external device such as MMC, you must write a device
driver for that device. At the “TFS4\PLATFORM\REINDEERPLUS\DRIVER\MMC,”
you can find an example MMC device driver for REINDEERPLUS.
For more details about writing a device driver for the removable external device, refer “II.
MMC (or HSMMC) Host Device Driver APIs”

Figure 3-5 MMC Device Driver Source Directory

TFS4 v1.5.0 Porting Guide 23

4. TFS4 Porting Procedure

This chapter describes TFS4 porting procedure in detail. The procedure is divided into five
steps as the following picture.

TFS4 Configuration

TFS4 Library Build

TFS4 Porting for Target OS

Build TFS4 with Target OS

Download to Target Device

Figure 4-1. TFS4 Porting Procedure

You don’t have to follow the above steps exactly. The build process is up to you. If you do
not want to build TFS4 library first and just want to build all TFS4 components together,
right before TFS4 build with OS, you can do in that way.

The above sequence is a kind of guideline for porting TFS4.

TFS4 v1.5.0 Porting Guide 24

4.1. TFS4 Library Build
This section describes TFS4 library build procedure. You can first configure TFS4
configuration files and build the sources.

4.1.1. TFS4 Configuration
There are three files for TFS4 configurations:

- tfs4_config_base.h
- tfs4_config_const.h

If you need to modify the TFS4 configurations, refer to the description of each file, and
configure them adequate to your target environment.

TFS4 v1.5.0 Porting Guide 25

4.1.1.1. tfs4_config_base.h
tfs4_config_base.h should be modified according to your target environment. If you
configure the tfs4_config_base.h file, you should re-build the TFS4 libraries.
tfs4_config_base.h is in the “C:\TFS4\TFS4\BASE\INC” directory.
tfs4_config_base.h has configuration entries for OS and base library such as UNICODE,
time and random functions.

Figure 4-2. tfs4_config_base.h

 TFS4_OS

It specifies target OS. There are TFS4_NUCLEUS, TFS4_PSOS, and TFS4_UNKNOWN in
the TFS4_config_const.h file. The currently available OSs are TFS4_NUCLEUS and
TFS4_PSOS. TFS4_WIN32 and TFS4_LINUX are used for development and test.
Specially, Nucleus was used for test on the REINDEERPLUS.

The following shows the configuration of Nucleus OS in the tfs4_config_base.h file as a
sample.

Figure 4-3. tfs4_config_base.h

If your target OS is not listed here, then define a new OS and modify TFS4 source files
which depend on the target OS. For defining a new target OS, refer the other example.

 TFS4_UNICODE
It specifies TFS4 works with UNICODE. Normally TFS4 receive multi-byte string as
input. But if TFS4_UNICODE is defined, TFS4 uses UNICODE (UTF-16) string for path
name and other string.

TFS4 v1.5.0 Porting Guide 26

 TFS4_CODEPAGE
It specifies the default language code page for TFS4. The supported code pages are listed
at ‘Appendix. VIII. Code Pages’. It affects the creation of the short filename from the
given long filename. As TFS4 supports the FAT filesystem, and the FAT filesystem needs
to use the codepage, you must specify which codepage you would use.

 TFS4_BYTE_ORDER
It specifies a byte ordering of your target. If your target uses little endian, you can set
TFS4_LITTLE_ENDIAN as follows. You can define it as follows.

#define TFS4_BYTE_ORDER TFS4_LITTLE_ENDIAN

If your target uses big endian, you should set TFS4_BYTE_ORDER to
TFS4_BIG_ENDIAN.

 TFS4_HAS_TM
It specifies whether your target system compiler supports ‘struct tm’ data type (C
standard). If your target system compiler does not support the standard ‘struct tm’, you
can comment it out or set to ‘0’.

You need to include header files for your target OS and define the value of true and false.

 Headers and base definitions for the target OS and the target compiler
If your compiler does not support an inline function nor has a different format of inline
function, you have to change the inline setting in the tfs4_config_base.h file as follows.

#if (TFS4_OS == TFS4_WIN32)
 #include <fcntl.h>
 #include <time.h>
 #include <windows.h>
 #define true 1
 #define false 0
 #define inline __inline

#elif (TFS4_OS == TFS4_LINUX)
 #include <sys/types.h>
 #include <fcntl.h>
 #include <unistd.h>
 #include <time.h>
 #include <stdlib.h>
 #ifdef TFS4_WATCOM
 #define inline
 #endif

#elif (TFS4_OS == TFS4_NUCLEUS)
 #include <time.h>
 #include <stdlib.h>
 #define inline

TFS4 v1.5.0 Porting Guide 27

 #if (__CC_ARM == 1) // Check Use ADS1.x
 #define TFS4_HAS_STDARG_H 1
 #endif

#elif (TFS4_OS == TFS4_PSOS)
 #include <types.h>
 #include <fcntl.h>
 #include <time.h>
 #define true 1
 #define false 0
 #define inline

#elif(TFS4_OS == TFS4_RTKE)
 #include <time.h>
 #include "din4rtkg.hec"
 #define true 1
 #define false 0
 #define inline

 #define TFS4_FILE_OPEN_FLAG
 #ifdef TFS4_FILE_OPEN_FLAG

/***/
 /* file access-mode, creation and status flags used with
open()/fcntl() */
 /**/
 #define O_RDONLY 0x0000 /* Open for reading only */
 #define O_WRONLY 0x0001 /* Open for writing only */
 #define O_RDWR 0x0002 /* Open for reading and

writing */
 #define O_NONBLOCK 0x0004 /* No delay */
 #define O_RAWMEM 0x0008 /* ISI: reserved for use by

pSE+ */

 #define O_EXCL 0x0100 /* Exclusive use flag */
 #define O_CREAT 0x0200 /* Create file if it does not

exist */
 #define O_NOCTTY 0x0400 /* Do not assign a controlling

term.*/
 #define O_TRUNC 0x0800 /* Truncate flag */

 #define O_APPEND 0x0010 /* Set append mode */
 #define O_SYNC 0x0020 /* Write accd. to SIO file

integrity */
 #define O_DSYNC 0x0040 /* Write accd. to SIO data

integrity */
 #define O_RSYNC 0x0080 /* Synchronized read I/O

operation */

 #define O_ACCMODE 0x0003 /* Mask for file access mode

*/
 #endif

#endif

TFS4 v1.5.0 Porting Guide 28

4.1.1.2. tfs4_config_const.h
tfs4_config_const.h should be modified according to your target environment. If you
configure the tfs4_config_const.h file, you should re-build the TFS4 libraries.
tfs4_config_const.h is in the “C:\TFS4\TFS4\FAL\INC” directory on your host as follows.

Figure 4-4 tfs4_config_const.h

 TFS4_WRITE_ACCELERATE
It is a flag to write only the first log when some data is appended within the same cluster.
It improves performance for which append operation of small data occurs frequently. You
can set the value as 1 to enable the feature. Or, set the value as 0 to disable the feature.

 TFS4_INIT_CLUSTER
It specifies whether a newly assigned cluster from FAT is initialized as 0 or not. If the
value is “1,” the cluster is initialized as 0. Initializing as 0 is POSIX standard. But, it
decreases the write performance. Disable it on your own risk.

 TFS4_USE_EXT_INTERFACE
It is needed when you want perfect compatibility with MS FAT filesystem.
TFS4 stores some data at file and directory metadata area to improve the performance of
lookup operation. But it does not guarantee full compatibility with MS FAT filesystem.

Note. TFS4 does not store any additional meta data on MMC (or HSMMC) media even if
this definition does not exist.

 TFS4_FAST_SEEK
It specifies whether the file system uses the fast seek functionality that improves file
pointer movement performance. If you want to support the fast seek, TFS4_FAST_SEEK
has to be defined as ‘1’. You have to specify this definition to 1 to use tfs4_fast_seek()
function. For using fast seek, refer to TFS4 Programmer’s Guide.

TFS4 v1.5.0 Porting Guide 29

 TFS4_FILE_LEVEL_FLUSH
It specifies whether the file system uses the file level flush that improves tfs4_fsync()
performance. If you want to support the file level flush, TFS4_FILE_LEVEL_FLUSH has
to be defined as ‘1’.

 TFS4_HIDDEN_DIR
It specifies whether the file system uses hidden area or not. If you want to support the
hidden area, TFS4_HIDDEN_DIR has to be defined as ‘1’.
The hidden area is a TFS4 specific directory that is not shown on other FAT compatible
filesystem. It is a special directory that can be listed by filesystem. But user can access the
directory with pre-defined path like a normal directory.
User must use tfs4_ioctl() to control access to the hidden area. Refer to the TFS4
Programmer’s Guide. There is another configuration for “TFS4_HIDDEN_DIR” at the
next chapter 4.1.1.3 tfs4_config.h

 TFS4_RESCUE
This constant enables the APIs, tfs4_restore() and tfs4_backup(), that are used for saving
file system metadata and restoring a file system from it. It is originally intended for
magnetic disks that are error-prone.

If you want to use the APIs, set ‘1’. If unsure, set ‘0’.

 TFS4_FILE_LOCKING
File locking provides the applications a method to get exclusive access rights to an open
file. If enabled, you can manages the access permission on a specific file through
tfs4_fcntl(). For more detailed information, please refer to the TFS4 Programmer’s Guide.

If you want to use it, set ‘1’. Otherwise, set ‘0’.

 TFS4_BAD_SECTOR_MANAGER
You can enable or disable the bad sector manager by adjusting this constant. TFS4
provides a filter driver layer, called BSM that wraps low-level physical device driver and
handles bad sectors on the device. It reserves storage spaces for reallocating bad sectors
and redirects I/O requests to this area. So this may be dangerous when used without a full
understanding.

To add this feature, set ‘1’. If you don’t need to use the BSM or don’t know exactly what it
is, it is strongly recommended to set ‘0’.

 TFS4_FAST_UNLINK
This option allows you to delete a large file extremely fast by using the Fast Unlink
technology introduced from TFS4 v1.5. It attaches the deleted cluster chain to a pool file
named ‘delete.me’ instead of clearing the entire FAT links. But, the system file,
‘delete.me’ unwanted will be created. The other thing you should aware is that the REAL
free space of the volume would not be recovered immediately after unlinking a file, but it
does not matter on creating a new file as TFS4 recycles the space occupied by ‘delete.me’.
Unlinking the pool file, ‘delete.me’ is not allowed using tfs4_unlink() and it is an intended
operation.

To add this feature, set ‘1’. If your files are usually small, it is recommended to set ‘0’.

NOTICE!!

TFS4 v1.5.0 Porting Guide 30

Fast Unlink may decrease append write performance of TFS4. It is caused by some
additional operation for updating the pool file (‘delete.me’).
The following is a method to remove this performance down. We recommend this work
while in an idle state. It makes the pool file to a small size.
1. Create and open a temporary file with flag

“O_RDWR | O_TFS4_NORMAL_UNLINK | O_TFS4_NO_INIT_CLUSTER“.
2. Truncate the file to a big size over 16KB.
3. Truncate the file to size zero.
4. Re-do operations 2 and 3 until the pool file size is 0.
5. Close and unlink the temporary file.

 TFS4_LOG_FILE_NAME
It specifies a log file name for TFS4. TFS4 writes log for recovery from abnormal
operation. TFS4 creates a log file in the root directory on each volume. You can specify
the log file name on your purpose. If you use UNICODE, you also have to specify the log
file name as a UNICODE string according to endian.

 TFS4_ATTR_NEW
It is needed when you want to use user attribute support. The two user attributes are
TFS4_ATTR_USR1 and TFS4_ATTR_USR2. You can use these attributes on your
purpose. These attributes can be used in tfs4_stat(), tfs4_stat_set(), tfs4_fstat(),
tfs4_fstat_set(). But these attributes can not be used on external device such as MMC.

NOTICE !!
 This definition may make some compatibility problem with another FAT compatible
file system. These two attributes use an area which is not used in FAT specification, but
another File System can use the area too.
 This definition does not be used with TFS4_USE_EXT_INTERFACE definition.

 TFS4_DIR_NAME_MAX_LENGTH
It specifies the maximum length of the directory name. For Windows, it is 243 at
maximum.

 TFS4_FILE_NAME_MAX_LENGTH
It specifies the maximum length of the file name. For Windows, it is 255 at maximum
including an extension.

 TFS4_PATH_NAME_MAX_LENGTH
It specifies the maximum path length. For example, the path length of /a/dir1/test.txt is 16.

 TFS4_PATH_COMPONENT_MAX
It specifies the maximum number name of directory and file on path.

 TFS4_MAX_DEVICE_NAME_LENGTH
It specifies the maximum length of device name. Do not change this value.

TFS4 v1.5.0 Porting Guide 31

 TFS4_MAX_VOLUME_NAME_LENGTH
It specifies the maximum length of volume name. Do not change this value.

 TFS4_MAX_FILE_SYSTEM_NAME_LENGTH
It specifies the maximum length of filesystem name.

 TFS4_MAX_FILE_LENGTH
It specifies the maximum size of a file. The default value is 4 byte of signed integer.

 TFS4_SSIZE_MAX_LENGTH
It specifies the maximum data size for a read or write operation.

 TFS4_MAX_PAGE_SIZE
It specifies the maximum page size of physical device. You don’t have to change it. It is
normally 4.

 TFS4_DEBUG
It is needed when you build TFS4 with debug mode.

 TFS4_FILESYSTEM_MAX
It specifies the maximum number of file systems that your target supports.

 TFS4_NAME_MAX_LENGTH
It specifies the maximum number of bytes for file and directory name. Considering
Unicode, 510 bytes is the maximum.

 TFS4_VOLUME_NAME_LENGTH
It specifies the volume name length. It is 3, because volume name is shown as /a/, /b/, etc.

 TFS4_DEVICE_NAME_LENGTH
It specifies the device name length. It can be up to 8, because device name is shown as
/dev/nf0, /dev/nf1, /dev/mmc0, etc.

 TFS4_SECTOR_SIZE
It specifies the sector size in byte.

 TFS4_SECTOR_SIZE_BITS
It specifies the number of bits for indicating TFS4_SECTOR_SIZE.

 TFS4_SECTOR_SIZE_MASK
It is used for fast operation. You specify it as ((1 << TFS4_SECTOR_SIZE_BITS) - 1).

4.1.1.3. tfs4_config.h
tfs4_config.h is the configuration file of TFS4. It can be automatically applied to TFS4 if
you modify the tfs4_config.h file. tfs4_config.h does not affect the TFS4 library and you
don’t have to re-build the TFS4 library, even though tfs4_config.h is modified.

tfs4_config.h is on “C:\TFS4\TFS4\FAL\INC” directory.

TFS4 v1.5.0 Porting Guide 32

The following shows the configurations in tfs4_config.h.

Figure 4-5. tfs4_config.h

 TFS4_PDEV_COUNT

It specifies the number of physical devices that your target supports. This is the count of
physical devices that can be registered with tfs4_pdev_reg()

 TFS4_VOLUME_COUNT_MAX
It specifies the maximum number of logical devices that your target supports. It is same as
the value of TFS4_LDEV_COUNT. The maximum value is 26.

 TFS4_VOLUME_COUNT
It specifies the maximum number of volumes that can be mounted concurrently. The
maximum value is 26.

 TFS4_LDEV_COUNT
It specifies the maximum number of partitions that can be mounted concurrently. This
value is same as the value of TFS4_VOLUME_COUNT.

 TFS4_FILE_MAX

TFS4 v1.5.0 Porting Guide 33

It specifies the maximum number of different files that you can open. Whenever each
volume is mounted, the number of files that you can open is decreased by 1, because the
root directory is opened for each mounted volume. TFS4_FILE_MAX determines the total
number of different files and directories that can be opened.

 TFS4_FILE_OPEN_MAX
It specifies the maximum number of files that you can open. But it includes the number of
files re-opened. Therefore, it should be larger than TFS4_FILE_MAX.
TFS4_FILE_OPEN_MAX determines the total number of files and directories that can be
opened at once.

 TFS4_MAX_DIR_OPEN
It specifies the maximum number of directories that you can open simultaneously.

The above TFS4_FILE_MAX, TFS4_FILE_OPEN_MAX, and TFS4_MAX_DIR_OPEN
settings are needed, because some same files can be opened more than 2 times.

For example, if A opens “/a/readme.txt”, it uses each one resource from a
TFS4_FILE_MAX and TFS4_FILE_OPEN_MAX. If B opens “/a/readme.txt”, it uses one
resource from a TFS4_FILE_OPEN_MAX. If C opens “/a/mydir/” by a
tfs4_opendir(), it uses one resource from each TFS4_FILE_MAX,
TFS4_FILE_OPEN_MAX, and TFS4_MAX_DIR_OPEN.

 TFS4_FILE_HASH
It specifies the hash length of file table. You can set it as the odd number or decimal
number near TFS4_FILE_MAX / 3.

 TFS4_CACHE_COUNT
It specifies the number of cache blocks (in sector unit), which is used by Buffer cache
manager. Each cache has the size of TFS4_SECTOR_SIZE. It should be set to memory
usage and more than 8 at minimum.

 TFS4_BCACHE_HASH_VALUE
It specifies the HASH length. You can set this as TFS4_CACHE_COUNT.

 TFS4_BCACHE_HASH_MASK
It is used for fast operation. You specify it as (TFS4_CACHE_COUNT - 1).

 TFS4_BCACHE_READ_AHEAD
If you define TFS4_BCACHE_READ_AHEAD, read ahead operation is performed on
buffer cache.

 TFS4_BCACHE_READ_AHEAD_COUNT
It specifies the number of sectors for the read ahead operation on buffer cache.

 TFS4_BCACHE_READ_AHEAD_MASK
It is used for fast operation. You specify it as (TFS4_BCACHE_READ_AHEAD_COUNT -
1).

 TFS4_BCACHE_WRITE_BACK
If you define TFS4_BCACHE_WRITE_BACK, write operation stores data at the buffer
cache and the write operation is delayed. The data may be lost due to the sudden power
off.

TFS4 v1.5.0 Porting Guide 34

 TFS4_BCACHE_WRITE_BACK_COUNT

It specifies the number of buffers for the write back operation.

 TFS4_DIRECT_IO_SECTOR
It specifies the minimum number of sectors for write operation with no cache.

 TFS4_FS_FAT_CACHE_SIZE
It specifies the number of sectors for caching.

 TFS4_FCACHE_HASH_VALUE
It specifies the HASH length.

 TFS4_FCACHE_HASH_MASK
It is used for fast operation. You specify it as (TFS4_FCACHE_HASH_VALUE - 1).

 TFS4_PATH_CACHE
It enables the path cache function.

 TFS4_PATH_CACHE_HASH_VALUE
It specifies the HASH value of the path cache.

 TFS4_PATH_CACHE_HASH_MASK
It is used for fast operation. You specify it as (TFS4_PATH_CACHE_HASH_VALUE - 1).

 TFS4_PATH_CACHE_COUNT_TO_FREE
It specifies the number of path cache entries to free for adding a new entry, when the path
cache is full. For example, if the total number of path cache entries is 10, all they are used,
TFS4_PATH_CACHE_COUNT_TO_FREE is set as 3, and a new entry has to be added, 3
entries would be freed from the total 10 entries and new entry would be added.

 TFS4_HIDDEN_DIR_NAME
It specifies the name of hidden directory. They are not be shown on other FAT compatible
file system that all of the files and directory and hidden directory itself below this directory.
But TFS4 can access these entries after the volume is mounted with
TFS4_MOUNT_HDIR(refer to the TFS4 Programmers Guide, tfs4_mount()). The
maximum length of the name is 26 byte.

 TFS4_HDIR_MAX_VOLUME_SIZE
It specifies the maximum volume size can be used for hidden area. It is specified with
Mega-Byte.

 TFS4_HDIR_VOLUME_COUNT
It specifies the maximum volume count can be mounted for hidden area concurrently.

4.1.2. TFS4 Library Build
This section describes how to build TFS4 source files of which a filesystem component is
composed. You can select a build tool considering your target environment, such as
makefile, ADS, or Code Composer.

TFS4 sources can be divided into two parts;
- Sources independent of the target & tfs4_config.h

TFS4 v1.5.0 Porting Guide 35

- Sources dependent on the target & tfs4_config.h

You can first build the independent sources to your target and tfs4_config.h file and make
into a library file, because they are not related to target and OS configuration. The
following figure shows the TFS4 source files to make a library.

Figure 4-6. Source files for TFS4 Library

The above source files are all independent source files of your target environment. You
don’t need to re-build them, even if tfs4_config.h is modified. But, they should be built
again if tfs4_config_const.h, tfs4_config_base.h or the compile environment is changed.
For example, if you modify MMC(or HSMMC) device setting, byte order, maximum

TFS4 v1.5.0 Porting Guide 36

length of directory and file in the tfs4_config_base.h and the tfs4_config_const.h, it affects
all the components of TFS4, so you must re-build the TFS4 sources.

When the number of cache is modified for TFS4 tuning, you don’t have to build the TFS4
library again and consequently it reduces a build time.

< Building TFS4 on ADS v1.2 >
This is the build steps of TFS4 sources.

1. Execute your build tool. ADS v1.2 (Metrowerks CodeWarrior for ARM Developer Suits
v 1.2) is used in this document.

Figure 4-7. ADS v1.2 Initial Screen

2. Open the project file for making a TFS4 library. You can click “File” “Open” on the
menu bar of the screen as follows.

TFS4 v1.5.0 Porting Guide 37

Or, button on icon bar.

Note
We provide a sample project file for building TFS4, a TFS4_Lib.mcp; the extension “mcp”
is the project file extension of ADS build tool. If you don’t use the ADS v1.2, you need to
create a project file on your build tool and add the TFS4 source files to the project file.

3. The screen to open a file appears.

TFS4 v1.5.0 Porting Guide 38

Find the TFS4_Lib.mcp file and press “Open” button on the screen.

4. The TFS4_Lib.mcp file is opened as below.

TFS4 v1.5.0 Porting Guide 39

See the TFS4 source and header files to build in the project file.
There are many tfs4_unicode_cpxxx.c on the right figure. But you do not need to add all of
them to the project. You add just only one file on your TFS4_CODEPAGE configuration
at tfs4_config_base.h.

TFS4 v1.5.0 Porting Guide 40

5. Select a type of build target..

There are three types of build targets. The following describes the meaning of each build
target.

- Debug: The output binary is compiled with debugging symbols and information of line
numbers.
- Release: In this configuration, the output binary will be fully optimized and contains no
debugging symbols.
- DebugRel: Adequate optimization level and including minimal debugging information.

6. Press the build setting button.

7. The build settings screen shows up.

The build setting screen can be a little different according to the build mode setting you
select. You have to consider the language setting your compiler supports on the build
setting screen. For ADS v1.2, you need to set the build options each language; you may
not need to do that for other build tool.

The following screens show the build options needed for each build mode and language;
the sample build options are based on ReindeerPlus, ARM CPU, and ADS v1.2. You can
set the build options suitable to your target and compile environment by referring to the
below sample options.

Note
The build options depend on the compiler. This TFS4 build section only explains the
options related to TFS4: TFS4_NUCLEUS, TFS4_KFAT, and TFS4_DEBUG (it is
optional for debug mode).

But if they are already defined in the tfs4_config_const.h file, you don’t have to enter the
options for compiling here.

<Debug settings for ARM Assembler>

TFS4 v1.5.0 Porting Guide 41

Figure 4-8. Debug Settings for ARM Assembler on ADS v1.2

<Debug settings for ARM C Compiler>

Figure 4-9. Debug Settings for ARM C Compiler on ADS v1.2

<Debug settings for ARM C++ Compiler>

TFS4 v1.5.0 Porting Guide 42

Figure 4-10. Debug Settings for ARM C++ Compiler on ADS v1.2

< Release settings for ARM Assembler>

Figure 4-11. Release Settings for ARM Assembler on ADS v1.2

< Release settings for C Compiler>

TFS4 v1.5.0 Porting Guide 43

Figure 4-12. Release Settings for ARM C Compiler on ADS v1.2

< Release settings for C++ Compiler>

Figure 4-13. Release Settings for ARM C++ Compiler on ADS v1.2

You have to add the build options for your target and compile environment.

TFS4 v1.5.0 Porting Guide 44

8. Additionally, you need to add the access paths on the build settings to include the
TFS4-related header files (TFS4\API, TFS4\BASE\INC, TFS4\BASE\UNICODE\INC,
TFS4\FAL\INC, TFS4\KFAT\INC, TFS4\OAL\NUCLEUS\INC, TFS4\PIL\INC, XSR
header file path, and MMC(or HSMMC) host device driver header file path, etc) while
TFS4 is compiled.

Figure 4-14. Set Access Paths

9. After setting the build options, press “OK” button to save.

10. Press button on ADS v1.2.

11. The project file build will start.

If the TFS4 building doesn’t encounter any compiling error, building TFS4 library is
completed successfully.

TFS4 v1.5.0 Porting Guide 45

4.2. TFS4 Porting to the Target OS
This section describes TFS4 porting process. The following picture shows the current step
on the TFS4 porting process.

TFS4 Configuration

TFS4 Library Build

TFS4 Porting for Target OS

Build TFS4 with Target OS

Download to Target Device

- Memory
- Semaphore
- Error Number Store
- TTY
- Time
- Unicode
- TFS4 Interface with XSR
- TFS4 Interface with

MMC Host Device Driver

Figure 4-15. TFS4 Porting for Target OS

This document defines a porting sequence. XSR and MMC(or HSMMC) porting is done in
advance, and TFS4 is ported to your target. TFS4 works with XSR and MMC(or
HSMMC) together. Thus, if any error occurs, you cannot find whether error is from TFS4
itself or not. TFS4 cannot be tested alone.

XSR and MMC(or HSMMC) should be ported and tested before being integrated with
TFS4. It is strongly recommend porting TFS4 after XSR and MMC(or HSMMC) are
guaranteed to work reliably on target with no error.
In current TFS4 version, porting example source codes for Nucleus is supported.

The following figure shows configurable TFS4 source files. You have to configure them in

TFS4 v1.5.0 Porting Guide 46

this section.

tfs4_config_base.h
tfs4_config_const.h
tfs4_config.h
tfs4_memory.h
tfs4_pdev_nand_xsr.h
tfs4_semaphore.h

tfs4_errno.c
tfs4_memory.c
tfs4_pdev_mmc_reindeer_plus.c
tfs4_pdev_nand_xsr.c
tfs4_semaphore.c
tfs4_time.c
tfs4_tty.c
tfs4_tuning.c

 Implementing part for target RTOS
1. Semaphore (tfs4_semaphore.c)
2. Memory allocation functions (tfs4_memory.c)
3. Error number store (tfs4_errno.c)
4. Time (tfs4_time.c)

 Implementing part for target device
1. MMC(or HSMMC) Host Driver (tfs4_pdev_mmc_reindeer_plus.c. This file name can
be changed by user)
2. XSR (tfs4_pdev_nand_xsr.c)
3. UART print (tfs4_tty.c)

This document explains the TFS4 porting based on ReindeerPlus and Nucleus as a sample.

TFS4 v1.5.0 Porting Guide 47

4.2.1. XSR Porting
For XSR porting, you can refer to XSR porting guide.
Here important thing is that you have to port XSR to your target and test it to verify
reliability of it.

4.2.2. MMC(or HSMMC) Host Device Driver Development
MMC(or HSMMC) Host Device Driver is not implemented in TFS4. TFS4 user has to
implement it if the target uses MMC(or HSMMC). TFS4 includes sample source code and
APIs based on the SAMSUNG S3C2410S CPU (Based on ARM920T core) architecture.

This is the directory path of sample MMC(or HSMMC) host device driver.

Figure 4-16. MMC(or HSMMC) Host Device Driver Path

In MMC(or HSMMC) directory, there are sample MMC(or HSMMC) host device driver
source codes based on the S3C2410S CPU architecture, as follows.

Figure 4-17. The Source File List of Sample MMC(or HSMMC) Host Device Driver

You can open them to see how they are implemented. You can write your MMC(or
HSMMC) host device driver suitable to your target with the given sample MMC(or

TFS4 v1.5.0 Porting Guide 48

HSMMC) APIs. The sample HSMMC APIs are similar to the sample MMC APIs. MMC
Device Driver support only 1 bit bus transfer mode. If you want to use a 4 bit or 8 bit
transfer mode, you have to use the HSMMC.
For its development, you can refer to Appendix “II. MMC (or HSMMC) Host Device
Driver APIs.”

The following table summarizes sample MMC(or HSMMC) APIs and features.

Table 6. MMC(or HSMMC) APIs

MMC APIs Descriptions
mmc_init_driver It initializes MMC(or HSMMC).
mmc_is_ready It returns whether MMC(or HSMMC) initialization is fail or

success.
mmc_read It reads data per sector from MMC(or HSMMC).
mmc_write It writes data per sector on MMC(or HSMMC).
mmc_get_stat It retrieves the information of MMC(or HSMMC) device.

You can find the feature of MMC(or HSMMC) host device driver you have to implement,
through the above listed APIs.

TFS4 file system requests read/write operation in sector (512 byte), physical information,
etc. to MMC(or HSMMC) host device driver. You don’t have to implement other
features of MMC(or HSMMC) like lock/unlock, password, and force erase, because TFS4
file system does not use them.

The following is the data structures of MMC(or HSMMC) host device driver.

Table 7. Data Structure of MMC(or HSMMC) Host Device Driver

typedef struct {
 t_uint32 uiDevSize;
 t_uint32 uiSectorSize;
 t_uint32 uiNumSectors;
 t_uint8 bSectorsPerTrack;
 t_uint8 bTracks;
 t_uint16 wCylinders;
 t_uint32 uiWPGroupSize;
 t_uint32 uiWPStatus;
 t_uint32 uiProductSN;
 t_uint16 wOemID;
 t_uint8 bManID;
 t_uint8 bProductRev;
 t_int8 chProductName[6];
 t_uint8 bManDate;
 t_uint8 bReserved;
} t_mmc_info;

TFS4 v1.5.0 Porting Guide 49

The following table shows the data structure description of MMC(or HSMMC) host device
driver.

Table 8. Data Structure Description of MMC(or HSMMC) Host Device Driver

MMC Data Structure Description
uiDevSize MMC(or HSMMC) device size in byte
uiSectorSize Sector size in byte.
uiNumSectors Number of sectors
bSectorPerTrack Number of sectors per track
bTrack Number of tracks. It means a head count in C/H/S

conversion
wCylinders Number of cylinders
uiWPGroupSize Number of sectors in a write protection group
uiWPStatus Write protection status
uiProductSN Product serial number
wOemID OEM/application ID
bManID Manufacturer ID
bProductRev Product revision number
chProductName[6]; Product name
bManDate Manufacturing date. YYYYMMMM(b). year: YYYY(b) +

1997
month: MMMM(b)

bReserved Reserved for future use

If TFS4 file system requires MMC(or HSMMC) information, MMC(or HSMMC) host
device driver has to read the register value of MMC(or HSMMC) and pass them to TFS4
file system.

bSectorPerTrack, bTracks, and wCylinders are geometric values and do not exist in
MMC(or HSMMC). They are calculated by using tfs4_pdev_get_geometrics() in the
tfs4_pdev.c file. Refer to sample MMC(or HSMMC) host device driver.

The following shows the implemented MMC(or HSMMC) host device driver for
ReindeerPlus; a device driver depends on target hardware.

Table 9. Sample MMC(or HSMMC) Host Device Driver for ReindeerPlus

t_int32 mmc_init_driver (void)
t_int32 mmc_is_ready (void)
t_int32 mmc_read (t_uint8 *pBuf, t_uint32
uiStartSector, t_uint32 uiNumSectors)
t_int32 mmc_write (t_uint8 *pBuf, t_uint32
uiStartSector, t_uint32 uiNumSectors)
void mmc_get_stat (t_mmc_info* pBuf);

You can write a MMC(or HSMMC) host device driver considering your target like the
above sample. API is same, however the implemented source can be different depending
on the target.

TFS4 v1.5.0 Porting Guide 50

4.2.3. Bad Sector Manager
Now TFS4 v1.5 supports a new feature, bad sector manager that implements filter driver
layer at the logical device driver level. When using magnetic disk as storage device, bad
sectors can put the file system into trouble, such like long delay time during operation or
catastrophic corruption. While the FTL that controls NAND Flash Memory conceals initial
bad blocks from upper layer application, most magnetic disks don’t handle bad sectors.

Bad Sector Manager is implemented as a filter driver. It intercepts all requests from the
upper layer (FAL) and preprocesses them. When it receives a request (read or write), it
checks whether the requested range of logical sector is on a bad sector, of which list are
managed by bad sector manager. If then, bad sector manager may split and redirect the
requests to the backup device.

Figure 4-18 Deploying Bad Sector Manager

Following code snippet shows you an example of deploying bad sector manager to a
hard-disk drive.
// Declaration
#define BSM_INIT

 #include "tfs4_bsm.h"
 DECLARE_DEVICE_CONTEXT(myhdd, "/dev/hdd");

// Physical Device Registration for myhdd1
 tfs4_pdev_hdd_get_op(&stOp1);
 tfs4_bsm_init_ex(PDEVICE_CONTEXT(myhdd), &stOp1, NULL, 0);
 tfs4_bsm_get_op(PDEVICE_CONTEXT(myhdd), &stOp);
 tfs4_pdev_reg(&stOp, TRUE, TRUE);

Following code snippet shows you another example of deploying bad sector manager to a
hard-disk drive using XSR as a backup.
// Declaration
#define BSM_INIT
#include "tfs4_bsm.h"
DECLARE_DEVICE_CONTEXT(myhdd, "/dev/hdd");

// Physical Device Registration for myhdd2

 tfs4_pdev_hdd_get_op(&stOp1);
 tfs4_pdev_nand_xsr_get_op(&stOp2);
 tfs4_bsm_init_ex(PDEVICE_CONTEXT(myhdd), &stOp1, &stOp2,
0xF0000);

TFS4 v1.5.0 Porting Guide 51

 tfs4_bsm_get_op(PDEVICE_CONTEXT(myhdd), &stOp);
 tfs4_pdev_reg(&stOp, TRUE, TRUE);

Table 10 Bad Sector Manager APIs and Macro

BSM APIs and Macro Descriptions
tfs4_bsm_init_ex Initialize BSM device and specify main device and

backup device.
tfs4_bsm_get_op Get a physical_device_op structure of BSM device.
tfs4_bsm_format Build initial data structures of BSM device.
tfs4_bsm_reallocate Add alternate translation rule to the BSM device.
DECLARE_DEVICE_CONTEXT Create an instance of BSM device
PDEVICE_CONTEXT Returns a pointer to an instance of BSM device

4.2.4. Common IOCTLs
Lower hardware driver such like XSR, MMC, or other devices may handle additional
IOCTLs for supporting device-specific features. Currently, following IOCTLs are defined.
Implementation of devices that does not support these features may ignore the requests.

enuIOCTL_GET_LASTERROR

When requested, IOCTL function should return the length of sectors successfully
written or read at the previous write or read request. For example, if an error occurred
while writing 55th sector at the previous write request, pfIOCTL of the driver
implementation should return 54 as its return value.

4.2.5. TFS4 Porting
This section describes how TFS4 is ported to your target. Mostly, what you have to do for
TFS4 porting in this section is writing the source codes related with your target and RTOS.
Then, you have to define it in the header file.

This is a source file list to configure from the TFS4 source files.

Table 11. TFS4 Source Files Being Ported to Target

Dependency Porting Parts Source files to
configure

Header file to
define

Memory configuration tfs4_memory.c tfs4_config.h
Semaphore
configuration

tfs4_semaphore.c tfs4_semaphore.h
Target
RTOS

Error Number tfs4_errno.c tfs4_errno.h
TTY configuration tfs4_tty.c tfs4_tty.h
Time configuration tfs4_time.c tfs4_time.h
Unicode configuration tfs4_unicode_xxx.c tfs4_unicode_char.h
TFS4 Interface with
XSR

tfs4_pdev_nand_xsr.c tfs4_pdev_nand_xsr.
h

Target
Device

TFS4 Interface with
MMC(or HSMMC) host
device driver

tfs4_pdev_mmc_rein
deer_plus.c

tfs4_pdev_mmc_rei
ndeer_plus.ch

TFS4 v1.5.0 Porting Guide 52

You can find almost all of the files in the directory
“C:\TFS4\TFS4\OAL\NUCLEUS\SRC”

TFS4 v1.5.0 Porting Guide 53

4.2.5.1. Memory configuration
There are two types of memory allocation from OS:

 Memory pool: Nucleus, RTKE
 Plain memory: pSOS, Linux

Memory pool is a preoccupied memory region for use. TFS4 memory pool can be created
when OS or TFS4 is initialized. If the memory pool is created when TFS4 initialization,
you have to write a tfs4_memory_init() function.

If your target OS has a plain memory type, target OS dynamically allocates a TFS4
memory. In that case, you don’t have to do nothing in tfs4_memory_init(); it
always returns 0. Set bIsMemoryInitialized as true. If memory initialization is
success, then it returns 0, success.

This section shows TFS4 memory configuration with a sample code, which is
implemented based on Nucleus.

<TFS4 memory configuration for Nucleus>

In the provided TFS4 source files, there is an implemented source for memory allocation
as a sample. It is implemented for Nucleus.

1. Execute an ADS 1.2, a build tool, on your host.

2. Open a tfs4_memory.c. The file directory path is C:\TFS4\TFS4\OAL\NUCLEUS\SRC.

Figure 4-19. Directory Path of tfs4_memory.c

TFS4 v1.5.0 Porting Guide 54

3. The tfs4_memory.c file is opened on ADS 1.2 editor as follows.

Figure 4-20. tfs4_memory.c

For Nucleus, a memory pool is used for memory allocation. When TFS4 is initialized, the
memory is allocated from the memory pool.

You have to add a function for the memory pool creation function in the
tfs4_memory_init() as the above. The code for creating the Nucleus memory pool,
NU_Create_Memory_Pool, is already implemented as a sample.

TFS4 v1.5.0 Porting Guide 55

4. This is an implementation guideline according to target OS and memory allocation type.

Table 12. Memory-related Implementation Guideline

OS Memory allocation
type

Implementation

OS creates a
memory pool

tfs4_memory_init() returns 0,
because OS already created a
memory pool.

You have to define the TFS4 memory
pool name in tfs4_memory.h as
follows.

#define
TFS4_MEMORY_POOL_NAME
 TFS4_Memory

It is to notify a memory pool name to
TFS4

Nucleus,
RTKE

Memory pool

TFS4 creates a
memory pool

You implement a function for
memory pool creation.

Currently, the memory pool creation
function for Nucleus is implemented
in tfs4_memory.c/h.

pSOS, Linux

Plain memory OS dynamically allocates a TFS4
memory. You don’t have to do
nothing in
tfs4_memory_init(); it always
returns 0.

According to your target RTOS, you have to make TFS4 use a memory; it is whether a
memory pool is used or not.

5. This is the implemented sample source for using a memory pool in tfs4_memory.c.
Those are developed on Nucleus.

Table 13. Implemented Memory-related Sources on Nucleus

#include <stdio.h>
#include <ctype.h>

#include "tfs4_types.h"
#include "tfs4_memory.h"
#include "tfs4_debug.h"
#include "tfs4_errno.h"
#include "tfs4_oal.h"

TFS4 v1.5.0 Porting Guide 56

NU_MEMORY_POOL TFS4_Memory;

static t_uint32 bIsMemoryInitialized = false;

/* purpose : initialize memory manager
 input :
 pAddr : address
 output :
 true if it is valid
 false otherwise
 note :
 revision history :
*/
t_int32
tfs4_memory_init(void)
{
 if (bIsMemoryInitialized == false)
 {
 STATUS status;

 status = NU_Create_Memory_Pool(&TFS4_MEMORY_POOL_NAME,
"TFS4_MEM",
 (void*)TFS4_MEMORY_START_ADDR,
TFS4_MEMORY_POOL_SIZE, 50, NU_FIFO);
 if(status != NU_SUCCESS)
 {

 return TFS4_EPANIC;
 }
 bIsMemoryInitialized = true;
 }
 else
 {

 return TFS4_EINIT_ALREADY;
 }
 return 0;
}

/* purpose : reset memory manager
 input :
 none
 output :
 0 on success
 < 0 on failure
 note :
 revision history :
*/
t_int32
tfs4_memory_reset(void)
{
 //// add memory manager reset code here
 STATUS status;

 if (bIsMemoryInitialized == true)

TFS4 v1.5.0 Porting Guide 57

 {
 status =
NU_Delete_Memory_Pool(&TFS4_MEMORY_POOL_NAME);
 if(status != NU_SUCCESS)
 {

 return TFS4_EPANIC;
 }
 }
 bIsMemoryInitialized = false;

 return 0;
}

/* purpose : check if the given memory address is valid
 input :
 pAddr : address
 output :
 true if it is valid
 false otherwise
 note :
 revision history :
*/
t_uint32
tfs4_is_valid_addr(void *pAddr, t_uint32 dwSize)
{
 t_uint32 dwAddr;

 dwAddr = (t_uint32) pAddr;

 if (pAddr != NULL)
 {
 if ((dwAddr >= TFS4_MEMORY_START_ADDR) &&
 (dwAddr + dwSize) <= (TFS4_MEMORY_START_ADDR +
TFS4_MEMORY_POOL_SIZE))
 {
 return true;
 }
 else
 {

 return false;
 }
 }

 return false;
}

/* purpose : allocation memory
 input :
 nSize : allocation size
 output :
 0 > : Success and available pointer
 0 : Memory allocation fail

TFS4 v1.5.0 Porting Guide 58

 note :
 revision history :
 26-MAR-2004 [DongYoung Seo]: First Writing
*/
void *
tfs4_memory_alloc(t_uint32 nSize)
{
 void *pMem;

 if(NU_Allocate_Memory(&TFS4_MEMORY_POOL_NAME, &pMem,
nSize, NU_NO_SUSPEND) != NU_SUCCESS)
 {
 return NULL;
 }
 return pMem;
}

/* purpose : deallocate memory
 input :
 pMem : pointer of memory
 output :
 none
 note :
 revision history :
 26-MAR-2004 [DongYoung Seo]: First Writing
*/
void
tfs4_memory_free(void *pMem)
{
 NU_Deallocate_Memory(pMem);
 }

The following explains the above sample source codes of being ported to Nucleus.

Table 14. Description of Sample Source Codes

Function Description
tfs4_memory_init TFS4 initializes the memory pool as follows:

- If OS creates a TFS4 memory pool,
tfs4_memory_init() returns 0.

- If TFS4 creates its own memory pool,
tfs4_memory_init() creates the TFS4 memory pool.
tfs4_memory_init() returns 0 on success, and returns
-1 on failure from the implemented function.
To confirm if tfs4_memory_init() is successfully
performed, bIsMemoryInitialized should be set as
true.

TFS4 v1.5.0 Porting Guide 59

tfs4_memory_reset TFS4 resets the created memory pool as follows:

- If OS creates a TFS4 memory pool,
tfs4_memory_reset() returns 0 on success. It does not
mean the memory pool is deleted, because it is created by
OS.

- If TFS4 creates its own memory,
tfs4_memory_reset() deletes the TFS4 memory pool.
tfs4_memory_reset() returns 0 on success and
bIsMemoryInitialized should be set as false.

If the memory pool is not removed,
tfs4_memory_reset returns -1 from the implemented
function and bIsMemoryInitialized is not changed.

tfs4_memory_alloc

It functions same as malloc() of standard library. It is
called while tfs4 is running. It returns the starting address of
the allocated memory on success, and it returns NULL on
failure.

tfs4_memory_free It functions same as free() of standard library. It is called
while tfs4 is running. It releases the allocated memory.

In order to implement a memory pool creation function suitable for your target OS, you
have to modify the internal function of the tfs4_memory_init(),
tfs4_memory_reset(), tfs4_memory_alloc(), and
tfs4_memory_free().

Currently, the memory pool related functions for Nucleus are implemented in
tfs4_memory.c.

6. If your target OS is Nucleus and you creates a memory pool, you have to define the
TFS4 memory pool name in tfs4_memory.h as follows.

TFS4 v1.5.0 Porting Guide 60

Figure 4-21. Define a Memory Pool Name in tfs4_memory.h

It is to prevent errors from where allocation and free function is implemented.

7. If you implement a source code for memory allocation of target OS, define them in
tfs4_config_base.h file as follows.

Figure 4-22. Define a tfs4_memory_alloc in tfs4_config_const.h

In the current version, memcpy, memset, and memcmp use a standard library. Modify
tfs4_config_const.h to use the user-created function, instead of compiler-supported library.
If they are not running, you need to implement them such as TFS4_malloc or

TFS4 v1.5.0 Porting Guide 61

TFS4_free.

Now you’ve done the TFS4 memory configuration.

Reference
- TARGET_SDRAM_START_ADDR and TARGET_SDRAM_START_ADDR is
physical address of SDRAM.

- TFS4_MEMORY_POOL_NAME, TFS4_MEMORY_START_ADDR, and
TFS4_MEMORY_POOL_SIZE are added for Nucleus RTOS in tfs4_memory.h.
For Nucleus, the values are necessary for creating a memory pool. But they are not needed
for pSOS or Linux.

- TFS4_MEMORY_START_ADDR and TFS4_MEMORY_POOL_SIZE should be set, with
reference to a memory map; the memory map is specified by OS porting policy. It is to
prevent overlapping with another pool.

For Nucleus, a memory pool created by tfs4_memory_init() is shared with XSR.
Thus, the memory pool size should be set enough.

Note
- We plan to modify XSR to use its own memory pool, not shared with TFS4 memory
pool.

- For more information of memory pool size, refer to the memory usage of TFS4 in 2.2
Target.

4.2.5.2. Semaphore configuration
Semaphore is to prevent other users from opening the same file or directory at that time
when a file or directory is opened. It makes it possible to keep a same file or directory
open but do not read/write access at same time. Its purpose is to preserve the integrity of
data while you are using it.

TFS4 uses a semaphore when a file or directory is accessed. But the TFS4 semaphore can
be created by OS or TFS4 at different time, according to OS. It can be created when:

 OS initialization
Semaphore is already created on memory when OS porting. TFS4 uses the created
semaphore. When TFS4 needs a semaphore, the created semaphore address is returned.
For that case, you have to implement a tfs4_sm_p() and tfs4_sm_v() to obtain and
release the OS-created semaphore.

 TFS4 initialization, termination
Semaphore is dynamically created when a tfs4_init() is executed. You have to
implement tfs4_sm_create(), tfs4_sm_delete(), tfs4_sm_p(), and

TFS4 v1.5.0 Porting Guide 62

tfs4_sm_v(). They should be suitable for target OS. After TFS4 creates a semaphore
by tfs4_sm_create(), semaphore is actually retrieved by tfs4_sm_p() when a
file or directory is accessed. For Nucleus and pSOS, that rule is applied.

TFS4 uses two types of semaphores:

- Directory semaphore
- File semaphore

When TFS4 tries to create a semaphore, the semaphore type is checked by the semaphore
name as a parameter. Only one semaphore is created when a semaphore is called.

<TFS4 semaphore configuration for Nucleus>

In the provided TFS4 source files, there is an implemented source for semaphore creation
as a sample. It is implemented for Nucleus.

1. Execute an ADS 1.2, a build tool, on your host.

2. Open a tfs4_semaphore.c. The file directory path is
 “C:\TFS4\TFS4\OAL\NUCLEUS\SRC”.

3. The tfs4_semaphore.c file is opened on ADS 1.2 editor as follows.

TFS4 v1.5.0 Porting Guide 63

Figure 4-23. tfs4_semaphore.c

4. Semaphore configuration depends on target OS. This is the semaphore implementation
guideline depending on target OS.

Table 15. Semaphore Implementation Guideline

OS Semaphore Creation Type Implementation
RTKE OS creates a semaphore Configure the semaphore related

functions in the
tfs4_semaphore.c/h file

Nucleus, pSOS TFS4 creates a semaphore Implement the semaphore related
functions such as the following
functions in the
tfs4_semaphore.c/h file:

TFS4 v1.5.0 Porting Guide 64

- Create: tfs4_sm_create()
- Delete: tfs4_sm_delete()
- Obtain: tfs4_sm_p()
- Release: tfs4_sm_v()

They should be implemented for
your OS.

5. You can find the implemented source based on Nucleus, pSOS, and RTKE in the
tfs4_semaphore.c/h file. You should define the OS in the tfs4_config_const.h file for using
the implemented source.

If you use different target OS like Linux, you should add the semaphore related source
code suitable for the OS.

<For implementing the semaphore functions on another OS>

6. Define the OS-defined variable type with t_semaphore in the tfs4_semaphore.h file
as follows.

Table 16. type definition OS-Defined Variable

#if (TFS4_OS == TFS4_NUCLEUS)
 typedef NU_SEMAPHORE t_semaphore; //// for Nucleus
#elif (TFS4_OS == TFS4_WIN32)
 typedef HANDLE t_semaphore; //// for Windows
#elif (TFS4_OS == TFS4_PSOS)
 typedef unsigned long t_semaphore; //// for pSOS
#elif (TFS4_OS == TFS4_RTKE)
 typedef unsigned char t_semaphore; //// for RTKE
#else
 typedef t_uint32 t_semaphore; //// for Others
#endif

It is to change the OS-defined variable type to commonly used one for TFS4,
t_semaphore, when semaphore sources are compiled.

7. Each OS has different type of semaphore structure. Thus, the semaphore structure of
tfs4_semaphore.h has to be modified, according to OS.

The following shows the OS-defined arguments of semaphore functions.

Table 17. Typedef OS-Defined Argument

typedef enum {
 enuSM_PRIOR = NU_PRIORITY,

TFS4 v1.5.0 Porting Guide 65

 enuSM_FIFO = NU_FIFO,
 enuSM_SUSPEND = (t_int32)NU_SUSPEND,
 enuSM_NO_SUSPEND = NU_NO_SUSPEND
} t_sm;

It is to change the OS-defined structure to commonly used one for TFS4 when semaphore
sources are compiled.

8. The following describes the semaphore functions implemented in the tfs4_semaphore.c
file. You can use them if your target OS is Nucleus, pSOS, and RTKE.

If not, you can newly implement properly them according to your target OS, by referring
to semaphore functions your OS provides, in the tfs4_semaphore.c file.

 tfs4_sm_create()
To use a semaphore for TFS4, the semaphore should be created first. TFS4 semaphore can
be created when OS or TFS4 is initialized according to OS.

Here is the tfs4_sm_create() implemented for Nucleus; Nucleus use the
TFS4-created semaphore. You can just use the implemented source code by defining the
OS in the tfs4_config_const.h file.

t_int32
tfs4_sm_create(t_tfs4_semaphore *pSmp, t_int8 *szName, t_uint32 nInitialCount)
{
 STATUS status; /* Semaphore creation status */

 TFS4_strcpy(pSmp->sName, szName);

 /* Create a semaphore with an initial count of 1 and priority
 order task suspension. */

 status = NU_Create_Semaphore(&pSmp->stSM, szName, nInitialCount,
enuSM_FIFO);
 if (status == NU_INVALID_SUSPEND)
 {
 return enuESM_INVALID_SUSPEND;
 }
 else if (status == NU_INVALID_SEMAPHORE)
 {
 return enuESM_INVALID_SEMAPHORE;
 }
 else if (status == NU_SUCCESS)
 {
 return 0;
 }
 else
 {
 return enuESM_UNKNOWN;
 }
}

TFS4 v1.5.0 Porting Guide 66

It depends on OS. If OS already created a semaphore, tfs4_sm_create() returns 0.

TFS4 needs two semaphores; a file semaphore and directory semaphore. They can be
checked by szName as a tfs4_sm_create() parameter. It returns 0 on success and an
error on failure; the returned error is defined in t_sm_error structure in the
tfs4_semaphore.h. file. The file semaphore name is "TFIL,” and the directory semaphore
name is “TDIR.”

 tfs4_sm_delete()
This function deletes a semaphore. You have to implement tfs4_sm_delete()
according to the target OS.

Here is the tfs4_sm_delete() implemented for Nucleus, pSOS, and RTKE in the
tfs4_semaphore.c file.

t_int32
tfs4_sm_delete(t_tfs4_semaphore *pSmp)
{
 STATUS status;

 status = NU_Delete_Semaphore(&pSmp->stSM);
 if (status != NU_SUCCESS)
 {
 return enuESM_UNKNOWN;
 }

 return 0;
}

It returns 0 on success and an error on failure; the returned error is defined by the
t_sm_error structure in the tfs4_semaphore.h.file. You can use the implemented source
code just by defining the OS in the tfs4_config_const.h file.

 tfs4_sm_p()
This function obtains the created semaphore. You have to implement tfs4_sm_p() for
target OS.

Here is the tfs4_sm_p() implemented for Nucleus, pSOS, and RTKE

t_int32
tfs4_sm_p(t_tfs4_semaphore *pSmp)
{
 STATUS status;

TFS4 v1.5.0 Porting Guide 67

 status = NU_Obtain_Semaphore(&pSmp->stSM,
(t_uint32)enuSM_SUSPEND);

 if (status != NU_SUCCESS)
 {
 return enuESM_UNKNOWN;
 }

 return 0;
}

It returns 0 on success and an error on failure; the returned error is defined by the
t_sm_error structure in the tfs4_semaphore.h.file. You can just use the implemented
source code by defining the OS in the tfs4_config_const.h file.

 tfs4_sm_v()
This function releases the semaphore. You have to implement tfs4_sm_v() for target
OS.

Here is a sample implementation of tfs4_sm_v() for Nucleus, pSOS, and RTKE.

t_int32
tfs4_sm_v(t_tfs4_semaphore *pSmp)
{
 STATUS status;

 status = NU_Release_Semaphore(&pSmp->stSM);

 if (status != NU_SUCCESS)
 {
 return enuESM_UNKNOWN;
 }

 return 0;
}

It returns 0 on success and an error on failure; the returned error is defined by the
t_sm_error structure in the tfs4_semaphore.h. You can just use the implemented source
code by defining the OS in the tfs4_config_const.h file.

TFS4 v1.5.0 Porting Guide 68

4.2.5.3. Error Number store
Error number (errno) has to be stored on memory to return an error number when directory
or file operation occur the error.

Since Linux or Windows is running on its own memory, the error number of a process is
not changed by another process even if the error number is defined as global variable.

But RTOS like Nucleus or pSOS shares memory. A global variable can be accessed by any
task on RTOS. It happens that the error number of a task can be changed by another task.
For that reason, error number has to be stored on separate task; Nucleus does it. But, for
pSOS it is not implemented yet.

Nucleus has a reserved region inside TCB (Task Control Block) that stores the task
information including the errno. pSOS is designed to store the task information on global
region. If you use another OS, you have to specify a region for storing an error number
depending on your OS.

Storing the error information, errno, is composed of two functions:

- tfs4_err_set_errno()
- tfs4_err_get_errno()

tfs4_err_set_errno() sets an error number to the errno, which is retrieved as an
integer parameter, on separate task region. tfs4_err_get_errno() returns an errno
from the separate task region.

By implementing the above functions according to your target OS, you can check the latest
error and what it is.

This section shows TFS4 error number-store configuration with a sample code, which is
implemented based on Nucleus.

<TFS4 error number-store configuration for Nucleus>

1. Execute an ADS 1.2, a build tool, on your host.

2. Open a tfs4_errno.c. The file directory path is “C:\TFS4\TFS4\OAL\NUCLEUS\SRC.”

3. The tfs4_errono.c file is opened on ADS 1.2 editor as follows.

TFS4 v1.5.0 Porting Guide 69

Figure 4-24. tfs4_errno.c

In case that your target OS is Nucleus.
But if you use other target OS, you have to implement the above two functions according
to the OS.

4.2.5.4. TTY configuration
TTY is the most widely used type of emulation for PC computer communications.

In TFS4, TTY has to be configured for using a test shell. It is to get a debugging message
from target while TFS4 or XSR is running on target, through UART. You can configure it
at tfs4_tty.c file according to your target; functions are already implemented in
tfs4_tty.c/h.

< TTY configuration of TFS4 >

1. Execute an ADS 1.2, a build tool, on your host.

TFS4 v1.5.0 Porting Guide 70

2. Open a tfs4_tty.c. The file directory path is ”C:\TFS4\TFS4\OAL\NUCLEUS\SRC”.

3. The tfs4_tty.c file is opened on ADS 1.2 editor as follows.

Figure 4-25. tfs4_tty.c

TFS4 v1.5.0 Porting Guide 71

The following represents the syntaxes of the implemented source codes based on the
UART device driver of ReindeerPlus to get or print a text from target.

t_int32 tfs4_get_char(void)
t_int32 tfs4_get_int(void)
t_int32 tfs4_gets(t_int8 *pBuff)
void tfs4_printf(const t_int8 *fmt,...);

4. You have to configure them appropriately to your target in order to use UART device.

Notice
UART is to print the debugging information for TFS4 while TFS4 is tested. Input code is
implemented in the tfs4_tty.c file. The input functions are tfs4_get_char(),
tfs4_get_int(), and tfs4_gets().

4.2.5.5. Time configuration
Time configuration needs to be done for TFS4 to get a specific time when file or directory
is created, accessed, or written.

It depends on OS or compiler. It is implemented in tfs4_time.c and tfs4_config_base.h.

This section shows TFS4 time configuration with a sample code, which is implemented
based on Nucleus.

<TFS4 time configuration for Nucleus>

1. Execute an ADS 1.2, a build tool, on your host.

2. Open a tfs4_time.c. The file directory path is ”C:\TFS4\TFS4\OAL\NUCLEUS\SRC”.

3. The tfs4_time.c file is opened on ADS 1.2 editor as follows.

TFS4 v1.5.0 Porting Guide 72

Figure 4-26. tfs4_time.c

The following represents the syntaxes of the source codes implemented to get or print a
text from target.

struct tm *tfs4_localtime(void)
t_int32 tfs4_gettimeofday(struct timeval *tv)
void tfs4_get_time(t_uint16 *pwDate, t_uint16 *pwTime, t_uint8
*pbMSec)

TFS4 v1.5.0 Porting Guide 73

You have to configure them appropriately to your target OS or compiler.

- tfs4_localtime() returns a local time by storing the current time in a struct tm.
- tfs4_gettimeofday() returns the current time by storing it in a struct
timeval. It is called in tfs4_get_time(). If tfs4_localtime() is composed,
the tfs4_localtime() is called.
- tfs4_get_time() stores a date and time separately as described in the
tfs4_stat() of TFS4 Programmer’s Guide.

Reference

<Date and Time Formats>
Many FAT file systems do not support Date/Time other than DIR_WrtTime and
DIR_WrtDate. For this reason, DIR_CrtTimeMil, DIR_CrtTime,
DIR_CrtDate, and DIR_LstAccDate are actually optional fields. DIR_WrtTime
and DIR_WrtDate must be supported, however. If the other date and time fields are not
supported, they should be set to 0 on file create and ignored on other file operations.

<Date Format>
A FAT directory entry date stamp is a 16-bit field that is basically a date relative to the
MS-DOS epoch of 01/01/1980. Here is the format (bit 0 is the LSB of the 16-bit word, bit
15 is the MSB of the 16-bit word):

- Bits 0.4: Day of month, valid value range 1-31 inclusive.
- Bits 5.8: Month of year, 1 = January, valid value range 1.12 inclusive.
- Bits 9.15: Count of years from 1980, valid value range 0.127 inclusive (1980.2107).

<Time Format>
A FAT directory entry time stamp is a 16-bit field that has a granularity of 2 seconds.
Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the 16-bit
word).

- Bits 0.4: 2-second count, valid value range 0.29 inclusive (0 . 58 seconds).
- Bits 5.10: Minutes, valid value range 0.59 inclusive.
- Bits 11.15: Hours, valid value range 0.23 inclusive.

The valid time range is from Midnight 00:00:00 to 23:59:58.

Date

Time

Month DateYear

Sec. Min.Hour

9 5 01116 Bit

Figure 4-27. Data Format of Date and Time

TFS4 v1.5.0 Porting Guide 74

4.2.5.6. TFS4 Interface with XSR
This section describes the XSR configuration. It is for TFS4 to use XSR, not for XSR
configuration itself.

TFS4 uses XSR to perform several operations to Physical NAND device. Thus, you have
to configure the NAND device setting.

XSR v1.4.0 provides multi-partition for file system. It make several file system device on a
physical NAND. TFS4 also support XSR multi-partition feature.

This is a sample codes to use XSR v1.4.0. It assumes two partitions for file system on BM.
The partition information is like below
We assume that the NAND Device has 1024 blocks.

file system partition 0 (block 0 ~ block 799) file system
partition 1

1. Execute an ADS 1.2, a build tool, on your host.

2. Open a tfs4_pdev_nand_xsr.h. The file directory path
is ”C:\TFS4\SRC\TFS4\PIL\INC”.

3. TFS4_pdev_nand_xsr.h includes the all XSR-related settings as below.

Figure 4-28. tfs4_pdev_nand_xsr.h – common NAND and XSR configuration

TFS4 v1.5.0 Porting Guide 75

Figure 4-29 STL and BML configuration

For more information of XSR configuration, refer to a XSR porting guide or XSR
programmer’s guide. In this chapter, some XSR configuration will be covered. However
they are strictly limited to what is related to TFS4.

 TFS4_NAND_SECTOR_SIZE
It is the sector size of NAND Device. It is normally 512 bytes.

 TFS4_NAND_SECTOR_SIZE_BITS
It is the least number of bits to represent TFS4_NAND_SECTOR_SIZE.

 TFS4_NAND_START_SECTOR
It is a starting sector address of the NAND region TFS4 uses. It is the logical information.
The number of sector filesystem uses is retrieved by STL_Open(). It can be set as 0, if
you want to use the whole NAND.

 TFS4_NAND_PAGE_SIZE
It is the page size of the NAND.

 TFS4_XSR_STL_BLOCKS_PER_UNIT
It is the number of blocks per unit of STLConfig structure. STLConfig is a parameter
of STL_Format(). This is the detailed description of nBlksPerUnit.

Unit is an abstract concept to block. Normally, unit is composed of N blocks and the
smallest erasable unit. The number of block per unit is configured by nBlksPerUnit.
For large block NAND device, nBlksPerUnit should be only 1, and for small block
NAND device, nBlksPerUnit can be specified among 1, 2, or 3. As the unit value is
increased, the more memory should be reserved for memory, but write performance of
random access is more improved.

TFS4 v1.5.0 Porting Guide 76

 TFS4_XSR_NUM_OF_RSVD_UNIT
It is the number of reserved units of STLConfig structure. STLConfig is a parameter
of STL_Format(). This is the detailed description of nNumOf RsvUnits.

STL manages the whole memory space as a unit. Some of the all units are unusable, which
is called a reserved unit. It is configurable and should be more than 2 at least. As the
reserved unit value is increased, usable disk capacity for user is decreased, but the write
operation is improved.

 TFS4_XSR_STL_ASYNC_MOD
It is used for the parameter of STL_open(). It specify STL running mode. TFS4
does not support ASYNC MODE. It should be FALSE32.

 TFS4_XSR_LLD_BLKSINRSV
It is the number of reserved blocks for NAND device

 TFS4_XSR_LLD_TOTAL_BLOCK
It is the number of blocks.

 TFS4_XSR_BML_PARTITION_INFO
It is the number of blocks for BML partition info. XSR v1.4.0 uses three blocks for
partition information.

 TFS4_XSR_BML_NUL_OF_PARTITION
It is the number of partition in NAND device. It is used for formatting BML. It should be
configured by used.

 TFS4_XSR_BML_PARTTIONx_ID, TFS4_XSR_BML_PARTITIONx_ATTR,
TFS4_XSR_BML_PARTITIONx_1STVBN,
TFS4_XSR_BML_PARTITIONx_NUMOFBLOCKS

They are the parameters of XSRPartI structure; XSRPartI is used as the parameter of
BML_Format().

BML_Format() is called once each target. It doesn’t need to be used.
Use BML_REPARTITION to modify the BML partition information, instead of
BML_INIT_FORMAT.

For details about BML, refer to BML programmer’s guide.

4.2.5.7. TFS4 Interface with MMC(or HSMMC) Host Device Driver

TFS4 needs a MMC(or HSMMC) Host Device Driver to use a MMC(or HSMMC). TFS4
includes a sample MMC(or HSMMC) host device driver, which is implemented based on
ReindeerPlus.

But you have to modify it according to your target clock or bus setting.

TFS4 v1.5.0 Porting Guide 77

For physical device interface of TFS4, the following interfaces are necessary.

Table 18. Necessary Physical Device Interface for TFS4

Function Description

Init It initializes a device.

Read Status It retrieves a device status.

Open It opens a device.

Close It closes a device.

Read It reads data from device.

Write It writes data on device.

Erase It erases specific region of device.

IO control It performs a generic IO control.

If you try to write a MMC(or HSMMC) host device driver on your target, you should
implement the functions that provides the features mentioned above.

< External Card Insert/Remove Notification >
Interrupt occurs when the external device is being inserted or ejected.
If an external device is inserted, external device should be registered to use. To register a
device to TFS4 use tfs4_pdev_reg(). reference to TFS4 programmers guide for detailed
information.
If an external device is disconnected. External device should be un-registered from TFS4.
To un-register an external device use tfs4_pdev_unreg().

All of the above features can be implemented in tfs4_pdev_mmc_nucleus.c/h; the file
name can be changed by user.

Table 19. Implemented Functions for MMC(or HSMMC) Host Device Driver

Function Description

t_int32
tfs4_pdev_mmc_init_device(v
oid)

It initializes a device.
It retrieves the MMC(or HSMMC)
information by using mmc_get_stat()
and stores it in tfs4_mmc_info.

For details about that, refer to 4.2.2. MMC(or
HSMMC) Host Device Driver Development.

TFS4 v1.5.0 Porting Guide 78

It specifies a function pointer to use the
MMC(or HSMMC) device.

static t_int32
_tfs4_mmc_read_status(t_phy
sical_device_info *pDI)

It retrieves a device status by storing into
t_physical_device_info.
This function be used while tfs4_pdev_reg()

static t_int32
_tfs4_mmc_open(void) It opens a device.

static t_int32
_tfs4_mmc_close(void) It closes a device.

static t_int32
_tfs4_mmc_read_sector(t_uin
t32 dwSectorNo, t_uint8
*pBuff, t_uint32 dwCount)

It reads data from device.

It reads the dwCount number of sector from
dwSectorNo and writes a code to store the
sector to pBuff.

It returns the number of read sector on
success and TFS4_EIO on failure.

static t_int32
_tfs4_mmc_write_sector(t_ui
nt32 dwSectorNo, t_uint8
*pBuff, t_uint32 dwCount)

It writes data on device.

It writes the dwCount number of sectors into
flash memory space starting at
dwSectorNo.

It returns the number of written sectors on
success and TFS4_EIO on failure.

static t_int32
_tfs4_mmc_erase_sector(t_ui
nt32 dwSectorNo, t_uint32
dwCount)

It erases the dwCount number of sectors
from dwSectorNo in the flash memory.

It returns 0 on success and TFS4_EIO on
failure.

static t_int32
_tfs4_mmc_ioctl(t_int32
command, void *pBuff)

It performs a generic IO control.

You can do additional features on it.
Currently, only the function of retrieving
MMC(or HSMMC) information is
implemented.

Note
Read/write function of external device driver should include a routine to check byte
alignment, because TFS4 just uses the address received from an application.

TFS4 v1.5.0 Porting Guide 79

4.3. Build with Target OS
If you’ve performed TFS4 porting as explained in the previous chapter successfully, now
you can build them together.

To build TFS4 with OS, you first need to compose a project file, makefile, or something to
build according to your build tool so that all the components are built together. Your
project file has to include:

- TFS4 library and configured TFS4 sources
- XSR library and sources
- MMC(or HSMMC) library or sources (Optional)
- OS library (it is Nucleus in this document)

The following table lists the target-dependant source files of TFS4.

Table 20. Configurable File List of TFS4

File Name Description

tfs4_errno.c It stores a TFS4 error number or returns the stored error
number.

tfs4_memory.c It has the TFS4 memory related functions.

tfs4_pdev_nand_xsr.c It has the code implemented to access to NAND device
through XSR.

tfs4_pdev_mmc_nucleus.c It interfaces a MMC(or HSMMC) host device driver
running on Nucleus.

tfs4_semaphore.c It has the codes implemented for semaphore.

tfs4_time.c It has the codes implemented for retrieving the time
information that filesystem uses.

tfs4_tty.c
It is used for TFS4 test shell. It performs the I/O control
through UART or keyboard. It is used only during
development.

The following table lists the XSR source files that are ported to ReindeerPlus. For other
targets, the file names can be changed.

Table 21. Configurable File List of XSR

File Name Description

TFS4 v1.5.0 Porting Guide 80

PAM.cpp Platform Adaptation Module

PNL.cpp Low Level Device Driver for large block NAND

NucleusOAM.cpp It has the code implemented for XSR porting to
Nucleus.

The following picture shows the implemented MMC(or HSMMC) host device driver files.

Figure 4-30. MMC(or HSMMC) Host Device Driver File List

The following table represents TFS4 library and source to build with OS.

 Table 22. TFS4 Library & Sources

 TFS4 XSR MMC(or HSMMC)
Host Driver

Library tfs4_lib.a XSR32lv4.lib
Source tfs4_errno.c

tfs4_memory.c
tfs4_pdev_mmc_reindeep_
plus.c
tfs4_pdev_nand_xsr.c
tfs4_semaphore.c
tfs4_time.c
tfs4_tty.c
tfs4_tuning.c

NucleusOAM.cpp
PAM.cpp
PNL.cpp

mmc_assert.c
mmc_command.c
mmc_csw.c
mmc_hw_interface.c
mmc_util.c

tfs4_integration_test.c/h includes a test shell for TFS4 test. If you don’t need the test shell,
do not add the tfs4_integration_test.c/h to the project file.

The following pictures show Reindeer_Plus_With_TFS4.mcp to build TFS4 with XSR,
MMC(or HSMMC) host device driver library, and OS.

TFS4 v1.5.0 Porting Guide 81

Figure 4-31. Reindeer_Plus_With_TFS4.mcp

< TFS4 build with Nucleus by using the project file on ADS v1.2 >

The following picture shows the TFS4 directory structure.

TFS4 v1.5.0 Porting Guide 82

Figure 4-32. Directory Path of TFS4-related Project Files

If you use the ADS1.2 build tool and the Nucleus OS, you can use the provided project file,
“Reindeer_Plus_With_TFS4.mcp” and
“Reindeer_Plus_With_TFS4_With_HS_MMC.mcp” in
the ”C:\TFS4\TFS4\BUILD\REINDEER_PLUS_ADS12” directory, as shown in the above
picture.

Currently, the “Reindeer_Plus_With_TFS4.mcp” and
“Reindeer_Plus_With_TFS4_With_HS_MMC.mcp” project file includes:

- TFS4 library and configured TFS4 sources
- XSR library and sources
- MMC (or HSMMC) library and sources
- OS library (it is Nucleus in this document)

Here, we explain the TFS4 build with OS by using ADS1.2.

1. Open the project file for making a TFS4 library. You can click “File” “Open” on the
menu bar of the screen as follows.

TFS4 v1.5.0 Porting Guide 83

Or, button on icon bar.

Note
We provide the project file for building TFS4 with XSR, sample MMC (or HSMMC) host
device driver, and adaptation layer for Nucleus. The name of the project file is
Reindeer_Plus_With_TFS4.mcp (or Reindeer_Plus_With_TFS4_With_HS_MMC.mcp);
the “mcp” is the extension of ADS. If you don’t use the ADS v1.2, you need to create your
own project file.

2. The screen to open a file appears.

TFS4 v1.5.0 Porting Guide 84

Find the Reindeer_Plus_With_TFS4.mcp file and press “Open” button on the screen.

3. The Reindeer_Plus_With_TFS4.mcp file is opened as below.

TFS4 v1.5.0 Porting Guide 85

TFS4 v1.5.0 Porting Guide 86

See the source and library files of Nucleus OS ported on ReindeerPlus, XSR, MMC (or
HSMMC) Host Device Driver, and TFS4 to build together in the project file.

4. Select a type of build target.

There are three types of build targets. The following describes the meaning of each build
target.

- Debug mode: The output binary is compiled with debugging symbols and information of
line numbers.
- Release mode: In this configuration, the output binary will be fully optimized and
contains no debugging symbols.
- DebugRel mode: Adequate optimization level and including minimal debugging
information.

5. Press the build setting button.

6. Specify configurations for your target in the Build Settings dialog window.

But the build setting screen can be a little different depending on the build mode setting
you select. You have to consider the language setting your compiler supports in the build
setting screen. For ADS v1.2, you need to set the build options for each language; you may
not need to do that for other build tool.

The following screens show the necessary build options for each build mode and language;
the sample build options are based on ReindeerPlus, ARM CPU, and ADS v1.2. You can
set the build options suitable to your target and compile environment by referring to the
below sample options.

Note
The build option depends on the compiler.

TFS4 v1.5.0 Porting Guide 87

<Debug settings for ARM Assembler>

Figure 4-33. Debug Settings for ARM Assembler on ADS v1.2

<Debug settings for ARM C Compiler>

Figure 4-34. Debug Settings for ARM C Compiler on ADS v1.2

TFS4 v1.5.0 Porting Guide 88

<Debug settings for ARM C++ Compiler>

Figure 4-35. Debug Settings for ARM C++ Compiler on ADS v1.2

< Release settings for ARM Assembler>

Figure 4-36. Release Settings for ARM Assembler on ADS v1.2

TFS4 v1.5.0 Porting Guide 89

< Release settings for C Compiler>

Figure 4-37. Release Settings for ARM C Compiler on ADS v1.2

< Release settings for C++ Compiler>

Figure 4-38. Release Settings for ARM C++ Compiler on ADS v1.2

You have to add build options for your target and compile environment.

TFS4 v1.5.0 Porting Guide 90

7. Additionally, you need to add the access paths on the build settings to include the
TFS4-related header files (TFS4\API, TFS4\BASE\INC, TFS4\BASE\UNICODE\INC,
TFS4\FAL\INC, TFS4\KFAT\INC, TFS4\OAL\NUCLEUS\INC, TFS4\PIL\INC, XSR
header file path, and MMC(or HSMMC) host device driver header file path, etc) while
TFS4 is compiled.

If you define the header file at tfs4_config.h, you don’t have to add the include path to the
build setting.

Figure 4-39. Include Access Paths

8. After setting the build options, press “OK” button to save.

9. Press button on ADS v1.2.

10. The project file build is performed; the project file includes TFS4 and OS. The target
image is created on your host.

You finished the build of the ported TFS4 and OS together. Now you can transfer the
target image to your target.

TFS4 v1.5.0 Porting Guide 91

4.4. Download to Target Device
We assume your host and target is already connected to each other by using Multi-ICE
(other ICE device can be substituted for it). Or you can write the target image on NAND
flash memory. You can select the deployment type of the target image, depending on your
development progress.

This is step for downloading the target image to SDRAM.

1. Power on your target.

2. Execute the AXD debugger of ADS 1.2 on your host.

Figure 4-40. Execute AXD Debugger of ADS v1.2

3. Execute the code for target initialization as follows.

TFS4 v1.5.0 Porting Guide 92

Figure 4-41. Initialize a target

4. Press “File” “Load Image” on menu to select the target image to download.

TFS4 v1.5.0 Porting Guide 93

Figure 4-42. Press Load Image Button

5. The following screen appears.

TFS4 v1.5.0 Porting Guide 94

Figure 4-43. Search the Image Being Loaded

Select the target image file to download.

TFS4 v1.5.0 Porting Guide 95

6. The screen shows the target image is getting loaded to target.

Figure 4-44. Load the Image

TFS4 v1.5.0 Porting Guide 96

7. The screen shows that the downloading is finished.

Figure 4-45. Find the Starting Point of the Image

“ ” indicates to the starting point of the target image for running on the editor screen.

Now, downloading the image to target is completed and you can execute it on target.

TFS4 v1.5.0 Porting Guide 97

5. TFS4 Test Process

This chapter describes TFS4 test process. If you are developing the TFS4 or other program
using TFS4, you can follow this test process.

To test TFS4, you first have to test XSR or MMC (or HSMMC) host device driver,
because TFS4 works with them and so you cannot find where the TFS4 error is from if
they are not tested before TFS4.

TFS4 test process includes the sub sections as follows.

Figure 5-1. TFS4 Test Process

Of the TFS4 Test, the step 1 and 3 don’t have to be performed all the time. They can be
performed if needed.

You can write a test code or use the provided test shell for XSR, MMC (or HSMMC), and
TFS4 test. This chapter explains the TFS4 test by using the test shell.

TFS4 v1.5.0 Porting Guide 98

5.1. XSR Test
For XSR test, you can refer to XSR programmer’s guide.
Here, the important thing is that you can test TFS4, only after XSR is guaranteed to work
reliably on target.

5.2. MMC (or HSMMC) test
For MMC (or HSMMC) test, you have to perform the sector read/write operation test. If
you want to test the HSMMC, before you perform the sector read/write operation test, you
have to change the bus width from 1 bit to 4 bit (or 8 bit).

TFS4 v1.5.0 Porting Guide 99

5.3. TFS4 test
TFS4 test is to check basic functionalities of TFS4. It is to find if TFS4 File System creates,
reads, or writes a file/directory on NAND flash memory or MMC (or HSMMC).

You can test all the TFS4 APIs listed in TFS4 programmer’s guide. The test shell has a lot
of commands (they include all the TFS4 APIs), to test the basic features of TFS4.

TFS4 test is performed according to the below sequence.

Figure 5-2. TFS4 Test Sequence

To see TFS4 is executed and tested, you should use a terminal program. You can see the
TFS4 running state and get the success or failure message from target. Host is connected to
target through serial line and shell is running on target for data communication; of course,
target device should support UART.

Note
Of the TFS4 Test, the step 3 and 4 don’t have to be performed all the time. They can be
performed if needed.

TFS4 v1.5.0 Porting Guide 100

< UART settings between host and target >

Before you execute a terminal program on your host, the UART setting should be done for
data communication with target.

You can set it before the downloaded target image is executed.

The following picture shows the UART/USB setting screen.

Figure 5-3. UART Options

Check the option suitable to your target UART.

- Baud Rate: it is to set the same transmission speed between host and target. Mostly it is
115200.
- COM Port: PC uses two COM ports, 1 and 2. Normally it is set to 1.

Your terminal prints characters out if you set the UART options successfully. If not, your
terminal prints the broken character or nothing.

TFS4 v1.5.0 Porting Guide 101

1. Power on your target.

2. Execute your terminal program on your host.

Figure 5-4. Execute a Terminal Program for Test

TFS4 v1.5.0 Porting Guide 102

3. Press “Execute” “Go” on menu of AXD debugger screen.

Figure 5-5. Running TFS4

TFS4 v1.5.0 Porting Guide 103

4. The terminal shows the TFS4 test shell is executed.

Figure 5-6. TFS4 Test Shell

It waits for user’s command. Enter “?” to see the command list.

<BML format information used on ReindeerPlus>

First of all, BML format of XSR should be performed to format a NAND device.
There is the code for BML format in tfs4_pdev_nand_xsr_bml_format() of the
tfs4_pdev_nand_xsr.c file. You can configure the file if necessary, with reference to XSR
documents. BML format should be done once.

XSR partition of the t_int32 tfs4_pdev_nand_xsr_bml_format() function
should be modified according to target bootloader. In the current release version, we do
not consider the bootloader.

TFS4 v1.5.0 Porting Guide 104

The following screen shows performing BML format; BML region is already created in
XSR test.

Figure 5-7. Perform BML_format

t_int32 tfs4_pdev_nand_xsr_bml_format(void) is executed in test shell and you can see the
message printed on the terminal as follows.

TFS4 v1.5.0 Porting Guide 105

5.3.1. Initialize TFS4
Initializing TFS4 should be performed before using TFS4 after the partition of NAND
device or MMC(or HSMMC) is created.

Enter “tfs4_init” on the test shell.

Figure 5-8. Perform tfs4_init

tfs4_init is executed in test shell .

5.3.2. Register a physical device

Register a physical device to TFS4.

TFS4 v1.5.0 Porting Guide 106

5.3.3. Perform fdisk
TFS4 supports making four partitions on NAND device at maximum. You need to set the
number of partition for TFS4 to use.

When NAND flash is manufactured, TFS4 is written on NAND flash by using ROM write.
Thus, fdisk is used only when development. You can test if the partition is created, deleted,
or modified on test shell. TFS4 fdisk is basically same as Linux fdisk.

In case of MMC(or HSMMC) Device, Windows OS supports only one partition. If you
create more than one partition, only the first partition is only detected.

1. Enter “tfs4_fdisk {device}” on your host terminal as follows.

TFS4 v1.5.0 Porting Guide 107

Figure 5-9. Perform tfs4_fdisk

2. void tfs4_do_fdisk(t_int8 *psDevice) is executed in test shell

3. Enter “m” to see the fdisk command.

Figure 5-10. fdisk Commands

TFS4 v1.5.0 Porting Guide 108

4. The following picture shows that a partition is created by using fdisk commands.

Figure 5-11. See the Created Partition

After the partition is created, enter “q” to quit the fdisk setting.

5.3.4. Format a volume
TFS4_format should be performed to format TFS4

Enter “tfs4_format {Device} {FilesystemType} {ClusterSize}” on the test shell.

Figure 5-12. Perform tfs4_format

TFS4 v1.5.0 Porting Guide 109

tfs4_format is executed in test shell and you can see the printed message that writing FAT
table is finished on NAND device.

5.3.5. Mount a volume
TFS4_mount should be done for TFS4 to use NAND device. If tfs4_format is not
performed, tfs4_mount returns fail.

Enter “tfs4_mount {LogicalDevice} {TargetVolume} {Filesystem} {flag}” on the test
shell.

Figure 5-13. Perform tfs4_mount

tfs4_mount is executed in test shell and you can see the printed message on the test shell.

TFS4 v1.5.0 Porting Guide 110

5.3.6. Case test & Stress test
There is a case test command that performs tfs4 open, read, or write function test over and
over. Case test is a collection of commands that performs basic functionalities of TFS4.

If case test is performed successfully, TFS4 is normally ported and running on target with
no errors. Case test takes about 10 minutes. If the error occurs, the test shell shows the
error messages and stops running.

The following screen shows that case test is executed.

TFS4 v1.5.0 Porting Guide 111

Figure 5-14. Perform a Case Test

A stress test is a random test of TFS4 for file and directory.

Enter “stress {test count}” on the test shell.

TFS4 v1.5.0 Porting Guide 112

Figure 5-15. Perform a Stress Test

TFS4 v1.5.0 Porting Guide 113

Appendix
Appendix covers the useful matters when you follow the TFS4 porting procedure. Also, it
may help application programmers to develop an application based on TFS4. Appendix
includes the seven sections as follows.

Figure 5-16. Contents of Appendix

You can see the above sections and go to the interested one.

TFS4 v1.5.0 Porting Guide 114

I. About FAT
Following explains the overview, architecture and brief features of FAT.

 Overview

FAT is an abbreviation of File Allocate Table. This is a place where the location
information of clusters1 is stored.

TFS4 is compatible with FAT. Thus, the basic architecture of FAT is similar to that of
TFS4. Following explains the architecture of FAT to help you understand the general
architecture of TFS4.

Volume is a part of one physical disk. For example, it can be a “c drive” or “d drive” of
your computer. A filesystem is used after formatted as one filesystem for one volume. At
the space that is assigned as a volume, filesystem uses the space from the first sector to the
last sector.

Following shows how FAT filesystem uses the first sector to the last sector, according to
the FAT322 standard.
This is the basic structure.

Boot Sector

FAT 1

FAT 2
Duplicate

Boot Sector

File System Info

Additional
Program code

Backup Boot Sector

File System Info

Additional
Program code

Backup

0th sector of Volume

End sector of Volume

......

File
and

Directory
Data Region

Root Direcotry

Figure 5-17. The Organization of FAT filesystem on Volume

FAT32 consists of following 4 regions.
- Reserved Region: Boot Sector and Additional block (FAT32 specification)
- FAT Region
- Root Directory Region
- File and Directory Data Region

Following explains each region in detail.

1 Cluster is a logical unit for storing files into HDD.
2 FAT32 holds a cluster with the minimum size 1KB to the maximum size 4KB.

TFS4 v1.5.0 Porting Guide 115

 Reserved Region

First region, Reserved Region is an additional block that is only used in a Boot Sector and
FAT32. It is composed of Filesystem Information Block, Additional program code block,
and Backup space. This document introduces the information about Boot Sector.

Note
For more information about Filesystem Information Block, refer to the Microsoft
Extensible Firmware Initiative FAT32 File System Specification, Microsoft Corporation,
Version 1.03, December 6, 2000.

Boot Sector is composed of 512 bytes. These 512 bytes are classified as five, which is as
follows.

Byte Offset Field Length Field Name

0x00 3 bytes Jump Instruction

0x03 LONGLONG OEM ID

0x0B 53 bytes BPB

0x40 26 bytes Extended BPB

0x5A 420bytes Bootstrap Code

0x01FE WORD End of Sector Marker

Figure 5-18. Boot Sector Structure

Jump Instruction, OEM ID, and Bootstrap Code are the codes that are used when a volume
is able to boot. End of Sector Marker is a unique feature of FAT, which can confirm the
last part of one sector. To access a volume, filesystem uses the record of Bios Parameter
Block (BPB) as a standard. BPB has a standard value that fills a volume.

Followings are the example for the value:
Byte numbers of one sector, sector numbers that are allocated to a Reserved Region,
specific value for Filesystem type(FAT16/32), Media descriptor, etc.

BPB uses total 79 bytes. Following shows the detailed structure.

TFS4 v1.5.0 Porting Guide 116

Byte Offset Field Length Sample Value Field Name

0x0B WORD 0x0002 Byte Per Sector

0x0D BYTE 0x02 Sectors Per Cluster

0x0E WORD 0x2000 Reserved Sectors

0x10 BYTE 0x02 Number of FATs

0x11 WORD 0x0000 Root Entries (FAT12/FAT16 only)

0x13 WORD 0x0000 Small Sectors (FAT12/FAT16 only)

0x15 BYTE 0xF8 Media Descriptor

0x16 WORD 0x0000 Sectors Per FAT (FAT12/FAT16 only)

0x18 WORD 0x3F00 Sectors Per Track

0x1A WORD 0xFF00 Number of Heads

0x1C DWORD 0x00000000 Hidded Sectors

0x20 DWORD 0x00F00300 Large Sectors

0x24 DWORD 0xE9030000 Sectors Per FAT (FAT32 only)

0x28 WORD 0x0000 Extended Flags (FAT32 only)

0x2A WORD 0x0000 Filesystem Version (FAT32 only)

0x2C DWORD 0x02000000 Root Cluster Number (FAT32 only)

0x30 WORD 0x0100 FSInfo Sector Number (FAT32 only)

0x32 WORD 0x0600 Backup Boot Sector (FAT32 only)

0x36 12 bytes All zero Reserved (FAT32 only)
0x40 BYTE 0x00 Physical Drive Number

0x41 BYTE 0x01 Reserved

0x42 BYTE 0x29 Extended Boot Signature

0x43 DWORD 0xE17B9822 Volume Serial Number

0x47 11 bytes “NO NAME” Volume Label
Figure 5-19. BPB Structure

BPB information is used for acquiring the specific values to create/delete/change files or
directories. For example, to crate one directory, following information is needed;
the information about FAT Region and Root directory
the information for the first Data Sector.

To organize this information, each field of BPB is used.

TFS4 v1.5.0 Porting Guide 117

 FAT Region

The number of sectors that can be allocated to the FAT starting sector and one FAT is
obtained through BPB. Generally, FAT is used with a mirror. Each entry of FAT
corresponds to the available cluster numbers as 1:1. If a FAT type is FAT16, the entry
uses 16-bit unit. Also, if a FAT type is FAT32, the entry uses 32-bit unit.

Each entry contains specific values, which can be classified as follows:
Reserved Entry Value
Media Descriptor:
-. FAT16: 0xFFF8
-. FAT32: 0x0FFFFFF8
EOC Mark:
-. FAT16: 0xFFFF
-. FAT32: 0x0FFFFFFF
Special Entry Value
Bad Cluster
-. FAT16: 0xFFF7
-. FAT32: 0x0FFFFFF7
Free Cluster
-. FAT16: 0x0000
-. FAT32: 0x00000000
Normal Entry Value
: Generally, each entry has an EOC value that notifies the last of a cluster chain. Or, it has
a cluster number of the next chain.

 Root Directory Region

Root Directory Region only exists in FAT16. At FAT32, a Root Directory is also used
after allocated with a cluster number. Root Directory Region exists before the starting
point of the first data sector.

It can access from the starting sector number to the last sector number. The last sector
number is calculated by the number of directory entries that Root Directory of BPB can
possess.

For more information for directory entries, refer to the next contents.

 File and Directory Data Region

Generally, a file has a data with a byte unit. However, directory has a data with a 32 bytes
unit, a directory entry, to indicate lower directories and files.
The size of every file and directory can be changed. In other words, the number of clusters
can be increased or decreased. At this point, FAT Region cluster chain is formed.

For example, this is a file named “File.txt.” Following shows how to form a cluster chain
in a FAT Region.

TFS4 v1.5.0 Porting Guide 118

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00000000h : F8 FF FF FF FF FF FF FF FF FF FF 0F 04 00 00 00
00000010h : FF FF FF 0F 06 00 00 00 07 00 00 00 08 00 00 00
00000020h : 09 00 00 00 0A 00 00 00 FF FF FF 0F 00 00 00 00

...
000001F0h : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Figure 5-20. Cluster chain on FAT

This picture shows the first sector of a real FAT Region. The red part is a cluster chain that
is allocated to a “File.txt” to explain an example.

Next picture explains the procedure of finding out a cluster chain.

Media Descriptor EOC Mark 0x0FFFFFFF 0x00000004

0x0FFFFFFF 0x00000006 0x00000007 0x00000008

… … … …

File.txt
0x00000005

…
0x00000009 0x0000000A 0x0FFFFFFF …

Figure 5-21. Cluster chain of the File.txt file

① “File.txt” starts from the 5th cluster. You can know this through a field that represents a
first cluster number of a directory entry in “File.txt.”
② The FAT entry that corresponds to the 5th cluster in 1:1 at FAT region, is recorded as
0x00000006.
③ Find a FAT entry that meets 1:1 to the value from a FAT entry.
④ If the read FAT entry value is EOC value, it ends. If not, the ③ is repeated.

This procedure is applied to both a file and directory.

Directory entry includes the information for files or directories that belong to the current
directory. The type of directory entry is classified as a short directory entry and long
directory entry. According to the length of a file name, a short name has a short directory
entry and a long name has a combination of a short directory entry and long directory entry.
Following picture displays the structure of a short directory entry and long directory entry.

TFS4 v1.5.0 Porting Guide 119

Byte Offset Field Length Field Name

0x00 8 bytes Filename

0x08 3 bytes Filename extension

0x0B BYTE Attribute byte (Bit coded)

0x0C BYTE Reserved for use by Windows NT

0x0D BYTE Millisecond stamp at file creation time

0x0E WORD Time file was created

0x10 WORD Date file was created

0x0E WORD Last Access date

0x10 WORD High word of the starting cluster number

0x0E WORD Time of last write

0x10 WORD Date of last write

0x0E WORD Low word of the starting cluster number

0x10 DWORD File Size as 32-bit DWORD
Figure 5-22. Short Directory Entry Structure

Byte Offset Field Length Field Name

0x00 BYTE Order of directory entry

0x01 10 bytes Character 1~5 of the long-name

0x0B BYTE Attribute byte (Bit coded)

0x0C BYTE

0x0D BYTE

0x0E 12 bytes Character 6~11 of the long-name

0x1A WORD Low word of the starting cluster number

0x1C DWORD Character 12~13 of the long-name

Type

Checksum of name in short dentry

Figure 5-23. Long Directory Entry Structure

Note
For more information about handling the long name in a file name and each directory entry,
refer to the Microsoft Extensible Firmware Initiative FAT32 File System Specification,
Microsoft Corporation, Version 1.03, December 6, 2000, Long Filename Specification,
Microsoft Corporation, Version 0.5, December 4, 1992.

TFS4 v1.5.0 Porting Guide 120

II. MMC (or HSMMC) Host Device Driver APIs
This section describes MMC(or HSMMC) host device driver API adapted for TFS4
filesystem. The APIs are listed from the next page. The APIs should be provided when you
writes a MMC(or HSMMC) host device driver.

This is the sample APIs of MMC(or HSMMC) host device driver.

t_int32 mmc_init_driver (void)
t_int32 mmc_is_ready (void)
t_int32 mmc_read (t_uint8 *pBuf, t_uint32
uiStartSector, t_uint32 uiNumSectors)
t_int32 mmc_write (t_uint8 *pBuf, t_uint32
uiStartSector, t_uint32 uiNumSectors)
void mmc_get_stat (t_mmc_info* pBuf)

TFS4 v1.5.0 Porting Guide 121

mmc_init_driver

DESCRIPTION

This function initializes MMC(or HSMMC).

SYNTAX

t_int32 mmc_init_driver (void)

PARAMETERS

Parameter Description
void

RETURN VALUE

Return Value Description
0 Success
Less than 0 Failure

REMARKS

This function initializes and enables normal I/O of MMC(or HSMMC). It returns a
negative number on failure. If this function is a success, it makes TRUE when
mmc_is_ready is called.

EXCEPTIONS

EXAMPLE

mmc_init_driver();

SEE ALSO

mmc_is_ready

TFS4 v1.5.0 Porting Guide 122

mmc_is_ready

DESCRIPTION

This function checks whether MMC(or HSMMC) initialization is fail or success.

SYNTAX

t_int32 mmc_is_ready(void)

PARAMETERS

Parameter Description
void

RETURN VALUE

Return Value Description
1 MMC is initialized successfully
0 MMC initialization failed.

REMARKS

This function confirms MMC(or HSMMC) initialization. This function can not be used to
know if MMC(or HSMMC) is inserted or ejected.

EXCEPTIONS

EXAMPLE

mmc_is_ready();

SEE ALSO

mmc_init_driver

TFS4 v1.5.0 Porting Guide 123

mmc_read

DESCRIPTION

This function reads a data sector from MMC(or HSMMC) .

SYNTAX

t_int32 mmc_read(t_uint8 *pBuf, t_uint32 uiStartSector, t_uint32
uiNumSectors)

PARAMETERS

Parameter Description
pBuf Buffer pointer to store data into
uiStartSector Starting sector number for data read operation
uiNumSectors The number of sectors to read

RETURN VALUE

Return Value Description
0 Success
Negative Failure

REMARKS

This function has to send the requested data from TFS4 File System to the buffer. It
performs I/O whose transfer unit is a sector (512 bytes), takes the arguments, the starting
sector number and the number of sector to read, and copies data. Filesystem guarantees
enough memory size for pBuf by the parameter and does not support alignment of buffer
pointer. Thus, the alignment should be handled in the mmc_read function, if necessary.

EXCEPTIONS

EXAMPLE

mmc_read(pBuf, 0, 1024);

SEE ALSO

mmc_write

TFS4 v1.5.0 Porting Guide 124

mmc_write

DESCRIPTION

This function writes a sector of data on MMC(or HSMMC).

SYNTAX

t_int32 mmc_write(t_uint8 *pBuf, t_uint32 uiStartSector,
t_uint32 uiNumSectors)

PARAMETERS

Parameter Description
pBuf Starting pointer of buffer storing data to write
uiStartSector Starting sector to write data
uiNumSectors The number of sector to write data

RETURN VALUE

Return Value Description
0 Success
Less than 0 Failure

REMARKS

This function has to write the requested data from TFS4 File System on a MMC(or
HSMMC) sector. It performs I/O whose transfer unit is a sector (512 byte), takes the
arguments, the starting sector number and the number of sector to write, and writes data on
MMC. It does not guarantee alignment of buffer pointer. Thus, the alignment should be
handled in the mmc_write function, if necessary.

EXCEPTIONS

EXAMPLE

mmc_write(pBuf, 0, 1024);

SEE ALSO

mmc_read

TFS4 v1.5.0 Porting Guide 125

mmc_get_stat

DESCRIPTION

This function retrieves the information of MMC(or HSMMC) device.

SYNTAX

void mmc_get_stat(t_mmc_info* pBuf)

PARAMETERS

Parameter Description
pBuf Buffer pointer where the information of t_mmc_info

type is stored.

RETURN VALUE

Return Value Description
void

REMARKS

TFS4 filesystem has to send the physical information and other additional information
to format MMC(or HSMMC). In case that the device driver gets a request from TFS4 file
system, this function has to read the MMC(or HSMMC) register value, process, and pass it
over as the defined in t_mmc_info type.

bSectorPerTrack, bTracks, and wCylinders are geometric values and do not exist in
MMC(or HSMMC). They are calculated by using _get_geometrics() in the
mmc_command.c file. Refer to sample MMC host device driver.

EXCEPTIONS

EXAMPLE

mmc_get_stat(pBuf);

SEE ALSO

TFS4 v1.5.0 Porting Guide 126

III. Data Structures
Data structure for application programmer is defined in tfs4_types.h. You can refer to
tfs4_types_internal.h for TFS4 Porting.

The following is the data types in tfs4_types.h for application programmer.

Table 23. Data Types of TFS4

typedef unsigned char t_uint8;
typedef char t_int8;
typedef short int t_int16;
typedef unsigned short int t_uint16;
typedef int t_int32;
typedef unsigned int t_uint32;

typedef t_int16 ssize_t;
typedef t_uint32 mode_t;
typedef t_int32 off_t;

typedef struct
{
 t_uint8 sDir_Name[11];
 t_uint8 cDir_Attr;
 t_uint8 cDir_NTRes;
 t_uint8 cDir_CrtTimeTenth;
 t_uint16 wDir_CrtTime;
 t_uint16 wDir_CrtDate;
 t_uint16 wDir_LstAccDate;
 t_uint16 wDir_FstClusHi;
 t_uint16 wDir_WrtTime;
 t_uint16 wDir_WrtDate;
 t_uint16 wDir_FstClusLo;
 t_uint32 dwDir_FileSize;
} t_dir_entry;

typedef struct
{
 t_uint32 st_mode; /* file mode */
 t_uint32 st_ino; /* file serial number */
 t_int16 st_dev; /* ID of device containing this file

*/
 t_int16 st_dummy; /* dummy entry */
 t_uint32 st_size; /* the file size in bytes */
 t_uint32 st_atime; /* time of last access */
 t_uint32 st_mtime; /* time of last data modification */
 t_uint32 st_ctime; /* time of last status change */
} t_stat;

typedef struct
{
 t_int32 f_type; /* type of filesystem */
 t_int32 f_bsize; /* optimal transfer block size,

TFS4 v1.5.0 Porting Guide 127

cluster size*/
 t_int32 f_bsizebits; /* block size in bits */
 t_int32 f_blocks; /* total data blocks in file system,

total cluster count */
 t_int32 f_bfree; /* free blocks in fs, free cluster

count */
 t_int32 f_bavail; /* free blocks avail to non-superuser,

equal to f_bfree */
 t_int32 f_files; /* total file nodes in file system

*/
 t_int32 f_ffree; /* free file nodes in fs */
 t_int32 f_fsid; /* file system id */
 t_int32 f_maxfilesize; /* maximum file size */
 t_int16 f_namelen; /* maximum length of filenames */
 t_uint8 f_dummy[2]; /* dummy for alignment */
} t_statfs;

typedef struct
{
 t_int8 d_name[512];
} t_dirent;

// directory stream class
typedef struct
{
 t_int32 fd; /* fd for the open directory */
 t_dirent dent; /* directory entry buffer */
 t_int16 offset; /* current offset */
 t_int16 index; /* internal data */
 t_uint8 dummy[2]; /* for alignment */
} t_DIR;

TFS4 v1.5.0 Porting Guide 128

IV. Library Functions
For information on TFS4 library functions, refer to TFS4 programmer’s guide.

TFS4 v1.5.0 Porting Guide 129

V. Header Files
This section describes the TFS4 header files. The TFS4 header files can be classified as
follows:

- Header files for TFS4 porting
- Header files that an application programmer has to include

Here we assume that TFS4 is ported to OS completely and an application programmer uses
a TFS4 in a library; an application programmer may use the TFS4 API using the structure.
The structure is in the TFS4 header file.

This is the list of header files for application programmer. They can include it to their
application.

- tfs4_api.h
- tfs4_config_const.h
- t fs4_config.h
- tfs4_errno.h
- tfs4_global.h
- tfs4_types.h

TFS4 v1.5.0 Porting Guide 130

VI. Error Codes
Following represents the TFS4 error codes and description.

Table 24. Error Codes List

Error Code Error
Number

Error Description

TFS4_OK -0x00000000 not error
TFS4_EPROG -0x00000001 programming error
TFS4_ENOMEDIA -0x00000002 there is no media
TFS4_EMEDIAFAIL -0x00000003 media is damaged
TFS4_ENOMEM -0x00000004 no memory
TFS4_EIO -0x00000005 I/O error
TFS4_EINVALID -0x00000006 Invalid argument
TFS4_ENOSUPPORT -0x00000007 Unsupported operation request
TFS4_EPANIC -0x00000008 panic, un-recoverable error
TFS4_ENODEV -0x00000009 no such device error
TFS4_EBUSY -0x0000000A the device is busy
TFS4_EINVALIDPATH -0x0000000B invalid PATH
TFS4_EBADF -0x0000000C bad file descriptor
TFS4_EFAULT -0x0000000D invalid path pointer
TFS4_EEXIST -0x0000000E file or directory already exists
TFS4_ENOENT -0x0000000F no such file or directory
TFS4_EACCESS -0x00000010 invalid access
TFS4_EINVAL -0x00000011 invalid rename path
TFS4_ENAMETOOLONG -0x00000012 too long path
TFS4_EISDIR -0x00000013 invalid operation try for a directory
TFS4_EISFILE -0x00000014 invalid operation try for a file
TFS4_EEJECT -0x00000015 media is ejected
TFS4_ENOTDIR -0x00000016 not directory
TFS4_ENFILE -0x00000017 too many files are currently open in

the system
TFS4_EROFS -0x00000018 write access to read only volume
TFS4_ENOTEMPTY -0x00000019 not empty directory
TFS4_EXDEV -0x0000001A volume is different
TFS4_ENOSPC -0x0000001B no room at the device
TFS4_ELOGDIR -0x0000001C directory with the same name to the

log file exists
 user should delete it and try

again
TFS4_ELOG_CREAT -0x0000001D failed to create log file
TFS4_ELOG_RECOVERY -0x0000001E
TFS4_ETOOLONG -0x0000001F file/directory name is too long
TFS4_EFAT -0x00000020 problem in FAT chain
TFS4_EIO_SOFT -0x00000021 FTL ECC error
TFS4_EPDEV_INIT -0x00000022 XSR STL_Init() error
TFS4_EPDEV_OPEN -0x00000023 XSR STL_Open() error
TFS4_EINIT_ALREADY -0x00000024 TFS4 already initialized
TFS4_EINIT -0x00000025 TFS4 is not initialized yet.

TFS4 v1.5.0 Porting Guide 131

VII. About TFS4 Integration Test Shell
TFS4 provides a test shell, so you can perform a TFS4 integration test on your host while
TFS4 is running on your target. The following picture shows the directory that includes a
shell source file, tfs4_integration_test.c.

Figure 5-24. Directory Path of tfs4_integration_test.c

The directory path of the test shell is “C:\TFS4\TEST\INTEGRATION” The directory
includes two file: a tfs4_integration_test.c and tfs4_integration_test.h

To use this shell, you first have to set a shell memory to use. You create a task and make
tf4_main() is called from the task.

The stack and heap size for the task is as follows.

Table 25. Stack and Heap size

Memory The least Memory Usage

Stack 60 KB

Heap 4 MB

As you see, a heap size is a little large, because a high capacity of buffer is allocated and
tested for write operation.

This shell has a lot of commands to test the basic features of TFS4. Use a “?” command to
see a shell help menu.

You can configure the shell memory usage and message print setting through UART in the
tfs4_integration_test.h file.

TFS4 v1.5.0 Porting Guide 132

This is the screen that TFS4 is initialized.

Figure 5-25. Test Shell Screen

To see a help menu, input “?”, “h”, or “help” on your test shell.

It is created for TFS4 API test, and you can execute a simple TFS4 API.

For example, if you try to initialize TFS4, you can enter “tfs4_init” on the shell. For TFS4
format, you can enter “tfs4_format /dev/nf0 fat16 8.”; refer to the help menu for command
input order.

Most API can be used as listed in TFS4 programmer’s guide. But, you cannot test a
tfs4_read or tfs4_write, because the buffer cannot be specified for those operations.

If you enter “tfs4_read 0 1024”, the test shell reads 1024 bytes of data from file which fd is
0, and prints it.

The following table lists the commands in the test shell.

Table 26. Test Shell Command

Command Description
quit, q, exit Finish the test
?, help, h Print Help
tfs4_init Initialize TFS4 File System
tfs4_termiante Terminate TFS4 File System
tfs4_pdev_reg Register a physical device
tfs4_pdev_unreg Un-register a physical device
tfs4_mount Mount Volume

Usage) tfs4_mount {Logical Device Name} {Target}
{Filesystem} {flag}

tfs4_umount Un-Mount Volume
Usage) tfs4_umount {VolumeName}

tfs4_umount2 Un-mount volume with flag
Usage) tfs4_umount2 {VolumeName} {flag}

tfs4_vm_mount_mmc Mount MMC
Usage) tfs4_vm_mount_mmc

tfs4_statfs get volume status

TFS4 v1.5.0 Porting Guide 133

Usage) tfs4_statfs {VolumeName}
tfs4_format format file system

Usage) tfs4_format {Device} {FilesystemType} {ClusterSize}
ex) format /dev/nf0 FAT16 4",

tfs4_fdisk fdisk utility
Usage) fdisk {device}
Ex) fdisk /dev/nf

tfs4_ioctl Run tfs4_ioctl
ex) tfs4_ioctl /dev/mmc enuIOCTL_MMC_GET_INFO

tfs4_opendir open a directory
Usage) tfs4_opendir {path}

tfs4_closedir close a directory
Usage) tfs4_opendir {path}

tfs4_mkdir make a directory
Usage) tfs4_mkdir {path} {mode}

tfs4_rmdir remove a directory
Usage) tfs4_rmdir {path}

tfs4_readdir read directory entry
Usage) tfs4_readdir {path}

tfs4_rewinddir rewind directory entry
Usage) tfs4_rewinddir {path}

print_open_dir print open directory list

tfs4_open open a file
Usage) tfs4_open {path} {flag}

tfs4_close close a file
Usage) tfs4_close {fd}

tfs4_read read file
Usage) tfs4_read {fd} {byte}

tfs4_write write to file
Usage) tfs4_write {fd} {byte}

tfs4_create create a file
Usage) tfs4_create {path} {mode}

tfs4_rename change file name
Usage) tfs4_rename {oldpath} {newpath}

tfs4_truncate truncate a file
Usage) tfs4_truncate {path} {size}

tfs4_ftruncate: truncate a file using FD
Usage) tfs4_ftruncate {fd} {size}

tfs4_stat get file stat
Usage) tfs4_stat {path}

tfs4_fstat get file stat using FD
Usage) tfs4_fstat {fd}

tfs4_unlink unlink file
Usage) tfs4_unlink {path}

tfs4_feof end of file check
Usage) tfs4_feof {fd}

tfs4_ftell get file pointer
Usage) tfs4_ftell {fd}"

tfs4_lseek set file pointer
Usage) tfs4_lseek {fd} {offset} {whence}

tfs4_fsynk sync file
Usage) tfs4_fsync {fd}

tfs4_sync sync device

TFS4 v1.5.0 Porting Guide 134

Usage) tfs4_sync {device name}
tfs4_access file access check

Usage) tfs4_access {path} {mode}
print_open_file print open file name & FD, alias 'pof'

Usage) pof
close_file close a file, alias 'closefile'

Usage) closefile {path}
read_file read file, alias 'readfile’

Usage) readfile {path} {byte}
write_file write file, alias 'writefile’

Usage) writefiled {path} {byte}
tfs4_backup Make a copy of file system metadata.

Usage) backup {volume} {rescue file path} {options} {buffer
size}

tfs4_restore Restore a file system to the old state when the rescue file had
been created.
Usage) restore {device name} {rescue file path} {options}
{buffer size}

rs read sector
Usage) rs {device_name} {sec_no}
device_name : /dev/nf, /def/mmc

stl_format format stl
bml_format format BML
casetest case test

usage) case {type} {caseNum}
stress random stress test

usage) stress {count}
dir print dir and files

usage) dir {path}
deltree erase directory tree

usage) deltree {path}
set_test_vol set test volume

usage) set_test_vol {volume_name}
ex) set_test_vol /e/

set_rand_seed set random seed
usage) set_rand_seed {value}

perf performance test (Sequential test)
usage) perf {mode} {test_count}
mode) tfs4_read, tfs4_write, tfs4_readwrite
mode) xsr_read, xsr_write, xsr_readwrite, all

tfs4_timer_expire() should be called once a 0.01 sec. by using
the timer interrupt for performing it exactly.

VIII. Code Pages
 Code Page & UNICODE
 949 : KOREAN
 437 : US
 850 : Multilingual Latin I

TFS4 v1.5.0 Porting Guide 135

 852 : Multilingual Latin II
 855 : Cyrillic
 857 : Turkish
 858 : Multilingual Latin I + Euro
 862 : Hebrew
 866 : Russian
 874 : Thai
 932 : Japanese Shift-JIS
 936 : Simplified Chinese GBK
 949 : Korean
 950 : Traditional Chinese Big5
 1258 : Vietnam <== does not support now.
 1250 : Central Europe
 1251 : Central Europe
 1251 : Cyrillic
 1252 : Latin I
 1253 : Greek
 1254 : Turkish
 1255 : Hebrew
 1256 : Arabic
 1257 : Baltic
 1258 : Vietnam
 28591 : IS08859_1 Latin 1
 28592 : IS08859_2 Latin 2
 28593 : IS08859_3 Latin 3
 28594 : IS08859_4 Baltic
 28595 : IS08859_5 Cyrillic
 28596 : IS08859_6 Arabic
 28597 : IS08859_7 Greek
 28598 : IS08859_8 Hebrew
 28599 : IS08859_9 Turkish
 28605 : IS08859_15 Latin 9

 reference page :
 http://www.microsoft.com/globaldev/reference/cphome.mspx

YOU CAN NOT USE CODEPAGE 0 and 1, which are undefined code page number.

Language Locale ANSI
CodePage

OEM
CodePage

Afrikaans Afrikaans 1252 850
Albanian Albanian 1250 852
Arabic Arabic (Algeria) 1256 720
Arabic Arabic (Bahrain) 1256 720
Arabic Arabic (Egypt) 1256 720
Arabic Arabic (Iraq) 1256 720
Arabic Arabic (Jordan) 1256 720
Arabic Arabic (Kuwait) 1256 720
Arabic Arabic (Lebanon) 1256 720

TFS4 v1.5.0 Porting Guide 136

Arabic Arabic (Libya) 1256 720
Arabic Arabic (Morocco) 1256 720
Arabic Arabic (Oman) 1256 720
Arabic Arabic (Qatar) 1256 720
Arabic Arabic (Saudi Arabia) 1256 720
Arabic Arabic (Syria) 1256 720
Arabic Arabic (Tunisia) 1256 720
Arabic Arabic (U.A.E.) 1256 720
Arabic Arabic (Yemen) 1256 720

Armenian Armenian 0 1
Azeri (Cyrillic) Azeri (Cyrillic) 1251 866
Azeri (Latin) Azeri (Latin) 1254 857

Basque Basque 1252 850
Belarusian Belarusian 1251 866
Bulgarian Bulgarian 1251 866
Catalan Catalan 1252 850
Chinese Chinese (Hong Kong S.A.R.) 950 950
Chinese Chinese (Macau S.A.R.) 950 950
Chinese Chinese (PRC) 936 936
Chinese Chinese (Singapore) 936 936
Chinese Chinese (Taiwan) 950 950
Croatian Croatian 1250 852
Czech Czech 1250 852
Danish Danish 1252 850
Divehi Divehi 0 1
Dutch Dutch (Belgium) 1252 850
Dutch Dutch (Netherlands) 1252 850

English English (Australia) 1252 850
English English (Belize) 1252 850
English English (Canada) 1252 850
English English (Caribbean) 1252 850
English English (Ireland) 1252 850
English English (Jamaica) 1252 850
English English (New Zealand) 1252 850
English English (Philippines) 1252 437
English English (South Africa) 1252 437
English English (Trinidad) 1252 850
English English (United Kingdom) 1252 850
English English (United States) 1252 437
English English (Zimbabwe) 1252 437
Estonian Estonian 1257 775
Faroese Faroese 1252 850

Farsi Farsi 1256 720
Finnish Finnish 1252 850

TFS4 v1.5.0 Porting Guide 137

French French (Belgium) 1252 850
French French (Canada) 1252 850
French French (France) 1252 850
French French (Luxembourg) 1252 850
French French (Monaco) 1252 850
French French (Switzerland) 1252 850
FYRO Macedonian FYRO Macedonian 1251 866

Galician Galician 1252 850
Georgian Georgian 0 1
German German (Austria) 1252 850
German German (Germany) 1252 850
German German (Liechtenstein) 1252 850
German German (Luxembourg) 1252 850
German German (Switzerland) 1252 850
Greek Greek 1253 737

Gujarati Gujarati 0 1
Hebrew Hebrew 1255 862
Hindi Hindi 0 1

Hungarian Hungarian 1250 852
Icelandic Icelandic 1252 850

Indonesian Indonesian 1252 850
Italian Italian (Italy) 1252 850
Italian Italian (Switzerland) 1252 850

Japanese Japanese 932 932
Kannada Kannada 0 1
Kazakh Kazakh 1251 866
Konkani Konkani 0 1
Korean Korean 949 949
Kyrgyz Kyrgyz (Cyrillic) 1251 866
Latvian Latvian 1257 775

Lithuanian Lithuanian 1257 775
Malay Malay (Brunei Darussalam) 1252 850
Malay Malay (Malaysia) 1252 850

Marathi Marathi 0 1
Mongolian Mongolian (Cyrillic) 1251 866

Norwegian (Bokmal) Norwegian (Bokmal) 1252 850
Norwegian (Nynorsk) Norwegian (Nynorsk) 1252 850

Polish Polish 1250 852
Portuguese Portuguese (Brazil) 1252 850
Portuguese Portuguese (Portugal) 1252 850

Punjabi Punjabi 0 1
Romanian Romanian 1250 852
Russian Russian 1251 866
Sanskrit Sanskrit 0 1

TFS4 v1.5.0 Porting Guide 138

Serbian (Cyrillic) Serbian (Cyrillic) 1251 855
Serbian (Latin) Serbian (Latin) 1250 852

Slovak Slovak 1250 852
Slovenian Slovenian 1250 852
Spanish Spanish (Argentina) 1252 850
Spanish Spanish (Bolivia) 1252 850
Spanish Spanish (Chile) 1252 850
Spanish Spanish (Colombia) 1252 850
Spanish Spanish (Costa Rica) 1252 850
Spanish Spanish (Dominican Republic) 1252 850
Spanish Spanish (Ecuador) 1252 850
Spanish Spanish (El Salvador) 1252 850
Spanish Spanish (Guatemala) 1252 850
Spanish Spanish (Honduras) 1252 850
Spanish Spanish (International Sort) 1252 850
Spanish Spanish (Mexico) 1252 850
Spanish Spanish (Nicaragua) 1252 850
Spanish Spanish (Panama) 1252 850
Spanish Spanish (Paraguay) 1252 850
Spanish Spanish (Peru) 1252 850
Spanish Spanish (Puerto Rico) 1252 850
Spanish Spanish (Traditional Sort) 1252 850
Spanish Spanish (Uruguay) 1252 850
Spanish Spanish (Venezuela) 1252 850
Swahili Swahili 1252 437
Swedish Swedish 1252 850
Swedish Swedish (Finland) 1252 850
Syriac Syriac 0 1
Tamil Tamil 0 1
Tatar Tatar 1251 866

Telugu Telugu 0 1
Thai Thai 874 874

Turkish Turkish 1254 857
Ukrainian Ukrainian 1251 866

Urdu Urdu 1256 720
Uzbek (Cyrillic) Uzbek (Cyrillic) 1251 866
Uzbek (Latin) Uzbek (Latin) 1254 857
Vietnamese Vietnamese 1258 1258

TFS4 v1.5.0 Porting Guide 139

Glossary

TFS4 v1.5.0 Porting Guide 140

Index

