78000 ‘
MICROPROCESSOR
FAMILY

' SGS-THOMSON

ARVICROEBEGIRONIES

/8000
MICROPROCESSOR
FAMILY

PROGRAMMING

15t EDITION

JUNE 1990

CONTENTS

Instruction Set e 1
IntrodUuctiont 1
Functional Summaryo e 1
Load and Exchange Instructionsttt 1
Arithmetic Instructionso e 2
Logical Instructions i 3
Program Control Instructionsttt e 3
Bit Manipulation Instructions e e 4
Rotate and Shift Instructions i 5
Block Transfer And String Manipulation i 5
Input/Output Instructionst e e 6
CPU Control Instructionscoiiuii it e e 7
Extended Instructions it e 7
Processor Flagso i i, B
Condition Codes .« .o v ettt e 9
Instruction Interrupts and Traps . .o v vt i 9
Notation and Binary Encodingt e 10
78000 Instruction Descriptions and Formatscoiiiiiinniin... 13
EPA Instruction Templatest 169

Programmers Quick Referencecciiiiiiiiiiiiiiiiiiiiiiiiiiieiiiaan, 173

Instruction Set

Introduction

This Manual describes the instruction set of
the Z8000. An overview of the instruction set is
presented first, in which the instructions are
divided into ten functional groups. The
instructions in each group are listed, followed
by a summary description of the instructions.
Significant characteristics shared by the
instructions in the group, such as the available
addressing modes, flags affected, or inter-
ruptibility, are described. Unusual instructions
or features that are not typical of predecessor
microprocessors are pointed out.

Following the functional summary of the
instruction set, flags and condition codes are

discussed in relation to the instruction set. This
is followed by a section discussing interrupt-

ibility of instructions and a description of

traps. The last part of this chapter consists of a
detailed description of each Z8000 instruction,
listed in alphabetical order. This section is
intended to be used as a reference by Z8000
programmers. The entry for each instruction
includes a description of the instruction,
addressing modes, assembly language mne-
monics, instruction formats, execution times:
and simple examples illustrating the use of the
instruction.

Functional Summary

This section presents an overview of the
78000 instructions. For this purpose, the
instructions may be divided into ten functional
groups:

Load and Exchange

Arithmetic

Logical

Program Control

Bit Manipulation

Rotate and Shift

Block Transfer and String Manipulation
Input/Output

CPU Control

Extended Instructions

The Load and Exchange group includes.a
variety of instructions that provide for move-
ment of data between registers, memory, and
the program itself (i.e., immediate data). These
instructions are supported with the widest
range of addressing modes, including the Base
(BA) and the Base Index (BX) mode which are
available here only. None of these instructions
affect any of the CPU flags.

The Load and Load Relative instructions
transfer a byte, word, or long word of data
from the source opérand to the destination
operand. A special one-word instruction, LDK,

is also included to handle the frequent require-
ment for loading a small constant (0 to 15) into
a regqister.

Load and Exchange Instructions.

Instruction Operand(s) Name of Instruction
CLR dst Clear

CLRB

EX dst, src Exchange

EXB

LD dst, src Load

LDB

LDL

LDA dst, src Load Address

LDAR dst, src Load Address Relative
LDK dst, src Load Constant

LDM dst, src, num Load Multiple

LDR dst, src Load Relative

LDRB

LDRL

POP dst, src Pop

POPL

PUSH dst, src. Push

PUSHL

These instructions basically provide one of
the following three functions:
m Load a register with data from a register or
a memory location.

Functional Summary (Continued)

m Load a memory location with data from a
register.

m Load a register or a memory location with
immediate data.

The memory location is specified using any
of the addressing modes (IR, DA, X, BA,
BX, RA).

The Clear and Clear Byte instructions can
be used to clear a register or memory location
to zero. While this is functionally equivalent to
a Load Itmediate where the immediate data is
zero, this operation occurs frequently enough
to justily a special instruction that is more
compact and faster.

The Exchange instructions swap the contents
of the source and destination operands.

The Load Multiple instruction provides for
efficient saving and restoring of registers. This
can significantly lower the overhead of pro-
cedure calls and context switches such as
those that occur at interrupts. The instruction
allows any contiguous group of 1 to 16 regis-
ters to be transferred to or from a memory
area, which can be designated using the DA,
IR or X addressing modes. (RO is considered to
follow R15, e.g., one may save R9-R15 and
RO-R3 with a single instruction.)

Stack operations are supported by the
PUSH, PUSHL, POP, and POPL instructions.
Any general-purpose register (or register pair
in segmented mode) may be used as the stack
pointer except RO and RRO. The source
operand for the Push instructions and the
destination operand for the Pop instructions
may be a register or a memory location,
specified by the DA, IR, or X addressing
modes. Immediate data can also be pushed
onto a stack one word at a time. Note that byte
operations are not supported, and the stack
pointer register must contain an-even value
when a stack instruction is executed. This is
consistent with the general restriction of using
even addresses for word and long word
accesses.

The Load Address and Load Address Rela-
tive instructions compute the effective address
for the DA, X, BA, BX and RA modes and
return the value in a register. They are use-
ful for management of complex data structures.

The Arithmetic group consists of instructions
for performing integer arithmetic. The basic

instructions use standard two's complement
binary format and operations. Support is also
provided for implementation of BCD
arithmetic.

Arithmetic Instructions

Instruction Operand(s) Name of Instruction
ADC dst, src Add with Carry
ADCB

ADD dst, src Add

ADDB

ADDL

CP dst, src Compare

CPB

CPL

DAB dst Decimal Adjust
DEC dst, src Decrement
DECB

DIV dst, src Divide

DIVL

EXTS dst Extend Sign
EXTSB

EXTSL

INC dst, src Increment
INCB

MULT dst, src Multiply
MULTL

NEG dst Negate

NEGB

SBC dst, src Subtract with Carry
SBCB

SUB dst, src Subtract

SUBB

SUBL

Most ot the instructions in this group per-
form an operation between a register operand
and a second operand désignated by any: of
the five basic addressing modes, and load the
result into the register.

The arithmetic instructions in general alter
the C, Z, S and P/V flags, which can then be
tested by subsequent conditional jump-instruc-
tions. The P/V flag is used to indicate arith-
metic overflow for these instructions and it is
referred to as the. V (overflow) flag. The byte
version of these instructions generally alters

the D and H flags as well.
The basic integer (binary) operations are

performed on byte, word or long word oper-
ands, although not all operand sizes are sup-
ported by all instructions.. Multiple precision
operations can be implemented in software
using the Add with Carry, (ADC, ADCB),

Functional Summary (Continued)

Subtract with Carry (SBC, SBCB) and Extend
Sign (EXTS, EXTSB, EXTSL) instructions.

BCD operations are not provided directly,
but can be implemented using a binary addi-
tion (ADC, ADCB) or subtraction (SUBB,
SBCB) followed by a decimal adjust instruc-
tion (DAB).

The Multiply and Divide instructions perform
signed two's complement arithmetic on word or
long word operands. The Multiply instruction
(MULT) mutliplies two 16-bit operands and
produces a 32-bit result, which is loaded into
the destination register pair. Similarly, Mult-
iply Long (MULTL) multiplies two 32-bit oper-
ands and produces a 64-bit result, which is
loaded into the destination register quadruple.
An overflow condition is never generated by a
multiply, nor can a true carry be generated.
The carry flag is used instead to indicate
where the product has too many significant bits
to be contained entirely in the low-order half
of the destination.

The Divide instruction (DIV) divides a 32-bit
number in the destination register pair by a
16-bit source operand and loads a 16-bit quo-
tient into the low-order half of the destination
register. A 16-bit remainder is loaded into the
high-order half. Divide Long (DIVL) operates
similarly with a 64-bit destination register
guadruple and a 32-bit source. The overflow
flag is set if the quotient is bigger than the
low-order half of the destination, or if the
source is zero.

Logical Instructions. .

Instruction Operand(s) Name of Instruction
AND dst, src And

ANDB

COM dst Complement
COMB

OR dst, src Or

ORB

TEST dst Test

TESTB

TESTL

XOR dst, src Exclusive Or
XORB

The instructions in this group perform logi-
cal operations on each of the bits of the oper-
ands. The operands may be bytes or words;
logical operations on long word are not sup-
ported (except for TESTL) but are easily imple-

mented with pairs of instructions.

The two-operand instructions, And (AND,
ANDB), Or (OR, ORB) and Exclusive-Or
(XOR,XORB) perform the appropriate logical
operations on corresponding bits of the desti-
nation register and the source operand, which
can be designated by any of four basic add-
ressing modes (R, IR, DA, IM, X). The result is
loaded into the destination register.

Complement (COM, COMB) complements
the bits of the destination operand. Finally,
Test (TEST, TESTB, TESTL) performs the OR
operation between the destination operand and
zero and sets the flags accordingly. The Com-
plement and Test instructions can use four
basic addressing modes to specify the
destination.

The Logical instructions set the Z and S flags
based on the result of the operation. The byte
variants of these instructions also set the Parity
Flag (P/V) if the parity of the result is even,
while the word instructions leave this flag
unchanged. The H and D flags are not affected
by these instructions.

Program Control Instructions.

Instruction Operand(s) Name of Instruction
CALL dst Call Procedure

CALR dst Call Procedure Relative
DINZ r, dst Decrement and Jump if
DBINZ Not Zero

IRET Interrupt Return

JP cc, dst Jump

JR cc, dst Jump Relative

RET cc Return from Procedure
sC src System Call

This group consists of the instructions that
affect the Program Counter (PC) and thereby
control program flow. General-purpose
registers and memory are not altered except
for the processor stack pointer and the pro-
cessor stack, which play a significant role in
procedures and interrupts. (An exception is
Decrement and Jump if Not Zero (DJNZ), which
uses a register as a loop counter.) The flags
-are also preserved except for IRET which
réloads the program status, including the
tlags, from the processor stack.

The Jump (JP) and Jump Relative (JR)
instructions provide a conditional transfer of
control to a new location if the processor flags

Functional Summary (Continued)

statisfy the condition specified in the condition
code field of the instruction. Jump

Relative is'a one-word instruction that will
jump to any instruction within the range -254
to +256 bytes from the current location. Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact to
improve code compactness and efficiency.

Call and Call Relative are used for calling
procedures; the current contents of the PC are
pushed onto the processor stack, and the effec-
tive address indicated by the instruction is
loaded into the PC. The use of a procedure
address stack in this manner allows straight-
forward implementation of nested and recur-
sive procedures. Like Jump Relative, Call
Relative provides a one-word instruction for
calling nearby subroutines. However, a much
larger range, -4092 to + 4098 bytes for CALR
instruction, is provided since subroutine calls
exhibit less locality than normal control
transfers.

Both Jump and Call instructions are
available with the indirect register, indexed

~ and relative address modes in addition to the
direct address mode. These can be useful for
implementing complex control structures such
as dispatch tables.

The Conditional Return instruction is a com-
panion to the Call instruction; if the condition
specified in the instruction is satisfied, it loads
the PC from the stack and pops the stack.

A special instruction, Decrement and Jump
if Not Zero (DINZ, DBINZ), implements the
control part of the basic PASCAL FOR loop in
a one-word instruction.

System Call (SC) is used for controlled
access to facilities provided by the operating
system. It is implemented identically to a trap
or interrupt: the current program status is
pushed onto the system processor stack fol-
lowed by the instruction itself, and a new pro-
gram status is loaded from a dedicated part of
the Program Status Area. An 8-bit immediate
source field in the instruction is ignored by the
CPU hardware. It can be retrieved from the
stack by the software which handles system
calls and interpreted as desired, for example
as an index into a dispatch table to implement
a call to one of the services provided by the
operating system.

Interrupt Return (IRET) is used for returning
from interrupts and traps, including system
calls, to the interrupted routines. This is a
privileged instruction.

Bit Manipulation Instructions

Instruction ~ Operand(s) Name of Instruction
BIT dst, src Bit Test

BITB

RES dst, src Reset Bit

RESB

SET dst, src Set Bit

SETB

TSET dst Test and Set
TSETB :

TCC cc, dst Test condition code
TCCB

The instructions in this group are useful for
manipulating individual bits in registers or
memory. In most computers, this has to be
done using the logical instructions with suit-
able masks, which is neither natural nor
efficient.

~ The Bit Set (SET, SETB) and Bit Reset (RES,
RESB) instructions set or clear a single bit in
the destination byte or word, which can be in
a register or in a memory location specified by
any of the five basic addressing modes. The
particular bit to be manipulated may be spec;j-
fied statically by a value (0 to 7 for byte, O to
15 for word) in the instruction itself or it may
be specified dynamically by the contents of a
register, which could have been computed by
previous instructions. In the latter case, the
destination is restricted to a register. These
instructions leave the flags unaffected. The
companion Bit Test instruction (BIT, BITB)
similarly tests a specified bit and sets the Z flag
according to the state of the bit.

The Test and Set instruction (TSET, TSETB)
is useful in multiprogramming and multipro-
cessing environments. It can be used for
implementing synchronization mechanisms
between processes on the same or differ-
ent CPUs.

Another instruction in this group, Test Con-
dition Code (TCC, TCCB) sets a bit in the des-
tination register based on the state of the flags
as specified by the condition code in the
instruction. This may be used to control sub-
sequent operation of the program after the
flags have been changed by intervening

. Functional Summary (Continued)

instructions. It may also be used by language
compilers for generating boolean values.

Rotate and Shift Instructions.

Instruction Operand(s) Name of Instruction
RL dst, src Rotate Left
RLB
RLC dst, src Rotate Left through
RLCB Carry
RLDB dst, src Rotate Left Digit
RR dst, src Rotate Right
RRB
RRC dst, src Rotate Right through
RRCB Carry
RRDB dst, src Rotate Right Digit
SDA dst, src Shift Dynamic Arithmetic
SDAB
SDAL
SDL dst, src Shift Dynamic Logical
SDLB

~ SDLL
SLA dst, src Shift Left Arithmetic
SLAB
SLAL
SLL dst, src Shift Left Logical
SLLB
SLLL
SRA dst, src Shift Right Arithmetic
SRAB
SRAL |
SRL dst, src Shift Right Logical
SRLB
SRLL

This group contains a rich repertoire of
instructions for shifting and rotating data
registers.

Instructions for shifting arithmetically or

. logically in either direction are available.
Three operand lengths are supported: 8, 16
and 32 bits. The amount of the shift, which
may be any value up to the operand length,
can be specified statically by a field in the
instruction or dynamically by the contents of a
register. The ability to determine the shift
amount dynamically is a useful feature, which
is not available in most minicomputers.

The rotate instructions will rotate the con-
tents of a byte or word register in either direc-
tion by one or two bits; the carry bit can be
included in the rotation. A pair of digit rota-
tion instructions (RLDB, RRDB) are especially
useful in manipulating BCD data.

Block Transfer And String Manipulation
Instructions.

Instruction Operand(s) Name of Instruction

CPD dst, src, r, cc Compare and Decrement

CPDB

CPDRB dst, src, r, cc Compare, Decrement and
Repeat

CPI dst, src, r, cc Compare and Increment

CPIB

CPIR dst, src, r, cc Compare, Increment and

CPIRB Repeat

CPSD dst, src, r, cc Compare String and

CPSDB Decrement

CPSDR dst, src, r, cc Compare String,

CPSDRB Dgcrement and Repeat

CPSI dst, src, r, cc Compare String and

CPSIB Increment

CPSIR dst, src, r, cc Compare String,

CPSIRB Increment and Repeat

LDD dst, src, r Load and Decrement

LDDB

LDDR dst, src, r Load, Decrement and

LDRB Repeat

LDI dst, src, r Load and Increment

LDIB

LDIR dst, src, r Load, Increment and

LDIRB Repeat

TRDB dst, src, r Translate and Decrement

TRDRB dst, src, r Translate, Decrement and
Repeat

TRIB dst, src, r Translate and Increment

TRIRB dst, src, r Translate, Increment and
Repeat

TRTDB srcl, src2, r Translate, Test and
Decrement

TRTDRB srcl, src2, r Translate, Test,
Decrement and Repeat

TRTIB srcl, src2, r Translate, Test and
Increment

TRTIRB srcl, sre2, r Translate, Test, Increment

and Repeat

This is an exceptionally powerful group of
instructions that provides a full complement of
string comparison, string translation and block
transfer functions. Using these instructions, a
byte or word block of any length up to 64K
bytes can be moved in memory; a byte or word
string can be searched until a given value is
found; two byte or word strings can be com-
pared; and a byte string can be translated by
using the value of each byte as the address of

Functional Summary (Continued)

its own replacement in a translation table. The
more complex Translate and Test instructions
skip over a class of bytes specified by a
translation table, detecting bytes with values
of special interest.

All the operations can proceed through the
data in either direction. Furthermore, the
operations may be repeated automatically
while decrementing a length counter until it is
zero, or they may operate on one storage unit
per execution with the length counter decre-
mented by one and’the source and destination
pointer registers properly adjusted. The latter
form is useful for implementing more complex
operations in software by adding other instruc-
tions within a loop containing the block
instructions.

Any word register can be used as a length
counter in most cases. If the execution of the
instruction causes this register to be decre-
mented to zero, the P/V flag is set. The auto-
repeat forms of these instructions always leave
this flag set.

The D and H flags are not affected by any of
these instructions. The C and S flags are
preserved by all but the compare instructions.

These instructions use the Indirect Register
(IR) addressing mode: the source and destina-
tion operands are addressed by the contents of
general-purpose registers (word registers in
nonsegmented mode and register pairs in seg-
mented mode). Note that in the segmented
mode, only the low-order half of the register
pair gets incremented or decremented as with
all address arithmetic in the Z8000.

The repetitive forms of these instructions are
interruptible. This is essential since the repeti-
tion count can be as high as 65,536 and the
instructions can take 9 to 14 cycles for each
iteration after the first one. The instruction can
be interrupted after any iteration. The address
of the instruction itself, rather than the next
one, is saved on the stack, and the contents of
the operand pointer registers, as well as the
repetition counter, are such that the instruc-
tion can simply be reissued after returning
from the interrrupt without any visible dif-
ference in its effect.

This group consists of instructions for trans-
ferring a byte, word or block of data between
peripheral devices and the CPU registers or
memory. Two separate I/O address spaces with

16-bit addresses are recognized, a Standard
I/O address space and a Special I/O address
space. The latter is intended for use with
special Z8000 Family devices, typically the
Z-MMU. Instructions that operate on the
Special I/O address space are prefixed with
the word “special.” Standard I/O-and Special
I/O instructions generate different codes on
the CPU status lines. Normal 8-bit peripherals

Input/Output Instructions.

Instruction Operand(s) Name of Instruction
IN dst, src Input

INB

IND dst, src, r Input and Decrement
INDB

INDR dst, src, r Input, Decrement and
INDRB Repeat

INI dst, sre, ¢ Input and Increment
INIB

INIR dst, src, r Input, Increment and
INIRB Repeat

OTDR dst, src, r Output, Decrement and
OTDRB ’ Repeat

OTIR dst, src, r Output, Increment and
OTIRB Repeat

OuT dst, src Output

OUTB

OUTD dst, src, r Output and Decrement
OUTDB

OUTI dst, src, r Output and Increment
OUTIB

SIN dst, src Special Input

SINB

SIND dst, src, r Special Input and
SINDB Decrement

SINDR dst, src, r Special Input, Decrement
SINDRB and Repeat

SINI dst, src, r Special Input and
SINIB Increment

SINIR dst, src, r Special Input, Increment
SINIRB and Repeat

SOTDR dst, src, r Special Output,
SOTDRB Decrement and Repeat
SOTIR dst, src, r Special Output,
SOTIRB Increment and Repeat
SOUT dst, src Special Output
SOUTB

SOUTD dst, src, r Special Output and
SOUTDB Decrement

SOUTI dst, src, r Special Output and
SOUTIB Increment

Functional Summary (Continued)

are connected to bus lines ADg-AD;. Standard
I/0 byte instructions use odd addresses only.
Special 8-bit peripherals such as the MMU,
which are used with special I/O instructions,
are connected to bus lines ADg-AD)5. Special
1/0 byte instructions use even addresses only.

The instructions for transferring a single
byte or word (IN, INB, OUT, OUTB, SIN,
SINB, SOUT, SOUTB) can transfer data
between any general-purpose register and any
port in either address space. For the Standard
I/O instructions, the port number may be
specified statically in the instruction or dynam-
ically by the contents of the CPU register. For
the Special I/O instructions the port number is
specified statically.

The remaining instructions in this group
form a powerful and complete complement of
instructions for transferring blocks of data
between I/O ports and memory. The operation
of these instructions is very similar to that of
the block move instructions described earlier,
with the exception that one operand is always
an /O port which remains unchanged as the
address of the other operand (a memory loca-
tion) is incremented or decremented. These
instructions are also interruptible.

CPU Control Instructions.

Instruction Operand(s) Name of Instruction
COMFLG flag Complement Flag
DI int Disable Interrupt

El int Enable Interrupt
HALT Halt

LDCTL dst, src Load Control Register.
LDCTLB

LDPS src Load Program Status
MBIT Multi-Micro Bit Test
MREQ dst Multi-Micro Request
MRES Multi-Micro Reset
MSET Multi-Micro Set
NOP No Operation
RESFLG flag Reset Flag

SETFLG flag Set Flag

All I/O instructions are privileged, i.e. they
can only be executed in system mode. The
single byte/word /O instructions don't alter
any flags. The block I/O instructions, includ-
ing the single iteration variants, alter the Z and
P/V flags. The latter is set when the repetition
counter is decremented to zero.

The instructions in.this group relate to the
CPU control and status registers (FCW, PSAP,
REFRESH, etc.), or perform other unusual
functions that do not fit into any of the other
groups, such as instructions that support multi-
microprocessor operation. Most of these
instructions are privileged, with the exception
of NOP and the instructions operating on the
flags (SETFLG, RESFLG, COMFLG,

LDCTLB).

Extended Instructions. The Z8000
architecture includes a powerful mechanism
for extending the basic instruction set through
the use of external devices known as Extended
Processing Units (EPUs). A group of
six opcodes, OE, OF, 4E, 4F, 8E and 8F (in
hexadecimal), is dedicated for the implemen-
tation of extended instructions using this facil-
ity. The five basic addressing modes (R, IR,
DA, IM and X) can be used by extended
instructions for accessing data for the EPUs.
There are four types of extended instructions
in the Z8000 CPU instruction repertoire: EPU
internal operations; data transfers between
memory and EPU; data transfers between EPU
and CPU; and data transfers between EPU flag
registers and CPU flag and control word. The
last type is useful when the program must
branch based on conditions determined by the
EPU. The action taken by the CPU upon
encountering extended instructions is depen-
dent upon the EPA control bit in the CPU'’s
FCW. When this bit is set, it indicates that the
system configuration includes EPUs; therefore,
the instruction is executed. If this bit is clear,
the CPU traps (extended instruction trap) so
that a trap handler in software can emulate the
desired operation.)

Processor Flags

The processor flags are a part of the pro-
gram status. They provide a
link between sequentially executed instructions
in the sense that the result of executing one
instruction may alter the flags, and the
resulting value of the flags may be used to
determine the operation of a subsequent
instruction, typically a conditional jump
instruction. An example is a Test followed by a
Conditional Jump:

TEST R1 Isets Z flag if Rl = 0!

JR Z, DONE lgo to DONE if Z flag is
set!

DONE:

The program branches to DONE if the TEST
sets the Z flag, i.e., if Rl contains zero.

The program status has six flags for the use
of the programmer and the Z8000 processor:

B Carry (C)

& Zero (Z)

W Sign (S)

B Parity/Overflow (P/V)
B Decimal Adjust (D)
B Half Carry (H)

The flags are.modified by many instructions,
including the arithmetic and logical
instructions.

Appendix C lists the instructions and the
flags they affect. In addition, there are Z8000
CPU control instructions which allow the pro-
grammer to set, reset (clear), or complement
any or all of the first four flags. The Half-Carry
and Decimal-Adjust flags are used by the
28000 processor for BCD arithmetic correc-
tions. They are not used explicitly by the pro--
grammer.

The FLAGS register can be separately
loaded by the Load Control Register (LDCTLB)
instruction without disturbing the control bits
in the other byte of the FCW. The contents of
the flag register may also be saved in a reg-
ister or memory.

The Carry (C) flag, when set, generally indi-
cates a carry out of or a borrow into the high-
order bit position of a register being used as
an accumulator. For example, adding the 8-bit

numbers 225 and 64 causes a carry out of bit 7
and sets the Carry flag:
Bit

7 6 5 4 3 2 1 0

225 1 1 1 0 0 0 0 1

+64 0 1 0 0 O 0 0 O

29 —0 0 1 0 0 0 0 1
E1 = Carry flag

The Carry flag plays an important role in the
implementation of multiple-precision arithmetic
(see the ADC, SBC instructions). It is also
involved in the Rotate Left Through Carry
(RLC) and Rotate Right Through Carry (RRC)
instructions. One of these instructions is used
to implement rotation or shifting of long strings
of bits. '

The Zero (Z) flag is set when the result reg-
ister’s contents are zero following certain
operations. This is often useful for deter-
mining when a counter reaches zero. In addi-
tion, the block compare instructions use the Z
flag to indicate when the specified comparison
condition is satisfied. :

The Sign (S) flag is set to one when the most
significant bit of a result register contains a
one (a negative number in two's complement
notation) following certain operations.

The Overflow (V) flag, when set, indicates
that a two's complement number in a result
register has exceeded the largest number or is
less than the smallest number that can be
represented in a two's complement notation.
This flag is set as the result of an arithmetic
operation. Consider the following example:

Bit
7 6 N 4 3 2 1 0

120

0 1 1 0 1 0
+105 0 0

1 1 0 1

o] oo
—

225 1 1 1 0 0 0
L

The result in this case (-95 in two's comple-
ment notation) is incorrect, thus the overflow
flag would be-set.

The same bit acts as a Parity (P) flag follow-
ing logical instructions on byte operands. The
number of one bits in the register is counted
and the flag is set if the total is even (that is,
P = 1). If the total is odd (P = 0), the flag is
reset. This flag is often referred to as the
P/V flag.

Overflow flag

8

Processor Flags (Continued)

The Block Move and String instructions and
the Block I/O instructions use the P/V flag to
indicate the repetition counter has decre-
mented to 0.

The Decimal-Adjust (D) flag is used for BCD
arithmetic. Since the algorithm for correcting
BCD operations is different for addition and
subtraction, this flag is used to record whether
an add or subtract instruction was executed so
that the subsequent Decimal Adjust (DAB)
instruction can perform its function correctly
(See the DAB instruction for further discussion

on the use of this flag).

The Half-Carry (H) flag indicates a carry out
of bit 3 or a borrow into bit 3 as the result of
adding or subtracting bytes containing two
BCD digits each. This flag is used by the DAB
instruction to convert the binary result of a
previous decimal addition or subtraction into
the correct decimal (BCD) result.

Neither the Decimal-Adjust nor the Half-
Carry flag is normally accessed by the pro-
grammer.

Condition Codes

The first four flags, C, Z, S, and P/V, are
used to control the operation of certain “condi-
tional” instructions such as the Conditional
Jump. The operation of these instructions is a
function of whether a specified boolean condi-
tion on the four flags is satisfied or not. It
would take 16 bits to specify any of the 65,536
(216) boolean functions of the four flags. Since
only a very small fraction of these are general-
ly of interest, this procedure would be very
wasteful. Sixteen functions of the flag settings
found to be frequently useful are encoded in a
4-bit field called the condition code, which

forms a part of all conditional instructions.

The condition codes and the flag settings
they represent are listed in Section 6.6.

Although there are sixteen unique condition
codes, the assembler recognizes more than six-
teen mnemonics for the conditional codes.
Some of the flag settings have more than one
meaning for the programmer, depending on
the context (PE & OV, Z & EQ, C & ULT,
etc.). Program clarity is enhanced by having
separate mnemonics for the same binary value
of the condition codes in these cases.

Instruction Interrupts and Traps

This section looks at the relation-ship between in-
structions ans interrupts.

When the CPU receives an interrupt
request, and it is enabled for interrupts of that
class, the interrupt is normally processed at
the end of the current instruction. However,
certain instructions which might take a long
time to complete are designed to be interrupt-
ible so as to minimize the length of time it
takes the CPU to respond to an interrupt.
These are the iterative versions of the String
and Block instructions and the Block I/O
instruction. If an interrupt request is received
during one of these interruptible instructions,
the instruction is suspended after the current
iteration. The address of the instruction itself,
rather than the address of the following
instruction, is saved on the stack, so that the
same instruction is executed again when the
interrupt handler executes an IRET. The con-

tents of the repetition counter and the registers
which index into the block operands are such
that after each iteration when the instruction is
reissued upon returning from an interrupt, the
effect is the same as if the instruction were not
interrupted. This assumes, of course, the inter-
rupt handler preserved the registers, which is
a general requirement on interrupt handlers.

The longest noninterruptible instruction that
can be used in normal mode is Divide Long
(749 cycles in the worst case). Multi-Micro-
Request, a privileged instruction, can take
longer depending on the contents of the des-
tination register.

Traps are synchronous events that result
from the execution of an instruction. The
action of the CPU in response to a trap condi-
tion is similar to the case of an interrupt (see
Section 7). Traps are non-maskable.

Instruction Interrupts and Traps (Continued)

The Z8000 CPUs implement four kinds of
traps:

m Extended Instruction

m Privileged Instruction in normal mode
m Segmentation violation

® System Call

The Extended Instruction trap occurs when
an Extended Instruction is encountered, but
the Extended Processor Architecture Facility is
disabled, i.e., the EPA bit in the FCW is a
zero. This allows the same software to be run
on Z8000 system configurations with or without
EPUs. On systems without EPUs, the desired
extended instructions can be emulated by soft-
ware which is invoked by the Extended
Instruction trap.

The privileged instruction trap serves to pro-
tect the integrity of a system from erroneous or
unauthorized actions of arbitrary processes.
Certain instructions, called privileged instruc-
tions, can only be executed in system mode.
An attempt to execute one of these instructions
in normal mode causes a privileged instruction
trap. All the I/O instructions and most of the
instructions that operate on the FCW are
privileged, as are instructions like HALT
and IRET.

The System Call instruction always causes a
trap. It is used to transfer control to system
mode software in a controlled way, typically to
request supervisor services.

Notation and Binary Encoding

The rest of this chapter consists of detailed
descriptions of each instruction, listed in
alphabetical order. This section describes the
notational conventions used in the instruction
descriptions and the binary encoding for some
of the common instruction fields (e.qg., reqister
designation fields).

The description of an instruction begins with
the instruction mnemonic and instruction name
in the top part of the page. Privileged instruc-
‘tions are also identified at the top.

The assembler language syntax is then given
in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addressing modes.

Example:
AND dst, src dst: R
ANDB src: R, IM, IR, DA, X

The operation of the instruction is presented
next, followed by a detailed discussion of the
instruction.

The next part specifies the effect of the
instruction on the processor flags. This is
followed by a table that presents all the
variants of the instruction for each applicable
addressing mode and operand size. For each
of these variants, the following information is
provided:

A. Assembler Language Syntax. The syntax
is shown for each applicable operand width

(byte, word or long). The invariant part of the
syntax is given in UPPER CASE and must
appear as shown. Lower case characters repre-
sent the variable part of the syntax, for which
suitable values are to be substituted. The syn-
tax shown is for the most basic form of the
instruction recognized by the assembler. For
example,

ADD Rd,#data

represents a statement of the form
ADD R3,#35. The assembler will also accept
variations like ADD TOTAL, #NEW-DELTA
where TOTAL, NEW and DELTA have been
suitably defined.

The following notation is used for register
operands:

Rd, Rs, etc.: a word register in the
range RO-R15

Rbd Rbs: a byte register RHn or
RLn wheren =0 - 7

RRd RRs: a register pair RRO, RR2,
... RR14

RQd: a register quadruple

RQO, RQ4, RQ8 or RQI12

The “s" or "'d"” represents a source.or destina-
tion operand. Address registers used in
Indirect, Base and Base Index addressing
modes represent word registers in nonseg-
mented mode and register pairs in segmented
mode. A one-word register used in segmented

10

Notation and Binary Encoding (Continued)

mode is flagged and a footnote explains the
situation.

B. Instruction Format. The binary encoding of
the instruction is given in each case for both
the nonsegmented and segmented modes.
Where applicable, both the short and long
forms of the segmented version are given (SS
and SL). :

The instruction formats for byte and word
versions of an instruction are usually com-
bined. A single bit, labeled “w,"” distinguishes
them: a one indicates a word instruction, while
a zero indicates a byté instruction.

Fields specilying register operands are
identified with the same symbols (Rs, RRd,
etc.) as in Assembler Language Syntax. In
some cases, only nonzero values are permitted
for certain registers, such as index registers.
This is indicated by a notation of the form
“RS # 0.”

The binary encoding for register fields is as
follows:

Rogister Binary
RQO RRO RO RHO 0000
Rl RH1 0001
RR2 R2 RH2 0010
R3 RH3 0011

Register Binary

RQ4 RR4 R4 RH4 0100
RS RHS 0101

RR6 R6 RH6 oll0

R7 RH7 0111

RQ8 RR8 R8 RLO 1000
R9 RL1 1001

RR10 R10 RL2 1010

R1l RL3 1011

RQI2 RRI2 R12 RL4 1100
RI3 RL5 1101

RR14 Rl14 RL6 1110

RIS RL7 1111

For easy cross-references, the same symbols
are used in the Assembler Language Syntax
and the instruction format. In the case of ad-
dresses, the instruction format in segmented
mode uses “segment” and “offset” to corres-
pond to “address,” while the instruction format
contains “displacement,” indicating that the
assembler has computed the displacement and
inserted it as indicated.

A condition code is indicated by “cc” in
both the Assembler Language Syntax and the
instruction formats. The condition codes, the
flag settings they represent, and the binary
encoding in the instruction are as follows:

1

Notation and Binary Encoding (Continued)

Code Meaning Flag Setting Binary
F Always false 0000
Always true 1000
z Zero Z2=1 0110
NZ Not zero Z2=0 1110
C Carry C=1 . 0111
NC No carry C=0 1111
PL Plus S=0 1101
MI Minus S=1 0101
NE) Not equal Z=0 1110
EQ Equal Z=1 0110
oV Overflow V=1 0100
NOV No overflow V=0 1100
PE Parity even P=1 0100
PO Parity odd P=0 1100
GE Greater than (SXORV) =0 1001
or equal
LT Less than (SXORV) =1 0001
GT Greater than (ZOR(SXORV)) =0 1010
LE Less than or (ZOR(SXORV)) =1 0010
equal
UGE Unsigned C=0 1111
greater than
or equal :
ULT Unsigned C=1 0111
less than
UGT Unsigned ((C=0AND(Z =0)) =1 1011
greater than
ULE Unsigned less (CORZ) =1 0011

than or equal

Note that some of the condition codes correspond to identical flag settings: i.e., Z-EQ, NZ-NE,
NC-UGE, PE-OV, PO-NOV.

C. Cycles. This line gives the execution time D. Example. A short assembly language
of the instructions in CPU cycles. example is given showing the use of the
instruction.

12

Z8000
Instruction
Descriptions
and Formats

ADC
Add With Carry

Operation:

Flags:

ADC dst, src dst: R
ADCB src: R

dst - dst + src + ¢

The source operand, along with the setting of the carry flag, is added to the destina-
tion operand and the sum is stored in the destination. The contents of the source are
not affected. Two's complement addition is performed. In multiple precision arith-
metic, this instruction permits the carry from the addition of low-order operands to
be carried into the addition of high-order operands.

C: Set if there is a carry from the most significant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise

D: ADC—unaffected; ADCB—cleared

H: ADC—unaffected; ADCB—set if there is a carry from the most significant bit of
the low-order four bits of the result; cleared otherwise

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: :gggﬂgi_)gf%s [1ol11010[w] &s | ra | 5 [1ol11010{w| &s | na | 5
Example: Long addition can be done with the following instruction sequence, assuming RO, R1

contain one operand and R2, R3 contain the other operand:

ADD RI,R3 ladd low-order words!
ADC RO,R2 ladd carry and high-order words!

If RO contains %0000, R1 contains %FFFF, R2 contains %4320 and R3 contains
%0001, then the above two instructions leave the value %4321 in RO and %0000
in R1.

13

ADD

Add

ADD dst, src dst: R
ADDB src: R, IM, IR, DA, X
ADDL
Operation: dst - dst + src
The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed.
Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL—unaffected; ADDB—cleared
H: ADD, ADDL—unaffected; ADDB—set if there is a carry from the most significant
bit of the low-order four bits of the result; cleared otherwise
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Formui Cycles Instruction Format Cycles
R: ﬁggsagi)g’s%s [1o[ooooo|w| Rs | Ra | 4 [1o[ocooolw| Rs | Ra | 4
ADDL RRd, RRs [10l010110] Rrs | RRd | 8 [10]010110] mRs | RRa | 8
IM: ADD Rd, fdata 00[000001 [0000| Rd 7 00[000001 [0000] Rd 7
data data
ADDB Rbd, #data 00000000 [0000] Rd 7 00| 000000 [0000] Rd 7
data data data data
ADDL RRd, fdata 00[010110]0000] RRd 000101100000 RRd
31 data (high) 16 14 31 data (high) 16 14
15 data (low) 0 15 data (low) 0
IR: igg;gﬁ}*gﬁs] [ooJooooo[w[Rs=0] na | 7 [ooooooo]w[Rs+0] Rra l 7
ADDL RRd, @Rs! 14 [oo] 010110 Rs+0] Rra | 14

[oo[o10110 [Rs=0] RRa |

14

ADD

Add

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: ADD Rd, address
: 01/00000(w|0000| Rd o1[ooooo[w|oo00| Rd
ADDB Rbd, address l I l I 9 SS l] | 10
address 0[segment offset
o1]ooooo]w oooo[Rd
SL{1] segment [00000000 12
offset
ADDL RRd, address 01{ 0101100000 RRd s |ss 01{010110 [0000] RRd 1
address 0| segment offset
01]7)101 10 ooool RRd
sL{1] segment | 00000000 18
offset
X: ADD Rd, addr(Rs)
. 1 oo(w| Rs=0| Rd
ADDB Rbd. addr(Re) 01Joo000[w] Rs=o | w0 |ss 01Jooooo[w[Rs+0] Rd 10
address 0[segment offset
o1[oo.ooo[w Rs#0] Rd
SL[1] segment [00000000 13
offset
ADDL RRd, addr(Rs) 01] 010110 | Rs0 | RRd 6 |ss 01]010110] Rs=0 | RRd 16
address 0| segment offset
01010110 [Rs=0] RRd
SL 1[segment | 00000000 19
offset
Example: ADD R2, AUGEND laugend A located at %1254!
Before instruction execution:
Memory R2 Flags
1252 EER CZSPVDH
1254 [0 6 4 4 czspan
1256
After instruction execution:
tMomory R2 Flags
1252 lc 36 5| CZSPIVD H]
1254 jo 6 4 4 0010dh
1258

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

18

AND
And

Operation:

Flags:

AND dst, src
ANDB

dst: R

src: R, IM, IR, DA, X

dst < dst AND src

A logical AND operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A one bit is

stored wherever the corresponding bits in the two operands are both ones; otherwise
a zero bit is stored. The source contents are not affected.

C: Unaffected

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: AND — unaffected; ANDB — set if parity. of the result is even; cleared otherwise

D: Unaffected
H: Unaffected

Addressing

Source

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: AND Rd, Rs 10{o0011|w| Rs | Rd 4 10[00011(w| Rs '| Rd 4
AND B, B [evori] = 7] [oloeri] = 7]
IM: AND Rd, #data 00]000111]0000] Rd 7 00[000111[0000] Rd 7
data data
ANDB Rbd, #data 00
[0001100000] Ra 7 00[000110]0000] Ra
data data data data
IR: AND Rd, @Rs!
ANDB Rbd, @fs! @uooufw[m:ﬂ Rd | 7 {oojooors|w|Rs<0] Ra] 7
DA: AND Rd, address 0100011]w[o000[Rd o01fooot1]w oooo[. Rd
ANDB Rbd, address 9 SS 10
address 0| segment offset
01]ooo11[w[oooo] Ra
SL|[1] segment 0000 0000 12
offset
X: AND. Rd, addr(Rs)
: 01[00011|w| Rsz0| Rd 01/00011|w| Rs#0| Rd
ANDB Rbd, addr(Rs) looot1]w] Rs-o] 10 |ss [w] Reeo] 10
address ol segment offset
01[00011[W| Rs»0[Rd
SL 1‘[segment (0000 0000 13
offset

16

AND
And

Example:

ANDB RL3, # %CE

Before instruction execution:

RL3 Flags
I 11100111] CZSPVDH
czs p dh

After instruction execution:

RL3 Flags
| 11000110] CZSPVDH
c011dh

Note 1: Word register in nonsegmented mode, register péir in segmented mode.

17

BIT

Bit Test

BIT dst, src
BITB

dst: R, IR,

src: IM
or

dst: R
src: R

DA, X

Operation: Z <« NOT dst (src)
The specified bit within the destination operand is tested, and the Z flag is set to one
if the specified bit is zero; otherwise the Z flag is cleared to zero. The contents of the
destination are not affected. The bit number (the source) can be specified statically
as an immediate value, or dynamically as a word register whose contents are the bit
number. In the dynamic case, the destination operand must be a register, and the
source operand must be RO through R7 for BITB, or RO through R15 for BIT. The bit
number is a value from 0 to 7 for BITB, or O to 15 for BIT, with 0 indicating the least
significant bit. Note that only the lower four bits of the source operand are used to
specify the bit number for BIT, while only the lower three bits of the source operand
are used for BITB.

Flags: C: Unaffected
Z: Set if specified bit is zero; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Bit Test Static

Destination Nonsegmented Mode Segmented Mode

Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: ggggbg b [1o[10011[w] Ra [b] 4 [1ol1o014][w] ra [b] 4
IR: ggs@gg]dlbb [ool10011]w]|Razo] b] 8 [oo[10011[w[Razo| b | 8
DA: BIT address, b T
BITBaad;erSesss, b 01[10011]w[oo00] w0 |ss 01]10011|w|0000] b »
address 0{ segment offset
01f10011{w[oooo] »
SL 1Regmsnt 0000 0000 13

oftset

18

BIT

Bit Test

Bit Test Static (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format ' Cycles Instruction Format I Cycles
X: BIT addr(Rd), b
BITB addr(Rd), b 01[10011]w[Rd=0] b P o01]to011[w[.Rdz0] b “
address OI segment offset
o1]10011]w|Rd=0] b
SL[1] segment [0000 0000 14
offset
R: BIT Rd, Rs 00[10011]w[oooo] s 10 00[10011]w[oo0o ns 10
BITB Rbd, Rs 0000 Rd [0000[0000 0000 Rd 0000|0000
Example: If register RH2 contains %B2 (10110010), the instruction
BITB RH2, #0

will leave the Z flag set to 1.

Note 1: Word register in.nonsegmented mode, register pair in segmented mode.

19

CALL
Call

CALL dst dst: IR, DA, X
Operation: Nonsegmented Segmented
SP « SP - 2 ~ SP <« SP -4
C -+ SP < PC @SP < PC
PC < dst PC <« dst
The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 in nonsegmented mode, or RR14 in
segmented mode. (The program counter value used is the address of the first instruc-
tion byte following the CALL instruction.) The specified destination address is then
loaded into the PC and points to the first instruction of the called procedure.
At the end of the procedure a RET instruction can be used to réturn to original pro-
gram. RET pops the top of the processor stack back into the PC.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax - Instruction Format Cycles Instruction Format Cycles
IR: CALL @Rd! [oo[o11111] Ra Joooo] 10 [oofo11111] na Joooo]| 15
DA: CALL address 01[011111Joooo0]0000 01[011111 00000000
12 SS 18
address O| segment offset
o1To1 1111 oooﬂoooo
SL{1] segment | 0000 0000 20
offset
X: CALL addr(Rd) 01Jo11111]Rd=0]0000 5 s 01]011111 | Rs=0 0000 18
address Ol segment offset
01[011111 [Rsz0[0000
SL[1] segment |0000 0000 21
offset
Example: In nonsegmented mode, if the contents of the program counter are %1000 and the

conients of the stack pointer (R15) are %3002, the instruction

CALL %2520

causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALL instruction with direct address mode specified) to be loaded into
the word at location %3000, and the program counter to be loaded with the value
%2520. The program counter now points to the address of the first instruction in the
procedure to be executed.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

20

CALR

Call Relative

Operation:

Flags:

CALR dst dst: RA

Nonsegmented Segmented

SP « SP - 2 SP <« SP - 4

@SP « PC @SP « PC

PC <« PC - (2 x displacement) PC <« PC-(2 x displacement)

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 if nonsegmented, or RR14 if
segmented. (The program counter value used is the address of the first instruction
byte following the CALR instruction.) The destination address is calculated and then
loaded into the PC and points to the first instruction of a procedure.

At the end of the procedure a RET instruction can be used to return to the original
program flow. RET pops the top of the processor stack back into the PC.

The destination address is calculated by doubling the displacement in the
instruction, then subtracting this value from the current value of the PC to derive the
destination address. The displacement is a 12-bit signed value in the range —2048 to
+2047. Thus, the destination address must be in the range —4092 to +4098 bytes
from the start of the CALR instruction. In segmented mode, the PC segment number
is not affected. The assembler automatically calculates the displacement by
subtracting the PC value of the following instruction from the address given by the
programmer.

No flags affected

Destination
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

RA:

CALR address [1101 l displacement J 10 F 101 ' displacement J 15

Example:

In nonsegmented mode, if the contents of the program counter are %1000 and the
contents of the stack pointer (R15) are %3002, the instruction

CALR PROC
causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALR instruction) to be loaded into the word location %3000, and the

program counter to be loaded with the address of the first instruction in procedure
PROC.

21

CLR
Clear

CLR dst dst: R, IR, DA, X
CLRB
Operation: dst - Q
The destination is cleared to zero.
Flags: No flags affected.
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: CLR Rd y
CIRB . Rbd [10Jo0110]w[Ra = 0]1000] 7 [10joo110{w|ra=0]1000]| 7
IR: CLR @Rdf
CLRB ol foojoo110[w|Rd=0[1000] 8 [oo[oo110[w|Rd = 0[1000]| 8
DA: CLR address
CLRB addoss o1loo110{w|ooo0[1000 1 lss 01joo110/w|0000[1000 12
address Dr segment offset
o1foo110]w oooojmoo
SL angmem 0000 0000 14
offset
X: CLR addr(Rd)
CLRB addr(Rd) 01/00110[w|Rd=0[1000 2 |ss o1kjo11o]w Rd$011000 12
address OT segment offset
01[o0110{w|[Rd=0[1000
SL 11 segment |0000 0000 15
offset .
Example: 1f the word at location %ABBA contains 13, the statement

CLR %ABBA
will leave the value 0 in the word at location % ABBA.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

22

COM

Complement
COM dst dst: R, IR, DA, X
COMB
Operation: (dst < NOT dst)
The contents of the destination are complemented (one's complement); all one bits
are changed to zero, and vice-versa.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
H —unaffected; —set if parity of the result is even; cleared otherwise
P: COM ffected; COMB t if parity of th Iti 1 d otherwi
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: COM Rd
COMB Ribd [10]oo110[w[Rrd +o00000] 7 |10]oo110[w|Rd +0{0000]|| 7
IR: COM @Rd! [aoJoo110]w[ra = 0[0000] | 12 [ooJoo110]w]ra = 0[0000]| 12
COMB @Rd!
DA: COM address o1[o0110/w[0000]0000 0100110 /w[0000 0000
COMB address 15 SS 16
address OI segment offset
o01foo110[w[o0000[0000
sL{1] segment [0000 0000 18
offset
X: COM addr(Rd) J
r 01fo0110/w| Ra=0[0000 01[o0110[w[rd+0 o000
COMB addr(Rd) address 16 ss 0| segment offset 16
01/o0110{w| Rd=0]0000
sL 1[segment | 0000 0000 19
offset
Example: If register Rl contains %2552 (0010010101010010), the statement

COM Rl

will leave the value %DAAD (1101101010101101).in R1.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

23

COMFLG

Complement Flag

Operation:

Flags:

COMFLG flag Flag: C, Z, S, P, V
FLAGS (4:7) - FLAGS (4:7) XOR instruction (4:7)

Any combination of the C, Z, S, P or V flags is complemented (each one bit is
changed to zero, and vice-versa). The flags to be complemented are encoded in a
field in the instruction. If the bit in the field is one, the corresponding flag is com-
plemented; if the bit is zero, the flag is left unchanged. Note that the P and V flags
are represented by the same bit. There may be one, two, three or four operands in
the assembly language statement, in any order.

C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if specified; unaffected otherwise
P/V: Complemented if specified; unaffected otherwise
D: Unaffected

H: Undefined

Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
COMFLG flags | 10001101 [czsPivo101] 7 [10001101 Jczspro101] 7
Example: If the C, Z, and S flags are all clear (=0), and the P flag is set (=1), the statement

COMFLG P, S, 2 C
will leave the C, Z, and S flags set (=1), and the P flag cleared (=0).

24

CP

Operation:

Flags:

Compare
CP dst, src dst: R
CPB src: R, IM, IR, DA, X
CPL or
dst: IR, DA, X
src: IM
dst — src

The source operand is compared to (subtracted from) the destination operand, and
the appropriate flags set accordingly, which may then be used for arithmetic and
logical conditional jumps. Both operands are unaffected, with the only action being
the setting of the flags. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. There are two variants of this instruc-
tion: Compare Register compares the contents of a register against an operand
specified by any of the five basic addressing modes; Compare Immediate performs a

comparison between an operand in memory and an immediate value.

C: Cleared if there is a carry from the most significant bit of the result; set other-
wise, indicating a “borrow”

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs
and the sign of the result is the same as the sign of the source; cleared otherwise

D: Unaffected
H: Unaffected

Compare Registér

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: ggBRgiag,sts [1o]ooto1[w] ms [Ra | 4 [1o]oot01{w| &s | e | 4
CPL RRd, RRs [o[c10000] ms | ra | 8 [to] 010000] s [Rd | 8
IM: CP Rd, #data 00[0010110000 Re , oo]oo‘wn 0000| Rd 7
data data)
CPB Rbd, #data 00]oo1010[0000] Rd ; 00001010 0000] Rd 7
data data data data
CPL RRd, #data 00[010000 [0000[Rd . 00/ 019000 0000| Rd
31 data (high) 16 14 a1 data (high) 16 14
15 data (low) 0 15 data (low) 0
IR: ggBRgigf,RgRsl [0oJoo101[w| Rsz0| Ra | 7 [ooJoot01[w[rso] ma | 7
CPL RRd, @Rs! [c0[010000 Rs=0] ra | 14 [00] 010000 | Rs<0| ma | 14

25

CP

Compare

Source
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: CP Rd, address
CPB Rba, address o1loo101]w[o000] Rd o |ss 01Joo101/w[o000]| R4 10
address 0| segment offset
01lo0101[w]oo00| R
SL|1| segment {0000 0000 12
offset
CPL RRd, address 01 ouoooo[uooo] Rd 15 |ss o1]o1oooo oooo] Rd 16
address ol segment offset
01[010000 [0000] Rd
SL[1] segment [0000 0000 18
offset
X gg;gi,:{dd::s;b 01/o0101|w| Rs=0] Ra 10 |ss|® 00101 w[Rs<0] Rd 10
+ addr(Rbs) address 0] segment offset
01Joo101]w[Rs+0] Rd
sL|1] segment [0000 0000 13
offset
CPL RRd, addr(Rs) 01{ 010000 [Rs #0| Rd © lss 01{010000 [Rs+0| Rd .
address OI segment offset
01]010000 [Rs+0| Rd
SL 1' segment (0000 0000 19
oftset
Compare Immediate
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CP @Rd!, fdata 00[00110|w|Rd=0]0001 . 00foo110/w[Rd =000t
data 1 data n
CPB @Rdl, fdata 00]00110|w| Rd=0 0001 » 00J00110/w| Rd+0[0001 »

data data

data data

26

CP

Compare

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: CP address, fdata 01foo110[w[o000]0001 01/oo110[w[0000 0001
address 14 SS}0| segment oftset 15
data data
01Joo110[w[oo00]oo001
1| segment (0000 0000
oy 17
offset
data
CPB address, fdata 01Joo110/w[o000]o001 o1foo110[w 00000001
address 14 SS 0] segment offset 15
data l data data data
01Joo110[w 0000[0001
SLisegmem 0000 0000 17
offset
data l © data
X: CP addr(Rd), #data 01Joo110[w[Rd = 0[0001 01{00110/w|Rd=0]0001
address 15 SS ol segment offset 15
data data
01Jo0110/w[Rd= 00001
s 1] segment . | 0000 0000 18
offset
data
CPB addr(Rd), #data 01/o0110]w] Rd=0]0001 01001 10[w| Rd=0[0001
address 15 Ss OI segment offset 15
data ‘ data data data
01Joo110[w[Rd=0[0001
1 00
SL segment | 0000 00 18
offset
data data
Example: If register RS contains %0400, the byte at location %0400 contains 2, and the source

operand is the immediate value 3, the statement

CPB @RS5,#3

will leave the C flag set, indicating a borrow, the S flag set, and the Z and V flags

cleared.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

21

CPD

Compare and Decrement

CPD dst, src, r, cc dst: IR
CPDB . src: IR
Operation: dst — src
AUTODECREMENT src (by 1 if byte, by 2 if word)
rer-1
This instruction isused to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by “cc” would be set by the comparison; otherwise the Z
flag is cleared. See list of condition codes. Both operands are unaffected.
The source register is then decremented by one if CPDB, or by two if CPD, thus
moving the pointer to the previous element in the string.-The word register specified
by “r" (used as a counter) is then decremented by one. ’
Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language .
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPD Rd, @Rs!, r, cc ‘
CPDB Rbd, @Rsr, o co 1011101 |W[Rs = 0[1000 2 1011101]|w[Rs « 01000 20
0000] r [Rd#0| cc 0000 r [rdwo| cc
Example: If register RHO contains %FF, register Rl contains %4001, the byte at location

%4001 contains %00, and register R3 contains 5, the instruction
CPDB RHO, @RI, R3, EQ

will leave the Z flag cleared since the condition code would not have been “equal.”
Register R1 will contain the value %4000 and R3 will contain 4. For segmented
mode, Rl must be replaced bv a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

28

CPDR

Compare Decrement and Repeat

CPDR dst, src, r, cc dst: IR

CPDRB src: IR

Operation: dst — src
AUTODECREMENT src (by 1 if byte; by 2 if word)
rer -1
repeat until cc is trueor R = 0
This instruction is used to séarch a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by “cc”” would be set by the comparison; otherwise the Z
flag is cleared. See list of condition codes. Both operands are unaffected.
The source register is then decremented by one if CPDRB, or by two if CPDR, thus
moving the pointer to the previous element in the string: The word register specified
“r"” (used as a counter) is decremented by one. The entire operation is repeated until
either the.condition is met or the result of decrementing r is zero. This instruction
can search a string from 1 to 65536 bytes or 32768 words long (the value of r must
not be greater than 32768 for CPDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: CPDR Rd, @Rs!, r, cc 1011101|W Rs
: T #0[1100 1011101|W|Rs#0[1100
11+9n 11+9n
CPDRB Rbd, @Rs!, r, cc ooool r |Rdzo| oo OOOQ[v |razol oo
Example: If the string of words starting at location %2000 contains the values 0, 2, 4, 6 and 8,

register R2 contains %2008, R3 contains 3, and R8 contains 8, the instruction
CPDR R3, @R2, R8, GT '

will leave the Z flag set indicating the condition was met. Register R2 will contain the
value %2002, R3 will still contain 5, and R8 will contain 5. For segmented mode, a
register pair would be used instead of R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements compared.

29

CPI

Compare and Increment

CPI dst, src, 1, cc dst: IR
CPIB src: IR

Operation: dst - src
AUTOINCREMENT src (by 1 if byte; by 2 if word)
rer-1
This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted trom) the destination operand and the Z flag is set if the
condition code is specified by “cc” would be set by the comparison; otherwise the Z
flag is cleared. See list of condition codes. Both operands are unaffected.
The source register is then incremented by one if CPIB, or by two if CPI, thus
moving the pointer to the next element in the string. The source, destination, and
counter registers must be separate and non-overlapping registers. The word register
specified by "r" (used as a counter) is then decremented by one.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles]| Instruction Format Cycles
IR: CPIRd, @Rs!, T, cc 1011101 |w|Rs = 0/ 0000 1011101|w[Rs 2 0] 0000
CPIB Rbd, @Rs!, r, cc 20 20
0000] r [Ra=0| cc 0000] r [Ra=0| cc

30

CPI

Compare and Increment

Example:

This instruction can be used in a “loop” of instructions that searches a string of data
for an element meeting the specified condition, but an intermediate operation on
each data element is required. The following sequence of instructions (to be
executed in non-segmented mode) “'scans while numeric,” that is, a string is
searched until either an ASCII character not in the range "0" to 9" (see Appendix
C) is found, or the end of the string is reached. This involves a range check on each
character (byte) in the string. For segmented mode, R1 must be changed to a
register pair.

LD R3, #STRLEN linitialize counter!

LDA R1, STRSTART lload start address!

LD RLO,#'9' !largest numeric char!
LOOP:

CPB @R1,#'0’ Itest char < '0'!

IR ULT,NONNUMERIC

CPIB RLO, @R1, R3, ULT Itest char > ‘0!

JR Z, NONNUMERIC

JR NOV, LOOP Irepeat until counter = 0!
DONE:
NONNUMERIC: lhandle non-numeric char!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

31

CPIR

Compare, Increment and Repeat

Operation:

Flags:

CPIR dst, src, r, cc

CPIRB

dst:

R

src: IR

dst — src

AUTOINCREMENT src (by 1 if byte; by 2 if word)
rer —1

repeat until ccistrueor R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared tor(subtracted from) the destination operand, and the Z flag is set if the
condition code specified by “‘cc”’ would be set by the comparison; otherwise the Z
flag is cleared. See list of condition codes. Both operands are unaffected.

The source register is then incremented by one if CPIRB, or by two if CPIR, thus
moving the pointer to the next element in the string. The word register specified by
"r" (used as a counter) is then decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc-
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPIR). The source, destination, and counter
registers must be separate and non-overlapping registers.

This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

C: Undefined

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Undefined

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Source
Addressing

Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax) Instruction Format Cycles? Instruction Format Cycles?

IR:

CPIR Rd, @Rsl, r, cc 1011101 (W 010 1011101 (W 0100
CPIRB Rbd,@Rs!, T, cc [w]Rs < o]0 100 [wirs < o

11+9n 11+9n

0000] r [Rd=0| cc 0000] + |Raz0| cc

32

CPIR

Compare, Increment and Repeat

Example:

The following sequence of instructions (to be executed in nonsegmented mode) can
be used to search a string for an ASCII return character. The pointer to the start of
the string is set, the string length is set, the character (byte) to be searched for is
set, and then the search is accomplished. Testing the Z flag determines whether the
character was found. For segmented mode, R]1 must be changed to a register pair.

LDA R1, STRSTART

LD R3, #STRLEN

LDB RLO, #% D thex code for return is D!
CPIRB RLO, @R], R3, EQ

JR Z, FOUND

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n=number of data elements compared.

33

CPSD

Compare String and Decrement

Operation:

Flags:

CPSD dst, src, r, cc dst: IR
CPSDB src: IR

dst — src .
AUTODECREMENT dst and src (by 1 if byte; by 2 if word)

rer -1

This instruction can be used to compare two strings of data until the specified condi-
tion is true. The contents of the location addressed by the source register are .com-
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code specified by "cc” would be set by the
comparison; otherwise the Z flag is‘cleared. See list of condition codes. Both ope-
rands are unaffected.

The source and destination registers are then decremented by one if CPSDB, or by
two if CPSD, thus moving the pointers to the previous elements in the strings. The
word register specified by """ (used as a counter) is then decremented by one.

C: Cleard if there is a carry from the most significant bit of the result of the com-
parison; set otherwise, indicating a “borrow”. Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Set is the result of the comparison is negative; cleared otherwise

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode " Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

IR:

CPSD ¢Rd!, @Rs!, 1, cc
CPSDB «Rd!,«Rs!,r,cc

1011101]w[Rs # 0] 1010 25 1011101|w[Rs #0[1010
0000 r [Razo| ecc 0000 r [Rdx0] cc

25

Example:

If register R2 contains %2000, the byte at location %2000 contains %FF, register R3
contains %3000, the byte at location %3000 contains %00, and register R4 contains
1, the instruction (executed in nonsegmented mode)

CPSDB @R2, @R3, R4, UGE
will leave the Z flag set to 1 since the condition code would have been “unsigned
greater than or equal”, and the V flag will be set to 1 to indicate that the counter R4

now contains 0. R2 will contain %1FFF, and R3 will contain %2FFF. For segmented
mode, R2 and R3 must be changed to register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

34

CPSDR

Compare String, Decrement and Repeat

Operation:

Flags:

CPSDR dst, src,r, cc dst: IR
CPSDRB src: IR

dst —src

AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
r+r —1

repeat until ccistrueorr = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by “cc” would be set by the compar-
ison; otherwise the Z flag is cleared. See list of condition codes. Both operands

are unaffected.

The source and destination registers are then decremented by one if CPSDRB; or by
two if CPSDR, thus moving the pointers to the previous elements in the strings. The
word register specified by "r” (used as a counter) is then decremented by one. The
entire operation is repeated until either the condition is met or the result of decre-
menting r is zero. This instruction can compare strings from 1 to 65536 bytes or from
1 to 32768 words long (the value of r must not be greater than 32768 for CPSDR).

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven more cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

C: Cleared if there is a carry from the most significant bit of the result of the com-
parison; set otherwise, indicating a “borrow”. Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers

Z: Set if the conditon code generated by the comparison matches cc; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Addressing
"Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

IR:

CPSDR@Rd!,@Rs!,r,cc ‘
CPEDREGRA! ORI« oc 1011101|w| Rs [1110 1011101|W| Rs [1110

11+14n

11 +14n
0000 Rd | cc o0oo] Rd | cc

35

CPSDR

Compare String, Decrement and Repeat

Example: If the words from location %1000 to %1006 contain the values 0, 2, 4, and 6, the
words from location %2000 to %2006 contain the values O, 1, 1, 0, register R13 con-
tains %1006, register R14 contains %2006, and register RO contains 4, the instruc-
tion (executed in nonsegmented mode)

CPSDR @R13, @R14, RO, EQ
leaves the Z flag set to 1 since the condition code would have been “equal” (loca-
tions %1000 and %2000 both contain the value 0). The V flag will be set to 1 indi-
cating r was decremented to 0. R13 will contain %0FFE, R14 will contain %1FFE,
and RO will contain 0. For segmented mode, R13 and R14 must be changed to
register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n=number of data elements compared.

36

CPSI

Compare String and Increment

CPSI dst, src, r, cc dst: IR
CPSIB src: IR
Operation: dst — src
AUTOINCREMENT dst and src (by | if byte, by 2 if word)
rer -1
This instruction can be used to compare two strings of data until the specified condi-
tion is true. The contents of the location addressed by the source register are com-
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code specified by “cc” would be set by the
comparison; otherwise the Z flay is cleared. See list of condition codes. Both ope-
rands are unaffected.
The source and destination registers are then incremented by one if CPSIB, or by
two if CPSI, thus moving the pointers to the next elements in the strings. The word
register specified by “r" (used as a counter) is then decremented by one.
Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: CPSI @Rd!,@Rs!,r,cc 1011101|W[Rs z0[0010 1011101|w|Rs=0[0010
CPSIB @Rd!,@Rs!,r,cc ooool T Tras ol oo 25 ooool ¢ Irazol oo 25

37

CPSI

Compare String and Increment

Example:

This instruction can be used in a “loop” of instructions which compares two strings
until the specified condition is true, but where an intermediate operation on each
data element is required. The following gequence of instructions, to be executed in
nonsegmented mode, attempts to match a given source string to the destination
string which is known to contain all upper-case characters. The match should suc-
ceed even if the source string contains some lower-case characters. This involves a
forced conversion of the source string to upper-case (only ASCII alphabetic letters
are assumed, see Appendix C) by resetting bit 5 of each character (byte) to 0 before

comparison.

LDA

LDA

LD
LOQP:

RESB

CPSIB

JR

JR
DONE:

NOTEQUAL:

R1, SRCSTART
R2, DSTSTART
R3, #STRLEN

@R1,#5
@R],@R2, R3, NE
Z, NOTEQUAL
NOV, LOOP

lload start addresses!
linitialize counter!

lforce upper-case!
lcompare until- not equal!
lexit loop if match fails!
Irepeat until counter = 0!
Imatch sueceeds!

Imatch fails!

In segmented mode, Rl and R2 must both be register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

38

CPSIR

Compare String, Increment and Repeat

CPSIR dst,src,r,cc dst: IR
CPSIRB src: IR

Operation: dst — src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
rer -1
repeat until ccistrueorr = 0
This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by “cc¢” would be set by the com-
parison; otherwise the Z flag is cleared. See list of condition codes.
Both operands are unaffected. The source and destination registers are then
incremented by one if CPSIRB, or by two if CPSIR, thus moving the pointers to the
next elements in the strings. The word register specified by "r"’ (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is met or the result of decrementing r is zero. This instruction can compare strings
from 1 to 65536 bytes or from 1 to 32768 words long (the value of r must not be
greater than 32768 for CPSIR).)
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted. The source, destination, and counter registers must be separate and non-
overlapping registers.

Flags: C: Cleared if there is a carry from the most significant bit of the result of the last
comparison made; set otherwise, indicating a “"borrow"’. Thus this flag will be set
if the last destination element is less than the last source element when viewed as
unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise
S: Set if the result of the last comparison made is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
H @ 1 @ I()
IR ggg{nggdféj;S]’:zC 101110& Rs+0/0110 114 14n 10111o1lwmao 0110) [0 1an
0000 r |Raso0| cc 0000] r [Rdso| cc

39

CPSIR

Compare String. Increment and Repeat

Example:

The CPSIR instruction can be used to compare test strings for lexicographic order.
(For most common character encoding — for example, ASCII and EBCDIC — lexi-
cographic order is the same as alphabetic order for alphabetic test strings that do
not contain blanks.)
Let S1 and S2 be text strings of lengths L1 and L2. According to lexicographic
ordering, Sl is said to be “less than” or “before” S2 if either of the following is true:
a At the-first character position at which S1 and
S2 contain different characters, the character
code for the Sl character is less than the
character code for the S2 character.
m Sl is shorter than S2 and is equal, character for
character, to an initial substring of S2.
For example, using the ASCII character code, the following strings are ascending
lexicographic order:
A
AUA
ABC
ABCD
A‘BD
Let us assume that the address of Sl is in RR2, the address of S2 is in RR4, the
lengths L1 and L2 of S1 and S2 are in RO and R1, and the shorter of L1 and L2 is in
R6. The the following sequence of instructions will determine whether Sl is less than
S2 in lexicographic order:
CPSIRB @RR2, °RR4, R6, NE !Scan to first unequal character!
IThe following flags settings are possible:
Z =0,V = 1: Strings are equal through L1
character.(Z = 0, V = 0 cannot occur).
Z =1,V = 0or l: A character position was
found at which the strings are unequal.
C = 1(S = 0Oor 1): The character in the RR2
string was less (viewed as numbers from 0 to
255, not as numbers from -128 to + 127).
C = 0(S = 0Oor 1): The character in the RR2
string was not less!

JR Z,CHAR_COMPARE 11f Z=1, compare the characters!
CP RO,R1 |0therwise, compare string lengths!

JR'LT, S1__IS__LESS
JR SI_NOT__Less

CHAR_COMPARE:
JR ULT, S1__IS__LESS IULT is another name for C=1!

S1_NOT LESS:

S1_IS__LESS:

40

DAB

Decimal Adjust

DAB dst dst: R
Operation: dst'« DA dst
The destination byte is adjusted to form two 4-bit BCD digits following an addition or
subtraction operation. For addition (ADDB, ADCB) or subtraction (SUBB, SBCB),
the following table indicates the operation performed:
Carry Bits 4-7 H Flag Bits 0-3 Number Carry
Before Value Before Value Added After
Instruction DAB (Hex) DAB (Hex) To Byte DAB
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
ADDB 0 0-9 1 0-3 06 0
ADCB 0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
SUBB 0 0-9 0 0-9 00 0
SBCB 0 0-8 1 6-F FA 0
1 7-F 0 0-9 A0 1
1 6-F 1 6-F 9A 1
The operation is undefined if the destination byte was not the result of a valid addi-
tion or subtraction of BCD digits.
Flags: C: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Unatfected
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: DAB Rbd [1o] 110000 Ra Joooo] 5 [1o[110000 ma Joooo] 5

41

DAB

Decimal Adjust

Example: If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic.

0001 0101
+0010 0111

0011 1100 = %3C

The DARB instruction adjusts this result so that the correct BCD representation is
obtained.

0011 1100
+0000 0110

0100 0010 = 42

42

DEC

Decrement

DEC dst, src dst: R, IR, DA, X
DECB src: IM
Operation: dst «- dst — src (where src = 1 to 16)
The source operand (a value from 1 to 16) is subtracted from the destination operand
and the result is stored in the destination. Subtraction is performed by adding the
two’s complement of the source operand to the destination operand. The source
operand may be omitted from the assembly language statement and defaults to the
value 1.
The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from 0 to
15, which corresponds to the source values 1 to 16.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs,
and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: DECRd, #n T T
. 10[10101;W| Rd -1 4 10/10101/W| Rd -1 4
DiCRd. tn [eferoiv o] [efroro o] e [r—1]
IR: DEC @Rd!, #n T
: ' 00({10101(W/| Rd=0 | n - 11 00[{10101/W| Rd#0 | n -1 11
picerd i | [rroroilw[mes[r 7] [elrororwraza o =]
DA: DEC address, #n 01[10101[w[0000]n -1 01]10101]w[o000]n -1
DECB address, #n 13 SS 14
address o| segment offset
01[10101]w|0000[n -1
SL[1] segment 0000 0000 16
offset
X: DEC addr(Rd), #n
‘ 01[10101[w| Rd=0[n - 1 01]10101]w] Rd=0[n -1
DECB addr(Rd), #n radross 14 |SS °| vogmont Hiset 14
01[10101|W|Raz0 [n -1
SL[1] segment [0000 0000|| 47
offset
Example: If register R10 contains %0024, the statement

DEC RIO

will leave the value %0029 in R10.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

43

DI Privileged
Disable Interrupt

DI Int Int: VI, NVI

Operation: If instruction (0) = 0 then NVI - 0
If instruction (1) = O then VI -~ 0

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI)
control bits in the Flags and Control Word (FCW) are cleared to zero if the cor-
responding bit in the instruction is zero, thus disabling the appropriate type of inter-
rupt. If the corresponding bit in the instruction is one, the control bit will not be
affected. All other bits in the FCW are not affected. There may be one or two
operands in the assembly language statement, in either order.

Flags: No flags affected.
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
DLint [o1111100 Joooooo|t]¥] 7 [o1111100 Joooooo[1]}] 7
Example: 1f the NVI and VI control bits are set (1) in the FCW, the instruction:

DI VI

will leave the NVI control bit in the FCW set (1) and will leave the VI control bit in
the FCW cleared (0).

44

DIV
Divide

Operation:

Flags:

DIV dst, src dst: R
DIVL src: R, IM, IR, DA, X

Word: (dst is register pair, src is word):
dst (0:31) is divided by src (0:15)
(dst (0:31) = guotient x src (0:15) + remainder)
dst (16:31) < quotient
dst (0:15) <+ remainder

Long: (dst register quadruple, src is long word or register pair):
dst (0:63) is divided by src (0:31)
(dst (0:63) = quotient X src (0:31) + remainder)
dst (32:63) < quotient
dst (0:31) < remainder

The destination operand (dividend) is divided by the source operand (divisor), the
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, two's complement integers and division is per-
formed so that the remainder is of the same sign as the dividend. For DIV, the
destination is a register pair and the source is a word value; for DIVL, the destina-
tion is a register quadruple and the source is a long word value.

There a four possible outcomes of the Divide instruction, depending on the division,
and the resulting quotient:

CASE 1. If the quotient is within the range -215 to 215 - 1 inclusive for DIV or
-231 to 281 — 1 inclusive for DIVL, then the quotient and remainder are left in the
destination register as defined above, the overflow and carry flags are cleared to
zero, and the sign and zero flags are set according to the value of the quotient.

CASE 2. i the divisor is zero, the destination register remains unchanged, the
overflow and zero flags are set to one and the carry and sign flags are cleared to
zero.

CASE 3. If the quotient is outside the range -216 to 216 — 1 inclusive for DIV or -232
to 232 -1 inclusive for DIVL, the destination register contains an undefined value,
the overflow flag is set to one, the carry and zero flags are cleared to zero, and the
sign flag is undefined.

CASE 4. If the quotient is inside the range of case 3 but outside the range of case
1, then all but the sign bit of the quotient and all of the remainder are left in the
destination register, the overflow and carry flags are set to one, and the sign and
zero flags are set according to the value of the quotient. In this case, the sign flag
can be replicated by subsequent instruction into the high-order half of the destina-
tion to produce the two's complement representation of the quotient in the same
precision as the original dividend.

C: Set if V is set and the quotient lies in the range from -216 to 216 — | inclusive for
DIV or in the range from -232 to 232 -1 inclusive for DIVL; cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise

S: Undefined if V is set and C is clear (overflow); otherwise set if the quotient is
negative, cleared if the quotient is non-negative.

V: Set if the divisor is zero or if the computed quotient lies outside the range from
-215 to 215 — 1 inclusive for DIV or outside range from -23! to 231 -1 inclusive
for DIVL; cleared otherwise

D: Unaffected

H: Unaffected

45

DIV
Divide

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
R: DIV RRd, Rs l10fo11011] ms | Rra | [1o]o11011] rs | Ra |
DIVL RQd, RRs 10l 0i1010] Rrs | Ra | {10l 011010] ms | Ra |
IM: DIV RRd, #data 0o[011011]0000] Rd 00[0110110000] Rd
data data
DIVL RQd, #data 00[011010 [0000] Ra 00[011010]0000] Rd
31 data (high) 16 31 data (high) 16
15 data (low) 0 15 data (low) 0
IR: DIV RRd, @Rs! {oo[011011 Rsx0| Ra | foo[011011[Rs=0] Ra |
DIVL RQd, @Rs! [oo[o11010 Rs=0] ra | [oo[o11010] Rs=0] Ra |
DA: DIV RRd, address 01/ 011011]0000] Rd ss 01]011011[0000] Rd
address 0[segment offset
01]011011]0000] Rd
SL 11 segment 0000 0000
offset
DIVL RQD, address 01J011010 0000] Rd ss 01/ 011010[0000] Rd
address OL segment offset
01[011010[0000] Rd
SL 1! segment 0000 0000
offset
X: DIV RRd, addr(Rs) 01/ 011011 [Rs#0 | Rd ss 01011011 [Rs#0| Rd
address lOLsegmonl offset
01011011 [Rs20| Ra
SL[1] segment 0000 0000
offset
DIVL RQd, addr(Rs) 01]011010]Rs0[Rd ss 01]011010[Rs=0] Rd
address 0[segment oftset
01] 011010 | Rs#0| Rd
SL 1| segment | 0000 0000
offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Execution times for each instruction are given in the table under Example.

46

DIV
Divide

Example: The following table gives the DIV instruction execution times for word and long

word operands in all possible addressing modes.

src Word Long Word
NS Ss SL NS SS SL

R 107 — — 744 — —
IM 107 — — 744 — —
IR 107 107 107 744 744 744

DA 108 108 111 745 746 748

X 109 109 112 746 746 749

(Divisor is zero)

R 13 13 13 30 30 30
IM 13 13 13 30 30 30
IR 13 13 13 30 30 30

DA 14 15 17 31 32 34

X 15 15 18 32 32 35

(Absolute value of the high-order half of the dividend is larger than the

absolute value of the divisor)

R 25
M 25
IR 25
DA 26
X 27

25
25
25
27
27

25
25
25
29
30

51
51
51
52
53

51
51
51
53
53

51
51
51
55
56

Note that for proper execution, the “dst field” in the instruction format encoding
must be even for DIV, and must be a multiple of 4 (0, 4, 8, 12) for DIVL. If the
source operand in DIVL is a register, the “src field” must be even.

If register RRO (composed of word register.RO and R1) contains %00000022 and

register R3 contains 6, the statement

DIV RRO,R3

will leave the value %00040005 in RRO (R1 contains the quotient 5 and RO contains

the remainder 4).

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: The execution time for the instruction will be lower than indicated for divide by zero and certain

overflow conditions.

47

DJNZ

Decrement and Jump if Not Zero

Operatign:

Flags:

DINZ R, dst
DBJNZ dst: RA

R<« R -1 .
If R # 0then PC -- PC - (2 x displacement)

The register being used as a counter is decremented. If the contents of the register
are not zero after decrementing, the destination address is calculated and then
loaded into the program counter (PC). Control will then pass to the instruction
whose address is pointed to by the PC. When the register counter reaches zero, con-
trol falls through to the instruction following DINZ or DBJNZ. This instruction pro-
vides a simple method of loop control.

The relative addressing mode is calculated by doubling the displacement in the
instruction, then subtracting this value from the updated value of the PC to derive
the destination address. The updated PC value is taken to be the address of the
instruction byte following the DINZ or DBJNZ instruction, while the displacement is a
7-bit positive value in the range 0 to 127. Thus, the destination address must be in
the range -252 to 2 bytes from the start of the DINZ or DBJNZ instruction. In the
segmented mode, the PC segment number is not affected. The assembler automatic-
ally calculates the displacement by subtracting the PC value of the following instruc-
tion from the address given by the programmer. Note that DINZ or DBJNZ cannot be
used to transfer control in the forward direction, nor to another segment in
segmented mode operation.

No flags affected

Destination
Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

RA:

DINZ R, displacement " -
DBJNZ Rb, displacement [1 b l : |w| e I B [1 1 117’ [w! disp l n

Example:

DINZ and DBJNZ are typically used to control a “"loop” of instructions. In this exam-
ple for nonsegmented mode, 100 bytes are moved from one bulffer area to another,
and the sign bit of each byte is cleared to zero. Register RHO is used as the counter.

LDB RHO,#100 linitalize counter!
LDA R1, SRCBUF lload start address!
LDA R2, DSTBUF
LOOP:
LDB RLO,@R1 lload source byte!
RESB RLO,#7 Imask off sign bit!
LDB @R2, RLO . lstore into destination!
INC Rl ladvance pointers!
INC R2
DBINZ RHO, LOOP Irepeat until counter = 0!
NEXT:

For segmented mode, Rl and R2 must be changed for register pairs.

48

Privileged EI

Enable Interrupts

El int Int: VI, NVI

Operation: If instruction (0) = 0 then NVI - 1
If instruction (1) = O then VI « 1
Any combination of the Vectored Interrupt (VI) or Non-Vetored Interrupt (NVI) con-
trol bits in,the Flags and Control Word (FCW) are set to one if the corresponding bit
in the instruction is zero, thus enabling the appropriate type of interrupt. If the cor-
responding bit in the instruction is one, the control bit will not be affected. All other
bits in the FCW are not affected. There may be one or two operands in the assembly
language statement, in either order.
Flags: No flags affected
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
El int [o1111100 Jooooor[¥]}] 7 [o1111100 Jooooo1[i]}] 7

Example:

If the NVI contol bit is set (1) in the FCW, and the VI control bit is clear (0), the
instruction

EI VI
will leave both the NVI and VI control bits in the FCW set (1)

49

EX

Exchange

EX dst, src dst: R

EXB src: R, IR, DA, X
Operation: tmp <~ src (tmp is a temporary internal register)

src < dst
dst - tmp

The contents of the source operand are exchanged with the contents of the destina-

tion operand.

Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: ?}éBRﬁ'bgsts [1ol10110]w] s | ma] 6 10[10110[w] &s [Ra || 6
IR: gBﬂgggﬁz’Rsl [oo[10110[w]Rs«0] ra | 12 [oo]10110/w[Rs«0 [Ra || 12
DA: EX Rd, address
EXB Rbd. address o1[10110/w[oooo] Rd 15 |ss o1|1o110’w 0000 Rd 16
address 0| segment offset
o1]10110{w[0000] Rd
st|1] segment | 0000 0000 18
offset
X: gBﬁgggddggs()R) 01[10110[w[Rs<0| Rd 6 |ss o1f10110]w[Rs+0] Rd 16
- acdrins address 01 segment offset
o1[10110[w[Rs+0[na
SL{1] segment 0000 0000 19
offset
Example: If register RO contains 8 and register R5 contains 9, the statement

EX RO,R5

will leave the values 9 in RO, and 8 in R5. The flags will be left unchanged.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

50

EXTS

Extend Sign

EXTSB dst dst: R
EXTS
EXTSL
Operation: Byte
if dst (7) = O then dst (8:15) <« 000...000
else dst (8:15) - 111...111
Word
if dst (15) = O then dst (16:31) < 000...000
else dst (16:31) - 111...111
Long
if dst (31) = O then dst (32:63) < 000...000
else dst (32:63) - 111...111
The sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTS, the destination is a
register pair; for EXTSL, the destination is a register quadruple.
This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (as, for example, before a divide).
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: EXTSB Rd [0l 110001] Rra [o000] 11 [10[110001] Ra Joooo] 11
EXTS RRD l10[110001 | ra [1010] 11 |10/ 110001 | ra [1010] 1
EXTSL RQd [1o[110001] Rra [0111] 11 l1o[110001] ma Jo111] 1
Example: If register pair RR2 (composed of word registers R2 and R3) contains % 12345678,

the statement

EXTS RR2
will leave the value %00005678 in RR2 (because the sign bit of R3 was 0).

51

HALT

Halt

Privileged

Operation:

Flags:

The CPU operation is suspended until an interrupt or reset request is received. This
instruction is used to synchronize the Z8000 with external events, preserving its state
until an interrupt or reset request is honored. After an interrupt is serviced, the
instruction following HALT is executed. While halted, memory refresh cycles will

" still occur, and BUSREQ will be honored.

No flags affected

Nonsegmented Mode

Segmented Mode

Assembler Language
Syntax

Instruction Format

Cycles!

Instruction Format

Cycles!

HALT

[o1111010 00000000]

8+3n

[01111010 [00000000 |

8+3n

Note 1: Interrupts are recognized at the end of each 3-cycle period; thus n = number of periods without

interruption.

52

Privileged IN (SIN)

(Special) Input

IN dst, src dst: R
INB src: IR, DA
SIN dst, src dst: R
SINB src: DA
Operation dst < src
The contents of the source operand, an Input or Special Input port, are loaded into
the destination register. IN and INB are used for normal 1/O operation; SIN and
SINB are used for-Special I/O operation.
Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: IN Rd!, @R
INBRbdl,(;Rs looft1110[w] rs | ra | 10 loof11110lw]| Rs | ma | 10
DA: IN Rd, port
INB Rbd, port 00[11101|w[Rd 10105 12 oo|111o1lw| Rd Lows 12
port port
SIN Rd, port
SINB Rbd, port
Example: If register R6 contains the I/O port address %0123 and the port %0123 contains

%FF, the statement
INB RH2, @R6
will leave the value %FF in register RH2.

Note 1. Word register in nonsegmented mode; register pair in segmented mode.

53

INC

Increment
INC dst, src dst: R, IR, DA, X
INCB src: IM
Operation: dst < dst + src (src = 1 to 16)

The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Two's complement addition is performed. The
source operand may be omitted from the assembly language statement and defaults

to the value 1.

The value of the source field in the instruction is one less than the actual value of the

source operand. Thus, the coding in the instruction for the source ranges from

0 to 15, which corresponds to the source values 1 to 16.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign
and the result is of the opposite sign; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: INC Rd,
INCBRbfi?//n |1o[10100{w| Ra [n-1] 4 [10[10100/w| Ra [n-1]f 4
: 1
" mgs@g?{dl#;n [oo]10100jw]Raxo[n-1] 1 [oo]to100[w[Ra=0]n-1]| 11
DA: INC address, #n
INCB address, #n 01]10100[w]ooo0[n -1 B 01[10100]w|0000]n -1 14
address 0[segment offget
01{10100w[o000[n -1
SL{1] segment [0000 0000 16
offset
X: INC addr(Rd), #n
INCB addr(Rd), #n 01]10100[w|Rds0[n-1 14 |gs o1froroojwlrason-1]| .,
address 0] segment offset
o01]10100|w|[Rdz0[n -1
SL{1] segment 0000 0000}| 17
offset
Example: If register RH2 contains %21, the statement

INCB RH2,#6
will leave the value %27 in RH2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

54

Privileged

IND (SIND)

(Special) Input and Decrement

IND dst, src, r dst: IR
INDB src: IR
SIND
SINDB
Operation: dst <« src
AUTODECREMENT dst (by 1 byte, by 2 if word)
rer -1 ’
This instruction is used for block input of strings of data. IND and INDB are used for
normal I/O operation; SIND and SINDB are used for special I/O operation. The con-
tents of tHe I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by “r” (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged.
Flags: C: Unaffected
Z: Unatffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: IND @Rdl, ¢Rs, r 0011101|w[Rs # 0[000S 0011101|W|Rs » 0[0005
INDB @Rd!, @Rs, r 21 21
0000] « |Rd=0[1000 0000] r [Ra=of1000
SIND @Rd!, @Rs, r
SINDB @Rd!, @Rs, r
Example: In segmented mode, if register RR4 contains %02004000 (segment 2, offset %4000),

register R6 contains the I/O port address %0228, the port %0228 contains %05B9,
and register RO contains %0016, the instruction

IND @RR4, @R6, RO

will leave the value %05B9 in location %02004000, the value %02003FFE in RR4,
and the value %0015 in RO. The V flag will be cleared. Register R6 still contains the

value %0228. In nonsegmented mode, a word register would be used instead of

RR4.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

55

INDR (SINDR) Privileged

(Special) Input, Decrement and Repeat

INDR dst, src, r : dst: IR
INDRB src: IR
SINDR
SINDRB

Operation: dst <« src
AUTODECREMENT dst (by 1 if byte, by 2 if word)
rer—1
repeat untilr = 0
This instruction is used for block input of strings of data. INDR and INDRB are used
for normal I/O operation; SINDR and SINDRB are used for special I/O operation.
The contents of the I/O port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by “r" (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can input from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 for INDR or SINDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

. Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: INDR @Rd!, @Rs, r
INDRB @Rd!, @Rs, r | |0011101[W[Rs «0]100s| | . | Toot1101]w[rs=0[100s| ;. o0
SINDR @Rdl, @Rs, r 0000 Rd % 0/0000 0000] Rd +0/0000

SINDRB @Rd!, @Rs, r

56

Privileged JNDR (SINDR)

(Special) Input, Decrement and Repeat

Example:

If register R1 contains %202A, register R2 contains the Special I/O address %0AFC,
and register R3 contains 8, the instruction

SINDRB @RI, @R2, R3)
will input 8 bytes from the special I/O port 0AFC and leave them in descending
order from %202A to %2023. Register R1 will contain %2022, and R3 will contain 0.
R2 wil} not be affected. The V flag will be set. This example assumes nonsegmented
mode; in segmented mode, Rl would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

57

INI (SINI)

(Special) Input and Increment

Privileged

INI dst, src, r dst: IR
INIB src: IR
SINI
SINIB
Operation: dst < src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
rer-—1
This instruction is used for block input of strings of data. INI, INIB are used for nor-
mal I/O operation; SINI, SINIB are used for special I/O operation. The contents of
the 1/O port addressed by the source word register-are loaded into the memory loca-
tion addressed by the destination register. I/O port addresses are 16 bits. The
destination register is then incremented by one if a byte instruction, or by two if a
word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r” (used as a counter) is then decremented
by one. The address of the I/O port in the source register is unchanged.
Flags: C: Unalffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: INI @Rd!, @Rs, r
INIB @Rd!, @Rs, r oo111o1|w Rs £ 0|100S 21 oo111o1|w Rs +0[{100S 21
SINI @Rdl, @Rs, r 0000] r [rd=o0[1000 0000[r [ra=ol1000
SINIB @Rd!, @Rs, r
Example: In nonsegmented mode, if register R4 contains %4000, register R6 contains the 1/O

port address %0229, the port %0229 contains %B9, and register RO contains %0016,
the instruction

INIB @R4, @R6, RO

will leave the value %B9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented mode, R4 would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

58

Privileged JNIR (SINIR)

(Special) Input, Increment and Repeat

INIR dst, src, r dst: IR
INIRB src: IR
SINIR
SINIRB
Operation: dst < src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
rer -1
repeat until r = 0,
This instruction is used for block input of strings of data. INIR and INIRB are used
for normal /O operation; SINIR and SINIRB are used for special I/O operation. The
contents of the I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register.is then incremented by one if a byte instruction, or by
two-if a word instruction, thus moving the pointer to the next element in the string.
The word register specified by "r"’ (used as a counter) is then decremented by one.
The address of the I/O port in the source register is unchanged. The entire operation
is repeated until the result of decrementing r is zero. This instruction can input from
1 to 65536 bytes or 32768 words (the value for r must not be greater than 32768 for
INIR or SINIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.
Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
- Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: INIR @Rd!, @Rs, r
INIRB @Rd!, @Fs, r 0011101 |W/Rs #0{000s| |, o1 Joot1101[w[Rs«0[000S]| 144 .440n
SINIR @Rdl, @Rs, r 0000 r [Rd=ofo000 0000/ r [Rd=o0[o000

SINIRB @Rd!; @Rs, r

59

INIR (SINIR) Privileged

(Special) Input, Increment and Repeat

Example:

In nonsegmented mode, if register Rl contains %2023, register R2 contains the I/O
port address %0551, and register R3 contains 8, the statement

INIRB @R1, @R2, R3)
will input 8 bytes from port %0051 and leave them in ascending order from %2023
to %202A. Register R1 will contain %202B, and R3 will contain 0. R2 will not be
affected. The V flag will be set. In segmented mode, a register pair must be used
instead of R1.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements transferred.

60

Privileged IRET

Interrupt Return

IRET
Operation: Nonsegmented Segmented
SP <« SP + 2 (Pop “identifier") SP < SP + 2 (Pop “identifier")
PS < @gsp PS - @Sp
SP <+ SP + 4 SP< SP + 6
This instruction is used to return to a previously executed procedure at the end of a
procedure entered by an interrupt or trap (including a System Call instruction).
First, the “identifier” word associated with the interrupt or trap is popped from the
systém processor stack and discarded. Then contents of the location addressed by
the system processor stack pointer are popped into the program status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW is not effective until the next instruction, so that the status pins will not
be affected by the new control bits until after the IRET instruction execution is com-
pleted. The next instruction executed is that addressed by the new contents of the
PC. The system stack pointer (R15 if nonsegmented, or RR14 if segmented) is used to
access memory. When using a Z8001, the operation of IRET in nonsegmented mode
is undefined. A Z8001 must be in segmented mode when an IRET instruction is
performed.
Flags: C: Loaded from processor stack
Z: Loaded from processor stack
S: Loaded from processor stack
P/V: Loaded from processor stack
D: Loaded from processor stack
H: Loaded from processor stack
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IRET [o1111011 00000000] 13 [01111011 | 00000000 | 16
Example: In the nonsegmented Z8002 version, if the program counter contains %2550, the

system stack pointer (R15) contains %3000, and locations %3000, %3002 and %3004
contain %7F03, a saved FCW value, and %1004, respectively, the instruction
IRET

will leave the value %3006 in the system stack pointer and the program counter will
contain %1004, the address of the next instruction to be executed. The program
status will be determined by the saved FCW value.

61

JP

Jump
JP cc, dst dst: IR, DA, X
Operation: If cc is satisfied, then PC < dst
A conditional jump transfers program control to the destination address if the
condition specified by “cc” is satisfied by the flags in the FCW. See list of condi-
tion codes. If the condition is satisfied, the program counter (PC) is loaded with
the designated address; otherwise, the instruction following the JP instruction is
executed.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: IP ce, @RI loofot1110]Rd=0] cc | | 107 [ooJot1110 Rax0] e]| 1517
DA: JP ce, address o1[011110[0000[cc 01[011110[0000] <
Y14 SS 8/8
address D] segment offset
01/ 011110 0000 cc
SL[1] segment [0000 0000]| 10110
offset
X: JP cc, addr(Rd) ‘
01{011110 | Rd#0 | ec as sso1]on11o Rd#0 | co || ooy
address 0[segment offset
01/011110|Rd=0| cc
SL|1] segment [0000 0000]| 11/11
offset
Example: If the carry flag is set, the statement

JP C, %1520

replaces the contents of the program counter with %1520, thus transferring control

to that location.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: The two values correspond to jump taken and jump not taken.

62

JR

Jump Relative

Operation:

Flags:

JR cc, dst dst: RA

if cc is satisfied then PC < PC + (2 x displacement)

A conditional jump transfers program control to the destination address if the condi-
tion specified by “cc” is satisfied by the flags in the FCW. See list of condition codes.
If the condition is satisfied, the program counter (PC) is loaded

with the designated address; otherwise, the instruction following the JR instruction is
executed. The destination address is calculated by doubling the displacement in the
instruction, then adding this value to the updated value of the PC to derive the
destination address. The updated PC value is taken to be the address of the instruc-
tion byte following the JR instruction, while the displacement is an 8-bit signed value
in the range -128 to + 127. Thus, the destination address must be in the range -254
to + 256 bytes from the start of the JR instruction. In the segmented mode, the PC
segment number is not affected.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

No flags affected

Destination
Addressing
Mode

Nonsegmented Mode Segmented Mode

Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles

RA:

JR cc, address [1 110 I cc I displacemenq 6 I1 110 [cc ‘ displacemeﬂ 6

Example:

If the result of the last arithmetic operation executed is negative, the following four
instructions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished with the instruction

JR ML $ +14
If the S flag is not set, execution continues with the instruction following the JR.
A byte-saving form of a jump to the label LAB is

JR LAB

where LAB must be within the allowed range. The condition code is "blank” in this
case, and indicates that the jump_is always taken.

63

LD
Load

src: R, IR, DA, X, BA, BX

dst: IR, DA, X, BA, BX

DA, X

The contents of the source are loaded into the destination. The contents of the source

There are three versions of the Load instruction: Load into a register, load into

LD dst, src dst: R
LDB
LDL
or
src: R
or
dst: R, IR,
src: IM
Operation: dst <« src
are not affected.
memory and load an immediate value.
Flags: No flags affected

Load Register

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: LD Rd, Rs
LDB Rbd, Rbs l10]10000]w] ms | ra | 3 [to]1oooolw] rs | ma || 3
LDL RRd, RRs [10[010100] RRs | RRd | 5 J10{o10100] mRs | RRa || 5
IR: LD Rd, @Rs!
LDB Rbd, @Rs! boltoooo[w[Rszo| ra | 7 [oofioooo[wrs=0] e]| 7
LDL RRd, @Rs! [oo] 010100 Rs=0] RRa | 11 [oo] 010100 Rs<0] rRa || 11
DA: LD Rd, address
LDB Rbd, address o1[10000]w|[0000| R4 o |ss 01[10000]w[oooo] Rd 10
address 0| segment offset
01[10000{w[o000] ra
sL 11 segment | 0000 0000 12
offset
'LDL RRd, address 01 o1o1o«o]oooo| RRd 01/ 010100 ooool RRd
12 Ss 13
address OJ segment offset
01/ 010100 [0000][RRd
SL 1'J‘ segment | 0000 0000 15
offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

64

LD
Load

Load Register (Continued)

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: LD Rd, addr(Rs)
. 01/10000|W| Rs20 | Rd R
LDB Rbd, addr(Rs) W] meso 10 | ssflroocolwlmseol e]I
address 0| segment offset
o1[10000]w|Rs=0| Rg
SL 1[segment | 0000 0000 13
offset
LDL RRd, addr(Rs) 01[010100 [Rs=0 [RRd 01[010100 [Rs=0][mRd
13 SS 13
address 0| segment offset
01] 010100 [Rs«0] RRd
SL 1] segment | 00000000 16
offset
BA: LD Rd, Rs!(#disp) .
: W[Rs#0| Rd 11000|W| Rs20 | Rd
LDB Rbd, Rei(raiepy | |2 1000[W] Revo 14 0] 1000]w] Rs<o] 14
displacement displacement
LDL RRd, Rs!(#disp) 00/ 110101 | Rs#0| Rd 17 00[110101 [Rs0] Ra 17
displacement displacement
BX: LD Rd, Rs!(Rx)
LDB Ry, Rel(R) 01]11000[w[Rs=0| Rd 14 o1[11000]w| Rs=0] Ra 1
0000] Rx [0000 0000 0000 Ax [0000 0000
LDL RRd, Rs!(Rx) 01[11010[1]Rs=0] rd 17 01[11010[1]Rs+0 [Rd .
0000] Ax [0000 0000 0000] Rx |0000 0000
Load Memory
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LD @Rd!, Rs 00{10111|W|Rd = 0| Rs
, 8 00{10111(W(Rd # 0| Rs 8
woraiie | [eloriweze 7] el Tone o]
LDL @Rd!, RRs Joo[o11101 [ra « o] mrs | 1 foofo11101 Ra+o] mAs || 11

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

65

LD
Load

Load Memory (Continued)

Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA:. LD address, Rs
' 1 0000| R 01[10111[w[o000]| Rs
LDB address, Rbs otfrotvi[w[oooo] As n o |ssfol l I 12
address 0—[segment offset
01]10111]w]o000| Rs
SL 1[segment | 0000 0000 14
offset
DA: LDL address, RRs
. 01[011101 [0000| RR
01]011101[0000] Rs 1w |ss | | mRs 15
address 0] segment offset
01) 011101 [0000] RRs
sL 1’ segment | 0000 0000 17
offset
X: LD addr(Rd), Rs
: 10111|w| Rd#0 o1[10111][w|Rd=0| m
LDB addr(Rd), Rbs orftori1[wlaso] e 12 |ssjuliortiwineo] m } o
address 0[segment offset
o1]1o111]w Rd#0| Rs
SL|1] segment | 00000000 15
offset
LDR addr(Rd), RRs 01l 011101 Rd=0] RR 01[011101 [Rd«0| RR
[Razo] RRs s |ssol col mme | g
address OI segment offset
01[011101 [Rd=0] RRs
SL 1[segment | 0000 0000 18
offset
BA: LD Rdl(#disp), Rs foo]11001]w]Razo]| s 00{11001]w|[Rd=0] Rs
LDB Rd!(#disp), Rbs 14 14
] displacement displacement
LDL Rd!(#disp), RRs
P 00[110111 | Ra+0] RRs 17 00[110111 [Rd=0] RRs 17
displacement displacement
BX: LD Rd!(Rx), Rs
: 01|11001|w| Rd=0| R 01 :
LDB Rd! (Rx), Rbs | cof re 14 lrvooslwlnaco] e]I,
0000] Rx [o00000000 0000] Rx | 00000000
LDL Rd!(Rx), RRs 01]110111] Rd=0] RRs 1 01110111 | Rd+0 | RRs 1
0000] Ax [00000000 0000] Ax | 00000000

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

66

LD

Load

Load Immediate Value

Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: LD Rd, #data 001000010000 Rd ; 00[100001 [0000] Rd 7
data data
LDB Rbd, #data? 00[100000 [0000] Rd ; 00[100000 [0000] Rd ;
data data data data
[1100] Ra [dmta | 5 [1100] Rd | data || 5
LDL RRd, #data 00[010100 [0000] RRd 00[010100 [0000] RRd
31 data (high) 16 1 31 data (high) 16 "
15 data (low) 0 15 data (low) 0
IR: LD @Rd!, fdata 00[001101 [Rd+0[0101 00[001101 [Rd #0[0101
1" 11
data data
LDB @Rd!, #data 00001100 [Rd#0]0101 " 00/ 001100 [Rd#0[0101 1"
data data data data
DA: LD address, fdata 01]001101]0000]0101 01Loo1101 0000|0101
address 14 SS OI segment offset 15
data data
01[001101 [0000{0101
1| segment |0000 0000
sL | seo 17
offset
data
LDB address, #data 01] 001100 0000fo101 o1loo11oo 0000|0101
address 14 SS Fr segment oftset 15
data T data data data
01] 001100 [0000]0101
1| segment |0000 0000
sL | ses 17
oﬂ'set
data] data

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: Although two formats exist for "LDB R, IM”, the assembler always uses the short format. In this case, the

“src field” in the instruction format encoding contains the source operand.

67

LD
Load

Load Immediate Value (Continued)

Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: LD addr(Rd), #data 01[001101 Ra=0]07101 01001101 RdanIDIDI
address 15 SS 0[segment offset 15
data data
01{001101 [Ra=0]0101
1] segment [0000 0000
SL 18
offset
data
LDB addr(Rd), #data 01[001100 [Rds0]0101 01001100 Rd:010101
address 15 SS 0[segment offset 15
data l data data data
01[001100[Ra=0]o101
. 1] segment [0000 0000 18
offset
data J data
Example: Several examples of the use of the Load instruction are treated in detail in Chapter 4

under addressing modes.

68

LDA
Load Address

LDA dst, src dst: R
src: DA, X, BA, BX

Operation: dst <- address (src)
The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address computation follows the rules for
address arithmetic. The destination is a word register in nonsegmented mode, and a
register pair in segmented mode.
In segmented mode, the address loaded into the destination has an undefined value
in all reserved bits (bits 16-23 and bit 31). However, this address may be used by
subsequent instructions in the indirect based or base-index addressing modes
without any modification to the reserved bits.
Flags: No flags affected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: LDA Rd!, address 01[110110]0000] R4 01110110 0000] RRd
12 Ss 13
address OI segment offset
01110110 [0000] RRa
SL[1] segment [0000 0000 15
N offset
X: LDA Rd!, addr(Rs)
‘ 01[110110 [Rs#0 | Rd 01{110110 | Rs=0 | RRd
[Rexo] 7 15 |ss|o wo] 13
address 0] segment offset
01/ 110110 | Rs#0 | RRd
SL 1| segment |0000 0000 16
offset
BA: LDA Rd!, Rs! (#disp) 00110100 [Rs=0| Rd ; 00110100 | Rs=0| Rd 5
displacement 5 displacement
BX: LDA Rdl, Rs! (Rx) 01110100 Rs:o[Rd 15 01110100 Rs;tol Rd 15
0000| Rx [0000 0000 0000| Rx [0000 0000

69

LDA
Load Address

Examples: LDA R4,STRUCT lin nonsegmented mode, register R4 is loaded!
Iwith the nonsegmented address of the location!
Inamed STRUCT!

LDA RR2, <<3>> 8(R4) lin segmented mode, if index register R4!
Icontains %20, then register RR2 is-loaded!
lwith the segmented address (<< 3>>, offset %28)!
LDA RR2,RR4(#8) lin segmented mode, if base register RR4!
Icontains %01000020, then register RR2 is loaded!
lwith the segment address << 1 >> %28!
I(segment 1, offset %28)!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

.10

LDAR
Load Address Relative

Operation:

Flags:

LDAR dst, src dst: R
src: RA

dst <= ADDRESS (src)

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The destination is a word register in
nonsegmented mode, and a register pair in segmented mode. In segmented mode,
the address loaded into the destination has all “reserved” bits (bits 16-23 and bit 31)
cleared to zero.

The relative addressing mode is calculated by adding the displacement in the
instruction to the updated value of the program counter (PC) to derive the address.
The updated PC value is taken to be the address of the instruction byte following the
LDAR instruction, while the displacement is a 16-bit signed value in the range
-32768 to +32767. The addition is performed following the rules of address
arithmetic, with no modifications to the segment number in segmented mode. Thus
in segmented mode, the source operand must be in the same segment as the LDAR
instruction.

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

No flags affected

Source
Addressing
Mode

Nonsegmented Mode Segmented Mode

Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles

RA:

LDAR Rd!, address 00110100 [0000| Rd 15 00110100 0000] Re

displacement displacement

15

Example:

LDAR R2, TABLE lin nonsegmented mode, register R2 is loaded!
!with the address of TABLE!

LDAR RR4, TABLE lin segmented mode, register pair RR4 is!
loaded with the segmented address of TABLE,!
Iwhich must be in the same segment as the program!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

11

LDCTL Privileged

Load Control

LDCTL dst, src dst: CTLR
src: R
or
dst: R
src: CTLR
Operation: dst < src

This instruction loads the contents of a general purpose register into a control
register, or loads the contents of a control register into a general-purpose register.
The control register may be one of the following CPU registers:

FCW Flag and Control Word

REFRESH Refresh Control

PSAPSEG Program Status Area Pointer - segment number
PSAPOFF Program Status Area Pointer - offset

NSPSEG Normal Stack Pointer - segment number
NSPOFF Normal Stack Pointer - offset

The operation of each of the variants of the instruction is detailed below. The ones
which load data inte a control register are described first, followed by the variants
which load data from a control register into a general purpose register. Whenever
bits are marked reserved, the corresponding bit in the source register must be either
0 or the value returned by a previous load from the same control register. For com-
patibility with future CPUs, programs should not assume that memory copies of con-
trol registers contain Os, nor should they store data in reserved fields of memory
copies of control registers.

Load Into Control Register
LDCTL FCW, Rs

Operation: FCW (2:7) < Rs (2:7)
FCW (11:15) - Rs (11:15)

||5141312111098765432|0
s L

YYY ey PV ¥y
FCW: [sec[sieralvifnvif Eﬁ slpv/o]

t eserved

LDCTL REFRESH, Rs

Operation: REFRESH (1:15) - Rs (1:15)
Rs:
REFRESH:

15 14 13 121110 9 8 7 6 5 4 3 2 1 0

TTITTIT T

Ile—‘ rate counter

12

Privileged LDCTL

Load Control

Operation:

Operation:

Operation:

LDCTL NSPSEG, Rs
NSPSEG (0:15) «- Rs (0:15)

SPSE“:;mmwu‘n‘m:

In segmented mode, the NSPSEG register is the normal mode R14 and contains the
segment number of the normal mode processor stack pointer which is otherwise
inaccessible for system mode.

In nonsegmented mode, R14 is not used as part of the normal processor stack
pointer. This instruction may not be used in nonsegmented mode.

LDCTL NSPOFF, Rs
NSP, Rs

NSPOFF (0:15) -~ Rs (0:15)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

im

I

TN SR NS NN TR RO S '

mumumj

L
TR VO RN A RO RN S U SN SRR N |

*NSPOFF:

*NSP in nonsegmented mode

In segmented mode, the NSPOFF register is R15 in normal mode and contains the
offset part of the normal processor stack pointer. In nonsegmented mode, R15 is the
entire normal processor stack pointer.

In nonsegmented 28002, the mnemonic “NSP" should be used in the assembly
language statement, and indicates the same control register as the mnemonic
"NSPOFF"”

LDCTL PSAPSEG, Rs
PSAPSEG (8:14) < Rs (8:14)

1, 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TR B I|I1I4LLJ;IIJ

TTIiiiy

Rs: l

PSAPSEG:

reserved

The PSAPSEG register may not be used in the nonsegmented Z8002. In the
segmented Z8001, care must be exercised when changing the two PSAP register
values so that an interrupt occurring between the changing of PSAPSEG and
PSAPOFF is handled correctly. This, is typically accomplished by first disabling
interrupts before changing PSAPSEG and PSAPOFF.

13

LDCTL

Privileged

Load Control

Operation:

*PSAPOFF: | offset (upper byte)

Operation:

Operation:

LDCTL PSAPOFF, Rs
PSAP, Rs

PSAPOFF (8:15) - Rs (8:15)

15 14 13 12 11 10 9 8

“ITIITTTT

*PSAP in nonsegmented mode

In the nonsegmented Z8002, the mnemonic “"PSAP" should be used in the assembly
language statement and indicates the same control register as the mnemonic
“PSAPOFF". In the segmented Z8001, care must be exercised when changing the
two PSAP register values so that an interrupt occurring between the changing of
PSAPSEG and PSAPOFF is handled correctly. This is typically accomplished by first
disabling interrupts before changing PSAPSEG and PSAPOFF. The low order byte
of PSAPOFF should be 0.

Load From Control Register
LDCTL Rd, FCW

Rd (2:7) - FCW (2:7)

Rd (11:15) <= FCW (11:15) (Z8001 only)
Rd (11:14) < FCW (11:14) (Z8002 only)
Rd (0:1) <= UNDEFINED

Rd (8:10) <= UNDEFINED

Rd (15) < 0 (28002 only)

15 14 13 12 11 10 9 8 4 3 2

5
FCW: ISEG|SIN|EPAI ﬂﬂ‘” s [piv| b | H

iy "“'iiuu
R&: [. .] . L |

’—undehned ——’

LDCTL Rd, REFRESH

Rd (1:8) - REFRESH (1:8)
Rd (0) < UNDEFINED
Rd (9:15) < UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2
REFRESH: | re rate counter ,
t L L T # i 'y

o]

74

Privileged LDCTL

Load Control

Operation:

Operation:

Operation:

LDCTL Rd, PSAPSEG

Rd (8:14) <= PSAPSEG (8:14)
Rd (0:7) <= UNDEFINED
Rd (15) < UNDEFINED

15 14 13 12 11 10 9 8 7 5 3 0

PSAPSEG: |

segment number

Ra:[[. o]]
1 }

This instruction may not be used in the nonsegmented version.

LDCTL Rd, PSAPOFF
Rd, PSAP

Rd (8:15) < PSAPOFF (8:15)
Rd (0:7) <= UNDEFINED

15 14 13 12 11 10 9 8
*PSAPOFF: I offset (upper byte)

Rrzasary

L L undefined J

R

*PSAP in nonsegmented mode

In nonsegmented mode, the mnemonic PSAP should be used in the assembly

language statement, and it indicates the same control register as the mnemonic
PSAPOFF.

LDCTL Rd, NSPSEG

Rd (0:15) «- NSPSEG (0:15)

e T IIIIITIL
Ra: [. .

This instruction is not available in nonsegmented mode.

15

LDCTL

Load Conirol

Privileged

LDCTL Rd, NSPOFF
Rd, NSP

Operation: Rd (0:15) «- NSPOFF (0:15)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
*NSPOFF: | iﬂf ‘ ¢ iilf¢4$fi¢¢l
Rd: I L L Il 1 1 | | 1 L L 1 L L I
*NSP in nonsegmented mode
In nonsegmented mode, the mnemonic NSP should be used in the assembly
language statement, and it indicates the same control register as the mnemonic
NSPOEF.
Flags: No flags affected, except when the destination is the Flag and Control Word (LDCTL
FCW, Rs), in which case all the flags are loaded from the source register.
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
LDCTL FCW, Rs Jo1111101] rs [1010] 7 [o1111101 [Rrs [1010] 7
LDCTL REFRESH, Rs [ot111101] 8s [1011] 7 [ot1111101 [rs Ja011] 7
LDCTL PSAPSEG, Rs [oriviior] m Jive0] | 7
LDCTL PSAPOFF, Rs
PoD Re [o1111101] rs [1104] 7 Jot111101| Rs [1101] 7
LDCTL NSPSEG, Rs 01111101 Rs [1110] 7
LDCTL NSPOFF, Rs
NP, s [o1111101] rs [1111] 7 foti11101| Rs [1111] 7
" Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
LDCTL Rd, FCW [o1111101] rd [o0010] 7 [o1111101 [-ra Joo10] 7
LDCTL Rd, REFRESH [o1111101] ra [o0011] 7 {o1111101] ra [o011] 7
LDCTL Rd, PSAPSEG [oivi1707] na Jovoo] | 7
LDCTL Rd, PSAPOFF
LDOTL R PSAD Jo1111101] ra Jo101] 7 [o11111017] nd [o0101] 7
LDCTL Rd, NSPSEG
Jo1111101 | ra [0110] 7
LDCTL Rd, NSPOFF [o1111101] Ra [o111] 7 Jor1111101] ra o111} 7

Rd, NSP

16

LDCTLB

Load Control Byte

Operation:

LDCTLB dst, src dst: FLAGS
src: R
or
dst: R
src: FLAGS
dst - src

This instruction is used to load the FLAGS register or to transfer its contents into a
general-purpose register. Note that this is'not a privileged instruction.

Load Into FLAGS Register

LDCTLB FLAGS, Rbs

FLAGS (2:7) "« src (2:7)

The contents of the source (a byte register) are loaded into the FLAGS register. The
lower two bits of the FLAGS register and the entire source register are unaffected.

5 4 3 2 1 0
°]

Rbs:

T
FLAGS: [c]z[spvolu] 7]

T

reserved

——
'y

Load From FLAGS Register

Flags:

LDCTLB Rbd, FLAGS

dst (2:7) «- FLAGS (2:7)
dst (0:1) -- 0

The contents of the upper six bits of the FLAGS register are loaded into the destina-
tion (a byte register). The lower two bits of the destination register are cleared to
zero. The FLAGS register is unaffected.

1 0

7 6 5 4 3 2
FLAGS: [clz[splo W[]

Rbd: L. loof

When the FLAGS register is the destination, all the flags are loaded from the
source. When the FLAGS register is the source, none of the flags are affected.

171

LDCTLB

Load Control Byte

Assembler Language

Nonsegmented Mode

Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles
LDCTLBFLAGS, Bbs | [9001100 | Rs |1001) 7] 10001100 | Rs [1001] 7
LDCTLB Rbd, FLAGS | 5001100 Rd |0001] 7 | 10001100] Rd [0001] 7

18

LDD

Load and Decrement

LDD dst, src, r dst: IR
LDDB src: IR
Operation: dst < src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
rer -1
This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDB, or by two if LDD, thus moving the pointers to the previous elements in
the strings. The source destination, and counter registers must be separate and non-
overlapping registers. The word register specified by "r" (used as a counter) is then
decremented by one.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: LDD @Rs!, @Rd!, r
LDDB @Re!, @Rl 1011101 |W|Rs = 0] 1001 2 1011101|w[Rs = 0[1001 20
0000 r [Rd=0[1000 0000] r [Ra=xo[1000
Example: In nonsegmented mode, if register R1 contains %202A, register R2 contains %404A,

the word at location %404A contains %FFFF, and register R3 contains 5,
the instruction

LDD @Rl, @R2, R3
will leave the value % FFFF at location %202A, the value %2028 in Rl, the value
%4048 in R2, and the value 4 in R3. The V flag will be cleared. In segmented mode,
register pairs would be used instead of R1 and R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

19

LDDR

Load, Decrement and Repeat

LDDR dst, src, r dst: IR
LDDRB src: IR

Operation: dst - src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
rer-—1 ‘
repeat untilr = 0
This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDRB, or by two if LDDR, thus moving the pointers to the previous elements
in the strings. The word register specified by """ (used as a counter) is then
decremented by one. The entire operation is repeated until the result of decremen-
ting r is zero. The source, destination, and counter registers must be separate and
non-overlapping registers. This instruction can transfer from 1 to 65536 bytes or from
1 to 32768 words (the value for r must not be greater than 32768 for LDDR).
The effect of decrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area. .
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: @Rd!, @Rs!
tggnggdlg;slrr 1011101|w| Rs [1001 11490 1011101|w[Rs [1001 11+9n
0000/ r | Ra [0000 0000/ r | R4 [0000

80

LDDR

Load. Decrement and Repeat

Example:

In nonsegmented mode, if register Rl contains %202A, register R2 contains %404A,
the words at locations. %4040 through %404A all contain %FFFF, and register R3
contains 6, the instruction

LDDR @Rl, @R2, R3
will leave the value %FFFF in the words at locations %2020 through %202A, the
value %201E in Rl, the value %403E in R2, and 0 in R3. The V flag will be set. In
segmented mode, register pairs would be used instead of R1 and R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

8l

LDI

Load and Increment

LDI dst, src, r] dst: IR
LDIB src: IR
Operation: dst <+ src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
rer -1
This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIB, or by two if LDI, thus moving the pointers to the next elements in the
strings. The source, destination, and counter registers must be separate and non-
overlapping registers. The word register specified by "r’’ (used as a counter) is then
decremented by one.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero, cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax : Instruction Format Cycles Instruction Format Cycles
IR: LDI @Rd!, @Rs!, r 1011101 [w|Rs = 0]0001 1011101 |W|Rs = 0{0001
LDIB @Rd!, @Rsl, r 0000] + [Rra=o[1000 2 oooo] r |Rd=0{1000 20
Example: This instruction can be used in a “loop” of instructions which transfers a string of

data from one location to another, but an intermediate operation on each data ele-
ment is required. The following sequence transfers a string of 80 bytes, but tests for
a special value (%0D, an ASCII return character) which terminates the loop if
found. This example assumes nonsegmented mode. In seqmented mode, register
pairs would be used instead of R1 and R2.

LD R3 #80 linitialize counter!

LDA R1, DSTBUF lload start addresses!

LDA R2, SRCBUF
LOOP:

CPB @R2, #%0D Icheck for return character!

JR EQ, DONE lexit loop if found!

LDIB @R], @R2, R3 ltransfer next byte!

JR NOV, LOOP Irepeat until counter = 0!
DONE:

Note I: Word register in nonsegmented mode, register pair in segmented mode.

82

LDIR

Load, Increment and Repeat

T

LDIR dst, src, r dst: IR
LDIRB src: IR
Operation: dst < src
AUTOINCREMENT dst and src (by 1 if byte; by two if word)
rer -1
repeat until R = 0
This instruction is used for block transfers of strings of data. The contents of the loca-
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIRB, or by two if LDIR, thus moving the pointers to the next elements in the
strings. The word register specified by "'r” (used as a counter) is then decremented
by one. The entire operation is repeated until the result of decrementing r is zero.
The source, destination, and counter registers must be separate and non-overlapping
registers. This instruction can transfer from 1 to 65536 bytes or from 1 to 32768
words (the value for r must not be greater than 32768 for LDIR).
The effect of incrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing .
the pointers ensures that the source string will be copied without destroying the
overlapping area.
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction’s execution time for each interrupt request that is
accepted.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language -
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: LDIR & Rd1, ¢Rs, r 1011101 |W[Rs #0[0001 1011101 |W|Re #0[0001
LDIRB @Rd!, @Rsl!, r - 11 +9n 11+4+9n
0000] ¢ [Ra=0]0000 0000 r [ra=ofo000

83

LDIR

Load, Increment and Repeat

Example: The following sequence of instructions can be used in nonsegmented mode to copy a
buffer of 512 words (1024 bytes) from one area to another. The pointers to the start of
the source and destination are set, the number of words to transfer is set, and then
the transfer takes place.

LDA Rl, DSTBUF
LDA R2, SRCBUF
LD RS3, #512
LDIR @RI1, @R2, R3

In segmented mode, R1 and R2 must be replaced by register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

84

LDK

Load Constant

LDK dst, src dst: R
i src: IM
Operation: dst < src (src = 0 to 15)
The source operand (a constant value specified in the src field) is loaded into the
destination register. The source operand is a value from O to 15. It is loaded into the
four low-order bits of the destination register, while the high-order 12 bits are
cleared to zero.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: LDK Rd, fdata f10[111101] Rd | data | 5 [1o[111101] Ra | data | 5
Example: To load register R3 with the constant 9:

LDK R3,#9

85

LDM

Load Multiple

Operation:

Flags:

LDM dst, src, n dst: R

src: IR, DA, X
or

dst: IR, DA, X

src: R
dst «- src(n words)

The contents of n source words are loaded into the destination. The contents of the
source are not affected. The value of n lies between 1 and 16, inclusive. This instruc-
tion moves information between memory and registers; registers are accessed in
increasing order starting with the specified register; RO follows R15. The instruction
can be used either to load multiple registers into memory (e.g. to save the contents
of registers upon subroutine entry) or to load multiple registers from memory (e.g. to
restore the contents of registers upon subroutine exit).

The instruction encoding contains values from O to 15 in the “num” field correspond-
ing to values of 1 to 16 for n, the number of registers to be loaded or saved.

The starting address is computed once at the start of execution, and incremented by
two for each register loaded. If the original address computation involved a register,
the register’s value will not be affected by the address incrementation during
execution. Similarly, modifying that register during a load from memory will not
affect the address used by this instruction.

No flags affected

Load Multiple - Registers From Memory

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
s /Rs!

IR: LDM Rd, @Rs!, #n 00/ 011100 | Rs=0[0001 00011100 | Rs#0 0001
11+ 3n 11+3n

0000] Rd [0000] num 0000] Rd [0000] num

DA: LDM Rd, address, #n 01/011100 00000001 01] 011100 0000[0001
0000 Rd | 0000 num | [14+3n|SS|0000] Rd [0000| num |[15+3n

address Ol segment offset

01] 011100 0000|0001

0000| Rd |0000| num
SL ‘ 17+3n

1J segment | 0000 0000

offset

X: LDM Rd, addr(Rs). #n 01011100 [Rs=0[0001 01]011100|Rs+0[0001

0000[Rd [0000] num | [15+3n|sS[0000] Rrd [0000] num || 15+3n
address (i segment oftset

01]011100 Rs+0 0001

0000 Rd [0000| num
SL l 18+3n

1| segment | 0000 0000

offset

86

LDM
Load Multiple

Load Multiple - Memory From Registers

Destination Nonsegmented Mode Segmented Mode -
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format ‘| Cycles
. 1 -
IR: LDM@Rd!, Rs, #n 00011100 | Rd#0[1001 00/011100 [Rd=0[1001
11+ 3n 11+3n
0000] ms |0000] num 0000[Rs [0000] num.
DA: LDM address, Rs, #n o1[011100 [0000[1001 01011100 [0000]1001
0000] As [0000] num 14+3n|sS[o000] Rs. [0000] num |[15+3n
address Ol segment offset
0|lo111oo 0000|1001
0000 Rs 0000| num
SL [17+3n
1I segment | 0000 0000
oftset
X: LDM addr(Rd), Rs, #n oﬂonwo Rd#0 (1001 o1!o111oo Rd#0 (1001
ooooT Rs [0000| num 15+3n(SS oooo] Rs {0000| num 15+3n
address 0| segment offset
S
01]011100 Rd+0[1001
ouool Rs 0000 num
SL 18+3n
1| segment {0000 0000
offset
Example: In nonsegmented mode, if register R5 contains 5, R6 contains %0100, and R7 con-

tains 7, the statement
LDM @Re, RS, #3 -
will leave the values 5, %0100, and 7 at word locations %0100, %0102, and %0104,

respectively, and none of the registers will be affected. In segmented mode, a
register pair would be used instead of R6.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of registers.

81

LDPS Privileged

Load Program Status

Operation:

Flags:

LDPS src src: IR, DA, X

PS < src

The contents of the source operand are loaded into the Program Status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW does not become effective until the next instruction, so that the status
pins will not be affected by the new control bits until after the LDPS instruction
execution is completed. The next instruction executed is that addressed by the new
contents of the PC. The contents of the source are not affected.

This instruction is used to set the Program Status of a program and is particularly
useful for setting the System/Normal mode of a program to-Normal mode, or for run-
ning a nonsegmented program in the segmented Z8001 version. The PC segment
number is not affected by the LDPS instruction in nonsegmented mode.

The format of the source operand (Program Status block) depends on the current
Segmentation mode (not on the version of the Z8000) and is illustrated in the
following figure:

NONSEGMENTED LOW ADDRESS SEGMENTED

FCcw

PC FCW

PC SEG. NO.

HIGH ADDRESS PC OFFSET

(shaded area is reserved—must be zero)

All flags are loaded from the source operand.

Source
Addressing
Mode

Nonsegmented Mode Segmented Mode

Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles

IR:

DA:

LDPS @Rs! Joo 111001] Rs=0]0000] 12 Joo] 111001 [Rs+0]0000]| 16

01]111001 [0000]0000

LDPS address 01{111001 00000000
16 S

20
address 0] segment offset

7

01]111001 0000—[0000
SL 1[segment 0000 0000 22

offset

LDPS R: -
addr(Rs) 01 111001|RS$0L0000 01|111001 Rs¢0|0000

address 0 l segment offset

20

01]111001 | Rs=0|0000
SL 1] segment | 0000 0000 23

offset

88

Privileged LDPS

Load Program Status

Example:

In the nonsegmented Z8002 version, if the program counter contains %2550, register
R3 contains %5000, tocation %5000 contains %1800, and location %5002 contains
%A000, the instruction

LDPS @R3
will leave the value %A000 in the program counter, and the FCW value will be
%1800 (indicating Normal Mode, interrupts enabled, and all flags cleared.) In the
segmented mode, a register pair is used instead of R3. Note: Word register is used
in nonsegmented mode, register pair in segmented mode.

89

LDR

Load Relative

Operation:

Flags:

LDR dst, src dst: R
LDRB src: RA
LDRL or
dst: RA
src: R
dst <« src

The contents of the source operand are loaded into the destination. The contents of
the source are not affected. The relative address is calculated by adding the
displacement in the instruction to the updated value of the program counter (PC)
to derive the operand’s address. In segmented mode, the segmented number of the
computed address is the same as the segment number of the PC. The updated PC
value is taken to be the address of the instruction byte following the LDR, LDRB, or
LDRL instruction, while the displacement is'a 16-bit signed value in the range
-32768 to + 32767.

Status pin information during the access to memory for the data operand will be Pro-
gram Reference, (1100) instead of Data Memory request (1000).

The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

This instruction must be used to modify memory locations containing program infor-
mation, such as the Program Status Area, if program and data space are allocated to
different segments.

No flags affected

Load Relative Register

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format- Cycles
RA: LDR Rd, address
! 0110
LDRB Rbd. address 0011000|{W|0000] Rd 1 0011000|w|0000| Rd 1
displacement displacement
LDRL RRd, address 00110101 [0000] Rd 00110101 [0000| Rd
17 17
displacement displacement

90

LDR

Load Relative

Load Relative Memory

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
RA: LDR address, Rs 0011001|w[o000] ms 0o11001]|w|oooo] s
LDRB address, Rbs 14 14
- displacement displacement
LDRL address, RRs 00110111 [0000] Rs 17 00110111 [0000] ms 17
displacement displacement
Example: LDR R2, DATA Iregister R2 is loaded with the value in the!

llocation named DATA!

91

MBIT Privileged

Multi-Micro Bit Test

MBIT

Operation: S 1 if MI high (inactive); O otherwise

This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. The multi-micro input pin (MI) is tested, and the S flag
is cleared if the pin is low (active); otherwise, the S flag is set, indicating that the
pin is high (inactive).

After the MBIT instruction is executed, the S flag can be used to determine whether
a requested resource is available or not. If the S flag is clear, then the resource is
not available; if the S flag is set. then the resource is available for use by this CPU.

Flags: C: Unaffected
Z: Undefined
S: Set if Ml is high; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

. Nonsegmented Mode Segmented Mode
Assembler Language
Syntax - Instruction Format Cycles Instruction Format Cycles
MBIT - | o111101100001010 | 7 | ot11101100001010] 7
Example: The following sequence of instructions can be used to wait for the availability of a
resource.
LOOP:
MBIT Itest multi-micro input!
JR PL,LOOP Irepeat until resource is available!
AVAILABLE:

92

Privileged MREQ

Multi-Micro Request

Operation:

Flags:

MREQ dst dst: R

if MI low (active) then S < 0

MO forced high (inactive)

else MO forced low (active)
repeat dst < dst — 1 untildst = 0
if MI low (active) then S < 1
else S« 0
MO forced high (inactive)
Z<1

This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. A request for a resource is signalled through the multi-
micro input and output pins (MI and MO), with the S and Z flags indicating the
availability of the resource after the MREQ instruction has been executed.

First, the Z flag is cleared. Then the MI pin is tested. If the MI pin is low (active),
the S flag is cleared and the MO pin is.forced high (inactive),thus indicating that the
resource is not available and removing any previous request by the CPU from the
MO line.

If the MI pin is high (inactive), indicating that the resource may be available, a
sequence of machine operations occurs. First, the MO pin is forced low (active),
signalling a request by the CPU for the resource. Next, a finite delay to allow for
propagation of the signal to other processors is accomplished by repeatedly
decrementing the contents of the destination (a word register) until its value is zero.
Then the MI pin is tested to determine whether the request for the resource was
acknowledged. If the MI pin is low (active), the S flag is set to one, indicating that
the resource is available and access is granted. If the MI pin is still high (inactive),
the S flag is cleared to zero, and the MO pin is forced high (inactive), indicating
that the request was not granted and removing the request signal for the MO.
Finally, in either case, the Z flaqg is set to one, indicating that the original test of the
MI pin caused a request to be made.

Sflag Zflag - MO Indicates
0 0 high Request not signalled
(resource not available)
0 1 high Request not granted
(resource not available)
1 1 low Request granted

(resource available)

C: Unaffected

Z: Set if request was signalled; cleared otherwise

S: Set if request was signalled and granted; cleared otherwise
V: Unaffected

D: Unaffected

H: Unaffected

93

MREQ

Multi-Micro Request

Privileged

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: MREQ Rd lo1[111011] Rrd [1101] [1247n| Jo1[111011] Rrd [1101] |12+7n
Example: TRY:
LD RO, #50 lallow for propagation delay!
MREQ RO Imulti-micro request with delay!
. lin register RO!
JR MI,AVAILABLE
JR Z,NOT_GRANTED
NOT__AVAILABLE: Iresource not available!
NOT_GRANTED: Irequest not granted!
JR TRY ltry again after awhile!
AVAILABLE: . luse resource!
MRES Irelease resource!
Note 1: If the request is made, n = number of times the destination is decremented. If the request is not made,

n=0.

94

Privileged MRES

Multi-Micro Reset

Operation:

Flags:

MRES

MO is forced high (inactive)

This instruction is used to synchronize multiple processors’ exclusive access to
shared hardware resources. The multi-micro output pin MO is forced high (inactive).
Forcing MO high (inactive) indicates that a resource controlled by the CPU is
available for use by other processors.

No flags affected.

Nonsegmented Mode Segmented Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

MRES [o1111011 [00001001] 5 [o1111011 [00001001 | 5

Example:

MRES Isignal that resource controlled by this CPU!
lis available to other processors!

95

MSET

Multi-Micro Set

Privileged

MSET

Operation: MO is forced low (active)

This instruction is used to synchronize multiple processors’ exclusive access to

shared hardware resources. The multi-micro output pin MO is forced low (active).
Forcing MO low (active) is used either to indicate that a resource controlled by the
CPU is not available to other processors, or to signal a request for a resource con-
trolled by some other processor.

Flags: No flags affected.
Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
MSET [o1111011] 00001000 | 5 [o1111011 [00001000] 5
Example: MSET ICPU controlled resource not available!

96

MULT
Multiply

Operation:

Flags:

MULT dst, src dst: R

MULTL src: R, IM, IR, DA, X
Word '

dst (0:31) <« dst (0:15) x src (0:15)

Long

dst (0:63) < dst (0:31) x src (0:31)

The low-order half of the destination operand (multiplicand) is multiplied by the
source operand (multiplier) and the product is stored in the destination. The con-
tents of the source are not affected. Both operands are treated as signed, two's com-
plement integers. For MULT, the destination is a register pair and the source is a
word value; for MULTL, the destination is a register quadruple and the source is a
long word value.

For proper instruction execution, the “dst field” in the instruction format encoding
must be even for MULT and must be a multiple of 4 (0, 4, 8, 12) for MULTL. If the
source operand in MULTL is a register, the "src field”” must be even.

The initial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The carry flag is set to
indicate that the upper half of the destination register is required to represent the
result; if the carry flag is clear, the product can be correctly represented in the same
precision as the multiplicand and the upper half of the destination merely holds a
sign extension.

The following table gives execution times for word and long word operands in each
possible addressing mode.

src Word Long Word
NS SS SL NS SS SL
R 70 70 70 282+7*n 282+7'n 282+7'n
M 70 70 70 282+7*n 282+7'n 282+7'n
IR 70 70 70 282+7*n 282+7'n 282+7'n
DA 71 72 74 283+7*'n 284+7'n 286+7'n
X 72 72 75 284+7'n 284+7'n 287+7'n

(n =number of bits equal to one in the absolute value of the low-order table 32 bits of the destination operand)

When the multiplier is zero, the execution time of Multiply is reduced to the following times:

src Word Long Word
NS SS SL NS SS SL
R 18 18 18 30 30 30
M 18 18 18 30 30 30
IR 18 18 18 30 30 30
DA 19 20 22 31 32 34
X 20 20 23 32 32 35

C: MULT—set if product is less than -23! or greater than or equal to 2!5; cleared
otherwise; MULTL—set if product is less than 23! or greater than or equal to 231;
cleared otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Cleared

D: Unaffected

: Unaffected

91

MULT

Multiply

Source Nonsegmented Mode Segmented Mode
Addressing |- Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
R: MULT RRd, Rs J1olo11001] Rs | ra | [1ofo11001] ms | ra |
MULTL RQd, RRs [1o]o11000] rs] ra | [1o[011000] rs | ma |
IM: MULT RRd, #data 00[011001 [0000| Rd 00{ 011001 [0000] Rd
data data
MULTL RQd, #data 00/ 011000 [0000| Rd 00/011000 [0000] Rd
31 data (high) 16 31 data (high) 16
15 data (low) 0 15 data (low) 0
IR: MULT RRd, @Rs! looJo11001 [Rs0| Ra | [oo[011001 [Rsx0] ra]
MULTL RQd, @Rs! lool 011000 Rs#0| Ra | [oo[011000 Rs+0] Ra |
DA: MULT RRd, address 01/011001[0000| Rd ss 01/ 011001 [0000| Rd
address ol segment offset
01[011001[0000] Rd
SL[1] segment [0000 0000
offset
MULTL RQd, address 01011000 |0000| Rd ss 01] 011000 [0000]| Rd
address OJ segment offset
01011000]0000] Rd
SL 1[segment |0000 0000
offset
X: MULT RRd, addr(Rs) 01011001 | Rs#0| Rd ss 01]011001 [Rs+0| R4
address o| segment offset
01[011001 | Rs=0| Rd
SL{1] segment [0000 0000
offset
MULTL RQd, addr(Rs) | [41]011000] Rsv0| Ad gforfotrooo Rs20| Rd
address S ol segment offset
01]011000 | Rs#0| Rd
SL|1] segment [0000 0000
offset

98

MULT
Multiply

Example:

1f register RQO (composed of register pairs RRO and RR2) contains
%2222222200000031 (RR2 contains decimal 49), the statement

MULTL RQO,#10
will leave the value %00000000000001EA (decimal 490) in RQO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Execution times for each instruction are given in the preceding tables.

99

NEG

Negate

NEG dst dst: R, IR, DA, X
NEGB

Operation: dst <« dst

The contents of the destination are negated, that is, replaced by its two's comple-
ment value. Note that %8000 for NEG and %80 for NEGB are replaced by
themselves since in two's complement representation the negative number with
greatest magnitude has no positive counterpart; for these two cases, the V flag is set.

Flags: C: Cleared if thd result is zero; set otherwise, which indicates a “borrow”
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if the result is %8000 for NEG, or %80 for NEGB: cleared otherwise
D: Unaffected -
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: NEG Rd
NEGB Rbd [1o[oo110[w] Rd Joo10] 7 [10Joo110[w] ra Joo1o]| 7
IR: NEG @Rd!
NEGB @Rd! [ooloo110{w| Rax0]0010] 12 looJoo110[w[ra=0[0010 12
DA: NEG address
NEGH aiuoss o1joo110{w|[o000]o010 5 |ss o1foo110/w[o000[0010 1
address ti segment offset

o1]oo110{w[oo00]0010
SL[1] segment [0000 0000 18

offset
X: Egg;igzﬁ%) 01jo0110/w|Rd=0[0010 © |ss 01oo110/w|Rda=0 0010 1
address 0J segment offset
01joo110[w| Rd=0[0010
SL|1] segment [0000 0000 19
offset
Example: If register R8 contains %051F, the statement
NEG R8

will leave the value %FAE] in R8.

Note 1: Word register.in nonsegmented mode, register pair in segmented mode.

100

NOP

No Operation

Operation:

Flags:

NOP

No operation is performed.

No flags affected

Assembler Language
Syntax

Nonsegmented Mode

Segmented Mode

Instruction Format

Cycles

Instruction Format

Cycles

NOP

[10001101 [00000111 |

[10001101 | 00000111 |

101

OR
Or

OR dst, src
ORB

dst: R

src: R, IM, IR, DA, X

Operation: dst < dst OR src
The source operand is logically ORed with the destination operand and the result is
stored in the destination. The contents of the source are not affected. The OR opera-
" tion results in a one bit being stored whenever either of the corresponding bits in the
two operands is one; otherwise a zero bit is stored.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: OR—unaffected; ORB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: 8§BRdRL§sts [1ofooorolw] s | ra] 4 [1ofocotofw] rs [ra]| 4
IM: OR Rd, #data 00{ 000101 [0000| Rd 7 00[000101]0000] Rd 7
data data
ORB Rbd, #data 00[000100[0000| Rd 00{ 000100 [0000| Rd 7
data data 7 data data
IR: 82}3F(§L§R§Rsl loojoootow]Rs+0| Ra | 7 |oojoooto{w|rs+o| ra || 7
DA: OR Rd, address 01]o0010/w[0000| Rd o1looo10/w|oooo| Rd
ORB Rbd, address 9 SS 10
address OI segment oftset
01jooo10/w[oooo| Rrd
SL|1] segment |0000 0000f| 12
offset
X: OR Rd, addr(Rs)
ORB Rbd. addr(Fs) 01]ooo10/w|Rs+0| Rd w0 |ss 01jooo10[w|Rsz0| Rd 10
address 0| segment offset
01/o0o10{w[Rs+o| Rd
SL|1] segment [0000 0000 13
address

102 .

OR
Or

Example: If register RL3 contains %C3 (11000011) and the source operand is the immediate
value %7B (0111]011), the statement

ORB RL3,#%7B
will leave the value %FB (11111011) in RL3.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

103

OTDR (SOTDR) Privileged

(Special), Output, Decrement and Repeat

OTDR dst, src, r dst: IR
OTDRB src: IR
SOTDR
SOTDRB
Operation: dst - src
AUTODECREMENT src (by 1 if byte, by 2 if word)
rer-1
repeat untilr = 0
This instruction is used for block output of strings of data. OTDR and OTDRB are
used for normal /O operation; SOTDR and SOTDRB are used for special I/O opera-
tion. The contents ofthe memory location addressed by the source register are
loaded into the 1/O port addresses by the destination word register. I/O port
addresses are 16 bits. The source register is then decremented by one if a byte
instruction, or by two if a word instruction, thus moving the pointer to the previous
element of the string in memory. The word register specified by “'r"’ (used as a
counter) is then decremented by one. The address of I/O port in the destination
register is unchanged. The entire operation is repeated until the result of decrement-
ing r is zero. This instruction can output from 1 to 65536 bytes or 32768 word (the
value for r must not be greater than 32768 for OTDR or SOTDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted. "
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?
IR: @Rd,@Rs!,
8;,331323(1’2;5]; 0011101|W|Rs#0]101s 11410n 0011101 |W|Rs £0[101s 11+10n
SOTDR @Rd. @Rl + 0000 r |Rdxo0l0000 0000 r [Rd+ofo000

SOTDRB @Rd,@Rsl, r

104

Privileged QTDR (SOTDR)

(Special), Output, Decrement and Repeat

Example:

In nonsegmented mode, if register R11 contains %0FFF, register R12 contains
%B006, and R13 contains 6, the instruction

OTDR @RI1], @R12, R13
will output the string of words from locations %B006 to %AFFC (in descending
order of address) to port %0FFF. R12 will contain %AFFA, and R13 will contain 0.
R11 will not be affected. The V flag will be set. In segmented mode, R12 would be
replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

105

OTIR (SOTIR) Privileged

(Special) Output. Increment and Repeat

OTIR dst, src, r dst: IR
OTIRB src: IR
SOTIR
SOTIRB

Operation: dst < src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
rer-—1
repeat untilr = 0
This instruction is used for block output of strings of data. OTIR and OTIRB are used
for normal 1/O operation; SOTIR and SOTIRB are used for special I/O operation.
The contents of the memory location addressed by the source register are loaded
into the I/O port addressed by the destination word register. I/O port addresses are
16 bits. The source register is then incremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r"’ (used as a counter) is then decremented
by one. The address of I/O port in the destination register is unchanged. The entire
operation is repeated until the result of decrementing r is zero. This instruction can
output from 1 to 65536 bytes or 32768 words (the value for r must not be greater than
32768 for OTIR or SOTIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction’s execution time for each interrupt request
that is accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: OTIR @Rd, @Rs!, r
OTIRB @Rd, @Rsl, r 001‘101|W Rs +0{001S 11+10n 0011101lw Rs # 0/001S 11+10n
SOTIR @Rd, @Rs!, r 0000[r [Rd=olo000 0000[r |Rd=o0loo00

SOTIRB @Rd, @Rs!, r

106

Privileged QTIR (SOTIR)

(Special) Output, Increment and Repeat

Example: In nonsegmented mode, the following sequence of instructions can be used to output
a string of bytes to the specified I/O port. The pointers to the I/O port and the start
of the source string are set, the number of bytes to output is set, and then the output
is accomplished.

LD Rl, #PORT
LDA R2, SRCBUF
LD R3, #LENGTH

OTIRB @R1, @R2, R3
In segmented mode, a register pair would be used instead of R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

107

OUT (SOUT) Privileged

(Special) Output

OUT dst, src dst: IR, DA
OUTB src: R
SOUT dst, src dst: DA
SOUTB src: R
Operation: dst - src
The contents of the source register are loaded into the destination, an Output or
Special Output port. OUT and OUTB are used for normal I/O operation; SOUT and
SOUTB are used for special I/O operation.
Flags: No flags affected.
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: OUT @Rd, Rs
OUTB ¢Rd, Rbs Joot1111]w[Ra 0] rs | 10 [oot1111]w]Rrd <0 ns | 10-
DA: OUT port, Rs
OUTB port, Rbs oo111o1]w] Rs lon_s 12 °°“‘°‘lﬂl Rs |011s 12
SOUT port, Rs port port
SOUTB port, Rbs
Example: If register R6 contains %5252, the instruction

OUT %1120, R6
will output the value %5252 to the port %1120.

108

Privileged QUTD (SOUTD)

(Special) Output and Decrement

OUTD dst, src, r dst: IR
OUTDB . src: IR
SOUTD
SOUTDB
Operation: dst < src
AUTODECREMENT src (by 1 if byte, by 2 if word)
rer -1
This instruction is used for block output of strings of data. OUTD and OUTDB are
used for normal /O operation; SOUTD and SOUTDB are used for special 1/O opera-
tion. The contents of the memory location addressed by the source register are
loaded into the I/O port addressed by the destination word register. I/O port
addresses are 16 bits. The source register is then decremented by one if a byte
instruction, or by two if a word instruction, thus moving the pointer to the previous
element of the string in memory. The word register specified by "'r"” (used as a
counter) is then decremented by one. The address of the I/O port in the destination
register is unchanged.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: OUTD @Rd, @Rs!, r
OUTDB ORY, 8Rel. ¢ o011101|w|[Rs #0[101s " oo11101|w|Rs#0[101s 2
SOUTD @Rd. @Rsl, © 0000] r | Ra [1000 0000 r | Rd [1000
SOUTDB @Rd, @Rs!, r
Example: In segmented mode, if register R2 contains the I/O port address %0030, register RR6

contains % 12005552 (segment %12, offset %5552), the word at memory location
%12005552 contains %1234, and register R8 contains %1001, the instruction

OUTD @R2, @RR6, R8
will output the value %1234 to port %0030 and leave the value %12005550 in RR6,

and %1000 in R8. Register R2 will not be affected. The V flag will be cleared. In
nonsegmented mode, a word register would be used instead of RR6.

Note 1: Word register in nonsegmented mode, register, pair in segmented mode.

109

OUTI (SOUTI) Privileged'

(Special) Output and Increment

OUTI dst, src, r dst: IR
OUTIB src: IR
SOUTI
SOUTIB
Operation: dst < src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
rer -1
This instruction is used for block output of strings of data. OUTI and OUTIB are
used for normal I/O operation; SOUTI and SOUTIB are used for special I/O opera-
tion. The contents of the memory location addressed by the source register are
loaded into the 1/O port addressed by the destination word register. I/O port
addresses are 16-bit. The source register is then incremented by one if a byte
instruction, or by two if a word instruction, thus moving the pointer to the next ele-
ment of the string in memory. The word register specified by "r/’ (used as a counter) -
is then decremented by one. The address of the I/O port in the destination register is
unchanged.
Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax . Instruction Format Cycles Instruction Format Cycles
IR: gggs@ggééggs\,rr 0011101|W|Rs #0/001S 21 0011101|W|Rs #0[001S 21
SOUTI @Rd, @Rsl, r 0000] r [Rd=0[1000 0000] r [Ra=o0l1000

SOUTIB @Rd, @Rsl, r

110

Privileged OUTI (SOUTI)

(Special) Output and Increment

Example:

This instruction can be used in a “loop” of instructions which outputs a string of
data, but an intermediate operation on each element is required. The following
sequence outputs a string of 80 ASCII characters (bytes) with the most significant bit
of each byte set or reset to provide even parity for the entire byte. Bit 7 of each
character is initially zero. This example assumes nonsegmented mode. In segmented
mode, R2 would be replaced with a register pair.

LD R1, #PORT !loag 1/O address!

LDA R2, SRCSTART " lload start of string!

LD R3, #80 linitialize counter!
LOOP:

TESTB @R2 Itest byte parity!

JR PE, EVEN

SETB @R2, #7 lforce even parity!
EVEN:

OUTIB @R], @R2, R3 loutput next byte!

IR NOV, LOOP Irepeat until counter = 0!
DONE:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

111

POP
Pop

POP dst, src dst: R, IR, DA, X
POPL src: IR
Operation: dst - src
AUTOINCREMENT src (by 2 if word, by 4 if long)
The contents of the location addressed by the source register (a stack pointer) are
loaded into the destination. The source register is then incremented by a value
which equals the size in bytes of the destination operand, thus removing the top ele-
ment of the stack by changing the stack pointer. Any register except RO (or RRO in
segmented mode) can be used as a stack pointer.
With the POPL instruction, the same register cannot be used in both the source and
destination addressing fields.
Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: POP Rd, @Rs! [fo[or0111 Rs 7 0] ra. | 8 |[10]0o10111|Rs=0] ra || 8
POPL RRd, @Rs! 10l 010101 |Rs 2 0] Ra | 12]10] 010101 |Rs 0] Ra || 12
IR: POP @Rdl, @Rs! Joo[010111 Rs=0 [Rd = o] 12 loo[010111 Rs0 R 0] [12
POPL @Rd!, @Rs! Joof 010101 Rs=0|Rd xo] 19 {oo[o10101 | Rs<0 [Rax0]| 19
DA: POP address, @Rs!

01/010111 | Rs#0 0000 16 |ss 01/ 010111 Rs#0 0000
address ol segment offset

16

01{010111 | Rs=0 0000
SL|1] segment | 0000 0000 19
offset

POPL address, @Rs! 01010101 | Rs=0]0000 2 |s 01010101 [Rs=0 0000

, address [} | segment offset

»n

23

01/ 010101 | Rsx0 [0000
SL{1] segment | 00000000 26

offset

112

POP

Pop

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: POP addr(Rd), @Rs! 21[0v0111 [Revo [maro 51 070171 [meve]mavo
16 SS 16
address OI segment offset
01[010111 [Rs#0 [Rd=0
SL{1] segment | 00000000 19
offset
POPL addr(Rd), @Rs! 01{010101 | Rs=0 | Rd=0 01010101 | Rs#0 | Rd=0
23 SS 23
address ol segment offset
011010101 Rs¢0|Rd*0
SL[1] segment [00000000 26
offset
Example: In nonsegmented mode, if register R12 (a stack pointer) contains %1000, the word at

location %1000 contains %0055, and register R3 contains %0022, the instruction
POP R3, @R12

will leave the value %0055 in R3 and the value %1002 in R12. In segmented mode,
a register pair must be used as the stack pointer instead of R12.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

13

PUSH
Push

PUSH dst, src dst: IR
PUSHL src: R, IM, IR, DA, X
Operation: AUTODECREMENT dst (by 2 if word, by 4 if long)
dst <« src
The contents of the destination register (a stack pointer) are decremented by a value
which equals the size in bytes of the source operand. Then the source operand is
loaded into the location addressed by the updated destination register, thus adding a
new element to the top of the stack by changing the stack pointer. Any register
except RO (or RRO in segmented mode) can be used as a stack pointer.
With PUSHL, the same register cannot be used for both the source and destination
addressing fields.
Flags: No flags affected
Source Nonsegmented Mode ‘ Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: PUSH ¢Rd!, Rs [10[010011 [Rax0] ms | 9 [10] 010011 Razo] ms | 9
PUSHL «Rd!, RRs 10l 010001 Rax0] ms | 12 |1o[010001] Raxo] s]| 12
IM: PUSH ¢Rd!, #data 00{ 001101 [Rdx0[1001 00/ 001101 |Rd=0 1001
12 12
data data
IR: PUSH @Rd!, «Rs! [oo[010011] Rax0]Rs »of 13 {ool 010011 [Rax0[Rs = 0f| 13
PUSHL ¢Rd!, Rs! Joo[010001 Rd=0]Rs = o] 20 [oo[010001] RazoRrs = 0]| 20
DA: PUSH «Rd!, address 01[010011 ra=0]0000 01[010011[Rd»0 0000
5 14 SSt 14
address 0 segment offset
01/ 010011 | Rd=0 0000
SL 1[segment | 00000000 17
offset
PUSHL@RJ!, address
01/010001 [Rd=0 [0000 o |ss 01010001 | Rd=0]0000 .
address 0| segment offset
o1| 010001 | Rd#0 |oooo
SL 1T segment | 0000 0000 24
offset

114

PUSH

Push

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: PUSH @Rd!, addr(Rs) 01] 010011 | Rd=0| R0 01[010011 [Rd=0[Rs=0
14 SS 14
address 0| segment offset
o1ro1oo11 Rd#0 | Rax0
SL|1] segment [0000 0000 17
offset
PUSHL @Rd!, addr(Rs) | 697010001 Rd=0] Rs=0 a1 |ss 01]010001 [Rd=0 | Rs»0 21
address 0| segment offset
01] 010001 | Rd=0 | Rs+0
SL|1| segment | 00000000 24
offset
Example: In nonsegmented mode, if register R12 (a stack pointer) contains %1002, the word at

location %1000 contains %0055, and register R3 contains %0022, the instruction
PUSH @RI12, R3

will leave the value %0022 in location %1000 and the value %1000 in R12. In
segmented mode, a register pair must be used as the stack pointer instead of R12.

Note 1: Word register is used in nonsegmented mode, register pair in segmented mode.

115

RES

Reset Bit

RES dst, src dst: R, IR, DA, X
RESB src: IM
or
dst: R
src: R
Operation: dst(src) <« 0

This instruction clears the specified bit within the destination operand without’
affecting any other bits in the destination. The source (the bit number) can be
specified as either an immediate value (Static), or as a word register which contains
the value (Dynamic). In the second case, the destination operand must be a register,
and the source operand must be RO through R7 for RESB, or RO through R15 for
RES. The bit number is a value from 0 to 7 for RESB, or 0 to 15 for RES, with O
indicating the least significant bit.

Only the lower four bits of the source operand are used to specify the bit number for
RES, while only the lower three bits of the source operand are used with RESB.
When the source operand is an immediate value, the “src field” in the instruction

format encoding contains the bit number in the lowest four bits for RES, or the
lowest three bits for RESB.

Flags: No flags affected

Reset Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: RES Rd, #b
RESB Rbd, #b [10]10001w] Ra | b | 4 [1ol1oo00d[w] ma [b]| 4
IR: RES @Rd!, #b
RESB oRdl, b [oo]10001[w[Raxo] b | 1 loo[1o001[w[Razo| v]| 11

DA: RES address, #b
RESB addross #b 01]{10001{w[oo00] b s |sslorlreoot[wlooco] ® "
address ol segment offset
o1]10001]w[oo00| b
X SL{1] segment | 00000000 16
offset
X: RES addr(Rd), #b
RESB addr(Rd), #b o01]10001]w[Raz0] b 1w |ss o1]10001|w[razo]| b 14
* address ﬂ segment offset
01]10001|w|Rd=0| b
SL 1| segment | 0000 0000 17
offset

116

RES

Reset Bit

Reset Bit Dynamic

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles

R: RES Rd, Rs
NESB Rba. Re ool10001|w|oo0o]| &s 10 o00[10001]w[oo0o| Bs 10
0000] Rra [0000[0000 0000[Rd [oooo]o000
Example: If register RL3 contains %B2 (10110010), the instruction
RESB RL3, #1

will leave the value %BO0 (10110000) in RL3.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

1z

RESFLG

Reset Flag

Operation:

Flags:

RESFLG flag flag: C, Z,S,P, V

FLAGS (4:7) <« FLAGS (4:7) AND NOT instruction (4:7)

Any combination of the C, Z, S, P or V flags are cleared to zero if the corresponding
bits in the instruction are one. If the bit in the instruction corresponding to a flag is
zero, the flag will not be affected. All other bits in the FLAGS register are
unaffected. Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,

in any order.

C: Cleared if specified, unaffected otherwise
Z: Cleared if specified, unaffected otherwise
S: Cleared if specified, unaffected otherwise
P/V: Cleared if specified, unaffected otherwise

D: Unaffected
H: Unaffected

Nonsegmented Mode

Segmented Mode

Assembler Language
Syntax Instruction Format

Cycles

Instruction Format

Cycles

RESFLG flags l1o]oo1101]czsPv[0011]

[10[o01101]czspv[o011]

Example:

If the C, S, and V flags are set (1) and the Z flag is clear (0), the statement

RESFLG C, V

will leave the S flag set (1), and the C, Z, and V flags cleared (0).

118

RET

Return

Operation:

Flags:

RET cc

Nonsegmented Segmented

if cc is true then if cc is true then
PC < @Sp PC <« @SPp

SP <« SP + 2 SP <« SP + 4

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by a CALL or CALR instruction. If the condition specified by
“cc'’ is satisfied by the flags in the FCW, then the contents of the location addressed
by the processor stack pointer are popped into the program counter (PC). The next
instruction executed is that addressed by the new contents of the PC.!

See list of condition codes. The stack pointer used is R15 in nonsegmented

mode, or RR14 in segmented mode. If the condition is not satisfied, then the instruc-
t.on following the RET instruction is executed. If no condition is specified, the return
is taken regardless of the flag settings.

No flags affected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles! Instruction Format Cycles!

RET cc l1o[011110 o000] e | | 107 | [10]o11110]0000] e | | 137

Example:

In nonsegmented mode, if the program counter contains %2550, the stack pointer
(R15) contains %3000, location %3000 contains %1004, and the Z flag is clear, then
the instruction

RET NZ

will leave the value %3002 in the stack pointer and the program counter will contain
%1004 (the address of the next instruction to be executed).

Note 1: The two values correspond to return taken and return not taken.

119

RL

Rotate Left

RL dst, src dst: R
RLB src: IM
Operation: Do src times: (src = 1 or 2)
tmp < dst
C < tmp (msb)
dst(0) < tmp (msb)
dst (n + 1) « tmp (n) (forn'= 0 tomsb - 1)
15 0
Word:
7 [
Byte: EI‘J_l I‘“'
The contents of the destination operand are rotated left one bit position if the source
operand is 1, or two bit positions if the source operand is 2. The most significant bit
(msb) of the destination operand is moved to the bit O position and also replaces the
C flag.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1. :
Flags: C: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Languag
Mode Syntax! Instruction Format? Cycles? Instruction Format2 [Cycless
R: giﬁﬁgﬁ";m l1o]11001[w| Ra Jools|o] 67 liof11001[w| Ra Jools]o] 14
Example: If register RHS contains %88 (10001000), the statement

RLB RHS
will leave the value %11 (00010001) in RH5 and the Carry flag will be set to one.

Note 1: n = source operand.
Note 2: s = 0 for Totation by 1 bit; s = 1 for rotation by 2 bits.
Note 3: The given execution times are for rotation by 1 and 2 bits respectively.

120

RLC

Rotate Left through Carry

RLC dst: R .
RLCB src: IM
Operation: Do src times: (src = 1 or 2)
tmp -
Cc < dst (msb)
dst(n + 1) <- dst(n) (forn = msb-1to 0)
dst (0) - tmp
15 0 J
Word: 4—[l
7 0
Byte:
The contents of the destination operand with the C flag are rotated left one bit posi-
tion if the source operand is 1, or two bit positions if the source operand is 2. The
most significant bit (msb) of the destination operand replaces the C flag and the
previous value of the C flag is moved to the bit O position of the destination during
each rotation.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax! Instruction Format2 Cycles3 Instruction Format2 [Cycles3
R: RLC Rd, #
RICB Rbd‘:‘#n [10[11001[w] ra f10[s]o] 617 [1o[11001{w| Ra |10[s[o] 6/7
Example: If the Carry flag is clear (= 0) and register RO contains %800F (1000000000001111),

the statement
RLC RO,#2
will leave the value %003D (0000000000111101) in RO and clear the Carry flag.

Note 1: n = source operand.
Note 2: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 3: The given execution times are for rotation by 1 and 2 bits respectively.

121

RLDB

Rotate Left Digit

Operation:

Flags:

RLDB link, src src: R
link: R

tmp (0:3) < link (0:3)
link (0:3) < src (4:7)
sic (4:7) - src (0:3)

src (0:3) < tmp (0:3)

o 7 4 3 I 0 7 4 3 ‘ 0
link | [| | |] sre
t |t J

The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the left by one BCD digit
(four bits). The lower digit of the source is moved to the upper digit of the source;
the upper digit of the source is moved to the lower digit of the link, and the lower
digit of the link is moved to the lower digit of the source. The upper digit of the link
is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift
to the left a string of BCD digits, thus multiplying. it by a power of ten. The link
serves to transfer digits between successive bytes of the string. This is analogous to
the use of the Carry flag in multiple precision shifting using the RLC instruction.

The same byte register must not be used as both the source and the link.

C: Unaffected)

Z: Set if the link is zero after the operation; cleared otherwise
S: Undefined

V: Unaffected

D: Unaffected

H: Unaffected

Destination
Addressing
Mode

Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles

R:

RLDB Rbl, Rbs [rol 111110 mos T mor | 9 Jrof111110] abs | o | 9

122

RLDB

Rotate Left Digit

Example: If location 100 contains the BCD digits 0,1 (00000001), location 101 contains 2,3
(00100011), and location 102 contains 4,5 (01000101)

100 [o]7] 101 [2]3] 102 [+]¢]

the sequence of statements

LD R3,#3 Iset loop counter for 3 bytes!
1(6 digits)!

LD R2,#102 Iset pointer to low-order digits!

CLRB RH1 1zero-fill low-order digit!
LOOP:

LDB RL1,@R2 lget next two digits!

RLDB RH1,RL1 Ishift digits left one position!

LDB @R2,RL1 Ireplace shifted digits!

DEC R2 ladvance pointer!

DINZ R3, LOOP Irepeat until counter is zero!

will leave the digits 1,2 (00010010) in location 100, the digits 3,4 (00110100) in loca-
tion 101, and the digits 5,0 (01010000) in location 102.

100 [T7] 101 [2T7] 102 [+]°]

In segmented mode, R2 would be replaced by a register pair.

123

RR

Rotate Right

RR dst, src dst: R
RRB : src: IM
Operation: Do src times: (src = 1 or 2)
tmp < dst
c <+ tmp (0)
dot (msb) < tmp (0)
dst (n = 1) = tmp (n) (forn = 1 to msb)
L 15 [L
Word: [T
L 7 o
Byte: I IZ]
The contents of the destination operand are rotated right one bit position if the
source operand is 1, or two bit positions if the source operand is 2. The least signifi-
cant bit of the destination operand is moved to the most significant bit (msb) and
also replaces the C flag.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set if the last bit rotated from the least significant position was 1; cleared
otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode V Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format! Cycles? Instruction Format! Cycles?
R: RR Rd,
HRBRbg?#n l1o]11001[w| Ra Jo1/s]o] 6/7 [1o[11001[w| Ra Jo1[s]o] 6/7
Example: If register RL6 contains %31 (00110001), the statement

RRB RL6
will leave the value %98 (10011000) in RL6 and the Carry flag will be set to one.

Note 1: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 2: The given execution times are for rotation by 1 and 2 bits respectively.

124

RRC

Rotate Right through Carry

RRC dst, src dst: R
RRCB src: IM
Operation: Do src times: (src = 1 or 2)
tmp <« ¢
c < dst (0)
dst (n) < dst(n + 1) forn = Otomsb — 1)
dst (msb) « tmp
l—’ 15 0
Word: [F—c]
7 0
Byte: —
The contents of the destination operand with the C flag are rotated one bit position if
the source operand is 1, or two bit positions if the source operand is 2. The least
significant bit of the destination operand replaces the C flag and the previous value
of the C flag is moved to the most significant bit (msb) position of the destination
during each rotation.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.
Flags: C: Set if the last bit rotated from the least significant bit position was 1; cleared
otherwise ’
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during rotation; cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format! Cycles? Instruction Format! Cycles?
RRC Rd, #
RAGE Rbd?//n [1ol11001[w| ra [11]s[o] 617 [10]11001{w| Ra [11]s]o] 6I7
Example: If the Carry flag is clear (=0) and the register RO contains %00DD

(0000000011011101), the statement
RRC RO,#2
will léave the value %8037 (10000000110111) in RO and clear the Carry flag.

Note 1: s = O for rotation by 1 bit; s = 1 for rotation by 2 bits
Note 2: The given execution times are for rotation by 1 and 2 bits respectively.

125

RRDB
Rotate Right Digit

RRDB link, src src: R
link: R
Operation: tmp (0:3) <- link (0:3)
. link (0:3) <= src (0:3) -
src (0:3) <- src (4:7)
src (4:7) < tmp (0:3)
7 4 3 [[7 ‘ I 4 3 1 0

link I r l I I] src
The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the right by one BCD digit
(four bits).
The lower digit of the source is moved to the lower digit of the link; the upper digit
of the source is moved to the lower digit of the source and the lower digit of the link
is moved to the upper digit of the source.
The upper digit of the link is unaffected. In multiple-digit BCD arithmetic, this
instruction can be used to shift to the right a string of BCD digits, thus dividing it by
a power of ten. The link serves to transfer digits between successive bytes of the
string. This is analogous to the use of the carry flag in multiple precision shifting
using the RRC instruction.
The same byte register must not be used as both the source and the link.

Flags: C: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected

Destination Nonsegmented Mode Segmented Mode

Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: RRDB Rbl, Rbs |1o[111100] mbs | mor | 9 lio[111100] Rbs | moi] 9

126

RRDB
Rotate Right Digit

Example: If location 100 contains the BCD digits 1,2 (00010010), location 101 contains 3,4
(00110100), and location 102 contains 5,6 (01010110)

100 101 102

CTe CL

the sequence of statements

LD R3,#3 Iset loop counter for 3 bytes (6
digits)!

LD R2,100 Iset pointer to high-order digits!

CLRB RH1 Izero-fill high-order digit!
LOOP:

LDB RL1,@R2 Iget next two digits!

RRDB RH1,RL1 Ishift digits right one position!

LDB @R2,RL1 Ireplace shifted digits!

INC R2 ladvance pointer!

DINZ R3,LOOP Irepeat until counter is zero!

will leave the digits 0,1 (00000001) in location 100, the digits 2,3 (00100011) in loca-
tion 101, and the digits 4,5 (01000101) in location 102. RH1 will contain 6, the
remainder from dividing the string by 10.

100 101 102

[:T:] [

In segmented mode, R2 would be replaced by a register pair.

127

SBC

Subtract with Carry

SBC dst, src dst: R
SBCB src: R
Operation: dst - dst — src - C
The source operand, along with the setting of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the
source are not affected. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. In multiple precision arithmetic, this
instruction permits the carry (“'borrow”) from the subtraction of low-order operands
to be subtracted from the subtraction of high-order operands.
Flags: C: Cleared if there is a carry from the most significant bit of the result; set
otherwise, indicating a "“borrow”
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs
and the sign of the result is the same as the sign of the source; cleared otherwise
D: SBC—unaffected; SBCB—set
H: SBC—unaffected; SBCB—cleared if there is a carry from the most significant bit
of the low-order four bits of the result; set otherwise, indicating a "borrow”
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SBC Rd, Rs -
SHOB Rbd. Rbs [1ol11011|w] ms | Ra | 5 [rof11o11]w] ms | ra | 5
Example: Long subtraction may be done with the following instruction sequence, assuming RO,

R1 contain one operand and R2, R3 contain the other operand:

SUBRI,R3 Isubtract low-order words!

SBC RO,R2 Isubtract carry and high-order words!
If RO contains %0038, Rl contains %4000, R2 contains %000A and R3 contains
%FQ000, then the above two instructions leave the value %002D in RO and %5000
in R1.

128

Privileged SC
System Call

Operation:

Flags:

SC src src: IM

Nonsegmented Segmented

SP <« SP - 4 SP « SP - 6
@SP+e PS @SP <« PS

SP « SP - 2 SP <« SP -2

@SP < instruction @SP <« instruction
PS <« System Call PS PS <« System Call PS

This instruction is used for controlled access to operating system software in a man-
ner similar to a trap or interrupt. The current program status (PS) is pushed on the
system processor stack, and then the instruction itself, which includes the source
operand (an 8-bit value) is pushed. The PS includes the Flag and Control Word
(FCW), and the updated program counter (PC). (The updated program counter
value used is the address of the first instruction byte following the SC instruction.)

The system stack pointer is always used (R15 in nonsegmented mode, or RR14 in
segmented mode), regardless of whether system or normal mode is in effect. The
new PS is then loaded from the Program Status block associated with the System
Call trap (see section 6.2.4), and control is passed to the procedure whose address is
the program counter value contained in the new PS. This procedure may inspect the
source operand on the top of‘the stack to determine the particular software service
desired.

The following figure illustrates the format of the saved program status in the system
stack:

NONSEGMENTED SEGMENTED
Low Low
ADDRESS ADDRESS
SP AFTER —»{ IDENTIFIER
STACK POINTER
AFTER TRAP ——| IDENTIFIER FCW
OR INTERRUPT row °C SEGMENT
PC OFFSET
STACK POINTER pe OFFSE
BEFORE TRAP ——»| SP BEFORE ——»
OR INTERRUPT
<~—1 WORD— |<— 1 WORD—|
HIGH HIGH
ADDRESS ADDRESS

The 78001 version always executes the segmented mode of the System Call instruc-
tion, regardless of the current mode, and sets the Segmentation Mode bit (SEG) to
segmented mode (=1) at the start of the SC instruction execution. Both the Z8001
and Z8002 versions set the System/Normal Mode bit (S/N) to system mode (= 1) at
the start of the SC instruction execution. The status pins reflect the setting of these
control bits during the execution of the SC instruction. However, the setting of SEG
and S/N does not affect the value of these bits in the old FCW pushed onto the stack.
The new value of the FCW is not effective until the next instruction, so that the status
pins will not be affected by the new control bits until after the SC instruction execu-
tion is completed.

The “src field” in the instruction format encoding contains the source operand. The
“src field"” values range from 0 to 255 corresponding to the source values 0 to 255.

No flags affected
Flags loaded from Program Status Area

129

SC

Privileged

System Call

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IM: SC forc Jort1111i1] s | 33 [ot1i11a1] s] 39
Example: In the nonsegmented Z8002, if the contents of the program counter are %1000, the

contents of the system stack pointer (R15) are %3006, and the Program Counter-and
FCW values associated with the System Call trap in the Program Status Area are
%2000 and %1000, respectively, the instruction

SC #3 Isystem call, request code = 3!
causes the system stack pointer to be decremented to %3000. Location %3000 con-
tains %7F03 (the SC instruction). Location %3002 contains the old FCW, and loca-
tion %3004 contains %1002 (the address of the instruction following the SC instruc-
tion). System mode is in effect, and the Program Counter contains the value %2000,
which is the start of a System Call trap handler, and the FCW contains %1000.

130

SDA

Shift Dynamic Arithmetic

Operation:

Flags:

SDA dst, src dst: R
SDAB src: R
SDAL

Right (src negative)

Do src times:
c <+ dst (0)
dst (n) < dst(n + 1) (forn = Otomsb — 1)
dst (msb) + dst (msb) .

Left (src positive)

Do src times:
c <+ dst (msb)
dst (n + 1) <+ dst (n) forn = msb — 1t00)
dst (0) < 0

Right Left

Byte: [_’_i' | “i»—» B<—[Ja—o

Word: {—;rjl ﬁ"’E] 5 oo

Long: E'FZT A j—‘ E]‘_r v fin J‘—]

n=0,24,...,14 n=0,2/4,...,14

The destination operand is shifted arithmetically left or right by the number of bit
positions specified by the contents of the source operand, a word register.

The shift count ranges from -8 to +8 for SDAB, from -16 to + 16 for SDA and from
-32 to +32 for SDAL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The sign bit is replicated in shifts to the right, and the C
flag is loaded from bit O of the destination. The least significant bit is filled with O in
shifts to the left, and the C flag is loaded from the most significant bit (msb) of the
destination. The setting of the carry bit is undefined for zero shift.

C: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during shifting; cleared otherwise

D: Unaffected

H: Unaffected

131

SDA

Shift Dynamic Arithmetic

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SDA Rd, Rs 10[110011] ma [1011 10[110011] Rd [1011
15+3n 15+ 3n
0000] Rs | 00000000 0000] Rs | 00000000
SDAB Rbd, Rs 10[110010] Rd [1011 10[110010] Ra [1011
15+3n 15+3n
0000] Rrs | 00000000 0000] Rs | 00000000
SDAL RRd, Rs
. 1111
10[110011] R | 1543n 10[110011] Ra [1111 154+3n
0000] Rs |00000000 0000] As | 00000000
Example: If register R5 contains %C705 (1100011100000101) and register Rl contains —2

(%FFFE or 1111111111111110), the statement .

SDA RS5,Rl

performs an arithmetic right shift of two bit positions, leaves the value %F1Cl1
(1111000111000001) in R5, and clears the Carry flag.

Note 1: n = number of bit positions; the execution time for n =0 is the same as forn = 1.

132

SDL

Shift Dynamic Logical

Operation:

Flags:

SDL dst, src dst: R
SDLB src: R
SDLL

Right

Do src times
C < dst (0)
dst (n) < dst(n + 1) (forn = Otomsb - 1)
dst (msb) < 0

Left
Do src times
c < dst (msb)
dst (n + 1) « dst(n) forn = msb - 1to0)

dst (0) <
Right Left
7 0 7 0
Byte: ° _.‘ |_.E| EI._i |<_ o

15 0 15 0
Word: o —»|]-—»EI <—| J+—o

15 0 15 0
Long: o —{ An 4'—‘ W

e L o

n=0,24,...,14

L Rn+1

n=0,2,4,...,14

The destination operand is shifted logically left or right by the number of bit posi-
tions specified by the contents of the source operand, a word register. The shift
count ranges from -8 to +8 for SDL, from -16 to + 16 for SDLB and from -32 to

+ 32 for SDLL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The most significant bit (msb) is filled with O in shifts to the
right, and the C flag is loaded from bit 0 of the destination. The least significant bit
is filled with O in shifts to the left, and the C flag is loaded from the most significant
bit of the-destination. The setting of the carry bit is undefined for zero shift.

C: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the most significant bit of the result is set; cleared otherwise

V: Undefined

D: Unaffected

H: Unaffected

133

SDL

Shift Dynamic Logical

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SDL Rd, Rs 10] 110011 Ra |0011 10/110011| md [0011
15+ 3n 15+3n
oooo[Rs | 00000000 0000] Rs |00000000
SDLB Rbd, Rs 10]/110010] Rd o011 10[110010]| rd [0011
15+3n 15+3n
0000] rs [00000000 0000| Rs | 00000000
SDLL RRd, Rs 10[110011 Ra [0111 10/ 110011 Rd 0111
15+3n 15+3n
0000] Rs [00000000 0000] Rs | 00000000
Example: If register RLS contains %B3 (10110011) and register Rl contains 4

(0000000000000100), the statement

SDLB RLS5,R1

performs a logical left shift of four bit positions, leaves the value %30 (00110000) in
RL5, and sets the Carry flag.

Note'l: n = number of bit positions; the execution time for n = 0 is the same as forn = 1.

134

SET
Set Bit

Operation:

Flags:

SET dst, src dst: R, IR, DA, X
SETB src: IM

or

dst: R

src: R

dst(src) - 1

Sets the specified bit within the destination operand without affecting any other bits
in the destination. The source (the bit number) can be specified as either an immedi-
ate value (Static), or as a word register which contains the value (Dynamic). In the
second case, the destination operand must be a register, and the source operand
must be RO through R7 for SETB, or RO through R15 for SET. The bit number is a
value from 0 to 7 for SETB or 0 to 15 for SET, with 0 indicating the least significant
bit.

Only the lower four bits of the source operand are used to specify the bit number for
SET, while only the lower three bits of the source operand are used with SETB.
When the source operand is an immediate value, the “src field” in the instruction
format encoding contains the bit number in the lowest four bits for SET, or the

lowest three bits

No flags affected

for SETB.

Set Bit Static

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SET Rd, #b
SETB Rbd, fb [10]10010{w| ra | b | 4 [10T1oo1o|w[ra | b || 4
IR: SET @Rd!, #b
SETB ORd! b looj10010{w| Raxo| b | 11 looj1o010lw|razo] b || 11
DA: SET address, #b
SETB address, #b o1f10010]w[0o0o] b 13 |ss o1]10010lwjoooo] » 14
address OI segment offset
01{10010[w[oo00]
SL[1] segment [00000000 16
offset
X: SET addr(Rd), #b
SETB sddr(Bd). fb o1/10010[w|Rd=0| b i |ss o1l10010[w[ra=o] b 18
address 0| segment offset
01/10010/w[rd 0] b
SL[1] segment [0000 0000 17
offset

135

SET

Set Bit

Set Bit Dynamic

Addressing

Nonsegmented Mode

Segmented Mode

Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: SET Rd, Rs ooftooiolw[oooo| Rs o0[10010[w|0000| Rs
SETB Rbd, Rs 10 g 10
0000] Rd [o0000 0000 0000] Ra [00000000
Example: If register RL3 contains %B2 (10110010) and register R2 contains the value 6, the

instruction

SETB RL3, R2

will leave the value %F2 (11110010) in RL3.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

136

SETFLG

Set Flag

Operation:

Flags:

SETFLG flag Flag: C, Z, S, P, V

FLAGS (4:7) < FLAGS (4:7) OR instruction (4:7)

Any combination of the C, Z, S, P or V flags are set to one if the corresponding bits
in the instruction are one. If the bit in the instruction corresponding to a flag is zero,
the flag will not be affected. All other bits in the FLAGS register are unaffected.
Note that the P and V flags are represented by the same bit.

There may be one, two, three, or four operands in the assembly language statement,
in any order.

C: Set if specified; unaffected otherwise
Z: Set if specified; unaffected otherwise
S: Set if specified; unaffected otherwise
P/V: Set if specified; unaffected otherwise
D: Unaffected

H: Unaffected

Nonsegmented Mode Segmented Mode
Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles
SETFLG flags 10001101 [czspv]ooo1} 7 [10001101 [czspivjooo1] 7

Example:

If the C, Z, and S flags are all clear (0),-and the P flag is set (1), the statement
SETFLG C
will leave the C and P flags set (1), and the Z and S flags cleared (0).

137

SLA

Shift Left Arithmetic

Operation:

Flags:

SLA dst, src dst: R
SLAB src: IM
SLAL

Do src times:
Cc < dst (msb)
dst (n + 1) - dst (n) (forn = msb — 1to0)
dst (0) -« O

Byte: El{ "u].__ °

Word: EI<—{1 5 J«—o

Long: {_T_I“"r Rn]“]

15 0
Rn+1]4—0

n=20,24,.., 14

The destination operand is shifted arithmetically left the number of bit positions
specified by the source operand. For SLAB, the source is in the range 0 to 8; for
SLA, the source is in the range 0 to 16; for SLAL, the source is in the range 0 to 32.
A shift of zero positions does not affect the destination; however, the flags are set
according to the destination value. The least significant bit of the destination is filled
with 0, and the C flag is loaded from the sign bit of the destination. The operation is
the equivalent of a multiplication of the destination by a power of two with overflow
indication.

The src field is encoded in the instruction format as the 8- or 16-bit two's comple-
ment positive value of the source operand. For each operand size, the operation is
undefined if the source op- -and is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

C: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise

S: Set if the result is negative; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed
during shifting; cleared otherwise

D: Unaffected

H: Unaffected

138

SLA

Shift Left Arithmetic

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SLA Rd, #b 10[110011] Rd [1001 10[110011] Rd [1001
13+3b 13+3b
b b
SLAB Rbd, #b
10[110010] Rd [1001] | 0 o | J10[110010] Rd [1001 1343b
0 b [) b
SLAL RRd, fb 10[110011] Rd [1101] | 5 ap| [10]110011] Ra [1104 13+ 3b
b b
Example: If register pair RR2 contains %1234ABCD, the statement

SLAL RR2,#8

will leave the value %34ABCDO00 in RR2 and clear the Carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same as forb = 1.

139

SLL

Shift Left Logical

Operation:

Flags:

SLL dst, src dst: R
SLB src: IM
SLLL

Do src times:
c < dst (msb)
dst (n-+ 1) - dst (n) (forn = msb - 11t00)
dst (0) < 0

7 0
Byte: 4—[j._ 0

15
Word: <—{ Ja—o

15
Long: <—{ Rn |<—|

] s 0
—{ Rn+1) 1<—0

n=2024..14

The destination operand is shifted logically left by the number of bit positions
specified by the source operand. For SLLB, the source is in the range 0 to 8; for
SLL, the source is in the range 0 to 16; for SLLL, the source is in the range 0 to 32.
A shift of zero positions does not affect the destination; however, the flags are set
according to the destination value. The setting of the carry bit is undefined for zero
shift. The least significant bit-of the destination is filled with 0, and the C flag is
loaded from the most significant bit (msb) of the destination. This instruction per-
forms an unsigned multiplication of the destination by a power of two.

The src field is encoded in the instruction format as the 8- or 16-bit positive value of
the source operand. For each operand size, the operation is undefined if the source

operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus

defaults to the value 1.

C: Set if the last bit shifted from the destination was 1, undefined for zero shift;

cleared otherwise
Z: Set if the result is zero; cleared otherwise

S: Set if the most significant bit of the result is set; cleared otherwise

V: Undefined
D: Unaffected
H: Unaffected

140

SLL
Shift Left Logical

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SLL Rd, #b 10 110011[Rd [ooo1 10L110011' Rd loum
13+3b 13+3b
b b
SLLB Rbd, #b
10[/110010| Rd [0001 1343b 10/110010] Rd Jooo1 13+3b
0 b [} b
SLLL RRd, #b .
10[110011] ra [o101 13+3b 10[110011] Rd Jot01]| 4o, a4y
b b
Example: If register R3 contains %4321 (0100001100100001), the statement

SLL R3,#1

will leave the value %8642 (1000011001000010) in R3 and clear the carry flag.

Note 1: b = number of bit positions; the execution time for b =0 is the same as for b = 1.

141

SRA

Shift Right Arithmetic

Operation:

Flags:

SRA dst, src ’) dst: R
SRAB src: IM
SRAL

Do src times:
c < dst (0)
dst (n) < dst (n + l)(forn = Otomsb — 1)
dst (msb) <« dst (msb)

0

Byte: A lj; i |—>

0

Word: Dl‘; | I'"

15 0

Lgng: l—}[j An J—l

Ll‘s Rn+1 . I——»E’

n=2024.. 14

The destination operand is shifted arithmetically right by the number of bit positions
specified by the source operands. For SRAB, the source is in the range 0 to 8; for
SRA, the source is in the range 0 to 16; for SRAL, the source is in the range 0 to 32.
A right shift of zero for SRA is not possible. The most significant bit (msb) of the
destination is replicated, and the C flag is loaded from bit O of the destination, this
instruction performs a signed division of the destination by a power of two.

The src field is encoded in the instruction format as the 8- or 16-bit two's comple-
ment negative of the source operand. For each operand size, the operation is
undefined if the source operand is not in the specified range.

The source operand may be omitted from the assembly language statement and thus
defaults to the value 1.

C: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise

'St Set if the result is negative; cleared otherwise

V: Cleared

D: Unaffected

H: Unaffected

142

SRA

Shift Right Arithmetic

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SRA Rd, #b ;
1o|11oon]bnd [1001 1343b 1or11oo1ﬂhnd EEXEI [P
SRAB Rbd, #b ' 10{110010| Rd (1001
1o|11oo1o Rd [1001 13+3b] |1 13+3b
0 -b 0 -b
SRAL RRd, #b
10[110011] Ra 1101 13+3b 10[110011] Rd [1101 13+3b
-b -b
Example: If register RH6 contains %3B (00111011), the statement

SRAB RHS6,#2
will leave the value %0E (00001110) in RH6 and set the carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same as forb = 1.

143

SRL

Shift Right Logical

Operation:

Flags:

SRL dst, src R dst: R
SRLB src: IM
SRLL

Do src times:
c < dst (0)
dst (n) < dst(n + 1)(forn = Otomsb - 1)
dst (msb) < 0

7 0

Byte: o] '-.B

15 - 0
|—>I Rn+1 —l_>

n=2024,.. 14

The destination operand is shifted logically right by the number of bit positions
specified by the source operand. For SRLB, the source operand is in the range 0 to
8; for SRL, the source is in the range 0 to 16; for SRLL, the source is in the range 0
to 32. A right shift of zero for SRL is not possible. The most significant bit (msb) of
the destination is filled with 0, and the C flag is loaded from bit 0 of the destination.
This instruction performs an unsigned division of the destination by a power of two.

The src field is encoded in the instruction format as the 8- or 16-bit negative value of
the source operand in two's complement rotation. For each operand size, the opera-
tion is undefined if the source operand is not in the range specified above.

The source operand may be omitted from the assembly language statement and thus
defaults to the value of 1.

C: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise

S: Set if the most significant bit of the result is one; cleared otherwise
V: Undefined

D: Unaffected

H: Unaffected

144

SRL
Shift Right Logical

Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles! Instruction Format Cycles!
R: SRL Rd, #b 10[110011]| R4 [0001 10110011 | Rd [0001
13+3b 13+3b
-b -b
SRLB Rbd, #b
10[110010] Rd 0001 1343 10/110010| Rd |0001 13+3b
0 -b 0 -b
SRLL RRd, #b
10/ 110011] Rd o101 13436 10/110011| Ra |o101 13+3b
-b -b .
Example: If register RO contains %1111 (0001000100010001), the statement

SRL RO,#6

will leave the value %0044 (0000000001000100) in RO and clear the carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same as forb = 1.

145

SUB

Subtract

SUB dst, src dst: R
SUBB src: R, IM, IR, DA, X
SUBL
Operation: dst - dst — src
The source operand is subtracted from the destination operand and the result is
stored in the destination. The contents of the source are not affected. Subtraction is
performed by adding the two's complement of the source operand to the destination
operand.
Flags: C: Cleared if there is a carry from the most significant bit; set otherwise, indicating
a “borrow”
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs
and the sign of the result is the same as the sign of the source; cleared otherwise
D: SUB, SUBL—unaffected; SUBB—set
H: SUB, SUBL—unaffected; SUBB—cleared if there is a carry from the most
significant bit of the low-order four bits of the result; set otherwise, indicating a
“borrow”
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R | SORs oa on [olovosiw] e [o] | 4 | [Cofwoow[me[we] | &
SUBL RRd, RRs [ro]010010] Ars [ARa | 8 l[10lo10010] RRs | RRa | 8
IM: SUB Rd, #data 00000010 0000[Rd . 00000010 o0000] Rd 7
data data
SUBB Rbd, #data oo|ooo.o11 0000 Rd 7 00[000011[0000[Ra 7
data data data data
SUBL RRd, #data 00{010010[0000[Rd 00[010010[0000] Rd
31 data (high) 16 14 31 data (high) 16 14
15 data (low) 0 15 data (low) 0
IR: gggBRgij,RgRsl [oo]o0001]w] Rs=0]. Ra | 7 00jo0001|w| Rs=0| Ra | 7
SUBL RRd, @Rs! Joo[o10010] Rs#0 | na |} 14 Joo[o10010] Rsv0] Ra] 14

146

SUB

Subtract

Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
DA: SUB Rd, address
. ! o1f00001|w|o000| Rd 1|w|ooo00| Rd
SUBB Rbd, address t[ooos[w[oooo] g | ssuloocerlwloooo] 10
address . Ol segment offset
o1Toooo1|w ooool Rd
SL 1| segment | 0000 0000 12
offset
SUBL RRd, address 01{010010 [0000] Rd s ss 01[010010 0000 Ra 16
address [] ’ segment oltset
01]010010 [0000] Rd
sL 1[segment | 0000 0000 18
offset
X: SUB Rd, addr(Rs) '
: 01[00001|W| Rs0| Rd 01]{00001|W| Rs20| Rd
SUBB Rbd, addr(Rs) loooa]w] pe-o] S P CHIXITE | 10
address OJ segment offset
01Jo0001]w]Rs+0| Ra
SL|1| segment | 00000000 13
offset
SUBL RRD, addr(Rs) 01] 010010] Rs=0| Rd 4 sslorfotooro Rs#0 | Rd 16
address 6 lﬂ segment offset
01]010010[Rs#0| Rd
SL{1] segment [0000 0000 19
offset

Example: If register RO contains %0344, the statement
SUB RO,#%AA
will leave the value %029A in RO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

147

TCC

Test Condition Code

TCC cc, dst dst: -R
TCCB

Operation: if cc is satisfied then
dst (0) - 1

This instruction is used to create a Boolean data value based on the flags set by a
previous operation. The flags in the FCW are tested to see if the condition specified
by “cc” is satisfied. If the condition is satisfied, then the least significant bit of the
destination is set. If the condition is not satisfied, bit zero of the destination is not
cleared but retains its previous value. All other bits in the destination are unaffected
by this instruction.

Flags: No flags affected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: TCC cc, Rd
' 10(10 w| Rd 10{10111|W| Rd
TC e 1 [honm]| s | Eom ml=]] s

Example: If register Rl contains 0, and the Z flag is set, the statement

TCC EQ,RI

will leave the value 1 in R1.

148.

TEST

Test

TEST dst dst: R, IR, DA, X
TESTB
TESTL
Operation: dst OR 0
The destination operand is tested (logically ORed with zero), and the Z, S and P
flags are set to reflect the attributes of the result. The flags may then be used for
logical conditional jumps. The contents of the destination are not affected.
Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: TEST—unaffected; TESTL—undefined; TESTB—set if parity of the result is even;
cleared otherwise
D: Unaffected
H: Unaffected
Destination Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: TEST Rd
TESTB Rbd [1oloo110{w| ra Jo100] 7 [1o]oo110[w] rd [o100]| 7
- TESTL RRd l1o]o11100] ra [1000] 13 [1o] 011100] ra [1000]| 13
IR: TEST @Rd! -
TESTB ol loojoo110{w[Rd 0[0100 8 |ooJoo110/w| Ra=0]0100|| 8
TESTL @Rd! loofot1100]Rd+0l1000] | 13 Joolo11100] Ra=0[1000]| 13
DA: TEST address
TESTB sidress 01loo110/w|0000[0100 1 lss o1loo110/w| 00000100 12
address 0| segment offset
01]oo110/w|0000[0100
SL|1| segment | 00000000 14
address
TESTL address 01/011100 0000|1000 01] 011100 00001000
16 SS 17
address 0| segment offset
01{ 011100 [0000[1000
SL|1| segment | 00000000 19
offset

149

TEST

Test

Destination
Addressing

Assembler Language

Nonsegmented Mode

Segmented Mode

Mode Syntax Instruction Format Cycles Instruction Format Cycles
X: TEST addr(Rd)
TESTB addr(Rd) 01]o0110[w|Rd=0 0100 2 |ss 01joo110/w|Rd»0 0100 12
address 0{ segment offget
o1[oo110/w[Rda=0 0100
SL|1] segment | 00000000 15
oftset
01/011100| Rd=0[1000 01/ 011100 | Rd=0[1000
| 4L J 17 ss l a I 17
address 0| segment offset
01011100 Rd=0[1000
SL{1] segment [00000000 20
offset
If register R5 contains %FFFF (1111111111111111), the statement

Example:

TEST RS

will set the S flag, clear the Z flag, and leave the other flags unaffected.

Note 1: Word register in nonsegmented ‘mode, register pair in segmented mode.

150

TRDB

Translate and Decrement

Operation:

Flags:

TRDB dst, src, r dst: IR
src: IR

dst <« src[dst]
AUTODECREMENT dst by 1

rer-—1

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte")
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rule for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location
addressed by the destination register.

The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by “r" (used as a
counter) is then decremented by one. The original contents of register RH1 are lost
and are replaced by an undefined value. Rl in nonsegmented mode, or RRO in
segmented mode, must not be used as a source or destination pointer, and Rl should
not be used as a counter. The source, destination, and counter registers must be
separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur. The
source register is unchanged.

C: Unaffected

. 'Z: Undetined

S: Unaffected :
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected

H: Unaffected

Addressing
Mode

Nonsegmented Mode Segmented Mode

Assembler Language

Syntax Instruction Format

Cycles

Instruction Format

Cycles

IR:

TRDB @Rd!, @Rs!, r 10[111000

Rd =0

1000

0000| r

Rs # 0

0000

25

10{111000

Rd+0

1000

0000

Rs 0

0000

25

Example:

In nonsegmented mode, if register R6 contains %4001, the byte at location %4001
contains 3, register R9 contains %1000, the byte at location %1003 contains %AA,
and register R12 contains 2, the instruction

TRDB @R6, @R9, R12

will leave the value %AA in location %4001, the value %4000 in R6, and the value
1 in R12. R9 will not be affected. The V flag will be cleared. RH1 will be set to an
undefined value. In segmented mode, R6 and R9 would be replaced with

register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

151

TRDRB

Translate Decrement and Repeat

Operation:

Flags:

TRDRB dst, src, R dst: IR
src: IR

dst < src [dst]
AUTODECREMENT dst by 1
rer—1

repeat untilr = 0

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte")
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order-zeros. The sum is used as the address of an 8-bit transla-
tion value within the table that replaces the original contents of the location
addressed by the destination register.

The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by "r"’ (used as a
counter) is then decremented by one. The entire operation is repeated until the
result of decrementing r is zero. This instruction can translate from 1 to 65536 bytes.
The original contents of register RH1 are lost and are replaced by an undefined
value. The source register is unchanged. The source, destination, and counter
registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

C: Unaffected

: Undefined

: Unaffected

V: Set

D: Unaffected
: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

TRDRB @Rbd!, @Rbs!, r| [10] 111000 |Rd=0[1100 10 111000 [Rd 0] 1100

11+14n

11 +14n
0000 r |Rs=0]0000 0000 r [Rs#0j0000

152

TRDRB

Translate Decrement and Repeat

Example:

In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register R9 con-
tains %1000, the translation table from location %1000 through %10FF contains O,
1,2, ..., %7F, 0, 1, 2, ..., %7F (the second zero is located at %1080), and register
R12 contains 3, the instruction .

TRDRB @R6, @R9, R12
will leave the values %00, %40, %00 in byte locations %4000 through %4002,
respectively. Register R6 will contain %3FFF, and R12 will contain 0. R9 will not be
affected. The V flag will be set, and the contents of RH1 will be replaced by an
undefined value. In segmented mode, R6 and R9 would be replaced by register
pairs.

BEFORE

%1000 [00000000

%4000 {0 0000000 %1001 (00000001

%4001 (01000000 %1002 {000000 10
%4002 [10000000 . .
B .
. .

AFTER %107F [01 111111

%1080 [00000000

%4000 [0 0000000 %1081 (00000001

%4001 [01000000 %1082 [000000 10
%4002 [00000000 . .
. .
. .

%10FF 01111111

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

183

TRIB

Translate and Increment

Operation:

Flags:

TRIB dst, src, R dst: IR
src: IR

dst < src[dst]
AUTOINCREMENT dst by 1

rer-1

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte”)
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register is then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r” (used as a counter) is then decremented by one. The original con-
tents of register RHI are lost and are replaced by an.undefined value. The source
register is unchanged. The source, destination, and counter registers must be
separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

: Undefined
: Unaffected

:+ Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected

: Unaffected

C: Unaffected
v

Addressing
‘Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

TRIB @Rd!, @Rs!, r 10/ 111000 |Rd # 00000 10[111000 [Rd =+ 0[0000

25

25
0000' r Rs +0(0000 0000[r Rs #0({0000

154

TRIB

Translate and Increment

Example:

This instruction can be used in a “loop” of instructions which translate a string of
data from one code to any other desired code, but an intermediate operation on
each data element is required. The following sequence translates a string of 1000
bytes to the same string of bytes, with all ASCII “control characters” translated

to the "blank” character (value = 32). A test, however,

is made for the special character “return” (value = 13) which terminates

the loop. The translation table contains 256 bytes. The first 33 (0-32) entries all con-
tain the value 32, and all other entries contain their own index in the table, counting
from zero. This example assumes nonsegmented mode. In segmented mode, R4 and
R5 would be replaced by register pairs.

LD R3, #1000 linitialize counter!
LDA R4, STRING lload start addresses!
LDA RS, TABLE
LOOP: :
CPB @R4, #13 Icheck for return character!
JR EQ, DONE lexit loop if found!
TRIB @R4, @RS, R3 ltranslate next byte!
JR NOV, LOOP Irepeat until counter = 0!
DONE:
TABLE+0 00100000
TABLE +1 00100000
TABLE +2 00100000

TABLE +32 00100000
TABLE +33 00100001
TABLE + 34 00100010

. .
. .
. .
TABLE+255 11111111

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

185

TRIRB

Translate, Increment and Repeat

TRIRB dst, src, R dst: IR
src: IR
Operation: dst <« src[dst]
AUTOINCREMENT dst by I
rer —1

repeat untilr = 0

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the “target byte")
are used as an index into a table of translation values whose lowest address is con-
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order Zeros. The sum is used as the address of an 8-bit transla-
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register is then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r"" (used as a counter) is then decremented by one. The entire opera-
tion is repeated until the result of decrementing r is zero. This instruction can
translate from 1 to 65536 bytes. The original contents of register RH1 are lost and are
replaced by an undefined value. The source register is unaffected. The source,
destination, and counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

Flags: C: Unaffected
Z: Undefined

: Unaffected

: Set

: Unaffected

S
v
D
H: Unaffected

Nonsegmenlted Mode Segmented Mode

Addressing | Assembler Language
Mode Syntax Instruction Format Cycles? Instruction Format Cycles?

IR: TRIRB @Rd!, @Rsl, r 10[111000 [Rd = 0]0100 1414 10[111000 [Rd = 0[0100
n
0000 r [Rs=+0]0000 0000 r [Rs+o0[0000

11+14n

156

TRIRB

Translate, Increment and Repeat

Example: The following sequence of instructions can be used to translate a string of 80 bytes
from one code to another. The pointers to the string and the translation table are set,
the number of bytes to translate is set, and then the translation is accomplished.
After executing the last instruction, the V flag is set and the contents of RHI are lost.
The example assumes nonsegmented mode. In segmented mode, R4 and R5 would
be replaced by register pairs.

LDA R4, STRING
LDA RS, TABLE
LD R3, #80
TRIRB @R4, @RS, R3

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: n = number of data elements translated.

187

TRTDB

Translate, Test and Decrement

TRTDB srcl, src2, R src 1: IR
src 2: IR

Operation: RH1 < src2[srcl]-
AUTODECREMENT srcl by 1

rer—1

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte) are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by-one, thus moving the pointer to the previous
element in the string. The word register specified by "'r" (used as a counter) is then
decremented by one. The second source register is unaffected. The source, destina-
tion, and counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit target byte values will
occur.

Flags: C: Unaffected
Z: Set if the translation value loaded into RHI is zero; cleared otherwise

S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
IR: TRIDB @Rsl!, @Rs2l, r 10/ 111000 Rs1 = d 1010 25 10111000 [Rs1 2 01010 25
0000] r [rs2+ 00000 0000] r |Rs2+0[0000
Example: In nonsegmented mode, if register R6 contains %4001, the byte at location %4001

contains 3, register R9 contains %1000, the byte at location %1003 contains %AA,
and register R12 contains 2, the instruction
TRTDB @R6, @R9, R12

Will leave the value %AA in RHI, the value %4000 in R6, and the value 1 in R12.
Location %4001 and register R9 will not be affected. The Z and V flags will be
cleared. In segmented mode, register pairs must be used instead of R6 and R9.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

188

TRTDRB

Translate, Test, Decrement and Repeat

Operation:

Flags:

TRTDRB src |, src 2, R src 1: IR
src 2: IR

RHI1 < src 2[srcl]
AUTODECREMENT srcl by 1
r<er -1

repeat until RHl = Oorr = 0

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte"’) are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pointer to the previous
element in the string. The word register specified by "r" (used as a counter) is then
decremented by one. The entire operation is repeated until either the Z flag is clear,
indicating that a non-zero translation value was loaded into RH1, or until the result
of decrementing r is zero. This instruction can translate and test from 1 to

65536 bytes. The source, destination, and counter registers must be separate and
non-overlapping registers.

Target byte values which have corresponding zero translation-table entry values are
to be scanned over, while target byte values which have corresponding non-zero
translation-table entry values are to be detected. Because the 8-bit target byte is
added to the second source register to obtain the address of a translation value, the
table may contain 256 bytes. A smaller table size may be used where it is known that
not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

C: Unaffected
Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected
: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

1 1
TRTDRB@Rs1®,@Rs2r | [oT111000 Jnat » 01110 10111000 [Rs1#0[1110

11 +14n

11+ 14n
0000 r Jrs220/1110 0000[r [rs2#01110

189

TRTDRB

Translate, Test, Decrement and Repeat

Example: In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, repectively, register R9 contains
%1000, the translation table from location %1000 through %10FF contains O, 1,
2, ..., %7F, 0, 1, 2, ..., %7F (the second zero is located at %1080), and register
R12 contains 3, the instruction

TRTDRB @R6, @R9, R12

will leave the value %40 in RH1 (which was loaded from location %1040). Register
R6 will contain %4000, and R12 will contain 1. R9 will not be affected. The Z and V
flags will be cleared. In segmented mode, register pairs are used instead of R6

and R9.
%1000 |00000000
%4000 |00000000 %1001 |00O0000O0 1
%4001 |{01000000 %1002 00000010
%4002 | 10000000 . .
. .
. .

%107F O 1 111111
%1080 | 00000000
%1081 | 0000000 1
%1082 | 00000010

%10FF O 1 111111

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

160

TRTIB

Translate, Test and Increment

Operation:

Flags:

TRTIB src 1, src 2, R src 1: IR
src 2: IR

RH1 < src2[srcl]
AUTOINCREMENT srcl by 1

rer-—1

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte”’) are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not atfected. The first
source register is then incremented by one, thus moving the pointer to the next ele-
ment in the string. The word register specified by "r” (used as a counter) is then
decremented by one. The second source register is unaffected. The source, destina-
tion, and counter registers must be separate and non-overlapping registers.

Because the 8-bit target byte is added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit target byte values

will occur.

C: Unaffected
Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unatfected
: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

IR:

@Rsl!, @Rs2! :
TRTIB @Rsl!, @Rs2l, r | 10111000 [Rs1 = {0010 10[111000 [Rs1 % 00010 25

25
0000 r |Rs2x0[0000 0000] r [Rs2+0/0000

161

TRTIB

Translate, Test and Increment

Example: This instruction can be used in a “loop” of instructions which translate and test a
string of data, but an intermediate operation on each data element is required. The
following sequence outputs a string of 72 bytes, with each byte of the original string
translated from its 7-bit ASCII code to an 8-bit value with odd parity. Lower case
characters are translated to upper case, and any embedded control characters are
skipped over. The translation table contains 128 bytes, which assumes that the most
significant bit of each byte in the string to be translated is always zero. The first 32
entries and the 128th entry are zero, so that ASCII control characters and the
“delete” character (%7F) are suppressed. The given instruction sequence is for
nonsegmented mode. In segmented mode, register pairs would be used instead of R3

and R4.
LD RS, #72 linitialize counter!
LDA R3, STRING lload start address!
LDA R4, TABLE
LOOP:
TRTIB @R3, @R4, R5 ltranslate and test next byte!
IR Z, LOOP Iskip control character!
OUTB PORTn, RH1 loutput characters!
JR NOV, LOOP Irepeat until counter = 0!
DONE:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

162

TRTIRB

Test, Increment and Repeat

Operation:

Flags:

TRTIRB src 1, src 2, R src 1: IR
src 2: IR

RHI1 < src2[srcl]
AUTOINCREMENT srcl by 1
rer-—-1

repeat until RHl = OorR = 0

This instruction is used to scan a string of bytes, testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
“target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected.

The first source register is then incremented by one, thus moving the pointer to the
next element in the string. The word register specified by "r"’ (used as a counter) is
then decremented by one. The entire operation is repeated until either the Z flag is
clear, indicating that a non-zero translation value was loaded into RH1, or until the
result of decrementing r is zero. This instruction can translate and test from 1 to
65536 bytes. The source, destination, and counter registers must be separate and
non-overlapping registers.

Target byte values which have corresponding zero translation table entry values are
scanned over, while target byte values which have corresponding non-zero transla-
tion table entry values are detected and terminate the scan. Because the 8-bit target
byte is added to the second source register to obtain the address of a translation
value, the table may contain 256 bytes. A smaller table size may be used where it is
known that not all possible 8-bit target byte values will occur.

This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction’s execution time for each interrupt request that is accepted.

C: Unaffected

Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected !

V: Set if the result of decrementing r is zero; cleared otherwise

D: Unaffected

H: Unaffected

Addressing
Mode

Assembler Language

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles? Instruction Format Cycles?

IR:

TRTIRB @Rsl!, @Rs2!, r

0 10[111000 [Rst 2 go110
10[111000 Ret #got10] |0 [|

11+14n
0000] r [rs2#0[1110 0000] r [rs220[1110

163

TRTIRB

Test, Increment and Repeat

Example:

The following sequence of instructions can be used in nonsegmented mode to scan a
string of 80 bytes, testing for special characters as defined by corresponding non-
zero translation table entry values. The pointers to the string and translation table
are set, the number of bytes to scan is set, and then the translation and testing is
done. The Z and V flags can be tested after the operation to determine if a special
character was found and whether the end of the string has been reached. The
translation value loaded into RH1 might then be used to index another table, or to
select one of a set of sequences of instructions to execute next. In segmented mode,
R4 and RS must be replaced with register pairs.

LDA R4, STRING
LDA RS, TABLE
LD R6, #80.
TRTIRB @R4, @RS, R6

JR NZ, SPECIAL
END__OF__STRING: .

SPECIAL: .
JR OV,LAST__CHAR__SPECIAL

LAST__CHAR__SPECIAL:

Note I: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: nh = number of data elements translated.

164

TSET

Test and Set

TSET dst dst: R, IR, DA, X
TSETB
Operation: S < dst(msb)
dst(0:msb) < 111...111
Tests the most significant bit of the destination operand, copying its value into the S
flag, then sets the entire destination to all 1 bits. This instruction provides a locking
mechanism which can be used to synchronize software processes which require
exclusive access to certain data or instructions at one time.
During the execution of this instruction, BUSRQ is not honored in the time between
loading the destination from memory and storing the destination to- memory. For
systems with one processor, this ensures that the testing and setting of the destination
will be completed without any intervening accesses. This instruction should not be
used to synchronize software processes residing on separate processors where the
destination is a shared memory location, unless this locking mechanism can be
guaranteed to function correctly with multi-processor accesses.
Flags: C: Unaffected
Z: Unaffected
S: Set if the most significant bit of the destination was 1; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected
Nonsegmented Mode Segmented Mode
Addressing | Assembler Language
Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: TSET Rd
TSETB Rbd [1ofootto[w] ra o110} 7 [toloor1o[w] ma Tor10]| 7
IR: TSET @Rd!
TSETB @Rdl |oojoo110{w|rd=0|0110] 1 [oo]oot1o[w[Razo]or10]| 11
DA: TSET address
TSETH adchass o01Joor1ojw|oooolo110 R 01joo110|w|oooofo110 15
address 0| segment offset
o1joo110[w[o000]0110
SL isegmanl 00000000 17
offset
X: TSET addr(Rd)
TSETB adr(Re) 01foo110|w[Rdz0] 0110 s |ss 01Jo0110/w[Rd=0]0110 s
address 0| segment offset
01Joo110|/w|Rd=0]0110
SL[1] segment | 0000 0000 18
offset

165

TSET

Test and Set

Example: A simple mutually-exclusive critical region may be implemented by the following
sequence of statements:
ENTER:
TSET SEMAPHORE
JR - MI,ENTER oop until resource con-!
. ltrolled by SEMAPHORE!
lis available!

ICritical Region—only one software process!
lexecutes this code at a time!

CLR SEMAPHORE Irelease resource controlled!
by SEMAPHORE!

166

XOR

Exclusive Or

XOR dst, src dst: R
XORB src: R, IM, IR, DA, X
Operation: dst - dst XOR src
The source operand is logically EXCLUSIVE ORed with the destination operand and
the result is stored in the destination. The contents of the source are not affected.
The EXCLUSIVE OR operation results in a one bit being stored whenever the cor-
responding bits in the two operands are different; otherwise, a zero bit is stored.
Flags: C: Unaffected
Z: Set if the result is z€ro; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: XOR—unaffected; XORB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected
Source Nonsegmented Mode Segmented Mode
Addressing | Assembler Language

Mode Syntax Instruction Format Cycles Instruction Format Cycles
R: XOR Rd, Rs
XORB Risd, Abs [10joo1oofw] rs | Ra | 4 |[1ofooroolw] s | ma || 4
IM: XOR Rd, #dat
#data 00[001001]0000] Rd 7 00/001001]|0000| Rd 7
data data
XORB Rbd, #data 00{ 001000 |0000] Rd 7 00001000 [0000| /Rd 7
data data data data’
IR: XOR Rd, @Rs!
XORB Rbd, @Rl fooloot1oo{w[Rs+0| Ra | 7 [oojoo100[w[Rs=0| Rd 7
DA: XOR Rd, address
XORB Rbd. address 01foo100/w[oo00] rd o lss 01Joo100/w[oooo] Rd 10
address Ol segment offset
01[00100/w|0000| Rd
SL{1] segment | 00000000 12
offset
X: XOR Rd, addr(Rs)
XORB Hbd. adair(Rs) 01joo100/w| Rs»0] Rd w0 |ss 01/00100[W| Rs=0| Rd 10
address OT segment offset
01joo100/w| Rs=0| Rd
SL|1| segment | 00000000 13
offset

1671

XOR

Exclusive Or

Example: If register RL3 contains %C3 (11000011) and the source operand is the immediate
value %7B (01111011), the statement

XORB RL3,#%7B
will leave the value %B8 (10111000) in RL3.

Note]: Word register in nonsegmented mode, register pair in segmented mode.

168

"~ EPA Instruction Templates

There are seven “templates” for EPA instruc-
tions. These templates correspond to EPA
instructions, which combine EPU operations
with possible transfers between memory and an
EPU, between CPU registers and EPU regis-
ters, and between the Flag byte of the CPU’s
FCW and the EPU. Each of these templates is
described on the following pages. The descrip-
tion assumes that the EPA control bit in the
CPU’s ECW has been set to 1. In addition, the
description is from the point of view of
the CPU—that is, only CPU activities are
described; the operation of the EPU is implied,

Extended Instruction
Load Memory from EPU

Operation: Memory <« EPU

but the full specification of the instruction
depends upon the implementation of the EPU
and is beyond the scope of this manual.

Fields ignored by the CPU are shaded in the
diagrams of the templates. The 2-bit field in bit
positions 0 and 1 of the first word of each
template would normally be used as an identi-
fication field for selecting one of up to four
EPUs in a multiple EPU system configuration.
Other shaded fields would typically contain
opcodes for instructing an EPU as to the oper-
ation it is to perform in addition to the data
transfer specified by the template.

The CPU performs the indicated address calculation and generates n EPU memory
write transactions. The n words are supplied by an EPU and are stored in n con-
secutive memory locations starting with the effective address.

Flags/Registers: No flags or CPU registers are affected by this instruction.

mode dst

Clock Cycles

SS SL
00 IR (dst # 0) 1143n
01 X (dst # 0) 15+3n 15+3n 18 +3n
01 DA (dst = 0) 14+3n 15+3n 17+3n

169

Extended Instruction
Load EPU from Memory

Operation:

Flags/Registers:

EPU < Memory

The CPU performs the indicated address calculation and generates n EPU memory
read transactions. The n consecutive words are fetched from the memory locations
starting with the effective address. The data is read by an EPU and operated upon
according to the EPA instruction encoded into the shaded fields.

No flags or CPU registers are affected by this instruction.

[o]

Clock Cycles

mode src NS SS SL
0 0 IR (src # 0) 114+3n

0 1 X (src # 0) 15+3n 15+3n 18+3n
0 1 DA (src = 0) 14+3n 15+ 3n 17+3n

Extended Instruction
Load CPU from EPU

Operation:

Flags/Registers:

Execution Time:

CPU < EPU registers

The contents of n words are transferred from an EPU to consecutive CPU registers
starting with register dst. CPU registers are transferred consecutively, with register 0
following register 15.

No flags are affected by this instruction.

11 + 3n cycles.

170

Extended Instruction
" Load EPU from CPU

Operation: EPU < CPU registers

The contents of n words are transferred to an EPU from consecutive CPU registers
starting with register src. CPU registers are transferred consecutively, with register 0
following register 15.

Flags/Registers: No flags are affected by this instruction.

Execution Time: 11 + 3n cycles.

Extended Instruction
Load FCW from EPU

Operation: Flags - EPU

The Flags in the CPU'’s Flag and Control Word are loaded with information from an
EPU on AD lines ADg-AD;.

Flags/Registers: The contents of CPU register 0 are undefined after the execution of this instruction.

Execution Time: 14 cycles.

171

Extended Instruction
Load EPU from FCW

Operation: EPU < Flags

The Flags in the CPU’s Flag and Control Word are transferred to an EPU on AD
lines ADg-AD;.

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Execution Time: 14 cycles.

10001110

Extended Instruction
Internal EPU Operation

Operation: Internal EPU Operation

The CPU treats this template as a No Op. It is typically used to initiate an internal
EPU operation.

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Execution Time: 14 cycles.

10001110

172

Programmers Quick Reference

Clock Cycles*

M i Op d Addr. Word, Byte Long Word Operation
Modes NS SS SL NS Ss SL
ADC R,src R 5 Add with Carry
ADCB R — R + src + carry
ADD R,src R 4 4 4 8 8 8 Add
ADDB M 7 7 7 14 14 14 R —R + src
ADDL IR 7 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
AND R.sre R 4 4 4 AND
ANDB IM 7 7 7 R — R AND src
IR 7
DA 9 10 12
X 10 10 13
BIT dst,b R 4 4 4 Test Bit Static
BITB IR 8 Z flag — NOT dst bit specified by b
DA 10 11 13 .
X 11 11 14
BIT dst,R R 10 10 10 Test Bit Dynamic
BITB Z flag — NOT dst bit specified by
contents of R
CALL dst IR 10 10 15 Call Subroutine
DA 12 18 20 Autodecrement SP
X 13 18 21 @ Sp — PC
PC — dst
CALR dst RA 10 10 15 Call Relative
Autodecrement SP
@ SP — PC
PC — PC + dst(range -4094 to
+4096)
CLR dst R 7 7 7 Clear
CLRB IR 8 dst — 0
DA 11 12 14
X 12 12 15
COoM dst R 7 7 7 Complement
COMB IR 12 dst — NOT dst
DA 15 16 18
X 16 16 19
COMFLG flags 7 7 7 Complement Flag
(Any combination of C, Z, S, P/V)
cp R,src R 4 4 4 8 8 8 Compare with Register
CPB M 7 7 7 14 14 14 R-src
CPL 1R 7 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
Ccp dst,IM IR 11 Compare with Immediate
CPB DA 14 15 17 dst - IM
X 15 18 18

* NS = Non-Segmented, SS = Short Segmented Offset, SL =Segmented Long Offset. Blank = Not Implemented.

113

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS Sss SL
CPD Ry.src,Ry,cc IR 20 Compare and D t
CPDB ' Ry - src
Autodecrement src address
CPDR Ry.src,Ry,cc IR (11 + 9n) Compare, Decrement and Repeat
CPDRB Ry - src
Autodecrement src address
Rx — Ry - 1
Repeat until cc is true or Ry = 0
CPI Ry,src,Ry,cc IR 20 Compare and Increment
CPIB Ry - src
Autoincrement src address
Ry =Ry -1
CPIR Ry.src,Ry,cc IR (11 + 9n) Comp I t and Repeat
CPIRB Ry - src
Autoincrement src address
Ry — Ry - 1
Repeat until cc is true or Ry = 0
CPSD dst,src,R,cc IR 25 Compare String and Decrement
CPSDB dst — src
Autodecrement dst and src addresses
R-R-1
CPSDR dst,src,R,cc IR (11 + l4n) Compare String, Decr. and Repeat
CPSDRB dst — src
Autodecrement dst and src addresses
R-R-1
Repeat until cc istrue or R = 0
CPSI dst,src,R,cc IR 25 Compare String and Increment
CPSIB dst - src
Autoincrement dst and src addresses
R-R-1
CPSIR dst,src,R,cc IR (11 + 14n) Compare String, Incr. and Repeat
CPSIRB dst — src
Autoincrement dst and src addresses
R—-R -1
Repeat until cc is true or R = 0
DAB dst R 5 5 5 Decimal Adjust
DEC dst,n R 4 4 4 Decrement by n
DECB IR 11 dst — dst - n
DA 13 14 16 (n = 1...16)
X 14 14 17
DI* int 7 7 7 Disable Interrupt
(Any combination of NVI, VI)
DIV R,src R 107 744 Divide (signed)
DIVL ™M 107 744 Word: Ry, 4 |= Ry 4 1+ src
IR 107 107 107 744 744 744 R, — remainder
DA 108 109 111 745 746 748 Long Word: R, y 2 4+ 3= Bp.n + 3+ src
X 109 109 112 746 746 749 Ryn 4+ 1= remainder

*Privileged instruction. Executed in system mode only.

174

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS Ss SL
DINZ R,dst RA 11 11 11 Decrement and Jump if Non-Zero
DBJNZ R—R-1
IfR # 0: PC — PC + dst(range -254 to 0)
EI* int 7 7 7 Enable Interrupt
(Any combination of NVI, VI)
EX R,src R 6 6 6 Exchange
EXB IR 12 R = src
DA 15 16 18
X 16 16 19
EXTS dst R 11 11 11 11 11 11 Extend Sign
EXTSB Extend sign of low order half of dst
EXTSL through high order half of dst
HALT* (8 + 3n) HALT
IN* R,src IR 10 Input
INB* DA 12 12 12 R — src
INC dst,n R 4 4 4 Increment by n
INCB IR 11 dst — dst + n
DA 13 14 16 .(n = 1...16)
X 14 14 17
IND* dst,src,R IR 21 Input and Decrement
INDB* dst — src
Autodecrement dst addresed
R—-R-1
INDR* dst,src,R IR (11 + 10n) Input, Decrement and Repeat
INDRB* dst — src
Autodecrement dst address
R—R -1
Repeat untilR = 0
INI* dst,src,R IR 21 Input and Increment
INIB* dst — src
Autoincrement dst address
R—-R-1
INIR* dst,src.R IR (11 + 10n) Input, Increment and Repeat
INIRB* dst — src
Autoincrement dst address
R—-R-1
Repeat untilR = 0
IRET* 13 13 16 Interrupt Return
PS — @ Sp
Autoincrement SP
P cc,dst IR 10 15 (taken) Jump Conditional
IR 7 7 (not taken) 1f cc is true: PC — dst
DA 7 8 10
X 8 8 11
IR cc,dst RA 6 6 6 Jump Conditional Relative

If cc is true: PC — PC + dst
(range -256 to +254)

*Privileged instruction. Executed in system mode only.

175

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS Sss SL
LD R.,src R 3 3 3 5 5 5 Load into Register
LDB IM 7 7 7 11 11 11 R = src
LDL M 5 (byte only)
IR 7 11 .
DA 9 10 12 12 13 15
X 10 10 13 13+ 13 16
BA 14 14 17 17
BX 14 14 17 17
LD dst,R IR 8 11 Load into Memory (Store)
LDB DA 11 12 14 14 15 17 dst — R
LDL X 12 12 15 15 15 18
BA 14 14 14 17 17 17
BX 14 14 14 17 17 17
LD dst,IM IR 11 Load Immediate into Memory
LDB DA 14 15 17 dst — IM
X 15 15 18
LDA- R,src DA 12 13 15 Load Address
X 13 13 16 R — source address
BA 15 18 15
BX 15 15 15
LDAR R,src RA 15 15 15 Load Address Relative
LDCTL* CTLR,src R 7 7 7 Load into Control Register
CTLR - src
LDCTL* dst, CLTR R 7 7 7 Load from Control Register
dst — CTLR
LDCTLB FLGR,src R 7 7 7 Load into Flag Byte Register
FLGR - src
LDCTLB dst, FLGR R 7 7 7 Load from Flag Byte Register
dst — FLGR
LDD dst,src,R IR 20 Load and Decrement
LDDB dst — src
Autodecrement dst and src addresses
R—~R+1
LDDR dst,src,R IR (11 + 9n) Load, Decrement and Repeat
LDDRB dst — src
Autodecrement dst and src addresses
R—R-1
Repeat until R = 0
LDI dst,src,R IR 20 Load and Increment
LDIB dst — src
Autoincrement dst and src addresses
R—R-1
LDIR dst,src,R IR (11 + 9n) Load. Increment and Repeat
LDIRB dst — src

Autoincrement dst and src addresses
R—~R-1
Repeat untilR = 0

176

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes Ns ss sSL NS Ss SL
LDK R,src M 5 5 5 Load Constant
R—n(n = 0..15)
LDM R.src,n IR 11 Load Multiple
DA 14 15 17 + 3n dst — src (n consecutive words)
X 15 15 18 (n = 1...16)
LDM dst,R,n IR 11 Load Multiple (Store Multiple)
DA 14 15 17 + 3n dst — R (n consecutive words)
X 15 15 18 (n =1...16)
LDPS* src IR 12 Load Program Status
DA 16 20 22 PS —'src
X 17 20 23
LDR R,src RA 14 14 14 17 17 17 Load Relative
LDRB R = src
(range -32768... + 32767)
LDR dst,R’ RA 14 14 14 17 17 17 Load Relative (Store Relative)
LDRB dst — R
LDRL (range -32768... + 32767)
MBIT* 7 7 7 Test Multi-Micro Bit
Set if M] is Low: reset S if My is High.
MREQ* dst R (12 + 7n) Multi-Mircre Request
MRES* 5 5 5 Multi-Micro Reset
MSET* 5 5 5 Multi-Micro Set
MULT R,src R 70 70 70 282+ 282+ 282+ Multiply (signed)
MULTL IM 70 70 70 282+ 282+ 282+ Word: Ry .= Ry - stC
IR 70 282+ Long Word: R, +3=Rp.2 n+3 - src
DA 71 72 74 283+ 283+ 286+ + Plus seven cycles for each 1 in the
X 72 72 75 284+ 284+ 287+ absolute value of the low order 16 bits of the
multiplicand.
NEG dst R 7 7 7 Negate
NEGB IR 12 dst — 0 — dst
DA 15 16 18
X 16 16 19
NOP 7 7 7 No Operation
OR R,src R 4 4 4 OR
ORB IM 7 7 7 R — ROR src
IR 7
DA 9 10 12
X 10 10 13
OTDR* dst,src,r 1R (11 + 10 n) Output, Decrement and Repeat
OTDRB* dst — src
Autodecrement src address
R—-R -1

Repeat until R = 0

*Privileged instructions. Executed in system mode only.

177

Clock Cycles

M i Op d Addr. Word, Byte Long Word Operation
Modes NS SS SL NS Sss SL
OTIR* dst,src,R IR (11 + 10 n) Output, Increment and Repeat
OTIRB* dst — src
Autoincrement scr address
R—~R-1
Repeat until R = 0
ouT* dst,R IR 10 Output
OUTB* DA 12 12 12 dst = R
OUTD* dst,src,R IR 21 Output and Decrement
OUTDB* dst — src
Autodecrement src address
R—-R-1
OuTI* dst,src,R IR 21 Output and Increment
OUTIB*) dst — src
Autoincrement src address
R—~R-1
POP dst.IR R 8 8 8 12 12 12 Pop
POPL IR 12 19 dst — IR
DA 16 16 18 23 23 25 Autoincrement contents of R
X 16 16 19 23 23 26
PUSH IR,src R 9 9 9 12 12 12 Push
PUSHL M 12 12 12 Autodecrement contents of R
IR 13 20 IR — src
DA 14 14 16 16 21 23
X 14 14 17 21 21 24 .
RES dst,b R 4 4 4 Reset Bit Static
RESB IR 11 Reset dst bit specified by b
DA 13 14 16
X 14 14 17
RES dst,R R 10 10 10 Reset Bit Dynamic
RESB Reset dst bit specified by contents R
RESFLG flag 7 7 7 Reset Flag
(Any combination of C, Z, S, P/V)
RET cc 10 10 13 (taken) Return Conditional
7 7 7 (not taken) If cc is true: PC — @ SP Autoincrement SP
RL dst,n R 6forn =1 Rotate Left
RLB R 7forn =2 by nbits (n = 1, 2)
RLC dst,n R 6forn = 1 Rotate Left through Carry
RLCB R 7forn =2 by n bits (n = 1, 2)
RLDB R,src R 9 9 9 Rotate Digit Left
RR dst,n R 6forn =1 Rotate Right
RRb R 7forn =2 by nbits (n = 1, 2)
RRC dst,n R 6forn =1 Rotate Right through Carry
RRCB R 7forn = 2 by nbits (n = 1, 2)

*Privileged instruction. Executed in system mode only.

118

Clock Cycles

M Op d Addr. Word, Byte Long Word Operation
Modes NS SS SL NS Ss sL
RRDB R,src R 9 9 9 Rotate Digit Right
SBC R,src R 5 5 5 Subtract with Carry
SBCB R — R - src — carry
sC src M 33 39 System Call
Autodecrement SP
@ SP — old PS
Push instruction
PS — System Call PS
SDA dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic
SDAB Shift dst left or right
SDAL by contents of R
SDL dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Logical
SDLB Shift dst left or right
SDLL by contents of R
SET dst,b R 4 4 4 Set Bit Static
SETB IR 11 Set dst bit specified by b
DA 13 14 16
X 14 14 17
SET dst,R R 10 10 10 Set Bit Dynamic
SETB Set dst bit specified by contents of R
SETFLG flag X 7 7 7 Set Flag
(Any combination of C, Z, S, P:V;
SIN* R,src DA 12 12 12 Special Input
SINB* R — src
SIND* dst,src,R IR 21 Special Input and Decrement
SINDB* dst — src .
Autodecrement dst address
R—-R -1
SINDR* dst,src,R IR (11 + 10n) Special Input, Decrement and Repeat
SINDRB* dst — src
Autodecrement dst address
R-R-1
Repeat untilR = 0
SINI* dst,src,R IR 21 Special Input and Increment
SINIB* dst — src
Autoincrement dst address
R—R-1
SINIR* dst,src,R IR (11 + 10n) Spoci&l Input, Increment and Rapeal
SINIRB* dst — src
Autoincrement dst address
R—-R-1
Repeat until R = 0
SLA dst,n R (13 + 3n) (13 + 3n) Shift Left Arithmetic
SLAB by n bits
SLAL
SLL dst,n R (13 + 3n) (13 + 3n) Shift Left Logical
SLLB by n bits
SLLL

*Privileged instruction. Executed in system mode only.

179

Clock Cycles

Op d Addr. Word, Byte Long Word Operation
Modes NS SS SL NS SS SL.
SOTDR* dst,src,R IR (11 + 10 n) Special Output, Decr. and Repeat
SOTDRB* dst — src
Autodecrement src address
R—~R-1
Repeat untilR = 0
SOTIR* dst,src,R R (11 + 10 n) Special Output, Incr. and Repeat
SOTIRB* dst — src
Autoincrement src address
R—-R-1
Repeat until R = 0
SOUT* dst,src DA 12 12 12 Special Output
SOUTB* dst — src
SOUTD* dst,src,R IR 21 Special Output and Decrement
SOUTDB* dst — src
Autodecrement src address
R—~R-1
SOUTI* dst,src,R IR 21 Special Output and Increment
SOUTIB* dst — src
Autoincrement src address
R—-R-1
SRA dst,n R (13 + 3n) (13 + 3n) Shift Right Arithmetic
SRAB by n bits
SRAL
SRL dst,n R (13 +3n) (13 + 3n) Shift Right Logical
SRLB by n bits
SRLL
SUB R.src R 4 4 4 8 8 8 Subtract
SUBB IM 7 7 7 14 14 14 R -R - src
SUBL IR 7 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
TCC cc,dst R 5 5 5 Test Condition Code
TCCB Set LSB if cc is true
TEST dst R 7 7 7 13 13 13 Test
TESTB IR 8 13 dst OR 0
DA 11 12 14 16 17 19
X 12 12 15 17 17 20

d in system mode only.

180

Clock Cycles

M Op d Addr. Word, Byte Long Word Operation
Modes NS SS SL NS Sss sL
TRDB dst,src,R IR 25 Translate and Decrement
dst — src(dst)
Autodecrement dst address
R-R -1
TRDRB dst,src,R IR (11 + 14n) T 1 D t and Rep
dst — src(dst)
Autodecrement dst address
R—-R -1
Repeat untilR = 0
TRIB dst,src,R IR 25 Translate and Increment
dst — src(dst)
Autoincrement dst address
R—-R-1
TRIRB dst,src,R IR (11 + 14n) T 1 I t and Rep
dst — src(dst)
Autoincrement dst address
R—-R-1 :
Repeat until R = 0
TRTDB srcl,src2,R IR 25 Translate and Test, Decrement
RH1 — src2 (srcl)
Autodecrement src 1 address
R—-R-1
TRTDRB srcl,sre2,R IR (11 + 14n) Translate and Test, Decr. and Repeat
RHI1 — src2 (srcl)
Autodecrement src1 address
R—-R-1
Repeat until R = O or RH1 # 0
TRTIB srcl,src2,R IR 25 Translate and Test, Increment
RH1 — src2 (srcl)
Autoincrement src address
R—-R-1
TRTIRB srcl,src2,R IR (11 + 14n) Translate and Test, Incr. and Repeat
RH1 — src2 (srcl)
Autoincrement src 1 address
R —RI
Repeat untilR = O or RH1 - # 0
TSET dst R 7 7 7 Test and Set
TSETB IR 11 S flag — MSB of dst
DA 14 15 17 dst — all Is
X 15 15 18
XOR R,src R 4 4 4 Exclusive OR
XORB M 7 7 7 R — R XOR src
IR 7
DA 9 10 12
X 10 10 13

181

LOWER NIBBLE (HEX). UPPER INSTRUCTION BYTE

0 1 2 3 ‘ 5 [] 7 8 9 A B c D E F
ADDB | ADD | SUBB | SUB ORB OR anpB | AND | xoms | xom cPB CP | See See | EXTEND | EXTEND
o|R—IR R~ IR R=IR |R =IR| R=IR R =R R*=1IR R = IR R — IR R =R R = IR R IR | Table Table INST INST
R =M R—=iM R —IM R—=IM R —IM R—=IM R—=IM R =M R=—IM R—1IM R—IM R—IM 1 1
CPL | PUSHL | SUBL | PUSH LDL porL | AppL | pop | muite | murt | pivi DIV | See LDL P CALL
1 R—=IR IR = IR R = IR IR — IR R— IR IR — IR R~ IR IR =IR R = IR R =R R = IR R = IR | Table IR=R PC—IR PC—IR
R —=IM R—IM R—=IM R=IM R—=IM|R=IM| R=IM]| R—IM 2
LDB RESB RES SETB SET BITB BIT INCB INC DECB | DEC | EXB EX LDB LD
2 R = IR R IR IR—=IM |IR—IM|IR—IMJIR=—IM|IR=IM |IR=IM|IR=IM|IR=IM|IR=IM|IR—IM|R—=IR R—IR IR=R IR=R
R = IM R~ IM R =R R =R R =R R—R R =R R =R
LDB LD LDB 53 LDA LDL RSYD | LbL | RSVD | LDPS See Ses | INB IN ours | out
R=BA |R—BA| BA—R |BA—R|R—BA|R=—BA BA — R IR Table Table R=IR R=IR IR=R IR=R
3 LDR LD LD LDAR | LDRL LD! 3K -3B
R=—RA |R—RA | RA—R |RA =R |R=—RA|R—RA RA — R
ADDB | ADD | SUBB SUB ORB OR ANDB | AND | XORB | XOR CPB cp See See | EXTEND | EXTEND
R =X R =X R =X R =X R =X R =X R =X R =X R =X R =X R =X R—=X Table Table INST INST
4R —DA |R—DA|R=DA [R—DA|R—DA|R—DA|R—DA R—DA|R=DA|R—=DA|R=DA|R=DA 1 1
cPL | PusHL | suBL | pusH LDL PoPL | ADDL | pop | MuLtL | MuLt | DIvL DIV | See LDL P CALL
E5 R =X IR =X R =X IR =X R—=X IR— X R =X IR— X —-X' R =X R =X R—X Table X~=R PC—X PC=X
= R—DA |IR—=DA| R —DA R = DA | R — DA R DA |R—DA |IR DA |R=—DA |R=DA |R=—DA 2 DA=—R PC~—DA PC—DA
£
‘E’ LDB LD RESB RES SETB SET BITB BIT INCB INC DECB | DEC | EXB EX LDB LD
6| R—X R =X X=IM |X=IM [X=IM X=IM | X=IM{X~=IM|X*=IM X =M =1 X = IM | R=X Re=X X=R X=R
E R—DA |R—DA DA — IM|[DA = IM|DA = IM|DA — IM [DA = IM |DA — IM [DA = IM |DA — IM |DA — IM | DA — IM | p=pA ~pA | pa-r | pa-r
1Z]
z LDB See LDB LD LDA LDL LDA LDL RSYD | LDPS | HALT See E See RSVD sc
E 7 R — BX Table BX =R BX — R R = BX R = BX R—=X X — R PS — X Table DI Table
I 7 R — DA PS — DA 7 7
3 .
= AppB | ADD | susB SUB ORB OR ANDB | AND | XORB | XoOR CPB CP | See See | EXTEND | EXTEND
g|*—R|R=R | R—=R |'R=R | R—R | R~=R | R=R | R=R [R=R | R—=R | R—R | R~k |Table | Table | INST. INST.
1 1
g CPL | PUSHL | SUBL | PUSH LDL POPL | ADDL | POP -| MULTL | MuLt | DIvL DIV | See RSVD | RET | RSVD
Eg R—=R |R—=R| R=R |R~R | R—R | R—IR | R—=R | R—=R | R=1R R=R [R=R | R—=R [Table PC~(SP)
2
]
g LDB LD RESB | RES SETB SET BITB BIT INCB INC | DECB | DEC | EXB EX TCCB | TCC
A} R—R R—R R=IM |R=IM R—IM R=1IM | R —IM R =M R—=1IM R=IM R=IM R=IM R=R R=R R R
DAB EXTS See See ADCB | ADC | sBcB SBC See RSVD See See |RRDB | LDK RLDB | RSVD
B EXTSB | Table | Table | R—R | R—R | R—R | R—R | Table Table | Table R R—IM R
R EXTSL 4 ‘4 5 s s
LDB
clr—m
CALR)
p-fPc —RA
)
E [PC —RA
DINZ
¢ | pBmNz
PC = RA
Op Code Map
Notes:

1) Reserved Instructions (RSVD) should not be
used. The result of their execution is not defined.

2) The execution of an extended instruction will
result in an Extended Instruction Trap if the EPA
bit in the FCW is a zero. If the flag is a one the
Extended Instruction will be executed by the EPU
function.

182

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

Table 2. Upper Instruction Byte

oc oD i 4D 8C 8D
COMB | COM COMB | COM COMB | COM
IR IR X X R R
DA DA
CPB cP CPB =3 LDCTLB | SETFLG
IR,IM IRIM X,IM XM R—FLGS
DAIM | DAIM
NEGB | NEG NEGB | NEG NEGB | NEG
IR IR X X R R
DA DA
RSVD | RSVD RSVD | RsVD RSVD | RESFLG
TESTB | TEST TESTB | TEST TESTB | TEST
IR IR X X R R
DA DA :
LDB LD LDB LD RSVD | COMFLG
IR—IM | IR—IM X=IM | X—=IM
DA—IM | DA—IM
TSETB | TSET TSETB | TSET TSETB | TSET
IR IR X X R R
DA DA
RSVD | RSVD RSVD | RSVD RSVD NoP
CLRB CLR CLRB CLR CLRB CLR
IR IR X X R R
DA DA
PUSH LDCTLB
M FLGS—R
Table 1. Upper Instruction Byte
1c sC
w © RSVD RSVD
£
Hz LDM LDM
=0 1 R~IR R—X
§ 5 R—DA
a E TESTL TESTL TESTL
Zh 8 IR X R
E Z DA
<] E LDM LDM
3 o IR—R X—R
1 DA-R

A 3B
INIB INI
0 R—IR | B—IR
INIRB INR
R—R | R—IR
SINIB SINI
1 B=R | IR—IR
SINIRB SINIR
R—IR | IR—IR
OUTIB ouT!
2 IR=R | IR—IR
OTiRB OUTIR
IR—IR | IR—IR
SOUTIB | SOUTI
3 R—IR | IR=IR
SOTIRB | SOTIR
w R—IR | IR—IR
3
a INB IN
5 4 R=DA | R—DA
=]
3
3
E SINB SIN
Z s R=DA | R—DA
7]
3z
Q
- OuTB ouT
é 6 DA-R | DA-R
w
=}
a SOuUTE | sout
g 7 DA—R | DA=R
5]
8
- INDB IND
8 R—IR | IR—IR
INDRB INDR
R—IR | IR—IR
SINDB SIND
9 R—IR | R—IR
SINDRB | SINDR
R—IR | IR—IR
OUTDB OouTD
A | R=R | R—R
OTDRB OTDR
R—IR | IR—IR
SOUTDB | SOUTD
8 R—IR_ | B—IR
SOTDRB | SOTDR
R—IR | IR—IR

Table 3. Upper Instruction Byte

183

LOWER NIBBLE (HEX), LOWER INSTRUCTION BYTE

B2 B3
RLB RL
(1 bit) (1bit)

R R
SLLB SLL
R R
SRLB SRL
R R
RLB RL
@bits) | (2bits)

R R
SDLB SDL

R R
RRB RR

11 b (1 bit)
R R
SLLL

RSVD R
SRLL

RRB RR
(2bits) | (2bits)

R R

RSVD SDLL
R

RLCB RLC

(1 bit) (1 bit)

R R
SLAB SLA

R R
SRAB SRA

R R
RLCB RLC
@bits) | (2bits)

R R
SDAB SDA
R R
RRCB RRC
(1 bit) (1 bit)
R R

SLAL
RSVD R
SRAL
RRCB RRC
@bits) | (2bits)
R R
SDAL
RSVD R
Table 4.

Upper Instruction Byte

B8
TRIB

1 RSVD

TRTIB

RSVD

TRIRB
4 IR

RSVD

TRTIRB
6 IR

RSVD

TRDB
IR

RSVD

TRTDB
IR

LOWER NIBBLE (HEX). LOWER INSTRUCTION BYTE
®

RSVD

TRDRB
IR

[p]

RSVD

TRTDRB

F RSVD

Table 5.
Upper Instruction Byte

BA BB
CPIB CPI
IR IR
LDIB LDI
IR—IR | IR—IR
LDIRB | LDIR
IR—IR | IR—IR
CPSIB | CPSI
IR IR
RSVD | RSVD
CPRIB | CPIR
IR IR
RSVD | RSVD
CPSIRB | CPSIR
IR IR
RSVD | RSVD
CPDB CPD
IR IR
LDDB LDD
IR-1R | IR-IR
LDDRB | LDDR
IR-IR | IR-IR
CPSDB | CPSD
It IR
RSVD | RSVD
CPDRB | CPDR
I# 1]
RSVD | RSVD
CPSDRB | CPSDR
i iR
RSVD | RSVD
Table 6.

Upper Instruction Byte

7B 7D
IRET RSVD
PC —(SSP)
RSVD RSVD
RSVD LDCTL
R—=FCW
RSVD LDCTL
R—RFRSH
RSVD LDCTL
Re
PSAPSEG
RSVD LDCTL
R—
PSAPOFF
RSVD LDCTL
R—NSPSEG
RSVD LDCTL
R = NSPOFF
MSET RSVD
MRES RSVD
MBIT LDCTL
FCW-R
RSVD LDCTL
RFRSH—R
LDCTL
PSAPSEG
-R
MREQ LDCTL
R PSAPOFF
-R
RSVD LDCTL
. NSPSEG —R
LDCTL
RSVD | NSPOFF —R
Table 7.

Upper Instruction Byte

184

Topical Index

Data Addressing Flags
Instruction Description Mnemonic Types Modes Affected
Arithmetic
Add with Carry ADC B, W R C,Z,8,V,D,H
Add ADD B, W,L R, IM, IR, DA, X C,Z,S,V, D H
Compare (Immediate) CP B, W IR, DA, X C,Z S,V
Compare (Register) CP B,W,L R, IM, IR, DA, X C,ZS8,V
Decimal Adjust Bit DAB B IR C,Z S
Decrement DEC B, W R, IR, DA, X Z,S,V
Divide DIV W, L . R, IM, IR, DA, X C,Z S,V
Extend Sign EXTS B,W,L R C, 2,8V
Increment INC B, W R, IR, DA, X Z,8,V
Multiply MULT W, L R,IM, IR, DA, X C,Z, S V¥
Negate NEG B, W R, IR, DA, X C.Z8sV
Subtract with Carry SBC B, W R C, 2,8 V,DH
Subtract SUB B,W,L R, IM, IR, DA, X C,Zz,S,V,DH
Bit Manipulation .
Bit Test BIT B, W R Z
Bit Reset (Static) RES B, W R, IR, DA, X —
Bit Reset (Dynamic) RES B, W R
Bit Set (Static) SET B, W R, IR, DA, X —
Bit Set (Dynamic) SET B, W R —
Bit Test and Set TSET B, W R, IR, DA, X S
Block Transfer and String Manipulation
Compare and Decrement CPD B, W IR C,Z 8V
Compare, Decrement, and Repeat CPDR B, W IR C,Z, 8V
Compare and Increment CPI B, W IR C,2,5V
Compare, Increment, and Repeat CPIR B, W 1R C,2,5V
Compare String and Decrement CPSD B, W 1R C,2,8V
Compare String, Decrement, and Repeat CPSDR B, W IR G, 2z S8V
Compare String and Increment CPSI B, W IR C, 2,8V
Compare String, Increment, and Repeat CPSIR B, W IR C, 2,5V
Load and Decrement LDD B, W IR A
Load, Decrement, and Repeat LDDR B, W IR v
Load and Increment LDI B, W IR v
Load, Increment, and Repeat LDIR B W IR \
Translate and Decrement TRDB B IR Z,V
Translate, Decrement, and Repeat TRDRB B IR Z,V
Translate and Increment TRIB B IR Z,V
Translate, Increment, and Repeat TRIRB B IR Vv
Translate, Test, and Decrement TRTDB B IR z, vV
Translate, Test, Decrement, Repeat TRTDRB B IR zZ,V
Translate, Test, and Increment TRTIB B IR Z,V
Translate, Test, Increment, and Repeat TRTIRB B IR Z,V
CPU Control Instructions
Complement Flag . COMFLG — — C*, 7}, 8%, P,V
Disable Interrupt DI — — —
Enable Interrupt EI — — —
Halt HALT — — —
Load Control Register (from register) LDCTL — R C!, 7%, 8%, P*, D*, H?
Load Control Register (to register) LDCTL — — —
Load Program Status LDPS — IR, DA, X C,Z2,5,P,D,H
Multi-Bit Test MBIT — — S
Multi-Micro Request MREQ — — Z, S
Multi-Micro Reset MRES — — —
Multi-Micro Set MSET — — —
No Operation NOP — — —
Reset Flag RESFLG — — C, 7%, 8, P,V
Set Flag SETFLG - — [OSAVANE S

1. Flag affected only for byte operation.
2. Flag modified only if specified by the instruction.

185

Topical Index (Continued)

Data Addressing . Flags
Instruction Description Mnemonic Types Modes Affected

Input/Output Instructions’ Regular Special
Input (S)IN® B, W IR, DA (DA) —
Input and Decrement (S)IND? B, W IR (IR) v
Input, Decrement and Repeat (S)INDR? B, W IR (IR) \4
Input and Increment (S)INT B, W IR (IR) \'A
Input, Increment, and Repeat (S)INIR® B, W IR (IR) \
Output (S)OUT® B, W IR, DA (DA) —
Output and Decrement . (S)OouTD’ B, W IR (IR) \A
Output, Decrement, and Repeat (S)OUTDR’® B, W IR (IR) v
Output and Increment (S)OUTP B, W IR (IR) \
Output, Increment, and Repeat (S)OUTIR® B, W IR (IR) v
Logical Instructions
And AND B, W R, IM, IR, DA, X Z,S,P
Complement COM B, W R, IR, DA, X Z, S, P
Or OR B, W R, IM, IR, DA, X 2,8, P
Test TEST B,W,L R,IR, DA, X Z,S, P
Test Condition Code TCC B, W R —_
Exclusive Or XOR B, W R, IM, IR, DA, X Z, S, P
Program Control Instructions
Call Procedure CALL — IR, DA, X —
Call Procedure Relative CALR — RA —
Decrement, Jump if Not Zero DINZ B, W RA —
Interrupt Return IRET —_ — C,Z, S, P,D H
Jump JP — IR, DA, X —
Jump Relative IR — RA —
Return From Procedure RET — — —
System Call SC — — —
Rotate and Shift Instructions
Rotate Left RL B, W R —
Rotate Left Through Carry RLC B, W R C, 2,8V
Rotate Left Digit RLDB B R Z, S
Rotate Right RR B, W R C, 2,8,V
Rotate Right Through Carry RRC B, W R C,Z,S8/V
Rotate Right Digit RRDB B R Z, S
Shift Dynamic Arithmetic SDA B, W, L R C,Z 8,V
Shift Dynamic Logical SDL B, W, L R C, 2,8V
Shift Left Arithmetic SLA B,W,L R C, 2,8V
Shift Left Logical SLL B, W, L R C, Z S,V
Shift Right Arithmetic SRA B, W, L R C, 2,8V
Shift Right Logical SRL B,W,L R C ZSs,V

3. Each I/O instruction has a Special counterpart used to alert other devices that a Special I/O transaction is occur-
ring. The Special /O mnemonic is S + Regular mnemonic. Refer to section 6.2.8 for further details.

186

[w0 f RHO 07 ALO o] [ro[7 RHO ALO 0]
RRO RRO
| w [AHY ALY o] | wwE Ant ALY 3}
. l Rz [A2 i ALz] e ana [T ALZ]
R [RHI T ALY] l A3 [RH3 ALY]
R RH4 : AL i [R L RHA L4]
RR4 RR4
{ Rs RHS i RLS] | as[RHS) j ALS |
RQ4
{ Re [RHs j RLs i : e[AHE : |
RRS RRS
ar{ AHT : RLY] Lyl RHT RLE RLT |
“'l Re [15 | “'| R8[15 o]
o[] []
Ras
RR10 { e L I RR10 { “mL I
an [] Rt [|
iz l ez] a2 ‘ Riz[]
ra[] l Rria[]
A1 q no1z nal |
R14 NORMAL STACK POINTER (SEG. NO.) (NSPSEG) RRA14 ‘ Ris’
AR R15* RS NORMAL STACK POINTER (NSP)
R1S NORMAL STACK POINTER (OFFSET) (NSPOFF)
28001 G 1 Purpose Regist. 28002 General Purpose Registers
Register Binary Hex
RQO RRO RO RHO 0000 0
Rl RH1 0001 1
RR2 R2 RH2 0010 2
R3 RH3 0011 3
RQ4 RR4 R4 RH4 0100 4
RS RHS 0101 5
RR6 R6 RH6 0110 6
R7 RH7 0111 7
RQ8 RR8 R8 RLO 1000 8
R9 RL1 1001 9
RR10 R10 RL2 1010 A
Rli RL3 1011 B
RQI2 RRI2 R12 RL4 1100 C
RI3 RLS 1101 D
RR14 Rl4 RL6 1110 E
RIS RL7 1111 F
Binary Encoding for Register Fields
28002 28001
Low Low
SYSTEM STACK ADDRESS ADDRESS
PS;NTgﬂ AFTER ol |pENTIFIER SYSTEMSP —| IDENTIFIER
INTERRUPT row OR INTERAUPT Fow
pC PC SEGMENT
;éi,g::s;;f;"_’ PC OFFSET
INTERRUPT SEFont Thap
OR INTERRUPT
|<— 1 WORD —»| <— 1 WORD —»
HIGH HIGH
ADDRESS ADDRESS

Format of Saved Program Status in the System Stack

Ra1Z

187

P CONTROL BITS FLAGS

r PROGRAM COUNTER

NONSEGMENTED

I PROGRAM COUNTER OFFSET

SEGMENTED

Program Status Blocks

BYTE OFFSET
HEX _oECMAL
0 0
8 8
10 16
.
18 24
20 32
28 40
30 48
38 56
ac 60
40 64
44 68

23A

570

PROGRAM STATUS AREA
POINTER (PSAP)

28001 28002
RESERVED
- -
RESERVED
oW EXTENDED Few
INSTRUCTION
SEG ™R pc
PCOFFSET | _
RESERVED
F—rcw | PRIVILEGED Few
INSTRUCTION
SEG TR bc
PCOFFSET | _ _
RESERVED
Tow _SYSTEM Few
= CALL
BE TRAP e
PCOFFSET | _ _ _
RESERVED
Few
= Sy NOT USED
PCOFFSET | __ __ __
RESERVED ow
FCW NON:-MASKABLE
INTERRUPT
SEG oc
PCOFFSET | _
RESERVED cow
FoW NON-VECTORED
SEG INTERRUPT
pC
PCOFFSET | _ _ _ __
RESERVED Fow
FoW
SEG pes
PC OFFSET
SEG
pC;
PCy OFFSET VECTORED 2
SE6 INTERRUPTS o
PC; OFFSET
N N
.
H
H :
SEG
PC,
PCyOFFSET | __ _ _ __ "

Program Status Area

BYTE OFFSET
DECIMAL

o

20

24

28

32

34

540

HEX
0

21Cc

188

Condition Codes

Code Meaning Flag Setting Binary
F Always false* - 0000
Always true - 1000
Z Zero Z=1 0110
NZ Not zero Z2=0 1110
C Carry C=1 0111
NC No carry C=0 1111
PL Plus S=0 1101
MI Minus S=1 0101
NE Not equal Z2=0 1110
EQ Equal Z=1 0110
oV Overflow V=1 0100
NOV No overflow V=0 1100
PE Parity even P=1 0100
PO Parity odd P=0 1100
GE Greater than (SXORV) =0 1001
or equal
LT Less than (SXORV) =1 0001
GT Greater than (ZOR(SXORV)) =0 1010
LE Less than or (ZOR(SXORV)) =1 0010
equal
UGE Unsigned C=0 1111
greater than
or equal
ULT Unsigned C=1 0111
less than
UGT Unsigned ((C=0)AND(Z =0)) =1 1011
greater than
ULE Unsigned less (CORZ) =1 0011

than or equal

This table provides the condition codes and the flag settings they represent.
Note that some of the condition codes correspond to identical flag settings: i.e., Z-EQ, NZ-NE,
NC-UGE, PE-OV, PO-NOV.

*Presently not implemented in PLZ/ASM Z8000 compiler.

7 6 5 4 3 2

I l l I l l 11101 BITS IN A BYTE

15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0

l[[lL[lI[ll[—lll|JsrrsmAwonu

Address n
I l BYTE
PR SO SO S S S
Address n (even) Address n + 1
UPPER BYTE] LOWER BYTE I WORD
Pl S T A S S
Address n Address n + 1
l UPPER WORD/UPPER BYTE l
P e S i s P R S R S S
Address n + 2 Address n + 3 LONG WORD
I LOWER WORDILOWER BYTE l
U S T T T PR N S RN
Add ble Data EIl

189

Z8000 Addressing Modes

Addressing Mode Operand Addressing Operand Value

In the Instruction In a Register In Memory

o The content of the
I REGISTER ADDRESS H ‘OPERAND I register

M
Immediate In the instruction

‘IR
The content of the location
Indieet o ey whose addsess s In the
register
DR
The content of the location
Direct | ADDRESS F { OPERAND whose address is in the
Address instruction
.
X The content of the loca-
REGISTER ADDRESS INDEX tion whose address is the
Index rrrr— preT— address In the Instruction
plus the content of the
working register.
RA The content of the location
whose address is the
Rel I PC VAL ! E content of the program
DISPLACEMENT OPERAND counter, offset by the
Address [orense] displacement in the
Instruction
oo
BA The content of the location
Base REGISTER ADDRESS BASE ADDRESS whose address is the
DISPLACEMENT OPERAND address in the register,
Address offset by the displacement
. in the instruction
‘BX

Pr—— The content of the loca-
Base [exse aooness | tion whose address 1s
Index REGISTER ADDRESS - INDEX -° OPERAND the address in a register
plus the index value in
another register.

*Do not use RO or RRO as indirect, index, or base registers.

Powers of 2 and 16

2= n 162 n
2% 8 2 160]é ?
2 16!
siz 9 » 162 256 2
1024 10 22 16 4096 3
2048 11 2 16¢ 65536 4
400 12 7 169 1048 576 5
8192 13 o 168 16777 216 6
2= 167 268 435 456 7
le3s4 2 - e 4 294 967 296 8
32768 15 2% 160 68 719 476 736 9
6553 16 20 - 160 1099 511 627 776 10
1Blo72 17 24 - 16 17592 186 044 416 1
%2144 18 2¢ - g2 281 474 976 710 656 12
24288 19 22 - ien 4503 599 627 370 496 13
2% - jeu 72057 594 037 927 936 14
1048576 20 - = 1g 1 152 921 504 606 846 976 15
2007152 21
4194304 22 Powers of 16
8388608 23

16 777 216 24

Powers of 2

190

8 7 6 5

4 3 2 1

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 [0 0 0 0 0 0 0 0 [0 0
1 268,435,456 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 536870912 2 33,554,432 2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3 .
4 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 1610612736 6 100,663,296 6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 1,879,048,192 7 117,440,512 7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7‘ 17
8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 2,415919,104 9 150,994,944 9 9,437,184 9 589,824 9 36.864 9 2,304 9 144 9 9
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 3,221,225,472 C 201,326,592 C 12,582912 C 786,432 o] 49,152 [} 3,072 (o} 192 C 12
D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D -3,328 D 208 D 13
E 3,758,096,38¢ E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15
8 7 6 5 4 3 2 1
Hexadecimal and Deci I ger C ion Table
To Convert Hexad 1 to Decimal To Convert Decimal to Hexadecimal

1. Locate the column of decimal numbers corresponding to
the left-most digit or letter of the hexadecimal: select
from this column and record the number that cor-
;‘esponds to the position of the hexadecimal digit or
etter. :

2. Repeat step | for the units (second from the left)
position.

3. Repeat step | for the units (third from the left) position.

4. Add the numbers selected from the table to form the
decimal number.

To convert integer numbers greater than the capacity of
the table, use the techniques below:
Hexadeci

Succesive cumulative mulitplication from left to right,
adding units position.

1 to Decimal

Example: D34)5=3380)¢ Example:
D= 13 Conversion of
x 16 . Hexadecimal Value
208 D
3= +13 1.D 3328
211 .
<16 2.3 48
76 34 _s
4= _+4 4. Decimal 3380
380

1. (a) Select from the tabel the highest decimal number
that is equal to or less than the number to be
converted. -

(b) Record the hexadecimal of the column containing
the selected number. ' .

(c) Subtract the selected decimal from the number to be
converted.

2. Using the remainder from step 1(c) repeat all of step 1

to develop the second position of the hexadecimal (and
a remainder).

3. Using the remainder from step 2 repeat all of step 1 to

develop the units position of the hexadeCtimal.

4. Combine terms to form the hexadecimal number.
D 3,

Divide and collect the remainder in reverse order.

1 to Hexadecimal

Example: 3380)g=D34,4 Example:
16|3380 remainder DC:;:;‘;:;:.

16] 211 M 3380
160_13\3 1.D - 332
D

6>

U'II
I

2.3 -

S
@

l

FEFN

3.4 -

I

£

4. Hexadecima! D3

191

ASCIl Characters

Hexadeci: Ch Meani Hexad Ch
00 NUL NULL Character 40 @
01 SOH Start of Heading 41 A
02 STX Start of Text 42 B
03 ETX End of Text 43 C
— 04 EOT End of Tr 44 D
05 ENQ Enquiry 45 E
06 ACK Acknowledge 46 F
07 BEL Bell 47 G
—08 BS ——— Back e 48 H
09 HT Horizontal Tabulation 49 I
0A LF Line Feed 4A]
0B vT Vertical Tabulation 4B K
—0C FF Form Feed 4C L
oD CR Carriage Return 4D M
OE SO Shift Out 4E N
OF St Shift In 4F o
—10 DLE Data Link Escape 50 - P
11 DC1 Device Control 1 51 Q
12 DC2 Device Control 2 52 R
13 DC3 Device Control 3 53 S
— 14 DC4 Device Control 4 54 T
15 NAK Negative Acknowledge 55 u
16 SYN Synchronous Idle 56 v
17 ETB End of Transmission Block 57 w
—18 CAN Cancel . 58 X
19 EM End of Medium 59 Y
1A SUB Substitute 'SA z
1B ESC Escape 5B [
—IC Fs File Separator 5C \
1D GS Group Separator 5]
1E RS Record Separator SE A
1K Us Unit Separator SF —
—20 SP —— Space 60 '
21 ! X 61 a
2 " 62 b
23 # 63 c
—_—24 $ 64 d
25 % 65 e
26 & 66 f
27 * 67 [°}
—28 (68 h
29) 69 i
24 . 6A j
2B + 6B k
—2C ‘ 6C 1
2D - 6D m
2E . 6E n
2F / 6F o
—30 0 70 p
31 1 -71 q
32 2 72 r
33 3 73 s
—34 4 74 t
35 5 75 u
36 6 ‘76 v
37 7 71 w
—38 8 78 x
39 9 79 Y
3A : 7A z
3B ; 7B {
— 3C < 7C]
3D = D }
3E > 7E ~
3F ? 7F DEL Delete

192

SALES OFFICES

AUSTRALIA

NSW 2027 EDGECLIFF
Suite 211, Edgecliff centre

203-233, New South Head Road

Tel. (61-2) 327.39.22
Telex: 071 126911 TCAUS
Telefax: (61-2) 327.61.76

BRAZIL
05413 SAO PAULO

R. Henrique Schaumann 286-CJ33

Tel. (55-11) 883-5455

Telex: (391)11-37988 "UMBR BR"

Telefax : 11-56651-128-22367

CANADA

BRAMPTON, ONTARIO
341 Main St. North

Tel. (416) 455-0505
Telefax: 416-455-2606

CHINA

BEIJING

Beijing No. 5 Semiconductor
Device Factory

14 Wu Lu Tong Road

Da Shang Mau Wai

Tel. (861) 2024378

Telex 222722 STM CH

DENMARK

2730 HERLEV

Herlev Torv, 4

Tel. (45- 42) 94 85.33
Telex: 3541

Telefax: (45- 42) 948694

FINLAND

LOHJA SF-08150
Karjalankatu, 2
Tel. 12.155.11
Telefax. 12.155.66

FRANCE

94253 GENTILLY Cedex
7 - avenue Gallieni - BP. 93
Tel.: (33-1) 47.40.75.75
Telex: 632570 STMHQ
Telefax: (33-1) 47.40.79.10

67000 STRASBOURG
20, Place des Halles

Tel. (33) 88.75.50.66
Telex: 870001F

Telefax: (33) 88.22.29.32

HONG KONG

WANCHAI

22nd Floor - Hopewell centre
183 Queen’s Road East

Tel. (852-5) 8615788

Telex: 60955 ESGIES HX
Telefax: (852-5) 8656589

INDIA

NEW DELHI 110001
Liason Office

62, Upper Ground Floor
World Trade Centre
Barakhamba Lane

Tel. 3715191

Telex: 031-66816 STMI IN
Telefax: 3715192

ITALY

20090 ASSAGO (MI)

V.le Milanofiori - Strada 4 - Palazzo A/4/A
Tel. (39-2) 89213.1 (10 linee)

Telex: 330131 - 330141 SGSAGR
Telefax: (39-2) 8250449

40033 CASALECCHIO DI RENO (BO)
Via R. Fucini, 12

Tel. (39-51) 591914

Telex: 512442

Telefax: (39-51) 591305

00161 ROMA

Via A. Torlonia, 15

Tel. (39-6) 8443341
Telex: 620653 SGSATE |
Telefax: (39-6) 8444474

JAPAN

TOKYO 108

Nisseki - Takanawa Bld. 4F
2-18-10 Takanawa
Minato-Ku

Tel. (81-3) 280-4121
Telefax: (81-3) 280-4131

KOREA

SEOUL 121

8th floor Shinwon Building
823-14, Yuksam-Dong
Kang -Nam-Gu

Tel. (82 2) 5563-0399
Telex: SGSKOR K29998
Telefax: (82-2) 552-1051

NETHERLANDS

5612 AM EINDHOVEN
Dillenburgstraat 25
Tel.: (31-40) 550015
Telex: 51186

Telefax: (31-40) 528835

SINGAPORE

SINGAPORE 2056

28 Ang Mo Kio - Industrial Park 2
Tel. (65) 4821411

Telex: RS 55201 ESGIES

Telefax: (65) 4820240

SPAIN

08021 BARCEL?
Calle Platon, 6 4" Floor, 5™ Door
Tel. (34-3) 4143300 4143361
Telefax: (34-3) 2021461

28027 MADRID

Calle Albacete, 5

Tel. (34-1) 4051615
Telex: 27060 TCCEE
Telefax: (34-1) 4031134

SWEDEN

S-16421 KISTA
Borgarfjordsgatan, 13 - Box 1094
Tel.: (46-8) 7939220

Telex: 12078 THSWS

Telefax: (46-8) 7504950

SWITZERLAND

1218 GRAND-SACONNEX (GENEVA)
Chemin Francois-Lehmann, 18/A

Tel. (41-22) 7986462

Telex: 415493 STM CH

Telefax: (41-22) 7984869

TAIWAN

TAIPEI

12th Floor

571, Tun Hua South Road
Tel. (886-2) 755-4111
Telex: 10310 ESGIE TW
Telefax: (886-2) 755-4008

UNITED KINGDOM and EIRE

MARLOW, BUCKS -
Planar House, Parkway
Globe Park

Tel.: (44-628) 890800
Telex: 847458

Telefax: (44-628) 890391

SALES OFFICES

US.A.

NORTH & SOUTH AMERICAN
MARKETING HEADQUARTERS
1000 East Bell Road

Phoenix, AZ 85022-2699
(1)-(602) 867-6100

SALES COVERAGE BY STATE

ALABAMA
Huntsville - (205) 533-5995

ARIZONA
Phoenix - (602) 867-6340

CALIFORNIA
Santa Ana - (714) 957-6018
San Jose - (408) 452-8585

COLORADO
Boulder (303) 449-9000

ILLINOIS .
Schaumburg - (708) 517-1890

INDIANA
Kokomo - (317) 459-4700

MASSACHUSETTS
Lincoln - (617) 259-0300

MICHIGAN
Livonia - (313) 462-4030

NEW JERSEY
Voorhees - (609) 772-6222

NEW YORK
Poughkeepsie - (914) 454-8813

NORTH CAROLINA
Raleigh - (919) 787-6555

TEXAS
Carrollton - (214) 466-8844

FOR RF AND MICROWAVE
POWER TRANSISTORS CONTACT
THE FOLLOWING REGIONAL
OFFICES IN THE U.S.A.

NEW JERSEY
Somerset (201) 563-6575

PENNSYLVANIA
Montgomeryville - (215) 362-8500

WEST GERMANY

6000 FRANKFURT
Gutleutstrabe 322

Tel. (49-69) 237492
Telex: 176997 689
Telefax: (49-69) 231957
Teletex: 6997689=STVBP

8011 GRASBRUNN
Bretonischer Ring 4
Neukeferloh Technopark
Tel.: (49-89) 460060
Telex: 528211

Telefax: (49-89) 4605454
Teletex: 897107=STDISTR

3000 HANNOVER 1
Eckenerstrasse 5

Tel. (49-5611) 634191
Telex 175118418
Teletex: 5118418 csfbeh
Telefax: (49-511) 633552

8500 NURNBERG 20
Erlenstegenstrasse, 72
Tel.: (49- 911)597032
Telex: 626243

Telefax: (49-911) 5980701

5200 SIEGBURG
Frankfurter Str. 22a

Tel. (49-: 2241) 660 84-86
Telex: 889510

Telefax: (49-2241) 67584

7000 STUTTGART

Oberer Kirchhaldenweg 135
Tel. (49-711) 692041

Telex: 721718

Telefax: (49-711) 691408

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all informations previously supplied.
SGS-THOMSON Microelectronics eroducts are not authorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectronics.

©'1990 SGS-THOMSON Microelectronics — Printed in Italy — All Rights Reserved
TM-Z8000 is a trademark of Zilog Inc.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A. - West Germany

AGC - GESSATE (MDD

