


Z8000 
MICROPROCESSOR 

FAMILY 
PROGRAMMING, 

1st EDITION 

JUNE 1990 





CONTENTS 

Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Introduction ................................................................ 1 
Functional Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Load and Exchange Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Program Control Instructions . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Bit Manipulation Instructions . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Rotate and Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Block Transfer And String Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Input/Output Instructions ................................................... , . 6 
CPU Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Extended Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Processor Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Condition Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Instruction Interrupts and Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Notation and Binary Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 
Z8000 Instruction Descriptions and Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 

EPA Instruction Templates . .................................................. 169 
Programmers Quick Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 173 



I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 



Instruction Set 
Introduction 

This Manual des.cribes the instruction set of 
the Z8000.· An overview of the instruction set is 
presented first, in which the instructions are 
divided into ten functional groups. The 
instructions in each group are listed, followed 
by a summary description of the instructions. 
Significant characteristics shared by the 
instructions in the group, such as the available 
addreSSing modes, flags affected, or inter· 
ruptibility, are described. Unusual instructions 
or features that are not typical of predecessor 
microprocessors are pointed out. 

Following the functional summary of the 
instruction set, flags and condition codes are 

Functional Summary 

This section presents an overview of the 
Z8000 instructions. For this purpose, the 
instructions may be divided into ten functional 
groups: 

• Load and Exchange 

• Arithmetic 
• Logical 
• Program Control 
• Bit Manipulation 

• Rotate and Shift 
• Block Transfer and String Manipulation 

• Input/Output 
• CPU Control 
• Extended Instructions 

The Load and Exchange group includes.a 
variety of instructions that provide for move· 
ment of data between registers, memory, and 
the program itself (i.e., immediate data). These 
instructions are supported with the widest 
range of addressing modes, including the Base 
(BA) and the Base Index (BX) mode which are 
available here only. None of these instructions 
affect any of the CPU flags. 

The Load and Load Relative instructions 
transfer a byte, word, or long word of data 
from the source operand to the destination 
operand. A special one· word instruction, LDK, 

discussed in relation to the instruction set. This 
is followed. by a section discussing interrupt­
ibility of instructions and a description of 
traps. The last part of this chapter consists.of a 
detailed description of each Z8000 instruction, 
listed in alphabetical order. This section is 
intended to be used as a reference by Z8000 
programmers. The entry for each instructlOn 
includes a description of the instruction, 
addressing modes, assembly language mne· 
monics, instruction formats, execution times' 
and simple examples illustrating the use of the 
instruction. 

is also included to handle the frequent require-
ment for loading a small constant (0 to 15) into 
a register. 

Load and Exchange Instructions. 

I"slruction Operand(s) Name of Instruction 

CLR dst Clear 
CLRB 

EX dst. src Exchange 
EXB 

LD cist, src Load 
LDB 
LDL 

LDA dst, src Load Address 

LDAR cist, src Load Address Relative 

LDK dst, src Load Constant 

LDM dst. STe, nurn Load Multiple 

LDR dst, src Load Relative 
LDRB 
LDRL 

POP dst, src Pop 
POPL 

PUSH dst, src Push 
PUSHL 

These instructions baSically provide one of 
the folloWing three functions: 
• Load a register with data from a register oi­

a memory location. 



Functional Summary (Continued) 

• Load a memory location with data from a 
register. 

• Load a register or a memory location with 
immediate data. 

The memory location is specified using any 
of the addressing modes (JR, DA, X, BA, 
BX, RA). 

The Clear and Clear Byte instructions can 
be used to clear a register or memory location 
to zero. While this is functionally equivalent to 
a Load rrhmediate where the immediate data is 
zero, this operation occurs frequently enough 
to justify a special instruction that is more 
compact and faster. 

The Exchange instructions swap the contents 
of the source and destination operands. 

The Load Multiple instruction provides for 
efficient saving ~nd restoring of registers. This 
can significantly lower the overhead of pro­
cedure cal.ls and contex.t switches such as 
those that occur at interrupts. The instruction 
allows any contiguous group of 1 to 16 regis­
ters to be transferred to or from a memory 
area, which can be designated using the DA, 
IR or X addressmg modes. (RO is considered to 
follow R15, e.g., one may save R9-R15 and 
RO-R3 with a single instruction.) 

Stack operations are supported by the 
PUSH, PUSHL, POP, and POPL instructions. 
Any general-purpose,register (or register pair 
in segmented mode) may be used as the stack 
pointer except RO and RRO. The source 
operand for the Push instructions and the 
destination operand for the Pop instructions 
may be a register or a memory location, 
speCified by the DA, IR, or X addressing 
modes. Immediate data can also be pushed 
onto a stack one word at a time. Note that byte 
operations are ,not supported, and the stack 
pointer register must contain an ·even value 
when a stack instruction is executed. This is 
consistent with the general restriction of using 
even addresses for word and long word 
accesses. 

The Load Address and Load Address Rela­
tive instructions compute the effective address 
for the DA, X, BA, BX and RA modes and 
return the value in a register. They are use-
ful for management of complex datil structures. 

The Arithmetic group consists of instructions 
for performing integer arithmetic. The basic 

2 

instructions use standard two's complement 
binary format and operations. Support is also 
provided for implementation of BCD , 
arithmetic. 

Arithmetic Instructions 
Instruction Operand(s) Name of Instruction 

ADC dst, s~c Add with Carry 
ADCB 

ADD ds!, src Add 
AD DB 
ADDL 

CP dst. src Compare 
CPB 
CPL 

DAB dst Decimal Adjust 

DEC dst, src Decrement 
DECB 

DIV ds!, src Divide 
DIVL 

EXTS dst Extend Sign 
EXTSB 
EXTSL 

INC dst, src Increment 
INCB 

MULT dst. src Multiply 
MULTL 

NEG dst Negate 
NEGB 

SBC dst, src Subtract with Carry 
SBCB 

SUB dst, src Subtract 
SUBB 
SUBL 

Most oj the instructions in this group per­
form an operation between a register operand 
and a second operand designated by any of 
the live,basic addressing modes, and load the 
result into the register. 

The arithmetic instructions in general alter 
the C, Z, Sand PIV flags, which can then be 
tested by subsequent conditional jump instruc­
tions. The PIV flag is used to indicate arith­
metic overflow for these instructions and it is 
referred to as the V (overflow) flag. The byte 
version of these instructions generally alters 
the D and H flags as well. 

The basic integer (binary) operations are 
performed on byte, word or long word oper­
ands, although not all operand sizes are sup­
ported by all instructions. Multiple precision 
operations can be implemented in software 
using the Add with Carry, (ADC, ADCB), 



Functional Summary (Continued) 

Subtract with Carry (SBC, SBCB) and Extend 
Sign (EXTS, EXTSB, EXTSL) instructions. 

BCD operations are not provided directly, 
but can be implemented using a binary addi­
tion (ADC, ADCB) or subtraction (SUBB, 
SBCB) followed by a decimal adjust instruc­
tion (DAB). 

The Multiply and Divide instructions perform 
signed two's complement arithmetic on word or 
long word operands. The Multiply instruction 
(MULT) mutliplies two 16-bit operands and 
produces a 32-bit result, which is loaded into 
'the destination register pair. Similarly, Mult­
iply Long (MULTL) multiplies two 32-bit oper­
ands and produces a 64-bit result, which is 
loaded into the destination register quadruple. 
An overflow condition is never generated by a 
multiply, nor can a true carry be generated. 
The carry flag is used instead'to indicate 
wher\3 the product has too many significant bits 
to be contained entirely in the low-order half 
of the destination. 

The Divide instruction (DIV) divides a 32-bit 
number in the destination register pair by a . 
16-bit source operand and loads a 16-bit quo­
iient into the, low-order half of the destination 
register. A 16-bit remainder is loaded into the 
high-order half. Divide Long (DIVL) operates 
similarly with a 64-bit destination register 
quadruple and a 32-bit source. The ove'rflow 
flag is set if the quotient is bigger than the 
low-order half of the destination,or if the 
source is zero. 
Logical Instructions. , 
IDalruction Operandls) Name of laslrucllon 

AND cist. src And 
ANDB 

COM dst Complement, 
COMB 

OR dst, src Or 
ORB 

TEST dst Test 
TESTB 
TESTL 

XOR dst, src Exclusive Or 
XORB 

The instructions in this group perform logi­
cal operations on each of the bits of the oper­
ands. The operands may be bytes or words; 
logical operations on long word are 'not sup­
ported (except for TEST1) but are easily imple-

men ted with pairs of instructions. 
The two-operand instructions, And (AND, 

ANDB). Or (OR, ORB) and Exclusive-Or 
(XOR,XORB) perform the appropriate logical 
operations on corresponding bits of the desti­
nation register and the source operand, which 
can be designated by any of four basic add­
ressing modes CR, IR, DA, 1M, X). The result is 
loaded into the destination register. 

Complement (COM, COMB) complements 
the b'its of the destination operand. Finally, 
Test (TEST, TESTB, TESTL) performs the OR 
operation between the destination operand and 
zero and sets the flags accordingly. The Com­
plement and Test instructions can use four 
basic addressing modes to specify the 
destination. 

The Logical instructions set the Z and S flags 
based on the result of the operation. The byte 
variants of these instructions also set the Parity 
Flag (P/V) if the parity of the result is even, 
while the word instructions leave this flag 
unchanged. The Hand D flags are not affected 
by these instructions. 

Program Control Instructions. 
laslruction Operandls) Name of Inslruction 

CALL dst Call Procedure 

CALR dst Call Procedure Relative 

DlNZ r. dst Decrement and lump if 
DBlNZ Not Zero 

IRET Interrupt Return 

lP cc. dst lump 

IR cc. dst lump Relative 

RET cc Return from Procedure 

SC src System Call 

This group consists of the instructions that 
affect the Program Counter (PC) and thereby 
control program flow. General-purpose 
registers q.nd memory are not altered except 
for the processor stack pointer and the pro· 
cessor stack, which playa significallt role in 
Procedures and interrupts. (An exception is 
Decrement and Jump ,if Not Zero (DJNZ), which 
uses a register as a loop counter.) The fjags 
are also preserved except for IRET whiCh 
reloads the program status, including the 
flags, from the processor stack. 

The Jump OP) and Jump Relative OR) 
instructions provide a conditional transfer of 
control to a new location if the Processor flags 

3 



Functional Summary (Continued) 

statfsfy the condition specified in the condition 
code field of the instruction. Jump 
Relative isa one· word instruction that will 
jump to any instruction within the range -254 
to + 256 bytes from the current location. Most 
conditiona~ jumps in programs are mac;le to 
locations only a few bytes away; the Jump 
Relative instruction exploits this fact to 
improve code compactness and efficiency. 

Call and Call Relative are used for calling 
procedures; the current contents of the PC are 
pushed onto the processor stack, and the effec· 
tive address indicated by the instruction is 
loaded into the PC. The use of a procedure 
address stack in this manner allows straight­
forward impiementation of nested and recur­
sive procedures. Like Jump Relative, Call 
Relative provides a one~w.ord instruction for 
calling nearby subroutines. However, a much 
larger range, -4092 to + 4098 bytes for CALR 
instruction, is provided since subroutine, calls 
exhibit less locality than normaJ control 
transfers. 

Both Jump and Call instructions are 
aVnilable with the indirect register, indexed 
and relative address modes in addition to the 
direct address mode. These can be useful for 
implementing complex control structures such 
as dispatch tables. 

The Conditional Return instruction is a com­
panion to the Call instruction; if the condition 
specified in the instruction is satisfied, it loads 
the PC from the stack and pops the stack. 

A special instruction, Decrement and Jump 
if Not Zero (DJNZ, DBJNZ), implements the 
control part of the basic PASCAL FOR . loop in 
a one-word instruction. 

System Call (SC) is used for controlled 
access to facilities provided by the operating 
system. It is implemented identically to a trap 
or interrupt: the current program status is 
pushed onto the system processor stack fol­
lowed by the instruction itself, and a new pro­
gram status is loaded from a dedIcated part of 
the Program Status Area. An a·bit immediate 
source field in the instruction is ignored by the 
CPU hardwC\re. It can be retrieved from the 
stack by the software which. handles system 
calls and interpreted as desired, for example 
as an index into a dispatch table to implement 
a call to one of the services provided by the 
operating system. 

4 

Interrupt Return (IRET) is used for returning 
from interrupts and traps, including system 
calls, to the interrupted routines. This is a 
privileged instruction. 

'Bit Manipulation Instructions 
InBlruclIQn Operand(s) Name QI InslructlQD 

BIT dst, src Bit Test 
BITB 

RES dst, src Reset Bit 
RESB 

SET dst, src Set Bit 
SETB 

TSET dst Test and Set 
TSETB 

Tee cc, dst Test condition code 
TeeB 

The instructions in ihis group are useful for 
manipulating individual bits in registers or 
memory. In most computers, this has to be 
done using the logical instructions with suit­
able masks, which is neither natural nor 
efficient. 

The Bit Set (SET, SETB) and Bit Reset (RES, 
RESB) instructions set or clear a single bit in 
the destination byte or word, which can be in 
a register or in a memory location specified by 
any of the five basic addressing modes. The 
particular bit to be manipulated may be spec~­
fied statically by a value (0 to 7 for byte, 0 to 
15 for word) in the instruction itself or it may 
be specified dynamically by the contents of a 
register, which could have been computed by 
previous instructions. In the latter case, the 
destination is restricted to a register. These 
instructions leave the flags unaffected. The 
companion Bit Test instruction (BIT, BITB) 
Similarly tests a specified bit and sets the Z flag 
according to the state of the bit. 

The Test and Set instruction (TSET, TSETB) 
is useful in multiprogramming and multipro­
cessing environments. It can be used for 
implementing synchronization mechanisms 
between processes on the same or differ-
ent CPUs. 

Another instruction in this group, Test Con­
dition Code (TCC, TCCB) sets a bit 'in the des­
tination register based on the state of the flags 
as specified by the condition code in the 
instruction. This may be used to control sub­
sequent operation of the program after the 
flags have been changed by intervening 



Functional Summary (Continued) 

instructions. It may also be used by language 
compilers for generating boolean values. 

Rotate and Shift Instructions. 
Instruction Operand(s) Name of Instruction 

RL dsl, src Rotate Left 
RLB 

RLC dst, s~c Rotate Left through 
RLCB Carry 

RLDB dsL src Rotate Left Digit 

RR dst, src Rotate Right 
RRB 

RRC dsl, src Rotate Right through 
RRCB Carry 

RRDB dst. src Rotate Right Digit 

SDA dsl, src Shift Dynamic Arithmetic 
SDAB 
SDAL 

SOL dsl, src Shift Dynamic Logical 
SDLB 
SDLL 

SLA dsi, src Shift Left Arithmetic 
SLAB 
SLAL 

SLL dsl, src Shift Left Logical 
SLLB 
SLLL 

SRA dst, src Shift Right Arithmetic 
SRAB 
SRAL 

SRL dsi, src Shift Right Logical 
SHLB 
SRLL 

This group contains a rich repertoire of 
instructions for shifting and rotating data 
registers. 

Instructions for shifting arithmetically or 
logically in either direction are available. 
Three operand lengths are supported: 8, 16 
and 32 bits. The amount of the shift, whic;h 
may be any value up to the operand length, 
can be speCified statically by a field in the 
instruction or dynamically by the contents of a 
register. The ability to determine the shift 
amount dynamically is a useful feature, which 
is not available in most minicomputers. 

The rotate instructions will rotate the con· 
tents of a byte or word register in either direc· 
tion by one or two bits; the carry bit can be 
included in the rotation. A pair of digit rota­
tion instructions (RLDB, RRDB) are especially 
useful in manipulating BCD data. 

Block Transfer And String Manipulation 
Instructions. 
Instructlan Operand(.) Name 01 IDBtruction 

CPO dst, src, f, cc Compare and Decrement 
CPDB 

CPDRB dsl, sre, r. cc Compare, Decrement and 
Repeat 

CPI dsl, sre, r, cc Compare and Increment 
CPIB 

CPIR dsl, sre, T, cc Compare, Increment and 
CPIRB Repeat 

CPSD dsl, sre, r, cc Compare String and 
CPSDB Decrement 

CPS DR dst, sre, r ,' cc Compare String, 
CPS ORB Dpcrement and Repeat 

CPSI dsl, sre, r. cc Compare String and 
CPSIB Increment 

CPSIR dsl, sre, r, cc Compare StrIng, 
CPSIRB Increment and Repeat 

LDD dSI, sre, r Load and Decrement 
LDDB 

LDDR dsl, sre, r Load, Decrement and 
LDRB Repeat 

LDI dst, sre, r Load and Increment 
LOIB 

LDIR dsl, sre, r Load, Increment and 
LDIRB Repeat 

TRDB cis!, sre, r Translate and Decrement 

TRDRB dst, src, r Translate, Decrement and 
Repeat 

TRlB dst, src, r Translate a.nd Increment 

TRIRB dst, src, r Translate, Increment and 
Repeat 

TRIDB srcl, src2, r Translate, Test dnd 
Decrement 

TRTDRB srcl, src2, r Translate, Test. 
Decrement and Repeat 

TRTlB src I: src2, r Translate, Test and 
Increment 

TRTIRB src 1, src2, r Translate. Test. Increment 
and Repeat 

This is an exceptionally powerful group of 
instructions that provides a full complement of 
string comparison, string translation and block 
transfer functions. Using these instructions, a 
byte or word block of any. length up to 64K 
bytes can be moved in memory; a byte or word 
string can be searched until a given value is 
found; two byte 'or word strings can be com­
pared; and a byte string can be translated by 
using the value of each byte as the address of 

5 



Functional Summary (Continued) 

its own replacement in a translation table. The 
more complex Translate and Test instructions 
skip over a class of bytes specified by a 
translation table, detecting bytes with values 
of special interest. 

All the operations can proceed through the 
data in either direction. Furthermore, the 
operations may be repeated automatically 
while decrementing a length counter until it is 
zero, or'they may operate on one storage \mit 
per execution with the length counter decre· 
mented by one and"the source and destination 
pointer registers properly 'adjusted. The latter 
form is useful for implementing more domplex 
operations in software by adding other instruc­
tions within a loop containing the block 
instructions. 

Any word register can be used as alength 
counter in most cases. If the execution of the 
instruCtion causes this register to be decre­
mented to zero, the P/V flag is set. The auto­
repeat forms of these instructions always leave 
this flag set. 

The D and H flags are not affected by any of 
these instructions. The C and S flags are 
preserved by all but the compare instructions. 

These instructions use the Indirect Register 
(lR) addressing mode: the source and destina­
tion operands are addressed by the contents of 
general-purpose registers (word registers in 
nonsegmented mode and register p'airs in seg­
mented mode). Note that in the segmented 
mode, only the low-order half of the register 
pair gets incremented or decremented as with 
all address arithmetic in the Z8000. 

The repetitive forms of these instructions are 
interruptible. This is essential since the repeti­
tion count can be as high as 65,536 and the 
instructions can take 9 to 14 cycles for each 
iteration after the first one. The instruction can 
be interrupted after any iteration. The address 
of the instruction itself, rather than the next 
one, is saved on tbe stack, and the contents of 
the operand pointer registers, as well as the 
repetition counter, are such that the instruc­
tion can simply be reissued after returning 
from theinterrrupt without any visible dif­
ference in its effect. 

This group consists of instructions for trans­
ferring a byte, word or block of data between 
peripheral devices and the CPU registers or 
memory. Two separate 110 address spaces with 

6 

16-bit addresses are recognized, a Standard 
110 address space and a Special 110 address 
space. The latter is intended for use with 
special Z8000 F~mily devices, typically the 
Z-MMU. Instructions that operate on the 
Special 1/0 address space are prefixed with 
the word "special." Standard I/O-and Special 
110 instructions generate different codes on 
the CPU status lines. Normal 8-bit peripherals 

Input/Output Instructions. 
IllIIlruction Oporand(a) Name olllllliruclion 

IN dst, src Input 
INB 

IND dst, sre, r Input and Decrement 
INDB 

INDR dst, sre, r Input. Decrement and 
INDRB Repeat 

INI dst, sre, r Input and Increment 
INIB 

INIR dst, sre, r Input, Increment and 
INIRB Repeat 

OTDR dst, sre, r Output, Decrement and 
OTDRB Repeat 

OTIR dst, sre, r Output, Increment and 
OTIRB Repeat 

OUT dst, src Output 
OUTB 

OUTD dst, sre, r Output and Decrement 
OUTDB 

OUTI dst, sre, r Output and Increment 
OUTIB 

SIN dst, src Special Input 
SINB 

SIND dst, sre, r Special Input and 
SINDB Decrement 

SIN DR dst, sre, r Special Input, Decrement 
SINDRB and Repeat 

SIN I dst, sre, r Special Input and 
SINIB Increment 

SINIR dst, sre, r SpecialInput. Increment 
SINIRB and Repeat 

SOTDR dst, sre, r Special Output, 
SOTDRB Decrement and Repeat 

SOTIR dst, sre, r Special Output, 
SOTIRB Increment and Repeat 

SOUT dst, src Special Output 
SOUTB 

SOUTD dst, sre, r Special Output and 
SOUTDB Decrement 

SOUTI dst, sre, r Special Output and 
SOUTIB Increment 



Functional Summary (Continued) 

are connected to bus lines ADo-AD7' Standard 
1/0 byte instructions use odd addresses only. 
Special 8-bit peripherals such as the MMU, 
which are used with special 1/0 instructions, 
are connected to bus lines ADa-AD IS' Special 
1/0 byte instructions use even addresses only. 

The instructions for transferring a single 
byte or word (IN, INB, OUT, OUTB, SIN, 
SINB, SOUT, SOUTB) can transfer data 
between any general-purpose register and any 
port in either address space. For the Standard 
I/O instructions, the port number may be 
specified statically in the instruction or dynam­
ically by the contents of the CPU register. For 
the Special 1/0 instructions the port number is 
specified statically. 

The remaining instructions in this group 
form a powerful and complete complement of 
instructions for transferring blocks of data 
between 1/0 ports and memory. The operation 
of these instructions is very similar to that of 
the block move instructions described earlier, 
with the exception that one operand is always 
an 1/0 port which remains unchanged as the 
address of the other operand (a memory loca­
tion) is incremented or decremented. These 
instructions are. also interruptible. 

CPU Control Instructions. 
Instruction 

COMFLG 

Dl 

El 

HALT 

LDCTL 
LDCTLB 

LDPS 

MBIT 

MREQ 

MRES 

MSET 

Nap 

RESFLG 

SETFLG 

Operand{s) 

flag 

int 

int 

dst, src 

sre 

dst 

flag 

flag 

Name 01 Instruction 

Complement Flag 

Disable Interrupt 

Enable Interrupt 

Halt 

Load Control Register 

Load Program Status 

Multi·Miero Bit Test 

Multi·Miero Request 

Multi· Micro 'Reset 

Multi·Micro Set 

No Operation 

Reset Flag 

Set Flag 

All 1/0 instructions are privileged, i.e. they 
can only be executed in system mode. The 
single bytelword 1/0 instructions don't alter 
any flags. The block 1/0 instructions, includ­
ing the single iteration variants, alter the 2 and 
P/V flags. The latter is set when the repetition 
counter is decremented to zero. 

The instructions in. this group relate to the 
CPU control and status registers (FCW,. PSAP, 
REFRESH, etc.), or perform other unusual 
functions that do not fit into any of the other 
groups, such as instructions that support multi­
microprocessor operation. Most of these 
instructions are privileged, with the exception 
of NOP and the instructions operating on the 
flags (SETFLG, RESFLG, COMFLG, 
LDCTLB). 

Extended Instructions. The 28000 
architecture includes a powerful mechanism 
for extending the basic instruction set through 
the use of external devices known as Extended 
Processing Units (EPUs). A group of 
six opcodes, OE, OF, 4E, 4F, 8E and 8F (in 
hexadecimal), is dedicated for the implemen­
tation of extended instructions using this facil­
ity. The five basic addressing modes (R, IR, 
DA, 1M and X) can be used by extended 
instructions for accessing data for the EPUs. 

There are four types of extended instructions 
in the 28000 CPU instruction repertoire: EPU 
internal operations; data transfers between 
memory and EPU; data transfers between EPU 
and CPU; and data transfers between EPU flag 
registers and CPU flag and control word. The 
last type is useful when the program must 
branch based on conditions determined by the 
EPU. The action taken by the CPU upon 
encountering extended instructions is depen­
dent upon the EPA control bit in the CPU's 
FCW. When this bit is set, it indicates that the 
system configuration includes EPUs; therefore, 
the instruction is executed. If this bit is clear, 
the CPU traps (extendEld instruction trap) so 
that a trap handler in software can emulate the 
desired operation. ' 

7 



Processor Flags 

The processor flags are a part of the pro­
gram status. They provide a 
link between sequentially executed instructions 
in the sense that the result of executing one 
instruction may alter the flags, and the 
resulting value of the flags may be used to 
determine the operation of a subsequent 
instruction, typically a conditional jump 
instruction. An example is a Test followed by a 
Conditional Jump: 

TEST Rl 
JR Z, DONE 

DONE: 

!sets Z flag if Rl = O! 
!go to DONE if Z flag is 
set! 

The program branches to DONE if the TEST 
sets the Z flag, i.e., if Rl contains zero. 

The program status has six flags for the use 
of the programmer and the Z8000 processor: 

• Carry (C) 
&I Zero (Z) 

• Sign (S) 
• Parity/Overflow (PIV) 

• Decimal Adjust (D) 

• Half Carry (H) 
The flags are.modified by many instructions, 

including the arithmetic and logical 
instr.uctions. 

Appendix C lists the instructions and the 
flags they affect. In addition,there are Z8000 
CPU control instructions which allow the pro­
grammer to set, reset (clear). or complement 
any or all of the first four flags. The Half-Carry 
and Decimal-Adjust flags are used by the 
Z8000 processor for BCD arithmetic correc­
tions. They are not used explicitly by the pro- . 
grammer. 

The FLAGS register can be separately 
loaded by the Load Control Register (LDCTLB) 
instruction without disturbing the control bits 
in the other byte of the FCW. The contents of 
the flag register may also be saved in a reg­
ister or memory. 

The Carry (C) flag, when set, generally indi­
cates a carry out of or a borrow into the high· 
order bit position of a register being used as 
an accumulator. For example, adding the 8-bit 

8 

numbers 225 and 64 causes a carry out of bit 7 
and sets the Carry flag: 

Bit 
7 6 5 , 3 2 0 

225 I I 0 0 0 0 I 
+ 64 0 0 0 0 0 0 0 

289 t~ 0 0 0 0 0 
Carry flag 

The Carry flag plays an important role in the 
implementation of multiple-precision arithmetic 
(see the ADC, SBC instructions). It is also 
involved in the Rotate Left Through Carry 
(RLC) and Rotate Right Through Carry (RRC) 
instructions. One of these instructions is used 
to implement rotation or shifting of long strings 
of bits. 

The Zero (Z) flag is set when the result reg­
ister's contents are zero follOWing certain 
operations. This is often useful for deter­
mining when a counter reaches zero. In addi­
tion, the block compare instructions use the Z 
flag to indicate when the specified comparison 
condition is satisfied. 

The Sign (S) flag is set to one wheri the most 
significant bit of a result register contains a 
one (a. negative number in two's complement 
notation) following certain operations. 

The Overflow (V) flag, when set, indicates 
that a two's complement number in a result 
register has exceeded the largest number or is 
less than the smallest number that can be 
represented in a two's complement notation. 
This flag is set as the result of an arithmetic 
operation. Consider the follOWing example: 

Bit 
765' 3 2 0 

120 
+ 105 

225 

o 
o 

c; 
o 
o 

o 
Overflow flag 

o 

o 
o 

o 

o 
o 

o 

The result in this case (-95 in two's comple­
ment notation) is incorrect, thus the overflow 
flag would be set. 

The same bit acts as a Parity (P) flag follow­
ing logical instructions on byte operands. The 
number of one bits in the register is counted 
and the flag is set if the total is even (that is, 
P = 1). If the total is odd (P = 0), the flag is 
reset. This flag is often referred to as the 
PIV flag. 



Processor Flag. (Continued) 

The Block Move and String instructions and 
the Block I/O instructions use the PlY flag to 
indicate the repetition counter has decre­
mented to O. 

The Decimal-Adjust (D) flag is used for BCD 
arithmetic. Since the algorithm for correcting 
BCD operations is different for addition and 
subtraction, this flag is used to record whether 
an add or subtract instruction was executed so 
that the subsequent Decimal Adjust (DAB) 
instruction can perform its function correctly 
(See the DAB instruction for further discussion 

Condition Codes 

The first four flags, C, Z, S, and P/V, are 
used to control the operation of certain "condi­
tional" instructions such as the Conditional 
Jump. The operation of these instructions is a 
function of whether a specified boolean condi­
tion on the four flags is satisfied or not. It 
would take 16 bits to specify any of the 65,536 
(2 16) boolean functions of the four flags. Since 
only a very small fraction of these are general­
ly of interest, this procedure would be very 
wasteful. Sixteen functions of the flag settings 
found to be frequently useful are encoded in a 
4-bit field called the condition code, which 

Instruction Interrupts and Traps 

This section looks at the relation-ship between in­
structions ans interrupts. 

When the CPU receives an interrupt 
request, and it is enabled for interrupts of that 
class, the interrupt is normally processed at 
the end of the current instruction. However, 
certain instructions which might take a long 
time to complete are designed to be interrupt­
ible so as to minimize the length of time it 
takes the CPU to respond to an interrupt. 
These are the iterative versions of the String 
and Block instructions and the Block I/O 
instruction. If an interrupt request is received 
during one of these interruptible instructions, 
the instruction is suspended after the current 
iteration. The address of the instruction itself, 
rather than the address of the following 
instruction, is saved on the stack, so that the 
same instruction is executed again when the 
interrupt handler executes an IRET. The con-

on the use of this flag). 
The Half-Carry (H) flag indicates a carry out 

of bit 3 or a borrow into bit 3 as the result of 
adding or subtracting bytes containing two 
BCD digits each. This flag is used by the DAB 
instruction to convert the binary result of a 
previous decimal addition or subtraction into 
the correct decimal (BCD) result. 

Neither the Decimal-Adjust nor the Half­
Carry flag is normally acces.sed by the pro­
grammer. 

forms a part of all conditional instructions. 
The condition codes and the flag settings 

they represent are listed in Section 6.6. 
Although there are sixteen unique condition 

codes, the assembler recognizes more than six­
teen mnemonics for the conditional codes. 
Some of the flag settings have more than one 
meaning for the programmer, depending on 
the context (PE & OV, Z & EQ, C & ULT, 
etc.). Program clarity is enhanced by having 
separate mnemonics for the same binary value 
of the condition codes in these cases. 

tents of the repetition counter and the registers 
which index into the block operands are such 
that after each iteration when the instruction is 
reissued upon returning from an interrupt, the 
effect is the same as if the instruction were not 
interrupted. This assumes, of course, the inter­
rupt handler preserved the registers, which is 
a general requirement on interrupt. handlers. 

The longest noninterruptible instruction that 
can be used in normal mode is Divide Long 
(749 cycles in the worst case). Multi-Micro­
Request, a privileged instruction, can take 
longer depending on the contents of the des­
tination register. 

Traps are synchronous events that result 
from the execution of an instruction. The 
action of the CPU in response to a trap condi­
tion is similar to the case of an interrupt (see 
Section 7). Traps are non-maskable. 

9 



Instruction Interrupts and Traps (Continued) 

The 28000 CPUs implement four kinds of 
traps: 

• Extended Instruction 

• Privileged Instruction in normal mode 

• Segmentation violation 

• System Call 

The Extended Instruction trap occurs when 
an Extended Instruction is encountered, but 
the Extended Processor Architecture Facility is 
disabled, i.e., the EPA bit in the FCW is a 
zero. This allows the same software to be run 
on 28000 system configurations with or without 
EPUs. On systems without EPUs, the desired 
extended instructions can be emulated by soft­
y.rare which is invoked by the Extended 
Instruction trap. 

Notation and Binary Encoding 

The rest of this chapter consists of detailed 
descriptions of each 'instruction, listed in 
alphabetical order. This section describes the 
notational conventions used in the instruction 
descriptions and the binary encoding for some 
of the common instruction fields (e.g., reqister 
designation fields). 

The description of an instruction begins with 
the instruction mnemonic and instruction name 
in the top part of the page. Privileged instruc­
'tions are also identified at the top. 

The assembler language syntax is then given 
in a single generic form that covers all the 
variants of the instruction, along with a list of 
applicable addressing modes. 

Example: 

AND dst, src 
ANDB 

ds!: R 
src: R, 1M, IR, DA, X 

The operation of the instruction is presented 
next, followed by a detailed discussion of the 
instruction. 

The next part specifies the effect of the 
instruction on the processor flags. This is 
followed by a table that presents all the 
variants of the instructi~n for each applicable 
addreSSing mode and operand size. For each 
of these variants, the following information is 
prOVided: 

A. Assembler Language Syntax. The syntax 
is shown for each applicable operand width 

10 

The privileged instruction trap serves to pro­
tect the integrity of a system from erroneous or 
unauthorized actions of arbitrary processes. 
Certain instructions, called privileged instruc­
tions, can only be executed in system mode. 
An attempt to execute one of these instructions 
in normal mode causes a privileged instruction 
trap. All the 1/0 instructions and most of the 
instructions that operate on the FCW are 
privileged, as are instructions like HALT 
and IRET. 

The System Call instruction always causes a 
trap. It is used to transfer control to system 
mode software in a controlled way, typically to 
request supervisor services. 

(byte, word or long). The invariant part of the 
syntax is given in UPPER CASE and must 
appear as shown. Lower case characters repre­
sent the variable part of the syntax, for which 
suitable values are to be substituted. The syn­
tax shown is for the most basic form of the 
instruction recognized by the assembler. For 
example, 

ADD Rd,#data 

represents a statement of the form 
ADD R3,#3S. The assembler will also accept 
variations like ADD TOTAL, #NEW-DELTA 
where TOTAL, NEW and DELTA have been 
suitably defined. 

The follOWing notation is used for register 
operands: 

Rd, Rs, etc.: 

Rbd Rbs: 

RRd RRs: 

ROd: 

a word register in the 
range RO-RIS 
a byte register RHn or 
RLn where n = ° - 7 
a register pair RRO, RR2, 
"'. RR14 
a register quadruple 
ROO, R04, R08 or ROl2 

The "s" or "d" represents a source,or destina­
tion operand, Address registers used in 
Indirect, Base and Base Index addressing 
modes represent word registers in nonseg­
men ted .mode and register pairs in segmented 
mode. A one-word register used in segmented 



Notation and Binary Encoding (Continued) 

mode is flagg:ed and a footnote explains the 
situation. 

B. Instruction Format. The binary encoding of 
the instruction is given in each case for both 
the nonsegmented and segmented modes. 
Where applicable, both the short and long 
forms of the segmented version are given (SS 
and SL). 

The instruction formats for byte and word 
versions of an instruction are usually com­
bined. A single bit, labeled "w," distinguishes 
them: a one indicates a word instruction, while 
a zero indicates a byte instruction. 

Fields specifying register operands are 
identified with the same symbols (Rs, RRd, 
etc.) as in Assembler Language Syntax. In 
some ca$es, only nonzero values are permitted 
for certain regist~rs, such as index registers. 
This is indicated by a notation of the form 
"RS "* 0." 

The binary encoding for register fields is as 
follows: 

RogiDter 

RQO RRO RO 
RI 

RR2 R2 
R3 

RHO 
RHI 
RH2 
RH3 

Binary 

0000 
0001 
0010 
0011 

Register Binary 

RQ4 RR4 R4 RH4 0100 
R5 RH5 0101 

RR6 R6 RH6 0110 
R7 RH7 0111 

RQ8 RR8 R8 RLO 1000 
R9 RLI 1001 

RRIO RIO RL2 1010 
RII RL3 1011 

RQI2 RRI2 RI2 RL4 1100 
RI3 RL5 1101 

RRI4 RI4 RL6 1110 
RI5 RL7 1111 

For easy cross-references, the same symbols 
are used in the Assembler Language Syntax 
and the instruction format. In the case of ad­
dresses, the instruction format in segmented 
mode uses "segment" and "offset" to corres­
pond to "address," while the instruction format 
contains "displacement," indicating that the 
assembler has computed the displacement and 
inserted it as indicated. 

A condition code is indicated by "cc" in 
both the Assembler Language Syntax and the 
instruction formats. The condition codes, the 
flag settings they represent, and the binary 
encoding in the instruction are as follows: 

11 



Notation and Binary Encoding (Continued) 

Code Meaning Flag Setting Binary 

F Always false 0000 
Always true 1000 

Z Zero Z; I 0110 
NZ Not zero Z ; 0 1110 
C Carry C; I 0111 
NC No carry C ; 0 1111 
PL Plus S ; 0 1101 
MI Minus S ; I 0101 
NE Not equal Z ; 0 1110 
EQ Equal Z; I 0110 
OV Overflow V; I 0100 
NOV No overflow V; 0 1100 
PE Parity even P ; I 0100 
PO Parity odd P ; 0 1100 
GE Greater than (S XOR V) ; 0 1001 

or equal 
LT Less than (S XOR V) ; I 0001 
GT Greater than (Z OR (S XOR V» ; 0 1010 
LE Le;s than or (Z OR (S XOR V» ; I 0010 

equal 
,UGE Unsigned C; 0 1111 

greater than 
or equal 

ULT Unsigned C; I 0111 
less than 

UGT Unsigned ((C ;0) AND (Z ; 0» ; 1011 
greater than 

ULE Unsigned less (C OR Z) ; I 0011 
than or equal 

Note that some of the condition codes correspond to identical flag settings: Le., Z·EQ, NZ-NE, 
NC-UGE, PE-OV, PO-NOV, 

C. Cycles. This line gives the execution time 
of the instructions in CPY cycles. 

12 

D. Example. A short assembly language 
example is given showing the use of the 
instruction. 



zaooo 
Instruction 
Descriptions 
and Formats 

Operation: 

Flags: 

ADC ds!, src 
ADCB 

dst -+- dst + src + c 

dst: R 
src: R 

ADC 
Add With Carry 

the source operand, along with the setting of the carry flag, is added to the destina­
tion operand and the sum is stored in the destination. The contents of the source are 
not affected. Two's complement addition is performed. In multiple precision arith­
metic, this instruction permits the carry from the addition of low-order operands to 
be carried into the addition of high-order operands. 

c: Set if thereds a carry from the most significant bit of the result; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign 

and the result is of the opposite sign; cleared otherwise 
D: ADC-unaffected; ADCB-cleared 
H: ADC-unaffected; ADCB-set if there is a carry from the most significant bit of 

the low-order four bits of the result; cleared otherwise 

Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode 

R: 

Example: 

Syntax Instruction ForlJlat Cycles Instruction Format Cycles 

ADC Rd, Rs 1101110101wi Rs I Rd I 5 1101110101wi Rs I Rd I 5 
ADCB Rbd. Rbs 

Long addition can be done with the following instruction sequence, assuming RO, Rl 
contain one operand and R2, R3 contain the other operand: 

ADD RI,R3 !add low-order words! 
ADC RO,R2 !add carry and high-order words! 

If RO contains %0000, Rl contains %FFFF, R2 contains %4320 and R3 contains 
%0001, then the above two instructions leave the value %4321 in RO and %0000 
in Rl. 

13 



ADD 
Add 

Operation: 

Flags: 

Source 
Addressing 

Mode 

R: 

1M: 

IR: 

14 

ADD dst, src 
ADDB 
ADDL 

dst .. - dst + src 

dst: R 
src: R, 1M, JR, DA, X 

The source operand is added to the destination operand and the sum is stored in the 
destination. The contents of the source are not affected. Two's complement addition 
is performed. 

c: Set if there is a carry from the most significant bit of the result; cleared otherwise 
Z: Set if the resu It is zero; cleared otherwise 
S: Set if the result is negat£ve; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign 

and the result is of the opposite sign; cleared otherwise 
D: ADD, ADDL-unaffec!ed; ADDB-cleared 
H: ADD, ADDL-unaffected; ADDB-set if there is a carry from the most significant 

bit of the low-order four bits of the result; cleared otherwise 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

ADD Rd, Rs 
11OIooooolwi I 1 11OIooooolwi 1 ADDB Rbd, Rbs A. Ad 4 As I Ad 4 

ADDL RRd, RRs 11010101101 AAs I AAd I 8 l' 0 I 010110 I AA. I AAd I 8 

ADD Rd, #data 001000001 j 0000 j Ad 001000001 10000 I Ad 
7 7 

data data 

ADDB Rbd, #data 001000000 10000 I Ad 001000000 10000 I Ad 
7 7 

data I data data I data 

ADDL RRd, #data 001010110100001 AAd 001 01011 0 I 0000 I AAd 

31 data (high) 16 14 31 data (high) 16 14 

15 data (low) 0 15 data (low) 0 

ADD Rd,@Rsl loolooooolwi As",O I Ad I 7 loolooooolwi As",O I Ad I 7 
ADDB Rbd, @Rsl 

ADDL RRd, @Rsl 1001010110 I A.",O I AAd I 14 100101011 0 I A.",O I AAd I 14 



Source 
Addressing 

Mode 

DA: 

X: 

Example: 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

ADD Rd, address 101100000lwl00001 Rd 1 
ADDB Rbd, address 

1 1 
9 

address 

ADDL RRd, address 1011 0101 10 1 0000 1 RRd 1 
15 

1 address 1 

ADD Rd, addr(Rs) 
101100000lwi R."O 1 Rd 1 

ADDB Rbd, addr(Rs) 10 
1 address 1 

ADDL RRd, addr(Rs) 
1011010110IR.,,01 RRd 1 

16 
I address 1 

A.DD 
Add 

Segmented Mode 

Instruction Format Cycles 

55 01Looooolwi 0000 1 Rd 

o I segment I offset 
10 

01100000lwl 0000 1 Rd 

5L 11 segment I 0 a 0 0 0 0 0 0 12 

offset 

o 11 0 1 0 11 0 1 0 0 0 0 j RRd 
55 16 

o I segment I offset 

o 11 0 1 0 1 1 0 1 0000 1 RRd 

5L '!l segment J 00000000 18 
offset 

55 01100000lwi R .. O 1 Rd 
10 

o I segment I offset I 

o1loo,ooolwl RS*O! Rd 

5L 11 segment I ooooo~oo 13 

offset 

55 
011010110 I R."O I RRd 

16 
o I segment I offset 

011010110 I Rs*O I RRd 

5L 1 I segment I 0 a a a 0 0 0 0 19 

offsot 

ADD R2, AUGEND !augend A located at %1254! 

Before instruction execution: 

Memory R2 

1252~ 
1254 0 6 4 4 

1256 

~ 

After instruction execution: 

Momory R2 

1252~ 
1254 0 6 4 4 

1256 

~ 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

15 



AND 
And 

Operation: 

Flags: 

Source 
Addres~ing 

Mode 

R: 

1M: 

IR: 

DA: 

X: 

16 

AND dst, src 
ANDB 

dst 4- dst AND src 

dst: R 
src: R, 1M, JR, DA, X 

A logical AND operation is performed between the corresponding bits of the source 
and destination operands, and the result is stored in the destinatiori. A one bit is 
stored wherever the corresponding bits in the two operands are both ones; otherwise 
a zero bit is stored. The source contents are not affected. 

C:Unaffecled 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
P: AND - unaffected; ANDB - set if parity of the result is even; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler. Language 

Syntax Instruction Format Cycles Instruc\ic:in Format Cycles 

I Rs II 1 AND Rd, Rs l'OIOOO"lwl Rs I Rd 4 1101000"1wi Rd 4 
ANDB Rbd. Rs 

AND Rd, #dala 1001000"'100.001 Rd I 0010001111 0000 f Rd r 
7 7 

I dala I data I 
ANDB Rbd, Udala 1001000110100001 Rd 1 

7 
001000110100001 Rd 1 

I data I data I data I data I 
AND Rd, @Rsl 1001000 11[w1 RHO I Rd 1 7 10010001+v1 RHO I Rd 1 7 
ANDB Rbd. @Rsl 

AND Rd, address 10'1000"lwI00001 Rd J SS 0'1000"IWI00001 Rd I 
ANDB Rbd. address 9 10 

I address I o I segment I offset I 

0'1000"lwI00001 Rd 
SL '1 segment 10000 0000 12 

offset 

AND. Rd. addrCRs) 1011000 1' lwl RHO I Rd 1 01100011lwl Rs-O I Rd I 
ANDB Rbd, addrCRs) 

1 1 
10 SS 

I 
10 

address o I segment I offs~t 

011000"lwl RHO I Rd 
SL 11' segment 10000 0000 13 

offset 



AND 
And 

Example: AN DB RL3, # %CE 

Before instruction execution: 
RL3 Flags 

1 1 1 0 0.1 1 1 CZSP/VDH 

czspdh 

After instruction execution: 

RL3 Flags 

1000110 CZSPNDH 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

17 



BIT 
Bit Test 

Operation: 

Flags: 

BIT dst, src 
BITB 

Z +- NOT dst (src) 

dst: R, IR, DA, X 
src: 1M 

or 

dst: R 
src: R 

The specified bit within the destination operand is tested, and the Z flag is set to one 
if the specified bit is zero; otherwise the Z flag is cleared to zero. The contents of the 
destination are not affected. The bit number (the source) can be specified statically 
as an immediate value, or dynamically as a word register whose contents are the bit 
number. In the dynamic case, the destination operand must be a register, and the 
source operand must be RO through R7 for BITB, or RO through RI5 for BIT. The bit 
number is a value from 0 to 7 for BITB, or 0 to 15 for BIT, with 0 indicating the least 
significant bit. Note that only the lower four bits of the source operand are used to 
specify the bit number for BIT, while only the lower three bits of the source operand 
are used for BITB. 

c: Unaff~cted 
Z: Set if specified bit is zero; cleared otherwise 
S: Unaffected 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Bit Test Static 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

R: BIT Rd, b 110110011jwi Rd 1 b 1 4 11011001+1 Rd 1 b 1 4 
BITB Rbd, b 

IR: BIT @Rd1, b 100 ! 1 00 1 llw1 Rd * 0 1 b 1 8 100!1OO1 +1 Rd*O 1 b 1 8 
BITB @Rd 1, b 

DA: BIT address, b l0110011[Wjooooj b I 5501Jl00ll1wJooooL b J BITB address, b 10 11 
I address I o! segment I offset I 

0111 00111 wl 0000 I b 

5L 11 ~egment JO 000 0000 13 

offset 

18 



BIT 
Bit Test 

Bit Test Static (Continued) 

Source 
Addressing 

Mode 

X: 

R: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

BIT addr(Rd). b 
BITB addr(Rd), b 1011100111wl Rd*O 1 b 1 11 SS 01110011Iwl·Rd*01 b 

1 address 1 o I segment I offset 

011100111wl Rd*O 1 b 

SL 11 segment I 0 a 0 0 0000 

offset 

BIT Rd, Rs 1001100111Wl00001 Rs 1 10 1001100111wl0000l Rs I 
BITB Rbd, Rs lO 0 0 oj Rd 1 0000 1 00001 lOOOOJ Rd 10000100001 

If register RH2 contains %B2 (10110010), the instruction 

BITB RH2, #0 

will leave the Z flag set to 1. 

Note 1: Word register In.nonsegmented mode, register pair in segmented mode. 

Cycles 

11 

14 

10 

19 



CALL 
Call 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

1ft: 

DA: 

X: 

Example: 

20 

CALL dst 

Nonsegmented 
SP_SP-2 
C ..... SP-PC 
PC - dst 

dst: .IR, DA, X 

Segmented 
SP _ SP - 4 
@SP 4- PC 
PC 4- dst 

The current contents of the program countel' (PC) are pushed onto the top of the 
processor stack. The stack poil)ter used is Rl5 in nonsegmenteq mode, or RRl4 in 
segmented mode. (The program counter value used is the address of the first instruc­
tion byte following the CALL instruction.) The speCified destination address is then 
loaded into the PC and points to the first inst~uction of the called procedure. . 
At the end of the procedure a 'RET instruction 9an be used to ,elturn to original pro­
gram. RET pops the top of the processor stack back into the PC. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

CALLQ'Rd! 
1001011111 I Rd 

10000 1 10 1001011111 I Rd 100'00 I 15 

CALL address 
101101111110000100001 01J011111 LooooJoooo 

1 1 
12 55 18 

address o I segment I offset 

0110111111000010000 

5l 11 segment 10000 0000 20 

ollset 

CALL addr(Rd) 
1011 011111 1 Rd;<O 100001 55 01 1 0.11111 I Rs;<O 10000 

I 1 
13 18 

address o 1 segment I offset 

0110111111 Rs;<O 10000 

5l 1J segment L 0000 0000 21 
offset 

In nonsegmented mode, if the contents of the program counter are % 1000 and the 
contents of the stack pointer (R15) are %3002, the instruction 

CALL %2520 

causes the stack pointer to be decremented to %3000, the value %1004 (the address 
follOWing the CALL instruction with direct address mode specified) to be loaded into 
the word at location %3000, and the program counter to be lOaded with the value 
%2520. The program counter now points to the address of the first instruction in the 
procedure to be executed. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

RA: 

Example: 

CALR dst 

Nonsegmented 
SP +- SP - 2 
@SP +- PC 

dst: RA 

PC +- PC - (2 X displacement) 

Segmented 
SP +- SP - 4 
@SP +- PC 

CALR 
Call Relative 

PC +- PC - (2 x displacement) 

The current contents of the program counter (PC) are pushed onto the top of the 
processor stack. The stack pointer used is R15 if nonsegmented, or RRI4 if 
segmented. (The program counter value used is the address of the first instruction 
byte following the CALR instruction.) The destination address is calculated and then 
loaded into the PC and points to the first instruction of a procedure. 

At the end of the procedure a RET instruction can be used to return to the original 
program flow. RET pops the top of the processor stack back into the PC. 

The destination address is calculated by doubling the displacement in .the 
instruction, then subtracting this value from the current value of the PC to derive the 
destination address. The displacement is a 12-bit signed value in the range -2048 to 
+2047. Thus, the destination address must be in the range -4092 to +4098 bytes 
from the start of the CALR instruction. In segmented mode, the PC segment number 
is not affected. The assembler automatically calculates the displacement by 
subtracting the PC value of the following instruction from the address given by the 
programmer. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

CALR address 
11101 1 

displacement I 10 
11101 1 

displacement I 15 

In nonsegmented mode, if the contents of the program counter are %1000 and the 
contents of the stack pointer (R15) are %3002, the instruction 

CALR PROC 

causes the stack pointer to be decremented to %3000, the value % 1004 (the address 
following the CALR instruction) to be loaded into the word location %3000, and the 
program counter to be loaded with the address of the first instruction in procedure 
PROC. 

21 



CLR 
Clear 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

IR: 

DA: 

X: 

Example: 

22 

CLR dst 
CLRB 

dst: R, IR, DA, X 

dst +- 0 

The destination is cleared to zero. 

No flags affected. 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

CLR Rd 
11 0 1001 10 1 IN I Rd " 011 000 I 7 

CLRB Rbd 

CLR @Rd( 
100 100 1 1 0 I wi Rd " 011 000 I 8 CLRB @Rdl 

CLR address 
101100110 I w I 0000 11 000 I 

CLRB address 11 
I address I 

CLR addr(Rd) 
CLRB addr(Rd) 10110011 01 w I Rd"O 11000 I 

12 I address I 

Segmented Mode 

Instruction Format 

11 olOOllOl w lRd" 011 0'00 I 

10010011 olwlRd" 011 000 I 
01100110lwlooooll000 

55 
oj segment I offset 

011001 10 I w I 0000 11 000 

5L 1 I segment I 0 a 0 0 0000 

offset 

55 
01100110lwl Rd*011000 

o I segment I allset 

01100110lwl Rd*O 11000 

5L 11 segment 10000 0000 

offset 

If the word at location %ABBA contains 13, the statement 

CLR %ABBA 

will leave the value 0 in the word at location %ABBA. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Cycles 

7 

8 

12 

14 

12 

15 



Operation: 

Flags: 

Destination 
AddreSSing 

Mode 

8: 

18: 

DA: 

X: 

Example: 

COM 
Complement 

COM dst 
COMB 

(dst _ NOT dst) 

dst: R, IR, DA, X 

The contents of the destination are complemented (one's complement); all one bits 
are changed to zero, and vice-versa. 

C: Unaffected 
Z: Set if the result 'is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
P: COM-unaffected; COMB-set if parity of the result is even; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

COMRd 11010011 olwlRd ¢ 01 0000 I 7 11010011 olwlRd ¢ 01 0000 I 
COMB Rbd 

80M e'Rdl IQ OI0011OI wiRd ¢ 010000 I 12 10010011 0 I w I Rd ¢ 0 I 0000 I 
COMB e'Rd1 

COM address 101100110lwl00ool00001 01100 110I wi 0000 10000 I 
COMB address 

I I 
15 55 

address o I segmant I offset I 

01!0011OI wlooooI00.00 
5L 11 .egment 10000 0000 

olfsa. 

COM addr(Rd) 101100110lwi Rd¢olooool 55 011001 10lwl Rd¢oloooo! 
COMB addr(Rd) 

I I 
16 

address a I segment I olfset I 

01100110lwl Rd¢O 10000 

5L 11 segment 10000 0000 
offset 

If register RI contains %2552 (0010010101010010). the statement 

COM Rl 

will leave the value %DAAD (l10110101010110t) in Rl. 

Note 1: Word register In nonsegmenled mode. regIster pdlr In segmented mocle. 

7 

12 

16 

18 

16 

19 

23 



COMFLG 
Complement Flag 

Operation: 

Flags: 

Example: 

24 

COMFLG flag Flag: C, Z, S, p, V 
FLAGS (4:7) +- FLAGS (4:7) XOR instruction (4:7) 

Any combination of the C, Z, S, P or V flags is complemented (each one bit is 
changed to zero, and vice-versa). The flags to be complemented are encoded in a 
field in the instruction. If the bit in the field is one, the corresponding flag is com­
plemented; if the bit is zero, the flag is left unchanged. Note that the P and V flags 
are represented by the same bit. There may be one, two, three or four operands in 
the assembly language statement, in any order. 

C: Complemented if specified; unaffected otherwise 
Z: Complemented if specified; unaffected otherwise 
S: Complemented if specified; unaffected otherwise 
P/V: Complemented if specified; unaffected otherwise 
D: Unaffected 
H: Undefined 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

Segmented Mode 

Instruction Format 

COMFLG flags 
110001101 ICZSPI~ 0 1 01 1 7 110001101 Iczsp30 101 1 

Cycles 

7 

If the C, Z, and S flags are all clear ( = 0)' and the P flag is set ( = I), the statement 

COMFLG p, S, Z, C 

will leave the C, Z, and S flags set ( = I), and the P flag cleared ( = 0). 



Operation: 

Flags: 

CP dst, src 
CPB 
CPL 

dst - src 

dst: R 
src: R, 1M, JR, DA, X 
or 
dst: JR, DA, X 
src: 1M 

CP 
Compare 

The source operand is compared to (subtracted from) the destination operand, and 
the appropriate flags set accordingly, which may then be used for arithmetic and 
logical conditional jumps. Both operands are unaffected, with the only aciion being 
the setting of the flags. Subtraction is performed by adding the two's complement of 
the source operand to the destination operand. There are two variants of this instruc­
tion: Compare Register compares the contents of a register against an operand 
specified by any of the five basic addressing modes; Compare Immediate performs a 
comparison between an operand in memory and an immediate value. 

C: Cleared if there is a carry from the most significant bit of the result; set other-
wise, indicating a "borrow" 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs 

and the sign of the result is the same as the sign of the source; cleared otherwise 
D: Unaffected 
H: Unaffected 

Compare Register 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

R: CP Rd, Rs 
CPB Rbd, Rbs 110100101iw1 Rs 

1 
Rd I 4 110100101iw1 Rs I Rd-I 4 

CPL RRd, RRs 
11010100001 Rs I Rd I 8 11010100001 Rs I Rd 

1 
8 

1M: CP Rd, #data 
001001011100001 Rd I 

7 
001001011100001 Rd I 

7 
data J data I 

CPB Rbd, #data 001001010100001 Rd 001001010100001 Rd 
7 7 

data I data data I data 

CPL RRd, #data 
001010000 10000 1 Rd 001 01 qooo 10000 I Rd 

31 data (high) 16 14 31 data (high) 16 14 

15 data (low) 0 15 data (low) 0 

IR: CP Rd, @Rsl 
1001001011wi RHO 1 Rd I 7 1001001011 wl Rs*O 1 Rd 

1 7 CPB Rbd, @Rsl 

CPL RRd, @Rsl 
10010100001 RHO I Rd I 14 1001010000 I Rs"O I Rd I 14 

25 



CP 
Compare 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

DA: CP Rd, address 
1011001011wl 0000 I Rd I ;~rlwlooool Rd CPB Rbd, address 9 10 
I address I 55 0 segment \ offset 

01ioOl0l1wl00001 Rd 

SL '1 segment I 0 a 0 0 0000 12 

offset 

CPL RRd, address 10 '1 01 0000 Too 0 oT Rd 1 01101000010000 I Rd 
15 SS 16 

I address I o I segment I offset 

011010000 100001 Rd 

SL '1 segment I 00 0 a 0000 18 
offset 

X: CP Rd, addr(Rs) 
10110010 llwl Rs*O I Rd I SS 0 1 10 0 1 0 11 wi Rs. 0 I Rd 

CPB Rbd, addr(Rbs) 10 10 r address 1 o I segment I offset 

011001 0 11 w I Rs. 0 i Rd 

SL 'T segment I 0 0 0 0 0000 13 

offset 

CPL RRd, addr(Rs) rOll 0 10 0 0 01 Rs * OT Rd 1 :; 1*,01 0000 -[ Rs. 0 I Rd 

r 1 16 SS 16 
address o segment I offset 

~'0000~*oJ Rd 
~~- ------

SL 1 segme~ 0000 0000 19 
offset 

Compare Immediate 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

IR: CP @Rdl, #data 
1001001101w1Rd*0100011 10010 0 1 1 0 I w I Rd * 0 I 000 1 I 

11 11 r data 1 I data 1 
CPB @Rd1, #data 

100ToolloTwi Rd*oloooll 10010011 olwl Rd*ol 00011 
11 11 

I data I data I I data I data I 

26 



Destination 
Addressing 

Mode 

DA: 

X: 

Example: 

CP 
Compare 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

CP address, #data 
01100110lwl00ooloOOl 01100110lw 000010001 

address 14 55 01 segment offset 15 

data data 

01100110lw 000010001 

11 segment 0000 0000 
5L 17 

offset 

data 

CPB address, #data ~11 olwl 0000 I 0001 01100110lw 00001 0001 

address 14 55 01 segment offset 15 
data I data data data 

01100110lw 00001 0001 

11 segment 0000 0000 
5L 17 

offset 

data data 

CP addr(Rd), #data 
01100110lwiRd * 010001 01100110lw Rd * 010001 

address 15 55 01 segment offset 15 
data data 

01100110lw Rd*oIOOOl 

11 segment 0000 0000 
18 5L 

offset 

data 

CPB addr(Rd), #data 
01100110lwl Rd*oloOOl 01100110lw Rd*oIOOOl 

address 15 55 01 segment offset 15 
data I data data data 

01JOOll0lw Rd*O 10001 

5L 
11 segment 0000 0000 

18 
offset 

data data 

If register R5 contains %0400, the byte at location %0400 contains 2, and the source 
operand is the immediate value 3, the statement 

CPB @R5,#3 

will leave the C flag set, indicating a borrow, the S flag set, and the Z and V flags 
cleared. 

Note 1: Word regIster in nonsegmented mode, register pair In segmented mode. 

27 



CPD 
Compare and Decrement 

Operation: 

Flags: 

Source 
Addressing 

Mode 

IR: 

Example: 

28 

CPO dst, src, r, cc 
CPOB 

dst - src 

ds!: IR 
src: IR 

AUTODECREMENT src (by I if byte, by 2 if word) 
r'" r - 1 

This instruction is ,used to search a string of data for an element meeting the 
specified condition. The contents of the location addressed by the source register are 
compared to (subtracted from) the destination operand, and the Z flag is set if the 
condition code specified by "cc" would be set by the comparison; otherwise the Z 
flag is cleared. See list of condition codes. Both operands are unaffected. 

The source register is then decremented by one if CPOB, or by two if CPO, thus 
moving the pointer to the previous element in the string.'The word register specified 
by "r" (used as a counter) is then decremented by one. . 

C: Undefined 
Z: Set if the condition code generated by the comparison matches cc; cleared 

otherwise 
S: Undefined 
V: Set if the result of decrementing r is zero; cleared otherlNise 
0: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

CPD Rd, @Rsl, r, cc 1'0"'0'lwIRs,,0110001 l' 0 ", 0 1 1 w 1 Rs " 01"000 I CPDB Rbd,.@Rsl, r. cc 20 100001 r IRd" 01 cel 100001 r IRd"ol ce I 

If register RHO contains %FF, register RI contains %4001, the byte at location 
%4001 contains %00, and register R3 contains 5, the instruction 

CPOB RHO, @RI, R3, EQ 

Cycles 

20 

will leave the Z flag cleared since the condition code would not have been "equal." 
Register RI will contain the value %4000 and R3 will contain 4. For segmented 
mode, RI must be replaced bv a register pair. 

Note I: Word register In nonsegmented mode. register pair in segmented ~ode. 



Operation: 

Flags: 

Source 
Addressing 

Mode 

1ft: 

Example: 

CPDR 
Compare Decrement and Repeat 

CPDB dst, src, r, cc 
CPDBB 

dst - src 

dst: IR 
src: IR 

AUTO DECREMENT src (by 1 if byte; by 2 if word) 
r'" r - 1 
repeat until cc is true or R = 0 

This instruction is used to search a string of data for an element meeting the 
specified condition. The contents of the location addressed by the source register are 
compared to (subtracted from) the destination operand, and the Z flag is set if the 
condition code specified by "cc" would be set by the comparison; otherwise the Z 
flag is cleared. See list of condition codes. Both operands are unaffected. 

The source register is then decremented by one if CPDRB, or by two if CPDR, thus 
moving the pointer to the previolls element in the string; The word register specified 
"r" (used as a counter) is decremented by one. The entire operation is repeated until 
either the.condition is ~et or the result of decrementing r is zero. This instruction 
can search a string from I to 65536 bytes or 32768 words long (the value of r must 
not be greater than 32768 for CPDR). 

This instruction can be interrupted after each execlltion of the basic operation. The 
program COllnter vaille of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven more 
cycles should be added to this instruction's execution time for each interrupt request 
that is accepted. 

C: Undefined 
Z: Set if the condition code generated by the comparison matches cc; cleared 

otherwise 
S: Undefined 
V: Set if the resllit of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles2 Instruction Format 

CPDR Rd, @Rsl, r, CC 
11 0111 ollwlRI" 0 111 001 11011101 I w I RI " 01 1100 I 

CPDRB Rbd, @Rsl, r, cc 11 +9n 
1 0000 1 r IRd"ol cc I 100 00 1 r IRd"ol cc I 

Cycles2 

11 +9n 

If the string of words starting at location %2000 contains the values 0, 2, 4, 6 and 8, 
register R2 contains %2008, R3 contains 3, and R8 contains 8, the instruction 

CPDR R3, @R2, R8, GT 

will leave the Z flag set indicating the condition was met. Register R2 will contain the 
vaille %2002, R3 will still contain 5, and R8 will contain 5. For segmented mode, a 
register pair would be used instead of R2. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 
Note 2: n = number of data elements compared. 

29 



CPI 
Compare and Increment 

Operation: 

Flags: 

Source 
Addressing 

Mode 

IR: 

30 

CPI dst, src, r, cc 
CPIB 

dst - src 

dst: IR 
src: IR 

AUTOINCREMENT src (by 1 if byte·; by 2 if word) 
r+-r-l 

This instruction is used to search a string of data for an elemerit meeting the 
specified condliion. The contents of the location addressed by the source register are 
compared to (subtracted Irom) the destination operand and the Z flag Is set If the 
condition code is specified by "cc" would be set by the comparison; otherwise the Z 
flag is cleared. See list of condition codes. Both operands are unaffected. 
The source register is then incremented by one If CPIB, or by two if CPI, thus 
moving the pointer to the next element in the string. The source .. destination, and 
counter registers must 'be separate and non-overlapping registers. The word register 
specified by "r" (used as a counter) is then decremented by one. 

C: Undefined 
Z: Set if the condition code generated by the comparison matches cc; cleared 

otherwise 
S: Undefined 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmenled Mode Segmented Mode 
Assembler Language 

Cycles" Syntax Instruction Format Instruction Format 

cpr Rd, @Rsl, r, cc r 10111 ollwlA ... 01 00001 11011 1 ollwlA ... 01 00001 CPlB Rbd, @Rsl, r, cc 
100001 r IAd .. ol eel 

20 
100001 r I Ad .. 01 ee I 

Cycles 

20 



Example: 

CPI 
Compare and Increment 

This fnstruction can be used in a "loop" of instructions that searches a string of data 
for an element meeting the specified condition, but an intermediate operation on 
each data element is required. The following sequence of instructions (to be 
executed in non-segmented mode) "scans while numeric," that is, a string is 
searched until either an ASCII character not in the range "0" to "9" (see Appendix 
C) is found, or the end of the string is reached. This involves a range check on each 
character (byte) in the string. For segmented mode, Rl must be changed to a 
register pair. 

LO 
LOA 
LO 

LOOP: 
CPB 
JR 
CPIB 
JR 
JR 

DONE: 

NONNUMERIC: 

R3, #STRLEN 
Rl, STRSTART 
RLO,#'9' 

@Rl,#'O' 
ULT,NONNUMERIC 
RLO, @Rl, R3, ULT 
Z, NONNUMERIC 
NOV, LOOP 

!initialize counter! 
! load start address! 
!largest numeric char! 

! test char < 'O'! 

!test char> 'O'! 

!repeat until counter O! 

!handle non-numeric char! 

Note 1: Word register In nonsegmented mode, register pair In segmented mode. 

31 



CPIR 
Compare, Increment and Repeat 

Operation: 

Flags: 

Sour,ce 
Addressing 

Mode 

IR: 

32 

CPIR dst, src, r, cc 
CPIRB 

dst - src 

dst: R 
src: IR 

AUTOINCREMENT src (by I if byte; by 2 if word) 
r -r - 1 
repeat until cc is true or R = 0 

This instruction is used to search a string of data for an element meeting the 
specified condition. The contents of the location addressed by the source register are 
compared to' (subtracted from) the destination operand, and the Z flag is set if the 
condition code specified by "cc" would be set by the comparison; otherwise the Z 
flag is cleared. See list of condition codes. Both operands are unaffected .. 

The source register is then incremented by one if CPIRB, or by two if CPIR, thus 
moving the pointer to the next element in the string. The word register speCified by 
"r" (used as a counter) is'then decremented by one. The entire operation is repeated 
until either the condition is met or the result of decrementing r is zero. This instruc­
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r 
must not be greater than 32768 for CPIR). The source, destination, and counter 
registers must be separate and non-overlapping registers, 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven'more 
cycles should be added to this instruction's execution time for each interrupt request 
that is accepted. 

C: Undefined 
Z: Set if the condition code generated by the comparison matches cc; cleared 

otherwise 
S: Undefined 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles2 Instruction Format 

CPIR Rd, @Rs!, r, cc 
11011101 I WT R. ~ oro 1001 11011101 I wi Ra¢ 01 010 01 

CPIRB Rbd,@Rsi, r, cc 11 +9n 
100001 r IRd ~ 01 cc 1 100001 1 IRd ~ 01 cc 1 

Cycles2 

11 +9n 



Example: 

CPIR 
Compare. Increment and Repeat 

The following sequence of instructions (to be executed in nonsegmented mode) can 
be used to search a string for an ASClI return character. The pointer to the start of 
the string is set, the string length is set, the character (byte) to be searched for is 
set, and then the search is accomplished. Testing the Z fl~g determines whether the 
character was found. For segmented mode, Rl must be changed to a register pair. 

LDA 
LD 
LDB 
CPIRB 
JR 

Rl, STRSTART 
R3, #STRLEN 
RLO, #% D 
RLO, @Rl, R3, EO 
Z, FOUND 

!hex code for return is D! 

Note 1; Word register in non segmented mode, register pair in segmented mode. 

Note 2: n = number of data elements compared. 

33 



CPSD 
Compare String and Decrement 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

34 

CPSD dst, src, r, cc 
CPSDB 

dst -, src 

dst: IR 
src: IR 

AUTODECREMENT dst and src (by I if byte; by 2 if word) 
r +- r - I 

This instruction can be used to compare two strings of data until the specified condi­
tion is true. The contents of the location addressed by the source register are·com­
pared to (subtracted from) the contents of the location addressed by the destination 
register. The Z flag is set if the condition code specified by "cc" would be set by the 
comparison; otherWise the Z flag is'cleared. See nst 01 condition codes. Both ope­
rands are unaffected. 

The source and destination registers are then decremented by one if CPSDB, or by 
two if CPSD, thus moving the pOinters to the previous elements in the strings. The 
word register speCified by "r" (used as a counter) is then decremented by one. 

C: Cleard if there is a carry from the most significant bit 01 the result of the com­
parison; set otherwise, indicating a "borrow". Thus this flag will be set if the 
destination is less than the source when viewed as unsigned integers. 

Z: Set if the condition code generated by the comparison mqtches cc; cleared 
otherwise 

S: Set is the result of the 'comparison is negative; cleared otherwise 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented M~de 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

CPSD ~'Rdl, .('(;RsI, r, cc 
110111 oll wlR ... 011010 1 11 ° 111 ° 1 I w I R.,. 0\1 01 oJ 

CPSDB Q'Rdl ,~, Rsl ,r,cc 25 25 LooooJ r JRd"OJ cc J 1000 0 1 r IRd"ol cc 1 

If register R2 contains %2000, the byte at location %2000 contains %FF, register R3 
contains %3000, the byte at location %3000 contains %00, and register R4 contains 
1, the instruction (executed in nonsegmented mode) 

CPSDB @R2, @R3, R4, UGE 

will leave the Z flag set to 1 since the condition code would have been "unsigned 
greater than or equal", and the V flag will be set to I to indicate that the counter R4 
now contains O. R2 will contain %IFFF, and R3 will contain %2FFF. For segmented 
mode, R2 and R3 must be changed to register pairs. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 



Operation: 

Flags: 

Addressing 
. Mode 

IR: 

CPSDR 
Compare String, Decrement and Repeat 

CPSDR dst, src,r, cc 
CPSDRB 

dst - src 

dst: IR 
src: IR 

AUTODECREMENT dst and src (by I if byte; by 2 if word) 
r'" r ..J I 
repeat until cc is true or r = a 

This instruction is used to compare two strings of data until the speCified condition is 
true. The contents of the location addressed by the source register are compared to 
(subtracted from) the contents of the location addressed by the destination register. 
The Z flag is set if the condition code speCified by "cc" would be set by the compar­
ison; otherwise ihe Z flag is cleared. See list of condition codes. Both operands 
are unaffected. 

The source and destination registers are then decremented by one if CPSDRB; or by 
two if CPSDR, thus moving the pOinters to the previous elements in the strings. The 
word register specified by Hr" (used as a counter) is then decremented by one. The 
entire operation is repeated until either the condition is met or the result of decre­
menting r is zero. This instruction can compare strings from I to 65536 bytes or from 
I to 32768 words long (the value of r must not be greater than 32768 for CPSDR). 

This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved before the interrupt request 
is accepted, so that the instruction can be properly resumed. Seven more cycles 
should be added to this instruction's execution time for each interrupt request that is 
accepted. 

C: Cleared if there is a carry from the most significant bit of the result of the com­
parison; set otherWise, indicating a "borrow". Thus this flag will be set if the 
destination is less than the source when viewed as unsigned integers 

Z: Set if the conditon code generated by the comparison matches cc; cleared 
otherwise 

S: Set if the result of the comparison is negative; cleared otherwise 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

CPSDR@Rd1.@Rsl.r.cc 110111011wl Rs 111101 II 0111 011wl Rs 11110J CPSDRB@Rd1.@Rsl.r,cc 11 + 14n 11 +14n Looool r I Rd I cc I 10000 1 r 1 Rd 1 cc 1 

35 



CPSDR 
Compare String, Decrement and Repeat 

Example: 

36 

If the words from location % 1000 to % 1006 contain the values 0, 2, 4, and 6, the 
words from location %2000 to %2006 contain the values 0, L I, 0, register RI3 con­
tains %1006, register RI4 contains %2006, and register RO contains 4, the instruc­
tion (executed in nonsegmented mode) 

CPSDR @RI3, @RI4, RO, EO 

leaves the Z flag set to I since the condition code would have been "eql,lal" (loca­
tions % 1000 and %2000 both contain the value 0). The V flag will be set to I indi­
cating r was decremented to O. Rl3 will contain %OFFE, Rl4 will contain %IFFE, 
and RO will contain O. For segmented mode, Rl3 and RI4 must be changed to 
register pairs. 

Note 1: Word register in nonsegmenied mode, register pair in segmented mode. 

Note 2: n = number of data elements compared. 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

CPSI 
Compare String and Increment 

CPSI dst, src, r, cc 
CPSIB 

dst - src 

dst: IR 
src: IR 

AUTOINCREMENT dst and src (by I if byte, by 2 if word) 
r 4- r - I 

This instruction can be used to compare two strings of data until the specified condi­
tion is true. The contents of the location addressed by the source register are com·· 
pared to (subtracted from) the contents of the location addressed by the destination 
register. The Z flag is set if the condition code specified by "cc" would be set by the 
comparison; otherwise the Z flag is cleared. See list of condition codes. Both ope­
rands are unaffected. 

The source and destination registers are then incremented by one if CPSIB, or by 
two if CPS!, thus moving the pointers to the next elements in the strings. The word 
register specified by "r" (used as d counter) is then decremented by one. 

C: Undefined 
Z: Set if the condition code generated by the comparison matches cc; cleared 

otherwise 
S: Undefined 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

CPS] ePRdl ,~Rsl ,r,ce 11o 111 ° 1 IwlRS * ° I 001 oJ L 1 01 11 01 I wi Rs * ° I 0010 I 
CPSIB ",Rdl ,@Rsl,r,ee 25 25 

10000 1 
r IRd*ol cc I 10000 1 r IRd*ol cc I 

37 



CPSI 
Compare String and Increment 

. Example: 

38 

This instruction can be used in a "loop" of instructions which compares two strings 
until the specified condition is true, but where an intermediate operation on each 
data element is required. The following ~equence of instructions, to be executed in 
nonsegmented mode, attempts to match a given ·source string to the destination 
string which is known to contain all upper-case characters. The match should suc­
ceed even if the source string contains some lower-case characters. This involves a 
forced conversio~ of the source string to upper-case (only ASCII alphabetic letters 
are assumed, see Appendix C) by resetting bit 5 of each character (byte) to 0 before 
comparison. 

LOOP: 

DONE: 

LOA 
LOA 
LO 

RESB 
CPSIB 
JR 
JR 

NOTEQUAL: 

RI, SRCSTART 
R2, DSTSTART 
R3, #STRLEN 

@RI,#5 
@RI,@R2, R3, NE 
Z, NOTEQUAL 
NOV, LOOP 

!load start addresses! 

!initialize counter! 

!force upper-case! 
!compare untiJ. not equal! 
!exit loop if match fails! 
!repeat until counter ~ O! 
!.match sueceeds! 

!match fails! 

In segmented mode, RI and R2 must both be register pairs. 

Note I: Word register in nonsegmented mode, register pair in segmented mode. 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

CPSIR 
Compare String I Increment and Repeat 

CPSIR dst,src,r,cc 
CPSIRB 

dst - src 

dst: IR 
src: IR 

AUTOINCREMENT dst and src (by I if byte, by 2 if word) 
r+-r-l 
repeat until cc is true or r = 0 

This instruction is used to compare two strings of data until the specified condition is 
true. The contents of the location addressed by the source register are compared to 
(subtracted from) the contents of the location addressed by the destination register. 
The Z flag is set if the condition code specified by "cc" would be set by the com­
parison; otherwise the Z flag is cleared. See list of condition codes. 
Both operands are unaffected. The source and destination registers are then 
incremented by one if CPSIRB, or by two if CPSIR, thus moving the pOinters to the 
next elements in the strings. The word register speCified by "r" (used as a counter) is 
then decremented by one. The entire operation is repeated until either the condition 
is met or the result of decrementing r is zero. This instruction can compare strings 
from I to 65536 bytes or from I to 32768 words long (the value of r must not be 
greater than 32768 for CPSIR). 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven cycles 
should be added to this instruction's execution time for each interrupt request that is 
accepted. The source, destination, and counter registers must be separate and non­
overlapping registers. 

C: Cleared if there is a carry from the most significant bit of the result of the last 
comparison made; set otherwise, indicating a "borrow". Thus this flag will be set 
if the last destination element is less than the last source element when viewed as 
unsigned integers. 

Z: Set if the condition code generated by the comparison matches cc; cleared 
otherwise 

S: Set if the result of the last comparison made is negative; cleared otherwise 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles2 Instruction Format Cycles2 

CPSIR <1<Rdl .<1<Rsl,r,cc 11 0111 01 I w I R. " 0 I 0 1 1 0 I [1011 1 0 1 I w I RI " 0 I 01 1 0 I 
CPSIRB i1oRdl ,i1'Rsl,r,cc 11 + 14n 11 + 14n 

10000 1 r IRd" 0 1 cc I 1 0000 1 
r IRd"ol cc I 

39 



CPSIR 
Compare String, Increment and Repeat 

Example: 

40 

The CPSIR instruction can be ussd to compare test strings for lexicographic order. 
(For most common character encoding - for example, ASCTI and EBCDIC - lexi­
cographic order is the same as alphabetic order for alph.,betic test strings that do 
not coru.,in blanks.) 

Let SI and S2 be text strings of 1engths Ll and L2. According to lexicographic 
ordering, SI is said to be "less than" or "before" S2 if either of the following is true: 

• At the· first character position at which SI and 
S2 contain different characters, the character 
code for the SI character is less than the 
character code for the S2 character . 

• SI is shorter than S2 and is equal, character for 
charaoter, to an initial substring of S2. 

For example, using the ASCII character code, the following strings are ascending 
lexicographic order: 

A 
AUA 
ABC 
ABCD 
NBD 
Let us assume that the address of SI is in RR2, the address of S2 is in RR4, the 
lengths Ll and L2 of SI and S2 are in RO and Rl, and the shorter of Ll and L2 is in 
R6. The the following sequence of instructions will determine whether SI is less than 
S2 in lexicographic order: 

CPSIRB @RR2, 9RR4, R6, NE !Scan to first unequal character! 

JR 2,CHAR_COMPARE 

CP RO,Rl 

JR-LT, SI_IS_LESS 
JR SI~OT_Less 
CHAR-COMPARE: 
JR ULT, SI-ISJESS 

SI_NOT LESS: 

!The following !lags settings are possible: 
2 = 0, V = 1: Strings are equal through Ll 
character. (2 = 0, V = 0 cannot occur). 
2 = 1, V = 0 or 1: A character position was 
found at which the strings are unequal. 
C = 1 (S = 0 or I): The character in the RR2 
string was less (viewed as numbers from 0 to 
255, not as numbers from -128 to + 127). 
C = 0 (S = 0 or I): The character in the RR2 
string was not less! 

!If 2 = 1, compare the characters! 

!Otherwise, compare string lengths! 

! UL T is another name for C = I! 



Operation: 

Flags: 

Addressing 
Mode 

R: 

DAB 
Decimal Adjust 

DAB dst dst: R 

dst'4- DA dst 

The destination byte is adjusted to form two 4-bit BCD digits following an addition or 
subtraction operation. For addition (ADDB, ADCB) or subtraction (SUBB, SBCB), 
the following table indicates the operation performed: 

Carry Bits 4-7 HFlag Bits 0-3 Number Carry 
Before Value Before Value Added After 

Instruction DAB (Hex) DAB (Hex) To Byte DAB 

a 0-9 a 0·9 00 a 
a 0·8 a A-F 06 a 

ADDB a 0-9 1 0·3 06 a 
ADCB a A-F a 0·9 60 1 

a 9·F a A-F 66 
a A-F 1 0·3 66 

0·2 a 0·9 60 
0·2 a A-F 66 

SUBB a 0·9 a 0-9 00 a 
SBCB a 0-8 1 6-F FA a 

7·F a 0-9 AO 
6·F 6·F 9A 

The operation is undefined if the destination byte was not the result of a valid addi­
tion or subtraction of BCD digits. 

c: Set or cleared according to the table above 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

DAB Rbd 
1101110000 I Rd 

10000 1 5 1101110000 I Rd 
1 0000 1 

5 

41 



DAB 
Decimal Adjust 

Example: 

42 

If addition is performed using the BCD values 15 and 27, the result should be 42. 
The sum is incorrect, however, when the binary representations are added in the 
destination location using standard binary arithmetic. 

0001 0101 
+ 0010 0111 

0011 1100 = %3C 
The DAB instruction adjusts this result so that the correct BCD represel'ltation is 
obtained. 

0011 1100 
+ 0000 0110 

0100 0010 42 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

IR: 

DA: 

X: 

Example: 

DEC 
Decrement 

DEC dst, src 
DECB 

dst: R, lR, DA, X 
src: 1M 

dst .- dst - src (where src = I to 16) 

The source operand (a value from I to 16) is subtracted from the destination operand 
and the result is stored in the destination. Subtraction is performed by adding the 
two's complement of the source operand to the destination operand. The source 
operand may be omitted from the assembly language statement and defaults to the 
value 1. 

The value qj the source field in the instruction is one less than the actual value of the 
source operand. Thus, the coding in the instruction for the source ranges from a to 
15, which corresponds to the source values I to 16. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs, 

and the sign of the result is the same as the sign of the source; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

DEC Rd, #n 
110110101iw1 Rd I n - '1 DECB Rbd, #n 

DEC @Rdl , #n 
100110101 iwI RM I n - 1 1 

DECB @Rd l , #n 

DEC address, #n [01[10101[W[00001 n-11 
DECB address, #n 

1 address 1 

DEC addr(Rd), #n 
1011101011wLRd,,01n -11 

DECB addr(Rd), #n 
l address I 

If register RIO contains %002A, the statement 

DEC RIO 
will leave the value %0029 in RIO. 

4 l' 01' 01 011wi Rd I n - 11 

11 100 l' 010 lJw1 Rd"O I n - 1 1 

13 
01L'01011w100001 n-11 

S5 a I segment I offset I 

011'01011wl 00001 n-1 

5L 11 segment L 0 0 0 a 0900 

offset 

o 111 01 0 1 L wi Rd" 01 n - 1 1 
14 55 

o I segment I offset I 

011101 011wl Rd"O In - 1 

5L 11 •• ument 10000 0000 

oll •• t 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

4 

11 

14 

16 

14 

17 

43 



DI Privileged 

Disable Interrupt 

Operation: 

Flags: 

Example: 

44 

DI Int 

If instruction (0) 
If instruction (I) 

Int: VI, NVI 

o then NVI ... - 0 
o then VI ... - 0 

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI) 
control bits in the Flags and Control Word (FCW) are cleared to zero if the cor­
responding bit in the instruction is zero, thus disabling the appropriate type of inter­
rupt. If the corresponding bit in the instruction is one, the control bit will not be 
affected. All other bits in the FCW are not affected. There may be one or two 
operands in the assembly language statement, in either order. 

No flags affected. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

D! In! 

Syntax Instruction Format Cycles Instruction Format Cycles 

I 01111100 I 000000 IYI~I 7 I 01111100 I 000000 IYI~I 7 

If the NVI and VI control bits are set (1) in the FCW, the instruction: 

DI VI 

will leave the NVI control bit in the FCW set (1) and will leave the VI control bit in 
the FCW cleared (0). 



Operation: 

Flags: 

DIV 
Divide 

DIV dst, src 
DIVL 

dst: R 
src: R, 1M, JR, DA, X 

Word: (dst is register pair, src is word): 
dst (0:31) is divided by src (0: 15) 
(dst (0:31) = quotient x src (0: 15) + remainder) 
dst (16:31) .- quotient 
dst (0: 15) .- remainder 

Lon,g: (dst register quadruple, src is long word or register pair): 
dst (0:63) is divided by src (0:31) 
(dst (0:63) = quotient x src (0:31) + remainder) 
dst (32:63) .- quotient 
dst (0:31) .- remainder 

The destination operand (dividend) is divided by the source operand (divisor), the 
quotient is stored in the low-order half of the destination and the remainder is stored 
in the high-order half of the destination. The contents of the source are not affected. 
Both operands are treated as signed, two's complement integers and division is per­
formed so that the remainder is of the same sign as the dividend. For DIV, the 
destination is a register pair and the source is a word value; for DIVL, the destina­
tion is a register quadruple and the source is a long word value. 

There a four possible outcomes of the Divide instruction, depending on the division, 
and the resulting quotient: 

CASE 1. If the quotient is within the range _215 to 215 - I inclusive for DIV or 
_231 to 231 - 1 inclusive for DIVL, then the quotient and remainder are left in the 
destination register as defined above, the overflow and carry flags are cleared to 
zero, and the sign and zero flags are set according to the value of the quotient. 

CASE 2. If the divisor is zero, the destination register remains unchanged, the 
overflow and zero flags are set to one and the carry and sign flags are cleared to 
zero. 

CASE 3. If the quotient is outside the range _216 to 2 16 -1 inclusive for DIV or -232 
to 232 - 1 inclusive for DIVL, the destination register contains an undefined value, 
the overflow flag is set to one, the carry and zero flags are cleared to zero, and the 
sign flag is undefined. 

CASE 4. If the quotient is inside the range of case 3 but outside the range of case 
I, then all but the sign bit of the quotient and all of the remainder are left in the 
destination register, the overflow and carry flags are set to one, and the sign and 
zero flags are set according to the value of the quotient. In this case, the sign flag 
can be replicated by subsequent instruction into the high-order half of the destina­
tion to produce the two's complement representation of the quotient in the same 
precision as the original dividend. 

c: Set if V is set and the quotient lies in the range from _216 to 216 - I inclusive for 
DIV or in the range from _232 to 232 - 1 inclusive for DIVL; cleared otherwise 

Z: Set if the quotient or divisor is zero; cleared otherwise 
S: Undefined if V is set and C is clear (overflow); otherwise set if the quotient is 

negative, cleared if the quotient is non-negative. 
V: Set if the divisor is zero or if the computed quotient lies outside the range from 

_215 to 2 15 - 1 inclusive for DIV or outside range from _231 to 231 -1 inclusive 
for DIVL; cleared otherwise 

D: Unaffected 
H: Unaffected 

45 



DIV 
Divide 

Source 
Addressing 

Mode 

R: 

1M: 

IR: 

DA: 

X: 

46 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles2 Instruction Format 

DIV RRd, Rs 
1101 011011 I Rs I Rd I 1101 011011 I Rs I Rd 

DIVL RQd, RRs 
11010110101 Rs I Rd I 1101 011010 I Rs I Rd 

DIV RRd, #data 001011011100 0 01 Rd 001011011100001 Rd 

dala data 

DIVL RQd, #doto 
001011010100001 Rd 001011010100001 Rd 

31 data (high) 16 31 data (high) 16 

15 data (low) 0 15 dala (low) 0 

DIV RRd, @Rsl 
10010110111 Rs;<O I Rd I 10010110111 Rs;<O I Rd 

DIVL RQd, @Rsl 
10010110101Rs;<01 Rd I 1001011010 I Rs;<O I Rd 

DIV RRd, address 
011011011100001 Rd 01JOll 011 10000 I Rd 

55 
address a I segment I offset 

011011011100001 Rd 

5L 11 segment 10000 0000 

offset 

DIVL RQD, address 
011011010100001 Rd 011011010100001 Rd 

55 
address I a I segment I offset 

01)011010100001 Rd 

5L 11 segment I 0 000 0000 

allset 

DIV RRd, addr(Rs) 
011011011 !RS;<O I Rd 55 01 1 01101 1 I Rs;< 0 I Rd 

address ,oJ segment J offset 

0110110111Rs;<01 Rd 

5L 11 segment 10000 0000 

offset 

DIVL RQd, addr(Rs) o 1 I 0 1 1 0 1 0 I Rs" 0 I Rd 011011010 I Rs"O I Rd 
55 

a I segment J offset address 

0 11011010 I Rs"O I Rd 

5L 1 I segment I 0000 0000 

offset 

Note 1: Word register In nonsegmented mode, register pair in segmented mode. 

Note 2: Execution times for each instruction are given in the table under Example. 

Cycles2 

I 

I 

I 
I 



Example: 

DIV 
Divide 

The Jollowing table gives the D1V instruction execution times for word and long 
word operands in all possible addressing modes. 

sre Word Long Word 

NS SS SL NS SS SL 
R 107 744 

1M 107 744 
IR 107 107 107 744 744 744 

DA 108 108 III 745 746 748 
X 109 109 112 746 746 749 

(Divisor is zero) 

R 13 13 13 30 30 30 
1M 13 13 13 30 30 30 
IR 13 13 13 30 30 30 

DA 14 15 17 31 32 34 
X 15 15 18 32 32 35 

(Absolute value of the high· order half of the dividend is larger than the 
absolute value of the divisor) 

R 25 25 25 51 51 51 
1M 25 25 25 51 51 51 
IR 25 25 25 51 51 51 

DA 26 27 29 52 53 55 
X 27 27 30 53 53 56 

Note that for proper execution, the "dst field" in the instruction format encoding 
must be even for D1V, and must be a multiple of 4 (0, 4, 8, 12) for D1VL. If the 
source operand in DrVL is a register, the "src field" must be even. 

If register RRO (composed of word register.RO and RI) contains %00000022 and 
register R3 contains 6, the statement 

D1V RRO,R3 

will leave the value %00040005 in RRO (RI contains the quotient 5 and RO contains 
the remainder 4). 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: The execution time for the instruction will be lower than indicated for diVide by zero and certain 
overflow conditions. 

47 



DJNZ 
Decrement and Jump if Not Zero 

Operati~n: 

Flags: 

Destination 
Addressing 

Mode 

RA: 

Example: 

48 

DJNZ R, dst 
DBJNZ 

R .. - R - I 

dst: RA 

If R "* ° then PC __ PC - (2 X displacement) 

The register being used as a counter is decremented. If the contents of the register 
are not zero after decrementing, the destination address is calculated and then 
loaded into the program counter (PC). Control will then pass to the instruction 
whose address is painted to by the PC. When the register counter reaches zero, con­
trol falls through to the instruction following DJNZ or DBJNZ. This instruction pro­
vides a simple method of loop control. 

The relative addressing mode is calculated by doubling the displacement in the 
instruction, then subtracting this value from the updated value of the PC to derive 
the destinatiop address. The updated PC value is taken to be the address of the 
instruction byte following the DJNZ or DBJNZ instruction, while the displacement is a 
7-bit positive value in the range ° to 127. Thus, the destination address must be in 
the range -252 to 2 bytes from the start of the DJNZ or DBJNZ instruction. In the 
segmented mode, the PC segment number is not affected. The assembler automatic­
ally calculates the displacement by subtracting the PC value of the following instruc­
tion from the address given by the programmer. Note that DJNZ or DBJNZ cannot be 
used to transfer control in the forward direction, nor to another segment in 
segmented mode operation. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

DJNZ R, displacement 
1'",1 r !wi disp 1 11 1"" 1 r !wi disp 1 11 

DBJNZ Rb, displacement 

DJNZ and DBJNZ are typically used to control a "loop" of instructions. In this exam­
ple for nonsegmented mode, 100 bytes are moved from one buffer area to another, 
and the sign bit of each byte is cleared to zero. Register RHO is used as the counter. 

LOOP: 

NEXT: 

LDB 
LDA 
LDA 

LDB 
RESB 
LDB 
INC 
INC 
DBJNZ 

RHO,#lOO 
Rl, SRCBUF 
R2,DSTBUF 

RLO,@Rl 
RLO,#7 
@R2, RLO 
Rl 
R2 
RHO, LOOP 

! initalize counter! 
!load start address! 

!load source byte! 
!mask off sign bit! 
!store into destination! 
!advance pOinters! 

!repeat until counter O! 

For segmented mode, Rl and R2 must be changed for register pairs. 



Operation: 

Flags: 

Example: 

EI int 

If instruction (0) 
If instruction (I) 

Privileged 

Int: VI, NVI 

o then NVI +- 1 
o then VI +- 1 

EI 
Enable Interrupts 

Any combination of the Vectored Interrupt (V!) or Non-Vetored Interrupt (NV!) con­
trol bits in, the Flags and Control Word (FCW) are set to one if the corresponding bit 
in the instruction is zero, thus enabling the appropriate type of interrupt. If the cor­
responding bit in the instruction is one, the control bit will not be affected. All other 
bits in the FCW are not affected. There may be one or two operands in the assembly 
language statement, in either order. 

No /lags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

EI in! 

Syntax Instruction Format Cycles Instruction Format Cycles 

10111110010000011rlii 7 10111110010000011rlri 

If the NVI contol bit is set (I) in the FCW, and the VI control bit is clear (0). the 
instruction 

EI VI 

will leave both the NVI and VI control bits in the FCW set (I) 

7 

49 



EX 
Exchange 

Operation: 

Flags: 

Source 
Addressing 

Mode 

R: 

IR: 

DA: 

X: 

Example: 

50 

EX dst, src 
EXB 

dst: R 
src: R, JR, DA, X 

tmp.,.- src (tmp is a temporary internal register) 
src .,.- dst 
dst .,.- tmp 

The contents of the source operand are exchanged with the contents of the destina­
tion operand. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction. Format 

EX Rd, Rs 110110110Jwi Rs I Rd I 6 110110ll0Jwi Rs I Rd I EXB Rbd, Rbs 

EX Rd, @Rsl I 0 0 11 0 1 1 0 Jwi Rs. 0 I Rd I 12 10011011 oJwi Rs.O I I EXB Rbd, @Rsl Rd 

EX Rd, address IOl1 1011 0lwl00001 Rd I 01110110lwl00001 Rd I EXB Rbd, address 15 SS I address 1 o I segment-l offset I 
01110110lwl00001 Rd 

SL 11 segment 10000 0000 
offset 

EX Rd, addr(Rs) [011101101",,1 RHO 1 Rd I 01110110lwl R .. O I Rd I 
EXB Rbd, addr(Rs) 16 SS 

r address 1 01 segment ·1 offset 1 
01110110 lwl RHO 1 

SL 11 segment 10000 

offset 

If register RO contains 8 and register R5 contains 9, the statement 

EX RO,R5 

Rd 

0000 

will leave the values 9 in RO, and 8 in R5. The flags will be left unchanged. 

Note 1: Word register in nonsegmented mode, register pair in segmented-mode. 

Cycles 

6 

12 

16 

18 

16 

19 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

EXTS 
Extend Sign 

EXTSB dst 
EXTS 
EXTSL 

Byte 
if dst (7) 

Word 
if dst (15) 

Long 
if dst (31) T 

dst: R 

o then dst (8:15) +- 000 ... 000 
else dst (8:15) +- 1l!".111 

o then dst (16:31) +- 000 ... 000 
else dst (16:31) +- 11!".111 

o then dst (32:63) +- 000 ... 000 
else dst (32:63) +- 11!...11l 

The sign bit of the low-order half of the destination operand is copied into all bit 
positions of the high-order half of the destination. For EXTS, the destination is a 
register pair; for EXTSL, the destination is a register quadruple. 

This instruction is useful in multiple precision arithmetic or for conversion of small 
signed operands to larger signed operands (as, .for example, before a divide), 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

EXTSB Rd 1101110001 I Rd 10000 1 11 1101110001 I Rd 10000 1 

EXTS RRD 1101110001 I Rd 11010 1 11 1101110001 I Rd 11010 1 

EXTSL RQd 1101110001 I Rd 10111 1 11 1101110001 I Rd 10111 1 

If register pair RR2 (composed of word registers R2 and R3) contains %12345678, 
the statement 

EXTS RR2 

will leave the value %00005678 in RR2 (because the sign bit of R3 was 0). 

11 

11 

11 

51 



HALT 
Halt 

Operation: 

Flags: 

Privileged 

The CPU operation is suspended until an interrupt or reset request is rec!"ived. This 
instruction is used to synchronize the Z8000 with external events, preserving its state 
until an interrupt or reset request is honored. After an interrupt is serviced, the 
instruction following HALT is executed. While halted, memory refresh cycles will 
still occur, and BUSREQ will be honored. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

HALT 

52 

Syntax Instruction Format Cycles! Instruction Format 

I 01 111010 I 00000000 I 8+3n I 01111010 I 00000000 

Note 1: Interrupts dre recogmzed at the end of each 3-cycle period; thus n = number of penods WIthout 
Interruptlon. 

Cycles! 

I 8+3n 



Operation 

Flags: 

Source 
Addressing 

Mode 

IR: 

DA: 

Example: 

Privileged IN (SIN) 
(Special) Input 

IN dst, src 
INB 
SIN dst, src 
SINB 

dst +- src 

dst: R 
src: JR, DA 

dst: R 
src: DA 

The contents of the source operand, an Input or Special Input port, are loaded into 
the destination register. IN and INB are used for normal 1/0 operation; SIN and 
SINB are used for Special 1/0 operation. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

IN Rd1, @Rs 100111110I wi 1 I 1001111101w1 Rs Rd 10 Rs 1 Rd I INB Rbd1, @Rs 

IN Rd, port Lool111011 wl Rd 1010si 1001111011wl Rd 1010si 
INB Rbd, port 12 

I port I I port I 
SIN Rd, port 
SINB Rbd, port 

If register R6 contains the 1/0 port address %0123 and the port %0123 contains 
%FF, the statement 

INB RH2, @R6 

will leave the value %FF in register RH2. 

Note 1. Word register In nonsegmented mode; register pair in segmented mode. 

10 

12 

53 



INC 
Increment 

Operation: 

Flags: 

Addressing 
Mode 

R: 

IR: 

DA: 

X: 

Example: 

54 

INC dst, src 
INCB 

dst -- dst + src (src = 1 to 16) 

dst: R, IR, DA, X 
src: 1M 

The source operand (a value from 1 to 16) is added to the destination operand and 
the sum is stored in the destination. Two's complement addition is performed. The 
source operand may be omitted from the assembly language statement and defaults 
to the value 1. 

The value of the source field in the instruction is one less than the actual value of the 
source operand. Thus, the coding in the instruction for the source ranges from 
o to 15, which corresponds to the source values l.to 16. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign 

and the result is of the opposite sign; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

INC Rd, #n 
INCB Rbd, #n 110 110 1OO1wi Rd 1 n - 11 

INC @Rd1, #n 1001101 o o \wi Rd .. O 1 n -11 INCB @Rd1, #n 

INC address. #n 1011101001w100001n-11 INCB address. #n 
[ address J 

INC addr(Rd), #n 
101110100lwi Rd .. O 1 n -11 INCB addr(Rd), #n 

1 address 1 

If register RH2 contains %21, the statement 

INCB RH2,#6 

will leave the value %27 in RH2. 

4 

11 

13 

14 

Segmented Mode 

Instruction Format 

11 01 1 01OO1wi Rd 1 n - 11 

100110100IwIRd .. 0In-11 

SS 011101001w100001n-11 
o I segment I offset [ 

011101 oolwl 0000 1 n-1 
SL' 11 segment I 0 0 0 0 0000 

offset 

01j10100lwl Rd,,0In-1[ 
SS 

o I 8egment I offset I 

01110100lwl Rd .. O In-1 
SL 11 segment I 0 0 0 0 0000 

offset 

Note I: Word register in nonsegmented mode, register pair in segmented mode. 

Cycles 

4 

11 

14 

16 

14 

17 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

Privileged IND (SIND) 
(Special) Input and Decrement 

IND dst, src, r 
INDB 
SIND 
SINDB 

dst +- src 

dst: IR 
src: IR 

AUTODECREMENT dst (by 1 byte, by 2 if .word) 
r+-r-l . 

This instruction is used for block input of strings of data. IND and INDB are used for 
normal 110 operation; SIND and SIN DB are used for special I/O operation. The con­
tents of tKe I/O port addressed by the source word register are loaded into the 
memory location addressed by the destination register. I/O port addresses are 16 
bits. The destination register is then qecremented by one if a byte instruction or by 
two if a word instruction, thus moving the pointer to the previous element of the 
string in memory. The word register specified by "r" (used as a counter) is then 
decremented by one. The address of the I/O port in the source register is 
unchanged. 

c: Unaffected 
Z: Unaffected 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
0: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

IND @Rdl, @Rs, r 
IN DB @Rdl, @Rs, r 

100111 ollwl RI" olooosl 21 100111 ollwlRI" olooosl 
21 

100001 r I Rd" OJ 1000J LooooJ r JRd"oL1000J SIND @Rdl, @Rs, r 
SINDB@Rdl , @Rs, r 

In segmented mode, if register RR4 contains %02004000 (segment 2, offset %4000). 
register R6 contains the 110 port address %0228, the port %0228 contains %05B9, 
and register RO contains %0016, the instruction 

IND @RR4, @R6, RO 

will leave the value %05B9 in location %02004000, the value %02003FFE in RR4, 
and the value %0015 in RO. The V flag will be cleared. Register R6 still contains the 
value %0228. In nonsegmented mode, a word register would be used instead of 
RR4. 

Nole 1: Word register in nonsegmented mode. register pair in segmented mode. 

55 



INDR (SINDR) Privileged 

(Special) Input, Decrement and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

56 

INDR dst, src, r 
INDRB 
SINDR 
SINDRB 

dst +- src 

dst: IR 
src: IR 

AUTOOECREMENT dst (by I if byte, by 2 if word) 
r+-r-l 
repeat until r = 0 

This instruction is used for block input of strings of data. INOR and INORB are used 
for normal 1/0 operation; SINOR and SINORB are used for special 1/0 operation. 
The contents of the I/O port addressed by the source word register are loaded into 
the memory location addressed by the destination register. 1/0 port addresses are 16 
bits. The destination register is then decremented by one if a byte instruction, or by 
two if a word instruction, thus moving the pointer to the previous element of the 
string in memory. The word register specified by "r" (used as a counter) is then 
decremented by one. The address of the I/O port in the source register is 
unchanged. The entire operation is repeated until the result of decrementing r is 
zero. This instruction can input from I to 65536 bytes or 32768 words (the value for r 
must not be greater than 32768 for INOR or SINOR). 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven more 
cycles should be added to this instruction's execution time for each interrupt request 
that is accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

INDR @Rd1, @Rs, r 
INDRB @Rd1, @Rs, r 

SINDR @Rd1, @Rs, r 
SINDRB @Rd1, @Rs, r 

Nonsegmented Mode 

Instruction Format 

10011101IwIR ... ollooSI 

10000 1 r IRd .. olooooJ 

Segmented Mode 

Cycles2 Instruction Format Cycies2 

11 + 10n 1001110 11wl R ... 0110 0 S I 11 + 10n 
10 0 0 0 1 r IRd .. olooool 



Example: 

Privileged INDR (SINDR) 
(Special) Input, Decrement and Repeat 

If register RI contains %202A, register R2 contains the Special 1/0 address %OAFC, 
and register R3 contains 8, the instruction 

SIN ORB @RI, @R2, R3 

will input 8 bytes from the special I/O port OAFC and leave them in descending 
order from %202A to %2023. Register RI will contain °/i;2022, and R3 will contain O. 
R2 will not be affected. The V flag will be set. This example assumes nonsegmented 
mode; in segmented mode, RI would be replaced by a register pair. 

Note 1: Word register in nonsegmented mode, register pair In segmented mode. 
Note 2: n = number of data elements transferred. 

57 



INI (SINI) Privileged 

(Special) Input and Increment 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

58 

INI dst, src, r 
INIB 
SIN! 
SINIB 

dst __ src 

dst: IR 
src: IR 

AUTOINCREMENT dst (by 1 if byte, by 2 if word) 
r ... r'- 1 

This instruction is used for block input of strings of data. INI, INIB are used for nor­
mal 1/0 operation; SINI, SINIB are used for special 1/0 operation. The contents of 
the I/O port addressed by the source word register, are loaded into the memory loca­
tion addressed by the destination register. 1/0 port addresses are 16 bits. The 
destination register is then incremented by one if a byte instruction, or by two if a 
word instruction, thus moving the pointer to the next element of the string in 
memory. The word register specified by "rn (used as a counter) is then decremented 
by one. The address of the 1/0 port in the source register js unchanged. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set jf the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

INI @Rd1, @Rs, r 
INIB @Rdl. @Rs. r roo 111 0 l1w1RI '" 011 00 SJ 21 100111011w1RI",01100sl 

SINI @Rdl. @Rs. r 100001 r IRd",0110001 10000 1 r IRd '" 011000 
SINIB @Rdl. @Rs, r 

Cycles 

21 

In nonsegmented mode, if reg,ister R4 contains %4000, register R6 contains the 1/0 
port address %0229, the port %0229 contains %B9, and register RO contains %0016, 
the instruction 

INIB @R4, @R6, RO 

will leave the value %B9 in location %4000, the value %4001 in R4, and the value 
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In 
segmented mode, R4 would be replaced by a register pair. 

Note 1: Word register in nonsegmented mode, register .pair in segmented mode. 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

Privileged INIR (SINIR) 
(Special) Input, Increment and Repeat 

INIR dst, src, r 
INIRB 
SINIR 
SINIRB 

dst +- src 

dst: IR 
src: lR 

AUTOINCREMENT dst (by 1 if byte, by 2 if word) 
r+-r-l 
repeat until r = O. 

This instruction is used for block input of strings of data. INlR and INlRB are used 
for normal I/O operation; SINlR and SINIRB are used for special I/O operation. The 
contents of the I/O port addressed by the source word register are loaded into the 
memory location addressed by the destination register. I/O port addresses are 16 
bits. The destination register is then incremented by one if a byte instruction, or by 
two if a word instruction, thus moving the pointer to the next element in the string. 
The word register specified by "r" (used as acounter) is then decremented by one. 
The address of the I/O port in the source register is unchanged. The entire operation 
is repeated until the result of decrementing r is zero. This instruction can input from 
1 to 65536 bytes or 32768 words (the value for r must not be greater than 32768 for 
INIR or SINIR). 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven more 
cycles should be added to this instruction's execution time for each interrupt request 
that is accepted. 

c: Unaffected 
Z: Unaffected 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

!NIH @Rd1, @Rs. r 
!NIRB @Rd1, @Rs. r 
SINIR @Rd1, @Rs. r 
SINIHB @Rd1• @Rs. r 

, Nonsegmented Mode 

Instruction Format 

10011101IwIR ... 01000sl 

10000 I r IRd"olooool 

Segmented Mode 

Cycles Instruction Format Cycles 

11 + 10n 10011101IwIR ... 01000sl 11 +10n 
10000 I r IRd"olooool 

59 



INIR (SINIR) Privileged 

(Special) Input, Increment and Repeat 

Example: 

60 

In nonsegmented mode, if register RI contains %2023, register R2 contains the I/O 
port address %0551, and register R3 contains 8, the statement 

INIRB @RI, @R2, R3 

will input 8 bytes from port %0051 and leave them in ascending order from %2023 
to %202A. Register RI will contain %202B, and R3 will contain O. R2 will not be 
affected. The V flag will be set. In segmented mode, a register pair must be used 
instead of R 1. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: n ::: number 0/ data elements transferred. 



Operation: 

Flags: 

Addressing 
Mode 

Example: 

Privileged IRET 

IRET 

Nonsegmented 
SP +- SP + 2 (Pop "identifier") 
PS +- @SP 
SP +- SP + 4 

Interrupt Return 

Segmented 
SP +- SP + 2 (Pop "identifier") 
PS +- @SP 
SP +- SP + 6 

This instruction is used to return to a previously executed procedure at the end of a 
procedure entered by an interrupt or trap (including a System Call instruction). 
First, the "identifier" word associated with the interrupt or trap is popped from the 
system processor stack and discarded. Then contents of the location addressed by 
the system processor stack pointer are popped into the program status (PS), loading 
the Flags and Control Word (FCW) and the program counter (PC). The new value 
of the FCW is not effective until the next instruction, so that the status pins will not 
be affected by the new control bits until after the IRET instruction execution is com­
pleted. The next instruction executed is that addressed by the new contents of the 
PC. The system stack pointer (R]5 if nonsegmented, or RR]4 if segmented) is used to 
access memory. When using a 2800], the operation of IRET in non segmented mode 
is undefined. A 2800] must be in segmented mode when an IRET instruction is 
performed. 

c: Loaded from processor stack 
Z: Loaded from processor stack 
S: Loaded from processor stack 
P/V: Loaded from processor stack 
D: Loaded from processor stack 
H: Loaded from processor stack 

Nonsegmented Mode Segmented Mode 
Assembler Language 

LRET 

Syntax Instruction Format Cycles Instruction Format Cycles 

I 01111011 I 00000000 I 13 I 0111101 1 100000000 I 16 

In the nonsegmented 28002 version, if the program counter contains %2550, the 
system stack pointer (R]5) contains %3000, and locations %3000, %3002 and %3004 
contain %7F03, a saved FCW value, and %1004, respectively, the instruction 

IRET 

will leave the value %3006 in the system stack pointer and the program counter will 
contain %] 004, the address of the next instruction to be executed. The program 
status will be determined by the saved FCW value. 

61 



IP 
Jump 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

1ft: 

DA: 

X: 

Example: 

62 

JP cc, dst dst; IR, DA, X 

If cc is satisfied, then PC +- dst 

A conditional jump transfers program control to the destination address if the 
condition specified by "cc" is satisfied by the flags in the FCW. See list of condi­
tion codes. If the condition is satisfied, the program counter (PC) is loaded with 
the designated address; otherwise, the instruction following the IP instruction is 
executed. 

No flags affected 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format 

lP cc, @RdJ 
1001011110 I Rd"O I 

lP cc, address 
1011011110100001 

1 address 

lP cc, addr(Rd) 
1011 011110 I Rd"O 1 
I address 

If the carry flag is set, the statement 

IP C, %1520 

cc I 
cc 1 

I 

cc J 
J 

Cycles2 

10/7 

717 

8/8 

Segmented Mode 

Instruction Format 

1001011110 I Rd"ol cc I 
011011110100001 cc 

88 
o I segment I offset 

011011110100001 cc 

8L 11 a8gment 10000 0000 

offsat 

88 011 011110 I Rd"O I cc 

o I segmant I offset 

011011110 I Rd"OI cc 

8L ~I segment I 0 0 0 0 0000 

offaa. 

Cycles2 

15/7 

8/8 

10/10 

11/11 

11/11 

replaces the contents of the program counter with %1520, thus transferring control 
to that location. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 
Note 2: The two values correspond to jump taken and jump not taken. 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

RA: 

Example: 

JR 
Jump Relative 

JR cc, dst ds!: RA 

if cc is satisfied then PC .... PC + (2 x displacement) 

A conditional jump transfers program control to the destination addresc if the condl­
tion.specified by "cc" is satisfied by the flags in the FCW. See list of condition codes. 
If the condition is satisfied, the program counter (PC) is loaded 
with the designated address; otherwise, the instruction following the JR instruction is 
executed. The destination address is calculated by doubling the displacement in the 
instruction, then adding this value to the updated value of the PC to derive the 
destination address. The updated PC value is taken to be the address of the instruc­
tion byte following the JR instruction, while the displacement is an 8-bit signed value 
in the range -128 to + 127. Thus, the destination address must be in the range -254 
to + 256 bytes from the start of the JR instruction. In the segmented mode, the PC 
segment number is not affected. 

The assembler automatically calculates the displacement by subtracting the PC value 
of the following instruction from the address given by the programmer. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction F armat Cycles 

JR cc, address 
11110 I cc ! displacement I 6 111 1 0 I cc I displacement I 6 

If the result of the last arithmetic operation executed is negative, the following four 
instructions (which occupy a total of twelve bytes) are to be skipped. This can be 
accomplished with tl;le instruction 

JR MI, $ + 14 

If the S flag is not set, execution continues with the instruction following the JR. 
A byte-saving form of a jump to the label LAB is 

JR LAB 

where LAB must be within the allowed range. The condition code is "blank" in this 
case, and indicates that the jump.is always taken. 

63 



LD 
Load 

Operation: 

Flags: 

LDdst, src 
LDB 
LDL 

dst __ src 

dst: R 
src: R, IR, DA, x, BA, BX 

or 
dst: lR, DA, x, BA, BX 
src: R 
or 
dst: R, IR, DA, X 
src: 1M ' 

The contents of the source are loaded into the destination. The contents of the source 
are not affected. 

There are three versions of the Load instruction: Load into a register, load into 
memory and load an immediate value. 

No flags affected 

Load Register 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

R: LD Rd, Rs 
110110000H Rs Rd I 3 110110000H Rs I Rd 3 

LDB Rbd, Rbs 

LDL RRd, RRs 
1101010100 I RRs RRd I 5 11010101001 RRs I RRd 5 

IR: LD Rd, @Rsi 
1001100001 w I Rs",O Rd I 7 1001100001 w I RHO I Rd 7 

LDB Rbd, @Rsi 

LDL RRd, @Rsi 
1001010100 I Rs",O RRd I 11 

100 1 0101001RS*ol RRd 11 

DA: LD Rd, address 
LDB Rbd, address 10 111 000 0 I w I 0000 I Rd J 

9 
55 0111 oooolwi 0000 I Rd I 10 

I address I o I segment I offset I 

01110000lwlooool Rd 

5L 11 segment 10000 0000 12 

offset 

, LDL RRd, address 
\01 1 01 01 0·0 I 0000 I RRd I 

12 
55011010100 10000 1 RRd I 13 

I address I o I segment I offset I 

011010100 10000 lARd 

5L 11 segment 100000000 15 
offset 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

64 



LD 
Load 

Load Register (Continued) 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

X: LD Rd, addr(Rs) r01T1 oooolwi R .. O I Rd I o 111 00 0 0 I w I Rs # a I Rd 
LDB Rbd, addr(Rs) 

I 1 10 55 10 
address a I segment! offset 

o1J,oooQTwJ R .. O T Rd 

5L 11 segmentlo 0 0 0 0000 13 
offset 

LDL RRd, addr(Rs) ro,T 0101001 Rs*o-I RRd I 01 I 01 0 1 a 0 I As"* 0 I RRd 
13 55 13 

r address 1 o I segment I offset 

5L 

0,1010100 I R"~~ 
1 I segment I 00 0 0 a 0 0 0 16 

offset 

BA: LD Rd, Rsl (#disp) 
[0 Of" 0 0 OT w1 Rs*ol Rd 1 00 I, 1 0 0 0 I w I Rs * 0 I Rd 

LDB Rbd, Rsl(#disp) 14 14 
I displacement I displacement 

LDL RRd, Rsl (#disp) [oQT'1010,l Rs*ol Rd 1 0011' 010' I RHO I Rd 
17 17 

I displacement I displacement 

BX: LD Rd, Rsl (Rx) 
101Jl1000JWJ Rs*O 1 Rd J 01 1'1 0001.w1 RHO 1 Rd LDB Rd, Rsl(Rx) 
I 00 0 0 I Rx I 0 000 0 000 I 14 

00001 Rx 10000 0000 
14 

LDL RRd, Rsl(Rx) 1011' 1010 1'IR .. o1 Rdl o iT 1 1 0 , 01'-' R .. 0 r Rd 1 
10000 I Rx 10000 0000 

17 
00001 Rx 10000 00001 

17 

Load Memory 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

IR: LD@Rdl , Rs 1001,o"'lw1Rd*01 Rs I LDB @Rdl , Rbs 
8 100 110 '11lwi Rd * 01 Rs 

I 8 

LDL@Rdl , RRs 1001011,01I Rd *01 RRs I 11 100 1 0' , , 01 I Rd * 0 I RRs I 11 

Note 1: Word register iO non segmented mode, regIster pair In segmented mode. 

65 



LD 
Load 

Load Memory (Continued) 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

DA: LD address, Rs fOlTl 01111w1 0000 I Asl 55101110-1111wl000ol As 
LDB address, Rbs. 11 12 

I address 1 o I segment I offset 

o11101111wl00001 As 

5L 11 segment 10000 0000 14 

offset 

DA: LDL address, RRs 
1011011101100001 AAsl 551011011101100001 AAs 

14 15 
f address I o I segment I offset 

a 11 a 1 1 1 a 1 I a a a a I AAs 

5L 11 segment 100000000 17 
offset 

X: LD addr(Rd). Rs f01[1011 tfwl Ad,.01 As 1 55 011101111wl Ad,.ol As 
LDB addr(Rd), Rbs 12 12 

I address I 01 segment I offset 

011101111wl Ad,.0l As 

5L 11 segment 10000 0000 15 
offset 

LDR addr(Rd), RRs 1011 a 11 1 a 1 I Ad,. a I AAs I 55 a 11 a 1110 1 I Ad,.O I AAs 15 15 
I address I o I segment I offset 

a 11 0 1 1 1 a 1 I Ad,. a I AAs 

5L 11 segment 100000000 18 

offset 

BA: LD Rdl (#disp). Rs foOTllool!wTAd,.oT As ! 0011100 llwl Ad,.O I As 
LDB Rdl(#disp), Rbs 14 14 

1 displacement 1 1 displacement 

LDL Rdl (#disp). RRs [0011101111 Ad,.ol AAs I 001110111 I Ad,.ol AAs 
17 17 r displacement I displacement 

BX: LD Rdl (Rx). Rs 
fo1[11001[wl Ad,.ol Rs 1 01111 oOllwl Ad,.O I As LDB Rdl(Rx). Rbs 
f 00001 Ax 10000 00001 

14 
[0000 I Ax 10000 0000 

14 

LDL Rdl(Rx), RRs 
fo iT 110 111 T Ad,.01 AAs 1 a 11110 111 I Ad,.O I AAs 

10000 I Ax 10000 0000 I 17 
00001 Ax 10000 0000 

17 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

66 



LD 
Load 

Load Immediate Value 

Destination 
Addressing 

Mode 

R: 

IR: 

DA: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

LD Rd, #data 
00110000110000 I Rd 001100001 ooooJ Rd 

7 
dats data 

LDB Rbd, #data2 
001100000 10000 1 Rd oo! 100000 000 oj Rd 

7 
data I data data data 

11100 I Rd I data I 5 11100 I Rd I data I 
LDL RRd, #data 001 0 1 0 1 00 I 0000 I RRd 001010100 00001 RRd 

31 data (high) 16 11 31 data (high) 16 

15 data (low) 0 15 data (low) 0 

LD @Rdl , Hdata 001001101 IRd ",01 0101 001001101 Rd '" 01 0101 
11 

data data 

LDB @Rd1, Hdata 0010011001Rd",010101 001001100 Rd",010101 
11 

data I dats data data 

LD address, #data 
0110011011000010101 011 001101 00001 0101 

address 14 55 01 segment offset 

data data 

011 001101 00001 0101 

11 segment 0000 0000 
5L 

offset 

data 

LDB address, #data 011001100 I 00001 0101 011001100 00001 0101 

address 14 55 01 segment offset 

data I data dats data 

011001100 00001 0101 

11 segment 0000 0000 
5L 

offset 

data data 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: Although two formats exist for "LOB R, 1M", the assembler always uses the short format. In this case, the 
"src field" In the instruction format encoding contams the source operand. 

Cycles 

7 

7 

5 

11 

11 

11 

15 

17 

15 

17 

67 



LD 
Load 

Load Immediate Value (Continued) 

Destination 
Addressing 

Mode 

X: 

Example: 

68 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LD addr(Rd), #data 
0110011011 Rd,010101 011 001101 Rd.010101 

address 15 55 01 segment offset 15 
data data 

011 001101 Rd:i:-O!0101 

5L 
11 segment 0000 0000 

18 
offset 

data 

LDB addr(Rd), #data 
011 00 i 1 00 1 Rd. 0 1 01 01 011001100 Rd*oj0101 

address 15 55 01 segment offset 15 

data 1 data data data 

01\001100 Rd=l=-O!OI01 

11 segment 0000 0000 
5L 18 

offset 

data data 

Several examples of the use of the Load instruction are treated in detail in Chapter 4 
under addressing modes. 



Operation: 

Flags: 

Source 
Addressing 

Mode 

DA: 

X: 

BA: 

BX: 

LOA 
Load Address 

LDA dst, src dst: R 
src: DA, x, BA, BX 

dst .. - address (src) 

The address of the source operand is computed and loaded into the destination. The 
contents of the source are not affected. The address computation follows the rules for 
address arithmetic. The destination is a word register in nonsegmented mode, and a 
register pair in segmented mode. 

In segmented mode, the address loaded into the destination has an undefined value 
in all reserved bits (bits 16·23 and bit 31). However, this address may be used by 
subsequent instructions in the indirect based or base-index addressing modes 
without any modification to the reserved bits. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDA Rd1, address 
1011110110100001 Rd 1 55 101 11 101 1 0 I 0000 I RRd 

1 I 
12 13 

address o I segment I offset 

0111 1 01 1 0 I 0000 I RRd 

5L 11 segment I 0 0 a a 0000 15 
offset 

LDA Rd1, addr(Rs) 
1011110110 I RHO I Rd 1 

13 
o 1 11 1 0 1 1 0 I Rs * 0 I RRd 1 

13 
1 address I S5 0 L segment! offset I 

a 1 ]1 1 0 1 1 0 J Rs *- 0 I RRd 

5L 1 I segment I 0 a a 0 000 0 16 
offset 

lOA Rd1, Rsl (#disp) 
1001101001 RHO I Rd 1 00110100 I Rs*O I Rd 1 

1 1 
15 

1 
15 

displacement displacement 

lOA Rdl., Rsl (Rx) 
1 01 1 1 0 1 00 I RHO I Rd 1 15 

01110100 I Rs*O I Rd 1 
15 

1 0000 1 Rx I 0000 000 oj 00001 Rx 10000 ooooJ 

69 



LDA 
Load Address 

Examples: LDA R4,STRUCT 

LDA RR2, «3» 8(R4) 

LDA RR2,RR4(#8) 

lin nonsegmented mode, register R4 is loaded! 
!with the nonsegmented address of the location! 
!named STRUCT! 

lin segmented mode, if index register R4! 
!contains %20, then register RR2 is loaded! 
!with the segmented address ( «3» , offset %28)! 
lin segmented mode, if base register RR4! 
!contains %01000020, then register RR2 is loaded! 
!with the segment address « 1 » %28! 
!(segment I, offset %28)! 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

70 



Operation: 

Flags: 

Source 
Addressing 

Mode 

RA: 

Example: 

LDAR dst, src 

dst .. - ADDRESS (src) 

dst: R 
src: RA 

LDAR 
Load Address Relative 

The address of the source operand is computed and loaded into the destination. The 
contents of the source are not affected. The destination is a word register in 
nonsegmented mode, and a register pair in segmented mode. In segmented mode, 
the address loaded into the destination has all "reserved" bits (bits 16-23 and bit 31) 
cleared to zero. 

The relative addressing mode is calculated by adding the displacement in the 
instruction to the updated value of the program counter (PC) to derive the address. 
The updated PC value is taken to be the address of the instruction byte following the 
LDAR instruction, while the displacement is a 16-bit signed value in the range 
-32768 to + 32767. The addition is performed following the rules of address 
arithmetic, with no modifications to the segment number in segmented mode. Thus 
in segmented mode, the source operand must be in the same segment as the LDAR 
instruction. 

The assembler automatically calculates the displacement by subtracting the PC value 
of the following instruction from the address given by the programmer. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDAR Rd1, address 
100110100100001 Rd 1 l 00110100 Joooo I.~ 

15 
1 

LDAR R2, TABLE 

LDAR RR4, TABLE 

displacement I l displacement 

lin nonsegmented mode, register R2 is loaded! 
!with the address of TABLE! 

lin segmented mode, register pair RR4 is! 
!loaded with the segmented address of TABLE,! 
!which must be in the same segment as the program! 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

15 

71 



LDCTL Privileged 

Load Control 

Operation: 

LDCTL dst, src 

dst .... src 

dst: CTLR 
src: R 
or 
dst: R 
src: CTLR 

This instruction loads the contents of a general purpose register into a control 
register, or loads the contents of a control register into a general-purpose register. 
The control register may be one of the following CPU ~egisters: 

FCW 
REFRESH 
PSAPSEG 
PSAPOFF 
NSPSEG 
NSPOFF 

Flag and Control Word 
Refresh Control 
Program Status Area Pointer - segment number 
Program Status Area Pointer - offset 
Normal Stack Pointer - segment number 
Normal.Stack Pointer - offset 

The operation of each of the variants of the instruction is detailed below. The ones 
which load data into a control register are described first, followed by the variants 
which load data from a control register into a general purpose register. Whenever 
bits are marked reserved, the corresponding bit in the source register must be either 
o or the value returned by a previous load from the same control register. For com­
patibility with future CPUs, programs should not assume that memory copies of con­
trol registers contain Os, nor should they store data in reserved fields of memory 
copies of control registers. 

Load Into Control Register 
LDCTL FCW, Rs 

Operation: 

Operation: 

72 

FCW (2:7) .... Rs (2:7) 
FCW (11:15) .... Rs (11:15) 

Fcw:§E~~ 

LDCTL REFRESH, Rs 

REFRESH (1:15)"" Rs (1:15) 

Rs: 

REFRESH: 
15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0 

I ! I ! ! ! I ! ! I ! ! ! ! ! I I 
+ + + + + + + + + + + + + + + I re I rate I. counter .... reser.ved 



Operation: 

Operation: 

Operation: 

Privileged LDCTL 
Load Control 

LDCTL NSPSEG, Rs 

NSPSEG (0: IS) .. - Rs (0: IS) 

15 141312 11 10 9 8 7 6 5 4 3 2 1 0 

Rs: 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1 

+ + + + + + + + + + + + + + + + 
NSPSEG:I 1 

In segmented mode, the NSPSEG register is the normal mode RI4 and contains the 
segment number of the normal mode processor stack pointer which is otherwise 
inaccessible for system mode. 

In nonsegmented mode, RI4 is not used as part of the normal processor stack 
painter. This instruction may not be used in nonsegmented mode. 

LDCTL NSPOFF, Rs 
NSP, Rs 

NSPOFF (0: IS) .- Rs (0: 15) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Rs: I! !!!!!!!!!!!!! 1 

+ + + + + + + + + + + + + + + + 
*NSPOFF: 1 1 

*NSP in nonsegmented mode 

In segmented mode, the NSPOFF register is RI5 in normal mode and contains the 
offset part of the normal processor stack pointer. In nonsegmented mode, RI5 is the 
entire normal processor stack painter. 

In nonsegmented Z8002, the mnemonic "NSP" should be used in the assembly 
language statement, and indicates the sarile control register as the mnemonic 
"NSPOFF" 

LDCTL PSAPSEG, Rs 

PSAPSEG (8: 14) .- Rs (8: 14) 

h 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Rs:I~~~r.~~~~~~~~~~ 
l+'+'+'+l+' 

PSAPSEG:.I segment number _ 

+ reserved t 

The PSAPSEG register may not be used in the nonsegmented Z8002. In the 
segmented Z800l, care must be exercised when changing the two PSAP register 
values so that an interrupt occurring between the changing of PSAPSEG and 
PSAPOFF is handled correctly. This is typically accomplished by first disabling 
interrupts before changing PSAPSEG and PSAPOFF. 

73 



LDCTL Privileged 

Load Control 

Operation: 

Operation: 

Operation: 

74 

LDCTL PSAPOFF, Rs 
PSAP, Rs 

PSAPOFF (8: 15) .. - Rs (8: 15) 

15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0 

Rs: I , I , I I I , I , , I , , , , I 
+ + + + + + + + 

*PSAP in non •• gm.nted mo~e 

In the nonsegmented Z8002, the mnemonic "PSAP" should be used in the assembly 
language statement and indicates the same control register as the mnemonic 
"PSAPOFF". In the segmented Z8001, care must be exercised when changing the 
two PSAP register values so that an interrupt occurring between the changing of 
PSAPSEG and PSAPOFF is handled correctly. This is typically accomplished by first 
disabling interrupts before changing PSAPSEG and PSAPOFF. The low order byte 
of PSAPOFF should be O. 

Load From Control Register 
LDCTL Rd, FCW 

Rd (2:7) ..- FCW (2:7) 
Rd (11:15)..- FCW (11:15) (Z8001 only) 
Rd (11: 14) ..- FCW (11: 14) (Z8002 only) 
Rd (0: 1) ..- UNDEFINED 
Rd (8: 10) ..- UNDEFINED 
Rd (15) ..- 0 (Z8002 only) 

LDCTL Rd, REFRESH 

Rd (l :8) ..- REFRESH (1 :8) 
Rd (0) ..- UNDEFINED 
Rd (9:15) ..- UNDEFINED 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 



Operation: 

Operation: 

Operation: 

Privileged LDCTL 
Load Control 

LDCTL Rd, PSAPSEG 

Rd (8: 14) -- PSAPSEG (8: 14) 
Rd (0:7) -- UNDEFINED 
Rd (15) -- UNDEFINED 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

PSAPSEG: ~~tl segment number "JI_ 
t t t t t t t 

Rd: I I , I I 
tL.------undeftned ___ ..J 

This instruction may not be used in the nonsegmented version. 

LDCTL Rd, PSAPOFF 
Rd,PSAP 

Rd (8:15) -- PSAPOFF (8:15) 
Rd (0:7) -- UNDEFINED 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

·PSAPOFF: I oftset (upper byte) _ 

t.++++++ 
Rd: I I undefined 

*PSAP in nonsegmenled mode 

In nonsegmented mode, the mnemonic PSAP should be used in the assembly 
language statement, and it indicates the same control register as the mnemonic 
PSAPOFF. 

LDCTL Rd, NSPSEG 

Rd (0: 15) +- NSPSEG (0: 15) 

15 1413 12 11 10 9 8 7 6 5 4 3 2 1 o· 

NSPSEG: I , ! . ! ! ! ! ! ! ! ! ! ! ! ! I 
+ + + t t + t + + + + t + t t t 

Rd: I I 

This instruction is not available in nonsegmented mode. 

75 



LDCTL Privileged 

Load Control 

Operation: 

Flags: 

Source 
Addressing 

Mode 

Destination 
Addressing 

Mode 

76 

LDCTL Rd, NSPOFF 
Rd, NSP 

Rd (0:15) +- NSPOFF (0:15) 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1" 0 

* NSPOFF: I , ! ! ! ! ! ! ! ! ! ! ! ! ! ! I 
~ ~ ~ ~ + + + + + + + + + + + + 

Rd: I I 
*NSP in nonsegmented mode 

In non segmented mode, the mnemonic Nsp should be used in the assembly 
language statement, and it indicates the same control register as the mnemonic 
N'SPOEF, 

No flags affected, except when the destination is the Flag and Control Word (LDCTL 
FCW, Rsl. in which case all the flags are loaded from the source register. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDCTL FCW. Rs I 01111101 I Rs 
11010 1 

7 01111101 I Rs 
11010 1 

7 

LDCTL REFRESH, Rs I 01111101 I qs 
1 1011 1 7 01111101 I Rs 

1 1011 1 
7 

LDCTL PSAPSEG, Rs 01111101 I Rs 
11100 1 7 

LDCTL PSAPOFF, Rs I 0111'1101 I Rs 
1 1101 1 7 01111101 I Rs 

1 1101 ! 7 PSAP, Rs 

LDCTL NSPSEG, Rs 0111,101 I R~ 1111 0 I 7 

LDCTL NSPOFF. Rs I 01111101 I Rs 1""1 7 01'" 101 I Rs 111111 7 NSP, Rs 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDCTL Rd, FCW I 01111101 I Rd I 0010 I 7 011'1101 . Rd 
1 0010 7 

LDCTL Rd. REFRESH I 01111101 I Rd I 0011 1 7 01' 111 0 1 Rd 
10011 7 

LDCTL Rd, PSAPSEG 01111' 01 Rd 
10100 7 

-
LDCTL Rd, PSAPOFF I 01111101 I Rd I 0101 I 7 011' 1101 Rd I 0101 7 
LDCTL Rd, PSAP 
LDCTL Rd, NSPSEG 

01111101 Rd 
10110 7 

LDCTL Rd, NSPOFF I 01111101 I Rd I 0111 1 Rd,NSP 
7 01111101 I Rd 

1 0111 7 



Operation: 

LDCTLB dst, src 

dst .. - src 

dst: FLAGS 
src: R 
or 
dst: R 
src: FLAGS 

LDCTLB 
Load Control Byte 

This instruction is used to load the FLAGS register or to transfer its contents into a 
general-purpose register. Note that this fs' not a privileged instruction. 

Load Into FLAGS Register 
LDCTLB FLAGS, Rbs 

FLAGS (2:7) ' .. - src (2:7) 

The contents of the source (a byte register) are loaded into the FLAGS register. The 
lower two bits of the FLAGS register and the entire source register are unaffected. 

Rbs: 

FLAGS: 

76543210 

I , , I I I I 0 I 0 I 
+ + + + + + I c I z i s Ip/vl 0 I H 1111 

• reserved 

Load From FLAGS Register 
LDCTLB Rbd, FLAGS 

Flags: 

dst (2:7) .. - FLAGS (2:7) 
dst (0: I) .. - 0 

The contents of the upper six bits of the FLAGS register are loaded into the destina· 
tion (a byte register). The lower two bits of the destination register are cleared to 
zero. The FLAGS register is unaffected. 

76543210 

FLAGS: I c I z I s IPNI 0 I H _ 

l l l l l l 
Rbd: I I 0 I 0 I 

When the FLAGS register is the destination, all the flags are loaded from the 
source. When the FLAGS register is the source, none of the flags are affected. 

77 



LDCTLB 
Load Control Byte 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDCTLB FLAGS, Rbs I 100011001 R. 
11001 1 7 1 10001100 

1 
R. 11001 1 7 

LDCTLB Rbd, FLAGS 
1 10001100 I Rd 10001 1 7 1 10001100 

1 
Rd 10001 1 7 

78 



Operation: 

Flags: 

AddreSSing 
Mode 

IR: 

Example: 

LDD 
Load and Decrement 

LDD dst, src, r 
LDDB 

dst.- src 

dst: IR 
src: IR 

AUTO DECREMENT dst and src (by I if byte, by 2 if word) 
r'- r - I 

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the 
destination register. The source and destination registers are then decremented by 
one if LDDE, or by two if LDD, thus moving the pOinters to the previous elements in 
the strings. The source destination, and counter registers must be separate and non­
overlapping registers. The word register specified by "r" (used as a counter) is then 
decremented by one. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

LDD@Rsl. @Rd1, r 
LDDB @Rsl, @Rd1, r 110111 011wlRa '" 011 0011 

20 
1101 1 1 01 I w I Ra '" 0 11 001 I 

I 0000 I r IRd",01 1000 1 10 000 I r IRd",ol 10oo l 

Cycles 

20 

In nonsegmented mode, if register Rl contains %202A, register R2 contains %404A, 
the word at location %404A contains %FFFF, and register R3 contains 5, 
the instruction 

LDD @Rl, @R2, R3 

will leave the value %FFFF at location %202A, the value %2028 in Rl, the value 
%4048 in R2, and the value 4 in R3. The V flag will be cleared. In segmented mode, 
register pairs would be used instead of R I and R2. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

79 



LDDR 
Load. Decrement and Repeat 

Operation: 

Flags: 

AddreSSing 
Mode 

IR: 

80 

LDDR dst, src, r 
LDDRB 

dst +- src 

dst: IR 
src: IR 

AUTODECREMENT dst and src (by I if byte, by 2 if word) 
r+-r-I 
repeat until r = 0 

This instruclion is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the . 
destination register. The source and destination registers are then decremented by 
one if LDDRB, or by two if LDDR, thus moving the pOinters to the previous elements 
in the strings. The word register specified by "r" (used as a counter) is then 
decremented by one. The entire operation is repeated until the result of decremen­
ting r is zero. The source, destination, and counter registers must be separate and 
non-overlapping registers. This instruclion can transfer from I to 65536 bytes or from 
I to 32768 words (the value for r must not be greater than 32768 for LDDR). 

The effect of decrementing the pOinters during the transfer is important if the source 
and destination strings overlap with the. source string starting at a lower memory 
address. Placing the pOinters at the highesladdress of the strings and decrementing 
the pOinters ensures that the source string will be copied without destroying the 
overlapping area. 

This instruclion can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven cycles 
should be added to this instruclion's execution time for each interrupt request that is 
accepted. 

c: Unaffecled 
Z: Undefined 
S: Unaffected 
V: Set 
D: U naffecled 
H: U naffecled 

Assembler Language 
Syntax 

LDDR @Rdl , @Rsl, r 
LDDRB @Rdl, @Rsl, r 

Nonsegmented Mode 

Instruction Format 

11 D1 1 1 D1 Iwl Rs 11 D D 1 I 
laD a a I r I Rd I Doool 

Segmented Mode 

Cycles2 Instruction Format Cycles2 

11 D1 1 1 D1 Iwl Rs 11 DO 1 I 
11 +9n 11 +9n 

16Doo l r I Rd 100Doi 



Example: 

LDDR 
Load. Decrement and Repeat 

In nonsegmented mode, if register Rl contains %202A, register R2 contains %404A, 
the words at locations %4040 through %404A all contain %FFFF, and register R3 
contains 6, the instruction 

LDDR @Rl, @R2, R3 

will leave the value %FFFF in the words at locations %2020 through %202A, the 
value %201E in Rl, the value %403E in R2, and 0 in R3. The V flag will be set. In 
segmented mode, register pairs would be used instead of Rl and R2. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: n = number of data elements transferred. 

81 



LDI 
Load and Increment 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

82 

LDI dst, src, r 
LDIB 

dst +- src 

dst: IR 
src: IR 

AUTOINCREMENT dst and src (by I if byte, by 2 if word) 
r+-r-l 

This instruction is used for block transfers of strings of data. The contents of the loca· 
tion addressed by the source register are loaded into the location addressed by the 
destination register. The source and destination registers are then incremented by 
one if LDlB, or by two if LDl, thus moving the pOinters to the next elements in the 
strings. The source, destination, and counter registers must be separate and non· 
overlapping registers. The word register specified by "r" (used as a counter) is then 
decremented by one. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero, cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDI @Rd1, @Rsl, r 
110111011w1R ... 0100011 1101 1 101 I w I RI '" ° I ° 001 I 

LOIB @Rd1, @Rsl, r Looool r jRd,"0110001 
20 

10000 1 r IRd,"011000J 
20 

This instruction can be used in a "loop" of instructions which transfers a string of 
data from one location to another, but an intermediate operation on each data ele· 
ment is required. The following sequence transfers a string of 80 bytes, but tests for 
a special value (%OD, an ASCII return character) which terminates the loop if 
found. This example assumes nonsegmented mode. In segmented mode, register 
pairs would be used instead of Rl and R2. 

LOOP: 

DONE: 

LD R3, #80 
LDA Rl, DSTBUF 
LDA R', SRCBUF 

CPB 
JR 
LDlB 
JR 

@R2, #%OD 
EQ, DONE 
@Rl, @R2, R3 
NOV, LOOP 

!initialize counter! 
!load start addresses! 

!check for return character! 
!exit loop if found! 
Itransfer next byte! 
Irepeat until counter O! 

Note I: Word register in nonsegmented mode, register pair in segmented mode. 



Operation: 

Flags: 

Addressing 
Mode 

1ft: 

LDIR 
Load, Inerement and Repeat 

LDIB dst, src, r 
LDIBB 

dst .... src 

dst: IR 
src: IR 

AUTOINCREMENT dst and src (by I if byte; by two if word) 
r ..... r - I 
repeat until R = 0 

This instruction is used for block transfers of strings of data. The contents of the loca­
tion addressed by the source register are loaded into the location addressed by the 
destination register. The source and destination registers are then incremented by 
one if LOIRB, or by two if LDIR, thus moving the pOinters to the next elements in the 
strings. The word register specified by "r" (used as a counter) is then decremented 
by one. The entire operation is repeated until the result of decrementing r is zero. 
The source, destination, and counter registers must be separate and non-overlapping 
registers. This instruction can transfer from I to 65536 bytes or from I to 32768 
words (the value for r must not be greater than 32768 for LDIR). 
The effect of incrementing the pOinters duriIlg the transfer is important if the source 
and destination strings overlap with the source string starting at a higher memory 
address. Placing the pOinters at the lowest address of the strings and incrementing. 
the pOinters ensures that the source string will be copied without destroying the 
overlapping area. 
This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven cycles 
should be added to this instruction's execution time for each interrupt request that is 
accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

LDIR @Rdl. @'Rsl. r 
LDIRB @Rdl• @Rsl. r 

Nonsegmented Mode 

Instruction Format 

110111011w1RI';' 01 0001 1 

10000 1 r I Rd .;. 0'1 0000 I 

Segmented Mode 

CycIes2 Instruction Format Cycles2 

110111011wlRI .;.0100011 
11 +9" 

10000T r rRd¢oTooool 
11 +9" 

83 



LDIR 
Load, Increment and Repeat 

Example: 

84 

The following sequence of instructions can be used in nonsegmented mode to copy a 
buffer of 512 words (1024 bytes) from one area to another. The pointers to the start of 
the source and destination are set, the number of words to transfer is set, and then 
the transfer takes place. 

LDA RI,DSTBUF 
LDA R2, SRCBUF 
LD R3, #512 
LDIR @RI, @R2, R3 

In segmented mod"e, RI and R2 must be replaced by register pairs. 

Note 1: Word register in nonsegmented mode, register pair In segmented mode. 

Note 2: n = number 01 data elements transferred. 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

LDK dst, src 

dst __ src (src = 0 to 15) 

dst: R 
src: 1M 

LDK 
Load Constant 

The source operand (a constant value specified in the src field) is loaded into the 
destination register. The source operand is a value from 0 to 15. It is loaded into the 
four low-order bits of the destination register, while. the high-order 12 bits are 
cleared to zero. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDK Rd. #data 
1101111101 I Rd ! data I 5 110 1 1 11101 I Rd I data I 5 

To load register R3 with the constant 9: 

LDK R3,#9 

85 



LDM 
Load Multiple 

Operation: 

Flags: 

LDM dst, src, n 

dst .. - src(n words) 

dst: R 
src: JR, DA, X 
or 
dst: JR, DA, X 
src: R 

The contents of n source words are loaded into the destination. The contents of the 
sourc~are )1ot affected. The value of n lies between I and 16, inclusive. This instruc­
tion moves information between memory and registers; registers are accessed in 
increasing order starting ;"ith the specified register; RO follows R15. The instruction 
can be used either to load multiple registers into memory (e.g. to save the contents 
of registers upon subroutine entry) or to load multiple registers from memory (e.g. to 
restore the contents of registers upon subroutine exit). 

The instruction encoding contains values from 0 to 15 in the "num" field correspond­
ing to values of I to 16 for n, the number of registers to be loaded or saved. 

The starting address is computed once at the start of execution, and incremented by 
two for each register loaded. If the original address computation involved a register, 
the register's value will not be affected by the address incrementation during 
execution. Similarly, modifying that register during a load from memory will not 
affect the address used by this instruction. 

No flags affected 

Load Multiple - Registers From Memory 
Source Nonsegmented Mode Segmented Mode 

Addressing Assembler Language 
Mode Syntax Instruction Format Cycles Instruction Format Cycles 

IR: LDM Rd. <1! Rsl, #n 
001 0111 00 I Rs",O I 0001 001011100 RH010001! 

0000 I Rd 10000 I num 
11 +3" 

00001 Rd 0000 I num ! 
11 +3" 

DA: LDM Rd, address. #n 
0110111001000010001 011 011100 000010001 

00001 Rd 100001 num 14+3" 55 0000 I Rd 0000 I "urn 15+3" 
address o I segment offset 

011 011100 00001 00 01 

5L 
0000 I .Rd 0000 I "urn 

17+3" 
11 segment 0000 0000 

offset 

X: LDM Rd. addr(Rs). #n 
0110111001Rs",010001 01j011100 Rs¢olooo1 

0000 I Rd 10000 I num 15+3" 55 0000 I lid 00 () 0 I "urn 15+3" 
address o I segment offset 

011 011100 Rs¢O IOD01 

5L 
0000 I Rd OOOO! "urn 

18+3" 
11 segment 0000 0000 

offset 

86 



LDM 
Load Multiple 

Load Multiple - Memory From Registers 

Destination 
Addressing 

Mode 

IR: 

DA: 

X: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDM<1;Rd1, Rs, #n 
001011100 I Rd*011001 001011100 Ad", 0 11 0. 01 

00001 Rs JooooJ num 
11 + 3n 

0000\ Rs 0. 0 0 o! num 
11 + 3n 

LDM address, Rs, #n 
0110111001000011001 011 011100 00001 1001 

0.000 I Rs I 00. 001 num 14+3n SS 0000 r As 0000 Inurn 15+3n 

address o I segment otfset 

011 01 11 00 00001 1001 

SL 
DODO! Rs 00 0 a! num 

17+3n 
11 segment 0000 0000 

allset 

LDM addr(Rd). Rs, #n 
011 011 100 I Rd.O 11001 011 011100 Rd#-oj1001 

00001 Rs too 0 0 Inurn 15+3n SS 00001 RS 00001 num 15+3n 

address oj segment offset 

011 011 100 Rd~o11001 

SL 
0000 I Rs DO 0 a Inurn 

16+3n 
11 segment 0000 0000 

offset 

In non segmented mode, if register R5 contains 5, R6 contains %0100, and R7 con· 
tains 7, the statement 

LDM @R6, R5, #3 

will leave the values 5, %0100, and 7 at word locations %0100, %0102, and %0104, 
respectively, and none of the registers will be affected. In segmented mode, a 
register pair would be used instead of R6. 

Note I: Word register In nonsegmented mode, register pair in segmented mode. 

Note 2: n = number of registers. 

87 



LDPS Privileged 

Load Program Status 

Operation: 

Flags: 

Source 
Addressing 

Mode 

IR: 

OA: 

X: 

88 

LOPS src src: IR, OA, X 

PS +- src 

The contents of the source operand are loaded into the Program Status (PS)' loading 
the Flags and Control Word (FCW) and the program counter (PC). The new value 
of the FCW does not become effective until the next instruction, so that the status 
pins will not be affected by the new control bits until after the LOPS instruction 
execution is completed. The next instruction executed is that addressed by the new 
contents of the PC. The contents of the source are not affected. 

This instruction is used to set the Program Status of a program and is particularly 
useful for setting the System/Normal mode of a program to' Normal mode, or for run· 
ning a nonsegmented program in the segmented 28001 version. The PC segment 
number is not affected-by the LOPS instruction in non segmented mode. 

The format of the source operand (Program Status block) depends on the current 
Segmentation mode (not on the version of the 28000) and is illustrated in the 
following figure: 

NONSEGMENTED 
lOW ADDRESS 

SEGMENTED 

Few 

pe Few 

PC SEG. NO. 

HIGH ADDRESS PC OFFSET 

(shaded area is reserved-must be zero) 

All flags are loaded from the source operand. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

LDPS @Rsl 
10011 1 1 00 1 1 As" 0 1 0 0 0 0 1 12 10011110011 As",olooool 16 

LDPS address 1011111001100001000 0 1 0111110011000010000 

I I 
16 55 

o I segment I 20 
address offset 

01r111001100001 0 0 00 

5L 1! segment I 0 a 0 0 0000 22 

ollset 

LDPS addr(Rs) 
1011'1'001IAS",0100001 0111110'01 I As",O 1 0000 

I I 
17 55 20 

address "I a I segment I offset 

011111001 I As",O 10000 

5L 1 I segment I 00 0 0 0000 23 

offset 



Example: 

Privileged LDPS 
Load Program Status 

In the non segmented 28002 version, if the program counter contains %2550, register 
R3 contains %5000, location %5000 contains %1800, and location %5.002 contains 
%AOOO, the instruction. 

LOPS @R3 

will leave the value %AOOO in the program counter, and the FeW value will be 
%1800 (indicating Normal Mode, interrupts enabled, and all flags cleared.) In the 
segmented mode, a register pair is used instead of R3. Note: Word register is used 
in nonsegmented mode, register pair in segmented mode. 

89 



LDR 
Load Relative 

Operation: 

Flags: 

LDR dst, src 
LDRB 
LDRL 

dst +- src 

dst: R 
src: RA 
or 
dst: RA 
src: R 

The contents of the source operand are loaded into the destination. The contents of 
the so~rce are not affected. The relative address is calculated by adding the 
displacement in the instruction to the updated value of the program counter (PC) 
to derive the operand's address. In segmented mode, the segmented number of the 
computed address is the same as the segment number of the PC. The updated PC 
value is taken to be the address of the instruction byte following the LDR, LDRB, or 
LDRL instruction, while the displacement is' a 16-bit signed value in the range 
-32768 to + 32767. 
Status pin information during the access to memory for the data operand will be Pro­
gram Reference, (1100) instead of Data Memory request (1000). 

The assembler automatically calculates the displacement by subtracting the PC value 
of the following instruction from the address given by the programmer. 

This instruction must be used to modify memory locations containing program infor­
mation, such as the Program Status Area, if program anddala space are allocated to 
different segments. 

No flags affected 

Load Relative Register 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format· Cycles 

RA: LDR Rd. address 
10011000lwl00001 Rd I 10011000lwlooool Rd I 

LDRB Rbd. address 14 14 
I displacement I I displacement J 

LDRL RRd. address I 00 1 1 0 1 0 1 I 000 oj Rd J 
17 

100110101100001 Rd I 17 
I displacement I I displacement I 

90 



LOR 
Load Relative 

Load Relative Memory 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

RA: LDR address, Rs 100110011wl00001 Rs I 100110011wl00001 Rs I 
LDRB address, Rbs 

I I 14 
I I 

14 
displacement displacement 

LDRL address, RRs 100110111100001 Rs J 100110111100001 Rs 1 
17 17 

I displacement 1 I displacement 1 

Example: LDR R2, DATA !register R2 is loaded with the value in the! 
!location named DATA! 

91 



MBIT Privileged 

Multi-Micro Bit Test 

Operation: 

Flags: 

Example: 

92 

MBIT 

5 +- I if MI high (inactive); 0 otherwise 

This instruction is used to synchronize multiple processors' exclusive access to 
shared hardware resources. The multi-micro input pin (MI) is tested, and the 5 flag 
is cleared if the pin is low (active); otherwise, the 5 flag is set, indicating that the 
pin is high (inactive). 

After the MBIT instruction is executed, the 5 flag can be used to determine whether 
a requested resource is available or not. If the 5 flag is clear, then the resource is 
not available; if the 5 flag is set. then the resource is available for use by this CPU. 

.C: Unaffected 
Z: Undefined 
S: 5et if MI is high; cleared otherwise 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

MBlT 

Syntax Instruction Format Cycles Instruction Format Cycles 

I 0111101100001010 I 7 I 0111101100001010 I 
The following sequence of instructions can be used to wait for the availability of a 
resource. 

LOOP: 
MBIT !test multi-micro input! 
JR PL,LOOP !repeat until resource is available! 

AVAILABLE: 

7 



Operation: 

Flags: 

Privileged MREQ 
Multi-Micro Request 

MREQ dst 

Z - 0 
if MI low (active) 

dst: R 

then S - 0 
MO forced high (inactive) 

else MO forced low (active) 
repeat dst - dst - 1 until dst = 0 
if MI low (active) then S - 1 

else S - 0 
MO forced high (inactive) 

Z-l 

This instruction is used to synchronize multiple processors' exclusive access to 
shared hardware resources. A request for a resource is signalled through the multi­
micro input and output pins (MI and MO). with the Sand Z flags indicating the 
availability of the res~urce after the MREQ instruction has been executed. 

First, the Z flag is cleared. Then the MI pin is tested. If the MI pin is low (active). 
the S flag is cleared and the MO pin is.forced high {inactive),thus indicating that the 
resource is not available and removing any previous request by the CPU from the 
MOline. 

If the MI pin is high (inactive). indicating that the resource may be available, a 
sequence of machine operations occurs. First, the MO pin is forced low (active). 
signalling a request by the CPU for the resource. Next, a finite delay to allow for 
propagation of the signal to other processors is accomplished by repeatedly 
decrementing the contents of the destination (a word register) until its value is zero. 
Then the MI pin is tested to determine whether the request for the resource was 
acknowledged. If the MI Jilin is low (active), the S flag is set to one, indicating that 
the resource is available and access i~anted. If the MI pin is still high (inactive), 
the S flag is cleared to zero, and the MO pin is forced high (inactive). indicating 
that,the request was not granted and removing the request signal for the MO. 
Finally, in either case, the Z flag is set to one, indicating that the original test of the 
MI pin caused a request to'be made. 

S flag Z flag MO Indicates 

0 0 high Request not signalled 
(resource not available) 

0 high Request not granted 
(resource not available) 

low Request granted 
(resource available) 

c: Unaffected 
Z: Set if request was Signalled; cleared otherwise 
S: Set if request was Signalled and granted; cleared otherwise 
V: Unaffected 
D: Unaffected 
H: Unaffected 

93 



MREQ Privileged 

Multi-Micro Request 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cyclesl Instruction Format 

R: MREQ Rd 10,1",0" I Rd 1,,0,1 12+7n 10,1",0" I Rd 1,,0,1 

Example: TRY: 
LD 
MREQ 

JR 
JR 

NOT-A VAILABLE: 

RO,#50 
RO 

MI,AVAILABLE 

!allow for propagation delay! 
!multi-micro request with delay! 
lin register RO! 

Z,NOT_(.;.RANTED 

!resource not available! 

!request not granted! 

JR TRY !try again after awhile! 
!use resource! AVAILABLE: 

MRES !release resource! 

Cyclesl 

12+7n 

Note I: If the request is made, n = number of times the destination is decremented. If the request is not made, 
n = O. 

94 



Operation: 

Flags: 

Example: 

Privileged MRES 
Multi-Micro Reset 

MRES 

MO is forced high (inactive) 

This instruction is used to synchronize multiple processors' exclusive access to 
shared hardware resources. The multi-micro output pin MO is forced high (inactive). 
Forcing MO high (inactive) indicates that a resource controlled by the CPU is 
available for use by other processors. 

No flags affected. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax 

MRES 

MRES 

Instruction Format Cycles Instruction Format 

I 01111011 I 00001001 I 5 I 01111011 I 

!signal that resource controlled by this CPU! 
lis available to other processors! 

00001001 

Cycles 

I 5 

95 



MSET Privileged 

Multi-Micro Set 

Operation: 

Flags: 

Example: 

96 

MSET 

MO is forced low (active) 

This instruction is used to synchronize multiple processors' exclusive access to 
shared hardware resources. The multi-micro output pin MD is forced low (active). 
Forcing MO low (active) is used either to indicate that a resource controlled by the 
CPU is not available to other processors, or to signal a request for a resource con­
trolled by some other processor. 

No flags affected. 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

MSET I 01111011 100001000 I 5 I 01111011 100001000 I 5 

MSET !CPU controlled resource not available! 



Operation: 

Flags: 

MULT 
Multiply 

MULT dst, src 
MULTL 

Word 

dst: R 
src: R, 1M, JR, DA, X 

dst (0:31) - dst (0: 15) x src (0: 15) 
Long 
dst (0:63) - dst (0:31) x src (0:31) 

The low-order half of the destination operand (multiplicand) is multiplied by the 
source operand (multiplier) and the product is stored in the destination. The con­
tents of the source are not affected. Both operands are treated as signed, two's com­
plement integers. For MULT, the destination is a register pair and the source is a 
word value; for MULTL, the destination is a register quadruple and the source is a 
long word value. 

For proper instruction execution, the "dst field" in the instruction format encoding 
must be even for MULT and must be a multiple of 4 (0, 4, 8, 12) for MULTL. If the 
source operand in MULTL is a register, the "src field" must be even. 

The initial contents of the high-order half of the destination register do not affect the 
operation of this instruction and are overwritten by the result. The carry flag is set to 
indicate that the upper half of the destination register is required to represent the 
result; if the carry flag is clear, the product can be correctly represented in the same 
preCision as the multiplicand and the upper half of the destination merely holds a 
sign extension. 

The following table gives execution times for word and long word operands in each 
possible addressing mode. 

src Word Long Word 

NS SS SL NS SS SL 
R 70 70 70 282 + 7'n 282+7'n 282 + 7'n 

1M 70 70 70 282 + 7'n 282 + 7'n 282 + 7'n 
IR 70 70 70 282 + 7'n 282 + 7'n 282 + 7'n 

DA 71 72 74 283 + 7'n 284 + 7'n 286 + 7'n 
X 72 72 75 284+7'n 284 + 7'n 287+7'n 

(n = number of bits equal to one in the absolute value of the low-order table 32 bits of the destination operand) 

When the multiplier is zero, the execution time of Multiply is reduced to the follow ing times: 

src Word Long Word 

NS SS SL NS SS SL 
R 18 18 18 30 30 30 

1M 18 18 18 30 30 30 
IR 18 18 18 30 30 30 

DA 19 20 22 31 32 34 
X 20 20 23 32 32 35 

c: MULT-set if product is less than _231 or greater than or equal to 215; cleared 
otherwise; MUL TL-set if product is less than 231 or greater than or equal to 231 ; 
cleared otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Cleared 
D: Unaffected 
H: iJ naffected 

97 



MULT 
Multiply 

Source Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles2 Instruction Format Cycles2 

R: MULT RRd, Rs 
1101011001 I Rs I Rd I 1101 011001 I Rs I Rd I 

MULTL RQd, RRs 
11010110001 Rs I Rd I 11010110001 Rs I Rd I 

1M: MULT RRd, #data 
001 011 00 lJ 0000 I Rd 001011001 100001 Rd 

data data 

MULTL RQd, #data 
001 0110 0 O~ 0000 I Rd 001011000 100001 Rd 

31 data (high) 16 31 data (high) 16 

15 data (low) 0 15 data (low) 0 

IR: MULT RRd, @Rsl 
1001011001 I Rs"O I Rd I 1001011001 I Rs"O I Rd I 

MULTL RQd, @Rsl 
1001011000 I Rs"O I Rd I 1001011000 I RHol Rd I 

DA: MUL T RRd, address 
011 01100110000 I Rd 011011001100001 Rd 

55 
address ~r segment I offset 

o 1 I .0 1 1 0 ° 1 I 00 0 ° I Rd 

5L 1T segment I 00 0 0 0000 

offset 

MULTL RQd, address 
011011000100001 Rd o 1} 0 1 1 00 0 I 0 ° ° oj Rd 

55 
I address ~ I segment I, offset 

011011000100001 Rd 

5L 11 segment I 0 0 0 0 0000 

offset 

X: MULT RRd, addr(Rs) 
011011001 I Rs"O I Rd ° iT 0 '1 1 ° ° 1 I RH ° I Rd 

55 
I address oj segment I offset 

011 011 001 I Rs *0 I Ad 

5L 11 segment I 00 0 0 0000 

offset 

MULTL RQd, addr(Rs) 
011011000 I Rs"O I Rd o ~ 011 000 I Rs * 0 I Rd 

I 55 
address '10 I segment I offset 

0110110001Rs,,01 Rd 

5L 1 I segment I 00 0 0 0000 

offset 

98 



Example: If register RQO (composed of register pairs RRO and RR2) contains 
%2222222200000031 (RR2 contains decimal 49), the statement 

MULTL RQO,#10 

will leave the value %OOOOOOOOOOOOOIEA (decimal 490) in RQO. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

Note 2: Execution times for each instruction dre given in the preceding tables. 

MULT 
Multiply 

99 



NEG 
Negate 

Operation: 

Flags: 

Destination 

NEG dst 
NEGB 

dst +- dst 

dst: R, IR, DA, X 

The contents of the destination are negated, that is, replaced by its two's comple­
ment value. Note that %8000 for NEG and %80 for NEGB are replaced by 
themselves since in two's complement representation the negative number with 
greatest magnitude has no positive counterpart; for these two cases, the V flag is set. 

c: Cleared if the result is zero; set otherWise, which indicates a "borrow" 
Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if the result is %8000 for NEG, or %80 for NEGB: cleared otherwise 
D: Unaffected 
H: U naffecled 

Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode 

R: 

IR: 

DA: 

X: 

Example: 

100 

Syntax Instruction Format Cycles 

NEG Rd 11D1001101wJ Rd 10010 1 NEGB Rbd 

NEG@Rdl 
1001001101wJ Rd."O 100101 NEGB "pRdl 

NEG address 101100110lwl0000100101 
NEGB address 

I address I 

NEG addr(Rd) 
NEGB addr(Rd) IOll00110lwi Rd."O 100101 

I address I 

If register R8 contains %05IF, the statement 

NEG R8 

will leave the value %FAEI in R8. 

7 

12 

15 

16 

Instruction Format 

1101001101wJ Rd 10010 1 

1001001101 wi Rd."O 10010 I 
01j00ll01W10000100l0 

SS 
o I segment I offset 

01100110lwl000010010 
SL 11 segment I 0 0 0 0 0000 

offset 

SS 
01100110lwl Rd."O 10010 
o I segment I offset 

01100110lwl Rd."O 10010 
SL 11 segment I 0 0 0 0 0000 

offset 

Note 1: Word register,.in nonsegmented mode, register pair in segmented mode. 

Cycles 

7 

12 

16 

18 

16 

19 



NOP 
No Operation 

NOP 

Operation: No operation is performed. 

Flags: No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

NOP 
110 a a 11 a 1 I 00000111 

1 7 110001101 I 00000111 I 7 

101 



OR 
Or 

Operation: 

Flags: 

Source 
Addressing 

Mode 

R: 

1M: 

IR: 

DA: 

X: 

102 

OR dst, src 
ORB 

dst - dst OR src 

dst: R 
src: R, 1M, IR, DA, X 

The source operand is logically ORed with the destination operand and the result is 
stored in the destination. The contents of the source are not affected. The OR opera­
tion results in a one bit being stored whenever either of the corresponding bits in the 
two operands is one; otherwise a zero bit is stored. 

c: Unaffected 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
P: OR-unaffected; ORB-set if parity of the result is even; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

OR Rd, Rs 
110 10 001D1wI 1 I l' OIOOO1Dl w l 1 I Rs Rd 4 Rs Rd ORB Rbd, Rbs 

OR Rd, #data 
1001000101100001 Rd I 001000101100001 Rd 

7 
I data I data 

ORB Rbd, #data 
Lool 000100 100001 Rd I 001000100 10000 I Rd 

7 I data I data I data I data 

OR Rd, @Rsl 
1001000101w1 Rs¢O 1 10010001 olwl Rs¢O 1 ORB Rbd, @Rsl Rd I 7 Rd I 

OR Rd, address 
ORB Rbd, address lo~1000101W100001 Rd I 01100010lwl 0000 I Rd 

I I 9 55 
address c1 segment 1 offset 

01100010Iwi 0000 I Rd 

5L 11 segment 10000 0000 

offset 

OR Rd, addr(Rs) 
ORB Rbd, addr(Rs) L01100010lwi Rs¢O I Rd I 01/000101wl Rs¢O I Rd 

10 
55 0 I segmenl I offs.t I address I 

01100010lwl Rs¢O I Rd 

5L lJ segment I 0 0 0 0 0000 

address 

Cycles 

4 

7 

7 

7 

10 

12 

10 

13 



Example: 

OR 
Or 

If register RL3 contains %C3 (11000011) and the source operand is the immediate 
value %7B (0111 JOII), the statement 

ORB RL3,#%7B 

will leave the value %FB (11111011) in RL3. 

Note 1: Word register In nonsegmented mode, register pair in segmented mode. 

103 



OTDR (SOTDR) Privileged 
(Special). Output. Decrement and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

104 

OTDR dst, src, r 
OTDRB 
SOTDR 
SOTDRB 

dst +- src 

dst: IR 
src: IR 

AUTODECREMENT src (by 1 if byte, by 2 if word) 
r.:-r-l 
repeat until r = 0 

This instruction is used for block output of strings of data. OTDR and OTDRB are 
used for normal 1/0 operation; SOTDR and SOTDRB are used for special 1/0 opera­
tion. The contents of1he memory location addressed by the source register are 
loaded into the 1/0 port addresses by the destination word register. VO port 
addresses are 16 bits. The source register is then decremented by one if a byte 
instruction, or by two if a word instruction, thus moving the pointer to the previous 
element of the string in memory. The word register specified by nrH (used as a 
counter) is then decremented by one. The address of VO port in the destination 
register is unchanged. The entire operation is repeated until the result of decrement­
ing r is zero. This instruction can output from 1 to 65536 bytes or 32768 word (t~ 
value for r must not be greater than 32768 for OTDR or SOTDR). 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the instruction can be properly resumed. Seven more 
cycles should be added to this instruction's execution time for each interrupt requ~st 
that is accepted. . 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

OTDR @Rd,@Rsl, r 
0TD,RB @Rd,@Rsl, r 

SOTDR@Rd,@Rsl, r 
SOTDRB @Rd,@Rsl, r 

Nonsegmented Mode 

Instruction Format 

100111 ollwlRI" 011 01 51 

100001 r IRholooool 

Segmented Mode 

Cycles2 Instruction Format Cycles2 

11+10n 100111 011w1R1 " °IIOISJ 1f+10n 
10000 1 r IRd .. olooool 



Example: 

Privileged OTDR (SOTDR) 
(Special). Output. Decrement and Repeat 

In nonsegmented mode, if register Rll contains %OFFF, register R12 contains 
%B006, and R13 contains 6, the instruction 

OTDR @Rll, @RI2, RI3 

will output the string of words from locations %B006 to %AFFC (in descending 
order of address) to port %OFFF. RI2 will contain %AFFA, and RI3 will contain O. 
R II will not be affected. The V flag will be set. In segmented mode, R 12 would be 
replaced by a register pair. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 
NO,te 2: n = number of data elements transferred. 

105 



OTIR (SOTIR). Privileged 

(Special) Output, Increment and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

106 

OUR dst, src, r 
OTIRB 
SOTIR 
SOTIRB 

dst +- src 

dst: IR 
src: IR 

AUTOINCREMENT src (by I if byte, by 2 if word) 
r +- r - I 
repeat until r = 0 

This instruction is used for block output of strings of data. OTIR and OTIRB are used 
for normal 1/0 operation; SOTIR and SOTIRB are used for special I/O operation. 
The contents of the memory location addressed by the source register are loaded 
into the I/O port addressed by the destination word register. 1/0 !,ort addresses are 
16 bits. The source register is then incremented by one if a byte instruction, or by 
two if a word instruction, thus moving the pointer to tile next element of the string in 
memory. The word register specified by "rn (used as a counter) is then decremented 
by one. The address of I/O port in the destination register is unchanged. The entire 
operation is repeated until the result of decrementing r is zero. This instruction can 
output from I to 65536 bytes or 32768 words (the value for r must not be greater than 
32768 for OTIR or SOTIR). 

This instruction can be interrupted after each execution of the basic operation. The 
program counter value of the start of this instruction is saved before the interrupt 
request is accepted, so that the. instruction can be properly resumed. Seven more 
cycles should be added to this instruction's execution time for each interrupt request 
that is accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

OTIR @Rd, @Rsl, r 
OTIRB @Rd, @Rsl, r 
SOTIR @Rd, @Rsl, r 
SOTIRB @Rd, @Rsl, r 

Nqnsegmented Mode 

Instruction Format 

100111 olJWI RI" 0100151 

10000 1 r IRd"olooool 

Segmented Mode 

Cycles Instruction Format Cycles 

11+10n I 00111011 w 1 R.,. 01 0 0 15 I 11 + 10n 
10000 1 r IRd"olooool 



Example: 

Privileged OTIR (SOTIR) 
(Special) Output. Increment and Repeat 

In nonsf?gmented mode, the following sequence of instructions can be used to output 
a string of bytes to the specified 1/0 port. The pointers to the 1/0 port and the start 
of the source string are set, the number of bytes to output is set, and then the output 
is accomplished. 

LD RI, #PORT 
LDA R2,SRCBUF 
LD R3, #LENGTH 
OTIRB @RI, @R2, R3 

In segmented mode, a register pair would be used instead of R2. 

Note 1: Word reqis!er in nonsegmented mode,- register pair in segmented mode. 

Note 2: n = number 01 data elements transferred. 

107 



OUT (SOUT) Privileged 

(Special) Output 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

IR: 

DA: 

Example: 

108 

OUT dst, src 
OUTB 

SOUT dst, src 
SOUTB 

dst .,- src 

dst: IR, DA 
src: R 

dst: DA 
src: R 

The contents of the source register are loaded into the destination, an Output or 
Special Output port. OUT and OUTB are used for normal 1/0 operation; SOUT and 
SOUTB are used for special 1/0 operation. 

No flags affected. 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

OUT "'Rd. Rs 100111111w1Rd~01 As I OUTB ",Rd, Rbs 

OUT port. Rs 
100111011 w ! As ! 0 11 sl OUTB port, Rbs 

SOUT port. Rs I port I 
SOUTB port. Rbs 

If register R6 contains %5252, the instruction 

OUT %1120, R6 

10 

12 

will output the value %5252 to the port %1120. 

Segmented Mode 

Instruction Formal Cycles 

I 00111111wIRd ~ 01 As I 10 

10011101!W! As ! 0 11 S I 
12 

I port I 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

Privileged OUTD (SOUTO) 
(Spec;ial) Output and Decrement 

OUTD dst, src, r 
OUTDB 
SOUTD 
SOUTDB 

dst +- src 

dst: IR 
src: IR 

AUTODECREMENT src (by I if byte, by 2 if word) 
r +- r - I 

This instruction is used for block output of strings of data. OUTD and OUTDB are 
used for normal 1/0 operation; SOUTD and SOUTDB are used for speCial 1/0 opera­
tion. The contents of the memory location addressed by the source register are 
loaded into the 1/0 port addressed by the destination word register. 1/0 port 
addresses are 16 bits. The source register is then decremented by one if a byte 
instruction, or by two if a word instruction, thus moving the pointer to the previous 
element of the string in memory. The word register specified by "ro (used as a 
counter) is then decremented by one. The address of the 1/0 port in the'destination 
register is unchanged. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

OUTD @Rd, @Rsl, r 
100111011 wi RS;' 0110151 Loo 1110 lJW[ Rs" 011 01 S I OUTDB @Rd, @Rsl, r 21 

SOUTD @Rd, @Rsl, r 1 0000 1 
r I Rd 11000 1 1 0000 1 r 1 Rd 11000 1 

SOUTDB @Rd, @Rsl, r 

Cycles 

21 

In segmented mode, if register R2 contains the 1/0 port address %0030, register RR6 
contains %12005552 (segment %12, offset %5552), the word at memory location 
%12005552 contains %1234, and register R8 contains %1001, the instruction 

OUTD @R2, @RR6, R8 

will output the value %1234 to port %0030 and leave the value %12005550 in RR6, 
and % 1000 in R8. Register R2 will not be affected. The V flag will be cleared. In 
nonsegmented mode, a word register would be used instead of RR6. 

Note 1: Word register in nonsegmented mode, registe~pair in segmented mode. 

109 



OUTI (SOUTI) Privileged 
(Special) Output and Increment 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

110 

OUTI dst, src, r 
OUTIB 
SOUTI 
SOUTIB 

dst +- src 

dst: IR 
src: IR 

AUTOINCREMENT 'src (by I if byte, by 2 if word) 
r +- r - I 

This instruction is used for block output of strings of data. OUTI and OUTIB are 
used for normal 1/0 operation; SOUTI and SOUTIB are used for special va opera­
tion. The contents of the memory location addressed by the source register are 
loaded into the va port addressed by the destination word register. va port 
,addresses are 16-bit. The source register is then incremented by one if a byte 
instruction, or by two if a word instruction, thus moving the pointer to the next ele­
ment of the string in memory. The word register specified by "r~' (used as a counter) , 
is then decremented by one. The address of the 1/0 port in the destination register is 
unchanged. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode , Segmented Mode 
Assembler Language 

Syntax , Instruction Format Cycles Instruction Format 

OUTI @Rd, @Rsl, r 
OUTIB @Rd, @Rsl, r 100111 ollwlAI" 010015\ 21 

\00111 011w1A'" 01 0015\ 

SOUTI @Rd, @Rsl, r \ 0000'1 r IAho 11000\ \00001 r I Ad .. 0110 0 0 \ 
SOUTIB @Rd, @Rsl, r 

Cycles 

21 



Example: 

Privileged OUTI (SOUTI) 
(Special) Output and Increment 

This instruction can be used in a "loop" of instructions which outputs a string of 
data, but an intermediate operation on each element is required. The following 
sequence outputs a string of 80 ASCII characters (bytes) with the most significant bit 
of each byte set or reset to provide even parity for the entire byte. Bit 7 of each 
character is initially zero. This example assumes non segmented mode. In segmented 
mode, R2 would be replaced with a register pair. 

LD Rl, #PORT 
LDA R2, SRCSTART 
LD R3, #80 

LOOP: 
TESTB @R2 
JR PE, EVEN 
SETB @R2, #7 

EVEN: 
OUTIB @Rl, @R2, R3 
JR NOV, LOOP 

DONE: 

!loa~ I/O address! 
! loa a start of string! 
!initialize counter! 

!test byte parity! 

!force even parity! 

!output next byte! 
! repeat until counter 

Note 1: Word register in nonsegmented mode, register pair In segmented mode. 

O! 

III 



POP 
Pop 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

IR: 

DA: 

112 

POP dst, src 
POPL 

dst +- src 

dst: R, IR, DA; X 
src: IR 

AUTOINCREMENT src (by 2 if word, by 4 if long) 

The contents of the location addressed by the source register (a stack pointer) are 
loaded into the destination. The source register is then incremented by a value 
which equals the size in bytes of the destination operand, thus removing the top ele­
ment of the stack by changing the stack pointer. Any register except RO (or RRO in 
segmented mode) can be used as a stack pointer. 

With the POPL instruction, the same register cannot be used in both the source and 
destination addressing fields. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycle~ Instruction Format Cycles 

POP Rd. @Rsl 
11010101111RS,,01 Rd. I 8 1101010111IR.,,01 Rd I 8 

POPL RRd, @R.l 
1101 0; 0101.1 R.,. 0 I Rd I 12 1101010l0lI R ... ol Rd I 12 

POP@Rdl, @Rsl 
1001010111 I R."O IRd .. 01 12 10010101111 R ... O IRd"ol 12 

POPL @Rd1, @Rsl 
1001 010101 I R ... O I Rd ".0 I 19 1001 010101 I R ... O I Rd .. 0 I 19 

POP address, @Rsl- 10 11 01 0 111 I Rs .. O I 0 0 0 0 1 SS 0110101111 R ... oloooo , I 
16 16 

address o I segment I offset 

0110101111 Rs .. O 10000 

SL 11 .egment 100000000 19 

offa8' 

POPL address, @Rsl roll 0101011 R ... o10000l SSloll 0101011 R ... oloooo 23 23 
r I address 1 -, 0 I .egmant I off.et 

0110101011 R ... O 10000 

SL 11 .egmant 100000000 26 
offset 



Destination 
Addressing 

Mode 

X: 

Example: 

POP 
Pop 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

POP addr(Rd), @Rsl 
1011010111 I Rs*O I Rd*O I 011010111 I RS*OJ Rd*OJ 

I I 
16 55 16 

address o I segment I offset I 

011010111 I Rs*O I Rd*O 

5L 1 I segment I 0 000 0 a 0 a 19 

offset 

POPL addr(Rd). @Rsl 
1011010101IRs*0IRd*01 .10110101011 Rs*O I Rd*ol 

I I 23 55 23 
address ' I a I segment I offset I 

0110101011 RHO I Rd*O 

5L 11 segment I 00000000 26 

offset 

In non segmented mode, if register Rl2 (a stack pointer) contains %1000, the word at 
location % 1000 contains %0055, and register R3 contains %0022, the instruction 

POP R3, @R12 

will leave the value %0055 in R3 and the value %1002 in R12. In segmented mode, 
a register pair must be used as the stack pointer instead of R12. 

Note 1: Word register in nonsegmented mode, register pair In segmented mode. 

ll3 



PUSH 
Push 

Operation: 

Flags: 

Source 
Addressing 

Mode 

R: 

1M: 

IR: 

DA: 

114 

PUSH dst, src 
PUSHL 

dst: IR 
src: R, 1M, 1R, DA, X 

AUTO DECREMENT dst (by 2 if word, by 4 if long) 
dst _ src 

The contents of the destination register (a stack pointer) are decremented by a value 
which equals the size in bytes of the source operand. Then the source operand is 
loaded into the location addressed by the updated destination register, thus adding a 
new element to the top of the stack by changing the stack pointer. Any register' 
except RO (or RRO in segmented mode) can be used as a stack pointer. 

With PUSHL, the same register cannot be used for both the source and destination 
addressing fields. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

PUSH e, Rd1. Rs 
11010100111 Rd;Ool Rs I 9 11010100111 Rd;Ool Rs I 9 

PUSHL e'Rd1, RRs 1101 0100011 Rd~O I Rs I 12 11010100011 Rd;OOI Rs I 12 

PUSH e, Rd1, #data 
10010011011 Rd;0011 001) 001 001101 I Rd;OO 11o 0 11 

12 12 
I data I data I 

PUSH e, Rd1, ~'Rsl 1001010011 I Rd;OO IRS;O 01 13 10010100111 Rd;OOIRs;O01 13 

PUSHL Q' Rd1, Q'Rsl 
10010100011 Rd;OoIRs;Ool 20 10010.10001 I Rd;OO IRs;O 01 20 

PUSH v' Rdl, address 10110100111 Rd;Oolooool 0;1 ° 1 00 11 1 Rd;OO 1 00 0 ° I 
r l 14 

SS ° 1 segment 1 offset I 14 
address 

0110100111 Rd;Ooloooo 

SL 11 segment 10000 0000 17 
offset 

PUSHL@Rd1, address 10110100011 Rd;OO 100001 0;1 01000 1T Rd;OO 1000 ° I 
21 SS 13· r address I o I segment I offset I 

0110100011 Rd;OoloOOO 

SL 11 segment 100000000 24 
offset 



Source 
Addressing 

Mode 

X: 

Example: 

PUSH 
Push 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

PUSH @Rdl. addr(Rs) 
101\ 010011 \ Rd,.O \ R.,.O I 01\ 010011\ Rd,.O \ R.,.O 

14 55 14 
I addr ••• I 0\ .ogmonl· \ .".01 

01\ 010011 \ Rd,.O I RI .. O 

SL J! .ogmonl L 00000000 17 
otlse. 

PUSHL @Rdl. addr(Rs) 
10110100011 Rd"O 1 R ... O I 

21 
S5 1011 0100011 Rd,.O 1 R ... O I 21 

I address I "I 0 1 segmonl 1 .".01 

01\ 010001 \ Rd,.O \ R."O 

, 5L 1\ legmonl 10000 0000 24 
olfae. 

In nonsegmented mode, if register R12 (a stack pointer) contains %1002, the word at 
location %1000 contains %0055, and register R3 contains %0022, the instruction 

PUSH @R12, R3 

will leave the value %0022 in location %1000 and the value %IODOin R12. In 
segmented mode, a register pair must be used as the stack 'pointer instead of R12. 

Note 1: Word register is used in nonsegmented mode, register pair in segmented mode. 

115 



RES 
Reset Bit 

Operation: 

Flags: 

RES dst, src 
RESB 

dst(src) .. - 0 

dst: R, lR, DA, X 
src: 1M 
or 
dst: R 
src: R 

This instruction clears the specified bit within the destination operand without 
affecting any other bits in the destination. The source (the bit number) can be 
specified as either an immediate value (Static), or as a word register which contains 
the value (Dynamic). In the second case, the destination operand must be a register, 
and the source operand must be RO through R7 for RESB, or RO through RI5 for 
RES. The bit number is a value from 0 to 7 for RESB, or 0 to 15 for RES, with 0 
indicating the least significant bit. 

Only the lower four bits of the source operand are used to specify the bit number for 
RES, while only the lower three bits of the source operand are used with RESB. 
When the source operand is an immediate value, the "src field" in the instruction 
format encoding contains the bit number in the lowest four bits for RES, or the 
lowest three bits for RESB. 

No flags affected 

Reset Bit Static 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler L::mguage 

Mode SyntaK Instruction Format Cycles Instruction Format Cycles 

R: RES Rd, .#b 1101100011wi RESB Rbd, #b 
Rd 1 b 1 4 1101100011wi Rd 1 b 1 4 

IR: RES @Rd1, #b 
RESB @Rd1, #b 10011 00011wi Rd*O 1 b 1 11 10011000 11wi RM 1 b 1 11 

DA: RES address, #b 10111 00011 wl 0000 I b 1 01j100011wl00001 b RESB address, #b 

l I 
13 SS 14 

address o! segment I offset 

011100011wl00001 b 

SL 11 segment I 0 000 0 a 00· 16 

offset 

X: RES addr(Rdl. #b 1011100011wl Rd*O I b I 011100011wl Rd*O I b 
RESB addr(Rdl. #b 

I I 14 SS 
o I segment j 

14 
address offset 

011100011wl Rd*O I b 

SL 1 I segment I 00 0 a 0 0 0 0 17 

offset 

116 



RES 
Reset Bit 

Reset Bit Dynamic 

Source 
Addressing 

Mode 

R: 

Example: 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

RES Rd, Rs 1001100011wl00001 Rs 1 1001100011w10000\ Rs 1 
RESB Rbd, Rs looool Rd 10000100001 10 10000 1 Rd 10000100001 

If register RL3 contains %B2 (10110010), the instruction 

RESB RL3, #1 

will leave the value %BO (10110000) in RL3. 

Note 1: Word register in nonsegmented mode. register pair in segmented mode. 

Cycles 

10 

117 



RESFLG 
Reset Flag 

Operation: 

Flags: 

Example: 

118 

RESFLG flag flag: C, z, s, P, V 

FLAGS (4:7) +- FLAGS (4:7) AND NOT instruction (4:7) 

Any combination of the C, Z, S, P or V flags are cleared to zero if the corresponding 
bits in the instruction are one. If the bit ir\ the instruction corresponding to a flag is 
zero, the flag will not be affected. All other bits in the FLAGS register are 
unaffected. Note that the P and V flags are represented by the same bit. 

There may be one, two, three, or four operands in the assembly language statement, 
in any order. 

c: Cleared if specified, unaffected otherwise 
Z: Cleared if specified, unaffected otherwise 
S: Cleared if specified, unaffected otherwise 
P/V: Cleared if specified, unaffected otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

RESFLG flags 
11010011011CZSPIVI00lli 7 

Segmented Mode 

Instruction Format 

11 01 001101 Iczs P/vl 001 1 I 

If the C, S, and V flags are set (1) and the Z flag is clear (0), the statement 

RESFLG C, V 

will leave the S flag set (1), and the C, Z, and V flags cleared (0). 

Cycles 

7 



Operation: 

Flags: 

Addressing 
Mode 

Example: 

HETcc 

Nonsegmented 
if cc is true then 
PC_ @SP 
SP - SP + 2 

Segmented 
if cc is true then 
PC_ @SP 
SP - SP + 4 

RET 
Return 

This instruction is used to return to a previously executed procedure at the end of a 
procedure entered by a CALL or CALR instruction. If the condition specified by 
"cc" is satisfied by the flags in the FCW, then the contents of the location addressed 
by the processor stack pointer are popped into the program counter (PC). The next 
instruction executed is that addressed by the new contents of the PC. \ 
See list of condition codes. The stack pointer used is RI5 in nonsegmented 
mode, or RRI4 in segmented mode. If the condition is not satisfied, then the instruc­
Lon following the RET instruction is executed. If no condition is specified, the return 
is taken regardless of the flag settings. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cyclesl Instruction Format Cyclesl 

RET cc 
1101011110100001 cc 1 1017 1101011110100001 cc 1 1317 

In nonsegmented mode, if the program counter contains %2550, the stack pointer 
(RI5) contains %3000, location %3000 contains %1004, and the Z flag is clear, then 
the instruction 

RET NZ 

will leave the value %3002 in the stack pointer and the program counter will contain 
%1004 (the address of the next instruction to be executed). 

Note 1: The two values correspond to return taken and return not taken. 

119 

--------



RL 
Rotate Left 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

120 

RL dst, src 
RLB 

Do src times: (src = I or 2) 
tmp +- dst 
c +- tmp (msb) 
dst(O) +- tmp (msb) 

dst: R 
src: 1M 

dst (n + I) +- 'tmp (n) (for n o to msb - 1) 

Word: ~'5 

Byte: EJ~7 °rJ 
The contents of the destination operand are rotated left one bit position if the source 
ope~and is I, or two bit positions if the source operand is 2. The most significant bit 
(msb) of the destination operand is moved to the bit 0 position and also replaces the 
C flag. 

The source operand may be omitted from the assembly language statement and thus 
dl"faults to the value I. 

c: Set if the last bit rotated from the most significant bit position was I; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during rotation; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax i Instruction Format2 Cycl .. 3 Instruction Format2 

RL Rd, #n 11011100+1 Rd 10018 101 6/7 1101110011 wl Rd 10018 101 RLB Rbd, #n 

If register RH5 contains %88 (10001000), the statement 

RLB RH5 

Cycles3 

6/7 

will leave the value %11 (00010001) in RH5 and the Carry flag will be set to one. 

Note 1: n = source operand. 
Note 2: s = 0 for ~rotation by 1 bit; s = 1 for rotation by 2 bits. 
Note 3: The given execution times are for rotation by 1 and 2 bits respectively. 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

RLC 
Rotate Left through Carry 

RLC 
RLCB 

dst: R 
src: 1M 

Do src times: (src = 1 or 2) 
tmp_ c 

Word: 

Byte: 

c _ dst (msb) 
dst (n + 1) ... - dst (n) (for n 
dst (0) _ tmp 

msb-l to 0) 

LG~~15----------~OIJ 

CEHr-----' ----=-,0 ~ 
The contents of the destination operand with the C flag are rotated left one bit posi­
tion if the source operand is 1, or two bit positions if the source operand is 2. The 
most significant bit (msb) of the destination operand replaces the C flag and the 
previous value of the C flag is moved to the bit 0 position of the destination during 
ea.ch rotation. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

C: Set if the last bit rotated from the most significant bit position was I; cleared 
otherwise 

Z: Set. if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during rotation; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntaxl Instruction Format2 Cycles3 Instruction Format2 Cycles3 

RLC Rd, #n 110111001iw1 110lsl01 11011100 +1 110lsl01 Rd 617 Rd 617 RLCB Rbd, #n 

If the Carry flag is clear (= 0) and register RO contains %800F (1000000000001111), 
the statement 

RLC RO,#2 

will leave the value %003D (0000000000111101) in RO and clear the Carry flag. 

Note 1: n = source operand. 

Note 2: s = a for rotation by 1 bit; 5 = 1 for rotation by 2 bits. 
Note 3: The given execution times are for rotation by 1 and 2 bits respectively. 

121 



RLDB 
Rotate Left Digit 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

B: 

122 

BLDB link, src 

tmp (0:3) 4- link (0:3) 
link (0:3) -- src (4:7) 
5i"e (4:7) 4- src (0:3) 
src (0:3) 4- tmp (0:3) 

4 3 

link I. 
~---'----,,---' 

src: R 
link: R 

4 3 

src 

The low digit of the link byte register is logically concatenated to the source byte 
register. The resulting three-digit quantity is rotated to the left by one BCD digit 
(four bits). The lower digit of the source is moved.to the upper digit of the source; 
the upper digit of the source is moved to the lower digit of the link, and the lower 
digit of the link is moved to the lower digit of the source. The upper digit of the link 
is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift 
to the left a st~ing of BCD digits, thus multiplying. it by a power of ten. The link 
serves to transfer ,digits between successive bytes of the string. This is analogous to 
the use of the Carry flag in multiple precision shifting using the RLC instruction. 

The same byte register must not be used as both the source and the link. 

c: Unaffected 
Z: Set if the link is zero after the operation; cleared otherwise 
S: Undefined 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

RLDB Rbi, Rbs 
1101111110 I Rb. I Rbi 1 9 1101111110 I Rb. I Rbi 1 

Cycles 

9 



Example: 

RLDB 
Rotate Left Digit 

If location 100 contains the BCD digits 0,1 (00000001), location 101 contains 2,3 
(00100011); and location 102 contains 4,5 (01000101) 

100 rn 10lffi 

the sequence of statements 

LOOP: 

LD 

LD 
CLRB 

LDB 
RLDB 
LDB 
DEC 
DJNZ 

R3,#3 

R2,#102 
RHI 

RLl,@R2 
RHI,RLl 
@R2,RLl 
R2 
R3, LOOP 

102 rn 
!set loop counter for 3 bytes! 
!(6 digits)! 

!set pointer to low-order digits! 
!zero-filllow-order digit! 

!get next two digits! 
!shift digits left one position! 
! replace shifted digits! 
!advance painter! 
!repeat until counter is zero! 

will leave the digits 1,2 (00010010) in location 100, the digits 3,4 (00110100) in loca­
tion 101. and the digits 5,0 (01010000) in location 102. 

100 rn 101 rn 102 rn 
In segmented mode, R2 would be replaced by a register pair. 

123 



RR 
Rotate Right 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

124 

RR dst, src 
RRB 

Do src times: (src = I or 2) 
tmp .... dst 
c"" tmp (0) 
dot (msb) .... tmp (0) 

dst: R 
src: 1M 

dst (n - I) .... tmp (n) (for n I to msb) 

Word: 

Byte: 

L~,15------------~'~L0 

[,....:-,7 ----=-' ~0 

The contents of the destination operand are rotated right one bit position if the 
source operand is I, or two bit positions if the source operand is 2. The least signifi· 
cant bit of the destination operand is moved to the most significant bit (msb) and 
also replaces the C flag. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value I. 

c: Set if the last bit rotated from the least significant position was I; cleared 
otherwisE: 

Z: Set if the result is zero; cleared otherwise 
S: Set if the most signific.ant bit of the result is set; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during rotation; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Formcill Cycles2 Instruction Formatl 

RR Rd, #n 110111001!w1 Rd 1011sl01 6/7 1101110011wl Rd jotIslol RRB Rbd, #n 

If register RL6 contains %31 (00110001), the statement 

RRB RL6 

Cycles2 

6/7 

will leave the value %98 (10011000) in RL6 and the Carry flag will be set to one. 

Note I: s=:O for rotation by I bit; 5 = I for rotation by 2 blls. 
Note 2: The given execution times are for rotation by 1 and 2 bits respectively. 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

Example: 

RRC 
Rotate Right through Carry 

RRC dst, src 
RRCB 

Do src times: (src = 1 or 2) 
tmp +- c 
c +- dst (0) 

dst: R 
src: 1M 

dst (n) +- dst (n + 1) (for n 
dst (msb) +- tmp 

o to msb - J) 

Word:. 
[,...:.:-,'5 ____ -.:..,0 Hi]] 

Byte: ~r---7 _-----,0 ~[iJJ 

The contents of the destination operand with the·C flag are rotated one bit position if 
the source operand is I, or two bit positions if the source operand is 2. The least 
significant bit of the destination operand -replaces the C flag and the previous value 
of the C flag is moved to the most siCjnificant bit (msb) position of the destination 
during each rotation. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value I. 

C: Set if the last bit rotated from the least significant bit position was I; cleared 
otherwise • 

Z: Sd if the result is zero; cleared otherwise 
S: SEt if the most significant bit of the result is set; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during rotation; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format! Cycles2 Instruction Format! Cycles2 

RRC Rd, #n 1I0111001iw1 Rd 11115101 6/7 110111 00+1 Rd 
RRCB Rbd. #n 

If the Carry flag is clear ( = 0) and the register RO contains %OODO 
(0000000011011101), the statement 

RRC RO,#2 

Hsiol 

will leave the value %8037 (10000000110111) in RO and clear the Carry flag. 

Note 1: s = 0 for rotation by I bit; s = 1 for rotation by 2 bits 
Note 2: The given execution times are for rotation by 1 and 2 bits respectively. 

6/7 

125 



RRDB 
Rotate Right Digit 

Operation: 

Flags: 

Destination 
AddreSSing 

Mode 

R: 

126 

RRDB link, src 

tmp (0:3) ",,- link (0:3) 
link (0:3) ",,- src (0:3) . 
src (0:3) ",,- src (4:7) 
src (4:7) ",,- tmp (0:3) 

4 3 

link 1 L.. ___ .1...----,._-' 

src: R 
link: R 

7 t 4 3 

src 

The low digit of the link byte register is logically concatenated to the source byte 
register. The resulting three-digit quantity is rotated to the right by one BCD digit 
(four bits). 

The lower digit of the source is moved to the lower digit of the link; the upper digit 
of the source is moved to the lower digit of the source and the lower digit of the link 
is moved to the upper digit of the source. 

The upper digit of the link is unaffected. In multiple-digit BCD arithmetic, this 
instruction can be used to shift to the right a string of BCD digits, thus dividing it by 
a power of ten. The link serves to transfer digits between successive bytes of the 
string. This is anal~gous to the use of the carry flag in multiple preCision shifting 
using the RRC instructiop. 

The same byte register must not be used as both the source and the link. 

e: Unaffected 
Z: Set if the link is zero after the operation; cleared otherwise 
S: Undefined 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

RRDB Rbi, Rbs 1101111 100 1 Rbs 1 Rbi 1 9 1101111100 I Rbs I Rbi 1 

Cycles 

9 



Example: 

RRDB 
Rotate Right Digit 

If location 100 contains the BCD digits 1,2 (00010010). location 101 contains 3.4 
(00110100), and location 102 contains 5,6 (01010110) 

100 rn 101 ffi 102 rn 
the sequence of statements 

LD R3,#3 

R2,100 
RHI 

!set loop counter for 3 bytes (6 
digits)! 

LOOP: 

LD 
CLRB 

!set pointer to high-order digits! 
!zero-fill high-order digit! 

LDB RLI,@R2 !get next two digits! 
RRDB RH1,RLl !shift digits right one position! 
LDB @R2,RLl !replace shifted digits! 
INC R2 !advance pOinter! 
DJNZ R3,LOOP !repeat until counter is zero! 

will leave the digits 0,] (0000000]) in location 100, the digits 2,3 (00100011) in loca" 
tion ]0], and the digits 4,5 (01000101) in location 102. RH] will contain 6, the 
remainder from dividing the string by ]0. 

100 rn ]01 r::T.1 
~ 

102 rn 
In segmented mode, R2 would be replaced by a register pair. 

127 



SBC 
Subtract with Carry 

Operation: 

Flags: 

Addressing 
Mode 

R: 

Example: 

128 

SBC dst, src 
SBCB 

dst .-- dst - src - C 

dst: R 
src: R 

The source operand, along with the setting of the carry flag, is subtracted from the 
destination operand and the result is stored in the destination. The contents of the 
source are not affected. Subtraction is performed by adding the two's complement of 
the source operand to the destination operand. In multiple precision arithmetic, this 
instruction permits the carry ("borrow") from the subtraction of low·order operands 
to be subtracted from the subtraction of high· order operands. 

C: Cleared if there is a carry from the most significant bit of the result; set 
otherwise, indicating a "borrow" 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs 

and the sign of the result is the same as the sign of the source; cleared otherwise 
D: SBC-unaffected; SBCB-set 
H: SBC-unaffected; SBCB-cleared if there is a carry from the most significant bit 

of the low-order four bits of the result; set otherwise, indicating a "borrow" 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

SBC Rd, Rs 1101110111wi I Rs Rd I 5 1101110111wi Rs I Rd I 5 SBCB Rbd, Rbs 

Long subtraction may be done with the follOWing instruction sequence, assuming RO, 
RI contain one operand and R2, R3 contain the other operand: 

SUB RI ,R3 !subtract low-order words! 
SBC RO,R2 !subtract carry and high-order words! 

If RO contains %0038, RI contains %4000, R2 contains %OOOA and R3 contains 
%FOOO, then the above two instructions leave the value %0020 in RO and %5000 
in RI. 



Operation: 

Flags: 

Privileged SC 
System Call 

SC src 

Nonsegmented 
SP.- SP - 4 
@SP .... PS 
SP.- SP - 2 
@SP.- instruction 
PS +- System Call PS 

src: 1M 

Segmented 
SP +- SP - 6 
@SP +- PS 
SP.- SP - 2 
@SP .- instruction 
PS .- System Call PS 

This instruction is used for controlled access to operating system software in a man­
ner similar to a trap or interrupt. The current program status (PS) is pushed on the 
system processor stack, and then the instruction itself, which includes the source 
operand (an 8-bit value) is pushed. The PS includes the Flag and Control Word 
(FCW), and the updated program counter (PC). (The updated program counter 
value used is the address of the first instruction byte following the SC instruction.) 

The system stack pointer is always used (R15 in nonsegmented mode, or RRl4 in 
segmented mode), regardless of whether system or normal mode is in effect. The 
new PS is then loaded from the Program Status block associated with the System 
Call trap (see section 6.2.4), and control is passed to the procedure whose address is 
the program counter value contained in the new PS. This procedure may inspect the 
source operand on the top of' the stack to determine the particular software service 
desired. 

The folloWing figure illustrates the format of the saved program status in the system 
stack: 

NONSEGMENTED 

!~~~~ :~l~TER r-::,O:::E:C:NT"'IF"'IE=R:-1 
OR INTERRUPT 

FCW 

~~~g~:~~NATpER r __ '_C_:-1 

OR INTERRUPT 

_1 WORD ...... 

LOW 
ADDRESS 

HIGH 
ADDRESS 

SPAFTER_ 

SP BEFORE_ 

SEGMENTED 

IDENTifiER 

FCW 

PC SEGMENT 

PC OFFSET 

--1 WORO-

LOW 
ADDRESS 

HIGH 
ADDRESS 

The Z8001 version always executes the segmented mode of the System Call instruc­
tion, regardless of the current mode, and sets the Segmentation Mode bit (SEG) to 
segmented mode (= I) at the start of the SC instruction execution. Both the Z8001 
and Z8002 versions set the System/Normal Mode bit (SIN) to system mode (= 1) at 
the start of the SC instruction execution. The status pins reflect the setting of these 
control bits during the execution of the SC instruction. However, the setting of SEG 
and SIN does not affect the value of these bits in the old FCW pushed onto the stack. 
The new value of the FCW is not effective until the next instruction, so that the status 
pins will not be affected by the new control bits until after the SC instruction execu­
tion is compieled. 

The "src field" in the instruction format encoding contains the source operand. The 
"src field" values range from 0 to 255 corresponding to the source values 0 to 255. 

No flags affected 
Flags loaded from Program Status Area 

129 



SC Privileged 

System Call 

Sourc:e 
Addr_lng 

Mod. 

1M: 

Example: 

130 

Nonsegmented Mode Segmented Mode 
Auembler Language 

Syntax Instruction Format Cycles Instruction Format Cyc:les 

SC Hare I 01111111 I src I 33 I 01111111 I src I 39 

In the nonsegmented 28002, if the contents of the program counter are %1000, the 
contents of the system stack pointer (HIS) are %3006, and the Program Counter and 
FCW values associated with the System Call trap in the Program Status Area are 
%2000 and % 1000, respectively, the instruction 

SC #3 Isystem call, request code = 31 
causes the system stack pOinter to be decremented to %3000. Location %3000 con­
tains %7F03 (the SC instruction). Location %3002 contains the old FCW, and loca­
tion %3004 contains % I 002 (the address of the instruction following the SC instruc­
tion). System mode is in effect, and the Program Counter contains the value %2000, 
which is the start of a System Call trap handler, and the FCW contains %1000. 



Operation: 

Flags: 

SDA 
Shift Dynamic Arithmetic 

SDA dst, src 
SDAB 
SDAL 

Right (src negative) 
Do src times: 

c +- dst (0) 

dst: R 
src: R 

dst (n) +- dst (n + 1) (for n = 0 to msb - I) 
dst (msb) +- dst (msb) 

Left (src positive) 
Do src times: 

c +- dst (msb) 
dst (n + I) +- dst (n) (for n = msb - I to 0) 
dst (0) +- 0 

Right 
7 0 

Left 
7 

Byte: cS l 1-0 ~ ____________ --JI'--O 0--l 
15 0 15 

Word: cS l 1-0 0--l ~ __________________ ~I'--O 

15 0 15 

Long: 

~I 
R, 

.~ 
[~}-j 

Ws 
Rn+ 1 

r---_R' ----,2. 
Rn+ 1 

n=0,2,4, ... ,14 n=0,2,4, ... ,14 

The destination operand is shifted arithmetically left or right by the number of bit 
positions specified by the contents of the source operand, a word register. 

The shift count ranges from -8 to +8 for SDAB, from -16 to + 16 for SDA and from 
-32 to +32 for SDAL. If the value is outside the speCified range, the operation is 
undefined. The source operand is represented as a 16-bit two's complement value. 
Positive values speCify a left shift, while negative values specify a right shift. A shift 
of zero pOSitions does not affect the destination; however, the flags are set according 
to the destination value. The sign bit is replicated in shifts to the right, and the C 
flag is loaded from bit 0 of the destination. The least significant bit is filled with 0 in 
shifts to the left, and the C flag is loaded from the most significant bit (msb) of the 
destination. The setting of the carry bit is undefined for zero shift. 

c: Set if the last bit shifted from the destination was I, undefined for zero shift; 
cleared otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during shifting; cleared otherwise 
D: Unaffected 
H: Unaffected 

131 



SDA 
Shift Dynamic Arithmetic 

Destination 
Addressing 

Mode 

R: 

Example: 

132 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cyclesl Instruction Format Cyclesl 

SDA Rd, Rs hol1100111 Rd ',0,,1 110/110011 / Rd /10111 
10000 I Rs 100000000 I 15+3n I 0000 I Rs I 000 0 00 0 0 I 

SDAB Rbd, Rs 1,0111 0010 I Rd 1,011 I 1,011100,01 Rd 1,0111 
I 0 000 I Rs I 0000 00 0 01 

15+3n 
100001 Rs looooooool 

SDAL RRd, Rs 11 0111 0011 I Rd 111 11 I 1,011100111 Rd 111111 
rooo01 Rs 1000000001 

15+3n 
10000 I Rs 100000000 I 

If register R5 contains %C705 (1100011100000101) and register RI contains - 2 
(%FFFE or 1111111111111110), the statement 

SDA R5,RI 

performs an arithmetic right shift of two bit positions, leaves the value %FICI 
(1111000111000001) in R5, and clears the Carry flag. 

Note 1; n = number 0/ bit positions; the execution time for n ::: 0 is the same as for n = I. 

15+3n 

15+3n 

15+3n 



Operation: 

Flags: 

SDL 
Shift Dynamic Logical 

SDL dst. src 
SDLB 
SDLL 

Right 
Do src times 

c +- dst (0) 

dst: R 
src: R 

dst (n) +- dst (n + 1) (lor n 0 to msb - 1) 
clst (msb) +- 0 

Left 
Do src times 

c +- dst (msb) 
dst (n + 1) +- dst (n) (for n 
dst (0) +-

Right 

msb - 1 to 0) 

Left 

Byte: 
~7 ______________ ~0 ~7 ______________ ~0 

0_1 r-G ~-l 1--0 

15 0 15 0 

Word: o-L-' _______ ....Jr-G ~-lr-----------11_0 

~~ '~r--:-: --.:-:, ------1:20 &1Jr--i"--:-_-_-_-~-+-", ==~~-.Jo 
n=0.2.4 •...• 14 n=0.2.4 •...• 14 

The destination operand is shifted logically left or right by the number of bit posi­
tions specified by the contents of the source operand. a word register. The shift 
count ranges from -8 to +8 for SDL. from -16 to + 16 for SDLB and from -32 to 
+ 32 for SOLL. If the value is outside the specified range. the operation is 
undefined. -The source operand is represented as a 16-bit two's complement value. 
Positive values specify a left shift. while negative values specify a right shift. A shift 
of zero positions does not affect the destination; however. the flags are set according 
to the destination value. The most significant bit (msb) is filled with 0 in shifts to the 
right. and the C flag is loaded from bit 0 of the destination. The leastsigniiicant bit 
is filled with 0 in shifts to the left. and the C flag is loaded from the most significant 
bit of the-destination. The setting of the carry bit is undefined for zero shift. 

c: Set if the last bit shifted from the destination was 1. undefined for zero shift; 
cleared otherwise 

Z: Set if the result is zero; cleared otherwise 
S: set if the most significant bit of the result is set; cleared otherwise 
V: Undefiried 
D: Unaffected 
H:Unaffected 

133 



SDL 
Shift Dynamic Logical 

Destination 
Addressing 

Mode 

R: 

Example: 

134 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

SDL Rd, Rs 
11 011 1 001 1 1 Ad 1 0011 1 11011100111 Ad 100111 

1 0 000 1 As I 0000 0000 1 
15+3" 

10000 I As I 0000 0000 1 

SDLB Rbd, Rs 11011100101 Ad 100111 11011100101 Ad 100111 

1 0 000 1 As 1 000 0 0000 1 
15+3" 

1 0000 1 As 1000000001 

SDLL RRd, Rs 
11011100111 Ad 101111 11011100111 Ad 101111 

Looool As 1000000001 
15+3" 

100 0 01 As 10000 ooooJ 

If register RL5 contains %B3 (10110011) and register Rl contains 4 
(0000000000000100), the statement 

SDLB RL5,Rl 

Cycles 

15+3" 

15+3" 

15+3n 

performs a logical left shift of four bit positions, leaves the value %30 (00110000) in 
RL5, and sets the Carry flag. 

Note' I: n = number of bit positions; the execution lime for n = 0 is the same as for n = 1. 



Op~ration: 

Flags: 

SET pst, src 
5MB 

dst(src) +- I 

dst: R, JR, DA, X 
src: 1M 
or 
dst: R 
src: R 

SET 
Set Bit 

Sets the specified bit within the destination operand without affecting any other bits 
in the destination. The source (the bit number) can be specified as either an immedi'­
ate value (Static), or as a word register which contains the value (Dynamic). In the 
second case, the destination operand must be a register, and the source operand 
must be RO through R7 for SETB, or RO through Rl5 for SET. The bit number is a 
value from 0 to 7 for SETB or 0 to 15 for SET, with 0 indicating the least significant 
bit. 

Only the lower four bits of the source operand are used to specify the bit number for 
SET, while only the lowes·three bits of the source operand are used with SETB. 
When the source operand is an immediate value, the "src field" in the instruction 
format encoding contains the bit number in the lowest four bits for SET, or the 
lowest three bits for SETB. 

No flags affected 

Set Bit Static 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode Syntax Instruction Format Cycles Instruction Format Cycles 

R: SET Rd, #b 
1101100101wi Rd I b I 4 1101100101wi Rd I b I 4 SETB Rbd, #b 

IR: SET @Rd1• #b 
100 11001 olwi Rd",O I b I 11 10011001 olwi R#O I b I 11 SETB @Rd1• #b 

DA: SET address. #b 10111001olwl00001 b I 5501110010lwl00001 b SETB address. #b 
I I 13 14 

address o I segment I offset 

0111001 olwl 0000 I b 

5L 1 I segment I 0000,0000 16 
offset 

X: SET addr(Rd). #b 
SETB addr(Rd). #b 101110010lwi Rd",ol b I 

14 
5501!1001O!wIRd*0! b 14 

I address I a I segment I offset 

01!10010IwIRd",0! b 

5L 11 segmenl 10000 0000 17 
offset 

135 



SET 
Set Bit 

Set Bit Dynamic 

Addressing 
Mode 

R: 

Example: 

136 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

SET Rd, Rs 
100/100101w100001 Rs I 100110010I w i 0000 I Rs I 

SETB Rbd, Rs 
10 000 I Rd 100000000 I 10 

100001 'Rd 100000000 I 

If register RL3 contains %B2 (10110010) and register R2 contains the value 6, the 
instruction 

SETB RL3, R2 

will leave the value %F2 (11110010) in RL3. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 

10 



Operation: 

Flags: 

Example: 

SETFLG 
Set Flag 

SETFLG flag Fl~.g: C. Z. S. p. V 

FLAGS (4:7) +- FLAGS (4:7) OR instruction (4:7) 

Any combination of the C. Z. S. P or V flags are set to one if the corresponding bits 
in the instruction are one. If the bit in the instruction corresponding to a flag is zero. 
the flag will not be affected. All other bits in the FLAGS register are unaffected. 
Note that the P and V flags are represented by the same bit. 

There may be one. two. three. or four operands in the assembly language statement. 
in any order. 

c: Set if specified; unaffected otherwise 
Z: Set if specified; unaffected otherwise 
S: Set if specified; unaffected otherwise 
P/V: Set if specified; unaffected otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format 

SETFLG flags 
1100011011CZSP/vl000li 

Segmented Mode 

Cycles Instruction Format 

7 110001101 ICZSPIVI 0001 I 

If the C. Z'o and S flags are all clear (0),· and the P flag is set (1). the statement 

SETFLG C 

will leave the C and P flags set (1). and the Z and S flags cleared (0). 

Cycles 

7 

137 



SLA 
Shift Left Arithmetic 

Operation: 

Flags: 

138 

SLA dst, src 
SLAB 
SLAt 

Do src times: 

dst: R 
src: 1M 

c .... dst (msb) 
dst (n + 1) .... dst (n) (for n 
dst (0) .... 0 

T 0 

msb - 1 to 0) 

Byte: [£]--11-_____ --'1-0 

15 0 

Word: 0--11-____________ ..... 1--0 

15 0 

Long: ~~5 ______ R_" ____ ~~~ 
~~" ________________ R"_+_' ______________ ~I~o 

n = 0,2, 4, """' 14 

The destination operand is shifted arithmetically left the number of bit positions 
specified by the source operand. For SLAB, the source is in the range 0 to 8; for 
SLA, the source is in the range 0 to 16; for SLAL, the source is in the range 0 to 32. 
A shift of zero pOSitions does not affect the destination; however, the flags are set 
according to the destination value. The least significant bit of the destination is filled 
with 0, and the C flag is loaded from the sign bit of the destination. The operation is 
the equivalent of a multiplication of the destination by a power of two with overflow 
indication. 

The src field is encoded in the instruction format as the 8- or 16-bittwo's comple­
ment positive value of the source operand. For each operand size, the operation is 
undefined if the source op and is not in the specified range. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

C: Set if the last bit shifted from the destination was 1, undefined for zero shift; 
cleared otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed 

during shifting; cleared otherwise 
D: Unaffected 
H: Unaffected 



Destination 
Addressing 

Mode 

R: 

Example: 

SLA 
Shift Left Arithmetic 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles1 Instruction Format 

SLA Rd, #b h 0111 0011 I Rd 110011 1101 1 10011 I 13+3b 
I b I I b 

SLAB Rbd, #b 
rl of 11001 oT Rd fl00l1 1101 1 10010 I 13+3b 
I 0 r b I I 0 I 

SLAL RRd, #b 
1101110011 r Rd 111011 I1OIll00llT 13+3b 
I b I I b 

If register pair RR2 contains %1234ABCD, the statement 

SLAL RR2,#8 

will leave the value %34ABCDOO in RR2 and clear the Carry flag. 

Rd 110011 

I 

Rd 110011 

b -I 

Rd 111011 

I 

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = 1. 

Cycl .. 1 

13+3b 

13+3b 

13+3b 

139 



SLL 
Shift Left Logical 

Operl:ltion: 

Flags: 

140 

SLL dst, src 
SLB 
SLLL 

Do src times: 
c +- dst (msb) 

dst: R 
src: 1M 

dst (n + I) +- dst (n) (for n 
dst (0) +- 0 

msb - 1 to 0) 

7 0 

Byte: 0-1 1_ 0 

15 

Word: 0-1 
15 

Long: 0~, 
Ro 

---j Rn + 1 

n = 0, 2, 4, ... , 14 

0 

1_ 0 

0 

Ii 
0 

1_ 0 

The destination operand is shifted logically left by the number of bit positions 
specified by the source operand. For SLLB, the source is in the range 0 to 8; for 
SLL, the source is in the range 0 to 16; for SLLL, the source is in. the range 0 to 32. 
A shift of zero pOSitions does not affect the destination; .however, the flags are set 
according to the destination value. The setting of the carry bit is undefined for zero 
shift. The least significant bit of the destination is filled with 0, and the C flag is 
loaded from the most significant bit (msb) of the destination. This instruction per­
forms an unsigned multiplication of the destination by a power of two. 

The src field is encoded in th", instruction format as the 8- or 16-bit positive value of 
the source operand. For each operand size, the operation is undefined if the source 
operand is not in the specified range. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

c: Set if the last bit shifted from the destination was 1, undefined for zero shift; 
cleared otherwise 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is set; cleared otherwise 
V: Undefined 
D: Unaffected 
H: Unaffected 



Destination 
Addressing 

Mode 

R: 

Example: 

SLL 
Shift Left Logical 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cyclesl Instruction Format 

SLL Rd, #b 11O[ 110011 [ Rd [00011 1101110011 [ 
13+3b 

1 b 1 1 b 

SLLB Rbd, #b 110 [ 11001 0 [ Rd [0001[ 
13+3b 110111 0010 [ 

1 0 1 b 1 1 0 1 
SLLL RRd, #b 11011100111 Rd 101011 

13+3b 
11011100111 

1 b 1 I b 

If register R3 contains %4321 (0100001100100001), the statement 

SLL R3,#1 

Rd [ 0001 1 
1 

Rd [ 0001 1 
b . 1 

Rd 101011 
1 

will leave the value %8642 (1000011001000010) in R3 and clear the carry flag. 

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = I. 

Cycles l 

13+3b 

13+3b 

13+3b 

141 



SRA 
Shift Right Arithmetic 

Operation: 

Flags: 

142 

SRA dst, src 
SRAD 
SRAL 

Do src times: 
c +- dst (O) 

dst: R 
src: IM 

dst (n) +- dst (n + l)(for n 0 to msb - I) 
dst(msb} +- dst (msb) 

Byte: cS-,-1 __ ------'1--0 
15 

Word: ~-,-I ____________ ~I--G 

15 

Long: 81 
" = 

n = 0,2,4, ... , 14 

The destination operand is shifted arithmetically right by the number of bit positions 
specified by the source operands. For SRAB, the source is in the range 0 to 8; for 
SRA, the source is in the range 0 to 16; for SRAL, the source is in the rang,e 0 to 32. 
A right shift of zero for SRA is not possible. The most significant bit (msb) of the 
destination is replicated, and the C flag is loaded from bit 0 of the destination, this 
instruction performs a signed division of the destination by a power of two. 

The src field is encoded in the instruction format as the 8- or 16-bit two's comple­
ment negative of the source operand. For each operand size, the operation is 
undefined if the source operand is not in the specified range. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value 1. 

e: Set if the last bit shifted from tlie'destination was 1; cleared otherwise 
Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Cleared 
D: Unaffected 
H: Unaffected 



Destination 
Addressing 

Mode 

R: 

Example: 

SRA 
Shift Right Arithmetic 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cyclesl Instruction Format 

SRA Rd, #b 
1101"00,,1 Rd 110011 11011100111 Rdl10011 

13+3b r -b 1 I -b I 
SRAB Rbd, #b 

11011100101 Rd 110011 11011 1 00101 Rd 110011 
13+3b 

I 0 I -b I I 0 I -b I 
SRAL RRd, #b 

1101110011 I Rd 111,011 1101110011 I Rd 111011 13+3b 
I -b I 1 -b 1 

If register RH6 contains %3B (00111011), the statement 
SRAB RH6,#2 

will leave the value %OE (00001110) in RH6 and set the carry flag. 

Note 1: b = number of bit positions; the execution Hme for b = a is the same as for b = 1. 

Cyclesl 

13+3b 

13+3b 

13+3b 

143 



SRL 
Shift Right Logical 

Operation: 

Flags: 

144 

SRL dst, src 
SRLB 
SRLL 

Do src times: 
C:.- dst to) 

dst: R 
src: 1M 

dst (n) :.- dst (n + I)(for n 0 to msb - I) 
dst {msb):.- 0 

Byte: O_I~ __________ ~~ 
15 

Word: o-LI ____________ ...J~0 

15 

Long: 

'Clr=--" ~_R_" _---=-,1 
L-______ R"_+1 _____ -...J~0 

n = 0,2,4, ... , 14 

The destination operand is shiftedlogic:::ally right by the number of bit positions 
specified by the source operand. For SRLB, the source operand is in the range 0 to 
8; for SRL, the source is in the range 0 to 16; for SRLL, the source is in the range 0 
to 32. A right shift of zero for SRL is not possible. The most significant bit (msb) of 
the destination is filled with 0, and the C flag is loaded from bit 0 of the destination. 
This instruction performs an unsigned division of the destination by a power of two. 

The src field is encoded in the instruction format as the 8- or 16-bit negative value of 
the source operand in two's complement rotation. For each operand size, the opera­
tion is undefined if the source operand is not in the range specified above. 

The source operand may be omitted from the assembly language statement and thus 
defaults to the value of 1. 

c: Set if the last bit shifted from the destination was 1; cleared otherwise 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most significant bit of the result is one; cleared otherwise 
V: Undefined 
D: Unaffected 
H: Unaffected 



Destination 
Addressing 

Mode 

R: 

Example: 

SRL 
Shift Right Logical 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles l Instruction Format 

SRL Rd, #b 
j1011100111 Rd 10001] flO r 1 1 00 11 I Rd I 000 11 

13+3b r -b 1 I -b I 
SRLB Rbd, #b 

j101110010 I Rd 100011 1101110010 I Rd I 00011 

I I 1 
13+3b 

f I I 0 -b 0 -b 

SRLL RRd, #b 
11011100111 Rd 10101 I 110'110011_

'

b Rd 
1

0101
1 

13+3b r -b 1 

If register RO contains %1111 (0001000100010001), the statement 

SRL RO,#6 

will leave the value %0044 (0000000001000100) in RO and clear the carry flag. 

Note 1: b = number of bit positions; the execution time for b = 0 IS the same as for b = 1. 

Cyclesl 

13+3b 

13+3b 

13+3b 

145 



SUB' 
Subtract 

Operation: 

Flags: 

Source 
AddreSSing 

Mode 

R: 

1M: 

IR: 

146 

SUB dst, src 
StiBB 
SUBL 

dst +- dst - src 

dst: R 
src: R, IM, IR, DA, X 

The source operand is subtracted from the destination operand and the result is 
stored in the destination. The contents of the source are not affected. Subtraction is 
performed by adding the two's complement of the source operand to the destination 
operand .. 

c: Cleared if there is a carry from the most significant bit; set otherwise, indicating 
a "borrow" 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs 

and the sign of the result is the same as the sign of the source; cleared otherwise 
D: SUB, SUBL--':unaffected; SUBB-set 
H: SUB, SUBL-unaffected; SUBB-cleared if there is a carry from the most 

significant bit of the low-order four bits of the result; set otherwise, indicating a 
"borrow" 

Nonsegmented Mode Segmented Mode 
Assembler 1.anguage 

Syntax Instruction Format Cycles Instruction Format Cycles 

SUB Rd, R. 
11010000ljwj I Rs I Rd I 4 11010000+1 Rs I Rd 4 

SUBB Rbd, Rbs 

SUBL RRd, RRs 
1101010010 I RRs I RRd I 8 1101010010 I RRs I. RRd I 8 

SUB Rd, #data 
00100001 oj 00001 Rd 001000010100001 Rd 

7 7 
data data 

. , 
SUBB Rbd, #data 1001000011 I DODD I Rd I 1001000011100001 Rd 7 7 

I data I data I data I data I 
SUBL RRd, #data 001010010100001 Rd 001010010100QoI Rd 

31 data (high) 16 14 31 data (high) 16 14 

15 data (low) 0 15 data (tow) 0 

SUB Rd, @Rsl 
1001000011 wl R ... O I SUBB Rbd, @Rsl 

Rd I 7 1001000011 wl R ... O I Rd I 7 

SUBL RRd, @Rsl 1001010010 I R ... O I Rd I 14 1001010.0101 R ... O I Rd' I 14 



Source 
Addressing 

Mode 

DA: 

X: 

Example: 

Nonsegmented Mode 
Assembler Language 

Syntax Instruction Format Cycles 

SUB Rd. addr.ess 1011000011wl00001 Rd 1 
SUBB Rbd. address 

1 address 1 

SUBL RRd. address ro iTo 1 001 0100001 Rd 1 
1 address 1 

SUB Rd. addr(Rs) 1011000011wl R .. O I Rd 
SUBB Rbd. addr(Rs) 

1 1 address 

SUBL RRD. addr(Rs) 1011 OtOOlOl R .. O I Rd 1 

1 address 1 

1£ register RO contains %0344, the statement 
SUB RO,#%AA 

will leave the value %029A in RO. 

9 

15 

10 

16 

SUB 
.Subtracl. 

~egmented Mode 

Instruction Format Cycles 

SS 011000011wl00001 Rd 
o I segment I offset 

10 

011000011wl00001 Rd 

SL 11 segment 10000 0000 12 
offset 

011010010100001 Rd 

S5 0 I segment I allse. 
16 

011010010100001 Rd 

SL 11 segment 10000 0000 18 
offset 

01j00001jWj Rs*O j Rd j 

SS 0 I segment I offset 1 
10 

011000011w1Rs*01 Rd 

SL 1T segment -} 0000 oaoo 13 
offset 

SSI011 01 0010 I R .. O I Rd 1 18 
o I segment I D,lfset 1 

0110100101 Rs*O I Rd 

SL 1 r segment 100000000 19 

offset 

Note 1: . Word register in nonsegmented mode. register pair in segmented mode. 

147 



Tee 
Test Condition Code 

Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

Example: 

148 

Tee cc, dst 
TeeB 

if cc is satisfied then 
dst (0) +- I 

dst:R 

This instruction is used to create a Boolean data value based on the flags set by a 
previous operation. The flags in the FeW are tested to see if the condition specified 
by "cc" is satisfied. If the condition is satisfied, then the least significant bit of the 
destination is set. If the condition is not satisfied, bit zero of the destination is not 
cleared but retains its previous value. All other bits in the destination are unaffected 
by this instruction. 

No flags affected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TCC cc, Rd 110110111!w1 Rd I cc I 5 110110111!w1 
TCCB CC, Rbd 

If register RI contains 0, and the Z flag is set, the statement 

Tee EQ,RI 

will leave the value I in Rl. 

Rd I cc I 

Cycles 

5 



Operation: 

Flags: 

Destination 
Addressing 

Mode 

R: 

IR: 

DA: 

TEST 
Test 

TEST dst 
TESTB 
TESTL 

dst OR 0 

dst; R, JR, DA, X 

The destination operand is tested (logically ORed with zero), and the Z, Sand P 
flags are set to reflect the attributes of the result. The flags may then be used for 
logical conditional jumps. The contents of the destination are not affected. 

c: Unaffected 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most Significant bit of the result is set; cleared otherwise 
P: TEST-unaffected; TESTL-undefined; TESTE-set if parity of the result is even; 

cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

TEST Rd 
1101001101wi Rd 

10100 1 7 1101001101wi Rd 0100 I 7 
TESTB Rbd 

TESTL RRd 
1101 011100 I Rd 

11000 1 
13 1101 0·11100 I Rd 1000 1 

13 

TEST @Rdl 
1001001101w1Rd,,0101001 8 100100110lwi Rd*O 0100 I 8 

TESTB @Rdl 

TESTL@Rdl 
10010111001Rd,,0110001 13 1001011100 I Rd*O 1000 I 13 

TEST address 
101100110lwl000010looi 01100110lwl000010l001 

TESTB address 11 55 12 
I address I o I segment I offset I 

0110011 01 W I 0000 j 01 00 

5L 11 segment I 0000 0 000 14 

address 

TESTL address 
101101110010000110001 

16 55 
01101110010000110001 

17 
I addres5 I o I segment I offset I 

011011100 I OOGO 11 000 

5L 11 segment 10000 0000 19 

offset 

149 



TEST 
Test 

Destination Nonsegmented Mode Segmented Mode 
Addressing Assembler Language 

Mode 

X: 

Example: 

150 

Syntax Instruction Format Cycles Instruction Format 

TEST addr(Rd) 
TESTE addr(Rd) 101100110lwi Rd¢O 101001 

12 
SS 01100110lwl Rd¢O 10100 1 

I I o I segment I offset I address 

01100110lwl Rd¢O 10100 

SL 11 segment I ODOO 0000 

offset 

10110111 DO I Rd¢O 110001 
17 SS 

0 11011100 I Rd¢01 1000 1 

I address I 01 sagment 1 offset 

011011100 I Rd¢011000 

SL 11 segment 10000 0000 

offset 

If register R5 contains %FFFF (1111111111111111), the statement 

TEST R5 

will set the S flag, clear the Z flag, and leave the other flags unaffected. 

Note 1: Word register in nonsegmented "mode, register pair in segmented mode. 

I 

Cycles 

12 

15 

17 

20 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

Example: 

TRDB 
Translate and Decrement 

TRDB dsi, src, r 

dst +- src[ dstl 
AUTODECREMENT dst by I 
r+-r-I 

dst: IR 
src: IR 

This instruction is used to translate a string of bytes from one code to another code. 
The contents of the location addressed by the destination register (the "target byte'.') 
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the 
address contained in the source register. The addition is performed following the 
rule for address arithmetic, with the target byte treated as an unsigned a-bit value 
extended with high-order zeros. The sum is used as the address of an a-bit transla­
tion value within the table which replaces the original contents of the location 
addressed by the destination register. 

The destination register is then decremented by one, thus moving the pointer to the 
previous· element in the string. The word register specified by "r" (used as a 
counter) is then decremented by one. The original contents of register RHI are lost 
and are replaced by an undefined value. RI in nonsegmented mode, or RRO in 
segmented mode, must not be used as a source or destination pointer, and RI should 
not be used as a counter. The source, destination, and counter registers must be 
separate and non-overlapping registers. 

Because the a-bit target byte is added to the source register to obtain the address of 
a translation value, the table may .contain 256 bytes. A smaller table size may be 
used where it is known that not all possible a-bit target byte v.alues will occur. The 
source register is unchanged. 

c: Unaffected 
·Z: Undefined 

S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format Cycles 

TRDB@Rdl, @Rsl, r 
11011110001Rd,,0110001 110L 111000 IRd" 01 1000 1 

100001 r JRI"olooool 
25 

Jooool r IR."olooool 
25 

In nonsegmeilted mode, if register ·R6 contains %400 I, the byte at location %4001 
contains 3, register R9 contains %1000, the byte at location %1003 contains %AA, 
and register RI2 contains 2, the instruction 

1'RDB @R6, @R9, RI2 

will leave .the value %AA in location %4001, the value %4000 in R6, and the value 
I in R12.R9 will not be affected, The V flag will be cleared. RHI will be set to an 
undefined value. In segmented mode, R6 and R9 would be replaced with 
register pairs. 
Note 1: Word register in nonsegmented mode, register pair tn segmented mode. 

151 



TRDRB 
Translate Decrement and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

1R: 

152 

TRDRB dst, src, R 

dst +- src [dst] 
AUTODECREMENT dst by I 
r+-r-I . 
repeat until r = 0 

dst: IR 
src: IR 

This instruction is used to translate a string of bytes from one code to another code. 
The contents of the Jocation addressed by the destination register (the "target byte") 
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the 
address contained in the source register. The addition is performed following the 
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value 
extended with high-order·zeros. The sum is used as the address of an 8-bit transla­
tion value within the table that replaces the original contents of the location 
:lddressed by the destination register. 
The destination register is then decremented by one, thus moving the pointer to the 
previous element in the string. The word register specified by "r" (used as a 
counter) is then decremented by one. The entire operation is repeated until the 
result of decrementing r is zero. This instruction can translate from I ~o 65536 bytes. 
The original contents of register RHI are lost and are replaced by an undefined 
value. The source register is unchanged. The source, destination, and counter 
registers must be separate and non-overlapping registers. 
Because the 8-bit target byte is added to the source register to obtain the address of 
a translation value, the table may contain 256 bytes. A smaller table size may be 
used where it is known that not all possible 8-bit target byte values will occur. 
This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved before the interrupt request 
is accepted, so the instruction can be properly resumed. Seven cycles should be 
added to this instruction's execution time for each interrupt request that is accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

TRDRB @Rbd l , @Rbs l , r 

Nonsegmented Mode 

Instruction Format 

11011110001Rd .. o111001 
L 00001 r IR ... olooooJ 

Segmented Mode 

Cycles2 Instruction Format Cycles2 

1101111000iRhoillooi 
11 + 14n 

10000 1 r IRI .. 0 i ooooJ 
11 +14n 



Example: 

TRDRB 
Translate Decrement and Repeat 

In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000 
through %4002 contain the values %00, %40, %80, respectively, register R9 con­
taips %1000, the translation table from location %1000 through %IOFF contains 0, 
1. 2, ... , %7F, 0, 1,2, ... , %7F (the second zero is located at %1080), and register 
RI2 contains 3, the instruction 

TRDRB @R6, @R9, RI2 

will leave the values %00, %40, %00 in byte locations %4000 through %4002, 
respectively. Register R6 will contain %3FFF, and RI2 will contain O. R9 will not be 
affected. The V flag will be set, and the contents of RHI will be replaced by an 
undefined value. In segmented mode, R6 and R9 would be replaced by register 
pairs. 

BEFORE 

%1000 00000000 

%4000 00 a 00000 %1001 00000001 

%4001 o 1 000000 %1002 00000010 

%4002 1 0000000 · · 
AFTER %107F 01111111 

%1080 000000 00 

%4000 00000000 %1081 000000 0 1 

%4001 a 1 000000 %1082 00 0 0 0 0 1 0 

%4002 00000000 · · · 
%10FF 01 1 1 1 1 1 1 

Note 1: Word register in nonsegmented mode, register pair in segmented m9de. 

Note 2: n = number of data elements translated. 

153 



TRIB 
Translate and Increment 

Operation: 

Flags: 

Addressing 
Mode 

154 

TRIB dst, src, R 

dst +- src[dstJ 
AUTOINCREMENT dst by I 
r +- r - I 

dst: IR 
src: IR 

This instruction is used to translate a string of bytes from one code to another code. 
The contents of the location addressed by the destination register (the "target byte") 
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the 
address contained in the source register. The addition is performed following the 
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value 
extended with high-order zeros. The sum is used as the address of an 8-bit transla­
tion value within the table which replaces the original contents of the location 
addressed by the destination register . .The destination register is then incremented 
by one, thus moving the pointer to the next element in the string. The word register 
specified by "r" (used as a counter) is then decremented by one. The original con­
tents of register RHI are lost and are replaced by an. undefined value. The source 
register is unchanged. The source, destination, and counter registers must be 
separate and non-overlapping registers. 

Because the 8-bit target byte is added to the source register to obtain the address of 
a translation value, the table may contain 256 bytes. A smaller table size may be 
used where it is known that not all possible 8-bit target byte values will occur. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TRIB @Rd1, @Rsl, r 11011110001Rd .. olooool 
25 

11011110001Rd .. olooool 
100 001 r IRuolooool 100 00 1 r IRs .. 0100001 

Cycles 

25 



Example: 

TRIB 
Translate and Increment 

This instruction can be used in a "loop" of instructions which translate a string of 
data from one code to any other desired code, but an intermediate operation on 
each data element is required. The following sequence translates a string of 1000 
bytes to the same string of bytes, with all ASCII "control characters" translated 
to the "blank" character (value = 32). A test, however, 
is made for the special character "return" (value = 13) which terminates 
the loop. The translation table contains 256 bytes. The first 33 (0·32) entries all con­
tain the value 32, and all other entries contain their own index in the table, counting 
from zero. This example assumes nonsegmented mode. In segmented mode, R4 and 
R5 would be replaced by register pairs. 

LOOP: 

DONE: 

LD R3, #1000 
LDA R4, STRING 
LDA R5, TABLE 

CPB 
JR 
TRIB 
JR 

@R4, #13 
EQ, DONE 
@R4, @R5, R3 
NOV, LOOP 

TABLE+O 00100000 

TABLE+l 00100000 

TABLE:--2 00100000 

TABLE+32 00100000 

TABlE+33 00100001 

TABLE+34 00100010 

TABLE+2S5 1 1 1 1 1 1 1 1 

!initialize counter! 
! load start addresses! 

!check for return character! 
!exit loop if found! 
!translate next byte! 
!repeat until counter 01 

Note 1: Word register in nonsegmented mode. regIster pair in segmented mode. 

155 



TRIRB 
Translate, Increment and Repeat 

Operation: 

Flags: 

Addressing 
Mode 

IR: 

156 

TRIRB dst, src, R 

dst +- srcldstJ 
AUTOINCREMENT dst by r 
r .. - r - I 
repeat until r = 0 

ds!: IR 
src: IR 

This instruction is used to translate a string of bytes from one code to another code. 
The contents of the location addressed by the destination register (the "target byte") 
are used as an index into a table of translation values whose lowest address is con­
tained in the source register. The index is computed by adding the target byte to the 
address contained in the source register. Tlie addition is performed following the 
rules for address arithmetic, with the target byte treated as an unsigned a-bit value 
extended with high-order zeros. The sum is used as the address of an a-bit transla­
tion value within the table which replaces the original contents of the location 
addressed by the destination register. The destination register is then incremented 
by one, thus moving the pointer to the next element in the string. The word register 
specified by "r" (used as a counter) is then decremented by one. The entire opera­
tion is repeated until the result of decrementing r is zero. This instruction can 
translate from I to 65536 bytes. The original contents of register RHI are lost and are 
replaced by an undefined value. The source register is unaffected. The source, 
d~stination, and counter registers must be separate and non-overlapping registers. 

Because the a-bit target byte is added to the source register to obtain the address of 
a translation value, the table may contain 256 bytes. A smaller table size may be 
used where it is known that not all possible a-bit target byte values will occur. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved before the interrupt request 
is accepted, so that the instruction can be properly resumed. Seven cycles should be 
added to this instruction's execution time for each interrupt request that is accepted. 

c: Unaffected 
Z: Undefined 
S: Unaffected 
V: Set 
D: Unaffected 
H: Unaffected 

Assembler Language 
Syntax 

TRIRB @Rd l , @RsI,.r 

Nonsegmented Mode 

Instruction Format 

11011110001Rd,,0101001 
10000 1 r IR ... olooool 

Segmented Mode 

Cycles2 Instruction Format Cycles2 

11011110001Rd .. 0101001 
11 + 14" 

10000 1 r IR."olooool 11 + 14" 



Example: 

TRIRB 
Translate, Increment and Repeat 

The following sequence of instructions can be used to translate a string of 80 bytes 
from one code to another. The pOinters to the string and the translation table are set, 
the number of bytes to translate is set, and then the translation is accomplished. 
After executing the last instruction, the V flag is set and the contents of RHI are lost. 
The example assumes nonsegmented mode. In segmented mode, R4 and R5 would 
be replaced by register pairs. 

LDA R4, STRING 
LOA R5. TABLE 
LD R3. #80 
TRIRB @R4, @R5, R3 

Note I: Word register In nonsegmenled mode, register pair in segmented mode. 

Note 2: n = number of data elements translated. 

157 



THTDB 
Translate. Test and Decrement 

Operation: 

Flags: 

Addressing 
Mode 

18:, 

Example: 

158 

TRTDB srcl, src2, R 

RHI +- src2[srclJ. 
AUTO DECREMENT srcl by I 
r+-r-I 

src I: IR 
src 2: IR 

This instruction is used to scan a string of bytes testing for bytes with special 
meaning. The contents of the locaiion addressed by the first source register (the 
"target byte") are used as an index into a table of translation values whose lowest 
address is contained in the second source register. The index is computed by adding 
the target byte to the address contained in the second source register. The addition 
is performed following the rules for address arithmetic, with the target byte treated 
as an unsigned 8·bit value extended with high-order zeros. The sum is used as the 
address of an 8-bit value within the table which is loaded into register RHI. The Z 
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The 
contents of the locations addressed by the source registers are not affected. The first 
source register is then decremented by'one, thus moving the pointer to the previous 
element in the string. The word register specified by "r" (used as a counter) is then 
decremented by one. The second source register is unaffected. The source, destina­
tion, and counter registers must be separate and non-overlapping registers. 

Because the 8-bit target byte is added to the second source register to obtain the 
address of a translation value, the table may contain 256 bytes. A smaller table size 
may be used where it is known that not all possible 8-bit target byte values will 
occur. 

c: Unaffected 
Z: Set if the translation value loaded into RHI is zero; cleared otherwise 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D': Unaffected 
H: Unaffected 

, Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TRTDB@Rsll, @Rs21, r 
110 11110 a a IROl " ~ 1010 I 25 1101111000 IRol" ~ 10101 

Looool r IRoh 01 00001 1 0000 1 r IR02" 01 00001 

Cycles 

25 

In nonsegmented mode, if register R6 contains %4001, the byte at location %4001 
contains 3, register R9 contains %1000, the byte at location %1003. contains %AA, 
and register RI2 contains 2, the instruction 

TRTDB @R6, @R9, RI2 

Will leave the value %AA in RHI, the value %4000 in R6, and the value I in R12. 
Location %4001 and regi$ter R9 will not bealfected. The Z and V flags will be 
cleared. In segmented mode, register pairs must be used instead of R6 and R9. 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

TRTDRB 
Translate. Test. Decrement and Repeat 

TRTDRB src 1. src 2, R 

RHI .... src 2[srcl] 
AUTODECREMENT srcl by 1 
r .... r - 1 
repeat until RHI = 0 or r = 0 

src 1: IR 
src 2: IR 

This instruction is used to scan a string of bytes testing for bytes with special 
meaning. The contents of the location addressed by the first source register (the 
"target byte") are used as an index into a table of translation values whose lowest 
address is contained in the second source register. The index is computed by adding 
the target byte to the address contained in the second source register. The addition 
is performed following the rules for address arithmetic, with the target byte treated 
as an unsigned a-bit value extended with high-order zeros. The sum is used as the 
address of an a-bit value within the table which is loaded into register RHI. The Z 
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The 
contents of the locations addressed by the source registers are not affected. The first 
source register is then decremented by one, thus moving the pointer to the previous 
element in the string. The word register specified by "r" (used as a counter) is then 
decremented by one. The entire operation is repeated until either the Z flag is clear, 
indicating that a non-zero translation value was loaded into RHl, or until the result 
of decrementing r is zero. This instruction can translate and test from 1 to 
65536 bytes. The source, destination, and counter registers must be separate and 
non-overlapping registers. 

Target byte values which have corresponding zero translation-table entry values are 
to be scanned over, while target byte values which have corresponding non-zero 
translation-table entry values are to be detected. Because the a-bit target byte is 
added to the second source register to obtain the address of a translation value, the 
table may contain 256 bytes. A smaller table size may be used where it is known that 
not all possible a-bit target byte values will occur. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved b~fore the interrupt request 
is accepted, so that the instruction can be properly resumed. Seven cycles should be 
added to this instruction's execution time for each interrupt request that is accepted. 

c: Unaffected 
Z: Set if the translation value loaded into RHI is zero; cleared otherwise 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles2 Instruction Format 

TRTDRB@Rsll.@Rs21 ,r 
l1 Oj111 000 IRI1 '" 01111 01 L1 0 L 11100 o.IRI1 '" 01111 0 I 

11 + 14n 
1 0000 I r IRlhol 1110 1 100001 r IRlhol11101 

Cycles2 

11 + 1.4n 

159 



TRTDRB 
Translate, Test, Decrement and Repeat 

Example: 

160 

In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000 
through %4002 contain the values %00. %40, %,80, repectively, register R9 contains 
%1000, the translation table from location %1000 through %IOFF contains 0, I, 
2, ... , %7F, 0, 1,2, ... , %7F (the second zero is located at %1080), and register 
R12 contains 3, the instruction 

TRTDRB @R6, @R9, R12 

will leave the value %40 in RH 1 (which was loaded from location % 1040). Register 
R6 will contain %4000, and R12 will contain I. R9 will not be affected. The Z and V 
flags will be cleared. In segmented mode, register pairs are used instead of R6 
and R9. 

%4000 1-"-:""::"'::"":''':''':-'-1 
%4001 1-"-"-'--'--''':''':-'-1 
% 4002 I..-:""::"'::"":''':''':..'-J 

%1000 0 0 0 0 0 0 0 0 

%1001 0 0 0 0 0 0 0 1 

% 1002 0 0 0 0·0 0 1 0 

%107F 01111111 

%1080 00000 000 

%1081 00000001 

%1082 0 0000010 

%10FF 0 1 1 1 1 1 1 1 

Note 1; Word register In nonsegmented mode, regIster paIr In segmented mode. 

Note 2: n :::: number 01 data elements translated. 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

TRTIB 
Translate. Test and Increment 

TRTIB src I, src 2, R 

RHI +- src2[sre!1 
AUTOINCREMENT sre! by I 
r +- r - I 

src I: IR 
src 2: IR 

This instruction is used to scan a string of bytes testing for bytes with special 
meaning. The contents of the location addressed by the first source register (the 
"target byte") are used as an index into a table of translation values whose lowest 
address is contained in the second source register. The index is computed by adding 
the target byte to the address contained in the second source register. The addition 
is performed following the rules for address arithmetic, with the target byte treated 
as an unsigned a-bit value extended with high-order zeros. The sum is used as the 
address of an a-bit value within the table which is loaded into register RHI. The Z 
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The 
contents of the locations addressed by the source registers are not affected. The first 
source register is then incremented by one, thus moving the pointer to the next ele­
ment in the string. The word register speCified by "r" (used as a counter) is then 
decremented by one. The second source register is unaffected. The source, destina­
tion, and counter registers must be separate and non-overlapping registers. 

Because the a-bit target byte is added to the second source register to obtain the 
address of a translation value, the table may contain 256 bytes. A smaller table size 
may be used where it is known that not all possible a-bit target byte values 
will occur. 

c: Unaffected 
Z: Set if the translation value loaded into RHI is zero; cleared otherwise 
S: Unaffected 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TRTIB @Rsll, @Rs21, r 
11 0 111 1 000 IAal '" ol 00 1 oj 110 1111 000 IAsl '" 01 0010 I 

25 I 00001 r IAa2",010000J looooj r IAs2 '" 01 0000 I 

Cycles 

25 

161 



TRTIB 
Translate, Test and Increment 

Example: 

162 

This instruction can be used in a "loop" of instructions which translate and test a 
string of data, but an intermediate operation on each data element is required. The 
follOWing sequence outputs a string of 72 bytes, with each byte, of the original string 
translated from its 7-bit ASCII code to an 8-bit value with odd parity. Lower case 
characters are translated to upper case, and any embedded control characters are 
skipped over. The translation table contains 128 bytes, which assumes that the most 
significant bit of each byte in the string to be translated is always zero. The first 32 
entries and the 128th entry are zero, so that ASCII control characters and the 
"delete" character (%7F) are suppressed. The given instruction sequence is for 
nonsegmented mode. In segmented mode, register pairs would be used instead of R3 
and R4. 

LO R5, #72 !initialize counter! 
LOA R3, STRING ! load start address! 
LOA R4, TABLE 

LOOP: 
TRTIB @R3, @R4, R5 ! translate and test next byte! 
JR Z, LOOP !skip control character! 
OUTB PORTn, RHI !output characters! 
JR NOV, LOOP !repeat until counter = O! 

DONE: 

Note 1: Word register in nonsegmented mode, register pair in segmented mode. 



Operation: 

Flags: 

Addressing 
Mode 

IR: 

TRTIRB 
Test, Increment and Repeat 

TRTIRB src I, src 2, R 

RHI - src2[srcl) 
AUTOINCREMENT srcl by I 
r-r-I 
repeat until RHI = 0 or R = 0 

src I: IR 
src 2: IR 

This instruction is used to scan a string of bytes, testing for bytes with special 
meaning. The contents of the location addressed by the first source register'{the 
"target byte"} are used as an index into a table of translation values whose lowest 
address is contained in the second source register. The index is computed by adding 
the target byte to the address contained in the second source register. The addition 
is performed following the rules for address arithmetic, with the target byte treated 
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the 
address of an 8-bit value within the table which is loaded into register RHL The Z 
flag is set if the value loaded into RHI is zero; otherwise the Z flag is cleared. The 
contents of the locations addressed by the source registers are not affected. 

The first source register is then incremented by one, thus moving the pointer to the 
next element in the string. The word register specified by "rn {used as a counter} is 
then decremented by one. The entire operation is repeated until either the Z flag is 
clear, indicating that a non-zero translation value was loaded into RHI, or until the 
result of decrementing r is zero. This instruction can translate and test from I to 
65536 bytes. The source, destination, and counter registers must be separate and 
non-overlapping registers. 

Target byte values which have corresponding zero translation table entry values are 
scanned over, while target byte values which have corresponding non-zero transla­
tion table entry values are detected and terminate the scan. Because the 8-bit target 
byte is added to the second source register to obtain the address of a translation 
value, the table may contain 256 bytes. A smaller table size may be used where it is 
known that not all possible 8-bit target byte values will occur. 

This instruction can be interrupted after each execution of the basic operation. The 
program counter of the start of this instruction is saved before the interrupt request 
is accepted, so that the instruction can be properly resumed. Seven cycles should be 
added to this instruction's execution time for each interrupt request that is accepted. 

c: Unaffected 
Z: Set if the translation value loaded into RHI is zero; cleared otherwise 
S: Unaffected ' 
V: Set if the result of decrementing r is zero; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles2 Instruction Format 

TRTIRB @Rs]l, @Rs21, r 
11 01111000 IRSI ,. 01 0110 I 1101111000 IRSI ,. ~ 011 0 I 

11 +14" 
loooo[ r [RSh 0[111 0 I 100001 r IRsholl1101 

Cycles2 

11 + 14" 

163 



TRTIRB 
Test, Increment and Repeat 

Example: 

164 

The following sequence of instructions can be used in non segmented mode to scan a 
string of 80 bytes, testing for special characters as defined by corresponding non­
zero translation table entry values. The pOinters to the string and translation table 
are set, the number of bytes to scan is set, and then the translation and testing is 
done. The Z and V flags can be tested after the operation to determine if a special 
character was found and whether the end of the string has been reached. The 
translation value loaded into RHl might then be used to index another table, or to 
select one of a set of sequences of instructions to execute next. In segmented mode, 
R4 and R5 must be replaced with register pairs. 

LDA R4, STRING 
LDA R5, vABLE 
LD R6, #8Q 
TRTIRB @R4, @R5, R6 
JR NZ, SPECIAL 

END_OF _STRING: 

SPECIAL: 
JR OV,LAST_CHAFLSPECIAL 

Note 1: Word register in nonseqmented mode, register pair in segmented mode. 

Note 2: h = number of data elements translated, 



Operation: 

Flags: 

Addressing 
Mode 

R: 

IR: 

DA: 

X: 

TSET dst 
TSETB 

S +- dst(msb) 
dst(O:msb) +- 111...111 

dst: R, JR, DA, X 

T5ET 
Test and Set 

Tests the most significant bit of the destination operand, copying its value into the S 
flag, then sets the entire destination to all 1 bits. This instruction provides a locking 
mechanism which can be used to synchronize software processes which require 
exclusive access to certain data or instructions at one time. 

During the execution of this instruction, BUSRQ is not honored in the time between 
loading the destination from memory and storing the destination to memory. For 
systems with one processor, this ensures that the testing and setting of the destination 
will be completed without any intervening accesses. This instruction should not be 
used to synchronize software processes residing on separate processors where the 
destination is a shared memory location, unless this locking mechanism can be 
guaranteed to function correctly with multi-processor accesses. 

c: Unaffected 
Z: Unaffected 
S: Set if the most significant bit of the destination was 1; cleared otherwise 
V: Unaffected 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax Instruction Format Cycles Instruction Format 

TSET Rd 
TSETB Rbd 110100110iwl Rd 

10110 1 
7 110100110iwl Rd 

10110 1 

TSET @Rd1 
10010011 olwl Rd",O 1 011 01 11 10010011 olwl Rd",O 1 011 01 TSETB@Rd l 

TSET address 
1011001101w1000010110J 5501100110lwl000010110 TSETB address 14 
I address I o 1 segment I offs~t 

01J001101w1000010110 

5L 11 segment 100000000 

ollaet 

TSET addr(Rd) 101100110/w/ Rd",O /01101 5501/00110/W/Rd",0/0110 TSETB addr(Rd) 
I 1 

15 
address o I segment I offset 

01/00110/W/ Rd"O /0110 

5L 1/ segment /00000000 

offset 

Cycles 

7 

11 

15 

17 

15 

18 

165 



TSET 
Test and Set 

Example: 

166 

A simple mutually-exclusive critical region may be implemented by the following 
sequence of statements: 

ENTER: 
TSET 
JR 

SEMAPHORE 
MI,ENTER ! loop until resource c;;on-! 

!trolled by SEMAPHORE! 
lis available! 

!Critical Region-only one software process! 
!executes this code at a time! 

CLR SEMAPHORE !release resource controlled! 
!by SEMAPHORE! 



Operation: 

Flags: 

Source 
Addressing 

Mode 

R: 

1M: 

IR: 

DA: 

X: 

XOR 
Exclusive Or 

XOR dst. src 
XORB 

dst _ dst XOR src 

ds!: R 
src: R,. IM. IR. DA. X 

The source operand is logically EXCLUSIVE ORed with the destination operand and 
the result is stored in the destination. The contents of the source are not affected. 
The EXCLUSIVE OR operatiol'/ r~sults in a one bit b~ing stored whenever the cor­
responding bits in the two operands are different; otherwise. a zero bit is stored. 

c: Unaffected 
Z: Set if the result is zero; cleared otherwise 
S: Set if the most Significant bit of the result is set; cleared otherwise 
P: XOR-unaffected; XORB-set if parity of the result is even; cleared otherwise 
D: Unaffected 
H: Unaffected 

Nonsegmented Mode Segmented Mode 
Assembler Language 

Syntax instruction Format Cycles Instruction Format Cycles 

XOR Rd. Rs 
1101001OO1wi I 1 1101001OO1wi I Rs Rd 4 Rs Rd I 4 XORB Rbd, Rbs 

XOR Rd, idata 1001001001100001 Rd I 00100100110000 I Rd 
7 7 

I data I data 

XORB Rbd. #data 1001001000[00001 Rd J 
7 

001001000Jooo01_~d 
7 

l data I data J data I data 

XOR Rd, @Rsl 
100100100I w i R."O I Rd I 7 1001001OO1wi R."O I Rd I 7 XORB Rbd, @Rsl 

XOR Rd, address 
101j00100lwlooooi Rd I 01100100lwl00001 Rd 

XORB Rbd, address 9 55 10 
l address J 01 sogment I offaet 

01100100lWl00001 Rd 

5L 11 segment 100000000 12 
offset 

XOR Rd, addr(Rs) 
lO 1[00 1001Wl R."O I Rd I Otl00100 lwi Rs"O I Rd 

XORB Rbd, addr(Rs) 10 
55 1 0 1 .egment 1 oll.et 

10 
I address I 

01100100lWI R."O I Rd 

5L 11 .agmant 100000000 13 

offset 

167 



XOR 
Exclusive Or 

Example: 

168 

If register RL3 contains % C3 (11000011) and the source operand is the immediate 
value %7B (0]]110]]), the statement 

XORB RL3,#%7B 

will leave the value %B8 (10]]1000) in RL3. 

Note 1: Word register in nonsegmenled mode, register pair in segmented mode. 



EPA Instruction Templates 

There are seven "templates" for EPA instruc­
tions. These templates correspond to EPA 
instructions, which combine EPU operations 
with possible transfers between memory and an 
EPU, between CPU registers and EPU regis­
ters, and between the Flag byte of the CPU's 
FCW and the EPU. Each of these templates is 
described on the following pages. The descrip­
tion assumes that the EPA control bit in the 
CPU's FCW has been set to I. In addition, the 
description is from the point of view of 
the CPU-that is, only CPU activities are 
described; the operation of the EPU is implied, 

Extended Instruction 
Load Memory from EPU 

Operation: Memory +- EPU 

but the full speCification of the instruction 
depends upon the implementation of the EPU 
and is beyond the scope of this manual. 

Fields ignored by the CPU are shaded in the 
diagrams of the templates. The 2-bit field in bit 
positions 0 and 1 of the first word of each 
template would normal'ly be used as an identi­
fication field for selecting one of up to four 
EPUs in a multiple EPU system configuration. 
Other shaded fields would typjcally contain 
opcodes for instructing an EPU as to the oper­
ation it is to perform in addition to the data 
transfer speCified by the template. 

The CPU performs the indicated address calculation and generates n EPU memory 
write transactions. The n words are supplied by an EPU and are stored in n con­
secutive memory locations starting with the effective address. 

Flags/Registers: No flags or CPU registers are affected by this instruction. 

Clock Cycles 

mode dst N5 55 5L 
0 0 IR (dst '* 0) II +3n 
0 I X (dst'* 0) 15+3n 15+3n 18+3n 
0 I DA (dst = 0) 14+3n 15+3n 17+3n 

169 



Extended Instruction. 
Load EPU from Memory 

Operation: EPU +- Memory 

The CPU performs the indicated address calculation and generates n EPU memory 
read transactions. The n consecutive words are fetched from the memory locations 
starting with the effective address. The data is read by an EPU and operated upon 
according to the EPA instruction encoded into the shaded fields. 

Flags/Registers: No flags or CPU registers are affected by this instruction. 

mode src 

0 0 IR (src *' 0) 
0 I ·x (src *' 0) 
0 I DA (src = 0) 

Extended Instruction 
Load CPU from EPU 

Operation: CPU +- EPU registers 

Clock Cycles 

N5 55 5L 
II +3n 
15+3n 15 + 3n 18+3n 
14+3n 15+3n 17 + 3n 

The contents of n words are transferred from an EPU to consecutive CPU registers 
starting with register ds!. CPU registers are transferred consecutively, with register 0 
following register 15. 

Flags/Registers: No flags are affected by this instruction. 

Execution Time: II + 3n cycles. 

170 



Extended Instruction 
. Load EPU from CPU 

Operation: EPU +- CPU registers 

The contents of n words are transferred to an EPU from consecutive CPU registers 
starting with register src. CPU registers are transferred consecutively, with register 0 
following register 15. 

Flags/Registers: No flags are affected by this instruction. 

Execution Time: II + 3n cycles. 

Extended Instruction 
Load FCW from EPU 

Operation: Flags +- EPU 

The Flags in the CPU's Flag and Control Word are loaded with information from an 
EPU on AD lines ADo-AD7. 

Flags/Registers: The contents of CPU register 0 are undefined after the execution of this instruction. 

Execution Time: 14 cycles. 

171 



Extended Instruction 
Load EPU from FeW 

Operation: EPU .. - Flags 

The Flags in the CPU's Flag and Control Word are transferred to an EPU on AD 
lines ADo-AD7. 

Flags/Registers: The flags in the FCW are unaffected by this instruction. 

Execution Time: 14 cycles. 

Extended Instruction 
Internal EPU Operation 

Operation: Internal EPU Operation 

The CPU treats this template as a No Op. It is typically used to initiate an internal 
EPU operation. 

Flags/Registers: The flags in the FCW are unaffected by this instruction. 

Execution Time: 14 cycles. 

172 



Programmers Quick Reference 
Clock Cycle.· 

Mnemonics Operands Addr. Word, Byte Long Word Operation 
Modes NS SS SL NS SS SL 

ADC H,sre R Add with Corry 
ADCB R-R+src+carry 

ADD H,sre R 4 4 8 8 8 Add 
ADDB 1M 7 7 14 14 14 R-R+src 
ADDL IR 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

AND H,sre R 4 4 AND 
ANDB 1M 7 7 R-RANDsrc 

IR 
DA 9 10 12 
X 10 10 13 

BIT dsl,b R 4 4 Test Bit Static 
B1TB IR 8 Z nag - NOT dsl bil specified by b 

DA 10 11 13 
X 11 11 14 

BIT dsl,R R 10 10 10 Test Bit Dynamic 
BITB Z nag _ NOT dst bit specified by 

contents of R 

CALL dsl IR 10 10 15 Call Subroutine 
DA 12 18 20 Aulodecrement SP 
X 13 18 21 @SP-PC 

PC - dsl 

CALR dsl RA 10 10 15 Coll Relative 
Autodecremenl SP 
@SP-PC 
PC - PC + dsl( range -4094 10 
+4096) 

CLR dst R 7 Clear 
CLRB IR 8 dsl - 0 

DA JJ 12 14 
X 12 12 15 

COM dst R 7 7 Complement 
COMB IR 12 ds! - NOT dsl 

DA 15 16 18 
X 16 16 19 

COMFLG nags 7 Complement Flag 
(Any combination of C, Z, S, PIV) 

CP R,src R 4 4 8 8 8 Compare with Register 
CPB 1M 7 7 14 14 14 R - src 
CPL lR 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

CP dst,lM IR JJ Compare with Immediate 
CPB DA 14 15 17 dsl - 1M 

X 15 15 18 

• NS = NOD-Segmented. 55 =:: Short Segmented Offset. SL =Segmented Long Offset. Blank = Not Implemented. 

173 



Ciock Cycles 

Mnemonics Operands Addr. Word. Byte LongW",d Operallon 
Mode. NS SS SL NS SS SL 

CPO RX,src,Ry,cc 1ft 20 Compare and Decrement 
CPDB RX - src 

Autodecrement Brc address 
Ry - Ry - I 

CPDR Rx,src,Ry,cc IR (II + 9n) Compare. Decrement and Repeat 
CPDRB Ry - src 

Autodecrement src address 
Rx - Ry - I 
Repeat until cc i,B true or Ry = 0 

CPI Rx,src.Ry,cc IR 20 Compare and Increment 
CPIB RX - src 

Autoincrement Brc address 
Ry - Ry - I 

cpm Rj{,src,Ry,cc IR (II + 9n) Compare. Increment and Repeat 
CPIRB RX - src 

Autoincrement Brc ac;idress 
Ry - Ry - I 
Repeat until cc is true or Ry = 0 

CPSD dst,src,R,cc IR 25 Compare String and Decrement 
CPSDB dst - Brc 

Autodecrement dst and Brc addresses 
R - R- I 

CPSDR dst,src,R,cc IR (II + 14n) Compare String. Decr. and Repeat 
CPSDRB dst - src 

Autodecrement dst and Brc addresses 
R-R-I 
Repeat until co is true or R = 0 

CPSI dst,src,R,cc IR 25 Compare String and Increment 
CPSIB dst - Brc 

Autoincrement dst and arc addresses 
R - R - I 

cpsm dst,src,R,cc IR (II + 14n) Compare String. Incr. and Repeat 
CPSmB dst - Brc 

Autoincrement dst and Brc addresses 
R-R-I 
Repeat until cc is true or R = 0 

DAB dsi R 5 5 5 Decimal Adjust 

DEC dst,n R 4 4 Decrement by n 
DECB IR II dst-dst-n 

DA 13 14 16 (n = 1...16) 
X 14 14 17 

DI" int 7 Disable Interrupl 
(Any combination of NVI, VI) 

DIV R,sro R 107 744 Divide (signed) 
DIVL 1M 107 744 Word.: Rn + 1 - Rn,n + 1 + src 

lR 107 107 107 744 744 744 Rn - remainder 
DA 108 109 III 745 746 748 Long Word: Rn + 2,n + 3 - Rn ... n + 3 + arc 
X 109 109 112 746 746 749 Rn,n + 1 - remainder 

*Prlvileged Instruction. Executed in system mode only. 

174 



Clock CIcles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

DINZ R,dst RA II II II Decrement and Jump if Non-Zero 
DBINZ R-R-I 

If R '" 0: PC - PC + dst(range -254 to 0) 

EI" int 7 Enable Interrupt 
(Any combination of NVI, VI) 

EX R,src R 6 6 6 Exchange 
EXB IR 12 R -- src 

DA IS 16 18 
X 16 16 19 

EXTS dst R 11 11 II 11 11 II Extend Sign 
EXTSB Extend sign of low order half of dst 
EXTSL through high order half of dst 

HALT" ( 8 + 3 n) HALT 

IN" R,src IR 10 Input 
INB" DA 12 12 12 R - src 

INC dst,n R 4 4 Increment by n 
INCB IR II dst - dst + n 

DA 13 14 16 (n = 1. .. 16) 
X 14 14 17 

IND" dst,src,R IR 21 Input and Decrement 
INDB" dst - src 

Autodecrement dst addresed 
R-R-I 

INDR" dst,src,R IR (11 + IOn) Input. Decrement and Repeat 
INDRB" dst - src 

Autodecrement dst address 
R-R-I 
Repeat until R = 0 

INI" dst/sre,R IR 21 Input and Increment 
INIB" dst - src 

Autoincrement dst address 
R - R - 1 

INIR" dst,src.R IR (11 + IOn) Input. Increment and Repeat 
INIRB" dst - src 

Automcrement dst address 
R-R-I 
Repeat until R = a 

IRET" 13 13 16 Interrupt Return 
PS - @ SP 
Autoincrement SP 

IP ce,dst IR 10 15 (taken) Jump' Conditional 
IR 7 7 (not taken) If cc is true: PC - dst 

DA 10 
X II 

IR ce,dst RA 6 Jump Conditional Relative 
11 cc IS true: PC - PC + dst 
(range -256 to + 254) 

*Privileged instruction. Executed in system mode only. 

175 



Clock Cycle, 

Mnemonics Operand. Addr. Word, Byte Long Word Operation 
Mode. N5 55 5L N5 55 5L 

LD H,sre R 3 3 3 5 5 5 Load Into Register 
LDB 1M 7 7 7 II II II ·R - arc 
LDL 1M 5 (byte only) 

IR 7 II 
DA 9 10 12 12 13 15 
X 10 10 13 13 13 16 

BA 14 14 17 17 
BX 14 14 17 17 

LD dst,R IR 8 II Load Into Memory (Store) 
LDB DA II 12 14 14 15 17 dst - R 
LDL X 12 12 15 15 15 18 

BA 14 14 14 17 17 17 
BX 14 14 14 17 17 17 

LD dst,lM IR II Load Immediate Into Memory 
LDB DA 14 15 17 dst - 1M 

X 15 15 18 

LDA· R,sTo DA 12 13 15 Load Address 
X 13 13 16 R - source address 

BA 15 15 15 
BX 15 15 15 

LDAR R,sto RA 15 15 15 Load Address Relative 

LDCTL" CTLR,sre R 7 Load into Control Register 
CTLR - sre 

LDCTL" dst,CLTR R 7 7 Load from Control Register 
dst - CTLR 

LDCTLB FLGR,sre R 7 Load Into Flag Byte Register 
FLGR - sre 

LDCTLB dst,FLGR R Load from Flag Byte Register 
dst - FLGR 

LDD dst,src,R IR 20 Load and Decrement 
LDDB dst - arc 

Autodecrement dst and Brc addresses 
R - R + I 

LDDR dst,src,R lR (11+ 9 n) Load, Decrement and Repeat 
LDDRB dst - src 

Autodecrement dst and src addresses 
R-R-I 
Repeat until R = 0 

LDI dst,src,R IR 20 Load and Increment 
LDIB dst - Brc 

Autoincrement dst and src addresses 
R - R - I 

LDIR dst,src,R lR (l1+9n) Load, Increment and Repeat 
LDIRB dst - src 

Autoincrement ~st and Brc addresses 
R - R - I 
Repeat until R = 0 

176 



Clock Cycles 

Mnemonics Operands Addr. Word, Byte Long Word Operation 
Modes NS SS SL NS SS SL 

LOK R,src 1M Load Constant 
R - n (n = 0 ... 15) 

LDM R,src,n IR 11 Load Multiple 
DA 14 15 17 + 3n ds! - src (n consecutive words) 
X 15 15 18 (n = 1. .. 16) 

LDM dst,R,n IR 11 Load Multiple (Store Multiple) 
DA 14 15 17 + 3n ds! - R (n consecutive words) 
X 15 15 18 (n = 1. .. 16) 

LOPS· src lR 12 Load Program Status 
DA 16 20 22 PS -" src 
X 17 20 23 

LDR R,src RA 14 14 14 17 17 17 Load Relative 
LDRB R - src 

(range -32768 ... + 32767) 

LDR dst,R' RA 14 14 14 17 17 17 Load Relative (Store Relative) 
LORD dst - R 
LDRL (range -32768 ... + 32767) 

MBlT· 7 Test Multi-Micro Bit 
Set if MJ is Low; reset S if MI is High. 

MREQ· dst R (12 + 7n) Multi-Mircre Request 

MRES· Multi·Micro Reset 

MSET· 5 5 Multi·Micro Set 

MULT R,src R 70 70 70 282 + 282 + 282 + Multiply (signed) 
MULTL 1M 70 70 70 282 + 282 + 282 + Word: Rn,n+ 1 - Rn+ 1" src 

IR 70 282+ Long Word: Rn ... n+3-Rn+2, n+3 .src 
DA 71 72 74 283 + 283 + 286 + + Plus seven cycles for each 1 in the 
X 72 72 75 284 + 284 + 287 + absolute value of the low order 16 bits of the 

multiplicand. 

NEG dst R 7 Negate 
NEGB IR 12 dst - 0 - dst 

DA 15 16 18 
X 16 16 19 

NOP No Operation 

OR R,src R 4 OR 
ORB 1M 7 R - R OR src 

IR 7 
DA 9 10 12 
X 10 10 13 

OTOR· dst,src,f lR (11 + 10 n) Output. Decrement and Repeat 
OTORB· dst - src 

Aulodecrement src address 
R - R - 1 
Repeat until R = 0 

"'Privileged instructions. Executed in system mode only. 

177 



Clock Cycl .... 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

OTIR· dst,src,R IR (ll + 10 n) Output. Increment and Repeat 
OTIRB· dst - src 

Autoincrement ser address 
R-R-I 
Repeat until R = 0 

OUT· dst,R lR 10 Output 
OUTB" DA 12 12 12 dst - R 

OUTDo dst,src,R IR 21 Output and Decrement 
OUTDB· dst - src 

Autodecrement src address 
R-R-I 

OUTI· dst,src,R IR 21 Output and Increment 
OUTIB" dst - src 

Autoincrement src address 
R-R-I 

POP dsUR R 8 8 8 12 12 12 Pop 
POPL !R 12 19 dst - IR 

DA 16 16 18 23 23 25 Autoincrement contents of R 
X 16 16 19 23 23 26 

PUSH IR,src R 9 9 9 12 12 12 Push 
PUSHL 1M 12 12 12 Autodecremenf contents of R 

IR 13 20 IR - src 
DA 14 14' 16 16 21 23 
X 14 14 17 21 21 24 

RES dst,b R 4 4 Reset Bit Stalic 
RESB IR II Reset dst bit specified by b 

DA 13 14 16 
X 14 14 17 

RES dst,R R 10 10 10 Reset Bit Dynamic 
RESB RElset dst bit specified by contents R 

RESFLG flag Reset Flag 
(Any combination of C, Z, s, P/V) 

RET cc 10 10 13 (taken) Return Conditional 
7 7 7 (not taken) If cc is true: PC - @ SP Autoincrement SP 

RL dst,n R 6 for n I Rotate Left 
RLB R 7 for n = 2 by n bits (n = 1, 2) 

RLC dst,n R 6 for n I Rotate Left through Carry 
RLCB R 7 for n 2 by n bits (n = 1, 2) 

RLDB R,src R 9 9 Rotate Digit Lelt 

RR dst,n R 6 for n = I Rotate Right 
RRb R 7 for n = 2 by n bits (n = 1,2) 

RRC dst,n R 6 for n = Rotate Right through Carry 
RRCB R 7 for n = by n bits (n = I, 2) 

·PrivUeged instruction. Executed in system mode only. 

178 



Clock Cycles 

Mnemonics Operand. Addr. Word. Byte Long Word Operation 
Modes NS 55 SL NS 55 SL 

RHDB R,src R 9 Rotale Digit Right 

SBC R,src R 5 5 5 Subtract with Carry 
SBCB R - R - src - carry 

SC src 1M 33 39 System Call 
Autodecrement SP 
@ SP - old PS 
Push instruction 
PS - System Call PS 

SDA dst.R R (15 + 3;') (15 + 3n) Shilt Dynamic Arithmetic 
SDAB Shift dst left or right 
SDAL by contents of R 

SDL dsl.R R (15 + 3n) (15 + 3n) Shilt Dynamic Logical 
SDLB Shift dst left or right 
SDLL by contents of R 

SET dst.b R 4 4 Set Bit Static 
SETB IR 11 Set dst bit specified by b 

DA 13 14 16 
X 14 14 17 

SET dst.R R 10 10 10 Set Bit Dynamic 
SETB Set dst bit specified by contents oi R 

SETFLG flag X Set Flag 
(Any combination of C, Z, S, P,V: 

SIN· H,src DA 12 12 12 Special Input 
SINB· R - src 

SIND· dst,src,R IR 21 Special Input and Decrement 
SINDB· ds! - src 

Autodecrement ds! address· 
R-R-l 

SINDR* dst,src,R IR (11 + Ian) Special Input. Decrement and Repeat 
SINDRB* ds! - src 

Autodecrement ds! address 
R - R - 1 
Repeat until R ;::: a 

SINI· dst,sre,R IR 21 Special Input and Increment 
SINIB· dst - src 

Autoincrement dst address 
R - R - 1 

SINIR* dst.src.R IR (II + Ian) Special Input. Increment and Repeat 
SINIRB* dst - src 

Autoincrement dst address 
R-R-l 
Repeat until R ~ a 

SLA dst,n R (13 + 3n) (13 + 3n) Shift Left Arithmetic 
SLAB by n bits 
SLAL 

SLL dst,n R (13 + 3n) (13 + 3n) Shill Left Logical 
SLLB by n bits 
SLLL 

*Privileged instruction. Executed in system mode only. 

179 



Clock Cycles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

SOTOR" dst,src,R IR (II + 10 n) Special Output. Deer. and Repeat 
SOTORB" dst -- src 

Autodecrement src address 
R-R-l 
Repeat until R = 0 

SOTIR" dst,src,R R (II + 10 n) Special Output. Incr. and Repeat 
SOTIJ\B" dst -- src 

Autoincrement src address 
R-R-l 
Repeat until R = 0 

SOUTo dst,src DA 12 12 12 Special Output 
SOUTB" cist -- src 

SOUTO" dst,src,R IR 21 Special Output and Decrement 
SOUTOB" dst -- src 

Autodecrement src address 
R-R-l 

SOUTI" dst,src,R IR 21 Special Output and Increment 
SOUTIB" dst -- src 

Autoincrement src address 
R - R - I 

SRA dst,n R (13 + 3 n) (13 + 3 n) Shilt Right Arithmetic 
SRAB by n bits 
SRAL 

SRL dst,n R (13 + 3 n) (13 + 3 n) Shift Right Logical 
SRLB by n bits 
SRLL 

SUB R,src R 4 4 8 8 8 Subtract 
SUBB 1M 7 7 14 14 14 R-R- src 
SUBL IR 7 14 

DA 9 10 12 15 16 18 
X 10 10 13 16 16 19 

TCC ce/dst R 5 Test Condition Code 
TCCB Set LSB if cc is true 

TEST dst R 7 7 13 13 13 Test 
TESTB IR 8 13 dst OR 0 

DA II 12 14 16 17 19 
X 12 12 15 17 17 20 

·PrlvUeged instructions. Executed in system mode only. 

180 



Clock Cycles 

Mnemonics Operands Addr. Word. Byte Long Word Operation 
Modes NS SS SL NS SS SL 

TROB dst,src,R IR 25 Translate and Decrement 
dst - src(dst) 
Autodecrement cist address 
R - R - I 

TRORB dst,src,R IR (11 + 14n) Translate. Decrement and Repeat 
dst - src (dst) 
Autodecrement cist address 
R - R - I 
Repeat until R = 0 

TRIB dst,src,R IR 25 Translate and Increment 
dst - src(dst) 
Autoincrement cist address 
R-R-I 

TRIRB dst,sl'c,R IR (11 + 14n) Translate. Increment and Repeat 
dst - src(dst) 
Autoincrement dst address 
R - R - I 
Repeat until R = 0 

TRTOB srcl,src2,R IR 25 Translate and Test. Decrement 
RHI - src2 (src I) 
Autodecrement src 1 address 
R-R-l 

TRTORB srcl ,src2, R IR (11 + 14n) Translate and Test, Deer. and Repeat 
RHI - src2 (srel) 
Autodecrement src 1 address 
R-R-I 
Repeat until R = 0 or RH 1 '" 

TRTIB srcl,src2,R IR 25 Translate and Test. Increment 
RHI - src2 (src 1) 
Autoincrement src address 
R-R-l 

TRTIRB srcl,src2,R IR (11 + 14n) Translate and Test. Incr. and Repeat 
RHI - src2 (src 1) 
Autoincrement src 1 address 
R - RI 
Repeat until R = 0 or RHI '" 

TSET dst R Test and Set 
TSETB IR II S flag - MSB of dst 

DA 14 15 17 dst - allis 
X 15 15 18 

XOR R,src R 4 4 Exclusive OR 
XORB 1M 7 7 R - R XOR src 

IR 7 
DA 9 10 12 
X 10 10 13 

181 



LOWER NIBBLE (HEX). UPPER INSTRUCTION BYTE 

0 I • • A • 
ADDB ADD SUBB SUB ORB OR AIIDB AIID XORD XOR CPB 

0 A-IA R-IR R - IR R -IR R - JR R - IR R - IR R-IR R - IR R - IR R-m 
R -1M R -1M R -1M R -1M fl-IM R - 1M R - 1M R -1M R - 1M R - [M R -1M 

CPL PUSHL SUBL PUSH LDL POPL ADDL POP MULn MUtT DIVL 

I R-IR !R -IR R-m IR -IR R - IR lR -IR R-IR IR -!R R-IR R - IR A'-IR 
R -1M R - 1M R -1M R - 1M R -1M R - 1M R - 1M 

LOB LO RESB RES SETB SET BIT> BIT INCB INC DEca 
2 

R-IR R-IR IA -1M IR -1M IA -1M IR - 1M IR -1M IR - 1M IR -1M IR -1M IR'-IM 
R - [M A - 1M R - R R - R R - R R - R R - R R - R 

LOB LO LOB LD LOA LDL RSYO LDL RSYO LDPS S_ 
R - SA R - SA SA - R SA - R R - SA R - SA SA - R IR Tobl. 

LDRB LOR LDRS LOR LOAR LDRL LDRt 3A 
R - RA R - RA RA - R RA - R R - RA R - RA RA - R 
ADDB ADD SUBB SOB ORB OR AIIDB AIID lORD XOR CPB 
R - X R - X R - X R - X R - X R - X R - X R - X R - X R - X R - X 

R - DA fl --DA R - DA R - DA R - DA R - DA R - DA R - DA R - DA R - DA R - DA 

CPL PUSHt suaL PUSH LOL POPL ADDL POP MULn MULT DIVL 
R - X IR - X R - X IR - X R - X JR -- X R - X IR ..... X R - X' R - X R -X 

R - DA IR - DA R - DA IR - DA R - DA IR ..... DA R - DA IR -DA R - DA R - DA R - DA 

LOB LD RESB RES SET> SET BIT> BIT INCB INC DECB 
R - X R - X X -1M X -1M X -1M X -1M X -1M X -1M X -1M X - 1M X -1M 

R - DA R - DA VA -1M DA -1M DA "':'IM DA - 1M DA -1M DA -1M DA -1M DA - 1M DA - 1M 

LOB S_ LOB LD LOA LDL LOA LDL RSYO LOPS HALT 
R - ax Tabl. ax - R ax - R R - BX R - BX R - X BX - R PS - X 

7 R - DA PS - DA 

ADDB ADD SUBB SUB ORB OR ANDB AIID XORB XOR CPB 
R - R R -R R - R R - R R - R R - R R -R R - R R - R R - R R - R 

CPL PUSHL SUBL PUSH LDL POPL ADDL POP· MULTL MULT DIVL 
R - R [R - R R - R IR - R R - R R-IR R - R R -,IR R - R R -R R - R 

LOB LD RESB RES SETB SET BIT> BIT INCB INC DECB 
R - R R - R R -1M R -1M R -1M R -1M R - 1M R - 1M R -1M R -1M R -1M 

DAB EXTS 5_ S_ AneB Ane SHCD SBC s- RSYO O-
EXTSB Tabl. Tabl. R - R R - R R - R R - R Tabl. Tabl. 

R EX!St • • • • 
LOB 

c R~IM 

CALa 
PC - RA 

JR 
PC - RA 

DJHZ 
DBlNZ 

PC - RA 

Op Cod. Map 

Notes: 

182 

I) Reserved Instructions (RSVD) should not be 
used, The result of their execution is not defined. 

2) The execution of an extended instruction will 
result in an Extended Instruction Trap if the EPA 
bit in the FeW is a zero. If the flag is a one the 
Extended Instruction will be executed by the EPU 
function. 

C o E 

CP s- S_ EXTEND EXTEND 
R - IR Tabl. Tabl. INsr IN51 
R -1M I I 

DlV S_ LDL If CALL 
R-IR Tabl. IR-R PC-lR PC-IR 
R - 1M 2 

DEC EXB EX LOB LD 
IR -1M R-IR R-IA IR-R IR-A 

S_ INB IN OUTB OOT 
Tabl. R-IA R-IR IA-R !A-A 

3,B 

CP S_ S_ EXTEND EXTEND 
R - X Tabl. Tabl. INST INST 

R - DA I I 

DIV 5_ LDL JP CALL 
R - X Tabl. X-R pc-x PC-X 

2 DA-R PC-DA PC-DA 

DEC EXB EX LOB LD 
X - 1M R-X R-X X-R X-R 

DA - 1M R-DA R-DA DA-R DA-R 

S- El 5_ RSYO SC 
Tabl. DI Tabl. 

7 7 

CP 5_ 5_ EXTEND EXTEND 
R - R Tabl. Tabl. INST. INST, 

I I 

DlV S- RSYO RET RSYO 
R -R Tabl. PC-(Sp) 

2 

DEC EXB EX TCCB TCC 
R -1M R-R R-R R R 

s_ HRDB LOS HLDB RSYO 
Tabl. R R-IM R • 



OC OD OC 

COMB COM COMB COM COMB 
IR IR X X R 

DA DA 

CPB CP CPB CP LDcnB 
1R,lM IR,IM X,IM X,IM R-FLGS 

DA,IM DA,IM 

NEGB NEG NEGB NEG NEGB 
IR IR X X R 

DA DA 

RSVD RSVD RSVD RSVD RSVD 

TESTB TEST TESTB TEST TESTB 
IR IR X X R 

DA DA 

LDB LD LDB LD RSVD 
iR-iM IH-IM X-1M X-1M 

DA-IM DA-IM 

TSETB TSET TSETB TSET TSETB 
IR IR X X R 

DA DA 

RSVD RSVD RSVD RSVD RSVD 

CLRB CLR CLRB CLR CLRB 
IR IR X X R 

DA DA 

PUSH LDCTLB 
1M FLGS-R 

1 ____ '-------

Table 1. Upper Instruction Byte 

IC 5C 9C 

'" 
RSVD U .. 

...: .. 
~~ B tOM 
_0 R-IR R-X 
"';:: R-DA .... u 

~~ TESTL TESTL I T~TL I 
ffi~ 

IR X 
DA 

~ffi 
g~ LDM LDM 

0 lR-R X-R 
.... DA-R 

Table 2. Upper Instruction Byte 

00 

COM 
R 

SETFLG 

NEG 
R 

RESFLG 

TEST 
R 

COMFLG 

TSET 
R 

NOP 

CLR 
R 

~ .. .. 
Z 7 

ffi 

~ 

A 

3,. 
INIB 

IR-IR 
INlRB 
lR-1R 

SINIB 
lR-lR 
SINmB 
IR-IR 

OUTIB 
JR-]R 
OTiRB 
IR-IR 

SOUTIB 
iR-1R 

SOTIRB 
IR-IR 

INB 
R-DA 

SINB 
R-DA 

OUTB 
DA-R 

SOUTB 
DA-R 

INDB 
lR-lR 
INDRB 
IR-IR 

SINDB 
IR-iR 

SINDRB 
IR-IR 

OUTOB 
IR-IR 

OTDRB 
lR-IR 

SOUTDB 
IR-IR 

SOTDRD 
IR-IR 

38 

!Nl 
IR-IR 
INm 

IR-IR 

SINI 
lR-1R 
SINm 
IR-IR 

OUTI 
lR-IR 
OUTIR 
lR-1R 

SOUTI 
IR-IR 
SOTIR 
lR-iR 

IN 
R-DA 

SIN 
R-DA 

OUT 
DA-R 

SOUT 
DA-R 

IND 
lR-!R 
INDR 
1R-IR 

SIND 
lR-IR 
SINDR 
IR-IR 

OUTO 
lR-IR 
OTDR 
IR-IR 

SOUTO 
lR-IR 

SOTDR 
IR-IR 

Table 3. Upper Instruction Byte 

183 



B2 B3 B8 BA BB 7B 7D 
RlB Rl TRIB CPIB CPI IRET RSVD 

(! bit) (I bit) IR IR IR PC-(SSP) 
R R 

lDlB lDl 
SllB SLL RSVD lR-IR IR-IR RSVD RSVD 

R R lDIRB lDIR 
SRlB SRl IR-lR lR-IR 

R R 
TRTIB CPSIB CPSI RSVD lDCTl 

RlB Rl IR IR IR R-Few 
(2 bits) (2 bits) 

R R 

RSVD RSVD RSVD RSVD lDCTL 
SDlB SDl R -AF'RSH 

R R 

TRIRB CPRIB CPIR RSVD lDCTL 
RRB RR IR IR IR R-

'11 bit) (I bit) PSAPSEG 
R R 

RSVD RSVD RSVD RSVD LDCTL 
Slll R-

RSVD R PSAPOFF 

SRll 

'" TRTIRB 
~ IR .. 
Z 
0 
;:: 
g RSVD 

~ 
'" !!i 
15 TRDB 
~ 
0 IR ... 

~ RSVD 

::l .. .. 
Z 

~ TRTDB 

0 
IR ... 

'" ~ .. 
Z 
g 
U 

" ~ 
'" !!i 
15 
~ 
0 ... 

~ 
::l .. .. 
Z 

~ 
0 ... 

RRB RR 
(2 bits) (2 bits) 

R R 

RSVD SDll 
R 

RlCB RlC 
(l bit) (l bit) 

R R 

SLAB SLA 
R R 

SRAD SRA 
R R 

RlCB RLC 

CPSIRB CPSIR 
IR IR 

RSVD RSVD 

CPDB CPD 
Ie IR 

lDDB lDD 
lR-IR IR-lR 

lDDRB lDDR 
IR-IR lR-lR 

CPSDB CPSD 
IH IH 

RSVD lDCTl 
R -NSPSEG 

RSVD lDCTL 
R -NSPOFF 

MSET RSVD 

MRES RSVD 

MBIT lDCTL 
FCW-R 

A (2 bils) (2 bits) 

R R 
RSVD RSVD RSVD RSVD LDCTL 

SDAB SDA 
RFRSH-R 

R R 

TRDRB CPDRB CPDR LDCTL 
c' IR IH IH PSAPSEG 

RRCB RRC -H 
c (I bit) (I bit) 

R R 
RSVD RSVD RSVD MREQ LDCTL 

R PSAPOFF 
SLAL -R 

RSVD R 
SRAL 

TRTDRB CPSDRB CPSDR RSVD LDCTL 
IR IR IR NSPSEG-R 

RRCB RRC 
(2 bits) (2 bits) 

R R 

RSVD RSVD RSVD 
LDCTL 

RSVD NSPOFF-R 
SDAL 

RSVD R 

Table 4. Table 5. Table 6. Table 7. 
Upper Instruction Byte Upper Instruction Byte Upper Instruction Byte Upper Instruction Byte 

184 



Topical Index 
Data Addressing Flags 

Instruction Description Mnem.onic Types Modes Affected 

Arithmetic 
Add with Carry ADC B, W R C, Z, S, V, D', H' 
Add ADD B, W, L R, 1M, JR, DA, X C, Z, S, V, D', H' 
Compare (Immediate) CP B, W JR, DA, X C, Z, S, V 
Compare (Register) CP B, W, L R, 1M, JR, DA, X C, Z, S, V 
Decimal Adjust Bit DAB B JR C, Z, S 
Decrement DEC B, W R, JR, DA, X Z, S, V 
Divide DIV W, L R, 1M, JR, DA, X C,Z, S, V 
Extend Sign EXTS B, W, L R C,Z, S, V 
Increment INC B, W R, JR, DA, X Z, S, V 
Multiply MULT W, L R, 1M, JR, DA, X C, Z, S, Vr, 
Negate NEG B, W R, JR, DA, X C, Z, S, V 
Subtract with Carry SBC B, W R C, Z, S, V, D', H' 
Subtract SUB B, W, L R, 1M, JR, DA, X C, Z, S, V, D', H' 

Bit Manipulation 
Bit Test BIT B, W R Z 
Bit Reset (Static) RES B, W R, JR, DA, X 
Bit Reset (Dynamic) RES B, W R 
Bit Set (Static) SET B, W R, JR, DA, X 
Bit Set (Dynamic) SET B, W R 
Bit Test and Set TSET B, W R, JR, DA, X S 

Block Transfer and String Manipulation 
Compare and Decrement CPD B, W JR C,Z, S, V 
Compare, Decrement, and Repeat CPDR B, W JR C,Z, S, V 
Compare and Increment CPI B, W JR C, Z, S, V 
Compare, Increment, and Repeat CPJR B, W JR C,Z, S, V 
Compare String and Decrement CPSD B, W JR C, Z, S, V 
Compare String, Decrement, and Repeat CPSDR B, W JR G, Z, S, V 
Compare String and Increment CPSI B, W JR C, Z, S, V 
Compare String, Increment, and Repeat CPSJR B, W JR C, Z, S, V 
Load and Decrement LDD B, W JR V 
Load, Decrement, and Repeat LDDR B, W JR V 
Load and Increment LDI B, W JR V 
Load, Increment, and Repeat LDJR B, W JR V 
Translate and Decrement TRDB B IR Z, V 
Translate, Decrement, and Repeat TRDRB B JR Z, V 
Translate and Increment TRIB B JR Z, V 
Translate, Increment, and Repeat TRJRB B JR Z, V 
Translate, Test, and Decrement TRTDB B JR Z, V 
Translate, Test, Decrement, Repeat TRTDRB B JR Z, V 
Translate. Test, and Increment TRTIB B lR Z, V 
Translate, Test, Increment, and Repeat TRTIRB B JR Z, V 

CPU Control Instructions 
Complement Flag COMFLG C', Z', S', p', V' 
Disable Interrupt Dr 
Enable Interrupt EI 
Halt HALT 
Load Control Register (from register) LDCTL R C', Z', S', p', D',H' 
Load Control Register (to register) LDCTL 
Load Program Status LDPS JR, DA, X C, Z, S, P, D, H 
Multi-Bit Test MBIT S 
Multi-Micro Request MREQ Z,S 
Multi-Micro Reset MRES 
Multi-Micro Set MSET 
No Operation NOP 
Reset Flag RESFLG C', Z', S', p', V' 
Set Flag SETFLG C', Z', S', p', V' 

1. Flag affected only for byte operation. 

2. Flag modified only if specified by the instruction. 

185 



Topical Index (Continued) 
Data Addressing Flags 

Instruction Description Mnemonic Types Modes Affected 

Input/Output Instructions' Regular Special 
Input (S)IN' B, W IR,DA (DA) 
Input and Decrement (S)IND' B,W IR (lR) V 
Input, Decrement and Repeat (S)lNDR' B, W IR (IR) V 
Input and Increment (S)INI' B,W IR (lR) V 
Input, Increment, and Repeat (S)INIR' B,W IR (IR) V 
Output (S)OUT' B,W IR, DA (DA) 
Output and Decrement (S)OUTD' B, W IR (IR) V 
Output, Decrement, and Repeat (S)OUTDR' B, W IR (IR) V 
Output and Increment (S)OUTI' S, W IR (IR) V 
Output, Increment, and Repeat (S)OUTIR' B, W IR (IR) V 

Logical Instructions 
And AND B, W R, 1M, IR, DA, X Z, S, P 
Complement COM B, W R, IR, DA, X Z, S, P 
Or OR B, W R, 1M, IR, DA, X Z, S,P 
Test TEST B, W, L R, IR, DA, X Z, S, P 
Test Condition Code TCC B, W R 
Exclusive Or XOR B, W R, 1M, IR, DA, X Z, S,P 

Program Control Instructions 
Call Procedure CALL IR, DA, X 
Call Procedure Relative CALR RA 
Decrement, Jump if Not Zero DJNZ B, W RA 
Interrupt Return IRET C, Z, S, P, D, H 
Jump JP lR, DA, X 
Jump Relative JR RA 
Return From Procedure RET 
System Call SC 

Rotate and Shift Instructions 
Rotate Left RL B, W R 
Rotate Left Through Carry RLC B, W R C, Z, S, V 
Rotate Left Digit RLDB B R Z, S 
Rotate Right RR B, W R C,Z, S0V 
Rotate Right Through Carry RRC B, W R C, Z, S;V 
Rotate Right Digit RRDB B R Z, S 
Shift Dynamic Arithmetic SDA B, W, L R C,Z, S, V 
Shift Dynamic Logical SDL B, W, L R C, Z,S, V 
Shift Left Arithmetic SLA B, W, L R C, Z, S, V 
Shift Left Logical SLL B, W,L R C, Z, S, V 
Shift Right Arithmetic SRA B, W,L R C, Z, S, V 
Shift Right Logical SRL B, W,L R C, Z, S, V 

3. Each 110 instruction has a Speclai counterpart used to alert other devices that a Special 110 transaction is occur-
ring. The Special 110 mnemonic is S + Regular mnemonic. Refer to section 6.2.8 for further details. 

186 



'''\ 
Ro'11 01' 
III 11~ 

",I A21 

'"I 'L> 

• .. 1 
R41 
A51 

, .. I R6! 
1\71 

... 1 
".11$ 

",' 
I'''' RAID 

Rul 

RI\12 I'''' AU( I , .. SYSTEM STACK POINTER (SlG. NO.! , .. NORMAL STACK POINTfR (SEa: NO.j(NSPSEGI 

RR'" illS' S'i'SfEMSTACKP01NTt:R(OfFSElI 

'" NORMAL STACK POINTER IOfFSET) tNsPOff) 

01 ,,,I Rolr 

01 RIII5 

, .. \ 112! 
A31 

, .. I 1141 

A5! 

, .. I R', 
1171 

01 

\'.' 
, .. I R./,S 

A.I 

I'''' RRIO 
All! 

I'''' RR12 

Aul 

I'''' RR14 R15' 

'" 

I' 

"LeAL7 

SYSTEM STACK POINTER 

NORMALSTACKPOINTEA (NSP) 

01 
01 

:--J 

zaOOI General Purpose Regilierl Z8002 General Purpose Reglslerl 

Regilier Binary Hex 

RQO RRO RO RHO 0000 a 
RI RHI 0001 1 

RR2 R2 RH2 0010 2 
R3 RH3 0011 3 

RQ4 RR4 R4 RH4 0100 4 
R5 RH5 0101 5 

RR6 R6 RH6 OlIO 6 
R7 RH7 0111 7 

RQB RRB RB RLO 1000 B 
R9 RLl 1001 9 

RRIO RIO RL2 1010 A 
Rli RL3 1011 B 

RQ12 RR12 R12 RL4 1100 C 
R13 RL5 1101 D 

RR14 R14 RL6 1110 E 
RIS RL7 1111 F 

Binary Encoding lor Regilier Flelda 

ZSIMl' zaoo, 

LOW LOW 

SYSTEM STACK ADDRESS ADDRESS 

~~!~T~= AFTER ..... IDENTifiER SYSTEM SP IDENTIFIER 
AFTER TRAP 

INTERRUPT 
FCW OR INTERRUPT FCW 

PC PC SEGMENT 

SYSTEM STACK 
PC OFFSET 

~~!~T5= BEFOAE __ 
SYSTEM SP 

INTERRUPT BEFORE TRAP 
OR INTERRUPT 

_ 1WORD_ ..-1 WORD __ 

HIGH HIGH 
ADDRESS ADDRESS 

Formal 01 Saved Program Sialul in Ihe SYllem Slack 

187 



CONTROL BITS 
15 

15 

188 

FLAGS 

C I z 1.lplVl- I H 

PROGRAM COUNTER 

NONSEGMENTED 

PROGRAM COUNTER OFFSET 

SEGMENTED 

Program Status Blocks 

BYTE OFFSET 
HEX DECIMAL 

,. 1& 

18 " 
2. 32 

28 4. 

3D 48 

38 .. 
3C GO 

40 8' 

4. 88 

23. 570 

PROGRAM STATUS AREA 
POINTER (PSAP) 

~ 

~r---" 
SEG. NO. UPPER _ ~.~ .J 

OFFSET IMPLIED 

Z8001 Z8002 

RESERVED 

--.....:.. 
RESERVED 

FCW 
FCW EXTENDED 

INSTRUCTION 

I-J:~~~ TRAP PC 

----
RESERVED 

FCW 
FCW PRIVILEGED 

INSTRUCTION 

-Ip~E~~ TRAP PC 

---RESERVED 
FCW 

FCW .SVSTEM 
CALL 

...Jp~E~~ TRAP PC 

---
RESERVED 

FCW SEGMENT NOT USED 

~p~E~J.m--
TRAP 

---
RESERVED 

FCW 
FCW NON·MASKABLE 

~p~E~~ 
INTERRUPT 

PC 

--
RESERVED 

FCW 
FCW NON· VECTORED 

l-J p~E~JruT---
INTERRUPT 

PC 

---RESERVED 

FCW 
FCW 

J-Jp~E~~ PC, 

H~:~~ VECTORED 
PC, 

~p~:~~ 
INTERRUPTS 

PC, 

4~~~m.r ---
PC, 

Program Status Area 

BYTE OFFSET 
DECIMAL HEX 

12 

16 10 

20 14 

24 18 

28 1C 

30 1E 

32 20 

34 22 

540 21C 



Condition Codes 

Code Meaning Flag Setting Binary 

F Always false' 0000 
Always true 1000 

2 Zero Z = I 0110 
N2 Not zero 2 = a 1110 
C Carry C=I 0111 
NC No carry C=O IIII 
PL Plus S = a 1101 
MI Minus S = I 0101 
NE Not equal Z = a 1110 
EO Equal 2 = I 0110 
OV Overflow V = I 0100 
NOV No overflow V = a 1100 
PE Parity even P = I 0100 
PO Parity odd P = a 1100 
GE Greater than (S XOR V) a 1001 

or equal 
LT Less than (S XOR V) I 0001 
GT Greater than (2 OR (S XOR V)) a 1010 
LE Less than or (2 OR (S XOR V)) 0010 

equal 
UGE UnsIgned C = 0 IIII 

greater than 
or equal 

ULT Unsigned C=I 0111 
less than 

UGT Unsigned ((C =0) AND (2 = 0)) 1011 
greater than 

ULE Unsigned less (C OR 2) = I 0011 
than or equal 

This table provides the condition codes and the flag settings they represent. 

Note that some of the condition codes correspond to identical flag settings: i.e., 2·EQ, N2·NE, 
NC·UGE, PE-OV, PO-NOV. 

·Presently not implemented In PLZlASM Z8000 compiler. 

7 6 5 .. 3 2 1 

BITS IN A BYTE 

1S 14 13 12 11 10 9 8 7 6 5 .. 3 2 1 

( I BITS IN A WORD 

Address n 

BYTe 

Address n (even) Addrns n + 1 

UPPER BYTE LOWER BYTE WORD , , . 1 r , 

Addressable Data Elements 

189 



Z8000 Addressing Modes 

Addressing Mode 

B 

Register 

1M 

Immediate 

"IB 

Indirect 
RegIster 

Dll 

Direct 
Address 

"X 

Index 

Bll 

Relative 
Address 

"aA 
Base 

Address 

"aX 
Base 

Index 

Operand Addressing 

1111 the InstructlOQ In a Register In Memory 

I REDISTERADDRES$ J---E!1 

I REGISTERADDRES$ ~I-----I OPERAND I 

~~---------~~ 

Operand Value 

The contenl 01 the 
register 

In the Instruction 

The content at Ih. location 
whole address I, In the 
register 

Th. conlent of the location 
whose address Is In the 
Instruction 

The conlont 01 the loea­
tlon whose address Is the 
address in the Instruction 
plus the content 01 the 
working register. 

The content altha location 
wholle address I. the 
conlant 01 the program 
counler. olilet by the 
displacement in the 
Instruction 

The conlant 01 the location 
whose addreu I. the 
oddr.l. In the register, 
oillet by the dl,placement 
In the lrutruction 

The content ot the loca· 
tlon whose address is 
the address In a register 
plus the-index value in 
onother register. 

-Do not lise RO or RRO as indIrect, mdex, or ruse registers. 

Powers of. 2 and 16 

2· ,s· 
256 2' 16' 
512 

1 024 10 
2048 II 

2' 16' 16 

2' 16' 256 

2" 16' 4096 

2" 16' 65536 
4096 12 2' 16' I 048 576 

8192 13 2" 16' 16777 216 

16384 14 
32768 15 

2' 16' 268 435 456 

2" 16' 4 294 967 296 8 

2' 16' 68719476736 9 
65536 16 2· 16 10 1099511 627776 10 

131072 17 2" 16 11 17592186044416 11 

262 144 18 
524 288 19 

I 048 576 20 

2" 16 12 281 474976710 656 12 

2" l61l 4 503 599 627 370 496 13 

2" 1614 72 057 594 037 927 936 14 
2· 1615 1 152921 504606846976 15 

2097 152 21 
4194304 22 Powers of 16 
8388 608 23 

16777 216 24 

Powers of 2 

190 



7 2 

Hax Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal 

268.435.456 16.777.216 1.048.576 65.536 4.096 256 16 

536.870.912 33.554.432 2.097.152 131.072 8.192 512 32 

805.306.368 50.331.648 3.145.728 196.608 12.288 768 48 

4 1.073.741.824 4 67.108.864 4.194.304 262.144 16.384 1.024 64 

1.342.177 .280 83.886.080 5.242.880 327.680 20,480 1.2SO SO 

1.610.612.736 100.663.296 6.291.456 393.216 24.576 1.536 88 

1.879.048.192 117 .440.512 7· 7.340,Q32 456.752 28.672 1.792 112 7 

8 2.147.483.648 134.217.728 8.388.608 524.288 32.788 2.048 128 

2.415.919.104 150.994.944 9,437.184 589.824 36.864 2.304 144 

A 2.684.354.560 A 167.772.160 A 10.485.760 A 655.360 A 40.960 A 2.560 A ISO A 10 

B 2.952.790.016 B 184.549.376 B 11.534.336 B 720.886 B 45.056 2.816 B 176 B II 

C 3.221.225.472 C 201.326.592 C 12.582.912 C 786.432 C 49.152 C 3.072 C 192 C 12 

D 3.489.660.928 D 218.103.S08 D 1~.631.488 D 851.968 D 53.248 D 3.328 D 208 D 13 

E 3.758.096.384 234.88L024 14.6SO.064 E 917.504 E 57.344 3.584 224 14 

4.026.531.840 251.658.240 15.728.640 983.040 61.440 3.840 F 240 15 

5 4 

Hexadecimal and Peclmallnterger CoDYenioD Tabl. 

To CoDvert Hexadecimal to Decimal 

I. Locate the column of decimal numbers corresponding to 
the left'most digit or letter of the hexadeCimal: select 
from this column and record the number that cor­
responds to the position of the hexadeCimal digit or 
letter. 

2. Repeat step I for the units (second from the left) 
position. . 

3. Repeat step I for the units (third from the left) position. 

4. Add the numbers selected from the table to form the 
decimal number. 

To convert integer numbers greater than the capacity of 
the table. use the techniques below: 

Hexadecimal to Decimal 

Succesive cumulative mulitplication from left to right. 
'adding units position. 

Example: D3416; 338010 

D; 13 

3 

4 

xl6 
208 
+ 13 
2IT 
xJ6 
3376 

+4 
3380 

Example: 
CoDnnIoDai 

Hexadecimal Value 
D34 

1.0 3328 

2.3 48 

3.4 

4. Decimal 3380 

To CODvert Decimal to Hexadecimal 

I. (a) Select from the tabel the highest decimal number 
that is equal to OJ 1,;"55 than the number to be 
converted. 

(b) Record the hexadecimal of the column containing 
the selected number_ 

(c) Subtract the selected decimal from the number to be 
converted. 

2_ Using the remainder from step I(c) repeat all of step I 
to develop the second position of the hexadecimal (and 
a remainder). 

3. Using the remainder from step 2 repeat all of step J to 
develop the units pOSition of the hexadecimal. 

4. Combine terms to form the hexadecimal number. 

Decimal to Hexadecimal 

Divide and collect the remainder in reverse order. 
ExamplW: 338010; D3416 Example: 

1613380", remainder 

16~4 t 
16U:L "'3 
~D 

ColivaniOll 01 
Decimal Value 

3380 

I.D -3328 

S2 

2.3 ~ 

J.4 ....=.i 

4. Hextlldeclma! 034 

191 



ASCII ~haracters 

Hexadeclmcd Charac:ter HeaDing Hoxacl",,1mal Chorac:ter 

00 NUL NULL Character 40 @ 

01 SOH Start of H~dinq 41 A 
02 STX Start of Text 42 B 
03 ETX End of Text 43 C 

--04 EOT -- End of Transmission 44 D---
OS ENQ Enquiry 45 E 
06 ACK Acknowledge 46 F 
07 BEL Bell 47 G 

--08 BS --Backspace 48 H---
09 HT Horizonta'l Tabulation 49 I 
OA LF Line Feed 4A I 
OB. VT Vertical Tabulation 4B K 

--OC FF -- Fonn Feed 4C L---
OD CR Carriage Retum 4D M 
OE SO ShlftOul 4E N 
OF SI Shift In 4F 0 

--10 DLE -- Data Link Escape 50 p---
II DCI Device Control 1 51 Q 
12 DC2 Device Control 2 52 R 
13 DC3 Device Control 3 53 S 

--14 DC4 -- Device Control 4 54 T---
15 NAK Negative Acknowledge 55 U 
16 SYN Synchronous ,Idle 56 V 
17 ETB End of Transmission Block 57 W 

--18 CAN --Cancel. 58 X---
19 EM End of Medium 59 Y 
IA SUB Substitute 'SA Z 
IB ESC Escape 5B [ 

--IC FS -- File Separator 5C \ 
ID GS Group Separator 5D J 
IE RS Record Separator 5f; 
IF US Unit Separator SF 

--20 SP-- Space 60 
21 ! 61 a 
22 62 b 
23 # 63 c 

--24 $ 64 d---
25 % 6S 
26 & 66 
27 67 9 

--28 68 h---
29 69 1 
2A 6A j 
2B + 6B k 

--2C 6e 1---
2D 6D m 
2E 6E n 
2F I 6F 0 

--30 0 70 p----
31 I 71 q 
32 2 72 
33 3 73 s 

--34 4 74 t----
3S 5 75 
36 6 76 
37 7 77 

--38 8 78 x----
39 9 79 
3A 7A 
38 7B 

-3C < 7C ,----
3D 7D J 
3E > 7E 
3F 7F DEL Delete 

192 





SALES OFFICES 

AUSTRALIA 

NSW 2027 EDGECLIFF 
Suite 211, Edgecliff centre 
203-233, New South Head Road 
Tel. (61-2) 327.39.22 
Telex: 071 126911 TCAUS 
Telefax: (61-2) 327.61.76 

BRAZIL 

05413 SAO PAULO 
R. Henrique Schaum ann 286-CJ33 
Tel. (55-11) 883-5455 
Telex: (391 )11-37988 "UMBR BR" 
Telefax: 11-551-128-22367 

CANADA 

BRAMPTON, ONTARIO 
341 Mai n St. North 
Tel. (416) 455-0505 
Telefax: 416-455-2606 

CHINA 

BEIJING 
Beijing No.5 Semiconductor 
Device Factory . 
14 Wu Lu Tong Road 
Da Shang Mau Wai 
Tel. (861) 2024378 
Telex 222722 STM CH 

DENMARK 

2730 HERLEV 
Herlev Torv, 4 
Tel. (45-42) 94.85.33 
Telex: 35411 
Telefax: (45-42) 948694 

FINLAND 
LOHJA SF-08150 
Karjalankatu, 2 
Tel. 12.155.11 
Telefax.12.155.66 

FRANCE 

94253 GENTILLY Cedex 
7 - avenue Gallieni - BP. 93 
Tel.: (33-1) 47.40.75.75 
Telex: 632570 STMHQ 
Telefax: (33-1) 47.40.79.10 

67000 STRASBOURG 
20, Place des Hailes 
Tel. (33) 88.75.50.66 
Telex: 870001 F 
Telefax: (33) 88.22.29.32 

HONG KONG 

WANCHAI 
22nd Floor - Hopewell centre 
183 Queen's Road East 
Tel. (852-5) 8615788 
Telex: 60955 ESGIES HX 
Telefax: (852-5) 8656589 

INDIA 

NEW DELHI 110001 
Liason Office 
62, Upper Ground Floor 
World Trade Centre 
Barakhamba Lane 
Tel. 3715191 
Telex: 031-66816 STMIIN 
Telefax: 3715192 

ITALY 

20090 ASSAGO (MI) 
V.le Milanofiori - Strada 4 - Palazzo A/4/A 
Tel. (39-2) 89213.1 (10 Iinee) 
Telex: 330131 -330141 SGSAGR 
Telefax: (39-2) 8250449 

40033 CASALECCHIO DI RENO (BO) 
Via R. Fucini, 12 
Tel. (39-51) 591914 
Telex: 512442 
Telefax: (39-51) 591305 

00161 ROMA 
Via A. Torlonia, 15 
Tel. (39-6) 8443341 
Telex: 620653 SGSATE I 
Telefax: (39-6) 8444474 

JAPAN 
TOKYO 108 
Nisseki - Takanawa Bid. 4F 
2-18-10 Takanawa 
Minato-Ku 
Tel. (81-3) 280-4121 
Tele/ax: (81-3) 280-4131 

KOREA 

SEOUL 121 
8th floor Shinwon Building 
823-14, Yuksam-Dong 
Kang-Nam-Gu 
Tel. (82-2) 553-0399 
Telex: SGSKOR K29998 
Telefax: (82-2) 552-1051 

NETHERLANDS 
5612 AM EINDHOVEN 
Dillenburgstraat 25 
Tel.: (31-40) 550015 
Telex: 51186 
Telefax: (31-40) 528835 

SINGAPORE 

SINGAPORE 2056 
28 Ang Mo Kia - Industrial Park 2 
Tel. (65) 4821411 
Telex: RS 55201 ESGIES 
Telefax: (65) 4820240 

SPAIN 

~~?I~lp~~o~~€~~~I~or, 5~ Door 
Tel. (34-3) 4143300-4143361 
Telefax: (34-3) 2021481 

28027 MADRID 
Calle Albacete, 5 
Tel. (34-1) 4051615 
Telex: 27060 TCCEE 
Telefax: (34-1) 4031134 

SWEDEN 
S-16421 KISTA 
Borgarfjordsgatan, 13 - Box 1094 
Tel.: (46-8) 7939220 
Telex: 12078 THSWS 
Telefax: (46-8) 7504950 

SWITZERLAND 

1218 GRAND-SACONNEX (GENEVA) 
Chemin Francois-Lehmann, 18/A 
Tel. (41-22) 7986462 
Telex: 415493 STM CH 
Telefax: (41-22) 7984869 

TAIWAN 

TAIPEI 
12th Floor 
571, Tun Hua South Road 
Tel. (886-2) 755-4111 
Telex: 10310 ESGIE TW 
Telefax: (886-2) 755-4008 

UNITED KINGDOM and EIRE 

MARLOW, BUCKS 
Planar House, Parkway 
Globe Park 
Tel.: (44-628) 890800 
Telex: 847458 
Telefax: (44-628) 890391 



U.S.A. 
NORTH & SOUTH AMERICAN 
MARKETING HEADQUARTERS 
1000 East Bell Road 
Phoenix, AZ 85022-2699 
(1)-(602) 867·6100 

SALES COVERAGE BY STATE 

ALABAMA 
Huntsville - (205) 533-5995 

ARIZONA 
Phoenix - (602) 867-6340 

CALIFORNIA 
Santa Ana - (714) 957-6018 
San Jose - (408) 452-8585 

COLORADO 
Boulder (303) 449·9000 

ILLINOIS 
Schaumburg - (708) 517-1890 

INDIANA 
Kokomo - (317) 459-4700 

MASSACHUSETTS 
Lincoln - (617) 259-0300 

MICHIGAN 
Livonia· (313) 462-4030 

NEW JERSEY 
Voorhees - (609) 772-6222 

NEW YORK 
Poughkeepsie - (914) 454-8813 

NORTH CAROLINA 
Raleigh - (919) 787-6555 

TEXAS 
Carrollton - (214) 466-8844 

FOR RF AND MICROWAVE 
POWER TRANSISTORS CONTACT 
THE FOLLOWING REGIONAL 
OFFICES IN THE U.S.A. 

NEW JERSEY 
Somerset (201) 563·6575 

PENNSYLVANIA 
Montgomeryville· (215) 362-8500 

SALES OFFICES 

WEST GERMANY 

6000 FRANKFURT 
Gutleutstrabe 322 
Tel. (49-69) 237492 
Telex: 176997689 
Telefax: (49·69) 231957 
Teletex: 6997689=STVBP 

8011 GRASBRUNN 
Bretonischer Ring 4 
Neukeferloh Technopark 
Tel.: (49·89) 460060 
Telex: 528211 
Telefax: (49·89) 4605454 
Teletex: 897107=STDISTR 

3000 HANNOVER 1 
Eckenerstrasse 5 
Tel. (49-511) 634191 
Telex 175118418 
Teletex: 5118418 csfbeh 
Tel efax: (49-511) 633552 

8500 NORNBERG 20 
Erlenstegenstrasse, 72 
Tel.: (49·911) 597032 
Telex: 626243 
Telefax: (49-911) 5980701 

5200 SIEGBURG 
Frankfurter Str. 22a 
Tel. (49-2241) 660 84-86 
Telex: 889510 
Telefax: (49·2241) 67584 

7000 STUTTGART 
Oberer Kirchhaldenweg 135 
Tel. (49-711) 692041 
Telex: 721718 
Telefax: (49-711) 691408 



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the 
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No 
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned 
in this publication are subject to change without notice. This publication supersedes and replaces all informations previously supplied. 
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express 
written approval of SGS-THOMSON Microelectronics. 

© 1990 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved 
TM-Z8000 is a trademark of Zilog Inc. 

SGS-THOMSON Microelectronics GROUP OF COMPANIES 
Australia - Brazil - China - France - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A. - West Germany 

AGO - GESSATE [Mil 



BELL INDUSTRIES 
Electronic Distribution Group 

1161 N. Fairoaks Avenue 

Sunnyvale, California 94089 

(408) 734-8570 


