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INTRODUCTION 
' 

The SGS-THOMSON Image processing databook contains comprehensive data on 
products for high-speed digital processing and image coding. 

High-speed digital products are made of hardwired digital processors. Applications 
include satellite communication links, studio TV equipments, image processing, 
radar and sonar. 

Image coding products provide video compression and decompression based on 
the Discrete Cosine Transform algorithm (OCT). 

---------------------- ~~~~~~~l9~ ----------------------
4 



INTRODUCTION 

IMAGE CODING 
An introduction to the OCT 

TV, film and photographs are all common examples 
of analogue images. As with all analogue signals, 
analogue images can suffer from degradation 
when they are processed (Eg. during duplication of 
a film or video tape or during transmission of a TV 
signal). Handling images digitally can prevent any 
degradation in the image and also opens the door 
to using computers to handle and modify the 
images. 

For example, with conventional colour 
photography complex chemical, optical and 
printing processes are required to process, enlarge 
and duplicate an image. Storing or distributing 
conventional photographs is also difficult. In 
contrast a photograph taken using an electronic 
camera can be stored on a variety of media (Eg. 
EEPROM, magnetic or optical disc), 
communicated via standard computer data 
networks, printed on colour printers or displayed on 
a monitor and can also be processed or modified 
by a computer. 

The benefits of handling images electronically and 
digitally are clear. However, the amount of data 
involved presents a major obstacle. For example, 
a colour TV picture requires about 200 Mbits/sec of 
data transmission, and a typical colour photograph 
requires about 3 Mbytes. 

These data rates and storage requirements are 
much greater than can be supported by today's 
data transmission networks or stored on current 
media. Data reduction is the only way to make 
handling of digital images practical. 

Several techniques have been studied to compress 
images. Some of them are very simple and easy to 
implement but give little compression. Others are 
very powerful in terms of compression ratio, but are 
prohibitive from a cost standpoint. 

In a variety of different application areas, transform 
coding techniques using the Discrete Cosine 
transform (OCT) are emerging which combine 
significant compression and impressive image 
quality with reasonable cost of implementation. 
Where moving pictures are being handled, 
transform coding is being augmented by motion 
compensation to further improve data reduction. 

This article describes how OCT/motion -
compensated image compression systems work 
and some of the VLSI products now becoming 
available to allow their implementation. The key 
impact of such VLSI techniques will be to allow 
previously expensive techniques to be used in cost 
sensitive applications - so, the VLSI 
implementation of these image compression 
functions is an enabling technology. 

For example videophone and videoconferencing 
systems have been available for some time. 
However, as each videophone typically costs 
$20000 they are little used. New VLSI products will 
reduce the cost of such systems to levels 
comparable with other business products (PCs, 
FAXs, terminals etc.). 

Other cost sensitive office and consumer products 
that become possible are : 
- Long playing, CD compatible digital Video-discs. 
- Large CD-ROM image databases and interactive 

CD-ROM video. 
- Photographic quality, colour facsimile. 
- Photographic quality colour printing and colour 

desk-top publishing. . 
- High quality digital video tape recorders (in the 

future supporting HDTV). 
These applications cover several of the most 
strategic markets (Telecommunications, 
office/business and consumer). 

1 ·THE BASIC PRINCIPLES OF THE OCT 

In transform coding, the input picture is divided into 
blocks to take advantage of the localized spatial 
2-D correlation of pixels. The block size is 
determined by the statistical correlation of pixels 
and by the picture format. Typically, a block size 
between 8 x 8 pixels or 16 x 16 pixels is used. 

The two dimensional transform of a block of pixels 
results in an uncorrelated coefficient block. The 
most significant information is concentrated into 
only a few coefficients which are sufficient to 
describe the original block. As only these 
coefficients are required, a first data reduction has 
been obtained. 
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INTRODUCTION 

One of the most important properties of the OCT is 
its reversibility; by applying the reverse transform 
to the coefficient block, the original block of pixels 
is reconstructed.Compression and decompression 
are symmetrical. Figure 1 shows an example of this 
operation. In this example a uniform block is shown 
where each pixel has the same value (for example 
blue sky). The result block has only one non-zero 
coefficient. Thus, the original block of 4 x 4 x 8 bits 
is coded with only 8 bits. 

Obviously, for a natural picture, the process is more 
complex. The OCT coefficients are related to the 
spatial frequencies inside the original block of 

Figure 1 : OCT Operation Example 
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pixels. In the transformed block, the results 
representing low frequencies (Eg. the average 
value of the original block) are located in the top left 
corner, and those representing higher frequencies 
are in the bottom right corner. 

The human eye does not have the same sensitivity 
to all spatial frequencies. A minimum threshold can 
be determined for each coefficient in the block. The 
less significant coefficients are eliminated (without 
any appreciable loss of quality) in the operation 
named quantization. Figure 2 shows a block 
transform of a picture giving the location of the 
most significant coefficients. 
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60 0 0 0 

0 0 0 0 

0 0 0 0 

Inverse 
60 60 60 60 DCT 0 0 0 0 

IMAGE·01.EPS 

Figure 2 : OCT Example on a Random Block 
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INTRODUCTION 

2 - A STILL PICTURE CODER/DECODER 

The block diagram of a still picture coder/decoder 
based_on OCT algorithm is represented in Figure 
3. 
The still picture coder is divided into four main 
blocks: 
- Block segmentation 
-OCT 
- Quantization :selection of significant coefficients 
- Data packing : Eg. Huffman style coding and 

CRCs 

Figure 3 : Block Diagram of a Still Picture Code 

Video IN 

Block 
Segmentation 

The core of the system is the OCT operator. To OCT 
a photograph (1500 x 900 pixels) will require about 
40 million multiplications. This might take 20 
seconds on a conventional microprocessor or a 
fraction of a second on a dedicated OCT processor. 

The decoder is the inverse of the coder (data 
depacking, inverse quantization, inverse OCT, 
scanning conversion as shown in Figure 4). This 
shows the reversibility of the OCT based algorithm 
and the symmetry possible in the implementation 
of a coder and a decoder. 

Control 
Unit 

Quantisation 

Data 
Packing 

Compressed 
Data OUT IMAGE-03.EPS 

Figure 4 : Block Diagram of a Still Picture Decoder 
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3 - MOVING PICTURE CODING 

A moving picture can be considered as successive 
still pictures; a TV signal is constituted of 25 or 30 
such still pictures per second. The still picture (or 
intra coding) techniques described previously can 
be used for moving pictures. Intra coding can 
provide about a 1 0:1 data reduction however, many 
applications require greater data reduction. 
Processing the difference between successive 
pictures (inter coding) provides further data 
compression. In addition motion compensation can 
improve the compression ratios by an extra factor 
of 10. 

3.1 Motion compensation 
Many different methods have been proposed for 
motion compensation. One of the most practical 
consists of looking at the position of the current 
block in the previous picture to determine a motion 
vector. This is called block matching. 

The current block (for which the motion has to be 
estimated) is projected into the previous picture, 
and the search for its previous position is done by 
comparison with all the possible blocks within a 
search window. It may not be possible to calculate 
an exact "previous" position so, the best match or 
"minimum distortion" (defined by the sum of 
differences between pixels of the two blocks) is 
used. 

Only a limited search window need to be used as 

Figure 5 : Block Matching Algorithm 

current block position 

in previous picture ·········· ................ . 

motion vector ··················· .......................... ······ 

previous position 
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the human eye is most sensitive to small 
movements. Large movements not handled by the 
motion compensation are seen as differences 
between successive pictures, and so are handled 
by the intra-frame OCT coding. 

3.2 Moving picture coder 
The basic principle of a moving picture coder is to 
transmit data related to movement in the picture as 
a set of motion vectors. The motion vectors are only 
an estimate of the movement within a picture so 
errors may result between the actual current 
picture and the prediction derived from the motion 
vectors. This error can first be concealed, or made 
less objectionable, by a simple low pass "loop filter" 
(see Figure 6). The remaining error between the 
actual and predicted images is OCT coded and 
transmitted with the motion vectors. Once the 
"base" image has been transmitted (by intra 
coding) the only data required is the motion vectors 
describing movement in the picture and OCT coded 
"error" information. 

Depending on the compression ratios and image 
quality desired, different mixtures of single picture 
(intra-frame) coding and motion compensation 
inter-frame coding can be used. Intra-frame coding 
also allows correction of any cumulative errors that 
may build up and in applications like video disc 
players allows random access into a video 
sequence. Figure 6 shows a block diagram of a 
moving picture coder. 

... ················-··· ~ 
search window 

previous picture IMAGE-OS.EPS 



INTRODUCTION 

Figure 6 : Full Motion Coder 

3_3 Moving picture decoder 
The moving picture decoder is much simpler. 
Compressed picture or picture-error data (from 
intra or inter-frame coding) is recovered by the 
inverse cosine transform. This data is either used 
directly as picture information (intra-frame coding) 

Output 

IMAGE-06.EPS 

or as error information correcting the values 
predicted with the motion vector information. An 
advantage of this method is that in the decoder, 
except for the inverse OCT, there is no huge 
computation requirement. The main computation 
has been done in the coder. 
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Figure 7 : Block Diagram of a Full Motion Decoder 
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4 • SUMMARY ON OCT AND MOTION 
COMPENSATION ALGORITHMS 

International organizations such as the ISO and 
CCITT are looking at standards for image coding 
using OCT algorithm. This is a recognition of the 
advantages of this algorithm which can be 

10 

Scanning 
Conversion 

summarized as follows : 

Video 
OUT 
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- OCT. provides an efficient coding scheme 
regarding compression ratios and image quality. 

- OCT algorithm is reversible and symmetrical, this 
allows real time coding and decoding on similar 
hardware. 
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SELECTION GUIDE 

DIGITAL SIGNAL PROCESSING DEVICES 

Part Number Function DataRate MOPS .Package (MHz) 

IMSA100-21 1 Dimensional filter I convolver, 32 taps ~c·""'' 21 80-320 PGA84 

IMAGE CODING DEVICES 

Part Number Function Data Rate Package (MHz) 

IMSA121 Discrete Cosine Transform Processor (OCT) 20 PLCC44 
8 x 8 pixel block size operation 
OCT, IDCT, Filter, Transpose operation 
Post-adder, pre-substractor 

STV3200 Discrete Cosine Transform Processor (OCT) 15.0 DIP40 
Multi pixel block size operation from 4 x 4 to 16 x 16 pixels PLCC44 

STV3208 Discrete Cosine Transform Processor (OCT) 20127 DIP40 
8 x 8 pixel block size operation PQFP44 
Zig-Zag scan of coefficients 

STI3220 Motion Estimator Processor 18 PQFP144 
Block matching, full search algorithm 
-81+7 displacements 
8 x 8 to 16 x 16 pixel block size operation 

IMAGE PRE-POST PROCESSING DEVICES 

Part Number Function Data Rate Package (MHz) 

IMSA110 2 dimensional filter I convolver 20 PGA100 
21 x 1 or? x 3 kernel 
3 delay lines 
back-end processor 

STV8438 Triple 8-bit Dl A converter 70 SDIP42 
voltage outputs 
internal voltage reference 
External analog inputs with switching capability 

PQFP44 





DATASHEETS 
DIGITAL SIGNAL PROCESSING DEVICES 
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IMSA100 

CASCADABLE SIGNAL PROCESSOR 

• FULL 16 BIT, 32 STAGE, TRANSVERSAL FIL­
TER 

• FULLY CASCADABLE WITH NO SPEED DE­
GRADATION OR REDUCTION IN DYNAMIC 
RANGE 

• COEFFICIENTS SELECTABLE AS 4, 8, 12, 
OR 16 BITS WIDE 

• DATA THROUGHPUT TO 15.0 MHZ 
• HIGH SPEED MICROPROCESSOR COM­

PATIBLE INTERFACE 
• DATA INPUT AND OUTPUT THROUGH DEDI­

CATED PORTS OR VIA THE MICROPRO­
CESSOR INTERFACE 

• FULLY STATIC HIGH SPEED CMOS IM­
PLEMENTATION 

• SINGLE +5V ± 5% OR ± 10% POWER SUP-
PLY VARIANTS 

• TTL AND CMOS COMPATIBILITY 
• LESS THAN 2W POWER DISSIPATION 
• STANDARD 84-PIN PGA 

APPLICATIONS 
• Digital FIR filtering 
• High speed adaptive filtering 
• Correlation and Convolution 
• Discrete Fourier Transform 
• Speech processing using Linear Predictive Cod-

ing 
• Image processing 
• Waveform synthesis 
• Adaptive and fixed equalizers and echo can­

cellers 
• Spread spectrum communication 
• Beamforming and beamscanning in sonar and 

radar 
• Pulse compression 
• High speed fixed point matrix multiplication 

July 1992 

PGA84 
(Grid Array Package) 

ORDERING INFORMATION 

Part Number Package Clock Temperature Speed 

IMSA 1 OO-G211 Ceramic Pin 21MHz -40°C, +85°C 
Grid Array 

IMSA100-G21S Ceramic Pin 21MHz 0°C,+70°C 
Grid Array 

1/28 
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IMSA100 

PIN CONNECTIONS 

2 3 4 5 6 7 8 9 10 

A 

B 

c 

D 

E 
IMSA100 

84 pin grid array 
top view 

F 

G 

H 

J 

K 

Note 
All Vee pins must be connected to the 5 Volt power supply. 
All GND pins must be connected to ground. 

1. INTRODUCTION 

The IMSA 100 is a high speed, high accuracy 32 
stage transversal filter. Its flexible architecture 
allows it to be used as a 'building block' in a wide 
range of Digital Signal Processing (DSP) applica­
tions. The part is capable of performing high speed 
DFTs, convolution and correlation, as well as many 
filtering functions. 

The input data word length is 16 bits, and coeffi­
cients are programmable to be 4, 8, 12 or 16 bits 
wide; two's complement numerical formats are 

2/28 
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used for both data and coefficients. The coefficients 
can be updated asynchronously to the ·system 
clock during normal operation, allowing.th~ chip to 
be used in a variety of adaptive systems. The 
IMSA 1 00 can also be cascaded to construct longer 
transversal filters with no additional logic or degra­
dation in speed, whilst preserving a high degree of 
accuracy. The device is controlled through a stand­
ard memory Interface, allowing use with any 
general purpose microprocessor. Data communi­
cations can be either through the memory inter­
face, or through dedicated data ports. 



2. DESCRIPTION 

The IMSA100 is a 32 stage, cascadable, digital 
transversal filter. The general canonical transversal 
filter is shown in Figure 1. An alternative, and 
functionally equivalent filter is shown in Figure 2. It 
is this second realisation that is used in the 
IMSA100, where the input signal is supplied in 
parallel to all 32 multipliers, and the delay and 
summation operations are performed in a dis­
tributed manner. 

Each data sample loaded into the I MSA 1 00 is fed 
in parallel to all32 stages. At each stage the current 
input sample is multiplied by a coefficient stored in 
memory, and added to the output of the previous 
stage delayed by one clock cycle. The filter output 
at time t=kT is given by: 

y(kT) = C(O) X x(kT) + C(1) X x((k-1)7) + ... 

... + C(N-1) x ((k-N+1)7) 

where x(kT) represents the kth input data sample, 
and C(O) to C(N-1) are the coefficients for the N 
stages. 

While the IMSA100 architecture is designed as a 
transversal filter it contains many features which 

Figure 1 : Canonical Transversal Filter Architecture 

lnput---+----1 

, Figure~ : fv1odified Transversal Filter Architecture 

,: -,~._I 'Input--~-------..---

IMSA100 

allow it to be used in a wide range of signal pro­
cessing applications, e.g. adaptive filtering, matrix 
multiplication, discrete Fourier transforms, correla­
tion and convolution. Figure 3 shows the users view 
of the IMSA100. 
The IMSA100 ~as four interfaces through which 
data can be transferred. The memory interface port 
allows access to the coefficent registers, the con­
figuration and status registers and the data input 
and output registers for the multiplier accumulator 
array. Three dedicated ports are also provided, 
allowing high speed data input and output to the 
IMSA 1 00 and the cascading of several devices. 

Typically a microprocessor will configure the 
IMSA 1 00 via the memory interface, then in a simple 
system data input and output can be performed 
through the data input (DIR) and data output (DOL, 
DOH) registers. Alternatively in a higher perfor­
mance system data transfer may be performed via 
the dedicated· input and output ports. A typical 
IMSA100 based system is shown in Figure 4. 
Simple high-throughput fixed-configuration sys­
tems can be implemented by clocking the configu­
ration information into the IMSA 100 from a ROM. 

Output A 1 00·02.EPS 

Output 

A 1 00·03.EPS 
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IMSA100 

Figure 3: IMSA100 User Model 

Asynchronous Functions 

Array 

24 
32 cycle delay (24 bits) 

Synchronous Functions 

Figure 4: Simple IMS100 Based System 

Clock 

The IMSA 100 input data word width is 16 bits. The 
coefficient words can be programmed to be 4, 8, 
12, or 16 bits wide. There is a trade off between the 
coefficient size and the speed of operation. If the 
coefficient word is Lc bits wide and the clock fre­
quency applied to the IMSA 100 is Fthen the maxi-

mum data throughput is 2;: So, for an IMSA100 

operating from a 20.8MHz clock and using 4-bit 

4/28 
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Data out 
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coefficients the maximum data throughput is 
1 0.4MHz, similarly for 16-bit coefficients the 
throughput is 2.6MHz. 

To preseNe complete numerical accuracy, no trun­
cation or rounding is performed on the partial pro­
ducts in the multiplier accumulator array. The out­
put of this array is calculated to full precision (36 
bits). A programmable barrel shifter is located at the 
output of this array, which allows one of five 24 bit 



fields to be selected from the 36 bit result. The 
selecied 24 bits are always correctly rounded and 
are sign extended before being output. The selec­
tion required can be determined from analysis of 
the coefficients and input data used in a given 
application. 
Two banks of coefficients are provided. At any 
instant one set of coefficients is in use within the 
multiplier accumulator array, the other set being 
accessible via the memory interface. Once a new 
set of coefficients has been loaded, the two coeffi­
cient banks can be interchanged by performing a 
write operation to the 'Bank Swap' bit of a control 
register. 
So that devices can be cascaded (eg. to construct 
longer transversal filters), a 32 stage, 24 bit wide, 
shift register and 24 bit adder is included on chip. 
The output of one chip is connected directly to the 
cascade input of the next. The output of the shift 
register is added internally to the output of the 
programmable barrel shifter to give the final 24 bit 
output from the chip. To minimise pin count and 
external buses, the data output and the cascade 
input ports transfer 24 bit words as a pair of 12 bit 
words across a 12 bit wide multiplexed interface. 
As IMSA100s can be cascaded there is a price I 
performance trade off for most IMSA 100 systems. 
For example, a correlation application could 
achieve high performance by using a cascade of 
IMSA 1 OOs sufficiently long to hold one of the wave­
forms being correlated in its coefficient registers 
and sending the other waveform involved in the 
correlation along the cascade of IMSA 1 OOs. A 
cheaper and slower solution would be to use a 
smaller number of IMSA 1 OOs and to decompose 
the single long correlation into a sequence of shor­
ter correlations, the results of which are then 
summed. 

3. PIN DESIGNATIONS 

System services 
Pin In/out Function 

Vee, GND Power supply and relurn 

CLK in Input clock 

RESET in System reset 

ERROR out Numerical overflow error 

BUSY out Bank swap in progress 

IMSA100 

Synchronous input/output 

Pin In/out Function 

GO in/out Initiate input/computation/ 
output cycle 

DIN[0-15] in Data input port 

DOUT[0-11] out Data output port 

CIN[0-11] in Cascade input port 

OUTRDY out Output data ready 

Asynchronous input/output 

Pin In/out Function 

D[0-15] in/out Memory interface data bus 

ADR[0-6] in Memory interface address bus 

cs in Memory interface select 

CE in Memory interface enable 

w in Memory interface write enable 

Notes __ 
Signal names are shown with an overbar if they are active 
low, otherwise they are active high. 

3.1 System services 

System services include all the necessary logic to 
start up and maintain the IMSA 100. 

Power 

Power is supplied to the device via the Vee and 
GND pins. Several of each are provided to mini­
mise inductance within the package. All supply pins 
must be connected. The supply must be decoupled 
close to the chip by at least one 1 OOnF low induct­
ance (e.g. ceramic) capacitor between Vee and 
GND. Four layer boards are recommended; if two 
layer boards are used, extra care should be taken 
in decoupling. 
Input voltages must not exceed specification with 
respect to Vee and GND, even during power-up 
and power-down ramping, otherwise /atchup can 
occur. CMOS devices can be permanently dam­
aged by excessive periods of latchup. 

CLK 

The clock input signal CLK controls the timing of 
input and output on the three dedicated ports and 
controls the progress of data through the multiplier 
accumulator array. 

J-_' --

1 
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IMSA100 

RESET 
When the IMSA 100 is reset the control logic within 
the IMS A 100 will be reset and the ACR, SCR and 
TCR will be initialised to their default values. 
Note that neither the internal data path registers 
nor the coefficient registers are affected by the 
reset. Resetting the device initialises the SCR to its 
default setting. 
So, depending on the setting of SCR before a reset, 
a reset may also be a device reconfiguration. The 
sequence of operations required to return the de­
vice to a defined state following reconfiguration is 
described under SCR in the register description. 
A reset is initiated automatically when power is first 
applied to the device. 
This reset will be completed once four cycles of 
CLK have occured after Vee is valid. Alternatively 
reset can be initiated by taking RESET low. This 
reset will be completed after at least two cycles of 
CLK have occured while RESET is held low. 
RESET should be held low for at least 200ns. 
Normal device operation can then continue after 
RESET is taken high. 
The reset should be completed before either the 
synchronous or asynchronous parts of the device 
are used. 

ERROR 
If asserted, this pin indicates an error condition has 
occured, and that the condition has not been 
cleared. The error condition results from a numeri­
cal overflow in either the final adder or in the field 
selector. To allow this signal to be wire ORed 
between all the devices in a cascade and hence to 
be used as an interrupt signal to the host processor, 
the ERROR outputs are open collector. 
If suitably armed before the error occured the ACR 
error bits can be read to discriminate the two error 
sources. The error bits in the ACR and the error 
condition can be cleared and then the error bits 
armed to detect further errors by writing values to 
the ACR. The sequence of values that should be 
written to the ACR error bits is 0 followed by 1. An 
error condition can only be cleared if the error bits 
were suitably armed before the most recent error 
occured. 
The ACR error bits may not observe an error oc­
curing between clearing and arming the error bits. 
So, when clearing an error and arming the error bits 
precautions should be taken to ensure that no new 
error occurs. For example, first prevent the 
IMSA 100 from initiating computation on new data; 
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second wait for any results pending to be output; 
then clear and rearm. The ACR error bits will ob­
serve any error occuring after they are armed. 
Thus, if an error occured before the ACR error bits 
were armed it may be necessary to arm the error 
and then force an error before proceeding to clear 
the error (as described above). 
Following power up the contents of the multiplier 
accumulator array and cascade path are indeter­
minate. As this indeterminate data flushes through 
a system of one or more IMSA 1 OOs errors are likely 
to occur. Similarly, altering the device configuration 
defined by the SCR is likely to result in errors. The 
sequence of operations required to return the de­
vice to a defined state following reconfiguration is 
described under SCR in the register description 
section of this specification. 

BUSY 

When high this pin indicates that an exchange of 
data between the Current and Update Coefficient 
Registers is in progress. Under certain conditions 
the duration of BUSY may be vanishingly small. 
BUSY will be active if the bank swap is caused by 
setting ACR[O] to request a single bank swap or 
when SCR[2]· is set selecting Continuous Swap 
mode. The detailed behaviour is described in the 
bankswap timing diagrams. 

3.2 Synchronous input/output 

GO 

The GO signal initiates a cycle of data input, com­
putation and output. An IMSA 100 configured as a 
slave will monitor the GO signal on the rising edge 
of CLK one cycle before it is ready to accept more 
data and on every rising edge thereafter until GO 
is found to be high.lf GO is high then data input will 
occur on the next rising edge of CLK. If GO is low 
when it is sampled no new data input will occur. 

In a cascade of IMSA100s one IMSA100 may be 
configured as a master. The master IMSA1 00 will 
drive its GO pin high after data has been written 
into its Data Input Register indicating that new data 
is available and that the slave IMSA100s in the 
casacade should start an input, computation, out­
put cycle. When the GO signal goes low new data 
can be written to the IMSA100s. Typically a host 
processor will write simultaneously to the Data 
Input Registers of all the IMSA100s in the cascade. 
The host will then monitor the GO signal before 
writing new data to the cascade. 



DIN[o-15] 
This 16 bit wide data input port allows high speed 
data input to the IMSA 100. The timing of this input 
is controlled by the CLK and GO signals. In a 
cascade of IMSA 1 OOs the 16 bit wide input data 
path and the CLK and GO signals will be bussed 
to all devices. 

DOUT[0-11] 

This 12 bit data port outputs the result from the 
IMSA100. The 24 bit result is multiplexed through 
this port as two 12 bit words, the least significant 
word being output first. The most significant word 
is output second and remains on the data pins until 
a new data output sequence is about to start. The 
OUTRDV signal can be used to latch these words 
into external circuitry. In a cascade of IMSA100s 
the DOUT pins of one device connect to the CIN 
pins of the next device in the cascade. 

CIN[0-11] 
The Cascade Input allows multiple IMSA 1 OOs to be 
cascaded. A 24 bit word is input as two 12 bit words 
the least significant word being input first. The 24 
bit word is delayed by a shift register and summed 
with the output of the multiplier accumulator array. 
The delay from a word being input on the cascade 
input to that word affecting the data output is 32 
data input cycles. In a typical I MSA 1 00 based 
system the cascade input of each device will be 
connected to the data output DOUT[0-11] of the 
previous IMS A100 in the cascade. The Cascade 
Input of the first device in the cascade will normally 
be connected to ground. 

OUTRDV-

The output ready signal OUTRDV goes low just 
after the least significant data output word is avail­
able on the DOUT pins and goes high just after the 
most significant word is available. The rising edge 
of OUTRDV also indicates that the Data Output 
registers (DOL, DOH) contain the new result word. 
Thus the OUTRDV signal can either be used to 
latch the output of the IMSA100 into external logic 
or to indicate that output of the IMSA100 can be 
read through the memory interface from the Data 
Output registers. 

3.3 Asynchronous input/output 

cs 
This pin selects the chip; if chip select CS is low an 
access to the memory interface will be enabled. 

IMSA100 

This signal is usually asserted by the host proces­
sor's address decoder at the beginning of a mem­
ory cycle. 

CE 

The chip enable pin. The memory interface on the 
IMSA 100 appears to the system controlling it as 
128 words of static RAM. The chip enable CE signal 
is similar in operation to the chip enable signal 
found on static RAMs. When CE is high the chip 
select, write enable and the address inputs are 
ignored and the memory interface data bus is 
tri-state. When chip enable is low a single read or 
write access is made to one of the registers within 
the IMSA100. Accesses to the memory interface 
can occur completely asynchronously to operation­
s on the data in, cascade in and data output ports 
DIN[0-15], CIN[0-11] and DOUT[0-11]. 

w 
The write enable pin indicates whether the access 
to the IMS A 100 memory interface is to be a write 
or a read. If W is low a write access is indicated. 

ADR[0-6] 

The seven bit address bus comprises pin ADR[0-6]. 
The seven bit binary value applied to the address 
inputs of the IMSA 100 indicates which register is to 
be accessed. ' 

D[0-15] 

During a write to the memory interface a 16 bit word 
is applied to data bus pins D[0-15]. This word will 
be latched on the rising edge of chip enable CE at 
the end of the cycle. During a read cycle the 
contents of the location accessed are placed on the 
data pins. When CE is high the data signals are 
tri-state. 

4. REGISTER DESCRIPTION 

The memory map shown below indicates the pri­
mary addresses for each register. All locations 
between decimal addresses 64 and 75 inclusive 
are uniquely decoded. This group of registers is 
shadowed at other locations up to the 128 word 
boundary. The effect of reading and writing to areas 
in the memory map other than those shown in the 
table is undefined. 

If the user wishes to initialise the device from a 
ROM addressed by a clocked counter, one of the 
following options applies: 

7/28 
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Restrict the counter to count only from 0 to 68; 
this avoids writing to the data registers as well 
as the shadow locations. 

4.1 Memory Map* 

Register Address decimal Address hex 

CCR[0-31] 32-63 20-3F 

UCR[0-31] 0-31 00-1F 

SCR 64 40 
65 41 

ACR 66 42 
67 43 

TCR 68 44 

DIR 72 48 

DOL 74 4A 

DOH 75 48 

2 Count down from 127 to zero. The initialization 
at the lower addresses will override spurious 
ones at the higher shadowed addresses.' : 

Function 

Current Coefficient Registers 

Update Coefficient Registers 

Static Control Register 
Unused location 

Active Control Register 
Unused location 

Test Control Register 

Data Input Register 

Data Output Register (Least Significant Word) 

Data Output Register (Most Significant Word) 

• All other locations accessible via the memory interface of the IMSA 100 are reserved. 

Figure 5: IMSA100 Memory Map 

.,. 16 bits ---J .. ~ 

Address 0 r-------------, 
Update 

32 

64 

66 

68 

72 

74 

75 
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Coefficient 
Registers 

Current 
Coefficient 
Registers 

Static Control Register 

Active Control Register 

Test Control Register 

Data Input Register 

Data Output Register 

Data Output Register 

SCR 

ACR 

TCR 

DIR 

DOL 

DOH 

D = RESERVED (write zero to this location, reading these 
locations gives an unspecified value) 

0 

B 

8 

0 

B 

A100·06.EPS 



4.2 Registers 

CCR[0-31] 
The Current Coefficient Registers contain the coef­
ficients currently being used by the multiplier ac­
cumlator array. CCR[O] (decimal address 32) corre­
sponds· to the coefficient register of the multiplier 
accumlator nearest the output of the IMSA100; i.e. 
this location is equivalent to C(O) in Figure 2. 
Similarly CCR[31] (decimal address 63) corre­
sponds to C(31). The Current Coefficient Registers 
can be read from at any time and can be written to 
provided that no data processing is taking place. 
The effect of writing to the Current Coefficient 
Registers while data is being processed is un­
defined. 

UCR[0-31] 

The Update Coefficient Registers are equivalent to 
the Current Coefficient Registers, with the excep­
tion that the values in the Update Coefficient Reg­
isters are not currently in use within the multiplier 
accumlator array and can therefore be written to at 
anytime. 
A bank swap operation is equivalent to an ex­
change of data between the Update Coefficient 
Registers and the Current Coefficient Registers. 

SCR 

The Static Control Register contains the control bits 
which configure the IMSA 100 and are unlikely to 
need updating after their initial configuration. The 
contents of the Static Control Register are not 
affected by the IMSA 1 00 and can be read at any 
time. 
Reconfiguring the SCR may result in indeterminate 
data values within the IMSA 100 system. These 
values may in turn result in errors. After reconfigu­
ring the SCR the following sequence should be 
followed to return the IMSA100 system to a 
defined, error free condition: 

1 Arm error bits in ACR. 
2 After SCR has been reconfigured GO should 

be held low for 20 cycles of CLK. · 
3 A series of suitable data values should then 

be flushed through the IMSA100 system. 
4 Any errors generated should then be cleared. 

IMSA100 

5 The IMSA 100 system is then ready to 
commence normal operation. 

ACF! 
The Active Control Register contains status and 
control bits which are likely to be accessed during 
normal operation of the IMS A1 00; i.e. when hand­
ling error conditions and when requesting single 
coefficient bank swaps. 

TCR 
The Test Control Register is used for test purposes. 
One of the test modes provides access to the least 
significant part of the multiplier accumulator array 
output. 

DIR 
The Data Input Register. The IMSA 100 can be 
configured to either take its input data from the DIN 
pins or from the Data Input Register. If the IMSA 100 
is configured as the master of a cascade of 
IMSA 1 OOs the GO signal will be driven in response 
to writing data into the Data Input Register. 
In a smaiiiMSA100 based system the Data Input 
Registers of all the devices in the cascade will 
normally be mapped into the same location within 
the address space of the processor controlling the 
cascade. Thus a single write operation can write 
data to all devices, the master IMSA 100 generating 
the GO signal for the slaves. The Data Input Reg­
ister is write only. 

DOL 
The least significant word of the Data Output Reg­
ister. The output data from the IMSA 100 is available 
from both the DOUT[0-11] pins and from the Data 
Output Registers. The value held in the Data Out­
put Registers is the 24 bit output word, sign ex­
tended to 32 bits. DOL contains the least significant 
16 bits of the 24 bit result; the register is read only. 

DOH 
The most significant word of the Data Output Reg­
ister. The DOH register contains the most signifi­
cant 8 bits of the 24 bit output word generated by 
the IMSA 1 00. The most significant 8 bits of DOH 
are the sign extension of the output word. DOH is 
read only. 
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The remainder of this section describes the register 
details bit by bit. Each section commences with the 
name of the register with the bit number(s) followed 
by the default value, in the general format: 

• Name 

I REGISTER[MSB-LSB] I Default: MSB LSB 

The least significant bit of a register is bit 0. 
* in the tables indicates the default state of the register 
bit(s). 

4.3 Static control register 

• Fast Output 

I SCR[1 OJ I Default: o 
The Fast Output bit controls the way in which the 
24 bit output of the IMSA 100 is multiplexed across 
the 12 bit wide DOUT port. The interval between 
data output cycles is the same for both Normal and 
Fast output modes. 
The difference between the modes is the time 
division between the least and most significant 
words. In fast output mode the least significant 12 
bit word is available for the minimum period 
possible, thus allowing the most significant word to 
be output at the earliest possible instant. In normal 
output mode the least significant word is available 
for the same length of time as the most significant 
word (unless the duration of the most significant 
word is extended by idle cycles). 
The timing constraints on data output in Normal 
mode are significantly simpler than those in Fast 
mode. Fast mode should be considered a special 
mode which is only used where the early availability 
of the output words is important, e.g. an adaptive 
system where the filter coefficients are being modi­
fied in response to the output data. 
All devices in a cascade of IMSA 1 OOs should be 
configured for the same output mode. The Fast 
Output bit should not be altered during data pro­
cessing. If it is altered the data output of the cas­
cade will be undefined until new input data has 
flushed through all stages of the cascade. If the 
coefficient size is 4 bits there is no difference 
between the fast and normal modes. 

SCR[10] Output mode 

0 Normal* 

1 Fast 

• Coefficient Size 

I SCR[9-8] Default: 11 
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Defines size of coefficient used, in terms of word 
width. This also determines the minimum interval 
between data input cycles and thus the data 
throughput of the IMSA 100. The Coefficient Size 
bits should not be altered during data processing. 
If they are altered the data output of the cascade 
will be undefined until new input data has flushed 
through all stages of the cascade. 
In each mode the coefficient data is the least 
signifcant bits of the 16 bit word; e.g. in 4 bit mode, 
a two's complement number should be pro­
grammed into bits 0-3 of the 16 bit register. The 
remaining bits 4-15 are ignored. 

SCR[9-8] Coefficient Data input interval size 

00 4bits 2 cycles 

01 Bbits 4 cycles 

1 0 12 bits 6 cycles 

1 1 16 bits 8 cycles* 

• Reserved 

I SCR[7-6] Default: 0 0 

These locations are reserved. The user should 
write 0,0 to these locations to maintain compata­
bility with future products. The value read from this 
location is undefined. 

• Reserved 

I SCR[3] Default: 0 

This location is reserved. The user should write 0 
to this location to maintain compatability with future 
products. The value read from this location is un­
defined. 

• Output Word Selection 

I SCR[5-4] I Default: 1 0 / I 
These bits determine the 24 bit wide field selected 
from the 36 bit wide output of the multiplier accu­
mulator array (bit positions numbered 0 to 35). 
The word selected will be rounded and sign ex­
tended before being output. Note that ranges '1 0' 
and '11' imply sign extension of the result. 
The Output Word Selection bits should not be 
altered during data processing. If they are altered 
the data output of the cascade will be undefined 
until new input data has flushed through all stages 
of the cascade. 



SCR[5-4] Field 

00 [7-30] 

01 [11-34] 

10 [15-38]* 

11 [2Q-43] 

• Continuous Swap 

I SCR[2] I Default: 0 

The Continuous Swap bit selects whether the two 
banks of coefficient registers are automatically ex­
changed after each data input and computation 
cycle or if individual bank swaps occur under the 
direction of the Bank Swap bit in the Active Control 
Register, ACR[O]. SCR[2] should not be set if a 
bankswap has been requested (by setting ACR[O]) 
and is still pending. 

SCR[2] Swap Mode 

0 Swap on asserting ACR[O]* 

1 Swap after end of each input cycle 

• Input Data Source 

I SCR[1] I Default: 0 

The data source for the multiplier accumulator 
array can come from one of two sources, selected 
by SCR[1]. Data can either be input from the DIN 
port or it can be written into the Data Input Register 
via the memory interface. See also the following 
section. 

SCR[1] Data Source 

0 From DIN port • 

1 From DIR 

• Master not Slave 

I SCR[O] I Default: 0 

The Master not Slave bit selects whether the 
IMSA100 samples the GO input to determine the 
start of a data input cycle (slave mode), or drives 
the GO pin when data is written to the DIR (master 
mode). If input data is supplied through the DIR one 
IMSA100 in the cascade should be configured as 
a master. If data is supplied to the DIN port by an 
external data source all the IMSA100s in the cas­
cade should be configured as slaves and GO 
should be driven by an external system. Note that 
an illegal mode results if SCR[1] is 0 and SCR[O] is 
1; i.e. a master cannot obtain data from the DIN 

port. · 

SCR[O] Mode 

0 Slave• 

1 Master 

4.4 Active control register 

• Cascade Adder Overflow 

I ACR[2] I Default: 0 

IMSA100 

., 
) 

-q 

If previously armed this status bit will be set if th~ 
addition of the 24 bit words output by the 24 from 
36 bit selector (on the output of the multiply accu­
mulator array) and the cascade shift register 
causes an arithmetic overflow. 
The ERROR pin will be driven low while this or any 
other error condition is active. This error bit and the 
error condition can be cleared by writing a zero to 
ACR[2], provided the data in the adder is no longer 
in error. After ·clearing this error bit the error bit 
should be armed (by writing a one to ACR[2]) to 
ensure that any future error is detected. See 
ERROR section. 

• Selector Overflow 

I ACR[1] Default: o 

If previously armed this status bit will be set if the 
24 bit output range of the selector does not include 
all the significant binary digits in the 36 bit result 
generated by the multiply accumulator array. The 
ERROR pin will be driven low while this or any other 
error condition is active. This error bit and the error 
condition can be cleared by writing a zero to 
ACR[1]. After clearing this error bit the error bit 
should be armed (by writing a one to ACR[1]) to 
ensure that any future error is detected. See 
ERROR section. 

• Initiate Bank Swap 

I ACR[O] I Default : 0 

Writing a one into this control bit requests an ex­
change of data between the Current and Update 
Coefficient Registers. The bank swap will occur as 
soon as the current computation cycle is com­
pleted, or on the next clock cycle if the IMSA 100 is 
idle. This control bit is cleared to zero by the 
IMSA100 when the bank swap is complete. No 
access should be made to either set of coefficient 
registers while a bank swap is in progress. ACR[O] 
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should not be set if SCR[2] is already set. For a 
detailed description of the behaviour see the bank­
swap and coefficient access timing diagrams. 

4.5 Test control register 

• Examine Full Output Word 

I TCR[2] I Default: o 

This bit overrides the. output word selection nor­
mally made by bits SCR[5-4]. The output word 
selection determines the 24 bit wide field selected 
from the 36 bit wide output of the multiply accumu­
lator array (bit positions numbered 0 to 35). When 
TCR[2] is set to '1' the output word selection is bits 
'-1' to 22, where bit '-1' is set to zero. The output 
word selection should not be altered during data 
processing. If altered the data output of the cas­
cade will be undefined until new input data has 
flushed through all stages of the cascade. 

TCR[2] Field 

0 Set by SCR[5-4]* 

1 [-1 to 22] 

• Reserved 

I TCR[1] I Default:O 

This location is reserved for test purposes. For 
normal operation the user should write 0 to this 
location. 

• Reserved 

I TCR[O] I Default: o 

This location is reserved for test purposes. For 
normal operation the user should write 0 to this 
location. 

5. DEVICE APPLICATIONS 

The IMS A 100 can be used in a variety of different 
applications requiring high performance computa­
tion. Some of these are described below, and are 
covered in detail in the IMS A100 Application Note 
series. 

5.1 Filtering and adaptive filtering 
The IMS A100 device can be used to implement 
high speed FIR and IIR digital filters. The maximum 
sampling frequency of the input signal ranges be­
tween 2.125MHz and 15MHz, depending on the 
coefficient word length and speed variant that has 
been selected. 

The continuous bank swap mode allows a single 
device to filter complex (I & Q) data streams. High 
speed random access coefficient registers enable 
high performance adaptive filters and equalisers to 
be realised with minimal complexity. 
The cascadability of the device enables FIRs of 
greater than 32 stages to be constructed, with no 
degradation in data throughput. 

5.2 Convolution and correlation 
The IMS A 100 is the first single-chip digital corre­
lator capable of highly accurate computation of 
correlation and convolution functions (16-bit coef­
ficients, 16-bit data and 36-bit accumulation). 
These functions have applications in matched fil­
tering, noise reduction and pulse compression in 
communication, radar and sonar systems. For 
correlations and convolutions involving a large 
number of data points, devices can be cascaded to 
several thousand stages with careful design. Alter­
natively, it is possible to use algorithms which allow 
decomposition of long correlation and convolutions 
into several smaller ones, which can then be car­
ried out by a single or smaller number of devices. 

5.3 Matrix multiplication 
The architecture of the IMS A 100 allows very high 
speed fixed point matrix multiplication. In this appli­
cation the columns of the multiplier matrix are 
circulated as inputs to the chip while the coefficients 
are programmed in a suitable manner with the 
elements of the multiplicant matrix. Larger matrices 
can be handled by either cascading several chips 
or by decomposing the matrices into smaller ones. 

5.4 Fourier transforms 
Two algorithms, namely the Prime Number Trans­
form (PNT) and the Chirp-Z Transform (CZT), can 
be used to perform high speed Fourier transforms 
using IMS A100s. The Fourier transform of long 
data sequences can be evaluated either by using 
cascaded IMS A100s or by using decomposition 
algorithms to convert a long transform into a num­
ber of short transforms (e.g. <32 points). These 
short transforms can then be carried out using the 
IMS A 1 OOs and a host processor. 
The speed of transform can be traded off against 
the number of chips employed. Any microproces­
sor with a standard memory interface could be 
used to handle intermediate results and to control 
the overall system. Two IMS A 1 OOs can be used to 
perform a transform of about 1000 points in around 
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1 ms to 2ms using look-up ROMs for address 
generation and high speed DSP controllers, or 5ms 
to 1 Oms using a microprocessor as the controller. 
More IMS A 1 OOs can be used if higher performance 
is required. 

5.5 Waveform synthesis 
The programmability of this digital transversal filter 
allows the IMS A 100 to be used for flexible wave­
form generation and synthesis, by exploiting the 
ability to change coefficients randomly, quickly and 
simply. Such a configuration could be attractive for 

6. ELECTRICAL SPECIFICATION 

IMSA100 

PC based synthesisers, as the chip can generate 
very accurate high bandwidth signals. 

5.6 General purpose accelerator 

By attaching one or more IMS A1 OOs to any com­
puter with DMA capability, a useful accelerator can 
be constructed, capable of handling all of the above 
applications without reconfiguration. The cascada­
bility of the device enables users to add IMS A 1 OOs 
as required for extra processing performance, with 
minimal impact on the driving software. 

The IMS A 1 00 is available in several temperature variants and the electrical characteristics of each are 
described in this section. When no variant is identified the information refers to all variants. 

6.1 DC electrical characteristics 

ABSOLUTE MAXIMUM RATINGS 

Symbol Parameter Min. Typ. Max. Units Note (1) 

Vee DC supply voltage 0 7.0 v 2,3 

V~oVo Voltage on input and output pins -1.0 Vcc+0.5 v 2,3 

Tstg Storage temperature -65 150 ·c 2 

TA Temperature under bias -55 125 ·c 2 

Pomax Power dissipation 2.0 w 2 

Notes 
1 All voltages are with respect to GND. 
2 This is a stress rating only and functional operation ofthe device at these or any othercondHions beyond those indicated 

in the operating sections of this specification is not implied. Stresses greater than those listed may cause pennanent 
damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliabiiHy. 

3 This device contains circuHry to protect the inputs against damage caused by high static voltages or electrical fields. 
However, it is advised that normal precautions be taken to avoid application of any voltage higher than the absolute 
maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate logic level such 
as Vee or GND. 
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DC OPERATING CONDITIONS 

Symbol Parameter Min. Typ. Max. Units Notes (1) 

Vee DC supply voltage 4.5 5.5 v 4 
4.75 5.25 v 5 

V1H Input Logic '1' Voltage CLK 4.0 Vcc+0.5 v 2 

Input Logic '1' Voltage RESET 2.4 Vcc+0.5 v 2 

Input Logic '1' Voltage other pins 2.0 Vcc+0.5 v 2 

V1L Input Logic '0' Voltage { CLK} -0.5 0.5 v 2 

Input Logic '0' Voltage RESET ·0.5 0.8 v 2 

Input Logic '0' Voltage other pins -0.5 0.8 v 2 

TA Ambient Operating Temperature 0 70 ·c. 3,4 
-40 85 ·c 3,5 

Notes 
1 All voltages are with respect to GND. All GND pins must be connected to GND. 
2 Input signal transients up to 10 ns wide, are permitted in the voltage ranges (GND · 0.5 V) to (GND • 1.0 V) and Vee 

+ 0.5 V to Vee+ 1.0 V. 
3 400 linear It/min transverse air flow. 
4 IMSA100-G21S. 
5 IMSA100-G211 

DC CHARACTERISTICS 

Symbol Parameter Min. Typ. Max. Units Notes (1,2) 

VoH Output Logic '1' Voltage 2.4 Vee v 4 

VoL Output Logic '0' Voltage 0 0.4 v 5 

(] Input current @ GND<VI<VCC ±10 J.lA 

loz Tristate output current @ GND<Vi<Vcc ±10 J.lA 

Icc Average power supply current 360 rnA 3 

Notes 
1 All voltages are with respect to GND.AII GND pins must be connected to GND. 
2 Parameters measured over variants full voltage and temperature operating range. 
3 Power dissipation is application dependent and varies with output loading. The maximum given here is for worst case 

data patterns and activity on all interfaces, with no DC load on outputs. 
4 OUTRDY, DouT: louT:> -4.4 rnA; ERROR is open collector; other outputs: louT:> ·5.5 rnA. 
5 OUTRDY, DouT: louT:> 4.4 rnA; ERROR: louT:> 5.5 rnA;_ other outputs: louT:> 5.5 rnA. 

CAPACITANCE 

Pin Min. Typ. Min. Units Notes 

"CLK 12 pF 1,2 

Ali other pins 5 pF 1,2 

Notes 
1 This parameter is supplied for engineering guidance and is not guaranteed. 
2 TA = 25°C, f=1MHz. 

6.2 Thermal Characteristics 

PIN GRID ARRAY THERMAL CHARACTERISTICS 

Parameter 

Junction to ambient thermal resistance 

Notes 
1 Measured at 400 linear It/min transverse air flow. 
2 This parameter is sampled and not 1 00% tested. 
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6.3 AC Timing Characteristics 

AC TEST CONDITIONS 

Output loads (except output turn-off tests) 

Pin Device mode 

GO Master 

DOUT, OUTRDY Fast output 

DOUT, OUTRDY Normal output 

All other outputs All modes 

Figure 6 : Output Load (Output Turn-Off tests) 

TIMING REFERENCE LEVELS 

I sink 

=1mA 

VREF 

= 1.5V 

Pin Reference levels 

INPUTS 0.8V,2.0V 

CLK 0.5V,4.0V 

OUTPUTS 0.4V, 2.4V 

OUTPUTS ±1 OOmV change from previous steady output voltage 

Notes 
1 Except CLK. 
2 Output continuously driven. 

IMSA100 

Load Unit 

20 pF 

15 pF 

30 pF 

30 pF 

I source 

=1mA 
A100·07.EPS 

Notes 

1 

2,3 

4 

3 Timings are tested using VOL=O.BV and with a suitable allowance for the time taken for the output to fall from O.BV to 
0.4V 

4 Output tum-off tests. 

tr'l SGS-1HOMSON 
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CLOCK 

Symbol Parameter Min. Typ. Max. Units Notes 

lcHCL Clock pulse width high 19 ns 

tcLCH Clock pulse width low 19 ns 

lcHCH Clock period 48 ns 

tR Clock rise time 0 50 ns 1 

IF Clock fall time 0 50 ns 1 

Note: 
1 Clock input transitions should be monotonic between the input thresholds of 0.5 V and 4.0 V. 

Figure 7 

CLK 

t CLCH 

! CHCH 
A 1 00-0S.EPS 
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MEMORY INTERFACE READ CYCLE 

Symbol Parameter Min. Typ. Max. Units Notes 

IELEH CE pulse width low 60 ns 

teHEL CE pulse width high 50 ns 

lsLEL CSsetuptime 15 ns 

teHSX CSholdtime 5 ns 

tAVEL Address setup time 15 ns 

teH.AX Address hold time 5 ns 

tWHEL Read Command setup 15 ns 

teHWX Read Command hold 5 ns 

teLQX Output turn on delay 0 ns 

teLQV Read data access 60 ns 

teHQX Read data hold 0 ns 

teHOZ Output turn off delay 25 ns 

FigureS 

tELEH IEHEL 

CE 

I SLEL 

cs 

tAVEL 

ADR[0-6) 

lwHEL 

w 

tELQX 

A100·09.EPS 
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MEMORY INTERFACE WRITE CYCLE 

Symbol Parameter 

teLEH CE pulse width low 

teHEL CE pulse width high 

tsLEL CS setup time 

teHSX CSholdtime 

tAVEL Address setup time 

teHAX Address hold time 

tWLEL Write Command setup 

teHWX Write Command hold 

toveH Write data setup 

teHDX Write data hold 

Figures 

CE 

lsLEL 

cs 

IAVEL 

ADR[O·B] 

IWHEL 

w 

I ELEH 

Min. Typ. Max. Units 

50 ns 

50 ns 

15 ns 

5 ns 

15 ns 

5 ns 

15 ns 

5 ns 

45 ns 

5 ns 

IEHEL 

:·.:·:····.········:···::··.······ ·:_:::·:··· 
·······:;.··· :·.······· 

......... '';•.:.;·.:·· .. :····=·=···==·=··· .. · ;·::·=:.::: 

Notes 

lovEH 

0[0·15] -------. r;====:::t==~ r--------

STATIC READ ACCESSES TO DOL AND DOH 
REGISTERS 
Certain applications require to read results from the 
IMS A100 at high speeds. To ensure full system 
performance it may be necessary to read results 
from the DOL and DOH registers using a con­
tinuous 'static' access rather than using the normal 
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clocked access. 
During static access the CE signal is held low 
continuously. Under this condition it is possible to 
monitor either DOL or DOH continuously to ob­
serve new output words as they become available 
or alternatively to switch between DOL and DOH 
without the restriction of having to sequence CE. 



IMSA100 

Symbol Parameter Min Typ. Max Units Notes 

tAvav Address access time 75 ns 1 

tcHQV Data input access time 1:+75 ns 2 

tELQV CE access time 60 ns 3 

tAX ax Data hold after address change 0 ns 

tcHQX Data hold after new data input 't+O ns 2 

tEHOX Data hold after end of read 0 ns 

Notes 
1 The address access time is specified for address transitions between decimal 74 (DOL register) and decimal 75 

(DOH register) only. 
2 The parameter 't describes the time taken from the input of a data word to that data word first affecting the most 

significant word (MSW) output. This is the time at which the DOL and DOH registers are updated. 
The duration of 't depends on the coefficient size selected and whether fast or nonnal output is selected. 

Coefficients Output mode 'ttime Coefficients Output mode 'ttime· 

4bit Fast 8CLKcycles 4bit Normal Not defined 

8bit 1 0 CLK cycles 8 bit 11 CLK cycles 

12bit 12 CLK cycles 12bit 14 CLK cycles 

16bit 14 CLK cycles 16bit 17 CLK cycles 

N.B. The data value read from either DOL or DOH will change as new results are computed by the device. 
3 This parameter is the normal read access time for reading any register through the microprocessor interface. In the 

special case of perfonning reads from only DOL and DOH any number of reads from these registers can be made 
with CE held low continuously. 
It is required that a static access (as described above.l§hould commence like a nonnal clocked, random, read access 
to either DOL or DOH. That is ADDRESS, CS and W should be established with setup times to CE specified for a 
normal read access. 
During a DOUDOH static access sequence accesses to locations other than DOL and DOH are undefined. 

Figure 10 

GO 

CLK 

ADR[0.6) 

tAVOV tAXax 

CE 

t ELQV tEHOX 

0[0.15] 

tcHOV tcHOX 

w] 
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TYPICAL SEQUENCE- 8 BIT COEFFICIENTS, NORMAL OUTPUT 

Figure 11 

OUTRDV 

DOUT PreviOUS MSW output 

Note3 

CIN --------------------'[J ____ __, 

Notes 

----~~~------
A100-12.EPS 

1 The minimum peliod between sampling the GO input is four clock cycles for 8 bit coefficients, see the table below for 
the other cases. 

2 After the minimum period described in note 1 has elapsed GO is sampled on every lising edge of CLK until GO is 
high. 

3 The delay from an output being initiated by GO to the output completing its previous output sequence and starting the 
new output sequence is 8 clock cycles for 8 bit coefficients, see the table below for the other cases. 

4 The least significant word is available at the output across one complete CLK cycle for the 8 bit coefficient, normal 
output case, see the table below for the other cases. 

5 The most significant word is available for the minimum period described in note 4, but will be extended by a clock cycle 
for each additional idle cycle inserted between data inputs. 

Coefficients Min_ Output Period Delay To Output Min. LSW Output Duration 
note 1 note3 notes4 and 5 

4bit 2 CLKcycles 6 CLKcycles Undefined, no normal output 

8bit 4CLKcycles 8CLKcycles 1 CLKcycle 

12bit 6CLKcycles 10 CLK cycles 2CLKcycles 

16bit 8CLKcycles 12 CLK cycles 3CLKcycles 
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TYPICAL SEQUENCE - 8 BIT COEFFICIENTS, FAST OUTPUT 

Figure 12 

OUTRDY 

DOUT Previous MSW output A1 

Note3 

CIN--------------------------------------------~~~------------~ 
A100-13.EPS 

Notes 
1 The minimum period between sampling the GO input is four clock cycles for 8 bit coefficients, see the table below for 

the other cases. 
2 After the minimum period described in note 1 has elapsed GO is sampled on every rising edge of CLK until GO is 

high. 
3 The delay from an output being initiated by GO to the output completing its previous output sequence and starting the 

new output sequence is 8 clock cycles for 8 bit coefficients, see the table below for the other cases. 

Coefficients Min. Output Period Delay To Output 
note 1 note3 

4bit 2 CLKcycles 6 CLK cycles 

8bit 4 CLK cycles 8 CLK cycles 

12 bit 6 CLK cycles 1 0 CLK cycles 

16 bit 8 CLKcycles 12 CLK cycles 
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TYPICAL SEQUENCE- 4 BIT COEFFICIENTS 

Figure 13 

OUTRDY 

DOUT Previous MSW output 

Note3 

CIN 

Notes 

A100-14.EPS 

1 The minimum period between sampling the GO input is two clock cycles for 4 bit coefficients, see the table below for 
the other cases. 

2 After the minimum period described in note 1 has elapsed GO is sampled on every rising edge of CLK until GO is 
high. 

3 The delay from an input being initiated by GO to the output completing its previous output sequence and starting the 
new output sequence is 6 clock cycles for 4 bit coefficients, see the table below for the other cases. 

Coefficients Min_ Output Period Delay To Output 
note 1 note3 

4bit 2 CLK cycles 6 CLKcycles 

8bit 4 CLK cycles 8 CLKcycles 

12 bit 6 CLK cycles 1 o CLK cycles 

16 bit 8 CLK cycles 12 CLK cycles 
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NORMAL OUTPUT TIMING-8 BIT COEFFICIENT CASE SHOWN 

Symbol Parameter Min. Typ. Max. Units Notes 

tcHQV CLK high to DOUT valid delay 36 ns 

ICHQX DOUT hold lime after CLK high 2 ns 

lavAL DOUT to OUTRDY low lead 15 ns 

IRLQX DOUT hold time after OUTRDY low 10 ns 1 

IQVRH DOUT to OUTRDY high lead 15 ns 

tRHQX DOUT hold lime after OUTRDY high 10 ns 1,2 

TIME1 LSW output duration 1 3 tcHCH 1 

TIME2 MSW output duration 1 3 1,2 
,lcHCH 

lovcL CASIN setup time to CLK low 10 ns 

lcLDX CAS IN hold time from CLK low 10 ns 

Notes 
1 This parameter is determined by the coefficient size in use. The minimum value given is correct for 8 bit coefficients. 

This parameter is extended by 1 (or-2) periods of CLK if 12 (or 16) bit coefficients are used. This mode of operation 
is not defined if 4 bit coefficients are used. 

2 These parameters are extended by one tCHCH for each idle cycle inserted between data input sequences 

Figure 14 
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L_ ______ ~R-L-QX----------------------~-QV_R_H __ ~)i 
t RHQX 

OUTRDY 

A100-15.EPS 

23/28 

41 



IMSA100 

FAST OUTPUT TIMING-4 BIT COEFFICIENT CASE SHOWN 

Symbol Parameter Min. Typ. Max. Units Notes 

tcHOV CLK high to DOUT valid delay 36 ns 1 
22 ns 1 

lcHOX DOUT hold time after CLK 2 ns 2 

IQVRL DOUT to OUTRDY low lead ns 

IRLQX DOUT hold time after OUTRDY low 10 ns 

tavRH DOUT to OUTRDY high lead 5 ns 1 

tRHQX DOUT hold time after OUTRDY high 10 ns 2 

tovcH CASIN setup time to CLK high 10 ns 

tcHDX CAS IN hold time to CLK high 0 ns 3 

Notes 
1 These parameters assume that each DOUT signal is loaded with a maximum of 15 pF. 
2 tcHax and tRHax for the MSW are shown here for the case where 4 bit coefficients are being used. In the other cases 

(8, 12 and 16 bit coefficients) the MSW is available for an additional2, 4 or 6 CLK periods. In all cases the MSW will 
be available for an additional period of CLK for each idle cycle inserted between data input sequences. 

3 Not tested. Guaranteed by design. 

Figure 15 
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EXTERNAL GO AND DATA INPUT TIMING 

Symbol Parameter Min. Typ. Max. Units Notes 

tGHCH GO setup time 10 ns 

tcHGX GO hold time 5 ns 

tovcH DIN setup time 30 ns 

tcHDX DIN hold time 5 ns 

Figure 16 

CLK 

GO 

DIN 

A100-17-EPS 

MASTER GENERATED GO 

Symbol Parameter Min. Typ. Max. Units Notes 

tEHGH Write to DIR to GO high delay 25 ns 1 

tGHCH GO high before GO sampled 10 ns 2 

tGLEL GO low to write to DIR 0 ns 

tGLCH GO low before GO next sampled 10 ns 2 

Notes 
1 The maximum delay from a write to the DIR to GO going high is 2 • tcHcH +50 ns. 
2 This parameter assumes the capacitive load on GO is less than 20 pF. GO is specified so that one master IMS A100 

can drive three slave IMS A 1 OOs without buffering. 
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Figure 17 

CE Note3 

GO 

CLK 

A100·18.EPS 

BANKSWAP TIMING 

Symbol Parameter Min. Typ. Max. Units Notes 

tEHBH ACR[O] set to BUSY high delay 55 ns 

tcHBL BUSY hold after bankswap 50 ns 

tcHEH ACR[O]=O hold after last input 20 ns 3 

tEHCH ACR[0]=1 setup to next input 10 ns 3 

Notes 
1 The activny on CE shown is for writing ACR[0]=1. During the period Note 1 it may be possible to access other registers 

(subject to their own access constraints). 
2 For small IEHCH, BUSY may only occur for a short time or not occur at all. 
3 If tcHEH or tEHCH is exceeded then bankswap may be synchronised to the previous or next input cycle. 

Figure 18 

BUSY 

CE 
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GO 
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The bankswap timing diagram shows how successive data samples (A and B) can be processed by different 
sets of coefficients by causing ·a bankswap to occur between the input of sample A and sample B. 

The sequence of events is as follows: 
TO No bankswap pending. 

T1 GO sampled and found to be high, thus initiating input of data sample A. 

T2 Bankswap requested by writing ACR[0]=1. If the minimum timing requirement, tcHEH, from T1 to T2 is not met it is 
possible (but not guaranteed) that the bankswap requested at T2 will occur immediately and thus affect the processing 
of data sample A. 

T3 Bankswap occurs on the first rising edge of CLK upon which GO is sampled (without reference to the state of GO). 
If the minimum timing requirement, tEHCH, from T2 to T3 is not met it is possible (but not guaranteed) that the bankswap 
requested at T2 will not occur at T3 but at the next sampling of GO. 

T4 This is the earliest time at which another bankswap can be requested. 

COEFFICIENT ACCESS TIMING 

Symbol Parameter Min. Typ. Max. Units Notes 

tEHCH End coefficient access before bankswap 0 ns 

tcHEL Start coefficient access after bankswap 0 ns 

Notes 
1 During this period accesses may be made to registers other than the coefficient registers (subject to their own access 

constraints). 

Figure 19 

CLK 

CE 

T6 

A 1 00-20.EPS 

If a bankswap (caused by setting either ACR[0]=1 or SCR[2]=1) occurs at the GO sampling point T6, then no access should 
be made to the coefficient registers between T5 and T7. 

27/28 

45 



IMSA100 

PACKAGE MECHANICAL DATA 
84 PINS- GRID ARRAY PACKAGE 

index 

li ~ 
A B 

I~ -
B 

A 

DIM 
Millimetres 

NOM TOL 

A 26.924 +0.254 
8 17.019 ±0.127 

c 2.456 ±0.278 
D 4.572 ± 0.127 
E 3.302 ± 0.127 
F 0.457 ±0.025 
G 1.143 ±0.127 
K 22.860 ±0.127 
L 2.540 ± 0.127 
M 0.508 

/M 10 9 

I 
0 0 

0 0 

0 0 

0 0 

0 0 
K 

0 0 

0 0 

0 0 

0 0 

0 0 
G 

c L L-j:-± 
D 

Inches 

NOM TOL 

1.060 ±0.010 
0.670 ±0.005 
0.097 ± 0.011 
0.180 ±0.005 
0.130 ±0.005 
O.Q18 ± 0.001 
0.045 ±0.005 
0.900 ±0.005 
0.100 ±0.005 
0.020 

Package weigth is approwimately 2.2 grams 
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8 7 6 5 4 3 2 1 

0 0 0 0 0 0 0 0 A 

0 0 0 0 0 0 0 0 B 

0 0 0 0 0 0 0 0 c 
0 0 0 0 D 

0 0 0 0 E 

0 0 0 0 F 

0 0 0 0 G 

0 0 0 0 0 0 0 0 H 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 K 

K 

PM-PGAB4.EPS 

Notes 

Pin diameter 

Flange diameter 

Chamfer 
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IMSA121 

2-D DISCRETE COSINE TRANSFORM IMAGE PROCESSOR 

• 8 X 8 TRANSFORM SIZE. 
• 8 X 8 DCT CALCULATION TIME= 3.21.lS . 

. • DC TO 20 MHZ PIXEL RATE. 
• 9-BIT ADD/SUBTRACT INPUT. 
• 12-BIT INPUT/OUTPUT. 
• 14-BIT FIXED COEFFICIENTS. 
• MULTIFUNCTION CAPABILITY (DCT, IDCT, 

FILTER). 
• FULL INTERNAL PRECISION, FOR EACH 

DIMENSION. 
• FULLY SYNCHRONOUS INTERFACE. 
• HIGH SPEED CMOS IMPLEMENTATION. 
• TTL COMPATIBLE. 
• SINGLE+5V±10%. 
• POWER DISSIPATION < 1.5 WATT. 
• 44 PIN PLASTIC PACKAGE. 

DESCRIPTION 
The IMS A121 is a device for computing the Dis­
crete Cosine Transform (DCT & IDCT). It will also 
function as a 2-D linear filter or perform matrix 
transposition. These 4 functions operate on blocks 
of data with a fixed size of 64 samples (8 x 8). The 
IMS A 121 has other functions aimed specifically at 
the implementation of video codecs; on-chip sub­
traction and addition functions may be selected to 
reduce system chip count. 
The main computation is performed by two identi­
cal multiplication· arrays, each of which perform an 
8 x 8 matrix multiplication in 64 cycles, with no 
internal rounding. The OCT/filter coefficients (14-
bit) are stored in 4 banks of fixed ROM. The inter­
mediate 8 x 8 matrix result is rounded to 16 bits and 
stored in the transposition RAM between each 
multiplication array. The device is fully pipelined 
with data sampled on the input at the clock fre­
quency and the resultant output appearing 128 
clock cycles later. 

July 1992 

PLCC44 
(Plastic Chip Carrier) 

ORDERING INFORMATION 

Designation 

IMSA121-J20S 

PIN CONNECTIONS 

CLK 

DINIOJ 

DINI11 

DINI3J 

Voo 

GND 

DINI4] 

DIN[5] 

DIN[6] 

DIN[?] 

Note 

11 

12 

13 

14 

15 

16 

17 

Package 

PLCC44 

0 

Clock 
speed 

20M Hz 

39 DXI10] 

38 DX111] 

37 DOUTIOJ 

36 DOUTI1J 

35 DOUTI2] 

34 ] GND 

33 Voo 
32 DOUTI3] 

31 DOUTI4] 

30 DOUTI5] 

29 DOUTI6J 

All Vee pins must be connected to the 5 Volt power 
supply. 
All GND pins must be connected to ground. 

A121-01.EPS 
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Figure 1 

SEL[2-0] 

CLK 

GO 

DIN 

1. OVERALL DEVICE OPERATION 
The IMS A121 is a device for computing the Dis· 
crete Cosine Transform (DCT) and the Inverse 
Discrete Cosine Transform (IDCT). It can also per­
form a simple low-pass filter operation. 
The IMS A121 processes blocks of data which are 
64 samples long and represent an 8 x 8 matrix. 
Data is sampled on the Din port every cycle and 
data is output every cycle on the Dout port. 
The GO signal is used to indicate the start of a 
block. When it is sampled high the data on the Din 
port is the first sample of the block. The mode select 
signals SEL[2-0] are sampled at the same time. 
The remainder of the block of data is sampled on 
the Din port for the subsequent 63 cycles and 
during this time the GO signal and the SEL port are 
ignored. Each consecutive group of eight samples 
is treated as a column, eight such columns making 
a block. 
The computation is in two stages, between which 
the block of 64 intermediate samples is stored in 
the transposition RAM. The transposition RAM 
serves a dual function of storing the intermediate 
results and transposing the data from column order 
into row order. This permits the two matrix compu­
tation elements to be identical although the first 
stage does the column computations and the sec­
ond stage does the row computations. 
Data is output on the Dout port in blocks of 64 
samples. However, each consecutive group of 
eight samples now represents a row because of the 
internal transposition of data. The first sample of 
the block is output on the Dout port 128 cycles after 
the first sample of the block was sampled on the 
Din port. 
An auxiliary port, Dx is provided. The data on the 
Dx port is optionally subtracted from the data on 
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the Din port (DCT mode) or added to the output 
(IDCT mode). 
The IMS A 121 views input data in column order and 
(because of the internal transposition) output data 
in row order. However, this convention is only used 
to define the arithmetic which the IMS A121 per­
forms. The system in which the IMS A121 is a 
component may well view the data going into the 
IMS A121 in row order and the data coming out in 
column order. 

1.1 The fixed ROM coefficients 
There are four sets of fixed ROM coefficients, each 
corresponding to one of the four possible functions 
the device can perform. The two main functions 
which the device can perform are the DCT and the 
IDCT. The other two functions provide assistance 
for the implementation of a video codec. The filter 
function is provided at very little overhead because 
the device is essentially a 2-D filter. The transposi­
tion function which is a unity multiplication, enables 
a simple method of switching out the filter without 
any external logic. 

1.2 Number formats 
All numbers input to the IMS A121 are signed 
integers. The Din and Dout ports use 12 bit signed 
integers, while the Dx port uses 9 bit signed in­
tegers. In both cases the number format is twos 
complement binary. Little Endian format is as­
sumed throughout, so that, for example, Din[O] is 
the least significant bit of the Din port and Din[11] 
the most significant (sign) bit. When a nine bit 
number is transfered over one of the 12 bit ports 
the most significant nine bits are used. The lowest 
three bits of the Din port are ignored and the lowest 
three bits of the Dout port will be zero. 



1.3 Internal Bit-field Selectors and Rounding 

The transforms are implemented by a matrix multi­
plication with no truncation or rounding. This yields 
a 33 bit result, with bit-field selectors provided to 
select the parts of the result which are of interest. 
16 bits are selected from the output of the first 
matrix multiplication, which are stored in the matrix 
transposition RAM. Either 9 bits or 12 bits are 
selected from the output of the second matrix multi­
plication (depending on the selected mode). 
Bits below the selected range are discarded al­
though the result is rounded not truncated. This is 
a simple round towards +=; if the most significant 
bit of those bits which have been discarded is set 
then one is added to the bits which are retained. 

1.4 Overflow, Saturation and Clipping 
Overflow can occur in the subtraction unit, the two 
bit-field selectors or the addition unit. Overflow 
occurs whenever there are insufficient bits in the 
result to represent the number. When overflow 
occurs the result is replaced by the most positive 
or the most negative number which can be repre­
sented (depending on the sign of the correct result). 
The device will normally be used in a feedback 
system. If either positive or negative overflow oc­
curs, then inaccuracies have been introduced. 
However, the system will remain stable. 
In some of the IOCT modes the output is clipped 
so that all results are positive and all negative 
numbers are replaced by zero. This ensures that 
the output is a valid (8-bit) pixel, between 0 and 
255. 

1.5 Subtraction with the OCT function 
When the IMS A121 is used to perform the OCT, it 
is possible to enable the on-chip subtraction unit, 
so that before the OCT the data on the Dx port is 
subtracted from the data on the Din port. The data 
is presented to the Ox port at exactly the same time 
as to the Din port. 
In OCT mode the data on the Din port is a nine bit 
number (the lowest 3 of 12 bits are ignored). The 
result of the subtraction is saturated to nine bits 
before being passed to the matrix multiplier. 

1.6 Addition with the IDCT function 
When the I MS A 121 is used to perform the I OCT, it 
is possible to enable the on-chip addition unit, so 
that after the I OCT of the data has been done, the 

IMSA121 

result may be added to the data on the Dx port. The 
timing requires careful consideration because of 
the latency of the device (128 cycles). The first 
sample of a block must be presented on the Dx port 
124 cycles after the first sample was presented to 
Din. The data presented to the Dx port should be 
transposed and is thus in the same order as it will 
come out of Dout four cycles later. 
The result of the addition is saturated to nine bits 
and then clipped so that all negative numbers are 
replaced by zero. The nine bit result is presented 
on Dout[11-3], while Dout[2-0] will be zero. 
Dout[11] will be zero because all the numbers are 
positive. 
Two modes are provided which perform the I OCT 
without addition. One of these modes disables the 
adder completely so that nine bit signed results 
appear on Dout. The other mode does NOT add 
on the value on the Dx port but still clips the result 
so that only positive values appear on Dout. 

1.7 Resetting 

The IMS A 121 does not have a reset pin. At power­
on the internal state will be undefined and as a 
result the first three blocks processed are not guar­
anteed correct. GO must be held low for at least 
191 cycles to ensure that when it does go high it is 
interpreted as the start of a block. 

2. OCT FUNCTION 

The OCT function is selected when SEL[2-0]=000 
or 100 (mode 0 or 4). 

2.1 Internal number format 
The input for the OCT is a 9 bit signed integer in 
the range -256 to +255. This is either an external 
input or the output of the on-chip subtracter de­
pending on SEL£2-0]. The input is multiplied in the 
matrix multiplication array by 14 bit signed fixed 
point numbers in the range -2 to (2-2-12). The 
accumulated result of 8 multiply operations is a 26 
bit signed integer, the bottom 8 bits of which are 
rounded (see section 1.3) and the top 2 bits used 
to saturate the output (see section 1.4). The result 
of the first matrix multiply is stored as a 16 bit signed 
integer and the second matrix multiply performed 
in exactly the same manner, yielding 33 bit results. 
The output rounds the bottom 19 bits, saturates the 
top 2 bits giving a 12 bit signed integer in the range 
-2048 to +2047. 
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Figure 2 : DCT Internal Number Format 

rn~ DDDDDDDDD 
COEFFICIENT DDDDDDDDDDDDDD 
MULliPLVOUT DDDDDDDDDDDDDDDDDDDDDDDDDD 
SELECTOROUT DDDDDDDDDDDDDDDD 
COEFFICIENT DDDDDDDDDDDDDD 
MULTIPLVOUTDDDDDDDDDDDDDDDDDIDDDDDDDDDDDDDDDD 
SELECTOROUT DDDDDDDDDDDD 

2.2 Internal data flow 

Figure 3 :Internal Data Flow 

2.3 The mathematical basis for the OCT 

The 1 dimensional equation for the OCT is as 
follows: 

Forward transform 
N-1 -.a: II< [ (2mt 1 )kit] X(l()= Nc(l<)m=IJ m)cos ~ k=0,1, ... ,N-1 

where r c( I<) = ..[2 for k=O 

1 for k=1 ... N-1 

where x(m) represent the input samples and X(k) 
is the resulting output. The special case for the 

Binary 
Point 

A121-03.EPS 
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IMSA121 is with N=B and the actual filter coeffi­
cients are then calculated. The following equation 
is used to calculate the actual filter coefficients. 

OCT coefficients 

Coeffkm = V2 c(l<) co{ (2m;_~)klt] 

It should be noticed that the coefficients are 2..f2 
times bigger than in the forward transform equa­
tion. This means that the output after the 2 dimen­
sional OCT is 8 times too big (The 1 dimensional 

transform is applied twice giving (2..f2)2 magnitude 
increase). This is in accordance with the 3 bit shift 
of the output data necessary to give the correct 12 
bit signed output. 
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OCT coefficients 
1.0000 1.0000 
1.3870 1.1759 
1.3066 0.5412 
1.1759 -0.2759 
1.0000 -1.0000 
0.7857 -1.3870 
0.5412 -1.3066 
0.2759 -0.7857 

1.0000 
0.7857 
-0.5412 
-1.3870 
-1.0000 
0.2759 
1.3066 
1.1759 

1.0000 
0.2759 
-1.3066 
-0.7857 
1.0000 
1.1759 
-0.5412 
-1.3870 

OCT coefficients (14 bit signed integers) 
4096 4096 4096 4096 
5681 4816 3218 1130 
5352 2217 -2217 -5352 
4816 -1130 -5681 -3218 
4096 -4096 -4096 4096 
3218 -5681 1130 4816 
2217 -5352 5352 -2217 
1130 -3218 4816 -5681 

3. IOCT FUNCTION 

The I OCT function is selected when SEL[2-0]=001, 
101 or 111 (modes 1, 5 or 7). 

3.1 Internal number format 

The input for the I OCT is a 12 bit signed integer in 
the range -2048 to +2047. The input is multiplied in 
the matrix multiplication array by 14 bit signed fixed 
point numbers in the range -2 to 2-2-12• The accu-

Figure 4 : I OCT Internal Number Format 

1.0000 
-0.2759 
-1.3066 
0.7857 
1.0000 
-1.1759 
-0.5412 
1.3870 

4096 
-1130 
-5352 
3218 
4096 
-4816 
-2217 
5681 

1.0000 
-0.7857 
-0.5412 
1.3870 
-1.0000 
-0.2759 
1.3066 
-1.1759 

4096 
-3218 
-2217 
5681 
-4096 
-1130 
5352 
-4816 

1.0000 
-1.1759 
0.5412 
0.2759 
-1.0000 
1.3870 
-1.3066 
0.7857 

4096 
-4816 
2217 
1130 
-4096 
5681 
-5352 
3218 

IMSA121 

1.0000 
-1.3870 
1.3066 
-1.1759 
1.0000 
-0.7857 
0.5412 
-0.2759 

4096 
-5681 
5352 
-4816 
4096 
-3218 
2217 
-1130 

mulated result of 8 multiply operations is a 29 bit 
signed integer, the bottom 8 bits of which are 
rounded (see section 1.3) and the top 5 bits used 
to saturate the output (see section 1.4). The result 
of the first matrix multiply is stored as a 16 bit signed 
integer and the second matrix multiply performed 
in exactly the same manner, yielding 33 bit results. 
The output rounds the bottom 19 bits, saturates the 
top 5 bits giving a 9 bit signed integer in the range 
-256 to +255 

INPUT DDDDDDDDDDDD 
COEFFICIENT DDDDDDDDDDDDDD 
~~~~DDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
SELECTOR OUT DDDDDDDDDDDDDDDD 
COEFFICIENT DDDDDDDDDDDDDD 

DDDDDDDDDDDDDDD MULTlPLYOUTDDDDDDDDDDDDDDDDD 
SELECTOR OUT DDDDDDDDD 

Bmary 
Pomt 

A 121-05.EPS 
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3.2 Internal data flow 

Figure 5 :_Internal Data Flow 

3.3 The mathematical basis for the IDCT 

The 1 dimensional equation for the IDCT is as 
follows: 

Inverse transform fu1 (2mt1)krc 
X(m)= N'Jj(k)c(k)cos[~J m=0,1, ... ,N-1 

k=() 

where 

f - lork=O 
c(k)- .,[2 

. 1 for k=1 ... N-1 

where x(m) represent the output samples and X(k) 

I OCT coefficients 
1.0000 1.3870 1.3066 1.1759 
1.0000 1.1759 0.5412 -0.2759 
1.0000 0.7857 -0.5412 -1.3870 
1.0000 0.2759 -1.3066 -0.7857 
1.0000 -0.2759 -1.3066 0.7857 
1.0000 -0.7857 -0.5412 1.3870 
1.0000 -1.1759 0.5412 0.2759 
1.0000 -1.3870 1.3066 -1.1759 

IDCT coefficients (14 bit signed integers) 
4096 5681 5352 4816 
4096 4816 2217 -1130 
4096 3218 '2217 -5681 
4096 1130 -5352 -3218 
4096 -1130 -5352 3218 
4096 -3218 -2217 5681 
4096 -4816 2217 1130 
4096 -5681 5352 -4816 

4. FILTER FUNCTION 

A121-06.EPS 

is the input. The special case for the IMS A121 is 
for N=B and the actual filter coefficients are then 
calculated. The following equation is used to calcu­
late the actual filter coefficients. 

I OCT coefficients 
.rn [(2m+1)k1t] Coeffmk = ""' c(k) cos 2N 

It should be noticed that the coefficients are 2-f2 
times bigger than in the inverse transform equation. 
This means hat the output after the 2 dimensional 
IDCT is 8 times too big (The 1 dimensional trans­

form is applied twice giving (2-f2)2 magnitude in­
crease). This is in accordance with the 3 bit shift of 
the output data necessary to give the correct result. 

1.0000 0.7857 0.5412 0.2759 
-1.0000 -1.3870 -1.3066 -0.7857 
-1.0000 0.2759 1.3066 1.1759 
1.0000 1.1759 -0.5412 -1.3870 
1.0000 -1.1759 -0.5412 1.3870 

. -1.0000 -0.2759 1.3066 -1.1759 
-1.0000 1.3870 -1.3066 0.7857 
1.0000 -0.7857 0.5412 -0.2759 

4096 3218 2217 1130 
-4096 -5681 -5352 -3218 
-4096 1130 5352 4816 
4096 4816 -2217 -5681 
4096 -4816 -2217 5681 
-4096 -1130 5352 -4816 
-4096 5681 -5352 3218 
4096 -3218 2217 -1130 

The filter function is selected with SEL[2-0]=01 0. (mode 2) 
This filter is intended to be used for image data,"taking 9 bit signed input data and giving a 9 bit signed 
result. 
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4.1 Internal number format 

The input to the filter is a 9 bit signed integer in the 
range -256 to +255. The input is multiplied in the 
matrix multiplication array by 14 bit signed fixed­
point numbers in the range -2 to 2-2-12• The accu­
mulated result of 8 multiply operations is a 26 bit 
signed integer, the bottom 5 bits of which are 
rounded (see section 1.3) and the top 5 bits are 

Figure 6 : Internal Number Format 

IMSA121 

used to saturate the output (see section 1.4). The 
result of the first matrix multiply is stored as a 16 bit 
signed integer and the second matrix multiply per­
formed in exactly the same manner, yielding 33 bit 
results. The output rounds the bottom 19 bits, 
saturates the top 5 bits giving a 9 bit signed integer 
in the range -256 to +255. 

B•t no.j1sj12j11j10 I 9 I 8 I 7 I 6 I 5 I 4 js I 2 I 1 I o ·1 I -21 ·31 -•I ·51 ·61 -71 ·81 ·91·101·111·121·131-1-1-'sl-161·171·181-191 

m~ DDDDDDDDD 
COEFFICIENT DDDDDDDDDDDDDD 
MULTIPLVOUTDDDDDDDDDDDDDDDDDDDDDDDDDD 
SELECTOROUT DDDDDDDDDDDDDDDD 
COEFFICIENT DDDDDDDDDDDDDD 
MULTIPLVOUTDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
SELECTOROUT DDDDDDDDD 

Brnary 

Pomt A121-07.EPS 

4.2 Internal data flow 

Figure 7 : Internal Data Flow 

4.3 Definition of filter 

A 121-0B.EPS 

1~ (4x pixel+ 2 x (L four adjacent pixels) 

+ 1 x (L four diagonal pixels)) The filter is a simple~-~-~ filter applied in both 

dimensions which means that the overall filter ker­
nel is: 

1 [ 1 2 1] 

However, at the block edges, where some of the 
pixels would fall outside the block boundary, the 
filter is modified to 0--1--0 which means that along 
the edge the kernel would be: 

16 242 
1 2 1 

i.e. an output pixel is calculated from the corre­
sponding pixel in the input field and its eight closest 
neighbours by evaluating 

~ 000] 1 2 1 (rotated suit) 
000 

and the corner pixels are passed through unmodi­
fied. 

t== SGS·lHOMSON ___________ 7_1_14 
... ""f l li:llfi©OO@~~rn©'ii'OO@IKilfi©ill 
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Filter coefficients 
1.0000 0.0000 0.0000 0.0000 
0.2500 0.5000 0.2500 0.0000 
0.0000 0.2500 0.5000 0.2500 
0.0000 0.0000 0.2500 0.5000 
0.0000 0.0000 0.0000 0.2500 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 

Filter coefficients (14 bit signed integers) 
4096 0 0 
1024 2048 1024 

0 1024 2048 
0 0 1024 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

5. TRANSPOSER FUNCTION 
The transposition function is selected with 
SEL[2·0]=011. (mode 3) 

0 
0 

1024 
2048 
1024 

0 
0 
0 

This is intended to be used for filtering image data, 
taking 9 bit signed input data and giving a 9 bit 
signed result. Data is passed through unmodified 
and is intended to be used in conjunction with the 

5.2 Transposition coefficients 
1.0000 0.0000 0.0000 0.0000 
0.0000 1.0000 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.0000 0.0000 0.0000 1.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 .0.0000 o.oooo~ 0.0000 

0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.2500 0.0000 0.0000 0.0000 
0.5000 0.2500 0.0000 0.0000 
0.2500 0.5000 0.2500 0.0000 
0.0000 0.2500 0.5000 0.2500 
0.0000 0.0000 0.0000 1.0000 

0 0 0 0 
0 0 0 0 
0 0 0 0 

1024 0 0 0 
2048 1024 0 0 
1024 2048 1024 0 

0 1024 2048 1024 
0 0 0 4096 

filter function (SEL[2-0]=01 0), so that by toggling 
SEL[O] the filter can be switched in and out. 

5.1 Internal number format and data flow 
The internal number format and data flow for the 
transpose function are the same as for the filter 
function. Refer to sections 4.1 and 4.2. 

0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 0.0000 
0.0000 1.0000 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 
0.0000 0.0000 0.0000 1.0000 

5.3 Transposition coefficients (14 bit signed integers) 
4096 0 0 0 0 0 0 0 

0 4096 0 0 0 0 0 0 
0 0 4096 0 0 0 0 0 
0 0 0 4096 0 0 0 0 
0 0 0 0 4096 0 0 0 
0 0 0 0 0 4096 0 0 
0 0 0 0 0 0 4096 0 
0 0 0 0 0 0 0 4096 
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6. PIN DESIGNATIONS 

System services 

Pin In/out Function 

Vcc,GND Power supply and return 

CLK In Input clock 

Synchronous input/output 

Pin In/out 

GO In 

Din[11·0] In 

Dout[11-0] Out 

Dx[11-3] In 

SEL[2-0] In 

6.1 System services 

Power 

Function 

Initiate input/computation 
/output cycle 

Data input port 

Data output port 

Addition/subtraction port 

Mode select input port 

Power is supplied to the device via the Vee and 
GND pins. Several of each are provided to mini­
mise inductance within the package. All supply pins 
must be connected. The supply must be decoupled 
close to the chip by at least one 1 OOnF low induct­
ance (e.g. ceramic) capacitor between Vee and 
GND. Four layer boards are recommended; if two 
layer boards are used, extra care should be taken 
in decoupling. 
Input voltages must not exceed specification with 
respect to Vee and GND. 

CLK 

The clock input signal CLK controls the timing of 
input and the output on the three dedicated inter­
faces, and controls the progress of data through 
the addition/subtraction units, multipliers and trans­
position RAM. Since the IMSA121 is fully static, the 
clock can be stopped in either phase without cor­
rupting data. 

6.2 Synchronous input/output 

GO 
The GO signal is active high and is sampled on the 
rising edge of the input clock. If the device is 
processing a previous block of data, the GO signal 
is ignored. Otherwise, the processing of a block of 
64 pixels commences and the GO signal is ignored 
for a further 63 cycles. Data is always assumed to 
be valid for the 64 cycles from the start of a major 
cycle. Blocks of data may be processed at any time 
and with any spacing between the major blocks, by 
toggling the GO signal as necessary. 

IMSA121 

Din[11-0] 

The data input port is sampled 64 times on suc­
cessive clock cycles, commencing when GO is 
sampled high. Data must be valid on the rising edge 
of CLK for each of the 64 cycles. The block of data 
may be considered as an 8x8 matrix, where each 
group of 8 samples represents a column, and the 
8 columns are sampled consecutively until the 
block is complete. The data is twos complement, 
Little Endian so that Din[1'1] gives sign information, 
and Din[12-x] is the least significant bit whe~e xis 
the word width indicated by the selected mode. 

Dout[11-0] . 
The data output port will be valid for periods span­
ning 64 clock cycles. The data will be valid on the 
rising edge of the clock, exactly 128 cycles (the 
latency) after the data was sampled on the input. 
This output data, which may be considered as an 
8 x 8 matrix, is transposed with respect to the input 
data. The data is twos complement, Little Endian 
like the input data. 
Blocks of data may follow directly after one-another 
so that the first data of a block is presented exactly 
64 cycles after the first data of the preceding block. 
However, if there is a gap between blocks zero will 
appear on the data output port between blocks of 
data. · • 

Dx[11-3] 
The addition/subtraction port is sampled on each 
clock cycle in exactly the same way as the data 
input port. The data on this port will either be 
subtracted from the signal ori the data input port 
before matrix multiplication, or, added to the result 
of matrix multiplication prior to output. The addition 
and subtraction functions can never be used 
together. The function selected is determined by 
the SEL[2-0] signals. The data is twos comple­
ment, Little Endian like the Din/Dout data. Note 
however, that although the Dx port has a different 
width, Dx[10] has the same bitwise significance as 
Din[1 O]/Dout[1 0]. 
The timing of data on the Dx port is different 
depending on the selected mode. 
In the case of subtraction in the DCT mode, SEL[1-
0]=00, data is presented on ·the Dx port on the 
same cycle as the corresponding data (from which 
it will be subtracted) is presented on the Din port. 
In the case of addition in the IDCT mode, SEL[1-
0]:01, data is presented on the Dx port exactly 4 
cycles before the corresponding data (to which it 
will have been added) appears on the Dout port. 
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SEL[2-0] 
The mode select input port is sampled on the rising edge of CLK, when GO is active, at the start of a block 
of data. This fixes the selected mode for the entire block of data. 

SEL[2-0] Mode Function PreSubtract PostAdd Clipping Din width Doutwidth 

000 0 OCT 

001 1 IDCT 

010 2 Filter 

011 3 Transpose 

100 4 DCT 

101 5 IDCT 

110 6 

111 7 IDCT 

7. ELECTRICAL SPECIFICATION 

7.1 DC electrical characteristics 

ABSOLUTE MAXIMUM RATINGS 

Symbol Parameter 

Vee DC supply voltage 

V1, Vo Voltage on input and output pins 

TA Temperature under bias 

Tstg Storage temperature 

Pomax Power dissipation 

Notes 

1 All voltages are with respect to GND. 

Disabled 

Disabled 

Disabled 

Disabled 

Enabled 

Disabled 

Disabled 

Disabled Disabled 9 12 

Disabled Disabled 12 9 

Disabled Disabled 9 9 

Disabled Disabled 9 9 
Disabled Disabled 9 12 

Enabled Enabled 12 9 

Reserved-Do not use 

Disabled Enabled 12 9 

Min Typ. Max Units Notes (1) 

0 7.0 v 2 

-1.0 Vcc+0.5 v 2 

-40 85 ·c 2 

-65 150 ·c 2 

1.5 w 2 

2 This is a stress rating only and functional operation of the device at these or any other conditions above those indicated 
in the operational sections of this specification is not implied. Stresses greater than those listed may cause permanent 
damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 

DC OPERATING CONDITIONS 

Symbol Parameter Min. Typ. Max. Units 

Vee DC supply Voltage 4.5 5.0 5.5 v 
V1H Input Logic '1' Voltage 2.0 Vcc+0.5 v 
VIL Input Logic '0' Voltage -0.5 0.8 v 
TA Ambient Operating Temperature 0 70 ·c 

Notes 

Ail voltages are with respect to GND. Ail GND pins must be connected to GND. 
2 nput signal transients up to 10 ns wide, are permitted in the voltage ranges GND- 0.5 V to GND- 1.0 V 

and Vee+ 0.5 Vto Vee+ 1.0 V. 
3 400 linear ft/min transverse air flow. 
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DC CHARACTERISTICS 

Symbol Parameter Min. Typ. Max. Units Notes (1,2) 

VoH Output Logic '1' Voltage 2.4 Vee v lo~-4.4mA 

VoL Output Logic '0' Voltage 0 0.4 v lo~4.4mA 

IJN Input Leakage Current (any input) ±10 J.IA 3 

Icc Average Power Supply Current 300 mA 4 

Notes 

All voltages are with respect to GND. All GND pins must be connected to GND. 
2 Under the conditions specified by the DC operating conditions. 
3 Vee= Vee( max), GND ~ V1N ~Vee 
4 This applies at 20 MHz and will be less at slower clock rates 

7.2 A.C. timing characteristics 
All timings are given for a load of 3DpF unless otherwise stated. 

CLOCK REQUIREMENTS 

Symbol Parameter Min Typ. Max Units Notes 

lcHCL Clock Pulse High Width 20 ns 

ICLCH Clock Pulse Low Width 20 ns 

lcHCH Clock Period 50 ns 

IR Clock Rise Time 0 50 ns 1 

IF Clock Fall Time 0 50 ns 1 

Notes 

The clock edges should be monotonic between V1L and V1H· 

Figure 8 

CLKJ: 
t CHCL 

H 
t CLCH 

-~ 
t CHCH Jl-

A121-09.EPS 
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SYNCHRONOUS INPUT AND OUTPUT (Din, Dout, Dx) 

Symbol. Parameter Min 

!cHOV CLK High to Dout Valid 

ICHQX Dout Hold Time after CLK 2 

tovcH Din/Dx Setup Time to CLK High 10 

ICHDX Din/Dx Hold Time to CLK High 0 

Figure 9 

DIN ~ 

* 
ox 

I I DVCH I 
I I 

_) fl 
CLK 

I 
I CHOV 

\I/ 
/I\ 

DOUT 

Synchronous control (GO, SEL[2-0]) 

Symbol Parameter Min Typ. 

tGHCH GO/SEL hold to clock high 0 

IGSCH GO/SEL setup to clock high 10 

Figure 10 

CLK 

GO 

SEL 
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Typ. Max Units Notes 

38 ns 

ns 

ns 

ns 

I 
I CHDX .I 

I 

ICHOX 

" /[\ 
A121-10.EPS 

Max Units Notes 

ns 

ns 

tGHCH 

\ 

X 
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PACKAGE MECHANICAL DATA 
44 PINS - PLASTIC CHIP CARRIER 

B 

9 
! 
! 
! 

"•••••••••••u••••••••••••~•••••••••••••••••••••••••• 

i 
i 

~ 
18 i 
ooooo6oo 

A 

[QJ G (Sealing Plane CoplanarHy) _____Q__ 

Dimensions 
Millimeters Inches 

Min. Typ. Max. Min. Typ. 
A 17.577 0.692 

B 16.612 0.654 

c 3.861 0.152 

D 4.369 0.172 

d1 

d2 

E 
e 1.270 0.050 

e3 12.70 0.500 

F 
F1 0.457 0.018 

G 

M 

M1 1.143 0.045 

14/14 ~ 
------------------------- ~~l ~~@~~~a~ 
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STV3200 

DISCRETE COSINE TRANSFORM (OCT) 

• 0 TO 15.0 MHz OPERATING FREQUENCY 
EQUAL TO PIXEL RATE 

• FORWARD OR INVERSE TRANSFORM 
• 7 BLOCK SIZE POSSIBILITIES : 

16 X 16 8x8 4x4 
16x 8 8x4 
8x16 4x8 

• 9-BIT TWO'S COMPLEMENT PIXEL FORMAT 
CORRESPONDING TO 3 POSSIBLE MAGNI­
TUDES DEPENDING ON THE PIXEL RANGE 
PIN (PR) STATE : 
- 8-BIT UNSIGNED MAGNITUDE 
- 8-BIT 2's COMPLEMENT MAGNITUDE 
- 9-BIT 2's COMPLEMENT MAGNITUDE 

• 12-BIT TWO'S COMPLEMENT COEFFICIENT 
FORMAT 

• FULLY TTL AND CMOS COMPATIBLE 
• CMOS TECHNOLOGY 
• SINGLE+ 5 VOLTS POWER SUPPLY 
• POWER DISSIPATION : 500 mW AT 15.0 MHz 

DESCRIPTION 

The STV3200 is a dedicated circuit for the discrete 
cosine transform (DCT) computation. The two­
dimensional forward DCT (FDCT) or inverse OCT 
(I OCT) is performed for various block sizes and a 
pixel rate up to 15.0 rylHz. The circuit architecture 
is fully bidirectional with a 9-bit magnitude pixel 
data bus and a 12-bit magnitude coefficient data 
bus programmed as input or output depending on 
the selection of FDCT or I OCT. 

FDCT IDCT Data Format 

Pixel Bus Input Output 9-bit 2's 
Complement 

Coefficient Output Input 12-bit 2's 
Bus Complement 

For the forward transform, the input pixels are 
coded in 9-bit 2's complement and the output coef­
ficients are coded in 12-bit 2's complement. For the 
inverse transform, the data format is identical with 
the coefficients used as input and the pixels used 
as output. 

July 1992 

DIP40 
(Plastic Package) 

ORDER CODE ; STV3200P 

PLCC44 
(Plastic Chip Carrier) 

ORDER CODE ; STV3200FN 

ORDER CODES 

Part Temperature Package Number Range 

STV3200CP 0 to 70°C DIP40 

STV3200CFN 0 to 70°C PLCC44 

1/15 
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PIN CONNECTIONS 

DIP40 PLCC44 

(.) "' (jj 0 () 

Ei 0 (f) (f) 
~ 0 u:: "' "' z 0 Cl Cl [!) LL LL LL 

BSO Vee 

881 FO 

882 F1 02 39 NC 

DO F2 03 38 F4 

D1 F3 04 37 FS 

D2 F4 05 36 F6 

D3 FS 
06 35 F7 

D4 F6 
07 34 ·FB 

DB 33 F9 
DS F7 

PR 32 F10 
06 FB 

DSYNC 31 F11 
D7 F9 

Vee 30 FSYNC 
DB F10 

Vee 29 NC 
PR F11 ~ ~ 0 C\i gj "' C1i lO ~ [\; "' "' "' "' "' DSYNC FSYNC 

(.) (.) (.) 
LE 

w en :.: z 1- (.) en 
Vee NC z z z 0 ;!) --' w (f) z ;!) (.) w 

1-
Vee Vss 

3200-01 B.EPS 
NC NC 

F/1 TEST 

OE EN 

Vss CLK 

3200-01 A.EPS 

PIN DESCRIPTION 

DIP40 PLCC44 Symbol Direction Function 

1:3 1:3 BSOto BS2 IN Block Size Selection 

4: 12 4:5 '7: 13 DO to DB IN/OUT Pixel Data Bus 

13 14 PR IN Pixel Range Selection 

14 15 DSYNC IN/OUT Pixel Block Synchronization 

18 21 F/1 IN Forward or Inverse Transform Selection 

19 22 OE IN Tristate Output Control 

20-25 23-28 Vss Ground 

21 24 CLK IN Clock Input 

22 25 EN IN Clock Enable 

23 26 TEST IN Test Mode 

27 30 FSYNC IN/OUT Coefficient Block Synchronization 

28:39 43:40 '38: 31 FO to F11 IN/OUT Coefficient Data Bus 

40-15-16 16-17-44 Vee +5V±10% 

17-24-26 6-18-19-20 NC Not Connected 
27-29-39 

2115 --------------~ ~~m~~:~~~ --------------
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FUNCTIONAL BLOCK DIAGRAM 

1321 

SHUFFLE STAGE 

13~ 
PIXEL 

SERIAL PARALLEL 
CONVERTER 

16 

PR-

ROUND 
and 
CLIP 

9 

DDTODB 

FUNCTIONAL DESCRIPTION 

1. EQUATIONS 

Figure 1 

I 

16 

7 

M Uoo' t Pixel Data 
Block 

..... 
N columns 

SERIAL OPERATIVE UNIT 

c 
0 
M 
M 
A 
N 
D 

B 
u 
s 

CONTROL UNIT 

~aj, 

TRANSPOSITION MEMORY 
256 X 16 BITS 

f----FDCT~ 

~IDCT-:--

... 

STV3200 

131 
SHUFFLE STAGE 

13~ 
COEFFICIENT 

SERIAL PARALLEL 
CONVERTER 

16 16 -------

DSYNC 
FSYNC 
BSD 
BS1 
BS2 
F/1 

-~ ' 

I ROUND I 
EN 

CLK 
OE 

TEST 
12 

_I 

FD~F11 
3200-02.EPS 

' Co elf. 

l 
Data N Lines 
Block 

• .... 
M coluinns 3200-03.EPS 

3/15 
--------------~ ~~~©mg::~~©~ -------------
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STV3200 

The STV3200 performs a Two dimensional Discrete Cosine Transform according to the following equations, 
where the block size is defined by M lines and N columns of pixels : 

FORWARD TRANSFORM EQUATION : 

[ 
32 2 M- 1N- 1 .. (2·i+1)U7t (2·j+1)V7tl 

F(u,v) = Round N . M C2(u) C (V) ;~ i~ D(I,J) ~os 2 . M cos 2 . N 

where C2(u) = 1/2 if u = 0 
= 1 otherwise 

INVERSE TRANSFORM EQUATION : 

.. 1 (2·1+1)U7t (2·]+1)V7t 
[ 

N-1M-1 . . . l 
D(I,J) = Round a v'f:o :;,

0
F(u,v) cos 2 . M cos 2 . N 

2. BLOCK FORMAT 
MAN is the block size. This means that pixel blocks 
contain N columns of M pixels. The STV3200 per­
forms a block transposition, and therefore the coef­
ficient blocks contain M columns of N pixels. 

The seven different possible block sizes are : 
16 X 16, 8 X 16, 16 X 8, 8 X 8, 4 X 8, 8 X 4 and 4 X 

4. 

3. BLOCK SCANNING 
Many possible arrangements for pixel block scan­
ning are possible. These different arrangements 
are: 

A - the block is entered line by line from the top 
line to the bottom line. Each line is entered 
from the left pixel to the right pixel. 

B - the block is entered line by line from the top 
line to the bottom line. Each line is entered 
from the right pixel to the left pixel. 

C - the block is entered line by line from the bottom 
line to the top line. Each line is entered from 
the left pixel to the right pixel. 

D - the block is entered line by line from the bottom 
line to the top line. Each line is entered from 
the right pixel to the left pixel. 

E - the block is entered column by column from 
the left column to the right column. Each 
column is entered from the top pixel to the 
bottom pixel. 

F - the block is entered column by column from 
the left column to the right column. Each 
column is entered from the bottom pixel to the 
top pixel. 

G - the block is entered column by column from 
the right column to the left column. Each 
column is entered from the top pixel to the 
bottom pixel. 

H - the block is entered column by column from 
the right column to the left column. Each 
column is entered from the bottom pixel to the 
top pixel. 

4. DATA FORMAT 
The coefficient format is 12-bit 2's Complement, 
corresponding to the range- 2048 to 2047. 

There are 3 possible ranges for pixel data : 

8-BIT UNSIGNED PIXEL MAGNITUDE 
(see Figure 2} 
The pixel data range is 0 to 255. In this case D8 is 
always equal to 0 and the PR pin must be set to 
1 for FDCT and IDCT. A clipping to the range 0 to 
255 is performed before outputting the recon­
structed pixels after an IDCT. 

8-BIT TWO'S COMPLEMENT MAGNITUDE 
(see Figure 3} 
The input pixel data range is - 256 to 255 and a 
clipping to the range- 128 to 127 is performed 
internally just before the FDCT. In this case, the PR 
pin must be set to 0 for FDCT and IDCT. 

9-BIT TWO'S COMPL_EMENT MAGNITUDE 
(see Figure 4) 

. The input pixel data range is - 256 to 255 and no 
clipping is performed. In this case, the PR pin must 
be set to 1 for FDCT and 0 for IDCT. Internal 
overflows may occur leading to aberrant errors on 
reconstructed values. 

4 __ , __ 15:__ __________ ~ ~~~~v~~~ ___________ _ 
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Figure 2 

PR=1 PR=1 3200-04.EPS 

Figure 3 

3200-0S.EPS 

Figure 4 

FDCT I _r 
IDCT 

9-bit I 12-bit 
~-I 

9-bit I 2'sC 2's C 
PR=1 

5. BLOCK FLOW 
Depending on the application, blocks may be en­
tered in different ways. 

Latent period : the latent period between input 
data and the corresponding output results in 130 + 
M·N cycles. This means that the first data item of a 
resulting block is provided 130 + M·N clock cycles 
after the first data item of the corresponding input 
block. 

Synchronization signals : an input block syn­
chronization signal must be provided. The input pin 
for this signal is DSYNC if FDCT is selected and 
FSYNC if IDCT is selected. This signal must be 
active with the first data item of each input block or 
group of blocks. 

An output block synchronization signal is provided. 
The output pin for this signal is FSYNC if FDCT is 
selected and DSYNC if IDCT is selected. This 

I 2'sC 
PR=O 

3200-0B.EPS 

signal is active with the first data item of each output 
block or group of blocks. 

The output synchronization signal is equal to the 
input synchronization signal delayed from 130 + 
M·N clock cycles. 

CONTINUOUS BLOCK FLOW 
Input data is entered continuously with one new 
item data at each clock cycle and output data is 
provided continuously with one new result data 
item at each clock cycle. 

The input synchronization pulse can be provided 
for each input block. In this case the output syn­
chronization pulse is provided for each output block 
(Figure 5). Another way is to provide a synchroni­
zation pulse only for the first block. In this case, only 
one synchronization pulse is provided for the first 
output block (Figure 6). 

5/15 -------------i..W ~~~m~~~~ -------------
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Figure 5: Continuous Block Flow-1 
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Figure 6 : Continuous Block Flow-2 
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block K ___ .._....__ 

-riT_input data 

~ ;input block 

U synchronization 

blockK+1 --

-riT_ ouput data 

output block 

synchronization 

3200-0?.EPS 

-riT_input data 

-----Input block 

synchronization 

blockK+1 --

-riT_ ouput data 

-----output block 

synchronization 

3200-0S.EPS 

CONTINUOUS BLOCK FLOW WITH BYPASS 
OF IRRELEVANT DATA 
It is possible to process a block flow including 
irrelevant data (corresponding to line suppresssion 
for example) as if it was a continuous block flow. 

One way is to stop the clock signal during the 
irrelevant data occurrence. Another way is to use 
the Clock Enable Signal (EN) to inhibit the chip 
internal clock during irrelevant data occurrence 
(Figure 7). 

6/15 
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BURST BLOCK FLOW (see Figure 8) 
Single blocks (or groups of blocks) may not be 
contiguous. In other words, delay cycles between 
two blocks (or groups of blocks) may exist. During 
these delay cycles, the clock is still running and the 
chip continues to perform computations. The con­
straint is that the internal pipe line must not be 
broken when a new block occurs. To take this 
constraint into account, the number of delay cycles 
(NC) must respect one of the following conditions : 

- the number of delay cycles (NC) is greater than 
or equal to 130 + M·N. In this case the pipe line 
is empty (all the relevant data has been 
outputted) when a new input block processing 
starts. 

Figure 7 : Continuous Block Flow with Irrelevant Data 

STV3200 

2 - the number of delay cycles (NC) is a multiple 
of the number of cycles required to enter a 
block (M·N). In this case, the input data always 
remains synchronous with the internal pipe 
line. 

MIXED FDCT/IDCT (see Figure 9) 
In some low frequency applications, it could be 
useful to use only one chip to compute all the FDCT 
and IDCT required by the coding scheme. Blocks 
must be entered in a burst fashion with at least 130 , 
+ M·N delay cycles between the last item of the set 
of input pixels for FDCT and the first item of input 
coefficients for IDCT. The same delay must be 
respected between the last item of input coeffi­
cients for 1 DCT and the first pixel of input pixels for 
FDCT. 

1--------------- enable signal 

Figure 8 : Burst Block Flow 

block K 

-rrrTIJ._ input data 

~ ~inputblock 

U synchronization 

.----block K:----1- block K+1 

v 

1/lllllllllllllllllll 

NC clock 
cycles 

-rrrTIJ._ ouputdata 

output block 

~synchronization 
3200-09.EPS 

1-'1---- block K+1 

~lnputdata 

input block 

synchronization 

3200-10.EPS 
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Figure 9: Mixed BxB FDCTIIDCT Example Waveforms 
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6. PINS DESCRIPTION 

CLK : Clock signal 

DATA PINS 
DO TO DB : 9-bit bidirectional Pixel data bus pins. 
Direction is programmed by the F/1 pin : 

FRState DO to DB Direction 
High Input 
Low Output 

Data is loaded (when input) on the falling edge of 
CLK or settled (when output) on the rising edge of 
CLK. DO is the least significant bit and DB the most 
significant one. 

FSYNC 

3200-11.EPS 

-256 128 64 32 16 8 4 2 1 Weight 

DSYNC : Pixel data block synchronization signal. 
This pin is bidirectional with the direction pro­
grammed by the F/1 pin (like DO to DB). DSVNC is 
active (low level) with the first pixel data of a block 
(or group of blocks). 

FO TO F11 : 12-bit bidirectional Coefficient data bus 
pins. Direction is programmed by the F/1 pin : 

F/1 State FO to F11 Direction 
High Input 
Low Output 

8/15 
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Data is loaded (when input) on the falling edge of CLK or settled (when output) on the rising edge of CLK. 
FO is the least significant bit and F11 the most significant one. 

MSB 

FSYNC : Coefficient data block synchronization signal. This pin is bidirectional with the direction pro­
grammed by the F/1 pin like FO to F11. FSYNC is active (low level) with the first coefficient data of block (or 
group of blocks). 

CONTROL PINS 
Fn : Forward or inverse selection. When F/1 is high, forward DCT is performed. When F/1 is low, inverse 
DCT is performed. 

BSO to ~S2 : Block size selection. The block size is programmed through these three pins according to 
the following table : 

BSO BS1 BS2 Pixel Block Size Coefficient Block Size 
0 0 0 

0 0 1 
0 1 0 

0 1 1 

1 0 0 

1 0 1 
1 1 0 

1 1 1 

PR : Pixel range selection. This pin controls the 
clipping of the pixel data. If PR is high, output pixels 
of an IDCT are clipped to the range 0 to 255. If PR 
is low input pixels of an FDCT are clipped to the 
range -128 to 127. 

OE : Output enable. This signal is active low. When 
OE is high, all outputs (defined by the F/1 pin state) 
are forced to the high impedance state. 

EN : Enable. This signal is active low. When EN is 

7. ACCURACY CHARACTERISTICS 

16 *16 16 *16 
8 *16 16.8 
16.8 8 *16 
8*8 8*8 
4*8 8*4 
8*4 4*8 
4*4 4*4 

Reserved 

high, internal states of the chip are frozen. When 
EN becomes low, execution restarts. 

POWER SUPPLY AND GROUND PINS 
Vee : + 5 Volt power supply 

Vss: ground 

OTHERS 
TEST : test control. This pin is reserved and must 
be low in normal mode. 

The accuracy characteristics have been measured according to the following scheme : 

Random Integer ~f------1 
Pixels Source 

Floating point 
accuracy 

FDCT 

12 

12 A 

B 

3200-12.EPS 

9/15 
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A : characteristics of FDCT for 8-bit magnitude random pixel data. Error between the FDCT computed 
with floating point accuracy and the FDCT computed by the STV3200 is measured. 

Block Size 16 *16 8 *16 16.8 8*8 4*8 8*4 4*4 

Exact Value 86.8% 88.4% 86.9% 88.4% 89.4% 8.8% 91.0% 

Error of± 1 LSB 13.0% 11.4% 13.0% 11.5% 10.5% 11.1% 8.9% 

Error of± 2LSB 0.23% 0.19% 0.14% 0.11% 0.11% 0.07% 0.11% 

B : characteristics of FDCT followed by an I OCT for 8-bit magnitude random pixel data. Error between the 
source picture and the FDCT computed by the STV3200 followed by an IDCT computed by the 
STV3200 is measured. 

Block Size 16 *16 8 *16 16.8 8*8 4*8 

Exact Value 82.2% 93.9% 93.0% 99.0% 99.9% 

Error of± 1 LSB 17.8% 6.1% 7.0% 1.0% 0.06% 

Error of± 2LSB 0.02% 0% 0% 0% 0% 

TIMING WAVEFORMS 
Sync Signals liming Diagram for a Forward Transform on a M*N Block. 

Cycle 

CLK 

DSYNC 

0 

tHDCL 

Note : FSYNC will be in an unknown state during the first 130 cycles after the power-up. 

M•N+130 

8*4 4*4 

99.9% 100% 

0.08% 0% 

0% 0% 

M•N+131 

3200-13.EPS 
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TIMING WAVEFORMS (continued) 
Sync Signals Timing Diagram for a Inverse Transform on a M*N Block. 

Cycle 0 M'N+130 M'N+131 

CLK 

FSYNC 

3200·14.EPS 

Note : DSYNC will be in an unknown state during the first 130 cycles after the power-up. 

Outputs Enable Signal Timing Diagram 

_) -!\ OE 

10FF 
i-=--'-l 1oN 

~ y. 
Outputs 

3200-15.EPS 

Control Signal liming Diagram 

I CLK 

V FII,PR,BSO,BS1 ,882 

______ _J/\~--~-------------------------------------------------
3200·16.EPS 
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Enable Signal1iming Diagram 

_j 
1ENeK 1eKEN 

1/ \ 

Clock Timing Diagram 

1 
1-eLK 

Output Timing Diagram 

tf-1--... 

ELECTRICAL CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS 
Supply voltage (Vee) : 6 Volts 
Operating Temperature Range : 0 to 70 ac 

I 

Voltage on Any Pin Relative to Vss: - 0.5 to Vee+ 0.5 Volts 

DC ELECTRICAL CHARACTERISTICS 

1\ 
EN 

1ENeK 
teKEN 

\ eLK 

3200-17.EPS 

1 1-eL 

3200-18.EPS 

3200-19.EPS 

Operating conditions : Vss = 0 Volt, T A= 0 to 70 °C, Vee= 5V ± 10 % unless otherwise noted 

Symbol Parameter Test Conditions Min. Typ. Max. Unit 

Vee Operating Voltage 4.5 5.5 v 
Power Supply Ripple 0.5 v 

Icc Supply Current CLOAD = 50pF on all output 
fcLK= 15MHz All inputs at Vee or Vss 100 mA 
fcLK= OMHz 1 mA 

Input Voltage Level (all inputs) Vcc=5±0.5 
VtL Logic Low 0.8 v 
VtH Logic High 2 v 

Hi-Z Input Leakage IN/OUT Buffers -5 +5 mA 
Input Buffers VtN = Vss to Vee -1 +1 mA 

Output Voltage Level (all outputs) Vcc=4.5V 
VoL Logic Low, I LOAD= +500)1A 0.4 v 
VoH Logic High, I LOAD= -500)1A 2.7 v 
CtN Input Capacitance Vo!fset = 2.5V, f =1M Hz 10 pF 

12/15 -------------~ ~~~m~~>!~©~ --------------
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AC ELECTRICAL CHARACTERISTICS 
Operating Conditions: Vss = 0 Volt, TA = 0 to 70 °C, Vee= 5 V ± 10% unless otherwise noted 
Outputs Load : capacitance = 50pF, current logic low = 500!-!A 

Test Load on All Outputs : 

Vee 

3200-20.EPS 

Timings are measured between threshold voltage of 1.5 V unless otherwise specified. 

Symbol Parameter Min. Typ. Max. Unit 

IR Rise Time from 0.5 to 3.5V 10 ns 

IF Fall Time from 3.5 to 0.5V 10 ns 

lcH Clock High Pulse Width 30 ns 

teL Clock Low Pulse Width 30 ns 

I eLK Clock Cycle 66 ns 

lsocL Data Setup Time from CLK 5 ns 

IHDCL Data Hold Time from CLK 20 ns 

too Output Data Delay from CLK 33 ns 

ICKEN Enable Hold from CLK 5 ns 

IENCK Enable Setup from CLK 5 ns 

I oFF Delay from OE ito Output going to High Impedance State 20 ns 

I oN Delay from OE.!. to Output going to High or Low State 20 ns 

leo Control Signal Setup from beginning of Input Stream 100 ns 

13/15 -------------lifi ~~~©IHW&'I~~~~ -------------
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PACKAGE MECHANICAL DATA 
40 PINS - PLASTIC DIP 

D 

Dimensions 
Millimeters 

Min. Typ_ 
a1 0.63 

b 0.45 

b1 0.23 

b2 1.27 
D 

E 15.2 
e 2.54 

e3 48.26 

F 
i 4.445 
L 3.3 

PM-DIP40.EPS 

Inches 
Max_ Min_ Typ_ Max_ 

0.025 

O.D18 

0.31 0.009 0.012 

0.050 

52.58 2.070 
16.68 0.598 0.657 

0.100 

1.900 

14.1 0.555 

0.175 

0.130 
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PACKAGE MECHANICAL DATA 
44 PINS- PLASTIC CHIP CARRIER 

c 
B 

M1 

f - -r w 

17 ! 29 

Ill .. , .. Ill ooooo;oooo 

[QJ G (Seating Plane Coplanarily) 1-...::..._-1 
PMPLCC44.EPS 

Dimensions 
Millimeters Inches 

Min. Typ. Max. Min. Typ. Max. 
A 17.4 17.65 0.685 0.695 
B 16.51 16.65 0.650 0.656 
c 3.65 3.7 0.144 0.146 
D 4.2 4.57 0.165 0.180 
d1 2.59 2.74 0.102 0.108 
d2 0.68 0.027 
E 14.99 16 0.590 0.630 

e 1.27 0.050 
e3 12.7 0.500 
F 0.46 O.Q18 

F1 0.71 0.028 
G 0.101 0.004 

M 1.16 0.046 

M1 1.14 0.045 

15/15 
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8 x 8 DISCRETE COSINE TRANSFORM (OCT) 

• 0 TO 27M Hz PIXEL RATE IN SINGLE 
PRECISION MODE, 

• 0 TO 20 MHz PIXEL RATE IN DOUBLE 
PRECISION MODE 

• FORWARD AND INVERSE 8 x 8 TRANS-. 
FORM 

• 9-BIT TWO'S COMPLEMENT PIXEL FORMAT 
• 12-BIT TWO'S COMPLEMENT COEFFICIENT 

FORMAT 
• OPTIMIZED ACCURACY FOR 8-BIT TWO'S 

COMPLEMENT PIXEL FORMAT 
• SELECTABLE SCANNING OF COEFFICIENT 

BLOCKS 
• FULLY TTL AND CMOS COMPATIBLE 
• CMOS TECHNOLOGY 
• SINGLE +5 VOLT POWER SUPPLY 
• MAXIMUM POWER DISSIPATION : 750mW 

AT27MHz 

DESCRIPTION 

The STV3208 is a dedicated circuit for the 8 x 8 
discrete cosine transform (OCT) computation. Two­
dimensional forward OCT (FDCT) or inverse OCT 
(I OCT) is performed for 8 x'8 block sizes and a pixel 

rate up to 27MHz. The circuit architecture is fully 
bidirectional with 9-bit magnitude pixel data bus 
and a 12-bit magnitude coefficient data bus pro­
grammed as input or output depending on the 
selection of FDCT or IDCT. 

FDCT IDCT Data Format 

Pixel Bus Input Output 9-bit 2's 
Complement 

Coefficient Bus Output Input 12-bit 2's 
Complement 

For the forward transform, the input pixels are 
coded on 9-bit 2's complement and the output 
coefficients are coded on 12-bit 2's complement. 
For the inverse transform, the data format is ident­
ical with the coefficients used as input and the 
pixels used as output. 

Two operating modes are provided : single preci­
sion mode at a pixel rate up to 27 MHz, and double 
precision mode at a pixel rate up to 20 MHz. 

July 1992 

ADVANCE DATA 

DIP40 
(Plastic Package) 

ORDER CODE : STV3208CP 

PQFP44 
(Plastic Package) 

ORDER CODE : STV3208CV 

ORDER CODES 

Part Temperature Package Number Range 

STV3200CP 0 to 70°C DIP40 

STV3200CV . o to 70°C PQFP44 

1/17 

This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 79 
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PIN CONNECTIONS 

- DIP40 

vss Vee 

Ne FO 

Ne F1 

DO F2 

D1 F3 

D2 F4 

D3 FS 

D4 F6 

DS F7 

D6 Fa 

D7 F9 

DB F10 

PR F11 

DsvNe FSYNe 

Vee ess 

Ne vss 

SID Ne 

Fn TEST 

OE EN 

Vss eLK 

3208-01A.EPS 

PIN IDENTIFICATION 

Pin Number Symbol 
4-12 DOlo 08 

13 PR 

14 DSYNC 

17 S/D 

18 F/1 

19 OE 

21 CLK 

22 EN 
23 TEST 

26 css 
27 FSYNC 

28-39 FO to F11 
1,20,25 vss 
15,40 vee 
2,3,24 NQ 

2/17 

80 

0 

8 ~ 
> c 

RESERVED 

SID 

F/1 

OE 

Vss 

RESERVED 

CLK 

EN 

TEST 

RESERVED 

RESERVED 

Type 
1/0 

Input 

1/0 

Input 

Input 

Input 

Input 

Input 
Input 

Input 

1/0 

1/0 

Power 

Power 

PQFP44 
c w 
> a: 
w 
(}) 

"' g: 13 1:3 w "' 21 a: c c "' "' c c 

RESERVED 

RESERVED 

D1 

DO 

Vss 

Vee 
FO 

F1 

F2 

F3 
RESERVED 

3208-01 B.EPS 

Function I Description 
Pixel data bus 

Pixel range selection 

Pixel block synchronization signal 

Single/double precision selection 

FDCT/IDCT selection 

Output three-state control 

Clock signal 

Clock enable signal 
Test mode selection 

Zig Zag selection 

Coefficient block synchronization signal 

Coefficient data bus 

Ground 

Power supply 
Not Connected 



FUNCTIONAL BLOCK DIAGRAM 

FORWARD TRANSFORM ~ <J INVERSE TRANSFORM 

8-PDINT DCT 

~------P SE<~~E 0~~~~~~6R~~IT 

16 

DO to DB 

8-PD!NT DCT 
SERIAL OPERATIVE UNIT 
(COLUMN TRANSFORM) 

c 
0 
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~-----~~~----~ 
N 
D 
B 
u 
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DSYNC -- ~-_j__L_~, -- FSYNC 
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SERIAL TRANSPOSITION MEMORY 

FUNCTIONAL DESCRIPTION 

1. EQUATIONS 

Figure 1 

M Uoo• t f----- FDCT __.. Pixel Data 
Block .._IDCT-

..... • 
N columns 

16 

FO to F11 

! 
Coeff. 

1 
Data N Lines 
Block 

... .... 
M columns 

STV3208 

css 

3208-02.EPS 

3208-03.EPS 

The STV3208 performs 8 x 8 two dimensional Discrete Cosine Transform according to the following formula: 

Equations for 9-bit PIXEL DATA (PR pin set to low) : 

FORWARD TRANSFORM EQUATION : 

[
1 ~ 7 

. . (2·i+1)U1t (2-j+1)V1tl 
F( u , v) = Round "4 C(u) C(v) i~ j~o D( I , J ) cos 16 cos 16 

3/17 
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INVERSE TRANSFORM EQUATION : 

[ 7 7 
D( i , j) ~ Round ~ u~o v~o C(u) C(v) 

F( ) (2·i+1)u1t U,V COS 16 
(2· j + 1) V1t] 

cos 16 

Where C(u) ~ ~ if u ~ 0 

~ 1 otherwise 

Equations for 8-bit PIXEL DATA (PR pin set to high) : 

FORWARD TRANSFORM EQUATION : 

[ 7 7 
F( u , v) ~ Round i C(u) C(v) ;~ i~ DC . ) (2· i + 1) u 1t (2· j + 1) v 1t l I , J COS 16 COS 16 

INVERSE TRANSFORM EQUATION : 

[ 7 7 
D( i , j ) ~ Round i u~o v~o C(u) C(v) 

F( ) (2· i + 1) U1t U,V COS 16 
(2· j + 1) V1t] 

cos 16 

Where C(u) ~ ~ if u ~ 0 

~ 1 otherwise 

2. DATA FLOW ORDERING 
The pixel block is scanned column by column (ORDER 1) or line by line (ORDER 2). If CSS is high, the 
coefficient block is scanned with a zig zag order. Figure 2 shows the relation between pixels order and 
coefficient order. 

Figure 2a : Data Ordering (CSS high) 

PIXEL ORDER COEFFICIENT ORDER 

9 17 25 33 41 49 57 2 6 7 15 16 28 29 
2 10 18 26 34 42 50 58 3 5 8 14 17 27 30 43 
3 11 19 27 35 43 51 59 4 9 13 18 26 31 42 44 

ORDER 1 4 12 20 28 36 44 52 60 <=> 10 12 19 25 32 41 45 54 
5 13 21 29 37 45 53 61 11 20 24 33 40 46 53 55 
6 14 22 30 38 46 54 62 21 23 34 39 47 52 56 61 
7 15 23 31 39 47 55 63 22 35 38 48 51 57 60 62 
8 16 24 32 40 48 56 64 36 37 49 50 58 59 63 64 

2 3 4 5 6 7 8 3 4 10 11 21 22 36 
9 10 11 12 13 14 15 16 2 5 9 12 20 23 35 37 
17 18 19 20 21 22 23 24 6 8 13 19 24 34 38 49 

ORDER2 25 26 27 28 29 30 31 32 <=> 7 14 18 25 33 39 48 50 
33 34 35 36 37 38 39 40 15 17 26 32 40 47 51 58 
41 42 43 44 45 46 47 48 16 27 31 41 46 52 57 59 
49 50 51 52 53 54 55 56 28 30 42 45 53 56 60 63 
57 58- 59 60 61 62 63 64 29 43 44 54 55 61 62 64 
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If CSS is low, the coefficient block is scanned line by line and the pixel block is scanned column by column, 
or the coefficient block is scanned column by column and the pixel block is scanned line by line. 

Figure 2b : Data Ordering (CSS low) 

PIXEL ORDER 
9 17 25 33 41 49 57 
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ORDER 1 12 20 
13 21 
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15 23 
16 24 

2 3 
10 11 

28 36 44 52 
29 37 45 53 
30 38 
31 39 
32 40 

4 5 
12 13 

46 54 
47 55 
48 56 

6 7 
14 15 

60 
61 
62 
63 
64 

8 

16 

ORDER2 

9 
17 
25 

18 19 20 21 
26 27 28 29 

22 23 24 
30 31 32 

33 34 35 
41 42 43 
'19 50 51 
57 58 59 

3. DATA FORMAT 

36 37 

44 45 
52 53 
60 61 

38 39 

46 47 
54 55 
62 63 

Coefficients format is 12-bit 2's complement, corre­
sponding to the range -2048 to 2047. 

There are 2 possible ranges for pixel data : 

9-bit two's complement magnitude 
(see Figure 3) 

The pixel data range is -256 to +255. In this case 
the PR pin must be set to 0 for IDCT. D8 is the most 
significant bit and DO the least significant bit for the 
pixel data. A clipping to the range -256 to +255 is 
performed before outputting reconstructed pixels 
after an IDCT. 

8-bit two's complement magnitude 
(see Figure 4) 

Figure 3 

40 
48 
56 
64 
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50 51 52 53 
58 59 60 61 

9 17 25 33 

10 18 26 34 
11 19 
12 20 

27 35 
28 36 

14 15 
22 23 
30 
38 

31 
39 

46 47 
54 55 
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32 
40 
48 
56 
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16 
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22 30 38 
23 31 39 
24 32 40 

41 49 
42 50 
43 51 
44 52 
45 53 
46 54 
47 55 
48 56 

62 ~ 
63 ;g 

cb 
64 :s: 

Pixel data range is -128 to + 127. In this case DO 
must be set to 0 and the PR Pin must be set to 1 
for IDCT. D8 is the most significant bit and D1 the 
least significant bit for the pixel data. A clipping to 
the range -128 to+ 127 is performed before output­
ting reconstructed pixels after an IDCT. 

This mode may be used for intra picture coding. In 
this case, pixel data range is 0 to 255. For a FDCT, 
the most significant bit of input pixel data (D8) must 
be inverted before entering the chip. This is equi­
valent to substract 128 to the input pixel data. Note 
that this operation will only have effect on the DC 
value F(O,O). For an IDCT, the most significant bit 
of output pixel data (D8) must be inverted. This is 
equivalent to add 128 to the output pixel data. 

(') 

9-bit 
2's C 

FDCT r>------1 2~-'-b-i t--1~'------l D-.-C-T __j 9- bit 

2's C 1 2's C 

PR=O 3208-04.EPS 
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Figure 4 

12-bit 
2's C 

4. BLOCK FLOW 

Depending on the application, blocks may be en­
tered in different way. 

Latent period : 
The latent period between input data and corre­
sponding output results is 167 clock cycles (if FDCT 
is selected) or 163 clock cycles (if IDCT is selected) 
in single precision mode (S/D pin set to 1). This 
means that the first data of the resulting block is 
provided 137 clock cycles (if FDCT is selected) or 
135 clock cycles (if IDCT is selected) in double 
precision mode (S/D pin set 

to 0). 

Latency Forward OCT Inverse OCT 
SID= 1 167 Cycles 163 Cycles 
Single Precision 

SID= 0 
Double Precision 

137 Cycles 135 Cycles 

Synchronization signals : 
An input block synchronization signal must be pro­
vided. The input pin for this signal is DSYNC if 
FDCT is selected and FSYNC if IDCT is se­
lected.This signal is active low and must not be 
active more than one clock cycle and during the 

Figure 5 

CLK 

INPUT 
DATA 

INPUT 
SYNC. 

OUTPUT 
DATA 

OUTPUT 
SYNC. 

6117 
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PR=1 3208-0S.EPS 

first clock cycle after power-up.This signal must be 
active with the first data of each input block or group 
of blocks. 

An output block synchronization signal is provided. 
The output pin for this signal is FSYNC if FDCT is 
selected and DSYNC if IDCT is selected. This 
signal is active with the first data of each output 
block or group of blocks. 

The output synchronization signal is equal to the 
input synchronization signal delayed from the la­
tent period (see Figure 5). 

CONTINUOUS BLOCK FLOW 

Inputs data are fed continously with one new item 
data at each clock cycle and output data is provided 
continously with one new result data item at each 
clock cycle. 

The input synchronization signal can be provided 
for each input block. In this case the output syn­
chronization pulse is provided for each output block 
(Figure 6). An other way is to provide a synchroni­
zation pulse only for the first block of a group of 
blocks. In this case, only one synchronization pulse 
is provided for the first output block (Figure 7). 

LATENCY 

3208 OS.EPS 



Figure 6 : Continuous Block Flow 1 
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Figure 7 : Continuous Block Flow 2 
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input data 

input block 
synchronization 

output dolo 

output block 
synchronization 

3208-07.EPS 

input data 

input black 
synchronization 

output data 

output block 
synchronization 

3208-08.EPS 

CONTINUOUS BLOCK FLOW WITH BYPASS OF 
IRREVELANT DATA 
It is possible to process a block flow including 
irrelevant data (corresponding to line suppression 
for example) as if it was a continous block flow. One 

way is to stop the clock signal during the irrelevant 
data occurence. Another way is to use the Clock 
Enable Signal (EN) which allows to stop the chip 
internal clock during irrelevant data occurrence 
(see Figure 8) 

7/17 
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Figure 8 : Continuous Block Flow with Irrelevant Data 

irrelevant 

1-------- block K ----- dote---- block K+l-----block K+2 
I 
I 
I 
I 
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I 

jcxxx 
I 
I 

~ 

!------- block K 1 block K+1 

enable signal 

input data 

input block 
synchronization 

,,~,r------L-,,,-~1/ ~.r- ~ 
output data 

BURST BLOCK FLOW (see Figure 9) 

Single blocks (or groups of block) may not be 
continous. In other words, delay cycles between 
two blocks (or groups of block) may exist. During 
these delay cycles, the clock is still running and the 
chip continues to perform computations. The con­
straint is that the internal pipe line must not be 
broken when the new block occurs.To take this 
constraint into account, the number of delay cycles 
(NC) must respect one of the following conditions : 
1 - the number of delay cycles (NC) is greater than 

or equal to the latency. In this case the pipe 
line is empty (all the relevant data has been 
output) when a new input block processing 
starts. 

Figure 9 : Burst Block Flow 

NC clock 
cycles 

I 
I 

---------v- output block 
sync~l'!llli~i.~s 

2 - the number of delay cycles (NC) is a multiple 
of 64. In this case, the input data always re­
mains synchronous with the internal pipe line. 

MIXED FDCT/IDCT (see Figure 1 0) 

In some low frequency application, it could be cost 
effective to use only one chip to compute all the 
OCT required by the coding scheme. Blocks must 
be fed in a burst fashion with at least the latency 
time between the last pixel of input pixels for FDCT 
and the first pixel of input coefficients for IDCT. The 
same delay must be respected between the last 
pixel of input coefficients for IDCT and the first pixel 
of input pixels for FDCT. 

~--block K+1 

input block 
synchronization 

3208-10.EPS 
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Figure 10: Mixed 8 x 8 FDCT/IDCT Example Waveforms {double precision) 

~64 cycle~ ~64 cycle~~ ~?4 cyclei_ -=::::t=~4 cycleL-=::J 
Block A Block B !OCT (C) IDCT (D) 

J . X X .1 X X l J/11 ~l/l//l/////l////1////l/l/l/l/l/l///l/l///l/1//l/l //1//l/l/////////l/l////l/l////l//////////////////////////, ~//, 
.~u 

~~6~i~~~---;--~6~i~~~~ 
lllllllllllllllllllllllllllllllllllllllllllll/llllllllllll/1/, 
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PRECISION SELECTION 

For single precision mode, the S/D pin must be 
high. In this case, the maximum rating for pixel is 
27 MHz. For double precision mode, the S/D pin 
must be low. In this case, the maximum rating for 
pixel is 20 MHz. 

5. PINS DESCRIPTION 

CLK : Clock signal 

DATA PINS 

DO to D8 : 9-bit bidirectional pixel data bus pins. 
Direction is programmed by the F/1 pin : 

F/1 state DO to DB Direction 

High Input 

Low Output 

Data is loaded {when input) or settled (when out-

~Ill/Ill u 
\ 

Block c Block D 
_ ~4 cycle~ -=::::t= ~4 cycre; _ 

~IIIII//, .1 llllllllllllllllllllllllllllllllllllllllllllllllllllllll 

11111u 
3208-11.EPS 

put) on rising edge of CLK. DO is the least signifi­
cant bit and D8 the most significant one. Note that 
for the optimized mode for 8-bit 2's C pixel data, D1 
is the least significant bit and DO must be set to 0. 

MSB LSB 

DSYNC : pixel data block synchronization signal. 
This pin is bidirectional with the direction pro­
grammed by the F/1 pin (like DO to DB). DSYNC is 

· active (low level during one clock cycle only) with 
the first pixel data of a block (or a group of blocks). 

FO to F11 : 12-bit bidirectional coefficient data bus 
pins. Direction is programmed by the F/1 pin : 

F/1 state FO to F11 direction 

High Output 

Low Input 

9/17 
------------------------ ~~~@~~~~~ ------------------------
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Data is loaded (when input) or settled (when output) on rising edge of CLK. FO is the least significant bit 
and F11 the most significant one. 

'MSB LSB 

FSYNC : coefficient data block synchronization 
signal. This pin is bidirectional with the direction 
programmed by the F/1 pin (like FO to F11 ). FSYNC 
is active (low level during one clock cycle only ) 
with the first coefficient data of a block (or a group 
of blocks). 

CONTROL PINS 

Fll :forward or inverse selection. When F/1 is high, 
forward DCT is performed, when F/1 is low, inverse 
DCT is performed. 

SID : single or double precision. When SID is high, 
single precision is selected. When SID is low, 
double precision is selected. 

CSS : coefficient scanning selection. When CSS is 
high, zig zag scanning of coefficient block is se­
lected. When CSS is low, row scanning of coeffi- · 
cient block is selected. 

PR : pixel range selection. If PR Is low, pixel range 
is -256 to +255. If PR is high, pixel range is -128 to 
+127. 

OE :output enable. This signal is active low. When 
OE is high, all outputs (defined by the F/1 pin state) 

6. ACCURACY CHARACTERISTICS 

are forced to the high impedance state. 
EN : enable. This signal is active low. When EN is 
high, internal states of the chip are frozen. When 
EN becomes low, execution restarts. EN must go 
to high state when CLK is high. 

State Function 

Fll is High Forward OCT 
Fll is Low Inverse OCT 

SID is High 
SID is Low 

Single Precision 
Double Precision 

CSS is High 
CSS is Low 

Zig Zag Scanning of coefficients 
Row Scanning of coefficients 

PR is High 8-bit 2's C Pixel Data 
PR is Low 9-bit 2's C Pixel Data 

OE is High 
OE is Low 

High Impedance Outputs 
Outputs Active 

EN is High 
EN is Low 

Internal Clock is stopped 
Internal Clock runs 

POWER SUPPLY AND GROUND PINS 

Vee : +5 Volt power supply 
Vss : ground potential 

OTHERS : Test. This pin is reserved and must 
be low in normal mode. 

The accuracy characteristics have been measured according to the following scheme : 

Source 
Rondom 
Integer 
Pixel 

10/17 
------------ J....,l ~~~m~~~~ 
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A: 
Characteristics of I OCT. Error between the I OCT computed with 64-bit floating point accuracy and the IDCT 
computed by the STV3208 is measured. Measures have been done according to the CCITTWGXV method 

Single Precision Double Precision 

Peak Error 1 1 

Peak Mean Square Error 0.0403 0.0258 

Overall Mean Square Error 0.0287 0.0200 

Peak Mean Error 0.0125 0.0041 

Overall Mean Error 0.0050 0.0000062 

9-bit pixels 8-bit pixels 

Single Precision Double Precision Single Precision Double Precision 

Exact value 97.1% 98.0% 99.96% 99.97% 

Errors of ± 1 LSB 2.9% 2.0% 0.04% 0.03% 

Errors of± 2 LSB 0% 0% 0% 0% 

8: 
Characteristics of FDCT. Error between the FDCT computed with 64-bit floating point accuracy and the 
FDCT computed by the STV3208 is measured. 

9-bit pixels 8-bit pixels 

Single Precision Double Precision Single Precision Double Precision 

Exact value 93.6% 96.9% 93.6% 96.9% 

Errors of± 1 LSB 6.4% 4.1% 6.4% 4.1% 

Errors of± 2 LSB 0% 0% 0% 0% 

C: 
Characteristics of FDCT followed by an IDCT. Error between the source picture and the FDCT computed 
by the STV3208 followed by an I OCT computed by the STV3208 is measured. 

9-bit pixels 8-bit pixels 

Single Precision Double Precision Single Precision Double Precision 

Exact value 89.3% 90.6% 99.88% 99.92% 

Errors of± 1 LSB 10.7% 9.4% 0.12% 0.08% 

Errors of± 2 LSB 0% 0% 0% 0% 

11/17 
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TIMING WAVEFORMS 
Synchonization Signals Timing Diagram for a Forward Transform 

CLK 

DSYNC 

DO to DB 

FOtoF11~ 

FSYNC 
3208-13.EPS 

Note: FSYNC will be in unknown state after the power up during a count of cycles equal to the latency. 

Synchronization Signals Timing Diagram for an Inverse Transform 

CLK 

FSYNC 

DOtoDB~ 

DSYNC 

3208-14.EPS 

Note : DSYNC will be in unknown state after the power up during a count of cycles equal to the latency. 

Output Enable Signal Timing Waveforms 

High Impedance State 

3208-15.EPS 

Control Static Signal Timing Waveforms 

CLK 
\.....___ 

3208-16.EPS 

12/17 
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TIMING WAVEFORMS (continued) 
Enable Signal Timing Waveforms 

EN_/ 

t EN1 

CLK ij 

t EN2 t EN1 

\ 1/ 

Note : EN signal must change from low to high level during the high level of CLK signal. 

Clock Timing Waveforms 

CLK I \ 

1cH teL 

\CLK 

Output Timing Waveforms 

ti tf 

0.5 113.5 

0.5 

--~ 

tr 

\ 
t EN3 

\ 

/ 
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STV3208 
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ELECTRICAL CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS 

Supply voltage (Vee) : 6 Volts 

Operating temperature range : 0 to 70 °C 

DC ELECTRICAL CHARACTERISTICS 

Operating Conditions: Vss = 0 Volt, TA = 0 to 70 °C, Vee= 5 V ± 5% unless otherwise specified 

Symbol Parameter Test Conditions Min. Typ. Max. 

Vee Operating Voltage 4.75 5.25 

Icc Supply current : CLOAD =50 pF on all outputs. 
FcLK=27 MHz All inputs at Vee or Vss 150 
FcLK= 0 MHz 1 

Input Voltage Level (except CLK) Vee= 5 ± 0.25 V 
V1L Logic Low 0.8 
V1H Logic High 2 

Clock Signal 
VJL(CLK) Logic Low 0.5 
VJH(CLK) Logic High 2.5 

High Impedance input leakage : VJN = Vss to Vee 
1/0 Buffers -5 +5 
Input Buffers -1 +1 

Output Voltage Level : Vcc=4.75 V 
VoL Logic Low ILoAo = 500J.LA 0.4 
VoH Logic High I LOAD= -500J.LA 2.7 

C1N Input capacitance VoFFSET = 2.5 V, f = 1 MHz 10 

AC ELECTRICAL CHARACTERISTICS 

Operating conditions : Vss = 0 Volt, TA = 0 to 70 °C, Vee= 5 V ± 5 % unless otherwise specified 

Outputs Loads : Capacitance = 50 pF, Current Logic Low = 500!!A 

Test Load on Outputs : 

Vee 

VREF 
= 1.5V 

Unit 

v 

rnA 
rnA 

v 
v 

v 
v 

J.LA 
J.LA 

v 
v 
pF 

320B-20.EPS 
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Timings are measured between threshold voltage of 1.5 V unless otherwise specified. 

Symbol Parameter Min. Typ. Max. Unit 

IR Rising time from 0.5 to 3.5 V 10 ns 

IF Falling time from 3.5 to 0.5 V 10 ns 

lcH Clock High Pulse Width 
SID= 1 15 ns 
SID=O 24 ns 

teL Clock Low Pulse Width 
SID= 1 15 ns 
SID=O 24 ns 

leU< Clock Cycle Duration 
SID= 1 37 ns 
SID=O 50 ns 

tsocL Data Setup lime from CLK i 8 ns 

IHDCL Data Hold lime from CLK i ·o ns 

too Output Data Delay from CLK i 15 ns 

IEN1 Enable Hold lime from CLK i ·o ns 

IEN2 Enable Rising Edge Setup lime from CLK J, 5 ns 

lENa Enable Falling Edge Setup lime from CLK J, 
SID=1 0 ns 
SID=O 0 ns 

loFF Delay from OE i to Output going to High Impedance State 15 ns 

toN Delay from OE J, to Output going to High or Low State 15 ns 

teo Fll , CSS, PR, SID Setup lime from Beginning of Input Stream 100 ns 

Jlt...-.,l SGS·ntOMSON __________ 1_51_17 
• 1, • lilllU@OO@~~~©ifOO©IllU©® 
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PACKAGE MECHANICAL DATA 
40 PINS- PLASTIC DIP 

Dimensions 
Millimeters 

Min. 
a1 
b 

b1 0.23 
b2 
D 
E 15.2 
e 

e3 
F 
i 
L 

16/17 

94 

Typ. 
0.63 
0.45 

1.27 

2.54 
48.26 

4.445 
3.3 

Max. 

0.31 

52.58 
16.68 

14.1 

'='=' SGS-TI-IOMSON 
A ""'f l U!l!U©Ilil@ffi~l<!l;'ii'llil@li!IU©"' 

PM-DIP40.EPS 

Inches 
Min. Typ. Max. 

0.025 
0.018 

0.009 0.012 
0.050 

2.070 
0.598 0.657 

0.100 
1.900 

0.555 
0.175 
0.130 



PACKAGE MECHANICAL DATA 
44 PINS- PLASTIC QUAD FLAT PACK 

E2 

E1 

E 

Dimensions 
Millimeters 

Min. Typ. 
A 

A1 0.25 
A2 2.55 2.80 
B 0.35 
c 0.13 
0 16.95 17.20 

01 13.90 14.00 
02 10.00 
e 1.00 
E 16.95 17.20 

E1 13.90 14.00 
E2 10.00 

F 1.60 
K 

L 0.65 0.80 

Max. Min. 

3.40 
0.01 

3.05 0.10 
0.50 0.014 
0.23 0.005 
17.45 0.667 
14.10 0.547 

17.45 0.667 
14.10 0.547 

0° (min.), 7° (max.) 

0.95 0.025 

A 

Inches 

Typ. 

0.11 

0.677 
0.551 
0.394 
0.039 
0.677 
0.551 
0.394 
0.063 

0.031 

STV3208 

PMPQFP44.EPS 

Max. 
0.134 

0.12 
0.020 
0.009 
0.687 
0.555 

0.687 
0.555 

0.037 

17/17 
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MOTION ESTIMATION PROCESSOR 

• PIXEL RATE FROM 0 UPTO 18MHz 
• BLOCK SIZE : 8 x 4n, 16 x 4n 
• MAXIMUM DISPLACEMENT +7/-8 PIXELS 

HORIZONTAL AND VERTICAL 
• COMPUTATION OF THE MOTION VECTOR 

AND MINIMUM DISTORTION 
• RANDOM ACCESS TO THE 256 DISTOR­

TIONS 
• 8-BIT UNSIGNED INPUT PIXEL 
• 4-BIT 2'S COMPLEMENT HORIZONTAL DIS­

PLACEMENT 
• 4-BIT 2'S COMPLEMENT VERTICAL DIS-

PLACEMENT 
• 16-BIT UNSIGNED DISTORTION VALUES 
• CLOCK FREQUENCY= INPUT RATE 
• FULLY TTL AND CMOS COMPATIBLE 
• CMOS TECHNOLOGY 
• SINGLE+ 5 VOLT POWER SUPPLY 
• MAXIMUM POWER DISSIPATION : 2 WATTS 

AT 18MHz CLOCK RATE 

DESCRIPTION 

The Real lime Motion Estimation Chip is a dedi­
cated circuit for motion estimation at video rate. 
The chip is optimized to compute the displacement 
vector of 8 x 4n or 16 x 4n blocks in a search 
window (SW) defined by a maximum horizontal and 
vertical displacement of+ 7/-8 pixels corresponding 
to 256 different vectors. 
The chip computes 256 distortions for each block 
according to the MAE criterion. 

Picture format Pixel Rate Block Size 

CIF10Hz 1.01MHz 8x4n,16x4n 

CIF30Hz 3.04MHz 8x4n, 16x4n 

1V25Hz 13.5MHz 8x4n,16x4n 

July 1992 

PQFP144 
(Plastic Package) 

ADVANCE DATA 

ORDER CODE : STI3220CV 

The minimum distortion and the corresponding 
vector are calculated on chip. A random access to 
all distortions allows to implement more elaborate 
algorithms at the system level. 
Displacement vectors of + 15/-16 pixels are accom­
modated with a single chip for lower rates (time 
multiplexed) or with several chips for higher rates 
(spatial multiplexed). 
The following table shows different application 
examples for the motion estimation chip : 

Maximum Minimum Number 
Displacement Chip Clock of chips Frequency 

+7/-8 1.01MHz 1 

+ 15/-16 4.07MHz 1 

+7/-8 3.04MHz 1 

+15/-16 12.2MHz 1 

+7/-8 13.5MHz 1 

+15 /-16 13.5MHz 4 

1/25 
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PIN CONNECTIONS 

0 

~ 
z 

w 00 g ~ ;g " 
s in ., ::c ~ 0 t- :I: >"' 

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 

RESERVED 

DSYNC1 

DSYNCO 

MVSYNC 

OSVNC 

EN 

CLK 

Voo 

RESERVED 

RESET 

1087 

1086 

lOBS 

1084 

1083 

1082 

1081 

lOBO 

RESERVED 

2/25 

98 

0 

&l [;j 1rl 
M 0 0 

~ . " ~ m ;:: &1:$! " 
;g X X 

., :1 ~ 

10 9 8 7 6 5 4 3 2 1 

144 RESERVED 

0 143 A6 

142 

141 A7 

140 80 

139 

138 81 

137 

136 82 

135 83 

134 

133 84 

132 

131 85 

130 

129 86 

128 

127 87 

126 co 
125 

124 C1 

123 

122 C2 

121 

120 C3 

119 

118 C4 

117 

116 cs 
115 

114 C6 

113 

112 C7 

111 

110 xo 
109 RESERVED 

u u 
R >:! x 

3220-01.EPS 
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1. PIN LIST 

Pin Number DESCRIPTION Pin Number · DESCRIPTION 

5 A5 80 ECO 
7 A4 82 EC1 
9 A3 84 EC2 

11 A2 86 EC3 
13 A1 87,88 Vee 
15 AO 90,91 Vss 
17 8SYNC 92 X7 

18, 19 Vee 94 X6 
21,22 Vss 96 X5 

23 SQ 98 X4 
25 H8 100 X3 
27 TEST 102 X2 
29 OE 104 X1 
31 Reserved 109 Reserved 
37 Reserved 110 xo 
38 DSYNC1 112 C7 
40 DSYNCO 114 C6 
42 MVSYNC 116 C5 
44 OSYNC 118 C4 
46 EN 120 C3 
48 CLK 122 C2 
50 Vss 124 C1 
51 Reserved 126 co 
52 Vee 127 87 
53 Reserved 129 86 
54 RESET 131 85 
56 1087 133 84 
58 1086 135 83 
60 1085 136 82 
62 1084 138 81 
64 1083 140 BO 
66 1082 141 A7 
68 1081 143 A6 
70 1080 144 Reserved 
72 Reserved 

All other pins are not connected 

3/25 

99 



STI3220 

2. INTRODUCTION 

The STI3220 circuit is intended for use in video 
compression systems where motion estimation is 
employed. For example, CCITH.261 and 
ISO(MPEG) compatible video compression sys­
tems need to perform motion estimation. Potential 
applications are numerous and include, for 
example, systems concerned with image trans­
mission and/or storage, e.g videophone, videocon­
ference, digital VTR, multimedia computer, etc. 

2.1 Motion Estimation Basics 
Motion estimation is one of the techniques that play 
a role in video picture compression. The basic idea 
arises from a common sense observation : in a 
video sequence, successive frames are likely to 
represent the same details, with little difference 
between one frame and the next. A sequence 
showing moving objects over a still background is 
a good example. Important data compression can 
be effected if each component of a frame is repre­
sented by its difference with the most similar com­
ponent-the predictor- in the previous frame, and 
by a vector - the motion vector - expressing the 
relative position of the two components. If an actual 
motion exists between the two frames, the dif­
ference may be null or very small. The original 
component can be reconstructed from the dif­
ference, the motion vector, and the previous frame. 
Mption estimation is the process of finding a good 
(if not the best) template for prediction and the 
corresponding vector. It does not in itself compress 
data but provides the basic information enabling 
data compression to be effected. 
Several motion estimation techniques exist but the 
most popular one is based on a block by block 
processing and for this reason is called block 
matching. 
For block matching processing, the frame to be 
compressed is positioned into blocks which are 
processed individually. For a given block - the 
reference block - a predictor is searched for 
among candidate blocks of equal size included in 
a surrounding rectangular region in the previous 
frame- the search window (see Figure 1). The 
reference block is compared with the candidate 
blocks. The result of a comparison is called a 
distortion and serves as a measure of the simi­
larity of the two blocks. The candidate block corre­
sponding to the minimum distortion is the best 
match, and this block along with the vector relating 
it to the reference block, form the predictor. 
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When all the blocks included in the search area are 
compared with the reference block-,-the-process is 
called full search block matching. 
To compare blocks, several criterion exist, among 
which the Mean Absolute Error (MAE), is the most 
often used because it offers a good trade-off be­
tween complexity and efficiency. 
The STI3220 performs full search block matching 
with the MAE criterion at pixel rates up to 18 MHz. 

Figure 1 : Block matching notation 
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2.2 Notation 
In Figure 2, the notation used throughout this do­
cument is illustrated. 
The reference block, referred to as X, is M rows 
high and N columns wide. A pixel of block X situated 
at the intersection of row i and column j is denoted 
Xi,j. For block X, numbering of rows and columns 
starts at 0. 
For the STI3220, M=8 or 16 and N is a multiple of 
4 and is denoted by N=4n. 
The search window, referred to as Y, is 15 pixels 
larger than X in each direction, leading to 256 
candidate blocks, as many distortions and as many 
motion vectors. A pixel of search window Y situated 
at the intersection of row i and column j is denoted 
by Yi,j. For search window Y, numbering of rows 
and columns starts at -8. 



A motion vector is expressed with two components, 
a vertical one and a horizontal one. The range of 
both components is [-8 +7]. Upward and left-hand 
components are negative; downward and right-
hand components are positive. · 
The set of 256 distortions can be regarded as an 
array where the indices of a given distortion are 
precisely the components of the motion vector 
related to it. Distortion Di,j is related to the motion 
vector whose components are (i,j) and is equal to : 

M N 

Di,j= L L,IXm,n -Ym+i,n+i I 
m=1 n=1 

3. FUNCTIONALITY 

3.1 Overview 
The STI3220 contains four 8-bit pixel ports, one to 
enter the reference block, and the other three to 
enter the search window. At each clock cycle, one 
pixel of the reference block and three (in the case 
of 8xN blocks) or two (in the case of 16xN blocks) 
pixels of the search window are entered in the 

Figure 2 : Notation 
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circuit. For more details on how to enter pixels for 
the various block sizes, see section 4. 
The STI3220 performs full search block matching 
with the MAE criterion over a search area expan­
ding 15 pixels around the reference block, 8 pixels 
in the north and west directions and 7 pixels in the 
south and east directions. The reason for this asy­
metry is that the number of candidates is 256 so 
that the full range of the 8 bit motion vector can be 
used. The STI3220 can be used to perform motion 
estimation over larger search windows by using 
several circuits in parallel or one circuit in a time 
multiplex fashion. For more details concerning 
larger search windows, see section 5. 
The STI3220 accomodates various block sizes. 
Block height is 8 or 16 and block width is a multiple 
of four. As internal accumulators are 16 bit wide, 
blocks of more than 256 pixels may cause overflow 
and generate erroneous results. Thus, the practical 
maximum sizes of blocks are 8x32 and 16x16. 
However, wider blocks can still be processed, using 
7-bit pixels for example. For more details on how 
to set the block size, see section 4.9. 
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The STI3220 · provides control to manage the 
various cases when a block is situated near the 
edge-of a picture. In such a situation, the search 
window is smaller and the motion vector set is 
reduced. There are 9 different cases depending on 
which edge/corner of the picture is concerned. For 
more details on how to set edge control, see sec­
tion 4.8. For each reference block entered on the 
circuit, a motion vector and the corresponding mini­
mum distortion are systematically delivered a few 
cycles after the last pixel of the reference block has 
been entered in the circuit. When several distor­
tions are equal to the minimum, ttie circuit outputs 
the vector which has the highest priority according 
to a priority table given in section 4.6. 
Results are delivered on an 8-bit bidirectional bus. 
The directionality of this bus is entirely controlled 
by the system. Motion vectors and minimum distor­
tions are delivered through this bus. Also, the circuit 
can read in an address and write out the corre­
sponding distortion. For more details on the man­
agement of this bus, see sections 4.6 and 4. 7. 
The STI3220 can be operated in an efficient pi­
peline mode where successive reference blocks 
are processed without any dead cycle between the 
last pixel of a block and the first pixel ofthe following 
block. In this mode, the circuit performs motion 
estimation at the video pixel rate, up to 18 MHz. For 
more details on modes of operation, see section 4. 

3.2 Block Diagram 
Figure 3 .features the block diagram of the circuit. 

Figure 3 : STI3220 Block Diagram 
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The STI3220 is composed of a 256 processQr 
systolic array which computes the distortions, a 
256x16 SRAM where distortions are temporarily 
stored, a comparator which computes the minimum 
among the distortions stored in RAM, a bidirec­
tional bus which is used to input addresses and to 
output motion vectors and the contents of the RAM, 
and a set of formatters which reorganize the data 
coming from the 4 8-bit pixel ports before feeding 
it to the processors. 
The 256 processors are all identical and work 
concurrently. Each one is dedicated to one distor­
tion of the distortion array shown above. As soon 
as a set of computations is finished, the results are 
simultaneously transferred to the RAM so that a 
new set of computations can start without any dead 
cycle. 
The RAM can be read from the system at anytime, 
except when a minimum computation is in process. 
The address of a distortion is precisely the vector 
related to it. 
The comparator is composed of sixteen compara­
tors computing in parallel, so that the 255 compari­
sons necessary to estimate the minimum distortion 
are carried out rapidly, in order to set the RAM free 
as soon as possible for external access. The com­
parator also stores the address of the minimum 
which is precisely the motion vector. 
The directionality of the 1/0 bus is entirely controlled 
by the system through the OE (output enable) pin, 
so that the system can choose the moment when 
results are made available. 
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4. MODE OF OPERATION 

The source format of a digital video signal is usually 
available in the classical line scanning format. This 
format is not at all convenient for motion estimation 
processing. Pixels must be delivered to the 
STI3220 in the block format which is described 
hereafter. 
Also, when the video signal is a colour video signal, 
luminance and chrominance pixels are interlaced. 
Motion estimation is usually performed with the 
luminance pixels alone, sometimes with the chro­
minance pixels alone, never with both. This is why 
in the following, a block of pixels will refer to a block 
of luminance pixels or a block of chrominance 
pixels, but not to a block of pixels where chromin­
ance and luminance data is mixed. 
Operation of the STI3220 is a succession of se­
quences of two types: initialization sequences and 
block sequences. For example, processing one 
reference block requires an initialization sequence 
followed by a block sequence. Section 4.4 details 
the way to combine initialization and block se­
quences to actually operate the circuit. Sections 4.1 
to 4.3 first detail the two types of sequences for 
different block sizes. 
These sequences vary slightly depending on the 
block height (8 or 16). 
During an initialization sequence, for all block sizes, 
the 15 leftmost columns of the search window are 
entered into the circuit. No reference block is 

Figure 4 : How to load a block 

STI3220 

loaded during this sequence. The duration of an 
initialization sequence is always 16xM cycles. 
During an initialization sequence, the circuit pi­
peline is initialized with the leftmost part of the 
search window. 
During a block sequence, theN rightmost columns 
of the search window are loaded into the circuit and 
the reference block is also loaded into the circuit. 
The duration of this sequence is always MxN 
cycles, the time needed to load the reference block. 
During a block sequence, the distortions relative to 
the reference block being loaded are computed. 

4.1 How to Load a Block 
The STI3220 deals with blocks of pixels. A block is 
a rectangular area of an image and is defined by 
its width and its height measured in numbers of 
pixels. 
When block B is delivered to the STI3220 (refer to 
figure 4), it is entered through an 8-bit wide pixel 
port. The block is scanned column by column, left 
to.right. Each column is in turn scanned from top to 
bottom. One new pixel of the block must be entered 
at each clock cycle so that the loading of a mxn 
sized block will last exactly mxn cycles. Data is 
latched on the rising edge of CLK. On the rising 
edge of CLK numbered 1 in figure 4,· the first pixel 
of block B is latched in the circuit. 
In all subsequent timing diagrams, whenever a 
block loading is involved, a simplified repre­
sentation will be used, as illustrated in Figure 4. 
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4.2 8x4n blocks 
. For 8x4n sized blocks, the search window is 
8+ 15 pixels high and 4n+ 15 pixels wide. It is 
divided in 6 sub-windows as shown in Figure 5. 

the initialization sequence. The rightmost sub-win­
dows SWA2, SWB2 and SWC2, are all 4n pixels 
wide and are loaded during the block sequence. 

They all have the same height which is the refer- 4.2.1 Initialization Sequence 
ence block height: 8. As the search window height For an illustration of this se.ction refer to Figure 6. 
is not a multiple of 8, sub-windows SWC1 and The initialization sequence for 8x4n sized refer-
SWC2 extend beyond the search window : their ence blocks starts with a BSYNC strobe during the 
bottom row is outside the search window. These first cycle. During the 8 first cycles, no data is 
pixels need not be entered in the circuit, but for entered in the circuit. During this time, the circuit 
timing reasons (loading the sub-window SWC1 initialises itself. Then loading of blocks SWA1, 
must last as long as loading sub-window SWB1 or SWB1 and SWC1 starts simultaneously through 
SWA 1 ), some value must be entered in their place. ports A[7:0], 8[7:0], C[7:0], respectively. When this 
The leftmost sub-windows SWA1, SWB1 and loading ends, the sequence is terminated. Its dur-
SWC1, are all 15 pixels wide and are loaded during ation is 128 cycles. 

Figure 5 : Search Window for 8 x 4n Reference Block 
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Figure 6 : Initialization Sequence for 8 x 4n Blocks 
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4.2.2 Block Sequence 
For an illustration of this section refer to Figure 7. 
When processing rectangular reference blocks 
(SQ high), a BSYNC low strobe during the first 
cycle of every block sequence is compulsory. When 
processing square reference blocks (SQ low), this 
strobe is optionai.During a block sequence, the 
reference block and sub-windows SWA2, SWB2 
and SWC2 are loaded simultaneously through 
ports X [ 7 : 0], A [ 7 : 0 ], B [ 7 : 0 ], C [ 7 : 0 ], 
respectively. This sequence takes exactly 8 X 4n = 
32n cycles as all these blocks have the same size. 

4.3 16x4n blocks 
For 16x4n sized blocks, the search window is 
16+15 pixels high and 4n+15 pixels wide. It is 
divided in 6 sub-windows as shown in Figure 8. 

Figure 7 : Block Sequence for 8 x 4n Blocks 
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They all have the same height which is the refer­
ence block height : ·16. Sub-windows SWA 1, 
SWA2, SWC1 and SWC2 extend largely beyond 
the search window. These pixels need not be en­
tered in the circuit, but for timing reasons (loading 
the sub-windows SWA1 and SWC1 must last as 
long as loading sub-window SWB1), some value 
must be entered in their place. An alternative 
method may be used to enter the required data 
items without entering unused values. See section 
4.3.1. 
The leftmost sub-windows SWA 1, SWB1 and 
SWC1, are all15 pixels wide and are loaded during 
the initialization sequence. The rightmost sub-win­
dows SWA2, SWB2 and SWC2, are all 4n pixels 
wide and are loaded during the block sequence. 
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Figure 8 : Search Window for 16 x 4n Reference Blocks 
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4.3.1 Initialization Sequence 
For an illustration of this section refer to Figure 9. 
The initialization sequence for 16x4n sized refer­
ence blocks starts with a BSYNC strobe during "the 
first cycle. During the 16 first cycles, no data is 
entered in the circuit. During this time, the circuit 
initializes itself. Then loading of blocks SWA 1, 
SWB1 and SvvC1 starts simultaneously through 
ports A [ 7,::9], B [ 7: 0 ], C [ 7: 0 ], respectively. 
When Jh[s 'loading ends, the sequence is termi­
nated. Its duration is 256 cycles. 
It is worth noting that the useful pixels of block 
SWC1 {those inside the search window) and the 
unused pixels of block SWA 1 {those outside the 
search window) are entered in the circuit concur­
rently, and vice versa. This is because these two 
blocks have symmetric positions in relation to the 
search window. Thus, the unused pixels of block 
SWA 1 can be the useful pixels of block SWC1, and 
vice versa. Practically, this is realised by linking 
ports A [ 7 : 0 ] and C [ 7 : 0 ] and writing to this 
common port a block composed of the 8 upper rows 

Figure 9 : Initialization Sequence for 16 x 4n Blocks 

of block SWC1 and the Blower rows of block SWA 1 
(see section 5.3 for a system diagram). However, 
this composed block still contains unused data :the 
8th row of block SWC1, which is outside the search 
window. 

4.3.2 Block Sequence 
For an illustration of this section refer to Figure 10. 
When processing rectangular reference blocks 
(SQ high), a BSYNC low strobe during the first 
cycle of every block sequence is compulsory. When 
processing square reference blocks (SQ low), this 
strobe is optional. 
During a block sequence, the reference block and 
sub-windows SWA2, SWB2 and SWC2 are loaded 
simultaneously through ports X[7:0], A[7:0], 8[7:0], 
C[7:0], respectively. This sequence takes exactly 
16x4n=64n cycles as all these blocks have the 
same size. 
The ports A[7:0] and C[7:0] can be linked and the 
blocks SWC2 and SWA2 partially scanned as seen 
above to reduce the number of data items delivered 
to the circuit. 

~------initialization sequence----~~___,n,ex"'-t­
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Figure 10 :Block Sequence for 16 x 4n Blocks 
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I sequence 

4.4 Actual Operation 
Actual operation of the circuit is a succession of 
initialization sequences and block sequences. No 
dead cycle can be introduced between the suc­
cessive sequences, as otherwise the circuit pi­
peline is broken. 

4.4.1 Processing One Block 
Processing one block requires an initialization se­
quence immediately followed by a block sequence. 
During the initialization sequence, the 15 left col­
umns of the search window are entered and stored 
in the circuit and no computation is performed. 
During the block sequence, the reference block 
and the ·remaining part of the search window are 
entered and processed in the circuit. During this 
sequence, the 256 distortions are computed. The 
output of the minimum distortion and the motion 
vector takes place a few cycles after the end of the 
block sequence, see section 4.6 for more details. 

4.4.2 Continuous Processing of Blocks 
One way to process several blocks is to repeat the 
above described operations as many times as 
necessary. However, under certain conditions, 
there is a more efficient way of processing several 
blocks. Under these conditions, only one initializa­
tion sequence and as many block sequences as 
there are reference blocks are necessary. The gain 
is substantial : there is a factor 3 (8x4n blocks) or 
2 (16x4n blocks) gain in memory bandwidth and 
operating frequency. 

3220-11.EPS 

The only condition to be observed in using this 
mode is that the 15 rightmost columns of search 
window k are exactly the 15 leftmost columns of 
search window k+ 1 . The reason why this mode is 
more efficient is easily understandable. The circuit 
takes advantage of the fact that successive search 
windows overlap. At the end of block sequence k, 
the 15 leftmost columns of search window k+ 1 are 
already loaded in the circuit so that no initialization 
sequence is required for block k+1. 
The first and unique initialization sequence loads 
in the 15 leftmost columns of the first search win­
dow. It is immediately followed by the successive 
block sequences. During block sequence k, results 
relative to block sequence k-1 are accessible 
through the 1/0 port. 
In particular, continous processing of blocks is 
possible when reference block k is the right neigh­
bour of reference block k-1. In this case the condi­
tion that two successive search windows overlap 
by 15 columns is met. 
If the edge control is set correctly, the pipeline is 
not broken when a search window is situated near 
the right edge of a frame and does not therefore 
overlap with the next search window. For more 
details on how to do this, see section 5. 

4.5 The Block Synchronisation signal : 
BSYNC 
An initialisation sequence always starts with a 
BSYNC strobe (active low). This sets the circuit 
ready for operation. 
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When rectangular blocks are processed (SQ high), 
the circuit must be informed when a new block 
starts. This is done by strobing BSYNC low during 
the first cycle of every block sequence. 
When square blocks are processed (SQ low), the 
circuit knows the size of the block so that the 
BSYNC strobe i~tional during block sequences. 
Signal H8 and SQ are read in the circuit at each 
BSYNC strobe. 

4.6 Output of Results 
Refer to Figure 11. 
At the beginning of every sequence, the circuit 
computes the minimum and its address among the 
values stored in the distortion RAM. If the previous 
sequence was a block sequence, the circuit com­
putes the motion vector and the minimum distortion 
relative to the reference block entered during this 
sequence. If it was an initialization sequence, the 
results are meaningless. 
When the results are available, the MVSYNC signal 
goes low. This happens during the (M+30)th cycle 
of every sequence (M=8 or 16). What happens next 
depends on the state of the lOB bus. 
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42 74 106 138 170 

76 108 140 172 202 

60 92 124 156 188 

104 136 168 200 226 

88 120 152 184 214 

118 150 182 212 236 

102 134 166 198 224 

132 164 196 222 244 

116 148 180 210 234 

146 178 208 232 249 

130 162 194 220 242 

160 192 218 240 253 

144 176 206 230 247 

158 190 216 238 251 

142 174 204 228 245 

If OE is high, the motion vector is present on the 
lOB bus during one cycle, while MVSYNC is low. 
Then MVSYNC goes high on the next cycle, during 
which nothing happens. Then DSYNCO goes low 
while the minimum distortion msb is present on 
lOB. Then DSYNCO goes high again and DSYNC1 
goes low while the minimum distortion lsb is pres­
ent on lOB. If OE goes low while the results are 
outputted, the data not yet delivered is lost. 
If OE is low, lOB is in the high impedance state and 
MVSYNC remains low. When OE goes high again 
the data is outputted as described above. This 
feature is useful when several STI3220 circuits are 
used in parallel : the circuits can share a common 
bus and although all the results are ready at the 
same time, the system can read them sequentially. 
If OE does not go high before a new sequence 
starts, then MVSYNC returns to a high state and 
the data is lost. 
If, in a given distortion set, several distortions are 
equal to the minimum of the set, the circuit will 
output the motion vector which has the highest 
priority according to the following table. 

0 2 3 4 5 6 7 

187 155 123 91 59 31 13 3 

171 139 107 75 43 21 7 1 

203 173 141 109 77 45 23 9 

189 157 125 93 61 33 15 5 

227 201 169 137 105 73 41 19 

215 185 153 121 89 57 29 11 

237 213 183 151 119 87 55 27 

225 199 167 135 103 71 39 17 

255 223 197 165 133 101 69 37 

235 211 181 149 117 85 53 25 

250 233 209 179 147 115 83 51 

243 221 195 163 131 99 67 35 

254 241 219 193 161 129 97 65 

248 231 207 177 145 113 81 49 

252 239 217 191 159 127 95 63 

246 229 205 175 143 111 79 47 



There is no simple algorithm which can describe 
this table, it is just a consequence of the circuit 
architecture. Note, however, that the (0,0) motion 
vector has the highest priority. 
The following table gives the exact bit allocation of 

1087 1086 1085 

Motion Vector Vj3 Vj2 Vj1 

Distortion MSB D15 D14 D13 

Distortion LSB D7 D6 D5 

4.7 How to Read a Distqrtion 
When a minimum computation is not in process, 
the distortion RAM can be read by the system 
through the lOB bus. This particular mode of oper­
ation is illustrated in Figure 12. 
The address must be entered while the bus is in 
high impedance state (OE low). Then OE must go 
high in order to let the circuit write on the bus, (OE 
signal must change value while CLK is high). The 
address taken into account is the one present on 
the bus during the last rising edge of CLK when OE 
was low. One dead cycle elapses, and the distor­
tion is written out, first the msbs then the lsbs. Four 
cycles are thus necessary to read a distortion. 
The address of a distortion is the related motion 

Figure 11 :Output of Results 

STI3220 

bus lOB when results are delivered. Vj[3:0] is the 
horizontal component of the motion vector and is 
coded in 2s complement. Similarly, Vi[3:0] is the 
vertical component of the motion vector. The mini­
mum distortion is an unsigned value. 

1084 1083 1082 1081 lOBO 

VjO Vi3 Vi2 Vi1 ViO 

D12 D11 D10 D9 DB 

D4 D3 D2 D1 DO 

vector. The bit allocation is exactly the same as 
seen above in section 4.6. 
When a minimum computation is in process, the 
distorsion RAM cannot be read. 
M + 1 cycles after the beginning of every sequence, 
a new set of distorsions is stored in the RAM. These 
distortions are those related to the previous se­
quence. A minimum computation immediately fol­
lows and lasts 28 cycles as shown in Figure 13. 
Then the results are delivered and this takes an­
other 4 cycles. The RAM is then available and 
distortions of the new set can be read until another 
set is stored in RAM, M + 1 cycles after the begin­
ning of the next sequence. 
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Figure 12: Reading a Distortion 
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Figure 13: RAM Availability 
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. 4.8 How to Use the Edge Control 

sequence N 

not available 

When a search window is partially outside the 
actual frame, the number of candidate blocks is 
less than 256 and the set of valid motion vectors is 
reduced. The STI3220 can take this into account 
and compute motion vectors in the valid range. 
There are 9 different cases depending on whether 
the search window is along one of the edges or in 
one of the corners of a frame. 
To set the edge control, four pins are provided. 
They are all latched in the circuit during the first 
cycle of every block sequence and are related to 
the search window loaded during this very se­
quence. 
Each pin is related to one edge of the frame (left, 
right, top or bottom) and setting one pin high during 
the first cycle of a block sequence will mean that 
the current search window (the one being loaded 
into the circuit during this particular block se­
quence) extends beyond the edge of the frame 
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related to that pin, and that the valid set of motion 
vectors for the current search window is reduced. 
The most common case is when the search window 
is entirely included in the frame, and the four pins 
are set low. 
Pin ECO is related to the top edge of the frame, and 
setting this pin high will reduce the valid range of 
motion vectors to the ones with a positive or null 
vertical component. 
Pin EC1 is related to the right edge of the frame, 
and setting this pin high will reduce the valid range 
of motion vectors to the ones with a negative or null 
horizontal component. 
Pin EC2 is related to the bottom edge of the frame, 
and setting this pin high will reduce the valid range 
of motion vectors to the ones with a negative or null 
vertical component. 
Pin EC3 is related to the left edge of the frame, and 
setting this pin high will reduce the valid range of 
motion vectors to the ones with a positive or null 



horizontal component. 
When the search window extends beyond a corner 
of the frame, two edges have to be selected. 
Unrealistic combinations of edges are not pro­
hibited and will yield logical results. For example, 

EC3 EC2 EC1 ECO 
0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
o· 1 0 1 
0 1 1 0 
o· 1 1 1 
1 0 0 0 
1 0 0 1 
1" 0 1 0 
1" 0 1 1 
1 1 0 0 
1" 1 0 1 
1" 1 1 0 
1" 1 1 1 

ECn = 0 unless otherwise noted. 

Figure 14 

EC3=1 EC1 = 1 

EC0=1 . . . . ---:-----------------------------:---

---:-----------------------------:---
EC2=.1 . . . . 
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4.9 How to Set the Block Size : signals SQ 
and HS 
To set the block size, two pins are provided. Both 
are latched in when BSYNC is strobed low. 
To process 8 pixel high reference blocks, signal HB 
must be low during the BSYNC strobe. To process 
16 pixel high reference blocks, signal HB must be 
high during the BSYNC strobe. 

STI3220 

selecting the top and the bottom edge will reduce 
the valid set of motion vectors to the horizontal 
ones. All combinations are summarized in the fol­
lowing table. Unrealistic combinations are indi­
cated with a*. 

Valid Range of Motion Vectors 

Horizontal Component Vertical Component 

-BSj$7 -8<i<7 

-8$j$7 0Si:57 

-8$j$0 -8Si:57 

-8$j$0 0Si:57 

-8<j<7 -8Si:50 

-8$j$7 i=O 

-Bsj<O -B<i$0 

-Bsj<O i=O 

0Sj:57 -8Si:57 

OSj$7 O<i<7 

j=O -8<i<7 

j=O OSi$7 

0Sj:57 -8<i<O 

O<j<7 i=O 

j=O -8Si:50 

j=O i=O 

To process square reference blocks, signal sa 
must be low during the BSYNC strobe.To process 
rectangular reference blocks, signal sa must be 
high during the BSYNC strobe. 
The following table summarizes the four different 
block sizes: 

HB SQ Block Size 

0 0 8x8 

0 1 Bx4n 

1 0 16x 16 

1 1 16x4n 

When the circuit is set to process rectangular 
blocks, it does not know the width of the block and 
so must be told when a new block starts. This is 
why, when rectangular blocks are. processed, a 
BSYNC strobe is compulsory during the first cycle 
of every block· sequence. It may be noted, for 
reference purposes only, that in this mode the 
successive reference blocks need not have the 
same width, provided their width is a multiple of 4. 
When the circuit is set to process square blocks, 
BSYNC strobes are optional at the beginning of 
every block sequence. They are required only with 
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initialization sequences. If the circuit is used in 
pipeline mode as explained in section 4.4.2, then 
only one BSYNC strobe is needed during the 
unique initialization sequence. 

4.10 How to Reset the circuit : signal RESET 
The STI3220 must be reset before operation. This 
is done by strobing the signal RESET low during at 
least one cycle before any initialization sequence 
starts. The clock must be running. 

4.11 How to measure the circuit latency time: 
signal OSYNC 
The circuit latency time Tlat is the time elapsing 
between the input of the first pixel of a reference 
block, and the output of the motion vector relative 
to this block. 
The motion vector is ready a few cycles after the 
last pixel of the reference block is entered in the 
circuit, 38 cycles for 8x4n sized reference blocks 
and 46 cycles for 16x4n sized reference blocks. 
The latency time is thus 32n+38 cycles for 8 x 4n 
sized reference blocks and 64n+46 cycles for 
16 x 4n sized reference blocks. 
To ease system implementation when this latency 
time must be taken into account, e.g. for the initial­
ization of circuits expecting results from the 
STI3220, the OSYNC signal is provided. 
The circuit generates one OSYNC low strobe for 
every BSYNC strobe. This occurs exactly Tlat 
cycles after the related BSYNC strobe, concurren­
tly with the MVSYNC strobe indicating that the 
motion vector is ready. 

4.12 How to freeze the circuit : signal EN 
It may be useful to freeze the circuit in an asyn­
chronous way for an indeterminate period of time 
without breaking the circuit pipeline or loosing any 
data. This is possible with the STI3220 because it 
is a fully static CMOS device. 
When signal EN is _high, the circuit internal clock is 
frozen until signal EN goes low again. 
To ensure no loss of data during the transitions 
between th~ozen and the working states of the 
circuit, the EN signal must fulfill the requirements 
specified in section 6. 
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5 • BASIC STI3220 APPLICATION EXAMPLES 

5.1. - Picture borders : example with 
8*8 blocks, displacement range -8 to +7: 
When computing a block in the middle of a picture 
in pipeline mode, the left and middle parts of the 
search window (Le and Mi columns) are already 
loaded into the STI3220 and the right part (Ri 
columns) is input with the reference block. The 
position of that right area in the picture is shifted 8 
columns right from the reference block position 
(see Figure 15). 
However when the reference block is the last one 
of a row of blocks in the image, only one rowforthe 
search window is available on the right of this 
reference block. In order not to break the pipeline 
mode, the remaining 7 columns of the search win­
dow will be the 7 columns corresponding to the next 
block that will be evaluated in the pipeline i.e. the 
first block position of the next row of block (see 
Figure 16). Those 7 columns are loaded into the 
chip but will not be taken into account for the motion 
vector calculation if the Edge Control signals are 
set to EC3 ... ECO = 0010 (right hand edge). 
The first reference block of the next lir;1e is entered 
in the chip in synchronism with search window 
columns from 7 to 15 (see Figure 17). The middle 
part of the search window has already been loaded 
during the previous block and the left part of the 
search window is not taken into account for motion 
vector calculation by setting the Edge Control bits 
to EC3 ... ECO = 1000 (left hand edge). 
Of course the same principle can be applied when 
reaching the end of an image (see Figure 18): the 
search window corresponding to the first block 
position of an image is loaded during the process­
ing of the last block of an image: pipeline process­
ing is never broken. Just notice in that case that the 
first column inputted is only significant on the A and 
B bands (last column of the image) and that the 7 
following columns are only significant on B and C 
bands (first columns of the image). 
The pipeline continuity on the borders of an image 
is always respected whatever the blocks' size is. 



Figure 15 

Figure 16 

unused column 

Aband { 

B band { 

C band { 

column 0 column 6 

~ Reference Block input on X 

columj + 7 

STI3220 

~ Reference Block 

~ Corresponding Search Area Input 

~fllH Preloaded Search Area 

lastcolum 

} Aband 

} B band 

} C band 

3220-16.EPS 

~ Corresponding Search Area Input on A, Band C. Only one column used 

[J Preloaded Search Area 
3220-17.EPS 
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Figure 17 

Figure 18 
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} A band 

} 8 band 

} C band 

~ Reference Block ~ Corresponding search area input 

~ Preloaded unused part of search window 

W Preloaded useful part of search window 
3220-18.EPS 

dummy A band { 
B band { 
C band { 
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2 3 

~ Reference Block 

~ Search Area Input 

[ill Preloaded Search Area 

:·:·:·:·:·:·:···: ........ . . . . . . . . ' 
::::::::: 

} Aband 

} B band 

} dummy C band 
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5.2.- Example of system outline in 
8x 4n mode: 

use of delay lines: in synchronism with the refer­
ence block, the frame memory is accessed on the 
line of blocks under the reference one. Two delay 

Figure 19 

STI3220 

lines are necessary to provide the STI 3220 with 
the middle and upper band of the search window. 
For low rate applications it may be cheaper to 
suppress the delay lines and to access 3 consecu­
tive times into the frame memory for each pixel of 
the reference block (see Figure 20). 

Second delay line output 

Reference block First delay line output 

Frame memory output 

STI3220 
One band of block delay line 

Reference F X 
block input 

8 

c 

F = pixel frequency 

Figure 20 

Reference 
block input 

STI3220 

X 

F = pixel frequency 

5.3. - Example of system outline in 
16*16 mode: 

In this case the search window is only one half block 
high above the reference block (8-pixels high) and 
one half block high under (in fact ?-pixels high). The 
total height of the search window is only two blocks 

3xF 

Previous 
frame 
buffer 

3220-20.EPS 

Previous· 
frame 
buffer 

3220-21.EPS 

high. When inputting the 8 first pixels of a column 
of the reference block, only the 8 corresponding 
pixels of the search window on band 8 and C are 
taken into account. In the same way, when inputting 
the 8 last pixels of a column of the reference block, 
only the 8 corresponding pixels of the A and 8 
bands are taken into account. 
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Figure 21 

+ + ++ + + 

A { + + + + 8 

8 

B { 16 

c { + + ++ + + 
+ + + + 

+ + ++ + + 

7 

9 

8 first pixels of a column 8 last pixels of a column 

~ Reference Block 

[J Preloaded search area 

~ Corresponding search area input 

1++1++ L±J Irrelevant part of search window 

I 8 pixels of the reference block and their correspondmg pixels in each band of the search window A, B or C 
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Figure 22 

STI3220 
Ar£ -1 RegisterlL_~ 

Previous 
Reference ~ X sr£~ ~ frame 
block input 

cr£ RegisterV~ buffer 

F = pixel frequency 

A system architecture using a band by band scan­
ning and 3 delay lines may be implemented in this 
case (refer to 8*4n example of system outline). For 
low rate applications it is possible to access only 
twice the pixel rate on the frame memory in order 
to provide the search window : as bands A and C 
are not read at the same time by the chip, they can 
be connected together (see Figure 22). 

5.4- principle of +15/-15 research 
(16*16 blocks) : 
Computing +15/-15 displacements with the STI 
3220 chip able to compute +71-8 displacements is 
made possible by dividing the total search window 
into 4 sub search windows (see Figure 23) : 4 
corresponding motion vectors and minimum distor­
sions will be calculated and the system.must man­
age those results in order to decide what will be the 
final motion vector for all the search window. The 
four partial motion vectors can be computed in two 
ways: 
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• using 4 STI 3220 chips each one loaded at the 
same time with the same reference block and 
one specific search window per chip. The com­
putation costs 2 blocks (1 initialization sequence 
+ 1 block sequence). 

• using only one STI 3220 chip loaded 4 consecu­
tive times with the same reference block and 
each of the specific search window. As the re­
covery between the different sub search win­
dows is not a multiple of 16, the pipeline mode 
cannot be used and the computation of the 
+15/-15 displacement costs 8 blocks 16*16 (4 
initialization sequences+ 4 block sequences): 
- phase 1 :initialization sequence of sub-window 

1 (first 15 columns). Input of a ·dummy refer­
ence block. 

- phase 2 : block sequence of sub-window 1 : 
input of the 16 last columns of the sub-window 
1 and the reference block. 

- phase 3 : initialization sequence of sub-win­
dow 2. Result of the first sub-window (motion 



vector+ minimum distortion) obtained after the 
46th cycle of that phase. 

- phase 4 : block sequence of sub-window 2. 
- phase 5 : initialization sequence of sub-window 

3. Result of sub-window 2 after the 46th cycle. 
- phase 6 : block sequence of sub-window 3. 
- phase 7 : initialization sequence of sub-win-

dow 4. Result of sub-window 3 after the 46th 
cycle. 

- phase 8 : block sequence of sub-window 4. 

The result for sub-window 4 is obtained after the 
next 46 cycles, and hence will typically be available 
during the beginning of the computations for the 
next reference block. 

It is possible in this way to compute the displace­
ment for a CSIF format picture as defined by the 
cern: 352 X 288 pixels X 15 Hz= 1.52 Mpixels/s. 

Figure 23 

0 0 14 15 30 31 

7 ,-~l_·-8--1----, 
B+.!L. _:i:l.. 

45 

: ······ ~ J!l~::;.l:l'l 
+15 

31 

+15 

Sub-window 1 

0 

-15 

Sub-window 3 

STI3220 

Eight accesses to the chip for one input pixel means 
a chip working frequency equal to 12.16 MHz. 

Note: Another alternative method of computing a 
-1+ 15 motion vector is to carry out the calculations 
on a -16/+15 search window {i.e. two times -8/+7 
in both directions) and to clip the motion vector to 
-15/+15 range {i.e. if motion vector is equal to -16 
it is forced to -15). The advantage of using a 
-16/+15 search window is thatthe block sequence 
of sub-window 1 is identical to the initialization 
sequence of sub-window 2 {idem for sub-windows 
3 and 4). That means that the pipeline mode can 
be used between sub-windows 1 and 2, and sub­
windows 3 and 4. The total computation time of the 
-16/+ 15 motion vector then costs 6 blocks {2 initial­
ization sequences+ 4 block sequences) instead of 
8 blocks. 

o,_---1~4~1~5--,=29~3=0~--~45 

la 
A 

·15 B 

c 

-15 

Sub-window 2 

-15 

A 
-15 

B 

c 
Sub-window 4 

Q Reference block position In the total search window 

"""' Dummy line or column of the sub-window 

D Sub-window n 
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6. ELECTRICAL CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS 

Symbol Parameter 

Vee Supply Voltage 

ToPER Operating Temperature Range 

Voltage on any pin relative to Vss 

DC ELECTRICAL CHARACTERISTICS 

Value 

6 

0,70 

6 

Operating conditions : Vss = OV, TA = 0 to 70°C, Vee= 5V ± 5%, unless otherwise specified 

Symbol Parameter Conditions Min. Typ. Max. 

Vee Operating Voltage 4.75 5.25 

Icc Supply Current CLOAD = 50pF (all outputs) 
• FcLK = 18MHz All inputs at Vee or Vss 400 
• FcLK = OMHz 1 

Input Voltage Level Vee= 5 ± 0.25V 
V1L • Logic Low 0.8 
V1H • Logic High 2 

High Impedance Input Leakage V1N = VSS to VCC 
el/0 Buffers -5 +5 
• Input Buffers - 1 +1 

Output Voltage Level Vcc=4.75V 
VoL • Logic Low ILOAD = 500JlA 0.4 
VoH • Logic High I LOAD=- 500JlA 2.7 

Clock Input Voltage Level Vee= 5 ± 0.25V 
• Logic Low 0.6 
• Logic High 2.5 

Input Capacitance Voffsel = 2.5V, F =1M Hz 10 

AC ELECTRICAL CHARACTERISTICS 
Operating conditions: Vss = OV, TA = 0 to 70°C, Vee= 5V ± 5%, unless otherwise specified 
Output Loads : Capacitance = 50pF, Current Logic Low = 500~ 

TEST LOAD ON OUTPUTS 

Vee 

VREF 

=1.5V 

Unit 

v 
oc 

v 

Unit 

v 
mA 

v 

JlA 

v 

v 

pF 

3220-25.EPS 
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7. TIMING DIAGRAMS 

TIMING PARAMETERS 

Symbol Parameter 

tcH Clock Pulse High Width 

teL Clock Pulse Low Width 

!eLK Clock Period 

IR Clock Rise Time (see note) 

IF Clock Fall Time (see note) 

tsocL Data Setup Time from CLK I 
lHDCL Data Hold Time from CLK I 
too Output Dta Delay from CLK I 

IEN1 Enable Hold Time from CLK I 
IEN2 Enable Rising Edge Setup Time from CLK.!. 

lEN3 Enable Falling Edge Setup Time from CLK I 
I OFF Delay from OE.!. to Output going to High Impedance 

toN Delay from OE I to Output going to High Impedance 

IOE1 CLK Rising Edge to OE going Low or High 

!oE2 OE Setup Time 

Note : The clock edges should be monotic between v,L and v,H. 

TIMING WAVEFORMS 

Figure 24 : Clock Timing Waveform 

CLK I \ 

1cH 

1cLK 

\ I\.5V 
\5V 

tR 

Min. Typ. 

20 
20 
50 
0 
0 
8 

0 

0 
5 
30 

0 
8 

I 

tc~ 

3./ 
0.1 

·-

tF 

STI3220 

Max. Unit 

ns 

ns 

ns 

10 ns 

10 ns 

ns 

ns 

20 ns 

ns 

ns 

ns 

20 ns 

20 ns 

ns 

ns 
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Figure 25 : Data Timing Waveforms 

Figure 26 : Clock Enable Timing Waveform 

EN 

r---- CLK 

ALL INPUTS 

\ 

ALL 
OUTPUTS 

3220-27.EPS 

Note :The EN signal must change from LOW to HIGH ievels only during the HIGH level of the CLK Signal. 3220-28.EPS 

Figure 27 : Output Enable Timing Waveform 

CLK 

OE 

\J High Impedance State V 
OUTPUTS -----------..Jv)------;._-------<\,_ ___ _ 

3220-29.EPS 
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PACKAGE MECHANICAL DATA 
144 PINS- PLASTIC QUAD FLAT PACK 

A 

. - - -- - -·- -·- -- - -·-r-·-·-·-·-·-·- --- -·- Ci c 

Dim. 
mm 

Min Typ 
A 

A2 3.17 3.42 
B 
0 30.95 31.20 

01 27.90 28.00 
02 22.75 
e 0.65 
E 30.95 31.20 

E1 27.90 28.00 
E2 22.75 
ZO 2.63 
ZE 2.63 

1 
I 
I 

E2 

E1 

Max 
3.92 
3.67 

31.45 
28.10 

31.45 
28.10 

Min 

0.125 

1.219 
1.098 

1.219 
1.098 

PMPQF144.EPS 

inches 
Typ Max 

.160 
0.134 .144 

1.228 1.238 
1.102 1.106 
0.896 
0.026 
1.228 1.238 
1.102 1.106 
0.896 
0.104 
0.104 

·~ SGS·lHOMSON __________ 2_51_25 
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IMSA110 

IMAGE AND SIGNAL PROCESSING SUB-SYSTEM 

• 1-D/2-D SOFTWARE CONFIGURABLE CON­
VOLVER!FILTER 

• ON-CHIP PROGRAMMABLE LINE DELAYS 
(0 -1120 STAGES) 

• 8-BIT DATA AND 8.5-BIT COEFFICIENT 
SLICE 

• 21 MULTIPLY-AND-ACCUMULATE STAGES 
• 1-D (21) OR 2-D (3 x 7) CONVOLUTION WIN­

DOW 
• ON-CHIP POST PROCESSOR FOR DATA 

TRANSFORMATION 
• FULLY CASCADABLE IN WINDOW SIZE AND 

ACCURACY 
• 20 MHZ DATA THROUGHPUT (420 MOPS) 
• SIGNED/UNSIGNED DATA AND COEFFI-

CIENTS 
• MICROPROCESSOR INTERFACE 
• HIGH SPEED CMOS IMPLEMENTATION 
• TTL COMPATIBLE 
• SINGLE +5V ± 10% SUPPLY 
• POWER DISSIPATION < 2.0 WATTS 
• 100 PIN CERAMIC PGA 

APPLICATIONS 
• 1-D and 2-D digital convolution and correlation 
• Real time image processing and enhancement 
• Edge and feature detection 
• Data transformation and histogram equalisa- · 

lion 
• Computer vision and robotics 
• Template matching 
• Pulse compression 
• 1-D or 2-D interpolation 

July 1992 

PGA100 
(Ceramic Grid Array Package) 

ORDERING INFORMATION --' 
.---------,-----.,-----,-------,~ 

0 
1---------+------t---"-"--'--'--'---+-----'-'----16 
LI_M_S_A1_'1_0_-G_2_0S_L ____ ~L-----L-------~~ 

Part Number 

1/26 
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PIN CONNECTIONS 

Index 1 2 3 4 5 

A 

8 

c 

D 

E 

F 

G 

H 

K 

Note 
All Vee pins must be connected to the 5 Volt power supply. 
All GND pins must be connected to ground. 

1. INTRODUCTION 
The IMS A110 is a single-chip reconfigurable and 
cascadable subsystem suitable for many high 
speed image and signal processing applications. 
Apart from its powerful multiply-accumulate capa­
bility (420 MOPs), the strength of the IMS A110 lies 
in its extensive programmable support for data 
conditioning and transformation. 

2/26 
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. 2. DESCRIPTION 

The IMS A110 consists of a configurable array of 
multiply-accumulators, three programmable length 
1120 stage shift registers, a versatile post-process­
ing unit and a microprocessor interface for configu· 
ration and control purposes. The comprehensive 
on-chip facilities make a single device capable of 
dealing with many image processing operations. 



Figu~e 1 : IMSA110 Users Model 

Asynchronous Functions 

>----r-+---,--1 1120 stage Programmable 
shift reg1ster (PSRC) 

1120 stage Programmable 
shift reg1ster (PSRB) 

1120 stage Programmable 
shift register (PSRA) 

Backend 
look up table 

' I 256 x 8-blt data I 
transformation 
look up RAM 

Backend 

IMSA110 

CLOCK 
RESET 

CASCAOE 
OUTPUT 22 post-processing unrt 

>----r--t--------------------.J (normalization, saturation, 
,__::..::._:::..:____/ and data transformation) 

Synchronous Functions 

The IMS A 110 has five interfaces through which 
data can be transferred, Figure 1. The micropro­
cessor interface allows· access to the coefficient 
registers, the configuration and status registers, 
and the data transformation tables. The remaining 
four interfaces allow high speed data input and 
O(Jtput to the IMS A110 and the cascading of sev­
eral devices. A typical IMS A 110 system is shown 
in Figure 3. If N devices are used in the cascade, 
they can be configured, entirely under software 
control, as a 21 N stage 1-D transversal filter or as 
a 7X by 3Y 2-D window, where X and Y are any 
integers satisfying N :>: XY. For example 4 cascaded 
devices can be software configured as: an 84-
stage 1-D filter, a 7 by 12 2-D window, a 28 by 3 
2-D window, or a 14 by 6 2-D window. 
The final output of the chip is 22 bits wide in twos 
complement format 

A110-02.EPS 

Figure 2 shows the distribution of the delays inside 
the part. 
The latency between PSRin and GOUT is depend­
ent upon the length of PSRc. For example, with 
PSRc set to 0, and all coefficients set to zero except 
CROc[6] (so the data passes through all MAC 
stages), the GOUT bus will correspond to the 
PSRin bus delayed by 47 clock cycles. 
The latency between PSRin and PSRout is 5 cycles 
PLUS the lengths of PSRc, PSRb and PSRa. If the 
shift registers are bypassed by setting SCR[1] to 1 
then PSRout will be PSRin delayed by 2 clock 
cycles. 
The Latency between the cascade input (GIN) and 
cascade output (GOUT) is 6 cycles. This is shown 
lumped at the cascade in-put and cascade output 
pads in Figure 2. Figure 4 gives details of the data 
pipelining through the backend datapath. 
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Figure 2: Synchronous Functions of the IMSA110 

PSRIN 

8 

PSROUT 
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Programmable PSRC 
shift register 

0 to 1120 stages 

8 

Programmable PSRB 
shift register 

0 to 1120 stages 

B 

Programmable PSRA 
shift register 

0 to 1120 stages 

8 

CR1 c coefficient registers 7 x 8 bits 

CR1 a coefficient registers 7 x B bits 

~--------- D f-------/--__....,.1------
13 

1 
2 

CIN 

cascade input 

Backend processing unit 

including cascade data path, 
normalization, saturation units and 
data transformation look up tables 

(see Figure 4 for detail) 

22 

COUT 

cascade output 
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Figure 3 : A TypicaiiMSA 11 0 Based System 
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IMSA110 IMSA110 IMSA110 
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Clock t 
3. PROGRAMMABLE SHIFT REGISTERS 
The three shift registers are 8 bits wide and are 
each programmable from 0 up to 1120 clock cycles 
in length. The lengths are programmed into control 
registers via the microprocessor interface. 
Data is clocked into the device via the PSRin bus 
(Programmable Shift Register in) at a maximum 
rate of 20 MHz. On-chip, the input data is then fed 
through a pipeline of the three shift registers. The 
output of the first shift register passes to the first 
7-stage mac array and also to the input of the 
second shift register. Having passed through all 
three shift registers the data is output on the 
PSRout bus and can be used for cascading. Alter­
natively, as shown in Figure 2 the shift registers can 
be bypassed and the input data transferred to the 
PSRout bus after two delay stages. This mode can 
be controlled via the on-chip control registers and 
significantly simplifies software configuration of a 
cascade arrangement 

4.MACARRAY 

t 

As shown in Figure 2, the processing core of the 
device consists of a configurable array of multiply­
accumulators (macs). The mac array consists of 
three 7-stage transversal filters which can be con­
figured eithe~_as a 21-stage linear pipeline or as a· 
3 x7 two-dimensional window. The input data is 8 
bits wide and is fed to the mac array via three 
programmable shift registers. 
The output of each shift register is supplied as input 
to one of the three 7-stage transversal filters. For 
each of the three transversal filters the associated 
input data is fed simultaneously to all7 mac stages. 
At each stage the input sample is multiplied by a 
coefficient stored in memory, and added to the 

Cascade Cascade Cascade 
OUT __. IN OUT ___.Output 
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output of the previous stage delayed by one clock 
cycle. The output of each 7-stage mac is fed, via a 
delay stage, to the first stage in the next transversal 
filter. 
The coefficient word width in the mac array is 8 bits 
wide. Two banks of coefficients are provided. At any 
instant one set of coefficients is in use within the 
mac array. The set in use is defined by the state of 
the 'Current Bank' bit, ACR[O]. The other set can 
be altered via the microprocessor interface. Once 
a new set of coefficients has been loaded, the 
activities of the two coefficient banks can be inter­
changed without interrupting the flow of data. Alter­
natively, by setting the 'continous bank swap' bit 
SCR[O], the two coefficient banks are swapped 
automatically after each data input. In this case the 
'Current Bank' bit only determines which bank is 
used first Both data input and coefficients can be 
programmed independently to support twos com­
plement or positive unsigned formats allowing 
multiple devices to be used as a 'slice' in higher 
accuracy systems. 
Within the mac array no truncation or rounding is 
performed on the partial products. The mac array 
output is fed to the backend post-processing unit 
which is responsible for data transformation I nor­
malisation and cascading function. 

5. BACKEND POST-PROCESSOR -hardware 
description 
The Backend Post-Processor consists of four 
major blocks : The input block (shifter, cascade 
adder and rectifier unit),a statistics monitor, the data 
conditioning unit which itself consists of the data 
transformation unit and the data normaliser, and 
the output block (output adder and multiplexers). 

5/26 
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A detailed diagram of the Backend Post-Processor 
is given in Figure 4. 
All operations performed in the backend are on 
twos complement signed numbers unless other­
wise stated. 

5.1 Shifter, Cascade Adder and Rectifier 

Data from the mac array enters the datapath via a 
programmable shifter. The shifter is capable of 
arithmetic right shifts (divides) of up to 8 bits with 
rounding, and left shifts of up to 8 bits. The size of 
this shift is controlled by the status bits BCR0[5-1]. 
The o'utput of the shifter passes into the cascade 
adder where it is added, along with any rounding 
generated by the shifter, to either the cascade input 
bus (BCRO[O] = 0), or a zero value (BCR[O] = 1 ). 
If the result of this 22-bit signed addition is greater 
than 221 - 1, (209715110) then the adder will 
generate a positive overflow. Likewise, if it is less 
than -22 \ (-20971521o) a negative overflow will 
be generated. In other words, a positive overflow 
is generated if the result of adding two positive 
numbers (both MSBs = 0) is negative (resulting 
MSB = 1). Conversely, a negative overflow is 
generated if the result of adding two negative num­
bers (both MSBs = 1) is positive (MSB = 0). Adding 
two numbers of different signs cannot cause the 
adder to overflow. 
The output of the cascade adder can optionally be 
full-wave or half wave rectified under the control of 
BCR0[7,6]. The output of the rectifier passes onto 
the X bus. Overflows on the X bus are signalled to 
both the statistics monitor and the data conditioner. 

5.2 Statistics Monitor 
The statistics monitor allows the user to set up 
watch dogs on the dynamics of the data on the X 
bus. It cannot affect the data on the X bus. The 
statistics gathered provide information on the sys­
tem behaviour which can be used to ensure correct 
data scaling and normalisation. The information is 
also useful in the control of the overall system's 
analogue frontend. 

Hardware/Functions 

The statistics monitor consists of a 24 bit Min/Max 
register (MMR), a 24 bit Min/Max Buffer (MMB), a 
22 bit Over/UnderShoot Counter (OUC), a 22 bit 
Over/UnderShoot Buffer (OUB) and a 22 bit twos 
complement comparator. 
It can perform one of four functions : 

• MAX REGISTER : Capture the maximum value 
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of data and store it in the MMR. 
• MIN REGISTER : Capture the minimum value of 

data and store it in the MMR. 
• OVERSHOOT COUNTER : Increment the OUC 

each time the data value exceeds the preset 
value in the MMR. 

• UNDERSHOOT COUNTER: Increment the OUC 
each time the data value is less than the preset 
value in the MMR. 

The mode of operation is determined by the 
Max/Min switch BCR1 [0], and the Static Threshold 
switch BCR1[1]. 

Operation 

Each sample on the X bus is compared against the 
threshold stored in the MMR. 
If the unit is configured as an overshoot counter 
and the data on the X bus exceeds the threshold 
in the MMR, then the counter (OUC) is in­
cremented. If the data is less than or equal to the 
threshold, then no action will occur. The OUC is 
unsigned and will not wrap around. Thus it behaves 
as a saturating counter with a maximum value of 
222 - 1, (3FFFFF1s, 419430310). lfthere is a positive 
overflow on the X bus, then the counter will incre­
ment since the correct X bus value must exceed 
the threshold. Similarly a negative overflow on the 
X bus will not increment the counter since the 
correct X bus value cannot exceed the preset 
threshold. 
If the unit is configured as an undershoot counter 
then the counter will be incremented whenever the 
sample is less than the preset threshold. In this 
case a negative overflow will cause the counter to 
increment. 
If the unit is configured as a max register a11d the 
X bus exceeds the current threshold in the MMR, 
then the value on the Xbus is loaded into the MMR 
and becomes the new threshold and the counter is 
incremented. If the threshold is not exceeded then 
no action occurs. Thus the value in the MMR is the 
maximum value that has appeared on the X bus, 
and the value in the OUC has been incremented 
by the number of times that the threshold has been 
updated. · 
If the unit is configured as a min register then the 
threshold is updated and the counter incremented 
whenever the X bus is less than the current thre­
shold. 
When operating as a min/max register, overflows 
on the X bus can never cause the threshold to be 
updated as this would load an erroneous value into 
the MMR. 
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Figure 4 : Detailed Block Diagram of the Backend Post-processing Unit 
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Overflow~ 

Bit 22 of the MMR records the history of positive 
overflows on the X bus. Similarly bit 23 records the 
history of negative overflows. These bits in the 
MMR are set to zero by writing to the MMR copy 
location and are active independently of whether 
the Static Threshold bit is set. When the MMR is 
read, then bits 22 and 23 are interpreted as follows: 

bit23 bit22 condition 

0 0 No overflow has occured 

0 1 One or more positive overflows 
have occured 

1 0 One or more negative overflows 
have occured 

1 1 Both postive and negative 
overflows have occured 

Detailed block diagram of the Backend Post-pro­
cessing Unit 

Access to registers 
The MMR and OUC are accessed, through the 
memory interface, only via their associated buffers 
(MMB and OUB respectively) and are not ac­
cessible directly. In order to load the MMR with a 
value, the host must first write the value to the MMB 
and then transfer the data from the MMB to the 
MMR by performing a WRITE to the copy MMR 
location, OB416- To read the MMR the host must 
first perform a READ cycle from location 08416 
(which transfers the contents of the MMR into the 
MMB) and then read the MMB. The OUB is ac­
cessed in the same way except that the dummy 
writes and reads are done to and from location 
OBC16-
Copies from MMR to MMB and OUC to OUB 
(reads) can be performed at any time giving a 
snapshot of the contents of the MMR and OUC 
respectively. Copies from MMB to MMR and OUB 
to OUC (writes) can also be performed at any time 
allowing the threshold and counter to be updated 
dynamically; 

5.3 Data transformation unit 
The data transformation unit consists of a presca­
lar, an under/over select detector, a look up table 
and a byte selector. It can be used in isolation to 
perform abitrary data mappings, or in conjunction 
with the data normaliser to implement sophisti­
cated dynamic range compression functions. 

Prescalar 
This allows an 8-bit field anywhere within the 22-bit 

8/26 

132 

X bus to be selected as the address to the LUT. 
This is performed by right shifting the X bus so that 
the required 8 bits are at the least significant end. 
The amount of right shift is programmed in BCR2[4-
0] and can have a value from 0 to 16. 

Over/under select detector 
With PosLUTAddr (SCR[6]) set to zero, this unit 
monitors whether the amount of right shift per­
formed by the prescalar is sufficient to include all 
significant bits in, and maintain the sign of, the 
selected 8 bit field (i.e. an over or under select is 
generated if the most significant bit of the selected 
8 bit field differs from any subsequent bit right up 
to and including the most significant bit of the right 
shifted X bus). This will be an overselect if the X 
bus is positive (Bit 21 = 0), and an underselect if 
the X bus is negative (Bit 21 = 1). In other words 
the LUT address is always deemed to be signed 
with an address range of -128 to 127. 
If however the control bit PosLUTAddr (SCR[6]) is 
set to one, the unit monitors whether the amount of 
right shift performed by the prescaler is sufficient to 
include all significant bits in the selected 8 bit field 
AND that all unselected bits are zero (i.e. an over 
or under select is generated if the first selected bit 
(bit 9) is not zero OR differs from any subsequent 
bit right up to and including the most significant bit 
of the right shifted X bus). This will be an overse­
lect if the Xbus is positive and an underselect 
WHENEVER the Xbus is negative. Thus, in this 
mode, the address range of the LUT is 0 to 255. 
Prescalar under/over selects and X bus posi­
tive/negative overflows are passed to the LUT 
along with the selected 8 bit address field. 

Look up table (LUT) and byte select 
The LUT consists of 64 words, 32 bits wide plus 
two special 32 bit locations called the upper and 
lower saturation registers (USR and LSR respec­
tively). Thus the LUT is actually 66 words by 32 bits. 
The 32 bit output of the LUT is called the Y bus. 
The most significant 6 bits of the 8 bit address field 
are used to address one of 64 words in the LUT. 
The least significant pair of bits in the 8 bit field are 
used to control a byte select on the output. Thus in 
addition to operating as a 64+2 word look up table 
of 32 bit words, it can be used as an 8 bit, 256+2 
byte LUT providing 8bit- 8bit transformations. 
Positive overflows on the X bus, and over selects 
in the prescalar cause the LUT to access the USR 
overriding the address given by the prescalar. Like­
wise negative overflows and under selects cause 



the LUT to access the LSR. Any sort of overflow on 
the X bus or prescalar will cause the byte select 
control to be overridden and the most significant 
byte (byte 3) of the appropriate Saturation Register 
will appear on the byte wide output of the data 
transformation unit. 
If there are simultaneous overflows on the X bus 
and in the prescalar then the overflow from the X 
bus takes priority. 
The USR and LSR can thus be used to model the 
saturating behaviour of analogue circuits instead of 
the usual 'wrap around' encountered in digital sys­
tems. Alternatively the USR and LSR could signal 
error conditions within the backend directly on the 
output pins via one of the output multiplexers. 
The LUT is loaded via the memory interface. The 
addressing for the LUT corresponds to the 8 bit 
field, assuming that the byte selector is being used. 
In order to access the look up table, USR and LSR 
from the microprocessor interface, the LUT Ac­
cess control bit ACR[1] must be set to zero. This 
will force the Y bus to zero and the normaliser to 
be controlled by BCR3[7-3] regardless of the set­
ting of the dynamic normalisation bit, BCR3[2]. The 
LUT, USR and LSR can then be loaded with any 
arbitrary value via the microprocessor interface. 
Setting the LUT access control bit to one will then 
allow the LUT to be used in the data transformation 
unit. 

5.4 Data normaliser 

This unit consists of a shifter capable of right shifts 
of up to 14 bits and left shifts up to 2 bits, followed 
by a zero data unit and an adder. The shifter is 
controllable from one of two 5 bit sources : control 
bits BCR3[7-3] or bits 26 to 22 of theY bus. The 
control bit Enable Dynamic Normalisation 
(BCR3[2]) determines which source is in control of 
the normaliser. If this bit is set to zero the normaliser 
is controlled by BCR3[7-3]. The five bit field is a 
twos complement number between 14 and -2. This 
indicates the amount of right shift (negative 
meaning left shift). Any value outside this range 
causes the output ofthe shifter to be forced to zero. 
The output of the shifter, with any rounding gener­
ated by the shifter, goes into the output adder. 

5.5 Output adder 

This is a 22 bit adder with one of its inputs coming 
from the data normaliser. The other input is either 
bits 21 to 0 of the Y bus from the data transforma­
tion unit, or set to zero under the control of BCR3[1]. 
Note that any overflow occuring due to left shifting 
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in the normaliser or the subsequent addition in the 
output adder is not detected by the IMS A110. 

5.6 Output 'multiplexers 

These two multiplexers allow the currently selected 
byte from the LUT to be optionally selected to drive 
either the most significant byte and/or the least 
significant byte of the Cascade Output pins. This is 
controlled by the state of BCR2[5] and BCR2[6]. 
Enabling either of these multiplexers overrides the 
state of the Cascade Output pins only on the rela­
vent 8 pins. The remaining pins will continue to 
represent the output of the output adder. 

6. BACKEND POST-PROCESSOR - Modes of 
Operation 

The backend post-processing unit is capable of 
performing many functions including data scaling, 
transformation, dynamic range compression and 
histogram equalisation. 

6.1 Default mode (after Reset) 

At power up or after reset the state of the backend 
post-processor is such that data from the MAC 
array and the cascade input are added and pass 
straight through the datapath unaffected. 
The default mode for the statistics monitor is min 
register although the values in the OUB, OUC, 
MMR and MMB will be undefined. Likewise the 
contents of the LUT, USR and LSR will be un­
defined, the LUT Access control bit will be zero 
forcing the Y bus to zero and allowing the micro­
processor interface to access the LUT, USR and 
LSR. 
Note that the cascade output pins and the PSR 
output pins are tristated. 

6.2 Cascade adder I MAC data scalar 

These units allow the cascading of IMS A110s 
where the output of the MAC array may be scaled 
before it is added to the cascade input data. The 
shifter can also be used for combining devices to 
obtain extended precision in input data, coefficient 
word length or both. 
The ability to zero the cascade input provides a 
simple means of controlling the number of 'active' 
devices cascaded as well as a means of debugging 
large systems. 

6.3 Rectification 
Rectification, the removal of negative results, is 
needed in several image processing functions. 
For example, edge detection using a Sobel oper-
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ator usually requires full wave rectification due to 
the different signs obtained at differing edge tran­
sitions. Edge detection using a Laplacian operator 
produces a change of sign at an edge. In this case, 
removing negative numbers using half wave recti­
fication can produce better results as full wave 
rectification can lead to some blurring of the edge 
transition. 

6.4 Static scaling 

This can be performed using one of two units: the 
MAC array output shifter (as above), and the data 
normaliser. In the second case the data undergoes 
a simple scaling operation (with rounding) within 
the normaliser. The normaliser can be used to scale 
(multiply) the data by the factors 0, 1/16384, 
1/8192, 1/4096 ... , 1/2, 1, 2, 4. By controlling the 
normaliser from the control bits BCR3[7-3], this 
provides a means for simple scaling of the data 
before it is output. Setting BCR3[1] and BCR2[6, 7] 
to zero ensures that the data transformation unit 
takes no part in the operation and the output of the 
normaliser is passed unchanged to the output pins. 

6.5 Dynamic scaling 

In this mode the scaling is controlled by the data 
itself. i.e. the scalar is controlled from the LUT 
(Ybus bits 26-22) by setting BCR3[2] to one, the 
Ybus input to the output adder being set to zero 
either by setting BCR3[1] to zero or programming 
the LUT accordingly. This mode can provide a 
discontinuous non-linear transformation. 

6.6 Simple transformation 

This mode allows the user to apply arbitrary trans­
formations to the data before it is output. Here the 
LUT is treated as 256 by 8, addressed as either 
-128 to 127 if PosLUTAddr is set to zero or 0 to 255 
if PosLUTAddr is set to one. The 8 bit field selected 
by the LUT prescalar is used to address a byte in 
the LUT which is passed directly to the output pins 
via one of the output multiplexers. Ybus control of 
the data normaliser is disabled, BCR3[7-3] are set 
out of range so as to zero the normaliser output and 
the Ybus input to the output adder is set to zero by 
BCR3[1]. One (or both) of the output multiplexers 
are enabled and so the addressed byte from the 
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LUT passes straight to the cascade output pads. 
Only the most significant byte of the USR and LSR 
are applicable in this mode as overflows override 
the byte select control and force it to select the most 
significant byte. 

6.7 Dynamic normalisation 

In this mode the normaliser and transformation 
units in the output conditioner are used together to 
perform sophisticated non-linear dynamic range 
compression and transformations. As in the simple 
transformation case the prescalar selects an 8 bit 
field anywhere within the X bus. The most signifi­
cant 6 bits, and overflows, are fed as an address 
to the LUT. In this case the look up table is treated 
as 64+2 by 32. Bits 26 to 22 of the Y bus are used 
to control the normaliser block so that the input to 
the normaliser is dynamically scaled. The output of 
the normaliser is then added in the output adder to 
the least significant 22 bits of the Y bus (Note that 
only 28 bits of the 32 bit Y bus are actually used). 

Thus the data is scaled, rounded, and then an 
offset is added to the scaled result. Each operation 
can be viewed as 

output = input x scale + offset 

Where scale and offset are both programmable 
functions of input. One way to view this operation 
is to consider that the original data range is divided 
into 64 equal sized levels and in each level a 
different scale and offset is applied. The scale and 
offset stored in the USR and LSR would be chosen 
to give the desired behaviour under overflow con­
ditions. 
Note that in the case of cascade adder overflows, 
the data on the X bus is invalid, so the scale here 
would usually be set out of range so as to zero the 
normaliser output. The offsets in the USR and LSR 
would then provide the cascade output directly. 

Note also that if the 5 bit scale field in the LUT is 
programmed so that the normaliser always zeros 
the data, then the output will correspond to the 22 
bit offset field in the LUT. This can be viewed as a 
coarse transformation with wide dynamic range 
which is useful for applications such as image 
contour emphasis and equalisation. 
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Figure 5 : Bit Format of Data Stored in LUT, USR and LSR 
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?.GLOSSARY 
This section defines the meaning of terms used 
elsewhere in this data sheet. 

Arithmetic Shift 
For a right shift, the most significant bit is always 
copied into the most significant end of the result. 
For example shifting right by 2: 

01000101 
11000101 

00010001 
11110001 

For a left shift, the least significant bit will become 
zero. 
Note that left shifting can cause overflows and 
these are not detected in the MAC output scalar or 
the data normaliser. 

Rounding 

All rounding done within the IMS A 110 is equivalent 
to truncating after adding 1/2 LSB. (Rounding is 
always applied in the positive direction). For 
example for 8 bit twos complement numbers under­
going a two bit right shift: 

00000011 -7 00000000 + 
0000001 0 -7 00000000 + 
11111110-7 11111111 + 
00000001 -7 00000000 
11111101 -7 11111111 

= 00000001 (rounded up) 
= 00000001 (rounded up) 
= oooooooo (rounded up) 

(no rounding) 
(no rounding) 

Left shifts do not generate rounding. 

Transversal Filter 

A transversal filter is a calculation consisting of the 
sum of products of successive points of input data. 
For input data x;, Xi+1, ••. ,and a set of coefficients, 
c5,cs, ... ,the result, Y is: 

Y=L,c~ x XS-1 

1=0 

Two's Complement 
Two's complement numbers allow both positive 

8 7 0 

BYTE 1 BYTEO 

I I I I I I I I I I I I I I 
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and negative numbers. For example in 8 bit num­
bers the most positive number is 127, the most 
negative is -128: 

two's complement 
10000000 
10000001 
11111111 
00000000 
00000001 
01111111 

Rectification 

decimal 
-128 
-127 

-1. 
0 
1 

127 

Rectification is a method of removing negative 
numbers. There are two methods: Full wave and 
Half wave. In either case all positive numbers and 
zero are unaffected. In Full wave rectification, any 
negative numbers are negated (i.e. multiplied by 1) 
so that they become positive. In Half wave rectifi­
cation, all negative numbers are replaced by zero. 

Dynamic Range Compression 

When Dynamic is used in this context, it is to 
indicate a change of behaviour for each data point. 
For example, a dynamic shift is one where the size 
of the shift may change on each successive clock 
cycle. Dynamic range compression is range com­
pression making use of an offset and shift, which 
can change depending on each data point. This 
allows the essential non-linear transformations re­
quired in image processing to be implemented on 
the IMS A110. 

Bit Fields 

Bits, words and addresses in this data sheet are 
little-endian; The lowest order byte of a multiple 
byte word is referred to as byte 0, and is addressed 
in the same way. Similarly, the least significant bit 
of any bit field is that with the lowest bit number. 
For example, 'bits 26-22' refers to a 5 bit field where 
bit 22 is treated as the least significant, and bit 26 
as the most significant. 
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Latency 

Within the IMS A110 the latency is the number of 
clock cycles from an input to its corresponding 
output. For instance, with the programmable shift 

FigureS 

CLK 

PSRIN !----' 

PSROUT t 
PSRIN latched 

PIN DESIGNATIONS 

System services 

Pin In/out Function 

Vee, GND Power supply and return 

CLK in Input clock 

RESET in System reset 

Synchronous input/output 

Pin In/out Function 

PSRin[7-0] in Programmable shift register 
input · 

PSRout[7-0] out Programmable shift register 
output 

Cin[21·0] in Cascade input port 

Cout[21-0] out Cascade output port 

Asynchronous input/output 

Pin In/out Function· 

E1,E2 in Memory interface enable 
signals · 

w in Memory interface write 
enable 

ADR[B-0] in Memory interface adress bus 

0[7-0] in/out Memory interface data bus 

Notes 
Signal names are showri with an overbar if they are active 
low, otherwise they are active high. · 
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registers bypassed by setting SCR[1] to 1, the 
latency from PSRin to PSRout will be 2 as shown 
in Figure 6. 

2 3 

A110·07.EPS 

8.1 System services 

System services include all the necessary logic to 
start up and maintain the IMS A110. 

Power 
Power is supplied to the device via the Vee and 
GND pins. Several of each are provided to mini­
mise inductance within the package. All supply pins 
must be connected. The supply must be decoupled 
close to the chip by at least one 1 OOnF low induct­
ance (e.g. ceramic) capacitor between Vee and 
GND. 

eLK 
The clock signal eLK controls the timing of input 
and the output on the four dedicated interfaces, and 
controls the progress of data through the shift 
registers, multiply-accumulate array and post-pro­
cessing unit. The A110 is fully static so the clock 
can be slowed down or stopped in either state 
without corrupting data. 

RESET 
If this pin is taken low for at least 2 clock cycles, the 
control logic within the IMS A110 will be reset and 
all of the control and configuration registers will be 
initialised to their default values. All other register, 
memory locations, datapath registers and shift reg­
isters will not be reset by this signal. 
A reset is initiated automatically when power is first 
applied to the device. This reset will be completed 
once four cycles of eLK have occured after vee 
is valid. 



8.2 Synchronous services 

PSRin[7·0] 

This 8-bit wide bus supplies input data to the de­
vice. The input data enters the first of the three shift 
registers in the chain; The timing of this input is 
controlled by the CLK signal. The data on the 
PSRin port is sampled on the rising edge of the 
clock. In a cascade arrangement, this bus will be 
connected to the PSRout port of the previous 
device. In such an arrangement the PSRin port on 
the first device will be the input to the overall 
cascaded system. 

PSRout[7·0] 

This bus outputs the data from the last programm­
able shift register in the chain. The data on this bus 
is synchronously clocked by the rising edge of CLK. 
In a cascade arrangement this port will be con­
nected to the PSRin port of the next device. At 
power up, or after a reset, the PSRout pins are 
tristated. They are enabled by SCR[5]. 

Cin[21-0] 

The Cascade Input port allows IMS A110s to be 
cascaded. It also can be used for combining an 
external signal (e.g. a reference image or an offset) 
with the processed result. In a cascade arrange­
ment, this bus will be connected to the Cascade 
Output of the previous device. The data on the Cin 
bus is sampled on the rising edge of CLK. 

Cout[21·0] 

This bus outputs the processed result from the I MS 
A110 and can also be used for cascading. The 
22-bit result is synchronously clocked by the rising 
edge of CLK. In a typical cascaded system this bus 
will be connected to the Cascade Input port of the 
next device. On the last device in the cascade, this 
bus will be the output of the overall system. At 
power up, or after a reset, the Cout pins are 
tristated. They are enabled by SCR[4]. 

IMSA110 

8.3 Asynchronous input/output 

E1,E2 
If both of these signals are low, then the micropro­
cessor interface is enabled. The operation of these 
enable signals is very similar to those found on 
static RAMs. When either of these signals are high 
the Write Enable and the address inputs are ig­
nored and the microprocessor interface Data sig­
nals are high impedance. When both Enable sig­
nals are low a read or write access is made to 
registers or the RAMs within the IMS A 110. Access 
to the microprocessor interface can occur asyn­
chronously to the synchronous pins (PSRin, 
PSRout, Cin, Cout) of the device. 

w 
Write Enable indicates whether the access to the 
IMS A110 memory interface is to be a read or a 
write. If W is low a write access is indicated. 

ADR[8-0] 

The nine bit binary value applied to the address 
inputs of the IMS A110 indicates which register or 
RAM location within the device is to be accessed. 

0[7-0] 
During a write to the microprocessor interface an 
8-bit word is applied to the Data pins which is 
written to the appropriate location. During a read 
cycle the contents of the location accessed are 
placed on the Data pins. When either of the En­
ables are high the Data pins are high impedance. 

9 REGISTER DESCRIPTION 

Memory map 
Within the IMS A110 addresses are fully decoded. 
Reading from locations not defined in the memory 
map will produce zero data. Data written to such 
locations is ignored. This allows the part to be fully 
programmed using a ROM with an address in­
cremeter. In this case, for future compatibility, zero 
should be written to all undefined locations. 
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Register Address decimal Address hex Function 

CROa 0-6 ooo-oo6 Coefficient Registers Bank Oa 

CROb 16-22 010-016 Coefficient Registers Bank Ob 

CROc 32-38 020-026 Coefficient Registers Bank Oc 

CR1a 64-70 040-Q46 Coefficient Registers Bank 1 a 

CR1b 80-86 050-056 Coefficient Registers Bank 1 b 

CR1c 96-102 060-066 Coefficient Registers Bank 1 c 

PCRA 128-129 080-081 PSRA Control Register 

PCRB 130-131 082-083 PSRB Control Register 

PCRC 132-133 084-085 PSRC Control Register 

SCR 144 090 Static Control Register 

ACR 146 092 Active Control Register 

BCR 160-163 OAO-OA3 Backend Configuration Register 

MMB 176-178 OBO-OB2 Maximum/Minimum Buffer 

CMM 180 OB4 CopyMMR 

OUB 184-186 OBB-QBA OvershooVUndershoot Buller 

cou 188 OBC CopyOUC 

TCR 208 ODO Test Control Register 

USR 248-251 OF8-0FB Upper Saturation Register 

LSR 252-255 OFC-QFF Lower Saturation Register 

LUT 256-511 100-1FF Look up Table 

9.2 Registers 

CROa Coefficient registers bank Oa 
These seven 8-bit locations contain coefficients 
which can be used by the third, of the three, 7-stage 
mac arrays. CROa(O) (address #000) corresponds 
to the coefficient register of this mac array nearest 
to its output. Similarly CROa(6) (address #006) 
corresponds to the coefficient register of this mac 
nearest to its input. These Coefficient registers can 
be written to provided that the other register bank 
is in use. Whether the coefficient written is signed 
or unsigned is determined by the 'Unsigned Coef­
ficient' bit SCR[3]. Once a value is written to a 
coefficient register, its value can be read back from 

an internal duplicate register. These registers will 
be used by the mac array, when ACR[O], 'Current 
Bank' is set to zero. Writing to these Coefficient 
Registers while in use will result in an undefined 
operation of the mac array. 

CROb Coefficient registers bank Ob 
These seven 8-bit locations contain coefficients 
which can be used by the second, of the three, 
7-stage mac arrays in the chain. CROb(O) (address 
#01 0) corresponds to the coefficient register of this 
mac array nearest to its output. Similarly CROb(6) 
(address #016) corresponds to to the coefficient 
register of this mac nearest to its input. Their beha- ' 
viour is otherwise identical to CROa. 
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Figure 7 : IMSA 11 0 Memory Map 
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CROc Coefficient registers bank Oc 
These seven 8-bit locations contain coefficients 
which can be used by the first, of the three, ?-stage 
mac arrays in the chain. CROc(O) (address #020) 
corresponds to the coefficient register of this mac 
array nearest to its output. Similarly CROc(6) (ad­
dress #026) corresponds to to the coefficient reg­
ister of this mac nearest to its input. Their behaviour 
is otherwise identical to CROa. 

CR1a Coefficient registers bank 1a 
These seven 8-bit locations contain coefficients 
which can be used by the third, of the three, ?-stage 
mac arrays in the chain. CR1a(O) (address #040) 
corresponds to the coefficient register of this mac 
array nearest to its output. Similarly CR1 a(6) (ad­
dress #046) corresponds to to the coefficient reg­
ister of this mac nearest to its input. These registers 
will be used provided that ACR[O], 'Current Bank' 
is set to one, or continuous bank swap mode is in 
operation (SCR[O] set to one). 

CR1 b Coefficient registers bank 1 b 
These seven 8-bit locations contain coefficients 
which can be used by the second, of the three, 
?-stage mac arrays in the chain. CR1 b(O) (address 
#050) corresponds to the coefficient register of this 
mac array nearest to its output. Similarly CR1b(6) 
(address #056) corresponds to to the coefficient 
register of this mac nearest to its input. Their beha­
viour is otherwise identical to CR1 a. 

CR1 c Coefficient registers bank 1 c 
These seven 8-bit locations contain coefficients 
which can be used by the second, of the three, 
?-stage mac arrays in the chain. CR1 c(O) (address 
#060) corresponds to the coefficient register of this 
mac array nearest to its output. Similarly CR1 c(6) 
(address #066) corresponds to to the coefficient 
register of this mac nearest to its input. Their beha­
viour is otherwise identical to CR1 a. 

PCRA PSRA Control register 
This is a 16-bit register, with least significant byte 
at location #080, and is used to set up the length 
of the last shift register in the chain. Programmed 
lengths outside the range 0 to 1120 will cause 
undefined behaviour of the shift register. 
PCRB PSRB Control register 

This is a 16-bit register, with least significant byte 
at location #082, and is used to set up the length 

of the second shift register in the chain. Pro­
grammed lengths outside the range 0 to 1120 will 
cause undefined behaviour of the shift register. 

PCRC PSRC Control register 
This is a 16-bit register, with least significant byte 
at location #084, and is used to set up the length 
of the first shift register in the chain. Programmed 
lengths outside the range 0 to 1120 will cause 
undefined behaviour of the shift register. 

SCR Static control register 
The Static Control Register contains the control bits 
which set up parts of the IMS A 110 which are likely 
to not need reconfiguration during processing. The 
contents of this register are not affected by the IMS 
A 11 0 and can be read at any time. Modifying the 
Static Control register during processing will result 
in undefined behaviour. Normal operation will start 
to occur between 0 and 3 clock cycles after the 
completion of the write cycle. 

ACR Active control register 
The Active Control Register contains status and 
control bits which are likely to be accessed during 
normal operation of the IMS A110. 

BCR Backend configuration register 
The Backend Configuration Registers consist of 
four byte-wide registers BCRO, BCR1, BCR2, and 
BCR3 which are located at addresses #OAO, #OA 1, 
#OA2, and #OA3 respectively. These four registers 
are used to control the backend post-processing 
unit. None of the control bits in these registers can 
be modified by the IMS A110. Modification of the 
values in these registers during processing may 
result in undefined behaviour. Normal operation will 
start to occur between 0 and 3 clock cycles after 
the completion of the write cycle. 

MMB Maximum/minimum buffer 
These three locations hold a 24-bit wide word, with 
the least significant byte at the lowest address, and 
act as a buffer between the MMR and the micro­
processor interface. All the transactions between 
the MMR and the host processor must take place 
through this register. When the MMR is not in use, 
the value of this buffer is undefined. 

CMM CopyMMR 
This location is used to' enable the data transfer 



between the MMB and MMR. A write to this location 
causes the contents of MMB to be copied into the 
MMR and bits 23 and 22 of the MMR (the cascade 
adder overflow flags) to be set to zero. A read from 
this location causes the reverse, i.e the contents of 
the MMR are copied into the MMB. The value 
written to this location is ignored, the value read 
back is undefined. 

OUB Overshoot/undershoot buffer 

These three memory locations hold a 22-bit word, 
with the least significant byte at the lowest address, 
and act as a buffer between the OUC and the 
microprocessor interface. All the transactions be­
tween the OUC and the host processor must take 
place through this register. When the OUC is not in 
use, the value of this buffer is undefined. 

COU CopyOUC 

This location in the memory is used to enable the 
data transfer between the OUB and OUC. A write 
to this location causes the contents of OUB to be 
copied into the OUC. A read from this location 
causes the reverse, i.e the contents of the OUC are 
copied into the OUB. The value written to this 
location is ignored, the value read back will be 
undefined. 

TCR Test control register 

This register is used for testing, and should be 
loaded with zero for normal operation. 

USR Upper saturation register 

This is a 32-bit value with the least significant byte 
at the lowest address. Its contents are used to 
replace the LUT output if positive overflow(s) occur 
in the look up prescaler and I or in the cascade 
adder. Accesses from the microprocessor interface 
can only be made while ACR[1] is set to zero. 

LSR Lower saturation register 

This is a 32-bit value with the least significant byte 
at the lowest address. Its contents are used to 
replace the LUT output if negative overflow(s) 
occur in the look up prescaler and I or in the 
cascade adder. Accesses from the microprocessor 
interface can only be made while ACR[1] is set to 
zero. 
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LUT Look up table 

These locations are for the 256-byte look up table 
which is used for data mapping and transformation 
operations. From the microprocessor interface, 
these locations are addressed in the same way as 
that seen by the 8-bit output of look up prescaler. 
When used in 32 bit mode, the locations are treated 
in the same way as other 32 registers: Word 0 has 
its most significant byte at #1 03, its least significant 
byte at #100, Word 12 has its most significant byte 
at #133, its least significant byte at #130. Accesses 
from the microprocessor interface can only be 
made while ACR[1] is set to zero. 

10. REGISTERS- BIT ALLOCATION 

This section describes the register details bit by bit. 
Each section commences with the name of the 
register with the bit number(s) followed by the 
default value, in the general format: 

Name REGISTER [MSB-LSB] Default : MSB ... LSB 

The least significant bit of a register is bit 0. 

* in the tables indicates the default state of the 
register bit(s). 

10.1 PSR control registers (PCR) 

PSRA control PCRA[10-0] Default: 0 .•. 0 

These eleven least significant bits of the PCRA are 
used to specify the length of the last Programmable 
Shift Register (PSRA). The length of the shift reg­
ister will be numerically equal to the binary value 
loaded in these bits. The value loaded in must be 
in the range of 0 to 1120 decimal. If a value outside 
this range is written to these bits the behaviour of 
the shift register will be undefined. After updating 
this register, the behaviour of the delay is undefined 
for 22 clock cycles. Hence changing the length from 
1 000 to 1 001 delays, will result in correct output 
only after 1023 cycles. This will also have to propa­
gate through the backend before the cascade out-
put values will be correct. · 

Reserved PCRA[15-11] Default: 00000 

These 5 most significant bits of the PCRA are 
reserved. The user should write zero to these loca­
tions to maintain compatibility with future products. 
The value read from these locations will be zero. 
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PSRB control PCRB[10-0] Default: 0 •.• 0 

These eleven least significant bits of the PCRB are 
used to specify the length of the second Programm­
able Shift Register (PSRB). The length of the shift 
register will be numerically equaltothe binary value 
loaded in these bits. The value loaded in must be 
in the range of 0 to 1120 decimal. If a value outside 
this range is written to these bits the behaviour of 
the shift register will be undefined. After updating 
this register will also have to propagate through 
PSRA and the backend before the cascade output 
values will be correct 

Reserved PCRB[15-11] Default: 00000 

These 5 most significant bits of the PCRB are 
reserved. The user should write zero to these loca­
tions to maintain compatibility with future products. 
The value read from these locations will be zero. 

PSRC control PCRC[10·0] Default: 0 •.• 0 

These eleven least significant bits of the PCRC are 
used to specify the length of the first Programmable 
Shift Register (PSRC). The length of the shift reg­
ister will be numerically equal to the binary value 
loaded in these bits. The value loaded in must be 
in the range of 0 to 1120 decimal. If a value outside 
this range is written to these bits the behaviour of 
the shift register will be undefined. After updating 
this register will also have to propagate through 
PSRB, PSRA and the backend before the cascade 
output values will be correct 

Reserved PCRC[15·11] Default:OOOOO 

These 5 most significant bits of the PCRC are 
reserved. The user should write zero to these loca­
tions to maintain compatibility with future products. 
The value read from these locations will be zero. 

1 0.2 Static control register (SCR) 

Reserved SCR[7] Default: 0 

This location is reserved. The user should write 
zero to this location to maintain compatibility with 
future products. The value read from this location 
will be zero. 

Positive Look up 
table address 

SCR[6] Default: 0 

This bit affects the way in which the over/under 
select detector checks the LUT address. It deter­
mines whether the address range of the LUT is 
signed (-128 to 127) or positive (0 to 255). A one at 
this location indicates a positive LUT address. 
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PSR out Enable SCR[5] Default: 0 

A zero at this location will force the PSR Output pins 
into the tristate mode. 

Cascade Enable SCR[4] Default:O 

A zero at this location will force the Cascade Output 
pins into the tristate mode. 

Unsigned coefficient SCR[3] 
load 

· Default: o 

If this bit is set to one, the format of subsequently 
loaded coefficients become unsigned, with coeffi­
cient value assuming a range between 0 and 255 
decimal. An 8-bit coefficient with all its bits set to 
one will represent +255 decimal. When this bit is 
zero the format of subsequently loaded coefficients 
will be twos complement and the corresponding 
numerical value will have a range between -128 
and +127. By changing this bit whilst coefficients 
are being loaded, coefficients between -128 and 
+255 can be used. The unsigned format on all 
coefficients is suitable when IMS A110s are com­
bined to obtain wider coefficients for extended pre-
cision. 

SCR[3] Coefficient type 

0 Signed coefficients • 

1 Unsigned coefficients 

Unsigned data SCR[2] Default: 0 

If this bit is set to one, the IMS A110 input data 
format will become unsigned, with input data value 
assuming a range between 0 and 255 decimal. An 
8-bit value with all its bits set to one will represent 
+255 decimal. When this bit is zero the input data 
format will be twos complement and the corre­
sponding numerical value will have a r~nge be­
tween -128 and +127. Unlike SCR[3], this bit can­
not be used to dynamically alter the data format. 
The unsigned format is suitable when IMS A110s 
are combined to obtain wider input data for ex-
tended precision. · 

SCR[2] Data type 

0 Signed data • 

1 Unsigned data 

Bypass shift registers SCR[1] Default: 0 

This bit is used to program the path between the 
PSRin and PSRout ports. A zero at this location will 
cause the output from the last programmable shift 



register to be sent to PSRout port. Writing a one to 
this bit will cause the three programmable shift 
registers to be bypassed, and the data entering the 
port PSRin to be fed directly, via a delay of 2 clock 
cycles, to the port PSRout. This bit allows full 
programmability of a cascade arrangement so that 
the same hardware can be operated in a variety of 
ways. 

Continous bank swap SCR[O] Default: 0 

The continuous bank Swap bit selects whether the 
the two banks of coefficient registers are used 
alternately after each data input or if this is control­
led solely by the state of the 'Current Bank' bit in 
the Active Control Register ACR[O]. 

SCR[O] Swap mode 

0 Swap on asserting ACR[O] * 

1 Swap after end of each input cycle 

1 0.3 Active control register (ACR) 

Reserved ACR[7-2] Default: 00000 

These 6 most significant bits of the ACR are 
reserved. The user should write zero to these loca­
tions to maintain compatibility with future products. 
The value read from these locations will be zero. 

Enable look up table ACR[1] Default: 0 

Writing a zero into this control bit allows the mem­
ory interface to access the Look up table; the output 
to the data transformation unit will be zero. The 
normaliser will be controlled by BCR3[7-3], regard­
less ofthestate ofBCR3[2]. Writing aonetoACR[1] 
allows the IMS A11 Oto use the Look up Table. After 
changing this bit, 2 clock cycles must occur before 
the Look up Table can be accessed. 

ACR[1] LUTmode 

0 Memory interface access * 

1 Data transformation unit 

Current bank ACR[O] Default: 0 

When the 'Continuous Bank Swap' bit is set to zero, 
writing a zero into this control bit instructs the I MS 
A 110 to use the set of coefficient registers at ad­
dresses 0 to #X26. Setting a one to this bit instructs 
the IMS A 110 to use the set of coefficient registers 
at addresses #40 to #X66. If the 'Continuous Bank 
Swap' bit is set to one, then this bit only indicates 
the bank selected for the first cycle of the con-
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tinuous swap mode. Writing to this bit whilst in 
continuous bank swap mode (SCR[0]=1) will result 
in undefined behaviour of the mac array. 

ACR[O] Coefficient bank 

0 Use coefficient registers at 0 to #X26 * 

1 Use coefficient registers at #40 to #X66 

10.4 Backend control register 0 (BCRO) 

Enable full-wave BCR0[7] Default: 0 
rectification 

If this bit is set the output of the cascade adder is 
full-wave rectified (absolute value operation) be­
fore it is fed to the remainder of the backend. This 
bit will override the function of the BCR0[6]. 

Enable half-wave BCRO[G] Default: 0 
rectification 

Writing a one in this bit will cause the negative 
values from the cascade adder to be replaced with 
zero. Note that writing a one into BCR0[7] will 
override the function of this control bit. 

BCD0[7-6] Rectifier mode 

00 Straight through* 

0 1 Half wave rectification 

1 0 Full wave rectification 

1 1 Full wave rectification 

Mac array output 
scaler 

BCRO[S-1] Default: 00000 

The contents of these five bits control the amount 
of right or left shift applied to the data at the output 
of the mac array. This field is interpreted as a two's 
complement number. A positive number repre­
sents a right shift (divide). Any shift in the range -8 
(11 000) to +8 (01 000) is legal. Values outside this 
range will result in undefined behaviour of the mac 
output scaler. 

Zero cascade input BCRO[O] Default: 0 

This bit controls the Cascade Input Multiplexer. 
Writing a one to this bit will cause a zero, instead 
of the cascade input data, to be fed to the cascade 
adder. 

BCR[O] Cascade input mode 

0 Cascade data * 

1 Zero 

~ SCS·nfOMSON 
A. 'Y l llllO©OO©!ii~f<©IYIR!©IillD©(\' 

19/26 

143 



IMSA110 

10.5 Backend control register 1 (BCR1) 

Reserved BCR1 [7-2] Default: 00000 

These locations are reserved. The user should 
write zero to these locations to maintain compati­
bility with future products. The values read from 
these locations will be zero. 

Static threshold BCR1[1] Default: 0 

If this bit is set to one, the signals from the com­
parator will be used to increment the Over I Under­
shoot Counter only. If this bit is zero, the signals 
from the comparator will be used to latch the output 
of the Cascade Adder into the Maximum I Minimum 
Register (MMR), and to increment the counter. In 
this case the counter will have been incremented 
by the number of times that the threshold has been 
updated. 

Enable greater than BCR1 [0] Default: o 
This control bit determines whether the comparator 
in the statistics monitor behaves as a 'greater than', 
or as a 'less than' comparator. The signal from this 
comparator is used to drive the Over I Undershoot 
Counter and the Max I Min Register. A one at this 
location selects 'greater than'. 

BCR1[1-0] Statistics monitor mode 

00 Min. register • 

0 1 Max. register 

1 0 Undershoot counter 

1 1 Overshoot counter 

10.6 Backend control register 2 (BCR2) 

Reserved BCR2[7] Default: 0 

This location is reserved. The user should write 
zero to this location to maintain compatibility with 
future products. The value read from this location 
will be zero. 

Pass LUT data to BCR2[6] Default: 0 
least significant 
output 

This bit controls the output multiplexer. If this bit is 
set to one, the selected byte from the LUT is output 
on the least significant byte (bits 7 to 0) of the 
Cascade Output pins. 
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Pass LUT data to most BCR2[5] 
significant output 

Default: 0 

This bit controls the output multiplexer. If this bit is 
set to one, the selected byte from the LUT is output 
on the most significant byte (bits 21 to 14) of the 
Cascade Output pins. 

Look up prescaler BCR2[4-0] Default: 00000 

The contents of these five bits control the amount 
of (arithmetic) right shift applied to the data, by the 
Look up Prescaler. Writing a numerical value be­
tween o and 16 (binary 1 0000) into these bits, will 
cause the data to be right-shifted by a correspond­
ing number of places. For example, if the bit pattern 
001 01 is written to these five bit positions, a right 
shift of 5 places will occur. Writing any value outside 
the range (0 to 16) will result in undefined behaviour 
of the look up Prescaler. 

10.7 Backend control register 3 (BCR3) 

Normalizer control BCR3[7-3] Default: 00000 

These five bits control the number of places, that 
the normaliser shifts the data to the right or to the 
left. This field is interpreted as a twos complement 
number. A positive number is taken to be a right 
shift. Any shift in the range -2 (1111 0) to+ 14 (0111 0) 
is legal. Any other value will cause the number zero 
to be output from the normaliser. 

Enable dynamic BCR3[2] Default: 0 
normalization 

If this bit is set to one, the normaliser will be 
controlled by bits 26 to 22 from the output of the 
look up table, instead of BCR3[7-3]. 

Feed LUT data to BCR3[1] Default: 0 
output adder 

One of the inputs of the Output Adder can be either 
supplied by the Look up Table or forced to zero. 
Setting this control bit to zero selects zero. Setting 
this control bit to one selects bits 21 to 0 of the Look 
up Table. 

Reserved BCR3[0] Default: 0 

This location is reserved. The user should write 
zero to this location to maintain compatibility with 
future products. The value read from this location 
will be zero. 



11. ELECTRICAL SPECIFICATION 

11.1 DC electrical characteristics 

ABSOLUTE MAXIMUM RATINGS 

Symbol Parameter 

Vee DC supply voltage 

V1, Vo Voltage on any other pin 

TA Temperature under bias 

Tstg Storage temperature 
PDmax Power dissipation 

Notes 

1 All voltages are with respect to GND. 

Min. 

0 

-1.0 

-40 
-65 
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Typ. Max. Units Notes{1,2) 

7.0 v 3 

:vcc+0.5 v 3 
85 ·c 
150 ·c 
2.0 w 

2 This is a stress rating only and functional operation of the device at these or any other conditions above those indicated 
in the operational sections of this specification is not implied. Stresses greater thi'm those listed may cause permanent 
damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical fields. 
However, it is advised that normal precautions be taken to avoid application of any voltage higher than the absolute 
maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate logic level 
such as Vee or GND. 

DC OPERATING CONDITIONS 

Symbol Parameter Min. Typ. Max. Units Notes (1) 

Vee Supply Voltage 4.5 5.0 5.5 v 

VIH Input Logic '1' Voltage CLK 4.0 Vcc+0.5 v 2 
Input Logic '1' Voltage other pins 2.0 Vcc+0.5 v 2 

V1L Input Logic '0' Voltage CLK -0.5 0.5 v 2 
Input Logic '0' Voltage other pins -0.5 0.8 v 2 

TA Ambient Operating Temperature 0 70 ·c 3 

Notes 

1 All voltages are with respect to GND. 
2 Input signal transients, up to 1 Ons wide, are permitted in the voltage ranges (GND - 0.5 V) to (GND - 1.0 V) and Vee 

+ 0.5 V to V cc + 1.0 V. 
3 400 linear ft/min transverse air flow. 

DC CHARACTERISTICS 

Symbol Parameter Min. Typ. Max. Units Notes {1,2) 

VoH Output Logic '1' Voltage 2.4 .,. Vee v 4 

VoL Output Logic '0' Voltage 0 0.4 v 5 

liN Input leakage current( any input current) ±10 ilA 3 

loz Off state output leakage current ±10 JlA 3 

loo Average power supply current 350 rnA 

Notes 

1 All voltages are with respect to GND. 
2 Parameters measured over full voltage and temperature operating range. 
3 Vee= Vcc(max), GND ~ V1N ~ Vee 
4 lOut ~ -4.4 rnA 
5 lOut ~ 4.4 rnA 

CAPACITANCE 

Pin Min. Typ. Max. Units Notes 

CLK 12 pF 1,2 

All other pins 5 -·, ,, pF 1,2 

1 This parameter is supplied for engineering guidance and is not guaranteed. 
2 TA= 25"C , F= 1 MHz. 
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11.2 Thermal Characteristics 

PIN GRID ARRAY THERMAL CHARACTERISTICS 

Parameter 

Junction to ambient thermal resistance 

Notes 
1 Measured at 400 linear ft/min transverse air flow. 
2 This parameter is sampled and not 1 00% tested. 

11.3 AC timing characteristics 

AC test conditions 

OUTPUT LOADS (except output turn-off tests): 30pF for all outputs. 

Figure 8: Output Load (output turn-off tests) 

TIMING REFERENCE LEVELS 

Pin 
INPUTS O.BV, 2.0V 
CLK 0.5V,4.0V 
OUTPUTS 0.4V, 2.4V 

VREF 

=1.5V 

Reference levels 

OUTPUTS ±1 OOmV change from previous steady output voltage 

Notes 
1 Except CLK. 
2 Output continously driven. 

I source 

=1mA 
A110-08.EPS 

Notes 

1 

2,3 

4 

3 Timings are tested using VoL=0.8V and with a suitable allowance for the time taken for the output to fall from o.av to 
0.4V. 

4 Output turn-off tests. 

11.4 Timing diagrams 

CLOCK REQUIREMENTS 

Symbol Parameter 

ICHCL Clock Pulse High Width 

lcLCH Clock Pulse Low Width 

ICHCH Clock Period 

IR Clock rise time 

IF Clock fall time 

Notes 

Min Typ. Max 
20 

20 
50 

0 50 

0 50 

1 Clock input transitions should be monotonic between the input thresholds of 0.5 V and 4.0 V. 

Units Notes 
ns 2 
ns 2 
ns 2 
ns 1 

ns 1 

2 For Rev.A parts tcHcL, lcLcH and lcHCH have maximum values of 50 OOOns, 50 OOOns and 1 00 OOOns respectively. (A 
minimum clock frequency of 10kHz.) 
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Figure 9 

CLK 

I CLCH 

lcHCH 

A110-09.EPS 

MICROPROCESSOR INTERFACE READ CYCLE 

Symbol Parameter Min Max Units Notes 

lA VEL Address setup 0 ns 

tEHAX Address hold 0 ns 

lwHEL Read Command Setup 0 ns 

IEHWX Read Command Hold 0 ns 

IELOX Output turn-on 0 ns 

tELOV Read data access 100 ns 

IEHOX Read data hold 0 ns 

tEHOZ Output turn off 25 ns 

Figure 10 

E1 

E2 

----~ ~,-
ADDRESS ____}\----------,-------------------------~-----------------)\____ 

IWHEL 

w 

t ELOV 

DATA ----------------~---{ 

A110-10.EPS 
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MICROPROCESSOR INTERFACE WRITE CYCLE 

Symbol Parameter Min Max Units Notes 

tELEH Enable Width Low 100 ns 

tAVEL Address setup 0 ns 

tEHAX Address hold 0 ns 

twLEL Write Command Setup 0 ns 

tEHWX Write Command Hold 0 ns 

tovEH Write data Set up 50 ns 

tEHDX Write data hold 0 ns 

Figure 11 

\ 1/ 
E1 

I 

t ELEH 

\ If 
E2 

I 

tAVEL IEHAX 

ADDRESS ~ 
IWHEL tEHWX _) 

w ~ y 
I DVEH IEHDX _I 

I 
DATA 'W w--_--J(\.__ ____ 1\_ 

A110-11.EPS 
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SYNCHRONOUS INPUT AND OUTPUT 

Symbol Parameter Min Max Units Notes 

tcHOV CLK high to Output Valid 40 ns 

!cHOX Output hold time after CLK 2 ns 

tDVCH Input setup time to CLK high 8 ns 

tcHDX Input hold time to CLK high 0 ns 

Figure 12 

INPUT t f !DVCH .. I .. lcHDX 

CLK 

!CHDV !CHQX 

OUTPUT ~ ~ 
A110-12.EPS 
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PACKAGE MECHANICAL DATA 
100 PINS- GRID ARRAY PACKAGE 

mdex 

li ~ 
A 81 

~ 1-

-I 82 .I 
A 

DIM 
Millimetres 

Nom 

A 26.924 

81 17.019 

82 18.796 

c 2.456 

D 4.572 

E 3.302 

F 0.457 

G 1.143 

K 22.860 

L 2.540 

M 0.508 

26/26 
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I 
K 

G 

.I c L 
D 

To I Nom 

±0.254 1.060 

± 0.127 0.670 

± 0.127 0.740 

±0.278 0.097 

± 0.127 0.180 

± 0.127 0.130 

±0.051 0.018 

± 0.127 0.045 

± 0.127 0.900 

± 0.127 0.100 

0.020 

10 9 8 7 6 5 4 3 2 1 

@ @ @ @ @ @ @ @ @ @ A 

@ @ @ @ @ @ @ @ @ @ 8 

@ @ @ @ @ @ @ @ @ @ c 
@ @ @ @ @ @ @ @ @ @ D 

@ @ @ @ @ @ @ @ @ @ E 

@ @ @ @ @ @ @ @ @ @ F 

@ @ @ @ @ @ @ @ @ @ G 

@ @ @ @ @ @ @ @ @ @ H 

@ @ @ @ @ @ @ @ @ @ 

@ @ @ @ @ @ @ @ @ @ K 

L-j:=± K 

PMPGA 1 OO.EPS 

Inches 
Notes 

To I 

± 0.010 

±0.005 

±0.005 

±0.011 

±0.005 

±0.005 

±0.002 Pin diameter 

±0.005 Flange diameter 

±0.005 

±0.005 

Chamfer 



• 3 CHANNEL D/A CONVERTER 
• 8-BIT RESOLUTION 
• 70 MEGASAMPLES PER SECOND CONVER­

SION RATE 
• AUXILIARY ANALOG R, G, B, SWITCHING 

CAPABILITIES 
• SINGLE VOLTAGE +5V OPERATION 
• ON-CI;IIP VOLTAGE REFERENCE 
• VOLTAGE OUTPUT BUFFER AMPLIFIER 
• TTL COMPATIBLE DIGITAL INPUTS 
• BINARY INPUT ON ALL CHANNELS 
• 2'S COMPLEMENT INPUT CAPABILITY ON 

TWO CHANNELS 
• MONOLITHIC BIPOLAR 
• 850 mW POWER DISSIPATION 
• OPERATING TEMPERATURE RANGE 

0°Cto + 70°C 

DESCRIPTION 

This Digital-to-Analog converter is a monolithic 
voltage output converter which can accept TTL­
level digital input voltages. 

The STV8438 contains three 8-bit D/A converters 
with a high performance on-chip voltage reference. 

Internal· analog multiplexing between the signals 
from the internal D/A converter and from auxiliary 
analog R, G, B signals is provided. Either binary or 
2's Complement inputs are available for two of the 
three channels. 

This device is particularly recommended for use in 
video processing applications with the capability of 
70Msps data conversion rate with excellent li­
nearity. 

May 1992 

STV8438 

TRIPLE 8-BIT D/A CONVERTER 

SHRINK42 
(Plastic Package) 

ORDER CODE : STV8438 

PQFP44 
(Plastic Package) 

ORDER CODE : STV8438CV 

1/11 
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PIN CONNECTIONS 

SHRINK42 PQFP44 

1C "' 1t .. "' £ ,_ 0 5 "' "' a: a: a: a: "' "' "' COM CLK 

G7 RiC 

G6 60 RO G4 

G5 81 Vee (D) GS 

G4 62 GND(D) G6 

83 
Vee (A) 

G3 GND(A) 

G? 

COM 

G2 64 RESERVED RESERVED 

G1 65 Raur CLK 

GO 66 RAux RIC 

GND(A) 80 
R7 67 

Gaur 81 

R6 Vcc(D) GAUX 82 

R5 GND(D) 

R4 VCC(A) 

R3 6AUX ~ 
>- ~~g:g lO "' ill .. gJ 5 <D <D 

0 "' "' 0 0 0 

R2 BouT z 0 z .;' 
"' > "' 

R1 GND (A) 8438-02.EPS 

RO GAUX 

VCC(D) GouT 

GND (D) GND(A) 

Vcc(A) RAUX 

GND(A) RouT 

8438-01.EPS 

PIN ASSIGNMENT (SHRINK 42) 

N' Pin Number Symbol Type Function 

1 COM I Analog switch selection 

2 to 9 G <0:7> I Digital input channel G 

10 to 17 R <0:7> I Digital input channel R 

18 to 32 Vee (D) I Digital power supply 

19 to 31 GND (D) I Digital ground 

20 to 30 Vee (A) I Analog power supply 

21 GND(A) I Analog R channel ground 

22 RouT 0 Analog output, R channel 

23 RAux I Auxiliary analog input, R channel 

24 GND(A) I Analog G channel ground 

25 GouT 0 Analog output, G channel 

26 GAUX I Auxiliary analog input, G channel 

27 GND(A) I Analog B channel ground 

28 BouT 0 Analog output, B channel 

29 BAux I Auxiliary analog input, B channel 

33 to 40 B<0:7> I Digital input channel B 

41 R/C I Binary or 2's complement selection 

42 CLK I Clock input 

2/11 
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PIN DESCRIPTION 

COM : Digital or analog inputs selection 
This TTL input selects on the output stage the 
signal from the DIA converter or the signal from the 
external analog input. The three internal analog 
switches are activated by the COM signal. 

COM = 0 connects auxiliary analog inputs to output 
amplifier 
COM = 1 connects internal digital channel to out­
put amplifier 

G <0:7> : Digital input channel G 
These TTL 8-8it input data are sampled on the 
rising edge of the clock CLK. Go is the LS8 and G7 
the MS8, coding is binary. 

R <0:7>: Digital input channel R 
These TTL 8-8it input data are sampled on the 
rising edge of the clock CLK. Ro is the LS8 and R7 
the MSB. Coding is binary if the RIC input is high, 
coding is 2's complement if the RIC input is low. 

8 <0:7> : Digital input channel 8 
These TTL 8-Bit input data are sampled on the 
rising edge of the clock CLK. 8o is the LSB and B7 
the MS8. Coding is binary if the RIC input is high, 
coding is 2's complement if the RIC input is low. 

RIC : Binaryl2's complement coding selection 
This TTL input selects the coding type on R and 8 
channels. 

RIC = 0 selects 2's complement coding on R and 
B channels 
RIC= 1 selects Binary coding on Rand B channels 

STV8438 

RAux : Auxiliary analog input, R channel 
This analog input is connected to the output Rout 
through the output amplifier if the COM signal is 
low. 

GAux : Auxiliary analog input, G channel 
This analog input is connected to the output GouT 
through the output amplfier if the COM signal is low. 

BAux : Auxiliary analog input, 8 channel 
This analog input is connected to the output BouT 
through the output amplifier if the COM signal is 
low. 

RouT : Analog output, R channel 
This voltage analog output corresponds to the digi­
tal channel R if the COM signal is high or to the 
auxiliary analog input RAux it the COM signal is low. 

GOUT : Analog output, G channel 
This voltage analog output corresponds to the digi­
tal channel G if the COM signal is high or to the 
auxiliary analog input GAuxifthe COM signal is low. 

BOUT : Analog output, 8 channel 
This voltage analog output corresponds to the digi­
tal channel 8 if the COM signal is high or to the 
auxiliary analog input BAux if the COM signal is low. 

CLK : Clock signal 
The digital inputs are sampled on the rising edge 
of this TTL input signal. 

Vee (A) I GND (A) : Analog power supply 
Vee (D) I GND (D) : Digital power supply. 

------------ ~.,l ~~m~~~~ 
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BLOCK DIAGRAM 

CIRCUIT DESCRIPTION 

The STV8438 is designed with 3 identical D/A 
converters. Each D/A converter is constituted of 
two 4-bit DACs separated by a current divider the 
elementary DAC is composed of multiple identical 
current switches supplied with the same current 
allowing high speed conversion rate. 

DIGITAL INPUT CHANNELS 

The STV8438 supports binary coding on the 3 R, 
G, B, input channels when R/C pin is high. When 
R/C pin is low, a 2's complement coding is applied 
to the Rand B channels this provides the capability 
to use the STV8438 with luminance and chromin­
ance coded signal ; the luminance signal (usually 
called Y) being applied to the G channel, the chro­
minance signals (called U, V) being applied respec-
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8438·03.EPS 

lively to the R and B channels. 

The input range on Y signal is 0/255 and the input 
range on both U, V signals is -128/+ 127. Whatever 
binary coding or 2's complement coding the output 
voltage is in the range of 1.685V for the lowest code 
to 3.315V for the highest code. 

ANALOG INPUT CHANNELS 

The STV8438 provides the capability to switch the 
output voltage from signals coming from the digital 
channels or from signal coming from auxiliary 
analog inputs. When COM signal is low, the auxi­
liary analog signals are connected to the output 
amplifier internaly clamped to the 16th digital step. 
When COM signal is high, the digital inputs after 
D/A conversion are connected to the output ampli­
fier. 



STV8438 

ANALOG OUTPUTS 

The output voltage amplifiers have an output range 
of 1.685V to 3.315V. The 1 .685V corresponds to 
the binary code 0 (RIC = 1) or to the 2's comple­
ment code -128 (RIC = 0). The 3.315V corresponds 

to the maximum value on the digital code 255 if 
RIC= 0, +127 if R/C = 1. 

The STV8438 provides a step if 6.39mV per LSB. 
Using the analog input signal (COM= 0), the output 
amplifier has a gain of 2. 

ABSOLUTE MAXIMUM RATINGS 

Symbol Parameter Value Unit 

Vee Supply Voltage 8 v 
Ptot Power Dissipation 1.8 w 

Toper Operating Temperature -40to85 oc 

Tstg Storage Temperature -55to150 oc 

DC ELECTRICAL CHARACTERISTICS (Temperature 0 to 70°C, Vee± 5%) 

Symbol Parameter Min. Typ. Max. Unit 

Vee Supply Voltage 4.75 5 5.25 v 
Icc Supply Current 170 rnA 

Resolution 8 Bit 

VoUTF Full Scale Output Voltage 3.315 v 
VoUlZ Zero Scale Output Voltage 1.685 v 

DL Differential Linearity Error ±0.5 LSB 

IL Integral Linearity Error 1 LSB 
Gain Conversion Error between RGB ±2 % 

Po Power Dissipation 850 mW 

AC ELECTRICAL CHARACTERISTICS (Temperature 0 to 70°C, Vee± 5%) (continued) 

I Symbol I Parameter I Min. I Typ. I Max. Unit 

ANALOG OUTPUTS 

Maximum Data Conversion Rate 70 Msps 

Is Settling lime ns 
Figure 1 14 
Figure 2 28.5 

Monotonicity Guaranteed 

Glttch Energy 80 pVs 

tpo Propagation Delay (Figures 1 and 2) 4 ns 

Crosstalk between Any Outputs (!eLK= 25MHz-input voltage.7Vpp) 50 dB 

Crosstalk between a;z outeuts when auxiliary analog inputs are 50 dB 
selected (!eLK= 25M z . 7 pp) 

RLOAD Output Load (AC coupled - see typical application diagram) 100 150 n 
VoUT Output Voltage Range (on 150!2 AC coupled) 1.63 VPP 

AUXILIARY ANALOG RGB INPUTS 

tsw Switching-time DAC/Analog Input (Figure 3) 5 ns 

Black Level Clamp Error ±2.5 % 

Crosstalk between Any Outputs (f = 5MHz-input voltage.7Vpp) 50 dB 

Crosstalk between RGB Analog Inputs and D/A Outputs dB 
(f = 5MHz-input voltage.7Vpp) 50 

t:r'L SCS·1HOMSON __________ 51_11 
... ..., " lililii@OO@i<ll.rn©'ii1]l@ilJU~ 
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AC ELECTRICAL CHARACTERISTICS (Temperature 0 to 70°C, Vee± 5%) (continued) 

I Symbol I Parameter Min. I Typ. Max. I Unit 

ANALOG OUTPUTS FROM ANALOG INPUTS 

G Voltage gain at 1=1 MHz (input voltage .7Vpp) 

BNa Band-width (-3dB) 

Slew-rate (inp. pulse 0.7Vpp) 

Harmonic distortion rate at 1 M Hz 

DIGITAL INPUTS 

V1N Input Voltage High Level 

VIL Input Voltage Low Level 

hH Input Current High Level 

ilL lnpur Current Low Level 

SWITCHING CHARACTERISTICS 

FCK Clock Rate 

Clock Duty-cycle Rate 

tcKR Clock Rise-time (10%- 90%) 

tcKF Clock Fall-time (90%- 1 0%) 

tsu Data Set-up Time to CLK 

tHOLD Data Hold-time from CLK 

to Data Conversion Delay 

INPUT TIMING DIAGRAM 

Clock 

---~~~~=~~--~ 
Data tsui ~!hold 

-----------;--' 

Ampo"•::Mof ~! 
conversion 

note: COM= 1 
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2.0 

100 

120 150 

2 

-500 

100 

50 

2.5 

2.5 

1 

Vth=1.5v. 
·- (2TC) 

Vth=1.5v. 
(2TC) 

MHz 

V/!!S 
0.2 % 

v 
0.8 v 
10 !lA 

!lA 

MHz 

% 

3.5 ns 

3.5 ns 

ns 

ns 

cycle 

8438-04.EPS 
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SETTLING TIME MEASUREMENTS 

Figure 1 Figure 2 

Clock 
(IMHz) 

Amp. 
Output 

------------------v.h =I.SV 

scale 

i , ltLSB : j 
---:---:-;----:--:::: l----------- ~------------ ---

: : : . . ' 
' ' ' 

15 = Settling time 

8438-05.EPS 

Clock 
(IMHz) 

Amp. 
Output 

------------------v,h =tsv 

scale 

: , lt/2 LSB j 
-- -;---:- -;----:--:::: :1:----------- --------- _._-- ---

15 = Settlmg time 

8438-06.EPS 

SWITCHING TIME DAC/AUXILIARY ANALOG INPUT MEASUREMENT 

COM -·-·-·-·-·-·-·---·-·~·-·-·-·-·-·-·-·-·-·- Vth = .1.5V 

I 

DATA xxxxx¥xxxxx 
AUXILIARY -----.. 

ANALOG 
INPUT 

AMP. 
OUTPUT 

: Is : 
~ 

8438-0?.EPS 

ID'L SGS·THOMSON ___________ 71_11 
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ANALOG· TEST SCHEMATICS 

GND (D) GND (A) 

DAC-TEST SCHEMATICS 

GND (D) GND (A) 

VOLTAGE AT BUFFER OUTPUT 

3.315v ····A···· 
3.187v ........................... . 

1.63 Vpp 

1.787v ....... . 
1.685v ... . 

····················~············· 

~ 
Full scale 
White level 

Input levels 

Black level 
Blanking level 

note : Analog external RGB signals clamped to black level 
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OUTPUT 75Q MATCHING 

TYPICAL APPLICATION 

Sw1tch select 

G channel 
digital mputs 

A channel 
d1gital inputs 

~47nF 

+5 v. 1.63 Vpp 

Clock input 

2's complement or 
bmary code select 

0.815 Vpp 

75!l 

75Q 

470nF 

470nF 

470nF 

STV8438 

8438-11.EPS 

• G)Banalog 
1 75n ~ 1ntput 

'---C::.::]----1• 
B analog 
intput 

~Ganalog 
75 n 1ntput 

I• 
G analog 
output 

8438-12.EPS 

9/11 

159 



STV8438 

PACKAGE MECHANICAL DATA 
42 PINS- PLASTIC SHRINK DIP 

e3 

Dimensions 
Millimeters 

Min. Typ. 
A 

a1 0.51 

b 0.38 0.46 

b1 0.20 0.25 

b2 0.76 1.02 

b3 0.75 

D 36.70 36.83 

E 15.24 
e 1.778 

e3 35.56 
e4 15.24 
F 13.46 13.72 

L 3.05 

fi 
!.!?.!~.~.~.:~.!!. 

PMSDIP42.EPS 

Inches 

Max. Min. Typ. Max. 

4.83 0.190 

0.020 

0.56 0.015 O.D18 0.022 

0.30 0.008 0.010 0.012 

1.27 0.030 0.040 0.050 

0.030 
36.96 1.445 1.450 1.455 

0.600 
0.070 

1.400 

0.600 0.625 
13.97 0.530 0.540 0.550 

3.43 0.120 0.135 

10/11 ------------------------- ~~~~©~~~:~?©~ -------------------------
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PACKAGE MECHANICAL DATA 
44 PINS - PLASTIC QUAD FLAT PACK 

A 

E2 

E 

PMPQFP44.EPS 

Dimensions 
Millimeters Inches 

Min. Typ. Max. Min. Typ. Max. 
A 3.40 0.134 

A1 0.25 0.01 
A2 2.55 2.80 3.05 0.10 0.11 0.12 
8 0.35 0.50 0.014 0.020 
c 0.13 0.23 0.005 0.009 
D 16.95 17.20 17.45 0.667 0.677 0.687 

D1 13.90 14.00 14.10 0.547 0.551 0.555 
D2 10.00 0.394 
e 1.00 0.039 

E 16.95 17.20 17.45 0.667 0.677 0.687 
E1 13.90 14.00 14.10 0.547 0.551 0.555 
E2 10.00 0.394 

F 1.60 0.063 
K 0° (min.), 7° (max.) 

L 0.65 0.80 0.95 0.025 0.031 0.037 

11/11 i:1i. ~~©m~~~Jl ------------
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DATASHEETS 
EVALUATION BOARDS 
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• IBM - PC XT, AT COMPATIBLE HALF CARD 
• ALLOWS THE PC DIRECT ACCESS TO ALL 

THE PORTS OF AN STV3208 
• MULTIPLE BOARDS MAY BE PLUGGED 

INTO A SINGLE PC, ALLOWING THE DIF­
FERENT FUNCTIONS AVAILABLE ON THE 
STV3208 TO BE PERFORMED SIMULTA­
NEOUSLY 

• DIRECTLY COMPLEMENTS THE STV3208 
C MODEL 

July 1992 

EVAL3208 

STV3208 EVALUATION BOARD 
ADVANCE DATA 

APPLICATIONS 

• ACCELERATION OF PC BASED IMAGE 
PROCESSING OPERATIONS AND THE 
STV3208 C MODEL 

• SYSTEM PROTOTYPING 
• ENGINEER FAMILIARIZATION WITH THE 

STV3208 

1/1 
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• SLAVE BOARD (IBM - PC XT or AT com­
patible) 

• BLOCK SIZE: 8 x 4n, 16 x 4n 
• MAXIMUM DISPLACEMENT +7/-8 PIXELS 

HORIZONTALLY AND VERTICALLY 
• COMPUTATION OF THE MOTION VECTOR 

AND MINIMUM DISTORTION 
• RANDOM ACCESS TO THE 256 DISTOR­

TIONS 
• 8-BIT UNSIGNED INPUT PIXEL 
• 4-BIT 2'S COMPLEMENT HORIZONTAL DIS­

PLACEMENT 
• 4-BIT 2'S COMPLEMENT VERTICAL DIS-

PLACEMENT 
• 16-BIT UNSIGNED DISTORTION VALUES 
• BLOCK EDITOR 
• DEBUGGING PROGRAM 
• TIMING GENERALLY CONTROLLED USING 

THE PC BUS 

July 1992 

EVAL3220 

STV3220 EVALUATION BOARD 
ADVANCE DATA 

REQUIRED EQUIPMENT 

• IBM PC RACK : XT or AT 
• A MONOCHROME OR A COLOR GRAPHIC 

CAD DRIVING A MONITOR 

SO.FTWARE DESCRIPTION 

The EVAL3220 package contains software, tools 
and documentation to help the programmer take 
full advantage of all the user interface management 
features. The EVAL3220 is a menu-driven software 
package enveloped to assist the programmer of the 
STi3220 chip. The software processes 8 x 4n or 
16 x 4n block size. Blocks can be edited, loaded 
and saved using menu functions. The user can 
check step by step the STi3220 input pixel's block 
or run a part or a complete block ending with a 
break point. A selected distortion or the distortion 
set can be displayed. A software simulation of the 
chip is also available upon request. 

1/1 
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IMSA110 EVALUATION BOARD 

• IBM -PC XT, AT COMPATIBLE HALF CARD 
• ALLOWS THE PC DIRECT ACCESS TO ALL 

THE PORTS OF AN IMSA110 
• EXTERNAL CONNECTIONS ARE AVAILABLE 

FOR PROCESSING REAL TIME DATA, AND 
INTERACTING INTO SYSTEMS 

• MULTIPLE BOARDS MAY BE PLUGGED 
INTO A SINGLE PC, ALLOWING IMSA110 
CASCADES TO BE BUILT 
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I. INTRODUCTION 

When an analogue signal is sampled in time, the 
sampled signal is referred to as a discrete-time 
signal. If each sample in this discrete-time signal is 
also quantised in amplitude, (e.g. represented by 
an arbitrary n-bit number), then it is usually referred 
to as a digital signal. In the subject of digital filtering 
it is these types of signals which are processed and 
operated on. The fact that the digital signals are 

quantised both in time and amplitude gives one 
greater control over the processing as compared 
to analogue signal processing. 

AN541/0792 

In these application notes the concept of the digital 
filtering is first introduced. This is done by starting 
from a simple RC analogue filter and deriving a 
corresponding digital filter. The classification of 
digital filters is then summarized, followed by giving 
a summary of techniques applicable to filter design 
using the IMSA100 device. 
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DIGITAL FILTERING WITH THE IMSA100 

II. FROM ANALOGUE TO DIGITAL 

Figure 1a shows a simple first-order RC filter. The 
simple differential equation describing this circuit in 
terms of its input and output voltages is: 

dva(fJ 
vo(t) + RC-----cif = v,(f) (1) 

where vo(t) and v;(t) are analogue output and input 
voltage waveforms. In the analogue world both 
input and output voltages are continuous-time 
waveforms and the complexity of the solution 
would depend on the input voltage function v;(t). 
Given an input waveform v,(t), the solution can be 
obtained using: 
(i) Standard mathematical techniques which 

solve the differential equation and obtain the 
output waveform in closed form. 

(ii) Numerical techniques which calculate the 
approximate output wave'ferm in a digital 
computer. This would necessitate the sampling 
of the input and output waveforms. 

If Tis sufficiently small then the derivative d~if) at 
time !=NT can be approximated by: 

dvo(nT) _ vo(nT)- va[(n- 1) 7] 
dt - T 

(2) 

substituting this in equation (1) we obtain: 

RC RC 
vd;nT) +T Va(nT) -T vo[(n-1)1] = v,(nT) (3a) 

Equation (3a) is a linear difference equation that 
approximates the differential equation (1). Equa­
tion (3a) can be rewritten as: 

1 (RC/T) 
Vo(nT) = 1 + (RCIT) v,(nT) + 1 + (RCIT) vo[(n-1)1] (3b) 

This is now a recursion formula in which the present 
input sample and the previous output sample are 
used to calculate the present output sample. The 
notation can be simplified to: 

vo(n) = bo v,(n) +a, vo(n-1) (4a) 

1 (RC/T) 
where bo 1 + (RCIT) and a,= 1 + (RCIT) 

The signal-flow diagram for this filter is shown in 
Figure 1 b. The block labelled 'D' represents a delay 
equal to one sampling period T. In digital filter 
notations a delay of n sampling periods is usually 
denoted by z-n. Therefore a dela{' of one sampling 
period can be represented by z- . 

It is important to note that a common element in all 
filter structures is the concept of storage. In the 
analogue RC filter (Figure 1 a) the storage is pres­
ent in the form of a capacitor and in its digital 
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equivalent (Figure 1 b) the storage takes the form 
of a delay stage. In fact the storage element is the 
essential ingredient for any filter whether analogue 
or a digital. This is because filters are used to 
operate on the signal 'changes' and as such they 
need to have some knowledge of the history of the 
signal to allow them to perform their function. 

An important characteristic feature of any filters is 
its so called 'impulse response'. This is defined as 
the output waveform of the filter when a unity 
impulse is applied to the input. Using equation (4a) 
and assuming a unity impulse as the input wave­
form i.e. 

VI (0) = 1 
v ,(n) = 0 for n > 0 

then the output sequence would be: 

bo. atbo, a/bo, ....... ,at"bo, ............ . 

or in short Vo (n) = a1n bo 
It should be noted that the above impulse response 
has, in theory, infinite length. This is due to the 
recursive nature of this particular filter structure. 
This types of filters are often referred to as infinite­
impulse-response (II R) filters. 

An alternative way of looking at the filter in this 
example is to use equation (4a) in successive 
substitutions i.e. 

vo(n) =bo v1 (n)+a, V0 (n-1) (4b) 
= bo v, (n) + a1 [ bo v, (n- 1) + a, Vo (n- 2) ] 
= bov, (n) + a1 bov, (n- 1) 
+ a12 [ bov1 (n- 2) +a, Vo (n- 3)] 

·= ..... 
= bo v,(n)+ a, bo v,(n-1) + a1 2 bo v,(n-2) 

+a13 bo v,(n-3)+ ..... 

Equation (4b) expresses the output waveform as a 
linear combination of input samples only, but this 
involves infinite number of input samples. Notice 
also that the coefficients bo and a1 have positive 
values less than unity (R and C are assumed to be 
finite and non-zero). This means that in equation 
(4b) the coefficients decrease for older input 
samples. It may therefore be reasonable to assume 
that these coefficients approximate to zero beyond 
a certain point. In this way only a finite number of 
terms would be involved in equation (4b), or in other 
words, the infinite impulse response is approxi­
mated by a finite impulse response since it decays 
rapidly to zero. This modified filter with its finite 
duration impulse response falls in the category of 
FIR (Finite-Impulse Response) filters. In the next 
section these concepts are generalized. 
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Figure 1 : Analogue RC Filter and its Discrete-time Equivalent 

(a) Analogue RC filter 

a, 
(b) Discrete-time version of (a) Atoo-ot.EPS 

IlL DIGITAL FILTER CLASSIFICATIONS 

Linear difference equations, similar to equation 
(4a & 4b) are the basis for the theory of digital 
filters. The general difference equation can be ex­
pressed as: 

M N 

}'(n)+ I am}'(n- m) =I bkx(n- k) (5) 
m:=:1 k=O 

Where the x andy sequences are the input and the 
output of the filter and am's and bk'S are the coeffi­
cients of the filter. 

As mentioned earlier the notation z-1 is often used 
to denote a delay equal to one sampling period. In 
the theory of the dicrete-time signals, the concept 
of z has been developed further and is referred to 
as the z-transform. This is a discrete-time version 

Figure 2 : Spectrum of a Sampled Signal 

of the well known Laplace transform (sometimes 
referred to as the s-transform) which is mainly used 
for dealing with continuous signals. In the s-domain 
a delay ofT seconds corresponds to e-sT_ Therefore 
the two variables s and z are related by: 

(6) 

where Tis the sampling period. -

In the s-domain the spectrum of a signal with a 
bandwidth B and sampled at a frequency fs, is 
periodic with a period equal to fs. This is depicted 
in Figure 2. This periodicity in the spectrum of a 
sampled signal is the basic reason behind the 
Nyquist criterion which requires a minimum samp­
ling frequency of twice the signal bandwidth (i.e. 
fsmin = 2 x B), in order to avoid aliasing effects. 

frequency 
B is the band width of the signal and Is is the sampling frequency 

A 1 00·02.EPS 
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Equation {6) allows a mapping between the two 
domains. Part of the imaginary axis between -

fs t fs · th I · d · · · I 2 o +2, 1n e s-p ane, 1s mappe mto a umt c1rc e 

in the z-domain as shown in Figure 3. The fact that 
the imaginary axis in the s-plane is mapped onto a 
circle is a consequence of the periodic nature ofthe 
spectrum. As shown in Figure 3, the left-hand half 

of the s-plane {between ; and 1> i~ mapped onto 

the inside of the unit circle, while the right-hand half 
is mapped onto the outside of the circle. 

As in the analogue design {s-domain) where a pole 
in the wrong place, i.e. in the right-half plane, 
indicates instability, in the case of discrete-time 
signals {z-domain) a pole outside the unit circle 
causes instabilities. In both cases zeroes can be 
anywhere. 

Using the z-transform notation, the general linear 
equation {5) can be expressed as: 

M N 

Y(Z) (1 + I, Bm z-"') = X(Z) I, bk z-k (7) 
m=1 k=O 

Where X{z) and Y{z) are the z-transforms of the 
input and output waveforms. The discrete-time {or 
digital) transfer function of the general filter is thus 
given by: 

(8) 

m=1 

In terms of realization, digital filters are classified 

into non recursive and recursive types. The nonre­
cursive structure contains only feed-forward paths 
and as such all the am terms {equation {8)) are zero. 
This means that for the nonrecursive filters the 
output is a sum of linearly weighted present and a 
number of past samples of the input signal as 
shown in Figure 4. Referring to equation {8), for the 
nonrecursive filters the transfer function has only 
zeroes and as such is always stable. 

In the recursive filters on the other hand some or 
all of the am terms are· non-zero resulting in the 
presence of both poles and zeroes in the transfer 
function. Figure 5 shows the general recursive filter 
structure. Figure 6 shows an alternative structure 
for the same transfer function with a reduced num­
ber of delay stages. 

Digital filters are also classified in terms of their 
impulse responses. In this classification those fil­
ters with a finite duration impulse response are 
referred to as FIR filters and those with an infinite 
duration impulse response are called II R filters. The 
simplest FIR filter realization is in the nonrecursive 
form. For example in Figure 4, if a unit impulse is 
clocked through the filter, the sequence, 

bo. ~. b.z .... bN. 0, 0, 0, 0, 0, ... 0, 0, 0 (9) 

will be output. Notice that the response consists of 
a sequence of samples corresponding to the filter 
coefficients followed by zeroes, i.e. the nonrecur­
sive structure is an FIR filter. On the other hand the 
impulse response of the recursive structure 
{Figures 5 & 6), because of the feedback paths, is 
infinite in duration, making the configuration an IIR 
filter. 

Figure 3 : Relation Ship between the s-domain and the z-domain 

s-plane z-plane 
A100·03.EPS 
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Figure 4 : Nonrecursive Digital Filter Structure 

output A 1 00-04.EPS 

Figure 5 : Recursive (IIR) Digital Filter Structure 

input 

output A 1 00-05.EPS 

Figure 6 : Alternative Recursive (IIR) Digital Filter Structure with Reduced Number of Delay Stages 

input 

output A 1 00-06.EPS 
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IV. DIGITAL FILTER DESIGN 

Digital filter design methods can be divided into two 
categories: 

(a) Design techniques suitable for FIR filters. 
(b) Design techniques suitable for IIR filters. 

In both cases the requirement is simply the choice 
of filter coefficients in such a way that the specifi­
cation for the required transfer function is met. The 
IMSA 100 can be used to implement high perfor­
mance FIR filters directly. It can also be used to 
implement IIR filters, although the general prob­
lems associated with IIR filter design are then 
introduced. In this section a brief comparison be­
tween FIR and IIR filters is given and some of their 
associated design techniques are summarized. 
Where necessary the IMSA100 implementation 
issues are also discussed. 

IV.1 Comparison between FIR and IIR filters 

FIR filters, because of their finite-impulse response 
have no counterparts among analogue filters and 
as such can implement transfer functions which 
cannot be realized in the analogue world. One such 
property is the excellent linear-phase characteristic 
which can easily be realized with FIR filters. Since 
a linear-phase response corresponds ·to only a 
fixed delay, attention can be focussed on approxi­
mating the desired magnitude response without 
concern for the phase. The design techniques for 
FIR filters are generally simpler than those for IIR 
filters, and as there are no feedback paths in an 
FIR filter, the stability of the filter is guaranteed. Also 
FIR filters have been employed, and algorithms 
have been developed, for adaptive processing 
while the use of IIR filters in these types of systems 
is not common. 
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IIR filters on the other hand have infinite impulse 
responses and thus their design can be closely 
related to analogue filter design. IIR filters in 
general require fewer stages compared to FIR 
filters but their stability is not unconditional and 
great care should be taken to insure stability. Fur­
thermore IIR filters do not generally result in linear­
phase characteristics which is important in many 
applications. 

IV.2 Basic design parameters 

In digital filter design, for the reason of conveni­
ence, the frequency axis is usually normalised with 
respect to the sampling frequency fs. For example 
for a filter with an actual pass-band cut-off fre­
quency of 20kHz, a stop-band cut-off frequency of 
30kHz and a sampling frequency of 1OOkHz we 
have: 

The normalised pass-band cut-off frequencyfptF 12~0-0.2 
The normalised stop-band cut-off frequency fstF 1~00-0.3 

As shown in Figure 7 the useful frequency axis 
(normalised) extends from 0.0 to 0.5, because the 
Nyquist sampling theorem requires a signal to be 
sampled at more than twice its highest frequency. 

This means that the ratio of the frequency of any 
component in the signal to the sampling frequency 
must always be less than 0.5. 

Referring to Figure 7, the pass-band and the stop­
band ripples are usually expressed in dBs i.e: 

pass-band ripple (dB)= 20 log10(1+o1) 
stop-band ripple (dB) =-20 log10(02)- . 

The parameters fpb, fsb, 01, 02 and the sampling 
frequency define the basic specification of a filter 
prior to its design. 
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Figure 7 : Specification parameters for a low pass filter. Similar parameters exist for high pass and 
band pass filters 

1.0 

+a 2 ------------------ --------------------------.----------

-a2 ---- ------------------- ---------------- ··r··-·a;· . 
~~ 

IV.3 Design techniques suitable for FIR filters 

As mentioned earlier one of the major advantages 
of FIR filters is the ease with which linear-phase 
behaviour can be obtained from these types of 
filters. Before summarizing the design techniques 
for FIR filters let us briefly consider the necessary 
conditions for linear-phase behaviour. It can readily 
be shown that in order to obtain an FIR filter with a 
linear-phase characteristic, the following condition 
has to be met (references 1 & 2): 

h(l)=±h(N-J) for Os;is;N (10) 
= 0 otherwise 

This condition requires that the the impulse re­
sponse of the FIR filter, h(i), to have either positive 
or negative symmetry. · 

In the case of positive symmetry the frequency 
response will be of the form 

H(eiwT)= A (w1) e-JroTN/2 (11a) 

where A( roT) is a real function of ro. Notice that the 
phase is a linear function of frequency. These types 
of filters are appropriate for frequency selective 
filters. 

A100·07.EPS 

In the case of negative symmetry the filter transfer 
function will have the following form: 

H(eP>T)=jB(w1) ejooTN/2 (11b) 

Again B(ro T) is a real function of ro. Note that the 
phase is again linear with frequency, but we also 
have a j term which indicates an extra phase shift 

1t 
of 2. These types of frequency responses are 

required to realise approximate differentiators and 

Hilbert transforms which implement a~ phase shift 

over a specified frequency range. 

There are essentially three well-established 
classes of design methods for (linear phase) FIR 
filters which are: 

(i) window method 
(ii) frequency sampling 
(iii) timal design (Remez Exchange Algorithm) 

Each one of these techniques has its own merits 
and the choice of which would depend on the 
application requirements and the design time in­
volved. 
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IV.3.a. WINDOW METHOD 

This is the most straight-forward approach to the 
design of FIR filters. In this method having defined 
an ideal frequency-response function, the corre­
sponding ideal impulse response is determined by 
evaluating the inverse Fourier transform of the 
ideal frequency response. In the selection of the 
ideal frequency response, the linear phase condi­
tion may or may not be applied depending on the 
application. 

As mentioned earlier because digital filters deal 
with signals sampled at a frequency fs,it therefore 
follows that this frequency response is periodic in 
frequency with a period equal to fs (Nyquist 
theorm). It is therefore possible to relate the im­
pulse response and the frequency response of a 
digital filter via the following Fourier pairs: 

+~ 

H (ro) = I, h (n) e-JnroT (12) 

+ros 

h(n)=J___ U: H(ro) einwT dro (13) 
Ols -;s 

where ros, is the sampling frequency in radians/s 
and T is the sampling period. Having defined an 
ideal frequency response, H(ro), equation (13) can 
be used to obtain the impulse response, h(n), of the 
filter. As an example consider the ideal low-pass 
frequency response characteristics with a cut-off 
frequency roc as shown in Figure Ba. Using equa­
tion (13), and equating H(ro) to 1.0 for -roc::; ro::; +me 
and to zero elsewhere, we can calculate the im-
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pulse response h(n) which is given by: 

h (n) = rocT sin (n roc T) 
1t (n roc T) 

(14) 

where -oo < n <+oo. This impulse response is shown 
in Figure .8b. There are two problems associated 
with this impulse response obtained in this way: 

(i) The filter impulse response is infinite in 
duration and as such an FIR filter of infinite 
length is required (remember as discussed 
earlier for FIR filter the impulse response 
sample values are effectively the filter 
coefficients). 

(ii) The filter is unrealizable since the impulse 
response begins at -oo, indicating that no finite 
amount of delay can make the impulse 
response realizable. 

One way to obtain an FIR filter which approximates 
the required frequency response is to truncate the 

infinite impulse response at n = ± ~' (see Fig­

ure Be), and shift the impulse response to the right 
to avoid negative time (Figure Bd). This would result 
in a realizable FIR filter with N+1 coefficients which 
are equal to the impulse response samples. 

The problem with this direct truncation of the im­
pulse response is that it results in a fixed amount 
of overshoot (approximately 9%) before and after 
the discontinuity in the frequency response. In the 
literature this problem is referred to as the Gibbs 
phenomenon. For this reason, direct truncation is 
not often a reasonable way of designing Fl R filters. 
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Figure 8 

! 
:amplitude 

0 frequency 

(a) frequency response of an ideal low-pass filter 

... 
time 

(b) impulse response of an ideal low-pass filter 

h(nT) 

.tt111tt. ... 
0 time 

(c) truncated impulse response 

0 q. ... 
time 

(d) truncated and shifted impulse response 

The frequency response of a truncated time series 
can be improved considerably by using a window 
function, w(n), which modifies the impulse re­
sponse to w(n) x h(n). In the previous example the 
window was simply a rectangular window. Figure 9 
shows the application of a different window function 
to the example of the ideal low-pass filter. Figure 9a 
shows the ideal infinite duration impulse response. 
Figure 9b shows the window function and Figure 9c 
shows the impulse response after the application 
of the window function. Figure 9d shows the shifted 
impulse response which avoids unrealizable nega­
tive delays. The filter coefficients (bk's) correspond 
to the sample values of this modified impulse re­
sponse which is now finite and realizable. Several 
window functions have been suggested in the lit­
erature some of which are: 

A 1 00-0B.EPS 

(i) Hamming window 
(ii) Hanning window 
(iii) Kaiser window 
(iv) Dolph-Chebyshev window 
(v) Blackman window 

The generalized Hamming window function is 
given by: 

(21rnJ WH(n)= a+ (1- a) cos LJV 
= 0 otherwise 

(15) 

(N-1J (N-1J for - - 2 - ~n~-l-2-

where O~o:~1. If o: = 0.54 the window is called a 
Hamming window, and if a = 0.50 it is called a 
Hanning window. 

IDl SCS·DIOMSON __________ 91_25 
• J, , ~O©OO©Ul~lli©'ii'OO©~O©@ 
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Figure 9 

: h(n) 
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(a) impulse response of an ideal low-pass filter 

:w(n) 

, ri!!!Jllll!J!!t!r ... 
0 n 

(b) window function w(n) 

; h(n). w(n) 

I I 

ft1 
!lllL 1tf 

I I 
~ 

0 n 

(c) impulse response after the application of the window function 

0 ft1 
(d) time-shifted impulse response 

For the Hamming window the main lobe of the 
frequency response is twice the width of that of the 
simple rectangular window. The amplitudes of the 
ripples of the Hamming window frequency re­
sponse are considerably smaller than those of the 
rectangular window. For the rectangular window 
the peak side lobe (in the stop band) is only 14dB 
below the main-lobe (pass-band) peak. For the 
Hamming window the peak side lobe ripple is about 
40dB below the pass band peak. Furthermore for 
the Hamming window 99.96% of the spectral en­
ergy is in the main-lobe peak. 

Another family of windows are those proposed by 
Kaiser: 

W /o(J)~1-[2n(N-1]f) (1S) 
K(n) /o(J)) 

= 0 otherwise 

( N-1) (N-1) for- - 2 - '>n'>- - 2 -
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1tf n 

A100-09.EPS 

Where lo is the modified Bessel function of the first 
kind. The parameters ~ is used to specify the 
main-lobe width and the side-lobe level of the 
frequency response. ~ is usually specified to have 
a value between 4 and 9. This range of ~ corre­
sponds to a range of side-lobe peaks of 3.1% to 
0.047% of the main-lobe peak. The Kaiser window 
is essentially an optimum window in the sense that 
it is a finite duration sequence that has the mini­
mum spectral energy beyond some specified fre­
quency. For the Kaiser window the width of main 
lobe is almost three times that of the rectangular 
window, while the peak side lobe in the stop band 
is 57 dB below the pass-band peak. The side-lobe 
ripple envelope decays to 94dB below the pass­
band peak at half the sampling frequency. 

The Dolph-Chebyshev window function has the 
minimum width of the main lobe in its frequency 
response for a given peak value of side-lobe ripple. 



For this window the stop-band ripples all have the 
same amplitude. Recursive equations exist which 
allow this window function to be evaluated. 

References 1 and 2 contain further information on 
this design method and the associated window 
functions. 

. IV.3.b. FREQUENCY SAMPLING TECHNIQUE 

This technique is less common than the other two 
design methods, however for the sake of complete­
ness it is briefly mentioned here. 

The basic idea behind this technique is that the 
given (desired) frequency response is approxi­
mated by sampling it at N equally-spaced points 
along the frequency axis between 0 and fs (corre­
sponding to N samples on the unit circle in the 
z-plane). AnN-point inverse OFT is then performed 
on these N frequency samples to give N samples 
of the impulse response h(n) which corresponds to 
the filter coefficients. The z-transform of the filter 
impulse response is then given by 

N-1 

H(Z)= I h(n) z-n 
k=O 

Figure 10 

amplitude 
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Substituting rJroT for z, the resulting frequency re­
sponse of the filter may be evaluated which would 
be an approximation of the desired frequency re­
sponse. The approximation error would be exactly 
zero at points where the desired frequency re­
sponse was sampled and would be finite between 
them. This process is depicted in Figure 10 . 

To reduce these approximation errors a number of 
frequency samples (particularly those in the transi­
tion band between band-pass and band-stop re­
gions, i.e. points T1, T2, T3 and T4 in Figure 10 can 
be made unconstrained variables. The values of 
these unconstrained variables are then optimised 

·using computer optimisation techniques involving 
linear-programming methods. This involves the 
solution of a set of linear unequalities in the uncon­
strained frequency samples. In this way, by adjust· 
ing the frequency sample values at T1, T2, T3 and 
T4, considerable ripple cancellation, both in the 
pass-band and stop-band, can be achieved result· 
ing in very good filter characteristics. The detail of 
these techniques are beyond the objectives of this 
application note, however interested readers can 
refer to reference 1 for further information. 

I \· +----"~----------~--------_.. frequency 

(a) sampling of the desired frequency response 
fs 

& 

=P'~/\ 
~ f\_~ ~ 

'· (b) the resulting approximation 

• frequency 
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IV.3.c. OPTIMAL FILTER DESIGN­
(REMEZ EXCHANGE ALGORITHM) 

In the frequency sampling technique, discussed in 
the previous section, some degree of improvement 
in the filter characteristics is obtained by allowing 
only a few of the frequency samples to be adjusted 
via a linear-programming technique. 

_An even more powerful technique which results in 
truly optimal filters, in the sense of having the 
sharpest transition between pass bands and stop 
bands (for a given filter length and a given approxi­
mation error) has been formulated based on the 
so-called Chebyshev approximations. Computer 
optimisation techniques based on linear pro­
gramming have been developed (references 3, 4, 
5 & 6) which allowed engineers to design optimal 
FIR filters with a minimum amount of knowledge 
about the actual optimisation algorithm. These it­
erative algorithms are based upon the principles of 
the Remez exchange algorithm. This algorithm 
yields optimal filters that satisfy the so-called mini­
max error criterion (reference 1 ), where for a given 
number of coefficients, the filter minimizes the 
maximum ripple amplitude in the pass band. The 
implications of this optimal design are: 

(a) The Remez exchange algorithm results in an 
FIR filter with the smallest number of 
coefficients satisfying the required 
specification. 

(b) The pass-band ripple components all have the 
same magnitude and need not be equal to the 
stop-band ripples, but their ratio must be 
specified. 

The input to the Remez exchange program usually 
includes the type of filter (frequency selective fil­
ters, differentiators and Hilbert transform filters), 
normalised stop-band and pass-band edges, the 
desired minimum stop-band attenuations, the 
maximum pass-band ripple and the ratio of the 
pass-band to stop-band ripples. 
The output of the program include estimated filter 
length, and impulse response (filter coefficients). It 
also includes first pass computed values for design 
parameters, such as pass-band ripple, stop-band 
attenuation. If the computed values do not satisfy 
the design requirements, the filter length may be 
increased slightly and the program is run again. 
Interested readers can find copies of this program 
in references 1, 2 & 4. 

IV.3.d. IMPLEMENTING FIR FILTERS WITH 
THE IMSA100 

The coefficient word size in the IMSA 100 can be 
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programmed to be 4, 8, 12 or 16 bits. Having 
calculated the filter coefficients using one of the 
techniques described earlier, these coefficients are 
then expressed in a 4, 8, 12 or 16-bit format, 
depending on the required accuracy. The filter can 
then be implemented by simply loading these coef­
ficients into the IMSA 100 coefficient memories. If 
the number of coefficients (filter stages) required is 
less than or equal to 32, a single IMSA100 would 
be sufficient, any unused coefficient locations 
being set to zero. If however, more than 32 coeffi­
cients are involved a number of IMSA100 devices 
can be cascaded to obtain the required filter order. 
Alternatively it is possible to partition a long FIR 
transfer function into product terms where each 
term has an order equal or less than 32. Then, 
using a single IMSA100, the data can be recircu­
lated through the same device with different coef­
ficients (associated with each term in the transfer 
function) for each circulation. In this way a very long 
FIR filter can be implemented with a single device 
at the expense of a reduction in the data rate. · 
The IMSA 100 can be cascaded very easily, without 
the need for any external components, to obtain 
high order filters with a high degree of accuracy. · 
The device has a versatile architecture which allow­
s it to be used in various system configurations. The 
coefficients can be programmed via a standard 
memory interface, while the input and output data 
can be communicated either via the memory inter­
face or dedicated 1/0 ports. Figure 11 shows some 
of the possible system configurations for the 
IMSA 100. In this diagram the interface between the 
host and the IMSA 100 consists of data and address 
buses of the processor plus standard memory-type 
control signals such as R/W, CE and CS. 
In Figure 11 a the host processor controls the filter 
coefficients, while the actual data to be processed 
is supplied directly from an AID to IMSA 100. In this 
example the filtered output is fed directly to a D/A. 
Using the IMSA 100 and a host processor it is 
possible to supply the input data to the device and 
also to collect the filtered samples via the memory 
interface. This allows system configuration such as 
those shown in Figures 11b&c. In Figure 11b the 
host processor receives the input data from a pe­
ripheral such as an AID and writes it (may be after 
some preprocessing) into the data-input register 
(DIR) of the IMSA 100. The filtered output sample 
is also collected by the host via the memory inter­
face and output (possibly after post processing) to 
a peripheral such as a D/A. Figure 11c shows a 
configuration where the IMSA 100 is used purely as 



a signal processing accelerator to the host. 
Numerous other configurations are possible includ­
ing integrating an IMSA100 into existing micropro­
grammed systems in order to improve the overall 
system performance. 

As mentioned earlier large numbers of the 
I MSA 1 00 devices can be cascaded to construct 
FIR filters of a high order. The cascading does not 
involve any external components and is simply a 
matter of connecting the output of the previous 
device to the cascade input of the next chip and 
joining the data input ports together (if they are 
being used rather than the memory interface). In 
normal operation the cascade input of the first 
device should be grounded. Figure 12a shows this 
cascading arrangement for two IMSA100 devices 
and Figure 12b depicts the block diagram of a 
system consisting of a host processor and two 
cascaded devices. In the latter case the data-input 
register (DIR) of both devices should be associated 
with the same address in the host's address space; 
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and one of the devices should be selected as a 
master to generate the GO signal (see product data 
sheet for further detail). 

Another important feature of the IMSA100 is a 
selector that is incorporated after the multiply-ac­
cumulator array. As discussed in the data sheet, the 
32 multiply and accumulation in the array are per­
formed to a precision of 36 bits which ensures that 
no intermediate overflows occur. The output selec­
tor can then be used to select and round a 24-bit 
word from this 36 bit result. This selection and 
rounding can be programmed to start from bits 7, 
11 , 15 or 20 and the selected word is sign extended 
if needed. One particularly useful selection is avail­
able when the input data and coefficients are in the 
form of 16 bit two's complement numbers nor­
malised to between + 1 and -1. In this case, if the 
selection is taken to start from bit 15, the output will 
have the same format as the input data (i.e. nor­
malised to between +1 and -1). 

Figure 11 :Possible System Configuration using the IMSA100 in Digital Filtering Applications 

(c) 
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Figure 12: Cascading IMSA100 devices 
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(a) cascading of IMSA100 devices using a dedicated input port 
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(b) cascading of IMSA 1 00 devices when a host processor is used A100-12.EPS 

IV.4. The IMSA 1 00 and IIR filters 

Although the IMSA 100 is designed primarily for FIR 
type filter implementations, it can also be used in 
realizing IIR filters. Referring to Figure 5 it can be 
seen that two IMSA 100 devices can be used to 
implement an IIR filter of order 32 or less in the 
direct form. One chip performing the calculation in 
the feed-forward path while the other does the 
feed-back path. Note that in Figure 5 the output of 
the feed-back filter has to be combined with the 
input sequence in a subtractor and fed into the input 
of the second chip. This subtraction can be per­
formed either by the host processor controlling the 
two IMSA 1 OOs or by an external adder. 

A simpler and more elegant technique to implement 
IIR filters using IMSA 100 is to make use of the 
continuous bank swap feature on the IMSA100 
coefficient memories. This allows a single 
IMSA1 00 to be sufficient for the implementation of 
IIR filters whose order is less than or equal to 16. 
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(Before describing how this can be achieved it is 
worth noting that IIR filters generally require con­
siderably fewer stages than their FIR counterparts, 
and as such a 16th order IIR filter implementable 
on a single IMSA100 can be considered as having 
quite a high order). Figure 13 shows the coefficient 
memory allocations in this approach, where a's and 
b's are the feedback and feedforward coefficients 
of the IIR filter respectively (see Figures 5 & 6) and 
are loaded by the host processor. Note that in 
Figure 13 alternate coefficients are set to zero in 
the two memory banks. The chip is also set to the 
continuous bank swap mode so that in one cycle 
the feedback coefficients (a's) and in the next cycle 
the feedforward coefficients (b's) are used in the 
calculation. It will be shown in the following para­
graphs that if the difference between data samples 
and alternate output samples are written to the data 
input register of the IMSA 100, then the remaining 
output samples would correspond to the correct 



filter output. The sequence of operations is as 
follows: 

The host starts the filter operation by writing the first 
data value, xo, to the data input register of the 
I MSA 1 00. Remembering thatthe coefficient alloca­
tion is as shown in Figure 13, the first output of the 
device would be a1xo. Referring to Figure 6, it can 
readily be seen that this is indeed the feed back 
contribution needed to be subtracted from the next 
data sample x1. The host reads this value (a1xo) 
from the data output registers (DOH and/or DOL) 
and stores it and then writes xo, for a second time, 
to the IMSA100 input. This time the coefficient 
memory banks would have been swapped and the 
output would correspond to boxo which can readily 
be confirmed to be the first correct filter output (see 
Figure 6). The host then reads this result as the first 
valid sample of the filtered output. 

Next the host subtracts the feedback factor, read in 
earlier (aoxo), from the second data sample x1, and 
writes the difference to the input register of the 
IMSA100. Remembering that the memory banks 
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are automatically swapped every cycle, the corre­
sponding ouput of the IMSA 100 will be: · 

a2xo + a1(X1- B1Xo) 

Referring to Figure 6 you should be able to confirm 
that this value corresponds to the feedback con­
tribution needed for the third input sample. The host 
reads this value and stores it and as before writes 
the input value (xt-atxo) to the IMSA100 input 
register for a second time. This will yield the second 
valid filtered sample i.e: 

b1X0 + bo(X1 - 81Xo) (17) 

The process is then continued in the same manner. 
The output of the IMSA100 will alternate between 
the feedback contribution and the filtered output 
samples. It should be emphasized that although 
the host is performing a single subtraction for every 
output value, it is the IMSA 100 device which is 
performing the bulk of the processing. Having es­
tablished how the IMSA100 can be configured to 
implement IIR filters, the next section deals with 
some of the design techniques that are used for 
determining the IIR filter coefficients. 

Figure 13: Coefficient Memory Allocation for IIR Filter Implementation 
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I 

IV.S Summary of the IIR filter design 
techniques 

The problem of designing recursive filters is one of 
determining the feedforward and feedback coeffi­
cients (i.e. bn's and am's in equation (8). The design 
techniques for IIR filters can be categorised into 
two basic groups: 
(i) Indirect approaches. 
(ii) Direct approaches. 

IV.5.a. INDIRECT APPROACHES FOR THE 
DESIGN OF IIR FILTERS 
As mentioned earlier digital recursive filters are 
closely related to conventional analogue filters. In 
the indirect method this similarity is exploited and 
the digital filter coefficients are determined from a 
suitable analogue filter, using some form of trans~ 
formation technique. In other words the indirect 
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approach uses the wealth of knowledge already 
available on analogue filters (such as Butterworth, 
Chebyshev and Elliptic filters) and develops a 
corresponding recursive digital filter. This method 
involves the following two steps: 
(1) the determination of a suitable analogue filter 

transfer function H(s) 
(2) transformation and digitization of this 

analogue filter 

Some ofthe most popular design techniques falling 
into the indirect category are: 

(a) Impulse-invariant transformation. 
(b) Bilinear z-transform. 
(c) Matched z-transform. 

These three techniques can be employed to derive 
recursive digital filters from conventional analogue 
filter structures. Before discussing these three 
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techniques the basic characteristics of the common 
analogue filters, from which IIR filters are derived, 
will be briefly reviewed. The starting point in the 
indirect IIR design techniques is often one of the 
following analogue filter types. 
1 Butterworth filters: These filters are 

characterised by the property that their 
magnitude characteristic is maximally flat at the 
origin of the s-plane. Butterworth filters are 
specified by their magnitude-square functions 
i.e: 

I H(sJI2= __ 1_2n 

1 +(~J (18) 

The pole locations in the s-plane are equally 
spaced around a circle of radius wc(sc=jWc)· 
These filters have a monotonically decreasing 
amplitude function with a roll-off of 
approximately 6ndB/decade. Figure 14 shows 
the overall amplitude response of this type of 
filter. 

2 Chebyshev filters: In these types of filters the 
peak magnitude of the approximation error is 
minimized over a prescribed band of 
frequencies and is also equiripple over the 
band. Chebyshev filters are specified by the 
magnitude-square function: 

2 1 
IH(s)l ~ J 1 +t2d ~ (19) 

Sc 

where CN(s) is a Chebyshev polynomial of order 
N. The parameter E is used to specify a 
magnitude function with equal ripple in the 
pass band and monotonic decay in the stop 
band. Figure 15 shows the magnitude-square 
transfer function for the Chebyshev filter 
(type I) where the amplitude of the ripple is 
given by: 

0=1--1-
-f1+7" (20) 

The poles of the Chebyshev filter lie on an 
ellipse determined from the parameters E, N 
and sc. Chebyshev filters of type II on the other 
hand have monotonic behaviour in the pass 
band (maximally flat around wo) and exhibit 
equiripple behaviour in the stop band. For 
further details refer to references 1 & 2. 

3 Elliptic filters:These filters exhibit a magnitude 
response that is equiripple in both the pass 
band and the stop band. These filters are 
optimum in the sense that for a given order and 
for a given ripple specification the transition 
band is the shortest possible. Elliptic filters are 
specified by the magnitude-square transfer 
function: 

IH(jro)l 2 1 (21) 
1 + E 2C'I'.{ro) 

Where CN(ro) is a rational Chebyshev function 
involving elliptical functions. Figure 16 
illustrates the magnitude-square response for 
an elliptic filter. 

Figure 14 : Frequency Response of the Butterworth Filter 

n=1 

frequency 
A100·14.EPS 
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Figure 15 : Frequency Response of the Chebyshev Filter (type I) 

Figure 16 : Frequency Response for an Elliptic Filter 

It is not possible to discuss all analogue filter types 
in this applications note as the main objective here 
is to summarize the basic design technique which 
allow transformation of analogue filters to digital 
realizations. Interested readers can refer to 
numerous books available on analogue filters. 

Having decided the type and the specification of 
the analogue filter that satisfies the requirement, 
the next step in the indirect design method is to use 
one of the three following techniques to obtain the 
corresponding digital filter. 

IV.5.b. IMPULSE INVARIANT 
TRANSFORMATION 

One of the most common techniques for deriving a 

frequency A100-15.EPS 

frequency 
A100-16.EPS 

digital filter from a given analogue filter is the 
impulse-invariant transformation. As the name sug­
gests this technique consists of using a sampled 
version of the impulse response of the analogue 
filter as the impulse response of the digital filter, i.e. 
the transformation does not change the impulse 
response of the analogue filter. Figure 17 illustrates 
the relationship between the analogue and the 
resulting digital responses of a typical low-pass 
filter obtained via the impulse-invariant method. 
The important point to note here is that sampling 
the analogue impulse response results in the fre­
quency response of the resulting digital filter being 
periodic with a period equal to the sampling fre­
quency fs. This means that the digital filter will have 
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a frequency response similar to a repetitive version 
of that of the analogue filter. If the frequency re­
sponse of the analogue filter does not decay to near 

zero beyond IE then serious aliasing would occur 
2 -

and the digital filter response would be corrupted. 
This aliasing problem means that this design tech­
nique is not suitable for high pass filters. However 
for low-pass and band-pass filters the problem can 
be avoided by choosing the sampling frequency 
high enough to ensure that the magnitude of the 

analogue filter response is negligible beyond ~· 
(Note that the IMSA100 is capable of a sampling 
rate of 2.5MHz for 16-bit data and coefficients). 

To demonstrate how the impulse-invariant transfor­
mation is used to digitize an analogue filter, con­
sider the simple case of an analogue filter with an 

impulse response hacn=Ae-a.t i.e. a simple RC filter 

(the s-domain transfer function of this filter is ..A). s+a 
We start by sampling the impulse response of this 
analogue filter with a sampling interval T to obtain 
the corresponding impulse response for the digital 
filter, i.e. 

ha (kT) =A e-a.kT (22) 

The z-transform of equation (22) is 

Hd (z) = L,. A e-akT [k (23) 

k=O 

Noting that as equation (23) is a geometric series 
the result of the summation would be 

A 
Hd (Z) 1 -1 -aT -z e 

(24) 

Equation (24) provides the z-domain tran·sfer func­
tion of the resulting digital filter. To determine the 
filter coefficient (bk'S and am's), equation (24) can 
be compared with equation (8). For this simple 
example it can be seen that we have 

a1 =- e-aT and bo =A. 

In this example, for the sake of clarity, the impulse 
responses were used to arrive at the z-domain 
transfer function. As analogue filters are often spe­
cified in the s-domain, it is more convenient to 
perform the impulse-invariant transformation di­
rectly from the s-domain to the z-domain. It should 
be obvious to the reader from the previous example 
that the required mapping is of the form 

1 1 --=> 
s+ a 1- e kT z' (25) 

Figure 17: The Impulsive lnvariance Transformation Relationship between Analogue and Digital 
Impulse and Frequency Responses 
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It can be shown that this is indeed a general 
mapping (reference 1 ), applicable to the impulse­
invariant method for both real and complex s-plane 
poles. 

As a second example consider the two-pole anal­
ogue filter specified by: 

Ha(S) (S+3)2(S+1) 

expanding using partial fraction yields 

H S __ 1 ___ 1_ (26) 
a()-s+1-s+3 

Using equation (25) the digital transfer function 
would be: 

1 - e-T z 1 1 - e-'JT z-1 

(27) 

Again by comparing equation (27) with (8) we 
obtain the filter coefficients, bo = 0 b1= e-T_e-3T 
and 81 =- (e-T+e...,"3T) 82 = e-4T 

As described earlier the sampling period T is 
chosen to ensure negligible aliasing in the filter 
transfer function. 

IV.S.c. THE BILINEAR Z-TRANSFORMATION 

Another indirect design method commonly used for 
recursive filters is the bilinear z-transformation. 
The major characteristic of this transformation is 
that it avoids the aliasing problem which was inher­
ent in the impulse-invariant transformation. Given 
an analogue transfer function H(s), let us rename 
the variable s to Sa to indicate the reference to the 
analogue world i.e. H(s) = H(sa). Now let us define 
a new variable Sct related to sa by the following 
mapping: 

(28) 
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where T is the sampling period. 

Since the analogue frequency variable roa is related 
to the s-plane variable by Sa=iroa, we can also 
express the above mapping as: 

(29) 

where Wct is defined as Sct=i roct. 

Starting from an analogue transfer function HGroa), 
Figure 18 illustrates the effect of this mapping on 
this transfer function. It can be seen from this 
diagram that the bilinear transformation com­
presses the entire analogue frequency range 
(roa=O -7 oo) into a finite range equal to half the 
sampling frequency. This means that the spectral 
folding problem is completely eliminated and alias­
ing is therefore avoided. This compression of anal­
ogue frequency axis is usually referred to as fre­
quency warping. 

The price that is paid for this advantage is a dis­
torted digital frequency scale resulting from this 
frequency warping. It can be seen from Figure 18 
that due to the non-linear mapping the specification 
of the resulting filter, such as the cut-off frequency, 
would be somewhat different from the starting anal­
ogue filter. This distortion can be taken into account 
in the course of digital filter design. For example 
the cut-off frequency of the original analogue filters 
are modified slightly so as after the mapping the 
resulting filter has the desired cut-off frequencies. 

Returning to the transformation equation (28), we 
can rewrite it as: 

Sa=~(~:~::~) (30) 

and remembering that z-1 = e-sdT we can write 

(31) 
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Figure 18: Graphical Illustration of the Bilinear-z-transform 
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Equation (31) provides the means for bilinear trans­
formation directly from the s-domain to the z-do­
main suitable for digital filter implementation. To 
illustrate how the bilinear transformation technique 
is used consider the following example: 

Filter specification 
Low pass: 0 ~ 1OkHz pass band 

Sampling rate: 100kHz 

Transition band: 1OkHz to 20kHz 

Stop-band attenuation: -1 OdB (starting at 20kHz) 

Filter must be monotonic in pass and stop band. 

Design 
The monotonicity requirement indicates a Butter­
worth filter (see previous sections). 

We have: 
- digital filter cut-off frequency=rocct=2 rr x 10000 
- start of digital filter stop band=rosct=2 rr x 20000. 

Since the sampling rate is 1OOkHz, the sampling 
period would be T =1 o·5 

therefore rocct T =0.2rr and rosd T =0.4rr 
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Using equation (29) we can calculate the corre­
sponding analogue filter frequencies i.e. 

2 
analogue filtercut-offfrequency = Wca = T tan (0. 1n) 

= 0.6498 X 1 05 

2 
start of analogue filter stop band = Wca = T tan (0.1n) 

=1.4531x105 

The required order of the Butterworth filter can be 
determined by using equation(18) and ensuring at 

least 1 OdBs attenuation at ro =rosa= 1.4531 x 105 

i.e. 

or 

10 lo [ 1 + (1.4531x10s)2"]= 10 
g l 0.6498x1 05 

1 + 1.4531x10 = 10 ( 5)2n 
0.6498x105 

This gives n=1.367, therefore we choose n=2. 

A second order butterworth filter with a cut-off at 
roca = 0.650 x 1 05 has two equally-spaced poles on 
a circle of radius roca (reference 1) given by 

St, 82 =- 0.6498 X 105 (0.7071 ± 0.7071j) 

= -04595 (1.0 ± j) X 1 05 



and the transfer function is given by: 

4.223. 109 
H(s) = 51 52 

(S- S1)(S- S2) ~ + 0.919. 105 + 4.223. 109 

Now we apply the bilinear-z transformation by sub­
stituting for s in the above transfer function from 
equation (31). This gives the following digital filter 
transfer function: 

H(z) 0.0675 + 0.1349[1 + 0.0675z-2 (32) 
1-1.1430z-1 +0.4128z 2 

The digital filter coefficients can be obtained by 
comparing equation (32) with (8) giving: 

bo =0.0675 
b, =0.1349 aJ=-1.1430 
b2 = 0.0675 a2= 0.4128 

These coefficient values are then expressed in 
binary with the number of bits governed by the 
required accuracy. The factors affecting the 
necessary accuracy are discussed in section 5 of 
this application note. 

Matched z-transform 
This transformation is a direct mapping from the 
poles and zeroes in the s-plane to the poles and 
zeroes in the z-plane. 

In general the two previous method i.e. the impulse 
invariant and the bilinear transformations are 
preferred to the matched z-transform as there are 
many cases where the matched z-transformation 
is not applicable. For this reason this technique is 
not detailed here. It would be sufficient to point out 
that the mapping is defined by the replacement 
relationship: 

IV.5.d. THE DIRECT DESIGN TECHNIQUES 
FOR IIR FILTERS 

(33) 

The IIR design techniques described so far were 
based on transforming a known analogue transfer 
function into the required digital filter transfer func­
tion. It is however possible to design digital IIR 
filters directly without reference to an analogue 
filter. Direct design methods fall into two categories 
namely direct closed form designs and optimisation 
techniques. 

The direct closed form design techniques begin 
with the desired response of the filter from which 
one can often decide where to place poles and 
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zeroes to approximate this response. These tech­
niques are not very common and a:s such will not 
be discussed here. 

The second classes of direct IIR filter design tech­
niques are based on computer optimisation. In 
these approaches the set of design equations can­
not be solved explicitly, instead mathematical op­
timization techniques are employed to determine 
the filter coefficients that minimize some error crite­
rion, subject to a set of desigri equations. The 
algorithms involved in these optimisation tech­
niques are of an iterative nature arid are terminated 
when the error reaches a minimum or the number 
of iterations exceeds a specifieq limit. 

Among the most commonly used optimisation tech­
nique is one which minimizes the pass-band ripples 
in filters exhibiting a given stop~band attenuation. 
This technique is sometimes referred to as the 
minimax method and the optimization algorithm 
involved has been developed by Fletcher and Po­
well (reference 7). The Fletcher~Powell optimiza­
tion algorithm generates the filter coefficients by 
using a convergent descent method. -

The spectral flatness approach is_ another optimis­
ation technique and is based on-the fact that multi­
plying the desired frequency response by its in­
verse should result in unity throughout the fre­
quency spectrum (i.e. a flat spectral line). Any 
deviations from the ideal response would result in 
ripples in this flat spectral line. Optimisation tech­
niques have been developed wl)ich attempt to 
minimize these ripples (reference 8j. )he difficulty 
with this technique is the modeling' of the desired 
frequency response. . ·. · · 

Mean-square-error optimization techniques have 
also been developed for IIR filter design. One such 
technique has been described by Steiglitz (refer­
ence 9) which involves minimizing the. square of the 
difference between actual filter behaViour and the 
desired performance. This algorithm searches an 
error .vs. design-parameter curve for a local mini­
mum. 

The details of the above optimisation techniques 
are beyond the objectives of this application note. 
However the references given should prove ade­
quate for interested readers. 
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V. FINITE WORD-LENGTH CONSIDERATIONS 
AND PROBLEMS 

In implementing digital filters both the input 
samples and the filter coefficients have to be quan­
tised and expressed in a limited number of bits. In 
the IMS A100 chip both the coefficients and data 
samples can be quantized up to 16-bits of accu­
racy, although smaller word-lengths can be used if 
desired. 

The problems of finite word length in digital filters 
apply to both FIR and IIR filters but their implica­
tions are much more severe for the II R filters, due 
to their inherent feedback nature. In the fixed-point 
implementations of digital filters it is usual to nor­
malize the numbers so as to make their absolute 
values less than one i.e. in the form of 

dN-1 . dN-2 dN-3 --------- ds d4 d3 d2 d1 do 

where dn represents the nth bit in the word and (.) 
indicates the binary point. Using this format (and 
two's complement notation) the number 

0.1111 ... 1111 

would represent a value very nearly equal to + 1, 
while the number 

1.0000 ... 0000 

would represent a value equal to -1.0. 

If purely integer numbers were to be used the 
process of truncation or rounding after multiplica­
tions would become meaningless. However using 
the above fractional-number representation, where 
the numbers are normalized to be less than one, 
the problems would not arise as the product of two 
numbers which are less than one would also be 
less than one. 
In general there are three sources of error arising 
in the implementation of digital filters these are: 
(i) Finite precision of the filter coefficients 
(ii) Limited word length of the input data 
(iii) Round-off and truncation errors in the 

multiplication and addition operations. 

The finite precision in the representation of the filter 
coefficients will obviously cause the frequency re­
sponse of the filter to depart to some extent from 
that desired for both FIR and IIR filters. 
Furthermore in the case of the recursive IIR im­
plementation, because of the existence of feed­
back paths, this finite precision may cause insta­
bilities in the filter behaviour. This happens be­
cause the inaccuracies may move the z-plane 
poles outside the unit circle hence causing insta-

bilities. The chances of this happening depends on 
how close the poles are to the unit circle in the first 
place. If multiplication and addition operations are 
followed by truncation and rounding (in order to 
contain word growth) further difficulties may arise. 
These problems may manifest themselves in un­
desirable oscillations in the form of 'limit cycle' or 
'overflow' oscillations (discussed later). It is there­
fore absolutely· essential for the filter behaviour to 
be simulated using the precision and roundings 
involved in the intended implementation. This is 
particularly relevant to recursive IIR filter where a 
risk of instability exists. 
One of the consequences of rounding and quanti­
sation in the digital recursive(IIR) filters is the limit­
cycle phenomenon, which takes the form of a 
stable periodic non-zero output for zero or constant 
input. The limit cycle behaviour of a digital filter in 
general is complex and difficult to analyse. How­
ever for simple first order filters, it is possible to 
illustrate the effect by way of an example. Consider 
the first order recursive filter with the following 
equation: 

y (n) = 0.09 x (n) + 0.91 y (n - 1) 

Assume that each output y(n) gets rounded to the 
nearest integer, also a·ssume that the input is con­
stant at 100 and the previous output is 90. 
The following table shows the resulting rounded 
output sequence for each iteration.The last column 
shows the perfect output (without rounding) for 
comparison .. 

n x(n) y(n) rounded perfect y(n) 
y(n) 

0 100 -- 90 --
1 100 90.9 91 90.9 

2 100 91.81 92 91.72 

3 100 92.72 93 92.46 

4 100 93.63 94 93.14 

5 100 94.54 95 93.76 

6 100 95.45 95 94.32 

7 100 95.45 95 94.83 

8 100 95.45 95 95.30 

9 100 95.45 95 95.72 

10 100 •95.45 95 96.11 

.. ... . .... .. ..... 

.. ... . .... .. ..... 

.. ... .. ... .. ..... 

.. 100 95.45 95 100.0 
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It is observed that the output sticks at a value of 95. 
However if the same filter is implemented with very 
high precision and no rounding the filter output 
would closely approach 100 (last column in the 
table). 

If we approach the limit from the opposite .side by 
starting with a value of y(n) of say 110, the output 
would arrive at a limit of 1 05. You can see from this 
example that the system has a dead zone of ± 5 
units around the ideal output of 100. 

In fact it can mathematically be shown that for a 
first-order recursive filter of the form 

y (n) = b x (n) +a y (n-1) 

The dead zone is given by 
9_ 

I dead zone I~ 1 _~ al (34) 

where q is the quantisation step. In the above 
example a quantised step of 1 was used and 
equation (34) gives a dead zone of± 5 too. 

For second-order systems similar results to (34) 
have been derived in the literature (reference 1 ). 

Overflow oscillation is another problem associated 
with digital recursive filters. In the I MSA 1 00 chip the 
full internal precision ensures that no overflow oc­
curs in the multiply-accumulator array. The only 
source of possible overflow is the external addition 
which is performed in combining the feedback 
terms with the input samples (see section 4.4). A 
simple but effective way to eliminate these oscilla­
tions is to perform this addition in a saturating 
manner (similar to analogue adders). This oper­
ation can easily be taken care of by the controlling 
host processor. 

In the IMSA100 device the data and coefficients 
can be expressed to a precision as high as 16 bits. 
The 32 multiplications and additions are carried out 
to 36-bit precision. This ensures that no overflow 
occurs in the multiply-accumulation array (unless 
all the coefficients and 32 consecutive data items 
have values equal to the most negative 16-bit 
number i.e. 1 000000000000000 in binary, which is 
of course highly unlikely). The selector at the output 
of the multiply and accumulate array allows the 
rounding and selection of 24 bits out of this 36 bits. 
The combination of full internal accuracy, the se­
lector functionality and the fact that the IMSA100 
devices can easily be cascaded allows high quality 
FIR filters to be readily implemented. As described 
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earlier the device can also be used to implement 
effi~ient IIR filters only in direct forms. It is well 
known that for high order filters direct implementa­
tions of IIR filters are more prone to instabilities 
compared to cascade or parallel arrangements. 
However the full internal precision of the IMSA 100 
combined with comprehensive filter simulations 
should minimize these instabilities. It should how­
ever be emphasized that it is possible to implement 
a high order high precision IIR filter in the cascade 
form on the IMSA 100 at the expense of processing 
speed. In this case the IMSA 100 should be used to 
implement low order (2nd or 4th order) sections of 
a cascade arrangement in turn by reloading suit­
able coefficients. The functionality of the whole filter 
is obtained by recirculating the first output batch 
through the chip with its coefficients modified to 
implement the 2nd section in the cascade array and 
soon. 

For the IIR filter implementations Figures 11 c & 11 b 
can be considered as possible system configura­
tions. 

VI. ADAPTIVE FILTERS 

So far we have discussed digital filters with fixed 
characteristics. Fixed filters are used in many prac­
tical situations to combat noise or interfering sig­
nals (e.g. a matched filter) or to select a desired 
frequency band (e.g. a band-pass filter). In digital 
signal processing the parameters of such fixed 
filters are determined once and remain unchanged 
during processing. Adaptive filters on the other 
hand automatically adjust their own parameters 
and seek to optimize their performance according 
to a specific criterion. The adaptive nature of such 
filters makes them particularly suitable for situation­
s where signal properties are unknown or variable 
with time. 

Figure 19 illustrates the basic structure of an adap­
tive filter. The input signal x(t) is filtered or weighted 
in a programmable filter to yield an output y(t). The 
filter output y(t) is then compared with a reference 
(sometimes called a training signal) waveform to 
yield an error signal e(t). This error is then used to 
update the filter coefficients in such a way that the 
error is progressively minimized. Several algo­
rithms for updating the filter coefficients have been 
developed and can be found in references 10, 11 
& 12. 
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One example of adaptive filtering is echo cancella­
tion in telephony. Echoes are the result of imped­
ance mismatches in the communication circuits. 
The hybrid couplers which are used at the interface 
between two-wire and four-wire circuits are a major 
source of echoes. Figure 20 shows how an adap­
tive filter arrangement can be used to cancel these 
echoes at the hybrid interface. Notice that in this 
case the training signal contains the echo, while the 
input to the adaptive filter is the signal arriving at 
the hybrid. Effectively the filter adaptively models 
the echo path and produces a synthetic antiphase 
echo return which cancels the echo in the 4-wire 
path returning from the hybrid. 

Adaptive filters have application in low-bit rate 
speech coding based on linear prediction where 
the filter coefficients, afteradaption, are transmitted 
instead of the speech signal itself. 

The programmability of the IMSA100 can be ex­
ploited in the implementation of adaptive filters as 
well as fixed filters discussed earlier. 

Figure 19: Basic Structure of an Adaptive Filter 

Adaptive algorithm 

Programmable filter 

r(t) 

A100·19.EPS 

Figure 20 : Application of Adaptive Filtering Techniques to Echo Cancellation 

Echo 

e(t) + 

Transmitted signal 
A100·20.EPS 
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VI. REFERENCES 

I. INTRODUCTION 
In the time-domain representation, signals are ex­
pressed as a function of time. For example X= Ae·at 
is a time-domain description of a signal whose 
amplitude decays exponentially with time. 

In the 18th century J.B. Fourier showed any signal 
that can be generated in a laboratory can be ex­
pressed as a sum of sinusoids of various frequen­
cies. In otlierwords each signal can be said to have 
a frequency spectrum represented by the ampli­
tude and phases of various sinosoidal compo­
nents. The frequency spectrum of a signal com­
pletely specifies it and is referred to as frequency­
domain description of the signal. 
The Fourier integrals provide the means for obtain­
ing the frequency-domain representation (the 
spectrum) of a signal from its time-domain repre­
sentation or vise-versa, i.e. 

Fourier Transform: 

X(ro) = C x(t)e-1"'1dt (1) 

AN542/0792 
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Inverse Fourier Transform: 

1 r-x(t) = 2rc __ X(ro)ei"'1dro (2) 

where x(t) is a time-domain signal, X(ro) is the 
frequency spectrum of x(t) and ro is the frequency 
variable. 

These transforms are fundamental to the descrip­
tion of many real world phenomena in the fields of 
science and engineering. In the area of signal 
processing the Fourier transform is an important 
mathematical (and nowadays practical) tool in un­
derstanding, analysing and solving system-level 
problems. The Fourier transform allows us to trans­
late time serial information into the frequency do­
main in a reversible way. The components of a 
signal, although dispersed in the time domain, may 
have restricted occupancy or a characteristic rela­
tionship in the frequency domain. In fact many 
physical processes can be categorised by the fre­
quencies they generate and their relative strength. 
This is one reason why the Fourier transform, with 
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its ability to segregate frequency components of a 
signal, has gained such an importance in many 
signal processing environments. 

Apart from the ability of the Fourier transform to 
provide spectral information, many signal process­
ing functions such as correlation, filtering and 
beamforming can be expressed in terms of the 
Fourier transform and its inverse. For these reason­
s considerable effort has gone into the develop­
ment of efficient algorithms for evaluating the Fou­
rier transform. The continuous-time Fourier trans­
form, given by equation (1), can be made suitable 
for digital computation by sampling the time and 
frequency variables and limiting the computation to 
a finite set of data points. This modified version of 
the Fourier Transform is often referred to as the 
Discrete Fourier Transform (DFT) and will be dis­
cussed in more detail in the next section. 

Many algorithms have been developed for efficient 
digital computation of the DFT. Until recently the 
digital multipliers needed to implement OFT's were 
costly, large and relatively slow, and the general 
purpose microprocessors were extremely slow at 
performing multiplications. Consequently it was 
necessary to calculate OFT's using a minimum 
number of multiplications and to use data and 
coefficient storage economically and this led to 
development of several Fast Fourier Transform 
(FFT) (references 1 & 2) algorithms. These FFT 
algorithms make use of the redundancies, that 
occur in the DFT, to reduce the arithmetic oper­
ations involved. Most FFT algorithms were de­
signed simply to minimise the total number of multi­
plications required to calculate the DFT, often at the 
expense of an increase in the number of additions, 
memory accesses and control complexity. One 
such algorithm is the Gooley-Tuckey radix-2 FFT 
algorithm which necessitates a data size equal to 
a power of two (N=2n). Winogard FFT algorithms 
on the other hand requires that the number of data 
points to be prime. Both algorithms simply minimize 
the number of multiplications in the DFT by the use 
of redundancies resulting from the particular choice 
of the data size. These algorithms are particularly 
suitable for general-purpose computers and micro­
processors where the major limit on processing 
speed is the time taken to perform the multiply 
instruction. 

Other algorithms have been developed which map 
the DFT process into particular hardware struc­
tures. Two such techniques are the Rader's Prime 
Number Transform (PNT) (reference 3) and the 
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Chirp-Z Transform (CZT) (reference 4) which con­
vert the DFT into circular correlation/convolutions. 
These algorithms are particularly suitable for im­
plementation using transversal filter type struc­
tures. In the past, CCD and SAW transversal filters 
have been used to implement high-throughput 
wide-bandwidth DFT processors using these algo­
rithms. The analogue nature of the CCD and SAW 
technologies has restricted the precision of these 
processors. 

The availability of the IMSA100, the first high per­
formance cascadable digital transversal filter, 
means that the same algorithms can now be im­
plemented digitally offering both high speed and 
high accuracy. This application note deals with the 
concepts behind these algorithms and their im­
plementations using the IMSA 100 signal proces­
sor. Generalised mapping techniques which facili­
tate the DFT evaluation of a long data sequence 
via a number of short transforms are also discussed 
(The radix-2 FFT is a special case of these more 
general partitioning techniques). The approach de­
scribed here is particularly suitable if a long DFT is 
to be evaluated with a transversal filter of limited 
size. Also, these decomposition methods are ap­
plicable to concurrent architectures and as such 
provide the basis for the trade-off between speed 
and cost involved in a particular implementation. 
These issues are of major importance when com­
bining the IMSA100(s) with the INMOS transputer 
family of parallel processors. 

Figure 1 a shows the structure for an N-stage ca­
nonical transversal filter where the output is the 
weighted sum of the N most recent input samples. 
The IMSA100 implementation of the transversal 
filter is depicted in Figure 1 b where the multi-input 
summation of the canonical form has been re­
placed by a delay and add chain. You should be 
able to convince yourself that the two structures in 
Figure 1 have the same functional behaviour. The 
main difference is that in Figure 1 b the partial 
product terms are passed down the delay-and-add 
chain whilst in Figure 1 a, the input samples are 
delayed and the sum of products is calculated 
simultaneously. 

A simplified functional diagram for the IMSA 100 is 
shown in Figure 2. The major processing part of the 
chip incorporates 32 multipliers and a 32-stage 
delay-and-add chain. For the IMSA100 the input 
data word length in 16 bits. The coefficient word 
length can be programmed to be 4, 8, 12 or 16 bits. 
The data throughput ranges from 2.5 million 
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samples/s to 1 0 million samples/s depending on 
the coefficient word size. Two complete sets of 
coefficient memories are provided. At any instant 
one set of coefficients is applied to the transversal 
filter, whilst the other set can be accessed via a 
standard memory interface (capable of 1 DOns cycle 
time). The function of the two coefficient memories 
can be exchanged by writing to control registers. 
Further this exchange can be made continuous, i.e 
alternate sets of coefficients can automatically be 
selected for successive computation cycles. This is 
particularly useful for complex number processing. 

Data input and output are available both through 
dedicated ports or via the memory interface. This 
selection can be programmed via the control and 
status registers in the IMSA 100. 

To preserve complete numerical accuracy, no trun­
cation or rounding is performed on the partial pro­
ducts in the multiplications and delay-and-add 
chain. The output of the chain is calculated with a 
precision of 36 bits which is sufficient to ensure no 
overflow occurs (the only time that the output of the 
delay-and-add chains exceeds 36 bits is when all 
32 coefficients and 32 successive input samples 
have the maximum possible negative value i.e. 

Figure 1 : Transversal Filter Architecture 

Output 

1 000000000000000 in two's complement binary 
notation, this is of course highly unlikely). A pro­
grammable barrel shifter is located at the output of 
this chain, which allows 24 bits (starting at bits 7, 
11, 15 or 20 of the full 36 bit result) to be selected 
and rounded for output. To allow devices to be 
cascaded without any external components, a 32-
stage 24-bit wide shift register and a 24-bit adder 
are included on the chip. For cascading purposes 
the output of one chip is connected directly to the 
cascade input of the next. 

The control registers accessible via the memory 
interface allows various operational parameters to 
be programmed. For the full detail of the specifica­
tion you are advised to refer to the IMSA 100 data 
sheet. 

In the following parts of this application note the 
basic concepts of OFT will be reviewed and some 
algorithms for its evaluation will be summarized. 
This is followed by a detailed description of those 
OFT algorithms suitable for implementation using 
the I MSA 1 00 transversal filter. A multi-dimensional 
mapping technique is also described which allows 
efficient computations of long-length DFTs via the 
IMSA 100 implementations. 

(a) canonical transversal f1ter architecture 

(b) IMSAIOO implementation of the transversal filer A100·01.EPS 
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Figure 2 : User's Model of the IMSA 100 

16 

Update coefficient registers 

Active coefficient registers 

Multiplier 
Accumulator Array 

32 cycle delay (24 bits) 

II. THE BASIC CONCEPTS OF OFT 

The equation for the Fourier transform and its 
inverse (equations 1 & 2) can be made suitable for 
digital processing by discretizing both the time 
variable t and the frequency variable ro; and by 
constraining the integration to finite limits. Referring 
to equation 1, for the forward transform, this can be 
done by making t=nT and ro=kroo. Where T is the 
sampling period of the time function and roo is the 
frequency resolution of the discrete spectrum. If the 
integration limits are confined over N time samples 
for which N independent frequency samples can be 
calculated we have 

n = 0,1 ,2,3, ........ ,N-1 
k = 0,1 ,2,3, ........ ,N-1 

The Fourier-transform integral then becomes a 
Fourier-transform sum given by: 

N-1 

X(kro0 ) = 2, x(nT) e-JkOJonT k = 0, 1, ... N - 1 (3) 
n=O 

It can be shown that the frequency resolution in the 
f-domain is given by: 

2rt 
roo= NT (4) 

Substituting this in (3) gives: 
N -1 

X(kro0) = 2, X(nT) e-2 "1kniN k = 0, 1, ... N - 1 (5) 
n=D 

For convenience the terms T and roo are usually 
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dropped from the indicies giving the DFT equation 
as: 

N-1 N-1 

X(k) = 2, x(n) e-2•Jnk/N = 2, x(n) wnkN (6) 

n=O n=O 
k = 0, 1, ... N-1 

where 

WN = e-2•JIN =cos(~ J- j sin(~ J (7) 

The inverse discrete Fourier transform (IDFT) can 
be derived in a similar manner from its correspond­
ing continuous form and is given by: 

N-1 N-1 

x(n) = ~ 2, X(k) e2"jnk/N = ~ 2, X(k) Wfpk (8) 
k=O k=O 

n = 0, 1, ... N- 1 

Note that the DFT and its inverse, IDFT, are very 

similar, the only difference is the factor~ and the 

negative exponent in the IDFT. This similarity has 
important practical significance as it allows an al­
gorithm or a hardware developed for DFT to be 
used for IDFT with minor modifications. For 
example an inverse DFT on the data sequence 
x(O), x(1) ... x(N-1) can be carried out by first 
reversing this sequence to generate a new data set 
x'() such that x'(O)=x(N-1), x'(1)=x(N-2) ........ x'(N-
1) = x(O) and then performing a OFT and dividing 
the result by N . This technique works simply be­
cause x'(k) = x(-k), (In the OFT both x(n) and X(k) 
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are assumed to be periodic) which converts the 
positive exponential in (8) into a negative one, 
representing a OFT. For this reason any algorithm 
or implementation in the following subsections will 
only be described for OFT as the extension to an 
lOFT is trivial. 

It is worth noting that some authorities write the 
OFT and its inverse as: 

N-1 

X(k) = ~ 2:, x(n) e-2•Jnk/N OFT 
n=O 

N-1 

x(n) = 2:, X(k) e2•ink/N lOFT 
k=O 

i.e. the factor * is applied to the OFT rather than 

its inverse. This version can be seen to have a 
physical meaning since X(O) , as defined, repre­
sents the average of the sampled time waveform 
i.e. the 'd.c.' value. Other authorities express the 
OFT and its inverse as: 

N-1 

X(k) = ~ 2:, x(n) e-2•Jnk/N OFT 
n=O 

N-1 

x(n) = 1 2:, X(k) e2"ink/N lOFT 
. ~ 

k=O 

This last formulation is necessary if the power 
contents of the time-domain and frequency-domain 
signals are to be identical. 

Throughout this application note, the definitions 
given by equations (6) and (8) are used for OFT 
and lOFT. However, the techniques described here 
are applicable to all three formulations of the OFT 
and its inverse. 

Ill. ALGORITHMS FOR EFFICIENT 
EVALUATION OF OFT 

From equation (6), it is apparent that the direct 
evaluation of the OFT is very much computation 
intensive. Assuming complex data, x(n)=xr(n) + j 
xi(n), we have 
X(k) =X R(k) + jX l(k) = 

N-1 

=n~o [xr(n) + jxi(n)] cos(2~k J- j sin(2~n J 
or 

27!nk . . 21lnk N-1 ( J 
R(k) = n~o xr(n) cos( N )+ Xl(n) sm N (9a) 

and 

N-1 

l(k) = n~o xi(n) cos(2~k )- xi(n) sin(2~k) (9b) 

where k=O, 1 ,2 ...... N-1, XR(k) and Xl(k) are the real 
and imaginary parts of the spectrum respectively. 

From equation (9) it can be deduced that the direct 
evaluation of OFT involves 4N2 multiplications and 
approximately 4N2 additions. In these estimates 
the computations involved in the evaluation of the 
trigonometric functions, (sin and cos) have been 
ignored as it is possible to precalculate the trigon­
ometric values in a look-up table and use them 
appropriately. Historically, multiplications were very 
slow compared to other operations, therefore algo­
rithms were developed to minimize the number of 
required multiplications at the expense of other 
operations. These algorithms made use of the 

cyclic nature of the exponential exp( -2~nk) to 

reduce the number of multiplications involved. 

To demonstrate some of the resulting redundan­
cies, consider the case where N is even. It is fairly 
straightforward to show that for this case 

W~=W~k (10) 
2 

and 

k k.,.ti 
WN=-WN2 (11) 

One algorithm which uses these types of redun­
dancies is the Gooley-Tuckey radix-2 FFT (refer­
ence 1 ). This algorithm requires the number of data 
points to be equal to a power of two, ie N=2m where 
m is an integer. Using the identities given by (1 0) 
and (~1) the algorithm expresses theN-point OFT 

in terms of two ~-point OFT's. Then the ~-point 

OFT's are expressed as two ~-point transforms 

using identities similar to (1 0) and (11 ). This decom­
position is carried out until all the OFT's involved 
are only two-point transforms. The net result of this 
decomposition is a considerable reduction in the 
number of multiplications. In fact it can be shown 
that for the Gooley-Tuckey radix-2 FFT algorithm 
the number of multiplications involved is approxi­
mately 2N log2(N) and the number of additions is 
3N log2(N). Compared to the 4N2 operations in­
volved in the direct OFT calculation, for a large N, 
the radix-2 FFT algorithm reduces the number of 
multiplications and additions considerably. 
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Another algorithm which also minimises the num­
ber of multiplications is Winogard's prime-length 
transform (reference 2). This algorithm is applic­
able to cases where the data size is a prime num­
ber. In practice this algorithm is used only for 
short-length transforms and mapping techniques 
are used to extend it to large data sizes (references 
5 & 6). 

The argument behind the efficiency of these algo­
rithms is only valid if the multiplication time is longer 
than other operations such as indexing and mem­
ory accesses. This is indeed the case for most 
general-purpose processors. 

Todays digital technology is capable of providing 
extremely powerful processing engines which 
mean that the minimization of the number of multi­
plications is not always the best approach. For high 
performance systems, other issues such as the 
memory bandwidth, architecture efficiency and 
parallelism potential have to be seriously con­
sidered. The advances in digital technology allow 
other algorithms particularly those which map the 
DFT onto special VLSI hardware structures to be 
exploited. The following sections deal with algo­
rithms that map the DFT into correlation/convol­
utions, ideal for implementation using the IMSA 100 
transversal filter. This algorithms make use of the 
higher level functional nature of the device and its 
on-chip memory to minimise the required host's 
memory bandwidth. For this reason the combina­
tion of a medium-speed microprocessor and the 
IMSA 100 device(s) results in a very high perfor­
mance system capable of competing ·with bit-slice 
DSP processors. 

IV. OFT ALGORITHMS SUITABLE FOR THE 
IMSA100 IMPLEMENTATION 

There are basically two algorithms which map the 
DFTinto a correlation (convolution) process. These 
are 
(i) the Prime Number Transform (PNT) 
(ii) the Chirp-Z-Transform (CZT) 

The PNT was developed by Radar and is applic­
able when the number of data points is prime. The 
CZT on the other hand is applicable to any data 
size; it can, however, be simplified if the data size 
is an even number. The following two sections deal 
with each one of these algorithms and their im­
plementations using the I MSA 1 00 transversal filter. 
The final part of this application note describes 
mapping techniques which allow the DFT of a large 
number of data points to be evaluated via a number 
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of short transforms. This mapping technique is of 
vital practical significance when implemanting PNT 
& CZT processors. 

IV.1. Rader's Prime Number Transform 
The PNT algorithm has its origin in number theory 
(reference 7) and consists of three seperate oper­
ations. The first is a permutation (re-ordering) of the 
input data. The second operation is correlation of 
the permuted input data with permuted discrete 
cosine and sine samples. The third operation is a 
repermutation, which yields the DFT components 
in the conventional order of linear frequency. This 
final stage may be ignored in applications which 
also involve an inverse DFT. 

In this section the mathematical background for the 
PNT will be summarized. Where necessary 
examples are provided to assist in the under­
standing of the concepts. 

If the standard DFT equation, i.e. 
N-1 N-1 

X(k) =I, x(n) e- 2"1"k1N =I, x(n) W~k (12) 
n~o n=O 

k = 0, 1, ... N- 1 

is to be converted to correlation between x(n) and 
the twiddle factors WN'S, the nk product needs to 
be converted to a sum n+k. For cases where N is 
prime number theory allows us to achieve this. 

According to number theory (reference 7), for each 
prime number N, there exist integers r, known as 
primitive roots, whose successive integer powers 
modulo-N will generate a permuted version of the 
sequence 1, 2, 3, ....... N-1. 

What this means is that for a prime number N, it is 
possible to map the sequence {p }=0, 1, 2, .... N-2 
via the equation 

q=(rq)mod N where {p}= { 0,1 ,2,3, ...... N-2} (13) 

to a sequence {q} where q is a one-to-one map of 
the original sequence {p} and consists of a per­
muted version of the sequence { 1, 2, 3, ... N-1 }. For 
such a unique map to be possible r must be a 
primitive root of N. Let us consider N=7, for which 
one of the primitive roots of 7 is 3. From (13) the 
mapping equation is 

q=(3P)mod N where p=O, 1 ,2, .... ,5 

For p=3, q=(27)mod 7=6. Table 1 gives the corre­
sponding values of p and q which confirm the 
one-to-one nature of the mapping. 

It should be emphasized that for any prime N, the 
primitive root r, is not unique. For example Table 2 
illustrates the mapping given by (13) for N=7. From 
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this table you can see that the mapping is unique 
and cyclic for r=3 and r=5 which are the primitive 
roots of 7. In most practical cases the smallest 
primitive root is often selected. 

Table 1 :The mapping corresponding to 
equation (13) for r=3 

I ~ I ~ I ~ I ~ I ~ I : I : I 

6 
I ~ I 

Table 2 : Values for q in the mapping q=(rP)mod 7 

rip 0 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 

2 1 2 4 1 2 41! 1 2 4 1 2 4 1 

3' 1 3 2 6 4 5 1 3 2 6 4 5 1 

4 1 4 2 1 4 2 1 4 2 1 4 2 1 

5' 1 5 4 6 2 3 1 5 4 6 2 3 1 

6 1 6 1 6 1 6 1 6 1 6 1 6 1 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 

9 1 2 4 1 2 4 i 1 2 4 1 2 4 1 

10 1 3 2 6 4 5 : 1 3 2 6 4 5 1 

11 1 4 2 1 4 2 : 1 4 2 1 4 2 1 

12 1 5 4 6 2 3 II 1 5 4 6 2 3 1 

13 1 6 1 6 1 6 1 6 1 6 1 6 '1 
• Note that r=3 and r=5 give unique mapp1ng and are therefore 
the primitive roots of 7. 

If N is prime and r is primitive root of N then we 
would like to apply the mapping given by (13) to an 
N-point OFT. Referring to the OFT equation (12), it 
can be seen that the subscripts n and k vary from 
0 to N-1 whilst in the mapping given by (13) the 
variable q assumes values from 1 to N-1 i.e it 
excludes zero. To overcome this problem we write 
the OFT equation (12) in the following form 

N-1 

X(OJ= I x(n) {14a) 
n=O 

N-1 

X(k)-x(OJ=I x(n)W~k k=1, ... ,N-1 (14b) 
n=O 

i.e. we separate the expressions for the zero-fre­
quency OFT component X(O) (the d.c. term) which 
is very simple. This expression consists of N addi­
tions only and if required can be calculated directly. 

We are left with OFT components X(k) correspond­
ing, to k=1, 2, .. N-1, which are given by (14b). Note 
that in this equation we have taken x(O) to the 
left-hand side so as the summation over n is from 
n=1 to n=N-1 . We can now apply the mapping given 
by (13) to equation (14) via the following transfor­
mations, 

n=(rm) mod N m=0,1, ...... ,N-2 (15) 
k=(r') mod N 1=0,1, ...... ,N-2 (16) 

which result in a permutation of the terms in the 
summation and a change in the order of the equa­
tions. Equation (14b) then becomes: 

N-2 m I 

X[(r')modN]- x(O) = L x[(r'")modN] w~ omodNI[(r)modNJ (17) 
m=O 

where 1=0,1,2, ...... N-2 

Remember that the twiddle factor, WN, is cyclic in 
N, therefore we have 

N-2 

X[(r1)modN]- X(O) =I x[(r"')modN] w~m + 11 (18) 
m=O 

where 1=0,1 ,2, ...... N-2 This equation indicates that 

the sequence X[(l)modN]-x(O) can be calculated 
via a circular correlation of the permuted input 

sequence x[(l)modN] and the sequence e-2rri.IVN. 

To see this clearly let us consider in detail an 
example for a OFT of length 7. 

The expression for a 7-point OFT is given by 
6 6 

X(k)= I X(n) w~k =I x(n) e-2rrjnk'7 (19) 
n=O n=O 

where n,k=0,1,2, ...... N-1 

This OFT equation can be expressed in matrix form as: (The subscript 7 has been dropped from W7 for 
convenience) 

X(O) IJI!l wo wo wo 
X(1) IJI!l W1 w2 W3 
X(2) wo W2 vi' W6 
X(3) wo W3 ws w2 

X(4) IJI!l W4 w1 ws 

X(5) IJI!l W5 w3 w1 

X(6) wo W6 ws vi' 

wo IJI!l 
vi' ws 
w1 w 
ws w1 

w2 w 
ws vi' 
w3 w2 

wo 
ws 
ws 

vi' 
w3 

w2 
w1 

x(O) 
x(1) 
x(2) 
x(3) 

x(4) 

x(5) 
x(6) 

(20) 
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T~e ·superscript in each wnk is evaluated mod 6. Noting that W0=1 and separating the equation for X(O) 
we can rewrite equation (20) as: 

[ 
X(1)-x(O) 

l [ 
w, W2 w3 w" vf' Iff' 

l [ 
x(1) 

l 
X(2)-x(O) w2 W4 Iff' w, w vf' x(2) 
X(3)-x(O) w wr;; w2 ws w, w" x(3) (21) 
X(4)-x(O) w" Wf vf' w2 Iff' w x(4) 
X(5)-x(O) ws W3 w, Iff' w" w2 x(5) 
X(6)-x(O) Iff' W5 w" w w2 w, x(6) 

and 
6 

X(O)= 2, x(n) (22) 
n=O 

The expression for X(O) i.e equation (22) is a simple summation and is assumed to be evaluated separately. 

Dealing with the computationally intensive part of the transform i.e. equation (21 ), we can apply the mapping 
given by (13) to this equation which would convert equation 21 into a cyclic correlation suitable for 
implementation using IMS A 1 00 transversal filter. We choose r=3 which is the smallest primitive root of 7. 
The mapping would thus correspond to that given by Table 1. We first apply the permutation given by this 
mapping to the input sequence of x(n)'s. This would correspond to a column permutation of the twiddle 
matrix as shown in (23). 

[ 

X(t)-x(O) ]" [ w~::lf'f': X(2)-x(O) 
X(3)-x(O) 
X(4)-x(O) 
X(5)-x(O) 
X(6)-x(O) 

W3 
W6 
W2 
W5 
W1 
W4 

~ l [ ~ l (23) 

W2 x(5) 

Note that the matrix equations (23) and (21) are essentially the same and their difference is only in the 
.order of the ferms. Next we apply the same mapping to the column matrix containing X(k)-x(O) terms in 
equation (23), this would of course correspond to a similar permutation of the rows of twiddle matrix in (23); 
and the resuli is given as equation (24). 

[ 
~~!~~:~~~ l [ :: :~ 
X(2)-x(O) W2 W6 
X(6)-x(O) Iff' W4 
X(4)-x(O) w" W5 
X(5)-x(O) W5 W1 

(24) 

Referring to equation (24) it can be seen that the twiddle-factor matrix has the property that each row can 
be obtained by a left-shift (rotate) of the previous row. This means that the sequence {X(1 )-x(O), X(3)-x(O), 
X(2)-x(O), X(6)-x(O), X(4)-x(O), X(5)-x(O)} can be obtained by performing a circular convolution between the 
seguence {x(1),x(3),x(2)x(6),x(4),x(5)} and a permuted twiddle factor set given by {W1, W3, W2, W 6, W4, 
w~ . 
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Figure 3 shows how this circular convolution can 
be implemented using a transversal filter structure. 
For the moment let us confine our attention to the 
canonical transversal filter structure and assume 
that the transversal filter is capable of complex 
processing i.e. both input data x(n) and the twiddle 
factors are complex. It will be shown later how a 
single IMSA 1 00 device can be used to implement 
this complex processing. Two implementations are 
shown in Figure 3. 

In the first implementation, Figure 3a, the permuted 
twiddle factors are used as the inputs to the trans­
versal filter. These twiddle factors are first loaded 
into the filter with the input switch at position 1 and 
then circulated with the input switch at position 2. 
The output samples, as shown in Figure 3a, would 
correspond to the OFT of the input sequence x(n). 
You should be able to confirm this by referring to 
the matrix equation given by (24). For the arrange­
ment in Figure 3a the allocation of the data se­
quence x(n) to the coefficient memory can be for­
mulated as: 

C(i) = x[(rN-2-i)modN] i = 0, 1, ... , N - 2 (25) 

where N is 7 in this case. Similarly the twiddle factor 
sequencing, at the input of Figure 3a, can be 
mathematically expressed as: 

I 
lnpul(i) = W[(r)modN] i = 0, 1, ... , N - 2 (26) 

The output sequence for Figure 3a is given by: 

Output(i) = X[(r1)modN] i = 0, 1, ... , N - 2 (27) 

Figure 3b shows the second possible implementa­
tion in which the coefficient memory contains the 
permuted twiddle factors and the permuted data 
sequence is loaded at the input of the filter and is 
circulated to generate the OFT of the input 
samples. For this implementation the generalized 
equations for the input and output sequences and 
the allocation of coefficient memory are: 

C(i) = wl<r'JmodNI i = 0, 1, ... , N - 2 (28) 

lnput(i) = x[(~-2-1modN] i = 0, 1, ... , N - 2 (29) 
Output(i) = X[(r1)modN] i = 0, 1, ... , N - 2 (30) 

Equation (25) to (27) and (28) to (30) define the 
required permutation and sequencing for a gener­
alised prime number transform based on the ca­
nonical transversal filter structure. 

It was argued earlier that the IMSA 100 implemen­
tation of the transversal filter structure (Figure 3b) 
is identical in behaviour to that of the canonical form 
(Figure 3a). The only difference is that in the ca­
nonical form the first coefficient, C(O), is associated 
with the left most memory location (see Figure 3a) 
while in the IMSA 1 00 implementation the right most 
coefficient register is allocated to C(O). We will now 
show how our 7-Point OFT can be implemented in 
complex form using the IMSA 100 transversal fil­
ters. The input data samples x(n), the twiddle fac­
tors W", and the OFT output samples X(n) can be 
expressed in terms of their real and imaginary parts 
as: 

x(n) = xr(n) + jxi(n) (31) 

w~ = e-2.uN =co{2~n )+ jsin(-~n)=WR(n) + jWI(n) (32) 

X(n) = XR(n) + jXI(n) (33} 

As mentioned earlier the IMSA 1 00 device contains 
two sets of coefficient memories; at any instant one 
set of the coefficients is used in the computation 
whilst the other set can be accessed via a standard 
memory interface. One very important feature of 
the device is that the two memory banks can be 
exchanged automatically at tbe beginning of every 
computation cycle. i.e. alternate set of coefficients 
are applied to the filter successively. This feature 
allows complex convolution and correlation to be 
performed in a single device. (This is unlike most 
conventional realizations of complex convol­
utionicorrelation where, as shown in Figure 4, four 
transversal filters are often used to implement 
these complex functions). This is achieved by ap­
propriately loading the two coefficient memories 
with combinations of real and imaginary samples 
of the reference signal and using the continuous 
memory-swap mode to implement complex pro­
cessing. The real and imaginary parts of the signal 
to be correlated (or convolved) with the reference 
signal are then applied alternatively to the input of 
the IMSA 100 device. An application note entitled 
'Complex Processing Using the IMSA100 Trans­
versal Filters' covers this topic in detail and is 
available from INMOS. The remainder of this sec­
tion gives an overview of the topic in relation to 
complex OFTs. 
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Figure 3 : Prime Number Transform Implementation Based on the Transversal Filter Structures 

x(O) ' output sequence 
X(S) X(4) X(6) X(2) X(3) X(1) 

(a) cnculat1ng the twiddle factors -time 

x(O) 
output sequence 

X(S) X(4) X(6) X(2) X(3) X(1) 
(b) circulating the permuted input sequence -t1me 

Figure 4 : Conventional Complex Correlator/convolver lnvoliving Four T~ansversal Filters 
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Figure 5 shows the IMSA 1 00 implementation of the 
7-point OFT example, corresponding to Figure 3a, 
where the twiddle factors are circulated. The nota­
tion used for real and imaginary parts of the signals 
is that given by equations (31) to (33). The twiddle 
factors are applied to the input in a sequence 
identical to that used in Figure 3a, with the real part 
of each sample followed by its imaginary part. The 
output sequence is also shown. It is assumed that 
the delay-and-add chain in the IMSA 100 is cleared 
first by writing several zero's to the input. (Note that 
this is only needed once and any further transforms 
do not need this flushing). The memory banks are 
set in their continuous-swap mode. In the first 
computation cycle, with WR(1) on the input, the 
memory bank 'N is used in the computation; in the 
second cycle, when Wl(1) is applied to the input, 
the memory bank 'B' is used in the computation; in 
the third cycle WR(3) is the input sample and the 
memory bank A is used in the computation and so 
on. Note also that for each output sample an exter­
nal addition (with either xr(O) or xi(O) depending on 
whether the output corresponds to real or imagin­
ary part of the result) has to be carried out as 
dictated by equation (24). This is a negligible over­
head compared to the computation performed by 
the transversal filter and can easily be carried out 
by the host processor. 

In Figure 5 the first eleven output samples (denoted 
with *) are partial results and as such are not fully 
valid. This is due to the inherent delay associated 
with any transversal filter implementation. In con­
tinuous processing, however, it is possible to avoid 
these undefined output samples and to achieve a 
duty cycle of 1 00% by updating two coefficient 
memory locations with new data samples. For 
example in Figure 5, assumming that we have 
applied the first cycle of the twiddle factor values 
i.e. WR(1), Wl(1), WR(3), Wl(3) ...... WR(S), 
Wl(5) to the input, it is· possible to update the · 
coefficient locations corresponding to xi(1) and 
xr(1) in memory bank A with the imaginary and real 
parts of the first sample of the new input data block. 
This can be done during the latest computation 
cycle (with WI(S) as the input twiddle factor) when 
the memory bank A is free. In the next cycle when 

WR(1) is applied to the input, xr(1) and -xi(1) in the 
memory bank B can be updated with new data 
values while this memory bank is free. In the fol­
lowing computation cycle when Wl(1) is the input 
twiddle factor, the coefficient memory locations 
corresponding to xi(3) and xr(3) in the memory 
bank A are updated and so on. This technique 
removes the undefined output samples and 
achieves a duty cycle of 1 00%. 

Figure 6 depicts the IMSA100 implementation of 
the 7-point OFT, corresponding to Figure 3b, where 
the input data samples are recirculated and the 
twiddle factors are stored in the coefficient 
memories. The input data samples are applied to 
the input in a sequence identical to that used in 
Figure 3b, with real part of each sample followed 
by its imaginary part. The output sequence is also 
shown. Other characteristics of this implementation 
are identical to the previous case with the exception 
that in this implementation it is impossible to avoid 
initial undefined output samples even when several 
continuous transforms are to be performed. 

The IMSA100 devices can be cascaded without 
any external components by simply connecting the 
output of the first device to the cascade-input of the 
second device. This simple cascading allows trans­
versal filters/correlators with many stages to be 
easily implemented. 

Using prime-number algorithm there are basically 
two ways to implement A 1 00 based OFT proces­
sors capable of handling long data blocks. The 
obvious approach is to cascade several devices 
resulting in a sufficiently large correlator/convolver 
capable of dealing with the whole data block size. 
This approach is only acceptable for moderate 
block sizes and becomes impractical if the data size 
is very large. The second approach is based on 
mapping techniques which convert a large OFT into 
several independent short transforms. These short 
transforms can then be evaluated either concurren­
tly or sequentially, depending on the required per­
formance. This means that the decomposition 
techniques described here are particularly useful 
as they provide the basis for trade-offs between 
cost and speed. This subject will be discussed in 
detail in section 5 of this application note. 
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Figure 5: 
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IMSA 100 implementation of a 7 point complex OFT, corresponding to the canonical 
transversal filter realization of Figure 3a 
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IMSA 100 implementation of a 7 point complex OFT, corresponding to the canonical 
transversal filter realization of Figure 3b 
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As mentioned earlier the I MSA 1 00 transversal filter 
has an on-chip industry standard memory interface 
which allows the part to be fully memory-mapable. 
Figure 7 shows a schematic diagram of a simple 
system making use of this memory interface. When 
implementing the prime transform algorithm on this 
system, the IMSA100 (or arrays of them) will per­
form the bulk of the computation and the host 
processor will be responsible for data permutation 
(using look-up tables), evaluating the X(O} term 
(equation 22), and performing the auxiliary addition 
involving either xr(O) or xi(O) (see Figures 5 & 6). 

Another possible system configuration is shown in 
Figure 8. This is particularly suitable for the ar­
rangement of Figure 5. The real and imaginary 
parts of the twiddle factors are pre-loaded in the 
memory MEM1 and are supplied to the A100 via 
the dedicted input port. The sequencer shown in 
Figure 8 could be a simple counter. The processor 
accesses the coefficient memories and the output 
result via the IMSA100's memory interface. Other 
system configurations are possible. For example 
Figure 9 shows the schematic of a high perfor­
mance signal processing system using a dedicated 
controller. 

Figure 7 : Schematic Diagram of a Simple 
IMSA100 Based System 

HOST PROCESSOR 

Data 

IMSA100's 

MEMORY 

IMSA100's are memory mapped 

using the on-chip industry standard memory interface 
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Figure 8 : An Implementation Particularly Suitable for the Arrangement in Figure 5 
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Figure 9 : Schematic Block Diagram of a High Performance Involving a Special Purpose Controller 
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IV.2. The chirp-z transform 

Another algorithm which converts the OFT equa­
tion into a convolution (or correlation) is the chirp-z 
transform. The reason for the name chirp is that the 
transform uses a sampled linear frequency-modu­
lated carrier which in signal processing is often 
termed a 'chirp signal'. In the previous section we 
saw that the prime number transform consisted of 
three operations, namely 
(i) Data input permutation. 

(ii) Convolution (or correlation) of the permuted 
data with a permuted sequence of twiddle factors. 
(iii) A final permutation to obtain the correct output 
sequence. 

Figure 10 summarizes the principles of the prime 
number transform algorithm. The auxiliary compu­
tation for zeroth input sample and evaluation of 

I 

II II I 
WI. 
Rl. 
II 

IMSA100< ~ 
.I 
MEMORY 

SYSTEM2 

Memory system 2 
handles the IMSA100 

coefficients 

A100-09.EPS 

X(O) are also shown in this schematic diagram. The 
structure of the chirp-z OFT algorithm is similar to 
that of the prime number transform technique and 
consists of the following sequence of three oper­
ations: 

(i) Premultiplication of the input sequence x(n) by 

the chirp e(-lljn2 /NJ • 

(ii) Convolution (or correlation) of the resulting se­
quence with a second chirp signal. 

(iii) Post-multiplication of the resulting sequence by 

the chirp signal e(-lljk2 INJ • 

These operations are summarized in Figure 11. 
Comparing Figure 10 and Figure 11, it can be seen 
that the major difference between the two algo­
rithms is that in the chirp-z transform the permuta­
tion operations are replaced by multiplications. 

Figure 10 : The Principle of the Prime Number Transform 

x(n) complex convolution 
with a permuted exponential 

x(O)fl 
: L X(O) 

x(N -1) 

X(k) 

x(O) 

A100-10.EPS 
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Figure 11 : The Basic Principle of the CZT 

x(n) 
complex convolution 

with ~ chip signal 
X(k) 

premultiplication 
by the chip 

(-n:jn2/N) 
e 

In the CZT the convolution (correlation) operations 
can be implemented using the IMSA100 transver­
sal filter, but the pre- and post-multiplications have 
to be done externally. In many applications data 
permutation may be preferred to multiplication in 
which case the prime numbers approach may be 
considered more advantageous. However there 
are applications (e.g beamforming) where the CZT, 
in particular a simplified version of it referred to as 
sliding CZT, is preferred. 

To understand the CZT algorithm we start from the 
DFT equation 

N-1 N-1 

X(k) = L, x(n) e-2pmktN = L, x(n) w~k (34) 
n=O n=O 

k = 0, 1, ... N -1 

and replace the term -2nk in the complex exponen­
tial with the seemingly" more complicated ex-
pression 

hence 
-2nk = (k - n)2 -k2 -n2 (35) 

N-1 
. 2 2 2 

X(k) = e-Jltk IN L [x(n) e""~"" IN][eJ"(k-n) IN] (36) 
n=O 
N-1 

= 9-Jnk21N L y(n) [el•(k-n)21N] 

n=O 

where k=0,1, ..... ,N-1. 

In equation 36, the term X(k) consists of three 
operations: 
(i) Multiplications of the samples X(n) with a com-

2 
plex linear frequency-modulated signal e-Jnn IN to 
form a new set of samples y(n); This operation is 
often referred to as premultiplication by a chirp, 
(ii) the convolution of y(n) with a second-linear 

- . 2 
frequency-modulated signal (the term el"(k- n) IN 

and . 2 
(iii) post multiplication by e-Jllk IN • 

Note that if only the power spectrum of the signal 
is required the final operation can be omitted, since 

e-lllk2/N represent only a phase-shift and 
2 

le-J"k /NI=1 . Also in operation (ii) the term (k-n)2 in 
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postmultiplication 
by the chip 

e 
(-1tl/N) 
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the complex exponential is equal to (n-k)2 so that 
a convolution operation, in this case, is identical to 
that of a correlation. Figures 12 and 13 show 
examples for a 6-point CZT implemented using the 
canonical transversal filter structure. In these diag­
rams it is assumed that the transversal filter is 
capable of complex processing. As described in the 
previous section the complex conolution/correla­
tion can easily be implemented using the IMSA100 
transversal filter chip. 
In Figure 12, samples corresponding to the product 
of the input data and the premultiplying chirp are 
stored as the filter coefficients and a second sam­
pled chirp is fed to the input of the convolver. Note 
that the convolver has N-complex points. Figure 13 
shows an alternative implementation where the 
product of the input data samples and the premulti­
plying chirp samples are the inputs to the convolver 
and a chirp signal is used as the reference signal 
in the coefficient store. Note that in this arrange­
ment the convolver has to have 2N-1 complex 
points. However when the number of points in the 
transform are even (N=even), it can easily be 

shown that the sampled chirp signal f(n) = r}""2 IN 

has the following properties: 

(i) it is periodic with a periodicity equal to N i.e. 
f(n) = f(n + N) (37) 

(ii) It is symmetrical about ";N i.e. 

f(n) = f(N - n) (38) 

These properties convert the convolution in Figure 
13 into a circular one which can be implemented 
with an N-point complex transversal filter. 

In many applications the PNT may be preferred to 
the CZT because of the requirement of pre- and 
post-multiplications in the latter. (Remember that in 
the PNT, permutation operations are involved 
rather than multiplications). 

As there are considerable amount of literature 
available on CZT, it will not be considered here in 
any more detail. 
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Figure 12 : Schematic Diagram for 6-point czr using canonical Transversal Filter Structure 

I 
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Figure 13: Alternative Implementation of the 6-point CZT 

x(n)'s~ 

e·l•rl'/6 

V. MULTIDIMENSIONAL INDEX MAPPING FOR 
OFT DECOMPOSITION 

In the previous sections, algorithms which convert 
the OFT into convolution/correlation operations 
were presented. These algorithms, particularly the 
PNT, are suitable for implementation using the 
IMSA 100 transversal filter. 

In order to compute the OFT of long data se­
quences, one approach is to cascade several the 
IMSA 100 devices so that sufficient convol­
ution/correlation points are made available. This 
approach is only acceptable for moderate data 
sizes, and does not provide the optimum perform­
ance for a given number of devices. 

In this section, index mapping techniques are de­
scribed which allow long OFT's to be decomposed 
into several shorter transforms. These shorter 
transforms can then be efficiently implemented by 
using I MSA 1 00 transversal filters. The decomposi-

X(K)'s 
A100-13.EPS 

tion techniques described here can be viewed as 
generalised algorithms, with radix-2 FFT being a 
special case of these more general partitioning 
techniques. These mapping techniques provide 
the basis for designing highly concurrent systems 
and optimization in terms of performance and cost. 

V.1. Basic concepts of index mapping 

The essence of these mapping techniques is that 
by a simple change of variable, the original complex 
problem is converted into several easy ones. Be­
fore applying these techniques to the OFT, let us 
consider a few examples which should help to 
familiarize the reader with the terminologies used 
in general index mapping. 

Consider a one-dimensional array of data x(n), n=O 
to N-1, where N is the total number of elements in 
the array. For N=6, the array elements will be given 
by {x(O) x(1) x(2) x(3) x(4) x(5)} 

------------ ·f:.V. ~~~©IH~~~©~ 17/24 

217 



DISCRETE FOURNIER TRANSFORM WITH THE IMSA100 

Let us rearrange this one-dimensional array into a two-dimensional array as shown below: 

[ x(O) x(1) x(2) x(3) x(4) x(5) l map [ x(O) x(1) x(2) J = [y(O,O)y(0,1)y(0,2)] (39) 
¢'> x(3) x(4) x(5) y(1 ,0) y(1, 1) y(1 ,2) 

We have 'mapped' the original one-dimensional array, x(n), into a two-dimentional array y(n1, n2). It can 
be seen that in this example the mapping is given by the following linear equation. 

n = 3n1 + n2, x(n) = y (n1 + n2) (40) 

where n1=0, 1 and n2=0, 1, 2. 
The mapping is said to be one-to-one (unique) as all the elements in the original array, x(n), appear in the 
two-dimensional array y(n1, n2). 

As a second example consider the following mapping: 

[ x(O) x(1) x(2) x(3) x(4) x(5) ] m.:_p [ xx((3°l) x(2) x(4) J 
~ x(5) x(1) 

This mapping has been obtained from 
n = (3n1 + 2n2) mod6 (42) 

[ y(O,O) y(O, 1) y(0,2)] 
y(1 ,0) y(1 '1) y(1 ,2) 

Note that in equation (42) the index n is evaluated modulo N (in this case N=6) and it is therefore 

cyclic inN. 

As a final example let us apply the following mapping 
n = (2n1 + 2n2) mod6 (43) 

to our 6-element array, which gives; 

x(S) l map [ x(O) x(2) x(4) J = [y(O,O)y(0,1)y(0,2)] 
[ x(O) x(1) x(2) x(3) x(4) ¢'> x(2) x(4) x(O) y(1,0)y(1,1)y(1,2) 

Obviously this map is not unique as x(1 ), x(3) and x(5) are not represented in the matrix y(n1, n2). 

V.2. Generalisation and conditions for uniqueness 

(41) 

(44) 

Let us now generalize the ideas developed in the previous examples. We are interested in mapping a 
one-dimensional array of length N=N1x N2 into a two-demensional array that is N1, by N2 in size. In other 
words, the one-dimensional array 

x(n) for n=O, 1 , ... N-1 

is to be mapped into a two-dimensional array 
y(n1,n2) for n1=0, 1, ... N1-1, and n2=0,1 , ... N2-1. 

The major requirement is that the mapping must be unique. This mapping can be represented by 

[ x(O) x(1) x(2) 

where 
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y(O,O) 

y(1,0) 

x(N-1) ] map 

x(n) = y (n1 + n2) (46) 
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y(O,N2· 
1) 

y(0,1) 

y(1 ,N2· 
1) y(1 '1) 

(45) 
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This map, in general, can assume many different 
forms, but the one particularly useful to the OFT is 
the linear form, 

n = (M1 n1 + M2 n2) mod N (47) 

Note that n is evaluated modulo N, making the map 
cyclic in n. In order for this map to be unique and 
one-to-one, the mapping constants M1 and M2 
must satisfy certain conditions. In the literature 
(references 5 & 6) these conditions have been 
derived from number theory for two cases which 
are described in the following two subsections. 

V.2.a. RELATIVELY PRIME CASE 

In this_case N1 and N2 are relatively prime and have 
no common factor. In the literature this case is often 
denoted by: 

(N1, N2) = 1 (48) 

which means that the greatest common divisor of 
N1 and N2 is unity. For example (5,7)=1, (8,9)=1 
and (6,25)=1. For this case the conditions on M1 
and M2 which make the mapping, given by (47), 
unique and one-to-one are: (references 5 & 6) 
[(M, =aN,) and/or (M, = pN,)] and (M,,N,) = (M,,N,) = 1 (49) 

where a and b are integers.ln other words, to 
ensure a unique maping for this case: 

(M1 must be a multiple of N2) 
or (M2 must be a multiple of N1) 
or (M1 and M2 must be multiples of of 

N2 and N1 respectively) 
and M, and N1 must be relatively prime. 
and M2 and N2 must be relatively prime. 

As an example consider N1=S, N2=7, N=35. From 
(49) we have to choose M1 a multiple of N2 or M2 
a multiple of N1 or both. Let us make M1 the 
simplest multiple of N2 i.e. M1=a N2=N2=7, this also 
satisfies (M,,N,)=(7,5)=1. Then noting that we 
must have (M2,N2)=(M2,7)=1, possible values for 
M2 are: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15. While 
M2=7, 14, 21 ... are not allowed as they are not 
relatively prime with N2. (Note also that for M1=5, 
10, 15, we also have M2=a N1, which is allowed.) 

If M1 is chosen to be M1=2x N2=14, then again the 
same values of M2 as above are valid. 

This example shows that a large class of unique 
mappings exist for this case. 

V.2.b. COMM};)N FACTOR CASE 

In this case N1 and N2 have a common factor r. i.e. 
their greatest common divisor is rand we have: 

(N1, N2) = r (50) 

For example (10,5)=5, (9,12)=3, and (7,21 )=7. For 
this case the conditions on M1 and M2, making the 
mapping given by (47) unique, have been shown 
to be: (references 5 & 6) 
(M1 = aN2) and (M2 ;e ~N1) and (a,N1) = (M2,N2) = 1 (51 a) 

or 
(M1 ;e aN2) and (M2 = ~N1) and (~,N2) = (M1,N1) = 1 (51 b) 

where a and b are integers. 

As an example consider N,=9,N2=15, N=135. 
From (51 a) we can choose, M1=a N2=N2=15. The 
condition (a ,N sub 1 )=(1 ,9)=1 is already satisfied. 
From (51a), values of M2 which are allowed are 
those which satisfy (M2 * bx 9) and (M2, 15)=1. 
Therefore following values of M2 are allowed 

M2=1, 2, 4, 7, 8, 11, 13, 14,16, 17, 19, 22, ..... 

M2 = 3, 5, 6, 9, 10, ... are not allowed as they do 
not satisfy (M2, 15)=1. 

Alternatively we could have chosen M1=a N2=2x 
15=30, then possible values of M2 would again be 

M2=1, 2, 4,7, 8, 11, 13, 14, ..... . 

However we could not have chosen M1=a N2=8x 
N2 since this violates the requirement (a, N1)=1. 

V.3. Application of index mapping to OFT 
decomposition 
Having covered the basic principle of index map­
ping and the required conditions for uniqueness, let 
us apply the mapping given by (47) to the OFT and 
investigate its consequences. 

Remember that the OFT equation is given by 
N-1 N-1 

X(k) = L, x(n) e-2•JnkiN = L, x(n) W~k (52) 
n=O n=O 

k = 0, 1, ... , N -1 

and that the exponent of W is evaluated modulo N 
since 

w~k = w~k+N (53) ; 

Let us apply the following mappings to the indices 
n and k; i.e. to both the input data array x(n), and 
the result array X(k); 

n = (M1 n1 + M2 n2) mod N (54) 
k = (L1 k1 + L2 k2) mod N (55) 

Where n1, and k1, are indexed to (N,-1) and n2 and 
k2 to (N2-1). As shown below these mappings 
convert the one dimensional arrays x(n) and X(k) 
into two-dimensional matrices y(n1, n2) and V(n1, 
n2) respectively. 
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[x(O)x(1 ) ... x(n) ... x(N-1)] 

where y(n1 ,n2)=x(n). 

And 

[X(O)X(1) ... X(n) ... X(N-1)] 

where Y(k1,k2)=X(k). 

map 
¢'> 

map 
¢'> 

y(O,O) 
y(1,0) 

y(N1-1,0) 

Y(O,O) 
Y(1,0) 

Applying these mappings to the DFT equation 
gives: 

N,-1 N2-1 

X(L1 k1 + L2 ~) = L L x(M1 n1 + M2 n2) W~k (56) 
n, =0 n2=0 

or 
N1-1 N2-1 

Y(k1,k2) = L, L, y(n1,n2) w~k (57) 
n1 =0 rl.2=0 

with 
W~k = W~L2n21<:! W~'L,n,k, W~'L,n,k, W~2L1n2k1 (5B) 

Let us now partially define the maps in (54) and (55) 
by setting; 

M2 = ~ N1 and L, = yN2 (59) 

Where ~ and yare integers. 

These assignments make the last term in (58) i.e 
w~2L1n2k1 equals to unity.Let us now separately 
consider each one of the two cases studied earlier 
and investigate the effect on the three remaining 
terms in (58). 

V.3.a. CASE 1 -PRIME FACTOR 
DECOMPOSITION 

For this case N1 and N2 are assummed to be 
relatively prime. From (49) it can be seen that it is 
possible to also set: 

M1 =a N2 and L2 =oN, (60) 

This makes the second term in (58) i.e. W~1 L2n1k2 
also equal to unity. The remaining two terms in (58) 
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y(0,1) 
y(1 ,1) 

y(N1,1) 

Y(0,1) 
Y(1,1) 

Y(N1,1) 

· ·. y(n1, n2) 

. ·. Y(k1, k2) 

y(O,N2-1) 
y(1 ,N2-1) 

Y(O,N2-1) 
Y(1,N2-1) 

can be written as: 
W~2l2N2k> = W~N,SN,n,k2 = W~~N1n2k> (61 ) 

w~'L'N'k' = w~N2]N2n,k, = W~201k1 (62) 

The DFT equation will therefore become: 

Y(k1,~) ~~~[ :~>(n1 ,n2) w~~·"•""] w~•n,k, 
where k1=0,1 ,2, ... ,N1-1 and 1<2=0,1 ,2, ... ,N2-1 

(63) 

The advantage of this equation is that it uncouples 
the DFT calculations in the sense that the N-point 
DFT can be mapped into two completely separate 
sets of short OFT's. In evaluating the Y(k1,k2)'s, in 
equation (63), the inner summations over n2 are 
operations involving separate· rows of the matrix 
y(n1, n2). The outer summations over n1, on the 
other hand, are column operations and can be 
carried out after the row operations are completed. 
By suitable choice of a, ~. y, and 8, each one of 
these summations can be expressed as a DFT of 
the corresponding row or column. Goods (refer­
ence 8) suggested: 

a=~=1 
y= (N21)modN1 (64) 
o = (N11)modN2 

[Note that in modulo arithmetic the reciprocal of a 
number (g) mod N is denoted by (g-1) mod N and 
is defined as : [(g) mod NJ[(g-1 mod N]=1. 

For example (3-1) mod 7=(5) mod 7 
since 5x 3=15 which is 1 modulo 7.] 
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Applying (64) to (63) gives: 

N1 -1[ N2-1 ] 
Y(k1,i<:!)=n~o n~:(n1,n2)W~~k2 W~~k, 

N,-1 

= 2:, [u(n1,k2)]W~11k1 (65) 
n, =0 

This is now a true two-dimensional OFT with the 
mapping of n and k given by: 

n = (N2 n1 + N1 n2) mod N (66a) 

k = ( [(N21) modN,] N2k1 + [(N11) modN2] N1k2) modN (66b) 

In this example the mapping of n is of the simplest 
form and that of k is the so called Chinese Remain­
der Theorem (CRT). 

Having mapped the original sequence x(n) into the 
two dimensional array y(n1, n2), equation (65) indi­
cates that the desired OFT can be evaluated by the 
following two steps: 

(i) Periorming an N2-point OFT on each row of 
matrix y(n1, n2). This corresponds to a total 
of N1 N2-point row OFT's and would convert 
the matrix y(n1, n2)" into the matrix u(n1, k2) 
as shown in figure ??? . 

(ii) Periorming an N1-point OFT on each 
column of the resultant matrix, u(n1, k2), to 
yield Y(k1, k2). The desired output 
sequence X(k) is related to Y(k1, k2) via the 
mapping given by (66b). 

Example: 
In this example we consider the evaluation of the 
OFT of a 35-element data array x(n) (n=O to 34) via 
the mapping techniques discussed so far. Let us 
take N=N1x N2=7x 5=35 i.e. N1=7 and N2=5. The 
data array x(n) is first mapped into a two dimen­
sional array y(n1' n2) via the mapping given by 
equation (66a) i.e. n = (5n1 + 7n2) mod35 (67) 

The array y(n1, n2) would thus be as follows: 

x(O) x(7) x(14) x(21) x(28) 
x(5) x(12) x(19) x(26) x(33) 
x(10) x{17) x(24) x(31) x(3) 

y(n1 ,n2)= x(15) x(22) x(29) x(1) x(B) 
x(20) x(27) x(34) x(6) x(13) 
x(25) x{32) x{4) x(11) x(18) 
x(30) x(2) x(9) x(16) x(23) 

The next step is to periorm the OFT of each row of 
this matrix. Obviously in this example this involves 
seven 5-point OFT's as shown in Figure 14. The 
result of these row OFT's is a new matrix denoted 
by u(n1,k2). 

Next the OFT of each column of the matrix u is 
evaluated. As shown in Figure14 this involves five 
7-point OFT's and yields the matrix Y(k1, k2). The 

two dimensional array Y(k1, k2) contains desired 
OFT results X(k), with the allocations governed by 
the mapping given by equation (66b) i.e. 
X(k)=Y(k1,k2) with 

k = ([(N21) mod N,] N2 k1 + [(N11) mod N2] N1 k2) mod N 
k = ~3)5k, + (3)7k2] mod 35 

= (15k, + 21k2) mod 35 

The array Y(k1, k2) would therefore have the follow­
ing arrangement: 

X(O) X(21) X(?) X(28) X(14) 
X(15) X(1) X(22) X(B) X(29) 
X(30) X(16) X(2) X(23) X(9) 

Y(k1,k2)= X(10) X(31) X(17) X(3) X(24) 
X(25) X(11) X(32) X(18) X(4) 
X(5) X(26) X(12) X(33) X(19) 
X(20) X(6) X(27) X(13) X(34) 

In a practical implementation, the IMSA100 trans­
versal filter can be used to periorm these short row 
and column OFT's via the prime number transform 
algorithm described earlier. The important fact to 
note here is that each set of row (or column) OFT's 
consists of a number of totally independent short 
transforms (see Figure 14). This allows various 
degrees of parallelism to be exploited very easily 
in acheiving the required specification. 

For example a single A 1 00 based OFT processor 
can be used to sequentially periorm all the row 
OFT's followed by the column OFT's, or when 
extremeley high processing speed is essential, 
several such OFT processors can be employed in 
parallel to complete the independent row (or col­
umn) OFT's. In the extreme case, it is possible to 
compute all row and column OFT's concurrently in 
a pipelined system arrangement. The I NMOS con­
current processor family (transputers) when com­
bined with the IMS A100(s) provide an ideal envi­
ronment for exploiting these algorithms. 

In arriving at equation (65) we applied the condi­
tions given by (64) to equation (63). This resulted 
in the mapping given by (66) on which the last 
example was based . It is possible to use other 
values foro:, ~. y, and 8 than those given by (64). 

For example we could have used: 

y=li=1 
a= (N21)modN, (68) 

P = (Ni"1)modN2 
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Figure 14 : Schematic Representation of Equation 65 for N = N, x N2 = 7 x 5 

k2~ 

n1 

y(n1, n2) 5-point OFT's u(n1, k2) 

k~ 
f.------?' X 

1----1------?'X X 
I----I--+----7'X X X 

1----1--+-+--/X X X X 
f--1----1--+-+------i X X X X X 
1--1----1--+-+------i X X X X X 
1--1----1--+-+------i X X X X X 

7-point OFT's Y(k1, k2) 

The OFT of the 35 data points is obtained by a set of row OFT's followed by a set of column OFT's 

This would have resulted in the mappings for nand 
k to be interchanged i.e. 

n = (r(N21) modN1] N2n1 + [(N11) modN2] N1n2) modN (69a) 

k = (N2k1 + N1k2) modN (69b) 

Another interesting possibility is 
a=~= y = li= 1 (70) 

This would result in the simple mapping for both n 
and k i.e. 

n = N2 n1 + N1 n2 (71a) 
k = N2 k1 + N1 k2 (71 b) 

but requires a modification in the W. We can see 
this by substituting (70) into (63) which gives: 

Y(k1,k2) =:t~[ :~:(n 1 ,n2) w~;n2k2 ] w~~n,k, (72) , 

By defining 

and 

w~, = w~: = e-2•1N21N, 

Equation (72) can be rewritten as: 

Y(k1,k2)=:t~[ :~:(n,,n2)w~t2 Jw~t' (73) 

This equation is very similar to (65), with the excep­
tion that a modified W is used. Equation (73) also 
maps into an arrangement similar to Figure 14. The 
OFT's of course, would have to be calculated with 
the modified W. This still can be done via the prime 
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number transforms by simply replacing W with W' 
in the transform. 

V.3.b. CASE 2- COMMON FACTOR 
DECOMPOSITION 

Having covered the case where N1 and N2 were 
relatively prime, we now go back to equation (58) 
and consider the case where N1 and N2 have a 
common factor r, i.e. 

(N1,N2)=r 
Remember that we applied (59) to (58) which made 
the last term in (58) equal to unity i.e. we have : 

N,-1[ N,-1 1M 
Y(k1,k2) =n~O n~Oy(n1,n2) w~~,n,k, r~'L,n,k, w~,'""''' (74) 

Unlike the previous case we cannot use equation 
(60) to make the second terms in (7 4) equal to unity. 
This is because the equations in (60) would violate 
the necessary requirement, specified by (51), for 
one-to-one mapping. 

The term WNM1L2n1k2 is referred to as a 'twiddle 
factor'. Referring to (51) and remembering that we 
have already used the conditions given by (59), we 
can set 

(76) 
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with the mapping given by: 
n = n, + Nt n2 (77a) 
k = N2 kt + k2 (77b) 

Note that equation (76) is very similar to equation 
(65) with the exception of the existence of the 
twiddle term. Equation (76) can be interpreted as 
shown in Figure 15. It can be seen that when N1 
and N2 have a common divisor, N-complex multi­
plications have to be performed between the row 
and column OFT operations. In the previous case 
where N1 and N2 were assumed to be relatively 
prime no such multiplications were needed making 
the former mapping more efficient and easier to 
implement. 

V.4. Extension to multiple dimensions 

The concepts presented in this application note 
were concentrated around a two-dimensional map­
ping. There is no reason why the same concepts 
cannot be extended to more dimensions. For 
example if N=N1 x N2 x Ns 

where N1, N2 and Ns are relatively prime. The 

original N-point transform can be carried out via 
N2x Ns, N1-point, transforms followed by N1x Ns, 
N2-point, transforms followed by N1x N2, Ns-point, 
transforms. The easiest way to see this is to first 
map the N-point transform into a two-dimensional 
one with dimensions 

N1 = N~ and N; = Nt N2 

This consists of Ns, N1x N2-point, transforms (row 
OFT's) followed by N1x N2, Ns-point, transforms 
(column OFT's). Each one of the N1x N2-point 
transforms can then be decomposed into N1, N2-
point, transforms followed by N2, N1-point, trans­
forms. 

Note that these multidimensional index mappings 
apply to both prime factor and common factor 
decompositions. In fact radix-2 FFT is nothing more 
than a common factor decomposition where all the 
factors N1, N2, Ns, N4 ......... are made equal to 2. 
The advantage of the prime factor over the com­
mon factor decomposition is in that no twiddle 
matrix multiplications are needed for the prime 

Figure 15 : Mapping of an N point OFT inti Dimensions 

y(n1, n2) row OFT's twiddle factor 
multiplications 

column OFT's 

N = N ,x N ,;vith N ,and N :!laving a common factor 

Y(k1, k2) 
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I. INTRODUCTION 

The correlation process is widely used in many 
electronic systems including instrumentation, com­
munication, medical ultrasonics, radar, sonar, con­
trol systems and other signal processing environ­
ments. The basic reasons for this widespread use 
can be attributed to the many useful characteristics 
exhibited by the correlation process. These proper­
ties include 
• The ability .to recover a desired signal masked by 

noise or other interferences. This is particularly 
useful in noisy environments that arise in com­
munication, radar, sonar and ultrasonic applica­
tions. 

• Delay estimation capability which is essential in 
many applications including range measurement 
in navigation systems, radar, sonar and also 
system identification. 

• The ability to recognize a given pattern within a 
signal. 

• The auto-correlation of a signal is closely related 
to the power spectrum which has resulted in the 

AN543/0792 

application of the correlation process to spectral 
analysis. 

• The correlation process provides a good charac­
terization of many signals and has therefore been 
used in many prediction and estimation algo­
rithms. 

Convolution is closely related to the correlation 
process. Mathematically convolution is what hap­
pens in the process of filtering. It will be shown in 
the next section that b.oth these functions involve a 
large number of multiplications and additions. Up 
to now, for the time domain implementation of these 
processes, many systems have used multiply-ac­
cumulator devices. Because of their inherent con­
currency, the numerical evaluations involved in the 
convolution and correlation functions can be per­
formed in parallel. But due to the high cost, power 
consumption requirement, and size restriction 
many digital systems use only a single (or possibly 
two) multiply-accumulator(s). This has resulted in 
a processing bottle-neck in the time domain evalu­
ation of these functions. For example using a 16-bit 
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multiply and accumulator chip available today it is 
possible, for a 32-point digital correlator, to achieve 
at best a sampling frequency of around 100 to 
300kHz. This is further reduced as the number of 
correlation points increases. Additional complex­
ities occur as some form of address generator has 
to be used to sequence the data and the reference 
coefficients through the multiply-accumulator chip. 

The IMSA 100 VLSI chip overcomes these prob­
lems by incorporating 32 multiply-accumulators on 
a single chip. The sampling speed of the IMSA 100 
ranges from 2.5MHz to 10MHz depending on the 
reference-waveform word-size. (4, 8, 12 or 16 bits). 
It is the true parallelism incorporated in the systolic 
structure of the IMSA100 that allows such speed 
increases. The architecture of the IMSA 100 has 
been designed in such a way that large numbers 
of these chips can be cascaded to perform high 
precision correlations involving more than 32 points 
at full speed. Alternatively it is possible to use 
multidimensional index mapping to decompose a 

Figure 1 : Illustration of Correlation Process 
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long correlation/convolution into a number of short 
ones which can then be carried out by usoing a 
single or a small number of devices. 

By suitable allocation of the coefficients, the 
IMSA100 can be used to perform 3x3, 5x5, or 
larger two-dimensional image convolutions. 

In this application note the concepts of correlation 
and convolution are first introduced followed by 
their IMSA100 implementation issues. Partitioning 
techniques for decomposing a long correla­
tion/convolution into a number of short ones are 
then described. Next an example of a two-dimen­
sional image convolution is given. Finally some 
application areas of correlation and convolution are 
summarised. 

II. CORRELATION CONCEPTS 

The correlation between two functions is a 
measure of their similarity. This is illustrated in 
Figure 1 where three extreme cases are depicted. 

(a) identical waveforms with 
maximum positive correlation 

----···------

(b) opposite waveforms with 
maximum negative correlation 

(b) uncorrelated waveforms 

A 1 00-01.EPS 
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Figure 1a shows two waveforms which are abso­
lutely identical and they have maximum positive 
correlation. The two waveforms in Figure 1 b are 
similar, except for their polarities and as such they 
have maximum negative correlation. Finally Figure 
1 c shows one of the waveforms of Figure 1 a and a 
noise like signal. As these two waveforms are 
completely dissimilar the correlation between them 
is expected to be very small or even zero. 

Mathematically the correlation function between 
two waveforms x(t) and y(t) is expressed as 

+T 
112 

Rxy ('t) =TI~~ ~ T J_ T x(t) y(t +'t) dt (1) 

2 

Rxy('t) is also referred to as cross-correlation be­
tween the two waveforms. For identical waveforms 
(ie correlating a waveform x(t) with itself) the corre­
lation function is denoted by Rxx('t) and is called the 
auto-correlation function. 

Equation (1) can be interpreted as follows: 

The cross-correlation function, Rxy('t) between the 
two waveforms x(t) and y(t) is obtained by shifting 
one of the two~'signals in time by an amount equal 
to 't (i.e. modifying y(t) to y(tH)), multiplying the 
shifted waveforms by the other signal and integrat­
ing the product. 

If the waveforms are periodic with a period To, 
equation (1) can be modified to: 

+To 

Rxy ('t) = ; 0 L ~0 x(t) y(t + 't) dt (2a) 

2 
i.e. the integration is evaluated only over one period 
of the signal. 

Figure 2 provides a graphical illustration of the 
process of cross correlation between two wave­
forms x(t) (Figure 2a) and y(t) Figure 2b. We start 
by multiplying the two waveforms and integrating 

over the interval -; 0 :5 ~; 0 yielding Rxy(O). With 't 

= 0, (ie no shift) it can be seen from Figures 2a & 2b 
that there is no overlap between non-zero parts of 
the two waveforms resulting in Rxy(O)=O as shown 
in Figure 2f. To evaluate Rxy('t), the waveform y(t) 
is left shifted by an amount equal to 't, giving y(t+'t), 
and the multiplication and integration is repeated. 
As the waveform y(t) is shifted to the left, there will 
be no overlap between non-zero parts of y(t+'t) and 
x(t) untill 't 1:1, see Figure 2c. At 't='t1, the non-zero 
parts of the two waveforms just begin to overlap. 
Figure 2d shows the position of y(t) when it is 

shifted by 1:=1:2. Here the non-zero parts of x(t) and 
y(t+1:2) have have overlapped and the integration 
of the product of the two waveforms therefore 
yields a non-zero value for Rxy(1:2) as shown in 
Figure 2f. As y(t) is shifted further the non-zero 
overlapping section of the two waveforms and 
hence the value of Rxy('t) increase. When y(t) is 
shifted to the position shown in Figure 2e, full 
overlap occurs and Rxy(-r) will attain its maximum 
value of Rxy('t3) as shown in Figure 2f. Shifting y(t) 
further causes the value of Rxy(-r) to decrease as 
the two waveforms pass each other. Figure 2f 
shows the complete cross-correlation function be­
tween the two waveforms. You can confirm the 
shape of this cross-correlation function by evalua­
ting equation (2a). 

One interesting point to note here is that the maxi­
mum value of Rxy('t) occurs at t=1:3 which is equal 
to the time-lag, T L, between the two waveforms x(t) 
and y(t). This is how the correlation process is used 
to measure delays. 

From figure 2 it can be seen that the cross correla­
tion function could have been evaluated by shifting 
x(t) to the right instead of left shifting y(t). Mathe­
matically this can be confirmed by defining a new 
variable t'=t+'t and substituting in (2a) which gives: 

+To 

Rxy ('t) = ; 0 L ~O x(t'- 1:) y(t) dt (2b) 

2 

So far we have dealt with the correlation of anal­
ogue signals. For digital processing both wave­
forms x(t) and y(t) have to be sampled and digi­
talized. For discrete-time signals the process of 
correlation can be expressed as: 

N-1 
1 

Rxy (mT) = N I, x(kT) y[(k + m) T] (3a) 
k=O 

At time t=kT equation (3a) requires future samples 
of y(t). Similar to the analogue case, (equation 2b), 
the above equation can be modified so that it only 
uses past samples of y(t), i.e. 

N-1 
1 

Rxy (mT) = N I, x[(k- m)T] y(kT) (3b) 
k=O 

In equation (3b), T, donates the sampling period 
and should be chosen to ensure that the sampling 
rate is greater than twice the signals bandwidth 
(Nyquist rate). For the sake of simplicity the factor, 
T, is usually dropped from the indices of equations 
(3a) & (3b), i.e. 

3/16 
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and 

N-1 
1 

Rxy (m) = N L x(k) y(k + m) (4a) 
k=O 

N -1 

Rxy (m) = ij L x(k- m) y(k) (4b) 
k=O 

Where k and m are used to index the samples and 
N is the number of correlation points involved. In 
practice the correlation size N will depend on the 
duration of the two functions, and on their peri­
odicity if they are periodic. From equations (4a) or 
(4b) it can be observed that direct evaluation of M 
samples of the cross-correlation function, Rxy, will 
involve Mx N multiply-and-accumulate operations. 

Ill. CONVOLUTION CONCEPTS 

The convolution function is closely related to that 
of correlation. The convolution of two signals x(t) 
and y(t) is mathematically defined by: 

+T 

1 I 2 Cxy (1:) =TI~~= T _ T x(t) y(1:- t) dt (5) 

2 
This equation is very much similar to equation (1) 
defining the correlation process. Their difference is 
that in convolution the signal y(t) is first time-

Figure 2 : Graphical Illustration of Correlation Process 

reversed (i.e. is mirrored around t=O) and then 
shifted by 1:. This time-reversed and shifted signal 
is then multiplied by x(t) and the product is inte­
grated over all t's. Figure 3 graphically illustrates 
the process of convolution. 

The process of convolution occurs in filters where 
the output of a filter is in fact the convolution of the 
input function, d(t), and the impulse response, h(t), 
of the filter (see the application note entitled 'Digital 
Filtering with the IMSA 1 00'): 

+= 

f{t) = f d(t) h(t- t) dt (6) 

where f(1:) is the filter output. 

For discrete-time signals equation (5) becomes 
N-1 

1 
Cxy (m) = N L x(k) y(m - k) (7) 

k=O 
which defines the convolution function for digital 
signals. Notice that like correlation, convolution 
involves carrying out N multiply-and-accumulations 
for each sample of Cxy(m). Due to the high degree 
of similarity between correlation and convolution 
functions, the same hardware can be used to per­
form both functions. All that needs to be done is to 
time-reverse one of the waveforms lor the convol­
ution process. 

_ _J_D_j_ _ __.tcb---+---~...--__;_____JDL_____t_._-i X (I) 

-T0 /2 0 TL +T0 /2 
(a) 
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Figure 3 : Illustrating of Convolution Process 
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The following two sections deal with hardware 
implementations for the correlation and convol­
ution functions. The first section deals with the 
conventional approach involving multiply-and-ac­
cumulator chips and points out the processing 
bottle-necks associated with these solutions. The 
second section shows how the IMSA100 signal 
processor can be configured to perform these func­
tions efficiently and simply, at speeds not economi­
cally feasible with the conventional approach. 

IV. CONVENTIONAL HARDWARE FOR 
TIME-DOMAIN EVALUATION OF 
CORRELATION 

As discussed earlier, the processes of correlation 
and convolution are based on multiplying a delayed 
version of a sequence of samples by another se­
quence and summing the products. Conceptually 
this could be mechanised, as shown in Figure 4, by 
providing two shift registers to hold all the values of 
x's and y's required for the computation, a further 
shift register to provide the delay (mT), an array of 
multipliers for forming the products, and a multi­
input adder for the final summation. In the example 
of Figure 4 the output would correspond to Rxy(2), 
as a delay of two stages is incorporated in the path 
of signal x(kT) giving x((k-2)T) (see equation 3b). 

Up to now, due to the large number of multipliers 
and adders involved, it has not been possible to 
economically implement high precision correlators 
directly in the form given by Figure 4. Instead to 
minimize the size, cost and power consumption, a 
single multiply-and-accumulator is usually used 
and time-shared between all the multiplications. 
Figure 5 shows a schematic block diagram of a 
conventional correlator implementation. The sys­
tem consists of memories to hold samples of the 
two signals to be correlated, a multiply-accumulator 
and an address generator hardware which is re­
sponsible for sequencing the correct order of signal 
samples through the multiply-and-accumulator. 
The obvious disadvantage of this arrangement is 
the processing bottle-neck caused by using a 
single multiply-and-accumulator to sequentially 
evaluate what is inherently a concurrent problem. 
Assuming a multiply-accumulate time ofT mac, for 
an N-point correlator implemented using a single 
multiply-accumulator, the maximum sampling rate 
would be 

1 
fmSXs =-NT (8) 

mac 

For example if Tmac= 100ns and N=100, then a 
signal sampling frequency of at most 1OOkHz would 
be possible. 
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Figure 4 : Schematic Diagram for an Ideal Correlator Hardware 
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Figure 5 : Block Diagram of 
a Conventional/convolver 
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Many applications such as radar and communica­
tion require faster processing rates than can be 
achieved using a single multiply-and-accumulator. 
(Some improvements can be achieved by carrying 
out the processing in the frequency domain at the 
cost of introducing some complexity. However here 
we are only concerned with the time-domain ap­
proach. A separate application note entitled 'Dis­
crete Fourier Transform with the IMSA100' deals 
with the time-domain to frequency-domain trans­
formations) 

In applications where a fast processing rate is 
essential, a trade-off is often made between the 
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correlator precision and its speed. For example if 
one or both of the signals x and y are assumed 
binary, the multiplications become simple binary 
AND operations, and it would be possible to imple­
ment a high speed low precision correlator. In fact 
rnany correlator ·chips available today are of this 
type and have very low precision compared to 
those implemented from multiply-accumulators. 

The IMSA 100 chip on the other hand is the first 
high-precision high-speed VLSI implementation of 
a single-chip correlator. It provides a numerical 
accuracy in excess of that of the 16-bit multiply and 
accumulators while allowing sampling rates in the 
MHz region. The next section illustrates how this 
chip can be used to perform fast and highly accur­
ate correlation and convolution functions. 

V. THE IMSA100 IMPLEMENTATION OF 
CORRELATION/CONVOLUTION 

The IMSA100 is a 32-stage correlator (convolver) 
in which the samples of the two signals to be 
correlated can be represented as up to 16-bit 
words. This corresponds to a signal dynamic range 
of 96 dB's. A number of these devices can also be 
cascaded, without the need for any external com­
ponents, to provide much longer correlators while 
preserving a high degree of accuracy. The 
IMSA100 chip (or cascaded chips) can be fully 
memory mapped and used as a peripheral acceler­
ator to a host processor. 

To understand the architecture of the IMSA 100 let 
us first consider the basic function of a simple 
3-point correlator shown in Figure 6a. The three 
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samples of the first signal (reference signal) i.e. xo, 
x1 and x2 are loaded in three registers feeding an 
array of three multipliers. The samples of the sec­
ond signal i.e. yo, y1, y2, .... are fed into a 3-stage 
shift register whose outputs are also connected to 
the multipliers. A three input adder combines the 
products to give the correlation function. As the 
samples of the signal yare shifted through the shift 
register, the output of this hypothetical correlator 
(assuming the shift register is reset at the start) will 
be: 

yo X2 , Yo x1 + Y1 X2 , Yo xo + Y1 X1 + 
Y2 X2 ' Y1 xo + Y2 X1 + Y3 X2, ... 

The cor.relator structure in Figure 6a can be modi­
fied to that given in Figure 6b without affecting the 
functiol')ality. In Figure 6b the multi-input summa­
tion process is avoided and replaced by a chain of 
delay-aryd-add units. The input, supplying the sig­
nal y, is also made common to all of the multipliers. 
Note also that the signal samples xo, x1, x2 are 
stored iri the opposite direction to that of Figure 6a. 
Supplying the input sequence of samples yo, Y1, y2, 
y3, ...... io the structure of Figure 6b and simulta­
neously shifting the partial products along the 
delay-and-add chain, it is straightforward to confirm 
that the output sequence would be 

yo x2 , yo x1 + Y1 x2 , yo xo + Y1 x1 + 
Y2 X2 ' Y1 xo + Y2 X1 + Y3 X2 ' ... 

This sequence is absolutely identical to that ob­
tained from Figure Sa. In other words the structure 
in Figures 6a & 6b have identical functionality and 
both can be used to perform correlation between 
two sequences. The IMSA100 architecture is 
based around this modified structure. The major 
processing part of the chip incorporates 32 multi­
pliers and a 32-stage delay-and-add chain as 
shown in Figure 7. 

At this point the interested reader is advised to 
consult the data sheet of the IMSA 1 00 for full 
details. 

In order to correlate two sequences x(k) and y(n), 
the samples of one of the two signals, say x(k)'s, 
should be stored in one set of the IMSA 1 OO's 
coefficient registers. These samples should be 
loaded from left to right with the last sample of x(k) 
stored in the coefficient register associated with the 
last multiplier. If the reference waveforms x(k) is 
less than 32-samples long, any unused left-most 
coefficient registers should be set to zero. For a 
30-sample reference signal, this allocation is de­
picted in Figure 8. 

Figure 6: Relating the IMSA100 architecture to that of a correlator 

Output 

... y3 • Y2 • Yt • Yo 

(a) Conventional correlator structure 

... y3 • Y2 • Yt • Yo 

(b) modified correlator architecture (IMSA 1 DO) A100·06.EPS 
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Figure 7 : User's Model of the IMSA 100 
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Figure 8 : Example of the reference signal allocation for a 30-point correlator 

coefficient register associated 
with the first stage · 

The samples of the other signal y(n) are then 
applied to the input of the IMSA100. As shown 
earlier the output sequence would correspond to 
the cross-correlation function of the two signals. If 
the two signals x(k) and y(n) are to be convolved 
rather than correlated, the reference signal x(k) 
should be loaded in the coefficient registers in the 

coefficient register associated 
with the last stage 

A100-08.EPS 

opposite direction. The register allocation for a 
30-point convolver is shown in Figure 9. As dis­
cussed in the data sheet, the IMSA100 processor 
has two sets of coefficient registers. At any instant 
in time one set of coefficients is applied to the 
multiplier array, whilst the other set can be ac­
cessed via the IMSA 100 memory interface. 

Figure 9 : Coefficient register allocation for a 30-point correlator 
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coefficient register associated 
with the first stage 

coefficient register associated 
with the last stage 
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For correlations (convolutions) dealing with real 
signals, one set of these coefficients would be 
sufficient. The second set can be used to hold a 
different reference signal and if necessary the func­
tion of the two memory banks can be interchanged 
by performing a write operation to the 'Bank swap' 
bit of a control register. Such an operation would 
initiate the correlation (convolution) of the input 
signal with the second reference waveform. The 
existance of the two coefficient register sets and 
the continuous bank-swap mode allows the 
IMSA100 to perform complex (correlation)convol­
ution, where both the reference and the input signal 
have real and imaginary components. This configu­
ration is discussed in the application note 'Complex 
Processing with the IMSA100'. 

For the IMSA100 the data-word length is 16 bits 
whilst the coefficient-word length can be pro­
grammed to be 4, 8, 12 or 16 bits. The maximum 
data throughput (the sampling rate) is a function of 
the coefficient size. Table 1 relates the coefficient 
size to the maximum sampling rate and indicates 
the effective number of multiply-and-accumulate 
operations per second in each case. The last col­
umn shows the effective number of multiply-and­
accumulates when four devices are cascaded. 

Table1 

Coefficient Sampling 
Effective number of 

multiply-and-accumulates 
word size rate (Millions/second) 

(bits) (MHz) 
SingleA100 Four A100s 

4 10 320 1280 

8 5 160 640 

12 3.3 106 424 

16 2.5 80 320 

The strength of the IMSA100 can be appreciated 
by comparing the effective number of multiply-and­
accumulations/sec with that of multiply-accumula­
tor IC's which range from 5--10 million/sec. 

As discussed in the A1 00 data sheet, in order to 
preserve complete numerical accuracy no trunca­
tion or rounding is carried out on the partial pro­
ducts in the multiply-and-accumulation array. The 
output is thus calculated to 36 bit precision which 
ensures no overflows. A barrel-shifter at the output 
of the multiply-and-accumulate array allows 24 bits 
from these 36 bits to be selected (sign-extended if 
necessary) and rounded for output. This selection 
can be programmed via a control register. The 
programming details can be found in the IMSA 100 
data sheet. 

The architecture of the IMSA100 has been de-

signed to allow large numbers of these devices to 
be cascaded for correlations (convolutions) involv­
ing more than 32-stages, the devices can be cas­
caded while preserving a high degree of accuracy 
and without the need for any external components. 
This is made possible by incorporating on chip a 32 
stage, 24-bit wide, shift register and a 24-bit adder 
which combines the output of the barrel-shifter with 
that of the 32-stage shift register (see Figure 7). 

The IMSA100 chips can be cascaded by simply 
connecting the output of the each device to the 
cascade input of the following device. The input is 
common to all cascaded devices. The effect of such 
an arrangement is that the output of the first device 
is delayed by 32 cycles, before being added to that 
of the next device. Figure 10 illustrates how, for 
example, a 64-point correlator can be implemented 
using two IMSA100 devices. The allocation of the 
reference signal samples is also indicated in this 
illustration. In this arrangement the barrel-shifter in 
each device acts as a data scalar (with rounding). 
The cascading process can be considered as a 
block-floating point operation where the common 
exponent is determined by the extent of the shift 
carried out by the barrel-shifter. With this cascading 
technique a very high degree of accuracy is 
preserved because the output scaling is only per­
formed after every 32-multiply and accumulation 
stages and not at any intermediate stage. 

For convolution purposes the reference signal 
should be loaded into the coefficient stage in the 
opposite direction to that shown in Figure 10. 

A very important feature of the IMSA100 transver­
sal filter is that the part is fully memory mappable. 
Apart from the two coefficient memory banks, 
which can be accessed via the IMSA100 standard 
memory interface, the input and output of the de­
vice are also accessible from the sam·e interface. 
This feature allows the part to be used either with 
its input and output data communicated through the 
dedicated ports or through the memory interface. 
The latter options allows the device to be easily 
interfaced to a host processor and used as a high 
speed peripheral. The status and control registers 
of the IMSA100, accessible via the memory inter­
face, provide full control of the part by the host 
processor. The memory interface can also be used 
as a facility for system diagnostics, as the host 
processor can act as a watch-dog in systems in­
volving arrays of IMSA 1 OO's. Full specification of 
the IMSA100, its status and control registers and 
its standard memory interface are detailed in the 
data sheet available from SGS-THOMSON. 
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Figure 10: Cascading two IMSA100 devices to obtain a 64 point correlator 

input 

multiply & accumulate array multiply & accumulate array 

cascade shift·register cascade shift-register 

IMSA100 IMSA100 

Allocation of the reference stgnal samples for a 62 point correllatJOn is 1nd1cated 

VI. DECOMPOSITION OF LONG 
CORRELATIONS AND CONVOLUTIONS 

A single IMSA100 device is effectively a 32-tap 
correlator (convolver) in which the samples of the 
two signals to be correlated can be expressed in 
upto 16-bit words. As described earlier, one method 
to deal with correlations/convolutions involving 
more than 32 points is to use several cascaded 
devices to achieve a longer correlator/convolver. 
For such an arrangement, and with 16-bit coeffi­
cients, tha data rate can be as high as 2.5 Million 
samples/sec. 

Alternatively it is possible to use various, decompo­
sition techniques to partition a long correlation/con­
volution into a number of shorter ones, which can 
then be carried out by a single or a small number 
of IMSA100 devices. The host machine would 
merely combine the results from these short corre­
lations/convolutions to obtain the overall result. The 
advantage of this approach, compared to using 
single MAC based processors, is a significant re­
duction in the required memory bandwidth. This is 
why even a medium-speed general purpose micro­
processor can achieve a very high performance 
when combined with the IMSA100. 

A simple way to decompose a long correlation/con­
volution of length N, between waveforms x andy, 
is to break up one of the waveforms, say x, into 
consecutive blocks of 32 sample. Each one of 
these blocks can then be correlated/convolved with 
the whole of the waveform y by loading each block 
into the IMSA 100 coefficient registers, and using y 

A100·100.EPS 

as the input sequence. The output from these 
correlations/convolutions can then be combined by 
displacing each partial result by 32 samples, with 
respect to the previous one, and periorming an 
addition operation. Note that the coefficient regis­
ters, containing blocks of waveform x, need only be 
updated once every time the whole of the waveform 
y is fed through the device, resulting in a significant 
saving in the memory bandwidth. The block size of 

. 32, suggested above, whould mean that a single 
IMSA 100 would be sufficient. However processing 
speed can be improved by using cascading devices 
to perform these partial correlations/convolutions. 
With suitable memory mappings, hosts such as 
SGS-THOMSON transputers can use their on-chip 
DMA engine to feed the IMSA 1 00 devices with the 
samples of the waveform y. 

A more complicated decomposition technique, to 
be described here, is based on the multidimen­
sional index mappings (references 1 & 2). These 
techniques are applicable to cyclic convolution­
s/correlations. However all convolutions/correla­
tions can be made cyclic by adding zero terms to 
the end of the data blocks. As an example, consider 
the following cyclic correlation: 

N-1 

C(k) = L, x(k + n) y(n) (9) 
· n=O 

where the indices are.evaluated modulo N. The 
arrays C, x, and y can be mapped into multidimen­
sional arrays C', x', andy', the requirement being 
that the mapping should be one-to-one and cyclic 
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in at least one dimension. The map, in general, can 
assume many different forms, but the one particu­
larly useful is the linear form. For a simple two­
dim~nsional decomposition such a map would be 
of the form: 

n = (M1 n1 + M2 n2) mod N (10) 

Note that n is evaluated modulo N, making the map 
cyclic in n. In order for this map to be unique and 
one-to-one, the mapping constants M1 and M2 
must satisfy certain conditions. These conditions 
are summarised in section 6 of the IMSA 100 Appli- · 
cation Note 2 which is available from INMOS and 
will not be repeated here. 

As an example let us map the arrays in equation 
(9) into two-dimensional matrices of dimensions N1 
and N2 where N=N1 x N2, we can use the mapping 
given by equations (1 0) for n and k giving 

C(M, k, + M2 k,) = 
N1-1 N,2-1 

L L x(Mt kt + M2 k, + Mt Ot + M2 02l y(Mt o, + M2 02) 

or 
Nt N2 

C'Ckt , k,) =I, I, x'(kt + n, , k2 + n2l y'Cnt , 02) (12) 
nt n2 

This is now a true two-dimensional convolution 
which can be made cyclic along n1 if M1 is made a 
multiple of N2, and/or cyclic along n2 if M2 is made 
a multiple of N1. With these conditions, inspection 
of equation (12) shows that the long N-point circular 
correlation can be performed by N12, N2-point 
correlations or Ni, N1-point correlations. This in­
volves correlating each row (or column) of the 
matrix y' with all the rows (or columns) of the matrix 
x'. These short circular correlations can be effi­
ciently performed by the IMSA100, with the host 
merely adding partial results. The approach is par­
ticularly efficient as it is possible to load one row ( 
or column) of the matrix y' into the coefficient 
memory of the device and to feed all the rows (or 
columns) of the matrix x' successively to the input 
of the device to obtain partial results, for the ele­
ments in the matrix C'. The fact that with this 
algorithm, the coefficient memories need only be 
updated occasionally (once every time all the ele­
ments of the matrix x' are fed into the device) results 
in an impressive reduction in the memory band­
width requirement. This is why, even with a general 
purpose microprocessor, as the host, very im­
pressive perfomance can be achieved. 

In the example given here, we concentrated around 
a two-dimensional mapping. It is important to re-

a lise that the same decomposition concepts can be 
extended to more dimensions. The easiest way to 
see this is to start with a two dimensional decom­
position and then partition the rows of the two­
dimensional matrices further. For example if 

N = N1 X N2X N3 
the original N-point correlation can be carried out 

via N§, N1x N2-point correlations. However, each 
one of the N1x N2-point correlations can further be 
decomposed, as before into N12, N2-point correla­
tions. 

VII. 2-D IMAGE CONVOLUTIONS WITH THE 
IMSA100 

Many applications including image processing re­
quire 2-D convolutions and correlations. Such 
operations are needed in image filtering, edge 
detection, etc. There are many ways that the 
IMSA 100 can be used to speed up these operation­
s. This section gives an example of how the device 
can be used to perform 3x 3, 5x 5, or larger 
convolutions. 

Figure 11 a shows a 20x 20-pixel image which is to 
be convolved with the 3x 3 reference matrix given 
by Figure 11b. One way to achieve this is to load 
the reference matrix, as shown in Figure 11 c, in one 
of the IMSA100 coefficient register banks, and 
sequence the image data through the device as 
shown by the arrowed path in Figure 11a. In this 
way every third output sample of the IMSA100 
would correspond to a valid filtered pixel for the 
second row of the image. To proceed, the same 
sequence, moved down by one row, is then passed 
through the device which provides the filtered re­
sults for the nest row and so on. A single IMSA 100 
can deal with reference matrices as big as 5 x 5. 

An alternative arrangement which gives a better 
throughput is one where, as shown in Figure 12a, 
7 zeroes are inserted in the IMSA100 coefficient 
registers (between terms corresponding to the col­
umns of the reference matrix). The data sequenc­
ing would be as shown in Figure 12c, where ten 
pixels from a given column are fed through the 
device before moving to the next column. In this 
scheme the first nine rows of the image are filtered 
in one scan, with 80% of the output data samples 
being valid. (Note that, using a single device, the 
number of inserted zeroes can be increased from 
7 to 11, allowing 13 image rows to be filtered in each 
scan.) 

11/16 

235 



CORRELATION AND CONVOLUTION WITH THE IMSA100 

Figure 11 : Example of a 3 x 3 image convolution/correlation with the IMSA100 
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(c) Coefficient register allocation for the 3 x 3 convolution 

Figure 12 : Improved version of the 3 x 3 image convolution/correlation with the IMSA 100 
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The examples given here are just a small subset of 
possible arrangements. Remembering that the 
IMSA100 devices can be cascaded or used in 
parallel, numerous other implementations for 
image processing become possible. 

VIII. SOME APPLICATION EXAMPLES OF 
CORRELATION AND CONVOLUTION 

Correlation and convolution are encountered in 
numerous applications of digital signal processing, 
this section summarises some of the application 
areas where these techniques are used. 

between the two waveforms. This is illustrated in 
Figure 13c where the peak of the cross-correlation 
function occurs at t=Td where Td is the delay be­
tween the two waveforms. This technique has ap­
plications in areas such as radar, sonar and medi­
cal ultrasonics where a measurement of the time 
delay between the transmitted signal and the return 
echo from an object gives an indication of the range 
of that object. 

The same technique can also be used to measure 
the period of a repetitive signal. This can be 
achieved by correlating the signal with itself i.e. by 
calculating its auto-correlation function as illus-

VIII.1 Delay and periodicity estimation trated in Figure 14 the auto-correlation of a periodic 
The correlation process can be used to estimate signal exhibits peaks, spaced a distance, To, apart 
the time delay between two similar signals. Fig- whereToistheperiodofthesignai.Oneapplication 
ure 13 shows two signals x(t) and y(t) which are of this technique is pitch-period measurement in 
identical in shape but have a time delay between speech signals. The time gap between the peaks 
them. If these two signals are correlated the cross- in the auto-correlation function of a segment of 
correlation function would attain a maximum when speech provides an estimate for the pitch period of 
y(t) is delayed by an amount equal to the delay voiced speech. 

Figure 13 : Delay Estimation using Correlation Process 
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Figure 14 : Application of Correlation to the Periodicity Measurement 

Vlll.2 Noise reduction using correlation 
techniques 
In many real-world applications the signals to be 
processed are immersed and possibly masked by 
noise. Such situations occur in noisy communica­
tion channels, long-range radar and sonar sys­
tems. In such cases correlation techniques can be 
used to extract and detect the signal from the 
background additive noise. This is achieved by 
correlating the noisy signal with a replica of the 
expected signal waveform. While the noise is un­
correlated with. the replica signal, the signal im­
mersed in noise will strongly correlate with the 
replica signal giving a large output value, well 
above the background noise. Mathematically this 
can be argued as follows (the proof here is not 
rigorous but does make the point): 

Let the signal waveform consist of N samples 
values sa, s1, s2, ...... SN-1. Suppose this signal is 
correlated by samples of a white noise having a 
standard deviation of crn (and variance crn2>. The 
ratio of the signal power to that of the noise prior to 
any processing is thus: 

Sig~al Power=~ (13) 
Nmse Power ifn 

where crs2 is the signal variance. Suppose we 
correlate this noisy signal with a replica of the 
original signal in anN-point correlator. At the instant 
when the signal waveform masked by the back­
ground noise is aligned with its replica in the corre­
lator, the output attains its maximum. At this instant 
the amplitude of signal component at the output of 
the correlator would be 

Sout = so2 + s12 + sl + sl + ... + SN-12 = N crs2 

The corresponding output signal power would thus 
be: Output Signal Power= N2 crs2 (14) 

14/16 

238 

A100·14.EPS 

The noise would also be modified by the operation 
of the correlator. In this case each output noise 
sample is equal to the sum of weighted input noise 
samples-the weighting coefficients being, of 
course, the samples ofthe reference signal. Hence 
each output noise sample is equal to the summa­
tion of N independent random numbers having 
standard deviations soan, S1<rn, s2crn, ...... , SN-1<rn. 
Since variances are additive in this case, the vari­
ance of the output noise samples is therefore 

O"nout2 = So2 ~ + St2 cr2 + ... + SN-12 cr2 = N Sn2 0"52 (15) 

The ratio of the output signal power to that of the 
output noise is thus 

(.§. ~ = Output Signal Power = N2 cr~ 
N J,uT cr~aut N ~ cr~ 

- N ~ - N (.§.) 
- ~ - N NPUT 

This indicates that the correlation process im­
proves the signal to noise ratio by 

CG = 10 log10 (N) dB's (17) 
which is defined as the 'Correlator Gain'. 

Vlll.3 Pulse-compression 
Another application of correlation is in radar and 
sonar systems where pulse compression tech­
niques are used to improve range resolution of the 
systems. In many active sonar and pulsed radar 
systems, a short pulse is transmitted followed by a 
listening period that represents a 'look' in the range 
dimension. The two way propagation duration, i.e. 
the time it takes for the pulse to travel to a target 
and back gives an indication of the range of that 
target. The range resolution i.e. the shortest dis­
tance between two targets that can be resolved, is 

equal to ~ where 't is the pulse duration and c is 
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the speed of wave propagation in the medium. For 
example for a radar system a 1011 s pulse corre­
sponds to a range resolution of 1.5km. Better range 
resolutions necessitate a shorter pulse. Unfortu­
nately the transmitted pulses cannot be made too 
short. This is because most systems are peak­
power limited and a shorter pulse means less signal 
power which in turn can severely limit operational 
range of the system. 

Pulse compression techniques allow a radar or 
sonar to utilize a long pulse to achieve large radi­
ated energy, but simultaneously to obtain the range 
resolution of a short pulse. This is accomplished by 
using a coded signal instead of a simple CW pulse. 
At the receiver the returned signal is correlated with 
a replica of the coded transmit signal. The returned 
signal would only correlate heavily with the replica 
for a short time, corresponding to when the echoes 
are aligned with the replica. This results in a narrow 
pulse appearing at the output of the correlator, 
everytime a match occurs. A signal that is com­
monly used in pulse-compression techniques is the 
lineal FM signal. An example of such a signal is 
depicted in Figure 15a. The autocorrelation of such 
a waveform is shown in Figure 15b. Note that the 
autocorrelation function has a narrow peak at the 
origin, with small side lobes elsewhere, i.e. the 
initially long FM pulse is 'compressed' into a narrow 
pulse after the autocorrelation process. 

It can be shown that the degree of compression is 
equal to BT where B is the bandwidth of the coded 
pulse and T is its duration. The effective pulse 

duration, as far as the range resolution is con­
cerned, will thus be: 

Effective Pulse Duration = :T = ~ (18) 

If the 1 Oil s pulse in the previous example is coded 
in such a way that its bandwidth becomes 5MHz, 
the effective pulse duration would be: 

1 
--6=0.2!lS 
5. 10 

This corresponds to a range resolution of 30 
metres. 

Vlll.4 System identification using correlation 
Another important application of cross-correlation 
is in the use of random-noise test signals to identify 
the impulse response of a system. For a system 
with an unknown impulse response h(t), the output 
y(t) is related to an input x(t) by 

y(t) = (: h(u) x(t- u)dt (19) 

The cross-correlation between the input x(t) and 
the output y(t) is defined by 

T 

<l>xy(T) = lim ~I X(!) y(t + T)dt (20) 
T -H>o 0 

T += 

= lim ~ I x(t) I h(u) x(t + T- u)dudt 
T->= 0 -= 

Using simple mathematical manipulation it can be 
shown that · 

I+= 
<llxy(T) = -= h(u) <l>xx (T- u) du (21) 

Figure 15 :Pulse Compression Function of a Linear FM-pulse 

(a) a linear-FM pulse 
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(b) auto-correlation function of a linear FM-pulse 
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i.e. The cross-correlation between x(t) and y(t) is 
the convolution of the impulse response h(t) with 
the auto-correlation of the input signal. 

If the input signal consists of broad-band white 
noise then its auto-correlation function, <I>xx(1:), 
would be an impulse (since a noise signal only 
correlates with itself at zero delay, 1:=0). Referring 
to equation (21) it therefore follows that for broad­
band noise input, the output <l>xy(1:) would be a 
direct measure of h(1:) since 

<I>xy(1:) = (: h(u) o (1:- u) du = h(1:) (22) 

Figure 16 illustrates the technique. 

Figure 16: System Identification using 
Correlation 

noise generator 

system impulse response 
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Vlll.5 The Discrete Fourier Transform (OFT) 
OFT has application in many signal processing 
areas, including speech processing, radar, sonar, 
image processing and control. This transform has 
often been performed using Cooley and Tukey 
radix-2 FFT algorithm (reference 3). This algorithm 
reduces the number of multiplications compared to 
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direct evaluation of the OFT at the expense of 
complicating the required indexing. 

Other algorithms have also been developed which 
allow the evaluation of the OFT via correlation 
(convolution) techniques (references 1, 2, 4, & 5). 
The IMS A100 device can be used to perform high 
speed OFT's based on these convolutional algo­
rithms. Using the IMS A 100 as a peripheral to a 
general-purpose microprocessor converts a slow 
host into a high-performance DFT processor. A 
separate application note available from INMOS 
describes how these algorithms can be im­
plemented using the IMS A100 devices. 
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APPLICATION NOTE 

COMPLEX (I&Q) PROCESSING WITH THE IMSA 100 

1. INTRODUCTION 

Complex processing, involving in-phase and quad­
rature signal components, is necessary in many 
signal processing applications. This type of pro­
cessing is needed in cases where the phase of the 
signal has significant impact on the processing 
outcome. For example consider a simple demodu­
lator as shown in Figure 1. The incoming tone, 
(A cos rot), is demodulated by mixing it with a local 
oscillator having the same frequency. The output of 
the mixer is low-pass filtered to yield the final result. 
If there is a phase difference <I> between the incom­
ing tone and the local oscillator signal, the output 
would be proportional to cos <1>. This indicates that 
the output of our simple demodulator is strongly 
dependent on the relative phases of the incoming 
and local oscillator signals. For the worst case of 

<1>-~. the output would become zero! This means 

that the relative phase shift of the local oscillator 
can be quite disasterous. 

Let us now perform the same demodulation using 
complex processing. The input signal can be rep­
resented in its complex form consisting of real and 
imaginary parts i.e. 

x(t) = Ae-ioot =A [cos( rot)- jsin(rot)] (1) 

Mixing the signal with a complex version of our local 
oscillator signal i.e. AiCoott<t>)= cos(rot+<l>)+jsin(rot+<l>) 
yields: 

Ae-1001 ei(oot +<I>)= Aei<l> = Acos<l> + jAsin<l> (2) 

Note that this output is complex and contains both 
phase (<I>) and amplitude (A) information. The amp­
litude can be extracted by taking the modulus of 
the output i.e. 

amplitude= --.I(Acos<l>)2 + (Asin<l>)2 = IAI (3) 

The above example illustrates how complex pro­
cessing can be used to preserve both phase and 
amplitude information in a simple demodulator. 

Similar phase related problems arise in correlation 
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and convolution evaluations where complex pro­
cessing becomes necessary for preserving the in­
tegrity of signals. This application note describes 
how on-chip facilities of the IMSA 100. transversal 
filter can be used to perform complex correlation, 
convolution and filtering. 

As described in the data sheet, the IMSA 100 trans­
versal filter incorporates two sets of coefficient 
memories (Figure 2), each containing 32 16-bit 
words. At any instant one set of coefficients is 
applied to the multiply-accumulate array, whilst the 
other set can be accessed via the IMSA 100 stand­
ard memory interface. The function of the two 
memory banks can be interchanged by performing 
a write operation to the 'Bank Swap' bit of a control 
register. 

This allows the new set of coefficients to be used 
in the computation at the beginning of the next 
cycle. In this operation once the two memory banks 
are interchanged, the 'Banks Swap' control bit is 
reset by the device. No more interchanges are 
performed unless the bank swap control bit is again 
set by the host. 

There is another control bit in the static control 
register of the IMSA 100, that when set continu­
ously interchanges the two memory banks at the 
beginning of each and every computation cycle. 
When this mode is set, alternate coefficient mem­
ory banks will be used for even and odd computa­
tion cycles. This mode is particularly suitable for 
implementing complex data processing. The fol­
lowing two sections describe how this continuous­
swap mode can be employed to perform complex 
convolutions and correlations using the IMSA 100 
transversal filters. A separate application note, 
available from !NMOS, deals with the correlation 
and convolution concepts and their implementation 
using the IMSA 1 00 device. Readers unfamiliar with 
the IMSA 100 and its implementation of correlation 
and convolution functions are advised to refer to 
that application note before reading the following 
sections. 
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Figure 1 : Simple Demodulator 

A cos (rot) 

2A cos (rot+ <I>) 

Figure 2: User's Model of the IMSA100 

16 

Update coefficient registers 

Active coefficient registers 

Multiplier 
Accumulator Array 

~ 32stages-.. 

32 cycle delay (24 bits) 

2. COMPLEX CORRELATION 

The complex correlation between two signals rand 
s is very similar to real correlation (refer to the 
application note entitled 'Correlation and convol­
ution with the IMSA 1 00') with the difference that 
one of the two signals has to be complex conju­
gated first i.e. 

or 

N-1 

1" * Rrs(m) = "N.Li r (k)s(k + m) (3) 
k=O 

N-1 

Rrs(m) = tL r(k)s*(k + m) (4) 
k=O 

where' indicated complex conjugate operation and 
both waveforms r and s can be complex. 

Let us now investigate how the IMSA 100 can per­
form this function. As shown in Figure 2, the com-
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A cos (<I>) 

A 1 00-01.EPS 

24 

A100-02.EPS 

putational core of the IMSA 100 contains an array 
of 32 multiply-and accumulators. In order to simplify 
the explanation of complex processing, let us con­
sider a simple five-stage transversal filter as shown 
in Figure ·3. Once you have understood how such 
a simple structure can be used for complex corre­
lation, it should be easy to extend the idea to larger 
correlations sizes involving one or many cascaded 
IMSA100 devices. 

Suppose we want to perform a two-point complex 
correlation between a reference signal and a se­
quence of complex input samples. Let us denote 
the two complex samples of the reference signal 
with 

r(O) = rr(O) + j ir(O) and 
r(1) = rr(1) + jir(1) 

where rr and ir indicate real parts and imaginary 
parts of the reference signal respectively. 
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Figure 3 : Two-point Complex Correlator Based on the IMSA 100 Architecture 

------- is(1), m(1), is(O), m(O) 

Assume the input sequence is the following set of 
complex samples: 

s(O) = rs (0) + j is(O), s(1) = rs(1) + j is(1) 
, .......... , s(n) = rs(n) + j is(n), ..... . 

where rs(n) and is(n) indicate real and imaginary 
parts of the nth input sample, s(n), respectively. 

The 5-stage transversal filter shown in Figure 3 can 
be used to correlate these two sequences. The 
reference signal samples are first complex conju­
gated i.e. 

r*(O) = rr(O) - j ir(O) and 
r*(1) = rr(1)- jir(1) 

These samples of r· are then allocated to the two 
coefficient memory banks as shown in Figure 3. It 
can be seen from this diagram that both coefficient 
stores contain real and imaginary samples of the 
reference signal. 

Assume that the input sequence is sampled into 
the correlator, with the real part followed by the 
imaginery part of each input sample. i.e. the input 
to the correlator is 

rs(O), is(O), rs(1 ), is(1 ), rs(2), is(2), ......... . 

where rs(O) is the first input sample. Also assume 
that we have selected the continuous-swap mode 
so as the memory banks A and 8 are swapped 
every time a new input is sampled. (On the 
IMSA 100, you can select this mode by writing to a 
control register). Assuming that the coefficient bank 
'/>\ is selected for the first input sample, 8 for the 
second and so on, you should be able to convince 
yourself that the output sequence for the arrange­
ment 1n Figure 3 is as shown in Table 1. Note that 
in this example it is assumed that the correlator is 

Memory 
bank 

Output 

A 1 00-03.EPS 

cleared first by writing several zero's to the input. 

The last column in table 1 expresses the output 
sequence in terms of the complex input and com­
plex reference samples. Examination of the output 
sequence would indicate that alternate samples 
correspond to real and imaginary parts of the ex­
pected correlation function. The arrangement for 
the two point correlator of Figure 3, can be gener­
alised to N-point complex correlation. Figure 4 
illustrates the allocation of a reference signal to the 
coefficient memories of the IMS A 100 for a 15-point 
complex correlation. The 15 complex samples of 
the reference signal are represented by: 

r(n) = rr(n) + j ir(n) for n = 0 to 14 

where rr(n) and ir(n) are the real and imaginery 
parts of the nth sample of the reference waveform. 
Similar to the 2-point complex correlator described 
earlier, the correct operation is achieved if each 
input sample is supplied to the chip with its real 
parts followed by its imaginery parts. The coeffi­
cient memories, of course, should be set to the 
continuous-swap mode. 

In general for anN-point correlator realized with the 
IMS A 1 00 chip, the first sample will always be zero 
(see table 1). The following N-1 output-sample 
pairs (real and imaginary parts) correspond to par­
tial results for the following complex correlation 
coefficients: 

Rsr [ -(N-1 )], Rsr [-(N-2)], ........... , Rsr(-1) 

and these will be followed with fully formed corre­
lation coefficients: 

Rsr(O),Rsr(1 ), Rsr(2) .......... . 
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Table 1 :Output Sequence for Figure 3 

Sample number Input sample Output sample value 

1 rs(O) 0 ---7 0 

2 is(O) rs(O)x rr(1 )+is(O)x ir(1) ---7 Real part of s(O) x r*(1) 

3 rs(1) -rs(O)x ir(1 )+is(O)x rr(1) ---7 I mag. part of s(O) x r*(1) 

4 is(1) rs(O)x rr(O)+is(O)x ir(O)+ ---7 Real part of 
rs(1) x rr(1 )+is(1 )x ir(1) s(O) X r*(0)+S(1) X r(1) 

5 rs(2) -rs(O)x ir(O)+is(O)x rr(O) ---7 I mag. part of 
-rs(1) x ir(1 )+is(1 )x rr(1) s(O) X r*(0)+S(1) X r*(1) 

6 is(2) rs(1 )x rr(O)+is(1 )x ir(O)+ ---7 Real part of 
rs(2) x rr(1 )+is(2)x ir(1) s(1) x r*(O)+s(2) x r(1) 

7 rs(3) -rs(1 )x ir(O)+is(1 )x rr(O) ---7 I mag. part of 
-rs(2) x ir(1 )+is(2)x rr(1) s(1) x r*(O)+s(2) x r*(1) 

8 is(3) rs(2)x rr(O)+is(2)x ir(O)+ ---7 Real part of 
rs(3) x rr(1 )+is(3)x ir(1) s(2) x r*(O)+s(3) x r(1) 

9 rs(4) -rs(2)x ir(O)+is(2)x rr(O) ---7 I mag. part of 
-rs(3) x ir(1 )+is(3)x rr(1) s(2) x r*(O)+s(3) x r*(1) 

10 is(4) rs(3)x rr(O)+is(3)x ir(O)+ ---7 Real part of 
rs(4) x rr(1 )+is(4)x ir(1) s(3) X r*(0)+S(4) X r(1) 

11 rs(5) -rs(3)x ir(O)+is(3)x rr(O) ---7 lmag. part of 
-rs(4) x ir(1 )+is(4)x rr(1) s(3) x r*(O)+s(4) x r*(1) 

Figure 4 : Example of Reference Signal Allocation for a 15 Point Complex Correlation 
using the IMSA100 

coefficient register 
associated with 
the first stage 

The reference signal is defined by r(n) = rr (n) + j ir (n) n = 0 to 14 

Each sample of the input signal is supplied with the real part followed by the imaginary part. 

coefficient register 
associated with 

the last stage 

Starting with coefficient set A, the banks are automatically swapped for each write to the input device. 

memory 
bank 

A 

B 

A100-04.EPS 

Complex correlators involving more than 15-points 
can be implemented either by cascading several 
IMSA 100 devices or alternatively by using mathe­
matical decomposition techniques to convert a long 
correlation into several short ones which can then 
be evaluated using a single device. Although the 
latter approach would require fewer devices, the 
processing rate would be less than the cascade 
arrangement. 
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The IMSA1 00 can be cascaded without any exter­
nal components to achieve correlators involving 
large number of correlation points. As an example, 
Figure 5 illustrates how a 31-point complex corre­
lator can be made up by cascading two IMSA 100. 
devices. The allocation of a complex 30-point ref­
erence signal to the coefficient memories is also 
shown in Figure 5. The input sequence, having a 
format described earlier, is supplied to both devices. 
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3. COMPLEX CONVOLUTION 
The convolution process is closely related to that 
of correlation. In order to convolve two signals, one 
of the signals is time reversed and the second 
signal is then correlated (without complex conju­
gate operation) with this time reversed waveform 
i.e. 

1 N-1 

Crs(m) = ·r;i~:, r(k)s(m- k). (5) 
k;O 

The process of convolution is what happens in 
filters where the output corresponds to a convol­
ution of the input signal and the impulse response 
of the filter. This is equivalent to correlating (without 
conjugate operation) time-reversed version of the 
impulse response with the input sequence. 

The IMSA 100 transversal filter can be used to 
perform complex convolution between a reference 

signal 

r(n) = rr(n) + j ir(n) 
for n = 0 ~ N -1 

and an input sequence 

s(O) = rs(O) + j is(O), s(1) = rs(1) + j is(1 ), 
. ......... , s(n) = rs(n) + jis(n), ...... . 

Figure 6 illustrates how the samples of a reference 
signal should be loaded in the coefficient memories 
for a 15-point complex convolution. In a similar_ 
fashion to the complex correlator implementation, 
the waveform to be convolved with this reference 
is applied to the input of the IMSA 100 with the real 
part followed by the imaginary part. The coefficient 
memory banks should be set to the continuous 
bank-swap mode as before. 

Again several IMSA 100 devices can be cascaded 
to implement longer complex convolvers. 

Figure 5: Cascading two IMSA100 Devices to obtain a 31 Point Complex Correlator 
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Figure 6 : Example of Reference Signal Allocation for a 15 Point Complex Convolution (filtering) 
using IMSA 100 

coefficient register coefficient register 
associated with associated with 
the first stage the last stage 

The reference signal is defined by r (n) = rr (n) + j ir (n) n = 0 to 14 

Each sample of the input signal is supplied with the real part followed by the imaginary part. 

Starting with coefficient set A, the banks are automatically swapped for each write to the input device. 

memory 
bank 

A 

B 

A 1 00-0S.EPS 
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I. INTRODUCTION 

The design of modern high speed digital systems 
is a considerable challenge. If the designer is using 
unfamiliar new products which themselves are 
complex VLSI devices then this task can become 
very difficult. This application note will help those 
who wish to build systems using the IMSA100 
cascadable signal processor. 

1.1. Scope of the document 
This document should be read in conjunction with 

. the device specification [1]. The device specifica­
tion is a short, precise, and minimal description of 
the IMSA100. The following document gives a 
more detailed description of the function of the 
device, along with many hints for designing the 
device into a circuit. Specific hardware designs are 
also given, which may help the designer further. 

1.2. Document summary 
In section II a description of the IMSA 100 device is 
given, with a particular emphasis on the operation 
and timing constraints of the various inputs and 
outputs. 

In section Ill smaller systems using a few IMSA100 
devices are considered. 

Section IV describes techniques which allow large 
and very large systems to be designed without loss 
of throughput. 

Section V describes a method which allows faster 
data rates to be achieved, by operating several 
IMSA100 devices in a parallel configuration. 

Figure 1 : IMSA100 Device Schematic 

CASCADE 
INPUT[0-11] 

Section VI gives some suggestions for debugging 
and fault finding hardware after it has been built. 

II. THE IMSA100 DEVICE (see Figure 1) 

This section gives a functional and parametric de­
scription of the device, and should be read in 
conjunction with the IMSA 100 data sheet. The data 
sheet is a necessary description for design with the 
IMSA100. The following expands on some of the 
device mechanics, which are described in the data 
sheet. 

11.1. Pin description and constraints 
The description of the various pins of the device is 
split into a description of power supply pins, asyn­
chronous pins, synchronous pins and control pins 

11.1.a. POWER SUPPLY 
All power supply pins must be connected to the 
correct polarity of supply for the device to operate 
correctly. The supply must be decoupled by a ca­
pacitor with a value of 1 OOnF or more which is 
suitable for high frequencies (e.g. multi-layer ce­
ramic). One or more should be mounted as close 
as possible to each device and the lead lengths of 
the capacitors should be minimised. The device is 
designed to operate with a single supply of be­
tween 4.5 and 5.5volts. 

11.1.b. SYNCHRONOUS INPUT/OUTPUT 
The synchronous pins of the device are CLOCK, 
GO, OUTRDY, Dataln[0 .. 15], Data0ut[0 .. 11] 
(multiplexed) and Cascadeln[0 .. 11] (multiplexed). 

DOUT 
[0·11] 

IMSA100 
OUTRDY 

RESET 
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The clock 

The CLOCK input pin requires a non-standard 
input signal of >4.0volts for a high level and 
<0.5volts for a low level. The waveform needs to 
be monotonic between these two levels. Details of 
how this is achieved are given in later sections of 
this application note. In general, a CMOS level 
clock driver with proper termination will be needed. 
The CLOCK pin forms a large capacitive load 
(12pF typ., 15pF max.) which needs to be con­
sidered when designing the clock driving system. 

The CLOCK is the source of synchronisation be­
tween cascaded I MSA 100 devices; GO, 
Data ln[0 .. 15] and Cascadeln[0 .. 11] all sample in 
response to it. The output signals Data0ut[0 .. 11] 
and OUTRDY are also timed from the clock. When 
the IMSA100 devices are programmed to operate 
in the normal mode the timing constraints associ­
ated with the transfer of data between adjacent 
cascaded IMSA 100 devices is less rigorous than in 
4 bit or fast modes. If the devices are being used 
in fast output or 4 bit modes it is important to keep 
the timing skew of the clock between devices to a 
minimum. In practice, it is not a good idea to buffer 
the clock between devices in these modes. If a 
master generated GO pulse is being used, a com­
mon clock is recommended. The maximum clock 
frequency for an IMSA 100 is normally 20.8MHz, (a 
30MHz version device is also available) but the 
device is fully static and will therefore operate at 
any frequency below this. It is also possible to start 
and stop the clock, provided no single phase 
becomes shorter than the minimum indicated in the 
data sheet. 

GO 

The GO pin initiates a compute cycle of the 
IMSA 100 and synchronises the devices in a 
multiple IMSA100 system. The GO pin is sampled 
on every rising edge of CLOCK when the IMSA 100 
is idle, and no computation cycle is in progress [1]. 
When a '1' is sampled, a computation cycle is 
started, and the J?ata.ID pfns or data input register 
DIR is sampled cin the n!3xt rising edge of CLOCK. 
The GO pin will not be sampled again until it is 
possible to commence another cycledt is therefore 
possible to leave the GO pin at a 'i' level following 
the initial clock edge, if the maximum data through­
put is necessary. The number of clock cycles be­
tween successive GO samples and the result ap­
pearing at the output, are dependant on the coeffi­
cient word length setting [1]. GIN is also sampled 
following a GO signal. 

For the GO pin to be an input, the IMSA 1 00 is set 
to be a slave by setting SCR[O] to a '0'. However, 
the IMSA 100 can be programmed to provide a GO 
signal for itself and for other IMSA 1 OOs by setting 
SCR[O] to a '1 '. This causes the device to send a 
signal from it's GO pin in response to a value being 
written to it's DIR register. The falling edge of this 
signal indicates when new data can be safely writ­
ten to the IMSA 1 OOs in the system. This feature is 
particularly useful in small systems where a micro­
proccessor is being used to provide data. It should 
be noted that the master IMSA 100 is only designed 
to drive itself plus another 3 devices (maximum 
load< 20pF) when operating at the maximum clock 
rate. However, at slower clock rates more devices 
can be added in line with the following table. 

Max clock Max no Length 
Frequency of slaves of filter 

20M Hz 3 128 
17.5MHz 4 160 
16MHz 5 192 
15MHz 6 224 

10MHz 10 352 
5MHz 30 992 

It is possible to buffer the GO signal from the master 
IMSA 1 00 providing the buffer is fast enough. The 
propagation delay for such a buffer with a 5pF input 
capacitance as a function of the I MSA 1 00 clock 
period is given below. 

TPbuffer < Tclk - 46ns 

An alternative method of buffering the GO signal is 
discussed in the section of this note dealing with 
large systems. 

Data input bus 
This 16 bit wide Dataln[0 .. 15] provides high speed 
data to the IMSA 1 OOs when SCR[1] is programmed 
to '0'. Usually, Dataln[0 .. 15] will be common to all 
the IMSA100s in a given cascade. The data is 
sampled on the rising edge of the clock following 
the acceptance of a 'GO sample' by the devices. If 
this bus is being used to provide data, the IMSA 100 
must be in slave mode and cannot be used as a 
master. Each pin represents a capacitive load of 
about 5pF. 

Data output bus 
The 24 bit result from the IMSA 1 00 is multiplexed 
through Data0ut[0 .. 11] as two 12-bit words, the 
least significant word being first. The most signifi­
cant word follows and remains on the pins until the 
next least significant word is available. The timings 
of the signals are dependant on the coefficient word 
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length and the normal/fast setting as defined in the 
SCR. In the 4-bit and fast modes the least signifi­
cant word is only available on one rising edge of 
CLOCK, with the most significant word being sent 
immediatly following the same edge. In the 4-bit 
mode running at full speed, every rising edge is 
used to both latch the output data into the Cl N pins, 
and to cause the output data to change to the new 
value. The advantage of the fast output mode is 
that the complete 24-bit output word is made avail­
able at the earliest possible time, whereas the 
normal mode delays the most significant word 
slightly. This eases the timing constraints of the 
circuitry sampling the output data. All devices in a 
given cascade must be set to the same coefficient 
word length and fast/normal option. The output 
drivers used on the data output pins are designed 
to drive small loads (e.g. 2 TIL inputs or about 
15pF) with a 20MHz CLOCK in the fast or 4-bit 
modes. Even in the normal mode the load should 
not exceed 30pF on these pins. 

Output ready signal 

The·output ready pin OUTRDY is provided to indi­
cate when the two 12-bit output words from the data 
output pins are valid. It can be used to demultiplex 
the output into registers, and also indicates when 
the data has been stored in the data output regis­
ters DOL and DOH. The falling edge of the 
OUTRDY signal indicates that the least significant 
word on the output is valid, whilst the rising edge 
indicates that the most significant word is valid and 
that the DOUDOH registers contain the new output 
data value. As in the case of [Data0ut[0 .. 11] the 
timings of this signal are dependant upon the coef­
ficient word length and the fast/normal mode set­
ting. Again, the timing constraints are eased when 
the device is operating in the normal mode on 8-bit, 
12-bit and 16-bit coefficient sizes. In the fast or 4-bit 
modes the OUTRDY signal is triggered by the 
falling edge of CLOCK following the rising edge of 
CLOCK which changes the output data. The 
OUTRDY pin should have a similar loading to the 
data output pins for optimum timing, and this should 
not exceed the limits set for the data output pins. 

The OUTRDY signal can be used to supply a clock 
for a D/A converter which, if it uses less than 12 of 
the available 24 bits, will only require one of the two 
12-bit words, thereby avoiding the need for demulti­
plexing logic. When demultiplexing is required, it 
can be achieved using two sets of edge triggered 
latches (e.g. 74ACT374) which are clocked by 
OUTRDY and it's inverse (Figure 1 ). It is suggested 

that any external logic associated with the Da­
ta0ut[0 .. 11] and OUTRDY pins be of a fast TIL 
compatible CMOS logic type (i.e. FACT) in order to 
minimise loadings. 

Cascade input port 

The cascade input port allows multiple IMSA100 
devices to be cascaded together in a chain. Like 
Data0ut[0 .. 11], Cascadeln[0 .. 11] is 12 bits wide 
and two words are used to form a 24-bit word with 
the least significant word being sampled first. The 
cascade input timings are given in the device spe­
cification, but it should be noted that the OUTRDY 
signal does not normally coincide with the samp­
ling of Cascadeln[0 .. 11]. The cascade input of the 
first device should be grounded unless data is to 
be supplied to it. 

11.1.c. MEMORY INTERFACE 
ASYNCHRONOUS INPUT/OUTPUT 
The memory interface is the asynchronous part of 
the system. It is designed, as far as is practical, to 
appear as a memory mapped peripheral. To 
achieve this there are chip select, chip enable, 
read/write and address and data bus signals, which 
will now be described. 

Chip select pin 
The chip select pin CS has to be pulled low (active) 
at the appropriate time for the memory interface to 
be enabled. This pin is usually connected to part of 
an address decode system. 

Chip enable pin 
The chip enable pin CE is pulled low (active) to 
enable the memory interface, after the address, 
write enable W and chip select CS signals have 
been set up. 

Read not write 
The read not write signal W defines whether a given 
cycle is reading from or writing to the IMSA 100 
memory. This signal should not be changed whilst 
CE is low. 

Memory address bus 
This 7 bit wide port ADR[0-6] is used to address the 
IMSA 1 00 memory. A memory map is given in the 
IMSA 1 00 specification showing locations of the two 
coefficient banks and control registers. The TCR 
register, located at decimal address 68, will default 
to all zeros on power up or in response to a RESET 
signal. However if it is disturbed, by for example a 
system memory test, it should be written back to all 
zeros. Failure to do so may result in unpredictable 
results. 

4/15 
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Memory data bus 
The 16 bit wide memory data port DATA[0-15] 
handles both input and output data to and from the 
IMSA 100 and is used to program the two banks of 
coefficient registers and the control registers. 
When writing to a coefficient register, the memory 
interface is transparent while CE is low. Writing to 
the active coefficients whilst the IMSA 100 is run­
ning a computation cycle may cause an incorrect 
transient coefficient to be used. Using the update 
registers followed by a bank swap avoids this prob­
lem. 

When the CE or CS are high the data pins are 
tri-state. The output stages associated with the 
data pins are current limited and may be loaded by 
more than the 30pF specified for the timings given 
in the specification provided the CE pulse length is 
increased. The table below gives an indication of 
the length CE pulse required for a series of loads. 

Capacitive load CE pulse 
on data bus length 

300 pF 50 ns 

100 pF 80 ns 

300 pF 170 ns 

1000 pF 500 ns 

Each Data pin represents a maximum load of about 
7pF when tri-stated. 

11.1 .d. SYSTEM CONTROL 
The IMSA100 is controlled by 3 signals, RESET, 
ERROR and BUSY which will now be described. 

Resetting the device 
To reset the IMSA 100 control logic pull the RESET 
pin low for at least 200ns followed by two cycles of 
the input clock. The reset function on the IMSA 100 
only resets the control registers to their default 
values. It does not change the values of the coeffi­
cients, clear the data path or reset the error flags if 
errors are still present. There is a power on reset 
signal ORed with the RESET pin circuitry which 
requires an adequate voltage on both the power 
supply and the internal clocks before it allows the 
internal reset signal to fall. For this reason the 
CLOCK pin must be exercised at or following power 
up before the control registers are programmed. A 
resistor (e.g. 33kW) from the RESET pin to Vee 
together with a capacitor (e.g. 10flF) to GND is 
usually sufficient to provide an adequate signal. 
The pin may be connected directly to Vee provided 
you are sure that your system power supply is 
monotonic on power up, as the power on reset 

circuit will only operate once. 

Error control 
If the ERROR pin is asserted it indicates that there 
has been a numerical overflow in either the final 
adder or field selector. Bits [1-2] in the Active Con­
trol Register ACR indicate which error type and the 
ERROR pin is reset by writing a '0' to these regis­
ters. Before continuing, these error bits must be 
armed by writing a '1' to bits[1-2] of the ACR. The 
ERROR pin is only able to sink current to GND and 
therefore requires a pull up resistor to Vdd. Many 
devices can be wire ORed together to indicate an 
error in any one of many IMSA 100 devices within 
a given system. The presence of an error does not 
affect the operation of the IMSA100 (although the 
results may be nonsense) and it is possible to 
continue to. use the device without resetting the 
condition. Although the ACR register is reset on 
power up, the ERROR pin is usually set again by 
random numbers within the device. In order to clear 
the ERROR pin it is necessary to flush the system 
before clearing and re-arming the ACR registers. 
Flushing involves writing zeros to the data input and 
cascade input over 32 successive cycles. 

Device busy 
The BUSY pin indicates when the active and up­
date coefficient registers are being or are about to 
be swapped. When this pin is high the coefficient 
registers should not be accessed. There is no 
guaranteed minimum duration of a BUSY signal 
since a bank swap request may be dealt with 
immediately. This pin operates only in conjunction 
with individual bank swap requests made via 
ACR[O] and not when the continuous bank swap 
mode is selected by SCR[2]. 

11.2. Initialisation of IMSA100s 
There are many ways of initialising one or more 
IMSA 1 00 devices but if in doubt the following pro­
cedure is recommended. First, for a system with all 
devices used as slaves do the following operations. 
1 Apply power and start CLOCK 
2 Take the RESET pin high 
3 Write all coefficients to '0' 
4 Set the Cascadeln[0 .. 11] of the first devices in 

any cascades to '0' 
5 Set GO to '1' or provide plenty of GO pulses 
6 Allow the system to run like this for long 

enough to clear out any stored junk numbers. 
This period will depend on the length of your 
filter and the frequency of your GO pulses. 
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7 Apply a RESET signal or write 'Os' and then 
'1 s'to the ACR[1-2]--- any error signal should 
now disappear. 

8 Set up your own SCR 

For a system with a master and slaves do the 
following. 

1 Apply power and start CLOCK 
2 Take the RESET pin high 
3 Set up your own SCR values 
4 Write all coefficients to '0' 
5 Set the GIN of the first devices in any cascades 

to '0' 
6 Write to the data input register DIR on the 

master IMSA 1 00 to create plenty of GO 
pulses 

7 Allow the system to run like this for long 
enough to clear out any stored junk numbers. 
This period will depend on the length of your 
filter and the frequency of your GO pulses. 

8 Write 'Os' and then '1 s' to ACR[1-2]--- any error 
signal should now disappear. 

Figure 2 : Two Simple Small Systems 

9 Set up your own coefficient and data values. 

11.3. An extra selector setting using TCR 

The test control register TCR is designed to help 
I NMOS fully test the IMSA 1 00. However, one of it's 
functions may be ·of interest if the output word 
selection field of [7-30] gives insufficient resolution. 
This is most likely to occur when smaller coefficient 
word lengths are in use. Writing a '1' to TCR[2] will 
overide the values programmed in SCR[4-5] to give 
a field selection of [-1-23] where field bit [-1] will 
always be '0'. The other TCR bits must always be 
set to '0' by the user. 

Ill. SMALLER IMSA100 SYSTEMS 

The techniques described in this section apply to 
systems employing perhaps four IMSA 100 devices 
in a single cascade together with a small support 
system including a single microprocessor. Two typi­
cal systems are shown in Figure 2. 

Host Processor 
used for providing coefficients, input data, system set-up and control 

Host Processor 
used for programming coefficient registers and setting up the system 

data 
output 

data 
output 

A 1 00·02.EPS 
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111.1. Board Layout Constraints 
During normal operation the IMSA 1 00 dissipates a 
fairly low average power (0.5W at 20M Hz approx). 
However, due to the high degree of parallelism 
within the device, it requires well decoupled, low 
inductance connections to it's power pins. A multi­
layer board with a Vee and GND plane is recom­
mended with at least one multi-layer ceramic de­
coupling capacitor of 1 OOnF or more mounted as 
close as possible to each IMSA1 00. The IMSA100 
devices forming a cascade should be located next 
to each other with the Cascadeln[0 .. 11] pins of the 
next device near the Data0ut[0 .. 11] pins of the first. 
Any circuitry using the Data0ut[0 .. 11] pins should 
be located as near to the I MSA 1 00 as possible to 
avoid excessive loading. The track carrying 
CLOCK should take a direct route from one 
I MSA 1 00 to the next in order to avoid excessive 
skew. 

111.2. Memory Interface 
The last IMSA100 in a cascade chain should oc­
cupy the lowest address space and the first in the 
cascade the highest. This is to maintain compata­
bility with the addressing of the coefficient registers 
where coeff[O] resides in the lowest location within 
the bank. 

In many applications it will not be necessary to 
buffer the pins associated with the IMSA 100 mem­
ory interface. It is, however, necessary to confirm 
that this is, in fact, the case. The timings of the 
proposed memory interface together with the bus 
loadings should be checked with the IMSA100 
device specification and the additional information 
given in Section 2 of this note. If the memory 
interface uses high speed buffers, some termina­
tion may be required to limit transients outside the 
power supply rails. In such cases 1 OOW resistors 
in series with the offending buffer(s) are recom­
mended. 

111.3. Clocking 
In general, the smaller the system, the easier the 
clocking will be. The IMSA100 CLOCK is not TTL 
compatable and will have to be g~nerated by a 
device or devices capable of driving signals to 
within about 0.5volts from each power rail. The 
constraint that the CLOCK signal at the IMSA100 
should be monotonic in between the high and low 
limits will almost certainly mean that termination will 
be required. The easist way of generating such a 
CLOCK for a small system is to use a TTL com­
patible CMOS device such as a 74ACT244 in the 

FACT family of devices. A chain of IMSA100 de­
vices connected by a 1 0 thou 1 OOW impedance 
track and driven from one end will need a terminat­
ing resistor of about 39W at the other (Figure 4). 
The exact values of terminating component will 
depend on many factors and the values given here 
are for guidance only and some experimentation 
may be needed. In systems using a slow CLOCK 
rate a slower CLOCK edge may ease or even 
remove the termination constraints. 

111.4. Data input 
The input data can be provided either through the 
memory interface to the DIR register or through the 
16 Dataln[0 .. 15] pins. The main constraint on the 
Dataln[0 .. 15] pins is that the data should meet the 
set up and hold times given in the device specifica­
tion for the relevant CLOCK edge. In the majority 
of cases Dataln[0 .. 15] will be common to all 
IMSA 100 devices. Termination on the drivers of this 
bus may be necessary under certain circum­
stances. 

111.5. Data output and output ready 
The output data can be obtained from the 
DOUDOH registers via the memory interface or 
from the 12 Data0ut[0 .. 11] pins. When the Da­
ta0ut[0 .. 11] pins are used the two 12 bit words will 
have to be separated in some way. In systems 
where less than 12 bits of the answer are required 
(e.g. to drive an 8 bit D-A converter) it may well be 
possible to discard one of the two words by choos­
ing appropriate coefficient values and/or selector 
settings. The OUTRDY signal can be used as a 
basis for a CLOCK for a D-A converter or other 
circuitry but it will need buffering if the load on it 
becomes excessive. If the full 24 bits are required 
the OUTRDY signal can be used to CLOCK edge 
sensitive latches [1]. 

111.6. Master generated GO 
The master generated. GO feature of the IMSA 100 
was designed principly for small systems where the 
input data is supplied through the memory inter­
face. On a master device, the GO pin has a dual 
function; first to provide a GO signal for all the 
IMSA 1 00 devices, and second to indicate to the 
system when it is appropriate to write a new value 
to DIR and hence start another cycle. It is difficult 
to obtain a high throughput, compared with using 
Dataln[0 .. 15] , if the output is being read from the 
DOUDOH registers, particularly in the 4-bit and 
8-bit modes. Care is needed to avoid writing a new 
value into the DIR before the old value has been 
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used, (the correct time is indicated by the falling 
edge of GO) or reading the DOL/DOH registers 
while they are being updated (the correct time is 
indicated by the rising edge of OUTRDY). In a 
multiple IMSA100 system using a master it is 
necessary to update the slave DIR registers before, 
or at the same time as, the master. It does not 
matter which device is the master but there must 
only be one for a given cascade. It is possible to 
update the DIR registers of all the IMSA 100 device­
s by addressing all their DIR registers simulta­
neously by pulling all the CS pins low during the 
write to the master's DIR. Alternatively,- the input 
data can be provided to all the slaves \yia the 
common Dataln[0 .. 15] which, in order to be safe, 
will have to remain valid until the rising edge of the 
CLOCK following the falling edge of the master 
generated GO signal. In this case the SCR regis­
ters in the slaves must be programmed to accept 
input data from Dataln[0 .. 15] and not the DIR reg­
ister. It is not possible for the master IMSA100 to 
take it's data from Dataln[0 .. 15]. 

111.7. External GO 
For high speed systems and for all systems where 
the input data is only provided via the Dataln[0 .. 15] 
port a GO signal must be provided by the support 
system. In many systems where the maximum 
throughput is required the GO signal may be taken 
high but it is important to keep track of when 
Dataln[0 .. 15] is sampled to avoid changing the 
input data at this time. The GO signal may be 
pulsed every N CLOCK cycles at or less·than the 
maximum data rate but any attempt to pulse GO at 
a higher rate will result in a drop in speed due to 
some of the pulses being ignored. It is important 
that the GO signal changes outside the set up and 
hold times given in the device specification to avoid 
the risk of different IMSA100 devices in the cas­
cade falling out of synchronisation. If IMSA100 
devices in a cascade do get out of synchronisation 
with each other for any reason, they will immedi­
ately resynchronise on a new correctly timed GO 
signal. 

IV. LARGE IMS A100 SYSTEMS 

This section deals with design techniques suitable 
for overcomming the problems raised when desig­
ning systems employing many IMSA100 devices. 
There is a ·limit to the number of IMSA 100 devices 
that can easily be put in a single cascade without 
break and that limit will depend on many factors but 
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especially board size and speed. Many of the prob­
lems are the same as those already dealt with in 
the previous section but more severe. Whilst with 
a small system it is fair to assume that every 
IMSA 100 is on a single board, this may well not be 
the case with large systems. However, with care it 
is possible to build very large systems of IMSA 100 
devices with a phenomenal performance. 

IV.1. How many IMSA100 devices per board? 
In theory it is possible to put as many IMSA100 
devices in a continuous chain as necessary without 
limit providing all the signals to and from the de­
vices meet the specification. In practice boards 
have a finite size, bus capacitances build up to 
unreasonable values, and so on. It therefore 
becomes necessary to partition the problem. In 
practice it is possible to put 32 IMSA 100 devices 
on a double extended Eurocard, using a 4 layer 
printed circuit board together with enough addi­
tional logic to allow these boards themselves to be 
cascaded. Such a board could be regarded as a 
1 024 stage subsystem. This same technique can 
be applied to smaller numbers of IMSA 100 devices 
on smaller boards, although address decoding will 
be easier if 32, 16, 8 or 4 devices are grouped 
together. Whilst the data throughput of the cascade 
can be maintained, the speed of the memory inter­
face will be a funtion of the loading of the data lines. 
For many applications this will not matter but in 
applications, such as fast adaptive filtering, the rate 
at which the coefficients can be updated may be 
important. It is therefore necessary to identify 
which aspects of performance are important, as 
they will have a significant effect on the way that 
the system is implemented. 

IV.2. Cascading boards 
This section describes one way of maintaining the 
maximum throughput of the IMSA 100 devices in a 
multiple board system by the use of pipelining. The 
general technique is to contain the timing problems 

. to each board separately and to make inter-board 
communication as easy as possible. Each board 
has a series of edge triggered latches (e.g. 74374 
devices) which latch all syncronous inputs and 
outputs including Dataln[0 .. 15] and GO. In prin­
ciple, all inputs are latched by a PH1 clock which 
is inverted to provide a PH2 clock to latch the 
outputs and to provide the clock for IMS A 1 OOs. The 
signal is transmitted between boards between the 
rising edge of PH2 and the rising edge of PH1 with 
the latches acting as drivers (Figure 3). 
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Figure 3 : Placement of IMSA 100 into Large System 
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The design of large boards in a cascade requires 
some care. This section considers the specific 
example of a cascadable board with 32 IMSA 100 
devices and support circuitry designed to run with 
a 20M Hz clock with 4, 8, 12 or 16-bit coeficient word 
lengths. Each of these boards represents a 1 024 
stage filter and all inputs and outputs are latched 
or buffered. 

IV.3.a. BOARD DESCRIPTION 
To minimise the length of the connections between 
Data0ut[0 .. 11] and Cascadeln[0 .. 11] of adjacent 
devices, it is best to arrange the IMSA 100 devices 
in a pattern like a snakes and ladder board (Fig­
ure 4). This has the additional advantage that com­
mon signals like GO, CLOCK, and the various 
buses may be shared between two rows of devices. 

To maximise the density of devices within the board 
area, half of Dataln[0 .. 15] and half of the memory 
data bus pass under each row of devices. The 
address bus and other signals pass between the 
first and second rows and third and fourth rows 
whilst CLOCK and GO pass between the second 
and third rows and the Iouth and fifth rows respec­
tively (Figure 4). 

L____ 

II 
Mem Data 
Address 

w 
ERROR 

A 1 00-03.EPS 

The block of IMSA100 devices are mounted away 
from the board edge connectors. The Cascade 
input latches drive the top of the IMSA 100 block, 
whilst the output data is produced at the bottom 
where it is latched. The input data is pipelined to 
drive the next board as well as providing data for 
the IMSA100 Dataln[0 .. 15] . The GO signal is 
pipe lined in a similar way to provide a delayed GO 
signal in step with the delayed input and output 
data. The system clock is used to provide PH1 and 
PH2 signals from two CMOS inverting buffer de­
vices located centrally on the connector side of the 
board. The clock is distributed to keep the timing 
skew on the clock to adjacent devices to a mini­
mum. The clock tracks driving the IMSA 1 00 device­
s are terminated by 39W for the top track and 27W 
for the rest which are driving two rows of devices. 
The termination consist of a resistor in series with 
a 1 OOnF capacitor to remove any DC path to GND. 
The tracks carrying the clock between IMSA 100 
devices were 1 0 thou wide, but the tracks from the 
clock driver to the beginning of the block of 
IMSA1 00 devices were of a width needed to match 
the terminating impedance. The GO signal is 
treated in a similar manner to the CLOCK , with the 
option of connecting termination components at the 
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end of each track. The only signals which are not 
driving every device are the Data0ut[0 .. 11] to Cas­
cadeln[0 .. 11]1inks, and the CS connections. Each 
one of these is connected separately to the address 
decoder. 

The memory interface buses, the ERROR and 
RESET functions are not latched but buffered in 
some way. The ADR[0-6], CE and W signals are all 
buffered from the memory interface. The data bus 
passes through a bi-dirctional buffer (7 4F245 in this 
case) with it's direction defined by the RnotW signal 
and with it's tri-state control connected to the board 
address decoder. Since there are 32 IMSA100 
devices together with about 2 feet of pcb track 
attached to each memory data pin, the CE signal 

Figure 4 : Clock Distribution for Large System 

IV.3.b. MEMORY MAPPING 

The exact memory map required will vary from 
system to system but there are one or two pitfalls 
which should be avoided. The coefficient registers 
in the IMSA 1 00 are addressed in such a way that 
the last coefficient is located at address[O] and the 
first in location [31]. In order to be consistant with 
this, the LAST IMSA 100 on the LAST board should 

System Address bits: 

IMS A100 address bits: 

Chip Select addresses: 

Board Select addresses: 

0 1 2 3 

0 1 2 3 

needs to have about 150ns duration. 

The RESET pins of the IMSA 100 devices are con­
nected together and connected to some open col­
lector logic plus a resistor to Vee and a capacitor 
to GND. This arrangement allows a RESET signal 
to be applied from the system but allows the board 
to reset itself if no such signal is applied. An LED 
indicates when the RESET signal is high. 

The ERROR pins are also connected together with 
a 1 K\Omega resistor pulling up to Vee. This signal 
is buffered with an open collector gate to allow the 
boards to be wire ORed if desired. A second LED 
indicates if an error has occured in any IMSA100 
on the board. 

Cascade 
Input 

Data 
Output 

A 1 QQ.Q4.EPS 

occupy the LOWEST memory location. Failure to 
implement this will make the block moving of 
stored coefficient values to the IMSA100 devices 
less straightforward than it could have been. If the 
coefficient registers are to be in a continuous mem­
ory space, it is necessary to organize the memory 
map as follows: 

4 5 

4 5 

6 7 8 9 

0 1 2 3 4 

10 11 12 13 14 15 

5 6 

0 1 2 3 
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This map assumes a 16 bit system address bus 
and 32 IMSA 100 devices on each board. Remem­
ber that the board address space should be large 
enough to cover both the number of IMSA 100 
boards required plus any other areas of circuitry 
requiring address space (e.g. memory etc). 
5!UW-461KE 

V. HIGHER DATA RATES USING MULTIPLE 
IMSA100 DEVICES 

For some applications, data rates in excess of 10 
M samples/sec must be used for real time process­
ing. Since the fundamental maximum data rate of 
the IMSA 100 is 10M samples/sec, this may appear 
to be a limiting factor. The following section de­
scribes a general method for interleaving multiple 
IMSA 100 devices to achieve effective data rates of 
20 M samples/sec and above, with little or no loss 
of functionality. 

V.1. Principle of operation 
Figure 5 shows four IMSA 100 devices connected 

Figure 5 : 20M Hz System using External Adders 

so as to provide the equivalent functionality of a 64 
stage, 20M sample/sec IMSA 100. The data rate to 
each device is reduced by introducing a data de­
multiplexer, which splits the data stream into two 
parallel streams. This enables a reduction of input 
data rate to 10 M samples I sec, the maximum 
possible for a standard IMSA 1 00. 

The segmentation of the problem is achieved be-
. cause of the transversal filter architecture of the 
IMSA 100. For any transversal filter structure, the 
summation performed at any given time is as fol­
lows. 

Coxa+ C1X-1 + C2X-2 + C3X-3 + C4X-4 + ... 

where X-2, ..x,xo, ... represent successive data 
samples in time, and Co,C1,C2, ... represent the 
coefficients. Equation 1 can.be rewritten as follows, 
with the two halves of the equation performed by 
two separate devices. This equation may be further 
generalised into N segments, executed on N2 de­
vices. 

(Coxa+ C2x-2 + C4X-4 + ... )+ 
(C1X-1 + C3X-3 + Csx-s + ... ) 

20MHz system clock 

MUX 
select 

Cascade delay 

Cascade delay 

MUX select 

Cascade delay 

Data 

A 1 00-0S.EPS 
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Figures 5 and 6 illustrate systems exploiting equa­
tion 2 to perform 20 M sample I sec filtering. The 
principle is that the upper pair of devices perform 
the evaluation for one time period, and the lower 
devices perform the evaluation for the next, which 
gives an interleaved computation. In these figures 
the abbreviations UL refers to the upper left 
IMSA1 00, LL the lower left, UR the upper right and 
LR the lower right.The following points should be . 
noted when observing these figures. 

• The positions of the coefficients are in reverse 
order 

• One delay stage is required at the input to the LL 
device. 

Both evaluations are being performed at exactly 
the same time, so that the major cycles of all 
devices commence on the same clock edge. This 
is set to coincide with the time that a data sample 
arrives at the ULand LL devices. 

V.2. Mechanics of Operation 

To see exactly how the circuit works, consider the 

Figure 6 : 20M Hz System using Cascade Adders 

Cascade delay 

i 

I 
I 
I 

following sequence arriving at the data input to the 
demultiplexer. 

XO, X1, X2, X3, ... 

Assume that xo is sent down bus 0, x1 is sent down 
bus 1, x2 down bus 0, and so on. Consider the major 
cycle that commences for all devices when X3 
arrives at the UL device. At that time, x2 will be at 
UR, x_1 at LL, and x2 at LR. For this cycle, the final 
output from UL and UR will be as follows. 

(Cox3 + C2x1 + C4X-1 + ... + Ce2X-ss)uL + 
(C1x2 + C3xo + Csx-2 + ... + Ce3X-eo)uR 

whilst LL and LR will produce the following. 

(C1x1 + C3x-1 + CsX-3 + ... + C63X-61)LL + 
(Cox2 + C2xo + C4X-2 + ... + Ce2X-eo)LR 

Thus, the output of the lower pair must be taken 
first through the output multiplexer, followed by the 
upper pair. The single delay at the input to LL is 
necessary for the organisation of coefficients. Be­
cause Coxn must be the last calculation, data must 
be presented to the device with coefficient Co after 
the device with coefficient C1. 

MUX select 

Cascade delay 

Data 

Llfl .. -·L':==========='--~~J~D:.:::O..::.UT.:___D_IN----l>-1 ~=======~ t Cascade delay Cascade delay 

MUX 
select 
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V.3. Using the cascade adders 

For most applications, it is more convenient to use 
the cascade adders rather than external devices 
(Figure 6). This is because the multiplexed output 
of the IMSA100 causes complication. A reduction 
in the number of devices used, and a simplification 
of the design can be achieved, by using the cas­
cade inputs of the IMSA 1 00. 

The cascade adders are used by first inserting a 32 
sample delay into the path of the data for the UR 
and LR devices, and second, by connecting the 
data output of UL and LL to the cascade inputs of 
UR and LR respectively. This avoids the use of two 
accumulator devices, and simplifies circuit board 
layout considerably. Of the two designs this is the 
more elegant, and is recommended for use in 
practice. 

V.4. Extensions to this technique 

Once the above technique functions correctly, 
many extensions are possible. Some of these ex­
tensions make the design even simpler. 

• Higher speed. By using a 3x3 or 4x4 configura­
tion, data rates of up to 30 M samples/sec and 
40 M Samples/sec respectively can be achieved. 
The only limitation is the speed of the demulti­
plexing and multiplexing logic. The minimum 
number of stages using this method also in­
creases proportionally. Thus for 2x2 devices, a 
minimum of a 64 stage system is produced, 
which can only be incremented in 64 stage mo­
dules. Likewise for 3x3, the minimum number is 
96 stages, and for 4x4 the minimum is 128. 

• Cascading. Since two cascaded IMSA100 de­
vices appear functionally equivalent to one 64-
stage IMSA 1 00, each of the four devices shown 
can be replaced with N IMSA 1 00 devices to form 
longer filters. The 32 stage delay would, for 
example, become 64 stages with two cascaded 
devices per location. 

• Complex Processing. The configuration de­
scribed permits complex processing, using bank 
swap as described in [5]. However, the two multi­
plexed data streams presented in the illustrated 
configurations will be the real and imaginary data 
streams, and the results likewise. Thus, by pro­
viding the complex input data correctly skewed 
in time, the multiplexers are eliminated. This 
results in a considerable simplification of the 
design. 

• Removing UL delay. The single stage delay can 
be removed if less than 64 stages are required. 
This is done by having a zero coefficient in the 
coefficient closest to the back end (leftmost on 
the illustration) of the LL device. 

• Removing 32 stage delay. The 32 stage delay 
can be eliminated, by zero filling the leftmost 
coefficients of UR and LR devices. This, although 
simplifying the circuit, may be costly, as the 
IMSA100 stages are being used as delay ele­
ments. The merits of this depend on the relative 
cost of an IMSA100 as compared with the cost 
of a 32 stage delay element. 

VI. CHECKING AND DEBUGGING 

This section gives some hints on how to check and 
debug the IMSA 100 part of a system. The IMSA 100 
has a number of features which make it easy to test 
within the context of a new or unproven circuit or 
P.C.B. The general philosphy is to get the memory 
interface working and then to use the DIR and 
DOUDOH registers to help find any problems. An 
oscilloscope is also needed to check signals like 
the CLOCK, GO and for checking the operation of 
the various busses. 

Vl.1. The Memory Interface 

The best way to check the function of the memory 
interface is to write and read values to either or both 
banks of coefficient registers. The correct operation 
of these is independant of the CLOCK , RESET 
settings or the contents of the SCR, ACR or TCR. 
The values that are written at this time are not 
important but writing 10101 ... and 01010 ... patterns 
will help locate any short or open circuits on the 
board. If little activity is observed from the I MS A 1 00 
then use the oscilloscope to check CS , CE , W , 
ADR[0-6] and DATA[0-15] lines, and ensure the 
presence and correct timing of these signals. The 
best way to do this is to write a program on the host 
processor that loops continuously doing writes and 
reads to one IMSA 100. These tests may not identify 
crossed data or address lines. 

It is worth correcting any problems in this area 
before proceeding to the next series of tests. 

Vl.2. Clock, GO and output ready 

Before checking these basic functions it is worth 
reseting the IMSA100 devices either by using the 
RESET pin or by powering down the system. This 
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is to ensure that earlier attempts to debug the 
memory interface have not accidentally written 
values to the SCR, TCR and ACR registers. The 
clock should be checked using an oscilloscope. 

Problems with impedance mismatching may cause 
excessive voltage overshoot and/or undershoot, or 
cause the clock to not meet the specification in 
some other way through excessive ringing. Lack of 
drive in the clock driver will cause poor '0' and/or 
'1' levels. If the clock does not quite meet the 
specification but is present and is a reasonable 
shape, it is probably worth leaving the problem until 
the rest of the system has been debugged. 

With the clock running either pull GO high or pro­
vide a series of GO pulses. If an IMSA 100 is to be 
used as a master simply pull GO high with a resistor 
for this test since all the devices are still set as 
slaves. Under these conditions the OUTRDY pin 
should be providing pulses. 

Vl.3. Setting up SCR values 
Before proceeding, the SCR registers should be 
set to #002 in slave IMSA 100 devices or #003 in 

. any master. 

Vl.4. Checking the data path 
The next step is to check the data path from the 
input of the first IMSA100 to the output of the last 
one. It is worth writing a program to display the 
contents of the DOUDOH registers on a monitor or 
TV screen. 

All coefficients should be set to '0' together with 
Cascadeln[0 .. 11] of the first device. A GO signal is 
now needed which is provided by the support logic 
or by writing to the DIR of an IMSA 100. The method 
depends on the system under test, which will either 
be a master generated GO or externally generated 
GO. The value written to a master IMSA 1 00 should 
not effect either its output or the contents of its 
DIR/DOL regisers, since all the coefficients are set 
to '0'. If there is the option of placing a value on 
Cascadeln[0 .. 11] of the IMSA 100, that value 
should appear in the DOUDOH register. For a 
single IMSA100 the value will be delayed by 32 
cycles of GO, and for many devices the delay will 
be a multiple of 32 cycles. 

The following tests are valid for all coefficient word 
lengths, although only the least significant 4 bits will 

be used. The source of the GO signal is unimport­
ant and the devices can be set for fast or normal 
output mode. However, SCR[4-5] should be set to 
'0' to select the [7-30] field, and the answers will 
then be the same as those given below. The values 
of coefficients and data and expected are given as 
hexadecima~ numbers. 
Set Cascadeln[0 .. 11] on first device to 

Set DIR on all devices to 

Set all active coefficients to 

#000000 

#1002 

#0004 

If a master IMSA100 is used, continuously write 
#1002 to it's DIR register. Otherwise, apply. a con­
tinuous or frequent GO signal, while writing data to 
the Dataln[0 .. 15] port of all the IMSA100 devices. 
For the first 32 cycles of every device the result in 
the DOUDOH register should increase linearly, in 
steps of #4008. The result will be split between the 
DOL and DOH register so that for the whole result 
#4008 DOH = #0004 and DOL = #0008. 

1st cycle in the cascade DOH=#OOOO DOL=#4008 

2nd cycle in the cascade DOH=#OOOO DOL=#8010 

3rd cycle in the cascade DOH=#DOOO DOL=#B018 

4th cycle in the cascade DOH=#0001 DOL=#D020 

5th cycle in the cascade DOH=#0001 DOL=#4028 

7th cycle in the cascade DOH=#0010 DOL=#8030 

7th cycle in the cascade DOH=#D010 DOL=#B038 

This test can be repeated using the Dataln[0 .. 15] 
port instead of the Dl R registers by setting the SCR 
values in all slave IMSA1 00 devices to #000. If the 
GO signal is generated from a master I MSA 1 00 it 
will still be necessary to write #1 002 to the DIR 
register repeatedly. The input value #1 002 can be 
changed to other values to check other bits in the 
data path. Once the cascade path has been filled, 
the answers should be stable, and any variation 
indicates a problem somewhere. 

Now that the devices have been exercised, it 
should be possible to remove any error indication 
from the ERROR pin by writing 'Os' to ACR[1-2] 
followed by writing '1s' to arm the register. 

The above tests only check the memory interface 
and the data path through the IMSA 100 devices. 
However, with these working, the debugging of the 
rest of system is made easier. Once all this works 
most of the system will be fully functional. 
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Vl.5. Fault finding guide 

It is assumed throughout that power has been 
applied to all the Vee and GND pins correctly. If it 
has not, expect very unpredictable behaviour 
and/or possible damage to the devices. 

When a problem is encountered it is often worth 
varying the power supply voltage or changing the 
clock frequency. This will often indicate the nature 
of the problem by showing if it is due to timing or 
perhaps noise. The following checks may also help 
to diagnose the problem. 

o If there is response from the memory interface 
check the following: 
- CS is low (when it matters) 
- CEis pulsing 
- The addresses are valid 
- W is working 
- Any memory bidirectional data buffers are 

working in the right direction. 

o If there is no GO signal from a master IMSA100 
check the following. The clock has to be present 
and the RESET pin high before the SCR, ACR or 
TCR registers can be written to. 
- There is only ONE master. 
- There are no shorts on the GO track. 
- SCR[O] is set to '1 '. 
- TCR is set to all 'Os'. 
- The clock is present. 
- RESET is high. 

o If there is no OUTRDY signal check the following. 
- GO signals are present on some rising clock 

edges. 
- TCR is set to all 'Os'. 
- There are no shorts on the OUTRDY track. 
- RESET is high. 

o The answers are wrong, which could be almost 
anything. However, the following checklist should 
diagnose the problem. 
- The SCR registers are set to the correct value. 
- The ACR registers are set to the correct value. 
- The TCR registers are set to all zeros. 
- All IMS A 1 00 devices are in the same output 

mode. (SCR[1 0]) 
- There is only one master. (SCR[O]) 
- The output word selection is sensible. 

(SCR[4-5]) 
-The data input source is correct. (SCR[1]) 
- The coefficients word lengths are right. 

(SCR[8-9]) 
- The coefficients are stored in the right bank. 
- DOL and DOH are read in the right order. 
- The memory data and address lines are in the 

right order. 
- OUTRDY is not inverted wrongly in any external 

logic. 
- 4, 8 and 12 bit coefficients are written into the 

least significant bits of the 16 bit wide coefficient 
registers. Input data is valid when sampled. 

- The order of the coefficients has not been man­
gled by the memory map. 
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I. INTRODUCTION 

1.1. The aims of this document 

a higher level function, beyond the scope of this 
document. This application note describes the fol­
lowing. 

The IMSA 100 performance makes the real time 
processing of digital images a practical possibility. 
This document is a practical guide, which explains 
how the device is used to process digital images. 
The processing done by the IMSA 1 00 will be some 
form of feature extraction, such as line, corner or 
edge detection. Feature extraction is often the first 
stage in the analysis of an image. Further analysis 
of an image, for example, deciding that a group of 
features in an image is a vehicle number plate, is 

AN546/0792 

• The operations of filtering and edge detection of 
a picture or image using a technique of 2-
dimensional convolution are explained. Some 
simple filter types including edge detection and 
contrast enhancement are described. 

• The use of the IMSA 1 00 to perform the 2 
dimensional convolution, in order to process an 
image is described. This shows the simplicity of 
use of the IMSA1 00 in this particular application. 
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• The estimation of performance and cost, for 
processing an image using the IMSA100 is 
described. Several possible systems consisting 
of IMSA 100 devices are given, to illustrate how 
easily the cost and performance may be 
controlled, by using different numbers of 
devices, and by altering the complexity of the 
system. 

• The processing of images at real time speeds 
(20 frames per second) is described, and a 
hardware implementation of this is given. This 
shows the high performance possible using the 
device. 

1.2. Document structure 
The remainder of section I gives an introduction to 
signal processing, and shows the position of the 
IMSA 100 within the field of signal processing, and 
more specifically its capabilities for the processing 
of digital images. 

Section II gives gives a practical explanation of 
some of the concepts of image processing. In­
cluded is an explanation of how filtering and edge 
detection of a picture operates, and how this may 
be applied to the IMSA100. 

Section Ill gives two possible systems which may 
be constructed using the IMSA 100, from a medium 
performance system to a very high performance 
system which will operate at real time speeds. 
Included in this section is a description of how the 
performance of a prospective system may be esti­
mated by trading off performance, complexity and 
cost. 

Section IV concludes and summarises the findings 
of this application note. 

1.3. An overview of signal processing 
Signal processing is an area of engineering which 
fills many people with dread. This is not entirely 
surprising when one considers both the theoretical 
and practical aspects of the subject. On the one 
side there are the mathematical algorithms re­
quired to solve even the simplest problem. This has 
long been regarded as the territory of academics 
and not to be tackled by the average engineer. On 
the other side there is the circuitry required to 
implement these algorithms. Historically, systems 
have often required many complex circuits, with 
system design requiring a knowledge of analogue 
design, and also, in the more recent past, digital 
design. 

Not surprisingly, there are very few scientists in the 

2/15 

264 

world with the knowledge or experience required to 
deal with all the aspects of signal processing de­
sign. Signal processing design now covers both 
analogue and digital design from the low end audio 
spectrum (40kHz) through the video spectrum 
(1 OOMHz) to the top end of the radio spectrum 
(1 OOGHz). When signal processing in all these 
areas began the techniques used were purely anal­
ogue. The power of digital signal processing now 
approaches the top end of the video spectrum. 
Although it is not yet possible to process pictures 
the size of a TV screen in real time, it will un­
doubtedly become possible within the next decade. 
One of the main applications of the IMSA100, as 
described in this document, is the processing of 
pictures in real time. 

In the radio frequency (RF) spectrum, specialised 
devices are used as the first stage processing 
elements. These devices use components such as 
wave-guides, to give the necessary processing 
bandwidth (GHz). The fastest devices use ma­
terials such as Gallium Arsenide, often super­
cooled to improve its performance. However, these 
devices are expensive and their use is avoided if 
possible. The information extracted by these de­
vices from a signal may be used by todays digital 
devices operating at speeds approaching 1 OOMHz. 
In the future, todays digital devices may improve to 
a level where they encroach on the radio spectrum. 
However, it is likely that RF devices will always be 
required as the front-end processing elements at 
these high-frequencies. The reason for this may 
remain that it is impossible to either sample or 
synthesise an analogue signal at speeds in excess 
of 1 OOMHz, without resort to cost prohibitive tech­
nology. 

1.4. Analogue and digital conversion 
Signal processing techniques in both the Audio and 
Radio spectrum are advancing both theoretically 
with the de,velopment of new algorithms, and prac­
tically with the increase in the level of integration of 
integrated circuits. Wherever possible, the new 
levels of integration in conjunction with efficient 
digital algorithms are used, so that problems which 
were previously solved using analogue design are 
now solved using digital design. 

Of course, it is nearly always necessary to com­
municate with the real world using analogue sig­
nals, so analogue to digital (A-D) and digital to 
analogue (D-A) converters are a necessity. This is 
why so much work is done to increase the speed 
and accuracy of the conversion which must ulti-



mately limit the speed of the complete system. 

The current range of A-D and D-A converters on 
the market can sample at up to 1 OOMHz. As might 
be expected, the limiting speed depends very much 
on the required accuracy, with slower conversion 
required to get improved accuracy. Of course, there 
is little point being able to do digital processing 
faster than the analogue conversion devices, so 
that in practice, the performance of conversion 
devices and digital processing devices proceed 
together. 

So there are fundamentally two problems which 
hinder DSP development, one is analogue/digital 
conversion and the other is the digital signal pro­
cessing itself. 

1.5. Techniques for digital signal processing 
(DSP) 

Digital signal processing has advanced rapidly 
since the major semiconductor manufacturers 
started to tackle the problem. Since then they have 
attempted to cram more and more raw processing 
power onto a single chip. At the same time they 
have realised that the signal processing devices 
need to be integrated into an entire system. So, 
they have devised families of devices which, how­
ever, require some considerable expertise to use. 
This evolution of devices has split into two direc­
tions. 

The first approach is the more complex and 
achieves the best performance. It often involves 
hardware design which is not trivial, and the sys­
tems generated will generally only perform one 
task. Any slight change to the task (algorithm) may 
require a complete system redesign, which is both 
lengthy and expensive. However, the performance 
of these so called bit-slice machines has been and 
still is very high and has a permanent place in the 
field. Bit-slice machines use dedicated multipliers, 
accumulators and address sequencers often with 
several address and data bus paths to achieve high 
speed. 

The second approach is simpler, and more ver­
satile. However, the performance is considerably 
lower than the bit-slice engines previously de­
scribed. Design involves using a general purpose 
processor (CPU) which has dedicated instructions 
to perform reasonably fast multiply, divide, add and 
subtract operations. The CPU does this by having 
dedicate parallel multipliers and barrel shifters in­
tegrated on the chip. The performance limit is not 
so much the on-chip operation as the time required 
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to get the data off and on chip (memory bandwidth). 
Possibly the best known examP.Ie of a signal pro­
cessing CPU is the TMS 320101 eTMS is a trade­
mark of Texas Instruments) and its derivatives the 
TMS 32020 and TMS 32030. 

The previous two approaches provide solutions to 
a large number of signal processing problems. 
However, one must accept either the performance 
limitations of the general purpose processor or the 
complexities of bit-slice design. In both cases the 
problem is bandwidth into the basic processing 
element. The fundamental limit is the rate at which 
memory can be accessed rather than the perfor­
mance of the processing element itself. If the pro­
cessing performed by the basic processing ele­
ment can be increased and the required memory 
bandwidth can be reduced, an improved perfor­
mance will be immediate. The IMSA100 uses a 
novel architecture to achieve these aims. 

The IMSA 100 is a processing element with consid­
erable processing power, yet having an interface 
with moderate bandwidth requirement. This is 
achieved by having data storage on chip, process­
ing the data in parallel, and storing the intermediate 
results of calculations. The I MSA 1 00 has also been 
designed to accommodate many of the commonest 
DSP algorithms; including the discrete Fourier 
transform [2}, correlation and convolution [3], and 
digital filtering [1] 

1.6. Overview of image processing with the 
IMSA100 

The I MSA 1 00 is a digital processing device at the 
forefront of digital signal processing performance. 
It is capable of processing video bandwidth signals, 
as well as many other types of high bandwidth 
signals. The maximum input sampling rate of the 
IMSA 100 is 1OM Hz, which means that it could, for 
example, process a [512 x 512] image at a rate of 
40 frames per second. The device operates on 
digital data with a width of 16 bits, and will perform 
80 million multiply accumulate operations per sec­
ond (80 MOPS) a performance well in excess of 
most bit-slice machines. 

The IMSA100 will perform calculations on signed 
16-bit integers without any loss of accuracy or 
overflow, perform rounding correctly, and will also 
perform complex number processing [4] without 
any additional hardware. This makes it an ex­
tremely simple device to use in a wide variety of 
applications, as it deals with so many of the prob­
lems which have historically plagued signal pro-
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cessing design. Immense care has been taken to 
ensure that the device is simple to use, for 
example, the microprocessor interface, which can 
be interfaced very simply with almost any industry 
standard processor. 

Probably the most important aspect of the 
IMSA 100 is that several can be used in parallel, 
with almost no 'glue' logic. In principle, there is no 
limit to the number and a system with 30 devices 
on a single board has been shown to work well. The 
processing of large images at high speed requires 
vast processing performance, making the 
IMSA 100 capability of being able to use many 
devices in parallel absolutely invaluable. 

II. PRACTICAL METHODS OF 2 
DIMENSIONAL CONVOLUTION 

11.1. dimensional convolution 
The process of 2-dimensional convolution of an 
image is the action of comparing a reference tem­
plate with a group of pixels, at every pixel point on 
an image. For example, if a [3 x 3] template were 
compared at every point on an image of size [5 x 5], 
there would be 9 valid comparison points as shown 
in Figure 1. The first of these valid comparisons 
surrounds pixel 1, the second pixel 2, and so on. 
The comparison is done in practice by a number of 
multiply and add operations. Consider the example 
with the first row being compared with the template. 
The result of the [3 x 3] convolution for the first 3 
positions will be 

1 a.? +b.? +c.? +d.? + e.1 + 1.2 + g.? + h.4 + i.5 

2 a.? + b.? +c.? + d.1 + e.2 + 1.3 + g.4 + h.5 + i.6 

3 a.? + b.? +c.? + d.2 + e.3 "':f.? + g.5 + h.6 + i.? 

which is a total of 9 multiply-accumulate operations 
for every pixel in the image. The magnitude of the 
image data and the magnitude and sign of the 
template elements determine the type of features 
which will be extracted from the image. Some 
simple templates are described later in this section. 

Figure 1 : [3 x 3] convolution on a [5 x 5]1mage 

? ? ? ? ? 

? 1 2 3 ? a b c 
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? 7 8 9 ? g h i 

? ? ? ? ? 
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In a real image, the magnitude of the pixels which 
is a measure of their blackness, is referred to as 
grey scale, having typically 8 bit accuracy. The 
alternative, which uses a single bit for each pixel, 
was used in the past, before digital grey scale 
processing was possible. Future picture process­
ing will undoubtedly be capable of processing col­
our images. This is a complex field, little understood 
at the present time, outside the scope of this appli­
cation note. 

With grey scale images it is important that the result 
of any image transformation yields grey scale 
values within the limits of the original image. This 
being so, the sign and magnitude of the elements 
of the template must be chosen with care. It may 
be necessary to scale and/or invert the results of 
an image transformation, so that the resultant 
image can be observed in a normal grey scale. 

It is usual for the template to be square, although 
it may be rectangular, and of any size. It is also 
normal when scanning a real image to traverse the 
picture as shown in the diagram, i.e. traversing a 
row, moving down, traversing again and so on until 
the entire image is scanned. 

One point of interest concerns the outermost 
pixels, which represent invalid data. For a [3 x 3] 
template a perimeter of one pixel width is invalid, 
for a [5 x 5] template the outermost 2 pixels are 
invalid and this redundancy increases as template 
sizes increase. This does not matter much for large 
image sizes, but must be borne in mind if large 
templates, with small images are being used. For 
the remainder of this section edge effects will, for 
convenience, be ignored. 

11.2. Convolution template types 

11.2.a. LOW PASS FILTER 
The effect shown in Figure 2, is of a low pass filter. 
The numbers have been chosen to show the 
smoothing effect of the filter. Notice that this is 
indeed a low pass filter, and that the pixel values 
are changing at a frequency which is approximately 
the cut-off frequency of the filter. The filter has 
effectively changed a black and white image into a 
blurred grey image. 

If this convolution is regarded as part of a picture 
with a pixel rate of 5MHz the cut-off frequency, 
above which all frequencies are removed, would be 
2.5MHz. (The figure of 5MHz has been chosen as 
it is the rate at which an IMSA 100 can process the 
data.) The cut-off frequency can be reduced by 
making the reference template (convolution kernel) 
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larger. For example a [9 x 9] convolution kernel 
would have a cut-off frequency of 870KHz. · 

For the low pass filter kernel no sign modification 
or scaling of the final image is necessary. Only 
when the result is outside grey scale limits will any 
modification be required. 

11.2.b. EDGE DETECTION 

Edge detection is illustrated below with a Sobel 
operator. This operator combines a vertical and a 
horizontal edge detector into a single Sobel oper­
ator as shown in Figure 3. 

It may be observed that the effect of applying a 
horizontal edge detection to an image, followed by 
applying a vertical edge detection to an image, and 
summing the results, will be exactly the same as 

Figure 2 : Illustration of Low Pass Filter 
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Figure 3 : Sobel Operator Formation 
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Figure 4 : Illustration of Edge Detection 
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directly applying the sobel operator to the image. 
This same principle of adding operators together, 
may be applied to many different operators with 
some interesting results. It is not within the scope 
of this application note to investigate this subject 
further. 

The following operations, shown in Figure 4, on 
part of an image illustrate the effect of the Sobel 
operator. It is possible to obtain similar results, by 

· doing a vertical and a horizontal edge detection, 
squaring and adding the results, and taking the 
square root to give a result for each final pixel. This 
is the ideal edge detector, but the cost of squaring 
twice and a square root is often cost prohibitive, 
with the Sobel operator a very satisfactory alterna­
tive. 
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Figure 4 shows the result of 2 convolution kernels 
operating on the different images. This illustrates 
the requirement for scaling and sign inversion. 
Before the resultant images can be displayed all 
negative numbers must be sign inverted and a 
scaling factor of 4 must also be applied. It is inter­
esting to note that the reason for the sign change 
is the direction of travel of the convolution kernel 
across an edge transition. Also, as will be shown 
later, the steepness of the edge transition is import­
ant. 

11.2.c. LAPLACIAN FILTERING (edge detection) 

Laplacian filtering uses a homogeneous operator, 
which means that it is the same in all directions. 
With the use of a Laplacian edge detection operator 
edges in all directions can be detected. This is 

Figure 5 : Illustration of Laplacian Filter 

0 0 1 1 1 

0 0 1 1 1 -1 

0 0 1 1 1 X -1 

0 0 0 0 0 -1 

0 0 0 0 0 

11.3. Effect of template size 

The previous sections have shown the effect of 
several [3 x 3] convolution kernels. This kernel size 
is very effective in many applications, while requir­
ing moderate processing for its calculation. One of 
the main reasons for not using larger templates is 
that the processing requirement becomes ex­
cessive, mainly due to the large number of multiply 
operations. The advantages of large kernels are 
twofold, firstly the larger kernels have a filtering 
effect which reduces the effect of noise, and sec­
ondly the larger kernels are able to detect gradual 
changes in brightness across a group of pixels. 

It must be remembered that single bit pixels are not 
used, and the pixels are represented in grey scale 
with range from 0 to 255. This means that in a real 
image, edges will span several pixels, and to detect 
these edges will require a larger convolution kernel. 

If, for example, a [3 x 3] kernel is used to detect an 
edge which changes from black to white linearly 
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-1 

different from the previous non-homogeneous 
edge detection (Sobel) operator, where edges in all 
directions except one can be detected. 

The effect of the [3 x 3] Laplacian operator is shown 
in Figure 5. As the operator passes over an edge, 
the magnitude of the result increases and there is 
a sign change. Also, the original pixels will remain, 
in areas where there is no edge to be detected. In 
order to detect the edges, after the 2-D convolution 
has been done .. a 3 stage process is necessary. 
First the result is scaled down by a factor of 9. 
Second, a full rectification is done, converting all 
negative to positive numbers. Third, the back­
ground information is thrown away, by introducing 
a suitable threshold below which the result is con­
sidered to be zero. 

0 -3 3 0 0 

-1 0 -3 3 0 0 

-1 - 0 -2 5 3 3 -
-1 0 -1 -2 -3 -3 

0 0 0 0 0 
A100·05.EPS 

over 5 pixels, then the maximum and minimum 
resultant pixel is 1.6 and -0.6 respectively, as 
shown in Figure 6. Each pixel is represented by a 
single step. This result must be compared with the 
result in Figure 5, where an instantaneous change 
between 2 pixels gives an output of -3.0 and 3.0. 
The results of -0.6 and 1.6 are barely enough to 
detect an edge. 

Figure 6 : Effect of Gradual Edges on Convolution 
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Ill. HARDWARE REQUIREMENTS FOR 2-D 
CONVOLUTION 

Two possible hardware implementations of 2-D 
convolution using the IMSA 1 00 are described in 
this section. Because these two implementaions 
use exactly the same principle of operation, the 
IMSA100 device, which is common to both, will first 
be described. The fundamental difference between 
the two designs is as follows. In the lower perform­
ance system all image data is transferred to the 
IMSA 100 across a comparatively slow memory 
interface.ln the high performance system all image 
data uses the dedicated input and output ports of 
the IMSA 100. These dedicated ports permit, with 
the addition of some dedicated hardware, a pro­
cessing rate of 5 million pixels per second. 

Implementation of 2-dimensional convolution on 
the IMSA 100 involves loading the elements of the 
convolution kernel into the coefficient registers, and 
passing the entire image through the device while 
storing the resultant image. To obtain maximum 
throughput this should be a continuous operation, 

Figure 7 : User's Model of the IMSA 100 

data 
input 

cascade 
input 

16 

24 

Update coefficient registers 

Active coefficient registers 

Multiplier 
Accumulator Array 

..__ 32 stages__.. 

32 cycle delay (24 bits) 
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and will consist of a sequence of alternate 
read/write operations starting at the first pixel of the 
first row of the image and finishing with the last pixel 
of the last row of the image. The two fundamental 
problems are to arrange that first, the convolution 
kernel elements are loaded into the appropriate 
coefficient registers, and second that the pixel data 
is ordered correctly both before and after process­
ing. The required initialisations of the IMSA 100 are 
also described. 

111.1. The IMSA100 model 

The IMSA100 model is shown in Figure 7. The 
many component parts of the IMSA 100 are in­
cluded to add flexibility, so that many signal pro­
cessing algorithms can be implemented. This 
means that the device can be used in many signal 
processing applications. The fundamental oper­
ation of the device is a high speed multiplier-accu­
mulator, which functions as a pipeline of 32 multi­
plier-accumulator devices. The peripheral circuitry 
simplifies the use of the device. 

24 

A100·07.EPS 
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The essential elements of the device, in so far as 
they are important to this discussion of 2-D convol­
ution, will now be described. 

• The multiplier accumulator array is the power­
house of the device. This is a 32 stage pipeline of 
multipliers, which multiply 32 elements of input 
data with the contents of the current coefficient 
registers in between 2 and 8 cycles. The cycle 
time is between 1 DOns and 400ns, and is a func­
tion of the coefficient width. There is no loss of 
accuracy in this section because all calculations 
are at 36 bit accuracy. 

• The data input is either from the dedicated data 
input port or via the data input register (DIR). The 
DIR can be accessed from the memory interface 

·port, which may be connected to a microproces­
sor. The fastest data access is by the direct input 
port, with input using the DIR register being 
usually 2 to 4 times slower. 

• The data output is taken from the high speed 
multiplexed data output port or from the data 
output registers (DOL and DOH), which contain 
the 24 bits of output data. These registers, like the 
DIR register, will normally be accessed much 
slower than the direct data output port. 

• The coefficient registers are used to store the 
convolution coefficients, for which only the cur­
rent coefficient registers are required. Because 
there is no need to bank-swap coefficient and 
update registers, neither the update coefficients 
nor the bank swap capability are ever used in this 
application. 

• The cascade input is used for simple connection 
of devices. The cascade input port is multiplexed 
in exactly the same way as the data output port, 
so that direct connection between the two and 
use of the GO signal for synchronisation are all 
that is required to cascade devices. For 2 dimen­
sional convolution requirements, only one 
IMSA 100 is required for doing a convolution with 
a kernel containing less than 33 elements, al­
though more devices can be used for improved 
performance as will be shown later. Whenever 
more than one device is used the cascade input 
port is required. 

• The 32 cycle delay element delays the cascade 
input data by exactly the same time as the multi­
plier accumulator array. It can be used in conjunc­
tion with the data input port to add together 2 
streams of pipelined data. This is very useful, 
particularly for convolution requiring data parti­
tioning. Real time 2-dimensional convolution of 
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images using the IMSA 100 requires the use of 
this delay element. 

• The control registers are used to initialise the 
device, and for some of the working operations of 
the device. These are referred to as the Static 
control register (SCR) and the Active control reg­
ister (ACR) respectively. The ACR can be altered 
during the operation of the device whereas the 
SCR cannot. The use of these registers as re­
gards 2-dimensional convolution will be de­
scribed later. 

• The output signals are described adequately in 
the IMSA 100 data sheet [6] and will not be de­
scribed further here, except for the GO signal 
which is relevent to the discussion. The GO pins, 
of all the IMSA 100 devices which are cascaded 
together, will be joined. GO is used for synchroni­
sation of a cascade of devices, and is not needed 
in a system with only a single IMSA100, unless 
the cascade input of that device is used. GO is 
set up from the SCR to be either a master or slave, 
and there is never more than one master. 

• GO is a special signal used to synchronise the 
cascade and data input ports. If the data input port 
Din or the cascade input port Cin is driven by 
external hardware, then all the IMSA 100 devices 
will be set to slave mode and external hardware 
will be used to drive the GO pin. If neither the 
cascade input port or data input port are driven 
by external hardware, (when all data will use the 
memory interface) then one of the IMSA100 de­
vices in the cascade will be configured as a 
master. The master which should be the last 
device in the cascade, drives the GO signal, and 
all the other devices synchronise their cascade 
and data inputs from the GO signal they receive. 
The GO signal master could in theory be driven 
by any of the devices in a cascade, and this would 
work for a short cascade. However, operation 
cannot be guaranteed, whereas an infinite length 
cascade will work if the master is the last device 
in the cascade. 

111.2.1MS A100 initialisations for convolution 

The following description summarised the initialisa­
tions of the IMSA100 devices which will be re­
quired, prior to the operation of 2-D convolution. A 
full understanding will require the use of the 
IMSA 1 00 data sheet [5]. The settings necessary for 
a 2-dimensional convolution, using 8-bit grey scale 
data and 8 bit coefficients are described. 

The coefficient size is set to 8 bits by setting bits 8 



(=1) and 9 (=0) of the SCR. As 8 bit grey scale is 
used the top 8 data bits from either the data input 
port or DIR (each 16 bits wide) will be zero. 

The result of the 8 by 8 multiplication will require 16 
bits, and the 32 stages of accumulation will require 
a further 5 bits so that the final result, will require 
21 bits accuracy. The result required is manipulated 
internally by a selector so as to be invisible to the 
user. The significant 8 bits of the result are obtained 
by setting bits 4 (=0) and 5 (=0) of the SCR, and 
reading data from the bottom 8 bits of the DOL 
register. 

If there is a cascade of devices the lower 8 bits of 
output appear on the lowest 8 bits of the multi­
plexed data output port, which will be connected to 
the cascade input of the next device in the cascade. 
By this means scaling is done automatically, and is 
invisible to the user. The whole purpose of this is 
that many devices can be cascaded, and appear 
like a single device with a number of stages which 
is a multiple of 32. 

The remaining SCR register settings are as follows. 
Bank swap mode will be set to off. Data mode will 
be set to either input data from the DIR register or 
data input port depending on the application. Fast 
output will be set to off for this application. 

The ACR will not generally be needed for this 
application as no bank swapping between the ac­
tive and update coefficient registers is necessary. 
It may be necessary to examine the selector over­
flow and cascade adder overflow bits of the ACR 
should an error occur (error pin goes low). 

Figure 8: Illustration of IMSA100 Pipilined Circulation 
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111.3.1MSA100 coefficient placement and data 
flow 
Section 11.2 describes some of the convolution 
kernels which are used to perform feature extrac­
tion and filtering on an image. The following dis­
cussion describes how these kernel elements are 
mapped onto the coefficient registers of the 
IMSA 1 00 so that 2-D convolution is performed. 

The IMSA 100 can be regarded as a 32 stage 
multiplier accumulator with 32 constant coeffi­
cients, which will be consecutively multiplied with a 
stream of incoming pixels. The current coefficients 
are labelled from C(O) to C(31) where C(O) is 
closest to the output, and C(31) is closest to the 
input, as shown in Figure 8. 
In Figure 8, pixel data presented at the Din port (or 
DIN register) at time 0 is referred to as DO. Imme­
diately after data is written, at time T1, a result will 
be read from the Dout port (or DOUDOH register). 
For the first 32 cycles (T1 to T32) of the IMS A 100, 
partial results for data DO to D31, and coefficients 
C(O) to C(31) will be output from the device. The 
results at time T1 and T2 are given. 

From T32 onwards the device presents full results 
at its output, and the result at time T32 and T64 are 
given to illustrate this. The steady state of the 
device yields the accumulation of 32 multiply oper­
ations which have taken place over the previous 32 
cycles. Notice also that at any instant the machine 
contains 32 pieces of information (state), which are 
the 32 partially accumulated results, as they pro­
ceed through the 32 stage pipeline. 

IMSA 100 functional schematic 

C(31) 

DOUT 
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If there is a cascade of 2 devices, there are 64 
coefficients which can be referred to as C[O] to 
C[63]. The output from the second device in the 
cascade is the sum of 64 multiply operations which 
have accumulated over the previous 64 cycles. 
This principle can be extended to many IMSA 100 
devices, so that long multiply-accumulation oper­
ations can be done. It is essential to be able to 
perform long cascades so that large convolutions 
are possible. For example, a 128 point convolution 
will require 4 IMSA100 devices in cascade. 

This also applies to 2-Dimensional convolution. For 
instance, an [11 x 11] convolution using 121 stages, 
will require 4 IMSA 100 devices. Of course, 7 stages 
are not required, which means that 7 of the coeffi­
cients (C[127] to C[121]) of the first IMS A 100 in the 
cascade will be set to zero. 

As can be recalled from section II, a [3 x 3] convol­
ution requires the accumulation of 9 multiply oper­
ations. Similarly, a [5 x 5] convolution, illustrated in 

Figure 9 : Pixel Scanning and Coefficient Ordering 

(A) Pixel array 

DO D10 D20 D30 D40 D50 D60 D70 

01 011 021 031 041 D51 D61 D71 

D2 D12 D22 D32 D42 D52 D62 D72 

D3 D13 D23 D33 D43 D53 D63 D73 

D4 D14 D24 D34 D44 D54 D64 D74 

D5 D15 D25 D35 D45 D55 D65 D75 

D6- . D16 D26 D36 D46 D56 D66 D76 

07 017 027 037 047 057 D67 D77 

DB D18 D28 D38 D48 D58 D68 D78 

D9 D19 D29 D39 D49 D59 D69 D79 

(C) Scanning for a single pixel 
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Figure 9, will require 25 stages of multiply-accumu­
lation. The only problem is that the coefficients 
must be loaded in the correct coefficient locations, 
and the input and output data must be ordered 
correctly, so that the IMSA 100 architecture can be 
utilised. This is described in the following section. 

111.4. Image scanning for a microprocessor 
based system 
The following description will normally only apply to 
a system using a memory interface, for the transfer 
of all data to and from the IMSA 100. It is perfectly 
possible to use the following pixel sequencing oper­
ations, for transferring data to the IMSA 100 devices 
across the high speed data input and output ports. 
However, this is not advised as the sequencing 
operations using normal hardware are complex, 
but are quite easy with a microprocessor. The 
additional hardware could be better used for imple­
menting an extremely high performance system, 
such as described later. 

(B) IMSA 1 DO coefficients 

C24 C19 C14 C9 C4 

C23 C18 C13 CB C3 

C22 C17 C12 C7 C2 

C21 C16 C11 C6 C1 

C20 C15 C10 C5 co 

(D) Scanning for next pixel 
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111.4.a. IMAGE SCANNING FOR 2-D 
CONVOLUTION IMPLEMENTATION 

A pixel array (A) with 10 rows and 8 columns is used 
purely for convenience. The convolution kernel with 
25 coefficients is shown in (B). The order of the 
coefficients is critical, starting at the bottom right 
and proceeding one column at a time (Remember 
that CO is the coefficient of the last stage of the 
cascade). The scanning pattern for the image is 
shown in (C) and (D). The dark black squares are 
valid output pixels, each of which represent the 
convolution of 25 pixels with 25 coefficients. 

If the light grey area of pixels is written to Din as 
shown in (C) the order will be D11 then D12 and so 
on in columns until D55 is written. Immediately after 
D55 is written to Din a valid pixel is read from Dout. 
The value of this pixel will be 

D33out = CO.D55 + C1.D54 + C2.D53 + .... 
+ C23.D12 + C24.D11 

After this D51 is written followed by D52, D53, D54, 
D55 after which another valid pixel can be read. 

D34out = CO.D65 + C1.D64 + C2.D63 + .... 
+ C23.D22 + C24.D21 

IMAGE PROCESSING WITH THE IMSA100 

In other words, for every 5 pixels written one valid 
pixel is read, from the beginning until the end of the 
row. At the end of the row go back to the start of the 
row and move down a row repeating until the entire 
image is scanned. The net effect is a completely 
convolved image. This is inefficient as the entire 
image is effectively written to the IMSA100 FIVE 
times. 

There is fortunately an optimisation which can be 
incorporated. The principle is that the some of the 
IMSA 100 coefficients are set to zero, so that those 
stages act only to store and delay accumulated 
results. This is described in the following section. 

111.4.b. IMPROVED IMAGE SCANNING FOR 2-D 
CONVOLUTION 

Improved performance can be obtained by modif­
ying the previous image scanning technique. The 
improvement is obtained not by processing the 
individual pixels faster, but by passing the pixels 
through the IMSA 100 fewer times. This is illustrated 
in Figure 10. 

Figure 10 :Pixel Scanning and Coefficient Ordering- High Performance 

{A) Pixel array {B) IMSA 1 00 coefficients 

DO 010 020 030 040 050 060 070 

01 011 021 031 041 D51 D61 D71 0 0 0 0 0 
D2 D12 D22 D32 D42 D52 D62 D72 0 0 0 0 0 
03 013 D23 D33 D43 D53 D63 D73 0 0 0 0 0 
D4 014 D24 D34 D44 D54 D64 D74 C36 C28 C20 C12 C4 
05 015 D25 D35 D45 D55 D65 D75 C35 C27 C19 C11 C3 
06 016 D26 D36 D46 056 D66 D76 C34 C26 C18 C10 C2 
07 D17 D27 D37 D47 D57 067 077 C33 C25 C17 C9 C1 
DB D18 D28 D38 D48 D58 D68 D78 C32 C24 C16 CB co 
D9 D19 D29 D39 D49 D59 069 D79 

{C) Scanning for 4 pixels {D) Scanning for next 4 pixels 
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Data is written to the IMSA 100 devices as before 
except this time data is scanning over 8 rows at a 
time, starting at 011 and finishing at 058. Scanning 
over the fifth column of 8 pixels from 051 to 058 
will yield 4 valid pixels, starting at the black square. 

033 out= CO.D55 + C1.D54 + C2.D53 + .... 
+ C23.D12 .f. C24.D11 

034 out= CO.D56 + C1.D55 + C2.D54 + .... 
+ C23.D13 + C24.D12 

035 out = CO.D57 + C1.D56 + C2.D55 + .... 
+ C23.D14 + C24.D13 

036 out= CO.D58 + C1.D57 + C2.D56 + ... 
+ C23.D15 + C24.D14 

Immediately after D33out is read from Dout, 056 
is written to Din. The partially accumulated result 
for pixel D43out is then stored in the empty slot 
(The empty slot is the position in the IMSA 1 00 
which would accumulate C5 with the data at Din. 
As this coefficient is set to zero no accumulation 
takes place, and this stage acts as delay and 
storage of data only) The next pixels 056 and 057 
are written, and the partially accumulated result for 
D44out and D45out are then stored in the IMSA 1 00 
pipeline. At this time there will be 3 partially accu­
mulated results D43out, D44out and D45out, which 
will be required for processing the next column. 

At the end of the column scan, after the pixel 058 
is written, 061 followed by the remainder of that 
column of 8 pixels, are written. This yields a. further 
4 pixels as given below. 

D43out = CO.D65 + C1.D64 + C2.D63 + .... 
+ C23.D22 + C24.D21 

D44out = CO.D66 + C1.D65 + C2.064 + .... 
+ C23.023 + C24.D22 

D45out = CO.D67 + C1.D66 + C2.065 + .... 
+ C23.D24 + C24.023 

D46out = CO.D68 + C1.067 + C2.D66 + .... 
+ C23.025 +. C24.D24 

The scanning technique which scans across 8 rows 
at a time, while 4 rows of pixels are written, is 2.5 
times more efficient than the previous technique, 
where only 5 rows are written, for a single output 
row. It is simple to calculate the efficiency for any 
number of zeros inserted into the coefficients ofthe 
IMSA100. 

111.4.c. CONVOLUTION EFFICIENCY 

For any system, there will be a fundamental pixel 
processing rate. As shown in section 111.5 the pro­
cessing rate, writing pixels across a high perfor­
mance memory interface is unlikely to be better 
than 4 Mpixels per second. Realistically 2Mpixels 
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per second is a more probable performance. How­
ever, as shown above, there will be an efficiency 
factor, dependent upon the the convolution tech­
nique used, which will reduce the performance 
further. The best that can be done uses an image 
scanning pattern as shown in Figure 10. 

To calculate the efficiency, the number of stages 
and the number of zeros must be known. These 
calculations assume that the maximum number of 
zeros will be used, for whatever number of A 1 OOs 
are selected. 

stages:= number.of.A 1 00sx32 (1) 

zeros := stages 2 DIV(filter.size-1) (2) 
(filter. size) 

Efficiency: = zer~s+ 1 . (3) 
zeros+filter.srze 

As a simple example, it is known to take 500ns to 
process a single pixel, and the efficiency is calcu­
lated at 50%. The expected processing rate will be 
1 Mpixels per sec. 

There is an obvious trade off between the number 
of A 100 devices used and efficiency. A small num­
ber of zeros increases efficiency greatly. However, 
as efficiency approaches 1 00% the added cost of 
more IMSA 100 devices, to give more stages, will 
not give a proportionate increase in performance. 
No figures are given here, as it is simple to calculate 
the numbers, for any given application. 

111.5. Moderate speed image convolution 
A moderate image convolution rate can be ob­
tained by using a very simple design incorporating 
an 8 or 16 bit processor, which controls one or 
several IMSA 100 devices. A typical system is 
shown in Figure 11. The system chosen uses an 
extremely high performance 16 bit processor, the 
I MST212. The limiting speed of this system is either 
the rate at which data can be transferred across the 
IMSA 1 OO/IMST212 memory interface, or the rate 
at which data can be transferred to and from an 
external system. The external system may consist 
of camera, frame grabbing hardware and some 
form of image displaying capability. For the purpose 
of argument it will be assumed that the 
IMSA 1 OO/IMST212 memory interface is the limiting 
factor. 

The performance of this system may be easily 
estimated, for whatever processor is used. This 
estimation assumes that the image resides in 
memory before processing starts, and that the data 
input port is not used. The resultant image will also 
reside in memory after processing. 



Figure 11 

Clock 

The processing of a single pixel involves 5 steps 
which are in order 

read from memory 
write to IMSA100 

~ 100ns 
~ 100ns 

IMS A 100 processing, ~ 200ns 
read result from IMSA 1 00 ~ 1 DOns 
write resultto memory ~ 1 DOns 

This shows that the time to process a single pixel 
will be 600ns so that for a complete picture of size 
[512 x 512] a processing rate of 6 frames per 
second may be possible. While this may be achiev­
able in theory there are several problems which 
lead to a reduction in this performance. 

• The data must be transferred both to and from the 
system, before and after processing. In practice 
this may take longer than the processing itself. 

• The data must be read and then written by the 
processor, usually into an internal register, which 
will consume at least 2 extra cycles (1 DOns mini­
mum) 

• The data accessed by the processor will be in the . 
form of a 2 dimensional array of pixels. The 
processor has to calculate the array subscripts for 
every pixel in the image, which will consume at 
least 4 processor cycles (200ns). The order with 
which pixels are loaded is not simply row by row 
and is described elsewhere. (section 3.4) 

• The nature of the convolution algorithm means 
that the image may need to be split up into small 
blocks, which must be overlapped, to give a con­
tinuous convolution of the entire screen. This will 
result in an inefficiency of between 10% and 50% 
depending on the size of the blocks and the 
degree of overlap. 

IMAGE PROCESSING WITH THE IMSA100 
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• The algorithm implemented on the IMSA 100 has 
a fundamental efficiency as described in section 
3.4. Equations are given for the calculation of this 
efficiency. The algorithm should be arranged so 
that the efficiency is better than 50%. 

The effect of all these factors that a simple micro­
processor based system is likely to have a process­
ing rate of between 1 and 4 frames per second. 
Even this will require an high performance proces-
sor with optimised software. · 

111.6. Very high speed image convlution 
Faster speeds require a slightly altered algorithm 
and dedicated hardware. The following describes 
a hardware implementation capable of processing 
speeds up to 20 frames per second. The hardware 
setup is shown in Figure 12. This figure illustrates 
the hardware required to perform a [3 x 3] convol­
ution on a [512 x 512] image. Larger convolutions 
on larger images are possible with the addition of 
extra hardware. For example, a [31 x 31] image 
convolution could be done using 31 IMSA 1 OO's and 
30 sets of shift registers. Each shift register has a 
512 + 32 stage delay. 

In the example shown, 2 rows of data are stored in 
long shift registers, while the third row enters the 
data input port of the first IMSA 100 in the cascade. 
The first IMSA 100 in the cascade has its cascade 
inputs grounded, while all other IMSA100 devices 
have their cascade inputs connected to the data 
outputs of the previous IMSA 100 in the cascade. 

The arrangement ensures that 2 pixels one above 
the other in an image are fed simultaneously into 
the cascade input and data input of each IMSA 100. 
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Figure 12 

DOUT 

The IMSA 100 devices will process one line of pixels 
at a time, and the entire image will eventually pass 
through every IMSA 100. Because the system is 
fully pipelined this results in no performance degre­
dation. 

Each stage of the cascade requires an IMSA 100 
and a long shift register. The IMSA 100 is like a 
32 stage delay element, where the cascade input 
delayed by 32 stages is added to the data input 
after it has been through a 32 stage multiplier-ac­
cumulator array. The 32 stage delay of tlie 
IMSA 100 means that the shift register delay must 
be a single line delay (51_2 pixels in this case) plus 
32 stages. 

The data throughput rate depends on the coeffi­
cient size selected for the IMSA 1 OO's, and is unaf­
fected by the number of stages. If 8 bit pixels with 
8 bit coefficients are selected, a data rate of 5kHz 
is achieved. For a [512 x 512] image this gives a 
convolution time of one frame in 50mS. This is a 
frame rate of 20Hz with faster speeds achieved by 
selecting regions of interest or multiplexing frames 
between several boards. 

As a further example application, it is required to 
pass a [31 x 31] pixel kernel template over a 
[1024 x 1024] image at 50 frames per second. 
Processing will require 310 IMSA1 00 devices, seg­
mented over several boards. One configuration 
would use 30 [1 024 + 32] delay stages, and would 
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require 31 IMSA 1 OO's to process the image in 200 
ms. Therefore 10 such boards would be required, 
and a means of multiplexing the individual images 
at a bandwidth of 50 Mpixels per second. This is 
mainly a problem of data distribution. The process­
ing problem has been solved by the ·capability of 
the IMSA 100. 

IV. CONCLUSIONS 

This application note has shown how the IMSA 100 
may be used to perform fast processing of digital 
images. Some typical image processing functions 
have been described, including edge detection and 
filtering of a picture. 

The versatility of the IMSA 1 00 has been shown by 
the following observations. 

• The IMSA 100 is capable of processing images at 
real time speeds, 20 frames per second, and a 
hardware implementation of this has been de­
scribed. This processing rate is possible because 
of the high speed sampling rate of 10 million 
pixels per second of the IMSA 100. 

• It is simple to build a lower performance system 
consisting of several IMSA 1 OOs and a micropro­
cessor, with a capability of processing at between 
2 and 4 frames per second. The simplicity of the 
microprocessor interface which turns the device 
into a memory mapped peripheral helps to 
achieve this. 



• Identical hardware implementations can be used 
for different sizes and types of 2-Dimensional 
filters. It is therefore not difficult to modify the 
signal processing algorithm after the hardware 
design is complete. This is eased by the general 
capabilities of the IMSA 1 00 for many signal pro­
cessimg applications, involving the implementa­
tion of specific algorithms on the general purpose 
architecture. 

• Even after hardware design is complete it is 
possible to increase or reduce performance as 
necessary, simply by increasing or reducing the 
number of IMSA100 devices in the system. This 
is only possible because the device is designed 
specifically so that several may be used in paral­
lel. 
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1. INTRODUCTION 

The IMS A 110 is a single-chip programmable and 
cascadable device suitable for many high speed 
image and signal processing applications. It con­
sists of a configurable array of multiply-accumula­
tors (420 MOPs), three programmable length 1120 
tage shift registers, a versatile post-processing unit 
and a microprocessor interface for configuration 
and control purposes. The comprehensive on-chip 
facilities makes a single device capable of dealing 
with many image processing operations. A simpli­
fied block diagram is shown in Figure 1 . 

For some applications however, the power and 
versatility of a single IMS A 110 is not sufficient, in 
these cases a cascade of devices often provides a 

AN547/0792 

solution. The purpose of this document is to de­
scribe some of the most useful ways to cascade 
IMS A 11 Os to achieve even higher performance 
and as such does not cover the use of the backend 
processor or device applications. 

2. OPERATION OF A SINGLE IMS A110 

The A 110 may be set up as either a one or two 
dimensional multiplier accumulator array (MAC). 

2.1 One dimensional operation of an IMS A110 
For one dimensional operation the first delay PSRc 
is set to some arbitrary value (normally zero) while 
PSRb and PSRa are set to zero. N.B. at any given 
point in time the first MAC stage in bank c is 
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processing the oldest data while the last MAC 
stage of bank a is processing the newest data. 

2.2 Two dimensional operation of an IMS A110 
For two dimensional operation the first delay 
(PSRc) is again set to some arbitrary value; how­
ever, the setting of PSRa and PSRb is dependant 
on the line length in pixels of the image being 
processed. It turns out that in order to achieve a 
rectangular convolution window the number of de­
lays to be programmed into PSRa and PSRb is 
equal to the line length in pixels plus the length of 
the MAC pipelines (seven stages). For example if 
the screen width of the image to be processed is 
512 pixels then the delay to be programmed into 
shift registers PSRa and PSRb is 519. 

N.B. normally when processing an image with an 
arbitrary setting of PSRc the delay (latency) 
through the IMS A11 0 causes the output image to 
be incorrectly aligned or skewed. This results in an 

Figure 1 :Block Diagram of the IMSA11 Os 

PSRIN 

PSROUT 

CAS IN 
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apparent rotation of the output image in the hori­
zontal plane. To correct this problem PSRc may be 
adjusted to introduce a suitable number of delays 
to shift the image into the correct position. 

Typically image data is fed into an IMS A 110 line by 
line starting at the top left and ending at the bottom 
right. Given this definition it may be seen that the 
first MAC stage in each row is processing the data 
nearest the left hand side of the screen (the oldest 
data) and that the last MAC stage in each row is 
processing the data nearest the right hand side of 
the screen (the newest data). In a similar fashion 
the first row is always processing the newest data 
(the data nearest the bottom of the screen) and the 
last row is always processing the oldest data (the 
data nearest the top of the screen). It is important 
to bear in mind these relationships when pro­
gramming IMS A 11 Os, otherwise the operation 
being performed on an image may not be what was 
expected. 



3. FUNDAMENTALS OF CASCADING IMSA 11 Os 

Consider a single IMSA110 configured to perform 
some task on a stream of data values. The filter 
kernel formed by the coefficients may be thought 
of as a block passing over the data. To produce 
bigger filters it is necessary to join a number of 
separate blocks together. This may be achieved by 
connecting together a number of IMSA110s, as 
shown in Figure 2, and configuring them suitably. 
In order to create a contiguous filter kernel (i.e. a 
filter without overlap or gaps) it is essential that the 
route between PSRin and PSRout for each device 
is programmed correctly and that the internal delay 
lines are programmed to the correct lengths. 

To assist in the calculation of the delays to be 
programmed into the programmable shift registers 
it is convenient to define a reference data path 
through the MAC of any given IMSA110. In this 
document, unless specified, the reference path is 
taken to be from the input to the multiplier marked 
with an asterisk (*) in Figure 1 to the cascade adder 
marked with a hash (#). 

In addition before embarking on any calculation it 
is necessary to know the following: 

CASCADING IMSA 11 Os 

The delay between PSRin and PSRout when 
the data is routed directly from PSRin to 
PSRout without passing through the 
programmable shift registers. This delay is 
known as Do. 

2 The delay along the reference path. This delay 
is known as DR. 

3 The delay through the backend between 
cascade in and cascade out. This delay is 
known as Ds. 

4 The locations of the other inherent delays 
within IMSA 11 Os. 

5 The meaning of line length, kernel width and 
kernel height. See Figure 3 for a definition of 
these terms. 

Figure 1 shows a functional block diagram of an 
IMSA 11 0 with all the inherent delays included: 
From this diagram it is possible to calculate the 
value of the three delay constants as shown in 
table 1. 

Table 1 

DR=(1 + 1 )+(7 + 1 )+(7 + 13) 

Figure 2: Standard Connection for Cascading IMSA110s 

Device n-1 Device n 
PSRIN PSROUT PSRIN PSROUT 

CASIN I IMSA110 I CASOUT CASIN -1 IMSA110 I CASOUT 

Figure 3 : Depiction of Line Length, Kernel Width and Kernel Height 

Filter kernel t 
w 

t 

L 

L = line length 
W =kernel width 
H :::: kernel height 

A 11 0-02-EPS 

A 11 0-03.EPS 

3/13 

281 



CASCADING IMSA110s 

4. CASCADING IMSA110s TO PRODUCE 
LONG ONE DIMENSIONAL FILTERS 

A single IMSA 11 0 is capable of producing a one 
dimensional filter with up to 21 taps (shorter filters 
may be made by setting unrequired coefficients to 
zero). To create longer filters it is necessary to 
cascade a number of IMSA 11 Os together. Each 
additional device added to the cascade gives an 
additional 21 taps allowing filters of almost un­
limited size to be built from simple building blocks. 
To develop the delays required to be set up in a one 
dimensional cascade the system shown in Figure 4 
will be considered. This system only contains two 
devices but will be examined in a general way so 
that rules may be developed for cascades of arbi­
trary length. It has already been mentioned how to 
set up the delays to achieve one dimensional con­
volution in a single device. Fortunately, in cascades 
of IMSA 11 Os the data relationships within each 
device are the same as those which would exist 
inside a single non cascaded device processing the 
same data. Hence, in the one dimensional cascade 
under consideration the delays programmed into 
PSRa and PSRb of each device are zero. 
In order to cascade IMSA 11 Os into long one dimen­
sional filters the data is normally routed directly 
from the input to the output of each device without 
passing through the programmable shift registers, 
as shown in Figure 4. It may be seen that each 
piece of data takes two routes through the cascade. 
One route generates partial results via the MAC of 
device n-1 and the other via the MAC of device n. 
These partial results are eventually combined at 
the cascade adder in the backend of device n. To 
produce the correct result it is important that these 

two separate data streams are aligned correctly. 

Assuming that the delay in the PSRc of device n-1 
is Xn-1 and that the delay in PSRc of device n is Xn, 
it is desired to calculate the relationship between 
these delays for correct combination of the partial 
results. Consider an item of data when it reaches 
device n-1. The delay before the component due 
to this data, flowing via the reference path in device 
n-1, reaches the cascade adder of device n is: 

Dn-1 = 1+Xn-1+1+3+DR+Ds 
Dn-1 = 41+Xn-1 

Similarly the delay before the component due to 
this data, flowing via the reference path in device 
n, reaches the cascade adder of device n is: 

Dn = Do+ 1 +Xn+ 1 +3+DR 
Dn = 37+Xn 

Now, for a contiguous convolution kernel, it is 
desired for the results flowing via the MAC of device 
n-1 to arrive at the cascade adder of device n, 21 
clock cycles behind those which have come from 
the other route. Hence: 

Dn-1-Dn = 21 
41+Xn-1-37-Xn = 21 

Xn-1 = Xn+17 

This means that the PSRc of device n-1 must be 
programmed with the value which is in PSRc of 
device n plus a fixed constant of 17. This rule may 
be extended to take into account any number of 
devices providing that the maximum length of the 
delay lines is not exceeded. The PSRc of the last 
device in the cascade may be programmed to an 
arbitrary value (normally zero) providing the maxi­
mum length of the first PSRc delay in the cascade 
is not exceeded. 

Figure 4 : Direct Data Path Connection for Cascading IMSA 11 Os 

Device n- 1 Device n 

PSRIN PSROUT 

CAS IN CASOUT 

A 11 0-04.EPS 
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For example consider the problem of filtering a data 
stream with a 50 tap filter. This could be achieved 
by cascading three IMSA 11 Os. Typical delays 
which would have to be programmed into the de­
vices are given in table 2. 

Table2 
Device 1 Device 1 Device2 

PSRa 0 0 0 
PSRb 0 0 0 
PSRc 34 17 0 

5. CASCADING IMSA110s TO PRODUCE 
WIDER TWO DIMENSIONAL FILTERS 

A single IMSA 110 is capable of filtering an image 
with a two dimensional kernel which has a maxi­
mum width of seven cells (narrower filters may be 
made by setting unrequired coefficients to zero). To 
create wider filters it is necessary to cascade a 
number of IMSA 11 Os together. Each additional de­
vice added to the cascade increases the maximum 
width by an additional 7 cells, allowing filters of 
almost unlimited width to be created. 
The connections required to cascade IMSA 11 Os 
into horizontal cascades may be seen in Figure 4. 
It may be noted that the connections for this type 
of cascade are identical to those presented in 
section 4 for one dimensional cascading. The dif­
ference in function is achieved by changing the 
delays present in the programmable shift registers. 
It was mentioned in section 2 that for two dimen­
sional filtering using a single device the length of 
PSRa and PSRb have to be programmed to the 
line length plus seven. Hence to ensure correct 
alignment of the rows of the filter in a horizontal 
cascade it is necessary that PSRa and PSRb of 
each of the devices must also be set to this value. 
In order to cascade horizontally the pixel data is 
normally routed directly from the input to the output 
of each device without passing through the pro­
grammable shift registers. As before it may be seen 
that each item of data (pixel) takes two routes 
through the cascade. By assuming that the delay 
in the PSRc of device n-1 is Xn-1 and that the delay 
in PSRc of device n is Xn, then the route delay 
equations derived are the same as those calcu­
lated in section 4. 

Dn-1 = 41+Xn-1 
Dn =37+Xn 

Now, for a contiguous convolution kernel, it is 
desired for results flowing via the MAC of device 
n-1 to arrive, at the cascade adder of device n, 7 
clock cycles behind those which have come from 
the other route. This may be achieved by ensuring 
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that the data passing via MAC n-1 takes 7 cycles 
longer than data passing via the MAC n route. 
Hence: 

Dn-1-Dn= 7· 
41+Xn-1-37-Xn = 7 

Xn-1 = Xn+3 

This means that the PSRc of device n-1 must be 
programmed with the value which is in PSRc of 
device n plus a fixed constant of 3. This rule may 
be extended to cascade any number of devices 
providing that the maximum length of the delay 
lines is not exceeded. The value programmed into 
the PSRc of the last device in the cascade is 
arbitrary (normally adjusted to deskew the output 
image) but must not be set so high that the PSRc 
of the first device in the cascade exceeds its maxi­
mum. 
For example consider the problem of filtering a 
1024 pixel wide image with a 15x3 filter kernel. This 
could be achieved by cascading three IMS A110s 
into a horizontal cascade. Typical delays which 
would have to be programmed into the devices are 
given in table 3. 

Table 3 
Device 1 Device 2 Device3 

PSRa 1031 1031 1031 
PSRb 1031 1031 1031 
PSRc 6 3 0 

6. CASCADING IMSA110s TO PRODUCE 
HIGHER TWO DIMENSIONAL FILTERS 

The maximum height of a two dimensional filter 
kernel produced by a single IMSA 11 0 is three cells. 
This is restricting in some applications but, may be 
easily overcome by cascading a number of 
IMSA 11 Os into a single vertical strip. The theoreti­
cal maximum height of filter which can be created 
is equal to three times the number of devices 
cascaded. Hence the vertical filter size is limited 
only by the number of devices used. 
To develop the delays required to be setup in a 
vertical cascade the system shown in Figure 5 will 
be considered. This system only contains two de­
vices but will be examined in a general way so that 
rules may be developed for cascades of arbitrary 
length. It was mentioned in section 2 that for two 
dimensional filtering using a single device the 
length of PSRa and PSRb have to be programmed 
to the line length plus seven (L+7). Obviously to 
ensure correct alignment of the rows of the filter in 
a vertical cascade it is necessary that PSRa and 
PSRb of each of the devices must also be set to 
this value. 
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To cascade vertically the pixel data is normally 
routed from the input to the output of each device 
via the programmable shift registers (see Figure 5). 
Again it may be seen that each pixel takes two 
routes through the cascade. One route generates 
partial results via the MAC of device n-1 and the 
other via the MAC of device n. 

These partial results are eventually combined at 
the cascade adder in the backend of device n. In 
order to produce the correct result it is important 
that these two data streams are aligned correctly. 

Assuming that the delay in the PSRc of device n-1 
is Xn-1 and that the delay in PSRc of device n is xn, 
it is desired to calculate the the relationship be­
tween these delays for correct combination of the 
partial results. Consider a pix~! when it reaches 
device n-1. The delay before the component due 
to this pixel, flowing via the reference path in device 
n-1, reaches the cascade adder of device n is: 

Dn-1 = 1+Xn-1+1+3+DR+Ds 
Dn-1 = 41+Xn-1 

Similarly the delay before the component due to 
this pixel, flowing via the reference path in device 
n, reaches the cascade adder of device n is: 

Dn = 1+(Xn-1+1)+(L+7+1)+(L+7+1)+1+1+(xn+1)+3+DR 
Dn = 54+2L+Xn-1+Xn 

But for a contiguous convolution kernel it is desired 
for results flowing via MAC n to arrive, at the 

cascade adder of device n, three line lengths after 
those which have come from the other route. This 
may be achieved by ensuring that the data passing 
via MAC n takes 3L (where L is the line length in 
pixels) cycles longer than data passing via the MAC 
n-1 route. Hence: 

Dn-Dn-,=3L 
54+2L+Xn-1+Xn-41-Xn-1=3L 

xn=L-13 

This means that the PSRc of device n must be 
programmed with a value which is equal to the line 
length minus a fixed constant of 13. This rule may 
be extended to cascades containing any number 
of devices providing thatthe maximum length of the 
delay lines is not exceeded. N.B. the setting of the· 
PSRc of the first device in the cascade is arbitrary 
and may be adjusted to deskew the output image. 
For example consider the problem of filtering a 512 
pixel wide image with a 7x7 filter kernel. This could 
be achieved by cascading 3 IMS A110s into a 
vertical cascade. Typical delays which would have 
to be programmed into the devices are given in 
table4. 
Table 4 

Device1 Device2 Devlce3 

PSRa 519 519 519 

PSRb 519 519 519 

PSRc 0 499 499 

Figure 5: Indirect Data Path Connection for Cascading IMSA110s 

Device n-1 Devicen 

PSRIN PSROUT PSRIN 
.---~1DH-~~~--~--~~ .------110 

PSROUT 

CAS IN CASOUT CASIN CASOUT 

A110-05.EPS 
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7. Cascading JMSA110s to produce wider and 
higher two dimensional filters 

To produce filters which are both wider and higher 
than allowed by a single IMSA 110 it is possible to 
cascade a number of the wider filters discussed in 
section 5 into a vertical strip. 

The connections required to cascade IMSA110s 
into two dimensional cascades may be seen in 
Figure 5. The system shown has arbitrary width but 
only two rows of devices allowing a maximum filter 
height of six cells. However the system will be 
examined in a general way so that rules may be 
developed for cascades of arbitrary height. It may 
be noted that across each row, except for the last 
device, direct connection is used between PSRin 
and PSRout. The last device uses the indirect route 
via the programmable shift registers to connect to 
the first device of the next row. Since each row of 
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this cascade consists of a horizontal cascade the 
rules developed for the delays in such a cascade 
(see section 6) apply to each row of this larger 
configuration. However, the relationship between 
the delays in the vertical direction requires careful 
consideration. 

Assuming that the array of IMS A110s contains M 
devices in the horizontal direction and that the 
delay in PSRc of each device is as shown in 
Figure 6, it is desired to calculate the relationship 
between these delays for correct combination of 
the partial results generated by each row within the 
cascade. Consider a pixel when it reaches device 
n-1, 1. The delay before the first component due to 
this pixel, flowing via the reference path in device 
n-1 ,1, reaches the cascade adder of device n,1 is: 

Dn-1,1 = 1+Xn-1,1+1+3+DR+DeM 
Dn-1,1 = 35+6M+Xn-1,1 

Figure 6 : Connections for Cascading IMSA 11 Os into Wider and Higher 2-D Filters 

Device n-1,1 Devicen-1, m 

PSRIN PSROUT PSRIN 

CAS IN CASOUT CAS IN CASOUT 

PSROUT PSRIN 
~--------~1DHr~~ 

CASOUT CAS IN CASOUT 

A110-06.EPS 
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Similarly the delay before the component due to 
this pixel, flowing via the reference path in device 
n, 1, reaches the cascade adder of device n, 1 is: 

Dn,1 =2 (M-1)+ 1 +(X~r1, M+ 1) +(L+ 7+ 1) 
+ (L+ 7 + 1) + 1 + 1 + (Xn,1 + 1) + 3 +DR 

Dn,1 = 52+2M+2l+Xn-1,M+Xn,1 

But for a contiguous convolution kernel it is desired 
for results flowing via MAC n, 1 to arrive, at the 
cascade adder of device n, 1 a period of 3L clock 
cycles after those which have come from the other 
route. Hence: 

Dn,1-Dn-1,1 = 3L 
52+2M+2L +Xn-1 ,M+Xn, 1-35-6M-Xn-1, 1 = 3l 

17-l-4M+Xn-1,M+Xn,1 =Xn-1,1 

Now it is also known from section 5 that any given 
device in a row except the final device has PSRc 
programmed to 3 more than the device which 
follows. This leads to the following relationship 
between the delays programmed into the first and 
the last devices of the top row: 

TableS 

Xn-1,1 = Xn-1,M+3(M-1) 

By substituting this result into the previous result 
gives: Xn,1=7M+L-20 

This_means that the PSRc of device n,1 must be 
programmed with the value which is equal to 7 
times the number of devices cascaded horizontally 
plus the line length minus a fixed constant of 20. 
This rule may be extended to cascades containing 
any number of devices providing that the maximum 
length of the delay lines is not exceeded. N.B. the 
setting of PSRc of the right most device in the first 
row is arbitrary, but is normally adjusted to deskew 
the output image. 

For example consider the problem of filtering a 512 
pixel wide image with a 9x9 filter kernel. This could 
be achieved by cascading six IMS A 11 Os into a 
cascade containing three rows of two devices. 
Typical delays which would have to be pro­
grammed into the devices are given in table 5. 

Device 1,1 Device 1,2 Device2,1 Device2,2 Device 3,1 Device3,2 
PSRa 519 519 
PSRb 519 519 
PSRc 3 0 

8. Cascading IMSA110s to perform multi pass 
filtering operations 

In addition to being able to cascade IMSA 11 Os for 
increased filter size it is also possible to cascade 
devices to perform multi pass filtering operations. 
For example consider the problem of edge detec­
tion in a noisy image. This task is often performed 
in two stages the first is low pass filtering to reduce 
the amount of noise and the second is the edge 
detection operation. This complete task may be 
performed by cascading two IMSA 11 Os as shown 
in Figure 7. Note that only an eight bit window of 
CASout from the first device is connected to PSRin 
of the second device. 
To configure such a cascade to perform the doubie 
filtering operation each device is considered sep­
arately and the delays are setup as described in 
section 2. For the example under consideration the 
coefficients of the first device are configured to 
perform the low pass filter operation while the 
coefficients of the second device are configured as 
an edge detector. 
This technique of multi pass filtering can obviously 
be extended to include more devices or it may be 
combined with the cascading techniques dis­
cussed in earlier sections to allow multi pass filter-
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519 
519 
506 

519 519 519 
519 519 519 
503 506 503 

ing with larger filter sizes. 
It is possible to use a single device for multi pass 
filtering. This technique works by feeding back 
alternate cascade outputs to PSRin, and making 
use of bank swapping. Figure 8 shows the basic 
setup. The disadvantages of this method are: 

1 The maximum data throughput is halved. 
2 The maximum filter size is reduced. 
3 External logic is required. 

To setup such a system requires careful programm­
ing to achieve the desired result. For example 
consider the problem of passing the local av~ 
eraging filter kernel shown below over an image 
twice. 

I I I I 
It may be shown using similar techniques to those 
presented earlier that the delays to be pro­
grammed into the programmable shift registers a 
and bare: 2L+7 
This value is equal to twice the line length plus the 
length of the MAC pipelines. N.B.Iogical reasoning 
would have lead to the same result by considering 
that the data rate within the device is equal to twice 
the rate of the applied image data. 
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Figure 7 · Cascading IMSA 11 Os for Multi-pass Filtering 
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Figure 8 : Multi-pass Filtering by using Feedback 
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To create the correct filter kernels it is very import­
ant that the coefficient registers are programmed 
correctly. Each filter is programmed into one of the 
two coefficient banks, and every odd coefficient 
must be set to zero otherwise the two interleaved 
data streams will corrupt each other. The table 
below shows how the coefficients should be pro­
grammed for the example under consideration. 

a 1 0 1 0 1 0 0 
CRO b 1 0 1 0 1 0 0 

c 1 0 1 0 1 0 0 

a 1 0 1 0 1 0 0 
CR1 b 1 0 1 0 1 0 0 

c 1 0 1 0 1 0 0 

PSRIN 

~-J-r 
1D 

PSROUT 

4 L+7 J-r 
4 L+ 7 _}--

CAS IN CASOUT 
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8 
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9. CASCADING IMS A110s FOR INCREASED 
DATA PRECISION 

In some high precision applications the 8 bit word 
length of a single IMSA110 is not sufficient. This 
section presents three techniques to overcome this 
problem. The first two combine IMSA110s with 
simple external hardware, the last one requires no 
external hardware but does place certain restric­
tions on the coefficients and the data. 

9.1 Increasing data precision with an external 
22 bit adder 

The first technique makes use of an external 22 bit 
adder in the configuration shown in Figure 9. 

At the input each 16 bit input value is split into two 
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8 bit words one containing the least significant 8 
bits and the other containing the most significant 8 
bits. Each of these 8 bit data streams is fed into an 
IMSA110. If the data is unsigned then both of the 
devices must be set to unsigned data operation. 
However, if the data is signed then in order to 
correctly process the data and preserve the sign 
information it is necessary for the least significant 
byte to be processed as unsigned data and the 
most significant byte to be processed as signed 
data (see Figure 9). This may be easily achieved 
by setting or clearing bit 2 of the SCR register in 
each IMSA 110 as appropriate. The 22 bit partial 
results from each device are combined by making 
use of a 22 bit adder. This adder forms the sum of 
the top 14 bits (sign extended to 22 bits if signed 
data is being used) of the least significant partial 
result and the full 22 bits of the most significant 
partial result to give the upper 22 bits of the final 
result. This is combined with the lower 8 bits of the 
least significant partial result to give the complete 
30 bit result. See Figure 10 for a graphical repre­
sentation of this. 

Note that for signed data, the least significant par­
tial result must be signed extended to 30 bits as 
shown in Figure 9. The sign extension is easily 
achieved by connecting the most significant bit of 
the least significant partial result to the most signi­
ficant 8 bits of the adder input. 

This technique may be extended to give data pre­
cisions above 16 bits, however, such precisions are 
rarely used in practice. Sometimes it may be 
desired to combine a bigger filter size, as discussed 
in earlier sections, with increased precision. Such 
a system is simple to create and just involves 
replacing each IMSA 11 0 in Figure 9 with the appro­
priate cascade of devices. Similarly multi pass 
filtering, as discussed in section 8, may be com­
bined with increased precision. This is achieved by 

Figure 10 : Calculation of the Final Output 

30 Bits 
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selecting a 16 bit window from the output of the 
system shown in Figure 9 and feeding this into the 
input of another high precision stage. 

9.2 Increasing data precision with an external 
delay line 
As an alternative to using an external adder it is 
possible to make use of the cascade adder built 
into each IMSA 110 and an external delay line (of 
length Ds) as shown in Figure 11: 

The rules discussed earlier in this section about 
signed data apply equally to this configuration. This 
means that if signed data was being processed 
then the left and right hand devices in the diagram 
would have to be configured for unsigned and 
signed operation respectively. Also CASin of device 
n would have to be sign extended to 22 bits as 
described in section 9.1. The one other consider­
ation when increasing the data precision in this way 
is the number delays required in the programmable 
shift registers of each device. 

Figure 9 : Cascade of IMSA 11 Os for Increased 
Data Precision (signed data) 

30 

A 11 0-09.EPS 

LS Partial Result 

MS partial Result 

Final Output 
A110-10.EPS 
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Figure 11 : Alternative Cascade of IMSA 11 Os for Increased Data Precision (unsigned data) 

16 MSB 

Obviously the setings of PSRa and PSRb are not 
affected by the presence of another device and are 
setup as described in section 2. The setting of 
PSRc for each device however is important, and 
incorrect setting will result in erroneous calculation 
of the most significant 22 bits of the result. 
Assuming that the delay in the PSRc of device n-1 
is Xn-1 and that the delay in PSRc of device n is Xn, 
it is desired to calculate the relationship between 
these delays for correct combination of the partial 
results. Consider an item of data when it reaches 
device n-1. The delay before the component due 
to this data, flowing via the reference path In device 
n-1, reaches the cascade adder of device n is: 

Dn-1 = 1+(Xn-t+1)+3+DR+Ds = Dn-1 = 41+Xn 

Similarly the delay before the component due to 
this data, flowing via the reference path in device 
n, reaches the cascade adder of device n is: 

Dn = 1 +(Xn+ 1 )+3+DR = Dn = 35+Xn 

Now for the data to be correctly aligned at the 
cascade adder of device n the delay along each 
path must be the same. Hence: 

Dn-t-Dn = 0 
41+Xn-t-35-Xn = 0 

Xn = Xn-1+6 

This means that the PSRc of device n must be 
programmed with the value which is in PSRc of 
device n-1 plus a fixed constant of 6. 

Obviously this technique of increasing data preci­
sion may be extended beyond 16 bits, or may be 
combined with other cascading techniques to give 

PSROUT 

CASOUT 

output 

A110·11.EPS 

larger filter sizes etc 

9.3 Increasing data precision with no external 
hardware 

If the data and coefficients are such that only 22 
bits or less are required to represent the result then 
it is possible to increase the data precision with no 
external hardware. The connections required are 
similar to those shown in Figure 11. However, the 
6 stage delay must be removed and the full 22 bits 
of CASout from the first device must be connected 
to CASin of the second device. To correctly sum the 
two contributions of the result, it is necessary to left 
shift the MAC output of the second device 8 places 
to the left. This shift is easily performed using the 
shifter in the second device, however, care must be 
taken to ensure that overflow does not occur. If 
such an overflow does occur then it will not be 
detected. 

10. CASCADING IMSA110s FOR INCREASED 
COEFFICIENT PRECISION 

Section 9 described three different techniques for 
increasing data precision by cascading IMSA 11 Os. 
In this section th-ree very similar techniques are 
presented for increasing coefficient precision. 

10.1 Increasing coefficient precision with an 
external 22 bit adder 

The first method makes use of an external 22 bit 
adder as shown in Figure 12. At the input each 8 

11/13 
~ ~~~@m~~~~~ --------------

289 



CASCADING IMSA110s 

bit value is fed to PSRin of both the IMS A 11 Os. The 
device at the top of the diagram is programmed with 
the least significant 8 bits of the coefficients and the 
device at the bottom is programmed with the most 
significant 8 bits of the coefficients. If the coeffi­
cients are unsigned then both of the devices must 
be set to unsigned coefficient operation. However, 
for signed coefficients, in order to correctly process 
the data and preserve the sign information it is 
necessary for unsigned and signed coefficient 
operation to be set in the top and bottom devices 
respectively (see Figure 12). This may be easily 
achieved by setting or clearing bit 3 of the SCR 
register in each IMS A 110 as appropriate. Also, sign 
extension must be performed as described in sec­
tion 9.1. The 22 bit partial results are then combined 
in exactly the same fashion as described in sec­
tion 9. 
As discussed for increased data precision this tech­
nique may be extended to more than 16 bits of 
accuracy if required, or may be adapted to make 
use of increased filter sizes etc. For very high 
precision systems increased coefficient and data 
precision may be combined to give very accurate 
results. 

10.2 Increasing coefficient precision with an 
external delay line 
The second method makes use of a delay line in a 
very similar configuration to that discussed in the 
previous section. A diagram showing the setup may 

be seen in Figure 13. 

The rules discussed earlier in this section about 
signed coefficients still apply in this configuration. 
Hence if signed coefficients are required then the 
left and right hand devices in the diagram have to 
be configured for unsigned and signed coefficient 
operation respectively and the sign must be ex­
tended appropriately. The calculation of the setting 
of PSRc for each device may be calculated in the 
same manner as described in the previous section. 
When the calculation is performed the following 
relationship is developed: 

subn = Xn-1+4 

Figure 12: Cascade of IMSA11 Os for Increased 
Coefficient Precision 
(signed coefficient) 
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Figure 13 :Alternative Cascade of IMSA 11 Os for Increased Coefficient Precision (unsigned coeffici~nts) 
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This means that the PSRc of device n must be 
programmed with the value which is in PSRc of 
device n-1 plus a fixed constant of 4. 

Obviously this technique may be extended for more 
precision or adapted using information presented 
in earlier sections to give increased filter size, multi 
pass filtering etc. 

10.3 Increasing coefficient precision with no 
external hardware 

It was discussed in section 9 how to achieve in­
creased data precision without using any external 
hardware. Since exactly the same technique may 
be applied to give increased coefficient precision 

CASCADING IMSA 11 Os 

duplicate details are not given here. 

11. SUMMARY 

This document has attempted to describe some of 
the many ways in which IMSA 11 Os may be cas­
caded to yield even higher performance. Obviously 
it has not been possible to discuss every possible 
configuration but hopefully the examples dis­
cussed should have provided both an insight into 
the extensive capabilities of these devices when 
cascaded, and some simple rules to allow easy 
setting up of some of the mt;~st common forms of 
cascades. 
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I. INTRODUCTION 

The IMSA110 consists of a high performance con­
figurable array of multiply-accumulators (420 
MOPs), three programmable length 1120 stage 
shift registers and a versatile backend post pro­
cessing unit. All these features are controlled from 
a microprocessor interface. The comprehensive 
on-chip facilities ensure that a single device is 
capable of dealing with many tasks commonly 
found in the fields of signal and image processing. 

scribes by example some of tlie uses of the back­
end post processor. 

The backend post processing unit gives the 
IMSA 110 a high degree of flexiblility, especially for 
image processing applications. This document de-

AN548/0792 

Unless specified otherwise all the examples con­
sidered will be based around image processing 
applications with 8 bits per pixel being used to 
represent the image data. 

2. DESCRIPTION OF THE BACK-END POST 
PROCESSOR 

Figure 1 shows the functional blocks and intercon­
nections which are present within the backend post 
processor of the IMSA110. 
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Figure 1 : Detailed Block Diagram of the Back-end Post Processing Unit 
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This diagram can be broken down into 4 main 
sections, the input block, statistics monitior, data 
conditioning unit and output block. A brief descrip­
tion of each of these major sections is given below, 
for full details reference should be made to the data 
sheet. 

2.1 Input Block (shifter, cascade adder and 
rectifier) 

Data from the MAC array encounters the shifter 
when it enters the input block. The shifter is capable 
of up to 8 arithmetic shifts in either direction. When 
shifting left it is possible for an overflow to occur. 
Such an overflow is not detected by the device, 
hence it is left to the user to ensure that uninten­
tional overflows do not occur. When shifting right 
rounding is applied to improve the accuracy of the 
device. The magnitude and direction of the shift are 
controlled by BCR0[5 .. 1] as described in the data 
sheet. 
The output data from the shifter is fed into the 
cascade adder. Here it is added to both the round­
ing bit generated by the shifter and the data applied 
to either the cascade input bus or zero depending 
on the setting of BCRO[O]. Should the result of the 
22 bit signed addition be greater than 221 -1 then a 
positive overflow is generated. Similarly if the result 
is less than -222 a negative overflow is generated. 

The output from the cascade adder can be option­
ally full or half wave rectified depending on the 
setting of BCR0[7 .. 6]. The output of the rectifier 
drives the X bus. Note that when full wave rectifi­
cation is beinp used and the output of the cascade 
adder is -22 then the output from the rectifier 
remains as -221 • 

2.2 Statistics Monitor 
The statistics monitior allows the X bus to be moni­
tored for certain conditions. Four different modes 
of operation are possible and these are tabulated 
below: 

Mode BCR1[1] · BCR1[0] 
Max Register 0 1 

Min Register 0 0 

Overshoot Counter 1 1 

Undershoot Counter 1 0 

When configured to be in max register mode and 
the X bus exceeds the current threshold in the 
MMR (max/min register), then the MMR is loaded 
with the value on the X bus and the counter (OUC) 
is incremented. If the threshold is not exceeded 
then no action is taken. Thus assuming the MMR 

was initially set to -221 its value at some later time 
is the maximum value which has appeared on the 
X bus in that period, and the OUC has been in­
cremented by the number of times the threshold 
has been updated. 

If configured to be in min register mode the thre­
shold is updated and the counter incremented 
whenever the X bus is less than the current thre­
shold. Note that when operating in max/min regis­
ter mode if a positive or negative overflow occurs 
then the threshold is not updated since this could 
leave a misleading value in the MMR. 

As an overshoot counter the statistics monitor oper­
ates by incrementing the OUC every time the value 
on the X bus exceeds the threshold in the MMR or 
if a positive overflow occurs. The OUC is unsigned 
and will not wrap around, thus behaving as a 
saturating counter. Similarly when configured to be 
in undershoot counter mode the OUC is in­
cremented every time the value on the X bus is less 
than the current threshold. 

When overflows occur this is recorded in bits 22 
and 23 of the MMR. Positive overflows cause bit 22 
to be set while negative overflows cause bit 23 to 
be set. These bits may be cleared by writing to the 
MMB copy location. 

Direct access to the MMR and OUC via the micro­
processor interface is not possible. Instead the 
reading and writing of these registers is_performed 
by making use of the MMB, CMM, OUB and COU 
registers. Full details may be found in the data 
sheet. 

2.3 Data Conditioning Unit (data transformation 
unit and data normaliser) 

2.3.1. DATA TRANSFORMATION UNIT 

The data transformation unit contains a prescaler, 
an under/over select detector, a look up table and 
a byte selector. It may be used on its own to provide 
arbitrary data mappings of an 8 bit segment of the 
X bus, or in conjunction with the data normaliser to 
implement sophisticated dynamic range com­
pression functions. 

The prescaler allows an 8 bit field to be selected 
from anywhere within the 22 bits of the X bus. This 
8 bit field is used as an address to the LUT. The 
way in which the address is treated is defined in 
SCR[6]. If this bit is set to zero then the address is 
signed and runs from -128 to 127. Alternatively if 
this bit is set to one then the address is unsigned 
and runs from 0 to 255. The over/under select 
detector monitors the operaton of the prescaler to 
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ensure that all the significant bits and the sign of 
the X bus are included within the 8 bit field. If this 
is not the case then an overselect or underselect 
signal is generated depending on whether the X 
bus is positive or negative respectively. 
The LUT consists of sixty four 32 bit words. In 
addition there are a further two 32 bit locations 
known as the upper and lower saturation registers 
(USR, LSR). The most significant 6 bits of the 
address field are used to select one of the 32 bit 
registers in the LUT. This 32 bit output is known as 
theY bus. The least significant 2 bits of the address 
field are then used to control a byte select on the 
output. Thus the LUT may be used to provide 
arbitrary Bbit - Bbit data transformations. 
Positive overflows on the X bus or overselects in 
the prescaler cause the LUT to access the USR 
overriding the address supplied by the prescaler. 
Similarly negative overflows and underselects 
cause the LUT to access the LSR. When such 
conditions occur the byte select control is also 
overridden thus causing the most significant byte 
(byte 3) of the appropriate saturation register to 
appear on the byte wide output of the data trans­
formation unit. 
The LUT is programmed via the memory interface. 
The addressing for the LUT corresponds directly to 
the 8 bit field, assuming that the byte selector is 
being used. To enable access to the LUT, USR and 
LSR from the microprocessor interface the LUT 
access control bit ACR[1] must be set to zero. This 
forces theY bus to zero and causes the normaliser 
to be controlled by BCR3[7 .. 3] regardless of the 
setting of the dynamic normalisation bit. Once the 
LUT has been programmed the LUT access control 
bit may be reset to one thus allowing the LUT to be 
used in the data transformation unit. 

2.3.2 DATA NORMALISER 
The data normaliser contains a shifter followed by 
a zero data unit. The shifter is capable of right shifts 
of up to 14 bits and left shifts of up to 2 bits. Any 
amount of shift outside this range invokes the zero 
data unit which zeros the output of the data nor­
maliser. The amount of shift is specified by one of 
two 5 bit sources. These are either BCR3[7 .. 3] or 
bits 26 to 22 of the Y bus. The source currently 
selected is determined by the setting of BCR3[2]. 

2.4 Output Unit (output adder and output 
multiplexers) 

2.4.1 OUTPUT ADDER 
The output adder takes one of its inputs from the 
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data normaliser (including the rounding bit). The 
other input is either the least significant 22 bits of 
the Y bus or zero depending on the setting of 
BCR3[1] 

2.4.2 OUTPUT MULTIPLEXERS 

The output multiplexers allow the selected byte 
from the LUT to be optionally selected to drive 
either the most or least significant 8 bits of the 
cascade output pins. This feature is controlled by 
the setting of BCR2[5 .. 6]. Any cascade output pins 
not being driven by the selected byte are driven by 
the appropriate bits of the output adder. 

3. USING THE BACKEND OF THE IMS A110s 

3.1 Local area averaging 
Local averaging is the one of the simplest image 
filtering operations. A typical local averaging filter 
may be seen in Figure 2. Although this filter looks 
very simple to implement on IMSA 11 Os there is one 
slight problem and that is how to achieve the divide 
by nine operation. The operation is necessary to 
ensure that the output image data requires the 
same number of bits to represent it as the input 
data. 

Figure 2 : Local Averaging Filter Kernel 
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The IMSA 11 0 is capable of dividing by integer 

powers of two. Using this capability the l could be 
9 

replaced with ~· Although this would adequately 

restrict the magnitude of the output data a signifi­
cant loss of dynamic range could occur. A better 

solution is to generate an approximation to l in the 
9 

form shown below. Where x represents the coeffi­
cient and y the number of righ shift below : 

X 1 
-:::;:-

2y 9 

It may be simply shown that the closest approxima­
tion which may be used with IMS A110s is: 

X= 57 
Y=9 
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By using these values the local averaging kernel to 
be programmed into the IMSA 11 0 is as shown 
below: 

Figure 3 : Modified Local Averaging Filter Kernel 

57 57 57 

57 57 57 

57 57 57 
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The division by 29 can't be performed by the shifter 
in the input block since it is only capable of right 
shifting up to 8 places. The shifter in the normaliser 
however is capable of right shifting the required 
nine places. 

To configure an IMSA110 so that it performs the 
local averaging operation used in the above 
example the following values would have to be 
programmed into the coefficient and control regis­
ters: 

Coeff Register 0 1 2 3 4 5 6 

CROa 57 57 57 0 0 0 0 

CROb 57 57 57 0 0 0 0 

CROc 57 57 57 0 0 0 0 

Registers Data msb •• lsb 

SCR 0 X X 1 1 1 X 0 

ACR 0 0 0 0 0 0 X 0 

BCRO X X 0 0 0 0 0 1 

BCR1 0 0 0 0 0 0 X X 

BCR2 0 0 0 X X X X X 

BCR3 0 1 0 0 1 0 0 0 

x : indicates don't care. 

Exactly the same technique may be applied to 
other filter kernels which require an awkward divi­
sion. For example the edge enhancement oper­
ation shown in Figure 4 requires a division by 5 
operation. A modified version of the kernel which 
may be easily implemented is shown below. 

Figure 4 : Edge Enhancement Filter Kernel 
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Figure 5 : Modified Edge Enhancement Filter 
Kernel 
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3.2 Histogram equalization 

Histogram equalization is one example of the wider 
field of histogram modification [1]. All such oper­
ations manipulate the grey levels within an image 
to generate a new image with a modified grey level 
histogram. The histogram equalization technique 
attempts to manipulate the grey levels within an 
image so that an even spread is obtained across 
the entire range of intensities. Details of the tech­
nique are widely available in the technical press [1] 
so an in depth discussion will not be provided here. 

There are two distinct stages in performing a histo­
gram equalization the second of which IMSA110s 
are capable of performing. The first stage is the 
calculation of the transfer function which maps the 
original image onto the histogram equalized image. 
The main computational cost involved in this stage 
is the determination of the original histogram. The 
second stage requires the implementation of the 
transfer function to map the grey levels in the input 
image to the equalized grey levels in the output 
image. 

The transfer function is implemented by making 
use of the arbitrary 8bit-8bit mapping ability of the 
LUT present within the IMSA 110. The offset of each 
location in the LUT may be regarded as one of the 
original grey levels and the value programmed into 
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that location is the transformed grey level after 
equalization. 
For example suppose that it was desired to use an 
IMSA 110 to perform a histogram equalization on 8 
-bit image data applied to the cascade input port 
with the MAC coefficients programmed to zero. The 
table below shows the values which would have to 
be programmed into the main control registers. The 
output data would appear on the lower 8 bits of the 
cascade output port. 

Register Data msb .. lsb 

SCR 0 1 X 1 X X X 

ACR 0 0 0 0 0 0 A 

BCRO X X X X X X X 

BCR1 0 0 0 0 0 0 X 

BCR2 0 1 0 0 0 0 0 

BCR3 1 0 0 0 0 0 0 

LUTn D D D D D D D 

x: lnd1cates don't care. 
A: Set to 0 to program LUT, set to 1 to allow IMSA 110 LUT ac­
cess. 
D :Program with the mapping n =o Dl7 .. 0]. 

X 

X 

0 
X 

0 

0 
D 

By modifying the transfer function programmed into 
the LUT many other operations are possible includ­
ing thresholding and image contouring which are 
described in sections 3.3 and 3.7 respectively. 

3.3 Edge detection and enhancement 

3.3.1 EDGE DETECTION 
Edge detection is a very important image process­
ing operation since it is often the first stage in 
feature recognition. For example consider the hori­
zontal edge detector shown in Figure 6. This filter 
is actually the y component of the Sobel operator. 
The output (H(x,y)) from the filter when convolved 
with an image is a measure of the change of 
intensity in the y direction at each point. 

Figure 6 : Y Component of the Sobel Operator 

- 1 -2 - 1 

0 0 0 

1 2 1 

A110·06.EPS 

The output at any given point may be positive or 
negative depending on the direction of the intensity 
gradient vector at that location. Often when using 
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such a filter to detect vertical edges only the mag­
nitude of the gradient vector is of interest (i.e. its 
direction is irrelevant). The results may be modified 
to simply indicate the magnitude by processing the 
output as shown below. 

F[x,y]=IH(x,y)l 

The modulus operation is an ideal example of the 
use of full wave rectification. The tables below show 
the configuration of the coefficient and control reg­
isters necessary to calculate IH(x,y)l. 

· Coeff Register 0 1 2 3 4 5 6 
CROa -1 -2 -1 0 0 0 0 

CROb 0 0 0 0 0 0 0 

CROc 1 2 1 0 0 0 0 

Registers Data msb .. lsb 

SCR 0 X X 1 0 1 X 0 

ACR 0 0 0 0 0 0 X 0 

BCRO 1 0 0 0 0 1 0 1 

BCR1 0 0 0 0 0 0 X X 

BCR2 0 0 0 X X X X X 

BCR3 0 0 0 0 0 0 0 0 

x : Indicates don't care. 

Typically orice an edge detection operator has 
been convolved with an image it is necessary to 
make some sort of decision based on the magni­
tude as to whether an edge exists at each point of 
the output. The method usually used is known as 
thresholding [1]. 

· The threshold operation involves mapping all 
points with a grey level greater than a given thre­
shold to one value (typically 255), and all other 
points to another value (typically 0). The lookup 
table as described in section 3.2 provides the ability 
to perform just such an arbitrary mapping. By mod­
ifying the control registers presented above it is 
possible to do not only the edge detection operation 
and the full wave rectification, but also to apply an 
arbitrary threshold all within a single device. The 
updated table of control registers is shown below: 

Registers Data msb .. lsb 

SCR 0 1 X 1 0 1 X 0 
ACR · 0 0 0 0 0 0 A 0 

BCRO 1 0 0 0 0 1 0 1 
BCR1 0 0 0 0 0 0 X X 

BCR2 0 1 0 0 0 0 0 0 
BCR3 1 0 0 0 0 0 0 0 

LUTn D D D D D D D D 

x: Indicates don't care. 
A: Set to Oto program LUT, set to Ito allow IMSA110 LUT ac­
cess. 
D : Set to 0 for n less than or equal to the threshold, set to 1 other­
WISe. 
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3.3.2 EDGE ENHANCEMENT 

Edge enhancement is often applied to images to 
either counteract blurring or to produce a sharper 
looking image which is sometimes aesthetically 
more pleasing. One filter kernel which gives an 
edge enhancement may be seen in Figure 5. When 
this filter is convolved with an image it is possible 
to generate not only valid positive image data but 
also negative values under some circumstances. 
One solution would be to apply full wave rectifica­
tion to the result however it is generally more 
acceptable if half wave rectification is applied. 

To implement such a filter on an IMSA 110 the 
coefficient and control registers would have to be 
set up as shown in the following tables. 

Coeff Register 0 1 2 3 4 5 6 
CROa 0 -13 0 0 0 0 0 
CROb -13 64 -13 0 0 0 0 
CROc 0 -13 0 0 0 0 0 

Registers Data msb •• lsb 

SCR 0 X X 1 0 1 X 0 
ACR 0 0 0 0 0 0 0 0 
BCRO 0 1 0 0 1 1 0 1 
BCR1 0 0 0 0 0 0 X X, 

BCR2 0 0 0 X X X X X 

BCR3 0 0 0 0 0 0 0 0 

x : Indicates don't care. 

3.4 Feature recognition 

By using the statistics monitor it is possible to get 
the IMSA 11 0 to see if a given pattern was present 
within an image. To enable this process to take 
place a number of things have to be done: 
• The MAC coefficients must be configured as a 

pattern detector for the pattern which is being 
searched for. If the pattern is large a number of 
devices can be cascaded [2] to achieve the re­
quired window size. 

• The statistics monitor must be configured so that 
it is in max register mode. 

• The MMR must be programmed with -221 at the 
start of the search period (typically at the start of 
a frame). 

As one or more images are processed the MMR 
register is continually updated to indicate the hig­
hest MAC output which has occured so far. When 
the pattern detector encounters the pattern that it 
is designed to search for the MAC output should 
generate a very large output which exceeds a given 
threshold. This output will be recorded in the MMR. 
By examining the MMR at the end of the search 

period (typically at the end of the frame) iUs 
possible to see if the threshold has been exceeded. 
If this is the case then it is possible to say that the 
pattern probably occurred somewhere within the 
data that was processed. The setting of the thre­
shold to achieve reliable operation requires system 
teaching using known sets of data. 

In a similar fashion it is possible to perform feature 
recognition with the statistics monitor configured as 
an overshoot counter. In this mode of operation the 
detection of the desired pattern is indicated by an 
increase in the value of the OUC (care must be 
taken to ensure that it does not saturate). The 
method of setting the threshold at which the over­
shoot counter is incremented is identical to the 
description given in the previous paragraph. Atfirst 
sight it may appear that this method enables the 
number of occurences of a given pattern to be 
counted. Unfortunately this is unlikely to be the 
case for the following reason. 

When the pattern being searched for is en­
countered it is possible for the OUC to be in­
cremented more than once. This is caused by a 
combination of uncertainty about the pattern and 
the properties of pattern detectors as decribed 
below: 
• In a typical pattern matching application the pat­

tern is rarely perfect. Degradations from the ideal 
may be caused by additive noise, distortion of the 
object, changing lighting conditions etc. To take 
this into account the threshold is normally set to 
a value which is low enough to increment the 
OUC for all likely occurences of the pattern. 

• Due to the nature of pattern detectors a large 
output is not only generated when the detector is 
coincident with the pattern but quite large out­
puts _can also be generated when it is just off 
centre. 

The combination of these two problems means that 
each occurence of the pattern could increment the 
OUC one or more times thus damaging any indica­
tion the change in OUC could give about the num­
ber of occurences of a pattern. 

3.5 Changing conditions compensation 
The front end of many automated image process­
ing systems will experience slowly changing input 
conditions. These may occur due to changing light 
levels, drifting component tolerances etc. The in­
clusion of the max/min register modes of the stat­
istics monitor allows the system to automatically 
compensate for these changes. For example con­
sider a system which uses daylight to illuminate the 

------------- ~~~~@It\~~~~ 
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field of view. As the day proceeds the output from 
the camera will change. By spending periods of 
time monitoring both the maximum and minimum 
levels in the data stream it is possible to adapt the 
system to take these changes into account. 

3.6 Binary image procesing 
A binary image is one which contains only two grey 
levels. Typically a binary image is the result of a 
thresholding operation as described in section 3.3. 
By making use of the MAC and the backend it is 
possible to implement a wide variety of different 
operations some of which are summarised below: 
• Isolated pixel removal - removal of all pixels 

which have no identical neighbour. 
• Line linking - bridging of small gaps between 

pixels. 
• Encoding according to connectivity - coding of 

pixels depending on their connectivity with re­
spect to. surrounding pixels. 

• Binary thinning including staircase elimination­
[3] [4] [5] [6] [7] 

• Feature growth -opposite of the above. 
• Conway's game of life - the oldest computer 

game known to man. 
As an example of the techniques involved isolated 
pixel removal will be examined in more detail. 
Consider a pixel with its 8 surrounding neighbours 
as shown in Figure 7. It is assumed that active and 
inactive pixels are represented by 1 and 0 respec­
tively. 

Figure 7 : A Pixel and its 8 closed neighbours 

A110-07.EPS 

If the central pixel is in the opposite state to all its 
surrounding neighbours then the value of the cen­
tral pixel must be toggled. In order to perform the 
transformation it is necessary to develop a filter 
kernel which will give a unique output for each of 
these two condition. One such kernel is shown in 
Figure 8 below: 
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Figure 8 : Filter Kernel for Isolated Pixel Removal 

1 1 1 

1 9 1 
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By programming the MAC with this kernel the 
outputs generated when the binary image is ap­
plied will range from 0 to 17 inclusive. The two 
particular cases of special interest are 8 and 9 
which correspond to a 0 surrounded by 1 s and a 1 
surrounded by Os respectively. 

To convert from the output of the MAC to a binary 
image in the original format use may be made of 
the LUT. The complete mapping for the LUT and 
the setting of the main control registers for this 
example are tabulated below: 

Coeff Register 0 1 2 3 4 5 6 
CROa 1 1 1 0 0 0 0 

CROb 1 9 1 0 0 0 0 

CROc 1 1 1 0 0 0 0 

Registers Data msb .. lsb 

SCR 0 1 X 1 1 1 X 0 

ACR 0 0 0 0 0 0 A 0 

BCRO X X 0 0 0 0 0 1 

BCR1 0 0 0 0 0 0 X X 

BCR2 0 1 0 0 0 0 0 0 

BCR3 1 0 0 0 0 0 0 0 

LUT0-7 0 0 0 0 0 0 0 0 

LUTB 0 0 0 0 0 0 0 1 

LUT9 0 0 0 0 0 0 0 0 

LUT 10-17 0 0 0 0 0 0 0 1 

x : Indicates don't care. 
A : Set to 0 to program LUT, set to 1 to allow IMS A 110 LUT ac­
cess. 

3.7 Multilevel thresholding -image contouring 
Often it is desired to highlight a number of areas 
within a single image. Providing that each of the 
areas occupies a different region of the grey scale 
then this can be achieved by multi level threshold­
ing (sometimes known as image contouring). Typi­
cally such a technique is often used in medical 
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work. For example consider an X-Ray taken of a 
patient which may well contain three very distinct 
regions: 
• Clear regions: representing bone. 
• Intermediate regions: representing major body 

organs. 
• Dark regions: representing regions where the 

X-Rays met little resistance. 
By using the LUT to provide arbitrary 8bit-8bit data 
mappings as descibed in sections 3.2 and 3.3 it is 
possible to assign each of these three regions a 
separate value. As a further enhancement external 
hardware could be used to colour each of the three 
regions. Such colouring can greatly simplify the 
comprehension of some types of image. 

3.8 Dynamic range compression 
Consider image data which requires 12 bits to 
represent each pixel. If it is desired to display such 
an image on a system which uses only 8 bits per 
pixel then some form of range compression is 
required. One solution is to discard the lower 4 bits 
of each pixel. This would leave the 8 most signifi­
cant bits for display. If however, the image was dark 
the lower 4 bits would contain a large proportion of 
the image data. To throw away the lower 4 bits in 
such a situation would almost certainly be unac­
ceptable. A better solution in this case would be to 
use the nonlinear tranformation shown in Figure 9. 
Using this transformation values between 0 and 63 
are unchanged; values between 64 and 1023 are 
mapped into the range 64 to 183 and values be­
tween 256 and 4095 are mapped into the range 
184 to 232. 

The IMSA 11 0 is capable of performing just such a 
nonlinear transformation by making use of both the 
data transformation unit and the data normaliser. 
The mode of operation which is required is known 
as dynamic normalisation, this is selected by set­
ting BCR3[2] (enable dynamic normalisation). In 
this mode the prescaler selects a 6-bit field any­
where within the X bus. This is used as an address 
to the LUT. Bits 22 to 26 of the output of the LUT 
are used to control the normaliser block so that the 
input to the normaliser is dynamically scaled. The 
output of the normaliser is then added, in the output 
adder, to the least significant 22 bits of the output 
of the LUT. 

The operation can be viewed as: 
output=(inputxscale)+affset 

where the scale is provided by bits 22 to 26 and the 
offset is provided by bits 0 to 21 of the LUT. 

To define the transformation function shown in 
Figure 9 it is necessary to carefully calculate the 
values to be placed in the LUT. The first stage in 
this calculation is deciding which slice of the X bus 
the prescaler is going to select. In this example it 
will be set so that bits 4 through to 11 are selected. 
This means that bits 6 to 11 are used as the address 
for the lookup table. Bearing this in mind it may be 
seen that in the first segment of the transfer func­
tion the LUT address is zero. Since in this segment 
the scale is 1 (0 right shifts) and the offset is 0 the 
following four bytes of data must be programmed 
into the first 32 bit location of the LUT. 

I LUTO 

BYTE 3 BYTE 2 BYTE 1 BYTE 0 
00 00 00 00 

Figure 9 : Typical Dynamic Range Compression Function 
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The second segment of the transfer function occurs 
between LUT addresses 1 to 15. In this segment 
the gradient is 1/8 (3 Right shifts). To ensure that 
the first and second segment line up correctly it is 
important to set the offset of the second segment 
to the correct value. 
It may be easily shown that in this case the offset 
is 56. Thus the data to be programmed into the 15 
LUT locations from addresses 1 to 15 is: 

BYTE3 BYTE2 BYTE 1 BYTEO 
LUT 1 00 co 00 3S 

LUTn 00 co 00 38 
LUT15 00 co 00 38 

In exactly the same manner the LUT data for the 
third and final segment of the transfer function may 
be shown to be: 

BYTES BYTE2 BYTE1 BYTEO 
LUT 16 01 80 00 AS 

LUTn 01 so 00 AS 

LUT63 01 80 00 A8 

The settings of the other main control registers to 
perform the example transform on data applied to 
the cascade input port are: 

Coeff Register 0 1 2 3 4 5 6 

CROa 0 0 0 0 0 0 0 
CROb 0 0 0 0 0 0 0 
CROc 0 0 0 0 0 0 0 

Registers Data msb •. lsb 
SCR 0 1 X 1 X X X 0 

ACR 0 0 0 0 0 0 A 0 
BCRO X X X X X X X 0 
BCR1 0 0 0 0 0 0 X X 

BCR2 0 0 0 0 0 1 0 0 
BCR3 X X X X X 1 1 0 
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x : indicates don't care. 
A : Set to 0 to program the LUT, set to 1 to allow IMS A 11 0 LUT 
access. 

4.SUMMARY 

This document has attempted to describe by 
example some of the many ways in which the 
backend post processor of the IMSA 11 0 may be 
used. It has only been possible to scratch the 
surface of a handful of applications but hopefully 
the examples discussed should have provided an 
insight into both the flexibility and capability of this 
section of the device. 
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1.1NTRODUCTION 

1.1 Thinning 

Thinning is a very important preprocessing stage 
of pattern recognition. It is a technique which ex­
tracts the basic shapes fro111 images. These shapes 
are known as skeletons. It attempts to remove all 
redundant points while maintaining the basic struc­
ture and connectivity of the original patterns. 

In [1] an algorithm is proposed and modifications 
to it are described in [2]. The final form of the 
algorithm has the advantage of being both fast, and 
suitable for parallel operation. 

1.2 The IMSA110 
The IMSA110 [3] is a single-chip reconfigurable 
and cascadable subsystem suitable for many high 
speed image and signal processing applications. 

AN549/0792 

The IMSA110 consists of a configurable array of 
multiply-accumulators, three programmable 
1120 stage shift registers, a versatile post-process­
ing unit and a microprocessor interface for configu­
ration and control purposes. 

Figure 1 shows the main processing core of the 
device. It consists of 21 multiply accumulate stages 

'arranged in three banks of seven. These may be 
configured as either a 21 stage pipeline or a 
3x7 two-dimensional window. The output from the 
MAGs is fed into the backend processing unit. It is 
this section which allows various data transforma­
tions to take place adding greatly to the flexibility of 
the overall device. The maximum data rate which 
may be applied to the inputs is 20M Hz. 

Figure 2 shows a functional block diagram of the 
backend post processing unit. Complete details 
may be found in [3]. 
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Figure 1 : IMSA 11 0 Users Model 
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Figure 2 : Detailed Block Diagram of the Back-end Post Processing Unit 
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2. THE ALGORITHM 

Consider an image lm in which every pixellm(i,j) is 
either 0 or 1. It is normal for 0 to represent the 
background and 1 to represent the foreground 
patterns. It is assumed that each pixel lm(i,j) has 
eight closest neighbours as shown in Figure 3. 

Figure 3 : A Pixel P1 and Its 8 Closest 
Neighbours 

Pg p2 p3 

Ps p1 p4 

p7 Ps Ps 
A110-03.EPS 

The output of the algorithm for any given pixel only 
depends on the value of that pixel and its eight 
nearest neighbours. This allows parallel process­
ing to be applied with the possibility of all the picture 
elements being processed simultaneously. 

The nature of the algorithm is iterative, each itera­
tion takes the image closer to the fully thinned 
result. When an iteration is performed which 
doesn't cause any change to the image then noth­
ing further can be gained by applying further itera­
tions. Each iteration is divided into two subiteration­
s which erode the pattern or patterns to be thinned 
on opposite edges. 

In the first subiteration the pixel P1 is deleted if all 
of the following criteria are satisfied: 
- 3::; B(P1)::; 6 
- A(P1) = 1 
- P2.P4.Ps = 0 
- P4.Ps.Pa = 0 
Where A(P1) is the number of 0 to 1 transitions 
around the closed path P2 .. Ps and B(P1) is the 
number of non zero neighbours of P1._ 

The second subiteration is identical to the first 
except that the last two criteria are changed to: 
- P2.P4.Pa"' 0 
- P2.Ps.Pa = 0 
It should be noted that this algorithm is not perfect. 
Some digital patterns will totally disappear. In fact 
any pattern that can be reduced to a 2 by 2 square 
will disappear entirely. A solution to this problem will 
be presented in section 4. 
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3 DISCRETE IMPLEMENTATION 

A number of methods of implementing thinning are 
available. These typically involve the use of arrays 
of processors such as the ICL DZP (See [5]). Such 
methods are expensive and physically large but do 
allow more complicated algorithms than the one 
presented in the previous section to be im­
plemented. 

A simple binary thinning unit which may be built in 
hardware is shown below. Such a unit is capable 
of implementing one subeteration of the algorithm 
described in section 2. It works by arranging for 
each of the address inputs of the PROM to corre­
spond to one of the pixels in a three pixel square 
region. By programming the PROM with the appro­
priate data, which may be calculated from the 
specified criteria, the output of the PROM gives a 
new image in which the objects should have been 
erolded. This process is repeated until no further 
erosion takes place (note .that alternate iterations 
must use alternate sets of criteria sets of criteria to 
obtain an unbiased operation). 

The performance of such a unit is considerable and 
it should be fairly !rival to proces~ ten million pixels 
per second.ln addition the unit is cascadable which 
can considerably increase the performance of a 
system. It does have a number of disadvantages 
however: 
• it is not a single chip solution, unless use is made 

of semi/full custom chip design. 
• it is inflexible. Replacing the PROM with SRAM 

would improve matters but even so the range of 
functions such a unit can perform is very limited. 

Figure 4: An Alternative Hardware 
Implementation 

512x 1 
PROM 
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4. A110 IMPLEMENTATION 

4.1. The basic implementation 
Consider the 2-D filter kernel shown below. When 
a binary image composed solely of O's and 1 's is 
applied to this kernel the output consists of num­
bers in the range of 0 to 511. Each output uniquely 
identifies the pattern of O's and 1 's which caused 
it. By feedit this output into a look up table which 
has 512 entries it is then possible to generate the 
output value for P1. The look up table must be 
programmed with the appropriate pattern of O's 
and 1 's as defined by the criteria for one of the 
subiterations. 

Figure 5 : A Kernel For Binary Thinning 

64 128 1 

32 256 2 

16 8 4 
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Unfortunately such a kernel cannot be im­
plemented on one IMSA 110. There are two reason­
s for this: 
• The LUT only contains 256 entries plus the upper 

and lower saturation registers. 
• Only coefficients between -128 and 255 mays 

be programmed into the MAC. 

. The first problem may be overcome by inverting the 
input image and programming the upper saturation 
register to 1 so that now any pattern with P1 deleted 
will give an output which is at least 256. This will 
cause an overselect to occur at the prescaler. The 
effect of this is for the LUT output to be taken from 
the USR (Upper saturation register). Thus the out­
put of the LUT will be 1 which indicates a deleted 
pixel in the inverted image convention. 

The second problem coulb be overcome by using 
two IMSA 11 Os. This is achieved by superimposing 
the two kernels below (See [4] for details about 
cascading). It would be desirable however to im­
plement each subiteration in a single device. 

Figure 6 :Twin Kernels for Binary Thinning 
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By inspection of the criteria it may be seen that if 
the coefficients are changed to the kernel shown 
below then it is still possible to produce a valid look 
up table. This occurs because although there are 
two different patterns which can give a MAC output 
of 127 the required LUT output for each is the 
same. This method allows a single IMSA 11 0 to fully 
implement one subiteration of the thinning algo­
rithm. Section 7 shows the data to be programmed 
into the IMSA 110 to implement this algorithm. 

Figure 7 : A Kernel For Single IMS A 110 
Binary Thinning 

64 127 1 

32 255 2 

16 8 4 

A110-07.EPS 

4.2. A solution to the disappearing pattern 
problem 
As mentioned in section 2 any object which thins 
down to a 2 by 2 pixel square will disappear entirely. 
This problem may be overcome by slightly modif­
ying the data in the lookup tables. 

The first subiteration attacks objects from both 
below and to the left. In order to stop 2 by 2 pixel 
regions disappearing it is necessary to stop the 
elimination of the central pixel in the image seg­
ment shown below. Note that white indicates a pixel 
which is set. o do this the date at location 1 FO in 
the first subiteration must be set to 0. 
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Figure 8 : The central pixel in this image 

A110-0B.EPS 

An identical procedure may be applied for the 
second subiteration except that in this instance the 
date at location 11 F must be set to 0. 

4,3. Monitoring the progress of the operation 
with the statistics monitor 
The completion of the thinning operation may be 
detected by using the statistics monitor in the back­
end. The procedure for doing this with a single IMS 
A110 is as follows: . 
• Set the max register MMR to 254, and configure 

the IMSA110 statistics monitor as an overshoot 
counter. 

• Zero the over shoot counter {OUC). 
• Perform the first subiteration. 
• Record the contents of the OUC register which 

now indicates the number of pixels already 
deleted at the start of the iteration. 

• Perform the second subiteration. 
• Repeat from tep 2 for the next iteration, if the 

same value is obtained in the OUC register twice 
in succession then tlie thinning operation is com­
plete since no further pixels have been deleted. 

The actual change in the overshoot count for each 
iteration may be used as an indication of the 
amount of progress being made. 

5 PERFORMANCE ASSESSMENT 

To perform a binary thinning operation on a typical 

512 pixel square image using a single IMSA110 
would take just over 13 ms for each subiteration at 
20 MHz {this neglects the time spent reconfiguring 
the look up table for the next subiteration). Thus if 
12 subiterations were required to fully thin an image 
then this would take about 156 ms. This perfor­
mance level is formidable byt mey be easily in­
creased by cascading a number of devices 
together {See [4]). For example if two devices were 
cascaded so that the first and second devices 
performed the first and second subiterations re­
spectively then each complete iteration would still 
take just over 13ms. So to apply 12 subiterations 
with this configuration would require only 78ms. 
This principle may be extended to cascades con­
taining any number.of devices (even numbers are 
preferred since no lookup table reconfiguration is 
required). If 12 devices were cascaded then the 
complete thinning operation would take only 13ms. 
In addition the screen may be sliced up with sep­
arate portions being sent to different IMSA 11 Os or 
cascades of IMSA110s for even greater perfor­
mance. 
The IMSA110 offers other advantages when built 
into a system since it is capable of performing all 
the initial image processing commonly associated 
with image recognition. 
• Preprocessing filtering. 
• Edge detection. 
• Thresholding. 
• Thinning. 
• Pattern matching. 

6 CONCLUSION 

It has been shown how the IMSA 11 0 may be used 
to provide a very high performance and expan­
dable thinning engine. This when coupled to the 
other abilities of the IMS A 1 0 make the device ideal 
as a front end processor in many image processing 
or recognition systems. 

6/8 l5fi ~itn'£~~~~ ------------
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7 IMPLEMENTATION DATA 

7.1. First subiteration 
SCR 090 sc 
ACR 092 00 
CROa 000 40 7F 01 
CROb 010 20 FF 02 
CROc 020 10 08 04 
PCRa 080 Line length +7 
PCRb 082 Line length +7 
PCRc 084 A suitable value to deskew the output image 
BCRO OAO 01 
BCR1 OA1 00 
BCR2 OA2 40 
BCR3 OA3 80 
USR OF8 00 00 00 01 
LUT 100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
1AO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
1CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
1EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
1FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

ACR 092 02 

7.2. Second subiteration 
SCR 090 sc 
ACR 092 00 
CROa 000 40 7F 01 
CROb 010 20 FF 02 
CROc 020 10 08 04 
PCRa 080 Line length +7 
PCRb 082 Line length +7 
PCRc 084 A suitable value to deskew the output image 
BCRO OAO 01 
BCR1 OA1 00 
BCR2 OA2 40 
BCR3 OA3 80 
USR OF8 00 00 00 01 
LUT 100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
1AO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
1CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
1EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
1FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

ACR 092 02 
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This application note, based around three different 
examples, gives an overview of architectures pro­
viding the motion compensation function. More 
than a collection of schematic diagrams (that would 
not fit exactly to the user's application), it is more 
an explanation of what kind of architecture can fit 
to what kind of application, what precautions must 
be taken and what kind of components can be used 
or not. 

All the architectures are based around the Sli3220 
chip developped by SGS-THOMSON microelec­
tronics that provides the motion estimation func­
tion. The chip functionnalities will not be detailed 
here (refer to the Sli3220 data sheet for more 
information ): the application note concentrates on 
the way of providing the good informations to the 
chip and not on the way of writing or reading those 
informations into the chip. For that purpose the 
main part of the note is dedicated to the frame 
buffer choice and managing. 

I - QUICK FEED-BACK ON COMPRESSION 
TECHNIQUES 

Compression techniques trying to reduce the 
amount of information for the transmission or the 
storage of a moving picture, are mainly based 
around the property of pixel's correlation for natural 
images. 

The first technique exploits the spatial correlation 
of pixels: a pixel in the image has a very high 
probability of having a value very close to its neigh­
bours average value. The most popular tool using 
this property is the Discrete Cosine Transform 
which transforms a block of pixels from the original 
picture into a block of non correlated coefficients. 
Each coefficient represents a spatial frequency of 
the original block (the top left one being the average 
value). Due to high spatial correlation between 
pixels, for most of the natural images the highest 
frequency coefficients are of little significance and 
hence can be reduced or suppressed without alter­
ing the picture quality. This is the role of the quan­
tisation block after the OCT. 

The second technique exploits the temporal corre-
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lation between a pixel in an image and the pixel 
being at the same position in the previous image. 
Except when an image and the previous one are 
totally different (sequence changes), the areas 
changing from an image to the following are very 
rare for natural moving pictures. Thus, if a predic­
tion of the current image is made, by copying the 
previous one, the difference between both will most 
often be close to zero : the non-zero differences 
represent the moving parts of the picture and are 
the only information needed to describe the new 
image from the previous one. 

In order to increase the efficiency of the prediction, 
the motion estimation technique is used that as­
sociates to a sub-block of the image (also called 
reference block) a motion vector giving the relative 
position of the most similar block in the previous 
image: this block is used as a prediction block. A 
motion compensation is implemented. 

Illustration of the motion compensation technique: 

3322 
2 2 
2 2 

reference block 

3322 
4433 
4433 

area of the previous picture 
centered around the 

reference block position 

If the prediction is made without motion compensa­
tion, the predicted block is: 

32 
43 

and the difference from the current block is: 
1 0 
21 

Using motion estimation will deliver a motion vector 
equal to + 1 in the horizontal direction (East) and -1 
in the vertical direction (North). The prediction block 
is. then the same than the reference one and the 
difference is zero: the only information needed to 
code the reference block is the motion vector. 

The previously described compression techniques 
lead to the typical moving picture coder scheme 
shown in Figure 1. This application note only con­
centrates on the potential implementations of mo­
tion compensation. 
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Figure 1·: Typical Moving Picture Coder Scheme 

Reference block 

II- MOTION COMPENSATION 

The motion compensation function is organised 
around three main functional blocks: a frame buffer 
for storage of the previous image, a motion estima­
tor for research of the best motion vector and a 
predictor able to deliver to the coder the predicted 
block pointed to by the motion vector. 

11.1 Motion estimation 

One of the main devices, needing a lot of compu­

Figure 2 

:-· >: : : . ·:: . . ·: . . . ... . ·.·.;.<<·. :-:-:-:-:····. •' .. ·.:.:-:-.-:-:-:-:-:-: <: 
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. . : : : : . : : . : . ~ : : . ; . ; . ; : . : . ; ; . : : : ~ . ~ : : : : .. : . : ..... . 

::·:: :.::::.::: .... · ..... . 

Search window 
(image N-1) 

Search Window 
3220-01.EPS 

tation, is the motion estimator whose role is to find 
in a limited area of the previous image centered 
around the reference block position and called 
search window, the position of the block most 
similar to the reference block: this position is called 
the motion vector (see Figure 2). 

In most cases, the picture is defined by the three 
components Y (luminance) U and V (chrominance), 
but the motion estimation is only made on the 
luminance component, the same resulting motion 
vector being applied to all componeiiis. 

Reference block 
(imageN) 

motion vector= -i in vertical direction, +i in horizontal direction 3220·02.EPS 
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The comparison of the reference block with each 
possible block of the search window needs a lot of 
computation. An expression for the distance be­
tween the reference block and a predicted block is : 

D(di,dj) =I, I, [Ref(m,n) - Pred(m+di,n+dj)J2 
m n 

where: 

Ref(m,n) = reference block pixel 
Pred(m+di,n+dj) = predictor'pixel with displace­
ment di in vertical and dj in-horizontal directions. 

Computing a distance between two blocks 8x8 for 
instance needs 64 substractions, 64 multiplications 
and 64 accumulations. For a -8 to +7 possible 
displacement in both directions (horizontal and ver­
tical), that is 256 possi_ble predicted blocks, and 
implies 256 x 64 x 3 = 49152 operations to do during 
the 64 cycles of the reference block before being 
able to extract a motion vector. 

The STi3220 motion estimation chip, devel­
opped by SGS-THOMSON, allows to find a mo­
tion vector in the range -8 to +7 in both direc­
tions, for reference block sizes of 8 x 4n (from 

Figure 3: Search Window Input 

1 dummy row 

8x4 to 8x32) or 16 x 4n (from 16x4 to 16x16). 

The formula used for computing the distance be­
tween the reference block and a candidate block of 
the search window is the Mean Absolute Error 
criterion defined by: 

D(di,dj) =I, I, IRef(m,n) - Pred(m+di,n+dj)l. 
m n 

This distance is also called distortion. 

The motion vector is the coordinates of the 
minimum distortion. 

In order to compute the distortions, the Sl13220 
chip must be loaded with the search window and 
the reference block. For that purpose the chip has 
4 input buses : one input for the reference block (X 
bus), one for the search window band above the 
reference block band (A bus), one for the search 
window band corresponding to the reference block 
one (8 bus) and one input for the lower search 
window band (C bus). 

Loading the chip is made column by column from 
top to bottom and left to right, a pixel being input 
on each of the four buses at each clock cycle. 

15 columns 
~: ... n columns 

~: 
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Loading the chip is done in two phases (see fig­
ure 2.2): 
- Initialisation sequence: Input of a dummy column 

of the search window used to initialise the internal 
pipeline architecture of lhe chip, followed by the 
15 left-most columns of the search window. Dur­
ing that phase, the reference block input (X) is 
insignificant. If the reference block is a-pixel high 
the initialisation phase costs Bx16=128 cycles. If 
the height is 16 pixels, the initialisation phase is 
256 cycles long. 

- Block sequence: During this phase the reference 
block and the end of the search window are input 
simultaneously into the chip. The last column of 
the reference block will exactly correspond to the 
last column of the search window. The chip will 
deliver the motion vector 38 (Bx4n blocks) or 46 
(16x4n blocks) cycles after the last pixel of the 
reference block, on a specific 8-bit bus lOB. 

fashion, then the chip always contains the leftmost 
part of the search window that will be used for the 
next reference block and that is a subset of the 
currElnt reference block's search window. That 
means that after the very first initialisation phase, 
a pipeline mode can be implemented: it is only 
mandatory to input the right part of the search 
window with the reference block; the left -most part 
being already in the chip (see Figure 4). 
Chapters Ill and IV show exa!"Tlples of pipeline 
mode usage with two block sizes (BxB and 16x16). 
For motion vectors outside of the range -8 to +7, 
the search window must be cut into sub-windows 
supported by the chip (i.e. -8 to +7 max in both 
directions around the reference block size). The 
computations must be done: 
• by several chips in parallel each one dedicated 

to a particular sub search window. 

• by only one chip computing the motion vector on 
If the picture is computed in a band by band the different sub windows in several passes. 

Figure 4 : Pipeline Mode between Two Consecutive Blocks 

Search window 
for reference block N 

--~---_L___------1---------·----

~ 
: initialisation block : . . : sequence sequence : 1.~:;?:::r ::,.: ::f -,.:,J: 

.·:::· .... ···: 
Relative position of reference block 

:· .. ·.:..:._._:;: __ ... _~ 

>------------·.--~-----+------, 

:----------: i ··:~~ : ::· . 
::·~ · .. : : : ·j 
,:·.·.:: . ···) 

I:.==.=.:· -:;;; ·----------·---ll--...--....... .....:....:......,....,....__--1 

·-- ---------- -"----'-------'-------' 
~ 

already block 
in the chip sequence 

Search window 
for reference block N+ 1 
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Chapter V shows an implementation of -16 to + 15 
research using one chip. 

11.2 Prediction 
- After computation of the motion vector for the Y 

component, it is necessary to extract, for each of 
the three components, a predicted block that will 
be subtracted from the reference block for cod­
ing. There are two main ways of delivering the 
predicted blocks : 

- the first one consists in accessing directly into the 
reconstructed frame buffer (see Figure 5). This 
implies that we have enough bandwith available 
on the frame buffer ports. 
the second one, is used if the frame buffer band­
with is not sufficient and consists in storing in an 
additional RAM the search window as it is sent 
to the STi3220 and to access that RAM for de­
livery of the predicted block (see Figure 6). In 
order to be able to deliver. the U and V predicted 
blocks, their corresponding search windows 
should also be sent to the additional RAM (while 
the STi3220 chip is disabled: EN input = 1 ). This 
implies that the STi3220 needs to be run at a 
higher speed. 
An alternative could be to split the frame buffer 
into two fields : one for Y and another for U and 
V. Y frame buffer is read out for search window 
delivery (prediction on additional RAM) while UN 
frame buffer is accessed for prediction output 
(see Figure 7). 

Figure 5 : Prediction access into the frame memory 

reference 

b[ 
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X 

A ...... 

8 ...... 

c ...... 

STr3220 

11.3 Frame buffer 

The frame buffer is shared by several resources: 

a) write of the reconstructed picture after 
decoding (necessary on Y, U and V 
components). As the decoder works on blocks 
of the image (for OCT) the write will be made 
in a block by block fashion. If the blocks are 
delivered by the decoder in a column order they 
can be directly used in the way they have been 
stored for the search window delivery. 

b) read of the search window for motion 
estimation (only necessary on Y component). 
Reading the search window can be made in 
two ways: 

- accessing 3 consecutive times to the frame buffer 
during one input cycle in order to deliver a pixel 
for the upper, middle and lower band of search 
window (see Figure 8). IfF is the frequency of the 
input samples delivered by the line to block scan­
ning, than the frame memory must be read at 3xF 
for search window access. 

- accessing only one time to the frame buffer (one 
block after each other) and using two delay lines 
in order to provide the STi3220 with the three 
necessary search window bands (see Figure 9). 
The lower band of the search window is directly 
the output of the frame buffer, the middle band is 
the output of the first delay line and the upper 
band is the output of the second delay line. The 
delay line length is one line of block. 

Frame 

Buffer 

read address 

rate adaptation 

Y, U and V predrcted blocks 

Coder 3220·05.EPS 



STi3220 MOTION ESTIMATION PROCESSOR CODEC 

F.igure 6 : Predictor Access into Additionnal Ram 
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Figure 7 : Predictor Access into Additionnal RAM (Y) and Frame Buffer (U and V) 
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c) If the bandwith is sufficient, the frame buffer 
may be also accessed for delivery of the 
predicted Y, U and V blocks. If the bandwith is 
not high enough, the prediction cannot be 
made directly into the frame buffer and will be 
realised in an additional RAM (as explained in 
paragraph 11.2). 

The three previous parameters (frame reconstruc­
tion, search window and prediction) are the prin­
ciple ones that will be taken into account in this 
note, but depending on the application (frame size, 
Y U V format ... ) they can share the frame buffer 

with other resources. For instance an are? of the 
memory can be reserved for implementation of the 
line to block conversion. Or the user may want to 
visualise the content of the frame buffer: in that 
case at least two frame stores are necessary, one 
for reconstruction, the other for visualisation. No 
doubt that other resources of the code'r would 
require memory space and that the frame memory 
(that is not only used for frame) could provide free 
areas to use. The main problem will rapidly be the 
limitation on the memory access times that forces 
to duplicate the number of memory chips. 

Figure 8 : 3 Accesses in Frame Buffer for Search Window 
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Figure 9 : Delay Lines for Search Window Delivery 
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Ill - EXAMPLE 1 : 720 X 576 X 25 HZ PICTURE, 
8X8 BLOCKS, -8 TO +7 SEARCH WINDOW 

as defined by the CCIR 601 recommendation, i.e. : 
- picture size: 720 x 576 pixels. The example con­

siders a 25 pictures per second application. 
Ill - 1 Introduction 

The first example of a motion compensation im­
plementation is based around a TV picture format 
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- 4.2.2. format : Picture defined by the three 8-bit 
components Y (luminance) U and V (chromin­
ance). In 4.2.2. format each pixel is described by 
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two components : one sample of Y and one 
sample of U or V. The U and V components are 
sub-sampled (2:1) in the horizontal direction. 

Note : If the picture is originally divided between 
two interlaced frames, it must be used in a non 
interlaced form for efficient motion estimation. 

The study will concentrate .on the motion compen­
sation function considering that the samples are 
delivered in input in an 8 by 8 block's form (scanned 
column by column from top to bottom and from left 
to right) with an alternance of one block of Y and 
one block of U or V. After the computation delay, 
the motion compensation function delivers for the 
coder a predicted block corresponding to the input 
reference block and waits back from the decoder 
for the reconstructed block. 

The study is made throught two architectures 
choices: 
- the first one is the simplest one. It allows to point 

out some of the key points of such an application 
: frame memory choice, delay lines realisation, 
frame memory organisation and predictor ac­
cess. The result is a frame address generator 
easy to realise but a solution that implies the use 
of very fast memories. 

- the second one is a solution where the use of the 
same amount of frame memory is more opti­
mised and the number of external components is 
reduced. On the other hand, the address gener­
ator is much more complicated to realise. 

The reader who doesn't want to follow the different 
steps of the study and enter into details can directly 
refer to the architectures block diagrams in Fig­
ure 10 and 14 and jump to the conclusion para­
graph 111.4. 

111-2 First architecture proposal 

a) Frame memory choice 

Pixel rate: 720 x 576 x 25 = 10.368 Mpixel/s. Let's 
name "f" that frequency. With two components per 
pixel, the input byte frequency is 2f = 20.736 
Mbytes!s. 

As the motion estimation is only made on the Y 
component the samples' rate on the STi3220 can 
be set to f = 1 0.368MHz. The U and V samples are 
directly sent to the coder. 

Due to the high samples' rate it seems difficult to 
read the 3 search window bands directly into the 

frame buffer at 3f speed. The solution with two 
delay lines, that allows to reduce the number of 
accesses on the frame buffer, will be kept for that 

-reason (refer to chapter 11.3 for principle). 

Frame buffer size= 720 x 576 x 2 = 414,720 x 2 = 
829,440 bytes 

Necessary bandwith on the frame buffer: 
- "2f" for the picture reconstruction (Y and UN 

components). 
- "f" for reading the search window on Y compo­

nent. 
- "2f" for extracting the predicted blocks on Y and 

U or V components. 

This is a total frequency of "Sf" (roughtly SOMHz). 

This frequency is too high for a high capacity static 
RAM or for a classical dynamic RAM. 

Dual port dynamic RAM (also called video RAM) 
fit well to the application. 

serial port: fast sequential access for reconstruc­
tion or search window delivery (regular block by 
block fashion). 

random port: random access for predicted blocks 
read. But 2 accesses still remain to be done on the 
random port i.e. a frequency of 20. 736MHz: this is 
too high for the existing components even if using 
the fast page mode : for instance a 256K x 4 video 
RAM, with access time of 100ns, has a 55ns read 
cycle when using fast page mode. 

It becomes necessary to split the RAM into two 
fields: 

one field for Y and one field for U and V (see 
Figure 10). 

Each field is 411 , 720 bytes long constituted by four 
256Kx4 VRAM. In that way it becomes possible to 
read in parallel the predicted blocks on Y and UN 
frame buffers at "f" frequency. The rate adaptation, 
delivering alternatively the Y or UN predicted 
blocks to the coder at "2f" frequency, is made 
thanks to two output FIFOs (one FIFO is only 64 
bytes long). 

The reconstructed blocks are sent back by the 
decoder to the frame buffer at "2f" frequency and 
are alternatively Y or UN blocks. They will be 
written on the serial ports of each RAM: "2f" fre­
quency is a cycle time of 48.22ns and the minimum 
write cycle time on the serial port of a 1 OOns video 
RAM is 30ns. 
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An optimisation consists in writing a block only 
on one row of the memory and not among two 
rows: in that way only one transfer is necessary~ 
between the Serial Access Memory (SAM) and the 
RAM for one block written. 

As the reconstructed blocks are written alterna­
tively on Y or UN frame buffer, each serial port is 
only used one half of the time. When not used for 
block reconstruction, the serial port of Y buffer can 
be used for outputting a block of the search window. 
This output must be done at "2f" frequency and a 
rate adaptation is necessary for the STi3220 work­
ing at "f" frequency : this is done with a 64-byte 
FIFO. 

b) Memory organisation 

Four 256K x 4 video RAMs are used for storing the 
414,720 bytes of one frame buffer (Y or UN). They 
are organised as a 512x512 nibble array. In order 
to optimise the use of their serial ports, each block 
must be stored on only one row of the memory. 

The memory space organisation becomes: 

Figure 10: First Architecture Proposal 
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c) Delay lines 

Delay lines are necessary on two different points of 
this motion compensation architecture : 
- a first set of two delay lines, already mention ned, 

is necessary for providing the STi3220 with the 
search window. Each delay line is one line of 
block long i.e. 720x8 = 5760 bytes long. The 
delay line can be made with an 8Kx8 SRAM 
associated with an address 9ounter (see Fig­
ure 11). Each byte of the SRAM pointed to by the 
counter is first read out and then written with the 
new value to input in the delay line (read modify 
write). When the counter (in fact decrementing) 
reaches 0 it is re-loaded with the line length value. 
As two accesses to the RAM must be done during 
one cycle (1/10.368MHz = 96.45ns) the RAM 
cycle time must be at least 40ns. 
a second delay line is necessary to delay the 
reconstruction of the picture into the frame mem­
ory. As a matter of fact, the reconstruction of the 
new picture must not destroy pixels of the old 
picture that are still necessary, in particular for 
prediction. 

000 BH B1-2 B1-3 B1-4 000 

000 B2-1 B2-2 B2-3 B2-4 000 

000 B3-1 B3-2 B3-3 B3-4 000 

For instance, when the reconstructed block corre­
sponding to reference block position 81-2 is de­
livered by the decoder to the frame buffer, it is not 
possible to write this block in the place occupied by 
81-2 as long as 81-2 can be used. The last use of 
81-2 may happen when delivering the predicted 
block corresponding to reference block 82-3 as 
81-2 is in the search window centered around 
82-3. 

Therefore the delay between the time a predictor 
is extracted from the frame memory and the time 
when it is possible to write the reconstructed block 
into the memory is one line of blocks plus two 
blocks i.e. (720 + 2x8) x 8 = 5888 pixels. As each 
pixel is equivalent to two bytes (Y and U/V), this 
delay line length must be 11776 bytes (minus the 
cycles lost outside the motion compensation part 
for computation in the coder and the decoder). 

The delay line can be made with the same principle 
than the previous ones, but taking care of the fact 
that the working frequency is "2f", i.e. a cycle time 
of 48.2ns. To cope with such a rate it could be 
possible to use two sets of two 16K x 4 static RAM 
in flip-flop: one set is written while the other is read. 
This solution is quite expensive.' 

Figure 11 : Example of Delay Line Implementation 
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To avoid those external SRAM, the new recon­
structed frame (let's call it frame 2) can be stored 
in the free address just after the last address of the 
current frame used for prediction (let's call it frame 
1) as it can be seen in Figure 12. The only condition 
to implement such a structure is to have a free area 
in the memory higher than the requested delay. 
When the read reaches the end of frame 1, the 
address generation only continues its increase for 
starting the read of frame 2: the address generation 
is cyclic over all the memory space. 

d) Predictor access 

As seen before, reading a predicted block must be 
done at "f" frequency, i.e. a cycle time of 96.45 ns. 
However the access time on the random port of a 
100ns video RAM is only 190ns. In order to cope 
with an average access time of 96ns, the page 
mode access of the video RAM must be used as 
much as possible : as a matter of fact, the row and 
column addresses (RAS and CAS selection) must 
be preset for each random access while for a page 
mode the row is only selected once (RAS), all the 
following accesses being done on the same row 
(also called page) with only a selection of the good 
column address (CAS). The fast page mode ac­
cess is only 55ns for a 1 DOns video RAM like the 
HITACHI's 256Kx4 HM534251. 

livered by the motion estimation chip Sli3220. This 
motion vector is delivered by the STi3220 on the 
36th cycle after the end of the reference block (in 
pipeline mode, it is equivalentto the 36th cycle after 
the beginning of the next reference block). As said 
before one block of the picture is not written among 
two pages of the memory. Nevertheless, except for 
a null motion vector, the predicted block involves 
several blocks of the frame memory i.e. several 
pages. In the example below the predicted block 
involves pixels from blocks# 1, 2, 4 and 5. 

1 2 
3 

I I 
I _I 

6 
4 5 

7 8 9 

In order to output the predicted block in a column 
by column order, it is necessary to select a new 
page twice during each column (access to block #1 
followed by block #4 in order to output the first 
column of the predicted block in the example 
above). Thus two RAS are necessary for 8 CAS: 2 
random accesses and 6 fast page mode accesses. 
With a 100ns VRAM, reading 8 bytes of a column 

The addresses for the predicted block must be is 2x190 + 6x55 = 71 Ons long, i.e. for reading a 
calculated depending on the motion vector de- predicted block : 71 Ons x 8 = 5.681JS. 

Figure 12 : Illustration of Frame Stores in the Memory Space 
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While reading a predicted block, it is also necessary 
to manage the serial port of the dual port RAM. A 
maximum of three transfers between RAM and 
SAM is necessary : 
- one transfer of the reconstructed block written in 

the SAM to the RAM. 
- Two transfers of RAM blocks needed on the SAM 

for delivery of the search window (the search 
window blocks are not in the same position than 
the reference frame blocks but shifted seven 
columns right (refer to chapter 2), i.e. that they 
cover 2 frame block's positions. Hence an addi­
tional RAM to SAM transfer may be necessary if 
the two consecutive blocks are not stored on the 
same page). 

The time for reading the 64 samples of a predicted 
block becomes: 

710x8 + 3x190 = 6.25J.!S. This is equivalent to 
6.25/64 = 97.65ns per sample, i.e. a frequency of 
1 0.24 Msample/s that must be compared to 
f = 10.368MHz. 

The margin is not very safe with the components 
existing on the market at the time this note was 
written. But there is no doubt that new faster video 
RAM are or will be available at the time the reader 
is looking to those lines. For that reason, this 
solution must be kept in mind. 

111-3 Second architecture proposal 

a) prediction 

The speed limitation with the previous solution is 
mainly due to the fact that the page mode of the 
video RAM cannot be used efficiently when reading 
the predictor. 

As the predicted block most often uses information 
on 4 blocks of the frame memory, it could be 
possible to read out all the samples needed for 
prediction in one of the 4 blocks, then all the needed 
samples on another block ... The number of ran­
dom accesses is limited to 4 page changes. But the 
address generation would be very difficult to man­
age (no continuity) and an additional output RAM 
would be necessary in order to rearrange the 
samples and deliver them to the coder in a column 

by column order and not in the way they have been 
extracted from the frame buffer. 

Therefore it appears as a necessity to split again 
the frame memory in two new parts. 

An interesting cut of the frame memory consists in 
storing all the even lines of block in one memory 
field and all the odd lines in another field. The 
predicted block always straddles one even and one 
odd band of block. 

1 I 2 
3 even band 

---1 I 
I 6 odd band 

4 I 5 

In the example above, block #1 is on even memory 
field and block #4 on odd memory field. The first 
columns of the predicted block are selected by a 
multiplexer between odd and even fields. On each 
field the selected page doesn't change during all 
the predicted block output, except if blocks #2 and 
#5 are not on the same page than blocks #1 and 
#4 respectively. For reading a predicted block, the 
maximum number of page changes is limited to 
two. 

Each RAM field becomes an half frame buffer i.e. 
207,360 bytes implemented on two 256Kx8 video 
RAM. The remaining 57,784 bytes of each field is 
used to begin the storage of the reconstructed 
picture just after the current one as explained be­
fore in "delay lines" chapter. 

b) Search window delivery 

An interesting consideration of that architecture is 
that the search window uses simultaneously the 
odd and even fields of the memory. It is then 
possible to provide the STi3220 on B and C inputs 
with the ouptut of the odd and even fields and to 
generate the A input thanks to a delay line supplied 
with the B input samples (see Figure 13). This 
allows to suppress one more delay line replaced by 
a simple data multiplexer: during one line of blocks, 
the odd field is connected to B input while the even 
field is connected to C input. During the following 
line of blocks, the odd field is connected to C input 
and the even one to B input. 
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Figure 13 : STi3220 Supply from 2 Frame Buffers and One Delay Line (example on two consecutive lines) 
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c) Second architecture timings 

Let's verify the reliability of the second architecture, 
shown in Figure 14: 

Each memory is accessed on the serial port alter­
natively for writing a block of the new reconstructed 
picture (this needs one transfer from SAM to RAM 
for each block) or for reading the search window in 
the previous picture (this needs one or two trans­
fers from RAM to SAM). Each transfer between 
RAM and SAM may cost two random cycles : one 
for waiting for a current random access on the RAM 
to be finished and one for transferring the desired 
row between RAM and SAM. The maximum time 
lost for two blocks on the serial port is 6 random 
cycles. Due to transfer cycles, read or write on the 
serial port must be made at a frequency higher than 
112f11. 

The random port is accessed for reading the pre-
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dieted blocks at "f" average frequency. Due to the 
seperation odd/even lines of blocks, we saw that 
only two page selections are necessary on each 
RAM. But it is also necessary to manage the serial 
memory exchanges with the RAM : as seen before 
this is a maximum of 3 transfers to do, each transfer 
followed by a new selection of the page currently 
read. A total of 8 random accesses may be lost for 
5 samples read out, the remaining .59 samples 
being accessed in fast page mode. 

With a random access = 190ns and a fast page 
mode access = 55ns, the global time for reading a 
predicted block on the random port is : 8 x 190 + 
59 x 55= 4. 765!!S. The margin with the time allowed 
(64/f = 6.17!ls) is very safe in that case. 

For instance if the fast page mode cycle is fixed to 
70ns and the random access to 210 ns (3 x 70) then 
the total time for reading a predicted block is 8x21 0 
+ 59x70 = 5.81 !!S. 
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Figure 14: Second Architecture Proposal 
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With such clocks, the serial clock cycle can be fixed 
to 35ns (70ns I 2). The total time for writing a 
predicted block and reading a search window block 
is: 128 x 35 + 6 x 210 = 5.741lS compared to the 
allowed time 6.171ls. 

There is no more problem of speed with this solu­
tion. Only small FIFOs (64 bytes) are necessary for 
rate adaptation between the variable samples rate 
around the frame memory and the fixed computa­
tion rate of the coder or the decoder. Of course 
synchronisation signals indicating the beginning of 
the blocks will also be necessary. 

The time left after the end of a data burst (a block) 
on the video RAM and the beginning of the next 
burst will be used for RAM refresh cycles. One 
refresh can be done simultanously on each video 
RAM, after each predicted block read sequence, 
that means one refresh every 6.171ls. This is a total 
time of 3.16ms for the 512 rows of the video RAMs, 
compatible with the maximum refresh cycle time of 
4ms. 
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d) Address controller 
The address controller, that can be an ASIC or 
developped around EPLD and PAL devices, must 
manage several functions: 
- SAM : Write of the reconstructed block on the 

good row and from the good column. 
- SAM : Read of the good block for the search 

window : for instance if the reference block posi­
tion begins at address n in the even field than the 
search window access must be done from ad­
dress n + 7 columns= n +56 in even field (B input 
of STI3220) and at address n +56 (or n + 1 line 
of block + 56) in odd field (C input of STI3220). 

For both read and write the address generation 
only consists in a counter incrementation. Even or 
odd field addresses are equal modulo one line of 
block. 
- RAM : read of the predicted block depending on 

the motion vector delivered by the STI3220 chip 
on the 36th cycle after the end of the reference 
block. From the start address of the predicted 
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block, the address generation consists in a 
simple counter incrementation plus a selection of 
the even or the odd field output data. 

- generation of the control signals for the RAM 
chips (including refresh cycles), for the multi­
plexer selections ... 

Ill - 4 Conclusion 
This first example has been studied through two 
architectures quite similar. In both cases eight 
video RAM chips 256Kx4 are used that allow to 
separate the sequential access on the serial port 
from the random access on the parallel port: 
- Read search window block on the serial port. 
- Write of the reconstructed blocks on· the serial 

port. One block must be stored on one row only 
to avoid time expensive page changes. The rec­
onstructed frame is stored just after the previous 
one in order to avoid an external delay line. 

- Read of the predicted blocks on the random port. 
The fast page mode must be used as much as 
possible to reduce access time. The second sol­
ution is much more optimised for reaching that 
goal. 

For such an application the main parameter is the 
high pixel rate. That was the reason for the choice 
of search window delivery through delay lines in 
order to limit the access time on the frame memory. 
However, if the components are not fast enough, it 
becomes necessary to split the frame memory into 
several fields : in that way it becomes possible to 
read or write simultaneously several informations 
on several fields at the same time thus reducing the 
apparent speed in the same ratio. The conse­
quence is that the more the number of fields, the 
more the number of associated data multiplexers 
and the more complicated the address generator. 

For all those reasons, the first solution, with a 
memory cut in two fields (Y and UN frames) is the 
simplest one (the address generator could be done 
with counters and PAL devices) but also the solu­
tion needing high speed memories. The solution 
has not enough time margin with the existing com­
ponents on the market (1 DOns VRAM), but has 
been exposed here because the components will 
go faster and faster or because it can be used for 
slower pixel rate applications. 

The second solution, with a memory cut in four 
fields (two fields Y and UN, each one separated 
into odd lines of blocks and even lines of blocks) is 
a better optimisation of the memory use and fits 
well with the existing components. An intrusting 
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feature of the frame cut allows to suppress one 
delay line and to replace it by a multiplexer. On the 
other hand the address generator is more compli­
cated but for a high volume application it can be 
realised with an ASIC thus providing a solution with 
a good components' speed/cost tradeoff. 

IV- EXAMPLE 2: CSIF PICTURE, 16X16 
BLOCKS, -8 TO +7 SEARCH WINDOW. 

IV-1 Introduction 
The second example of architecture study is made 
around a CIF 30Hz format : 

frame size = 352 x 288 pixels. 
Pixel rate= 3.0413 Mpixel/s. 

4.1.1. Format: 

The chrominance components U and V are sub­
sampled (2:1) in both vertical and horizontal direc­
tions. Four orthogonal pixels of the picture are 
defined by four samples of luminance (Y) one 
sample of chrominance U and one other sample of 
chrominance V. 

pixels associated samples 

Pix Pix Pix Pix YUV y YUV y 
0 0 0 0 0 0 0 0 

Pix Pix Pix Pix y y y y 
0 0 0 0 0 0 0 0 
Pix Pix Pix Pix YUV y YUV y 
0 0 0 0 0 0 0 0 

The motion estimation is made on 16x16 blocks of 
Y, while the coding, and hence the prediction is 
considered to be made on 8x8 blocks for the three 
components of the image. Due to sub-sampling 
ratio, each block 16x16 of Y is associated to one 
block 8x8 of U component and one block 8x8 of V. 
The combination of those 3 blocks is also called a 
macro-block. A CIF picture is composed by 22 x 18 
macro blocks. 

macro block composition : 

8 8 

8~ 
8~ 

8 8 

u v 8 

One macro block is 
256 + 2x64 = 384 bytes. 

The samples are considered to be sent to the 
motion compensation part in the macro block 
fashion i.e. one block 16x16 of Y scanned column 
by column (one column is 16 bytes) followed by two 
blocks 8x8 of U and V also scanned column by 
column (one column is 8 bytes). 
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However the predicted blocks must be 8x8 blocks, 
scanned column by column and sent to the coder 
in the order: 

Y1 Y2Y3Y4UV. 

Those blocks after decoding are input back in the 
same order for the frame reconstruction. 

Four pixels of the picture being associated to 4 
bytes of luminance and 2 bytes of chromimance, 
the total frame size is 352 x 288 x 1.5 = 152,064 
bytes ?nd the byte rate is 1.5 times higher than the 
pixel rate i.e. 4.56 Mbyte/s (219ns for one byte). 
This is the working frequency of coder and decoder: 

Considering the slow byte rate of this example, the 
architecture is chosen with two imperatives: 
- use of classical Dynamic RAM for frame buffer 

(e.g. a 100nsaccesstime DRAM hasacycletime 
of 190ns). 

- access for search window directly in the 
frame buffer to supress the external delay lines. 

It seams also interesting, for simplification pur­
poses, to manipulate Y and UN samples in the 
same flow (no differenciation for search window). 

As in the previous example, people in a hurry can 
directly refer to the architecture in Figure 18 and to 
the summary in the conclusion chapter IV.3. 

IV-2 Architecture choice 

a) Search window delivery 
When doing motion estimation on 16x16 blocks 
with displacement vector in the range -8 to +7, only 
one half of the upper band of the search window is 
used (Blower pixels) and only one half of the lower 
band is used (7 upper pixels) as shown in Fig­
ure 15. 

It becomes possible to connect together inputs A 
and C of the Sli3220 as they are not used at the 
same tirne. 

Sharing the resources between A and C inputs 
doesn't make the use of two delay lines possible. 
The search window delivery must directly be made 
into the frame buffer with two accesses for each 
reference block sample input. 

In order not to double the access frequency on the 
frame memory, it is possible to split the RAM into 
two fields : one field for storage of even lines of 
macro blocks and one field for storage of odd 
lines of macro blocks. In that way only one ac­
cess is necessary on each field for providing the 
two search window samples. A data multiplexer will 
allow the connection of either the even or the odd 
field to either the B or A+C inputs of the Sli3220. 

Figure 15: Search Window and Reference Block Position 
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b) Prediction 

The predictor access will be made in an additionnal 
static RAM where the search window must be 
stored on the flight. In order to simplify the system, 
the U and V components will also be read in the 
frame buffer for delivery of the search window 
although! they are not used for motion estimation. 
When delivering the U or V samples on the A,8 and 
C inputs of the STi3220 it is necessary to disable 
the chip for not taking care of those information: the 
EN pin must then be tired to high level. Due to their 
sub-sampling ratio, the motion vector for U and V 
components will be half the motion vector of Y 
component. 

The total area necessary for storage of the search 
window is (see Figure 16): 

Figure 16 : organisation of the prediction SRAM. 

A1 A2 A3 A4 half macro block height 

81 82 83 84 one macro block height 

C1 C2 C3 C4 half macro block height 

- Four macro blocks for the current search window: 
2 macro blocks for 8 band (8 1 and 82) and 2 half 
macro blocks on either A or C band (respectively 
A1, A2 and C1, C2). 

Figure 17 : predictor organisation 
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- One additional macro block on 8 band (83) and 
two half macro blocks on A and C bands (A3 and 
C3): those macro blocks will be used in conjunc­
tion with A2,82 and C2 for the next search win­
dow (let's say the second search window). During 
the time they are s\ored, the motion vector corre­
sponding to the first search window and refer­
ence block is output by the Sli3220 on the 46th 
cycle. We can consider that the motion vector can 
be changed by the external system and that it will 
be taken into account for prediction only with the 
first sample of the next macro block: that leaves 
384 - 46 = 338 cycles for the external system to 
decide which vector must be used. 

- One addilionnal macro block on each band 
(A4,84,C4) necessary to avoid destroying the 
first search window read out for prediction with 
the information of the third search window that 
must be stored in the SRAM (third search window 
= A3, A4, 83, 84, C3, C4). 

Of course when the predictor of the first search 
window has been output, locations A 1, 81, C1 are 
free for storage of the last blocks of the fourth 
search window (fourth search window= A4, A 1, 84, 
81, C4, C1). 
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The total space needed in the prediction SRAM 
must be 8 macro blocks i.e. 3072 bytes, that can 
be divided between one 2Kx8 SRAM for Y compo­
nent and one 1 Kx8 SRAM for U and V (see Fig­
ure 17). The SRAM are associated with two latches 
that temporarely store the samples on each band. 

The SRAM is accessed 3 times: one time for storing 
a sample of one band (8 for instance), one time for 
storing a sample of the other band (C if first half of 
a column, A if second half) and one time for reading 
one sample of the predicted block. With a sample 
rate equal to 219ns, the access time on the SRAM 
must be at least 73ns. 

c) Frame memory choice 

The last point to consider is the frame memory that 
must be shared between frame reconstruction and 
search window read. As the cycle time of the mem­
ory (190ns for a 1 DOns DRAM) is not far from the 
byte cycle time (219ns) it is not possible to do two 
accesses during one cycle : the frame buffer must 
again be split into two new parts. The samples will 
be read or written by pair, one memory dedicated 
to odd samples the other to even samples. 

This leads to 4 memory spaces : two fields for 
storing odd or even lines of blocks and each field 
constituted by two memories for storing 2 samples 
in parallel. Each memory must be 38,016 bytes 
long. The nearest existing DRAM implies the use 
of 8 DRAM 64K x 4 with access time not higher than 
1 DOns to cope with the 219ns cycle time. 

Macro block n : 

yO y1 y3 ... y240 uo 
y1 y17 y33 ... y241 u1 
y2 y18 u2 
y3 y19 u3 
y4 y20 u4 
y5 y21 u5 
... u6 

y14 y30 u7 
y15 y31 ... y255 

us 
u9 

u15 

The proposed architecture is shown in Figure 18. 

The frame memories are associated to 6_1atches. 
As a matter of fact four samples are read'.out from 
the two fields of two memories during one cycle 
(needing four latches for temporal storage) and two 
samples are written in one field of two memories 
during the following cycle (needing two latches plus 
a multiplexer for selection of the good field). 

d) Memory organisation and refresh 

The 64Kx8 DRAM are organised as a 256 x 256 
array. 

One macro block is 384 bytes shared between two 
DRAM : so each half macro block of 192 bytes is 
stored over 2 DRAM. 

The picture contains 22 x 18 = 396 macro blocks 
shared between two fields of DRAM , so each 
DRAM contains 198 half macro blocks of 192 
bytes. 

If each half macro block is written on a column of 
the DRAW (198 columns used in each RAM), each 
time a macro block is accessed (and there is always 
a macro block read in each DRAM for search 
window delivery), the corresponding 192 rows are 
addressed and hence refreshed. The total time 
needed for reading a macro block is 384 x 219ns 
= 84.096!!S. This is also the cycle time for refresh­
ing all the useful rows of the memory : it is com­
patible with the maximum refresh cycle times of 
4ms defined for the 64K x 8 DRAM. 

... u56 vo vB ... v56 

... u57 v1 v9 ... v57 
v2 
v3 
v4 
v5 
v6 

... u63 v7 ... v63 
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Memory organisation for storage of macro block n in odd or even field : 

DRAM1 -column n DRAM2 - column n 
rowO yO 
row 1 y2 
row2 y4 

... 
row7 y14 
rowS y16 

... 
row 127 Y254 

row 128 
row 129 

... 
row 159 

row 160 
row 161 

row 191 

Rows 192 to 255 are not used. Macro block n+ 1 is 
stored on column n+ 1. 

Note: The two memories in each field are always 
accessed with the same address. 

e) Address control 

In order to simplify read , the write address gener­
ation should take care of the fact that theY samples 
are sent back by the decoder in 8x8 blocks (after 
inverse OCT) and that they will be read in 16x16 
blocks for motion estimation: the samples should 
be stored in a way such as the read only consists 
in increasing the row addresses. Of course the U 
and V 8x8 blocks are stored in the way they are 
coming from the decoder just after the Y block in 
the memory. 

When a memory field is dedicated to the middle 
band of the search window (B input), the column 
address doesn't change during one macro block. 
When the field is dedicated to lower and upper 
bands (A and C inputs) the 8 last bytes of a column 
are read out before the 8 first ones (for Y) so it is 
necessary to change the column address every 8 
samples (for Y) or 4 samples (for U or V) but with 
a row address always increasing from the begin­
ning to the end of the macro block. 

uo 
u2 

u62 

vo 
V2 

v62 

y1 
y 

y5 

y15 
... 

y255 

u1 
u3 

u63 

v1 
v3 

v63 

crete Cosine Transform, Inverse OCT, filtering or 
matrix transposition. In that case the filter is used 
that associates with the input predicted block a 
low-pass filtered output block delivered in a trans­
posed order. Even when the filter is not used in the 
loop, the IM8121 must be used to do transposition 
of the predicted blocks i"ri order that they can always 
remain with the same scanning order in the output 
stage. 

Note: the filtering is done on BxB blocks and not 
16x16: that is one of the reasons why the prediction 
must be made on BxB blocks. The delay for the filter 
or transposition function is 128 cycles. 

g) Error blocks= reference -prediction 

The filtered predicted blocks must be subtracted 
from their corresponding reference block to provide 
the error blocks, sampled over 9 bits, that will be 
computed by the coder (for instance through! 
OCT). Those blocks must be 8x8 blocks. The trans­
formation from 16x16 to 8x8 blocks is already done 
for the predicted blocks when reading the search 
window RAM, but it must be made for the reference 
block that was sent to the 8113220 in 16x16 form. 

The delay between the time a reference block is 
input in the 8113220 chip and the time it is sub­
tracted from the predicted block is 2 macro blocks 

f) Filter for reading the predicted blocks and 128 cycles for 
In the architecture scheme shown in Figure 18 filtering i.e. 896 cycles. Of course this is an approxi-
there is a filter on the predictor output : this filter mation as the number of cycles depends on the 
can be used to increase the efficiency of the pre- final schematic diagram. 
diction by reducing artefacts due to high frequen- The proposed architecture for delaying the input 
cies. It is realised with an IM8121 device from reference blocks and providing the block format 
8G8-THOM80N that is able to perform either Dis- .conversion is shown in Figure 19. 

------------ lifi ~~m~~~~ 21/32 
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Figure 19: Block Delay+ Format Change 
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delayed frame SYNC 

When starting, the write on the FIFOs is disabled 
until the first frame synchronisation appears (with 
the first pixel). Read on the FIFOs is prohibited until 
the delayed frame sync. (generated by the counter­
s pre loaded to the delay length = 896 cycles) is not 
delivered. 
In write mode the first 8 samples of a column are 
written on the first FIFO, the 8 following on the 
second FIFO: the first FIFO will always contain the 
upper 8x8 blocks of a 16x16 block and the second 
FIFO the lower ones. In read mode the first FIFO 
is read 128 consecutive cycles for delivery of the 
two first 8x8 blocks, and than the second FIFO 
during 128 cycles for the two following blocks. For 
U and V blocks (already in 8x8 format) the FIFOs 
are read in the way they are written. 

h) delay predicted blocks 

The filtered predicted blocks must not bEl lost after 
delivery of the error blocks as they will be used for 
frame reconstruction in addition with the recon­
structed blocks (after decoding). For that purpose 
they must be delayed during. the time the error 
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blocks are computed in the coder and sent back to 
the board by the decoder. This delay can be made 
using the SGS-THOMSON A113 chip: this device 
is a delay line whose length can be programmed 
from 8 to 1320 steps. 

IV-3 Conclusion 
The most interesting feature of this architecture is 
the use of very popular (and hence cheap) compo­
nents like the 64Kx4 DRAM or the small 1 Kx8 or 
2Kx8 SRAMs. 
Like in the previous example, in order that the 
DRAM cycle time (190nsfor a 100ns DRAM) fit with 
the input byte cycle time (219 ns) a split of the frame 
buffer in several fields is necessary: 
- one odd lines of blocks field and one even lines 

of blocks field. On each cycle, one sample is read 
out from each of the two fields providing the two 
samples necessary for the search window sup­
ply. 

- each of the two fields is divided in two parts: in 
that way, during one cycle two bytes are read out 
in parallel from each field (one byte in each 
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sub-part) and during the following cycle two bytes 
are written in parallel in one of the fields, for frame 
reconstruction. 

The total frame memmory is composed by eight 
64Kx4 DRAM. 
The frame buffer is only used for search window 
delivery and for frame reconstruction. The predic­
tion is made in an additional RAM where the search 
window is stored on the flight as it is sent to the 
STi3220 inputs. In order to simplify data control, the 
U and V samples are computed in the same flow 
than the Y samples. The additional RAM is a 2Kx8 
SRAM for Y search window and 1 Kx8 for U!V 
search window. 
As the prediction is seperated from the frame buff­
er, the address generator of the frame memory is 
greatly simplified and could be realised with several 
counters and PAL devices. 
This architecture is the simplest and the cheapest 
of the three examples of this application note. 
Consequently, it is also the architecture that is the 
fastest to implement with standard components for 
prototyping a codec. For high volumes, the memory 
address generator and the predictor could be inte­
grated into a ASIC device leading to a block diag­
ram with the STi3220, the DRAMs and the control 
ASIC as main devices. 

V- EXAMPLE 3: CIF PICTURE, 16x16 
BLOCKS, -16 TO +15 SEARCH WINDOW. 

V-1 Introduction 

The picture format considered in this example is 
exactly the same than the previous one : 

30 frames/s, 352 x 288 pixels/frame, 12bit/pixel 
(4.1.1 format): frame size= 152,064 bytes. 

But in this example we want to compute a motion 
vector in the range -16 to + 15 in both directions. 

The study first explains how to compute such a 
search window with only one STi3220 able to cover 
a -8 to +7 range, then a proposal of architecture is 
made (refer to figure 5.2) followed by an explana­
tion of the search window supply mechanism. Fi­
nally, like in the other examples the study ends with 
a verification of the different accesses that must 
share the frmae memory bandwith. A conclusion 
chapter (5-6) is available for people who just want 
a quick overview. 

V-2 Search window computation 

a) Search window definition 

As the STi3220 chip is only able to compute motion 
vectors in the range -8 to +7, four different compu-

lations over four sub search windows are necess­
ary to cover the range -16 to +15. The sub windows 
selection is shown in Figure 20. 
The four resulting motion vectors are partial ones. 
In order to determine what will be the final motion 
vector for the total search window, the minimum 
distortions, corresponding to each partial motion 
vector for the total search window, the minimum 
distortions, corresponding to each partial motion 
vector, must all be compared. No particular algo­
rithm will be given here to determine what must be 
the final motion vector as it is a part of the coding 
policy. 
The motion vector can be directly associated to the 
minimum of the four distortions: for instance, if the 
minimum is obtained in the sub search window 2, 
then the resulting motion vector (MV) is the partial 
motion vector 2 (MV2) plus 8 in horizontal direction 
and minus 8 in vertical direction. 

b) How to compute sub-search windows 

The four different calculations for each sub search 
window can be implemented in two different ways : 

using four STi3220 chips in parallel each one 
working on a different sub search window. After 
an initialisation sequence and a block sequence 
on each STi3220 (i.e. 512 cycles), the computa­
tion can be done and the partial motion vectors 
obtained after 46 new cycles on each chip. This 
solution is only useful in high speed systems and 
is an heavy and expensive solution. In an appli­
cation like the CIF format it is cheaper to use the 
second solution. 

- using only one STi3220 doing all the partial com­
putations on the four sub search windows. Each 
time a sub search window is computed, an initiali­
sation sequence and a block sequence are 
necessary. It can be noticed on Figure 20 that the 
initialisation sequence of sub search windows 2 
and 4 are the same as the block sequence of sub 
search windows 1 and 3 respectively. Hence the 
pipeline mode can be used between sub search 
windows 1 and 2 (or 3 and 4). Sending all the . 
necessary data to the chip will cost 6 blocks 
16x16 i.e. 1536 cycles. Each time the chip is in a 
block sequence, the 16x16 reference block must 
be input on the X bus for comparison with the sub 
search window. Of course the results of each sub 
search window, obtained on the 46th cycle fol­
lowing a block sequence, must be stored in order 
to be analysed at the end of the process (at least 
the motion vector and the minimum distortion 
must be kept). 
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All the sub window scanning must be done during 
the time of one input reference block. As six se­
quences are necessary the chip must work at a 
speed 6 times higher than the Y reference input 
rate. 
Considering the pixel rate = 352x288x30 = 
3.041MHz, the chip must run at 18.25MHz i.e. at 
its maximum working frequency. It implies that Y 
and UN samples cannot be mixed on the same 
flow as the speed would be 1.5 times higher. 

V-3 Architecture study 

Due to the division of the search window in four 
different parts it is not possible to use the delay lines 
structure in this application. 
It could be possible to split the frame memory in 
two parts (odd and even lines of blocks) in order to 
access in parallel to the two samples needed for 
the search window. This implies the use of video 
RAM in order to cope with the samples rate (about 
55ns) but this would lead to memory sizes of 
152,064 I 2 = 76,032 bytes which is not optimum 
with the existing component sizes (64K x 4 or 
256K x 4). Hence we will consider a solution with 
only one frame buffer constituted by two 256K x 4 
video RAM memories. 

It is not possible to output from the frame buffer all 
the blocks needed for the search window during the 
time of only one reference block : the frequency 
would be 12 x f if f is the pixel's frequency. 
A small static RAM will be added to the main frame 
buffer in order to store the search window : in that 
way, for each new reference block in the pipeline, 
only the three new right-most blocks of the search 
window are necessary (see Figure 20). As it is 
necessary to provide the search window inputs of 
the Sli3220 with two samples on each cycle, the 
SRAM is in fact separated in two parts : one SRAM 
for storing the middle band's search window blocks 
and one SRAM for storing the upper and lower 
bands of the search window (as they are not ac­
cessed at the same time). The transfer of the new 
blocks from the frame buffer to the two SRAM will 
be made through! two FIFOs for rate adaptation. 

The last point to consider is that all the SRAM data 
are read out in the same way they are written: this 
property induces to use FIFOs instead of SRAM in 
order to simplify the external control (no counters 
for address generation). : 
An architecture able to support this ex<ifnple is 
shown in Figure 21 and is going to be_analysed in 
the following lines. .-- · · 

Figure 20: Four Sub Search Window for -16 to +15 Displacement 
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V-4 Search window delivery 

Note: For each block of the search window, the 8 
last pixels of each column are sent to the Sli3220 
chip on 8 and C buses, followed by the 8 first 
columns sent on buses A and 8 (refer to Figure 20). 
In order to provide the search window blocks in the 
good order, the output of the frame memory is 
delayed by 16 cycles (refer to Figure 21 ): the 8 first 
samples of a column are first written into the 16 
cycles delay device, then the 8 last samples of the 
column are read out from the memory for search 
window delivery (they are also written in the delay 
line). During the 8 following cycles the 8 first 
samples of the next column are read out from the 
memory and stored into the delay line while the 8 
first samples of the current column are extracted 
from the delay line for search window .... The delay 
for delivering the search window is equivalent to 8 

Figure 21 : Example 3 Architecture 

cycles. 

Let's try to analyse the different phases of the 
search window delivery, with reference to Fig­
ure 22. 

Note: The blocks noticed in Figure 22 have not the 
same borders than the blocks of the image: as a 
matter of fact their relative position is shifted one 
column left. The information will be extracted from 
the frame buffer blocks after blocks but it is easy, 
with the rate adaptation provided by FIFOS 1A and 
1 B, to read out the blocks for search window with 
a relative position anticipated by one column. For 
simplification purpose we will refer in the explana­
tions to the search window blocks and not to the 
image blocks keeping in mind that one search 
window block= one column of a block imageN and 
fifteen columns of block image N+ 1. 
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Figure 22 : Search Window Block Notation 

AO A1 A2 A3 

1: 

II 80 81 82 83 
II 

II --
co C1 C2 C3 

search window of reference block N 

The sequences on the Sli3220 inputs for reference 
block N must be: 

AIC input : A 1 
8 input: 81 
X input: 

A2 A3 C1 
82 83 81 
N N 

C2 C3 
82 83 
N N 

The input sequences for the next reference block 
N+1willbe: 

AIC input : A2 
8input: 82 
Xi~put: 

A3 A4 C2 C3 C4 
83 84 82 83 84 

N+1 N+1 N+1 N+1 

As it can be seen on those two reference block 
sequences some blocks of the search window are 
used several times either for the same search 
window or for the next one. Hence when outputting 
a block from the FIFOs it may be necessary to write 
it back into the same FIFO: the output of the FIFOs 
2A and 28 may be connected to their own input. 

Search window processing: 

Note: The FIFOs name used in this description can 
be referred to in figure 5.2. 
- At the beginning of the process, we suppose that 

FIFO 2A (upper and lower bands FIFO) already 
contains A 1 A2 C1 and C2 and that FIFO 2B 
(middle band) contains B1 and B2. FIFOs 1 A and 
1 B should contain at the beginning respectively 
A3 C3 and 83. This can be represented by : 
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FIF02A FIFO 1A 
out I A1 A2 I C1 C2 in out A3 I C3 I In 

FIF028 FIFO 18 
out I 81 I 82 I .. IN out U!J IN 

There is a free area in FIFO 2B which size is one 
block. 

- The first phase is an initialisation phase of the 
STi3220 and consists in loading the first half part 
of the first sub search window into the chip. 
Blocks A1 and B1 are read out from FIFOs 2A 
and 2B. Block A 1 will not be used in another 
phase so FIFO 2A is not written during that time. 
On the other hand, block B1 will be used later and 
hence the block read out from the FIFO 28 is 
written back into the same FIFO. The reference 
block input X on the Sli3220 is irrelevant during 
that phase. The FIFOs content at the end of this 
phase is: 

FIF02A FIFO 1A 

out I A2 I C1 I C2 I [in out I As I csl in 
FIF028 FIF018 

out 1 82 1 81 1 .. I in out ~in 

- During the second phase A2 and B2 are output 
from the FIFOs. This is a block sequence for the 
STi3220 during which the reference block must 
also be input. At the end of that phase the first 
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sub search window is input and the first motion 
vector computation is running. As blocks A2 and 
82 will be used during later phases they must be 
written back in both FIFOS. 

FIFOS content at the end of the phase : 

FIF02A FIFO 1A 

out I C1 I C2 I A2 I in out I A3 I C3 I in 
FIFO 28 FIFO 18 

out I 81 I 82 I .. I in out ~ in 

the 3rd phase is also a block sequence for the 
STi3220 as the pipeline mode can be used be­
tween first sub-window and second one. The refer­
ence block must again be sent to the STi3220. 
During the same time blocks A3 and 83 are needed 
to finish the second search window: as those blocks 
are not yet into FIFOS 2A and 28, they are read out 
from FIFOs 1A and 18 while they are also stored 
into Fl FOs 2A and 28 in their free locations i.e. just 
after blocks A2 and 82. FIFOs 2A and 28 are not 
read during that phase. 

Note: on the 46th to 49th cycle of this sequence the 
first motion vector and minimum distortion are de­
livered on lOB bus of the STi3220 : they must be 
stored for future exploitation. 

The FJFOs content at the end of the phase is: 

FIF02A FIFO 1A 

out I C1 lc2IA21A31 in out I C31 .. I in 
FIF028 FIFO 18 

out I 81 1 82 1 831 in out D in 

FIFO 1 A has free location for writing the next search 
window block for the next process, i.e. A4. As this 
FIFO contains two blocks for search window. writ­
ing A4 can spend half an input block time (twice the 
pixel rate). In the same way 84 can be written into 
FIFO 1 B during the time of one input block (at pixel 
rate). 

- The 4th phase is again an initialisation sequence 
for the STi3220 during which the first part of the 
third sub search window must be loaded. During 
that phase blocks C1 and 81 are read out from 
FIFOs 2A and 28. Both blocks will not be used 
anymore and hence are not written back into the 
FIFOs. 

FIF02A FIFO 1A 

out I C2 I A2 I A3 I in out I C3 I .. I in 
FIF028 FIFO 18 

out 1 82 1 83 1 .. I in out D in 

Note: The result of the second sub search window 

is available during that phase and must be stored. 

- During the 5th phase, which is an STI3220's block 
sequence, blocks C2 and 82 are output from 
FIFOs 2A and 28 and must be written back into 
their original FIFOforfuture usage. Of course the 
same reference block is again input into the 
STI3220. 

FIF02A FIFO 1A 

out I A2 I A3 I C2 I in out I C31 .. I in 
FIF028 FIFO 18 

out 1 83 1 82 1 .. I in out D in 

- The 6th is the last block sequence, pipelined with 
the previous one, during which the last part of the 
search window is loaded : block C3 is delivered 
by FIFO 1 A and stored into 2A while block 83 is 
delivered by FIFO 28. 

FIF02A 

out I A2 I A3 I C2 I C3 I 
FIF028 

out 1 82 1 83 1 .. 1 in 

FIFO 1A 

in out I A4 I .. I in 
FIFO 18 

out CJ in 

At the end of that phase, FIFOs 2A and 28 are 
ready for starting the next reference block compu­
tation. The hypothesis of the FIFOs content at the 
beginning of the process is verified, For FIFOs 1A 
and 1 B, we supposed at the beginning of the 
explanation that the blocks needed where already 
stored into the FIFOs. In fact blocks An and Bn are 
needed on the 3rd phase of the process, blocks Cn 
on the last phase. They can be loaded while they 
are not used and not necessarely since the begin­
ning of a search windc:>w process. 

Note : the result of the last sub search window is 
obtained after the 46th cycle of the first phase of 
the next search window delivery. 

Note : The reference block must also be sent 4 
times to the STi3220 chip. For that purpose the 
reference block is first sent to the board at 6f 
frequency and stored into a FIFO which output is 
sent back to its own input in the same way than the 
other FIFOs used for search window delivery. 

V-5 Frame buffer accesses 

The frame size is 352x288x1.5 = 152,064 bytes 
organised as 396 macro blocks each of 398 bytes. 
For serial port's use optimisation, each macro block 
is associated to one row of the memory. Only 396 
rows over 512 and 398 columns over 512 are used 
in each of the two 256K x 4 video RAM of the frame 
buffer. 
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The serial port of the video RAM is dedicated to 
search window blocks reading and to block recon­
struction :the blocks needed for search window are 
only Y component blocks (256 bytes) while the 
reconstructed block is a complete macro block (384 
bytes). 

When reconstructing a block into the frame mem­
ory, care must be taken in order not to scratch 
information still necessary for the search window 
(refer to example 1 for explanations): the delay 
before writing a new block into the frame memory 
after it has been computed in the STi3220 must be 
at least equal to 2 lines of blocks and 2 blocks = 46 
macro blocks = 17664 cycles. This would be a lot 
of bytes to temporarely store in an additionnal 
memory. To avoid this, it is possible to write the 
reconstructed blocks directly into a free area of the 
frame memory (512 -396 = 116 rows available) and 
to transfer after the desired delay, the macro blocks 
from the temporal additionnal area to their definitive 
location in the frame memory: this is one transfer 
from additionnal area in RAM to SAM and one 
transfer from SAM to frame area in RAM. 

As the macro blocks are computed in the decoder 
in 8x8 size (in the order Y1 Y2 Y3 Y4 U and Vas 
explained in chapter 4.1) it is necessary when 
writing the blocks into the frame memory to store 
them in the good order for a future macro block 
sequential output: first column of Y1 block must be 
followed by first column of Y3, followed by second 
column of Y1 .... That means that only 8 consecu­
tive samples coming from the decoder can be 
written on consecutive addresses of the serial port. 
A transfer between SAM and RAM must be done 
every 8 pixels (except for u· and V that are always 
8x8 blocks stored after the last column of Y4). 
Writing a macro into the frame memory will need 
32 transfers during Y samples block input and one 
final transfer after U and V blocks input. 

The total number of accesses on the serial port 
during one block of pixels is: 
- read of 3 blocks of 256 bytes for search window. 

The maximum time for loading a block into serial 
memory consists in waiting for the current ran­
dom access to be finished, followed by the trans­
fer cycle from RAM to SAM. For 3 blocks this will 
be a total of 6 random cycles. 

- write of the reconstructed macro block i.e. 384 
serial cycles associated with 33 transfers and 33 
"wait" cycles. 

- 2 transfers between RAM and SAM for storage 
of the macro blocks in the good final address, 

associated to one "wait" cycle. 

This is a total of 3x256 + 384 serial cycles + 6 + 66 
+ 3 random cycles. With a 1 OOns video RAM the 
minimum serial clock cycle is 30ns and the random 
one is 190ns leading to a global time of 48.810 us. 

As the basic pixel frequency is 352 x 288 x 30Hz= 
3.04128MHz = f, the total time allowed per block is 
256/f = 84.1751-Ls: the margin is high enough for the 
serial port accesses. 

On the other hand, the random port is dedicated to 
the predicted macro block accesses.The predicted 
block must be delivered to the coder in a 8x8 form 
(Y1 Y2 Y3 Y4 U and V) (see Figure 23). 

Figure 5.4 : Example of predictor position in 
the searc window 

Y pred1cted BxB blocks 
c--

: Y1 
U or V pred1cted block 

~ 
Y2 ~ 

• 1-: 
: Y3 Y4 [, ..•... 

. ...... 

Y search window U or V search window 

3220-22.EPS 

As it can be seen in the figure, for two 8x8 predicted 
blocks (Y1 and Y2 in the example above) it is 
possible to read 8 consecutive samples of a column 
on 8 consecutive addresses of a macro block and 
for two 8x8 predicted blocks (Y3 and Y4 in the 
example above) two different macro blocks access 
are necessary for delivering one column of 8 
samples. In the same way for the U and V predicted 
blocks it is necessary to do two macro block 
changes every 8 samples. Each macro block 
change is a normal random cycle (190ns) while 
each consecutive address access can be done as 
a page mode cycle (55ns). 

The total number of accesses for prediction is : 2 x 
(8 x (1 random + 7 page))+ 2 x (8 x (2 random+ 6 
page))+ 2 x (8 x (2 random+ 6 page))= 80 random 
+ 304 page mode. 

Those accesses will be interrupted by the control 
cycles for the serial port, i.e. 3 + 33 + 2 = 38 cycles 
(equivalent to a random access). As those ac-
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cesses may happen during page mode sequences, 
we consider that each access for the serial port 
replaces a page mode cycle by a random cycle. 

The global number of accesses on the random port 
is: 

(80 + 38) random + 38 transfers + (304 - 38) page 
mode = 156 random + 266 page mode = 44.27f!S. 

This time is also compatible with the total time of 
84.175f!S allowed for a complete macro block input. 

If we take a basic cycle time of SOns for the serial 
port, with a page mode cycle of 1 DOns and a 
random cycle of 300ns, the total times on each port 
become: 
- serial port : 1152 serial + 75 random = 80.1f!S 
- random port : 156 random + 266 page = 73.4f!S 

The time margin on the frame memory accesses 
may allow to use slower (and hence cheaper) video 
RAM, or free spaces in the vidoe RAM can be used 
for additional functions that have not been con­
sidered here, for example the line to block conver­
sion for the reference block. The more functions will 
share the frame memory space the more compli­
cated will be the address controller. However this 
controller is most likely to be realised with EPLD 
devices or integrated into an ASIC. 

V-6 Conclusion 
This architecture presents the advantage of offer­
ing interesting solutions for computing a search 
window range that didn't seem originally easy to 
manage: 
- Use of only one STi3220 chip running full speed 

for calculation of the whole range. 
- Use of a small amount of video RAM for frame 

buffer (two 256Kx4 chips) shared between frame 
reconstruction, prediction and serach window 
delivery. 

- Use of 5 additional FIFOs connected in a clever 
way, for delivery of the good search window 
sequences on the STi3220 inputs. 

However, having said that, it must be considered 
that the RAMs, FIFOs and multiplexer controller is 
going to be very complex. An ASIC circuit will be 
the good choice in that case. 

VI - MISCELLANEOUS 

Vl-1 -16/+15 displacement range with one 
chip at lower speed 

In the third example, we saw that the STi3220 chip 
was used at 6f frequency iff is the pixel rate, due 

to the fact that two intialisation sequences are 
necessary for each search window scanning. The 
pipeline mode cannot be used efficiently in this 
case. 

However it is possible to always use the pipeline 
mode as shown in Figure 24. 

All the blocks of a complete row are first compared . 
to their associated sub-search window 1 for in­
stance (upper left sub search window): all the 
corresponding partial vectors and distortions must 
be stored. Then the same reference blocks are sent 
again to the STi3220 chip for comparison with sub 
search window 2 (upper right): the resulting distor­
tions are compared to their corresponding distor­
tions of sub search window 1 and the minimum of 
both is kept in memory with its associated motion 
vector. Of course the same operation is made again 
with sub-search windows 3 (lower left) and 4 (lower 
right). During all the computation the pipeline mode 
is never broken. 

In this case the chip's working frequency is only four 
times the pixel's rate. 

After a complete line of blocks has been computed, 
all the resulting motion vectors can be used for 
extraction of the predicted blocks. 

The disadvantage of this solution is that it is 
necessary to work over a complete line of blocks 
(address generation more complicated) and that, 
consequently it needs the storage of all the mini­
mum distortions and motion vectors of a line of 
block. 

This solution could be useful for applications where 
the STi3220 working frequency is not high enough 
(chip running at 4f instead of 6f). 

Vl-2 Computing larger displacement ranges 

There is no limitation on the size of the search 
window that can be used : the only condition is to 
split the global search window into sub-search 
windows compatible with the STi3220 chip search 
window (-8 to +7). Figure 25 shows an example of 
-32 to + 31 search window scanning in horizontal 
direction and -16 to + 15 scanning in vertical direc­
tion with 16x16 blocks. 

The larger the total search window, the higher the 
number of sub-search windows and the faster the 
chip's working frequency. In the example of Fig­
ure 25 the chip must work at 10 times the pixel's 
frequency. If the chip frequency becomes too high 
it is then necessary to use several chips as ex­
plained in chapter Vl.3. 
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Figure 24 : -16/+ 15 Displacement Range with STI3220 at 4f Frequency 

A1 A2 A3 A4 A5 

81 82 83 84 85 R1 R2 R3 R4 R5 

C1 C2 C3 C4 C5 

PREVIOUS PICTURE CURRENT PICTURE 

first line computation on sub search window 1 

~ 
EEJ 

second line computation on sub search window 2 

~ 
~ 

B 
;···o 
······--· 

no sub search window for R1 

G3 
EG 

no sub search window for R5 

Same computation principle than the first one with 

R1 R2 R3 R4 instead of R2 R3 R4 R5 

third line computation on sub search window 3 0 ___ : no sub search window for R1 

Same computation principle than the first one with 

81 82 83 84 85 

C1 C2 C3 C4 C5 

fourth line computation on sub search window 4 

instead of 

l ... D 

A1 A2A3A4A5 

81 82 83 84 85 

no sub search window for R5 

Same computation principle than the first one with 
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Figure 25 : Example of Search Window Range -32/+31 in Horizontal Direction -16/+ 15 In Vertical Direction 

A1 A2 A3 A4 A5 

B1 B2 B3 B4 B5 search window of reference block centered on 83 position 

C1 C2 C3 C4 C5 

sub search window 1 · A1 A2 sub search window 5 

1 initialisation + 1 block sequence B1 B2 1 tmttaiJsatJon + 1 block sequence 

sub search window 2 a2A3 

1 block sequence b2B3 

sub search window 3 a3A4 

1 block sequence b3B4 

sub search window 4 a4A5 

1 block sequence b4B5 

An, Bn or Cn : blocks sent to the ST1 3220 

an, bn, en : blocks already in the STi 3220 

Total time for scanning all the search w1ndow = 10 blocks 

Figure 26: -15/+15 Search Window 
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The search window size is not necessarely defined 
between -(m x block_size) to (m x block_size)-1 as 
all the examples that have been seen before. But 
if it is not, then the pipeline mode cannot be used . 
efficiently on a line of blocks. The main typical case 
concerns the 16x16 blocks with -15 to + 15 search 
window range. As it can be seen on Figure 26, the 
initialisation sequence of sub-search window 2 (or 
4) is not equal to the blocks sequence of sub­
search window 1 (or 3) but is shifted one column 
left: therefore the pipeline mode cannot be used 
between search windows 1 (3) and 2 (4). 

The time needed to scan the complete search 
window is equivalent to 8 sequences (4 initialisa­
tions and 4 blocks) instead of the 6 sequences (2 
intialisations and 4 blocks). 

If the STi3220 motion estimation chip is not able to 
support the pixel rate implied by such an applica­
tion, an alternative could be to compute the -16/+ 15 
search window and to clamp the motion vectors 
that may be equal to -16 to the value -15: this is not 
critical as in that case the prediction is always made 

Figure 27 : Use of Two STi3220 

A1 A2 A3 A4 AS AS 

S1 S2 S3 S4 S5 S6 

C1 C2 C3 C4 C5 C6 

PREVIOUS PICTURE 

but perhaps with less efficiency. 

Vl-3 Using several STi3220 

If the STi3220 working frequency is not high 
enough for the desired search window and pixels' 
frequency, it becomes necessary to use several 
chips for the computations. Two solutions are then 
possible: 
- Each chip computes one or several sub search 

windows of each reference block. 
- Each chip computes the complete search win­

dow but only for one reference block every N 
reference blocks (where N is the number of chips) 
as illustrated in the figure 6.4 here under with two 
STi3220. 

In that example, it can be noticed that the frame 
buffer RAM working frequency is exactly the same 
as the STi3220 chips working frequency. Of course 
a small additional RAM is necessary around each 
chip for temporal storage of its search window. The 
motion vector is alternatively delivered by one chip 
or the other. 

I 
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... 

S3 
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S1 S21C1 1c2 s2lsals4 C2 calc4 s41 ssl sa C4 lcsl 

Chip #2 input 
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