
. ·.···. SB-1 USER'S MANUAL

~
r, -z
0 u

COPYRIGHT SIBYTE, 2000

Trademarks

SiByte is a registered trademark of SiByte, Inc.

All other trademarks referenced herein are the property of their respective owners.

Copyright

Copyright© 2000 SiByte, Inc. All Rights Reserved.

SiByte, Inc. reserves the right to amend or discontinue this product without notice. Circuit and
timing diagrams used to describe SiByte product operations and applications are included as a
means of illustrating a typical product application. Complete information for design purposes
is not necessarily given. This information has been carefully checked and is believed to be
entirely reliable. SiByte, however, will not assume any responsibility for inaccuracies. Life
Support Applications: SiByte products are not designed for use in life support applications
devices, or systems where malfunctions of the Sibyte product can reasonably be expected to
result in personal injury. SiBytes customers using or selling SiByte products for use in such
applications do so at their own risk and agree to fully indemnify SiByte for any damages
resulting in such improper use or sale.

SiByte Confidential

Table of Contents
CHAPTER 1

CHAPTER 2

CHAPTER 3

SB-I Users Manual

Introduction 21

Introduction 21
Document Organization 21
Additional Documentation 23
What is Missing or Incomplete in this Version of the Document? 23

SB-1 Overview 25

Introduction 25
High Level Features 25

SB-1 Units 28
The PC Unit 28

The Branch Unit 28

Two Level GShare, Branch Direction Predictor 28

Return Stack (RS) 28
Jump Register Cache (JRC) 28

The Issue Unit (/Box) 28
The Execute Unit (EO, El) 29
The Load/Store Unit(LSO, LSl) 29
The Floating Point Unit (FO, Fl) 29
The MDMX Unit (AO, Al) 29
The Memory Unit (MBox) 29
The Bus Interface Unit(BIU) 30

Level One Instruction and Data Caches 30

SB-1 Specifics 30

The CPU Instructions 31

Introduction 31
List oflnstructions 31

CPU Load, Store and Memory Control Instructions 31

v

c

CHAPTER 4

CPU Arithmetic Instructions 32
CPU Logical Instructions 33
CPU Move Instructions 34
CPU Shift Instruction 34
CPU Branch and Jump Instructions 35
CPU Trap Instructions 35
Obsolete Branch Instructions 36
Embedded Application Instructions 37

Block and Pipeline Diagrams 37
The EXEO Unit 38
The EXEi Unit 40
The LSO Unit 42
The LSI Unit 44

SiByte Confidential

Instruction Latency and Throughput by Category of Instructions 46

Available Bypasses 46
Instruction Types Issued to each Pipe 47

Issue Rules and Restrictions 47

Differences between 32 and 64-bit Modes of Operation 48

The FPU (CPJ) and MIPS-JD ASE Instructions 49

Introduction 49

High Level Description ofFP Block 49

Block and Pipeline Diagrams 50
Instruction Latency and Throughput by Category of Instructions 51

MIPS-3D ASE Instructions 54

Available Bypasses 55
Differences between the Pipes 55

Issue Rules and Restrictions 56

Implementation Details on Special Instructions 56
MADD, MSUB, NMADD, NMSUB 56
DIV Operation 57

SQRT Operation 58
REC/PI and RSQRTI Operations 58
RECIP2 58
RSQR12 58

Supplemental FP Instruction in SB-1 58

FIR Register Implementation in SB-1 67

vi SB-I Users Manual

CHAPTER 5

CHAPTER 6

SB-I Users Manual

SiByte Confidential

Exception Processing 67
RESET 68
FP Instruction Issue Policy with Exception Off Mode 68
FP Instruction Issue Policy with Exception On Mode 68

Denormals 68
Exception Flags 69

The MDMX ASE Instructions 71

Introduction 71
List of Supplemental Instructions 71

MDMX ASE Instruction Categories in SB-1 78
MDMX Unit Block Diagram 79
Pipeline Flow by Categ~ry of Instructions 81

TYPE I Pipe 81
TYPE II Pipe 81
TYPE Ill Pipe 81

Instruction Latency and Throughput by Category of Instructions 82
Available Bypasses 82
Differences between the Pipes 82
Issue Rules and Restrictions 83

Memory Hierarchy and the Primary Instruction and Data
Caches 85

Introduction 85
Supported Cache and Memory Hierarchy 85

Level One (Primary) Caches 87

Instruction Cache (I-Cache) 87
Accessing the Instruction Cache 88
Address Fields Decoding 89
Parity/ECC Support 89
Notes on the Virtual Nature of the Instruction Cache 89

Data Cache (D-Cache) 90
Accessing the Data Cache 91

Address Fields Decoding 92

vii

CHAPTER 7

viii

Parity/ECC Support 92
Rules for Uncached Data Accesses 92
Operation of the Write Buffer 93

Merging Rules 93

SiByte Confidential

Pref etch Support for Primary Data Cache (User Level Pref etching and Streaming) 94

Regular Data Prefetching 95

Streaming Ptefetch Support in SB-1 95
The PREF and PREFX Instructions in SB-I 96

CACHE Instructions 100
CACHE Variants 100
Index Invalidate (I) 102
Index Load Tag (I) 102
Index Store Tag (I) 102
Hit Invalidate (I) 102
Index Load Data (I) 103
Index Store Data (I) 103
Index Invalidate (D) 103
Index Load Tag (D) 104
Index Store Tag (D) 104
Hit Invalidate (D) 104
Hit Writeback Invalidate (D) 104
Hit Writeback (D) 105
Index Load Data (D) 105
Index Store Data (D) 105

Cache Operation Effects on Duplicate Tags 106

CACHE Instruction Issue Rules 106
Register Definitions 106

Tag Registers (MIPS Compliant) 107
Data Registers (SiByte Debug Defined) 109
Cache Coherency Attributes 111

Virtual Memory Address Space and the TLB Format 113

Introduction 113

Supported Memory Address Space in SB-1 114
TheTLB 118

TLB Entry Format 119

SB-1 Users Manual

CHAPTER 8

CHAPTER 9

CHAPTER10

SB-I Users Manual

SiByte Confidential

The CPO Architecture 121

Introduction 121

Overview of CPO Registers 121
Processor Status and Control (Status, CPO Register 12, selO) 124
Processor Identification and Revision (PRld, CPO Register 15, selO) 125
Configuration Register (Config, CPO Register 16, selO) 126
Load Linked Address (UAddr, CPO Register 17, selO) 127
Watchpoint Address (WatchLo, CPO Register 18, selO-n) 127
Watchpoint Control (WatchHi, CPO Register 19, selO-n) 127
EJTAG Debug Register (Debug, CPO Register 23, selO) 127

Program Counter at Last EJTAG Debug Exception (DEPC, CPO Register 24, selO) 128
Performance Counter Interface (PerfCnt, CPO Register 25, selO) 128
Parity/ECC Error Control and Status (ErrCtl, CPO Register 26, selO) 128
Cache Error Control and Status (CacheErr, CPO Register 27, sel0-3) 128
Low-order Portion of Cache Data Interface (DataLo, CPO Register 28, sell) 128
High-order Portion of Cache Data Interface (DataHi, CPO Register 29, sell) 128
EJTAG Debug Exception Save Register(DESAVE, CPO Register 31, selO) 128

Privileged Resource Hazards 129
Privileged Resources and Instructions 129
Privileged Resource Hazards 130
CPO Register Side-Effects 131

Fetch Hazards 131

Execution Hazards 132

The Debug Architecture 137

Introduction 137

Debug Features 137
Watch Registers 137

EJTAG 139

Extended Debug Mode 141

Debug Signal Pins 143

Error Handling 145

Introduction 145

Instruction Cache 147

ix

CHAPTER11

CHAPTER 12

x

Implementation Notes: 147

Data Cache 148
Implementation Notes 149

TLB 150
Implementation Notes 150

BIU 151
General 151

Implementation Notes: 152

Error Reporting Registers 152

SiByte Confidential

The Peifonnance Monitor Architecture 157

Introduction 157
Architecture State and Features 158

Event Counter and Control Registers (Register= 25, Select= OxOO, OxOJ, Ox02, Ox03,
Ox04,0x05,0x06,0x07) 159
Counter Overflow Interrupt 160
Event Control and Address Registers (Select= OxJO, Oxll, Oxl 2) 161

Performance Events 167
Pending Issues 169

Multiprocessing Support 171

Introduction 171
Support for Atomic Operations 171
Processor Synchronization 173

Test and Set 173
Counter Based Synchronization 173

Coherency 173
Memory Model 173

Cache Organization and Coherency in SB-1 174
Instruction Stream Modifications 174
Caching Attributes 174

Processor Bringup 175

SB-1 Users Manual

CHAPTER13

SB-I Users Manual

SiByte Confidential

SB-1 Implementation Specific Details 177

Introduction 177
Clarifications on Implementation-Dependent Non-Privileged Instructions 177

Clarifications on Implementation-Dependent Privileged Instructions 178

xi

SiByte Confidential

xii SB-I Users Manual

SiByte Confidential

List of Figures
Introduction 21

SB-1 Overview 25
FIGURE 2-1 Simplified Block Diagram of SB-1 27

The CPU Instructions 31
FIGURE 3-1 EXE and LS Pipes in SB-1 37
FIGURE 3-2 EXEO Block Diagram 38 .
FIGURE 3-3 EXEi Block Diagram 40
FIGURE 3-4 LSO Unit Block Diagram 42
FIGURE 3-5 LSI Block Diagram 44

The FPU (CPl) and MIPS-3D ASE Instructions 49
FIGURE 4-1 Block Diagram of the Floating Point Unit 50

FIGURE 4-2 DIV Format 59

FIGURE 4-3 RECIP Format 61
FIGURE 4-4 RSQRT Format 63
FIGURE 4-5 SQRT Format 65
FIGURE 4-6 FIR Register Format in SB-I 67

The MDMX ASE Instructions 71
FIGURE 5-1 PAVGOB Format 72
FIGURE5-2 PAVGOB Format 74
FIGURE 5-3 PAVGOB Format 76
FIGURE 5-4 AO Pipe Block Diagram 79
FIGURE 5-5 Al Pipe Block Diagram 80

Memory Hierarchy and the Primary Instruction and Data Caches 85

SB-1 Users Manual

FIGURE 6-1 Memory Structures and Bus Organization around the SB-I
Core 86

xiii

FIGURE 6-2 Primary Instruction Cache Indexing in SB-1 88

FIGURE 6-3 Instruction Cache Organization in SB-1 89
FIGURE 6-4 Primary Data Cache Indexing in SB-1 91
FIGURE 6-5 Data Cache Organization in SB-1 92
FIGURE 6-6 Format for PREF Instruction 96
FIGURE 6-7 Format for PREFX Instruction 96

Virtual Memory Address Space and the TLB Format 113
FIGURE 7-1 SB-1 Virtual Address Space 116
FIGURE 7-2 TLB Entry Format in SB-1 119

The CPO Architecture 121
FIGURE 8-1 SB-1 Status and Control Register 124
FIGURE 8-2 PRid Register Format 125
FIGURE 8-3 MPV Field in SB-1 Config Register 126
FIGURE 8-4 LLAddr Register Format in SB-1 127

The Debug Architecture 137

Error Handling 145

The Performance Monitor Architecture 157
FIGURE 11-1 Performance Counter Control Register 159
FIGURE 11-2 Performance Counter Register 160
FIGURE 11-3 Cache Event Control Register 163
FIGURE 11-4 Event Instruction Address Register 164

FIGURE 11-5 Event Data Address Register 165

Multiprocessing Support 171

SB-1 Implementation Specific Details 177

SiByte Confidential

xiv SB-1 Users Manual

SiByte Confidential

List of Tables
Introduction 21

TABLE 1-1 Supplemental Documents to SB-1 Users Manual 23

SB-1 Overview 25
TABLE 2-1 SB-1 High Level Specification 25

The CPU Instructions 31
TABLE3-l
TABLE3-2
TABLE3-3
TABLE3-4
TABLE3-5
TABLE3-6
TABLE3-7

TABLE3-8
TABLE3-9
TABLE3-10
TABLE3-11

CPU Load, Store, and Memory Control Instructions 31

CPU Arithmetic Instructions 32
CPU Logical Instructions 33
CPU Move Instructions 34
CPU Shift Instructions 34
CPU Branch and Jump Instructions 35
CPU Trap Instructions 35
Obsolete Branch Instructions 36
Embedded Application Instructions 37
Instructions Supported by the EXEO Unit 39
EXEO Pipe Stages in SB-1 39

TABLE 3-12 Instructions Supported by the EXEl Unit 41
TABLE 3-13 EXEl Pipe Stages in SB-1 (All Except Divide) 41
TABLE 3-14 EXEl Pipe Stages in SB-1 for Divide Instructions 42
TABLE 3-15 Instructions Supported by the LSO Unit 43
TABLE 3-16 LSO Pipe Stages in SB-I 43
TABLE 3-I7 Instructions Supported by the LSI Unit 45
TABLE 3-I8 LSI Pipe Stages in SB-I 45
TABLE 3-I9 Instruction Throughput and Latency for EXE and LS Units by Inst

Category 46

TABLE 3-20 List of Available Bypasses in SB-I Core for EXO, EXI, LSO, and
LSI Units 46

TABLE 3-2I Instruction Types Issued to each Pipe 47

SB-1 Users Manual XV

SiByte Confidential

TABLE 3-22 Instruction Issue Rules and Restrictions for CPU instructions 47

The FPU (CPl) and MIPS-3D ASE Instructions 49
TABLE4-1
TABLE4-2

TABLE4-3

TABLE4-4
TABLE4-5

TABLE4-6

TABLE4-7
TABLE4-8

TABLE4-9

FP Block Description 49

FPO and FPI Pipe Operation 51

FPU Load/Store Instructions Supported in CPU Unit (Chapter
3) 51

FPU Arithmetic Instructions 51

FPU Move Instructions 52
FPU Convert Instructions 53

FPU Branch Instructions 53
Obsolete FPU Branch Instructions 54

MIPS-3D Instructions in the SB-1 Core 54
TABLE4-10 List of Available Bypasses· in SB-1 Core forEXO, EXl, LSO, and

LSI Units 55

TABLE 4-11 Instruction Types Issued to each Pipe 55

TABLE 4-12 Issue Rules and Restrictions for Floating Point Instructions 56
TABLE 4-13 FIR Register Field Descriptions 67

TABLE 4-14 SB-1 Exception Behavior 69

The MDMX ASE Instructions 71
TABLE5-1

TABLE5-2

TABLE5-3
TABLE5-4

TABLE5-5
TABLE5-6

TABLE5-7

TABLE5-8

TABLE5-9

SiByte Supported Additional MDMX Instructions 71

MDMX Instruction Categories in SB-1 78
MDMX TYPE-I Pipe Operation 81

MDMX TYPE-II Pipe Operation 81

MDMX TYPE-ID Pipe Operation 81

MDMX Instruction Latency and Throughput 82

List of Available Bypasses in SB-1 Core for EXO, EXI, LSO, and
LSI Units 82
Instruction Types Issued to each Pipe 82

Issue Rules and Restrictions for MDMX Instructions 83

Memory Hierarchy and the Primary Instruction and Data Caches 85

xvi

TABLE6-1

TABLE6-2

TABLE6-3

SB-1 Primary Instruction Cache Characteristics 87
SB-1 Primary Data Cache Characteristics 90

Cache Prefetch Support for Primary Data Cache 94

SB-1 Users Manual

TABLE6-4

TABLE6-5

TABLE6-6
TABLE6-7
TABLE6-8

TABLE6-9

SiByte Confidential

Regular Data Prefetch Support Provided by SB-1 95

Streaming Prefetch Support in SB- I 95
PREF Hint Field Encodings 97

Instruction Cache I 00
Data Cache IO I
TagLo Register: Register 28, Select 0 (Instruction Cache) 107

TABLE 6-10 TagHi Register: Register 29, Select 0 (Instruction Cache) 107
TABLE 6-11 TagLo Register: Register 28, Select 2 (Data Cache) 107
TABLE 6-I2 TagHi Register: Register 29, Select 2 (Data Cache) 108
TABLE 6-13 State/Coherent/Check Field Encodings 108
TABLE 6-I4 DataLo Register: Register 28, Select I (Instruction Cache) 109
TABLE 6-I5 DataHi Register: Register 29, Select I (Instruction Cache) 109
TABLE 6-I6 DataLo Register: Register 28, Select 3 (Data Cache) 109
TABLE 6-I7 DataHi Register: Register 29, Select 3 (Data Cache) 110
TABLE 6-I8 SB-I Cache Coherency Attributes llI

Virtual Memory Address Space and the TLB Format 113
TABLE 7-I Virtual Memory Address Space 114
TABLE 7-2 SB-I Cache Coherency Attributes 117
TABLE 7-3 TLB Organization in SB-I 118

The CPO Architecture 121
TABLES-I ListofCPORegistersinSB-I I2I
TABLE 8-2 PRid Register Fields in SB-I I25

TABLE 8-3 LLAddr Register Field Descriptions 127
TABLE8-4
TABLE8-5
TABLE8-6

Resources Required by MIPS64 Privileged Instructions I29

Processor Activities Requiring Privileged Resources 130
Operation Grouping of Privileged and Miscellaneous CPU
Operations 130

TABLE8-7
TABLE8-8

Implemented Interlocks for Each Pair of Operation Groups 13 I
CPO Registers that Affect Instruction Fetch 132

TABLE 8-9 Required/Generated CPO States by SB-I Instructions and
Activities 132

The Debug Architecture 137

SB-1 Users Manual xvii

Error Handling 145

SiByte Confidential

WatchLo/Hi Register Specifics 138 TABLE9-l

TABLE9-2
TABLE9-3
TABLE9-4
TABLE9-5
TABLE9-6

Debug Register: CPO Register 23, Sel = 0, EDM = 0 139
EDebug Register(CPO Register 23, Sel = 3) 141
Debug, Sel = 0, EDM = I 141
Debug Reset Behavior 142
Debug Signal Pins 143

TABLE 10-1 SB-I Error Types 146
TABLE 10-2 Instruction Cache Tag Field Protection 147
TABLE 10-3 Instruction Access Error Types 148
TABLE 10-4 Data Cache Tag Protection 148
TABLE 10-5 Load Errors 149
TABLE 10-6 Store Errors 149
TABLE 10-7 Cacheline Errors due to Evicts 150
TABLE 10-8 Error-Exception Types and Interventions 150
TABLE I 0-9 Duplicate Tag State/ Address Parity Cache Errors 151
TABLE 10-10 CPO Err Ctl Register Fields 152

TABLE 10-11 CacheErr-1 Format 153
TABLE 10-12 Validity of ldx and Way Fields in !Cache Errors 153
TABLE 10-13 CacheErr-D Format 154
TABLE 10-14 Validity ofldx, Way and PA Fields in DCache Errors 155
TABLE 10-15 Error Reporting Registers 156

The Performance Monitor Architecture 157
TABLE 11-1 Performance Counter Register Mapping 158

TABLE 11-2 Performance Counter Control Register Field Description 159
TABLE 11-3 Performance Counter Register Field Description 160
TABLE 11-4 Cache Event Control Register Field Description 163
TABLE 11-5 Event Instruction Address Register Field Description 164
TABLE 11-6 Event Data Address Register Field Description 165
TABLE 11-7 Instruction Count 167
TABLE 11-8 Microarchitectural Events 168

Multiprocessing Support 171

xviii SB-I Users Manual

SiByte Confidential

SB-1 Implementation Specific Details 177

SB-1 Users Manual xix

SiByte Confidential

xx SB-1 Users Manual

CHAPTER I Introduction

1.1 Introduction

This document supplements MIPS64 Specification
refer to the MIPS64 document for any specifics r
aforementioned document provides a hiS8>ry o

nologies Incorporated (MTI). The user should
IPS64 instruction set architecture. The

architecture together with details on the CPU, FPU
d Resource Architecture. and coprocessor architectures, and

This specification describes the act
clarify any and all implementatio

designers, operatin
the SB-1 processor~

tion of SB-1 processor. The purpose of this document is to
es listed in the MIPS64 Specification document.

ts hardware designers and software engineers comprising compiler
·1ers, and application writers wishing to optimize software performance on

1.2 Document Organization

This document is organized as follows:

Chapter 2 provides a general block diagram for the overall CPU and covers the functionality of the basic blocks.

SB-I Users Manual 1-21

Document Organization SiByte Confidential

Chapter 3 presents a general description of the ALU block together with an overview of the integer and load/
store instructions and their latencies.

Chapter 4 delves into floating point architecture specifics and covers FP instructions, latencies, and restrictions
for CPI category of instructions. This chapter also covers MIPS-3D Application Specific Extension (ASE)
category of instructions.

Chapter 5 deals with MIPS MDMX ASE and related issues.

Chapter 6 provides a basic description of SB-1 supported memory hierarchy, Caches, TLBs, Cache Operations,
and Cache Coherency Attributes.

Chapter 7 covers the MIPS64 Address Space as implemented by SB-1 core.

Chapter 8 specifies a complete listing of the CPO registers supported in SB-1 core.

Chapter 9 details the debug architecture for SB-1. SiB yte-specific enhancements to the standard MIPS64 Debug
architecture are described here.

Chapter 10 describes the Error handling capabilities of SB-1.

Chapter 11 addresses the performance monitoring architecture supported by SB-1. A complete listing of these
features and their usage through CPO architecture space registers is described in this chapter.

Chapter 12 provides a high level overview of the multiprocessing features supported by SB-1. Example code
segments featuring the MP capabilities of the processor are provided here.

Chapter 13 provides a list of all implementation-specific features in the MIPS64 Specification and provides the
SB-1 resolutions of these features.

1-22 SB-I Users Manual

Additional Documentation SiByte Confidential

1. 3 Additional Documentation

The following documents are required as supplement to this specification.

TABLE 1-1 Supplemental Documents to SB-1 Users Manual

Document Description Source

MIPS64 Specification, Revision 1.0 Consolidated MIPS I, II, III, IV, and V ISA MIPS Technologies Incorporated
Specifications with a new Privileged Resource
Architecture based on MIPS R4000 Processor

MIPS-3D ASE Specification, Revision 1.0 Describes 3D enhancements to the basic MIPS Technologies Incorporated
MIPS64 Architecture

MDMX Version 2.0 Specification, Revision 0.3.2 Describes MIPS Multimedia Extensions to the MIPS Technologies Incorporated
basis MIPS64 Architecture

MIPS RISC Architecture Volume I Describes MIPS basic instructions in detail MIPS Technologies Incorporated

MIPS RISC Architecture Volume II Describes MIPS basic instructions in detail MIPS Technologies Incorporated

MIPS Extended JTAG (EJTAG), Version 2.5 Describes MIPS EJTAG Specification MIPS Technologies Incorporated

1.4 What is Missing or Incomplete in this Version of the Document?

The following Chapters need additional work. A future revision of this document will provide further details.

• Chapter 4: The FPU (CP 1) and MIPS-JD ASE lnstructions. The exception specific implementation details
for the FPU unit need to be additionally elaborated upon.

• Chapter 5: The MDMX ASE Instructions. The implementation details of this unit are not finalized and are
subject to change from their current description in Chapter 5.

• Chapter 11: The Performance Monitor Architecture. The implementation details of this unit are not finalized
and are subject to change from their current description in Chapter 11.

SB-1 Users Manual 1-23

What is Missing or Incomplete in this Version of the Document? SiByte Confidential

1-24 SB-1 Users Manual

CHAPTER2 SB-1 Overview

2.1 Introduction

This chapter elaborates on high level features suppo
functionality is provided in subsequent chapters .

Further detail on specific SB-1

•
2.2 High Level Features

TABLE 2·1 SB-

FEATURE

Frequency

Issue Type

Pipe Architecture

SB-1 Users Manual

A) MIPS64 with SIMD Floating Point Functionality

MIPS-3DASE

MDMXASE

600-1000 MHz

Quad Inorder

Dual Enhanced-Skew Execute

Dual Memory

Support for 0-cycle load-to-use instruction sequences

2-25

High Level Features SiByte Confidential

TABLE 2-1 SB-1 High Level Specification

FEATURE SPECIFICATION

Caches Split I and D (Harvard Architecture)

Instruction 32K, 4-way, 32-Byte Lines, LRU Replacement Policy

Data 32K, 4-way, Non-blocking, 32-Byte Lines, LRU Replacement Policy

Branch Predictors 3x Structures

Direction Predictor 2-Level GShare, 4K-entry x 2-bit

Jump Register Cache 64-entry

Return Stack 8-entry

Peak OPS at 1000 MHz"

Integer 4 per cycle, 4 BOPS

Floating Point 8 per cycle, 8 GFLOPS

Power Consumption at 1000 MHz <4 Watts

Dhrystone 2.1 MIPS at 1000 MHz >2000

a. MADD instruction is counted as 2 distinct operations: one multiply and one add

Figure 2-1 shows a simplified block diagram for SB-1 core. Subsequent sections provide additional detail with
regard to the internals of SB-1.

2-26 SB-1 Users Manual

High Level Features SiByte Confidential

JmpReg Skewed Pipes
4x Issue EO

....._
Cache lnorder

..
64-En!_ry 2EXE I- - - -

- ..
IReg

2 Lei/St
DirPred

....- .. El I.
.....

4Kx2b ... t Lat= I cycle .. 32x64b

HI J_ LO

RetStack Total: 2 I Cycle

8-Entry + Skewed Pipes I! Fetch/ FO/AO
Decode/

1-----1 FPReg
Issue/

..... Fl/Al • ·Control
Lat = 412 cycles

__..
32x64b -...

l Total: 2 I Cycle

+ • LSO ... -...
I Cache MIPS64 I- - - - Double Pumped DCache ..

MIPS3D
MDMX LSl-

Llne=32B ... Llne=32B
32Kx4Way 0-cycle Id to use

..
32Kx4Way .,. • t 1 " .,.

I
J_
-1 ... ~

en ~ ti ~ 5 MBOX ~-
n
~ BIU .g • .. :::i TLB

;' CPO t:D 'Tl
a. 0

CJ<l 64x2-Entry "'
~

..... ~ ...
ZBbus

FIGURE 2-1 Simplified Block Diagram of SB-1

SB-1 Users Manual 2-27

SB-1 Units SiByte Confidential

2.3 SB-1 Units

Internally, the SB-1 core comprises the PC Unit, the Issue Unit, the Execute Unit, the Load/Store Unit, the
Floating Point Unit, the MDMX Unit, the Memory Unit, the Bus Interface Unit, and the Level One Instruction
and Data Caches. The following sections briefly describe the functionality of each unit.

2.3.1 The PC Unit

The PC Unit performs the sequencing of the instruction fetch together with completing instructions and detecting
exceptions. These functions are implemented via two subunits: the Fetch Unit and the Graduation Unit. The
responsibility of the Fetch Unit is to predict the program flow and qualify fetched instructions. The Graduation
Unit ensures that the instructions modify architected state in program order in light of branch mispredicts and
instruction exceptions.

2.3.1.1 The Branch Unit

As shown in Figure 2-1, SB-1 supports three unique structures to aid program control flow in three distinct areas.

2.3.1.1.1 Two Level GShare. Branch Direction Predictor

This structure, with 4K x 2bit entries works in conjunction with a 9-bit Branch History Register (BHR). The
contents of BHR are Exclusive-ORed with 11 PC bits to provide an index into the direction predictor table which
uses the 2-bit counter scheme to predict branch outcome (taken vs. not-taken). There can be up to 2 predictions
per cycle.

2.3.1.1.2 Return Stack <RS>

The eight entry processor-based Return Stack provides a mechanism to predict return addresses for subroutine
calls. SB-1 supports an 8-entry Return Stack.

2.3.1.1.3 .lump Register Cache (.lRC)

The Jump Register Cache is used to accelerate the execution of indirect branches through registers. SB-1
supports a 64-entry JRC. It provides a prediction mechanism for the target of indirect jumps through registers.

2.3.2 The Issue Unit (IBox)

The Issue Unit is responsible for issuing instructions to various functional units, and for tracking their progress
until they can be handed off to the graduation part of the PC Unit. This unit examines and keeps track of all
structural hazards as well as data dependencies in order to issue up to 4 instructions per cycle.

2-28 SB-I Users Manual

SB-1 Units SiByte Confidential

SB-1 supports decoupled front and back ends; the machine can continue processing instructions on instruction
cache misses. An instruction queue (IQ) buffers instructions as they are fetched from memory.

2.3.3 The Execute Unit (EO, El)

The Execute Unit is responsible for execution of ALU, Shift, and Branch instructions in the MIPS64 ISA. This
unit supports thirty-two 64-bit Integer registers and 64-bit HI/LO registers for multiplies. The execute unit
supports dual 8-stage, fully pipelined, I-cycle execution latency pipes with enhanced skewing to allow zero­
cycle load-to-use sequences. Multiply and divide instructions take additional cycles to complete.

2.3.4 The Load/Store Unit (LSO, LSl)

The Load/Store Unit executes memory load and store operations supported by the MIPS64 ISA. The load/store
unit supports dual 8-stage load/store pipelines with the ability to execute simple ALU instructions in one pipe.
This reduces ALU to address generation penalty for load/store address computations.

2.3.5 The Floating Point Unit (FO, Fl)

The Floating Point Unit executes MIPS64 floating point and MIPS-3D ASE categories of instructions. It is
IEEE-754 compatible and has support for Single, Double, and Paired-Single data formats.

There are thirty-two 64-bit Floating Point Registers in the FP Unit. The unit supports dual 11-stage, fully
pipelined, 4-cycle execution latency pipes with enhanced skewing to allow zero-cycle load-to-use sequences.

2.3.6 The MDMX Unit (AO, Al)

The MDMX unit implements MIPS MDMX instructions using the same registers as the Floating Point Unit. It
supports thirty-two 64-bit Floating Point Registers. The unit supports dual 9-stage, fully pipelined, 2-cycle
execution latency pipes with enhanced skewing to allow zero-cycle load-to-use sequences.

The MDMX unit has extended accumulator support, with 24 and 48-bit modes for 8 and 16-bitSIMD
computations, respectively.

2.3.7 The Memory Unit (MBox)

The Memory Unit implements the memory management functionality, as outlined in the MIPS64 Privileged
Resource Architecture. In particular, it supports Coprocessor 0 (CPO) functionality ofTLB, CACHE, and SYNC
category of instructions.

SB-1 Users Manual 2-29

SB-1 Specifics SiByte Confidential

2.3.8 The Bus Interface Unit (BIU)

This unit provides the interface between the core and the external bus.

2.3.9 Level One Instruction and Data Caches

SB-1supportsa32KB, 4-way set associative, virtually-indexed and virtually-tagged instruction cache and a
32KB, 4-way set associative, physically-indexed and physically-tagged data cache. This provides the processor
with a sizable portion of fast, on-chip memory.

SB-1 has a non-blocking data cache with support for up to 8 outstanding cachelines.

2.4 SB- I Specifics
. .

The remaining chapters in this document provide further details on the specifics of the major units in SB-1 core .

. 2-30 SB-1 Users Manual

CHAPTER3 The CPU Instructions

3.1 Introduction

This chapter provides a general overview of MIPS6
The information provided here should be regar

tions, as supported in SB-1 implementation.
ent to MIPS64 Specification document.

•
3.2 List of Instructions

of CPU category instructions supported in SB-1.

3.2.1 CPU Loa , mory Control Instructions

TABLE 3-1 CPU Loa~ Store, and Memory Control Instructions

Mnemonic Instruction

LB Load Byte

LBU Load Byte Unsigned

LH Load Halfword

LHU Load Halfword Unsigned

SB-I Users Manual 3-31

List of Instructions SiByte Confidential

TABLE 3-1 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LW Load Word

LWL Load Word Left

LWR Load Word Right

SB Store Byte

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

LL Load Linked Word

SC Store Conditional Word

SYNC Synchronize Memory Operations

LD Load Doubleword

LDL Load Doubleword Left

LDR Load Doubleword Right

LLD Load Linked Doubleword

LWU Load Word Unsigned

SCD Store Conditional Doubleword

SD Store Doubleword

SDL Store Doubleword Left

SDR Store Doubleword Right

PREF Prefetch Memory Data

PREFX Prefetch Memory Data Indexed

3.2.2 CPU Arithmetic Instructions

TABLE 3-2 CPU Arithmetic Instructions

Mnemonic Instruction

ADD Add Word

ADDI Add Immediate Word

ADDIU Add Immediate Unsigned Word

ADDU Add Unsigned Word

3-32 SB-1 Users Manual

List of Instructions SiByte Confidential

TABLE 3-2 CPU Arithmetic Instructions

Mnemonic Instruction

DIV Divide Word

DIVU Divide Unsigned Word

MULT Multiply Word

MULTU Multiply Unsigned Word

SLT Set on Less Than

SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate Unsigned

SLTU Set on Less Than Unsigned

SUB Subtract Word

SUBU Subtract Unsigned Word

DADD Add Doubleword

. DADDI Add Immediate Doubleword

DADDIU Add Immediate Unsigned Doubleword

DAD DU Add Unsigned Doubleword

DDIV Divide Doubleword

DDIVU Divide Unsigned Doubleword

DMULT Multiply Doubleword

DMULTU Multiply Unsigned Doubleword

DSUB Subtract Doubleword

DSUBU Subtract Unsigned Doubleword

3.2.3 CPU Logical Instructions

TABLE 3-3 CPU Logical Instructions

Mnemonic Instruction

AND Logical AND

ANDI Logical AND Immediate

LUI Load Upper Immediate

NOR Logical NOR

OR Logical OR

ORI Logical OR Immediate

SB-I Users Manual 3-33

List of Instructions SiByte Confidential

TABLE 3-3 CPU Logical Instructions

Mnemonic Instruction

XOR Logical XOR

XOR! Logical XOR Immediate

3.2.4 CPU Move Instructions

TABLE 3-4 CPU Move Instructions

Mnemonic Instruction

MFHI Move from HI

MFLO Move from LO

MTHI Move to HI

MTLO Move to LO

MOVF Move Conditional on Floating Point False

MOVN Move Conditional on Not Zero

MOVT Move Conditional on Floating Point True

MOVZ Move Conditional on Zero

3.2.5 CPU Shift Instruction

TABLE 3-5 CPU Shift Instructions

Mnemonic Instructions

SLL Shift Word Left Logical

SLLV Shift Word Left Logical Variable

SRA Shift Word Right Arithmetic

SRAV Shift Word Right Arithmetic Variable

SRL Shift Word Right Logical

SRLV Shift Word Right Logical Variable

DSLL Shift Doubleword Left Logical

DSLL32 Shift Doubleword Left Logical +32

DSLLV Shift Doubleword Right Logical Variable

DSRA Shift Doubleword Right Arithmetic

3-34 SB-1 Users Manual

List of Instructions SiByte Confidential

TABLE 3-5 CPU Shift Instructions

Mnemonic Instructions

DSRA32 Shift Doubleword Right Arithmetic +32

DSRAV Shift Doubleword Right Arithmetic Variable

DSRL Shift Doubleword Right Logical

DSRL32 Shift Doubleword Right Logical +32

DSRLV Shift Doubleword Right Logical Variable

3.2.6 CPU Branch and Jump Instructions

TABLE 3-6 CPU Branch and Jump Instructions

Mnemonic Instructions

BEQ Branch on Equal

BGEZ Branch on Greater Than or Equal Zero

BGEZAL Branch on Greater Than or Equal Zero and Link

BGfZ Branch on Greater Than Zero

BLEZ Branch on Less Than or Equal Zero

BLTZ Branch on Less Than Zero

BLTZAL Branch on Less Than Zero and Link

BNE Branch on Not Equal

J Jump

JAL Jump and Link

JALR Jump and Link Register

JR Jwnp Register

3.2.7 CPU Trap Instructions

TABLE 3-7 CPU Trap Instructions

Mnemonic Instruction

BREAK Breakpoint

SYSCALL System Call

TEQ Trap if Equal

SB-1 Users Manual 3-35

List of Instructions SiByte Confidential

TABLE 3-7 CPU Trap Instructions

Mnemonic Instruction

TEQI Trap if Equal Immediate

TGE Trap if Greater Than or Equal

TGEI Trap if Greater Than or Equal Immediate

TGEIU Trap if Greater Than or Equal Immediate Unsigned

TGEU Trap if Greater Than or Equal Unsigned

TLT Trap if Less Than

TLTI Trap if Less Than Immediate

TLTIU Trap if Less Than Immediate Unsigned

TLTU Trap if Less Than Unsigned

TNE Trap if Not Equal

TNEI Trap if Not Equal Immediate

3.2.8 Obsolete Branch Instructions

Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS64 Architecture.

TABLE 3-8 Obsolete Branch Instructions

Mnemonic Instruction

BEQL Branch on Equal Likely

BGEZALL Branch on Greater Than or Equal Zero and Link Likely

BGEZL Branch on Greater Than or Equal Zero Likely

BGTZL Branch on Greater Than Zero Likely

BLEZL Branch on Less Than or Equal Zero Likely

BLTZALL Branch on Less Than Zero and Link Likely

BLTZL Branch on Less Than Zero Likely

BNEL Branch on Not Equal Likely

3-36 SB-1 Users Manual

Block and Pipeline Diagrams SiByte Confidential

3.2.9 Embedded Application Instructions

TABLE 3-9 Embedded Application Instructions

Mnemonic Instruction

CLO Count Leading Ones in Word

CLZ Count Leading Zeros in Word

DCLO Count Leading Ones in Doubleword

DCLZ Count Leading Zeros in Doubleword

MADD Multiply and Add Word

MAD DU Multiply and Add Unsigned Word

MSUB Multiply and Subtract Word

MSUBU Multiply and Subtract Unsigned Word

MUL Multiply Word to Register

SSNOP Superscalar Inhibit NOP

3.3 Block and Pipeline Diagrams

The CPU block of SB-1 consists of a an Execute unit (EXE) and a Load/Store Unit (LS). Figure 3-1 shows the
pipes in each unit.

EXE Unit LS Unit
I

I I
I I

EXEO I EXEl LSO I LSI

I I
I I

..L

FIGURE 3-1 EXE and LS Pipes in SB-1

SB-1 Users Manual 3-37

Block and Pipeline Diagrams SiByte Confidential

3.3.1 The EXEO Unit

Figure 3-2 shows a block diagram of instruction execution flow in the EXEO pipe.

3-38

PC
Predicted PC

RT/Imm
RS

I
I

y_ ~ ~
I
I

I Branch Eval
I I

I I

Link PC
~ y
I I I

I I I

I I ALU1
I I I

I I I

• '
I I
I I

Shift I J..._.J
I I

I I

... _'t_ y_

~ 7

FIGURE 3-2 EXEO Block Diagram

-,.

+

....

Mispredict

Target PC

Output to Reg File

SB-1 Users Manual

Block and Pipeline Diagrams SiByte Confidential

The List of instructions supported by EXEO Unit is shown in Table 3-10.

TABLE 3-10 Instructions Supported by the EXEO Unit

List of Instructions supported by EXEO Unit
ADDs, SUBs, Logical Ops

Shifts

LUI

Branches/Jumps

CPI Branches

Sets

Traps

CLZ/CLO

Conditional Moves

MOVT,MOVF

MOVZ,MOVN

The pipeline diagram for EXEO unit is shown in Table 3-11.

TABLE 3-11 EXEO Pipe Stages in SB-1

Stage F D I 1 2 3a 4 5

ALU and Shift Fetch Decode Issue Skew! Skew2 ReadRF Execute Write RF

Branch Ops Fetch Decode Issue Skew I Skew2 ReadRF Check Prediction -- signal redirect if Write Link
mispredicted; Compute target and link Address to RF
addresses

CPI Branch Fetch Decode Issue Skew I Skew2 ReadRF Check Prediction -- signal redirect if Write Link
Ops ReadFPCCs mispredicted; Compute target and link Address to RF

addresses

MOVF,MOVT Fetch Decode Issue Skew! Skew2 ReadFPCCs Evaluate Condition Write RF

MOVZ, Fetch Decode Issue Skew! Skew2 ReadRF Compare rt to zero, Signal result to FP Unit
MOVN

a. FP Condition Codes are not bypassed

The skewed slots in pipe stages 1 and 2 allow the coissuing of load/store and dependent EXE instructions in the
same cycle.

SB-1 Users Manual 3-39

Block and Pipeline Diagrams

3.3.2 The EXEl Unit

The block diagram for EXEI Unit is shown in Figure 3-3.

3-40

RT/Imm
RS

* , I I ALU
I I

-•
I I Shift:
I I

I

n_ r •
I ¥ 1.lrl
1 u ttv 1fr

j "t

I D.I .~ I
I 1~1 e~

--
•
#:

'------!

"" • -•
~

l
FIGURE 3-3 EXEl Block Diagram

SiByte Confidential

~

/ .. Output to Reg File

SB-1 Users Manual

Block and Pipeline Diagrams SiByte Confidential

The List of instructions supported by EXEO Unit is shown in Table 3-12.

TABLE 3-12 Instructions Supported by the EXEl Unit

List of Instructions supported by EXEl Unit
ADDs, SUBs, Logical Ops

Shifts

LUI

Conditional Moves

Multiplies

Divides

MT/MF HI/LO

MOVT,MOVF

MOVZ,MOVN

The pipeline diagram for EXEi unit is shown in Table 3-13.

TABLE 3-13 EXEl Pipe Stages in SB-1 (All Except Divide)

Stage F D I 1 2 3a 4 5 6 7 8

Simple ALU Ops Fetch Decode Issue Skewl Skew2 ReadRF Execute Write RF
and Shifts

MULT Fetch Decode Issue Skew! Skew2 Read RF Execute! Execute2 Execute3 Write HI/LO

DMULT Fetch Decode Issue Skewl Skew2 Read RF Execute! Execute2 Execute3 Execute4; Write HI

Write LO

MUL Fetch Decode Issue Skew! Skew2 ReadRF Execute! Execute2 Execute3 Write RF

MADD/MSUB Fetch Decode Issue Skewl Skew2 Read RF Execute! Execute2 Read HI/LO; Write HI/LO
Execute3

MTHl/MTLO Fetch Decode Issue Skewl Skew2 ReadRF Write HI/LO

MFHl/MFLO Fetch Decode Issue Skew! Skew2 Read HI/LO Write RF

MOVF,MOVT Fetch Decode Issue Skew! Skew2 ReadFPCCs Evaluate Write RF
Condition

MOVZ,MOVN Fetch Decode Issue Skew! Skew2 Read RF Compare rt
to zero,

Signal
result to FP
Unit

a. FP Condition Codes are not bypassed

SB-1 Users Manual 3-41

Block and Pipeline Diagrams SiByte Confidential

As in EXEO, the skewed slots in pipe stages 1 and 2 allow the coissuing of load/store and dependent EXE
instructions in the same cycle.

Table 3-14 shows the pipeline stages for integer divide operations supported in EXEl unit.

TABLE 3-14 EXEl Pipe Stages in SB-1 for Divide Instructions

Stage F D I 1 2 3 4

DIV/DIVU Fetch Decode Issue Skewl Skew2 Read RF Assen div_busy;

Execute I

DDIV/DDIVU Fetch Decode Issue Skewl Skew2 Read RF Assen div_busy;

Execute!

3.3.3 The LSO Unit

The block diagram for LSO Unit is shown in Figure 3-4.

3-42

Off set
Base

1
Adder

•
Address Error

Logic

FIGURE 3-4 LSO Unit Block Diagram

••• 36168 ••• 40n2

... Execute33; ... Write Hl/LO

Deassen div_busy

... Execute65; ... Write HI/LO

Deassen div_busy

.. Address to TLB

.. Address Error Exe

SB-1 Users Manual

Block and Pipeline Diagrams

The List of instructions supported by LSO Unit is shown in Table 3-15.

TABLE 3-15 Instructions Supported by the LSO Unit

List of Instructions supported by LSO Unit
Integer and Floating Point Loads and Stores

SiByte Confidential

The pipeline diagram for LSO unit is shown in Table 3-16. The diagram applies to both integer and floating point
loads and stores.

TABLE 3-16 LSO Pipe Stages in SB-1

Stage F D I 1 2 3 4 5 ••. 9

Loads Fetch Decode ReadRF Compute Address; Cache Tag Lookup, - Write RF

Access TLB Cache Data Read
and Way Select

Stores Fetch Decode Read RF Compute Address; PA Pushed into - - Data Pushed ... Cache accessed after

Access TLB DC FIFO intoDCFIFO graduation of store
instruction and
availability of free slot
in DCache

SB-1 Users Manual 3-43

Block and Pipeline Diagrams

3.3.4 The LSl Unit

The block diagram for LSI Unit is shown in Figure 3-5.

3-44

Offset
Base

"T

I
I

't.

ALU

IAddrds Error
I Lqgic

...

CPO *river

__y_ _y

~ 7

FIGURE 3-5 LSl Block Diagram

SiByte Confidential

.... Address to TLB

_. Address Error Exe

..... CPO Bus

.... Output to Reg File

SB-I Users Manual

Block and Pipeline Diagrams SiByte Confidential

The list of instructions supported by LSI Unit is shown in Table 3-17.

TABLE 3·17 Instructions Supported by the LSI Unit

List of Instructions supported by LSI Unit
ADDs, SUBs, Logical Ops

LUI

Loads and Stores

Indexed Loads/Stores

TLB OPs

MT/MF CPO

Cache Ops

The pipeline diagram for LS 1 unit is shown in Figure 3-18.

TABLE 3-18 LSI Pipe Stages in SB-I

Stage F D I 1 2 3 4 5 6 7 ••• 9

Loads Fetch Decode ReadRF Compute Access Cache Data Write RF
Address TLB, Readand

Cache Tag Way Select

Lookup

Stores Fetch Decode ReadRF Compute Access Data ... Cache
Address TLB; Pushed accessed

PA Pushed into after

into DC FIFO graduation

DCFIFO of store
instruction
and
availability
of free slot
inDCache

ALU Ops Fetch Decode Read RF Execute Pipe Pipe Write RF

MFCO Fetch Decode Drive Drive CPO Pipe Write RF
Control Bus

MTCO Fetch Decode Read RF Pipe Pipe Pipe Pipe Drive Drive Write RF
Control CPO Bus

Cache Ops Fetch Decode ReadRF Compute
Address

SB-1 Users Manual 3-45

Instruction Latency and Throughput by Category of Instructions SiByte Confidential

3.4 Instruction Latency and Throughput by Category of Instructions

Table 3-19 shows the latency and throughput by category for all instructions supported in the EXE and LS Units.

TABLE 3-19 Instruction Throughput and Latency for EXE and LS Units by Inst Category

Throughput (1 Instruction/x cycles
Instruction Category Latency per supported pipe) Co-issue w/ Dependent Op?

ALU ops to EXE Pipes I I No

ALU ops to LSI Pipe I I Yes -- to EXE Pipes Only

Shifts I I No

Branches I I NA

32-bit Multiplies 3 I No

64-bit Multiplies 3 to LO, 4 to HI 2 No

MTLO/MTHI - I No

MFLO/MFHI - I No

32-bit Divides 36 35 No

64-bit Divides 68 67 No

Load - I Yes -- to EXE Pipes Only

Stores - I No

MFCO - I Yes -- to EXE Pipes Only

MTCO - 1 No

3.5 Available Bypasses

Table 3-20 shows the available bypasses among EXO, EXl, LSO and LSI units.

TABLE 3-20 List of Available Bypasses in SB-1 Core for EXO, EXl, LSO, and LSI Units

Fromtro EXO EXl LSO LSI

EXO Yes Yes

EXI Yes Yes

EXI (MUL Inst Only) Yes Yes

LSOLoad Yes Yes Yes Yes

LSI Data Yes Yes Yes Yes

LSI Load Yes Yes Yes Yes

3-46 SB-1 Users Manual

Instruction Types Issued to each Pipe SiByte Confidential

3.6 Instruction Types Issued to each Pipe

Table 3-21 summarizes the types of instructions that can be issued to each one ofEXO, EXl, LSO, and LSI pipes.

TABLE 3-21 Instruction Types Issued to each Pipe

Instruction Type EXOPipe EXl Pipe LSOPipe LSI Pipe

ADDs, SUBs, Logical Ops Yes Yes Yes

Shifts Yes Yes

LUI Yes Yes Yes

Branches/Jumps Yes

Sets Yes

Traps Yes

CLZ/CLO Yes

Integer MOVZ, MOVN Yes Yes

FP MOVZ, MOVN Yes Yes

MOVF,MOVT Yes Yes

Multiplies Yes

Divides Yes

MT/MF HI/LO Yes

Loads/Stores Yes Yes

Indexed Loads/Stores Yes

CacheOPs Yes

TLBOPs Yes

MT/MF CPO Yes

3. 7 Issue Rules and Restrictions

Table 3-22 identifies issue rules and restrictions for EXE and LS pipes. These restrictions are enforced by
hardware interlocks.

TABLE 3-22 Instruction Issue Rules and Restrictions for CPU instructions

Instruction A Instruction B Restrictions

MUL Any dependent op to EXO or EXI Dependent op can issue 3 cycles after MUL

MUL Any dependent op to LSO or LS I Dependent op can issue 8 cycles after the MUL

SB-1 Users Manual 3-47

Differences between 32 and 64-bit Modes of Operation SiByte Confidential

TABLE 3-22 Instruction Issue Rules and Restrictions for CPU instructions

Instruction A Instruction B Restrictions

MULT, MADD, MSUB MFLO,MFHI MF* instruction can issue two cycles after the multiply

DMULT MFLO MFLO can issue two cycles after DMULT

DMULT MFHI MFHI can issue three cycles after DMULT

DMULT Any Multiply No multiply instructions may be issued in the cycle immediately
following a DMULT

DIV,DDIV DIV,DDIV Another divide cannot be issued while there is a divide in the pipe

DIV,DDIV MFLO,MFHI HI/LO reads cannot be issued while there is a divide in the pipe

DIV,DDIV Any multiply except MUL Multiplies that write HI/LO cannot be issued while there is a divide
in the pipe

Shift or ALU op to EXE pipes Any dependent LS op Dependent op can issue 4 cycles after the shift

ALU op to LS I pipe Dependent LS op Dependent op can issue the next cycle after the ALU op; cannot co-
issue

Load, Store, MFCO Dependent LS op Dependent op can issue 4 cycles after the LD/ST

3.8 Differences between 32 and 64-bit Modes of Operation

EXE Ops: In 32-bit mode, 64-bit instructions cause reserved instruction exceptions

LS/ST Ops: Address errors are generated based on the mode as specified in the MIPS64 Specification.

3-48 SB-I Users Manual

CHAPTER4

4.1 Introduction

The FPU (CPI) andMIPS-3D
ASE Instructions

This chapter provides a general overview of MIPS6
instructions, as supported in SB-1. The informat~~it~,
MIPS64 Specification and MIPS-3D ASE doc · ts:'tt411'

:l'

IPS-3D ASE (Application Specific Extension)
'here should be regarded as a supplement to

4.2 High Level Descri

tcs of the FP Units in SB-1.

TABLE4-1 FP

Feature Description

Number of FP Pipes 2: FPO Pipe and FPI Pipe

Symmetrical Pipes? No (See detailed pipe descriptions)

Number of Stages per FP Pipe 11

FP Latency 4 for a majority of the instructions (See detailed pipe descriptions)

Fully Pipelined? Yes for a majority of the instructions (See detailed pipe descriptions)

SB-1 Users Manual 4-49

Block and Pipeline Diagrams SiByte Confidential

TABLE 4-1 FP Block Description

Feature Description

Maximum Number of PP Operations per Cycle per Pipe 4 Single Precision PP Operations

(2 Multiply Adds on Paired Single Operands per One Instruction)

Maximum Number of PP Operations per Cycle in SB-I 8 Single Precision PP Operations

4.3 Block and Pipeline Diagrams

Figure 4-1 shows a high level block diagram of the Floating Point Unit in SB-1.

IRF FRF
LOO
LDl

fd fd

fs f

MUL ADD APX MUL
(Approximate)

FPlPipe

FIGURE 4-1 Block Diagram of the Floating Point Unit

4-50

FRF

ADD

FPO Pipe

APX
(Approximate)

SB-I Users Manual

Instruction Latency and Throughput by Category of Instructions SiByte Confidential

Table 4-2 shows Floating Point pipe diagram for FPO and FPI pipes.

TABLE 4-2 FPO and FPl Pipe Operation

Stage F D I 1 2 3 4 5 6 7 8

FPOps Fetch Decode Issue SI S2 Read RF Execute! Execute2 Execute3 Execute4 Write RF

4.4 Instruction Latency and Throughput by Category of Instructions

The following tables present the list of supported instructions in SB- I Floating Point Unit and their associated
latencies.

TABLE 4-3 FPU Load/Store Instructions Supported in CPU Unit (Chapter 3)

Instruction Description

LWCI Refer to Chapter 3

SWCI Refer to Chapter 3

LDC! Refer to Chapter 3

SDCI Refer to Chapter 3

LDXCI Refer to Chapter 3

LWXCI Refer to Chapter 3

SDXCl Refer to Chapter 3

SWXCl Refer to Chapter 3

LUXCI Refer to Chapter 3

SUXCI Refer to Chapter 3

All instructions in Table 4-3 can be issued to LS I pipe. The first four instructions can be additionally issued to
LSOpipe.

TABLE 4-4 FPU Arithmetic Instructions

Instruction Supported Data Formats Latency Throughput (1 Instruction/x cycles per supported pipe)

ABS Single, Double, Paired Single 41414 I

ADD Single, Double, Paired Single 4/4/4 I

C.cond Single, Double, Paired Single 4/4/4 I

DIV Single, Double, Paired Single 24/32/24 4 Insts/24 cycles (S), 4 Insts/32 cycles (D), 4 lnsts/24 cycles (PS)

MUL Single, Double, Paired Single 4/4/4 I

SB-1 Users Manual 4-51

Instruction Latency and Throughput by Category of Instructions SiByte Confidential

TABLE 4-4 FPU Arithmetic Instructions

Instruction Supported Data Formats Latency Throughput (1 lnstruction/x cycles per supported pipe)

NEG Single, Double, Paired Single 4/4/4 I

SUB Single, Double, Paired Single 41414 I

SQRT Single, Double, Paired Single 28/40/28 4 lnsts/28 cycles (S), 4 lnsts/40 cycles (D), 4 lnsts/28 cycles (PS)

MADD Single, Double, Paired Single 8/8/8 I

MSUB Single, Double, Paired Single 8/8/8 I

NMADD Single, Double, Paired Single 8/8/8 I

NMSUB Single, Double, Paired Single 8/8/8 I

REC IP Single, Double, Paired Single 12/20/12 4 Insts/12 cycles (S), 4 lnsts/20 cycles (D), 4 lnsts/12 cycles (PS)

RSQRT Single, Double, Paired Single 16/28/16 4 lnsts/16 cycles (S), 4 Insts/28 cycles (D), 4 lnsts/16 cycles (PS)

TABLE 4-5 FPU Move Instructions

Instruction Supported Data Formats Latency Throughput (1 lnstruction/x cycles .per supported pipe)

CFC! - I I

CTCI - 4 I

MFCI - I I

MTCI - 4 I

DMFCI - I I

DMTCI - 4 I

MOV Single, Double, Paired Single 4 I

MOVF Single, Double, Paired Single 4 I

MOVN Single, Double 4 I

MOVT Single, Double, Paired Single 4 I

MOVZ Single, Double 4 I

4-52 SB-1 Users Manual

Instruction Latency and Throughput by Category of Instructions SiByte Confidential

TABLE 4-6 FPU Convert Instructions

Instruction Supported Data Fonnats Latency Throughput (1 Instruction/x cycles per supported pipe)

CVT.D Single, Word, Long 4 I

CVT.L Single, Double 4 1

CVT.PS Single, (Paired Word) 4 I

CVT.S Word, Double, Long, Paired Lower, Paired Upper 4 I

CVT.W Single, Double 4 I

CEIL.W Single, Double 4 I

CEIL.L Single, Double 4 I

FLOOR.W Single, Double 4 I

FLOOR.L Single, Double 4 I

ROUND.W Single, Double 4 1

ROUND.L Single, Double 4 I

TRUNC.W Single, Double 4 I

TRUNC.L Single, Double 4 I

ALNV Paired Single 4 I

PLL Paired Single 4 1

PLU Paired Single 4 I

PUL Paired Single 4 I

PUU Paired Single 4 I

TABLE 4-7 FPU Branch Instructions

Instruction Latency

BClF Refer to Chapter 3

BClT Refer to Chapter 3

SB-1 Users Manual 4-53

MIPS-30 ASE Instructions

TABLE 4-8 Obsoletea FPU Branch Instructions

Instruction Supported Data Formats

BClFL Refer to Chapter 3

BCITL Refer to Chapter 3

a. Software is strongly encouraged to avoid
use of the Branch Likely instructions, as
they will be removed from a future revi­
sion of the MIPS64 architecture.

4.5 MIPS-JD ASE Instructions

SiByte Confidential

Table 4-9 lists the MIPS-3D ASE instructions supported in SB-I. The execution of these instructions is
supported through the Floating Point Unit.

TABLE 4-9 MIPS-3D Instructions in the SB-1 Core

Instruction Supported Data Formats Latency Throughput (1 Instruction/x cycles per supported pipe)

ADDR Paired Single 4 1

MULR Paired Single 4 1

RECIPl Single, Double, Paired Single 4 1

RECIP2a Single, Double, Paired Single 8 1

RSQRTI Single, Double, Paired Single 4 1

RSQRT2 Single, Double, Paired Single 8 1

CVT.PS (Single), Paired Word 4 1

CVT.PW Paired Single 4 I

CABS Single, Double, Paired Single 4 I

BCIANY2F - - -
BC1ANY2T - - -
BCIANY4F - - -

BCIANY4T - - -

a. RECIP2 is implemented as nmsub fd, 1, fs, ft

4-54 SB-I Users Manual

Available Bypasses SiByte Confidential

4.6 Available Bypasses

Table 4-10 shows the available bypasses among Floating Point, Load/Store and Integer Register File units.

TABLE 4-10 List of Available Bypasses in SB-1 Core for EXO, EXl, LSO, and LSl Units

Fromffo FPO FPl

FPO Yes Yes

FPl Yes Yes

LSOLoad Yes Yes

LSl Load Yes Yes

Integer Register File Yes Yes

4. 7 Differences between the Pipes

Table 4-11 summarizes the types of instructions that can be issued to each one of FPO and FP 1 floating point
pipes. The two pipes are symmetrical for most regular floating point operations, but the majority of MIPS-3D
instructions can be issued to FP 1 pipe only.

TABLE 4-11 Instruction Types Issued to each Pipe

Instruction Type FPO Pipe FPl Pipe

All Except Below Yes Yes

C.cond Yes No

DIV Yes Yes

REC IP Yes Yes

RSQRT Yes Yes

SQRT Yes Yes

RECIPl Yes Yes

RECIP2 Yes Yes

RSQRTl Yes Yes

RSQRT2 Yes Yes

CABS Yes No

SB-1 Users Manual 4-55

Issue Rules and Restrictions SiByte Confidential

4.8 Issue Rules and Restrictions

Table 4-12 identifies the issue rules and restrictions for floating point instructions.

TABLE 4-12 Issue Rules and Restrictions for Floating Point Instructions

Instruction A Instruction B Restrictions

All Except below All Except below Dependent op can issue 4 cycles after instruction

REC IP Any dependent op Dependent op can issue 9 cycles after for Single Precision and Paired Singles
and 15 cycles after for Double Precision

RSQRT Any dependent op Dependent op can issue 12 cycles after for Single Precision or Paired Singles
and 21 cycles after for Double Precision

DIV Any dependent op Dependent op can issue 18 cycles after for Single Precision and Paired Singles
and 24 cycles after for Double Precision

SQRT Any dependent op Dependent op can issue 28 cycles after for Single Precision and Paired Singles
and 40 cycles after for Double Precision

MADD, MSUB, NMADD, Any dependent op Dependent op can issue 8 cycles after for Single Precision, Double Precision,
NMSUB, REC1P2, RSQRT2 and Paired Singles (unless accumulator of MADD, See Section 4.9.1).

4.9 Implementation Details on Special Instructions

The next sections comment on SB-1 specific implementation details with regard to a few FP instructions.

4.9.1 MADD, MSUB, NMADD, NMSUB

OPERATION fd, fr, fs, ft; fd ~fs * ft +/- fr

This group of instructions is implemented as an IEEE rounded multiply followed by an IEEE rounded add, all
with an 8-cycle latency. Operand fr is read 4 cycles after operands fs and ft. It can also be sourced from a
bypass. These instructions behave like a separately issued MUL followed by an ADD. Exception flags of both
MUL and ADD are ORed and stored in the FCSR.

An operation that accumulates the result of several multiplies is executed with 3 bubbles between subsequent
ops. To avoid the bubbles, it is recommended to process up to 4 different multiply-accumulate type operations in
parallel. An example follows:

4-56

MADD fO, fO, fl, f2
3 bubbles (nops)
MADD fO, fO, f4, fS
3 bubbles (nops)

(fO

(fO

fO + fl * f2) "

fO + f4 * fS)

SB-I Users Manual

Implementation Details on Special Instructions SiByte Confidential

MADD fO, fO, f6, f7 (fO = fO + f6 * f7)

The above sequence can be optimized by interleaving four independent streams as such:

MADD fO, fO, fl, f2 Stream 1

MADD f8, f8, f9, flO Stream 2
MADD f16, fl6, fl7, f18 Stream 3
MADD f24, f24, f25, f26 Stream 4

MADD fO, fO, f4, fS Stream 1
MADD f8, f8, fll, f12 Stream 2
MADD f16, f16, f19, f20 Stream 3
MADD f24, f24, f27, f28 Stream 4

MADD fO, fO, f6, f7 Stream 1
MADD f8, f8, f13, f14 Stream 2
MADD fl6, f16, f21, f22 Stream 3
MADD f24, f24, f29, f30 Stream 4

These instructions are fully pipelined, i.e., each pipe can absorb a multiply-add type operation every cycle.

4.9.2 DIV Operation

DIV fd, fs, ft; fd f- fs I ft

In SB-1, this operation is implemented using RECIP.fmt, MUL.fmt, and a rounding step to obtain the correctly
rounded IEEE result. DIV operations with exponent ft= 254, 253 for single precision and exponent of ft= 2047,
2046 for double precision computes are not implemented and will cause an unimplemented exception.

If rounding precision is not required, this instruction can be implemented using RECIP and MUL instructions.
This saves the rounding step which take 8 cycles to execute.

Hence the sequence

RECIP.fmt fl, f2
MUL.fmt fl, fl, f3

has 8 fewer cycles than

DIV.fmt fl, f3, f2

SB-1 Users Manual 4-57

Supplemental FP Instruction in SB-1 SiByte Confidential

4.9.3 SQRT Operation

SQRT fd, fs, ft; fd ~sqrt(fs)

In SB-1, this operation is implemented using RSQRT.fmt, MUL.fmt, and a rounding step to obtain the correctly
rounded IEEE result.

If rounding precision is not required, this instruction can be implemented using RECIP and MUL instructions.
This saves the rounding step which take 8 cycles to execute.

Hence the sequence

RSQRT.fmt fl, f2
MUL.fmt fl, fl, f2

has 8 fewer cycles than

SQRT.fmt fl, f2

4.9.4 RECIPl and RSQRTl Operations

RECIPl computes an approximation of 1/x and RSQRTI computes an approximation of 1/sqrt(x), both with at
least 14 bits of precision for Single, Double and Paired Single operands.

For further detail on these operations, refer to MIPS-3D Specifications.

4.9.5 RECIP2

RECIP2 computes -(a* b - 1) for any number in Single, Double, and Paired Single format and is implemented
using NMSUB fd, l, fs, ft operation.

4.9.6 RSQRT2

RSQRT2 computes -(a* b - 1) I 2 for any number in Single, Double, and Paired Single format and is
implemented using NMSUB fd, 1, fs, ft operation with divide by 2 factored in at the end.

4.10 Supplemental FP Instruction in SB-1

This section describes the supplemental floating point instructions supported in SB-I.

4-58 SB-1 Users Manual

Supplemental FP Instruction in SB-1 SiByte Confidential

Floating Point Divide DIV.fmt

31 26 25 21 20 16 15 ll 10 65 0

I CO Pl I fmt I ft I f s I f d I DIV I 010001 000011

6 5 5 5 5 6

FIGURE 4-2 DIV Format

Format:
DIV.S fd, fs, ft
DIV.D fd, fs, ft
DJ:V.PS fd, fs, ft SB-1 Addition

Purpose: To divide FP values

Description: fd ~ fs / ft

The value in FPR ts is divided by the value in FPR ft. The result is calculated to infinite precision,

rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands

and result are values in format fmt.

Restrictions:
The fields ts, ft, and fd must specify FPRs valid for operands of type fmt; if they are not

valid, the result is undefined.

The operands must be values in format fmt; if they are not, the result is undefined and

the value of the operand FPRs becomes undefined.
Unimplemented Exceptions for exponent of ft= 254, 253 for DIV.Sand DIV.PS and for exponent of
ft= 2047, 2046 tor DIV.D

SB-I Users Manual 4-59

Supplemental FP Instruction in SB-1 SiByte Confidential

Operation:
StoreFPR (fd, fmt, ValueFPR(fs, frnt) I ValueFPR(ft, frnt))

Exceptions: Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions: Inexact, Invalid Operation, Unimplemented Operation,

Division-by-zero, Overflow, Underflow

4-60 SB-1 Users Manual

Supplemental FP Instruction in SB-1 SiByte Confidential

Reciprocal Approximation RECIP.fmt

31 26 25 21 20 16 15 1110 65 0

I CO Pl I fmt I 0 I f s I f d I REC IP I 010001 010101

6 5 5 5 5 6

FIGURE 4-3 RECIP Format

Format:
RECIP.S fd; fs
RECIP.D fd, fs
RECJ:P.PS fd, fs SB-1 Addition

Purpose: To approximate the reciprocal of an FP value (quickly)

Description: fd f- 1. o / fs

The reciprocal of the value in FPR ts is approximated and placed into FPR fd. The operand and result

are values in format fmt.

The numeric accuracy of this operation does not meet the accuracy specified by the IEEE 754 Floating

Point standard. The computed result differs from both the exact result and the IEEE-mandated repre­

sentation of the exact result by no more than one unit in the least-significant place (ULP).

The result is not affected by the current rounding mode in FCSR.

Restrictions:
The fields ts and fd must specify FPRs valid for operands of type fmt; if they are not valid,

the result is undefined.

The operand must be a value in format fmt; if it is not, the result is undefined and the value of the aper-

SB-1 Users Manual 4-61

Supplemental FP Instruction In SB-1 SiByte Confidential

and FPR becomes undefined.

Operation:
StoreFPR(fd, fmt, 1.0 I ValueFPR(fs, fmt))

Exceptions: Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions: Inexact, Invalid Operation, Unimplemented Operation,

Division-by-zero, Overflow, Underflow

4-62 SB-1 Users Manual

Supplemental FP Instruction in SB-1 SiByte Confidential

Reciprocal Square Root Approximation RSQRT.fmt

31 26 25 21 20 16 15 ll 10 65 0

I CO Pl I fmt I 0 I f s I f d I RSQRT I 010001 010110

6 5 5 5 5 6

FIGURE 4-4 RSQRT Format

Format:
RSQRT.S fd, fs

RSQRT.D fd, fs
RSQRT.PS fd, fs SB-1 Addition

Purpose: To approximate the reciprocal square root of an FP value (quickly)

Description: fd ~ 1. o / SQRT (fs l

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR
fd. The operand and result are values in format fmt.

The numeric accuracy of this operation does not meet the accuracy specified by the IEEE 754 Floating
Point standard. The computed result differs from both the exact result and the IEEE-mandated repre­

sentation of the exact result by no more than two units in the least-significant place (ULP).

The result is not affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is

undefined.

The operand must be a value in format fmt; if it is not, the result is undefined and the value of the oper-

SB-1 Users Manual 4-63

Supplemental FP Instruction in SB-1 SiByte Confidential

and FPR becomes undefined.

Operation:
StoreFPR(fd, frnt, 1.0 I SquareRoot(ValueFPR(fs, frnt)))

Exceptions: Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions: Inexact, Invalid Operation, Unimplemented Operation,
Division-by-zero, Overflow, Underflow

4-64 SB-I Users Manual

Supplemental FP Instruction in SB-1

Floating Point Square Root

31

CO Pl
010001

6

26 25

fmt

5

21 20 16 15

0

5

FIGURE 4-5 SQRT Format

Format:
SQRT. s· fd, fs

SQRT.D fd, fs

SQRT.PS fd, fs

Purpose: To compute the square root of an FP value

Description: fd f-- SQRT (£s l

1110 65

f s f d

5 5

SB-1 Addition

SiByte Confidential

SORT
000100

6

SQRT.fmt

0

The square root of the value in FPR fs is calculated to infinite precision, rounded according to the cur­
rent rounding mode in FCSR, and placed into FPR fd. The operand and result are values in format fmt.

If the value in FPR fs corresponds to - O, the result is - O.

Restrictions:
If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
undefined.

The operand must be a value in format fmt; if it is not, the result is undefined and the value of the oper­
and FPR becomes undefined.

SB-1 Users Manual 4-65

Supplemental FP Instruction in SB-1 SiByte Confidential

Operation:
StoreFPR(fd, fmt, SquareRoot(valueFPR(fs, fmt)))

Exceptions: Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions: Inexact, Invalid Operation, Unimplemented Operation

4-66 SB-1 Users Manual

FIR Register Implementation in SB-1 SiByte Confidential

4.11 FIR Register Implementation in SB-1

The Floating Point Implementation Register (FIR) is a 32-bit read-only register that contains information
identifying the capabilities of the floating point unit, the floating point processor identification, and the revision
level of the floating point unit. Figure 4-6 shows the format of the FIR register and Table 4-13 describes the FIR
register fields.

31 201918171615 8 7

I [

0 I3J PST DI sJ Implementation l
1j1j1 I Oxl

FIGURE 4-6 FIR Register Format in SB-1

TABLE 4-13 FIR Register Field Descriptions

Name Bits Description

0 31:20 Reserved for future use; reads as zero

3D 19 Indicates that the MIPS-3D ASE is implemented

PS 18 Indicates that the paired single (PS) floating point data type and instructions are
implemented

D 17 Indicates that the double-precision (D) floating point data type and instructions
are implemented

s 16 Indicates that the single-precision (S) floating point data type and instructions are
implemented

ProcessorID 15:8 Identifies the floating point processor. This value matches the corresponding field
of the PRld CPO register

Revision 7:0 Specifies the revision number of the floating point unit. This allows software to
distinguish between one revision and another of the same floating point processor
type.

4.12 Exception Processing

Revision
Oxl

0

J

Read/Write Reset State

0 0

R 1

R 1

R 1

R 1

R Preset

R Preset

This section is currently being worked on and will be fully included in the next revision of this document.

SB-1 Users Manual 4-67

Exception Processing SiByte Confidential

4.12.1 RESET

After Reset, all exceptions are disabled, flush to zero is enabled, and rounding mode is set to RN (Round to
nearest-even).

4.12.2 FP Instruction Issue Policy with Exception Off Mode

If no exception is enabled and flush to zero is enabled, the issue box optimally schedules FP operations into the
FP unit.

4.12.3 FP Instruction Issue Policy with Exception On Mode

If any exception is enabled or flush to zero is disabled, then no further operations will be issued for one cycle. If
the current operation is a long-latency operation (DIV, SQRT, RECIP, RSQRT), then no operation will be issued
until the long-latency operation is within 3 cycles of completion.

Medium-latency operations (MADD, MSUB, NMADD, NMSUB, RECIP2, RSQRT2) will hold off the issue of
any short or long latency operation until the medium latency operation is within 3 cycles of completion.

4.12.4 Denormals

The SB-1 will flush all denormals to zero if flush to zero is enabled. It will also flush all underflow results to
zero.

If flush to zero is disabled, the SB-1 will cause an unimplemented operation exception for denormal inputs and
underflowing results for arithmetic operations.

4-68 SB-1 Users Manual

Exception Processing SiByte Confidential

4.12.5 Exception Flags

The following table shows the exception flag settings for various categories of floating point operations.

TABLE 4-14 SB-1 Exception Behavior

Operation Input Result FS EV zo U I

Ari th x Underflow I 0 0 0 0 I I

Ari th x Underflow 0 I 0 0 0 0 0

Ari th x Overflow x 0 0 0 I 0 I

SQRT Negative Number x x 0 I 0 0 0 0

DIV x/0 = inf, (x != 0) x x 0 0 I 0 0 0

DIV 010 x x 0 1 0 0 0 0

DIV O/inf = 0 x x 0 0 0 0 0 0

DIV inf/inf x x 0 I 0 0 0 0

SB-1 Users Manual 4-69

Exception Processing SiByte Confidential

4-70 SB-1 Users Manual

CHAPTERS The MDMX ASE Instructions

5.1 Introduction

This chapter provides a general overview of MD
provided here should be regarded as a suppleme

ft

'tions, as supported in SB-1. The information
"''V2.0 Specification document.

nstructions, the SB-1 core supports 3 additional instructions. These

dditional MDMX Instructions

Instruction

PAVG Averages the elements of a pair of 8 x Sbit vectors

PABSDIFF Provides the absolute value of the difference of the elements of a pair of 8 x Sbit vectors

PABSDIFFC Provides the same functionality as PABSDIFF on the input vector pairs and accumulates the results

A description of these instructions follows:

SB-1 Users Manual 5-71

List of Supplemental Instructions

PAVGOB

31

MDMX
011110

6

26 25

fmtsel

5

21 20

FIGURE 5·1 PAVGOB Format

Format: PAVGOB vd, vs, vt

Purpose: Perform Bytewise Averaging

16 15 1110

vt vs

5 5

Description: vd[i] f-(vs[i] + select(fmtsel, vt) [i)) I 2

This instruction only supports OB format.

The sel field selects the values of vt[] used for each i.

Restrictions:

No data-dependent exceptions are possible.

SiByte Confidential

Perform Bytewise Averaging

65

vd

5

PAVG
001000

6

0

The operands must be values in the specified format. If they are not, the results are undefined and the values of
the operand vectors become undefined.

The result of this instruction is undefined if the processor is executing in 16 FP register mode.

5-72 SB-1 Users Manual

List of Supplemental Instructions

Operation:
PAVG.OB

ts f-CPR[vs]

tt f-select(fmtsel, vt)

OPR[vd] f-PAVGOB (ts63 .. 56 ' t t53 .. 56)

11 PAVGOB (tS55 .. 48 ' ttss .. 48

11 PAVGOB (ts47 .. 4o , tt47_ .40

11 PAVGOB (tS39 __ 32 , tt39_ .32

11 PAVGOB (ts31 .. 24 , tt31 .. 24

11 PAVGOB (ts2J .. 16 , tt23 .. 16

11 PAVGOB (tS1s .. OB , tt1s .. OB

11 PAVGOB (tso? .. oo , tto? .. oo

function PAVGOB(ts, tt)

PAVGOB f- [(0 11 ts) + (0 11 tt) + 1] » 1

end PAVGOB

Exceptions: Co-processor Unusable, Reserved Instruction, MDMX Unusable

SB-1 Users Manual

SiByte Confidential

5-73

' j

List of Supplemental Instructions

PABSDIFF.OB

31

MDMX
OllllO

6

26 25

fmtsel

5

2120

FIGURE 5-2 PAVGOB Format

Format: PABSDIFF.OB vd, vs, vt

16 15

vt

5

Purpose: Perform Bytewise Absolute Value of Differences

vs

5

Description: vd [i] ~(vs [i] > select (fmtsel, vt) [i l l ?

1110

SiByte Confidential

Perform Bytewise Absolute Value

vd

5

65 0

IPABSDIFF I
001001

6

(vs[i] - select(fmtsel, vt)[i]): (select(fmtsel, vt)[i] - vs[i])

This instruction only supports OB format.

The sel field selects the values of vt[] used for each i.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are undefined and the values of
the operand vectors become undefined.

The result of this instruction is undefined if the processor is executing in 16 FP register mode.

5-74 SB-1 Users Manual

List of Supplemental Instructions

Operation:
PABSDIFF.OB

ts t-CPR[vs]

t t t- select (fmtsel,

OPR [vd] t- PABSDIFFOB

11 PABSDIFFOB

11 PABSDIFFOB

11 PABSDIFFOB

11 PABSDIFFOB

11 PABSDIFFOB

11 PABSDIFFOB

11 PABSDIFFOB

vt)

(tsoJ .. 56 ' ttoJ .. so

(tsss .. 48 I ttss .. 48

(ts41 .. 4o I tt47 .. 40

(tS39 .. 32 I tt39 .. 32

(ts31 .. 24 I t t31 .. 24

(tS23 .. 16 I t t23 .. 16

(tS1s .. 08 I tt1s .. 08

(tS07 .. 00 I tto1 .. oo

function PABSDIFFOB(ts, tt)

if ts >= tt

)

PABSDIFFOB t- ts - tt

else

PABSDIFFOB t- t t - ts

end PABSDIFFOB

Exceptions: Co-processor Unusable, Reserved Instruction, MDMX Unusable

SB-1 Users Manual

SiByte Confidential

5-75

List of Supplemental Instructions

PABSDIFFC.OB

31

MDMX
011110

6

26 25

fmtsel

5

2120

FIGURE 5-3 PAVGOB Format

Format: PABSDIFFC.OB vs, vt

16 15

vt vs

5 5

Purpose: Accumulate Absolute Values of Differences of Byte Vectors

ll 10

SiByte Confidential

Perform Bytewise Absolute Value

0
00000

5

65 0

Description: ace [i] f- ace [i] + (vs [i] > select (fmtsel, vt) [i]) ?

(vs[i] - select(fmtsel, vt) [i]) : (select(fmtsel, vt) [i] - vs[i])

This instruction only supports OB format.

The sel field selects the values of vt[] used for each i

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are undefined and the values of
the operand vectors become undefined.

The result of this instruction is undefined if the processor is executing in 16 FP register mode.

5-76 SB-1 Users Manual

List of Supplemental Instructions

Operation:
PABSDIFFC.OB

ts +-CPR[vs]

tt +-select(fmtsel, vt)

ACC f- PABSDIFFCOB (acc191, .168' ts63 .. 56 ' tt63 .. 56)

11 PABSDIFFCOB (acc167 .. 144 • tsss .. 4a ' ttss .. 48

11 PABSDIFFCOB (acc143 .. 120' ts41 .. 4o ' tt47, .40

11 PABSDIFFCOB (accug .. 096 • tS39,,32 ' tt39, .32

11 PABSDIFFCOB (accogs .. on• ts31 .. 24 ' tt31, .24

11 PABSDIFFCOB (accon .. 048 • tS23 .. 16 • tt23 .. 16

11 PABSDIFFCOB (acco47 .. 024• ts1s .. oa ' tt1s .. oa

11 PABSDIFFCOB (acco23 .. ooo • tso1 .. oo • tto1 .. oo

function PABSDIFFCOB(a, ts, tt)

PABSDIFFCOB +-a + PABSDIFFOB(ts, tt)

end PABSDIFFCOB

Exceptions: Co-processor Unusable, Reserved Instruction, MDMX Unusable

SB-1 Users Manual

SiByte Confidential

5-77

MDMX ASE Instruction Categories in SB-1 SiByte Confidential

5.3 MDMX ASE Instruction Categories in SB-I

MDMX ASE instructions fall into one of three categories as implemented in SB-1. These categories are shown
in Table 5-2.

TABLE 5-2 MDMX Instruction Categories in SB-1

Category List oflnstructions

TYPE! TYPE 1-0: No Condition Code (CC) involvement

Non-Accumulator Instructions ADD, SUB, MUL AND, OR, NOR, XOR, SLL, SRL, SRA, MSGN, ALNI, ALNV, MIN,
MAX, SHFL, PAVG (SB-I specific), PABSDIFF (SB-I specific)

TYPE 1-1: Read CC

PICKF, PICKT

TYPE 1-2: Write CC

C.EQ, C.LT, C.LE

TYPE II MULS, MULSL, MULL, MULA, SUBA, SUBL, ADDA, ADDL, WACH, WACL,

Accumulator Based Instructions PABSDIFFC (SB-I specific)

TYPE III RZU, RNAU, RNEU, RZS, RNAS, RNES, RACH, RACL, RACM

Accumulator Read Instructions

5-78 SB-1 Users Manual

MDMX Unit Block Diagram SiByte Confidential

5.4 MDMX Unit Block Diagram

The MDMX unit supports 2 execution pipes: AO and Al. Figure 5-4 shows a block diagram of the AO pipe and
Figure 5-4 show the block diagram for Al pipe. The following sections specify the types of instructions that can
be issued to either pipe.

Imm Operand From FPR(vt) From FPR(vs)

1 1 1
~

,
~

ADDl MULl SHFf SHFL

.. .. + +

~ 7
ADD2 MUL2

.. + ..

~---·~ Output to FP Register File

FIGURE 5-4 AO Pipe Block Diagram

SB-1 Users Manual 5-79

MDMX Unit Block Diagram SiByte Confidential

Imm Operand From FPR(vt) From FPR(vs)

l l l

ADDl MULl SHFf SHFL

ACC RND ADD2 MUL2 CCODE

To CCR

Output to FP Register File

FIGURE 5-5 Al Pipe Block Diagram

5-80 SB-1 Users Manual

Pipeline Flow by Category of Instructions SiByte Confidential

5.5 Pipeline Flow by Category of Instructions

The following sections outline the pipeline flow for the three types of instructions supported by the MDMX unit.

5.5.1 TYPE I Pipe

Table 5-3 shows MDMX pipe diagram for TYPE-I instructions.

TABLE 5-3 MDMX TYPE-I Pipe Operation

Stage F D I 1 2 3 4 5 6

TYPE I-0 Fetch Decode Issue SI S2 Read RF Execute! Execute2 Write RF

TYPE!-! Fetch Decode Issue SJ S2 Read RF Execute I Execute 2 Write RF

Read CC

TYPEI-2 Fetch Decode Issue SI S2 Read RF Execute! Execute 2 Write CC

TYPE-IO and 12 instructions can be issued to either AO or Al pipe of the MDMX Unit, and TYPE-11 can be
issued to Al pipe only.

5.5.2 TYPE II Pipe

Table 5-4 shows MDMX pipe diagram for TYPE-II instructions.

TABLE 5-4 MDMX TYPE-II Pipe Operation

Stage F D I 1 2 3 4 5 6

TYPE II Fetch Decode Issue SI S2 Read RF Execute! Execute2 Write Accumulator

TYPE-II instructions can be issued only to Al pipe of the MDMX Unit.

5.5.3 TYPE III Pipe

Table 5-5 shows MDMX pipe diagram for TYPE-ill instructions.

TABLE 5-5 MDMX TYPE-III Pipe Operation

Stage F D I 1 2 3 4 5 6

TYPE III Fetch Decode Issue SI S2 Read RF Execute! Execute2 Write RF

Read Accumulator

TYPE-ID instructions can be issued only to Al pipe of the MDMX Unit.

SB-1 Users Manual 5-81

Instruction Latency and Throughput by Category of Instructions SiByte Confidential

5.6 Instruction Latency and Throughput by Category of Instructions

Table 5-6 presents a list of supported instructions in SB-1 Floating Point Unit and the associated latency.

TABLE 5-6 MDMX Instruction Latency and Throughput

Instruction Latency Throughput (1 Instruction/x cycles per supported pipe) Co-issue Dependent Op?

TYPEI 2 I No

TYPE II 2 l No

TYPE III 2 I No

5. 7 Available Bypasses

Table 5-7 shows the available bypasses for the MDMX unit.

TABLE 5-7 List of Available Bypasses in SB-1 Core for EXO, EXl, LSO, and LSl Units

Fromffo AO Al

AO Yes Yes

Al Yes Yes

LSO Yes Yes

LSI Yes Yes

5.8 Differences between the Pipes

Table 5-8 summarizes the types of instructions that can be issued to each one of AO and Al MDMX pipes.
Except for TYPE-I Category instructions, all other instructions can be issued to Al pipe only.

TABLE 5-8 Instruction Types Issued to each Pipe

Instruction Type AO Pipe Al Pipe

TYPE 1-0, Type 1-2 Yes Yes

TYPE 1-1 No Yes

TYPE II No Yes

TYPE III No Yes

5-82 SB-I Users Manual

Issue Rules and Restrictions SiByte Confidential

5.9 Issue Rules and Restrictions

Table 5-9 identifies issue rules and restrictions for MDMX ASE instructions.

TABLE 5-9 Issue Rules and Restrictions for MDMX Instructions

Instruction A Instruction B Restrictions

Any TYPE I, II, or III Any Dependent TYPE I, II, or III I cycle bubble

SB-1 Users Manual 5-83

Issue Rules and Restrictions SiByte Confidential

5-84 SB-I Users Manual

CHAPTER6

6.1 Introduction

--~- - --·----- ------ - ------· -- ------

Memory Hierarchy and the
Primary Instruction and Data
Caches

This chapter elaborates on the supported memory hi
caches in SB-1. For information on level two c

e specifics of level one instruction and data
:m interface issues, refer to the appropriate system

level user's manual. rB

6.2 Supported Cache a

Figure 6-1 shows the
unit around the SB
diagram.

SB-1 Users Manual

uction and data caches, the memory controller, and the bus interface
s and their speeds relative to the core are additionally shown on the

6-85

Supported Cache and Memory Hierarchy SiByte Confidential

VA@lx .. Fill
128@ Ix (4 instructions) I-Cache ~

~

64 @ 2x Ooad data)
~

CORE

PA@2x

ur·~~ ® ~ ® 0

~ ~
><" e - ~

® ® 64 @ 2x (store data) DCFifo ~
DC= Data Cacl>e D-Cache

Miss @2:x

FilltolandD
+;.ill

......
1

r
128@ lx

+ ~ 128@ lx
+ Evict

l ReadQ j j+ MBox PA@lx WB

"'"'"'- .-'I
)> '" 6 ,l Snoop-Hit OJ.eek 00

® ® il' ~~ , ~
PA@lx _.Snoo~Hit

BIU ~ Duplicate Tag TID PA@ 1/2x ... --...
p.
256@ l/2x

SB-1 Boundary t _ - - SB-1 Boon - - -- ------ ---- - - ---
dary

PA @ l/2x read

tll PA @ l'!x write • Address ZBbus
256@ l/2x +---'---------------------.-. Data

FIGURE 6-1 Memory Stmctures and Bus Organization around the SB-1 Core

6-86 SB-1 Users Manual

Supported Cache and Memory Hierarchy SiByte Confidential

6.2.1 Level One (Primary) Caches

The SB-1 core implements built-in level one instruction and data caches with flexible streaming features. The
next two sections elaborate on the specifics of the primary caches.

6.2.1.1 Instruction Cache (1-Cache)

Table 6-1 outlines the main features of the primary instruction cache in SB-I.

TABLE 6-1 SB-1 Primary Instruction Cache Characteristics

Cache Feature Specifics

Size 32KBytes

Associativity 4way

Replacement Algorithm LRU (Least Recently Used)

Line Size 32 Bytes

Indexing/Tagging Virtually Indexed (44-bit address), Virtually Tagged3

Read Policy Blocking

Read Order Critical Quad Word First (Half Line Resolution)

Write Policy Not Applicable

Write Order Not Applicable

Data Parity 1 bit/Byte

Tag Parity 2 bitsffag

Lock Support No

Streaming Support No

ECC Support No

a. Includes ASID/G bit to avoid flushing for every context
switch

SB-1 Users Manual 6-87

Supported Cache and Memory Hierarchy SiByte Confidential

6.2.1.1.1 Accessing the Instruction Cache

Figure 6-2 shows the manner in which the 44-bit virtual address is used to access a line. As shown in the figure,
the index consists of 8 bits, resulting in 256 individually accessible sets of 32-byte lines by 4 ways. The address
portion of the tag consists of 31 bits.

43 1312 54 0
Asm1G Upper Address Index Byte

Way3 Way2 Wayl WayO

Hit/Miss Hit/Miss Hit/Miss Hit/Miss

FIGURE 6-2 Primary Instruction Cache Indexing in SB-1

6-88 SB-I Users Manual

Supported Cache and Memory Hierarchy

6.2.1.1.2 Address Fields Decoding

Figure 6-3 shows bank organization in the primary instruction cache for SB-1.

Index 255

Index 0

Way3

A
Data

Byte31

Byte31

32 bytes + tag
(l cache line)

\

ByteO

ByteO

Way2

A
"\ (

Data
Byte3 ByteO

Byte31 ByteO

FIGURE 6-3 Instruction Cache Organization in SB-1

6.2.1.1.3 Parity/ECC Support

Way I

A
'\

Ta Data

Byte31 ···· IByteO

Byte3i ··•· l ByteO

SiByte Confidential

WayO

A
\

Data

Byte3 ByteO

Byte31 ByteO

The primary instruction cache in SB-1 supports data and tag parities (shown in Table 6-1) but does not have
ECC.

6.2.1.1.4 Notes on the Virtual Nature of the Instruction Cache

The following should be considered when dealing with the instruction cache:

1. Virtual aliases may cause multiple copies of the same cache data to appear in the instruction cache.

2. If a mapped address is changed from a cached attribute to an uncached attribute, the cache lines must be
flushed from the instruction cache to eliminate the stale instructions. For correct operation, mapped
addresses to an uncached space must never be present in the instruction cache.

Specifically, cachable and uncachable references to the same space do not preserve coherence. Note that the
Ll I-cache does not participate in the coherence algorithms.

3. Because of (2) above, the I-Cache must be flushed before seeing a write into the code stream (e.g., planting a
breakpoint).

SB-1 Users Manual 6-89

Supported Cache and Memory Hierarchy SiByte Confidential

4. Mapped addresses to uncached space will cause an instruction cache lookup and subsequent error detection to
be performed. As a result, it is possible to detect an instruction cache error even though the page mapping for
that address is uncached, causing what may be referred to phantom CacheError exceptions.

5. The D-Cache will not supply data to satisfy an I-Cache miss for the same CPU.

6. The ASID field in the Entry Hi register should only be modified by a DMTCO or TLBR instruction in
unmapped or in mapped global space, i.e. the G bit is set in the TLB entry. If the ASID is changed in mapped
space that is not global, i.e. the G bit is cleared, the behavior of the processor is UNDEFINED, and TLB
exceptions, including TLB Shutdown, may result.

6.2.1.2 Data Cache (D-Cache)

Table 6-2 outlines the main features of the Primary Data cache in SB-1.

TABLE 6-2 SB-1 Primary Data Cache Characteristics

Cache Feature Specifics

Size 32 KByte

Associativity 4way

Replacement Algorithm LR U (Least Recent! y Used)

Line Size 32 Bytes

Indexingffagging Physically Indexed (40-bit address), Physically Tagged

Read Policy Non-Blocking -- Up to 8 outstanding cache lines

Read Order Critical Double Word First

Write Policy Write Back only (no Write-Through support)

Data Parity See ECC support

Tag Parity 2 bits/tag

Lock Support No

Streaming Support Yes: Up to a maximum of SKByte (I way)

ECC Support Yes: 8 bits per 64-bit doubleword; single-bit error correction, double-bit error detection

6-90 SB-I Users Manual

Supported Cache and Memory Hierarchy SiByte Confidential

6.2.1.2.1 Accessing the Data Cache

Figure 6-4 shows the manner in which the 44-bit virtual address is used to access a line. As shown in the figure,
the index consists of 8 bits, resulting in 256 individually accessible 32-byte lines by 4 ways. The address portion

of the tag consists of 28 bits.1 The next section elaborates on the full composition of bits in the tag field.

43 6 5 4 0

Upper Address Index Byte

Way3 Way2 Wayl WayO

HiUMiss Hit/Miss HiUMiss Hit/Miss

FIGURE 6-4 Primary Data Cache Indexing in SB-1

1. Bit 12 (shown in Figure 6-4) is part of the tag and part of the index. A program making explicit ref­
erence to tags (via TagLo register) must be aware of this and maintain consistency between index
and tags at that index.

SB-1 Users Manual 6-91

Supported Cache and Memory Hierarchy

6.2.1.2.2 Address Fields Decoding

Figure 6-5 shows bank organization in the primary data cache for SB-1.

Index255

IndexO

Way3

A.
Data

Byte31

Byte31

32 bytes + tag
(1 cache line)

Way2
A

'\
Data

ByteO Byte3

ByteO Byte31

FIGURE 6-5 Data Cache Organization in SB-1

6.2.1.2.3 Parity/ECC Suwort

Way 1

'\ r A.
'\

Ta Data
ByteO Byte31 •••• IByteO

ByteO Byte3~ ····I ByteO

SiByte Confidential

WayO

A
'\

Data
Byte3 ByteO

Byte31 ByteO

The Primary Data Cache in SB-I supports tag parity (shown in Table 6-1) and has 64-bit ECC for the data
portion. Single-bit errors are corrected and double-bit errors are detected. Refer to Chapter 10 for further
description of these error cases.

6.2.2 Rules for Uncached Data Accesses

The following list tabulates the rules and restrictions for uncached accesses:

1. Uncached accesses are issued in order.

2. Uncached accesses are never issued speculatively.

3. Uncached writes are blocked if there are any outstanding uncached reads.

4. Uncached accesses may be issued in any number, subject to normal ReadQ/Write buffer depths.

5. External system must maintain ordering:

- Reads to a device must not pass reads or writes to same device.

6-92 SB-I Users Manual

Supported Cache and Memory Hierarchy SiByte Confidential

- Writes to a device must not pass writes to same device.

6.2.3 Operation of the Write Buffer

The write buffer is a 10-deep storage structure that holds data on its way to memory. Each entry consists of a PA
and 32 bytes of data. There are three logical sources for the data being put into the write buffer, outlined below:

1. Lines evicted from the Data Cache (as a result of a fill or a CACHE instruction). The data is always a full
cache line (32 bytes).

2. Uncacheable stores. These data come from the DCFIFO where they are held until store instructions graduate.
The data in this case is between 1 and 8 bytes wide.

3. Uncacheable accelerated stores. These are the same as uncacheable stores but can be merged in the write
buffer, provided they obey the merging rules outlined next.

4. Uncacheable loads (in order to maintain order with uncacheable stores).

6.2.3.1 Merging Rules

The write buffer contains one 32-byte merge buffer.

The merge buffer begins merging when an uncached accelerated (UAC) double or single word block-aligned
store is executed. Merging continues if the next uncacheable write buffer request is a UAC double or single
word store to an address within the same block. There are two merging modes. If the next request is to an
identical address, then the merging mode is auto-increment, otherwise, the merging mode is sequential. The
merging mode is established by the second UAC store to the block.

Merging stops when one of the following conditions is met:

• An uncached or UAC load is executed.

• An uncached store is executed.

• A UAC partial-word store is executed.

• A change in the current merging mode is observed.

• A complete block is gathered1.

• The time-out counter indicates that 512 cycles have passed since the last UAC store was observed and no
other write buffer request has happened.

1. In sequential mode, the block is considered complete when the 2 highest-addressed words of the block are
written.

SB-1 Users Manual 6-93

Supported Cache and Memory Hierarchy SiByte Confidential

Cached accesses to the write buffer do not disturb merging. When merging terminates, the data is placed into a
write buffer entry and is ready to be issued to the system interface bus.

When gathering in auto-increment mode, UAC double or singleword stores may be freely mixed. The data will
be appended to the end of the already merged data in the merge buffer. However, if the merge buffer already
contains seven valid words and the next request is a UAC double store, the doubleword will not fit into the same
32-byte block. In this case, the seven words in the merge buffer are placed into a write buffer entry and the new
double store starts a new merging block.

When gathering in sequential mode, UAC singleword stores must occur in pairs to prevent address error
exceptions.

6.2.4 Prefetch Support for Primary Data Cache (User Level Prefetching and Streaming)

The primary data cache in SB-1 supports a number of the Prefetch Hints as specified in MIPS64 Specification.
Among the supported hints are regular data prefetching and streaming data through the data cache.

Table 6-3 presents the high level features provided by PREF (PREFX) instruction. The subsequent two sections
describe regular prefetching and streaming through the PREF (PREFX) instruction.

TABLE 6-3 Cache Prefetch Support for Primary Data Cache

Feature Description

Instruction Type PREF (or PREFX) Instruction, a Non-Privileged Instruction (refer to MIPS64
Specifications).

Description of Instruction PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte
address. PREFX adds the contents of GPR index to the contents of GPR base to form an
effective byte address. The hint field supplies information about how the addressed data is
to be manipulated.
PREF (PREFX) enables the processor to take some action as specified by the hint field, to
improve program performance. The action taken for a specific PREF (PREFX) instruction
is both system and context dependent. Any action, including doing nothing, is permitted as
long as it does not change architecturally visible state or alter the meaning of a program. A
PREF (PREFX) instruction either does nothing or takes an action that increases the
performance of the program.

... PREF (PREFX) does not cause addressing-related exceptions. If it does happen to raise an
exception condition, the exception condition is ignored. If an addressing-related exception
condition is raised and ignored, no data movement occurs.

PREF (PREFX) never generates a memory operation for a location with an uncached
memory access type.

For a cached location, the expected and useful action for the processor is to move a block of
data between cache and the memory hierarchy. The size of the block transferred in SB-I is
one line of data (32 Bytes).

6-94 SB-1 Users Manual

Supported Cache and Memory Hierarchy SiByte Confidential

TABLE 6-3 Cache Prefetch Support for Primary Data Cache

Feature Description

Granularity 1 Line (32 Bytes)

Programming Notes Prefetch cannot access a mapped location unless the translation for that location is present
in the TLB. Locations in memory pages that have not been accessed recently may not have
translations in the TLB, so prefetch may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch
using a pointer before the validity of the pointer is determined.

Hint field encodings whose function is described as "streamed" convey usage intent from
software to hardware. Software should not assume that hardware will always pref etch data
in an optimal way.

6.2.4.1 Regular Data Prefetching

Table 6-4 describes the regular data prefetch support provided by SB-1 core.

TABLE 6-4 Regular Data Prefetch Support Provided by SB-1

Feature Description

Instruction Type PREF or PREFX Instruction, Non-Privileged (refer to MIPS64 Specifications).

Load Hint (Hint Value = 0) Use: Prefetched data is expected to be read (not modified)

Action: Fetch data as if for a load

Store Hint (Hint Value = 1) Use: Prefetched data is expected to be stored or modified

Action: Fetch data as if for a store

Data Placement Always put in current LRU, upgrading way to MRU

6.2.4.2 Streaming Pre/etch Support in SB-1

Table 6-5 outlines the streaming prefetch support provided by the primary data cache.

TABLE 6-5 Streaming Prefetch Support in SB-1

Feature Description

Instruction Type PREF or PREFX Instruction, Non-Privileged (refer to MIPS64 Specifications)

Load_Streamed Hint (Hint Value= 4) Use: Prefetched data is expected to be read (not modified) but not reused extensively; it
"streams" through the cache.

Store_Streamed Hint (Hint Value = 5) Use: Prefetched data is expected to be stored or modified but not reused extensively; it
"streams" through the cache.

Data Placement If the block is already in the cache, treat as regular prefetch (can upgrade to MRU).
Otherwise, replace the LRU way without upgrading that way, and mark the way so that
subsequent hits do not upgrade. The next fill to that index resets the way settings.

SB-1 Users Manual 6-95

Supported Cache and Memory Hierarchy SiByte Confidential

6.2.5 The PREF and PREFX Instructions in SB-11

This section presents a general description of PREF and PREFX instructions in SB-1.

31 26 25 21 20 16 15 0

I
PREF

I
Base

I
Hint

I
Off set

I 110011
6 5 5 16

FIGURE 6-6 Format for PREF Instruction

31 2625 2120 16 15 1110 6 5 0

COPlX Base Index Hint 0 PREFX
010011 00000 001111

6 5 5 5 5 6

FIGURE 6-7 Format for PREFX Instruction

Format:
PREF · hint, offset(base)

PREFX hint, index(base)

Purpose:
To move data between memory and cache.

1. The PREFX instruction is identical to PREF but supports base + index addressing instead. Except
for address computation, all descriptions for PREF apply equally to PREFX.

6-96 SB-1 Users Manual

Supported Cache and Memory Hierarchy SiByte Confidential

Description:
PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address.

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address.

The hint field supplies information about how the addressed data is to be manipulated.

PREF enables the processor to take some action as specified by the hint field, to improve program performance.
The action taken for a specific PREF instruction is both system and context dependent. Any action, including
doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of a
program (refer to Table 6-6 for more details).

PREF does not cause addressing-related exceptions. If it does happen to raise an exception condition, the
exception condition is ignored. If an addressing-related exception condition is raised and ignored, no data
movement occurs.

PREF never generates a memory operation for a location with an uncached memory access type. For a cached
location, the expected and useful action for the processor is to move a block of data between cache and the
memory hierarchy. The size of the block transferred in SB-I is one line (32 bytes).

Table 6-6 defines the hint field values.

TABLE 6-6 PREF Hint Field Encodings

Value Name Data Use and Desired PREF Action SB-1 Reference

0 load Use: Prefetched data is expected to be read (not modified) Supported in SB-I

Action: Fetch data as if for a load. Section 6.2.4.1: "Regular
Data Prefetching"

I store Use: Prefetched data is expected to be stored or modified Supported in SB-I

Action: Fetch data as if for a store. Section 6.2.4.1: "Regular
Data Prefetching"

2-3 Reserved Reserved for future use - not available to implementations. -

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not Supported in SB-1
reused extensively; it "streams" through the cache Section 6.2.4.2:
Action: Fetch data as if for a load and place it in the cache so that it "Streaming Prefetch
does not displace data prefetched as "retained" Support in SB- I"

5 store_streamed Use: Pref etched data is expected to be stored or modified but not Supported in SB- I
reused extensively; it "streams" through the cache Section 6.2.4.2:
Action: Fetch data as if for a store and place it in the cache so that it "Streaming Prefetch
does not displace data prefetched as "retained" Support in SB-I"

6 load_retained Not Applicable Not Supported in SB-I

7 store_retained Not Applicable Not Supported in SB-I

8-24 Reserved Reserved for future use - not available to implementations -

SB-1 Users Manual 6-97

Supported Cache and Memory Hierarchy SiByte Confidential

TABLE 6·6 PREF Hint Field Encodings

Value Name Data Use and Desired PREF Action SB-1 Reference

25 writeback_invalidate Use: Data is no longer to be expected to be used Supported in SB-I

(also known as nudge) Action: schedule a writeback of any dirty data. At the completion of Explanation to the left
the writeback, mark as invalid the state of any cache line written back.

26-31 Implementation Dependent Unassigned by the Architecture -

6-98 SB-1 Users Manual

Supported Cache and Memory Hierarchy SiByte Confidential

Restrictions:
None

Operation:

vAddr ~ GPR[base] + sign~extend(offset) 1

(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD)2

Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:
Prefetch cannot access a mapped location unless the translation for that location is present in the TLB. Locations
in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch may not
be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using a pointer before
the validity of the pointer is determined.

Hint field encodings whose function is described as "streamed" convey usage intent from software to hardware.
Software should not assume that hardware will always prefetch data in an optimal way.

Implementation Notes:
The SB-1 does not trigger a data watch by a prefetch instruction whose address matches the Watch register
address match conditions.

1. For PREFX, the address computation is: v Addr +-- GPR[base] + GPR[index]
2. AddressTranslation, as used here, cannot raise any exceptions.

SB-1 Users Manual 6-99

CACHE Instructions SiByte Confidential

6.3 CACHE Instructions

This section covers the microarchitectural implementation of the MIPS CACHE instructions. For reference, the
table of CACHE instructions is repeated here with a brief description of each operation. In addition, the registers
used with the CACHE instructions, i.e., TagHi, TagLo, DataHi, and DataLo are defined.

6.3.1 CACHE Variants

The foll9wing tables, divided by cache type, list the types of cache operations defined by MIPS and implemented
by SB-1. Special debug cache operations are described as well.

TABLE 6-7 Instruction Cache

Bits (20:16) of

Operation Cache Inst" Description

Index lnval 0001 Invalidate the cache line at the specified index

Index Load Tag OOll Read the cache line tag at the specified index into the TagHilfagLo registers

Index Store Tag 0101 Write the cache line tag at the specified index from the TagHiffagLo registers

Hit Inval 1001 Invalidate the cache line at the specified address if it is present in the cache

Index Load Data OOlT Read the contents of the data array into DataHi/DataLo registers (debug only)

Index Str Data OIOT Write the contents of the DataHi/DataLo registers into the data array (debug only)

a. I= 00, D = 01, T = 10, S = 11

6-100 SB-1 Users Manual

CACHE Instructions SiByte Confidential

TABLE 6·8 Data Cache

Bits (20:16] of

Operation Cache Inst" Description

Index WB Inval OOOD Writeback dirty data and invalidate the cache line at the specified index

Index Load Tag OOID Read the cache line tag at the specified index into the TagHiffagLo registers

Index Store Tag OlOD Write the cache line tag at the specified index from the TagHiffagLo registers

Hit Inval lOOD Invalidate the cache line at the specified address if it is present in the cache

HitWB Inval lOID Writeback dirty data and invalidate the cache line at the specified address if it is
present in the cache

HitWB llOD Writeback dirty data and set the cache line state to clean at the specified address if
the cache line is present in the cache

Index Load Data OOIS Read the contents of the data array into DataHi/DataLo registers (debug only)

Index Str Data OIOS Write the contents of the DataHi/DataLo registers into the data array (debug only)

a. I=OO,D=Ol,T=lO,S=ll

The effective address for a CACHE instruction is calculated by adding the instruction offset field to a base
register. The resulting address is translated by the TLB, and depending on the target cache, either the effective
address or the translated address is used to access the cache. The process of translation may cause a TLB Refill
or TLB Invalid exception but not a TLB Modified exception. In addition, the effective address for a CACHE
instruction never generates a Watch exception, although address errors will be asserted for addresses that are not
legal in the current operating mode.

For the instruction cache, the effective address is used to access the cache. The address is translated regardless of
the operation, but all TLB errors are suppressed, even though address errors may still result. Index operations
use bits [12:5] to specify a set index and bits [14:13] to specify a way for the 32K cache on the SB-1 core. For hit
operations, the ASID in the EntryHi register is coupled with the effective address to generate a virtual address,
which is compared against the cache tags to detect a hit or miss.

For the physically addressed data cache, the effective address is translated through the TLB for hit variants. TLB
exceptions, due to the translation process, as well as address error exceptions may occur for these CACHE
instructions. The resulting physical address is used to determine a hit or miss in the cache. Index operations,
however, bypass the TLB, so no TLB exceptions will occur. Address errors may arise if the effective address is
not valid for the current operating mode. Like the instruction cache, bits [12:5] indicate a set index, while bits
[14:13] designate a way for index operations.

In the SB-1 implementation, CACHE instructions ignore byte alignment. As such, address errors due to
misalignment will never occur.

SB-1 Users Manual 6-101

CACHE Instructions SiByte Confidential

The Index Load/Store Data operations, defined for debug purposes, require additional bits to specify the double
word location in a cache line. Bits [4:3] of the address are used for this purpose, so the operation effectively
behaves like a double word load/store.

The following sections describe the cache operations supported by the SB-1 core.

6.3.2 Index Invalidate (I)

The Index Invalidate variant sets the state of an instruction cache line at the specified index to invalid by clearing
the valid and parity bits (VP= 00). The index is taken from the effective address bits [12:5) and the way is
selected by bits [14:13). The LRU remains unchanged and no parity check is performed. Address errors may
occur for invalid addresses, but no TLB exceptions are raised.

6.3.3 Index Load Tag (I)

The Index Load Tag operation loads the instruction cache TagHi and TagLo registers with the information stored
in the I-Cache tag array. The tag index and way are taken from address bits [12:5) and [14:13], respectively. See
the TagHi and TagLo definitions below for the format and data transferred by these registers. The LRU remains
unchanged and no parity check is performed. Address errors may occur for invalid addresses, but no TLB
exceptions are raised. The LU bit is set to one when an Index Load Tag is performed.

6.3.4 Index Store Tag (I)

The Index Store Tag operation reads the instruction cache TagHi and TagLo registers and stores the information
into the cache tag array. The tag index and way are taken from address bits [12:5] and [14: 13], respectively. See
the TagHi and TagLo definitions in section 6.6 for the format and data transferred by these registers. Address
errors may occur for invalid computed addresses, but no TLB exceptions are raised. If the LU bit is set in the ,
TagHi register, then the LRU is set to the state indicated by the LRU field; otherwise, it is set to a default state.
Invalid LRU values will also be reset to a default state. See the LRU implementation notes below. A parity
calculation is not performed by this operation, so the parity bits for the tag are taken directly from the Pl, PO, and
P bits in the Tag registers.

6.3.S Hit Invalidate (I)

The Hit Invalidate operation clears the state of an instruction cache line if the effective address and the ASID
match a tag in the cache. A hit sets the valid and parity bits to zero (VP = 00). The LRU remains unchanged, and
any detected parity errors are ignored. Address errors may occur for invalid addresses, but no TLB exceptions
are raised.

6-102 SB-1 Users Manual

CACHE Instructions SiByte Confidential

6.3.6 Index Load Data (I)

The Index Load Data operation is implemented purely for debug purposes and loads the instructions from the
data array into the DataHi and DataLo registers. Two instructions are loaded into the DataLo register, while the
parity and predecode for those instructions is written into the DataHi register.

This operation is endian-neutral, so software must interpret the instructions correctly. For big-endian code, InstA
contains instruction word 0 and InstB contains instruction word 1. The opposite is true for little-endian code, so
InstA contains word 1 and InstB contains word 0. This format allows software to move the double word data
directly to a register and perform double word stores to code space without swapping. The LRU remains
unchanged for Index Load Data CACHE instructions, and a parity check is not performed. Address errors may
occur for invalid addresses, but no TLB exceptions are raised.

6.3.7 Index Store Data (I)

The Index Store Data operation is implemented purely for debug purposes and stores the instructions contained
in the DataHi and DataLo registers into the instruction cache data array. The DataLo register contains two
instructions, while the DataHi register includes the parity and predecode for those instructions. The predecode
logic is bypassed for this operation, so the predecode bits for each instruction are taken from the register.

This operation is endian-neutral, so software must write instructions into the InstA and InstB fields in the DataLo
register for the appropriate endianness. For big-endian code, InstA contains instruction word 0 and InstB
contains instruction word 1. The opposite is true for little-endian code, so InstA contains word 1 and InstB
contains word 0. This format allows software to perform doubleword loads to code space and to move the
doubleword data directly to DataLo without swapping.

The LRU remains unchanged for Index Store Data CACHE instructions. A parity calculation is not performed
by this operation, so the parity bits for the data are taken directly from the IPA and IPB fields. The predecode
bits and predecode parity must also be calculated by software and placed in the DataHi register. Address errors
may occur for invalid addresses, but no TLB exceptions are raised.

6.3.8 Index Invalidate (D)

The Index Invalidate variant sets the state of a data cache line at the specified index to invalid by clearing the
state, coherent, and check bits to all zeros. The index is taken from the effective address bits [12:5] and the way
is selected by bits [14:13]. The LRU remains unchanged and no parity check is performed. Address errors may
occur for invalid addresses, but no TLB exceptions are raised.

SB-1 Users Manual 6-103

CACHE Instructions SiByte Confidential

6.3.9 Index Load Tag (D)

The Index Load Tag operation loads the data cache TagHi and TagLo registers with the information stored in the
cache tag array. The tag index and way are taken from address bits [12:5] and [14:13), respectively. See the
TagHi and TagLo definitions below for the format and data transferred by these registers. The LRU remains
unchanged and no parity check is performed. Address errors may occur for invalid addresses, but no TLB
exceptions are raised. The LU bit is set to one when an Index Load Tag is performed.

6.3.10 Index Store Tag (D)

The Index Store Tag operation reads the data cache TagHi and TagLo registers and stores the information into the
cache tag array. The tag index and way are taken from address bits [12:5) and [14:13), respectively. See the
TagHi and TagLo definitions below for the format and data transferred by these registers. Address errors may
occur for invalid addresses, but no TLB exceptions are raised.

If the LU bit is set in the TagHi register, then the LRU is set to the state indicated by the LRU field; otherwise, it
is set-to a default state. Invalid LRU values will also be reset to a default state. See the LRU implementation
notes below.

A parity calculation is not performed by this operation, so the parity bits for the tag are taken directly from the Pl
and PO bits in the TagLo register. In addition, the state check bits are sourced directly from the TagHi register.

6.3.11 Hit Invalidate (D)

The Hit Invalidate operation clears the state of a data cache line if the translated physical address matches a tag in
the cache. A hit sets the state, coherent, and check bits to zero. The LRU remains unchanged. Address errors
may occur for invalid addresses, and TLB exceptions may be raised as a result of the address translation.

Parity errors detected by this operation leave the state of the data cache unchanged. In addition, any cache error
exceptions will be taken imprecisely.

6.3.12 Hit Writeback Invalidate (D)

The Hit-Writeback Invalidate operation causes a cache line to be written back to memory if the translated
physical address matches a tag in the cache and the data are dirty. Additionally, the state of the line is cleared,
and the state, coherent, and check bits are set to zero. The LRU remains unchanged. Address errors may occur
for invalid addresses, and TLB exceptions may be raised as a result of the address translation.

Tag parity errors detected by this operation leave the state of the data cache unchanged, and no writebacks to the
bus occur. In addition, any cache error exceptions will be taken imprecisely.

6-104 SB-1 Users Manual

CACHE Instructions SiByte Confidential

A single-bit ECC error detected by this operation is corrected, and the data are written into memory with a
corrected data code. A double-bit ECC error detected by this operation is not corrected, and the data are written
to memory with an uncorrected data code. In either case, any cache error exceptions will be taken imprecisely.

6.3.13 Hit Writeback (D)

The Hit Writeback operation causes a cache line to be written back to memory if the translated physical address
matches a tag in the cache and the data are dirty. Additionally, the state of the line is modified to clean, and the
the data are retained in the cache. For coherent lines, the state becomes OblO and the check bits change to Obll.
For non-coherent lines, the state becomes Ob IO and the check bits change to Ob IO. The LRU remains unchanged.
Address errors may occur for invalid addresses, and TLB exceptions may be raised as a result of the address
translation.

Tag parity errors detected by this operation leave the state of the data cache unchanged, and no writebacks to the
bus occur. In addition, any cache error exceptions will be taken imprecisely.

A single-bit ECC error detected by this operation is corrected, and the data are written into memory with a
corrected data code. A double-bit ECC error detected by this operation is not corrected, and the data are written
to memory with an uncorrected data code. In either case, any cache error exceptions will be taken imprecisely.

6.3.14 Index Load Data (D)

The Index Load Data operation is implemented purely for debug purposes and loads doubleword data and ECC
from the data array into the DataHi and DataLo registers. The data are loaded into the DataLo register, while the
ECC bits for the data are written into the DataHi register. The index and way for the operation come from bits
[12:5] and [14:13], respectively.

The LRU remains unchanged for Index Load Data CACHE instructions, and an ECC check is not performed.
Address errors may occur for invalid addresses, but no 1LB exceptions are raised.

6.3.15 Index Store Data (D)

The Index Store Data operation is implemented purely for debug purposes and stores the doubleword data and
ECC contained in the DataHi and DataLo registers into the data cache data array. The DataLo register contains
the doubleword data, while the DataHi register includes the ECC for the data. The index and way for the
operation come from bits [12:5] and [14:13], respectively.

The LRU remains unchanged for Index Store Data CACHE instructions. An ECC calculation is not performed
by this operation, and the ECC bits for the data are taken directly from the DataHi register. Address errors may
occur for invalid addresses, but no 1LB exceptions are raised.

SB-1 Users Manual 6-105

Cache Operation Effects on Duplicate Tags SiByte Confidential

6.4 Cache Operation Effects on Duplicate Tags

This section is TBD.

6.5 CACHE Instruction Issue Rules

CACHE instructions are serially issued, i.e. all previous instructions must graduate so that potential rnispredicts
and exceptions are cleared before the operation executes. In addition, the CACHE operation performs an
implicit memory synchronization since outstanding loads and stores (and even other CACHE instructions) may
update the cache state. An implicit memory synchronization follows the CACHE operation as well so
subsequent loads and stores can observe the effect of the CACHE instruction.

Note that the synchronization does not apply to instruction accesses, so the result of a CACHE operation on the
instruction cache is unpredictable if the effective address generated by the CACHE operation is near a p0tential
cached instruction fetch path.

6.6 Register Definitions

This following sections cover the tag and data registers supported by SB-1 core.

6-106 SB-1 Users Manual

Register Definitions SiByte Confidential

6.6.1 Tag Registers (MIPS Compliant)

TABLE 6-9 TagLo Register: Register 28, Select 0 (Instruction Cache)

Bits Size Field Description

[63:62] 2b R Vinual Address Region bits

[61:44] !Sb 0 Read as zeros; ignored on write

[43:25] 19b VTagl Vinual Address bits [43:25]

[24:13] 12b VTagO Vinual Address bits [24:13]

[12] lb 0 Read as zeros; ignored on write

[11] lb Pl Parity Bit I; even parity for R and VTag I

[10] lb PO Parity Bit 0; even parity for VTagO, G, and ASID

[9] lb 0 Read as zeros; ignored on write

[SJ lb G Global Bit

[7:0] Sb ASID Address Space Identifier

TABLE 6-10 TagHi Register: Register 29, Select 0 (Instruction Cache)

Bits Size Field Description

[31:30] 2b 0 Read as zeros; ignored on write

[29] lb v Cache Tag Valid Bit

[28] lb 0 Read as zeros; ignored on write

[27] lb p Parity Bit; even parity for V

[26:23] 3b 0 Read as zeros; ignored on write

[22] lb LU LRU Update Bit

[21:14] Sb LRU Least Recently Used Pointer

[13:0] 14b 0 Read as zeros; ignored on write

TABLE 6-11 TagLo Register: Register 28, Select 2 (Data Cache)

Bits Size Field Description

[63:40] 24b 0 Read as zeros; ignored on write

[39:26] 14b Prag! Physical Address bits [39:26]

[25:13] 13b PfagO Physical Address bits [25:13]

SB-1 Users Manual 6-107

Register Definitions

TABLE 6-11 TagLo Register: Register 28, Select 2 (Data Cache)

Bits Size Field Description

[12] lb 0 Read as zeros; ignored on write

[11] lb Pl Parity Bit 1; even parity for Prag 1

[10] lb PO Parity Bit 0; even parity for PfagO

[9:0] IOb 0 Read as zeros; ignored on write

TABLE 6-12 Tagm Register: Register 29, Select 2 (Data Cache)

Bits Size Field Description

[31:30] 2b 0 Read as zeros; ignored on write

[29:28] 2b State Data Cache State

[27] lb Coh Coherent Data Bit

[26:25] 2b Check Check Bits

[24] lb ExtNC Not cached in external Caches (e.g. L2)

[23] lb Stream Stream Bit

[22] lb LU LRU Update Bit

[21:14] 8b LRU Least Recently Used Pointer

[13:0] 14b 0 Read as zeros; ignored on write

TABLE 6-13 State/Coherent/Check Field Encodings3

State Coherent Check Description

00 0 00 Invalid

01 1 11 Coherent-Shared

10 0 11 Non-Coherent-Exclusive-Clean

11 0 01 Non-Coherent-Exclusive-Dirty

10 I 10 Coherent-Exclusive-Clean

11 1 00 Coherent-Exclusive-Dirty

a. All other combinations are error
combinations

LRU Implementation Notes:

6-108

SiByte Confidential

SB-1 Users Manual

Register Definitions SiByte Confidential

The LRU pointer contains four 2-bit entries corresponding to the MRU to LRU ways, i.e. the two most­
significant bits indicate the MRU way while the two least-significant bits indicate the LRU (LRU acts as a
FIFO.) For the LRU to be valid, each entry must contain a unique 2-bit way number, which results in a total of
24 valid combinations. The LRU pointer is corrected by the cache when one of the invalid combinations is
detected; the default value for the error case forces the entries, from MRU to LRU, to the following: way 3, way
2, way 1, way 0. The default value is also written during an Index Store Tag when the LU bit in the TagHi
register is clear. In addition, the LU bit is read as a one when an Index Load Tag operation is performed.

6.6.2 Data Registers (SiByte Debug Defined)

The following tables define the Data Register portion of CACHE operations supported by SB-1.

TABLE 6-14 DataLo Register: Register 28, Select 1 (Instruction Cache)

Bits Size Field Description

[63:32] 32b InstA Instruction A

[31:0] 32b InstB Instruction B

TABLE 6-15 DataHi Register: Register 29, Select 1 (Instruction Cache)

Bits Size Field Description

(63:17] 47b 0 Read as zeros; ignored on write

(16] lb PDP Predecode Parity Bit; even parity for PDA and PDB

(15:12] 4b PDA Instruction Predecode bits for lnstA

[11:8] 4b PDB Instruction Predecode bits for InstB

(7:4] 4b IPA Even Byte Parity for InstA

[3:0] 4b IPB Even Byte Parity for InstB

TABLE 6-16 DataLo Register: Register 28, Select 3 (Data Cache)

Bits Size Field Description

(63:0] 64b Data Cache Data

SB-I Users Manual 6-109

Register Definitions SiByte Confidential

TABLE 6-17 DataHi Register: Register 29, Select 3 (Data Cache)

Bits Size Field Description

[63:8] 56b 0 Read as zeros; ignored on write

[7:0] 8b ECC Cache Data ECC

6-110 SB-1 Users Manual

Register Definitions SiByte Confidential

6.6.3 Cache Coherency Attributes

Table 6-18 shows the Cache Coherency Attributes supported in SB-I. The "C Field" shown below is part of
EntryLoO and EntryLol registers in CPO (Registers 2 and 3, Select 0). Refer to MIPS64 Specification for
additional detail regarding CPO Registers.

TABLE 6-18 SB-I Cache Coherency Attributes

C(5:3) Cache Coherency Attributes With Historical Usage SB-1 Assignment

0 Available for implementation dependent use Cacheable Coherent:

Historical usage: Exclusive in LI, Uncacheable in L2.

- Reserved (R4000®, VRS400, RIOOOO®)

- Unused, defaults to cached (R4300™) Similar to C = 4, but do not allocate in L2.

- Cacheable, noncoherent, write through, no write allocate (RC32364, RMS200)

1 Available for implementation dependent use Cacheable Coherent:

Historical usage: Shared in LI, Uncacheable in L2.

- Reserved (R4000)

- Unused, defaults to cached (R4300) Similar to C = 5, but do not allocate in L2.

- Cacheable, noncoherent, write through, write allocate(RC32364, RMS200)

- Cacheable write-through, write allocate (VRS400)

2 Uncached Uncached

Historical usage:

- Uncached (all processors)

3 Cacheable Cacheable Noncoherent

Historical usage:

- Cacheable noncoherent (noncoherent) (R4000, RlOOOO)

- Cached (R4300)

- Cacheable, noncoherent (writeback) (RC32364, RM5200)

- Cacheable, writeback (VR5400)

4 Available for implementation dependent use Cacheable Coherent Exclusive

Historical usage: Line is always fetched exclusive.

- Cacheable coherent exclusive (exclusive) (R4000, RlOOOO)

- Unused, defaults to cached (R4300)

- Reserved (RC32364, RM5200, VR5400)

5 Available for implementation dependent use Cacheable Coherent Sharable

Historical usage: Line is fetched shared on a load miss,

- Cacheable coherent exclusive on write (sharable) (R4000, RIOOOO) exclusive on a store miss.

- Unused, defaults to cached (R4300) Line is upgraded to exclusive if it is
fetched shared but no other processor has

- Reserved (RC32364, RM5200, VR5400) it.

SB-I Users Manual 6-111

Register Definitions SiByte Confidential

TABLE 6-18 SB-1 Cache Coherency Attributes

C(S:3) Cache Coherency Attributes With Historical Usage SB-1 Assignment

6 Available for implementation dependent use Not Used

Historical usage:

- Cacheable coherent update on write (update) (R4000)

- Unused, defaults to cached (R4300)

- Reserved (RC32364, RM5200, RlOOOO)

7 Available for implementation dependent use Uncached Accelerated:

Historical usage: Merge in Write Buffer

- Reserved (R4000)

- Unused, defaults to cached (R4300)

- Reserved (RC32364, RM5200)

- Uncached accelerated (VR5400, R!OOOO)

6-112 SB-I Users Manual

CHAPTER7 Virtual Memory Address Space
alUl, the TIB Format

7.1 Introduction

This chapter elaborates on virtual memory address s
this chapter should be used in conjunction with
Specification. •

SB-1 Users Manual

B fonnat in SB-1. The material presented in
ivileged Resource Architecture in MIPS64

7-113

Supported Memory Address Space in SB-1 SiByte Confidential

7.2 Supported Memory Address Space in SB-1

Table 7-1 shows the MIPS64 virtual memory address space, as supported in SB-1. The supported physical

address space in SB-1is40 bits wide and the virtual address space is 44 bits wide1.

TABLE 7-1 Virtual Memory Address Space

....
Segment

64-bit
Associated with Reference Legal Actual Segment Segment

VA63 .. 62 Maximum Address Range Address
Name(s)

Enable
Mode from Mode(s) Size Type

OxFFFF FFFF FFFF FFFF

kseg3 229 Bytes
32-bit

through Always Kernel Kernel

OxFFFF FFFF EOOO 0000
Compatibility

OxFFFF FFFF DFFF FFFF
sseg Supervisor

229 Bytes
32-bit

ksseg
through Always Supervisor

Kernel Compatibility
OxFFFF FFFF COOO 0000

OxFFFF FFFF BFFF FFFF

229 Bytes
32-bit

ksegl through Always Kernel Kernel

OxFFFF FFFF AOOO 0000
Compatibility

11
OxFFFF FFFF 9FFF FFFF

ksegO 229 Bytes
32-bit

through Always Kernel Kernel

OxFFFF FFFF 8000 0000
Compatibility

OxFFFF FFFF 7FFF FFFF
Address through Error -- - -- -- --

OxCOOO OFFF 8000 0000

OxCOOO OFFF 7FFF FFFF

xkseg through KX Kernel Kernel (244 - 231) Bytes 64-bit

OxCOOO 0000 0000 0000

OxBFFF FFFF FFFF FFFF 8 x 240 Byte

10 xkphys through KX Kernel Kernel regions within 64-bit
the 262 Byte

Ox8000 0000 0000 0000 Segment

Ox7FFF FFFF FFFF FFFF
Address

through Error -- -- -- -- --
Ox4000 1000 0000 0000

01
Ox4000 OFFF FFFF FFFF

xsseg
through sx

xksseg
Ox4000 0000 0000 0000

Supervisor
Supervisor

Kernel
244 Bytes 64-bit

7-114 SB-1 Users Manual

Supported Memory Address Space in SB-1 SiByte Confidential

TABLE 7-1 Virtual Memory Address Space

Segment
64-bit

Associated with Reference Legal Actual Segment Segment
VA63 .. 62 Maximum Address Range Address

Name(s)
Enable

Mode from Mode(s) Size Type

Ox3FFF FFFF FFFF FFFF
Address through Error -- -- -- -- --

OxOOOO 1000 FFFF FFFF

xuseg OxOOOO OFFF FFFF FFFF User

00 xsuseg through ux User Supervisor (244 - 231) Bytes 64-bit

xkuseg OxOOOO 0000 8000 0000 Kernel

useg OxOOOO 0000 7FFF FFFF User

231 Bytes
32-bit

suseg through Always User Supervisor

kuseg OxOOOO 0000 0000 0000 Kernel
Compatibility

1. PABITS and SEGBITS, respectively, as referenced in the MIPS64 Specification

SB-1 Users Manual 7-115

Supported Memory Address Space in SB-1 SiByte Confidential

Figure 7-1 shows the virtual address space supported by SB-1.

64-Bit Virtual Memory Address Space 32-Bit Compatibility Address Space

OxFFFF FFfF FFFF FFFF OxFFFF FFFF FFFF FFFF

Kernel kseg3
Mapped

OxFfFF FFFF EOOO 0000

xkseg Kernel Supervisor
Mapped Mapped

sseg

OxFfFFFFFF OlOO 0000
Ox.OJ()() 0000 0000 0000 Kernel

Kernel Unmapped ksegl

x.kphys Unmapped Uncached
OxFfFF FFFF AOOO 0000

Kernel
ksegO

Unmapped
Ox.8000 0000 0000 0000

OxFfFF FFFF 8000 0000

Supervisor

xsseg
Mapped

Ox.0000 0000 7FFF FFFF

Ox4000 0000 0000 0000
~ #j.

User
S"

User useg
Mapped Mapped

xuseg

FIGURE 7-1 SB-1 Virtual Address Space

For reference purposes, Table 6-18 from Chapter 6 is repeated below to clarify the cache coherency attribute
encoding (CCA field <61:59> of virtual address) used in constructing the full virtual address.

7-116 SB-1 Users Manual

Supported Memory Address Space in SB-1 SiByte Confidential

TABLE 7-2 SB-1 Cache Coherency Attributes

C(5:3) Cache Coherency Attributes With Historical Usage SB-1 Assignment

0 Available for implementation dependent use Cacheable Coherent:

Historical usage: Exclusive in LI, Uncacheable in L2.

- Reserved (R4000®, VR5400, RIOOOO®)

- Unused, defaults to cached (R4300™) Similar to C = 4, but do not allocate in L2.

- Cacheable, noncoherent, write through, no write allocate (RC32364, RM5200)

1 Available for implementation dependent use Cacheable Coherent:

Historical usage: Shared in LI, Uncacheable in L2.

- Reserved (R4000)

- Unused, defaults to cached (R4300) Similar to C = 5, but do not allocate in L2.

- Cacheable, noncoherent, write through, write allocate(RC32364, RM5200)

- Cacheable write-through, write allocate (VR5400)

2 Uncached Un cached

Historical usage:

- Uncached (all processors)

3 Cacheable Cacheable Noncoherent

Historical usage:

- Cacheable noncoherent (noncoherent) (R4000, RJOOOO)

- Cached (R4300)

- Cacheable, noncoherent (writeback) (RC32364, RM5200)

- Cacheable, writeback (VR5400)

4 Available for implementation dependent use Cacheable Coherent Exclusive

Historical usage: Line is always fetched exclusive.

- Cacheable coherent exclusive (exclusive) (R4000, RlOOOO)

- Unused, defaults to cached (R4300)

- Reserved (RC32364, RM5200, VR5400)

5 Available for implementation dependent use Cacheable Coherent Sharable

Historical usage: Line is fetched shared on a load miss,

- Cacheable coherent exclusive on write (sharable) (R4000, RlOOOO) exclusive on a store miss.

- Unused, defaults to cached (R4300) Line is upgraded to exclusive if it is
fetched shared but there is no sharing.

- Reserved (RC32364, RM5200, VR5400)

SB-1 Users Manual 7-117

TheTLB SiByte Confidential

TABLE 7-2 SB-1 Cache Coherency Attributes

C(5:3) Cache Coherency Attributes With Historical Usage SB-1 Assignment

6 Available for implementation dependent use Not Used

Historical usage:

- Cacheable coherent update on write (update) (R4000)

- Unused, defaults to cached (R4300)

- Reserved (RC32364, RM5200, RIOOOO)

7 Available for implementation dependent use Uncached Accelerated:

Historical usage: Merge in Write Buffer

- Reserved (R4000)

- Unused, defaults to cached (R4300)

- Reserved (RC32364, RM5200)

- Uncached accelerated (VR5400, RIOOOO)

7.3 The TLB

Table 7-3 shows the organization of the Translation Lookaside Buffer in SB-1.

TABLE 7-3 TLB Organization in SB-1

Cache Feature Specifics

Size 128 Entries, Arranged in 64 Rows of Even/Odd Pairs

Associativity Full

Replacement Algorithm Software Managed, with assist from Random

Parity None

ECCSupport None

7-118 SB-1 Users Manual

TheTLB SiByte Confidential

7.3.1 TLB Entry Format

Figure 7-2 shows the TLB Format supported in SB-1.

255 217216 205 204 192

I 0 I Mask I 0 I
39 12 13

191 190189 172171 141 140 136135 128

I R I 0 I VPN2 I GI 0 I ASID I
2 18 31 4 8

127 9897 70 69 67 66 65 64

I 0 I PFN I c jnjviol
30 28 3 1

63 3433 6 5 3 2 0

I 0 I PFN I c jnjvjol
30 28 3 1 1

FIGURE 7-2 TLB Entry Format in SB-1

SB-1 Users Manual 7-119

TheTLB SiByte Confidential

7-120 SB-1 Users Manual

CHAPTERS The CPO Architecture

8.1 Introduction

This chapter provides the list of CPO registers suppo
CPO registers, Required and Optional. For detail
chapter elaborates mainly on the list of <lf>tion

. The MIP64 Specification provides two sets of
registers, refer to the MIPS64 Specification. This

nd optional fields within Required registers as
supported in SB-1 core.

Table 8-1 provide

Register
Sel Function

Compliance Reference:
Number Level MIPS64 Specification

0 0 Index Index into the TLB entry Required Section 4.9.1, pg. 105

0 Random Randomly generated index into the TLB array Required Section 4.9.2, pg. 106

2 0 EntryLoO Low-order portion of the TLB entry for even- Required Section 4.9.3, pg. 107
numbered virtual pages

3 0 EntryLol Low-order portion of the TLB entry for odd- Required Section 4.9.3, pg. 107
numbered virtual pages

SB-I Users Manual 8-121

Overview of CPO Registers SIByte Confidential

TABLE 8-1 List of CPO Registers in SB-1

Register
Sel

Register
Function

Compliance Reference:
Number Name Level MIPS64 Specification

4 0 Context Pointer to page table entry in memory Required Section 4.9.4, pg. 110

5 0 PageMask Control for variable page size in TLB entries Required Section 4.9.5, pg. 111

6 0 Wired Controls the number of fixed ("wired") TLB Required Section 4.9.6, pg. 112
entries

7 all Reserved for future extension Reserved

8 0 BadVAddr Reports the address for the most recent address- Required Section 4.9.7, pg. 113
related exception

9 0 Count Processor cycle count Required Section 4.9.8, pg. 114

10 0 EntryHi High-order portion of the TLB entry Required Section 4.9.9, pg. 114

11 0 Compare Timer interrupt control Required Section 4.9.10, pg. 116

12 0 Status Processor status and control Required Section4.9~11, pg.116

13 0 Cause Cause of last general exception Required Section 4.9.12, pg. 123

14 0 EPC Program counter at last exception Required Section 4.9.13, pg. 126

15 0 PRid Processor identification and revision Required Section 4.9.14, pg. 127

16 0 Con fig Configuration register Required Section 4.9.15, pg. 128

16 I Configl Configuration register I Required Section 4.9.16, pg. 130

17 0 LLAddr Load linked address Implemented in SB- I Section 4.9.17, pg. 132

18 0 WatchLo Instruction Watchpoint address Implemented in SB-I Section 4.9.18, pg. 132

Also, refer to the Debug
Architecture Chapter in this
manual.

18 I WatchLo Data Watchpoint address Implemented in SB-I Section 4.9.18, pg. 132

Also, refer to the Debug
Architecture Chapter in this
manual.

19 0 WatchHi Instruction Watchpoint control Implemented in SB-I Section 4.9.19, pg. 134

Also, refer to the Debug
Architecture Chapter in this

-··- manual.

19 I WatchHi Data Watchpoint control Implemented in SB-1 Section 4.9.19, pg. 134

Also, refer to the Debug
Architecture Chapter in this
manual.

20 0 XContext Extended Addressing Page Table Context Required Section 4.9.20, pg. 135

21 all Reserved for future extensions Reserved

22 all Performance Event register Implemented in SB-1 Section 4.9.21, pg. 136

8-122 SB-1 Users Manual

Overview of CPO Registers SiByte Confidential

TABLE 8·1 List of CPO Registers in SB-1

Register
Sel

Register
Function

Compliance Reference:
Number Name Level MIPS64 Specification

23 0 Debug EJTAG Debug register Implemented in SB-1 EJTAG v2.5 Specification

Also, refer to the Debug
Architecture Chapter in this
manual.

23 3 EDebug Extended Debug register Implemented in SB-1 EJTAG v2.5 Specification

Also, refer to the Debug
Architecture Chapter in this
manual.

24 0 DEPC Program counter at last EJTAG debug Implemented in SB-1 EJTAG v2.5 Specification
exception Also, refer to the Debug

Architecture Chapter in this
manual.

25 0-n PerfCnt Performance counter interface Implemented in SB- I Section4.9.24, pg. 137

Also, refer to the
Performance Monitoring
Architecture Chapter in this
manual.

26 0 ErrCtl Parity/ECC error control and status Implemented in SB-I Section4.9.25, pg. 140

Also, refer to the Error
Handling Chapter in this
manual.

26 I BusErr_DPA Data Bus Error Physical Address Implemented in SB-I Section 4.9.25, pg. 140

Also, refer to the Error
Handling Chapter in this
manual.

27 0 CacheErrI Instruction Cache error control and status Implemented in SB-I Section 4.9.26, pg. 140

Also, refer to the Error
Handling Chapter in this
manual.

27 I CacheErrD Data Cache error control and status Implemented in SB-I Section 4.9.26, pg. 140

Also, refer to the Error
Handling Chapter in this
manual.

27 3 CacheErr_DPA Data Cache Error Physical Address Implemented in SB-1 Section 4.9.26, pg. 140

Also, refer to the Error
Handling Chapter in this
manual.

28 0 TagLoI Low-order portion of instruction cache tag Required Section 4.9.27, pg. 142
interface

28 I DataLo Low-order portion of cache data interface Not Implemented in SB-I Section 4.9.28, pg. 143

28 2 TagLoD Low-order portion of data cache tag interface Required Section4.9.27, pg. 142

SB-1 Users Manual 8-123

Overview of CPO Registers

TABLE 8-1 List of CPO Registers in SB-1

Register
Sel

Register
Function

Compliance
Number Name Level

29 0 TagHiI High-order portion of instruction cache tag Required
interface

29 1 DataHi High-order portion of cache data interface Not Implemented in SB- I

29 2 TagHiD High-order portion of data cache tag interface Required

30 0 ErrorEPC Program counter at last error Required

31 0 DESAVE EJTAG debug exception save register Implemented in SB-1

8.2.1 Processor Status and Control (Status, CPO Register 12, selO)

Figure 8-1 shows the SB-1 Status and Control Register.

31 1817 1615

SiByte Confidential

Reference:
MIPS64 Specification

Section 4.9.29, pg. 143

Section 4.9.30, pg. 144

Section 4.9.29, pg. 143

Section 4.9.31, pg. 144

Also, refer to the Error
Handling Chapter in this
manual.

EJTAG v2.5 Specification

Also, refer to the Debug
Architecture Chapter in this
manual.

0

MIPS64 Defined Bits l ~ l ~ l MIPS64 Defined Bits J
RGURE 8-1 SB-1 Status and Control Register

The SBX bit allows the execution of SiByte specific extensions to the standard MIPS64 instruction set
architecture. Upon reset, this bit is set to 0, disabling the execution of extended instructions. If an extended
instruction is executed with this bit set to 0, the processor will generate a Reserved Instruction exception. The
list of extended instructions in SB-1 follows:

MDMX: PAVU PABSDIFF, PABSDIFFC. Refer to Chapter 3 for additional details.

Floating Point: DIV.PS, RECIP.PS, RSQRT.PS, SQRT.PS. Refer to Chapter 4 for additional details.

8-124 SB-1 Users Manual

Overview of CPO Registers

8.2.2 Processor Identification and Revision (PRid, CPO Register 15, selO)

Figure 8-2 shows the format of PRid register in MIP64 architecture.

31 24 23 1615 87

Options CompanylD I Processor ID

FIGURE 8-2 PRld Register Format

SiByte Confidential

0

Revision

This is a 32 bit read-only register, factory preset, that contains information identifying the manufacturer,
manufacturer options, processor identification and revision level of the processor. Table 8-2 presents the value of
this register in SB- I.

TABLE 8-2 PRld Register Fields in SB-1

Field Description Setting

Revision Specifies the revision number of the processor. This field allows Oxl
software to distinguish between one revision and another of the (Initial Value) same processor type.

Processor ID Identifies the type of processor. This field allows software to Oxl
distinguish between various processor implementations within a
single company, and is qualified by the CompanyID field,
described above. The combination of the CompanyID and
ProcessorID fields creates a unique number assigned to each
processor implementation.

SB-1 Users Manual 8-125

Overview of CPO Registers SiByte Confidential

TABLE 8-2 PRld Register Fields in SB-1

Field Description Setting

Company ID Identifies the company that designed or manufactured the
processor. Software can distinguish a MIPS32 or MIPS64

Ox4

processor from one implementing an earlier MIPS ISA by
checking this field for zero. If it is nonzero the processor
implements the MIPS32 or MIPS64 Architecture. Company IDs
are assigned by MIPS Technologies when a MIPS32 or MIPS64
license is acquired. The encodings in this field are:

OxO: Not a MIPS32 or MIPS64 processor

Oxl: MIPS Technologies, Inc.

Ox4 : SiByte, Inc.

Company Options Available to the designer or manufacturer of the processor for PRid<24> =MP Bit
company-dependent options. The value in this field is not PRid<24> = OxO for Uniprocessor specified by the architecture.

PR!d<24> =Ox! for Multiprocessors

PRld<27:2S> =Processor Number

OxO through Ox7, up to 8 processors

If PRld<24> == 0, then the only valid value

for PRid<27:25> is OxO

PRld<31:28> = SIByte Reserved

8.2.3 Configuration Register (Config, CPO Register 16, selO)

Bits 16 through 30 of this register are reserved for implementation by MIPS64 ISA SB-1 uses bits [19:16] of
Config register to implement the multiprocessor vector offset bits, called MPV. This allows each processor to
"shift" its exception block by 64KB, i.e. bits [19:16] of the exception vector are selected directly from this
register field. At Reset, these bits are set to 0. These bits are read/write.

Figure 8"3 shows the bits taken by this field in the Config Register.

3130 20 19 1615 0

I I.. SB-1 Reserved MIPS64 Defined Bits

FIGURE 8-3 MPV Field in SB-1 Contig Register

8-126 SB-I Users Manual

Overview of CPO Registers SiByte Confidential

Exceptions that occur to the boot block, e.g. vectors with OxBxxx_xxxx such as reset, NMI, debug, etc., are not
affected by this offset, and as such, multiple copies do not need to be present in the ROM.

8.2.4 Load Linked Address (LLAddr, CPO Register 17, selO)

The LLAddr register contains relevant bits of the physical address read by the most recent Load Linked
instruction.

This register is for diagnostic purposes only and serves no function during normal operation. The format of this
register in SB-1 is shown in Figure 8-4.

40 39

OxO Physical Address

FIGURE 8-4 LLAddr Register Fonnat in SB-1

Table 8-3 describes the LLAddr register fields.

TABLE 8-3 LLAddr Register Field Descriptions

Fields
Description Read/Write

Name Bits

PAddr 39:0 This field encodes the physical address read by the most recent RIW
Load Linked instruction.

-- 63:40 All Zeros R/W

8.2.5 Watchpoint Address (WatchLo, CPO Register 18, selO-n)

For details, refer to the chapter on Debug Architecture in this manual.

8.2.6 Watchpoint Control (WatchHi, CPO Register 19, selO-n)

For details, refer to the chapter on Debug Architecture in this manual.

8.2.7 EJTAG Debug Register (Debug, CPO Register 23, seIO)

For details, refer to the chapter on Debug Architecture in this manual.

SB-1 Users Manual

Reset State

Undefined

OxO

0

8-127

Overview of CPO Registers SiByte Confidential

8.2.8 Program Counter at Last EJTAG Debug Exception (DEPC, CPO Register 24, selO)

For details, refer to the chapter on Debug Architecture in this manual.

8.2.9 Performance Counter Interface (PerfCnt, CPO Register 25, selO)

For details, refer to the chapter on Performance Monitoring Architecture in this manual.

8.2.10 Parity/ECC Error Control and Status (ErrCtl, CPO Register 26, selO)

For details, refer to the chapter on Error Handling in this manual.

8.2.11 Cache Error Control and Status (CacheErr, CPO Register 27, sel0-3)

For details, refer to the chapter on Error Handling in this manual.

8.2.12 Low-order Portion of Cache Data Interface (DataLo, CPO Register 28, sell)

This CPO register is not implemented in SB-1.

8.2.13 High-order Portion of Cache Data Interface (DataHi, CPO Register 29, sell)

This CPO register is not implemented in SB-1.

8.2.14 EJTAG Debug Exception Save Register (DESA VE, CPO Register 31, selO)

For details, refer to the chapter on Debug Architecture in this manual.

8-128 SB-I Users Manual

Privileged Resource Hazards SiByte Confidential

8.3 Privileged Resource Hazards

This section details the hazards surrounding the SB-1 privileged resources. Specifically. the use of privileged
resources. such as CPO registers. the TLB. and cache state. and the execution of privileged instructions. such as
MTCO and MFCO. are covered.

8.3.1 Privileged Resources and Instructions

The SB-1 privileged resources include the Coprocessor 0 registers. the Translation Lookaside Buffer. and the
Instruction and Data Cache Tags.

Some CPO registers serve as the interface between software and the hardware resource. For TLB access. the
following CPO registers are used: Index (0), Random (1). EntryLoO (2), EntryLol (3), PageMask (5). and
Entry Hi (10). For cache tag access, the TagLo-I (28, sel. 0) and TagHi-I (29, sel. 0) interface with the instruction
cache, and TagLo-D (28, sel. 2) and TagHi-D (29, sel. 2) interface to the data cache.

The following table outlines the resources required by the privileged instructions defined by the MIPS64 ISA.
The Inst column indicates the type of instruction, while the Source and Destination columns list the required
resources and the resources updated by the instruction.

TABLE 8-4 Resources Required by MIPS64 Privileged Instructions

Inst Source Destination

CACHE TLB, Cache Tags. TagLo/TagHi Cache Tags, TagLo/TagHi

ERET Status, EPC. ErrorEPC Status, PC

DERET Debug, DEPC Debug, PC

DMFCO/MFCO CPO Register

DMTCO!MTCO CPO Register

MTCO Entry Hi TLB, EntryHi

TLBP TLB. EntryHi Index

TLBR TLB, Index TLB, PageMask, EntryHi/EntryLo

TLBWI Index, PageMask, EntryHi/EntryLo TLB

TLBWR Random. PageMask, EntryHi/EntryLo TLB

SB-1 Users Manual 8-129

Privileged Resource Hazards SiByte Confidential

In addition. some processor activities implicitly require privileged resources to operate. These are listed below:

TABLE 8-5 Processor Activities Requiring Privileged Resources

Action Source Destination

Inst Fetches Cache Tags (TLB on miss)

Loads TLB. Cache Tags

Stores TLB, Cache Tags

8.3.2 Privileged Resource Hazards

Whenever an instruction writes a result to a resource required by a subsequent instruction or action, a hazard
exists. This is commonly known as a Read-After-Write (RAW) hazard. (Other types of hazards, such as WA W
and WAR, are not visible in the SB-1 's implementation of the privileged resources.) In the SB-1, all privileged
instructions and memory actions such as loads and stores are interlocked by serializing the dependent operations.
As a result, no SSNOPs are required between these types of operations.

The privileged instructions and other operations can be classified into several groups, as shown below:

TABLE 8-6 Operation Grouping of Privileged and Miscellaneous CPU Operations

Group Instruction/ Action Description

TLBOp TLBWI, TLBWR, TLBR, TLBP TLB Instructions

Entry Hi MTCO CPO.Entry Hi Move to CPO.EntryHi

Cache CACHE Cache Operation Instructions

CPOWr MTCO, DMTCO CPO Register Write Operations

CPO Rd MFCO,DMFCO CPO Register Read Operations

MemOp Loads and Stores Load and Store Operations

Note that in this classification, a move to the CPO.EntryHi register is a special case due to its effects on the
implementation, namely the TLB.

8-130 SB-1 Users Manual

Privileged Resource Hazards SiByte Confidential

The following matrix outlines the implemented interlocks for each pair of operation groups. To eliminate the
hazards, the SB-1 effectively serializes the instructions from each group that may result in a hazard. Note that no
hazards exist for a group followed by a CPOWr or Entry Hi (these are WA* hazards).

TABLE 8-7 Implemented Interlocks for Each Pair of Operation Groupsa

First/Second TLBOp Cache CPO Rd MemOp

TLBOp HW Interlock HW Interlock HW Interlock HW Interlock

Entry Hi HW Interlock HW Interlock HW Interlock HW Interlock

Cache HW Interlock HW Interlock HW Interlock HW Interlock

CPOWr HW Interlock HW Interlock HW Interlock HW Interlock

CPORd CPO Hazard HW Interlock CPO Hazard CPO Hazard

MemOp CPO Hazard HW Interlock CPO Hazard CPO Hazard

a. Hardware interlock implies serialization

Instruction cache operations are not interlocked with respect to the instruction fetch. As a result, care must be
taken when executing these operations since they may have unpredictable results. It is recommended that
instruction cache operations only be executed from uncacheable space.

8.3.3 CPO Register Side-Effects

Although the above operations are interlocked, side-effects of writing CPO registers are not interlocked. In
general, the CPO write takes effect in stage 8 of the pipeline; however, the usage of the CPO data may take place
earlier in the pipeline. Thus, there is a "shadow" of some number of instructions between the update and the
update's being observed. These hazards are divided into fetch hazards and execution hazards.

(Note that updates of CPO state that are invisible to software, such as exceptions, or that are implicit in the
execution of certain instructions, such as an ERET, are handled by the hardware, so no SSNOPs are required for
proper operation.)

8.3.3.1 Fetch Hazards

Because the instruction fetch is decoupled from the execution of instructions, there is no way to guarantee the
timing between the CPO register write and the instruction fetch. To eliminate this type of hazard, an ERET
instruction must be executed between the CPO write and the first instruction that should observe the update. In
the SB-1, there are no cases that require placing SSNOPs before the ERET instruction.

SB-1 Users Manual 8-131

Privileged Resource Hazards SiByte Confidential

Writes to CPO registers that affect instruction fetch are listed below by register:

TABLE 8-8 CPO Registers that Affect Instruction Fetch

Register Field Action

Entry Hi ASID Inst Cache Lookup/Inst Watch Exception

Status cu Coprocessor Usable Exceptions

RE Instruction Fetch Endinanness

MX MDMX Usable Exceptions

PX Rsvd Inst for 64b User Instructions

KX/SX/UX Address ErrorffLB Refill Exceptions

KSU Address Error Exceptions

EXL/ERL Address Error/Inst Watch Exceptions

Config KO Instruction Cache Lookup

WatchLo-1 All Instruction Watch Exceptions

WatchHi-1 All Instruction Watch Exceptions

In addition, installing a new TLB entry for the instruction fetch requires executing an ERET to ensure that the
TLB state has been updated properly.

8.3.3.2 Execution Hazards

Execution hazards occur between the time of the CPO register write and the time of the CPO register use after the
issue stage. The following table indicates when certain instructions or actions require and/or generate CPO state.
Note that TLB operations and registers, as well as CACHE instructions, are omitted since they are fully
interlocked.

TABLE 8·9 Required/Generated CPO States by SB-1 Instructions and Activities

Operands Results

InsUEvent What Pipestage What Pipestage

MTCO/DMTCO CPO Register 8

MFCO/DMFCO CPO Register Interlock

Load/Store EntryHi.ASID Interlock

Status.RE Interlock

Status.KX/SX/UX Interlock

Status.KSU Interlock

Status.ERL Interlock

8-132 SB-1 Users Manual

Privileged Resource Hazards SiByte Confidential

TABLE B-9 Required/Generated CPO States by SB-1 Instructions and Activities

Operands Results

Inst/Event What Pipestage What Pipestage

Status.EXL Interlock

Config.KO Interlock

WatchLo-D Interlock

WatchHi-D Interlock

FP 64b Registers Status.FR 0

SiByte Ext Status.SBX 0

Exception Status.BEV 7 Status.ERL 8

Cause.IV 7 Status.EXL 8

Config.MPV 7 Cause.BD 10

Cause.CE 8

Cause.ExcCode 8

EPC 10

ErrorEPC 10

Mero Exception (including above) Context 8

BadVAddr 8110

Entry Hi 8

XContext 8

Interrupt Status.IM 4 See Exception Above

Status.ERL 4

Status.EXL 4

Status.IE 4

Cause.IP 4

Timer Int Count 3 Cause.IP? 4

Compare 3

Def Watch Exe (Data) Status.EXL 4 Cause.WP 8

Status.ERL 4 See Exception Above

Cause.WP 4

ERET EPC 7 Status.ERL 8

ErrorEPC 7 Status.EXL 8

Debug Exception Debug.DBD 10

Debug.DM 8

SB-I Users Manual 8-133

Privileged Resource Hazards SiByte Confidential

TABLE 8-9 Required/Generated CPO States by SB-1 Instructions and Activities

Operands Results

Inst/Event What Pipestage What Pipestage

Debug.IEXI 8

Debug.DExcCode 8

Debug.DINT 8

Debug.DIB 8

Debug.DDBS 8

Debug.DDBL 8

Debug.DBp 8

Debug.DSS 8

DEPC 10

Impr Debug Exe . Debug.MCheckEP 4 See Debug Exception Above

Debug.CacheEP 4

Debug.DBusEP 4

Debug.IEXI 4

DERET DEPC 7 Debug.OM 8

Debug.IEXI 8

The pipestages for each event can be used to calculate the required separation (in cycles) between two events.
Note that the SB-1 is a superscalar machine, so cycles do not necessarily equal instructions. To make the number
of instructions equal the number of cycles, the SSNOP instruction can be used since this instruction forces
single-issue for itself.

To calculate the separation, the following formula can be used:

Separation = Pipestage(Result) - Pipestage(Operand) - 1

For example, a MTCO instruction that modifies the RE bit must occur a certain number of cycles before a
subsequent load or store. The number of cycles, or SSNOPs, is 8 (MTCO write) - 0 (Load/Store use) - 1, or 7.
Likewise, a MTCO that enables interrupts may cause an interrupt to be taken on an instruction issued four cycles
later:

Separation = 8 (MTCO write) - 4 (IE use) - 1 = 3

T MTCO rl, CPO.Status

8-134 SB-1 Users Manual

Privileged Resource Hazards SIByte Confidential

T+l SSNOP

T+2 SSNOP

T+3 SSNOP

T+4 (interrupt seen here)

In some cases, the separation may be 0 cycles, such as between a MTCO to the EPC register followed by an
ERET. In the SB-1, privileged instructions are always the oldest instruction issued in a particular cycle. As a
result, privileged instructions are effectively pipelined, so SSNOPs do not need to be used to ensure that two
privileged instructions are issued in different cycles. With this behavior and with interlocks, privileged
instruction sequences need not include intervening instructions.

The cycle separation calculated by using the above table indicates the maximum shadow resulting from a
particular pair of operations. Use of the dependent operation within that shadow may result in
UNPREDICTABLE behavior.

SB-1 Users Manual 8-135

Privileged Resource Hazards SiByte Confidential

8-136 SB-I Users Manual

CHAPTER9 The Debug Architecture

9.1 Introduction

This document covers the SB-1 core debug impleme
in nature and allow customers programming or i

debug features of the SB-1 are mostly software
SB-1 core to debug their software and hardware .

9.2 Debug Features

The SB-1 core provides custo
systems. Included in
compliant EJTAG
which includes an e
TAP.

9.2.1 Watch Registers

•

debug features that aid in the development of hardware and software
g functionality are MIPS64 compliant Watch registers and a MIPS

additional debug flexibility, an enhanced debug mode is implemented
g interface and an alternate debug vector which enables loading code over the

Two Watch register pairs (WatchHi and WatchLo) are implemented by the SB-1 core to trap on software­
specified addresses. The first pair, selected when sel equals zero, can be used to break on instruction addresses
while the second pair, selected when sel equals one, traps load or store accesses.

SB-1 Users Manual 9-137

Debug Features SiByte Confidential

The Watch registers are implemented as specified in the MIPS64 document with the following exceptions. The
WatchLo register, corresponding to select zero, always reads bits [1:0] as zero and ignores writes to those bits,
because they are used exclusively for instruction references. Likewise, bit [2] of WatchLo register one is always
read zero and ignored on writes, and bits [1:0] are used as enables since that register corresponds to data
references only.

TABLE 9-1 WatchLo/Hi Register Specifics

Bits Field Description Access Reset

WatchLo, Sel = 0

[63:3] VAddr Instruction Virtual Address R/W x
[2] I Instruction Watch Enable RJW 0

[1:0] 0 Reserved R 0

WatchHi, Sel = 0

[31] M More Watch Pairs Implemented R 1

[30] G Global Bit RJW x
[29:24] 0 Reserved R 0

[23:16] ASID Application Space ID RJW x
[15:12] 0 Reserved R 0

[11 :3] Mask Mask Bits R/W x
[2:0] 0 Reserved R 0

WatchLo, Sel = 1

[63:3] VAddr Data Virtual Address R/W x
[2] 0 Reserved R 0

[I] R Load Watch Enable RJW 0

[OJ w Store Watch Enable RJW 0

WatchHi, Sel = 1

[31] M More Watch Pairs Implemented R 0

[30] G Global Bit RJW x
[29:24] 0 Reserved R 0

[23: 16] ASID Application Space ID RJW x
[15:12] 0 Reserved R 0

[11:3] Mask Mask Bits R/W x
[2:0] 0 Reserved R 0

9-138 SB-1 Users Manual

EJTAG SiByte Confidential

9.3 EJTAG

The SB-1 core features a compliant subset of the MIPS EITAG, Version 2.5, functionality. EJTAG extends the
operating modes, the ISA, and the CPO registers of a MIPS processor.

In addition to the normal kernel, supervisor, and user modes, the EJTAG specification defines a special debug
mode. In debug mode, several types of debug exceptions may be serviced, including single step instruction
breaks and debug interrupts signalled by the external agent via the DINT pin. The debug mode may also be
entered via the Software Debug Breakpoint instruction (SDBBP).

EJTAG defines several CPO registers to hold debug state when a debug exception is encountered. The Debug
register contains information about how the debug handler was entered, while the DEPC register holds the PC of
the instruction that was executing when the debug exception occurred. To provide consistent state between
debug exceptions, the DESAVE register is implemented and acts as a scratch register for the debug handler.
When the handler is complete, a DERET instruction is executed, resuming the original program at the PC stored
inDEPC.

The EJTAG spec outlines the behavior of debug mode and single step instruction break (which is enabled for all
modes except debug when the SSt bit is set) as well as the register definitions for the extended CPO registers.
Since the SB-1 does not implement some EITAG features, the Debug register is defined as follows (for an
explanation of EDM, see the next section):

TABLE 9-2 Debug Register: CPO Register 23, Sel = 0, EDM = 0

Bits Field Description Access Reset

(31] DBD Debug Branch Delay Slot R x
[30] DM Debug Mode Status R 0

[29] NoDCR No Debug Control Register R I

[28] LSNM Load/Store Normal Memory• R 0

[27] Doze Doze Status R 0

(26] Halt Halt Status R 0

[25] CountDM Count Register in Debug Mode R 0

[24] 0 Reserved R 0

(23] MCheckP Machine Check Exception Pending R/Wlb 0

(22] CacheEP Cache Error Exception Pending R/Wlb 0

[21] BusDP Bus Error Exception Pending R/Wlb 0

[20] IEXI Imprecise Error Exception Inhibit R/W 0

[19] DDBS!mpr Debug Data Brk St Impr Stat• R 0

SB-I Users Manual 9-139

EJTAG

TABLE 9-2 Debug Register: CPO Register 23, Sel = 0, EDM = 0

Bits Field Description Access

[18] DDBLlmpr Debug Data Brk Ld Impr Stata R

[17:15] EJTAGver EJTAG Version (Version 2.5) R

[14:10] DExcCode Debug Exception Code R

[9]

[8]

[7:6]

[5]

[4]

[3]

[2]

[l]

[0]

NoSSt No Single Step Implemented R

SSt Single Step Enable R/W

Rsvd Reserved R

DINT Debug Interrupt Status R

DIB Debug Instruction Break Exception Statusc R

DDBS Debug Data Break Store Exception Statusc R

DDBL Debug Data Break Load Exception Statusc R

DBp Debug Breakpoint Exception Status R

DSS Debug Single Step Exception Status R

a. These Debug Register bits are forced to 0 since the
EJTAG memory region and break registers are not
implemented

b. R/Wl indicates that software may read the state of
the bit but can only modify it by writing a one.

c. These bits are always read as zero in standard debug
mode, but when extended debug mode is enabled,
they are used to indicate watch exception condi­
tions. See below.

9-140

Reset

0

001

x
0

0

0

x
0

0

0

x
x

SiByte Confidential

SB-I Users Manual

Extended Debug Mode SiByte Confidential

9.4 Extended Debug Mode

In addition to EJTAG, the SB-1 core implements a SiByte defined extended debug mode to enhance the
processor's debug capabilities. Extended debug mode uses the existing EJTAG and Watch registers and defines
an extended debug mode register (EDebug) that controls the additional debug features. Addressed via the Debug
register number with select equal to 3, the EDebug register contains the following fields:

TABLE 9-3 EDebug Register(CPO Register 23, Sel = 3)

Bits Field Description Access Reset

[31] EDM Extended Debug Mode Enable R/W 0

[30] Alt Vee Alternate Debug Vector Select R/W a

[29:9] Rsvd Reserved R 0

[8] SStPrv SSt Enable in Privileged Modes R/W x
[7:6] Rsvd Reserved R 0

[5] EDE Extended Debug Event R/W 0

[4] EDI WT EDIW triggers EDE R/W x
[3] EDDWST EDDWS triggers EDE R/W x
[2] EDDWLT EDDWL triggers EDE R/W x
[1:0) Rsvd Reserved R 0

a. See discussion about the DBBOOT signal below

Extended debug mode is controlled through the EDM bit in the EDebug register. When EDM is enabled, the
Watch register pairs are used to generate debug exceptions rather than normal Watch exceptions. As a result,
Watch register matches may no longer be deferred (the WP bit will never be set) and cause entry into the debug
handler if the core is not already in debug mode. Upon entering debug mode, bits [4:2] of the Debug register are
set depending on the type of Watch register match:

TABLE 9-4 Debug, Sel = 0, EDM = 1

Bits Field Description Access Reset

[4] EDIW Extended Debug Instruction Watch Status R x
[3] EDDWS Extended Debug Data Watch St Status R x
[2] EDDWL Extended Debug Data Watch Ld Status R x

The EDebug register also allows software to select an alternate exception vector for debug exceptions. When the
AltVec bit is set in the EDebug register, the processor jumps to instruction address OxB000_0480 instead of the
normal EJTAG debug exception vector. An external agent, like the SB-1250 SCD, may map the memory at the

SB-I Users Manual 9-141

Extended Debug Mode SiByte Confidential

physical address that results (Ox00_1000_0480) to a JTAG probe so the debug handler and data can be delivered
by the probe. Servicing the debug exception through the probe allows flexible implementation of the handler.

Extended debug mode enables software to control single step more finely. The SStPrv bit enables single step in
non-user modes (kernel, supervisor, EXL, and ERL) and may be cleared when EDM is enabled so single step is
only active for user mode software. If EDM is disabled, or SSt is off, the state of this bit has no effect on single
step.

Finally, the EDE bit in the EDebug register allows software and certain hardware events to signal that a debug
event l'!!:is occurred. The state of this bit is reflected in the EDEN signal, an SB-1 core output, which may be
driven to an external agent to trigger an outside action. The EDE bit is always settable from software; however,
ifEDM is enabled, watchpoint events may set the bit as well, as long as the corresponding trigger bits are set
(bits [4:2] of the EDebug register). Clearing the EDE bit can only be done in software.

Debug mode can be entered directly from reset if the DBBOOT signal is asserted during reset. This signal forces
the SB-1 core to begin fetching from the alternate debug vector in debug mode when reset is deasserted. The
table below indicates what state is set by the DBBOOT signal during reset:

TABLE 9-5 Debug Reset Behavior

DBBOOT DM AltVec Vector

0 0 0 OxBFCO_OOOO

I I I Ox8000_0480

DBBOOT can also be used to force the state of the AltVec bit in the EDebug register. Asserting DB BOOT during
normal operation will set the AltVec bit but will not cause the processor to enter debug mode (DINT must be
used if entry into debug mode is desired.) The bit can only be cleared by software, and the DBBOOT signal must
be deasserted for the clearing write to take effect.

Enabling some features in extended debug mode places certain restrictions on software. Because EDM uses the
Watch registers as breakpoints, setting EDM when the Cause[WP] bit is one results in UNDEFINED processor
behavior. In addition, the behavior of the processor is UNDEFINED if the EDM and SStKS bits are modified
while not in debug mode, since single step behavior cannot be guaranteed. Software should check or clear the
WP bit before setting the EDM bit, and handlers should be careful not to modify the state of the EDM and
SStKS bits outside of debug mode. The EDE and AltVec bits may, however, be modified as long as the previous
restrictions are honored.

9-142 SB-1 Users Manual

Debug Signal Pins SiByte Confidential

9.5 Debug Signal Pins

The following table summarizes the external debug signals implemented on the SB-1 core:

TABLE 9-6 Debug Signal Pins

Name 110 Description

DINT I Debug Interrupt: causes the processor to take a debug exception and enter debug mode

DBBOOT I Debug Boot: forces the processor into debug mode after reset and initiates the instruction fetch from the alternate
debug vector. Sets AltVec immediately. On Reset, causes immediate entry to DM at Alternate Vector.

EDEN 0 Extended Debug Event Notification: asserts to notify an external agent of a core debug event; initiated by the debug
handler or hardware watchpoints

DBBOOT can also be used to force the state of the AltVec bit in the EDebug register. Asserting DBBOOT
during normal operation will set the AltVec bit but will not cause the processor to enter debug mode. (DINT
must be used if entry into debug mode is desired.) The bit can only be cleared by software, and the DBBOOT
signal must be deasserted for the clearing write to take effect.

SB-1 Users Manual 9-143

Debug Signal Pins SiByte Confidential

9-144 SB-1 Users Manual

CHAPTER JO Error Ha1Ulling

10.1 Introduction

This chapter covers the error handling capabilities o
depending on their relationship to the instruction

re. Errors are classified into several groups
of these classes are defined here:

Precise - An exception is precise if the Jlc dicates the PC of the exact instruction that caused or
detected the error.

Imprecise - An exception is impr
guaranteed to have caused or de

Deterministic - A dete
determined by inte
instructions that cau

or ErrorEPC indicates the PC of an instruction that cannot be

precise but the instruction that caused or detected the error can be
m flow from the instruction indicated by the EPC or ErrorEPC. In general,

· nistic errors are located within four instructions of that PC.

rror is imprecise, but the instruction stream may be restarted from the instruction
indicated by the EPC or E rEPC. In addition, recoverable errors are corrected by hardware, which completes
the correction before the error is signaled.

SB-1 Users Manual 10-145

Introduction SiByte Confidential

Table 10-1 classifies the type of errors that are detectable in the SB-1 core and describes the type of exception
taken by each:

TABLE 10-1 SB-1 Error Types

Error Type Exception Type

Instruction Cache

Instruction Cache Tag Address Parity Error Cache Error

Instruction Cache Data Parity Error Cache Error

Data Cache

Data Cache Tag State Parity Error Cache Error

Data Cache Tag Address Parity Error Cache Error

Data Cache Data Single-Bit ECC Error Cache Error

Data Cache Data Double-Bit ECC Error Cache Error

TLB·

TLB Multiple Entry Match (TLB Shutdown) Machine Check

BID

External Cache/Memory Error (external cache miss request ends in an uncorrectable parity/ECC error response) Cache Error

External Cache/Memory Error (external cache miss request ends in an uncorrectable parity/ECC error response) Cache Error

External Bus Error (external request ends in a bus error response) Bus Error

Duplicate Tag State Parity Error Cache Error

Duplicate Tag Address Parity Error Cache Error

General

Time Out Counter Expiration Machine Check

All other errors are undetectable and may manifest themselves in unpredictable processor behavior. The
subsequent sections detail the various error detecting and correcting properties of the different units on the CPU.

10-146 SB-1 Users Manual

Instruction Cache SiByte Confidential

10.2 Instruction Cache

In general, the instruction cache is parity protected in both the tag and data arrays. The tag fields and their
protection are listed in Table 10-2.

TABLE 10-2 lnstmction Cache Tag Field Protection

Field TagLoBits Size Protection TagLoBit

R [63:62) 2b Parity Bit (Pl) [ll]

VTagl (43:25) 19b Parity Bit (Pl) [I I]

VTagO [24:13) 12b Parity Bit (PO) [10]

G (8) lb Parity Bit (PO) [10)

ASID (7:0) Sb Parity Bit (PO) (10]

v (29] lb Parity Bit (P) (27]

Even parity is implemented in the instruction cache tag; that is, the number of ones in the protected data and the
parity bit is an even number. The valid (V) bit is covered by a single parity bit (P). In the rest of the tag, PO
covers the ASID, the G bit, and bits [24:13] of the address. Pl covers bits [43:25] of the address and the region
bits.

The instructions and the predecode bits are protected by a parity bit for every byte of data. As a result, one
cacheline contains 32b of parity for the instructions and 4b of parity to cover the predecode bits (one bit of
predecode parity covers two instructions'predecode bits). Again, the parity for the data array is even parity,
although this parity calculation is not visible to the user.

Note that with a parity protection scheme, single bit errors can be detected, but not corrected, by the hardware.
Also, some double bit errors cannot be detected.

10.2.1 Implementation Notes:

The valid bit parity calculation factors into the hit signal. As a result, the V and P bits must match for the line to
be valid in the cache. Tag address parity errors are calculated for each way and are signaled if any of the ways in
the index contains an error, regardless of the hit/miss determination. Instruction and predecode parity errors are
only reported if there is an error in the instructions being fetched.

The LRU bits are not parity protected, but invalid combinations are flushed to a known valid format when an
invalid state is detected. Errors detected in the valid and parity bits are never reported, although they are
scrubbed to the invalid state (V=O, P=O).

SB-I Users Manual 10-147

Data Cache SiByte Confidential

Table 10-3 indicates the types of errors that can occur at different stages of an instruction access.

TABLE 10-3 Instruction Access Error Types

Action Error-Exception Type

Icache Lookup Tag Address Parity-Cache Error Precise

lcache Hit Data Parity-Cache Error Precise

lcache Miss External Cache Error Precise

External Bus Error Precise

During an instruction cache miss, uncorrectable errors signaled on the return of the cacheline cause a cache or
bus error exception to be taken. In either case, the data are not filled into the cache.

10.3 Data Cache

The Data Cache address in the tag array is protected by even parity, as shown in Table 10-4.

TABLE 1D-4 Data Cache Tag Protection

Field TagLoBits Size Protection TagLoBit

PTagl [39:26] 14b Parity Bit (Pl) [II]

PTagO [25:13] l3b Parity Bit (PO) [10]

The state bits in the tag array are protected by a sparse encoding. This encoding is detailed in TagLoffagHi
descriptions in Chapter 6.

In the data array, error correcting code (ECC) is implemented to correct single bit data errors and detect double
bit errors. Both types of errors signal exceptions, although the single bit errors are corrected by hardware before
the error handler is invoked. Single bit errors are imprecise, but the program may be restarted from the
instruction address stored in the ErrorEPC register. An exception is taken on single bit errors so that software
may log the error if desired.

Double bit ECC errors are imprecise, but for load hits, the instruction that caused the error can be determined by
interpreting the instruction stream from the instruction address stored in the ErrorEPC register. In general, the
load instruction that caused the error is within four instructions in the dynamic instruction stream.

10-148 SB-1 Users Manual

Data Cache SiByte Confidential

10.3.1 Implementation Notes

Data cache errors may be detected by speculative loads, although the errors themselves will be reported on non­
speculative instructions.

The LRU bits are not parity protected, but invalid combinations are flushed to a known valid format when an
invalid state is detected. In addition, the stream bit in the tag array is not protected, so errors in this bit are not
detected.

Table 10-5 indicates the types of errors that can occur at different stages of a load access:

TABLE 10-5 Load Errors

Action Error-Exception Type

Load Lookup Tag State Parity-Cache Error Deterministic

Tag Address Parity-Cache Error Deterministic

Load Hit Single Bit ECC-Cache Error Recoverable

Double Bit ECC-Cache Error Detenninistic

Load Miss External Cache Error Imprecise

External Bus Error Imprecise

Table 10-6 indicates the types of errors that can occur at different stages of a store access, with the final column
indicating whether the store data are written into the data cache.

TABLE 1 o-6 Store Errors

Action Error-Exception Type Data Written

Store Lookup Tag State Parity-Cache Error Imprecise No

Tag Address Parity-Cache Error Imprecise No

Store Hit Single Bit ECC-Cache Error Recoverable Yes

Double Bit ECC-Cache Error Imprecise No

Store Miss External Cache Error Imprecise No

External Bus Error Imprecise No

During a data cache miss, uncorrectable errors signaled on the return of the cacheline cause either a cache or bus
error exception to be taken. In both cases, the fill proceeds as it normally would, i.e. the data and address are
written, but the tag state is marked with an error code. Note that this behavior may result in additional cache
errors if the cache is subsequently accessed.

SB-1 Users Manual 10-149

TLB SiByte Confidential

A fill may result in the eviction of a cacheline. If that cacheline contains an error, the processor may inhibit the
write back or complete the writeback by signaling an error during the data phase of the bus. Table 10-7 indicates
what happens in each case:

TABLE 10-7 Cacheline Errors due to Evicts

Error-Exception Type Processor Behavior

Tag State Parity-Cache Error Imprecise Inhibit Writeback

Tag Address Parity-Cache Error Imprecise Inhibit Writeback

Single Bit ECC-Cache Error Recoverable Writeback-Data Corrected

Double Bit ECC-Cache Error Imprecise Writeback-Data Uncorrected

Finally, the data cache is checked for errors on coherency requests, and both invalidate and intervention requests
cause the processor to take a cache error exception if the processor detects an error in any of the tags at the target
index. Invalidates that detect tag errors do not change the tag state, and interventions always reply,to the
reqriestor with an error indication, as shown in Table 10-8.

TABLE 10-8 Error-Exception Types and Interventions

Error-Exception Type Invalidate Intervention

Tag State Parity Imprecise Error Only Reply-Tag Uncorrected

Tag Address Parity Imprecise Error Only Reply-Tag Uncorrected

Single Bit ECC Recoverable NIA Reply-Data Corrected

Double Bit ECC Imprecise NIA Reply-Data Uncorrected

10.4 TLB

The processor TLB is protected from multiple entry matches by detecting such cases on TLB writes. When a
TLB write is executed and a match occurs that would result in multiple matching entries in the TLB, the
processor takes a machine check exception and sets the TS bit in the Status register. This exception is imprecise.

When matching entries are detected, the processor does not write the TLB with the conflicting entry. Software
may try to correct the situation by flushing the TLB, but before the error handler returns, it must clear the TS bit.

10.4.1 Implementation Notes

The TLB actually implements a hidden "valid" bit which is cleared by reset and only set on a TLB write.
Matches cannot occur for an entry whose valid bit is cleared. Because the valid bit prevents matches after reset
and because the processor prevents matching writes, there is no need to "shutdown" the TLB when an error

10-150 SB-I Users Manual

BIU SiByte Confidential

condition is detected as multiple entries will never be present. Software's clearing the TS bit is simply based on
architectural convention since the bit only indicates status. Note that even though the TS bit may be set, TLB
lookups will continue as no harm will result, and TLB faults may occur if the handler uses mapped addresses.

10.5 BIU

The BIU forwards errors detected on the system bus to the exception unit. If an instruction request ends in an
uncorrectable cache error or bus error, the fetch unit signals the appropriate error for that request. All instruction
bus and cache errors are precise. A data request that ends in an error causes the processor to take the cache error
or bus error exception at the earliest available instruction. Because the primary data cache is non-blocking, these
errors are imprecise. In addition, the imprecise errors are held pending until the detected exception is taken. On
all requests that end in an external error, the data returned have no meaning and are never written into the cache.

The BIU contains no timeout mechanism for bus requests. The external agent is responsible for returning a bus
error on a processor request that cannot be serviced so the BIU request entry may be deallocated.

The primary data cache duplicate tags also detect parity errors on all coherent bus transactions. Because the
duplicate tags are basically shadow copies of the main tags, they have the same error properties and may detect
errors in the state bits or address bits. Any way that contains an error causes a cache error to be taken. Each case
is outlined in Table 10-9.

TABLE 10-9 Duplicate Tag State/ Address Parity Cache Errors

Error-Exception 'fype Processor Behavior

Tag State Parity-Cache Error Imprecise Error (Unowned)

Tag Address Parity-Cache Error Imprecise Error (Unowned)

Any error in the duplicate tags causes the processor to indicate an error response. From the point of view of the
bus protocol, the processor does not own the line.

10.6 General

The CPU implements a 29b timeout counter to detect when the processor is no longer executing instructions.
The counter is reset to zero every cycle an instruction graduates and increments whenever zero instructions
graduate. If the counter overflows, the processor takes a machine check exception, which releases the processor
to begin execution at the exception handler. Processor state may be saved by the handler, but it is likely that the
core needs to be initialized by a reset sequence to behave correctly.

SB-1 Users Manual 10-151

Error Reporting Registers SiByte Confidential

Software can detect a machine check due to a timeout by reading the TO bit in the ErrCtl register. When the
timeout counter expires, this bit is set, and it can only be cleared by reset.

10.6.1 Implementation Notes:

A 29b counter will cause a machine check after approximately 500ms at 1 GHz (21\29 cycles elapse before a carry
out of the counter is generated).

10. 7 Error Reporting Registers

In general, the first source of error information can be found in the CPO ErrCtl register (number 26, select 0). For
cache errors, this register indicates which cache, instruction or data, detected the error and whether the error is
recoverable, i.e., corrected by the hardware. In addition, the register indicates when multiple bus errors have
occurred or what action has resulted in a·machine check.

ErrCtl (Register 26, Select 0):

TABLE 10-10 CPO Err Ctl Register Fields

Bits Field Description Access Reset

[31) R Recoverable Cache Error R 0

[30) DC Data Cache Error R 0

[29) IC Instruction Cache Error R 0

[28:24) 0 Reserved R 0

[23) MB Multiple Bus Errors Detected R 0

[22:16) 0 Reserved R 0

[15) TS TLB Shutdown Machine Check (Copy of Status TS Bit) R 0

[14) TO Timeout Machine Check R 0

[13) 0 Reserved R 0

The ERL bit modifies the behavior of the DC and IC bits when cache errors are detected. If ERL=O and a cache
error exception is taken, these bits log the cache in which the error occurred, and only one bit is set. IfERL=l,
these bits become "sticky" so cache errors can accumulate while the processor is executing the cache error
handler. In this way, data cache errors cannot mask instruction cache errors, or vice versa.

Note that if a Cache Error exception is taken and the R bit is set, then the handler may return immediately as the
error has been corrected by hardware. Software may, however, log the error if desired since the CacheErr

10-152 SB-1 Users Manual

Error Reporting Registers SiByte Confidential

registers contain valid information about the error. In addition, if the IC bit is set, the R bit is masked so that
instruction cache errors are always serviced.

The TS and TO bits may both be set in the ErrCtl register. In this case, the timeout error takes higher precedence
than the 1LB shutdown.

The CacheErr-1 register (number 27, select 0) indicates the cause and location of errors detected in the instruction
cache. The TA bit indicates that the processor detected a parity error in the tag address array, while the D bit
indicates that the parity error was detected in the fetched instructions. The E bit indicates that the error occurred
on an external access. For tag errors, the Idx field is valid and indicates the cache index where the error was
detected, but the Way field is unpredictable. For data errors, both the ldx and Way fields are valid and point
where the error instructions are located in the cache. Neither the Idx nor the Way field is defined for external
errors, so the EPC register should be used for address information.

The following table specifies the CacheErr-1 format and indicates when the Idx and Way fields are valid:

TABLE 10-11 CacheErr-1 Format

Bits Field Description Access Reset

[31:30] 0 Reserved R 0

[29) TA Tag Address Parity Error R x
[28) D Data Array Parity Error R x
[27) 0 Reserved R 0

[26) E External Cache Error R x
[25:16] 0 Reserved R 0

[15] 0 Reserved for Cache Index/Way R 0

[14:13] Way Instruction Cache Way R x
[12:5] Idx Instruction Cache Index R x
[4:0] 0 Reserved R 0

TABLE 10-12 Validity ofldx and Way Fields in ICache Errors

Error ldx Way

Tag Address Valid Invalid

Data Array Valid Valid

External Invalid Invalid

CacheErr-1(Register27, Select 0):

SB-1 Users Manual 10-153

Error Reporting Registers SiByte Confidential

The CacheErr-D register (number 27, select 1) indicates the cause and location of errors detected in the data
cache. The TS bit indicates that the processor detected a parity error in the tag state array, while the TA bit
signals a parity error in the tag address. If a single-bit ECC error is detected, then the DS bit is set, and the DD
bit is set when a double-bit ECC error is detected. Finally, the E bit is set when a data cache access ends in an
external error.

Five bits in the CacheErr-D register indicate the type of access that caused the error to be detected: L for loads,
S for stores, WB for writebacks, C for coherency requests (such as invalidates or interventions), and DT for
duplicate tag accesses.

In addition to the CacheErr-D register, another CPO register, CacheErr-DPA (register 27, select 3), captures the
entire 40b physical address for data cache accesses. It is always written when an error is detected in the data
cache.

Table 10-13 specifies the CacheErr-D format and indicates when the Idx and Way fields are valid and when the
·PA is valid in the CacheErr-DPA register.

TABLE 10-13 CacheErr- D Format

Bits Field Description Access Reset

[31] M Multiple Data Cache Errors R 0

[30) TS Tag State Parity Error R x
[29) TA Tag Address Parity Error R x
[28) DS Data Array Single-Bit ECC Err R 0

[27] DD Data Array Double-Bit ECC Err R x
[26] E External Cache Error R 0

[25) L Error on Load Access R 0

[24] s Error on Store Access R x
[23] FWB Error on Fill/Writeback R x
[22] c Error on Coherency Access R x
(21] DT Error on Duplicate Tag Access R x
[20:16] 0 Reserved R 0

[IS] 0 Reserved for Cache Index/Way R 0

[14:13) Way Data Cache Way R x
[12:5] ldx Data Cache Index R x
[4:0] 0 Reserved R 0

10-154 SB-1 Users Manual

Error Reporting Registers SiByte Confidential

TABLE 10-14 Validity of Idx, Way and PA Fields in DCache Errors

Error ldx Way PA

Load/Store:

Tag Address Valid Invalid Valid

Tag State Valid Invalid Valid

Data Single-Bit ECC Valid Valid Valid

Data Double-Bit ECC Valid Valid Valid

External Invalid Invalid Valid

Writeback/Coherency:

Tag Address Invalid Invalid Valid

Tag State Invalid Invalid Valid

Data Single-Bit ECC Invalid Invalid Valid

Data Double-Bit ECC Invalid Invalid Valid

Duplicate Tag:

Tag Address Invalid Invalid Valid

Tag State Invalid Invalid Valid

The CacheErr-D and CacheErr-DPA always capture the first signaled cache error, and the information stored in
these registers is "locked" until software performs a write to the CacheErr-D register. If another cache error is
detected before the lock is cleared, the M bit is set, indicating that multiple cache errors have been detected. Like
the lock bit, the M bit is cleared by a write to the CacheErr-D register.

When a data cache access ends in a bus error, the physical address of that request is stored in a separate register,
BusErr-DPA (number 26, select 1). Like the CacheErr-D and CacheErr-DPA registers, this register contains the
first detected error, and the lock for the register may be cleared by a write to that register. Multiple bus errors are
also indicated, and the MB bit in the ErrCtl register serves this purpose.

SB-I Users Manual 10-155

Error Reporting Registers SiByte Confidential

Table 10-15 provides a summary of error reporting registers.

TABLE 10-15 Error Reporting Registers

Name Reg Se!

ErrCtl 26 0

BusErr-DPA 26 I

CacheErr-I 27 0

CacheErr-D 27 I

CacheErr-DPA 27 3

10-156 SB-I Users Manual

CHAPTER JI

11.1 Introduction

The Peiformance Monitor
Architecture

This document describes the architecture states, feat
mechanism in SB 1. The architecture features an

ormance events of the performance monitor
etty much final and mostly compliant with MIPS

nt registers, and larger counter width. The architecture specification, but with addit@mal
architecture states include four pairs
performance events are a list of mac
performance. Some events may be

SB-1 Users Manual

trol registers, cache and branch event registers. The
vents which are interesting to monitor for analyzing .

implementation in the future.

11-157

Architecture State and Features SiByte Confidential

11.2 Architecture State and Features

The performance monitor mechanism uses a total of 11 registers. The traditional counter control and data
registers are mapped to CPO Register 25 with Select from 0 to 7. The added event control and address registers
are mapped under CPO Register 22 with Select from 0 to 2. The mapping of the register is shown in Table 1.
Their functionality and contents are described in the following sessions.

TABLE 11-1 Performance Counter Register Mapping

Register Select Counter Index Register Usage

25 OxOO 0 Event control register 0

OxOl Event control register 0

Ox02 I Event control register I

Ox03 Event control register I

Ox04 2 Event control register 2

Ox OS Event control register 2

Ox06 3 Event control register 3

Ox07 Event control register 3

Ox08-0xOF NA Reserved

22 OxOO Event Event control register

OxOI Event instruction address register

Ox02 Event memory address register

11-158 SB-1 Users Manual

Architecture State and Features SiByte Confidential

11.2.1 Event Counter and Control Registers (Register = 25, Select = OxOO, OxOl, Ox02, Ox03,
Ox04,0x05,0x06,0x07)

SB 1 implements four 41-bit count up counters. They are readable and writable by software and updated
implicitly by hardware event specified in the corresponding control register. The MSB (bit 40) is the overflow
bit when there is a carry out from bit 39. It can be used to cause counter overflow interrupt and freeze the update
of all the counters and event registers. Forty bits should be sufficient enough to last for about 18 minutes of
execution time to count a 1-bit event at a frequency of 1 GHz.

Each counter register is paired with a control register. The following figure shows the format of the counter
control register. Table 2 describes the control register fields. The control register is both readable and writeable
by software.

31 30 29 11 10 5 4 3 2 0

M 0 I Event I IE u s K EXL

FIGURE 11-1 Performance Counter Control Register

TABLE 11-2 Performance Counter Control Register Field Description

FieJdName Bits Description SW Read/Write Reset State Compliance

M 31 If this bit is 'l , another pair of performance counter R Preset Yes
control and counter registers are implemented at n+2 and
n+3.

FE 30 Freeze enable: Once a counter overflows, it freezes the R/W 1 New
other counters and registers, preventing further updates if
this bit is set.

0 29:11 Must be set to 0. Return 0 on read. No exception is R/W 0 Yes
incurred if a 1 is written.

Event 10:5 ID of the event being monitored: Events are symmetrical R/W Undefined Yes
to each counter.

IE 4 Overflow interrupt enable: Once a counter overflows, an R/W 0 Yes
overflow interrupt is triggered if this bit is set.

u 3 Enable event counting in User mode. R/W Undefined Yes

s 2 Enable event counting in Supervisor mode. R/W Undefined Yes

SB-1 Users Manual 11-159

Architecture State and Features SiByte Confidential

TABLE 11-2 Performance Counter Control Register Field Description

Field Name Bits Description SW Read/Write Reset State Compliance

K 1 Enable event counting in Kernel mode. R/W Undefined Yes

EXL 0 Enable event counting when EXL bit is set. RIW Undefined Yes

A counter is 41-bit wide. It is incremented by the value of the input event specified in the control register each
core cycle. The register format is shown in the following figure. When a counter generates a carry out of the bit
39, its overflow bit (bit 40) is set. In addition, a counter overflow interrupt is incurred if the counter's IE bit is
set. The overflow freezes the update of all performance counter registers and event registers when the counter's
FE bit is set. This helps retain the counter values precisely to the point of counter overflow. If the FE bit is not
set, the counter continues incrementing.

I " _I 0

41 40 39

I av I Event Count

FIGURE 11-2 Performance Counter Register

TABLE 11-3 Performance Counter Register Field Description

Field Name Bits Description SW Read/Write Reset State Compliance

0 63:41 Write is ignored. Read is 0. RIW 0 New

ov 40 Overflow bit from bit 39. RIW 1 New

Event Count 39:0 Incremented by the input values of the specified R/W Undefined New
event each CPU cycle.

11.2.2 Counter Overflow Interrupt

Once a counter 's overflow bit is set, if the IE bit is set, the hardware interrupt 5 should be raised and the interrupt
bit IP(7) should be set in the Cause register.

11-160 SB-1 Users Manual

Architecture State and Features SiByte Confidential

11.2.3 Event Control and Address Registers (Select= OxlO, Oxll, Ox12)

Instruction cache, data cache, and branch prediction performance are the most important factors in deciding
overall machine performance. The interesting events for performance analysis are the instruction cache misses,
data cache misses, and branch mispredictions. With detailed information about these events such as the address
of the event and the status of the requested data, one can optimize the code to get around the potential
performance problems.

SB I has a set of event address registers to assist the performance analysis: one for specifying the detailed
conditions of the event to be captured, one for storing the event's data address, and the other for storing the
instruction address of the operations that cause the event. SB I captures the virtual address of the instruction. It
captures the physical address of the data address, due to the unavailability of virtual addresses at the point of
capture.

The formats of the registers are shown in the following figures. Table 4 lists the description of the control
register fields. The fields in the control register are used to qualify four major sources of events:

• Branch execution

• Instruction cache misses

• Data cache misses for loads

• Data cache misses for stores.

The control register is 32-bit wide. Fields EXL, K, S, and U are common to qualify all four sources of events.
They specify the execution modes in which the events can be captured. Fields Cc, Cw, Pt, Pn, Ot, On, Be, Br, Bi,
Bu, Be, and Bwi (bits 4 to 15) are used only to qualify the branch execution events. These fields are divided into
five group of filters as follows:

• Prediction result filter (Cc and Cw): they are masks to select the branches with correct or incorrect prediction
results which include taken/not-taken predictions and indirect target predictions. When both bits are set, all
the branches regardless of their prediction outcomes are included. When only one bit is set, only the branches
with the selected outcome are included. When both bits are cleared, no branches are included.

• Prediction filter (Pn and Pt): they are masks to select the branches with taken or not-taken predictions. When
both bits are set, all the branches regardless of their prediction outcomes of taken/not-taken are included.
When only one bit is set, only the branches with the selected prediction are included. When both bits are
cleared, no branches are included.

• Outcome filter (Ot and On): they are masks to select the branches with taken or not-taken outcomes. When
both bits are set, all the branches regardless of their execution outcomes of taken/not-taken are included.
When only one bit is set, only the branches with the selected outcome are included. When both bits are
cleared, no branches are included.

• Branch type filter (Be, Br, Bi, Bu, and Be): they are masks to select various types of branch instructions as
specified in the table.

SB-I Users Manual 11-161

Architecture State and Features SiByte Confidential

• Instruction watch filter (Bwi): it indicates whether or not the branch event needs to be qualified with instruc­
tion watch register match.

The final qualification of a branch event is the ANDing result of the execution modes, and the qualification from
each of the above five categories. With all these fields, we have a powerful filtering logic to select the interesting
sets of branch events for capturing. The logic expression of the filtering is shown as follows:

Branch Event Qualification = (Execution mode filter) & (Prediction result filter) & (Prediction filter) &

Execution outcome filter) & (Branch type filter) & (Instruction watch match filter)

Note that unconditional, indirect, call, and return branches are always predicted taken, because their outcomes
are always taken. In addition, since th~ predicted targets of unconditional branches are calculated, the prediction
is always correct.

The rest of the fields in the control register (W, R, I, Cwd, and Cwi) are used for qualifying cache miss events
which include instruction cache misses, data cache misses for loads, and data cache misses for stores. They are
used in the following ways:

• Access type filter (W, R, and I): they are masks to select various types of cache accesses. When W' is set, the
store accesses to the data cache are included. When R' is set, the load accesses to the data cache are included.
When 'I' is set, the instruction cache miss accesses are included. With various bits being set, various types of
cache accesses are included.

• Data watch register match filter (Cwd): it indicates the cache access event needs to be qualified with the
match result of data watch register. This filter is available only for data cache accesses for loads (when R is
set). It is a don't care for all the other types of events.

• Instruction watch register match filter (Cwi): it indicates the cache access event needs to be qualified with the
match result of instruction watch register. This filter is available only for the instruction cache miss requests
and data cache misses for loads (when I or R is set). It is a don't care for data cache misses from stores.

The final qualification of a cache access event is the ANDing result of the execution modes and the qualification
from each of the above three categories. With all these fields, there is a powerful filtering logic to select the
intersecting sets of cache miss events to capture. The logic expression of the filtering of each access type is
shown below:

Cache Event Qualification = (Execution mode filter) & (Access type filter) &

(Data watch match filter) & (Instruction watch match filter)

11-162 SB-1 Users Manual

Architecture State and Features SiByte Confidential

Note that each cache access type should have independent qualification logic since they each use different filters.

31...21 20 19 18 17 16 15 14 13 12 II IO 9 7 6 5 4 3 2 0

0 Cwi Cwd R W Bwi Be Bu Bi Br Bl On Ot Pn Pt Cw Cc U s K EXL

FIGURE 11-3 Cache Event Control Register

TABLE 11-4 Cache Event Control Register Field Description

Field Name Bits Description SW Read/Write Reset State Compliance

0 31:21 Write is ignored. Return 0 on read. No exception is incurred if R 0 New
a 1 is written

Cwi 20 Cache event capturing should be qualified by the match result of R/W Undefined New
instruction watch register

Cwd 19 Cache event capturing should be qualified by the match result of R/W Undefined New
data watch register

I 18 Select instruction fetch to be captured R/W Undefined New

R 17 Select data reads to be captured (for loads) R/W Undefined New

w 16 Select data writes to be captured (for stores) R/W Undefined New

Bwi 15 Branch event capturing should be qualified by the match result RJW Undefined New
of instruction watch register

Be 14 Conditional branch mask; this bit selects all the conditional R/W Undefined New
branches

Bu 13 Unconditional branch mask; this bit selects all the unconditional R/W Undefined New
jumps

Bi 12 Indirect branch mask: this bit selects all the indirect branches. R/W Undefined New

Br II Procedure return mask: this bit selects all the procedure returns. R/W Undefined New

Bl 10 Procedure call mask: this bit selects all the procedure calls. R/W Undefined New

On 9 Not-Taken outcome mask: this bit selects the branches with not- R/W Undefined New
taken outcome.

Ot 8 Taken outcome mask: this bit selects the branches with taken RJW Undefined New
outcome.

Pn 7 Not-Taken prediction mask: this bit selects the branches with R/W Undefined New
not-taken predictions.

Pt 6 Taken prediction mask: this bit selects the branches with taken R/W Undefined New
predictions.

Cw 5 Wrong prediction mask: this bit selects the branches with wrong R/W Undefined New
predictions.

SB-1 Users Manual 11-163

Architecture State and Features SiByte Confidential

TABLE 11-4 Cache Event Control Register Field Description

Field Name Bits Description SW Read/Write Reset State Compliance

Cc 4 Correct prediction mask: this bit selects the branches with R/W Undefined New
correct predictions.

u 3 Enable event capturing in User mode. R/W Undefined New

s 2 Enable event capturing in Supervisor mode. R/W Undefined New

K 1 Enable event capturing in Kernel mode. R/W Undefined New

EXL 0 Enable event capturing when EXL bit is set. R/W Undefined New

Each ofthe two event address registers is 64-bit wide. The instruction address register stores the-virtual
instruction address of either the load that causes a qualified data cache event or the branch that causes a qualified
branch event. For instruction cache miss events and data cache miss events from stores, the instruction address
register does not latch the instruction addresses, because the addresses are not available when the event is
captured. Since each instruction is 32-bit wide, the lowest 2 address bits are always 0. Therefore, the lowest two
bits in the instruction address register are then used to indicate the type of instruction address being captured, as
shown in Table 5.

The format of the instruction address register is shown in the following figure. The description of the fields can
be seen in Table 5.

Virtual Address

FIGURE 11-4 Event Instruction Address Register

TABLE 11-5 Event Instruction Address Register Field Description

Field Name Bits Description SW Read/Write Reset State Compliance

Virtual Address 63:2 The virtual instruction address of the instruction that is R/W Un def med New
qualified for the branch events or data cache events.

Type 1:10 Type of address captured: 00 is for not-taken branch, 01 is for R Undefined New
taken branch, 10 is for data load, and 11 is reserved.

11-164 SB-I Users Manual

Architecture State and Features SiByte Confidential

The data address register, on the other hand, stores either the missing data line addresses or missing instruction
line addresses, because all the data cache read/write accesses and instruction misses must go through the same
pipeline before they are sent to the bus. Because of the timing of the event capturing, we store the physical
address of the data/instruction line being referenced, instead of its virtual address. Since the physical line
address is stored, the lowest five address bits are always 0. The physical address takes up bits 5 to 39 in the
register. The higher order bits are used to indicate the status of the captured event. The format of the register is
shown in Table 6.

Bits I, R, and W indicate the type of the event as instruction cache miss, data cache miss from load, and data
cache miss from store respectively. When a miss event is first captured, the pending bit is set until the data
returns. Once the data actually returns, the pending bit is cleared and the source of the data return is recorded in
the status bits as follows:

• Dirty (D) bit: indicates the returned data is dirty

• Other (0) bit: indicates the data is returned by the bus agents other than processors, secondary cache, and
main memory

• Main memory (M) bit: indicate the data is returned by main memory

• Secondary Cache (C) bit: indicate the data is returned by the secondary cache

• Processor (P) bit: indicate the data is returned by other processors

63 62 61 60 59 58 57 56 55 54 40 39 5 4 0

I Pdl 1 I RI wl PI c IM I 0 I 0 I 0 I Physical Address I 0 I

FIGURE 11·5 Event Data Address Register

TABLE 11-6 Event Data Address Register Field Description

Field Name Bits Description SW Read/Write Reset State Compliance

Pd 63 Cache miss event captured is still pending for the return. R 0 New

I 62 Captured event is an instruction cache miss request. R Undefined New

R 61 Captured event is a data cache access from read request. R Undefined New

w 60 Captured event is a data cache access from write request. R Undefined New

p 59 Captured request is serviced by the processor. R Undefined New

SB-1 Users Manual 11-165

Architecture State and Features SiByte Confidential

TABLE 11-6 Event Data Address Register Field Description

Field Name Bits Description SW Read/Write Reset State Compliance

c 58 Captured request is serviced by the secondary cache. R Undefined New

M 57 Captured request is serviced by main memory. R Undefined New

0 56 Captured request is serviced by agents other than the R Undefined New
processors, secondary cache, and main memory

D 55 Data returned as dirty. R Undefined New

0 54:40 Reserved. Write is ignored. Read returns 0. R 0 New

Physical Address 39.5 The memory physical address of data cache miss event or R Undefined New
instruction fetch miss event.

0 4:0 Reserved. Write is ignored. Read returns 0. R 0 New

11-166 SB-1 Users Manual

Performance Events SiByte Confidential

11.3 Performance Events

The following table lists the performance events being designed in SB 1. The 'event description' field shows the
meaning of the event being generated. The 'count description'field shows what the intended count is. The 'type'
field shows how an event is counted in the machine pipeline. It could be counted speculatively (Spec), non­
speculatively (past the branch validation) (Non-S), or post graduation (Grd). The Max' field shows the
maximum count of an event in one cycle. The 'Src' field shows the generator of the event signal. The event ID
has not been assigned. They will be assigned based on the physical implementation later. The total number of
events is currently 50.

TABLE 11-7 Instruction Count

Event# Event Description Count Description Type Max Src

Instruction Frequency

Clock is high #of cycles PC

of instructions retired total number of instructions retired Grd 1 PC

a BR instruction executed # of BR instructions executed Non-S 4 PC

of LD instructions executed total# of LD instructions executed (after Non-S I PC
speculative point)

of ST instructions executed total# of ST instructions executed (after Non-S 2 PC
speculative point)

a CPO instruction executed #of CPO instruction executed (after Non-S 2 PC
speculative point)

of FLOPS executed # of FLOPS executed Non-S 1 PC

#of MOPS executed #of MOPS executed Non-S 8 PC

a store conditional executed #of store conditionals executed (after Grd 2 PC
speculative point)

a successful store conditional executed # of successful store conditionals Grd I PC
executed (after speculative point)

Cache Access Events

a cache event captured # of cache events captured Spec 1 M

a fetch results in I-Cache miss # of fetch results in I-Cache miss Spec 1 PC

a valid I-Cache fill #of valid I-Cache fill Spec I PC

a D-cache read results in a miss # of D-cache read misses Spec 2 DC

D-cache is filled # D-cache fills Spec 1 DC

a read hits in DCFIFO # of read hits in DCFIFO Spec 2 DC

a read hits in read queue # of merged read accesses Spec 2 M

a load/store hits prefetch in read queue # of load/store hits prefetch in read queue Spec 2 M

a prefetch hits in cache or read queue # of canceled prefetch requests Spec 2 M

SB-1 Users Manual 11-167

Performance Events SiByte Confidential

TABLE 11-7 Instruction Count

Event# Event Description Count Description Type Max Src

of valid entries in read queue average life time of request in read queue Spec 8 M

of valid uncached entries in read queue average life time of uncaches request in Spec 8 M
read queue

a request hits in write buffer # of request hit in write buffer Non-S 1 M

a writeback occurs due to replacement # of write-backs due to replacement Non-S I M

Bus Interface

a bus request is sent to ZB bus # of bus requests Non-S I B

a bus read request is sent to ZB bus # of bus read requests Non-S I B

a bus write request is sent to ZB bus # of bus write requests Non-S I B

B IU stalls due to address bus busy # of stall cycles for waiting for address Non-S I B
bus

B IU stalls due to data bus busy # of stall cycles for waiting for data bus Non-S I B

Multiprocessor

a snoop request comes #of snoops Non-S I B

a snoop hits in write buffer # of snoop hits in write buffer Non-S I M

a shared snoop hits on a shared line # of read shared snoop hits on a shared Non-S I B
line (no action)

a shared snoop hits on an exclusive line # of read shared snoop hits on an Non-S I B
exclusive line (intervention shared)

an exclusive snoop hits on shared line # ofread exclusive snoop hits on shared Non-S I B
line (invalidate)

an exclusive snoop hits on exclusive line #of read exclusive snoop hits on Non-S I B
exclusive line (intervention exclusive)

an invalidate snoop hits on shared line # of invalidate snoop hits on shared line Non-S I B
(invalidate or write-invalidate)

an invalidate snoop hits on exclusive line # of invalidate snoop hits on exclusive Non-S I B
line (invalidate or write-invalidate)

snoop address queue is full # of cycles when snoop address queue is Non-S I B
full

TABLE 11-s Microarchitectural Events

Event# Event Description Count Description Type Max Src

FE pipeline efficiency

taken branch bubble visible (a bubble reaches taken branch bubble visible (a bubble reaches issue Spec I PC
issue when there is no valid instruction to when there is no valid instruction to issue)
issue)

11-168 SB-1 Users Manual

Pending Issues SiByte Confidential

TABLE 11·8 Microarchitectural Events

Event# Event Description Count Description Type Max Src

instruction cache miss bubble (a bubble instruction cache miss bubble (a bubble reaches issue Spec I PC
reaches issue when there is no valid instruction when there is no valid instruction to issue)
to issue)

Issue efficiency

of instructions issued # of instructions issued Spec 4 I

No valid instructions available for issuing # of cycles when no valid instructions are available for Spec 4 I
issuing

Valid instructions are available for issuing but # of cycles when valid instructions are available for Spec 4 I
stopped by resource constraints issuing but stopped by resource constraints

Valid instructions are available for issuing but # of cycles when valid instructions are available for Spec 4 I
stopped by dependency constraints issuing but stopped by dependency constraints

Issue stopped by width limit # of cycles when maximum issue is achieved Spec 4 I

Replay and Misprediction

a replay is signaled (data dependency, RQ full, # of replays signaled (data dependency, RQ full, Non-S I I
DCFIFO, fill) DCFIFO, fill)

a replay caused by data dependency is signaled # of replays caused by data dependency is signaled Non-S I I

a replay caused by RQ full is signaled # of replays caused by RQ full Non-S I I

a replay caused by DCFIFO is signaled # of replays caused by DCFIFO full Non-S I I

Branch prediction/execution details

a branch event is captured # of branch events captured Non-S I PC

Bus interface

BIU is busy #of MBOX requests to BIU when BIU is busy Non-S I M

11.4 Pending Issues

• The assignment of the events to each counter with Mux minimization in mind

• The assignment of only a subset of events to the first counter for denominators

• Events

SB-1 Users Manual 11-169

Pending Issues SiByte Confidential

11-170 SB-1 Users Manual

CHAPTER12 Multiprocessing Support

12.1 Introduction

This chapter provides a high level overview of the
core. The material presented here is intended to

g support features provided by SB-1 processor
~unction with the more detailed system

configuration specifics provided by the §8-12 ual1.

MIPS atomic operation pairs:

• Load Linked -

These instructions provide a fast and simple alternative to the Dekker or Peterson algorithms for mutual exclu­
sion. When used properly, these instructions provide support for an atomic read-modify-write sequence, upon
which standard mutual exclusion mechanisms can be easily built.

The common usage for a busy-wait memory lock is as follows:

1. SB-1250 is the first Multiprocessing System On a Chip (SOC) product that utilizes the SB-1 core.

SB-1 Users Manual 12-171

Support for Atomic Operations SiByte Confidential

Register $1 contains the address of a memory lock/semaphore, where 1 represents a locked state and 0 a clear
state .

. align 32

.set noreorder
TryAgain: LL $2, 0($1) # get the lock

BNE $2, $0, Try Again # if lock==l, spin
ADDIU $2, $0, 1 # lock==O, so $2=1
SC $2, 0($1) # lock=l
BEQ $2, $0, TryAgain # if r-m-w fails ($2==0), spin
NOP

critical section =====
ADD $2, $0, $0 # $2=0
SW $2, 0($1) # lock=O

If a 1 is written to $2 by the Store Conditional (SC), it indicates that the SC successfully updated the architectural
view of memory location ($1). Otherwise, a 0 is written to $2. The memory lock must exist in cached coherent
memory space, otherwise the results are UNPREDICTABLE.

Although not necessary for correct behavior, aligning the LL-SC sequence into the same 32 bytes can reduce
spin time by ensuring that an Icache miss never occurs between the Load Linked and the Store Conditional.

There are several events which will cause the failure of Store Conditional instruction if they occur between a
Load Linked and Store Conditional instruction pair. These include the following:

• Completion of a coherent memory access to the same 32-byte aligned block of memory by another processor,

• The occurrence of an exception on the processor executing the LUSC instruction pair,

• A line fill which forces the locked line out of the cache.

In addition, the results of the Store Conditional are UNPREDICTABLE if:

• The Store Conditional instruction is not preceded by a Load Linked instruction.

• The Store Conditional instruction is preceded by a Load Linked instruction to a different physical or virtual
address.

Any of the above conditions may cause a Store Conditional to indicate success without actually guaranteeing
atomic access to the memory block in question.

The Load Linked-Store Conditional pairings do not explicitly guarantee fairness, only mutual exclusion.

12-172 SB-I Users Manual

Processor Synchronization SiByte Confidential

12.3 Processor Synchronization

The following sections elaborate on processor synchronization schemes available for SB-I multiprocessing.

12.3.1 Test and Set

For an example of how this synchronization method operates in SB-I, refer to Section I2.2.

12.3.2 Counter Based Synchronization

The common usage for a counting semaphore is shown below.

The memory lock contains the number of processes allowed in the critical section, and its address is specified by
register I ($I) below:

.set noat

.set noreorder

.align 32
TryAgainl: LL $2, 0($1) # Get memory lock

BEQ $2, $0, TryAgainl # Check for non-zero result
DADDIU $2, $2, -1 # Decrement Semaphore (delay slot)
SC $2, 0($1) # Attempt to store
BEQ $2, $0, TryAgainl # If failed, loop back
NOP

Critical Section
TryAgain2: LL $2, 0($1) # Get lock again

DADDIU $2, $2, 1 # Increment Semaphore
SC $2, 0($1) # Attempt store
BEQ $2, $0, TryAgain2 # If failed, loop back
NOP

12.4 Coherency

The following sections provide an overview of the supported memory model and cache organization in systems
that use the SB- I processor.

12.4.1 Memory Model

The SB-I supports a weakly ordered memory model. This is an important consideration when using non-atomic
multi-programming techniques such as producer-consumer structures and shared memory states.

SB-1 Users Manual 12-173

Cache Organization and Coherency in SB-1 SiByte Confidential

The following rules apply to external visibility of memory accesses in either a cached coherent or cached
noncoherent region of memory:

• The order between a load and a store on the same processor is not guaranteed, and

• The order between multiple loads is not guaranteed.

12.5 Cache Organization and Coherency in SB-1

To ensure code efficiency and correctness, the following need to be considered with regard to the cache
organization in SB-1.

12.5.1 Instruction Stream Modifications

·The SB-1 has split instruction and data caches. Any program that requires modification to its own instruction
stream must obey the following sequence of events and must guarantee that all these events occur in the order
shown on a single processor before attempting to execute the new code:

1. Store the new instructions

2. Flush the L1 data cache

3. Flush the L1 instruction cache

4. Execute a SYNC instruction

In addition, all other processors in the system must be forced to flush their instruction caches and sync before
attempting to execute the new code. Failure to do so may result in the execution of older cached code.

12.5.2 Caching Attributes

The SB-1implements4 different caching attributes at page granularity (refer to Chapter 6 for more detail):

• Cached coherent,

• Cached noncoherent,

• Uncached, and

• Uncached accelerated

For cached coherent pages, a snoop-based protocol can be implemented by the encompassing system to maintain
coherency across the agents. This protocol is highly efficient and, as such, manual optimization of the cached
state of highly-volatile exclusive regions is not recommended (refer to SB-1250 Users Manual for specific
details for this system level implementation.)

12-174 SB-I Users Manual

Processor Bringup SiByte Confidential

Cached noncoherent regions allow memory regions outside the range of the coherence protocol to be cached to
improve performance. For this class of regions, such as a bus device with memory-mapped configuration data,
the operating system is responsible for ensuring that memory writes to the region are coherent across processors.
As a minor optimization, memory pages containing only instructions may also be placed in cached noncoherent
regions.

Multiprocessor memory contention should generally be avoided in all other modes.

12.6 Processor Bringup

After system reset, processor l in SB-1250 is held in reset mode to allow critical system initializations occur in a
uniprocessor environment under processor 0. After system initialization is complete, processor 0 may "release"
processor l by writing a 0 to bit l of the system_cfg register.

Processor 1, when "released," begins executing at the normal reset vector. Typically the reset vector code
includes a branch based on a read of the PRid register.

Refer to SB-1250 User Manual for further documentation on supported MP, L2, and memory coherency
protocols.

SB-1 Users Manual 12-175

Processor Bringup SiByte Confidential

12-176 SB-1 Users Manual

CHAPTER13 SB-I Implementation Specific
Details

13.1 Introduction

This chapter clarifies SB-1 implementation specific
in the MIPS64 Manual are referenced and clarifi
Manual followed by SB-1 implementatilllb sp

13.2 Clarifications on 1
Instructions

• P 4: SB-1 imp

icular, implementation-dependent comments
et bellow specifies a page number in MIPS64

hts).

RET and SDBBP as the only EJTAG instructions.

• P 41: Refer to Prefetch Description in Chapter 6 for supported pref etch hint bits in SB-1.

• P 44: Refer to Prefetch Description in Chapter 6 for supported prefetch hint bits in SB-1.

• P 46: For those Cache Operations that require an index, no translation of the effective address occurs in SB-1.

• P 47: An Address Error Exception (with cause code equal AdEL) may occur if the effective address refer­
ences a portion of the kernel address space which would normally result in such an exception.

SB-I Users Manual 13-177

Clarifications on Implementation-Dependent Privileged Instructions SiByte Confidential

• P 47: A data watch is not triggered by a cache instruction whose address matches the Watch register address
match conditions.

• P 48: DataLo and DataHi registers are not implemented in SB-1.

• P 49: Code 011 is not implemented in SB-1.

• P 50: "Fetch and Lock" Cache Op is not implemented in SB-1.

• P 53: SB-1 includes the standard 1LB MMU.

• P 54-59: For all 1LB instructions (1LBR, 1LBWI, TLBWR), no masking is involved in the VPN2 and PFN
fields ofEntryHi, EntryLoO and EntryLol registers. All bits are preserved after a TLB entry is written and
then read.

• P 60: SB-1 does not implement the WAIT instruction; it is treated as a noop.

• P 61: The format of FIR register is described in Chapter 4 of this document.

• P 62: SB-1 will flush all denormals to zero if flush to zero is enabled. It will also flush all underflow results
to zero. If flush to zero is disabled, the SB-1 will cause an unimplemented operation exception for denormal
inputs and underflowing results for arithmetic operations.

13.3 Clarifications on Implementation-Dependent Privileged
Instructions

• P 70: SB-1 does not implement CPO Reg22.

• P 73: In SB-1, SEGBITS = 44 and PABITS = 40.

• P 76: SB-1 implements 64-bit addressing.

• P 76: SB-1 implements Supervisor Mode.

• P 79: Refer to the next two bullets for implementation-dependent behavior when StatusERL =L

• P 83: For kuseg segment when StatusERL =1, the lower 231 byte segmentofkuseg is treated as an ummapped

uncached segment. For 64-bit addressing mode, when the UX bit is set in CPO register, for range of addresses

between 231 and 244, the following address translation occurs: bits 39 to 32 of the translated PA are all zeros,
bits 31 to bit 0 of the translated PA are the same as the corresponding bits of the virtual address; the cache
attribute is that of uncached type.

• P 85: Refer to Chapter 7 for the TLB format in SB-1.

13-178 SB-1 Users Manual

Clarifications on Implementation-Dependent Privileged Instructions SiByte Confidential

• P 94: The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing
an instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this
value may or may not be predictable if the Reset Exception was taken as the result of power being applied to
the processor because PC may not have a valid value in that case. In SB-1, the value loaded into ErrorEPC
register is not predictable on a Reset.

• P 94: Soft Reset exception is not implemented in SB-1.

• P 95: NMI exception is implemented in SB-1.

• P 96: Machine check exception is implemented in SB-1 for TLBffime out.

• P 96: In SB-1, detection of multiple matching entries in the TLB occurs on the TLB write that creates multi­
ple matching entries.

• P 99: In SB-1, a cache error exception resulting from an access to the data cache is generally reported impre­
cisely with respect to the instruction that caused the cache error.

• P 100: In SB-1, a data bus error exception is reported imprecisely with respect to the instruction that caused
the bus error.

• P 102: From the MIPS64 Manual: "Some implementations of previous ISAs reported this case as a Floating
Point Exception, setting the Unimplemented Operation bit in the Cause field of the FCSR register." SB-1
does not do this.

• P 103: If the EXL or ERL bits are one in the Status register and a single instruction generates both a watch
exception (which is deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower
priority exception is taken. In SB-1, the WP bit is not set in this case.

• P 103: In SB-1, a data watch exception is not triggered by a prefetch or cache instruction whose address
matches the Watch register address match conditions.

• P 105: In SB-1, the width of the index field matches the size of the TLB.

• P 106: The random CPO register is incremented by one for each cycle that has more than zero intruction(s)
graduated, except for the cycles that have a TLBWI or TLBWR graduated. For every 3rd of such cycles, the
random CPO register is not incremented.

• P 108: Refer to Chapter 6 for a full listing of SB-1 implemented cache coherency attributes.

• P 112: SB-1Implements4K, 16K, 64K, 256K, lM, 4M, 16M, and 64M1 page sizes.

• P 114: The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is exe­
cuted, retired, or any forward progress is made through the pipeline. For SB-1, the rate at which the counter
increments is once per cycle.

1. 64M support will be in Pass2 of SB-1.

SB-1 Users Manual 13-179

Clarifications on Implementation-Dependent Privileged Instructions SiByte Confidential

• P 116: When the value of the Count register equals the value of the Compare register, an interrupt request is
ORed with hardware interrupt 5 to set interrupt bit IP(7) in the Cause register. This causes an interrupt as
soon as the interrupt is enabled.

• P 117: In SB-1, the RP bit is not implemented.

• P 119: The TS bit indicates that the TLB has detected a match on multiple entries. In SB-1, this detection
occurs on a write to the TLB.

• P 120: Supervisor Mode is implemented.

• P 128: For a description of PRid Register format in SB-1, refer to Chapter 8 in this document.

• P 132: For a description of LLAddr Register format in SB-1, refer to Chapter 8 in this document.

• P 133: SB-1 provides two pairs ofWatchLo and WatchHi registers, referencing them via the select field of the
MTCO/MFCO and DMTCO/DMFCO instructions. Refer to Chapter 9 in this document.

• P 133: In SB-1, a data watch is not triggered by a prefetch or a cache instruction whose address matches the
Watch register address match conditions.

• P 137: For a list of performance counters implemented in SB-1, refer to Chapter 11 in this document.

• P 140: For the exact format and operation of the ErrCtl register, refer to Chapter 10 in this document.

• P 140: For the exact format and operation of the CacheErr register, refer to Chapter 10 in this document.

• P 142: For the exact format of the TagLo and TagHi registers, refer to Chapter 6 in this document.

• P 145: For a list of CPO Hazards in SB-1 refer to Chapter 8.

13-180 SB-I Users Manual

