SIGNETICS
8#300

PROGRAMMING
MmANUAL

SIGNETICS
88300
PROGRAMMING
mANUAL

Material used in this document was prepared
by A.H.J. Schatorjé of N.V. Philips, Eindhoven,
The Netherlands.

SIGNETICS reserves the right to make changes in the products contained in this book in order to
improve design or performance and to supply the best possible products. Signetics also assumes
no responsibility for the use of any circuits described herein, conveys no license under any patent
or other right, and makes no representations that the circuits are free from patent infringement.
Applications for any integrated circuits contained in this publication are for illustration purposes
only and Signetics makes no representation or warranty that such applications will be suitable for
the use specified without further testing or modification. Reproduction of any portion hereof without
the prior written consent of Signetics is prohibited.

©Copyrighted by Signetics Corporation May 1978.

sifntics

PREFACE

Signetics 8X300 Programming Manual is designed to provide all
the information necessary to prepare code for the 8X300 Micro-
controller. Details for every variation within each class of in-
struction are shown diagrammatically, in binary and in assembly
language. Sample programs and a description of the Microcon-
troller Cross Assembly Program (MCCAP) are included.

Additional information relevant to the application of the 8X300
can be found in the following documents:

8X300 Programming Course

8X300 Reference Manual

Signetics Microcontroller Cross Assembly Program
These and other Signetics product documents are available
through the offices listed in the back of this manual.

Sinotics

TABLE OF CONTENTS

The 8X300 System 6
The 8X300 Instruction Set 14
MCCAP Microcomputer Cross Assembler Program 15
MOVE Instructions 16
ADD Instructions 28
AND Instructions 40
XOR (eXclusive OR) Instructions o i . 52
XEC (eXECute) InStructions o 67
NZT (Non Zero Test) Instructionso i . 68
XMIT (transMIT) Instructions0 . 72
JMP (JUMP) Instructions 78
Microcontrolier Cross Assembly Program (MCCAP) 80
Programming Examples 89
Sales offices 96

Sifnotics

THE 8X300 SYSTEM

SiOtiEs

8X300 Programming Manual

THE 8X300 SYSTEM

The independent instruction and data input/output (1/0)
system of the 8X300 is shown in Fig. 1. The 13-bit address
bus, capable of addressing 8192 instructions, and the 16-
bit instruction bus allow the 8X300 to access the next in-
struction while simultaneously performing data I/ O with the
Interface Vector (IV) bus. As can be seen from the diagram,
all data to or from external devices or registers passes via
the IV bus.

Figure 2 shows the functional diagram of the 8X300, with
the data paths between the elements of the microproces-
sor and the connections to the address, instruction and IV
busses. Although the program instruction addressing is es-
sentially independent of the data flow, links exists to allow
address modification or the transmission of data from the
program to an output device.

Interface Vector Bus

All data input to or output from the 8X300 goes via the IV
bus. This IV bus serves both as an address and data bus
and is accompanied by control signals to determine its
function. Being an 8-bit bus, it has the capability to address
up to 256 1/0 registers (IV bytes). The input/output facili-
ties are further expanded by selection of Left Bank (LB) or
Right Bank (RB) address, giving a total of 512 addressable
IV bytes.

When the 8X300 is required to accept data from or send
data to a particular IV byte, it must first enable the IV byte.
An |V byte is enabled when its address is presented on the
IV bus and the bus control signals indicate that the data is
an address on the required bank. The IV byte will remain
enabled until another IV byte on the same bank is enabled,
at which time it becomes disabled.

Because the Left and Right Banks are independent, one IV
byte on each Bank can be active (enabled) simultaneously.
Data input from, or output to the IV bus implied data I/0 to
the active byte on the Bank specified by the Instruction
causing the 1/0 action.

The most significant bit of all data is bit O.

Internal Data Registers

The 8X300 contains an auxiliary (AUX) register and seven
work registers to facilitate data manipulation. A separate
overflow register is used to provide overflow indication
after an ADD instruction. Figure 2 shows these in the sche-
matic diagram of the 8X300.

The AUX register is used as the implied operand in ADD,
AND and XOR instructions: however it can also be used as a
normal work register for other instructions.

DATA FLOW IN AN 8X300 SYSTEM

ADDRESS
PROGRAM ﬁ A0-A12
STORAGE 10-115
INSTRUCTION
DATA STORAGE
(RAM}
8X300
IV BUS o
IVO-IV7
LB,sc
RB,WC
| |
/O REGISTERS < MCLK
8T32
[e) [¢]
F..
-
)
z
4 E 5| &
z > B < a
off < < T| =«
ofl off o
v

PERIPHERAL DEVICES

Figure 1

Siaotics | 7

8X300 Programming Manual

The overflow register can only be used as a source of data.
Its seven most significant bits are always zero, while a one
in the least significant bit position indicates that overflow
occurred during the last ADD instruction. The overflow reg-
ister contents can only be changed by the result of an ADD
instruction.

Table 1 gives details of the data registers of the 8X300 and
the corresponding instruction operand values.

Internal Program Registers

There are three registers concerned with instruction execu-
tion in the 8X300:

Address Register (AR) — output register holding the ad-
dress of the current instruction for the program memory;

Program Counter (PC) — holding the address of the cur-
rent or next instruction to allow modification by the control
circuity;

Instruction Register (IR) — Holding the 16-bit instruction
word currently being executed.

These registers cannot be addressed as the operand of an
instruction although the content of the program counter and
address register can be changed as the result of special
instructions. The program counter and address register are
incremented by one during each instruction cycle to provide
the address of the next instruction to be executed. Howev-
er, a jump instruction can cause this action to be overruled
and a new address substituted.

FUNCTIONAL DIAGRAM OF THE 8X300.
:) SHIFT :> MERGE |—
0 17
OVF
R1
R2
R3
> R4
R5
R6
R11
1 C: AUX
— Q:
4+
<}: ALU n
g T o
RIGHT L |5 <1r_\7_4‘> IVBO-1VB7
’—
\(} mask (K== porate (G < IV BUS
! >
lL INTERNAL CONTROL
P SIGNALS
S=0
‘
AR5-AR12 | IR8-IR15 H
1
| ARO-AR4/IR3-IR7 IRO-IR15 o B
| ARO-AR12 1 o we
| | DECODE 0 sC
AND
' L[conTroL CONTROL 0 MCLK
—Tr T LOGIC < O HALT
12 12 0 15 _
0 0 . O RESET
AR PC IR « o X,
l LsB ﬁ LSB Tr LsB « o X4
10-115
AO-A12 INSTRUCTION DATA
INSTRUCTION ADDRESS
Figure 2

8 sif|ntics

8X300 Programming Manual

Table 1. INTERNAL DATA REGISTERS OF THE 8X300.

DESCRIPTION

NAME OCTAL ADDRESS

AUX 00

R1 01

R2 02

R3 03

R4 04 General purpose registers.
R5 05

R6 06

R11 11

OVF 10

zero.

Work register, containing the implied operand for ADD, AND and XOR instructions.

Read-only register whose least significant bit indicates overflow status of the last
ADD instruction: LSB = 1, overflow occurred. The remaining seven bits are always

The Address Bus

The 8X300 has a separate 13-bit instruction address bus
with the capability to address up to 8192 program words.

The Instruction Bus

This is a 16-bit bus which delivers the contents of the se-
lected instruction memory address to the instruction regis-
ter of the 8X300.

Instruction Formats and Operand Fields

An 8X300 instruction consists of a three bit operation code
(OP) followed by a thirteen bit operand field. The operation
code determines the class of the instruction to be per-
formed, while the operand field provides details of the data
to be processed. Figure 3 shows the general instruction for-
mat for the 8X300.

Table 2 shows the various instruction formats and the
instructions that use those.

Table 2 INSTRUCTION FORMATS.

Format Instructions
012345678910 (11121314 15
OP S R D MOVE register to register
ADD
AND register to IV bus address
XOR
OP S L D MOVE register to |V bus
ADD IV bus to register
AND IV bus to IV bus
XOR IV bus to IV bus address
OP S | XEC register
NZT register
OoP S L | XEC IV bus
NZT IV bus
oP D | XMIT register
IV bus address
OoP D L | XMIT IV bus
oP A JMP

Silnotics

8X300 Programming Manual

GENERAL INSTRUCTION FORMAT.

O + 2 3 4 5 6 7 8 9 10 11 12 13 14 15

opP

OPERAND FIE i
CODE LDS (13 bits)

Figure 3

S — Source

This field defines the location of the data byte to be pro-
cessed. It is a 5-bit field divided into two sub-fields: Sg (3
bits) and S1 (2 bits). This allows the address of the source
data byte to be specified as two octal digits (maximum is
37). The source can be either a register, in which case both
sub-fields are used for the address (see Table 1), or the IV
bus. When the source is the IV bus, S specifies the bank (2
= Left bank, 3 = right bank) and Sg specifies the LSB of the
data to be processed: Sg = n means that the source data
byte will be right rotated until bit n is the least significant bit.
Thus Sg = 7 requires no right rotation.

D — Destination

This 5-bit field specifies the destination of the processed
data: it can be a register, the IV bus or an IV bus address.
Sub-fields Dg and D 1 aliow the destination to be addressed
as two octal digits in the same manner as the source field.

When the destination is a register, both sub-fields are used
for the address (see Table 1).

When the data is to be used as an IV bus address, the octal
values 07 (left bank address) or 17 (right bank address)
must be programmed.

When the destination is the IV bus (to the currently enabled
IV byte), D1 specifies the bank (2 = left bank, 3 = right
bank) and Dg specifies the position in the IV byte with which
the least significant bit of the processed data field should
be aligned.

L — Length

This 3-bit field defines the number of bits in the source
and/or destination field.

When the destination is the IV bus, the L field specifies the
length of the destination field whose least significant bit is
specified by Dq.

When the source is the IV bus, the L field specifies the
length of the source field whose least significant bit is
specified by Sg. If the destination is also the IV bus then the
L field applies to both source and destination.

Note: a value of L = O specifies an 8-bit data field.

R — Rotate

For instructions where the source is a register and the des-
tination is either a register or an IV bus address, the 3-bit
rotate field is used in place of the length field. A value n
means that the source data field is right rotated n-places
before being processed.

| — Integer

The integer field is either 5 bits or 8 bits long, depending on
the instruction. It is used to provide a constant in the range
0 to 37g (5 bits) or 0 to 377g (8 bits).

A — Address

The 13-bit address field is used with the jump instruction to
define the absolute address to be set into the address reg-
ister and program counter, i.e. the address of the next in-
struction to be executed.

10 Sifnetics

8X300 Programming Manual

Right Rotate and Mask Functions

The combination of right rotate and mask functions allows
selection of one or more bits from a source data field. For
instructions where both the source and destination are reg-
isters, only the rotate function is available, the data being a
fixed length of 8 bits.

The right rotate function provides an end-around-shift of
one to seven places of the 8-bit source field, see Fig. 4. In
this manner, the least significant cit of the bit string re-
quired can be positioned in the least significant position of
the data byte, ready for further processing, see Fig. 5.

The number of places that the data is to be rotated is speci-
fied by the R field, when present, and by the Sq field when
the source is the IV bus.

The R field specifies the number of places the data is to be
rotated; the Sq field specifies the bit of the source data
field which will be rotated to bit position seven before
masking.

The mask function allows selection of the least significant L
bits of the rotated IV bus source data for subsequent pro-
cessing. The value L is specified by the L-field of the in-
struction. After masking, the L least significant bits are
output to the Arithmetic and Logic Unit (ALU), with the re-
maining bits of the byte set to zero.

RIGHT ROTATE.

1
4

Figure 4

Arithmetic and Logic Unit (ALU)

As its name implies, the ALU performs all the arithmetic and
logic functions. For this purpose it has a direct input from
the AUX register for the implied operand in ADD, AND and
XOR instructions. The output of the ALU may go directly to
the address or data registers, or, via the shift and merge
circuits, to the IV bus.

MASKING

7

rotate 2 places

e

(Sg=5or R=2)
Y .
. mask L bits
mask field (L =4 here)
A
0 ! 2 3 4, 5 6 ! resulting input field to ALU,
0 0 0 0 2 3 4 5 bits 4—7 contain the data of
bits 2—5 of the original field
Figure 5

Sifnotics

1

8X300 Programming Manual

Shift and Merge Functions

The shift and merge functions allow alteration of the state of
a bit string within the IV bus data byte. The action of the
rotate and mask functions ensures that the required pro-
cessed data is in the least significant bits of the ALU out-
put; the left shift function then aligns the data in the required
bit positions prior to merging, see Fig. 6.

Because the process is not an end-around-shift, data shift-
ed from position 0, the MSB, is lost. The number of positions
to be shifted is determined by the value Dq: the data is left
shifted untii the LSB has reached the bit position specified
by Do.

The merge function allows the user to update part of the
existing IV bus data without affecting the remaining parts of
the data byte. The length of the bit string to be merged with
the existing data is specified by the L-field, the LSB of the
bit string being specified by Dg (after shifting).

SHIFT AND MERGE.

e

«+——— L—bits ——

output of ALU

shift left until bit 7
in position D¢
(Dg=5 here)

merge field
A

T V.
original 1V bus data

Timing and Instruction Cycle

Each processor operation is executed in one instruction cy-
cle which is internally divided into quarter cycles. During the
first quarter cycle the instruction word is accepted by the
instruction register and the data input latches are enabled
to accept the data on the IV bus. As processing takes place
during the second and third quarter cycles, the input data
must be stable by the end of the first quarter cycle. The
address for the next instruction becomes available during
the third quarter cycle enabling access of the program
memory during the third and fourth quarter cycles for the
ensuing instruction. If data is to be output to the IV bus, out-
put drivers are activiated during the third quarter cycle to
present stable output data during the fourth data cycle.
Thus, the IV bus works in the input mode during the first two
quarter cycles and in the output mode during the last two
quarter cycles. Figure 7 shows the breakdown of the in-
struction cycle time.

During the instruction cycle, the control and decoding logic
of the 8X300 selects and activates the required timing and
bus control signals in order to execute the current instruc-
tion. These signals are shown in Table 3. Figure 8 shows
the timing of the control signals during a sequence of three
instructions to add the data from an I/0O device on the left
bank to a running total in storage in a register at the right
bank.

Figure 6
TIMING CYCLE OF THE 8X300
1 instruction cycle time
| MCLK = LOW ‘<—MCLK=HIGH»|
1 | |
H T T)
| INST & IV BUS | DATA ADDR &IV | ADOR &N |
| |
! DATA INPUT | PROCESSING CHANGING | VALID :
] |
I |

~— % CYCLE —=!=— % CYCLE —#|=— % CYCLE —=|=—1% CYCLE —=

Figure 7

12 sifnntics

8X300 Programming Manual

Table 3.

170 TIMING AND CONTROL SIGNALS

SIGNAL

FUNCTION

MCLK

WC

SC

Master clock: used to clock |70 devices or
provide synchronization for external logic.

Write Command: HIGH when data is being
output to the IV bus.

Select Command: HIGH level indicates that
the data output on the IV bus is an address.
Left Bank: LOW level enables |/ 0O registers
on the left bank.

Right Bank: LOW level enables |1/0 regis-
ters on the right bank.

TIMING OF THE CONTROL SIGNALS DURING A TYPICAL THREE-INSTRUCTION SEQUENCE

-— XMIT MOVE - —ADD -
/T \ /T \ /)
T\ / \ /T
-/ \ / | N
/T
/ N\ / \
7K X

XMIT 5,IVL SELECT INPUT DEVICE

750 ns MOVE R3,IVR ADDRESS DATA STORAGE REGISTER

ADD LB,RB READ INPUT DATA, ADD TO TOTAL AND STORE

Figure 8

wC

SC

IV BUS

Sifjnotics

THE 8X300
INSTRUCTION SET

8X300 Programming Manual

THE 8X300 INSTRUCTION SET

The 8X300 instruction set is comprised of eight classes of
instruction, each identified by a different OP code value.
Variations in the operand specification provide a subset of
instructions within the instruction class to give a total of
thirty-two instructions. The eight classes of instruction are:

MOVE: 0 Data from the source register or IV bus is moved
to the destination register or IV bus. The data
may be rotated any number of places and/or
masked to any length during the MOVE oper-
ation. The source data field remains unchanged
after the operation.

ADD: 1 Data from the source register or IV bus is added
to the contents of the AUX register in ALU and
the result is placed in the destination register or
IV bus. The data may be rotated and/or masked
during the operation. The source data field and
the AUX register remain unchanged unless one

is also the destination.

AND: 2 Data from the source register or IV bus is AND-
ed with the contents of the AUX register and the
result is placed in the destination register or IV
bus. The data may be rotated and/or masked
during the operation. The source data field and
AUX register remain unchanged unless one of

those is also the destination.

XOR: 3 Data from the source register or IV bus under-
goes an EXCLUSIVE OR comparison with the
contents of the AUX register. The result is
placed in the destination register or IV bus. Data
may be rotated and/or masked during the oper-
ation. The source data field and AUX register
remain unchanged unless one of those is also

the destination.

XEC: 4 Causes execution of the instruction at the ad-
dress formed by replacing the least significant
bits of the last address with the sum of the | field
and the data in the source register or IV byte.
After execution of the instruction at the speci-
fied address, instruction execution continues at
the address following the XEC instruction, un-

less the executed instruction caused a jump.

NZT: 5 The least significant bits of the instruction ad-
dress are replaced by the | field data if the reg-
ister or IV bus specified by the source field has
non-zero contents. The tested data field re-

mains unchanged.

XMIT: 6 The data in the | field is placed in the register or

IV bus specified as the destination.

JMP: 7 The address of the next instruction to be ex-
ecuted is changed to that specified by the 13-

bit A field of the instruction.

MCCAP — MicroComputer Cross Assembler
Program for the 8X300

A cross assembler program is available to translate pro-
grams written in mnemonic source code. This is far more
convenient and includes the advantages of explanatory text
within the source program and error detection during the
assembly process. The relevant assembler statement is
shown in each example of the 8X300 instructions to provide
correlation between the cross assembler statements and
the 8X300 instruction code. A complete description of
MCCAP and listings of typical programs are given at the
end of this manual.

The cross assembler is written in FORTRAN and can be
used on most computer systems capable of accepting this
source language.

SiNOLES 15

8X300 Programming Manual

MOVE Instructions — Op Code O
MOVE, Register, Register

Format

o 1 2 3 4 5 6 7 8 9 10 11 12 i3 14 15

S D

Description

The contents of the register specified by S are right rotated as specified by R and
placed in the destination register specified by D. The contents of the source register
remain unchanged. The original contents of the destination register are lost.

S specifies the source register.
R specifies the number of places that the source data is to be rotated.
D specifies the destination register.

The order of operation is:
copy the contents of the source register;
right rotate the copied data R places;

move the rotated data to the destination register.

Permitted operand values

S: 00/01/02/03/04/05/06/10/11
R:0/1/2/3/4/5/6/7
D: 00/01/02/03/04/05/06/ 11

16 sifnotics

Operation

(8) —D

8X300 Programming Manual

MOVE Instructions — Op Code O

Example MOVE, Register, Register

Move the contents of R1, right rotated 2 places, to the AUX register.

Instruction word Assembler notation

MOVE R1 (2), AUX

T T
octal L 0 l 0 { 1 l 2 I 0 : 0 I
T T
binary [O 0 OIO 0ro 0 1]0 1 OIO 0:0 0 Ol
1
' A2 v 4 Y -
oP S R D

Instruction operation

KO 01011 Copy source register R1 (S = 01)
1

0100101 Rotate 2 places (R = 2)

1010010 1 Move resulit into AUX (D = 00)

Result

The original contents of the AUX register are replaced by the rotated data of R1. The
contents of R1 are not changed.

Data flow

> SHIFT :{) MERGE |——

F—————— - OVF
| R1
| R2
{ R3
R4
| R5
‘ R6
' R11

<: AUX

ALU

<}—{7_]r> IVBO-1VB7
IV BUS

RIGHT
ROTATE

IV LATCHES

silnotics 17

8X300 Programming Manual

MOVE Instructions — Op Code O

MOVE, Register, IV bus address

Format

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S D

Description

Enable the IV byte, at the bank specified by D, whose address is given by the right

rotated contents of the register specified by S.

S specifies the source register.

R specifies the number of places that the source data is to be rotated.

D specifies the destination bank of the IV bus for the address data:

D = 07 specifies the left bank;
D = 17 specifies the right bank.

The order of operation is:
rotate the copied contents of register S by R places;

output the result to the IV bus as an address.

The contents of the source register remain unchanged after the instruction.

Operand values

S: 00/01/02/03/04/05/06/10/11
R:0/1/2/3/4/5/6/7
D: 07/17

18 Silnetics

Operation

Enable IV byte with address (S)

8X300 Programming Manual

MOVE Instructions — Op Code 0

Example MOVE, Register, IV bus address

Select the working storage register at the right bank whose address is given by the
contents of R3.

Instruction word Assembler notation

MOVE R3 (0), IVR

T T
octal L 0 l 0 [3 [0 l 1]l 7 I
1
T T
binary IOOOIO oo 1 1]000,0 IJI1 1 1]
1
v v S— 7 v
orP S R D

Instruction operation
00000100 copy source register R3 (S = 03)
000O0OO0OT1O0O0 rotate O places

00000100 output to IV bus as address on the right bank (D = 17)

Result

The previously enabled IV byte on the right bank is disabled and the byte with address
004 on the right bank is enabled.

Data Flow

RIGHT
ROTATE

M IVBO-IVB7
IV BUS

IV LATCHES

Sifnotics 19

8X300 Programming Manual

MOVE Instructions — Op Code O

MOVE, Register, IV bus

Format ‘ Operation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T T T T T T T T (s)_.D

S D

Description

Move the least significant L bits of the register specified by S to the variable length
field of the IV bus.

S specifies the source register.

L specifies the length (number of bits) of the masked data field that is to be merged
with the existing IV byte data. (L = O selects an 8-bit field.)

D specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D1 = 3 selects the right bank.

Do specifies the bit position in the IV byte with which the least significant bit of
the processed data field should be aligned. This means that the processed data
field is left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

The order of operation is:
MSB o 1 2 3
read the contents of the selected IV byte into the IV latches; P XX l I

source register

copy the contents of the source register;

shift the copied data field as specified by Do; / /

merge the least significant L bits with the data in the IV latches; rx l X X xJ IV bus
output the modified data field to the IV byte.

Note that the original data in the IV byte outside the merged L-bit field remains
unaltered. The contents of the source register remain unchanged.

Operand values

S: 00/01/02/03/04/05/06/10/11
L: 1/2/3/4/5/6/7/0

Do: 0/1/2/3/4/5/6/7

D4: 2/3

Note that L = O selects an 8-bit field.

20 sifnetics

8X300 Programming Manual

MOVE Instructions — Op Code 0

Example MOVE, Register, IV bus

Move the contents of the least significant 3 bits of register 11 to the selected iV byte
at the left bank, with bit 5 as the least significant position of the IV byte.

Instruction word Assembler notation

T T
octal l 0 | 1 I 1 l 3 l 2 ! 5 I
1 |

MOVE R11, 3, LIV5

Instruction operation
11101111 original IV byte data to input latches

11011000 copy contents of R11 (S = 11)

011000 shift ALU output (Dg = 5)

f E——

—
1110001 1 merge the 3-bit field with existing IV data (L = 3)
—— S——

previous values of IV
bus preserved in new
IV data

Result

Content of bits 5, 6 and 7 of R11 inserted in bits 3, 4 and 5 of the IV byte. Bits 0, 1, 2,

6 and 7 of the IV byte unchanged.
SHIFT H MERGE

Data flow

M IVBO-1VB7
IV BUS

IV LATCHES

I |

Sifnotics 21

8X300 Programming Manual

MOVE Instructions — Op Code O

MOVE, IV bus, Register
Format

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S D

Description

Move the L-bit field of the IV bus data to the least significant L bits of the register

specified by D.

S1 specifies the bank of the IV bus which is the data source.

S1 = 2 selects the left bank;
S1 = 8 selects the right bank.

Operation

(IV byte) —D

Sp specifies the bit which will be the least significant bit of the input data field after

rotation.

L specifies the length (number of bits) of the masked field.
Note that L = O selects an 8-bit field.

D specifies the address of the destination register.

The order of operation is:
read data on IV bus specified by Sq to input latches;
right rotate the input data field as given by Sp;

mask off the least significant L bits of the rotated field;

move the masked field to the least significant L bits of the destination register,

with zeros in the unmasked positions.

Operand values

Sp: 0/1/2/3/4/5/6/7

Sq: 2/3

L: 1/2/3/4/5/6/7/0

D: 00/01/02/03/04/05/06/11

22 Sinoties

- L —

i 234‘567 LSB

X lx X xJ IV bus

0o 0 O OI register

8X300 Programming Manual

MOVE Instructions — Op Code O

Example MOVE, IV bus, Register

Move bits 1, 2 and 3 of the enabled IV byte at the right bank to register 6.

Instruction word Assembler notation

MOVE RIVS, 3, R6

T T
octal I 0 I 3 : 3 I 3 I 0 : 6 I
T T
binary |000l1 110 1 1|O 1 1,0 0:1 1 OI
1
' Y v < Y 4
oP S L D

Instruction operation

1
K\1‘1 0101 IV bus input

01011111 right rotate 4 places (Sg = 3)

0000O0T1TT11 mask 3 bits (L
e et

i
00000 1T 11 result to R6 (D = 06)

3)

Result

Bits 1, 2 and 3 of the IV byte at the right bank are inserted into the least significant 3 bits
of R6. The other bits of R6 are set to zero. The source IV byte is not altered.

Data flow

> SHIFT MERGE [——

Fr———— - —> OVF
| R1
| R2
I R3
R4
I R5
' R6
I R11

< AUX

ALU

ﬁbb IVBO-1VB7
IV BUS

RIGHT N/

MASK ROTATE

IV LATCHES

Sifnotics 23

8X300 Programming Manual

MOVE Instructions — Op Code O
MOVE, IV bus, IV bus

Format

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T

T T

S D

Description

Move the variable length field, specified by Sg and L, from the bank specified by S4
to the field and bank specified by D.

S4 specifies the bank of the IV bus which is the data source:
S = 2 selects the left bank;
S1 = 3 selects the right bank.

So specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field that is to be processed and
merged with the existing IV bus data.
Note that L = O selects an 8-bit field.

D1 specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D1 = 3 selects the right bank.

Do specifies the bit position in the data from the input latches with which the least
significant bit of the processed data field should be aligned. This means that
the processed data field is left-shifted so that bit 7 is aligned with bit Do
of the input latches.

The order of operation is: MSB 0o 1 2 r;) :. 5 6 7
read the data from the source IV byte into the input latches; rx X X l I X X X l
copy the input data and right rotate as specified by So;
mask off the least significant L bits; i l l \i\4\4 l
shift left as specified by Dg; l X X X X X X]

merge the L-bit field with the data from the input latches; ’
output 8 bits of data to IV bus.

Note that during the merge phase, the original values of the source field bits outside the
masked field are preserved.

Operand values

So: 0/1/2/3/4/5/6/7
Sq: 2/3
L: 1/2/3/4/5/6/7/0
Dp: 0/1/2/3/4/5/6/7
Dq:2/3

24 Silnotics

- |

Operation

(8) —D

LsB

IV bus input

IV bus output

8X300 Programming Manual

MOVE Instructions — Op Code 0

Example MOVE, IV bus, IV bus

Move bits 0, 1 and 2 of the IV byte at the Left Bank to bits 3, 4 and 5 of the same IV byte.

Instruction word Assembler notation

MOVE LIV2, 3, LIV5

Instruction operation

]
10101011 initial contents of IV byte to input latches

01011101 right rotate 5 places (Sg = 2)

o
0000O0OT1O01 mask 3 bits (L = 3)

00O01TO0O1 shift left 2 places (Dg = 5)

N, s’

m——
10110111 merge with contents of input latches and output to IV bus
N, e’ e

original values

Result

Bits 3, 4 and 5 contain the same values as bits 0, 1 and 2. All other bits unchanged.

SHIFT MERGE

Data flow

RIGHT
ROTATE

MASK

ey "0 V7
IV BUS

IV LATCHES

Sifnotics 25

8X300 Programming Manual

MOVE Instructions — Op Code O

MOVE, IV bus, IV bus address
Format

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

Operation

Enable the 1V byte at the bank specified by D, whose
address is given by the bus data specified by S.

Copy the data from the IV bus as specified by S1, right rotate the data field until bit
Sg is in the least significant position, mask the least significant L bits and output the
result to the bank of the IV bus specified by D, as an |V byte address. Bits of the

output field outside the mask are set to zero.

S1 specifies the bank of the IV bus which is the data source:

S1 = 2 selects the left bank;
S1 = 3 selects the right bank.

Sg specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field.

D specifies the destination bank of the IV bus for the address data:

D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:
copy the input data on the IV bus;
right rotate the input data as given by Sq;
mask the least significant L bits;

output result with zeros in positions outside mask.

Operand values

Sp: 0/1/2/3/4/5/6/7

Sq: 2/3
L: 1/2/3/4/5/6/7/0
D: 07/17.

Note that L = O specifies 8-bit field.

26 Sifnetics

l)(XI IV bus

J 1V bus address

8X300 Programming Manual

MOVE Instructions — Op Code 0O
Example MOVE, IV bus, IV bus address

Enable the IV byte at the left bank whose address is the value of bits 2, 3 and 4 of the
presently enabled IV byte at the left bank.

Instruction word Assembler notation

MOVE LIV4, 3, IVL

T T

octal L 0 l 2 I 4 | 3 I 0 ! 7 l
1 |
T T

binary 0 0 O|1 o+ 1 0 OIO 1 1l0 011 1 1-|
1 1
A A Y -

opP S L D

L1 110110 1I IV bus input
10111101 right rotate 3 places
00000 T1TO1 mask 3 bits (L = 3)
0000O0T1TO01 address data to IV bus
Result

The IV byte, at the address given by bits 2, 3 and 4 of the previously enabled byte, is
enabled. As both bytes are on the same bank, the source byte is disabled when the
new address is output on the bus.

Data flow

r—=" r— ="

‘ ' IVBO-1VB7
IV BUS

MASK RIGHT M
ROTATE

IV LATCHES

Sifjnotics 27

8X300 Programming Manual

ADD Instructions — Op Code 1
ADD, Register, Register
Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T T T T

S D
OoP =1 R

S1 SO 01 DO

L 1 i Il 1 A 1 1 L 1

Description

Add the right rotated contents of register S to the contents of the AUX register and
place the result in register D. If overflow occurs during the addition, bit 7 of the OVF

register is set to 1, otherwise it is set to 0.

S specifies the source register.

R specifies the number of places that the source data is to be rotated.

D specifies the destination register.

The order of operation is:
copy the contents of the source register;

right rotate the copied data;

add the right rotated data to the contents of the AUX register;

move the result to the destination register;

set the overflow indication as appropriate.

The contents of the source and AUX registers remain unchanged after the instruction

unless one of these is also specified as the destination.

Operand values

S: 00/01/02/03/04/05/06/10/11
R: 0/1/2/3/4/5/6/7
D: 00/01/02/03/04/05/06/11

28 Sifjnekics

Operation

(S) plus (AUX) —D

8X300 Programming Manual

ADD Instructions — Op Code 1

Example ADD, Register, Register

Add the contents of R1, right rotated 4 places, to the contents of the AUX register and
store the result in R3.

Instruction word Assembler notation

ADD R1 (4), R3

T
octal I 1 I 0 : 1 | 4 I 0 ! 3 I
1
. T T
binary [0 0 1{0 0:'/0 O 1|1 0 OIO 010 1 q
1 1
' VT ' Y
op S R D

Instruction operation
01110001 copy source register
o%*%\ rotate 4 places
11101001 contents of AUX
0O00O0OO0OO0OO0ODO sum

0O00000O0O0 1 overflow indication in OVF register

0000OO0OO0OBO0OO result in Rg

Data flow

j,> SHIFT :> MERGE |—C

-+ OVF
R1
R2
R3
R4
R5
R6
R11

ALU

Q_\7j> [VBO-1VB7
IV BUS

ROTATE

IV LATCHES

sifnetics 29

8X300 Programming Manual

ADD Instructions — Op Code 1

ADD, Register,; IV bus address Operation
Format Enable the IV byte with address (S) plus (AUX).
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S D
oP=1 R
$1 Sg D4 Dg

Description

Enable the IV byte whose address is given by the sum of the right rotated contents of
the source register and the contents of the AUX register at the bank specified by D.

S specifies the source register.
R specifies the number of places that the source data is to be rotated.

D specifies the destination bank of the IV bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:
rotate the copied contents of register (S) by R places;
add the rotated data field to the contents of AUX;
set the overflow indication as appropriate;
output the sum to the IV bus as an address.

The contents of the source register remain unchanged after the instruction.

Operand values

S: 00/01/02/03/04/05/06/10/ 11
R:0/1/2/3/4/5/6/7
D: 07/17

30 SiNOLES

8X300 Programming Manual

ADD Instructions — Op Code 1

Example ADD, Register, IV bus address
Enable the IV byte at the right bank whose address is the sum of the contents of R3 and
AUX.
Instruction word Assembler notation
i T

octal I 1 l 0 3 | 0 , 1o 7 j ADD R3 (0), IVR
binary lo 0 1|'0 o:'o 1 1l0 0 0,0 151 1 1]

kﬂ ~ ;ﬁ(A ~ J

opP S R D

Instruction operation

00010110 copy source data

00010110 no rotation (R = 0)

00000101 contents of AUX

00011011 sum

000O0OO0OO0OOO OVF register after addition

00011011 result to IV bus as an address at the right bank (D = 17)

Resuit

The IV byte on the right bank, whose address is the sum of the contents of R3 and the
AUX register, is enabled.

Data flow

r— =" r— ="

ROTATE

H IVBO-1VB7
IV BUS

IV LATCHES

SHNOtCS 31

8X300 Programming Manual

ADD Instructions — Op Code 1

ADD, Register; IV bus

Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

Add the contents of the source register to the contents of the AUX register and move
the least significant L bits of the result to the IV bus as given by D.

S specifies the source register.

L specifies the length (number of bits) of the masked field that is to be merged with
the existing IV byte data. Note that L = O selects an 8-bit field.

D1
specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D1 = 3 selects the right bank.

Do
specifies the bit position in the IV byte with which the least significant bit of the
processed data field should be aligned. This means that the processed data field
is left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

The order of operation is:
the contents of the destination IV byte are read into the input latches;

the contents of the source register are copied and added to the contents of the
AUX register;

the result is left shifted as specified by D;
the overflow indication is set as appropriate;

the shifted data field is merged with the original contents of the IV byte
and output to the IV bus.

Note that the bits of the output data field outside the L-bit masked field retain their
original values. The contents of the source register remain unchanged after the
instruction.

Operand value

S: 00/01/02/03/04/05/06/10/11 MS

123’

Operation

(S) plus (AUX) =D

LSB

B 0
L: 1/2/3/4/5/6/7/0 [x X X x|

l result

Do: 0/1/2/3/4/5/6/7

[x x|

oo 77

l IV bus output

- L

32 siljntics

8X300 Programming Manual

ADD Instructions — Op Code 1

Example ADD, IV bus, Register

Add the contents of R11 to the contents of the AUX register and output the least
significant 4 bits of the sum to bits 0, 1, 2 and 3 of the IV byte at the Left Bank.

Instruction word Assembler notation

octal L 1 | 1 E 1 I 4 I 2 1: 3 —l ADD R11, 4, LIV3
binary ILO 1[0 150 0 1[1 0 ol1 ofo 1 1]

' ' \'4 hd

op s L D

Instruction operation

00100O0T11 copy source data
11010111 contents of AUX
11111010 sum

1010 shift left 4 places (Dg = 3)
e e

pm——
10101101 merge with original IV bus data and output to IV bus left
Y bank (D = 2)

m—e—
original
content
preserved

Result

Bits 0, 1, 2 and 3 of the IV byte at the left bank are set to the values of the least
significant 4 bits of the sum of (R11) and (AUX). The overflow indicator is set to zero.

SHIFT H MERGE

Data flow

M IVBO-1VB7
IV BUS

IV LATCHES

L_—_ 1

Silntics 33

8X300 Programming Manual

ADD Instructions — Op Code 1

ADD, IV bus, IV bus

Format Operation

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
— —— — ——— — (S) plus (AUX) —D

S D

Description

Add the L-bit field of the IV bus source data to the contents of the AUX register and
move the least significant L bits of the result to the IV bus field specified by Dg.

S1 specifies the bank of the IV bus which is the data source:
S1 = 2 selects the left bank;
S = 3 selects the right bank.

Sp specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field that is to be processed and
merged with the existing IV bus data.
Note that L = O selects an 8-bit field.

D specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D1 = 3 selects the right bank.

Do specifies the bit position in the IV byte with which the least significant bit of the
processed data field should be aligned. This means that the processed data field
is left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

The order of operation is: MSB 0o 1 2 ‘ 3] 4 ‘ 5 6 7 LSB
read the data from the IV bus into the input latches; l X X X l I X X XJ IV bus input
right rotate the copied input data as given by So;
mask off L bits; l l l l l l
add the L-bit field to the contents of the AUX register; X x X X X X J IV bus output

left-shirt the sum as given by Dg;

*
. ’4_ L —»| 7276849
merge the least significant L bits of the shifted field with the contents of the input

* processed data
latches;

output the merged 8-bit field to the bank of the IV bus given by D1.

Note that during the merge phase, the original values of the source field outside the
masked field are preserved. The original contents of the destinction field are lost.

Operand values

Sg: 0/1/2/3/4/5/6/7
S1:2/8
L: 1/2/3/4/5/6/7/0
Do: 0/1/2/3/4/5/6/7
D1 2/3

34 sijnotics

8X300 Programming Manual

ADD Instructions — Op Code 1

Example ADD, IV bus, Register

Add bits 0, 1, 2 and 3 of the IV byte at the right bank to the contents of the AUX
register and store the result in the AUX register.

Instruction word Assembler notation
ADD RIV3, 4, AUX

o [1 [a1 s [4 [o o |

binary [00 1|1 110 1 1|1 00]0 OIOOOI

~ ~ v - g
oP S

Instruction operation

)
|0<01\10: source IV data

11010110 rotate 4 places (Sg = 3)

0000O0T1T1O0 mask 4 bits (L = 4)
10011011 contents of AUX
10100001 sum

000O0OO0O0OOO0OO OVF register after addition
10100001 new contents of AUX register

Result

The 4 most significant bits of the IV byte are added to the AUX register contents. The
overflow indicator is set to zero.

Data flow

j'> SHIFT :D MERGE |—

> OVF
R1
R2
R3
R4
R5
R6
R11

L] \ AUX
ALU
MASK RIGHT %
ROTATE

Sifnetics 35

tv(> IVBO-1VB7
IV BUS

IV LATCHES

8X300 Programming Manual

ADD Instructions — Op Code 1

ADD, Register, IV bus Operation
Format (S) plus (AUX) —D
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S D
oP=1 L
S4 So D4 Dg

Description

Add the L-bit field of the IV bus source data to the contents of the AUX register and
place the result in the destination register. Set the overflow indicator as appropriate.

S specifies the bank of the IV bus which is the data source:
S1 = 2 selects the left bank;
S1 = 3 selects the right bank.

Sp specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field.
Note that L = O selects an 8-bit field.

D specifies the address of the destination register.

The order of operation is:

- L
read the source IV byte data into the input latches; MSB 0 1 I 2 314 5 6 7 LSB
right rotate the input data as given by So; [x X l X X X xJ IV bus (source)
mask the rotated data field as specified by L; \\
add the masked data to the contents of the AUX register;
set the overflow indicator as appropriate; ro

O 0O 0 0 O I J ALU input
move the result of the addition to the destination register. ‘

Operand values

Sp: 2/3

$4:0/1/2/3/4/5/6/7

L: 1/2/3/4/5/6/7/0

D: 00/01/02/03/04/05/06/11
Note that L = O selects an 8-bit field.

36 sifnotics

8X300 Programming Manual

ADD Instructions — Op Code 1

ADD, IV bus, IV bus
Example

Add the contents of bits 4 to 7 of the IV byte at the left bank to the contents of the AUX
register and move the least significant 4 bits of the sum to the most significant 4 bits
of the IV byte at the left bank.

Instruction word Assembler notation
T T
octal [:] E | 4 | EE | ADD LIV7, 4, LIV3
binary t)o1]10:1 11[1ool1oio1ﬂ
v VT Vv YT
op S L D

Instruction word
01100110 IV bus data to input latches
01100110 no right rotate (Sg = 7)
N e
00000110 mask 4 bits (L = 4)
00110010 contents of AUX

00111000 sum

170 0 0 shift left 4 places (Dg = 3)

Nrr— matsain

e N

10000110 merge with input data and output to IV bus
R
original
values

Resuit

The 4 most significant bits of the IV byte are changed to the values given by the sum of
the 4 least significant bits and the contents of the AUX register. The overflow

indicator is set to O.
SHIFT H MERGE

Data flow

RIGHT

MASK ROTATE

h ' IVBO-1VB7
IV BUS

IV LATCHES

Sifnotics 37

8X300 Programming Manual

ADD Instructions — Op Code 1

ADD, IV bus, IV bus address

Format
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S D
oP=1 L
S So Dy Do
1 1 I 1 1 1 1 1 ' i
Description

Operation

(S) plus (AUX)—D

Enable the IV byte, at the bank specified by D1, whose address is given by the sum of
the L-bit field of the source data and the contents of the AUX register.

S

So

specifies the bank of the IV bus which is the data source:
S1 = 2 selects the left bank;
S1 = 3 selects the right bank.

specifies the bit which will be the least significant bit of the rotated
input data field.

specifies the length (number of bits) of the masked field
Note that L = O selects an 8-bit field.

specifies the destination bank of the IV bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:

read the data from the current IV byte into the input latches;
right rotate the copied input data as given by Sg;

mask off the least significant L bits;

add the masked field to the contents of the AUX register;
set the overflow indicator as appropriate;

output the data as in IV bus address at the bank specified by D.

Operand values

So
S1
L:
D:

38

MSB
:0/1/2/3/4/5/6/7

1 2/3
1/2/3/4/5/6/7/0
07/17

SiljnDLiES

-— L —

l X X | 1V bus (source)

0 1{2 3 4 5|6 7 LSB
IX X
IO 0 0 OI

ALU input

l<————L—-—>

8X300 Programming Manual

ADD Instructions — Op Code 1

Example ' ADD, IV bus, IV bus address

Enable the IV byte at the left bank whose address is the sum of the contents of the AUX
register and bits 5, 6 and 7 of the presently enabled IV byte at the left bank.

Instruction word Assembler notation
T T ADD LIV7, 3, IVL
octal | 1 2 : 7 | 3 I 0 I 7 l
T T
binary |001 1011 1 1|01 1]0 0{1 1 1|
\/___/ ~ AN ~ AN ~ w3
op S L D

11011101 IV bus input
11011101 no right rotate (Sp = 7)
000OCGO1O01 mask 3 bits (L = 3)
00001101 contents of AUX
00010010 sum
00000O0OO0OO0 OVF register

0O000O10O01T0O0 new IV bus address, left bank.
Result
Original address at left bank disabled and new address, given by sum above, enabled.

Data flow

r—=—=—" r— ="

RIGHT \/ IVBO-1VB7
MASK RoTaTE [(e—————— - — | BUS

{V LATCHES

Sifnoetics 39

8X300 Programming Manual

AND Instructions — Op Code 2

AND, Register, Register
Format

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

ADD the right rotated contents of register S with the contents of the AUX register and

place the result in register D.

S specifies the source register.

R specifies the number of places that the source data is to be rotated.

D specifies the destination register.

The order of operation is:
copy the contents of the source register;

right rotate the copied data;

AND the right rotated data with the contents of the AUX register;

move the result to the destination register.

The contents of the source and AUX registers remains unchanged after the
instruction unless one of these is also the destination register.

Operand values

S: 00/01/02/03/04/05/06/10/ 11
R: 0/1/2/3/4/5/6/7
D: 00/01/02/03/04/05/06/11

40 Sifnotics

Operation

(S) A(AUX) =D

8X300 Programming Manual

AND Instructions — Op Code 2

Example AND, Register, Register

AND the contents of R3 to the contents of the AUX register and store the result in R3.

Instruction word Assembler notation

AND R3 (0), R3

Instruction operation

00001111 initial contents of R3 (no rotation, R = 0)
0000O0O0T1 1 contents of AUX

0000O0O0T11 result of AND function

00000011 new contents of R3

Result

R3 new contains the result of ANDing its original contents with those of the AUX
register.

Data flow

> SHIFT :{) MERGE |——

_————— - OVF
| R1
[R2
[R3
R4
| RS
| R6
| R11

e 7UX

ALU

RIGHT
ROTATE

C—V_:> IVBO-1VB7
IV BUS

IV LATCHES

sifnotics a1

8X300 Programming Manual

AND Instructions — Op Code 2
AND, Register, IV bus address

Format

o 1+ 2 3 4 5 6 7 .8 9 10 11 12 13 14 15

S D

Description

Enable the IV byte, at the bank specified by D, whose address is given by the AND
operation on the right rotated contents of the source register and the contents of the
AUX register.

S specifies the source register.
R specifies the number of places that the source data is to be rotated.

D specified the destination bank of the IV bus for the address data:
D = 07 specifies the left bank;
D = 17 specifies the right bank.

The order of operation is:
rotate the copied contents of register S by R places;
AND the rotated data field with the contents of AUX;
output the result to the IV bus as an address.

The contents of the source register remain unchanged after the instruction.

Operand values

$: 00/01/02/03/04/05/06/10/ 11
R:0/1/2/3/4/5/6/7
D: 07/17

42 Silptics

Operation

Enable IV byte with address (S) A (AUX).

8X300 Programming Manual

AND Instructions — Op Code 2
Example AND, Register, IV bus address

Select the IV byte at the left bank, whose address is contained in bits 4, 5 and 6 of
register R3. It is assumed that the AUX register already contains the required mask.

Instruction word Assembler notation
AND R3 (1), IVL
1 1
octal | 2] 0 : 3 I 1 I 0 : 7 l
T T
binary [01 o|o 010 1 1]00 1]0 BEEE 1]
\ v —~ VAN ~ VAN ~ v
oP S R D

Instruction opergtion

11011101 copy source register
11101110 rotate 1 place (R = 1)
0000O0T1T11 contents of AUX

0000O0T1T10O0 result of AND comparison

0000O0OT1TT1O new left bank address (D = 07)

Result
The IV byte on the left bank with address 006 is enabled.

Data flow

r— =" r—="

RIGHT
ROTATE

<__ﬁ IVBO-IVB7
IV BUS

IV LATCHES

Siljnetics 43

8X300 Programming Manual

AND Instruction — Op Code 2

AND, Register, IV bus

Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T L L] T ¥ T T

S D
oP=2 L
S Sg D4 Dg

L 1. 1 1 L 1 1 1 L 1

Description

Pertorm an AND operation on the source register contents and those of the AUX
register and move the least significant L bits of the result to the destination field of
the IV bus.

S specifies the source register.

L specifies the length (number of bits) of the masked field that is to be merged
with the existing IV byte data.
Note that L = O selects an 8-bit field.
D specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D1 = 3 selects the right bank.
Do specifies the bit position in the IV byte with which the least significant bit
of the processed data field should be aligned. This means that the processed data
field is left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

The order of operation is:
the contents of the destination IV byte are read into the input latches;

the contents of the source register are copied and ANDed with the contents of the
AUX register.

the result is left-shifted as specified by D:

the shifted data field is merged with the original contents of the IV byte and output to
the IV byte.

Note that the bits of the output data field outside the L-bit processed field retain their
original values. The contents of the source register remain unchanged after the
instruction.

-

Operand values
MSB 0o 1 2 3]4 5

L —»

6 7

S: 00/01/02/03/04/05/06/10/11 [x x x x|

]

L: 1/2/3/4/5/6/7/0
Dp: 0/1/2/3/4/5/6/7

S

Dy: 2/3

[x]

XXl

’<—L——-——>

44 Sifnotics

Operation

(S) A (AUX)—D

LSB
ALU output

1V bus output

8X300 Programming Manual

Example

AND Instructions — Op Code 2

Perform an AND operation on the contents of R6 and the AUX register and move the
least significant 3 bits of the result to bits 1, 2 and 3 of the |V byte at the left bank.

Instruction word

octat I 2 [0

binary ro 1 0 I 0

o
-
-
o
—
o

T
1!1 010 1 1]

N L

J] —

Instruction operation
10110101
11011110
10010100

0

e i’

e —.
11001010
L orema

original
values

Result

- <

copy source register
contents of AUX

result of AND comparison
shift left 4 places (Dg = 3)

merge with original IV bus contents (L = 3)

The 3-bit result of the AND operation is moved to bits 1, 2 and 3 of the IV byte at the left

bank.

Data flow

AND, Register, IV bus

Assembler notation

AND RS, 3, LIV3

SHIFT H

MERGE

L_——d

M IVBO-1VB7
IV BUS

IV LATCHES

silnekics

45

8X300 Programming Manual

AND Instructions — Op Code 2

AND, IV bus, Register
Format

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

Perform an AND operation on the L-bit field of the IV bus source data and the

contents of the AUX register.

S specificies the bank of the IV bus which is the data source;

S1 = 2 selects the left bank;
S1 = 3 selects the right bank.

Sp specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field.
Note that L = O selects an 8-bit field.

D specifies the address of the destination register.

The order of operation is:
read the contents of the IV byte into the input latches;
right rotate the input data as given by Sq;
mask the rotated data field as specified by L;
AND the masked data to the contents of the AUX register,;

move the result to the destination register.

Operand values

So 2/3

Sq 0/1/2/3/4/5/6/7

L: 1/2/3/4/5/6/7/0

D: 00/01/02/03/04/05/06/11.
Note that L = O selects an 8-bit field.

46 Sifnntics

3|4 5 6 7

XXXXI

- |

Operation

(S) A (AUX)—~D

LSB

1V bus {source)

ALU input

8X300 Programming Manual

AND Instructions — Op Code 2

Example AND, IV bus, Register

Perform an AND operation on the contents of the IV byte at the left bank and the
contents of the AUX register and store the result in R4.

Instruction word Assembler notation

octal | 2 | 2 | 7 I 0 l 0 I AND LIV7, 8, R4

-

T
binary [0 1 011 or1 1 1l000l0 011 00|
Il

“ — AN
A

v
opP S

- <

Instruction operation
01011011 IV bus input
01011011 no rotation (Sg = 7)
01011011 no mask (L = 8 bits)
11000111 contents of AUX
0100001 1 result of AND

01000O0T1T1 new contents of R4

Result

R4 contains the result of the AND operation on the contents of the left bank of the IV bus
and the AUX register.

Data flow

‘> SHIFT :> MERGE |——

> OVF
R1
R2
R3
R4
R5
R6
R11

] v

ALU

RIGHT M
MASK ROTATE

_\7:{> IVBO=1VE7
IV BUS

1V LATCHES

Siqnetics 47

8X300 Programming Manual

AND Instructions — Op Code 2

AND, IV bus, IV bus

Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

Perform an AND operation on the L-bit field of the IV bus source data and the
contents of the AUX register, and move the least significant L bits of the result to the
destination field of the IV bus.

S1 specifies the bank of the IV bus which is the data source:
S = 2 selects the left bank;
S1 = 3 selects the right bank.

S specifies the bit which will be the least significant bit of the
rotated input data field.

L specifies the length (number of bits) of the masked field that is
to be processed and merged with the existing IV bus source data.
Note that L = 0 selects an 8-bit field.
D1 specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D4 = 3 selects the right bank.
Do specifies the bit position in the data from the input latches with which the

least significant bit of the processed data field should be aligned. This means that
the processed data field is left-shifted so that bit 7 is aligned with bit Dg
of the input latches.

The order of operation is:
read the data from the IV bus into the input latches;
right rotate the copied input data as given by Sg;
mask off the least significant L bits;
perform the AND operation on the contents of the AUX register;
left-shift the result as given by Do;

merge the least significant L bits of the shifted field with the contents of the input
latches;

output the merged 8-bit field to the bank of the IV bus given by D1.

Note that during the merge phase the original values of the bits outside the masked
field are preserved. The original data in the destination IV byte is lost.

Operand values MSB 0o 1 2 l: " 4 l 5 6 7
Sp: 0/1/2/3/4/5/6/7 IX X X‘ |x X X l
Livll |
L: 1/2/3/4/5/6/7/0 lx X X X Xl XJ
Do: 0/1/2/3/4/5/6/7

Dy: 2/3. - L'
48 Siljnetics

Operation

(S) A (AUX) —D

LSB

IV bus input

1V bus output

4'processed data

8X300 Programming Manual

AND Instructions — Op Code 2

Example AND, IV bus, IV bus

Mask the most significant 4 bits of the IV bus data at the left bank and move the result to
the IV byte at the right bank. (It is assumed that the AUX register has already been
loaded with the required contents for this.)
Assembler notation

Instruction word AND LIV7, O, RIV7

T T
octal l 2 I 2 1 7 I 0 [3 1 7 |

T
binary li) 1 Ol'l 011 1 1|00011 111
L

-
-

~ e
S

op

~ <
O <

Instruction operation
10110110 IV bus data to input latches
10110110 no rotate or mask (Sg = 7,L = 0)
11110000 contents of AUX
10110000 result of AND
10110000 no shift (Dg = 7)

10110000 new IV bus data

Result

The most significant 4 bits of the input data are moved to the IV byte at the right bank.

SHIFT H MERGE

Data flow

M IVBO-1vB7
IV BUS

IV LATCHES

sifnotics 49

8X300 Programming Manual

AND Instructions — Op Code 2
AND, IV bus, IV bus address

Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T Y T T T T

S D

S So D4 Do

L 1 L 1 L ! L i L L

Description

Enable the IV byte at the bank specified by D, whose address is the result of the AND
operation on the L-bit field of the IV bus and the contents of the AUX register.

S1 specifies the bank of the IV bus which is the data source: ‘
S1 = 2 selects the left bank;
S1 = 3 selects the right bank.

Sg specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field.
Note that L = O selects an 8-bit field.

D specifies the destination bank of the IV bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies tight bank address (IVR).

The order of operation is:
read the data from the current IV byte into the input latches;
right rotate the copied input data as given by Sg;
mask off the least significant L bits;
perform the AND operation on the contents of the AND registers;

output the data as an address at the bank specified by D.

Operand values
MSB 0 1142

3

Operation

(S) A (AUX) —D

- L —

4 5|6 7 LSB

So: 0/1/2/3/4/5/6/7 [x x

I X X | 1V bus (source)

S1:2/3 \ \
L: 1/2/3/4/5/6/7/0
0o 0 OI

D: 07/17 [0

| ALU input

50 Sifjnetics

\4——L—>l

8X300 Programming Manual

AND Instructions — Op Code 2

Example AND, IV bus, IV bus address

Enable the IV byte at the left bank whose address is the result of the AND operation on
the contents of the AUX register and bits O to 3 of the currently enabled IV byte at the
left bank.

Assembler notation
Instruction word

AND LIVS, 4, IVL

{ T
octal I 2 l 2 : 3 l 4 I 0 : 7 I
T T
binary [010'10'01 11100,0 o1 1 ‘Il
1 i
AN ~ v AN ~ A v
orp S L D

11111010 IV bus input
101011 1™ rotate 4 places (Sg = 3)
00001111 mask 4 bits (L = 4)
00001O00O01 contents of AUX
00001001 result of AND

00001 O0O01 new address at left bank

Result

The previously enabled byte at the left bank is disabled and the byte at address 11
(octal) is enabled.

Data flow
r— ="M r— ="

MASK RIGHT % M IVBO-1VB7
ROTATE IV BUS

IV LATCHES

Sifjnotics 51

8X300 Programming Manual

XOR Instructions — Op Code 3

XOR, Register, Register

Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T T T T T

S D

S] SO D1 DO

1 1 i 1 1 1 L L i 1

Description

Perform an exclusive OR operation on the right rotated contents of the source
register and the contents of the AUX register.

S specifies the source register
R specifies the number of places that the source data is to be rotated.
D specifies the destination register.

The order of operation is:
copy the contents of the source register;
right rotate the copied data;
XOR the right rotated data with the contents of the AUX register;
move the result to the destination register.

The contents of the source and AUX registers remains unchanged after the instruction
unless one of these is also specified as the destination register.

Operand values

S: 00/01/02/03/04/05/06/10/ 11
R: 0/1/2/3/4/5/6/7
D: 00/01/02/03/04/05/06/11

52 sifnntics

Operation

(S) ® (AUX) —D

8X300 Programming Manual

XOR Instructions — Op Code 3

Example XOR, Register, Register

Perform an exclusive OR operation on the contents of R1, rotated 3 places, and the
contents of the AUX register. Store the result in R4.

Assembler notation
Instruction word

T T
octal | 3 I 0 ! 1 I 3 l 0 : 4 I

T
binary |o 1 1]0 010 0 1|o 1 1]0 011 0 o]

XOR R1 (3), R4

N /A AN v
hd Y

~
op S R

1.00 10010 copy source register R1 (S = 01)
01010010 rotate 3 places (R = 3)
11111111 contents of AUX
10101101 result of XOR

10101101 new contents of R4

Result

Register R4 holds the result of the XOR operation on the rotated contents of R1 and the
contents of AUX.

Data flow

> SHIFT _> MERGE |—

-——————— - OVF
| R
[R2
| R3
R4
| R5
[R6
' R11

AUX

ALU

<——Vi> IVBO-1VB7
IV BUS

RIGHT
ROTATE

IV LATCHES

SilNDLics 53

8X300 Pro_gLrammlng Manual

XOR Instructions — Op Code 3

XOR, Register, IV bus address Operation

Format Enable the IV byte with address (S) & (AUX).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T T T T T

S D

$ So Dy Dg

A 1 i L i i 1 1 1 i

Description

Enable the IV byte, at the bank specified by D, whose address is the result of the
XOR operation on the right rotated contents of the source register and the contents of
the AUX register. -

S specifies the source register.
R specifies the number of places that the source data is to be rotated.

D specifies the destination bank of the |V bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:
rotate the copied contents of register S by R places;
XOR the rotated data field to the contents of AUX;
output the result to the IV bus as an address.

The contents of the source register remain unchanged after the instruction.

Operand values

S: 00/01/02/03/04/05/06/10/ 11
R: 0/1/2/3/4/5/6/7
D: 07/17

54 sijnotics

8X300 Programming Manual

XOR Instructions — Op Code 3
Example XOR, Register, IV bus address

Enable the IV byte at the right bank whose address is the result of the XOR operation on
the contents of R3 and the AUX register.

Instruction word Assembler notation
octal L 3 | 0 I 3] 0] : | 7 —| XOR R3 (0), IVR
binary [0 1 1|0 010 1 1|000|0 111 1 1]
— S —
opP S R D

Instruction operation
10110111 copy source register
10110111 no rotate (R = 0)
01101101 contents of AUX
11011010 result of XOR

11011010 new right bank address

Resuilt

The previously enabled IV byte at the right bank is disabled and the IV byte at address
332 (octal) is enabled. The source and AUX registers remain unchanged.

Data flow

r—=" r— ="

(}:ﬁ IVBO-IvB7
IV BUS

IV LATCHES

Sifnetics 55

8X300 Programming Manual

XOR Instructions — Op Code 3

XOR, Register, IV bus Operation
Format (S) ® (AUX) =D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S D
oP=3 L
31 SO D] DO

Description

Perform an exclusive OR operation on the contents of the source register and the
contents of the AUX register. Move the least significant L bits of the result to the L-bit
field of the IV bus.

S specifies the source register.

L specifies the length (number of bits) of the masked field that is to be merged with
the existing IV byte data.
Note that L = O selects an 8-bit field.

D1 specifies the bank of the IV bus which is the destination:
D4 = 2 selects the left bank;
D4 = 3 selects the right bank.

Do specifies the bit position in the IV byte with which the least significant bit of
the processed data field should be aligned. This means that the processed
data field is left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

The order of operation is:

read the data of the destination IV byte into the input latches;

copy the contents of the source register and perform an XOR operation on the
contents of the AUX register;

left-shift the result as specified by Dg;

merge the least significant L-bits of the shifted field with the data in the input
latches;

output the merged data to the IV bus.

Note that the bits of the output data field outside the L-bit masked field retain their
original values. The contents of the source register remain unchanged after the

instruction.
-— L —
Operand values MSB o 1 2 3 I 4 5 6 7 LSB
S: 00/01/02/03/04/05/06/10/11 I x X X X l l AL output
L: 1/2/3/4/5/6/7/0 ,/‘/‘/./
Do: 0/1/2/3/4/5/6/7 fx ” | " xJ IV bus output

D4: 2/3

‘<—-——LA———>

Note: L = O seiects an 8-bit fieid.

56 Sinotics

8X300 Programming Manual

XOR Instructions — Op Code 3

Example XOR, Register, IV bus

Store the one’s complement of the contents of R5 in the IV byte at the right bank. (It is
assumed that the AUX register already contains all ones.)

Instruction word Assembler notation

XOR R5, 0, RIV7

T T
octal | 3 l 0 ! 5 I 0 I 3 | 7 |

T
binary LO 1 1]0 o111 o0 1|0 00[1 111 1 1]

\ / ~ "\ J
oP S

9

Instruction operation

01100111 copy source register
11111111 contents of AUX
10011000 result of XOR
10011000 no shift (Dg = 7)

10011000 data to IV bus

Result

The one’s complement of the source register is output to the right bank of the IV bus.

Data flow

M IVBO-1VB7
IV BUS

IV LATCHES

sifnotics 57

8X300 Programming Manual

XOR Instructions — Op Code 3

XOR, IV bus, Register

Format

0O 1 2 3 4 5 6 7 8 9 10 11.12 13 14 15

S D

Description

Perform an exclusive OR operation on the L-bit field of the IV bus source data and the
contents of the AUX register. Move the 8-bit result to the register specified by D.

S specifies the bank of the IV bus which is the data source:

S1 = 2 selects the left bank;
S1 = 3 selects the right bank.

Sp specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field.
Note that L = O selects an 8-bit field.

D specifies the address of the destination register.

The order of operation is:
read the IV bus data into the input latches;
right rotate the input field as specified by Sg;

mask the rotated data field as specified by L;

XOR the masked data with the contents of the AUX register;

move the 8-bit result to the destination register.

Operand values

So: 2/83

S1: 0/1/2/3/4/5/6/7

L: 1/2/3/4/5/6/7/0

D: 00/01/02/03/04/05/06/11
Note that L = O selects an 8-bit field.

58 | , Sinotics

MSB 0]

-— L —
1

2 3 4 5,6 7

| x

x|

E

d
e

‘4—— L——-—»’

Operation

(S) ® (AUX) —D

LSB

1V bus (source)

ALU input

8X300 Programming Manual

XOR Instructions — Op Code 3

Example XOR, IV bus, Register

Perform an exclusive OR operation on the contents of bits 2, 3 and 4 of the IV byte at
the left bank and the contents of the AUX register. Store the result in the AUX register.

Instruction word Assembler notation

XOR LIV4, 3, AUX

T T
octal l 3 I 2 4] 3 [o 0 J
1 1
T T
binary I 0 1 1 I 1 011 0 O I o 1 1 l 0O 0ro0o 0 O |
1 1
VT \b_\f ~ Y
oP S L D

10111011 IV bus input
01110111 rotate 3 places (Sp = 4)
0O0o000O0T1T 11 mask 3 bits (L = 3)
00000111 contents of AUX
0o000O0OO0ODOO result of XOR

000O0O0O0O0OO new contents of AUX

Result

The contents of the AUX register are changed to the result of the XOR operation. The
source IV byte remains unchanged.

Data flow

[) SHIFT :{) MERGE |—

—r———— = - OVF
| R1
I R2
| R3
R4
| RS
| R6
| R11

H‘—' AUX

MASK RIGHT N/
ROTATE ' IH

ALU

—v:"\> IVBO-IVB7
IV BUS

IV LATCHES

SinOLics 59

8X300 Programming Manual

XOR Instructions — Op Code 3

XOR, IV bus, IV bus

Format
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T 1 T T T T T T T
S D
oP=3 L
Description

Perform an exclusive OR operation on the L-bit field of the IV bus source data and
the 8-bit contents of the AUX register and move the least significant L bits of the result
to the destination field of the IV bus, given by D.

S specifies the bank of the IV bus which is the data source:
S¢ = 2 specifies the left bank;
S1 = 3 specifies the right bank.

Sp specifies the bit which will be the least significant bit of the input data field after

rotation.

L specifies the length (number of bits) of the masked field that is to be processed and
merged with the existing IV bus source data.
Note that L = O selects an 8-bit field.

D4 specifies the bank of the IV bus which is the destination:

D1 = 2 specifies the left bank;
D1 = 3 specifies the right bank.

Do specifies the bit position in the data from the input latches with which the

least significant bit of the processed data field should be aligned. This means
that the processed data field is left-shifted so that bit 7 is aligned with bit Dg of
the input latches.

The order of operation is:
read the IV bus data into the input latches;
right rotate the input data field until bit So becomes the LSB;
mask the least significant L bits;
XOR the masked field with the contents of the AUX register;
left-shift the result until bit 7 is aligned with bit Dg;
merge the least L bits with the original IV bus data from the input latches;
output the merged 8-bit field to the IV bus.

Note that during the merge phase, the original values of the bits outside the masked
field are preserved. The original data in the destination IV byte is lost.

Operation

(S) ® (AUX) =D

Permitted operand values - L -

So: 0/1/2/3/4/516/7 mse o 0 1 2 ‘ 3 4 ‘ 5 6 7 LB

0 l X X X | I X X X l IV bus input
S1:2/3

L: 1/2/3/4/5/6/7/0 l i l l l l

Do: 0/1/2/3/4/5/6/7 I X X .x X X I X I 1V bus output
Diy: 2/3

Note that L = O selects an 8-bit field.

60 SNCTES

*
processed data

8X300 Programming Manual

XOR Instruction — Op Code 3
Example XOR, IV bus, IV bus

Perform exclusive OR operation on the contents of the AUX register and the
contents of the IV byte at the left bank and output the result to the IV byte at the right

bank.

Instruction word Assembler notation
' , XOR, LIV7, 0, RIV7

octal l 3 I 2 ‘l 7 I 0 I 3 : 7 l

Instruction operation
10111011 IV bus input
19111011 no rotate (Sg = 7)
10111011 no mask (L = 0)
001001O01 contents of AUX
10011110 result of XOR
10011110 no shift (Dg = 7)

10011110 new |V bus data
Result

The IV byte at the right bank contains the results of the exclusive OR operation on the
contents of the AUX register and the IV byte at the left bank.
SHIFT H MERGE

Data flow

M IVBO-1VB7
IV BUS

IV LATCHES

Silnetics 61

8X300 Programming Manual

XOR Instructions — Op Code 3

XOR, IV bus, IV bus address

Format

0 v+ 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

Enable the IV byte, at the bank specified by D, whose address is the result of the
XOR operation on the L-bit field of the IV bus and the contents of the AUX register.

S1 specifies the bank of the IV bus which is the data source:
S1 = 2 specifies the left bank;
S1 = 3 specifies the right bank.

Sp specifies the bit which will be the least
significant bit of the input data field after rotation.

L specifies the length (number of bits) of the mask field.
Note that L = O selects an 8-bit field.

D specifies the destination bank of the IV bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:
read the IV bus data into the input latches;
right rotate the input data field until bit Sg becomes the LSB;
mask the least significant L bits;

XOR the masked field with the contents of the AUX register;

move the resulting 8-bit field to the IV bus as an address at the bank specified by D.

Permitted operand values

msB 0o 1|2

3

4

- L —

5|6 7

Sp: 0/1/2/3/4/5/6/7

lXX

S1: 2/3

D: 07/17

L: 1/2/3/4/5/6/7/0 \ \
o o]

Note that L = O selects an 8-bit field.

62 SiljnotiEs

\<—L—>‘

Operation

(S) ® (AUX) —D

LSB

1V bus (source)

ALU input

8X300 Programming Manual

Example

XOR Instructions — Op Code 3
XOR, IV bus, IV bus address

Enable the IV byte at the right bank whose address is the result of the XOR operation
on the contents of the AUX register and the least significant 4 bits of the IV byte at the

left bank.

Instruction word

T T
octal l 3 I 2 7 I 4 I 1 [7 I
i]
T T
binary [0 101 l 1T 01 1 1 l 1 0 O l o 111 1t]
i !
S V- M —v
orp S L D

Instruction operation

10110110 IV bus input
10110110 no rotate (Sg = 7)

N e’

e —
00000110 mask 4 bits (L. = 4)
00001110 contents of AUX
0000O0O10O0O0 result of XOR
000010O00O new |V bus right bank address
Result

The previously enabled byte at the right bank is disabled and the byte at address 10
(octal) at the right bank is enabled.

Data flow

r——" r— ="

MASK RIGHT M
ROTATE

IV LATCHES

Sifnetics

Assembler notation

XOR LIV7, 4, IVR

M IVBO-1VB7
IV BUS

63

8X300 Programming Manual

XEC Instructions — Op Code 4
XEC, Register

Format Operation
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T T T

T

Execute the instruction at the current page address offset

0P -4 S | by | + (S). Return to the instruction following the XEC
S S instruction unless an unconditional jump or a satisfied
L L DR T S conditional jump is encountered.
Description

Execute the instruction at the address formed by replacing the 8 least significant
bits of the contents of the address register with the 8-bit sum of | and the contents of
the register specified by S.

S specifies the source register.

| is the 8-bit integer value for address modification.

The order of operation is:
copy the data from the source register,;
form the 8-bit sum of the | field value and the source register contents;
modify the address register with the 8-bit sum.

Only the least significant 8-bits of the address register can be changed by this
instruction, so that a range of 256 addresses is available. This range of 256
addresses is termed the address page, determined by the five most significant bits of
the address register. When the sum of (S) + | is greater than 255 (377 octal) only the
least significant 8 bits are used; the overflow register is not changed.

The program counter is not altered by the XEC instruction, so that the original
address within the page is retained. During the instruction to be executed, the program
counter is incremented by one in the normal way to point to the instruction following
the XEC instruction. However, if the executed instruction is a JMP or NZT, the program
counter can be changed to the jump address and instruction execution does not
return to the address following the XEC instruction.

Permitted operand values

S: 00/01/02/03/04/05/06/10/ 11
I: 0<1<377g

Example

Execute the instruction whose address is given by replacing the least significant 8 bits
of the contents of R3 and the octal integer 315.

Instruction word Instruction operation

Initial value of address register: 710g (00001 11001000)

octal [4 l o 8 I 3 v 1 v 5 J Initial value of program counter: 710g
binary [100‘0 0‘:011|1 1E001E101J I-field 11001101
‘ﬂ“'/ v
orp S ! copy contents of R3 10000010

8-bit sum of R3 and | o1001111
becomes 8 LSBs of e J

A bl ¢ address register 1 1 7

ssembler notation

‘New value of address register: 517g (00001 01001111)

XEC 315 (R3) The program counter and R3 are unchanged.

64 sifnotics

8X300 Programming Manual

Result

XEC Instruction — Op Code 4

The value in the address register is changed to 517g, so that the next instruction to be

executed is the one at address 517.

The sequence of instructions executed depends upon the presence of a JMP or NZT

instruction:

(a) with jump

(b) without jump

XEC, Register

Address Address
710 XEC instruction 710 XEC instruction
517 Instruction to be executed 517 instruction to be executed
(jump to address 355) 711 next instruction
355 next instruction
Data flow
> SHIFT :{) MERGE [——
0 7
-————— —> OVF
I R1
I
!
i
T
|
|
I
ALU %]
w
by N
L | © <}:——Z—;_'> IVBO-I1VB7
< IV BUS
1 >
!_ N INTERNAL CONTROL
5= 1 SIGNALS
| ir
AR5-AR12 | IR8-IR15
:
r___*J_A-R_O;AE4/_|R3_—|E7_~__ IRO-IR15 . -0 (B
I | ARO-AR12 I —0 We
—————— |
: '[' | DECODE O sC
AND
‘4 |—-> CONTROL CONTROL O MCLK
ry LOGIC + O HALT
0 I 12 0 ! 12 15 _
1 + —O RESET
AR IR -
PC - 0 X,
LsB ﬁ LSB LsB . o X,
AO0-A12 10-115
INSTRUCTION ADDRESS INSTRUCTION DATA
Sifnotics 65

8X300 Programming Manual -

XEC Instructions — Op Code 4

XEC, IV bus
Format Operation
0O 1+ 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 T U T Execute the instruction at the current page address offset
S by | + (S). Return to the instruction following the XEC
OP=4 L ! instruction unless an unconditional jump or a satisfied
L S1 So_ L L conditional is encountered.

Description

Execute the instruction at the address formed by replacing the 5 least significant
bits of the contents of the address register with the 5-bit sum of | and the contents of
the IV bus field specified by S.

S specifies the bank of the IV bus which is the data source:
S{ = 2 specifies the left bank;
S1 = 3 specifies the right bank.

So specifies the bit which will be the least significant bit of the input data field after
rotation.

| is the 5-bit integer value for address modification.

L specifies the length (number of bits) of the masked field. The maximum value of L
that may be specified is L = 6.

The order of operation is:

read the IV bus data into the input latches;

rotate the input data field as given by Sg;

mask off the least significant L bits;

add the masked field to 5-bit integer; :

replace the least significant 5-bits of the contents of the address register with the 5-

bit result of the add operation. '
Only the least significant 5 bits of the address register can be changed by this
instruction, so that a range of 32 addresses is available. This range of 32 addresses
is termed the address page, determined by the eight most significant bits of the
address register. When the sum (S) + | is greater than 31 (37 octal) only the least
significant 5 bits are used; the overflow register is not changed.

The program counter is not altered by the XEC instruction, so that the original
address within the page is retained. During the instruction to be executed, the program
counter is incremented by one in the normal way to point to the instruction following
the XEC instruction. However, if the executed instruction is a JMP or NZT, the program
counter can be changed to the jump address and instruction execution does not
return to the address following the XEC instruction.

MSB 01i2345

Permitted operand values ‘ 6 7 Ls8

So: 0/1/2/3/4/5/6/7 A [x x| [x x| v bus tsource)
Sq:2/3 '

L: 1/2/3/4/5 \ \

. < | <

 0=1=237s | 0 0 0 0 I I ALU input
Example ,

Execute the instruction whose address is given by replacing the least significant 5 bits
of the contents of the address register with the sum of the octal integer 26 and the
contents of bits 2,3 and 4 of the IV byte at the left bank.

Instruction word

octal | 4 I 2 E 4 I 3 | 2 E 6]
binary [1 0 0 I 10 : 10 0 l 0 1 1J 10 E 11 0] Assembler notation
—_—— e XEC 26H (LIV4,3)
op S L f

66 Sietics

8X300 Programming Manual

Instruction operation

Initial value of address register: 55g (00000001 01101)

N, e’

IV bus input 11011101 (a) with jump
\ Address
rotate 3 places 10111011 55 XEC instruction

71 instruction to be executed

. ———
mask 3 bits (L = 3) 0000OO0O0T1 1 (jump to address 150)

+ 150 next instruction
value of I-field 00010110 (b) without jump
. Address
5;,bdlt sum to_5 L.SBs of 11001 55 XEC instruction
address register 71 instruction to be executed
New value of address register: 71g (00000001 11001) 56 next instruction
Resuit

The value in the address register is changed to 71g so that the next instruction to be
executed is at address 71. The sequence of instructions executed depends upon the
presence of a JMP or NZT instruction:

Data flow
> SHIFT MERGE [——
) 7
F—_—————— — OVE
I R1
| R2
I R3
lr = R4
I R5
I R6
| R11
Q: AUX
ALU ‘ »
: T
MASK RIGHT \/ © {7
ROTATE — <
|
| >
|
L INTERNAL CONTROL
5= _} SIGNALS
AR5-AR12 | IR8-IR15 ”
| —o
| ARO-AR4/IR3-IR7 IRO-IR15)
I"__'— __________ >
| | ARO-AR12 1 =)
— = — 0 — — M
N | ! DECODE ©
[_ AND o
|| +| CONTROL CONTROL
0 ! 12 0 t 12 0 15 Hoeie " ©
} | < O
PC IR — °
LSB ﬁ LSB LSB « -0
AD-A12 10-115

INSTRUCTION ADDRESS INSTRUCTION DATA

SHNOtCS

XEC Instructions — Op Code 4

XEC, IV bus

' C IVBO-1VB7
1V BUS

MCLK
HALT

RESET

X2

67

8X300 Programming Manual

NZT Instructions — Op Code 5
NZT, Register

Format

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

If (S) # 0, jump to the address formed by replacing the 8 least significant bits of the
contents of the address register and program counter with the value in the | field.

If (S) = 0, increment the program counter by one.

S specifies the register which is the subject of the test.
| is the 8-bit integer for address modification.

The order of operation is:
copy the contents of the source register;
test the register contents for all zeros;

if the contents are not zeros, replace the least significant 8 bits of the contents of
the address register and program counter with the value of the I-field;

if the contents are zeros, increment the program counter by one.

Permitted operand values
S: 00/01/02/03/04/05/06/10/11
I: 0 <1=<377g

68 sifnotics

Operation

Jump if (S) # O

8X300 Programming Manual

Example

NZT Instructions — Op Code 5

Jump to address 5300g if the content of R6 is not zero.

Instruction word

B

octal

[o [s]

|

3

T T
binary Ll 0 1'0 011 1 0]1 110 0 o0
1 1

o
o
°]

\ﬁ/—_/;w

oP

S

Instruction operation

Initial contents of address register and program counter

contents of I-field

new contents of address register and program counter if

(R6) # 0O

YT
[

01010 11000011 (5303g)

01010 11000000 (5300g)

new contents of address counter and program register if

(R6) =0
Result

01010 11000100 (5304g)

If the contents of R6 are non-zero, the program branches to address 5300, otherwise it
continues at address 5304.

11000000 (300g)

NZT, Register
Assembler notation

NZT R6, 300H

Data flow
ﬁ‘> SHIFT :> MERGE f——
0 7
- —— = — — — OVF
| R1
I R2
| R3
: > R4
| R5
| R6
| R11
Q: AUX
w
w
T _— _
o <*V_‘> IVBO-1VB7
< IV BUS
>
INTERNAL CONTROL
S0 SIGNALS
ARB-AR12 IR8-IR15
—O0 R—B
ARO-AR4/IR3-IR7 IRO-IR15 R — o§
r-r—7T1T- - - ——— —
| ARO-AR12 1 ~0 WC
[—I DECODE O sC
TRO AND ——0 MCLK
i —*| CONTROL CONTROL
LOGIC — —O HALT
0 12 0 12 15 _
— —O RESET
AR PC IR - o x,
LSB LSB LSB - —0 X,
AO-AT2 10-115

INSTRUCTION ADDRESS

INSTRUCTION DATA

Sifnotics

69

8X300 Programming Manual

NZT Instructions — Op Code 5

NZT, IV bus

Format Operation
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T T T

If (S) # 0, jump to the address formed by replacing the 5
oP=5 L | least significant bits of the contents of the address register
s, So and program counter with the value in the I-field.

Description

if the contents of the L-bit field of the IV bus source data is non-zero, insert the value of
the 5-bit I-field into the 5 least significant bits of the address register and program
counter. If the contents are all zeros, the program counter is incremented by one.

S specifies the bank of the IV bus which is the data source:
S = 2 specifies the left bank;
S1 = 3 specifies the right bank.

S specifies the bit which will be the least significant bit of the input data field after
rotation.

| is the 5-bit integer value for address modification.

L specifies the length (number of bits) of the masked field.
Note that L = 0 specifies an 8-bit field.

The order of operation is:
read the IV bus data into the input latches;
rotate the copied input data until bit Sg becomes the LSB;
mask off the least significant L bits;
test the contents of the masked field;

if the contents of the masked field are non-zero, replace the 5 least significant bits of
the program counter and address register with the value of the I-field;

if the contents of the masked field are zero, increment the program counter by one.

Permitted operand values

So: 0/1/2/3/4/5/6/7
Sq: 2/3

L: 1/2/3/4/5/6/7/0
I 0=<1=<137g
EXAMPLE -

Jump to address 115g if the content of bit 5 of the IV byte at the left bank is not zero.

Instruction vov:(ord) Assembler notation

o | 5 [2 s | 1 | 5 | ‘ NZT LIV, 1, 15H

T T
1 |
1 1
T T
binary r1 0 1‘1 011 0 1|0 o] 11()‘ 111 0 1!
1 1

——
opP S L |

70 sifjnotics

8X300 Programming Manual

Instruction operation

Initial value of address register
and program counter:

1378 (00000010 11111)

IV bus input 101

rotate 2 places

mask 1 bit (L = 1)

Mask field # 0 so (l)

moved to AR and PC.
contents of |

New value of address register

10101

101

0000O0OO0OO1

01101

and program counter: 115g (00000010 01101)

New value of address register and program

counter if contents of IV byte = 0

:140g (0000001100000)

NZT Instructions — Op Code 5

NZT, IV bus

Data flow
> SHIFT :> MERGE |—
0 7
e — OVF
I R1
| R2
' R3
: > R4
| R5
| R6
| R11
AUX
ALU wn
’ .
MASK RIGHT M 2 _\7:(> IVBO-1VB7
. ROTATE < 1V BUS
>
INTERNAL CONTROL
o-0 SIGNALS
AR5-AR12 IR8-1R15 ”
O RB
ARO-AR4/IR3-1R7 IRO-IR15 - o B
r—-—— - ——— —— — ——— - >
l ARO-AR12 1 o we
I] DECODE -0 SC
AND ‘
ilr + — CONTROL CONTROL O *MCLK
LOGIC « O HALT
0 12 12 0 15 e
’ 9 “ —O'RESET
AR PC IR i 0 X,
LSB LSB LSB < O X4
AO-A12 10-115
INSTRUCTION ADDRESS INSTRUCTION DATA
Emllﬂtill!i 71

8X300 Programming Manual

XMIT Instructions — Op Code 6

XMIT, Register

Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T T T T T T T T T
D
oP=6 |
Dy Do
Description

Store the value of the 8-bit integer in the register specified by D.

D specifies the register to be loaded.

| is the 8-bit field containing the value to be loaded into the register.

Permitted operand values

D: 00/01/02/03/04/05/06/ 11
L 0<I<377g

72 Sifnotics

Operation

I—D

8X300 Programming Manual

EXAMPLE XMIT INSTRUCTIONS — OP CODE 6

Set the value 377g in the AUX register. XMIT, Register

Instruction word Assembler notation

T T T
octal I 6 | ° . ° | 3oy XMIT, 377H, AUX
T T T
binary [1 10]0 0|000|1 191 1 11 1,
1 i 1
' Y
op D '
Instruction operation Result
initial contents The value of the | field is set in the destination register.
of AUX 01100101
| field 11111111
new contents of AUX 11111111
Data flow
> SHIFT :{) MERGE |—
0 7
_———— —— — OVF
| R1
! R2
| R3
R4
| R5
| R6
[R11
AUX
ALU "
I
RIGHT <‘L ~ Lo C—\7—1'> IVBO-1VB7
| ROTATE < IV BUS
I I >
I L INTERNAL CONTROL
| S SIGNALS
|
|ARS-AR12
| O R8
| IRO-IR15 R O (B
lL B | ARO-AR12 O WC
]I : ’ I DECODE O sC
AND
v L-» CONTROL CONTROL O MCLK
I' Y LOGIC ., O HALT
0 12 12 1 —
5 <+ O RESET
AR PC IR < 0 X,
LSB LSB LSB - 0 X,
A0-A12 10-115
INSTRUCTION ADDRESS INSTRUCTION DATA
Ei!llll!lillﬁ 73

8X300 Programming Manual

XMIT Instructions — Op Code 6

XMIT, IV bus address

Format
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T Y T T T T

T T T

Description

Enable the IV byte, at the bank specified by D, whose address is the 8-bit integer I.

D specifies the destination bank of the IV bus for the address data:
D = 07 specifies the left bank address:
D = 17 specifies right bank address.
| is the 8-bit field specifying the address of the byte to be enabled.
The order of operation is:
copy the 8 least significant bits of the instruction word;
output the 8-bit field to the IV bus as an address on the bank specified by D.

Permitted operand values

D: 07/17
l: 0<1=<377g

74 Silnotics

Operation

|I—D

8X300 Programming Manual

EXAMPLE XMIT Instructions — Op Code 6
Enable the IV byte at the left bank whose address is 53g. XMIT, IV bus address
Instruction word
octal I 6 I 0 7 l o 1 s | 3 I Assembler notation
1 1 1
binary |1 1 olo 011 1 1|o 011 0 110 1 1| XMIT 027H, IVL.
1 | |
v Y
oP D [

Instruction operation

value of | field (63g) 00101011
new |/O address at

left bank 001010 11
Result

The previously enabled IV byte at the left bank is disabled and the byte at address 27g
at the left bank is enabled. The right bank is not affected.

Data flow —
r——-" r——"

RIGHT A4 || iVBO-1VB7
MASK (}: ROTATE ¢ Q:ﬁ W BUS

IV LATCHES

INTERNAL CONTROL

:0_} SIGNALS
ARS5-AR12 | ”
| : o RB
| ARO-AR4/IR3-1R7 IRO-IR15 o[B8
| P—— —
L | | ARO-AR12 —O0 WC
]! : lL | DECODE O sC
AND 5
* {' l' > CONTROL CONTROL MCLK
y LOGIC . O HALT
0 ! 12 0 12 0 15 _ —
« O RESET
AR PC IR . o X,
LSB LS8 LSB * -0 X{
A0-A12 10-115
INSTRUCTION ADDRESS INSTRUCTION DATA

SilnoLies 75

8X300 Programming Manual

XMIT Instructions — Op Code 6

XMIT, IV bus
Format Operation
O 1 2 3 4.5 6 7 8 9 10 11 12 13 14 15
T T T L) T T T T T T T T I D
D
op=6 - ! Assembler notation
Dy Do

XMIT 03, LIV5, 3
Description

Transmit the least significant L bits of the 1 field to the L-bit field of the IV bus
specified by D. If L is greater than 5 bits, the most significant bits of the destination field
are filled with zeros.

D4 specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D1 = 3 selects the right bank.

L specifies the length of the destination field (number of bits).
Note that L = O selects an 8-bit field.

Do specifies the bit position in the IV bus with which the least significant bit
of the | field data should be aligned. This means that the | field data is
left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

The order of operation is:
read the contents of the destination IV byte into the input latches;
copy the least significant 5 bits of the instruction word;
left shift the copied 5-bit field as specified by Do;

merge the shifted field, as specified by L, with the contents of the IV latches and
output the result to the IV bus.

Note that the data in the IV latches outside the field specified by Dg and L is not
altered.
]

Permitted operand values

Do: 0/1/2/3/4/5/6/7 | 000 | J ALU output
Dy: 2/3 / /
L: 1/2/3/4/6/6/7/0
| x x| [x x| 1V bus (destination)
l: 0=<1=237g
S
EXAMPLE

Transmit the value 3 to bits 3, 4 and 5 of the IV byte at the left bank.

Instruction word

octal

T
[|
| — T
binary F 1 O|1 011 0 1]0 1 1| 00:0 1 1J
I

76 Silnetics

8X300 Programming Manual

Instruction operation

initial contents of IV byte 010001O00O0

value of | field 000 1 1

output of ALU 0000001 1

ad

shift 2 places 000011
N —

—
merge L bits and output 010011 U
to IV bus to IV byte
orginal data of IV
byte
Result

XMIT Instructions — Op Code 6

The three least significant bits of the | field are transmitted to bits 3, 4 and 5 of the IV

byte at the left bank.

Data flow

SHIFTH

&oioobo&o

MERGE
wv
w
xI
RIGHT <: V ©
| ROTATE <
-
' >
| INTERNAL CONTROL
| SIGNALS
|
[ARS-AR12
|
| _LAR0~AR4HR34R7 IRO-IR15
l ——— —>
L f | ARO-AR12
- | I
] DECODE
[L AND
+ ‘ > CONTROL CONTROL
LOGIC <
0 12 0 12 0 15 _
AR PC IR .
LSB LSB LSB *
A0-A12 10-115

INSTRUCTION ADDRESS

INSTRUCTION DATA

SilDtics

XMIT, IV bus

M \VBO-1vB7
IV BUS

77

8X300 Programming Manual

JMP Instruction — Op Code 7

JMP, address

Format

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

Operation

Set the value in the A field into the program counter and
address register.

Jump to the instruction address specified by the A field, and continue normal
program execution from that address. The contents of the 13-bit A field are loaded into
the program counter and address register. The next instruction to be executed is

then the instruction at the new address.

A is the 13-bit field specifying the address to which the jump is made.

The order of operation is:

load the address register and program counter with the contents of the A field;

new address value is used for next instruction.

Permitted operand values

A0 <A =< 177778 (819110)

78 Sifntics

8X300 Programming Manual

Example JMP Instruction — Op Code 7

Jump to address 512g. JMP, address

Instruction word

T 1
octal l ’ I o ° ! 5 1 ' X 2 I Assembler notation
. T T T T
binary [1 1 1 010 0 011 o0 110 0 110 1 ol JMP 512H
%’—/\ -~
op A

Instruction operation
current address (of JMP
instr.) Value of PC and AR 0 000 000 111 010 728

new address (contents of
A field) new vaiue of PC

and AR. 0 000 101001 010 512g
Result
The next instruction to be executed will be that at the address specified by the A field
(512g).
Data flow
> SHIFT :() MERGE |——
0 7
r—_—————— — OVF
| R1
! R2
| R3
1
: > R4
| R5
| R6
| R11
Q: AUX
R
ALU %)
T
: RIGHT 4 O \ [VBO-1VB7
| —
<1L MASK AV: ROTATE <11 < C D IV BUS
l >
IL INTERNAL CONTROL
—q SIGNALS
$S=0 |
AR5-AR12 | IR8-1R15
|
| ARO-AR4/IR3-1R7 IRO-IR15 R —o B
| ARO-AR12 * o We
- Ty T 1
, | | DECODE O sC
AND
| l—-» CONTROL CONTROL —O MCLK
4 LOGIC * O HALT
] 1 12 1 -
9 4 0 0 > « O RESET
AR PC IR < 0 X,
LSB LSB LSB — 0 X4
AO-A12 10-115
INSTRUCTION ADDRESS INSTRUCTION DATA

Sifjnetics ' 79

MICROGCONTROWER
CROSS ASSEMBLY
PROGRAM

sinotics

8X300 Programming Manual

The 8X300 Cross Assembly Program, MCCAP, provides a
programming language which allows the user to write pro-
grams for the 8X300 in symbolic terms. MCCAP translates
the user’s symbolic instructions into machine-oriented bina-
ry instruction. For example, the jump instruction, JMP, to a
user defined position, say ALPHA, in program storage is
coded as:

JMP ALPHA

and is translated by MCCAP into the following 16-bit word
(see Figure 1).

JMP ALPHA

0 15

[l felef [e o o [:[-To]o o]
L | |
T T
b(EXAMPLE)lOCATION
OF ALPHA

.> OP CODE FOR JMP

Figure 1

MCCAP allocates the 8X300 program-storage and assigns
Interface Vector and Working Storage address to symbols
as declared in the user’s program.

The ability to define data of the Interface Vector as symbol-
ic variables is a powerful feature of MCCAP. Interface Vec-
tor variables may be operated on directly using the same
instructions as those for variables in Working Storage and
for the working registers.

The Assembler Declaration statements of MCCAP allow the
programmer to define symbolic variable names for data ele-
ments tailored to his application. Individual bits and se-
quences of bits in Working Storage and on the Interface
Vector may be named and operated upon directly by 8X300
instructions.

In addition to simplifying the language and bookkeeping of
the program, MCCAP provides program segmentation and
communication between segments; i.e., the main program
and any subprograms. If a sequence of code appears more
than once in a program, it can be written as a separate pro-
gram segment, a subprogram, and called into execution
whenever that subprogram’s function is required. Program
segmentation also permits the construction of a program in
logically discrete units. These segments need not be writ-
ten sequentially or even by the same person. The various
program segments provide a function description, or block

diagram, of the application. Communication between seg- -

ments means that control and data can be transferred in
both directions. MCCAP automatically generates the code
for subprogram entry and exit mechanisms when the appro-
priate CALL and RTN statements are invoked.

MCCAP OUTPUT

The output from a MCCAP compilation includes an assem-
bler listing and an object module. During pass two of the
assembly process, a program listing is produced. The list-
ing displays all information pertaining to the assembled pro-
gram. This includes the assembled octal instructions, the
user's original source code and error messages. The listing
may be used as a documentation tool through the inclusion

of comments and remarks which describe the function of a
particular program segment. The main purpose of the list-
ing, however, is to convey all pertinent information about
the assembled program, i.e., the memory addresses and
their contents.

The object module is also produced during pass two. This is
a machine-readable computer output produced on paper
tape. The output module contains the specifications neces-
sary for loading the memory of the Microcontroller Simula-
tor (MCSIM), for loading the memory of the SMS ROM
Simulator, or for producing ROMs or PROMs. The object
module can be produced in MCSIM, ROM Simulator or BNPF
format.

An example of a MCCAP source program is shown in
Figure 2.

PROGRAM STRUCTURE

Program Segments

A MCCAP program consists of one or more program seg-
ments. Program segments are the logically discrete units,
such as the main program and subprograms, which com-
prise a user’s complete program. Program segments con-
sist of sequences of program statements. The first program
segment must be the main program. The main program
names the overall program and is where execution begins.
All other segments are subprograms; each subprogram
must be named. Control and data can be passed in both
directions between segments. No segment may call itself,
or one of its callers, or the main program. Program seg-
ments take the form as shown in Figure 3.

The Assembler Declaration statements define variables
and constants. They must precede the use of the declared
variables and constants in the Executable Statements in a
program. The Executable Statements are those which re-
sult in the generation of one or more executable machine
instructions.

Subprograms

Subprograms are program segments which perform a spe-
cific function. A major reason for using subprograms is that
they reduce programming and debugging labor when a spe-
cific function is required to be executed at more than one
point in a program. By creating the required function as a
subprogram, the statements associated with that function
may be coded once and executed at many different points
in a program. Figure 3 illustrates an example.

The program structure in Figure 3 causes the code associ-
ated with PROC WAIT to be executed three times within
PROG MANYWAIT. This is accomplished even though the
statements associated with PROC WAIT are coded only
once, rather than three times.

Subprogram Calls and Returns

For user-provided procedures, a jump to the associated
procedure and a return link are created for each procedure
reference. The instructions to accomplish this result in sub-
program entry time. The instructions to accomplish subpro-

Silnotics 81

8X300 Programming Manual

MCCAP SOURCE PROGRAM
MICROCONTROLLER SYMBOLIC ASSEMBLER VER 1.0
1680 *
1681 *
1682 01544 PROC RDCMMD
1683 *
1684 01544 6 07003 SEL IVRESP FDC RESPONSE BYTE
1685 01545 6 20101 XMIT UR, BCTRL ESTABLISH USER READ ONLY
1686 01546 6 07002 SEL IVDATA HOLDS COMMAND BYTE
1687 01547 0 27305 MOVE FUNC, R5 FUNCTION CODE
1688 01550 0 24306 MOVE DADDR, R6 DISK ADDRESS
1689 01551 0 21202 MOVE BUFF, R2 BUFFER FUNCTION CODE
1690 01552 6 07003 SEL IVRESP
1691 015653 6 25100 XMIT 0, DONE SHOW COMMAND IN PROGRESS
1692 01554 6 20100 XMIT uw, BCTRL RESTORE USER WRITE
1693 01555 6 27101 XMIT 1, XFR SIGNAL USER FDC ACCEPTED BYTE
1694 01556 6 07001 SEL IVCTRL USER CONTROL BYTE
1695 01557 5 26117 NZT CMMD, * WAIT FOR CMMD TO GO LOW
1696 01560 6 07003 SEL IVRESP FDC RESPONSE BYTE
1697 01561 6 27100 XMIT 0, XFR LOWER XFR SIGNAL
1698 01562 6 07001 SEL IVCTRL USER CTRL BYTE
1699 01563 4 26123 XEC *(CMMD), 2 WAIT FOR NEXT COMMAND SIGNAL
1700 01564 6 07003 SEL IVRESP SECOND COMMAND BYTE AVAILABLE
1701 01565 6 20101 XMIT UR, BCTRL SET IVDATA TO USER READ ONLY
1702 01566 6 07002 SEL IVDATA 2ND COMMAND BYTE
1703 01567 0O 27704 MOVE TRACK, R4 TRACK ADDRESS
1704 01570 0 27503 MOVE SECT, R3 SECTOR ADDRESS
1705 015671 6 07003 SEL IVRESP FDC RESPONSE BYTE
1706 01572 6 27101 XMIT 1, XFR SIGNAL USER
1707 01573 6 20100 XMIT Uw, BCTRL RESTORE USER WRITE
1708 01574 6 07001 SEL IVCTRL 1
1709 01575 5 26135 NZT CMMD,* WAIT FOR CMMD TO GO LOW
1710 01576 6 07003 SEL IVRESP FDC RESPONSE BYTE
1711 01577 6 27100 XMIT 0, XFR LOWER XFR SIGNAL
1712 *
1713 01600 7 01652 RTN RETURN
1714 END RDCMMD
1715
Figure 2

PROGRAM STATEMENT

SUBPROGRAMS

END STATEMENT

a. Main Program Form

DECLARATION STATEMENT(S)

EXECUTABLE STATEMENT(S)

PROGRAM SEGMENTS

PROCEDURE STATEMENT
DECLARATION STATEMENT(S)

L]
L]
L]
EXECUTABLE STATEMENT(S)
L]
L]

END STATEMENT

b. Subprogram Form

Figure 3

82

gram exit result in exit time. The user ‘may utilize the
MCCAP procedure mechanism for linking calling programs
with called programs or he may create his own instructions
to do so. The following describes the linkage mechanism
and timing for MCCAP user procedures.

Linkage between called and calling programs is achieved
through the generation of an indexed “return jump” table,
the length of which corresponds to the number of different
times in the program that the subprograms are called. This
table is generated automatically by MCCAP when proce-
dure CALL and RTN statements are invoked. For each pro-
cedure reference, MCCAP creates two statements in the
calling program. Thus, the time required for the subprogram
entry is 0.5 microseconds. The subprogram return mecha-
nism requires the execution of two instructions or 0.5 micro-
seconds. These times do not include saving and restoring
of the working registers. The total time to save all working
registers is 3.5 microseconds, the same time to restore all

sifjantics

8X300 Programming Manual

registers. Saving of all working registers is normally not
necessary, but worst case calculations for entry and exit
time below do include this time. Thus, subprogram exit and
entry times are:

0.5us < Entry Time < 4.0us

0.5us < Exit Time < 4.0us
Details of the code required for procedure CALL and RTN
are provided in the Programming Examples section. See
Figures 21 and 22.

Macros

A macro is a sequence of instructions that can be inserted
in the assembly source text by encoding a single instruc-
tion. The macro is defined only once and may then be in-
voked any number of times in the program. This facility
simplifies the coding of programs, reduces the chance of
errors, and makes programs easier to change.

A macro definition consists of a heading, a body and a
terminator. This definition must precede any call on the ma-
cro. In MCCAP, the heading consists of the MACRO state-
ment which marks the beginning of the macro and names it.
The body of the macro is made up of those MCCAP state-
ments which will be inserted into the source code in place
of the macro call. The terminator consists of an ENDM
statement which marks the physical end of the macro defi-
nition.

MCCAP Statements
The MCCAP language consists of thirty statements catego-
rized as follows:

Assembler Directive Statements

Assembler Declaration Statements

Communication Statements

Macro Statements
Machine Statements

The following lists the statements in each category, de-
scribes their use, and provides examples. Detailed use of
the instructions including rules of syntax and parameter re-
strictions are described in the MCCAP Reference Manual.

Assembler Directive Statements

Assembler Directive statements define program structure
and control the assembler outputs. They do not result in the
generation of 8X300 executable code. There are twelve As-
sembler Directive statements:

PROG Statement
PROC Statement
ENTRY Statement
END Statement
ORG Statement
OBJ Statement
IF Statement
ENDIF Statement
LIST Statement
NLIST Statement
EJCT Statement
SPAC Statement

PROG Statement
Use
Defines the names and marks the beginning of a main pro-

gram.
Example: PROG PROCESS

PROC Statement

Use

Defines the names and marks the beginning of a subpro-
gram.

Example: PROC WAIT

ENTRY Statement

Use

Defines the name and marks the location of a secondary
entry point to a subprogram.

Example: ENTRY POINT 2

END Statement
Use
Terminates a program segment or a complete program.

Examples: END SUB1
END MAIN

ORG Statement

Use

Sets the program counter to the value specified in the oper-
and field.

Example: ORG 200

OBJ Statement
Use
To specify the format of the object module.

Examples: OBJ R
OBJ M
OBJ N

NOTE

“R" indicates the ROM Simulator format. “M" indicates the Microcontroller
Simulator format. “N” indicates BNPF format.

IF Statement

Use

To mark the beginning of a sequence of code, which may or
may not be assembled depending on the value of an expres-
sion.

Examples: IF VAL
IFX+Y

MOVE Statement

Use

To copy the contents of a specified register, WS variable or
IV variable into a specified register, WS or IV. Defined in
Instruction Descriptions.

Examples: MOVE R1(6);R6
MOVE X,Y

NOTE

The first example illustrates a six place right rotate of R1’s data before it is
moved to R6. The contents of R1 are not affected. The second example may
be a Working Storage or Interface Vector variable move, depending on the
way X and Y are defined in Declaration Statements.

Sifntics 83

8X300 Programming Manual

ADD Statement

Use

To add the contents of a specified register, WS variable, or
IV variable to the contents of the AUX register and place
the result in a specified register, WS variable or IV variable.

Examples: ADD R1(3),R2

ADD DATA,OUTPUT
NOTE

The first example illustrates a three place right rotate of R1’s data before the
addition is carried out. Under certain conditions a rotate may be used to multi-
ply the specified operand by a power of 2 before the addition is done. The
contents of R1 are not affected. The second example suggests that the con-
tents of WS variable have been added to the contents of the AUX register and
the result placed in an IV variable, making the result immediately available to
the user's system.

AND Statement

Use

To compute the logical AND of the contents of a specified
register, WS variable or IV variable and the contents of the
AUX register. The logical result is placed in a specified reg-
ister, WS variable or IV variable. In actual practice, the AND
statement is often used to mask out undesired bits of a reg-
ister.

Examples: AND R2,R2
AND R3(1),R5

AND XY
NOTE

The first example illustrates the use of an AND statement in what might be a
masking operation. If the AUX register contains 00001111 then this statement
sets the 4 high order bits of R2 to O no matter what they were originally. The 4
low order bits of R2 would be unaffected.

The second example illustrates a one place rotate to the right of R3's data
before the AND is carried out. The contents of R3 are not affected. In the third
example, X and Y may be parts of the same WS or IV byte, or one may be a
WS byte and the other an IV byte.

XOR Statement

Use

To compute the logical exclusive OR of the contents of a
specified register, WS variable or IV variable and the con-
tents of the AUX register, and place the result in a specified
register, WS variable or IV variable. In practice, the XOR
statement is often used to complement a value and to per-
form comparisions.

Examples: XOR R6,R11
XOR R1(7),R4

XOR X,Y
NOTE

The first example illustrates the use of an XOR statement in what might be a
complementing operation. If the AUX register contains all 1's then the execu-
tion of this statement results in the compiement of the contents of R6 replac-
ing the contents of R11. The second and third examples are of the same form
as the second and third examples of the AND statement.

XMIT Statement

Use

To transmit or load literal values into registers, WS varia-
bles or IV variables.

Examples: XMIT DATA,IVR
XMIT OUTPUT,IVL
XMIT —11,AUX
XMIT —00001011B,AUX
XMIT —13H,AUX

NOTE

The first example selects a previously declared WS variable by transmitting
its address to the IVR register. The second example selects a previously de-
clared IV variable by transmitting its address to the IVL register. The last
three examples all result in the generation of the same machine code. They all
load the AUX register with —11,,. In the first case, the programmer has written
the number in base 10. In the second case, the programmer has written the
number in binary and has indicated this by placing a B after the number. In the
third case, the number has been written in octal as indicated by an H after the
number.

XEC Statement

Use

To select and execute one instruction out of a list of instruc-
tions in program memory as determined by the value of a
data variable, and then continue the sequential execution of
the program beginning with the statement immediately fol-
lowing the XEC unless the selected instruction is a JMP or
NZT statement.

Examples:

XEC JTABLE(R1),3

GRBERTHAN

JMP LESSTHAN

JMP EQUALTO

XEC SEND (INPUT),4
“NEXT INSTRUCTION”
“NEXT INSTRUCTION”

XMIT 11011011B,AUX
XMIT 11111111B,AUX
XMIT 10101010B,AUX
XMIT 00000000B,AUX

JTABLE JMP

SEND

NOTE

In the first example, the execution of the program will be transferred to one of
three labeled instructions on the basis of whether register R1 contains 0, 1 or
2. In the second example, the XEC statement causes the execution of a state-
ment which transmits a special bit pattern to the AUX register in response to
an input signal which is either 0, 1, 2 or 3. After the pattern is transmitted, the
execution of the program continues with the next instruction after the XEC.

NZT Statement

Use

To carry out a conditional branch on the basis of whether or
not a register, WS variable, or IV variable is zero or non-
zero.

Examples: NZT R1,*+2

NZT SIGN,NEG
NOTE
In the first example, if the contents of R1 are non-zero, then program execu-
tion will continue with the instruction, whose address is the sum of the ad-
dress of the NZT statement and 2. If the contents of R1 are 0, the program
execution continues with the next instruction after the NZT statement. In the
second example, if the contents of a WS or IV variable called SIGN is
non-zero, then program execution will continue beginning with the instruction
whose address is NEG. Otherwise execution continues with the next instruc-
tion after the NZT statement.

JMP Statement
Use
To transfer execution of the program to the statement
whose address is the operand of the JMP statement.
Examples: JMP START

JMP *—2
NOTE
In the first example, execution of the program continues sequentially begin-
ning with the instruction I:abeled START. In the second example, program ex-

84 sinotics

8X300 Programming Manual

ecution continues beginning with the instruction whose address is the JMP in-
struction’s address minus 2.

SEL Statement

Use

Select a variable in Working Storage or on the Interface
Vector, so that subsequent machine instructions may refer-
ence that variable.

Examples: SEL DATA
SEL OUTPUT
NOTE

It is the programmer’s responsibility to assure that the proper page has been
addressed before calling the SEL statement if the variable may be in Working
Storage. The SEL statement causes a single instruction, XMIT, to be assem-
bled into the user program. The operand of the XMIT instrucion is the byte
address of the named variable (argument of the reference) as it has been
allocated in Working Storage or on the Interface Vector.

PROGRAMMING EXAMPLES

This section contains programming examples which demon-
strate how the 8X300’s instructions can be assembled to
perform some simple, commonly required functions. These
examples are written as program fragments. They are not
complete programs as the Data Declaration and Directive
statements have been omitted. Otherwise, they follow stan-
dard MCCAP conventions.

Looping

Looping is terminated by incrementing a counter and testing
for zero. Register R1 is used as counter register and is
loaded with a negative number so that the program counts
up to zero. Figure 4 illustrates the process.

LOOPING
XMIT NEG,R1
Load negative loop count.
ALPHA oo
L
[]
. Loop start.
XMIT 1,AUX
Store increment value in AUX register
which is an implicit operand of ADD in-
struction.
ADD R1,R1

Increment counter register. Add con-
tents of AUX to contents of R1 and
store the sum in R1.
NZT R1,ALPHA
Test contents of R1 for zero. If zero, ex-
ecute next sequential instruction, oth-
erwise, jump to ALPHA and continue
execution from there.

TIME: 750 nanoseconds

Figure 4

Inclusive-OR (8 Bits)

Generate inclusive-OR of the contents of R1 and R2. Store
the logical result in R3. Although the 8X300 does not have
an OR instruction, it can be quickly implemented by making
use of the fact that (A + B) + (AB) is logically equivalent to
A & B.

INCLUSIVE-OR

MOVE R2,AUX Load one of the operands into AUX reg-
ister so that it can be used as the im-
plicit operand of XOR and AND
instructions.

XOR R1,R3 Take exclusive OR of AUX and Ri1.

Store result in R3.

Take AND of AUX and R1. Place resulis
in AUX.

Take exclusive OR of AUX (A + B) and
R3 (A + B). Store result in R3. R3 now
contains inclusive OR of R1 and R2.

AND R1,AUX

XOR R3,R3

TIME: 1.0 microseconds

Figure 5

Two’s Complement (8-Bits)

Generate the two’s complement of the contents of R2.
Store the result in R3. Assume that R2 does not contain
200,

TWO’S COMPLEMENT

XMIT —1,AUX Load AUX in preparation for XOR.
XOR R2,R3 1’s complement of R2 is now in R3.
XMIT 1,AUX Load AUX in preparation for ADD.
ADD R3,R3 2's complement of R2 is now in R3.

TIME: 1.0 microseconds

Figure 6

8-Bit Subtract
Subtract the contents of R2 from the contents of R1 by tak-
ing the two’s complement of R2 and adding R1. Store the
difference in R3.

8-BIT SUBTRACT

XMIT —1,AUX Perform 2’s complement, R2.

XOR R2,R3

XMIT 1,AUX

ADD R3,AUX 2’s complement of R2 is now in AUX.
ADD R1,R3 R1-R2 is now in R3.

TIME: 1.25 microseconds

Figure 7

16-Bit ADD, Register to Register
Add a 16-bit value stored in R1 and R2 to a 16-bit value in
R3 and R4. Store the result in R1 and R2.

Silnotics 85

8X300 Programming Manual

16-BIT ADD, REGISTER TO REGISTER

MOVE R2,AUX

Move low order byte of first operand to
AUX in preparation for ADD.

Add the low order bytes of the two
operands and store the resuit in R2. R2
contains the low order byte of the re-
sult.

Move high order byte of first operand to
AUX.

Add in possible carry from addition of
low order bytes.

Add the high order bytes plus carry and
place result in R1. R1 contains the high
order byte of the result.

ADD R4,R2

MOVE R1,AUX
ADD OVF,AUX

ADD R3,R1

TIME: 1.25 microseconds

BYTE ASSEMBLY

10X X XX X1

STROBE
SIGNALS FROM

INPBIT |USER SYSTEM
|—————

IV BYTE ADDRESS + INPADR
Figure 10

Figure 8

16-Bit ADD, Memory to Memory

Add a 16-bit value in Working Storage, OPERAND1,to a 16-
bit value in Working Storage, OPERAND2, and store result
in Working Storage OPERAND1. H1 and L1 represent the
high and low order of bytes OPERAND1. H2 and L2 repre-
sent the high and low order bytes of OPERAND2.

16-BIT ADD, MEMORY TO MEMORY

XMIT L2,IVR Transmit address of low order byte of

second operand to IVR.

MOVE L2, AUX Move low order byte to AUX.

XMIT L1,IVR Transmit address of low order byte of
first operand to IVR.

ADD L1,L1 Add low order bytes and store result in
L1.

MOVE OVF,AUX Move possible carry from additon of

low order bytes to AUX register.
Add high order byte of second operand
to possible carry. Store result in AUX.

XMIT H2,IVR

ADD H2,AUX
XMIT H1,IVR
ADD H1,HA1 High order byte of sumisin H1. Low or-

der byte of sum isin L1.

TIME: 2.25 microseconds
Figure 9

Byte Assembly From Bit

Serial Input

This is typical of problems associated with interfacing to
serial communications lines. An 8-bit byte is assembled
from bit inputs that arrive sequentially at the Interface Vec-
tor. A single bit on the Interface Vector named STROBE is
used to define bit timing, and a second bit, named INPBIT, is
used as the bit data interface. Figure 10 illustrates the byte
assembly.

Rotate Left

The 8X300 has no instructions which explicitly rotate data
to the left. Such an instruction would be redundant because
of the circular nature of the rotate operation. For example, a

BYTE ASSEMBLY PROGRAM

XMIT 0,R1 R1 will be used as a character buffer. It
has been cleared.
XMIT 8,R2 R2 will be used as a bit counter.

XMIT INPADR,IVL Select IV Byte that contains INPBIT and
STROBE.
NEXT

BIT N2T STROBE,*+2 Test STROBE for data ready. The
MOVE instruction is executed only
when STROBE = 1.
JMP *—1 Loop until STROBE = 1.
MOVE INPBIT,AUX
XOR R1(1),R1 Rotate R1 one place right. This puts a
zero in the least significant bit position.
Then take the exclusive OR of this ro-
tated version of R1 and of AUX. Place
the result in R1. The least significant bit

of R1 will now equal the latest value of

INPBIT.

XMIT —1,AUX

ADD R2,R2 Decrement R2.
IF R2 is not yet zero, then more bits
must be collected to complete the byte
being assembled.

MOVE R1(1),R1 This instruction will only be executed

when 8 bits have been collected. After
this is done it is still necessary to ro-
tate one more time to get the last INP-
BIT into the high order bit position of
R1.

TIME: 1.8 microseconds per bit (minimum)

Figure 11

rotate of two places to the left is identical to a rotate of six
places to the right. The rotate n places to the left in an 8-bit
register, rotate 8-n places to the right. This example illus-
trates a rotate of the contents of R4 three places to the left.

MOVE R4(5), R4
TIME: 250 nanoseconds

Three Way Compare

The contents of R1 are compared to the contents of R2. A
branch is taken to one of three points in the program de-
pending upon whether R1 = R2, R1 << R2, or R1 > R2.

86 Sifnetics

8X300 Programming Manual

THREE WAY COMPARE
RESULT
A
S N

S_l(iN
WORKING STORAGE BYTE
Figure 12

Bit Pattern Detection In An 1/0 Field

Test input field called Input for specific bit pattern, for ex-
ample: 1 0 1 1. If pattern is not found, branch to NFOUND,
otherwise continue sequential execution. Figures 16 and 17
illustrate the procedure.

THREE WAY COMPARE PROGRAM

XMIT RESULT,IVR Choose a working Storage byte by transmitting its ad-
dress to IVR register.
XMIT —1,AUX Load AUX with all 1's, in preparation for complementing
contents of R2.
XOR R2,RESULT Store complement of R2 in RESULT.
XMIT 1,AUX
ADD RESULT,AUX AUX now contains 2's complement of R2.
ADD R1,RESULT RESULT now contains R1-R2.
NZT RESULT,NEQUAL If RESULT # 0, then R1 # R2.
JMP EQUAL
NEQUAL NZT SIGN,LESS Sign Bit = 1 only when R1 << R2.
GREATER Continue
L]
[]
[]
EQUAL Continue
[]
L]
L]
LESS Continue
TIME: 2.0 microseconds
Figure 13

BIT PATTERN DETECTION

!

DATA FROM

INPUT
—~— USER SYSTEM
e

IV BYTE

Figure 16

Interrupt Polling

Three external interrupt signals are connected to three IV
bits. The three bits are scanned by the program to deter-
mine the presence of an interrupt request. A branch is taken
to one of eight program locations depending upon whether
any or all of the interrupt request signals are present. The IV
bits associated with the interrupt requests are wired to the
low order three bits of the IV byte named Control. Figures
14 and 15 illustrate the interrupt polling.

BIT PATTERN DETECTION PROGRAM

XMITI INPUT,IVL Choose proper IV Byte by transmitting its address to
IVL register.

XMIT 1011B,AUX Store desired bit pattern in AUX register for use as
implicit operand of XOR instruction.

XOR INPUT,AUX Take exclusive OR of the contents of INPUT and AUX
Store the result in AUX. Now the contents of AUX will be
zero if the contents of INPUT are 1011.

NZT AUX ,NFOUND Test AUX for zero Branch to NFOUND if non-zero

L

LN

LN J

NFOUND Continue
TIME 10 microseconds

Figure 17

INTERRUPT POLLING

——

¢ INTERRUPT SIGNALS
CONTROL FROM USER SYSTEM

e

IV BYTE

Figure 14

Control Sequence #1
Set an output bit when an input bit goes high (is set) (see
Figure 18).

INTERRUPT POLLING PROGRAM

XMIT CONTROL,IVL Choose proper IV Byte by transmitting its address to
IVL register.

XEC JTABLE (CONTROL),8 Execute the one instruction whose address is the sum
of JTABLE and the contents of CONTROL.. The 8 indi-
cates the length of the table.

e
[]
L]

JTABLE JMP ALPHA1 Table of 8 instructions, one of which is executed as a

result of the XEC instruction above.
JMP ALPHA2
[]
®

L]
JMP ALPHAS
TIME: 750 nanoseconds.

Figure 15

CONTROL SEQUENCE #1

STATUS
| <@==— FROM USER SYSTEM

ALARM
[~ TO USER SYSTEM

IV BYTES

Figure 18

CONTROL SEQUENCE # 1 PROGRAM

XMIT STATUS,IVL Choose nput IV byte by transmitting its address to IVL.

NZT STATUS *+2 Test input bit to determine whether it is still zero Skip
next instruction if it 1s not zero.

JMP =1 Jump to previous instruction

XMIT ALARM,IVL Choose output IV byte

XMIT 1,ALARM Set output bit by loading ALARM with 1.

TIME 1 0 microseconds (minimum)

Figure 19

sifntics 87

8X300 Programming Manual

Control Sequence #2
Output a specific 5-bit pattern in response to a specified 3-
bit input field.

Subprogram Calls and

Returns

The mechanism for managing subprogram calls and returns
is based on assigning a return link value to each
subprogram caller; this return link value is then used, on exit
from the subprogram, to index into the return jump table
which returns control to the callers of the subprogram. Fig-
ure 21 is an example of a subprogram called from four
different locations in the main program.

As seen from Figure 21, each subprogram (or procedure)
caller is assigned a “tag” or index values ranging from O to
3, or a total of four index values for the four callers. Before
jumping to the subprogram, the index value is placed in a
previously agreed upon location, register R11 in this case.
Upon exit from the subroutine, the index value stored in R11
is used as an offset to the Program Counter in order to
execute the proper JMP instruction. The key to returning to
the proper caller is the index jump table. Figure 22 gives a
detailed description of the return operation.

RETURN OPERATION

CONTROL SEQUENCE #2 PROGRAM

XMIT STATUS,WL Choose the IV byte which receives the 3-bit input from
user's system.

MOVE STATUSR1 Move the 3 bits of interest from the IV byte to register R1.
The 3 bits are automatically right justified.

XMIT ALARM,IVL Choose the IV byte through which the response is sent to
the user’s system.

XEC PATTERN(R1),8 Select specific pattern from PATTERN table.

JMP 49

PATTERN XMIT A,ALARM

XMIT B,ALARM
XMIT C,ALARM

L d L4 Transmit proper pattern to output IV byte subfield by execut-

® L 4 Ing just one of these eight instructions. A through H repre-
o o sent the names associated with eight different control bit
XMIT H.ALARM patterns.
L] []
L] L]
[] °
TIME: 1.25 microseconds.
Figure 20

Address n XEC'—1 This instruction results in the execution of the instruction
located at the current value of the Program counter p
plus 1 plus the contents of R11, which 1s the caller ndex
value.

Address n+1 JMP A

Address n+2 JMP B The JMP table follows in consecutive Program Storage
locations following SEC

Address n+3 JMP C

Address n+4 JMP D

Figure 21

SUBPROGRAM CALL
Program
Storage
Address Instruction
000137, XMIT 0, R11 Load AUX with O Caller # 1
000140, JMP SUBR Jump to start of subprogram
000141, Next Instruction

[]

L]

°

*®
001133, XMIT 1, R11 Load AUX with 1 Caller # 2
001134, JMP SUBR Jump to start of subprogram
001135, Next Instruction .

®

[N J

[J
003260, XMIT 2, R11 Load AUX with 2 Caller # 3
003261, JMP SUBR Jump to start of subprogram
003262, Next instruction

[]

[]

[]

[J
003654, XMIT 3, R11 Load AUX with 3 Caller #4
003655, JMP SUBR Jump to start of subprogram
003656, Next instruction

[]

L]

L]

L]

a. Main Program
SUBR Machine Instructions
JMP TABL

[

L]

L]

[]
Subroutine
Return
Code
TABL XEC *+1(R11) Execute JMP located at

JMP 000141,
JMP 001135,
JMP 003262,
JMP 003656,

current PC + 1 + (R11).
Return to Caller #1
Return to Caller #2
Return to Caller #3
Return to Caller #4

b. Subroutine

Figure 22

88 sifntics

PROGRAMMING
EXAMPLES

Sinotics

8X300 Programming Manual

PROCEDURE NAME: TAD 16

General Description

TAD16 is a double precision (16-bit) 2’s complement addi-
tion program which checks for arithmetic overflow by com-
paring the signs of the operands and the result. Overflow
has occurred when and only when the operands have like
signs and the result has the opposite sign. When overflow
occurs the program returns the value 100000 base 8. This
is the largest negative 16-bit 2's complement number.
TAD 16 requires that its two double precision operands al-
ways be found in the same four memory locations. These
four locations can be anywhere on page 0 of working stor-
age and do not have to be contiguous. All results are stored
in the two working storage locations which originally held
the second operand. See Figure 23 for the flow chart and
Figure 24 for the program listing.

Memory Requirements:
Program Memory: 24 words
Working Storage: 4 bytes

Registers Used and Their Logical Function:

R1 This register is used to hold information on the signs
of the operands. R1 contains O if both operands are
positive, 2 if both operands are negative, or, 1 if the
operands have opposite signs.

Symbols:

AL Low order byte of A

AH High order byte of A

A1 High order (sign) bit of A

BL Low order byte of B

BH High order byte of B

B1 High order (sign) bit of B

Timing

Worst Case: 5.25 microseconds when overflow occurs
Best Case: 3.75 microseconds when operands have op-
posite signs

Calls On Other Library Procedures: None

TAD 16 FLOW CHART

ADD

DOUBLE PRECISION

!

ARE

ARE
NO

1S
THE
ANSWER

THE SIGNS
OF AAND B
DIFFERENT

A ANDB
BOTH POSITIVE
?

IS
THE

POSITIVE
?

OVERFLOW

ANSWER
POSITIVE
?

Figure 23

90

SiljNOtiES

8X300 Programming Manual

[T I T T I NI e e S e e e el

e SO I ORI A SN

i
|

«TOTAL

VUGN Bx R) S N O I (W B LY B s SR I SO AN

FROS EZAMFLE

i

|

=
-

v 1T
p—

= £
Lt
=~
-
=
furl

g
[

aonov
nooa1n

= == o

DO R I S B |

nnntr &

ool 1

o1z &

non14 1 27
0O01S 4 0101s
aoois 7

ooy 7

aonzo 7

o021 5 201324
noozz F O00mEn
0022 S 20130
o004 & onzon
ooozs 0 a0onsv
oongs & 17212
Q0027 & 27000
oooz0 ¥ ooon3t

ARZSEMBLY ERRORS

i T DD e ¢ ¢ % % ¢ ¢
LTI~ —=Ir

TAD

RIY

PROGRAM SAMPLE

VER 1.0

1 AEZTEMELER

FROG
FROC

EZAMPLE
TAD1E

MCLIE PROCEDURE TO
IN 27
FOR ARITHMETIC

HDD TWO

OVYERFLOW.

DATH

Z00:Ta3

DECLARATIOME.

RIV 20
BRIV 20

EIV 2

RIV

ZERO=

OME

OvERFLOW

IMEOUMDE

A1

MOvE H1s AL
=E Bl
. ADD El:FR1
*E1=0
*E1=Z
*F1=1 IF
ZEL HL
MOVE Sy ALl

ZEL L
HDD EL-EL
MOVE
ZEL
I
=EL
AOD
ari
HEC
AP
e
AR
OrRG L
MET E1.0VERFLOW
e IMEDOUNDE

=R R

Els INBOUNIE
S00H R
AL s BH

EL

OsEL

+HL+EL HOW

SHMEMER IH

RTH
EMD TARD1S
EMD ZAMFLE

Figure 24

FR5E

1e BIT MUMEERE
COMPLEMENT MOTRTION RMD CHECK

IF EOTH=0.
IF EOTH=1.
EOTH DIFF.

IM EL.

EH..EL

Sifnotics

91

8X300 Programming Manual

PROCEDURE NAME: MuL8x8

General Description:

MULS8XS8 is a procedure which multiplies two 8-bit 2’s com-
plement numbers. For reasons of speed, negative numbers
are converted to positive numbers before the multiplication
takes place. Afterward, the product is given the proper
sign. The algorithm is a straight forward add and shift rou-
tine. The operands are taken from R1 and R2. The low order
byte of the sixteen bit result is stored in R1. The high order
byte is stored in R3. See Figure 25 for the flow chart and
Figure 26 for the program listing.

Memory Requirements:
Program Storage: 47 words
Working Storage: None

Registers Used And Their Logical Function:

R1 Initially contains the multiplier. Eventually contains
the low order byte of the product.

R2 Initially contains the multiplicand.

R3 Contains the high order byte of the result.

R4 Bit counter.

R5 Contains information on the sign of the result. RS = 0
if the result is negative or R5 = 1 if the result is posi-
tive.

Timing:

Worst Case: 35.75 microseconds

Calls On Other Library Procedures:

None

MUL 8X8 FLOW CHART

INITIALIZE BIT
COUNT

\]

DETERMINE OPERAND

SIGNS]

Y

TAKE THE 2'S COMPLEMENT
OF ANY NEGATIVE OPERANDS

NO

|

s
Low
ORDER BIT OF -

MULTIPLIER

=12

ADD MULTIPLICAND TO
HIGH ORDER BYTE

(

—|

SHIFT RIGHT I

|

SHIFTED

EIGHT NO

TIMES

NEGATIVE
RESULT

YES

TAKE 2'S COMPLEMENT
OF RESULT

\J

Figure 25

:“ DONE ’

92

SilnLiEs

8X300 Programming Manual

FROG ZAMPLE

S Bt W0 (R I OO PR A RN

e

SUBRERSY s VRN) I SR I AN =

=

N .L'. O (TG

[N s N

(AL) BN I Y |

+TOTAL

R C s S Y

AT I I oY

D011
onglz
oontE s
oonlgd 1
non1ts =

D001 s
o017

LN EV I O R B N S ¢

ES]
noogz
Ooogz
IIE TS
noods

[N R ' N RO)

e

e

I 0G0 e O

L
ool

01700

nooony
anoil

ni
nnnnt
oo
onon
0z70n0

DS00s

noont

nznnz

HENEY
03 02s

REZEZEMELY

ERRORE

[

* v eee

cOomez

EHIFT

EMDL

"

©HMIT

PROGRAM LISTING

JIV N K

-EMELER “ER 1.0 PRSE 1

*30

[

FROS ZHAMPLE
FROC MULzx:z

MCLIE FROCEDURE TO MULTIPLY TwWO 2 EIT 2°3
COMPLEMENT MUMEERE TO GEMERATE A
1e~EBIT REZULT.

MMIT
MIT
MIT

‘TEZT DFERAMDY ZIGH,

AMD
Or=

FOZITIVE.
MEGATIVE.
cOome OPERAMDL.

|D—‘~L]Il—|’

- ;‘_ﬁ i;l_'l o 4—:- — »—: (1] :: -

-<TEZT OFERAMDZ =1

]
=z
.

COMe ORERAMDE.
=OR
“MIT
A0D
IS
LoW ORDER EIT 17
M
HZT
Ame
MOWVE
AOL
H=MIT
SHI
=MIT
AMD

YEEZ. ADD MULTIFLICAMD,

THIFT FPARTIAL.
FRODUCT FISHT.

DOME?

1]

MELER “ER 1.0 FRIZE

A0 Fl.R1
MOWE O%F s AL

ETH
EMD]
EMD ZAMPLE
0

Figure 26

Sifnetics 93

8X300 Programming Manual

PROCEDURE NAME: SORT

Registers And Their Logical Function:

G 1D iption: R1 This register is used to pass the lower boundary ad-
ene!'a escrip 'on_' dress to the procedure. In the course of execution,
SORT is a procedure which sorts the contents of a block of this value is cHanged to its 2's cdmplement

Working Storage locations into descending order. That is, R2 This register is used to pass the upper boundary ad-
the data is sorted so that as the Working Storage address- dress to the procedure. In the course of execution

es increase, the value of the contents decrease. The this value is changed to its 2's complement ’
boundaries of the block are set by the main program. The R3 This register is used to hold the current address, N.

lower address boundary must be glaced inR1. The high ad- R4 This register is used to hold the current contents of N
dress boundary must be placed in R2. The high address which is denoted as (N)

bo_undary n_1ust t?e placed in R2. The block must be con- R6 This register is used as a scratchpad to hold a variety
tained within a single memory page and that page must be of temporary results

selected by the main program. The contents of the block)

are treated as 2's complement numbers. See Figure 27 for Timing:

the flow chart and Figure 28 for the program listing.

Memory Requirements:
Program Storage: 47 words
Working Storage: None

1t is difficult to compute the exact timing for this procedure.
Six microseconds per byte sorted is a realistic average
time.

Calls On Other Library Procedures: None

SORT FLOW CHART

/

I SET N = THE LOWER LIMIT]

Y

NEGATE THE UPPER AND
LOWER LIMITS

Do
(N)
AND (N* 1)
HAVE SAME
SIGN

A
NO YES NO
T - YES
® »| INCREMENT |
N -

Figure 27

YES

SWAP THE CONTENTS
OFNANDN*1

! {

DECREMENT
N

94 Sifnotics

8X300 Programming Manual

PROG

QN TN B B8 (O) [O P I ST

L0 =0 T O a0 M) e

=

fu

4

OO G0 G T To T To o Pt T N Tis T st bt bt bt bt b e et pt et

=
9
0
1
IS
2

I RO A

R RE RN IS Bn VRN) I O I K

[

KON i o o e o o do o o o o) Lo)

£

n

R A B SN |

s PR OB O n SO ORI IR IO I

LS B S O (N

+TOTAL

‘ROG 2

ZIAMPLE

o e Gl e (T

anany

oooin
oont
aootz
non1z
aootgd =

[= 1y

(3]
=
—
=
=

[
fowe
T
i

[R O N |

annnt
QT 05

on
£
=

1
0
n
i
It
aoont
0E7 08
D010
0SS

R EYEL RN

e
oong 1
oo
nongdz
nongdd
nonds

—

=3
=
=

Y

=
=
= =

=

IR RN N S | |

Lo}
=
=

onosgd 0
ooass 7
oonss 7

RZZEMELY ERRORZ

L2 20 2N 2R K B 3% 2

JUL NS
ZIGH
ZTART

MENTH

CHELCE

Zhige

DECH

noME

PROGRAM LISTING

AREZZEMELER YER 1.0 FRSE 1

MCLIE PROCEDURE TO 20RT THE
COMTENMTE OF A BLOCK OF WORKING
ETORAGE LOCATIONE INTO DEZCEMDIMG
OFRDER.

BT
F: I l'..l
MOYE
AMIT

AOR
MOYVE
MOVE
OrG
AMIT
800
AHD
MOVE
“0R
Ors
HET
=MIT
0L
=0R
{00
=“MIT
HHD
ami
NMZT
Osi

DES I

CH+1xr.

= or+1y MOW
(M —M+L

IH AL,
HOW IM &5,

BE=0. IF JHr=i0M+10.

ADT IMCREMEMT M.
MOYE

MOWE

MOWE AL=—UFPFPER LIMIT.

RE=M-RZ.

AnD
AMIT
M-R2 MUZT EE < = 0,
RE=0 IF M=RZ.
All==ZI6GH OF dM+1>.
AME

MOVE Re=iM+1n.
MOVE Rds DAY

MOVE RI, IVE ENAELE M.

MOYE R&s DMy

MOVE ElsALE

ADD

*3 VER 1.0

n
I
i
m

(]

MELEF

MZT
HMIT

RS DECH
1s AL
Mgl MERTH
AMIT —1.ALE
AL L)

MOYE R3s IVR
MOYE DMYsR4
JME - TEST

RTH
EMD
END

=0RT
EZAMPLE

Figure 28

Sifnntics 95

SIGNETICS
HEADQUARTERS

811 East Arques Avenue
Sunnyvale, California 94086
Phone: (408) 739-7700

ALABAMA
Huntsville

Phone: (205) 533-5800
MIIZIINA

Pnone (602) 265-4444
CALIFORN
ln;lawuo

Phone (213} 670-1101

Phone (714) 833 8980

(213)
San

Phone (714) 560-0242
Sunnyvale

Phone (408) 736-7565
Woodland Hills

Phone: (213) 340-1431
COLORADO
Aurora

Phone: (303) 751-5011
FL(IRID
Pompan

Phone (305) 782-8225
ILLINOIS
Rolling Meadows

Phone: (312) 259-8300
KANSAS
Wichita

Phone: (316) 683-5652
MASSACIIUSEI‘TS

Bedford

Phone: (617) 275-8900
MARYLAN
Columbia

Phone: (301) 730-8100
MINNESOTA
Edina

Phone (612) 835-7455
NEW JER
Cherry ll

Phone (609) 665-5071
Pisca

Phone (201) 981-0123
NEW YOR!
Wappmxers Falls

Phone: (914) 297 4074

Woodbury,

Phone: (516) 364-9100
0HIO
Worthin,

Phone (614) 888-7143
TEXAS

Dallas
Phone: (214) 661-1296
UTAH

Centervi
Phone 80]) 290-1292

REPRESENTATIVES

ALABAMA
Huntsville
Alpha Marketing
Phone: (205) 533-0766
CALIFORNIA .
San Diego
Mesa gmeenna
Phone: (714) 278-8021
Sherman Oaks
Astralonics
Phone: (213) 990-5903
CANADA
Montreal, Quebec
Philips Electronics
Industries Ltd.
Phone: (515) 342-9180
Ottawa, Ontario
Philips Electronlcs
Industrie
Phone: (613) 237-3131
Scarborough, Ontario
Philips Eléctronics
Industries Ltd.
Phone: (416) 292-5161
Vancouver, B.C.
Philips Electronics
Industries Ltd.
Phone: (604) 435-4411
Winnipeg, Manitoba
Philips Electronics
Industries, Ltd.
Phone: (204) 774-1931
CONNECTICUT
Danbury
Kanan Associates
Phone: (203) 743-1812
FLORIDA
Altamonte Springs
Semtronic Associates
Phone: (305) 831-8233
Clearwater
Semtronic Associates
Phone: (813) 461-4675

96

GEORGIA

Atlanta
Alpha Marketing
Phone (404) 231-0534
ILLING
Chnca;o

L-Tec, Inc.

I;hone: (312) 286-1500
Fnr(w:yno

Insul-Re

Phone: (219) 482 1596
Indlanapohs

Insul-R
Phone: (317) 259 4432
KANSAS

Overland Park

Advanced Technical Sales

Phone: (913) 492-4333
MARYLAND
Baltimore

Micro-Comp.

Phone: (301) 247 0400
MASSACHUSETTS
Reading

Kanan Associates

Phnne: (617) 944-8484
MICHIG,

Bloomfleld Hills
Enco Marketing
Phone: (313) 642 0203
MINNES
Edina
Mel Foster Techmcal Sales
Phone (612) -2252
MISSOUR

st I.ou-s
Advanced Technical Sales
Phone: (318) 567-6272
NEW JERSEY
Haddonfield
Thomas Assoc., Inc
Phone: (609) 854- 3011
NEW MEX
Alhunuerque
The Staley Company, Inc.
Phone:(505) 292-0060
NEW YORK

Ithaca
Bob Dean, Inc.
Phone: (607) 272-2187
NORTH CAROLINA
Cary
Montgomery Marketing
Phone: (919) 467-6319
Charlotte

Montgomery Marketing
Phone: (704) 535-2400
OHIO
Centervme
Norm Case Associates
Phone: (513) 433-0366
Rocky River
Norm Case Associates
Phone: (216) 333-4120
OREGON
Portland
Western Technical Sales
Phone: (503) 297-1711
TEXAS

Austin
Cunningham Company
Phone: (512) 459-8947
Dallas

Cunningham Company
Phone: (214) 233-4303
Houston

Cunningham Company
Prhone: (713) 683-7231

UTA|
West Bountiful
Barnhill Five, Inc.
Phone: (801) 292- 8991
WASHINGTON
Bellevue)
Western Technical Sales
Phone: (206) 641-3900
WISCONSIN
Wauwatosa

L-Tec, Inc.
Phone: (414) 774-1000

DISTRIBUTORS

ALABAMA
Huntsville
Hamilton/Avnet Electronics
Phone: (205) §33-1170
Pioneer Electronics
Phone: (205) 837-3300
ARIZONA
Phoenix
Hamilton/Avnet Electronics
Phone: (602) 275-7851
Liberty Electronics
Phone: (602) 249-2232
CALIFORNIA
Costa Mesa
Avnet Electronics
Phone: (714) 754-6051
Culver City
Hamilton Electro Sales
Phone: (714) 558-2183
El Segun
leerty Electromcs
Phone: (213) 322-8100

Irvine
Schweber Electronics
Phone: (714) 556-3880
Mountain View
Elmar Electronics
Phone: (415) 961-3611
Hamilton/Avnet Electronics
Phone: (415) 961-7000
San Diego
Hamilton/Avnet Electronics
Phone: (714) 279-2421
Liberty Electronics
Phone: (714) 565-9171
Sunnyvale
Intermark Electronics
Phone: (408} 738-1111
CANADA
Downsview, Ontario
Cesco Electronics
Phone: (416) 661-0220
Zentronics
Phone: (416) 635-2822
Mississauga, Ontario
Hamilton/Avnet Electronics
Phone: (416) 677-7432
Montreal, Quebec
Cesco Electronics
Phone: (514) 735 5511
Zentro
Phone: (514) 735 5361
Ottawa, Ontario
Cesco Electronics
Phone: (613) 729-5118
Hamilton/Avnet Electronics
Phone: (613) 226
Zentronic
Phone: (613) 238 6411
Quebec City
Cesco Electronics
Phone: (418) 524-4641
Vancouver, B.C.

Bowtek Electronlcf (io Ltd.

Phone: (604) 73
Ville St. Laurent, Quebec
Hamllton/Avnet Electronics
Phone: (514) 331-6443
COLORADO
Commerce City
Elmar Electronics
Phone (303) 287-9611

Hamllton/»\vnet Electromcs
Phone: (303) 534-12
CONNECTICUT
Danbury
Schweber Electronics
Phone: (203) 792-3500
Georgetown
Hamilton/Avnet Electronics
Phone: (203) 762-0361
amden
Arrow Electronics
Phone: (203) 248-3801
FLORIDA
Ft. Lauderdale
Arrow Electronics
Phone: (305) 776-7790
Hamilton/Avnet Electronics
Phone: (305) 971-2800
Hollywood
Schweber Electronics
Phone: (305} 927-0511
Melbourne
Arrow Electronics
Phone: (305) 725-1480
Orlando
Hammend Electronics
Phone: (305) 241-6601
GEORGIA
Atlanta
Arrow Electronics
Phone; (404) 455-4054
Schweber Electronics
Phone: (404) 449-9170
Doraville
Arrow Electronics
Phone: (404) 455-4054
Norcross
Hamilton/Avnet Electronics
Phone: (404) 448-0800
ILLINOIS
Chicago
Arrow Electronics
Phone: (312) 893-9420
Bell Industries
Phone: (312) 982-9210
EIK Grove
Schweber Electronics
Phone: (312) 593-2740
Schiller Park
Hamilton/Avnet Electronics
Phone: (312) 671-6094
INDIANA
Indianapolis
Pioneer Electronics
Phone: (317) 849-7300
KANSAS
Lenexa
Hamilton/Avnet Electronics
Phone: {913) 888-8300
MARYLAND
Baltimore
Arrow Electronics
Phone: (301) 247-5200

Gaithersburg
Pioneer Washington
Electronics
Phone: (301) 948-0710
Schweber Electronics
Phone: (301) 840-5900
Hanover
Hamilton/Avnet Electronics
Phone: (301) 796-5000
MASSACHUSETTS
Waltham
Schweber Electronics
Phone: (617) 890-8484
Woburn
Arrow Electronics
Phone: (617) 933-8130
Hamilton/Avnet Electronics
Phone: (617) 933-8020
MICHIGAN
Livonia
Hamilton/Avnet Electronics
Phone: (313) 522-4700
Pioneer Efectronics
Phone: (313) 525-1800
Troy
Schweber Electronics
Phone: (313) 583-9242
MINNESOTA
Bloomington .
Arrow Electronics
Phone: (612) 887-6400
Eden Prairie
Schweber Electronics
Phone: (612) 941-5280
Edina
Hamilton/Avnet Electronics
Phone: (612) 941-3801
MISSOURI
Hazelwood
Hamilton/Avnet Electronics
Phone: (314) 731-1144
NEW MEXICO
Albuguerque
Hamilton/Avnet Electronics
Phone: (505) 765-1500
NEW YORK
Buffalo
Summit Distributors
Phone: (716) 884-3450
East Syracuse
Hamilton/Avnet Electronics
Phone: (315) 437-2642
Farmingdale, L.1.
Arrow Electronics
Phone: (516) 694-6800
Rochester
Hamilton/Avnet Electromcs
Phone: (716) 442-7820
Schweber Electronics
Phone: (716) 424-2222
Westbury, L.1.
Hamilton/Avnet Electronics
Phone: (516) 333-5800
Schweber Electronics
Phone: (516) 334-7474
NEW JERSEY
Cedar Grove
Hamilton/Avnet Electronics
Phone: (210) 239-0800
Cherry Hill
Milgray-Delaware Valley
Phone: (609) 424-1300
Moorestown
Arrow/Angus Electronics
Phone: (609) 235-1900
Mt. Laurel
Hamilton/Avnet Electronics
Phone: (609) 234-2133
Saddlebrook
Arrow Electronics
Phone: (201) 797-5800
Somerset
Schweber Electronics
Phone: (201) 469 6008
PENNSYLV
Horsham .
Schweber Electronics
Phone: (215) 441-0600
Pittsburgh
Pioneer/Pittsburgh
Phone: (412) 782-2300
NORTH CAROLINA
Greensboro
Hammond Electronics
Phone: (919) 275-6393
Pioneer Electronics
Phone: (918) 273-4441
Raleigh .
Hamilton/Avnet Electronics
Phone: (219) 829-8030
OKi0
Beechwood
Schweber Electronics
Phone: (216) 464-2970
Cleveland
Arrow Electronics
Phone: (216) 464-2000
Hamilton/Avnet Electronics
Phone: (216) 461-1400
Pioneer Standard Electronics
Phone: (216) 587-3600

Sil[ntiES

Dayton
Hamiiton/Avnet Electronics
Phone: (513) 433-0610
Pioneer Standard Electronics
Phane: (513) 236-9900
Kettering
Arrow Electronics
Phone: (513) 253-9176
OKLAHOMA
Tulsa
Component Specialties
Phone: (918) 664-2820
TEXAS
Dallas
Component Specialists
Phone: (214) 357-6511
Hamilton/Avnet Electronics
Phone: (214) 661-8204
Quality Components
Phone: (214) 387-4949
Schweber Electronics
Phone: (214) 661-5010
Houston
Component Specialists
Phone: (713) 771-7237
Hamilton/Avnet Electronics
Phone: (713) 780-1771
Quality Components
Phone: (713) 772-7100
Schweber Electronics
Phone: (713) 784-3600
UTAH
Salt Lake City
Alta Electronics
Phone: (801) 486-4134
Hamllton/Avnet Electromcs
Phone: (801) 972-
WASHINGTON
Bellevue
Hamilton/Avnet Electronics
Phone: (206) 746-8750
Liberty Electronics
Phone: (206) 453-8300
WISCONSIN
Milwaukee
Arrow Electronics
Phone: (414) 764-6600
New Berlin
Hamilton/Avnet Electronics
Phone: (414) 784-4510

FOR SIGNETICS
PRODUCTS
WORLDWIDE

ARGENTINA

Fapesa Ly.C.
Buenos-Aires
Phone: 652-7438/7478

USTRIA
Osterreichische Philips
ien
Phone: 93 26 11
AUSTRALIA
Philips Inﬂustnes-ELcoMA
Lane-Co S.W.
Phone: (02) 427-0888
Queensland
Brisbane
(07) 277-3332
South Australia
Adelaide
{08) 223-4022
Victoria
Melbourne
(03) 699-0300
Western Australia
Perth
(09) 277-4199
BELGIUM
M.B.L.E.
Brussels
Phone: 523 00 00

BRAZIL
1brape, S.A.

Sao Paulo

Phone: 284-4511
CANADA
Philips Electron Devices

Toronto
Phone: 425-5161

CHILE
Philips Chilena S.A.
Santiago
Phone: 39-4001
COLOMBIA
Sadape S.A.
Bogota
Phone: 600600
DENMARK
Miniwatt A/S
Kobenhavn
Phone: (01) 69 16 22
FINLAND
Oy Philips Ab
Helsinki
Phone: 17271

FRANCE
RI.C.

Paris

Phone: 355-44-99
GERMANY
Valvo

Hamburg

Phone (040) 3296-1
HONG KONG
Phn}l{ms H}?ng Kong, Ltd.

ong Kong
Phone: 12-245121
INDIA
Semiconductors, Ltd,
(REPRESENTATIVE ONLY)

INES|
P. T. Philips-Ralin Electronics
Jakarta
Phone: 581058
IRAN
Berkeh Company, Ltd.
Tehran
Phone: 831564
ISRAEL
Rapac Electronics, Ltd.
Tel Aviv
Phone: 477115-6-7
ITALY
Philips S.p.A.

Milano
Phone: 2-6994
JAPAN
Signetics Japan, Ltd.
Tokyo
Phone: (03) 230-1521
KOREA
Philips Elect Korea Ltd.
Seoul
Phone: 44-4202

MEXICO
Electronica S.A. de C.V.

Mexico D.F.

Phone: 533-1180
NETHERLANDS
P|IlE|lDdS Nenerland B.V.

n

Phone (040) 793333
NEW ZEALAND
Phlllps Electrical Ind. ELCOMA

Auckland

Phone: 867119
NORWAY
Electronica A.S.

Dslo
Phone: (02) 15 05 90
PAKISTAN
Elmac Ltd

Karachi

Phone: 515-122
PERU
Cadesa

Lima

Phone: 628599
PHILIPPINES
Philips Industrial Dev., inc.

Makata-Rizal

Phone: 868951-9
SINGAPORE /MALAYSIA
Philips Singapore Pte., Ltd.

Singapore

Phone: 538811
SOUTH AFRICA
E.D.A.C. (PTY), Ltd.

Johannesburg

Phone: 24-6701-3
SPAIN
Copresa S.A.

Barcelona

Phone: 329 63 12
SWEDEN
Elcsl:ma AB.

Phone: 08/67 97 80
SWITZERLAND
Phi'lﬂs A.G.

Phone: 01/44 22 11
TAIWAN
Philips Taiwan, Ltd.

Taipei

Phone: (02) 551-3101-5
TH ND
Saeng I;(hong Radio, Ltd.

Bangko

Phone: 252-7195, 252-7395
UNITED KINGDOM
Mullard, Ltd.

London

Phone: 01-580 6633
UNITED STATES
Signetics Internatmnal Corp.

unnyvale, California

Phane: (408) 739-7700
URUGUAY
Luzilectron S.A.

Montevideo

Phone: 9143 21
VENEZUELA
Industrias Venezolanas
Philips S..

Caracas
Phone: 360-511

SiNDLCS

a subsidiary of U.S. Philips Corporation

Signetics Corporation

PO. Box 9052

811 East Argues Avenue
Sunnyvale, California 94086
Telephone 408/739-7700

November 14, 1978

Dear Field Sales People;

The 8X300 Programming Manual has a few errors in its present form.
Please note the changes 1isted below. Thank you.

Larry Leppert

-- 8X300 PROGRAMMING MANUAL ERRATA --

PAGE NO. 33:
Under the boldface type in the upper right corner which reads "Add

Instructions -- Op Code 1", the next line should read "Add, Register,
IV Bus" instead of "Add, IV Bus, Register."

PAGE NO. 34 and 36:

Have been interchanged; that is, the text on page 34 should appear

on page 36 and the text on page 36 should appear on page 34. In
addition, on the existing page 36, the Tine in the upper left corner
which reads "Add, Register, IV Bus" should read "Add, IV Bus, Register."”

PAGE NO. 75:

The assembler notation in the upper right corner should read "XMIT
053H, IVL", instead of "XMIT 027H, IVL." The result should refer to
"the byte at address 538" rather than "the Byte at Address 278.“

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	_01

